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Abstract

This thesis presents a measurement of the proton diffractive stmcture function
in ep deep inelastic scattering at HERA using the ZEUS detector. The events used
in the analysis are characterized by a gap in pseudorapidity between the diffractively
statte red proton and the rest of hadronic System. The proton diffractive structure
function F2 •" is measured äs a function of xj> (momentum fraction of the proton
carried by the pomeron), of ß (momentum fraction of the pomeron carried by the

struck quark) and of Qz. The data confirm factorization of F2 ^(xgt^ß, Q2) to the
pomeron flux factor and to the pomeron structure function. The xp dependence of
F^| •" in all ß and Q7 bins has the same form (xF)b where 6 = -1.25 ± 0.07(stat)±
0.09(sys). The ß dependence of the pomeron structure function F*(ß,Q*) requires
both a hard and a soft component for the quark content of the pomeron. For fixed
ß values the data approximately scale with Q3. This also supports the idea of
the pomeron in the diffractive ep deep inelastic scattering behaving effectively äs a
particle, which consists of point-like constituents.
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l Introduction

Our present understanding of the structure of matter has been established in early fixed
target lepton scattering experiments. On the basis of the results from these experiments
the theory of strong interactions, Quantum Chromodynamics (QCD), was developed. The
theory describes interactions between quarks and gluons in hadrons.
In 1992 the new electron-proton collider HERA (Hadron Elektron Ring Anlage) at DESY
(Deutsches Elektronen SYnchrotron) in Hamburg has been put into Operation. HERA
provides collisions between 26.7 GeV electrons and 820 GeV protons. The energy avail-
able in the center of mass System, 296 GeV, is one order of magnitude higher than the
one at previous fixed target experiments. This new energy ränge allows to measure the
structure of the proton at Bjorken x down to ~ 10~4, which is two Orders of magnitude
smaller than previously.
Presently two experiments, Hl and ZEUS, are performed at the HERA collider. First
results from the two collaboratJons concerning deep inelastic scattering cross section and
proton structure function have been already published [l, 2). Recently both collaborations
have observed in the deep inelastic scattering (DIS) event sample a fraction of events with
a large gap in pseudorapidity between the scattered proton and the hadronic activity in
the calorimeter [3, 4). This class of DIS events can be explained by the hypothesis that
the DIS process involves the interaction of the virtual photon with a colorless object in
the proton like the pomeron. Evidence for a partonic structure of the pomeron was first
observed by the UA8 Collaboration [5].
This thesis presents the general characteristics of events with large rapidity gap and the
method and the measurement of the proton diffractive structure function, the pomeron
flux factor and the pomeron structure function, using the ZEUS detector.
In Section 2 we present a brief description of the QCD and general characteristics of Stan-
dard and diffractive deep inelastic scattering processes. The most populär modeis of the
diffractive scattering are also reviewed. General design parameters of the HERA collider
and a description of the relevant in this analysis ZEUS detector components are presented
in Section 3. The Section 3 explains also the method of the luminosity measurement in
the ZEUS experiment and the ZEUS trigger and data acquisition system. Different re-
construction methods of the kinematic variables at HERA are compared in Section 4.
The Monte Carlo Simulation and reconstruction programs are described in Section 5. Se-
lection cuts used to obtain a clean DIS sample and to extract the diffractive subsample
are presented in Section 6. In that Section we also explain methods of estimating and
removing main background sources from the data sample. A general characteristic of the
inclusive properties of the diffractive events are reviewed in Section 7. The contribution
of diffractive events to the total DIS cross section is evaluated. Data are compared with
the MC predictions. In Section 8 we present the method used to unfold the data and to

extract the diffractive structure function of the proton. The measured F3 (xp,/3,Q2)
is then factorised to the flux of pomerons in the proton and to the pomeron structure
function. A summary of the results presented in this thesis is given in Section 9.



2 Diffractive ep deep inelastic scattering

2.1 Deep inelastic scattering

One of the methods of testing QCD äs probing the parton structure of a nucleon with
a pointlike lepton. In ep deep inelastic scattering (DIS) at high energies the electron
interacts with the constituents of the proton. The effective probe of the structure within
the nucleon is the exchanged virtual vector boson carrying the four-momentum <?, where
—g2 = Q2 > 0. The resolving power of this probe is the wavelength l/Q (we assume
Ä = c = 1) and so the degree of structure revealed increases with Q2. The DIS at small
Bjorken x is probing the parton distributions in the proton in a limit where the momentum
fraction carried by a parton is very small. The understanding of the parton distributions
in that limit is one of the most interesting problems in QCD [10, 11],
In most cases the proton breaks up during the interaction and many particles are produced
in the final state. We can distinguish two different types of ep DIS:

e + p —> e + X and e + p —* v + X

where X represents the hadronic final state. The first reaction is known äs a neutral
current (NC) DIS, because the intermediate vector boson is neutral (7,Z°), whereas in
the second process, so called charged current (CC) DIS, the intermediate vector boson is
charged (W*) and the initial electron converts to a neutrino.
In the following we will restrict to the NC DIS processes, where the momentum transfer is
high (Q2 ^> A2). We confine our discussion to the case where only a single virtual photon
is exchanged, because this process is most significant at HERA energies. The analysis is
also restricted to collisions with unpolarized beams.

2.1.1 Kinematics in DIS

A schematic view of the NC DIS is shown in Fig 2.1. The incident electron carrying
a four—momentum k is scattered off the proton with a four-momentum p through the
exchange of a single virtual photon whose four-momentum is denoted by q, The scattered
electron has a four-momentum k' and X denotes the hadronic final state. The analysis
in this thesis is restricted to the inclusive NC DIS, so we are not interested in identifying
specific particles in the hadronic final state X.

Below we introduce variables describing the DIS kinematics. The virtuality of the
exchanged photon sets the scale of the interaction because the resolution is proportional
to l/|g|. Using the notation given in Fig 2.1 we define:

Q2 = -92 = - ( fc-Jk' )2>0 (2.1)

In fixed target experiments the most useful reference frame was the proton rest frame,
which was simultaneously the laboratory frame (LAB). In the case of colliders both beam



Figure 2.1: Schematic view of ep DIS in one photon exchange approximation.

particles are moving in the LAB frame. This results in a much more higher center of mass
energies which are available (for example the HERA collider is equivalent to the fixed
target experiment with 52 TeV electrons colliding with protons at rest). In the proton
rest frame we can express the four-momentum transfer squared q* by the energy E' and
the polar angle 0 of the scattered electron. Neglecting the mass of the electron we obtain:

in2 (2.2)

In the same frame the energy loss of the lepton reads:

v = lw = E~E' (2-3>
It is useful to introduce two Bjorken scaling variables. The first one reads:

22 -tx = 2P.q-^-s (2'4)
and is interpreted äs the fraction of the proton momentum carried by the struck quark in
the parton model. The second variable:

y= —r = — ~ — (2-5)
fß * K cf Jj \y

is the fraction of the energy lost by the electron in the frame for which the proton is at
rest. In equations (2.4) and (2.5), s, u, t are the commonly used Mandelstam variables.
In particular, s is the center of mass energy squared, which by neglecting the proton mass,
equals:

where E and EP are energies of the electron and proton beams respectively. The invariant
mass of the hadronic final state X is given by:

W2 = (P + 9)2 = Q2 (- - l) + m2p = s + t + u (2.7)

where mp is the proton mass.

The kinematical variables, only two of which are independent, can be determined either
from the scattered electron or from the hadronic System.



2.1.2 DIS cross sections

The simplest DIS cross section that one can measure is the inclusive one, when we observe
only the scattered electron and sum over all final hadronic states. Using the electron
variables, the differential ep DIS cross section reads [13, 14]:

-&- = 2!£W
<KME' g4 E »"

where

f + j f f c + 21

are respectively lepton and hadron tensors. W\^ are Lorentz invariant proton structure
functions of scalar variables Q2 and v in the proton rest frame. It is more convenient,
however, to use Lorentz invariant variables defined in the previous paragraph. The cross
section can be rewritten in the form:

a
V .,. , *•>, O " l ,„ g.

WOJE1/ >)IT2 ' 4 ff l -*• i\-i -6 / *"— 0a\la£/ 4£- sin ^ \

The difFerential DIS cross section can be expressed in difFerent independent variables using
the relations:

(Pa

If large Q2 virtual photons resolve point-like constituents inside the proton then the
structure functions Wi and i/Wa become functions of the single variable x =

Q2) ̂  F^x) (2.11)

, ( f ) -* Fi(x) (2.12)

This property, first postulated by Bjorken [6], and called scale invariance, is experimen-
tally observed [7] for Q2 > l GeV2. In the naive parton model the proton consists of
point-like partons, from which the electron scatters coherently. This model provides an
explanation for the observed scaling behavior. Callan and Gross predicted that for spin
1/2 partons the ratio of structure functions 2xFi/Fy equals one, while for integer spin
partons the ratio would equal zero [8]. The data give evidence for spin 1/2 partons [9].
In terms of quark momentum distributions, the structure function in the naive parton
model can be written äs:

2xFl(x) = F2(x) = £ e2 [xg/(x) + x g f ( x ) ] (2.13)
/

where the sum runs over all flavors /.



If we sum over the momenta of all partons inside the proton we must reconstruct the
total momentum of the proton. Data show that about half of the proton momentum is,
however, carried by something which does not couple to the photon. Quantum Chro-
modynamics (QCD) postulates that the missing momentum of the proton is carried by
gluons. The gluons carry the strong color force and bind the quarks within the proton.
The addition of gluons leads to the F2 scaling violation and the quark densities become
functions of both x and Q2. The Q2 evolution of the parton densities is determined by
perturbative QCD from the Gribov-Lipatov-Altarelli-Parisi (GLAP) equations [15, 16]:

where the strong coupling constant is given by:

The parameter A sets the scale at which perturbative approach is not justified, and n/
denotes the number of quark flavors. The evolution is governed by the P„, P59, Pw, PM

functions which can be calculated within QCD. The lowest order expressions read:

(2.18)

(2.19)

Psg(z) = 6 (i^+r-^- + *(!-*)) (2.20)

The physical meaning of the P functions is the following. The quantity:

(2.21)

is interpreted äs the probability density of finding a quark inside a quark with fraction z
of the parent quark momentum, when the scale at which partons are observed, is changed
by 6Q2, to first order in aa. The term 6(1 —z) corresponds to there being no change in
9(x,C?2).
Due to emission of gluons, quarks are given a transverse momentum and the Callan-Gross
relation is no longer valid. The correlation between both structure functions is predicted
by QCD through the longitudinal structure function FL = F2 — 2xFlt The compact form
of the differential ep DIS cross section in terms of the structure functions F? and FL reads:

(Pff 47TQ2 t/2 l
(l - y + %-)F2(x, Q2) - =y2FL(x, g2) | (2.22)

£ £t
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Figure 2.2: F2 proton structure function for some recent parton parameterizations. 1993
ZEUS data are also shown.

Assuming that the efFect of the F& term is small we can rewrite the cross section in the
simple form:

[' + ('-'
The QCD provides an Interpretation of the cross section in terms of quark densities.
However, QCD predicts only the Q2 evolution of the parton distribution, but does not
provide any particular form of them. There are many different predictions of the F^
proton structure function. They are based on the fits to the data with some theoretical
assumption. A few of these parameterizations are presented in Fig. 2. 2.

2.2 Diffractive hard scattering

In the Standard ep DIS (standard means the type of DIS described in the previous para-
graph), a quark or a gluon is scattered off the proton and it leaves a colored proton
remnant because the struck parton itself carries color. There are color strings between
the hard scattered partons and the remnant of the proton. This is schematically shown
in Fig.2.3 a,b. The hadronization process combines somehow all colored partons to give
observed, colorless hadrons. Particles produced in that process fill the region between the
hard scattered parton and the proton remnant.
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Figure 2.3: Basic processes for electron-proton and electron-pomeron deep inelastic scat-
tering: a) Lowest orderö (ctem) process in ep DIS, b) Gamma-gluon fusion O (ctemcta) in
ep DIS, c) Lowest orderö (aem) process in eJP diffractive DIS, d) Gamma-gluon fusion O
(aem&s) in elP diffractive DIS. The color string is indicated on the pictures. Because the
pomeron is a colorless object there is no color flow between diffractively scattered proton
and particles from the hard interaction.

However there is a fraction of events in ep DIS which have a large gap in pseudorapidity1

between the scattered proton and other hadrons. These events cannot be fully explained
by Standard ep DIS, because in Standard DIS the gap can be produced only by QCD
fluctuations of the hadronization process. They should appear very seldom, because they
are exponentially suppressed2.

