Interner Bericht	_
DESY F35D-96-08	
März 1996	

Messung der Kopplungskonstanten α_s der starken Wechselwirkung aus Jetraten in der tiefinelastischen *ep*-Streuung bei HERA

von

T. M. Trefzger

Eligiti tutti Pri Zutgiti tu Acce	1 5. APR. 195	Bibliothek Marany
Loci	1	-179

DESY behält sich alle Rechte für den Fall der Schutzrechtserteilung und für die wirtschaftliche Verwertung der in diesem Bericht enthaltenen Informationen vor.

DESY reserves all rights for commercial use of information included in this report, especially in case of filing application for or grant of patents.

۲.

Die Verantwortung für den Inhalt dieses Internen Berichtes liegt ausschließlich beim Verfasser

.

Messung der Kopplungskonstanten α_s der starken Wechselwirkung aus Jetraten in der tiefinelastischen ep-Streuung bei HERA

INAUGURALDISSERTATION zur Erlangung des Doktorgrades der Fakultät für Physik der Albert-Ludwigs-Universität Freiburg i. Br.

vorgelegt von Thomas M. Trefzger geb. in Wehr/Baden

> Dekan: Prof. Dr. Grabert Leiter der Arbeit: Prof. Dr. Bamberger Referent: Prof. Dr. Bamberger Korreferent:

März 1996

Tag der Verkündigung des Prüfungsergebnisses:

INHALTSVERZEICHNIS

Inha	lteve	rzei	chnie
511111	uusve	rzei	

£	inleit	ung	1
1	The	eoretische Grundlagen	3
	1.1	Historische Entwicklung der Quantenchromodynamik	4
	1.2	Status der a, Bestimmungen	5
	1.3	Die tiefinelastische Elektron-Proton-Streuung	9
		1.3.1 Die kinematischen Variablen	11
		1.3.2 (2+1) Jetproduktion	12
		1.3.3 Die Renormalisierungsskala	16
		1.3.4 Die Faktorisierungsskala	17
2	Jeta	algorithmen	19
	2.1	Der JADE Algorithmus	20
	2.2	Der K ₁ Algorithmus	22
		2.2.1 Der Ki Algorithmus mit Pseudoteilchen	24
		2.2.2 Das Breitsystem	25
	2.3	$(2+1)$ Jetproduktion mit dem K_{\perp} Algorithmus	29
3	Мо	nte-Carlo-Generatoren und QCD-Rechnungen	\$1
	3.1	Monte Carlo-Modelle zur Erzeugung partonischer Endzustände	31
	3.2	Fragmentationsmodelle zur Erzeugung hadronischer Endzustände	33
	3.3	Monte-Carlo-Generatoren	34
	3.4	QCD-Rechnungen	36
		3.4.1 PROJET und DISJET	38
		3.4.2 MEPJET	39

4	HE	RA und das ZEUS-Experiment	41
	4.1	Der HERA Speicherring	41
	4.2	Der ZEUS Detektor	43
		4.2.1 Die Spurdetektoren	45
		4.2.2 Das Kalorimeter	45
		4.2.3 Das ZEUS-Triggersystem	51
5	Dat	tenselektion	52
	5.1	Charakteristik von NC-DIS Ereignissen	52
	5.2	Die Bestimmung der kinematischen Variablen	52
	5.3	Untergrundereignisse	56
		5.3.1 Ereignisse aus der Photoproduktion	56
		5.3.2 Weitere Untergrundereignisse	56
	5.4	Ereignisse aus der diffraktiven Streuung	57
	5.5	Elektronenidentifizierung	58
	5.6	Selektionskriterien	59
6	Ver	gleich der Jetalgorithmen K_{\perp} und JADE	62
6	Ver 6.1	gleich der Jetalgorithmen K ₁ und JADE Rekombinationsabhängigkeit der beiden Algorithmen	62 62
6	Ver 6.1 6.2	gleich der Jetalgorithmen K ₁ und JADE Rekombinationsabhängigkeit der beiden Algorithmen	62 62 64
6	Ver 6.1 6.2 6.3	gleich der Jetalgorithmen K ₁ und JADE Rekombinationsabhängigkeit der beiden Algorithmen	62 62 64 67
6	Ver 6.1 6.2 6.3 6.4	gleich der Jetalgorithmen K _⊥ und JADE Rekombinationsabhängigkeit der beiden Algorithmen	62 62 64 67 68
6	Ver 6.1 6.2 6.3 6.4 6.5	gleich der Jetalgorithmen K ₁ und JADE Rekombinationsabhängigkeit der beiden Algorithmen	62 64 67 68 69
6	Ver 6.1 6.2 6.3 6.4 6.5 6.6	gleich der Jetalgorithmen K _⊥ und JADE Rekombinationsabhängigkeit der beiden Algorithmen Der (2+1) Phasenraum der beiden Algorithmen Partonschauereffekt Die Vorwärtsregion Die Beschreibung des Beobachterjets Reinheit und Effizienz	62 64 67 68 69 73
6	Ver 6.1 6.2 6.3 6.4 6.5 6.6 Bes	gleich der Jetalgorithmen K_{\perp} und JADE Rekombinationsabhängigkeit der beiden Algorithmen Der (2+1) Phasenraum der beiden Algorithmen Partonschauereffekt Die Vorwärtsregion Die Beschreibung des Beobachterjets Reinheit und Effizienz timmung von α , aus Jetraten mit dem K_{\perp} Algorithmus	 62 64 67 68 69 73 76
6	Ver 6.1 6.2 6.3 6.4 6.5 6.6 Bes 7.1	gleich der Jetalgorithmen K_{\perp} und JADE Rekombinationsabhängigkeit der beiden Algorithmen Der (2+1) Phasenraum der beiden Algorithmen Partonschauereffekt Die Vorwärtsregion Die Beschreibung des Beobachterjets Reinheit und Effizienz timmung von α , aus Jetraten mit dem K_{\perp} Algorithmus Kinematischer Bereich	 82 62 64 67 68 69 73 76 76
6 7	Ver 6.1 6.2 6.3 6.4 6.5 6.6 Bes 7.1 7.2	gleich der Jetalgorithmen K_{\perp} und JADE Rekombinationsabhängigkeit der beiden Algorithmen Der (2+1) Phasenraum der beiden Algorithmen Partonschauereffekt Die Vorwärtsregion Die Beschreibung des Beobachterjets Reinheit und Effizienz timmung von α , aus Jetraten mit dem K_{\perp} Algorithmus Kinematischer Bereich Jetkinematik	 82 62 64 67 68 69 73 76 76 77
6	Ver 6.1 6.2 6.3 6.4 6.5 6.6 Bes 7.1 7.2 7.3	gleich der Jetalgorithmen K_{\perp} und JADE Rekombinationsabhängigkeit der beiden Algorithmen Der (2+1) Phasenraum der beiden Algorithmen Partonschauereffekt Die Vorwärtsregion Die Beschreibung des Beobachterjets Reinheit und Effizienz timmung von α , aus Jetraten mit dem K_{\perp} Algorithmus Kinematischer Bereich Jetrekonstruktion und Jetraten	 82 62 64 67 68 69 73 76 76 77 80
8	Ver 6.1 6.2 6.3 6.4 6.5 6.6 7.1 7.2 7.3 7.4	gleich der Jetalgorithmen K_{\perp} und JADE Rekombinationsabhängigkeit der beiden Algorithmen Der (2+1) Phasenraum der beiden Algorithmen Partonschauereffekt Die Vorwärtsregion Die Beschreibung des Beobachterjets Reinheit und Effizienz timmung von α , aus Jetraten mit dem K_{\perp} Algorithmus Kinematischer Bereich Jetrekonstruktion und Jetraten Systematische Untersuchungen	62 64 67 68 69 73 76 76 76 77 80 84
7	Ver 6.1 6.2 6.3 6.4 6.5 6.6 7.1 7.2 7.3 7.4 7.5	gleich der Jetalgorithmen K_{\perp} und JADE Rekombinationsabhängigkeit der beiden Algorithmen Der (2+1) Phasenraum der beiden Algorithmen Partonschauereffekt Die Vorwärtsregion Die Vorwärtsregion Die Beschreibung des Beobachterjets Reinheit und Effizienz timmung von α , aus Jetraten mit dem K_{\perp} Algorithmus Kinematischer Bereich Jetrekonstruktion und Jetraten Systematische Untersuchungen Vergleich zwischen MEPJET und LEPTO	62 64 67 68 69 73 76 76 77 80 84 85
7	Ver 6.1 6.2 6.3 6.4 6.5 6.6 7.1 7.2 7.3 7.4 7.5 7.6	gleich der Jetalgorithmen K_{\perp} und JADE Rekombinationsabhängigkeit der beiden Algorithmen Der (2+1) Phasenraum der beiden Algorithmen Partonschauereffekt Die Vorwärtsregion Die Beschreibung des Beobachterjets Reinheit und Effizienz timmung von α , aus Jetraten mit dem K_{\perp} Algorithmus Kinematischer Bereich Jetrekonstruktion und Jetraten Systematische Untersuchungen Vergleich zwischen MEPJET und LEPTO Jetkinematik im eingeschränkten kinematischen Bereich	 62 64 67 68 69 73 76 76 77 80 84 85 92

ii

INHALTSVERZEICHNIS

iii

8	Bes	timmung von a , aus Jetraten mit dem JADE Algorithmus	101
	8.1	Die Wahl des kinematischen Bereiches	101
	8.2	Jetkinematik	102
	8.3	Jet Rekonstruktion und Jetraten	107
	8.4	Korrekturfaktoren für Detektorakzeptanz und Hadronisierung	109
	8.5	Vergleich zwischen QCD Rechnungen und LEPTO 6.1	112
	8.6	Methode zur Bestimmung von a,	112
		8.6.1 Anzahl der Flavours	114
		8.6.2 Ergebnisse der Anpassung von $\Lambda_{\overline{MS}}^{(5)}$ an die (2+1) Jetrate	117
	8.7	Systematische Untersuchungen	117
		8.7.1 Experimentelle Unsicherheiten	118
		8.7.2 Hadronisierungsfehler	122
		8.7.3 Einfluß der Partondichten	122
		8.7.4 Skalenabhängigkeit	123
	8.8	Weitere systematische Untersuchungen	125
		8.8.1 Anpassung von $\Lambda_{\overline{MS}}^{(5)}$ an die (2+1) Jetrate mit MEPJET	125
		8.8.2 Korrektur der Daten mit LEPTO 6.3	127
		8.8.3 Rekombinationsabhängigkeit des JADE Algorithmus	128
		8.8.4 Vergleich mit der α_s Bestimmung mit dem K_{\perp} Algorithmus	128
	8.9	Das "Laufen" von α,	129
	8.10	Resultate	130
7.			
⊿u	58 IN	iteniass ung	135
Lit	erat	urverzeichnis	137

Das Verständnis der Welt der Elementarteilchen ist in dem sogenannten Standardmodell zusammengefaßt. Danach ist alle vorkommende Materie aus sechs Leptonen und sechs Quarks aufgebaut. Das Standardmodell der Elementarteilchenphysik umfaßt die vereinheitlichte Theorie der elektroschwachen Wechselwirkung und die Quantenchromodynamik, die Theorie der starken Wechselwirkung. Die Gravitationswechselwirkung kann für Untersuchungen im Rahmen der Elementarteilchenphysik vernachlässigt werden. Die Stärke der Wechselwirkungen ist bestimmt durch Kopplungskonstanten, die nicht im Rahmen des Standardmodells festgelegt sind, sondern experimentell bestimmt werden müssen. Von den vier fundamentalen Kräften der Natur ist die QCD experimentell am ungenauesten bestätigt.

Der einzige freie Parameter der QCD ist die Kopplungskonstante α_s . Die erste experimentelle Bestätigung dieser Theorie - die Entdeckung des Gluons, welches die Wechselwirkung zwischen den Quarks vermittelt - wurde am e^+e^- -Speicherring PETRA gefunden. Die ersten Bestimmungen von α_s wurden vor etwa 25 Jahren an Lepton-Nukleon-Experimenten mit ruhenden Nukleonen durchgeführt. Es folgten viele weitere Bestimmungen der starken Wechselwirkungskonstanten mit unterschiedlichen Methoden an verschiedenen Experimenten.

Mit dem Speicherring HERA, an dem Elektronen mit einer Energie von 27.5 GeV an Protonen mit einer Energie von 820 GeV gestreut werden, eröffnen sich neue kinematische Bereiche der Lepton-Nukleon-Physik. Die maximale Schwerpunktsenergie beträgt $\sqrt{s} = 300$ GeV. Die QCD sagt voraus, daß die starke Kopplungskonstante α_s abhängig ist vom Quadrat des Viererimpulsübertrages Q^2 der Streuung. Daher ist es wichtig, α_s bei verschiedenen Q^2 . Werten zu messen. Mit HERA ist es erstmals möglich, in einem Experiment mit derselben Methode α_s in einem weiten kinematischen Bereich zu messen und somit Aussagen über das "Laufen" von $\alpha_s(Q^2)$ zu machen. In dieser Arbeit wird α_s zwischen $Q^2 = 120$ und $Q^2 = 3600$ GeV² gemessen.

Hierzu werden hadronische Endzustände der tiefinelastischen ep Streuung betrachtet. Ein Streuprozeß der tiefinelastischen Streuung durch Austausch eines virtuellen Bosons (γ^* , Z^0) ist charakterisiert durch das gestreute Elektron, den Protonrest und den hadronischen Endzustand, der aus einem oder mehreren Jets bestehen kann. Im naiven Quark-Parton-Modell gibt es ein Parton neben dem Protonrest im Endzustand. Die Wahrscheinlichkeit dafür, daß ein Ereignis (bzgl. der Partonebene) mit zwei Partonen und dem Protonrest auftritt, ist gerade α_s . Bei HERA wird ein solches Ereignis als (2+1) Jetereignis bezeichnet. Der Beobachterjet (Protonrest) wird mit "+1" bezeichnet. Im Experiment wird eine Anhäufung von Energie in einem kleinen Winkelbereich des Detektors als Jet bezeichnet. Die Bestimmung der Anzahl der Jets kann mit verschiedenen Methoden erfolgen, in dieser Analyse werden der JADE und der K_{\perp} Algorithmus benutzt.

Durch Vergleich der gemessenen und mit einem Monte-Carlo-Generator auf die Partonebene korrigierten (2+1) Jetrate mit den Vorhersagen für die (2+1) Jetrate in Abhängigkeit von α_s einer QCD Rechnung läßt sich α_s in erster Ordnung in Abhängigkeit von Q^2 bestimmen.

Die hier vorgestellte Analyse von Jetereignissen bei HERA beruht auf Daten des Jahres 1994 mit einer Luminosität von $3.2 \ pb^{-1}$.

Die Arbeit ist wie folgt gegliedert:

Im Kapitel 1 wird ein kurzer Überblick über die QCD, über die tiefinelastische Streuung und die (2+1) Jetproduktion gegeben. Messungen der Kopplungskonstanten α_s , die in den letzten 25 Jahren an vielen Experimenten durchgeführt wurden, werden vorgestellt.

Um die Anzahl der Jets zu bestimmen wird ein Jetalgorithmus benötigt. Kapitel 2 stellt die in der Analyse benutzten und für die Elektron-Proton-Streuung modifizierten Jetalgorithmen vor.

Die gemessene (2+1) Jetrate soll mit den Vorhersagen der QCD Rechnungen verglichen werden. Dazu muß die (2+1) Jetrate auf die Partonebene korrigiert werden. Die phänomenologischen Modelle zur Beschreibung des hadronischen Endzustandes werden in Kapitel 3 zusammen mit den für die Analyse benutzten QCD Rechnungen vorgestellt.

Der Speicherring HERA und der Detektor ZEUS werden kurz in Kapitel 4 beschrieben.

Die Selektion der Ereignisse für die in dieser Arbeit vorgestellte Analyse wird in Kapitel 5 behandelt.

Die Vor- und Nachteile der beiden für diese Analyse benutzten Jetalgorithmen - des JADE und des K_{\perp} Algorithmus - werden schließlich in Kapitel 6 diskutiert.

In Kapitel 7 werden die Ergebnisse einer α_s -Bestimmung aus der (2+1) Jetrate mit dem K_{\perp} Algorithmus in einem Q^2 -Bereich von 120 bis 3600 GeV^2 vorgestellt. Ausführlich werden die Schwierigkeiten beschrieben, die bei einer Erweiterung des kinematischen Bereiches auftreten.

Abschließend gezeigt wird in Kapitel 8 die Bestimmung von α_s aus der (2+1) Jetrate, die mit dem JADE Algorithmus bestimmt wurde. Studiert wird der Einfluß theoretischer und experimenteller Unsicherheiten. Die Resultate der Analyse werden vorgestellt und mit den Ergebnissen aus Kapitel 7 verglichen.

Die Zusammenfassung wiederholt die wesentlichen Ergebnisse dieser Arbeit.

Kapitel 1

Theoretische Grundlagen

Soweit wir heute wissen, ist alle in der Natur vorkommende Materie aus Elementarteilchen, den Leptonen und Quarks aufgebaut. Die Leptonen und Quarks sind Fermionen und tragen den Spin 1/2. Sie werden nach ihrer aufsteigenden Masse in drei Generationen angeordnet (siehe Tabelle 1.1). Diese

Fermionen	Ge	nerai	tion	elektr. Ladung	Farbe
	1	2	3		
Leptonen	Ve	ν_{μ}	vr	0	
	e	μ	τ	-1	-
Quarks	u	С	t	+2/3	r,b,g
	d	8	Ь	-1/3	

Tabelle 1.1: Die Leptonen und Quarks

Teilchen können, je nach ihren Eigenschaften, über die vier Grundkräfte miteinander wechselwirken: Neben der Gravitationswechselwirkung sind dies die starke, die elektromagnetische und die schwache Wechselwirkung. Das Standardmodell der Elementarteilchenphysik umfaßt die vereinheitlichte Theorie der elektroschwachen Wechselwirkung und die Quantenchromodynamik, die Theorie der starken Wechselwirkung. Jede der Wechselwirkungen wird durch den Austausch von Vektorbosonen vermittelt (siehe Tabelle 1.2). Diese Vektorbosonen sind Elementarteilchen und tragen einen ganzzahligen Spin.

Wechselwirkung	Vektorboson
Gravitation	Graviton (G)
Starke WW	8 Gluonen (g)
Elektromagnetische WW	Photon (7)
Schwache WW	W^{\pm}, Z^{0}

Tabelle 1.2: Die vier fundamentalen Wechselwirkungen und ihre Vektorbosonen.

Die Stärke der Wechselwirkungen ist bestimmt durch Kopplungskonstanten, die nicht im Rahmen des Standardmodells festgelegt sind, sondern experimentell bestimmt werden müssen. In Tabelle 1.3 sind die fundamentalen Parameter des Standardmodells und ihre gemessenen Werte [1] aufgelistet. Die Kopplungskonstante α_s der starken Wechselwirkung ist bisher am ungenauesten bestimmt. Da α_s - abgesehen von den Quarkmassen - der einzige freie Parameter der QCD ist, stellt die genaue Messung von α_s eine wichtige Überpüfung der QCD dar. Die Messung dieser Kopplungskonstanten im Experiment ZEUS am Speicherring HERA ist Gegenstand dieser Arbeit.

Kopplungskonstante	Wert	relativer Fehler 10 ⁶
Feinstrukturkonstante: $\alpha(m_{e^2})$	1/137.0359895(61)	0.045
Fermi Kopplungskonstante: G_F/GeV^2	1.16639(2) - 10-5	20
Weinbergwinkel: $\sin^2 \theta_W(\overline{MS})$	0.2315(4)	2200
Starke Kopplungskonstante: $\alpha_s(M_Z)$	0.118(3)	25000

 Tabelle 1.3: Fundamentale Parameter des Standardmodells, ihre gemessenen Werte und die Unsicherheiten der Messungen.

1.1 Historische Entwicklung der Quantenchromodynamik

4

1964 entwickelten Gell-Mann [2] und Zweig [3] ein Quarkmodell, mit dem alle damals bekannten Hadronen in Multipletts der Gruppe $SU(N_f)$ eingeordnet werden konnten. N_f ist die Anzahl der verschiedenen Quarksorten ("flavours"). Um die Erhaltung des Pauliprinzips zu gewährleisten, war es nötig, den Quarks drei "Farb"-Freiheitsgrade zuzuordnen. Diese Transformationen werden wiederum durch eine $SU(3)_{farb}$ -Gruppe vermittelt.

Neben diesem statischen Quarkmodell - das bis heute Gültigkeit besitzt - wurde 1969 von Feynman und anderen Autoren das Partonmodell [4, 5] entwickelt. Das Partonmodell geht von punktförmigen, masselosen Partonen aus, die nicht miteinander wechselwirken. Unter Benutzung zweier Strukturfunktionen $F_1(x, Q^2)$ und $F_2(x, Q^2)$ läßt sich der Wirkungsquerschnitt der tiefinelastischen Lepton-Nukleon-Streuung im Quark-Parton-Modell beschreiben:

$$\frac{d\sigma^2}{dQ^2 dx} = \frac{4\pi\alpha_{em}^2}{xQ^4} \left[y^2 x F_1(x,Q^2) + (1-y)F_2(x,Q^2) \right] \,.$$

Unter der Annahme, daß die Partonen Teilchen mit Spin $\frac{1}{2}$ sind konnten Callan und Gross [6] folgende Beziehung herleiten:

 $2xF_1(x)=F_2(x).$

Experimentell wurde am SLAC gezeigt, daß die Partonen, die aufgrund ihres Spin $\frac{1}{2}$ mit den Quarks identifiziert wurden, nicht den ganzen Impuls des Nukleons tragen. Die experimentellen Daten schlie-Ben Partonen mit Spin 0 aus. Es wurden weitere Konstituenten im Nukleon postuliert: Die Gluonen die Austauschteilchen der starken Wechselwirkung zwischen den Quarks. Um diese starke Farbwechselwirkung zwischen den Quarks und den Gluonen zu beschreiben, wurde eine Quantenfeldtheorie aufgestellt: Die Quantenchromodynamik (QCD).

Ein wichtiger Schritt auf dem Weg zur experimentellen Bestätigung der QCD war die Beobachtung von Drei-Jet-Ereignissen am Speicherring PETRA 1979. Hier konnte erstmals der direkte experimentelle Nachweis für die Existenz von Gluonen erbracht werden [7].

Die Quantenchromodynamik (QCD) ist eine Feldtheorie, die die starke Wechselwirkung zwischen farbigen Quarks und den Gluonen beschreibt [8, 9]. Ein Quark kann in 3 Farben existieren, Gluonen können in 8 Farbkombinationen auftreten. Die starke Wechselwirkung wird durch Austausch von Gluonen vermittelt. Diese sind elektrisch neutral, masselos und tragen Farbe-Antifarbe als Ladung, d.h. sie können auch untereinander wechselwirken, im Gegensatz zu den Photonen der Quantenelektrodynamik, die nicht selbstkoppelnd sind. Die effektive Kopplungsstärke α_0 , hängt ab von dem Impulsübertrag Q^2 . In führender Ordnung (LO) der Störungsrechnung in der QCD erhält man:

$$\alpha_s(Q^2) = \frac{12\pi}{(33 - 2N_f)\ln(Q^2/\Lambda^2)}$$

 N_f ist die Zahl der beteiligten Quarksorten. N_f ist von Q^2 abhängig und liegt zwischen 3 und 5 (siehe Kapitel 1.3.3). Der Parameter A muß durch Vergleich von QCD Vorhersagen mit experimentellen Daten aus der Lepton-Nukleon-Streuung und der e^+e^- -Streuung bestimmt werden, damit erhält man A-Werte zwischen 100 und 500 MeV. Die oben angegebene Formel ist nur für $Q^2 \gg \Lambda^2$ gültig. Aus dieser Formel für α_s ist erkennbar, daß die Kopplungskonstante α_s mit steigendem Q^2 abnimmt, solange N_f kleiner als 17 ist. Im Rahmen des Standardmodells und nachdem LEP die Zahl der Neutrinos mit 3 ermittelt hat, kann mit $N_f \leq 6$ gerechnet werden. Diese Abhängigkeit von α_s von Q^2 , die oft als "Laufen" von α_s bezeichnet wird, soll ebenfalls in dieser Arbeit untersucht werden.

Im Limes $Q^2 \to \infty$, geht die Kopplungskonstante gegen Null. Dies wird als asymptotische Freiheit bezeichnet. Für kleine Energieskalen (z.B. Q^2 oder der transversale Impuls p_T^2) wird die Kopplung groß, und es kann nicht mehr störungstheoretisch gerechnet werden. Dieser Bereich der starken Kopplung ist von entscheidender Bedeutung für das Confinement, die Einsperrung der Quarks in Hadronen.

1.2 Status der α_s Bestimmungen

Eine genaue Bestimmung der starken Wechselwirkungskonstanten α , in Abhängigkeit von Q^2 ist notwendig, um

- die Theorie der starken Wechselwirkung zu bestätigen; α, ist der einzige freie Parameter der QCD;
- und auch f
 ür Tests der starken und elektroschwachen Theorie, um starke Korrekturen h
 öherer Ordnung möglichst pr
 äzise bestimmen zu k
 önnen.

Die Tabelle 1.4 gibt einen Überblick der bisherigen Messungen von α_s durch unterschiedliche Experimente mit verschiedenen Methoden bei mehreren Energieskalen Q^2 . Die Abbildung 1.1 zeigt die in der Tabelle angegebenen Werte für α_s in Abhängigkeit von Q. Eindeutig ist ein "Laufen" von α_s zu beobachten, jedoch sind die einzelnen α_s . Werte an vielen Experimenten bestimmt worden.

Einzig die Messungen von H1 und ZEUS · letztere soll in dieser Arbeit vorgestellt werden - messen α_s mit derselben Methode über einen bestimmten Bereich von Q^2 in einem einzigen Experiment und können somit zuverlässige Aussagen über das "Laufen" der starken Wechselwirkungskonstanten machen. Um die einzelnen α_s -Messungen direkt miteinander vergleichen zu können, wird das Ergebnis für α_s bei festem $Q^2 = M_{Z^0}$ angegeben.

Den meisten in der Tabelle 1.4 aufgeführten Messungen liegt folgende Vorgehensweise zugrunde:

Wirkungsquerschnitte, Jetraten, Strukturfunktionen, etc. werden experimentell gemessen und mit theoretischen QCD Vorhersagen verglichen. Das Quark-Partonmodell ergibt eine erste Vorhersage und die Quantenchromodynamik liefert Korrekturterme zu dieser Vorhersage von der Form $(1 + C \cdot \alpha_s(Q^2)/\pi + ..)$. Die Kopplungskonstante α_s ist, wie bereits betont, der einzige freie Parameter der QCD und kann nur durch Vergleich von Theorie und Experiment bestimmt werden.

Die ersten Messungen von α , konnten aus der Skalenbrechung der Strukturfunktionen bestimmt werden. Durch tiefinelastische Prozesse (DIS) kann die Strukturfunktion gemessen werden. Im Quark-Partonmodell sind die Strukturfunktionen nur vom relativen Impulsanteil x des Quarks abhängig. In der QCD hängen sie auch vom Impulsübertrag Q^2 ab, weil die Quarks im Nukleon Gluonen aussenden

	Q			$\Delta \alpha_{s}$	(M_{70})	
Prozeß	[GeV]	$\alpha_s(Q)$	$\alpha_s(M_{Z^0})$	exp.	theor.	Theorie
DIS[Bj-SR]	1.58	0.375+0.062	0.122+0.005	<u> </u>	-	NNLO
DIS[GLS-SR]	1.73	0.32 ± 0.05	0.115 ± 0.006	0.005	0.003	NNLO
$R_{\tau}[LEP]$	1.78	0.36 ± 0.04	0.122 ± 0.005	0.002	0.004	NNLO
$DIS[\nu; F_2 \text{ und } F_3]$	5.0	0.193+0.019	0.111 ± 0.006	0.004	0.004	
$DIS[\mu;F_2]$	10.0	0.180 ± 0.018	0.113 ± 0.000	0.004	0.004	NLO
		0.001	0.113 1 0.003	0.003	0.004	NLO
$e^+e^-[\sigma_{had}]$	34.0	0.146+0.031	0.124+0.021	+0.021	_	NNLO
e ⁺ e ⁻ [ev.shapes]	35.0	0.14 ± 0.02	0.119 ± 0.014	-0.019		NIO
e ⁺ e ⁻ [ev.shapes]	58.0	0.132 ± 0.008	0.123 ± 0.007	0.003	0.007	TOCUM
				0.000	0.001	reaum.
$p\overline{p} \rightarrow b\overline{b}X$	20.0	$0.138^{+0.028}_{-0.019}$	0.109+0.016	+0.012	+0.011	NLO
$p\overline{p}, pp \rightarrow \gamma X$	24.2	0.137+0.017	0.112+0.012	0.007	-0.010 +0.010	NIO
$p\bar{p} \rightarrow W$ jets	80.6	0.123 ± 0.025	0.121 ± 0.024	0.017	0.005 0.016	NLO
$e^+e^- \rightarrow Z^0$:					•	
$1(Z^{\circ} \rightarrow hadrons)$	91.2	0.126 ± 0.007	0.126 ± 0.007	0.006	+0.003	NNLO
had event shapes	91.2	0.119 ± 0.006	0.119 ± 0.006	0.001	0.006	NLO
nad.event shapes	91.2	0.123 ± 0.006	0.123 ± 0.006	0.001	0.006	resum.
$ep \rightarrow (2+1)$ jets (H1)	$\sim 5 - 60$		0.123 ± 0.018	0.012	0.013	NLO
$ep \rightarrow (2+1)$ jets (ZEUS)	~ 1 3 − 35	-	0.117 ± 0.010	0.005	0.009	NLO
$Q\overline{Q}$ -Zustand	5.0	0.188 ± 0.018	0.110 ± 0.006	0.000	0.000	
J/♥ + Y Zerfälle	10.0	0.167+0.015	0.113+0.007	0.000	+0.007	NIO I
		0.011	~	0.001	~0.005	aro
Skalenverletzung:						
e+e-	20 ~ 91	-	0.127 ± 0.011	-	-	NLO
ep	~ 2 - 10	-	0.120 ± 0.010	0.005	0.009	NLO

Tabelle 1.4: Zusammenfassung von Messungen zur Bestimmung von α_s . Die Abkürzungen bedeuten: DIS = Tiefinelastische Streuung; Bj-SR = Bjorkensche Summenregel; GLS-SR= Gross-Llewelyn-Smith Summenregel; (N)NLO = (nest-)nest-to-leading order Störungstheorie; LGT = Gitter-QCD;resum. = resummierte nest-to-leading order.

6

Abbildung 1.1: Verschiedene Messungen zur Bestimmung von α_s . Aufgetragen ist der Wert von α_s gegen die Energieskala Q, bei der gemessen wurde. Die gestrichelten Linien sind die QCD Vorhersagen für verschiedene Werte von $\Lambda_{\overline{MS}^{(s)}} = 100 \text{ MeV}, 200 \text{ MeV}, 300 \text{ MeV}$ in der Region, in der gilt $N_f = 5$, d.h. Q > 10 GeV.

und absorbieren und deshalb kurzzeitig Quark-Antiquark-Paare entstehen können. Die Wahrscheinlichkeit, daß ein sekundäres Quark getroffen wird, steigt mit Q^2 . Die Strukturfunktion hängt also von x und Q^2 ab. Die Wahrscheinlichkeit, mit der ein Gluon ausgesendet wird oder ein Quark-Antiquark-Paar entsteht, ist proportional zu α_s . Eine genaue Messung der Strukturfunktion in Abhängigkeit von Q^2 ermöglicht eine Bestimmung von α_s . Die präzisesten Messungen aus der Skalenbrechung der Strukturfunktion wurden bei SLAC und BCDMS [10] gemacht.

Ebenso kann durch Vergleich der Messung und den theoretischen Vorhersagen α_s aus der Gross-Liewelyn-Smith Summenregel [11] und der Bjorkensche Summenregel für polarisierte Strukturfunktionen [12] bestimmt werden: Die Gross-Liewelyn-Smith Summenregel,

$$GLS = \int_0^1 F_3(x,Q^2) dx \equiv 3(1-\frac{\alpha_s}{\pi}+\cdots),$$

gefittet mit Daten der CCFR Kollaboration ergibt $\alpha_s(1.73 \text{ GeV}) = 0.32 \pm 0.05$ [13]. Die Bjorkensche Summenregel für polarisierte Strukturfunktionen,

$$\int_0^1 [g_1^p(x) - g_1^n(x)] dx \equiv \frac{1}{3} \left| \frac{g_A}{g_V} \right| (1 - \frac{\alpha_s}{\pi} + \cdots)$$

ermöglicht ebenfalls eine α_s . Bestimmung. Dabei sind $g_1(x)$ die polarisierten Strukturfunktionen $g_1(x)$ für Neutronen (n) und Protonen (p) aus dem Unterschied der Wirkungsquerschnitte für parallele und antiparallele polarisierte Targets und polarisiertem $(e \text{ oder } \mu)$ Strahl bestimmt. g_A und g_V sind Meßgrößen beim β -Zerfall des Neutrons, $g_A/g_V = -1.26$. Unter anderem wurde am CERN (SMC) [14] diese Methode benutzt.

An $p\bar{p}$ Beschleunigern wurde α_s mit verschiedenen Methoden bestimmt:

- Aus der Messung des b5 Wirkungsquerschnittes.
- Aus der Differenz des Wirkungsquerschnittes für direkte Photonproduktion zwischen pp und pp.
- Aus dem Verhältnis der Wirkungsquerschitte f
 ür die Produktion eines W-Bosons ohne Jet und eines W-Bosons mit einem Jet.

