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Abstract

A quantitative study of Deep Inelastic Scattering (DIS) at very high momen-
tum transfers, Q?, is performed using the ZEUS detector at the HERA ep-
collider at DESY. High Q? DIS events are observed in the Charged Current
(€C - W.exchange) and Neutral Current (NC - 5/Z%exchange) modes at
(? up to and beyond the square of the mass of the heavy weak bosons. From
an integrated luminosity of 0.54 pb™", a sample of 23 CC events and 436 NC
events with Q% > 400GeV? are identified. The CC and NC total cross-sections,
the NC/CC ratio, and differential distributions in do/dQ)® are reported. For
the first time, charged-lepton scattering cross sections have been measured

into the Q2 range where the CC and NC cross sections are comparable. *
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Chapter 1

INTRODUCTION

Particles interact via three forces. The strong force governs the interactions be-
tween quarks. The electroweak force unifies electromagnetic and weak forces.
Charged particles interact via the electromagnetic force, while the decay of
particles, e.g. 3-decay, is caused by the weak force. Finally, large scale phe-
nomena are governed by gravity, which is weak at the atomic and subatomic
scales compared to the other forces and, therefore, is neglected at current
energies accessible in particle physics experiments.

In field theory, particles are described as fields that transmit these forces.
For example, the electromagnetic force in ep scattering is mediated by a virtual
spin-1 photon (it is virtual because the intermediate state ¢py violates energy
conservation via the uncertainty principle}. Strong forces are mediated by
spin-1 gluons, and weak forces are governed by spin-1 W and Z exchanges.

Matter is composed of three types of particles: leptons (e, g, 7, Ve, vy, ),
gauge bosons (e.g. v, W, and Z), and hadrons, which are made of quarks. The
proton and the neutron are made of three quarks (p = uud, n = ddu), while
mesons (e.g the pion) are made of quark-antiquark (¢¢) pairs (7% = ud). These
hadrons have also been shown to contain a sea of gluons and ¢4 pairs. The

sea plays a major role in deep inelastic high energy collisions which directly
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tigure 1.1: High energy collision in which a photon is able to resolve individual

quarks.

scatter off individual quarks and gluons (figure 1.1).

Electromagnetic interactions are described by the Quantum Electrodynam-
ics (QED). “T'he photon, which transmits the electromagnetic force between
charged particles, is described by an electromagnetic field A, that couples to
the electron and proton “currents”. These currents are probability currents
whose forms arise from Dirac’s equation, which describes spin-1/2 particle
fields, or from the Klein-Gordon equation for spin-0 particles (e.g. 7+).?

Quark and gluon interactions are described by Quantum Chromodynamics
(QCD) through the introduction of the color force. Quarks come in three col-
ors: red, blue, and green {and antired, antiblue, and antigreen for antiquarks),
with the gluon transferring the color force between gluons and quarks. A con-
sequence of QCD is the statement that only colorless states can be free, and,
therefore, observed. As a result, an individual quark cannot be set free because

it has color. Therefore, for example, to study quarks, one has to scatter e off

protons and study the scattered lepton and the struck quark, which manifests
itself as a jet (when the quark separates from the other quarks in the proton,
color interactions take over and decelerate the struck quark. As a result, it
radiates hadrons, mostly # mesons, just like a decelerating electron radiates
photons in bremsstrahlung. This hadron shower is called a jet).

Neutron 3-decay and other interactions fall under the realm of the weak
theory. The carriers of this force are the massive W% and Z° that give rise
to weak Charged and Neutral current interactions, respectively. Due to the
V — A (vector-axial) nature of the interactions, these interactions violate parity.
This theory is unified with QED by the Glashow—Weinberg-Salam model of
the “electroweak” theory.

A successful technique that explores the nature of these forces and the
structure of hadrons is Deep lnelastic Scattering (DIS). Measurements of in-
clusive DIS cross sections have revealed new levels of the structure of hadrons.
The gauge bosons provide excellent probes, especially at higher energies, into
the proton. At high energies, the momentum transfer, 9%, to the proton is
large, resulting in a probe with small wavelength that resolves the proton struc-
ture. In addition, at high 2, a unique window is opened to study deviations
from the Standard Model (QCD and the Glashow-Weinberg~Salam model of
electroweak theory) and to look for new particles.

In Neutral Current (NC) DIS, the exchanged boson is the photon (fig-
ure 2.1) or the Z° (figure 2.1) particle. In Charged Current (CC) DIS, a W*
is exchanged (figure 2.2). The HERA (Hadron Electron Ring Anlage) accel-
erator, located at the Deuthches Electronen-Syncrotron (DESY) laboratory,

in Hamburg, Germany, offers the unique study of such interactions through



collisions of 26.7 GeV electrons with 820 Gel’ protons. In 1993, ZEUS, one of
the two currently operational HERA experiments, collected a total integrated
luminosity of 0.54pb™".

"This thesis describes the measurements of NC and CC DIS cross sections at
Q? > 400 GeV? done with the ZEUS experiment. This is the first measurement
in which NC and CC processes are compared at high Q?, where both are
expected to be of comparable strength. The H1 collaboration has measured
the total CC cross section and demonstrated that the CC propagator term

! ZEUS has measured this mass and found that My =

has a finite mass.
76+ 16 £13 GeV.2

‘I'he organization of this thesis is as follows: Chapter 2 gives the theoret-
ical background. The experimental setup is explained in Chapters 3, 4, and
5, i which HERA, the ZEUS detector, and the ZEUS calorimeter readout
and trigger are described, respectively. Analysis of the data starls with kine-
matic reconstruction in Chapter 6.1, which also describes the Monte Carlo
simulation. Data selection is given in Chapter 7. An important part of the
analysis is an energy correction method applied to the CC data and this is de-

tailed in Chapter 8. The measured cross sections and error analysis on these

measurements are in Chapter 9. Finally, Chapter 10 contains the conclusions.

o

Chapter 2

THEORETICAL BACKGROUND

2.1 The Gauge Principle

Electroweak and QCD theories are gauge theories. When a local gauge trans-
formation is applied {i.e., introducing an extra phase factor in the particle
wavefunction that depends on space-time coordinates), then the theory is not
invariant. But, if a compensaling new lield is introdaced that transforms in
a particular way and interacts with the original particles in the theory, in-
variance is restored. 1'he first atlempl to extract a theory from local gauge
invariance was done by Yang and Mills.?

The photon, W, Z, and gluons are called gauge particles because they
arise naturally from demanding local gauge invariance. They are precisely
the compensating fields that are needed to restore local invariance. This can
be understood from the following argument: any change in phase at some
space-time point will have to propagate with a finite speed before it reaches
other points. The carrier of this signal is the gauge particle. Only local
gauge transformations take this finiteness of speed into account since these
transformations are not simultaneous because, by definition, they perform

different transformations at different space-time points due to the dependence
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of the extra phase factor on these points.

T'he Dirac Lagrangtan, which describes free spin-1/2 charged particles, is
£ = iy 0,4 — myy (2.1)

where 3 is a spinor field and  is its adjoint. Applying the Euler-Lagrange
equation to ¢, one obtains Dirac’s equation for ¥ (and vice versa). Under the
local gauge transformation

= g7y (2.2)

where r = r* denotes space-time points and a is some function of z, £
becomes

L - L+ e(dayin*y (2.3)

‘I'herefore, £ is not invariant. ‘This extra term suggests how to recast L so

that it becomes invariant under (2.2). Rewriting £ as
L= igy* 9, — mip — (e¥"P)A, (2.4)
where A, is a new gauge field that transforms according to
A, =+ A, +8a (2.5)

then this new £ is now invariant under {2.2). The last term in equation (2.4)
is of the form j*A, with j* = e(9*%), the transition current. It is this term
that is used in perturbation theory to calculate cross sections since it embodies
the interaction of the particle field with A*. By requiring £ to be invariant
nnder local gauge transformations, a new field, A,, must be introduced. One
recognizes A, as the photon field and e as the charge of the particle that

interacts with the photon. Equation (2.2) is called a {7(1) local transformation.

Yang-Mills fields have two interacting spin-1/2 fields. \We use equation
(2.1) where ¥ is a two-component column vector (¥ = (1, ¢3)7) and v,
obey Dirac’s equation. Since 3: is a two-component vector, then a(r) in (2.2) is
a 2x2 matrix. But any 2x2 matrix can be expressed as a linear combination of
Pauli matrices. Therefore, a is replaced by a = ¥°; a;0; (0; are Pauli matrices)
and ¢ is replaced by e = (¢),€3,¢€3). As a result, ea(r) is changed to e « ().
Requiring local gauge invariance gives rise to three massless gauge bosons.
Through the Higgs mechanism, these particles acquire mass and are identified
as W% and Z° bosons. This is referred to as an S{/(2} tranformation. (In
electroweak theory (section 2.4 below) the Lagrangian is different. Demanding
local gauge invariance produces, through the Higgs mechanism, a massless
boson —the photon— and three massive bosons —I¥'* and Z°). For QCD,
v is a three-component vector, corresponding to three color charges, and a
is a 3 x 3 matrix given in terms of the eight Gell-Mann matrices, giving
eight massless bosons {gluons). In this case, the transformation is an SU(3)

transformation.

2.2 Electromagnetic Interactions

2.2.1 ep—eX DIS

Deep Inelastic Scattering (DIS) of ep — €X is shown in figure 2.1. In the
diagram, a blob is put at the proton vertex which “parametrizes” the proton
structure. 'T'he incoming vlectron has 1- momentum / = (£, 1) and it scatters
with 4-momentum ' = (£’,I'). The proton enters in with p = (£,,p) and

collides with the exchanged photon, 4. In DIS, 5 is virtual and has enough



e(E) eH(E)

Y(q)

P(p) X

Figure 2.1: ep — ¢X, photon exchange.

4-momentum, ¢ = [ — ', to break up the proton, producing the system X,
which is observed as jet(s) in the detector.
‘The cross section for this process is given by

LK,

) [p—
doex = FMP 3 e

(2.6)

where |M]? is the square of the invariant amplitude averaged over incoming
spins and summed over final spins. #" is the flux of colliding particles and is
given by

F = a(IE, + [plE) = Al(p- 1) — mim)]'? (2.7)

where m, and m, are the electron and proton rest masses, respectively.

| M]? can be written as®

o _ 167%a?
l’“l = Q‘

LW, Axm, 2.8)
The leptonic tensor, L*, is®

L =2 [ 4 e~ (= m2)g) (2.9)

Note that

P L L) (2.10)

which reflects current conservation. U'he proton tensor, 11°,,, is not the same
as the electron tensor because in DIS the photon does not see a point particle.
Instead, it sees the structure of the proton. IV, must obey two symmetry con-
ditions: Lorentz invariance and electromagnetic current conservation similar
to {(2.10). 1t must be constructed from the available tensors and 4+-momentum
vectors at the proton vertex. There are two imndependent vectors, p and ¢, and
one tensor, g,,. The antisymmetric tensor €,,,4 is ruled out because it does
not conserve parity. Therefore, the most general form of the tensor can be
written as

Wo =-Wyg. + %;P..Pv + %ququ + ::!;:(Puqv + Pl (2.11)

» P

4

which is Lorentz invariant. The terin with 1§’ is omitted because it is parity
violating. The W;’s are functions of Lorentz scalar variables that are con-
structed from the 4-momenta available at the proton vertex. There are two
independent scalar variables and they are taken to be the Lorentz invariant

quantities
Q?
= —
2p-q

where r represents the fraction of the proton momentum carried by the struck

, Q= —¢? (2.12)

quark. From the current conservation condition (cf. 2.10)
PWo, = ¢"W,, = 0 (2.13)

Ws and W can be re-expressed in terms of ¥, and W, yielding

v Guv , p-q Pq W,
l-llu.» = ('—g‘.u + qz ) ”l + (pu - T’i'qu) (pv - —(F‘fh) ;;;‘;’) (211)
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Now we can evaluate M2 in (2.8). From (2.10), and neglecting the masses
of the electron and the proton

2,

m?
P

W, =4(- 1YW, +

(p-Dp- 1 (2.15)
From 1-momentum conservation at the electron vertex we have
2 2 Y2 4 Yo 2 6

QP=-g =10 2. 0') =1L, E}sin 3 (2.16)

where the ? = {7 = m3 >~ 0 and @ is the scattered electron’s angle. Also, we

introduce another Lorentz invariant variable, y, given by

-
-

y= (2.17)

-—

p-
ln the center of mass, | = (£,2E),p = (E, -3 £), ' = (E,T£sin8,0,2L cosb),

where 8 is the center of mass scattering angle of the electron, resulting in
1
y= i(l—cos()) (2.18)
Using (2.16) in (2.17) one obtains

pl=(0=-y) p) (2.19)

From (2.19) and (2.16), equation (2.15) becones
W, &
L*W,, = 2Q*W, + =2 (1 - y) (2.20)
m2 2
where 3 = (p 4 1) ~ 2(p - I}, square of the center of mass energy. The cross
section is usually expressed in terms of the variables (Q? and r. Since these
are Lorentz invariant, one can find the cross section in any frame in terms of

these variables, making the cross section itself Lorentz invariant. To make the

1]

mathematics simple, we find the pure photon exchange cross section in the

proton rest frame where p = (m,,0). In this case, from (2.6)

-)z ¥
PE = e = ZVE rag? (2.21)
T
and
F=2s=4m,E, (2.22)

We now define the structure functions ¥} and F;. In the high @3, or

Bjorken, limit, ¥, ; become
vWi - Fyz,Q%) =3 elzfi(2,Q%) (2.23)

i
m, ¥, — Fi(z,QY) = ;,—J-_Fz(r,Q’) (2.21)

where v = (p-g¢)/m, represents the fraction of energy transferred to the proton
in its rest frame, ¢;'s are the charges of the quarks in the proton, and f; is the
probability that quark ¢ has momentum fraction z of the proton momentum.
'rom (2.8), {2.20), (2.21), (2.22), (2.23) and (2.21), the pure photon exchange

cross section is
dﬂg.\f _ 2702
dzdQ? ~ zQ*

L4+ - y) (2, QY (2.25)

Two comments are in order here. First, note that in (2.23) F; is given as
an incoherent sum of probabilities, which is justified for |p| > m., m,. In this
case, time dialation in the proton slows down the interaction of the quarks with
each other. That is, during the short time in which the photon interacts with
the proton, the quarks are essentially free, allowing the use of an incoherent
sum of probabilities. Second, ¥} ; depend on & and Q* where the naive parton

model 7 inclucles only the dependence on r (scaling behavior). This is due to
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the presence of gluons that are radiated by the quarks or gluons which interact
with the photon via a quatk exchange. At higher Q?, more of these gluons
are produced, leading to the dependence of the structure functions on Q? (i.e.,

scaling violation).

2.3 Electroweak Interactions

2.3.1 1" - A Interactions

\Weak interactions violate parity and this changes the “character” of the in-
teractions from that of the electromagnetic interactions. This is seen from

interactions that involve neutrinos. We start with Dirac’s equation
(i9"8, —m) =0 (2.26)

which describes spin-1/2 particles. For a massless particle, i.e. a neutrino, we

obtain
P =0 (2.27)
where 8, = (3/8t, V) and 4% = (3, 3a) with
-0 0 0 1
a=| "’ , B= (2.28)
0 o I o

and we are working in the *Weyl” representation. Since H = d/dt andp =V,
(2.27) reduces to

He=a-py (2.29)
leacling to the two decoupled equations (3: = (@ 1)

Ep=-0 py (2.30)

Ey =0 -py (2.31)
For positive energy solutions, (2.30} describes a left-handed neutrino, v
(helicity +1/2). It can also be written in the form of £ = o - (—p)y which
gives the negative energy solutions. However, with this form, the helicity is
opposite and, therefore, gives a right--handed anti-neutrino, vg. Similarly,
(2.31) describes v, and vp. Under parity operation, (2.30) takes v, — vg
which violates parity since a vg has not been found. Therefore, to select the
right helicity state, the electromagnetic vector interaction of the form * is
modified to
7“%(1 -1 (2.32)
which is a vector-azial interaction, V — A. The interaction (2.32) does pick
the right helicity state because

R 10 ) 2
(1-+°) = = (2.33)
00 \ 0

B2 =

which selects only vp and vg.

2.3.2 Charged Current ¢p — v, X DIS

Charged Current reactions involve the exchange of W# particles and are weak
interactions. [n ¢“p — v.X (figure 2.2}, the outgoing lepton is a neutrino
which follows the ¥ — A nature of the neutrino interactions. At the lepton
vertex, the current has the form

: 1 —95)
o Tu (——,—'—t (2.34)

[TS3 RS

where g/2 is the weak coupling and is related to Fermi's constant, G, by

¢*/8M2 = Gp/V/2. The propagator for the massive exchanged vector boson,




P(p)

Figure 2.2: ep — vX, W* exchange.

W is
—g* + q*g" [ M}
g 2+<r qg/ W (2.35)
q* - My
For the proton vertex, in equation (2.11), W is omitted because elec-
tromagnetic interactions respect parity. Weak interactions, however, violate

parity and, hence, W, has to be included in (2.11) with the antisymmetric

tensor, changing equation (2.14) to

— quly p-q P9 \ W2
Wy = (—9...y + :,2 ) W+ (Pu - '?’qu) (Pv - q—,qu) m_}-.
i
-— W. .
Gt uvacPadaWs (2.36)
At high energy, or in the Bjorken limit, I3 becomes
vy — (2, Q%) (2.37)

The leptonic tensor is calculated in the same way as for the electron and is?

L =2 [ 4 19— (1 1) = e unal®l?) (2.38)

15

T'his results in the following cross section for ¢~ p ('(" interactions:

doce _ oMy GE Q?
dedQ®? ~  8x Q? + M}

2
) [Ve b€, QY) + Yoo b (2. Q%)) (2.39)

where Yy = 1 £ (1 — y)? and My is mass of the i¥'® boson. The structure

functions are given by
FFO =22 [uil. Q1) + dif2, Q)] (2.40)

F§C =22 3 [ui, Q") - di(2,Q")] (2.41)
where u; = (u,¢,t) and d; = (d,s,t) represent the u, d, 3, ¢, and ¢ quark

momentum distribution functions. If the expressions for £{5 are substituted

in (2.39), then
dacc

HE‘E)_?~>,.:“"+“ —y)’Zd {2.42)
giving a different structure than for the electromagnetic case, (2.25), which is
proportional to 3; €2 f; with f; = u,,d;,...etc. This is due to the fact that in
electromagnetic scattering, the exchanged photon sees the charge of the quarks
and, therefore, F3 must sum over all the quark distributions weighted by their
charges. In weak interactions, there is a universal coupling given by Gr and,
therefore, charges of the particles do not enter.

Parity violation plays a major role (recall that only left-handed neutrinos
and right-handed antineutrinos exist) as manifested in helicity conservation
which is reflected in (2.42). The basic argument? is shown in figure 2.3. In
the center of mass frame (CM), the electron, €=, which is left-handed, collides
with a left handed quark, u, with total ./, = 0, where .J, is the spin projection
on the z-axis, taken to be along the direction of the incoming quark. The

scattered particles are v, and d, both are lefl-hancled. In backward scattering,
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+ zdirection e

_ Jz=0 _ .Iz=+l
P — A L e~ d

J =0 J,=-1
v s _d v, =3 =10
(A) (B)

Figure 2.3: Helicity diagrams for electron-quark interactions: (A)e™, u, d,
and v are left-handed and helicity is conserved, corresponding to the first
term of equation (2.42). (B) d and @ are right-handed and helicity is not

conserved, corresponding to the second term in (2.42).

(scattering angle = 180°), J, = 0 and helicity is conserved giving rise to the
constant term ¥;u; in {2.42). However, if the ¢~ collides with a d, then
J. = 1 since d is right-handed. In backward scattering, where the scattered
particles are v, and #, then J. = —1 and helicity is not conserved. Therefore,
backward scattering is forbidden in CM, resulting in the (1 — y)? term (2.42)
which vanishes when y = 1, where in CM, y = 1 for backward scattering

(equation (2.18)).

2.3.3 Neutral Current ep — ¢X DIS

NC interactions include both photon and Z° exchange. The photon exchange

reaction is electromagnetic and it has been discussed (section 2.2.1). ln this

17

(1) \/ei(z')

P(p)

Figure 2.4: ep - eX, Z° exchange.

section, only the weak NC interaction involving the Z£7 is consiclered (fig-
ure 2.4). One must note that when both photon and Z° exchanges occur, then
this will give rise to interference terms between the photon and the Z°.