Pseudorapidity of a particle scattered at the angle 0 equals to rj = — In tan |.
2If we define Ar; äs a difference between the pseudorapidities of the proton remnant and the struck

parton, than A»7 ~ In l/x. In the hadronization process, however, the mean number of produced particles
{n/,} increases faster with l/x äs the ATJ. If we assume Poisson distribution in rj for the produced hadrons,
the probability that there are no particles in the gap Ar? is proportional to exp (—(n/,)).



Events with large rapidity gaps could be explained by diffractive scattering through an
exchange of a colorless object with vacuum quantum numbers, called pomeron. One
can imagine that the proton emits a pomeron and that the electron is scattered off the
pomeron. In this approach there is no color flow between the scattered proton and the
struck parton. Particles resulting from the hard scattering are therefore separated in
pseudorapidity from the fast moving proton. This is schematically shown in Fig.2.3 c,d.
The formal definition of diffractive processes proposed by Bjorken [17] reads:

A processes is diffractive if, and only if, there is a large rapidity gap in the
produced particle phase space which is not exponentially suppressed.

2.2.1 Kinematics

A schematic view of the diffractive DIS is shown in Fig.2.4. Assuming that diffractive DIS
holds through an exchange of the pomeron we have two distinct vertices. The pomeron-
-proton vertex is characterized by a four-momentum transfer squared t — (p — p)2 from
the initial to the scattered proton and by the fraction xp of the longitudinal momentum
of the proton carried by the pomeron. t is also the invariant mass squared of the pomeron.
This vertex can be described by the flux f p / p ( x p , t ) of pomerons in the proton.
The second vertex, 7*-pomeron, is characterized by the invariant mass squared of the
virtual photon, — Q2, and the Bjorken scaling variable:

O2

ß = TJT- (2-24)20 • q

where 6 denotes the four-momentum of the pomeron. ß can be interpreted äs the frac-
tion of the pomeron momentum carried by the struck parton. In order to parameterize
the 7* .P vertex we introduce the pomeron structure function F2p(/3, <22). We call the
pomeron structure function 'hard' when a single constituents carry a large fractions of
the total momentum. If most constituents carry a small fraction of the total momentum
the pomeron structure function is called 'soft'.

The variables ß and XP are connected through the relation:

xBj = ßxp (2.25)

The invariant mass squared of the hadronic final state (without the final state proton) is
given by:

m\ (g + p - p')2 = -Q2 + syxp + t (2.26)

If we neglect t in the last formula, we derive the following expression for ß:

This formula is independent of the microscopic nature of the 7* JP vertex and can be used
in models in which the pomeron is not treated äs a particle.

8
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Figure 2.4: Schematic view of diffractive ep deep inelastic scattering.

2.2.2 Diffractive structure function

In analogy with ordinary DIS we can write the difFractive DIS cross section äs:

dv(tp —* cpX) _ 47TÖ2 f / y2\ ^ n2^. V2 rdiff, , n2

(2.2S)

The effect of the FL ^ term has been studied in reference [18]. It is of importance only
for /? less than 0.1 or for Q2 less than 10 GeV2, and therefore it has been neglected in

this anal\e form:
T -er

this analysis. Neglecting the FL ** term, the difFractive cross section can be written in

diff, . Q -#.
a('^,ß,Q )

where the Standard proton /2 structure function has been replaced by a corresponding

diffractive one, F2 •y, with xp and t specifying the difFractive conditions.

F2 ^ is given in terms of quark densities which under difFractive conditions specify the
probability to find a parton with a momentum fraction x of the original proton momentum.
Assuming factorization these densities are given by the convolution of the probability to
find a pomeron with a fraction xp> of the proton momentum and the probability to find
a quark with a momentum fraction ß in the pomeron:

- ßxP) (2.30)

Integrating over ß and summing over quark flavors we can make the replacement:



The pomeron flux factor can be written äs:

where er(JPp — t X) is the total pomeron-proton cross section. The pomeron structure
function can be expressed in terms of the density distributions for quarks and antiquarks
of flavor / in the pomeron:

F?(ß, Q2) = E «} [ß<lf(ß, Q2) + Mf ( A Q2)} (2-33)

2.3 The pomeron and its phenomenological models

Many authors have proposed several models to explain diffractive interactions in pp and
ep scatterings. In this section we present three difFerent approaches to that problem. The
models differ not only in quantitative predictions, but also in the understanding of the
nature of the diffractive scattering. One of the most important assumption is whether the
pomeron can be treated äs a particle or not. If the pomeron can be considered äs a particle
with an internal structure similar to the one of hadrons, one can speak about pomeron
structure function and imagines that the virtual photon interacts with a constituent of
the pomeron. In this approach, it is even reasonable to consider the diffractive scattering
äs two distinct processes: emission of the pomeron from the proton and deep inelastic
scattering of the electron on the structure of the pomeron. Some models assume that
the whole pomeron interacts with the hadronic fiuctuation of the virtual photon. In this
approach the pomeron is not treated äs a particle and the factorization is strongly broken.
However even in these models one can introduce some effective structure function and flux
of the pomeron.

2.3.1 Ingelman-Schlein model

The idea of Ingelman and Schiein is that the proton couples to a spacelike pomeron and
this pomeron consists of partons [19]. The pomeron is considered äs a quasi-hadron that
can be resolved by the virtual photon.
The model assumes the factorization of the proton diffractive structure function to the
pomeron flux factor in the proton and to the structure function of the pomeron itself.
The pomeron flux factor is defined äs a ratio of single diffractive cross section and the
pomeron-proton total cross section:

l J^ h.t / r t r t „ x
a-£' <2'34)

The parameters in the exponential i-dependence are extracted from hadron data. The
factor 1/Xp with p = l corresponds to the conventional 1/ni^ dependence of diffractive

10



scattering. The total pomeron-proton cross section equals 2.3 mb. The uncertainty of
the flux factor is about 25%.
The model assumes that the pomeron is mainly composed of gluons. However, authors
propose different pomeron structure functions. The two extreme possibilities are:

• ß<lq/p(ß) — f/?(l "~ ß) ~ the pomeron is made of quarks and their distribution is
hard (the pomeron is made of few partons).

• ßgaff>(ß) — 6(1 — /?)5 - the pomeron is dominated by gluons and their distribution
is soft (the pomeron consists of many partons).

The normalization of these structure functions is determined by the momentum sum rule:

£ /' dx */(*) = l (2.35)
»• J0

where the sum runs over all considered flavors. The pomeron is a much smaller object
than a normal hadron. Therefore if the pomeron is essentially a gluonic object, QCD
predicts the occurrence of a gluon recombination [20, 21, 22], which leads to a reduction
of the gluon density äs compared to the conventional GLAP evolution. The recombination
is incorporated in the GLR equation [23].

2.3.2 Donnachie-Landshoff model

The authors use the data from pp and pp experiments [24] to extract the phenomenological
model of the pomeron [25, 26]. They do not propose a QCD based explanation for
diffractive ep scattering. The pomeron is treated like a photon. In particular it couples
to quarks like a C = +1 isoscalar photon.

The coupling of the pomeron to the proton is 3ßQFi(t) [26]. The parameter ßQ(=
1.8 GeV"1) is the coupling constant of the pomeron to quarks and the function Fi(t) is
the elastic form factor which is well parameterized by:

4m*- 2.8* / l y
Fi(i) ~ 4*,; -< (T^T/ÖJ) (2-36)

where mp is the proton mass.

The flux of the pomerons in the proton in this model is:

(2.37)

a(t) is the Regge trajectory of the pomeron, which experiment finds to be:

a(t) = l + c + <*' t, e = 0.085, a' = 0.25 GeV2 (2.38)

11



The pomeron structure function, by analogy to the photon structure function should
have two pieces. There is a part that resembles the structure function of a hadron and
there is a part that is peculiar to the photon. The latter corresponds to the box diagram
and for the pomeron reads:

<7°/P = 0.2/?(1 -ß) (2.39)

The other part of the pomeron structure function resembles the structure function of an
ordinary hadron. Just äs the hadronic piece of the photon structure function is associated
with the vector meson dominance, one expects the hadronic piece of the pomeron structure
function should be dominated by the vector meson /. The nonvalence part of this structure
function reads:

G'/F = 0'02 (-t + 0.35) Ia'(~' + °'36)] " r'(1 ~ ß}5 (2'40)
while the valence part can be approximated by:

5V56(1 - ß) (2.41)

For ß > 0.1 the first term G°/P dominates and the last two terms can be neglected. The
model predicts that the diffractive cross section is a few percent of the total DIS cross
section.

2.3.3 Nikolaev-Zakharov model

The model proposed by Nikolaev and Zakharov [27, 28] assumes the existence of the
perturbative QCD pomeron. The diffractive ep scattering holds äs a photon diffractive
dissociation on the proton. The au t hör s have developed a detailed description of diffractive
DIS in terms of the diffractive excitation of multiparton Fock space of the photon:

|7> = l7We + |W> + !*«> + .» (2-42)

Exchange of the pomeron can be imagined äs an exchange of the two noninteracting and
seemingly uncorrelated gluons. A schematic view of the ep diffractive scattering proposed
by the model is shown in Fig.2.5.

Although the pomeron in this model is not treated äs a particle with a well defined
partonic structure, the authors, however, propose a two-component pomeron structure
function [29], whose both parts evolve according to the GLAP equations, respectively
from the initial valence quark-antiquark and the valence gluon-gluon components. For
these two components the fluxes of the pomeron in the proton are different. This leads
to a specific breaking of the factorization.

Diffractive excitation of the qq Fock state of the photon (we take into account only
transverse photons) reads:

qq)
dtdM2 löTTt=0

12

dz<Pr\^(Q\z,r)\*a(x,rY (2.43)
JO



where fis the transverse Separation of the quark and antiquark in the photon, z and (l — z)
are partitions of photon's lightcone momentum between quark and antiquark. a(x,r) is
the dipole cross section for scattering on the proton target [30], and \$^*(Q2,z,r)\s the
dipole distribution in the photon and was calculated in [31].

One can reinterpret the cross section (2.43) äs DIS on the valence qq of the pomeron.
In that sense the xp and ß dependence can be factorized and we can write down the
convolution representation:

qq)

dtdxp
fftot(pP)

t=o 167T

in which the valence qq structure function of the pomeron is:

= 0.27/9(1 - ß)

and the flux function is defined by:

Fl

(2.44)

(2.45)

. .
'

The authors propose the normalization </»F(X/> = 0.03) = 1.

The second part of the pomeron structure function originales from the gluonic com-
ponent of the pomeron. This part can be approximated by:

= 0-063(1 - (2.47)

The sea component of the pomeron structure function is endowed with the flux factor,
/F(XF), which differs from the <J>P(XP) and reads:

2 3 6 (2.«,

Figure 2.5: Pomeron exchange in the Nikolaev-Zakharov model.
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where the form factor F(*) = z2[/fi(*)2 + zKi(z)K0(z) + |*2Ao(*)2], and //G=0.75 GeV
sets the correlation radius for the perturbative gluons. Functions <j>p(xp) and fp(xp)
can be well parameterized by:

.0 \P l

<!>P(XP), fp(xp) = —
\Xp

(2.49)

with parameters shown in the table:

function

<j>p(xF)

/F(*F)

Pi
0.259
0.58

P2

0.2142
0.48

P3

0.00149
0.0023

Both parts of the pomeron structure function can be evolved with the GLAP equations
taking äs the starting point Q2=IQ GeV. Predictions of the model for both parts of the
structure function and for both flux factors are shown in Fig.2.6 and Fig.2.7 respectively.
Now we can write the formula for the diffractive DIS cross section:

Xp qq)
dtdxp

<*tot(pp)

t=o 167T Q

(2.50)

The authors focused on the forward diiFraction dissociation, t=Q. However, the t—
-dependence of the flux factors in the model is definite and different for valence and
sea parts: <j>p(xp)exp(-Bet\t\) and fp(xp)exp(—B^p\t\)1 where Be/(^ 12 GeV"2) is the
difFraction slope of elastic scattering, whereas B3p(Ä! 6 GeV"2) is the slope connected
with triple-pomeron regime. This leads to a i-dependent factorization breaking. The
f-integrated mass spectrum equals:

O *i\)
167TB3P Q2

where atot(pp)/\^ » 1.8 GeV~2.

The diffractive proton structure function, integrated over i, predicted by the model
reads:

<WPP) l * ,_ 9|g,) (252)
16?r

where

and fftot(pp) — 40 mb.

(2.53)
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Figure 2.6: Predictions ofthe Nikolaev-Zakharov model for flux functions 4>p(xp) (solid
curve) and fp(xp) (dashed curve).
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Figure 2.7: Predictions of the Nikolaev-Zakharov model for the ß and Q2 dependencies of
the components F^{(ßt Q2) (solid curves) and F£a(ß, Q2) (dashed curves) ofthe pomeron
structure function.
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3 ZEUS - a detector at HERA

3.1 The HERA accelerator

HERA is the first electron-proton collider in the world. It is situated at the DESY
laboratory in Hamburg, Germany. The project was authorized in April 1984 and began
Operation for two installed experiments, Hl and ZEUS, in the summer of 1992. HERA
was built by an international collaboration from Canada, China, CSFR, France, Germany,
Israel, Italy, Netherlands, Poland, United Kingdom and the USA.