Die Gittereichtheorie kann Bindungszustände von Quark und Antiquark ein und desselben Flavours, einem sogenannten Quarkonium, und deren Hyperfeinaufspaltung berechnen und daraus α_s extrahieren. So wird z.B. die Aufspaltung zwischen 1S und 1P beim Charmonium benutzt. Diese Aufspaltung ist nahezu unabhängig von der c-Quarkmasse, aber stark abhängig von Λ , d.h. von α_s .

Der Zerfall schwerer Quarks $(J/\Psi, \Upsilon)$, d.h. das Verhältnis der Verzweigungsverhältnisse in Hadronen und Leptonen kann gemessen und mit der NLO QCD Rechnung verglichen werden [15], um daraus α_s zu bestimmen.

Die wichtigsten und ausführlichsten Messungen von α_s stammen jedoch von den vier LEP Experimenten (e^+e^- -Streuung). Inzwischen gibt es über 60 Publikationen, die sich mit der QCD und der α_s -Bestimmung beschäftigen. Hier soll nur kurz angedeutet werden, welche Methoden bei LEP benutzt wurden. Ein ausführlicher Überblick ist in den Publikationen von Bethke [16] und Catani [17] zu finden.

• Eine sehr genaue α_s . Bestimmung erfolgt durch Vergleich des gemessenen Verhältnisses R_Z mit der QCD Theorie, die vollständig bis zur dritten Ordnung gerechnet ist. R_Z , das Verhältnis zwischen der hadronischen partiellen Breite Γ_{had} und der leptonischen partiellen Breite Γ_{lep} des Z^0 , ist definiert als

$$R_Z = \left(\frac{\Gamma_{had}}{\Gamma_{lep}}\right)_{exp} = \left(\frac{\Gamma_{had}}{\Gamma_{e^+e^-}}\right)_0 (1 + \delta_{QCD})$$

mit

$$\delta_{QCD} = (\alpha_s/\pi) + 0.85(\alpha_s/\pi)^2 - 15(\alpha_s/\pi)^3 \,.$$

Ohne QCD Korrekturen und unter gewissen Annahmen für die Masse des Top Quarks ($M_t = 150 \text{ GeV}$) und des Higgsteilchens ($M_H = 300 \text{ GeV}$) ist ($\Gamma_{had}/\Gamma_{e^+e^-}$) $_0 = 19.943$.

7

• LEP hat die Zerfallsrate R_τ der τ -Leptonen gemessen, um α_r zu bestimmen: Die τ -Leptonen lassen sich bei LEP sehr gut mit Hilfe der Silizium-Vertex-Detektoren identifizieren und das Verhältnis von hadronischen zu leptonischen τ -Zerfällen läßt sich präsize bestimmen zu

9

$$R_{\tau} = \frac{B(\tau \to \text{Hadronen} + \nu_{\tau})}{B(\tau \to e\nu_{e})} \equiv 3.058 \cdot (1 + \delta_{QCD}) \,.$$

Der Faktor vor der Klammer weicht geringfügig von dem Wert $N_C = 3$ ab, da QED-Strahlungskorrekturen und Massenunterschiede berücksichtigt werden müssen. Die Wahrscheinlichkeit für die Abstrahlung eines Gluons im hadronischen Endzustand ist proportional zu α_s bei der Ruheenergie des τ -Leptons. In dritter Ordnung der QCD-Störungsrechnung ergibt sich für den Korrekturterm δ_{QCD} :

$$\delta_{QCD} = (\alpha_s/\pi) + 5.2(\alpha_s/\pi)^2 + 26.4(\alpha_s/\pi)^3.$$

Der kombinierte, gemessene Wert aller LEP Experimente ist $R_r = 3.617 \pm 0.034$, dies führt zu $\alpha_s(M_{Z^0}) = 0.122 \pm 0.005$.

- Eine weitere Möglichkeit ist die Benutzung von hadronischen Ereignisgrößen, z.B. "Thrust", "Sphericity", "Aplanarity" oder Energie-Energie-Korrelationen. Die QCD Rechnungen sind bis zur zweiten Ordnung α, gerechnet.
- α_s kann auch aus den Jetraten bestimmt werden. Die LEP Experimente können hierzu den JADE Algorithmus oder den K_{\perp} Algorithmus benutzen (beide Algorithmen werden ausführlich in Kapitel 2 vorgestellt), für beide Algorithmen gibt es Rechnungen bis zur zweiten Ordnung von α_s .

Ebenfalls die Jetrate wurde bei CLEO [18] benutzt, um α_s bei einer Ruheenergie von 10 GeV zu bestimmen. Ein Vergleich der α_s Messungen von LEP und CLEO aus den Jetraten zeigt, daß es sehr wichtig ist, die Lücke zwischen niedrigen Energien (~ 10 GeV) aus DIS Experimenten und hohen Energien ($M_{Z^0} = 91.2 \text{ GeV}$, LEP Experimente) zu schließen. Tendenziell ergeben alle Messungen aus Niederenergieexperimenten einen kleineren Wert von $\alpha_s(M_{Z^0})$ als z.B. die Ergebnisse der LEP Experimente [19]. Diese Lücke kann mit den Experimenten H1 und ZEUS geschlossen werden, die es erlauben, über einen weiten Energiebereich α_s zu bestimmen.

Erste Ergebnisse von HERA wurden von H1 veröffentlicht [20, 21]. Hier wurde der modifizierte JADE Algorithmus (siehe Kapitel 2) benutzt, um die Extraktion von α_s mit Jetraten durchzuführen.

Die hier in dieser Arbeit vorgestellte und von ZEUS veröffentlichte Analyse [22] konnte α_s in einem Bereich von $Q = 13 - 35 \ GeV$ mit der bisher größten bei HERA erreichten Genauigkeit bestimmen.

1.3 Die tiefinelastische Elektron-Proton-Streuung

Die tiefinelastische Elektron Proton-Streuung (DIS:"deep inelastic scattering") bietet die Möglichkeit, die Struktur der Nukleonen zu erforschen und die Theorie der starken Wechselwirkung, die Quantenchromodynamik (QCD), zu studieren. Der hadronische Endzustand wurde zuerst an Fixed Target-Experimenten untersucht. Dabei wurden Effekte, wie zum Beispiel Teilchenproduktion bei hohem transversalen Impuls p_T [23] und Jetproduktion [24], beobachtet. Jedoch war die Schwerpunktsenergie dieser Experimente zu gering, um gut sichtbare, identifizierbare Jets beobachten zu können. Erst mit der Experimentieranlage HERA ist es möglich, eine klare Jetstruktur in der tiefinelastischen Streuung zu sehen.

Die Bestimmung der Anzahl der Jets im Detektor und speziell das Messen der (2+1) Jetrate ermöglicht z.B. die Bestimmung der Gluondichte xg(x) im Proton und das Messen der Kopplungskonstanten der starken Wechselwirkung α_s . Dabei bezeichnet "+1" den Protonrest, der im Detektor nicht gemessen werden kann; er verschwindet in der Strahlröhre. Der Protonrest oder Beobachterjet zeichnet sich dadurch aus, daß er nahezu keinen transversalen Impuls hat.

Insbesondere kann α_s in Abhängigkeit vom negativen Quadrat des Impulsübertrags Q^2 gemessen werden und zwar mit derselben Methode und demselben Experiment, d.h. das theoretisch postulierte "Laufen" von α_s kann beobachtet werden.

Die Abbildung 1.2 zeigt schematisch den Streuprozeß der tiefinelastischen Streuung für die ep-Wechselwirkung. Das einlaufende Elektron tritt mit einem Parton mit dem Viererimpulsbruchteil ξP des Protons durch Austausch eines Bosons - in diesem Falle eines Photons - in Wechselwirkung. Der Endzustand ist charakterisiert durch das gestreute Elektron mit dem Impuls k', einem Beobachterjet r (Protonrest) mit dem Impuls $(1 - \xi)P$, der an der eigentlichen Streuung nicht teilnimmt, und dem hadronischen Endzustand, der aus einem oder mehreren Jets bestehen kanp.

Abbildung 1.2: Neutraler Strom in der tiefinelastischen Streuung.

Ein (1+1)-Jetereignis auf der Partonebene ist ein Prozeß nullter Ordnung in α_s . Die Abbildung 1.3 zeigt ein entsprechendes Diagramm. Wenn die reellen Korrekturen in erster Ordnung α_s berücksichtigt werden, gibt es zwei Ereignistypen, die ebenfalls abgebildet sind. Die Quarks können ein Gluon abstrahlen, dieser Ereignistyp wird als Gluonbremsstrahlung oder QCD-Compton bezeichnet. Oder ein gluoninitiiertes Ereignis kann als Boson-Gluon-Fusion stattfinden, d.h. ein Quark-Antiquarkpaar wird gebildet. Beides wird als (2+1) Jetereignis bezeichnet. Die Wahrscheinlichkeit für solche Prozesse ist proportional zu α_s . Die Klassifizierung und Zählung der (2+1) Jetrate ermöglicht also das Bestimmen der starken Wechselwirkungskonstanten α_s .

П

Abbildung 1.3: DIS Diagramme für (a) Bornterm (Prozeß der nullten Ordnung α_s), (b) QCD Compton (c) Boson-Gluon-Fusion ((b) und (c) sind beides Prozesse der ersten Ordnung α_s), die zu (a) (1+1), (b) (2+1), (c) (2+1) Jetereignissen führen.

1.3.1 Die kinematischen Variablen

Der dieser Analyse zugrundeliegende Prozeß der tiefinelastischen ep-Streuung läßt sich beschreiben durch:

 $Elektron(k) + Proton(P) \rightarrow Elektron(k') + Jet_1(p_1) + Jet_2(p_2) + Beobachterjet(p_r)$.

In Klammern ist der Viererimpuls der Teilchen angegeben. Das Quadrat der ep Schwerpunktsenergie s ergibt sich zu

$$s = (P+k)^2 = M_e^2 + M_p^2 + 2E_eE_p - 2\vec{k}\vec{P} \approx 4E_eE_p$$
.

Die Variable Q^2 , das negative Quadrat des Viererimpulsübertrags q des virtuellen Photons, ist definiert als

$$Q^2 = -q^2 = -(k - k')^2 \, .$$

12

KAPITEL 1. THEORETISCHE GRUNDLAGEN

Das Quadrat der Masse des hadronischen Systems W ist

$$W^2 = (P+q)^2 \approx Q^2 \frac{1-x}{x}$$

Jedes DIS Ereignis läßt sich beschreiben durch zwei unabhängige Skalenvariablen, z.B. Q^2 und W^2 . Eine andere Möglichkeit ist die Einführung der zwei Skalenvariablen z und y:

$$\mathbf{r}=\frac{Q^2}{2Pq}\,,$$

die Bjorkensche Skalenvariable, und

 $y=\frac{Pq}{Pk},$

der relative Energieübertrag zwischen Proton und Elektron. In DIS-Prozessen, wenn man den hadronischen Endzustand nicht auflöst, genügen zwei unabhängige Variablen, um den Streuprozeß zu beschreiben.

1.3.2 (2+1) Jetproduktion

In diesem Abschnitt sollen die Berechnungen zu den Jet-Wirkungsquerschnitten in nullter Ordnung α_s (α_s^0) und in erster Ordnung α_s (α_s^1) kurz dargestellt werden. In der tiefinelastischen Streuung wird der elektroschwache Bornterm in erster Ordnung:

$$\frac{d\sigma}{dxdy} = \frac{2\pi\alpha_{em}^2}{z^2y^2s} \left[(1+(1-y)^2\sigma_{U+L} - y^2\sigma_L) \right]$$

korrigiert durch den QCD Compton Prozeß, d.h. die Emission eines Gluons, und durch den Boson-Gluon-Fusions Prozeß, bei dem ein Quark-Antiquark-Paar gebildet wird. In der oben angegebenen Formel ist σ_{U+L} (oder F_2) der Helizitätswirkungsquerschnitt für unpolarisierte Photonen und σ_L (oder F_L) der Helizitätswirkungsquerschnitt für polarisierte Photonen ($F_L = F_2 - 2xF_1$). Um den Prozeß im Quark-Parton-Modell zu beschreiben, genügen zwei kinematische Variablen, x und y. In O(α_o) gibt es drei zusätzliche Variablen, die die Kinematik der (2+1) Jetereignisse bestimmen, so daß der Wirkungsquerschnitt der (2+1) Jetproduktion von fünf unabhängigen kinematischen Variablen abhängt (x, Q^2, x_p, z, ϕ):

$$\frac{2\pi x_p d^5 \sigma_{2+1}}{dx dy dx_p dz d\phi}$$

Die Skalenvariable x_p, definiert durch:

$$x_p = \frac{x}{\xi} = \frac{Q^2}{2p \cdot q} = \frac{Q^2}{Q^2 + m_{11}^2},$$

wobei $p = \xi P$ der Impulsbruchteil des Protons ist, der vom Parton getragen wird und m_{ij} die invariante Masse der zwei Stromjets ist. Es gilt $x \leq x_p \leq 1$.

• Die Skalenvariable 2, definiert durch:

$$z = \frac{p \cdot p_1}{p \cdot q} = \frac{\sum_{s \in I} (E - p_s)}{\sum_{o \mid I} (E - p_s)} = \frac{1}{2} (1 - \cos \Theta^*)$$
$$(0 \le z \le 1)$$

13

Dabei ist Θ^* der Polarwinkel des Jets im Parton Schwerpunktssystem. Die Abbildung 1.4 zeigt den Polarwinkel Θ^* und die invariante Masse m_{ij} .

 Der Azimuthalwinkel φ der Partonen gibt die Orientierung des Leptons relativ zum hadronischen System an.

Für die ep Streuung ist der (2+1) Jet Wirkungsquerschnitt in $O(\alpha_s^1)$ gegeben durch:

$$\frac{d^2\sigma_{2+1}}{dx\ dy} = \frac{\alpha^2\ \alpha_s}{y\ Q^2} \cdot \int \frac{dx_p}{x_p}\ \int dz\ \int \frac{d\phi}{2\pi}\ (I_g + I_q),$$

wobei I_g and I_q die Gluon und Quark initiierten Beiträge darstellen (siehe [25]). Die ϕ -Abhängigkeit wird eliminiert, indem von 0 bis 2π integriert wird. Die Integration über x_p beinhaltet die Integration über die Partonendichten. Die Integration über die drei Variablen z, x, y führt zur (2+1) Jetrate, die folgendermaßen definiert ist:

$$\frac{d^2\sigma_{2+1}}{dxdy} = R_{2+1}(x,y)\frac{d^2\sigma_{total}}{dxdy} .$$

Die (1+1) Jetrate (R_{1+1}) und die (2+1) Jetrate (R_{2+1}) sind normiert und erfüllen die Bedingung $R_{1+1} + R_{2+1} = 1$. Der totale Wirkungsquerschnitt ist definiert als:

$$d^2\sigma_{total} = d^2\sigma_{2+1} + d^2\sigma_{2+1} \ .$$

Die 3+1 Jetrate tritt erst in der Ordnung α_a^2 auf.

Der (2+1) Jet Phasenraum wird durch die drei Variablen x_p , z und ϕ beschrieben bei festgehaltenen kinematischen Größen x und Q^2 . Es gibt aber singuläre Regionen im Phasenraum ($0 \le z \le 1, x \le x_p \le 1$): Der differentielle Wirkungsquerschnitt für den QCD Compton Prozeß ist gegeben durch

$$d\sigma_{2+1}^{\text{QCDC}} \propto \frac{1+x_p^2 z^2}{(1-x_p)(1-z)}$$

welcher in folgenden kinematischen Bereichen divergiert:

- $z \rightarrow 1$ (p_2 kollinear zu P)
- $x_p \rightarrow 1 \ (p_2 \text{ kollinear } zu \ p_1)$
- $z, x_p \rightarrow 1 \ (p_2 \text{ niederenergetisch})$

Beim Boson-Gluon-Fusions-Prozeß ist der differentielle Wirkungsquerschnitt gegeben durch

$$d\sigma_{2+1}^{\text{BGF}} \propto \frac{[z^2 + (1-z^2)][x_p^2 + (1-x_p^2)]}{z(1-z)}$$

welcher divergiert für:

- $z \rightarrow 1$ (p_2 kollinear zu P)
- $z \rightarrow 0$ (p_1 kollinear z u P)
- $z \rightarrow 1$ (p_2 niederenergetisch)
- $z \rightarrow 0$ (p_1 niederenergetisch)

Die kollinearen Singularitäten entsprechen einem Prozeß, in dem zwei Partonen nicht mehr aufgelöst werden können, weil der Winkel zwischen den beiden Partonen 0° beträgt. Diese Divergenzen im Endzustand werden gerade durch die Divergenzen der virtuellen Beiträge kompensiert (entsprechend dem Theorem von Kinoshita, Lee und Nauenberg [26]; nur für die QED bewiesen). Die verbleibenden kollinearen Divergenzen zum einlaufenden Quark oder Gluon werden durch eine greignete Renormalisierung der Partonverteilungen absorbiert.

Nach dieser Renormalisierung der Partondichten ist der inklusive Wirkungsquerschnitt in $O(\alpha_s^1)$ endlich [27]. Die Kompensation der Divergenzen durch die virtuellen Korrekturen aufgrund der Interferenz mit Schleifengraphen zum Wirkungsquerschnitt mit zwei auslaufenden Partonen fehlt jedoch. Um also im gesamten Phasenraum einen endlichen (2+1) Jet Wirkungsquerschnitt zu erhalten, wird ein Schnitt eingeführt, der den Phasenraum auf den Bereich außerhalb der Divergenzen beschränkt. Der verbleibende Phasenraum ist die (1+1) Jetregion. Als Schnitt wird oft das Quadrat der invarianten Masse zweier Partonen benutzt:

$$y_{cut} = \frac{m_{ij}^2}{s}$$

- 14

wobei s eine Referenzmasse, z.B. W^2 ist. Der so erhaltene (2+1) Jet Phasenraum schließt die Divergenzen bei z = 0, z = 1 und $x_p = 1$ aus. Für $s = W^2$ ergeben sich folgende Integrationsgrenzen für zund x_p [25]:

15

$$z^{\min} = \frac{(1-x)x_p}{x_p - x} y_{cut} = 1 - z^{\max} ,$$
$$x_p^{\min} = \frac{x}{1 - 2(1-x)y_{cut}} ,$$
$$x_p^{\max} = \frac{x}{x + (1-x)y_{cut}} = \frac{Q^2}{Q^2 + y_{cut}W^2} .$$

Der Phasenraum ist abhängig von x und y_{cut} . In Abb.1.5 ist der (2+1) Jet Phasenraum für einen $y_{cut} = 0.02$ und vier verschiedene Werte von x (x = 0.5, x = 0.1, z = 0.01 und x = 0.001) gezeigt. Die Abbildung 1.5 zeigt, daß der Phasenraum größer wird, wenn x größer wird (bis $x \sim 0.1$), dann aber wieder kleiner wird ($x \ge 0.1$). Die infraroten Divergenzen im Wirkungsquerschnitt werden also durch

Abbildung 1.5: Erlaubter (2+1) Jet Bereich des (2+1) Phasenraumes für verschiedene z-Werte und einen $y_{out} = 0.02$.

den Parameter y_{cut} reguliert. Der Anteil an (2+1) Jets, also die (2+1) Jetrate (R_{2+1}), ist definiert durch die Integration über einen Bereich zwischen y_{cut} und 1 und ist gegeben durch

$$R_{2+1}=c_{21}\cdot\alpha_{s},$$

wobei der Koeffizient c_{21} bedeutet, daß die Anzahl der Stromjets 2 ist und 1 die Ordnung in α_s $(O(\alpha_s^1))$. c_{21} ist eine Funktion von y_{cut} und den kinematischen Variablen.

In nächstführender Ordnung ($O(\alpha_s^2)$) werden für die (2+1) Jetrate R_{2+1} virtuelle Korrekturen und unaufgelöste (3+1) Jetereignisse berücksichtigt. Die Größe der Korrekturen ist abhängig vom benutzten Jetalgorithmus (siehe Kapitel 2), dem benutzten y_{cut} (bei Clusteralgorithmen) und dem kinematischen Bereich:

$$R_{2+1} = c_{21} \cdot \alpha_s + c_{32} \cdot \alpha_s^c$$

Um α_s im Experiment zu bestimmen, wird die gemessene (2+1) Jetrate mit der theoretisch errechneten verglichen:

$$\mathcal{C}_{2+1}^{\text{theor.}} = \frac{\sigma_{2+1}}{\sigma_{tot}},$$

wobei σ_{tot} definiert ist als

$$\sigma_{tot} = \sigma_{1+1} + \sigma_{2+1}$$

Der Anteil des (3+1)-Wirkungsquerschnittes σ_{3+1} kann durch die Wahl des Abschneideparameters y_{cut} im Jetalgorithmus vernachlässigbar klein gewählt werden.

1.3.3 Die Renormalisierungsskala

Die Renormierung besteht darin, die ultravioletten Divergenzen in die Definition der Felder und Kopplungen zu absorbieren.

Der (2+1) LO und NLO Wirkungsquerschnitt hängt explizit von der Renormalisierungsskala µ, ab:

$$\frac{d\sigma_{2+1}^{DD}}{dx dQ^2} = A \frac{\alpha_s(\mu_r^2)}{2\pi} \\ \frac{d\sigma_{2+1}^{NLO}}{dx dQ^2} = A \frac{\alpha_s(\mu_r^2)}{2\pi} \left[1 + (BN_f + C + b_0 \ln(\mu_r^2/Q^2)) \frac{\alpha_s(\mu_r^2)}{2\pi} \right]$$

wobei A, B und C Funktionen sind, die abhängen von der Jetdefinition, Jetkinematik und $\mu_{f,\mu_{f}}^{2}$ ist die Faktorisierungsskala (siehe nächsten Abschnitt). Dies gilt nur, wenn die Abhängigkeit von den internen Jetvariablen (x_{p}, z, ϕ) bereits durch Integration aufgehoben wurde. Die Abhängigkeit der starken Wechselwirkungskonstanten α_{s} von der Renormalisierungskala ist gegeben durch eine Renormalisierungsgruppengleichung, welche in zweiter Ordnung folgendes Aussehen hat:

$$\frac{\partial}{\partial \ln \mu_r^2} \frac{\alpha_s(\mu_r^2)}{2\pi} = -b_0 \left(\frac{\alpha_s(\mu_r^2)}{2\pi}\right)^2 \left[1 + b_1 \frac{\alpha_s(\mu_r^2)}{2\pi}\right] ,$$

wobei

$$b_0 = \frac{11}{6}N_c - \frac{1}{3}N_f,$$

$$b_1 = \frac{\frac{17}{3}N_c^2 - \frac{5}{3}N_cN_f - C_FN_f}{2b_0}$$

 N_c ist die Anzahl der Farben (= 3) in der QCD, N_f die Anzahl der beteiligten Quarksorten und $C_F = \frac{(N_c^2 - 1)}{2N_c}$ der Casimirfaktor. Als eine Lösung kann

$$\frac{\alpha_s(\mu_r^2)}{2\pi} = \frac{1}{b_0 \ln(\mu_r^2/\Lambda^2)} \left[1 - \frac{b_1 \ln \ln(\mu_r^2/\Lambda^2)}{b_0 \ln(\mu_r^2/\Lambda^2)} + \mathcal{O}\left(\frac{1}{\ln^2\left(\frac{\mu_r^2}{\Lambda^2}\right)}\right) \right]$$

angegeben werden, wobei der Parameter A eingeführt wurde.

Werden die Terme proportional zu $(\ln \frac{\mu^2}{\Lambda^2})^{-2}$ in der Definition von Λ berücksichtigt, dann heißt die Wahl des Schemas, um die Kopplungskonstante zu renormalisieren, das modifizierte "Minimal Subtraction" Schema (\overline{MS}) und Λ wird mit $\Lambda_{\overline{MS}}$ bezeichnet. Der systematische Fehler des (2+1) Jet Wirkungsquerschnittes durch die Wahl des Renormalisierungsschemas wird in [28] untersucht.

Die Koeffizienten b_0 und b_1 enthalten die Anzahl der Flavours N_f . Diese Zahl ändert sich als Funktion von μ_r^2 . Naiv gesprochen bedeutet das: Ist Q^2 kleiner als die Masse m_f^2 des Quarks mit dem Flavour f(f = u, d, ...), dann kann dieses Quark nicht produziert werden und wird nicht zu N_f gezählt. Weil aber die Kopplungskonstante α_s eine Lösung der Renormierungsgruppengleichung ist und stetig sein muß, ändert sich $\Lambda_{\overline{MS}}$ an den Flavourschwellen auf diskrete Weise. In der Literatur gibt es verschiedene Ansätze, wie sich $\Lambda_{\overline{MS}}$ an den Flavourschwellen berechnen läßt, in dieser Arbeit wird die Definition von Marciano [29] benutzt. z.B. An der b-Quark Schwelle muß z.B. gelten:

$$\alpha_s(m_b^2, \Lambda_{5,\overline{MS}}^2) = \alpha_s(m_b^2, \Lambda_{4,\overline{MS}}^2) .$$

Das bedeutet für die Umrechnung von $\Lambda_{4,\overline{MS}} \rightarrow \Lambda_{5,\overline{MS}}$:

$$\begin{split} \Lambda_{5,\overline{MS}} &\approx \Lambda_{4,\overline{MS}} \cdot \left(\frac{\Lambda_{4,\overline{MS}}}{m_b}\right)^{2/23} \cdot \left[\log \frac{m_b^2}{\Lambda_{4,\overline{MS}}^2}\right]^{-963/13225} \\ \Lambda_{5,\overline{MS}} &\approx 0.66 \cdot \Lambda_{4,\overline{MS}} \quad \text{für } \Lambda_{4,\overline{MS}} = 200 \; MeV \end{split}$$

Wegen der in der Literatur unterschiedlichen Definitionen von Λ , die neben der Anzahl der Flavours auch vom gewählten Renormalisierungsschema abhängen, wird bei Messungen von α , häufig das Ergebnis $\alpha_{I}(\mu^{2})$ bei festem μ^{2} , wie z.B. $\mu^{2} = M_{Zo}^{2}$ angegeben.

1.3.4 Die Faktorisierungsskala

Die kollinearen Singularitäten werden in den Partondichtefunktionen absorbiert.

Die Abhängigkeit von der Faktorisierungsskala μ_j^2 hat ihren Ursprung in den Partondichtefunktionen und den α_i^2 Termen der Form $D \ln \mu_j^2/Q^2$. Der (2+1) Jet Wirkungsquerschnitt in $\mathcal{O}(\alpha_i^2)$ hat dann die Form:

$$\begin{aligned} \frac{d\sigma_{2+1}^{NLO}}{dxdQ^2} &= \\ A\frac{\alpha_s(\mu_r^2)}{2\pi} \left[1 + \left(B(\mu_f^2)N_f + C(\mu_f^2) + b_0 \ln(\frac{\mu_r^2}{Q^2}) + (D(\mu_f^2)b_0 + E(\mu_f^2)) \ln(\frac{\mu_f^2}{Q^2}) \right) \frac{\alpha_s(\mu_r^2)}{2\pi} \right] , \end{aligned}$$

wobei

$$D(\mu_f^2) = \frac{\int dz_p dz d\phi A_{fusion}(\mu_f^2)}{\int dz_p dz d\phi (A_{compton}(\mu_f^2) + A_{fusion}(\mu_f^2))}$$

Dabei ist $A_{compton}$ der Wirkungsquerschnitt in LO für den QCD-Compton-Prozeß und A_{fusion} der Wirkungsquerschnitt für den Boson-Gluon-Pusion-Prozeß, wie sie in Abbildung 1.3 dargestellt sind. Die Idee, Partondichtefunktionen (PDF) einzuführen, geht darauf zurück, den Wirkungsquerschnitt für den DIS Prozeß (Abbildung 1.2) mit Hilfe des Faktorisierungstheorems auszurechnen. Dieses Theorem

besagt, daß der Wirkungsquerschnitt σ geschrieben werden kann als Summe über die Wirkungsquerschnitte $\hat{\sigma}$ aller möglichen Subprozesse aller Partonen gewichtet mit den Wahrscheinlichkeiten dieser Partonen im Proton. Theoretisch können diese Partondichtefunktionen (PDF) nicht berechnet werden,

$$\sigma = \sum \int d\xi \cdot PDF \cdot \hat{\sigma} .$$

sondern sie werden experimentell als Funktion von z bestimmt:

Die Entwicklung der Partondichtefunktionen der Quarks g und der Gluonen g als Funktion von Q^2 werden durch die Altarelli-Parisi-Gleichungen [30] beschrieben:

$$\begin{array}{ll} \displaystyle \frac{\partial f_q(\xi,\mu_f^2)}{\partial \ln(\mu_f^2)} & = & \displaystyle \frac{\alpha_s(\mu_f^2)}{2\pi} \int_{\xi}^1 \frac{dz}{z} \left[P_{qq} \left(\frac{\xi}{z} \right) f_q(z,\mu_f^2) + P_{qg} \left(\frac{\xi}{z} \right) f_g(z,\mu_f^2) \right] \;, \\ \displaystyle \frac{\partial f_g(\xi,\mu_f^2)}{\partial \ln(\mu_f^2)} & = & \displaystyle \frac{\alpha_s(\mu_f^2)}{2\pi} \int_{\xi}^1 \frac{dz}{z} \left[P_{gq} \left(\frac{\xi}{z} \right) f_q(z,\mu_f^2) + P_{gg} \left(\frac{\xi}{z} \right) f_g(z,\mu_f^2) \right] \;. \end{array}$$

Die Splitting-Funktionen $P_{ij}\left(\frac{\xi}{t}\right)$ sind die Wahrscheinlichkeiten in führender Ordnung für die Prozesse

$$\begin{aligned} q \to qg \qquad P_{qg} &= \frac{4}{3} \left[\left(\frac{1+z^2}{1-z} \right)_+ + \frac{3}{2} \delta(1-z) \right] \\ g \to gg \qquad P_{gg} &= 6 \left[\frac{1-z}{z} + z(1-z) + \left(\frac{z}{1-z} \right)_+ + \frac{33-2 \cdot n_f}{6} \delta(1-z) \right] \\ g \to qq \qquad P_{qq} &= \frac{1}{2} \left(z^2(1-z)^2 \right) , \end{aligned}$$

(q: Quark, g: Gluon), mit der "+"-Distribution:

$$\int_0^1 dz \frac{f(z)}{(1-z)_+} \equiv \int_0^1 dz \frac{f(z)-f(1)}{1-z}$$

wobei $(1 - z)_{+} = (1 - z)$ wenn z < 1. Die Altarelli-Parisi Splitting-Funktionen P_{ij} geben also die Wahrscheinlichkeit an, daß ein Parton *j* durch Abstrahlung eines Partons *k* in ein Parton *i* übergeht. Die Splitting-Funktionen sind bis zur Ordnung α_s^2 bekannt [31].

Kapitel 2

Jetalgorithmen

In Kapitel I wurde dargelegt, daß α_s grundsätzlich aus dem Verhältnis $\sigma_{2+1}/\sigma_{tot}$, welches der (2+1) Jetrate R_{2+1} entspricht, bestimmt werden kann. Im Experiment muß daher zunächst ein Verfahren entwickelt werden, mit dessen Hilfe eine Jetklassifikation durchgeführt werden kann und die Anzahl der Jets festgelegt werden kann. In diesem Kapitel sollen speziell zwei Jetalgorithmen - der JADE und der K_{\perp} Algorithmus - vorgestellt werden.

Ein Jet ist eine Anhäufung von Hadronen in einem kleinen Winkelbereich [32]. Zur Identifizierung dieser Anhäufung von Hadronen und damit der Energie im Detektor benötigt man einen Jetalgorithmus, der folgende Kriterien erfüllen sollte:

- · Einfach anzuwenden in experimentellen Analysen.
- Einfach zu benutzen in theoretischen Berechnungen.
- Der Jetalgorithmus sollte in jeder Ordnung der Störungstheorie definiert sein und in jeder dieser Ordnungen endliche Wirkungsquerschnitte geben.
- Er sollte keine infraroten und kollinearen Impulse einführen, wie sie in Kapitel 1 beschrieben wurden.
- Die Hadronisierungseffekte sollten klein sein. Da eigentlich Partonverteilungen gemessen werden sollen, im Detektor aber nur Hadronen sichtbar sind, muß von der Hadronebene auf die Partonebene korrigiert werden. Diese Korrektur wird Hadronisierungseffekt genannt.
- Der Protonrest, also der Beobachterjet, muß sinnvoll im Jetalgorithmus berücksichtigt werden.

Alle betrachteten Jetalgorithmen benutzen die Viererimpulse der Teilchen als Anfangspunkt für die Jetsuche. Das Ergebnis sind dann die Vierervektoren der rekonstruierten Jets. Jeder Clusteralgorithmus hat einen Abschneideparameter y_{cut} , der die Auflösung der Jetrekonstruktion bestimmt. Die Auflösung hängt vom kinematischen Bereich ab, und der Parameter wird für jede Analyse neu festgelegt. Es wird unterschieden zwischen Konusalgorithmen und Clusteralgorithmen. Beim Konusalgorithmus [33] werden alle Teilchen zu einem Jet zusammengefaßt, die innerhalb eines vorgegebenen Radius $R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ in der $\eta \phi$ Ebene liegen. Der Winkel ϕ ist der Azimuthalwinkel, η ist die Pseudorapidität, die durch

$$\eta = -\ln an \left(rac{ heta}{2}
ight)$$

20

KAPITEL 2. JETALGORITHMEN

über den Polarwinkel θ gegen die Strahlachse definiert ist.