CC weak interactions are pure ¥V — A interactions (maximal mixing of
vector and axial interactions) and, therefore, are left-handed. However, weak

NC interactions are rot purely V —A. The interaction in (2.32) is then changed

to
g 1., 5
S LIV T PR 243
oL (e — &) (2.43)
where the coefficients ¢, = —1/2 and ¢, ~ —0.05 for €™ (they are different for

different particles), and Py is the weak mixing angle (see section 2.4 below).
The fact that ¢ # 1/2 and is small means that party is not | maximally
violated, as is the case for CC interactions. Jt also signifies the existence of
a right-handed component in the NC interaction. In the Standard Model,
the coefficients are functions of the parameter sin® 8y which is determined by

experiment. The present value of this parameter '* is sin? By = 0.225.
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‘The Z° propagator is the same as in (2.35} but with My replaced by Mz

—g* +q"¢"/M}

2.44
q2 - ."1% ( )

The leptonic tensor is
1 = A+ ) [P0+ 141~ g (1 1) - ticycy€umol* ! (2.45)

The tensor at the proton vertex remains the same as in CC, where W; is
included to account for parity violation. The cross section, for a pure Z°
exchange, is

doxc, _ Ira? -‘( Q?
dedQ? T xQt Q*+ M3

2

) [(2 + A)F¥C2(2,Q%) + 2eacs F Oz, )]
(2.46)

with R = 1/{1sin? 8y cos? f). The structure functions for pure Z¢ exchange

are
FFor = r 37 (2 + ) 02,01 + 0.5, Q") (247)

B =2 dle o, Q") ~ i, Q) (2.48)

2.4 Electroweak Unification

The factor cosfw in (2.43) comes from Glashow-Weinberg-Salam theory of
electroweak unification. In this theory, the CC current for W~ emission, is
(ef. (2.31))

5 =0y (1= )€ = mner (2.49)
where ¢ = ¢, and v = v,. The subscript L stands for left-handed. Here
we redefine the electron spinor by absorbing the {1/2)(1 — 75} factor and set

er = (1/2)(1 - s)e. The neutrino is, of course, left handed.
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For W* emission, we have
" 1 )
Ji =g (l=y)v=éyum (2.50)
Therefore, we can put € and v in a doublet
€ . Y A .
= 0L =}, = OLY.0101 (2.51)
v

L

with oy = (1/2)(0y £ io2), where 0,2 are Pauli matrices. This resembles
the isospin structure of the SU(2) group. To complete the group, we have to
construct ]: by using o5. In analogy with (2.19) and (2.50), we have

. L 1 .
i = PLIu5030L = 5 (L€ — Prvuve) (2.52)

Therefore, we have created isotriplet currents belonging to the St'(2), group
with the currents being j;, t =+, —, 3. The charges of this group are its
generators and are given by, along with their commutation relation,
I= /j;;(x)dax o [Er) = et (2.53)
We would like to identify jJ with the NC reaction. However, as pointed
out in section 2.3.3, NC is not pure V' — A, i.e. it is not purely left-handed
as (2.52) would suggest. Right-handed currents must be included in order to
fully characterize NC interactions. For this, we turn to the electromagnetic
interaction, which is a NC reaction but with a massless gauge boson. It has
both left and right components since we can write the electromagnetic current
as
€u€ = €pyuen t €LI,6L (2.51}
where eg = (1/2){1 + +5)e. Using the charge operator, (J.,,. the electromag-

e

netic current is j5™ = %7y Qente. Qe has eigenvalue = —1 for the electron.
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Since we have Q.,, and fy, we use the analogy with the Gell-Mann-Nishijima
formula® and define the weak hypercharge ¥, belonging to the group /(1)}y,

whichi relates isospin and electromagnetic charge by
1.,
Qem = I3 + 51 (2.55)
with the hypercharge current given as jl’ = r,;‘.?y*,',‘ 1y . Therefore
sem -3 1 ¥
F M MR e (2.56)

Note that j3 respects SU/(2) symmetry by construction and is unchanged by
U(1)y. However, jY is constructed so that it is invariant under SU(2) trans-
formations. Therefore, it is a weak isospin singlet. Thus, through (2.56),
the electromagnetic and weak interactions are unified, resulting in the group
SU(2)g x t(1)y with both left-handed and right-handed components.

The Z° current comes from jJ because ;> gives us t.he. W32 field, which is
neutral. Since )3 “interacts” with j;’ producing 7;™, it is expected to interact
again with ;¥ resulting in jf. To find jZ, we have to turn to the electroweak

interaction which is, according to the Standard Model,
g .
~ilgd - Wr S B (2.57)

where g and ¢'/2 are the current couplings to the fields. This form of the
interaction is justified by the need for three interacting fields and currents
(#3, j#3). This is given by the first term, which is the form for an S¥/(2) in-
teraction. Hypercharge is introduced by the current relation in (2.56). There-
fore, the hypercharge field which interacts with the the hypercharge current

is given by the second term, in analogy with the electromagnetic interaction,

2]

1Qunj; A* (since hoth belong to (1) group -— see last term of {2.4)}). The
neutral hosons, Z° and photon, must come from the neutral fields W§ and B*.

When the Higgs mechanism is invoked.? a mass matrix is obtained with
two eigenvalues: zero value, the mass of the photon. and a nonzero value
which is identified with the Z¢ mass. The corresponding normalized orthogonal
eigenvectors are

¢'Wi + gB* .
———=A" | egenvalue= M, =10 2.58
] N (2.58)
g'Wi —gB* _ | ,
e = 2% elgenvalue= Mz #0 2.59
\/57—-”7; g € z # { )

The electroweak mixing angle is obtained from the definition (since the fields

are normalized)
!

ﬁ = cos iy (2.60)

g .
- = = sin By {2.61)
Vgttyg

Examining the third component of the interaction (2.57), we find

0] 3
—i [gjilif’{ - ’2)']‘)‘ B“] = - [g sin iy j> + g’ cos Bu'J—g— A¥

i
—1 [y cos B j) — g cos 911"-;-] 2% (2.62)
where (2.58), (2.59), (2.60), and (2.61) have been used. Because the first
term is the electromagnetic interaction, the first term in parenthesis is €j5™ =

{72+ 7Y /2) resulting in

gsinfy = ¢’ cosfy =€ (2.63)

This yields the result from the Higgs mechanism

My
P I (2.64)
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Using (2.63) and (2.56), the second term in parenthesis in (2.62) is

..'_;q_ 3 _ em b= g szn 2.6
'cos0w (} sin 0;” )Z lcosﬂ T (2.65)

i¥Cz = 3 — sin® Gy jcm (2.66)
Note that the same coupling g/ cos f also appears in (2.43). Asis mentioned

in section 2.3.3, ¢, and c, are given in terms of the weak mixing angle. To see

this, replace a3/2 by f5 in (2.52) and note ¢ = . ot40

i3 = ke
= 50—l etenliz( - )
= Jobaont =281 - 7)o
= 36m0 - ko (2.67)
where the relations {7,,7.} = 2¢u and {75,7.} = 0 are used. We also

have ji™ = €67,Qemd (recall that ¢ is given by (2.51): but Qem = 0 for »).

Therefore, the second term in parenthesis in (2.62) can be written as

, g < 1 . . ‘
‘COS“TW?Y“ §(l —15)fs — sin? Ow Q.| ¢ Z* (2.68)

NC
in ¢

Comparing this with (2.43), ¢, and ¢, are given by

I Iy = 2sin? 015 Qem

Iy {2.69)

Ca

For the electron, Jy = ~1/2 and Q.., = —1 giving ¢, = 0.05 (using sin? fy =

0.225) and ¢, = —1/2 as is given in section 2.3.3.
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2.5 Summary of Cross Sections and Kinemat-

ics in DIS

The e™p cross sections are

(;LUT.\;;’ - 2ral [y“h""(r Q%) + Y_EN(2,0? )]
:IUTCQi - Q= B0 Ree [V4 F£9(2,Q7) + Vo2 ES(2, 07
2
R = 4sin129w (Q2 f ,-'LI‘ZF) ; (2.70)
where the relation
MiyGr = L,Qf—f;‘“ (2.71)

is used. The structure functions for NC interaction are® (for an unpolarized

electron beam)

F;‘VC - 1':2[‘:'" - 'pl,;'ul + .p').((_i + (‘:)HZ-\'(';:

ENC = e, PEM™ = 20,0, Phaky O (2.72)
where

B = 2Dl Q)+ ale Q)]

B = 2xzw (02,0 + 42, @?)]

£ = xi(cif + i) [al2, Q1) + 4=, Q)]

B = 23 e [0z, Q") = iz, @)}

o = ”Zemm a:(z,@%) - a2, Q") (2.73)
and

W
-3
oy
=

- 1 ( Q (
- 1sin? 911,:'('.052 hy Q7 + .”% ’
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The +2° interference terms are given by £37%. For the CC interaction, the

structure {unctions are given by

FEO = 2 [u(n, Q") + dd2,QY)]

)Y [wilz, Q%) - di(=, Q)] (2.75)

CC
F3

For an incoming(scattered) lepton 4-momentum {(!') and an incoming pro-
ton 4-momentum p, the kinematical variables z, y, and Q? are given in the

laboratory frame by

Q2 = —q2 = —(l - !')2 = 4E1E,'sinzg-
Q’J
¢ = 2myr

my = %(a-m:)—E,’E,,[l-Fcose)

Ql

ax

(2.76)

where 8 is the scattered lepton angle and, neglecting electron and proton

masses,

» = E,(1,0,0,-1)

{ = EQ1,0,0,1)
' = Ef1,sinfcos $,sindsin e, cosl)
s = AEE, (2.77)

AUHERA in 1993, K, = 26.7 GeV and k, = 820 GeV, giving a center of mass
energy /3 = 296 GeV.

Chapter 3

HERA

3.1 General Overview

elcclrons

I'igure 3.1: HERA collider ring.

HERA, ! figure 3.1, is the world’s only ep collider. 1t is located at the DESY

laboratory, in Hamburg, Germany. The HERA tunnel is located 10m — 25m



Energy E, =82 GeV, E, =30 GeV
‘Luminosity 1.5 x 103 em 2!
Magnetic Field Proton ring 1.657'

Electron Ring 0.1657

Energy Range 300 — 1000 GeV protons
10 -- 33 GeV electrons

‘otal Number of Particles | 2.1 x 10'® protons

0.8 x 10'3 electrons

Number of Bunches 220! for protons and electrons

'Time Between Crossings | 96ns

RFE Frequency 52M Hz and 208M H z for protons

500M H z for electrons

1210 filled bunches and 10 empty for background studies

Table 3.1: Some design Parameters for HERA.

under a large park and residential area. HERA has two accelerator rings,
electron and proton, that intersect at four collision points. The circumference
of each accelerator ring is 6.34m. The four collision points are sites for the
two currently operational collider experiments, ZEUS and H1, and two future
fixed target experiments, HERMES and HERA-B. Some of the HERA design

paramelers are listed in Table 3.1.

[0V
-1

3.1.1 Injection Scheme

Figure 3.2: HERA injection scheme.

As shown in figure 3.2, the injection begins with LINAC Il which accelerates
electrons to 500 MeV. These electrons are injected into a small storage ring
(’1A) till the current per bunch reaches 60m A. Once this current is achieved,
the bunches are injected into DESY 1l which accelerates them to 7 (GeV before
they are sent to PETRA [l. This is repeated at 12.54z until 70 bunches are
obtained with 28.8m spacing between the bunches, at which point they are
accelerated to 14 GeV and then injected to HERA. HERA uses conventional
magnets to provide a magnetic field of 0.1657 for bending electrons. The
electrons’ energy energy lost by synchrotron radiation is restored by S00M H 2

REF cavities.
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Protons are obtained from an H~ ion source and are injected to a linear
accelerator that accelerates them to 504 ¢V . U pon entering DESY 111, H~ are
stripped of electrons and captured into bunches. The protons are accelerated
to 7.5 GeV and are injected into PETRA 11, in which 70 bunches are collected
at 10 GeV before the final injection into HERA. This process is repeated until
220 bunches are stored in HERA.

‘To maintain 820 GeV protons in their orbit, a bending field of 4.651" is
required. For such high fields, superconducting magnets are used. Since the
proton is about 2000 times more massive than the electron, the energy loss
due to synchrotron radiation is (m,/m.)! ~ 10'® times smaller than for elec-
trons. Therefore, this loss is not a problem even at 820 GeV and conventional
klystrons and cavities are used, as in the electron case. The RF frequency used
at injection is 52M Hz. However, to sharpen the bunches, the RF frequency
is increased to 208 M H z at full energy.

“The collision of the two beams occurs every 96ns witha zeto degree crossing
angle, requiring extra bending magnets close to the collision point, thereby
generating a large amount of synchrotron radiation from the electron beam.
The experiments must be shielded against this radiation.

In 1993, HERA delivered 84 filled electron and proton bunches. 10(6) elec-
tron(proton) bunches were left empty for background studies (mainly beam~
gas interactions). The integrated luminosity delivered was ~ 1pb~! with ZEUS

collecting 0.54pb~".

Chapter 4

THE ZEUS DETECTOR

4.1 Overview

The ZEUS detector, shown in figure 4.1, consists of several conmponents. Of
major importance is the depleted uranium/scintillator calorimeter, which is,
for the 1993 run, the principle instrument for particle energy and location
measurements. Charged particles are tracked from the interaction point us-
ing the vertex detector (VXD) and the central tracking detector (CTD). The
backing calorimeter, made of iron plates and proportional tubes, surrounds
the calorimeter. Muons are detected by the muon chambers (FMUQ, BMUO
and RMUO). The Veto Wall is used to veto muons due to proton-gas interac-
tion upstream in the proton beampipe, Finally, the luminosity is measuted by
the Luminosity Monitor, as described in section 4.5 below. In the following,
components relevant to this analysis are described. More details concerning

the rest of the components can be found in reference 12.
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Figure 4.1: ZEUS Detector: The top diagram shows the z2-projection, where
+2 is the direction of the incoming proton beam and +: is upward. The bottom

figure shows the xy-projection.
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4.2 The ZEUS Calorimeter

The particles produced in an ep interaction usually traverse some detecting,
or active, medium in which they deposit all or a fraction of their energy. It is
important to measure the energy of these particles as accurately as possible in
order to reconstruct the events. The calorimeter is among the several devices
that achieve these measurements.

In the calorimeter, particles interact with its material and energy is mea-
sured in the form of light that is proportional to the encrgy of the incoming
particle or jet. Not all of the original energy of the incoming particle(s) is de-
tected since the majority of the material in the calorimeter does not produce
light. However, the important feature is the fact that the detected light is
proportional to the energy of the particles. The proportionality constants can
be determined from exposing differeut sections of the calorimeter to beams of
known energy and measuring the response. {'sing the results of this calibra-
tion, the energy of the incoming particles or jets during physics runs can be
reconstructed. In addition, calorimeters provide fast signals ~ 100ns permit-
ting fast decisions on event selection, which is very important at the HERA

environment since the ep collisions occur every 96ns (section 3).

4.2.1 Electromagnetic Showers

At high energies, e* lose energy mainly through bremssteahlung, where the
nuclear fieids accelerate ¢* which emit photons. In this regime (£ > 1 GeV/),
the energy loss is characterized by X, or radiation length, which is the length

of material in which an electron deposits about 3% of its energy. The energy,



£, of the electron after traversing a thickness ¢ is
E = E,e e (4.1)

where E, is the initial energy of the electron. X, can be parametrized for
7 > 13, to 20%, as'?

Photons, on the other hand, lose energy mainly by pair creation at energies
above 10 MeV.

At lower energies, Bhabha and Mller scattering and ionization losses dom-
inate for electrons. Positrons also suffer annihilation. For energies less than
10 MeV, photons lose energy mainly by the photoelectric effect and Comp-
ton scattering. The energy below which all such low energy losses become

important is called the critical energy, E., and is given by

Ee 552-9 (MeV] (4.3)

which is correct to 10% for Z > 13. Using this formula, we can estimate the
maximum length of an electromagnetic shower. On average, after an electron
with initial energy E, passes through a thickness X,, it radiates a photon. Af-
ter another X,, the electron emits another photon, while the initially radiated
photon is likely to create an e”¢* pair. Therefore, after every X,, the number
of particles increases by about a factor of 2. Then one can see that after a
thickness ¢ in the material, in units of X,, the number of particles produced is
2. Assuming the produced particles equally share the energy of the original
electron, then the average energy per particle is

E o = L (1.4)

"'\'"rr"e* 2z

13

where N+ is the number of particles. The process of energy degradation
per newly produced particle continues on until E,, = E., at which point
collision losses become farge, terminating the shower in the process, since no

more radiation is possible. This occurs at t = ¢,.. where

R ¥ W(E/E)
Buem K= 5o s = — g

(1.5)

‘This indicates that the maximum length of an electromagnetic shower increases
only logarithmically with energy. Therefore. oue can measure low and high
energies with a compact calorimeter (the ZEUS calorimeter can measure en-
ergies up to 100 GeV). Another useful property that we get from the above
argument is that the number of procluced particles, ¥, is directly proportional
to the original energy of the incoming particle E,.

To contain 98% of the electromagnetic shower, the required length of the
calorimeter is

Loos o Ly + 12 (1.6)

where ) is in units of X, and is given by
Ao 34+05X, (4.7

X gives the length at which the shower decays after it reaches its maximum
longitudinal spread. The decay is of the form e~H* with 4} = 0.4(1.2) for elec-
tron{photon). For the uranium/scintillator ZELUS calorimeter, £, ~ 10.6 MeV
resulting in Logs =~ 25X,.

The electromagnetic shower also develops laterally mainly due to multiple
scattering from electrons with energy insufficient for radiation but enough to

collide and veer off the shower axis. ' The relevant length scale is the Moliére
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radius, pas, which is defined to be the average deflection of these electrons. An
electron with energy E, after traversing a longitudinal length of X,, will have

par given by

21X, A [ g
PM =

95% of the energy of a showering e* is deposited in a cylinder with radius
2pas. At ZEUS, pa for the electromagnetic calorimeter is 3.3cm. Therefore,
to contain 95% of an electromagnetic shower, the radius needed is 2p3 x 2 =

13.2em.

4.2.2 Hadronic Showers

Many interactions occur during the development of hadronic showers. As a
result, they are hard to model in detail and one must rely heavily on Monte
Carlo-based models and experimental results. Unlike the electromagnetic
shower, where most of the energy appears in the form of detectable ionization
energy, a hadronic shower loses ~ 50% of its energy in nuclear excitations,
breakup of nuclei and evaporation of protons and neutrons.

At energies above 50 MeV, spallation starts, where nuclei are excited and
then de-excited through evaporation and emission of protons, neutrons, pi-
ons,...etc. These secondary particles are emitted if their kinetic energies are
areater than the nuclear binding energy. They are emitted wvith < pyp o>
0.35 (GeV, absorbing ~ 1/2 of the incoming hadronic shower energy.'® The
remainder of the energy is carried off by fast forward-going particles such as
pions and nucleons. Photons are also emitted during nuclear de-excitation.
T'herefore, part of the shower is electromagnetic in character, which is en-

hanced by the fact that a good proportion of the secondary particles are 7%

that interact electromagnetically without undergoing nuclear reactions.

Due to binding energies and nuclear breakup, a sizable fraction of available
energy is absorbed, leading to a reduction in the signal. In addition, neutrinos
leave the calorimeter without being detected, also contributing to signal loss.
Muons are minimum ionizing particles and they leave only part of their energies
in the calorimeter, further degrading the signal resolution. If uranium is used,
then fission starts, especially at higher energies, producing slow neutrons (few
MeVs) that carry part of the signal.

The length needed to contain 95% of the shower, including all of the above
effects, can be obtained from Monte Carlo studies and experimental results.

This length is parametrized as
Logs 2 0.2l0 £ 4+ 0.7+ 2.51£%4 (4.9)

where £ is in GeV and ) is the absorption length given by

AI/J
A 357 [om] (4.10)

where p is the density in g/em3. For uranium, 300 GeV pions are contained
in ~ 80cm while 300 GeV electrons are contained in ~ 10em. ln ZEUS, the
depth of the calorimeter is such that containment in excess of 95% is achieved
for 90% of jets with maximum energy for high Q? events.!? Also for ZEUS,
the hadronic shower has £, = 12.3 MeV with pyy = 2cm.