The electron and proton beams are guided in two separate rings which cross each
other in three experimental halls, two of which are occupied by Hl and ZEUS, and the
third hall has been allocated for HERMES. The layout of the HERA collider is presented
in Fig.3.1. The protons are accelerated up to an energy of 820 GeV with the use of
superconducting magnets. The electron ring uses conventional magnets and störe 30 GeV
electrons. During the running period of 1992-1993 the energy of electrons was limited to
26.7 GeV.
The proton injection System begins with the Proton Linac, where H~ ions are accelerated
up to 50 MeV. Then they are accelerated up to 7.5 GeV in the DESY III Synchrotron.
After stripping off, the hydrogen ions are accelerated to 40 GeV in PETRA II and then
they are injected to HERA where the nominal energy is achieved.
Electrons are first accelerated to 500 MeV in the LINAC II and then up to 7.5 GeV in
the DESY II Synchrotron. Then electrons are transfered to the PETRA II storage ring,
where their energy is increased to 12 GeV. Both, electron and proton bunches spacing in
PETRA is the same äs in HERA. The last step of the accelerating of the electrons take
place in HERA, where they achieve theirs final energy.

Some of the design values of HERA parameters are shown in Table 3.1. For the 1993
data taking, 84 paired bunches were filled for each beam and in addition 10 electron and
6 proton bunches were left unpaired for background studies. The electron and proton
beam currents were typically 10 mA. The proton ring RF frequency was 208 MHz which
resulted in a root mean square proton bunch length of about ±20 cm.

3.2 The ZEUS detector

The main components of the central ZEUS detector are shown in Fig.3.2. In the ZEUS
coordinate System, the initial protons move in the positive z direction. The origin of the
ZEUS coordinate System is defined at the nominal interaction point. The x coordinate
points towards the center of the HERA ring, and the y coordinate points upwards. The
ZEUS detector was designed to fulfill strong requirements on calorimetry, tracking and
particle identification. Due to large momentum imbalance between the incident electrons
and protons, most particles are produced close to the proton beam direction.

In the following only the components used in this analysis are described in detail. A
füll description of the ZEUS detector can be found in [32].
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Figure 3.1: Layout of HERA accelerator with the zoom on the injection scheme.

HERA parameters
Nominal Energy (GeV)
C.M. Energy (GeV)
Maximum Q2 (GeV2)
Luminosity (cm~2s~l)
Circumference (m)
Magnetic Field (T)
Injection Energy (GeV)
Filling Time (min)
Circulating Current (mA)
Number of Bunches
Time between Crossings (ns)
Horizontal Beam Size crx (mm)
Vertical Beam Size av (mm)
Longitudinal Beam Size az (cm)

electron
30

pro ton
820

314
9x 104

1.5 x 1031

6336
0.165

14
15
58

4.65
40
20
163

210
96

0.26
0.07
0.8

0.29
0.07
11

Table 3.1: Design values of the main HERA parameters.
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Figure 3.2: Schematic view of the ZEUS detector.

3.2.1 Central tracking System

The central tracking System consists of the vertex detector (VXD), the central tracking
detector (CTD), the forward and rear tracking detectors (FTD and RTD) and the magnet
coil (MAGNET). This System allows for a precise determination of the primary and
secondary vertices, a good transverse momentum resolution and a reconstruction of tracks
and momenta of charged particles.
The main tasks of the VXD are the measurement of the event vertex, the detection of
short lived particles by reconstructing secondary vertices, and the improvement of the
momentum and angular resolution of charged particles. It is a cylindrical drift chamber
with wires running parallely to the beam. A spatial resolution of 50 //m has been achieved
in the central region of the cell and 150 /xm near the edges. The CTD is used to reconstruct
the direction and momentum of charged particles in the polar angle region of 15° < 0 <
164° surrounding the interaction region. It is also used to measure the energy loss dE/dx
that is used for particle identification. The CTD is a cylindrical drift chamber consisting of
4608 sense wires. The chamber is divided into nine superlayers. Each superlayer is further
divided into cells containing eight sense wires. Five superlayers have wires parallel to the
beam line, and four are stereo layers which have wires with a small angle with respect
to the beam line. The arrangement of wires in one o et an t of the CTD is schematically
shown in Fig.3.3. The position resolution in the z direction is between 1.0 and 1.4 //m.
The design hit resolution in the r — <f> plane is 100-120 /nn. For charged particles that
traverse all nine superlayers, the design momentum resolution is ff(p)/p — (0.005)p@0.016
(for pr in GeV). Forward and rear tracking detectors enable measurement of tracks in
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Figure 3.3: Layout of an octant of the CTD. Sense wires are indicated by larger dots. The
superlayer numbering convention and stereo angle of wires within the superlayer is also
shown.

the very forward and rear directions. The FTD consists of three planar drift chambers.
It provides tracking with a polar angle coverage of 7.5° < 0 < 28°. The RTD in the rear
direction consists of a single drift chamber. It covers the polar region 160° < 0 < 170°.
Each chamber in the FTD and RTD consists of three layers of drift cells perpendicular to
the beam line with fixed wires whose orientations are 0°, +60°, —60°. A superconducting
solenoid (MAGNET) is positioned around the CTD in a 2.8 m long cryostat. It supplies
the magnetic field 1.43 T that bends charged particles in the r — $ plane and hence
allows for a momentum measurement. The influence of the magnetic field on the beams
is compensated by a special superconducting magnet (Compensator) installed behind the
rear calorimeter.

3.2.2 Calorimeter

Good calorimetry was one of the strong requirements for the ZEUS detector. It is essential
for precise measurements of particles energies and positions. An ideal calorimeter should
be able to stop all incoming particles. But in real life the energy of a particle is measured
through conversion of fraction of the initial energy into a visible signal. Incident particle
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interacts with a dead material of the calorimeter producing secondary particles. This is
the so called showering process. Calorimeters can measure energies of both charged and
neutral particles. We distinguish electromagnetic and hadronic showers, and the difference
between them is used to identify the scattered electron.

Electromagnetic showers are produced by incident high energy electrons and photons
due to combined phenomena of bremsstrahlung and pair production. An electron radiates
photons, which converts to pairs, which radiate and produce fresh pairs in turn. This
process continues until the mean energy per particle equals to the definite energy Ec, when
the energy loss by Ionisation becomes important and no further radiation is possible. The
shower will reach a maximum and then cease abruptly. The maximum will occur at:

(31)
( }ln 2

where t is measured in radiation lengths -Y<» and EQ is the energy of the incident particle.
The number of the particles at the maximum is:

^m«x = exp[imaxln2] = ̂  (3.2)
-C/c

In practice the development of a shower consists of an initial exponential rise, a bread
maximum and a gradual decline. However, the above equations indicate the main quali-
tative features of an electromagnetic shower:

(a) the maximum occurs at a depth increasing logarithmically with the primary energy
EQJ

(b) the number of shower particles at the maximum is proportional to EQ,

(c) a total track-length integral is proportional to EQ.

The transverse size of the electromagnetic shower is determined by the Coulomb scat-
tering. In all materials, this spread is of the order of one Moliere unit:

Ä. = 21^ (3.3)
^C

with Ec in Mev. The effective Rm of the electromagnetic parts of the ZEUS calorimeter
is 2 cm.

The physical processes that cause the propagation of a hadronic shower are consider-
ably different from the processes in the electromagnetic shower. In conventional calorime-
ters a large fraction of hadronic energy is dissipated by the excitation or breakup of
nuclei of the absorber material and remains undetected. The ratio of visible energy to
the total energy is called sampling fraction and depends on the type of particle traversing
the calorimeter. The sampling fraction is different for electrons and hadrons. A hadron
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calorimeter is characterized by the ratio of the electron to the hadron response, e/h,
which for an ideal calorimeter should approach one. The calorimeter which fulfill this
requirement is called compensated. Otherwise the response of the calorimeter starts to
be nonlinear with ene'rgy, because the number of produced TTQ'S increases with increasing
energy. Up to now equal response to the electrons and hadrons has been achieved only in
calorimeters made from depleted uranium and scintilator. The energy in hadronic showers
is deposited through the following processes:

(a) electromagnetic cascades, which are the result of the decay of neutral hadrons (TTO)
into photons,

(b) ionisation by charged hadrons that produce an energy loss described by the Bethe-
Bloch equation:

JE1 7 1 T /O™ „2Ä ,2d2\)

/

where / is the ionisation constant of the material.

(c) the hadron nucleus scattering which leads to nuclear breakup and fission; this process
results in energy dissipation,

(d) in material with very high Z (238U), hadronic showers produce a significant number
of neutrons with energies in the MeV ränge. These neutrons are moderated in
energy by elastic collisions with hydrogen in the scintilator. The kinetic energy of
the neutrons is converted into measurable proton-recoil energy. This boosts the
hadron response considerably.

(e) at very low neutrons energies the neutron capture process dominates which yields
delayed gamma radiation and hence the delayed boost of the signal.

The ZEUS calorimeter is divided into three parts: FCAL which covers the azimuthal
region 2.2° < 0 < 39.9°, BCAL covering 36.1° < 0 < 129.1° and RCAL covering 128.1° <
& < 176.5°. Each part consists of modules which are further divided into 20 x 20 cm2

towers. Each tower is longitudinally divided into an electromagnetic (EMC) and hadronic
(HAC) sections. FCAL and BCAL have two hadronic sections while the RCAL has only
one. A tower in FCAL and BCAL consists of four 5 x 20 cm2 EMC cells and two 20 x 20 cm2

hadronic cells (HACl and HAC2). A tower in the RCAL consists of two 10 x 10 cm2 EMC
cells and one 20 x 20 cm2 HACl cells. Each cell is read out by two photomultipliers (PMT)
to provide redundancy and more accurate position measurement within a cell. Each cell
consists of alternating layers of 3.3 mm thick depleted uranium (DU) äs the passive
absorber and 2.6 mm plastic scintilator. äs the active material. The depleted uranium is
an alloy of 98.4% 238U, 1.4% Nb and less than 0.2% 235U. The DU plates are wrapped by
thin sheet of stainless steel in order to reduce noise from the natural radioactivity. This
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Figure 3.4: Layout of the ZEUS FCAL module. The module is partitioned into towers
of SOx 20 cm2 having three sections, an electromagnetic section EMC and two hadronic
sections, HACl and HACS.

efFectively lowers the e/h ratio, but on the other band, neutrons produced in hadronic
showers loose relatively more Ionisation energy in the scintilator. The ratio of the thickness
of absorber to the active material is chosen to achieve a füll compensation and the best
energy resolution.
Under test beam conditions the CAL has an energy resolution &E/E = 0.35/\/£(GeV)

for hadrons and o*E/E = 0.35/\/E(GeV) for electrons.
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3.2.3 Other components

The veto wall and C5 counter advertise particles that enter the detector from the rear
direction. The purpose of the veto wall is to veto upstream beam gas interactions and to
shield the detector against particles from the proton beam halo. The veto wall is a large
iron wall (8x7.6x0.87 m) covered on both sides with scintillation counters. It is located
at z — —748 cm.
The C5 counter consists of two planes of scintilator separated with 5 cm of lead which
surround the beam pipe at z = —315 cm. Lead sheets in front and behind the scintilator
suppress Synchrotron radiation. The C5 counter provides accurate timing measurement
for both electron and proton beams, which is useful for the rejection of the beam gas
interactions.

Apart from the main ZEUS detector, there are the so called small angle detectors
that measure particles emitted at very forward or backward directions, which escape
undetected down the beam pipe.
The leading proton spectrometer (LPS) allows the measurement of forward scattered
protons that have lost only a little of the longitudinal momentum (< 0.3p6eam) and have
small transverse momenta pr < l GeV.
The LPS was not fully instrumented in the 1993 running period and was not used in the
analysis presented in this thesis. However, the LPS will be a very important tool in the
further analysis of diffractive processes.
On the other side of the ZEUS detector one can find the luminosity monitor which allows
for the measurement of small angle photons and electrons. It is described in the next
paragraph.