In dieser Analyse werden nur Clusteralgorithmen untersucht, und zwar der JADE Algorithmus [34] und der K_{\perp} Algorithmus [35, 36]. Bei Clusteralgorithmen wird gefordert, daß die invariante Masse zweier Objekte größer als ein Minimalwert y_{min} ist. Ein Objekt kann ein Parton, Hadron oder eine Energieablagerung in einer Zelle des Kalorimeters sein.

Die Abbildung 2.1 zeigt ein typisches Jetereignis. Deutlich sind zwei Stromjets zu sehen und das gestreute Elektron. Im x-y-Schnitt des ZEUS-Detektors (siehe Kapitel 4) zeigt sich eine Anhäufung von Spuren in zwei kleinen Winkelbereichen. Beide Jets sind räumlich voneinander getrennt. Im oberen rechten Bild ist die transversale Energie in Abhängigkeit von η und ϕ aufgetragen. Im unteren rechten Bild ist im FCAL (Vorwärtskalorimeter) (siehe Kapitel 4) eine Energieablagerung rund um die Strahlröhre zu erkennen, diese Energie kommt sehr wahrscheinlich vom Beobachterjet.

Abbildung 2.1: Ein (2+1) Jetereignis im ZEUS-Detektor. Großes Bild: Schnitt durch die zy-Ebene des Detektors, rechts unten: Schnitt durch den Detektor entlang der z-Achse, rechts oben: Die transversale abgelagerte Energie im Kalorimeter in der $\eta\phi$ -Ebene.

2.1 Der JADE Algorithmus

Der JADE Algorithmus wurde zuerst in der e^+e^- Streuung angewendet. Dort sind nahezu alle auslaufenden Hadronen im Detektor sichtbar. In der *ep*-Streuung gibt es zusätzlich einen Beobachterjet, der in Richtung des Protonstrahls zeigt und der seinen Ursprung in dem Teil des Protons hat, der nicht am harten Streuprozeß teilgenommen hat. Ein Großteil des Beobachterjets verschwindet in der Strahlröhre des Detektors. Dieser Beobachterjet ist für die Analyse nicht von Bedeutung, jedoch kann ein Teil seiner Energie im Detektor sichtbar sein und einen Stromjet, also einen Jet des harten Streuprozesses, vortäuschen. Deshalb muß ein geeignetes Kriterium eingeführt werden, um den Beobachterjet zu identifizieren und abzutrennen.

21

Die Energie des Beobachterjets ist sehr hoch, das läßt sich durch folgende einfache Betrachtung im Rahmen des Quark-Partonmodelles erklären: x ist der Teil des Protonimpulses, welcher vom getroffenen Quark getragen wird. Die Energie des Beobachterjets ist dann $(1-x) \cdot E_p$, wobei $E_p = 820 \text{ GeV}$ die Energie des Protons ist. Die meisten Ereignisse bei HERA haben ein $x \ll 0.1$, d.h. der Beobachterjet hat eine Energie von mehr als 700 GeV.

Um den Beobachterjet abzutrennen, wurde der JADE Algorithmus für die ep-Streuung modifiziert [37, 38, 39]. Der modifizierte JADE Algorithmus führt für den Beobachterjet ein zusätzliches Teilchen das Pseudoteilchen ein. Daher rührt auch die Schreibweise "+1". (2+1) bezeichnet also ein Ereignis mit zwei Stromjets und einem Beobachterjet, bzw. einem Pseudoteilchen. Der für die Analyse benutzte modifizierte JADE Algorithmus wird folgendermaßen angewendet:

- Von allen sichtbaren Teilchen wird der longitudinale Impuls im HERA Laborsystem berechnet. Der fehlende longitudinale Impuls p, im Vergleich mit der ep Impulsbilanz der einlaufenden Teilchen (in Richtung der Strahlröhre) wird dem Pseudoteilchen zugeordnet.
- Nun kann der JADE Algorithmus auf

$$\{p_1, p_2, p_3, \dots, p_n, p_r\}$$

angewendet werden, wobei $p_1, ..., p_n$ die Viererimpulse aller sichtbaren Hadronen und p_r der Viererimpuls des Pseudoteilchens ist. Der Algorithmus arbeitet wie folgt:

- Alle möglichen Kombinationen yij zweier Objekte werden berechnet:

$$y_{ij} = m_{ij}/s; m_{ij} = 2E_iE_j(1-\cos\theta_{ij}),$$

wobei E_i und E_j die Energien der Teilchen *i* und *j* sind und θ_{ij} der Winkel zwischen den Teilchen darstellt. *s* bezeichnet eine Referenzmasse.

- Das minimale $y_{ij} \equiv y_{min}$ wird gesucht.
- Ist das Minimum kleiner als der Auflöseparameter y_{cut} , so werden die beiden Objekte i und j zu einem Impuls p_{ij} kombiniert.
- Dann werden wieder alle Kombinationen berechnet und die Prozedur wird wiederholt.
- \sim Ist y_{min} größer als der Auflöseparameter y_{cut}, so entspricht die Zahl der noch vorhandenen Objekte der Anzahl der Jets.

Die Variable s ist eine Referenzmasse. In dieser Analyse wird die invariante Masse des hadronischen Systems W^2 als Referenzmasse benutzt. W^2 wurde in Analogie zur e^+e^- . Streuung gewählt, dort wird ebenfalls die invariante Masse aller Teilchen, in der e^+e^- . Streuung ist das gerade Q^2 , als Referenzmasse benutzt.

Die Rekombination der Vierervektoren kann auf verschiedene Art und Weise erfolgen (siehe Tabelle 2.1). Im E-Schema werden die Vierervektoren lorentzinvariant addiert, um die Masse $M_{ij}^2 = (p_i + p_j)^2$

Schema	Auflösung	Rekombination	Bemerkungen
E	$\frac{(p_1+p_2)^2}{E_{vis}^2}$	$p_k = p_i + p_j$	lorentzinvariant
Р	$\frac{2E_iE_j\left(1-\cos\Theta_{ij}\right)}{E_{vis}^2}$	$\vec{p}_k = \vec{p}_i + \vec{p}_j$ $E_k = \mid \vec{p}_k \mid$	verletzt ΣE
E0	$\frac{(p,+p_j)^2}{E_{vis}^2}$	$\vec{p}_k = \frac{E_k}{\left[\vec{p}_i + \vec{p}_j\right]} \left(\vec{p}_i + \vec{p}_j\right)$ $E_k = E_i + E_j$	erhält ΣE aber verletzt Σp
JADE	$\frac{2E_iE_j\left(1-\cos\Theta_{ij}\right)}{E_{vis}^2}$	$p_k = p_i + p_j$	erhält $\Sigma E, \Sigma p$
k _T	$\frac{2\min\{E_i^2,E_j^2\}\cdot(1-\cos(\theta_{i_2}))}{E_{v_{i_2}}^2}$	$p_k = p_i + p_j$	erhält $\Sigma E, \Sigma p$

Tabelle 2.1: Auflösungs- und Rekombinationsschemata verschiedener Cluster Algorithmen nach [40]. E_{vis} ist die sichtbare, detektierte Energie des Streuprozesses.

auszurechnen. Die Energie und der Impuls bleiben erhalten und den Jets wird eine Masse zugeordnet. Im E0- oder p-Schema werden die Impuls- oder die Energiekomponenten der resultierenden Vierervektoren so skaliert, daß die Jets masselos sind. Das JADE Schema, das für diese Analyse benutzt wurde, beruht auf dem exakten Rekombinieren der Vierervektoren, vernachlässigt aber Massenterme in der Definition von M_{ij} . Bis zur zweiten Ordnung in α , sind das JADE- und E0-Schema identisch.

Die Rekombinationseffekte, d.h. die Abhängigkeit der Jetraten von der Wahl des Rekombinationsschemas, werden in Kapitel 6 untersucht. Eine Untersuchung der Rekombinationseffekte des JADE Algorithmus in der e^+e^- -Streuung findet sich in [41] und [42].

2.2 Der K_{\perp} Algorithmus

Der K_{\perp} Algorithmus benutzt die transversale Energie k_{\perp} als Distanz, um zu entscheiden, ob ein Teilchen mit dem anderen assoziiert wird. Er wurde ebenfalls zuerst in der e^+e^- . Streuung [43] angewendet - dort wird er auch Durham Algorithmus genannt - und dann für die ep. Streuung modifiziert. Im Unterschied zum JADE Algorithmus wird die invariante Masse m_{ij} zweier Objekte folgendermaßen berechnet:

$$m_{ij} = 2\min(E_i^2, E_j^2)(1 - \cos\theta_{ij})$$

wobei θ_{ij} der Winkel zwischen den Objekten i und j mit den Energien E_i und E_j ist. Aus der e^+e^- -Streuung weiß man, daß der JADE Algorithmus Phantomjets produzieren kann [42, 44]. Ein Ereignis

mit folgenden Vierervektoren, z.B.:

kann mit dem JADE Algorithmus als 3-Jetereignis klassifiziert werden:

Dies hängt mit der Definition der invarianten Masse in den beiden Algorithmen zusammen. Die Definition im JADE Algorithmus kann zu einem dritten "Phantom". Jet führen. Ein weiterer Unterschied zum JADE Algorithmus liegt in der Behandlung des Pseudoteilchens und in der Wahl des Bezugssystems. Alle benutzten Größen $(E_i, E_j, \theta_{ij} \text{ und } \theta_{ib})$ im K_{\perp} Algorithmus sind im Breitsystem berechnet (siehe Abschnitt 2.2.2).

Der Algorithmus trennt die Objekte in zum Beobachter- oder Stromjet gehörig. Es wird also im Gegensatz zum JADE Algorithmus kein Pseudoteilchen eingeführt, das die Richtung des Beobachterjets vorgibt. Durch die Transformation in das Breitsystem ist die Richtung des einlaufenden Partons im Quark-Partonmodell identisch mit der Richtung des auslaufenden Partons. Die fehlende Energie auf der Detektorebene bewirkt allerdings, daß die Energien und Winkelverteilungen des Beobachterjets sehr unterschiedlich von denen auf der Parton- und Hadronebene sind (siehe Kapitel 6). Wenn jedoch ein Pseudoteilchen im K_{\perp} Algorithmus eingeführt wird, dann stimmen die Verteilungen des Beobachterjets auf Parton-, Hadron- und Detektorebene überein .

Die Auftrennung in Stromjets und Beobachterjet geschieht im K_{\perp} Algorithmus mit folgenden Schritten:

· Für jedes Objekt i wird

$$y_{ib} = m_{ib}/s$$
; $m_{ib} = 2E_i^2(1 - \cos\theta_{ib})$

ausgerechnet, wobe
i θ_{ib} der Winkel zwischen dem Objekt i und der Protonrichtung ist. Alle Kombinationen

$$y_{ij} = m_{ij}/s$$
; $y_{ij} = 2min(E_i^2, E_j^2)(1 - \cos\theta_{ij})$

werden berechnet. θ_{ij} ist der Winkel zwischen den beiden Objekten i und j.

24

KAPITEL 2. JETALGORITHMEN

- Der kleinste Wert aus $\{y_{ib}, y_{ij}\}$ wird bestimmt. Ist y_{ij} der kleinste Wert und $y_{ij} < y_{cut}$, dann werden die beiden Objekte i und j zu einem Impuls p_{ij} kombiniert. Ist $y_{ib} < y_{cut}$, dann wird der Viererimpuls p_i zum Strahljet addiert.
- Dann werden wieder · analog zum JADE Algorithmus · alle Kombinationen berechnet und die Prozedur wiederholt.
- Sind y_i, und y_i, größer als der Auflöseparameter y_{cut}, so entspricht die Zahl der noch vorhandenen Objekte der Anzahl der Jets.

Als Referenzmasse s wird Q^2 gewählt. Die Größe s darf nicht von x abhängen, da sonst der (n-Jet)-Wirkungsquerschnitt nicht mehr faktorisierbar ist [45]. Es kann auch ein konstanter Wert für s benutzt werden, die Vor- und Nachteile dieser Wahl werden in Kapitel 7 untersucht.

Das Programmpaket KTCLUS [46] von Mike Seymour wurde benutzt, um den K_{\perp} Algorithmus anzuwenden und die Transformation der Vierervektoren in das Breitsystem durchzuführen.

2.2.1 Der K_{\perp} Algorithmus mit Pseudoteilchen

Um die η Verteilungen (Pseudorapiditätsverteilungen) des Beobachterjets direkt mit dem JADE Algorithmus vergleichen zu können und den Einfluß eines Pseudoteilchens auf die Kinematik der Stromjets zu untersuchen, wurde auf Detektorebene nachträglich ein Pseudoteilchen analog zur Einführung des Pseudoteilchens im JADE Algorithmus eingeführt. Ergebnisse dieser Untersuchung sind in Kapitel 6 beschrieben.

2.2.2 Das Breitsystem

Der K_{\perp} Algorithmus wurde im Breitsystem angewendet.

Das Breitsystem ist definiert als das Bezugssystem, in dem der Energieübertrag des Elektrons verschwindet. Der Dreierimpuls des virtuellen Bosons und des Partons sind antiparallel und zeigen in die positive, bzw. negative z-Richtung. Das einlaufende Parton wird also um 180° gestreut:

$\vec{p}_{einlaufend} = -\vec{p}_{auslaufend}$

Deswegen wird das Breitsystem auch oft "brick wall frame" genannt, weil bildlich gesprochen das Parton an einer Wand reflektiert wird. Die Transformation vom HERA Laborsystem zum Breitsystem wird durch eine Lorentztransformation und anschließende Rotation vollzogen. Die Rotation ist notwendig, um das virtuelle Photon in die negative z'-Richtung und das gestreute Elektron in die x - x'. Ebene zu bringen (siehe Abbildung 2.2).

Abbildung 2.2: Das Quark-Partonmodell im Breitsystem.

Der Vorteil einer Transformation vom Laborsystem in das Breitsystem besteht darin, daß so direkt Ergebnisse der tiefinelastischen ep-Streuung mit Ergebnissen aus der e^+e^- -Streuung verglichen werden können. So kann z.B. durch Vergleich von ZEUS Daten mit Ergebnissen aus der e^+e^- -Streuung die Universalität der Fragmentation von Quarks überprüft werden [47]. Die Abbildung 2.3 veranschaulicht die Analogie zwischen e^+e^- -Streuung und ep-Streuung.

Die Abbildung 2.4 zeigt die isotrope Verteilung von masselosen 10 GeV-Teilchen im HERA-Laborsystem fr $Q^2 = 40 \text{ GeV}^2$ und x = 0.01. Die schattierten Bereiche entsprechen den Kalorimetersektionen des ZEUS-Kalorimeters (siehe Kapitel 4): FCAL (hellgrau), BCAL (schwarz), RCAL (dunkelgrau). Den

Abbildung 2.3: Vergleich der Prozesse 1. Ordnung für $e^+e^- \rightarrow$ Hadronen und für DIS-Streuung: (a) Zeit-Raum-Bild; (b) Raumbild (longitudinaler Impuls p_L versus transversaler Impuls p_T).

Effekt der Lorentztransformation in das Breitsystem zeigt der untere Teil der Abbildung 2.4. Ein typisches DIS Ereignis zeigt die Abbildung 2.5. Das obere Bild zeigt das Ereignis im HERA-Laborsystem. Ein 13.6 GeV Elektron wurde im RCAL identifizert, das z und Q^2 des Ereignisses sind 0.008 und 470 GeV². Ein Jet wurde im BCAL, der andere im FCAL gefunden. Das rekonstruierte einlaufende virtuelle Photon ist ebenfalls eingezeichnet. Im unteren Bild ist dasselbe Ereignis nach der Transformation in das Breitsystem zu sehen. Das virtuelle Photon läuft definitionsgemäß in positiver z-Richtung ein.

Abbildung 2.4: Isotrope Verteilung von masselosen 10 GeV Teilchen im HERA Laborsystem (oben) und die resultierende Transformation im Breitsystem (unten).

Abbildung 2.5: Ein DIS-Ereignis im HERA Laborsystem (oben) und im Breitsystem (unten).

2.3 (2+1) Jetproduktion mit dem K_{\perp} Algorithmus

In Kapitel 1 wurde die durch den JADE Algorithmus definierte (2+1) Jetproduktion beschrieben. In diesem Abschnitt werden die Phasenraumgrenzen, wie sie der K_{\perp} Algorithmus festlegt, dargestellt.

29

Der heim JADE Algorithmus benutzte Schnitt, der die (2+1) von der (1+1) Jetregion abtrennt, ist im K_{\perp} Algorithmus - wie bereits beschrieben - anders definiert. Hier gilt:

$$y_{cut} = \frac{m_{ij}^2}{s},$$

wobei m_{ij} nicht wie im Jade Algorithmus als $2E_i E_j (1 - \cos \theta_{ij})$ definiert ist, sondern als $2\min \{E_i^2, E_j^2\}(1 - \cos \theta_{ij})$. Die Referenzmasse *s* ist im K_\perp Algorithmus Q^2 oder es wird eine konstante Referenzmasse angenommen. Die Referenzmasse hängt also nicht von *x* ab. Wenn die Referenzmasse *s* nur eine Funktion von Q^2 ist, dann hat das den Vorteil, daß der (n-Jet) Wirkungsquerschnitt nicht von *x*, *y* abhängt, sondern nur von x_p . Der (n-Jet) Wirkungsquerschnitt kann folgendermaßen definiert werden:

$$\frac{d^2\sigma_{(n)}}{dxdy} = \frac{2\pi\alpha_s^2}{Q^4} \{ [1+(1-y)^2] F_T^{(n)}(x,Q^2,y_{cut}) + 2(1-y) F_L^{(n)}(x,Q^2,y_{cut}) \} ,$$

wobei F_L und F_L die transversale und longitudinale Strukturfunktion des Protons sind. Faktorisierung bedeutet nun, daß für jede Polarisation P = T, L die Strukturfunktion in folgender Form ausgedrückt werden kann:

$$F_{P}^{(n)}(x,Q^{2},y_{cut}) = \sum_{i} \int_{x}^{1} d\xi \frac{x}{\xi} C_{p,i}^{(n)}\left(\frac{x}{\xi},\alpha_{s}(\mu^{2}),Q^{2},\mu^{2},y_{cut}\right) D_{s}(\xi,\mu^{2}) .$$

Die (n-Jet)-Koeffizientenfunktionen $C_{p,i}^{(n)}$ sind in der perturbativen QCD berechenbar. $D_i(\xi, \mu^2)$ sind die nicht perturbativen Partonstrukturfunktionen, sie müssen experimentell bestimmt werden. Die Koeffizientenfunktion $C_{p,i}$ kann berechnet [48] werden aus dem totalen Wirkungsquerschnitt für eine Wechselwirkung zwischen einem unpolarisierten Parton *i* und Impuls ξp und einem virtuellen Photon mit Polarisation P und Impuls q. $C_{p,i}^{(n)}$ hängt also nur von i, P und den Impulsen ξp und q ab. Dieses Argument kann durch Einführung eines von x unabhängigen Jetalgorithmus auf die (n-Jet)-Koeffizientenfunktionen ausgedehnt werden.

Nun wird auch deutlich, warum die Referenzmasse nicht von x abhängen soll. Die Koeffizientenfunktion $C_{p,i}^{(n)}$ hängt nur vom Verhältnis $x/\xi = x_p$ ab. x_p kann auf der Partonebene berechnet werden, ohne Information über das Bjorken x des einlaufenden Protonimpulses.

Um nun · analog zum JADE Algorithmus · festzulegen, was ein (2+1) Jetereignis ist, wird ein Algorithmus benötigt, der keine x·Abhängigkeit hat. Die (2+1) Phasenraumgrenzen sind im K_{\perp} Algorithmus wie folgt festgelegt [49]:

$$d_{12} = \frac{(1-x_p)}{x_p} \cdot s \cdot \min\left\{\frac{x_p + z_1 - 2x_p z_1}{1-x_p - z_1 + 2x_p z_1}, \frac{1-x_p - z_1 + 2x_p z_1}{x_p + z_1 - 2x_p z_1}\right\}$$

und

$$=\frac{z_i(1-x_p-z_i+2x_pz)\cdot s}{x_p}.$$

Veranschaulicht werden die Phasenraumgrenzen in Abbildung 2.6. Der Phasenraum hängt nur vom benutzten y_{cut} und der Wahl der Referenzmasse s ab und ist weitgehend unabhängig von z. Der

minimale Wert für x_p ist festgelegt durch Bjorken $x: x \le x_p \le 1$. Die gestrichelte Linie entspricht der Phasenraumgrenze d_{12} , die einer konstanten transversalen Komponente von $2 \cdot y_{cut} = 1.0$ entspricht, wenn $y_{cut} = 0.5$ ist. Die durchgezogene Linie berücksichtigt die Definition des Beobachterjets im K_{\perp} Algorithmus, so daß sich ein kleinerer Phasenraum für die beiden Stromjets ergibt.

Abbildung 2.6: Der (2+1) Jet Phasenraum im K_{\perp} Algorithmus. Die gestrichelte Linie entspricht d_{12} für einen $y_{cut} = 0.5$. Die durchgezogene Linie berücksichtigt die Definition des Beobachterjets im K_{\perp} Algorithmus. Nicht eingezeichnet ist die untere Grenze für x_p ($x_p \ge x$).

32 KAPITEL 3. MONTE CARLO-GENERATOREN UND QCD RECHNUNGEN

Kapitel 3

Monte-Carlo-Generatoren und QCD-Rechnungen

Die mit dem ZEUS-Detektor genommenen Daten sollen mit den Ergebnissen der QCD Rechnungen in NLO verglichen werden. Deshalb müssen die Daten bezüglich Hadronisierungseffekten und Detektorakzeptanz korrigiert werden. Um diese Akzeptanzen und Effizienzen zu berechnen, wird eine Simulation der Wechselwirkung und der nachfolgenden Prozesse im Detektor benötigt. Für analytische Methoden ist die Apparatur zu komplex. Deswegen werden Monte-Carlo-Generatoren benutzt, die als ersten Schritt den Wirkungsquerschnitt in dem betrachteten Phasenraum berechnen und eine Liste der erzeugten Teilchen mit ihren Viererimpulsen erzeugen. Im nächsten Schritt wird für diese Teilchen in einer Detektorsimulation die Detektorantwort auf das Ereignis berechnet.

Die Abbildung 3.1 gibt einen Überblick über den Aufbau eines Monte-Carlo-Generators. Folgende Schritte werden zur vollständigen Ereignissimulation unterschieden:

- Der harte Subproze
 ß, dessen Wirkungsquerschnitt aus dem Matrixelement folgt, wie es im n
 ächsten Abschnitt vorgestellt wird.
- Das Partonschauermodell, für Partonschauer im Anfangszustand (ISPS) und im Endzustand (FSPS).
- Die Hadronisierung, die im Abschnitt 3.2 beschrieben wird.

3.1 Monte-Carlo-Modelle zur Erzeugung partonischer Endzustände

Matrixelemente

Um QCD-Effekte in Monte-Carlo-Modellen zu berücksichitgen, werden die exakten Matrixelemente n-ter Ordnung verwendet, wobei n der Anzahl der Partonen entspricht. Für die ep-Strenung sind bisher nur die Matrixelemente bis zur ersten Ordnung in α_s in Monte-Carlo-Modellen implementiert.

Abbildung 3.1: Schematisches Diagramm, wie bei Monte Carlo Programmen die Erzeugung und Hadronisierung eines DIS Ereignisses erfolgt.

Das Partonschauermodell

Das Partonschauermodell basiert auf QCD-Partonverzweigungen in der "leading logarithm approximation", wobei nur die führenden kollinearen Singularitäten der vollständigen QCD-Rechnung berücksichtigt werden. In diesem Modell entstehen die Partonen durch iterative Verzweigungen über die Prozesse $q \rightarrow qg$, $g \rightarrow q\bar{q}$ und $g \rightarrow gg$. Dadurch lassen sich hadronische Endzustände mit beliebig vielen Partonen beschreiben. Somit können also näherungsweise Prozesse höherer Ordnung in

 α , beschrieben werden. Unsicherheiten aufgrund der kollinearen Näherung bewirken aber, daß die Vorhersagen für die harte QCD-Abstrahlung unter großen Winkeln relativ unsicher ist. In Abbildung 3.2 ist ein Partonschauer mit Abstrahlungen im Anfangs- und Endzustand dargestellt. Es wird unterschieden zwischen Partonschauer im Endzustand, das bedeutet Partonverzweigungen nach dem Photonvertex, und Partonschauer im Anfangszustand, mit Partonverzweigungen vor dem Photonvertex. Die iterative Berechnung vernachlässigt die Interferenzterme und ist nicht eichinvariant. Die Anzahl der Partonen wird begrenzt durch einen Parameter y_{cut} : Für zwei Partonen aus dem Prozeß $p_1 \rightarrow p_2 + p_3$ wird gefordert, daß ihre invariante Masse $M_{P_2P_3}^2$ größer ist als

$$M_{p_2p_3}^2 = (p_2 + p_3)^2 \ge y_{cut} \cdot W^2$$

Um also auch Prozesse höherer Ordnung in α_s zu berücksichtigen, ist es sinnvoll, in der Monte-Carlo-Simulation die Beschreibung durch Matrixelemente mit dem Partonschauermodell zu kombinieren: Hochenergetische Partonen, die unter einem großen Winkel abgestrahlt werden, können durch das Matrixelement beschrieben werden. Für die Abstrahlung niederenergetischer und kollinearer Partonen wird die Näherung im Partonschauermodell benutzt. Je nach Ereignistopologie wird also entweder das Matrixelement oder das Partonschauermodell benutzt: Wenn das Matrixelement für ein generiertes Ereignis keine Abstrahlung oberhalb des Abschneidewertes $y_{cut} \cdot W^2$ ergibt, so wird dieser Abschneidewert für die maximale Virtualität des Partonschauers benutzt.

Das Farbdipolmodell

Zusätzlich zum ME+PS Modell (Matrixelement und Partonschauer) wird das Farbdipolmodell [50] benutzt, um Partonen zu erzeugen. Im Rahmen dieses Modells wird die Abstrahlung der Partonen als Abstrahlung eines Farbdipols zwischen q und \overline{q} betrachtet. Die Abstrahlung eines weiteren Gluons läßt sich näherungsweise beschreiben als Abstrahlung von zwei unabhängigen Dipolen, nämlich zwischen Quark und Gluon und zwischen Gluon und Antiquark. Weitere Abstrahlungen werden im Farbdipolmodell in gleicher Weise beschrieben. Im Unterschied zum Partonschauermodell wird nicht zwischen Anfangs- und Endzustand unterschieden, und die Partonen werden auch nicht mit abnehmender Virtualität sondern mit abnehmendem transversalen Impuls erzeugt.

3.2 Fragmentationsmodelle zur Erzeugung hadronischer Endzustände

Die Störungstheorie der QCD beschreibt die Produktion von Quarks und Gluonen, allerdings sind diese Teilchen gemäß des Confinement-Prinzips (siehe Kapitel 1) keine beobachtbaren Teilchen. Gemessen werden können nur die hadronischen Endzustände. Phänomenologische Näherungen werden benutzt, um die Hadronisierung zu beschreiben. Im folgenden sollen das LUND-String-Modell und das Clustermodell von Marchesini und Webber kurz vorgestellt werden.

Das Clustermodell

Die Fragmentation durch Clusterzerfall [51] wird zusammen mit dem Partonschauermodell von Webber und Marchesini [52, 53] verwendet. Der Ansatz ist folgender:

- Alle Gluonen zerfallen in ein Quark-Antiquark-Paare, und diese werden dann in farbneutrale Cluster aufgeteilt.
- Schwere Cluster mit einer Masse größer als M^{max}_{cluster} zerfallen so lange in kleinere Cluster, bis die Masse kleiner als M^{max}_{cluster} ist.
- Die Cluster zerfallen in Hadronen. Der Zerfall der Cluster wird mit Hilfe der Zustandsdichte für die einzelnen Hadronen bestimmt.

Das LUND-String-Modell

Im LUND-String-Modell [54] bilden sich zwischen dem auseinanderlaufenden Quark-Antiquark-Paar aus der zunehmenden Feldenergie immer weitere Paare. Dem Modell liegt die Vorstellung einer elastischen Saite zugrunde, die bei zunehmender Zugkraft, entsprechend dem mit der Entfernung steigendem QCD-Potential, in mehrere Stücke reißt. Die Energie U, die in einer Saite ("string") enthalten ist, ist proportional zur Länge I: $U = \kappa \cdot l$, wobei die Stringkonstante κ etwa 1*GeV/fm* ~ 0.2 *GeV*² beträgt. Die Kinematik der Stringfragmentation für ein Quark-Antiquark-Paar soll im folgenden kurz erläutert werden. Die Bestandteile des Paars $g_{0}\overline{q_{0}}$, das zum Zeitpunkt t = 0 und dem Ort x = 0erzeugt wird, laufen auseinander. An einem Punkt (x_i, t_i) ist die Feldenergie so groß, daß das Paar aufgespalten wird. Wenn die invariante Masse groß genug ist, finden weitere Aufspaltungen statt. Zur Bildung von massiven Quarks und/oder Quarks mit Transversalimpuls $m_T = \sqrt{m^2 + p_T^2}$ müssen die an einem Punkt erzeugten Quarks und Antiquarks in den klassisch erlaubten Bereich tunneln. Die Tunnelwahrscheinlichkeit ist

$$\exp(-\pi m_T^2/\kappa) = \exp(-\pi m^2/\kappa) \exp(-\pi p_T^2/\kappa)$$

Die Aufspaltung von Masse und Transversalimpuls führt zu einer Gaußverteilung mit $\langle p_T \rangle = \sigma^2 = \kappa/\pi$ für den Transversalimpuls p_T . Der Wert für σ beträgt ungefähr 350 MeV.

Die longitudinale Fragmentation wird durch die Fragmentationsfunktion f(z) bestimmt:

mit

$$z = \frac{E + p_{\parallel Hadron}}{E + p_{\parallel Quark}} .$$

 $f(z) = \frac{(1-z)^a}{z} \exp\left(\frac{-bm_T^2}{z}\right)$

Die Parameter a und b sind im Programm frei wählbar (Sollwert: a = 0.5, $b = 0.9 \ GeV^2$). Bei der Fragmentation bleiben Energie, Impuls und Flavour bei jedem Schritt erhalten.

Im Gegensatz zur e^+e^- . Streuung, bei der der Anfangszustand aus punktförmigen Teilchen ohne innere Struktur besteht, muß die innere Struktur des Protons in der *ep*-Streuung zusätzlich zur Beschreibung durch die Partonstrukturfunktionen durch phänomenologische Größen beschrieben werden. Um die Fermibewegung der im Proton gebundenen Partonen zu simulieren, wird eine gaußförmige Transversalimpulsverteilung k_i der Partonen eingeführt. Der zusätzliche mittlere transversale Energiefluß beträgt 440 MeV. Dieser Wert wurde aus Lepton-Nukleon-Reaktionen bei kleineren Schwerpunktsenergien als bei HERA hergeleitet. Wenn nicht ein Valenzquark im Proton getroffen wird - dann ist der Protonrest ein Diquark - sondern ein Seequark oder ein Gluon, dann muß der Protonrestimpuls durch eine Wahrscheinlichkeitsverteilung P(z) beschrieben werden, und der Transversalimpuls p_T wird durch eine Gaußverteilung mit der Breite σ_{p_T} beschrieben.

Der Einfluß der Parameter a und b der Fragmentationsfunktion, die Breite der Transversalimpulsverteilung, P(z), σ_{PT} und k_i auf die Jetraten, und damit die α_s -Bestimmung werden in Kapitel 8 untersucht.

3.3 Monte-Carlo-Generatoren

Hier sollen nun kurz die Monte-Carlo-Generatoren dargestellt werden, die in dieser Arbeit benutzt wurden. Ebenso werden die Parameter erläutert, die für die Berechnung des systematischen Fehlers wichtig sind.

Die Tabelle 3.1 gibt eine Übersicht der benutzten Monte-Carlo-Generatoren.

Akronym	Beschreibung
QPM	keine QCD Prozesse höherer Ordnung, String Fragmentation (SF)
ME	$O(\alpha_s)$ komplette Matrixelement Berechnung + SF
CDM	Farbdipol Modell + SF [55]
MEPS	Partonschauer [56] + SF, d.h.
	komplette $\mathcal{O}(\alpha_s)$ Matrixelementrechnung (ME)
ARIADNE	Farbdipolmodell kombiniert mit exakter $O(\alpha_{*})$
(CDMBGF)	Matrixelementrechnung (ME)

 Tabelle 3.1: Akronyme für die DIS Modelle, die in dieser Arbeit benutzt werden. Alle hier aufgelisteten

 Modelle benutzen die LUND Stringfragmentation.