"T’he structure of the ZELUS calorimeter is described in section 1.3

4.2.3 Sampling, Resolution, and Compensation

I a sampling calorimeter, the active material is sandwiched between two ab-

sorber materials. Although this degrades the signal, since only part of the
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shower is sampled in the active material, this design has the advantage that it
ensures shower containment in a compact calorimeter when a dense absorber
material is used (e.g. uranium).

Because part of the shower is sampled, the resolution is affected. Other
factors also contribute to worsening of the resolution, such as the lateral spread
of the shower, nonuniformities due to calorimeter construction and instrumen-
tation, photostatistics {from photomultipliers—1>Ml's-— that collect light ancl
generate electrons). Since the number of particles produced in the calorimeter
is proportional Lo energy, then resolution follows a VN ~ 1/VE distribu-
tion.

Hadronic showers suffer from greater loss of energy (see above) which af-
fecls resolution even more. The figure of merit for the difference in response
of the calorimeter to electromagnetic and hadronic showers is the ratio e/h,
or the ratio of the response to electrons and hadrons. Due to this greater
loss of energy of hadronic showers, e/k > 1 which causes nonlinearity to
hadsonic response. This nonlinearity degrades the energy resolution (more
energy smearing) which is important for high energy jets at high Q?, where
events at lower (J? can be recontructed at higher Q*. Using uranium as a pas-
sive material helps in compensating for this loss by detecting neutrons resulting
from nuclear breakup for two reasons. First, the number of these neutrons is
proportional to the binding energy.'® Second, they are not affected by ura-
sium. In addition, the electromagnetic response caused by hadronic showers
must be reduced (to curtail the electromagnetic fluctuations that are nonlinear
with energy). Therefore, to achieve maximal compensation, the spacing and

thickness of absorber and scintillating materials are tuned so that efh = 1.
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Calorimeters that have ¢/h = 1 are referred to as compensating. At ZEUS,
3.3mm uranium plate is sandwiched between 2.6mm scintillator. With this

configuration, e/h = 1.0 £ 0.03 has been achieved. !¢ The resolutions obtained

are!?
. o
U(% = 3;; 2%  for hadrons
> a
o—-—-——( ) = M 5 1%  for electrons (1.11)

¥ VE
where the extra 1% and 2% come from nonuniformities in the calorimeter and

readout, described above.

4.3 Mechanical Description

The ZEUS calorimeter is divided into three parts with the following angular
regions coverape:

~The Forward calorimeter (FCAL): 2.2° —39.9°,

“The Barrel calorimeter (BCAL) : 36.7¢ — 129.1°.

-The Rear calorimeter (RCAL) : 128.1° - 176.5°.

Each part is divided into modules with each module, in turn, divided into
several towers. Generally, each tower consists of 1 electromagnetic calorimeter
(EMC) cells (F/BCAL) or 2 EMC cells (RCAL) and 2 hadronic calorimeter
(HAC) cells (F/BCAL) or 1 HAC cell (RCAL) located behind the EMC cells.
‘The exceptions are towers in the FCAL or RCAL region shadowed by BCAL
EMCs. In this case, the 4 EMC cells are replaced by a single HAC cell.

Taking the origin at the interaction point and defining the +z-direction

along the incoming proton beam, FUAL extends from 2 = 222cm — 452em



38

and RCAL extends from z = —118cm to —309cm. FCAL and RCAL HAC
cells are 20 x 20ecm®. The FCAL EMCs are 5 x 20cm? while the RCAL EMCs
are 10 x 20cm?. The 23 FCAL and 23 RCAL modules are placed so that the
EMC cells face the direction of the interaction point. The depth of an EMC
is about 25X,(~ 11). The depth of the HAC changes from ~ 6X in the very
forward direction to ~ 3A in the rear direction.

BCAL cells are arranged in 32 modules placed parallel to the beam axis.
BCAL towers are wedge-shaped with an opening angle of 11.25°. The EMCs
are S5em long along the z-direction and the HACs are 20cm. Each BCAL
module has an inner radius 123.2¢m and an outer radius of 291.2em.

The ZEUS calorimeter covers 99.8% of 4x with an angular resolution of
10mrad. Calibration of the absolute energy scale is better than 1% and event
times can be measured to Ins. It is constructed from depleted uranium (D7)
plates sandwiched between scintillator plates. The depleted uranium is 98.1%
23817, 1.7% Nb, and less than 0.2% 2*°U, with a density of 18.9¢/cm®. The
scintillator is made of SCSN-38 which has a relatively high light yield and
is stable against aging and radiation. The uranium radioactivity insures a
stable calibration signal which is used for monitoring over time. DU plates are
enclosed in a stainless steel foil of 0.2mm thickness in the EMCs and 0.4mm
in HACs to keep radioactivity emitted low so the resulting PMT dark current
is low. At the same time, it is high enough for calibration. The stainless steel
foil also protects against contamination.

Wave Length Shifters { WLS) are placed perpendicular to and used to read
the light output from the scintillator plates. They are made of polymethyl

methacrylate (PMMA) doped with fluorescent dye Y7, with an ultraviolet
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light absorber for wavelengths less than 360nm.

4.4 Tracking

"The tracking system identifies charged particles and reconstructs their tracks
for momentum measurements. It is designed to reconstruct electrons and

hadrons with ¢(p,)/p < 0.003p, over a wide angular range.

4.4.1 Central Tracking Detector

The Central Tracking Detector {(C'T'D) reconstructs the trajectories of particles
within an angular range of 15°—164°. The active length of the CTD is 2m, with
an outer radius of 85¢m, and is positioned around the Vertex Detector (see
below). It is divided into 9 superlayers with each layer containing 8 sense wires.
5 of these layers run parallel to the beam axis and 4 are tilted by a stereo angle
of £5° to make polar and azimuthal angular resolutions approximately equal.
In 1993, the CTD was operated with a magnetic field of 1.437" using a mixture
of Ar:C0;:CyHg with ratios 90:8:2. The resolutions obtained!” were 260um

for r¢ measurements and 1.5¢m for reconstructing the track z-coordinate.

4.4.2 Vertex Detector

The Vertex Detector (VXD) detects short-lived particles and improves the
angular and momentum resolution of particles measured in the C'I'D. It is
a cylindrical drift chamber that covers the angular region from 8.6° ~ 1652,
The VXD has an inner radius of 8.8an and an outer radius of 16.2¢m. It

is filled with dymethyl ether with a trace of oxygen and is situated between
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the beampipe and the C'I'D. Enclosed within the VX1 are 120 drift cells each
containing 12 sense wires with 1.6m length parallel to the heam axis. For the
1993 run, the ro resolution was 50;m in Lhe center of a cell and 150um at the
edges.!” Using the hit information from both the VXD and CTD, the track
momentum and distance of closest approach improves by a factor of 2-3 when
compared to the CTD measurements alone, resulting in momentum resolution
for full VXD and CTD reconstructed tracks of ¥ a(p,)/p. = 0.005p, 5 0.016,

where p; is in GeV'.

4.5 Luminosity Monitor

The luminosity is measured using the precisely known Bethe-Heitler cross
section describing bremsstrahlung, ep — epy, at small angle. The Luminosity
Monitor detects electrons and photons from this interaction in coincidence.

The cross section for this interaction is given by the Bethe-Heitler formula

dogy _, K (E E 2 E,EE'Y 1 5
dk 4‘"’@ E‘+E 3 I mymk 2 (1.12)

where k is the photon energy, £( £’) is the incoming(scattered) electron energy,

E, is the incoming proton energy, m, and m, are the proton and electron
masses, respectively, and r, is the electron’s classical radius.

T'he Monitor consists of two detectors. ‘L'he eleclron delector is located at
z = —35m from the interaction point in the direction of the incoming electron
beam. 1t is made of a lead scintillator sampling calorimeter surrounded by lead
shielding. It tags electrons with scattering angle less than 0.5mrad and with
energies in the range of 11 GeV —19 GeV'. Photons are detected in the photon

calorimeter which is located at z = —106m. [t is made of a carbon filter to

1l

absorb synchrotron radiation, a (‘erenkov counter to velo electrons coming
mainly from photon conversions in the filter, and a photon lead scintillator
sampling calorimeter. I’hotons in the range of 10 GeV' - 16 eV’ are detected
in the Monitor.

Luminosity, £, is related to the bemsstrahlung events rate, R, by

-1 (1.13)

Oobs

Electron-gas interactions have a large cross section which approximately varies
like Z% . Since this has the same signature as a bremsstrahlung event, it is a
significant background which must be subtracted. This rate can be obtained
from the electron pilot bunch rate, where the pilot bunch is one that does not
have a corresponding proton bunch to collide with. Therefore, the total rate
is
Ilu(
H&:H«"—Hydar (‘1-“)

Lt

where R, is the total observed rate, [, is the total electron current, ..
is the electron pilot bunch current, and £, is the observed rate from the
electron pilot bunch. The observed cross section is the Bethe-Heitler cross
section folded with the Luminosity Monitor’s acceptance, Ay,,.,, and is given
by

Tohs = //‘eum.’[ﬂﬂu (1.15)

As mentioned above, the total integrated luminosity in 1993 was 0.54pb~!.
The total systematic error on the measurement was'® 2.5% which included
error in electron-gas subtraction(0.5%), cross section calculation(1.0%), cor-
rections for multiple events(0.05%), counting errors(0.3%}, energy scale er-

rors(1.9%), acceptance correction(0.5%), and Monte Carlo statistics(1.0%).



12
4.6 Backing Calorimeter

The Backing Calorimeter (BAC) surrounds the ZEUS calorimeter. It is de-
signed to include the energy leaking from the calorimeter to improve energy
resolution. In addition, it is used to detect muons, from ep interactions and
cosmics. The BAC energy resolution is 101%/VE.

‘I'he iron yoke of the BAC is made of 7.3cm plates with 3.7em gaps which
are equipped with aluminum proportional tubes filled with 87% Ar and 13%
(*0,. Signals are carried by gold plated tungsten wires 50ym in diameter that

are stretched in 15 x 11mm? cells of an aluminum extrusion.

4.7 Veto Wall

The Veto Wall is located ar 2 = —7.5m. lts i~ used to (letectﬂmuons coming
{rum npstream inside the proton beampipe. '['hese muons result from proton-
gas interactions.

T'he Veto Wall is an 800(width) x907(height) x87(thickness) cm® iron wall
consisting of 13 layers of iron blocks used as a passive absorber. A rectangular
hole with dimensions —40cm < z < 40cm and —45em < y < 130.5¢cm is left
in the middle of the wall for beam magnets and a vacuum chamber. Two
scintillator hodoscope arrays are also present on both sides of the wall, with

each array consisting of 48 scintillator counters.

4.8 C5 Counter

Beam-gas interactions are significant background in HERA, especially from
protons. To reduce the beam-pgas rate, the ('5 counter is used. It consists of
four 2.6mm thick scintillator counters surrounding the beampipe and located
behind the RCAL at z = —315cm. These counters are at about fem distance
from the beam. Each pair of counters is used in coincidence to detect beam-
gas interactions. The €5 Connter mieasures both the times anid energies of the
detected particles.

The characteristic time of a beam - pas event is different from an ep ovent.
When a proton in the beampipe collides with a gas particle, the scattered
particles arrive at the RCAL earlier than those particles originating from an
ep collision (in this case, the proton has to traverse an extra distance to the
interaction point making the scattered particles arrive at the RCAL at later
times). From such timing information, the background rate is reduced by an

order of magnitude. ®




14

Chapter 5

TRIGGER AND READOUT

5.1 Layout

The main trigger backgrounds in HERA are beam-gas interactions (~ 100k H z),
cosmics (~ 1kHz), and electronics noise (~ 0.1kHz). The goal of the trig-
ger is to reduce this background efficiently while identifying the “interesting”
physics events. The readout, on the other hand, has to measure the energy
deposits and their times accurately to reconstruct these events. Because the
time between crossings is 96ns, it is very difficult to make a decision to keep
an event within such a short time. To overcome this, both the trigger and
readout are designed as pipelines. The trigger pipeline performs the neces-
sary calculations and distributes the decision to the readout in ~ 5us, while
accepting events every 96ns, avoiding any deadtime in the process. The read-
out keeps the event information in buffers until it receives a trigger decision
while still accepting events every 96ns. The data acquisition system is shown
schematically in figure 5.1.

ZEUS uses a three level trigger. At the first lé\'el, the rate is reduced to
below 1kHz by using programmable dedicated logic circuits. The results of

each detector component are sent to the Global First Level Trigger (GFLT)
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Figure 5.1: ZEUS Data Acquisition chain.

within 26 crossings. The GFLT takes 20 more crossings before sending a
decision (“level 1 accept”) for the component readouts to read the event, that
is, digitize and send the event to the Second Level Trigger (SLT). Therefore,
the trigger takes a total of 46 crossings, or 4.4us before issuing an accept. The
Calorimeter First Level Trigger (CFLT) has, in addition, the Fast Clear!®
which runs hardware cluster finding algorithms on the CFLT data. It can
abort events before initial data processing by the SLT. The CFLT/Fast Clear

design goal is to reduce the input rate to the SLT to below 1hH z.
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After the GFLY decision, the component SLT, which is software based,
processes digitized data, enabling more precise calculations. ‘I'he results of
these calculations are sent to the Global Seconl Level Trigger 2 (GSLT) which
combines the information of all components and reduces event rate to less than
100Hz. A positive decision from the GSLYI' is fanned out to the components
via the Event Builder.® ‘The components then send their data to the Event
Builder which formats them into ADAMO structure?? before transmitting
them to the Third Level Trigger®® (TLT). The TLT is a Silicon Graphics
computer farm (6 VME crates with each crate connected to 6 computers). It
runs a simplified version of the offline reconstruction code to reduce the event
rate to 54z (500kBytes/s). The results of the TLT processes are sent to mass

storage devices or to the central online computer for online monitoring.

5.2 ZEUS Calorimeter Readout

The ZEUS calorimeter readout >*?* shapes, amplifies, and samples the signal
at a rate of 10MHz. It is a Sus deep pipeline that reconstructs energy and
time of the events, measures the level of noise from the radioactive depleted
uranium, and sends 5% of the charge on each channel to the CFLI (see below).

T'he ZEUS calorimeter data acquisition chain starts with the Analog Cards
of the readout, which are placed on the calorimeter. They are pipelined and
cach card reads 12 PMTs. They provide 17 bits of pulseheight dynamic range
(up to 100 GeV) and times of energy deposits accurate to lns, which are
for vetoing beam-gas interactions. The 12 PMT signals are integrated and

shaped before being sampled every 96ns. The samples are stored in an analog

i7

pipeline until 2 receipt of a level 1 accept. If there is no such trigger, they are
discarded. Once triggered, these samples are sent via 60m twisted pair cables
to the Digital Cards, located in the electronics house (ruck sack).

The Digital Cards digitize the samples, correct for gain and pedestal errors,
and calculate the energy and time. Signals from 24 PMTs are handled by one
Digital Card. The result of these calculations are sent to the calorimeter SLT.

The SLT 28 is a 3-layer transputer processor network that interfaces with
the Digital Cards. To cut on time dedicated for events, each transputer pro-
cesses data from several neighboring calorimeter cells, in parallel with other
transputers. The SLT monitors the calorimeter continuously and also controls
the readout electronics. It identifies electron and hadron clusters and sparks.

1t also calculates the times of the energy deposits. The results are sent to the

GSLT.

5.3 ZEUS Calorimeter First Level Trigger

5.3.1 Rates and Goals

‘The CFLT ¥ task is to identify NC (characterized by low #’ and an isolated
electron in the final state), CC (high missing ;... ), photoproduction and
low x events (Lypically low energies), and exotic events (leptoguarks, excited
fermions,...etc, that have high missing Pin.is,, or isolated electron/muon in the
final state). This interesting physics comes at a rate of few Hz which has to be
extracted from a background made of beam-gas interactions (~ 100&H z)and
cosmic and beam muons (few 100s Hz). The goal is to cut the background

rate to below 1kHz while maintaining high efficiency for physics events.
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5.3.2 Data Flow

A typical calorimeter trigger tower consists of 1 (F/BCAL) or 2 (RCAL) EMC
cells and 2 (F/BCAL) or one (RCAL) HAC cells that lie most projectively
behind the EMC towers. The collection of the EMC cells or HAC cells of
a tower is called an EMC, or HAC, section. As is mentioned in section 1.3,
some of the F'/RCAL cells are shadowed from the interaction point by BCAL.
A particle that scatters to these cells will first hit a BCAL EMC cell, BCAL
HAC cell, then the shadowed cell. For this reason, these shadowed cells are
used as HAC cells and are combined, through cabling, with the BCAL HAC
cells to make the geometry as projective as possible. Therefore, the CFLT
treats the shadowed cells as part of the BCAL. Using a combination of cables
and electronics assignments, the calorimeter is divided into 896 trigger towers
{figure 5.2(A)) that are further subdivided into 16 regions (1 FCAL, 8 BCAL,
and 4 RCAL — figure 5.2(B)), each region being an 8 x 7, or 56, CFLT tower
region. Each region is served by one CFLT VME crate in the electronics house.
Each VME crate is custom made with a standard VME J1 and custom J2 and

J3 backplanes. The J2 and J3 buses are split in the middle.

Trigger Suin Card

‘Typically, each Analog Card reads 12 PMTs. The “left” Analog Card reads 6
PMTs from the “left” side of a tower and 6 I’MT's from the left side of another
tower. The *right” Analog Card does the same but with the right sides of
the two towers (figure 5.3). The Analog Card sends 5% of the charge in sums
of up to 6 M signals from one tower lo the Trigger Sum Card (TSC), the

first element in the CFLL chain. Like the Analog Cards, the TSCs are also
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Figure 5.2: Figure(A): Trigger Tower arrangement. Figure(B): Trigger region

assignments of the calorimeter (0-F) with edge regions shown.
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Figure 5.3: Summation scheme of Analog and Trigger Sum Cards. L stands
Jor left and K for right. TEC is the Trigger Encoder Card (see section 5.3.2).

mounted on the calorimeter.

The ‘'I'SC has 8 inputs, 4 for left PM1s and 4 for right PM1s. Each
left/right input pair is integrated and summed with 12-bit dynamic range.
The baseline is restored every 96ns. The resulting signal is then shaped and
sent by a 60m shielded twisted-pair cable to the Trigger Encoder Card (TEC),
located in the electronics house.

P gains are set such that 1 GeV of energy produces 3.65pC of charge
on each of the 2 PMTs attached to an FCAL cell. For B/RCAL, the gain is
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530pC/GeV. When left and right PMT's are summed, the total charge per
GeV of energy is either 7.3pC (FCAL) or 10.6pC (B/RCAL). 5% of this charge
is sent to the TSC. In FCAL, the maximum deposited energy is 4100 GeV'. In
B/RCAL, it is 100 GeV. Therefore, the maximum charge delivered to each
TSC is 400 GeV x 7.3pC/GeV x 0.05 = 146pC for FCAL and 100 GeV x
10.6pC/GeV x 0.05 = 53pC for B/RCAL. For FCAL cells shadowed by BCAL,
although summed with BCAL HAC cells, the TSC gain is set for the maximum
deposited energy of 400 GeV, resulting in a maximum charge of 100 GeV' x
10.6pC/GeV x 0.05 = 212pC. The TSC maximum driving voltage on its
output is 2V'. Therefore, the TSC gains are set to 13.7mV/pC for FCAL,
3I7.TmV/pC for B/RCAL, and 9.4mV/p(" for FCAL cells summed with BCAL
HAC cells.

Eacli individual TSC input is controlled by serial data via fanouts located
on the detector. 'This flexibility allows individual left or right inputs to be shut
off when they become noisy. Calibration compensates for this at the Trigger
Encoder Card (see below) level by applying a multiplicative factor to the charge
to energy conversions of the remaining active inputs. In addition, the fanouts
can be used to set thresholds used in detecting sparks through differences in
left and right puiseheights. There are ~ 5000 TSC input channels on the

calorimeter controlled by 130 fanouts.

Trigger Encoder Card

The Trigger Encoder Cards (TECs—figure 5.1) are located in the CFLT crates
in the electronics house. There are 14 I'XCs per each of the 16 trigger crates

covering a 8 x 7 trigger region (56 towers). Therefore, there are 221 TECs in
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Figure 5.4: TEC Schematic for Front End, Linearization, and Tests.

the system, giving a total of 1792 channels (896 low gain and 896 high gain
channels). Each TEC receives signals for up to 4 EMC and 4 HAC sections
from 1SCs. ‘The TEC is a 370 x 400mm? 13-layer printed circuit board with
8700 vias, and 1100 components that occupy 75% of the board area. It provides
a dynamic range of 0 — 400 GeV.