3.3 Luminosity measurement in 1993

The luminosity, L, is defined by the formula:

N = Lff (3.5)

where 7V is the event rate of the process which has a cross section a. The determination
of the luminosity in the ZEUS experiment is based on the measurement of the rate of
Bethe-Heitler process ep —* e~fp. This process has both clear experimental signature and
a large cross section.
Photons produced in the bremsstrahlung process and secondary electrons are measured in
the luminosity monitor (LUMI). The layout of the luminosity monitor is shown in Fig.3.5.
The LUMI is divided into two parts, the photon and electron branches, which measure
the energy and position of the bremsstrahlung photon and electron, respectively.
The scattered electrons have energies lower than the beam energy and therefore are de-
flected by the magnet system from the nominal orbit. These electrons leave the vacuum
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Figure 3.5: Layout of the luminosity monitor detectors.

pipe through a thin window located at z = —27 m and are detected in the electromag-
netic calorimeter (EDET) positioned at z = —36 m. The bremsstrahlung photons are
not deflected by the magnetic field and leave the beam pipe through an exit window lo-
cated at z = —92 m. They are measured in the photon calorimeter (GDET) installed at
z = -108 m.
Under test beam conditions both electromagnetic calorimeters had a resolution of &E/E =
18.5%/A/J5(GeV). Each calorimeter consists of alternate layers of lead äs absorber and
plastic scintilator äs active material. The photon calorimeter has a depth of 22Ao and
the electron calorimeter has a depth of 21Ao. In both calorimeters after 7X0 the posi-
tion detector is inserted. Each position detector consists of two layers of horizontal and
vertical scintilator fingers. A carbon filter is placed in front of the photon calorimeter to
reduce the fiux of Synchrotron radiation down to a negligible level.
The geometric acceptance of the photons is independent of the photon energy and is ap-
proximately 98%. In contrast, the electron acceptance is energy dependent and is over
70% in the ränge 0.35£e < Ee> < 0.65Ee.

Experiment ally, the luminosity was calculated [33] from the rate of ep bremsstrahlung
events Rep and the luminosity definition formula:

L = (3.6)
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The observed cross section is determined by the convolution of the Bethe-Heitler cross
section (JBU and a probability >4jumj that a bremsstrahlung event will be identified äs a
luminosity event:

&oba = l AlumidcrBH (3.7)

The Integration runs over the whole relevant ränge of photon four-momenta. The brems-
strahlung of beam electrons on the rest gas has the same signature äs the ep brems-
strahlung, but an even larger cross section. It therefore represents a significant background
and has to be subtracted statistically using the electron pilot bunches. Thus the 'true'
rate of the ep bremsstrahlung reads:

Rep = Rtot — kRpHot (3-8)

where Rtot is the total rate of bremsstrahlung events, Rpn0t is the rate measured from the
electron pilot bunches and k is the ratio of the total electron current to that in the pilot
bunches.

For luminosity determination photons with energy greater than 5 GeV were used.
However, for systematic checks this cut value is changed. The main sources of systematic
error in the luminosity measurement are:

• uncertainty in egas background subtraction (estimated error is 0.5%),

• counting errors due to wrong flagging of the 'luminosity events' (estimated errors
are below 0.3%),

• correction for multiple events is less than 0.2%,

• uncertainty of the theoretical cross section (about 1%),

• acceptance error of the photon calorimeter (from MC studies an error of 0.5% is
expected),

• a 1% uncertainty of the photon calorimeter calibration was established.

Since all contribution are independent, therefore errors can be summed up in quadrature
resulting in a 2.5% total systematic error of the luminosity measurement. The integrated
luminosity delivered by HERA and used in this analysis are shown in Fig. 3. 6.

3.4 The ZEUS trigger and the data acquisition system in 1993

At HERA, bunch crossings occur every 96 ns. This time is too short to allow components
to read out data and issue a trigger decision. Most of the triggers come from collisions
between the proton beam and the residual gas in the beam pipe. The selection of inter-
esting events among many background events is performed in three level trigger system,
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Figure 3.6: Luminosity delivered by HERA and accumulated by ZEUS experiment in 1993
running period.

which reduces the rate from about 50k Hz down to few Hz. The schematic view of the
ZEUS trigger and the data acquisition System is shown in Fig.3.7.

The first level trigger (FLT) [34] is designed to reduce the event rate to 1k Hz. For
every bunch crossing, the data from the components are stored in pipeline bufFers for 5 /*s
while the FLT calculations are performed. Each component can have its own local FLT.
The decisions from the local FLT are passed to the global FLT (GFLT) which makes a
final decision. The FLT for DIS events required a logical .OR. of three conditions on sums
of energy in the EMC calorimeter cells:

• either the BCAL EMC energy exceeded 3.4 GeV

• or the RCAL EMC energy, excluding the towers immediately adjacent to the beam
pipe, exceeded 2.0 GeV

• or RCAL EMC energy, including the beam pipe towers, exceeded 3.75 GeV.
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Figure 3.7: Overview of the ZEUS trigger and data acquisition system [35].

27



Additionally, an alternative high transverse energy trigger included DIS events with an
electron in the FCAL. The FLT acceptance rises from about 95% at Q2 = 5 GeV2 to a
value close to 100% for Q2 above 10 GeV2. It was found from a study of independent
triggers that the inefficiency due to bad channels and calibration errors is less than 1%.
The events accepted by GFLT are passed to the second level trigger (SLT). While the
FLT is a hardware trigger, the SLT is a software-based one and runs on a network of
transputers. The SLT has access to a large fraction of data and has more time to make
a decision. The SLT rejects proton beam-gas events using the event times measured in
the calorimeter. It sets an Output rate to about 100 Hz, but without loss of DIS events.
After a positive decision of the SLT, the digitized data from all components are collected
by the ZEUS event builder (EB) and sent to the third level trigger (TLT). The TLT is a
software-based trigger which performs calculations on a farm of Silicon Graphics (SGI)
Workstations. It is designed to reduce the rate to few Hz. The Output rate is limited by
the rate at which data can be written on tapes. The TLT applies stricter cuts on the
event timings and also rejects beam-halo muons and cosmic muons. Events remaining
after these cuts are then selected by individual physics filters. In 1993 there were three
different filters for DIS [36]:

1. Normal neutral current is meant to be an event with a Q2 value that is not very
high, so that the electron is either in the RCAL or in the BCAL. In this case the
FLT bits for the electromagnetic part of the BCAL or the RCAL should be set. In
addition the following cuts were applied:

• £ E — pz + 2£y > 20 GeV, where the sum runs over all calorimeter cells, and
Ey is energy measured in photon calorimeter of the luminosity monitor.

• £ E — pz < 100 GeV. In this case E^ is not included to avoid the loss of deep
inelastic events which overlay with bremsstrahlung events.

2. Very high Q2 neutral current in which an electron enters BCAL or FCAL. In the
latter case the FLT bits could not be set. Since in these events the transverse energy
is very high, it was found that the cut ET > 40 GeV, where ET is calculated from
the calorimeter energy deposits, has an efficiency 100%. In addition '.E — pz' cuts
described above are applied.

3. Charged current events are characterized by a high measured missing transverse
momentum PT due to the outgoing neutrino. The following cuts are applied:

• PT > 9 GeV

• and (Number of tracks > l or EFCAL > 10 GeV)

• and ERCAL < 70 GeV

The TLT result for each event can be read from the first three bits (0-2) of the
ADAMO [44] word TLTEVT_Subtrg(4).
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4 Reconstruction of kinematics at HERA

An accurate reconstruction of kinematic quantities (x, y, Q2, XP, ß) is crucial for struc-
ture functions measurements at HERA. In this section, we present various reconstruction
methods of the kinematical variables for inclusive, difFractive NC DIS. We compare smear-
ings of the kinematical variables and select the best method which we use in following
analysis. The determination of känematical variables was extensively studied in [37].

4.1 Reconstruction methods

The quantities one measures in the experiment are the angles and energies of the final
state electron and hadrons. In DIS the hadron flow is directly related to the kinematics
of the struck quark. In the following we use the notation:

E - Energy of the initial electron
E - Energy of the final electron
6 - Polar angle of the final electron
Ep - Energy of the initial proton
Eq - Energy of the struck quark
7 - Polar angle of the struck quark

Using only the scattered electron energy E and the scattered angle 0 we have:

E'
= l- (1- COS B) (4.1)

) (4.2)

E E' (l +COS0)
Ep 2E-E'(l-cosO) (4'3)

The electron energy scale at ZEUS is understood only at a few percent level due to a
not exact knowledge of the dead material between the beam pipe and the calorimeter.
Recently a method was proposed to correct the energy of the scattered electron [38].

The Jacquet-Blondel method [39] reconstructs kinematics of the ep DIS using the
hadronic vertex (£7, 7). From that method we obtain:

.- P*.) , . 4,
(4-4)

JB
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XJB = iS (4.6)

where the sum runs over all observed final state hadrons. The energy of hadrons is ob-
tained from the energy of the calorimeter cells, and the polar angle of the cell is determined
using the cell center at the face of the calorimeter and the event vertex.

The (mixed) method combines the electron and hadronic methods. The following
equations relate the kinematical variables in terms of the measured quantities:

2/mix = yjß (4.7)

Qm<x = «Lc (4-8)

xmix = ̂  (4.9)

In the double angle method the polar angles of the electron and of the struck quark are
used. The current Jet angle 7 can be obtained by inverting the Jacquet-Blondel variables:

,410)

( '<3Jfl(l - VJB)

Neglecting the vector sum PT of the spectator jet and the jet mass one can show that the
above formula determines the angle 7 which is just the energy weighted average of the
cosines of the particles in the current jet. Using a calorimeter to measure the energy we
obtain:

c - , , .
cos 7= — — — - (4.11)

Z-c^i

where the sum runs over all calorimeter cells not assigned to the scattered electron. Kine-
matic variables can then be determined from the following equations:

, . r,
sin 7 + sin & — sm(v + 7)

( }

2 sin 7(1 + cos

sm 7 + sin & + sin(0 + 7) ,
( )

This method is not sensitive to energy fluctuations of the hadronic System.

The kinematic variables which characterize diffractive scattering for different recon-
struction methods can be determined from the equations:

'meth

Qmeth + mX meth
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11 -\c\)

Pmeth

where subscript meth indicate any particular reconstruction method. For all methods
but the double angle method, the invariant mass of the hadronic System (without the
diffractively scattered proton) is calculated from the energies and angles of the calorimeter
cells using the event vertex. The mass mx DA is obtained from the equation:

* - pl (4.17)

where:
A (4.18)

qLt(1 yDA}
S1IT7

The scattered electron energy determined from double angle method reads:

n7

-sm(0 + 7) ( '

4.2 Smearing of kinematic variables

A sample of MC events (EPDIFFR, see next section) was used to study the smearings for
difFerent reconstruction methods. In Fig.4.1 the smearing is shown from the true values
for reconstruction using the double angle, electron, JB, mixed methods. The plots show
the reconstructed value versus the MC generated value. The same plots after applying
the final selection cuts (see Section 7) are shown in Fig.4.2. One can see that the cuts
select the subsample for which the kinematical variables are measured much more better
than before.

The reconstruction of ß and xp is affected by the poor determination of the mass mx.
The measurement of mx is influenced by the energy and particle loss due to the dead
material in the detector, which is not well simulated in Monte Carlo. Approximately 50%
more hadronic energy is lost in the data then in MC Simulation [40]. Also the calorimeter
noise affects the reconstruction of low m äs s es. The noise results in low energy isolated
cells randomly distributed over tbe whole calorimeter. In this analysis isolated cells with
energies less than 160 MeV for EMC cells and less than 180 MeV for HAC cells were
removed [41].
The resolution in the measurement of the mass mx was simulated in Monte Carlo. Results
are shown in Fig.4.3 for two cases: a) the mass is calculated directly from calorimeter cells;
b) the mass is calculated from the double angle method. In the first case the resolution
is below 20% but the systematic shift is of the order of 20-30%. In the second case the
resolution changes smoothly from 20% for low masses to 50% for high masses, but the
systematic shift is not so dramatic äs previously, thus is still observed. For a better
measurement of the mass mx we have scaled the mass spectrum by a factor of 1.15 to
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reconstruct more precisely the true mean value. The resolution of mass measurement
before and after this correction is shown in Fig.4.4. On the same figure we also show the
Gaussian fit to the mass resolution distributions.

For a precise measurement of the angles, it is necessary to know exactly the event
vertex. The vertex is determined from the combined measurement of tracks in CTD and
in the vertex detector using the program VCTRAK [42]. The reconstructed vertex is used
only if the number of tracks used for vertex determination is greater than or equal to 2
and if the reduced x2 is less than 10. In Fig.4.5 the reconstructed vertex in the data is
compared with the Monte Carlo Simulation. The resolution of about 20 cm comes from
the proton bunch length.