LEPTO

LEPTO generiert Ereignisse in führender Ordnung der Kopplungskonstanten. Die QCD-Effekte in nächstführender Ordnung werden in der Matrixelement und Partonschauer (ME+PS) Option berücksichtigt. Für alle frei wählbaren Parameter wurde der Sollwert benutzt, außer PARL(8). Dieser Parameter steuert den Abschneidewert für die maximale Virtualität. Er wurde von 0.015 auf 0.005 abgeändert, um auch Jetraten mit einem Auflöseparameter von $y_{cut} = 0.01$ beim JADE Algorithmus untersuchen zu können. Für die von der ZEUS Kollaboration veröffentlichte und in dieser Arbeit vorze-

Parameter	Bedeutung	Sollwert	benutzter Wert
LST(13)	Anzahl der Quarksorten in BGF Prozessen	5	5
LST(18)	α _{em}	$a_{-1}(Q^2)$	$\alpha_{m} = 1/137$
PARL(3)	intrinsisches $\langle k_i \rangle$ im Proton	0.44 GeV	0 44 GeV
PARL(8)	Veut	0.015	0.005
PARL(9)	m _i ,	2 GeV	2 GeV
PARL(14)	σ_{p}	0.44 GeV	0.44 GeV
PARU(112)	Λ_{QCD} in $\alpha_4(Q^2)$	250 MeV	230 MeV
MSTU(111)	Ordnung in a	1	2
MSTU(112)	Anzahl der Quarksorten	5	5

Tabelle 3.2: Die wichtigsten Parameter in LEPTO 6.1, angegeben sind der Sollwert und der in der Analyse benutzte Wert.

stellte α_s -Bestimmung mit dem JADE Algorithmus wurden die Daten mit dem Monte-Carlo-Generator LEPTO6.1 [56] korrigiert. Als systematische Untersuchung wird in dieser Arbeit eine Korrektur der Daten mit LEPTO 6.3 vorgenommen. Die Analyse mit dem K_{\perp} Algorithmus wurde mit LEPTO 6.1 und LEPTO 6.3 [57] durchgeführt. Die Autoren haben den Sollwert des Parameters y_{cut} (PARL(8)) von 0.015 auf 0.0001 erniedrigt. Dieser Wert wurde für die Generierung der Monte-Carlo-Daten benutzt. Außerdem wurde für einen Vergleich des (2+1) Jet Wirkungsquerschnittes in LO zwischen den QCD Rechnungen und dem Monte-Carlo-Generator LEPTO in Kapitel 7 LEPTO 6.4 [58] benutzt. Der Sollwert von PARL(8) wurde auf 0.01 gesetzt. Die jeweiligen zusätzlichen Modifikationen in den einzelnen Versionen können den entsprechenden Referenzen entnommen werden. Die Hadronisierung wird mit dem Programm JETSET [59] durchgeführt, welches das Stringmodell benutzt. In der Tabelle 3.2 sind die wesentlichen Parameter des Generators LEPTO 6.1, sowie deren Sollwerte und die in der Analyse benutzten Werte, aufgeführt. Als Partondichtefunktion wurde MRSD'_ [60] benutzt.

ARIADNE (CDMBGF)

Im Monte-Carlo-Generator ARIADNE [55, 61] wurden für die frei wählbaren Parameter immer die Sollwerte benutzt. Implementiert ist in diesem Generator das Parbdipolmodell. Für die Hadronisierung wird ebenfalls JETSET verwendet.

HERWIG

HERWIG [62] ist ein Generator, der benutzt wurde, um systematische Fehler abzuschätzen, die dadurch entstehen, wenn für die Hadronisierung nicht JETSET, also das LUND-Stringfragmentationsmodell, sondern das Clustermodell angewendet wird. In HERWIG ist das Partonschauermodell implementiert, es werden aber zusätzlich QCD-Kohärenzeffekte im Anfangs- und Endzustand berücksichtigt.

JETSET

Wie bereits erwähnt, benutzt JETSET [59] das LUND-Stringfragmentationsmodell um die Hadronisierung zu beschreiben. Die Sollparameter wurden nicht verändert (außer für die systematische Fehlerbestimmung).

HERACLES

Die beiden Modelle LEPTO und ARIADNE wurden zusammen mit HERACLES [63] benutzt. In HERACLES werden die elektroschwachen Strahlungskorrekturen für die tiefinelastische Streuung berechnet.

3.4 QCD-Rechnungen

Die vorgestellten Monte-Carlo-Generatoren sind alle in führender Ordnung gerechnet und schätzen Effekte durch die nächstführende Ordnung mit Modellen ab. Die gemessene Jetrate wird mit Monte-Carlo-Generatoren auf die Partonebene korrigiert und dann mit den Vorhersagen für die Jetraten der QCD Rechnung in NLO verglichen. In diesem Abschnitt soll kurz erklärt werden, welche DIS Wirkungsquerschnitte, und damit die (2+1) Jetrate in den QCD Rechnungen bestimmt werden können und welche QCD Rechnungen benutzt wurden.

In der tiefinelastischen Streuung (siehe Kapitel 1) findet folgende Reaktion statt:

 $e^{-}(l) + Proton(P) \rightarrow e^{-}(l') + Protonrest(p_r) + Parton \ 1(p_1) + \ldots + Parton \ n(p_n)$

Dabei wird ein Vektorboson $V = \gamma^*, Z, W$ ausgetauscht.

Der hadronische Tensor $H^{\mu\nu}$ des Partons p_1 wird von fünf paritätserhaltenden hadronischen Strukturfunktionen $H_1 - H_5$ beschrieben [25]:

$$\begin{split} H^{\mu\nu} &= H_1 \left(g^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{q^2} \right) + H_2 \frac{1}{Pq} \vec{P}^{\mu} \vec{P}^{\nu} + H_3 \frac{1}{Pq} \vec{p}_1^{\mu} \vec{p}_1^{\nu} \\ &+ H_4 \frac{1}{Pq} \left(\vec{P}^{\mu} \vec{p}_1^{\nu} + \vec{P}^{\nu} \vec{p}_1^{\mu} \right) + H_5 \frac{1}{Pq} \left(\vec{P}^{\mu} \vec{p}_1^{\nu} - \vec{P}^{\nu} \vec{p}_1^{\mu} \right) \,. \end{split}$$

Dabei wurden die stromerhaltenden Impulse $p_i^{\mu} = p_i^{\mu} - \frac{(p,q)}{q^2}q^{\mu}$ eingeführt. In O(α_s) gibt es nur die Strukturfunktionen $H_1 - H_4$, weil es in dieser Ordnung keine Schleifenkorrekturen gibt, die alle in H_5 enthalten sind.

Experimentell können die Helizitätswirkungsquerschnitte $\sigma_{U+L}, \sigma_L, \sigma_T, \sigma_I, \sigma_A$ gemessen werden.

Der (n-jet) Wirkungsquerschnitt in DIS kann als Summe dieser Helizitätswirkungsquerschnitte berechnet werden:

$$d\sigma^{had}(n-jet) \sim \left[(1+(1-y)^2) d\sigma_{U+L}(n-jet) - y^2 d\sigma_L(n-jet) + 2(1-y)\cos(2\phi) d\sigma_T(n-jet) - (2-y)\sqrt{1-y}\cos\phi d\sigma_I(n-jet) + y\sqrt{1-y}\sin\phi d\sigma_A(n-jet) \right]$$

Dabei ist ϕ (siehe auch Kapitel 1) der Azimuthalwinkel zwischen der Partonebene ($\vec{p}, \vec{p_1}$) und der Leptonebene $(\tilde{l}, \tilde{l'})$ im γ^* . Parton-Schwerpunktsystem, σ_{U+L} und σ_L entsprechen dem unpolarisierten und dem longitudinal polarisierten Anteil des Wirkungsquerschnittes, σ_T und σ_I, σ_A dem transversalen und dem transversal-longitudinalen Interferenzanteil. Diese Helizitätswirkungsquerschnitte sind direkt proportional zu den fühf kovarianten Strukturfunktionen $H_1 - H_5$.

Wenn über den Azimuthalwinkel ϕ integriert wird, tragen nur σ_{U+L} und σ_L zum (2+1) Jet Wirkungsquerschnitt bei. Diese Integration über ϕ wurde bei PROJET und DISJET durchgeführt. Dann ist es möglich, mit Hilfe der hadronischen Tensoren $H^{\mu\nu}$ in fester Ordnung Störungstheorie durch kovariante Projektion den (2+1) Jet Wirkungsquerschnitt auszurechnen:

$$\sigma_{U+L} = \left(-\frac{1}{2}g_{\mu\nu} + \frac{3x_p}{pq}p_{\mu}p_{\nu}\right)\hat{H}^{\mu\nu}(n-jet)$$
$$\sigma_L = \frac{2x_p}{pq}p_{\mu}p_{\nu}\hat{H}^{\mu\nu}(n-jet)$$

Diese $O(\alpha_*^2)$ (2+1)-Jet Matrixelemente entsprechen einer vollständigen NLO Rechnung einschließlich virtueller und reeller Korrekturen. Die folgenden Unterprozesse tragen zum (2+1) Jet Wirkungsquerschnitt bis zur Ordnung $O(\alpha_{s}^{2})$ bei:

$$\begin{split} H^{\mu\nu}(reell,\mathcal{O}(\alpha_{s})):\gamma^{*}+q\rightarrow q+g\\ \gamma^{*}+g\rightarrow q+\bar{q}\\ \bar{H}^{\mu\nu}(reell,\mathcal{O}(\alpha_{s})):\gamma^{*}+q\rightarrow q+g+g\\ \gamma^{*}+q\rightarrow q+\bar{q}+q\\ \gamma^{*}+g\rightarrow q+\bar{q}+q\\ \gamma^{*}+g\rightarrow q+\bar{q}+g\\ \bar{H}^{\mu\nu}(virtuell,\mathcal{O}(\alpha_{s}^{2})):\gamma^{*}+q\rightarrow q+g\\ \gamma^{*}+g\rightarrow q+\bar{q} \end{split}$$

Außerdem tragen zum Wirkungsquerschnitt die entsprechenden Antiquarkprozesse mit $q \leftrightarrow \overline{q}$ bei. Die Matrixelemente für alle Beiträge zum (2+1) Jet Wirkungsquerschnitt wurden zuerst in [64] diskutiert. DISJET [65, 66] und PROJET [67] benutzen eine modifizierte Form dieser Matrixelemente in ihren Programmen. Die zweite Projektion (~ $p_{\mu}p_{\nu}$) in σ_{U+L} trägt, abhängig vom kinematischen Bereich, zu 20% – 30% zum (2+1) Wirkungsquerschnitt bei. Der Anteil bei σ_L ist relativ klein (kleiner als 1% für den kinematischen Bereich von HERA). Dies folgt aus den von y abhängigen Koeffizienten $(1+(1-y)^2)$ und $(-y^2)$ und der Tatsache, daß y bei kleinen Werten sein Maximum hat $(< y > \sim 0.1)$. Der Anteil von der Projektion mit $-g_{\mu\nu}$ auf den hadronischen Tensor zum (2+1) Jet Wirkungsquerschnitt wurde zuerst in [68] und [69] diskutiert und in die Programme DISJET und PROJET implementiert. Eine vollzählige Auflistung aller Matrixelemente in LO mit bis zu vier Partonen im Endzustand kann in [70] gefunden werden.

In der perturbativen QCD kann die generelle Struktur der (2+1) Jet Wirkungsquerschnitte in NLO für DIS Prozesse folgendermaßen geschrieben werden:

$$d\sigma^{had}((2+1)Jet) = \sum_{a} \int d\xi f_{a}(\xi,\mu_{F}^{2}) d\sigma^{a}(p = \xi P, \alpha_{s}(\mu_{R}^{2}),\mu_{R}^{2},\mu_{F}^{2}),$$

wobei aufsummiert wird über alle Partonen $a = q, \overline{q}, g$, die einen Bruchteil ξ des Protonimpulses tragen. σ^a ist der Wirkungsquerschnitt der Partonen, bei dem die kollinearen Singularitäten des Anfangszustandes in den skalenabhängigen Partondichten $f_a(\xi, \mu_F^2)$ berücksichtigt werden. In der Bornnäherung tragen die Prozesse $\gamma^* + q \rightarrow q + g, \ \gamma^* + \overline{q} \rightarrow \overline{q} + g, \ und \ \gamma^* + g \rightarrow q + \overline{q} \ zum$ Wirkungsquerschnitt bei. In O(a_s^2) kommen die reellen Emissionskorrekturen $\gamma^* + q \rightarrow q + q + q$, $\gamma^* + q \rightarrow q + \overline{q} + q, \gamma^* + g \rightarrow q + \overline{q} + g$ und die analogen, vom Antiquark initiierten Prozesse dazu.

Diese Wirkungsquerschnitte und auch die 1-Schleifen Amplituden können numerisch berechnet werden, sobald festgelegt wurde, welche Ereignisse (2+1) Jets sind. Die ultravioletten Divergenzen in den 1-Schleifen Amplituden verschwinden durch das MS Renormalisierungsschema, welches aber eine Abhängigkeit von der Renormaliserungsskala #R einführt, weil nur in nächstführender Ordnung gerechnet wird. Die infraroten und kollinearen Divergenzen von den Partonen des Endzustandes heben sich mit den entsprechenden Divergenzen in den 1-Schleifen Beiträgen auf. Die verbleibenden kollinearen Divergenzen des Anfangszustandes können ebenfalls renormiert werden, führen aber zur Abhängigkeit vom Faktorisierungsschema μ_F (siehe Kapitel 1).

3.4.1 PROJET und DISJET

Um den (2+1) Jet Wirkungsquerschnitt zu berechnen, muß festgelegt werden, welches die Definition für ein (2+1) Jetereignis ist. Dazu wird ein Auflösungskriterium eingeführt, wie es in Kapitel 2 beschrieben ist. Das Auflösungskriterium sei hier noch einmal aufgeführt:

. .

$$s_{ij} = (p_i + p_j)^2 \ge M^2 = max\{y_{cut}W^2, M_0^2\} \quad (i, j = 1, ..., n, r; i \neq j)$$

mit y_{cut} als Auflöseparameter und s_{ij} als die invariante Masse der beiden Endzustandspartonen, ein schließlich des Beobachterjets mit dem Impuls $p_r = (1 - \xi)P$. M_0 ist ein Minimum für die Masse, um die perturbative von der nichtperturbativen Region zu trennen, wenn W^2 sehr klein ist. Bei DISJET ist die untere Grenze für $M_0 = 2 \ GeV$, bei PROJET gibt es kein unteres Limit. Durch die Definition des (2+1) Jet Phasenraumes durch den JADE Algorithmus, innerhalb beider Programme ist der Anwender gezwungen, in seiner Analyse ebenfalls diese Definition zu benutzen. Diese Definitionin DISJET und PROJET entspricht nicht eindeutig einem bestimmten Rekombinationsschema, wie sie in Tabelle 2.1 angegeben sind.

3.4. QCD RECHNUNGEN

Es ist also nicht möglich, den (2+1) Phasenraum z.B. mit dem K_{\perp} Algorithmus zu definieren und dann den (2+1) Jet Wirkungsquerschnitt in NLO auszurechnen.

Für den kinematischen Bereich, in dem die a_s -Bestimmung durchgeführt wurde, sind die NLO Korrekturen klein: Typischerweise betragen die NLO Korrekturen zwischen 5% (für den (2+1) Jet Wirkungsquerschnitt) und 20% (für den totalen Wirkungsquerschnitt), siehe auch die Tabelle 8.6 in Kapitel 8. Dies ist natürlich abhängig vom gewählten kinematischen Bereich, dem benutzten Jetalgorithmus und dem y_{cut} . Die NLO Korrekturen beziehen sich auf den in der Analyse benutzten kinematischen Bereich: $120 < Q^2 < 3600 \text{ GeV}^2$, 0.01 < x < 0.1 und y > 0.1 und einem Abschneideparameter $y_{cut} = 0.02$ im JADE Algorithmus.

Die Abbildung 3.3 zeigt die z-Verteilung ohne Schnitt auf die Variable z und die x_{p-1} , p_{T-} und m_{ij} -Verteilung der (2+1) Jets mit z-Schnitt (z > 0.1) in LO und NLO. Die NLO Effekte sind sehr klein. Der Schnitt auf die Variable z wurde unter anderem deshalb eingeführt, weil bei kleinem z die NLO Korrekturen am größten sind. Hier ist anzumerken, daß die NLO Korrekturen in PROJET und DISJET für z < 0.1 klein sind. Der Partonschauer, der näherungsweise Prozesse höherer Ordnung beschreibt, tritt gehäuft bei kleinem z auf. Die Korrekturen durch den Partonschauer sind bei kleinem z wesentlich größer als die Korrekturen in PROJET und DISJET. Der Effekt des Partonschauers ist vergleichbar mit den Korrekturen von MEPJET.

3.4.2 MEPJET

Die NLO QCD Rechnungen PROJET und DISJET können nur den (1+1) und (2+1) Jet Wirkungsquerschnitt unter Benutzung der JADE Jetdefinition berechnen, wobei sich diese in den Programmen benutzte Jetdefinition nicht eindeutig einem Rekombinationsschema (siehe Tabelle 2.1) zuordnen läßt. MEPJET [71] ist die erste QCD Rechnung, die unabhängig vom Jetdefinitionsschema den (2+1) Jet Wirkungsquerschitt in NLO für die tiefinelastische Streuung berechnen kann. Außerdem wurden in den Programmen PROJET und DISJET Terme proportional zu y_{cut} vernachlässigt. Da aber y_{cut} : W^2 nicht notwendigerweise klein ist, ist also in bestimmten Phasenraumregionen diese Näherung nicht zulässig. Das Programm MEPJET benutzt zur Berechnung des Wirkungsquerschnittes eine Methode, die von Giele und Glover [72] erfolgreich zur Berechnung von Wirkungsquerschnitten bei LEP und beim Tevatron angewendet wurde: Ohne Festlegung des (2+1) Jetphasenraumes durch einen Jetalgorithmus muß die Integration über die (3+1) Parton Endzustände über den ganzen Phasenraum durchgeführt werden. Um nun die kollinearen und infraroten Divergenzen zu isolieren, wird der Auflöseparameter s_{min} eingeführt. Wenn irgendein Paar der Partonen (einschließlich der Partonen aus dem Anfangszustand) die Bedingung

$s_{ij} = 2p_i \cdot p_j < s_{min}$

erfüllt wird die Integration in n Dimensionen analytisch durchgeführt. Dieser Teil des Wirkungsquerschnittes wird nun zu den virtuellen Beiträgen addiert. Dieser Anteil am (2+1) Partonen Wirkungsquerschnitt ist im allgemeinen negativ und wächst logarithmisch um dieselbe Größenordnung um die s_{min} verkleinert wird. Dieses logarithmische Anwachsen des negativen Wirkungsquerschnittes wird aufgehoben durch das Anwachsen des (3+1)-Partonwirkungsquerschnittes, solange s_{min} klein genug ist. Die Integration über den (3+1)-Parton Phasenraum wird mit Monte-Carlo-Rechnungen durchgeführt. Das Resultat sind dann die Vierervektoren der Partonen, die es erlauben, jeglichen Jetalgorithmus in jedem Bezugssystem mit allen möglichen Akzeptanzschnitten zu benutzen.

Abbildung 3.3: z, x_p, p_T, m_{ij} -Verteilung für die beiden Stromjets ohne z-Schnitt in der z-Verteilung, mit z > 0.1 für die übrigen Verteilungen. Die (2+1) Jets wurden mit dem JADE Algorithmus bestimmt. Es ist deutlich zu sehen, daß die NLO-Effekte klein sind.

Kapitel 4

HERA und das ZEUS-Experiment

4.1 Der HERA Speicherring

Die Hadron-Elektron-Ring-Anlage HERA ist der erste und bisher einzige Elektron-Proton-Speicherring der Welt. Gebaut wurde er am Deutschen Elektronen-Synchrotron DESY in Hamburg, Deutschland. Er besteht aus zwei unabhängigen Speicherringen. Die Elektronen werden in dem einen Ring auf bis zu 30 GeV, die Protonen in dem anderen Ring auf bis zu 820 GeV beschleunigt. Dies entspricht einer maximalen Schwerpunktsenergie von 314 GeV. Der HERA Speicherring und seine Vorbeschleu-

	p-Ring	e-Ring	Einheiten
Nominalenergie (Design)	820	30	GeV
Schwerpunktsenergie (Design)	314		GeV
Luminosität (Design)	1.5 · 10 ³¹		$cm^{2}s^{-1}$
Nominalenergie (1994)	820	27.5	GeV
Schwerpunktsenergie (1994)	300		GeV
max. Luminosität (1994)	5.2 · 10 ³⁰		$cm^{2}s^{-1}$
Umfang	6336		m
Wechselwirkungszonen	4		
Umlaufende Teilchenpakete	210		
Anzahl der gefüllten Teilchenpakete (1994) (e)	153+15		
Anzahl der gefüllten Teilchenpakete (1994) (p)	153+17		
Zeit zwischen Kollisionen	96		ns

Tabelle 4.1: Der HERA-Speicherring.

niger sind in Abb. 4.1 gezeigt. Die Elektronen und Protonen werden zuerst in mehreren Schritten vorbeschleunigt, bevor sie in den HERA-Ring injiziert werden.

Zwei LINAC (linear accelerator) Beschleuniger beschleunigen die Elektronen, bzw. Positronen auf 220 und 450 MeV. DESY II beschleunigt die Elektronen weiter auf 8 GeV, danach werden sie mit PETRA auf 14 GeV beschleunigt und dann in den Elektronring von HERA eingespeist und auf die Endenergie beschleunigt.

42

Abbildung 4.1: Der HERA-Speicherring

Für die Beschleunigung der Protonen werden negativ geladene Wasserstoffionen im LINAC auf 50 MeV vorbeschleunigt. Die Elektronenhülle wird beim Eintritt in DESY III abgestreift, die Protonen werden beschleunigt auf 7.5 GeV und zu PETRA weitergeführt. Dort werden sie auf 40 GeV beschleunigt bevor sie im supraleitenden HERA Ring ihre Endenergie von 820 GeV erreichen.

In Tabelle 4.1 sind die wichtigsten Parameter des Speicherringes angegeben.

Die beiden Teilchenstrahlen werden an zwei Punkten aufeinandergeschossen, bei denen ep-Kollisionen auftreten können. Die beiden Detektoren H1 [73] und ZEUS [74] sind in den Hallen Nord und Süd aufgebaut.

Zusätzlich wird mit dem HERMES Experiment in der Halle Ost die Streuung polarisierter Elektronen an einem Gastarget untersucht [75]. Ziel dieses Experimentes ist es, die Spin-Struktur des Protons und des Neutrons zu erforschen. Als viertes Experiment wird in der Halle West der HERA-B Detektor [76] aufgebaut. Hier soll in naher Zukunft der Proton-Halo mit einem Draht-Target wechselwirken. Untersucht werden soll die CP-Symmetrie in einem System von Teilchen, die ein schweres b-Quark enthalten.

Abbildung 4.2: Schnitt durch den ZEUS-Detektor längs der Strahlachse.

4.2 Der ZEUS Detektor

Der ZEUS-Detektor ist längs der Strahlachse nicht symmetrisch (Abbildung 4.2), was an der unterschiedlichen Energie der Teilchen liegt, die dort zur Kollision gebracht werden. Da die Impulsüberträge bevorzugt in die Strahlrichtung der Protonen abgegeben werden, hat man diese als Vorwärtsrichtung definiert. Die Abbildung 4.3 zeigt einen Schnitt durch den den Detektor senkrecht zur Strahlachse. Zuerst sollen kurz die Komponenten des Detektors vorgestellt werden und später etwas ausführlicher der Spurdetektor und vor allem das Kalorimeter.

- Im inneren Teil des Detektors werden geladene Teilchen nachgewiesen. Er besteht aus den folgenden Elementen:
 - dem Vertex-Detektor (VXD)
 - ~ der zentralen Spurkammer (CTD)
 - den Spurenkammern in Vorwärts- und Rückwärtsrichtung (FTD, RTD)
 - dem Übergangsstrahlungsdetektor (TRD)
- Dieser innere Teil des Detektors ist von einer supraleitenden Spule umgeben, die ein axiales Magnetfeld von 1.43 Tesla erzeugt.
- Die Spurkammern, der TRD und die supraleitende Spule werden von dem hochauflösenden Uran-Szintillator-Kalorimeter umschlossen. Das Kalorimeter wird in drei Baugruppen unterteilt:

Abbildung 4.3: Schnitt durch den ZEUS-Detektor senkrecht zur Strahlachse.

- das Vorwärtskalorimeter (FCAL, Winkelbereich zwischen 2.2° und 39.9°)
- das Zentralkalorimeter (BCAL, Winkelbereich zwischen 36.7° und 129.1°)
- das Rückwärtskalorimeter (RCAL, Winkelbereich zwischen 128.1° und 176.5°)
- Im Vorwärts- und Rückwärtskalorimeter ist zusätzlich ein Hadron-Elektron-Separator (HES) eingebaut. Damit kann die Identifizierung der gestreuten Elektronen verbessert werden.
- Teilchen, die im Uran-Szintillator-Kalorimeter nicht absorbiert worden sind, können in dem ihn umgebenden Magnetjoch (YOKE) nachgewiesen werden. Das Magnetjoch ist aus Eisenplatten mit dem dazwischenliegenden Jochkalorimeter (BAC) aufgebaut, das aus mit einem Gasgemisch $(Ar/CO_2/C_2H_6)$ gefüllten Proportionaldrahtkammern besteht.
- Da Myonen nahezu ungehindert das Kalorimeter durchqueren können, ist das BAC von weiteren Spurkammern (MUON) umgeben.
- Um Protonen nachzuweisen, die ihre Richtung kaum ändern, sind im HERA-Tunnel Spektrometer angebracht.
- Zur Messung der Luminosität sind in Richtung des Elektronenstrahls im HERA-Tunnel Elektronenund Photonendetektoren installiert worden.

4.2.1 Die Spurdetektoren

Mit Hilfe der Spurdetektoren sollen die Spuren geladener Teilchen rekonstruiert werden, um Richtung und Impuls der Teilchen zu bestimmen. Die unterschiedlichen Detektoren sollen einen möglichst großen Raumwinkel abdecken, damit alle Spuren erfaßt werden:

- Umgeben ist der Wechselwirkungspunkt von einer zylindrischen Driftkammer, der zentralen Spurkammer (CTD). Hier werden die geladenen Teilchen, deren Trajektorien sich im Magnetfeld der supraleitenden Spule krümmen, über fast den gesamten Raumwinkelbereich (8.6° bis 165°) rekonstruiert. Diese Kammer besteht aus neun Lagen mit je acht Schichten von Drähten, die einen Zylinder formen. Sie hat eine Ortsauflösung in $r\phi$ von etwa 150 – 200 μm .
- Um auch kleine Streuwinkel messen zu können, werden drei planare Vorwärtsspurdetektoren (FTD) verwendet; zusätzlich erweitert ein Rückwärtsspurdetektor (RTD) den Winkelbereich, um Elektronen mit sehr geringen Impulsüberträgen nachzuweisen. Der FTD deckt den Winkelbereich zwischen 7° und 28° ab, der RTD von 159° bis 170°.
- Zusätzlich sind zwischen den Driftkammern des FTD vier Übergangsstrahlungsdetektoren (TRD) angebracht. Der TRD soll die Übergangsstrahlung messen, um so Teilchen gleichen Impulses aber unterschiedlicher Ruhemasse zu separieren. Diese Strahlung entsteht, wenn ein geladenes Teilchen die Grenzschicht von Materialien durchquert, die eine unterschiedliche Dielektrizitätskonstante besitzen. So können Elektronen im Energiebereich zwischen 1 und 30 GeV zu 90% erkannt werden bei einer Hadronfehlidentifikation von 5%.

4.2.2 Das Kalorimeter

In der Hochenergiephysik besteht die Aufgabe des Kalorimeters darin, die Energie von Teilchen zu messen. Des weiteren kann die Position der Teilchen bestimmt werden und Elektronen von Hadronen unterschieden werden. Idealerweise sollte ein Kalorimeter alle eintreffenden Teilchen stoppen und das Teilchen alle Energie abgeben. Im Kalorimeter gibt das Teilchen in einem Absorbermedium seine Energie ab und produziert dabei ein optisches oder elektrisches Signal, das proportional zu seiner Energie ist. Um die Abmessungen des Kalorimeters klein zu halten, muß es eine hohe Dichte besitzen. Beim Absorptionsprozeß erzeugt das einfallende Teilchen Sekundärteilchen, diese wiederum tertiäre Teilchen usw., bis die ganze Energie des einfallenden Teilchen abgegeben wurde. Diesen Prozeß nennt man Schauerbildung. Er wird unterschieden zwischen elektromagnetischen und hadronischen Schauer. Hadronen nehmen neben der elektromagnetischen Wechselwirkung auch noch an der starken Wechselwirkung mit den Atomkernen des Absorbermaterials teil, was zu einem unterschiedlichen Signalverhalten bei Elektronen und Hadronen führt.

Man unterscheidet bei Kalorimetern zwischen homogenen Kalorimetern, die nur aus einem Absorbermaterial bestehen, in dem sowohl die Schauerentwicklung als auch das Meßsignal entstehen und Sandwich-Kalorimetern, bei denen sich passive Absorberplatten und signalerzeugende Schichten abwechseln. Ein solches Sandwich-Kalorimeter wird bei ZEUS verwendet.

Elektromagnetische Schauer

Elektronen hoher Energie verlieren beim Durchgang durch Materie vor allem durch Bremsstrahlung ihre Energie, indem sie Photonen erzeugen, die dann wiederum sekundäre Elektron Positron-Paare bilden. Dieses kaskadenartige Anwachsen von Elektronen, Positronen und Photonen nennt man elektromagnetischen Schauer.

Bremsstrahlung:
$$e^- + \text{Kern} \longrightarrow e^- + \text{Kern} + \gamma$$

Paarbildung: $\gamma + \text{Kern} \longrightarrow e^+ + e^- + \text{Kern}$

Erst wenn die Energie der Schauerteilchen genügend klein geworden ist, bricht die Schauerbildung ab. Dies ist der Fall, wenn der Energieverlust durch Ionisation höher ist als der durch die Bremsstrahlung; diese Energie heißt kritische Energie E_c und ist materialabhängig:

$$E_c \sim \frac{580 MeV}{Z}$$
 mit Z: Ordnungszahl des Absorbermaterials

Die longitudinale Ausdehnung eines Schauers wird durch die sogenannte Strahlungslänge X_o angegeben. Dies ist die Weglänge, nach der die Energie eines Elektrons durch Bremsstrahlung im Mittel auf $\frac{1}{c}$ ihres ursprünglichen Wertes abgesunken ist, so daß für den mittleren Energieverlust durch Bremsstrahlung von Elektronen mit einer weit über der kritischen Energie E_c liegenden Energie gilt:

$$-\frac{dE}{dx}=\frac{E}{X_o}$$

An einem einfachen Modell läßt sich die Schauerentwicklung erläutern:

Das primäre Elektron hat die Energie E_o und strahlt nach Durchqueren der Schichtdicke X_o (Strahlungslänge) die Hälfte seiner Energie in Form eines Photons ab. In der nächsten Strahlungslänge erzeugt das Photon durch Paarbildung ein Positron und ein Elektron, die je die Hälfte der Energie des Photons, d.h. $\frac{E_o}{4}$ haben, während das primäre Elektron ein weiteres Photon mit der Energie Erzeugt. Nach zwei Strahlungslängen gibt es also im Mittel vier Teilchen, jedes mit der Energie $\frac{E_o}{4}$. So weitergedacht ergibt das nach t Strahlungslängen $2^t = N$ Teilchen, zu etwa gleichen Teilen Positronen, Elektronen und Photonen.

Dieses Modell vernachlässigt den Compton- und den Photoeffekt der Photonen und das Energiespektrum der Bremsstrahlung, wie auch den Ionisationsverlust der Elektronen. Die Energie eines Teilchens nach t Strahlungslängen ist dann $E(t) = \frac{E_0}{2t}$. Wenn die kritische Energie erreicht ist, wird der Schauer maximal ausgeprägt sein und dann abbrechen. Das Maximum wird dabei in der Tiefe t erreicht:

$$t = t_{max} = \frac{\ln \frac{E_a}{E_c}}{\ln 2}$$

(t: Anzahl der Strahlungslängen)

Die erforderliche Länge des Kalorimeters wächst also logarithmisch mit der Energie der Teilchen, die gemessen werden sollen.

Die Anzahl der Schauerteilchen im Maximum ist dann:

$$N_{max} = \exp(t_{max} \cdot \ln 2) = \frac{E_o}{E_c}$$

Die vorstehenden Betrachtungen geben ein grobes qualitatives Bild der Entwicklung des elektromagnetischen Schauers, in Wirklichkeit unterliegt sie z.B. statistischen Schwankungen. Praktisch erfolgt die Berechnung durch Computersimulation mit Hilfe von Monte-Carlo-Programmen. Sie zeigt zuerst einen in etwa linearen Anstieg, ein breites Maximum und dann einen exponentiellen Abfall. Qualitativ richtig sind jedoch folgende Eigenschaften der Schauer: 4.2. DER ZEUS DETEKTOR

• Die Anzahl der Strahlungslängen t_{max} , bei der die Primärenergie eines Teilchens vollständig absorbiert ist, wächst logarithmisch als Funktion der Energie E_{o} .

47

• Das Weglängenintegral aller Schauerteilchen ist proportional zu Eo, es gilt näherungsweise:

$$L = \frac{2}{3} \int_0^{l_{max}} N dt = \frac{2}{3 \cdot \ln 2} \frac{E_o}{E_c} \sim \frac{E_o}{E_c}$$

wobei der Faktor $\frac{2}{3}$ durch die Anzahl der geladenen Teilchen zustandekommt.

Das Weglängenintegral ist also auch proportional zu E_o . Da die geladenen Teilchen auf ihrem Weg ein optisches oder elektrisches Signal erzeugen (Cherenkovstrahlung, Szintillationslicht) und das zu messende Signal proportional zur Weglänge ist, folgt die Proportionalität zwischen Primärenergie und gemessenem Signal.