‘The analog pulse, with 80ns width and 20ns flat top, is digitized, after
being pedestal corrected, by two 8-bit Flash Analog to Digital Converters

(FADCs), in low and high gain channels. In the high gain channel, the signal
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is multiplied by & (B/RCAL) or 32 (FCAL). The pedestals are set by two
Digital to Analog Converters (DACs), one for the low gain channel and one
for the high gain channel. The noise in the system is less than 4 counts on any
individual high gain channel.

Each FADC (low and high gain) is clocked by a 96ns clock whose phase is
adjusted by a delay line in order to digitize the midpoint of the flat top of the
incoming pulse. The digitized signal is then sent to a register that synchronizes
the data with the GFLT 96ns clock that drives the whole system.

The digitized data, along with the high/low gain overflow bits, are received
by a 2-page programmable Linearization Memory. Its first page corrects the
data for calibration and places the corrected data on one of two 8-bit scales,
low and high gain (determined by the FADC high gain overflow bit). In
the high gain channel, the full scale energy is £,.. = 12.5 GeV while it is
400 GeV(100 GeV) in the low gain channel for FCAL(B/RCAL), yielding a
gain of 32(8). The resulting resolution is £,,./2® = E,.../256. The high
gain scale resolution is then 49 MeV /bit, while the low scale resolution is
1.6 GeV/bit in the FCAL and 390 AMeV /bit in B/RCAL. Energies below
464 MeV are set to zero

The second page contains 8-bit words that include one “Q”(or Quiet) bit,
indicating a section (HAC or EMC) with encrgy less than that of a minimumn
ionizing particle (MII’), one *M” bit for an energy cousistent with a MIP, and
6 bits of energy placed on a nonlinear {compressed) scale between minimum
ionizing and maximum scale. The maximum value of 63 of these 6 bits is
reserved for the low gain overflow.

The Linearization Memory sends its 8 bits of data from the first page, along
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Threshold number

)] 1 2 3 1 5 6 7

T'hreshold bit {000 | 001 | 010 | 011 | 100 | 101 | {10 111

representation

Tower Energy > f - | 1.25] 2.5 | 5.0 | 10.0 { 20.0 { 40.0 | overflow
{GeV)

Table 5.1: Threshold bits used for tests by the TEC.

with the high gain overflow bit, to two 2-page programmable Geometric Mem-
ories, GMA and GMB. GMA calculates K, (first page) and £, = £, sinf
(second page), while the GMB finds K, = E,sinfcos¢ (first page) and
Lk, = Eusindsing (second page). Ky, values are set for all channels at
100 (eV/256 = 1.6 GeV /bit. Ly values for all channels are placed al a scale
of 75 GeV/256 = 0.29 GeV/bit, where £, = 75 GeV. K, and K, are
signed quantities ranging from —75 GeV to 75 GeV and are expressed in 2's-
complement notation at a scale of 75 GeV/2™ = 75 GeV//128 = 0.58 GeV /bit.

It takes 96n3s to send these quantities to the adder trees. During the first
18ns, £, and kK, are presented to their respective adder trees. In the second
18ns, £, and E, are presented (£, and E, go through the same trees as Fy,
and £, respeclively). ‘'here are two trees for EMC and two for HAC. "The
results of the adder trees are sent to the Adder Card via modified J2 and J3
split backplanes at 12ns rate.

‘I'he test circuitry uses the Q, M, and the 6 bits of compressed scale energy
from the EM(" and HAC sections of each tower. ‘I'he sum of the HAC and EMC

energies is tested against 6 energy thresholds. The result of this comparison

is given as three programmable threshold bits whose definition is shown in
table 5.1. In addition, an *E” bit is reported if the tower is consistent with
electromagnetic energy. This bit is determined by a programmable function
of six bits a piece of EMC and HAC energy. The EMC Q bit is ANDed with
the HAC Q bit. The same is done with the M bit. The resulting 6 bits (3
threshold bits, E bit, @ bit, and M bit) are multiplexed to three bus lines on
modified J2 and J3 split backplanes at a 12ns rate.

Trigger Adder Card

There are two Trigger Adder Cards (I'ACs) per CFLT crate {a total of 32 in
the system). One is on the left of the split of the J2 and J3 backplane and
one on the right. Each receives data from 7 TECs. One TAC is designated as
the “Master” and the other is the “Slave” (no connection to the corresponding
VME terms). The two TACs communicate with each other via a bi-directional
front panel printed circuit board.

The TACs continue the energy summation of the TEC's which send £, £/,
E,, E,, and the overflow bit. The summation is done with & bits of dynamic
range. The Master card combines the information from the two TACs and
sends energies and the overflow (ORed with the carry bit) via cables to the
CFLI Processor (CFLI'I").

Energies in subregions within the 8 x 7 tower region, served by one crate, are
also calculated. These subregions are programmable and up to 8 subregions
can be defined. This is essential for regions in the calorimeter that span more
than one trigger crate. For example, specific trigger towers in the 1 RCAL

regions served by 41 crates are assigned to the RCAL beampipe area. Energies
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found from the threshold test bits of the TECs for these towers are summed
up by their respective TACs of that crate. he results are then sent to the
CFLIP which finds the total beampipe subregional energy sums by summing
the results of the 4 crates.

T'he number of towers in a 56 tower trigger region exceeding each threshold,
but not the one above it, are histogrammed. This is used to search for jet
candidates in which energy deposition is contained in a few towers.

[solated electrons and muons are found by the TACs. It is important to
do such a search at the first level trigger for four reasons. First; no Q7 cut is
needed to find electrons. Second, the background coming from hadrons faking
an electron, by passing at an angle from an EMC cell of one tower to a HAC
cell of another tower, is reduced. Third, muons can indicate the production of
heavy quarks, decay of heavy leptons, or production of gauge boson. Fourth,
the muon trigger background rate is reduced when the CFLT muon trigger is
combined with the muon triggers of the muon detectors.

‘The TACs use E and Q bits to find electrons (for muons, the M bit is used)
by searching for a pattern consistent with an isolated electron (7 patterns are
considered in the hardware®®). One such pattern is shown in figure 5.5. The
pattern logic starts with seven overlapping 2 x 2 trigger tower regions across
the top of the 56 tower region in parallel. In each 4 x 1 region, of the 8 x 7
tower region, the pattern logic searches the central 1-4 (2 x 2) towers with
an electromagnetic signal (E bit). It then checks the surrounding (up to 12)
towers to be quiet. It takes 12ns to identify a pattern in the 2 x 2 region and
two cycles of 12ns for the remaining 12 towers surrounding it (to complete the

1 x 1 region). However, when the search in the 12 surrounding towers begins
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Figure 5.5: The three step algorithm to identify isolated rlectrons by the TACs.

at the next 12ns step, a new 2 x 2 search starts with towers in the & x 7 tower
region that are one row below. In total, it takes nine 12ns cycles to analyze a
56 tower region for contained and edge leptons (edge leptons are found at the

edges of an 8 x 7 region. Their isolation is confirmed by the CFLTP).

CFLT Processor

The CFLTP gets information from all 16 CFLT crates and produces global

and regional trigger quantities which it transmits to the GFLT. It receives the
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number of contained and edge leptons and verifies isolation for the edge lep-
tons. It continues the process of energy summation of the TECs and calculates
regional and global Evs, Ex, Ey, Emiss = \/I?r_-l-_E:, and total missing electro-
magnetic energy. The transverse energies of HAC and EMC calorimeter sec-
tions and missing transverse EMC energy are compared against programmable
thresholds. Sums of energies in FCAL beampipe and RCAL beampipe are also
calculated. The results of this summation are sent in 32 16-bit words to the
GFLT (table 5.2).

The hardware of the CFLTP consists of 8 Input Cards (ICs), one Commu-
nications Card (CommC), and 10 Algorithm ('ards (ACs}). Each IC gets data
from TACs in 2 crates at 128bits/24ns and sends data at 18ns rate to the
ACs. Each AC executes a different algorithm and receives different subsets of
the data through the backplane from the 1Cs for the appropriate calculations.

The CommC receives and distributes clocks and control signals from the
GFLT. From the GFLT 96ns clock, it creates the 12ns clock for the TACs
and the 48ns clock for the [Cs and ACs. The CFLT control signals and the
I2ns and 96ns clocks are fanned out to the TACs through the Adder Support
Module. The 96ns clock can also be generated by the CommC for standalone
testing. The delays on the various clocks are independently adjusted by soft-

ware.

5.3.3 Calibration

The CFLT is calibrated using charge injectors that mimic both the pulse size
and time structure of real physics data. The precision of the charge injectors is

known to within 1%. These injectors are controlled by the calorimeter readout,
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Regional Quantities x 16

Gilobal Quantities

Pattern Logic

[solated ¢

Isolated u

1 bits
1 bits

8-bit resolution adders, full scale 50 Gel' or 75 GeV

Isolated e 2 bits
Isolated g 2 bits
EEMC 3 bits
E, 3 bits

EFMC EEMC
ot 1
E,

E(ol

IElmisl!| Mlgle
IEE.“C

imias
k., E,

~MCAL
blal

ACAL pRCAL
bE.‘\f’(‘ ' b HAC
(Eemc/Enac)rear

'‘BCAL
E’EMC

8 bit x2

8 bits

8 bits

8 bits x2

T bits + sign

7 bits + sign x2
& bits

8 bits x2

1 bits

3 bits

Quantities based on

3-bit comparisons, *“Threshold Sums”

Quiet Region 1 bit

Erjncar in bp 3 bits x8&
Electronic OF" 1 bit
Jet Likelihood 3 bits

BCAL Towers > E;,‘,
Er/pcat outside bp1
Erjreat bp

Any RCAL Tower > KLS
Global Jet Likelihood

& bits
8 bits x2
8 bits x2
! bit
& bits

tThe = Threshold, 1bp = Beampipe
8KL = Kinematic Limit, "OF = Overflow

Table 5.2: Quantities available from the CFLT (every %6ns).
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Figure 5.6: Time evolution of a typical pulse charge tnjector pulse profile at
the FADC on the TEC. Vertical bars are root mean square errors arising from
sampling each point 10 times. Note that the pulse rises again after the peak ts
reached. This is because the nert edge of the 96ns clock is starting to digitize

{nerl crossing).

which is interfaced to the CFLT by a 2TP-VME?® module located in one of
Lhe readout crates. 'I'his module, which is part of the CFLT crate system,
is used to send control signals to fire the charge injectors at a certain pulse
height (set by a DAC on the Analog Card) and time.

If the pulse heights are set at some fixed voltage, then by varying the
clock delay line of the TEC for every individual FADC, one can obtain a pulse
height-time profile at the FADC (which is accessed by reading the digitized
data from the TEC Linearization Memory). Figure 5.6 shows a typical pulse

profile. This type of information is used to find bad channels in the calorimeter.

6l

6 2 4 [] l |.0 12

Energy (GeY)

Figure 5.7: A linearity profile for one of the high gamn channels. The Ervor
bar on each point is too small to be seen. Note that the first point deviates a

little from a straight line. This point is the pedestal setting of the channel.

Any channel that reports a pulse height different by 10% {rom expectation is
flagged as a bad channel and later fixecl. 1t is also be used to find bad clock
delay lines (since in this case the pulse profile will either be digitized at an
“abnormal” delay setting of the delay line or will have a different time structure
from that expected, shown in figure 5.6). In addition, such profiles are used
to obtain the setting of each FADC delay line needed to «igitize the middle of
the pulse flat top.

If the FADC clock delays are set so that the FADCs always digitize at the
puise flat top, then by changing the Analog Card DAC setting, so that the pulse
height is changed, and reading the FADC data after the pulse is digitized, one

can check the linearity of the analog part of the CFLT. Such linearity profiles,
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an example of whichis shown in figure 5.7, give the maximum low and high gain
pedestal corrected scales (ideally, gain of 1 for the low gain channel, and gain
of 32(8) for high gain channel in the FCAL{R/BCAL)). These gains constitute
the calibration constants, which are stored in the Linearization Memories in
the form of multiplicative factors. During 1993, these multiplicative factors
were set to unity. The calibration procedure was first implemented during the

19% run,

5.3.4 Trigger Conditions and Performance in 1993
Trigger Quantities

‘The principle algorithm used in 1993 to reduce ~ 100kH 2z of background rate,
while retaining high efficiency for NC and CC events, is an OR of energy
threshold requirements on several trigger quantities (table 5.3). Not all the
CFLY quantities listed in table 5.2 are used since the luminosity in 1993 was
about 5% the design luminosity.

The REMCthr (£5$A%.,.) trigger shown in table 5.3 uses the three energy
threshold bits of the TECs to find electrons. The isolated electron trigger was

tirst implemented in 1994.

Rates and Efficiencies

In 1993, the total CFLT rate was 7542z {rom a total background rate of ~
100k z, at a HERA luminosity of 0.7 x 10%. ‘The efficiency of each trigger
has been studied with the CFLT triggers collected by CGFLT. 1o obtain the

efficiency of EESAL, for example, one obtains the £EZCAL energy spectrum
) EMC EMC gy sp
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Ei 215 GeV OR

E, 2115 GeV OR
LEEMC > 10 eV OR
EBSAL >34GeV  OR

ERCAL. hol > 9 eV OR

EBSAL, >3.15 GeV

pr = Beampipe.

able 5.3: Threshold requirements on CFLT quantities for 1993.

of data triggered by other quantities irrespective of whether EBSAL trigger
tagged the events. Another EEGM energy spectrum is obtained but with
the requirement that all the events are also tagged with the KB trigger.
Dividing this spectrum by the previous spectrum results in an efficiency curve.
To correct for the CFLT acceptance, we use a £EGH spectrum for Monte Carlo

data that passed through the CFLI simulation, Multiplying this spectrum by

the efficiency curve and integrating the result gives the total efficiency of the

bgc‘.’,ﬁ, trigger.

The overall CFLT efficiency for NC events is 98% and for CC events 85%.
The REMCthr trigger has been the most efficient trigger for NC, where more
than 92% of the ZEUS NC sample has been tagged by this trigger with 49%
of it being collected exclusively by this trigger. The purity of the REMCthr
trigger is low with 95% of it being rejected at the SLI' as originating from
beam-gas interactions.

‘The REMCihr rate was estimated to be too large for the 1991 run, where
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the luminosity was 5 times that of 1993. As a result, the isolated electron
trigger was studied in 1993 to find the best algorithm needed for the 1991
run. - As discussed above, the isolated electron algorithm searches for tow-
ers with electromagnetic (E) bits surrounded by quiet towers (Q bit). An
EMC(HAC) tower is quiet if its energy is less than some programmable thresh-
old. Qeme(Quac). The E bit is based on a programmable function. The algo-
tithm chosen is Qene = 2.52 GeV, so the trigger has 100% efficiency {including
energy sharing between towers) for electron energy > 5 GeV, Qrac = 0.95GeV,
and E = [(EMC > Quu) AND (HAC < Quac)] OR {EMC 2 Qemc) AND
(EMC/HAC > 3)]. With this configuration, the rate is reduced by a factor of
2 with respect to the REMCthr trigger (figure 5.8(A}) while maintaining the
same efficiency as the REMCthr trigger for NC events. The overall efficiency
of the isolated electron trigger relative to a standard ZEUS software electron

finder is 98% (figure 5.8(B)).
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Figure 5.8: Figure (A): The isolated electron trigger beam-gas background
in arbitrary units as a function of Que and EMC/HAC parameters. The
dot-dashed line indicates the rate of the REMCthr trigger at 3.75 GeV. Fig-
ure (B): The isolated electron trigger efficiency relative to a standard ZEUS
electron finder versus electron energy. The efficiency rises between E, 2.5 and
5 GeV due to events where the electron energy is shared between trigger towers
(Qeme = 2.52 GeV ). Luents with £y > 30 GeV are not elecirons sinee they

are outstde the kinematic limit.
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1. The electron method: The kinematic variables are reconstructed from
the scattered electron energy E! and angle 8,, where 6, is measured
from the incoming proton direction defined to be along +z direction. In

Chapter 6 this case, the variables become

Q? = 2E,E!(1 +<cosb,)

KINEMATIC RECONSTRUCTION E [ ENL +cosb.)

Ly = —

E, |2E - Ei(1 - cosB,)

AND MONTE CARLO B 6

Y I—Eé(l—cosg.)
SIMULATION where E, is the incoming proton eneray.

2. The Jacquet-Blondel (JB) method3!: The kinematic variables are re-
6.1 Kinematic Reconstruction constructed from the struck quark hadronic jet using the magnitude of

the vector sum of the transverse momentum of the hadrons (1%;) and
‘I'he kinematic variables z, y, and Q? can be reconstructed using a variety

from the hadronic longitudinal energy sum T(E ~ £%.);,. The kinematic
of nmethods with combinations of the scattered lepton and quark jel energies

variables are
and angles.® One chooses the method giving the best average resolution and

2 (i Pui)? + (T P)*

smallest kinematic biases. The kinematic variables, given in equations (2.12) = N
— Y
and (2.17), are 2
Ty = =
SYis
Q = —¢=-(-ty _ Lk - P 63
A e T (63)
r = —
gg (6.1) Since the calorimeter is used to measure energies, then the summation
y = — .
pl is over the calorimeter cells.

where {({'}) is the incoming(scattered) lepton 1-momentum and p is the incom-
3. The Double Angle {DA} method: In this method, only the angles of the
ing proton 1~momentum.
scattered electron, 0., and the hadronic jet, yy, are used. The angle
Three methods for kinematic reconstruction are considered in this analysis:
+ar 1s that of a massless object balancing the momentum vector of the
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electron. In the niive parton model, it is the scattering angle of the
struck quark. It is determined from the hadronic flow measured in the

‘detector using the equation

P~ AL,

th ¢

COSVI = 53— g 6.4
.’” I’é!, + 4Ezy}$ () )
The kinematic variables are given by
4 2
Q4. = %sin“m(l + cos 8,)
Tpa = E,i—;l{sin 111 + sinb, +sin(8, + Y}
¥pa = %sin 8.(1 — cosyn) (6.5)

where A = sinqy + sinf, —sin{8. + vir).

‘The DA method reconstructs Q? with negligible bias and good resolution
over a wide range of Q* because it is independent of the measured energy. It
is used to reconstruct the NC kinematics. The electron method is used as part
of the NC selection to reject background and as a consistency check.

For CC events, since only a hadronic jet ts observed in the final state, the
1B method must be used. However, when the calorimeter is used for energy
measurements, the JB method becomes biased toward lower energy values due
to hadronic energy loss in the inactive material front of the calorimeter. There-
fore, in this case, the JB method has the worst resolution® when compared

to the electron and the DA methods.
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6.2 Monte Carlo Simulation

The acceptance of the trigger and data selection is determined by passing the
Monte Carlo events through the reconstruction and selection procedure iden-
tical to those for the data, described in chapter 7. ‘I'he detector simulation is
based on the GEANT » program and incorporates knowledge of the apparatus,
test beam results, and trigger.

Events from CC and NC DIS processes are generated using the event~
generator LEPTO® with matrix element plus parton shower (MEPS) option.
Electroweak radiative corrections are implimented with the use of HERA-
CLES?S as interfaced to LEPTO by DJANGO.?® The proton parton densities
are chosen to be either the MRSD) set*> or MRSD.. To study the sensitivity
of the resolution and acceptance to models of the final state and fragmenta-
tion, additional samples are generated with ARIADNE. > An additional set of
NC events have been generated using the Color Dipole Model + Boson Gluon
Fusion model (CDMBGF) of hadronization.



Chapter 7

DATA SELECTION

7.1 NC Data Selection

In this section, the NC data selection cuts are described. These cuts are
swumarized in Table 7.1, which also gives each cut efficiency for the NC events
surviving all cuts through the previous cut, as determined from NC Monte
Carlo events with true Q? > 400 GeV2.

A cone-based algorithm *° (ELECS) is used to find electrons. At times this
electron finder reporis more than one electron candidate. By default, it selects
the electron candidate with the highest transverse momentum, p{. However,
sometimes the electron finder selects the highest p} electron candidate within
the struck quark jet instead of the true electron candidate which has a lower
pt. Therefore, for this analysis, an improved selection procedure is used with
the electron linder. The improved finder selects the electron candidate which
satisfies the largest number of the following five requirements: the smallest
Ye, smallest y,,, and highest p?, most isolated (the distance-weighted sum of
energy near the candidate, ¥°; £:/d?, is the smallest, where E; is the ith cell
energy and d; is the distance from the cell’s center to the electron candidate

position), and the smallest difference between the electron candidate angle and

the jet angle of any other electron candidate.