For the analysis performed in this thesis the double angle method has been chosen,
because this method depends only on the measured angles and not energies and gives the
best resolution of the measurement of kinematical variables.
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Figure 4.5: Vertex distribution for Monte Carlo (solid line) and for data (füll circles).
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5 Monte Carlo Simulation

In high energy physics the Monte Carlo (MC) Simulation is necessary to study the de-
tector acceptance and the influence of the resolution on the reconstruction of kinematic
variables. For every experiment, Monte Carlo Simulation programs reflect the complete
chain between particles collisions and the reconstruction of the event. An overview of the
data taking and the MC Simulation chains in ZEUS experiment is schematically shown
in Fig. 5.1. Event generators produce four-momenta of the final particles according to
the desired process in ep scattering. Output from the generator is passed through the
ZEUS detector Monte Carlo Simulation program MOZART. The program is based on the
GEANT [43] Simulation package. The stable particles outgoing from the generator are
traced through the whole detector and the response of each individual subdetector is sim-
ulated. The Output is in the ADAMO [44] data format which is identical to that of ZEUS
real data. The online trigger is simulated using the ZGANA trigger Simulation program.
The raw data and the Output from the MC Simulation are reconstructed using the ZEUS
physics reconstruction program ZEPHYR. This program consists of many individual rou-
tines supplied by different physics groups. During the reconstruction several bits are set,
which then simplify the selection of desired process in real data. More details of detector
(MOZART) and trigger (ZGANA) Simulation codes äs well äs of reconstruction program
ZEPHYR are given in [32].

Two different MC programs were used to simulate the diffractive DIS process. The
model proposed by Ingelman and Schiein was implemented in the POMPYT 1.0 [50] MC
generator. To simulate hard scattering processes the PYTHIA 5.6 [51] MC generator was
used, and the hadronisation process was simulated using the JETSET 7.3 [52] MC pro-
gram. Two sample of events with different pomeron structure functions were generated:
ß<l(ß) = f 0(1 - ß) ~ about 70k events, and ßq(ß) = 6(1 - ß)5 - about 20k events. The
first sample is called hard (HP), and the second one soft (SP). In both cases the flux of
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Figure 5.1: Overview of the data and MC Simulation chains in the ZEUS experiment.
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pomerons in the proton was chosen according to the function:

/P/P(SP,*) = ^—(3.19e8i + 0.212e3*) (5.1)2.o Xf>

The model of Nikolaev and Zakharov was implemented in the EPDIFFR [53] MC gener-
ator. The model used in MC is based on reference [28] and slightly differs from the one
described in Section 2. The Monte Carlo code does not use any prescription of the proton
diffractive structure function, and events are generated according to the prescription for
the cross section. However one can express the cross section used in MC program in
terms of the diffractive structure function, which numerical form can be extracted from
the Monte Carlo Simulation. The hadronisation process was simulated using the JET-
SET 7.3 [52] MC program.
In the analysis about 120k events were used. The EPDIFFR generator uses weights to
cover phase space more efficiently. For each event the weight is the cross section computed
for the generated kinematic variables [54]:

d° dt

where £ is any variable or set of variables one uses to describe the process and (RN) is the
generated random number. Cross section predicted by the MC for the simulated process
in a given kinematical ränge reads:

(5.3)

where the sum runs over all generated events. If one wants to compute the cross section in
a ränge smaller than the generation one, the sum of weights should cover only these events
which are in the selected ränge, but the number of generated events in the denominator
should still be the füll one.

Neither of Monte Carlo programs used for Simulation of diffractive events does not
include Simulation of radiative corrections.

To study the DIS background a sample of 200k neutral current DIS events with
Q2 > 4 GeV2 was used. The hard scattering process was generated using the LEPTO 6.1
[45] program. The effects of the initial and final state photon radiation were included
through the HERACLES 4.4 [46] program which was interfaced to LEPTO via the
DJANGO 6.0 [47] program. The parametrisation of the proton structure function accord-
ing to the MRSD'_ [48] prescription was used because it provides a reasonable description
of the proton structure function measured by ZEUS [1]. The hadronisation process was
simulated using the color dipole model äs implemented in ARIADNE 4.04 [49] program.
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6 Data selection

6.1 Selection of diffractive NC DIS events

During the 1993 running period, a total of 2xl06 events were recorded with the DIS
trigger described in subsection 3.5. Events which are written to the data summary tapes
(DST) have to pass the TLT NC filters (normal or high Q"2) for the NC selection and the
TLT CG filter for the charged current selection.
The event selection procedure is designed to recognize events with a scattered beam
electron and to remove remaining beam-gas and photoproduction backgrounds. Electrons
are recognized by the spatial pattern of energy deposition in the calorimeter and by the
ratio of EMC to HAC energies. The first level of NC DIS event selection was performed
during the offline reconstruction of the raw data. Selected events have to satisfy the
following requirements:

1. The event has to pass at least one of the two TLT NC filters (normal or high Q2).

2. The time at which the particles enters the calorimeter cell is extracted from the
pulse of the photomultiplier (PMT). The resolution of the time measurement is ap-
proximately one nanosecond for a few GeV particle. Time offsets on the individual
PMT's are adjusted such that for interactions originating from the nominal interac-
tion point and at the nominal bunch crossing time, the calorimeter cell time equals
zero. A time of the global section of the calorimeter (F/B/RCAL) is calculated äs
an energy weighted average of the individual PMT's.
The calorimeter timing is used to remove the upstream beam-gas interactions. For
instance, the energy deposit in the RCAL from an upstream proton-gas interaction
occurs early compared to the interactions originating from the nominal vertex. The
proton bunch length broadens the time distribution of the particles that enter in
the FCAL. For the ep interactions, the time width of the RCAL is insensitive to the
proton bunch length (electron bunch length can be neglected). But for upstream
proton-gas interactions, both the FCAL and RCAL time distributions are affected
by the proton bunch length.
The following cuts were applied on the timings: \tx\ 6 ns, \tp\ 8 ns, \tp — tn\
8 ns, \tG\ 8 ns.

3. Cosmic muons and further halo muons are rejected using muon finding programs.
The programs (MUTRIG, ALHALO2 [55]) use the time signature and characteristic
energy deposits in the calorimeter to identify the muons.

4. Sparks (the events with sudden discharges between the calorimeter PMT and PMT
shieldJng) and events with no energy deposit in the calorimeter are rejected using
the subroutine RMSPARK [55].

38



5. The quantity 6 = ̂  Ei — pz. + 2£7 has to be greater than 25 GeV, where the sum
runs over all calorimeter cells, and E^ denotes the energy measured in the photon
calorimeter of the luminosity monitor. 8 is calculated forcing the vertex to be at
position z = 0.

After this selection about 3.8xl05 events remained. In order to obtain a clean sample of
DIS NC events, the following final selection cuts are applied to the data sample:

1. A minimum energy is required for the electron candidate, EK > 5 GeV, in order to
have both a high efficiency and purity in the neutral current sample. This cut is
also very effective at removing photoproduction background events.

2. Stricter cuts on timing, \tp — tji\ 6 ns and \tft\ 6 ns were applied to reject beam
related backgrounds and cosmic rays.

3. The requirement ye < 0.95 removes fake electrons in the FCAL. This cut has no
effect for RCAL electrons, since the 5 GeV cut corresponds to a cut on ye < 0.84.
The fake electrons arise primarily from photoproduction background.

4. A cut on yjB is important in reducing the effect of noise on the measurement of
kinematic variables. The yjB cut removes low y events which have migrated to low
x when using the double angle method. We have chosen the cut value of yjß > 0.04.

The angle and energy of scattered electrons which enters the RCAL close to the beam
pipe have is poor determined due to energy leakages. Therefore a 'box' cut on the
reconstructed electron position was applied. The position was reconstructed using
the ELECPO routines [56]. We require that the reconstructed electron position
should satisfy:

\x > 16 cm and \y\ 16 cm

This cut is further justified by the fact that the amount of dead material is very
high in front of the RCAL in this region and is not quite properly simulated in the
Monte Carlo.

6. The DIS accepted events were required to have a measured tracking vertex. The
correct position of the vertex is very important because it influences the angles of
the outgoing particles and hence the reconstruction of kinematic variables. A cut
on vertex position \VZ\ 40 cm was applied.

After this selection about 110k events remained. Diffractive DIS events were selected
using the cut on the maximum pseudorapidity rjmax in the event. T)max is defined äs the
pseudorapidity of the calorimeter condensate with energy greater than E^t that is closest
to the outgoing proton beam direction. A condensate is a set of adjacent calorimeter
cells with an energy deposit above 100 MeV for pure EMC and above 200 MeV for HAC
or mixed energy deposits. The parameter E^t was chosen to be equal 400 MeV. It
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Figure 6.1: Event display of neutral current DIS candidate. Selection cuts described above
were applied.
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Figure 6.2: Event display of a diffractive DIS candidate. Apart of the DIS selection cuts,
the 7}maz cut was applied.
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was proved, however, that changes ±100 MeV do not influence the distributions. After
i?mor < 1-5 cut> 1949 events remained. The cut rjmax < 1.5 selects a pure sample [3] of
diffractive events. The contamination from non-diffractive DIS is small.

6.2 Background estimation

For a correct measurement of the diffractive structure function, we have to estimate
the remaining background in the selected sample, and eventually subtract it. We can
distinguish two different types of background in the diffractive subsample: the background
to DIS and the DIS background to diffractive events. The main sources of background
leading to a fake electron found in the calorimeter arise from photoproduction and beam
interactions with the residual gas. In the case of photoproduction, the scattered electron
escapes down the beam pipe and a false electron is identified from the energy deposits
in the calorimeter. The large cross section for photoproduction makes this background
significant. The second class of background comes from statistical fluctuations of the
hadronization process which lead to the gap in pseudorapidity in the DIS events. In the
following, we present the methods used to estimate the background in the final sample.

6.2.1 Photoproduction background

We have determined the photoproduction background from the data itself by investigat-
ing the 6 distribution. From the shape of 6 äs determined from the Monte Carlo, the
contribution of diffractive DIS events in the S distribution of the data was fitted. The
background contribution from photoproduction events, characterized by lower values of
6, was fitted in the data sample äs well, such that contributions from the two event types
could be disentangled. During the photoproduction background subtraction, all final se-
lection cuts were applied to the data but the 6 cut.
The S distribution for the DIS MC peaks around a two electron beam energy value and
has a radiative tail towards lower values. The shape of the DIS S distribution is well
parameterized [57] by the Gaussi an distribution (with different widths on either side of
a central value) and with an exponential form responsible for the radiative tail. The
phenomenological function used to fit the DIS 6 distribution reads:

6>6yc

-a(S - *r ) + (Pl - f t) exp - c ' * ~

piexp

p2exp

(6-1)
We fit to the data the same functional form but allowing the central value and width to
be different from MC distribution:

data
AßisW =

exp

P3P2 exp

J
6 > 6

~ P2)
(6.2)
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Figure 6.3: Photoproduction background äs estimated from fits to E — pz distributions
in different (XP, Q*) bins. In the right upper corners the percentage of photoproduction
background in selected bin are shown.

We fit the photoproduction background in the data with the Gaussian shape:

(S - «o™)2' (6.3)

which was found to well parameterize the photoproduction events which pass the DIS
selection cuts. The mean value for the photoproduction background was required to be
less than 32 GeV, and the width should be in the ränge between 5 and 10 GeV. For eachi -fr
(XF, Q2) bin used in measurement of F2 •*' the 6 distribution was fitted with the function:

data, (6.4)
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Due to the lack of statistics each bin was integrated over ß, The results of the photo-
production background estimation in each bin are shown in Fig.6.3. One can see that the
6 > 35 GeV cut was chosen optimally to distinguish between DIS and photoproduction
background. Since the photoproduction background is small in comparison to the errors
of the measured structure function, it was not subtracted from data.

6.2.2 Beam-gas interactions

In the selected sample we can also have some background from beam interactions with
the residual gas in the beam pipe. Proton beam gas interactions are very effectively
removed by the calorimeter timing cut, but this cut cannot be used to remove electron
gas interactions, because they do not deposit energy in FCAL. After final selection cuts,
there were only three events from unpaired bunches left, one from proton-gas collision
and two from electron-gas collisions, but only one e-gas event fall into the final bins. One
can estimate the number of background events in the bin using the electron and proton
pilot bunches. The ratio of the electron current in the ep bunches to the current in the
electron pilot bunch is 7.8±1.9, and the ratio of the proton current in the ep bunches to
the current in the proton pilot bunch is 13.0±1.9. These factors mean that the background
from beam-gas collisions is below 1%. An example of electron-gas collision is shown in
Fig.6.4.

6.2.3 Non-diffractive DIS background

The ijmax < 1-5 cut selects quite a clean diffractive sample, nevertheless we have some
contamination of non-diffractive DIS background. This type of background was estimated
from the Monte Carlo studies. The number of DIS events which pass the final selection

cuts was estimated in each (XP, ß, Q2) bin during the extraction of F2 •". Then the
amount of non-diffractive DIS events in each bin was reweighted to the luminosity of the
data and subtracted from the sample. The results are presented in the Section 8. In
Fig.6.5 we show an example of DIS event which passed the i]max < 1.5 cut äs simulated
in MC.