Es ist sinnvoll, elektromagnetische Schauerzähler aus Materialien mit großer Ordnungszahl Z und damit kleinem X_o zu bauen, damit der Schauer möglichst klein bleibt.

Hadronische Schauer

Ein Hadronschauer entsteht durch die inelastische Wechselwirkung eines einfallenden hochenergetischen Hadrons mit einem Kern, bei der die sekundär erzeugten Hadronen wiederum durch inelastische Stösse mit den Kernen wechselwirken. So entsteht eine Kaskade von Teilchen, die erst dann abbricht, wenn die Energie so klein ist, daß die Teilchen vollständig abgebremst oder absorbiert sind. Die Skala für die longitudinale Ausdehnung ist durch die Absorptionslänge γ bestimmt, die materialabhängig ist. Bei schweren Elementen ist sie jedoch erheblich höher als die Strahlungslänge für elektromagnetische Schauerzähler. Bei gleicher Energie der nachzuweisenden Teilchen ist also ein Hadronkalorimeter wesentlich tiefer als ein elektromagnetisches Kalorimeter.

Bei elektromagnetischen Schauern erscheint die Energie des einfallenden Teilchens vollständig als Ionisationsenergie des Absorber- oder Auslesemediums. Dies ist bei hadronischen Schauern nicht der Fall, dort werden nur etwa $\frac{2}{3}$ in Ionisationsenergie umgewandelt. Der Rest der Energie trägt nicht zur sichtbaren Energie bei, d.h. es entsteht kein meßbares Signal; dies trifft zu für folgende Prozesse:

- Spallation von Kernen. Das einfallende Hadron kann zwischen den Nukleonen eines Kerns eine Kaskade auslösen, dabei werden Teilchen, z.B. Nukleonen und Pionen frei, die eventuell diesen Prozeß bei anderen Kernen wiederholen. Die darauffolgende Abregung des Kerns geschieht durch Emission von Sekundärteilchen, vorwiegend Neutronen. Möglich ist auch eine Spaltung des angeregten Kerns, wobei die Bruchstücke ebenfalls Neutronen emittieren.
- Die stark wechselwirkenden Hadronen bilden π-Mesonen, diese zerfallen in Myonen und Neutrinos, die nicht an der Schauerentwicklung teilnehmen.
- Die Hadronen wechselwirken mit den Kernen des Absorbermaterials. Dabei kommt es zu Kernzertrümmerungen, deren Bruchstücke im Absorbermedium steckenbleiben können und nicht zur sichtbaren Energie beitragen. Die benötigte Bindungsenergie geht ebenfalls verloren.

Die sichtbare Energie eines Hadrons im Kalorimeter ist also im allgemeinen geringer als die eines Elektrons gleicher Energie. Das Signalverhältnis zwischen Elektron und Hadron, bezeichnet mit $\frac{e}{h}$, ist also größer eins.

48

Kompensierende Kalorimeter

Um für Hadronen und Elektronen die Energie richtig bestimmen zu können, ist es notwendig, die bei der hadronischen Energiemessung verlorene Energie zu kompensieren. Besonders durch die Entstehung von neutralen und geladenen Pionen, die elektromagnetische bzw. hadronische Schauer auslösen, welche dann unterschiedlich zur sichtbaren Energie beitragen, ist das Verhältnis zwischen primärer Energie und gemessenem Signal nicht mehr proportional. Zur Kompensation wird ²³⁸U als Absorptionsmaterial verwendet. Man nutzt dabei die bei der Spaltung von ²³⁸U freiwerdende Energie, dort entstehen nämlich neben harten γ -Strahlen Neutronen. Die Neutronen durchdringen den Absorber aus ²³⁸U nahezu ungeschwächt, geben jedoch in einem protonenreichen Auslesemedium einen Großleil ihrer Energie an das Proton ab, die Rückstoßprotonen werden dann als sichtbare Energie im Auslesemedium registriert. Gleichzeitig nimmt das Signal des elektromagnetischen Schauers bei Absorbermaterial mit großem Z ab. Denn niederenergetische Photonen erzeugen durch Photoeffekt Elektronen, die im Absorbermaterial bleiben und so nicht zum Signal beitragen. Dieser Effekt ist materialabhängig. Durch geeignete Wahl der Dicke des Absorbermaterials (also der Uranplatten) und der Detektorschichten kann Kompensation erreicht werden. Messungen haben gezeigt, daß eine nahezu vollständige Kompensation bei einer Hadronenenergie ab etwa 5 GeV möglich ist.

Sandwich-Kalorimeter

Sandwich-Kalorimeter, die auch Sampling-Kalorimeter genannt werden, sind abwechselnd aus Schichten von Absorbermaterial und aktiven Detektorschichten aufgebaut. Als Absorber verwendet man, aus obengenannten Gründen, Materialien mit möglichst hoher Ordnungszahl und Dichte. Die Detektorschicht besteht aus Plastikszintillatoren oder z.B. aus Flüssig-Argon-Ionisationskammern, wie bei H1.

Eine wichtige Kenngröße für das Kalorimeter ist die Energieauflösung. Bei Sandwich Kalorimetern werden die Spuren der Teilchen nicht vollständig erfaßt, sondern nur abgetastet, d.h. die Detektoren registrieren nur einen Teil der Schauerenergie, sie wird stichprobenartig gemessen. So entstehen Fluktuationen im registrierten Signal. Die Anzahl n der gemessenen Teilchendurchgänge im Auslesemedium gehorcht der Poissonstatistik, ihre Standardabweichung ist also $\frac{1}{\sqrt{n}}$. Da E und n zueinander proportional sind, erzeugen die Fluktuationen eine $\frac{1}{\sqrt{E}}$ -Abhängigkeit der Energieauflösung des Kalorimeters.

Durch die Fluktuationen des Anteils der neutralen Pionen in hadronischen Kalorimetern, die jeweils sofort in zwei γ -Quanten zerfallen und damit einen elektromagnetischen Subschauer auslösen, wird die Energieauflösung im allgemeinen verschlechtert. Dazu kommen Leckverluste, d.h. Teilchen, die in longitudinaler oder transversaler Richtung aus dem Kalorimeter entweichen.

Der Aufbau des ZEUS-Kalorimeters

Das ZEUS-Kalorimeter ist ein Sandwich-Kalorimeter. Die Absorberplatten bestehen aus abgereichertem Uran, mit einer Isotopenverteilung von weniger als 0.2% ²³⁵U, 98.1% ²³⁸U und 1.7% Nb, die Szintillatorplatten sind aus Polystyrol. Zur Vermeidung der Schauerfluktuationen wird ein $\frac{\pi}{h}$ -Verhältnis von eins gefordert. Die beste Annäherung an ein $\frac{\pi}{h}$ -Verhältnis von eins wurden mit Uranschichten von 3.3 mm Dicke und Szintillatorschichten von 2.6 mm erreicht. Für eine detaillierte Beschreibung des ZEUS-Kalorimeters sei auf [77, 78] verwiesen.

Das Kalorimeter wurde in modularer Bauweise gefertigt, aufgeteilt in FCAL, BCAL und RCAL. Jedes

Teilkalorimeter ist wieder modular aufgebaut. Die Abbildung 4.4 zeigt die dreidimensionale Ansicht eines FCAL-Moduls. Die einzelnen Module sind zwar verschieden groß, gleichen sich jedoch in ihrem

Abbildung 4.4: Dreidimensionale Ansicht eines FCAL-Moduls

Aufbau. Das abgebildete Modul ist unterteilt in zwei Hauptabschnitte, die wegen ihrer hauptsächlichen Funktion als elektromagnetische Kalorimeter (EMC) und als hadronische Kalorimeter (HAC0, HAC1, HAC2) bezeichnet werden. Das in den Szintillatorplatten durch Schauerteilchen entstandene Licht wird aufgrund der Totalreflektion an der Szintillatoroberfläche zu den Seitenkanten geleitet und kann diese verlassen. Dort trifft es auf Wellenlängenschieber und wird darin an den Seiten des Moduls zu den Photomultipliern geleitet, die direkt hinter den Modulen angebracht sind. Photomultiplier erzeugen aus den Lichtsignalen ein elektrisches Signal. Das einfallende Licht trifft dort auf die Photokathode, aus der Elektronen herausgeschlagen werden (Photoeffekt). Diese Photoelektronen werden in einem elektrischen Feld beschleunigt, treffen auf Elektroden und setzen dabei weitere Elektronen frei. So wird ein den eintreffenden Photonen proportionaler Stromimpuls ausgelöst, dessen integrierte Gesamtladung der im Kalorimeter deponierten Energie proportional ist.

Die Photomultiplierpulse, die also die gesamte Information des Kalorimeters enthalten, werden in einer komplexen Ausleseelektronik weiter verarbeitet.

Bei ZEUS ist es gelungen, eines der besten Kalorimeter zu bauen:

- Der Wechselwirkungspunkt wird nahezu hermetisch vom Kalorimeter umschlossen (99.7% des Raumwinkelbereiches).
- Die Energieauflösung erreicht für hadronische Schauer $\frac{\sigma}{E} = \frac{35\%}{\sqrt{E}} \pm 2\%$ und für elektromagnetische Schauer $\frac{\sigma}{E} = \frac{18\%}{\sqrt{E}} \pm 1\%$.
- Die Linearität des Kalorimeters ist im untersuchten Energiebereich besser als 2%.
- Das $\frac{4}{5}$. Verhältnis beträgt $\frac{4}{5} = 1.00 \pm 0.02$ für Energien oberhalb 10 GeV.

Eichung des ZEUS-Kalorimeters

50

Eine dauernde Überwachung und Eichung des Kalorimeters ist notwendig, um aussagekräftige und genaue Ergebnisse bei der Energiebestimmung zu erhalten.

Die Photomultiplier sind nicht nur Alterungsprozessen, sondern auch Fertigungstoleranzen und Instabilitäten der angelegten Verstärkungsspannungen unterworfen. Die gesamte Ausleseelektronik, bzw. schon die Signalbildung und -weiterleitung wird ständig kontrolliert. Bei ZEUS werden unter anderem folgende Eichmethoden benutzt:

Die Ladungsinjektion

Die Ladungsinjektion dient dazu, die Ausleseelektronik zu kalibrieren. Hierzu schickt man einen definierten Ladungspuls durch die Elektronikkette und kann so für jeden einzelnen Zweig die Verstärkungsfaktoren bestimmen, indem man die berechneten Ladungen auswertet.

• Das Uransignal

Obwohl die Uranplatten mit Stahl ummantelt wurden, um die den Szintillator treffende Gammastrahlung zu verringern, reicht die Strahlung aus, um für Kalibrationszwecke verwertbar zu sein. Die Radioaktivität des abgereicherten Urans erzeugt in den Photomultipliern einen Anodenstrom, der unter anderem von der Höhe der Verstärkungsspannung des Photomultipliers abhängig ist. Dieser Anodenstrom soll nun für alle Kanäle eines Typs die gleiche Stärke haben. Erreicht wird dies durch das Regulieren der Verstärkungsspannungen der Photomultiplier. So können Unterschiede der Eigenschaften der Photomultiplier, den Welfenlängenschiebern, etc. ausgeglichen werden.

Durch die Eichung mit dem Uransignal ist es möglich, eine relative Energieskala der Kalorimetermodule mit einem Fehler von etwa 1% zu bestimmen.

Eichung über Lichteinspeisung

Für das Vorwärts- und Rückwärtskalorimeter hat die Universität Freiburg, zusammen mit der McGill University in Montreal, ein LED/Laser-Lichteichungssystem entwickelt. Für das Zentralkalorimeter entwickelte die Pennsylvania University ein Lichteichungssystem. Das Lichteichungssystem erfüllt folgende Aufgaben:

- Überwachung der Kurz- und Langzeitstabilität der Photomultiplier durch präzise Messung der Anzahl der Photoelektronen pro GeV.
- Überprüfung der Linearität der Photomultiplier über den gesamten Energiebereich.
- Überprüfung der Linearität und des Zeitverhaltens der Ausleseelektronik über den gesamten dynamischen Bereich (auch ohne Teilchenstrahl).

4.2. DER ZEUS DETEKTOR

51

Die Messung der Anzahl der Photoelektronen pro GeV stellt sich als besonders günstig für die Stabilitätsuntersuchung heraus. Dieser Wert ist in weiten Bereichen unabhängig von der Lichtintensität der LEDs.

Das Lichtverteilungssystem wird ausführlich in [79, 80] behandelt.

4.2.3 Das ZEUS-Triggersystem

Die Aufgabe des Triggersystems ist die Unterscheidung zwischen interessanten physikalischen Ereignissen und unerwünschten Untergrundereignissen. Bei ZEUS wird hierfür ein System aus drei sukzessiven Triggerstufen benutzt: First Level Trigger (FLT), Second Level Trigger (SLT), Third Level Trigger (TLT). Die Ereignisraten sollen dabei auf 1 kHz (FLT), 100 Hz (SLT) und 5 Hz (TLT) reduziert werden. Für Detailinformation sei auf [81] verwiesen.

Auf der Stufe des TLT sind bereits die wesentlichen physikalischen Größen, z.B. Teilchenidentität, Vertexposition, kinematische Variablen, berechnet und es kann bereits durch die Abfrage eines geeigneten Filters eine effiziente Datenselektion durchgeführt werden.

Kapitel 5

Datenselektion

5.1 Charakteristik von NC-DIS Ereignissen

In der vorliegenden Arbeit wurden die 1994 vom ZEUS Detektor gemessenen Daten analysiert, sie entsprechen einer integrierten Luminosität von $\mathcal{L}_{tot, 94} = 3.2 \text{ pb}^{-1}$.

Ein wesentliches Kennzeichen der Ereignisse der tiefinelastischen ep-Streuung durch Austausch eines neutralen Eichbosons (γ^* , Z^0) (NC-DIS) ist der Nachweis des gestreuten Elektrons im Endzustand. Zusätzlich zu dem Elektron werden ein oder mehrere Stromjets und der Beobachterjet gebildet. Die Stromjets können im Kalorimeter als Energieablagerungen und im Vertexdetektor als Spuren nachgewiesen werden.

Es müssen geeignete Selektionskriterien gefunden werden, die es erlauben, die NC-DIS Ereignisse eindeutig zu klassifizieren und den Untergrund der Nicht-NC-DIS Ereignisse möglichst vollständig zu unterdrücken.

5.2 Die Bestimmung der kinematischen Variablen

Abbildung 5.1: Definition der Energie E_e , bzw. E'_e , des einlaufenden, bzw. gestreuten Elektrons, des Streuwinkels θ des Elektrons, der hadronischen Energie F und des Streuwinkels γ_h des hadronischen Jets. E_p ist die Energie des einlaufenden Protons.

Bei NC-DIS-Ereignissen mit neutralem Strom lassen sich die kinematischen Variablen unabhängig sowohl aus dem gestreuten Elektron als auch aus dem Strom-Jet oder aus einer Kombination zweier unabhängiger Meßgrößen bestimmen [82]. Die Abbildung 5.1 zeigt einen NC-DIS ep-Streuprozeß und definiert die zugehörigen Meßgrößen. Im folgenden sollen kurz die wichtigsten Methoden zur Rekonstruktion der Ereigniskinematik mit den in der Abbildung 5.1 gezeigten experimentellen Größen vorgestellt werden. Die Abbildung 5.2 zeigt die Abhängigkeit der kinematischen Variablen x, Q^2 von den Linien konstanter Energie (a) und konstanten Winkels (b) des Elektrons, und Linien konstanter Energie (c) und konstanten Winkels (d) des hadronischen Jets. Die Genauigkeit, mit der diese Variablen im jeweiligen $x - Q^2$. Bereich bestimmt werden können, gibt gleichzeitig Aufschluß darüber, wie genau mit diesen Variablen x und Q^2 gemessen werden können. In den $x - Q^2$. Bereichen, in denen für zwei Variablen die Linien eng zusammenliegen, ist eine gute Rekonstruktion möglich.

53

Abbildung 5.2: Linien konstanter Linien konstanter Energie (a) und konstanten Winkels (b) des Elektrons, und Linien konstanter Energie (c) und konstanten Winkels (d) des hadronischen Jets im $z - Q^2$ -Bereich.

Elektron-Methode

Die Elektron-Methode verwendet die Energie E'_{ϵ} und den Winkel θ des gestreuten Elektrons. Diese Methode wird in allen Experimenten mit einem ruhenden Target benutzt, um x und Q^2 zu rekonstru-

ieren. Es gelten dann die folgenden Beziehungen für die kinematischen Größen:

$$\begin{aligned} Q_{el}^2 &= 2E_e E'_e (1 - \cos \theta) ,\\ z_{el} &= \frac{E_e}{E_p} \left(\frac{E'_e \cos^2 \theta/2}{E_e - E'_e \sin^2 \theta/2} \right) \\ y_{el} &= 1 - \frac{E'_e}{E_e} \sin^2 \theta/2 . \end{aligned}$$

Die Auflösung in Q^2 ist gut, außer für wenig abgelenkte Elektronen, d.h. $\theta \sim 180^{\circ}$ (siehe Abbildung 5.2).

Jacquet-Blondel-Methode

Die Jacquet-Blondel-Methode [83] benutzt nur Größen, die aus dem gesamten hadronischen Endzustand berechnet werden. Also die hadronische Gesamtenergie F und den Winkel des hadronischen Jets γ_A :

$$y_{JB} = \frac{\sum_{h} (E_{h} - p_{x,h})}{2E_{e}} = \frac{F(1 - \cos \gamma_{h})}{2E_{e}} ,$$

$$Q_{JB}^{2} = \frac{\left(\sum_{h} p_{x,h}^{2}\right) + \left(\sum_{h} p_{y,h}^{2}\right)}{1 - y_{JB}} = \frac{F^{2} \sin^{2} \gamma_{h}}{1 - y_{JB}}$$

$$z_{JB} = \frac{Q_{JB}^{2}}{s \cdot y_{JB}} .$$

Summiert wird über alle Hadronen. Die Auflösung in Q^2 für großes y ist schlechter als mit der Elektronmethode, wegen des Terms $\frac{1}{1-y}$. Daselbe gilt für x. Die Auflösung für kleines y ist schr gut, weil sie hauptsächlich von der hadronischen Energieauflösung abhängt (siehe Abbildung 5.2). Die Jacquet-Blondel-Methode ist die einzige Methode, die bei DIS Ereignissen mit geladenem Strom, d.h. dem Austausch eines W^{\pm} -Bosons, benutzt werden kann.

Doppel-Winkel-Methode

Die Doppel-Winkel-Methode [82] benutzt nur die Winkel des gestreuten Elektrons θ und des hadronischen Jets γ_h . Im Quark-Partonmodell entspricht γ_h dem Streuwinkel des getroffenen (masselosen) Quarks:

$$y_{DA} = \frac{\sin\theta(1-\cos\gamma_h)}{\sin\gamma_h + \sin\theta - \sin(\gamma_h + \theta)},$$

$$Q_{DA}^2 = 4E_e^2 \frac{\sin\gamma_h(1+\cos\theta)}{\sin\gamma_h + \sin\theta - \sin(\gamma_h + \theta)},$$

$$x_{DA} = \frac{E_e}{E_p} \frac{\sin\gamma_h + \sin\theta + \sin(\gamma_h + \theta)}{\sin\gamma_h + \sin\theta - \sin(\gamma_h + \theta)}.$$

Diese Methode reduziert die Empfindlichkeit auf die Unsicherheiten bei der Energiemessung.

Abbildung 5.3: Die kinematischen Variablen x_{DA} und Q_{DA}^2 und die Energie E'_e und der Streuwinkel θ des Elektrons. Die Energie des gestreuten Elektrons wurde aus den Winkeln θ und γ_h berechnet. Aufgetragen sind jeweils die selektierten Daten und die von LEPTO 6.3, bzw. ARIADNE 4.06 generierten Ereignisse.

Die Doppel-Winkel-Methode wurde für die in dieser Arbeit durchgeführte Analyse gewählt, um x, Q^2 und y zu rekonstruieren, weil für den betrachteten $x - Q^2$. Bereich die Doppel-Winkel-Methode die beste Auflösung ergibt.

Die Energie des gestreuten Elektrons kann aus den Winkeln berechnet werden:

$$E_{DA} = \frac{Q_{DA}^2}{2 \cdot E_e (1 + \cos \theta)} ,$$

= $2 \cdot E_e \frac{\sin \gamma_A}{\sin \gamma_A + \sin \theta - \sin(\gamma_A + \theta)}$

 E_{DA} ist weitgehend unabhängig von der Energiekalibration des Kalorimeters. Die Abbildung 5.3 zeigt die kinematischen Variablen x_{DA} und Q_{DA}^2 und die Energie E_{DA} und den Streuwinkel Θ des Elektrons für die selektierten Daten von 1994. Verglichen werden die selektierten Daten mit den von

55

LEPTO 6.3 und ARIADNE 4.06 generierten Ereignissen. Alle Abbildungen zeigen eine sehr gute Übereinstimmung zwischen den Verteilungen für die gemessenen und die generierten Ereignisse.

5.3 Untergrundereignisse

Zusätzlich zu den interessierenden NC-DIS-Prozessen werden eine Reihe von Untergrundereignissen registriert. Im folgenden sollen die wichtigsten kurz erläutert werden. Durch geeignete Selektionskriterien können diese Prozesse weitgehend verworfen werden.

5.3.1 Ereignisse aus der Photoproduktion

Um Ereignisse aus der Photoproduktion zu unterdrücken, wird die Größe δ benutzt, die sich aus der Energie- und Impulserhaltung ergibt:

$$\delta = E - p_z = \Sigma E_i (1 - \cos \theta_i)$$

wobei der Index i über alle Kalorimeterzellen läuft. Bei Ereignissen der tiefinelastischen Streuung mit neutralem Strom, bei der das Elektron im Kalorimeter detektiert werden kann, sollte δ etwa $2 \cdot E_e$ sein. In der Photoproduktion ist der Viererimpulsübertrag relativ gering, das Elektron kann nicht im Zentraldetektor nachgewiesen werden, δ ist klein.

Bei Ereignissen aus der Photoproduktion können Elektronen aus x^0 -Zerfällen in das Kalorimeter gelangen, die ein gestreutes Elektron vortäuschen. Diese Elektronen täuschen ein NC-DIS Ereignis mit großem y_{el} vor, da sie meistens niedrige Energie haben und in der Vorwärtsregion auftreten. Deswegen werden Ereignisse mit großem y_{el} verworfen.

5.3.2 Weitere Untergrundereignisse

Strahl-Restgas und Strahl-Wand Ereignisse

Protonen des HERA Strahls können mit einem Gasmolekül im Strahlgas oder mit den Wänden des Strahlrohres wechselwirken. Dabei entstehen viele Sekundärteilchen, die charakterisiert sind durch eine große Anzahl von Spuren im Vertexdetektor und eine hohe Energieablagerung im Kalorimeter. Um diese Ereignisse zu erkennen und aus dem Datensatz zu entfernen, wird die Ankunftszeit in den verschiedenen Kalorimeterteilen gemessen und ein Selektionskriterium festgelegt: Die Zeitmessung ist so geeicht, daß für ein Ereignis am Wechselwirkungspunkt $z = 0 \ cm$, also ein ep Ereignis, eine Zeit $t = 0 \ ns$ im FCAL und RCAL Kalorimeter erwartet wird.

Ereignisse mit dem Strahlgas oder den Wänden des Strahlrohres werden eine Zeit im RCAL Kalorimeter von etwa $t \sim -11ns$ haben, das veranschaulicht die Abbildung 5.4.

Abbildung 5.4: Vergleich der Kalorimeterzeiten für ein ep-Ereignis (links) und ein Untergrundereignis (rechts).

Ereignisse von kosmischer Strahlung und Halo-Myonen

Der Protonstrahl ist von einer großen Anzahl von Halo-Myonen begleitet, außerdem durchqueren kosmische Myonen den Detektor. Beide Prozesse können durch γ -Abstrahlung elektromagnetische Schauer induzieren, die fälschlicherweise als gestreute Elektronen identifiziert werden können.

Diese Ereignisse lassen sich aber durch die Art der Energieablagerung entlang des Kalorimeters und an dem fehlenden Vertex am Wechselwirkungspunkt erkennen und verwerfen.

Funkenbildung an einer Photoröhre

Manchmal werden Ereignisse beobachtet, die in einer einzelnen Kalorimeterzelle eine große Energieablagerung haben. Dies wird auf eine Funkenbildung an einer der beiden Photoröhren zurückgeführt. Zellen, bei denen nur in einem der beiden Photomultiplier ein Signal gesehen wurde, bzw. bei denen das Signal in den Photomultipliern stark unterschiedlich ist, werden verworfen.

5.4 Ereignisse aus der diffraktiven Streuung

Unter den NC-DIS Ereignissen wurde eine Klasse von Ereignissen entdeckt, die keine hadronische Energieablagerung im Vorwärtsbereich aufweist. Diese sogenannte diffraktive Streuung findet in etwa 6% (abhängig vom kinematischen Bereich) aller NC-DIS Ereignisse statt. Anscheinend wird bei diesen Prozessen ein farbneutrales Teilchen - das Pomeron - zwischen Proton und Photon ausgetauscht. Zur Beschreibung der diffraktiven Ereignisse und des Pomerons sei auf [84] und darin angegebene Referenzen verwiesen. Da diese Ereignisse in den Monte-Carlo-Generatoren nicht simuliert werden, werden sie durch einen geeigneten Schnitt auf die Energie im FCAL-Kalorimeter aus dem Datensatz entfernt.

5.5 Elektronenidentifizierung

58

Bei NC-DIS Ereignissen mit Austausch eines γ - oder Z^0 -Bosons ist das gestreute Elektron räumlich klar getrennt von den hadronischen Schauern im Kalorimeter. Nur für Ereignisse mit hohem y und kleinem x, bei denen das Elektron und der Stromjet im RCAL gemessen werden, ist die räumliche Trennung schwierig.

Die Identifizierung des gestreuten Elektrons und dessen Energie beruht bei den in dieser Analyse benutzten Elektronsuchalgorithmen nur auf Informationen des Kalorimeters:

 Zuerst werden mit einem geeigneten Algorithmus Energieablagerungen in einzelnen Kalorimetern zusammengefaßt und Kalorimeterobjekte gebildet. Dieser Algorithmus kann ein Konus-, Kondensat- oder Inselalgorithmus sein, siehe Abbildung 5.5 zur Erläuterung.

Abbildung 5.5: Verschiedene Methoden der Elektronenidentifizierung: (a) Kondensat-, (b) Insel- und (c) Konus-Algorithmus. Das Gitter soll einen Teil des Kalorimeters darstellen, die Zahlen entsprechen der Größe der Energieablagerung in dieser Zelle.

- Dann trennt der Elektronsuchalgorithmus elektromagnetische von hadronischen Schauerobjekten mit Hilfe geeigneter Kriterien. Zum Beispiel wird ausgenutzt, daß ein elektromagnetischer Schauer gleich am Beginn einer Zelle aufschauert und der Schauer räumlich; eng begrenzt ist. Hier unterscheidet der Elektronsuchalgorithmus nicht zwischen Elektronen und Photonen.
- Abhängig vom Elektronsuchalgorithmus wird nun entweder das Objekt mit der höchsten Energie, mit dem niedrigsten Q^2 oder dem höchsten p_T als gestreutes Elektron identifizert.

Um die Qualität eines Elektronsuchalgorithmus zu beurteilen, werden Monte-Carlo-Ereignisse benutzt und die Reinheit und Effizienz bei der Identifizierung des Elektrons bestimmt:

$$Effizienz = \frac{Anzahl der Elektronen, die korrekt identifiziert wurden}{Anzahl der generierten Elektronen}$$

Reinheit = Anzahl der Elektronen, die korrekt identifiziert wurden Anzahl der identifizierten Elektronen Mit einer Mindestenergie des gestreuten Elektrons, die oberhalb 10 GeV liegt, erreichen die in dieser Analyse benutzten Elektronsuchalgorithmen eine Reinheit von über 90% und eine Effizienz von deutlich über 70%. Die benutzten Elektronsuchalgorithmen sind SINISTRA und EEXOTIC. EEXOTIC ist ein Elektronsuchalgorithmus, der den Konusalgorithmus benutzt und bei mehreren Kandidaten für ein gestreutes Elektron das Elektron mit dem höchsten p_T auswählt.

59

SINISTRA benutzt keinen der vorgestellten Algorithmen, sondern beruht auf der Methode eines neuronalen Netzwerkes [85].

5.6 Selektionskriterien

Folgende Selektionsverfahren wurden auf den in dieser Analyse benutzten Datensatz angewendet: (Alle angegebenen Routinen sind Teil eines Programmpaketes, das von der ZEUS Kollaboration zur Selektion und Rekonstruktion von Ereignissen erarbeitet wurde.)

- Die Routine OITTYP wurde benutzt, um Ereignisse, die für Testzwecke aufgenommen wurden, zu entfernen.
- Die Routine EVTAKE verwirft alle Ereignisse, bei denen eine wichtige Detektorkomponente nicht aktiv war.
- Die Routinen ISITAMU und ALHALO2 bestimmen alle Ereignisse, die von kosmischen Myonen oder Halo-Myonen kommen, und verwirft diese.
- Die Routine RMSPARK filtert Ereignisse mit einem Funkenbildung an einer Photoröhre des Kalorimeters aus.
- In den Spurdetektoren sollte mindestens eine Spur gefunden worden sein.
- Die z-Position des rekonstruierten Wechselwirkungspunktes muß zwischen -50 cm und +50 cm liegen.
- Die gemessene Zeit im RCAL darf maximal -4 ns bis +4 ns betragen, wenn die Energie im RCAL größer als 5 GeV ist. Bei einer Energie kleiner als 5 GeV kann die Zeit im RCAL nicht genau genug bestimmt werden. Es wird dann kein Schnitt angewendet.
- SINISTRA wurde in der Analyse als Elektronsuchalgorithmus benutzt. Für alle selektierten Ereignisse muß SINISTRA ein Elektron gefunden haben.
- Die Energie des gestreuten Elektrons muß größer als 10 GeV sein, damit eine eindeutige Identifizerung des Elektrons gewährleistet ist.
- Ein weiterer Schnitt verwirft Ereignisse, bei denen der x- bzw. der y-Abstand des Elektrons an der Oberfläche des RCAL kleiner als 16 cm ist. Für diese Ereignisse ist die Messung des Winkels und der Energie des gestreuten Elektrons mit einem großen Fehler behaftet, weil ein Teil des elektromagnetischen Schauers in der Strahlröhre verschwindet und nicht nachgewiesen werden kann.
- Der schon diskutierte $E p_z$ Schnitt verlangt, daß die Ereignisse ein $E p_z$ zwischen 35 und 60 GeV haben.

KAPITEL 5. DATENSELEKTION

- yel muß kleiner 0.95 sein, um Ereignisse aus der Photoproduktion auszuschließen.
- Der Datensatz soll keine diffraktiven Ereignisse erhalten. Deshalb wurde verlangt, daß die Energie im FCAL (Vorwärtskalorimeter) größer als 1 GeV ist.

Zusätzlich zu diesen Selektionskriterien wurden noch kinematische Schnitte auf z, y und Q^2 angewendet, die aber in den Kapiteln 7 und 8 motiviert werden.

In Tabelle 5.1 sind alle Selektionskriterien aufgelistet, und die Anzahl der Ereignisse ist angegeben, die durch die jeweiligen Schnitte entfernt wurden. Die entfernten Ereignisse pro Selektionskriterium sind abhängig von der Reihenfolge. Die angebenen Zahlen beziehen sich jedoch darauf, daß alle Ereignisse auf jedes Selektionskriterium überprüft wurden, also unabhängig von der Reihenfolge.

Startpunkt für die Ereignisselektion ist ein DST-Filter (DST = Data Selection Tape). Die DST-Filter sind Teil des Offline-Rekonstruktionsprogrammes ZEPHYR. Sie werden auf der Stufe des TLT (siehe Kapitel 4) angewendet, wenn bereits der Vertex rekonstruiert und die kalibrierten Kalorimeterenergien berechnet sind. Das Ergebnis der DST-Filterroutine wird gespeichert und kann bei der Datenselektion durch den Benutzer leicht abgerufen werden. Das benutzte DST-Filter in dieser Analyse ist Bit14. Mit Bit14 wurden 646241 NC-DIS Ereignisse selektiert. Folgende globale NC-DIS Selektionskriterien sind darin schon enthalten:

- Ein gestreutes Elektron konnte identifiziert werden. Benutzt werden vier verschiedene Elektronensuchalgorithmen (EEXOTIC, ELEC5, LOCAL und SINISTRA)
- $E p_s + 2E_{\gamma}^{Lumi} > 35 GeV$. E_{γ}^{Lumi} ist die Energie des Photons im Luminositätsdetektor.
- $E_{el} > 5GeV$
- $y_{JB} > 0.02$
- RMSPARK wird benutzt.
- Die Zeiten im Kalorimeter müssen folgende Bedingungen erfüllen (wenn eine Zeit gemessen werden konnte und die Energie im RCAL Kalorimeter $E_{RCAL} > 5 \ GeV$ ist), t_{FCAL} ist die gemessene Zeit im FCAL Kalorimeter, t_{RCAL} ist die gemessene Zeit im RCAL Kalorimeter:

 $\begin{aligned} |t_{RCAL}| &< 8 \text{ ns} \\ |t_{FCAL}| &< 8 \text{ ns} \\ |t_{FCAL} - t_{RCAL}| &< 8 \text{ ns} \end{aligned}$

Gesamtanzahl der Ereignisse	646241 Anzahl der entfernten Ereignisse		
Selektionskriterien			
OITTYP	7674		
EVTAKE	75138		
ISITAMU	1158		
Anzahl der Spuren ≥ 1	39699		
$ Vertex_x < 50cm$	74294		
$ t_{RCAL} < 3ns$, wenn $E_{RCAL} \ge 5GeV$	7484		
Ein Elektron gefunden (SINISTRA)	197925		
$E_{el} > 10 GeV$	206713		
x oder y-Koordinate $> 16cm$	2419		
$35 < E - p_x < 60 GeV$	65855		
$E_{FCAL} > 1 GeV$	56718		
$y_{DA} > 0.1$	193070		
$y_{el} < 0.95$	3226		
$Q_{DA}^2 > 44 GeV^2 (K_\perp - \text{Analyse})$	558048		
$0.001 < x_{DA} < 0.1 (K_{\perp} - \text{Analyse})$	366330		

Tabelle 5.1: Die Anzahl der Ereignisse, die durch das entsprechende Selektionskriterium entfernt wurden. Jedes Ereignis wurde unabhängig von den anderen Schnitten auf jedes Selektionskriterium geprüft. Die Anzahl der entfernten Ereignisse ist deshalb größer als die Gesamtanzahl der Ereignisse.