The Third level Trigger NC filter® (6 = £~P. > 25 (Ge} and £? > 4 GeV)
selects 351000 candidates, out of which 1305 events have El > 10 GeV and
Qb4 > 400 GeV?, where E. is the scattered electron energy. Many of the
electron candidates selected at this stage are energetic KMC clusters in the
very forward direction associated with the recoil hadrons from ep scattering.
They tend to reconstruct at high y. and are rejected by a cut of y, < 0.95,
reducing the sample to 863 events. ‘To eliminate events with initial state
radiation or from photoproduction, we require § > 35 GeV'. 'The cosmic ray
background is eliminated by requiring p,/VE, < 2 GeV'}, where p, and £, are
summed over the whole event, leaving 193 events. 1o reduce the remaining
photoproduction background, the electron and DA reconstruction methods are
required to be consistent by demanding 0.7 < Q?/Q%, < 1.2. 174 events pass
this cut.

After the above cuts, a small background of photoproduction events is still
present in the data. This background is usually associated with energetic EMC
deposits (e.g. ©%-decay) contained within or near the hadronic jet, resulting
in fake electrons. Part of this background are low Q? DIS events, with fake
electrons more forward than the true scattered electron, and resolved photo-
production events in which the electron candidate is an EMC deposit inside
the photon remnant jet or a real scattered electron near the RCAL beampipe.
This background is cut by requiring either a high energy scattered electron
(£ > 20 GeV') or that the scattered electron has a matched CTD track and

it is either found by the Sinistra!" electron finder (a neural network based



algorithm that has a higher efficiency for rejecting events with hadronic en-
ergy near EMC deposits), or it is very isolated (T; £:/d? < 3, where E; and
d; are defined above). In addition, all events must have energy within the 2
concentric rings of single towers surrounding the RCAL beampipe less than
1 GeV. The combination of these three culs, which is referred to as *“CT-
Dtek, iso, RCALbp” in table 7.1, leaves 136 events as the final NC sample
with Q% > 100 GeV?. Figure 7.1 shows a NC event from the final sample.
‘The photoproduction background after these cuts is estimated to be less than
2%, by generating photoproduction Monte Carlo events, using the Pythia 5.6 12
event generator, and applying the same NC selection cuts on the reconstructed
Monte Carlo events.

Figures 7.2 and 7.3 show distributions for NC data and Monte Carlo events
after the successive cuts, described above, in order to see the relative cut effi-
ciency (with respect to the events passing the previous cut) and the background
rejected. For example, figure 7.2(A) shows the £, distribution for events with
Q%, > 400 GeV?2. Figure 7.2(B) shows events with Q% > 400 GeV? and
E! > 10 GeV, and so on. In these and all subsequent plots in this chapter,
Monte Carlo events are absolutely normalized to data by luminosity, unless
otherwise indicated.

Figures 7.4 and 7.5 show the event distributions, for data and Monte Carlo,
a.ft,;l.' all NC selection cuts except that mentioned on the caption above each
distribution. These figures show the absolute efficiency of each cut in selecting
NC data events.

In all the aforementioned figures, the NC Monte Carlo predicts higher

energies than the NC data, as is seen from the slight shift of the data from the

3

Monte Carlo predictions. This is because the NC Monte (‘arlo predicts more
energy for the scattered electron by a scale factor of 6%. Figure 7.6 compares
the scattered electron energy, £7, distribution of the final NC data candidates
with NC Monte Carlo. The 6% scale factor maybe to possibly incomplete
simulation of inactive material in front of the calorimeter'. It is determined
from the difference between the data and Monte Carlo prediction for the ratio
ElfEp 4, where Ep , is the scattered electron energy reconstructed with the
DA reconstruction method. This method is used since the DA reconstruction is
largely independent of the measured energies (section 6.1) and there is excellent
agreement between data and Monte Carlo spectra for £, (figure 7.7).
Finally, figure 7.8 shows the efficiency of the selection cuts for NC Monte
Carlo events with true Q?, (02, greater than 400 GeV2. The overall efficiency

is 0.82 .

7.2 CC Data Selection

This section details the CC selection cuts, which are summarized in table 7.2
In contrast to the NC DIS events, the final state lepton in a CC event is
a neutrino and is not detected. Therefore, there is large missing transverse
momentum, Pyniss, it the final state. The Third Level Trigger (TLT) CC
selection®® (pimiss > 9 GeV and either a track, or Ercar > 10 GeV) passes
approximately 33000 events. Using events from the non-colliding electron

and proton bunches, it is estimated that half of the TLT CC selected events

'The absolute calorimeter energy scale is known to better then 2% from halo-muon
calibration events.



Selection Events | NC-cut | Comments
Criteria Remain €

NC Trig/DST || 351000 | x0.92 | &' > 25 GeV, E; > 4 GeV
Q5. > 400 Gev? | 3569 | x0.94

E* > 10 GeV 1305 x0.96 | High elficiency for
electron reconstruction
¥ < 0.95 863 x0.99 | php~ with fake forward
electrons (7 from =° decays)
6> 35 GeV 613 x0.96 | & ~2E, =534 GeV for

events fully contained
in CAL; php at § < 35 GeV

BJVE, <2 GeV'7? | 493 %0.98 | cosmics
0.7<Q3/Q%, <12 || 474 x0.99 | php
CTDtrk, iso, 436 x0.97 { php with [ake electrons
RCALbp
Lvents remain 436 SCANNLED
NC events {bkg) 436(8.7) bkg = php from MC!

“php = photoproduciion, 6 = E = P,, IMC = Moute Carlo
Table 7.1: Summary of NC selection cuts starting with Q}, > 400 GeV?: the
cuts are listed in column 1. The number of events selected is in column 2.
Column 3 shous the efficiency of the cut with respect to the events passing the
preceding cut using NC Monte Carlo events with true Q3 > 400 GeV?. The

motivation for each cut is given in column {, with further details in the tezl.
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Figure 7.1: A NC data event with Q%, = 20000 GeV?, zpy = 0.27, and
£ =202 GeV.
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Figure 7.3: NC data reduction, continved. Q2/Q} ,: Points with error bars are
the NC candidates, solid histograms are the NC Monte Carlo simulation, and
Figure 7.2: NC data reduction. Points with error bars are the NC candidates, shaded histograms are the final 436 NC data candidates. The cul is indicated
solid histograms are the NC Monte Carlo simulation, and shaded histograms by the caption above the plot. The data are shown after all previous cuts.

are the final 436 NC data candidates. The cuts are indicated by the caption
above each plot. The date are shown after all previous cuts: (A} Scattered

electron energy, E. (B)y. (C)6=E—P. (D) o/ VE: (continued in fig. 7.3).
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Zeus 1993 NC Analysis
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Figure 7.4: Effects of the NC selection cuts. Points with error bars are the NC
candidates, solid histograms are the NC Monte Carlo, and shaded histograms
are the final {36 NC data candidates. Data are shoum after all selection cuts
are applied except the cul displayed in the caption: (A) Scattered electron en-
ergy £ (B) y (C) 6= E — P, (D) p/VE! (continued in fig. 7.5).
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Figure 7.5: Effects of the NC selection cuts, continued. Q?/Q} 4 Points with
error bars are the NC candidates, solid histograms are the NC Monte Carlo,
and shaded histograms are the final 436 NC data candidates. Data are shoun

after all selection cuts are applied except the Q?/Q%, cut.
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Figure 7.6: Scattered electron energy, E., for the final {36 NC data candidates

(histogram with error bars) compared to N Monte Carlo (solid histogram).
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Figure 7.7: (A) Comparison of the scattered electron energy, E., (shaded his-
togram) and Ep,, (unshaded histogram) for the final {36 NC data candidates,
where Ep,, s the scattered clectron energy reconstructed by the DA recon-
struction method. (B) Comparison of Ep, spectra for the final {36 NC data
candidates (unshaded histogram) and NC Monte Carlo (shaded histogram).
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are cosmic ray interactions and the remainder are primarily proton beam-
gas interactions, Of the 33000 events, 86%, including most of the cosmics, are
rejected by requiring a vertex with at least two tracks in the CTD reconstructed
in the range |z| < 45¢cm.

Figure 7.10 shows the number of tracks not associated with the primary
event vertex, |z|, and pymiss distributions for events in non-colliding ep bunches.
Beam-gas background is reduced by requiring pyniss > 12 GeV and the num-
ber of tracks not associated with the primary event vertex < 40. 1852 events
pass these cuts. Figures 7.11 and 7.12 show distributions of the data after
each stage of the selection cuts and compare them with the Monte Carlo event
simulation.

Beam-gas interactions that occur away from the nominal interaction point
downstream in the proton ring result in halo muons that are detected by
the Veto Wall. Events with hits in the Veto Wall are rejected, leaving 1685
events. Residual beam-gas events within ZEUS tend to deposit energy mainly
in the FCAL beampipe region. In figure 7.12 the ratio r = pf*. . /Dimiss i8
shown for the 1685 events passing the above cuts, where p2¥. . is the total
missing transverse momentum outside a box of £50 em centered on the FCAL
beampipe axis. Most of the CC events are expected to concentrate at r ~ 1
while the beam-gas events are at r < 1. Therefore, only events with r > 0.7
are selected for further analysis.

The pia.,,/Pimiss cut rejects most of the beam-gas background, reducing
the number of events from 1685 to 113, at a relative efficiency of 0.9 for CC
events, as shown in table 7.2, The CC events that fail this cut are concen-

trated at large x. The dominant remaining backgrounds are from cosmic ray
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interactions, including muon overlays in which a cosmic shower is contained
within the same beam crossing as a beam-gas event or an ep event, 19 events
are classified as muons by the muon finder ™ and are removed.

Another powerful muon rejector uses the event times available from each
calorimeter cell. The calorimeter is segmented into 18 regions, 16 of which are
similar to the CFLT segmentation (section 5.3.2). In addition, 2 more regions
are formed by the 3 concentric rings of calorimeter cells surrounding the FCAL
and RCAL beampipes. Figure 7.12 shows the distribution of the difference,
AT, between the region with the earliest time and that of the latest time.
‘The peak at AT = 11 ns reflects the time of flight of muons traversing several
sections of the calorimeter. The excess at AT > 13 ns are cosmic overlays
which overlap ep events. Demanding AT < 8 ns, the earliest and latest times
less than 8 ns, and at least one region reporting a time, rejects 65 events. An
additional 3 events are removed because they have reconstructed tracks in 3
or more muon chambers, leaving 26 events in the data sample.

A final selection cut is required to eliminate backgrounds from calorimeter
noise pulses and from NC DIS at high z in which the hadrons go down the
FCAL beampipe undetected. These backgrounds are reduced by demanding
that no calorimeter cell contains more than 75% of the total p;mis, of the event.

This cut is shown as pP2%! [pimiss < 0.75 in table 7.2. 2 events are rejected

with this cut (figure 7.12), leaving 24 CC candidates in the final sample, of
which 23 candidates have Q% > 400 GeV?. A CC candidate from this sample
is shown in figure 7.9.

Figures 7.13 and 7.14 show additional distributions of the above mentioned

cut variables for CC data and Monte Carlo events. These figures show the

&5

absolute efficiency of each cut in selecting CC events by plotting data and
Monte Carlo with all the CC selection cuts applied except the cut mentioned
on the caption above each figure. ‘The absolute efficiency of the p[i*=s! p, 1.0
cut is shown in figure 7.12(C). The combination of the cut on the number of
chambers of the muon detector and presence of a muon from the muon finder
rejects 4 events after all the other culs are applied, with the muon finder
rejecting one cosmic event. It should be noted that py  /piuiss > 0.7 is the
most powerful of the selection cuts. By applying this cut alone (figure 7.14(C)},
the number of events is reduced from 1150 to 24. Although this reduces
the efficiency of CC selection by 10%, as seen from table 7.2, most of the
background close to the FCAL beampipe is rejected. As mentioned above, the
CC events lost by this cut are high x events with hadron jets confined in the
forward area of the calorimeter.

The efficiency of the cuts for CC Monte Carlo events with Q2 > 400 GeV'?

is shown in figure 7.15. The overall efficiency for the CC' selection is 0.76 .
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87
Selection Events CC-cut | Comrments ﬁ (hr ”“ l H
Criteria Remain € - LU
CC Trig/DST 33584 X0.87 | Pimiss > 9 GeV, track = —
or Feal g —
Require Vertex 18636 x0.94 S 3 —
'rks on Vertex > 2 |l 13544 x(.95 | cosmics rarely make © § -
vertex N - I
|z} < 45 em 4547 x0.99 | cosmics + p-gas” far c 3 o
from nominal IP! & o= —_— G
Prmins > 12 GeV 2781 x0.92 | CC have high pymi,, e % - aoflcoooonone
Number of tracks 1852 x1.00 | p-gas has lots of tracks S 4 L1 e W
not associated with - I l I H'
primary vertex < 40 ¢ . K
no Veto Wall hits || 1685 x1.00 | halo muons ggi
Pimisel Pemiss > 0.7 || 113 x0.90 | p-gas concentrated ~g7)
near bp! gil
muon finder 94 x 1.00 ~ed
Cal regional 29 x0.99 | Remove p-gas EE:‘
time-dilf < 8 ns + overlay cosmics =§°
muon chambers < 3 [| 26 x1.00 | cosmics i.ﬁ
maziell < 0.75 || 24 x1.00 | Remove p-gas ’§§
+ spark/muon overlays i 12
Eveuts remain 24 SCANNED i3°
CC Candidates (bkg) || 24(< 1.05) Lkg = php and NC 118
from Monte Carlo 3
CC Candidates with [ 23 aL
Q? > 400 Gev? ‘29
“p-gas = proton-gas, tIP = interaction point, ¥ bp = beanpipe L
Table 7.2: Summary of CC selsection cuts: the cuts are listed in column 1. @i\
The number of events at each cut stage is in column 2. Column 3 shows the
efficiency of the cut relative to the preceding cut using CC Monte Carlo with Figure 7.9: A CC candidate with pi,, = 67.8 GeV, yu = 0.52, and

QF > 400 GeV2. The motivation for each cut is given in column 4, with %, = 9577 GeV2.

Jurther delails i the text.
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Figure 7.11: CC data reduction. Points with error bars are the data, shaded

histograms are the 2§ final CC candidates, and solid histograms are the CC

Monte Carlo. The selection culs are indicated by the caption above each fig-

ure: (A) Number of tracks on primary vertex (B) Verter z position (C) Total

missing transverse momentum, Piniss (4) Number of tracks not associated with

the primary verter (continued in fig. 7.12).



90

Zeus 1993 CC Analysis
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ligure 7.12: ('C deta reduction, continved from fig. 7.11. Points with error
bars are the data, shaded histograms are the 2{ final CC candidates, and solid
histograms are the CC Monte Carlo. In figure (B), the shaded histogram is
~NC data events normalized to the final CC data events. The selection cuts are
indicated by caption above each figure: (A) r = pf [Pimiss (B) Difference in

arcell

time between calorimeter regions, AT (C) pl*=! [pyniss.
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Vertez z position (C) Total transverse momentum, pimiss (L)) Number of tracks

not on the vertexr (continued in fig. 7.1{).



Zeus 1993 CC Analysis

3 Prniod P > 0.7
3 10 3 Enltries 1150
g b __u_..-a> Keep
2 L ————
& 107 (A)
3 ——
10 3 ...*._
1
NP RO U l
0 0.2 0.4 0.6 0.8 1 1.2 1.4
P P
AT < 8 nsec
49

Events/nsec

PR I S S
10 12
AT (nsec)

Figure 7.14: Effects of CC selection cuts, continued from fig. 7.13: Data are
shown after all cuts except the one mentioned in the caption above the figure.
Points with error bars are the data, shaded histograms are the final 24 CC
candidates, and solid histograms are the Monte Carlo: (A) piuk,,/Pimiss (B)

Deifference in time between calorimeter regions, AT,

w 1
0.9
08
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Zeus 1993 CC Analysis

AR LA10I OALE ALRAS LAAL) LALR) ALY LAAL LEALI AR

-
L> Q7 > 400 GeV?

| gl L

10° ;o‘ .
Q, (GeV?)

BX]

Figure 7.15: CC cut efficiency for ('C Monte Carlo for Q7 > 100 GeV'2.,



94

7.3 Bins For Cross Section Measurements

The NC and CC cross section are measured in five (J? bins. The bins are

100 GeV? < Q7 < 1000 GeV?, 1000 GeV? < Q% < 2500 GeV?, 2500 GeV'? <

(< 6250 (ieV?, 6250 GeV? < QF < 15625 GieV?, and Q? > 15625 GeV/2.
The cross section, o, in each NC{CC) bin is measured according to the

formula

- N
T LA
where N is t.he number of observed NC(CC) data events, £ = 0.54+0.0135pb~"

P (1.1)

is the luminosity, and A is the bin acceptance. A is given by

1\]’Ef

- — 2
A= e (7:2)
X7 is the number of NC(CC) Monte Carlo events reconstructed with Q? in
the bin and ¥ is the number of NC{CC) Munte Carlo events generated with

(2% in the bin. Monte Carlo events are generated without radiative corrections.

I'he effect of these corrections is described in section 9.2.5.

Chapter 8

CC HADRONIC CORRECTION

8.1 Motivation

As mentioned in section 6.1, the CC data can only be reconstructed with the
JB method. If calorimetry is used to measure energies, then, unlike the DA
reconsiruction method (section 6.1), the JB reconstruction underestimates (2
over a large range of Q2. This is shown in figure 8.1, which compares the JB
reconstruction to the DA reconstruction using NC Monte Carlo events with
true Q? > 400 GeV'? and transverse momentum, P, of the hadronic jet
> 12 GeV'). This bias toward lower Q? is due to loss of particle energy in the
inactive material in front of the calorimeter. To minimize the event migration
between Q? bins, one needs to correct for this loss of energy.

We use a method of correcting for energy loss by using a set of events that
(1) are measured by their hadronic energies where these energies are large
enough, and (2) are reconstructed by an independent method that predicts
what the hadronic energies should be if there are no losses due to dead ma-
terial. The NC data are used to obtain an empirical formula that relates the
observed hadronic energies to the DA predictions, since the NC events can be

reconstructed by both the DA reconstruction and the JB reconstruction. This



96

correction can then be applied Lo the CC data sample to determine the cor-
rected kinematics. In this chapter this correction procedure is described, where
the DA predictions are considered as the “true” predictions since they do not
depend on the measured energies (section 6.1). The corrections used are two
mulliplicative factors, Hi(#js,y), 1 = 1,2, that depend on Py (transverse
momentum of the hadronic sector of the event) and .. Thése factors correct
both £, and y;s, resulting in the corrected variables Do, = By(Pijp, yjs) Fijs

and ey = Rl P i)y, Then the correctedd QHQ2,, ) is founel from

I‘ZCOI'
= T (8.1)

‘'his method provides an event by evenl correction to the measured [
and y;, without making corrections on the individual calorimeter cells summed
to make these quantities.

‘I'wo methods are used to determine Lhe factors R, and f;. Section 8.2
describes the first method, which uses the NC data to determine f, and R,
(*data correction”). The factors obtained from this method are used to correct
the CC data. Section 8.3 describes the other method, which uses the NC Monte
Carlo to find R, and R, (“Monte Carlo correction”). ‘T'he values of K, and
obtained from the Monte Carlo correction are used to correct the CC Monte
Carlo events.

The data and Moate Carlo corrections are also compared to the JB recon-
struction. Since we are correcting the JB variables back to their DA values,
the DA reconstruction predictions are treated as the true predictions. 'The bin
to bin migration, bin acceptance, and bin purity {defined in section 8.4) are
obtained from NC Monte Carlo events and compared to the CC Monte Carlo

migration, acceptance, and purity after the Monte Carlo correction is applied.
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Figure 8.1: Comparison of the JB and IJA reconstruction methods. This figure
shows (QF — Q?)/Q? vs QF for NC Monte Carlo events with QF > 400 GeV?

and hadronic transeverse momentum P > 12 GeV.
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8.2 Data Correction Method

8.2.1 NC Data Sample and Binning

A NC data sample with Q% > 100 GeV? is used to correct [ and yj,. The
selected sample is based on the following culs: £, 2 10 GeV, £ - P, >

35 GeV, 0.7 < Q3/Q, < 1.2, ye < 0.95, P./VE; < 2, and |z] < 50cm. The
estimated background from photoproduction with these cuts is less than 2%.
This background is estimated by generating photoproduction events with the
Pythia*? event generator and applying these cuts on them.