6.2.4 Background from double diffractive events

Since the proton system is not detected with present data, we use the term diffractive to
indicate a single diffractive dissociation of the photon on the proton and double dissocia-
tive events where also the proton dissociate. The events with exited proton states with
mass MN < 4 GeV pass the diffractive selection cuts. From the proton-proton measure-
ments of the ratio of double to single dissociative events it was estimated [63], that the
fraction of double dissociative events in the data sample is of the order of ~ (15 ± 10)%.
This is independent of ß and Q2 and do not vary significantly with
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Figure 6.4: Event display of an electron-gas interaction which passed the final diffractive
selection cuts.
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Figure 6.5: Event display of an example of DIS event (taken from Monte Carlo) which
passed the final diffractive selection cuts.
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7 Characteristics of the diffractive DIS events

In this section we present inclusive distributions of diffractive DIS events. We compare
the data with various Monte Carlo models disregarding the absolute normalization of the
MC, leaving it äs a free parameter to be fitted to the data. The properties of diffractive
DIS events were extensively studied in [58, 59].

7.1 Estimation of diffractive fraction in the DIS cross section

To estimate the fraction of diffractive and non -diffractive events in the DIS data sample
one can use the distribution of the maximum pseudorapidity rjmax. It should be possible
to obtain the distribution of the data äs a weighted sum of diffractive and non-diffractive
parts:

dN dN dN . .
d^ = wdiff MC diff + WDIS,MCDIS (7.1)
u ' /o* ** u'/mai

By minimizing x2 f°r *ne three distribution, we obtain the weights wj-ff&nd IÜD/S- Since
the proton fragmentation region is not well reproduced by MC Simulation, we use one
wide bin for rjmax > 4. That bin is filled in majority by the non-diffractive DIS compo-
nent and it gives very little information about relative contribution of diffractive and
non-diffractive components in the data. Before fitting the data with diffractive and
non-diffractive MC samples, we have to subtract the remaining photoproduction back-
ground (it was estimated to be 7% of the total DIS sample). The photoproduction back-
ground which pass the final DIS selection cuts is concentrated in the proton fragmentation
region (about 80%). For systematic checks, we have tried three different distribution of
the photoproduction background:

(a) all the background events in the proton fragmentation region,

(b) 80% of the background in the proton fragmentation region and 20% equally dis-
tributed among the other bins,

(c) we do not remove photoproduction background.

As an another systematic check, we changed the number of bins in the distributions.
The results are shown in Fig.7.1 and in Table 7.1. The errors shown in the Table 7.1
come from the above systematic checks. In all fits the low rjmax region is not well fitted
because neither NZ nor POMPYT describes the low mass states. The SP model alone
does not describes the real data and was not considered in further analysis. The fraction
of diffractive component in DIS obtained with a mixture of HP (75%) and SP (25%) is
similar to the one determined using the NZ model. The HP model alone predicts a little
smaller fraction. This can be understood because both, NZ and HP models have the
hard component which is responsible for low »?mar, but only NZ model has additional soft
component which is predicted to be —40% of the diffractive cross section.
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Figure 7.1: Contributions of diffractive and non-diffractive components in the DIS data
sample. The open circles represents the contribution from diffractive MC. The filled circles
representa the best estimate ofthe contributions from diffractive and non-diffractive parts.
(a) NZ model, (b) HP model, (c) SP model, (d) HP+SP modei

Diffractive
MC type

NZ
HP
SP

HP+SP

Diffractive
contribution (%)

14.5 ± 1.2
12.2 ± 1.1
39.3 ± 1.2
14.6 ± 1.1

£
dof
27.1
17.3
55.7
22.3

Table 7.1: Contributions of the diffractive and non-diffractive components to the total
DIS cross section.
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7.2 Inclusive properties of events with a large rapidity gap

In this paragraph, we present the main features of large rapidity gap events. The data
shown are uncorrected for detector effects and selection cuts.

We divide the DIS sample into two parts: one with 7jmax < 1-5 and the other with
Vmox > 1-5. The correlation between the invariant mass mx of the hadrons observed in
the calorimeter and the invariant mass WDA of the 7*7? System is shown in Fig. 7. 2. The
diffractive events are characterized by small values of mx in comparison to W D A- The
events span the ränge of WDA from 60 to 270 GeV, and for WDA > 150 GeV are well
separated from the rest of the sample.

The distributions of kinematic variables,
selection cuts are shown in Fig.7.3.

, /?, x, Q2, mx-, W, after applying final

The data are compared with MC predictions of NZ and HP models. The errors on
the data points are only statistical. In general, both models describe the data. But in

J60

100 150 200 250

Figure 7.2: Correlation between the invariant mass mx of the hadrons observed in the
calorimeter and the invariant mass, WDA, ofthe 7*p System. Events with a large rapidity

"n-max < 1.5 are shown äs a big dots, and events with nmax > 1.5 are shown äs points.
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Figure 7.3: Comparison of different kinematic variables of events with large rapidity gap
with Monte Carlo predictions. Hard POMPYT MC - solid line, EPDIFFR MC - dashed
line, ZEUS data - open circles.
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Figure 7.4: Fraction of events with a large rapidity gap, t/mor < 1.5, äs a function
for different ranges of Bjorken XDA- No acceptance corrections have been apptied,

distributions of m^ and /3, can be observed differences. The NZ model fit to the data still
quite well, whereas the HP model does not reproduce the large mx tail and underestimates
the observed number of events at low ß values.

In Fig.7.4 the ratio r of the number of events with rjmax < 1.5 to the total number
of DIS events äs a function of Q^A for three different intervals in Bjorken XDA is shown.
The constancy of r with Q\)A suggests that the production mechanism responsible for the
large rapidity gap events should be a leading twist efFect (the same was observed in the
total DIS sample [60]).
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8 Determination of F2 (xp, ß, Q2)

8.1 Bin selection and acceptances

The bin sizes in XF, ß and Q2 used during the extraction of F2 ^ were chosen to be larger
than the measurement resolutions:

A/? > <T0(xF,ß,Q2) (8.1)
Axp > 0Xp(xP,ß,Q2) (8.2)
AQ2 > vQ*(xr,ß,Q2) (8.3)

The resolution and the systematic shift of XF, ß and Q* after final selection cuts are
shown in Fig. 8.1. The fractional difference between measured and true values is plotted
äs a function of the measured value. The systematic shift is given by the horizontal lines
and the resolution is given by the error bars. Due to the lack of statistic and by requiring
that relations (8.1-3) are to be satisfied, we only use three bins in Q2: 8 - 12, 12 - 20 and
20 - 50 GeV2. The forth bin, 50 < Q2 < 100 GeV2 is discussed in this section, but is not
used in final measurements. The selected bin ranges in the (XF, /?) plane are shown in
Figs.8.2-4.

The events measured in a given bin could have originated from other bins in the (ZF,
ß) plane. The migration of events in the (XF, ß) plane is shown in Fig.8.2. The base of
the arrow is at the average XP and ß for a given bin. The head of the arrow is at the
average reconstructed XP and ß. The migration between different Q2 bins is small and
was neglected in the following analysis.

To check the quality of chosen bins, we define the notions of acceptance and smearing.
The acceptance is defined äs the number of events which are generated in a given bin and
are selected after final selection cuts divided by the number of events which are generated
in this bin:

The values of acceptance are shown in Fig. 8. 3. The better bin the closer to one is the
value of acceptance. However, numbers very close or exactly equal to one (especially for
high ß and Q2 bins) are connected with very low statistics in these bins and therefore
errors for these numbers are big.
The smearing is the number of events which are generated in the bin and measured in
the bin divided by the number of events which are generated in the bin and selected:

« , ß )

(8-5)
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Figure 8.1: Fractional difference between reconstructed and generated values of ß, XP and
Q\)& äs a function of the reconstructed value. The horizontal lines give the systematic
shifl and the error bars give the measurement resolution.

The values of smearing are shown in Fig. 8. 4. Low values of smearing indicate that events
are lost either by selection cuts or by migration. No number given in a bin on Fig. 8, 3-4
means that the value is less than 1%.

One can also define the purity of the bin äs the number of original events measured in
the bin divided by the nurnber of events generated in the bin. The purity can be obtained
by multiplying the smearing by the acceptance.

In the final analysis, we use only bins with a smearing above 20% (typically about
35%) and with an acceptance above 10% (typically about 60%). These requirements
allow only to consider bins with XP < 0.01 and ß > 0.1. In that ränge the non-diffractive
component can also be safely estimated and removed from the diffractive sample. We
do not use bins having ß > 0.8, because for so small masses vector-meson production
dominates. For Q2 less than 8 GeV2, the event acceptance is below 50% due to the box
cut on the electron position. Therefore, we do not consider bins below that value of Q2.
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8.2 Unfolding procedure

The experimentally measured distributions are always affected by trigger, selection cuts,
reconstruction methods and detector acceptance and resolution. They difFer significantly
from the "true" distributions which can be compared with our theoretical predictions. In
order to determine true distributions from the measured ones we often use an unfolding
procedure. There are many different unfolding techniques [61]. The method used in this
analysis is based on the Bayes theorem and was proposed in [62].

Let us assume we have several independent causes (C,-, i = l, 2,...nc) which can
produce several possible effects (Ejt j = l, 2,...n£) and we know the initial probability
of the causes P(Ct) and the conditional probability of the z-th cause to produce the j-th
efFect P(Ej\d)- Then the Bayes formula can be written down in the form:

It means that if we observe a single j'-th event, the probability that it has been due to
the i-th cause is proportional to the probability of the cause times the probability of the
cause to produce the effect. The Bayes formula has the power to increase the knowledge of
P(d) by increasing the number of observations. We indicate the initial probability of the
causes with Po(d). If there is no a priori prejudice on Po(d)j the unfolding process can
be started from a uniform distribution. The final distribution depends also on P(Ej\d).
These probabilities must be calculated with Monte Carlo methods.

After N0bg experimental observations, one obtains a distribution of frequencies n(E) =
{n(Ei), n(#2)i ..., n(E0i,a)}. The expected number of events to be assigned to each of the
causes and only due to the observed events can be calculated using the formula:

nE

= £"(^)mi^) (8-7)
3=1

Taking into account the inefficiency Cj = J^Jfi Pfäifä*)) the kest estimate of the true
number of events is then:

1 nE

n(d) = -Y.n(E3)P(d\Ej) e, * 0 (8.8)
C» j=\f e, = 0 then n(d) will be set to zero, since the experiment is not sensitive to the cause

Ci. From these unfolded events, we can estimate the true total number of events, the final
probabilities of the causes and the overall efficiency:

1=1

P(d) = P(d\n(E)) = % (8.10)

(8.11)
^V«r«
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It is important to remark that c may differ from the a priori overall efficiency CQ calculated
from reconstructed and generated Monte Carlo events:

f _
0 " nc

Using the method described above, the unfolding procedure is performed through the
following steps:

1. choose the initial distribution of /j)(Ci) from the best knowledge of the process
under study,

2. calculate n(C) and P_(C),

3. make a x2 comparison between n(C) and no(C),

4. replace ̂ (C) by £(C), and ng(C) by n(C) and start again;
if, after the second iteration the value of \ is "small enough", stop the iteration;
otherwise go to step 2.

The uncertainties of the unfolded distribution come mainly from the statistical error
on n(Ej) and from the limited number of simulated events used for the calculation of

In the case of the measurement of F2 ^ the effects Ej are the observations of an event
in a bin of measured quantities (Ax/>, A/3)meaa, and the causes C; are all the possible
bins of the true values (Axp, A^)true. As the initial distribution of Po(Ci) we use the
prediction of the Nikolaev-Zakharov model (EPDIFFR MC) which fits the data very well.

The number of true events in a bin is related to the differential cross section and
luminosity by:

dxpdßdQ* r '^ L
where the integration is only taken over the bin and L is the integrated luminosity. Differ-

ent models of the pomeron lead to different values of F2 . The differential cross sections

for two different parametrisations of Fz •*' can be related by:

f'fttQ^ (8-14)

Once the true distribution of data Ndata(xp,ß, Q"1} is found, the value of F2j~ta for the
selected bin can be determined from:

The statistical error on the measured F2 df{0 is calculated from the statistical uncertain-
ties of the MC distribution NMC(xF,ß,Q2) and from the distribution of unfolded data
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8.3 Presentation of the final results

The proton difFractive structure function F2 •" has been measured in the kinematic ränge
of 6.5 - IG"1 < XP < 10~2, 0.1 < ß < 0.8 and 8 < Q2 < 50 GeV2. The final results

for F2 , for the 540 nb"1 (±2.5%) integrated luminosity, are shown in Table 8.1 and
in Fig.8.5. The statistical errors include statistical uncertainties from the Monte Carlo
program used for the unfolding. The systematic errors were obtained on the base of
systematic checks discussed in the next subsection, adding in quadrature deviations from
the central values (obtained for nominal cuts).