Kapitel 6

Vergleich der Jetalgorithmen K_{\perp} und JADE

Ziel der vorliegenden Analyse ist die Bestimmung von α_s in Abhängigkeit von Q^2 aus dem Verhältnis des (2+1) Jet Wirkungsquerschnittes zum totalen Wirkungsquerschnitt, das gerade der (2+1) Jetrate der NC-DIS ep-Prozesse entspricht. Von zentraler Bedeutung ist daher die Wahl eines geeigneten Jet Algorithmus.

In Kapitel 2 wurden zwei Clusteralgorithmen - der K_{\perp} und der JADE Algorithmus - vorgestellt. In diesem Kapitel sollen die beiden Algorithmen bezüglich der Rekombinationsabhängigkeit, des Phasenraumes, des Partonschauereffekts, der Beschreibung des Beobachterjets und der Vorwärtsregion verglichen werden.

Als Referenzmasse s wurden im JADE Algorithmus W^2 und im K_{\perp} Algorithmus Q^2 gewählt. Der Abschneideparameter im JADE Algorithmus ist $y_{cut} = 0.02$, im K_{\perp} Algorithmus ist der Abschneideparameter $y_{cut} = 0.5$.

Soweit nicht ausdrücklich angegeben, wurden für die Ergebnisse aller Daten, für die der K_{\perp} Algorithmus benutzt wurde, als kinematischer Bereich:

$$44 < Q^2 < 2560 \ GeV^2$$
, $0.001 < x < 0.1$, $0.1 < y < 0.95$

gewählt. Ergebnisse mit Hilfe des JADE Algorithmus sind für den kinematischen Bereich

$$|20 < Q^2 < 3600 \ GeV^2$$
, $0.01 < x < 0.1$, $0.1 < y < 0.95$

angegeben. Diese kinematischen Grenzen sind das Ergebnis der Untersuchungen dieses Kapitels (Partonschauereffekt, Vorwärtsregion, etc.).

6.1 Rekombinationsabhängigkeit der beiden Algorithmen

Die unterschiedlichen Rekombinationsschemata sind in Tabelle 2.1 in Kapitel 2 beschrieben. Die Jetrate sollte möglichst unbeeinflußt von der Wahl des Rekombinationschemas sein. Die Tabelle 6.1 zeigt, wie sehr sich die (2+1) Jetrate ändert, wenn ein anderes Rekombinationsschema benutzt wird. Die Rekombinationseffekte, d.h. ob z.B. die Vektoren unabhängig davon sind, daß sie den Energie-
und den Impulserhaltungssatz verletzen oder erhalten, sind sehr groß für den JADE Algorithmus. Allerdings ist die (2+1) Jetrate für das E0, das P und das JADE Schema sehr ähnlich, nur die (2+1) Jetrate für das E Schema ist etwa doppelt so groß. Die Effekte beim K_{\perp} Algorithmus sind sehr klein (< 20%).

Für die in diesem und in den Kapiteln 7 und 8 vorgestellten Analysen wurde das E Schema für den K_{\perp} Algorithmus und das JADE Schema für den JADE Algorithmus benutzt.

Rekombinationsschema	(2+1) Jetrate in % (K1 Alg.)	(2+1) Jetrate in	%(JADE Alg.)
····		ohne z Schnitt	z > 0.1
E Schema	17.0±0.2	40.9±0.9	18.6±0.7
EØ Schema	17.2±0.3	19.4±0.7	8.3 ± 0.5
P Schema	14.9±0.2	23.2±0.7	7.8±0.5
JADE Schema	-	18.4±0.7	8.6±0.5

Tabelle 6.1: Die (2+1) Jetrate für den K_{\perp} Algorithmus ($y_{cut} = 0.5$) und den JADE Algorithmus ($y_{cut} = 0.02$) und unter Benutzung verschiedener Rekombinationsschemata. Der kinematische Bereich für den K_{\perp} Algorithmus ist 44 < Q^2 < 2560 GeV², für den JADE Algorithmus 120 < Q^2 < 3600 GeV².

Rekombinationsschema		K_{\perp} Alg.		JADE Alg.,z ;		> 0.1
	LO	NLO	K	LO	NLO	K
$120 < Q^2 < 3600 \ GeV^2, \ 0.01 < x < 0.1, \ 0.1 < y < 0.95$						
E Schema	42.4	48.1	1.13	90.8	154.7	1.70
E0 Schema	-	-	-	90.8	99.9	1.10
P Schema	-	-	-	90.8	89.3	0.98
JADE Schema	- 1	- 1	-	90.8	99.9	1.10
$44 < Q^2 < 2560 \ GeV^2, \ 0.001 < x < 0.1, \ 0.1 < y < 0.95$						
E Schema	613.4	739.1	1.20	248.2	593.1	2.39
E0 Schema		-	-	248.2	303.3	1.22
P Schema	1 - 1	-	-	248.2	275.7	1.11
JADE Schema	_	~	-	248.2	400.2	1.61

Tabelle 6.2: Der (2+1) Jet Wirkungsquerschnitt (in pb) in LO und NLO (MEPJET) und der K-Faktor für den K_{\perp} und den JADE Algorithmus und unter Benutzung verschiedener Rekombinationsschemata. Die Strukturfunktion MRSA wurde benutzt ($\Lambda_{\overline{MS}}^{(4)} = 230 \text{ MeV}$).

Bei Benutzung der neuen QCD Rechnung von E. Mirkes und D. Zeppenfeld (MEPJET [71]) ist es möglich, in LO und NLO die (2+1) Jet Wirkungsquerschnitte für verschiedene Algorithmen und verschiedene Rekombinationsschemata zu berechnen. Eine interessante Größe ist hierbei der K-Faktor:

$$K = \frac{\sigma_{NLO}}{\sigma_{LO}}.$$

Es sollte $K \approx 1$ sein, da dann die Korrekturen durch die höhere Ordnung klein sind. In LO ist der Wirkungsquerschnitt unabhängig vom gewählten Rekombinationsschema, denn die zwei oder drei

Partonen werden durch einen einzigen Schritt kombiniert. In NLO können mehr Schritte notwendig sein, weil z.B. durch die zusätzliche Abstrahlung von Gluonen mehr als drei Partonen entstehen können.

Die Tabelle 6.2 zeigt die Wirkungsquerschnitte in LO und NLO für die beiden Algorithmen und verschiedene Rekombinationsschemata. Für den K_{\perp} Algorithmus ist nur das E-Schema in das Programm MEPJET eingebaut. Der K-Faktor ist für den K_{\perp} Algorithmus und für das P- und EO. Schema im JADE Algorithmus nahe bei 1. Der kinematische Bereich ist hier für beide Algorithmen 120 $< Q^2 < 3600 \ GeV^2, 0.01 < x < 0.1$. Im Vergleich zu Tabelle 8.3 in Kapitel 8 läßt sich auch der durch die Wahl der Strukturfunktion entstehende systematische Fehler bestimmen. Der (2+1) Jet Wirkungsquerschnitt ändert sich in LO im kinematischen Bereich von $(120 < Q^2 < 3600 \ GeV^2, 0.01 < x < 0.1, 0.1 < y < 0.95)$ für das JADE Schema von 89.7 pb (MRSD'_) zu 90.8 pb (MRSA), also um etwa 1%. Diese geringe Abweichung ist zu erwarten, weil bei diesem hohen x die Strukturfunktion sehr gut bekannt ist.

6.2 Der (2+1) Phasenraum der beiden Algorithmen

Die Abbildung 6.1 zeigt für generierte Ereignisse den erlaubten Phasenraum für (2+1) Jets, bestimmt mit dem JADE und dem K1 Algorithmus. Gezeigt ist ein Teil der gemessenen Daten 1994. Die Verteilung der Punkte ist spiegelsymmetrisch um den Wert z = 0.5 verteilt. Für jedes Ereignis ist z_1 und z_2 eingezeichnet. Aus $z_1 + z_2 = 1$ ergibt sich die Spiegelsymmetrie. Die Abbildung 6.2 zeigt die $x_p - z$ -Verteilung für (2+1) Jets in einem kinematischen Bereich von 120 < Q^2 < 125 GeV^2 , 0.01 < x < 0.011, 0.1 < y < 0.95. Die Ereignisse wurden mit LEPTO 6.1 generiert. Die eingezeichnete durchgezogene Linie zeigt den erlaubten Phasenraum für die (2+1) Jets, bestimmt mit dem K_1 Algorithmus, die gestrichelte Linie den Phasenraum für (2+1) Jets, bestimmt mit dem JADE Algorithmus. In der Schnittmenge der beiden Phasenräume wurden exakt dieselben (2+1) Jets gefunden. Erweitert man den x Bereich, so bleibt der Phasenraum für den K_{\perp} Algorithmus konstant (außer der Bedingung $x_p > z$), der Phasenraum für die JADE-Jets wird jedoch größer (vergleiche Abbildung 1.5). Die Anzahl der (2+1) Jets ist also nur in einem kleinen z Intervall vergleichbar. Wird die Partonschaueroption (ME+PS) in LEPTO 6.1 (untere Abbildung in 6.2) benutzt, so ist um die Anzahl der Jets zu bestimmen - mehr als ein Rekombinationsschritt notwendig. Das ist der Grund warum zwar die Anzahl der (2+1) Jets vergleichbar ist, aber nicht exakt dieselben Ereignisse gefunden werden. Die Rekombination der einzelnen Partonen geschieht in den beiden Algorithmen auf unterschiedliche Weise. Aus Abbildung 6.3 läßt sich ablesen, daß 58 (2+1) Jetereignisse von beiden Algorithmen gefunden wurden, insgesamt 68 (2+1) Jetereignisse im K_{\perp} Algorithmus und 113, bzw. 67, wenn z > 0.1 verlangt wird, (2+1) Jetereignisse mit dem JADE Algorithmus.

Und auch dies gilt nur, solange das Matrixelement ohne Partonschauer als Option im Monte-Carlo-Generator gewählt wird. Doch dann ist die Übereinstimmung - wie bereits erwähnt - trivial zu erklären: Unabhängig vom Jetalgorithmus gibt es nur einen Rekombinationschritt, denn die Anzahl der Teilchen ist 2 (Bornterm) oder 3 (QCDC oder Boson-Gluon-Fusion Ereignisse).

Die Hadronisierung und die Detektorsimulation bewirken, daß die (2+1) Jetraten bei verschiedenen Algorithmen sehr verschieden sind. Die Anzahl der Teilchen (im Kalorimeter haben im Schnitt mehr als hundert Zellen eine Energieablagerung) ist sehr groß, es bestehen viele Möglichkeiten Jets zu bilden. In einem kinematischen Bereich, in dem der JADE Algorithmus und der K_{\perp} Algorithmus auf Detektorebene etwa dieselbe (2+1) Jetrate haben ($160 < Q^2 < 1280 \ GeV^2$ und 0.01 < z < 0.1) werden nur ungefähr ein Drittel der (2+1) Jetereignisse von beiden Algorithmen gefunden. Ein Drittel 65

66

Abbildung 6.1: Die $x_p - z$ -Verteilung für (2+1) Jets in einem kinematischen Bereich von $120 < Q^2 < 3600 \text{ GeV}^2$, 0.01 < x < 0.1, 0.1 < y < 0.95 für den JADE Algorithmus (oben) und $40 < Q^2 < 2560 \text{ GeV}^2$, 0.001 < x < 0.1, 0.1 < y < 0.95 für den K_{\perp} Algorithmus (unten). Nur ein Teil der selektierten Ereignisse (Daten 94) ist eingezeichnet.

Abbildung 6.2: Die $x_p - z$ -Verteilung für (2+1) Jets in einem kinematischen Bereich von $120 < Q^2 < 125GeV^2, 0.01 < x < 0.011, 0.1 < y < 0.95$, bestimmt mit dem JADE- und dem K_{\perp} Algorithmus. Die Daten wurden mit LEPTO 6.1 generiert. Bei der oberen Abbildung wurde nur die Matrixelement (ME)-Option benutzt, bei der unteren Abbildung die Matrixelement und Partonschauer (ME+PS) Option.

Abbildung 6.3: Die Anzahl der Jets in einem kinematischen Bereich von 120 $< Q^2 <$ 125 GeV², 0.01 < x < 0.011, 0.1 < y < 0.95, bestimmt mit dem JADE- und K_{\perp} Algorithmus. Die Daten sind mit LEPTO 6.1 (nur Matrixelement) generiert.

der (2+1) Jetereignisse, die vom K_{\perp} Algorithmus gefunden werden, sind (1 + 1)-Jetereignisse beim JADE Algorithmus und umgekehrt.

6.3 Partonschauereffekt

In Kapitel 3 wurde beschrieben, mit welchen Optionen der Monte-Carlo-Generator benutzt werden kann. Das Matrixelement alleine ist eine LO Rechnung. Die α_4 -Bestimmung wird in NLO durchgeführt. Deshalb wird - als eine Näherung des NLO-Anteils - das Partonschauermodell benutzt. Es erlaubt die Abstrahlung von Gluonen im Anfangs- und Endzustand. Deshalb beträgt auf Partonebene die Anzahl der Teilchen nicht 3 für ein (2+1) Jetereignis, sondern zusätzlich gibt es Teilchen, die durch den Partonschauer entstanden sind (etwa 5 bis 10 zusätzliche Teilchen). Diese zusätzlichen Teilchen können eine ganz andere (2+1) Jetrate zur Folge haben. Dies zeigt die Abbildung 6.4. Die (2+1) Jetrate R_{2+1} ist mit dem Partonschauermodell (Option ME+PS) immer größer als ohne (Option ME).

Der Quotient ist stark von x abhängig: Bei kleinerem x ist die Wahrscheinlichkeit für eine Gluonabstrahlung größer. Deutlich ist auch zu sehen, daß der JADE Algorithmus wesentlich empfindlicher ist. Deswegen wurde der x-Bereich bei der Analyse mit dem JADE Algorithmus auf 0.01 < x < 0.1eingeschränkt. Während ein Schnitt auf die Variable z den Quotienten $R_{2+1}^{MEPS}/R_{2+1}^{ME}$ für den JADE Algorithmus deutlich verkleinert, ist der Effekt beim K_{\perp} Algorithmus klein. Für einen kinematischen Bereich mit $44 < Q^2 < 2560 \ GeV^2$, 0.001 < x < 0.1, wie er für die Analyse mit dem K_{\perp} Algorithmus benutzt wurde, beträgt die (2+1) Jetrate mit der Option ME+PS 17.75%, mit der Option ME 14.20 %. Wendet man in demselben kinematischen Bereich den JADE Algorithmus an, steigt die

Abbildung 6.4: Der Quotient von (2+1) Jetrate mit dem MEPS zu (2+1) Jetrate mit dem ME Modell für den K_{\perp} (oben) und den JADE Algorithmus (unten) mit und ohne z Schnitt als Funktion von z.

(2+1) Jetrate von 4.47 % (Option ME) auf 10.32% (Option ME+PS). Die (2+1) Jetrate ist bestimmt ohne einen Schnitt auf die Variable z. Die Abbildung 6.5 verdeutlicht, daß ein Schnitt auf die Variable z > 0.1 beim JADE Algorithmus den Partonschauereffekt deutlich verkleinert. Eindeutig und unabhängig vom Algorithmus ist zu sehen, daß die zusätzlich durch den Partonschauer gefundenen (2+1) Jetereignisse in der Vorwärtsregion, d.h. bei kleinen Werten von z gehäuft auftauchen. Als Monte-Carlo Generator wurde für diese Untersuchung LEPTO 6.3 benutzt, LEPTO 6.1 führt zu den gleichen Ergebnissen.

6.4 Die Vorwärtsregion

Die Abbildung 6.6 zeigt für (2+1) Jetereignisse die Pseudorapiditätsverteilung des Jets mit der größeren Pseudorapidität, d.h. den Jet, der näher an der Strahlröhre ist. Hier ist es wichtig - wie bereits mehrfach erwähnt - daß dieser Jet nicht zu nahe an der Strahlröhre ist.

Die maximal im Kalorimeter meßbare Pseudorapidität ist $\eta \approx 4$, entsprechend einem Winkel von $\theta \approx 2^{\circ}$. Es ist schwierig, im Experiment zu unterscheiden, ob die Energieablagerung im Kalorimeter in der Vorwärtsregion vom Beobachterjet oder vom Stromjet stammt. Das ist auch der Grund, warum bei der Analyse mit dem JADE Algorithmus der Schnitt auf die Variable z eingeführt wurde: Damit werden vor allem Ereignisse entfernt, bei denen ein Jet schr nahe an der Strahlröhre gefunden wurde.

Ein weiteres Argument für die Einführung des Schnittes auf die Variable z bei Verwendung des JADE. Algorithmus ist die Diskrepanz zwischen der QCD Rechnung und den gemessenen Daten bei Werten von z kleiner 0.1. Dies wird in Kapitel 8 diskutiert. Ein Vorteil beim K_{\perp} Algorithmus ist, daß

67

Abbildung 6.5: Die z- und x_p -Verteilung für (2+1) Jetereignisse, generiert mit LEPTO 6.3 für die Option ME und ME+PS für den JADE und den K_{\perp} Algorithmus. Der kinematische Bereich ist: $44 < Q^2 < 2560 \text{ GeV}^2$, 0.001 < x < 0.1 0.1 < y < 0.95.

die Pseudorapiditätsverteilung auch ohne zusätzlichen Schnitt kaum Jets in der Vorwärtsregion, d.h. $\eta > 3.4$, bzw. ($\eta = -\ln \tan(\frac{4}{3})$) $\theta < 4^{\circ}$, zeigt. Der zusätzliche Schnitt auf die Variable z im JADE Algorithmus entfernt 50 % der Ereignisse.

6.5 Die Beschreibung des Beobachterjets

Die beiden untersuchten Algorithmen - der JADE Algorithmus und der K_{\perp} Algorithmus - benutzen eine unterschiedliche Methode, den Beobachterjet zu identifizijeren und vom Stromjet abzutrennen. Der JADE Algorithmus berechnet den fehlenden longitudinalen und transversalen Impuls, und führt ein Pseudoteilchen mit diesem Impuls ein. Der K_{\perp} Algorithmus berechnet die Distanz zwischen einem Objekt und dem einlaufenden Proton und die Distanz zwischen dem nächsten benachbarten Objekt. Ist die Distanz zum einlaufenden Protonstrahl kleiner, wird das Objekt zum Beobachterjet gezählt. Daher ist auch verständlich, daß die η -Verteilungen des Beobachterjets in den beiden Algorithmen unterschiedlich sind (siehe Abbildung 6.7, oberes und unteres Bild).

Wird im K_{\perp} Algorithmus ebenfalls ein Pseudoteilchen eingeführt, so sind die η -Verteilungen des Beobachterjets im K_{\perp} Algorithmus und dem JADE Algorithmus vergleichbar (siehe Abbildung 6.7, mittleres Bild), ebenso die Verteilungen für den longitudinalen und transversalen Impuls (siehe Abbildung 6.8). Der longitudinale Impuls ist, nachdem ein Pseudoteilchen eingeführt wurde, im Mittel etwa 740 GeV. Im K_{\perp} Algorithmus (ohne Pseudoteilchen) beträgt der longitudinale Impuls, also der Impuls, der im Kalorimeter gemessen wird und mit dem Beobachterjet assoziiert wird, im Mittel etwa 55 GeV.

Abbildung 6.6: Die Pseudorapiditätsverteilung des Vorwärtsjets bestimmt mit dem JADE Algorithmus (ohne z Schnitt weiß, mit Schnitt z > 0.1, grau schattiert) und den K_{\perp} Algorithmus für die Daten.

Abbildung 6.7: Die Pseudorapiditätsverteilung des Stromjets mit dem größeren η und dem Beobachterjet für den JADE (mit z Schnitt) und den K_{\perp} Algorithmus (mit und ohne Pseudoteilchen) für die Daten 94.

Die Pseudorapiditätsverteilung des Beobachterjets liegt mit Pseudoteilchen (algorithmusunabhängig) größtenteils außerhalb des Kalorimeters. Bei welcher der beiden Methoden - mit oder ohne Pseudoteilchen - nun die Behandlung des Beobachterjets besser gelöst ist, läßt sich nicht einfach beantworten. Vergleicht man den Energieanteil im Kalorimeter, der dem Beobachterjet zugeordnet wird, so stellt man fest, daß bei beiden Algorithmen dem Beobachterjet ein relativ großer Anteil der sichtbaren Energie zugeordnet wird. Beim JADE Algorithmus wird nur die Energie im Kalorimeter berücksichtigt, um direkt mit den Ergebnissen des K_{\perp} Algorithmus vergleichen zu können. Der gewählte kinematische Bereich ist der der JADE-Analyse, es werden nur (2+1) Jetereignisse betrachtet. Die Energieaufteilung und die Gesamtenergie sind bei beiden Algorithmen vergleichbar (siehe die Tabelle 6.3).

Energie (GeV^2)	$(K_{\perp} \text{ Alg.})$	(JADE Alg., $z > 0.1$)
sichtbare Energie	118	131
Beobachterjet	55	56
1.Stromjet	46	58
2.Stromjet	17	17

Tabelle 6.3: Die sichtbare Energie im Kalorimeter und die Energien des Beobachterjets und der beiden Stromjets.

Die Abbildung 6.9 zeigt für mit LEPTO 6.1 generierte (2+1) Jetereignisse die Pseudorapiditätsverteilung für den Stromjet mit der größeren Pseudorapidität und den Beobachterjet. Deutlich ist zu sehen, daß durch Einführung des Pseudoteilchens, also durch Berücksichtigung der fehlenden Energie, im JADE Algorithmus eine sehr gute Übereinstimmung zwischen Parton-, Hadron- und Detektorebene

Abbildung 6.8: Die Pseudorapiditätsverteilungen und die Verteilungen der transversalen und longitudinalen Impulse des Beobachterjets für den JADE Algorithmus (mit z Schnitt) und den K_{\perp} Algorithmus (mit Pseudoteilchen) für die Daten 94.

74 KAPITEL 6. VERGLEICH DER JETALGORITHMEN K₁ UND JADE

Abbildung 6.9: Die Pseudorapiditätsverteilungen des Stromjets mit dem größeren η und des Beobachterjets für den JADE (mit z Schnitt) und den K_{\perp} Algorithmus (mit Pseudoteilchen) für Monte-Carlo-Ereignisse.

erreicht werden kann. Beim K_{\pm} Algorithmus ist die Übereinstimmung der verschiedenen Ebenen für den Beobachterjet ebenfalls gut. Der Stromjet unterscheidet sich jedoch deutlich auf Detektorebene, verglichen mit der Parton- oder Hadronebene.

Die Einführung des Pseudoteilchens beeinflußt die η -Verteilung des Stromjets nicht. Die (2+1) Jetrate bleibt ebenfalls unverändert. Dies liegt daran, daß das eingeführte Pseudoteilchen sofort mit dem Beobachterjet assoziiert wird, da es keinen transversalen Impuls besizt.

6.6 Reinheit und Effizienz

Energicauflösung und Winkelauflösung des Kalorimeters, können dazu führen, daß (N+1)-Jetereignisse auf der Partonebene als ((N-1)+1)-Jetereignisse auf der Detektorebene klassifiziert werden. Diese Migration wird zusammengefaßt in den Begriffen Reinheit und Effizienz. Im Idealfall betragen Reinheit und Effizienz 100%. Die Effizienz ist definiert als die Anzahl der Ereignisse, die als (2+1) Jetereignisse generiert und gefunden wurden, dividiert durch die Anzahl der generierten (2+1) Jetereignisse. Die Reinheit ist definiert als die Anzahl der Ereignisse, die als (2+1) Jetereignisse generiert und gefunden wurden, dividiert durch die Anzahl der gefundenen (2+1) Jetereignisse. In der Abbildung 6.10 ist die Korrelation der generierten (Partonebene) und der gefundenen (Detektorebene) Ereignisse für den JADE- und den K_{\perp} -Algorithmus gezeigt. Die Reinheit und Effizienz ist für beide Algorithmen vergleichbar (siehe auch die Tabelle 6.4). Bei beiden Algorithmen werden die Reinheit und die Effizienz für höhere Q^2 -Werte besser. Um einen direkten Vergleich zu ermöglichen, wurde für beide Algorithmen der kinematische Bereich wie folgt festgelegt: $120 < Q^2 < 3600 GeV^2$, 0.01 < x < 0.1, 0.1 < y < 0.95.

Die Werte für die Reinheit und Effizienz beim JADE Algorithmus sind 63.6% und 48.3%. Beim K_{\perp} Algorithmus ist die Reinheit 64.6%, die Effizienz 49.6%.

Q^2	K_{\perp} Algo	orithmus	JADE Algori	thmus, z > 0.1
	Effizienz (in %)	Reinheit (in %)	Effizienz (in %)	Reinheit (in %)
44 - 56	49.8	52.1		
56 - 80	51.0	51.7	-	-
80 - 160	54.6	57.7	_	-
160 - 320	53.9	61.7		-
320 - 640	55.0	65.5	-	-
640 - 2560	71.9	65.7	-	-
total	52.0	56.1	-	-
120 - 240	-	-	45.5	64.6
240 - 720	-	-	50.8	64.0
720 - 3600	-	-	60.0	62.2
total	-	-	48.3	63.6

Tabelle 6.4: Die Effizienz und Reinheit für beide Algorithmen in den Q^2 -Bereichen der jeweiligen Analyse. Der x-Bereich für die Analyse mit dem K_{\perp} Algorithmus ist [0.001, 0.1], für die Analyse mit dem JADE Algorithmus [0.01, 0.1].

Abbildung 6.10: Die Korrelation der generierten (Parlon) und der gefundenen (Detektor) Ereignisse für den JADE und den K_{\perp} Algorithmus.

Zusammenfassend läßt sich sagen, daß sich mit beiden benutzten Jetalgorithmen die (2+1) Jetrate genau bestimmen läßt und eine Bestimmung von α_s möglich ist.

Die Rekombinationsabhängigkeit beträgt - abgesehen vom E Schema im JADE Algorithmus - etwa 20%. Die Korrekturen durch die nächstführende Ordnung sind 10% bis 20%, außer bei Benutzung des E Schemas und des JADE Schemas bei einem x·Bereich von [0.001, 0.1]. Dies zeigt sich auch im Partonschauereffekt. Hier ist es mit dem JADE Algorithmus (JADE Schema) nicht möglich, in einem x·Bereich kleiner als 0.01 eine Analyse durchzuführen. Durch Einführung eines Schnittes auf die Variable z kann der Partonschauereffekt in dem z-Bereich zwischen 0.01 und 0.1 weiter verringert werden. Gleichzeitig werden durch diesen Schnitt Ereignisse mit einer Pseudorapidität nahe der Strahlröhre entfernt. In diesem Bereich - bedingt durch den Phasenraum - findet der K_{\perp} Algorithmus weniger (2+1) Jetereignisse. Die Übereinstimmung der Pseudorapiditätsverteilung des Stromjets mit dem größeren η auf Parton- und Detektorebene ist beim K_{\perp} Algorithmus unbefriedigend. Eine Verbesserung kann hier durch die Einschränkung des kinematischen Bereiches und das Einführen einer konstanten Referenzmasse erzielt werden (siehe Kapitel 7).

Die Bestimmung von α_s mit dem K_{\perp} Algorithmus wird in Kapitel 7, mit dem JADE Algorithmus in Kapitel 8 vorgestellt.

Kapitel 7

Bestimmung von α_s aus Jetraten mit dem K_{\perp} Algorithmus

Die beiden Experimente ZEUS und H1 haben bisher für die α_s -Bestimmung aus der (2+1) Jetrate nur den JADE Algorithmus benutzt. Die QCD Rechnungen zur Bestimmung des (2+1) Jet Wirkungsquerschnittes in nächstführender Ordnung waren bis Ende des Jahres 1995 nur für den JADE Algorithmus erhältlich. Zu diesem Zeitpunkt stellten E. Mirkes und D. Zeppenfeld ein neues Programm (MEPJET [71]) vor, das es erlaubt, DIS-Wirkungsquerschnitte in NLO mit dem Konus, JADE oder K_{\perp} Algorithmus auszurechnen.

Experimentell wurde der K_{\perp} Algorithmus in der ep-Streuung schon lange benutzt [86, 87], Vor- und Nachteile gegenüber dem JADE Algorithmus wurden bereits in Kapitel 6 diskutiert.

Erste Ergebnisse des neuen Programmes MEPJET im Vergleich mit dem Monte-Carlo-Generator LEPTO sollen in diesem Kapitel vorgestellt werden. Um den (2+1) Phasenraum zu definieren, wurde der K_{\perp} Algorithmus benutzt. Der Vergleich zwischen MEPJET und verschiedenen Versionen von LEPTO zeigt jedoch, daß es momentan nicht möglich ist, den kinematischen Bereich gegenüber der Analyse mit dem JADE Algorithmus zu vergrößern. Der (2+1) Jet Wirkungsquerschnitt in LEPTO stimmt nicht mit den Vorhersagen von MEPJET in LO überein, sobald der $z - Q^2$ -Bereich gegenüber dem kinematischen Bereich der JADE Analyse erweitert wird. Außerdem ist der systematische Fehler bei kleinem Q^2 ($Q^2 < 100 \ GeV^2$) beim Bestimmen der (2+1) Jetrate mit dem K_{\perp} Algorithmus nur für den Bereich 120 $< Q^2 < 3600 \ GeV^2$ durchgeführt wird.

7.1 Kinematischer Bereich

Aus experimenteller Sicht ist der K_{\perp} Algorithmus besser geeignet α_s zu bestimmen als der JADE Algorithmus, weil ein größerer kinematischer Bereich betrachtet werden kann:

Der Partonschauereffekt, der ausführlich in Kapitel 6 behandelt wird, ist für kleines x wesentlich größer als für x > 0.01, wenn die Jets mit dem JADE Algorithmus bestimmt werden. Der K_{\perp} Algorithmus ermöglicht es, bei kleinerem x, und damit kleinerem Q^2 eine Analyse durchzuführen, bei der der Partonschauereffekt noch klein ist. Es sollte prinzipiell möglich sein, α_s nicht nur in drei Q^2 Bereichen zu messen (siehe Kapitel 8), sondern in sechs Q^2 Bereichen, da die Anzahl der Ereignisse größer und 77

damit der statistische Fehler kleiner ist. Mit einer Bestimmung von α , in sechs Q^2 Bereichen ist auch eine Untersuchung des "Laufens" von α , aussagekräftiger.

Wie die Abbildung 6.4 in Kapitel 6 zeigt, sind der Effekt des Partonschauers für den K_1 Algorithmus kleiner als für den JADE Algorithmus. Deswegen kann der kinematische Bereich ausgedehnt werden zu kleinerem x und damit kleinerem Q^2 . Folgender Bereich wurde festgelegt:

- $44 < Q_{DA}^2 < 2560 \ GeV^2$
- $0.001 < x_{DA} < 0.1$
- 0.1 < y_{DA},y_{el} < 0.95

Die Anzahl der Ereignisse beträgt 27359, d.h. die fünffache Datenmenge im Vergleich zur Analyse mit dem JADE Algorithmus (siehe Kapitel 8) steht zur Verfügung. Der Q^2 -Bereich wurde in sechs Bereiche unterteilt, Tabelle 7.1 zeigt die Anzahl der Ereignisse in den verschiedenen Q^2 -Bereichen und das mittlere $\langle Q^2 \rangle$.

$Q^2 (\text{GeV}^2)$	$\langle Q^2 \rangle (\overline{GeV})$	Anzahl der Ereignisse
44 - 56	49.6	6331
56 - 80	66.6	7282
80 - 160	110.5	8022
160 - 320	220.1	3352
320 - 640	445.0	1490
640 2560	1141.0	882
44 - 2560	151.4	27359

Tabelle 7.1: Die Anzahl der Ereignisse für die sechs Regionen von Q^2 und den gesamten Q^2 -Bereich für eine Auswertung der Daten mit dem K_{\perp} Algorithmus.