The data are divided in 3 bins of Fj (10 GeV < Py, < 14 GeV, 14 GeV <
Py < 19GeV, and Pij > 19 GeV) and 3 bins of yj (355 < 0.1,0.1 <y < 0.3,
and y;s > 0.3) . A total of 1406 NC events are contained in these bins. In
each bin, a plot of ypa/y;s vs Pijn and Pipaf/ Py vs yy is obtained. Figure 8.2
shows the plots of Ppa/Pijs vs yjs and vs Py, for the bins. In only this plot,
the |z] < 50cm is not applied, which results in additional 42 events. The DA
method, as used by ZEUS, assumes that no p, is lost down the beampipe.
This gives the result that ypa/yj = Pipa/ Py, where Pipy is p, reconstructed

using the DA reconstruction. Therefore, plots for ypa/y; are the same as for

PipafPys.

8.2.2 The Data Correction Function

Figure 8.2 shows Pipaf Pijs vs Pys and yj. As is seen from this figure, the data
correction function gives a larger correction at small F, and then decreases
asymptotically with increasing momentum. This is because higher energy jets

traverse the inactive material in front of the calorimeter with less fractional
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enerpy loss. Therefore, a smaller fraction of energy is lost before these par-
ticles are detected, resulting in a smaller correction. At lower energies, more
particles are lost from the jet and, therefore, a larger correction is needed. We

parametrize this behavior by

1
AP3) = o -

The opposite is true when y; is considered. In this case, a smaller cor-
rection is needed at small y;, since events with small y;, are not energetic,
therefore, particles are lost from the hadronic jet. At larger y;s, a larger correc-
tion is needed with the function flattening out quickly with rising y;» because
these are energetic events that lose less energy in the inactive material before

reaching the calorimeter. Therefore, we parametrize this correction as

Blyp) = ¢ — fexp(—gy;) (8.3)

where a,b,¢, f, and g are fit parameters. As mentioned above, the plots for
ypafy; are the same as for Pipa/Pij. Therefore, both Ri(Pi,y;) and
Rao(Pjs, yjs) have the same functional form. This functional dependence is
given by Rya(Pis,yis) = A(Pip)Blys) with

Rual i) = SL 0o )
To determine the parameters of the above formula, the following function is

minimized,

2 1408 ) f___fmﬁl ‘ 2
s g {[r T —exp(—b[’lfja)] /('5“)’} (8.5)

where the sum is over the 1406 NC data points, r; = Ip /1, = Yhalyh, and

ér, is the error estimate on r; (see appendix for estimates of r;). Note that
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Fit Data Moute Carlo
Paratneters R, R, R, R,
a 1384030 | 2724 1.05 3424049 4.85 + 3.85
b 0.17+0.02 | 0.12+ 0.04 0.10 £ 0.02 0.11 £ 0.09
c 1504031 { 3.00+1.12 | 3.62+049 { 525+ 3.68
f 0.254+ 0.06 | 0.59% 0.30 0.4910.12 0.71£0.72
g 1524 +1.96 | 19.62 4+ 5.8% || 33.51 £ 5.16 | 50.25 + 26.77
X2 2.25 .56 1.96 0.53

Table 8.1: Fit parameters for equation 8.5 for both Data and Monte Carlo
corrections. The parameters (a, b, ¢, f, and g) for Py, corrections (R,) are
given in columns 2 and §. The parameters for correcting y;, (Ra) are listed in

columns 2 and 5.

two different fits are performed because §r; for F5;,/ Pip 4 is different from that
of y;b/ybn even though the ratios are equal (for further details, see appendix).

The values of the fit parameters for both 7, and y;, corrections are listed
in table 8.1 (columns 2 and 3). In order to compensate for the skew of the
function due to the preponderance of events at low %, a minor correction to
the function is applied, yielding a final form of

1.50 — 0.25 exp(—15.24y;3)
1.38 — exp(—0.17P}

Ri(Pijpyyip) = Pij Correction  (8.6)

for the Pyj correction, and

3.00 — 0.59 exp(—19.62y,,)
2.72 — exp(—0.12P%%)

Ra(Pijy,yin) = y;» Correction (8.7}

for the y;, correction. T'he correction functions are plotted in figures 8.3 and 8.4
which show that both functions give a maximum correction of ~ 1.25 at Pyj, ~
12 GeV, falling rapidly down to ~ 0.96 at low y;, and very high £3;. Both

corrections tend to asymptotic values of 1.08 (P correction) and 1.1 (y;,



Data Monte Carlo

P‘I' 2 yji Rl R‘l onr/Q)?. Rl Ru Qfar/Qf’D
12,005 1.18 | 1.16 1.14 1.18 | 1.17 1.40
12,02 || 1.27]1.25 1.73 1.21 [ 1.18 1.53
12,05 | 1.28 | 1.26 2.22 1.21]1.18 1.78

20,0.05 | 1.07 | 1.09 1.15 112 1.13 1.26
20,02 ] 1.15] 1.18 1.38 1.15 | 1.14 1.37
20,05 |f 1.16 { 1.18 1.64 1.16 [ 1.14 1.53

70, 0.05 || 1.00 | 1.02 1.01 1.04 | 1.07 1.08
70,02 | 1.08] 1.10 1.19 1.06 | 1.09 1.16
70,05 || 1.09 | 1.11 1.32 107 { 1.09 1.24

‘Table 8.2: Comparison of Ry and Ry for values of Py, (in GeV ) and y,p for
both data and Monte Carlo (columns 2, 3, 5, and 6). Columns { and 7 give

the ratio of ng,/Q,zb»

correction). Figure 8.5 shows a plot of (Q* ~ Q%,)/Q% , vs Q% for the two
cases of Q7 = Q% and Q* = Q?,, {for NC events with Q}, > 400 GeV?
and Py > 12 GeV). 1t is seen that Q? bias due to the JB reconstruction is
reduced.

In practice, as y;, becomes closer to 1, it may be corrected to nonphysical
values. No attempt is made here to adjust the corrections given above to avoid
this effect. For the CC data sample, if yc. > 0.9, then y; is used in equation

(8.1} instead of y,..

8.3 Monte Carlo Correction Method

In this section, the steps that lead to the data correction of the previous

section are repeated by using NC Monte Carlo events to find R and R, (the
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Figure 8.3: The P,j, correction used to correct the CC data. It is given by

1.50—0.23 exp(—15.24y;,)

Ri(Ps,yie) = L38~exp(-0 1T P5Y)
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Y, Correction
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Figure 8.4: The y;, correction used to correct the CC data. The correction is

_ 3.00-0.59 exp(~19.62y;,)
Rz(Pu'h!b'b) = 2_72_”',(_0.]2[)”_. )
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“\Monte Carlo correction” method). The values of Ry and H; obtained from
the Monte Carlo correction ate used to correct the CC Monte Carlo.

A sample of 6585 NC Monte Carlo events with Q > 100 GeV? is generated
using the Color Dipole Model + Boson Gluon Fusion model of hadronization.
‘I'he same cuts described in section 8.2.1 are used, giving 2333 NC Mente Carlo
events. Equation 8.5 is minimized and the resulting values of the fit parameters
are listed in table 8.1 {columnas 4 and 5). As before, to compensate for the
preponderance of events at low Q?, a minor correction is applied to £ and R,

asiving the final forms (see equation (8.4))

3.62 — 0.49exp(—33.51y;)
2 -
(Fisypa) = =335~ exp(—0.1P3°

Pijy Monte Carlo correction

(8.8)
and

5.25 - 0.71 exp(—50.25y;1)

Ry(Pissypa) = 185 — exp( -0 1175 yi;6 Monte Carlo correction
-0 = Y. s

(8.9)

Figure 8.6 compares Q% and the corrected Q*(Q%,,) to Q% for events with
(%, > 400 GeV? and Pjy > 12 GeV. The bias in the JB reconstruction is
reduced, with a small tail remaining.

"The ratios of the data correction to the Monte Carlo correction are shown
in figure 8.7 for both /%, and y;. The corrections differ from each other by
al most 6%, which occurs at Pyjp = 12 GeV or for y;3 < 0.05. At asymptotic
valites they differ by 2%. ‘This can also be seen from table 8.2 in which H, and

R, are given for values of £ and y;; {data and Monte Carlo).
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Py and yj.  The marimum difference between the data and Monte Carlo

corrections is 6% tending to an asymplotic value of 2%.

109

8.4 Discussion

8.4.1 Bias Reduction and Resolution Improvement

'The correction methods of sections 8.2 and 8.3 attempt to give average energy
adjustments. As shown by figures 8.5(A} and 8.5(B) for the data correction

(equations (8.6) and {8.7)), the mean of the distribution improves from about

2 2
-25% for the 21‘5{,%—"- distribution of the NC data to essentially 0% for the

gz—ﬁ%’“ distribution. ‘The same is true for the Monte Carlo correction of
the JB variables (equations (8.8) and (8.9)) as indicated in figures 8.6(A)
and 8.6(B).

From figures 8.5(C) and 8.6(C), it might be concluded that a single global

scale shift, foeate, is all that is needed. However, this is not the case. To see
2 _02
this, one can multiply Qf,J in the 2‘—7&5 distributions of the NC data and

13
QLA

Monte Carlo (figures 8.8(C) and 8.8(A), respectively) by fyae = 1.35 and
facate = 1.3, respectively, to shift the distributions to a mean of zero. As
shown in figure 8.8, multiplying Q3, by these scale factors, which results in
figures 8.8(D) and 8.8(B), does correct for the shift in Q?. However, unlike
the data or the Monte Carlo correction methods, multiplying by a scale factor

does not improve the sigma, o, of the resulting distributions. Specifically, the

Jacate@®-Q% 4

2 02
o of ——-5%-‘— is larger when compared to the o of the original 9-%79&
DA

distribution for NC data or Monte Carlo. o is taken to be the width of the

2 _02
gaussian fits for the 2%,@ distributions or for the resulting distributions,
DA

fn-uQ:'g—oi;A
DA

—=ah—tA, For the NC data shown in figures 8.8(C) and 8.8(D), o changes

0% _02
1.35Q° .—()D'4

2 _O2
from 19.6% for the 9%,&’-'-‘- distribution to 28.6% for the —g— distribu-
DA DA

tion. Going back to figure 8.5(B), it is seen that the data correction given by
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2

equations {8.6) and (8.7) results in o = 17.5% for the NC Q"&%%“ distribu-
tion. I'herefore, the data correction gives an improvement in o when compared
to the scale shift f,ie = 1.35 by a factor of (28.6 —17.5)/28.6 = 0.39 .

For NC Monte Carlo, o changes from 17.8% for the 2:'6-:5%‘— distribution
to 22.7% for the io%‘,;—‘% distribution. The result of Monte Carlo correction
(equations (8.8) and (8.9)), shown in figures 8.6(A) and B.6(B), gives o0 =
19.6%, yielding an improvement in o when compared to the scale shift fycare =
1.3 by a factor of (22.7 - 19.6)/22.7 = 0.14 .

‘Pherefore, correcting the data, or Monte Carlo, by a simple scale factor is
not enough. One needs to correct the event energies first (Pij» and y;s in this

analysis) by a more detailed correction scheme, such as the method described

above.

8.4.2 Application to CC Monte Carlo

I'o compare the relative effects of the data and Monte Carlo corrections on CC
Monte Carlo events, both corrections are applied separately to the CC Monte
Carlo sample. This sample consists of 7822 generated events with true Q7 >
100 GeV?, of which 5928 events pass the CC selection cuts. The events are
distributed in the Q? bins shown in table 8.3 before and after cuts (these are the
same bins used for do/dQ? measurements—section 7.3). Table 8.3 also shows
the same for NC Monte Carlo for comparison. In figure 8.9, (Q2, —Q,)/Q} for
both data and Monte Carlo corrections is plotted vs Q2. With the exception
of Q2 > 35000 GeV?, the Monte Carlo correction is slightly smaller than the
data correction, reflecting greater energy loss in the data compared to the

Monte Carlo. In figure 8.9, the two correction methods are compared to the
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Qi Bius (GeV'?)
400-1000 | 1000-2500 t 2500-6250 | 6250-15625 { > 15625
# CC events 1965 2470 2180 1012 195
(no culs)
# CC events 1157 1837 1834 922 178
{cuts)
(CC) 0.59 0.74 0.84 0.91 0.91
# NC events 1840 2281 554 98 14
{no cuts)
# NC events 1476 1880 460 80 12
(cuts)
«(NC) 0.80 0.82 0.83 0.82 0.86

‘Table 8.3: Number of CC(NC) Monte Carlo events generated before and after
passing CC(NC) selection cuts in each of the five QF bins considered for cross

section measurements., The Ird(6th) row gives the efficiency due to the cuts.

JB reconstruction of the CC Monte Carlo events to illustrate the improvement
attained by these corrections.

As mentioned in section 8.1, the purpose of correcting for energy loss is to
minimize event migration. Since the JB reconstruction of kinematic variables
underestimates the reconstructed Q?, event migrations to lower Q* bins are
expected to be large. Correcting the reconstructed energies, and, therefore,
the reconstructed @2, reduces the bin to bin migrations. To see this reduc-
tion, the Q? of the CC Monte Carlo events is reconstructed with both the JB
reconstruction method (Q;o) and the Monte Carlo correction method of sec-
tion 8.3 (Q2,,). The effects of reconstruction on the event migration is shown
in the two “smearing” matrices below, where a smearing matrix quantifies
how many events are smeared (or migrate) from one bin to another. The left

matrix shows the effect of the JB reconstruction on CC migration and the
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applying the Monte Carlo correction.
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tisht matrix gives the effect of the Monte Carlo correction. The left matrix
below shows where the CC Monte Carlo events, generated in the true Q7 bin
and passing the selection cuts, end up after reconstructing Q3 for the JB
reconstruction. The right matrix does the same but uses the corrected Q2
for bin assignments after applying the Monte Carlo correction. The columns
of each matrix indicate the Q? bins. The rows of the left and right matri-
ces indicate the Q% and @2, bins after the JB reconstruction and using the
Monte Carlo correction, respectively. For example, from a total of 1157 events
generated with 400 < Q? < 1000 GeV? and passing the CC selection cuts
(table 8.3), 740 events end up with 400 < Q% < 1000 GeV?, 4 events with
1000 < Q% < 2500 GeV?, 0 events with Q% > 2500 GeV?, ...etc.

Qi — Qi -
70 121 92 2 1 974 212 220 1 0
41070 71 57 1 95 1505 381 36 3
QL o 13 990 a7 14 |Qh 1| 1 88 1347 235 12
00 7 427 106 0 0 8 615 65
0 0 0 1 46 o 0 1 35 98

Comparing the two matrices, it is clear that there is a substantial reduction
in the event bin to bin migration from using the Q2,, instead of Q% reconstruc-
tion. To find the percent improvement in reducing the bin to bin migration of
the CC Monte Carlo events, each column of the above two matrices is divided
by the number of generated events that pass CC selection cuts given in ta-

ble 8.3. Therefore, the first column is divided by 1157, and so on. The results
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are given in the following two matrices

Q? —
(064 0.40 005 0.02 0.01
0.0 058 040 0.06 0.06
Q411 00 001 054 045 0.08
00 00 00 046 0.60
00 00 00 00 026

0.84 0.13 001 00 0.0
0.08 0.82 0.21 0.04 0.02
2. 1] 00 005 073 025 007
0.0 0.0 005 067 0.37
00 00 00 004 055

Each element of the above two matrices is the fraction of the generated CC

Monte Carlo events that pass CC selection and are reconstructed in the bin.
[n the following, the top matrix is called the jb-matrix and the bottom matrix
is called the cor-matrix. The jb-matrix has its diagonal elements with values
between 0.26-0.64 {average ~ 0.5). Allits lower off-diagonal elements are close
to zero while the upper off-diagonal elements are comparable to the diagonal
ones. This reflects the fact that when the calorimeter is used to measure
event energies, the JB reconstruction underestimates Q. The cor-matrix has
diagonal elements that range between 0.55-0.81 (average ~ 0.72) and are 41%
higher on average than the jb-matrix diagonal elements, The cor-matrix lower
off-diagonal elements are between 0.04-0.08 and are more symimetric about the
diagonal than the jb-matrix. This indicates that the Monte Carlo correction

method eliminates much of the bias towards lower Q? values present in the
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JB reconstruction and it lessens the bin to bin migration. However, there still
remain some bias toward lower Q? after using the Monte Carlo correction on
the CC Monte Carlo events, since the the upper off-diagonal elements of the
cor-matrix are larger than the lower off-diagonal elements.

Note that the addition of the elements in each column of the jb-matrix
and the cor-matrix does not result in 1.0 in some of the columns because
some of the CC Monte Carlo events are reconstructed (corrected) in the Q? <
400 GeV? bin.

Since we are correcting the JB variables back to their DA values, the predic-
tions of the DA reconstruction are treated as the true predictions (section 8.1).
From these predictions, the Monte Carlo correction is obtained. Therefore, one
needs to compare the CC Monte Carlo event migration, after the Monte Carlo
correction is applied to the CC Monte Carlo, to the NC Monte Carlo event
migration after reconstruction with the DA reconstruction method. The cor-
matrix obtained above compared the corresponding smearing matrix of the
NC Monte Carlo events reconstructed with the DA variables, which is

Q,2 —

0.95 0.04 002 004 00
0.01 094 0.06 0.0 00
1.0 00 00 o087 006 00
00 00 001 084 0.7
\ 00 00 00 00 083

As expected, the bin to bin event migration is less when the DA reconstruc-
tion is used because the DA reconstruction is largely energy independent (see

equation (6.5)).

[ @7 Bin (GA®) [ AQL) [ AQL)
400- 1000 0.81 067
1000-2500 0.76 0.82
2500-6250 0.65 0.77

6250- 15625 0.43 0.76
> 15625 0.24 0.69

Table 8.4: Acceptance, Ace, as a function of reconstructed Q* for the five Q?
bins used in the cross section measurements. A i3 the ratio of the number of
evenls passing all cuts that have reconstructed Q? (Qf,} or Qfo,) in the bin to
the total number of events generated with QF in the bin.

The acceptance (chapter 7), Acc, of each Q?,, bin is found after applying
the Monte Carlo correction to the CC Monte Carlo events. The results are
tabulated in table 8.4, which gives Acc as a function of Q2,, for the five Q2
bins. For comparison, table 8.4 also shows Agc, after the reconstructing the

CC Monte Carlo events with the JB reconstruction method, as a function of

Q3. As is seen from table 8.4, Acc(Q2,) is relatively flat versus QZ,,, with

cor

2
i

an average of (.71, while Acc (%) decreases from 0.81 down to 0.24.

Table 8.5 shows the purity of each Q2 bin. Purity is defined as the ratio
of the number of generated events in the bin that pass selection cuts with
Q? reconstructed in the bin to the total number of events passing cuts that
have Q? reconstructed in the bin. The purity for the three lowest ? bins is
higher for the Monte Carlo correction method. Although the purity using the
JB reconstruction is comparable to the one obtained from the Monte Carlo
correction method in the highest two @ bins (it is 0.98 for the highest Q3

bin}, it should be noted that the acceptances for these two bins with the JB
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Q? Bin Purity
(GeV?) JB | Cor
400-1000 || 0.47 | 0.74
1000-2500 || 0.57 | 0.75
2500-6250 || 0.69 | 0.80
6250-15625 |i 0.79 | 0.80
> 15625 || 0.98 | 0.70

‘Table 8.5: Purity due to JB reconstruction and Monte Carlo correction method.
Purity is defined as as the ratio of the number of gencrated events in the bin
that pass selection cuts with Q* reconstructed in the bin to the number of events

passing cuts that have Q* reconstructed in the bin.

reconstruction are low (0.43 and 0.24—table 8.4).
For comparison with the DA reconstruction of the NC Monte Carlo, the

NC bin acceptance, Axc, and bin purity are given in table 8.6.

8.5 Summary

In this chapter, a hadronic energy correction method that uses NC data and
NC Monte Carlo is presented. The data and Monte Carlo corrections im-
prove the bias and resolution for reconstructed (% on an event by event basis,
when compared to the JB reconstruction of kinematic variables. When the
Monte Carlo correction is applied to the CC Monte Carlo, the event bin to
bin migration is reduced, Q?—dependence of bin acceptances are reduced, and
bin purities are enhanced. There is still some bias toward lower Q? values
present in the correction, which might be improved with a larger NC data

sample that fits more closely the dependence of the correction at large P ;.
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¢)* Bin Purity | Axe
(GeV?) DA DA
400-1000 0.91 0.83
1000-2500 0.94 0.82
2500-6250 0.96 | 0.75
6250-15625} 0.89 | 0.77
> 15625 1.00 | 0.71

Table 8.6: NC events purity (first column), due to the DA reconstruction, and

bin acceptance.