The data show that F2 falls rapidly äs a function of xp. The dependence on ß and Q2

in the measured kinematical ränge is weak.
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Figure 8.5: Final results for F2 measurement. F2 is shown äs a function of xp in
different ß and Q* bins. The inner error bars show statistical errors, the füll error bars
correspond to the statistical and systematic errors added in quadrature. The data include
an estimated 15% contribution due to double dissociation. The overall normalization
uncertainty of 2.5% due to the luminosity uncertainty is not included.
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0.00325
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0.00515
0.00081
0.00130
0.00205
0.00325

0.00205
0.00325
0.00515
0.00815
0.00205
0.00325
0.00515
0.00130
0.00205
0.00325

#events

52
54
24
10
69
48
28
11
51
23
33
9

31
47
38
17
83
65
57
27
45
49
32
36
19
33
34
15
46
41
34
44
38
31

DIS back.

2.5
5.1
5.1
0.0
0.0
5.1
2.5
0.0
0.0
1.3
1.3
0.0

2.5
11.4
2.5
5.1
1.3
5.1
3.8
2.5
1.3
1.3
2.5
0.0
1.3
0.0
5.1
1.3
3.8
3.8
3.8
0.0
2.5
5.1

F?iff ± (stat) ± (sys)
23.4 ± 2.0 ± 3.6
10.4 ± 0.9 ± 2.1
5.4 ± 0.5 ± 2.3
3.6 ± 0.7 ± 2.3
36.9 ± 3.5 ± 9.3
25.6 ± 2.5 ± 5.8
13.7 ± 1.5 ± 2.8
6.3 ± 1.1 ± 3.8
42.0 ± 5.1 ± 27.6
35.8 ± 4.9 ± 6.9
16.5 ± 2.7 ± 8.1
7.8 ± 1.5 ± 2.0

30.8 ± 3.5 ± 3.3
13.0 ± 1.2 ± 1.9
6.3 ± 0.6 ± 1.7
3.0 ± 0.4 ± 1.6
40.0 ± 4.0 ± 7.3
21.7 ± 2.1 ± 5.2
15.3 ± 1.6 ± 2.1
5.0 ± 0.6 ± 1.5
39.4 ± 5.0 ± 18.0
28.7 ± 3.5 ± 6.6
17.1 ± 2.2 ± 3.9
10.2 ± 1.3 ± 1.0

24.6 ± 4.0 ± 4.7
9.9 ± 1.1 ± 1.9
6.0 ± 0.7 ± 2.1
3.2 ± 0.4 ± 0.9
23.2 ± 2.5 ± 4.2
18.2 ± 2.0 ± 2.3
13.3 ± 1.7 ± 3.8
29.0 ± 3.7 ± 3.5
18.2 ± 2.3 ± 3.8
10.4 ± 1.4 ± 2.5

Table 8.1: Final results for F2 ^ measurement. The data include an estimated 15%
contribution due to doublt dissociation. The overall normalization uncertainty of 2.5%
due to the luminosity uncertainty is not included.
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8.4 Systematic errors

The systematic error assigned to the measured F2 in each (z/>, /3, Q2) bin has been
obtained from several systematic checks of conditions under which the structure function
was extracted.
The following systematic effects increase the systematic error assigned to the measured

_F2 in each XP and ß bins:

1. Error due to the luminosity uncertainty (2.5%).

2. Error due to the electron energy scale. This error comes from the fact that dead
material is not well sämulated in Monte Carlo. However, since the double angle
method, which is not sensitive to electron energy, is used, the error affects only
selection cuts and not the kinematic reconstruction.

3. Error due to the electron position measurement. The reconstruction of the electron
Position afFects the reconstructed kinematic variables since the angle 0 is determined
using the measured position in the calorimeter.

4. Error due to the reconstruction of the event vertex. The determination of the
vertex influence the kinematic reconstruction since the vertex is used to determine
the angles. Error on the vertex has also an effect on selection criteria through the
S-cut.

5. Error due to Simulation of hadronic energy distribution in the calorimeter. A mis-
match in the angular distribution of the hadronic activity in the detector and in the
Monte Carlo leads to an error on the reconstructed 7.

6. Photoproduction background leads to larger values of measured F2 . The photo-
production background was estimated to be below the measurement resolution.

7. Error due to noise in the calorimeter. The noise leads generally to a larger mea-
sured y.

8. Choice of the reconstruction and unfolding methods.

9. The effects of the QED radiation on the smearing of the kinematic variables and of

the FL B contribution to the F2 •*' were checked to be smaller than the statistical

errors of measured F2 [3].

The following systematic checks were performed to estimate the uncertainties due to
selection cuts, background estimation and unfolding:

1. The cut on electron energy was changed from 5 GeV to 10 GeV.
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2. The electron finder EEXOTIC [55] was used instead of ELEC5 [55] to select electron
candidates.

3. The cut on yjB was lowered to 0.3 and raised to 0.5.

4. The cut on E - pz was changed to 40 < E - pz < 60 and to 30 < E - pz < 60.

5. Hard POMPYT was used to unfold the data instead of Nikolaev-Zakharov MC.

6. The cut on i)max was changed to »/mär < l and to ijmax < 2.

7. The number of iteration in unfolding procedure was changed by two.

8. The cut on the vertex was changed to z| < 30cm and to |z| < 50cm.

The results of the above systematic checks are summarized in Tables 8.2-4. In most bins,

the F2 ** extracted under different conditions agree with the values obtained by nominal
cuts within the statistical errors. The total systematic error attributed to each measured

F-2 •*' point, was obtained by adding in quadrature deviations from the nominal F2 •"
value for each systematic check.

8.5 Test of the factorization theorem

In order to check the factorization theorem discussed in section 2, (formula (2.31)) we

have investigated whether the zp-dependence of F% •*' is the same in each (/?, Q2) bin.
We have performed a global fit to the all data points of the form:

ai-(xp) 6 (8.16)

where the normalizations a, were allowed to differ in different (/?, Q2) bins, but the
exponent should be the same. The results of the fit are shown in Fig.8.6. Within the
experimental errors the data are consistent with the constant slope:

b = -1.25 ± 0.07(stat) ± 0.09(sys) (8.17)

The statistical error is obtained when the fitted points were assumed to have only statis-
tical errors. The systematic error was calculated by refitting the measured data points
obtained by different systematic checks and adding deviations from the central value of 6
in quadrature. The \ values for each (/3, Q2) bin were between 0.05 and 1.5 per degree
of freedom.

The results are consistent with an independent analysis performed by the ZEUS Col-
laboration (6 = -1.3 ± 0.08(stat)tS'JJ(sys)) [63] and with recent results from the Hl
Collaboration (6 = -1.19 ± 0.06(statj ± 0.07(sys)) [64].
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0.650
0.650
0.650
0.650
0.175
0.175
0.175
0.175
0.375
0.375
0.375
0.375
0.650
0.650
0.650
0.650

0.175
0.175
0.175
0.175
0.375
0.375
0.375
0.650
0.650
0.650

xF

0.00205
0.00325
0.00515
0.00815
0.00130
0.00205
0.00325
0.00515
0.00081
0.00130
0.00205
0.00325
0.00205
0.00325
0.00515
0.00815
0.00130
0.00205
0.00325
0.00515
0.00081
0.00130
0.00205
0.00325

0.00205
0.00325
0.00515
0.00815
0.00205
0.00325
0.00515
0.00130
0.00205
0.00325

Nominal

F/^±(stat)
23.4 ± 2.0
10.4 ± 0.9
5.4 ± 0.5
3.6 ± 0.7

36.9 ± 3.5
25.6 ± 2.5
13.7 ± 1.5
6.3 ± 1.1

42.0 ± 5.1
35.8 ± 4.9
16.5 ± 2.7
7.8 ± 1.5

30.8 ± 3.5
13.0 ± 1.2
6.3 ± 0.6
3.0 ± 0.4

40.0 ± 4.0
21.7 ± 2.1
15.3 ± 1.6
5.0 ± 0.6

39.4 ± 5.0
28.7 ± 3.5
17.1 ± 2.2
10.2 ± 1.3
24.6 ± 4.0
9.9 ± 1.1
6.0 ± 0.7
3.2 ± 0.4

23.2 ± 2.5
18.2 ± 2.0
13.3 ± 1.7
29.0 ± 3.7
18.2 ± 2.3
10.4 ± 1.4

S y s t e m a t i c c h e c k s

E' >10
24.2
10.9
5.6
3.5

38.2
26.4
13.9
6.3

43.4
36.5
16.5
7.8

31.2
13.6
6.4
5.0

41.2
22.4
15.4
3.0

41.2
29.5
17.1
10.1
27.6
11.1
6.7
3.3

24.8
18.8
13.5
29.3
18.5
10.4

EEXOTIC
26.5
11.9
6.0
3.6

45.2
29.5
14.6
6.6

56.6
42.6
16.8
8.3

31.8
13.8
6.7
5.4

43.4
25.5
16.8
3.2

50.1
34.8
16.8
10.3
26.1
10.0
6.3
3.1

23.6
17.7
12.9
28.9
18.2
10.3

yjs >0.03
23.4
10.4
5.6
4.0

36.9
25.6
13.9
5.7

42.0
35.8
16.9
7.5

30.8
13.0
6.7
5.6

40.0
21.7
15.5
3.6

39.4
28.6
17.1
10.2
24.6
9.9
6.0
3.2

23.2
18.1
13.2
29.0
18.2
10.3

yjs >0.05
23.4
10.2
5.3
3.3

37.1
24.5
12.4
9.6

41.9
35.1
14.8
9.0

30.8
13.1
6.4
5.5

40.0
21.8
15.5
3.1

39.4
28.8
17.2
10.0
24.6
9.9
6.0
3.1

23.1
18.1
13.2
29.0
18.2
10.5

Table 8.2: F2 extracted under different conditions. The values of F2 are tabulated

for the different systematic checks. The values ofQ2, ß and XP at which
are listed.
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Q2

(GeV*)
10
10
10
10
10
10
10
10
10
10
10
10

15
15
15
15
15
15
15
15
15
15
15
15

32
32
32
32
32
32
32
32
32
32

ß

0.175
0.175
0.175
0.175
0.375
0.375
0.375
0.375
0.650
0.650
0.650
0.650

0.175
0.175
0.175
0.175
0.375
0.375
0.375
0.375
0.650
0.650
0.650
0.650

0.175
0.175
0.175
0.175
0.375
0.375
0.375
0.650
0.650
0.650

Xp

0.00205
0.00325
0.00515
0.00815
0.00130
0.00205
0.00325
0.00515
0.00081
0.00130
0.00205
0.00325

0.00205
0.00325
0.00515
0.00815
0.00130
0.00205
0.00325
0.00515
0.00081
0.00130
0.00205
0.00325

0.00205
0.00325
0.00515
0.00815
0.00205
0.00325
0.00515
0.00130
0.00205
0.00325

Nominal

F/^±(stat)

23.4 ± 2.0
10.4 ± 0.9
5.4 ± 0.5
3.6 ± 0.7

36.9 ± 3.5
25.6 ± 2.5
13.7 ± 1.5
6.3 ± 1.1

42.0 ± 5.1
35.8 ± 4.9
16.5 ± 2.7
7.8 ± 1.5

30.8 ± 3.5
13.0 ± 1.2
6.3 ± 0.6
3.0 ± 0.4

40.0 ± 4.0
21.7 ± 2.1
15.3 ± 1.6
5.0 ± 0.6

39.4 ± 5.0
28.7 ± 3.5
17.1 ± 2.2
10.2 ± 1.3
24.6 ± 4.0
9.9 ± 1.1
6.0 ± 0.7
3.2 ± 0.4

23.2 ± 2.5
18.2 ± 2.0
13.3 ± 1.7
29.0 ± 3.7
18.2 ± 2.3
10.4 ± 1.4

S y s t e m a t i c c h e c k s

30 < 6 < 60

24.0
10.1
5.4
3.6

37.0
25.6
13.6
6.3

41.9
35.8
16.5
7.8

30.7
12.8
6.1
3.0

40.1
21.5
15.3
5.0

39.5
28.6
17.1
10.2

25.3
9.9
5.9
3.2
23.2
18.2
13.2
28.9
18.2
10.5

40 < 6 < 60

23.8
10.3
5.4
3.5

37.4
24.2
12.6
6.0

45.2
36.1
13.5
6.7

28.5
12.6
6.0
3.0

37.8
20.4
14.6
5.0

40.4
28.5
16.6
9.6

22.1
9.2
6.0
3.2

22.4
17.0
13.1
29.3
17.8
10.1

1)max < 1

23.1
10.5
6.2
5.8

37.3
24.3
14.0
6.5

42.8
35.9
16.0
7.8

30.2
13.2
7.1
3.8

40.4
21.6
15.5
6.1

39.6
28.7
16.8
10.2

24.1
9.6
5.7
2.9
23.0
17.8
12.3
29.0
18.1
10.4

tymax ^ £

23.5
10.1
5.4
3.7

36.9
25.4
13.5
5.9

42.0
35.8
16.4
6.9

30.5
12.2
6.1
3.1

39.6
21.0
15.2
5.2

39.4
28.7
17.0
10.4

24.1
9.6
5.7
2.9
23.0
17.8
12.3
29.0
18.1
10.4

Table 8.3: F2 txtracted under different conditions, continued.
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<?a
(GeV2)