Ein weiteres Problem ist die Beschreibung der Daten durch die vom Monte-Carlo-Generator generierten Ereignisse. Die Abbildung 7.1 zeigt, daß LEPTO 6.1 die Q^2 -Abhängigkeit der (2+1) Jetrate für $Q^2 < 160 \ GeV^2$ in einer anderen Weise beschreibt als die gemessenen Daten. Die Ereignisse von LEPTO 6.1 wurden mit den vorgegebenen Sollwerten generiert, außer PARL(8) (siehe Kapitel 3), das auf 0.005 gesetzt wurde. PARL(8) = 0.005 wurde gewählt, weil mit diesem Parameter eine sehr gute Übereinstimmung in LO mit PROJET und DISJET gefunden wurde, allerdings für (2+1) Jets, die mit dem JADE Algorithmus bestimmt wurden (siehe Tabelle 3.3 in Kapitel 8).

Die Ereignisse, die mit LEPTO 6.3 generiert wurden, sind mit den Sollparametern erzeugt, d.h. PARL(8) = 0.0001. Die Übereinstimmung mit den Daten auf Detektorebene ist wesentlich besser als mit LEPTO 6.1, die Korrekturfaktoren für Hadronisierung und Detektorakzeptanz sind ebenfalls kleiner als mit LEPTO 6.1. Deshalb werden, vom experimentellen Standpunkt aus gesehen, die Daten mit LEPTO 6.3 verglichen und korrigiert.

7.2 Jetkinematik

Die Abbildung 7.2 zeigt die Pseudorapiditätsverteilung η der beiden Stromjets der (2+1) Jetereignisse im HERA Laborsystem (oben). Die η -Verteilung des Jets mit dem größeren η , d.h. des Jets, der näher

Abbildung 7.1: Die (2+1) Jetrate R_{2+1} für die gemessenen Daten; LEPTO 6.1 und LEPTO 6.3, jeweils Detektor- und Partonebene in Abhängigkeit von Q_{DA}^2 .

an der Strahlröhre liegt, ist räumlich besser vom Beobachterjet getrennt, als im JADE Algorithmus. Beide Monte-Carlo Generatoren (LEPTO 6.3 und ARIADNE 4.06) beschreiben die Daten ausreichend gut. Für die Bestimmung der Anzahl der Jets wurden die Viererimpulse in das Breitbezugssystem transformiert. Die in diesem Kapitel gezeigten Verteilungen sind göltig für das Laborsystem, um einen direkten Vergleich mit den Verteilungen des JADE Algorithmus zu vereinfachen.

In der Abbildung 7.2 sind auch die z- und x_p -Verteilung, sowie die Verteilung der invarianten Masse der zwei Stromjets m_{ij} und die transversale Impulsverteilung p_T der (2+1) Jetereignisse für die Daten und die Ereignisse auf der Detektorebene der Monte-Carlo Generatoren ARIADNE 4.06 und LEPTO 6.3 zu sehen. Der transversale Impuls p_T der (2+1) Jetereignisse wurde aus den Variablen x_p , z und Q^2 bestimmt:

$$p_T = \sqrt{Q^2 \cdot \frac{1}{x_p} \cdot (1 - x_p) \cdot z(1 - z)}$$

Nur etwa 10% - 15% der (2+1) Jetereignisse liegen in dem Bereich 0 < z < 0.1. Im JADE Algorithmus sind es 50%. Ein kleiner Wert von z entspricht einem Jet in der Vorwärtsregion, in der die Jetenergie und der Jetwinkel nicht ausreichend genau gemessen werden können.

Bei der Analyse mit dem JADE Algorithmus, die in Kapitel 8 behandelt wird, mußte ein Schnitt auf die Variable z eingeführt werden, um den Partonschauereffekt klein zu halten und um Jets mit kleinem Winkel θ auszuselektieren.

Abbildung 7.2: Die Pseudorapiditätsverteilungen der beiden Stromjets der (2+1) Jetereignisse und die $z_{\gamma}, x_{p\gamma}, m_{ij\gamma}$ und p_T -Verteilungen der (2+1) Jetereignisse. Die (2+1) Jetereignisse wurden bestimmt mit dem K_{\perp} Algorithmus ($y_{cut} = 0.5$) und Q_{MIX}^2 als Referenzmasse.

7.3 Jetrekonstruktion und Jetraten

Die Tabelle 7.2 zeigt die (2+1) Jetraten für die Daten und die beiden Monte-Carlo-Generatoren LEPTO 6.3 und ARIADNE 4.06 auf Detektorebene. Im Gegensatz zum JADE Algorithmus wird die (2+1) Jetrate mit dem K_{\perp} Algorithmus mit steigendem Q^2 kleiner. Das liegt an der skalierten invarianten Masse, die hier m_{ij}^2/Q^2 ist und nicht m_{ij}^2/W^2 wie im JADE Algorithmus. Die Übereinstimmung mit den Monte-Carlo-generierten Daten ist gut, im Mittel ist die gemessene (2+1) Jetrate der Daten etwas geringer. Als Referenzmasse in der Jetdefinition wurde Q^2 gewählt. Die Referenzmasse darf beim K_{\perp} Algorithmus nicht von x abhängen, da sonst der (n-Jet) Wirkungsquerschnitt nicht mehr faktorisierbar ist. Q^2 wurde wie folgt berechnet:

$$Q_{MIX}^2 = s \cdot z_{el} \cdot y_{JB}$$

 Q_{MIX}^2 wurde benutzt, um den Korrekturfaktor klein zu halten, d.h. die mit den Daten gemessene Jetrate sollte der Jetrate auf der Partonebene entsprechen. Die Bezeichnung "MIX" bezieht sich darauf, daß zwei Methoden - die Elektron- und die Jaquet-Blondel-Methode - benutzt wurden, um Q^2 zu berechnen (siehe Kapitel 5). Die Abbildung 7.5 zeigt unter anderem die (2+1) Jetrate für Q_{DA}^2 und Q_{MIX}^2 als Referenzmasse. Die (2+1) Jetrate mit Q_{DA}^2 als Referenzmasse ist deutlich geringer als für Q_{MIX}^2 als Referenzmasse. Die Tabellen 7.2 und 7.3 zeigen, daß die (2+1) Jetrate mit Q_{MIX}^2 als Referenzmasse für die Daten vergleichbar ist mit den Vorhersagen von LEPTO 6.3 auf Partonebene, so daß sich ein kleiner Korrekturfaktor ergibt. Bei Q_{DA}^2 als Referenzmasse ergibt sich ein größerer Korrekturfaktor, weil die (2+1) Jetrate deutlich kleiner ist, als die (2+1) Jetrate auf der Partonebene. Die Tabelle 7.3 zeigt die (2+1) Jetrate auf Parton- und Hadronebene für LEPTO 6.3 und ARIADNE

Q^2 (GeV ²)	Daten	LEPTO 6.3	ARIADNE 4.06
44 - 56	22.7 ± 0.6	23.9±0.6	26.4±0.5
56 - 80	18.7±0.5	22.4±0.5	23.2±0.4
80 - 160	15.3±0.4	18.8±0.4	16.9±0.3
160 - 320	12.3 ± 0.6	13.3±0.5	11.7±0.4
320 - 640	10.5±0.8	10.5±0.7	8.5±0.6
640 - 2560	5.3 ± 0.8	4.3±0.4	2.8±0.4
44 - 2560	16.9±0.2	19.1±0.2	19.0±0.2

Tabelle 7.2: Die (2+1) Jetrate in % und der statistische Fehler, bestimmt mit dem K_{\perp} Algorithmus $(y_{cut} = 0.5, Referenzmasse <math>Q_{MIX}^2)$ für die Daten und die Monte-Carlo-Generatoren LEPTO 6.3, ARIADNE 4.06 (Detektorebene) für die sechs Regionen von Q^2 und den gesamten Q^2 -Bereich.

4.06. Als Abschneideparameter wurde $y_{cut} = 0.5$ gewählt. Die Tabelle 7.4 gibt die Korrekturfaktoren für die Hadronisierung C_{2+1}^h , die Detektorakzeptanz C_{2+1}^d sowie den Gesamtkorrekturfaktor C_{2+1} an. Die Korrekturfaktoren beider Generatoren sind sehr ähnlich. Auffällig ist, daß für größeres Q^2 die Korrekturfaktoren bis zu 50% betragen. In einem Bereich also, der im JADE Algorithmus die kleinsten Korrekturfaktoren geliefert hat, allerdings für einen x Bereich von 0.01 < x < 0.1.

Die Abbildung 7.3 zeigt die unkorrigierten Jetraten in Abhängigkeit vom Abschneideparameter y_{rut} im Breit- und im Laborsystem. Auffällig ist, daß der K_{\perp} Algorithmus im Breitsystem mehr (0+1) Jets, also Beobachterjets, findet als im Laborsystem. Verständlich wird das, betrachtet man Abbildung 2.4 in Kapitel 2. Das FCAL "schrumpft" im Breitsystem zusammen, d.h. der K_{\perp} Algorithmus, der die transversale Energie betrachtet, addiert oft alle Energieablagerung im Kalorimeter zum Beobachterjet. Das geschieht nicht nur auf der Detektorebene, sondern auch auf der Parton- und Hadronebene (siche Abbildung 7.4). Im JADE Algorithmus - schon ersichtlich durch die Definition des Pseudoteilchens und des relativ kleinen Abschneideparameters ($y_{cut} = 0.02$) - gibt es kaum (0+1) Jetereignisse.

Der gewählte Wert für den Abschneideparameter y_{cut} im K_{\perp} Algorithmus dieser Analyse ist 0.5. Mit diesem y_{cut} ist die (0+1) Jetrate etwa 15% und Ereignisse höherer Ordnung, also (3+1) Jetereignisse, sind selten (< 3%).

	LEF	PTO 6.3	ARIAD	NE 4.06
Q^2 (Ge	V ²) Hadron	Parton	Hadron	Parton
44 - 8	56 23.8±0.5	5 23.1±0.5	26.0±0.5	25.3±0.5
56 - 8	30 20.2±0.5	5 20.8±0.5	20.5±0.4	21.2±0.4
80 - 1	60 14.6±0.4	1 15.9±0.4	13.2±0.3	15.4 ± 0.3
160 - 3	20 8.8±0.4	10.8±0.5	7.2±0.3	9.3±0.4
320 - 6	40 4.9±0.5	6.8±0.6	4.0±0.4	4.9±0.4
640 2	560 2.3±0.5	3.2±0.5	1.5±0.3	1.6±0.3
44 - 2	560 16.5±0.2	17.2±0.2	16.4±0.2	17.4±0.2

Tabelle 7.3: Die (2+1) Jetrate und der statistische Fehler, bestimmt mit dem K_{\perp} Algorithmus $(y_{cut} = 0.5, Referenzmasse Q^2)$ für die Hadron- und die Partonebene für die Monte-Carlo-Generatoren LEPTO 6.3, ARIADNE 4.06 in den sechs Regionen von Q^2 und den gesamten Q^2 -Bereich.

		LEPTO 6.3			_	ARIADNE 4.06		
Q^2 (GeV ²)	C_{2+1}^d	C_{2+1}^h	C ₂₊₁	$R_{2+1}^{Kor.}$	C_{2+1}^{d}	C_{2+1}^{h}	C2+1	RKor.
44 - 56	1.00	0.97	0.97	22.0 ± 1.0	0.98	0.97	0.96	21.8+0.9
56 80	0.90	1.03	0.93	17.4±0.9	0.88	1.03	0.91	17.0+0.8
80 - 160	0.78	1.09	0.85	13.0±0.7	0.78	1.17	0.91	13.9+0.6
160 - 320	0.66	1.23	0.81	10.0±0.9	0.62	1.29	0.79	07+08
320 - 640	0.47	1.39	0.65	6.8±1.2	0.47	1.23	0.58	61+10
640 - 2560	0.53	1.39	0.74	3.9±1.0	0.54	1.07	0.57	30100
44 - 2560	0.86	1.04	0.90	15 2+0 3	0.96	1.06	0.01	0.0±0.9
				10.010.0	0.00	1.00	0.92	15.5±0.3

Tabelle 7.4: Die Korrekturfaktoren für die (2+1) Jetrate, bestimmt mit dem K_{\perp} Algorithmus für die Hadronisierung C_{2+1}^h , Detektorakzeptanz C_{2+1}^d , sowie den Gesamtkorrekturfaktoren C_{2+1} und die korrigierten (2+1) Jetraten R_{2+1}^{Kor} für die Monte-Carlo-Generatoren LEPTO 6.3, ARIADNE 4.06 für die sechs Regionen von Q^2 und den gesamten Q^2 -Bereich.

Die Abbildung 7.5 zeigt die (2+1) Jetrate für Q_{MIX}^2 und Q_{DA}^2 als Referenzmasse und im Vergleich die (2+1) Jetrate für eine konstante Referenzmasse $(40 \, GeV^2)$. Wie erwartet wächst die (2+1) Jetrate, wenn man eine konstante Referenzmasse wählt, d.h. die Anzahl der (2+1) Jetreignisse steigt ebenfalls, allerdings ist der Korrekturfaktor wesentlich größer (bis zu 80%). Der Korrekturfaktor ist in derselben Größenordnung wie bei der Wahl von Q_{DA}^2 als Referenzmasse. Weil Q_{DA}^2 immer kleiner ist als Q_{MIX}^2 , ist auch die (2+1) Jetrate kleiner.

Abbildung 7.3: Unkorrigierte relative Jetraten R_j (Daten 94), bestimmt mit dem K_{\perp} Algorithmus im Breit- und im Labor-Bezugssystem in Abhängigkeit von y_{cut} .

Abbildung 7.4: Relative Jetraten R_j (LEPTO 6.3), bestimmt mit dem K_{\perp} Algorithmus im Breit-Bezugssystem auf der Parton- und der Hadronebene in Abhängigkeit von y_{cut}.

Abbildung 7.5: Die (2+1) Jetrate für konstante (40 GeV²) Referenzmasse und für Q_{MIX}^2 und Q_{DA}^2 als Referenzmasse in Abhängigkeit von Q_{DA}^2 . Der Wert des Abschneideparameters ist 0.5.

7.4 Systematische Untersuchungen

Die Tabelle 7.5 zeigt die experimentellen systematischen Unsicherheiten durch die Ereignisselektion und durch die Korrektur der Daten mit ARIADNE 4.06. Angegeben sind die korrigierte (2+1) Jetrate und der statistische Fehler. Dann folgt eine Auflistung der experimentellen systematischen Untersuchungen und die jeweilige Abweichung zur korrigierten (2+1) Jetrate. Die Abweichung bezieht sich auf die korrigierte (2+1) Jetrate, die durch die jeweilige systematische Untersuchung bestimmt wurde. Der systematische Fehler durch die Ereignisselektion wurde durch die Variation des $E - p_e$. Schnittes und des y_{el} . Schnittes und durch die Wahl eines unterschiedlichen Elektronsuchalgorithmus abgeschätzt. Die Unsicherheit in der Energiebestimmung wurde durch Variation der im Kalorimeter gemessenen Energie um $\pm 5\%$ bestimmt.

Der experimentelle systematische Fehler wird dominiert durch die Wahl der Referenzmasse. Die Größe Q_{MIX}^2 bewirkt, daß der Korrekturfaktor für die Detektorakzeptanz und die Hadronisierung relativ klein bleibt. Die Q_{DA}^2 Verteilung stimmt sehr gut mit der Q^2 Verteilung auf Partonebene überein, wird aber Q_{DA}^2 als Referenzmasse benutzt, weicht die (2+1) Jetrate auf Detektorebene bis zu 80% von der (2+1) Jetrate auf Partonebene ab. Der Tabelle 7.5 ist zu entnehmen, daß bei Verwendung von Q_{DA}^2 und Q_{MIX}^2 als Referenzmasse sich die korrigierte (2+1) Jetrate um bis zu 25% unterscheidet. Der experimentelle systematische Fehler wurde dadurch bestimmt, daß der Fehler aller systematischen Untersuchungen quadratisch addiert wurde. Der systematische Fehler ist für Ereignisse mit hohem Q^2 ($Q^2 > 100 \ GeV^2$) kleiner.

Durch die Abhängigkeit des (2+1) Jet Wirkungsquerschnittes, und damit der (2+1) Jetrate, von der Wahl der Renormalisierungsskala μ_r und der Faktorisierungskala μ_f (siehe Kapitel 1) entsteht ein weiterer systematischer Fehler. Als Skala wird in dieser Analyse Q^2 benutzt, ebenso können der

Q^2	44 56	56 80	80-160	160-320	320 640	640 2560	44 2560
R ^{kor} .	22.0	17.4	13.0	10.0	6.8	3.9	15.2
stat Fehler	±1.0	±0.9	±0.7	±0.9	±1.2	±1.0	±0.3
	Änd	erung de	er (2+1) J	etrate dur	ch:		
ARIADNE 4.06	0.2	04	+0.9	-0.3	0.7	-0.9	+0.3
$E_{col} \cdot 1.05$	+0.3	-0.1	-1.5	-0.4	-0.7	-0.4	-0.1
$E_{cal} \cdot 0.95$	-0.4	0.5	-0.4	-0.8	+0.1	+0.3	-0.4
$y_{el} > 0.7$	+0.3	+0.2	-0.9	+0.6	+0.7	+0.9	+0.3
$45 < E - p_z < 60 \ GeV^2$	-1.1	-1.8	-1.0	-0.9	0.3	-1.1	-1.0
EEXOTIC	-0.5	-0.9	-0.5	-0.2	-0.3	-0.6	-0.4
Q^2_{DA} als Skala	5.2	3.2	-2.5	-1.2	-1.5	-0.5	-3.1
Syst. Fehler (exp.)	+0.4 -5.3	+0.2 -3.9	+0.9 -3.3	+0.6 -1.8	+0.7 -1.8	+0.9 -1.7	+0.4 -3.3

Tabelle 7.5: Die experimentellen Unsicherheiten durch Ereignisselektion, Monte-Carlo Generator und Wahl der Referenzmasse. Aufgetragen sind die korrigierte (2+1) Jetrate und die Abweichung der (2+1) Jetrate durch die jeweilige systematische Untersuchung in den einzelnen Q^2 -Bereichen.

transversale Impuls p_T^2 oder die invariante Masse m_i , benutzt werden. Um den systematischen Fehler abzuschätzen, wurde die Wahl der Skala $\mu_f^2 = \mu_r^2 = Q^2$ variiert in einem Bereich von $\mu_f^2 = \mu_r^2 = 0.4 \cdot Q^2$ bis $\mu_f^2 = \mu_r^2 = 2.0 \cdot Q^2$.

Die Abbildung 7.6 verdeutlicht die Abhängigkeit des (2+1) Wirkungsquerschnittes von der Wahl der Renormalisierungs- (μ_r) und Faktorisierungsskala (μ_f) für MEPJET in LO und NLO in verschiedenen Q^2 -Bereichen. Der x-Bereich ist [0.001, 0.1]. In den Bereichen mit kleinem Q^2 ist der systematische Fehler durch die Skalenunsicherheit größer. Der K-Faktor (siehe Kapitel 6) ist für höheres Q^2 näher bei 1 als bei niedrigem Q^2 .

7.5 Vergleich zwischen MEPJET und LEPTO

MEPJET ist die einzige QCD Rechnung, die es erlaubt in NLO für ep-Streuung unter Verwendung des K_{\perp} Algorithmus den (2+1) Jet Wirkungsquerschnitt auszurechnen. Die gemessenen Daten müssen mit dem Monte-Carlo-Generator LEPTO auf die Partonebene korrigiert werden, bevor sie mit den Ergebnissen von MEPJET verglichen werden können. In LO sollten deshalb MEPJET und LEPTO dieselben Ergebnisse für den (2+1) Jet Wirkungsquerschnitt liefern.

Für diese Untersuchung wurden drei Versionen von LEPTO (6.1, 6.3, 6.4) benutzt. Der K_{\perp} Algorithmus wurde mit sieben verschiedenen Abschneideparametern y_{cwt} für die Bestimmung der (2+1) Jetrate angewendet. Untersucht wurde ebenfalls, ob die Q^2 -Abhängigkeit der (2+1) Jetrate in dem Monte-Carlo-Generator und in der QCD Rechnung ähnlich sind. Unterschiedliche Abschneideparameter zu benutzen ist wichtig, weil im K_{\perp} Algorithmus der Phasenraum nur von dem benutzten y_{cut} abhängt und die Ergebnisse unabhängig vom benutzten y_{cut} sein sollten. Der Monte-Carlo-Generator LEPTO wurde in den verschiedenen Versionen (6.1, 6.3, 6.4) mit den Sollparametern benutzt, um die Ereignisse zu erzeugen, außer PARL(8) = 0.005 in LEPTO 6.1 und PARL(9) = 10 in LEPTO 6.4.

Abbildung 7.6: Abhängigkeit des (2+1) Jet Wirkungsquerschnittes σ_{2+1} von der Wahl der Renormalisierungs- μ_r^2 und Faktorisierungsskala μ_f^2 für MEPJET in LO und NLO in verschiedenen Q^2 -Bereichen. Der z-Bereich ist jeweils [0.001, 0.1]. Der (2+1) Phasenraum wurde bestimmt mit dem K_{\perp} Algorithmus und Q^2 als Referenzmasse.

87

PARL(8) ist der Abschneideparameter y_{cut}^{LEPTO} für den JADE Algorithmus, der intern in LEPTO benutzt wird.

Allerdings stimmen sowohl der (2+1) Jet Wirkungsquerschnitt als auch die Q^2 Abhängigkeit der QCD Rechnung MEPJET in LO nicht mit den Resultaten aus der Monte-Carlo Rechnung LEPTO überein (siehe Tabelle 7.6 und 7.7). Dies liegt sicherlich auch daran, daß LEPTO intern den JADE Algorith-

Ycut	MEPJET	LEPTO 6.1	LEPTO 6.3	LEPTO 6.4
0.1	3032.4	1417.0	3392.1	3097.2
0.2	1859.5	1095.6	2399.1	2072.5
0.3	1233.5	874.0	1686.9	1434.3
0.4	836.1	702.9	1188.3	988.9
0.5	613.4	575.1	866.3	722.1
1.0	220.4	250.2	329.1	264.3
2.0	72.9	88.6	118.8	93.1

Tabelle 7.6: Der (2+1) Jet Wirkungsquerschnitt (in pb) bestimmt mit dem K_{\perp} Algorithmus für MEPJET und die Monte-Carlo-Generatoren LEPTO 6.1, 6.3 und 6.4. In MEPJET, LEPTO 6.3 und LEPTO 6.4 wurde die Strukturfunktion MRSA benutzt, in LEPTO 6.1 MRSD_, jeweils im kinematischen Bereich $44 < Q^2 < 2560 \text{ GeV}^2$, 0.001 < x < 0.1, 0.1 < y < 0.95.

Q^2 (GeV ²)	MEPJET	LEPTO 6.1	LEPTO 6.3	LEPTO 6.4
44 - 56	28.5%	23.1%	28.4%	25.1%
56 - 80	31.1%	30.2%	31.5%	29.6%
80 - 160	27.8%	29.3%	27.3%	31.9%
160 - 320	8.9%	12.8%	8.8%	9.9%
320 - 640	2.7%	3.8%	2.9%	2.9%
640 - 2560	0.9%	0.8%	1.2%	0.7%
	(24	1) Jet Wirku	igsquerschnitt	in pb
44 - 2560	613.4	575.1	866.3	722.1

Tabelle 7.7: Der (2+1) Jet Wirkungsquerschnitt für $y_{cut} = 0.5$ (K_{\perp} Algorithmus) und der prozentuale Anteil des (2+1) Wirkungsquerschnittes in den angegebenen Q^2 Bereichen (0.001 < x < 0.1).

mus benutzt um die Anzahl der (2+1) Jets zu definieren, so daß ein Teil des erlaubten Phasenraumes im K_{\perp} Algorithmus durch den JADE Algorithmus nicht abgedeckt ist (siehe die Abbildungen 1.5 in Kapitel 1 und 2.6 in Kapitel 2). Dies kann erklären, warum LEPTO 6.1 (*PARL*(8) = 0.005) einen kleineren (2+1) Jet Wirkungsquerschnitt als MEPJET berechnet. In LEPTO 6.3 ist der erlaubte (2+1) Phasenraum größer, weil *PARL*(8) = 0.0001 ist. Der (2+1) Jet Wirkungsquerschnitt ist für LEPTO 6.3 immer größer als die Vorhersagen von MEPJET. In LEPTO 6.4 wird der effektive Wert für y_{cut}^{LEPTO} aus *PARL*(8) \equiv y_{cut} und *PARL*(9) \equiv *M* berechnet ($M \gg y_{cut} \cdot W^2$). Für *PARL*(8) = 0.01 und *PARL*(9) = 10 ist der effektive Wert für den Abschneideparameter meist ~ 0.001.

Die Abbildung 7.7 zeigt die in LO und NLO von MEPJET berechnete z- und x_p -Verteilung für einen Q^2 -Bereich von 44 – 2560 GeV² und einem z-Bereich von 0.001 – 0.1. Ebenso gezeigt sind die p_T und die m_{ij} -Verteilung der (2+1) Jets. Der (2+1) Jet Wirkungsquerschnitt in NLO ist etwa 20% größer als in LO. Ein Vergleich mit der Abbildung 6.5 zeigt, daß die Übereinstimmung bezüglich der Form der Verteilungen zwischen LEPTO 6.3 und MEPJET gut ist. Der Effekt des Partonschauers ist vergleichbar mit den NLO Korrekturen: Beide sind bei kleinen Werten von x_p und z lokalisiert.

Wie bereits ausgeführt, ist jedoch der (2+1) Jet Wirkungsquerschnitt in LEPTO 6.3 - obwohl er bezüglich der Form der Verteilungen übereinstimmt - zwischen 10% und 60% größer (abhängig vom benutzten y_{cut} im K_{\perp} Algorithmus) als der (2+1) Jet Wirkungsquerschnitt von MEPJET. Die beste Übereinstimmung ergibt sich mit LEPTO 6.1 für einen Abschneideparameter von 0.5.

Abbildung 7.7: Die x_y , z_r , m_{ij} , und p_T -Verteilung für (2+1) Jetereignisse berechnet mit MEPJET (LO und NLO). Die (2+1) Jetereignisse wurden mit dem K_{\perp} Algorithmus bestimmt, als Referenzmasse wurde Q^2 benutzt. Der kinematische Bereich wurde auf 44 < Q^2 < 2560 GeV², 0.001 < x < 0.1, 0.1 < y < 0.95 beschränkt.

Weil keine befriedigende Übereinstimmung in LO zwischen MEPJET und den verschiedenen Versionen von LEPTO zu erzielen ist und der systematische Fehler bei kleinerem Q^2 größer ist, wurde der kinematische Bereich auf

$$20 < Q^* < 3600 \ GeV^2$$
, $0.01 < x < 0.1$, $0.1 < y < 0.95$

beschränkt. Der (2+1) Jet Wirkungsquerschnitt wurde mit dem K_{\perp} Algorithmus auch mit einer

89

konstanten Referenzmasse $s = 120 \ GeV^2$ berechnet, weil mit dieser Wahl der Referenzmasse mehr (2+1) Jetereignisse bestimmt werden.

Mit diesen neuen Bedingungen für den kinematischen Bereich und den K_{\perp} Algorithmus soll noch einmal MEPJET mit den verschiedenen Versionen von LEPTO verglichen werden, als Referenzmasse wurde $s = 120 \ GeV^2$ gewählt ($y_{cut} = 0.5$).

Der in LEPTO benutzte Abschneideparameter PARL(8), der den (2+1) Phasenraum bestimmt, wurde in einem Bereich von 0.1 bis 0.00001 variiert, um den Einfluß auf den (2+1) Jet Wirkungsquerschnitt zu untersuchen. Das Ergebnis ist in Abbildung 7.8 dargestellt: Für einen Wert von PARL(8) < 0.001ändert sich der (2+1) Wirkungsquerschnitt nicht mehr. LEPTO 6.3 hat einen etwa 10% höheren (2+1) Jet Wirkungsquerschnitt als LEPTO 6.1. LEPTO 6.4 und LEPTO 6.1 stimmen beide für $y_{cut} < 0.001$ überein. Verglichen mit LEPTO 6.1 und LEPTO 6.3 ergibt LEPTO 6.4 über den ganzen untersuchten y_{cut} -Bereich etwa denselben (2+1) Jet Wirkungsquerschnitt. Intern wird in LEPTO 6.4 ein effektiver y_{cut} ausgerechnet, der von PARL(8) und PARL(9) abhängt. Um diesen Effekt zu studieren, wurde PARL(9) über einen weiten Bereich variiert (siehe Abbildung 7.9). Deutlich ist zu sehen, daß es für LEPTO 6.4 keine Parameterwahl gibt, die - unabhängig vom benutzten y_{cut} Algorithmus - eine Übereinstimmung zwischen MEPJET (LO) und LEPTO 6.4 ergibt. Eine bestmögliche Übereinstimmung zwischen MEPJET (LO) und LEPTO 6.4 (2+1) Jet Wirkungsquerschnittes ergibt sich für PARL(8) = 0.001 und PARL(9) = 0.1 in LEPTO 6.4.

Allerdings konnte LEPTO 6.4 zum Zeitpunkt der Analyse noch nicht für die Korrektur der Daten verwendet werden, weil es noch keine Version des Programmes DJANGO gab, in dem LEPTO 6.4 berücksichtigt ist. Das Programm DJANGO ist ein Interface der Programme LEPTO und HERACLES. Für die Korrektur der Daten muß ein Monte-Carlo-Generator benutzt werden, der die QED Strahlungskorrekturen (HERACLES) miteinbezieht.

Dieses Interface gibt es für LEPTO 6.1. Die Daten werden deshalb mit LEPTO 6.1 + HERACLES 4.1 korrigiert. Der Wert für PARL(8) ist 0.005. Die Tabelle 7.8 zeigt, daß die Übereinstimmung gut ist, solange der benutzte Wert für Y_{cut} im K_{\perp} Algorithmus größer als 0.4 ist. Die Tabelle 7.8 zeigt den (2+1) Jet Wirkungsquerschnitt, wobei der (2+1) Phasenraum definiert ist durch den K_{\perp} Algorithmus mit konstanter Referenzmasse $(s = 120 \ GeV^2)$.

Yeut	MEPJET	LEPTO 6.1
0.1	470.9	345.8
0.2	329.3	271.9
0.3	254.7	226.4
0.4	206.5	191.5
0.5	171.0	164.8
1.0	84.9	84.9
2.0	34.0	35.4

Tabelle 7.8: Der (2+1) Jet Wirkungsguerschnitt σ_{2+1} (in pb) bestimmt mit dem K_{\perp} Algorithmus mit einer konstanten Referenzmasse $s = 120 \text{ GeV}^2$ für MEPJET und den Monte-Carlo-Generator LEPTO 6.1. In MEPJET und LEPTO 6.1 wurde die Strukturfunktion MRSD_ benutzt. Der kinematische Bereich ist: $120 < Q^2 < 3600 \text{ GeV}^2$, 0.01 < x < 0.1, 0.1 < y < 0.95.

Als weitere Untersuchung wird Q^2 als Referenzmasse im K_{\perp} Algorithmus zur α_o . Bestimmung angewendet. In LEPTO 6.1 und 6.3 wurde als Strukturfunktion MRSD'_ mit $\Lambda_{\overline{MS}}^4 = 230 \ MeV$ gewählt, ebenso in MEPJET. Die Tabelle 7.9 vergleicht die (2+1) Jet Wirkungsquerschnitte in LEPTO 6.1

Abbildung 7.8: Der (2+1) Jet Wirkungsquerschnitt bestimmt mit dem K_{\perp} Algorithmus mit einer konstanten Referenzmasse $s = 120 \text{ GeV}^2$ in Abhängigkeit von dem Abschneideparameter $y_{cut} \equiv$ PARL(8) in LEPTO 6.1, LEPTO 6.3 und LEPTO 6.4. Der kinematische Bereich ist $_{\delta}120 < Q^2 < 3600 \text{ GeV}^2$, 0.01 < x < 0.1, 0.1 < y < 0.95. Gezeigt werden drei verschiedene y_{cut} . Werte (0.2, 0.5, 1.0) im K_{\perp} Algorithmus.

Abbildung 7.9: Der (2+1) Jet Wirkungsquerschnitt bestimmt mit dem K_{\perp} Algorithmus mit einer konstanten Referenzmasse $s = 120 \text{ GeV}^2$ in Abhängigkeit von dem Parameter PARL(9) in LEPTO 6.4. Der kinematische Bereich wurde auf $120 < Q^2 < 3600 \text{ GeV}^2$, 0.01 < x < 0.1, 0.1 < y < 0.95 beschränkt. Gezeigt werden drei verschiedene y_{cut} -Werte (0.2, 0.5, 1.0) im K_{\perp} Algorithmus.

und 6.3 (ME und ME+PS Option) und MEPJET (LO und NLO). Der Unterschied für den (2+1) Jet Wirkungsquerschnitt zwischen LEPTO 6.1 und MEPJET in LO beträgt etwa 5%. Als systematische Untersuchung zur α_s -Bestimmung, die in Kapitel 8 mit dem JADE Algorithmus durchgeführt wird, genügt die vorliegende Übereinstimmung. In der Tabelle 7.9 sind auch die Ergebnisse der (2+1) Wirkungsquerschnitte von LEPTO 6.3 angegeben, wie schon in diesem Abschnitt ausführlich diskutiert wurde, gibt es keine befriedigende Übereinstimmung zwischen MEPJET und LEPTO 6.3, wenn die Sollparameter in LEPTO 6.3 benutzt werden. Ebenfalls in diesem Abschnitt wurde bereits gezeigt, daß LEPTO 6.1 die Q^2 -Abhängigkeit der (2+1) Jetrate nicht genau beschreibt. Dies trifft jedoch nur für $Q^2 < 100 \text{ GeV}^2$ und z < 0.01 zu, so daß eine Korrektur der Daten mit LEPTO 6.1 in dem betrachteten kinematischen Bereich möglich ist.