For 0.1 < y; < 0.3, the Q? data and Monte Carlo correction factors (equa-
tion 8.1) agree within 1%: but, for high y;, (low y;), the data correction is up
to 30% larger (smaller) than the Monte Carlo (? correction (table 8.2).

To find the cross sections, the measured P and y; of the CC data are
corrected with the NC data correction (equations (8.6) and (8.7)), while P
and y;, of the CC Monte Carlo events are corrected with the Monte Carlo
correction (equations (8.8) and (8.9)). The resulting Q2,, is obtained from the

corrected kinematics using equation (8.1).



Chapter 9

CROSS SECTION
MEASUREMENTS AND R(G:\v'c/()'cc)

In this chapter, the measured NC and CC cross sections and cross section ratios
are given in section 9.1. The error analysis on the cross section measurements
is detailed in section 9.2. Finally, section 9.3 gives the final cross section

measurements, after all errors are evaluated.

9.1 Bin Acceptance and Cross Sections

‘The NC and CC cross sections are measured in five * bins. They are
100 GeV? < Q* < 1000 GeV?, 1000 GeV? < Q? < 2500 GeV?, 2500 GeV? <
Q? < 6250 GeV?, 6250 GeV? < Q* < 15625 GeV?, and Q* > 15625 GeV™.
‘The cross sections are found according to equation (7.1). The NC and CC
bin acceptances are listed in tables 8.6 and 8.4, respectively. The acceptances
are also listed in table 9.1. In addition, table 9.1 shows the measured cross
sections with statistical errors. For bins with observed number of data events
more than 9, the statistical error is taken as the square root of the observed

number of data events. For the rest of the bins, the error is taken as the 68%
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confidence limit with the measured cross section being the mean of the oisson

distribution.

Q2. Q2. | 400,1000 | 1000,2500 ] 2500,6250 | 6250,15625 | 15625,87500
(GeV?)
Nae 328 86 I8 3 1
Axc 0.83 0.82 0.75 .77 0.71
Oxc 732440 | 194421 | 44110 7.241%8 2.633
N(:(: 2 7 5 7 2
Ace 0.67 0.82 0.77 0.76 0.69
[ 55438 1 15840 | 12.0%] 17.1%8] 5345
87500 GV? > QF > Q7

Axc 0.82 0.8! 0.75 0.76 0.71
oxe 979447 | 247424 | 54+ 115 9.71%4 2.6433
Ace 0.76 0.79 0.76 0.7 0.69
acc 564 11.7| 494107 | 344£9.1 [ 225475 5.3%3

Table 9.1: NC and CC cross sections, oxccc. Nycee 15 the number of
observed events and Axcoc is the bin acceptance. Errors on oncec are

statistical only. Also shown are oxc.cc for 87500 GeViQ? > Q2

men

9.2 Systematics Errors

Three sources contribute to the systematic errors. The first (type I) is the
uncertainty in the luminosity measurement of £2.5%.'® The second source
(type II) comes from the difference in calorimeter energy scale between the
Monte Carlo and the data. ‘Lo find Lhe systematic error <ue to this effect,
the relevant cuts have to be scaled by a factor. The cuts are then applied to
Monte Carlo only and the cross sections are calculated after applying the cuts.

The third source of error (type [II} is produced when the shapes of the Monte



Svslematic Q7 bin ({reV?)

Error Source || 400-1000 | 1000-2500 | 2500-G250 | 6250-15625 | > 15625
¢ Scalel 2.5 L5 20 1.5 0.0
L. Scale? 2.5 2.5 2.0 L5 0.0
E-P, 1.0 1.5 0.0 6.0 0.0
Ve 0.0 1.5 1.8 1.8 1.8
I 1.5 1.5 0.0 0.0 0.0
p/VE 1.2 0.0 0.0 0.0 0.0
PRI 0.0 5.6 0.0 0.0 0.0
CTDurk, iso 1.0 1.0 .o 1.0 1.0
RCALbp

¢~ Finder 5.0 2.0 2.0 2.0 2.0
COMBGF 5.0 10.0 10.0 10.0 10.0
vs MEPS

Luminosity 2.5 2.5 2.5 2.5 2.5
Total Error 85 | 125 11.0 10.9 10.7

Tem Scale = electron energy scale, I Scale = hadronic energy scale
‘Table 9.2: Percent systematic errors on the NC measured cross sections due to
various sources. The errors are given in percenl and are added in quadralure

to give the total error.

Carlo distributions are different from data distributions, assuming there is no
energy scale [actor between the two. For this type of error, the cuts are varied

in both Monte Carlo and in data and the cross sections are recalculated.

9.2.1 NC Systematic Errors

Systematic errors on the NC cross sections are discussed in this section.
Table 9.2 summarizes the NC systematic errors. There are two sources of
calorimeter energy scale systematic error (type 11). The first source is the 6%
difference between NC Monte Carlo predictions and NC data for the scattered

electron energy, as mentioned in section 7.1 (see figures 7.6 and 7.7). This
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difference is due to incomplete simulation of the inactive material in front of
the calorimeter. Multiplying the scattered electron energy and the relevant
selection cuts that use this energy {£,, y., £~ I, and Q?/Q%,) in NC Monte
Carlo by 0.94, the cross sections increase by 2.5%, 1.5%, 2%, 1.5%, and 0%
from lowest to highest (* bin. The percent increase of the cross sections in
the bins show some fluctuations due to Monte Carlo statistics. As a result,
the error assigned to the electron energy scale is 3% for all the bins.

The second source of calorimeter energy scale error is the hadronic energy |
scale. Figure 9.1{A) compares the hadronic £ — P spectra of NC Monte Carlo
to NC data, showing that there maybe some difference in shape. T'he shift in
hadronic energy scale is estimated to be 10% [rom the resolution obtained by
comparing the hadronic true p{™™ to the reconstructed hadronic 4,4, as shown
in figure 9.1{B), using the NC Monte Carlo events. Varying the hadronic
energy by +10%, the changes to the cross sections are a 2.5% increase for
the lowest two Q? bins, 2% increase for the next bin, 1.5% decrease for the
fourth bin, and none for the highest bin. Therefore, the errors assigned due
to hadronic energy scale are 2.5%, 2.5%, 2%, 1.5%, and 0% for the lowest to
highest Q2 bins.

Another systematic error is caused by differences between NC data and
NC Monte Carlo not due to an energy scale difference (type 111). For this
type of error, the three highest Q? bins are combined into one bin with @* >
2500 GeV?2. In the highest three Q? bins, losing an event in any one bin may
introduce large statistical errors, rendering the estimate of the error inaccurate,
since the measured statistics in each of these bins is small. Combining the three

bins enables us to utilize all 22 remaining events in these bins. When these
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Figure 9.1: (A) Comparison of the hadronic E — I, for the final {36 NC
candidates (histogram with error bars) and NC Monte Carlo (solid histogram).
L is the tolal hadronic energy and P, is the total hadronic longitudinal energy
(B) (P — piue)/pire for NC Monte Carlo events with NC selection cuts,
where [2jy is the hadronic jet measured transverse momentum and piree is its

true transverse momentum.
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bins are combined, the slatistical error is reduced since the loss of an event or
two due to cut variation does not introduce unrealistically large errors. The
errors determined in this manner are assumed to be applicable to all of the
three highest (J? bins. Unless otherwise stated, the three highest ? bins are
combined into the *highest bin" in the following. Possible sources of the type

[11 systematic errors are:

e E— P,;: The NC Monte Carlo is generally 2 GeV higher on average than
the data in all bins (fizure 7.5). Increasing the £— P, cut by 2 GeV in the
first Q? bin does not change the bin acceptance. However, the number of
NC data events is decreased from 328 to 325, resulting in a 1% decrease
in the cross section. When £ — P, is increased by 2 GeV in the second
@? bin, the bin acceptance is decreased from 0.83 to 0.8]1. The number
of NC data events stays the same (86 events), giving an increase of 1.5%
in the cross section. For the highest Q% bin, the bin acceptance and the
number of NC data events stay the same when £ — P, is increased by
2 GeV. Decreasing the £ — P, cut by 2 (el leaves the bin acceptance
and number of data events in each 9 bin unchanged. Therefore, the
errors assigned due to the £~ P, cut are 1%, 1.5%, and 0% in the lowest

(2? bin, second bin, and highest bin.

o y.: The NC Monte Carlo predicts higher values of y. on average, as
seen from figure 7.5. The difference in the mean of the distribution of y,
between data and Monte Carlo is 0.03 in the lowest bin, 0.08 in the second
bin, and zero in the highest bin. However, the resolution is 0.074 in all

the bins, as determined from the rms value of the y. — ¥, distribution,



126

shown in figure 9.2. Therefore, the y. cut is varied by 0.1 unit in all
the bins. Decresing this cut by 0.1 in the lowest Q? bin leaves the bin
acceptance and number of NC data events unchanged. Decreasing the
cut by 0.1 in the second Q? bin decreases the bin acceptance from 0.82 to
0.79, while number of NC data events is decreased from 86 to 84 events,
resulting in 1.5% increase in the cross section. Decreasing the cut in
the highest Q? bin decreases the bin acceptance from 0.75 to 0.7 . The
number of NC data events decreases from 22 to 20 events, yielding a
1.8% increase in the cross section. Increasing the cut in all the bins has
no effect on the cross sections. Therefore, the errors assigned are {from

lowest to highest Q? bin) 0%, 1.5%, and 1.8%.

E!: Figure 7.6 shows that the NC Monte Carlo predicts higher £ than
is measured from the data on average. The rms value for E! - £}, .
is shown in figure 9.3 for NC Monte Carlo events passing NC selection
cuts. For the lowest (J? bin, the NC Monte Carlo predicts higher energy

by 1 (FeV on average. Comparison of £' with £} , shows that the rms

true
of the distribution of their difference is 2 GeV in this bin. Therefore,
the E. cut is varied by £2 GeV. Decreasing the cut by 2 GeV increases
the lowest @? bin acceptance from 0.83 to 0.85. The number of NC data
events is increased from 328 to 331 eveats, resulting in a 1.5% decrease
in the cross section. However, increasing the cut by 2 GeV in the bin

decreases the acceptance to 0.81 and the number of NC data events to

320, yielding no change in the cross section.

In the second Q? bin, the NC Monte Carlo is 2.5 GeV higher than the
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Figure 9.2: y. — Yirue for NC Monte Carlo events passing the NC selection

cuts.
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NC data on average with the £ — £ distribution rms of 2.1 GeV'.

true

Decreasing the E! cut by 2.4 GeV leaves both the acceptance and the

-number of NC data unchanged. Increasing the cut by 2.4 GeV decreases

the acceptance from 0.82 to 0.81, while leaving the number of NC data

events the same, giving an increase of 1.5% in the cross section.

For the highest Q% bin, mean of the NC Monte Carlo distribution is
1 GeV lower than that of the NC data. However, the E, — Ej . dis-
tribution rms is 4 GeV. Varying the cut by +1 GeV does not change

either the acceptance or the number of NC data events.

“I'herefore, the errors assigned due to this cut are (from lowest to highest

@Q? bins} 1.5%, 1.5%, and 0%.

po/ VE:: This cut is varied by 0.1 in the lowest 2 QZ bins and 0.2 in the
highest bin. These values correspond to the shift in the mean between
data and Monte Caclo. Decreasing the cut by 0.1(0.2) in the two lowest
@? bins (highest Q? bin) does not change either the number of NC data

events or the bin acceptance remain unchanged.

Increasing the cut from 2.0 to 2.1 in the first @* bin increases the ac-
ceptance from 0.83 to 0.84, while leaving the number of NC data events
unchanged, resulting in 1.2% decrease in the cross section. For the rest
of the Q? bins, increasing the cut to 2.1 doeas not produce any change

in the bin acceptance and the number of NC data events.

‘Therefore, the errors assigned due to this cut are 1.2% in the lowest Q?

bin and 0% for the rest of the bins.
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s Q?/Q%,: Removing this cut in the lowest (}* bin increases the accep-
tance from 0.83 to 0.84. The number of NC data events is also increased
to 333 events, yielding a 0.3% increase in the cross section. When this
cut is removed for the second Q2 bin, the acceptance is increased from
0.82 to 0.83. The number of data events also increases from 86 to 92
events, resulting in 5.6% increase in the cross section. For the highest Q?
bin, removing the cut increases the acceptance from 0.75 to 0.76. The
number of NC data events stays the same, giving a 1.3% increase in the

cross section.

Therefore, the errors assigned to the cross section are (from lowest to
highest Q? bin) 0%, 5.6%, and 0%. Note that no error is assigned to the
highest Q? bin even though the change in the cross section is 1%. The
reason is that removing the cut is in itself a rather large change, which

results in a small variation in the cross section in the highest bin.

CTDtrk, iso, RCALbp: For this cut, all the bins are combined into a
single Q* > 400 GeV? bin. Removing this cut from data and Monte
Carlo results in a 1% increase in the bin acceptance. The number of NC
data events increases from 436 to 443, resulting in a 1% increase in the
cross section. Therefore, a 1% error is assigned to all bins due to this

cut.

L 4

EKlectron finding algorithm: ELEC5 is used as the default electron
finder in this analysis. We use Sinistra*! instead of ELECS5 to find the
effect on the cross section due to the electron finder. Using the Sinistra !

finder for the first Q? bin leaves the acceptance unchanged. The number
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of NC data events is reduced from 328 to 313, resulting in 5% decrease
in the cross section. In the second Q? bin, Sinistra decreases the number
of NC data events from 86 to 82. The acceptance is reduced from 0.82
to 0.80, yielding a decrease of 2% in the cross section. Using Sinistra
in the highes-t Q? bin reduces the acceptance from 0.75 to 0.74 with the
number of NC data events remaining the same (22 events), giving an

increase of 2% in the cross section.

Therefore, the errors assigned due to electron finder are (from lowest to

highest Q? bins) 5%, 2%, and 2%.

Sensitivity to structure functions: NC Monte Carlo events are generated
with the MRSD’_ *® set of structure functions. To quantify the depen-
dence of the measured cross sections on various structure functions, the
MRSDO0,% CTEQ, " and GRV "7 sets are used. The NC Monte Carlo
events are reweighted with the ratio of these sets to NIRSD”.. The ob-
tained cross sections differ by less than 1% from the values given in

table 9.1, Therefore, no error is assigned due to structure functions.

Sensitivity to final state models and fragmentation: Two different fi-
nal state and fragmentation models are considered. One is the Color
Dipole and Boson Gluon Fusion (CDMBGF) model used by the ARI-
ADNE 4.0% Monte Carlo generator. The other is the Matrix Elements
Parton Shower (MEPS) used by the LEPTO 6.1 Monte Carlo genera-
tor. Figure 9.4 shows the acceptances using the 2 fragmentation models.
The MEPS model gives acceptances that are larger by ~ 10% than the

CDMBGF model. For large Q* bins, the difference is small compared



132 133

to the statistics of the Monte Carlo events. "L'o check if this difference
in acceptance between the two models is due Lo one or more of the se-
- lection cuts, the efficiency of each cut is shown for the two models in
figure 9.5. The figure shows that no individual cul causes more of effi-

ciency differences than any other cut. Therefore, it is the combination

PR
<
=2
of all cuts that contributes to the 10% difference in acceptance between 2 !
“
‘ =
the two models. The 10% error is assigned for the highest four Q? bins. 3
In the lowest bin, an average of both final state models is used to find 0.9 b
the bin acceptance, Axc, given in table 9.1. Therefore, an error of 5% [ +
08 - . Py ——
is assigned to the lowest Q? bin. i R S
o |
o tffect of trigger efficiency: For NC events, a high energy scattered elec- Tt ———T:
tron is required in the NC selection (£, > 10 GeV), which is higher than o8 |
the thresholds used to trigger the events (section 5.3.4). Therefore, the
) o 05 [ ® MEPS
trigger effect on the NC events is estimated to be less than a percent for 1
all of the bins. 0.4 | o COM
0.3
9.2.2 CC Systematics Errors [
0.2 n PR W T ST | " - " N SV Y | N Al
10° 10

Systemalic errors on the CC measurcd cross seclions are delailed in this Q' (GeVY)

section. ‘Table 9.3 summatizes the CC systematics. In the CC cross sections,

the energy scale difference (type 11 error) between the Monte Carlo and data

o ] ) Figure 9.4: Acceplance as a function of Q? for MEPS and CDMBGF
alfects the pumiss > 12 GeV cut. As is pointed oul in the above section, the

. s hadronization models. Vertical bars are statistical errors.
hadronic energy scale differs between NC data and Monte Carlo by 10%. This
is shown in figure 9.1{B), where the hadronic £ in the NC Monte Carlo is

compared with the data. Changing the pymiss by +10% results in changes of
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Figure 9.5: Cut efficiency as a function of Q? for MEPS and CDMBGF

hadronization models. Vertical bars ere statistical errors, Efficiency is the
ratio of the number of events thal pass cuts and reconstructed in the bin io the

number of events generated in the bin and pass cuts.
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+5%, +1%, £0.8%, £0.6%, and +3% in the measured cross sections from the
lowest to the highest Q2 bin, respectively. Therefore, an error of £5%(3%)
is assigned to the lowest(highest) Q? bin due to the energy scale. No error is
assigned to the other bins for this effect.

Another systematic error is caused by differences between the various dis-
tributions of data and Monte Carlo irrespective of an energy scale difference
(type 111). The measured statistics in each Q? bin for CC is small. Therefore,
the combined (* > 400 GeV? bin is used, utilizing all the 23 CC events. The
error assigned for the Q? > 400 GeV? bin is also taken to be the error for all

of the five individual Q? bins. The sources of these systematic errors are:

o 0 [pimiss: CC Monte Carlo and data are in good agreement (fig-
ure 7.14). Increasing the pf2.,,/Pimiss cut by as much as 20% from 0.7
to 0.84, the bin acceptance decreases from 0.76 to 0.73. The number of
CC data events remains 23 events, resulting in a total cross section for
§? > 400 of 58pb, comprising a 3.5% change from the measured cross
section of 56pb. Since the resulting difference in the cross section is small

from a 20% change increase in the cut, no error is assigned.

PRl piniss: Data and Monte Carlo distributions are in good agree-

ment. Decreasing the cut from 0.75 to 0.525 (20% decrease) rejects one
CC data event. The bin acceptance remains the same at 0.76, resulting
in a 4.4% increase in the cross section. Because the resulting increase
of the cross section is small for a 20% decrease in the cut, no error is

assigned.

@ Pimiss: The Pemiss cut is changed by £10% (corresponding to the hadronic
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Pyj» tesolution obtained from NC Monte Carlo, shown in figure 9.1).
Increasing the cut by 10% to 13.2 eV’ decreases the bin acceptance
from 0.76 to 0.75. The number of CC data events remains the same at
22 events, resulting in a cross section of 51.3pb, which is 3.7% lower than
the measured cross section of 56pb. Therefore, an error of 4% is assigned

to all the Q? bins.

|z and number of tracks on vertex: Figure 9.6 shows the z vertex dis-
tribution of the 4136 NC candidates with Q% > 100 GeV? compared to
the NC Monte Carlo. The width of the data and Monte Carlo distri-
butions are the same. However, there is a shift of one bin between the
two distributions, where the bin width is 4cm. In addition, the NC data
distribution is wider than Monte Carlo. To account for this, another
3cm difference is added to the 4cm difference between the NC data and
Monte Carlo z vertex distributions. Therefore, the cut is increased by
Tem to |z] < 52cm. This leaves the bin acceptance the same at 0.76,
while increasing the CC data sample to 24, where the additional CC
data event has a vertex at 2 = —50.9¢m, resulting in a 4.4% increase in
the cross section. Decreasing the cut by 7em does not change the bin
acceptance and the number of CC data events, yielding no change in the

cross section.

Number of tracks on the vertex: reducing the requirement from 2 to
one track, a CC event is added to the sample, leaving the acceptance
unchanged. As a result, the cross section is increased by 4.4%. Increasing

the cut to 3 tracks on the vertex, reduces the number of CC candidates
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by 2 to 21 CC data events. The acceptance is reduced from 0.76 to
0.72, resulting in a cross section of 54pb, which is 4% different from the

measured cross section.

Therefore, an error of 4.4% is assigned to all Q2 bins to these two cuts.