10
10
10
10
10
10
10
10
10
10
10
10
15
15
15
15
15
15
15
15
15
15
15
15
32
32
32
32
32
32
32
32
32
32

ß

0.175
0.175
0.175
0.175
0.375
0.375
0.375
0.375
0.650
0.650
0.650
0.650
0.175
0.175
0.175
0.175
0.375
0.375
0.375
0.375
0.650
0.650
0.650
0.650
0.175
0.175
0.175
0.175
0.375
0.375
0.375
0.650
0.650
0.650

xF

0.00205
0.00325
0.00515
0.00815
0.00130
0.00205
0.00325
0.00515
0.00081
0.00130
0.00205
0.00325
0.00205
0.00325
0.00515
0.00815
0.00130
0.00205
0.00325
0.00515
0.00081
0.00130
0.00205
0.00325
0.00205
0.00325
0.00515
0.00815
0.00205
0.00325
0.00515
0.00130
0.00205
0.00325

Nominal

F/^±(stat)
23.4 ± 2.0
10.4 ± 0.9
5.4 ± 0.5
3.6 ± 0.7

36.9 ± 3.5
25.6 ± 2.5
13.7 ± 1.5
6.3 ± 1.1

42.0 ± 5.1
35.8 ± 4.9
16.5 ± 2.7
7.8 ± 1.5

30.8 ± 3.5
13.0 ± 1.2
6.3 ± 0.6
3.0 ± 0.4

40.0 ± 4.0
21.7 ± 2.1
15.3 ± 1.6
5.0 ± 0.6

39.4 ± 5.0
28.7 ± 3.5
17.1 ± 2.2
10.2 ± 1.3
24.6 ± 4.0
9.9 ± 1.1
6.0 ± 0.7
3.2 ± 0.4

23.2 ± 2.5
18.2 ± 2.0
13.3 ± 1.7
29.0 ± 3.7
18.2 ± 2.3
10.4 ± 1.4

S y s t e m a t i c c h e c k s

|K|<30
23.5
10.5
5.4
3.6

36.9
25.9
13.9
6.3

41.9
36.0
16.5
7.8

31.5
13.3
6.3
3.1

39.4
21.7
15.4
5.0

38.1
27.8
17.1
10.1
24.4
9.7
5.9
3.2

22.9
17.6
13.1
29.2
18.2
10.4

|K|<50
23.3
10.2
5.4
3.6

36.9
25.8
13.8
6.3

42.1
36.4
16.5
7.8

30.9
13.1
6.3
3.1

40.0
21.8
15.4
5.1

39.1
29.0
17.3
10.3
24.4
9.7
6.0
3.4

22.6
17.6
13.3
28.4
18.0
10.4

#iter
23.2
10.3
5.4
3.3

36.8
25.6
13.5
6.0

41.8
35.9
16.5
7.6

29.9
12.4
5.8
2.8

39.4
20.6
14.0
4.7

39.5
27.2
15.0
9.1

22.8
9.2
5.7
3.1

22.7
17.8
13.0
28.3
17.1
9.8

HP
22.0
9.2
7.5
3.8

33.0
22.0
11.8
8.0

65.2
35.2
9.2
7.8

29.0
14.3
7.6
4.2

34.1
18.5
16.5
5.6

53.7
31.0
16.6
9.5

23.2
10.9
6.4
2.4

19.8
16.6
10.0
26.9
14.4
10.5

Table 8.4: F2 extracted under different conditions, continued.
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Figure 8.6: Test of factorization of F2 . The solid lines are the results of the global fit
of the function (8.16) to the data points which are represented äs füll dots. The inner
error bars show statistical errors, the füll error bars correspond to the statistical and
systematic errors added in quadrature. The data include an estimated 15% contribution
due to double dissociation, The overall normalization uncertainty of 2.5% due to the
luminosity uncertainty is not included.

The ß and Q2 dependences of the F2 •" were obtained by Integration over the measured
ränge of x/>:

(8.18)

where xlp° = 6.3 • 10~4 and xtp'h = 10 2. We integrated the fitted xp dependence, hence
we assumed that the factorization theorem holds in the ränge of Integration. The resulting

function F2 (ß, Q2) is proportional to the structure function of the pomeron. The ß and

Q2 dependences of F^(ß, Q2) are shown in Fig.8.7.

The F2 (ß, Q2) values äs a function of ß for fixed Q2 are consistent with a flat ß
j •»

dependence äs expected from the aligned jet model [65]. For fixed ß the F2 (ß,Q2) is
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0=0,375
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Figure 8.7: Results of FP(ß^Q2) compared to the predictions of [18] indicated äs a solid
line. The inner error bars correspond to the statistical errors, the outer error bars corre-
spond to the statistical and systematic errors added in quadrature. The systematic errors
combine in quadrature the fits of the xp dependence due to each of the systematic checks
discussed in the text. The overall normalization is determined by the experimental Inte-
gration limits over XP (6.3 • 10~4 < XP < 10~2). The dato include an estimated 15%
contribution due to double dissociation. The overall normalization uncertainty of 2.5%
due to the luminosity uncertainty is not included.

approximately independent of Q2 which is consistent with scattering off point-like partons
within the pomeron.

There are analysis of the pomeron structure functions based on QCD evolution equa-
tions with different phenomenologically motivated parametriaations of initial parton dis-
tributions in the pomeron. They predict a very mild scaling violation of Ff with Q2

[18, 66, 67].

In Fig.8.7, we have compared the results of the measurements with predictions of ß
and Q2 dependence of [18]. The authors proposed the following parton distributions in
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the pomeron at the reference scale QQ = 4 GeV2:

ßup(ß,Ql,t) = QA(l-6)Sp(ß)

ßcp(ß,Qlt) = 6 S p ( ß )

0$p(0,Qo,t) = (0.2180-0'w +3.090X1-0) (8-19)

where the function Sp(ß) is parameterized äs follow:

Sp(ß) = (0.0528/T0-08 + 0.8010)(1 - ß) (8.20)

and 6 = 0.02 [68]. The parton distributions defined by equations (8.19) and (8.20) were
next evolved up to the values of Q2 for the measured points using the LO GLAP equations.

The agreement with the data is very good for both the shape in ß äs well äs the
evolution with Q2.

jjff
In Fig.8.8 we present the prediction of [18] for the xp dependence of F2 J(xp, 0, Q2).

The factorization property (2.31) and the value of intercept ap(0) = 1.1 are built into
this model. We have subtracted from the data the estimated 15% of double dissociative
events in order to compare with this model. Again we see that the analyzed data confirm
very well this assumptions.

8.6 Comparison with theoretical models

In this paragraph, we will compare the results of F2 ™(xp, ß, Q2) measurement with theo-
retical models of single diffractive dissociation discussed in section 2. We have subtracted
from the data the estimated 15% of double dissociative events in order to compare with
these models. The measured data points and the models are compared in Fig.8.9.

At high 0-values the predictions of Nikolaev-Zakharov and Donnachie-Landshoff are
in reasonable agreement with the data. At sinailer 0-values, the Donnachie-LandshofF

model underestimates the observed Fy , because it includes only a hard component of
the pomeron structure function. The Nikolaev-Zakharov prediction, which also include a
soft component, describes the data also at s m all er 0-values. The analysis performed in
this thesis is unable to observe the factorization breaking effects predicted by Nikolaev-
Zakharov model. In both above considered models, the momentum sum rule for quarks
is not satisfied.

The Ingelman-Schlein model with a hard pomeron structure function for which the
momentum sum rule is assumed for the light quarks, predicts values of F2 ** above the
measured ones. Hence the data break the model in this form. There are two possibilities
to make the model more consistent with the recent measurements:
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Figure 8.8: Results of F2 ^(xp,ß,Q2) compared to the predictions of [18] indicated äs
a solid line. The inner error bars show statistical errors, the füll error bars correspond
to the statistical and systematic errors added in quadrature. The overall normalization
uncertainty of 2.5% due to the luminosity uncertainty and 10% due to the subtraction of
the double dissociation events is not included.

a) One can change the ß spectrum of valence quarks by adding more soft quarks. Then
one can still require the momentum sum rule to be fulfilled.

b) One can allow for existence of gluons and use the GLAP evolution equations.

In the framework of Regge theory, the results can be interpreted äs a hadronic exchange

in i-channel which couples to the incident proton. The dependence of F2 (xp,/5,Q2)
on XP can be interpreted äs the intercept:

a(0) = 1.13 ± 0.04(stat) ± O.OS(sys)

of the leading Regge trajectory. Within the experimental errors the results are still con-
sistent with the Donnachie-LandshofF intercept. The measured value is inconsistent with
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Figure 8.9: Results of F2 •''(IF,/?, Q2) {/u// rfofsj compared to various theoretical models:
Nikolaev-Zakharov (solid line), Ingelman-Schlein (dashed line) and Donnachie-Landshoff
(dotted line). The inner error bars show statistical errors, the füll error bars correspond
to the statistical and systematic errors added in quadrature. The overall normalization
uncertainty of 2.5% due to the luminosity uncertainty and 10% due to the subtraction of
the double dissociation events is not included.

the intercept of the leading meson Regge trajectories (a(0) = 0.5), which suggest that
the colorless object in the proton responsible for difFractive deep inelastic scattering is the
pomeron. The precision of the measurements does not exclude the higher intercept, more
consistent with BFKL motivated pomeron.
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9 Conclusions

The measurement of the proton diffractive structure function in deep inelastic ep scatter-
ing at HERA has been presented. In the analysis the füll 1993 ZEUS data sample, which
corresponds to the integrated luminosity of about 540 nb"1, has been used.
Diffractive deep inelastic events were selected by the requirement of a large rapidity gap
between the diffractively scattered proton and the rest of the hadronic System. Compar-
ison of the data with Monte Carlo predictions (POMPYT and EPDIFFR) showed that
both models generally described the inclusive distributions of the observed kinematic
variables. However the distributions of mx and ß are rnore consistent with models where
along with the hard, also the soft component is present in the pomeron structure function.
This is why the Nikolaev-Zakharov model was used for unfolding of the data.

A 'ff
The proton diffractive structure function F% •" has been measured äs a function of xp

(fraction of the proton momentum carried by the pomeron), of ß (fraction of the pomeron
momentum carried by a struck quark) and of Q2. It was not possible to measure £, the
momentum transfer squared to the proton, and therefore the results are integrated over

t. The proton diffractive structure function F2 •" was measured in the kinematic ränge of

6.5 • 10-4 < xP < IQ'2, O.K ß < 0.8 and 8 < g2 < 50 GeV2. The data show that F.diff

falls rapidly for fixed ß and Q2 äs a function of xp. Within the experimental errors, the
data show factorization of the proton diffractive structure function to the pomeron flux
in the proton and to the pomeron structure function. The universal XP dependence of

F2 in all (ß, Q2) bins has been found to be:

where 6 = -1.25 ± 0.07(stat) ± 0.09(sys).

Using the data considered in this analysis we are unable to observe the factorization
breaking effects predicted by the Nikolaev-Zakharov model. The diffractive structure
function is well described by the Nikolaev-Zakharov model, although this model does not
use the concept of a particle-like pomeron.

In the measured Q2 ränge the pomeron structure function scales with Q2 at fixed
ß. However, a mild scaling violation is not excluded. The data is in a good agreement
with the model [18] based on factorization and QCD evolution equations, which leads to
scaling violation in this model. The gluon content of the pomeron can only indirectly
manifest itself through the QCD evolution of the pomeron structure function with Q2.
The relatively large gluon distribution in the pomeron with a hard spectrum (l — ß)
is responsible for increase of the pomeron structure function with Q2 at fixed ß up to
relatively large values of ß w 0.5. It should be noted that the proton structure function
Starts to decrease with increasing Q2 already for XBJ > 0.1.
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Ff has not vanishing values for a significant ränge of ß. The ß dependence of the
pomeron structure function requires both a hard and a soft component for the quark con-
tent of the pomeron. At moderate ß values, the pomeron structure function is dominated
by the hard component. The soft component is important at the small values of ß - this
fact could be attributed to the QCD evolution [18].

No scaling violation (or a very mild one, described by Standard perturbative QCD
evolution equations) support the idea of the pomeron in the diffractive deep inelastic ep
scattering behaving effectively äs a particle, which consists of point-like constituents.
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