Uncertainty in hadronic energy corrections of chapter 8: To test the
uncertainty due to the data and Monte Carlo correction methods, the
data correction is applied to the NC data sample and the Monte Carlo
correction is applied to the NC Monte Carlo. The resulting oxc(Q? >
400 GeV?) is 1069 pb, 9% higher than the measured value of 979 {ta-
ble 9.1). Therefore, an error of 9% is assigned to oc¢ for all the CC
bins due to the hadronic correction. When no correction is applied,
oce(Q? > 400 GeV?) = 55.5pb, which is consistent with the value given
in table 9.1. However, in this case, 21 events survive the Q? > 400 GeV?
cut, where Q? here is Q?,,, reconstructed using the JB reconstruction
method. Since the acceptance is also reduced by 9% from 0.76 to 0.7,
there is no change in the cross section . Therefore, no error is assigned

to the JB reconstruction of Q2.

Sensitivity to structure functions: CC Monte Carlo data are generated
with the MRSDO set of structure functions. To quantify the dependence
of the measured cross sections on various structure functions, MRSD'_,
CTEQ, and GRYV sets are considered. The CC Monte Carlo events are
reweighted with these sets and the obtained cross sections differ by less
than 1% from the values given in table 9.1. I'herefore, no error is assigned

due to different structure functions.
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e Sensitivity to final state models and fragmentation: The default CC

Monte Carlo events used in this analysis are generated by the LEPTO
6.1 generator with the MEI’S model of fragmentation. If the CDMBGF
model is used instead, the CC bin acceptances increase by up to 5%. 44
Therefore, an error of 5% is assigned fot the final state fragmentation

model.

Trigger efficiency: To find the effect of the trigger efficiency on Acc, the
trigger threshold curves for four relevant trigger quantities are obtained
{figure 9.7). These quantities are Egrarc, Eru, £, and Egage. The
efficiency for the Eppirc quantity is obtained by dividing the Eggasc
profile for the data triggered by the Eggasc trigger by the Egpasc profile
for data events triggered by the other trigger quantities, irrespective of
whether the Eggasc triggered these events. The threshold curves for the
rest of the trigger quantities shown in figure 9.7 are found in the same
manner. Figure 9.8 shows the trigger quantity profiles for CC Monte
Carlo events. Overlayed in this figure are also the efficiency corrected
profiles, which are obtained by multiplying the trigger profiles for the

CC Monte Carlo events by the threshold curves.

The efficiency , ¢;, of each CC Monte Carlo event that passes the CC se-
lection is found for each of trigger quantity ¢, wheret = Eppare, Ew, £ty
or Egmc. The inefficiency for each CC Monte Carlo event due to the
trigger quantity i is 1 — ¢;. The total inefficiency of each Monte Carlo
event is [11,(1 — &). Performing the sum $[1 — (JT,, 1 - )], where

the summation is over all the CC Monte Carlo events passing the cuts
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Q"> Q%4 § NCuncorr [ NC corr | CC uncorr | CC cosr B
(GeV?) syslematic | systematic | systematic | systematic
Q* > 400 7 4 11.3 6.4 17.6%3%
Q% > 1000 7 4 11 4 5.0123
Q7 > 2500 4.2 4 11 4 1613
Q7> 6250 4.2 3 11 3 0.4,
Q7 > 15625 4.2 2 11 [ 0.533

‘Table 9.4: Correlated systematic errors, uncorrelated systematics errors, and
total combined error on R (statistical and systematic), given in percent. Cor-
related systematic ervors are errors affected by the calorimeter energy scale.
They correlate the NC and CC measurements. The uncorrelated systematics
are the vest of the systematic errors thal are nol affected by the energy scale

(see text for more details).

that have Q? reconstructed in the bin, and dividing the result by the
total number of CC events generated in the bin gives the total trigger

efficiency corrected acceptance for the bin.

The effect of the Lrigger efficiency is a 3.0% reduction in the lowest Q?
bin acceptance. It is less than a percent for the rest of the bins. Therfore,
a 3% error is assigned for the lowest (* bin and no error for the rest of

the bins.

9.2.3 R(owc/occ) Errors

ln this section, the errors on R{oxc/occ) are evaluated. These errors
are obtained by smearing the observed number of data events and the recon-

structed number of events by gaussian or gamma distributions, as described
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Figure 9.6: 2 vertez distribution for NC data (histogram with error bars) and

Monte Carlo events (solid histogram).
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below. These distributions are used to obtain the total combined errors (sta-
tistical and systematic) on R. The values of A are listed with the total errors

in table 9.1.

9.2.4 Errors Evaluation

R is given by

oxe
R=—== (9.1)
gee
where Axe = NEG/NEE and Ape = NES/NEE . Nl oo and NG o are the

number of generated and reconstructed NC and CC Monte Carlo events, re-
spectively, ! ""' and \"5’ are the number of observed NC and CC data events,
respectively. R is evaluated using the values given in table 9.1 for N¢ o and

Axcce. The Errors on Nagaws are used to calculate the uncertainty on R.

:\’;‘}'{_S}} is simeared according to its errors, as described below, taking into ac-
counl correlated errors on N{f& and NG5, The uncertainty on R is obtained
in the following way:

o For Monte Carlo events, N5 o¢ is smeared by a gaussian distribution,

rec

resultm;, in the distribution P§E cc yiaer With mean NIE oo and width

2, /NEE oy where \/NEGoc is the statistical error on N cc. The
distribution is generated by the following algorithm:

1. A random number, g,, is generated from a gaussian distribution of

mean zero.

2. g, is shifted to a value, g/, distributed around the mean N ce,

with a width of 2‘/ Nig& o using the following formula

oo+ NGee (9.2)
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The above two steps are repeated 50000 times (i.e. 50000 random num-
bers generated) for every Q? bin. The distribution of the 50000 values

of ¢! is denoted by P& ce i

For data events, if N¢&cc > 9, it smeared by a gaussian distribution.
i Nt oo < 9, then it is smeared by a gamma distribution, assuming
\r’(‘c cc 1s a continuous number. Whether a gaussian or a gamma distri-
bution is used for smearing N¢2 o, the resulting distribution of smeared

values is denoted by P22 ... The width of ¢ ~. s 2,/ NS if a
Y 'Ncee NC.Ct Neoe

gaussian distribution is used for smearing.

‘The width of £ c¢ . Obtained thus far includes only the statistical
error on ¥¥& pe. To incorporate the systematic errors on V{G oe, two

more distributions are obtained with the following systematic errors:

1. NC-CC correlated systematics: These are systematic errors on the
bin acceptance thal depend on the calorimeter energy scale and
are correlated for both NC and CC. For NC, these errors include
the effects of ¢~ and hadronic energy scales on acceptance and on
the cuts & — I, y,, and £!. For CC, they affect pini,s and the
hadronic energy scale. These errors are listed in tables 9.2 and 9.3.
The total error due to these effects, shown in table 9.1, is obtained
for each bin by adding the individual errors in quadrature. The
total error for each bin is then used as the width of the gaussian
distribution needed to smear N{f& o for that bin. The identical
random numbers generated from a gaussian distribution to smear

NS are also used to smear N5, This is done in order to reflect
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the fact that these errors are correlated. The resulting distributions

are P{&ce.y» which are obtained by

R;%.CC.I = Gr X Peorr X '\.’,\" (c?,CC + ‘f\'.vé.cc (93)

where p.,, is the percent total correlated systematic error, given
in table 9.4, on NJZ ce. 50000 random numbers are generated to

obtain P co,-

2. Uncorrelated systematics: The remaining systematic errors (ta-
bles 9.2 and 9.3) are uncorrelated between NC and CC. The indi-
vidual errors are added in quadrature to find the total error, given
in table 9.4. The resulting total errors for each bin are taken as the
widths of the gaussian distributions. Since these are uncorrelated,
two different sets of random numbers are generated to smear NV§&

and NGE, giving P& .2, which is obtained by
P !VCC',CC,Q = gr X Puncor X -"\".;'cc‘:.cc + 1\’Rsé.CG (94)

where puncor- is the percent uncorrelated systematic error, shown
in table 9.4, on N{§ . 50000 random numbers are generated to

obtain P{% e,

The final distribution, NC.CC that includes the statistical, and uncorre-
lated and correlated systematic errors on ¥{ o is obtained by adding

the above three distributions of shifted random numbers,

rec —_— rec {4 rec
oo = PR ccsa ¥ PRGcey + PR cea (9.5)

17
o Performing the replacement N¥are — P \5'(_56 in equation {9.1), v
obtain
‘uobs (f&:@)
P(r) = e (9.6)

Jobs V-3
ras (%)
Since this equation performs a division of distributions, R in equation
(9.1} is replaced by a distribution P(r). Note that N7 ¢ is not replaced

by a distribution since the generated Monte Carlo events are not smeared.

"The errors on R are found by calculating the areas under the distribution
P(r) that contain 15.9% and 84.1% of the total integrated area (this
represents the 68.3% confidence interval). 7., and r,;, are values of
R that result in f;™" P(r)dr = 0.159 and [72 _P(r)dr = 0.841 so that
Jimer P(r)dr = 0.68. R is then given as RS, with §, = r,., — R and
62 = R — ryin.

The “smeared” ratio distribution of the acceptances, Fuio( Axc/ Ace), is

shown in figures 9.9 and 9.10, for each Q? bin. It is given by

vyen
A“‘C) P" Ne (9.7)

Pro io ( X
t -ACC Prec

P(r) distributions are shown in figures 9.11 and 9.12.

9.2.5 Radiative Corrections

Radiative corrections are calculated using HERACLES 4.1.% For NC events,
it includes an O(a,) correction due to Fi, and an O(a) correction resulting
from one loop virtual corrections and real bremsstrahlung (initial and final

state radiation). The final state radiated photon energy is added back to the
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Figure 9.9: Smeared acceptance ratio distributions, Fraio(Anc/Acc), for
Q? > 400 GeV?, > 1000 GeV?, > 2500 GeV?, and > 6250 GeV?, respec-
tively {continued in figure 9.10).
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ZEUS 1993 R(NC/CC) Error Analysis
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Figure 9.11: P(r) vs r for Q* > 400 GeV?, > 1000 GeV?, > 2500 GeV?, and
> 6250 GeV?, respectively (continued in figure 9.12).
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Figure 9.12: P(r) vs r for Q* > 15625 GeV2,
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scattered electron energy before Q? is calculated. A cut of y < 0.95 is included
in these calculations. For CC events, the radiative corrections include only the
initial state radiation.

‘T'he radiative correction factors are 0.89, 0.88, 0.89, 0.91, and 0.95 for NC
bins (lowest to highest) and 1.02, 1.03, 1.03, 1.03, and 1.02 for CC bins (lowest
to highest). For 87500 GeV? > Q? > Q2% bins, where Q2. = 400 GeV?,
1000 GeV?, 2500 GeV?, 6250 GeV?, and 15625 GeV'?, the correction factors
are the same as listed above for the differentially binned NC and CC events.
Therefore, the measured cross sections and the errors are scaled by these same

factors. The correction factor for the errors on R is the ratio of the NC

correction factor to the CC factor.

9.3 Final Cross Sections and R

The final cross sections are in table 9.5 and are shown in figure 9.13. The
ratio of the cross sections approaches unity at Q% > 2500 GeV? demonstrating
the equal strength of the weak and electromagnetic forces at high Q. The
NC cross section falls rapidly with Q? due Lo the massless photon propagator.
On the other hand, the CC cross section starts out flat at lower Q? and falls

rapidly at higher Q? due to the finite mass 11/ -propagator.
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Q2,,, Q% T 00,1000 ] 1000,2500 | 2500,6250 | 6250.15625 | 15625,87500

((ieV'?)

E7 328 86 18 3 1

rxe 0.89 0.88 0.89 0.91 0.95

oxc 651 171 39 6.6 2.5

Sne 436456 |£19+21 | 49443 [*Hii1o07 |*37103

a3y 862 218 51 9.9 1.1

ke 836 200 43 6.5 0.57

Xoc 2 7 5 7 2

ree 1.02 1.03 1.03 1.03 1.02

occ 5.6 16.3 12.4 17.6 5.4

$ce E20.7 [ Hei20 | FEit1a [H50421 [Hixo7

aid 13.1 16.7 15.5 7.8 1.6

87500 GeVZ > Q2 > Q2.

TaG 0.89 0.88 0.89 0.91 0.95

oxe 871 217 48 8.8 2.5

Sxe 442475 | £21427 {£10453 { X210 [ %103

rec 1.02 1.03 1.03 1.03 1.02

oo 57 50 35 23.2 5.4

e $12475 [ £11£60{ £94+ 4.1 477428 {Hito7
raclree || 0.87 0.85 0.86 0.88 0.93
R=2s 1153055 (4388 144403 047 0543

‘Table 9.5: The numbrr of observed cvents, vadiative corvection factors, ra¢

and rcc, measured cross seclions(tstatisticaltsystematic = Sxccc) of NC
and CC, Standard Model (5M) Born cross sections, and H{axc/oce), includ-

tng the total error on R.
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Figure 9.13: NXC and CC differrential cross sections, do [dQ?. Points with the
error bars are the measured cross sections. The horizontal bars indicate the bin
sizes. The solid curves are the Standard Model (SM) predictions. The points

are plotted at the average Q* of Monte Carlo events reconstructed in the bin.
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Chapter 10

CONCLUSIONS AND OUTLOOK

'The ZEUS detector was used to measure NC and CC cross sections at Q% >
400 GeV?. At high Q?, the exchanged boson has a small wavelength, enabling
it to resolve the structure of the proton. In addition, the high Q? regime
opens a window for detection of deviations from the Standard Model. In
1993, HERA collided 26.7 GeV electrons with 820 GeV protons with ZEUS
collecting 0.54pb™! of data.

The NC selection started with about 351000 data events, out of which 136
NC candidates were identified with Q% > 400 GeV? after all selection cuts were
applied. The cuts rejected background events {photoproduction and cosmics)
with high efficiency. The overall cut efficiency for selecting NC events with
Q? > 100 GeV? was 0.82 .

The CC selection identified 24 CC data candidates from a total of 33000

events passed by the Third Level Trigger. The selection cuts rejected beam-

. gas and cosmic backgroud with high efficiency. The overall cut efficiency for

selecting CC events with QF > 400 GeV'? was 0.76 .
The NC data were reconstructed using the DA reconstruction method.
The CC were reconstructed with the JB reconstruction method. The JB re-

construction is biased toward low energies due to loss of particles from the
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hadronic jet in the inactive material in front of the calorimeter. Therefore,
two correction methods using the NC data and Monte Carlo were obtained
to reduce the bias. The correction obtained from the NC data was used to
correct the CC data, while the correction obtained from the NC Monte Carlo
was used to correct the CC Monte Carlo.

The NC and CC cross sections and their ratios were measured in five Q?
bins, ranging in Q? from 400 GeV? to 87500 GeV'2. T'hese measurements show
for the first time that the NC and CC cross sections are comparable at high
(2. The NC cross sections falls rapidly with (J? due to the photon propagator.
For the first time, the W propagator effect on the CC cross section is seen,
where the CC cross section starts out flat at lower Q? and then falls rapidly
at higher @Q*. Both NC and CC measurements are in agreement with the
Standard Model predictions.

In 1994, HERA collided positrons on protons. For the NC current interac-
tions, the third component of isospin, fy, is +1/2 for €*, the effect of which is
to reduce in the NC cross section. For CC interactions, since the proton has
more u quarks than d quarks, it is expected that the positron cross section is
also smaller than for electron collisions. Comparing the electron and positron
cross sections enables us to test the Standard Model. In addition, measur-
ing posilron cross sections with high statistics and comparing them with high
statistics electron measurements will determine K3 for both NC and CC inter-
actions at high Q? values not accessable to previous fixed target experiments,
enabling observation of the valence quarks and, thereby, measurement of their

structure functions at these Q? values.
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Appendix A

Error Estimates on the JB and DA

Variables

Errors on measuring the DA variables are related to &~y and 64., errors in
measuring 7y and 8, (angles of the hadronic system and the scattered electron,
respectively). Errors on the JB variables are dependent on 68; and 8¢,, the
errors on the angular positions, 87 and ¢;, of the calorimeter cell ¢, and §E;,
error on energy measurement, £;, in the cell.
Pipa is given by

Ploa=Qball = ypa) (A1)

Using the following 2 expressions

2sin (1 + cos f,)

2 4
Qba = 1E? yi (A2)
and
iné.(1 ~ cos~
yop = Snbe(l = co 2 cos i) (A3)
where
A =sinyg +sinb, —sin(8. + v5) (A4)

and E, is the incoming electron energy of 26.7 GeV, one can obtain

2E, . .
Ppa= = sin vy siné, (A.5)
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Assumning Gaussian errors in vy and 8., then the error on Ppy is

s, ' (0Poa V]
8lPipa = [(Whn) + ( 6, 69:) ] (A.6)
From equations {A.4) and (A.5) one obtains
6;’::{.4 = %sin 8. (cos T - %sin Y %) (A.T)
with
2 — cos - cos(f. + 1) (438)

vy
Since both Ppa and A are symmetric in 8. and 4y, the corresponding equa-
tions for 3pa/08, and GA/08, have the same form as given in equations
(A.7) and (A.8) but with ¥ exchanged with 6,.

Similarly, the ersor on ypa, dypa, is

9 * (y 0
- Yypa OYyoa 4
Sypa = [( oo 571{) + ( 0. 59e) ] (A9)
Using A.3, one finds

Jypa _ 1 -cosyy 1.  0A

%, - i (cos A yy sin 0’(‘)0. (A.10)

and
dypa  sind, | . i JA ]
_—= sinyy — —(i — cos V) =— All
Fvm 2 [ - { i) - (A1)

Using the Monte Carlo, the errors 68, and 6+ are estimated to be 0.0194

and 0.127 radians, respectively.

‘I'he errors on the JB variables are obtained from

Py = Eisin 07 (A.12)
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and

- 2 —~ 2 - 27y /2
~ | P NPl (. NPl
8102, = a7 plnll.2 L1y r 0 sk
[P {2'_ [( . 60,) +( 7% so:] + . Sk,

(A.13)

where the sum is over calorimeter cells, £; = (cos ¢;,sin¢,), and 8154} is the

error on Py . After evaluating the derivatives in equation (A.13), one obtains

(81Pl)?

Y (EPy - 2icos,86)’
+ 3 (Ev'P:jb - sin 9-501)2
+ Y (P disind8E) (A.11)
where f.- = (- sin ¢;,sin ¢;} and I):‘,'h = (P, 1)/ Pjs. The following are taken
as first order estimates of AE;:
Sk; = 0.35\/1-12 for HAC cells
81

1]

0.18\/E; for EMC cells (A.15)

Errors on the angles vary depending on the cell position in the calorimeter.

{n F/RCAL, the errors on the angles are

80, = (25) [(cos 8200 + sin 61 (A.16)
and
. 1 .. .
bo; = (w) ((sin ¢:62)® + (cos _cv,-tSy,‘)J]”2 (A.17)

with B; = (22 + y? + 27)"/? is the distance from the interaction point to the
cell 7. §z; and Sy; are estimated to be

z - dimension of cell i
12

6.1.',' =

by: = y— drmensz;:l of cell i (A18)
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The transverse dimensions are 20 x 5 em? for FCAL EMC cells, 20 x 10 em?
for RCAL EMC cells, and 20 x 20 cm? for F'/RCAL HAC cells.
In BCAL, the angular errors are

50, = s_';f-.sz,. (A19)

and
. _ 2®[32
“=e

where éz; is taken to be the z-dimension of the cell, 5 em for an EMC cell and

(A.20)

20 em for a HAC cell.

‘I'he errors on y;, are derived from

1
i = ?E:;E;(l — cos ;) (A.21)

Sy = —— v Wivs g 2+ iy’ ” (A.22)
it = 3E, 9E; o6 -

Since

then using equation (A.21) in (A.22}, éy;5 becomes

1/2
Sy = % {Z [[(1 —cosB)8E) + (E;sin0;60;)’]} (A.23)

The errors on angles are estimated as given above,
Once all the above errors are determined, then ér (see equation (8.5)) for

each data point is calculated from ér = ‘/(61"9461‘/31’:1)4)2 + (6 Pon0r [OF;s)?,

ylelding
1 2 ) 2]1/2 |
br= o [(Pu'bﬂ’:m) + (Pipab Py} ] (A29)
311

for the Py correction and
1 1/2
br = o [vinbyoa)” + (voabys)’] (A.25)
b

for the y;) correction.
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