(2+1) Jet Wirkungsquerschnitt in pb	MEPJET	LEPTO 6.1	LEPTO 6.3
LO, ME	42.3	44.7	50.7
NLO, bzw. ME+PS	47.5	51.6	67.0

Tabelle 7.9: Vergleich des (2+1) Jet Wirkungsquerschnittes berechnet mit MEPJET und LEPTO 6.1 und 6.3 mit dem K_{\perp} Algorithmus und Q^2 als Referenzmasse.

7.6 Jetkinematik im eingeschränkten kinematischen Bereich

Um den systematischen Fehler klein zu halten und die Ergebnisse der α_s -Bestimmung direkt mit den Ergebnissen der Analyse mit dem JADE Algorithmus vergleichen zu können (siehe Kapitel 8), wurde derselbe kinematische Bereich, der für die Analyse mit dem JADE Algorithmus benutzt wurde, gewählt:

 $120 < Q^2 < 3600 \ GeV^2$, 0.01 < x < 0.1, 0.1 < y < 0.95.

In diesem kinematischen Bereich stimmen auch die Vorhersagen der Monte-Carlo-Generatoren LEPTO 6.1 und LEPTO 6.3 mit den Daten befriedigend überein.

Die Abbildung 7.5 zeigt, daß die (2+1) Jetrate bei hohem Q^2 höher ist, wenn eine konstante Referenzmasse statt Q^2_{MIX} oder Q^2_{DA} benutzt wird. Um den kinematischen Bereich in drei Q^2 -Bereiche zu unterteilen, und um eine Bestimmung der Kopplungskonstanten in Abhängigkeit von Q^2 zu ermöglichen, sollte die Anzahl der (2+1) Jetereignisse groß sein. Um mögliche systematische Effekte zu untersuchen, wird versucht, die Kopplungskonstante für den kinematischen Bereich 120 $< Q^2 < 3600 \ GeV^2$ mit Q^2_{DA}, Q^2_{MIX} und $s = 120 \ GeV^2$ als Referenzmasse zu bestimmen. Als Abschneideparameter wird $y_{cut} = 0.5$ gewählt.

Zuerst wird untersucht, wie groß der Partonschauereffekt in diesem kinematischen Bereich ist und ob die Beschreibung der (2+1) Jetvariablen ausreichend gut ist, wenn eine konstante Referenzmasse benutzt wird.

Die Abbildung 7.10 zeigt die x_{p} - und z-Verteilung für (2+1) Jetereignisse einmal mit konstanter Referenzmasse (oben) und einmal mit Q^2 als Referenzmasse (unten). Die Ereignisse sind mit LEPTO 6.1 mit der Option ME generiert und werden verglichen mit Ereignissen die mit der Option ME+PS generiert wurden. Der Partonschauereffekt ist klein (10%) und \cdot im Gegensatz zu (2+1) Jetereignissen, die mit dem JADE Algorithmus bestimmt wurden \cdot gleichmäßig im Phasenraum verteilt. Bei den (2+1) Jets, die mit dem JADE Algorithmus bestimmt wurden, sind die zusätzlich durch die Partonschauer erzeugten Jets bei kleinem z.

Der erlaubte Phasenraum für (2+1) Jets ist mit $s = 120 \ GeV^2$ als Referenzmasse deutlich größer als für Q^2 als Referenzmasse. Die (2+1) Phasenraumgrenzen für den K_{\perp} Algorithmus wurden in Kapitel 2 angegeben. Weil $Q^2 \ge 120 \ GeV^2 = s$ ist, ist der Phasenraum für eine konstante Referenzmasse größer.

MEPS -월 250 Đ 250 MEPS ME ap 200⊧ ME 200 150 150 100 100 50 50 شتأ بطحين بالصب فالصاد فالعا 0^t-يتبيدا يعتقلين ببايدينا يتباعد 0^L 0.2 0.4 0.6 0.8 0.1 0.2 0.3 0.4 0.5 ά. 1 Z 480 MEPS 5 70 MEPS G 160 **-140** --- ME dR₂, 60 af 120 50 100 40 80 30 60 20Ē 40 10 20 0 0.2 0.4 0.6 0.8 0.1 0.2 0.3 0.4 0.5 Ο X, z

Abbildung 7.10: Die x_{p^-} und die z-Verteilung für Ereignisse generiert mit LEPTO 6.1 mit der Option Matrizelement (ME) und der Option Matrizelement+Partonschauer (ME+PS). Die (ξ +1) Jetereignisse wurden mit dem K₁ Algorithmus bestimmt, als Referenzmasse wurde $s = 120 \text{ GeV}^2$ (obere Abbildung) bzw. Q^2 (untere Abbildung) benutzt. Der kinematische Bereich ist $120 < Q^2 < 3600 \text{ GeV}^2$, 0.01 < x < 0.1, 0.1 < y < 0.95.

Da - wie in Kapitel 6 (Abbildung 6.9) gezeigt wurde - die Pseudorapiditätsverteilung des Stromjets mit dem größeren η auf Detektorebene nicht mit der Verteilung auf Partonebene übereinstimmt, wenn Q_{MIX}^2 als Referenzmasse benutzt wird, soll untersucht werden, ob eine konstante Referenzmasse im K_{\perp} Algorithmus die Übereinstimmung der η -Verteilung auf Parton- und Detektorebene verbessert. Die Abbildung 7.11 zeigt die Pseudorapiditätsverteilung der zwei Stromjets der (2+1) Jetereignisse und z, x_p , die invariante Masse m_{ij} und den transversalen Impuls p_T der (2+1) Jetereignisse. Verglichen werden die gemessenen Daten und die Detektor- und Detektorebene stimmen für alle gezeigten Verteilungen gut überein. Die Vorteilungen auf Parton- und Detektorebene stimmen für alle gezeigten Verteilungen gut überein. Die Monte-Carlo Ereignisse beschreiben die Daten gut. Die Pseudorapiditätsverteilung des Stromjets mit dem größeren η zeigt eine wesentlich bessere Übereinstimmung zwischen Detektor- und Partonebene als mit Q^2 als Referenzmasse. Diese Verbesserung ist nicht nur auf den eingeschränkten kinematischen Bereich zurückzuführen.

Eine konstante Referenzmasse hat außerdem gegenüber Q^2 als Referenzmasse den Vorteil, daß der erlaubte (2+1) Phasenraum größer ist.

Abbildung 7.11: Die Pseudorapiditätsverteilungen und die x_{p} , z, m_{ij} und p_T -Verteilungen für (2+1)Jetereignisse generiert mit LEPTO 6.1 (Parton- und Detektorebene) und für die gemessenen Daten. Die (2+1) Jetereignisse wurden mit dem K_{\perp} Algorithmus bestimmt, als Referenzmasse wurde s =120 GeV² benutzt. Der kinematische Bereich ist 120 < Q² < 3600 GeV², 0.01 < x < 0.1, 0.1 < y <0.95.

Ein Vergleich der Abbildungen 7.11 und 7.12 zeigt, daß alle gezeigten Verteilungen sehr gut übereinstimmen. Die Vorhersagen von MEPJET in LO und NLO stimmen gut mit den Vorhersagen von LEPTO 6.1 mit der Option ME, bzw. ME+PS überein. Der K-Faktor ist nahe bei 1. Die NLO Korrekturen sind gleichmäßig über den Phasenraum verteilt.

Abbildung 7.12: Die x_p -, z-, m_{ij} - und p_T -Verteilung für (2+1) Jetereignisse berechnet mit MEPJET (LO und NLO). Die (2+1) Jetereignisse wurden mit dem K_{\perp} Algorithmus bestimmt, als Referenzmasse wurde $s = 120 \text{ GeV}^2$ benutzt. Der kinematische Bereich ist $120 < Q^2 < 3600 \text{ GeV}^2$, 0.01 < z < 0.1, 0.1 < y < 0.95.

96KAPITEL 7. BESTIMMUNG VON OS AUS JETRATEN MIT DEM KA ALGORITHMUS

7.7 Bestimmung von α , aus Jetraten mit dem K_{\perp} Algorithmus

In diesem Kapitel wird die Kopplungskonstante a_s mit dem K_\perp Algorithmus im kinematischen Bereich

$$120 < Q^2 < 3600 \ GeV^2$$
, $0.01 < x < 0.1$, $0.1 < y < 0.95$

durchgeführt. Es wurde bereits gezeigt, daß MEPJET und LEPTO 6.1 im eingeschränkten kinematischen Bereich in ihren Vorhersagen für den (2+1) Jet Wirkungsquerschnitt auf 5% genau übereinstimmen.

Die gemessene und korrigierte (2+1) Jetrate wird nun mit der von MEPJET (NLO) verglichen. Die Tabelle 7.10 zeigt die gemessene (2+1) Jetrate und die (2+1) Jetrate auf der Detektorebene, welche mit LEPTO 6.1 generiert wurden. Die Abhängigkeit der (2+1) Jetrate von der Wahl der Referenzmasse $(Q_{DA}^2 \text{ oder } Q_{MIX}^2)$ ist sehr groß. Die Korrekturfaktoren betragen 40% bzw. 60%. Trotzdem stimmt die korrigierte (2+1) Jetrate, einmal bestimmt mit Q_{DA}^2 und einmal bestimmt mit Q_{MIX}^2 als Referenzmasse, überein.

	(2+1) Jetrate (in %)
Unkorrigierte Daten (Q_{DA}^2)	3.4±0.3
LEPTO 6.1, Detektorebene (Q_{DA}^2)	3.3±0.3
Unkorrigierte Daten (Q^2_{MIX})	10.2 ± 0.5
LEPTO 6.1 Detektorebene (Q_{MIX}^2)	9.9±0.4
LEPTO 6.1 (MEPS)	4.7
Korrigierte Daten (Q_{DA}^2), LEPTO 6.1	4.8±0.5
Korrigierte Daten (Q_{MIX}^2) , LEPTO 6.1	4.8±0.6

Tabelle 7.10: Die (2+1) Jetrate $(y_{cut} = 0.5)$, bestimmt mit dem K_{\perp} Algorithmus und Q^2 als Referenzmasse, für die unkorrigierten und korrigierten Daten und LEPTO 6.1. Der kinematische Bereich ist $120 < Q^2 < 3600 \text{ GeV}^2$, 0.01 < x < 0.1, 0.1 < y < 0.95.

Q^2 -Bereich (GeV ²)	MEPJET	LEPTO 6.1	
120~3600	LO, ME	42.3	44.7
120 - 3600	NLO, bzw. ME+PS	47.5	51.6
120-240	LO, ME	19.3	19.7
120-240	NLO, bzw. ME+PS	22.7	24.7
240-720	LO, ME	18.9	20.5
240 720	NLO, bzw. ME+PS	21.1	22.9
7203600	LO, ME	4.1	4.0
720-3600	NLO, bzw. ME+PS	3.7	4.0

Tabelle 7.11: Vergleich des (2+1) Jet Wirkungsquerschnittes berechnet mit MEPJET und LEPTO 6.1 mit dem K_{\perp} Algorithmus und Q^2 als Referenzmasse.

Eine Unterteilung des kinematischen Bereiches in drei Q^2 Bereiche ist wegen der geringen Statistik mit einem Abschneideparameter von $y_{cut} = 0.5$ und Q_{DA}^2 als Referenzmasse nicht sinnvoll. Für Q_{MIX}^2 als Referenzmasse ist die Statistik ausreichend, so daß der Q^2 -Bereich in drei Regionen (120 $< Q^2 <$ 240 GeV², 240 $< Q^2 < 720$ GeV², 720 $< Q^2 < 3600$ GeV²) unterteilt werden kann. Die(2+1) Jetrate für die Daten, für die Detektor und die Partonebene von LEPTO 6.1 und die korrigierte (2+1) Jetrate mit statistischem Fehler, jeweils bestimmt mit dem K_{\perp} Algorithmus und $s = Q_{MIX}^2$ als Referenzmasse, sind in Tabelle 7.12 angegeben.

Q^2 -Bereich (GeV ²)	$R_{2+1}^{Daten 94}(in\%)$	$R_{2+1}^{L61,DET}(in\%)$	$R_{2+1}^{L61,PAR.}(in\%)$	R_{2+1}^{kor} (in %)
120 3600	10.2±0.5	9.9±0.4	4.7	4.8±0.6
120 240	11.6±0.9	10.8±0.7	6.6	7.1±1.1
240 720	10.9±0.8	10.0±0.6	4.5	4.9±1.0
720 3600	4.5±0.8	4.4±0.6	2.0	2.0±1.0

Tabelle 7.12: Die(2+1) Jetrate für die Daten $R_{2+1}^{Daten94}$, die Detektor- $R_{2+1}^{L61,DET}$ und die Partonebene $R_{2+1}^{L61,PAR}$ von LEPTO 6.1 und die korrigierte (2+1) Jetrate R_{2+1}^{hort} mit statistischem Fehler, bestimmt mit dem K_{\perp} Algorithmus und $s = Q_{MIX}^2$ als Referenzmasse.

Es bietet sich außerdem an, eine konstante Referenzmasse zu wählen anstatt Q_{DA}^2 oder Q_{MIX}^2 . Durch die Wahl einer konstanten Referenzmasse ist auch gewährleistet, daß der Wert der Referenzmasse auf Parton- und Detektorebene identisch ist. Der systematische Fehler durch das Bestimmen der Referenzmasse, wie hei der Rekonstruktion von Q^2 , entfällt. Ein weiterer, schon erwähnter Vorteil ist die höhere Anzahl von (2+1) Jetereignissen. Als Referenzmasse wurde $s = 120 \ GeV^2$ gewählt und als Abschneideparameter ein Wert von $y_{cut} = 0.5$. Die Tabellen 7.13 und 7.11 vergleichen die Vorhersagen für den (2+1) Wirkungsquerschnitt von LEPTO 6.1 und MEPJET in den einzelnen Q^2 -Bereichen für Q^2 und für eine konstante Referenzmasse. Die Vorhersagen von MEPJET und LEPTO 6.1 in LO sind in guter Übereinstimmung in jedem betrachteten Q^2 -Bereich. Zum Vergleich des (2+1)Jet Wirkungsquerschnittes wurde auch LEPTO 6.3 untersucht. Der (2+1) Jet Wirkungsquerschnitt in LO ist etwa 30% höher als der in MEPJET berechnete.

Auffallend ist, daß der K-Faktor ($K = \frac{\sigma_{NLO}}{\sigma_{LO}}$) nahe bei 1 ist und das Partonschauermodell in LEPTO die NLO Korrekturen überschätzt.

Der K-Faktor und die Abhängigkeit von der Wahl der Rekombinationsskala μ_R und Faktorisierungsskala μ_F sind in Abbildung 7.13 zu schen. μ_R und μ_F wurden von $0.4 \cdot Q^2$ bis $2 \cdot Q^2$ variiert. In NLO ist der systematische Fehler durch die Wahl der Renormalisierungs- und Faktorisierungsskala wesentlich kleiner als in LO. In der oberen Abbildung wurde Q^2 als Referenzmasse gewählt, in der unteren Abbildung wurde eine konstante Referenzmasse im K_\perp Algorithmus verwendet.

Die Tabelle 7.14 gibt einen Überblick über die (2+1) Jetrate der gemessenen Daten und den Vorhersagen von LEPTO 6.1 auf Parton- und Detektorebene. Der Korrekturfaktor für Detektorakzeptanz und Hadronisierung ist abhängig vom gewählten Q^2 . Bereich und beträgt zwischen 10% und 20%.

Q^2 Bereich (GeV ²)	(2+1) Jet Wirkungsquerschnitt in pb	MEPJET	LEPTO 6.1	LEPTO 6.3
120-3600	LO, ME	171.0	164.8	225.4
120 3600	NLO, bzw. ME+PS	168.1	209.7	269.0
120 240	LO, ME	34.2	35.5	46.3
120 240	NLO, bzw. ME+PS	34.0	45.9	58.6
240 720	LO, ME	87.5	87.3	117.7
240 720	NLO, bzw. ME+PS	85.4	110.3	138.2
720 3600	LO, ME	49.3	42.0	61.4
720 3600	NLO, bzw. ME+PS	48.7	53.5	72.2

Tabelle 7.13: Vergleich des (2+1) Jet Wirkungsquerschnittes, berechnet mit MEPJET und LEPTO 6.1 und 6.3 mit dem K_{\perp} Algorithmus und $s = 120 \text{ GeV}^2$ als Referenzmasse.

Q^2 -Bereich (GeV ²)	$R_{2+1}^{Daten94}(in\%)$	$R_{2+1}^{LE1,DET}(in\%)$	$R_{2+1}^{L61,PAR.}(in\%)$	R_{2+1}^{kor} (in %)
120 3600	16.1±0.6	16.9±0.4	17.5	18.0±0.7
120-240	7.8±0.7	9.4±0.5	10.8	10.0±0.9
240-720	17.9±1.0	19.0±0.6	20.6	19.9±1.2
720-3600	29.1±1.0	27.3±1.2	25.9	28.4±1.6

Tabelle 7.14: Die(2+1) Jetrate für die Daten $R_{2+1}^{Doten94}$, die Detektor- $R_{2+1}^{L61,DET}$ und die Partonebene $R_{2+1}^{L61,PAR}$ von LEPTO 6.1 und die korrigierte (2+1) Jetrate R_{2+1}^{bor} mit statistischem Fehler, bestimmt mit dem K_{\perp} Algorithmus und $s = 120 \text{ GeV}^2$ als Referenzmasse.

Die Bestimmung der Kopplungskonstanten α_s geschieht auf folgende Weise: Mit der QCD Rechnung MEPJET wird für eine Anzahl verschiedener $\Lambda_{\overline{MS}}^{(5)}$ Werte der (2+1) Jet Wirkungsquerschnitt σ_{2+1} und der totale Wirkungsquerschnitt σ_{total} bestimmt. Die (2+1) Jetrate R_{2+1} ergibt sich dann mit

$$R_{2+1} = \frac{\sigma_{2+1}}{\sigma_{total}} \ .$$

Die Abbildung 7.14 zeigt die von MEPJET (NLO) vorhergesagte (2+1) Jetrate in Abhängigkeit von $\Lambda_{\overline{MS}}^{(5)}$. Außerdem ist eingezeichnet die (2+1) Jetrate der korrigierten Daten und der statistische Fehler. Die (2+1) Jetrate bezieht sich auf den K_{\perp} Algorithmus mit einer konstanten Referenzmasse $s = 120 \ GeV^2$ und einem kinematischen Bereich von 120 bis 3600 GeV^2 . Die Tabelle 7.16 zeigt die α_s . Werte für die 3 Q^2 -Bereiche und für den kombinierten Bereich sowie die α_s -Werte extrapoliert zu $Q = M_{Z^0}$. Nur der statistische Fehler ist angegeben.

Ein Vergleich mit der α_4 -Bestimmung aus der (2+1) Jetrate mit dem JADE Algorithmus und eine Diskussion der Ergebnisse findet in Kapitel 8 statt.

Auffallend ist die Q^2 Abhängigkeit von α_{\bullet} , wenn die (2+1) Jetrate mit einer konstanten Referenzmasse bestimmt wird: $\alpha_{\bullet}(Q^2)$ ist nahezu konstant. Für die Renormalisierungs- und Faktorisierungsskala wurde Q^2 gewählt. Alternativ kann p_T^2 oder m_{ij}^2 benutzt werden. D.h. α_{\bullet} wird nicht in Abhängigkeit von Q^2 sondern in Abhängigkeit von p_T^2 oder m_{ij}^2 bestimmt. Der mittlere transversale Impuls und die mittlere invariante Masse in den drei Q^2 Bereichen ist für eine konstante Referenzmasse im K_{\perp} Algorithmus nahezu konstant (siehe Tabelle 7.15).

		s = 12	0 GeV ²	$s = Q^2$		
Q^2	$\langle Q \rangle$	$< p_T >$	$\langle m_{ij} \rangle$	< p _T >	$ < m_{ij} > $	
(GeV ²)	(GeV)	(GeV)	(GeV)	(GeV)	(GeV)	
120 - 240	13.3	10.7	27.3	12.0	26.9	
240 - 720	20.4	10.3	26.0	17.8	39.4	
720 - 3600	35.5	11.0	30.3	26.2	53.0	
120 - 3600	22.1	10.6	27.3	15.5	34.9	

Tabelle 7.15: Die Mittelwerte von Q, m_{ij} und p_T in den einzelnen Q^2 -Bereichen und dem Gesamtbereich für Q^2 bei Benutzung des K_{\perp} Algorithmus und $s = 120 \text{ GeV}^2$, bzw. $s = Q^2$ als Referenzmasse.

Abbildung 7.13: Der (2+1) Jet Wirkungsquerschnitt σ_{2+1} bestimmt mit dem K_{\perp} Algorithmus mit Q^2 als Referenzmasse (oben) und einer konstanten Referenzmasse $s = 120 \text{ GeV}^2$ (unten) in Abhängigkeit von der Wahl des Renormalisierungs- und Faktorisierungsskala. Der kinematische Bereich ist $120 < Q^2 < 3600 \text{ GeV}^2$, 0.01 < x < 0.1, 0.1 < y < 0.95.

Abbildung 7.14: Die von MEPJET (NLO) vorhergesagte (2+1) Jetrate in Abhängigkeit von $\Lambda_{MS}^{(5)}$. Außerdem ist eingezeichnet die (2+1) Jetrate der korrigierten Daten (durchgezogene Linie) und der statistische Fehler (gestrichelte Linie). Die (2+1) Jetrate wurde bestimmt mit dem K_{\perp} Algorithmus mit einer konstanten Referenzmasse $s = 120 \text{ GeV}^2$ in einem kinematischen Bereich von $Q^2 = 120$ bis 3600 GeV².

Q^2	< Q >	$\Lambda \frac{(5)}{MS}$	a (Q)	$\alpha_s(M_{Z^0})$	Referenzmasse
<u>(Gev-)</u>	(Gev)	(Mev)			
120 - 240	13.3	181 +58 -46	0.159 +0.009 -0.008	0.114 +0.005	$s = 120 \ GeV^2$
240 - 720	20.4	260 +74	0.157 +0.009 -0.008	0.121 +0.005	$s = 120 \ GeV^2$
720 - 3600	35.5	337 ⁺¹⁰⁶ -99	0.148 +0.009	0.126 +0.006 -0.005	$s = 120 \ GeV^2$
120 - 3600	22.1	251 +58 -46	0.154 +0.006	0.120 +0.004 -0.004	$s = 120 \ GeV^2$
120 - 240	13.3	342 ⁺¹⁰⁸ -97	0.184 +0.018	0.126 +0.008 -0.009	$s = Q^2$
240 - 720	20.4	268 ⁺¹²⁹	0.158 +0.014 -0.014	0.121 +0.008	$s = Q^2$
720 - 3600	35.5	96 +126 -75	0.120 +0.017	0.105 +0.013 -0.019	$s = Q^2$
120 - 3600	22 .1	227 +116 -82	0.151 +0.013 -0.013	0.118 +0.008	$s = Q^2$

Tabelle 7.16: Die gemessenen Werte von $\Lambda_{\overline{MS}}^{(5)}$ und α_s für die drei Regionen von Q^2 und den gesamten Q^2 -Bereich. Zwei unterschiedliche Referenzmassen wurden benutzt ($s = 120 \text{ GeV}^2$ und $s = Q^2$). Nur der statistische Fehler ist angegeben.

Kapitel 8

Bestimmung von α_s aus Jetraten mit dem JADE Algorithmus

Wurde in Kapitel 7 die α_s -Bestimmung mittels (2+1) Jetraten, die mit dem K_{\perp} Algorithmus ermittelt wurde, durchgeführt, so wird in diesem Kapitel die α_s -Bestimmung mit dem JADE Algorithmus erfolgen. Eine eingehende systematische Untersuchung und Fehlerdiskussion werden dargestellt.

Eine ausführliche Zusammenfassung dieser Analyse findet sich auch in internen ZEUS-Berichten [88, 89], die daraus resultierende Veröffentlichung ist zu finden in [22].

In diesem Kapitel werden zusätzlich wichtige systematische Untersuchungen durchgeführt, die in der Publikation nicht berücksichtigt wurden, weil sie zu diesem Zeitpunkt noch nicht möglich waren:

- Anpassung von $\Lambda_{\overline{MS}}^{(5)}$ an die (2+1) Jetrate mit MEPJET.
- Korrektur der Daten mit LEPTO 6.3.
- Rekombinationsabhängigkeit des JADE Algorithmus.
- Vergleich mit der α_s -Bestimmung mit dem K_{\perp} Algorithmus.

8.1 Die Wahl des kinematischen Bereiches

Für die Analyse mit dem JADE Algorithmus wurde folgender kinematische Bereich festgelegt:

- $120 \le Q_{DA}^2 \le 3600 \ GeV^2$
- $0.01 \leq x_{DA} \leq 0.1$
- $0.1 \leq y_{DA}, y_{el} \leq 0.95$

Ein hohes z und Q^2 wurden gewählt, um die Effekte des Partonschauers (siehe auch Kapitel 6) und die Unsicherheiten in der Hadronisierung und der Partondichtefunktion klein zu halten. Hohes y selektiert Ereignisse, deren hadronische Aktivität nicht in der Vorwärtsregion liegt (siehe Abbildung 8.1). Bei hohem Q^2 sind außerdem die Jetstrukturen wesentlich besser ausgeprägt und die Unsicherheiten bei

der Bestimmung des (2+1) Jet Wirkungsquerschnittes sind reduziert. Damit ist gewährleistet, daß die Korrekturfaktoren, mit denen die gemessenen (2+1) Jetraten auf die Partonebene korrigiert werden, bei gleichzeitig genügend hoher Statistik klein sind. Die Anzahl der Ereignisse in dem obengenannten kinematischen Bereich betrug 4472. Der Q^2 -Bereich wurde weiter in drei Regionen unterteilt, um $\alpha_s(Q)$ bei ansteigender Energieskala zu messen: zum einen um die Konsistenz der Ergebnisse zu pröfen, andererseits um das "Laufen" der starken Wechselwirkungskonstanten zu zeigen. Die drei Regionen sind: $120 < Q^2 < 240, 240 < Q^2 < 720, 720 < Q^2 < 3600 GeV^2$. Die Anzahl der Ereignisse in den jeweiligen Q^2 . Bereichen ist 1649, 2048 und 775.

8.2 Jetkinematik

Bei den beobachteten (2+1) Jetereignissen liegt typischerweise ein Stromjet in der Vorwärtsrichtung, d.h. im FCAL Kalorimeter. Oft ist es schwer, den Stromjet mit dem kleineren Jetwinkel, d.h. mit dem größerem η , vom Beobachterjet zu unterscheiden. Manchmal werden auch die Energieablagerungen des Beobachterjets, die in die inneren Ringe des Kalorimeters hineinlecken, fälschlicherweise als Stromjet erkannt.

Um eine bessere Trennung des Stromjets mit dem größeren η vom Beobachterjet zu gewährleisten, kann ein Schnitt auf die Variable η oder θ , z.B. $\theta > 10^{\circ}$, eingeführt werden.

Eine Alternative ist ein Schnitt auf die Variable z (kleine Werte von z entsprechen einem großem Wert von η):

$$z_1 = \frac{E_1 \cdot (1 - \cos \theta_1)}{\sum_{i=1,2} E_i \cdot (1 - \cos \theta_i)}$$

Diese Formel gilt für einen der beiden Stromjets. $z_1 + z_2 = 1$. Die Variable z wird im Experiment aus der Energie E_i und dem Winkel θ_i des Jets bestimmt, auf der Partonebene wird z aus den Viererimpulsen berechnet (siehe Kapitel 1).

In dieser Analyse wurde folgender Schnitt auf die Partonvariable z gewählt: 0.1 < z < 0.9. Dieser Schnitt reduziert den Anteil von Stromjets mit Winkeln kleiner als 8° von 30% auf 10%. Dies wird deutlich in der Abbildung 8.2: Ohne z-Schnitt ist der Anteil an Jets mit großem η deutlich höher. Allerdings halbiert sich die Anzahl der (2+1) Jets nach dem z-Schnitt.

Abbildung 8.2: η -Verteilung für den Stromjet eines (2+1) Jetereignisses mit dem größeren η . Der schattierte Bereich zeigt die η -Verteilung mit dem 0.1 < z < 0.9 Schnitt.

Die Abbildungen 8.3 und 8.4 zeigen, daß die unkorrigierten Daten sehr gut mit den von LEPTO 6.1 generierten Daten auf Detektorebene übereinstimmen. Der z Schnitt ist bereits berücksichtigt. Im nächsten Schritt werden die Daten auf die Partonebene korrigiert, um sie direkt mit den Vorhersagen der beiden QCD Rechnungen DISJET und PROJET vergleichen zu können.

Idealerweise sollten die korrigierten Verteilungen mit den Vorhersagen der QCD Rechnung übereinstimmen. Das bestätigt die Abbildung 8.5: (a) zeigt die z-Verteilung. Die korrigierten Daten stimmen für z > 0.1 sehr gut mit den Vorhersagen der Programme PROJET und DISJET überein. Für kleine z-Werte (z < 0.1) ist eine Erhöhung bei den Daten zu sehen. Wie schon ausführlich dargestellt wurde, ist ein kleiner Wert von z mit einem kleinen Winkel des Stromjets gleichzusetzen. Die Rekonstruktion kleiner Winkel des Stromjets ist jedoch experimentell schwierig und mit einer großen Unsicherheit verbunden. Die Abbildung 8.5 (a) zeigt die Vorhersagen von PROJET und DISJET einmal als Histogramm und einmal als Funktion. Ein Vergleich zwischen dem Histogramm, mit der gleichen Bingröße wie die Daten, und den korrigierten Datenpunkten zeigt, daß diese für z < 0.1 nicht übereinstimmen. Die x_p , p_T m_{ij} -Verteilungen stimmen schr gut mit den NLO Vorhersagen überein, die Verteilungen zeigen nur die Ereignisse mit z > 0.1.

Abbildung 8.3: η -Verteilung für die beiden Stromjets mit Pseudorapiditäten η_1 und η_2 mit dem 0.1 < z < 0.9 Schnitt für die unkorrigierten Daten und die von LEPTO 6.1 (MEPS) generierten Daten (Detektorebene).

Abbildung 8.4: z-, z_p -, p_T - und m_{ij} -Verteilungen für die beiden Stromjets mit dem 0.1 < z < 0.9 Schnitt (außer z-Verteilung) für die unkorrigierten Daten und die von LEPTO 6.1 generierten Daten (Detektorebene).

Abbildung 8.5: (a) Die z-Verteilung für die korrigierten Daten verglichen mit den Vorhersagen von DISJET und PROJET (ohne z > 0.1 Schnitt). (b),(c),(d) Die x_p , p_T und m_{ij} -Verteilungen werden mit dem Schnitt z > 0.1 auf die Variable z dargestellt.

8.3 Jet Rekonstruktion und Jetraten

Die Jetraten wurden auf der Parton-, Hadron- und Detektorebene mit Hilfe des JADE Algorithmus (im JADE Schema, siehe Tabelle 2.1 in Kapitel 2) bestimmt. Auf der Detektorebene wurde der modifizierte JADE Algorithmus (mit Pseudoteilchen) angewendet, um den Beobachterjet richtig zu beschreiben. Als Referenzmasse wird die invariante Masse des hadronischen Systems W^2 benutzt. Benutzt wurden auf der Partonebene (Option ME+PS) und auf der Hadronebene die Vierervektoren der Hadronen und auf der Detektorebene die Energieablagerungen der Zellen im Kalorimeter. Für die gemessenen Daten und die generierten Ereignisse auf Detektorebene wurde W^2_{vis} folgendermaßen berechnet:

107

$$W_{vis}^2 = s \cdot (1 - x_{DA}) \cdot y_{JB}$$

Durch diese Wahl der Rekonstruktionsmethoden, die Doppel-Winkel-Methode für z und die Jaquet-Blondel-Methode für y bei der Berechnung von W_{vis}^2 , wurden die Detektoreffekte minimiert.

Die gemessenen Jetraten können nicht direkt mit den theoretisch bestimmten Raten verglichen werden. Sie müssen auf die Partonebene korrigiert werden, um Detektorakzeptanzeffekte, Effekte der Hadronisierung und der Abstrahlung von Photonen im Anfangs- oder Endzustand zu berücksichtigen. Dazu wurden die gemessenen Daten mit simulierten Daten verglichen. Als Monte-Carlo-Generator wurde LEPTO 6.1 benutzt. Das LUND Fragmentationsmodell wurde für die Hadronisierung benutzt. Um die QED Strahlungskorrekturen zu berücksichtigen, wurde HERACLES 4.1 benutzt, d.h. das Interface DJANGO6 2.1 [90]. In LEPTO 6.1 wurde die ME+PS Option gewählt, d.h. zusätzlich zu dem Matrixelement in LO wurden Prozesse in NLO mit den Partonschauern simuliert. Die Jetraten und die Jeteigenschaften konnten mit dem ME+PS Monte-Carlo Datensatz sehr gut beschrieben werden. Die Abbildung 8.6 und die Tabelle 8.1 zeigen die unkorrigierten Jetraten in den verschiedenen Q^2 -Bereichen im Vergleich mit den Jetraten des Monte-Carlo-Generators auf der Detektorebene.

	$120 < Q^2 < 240$		240 < ($Q^2 < 720$	720 < 6	$720 < Q^2 < 3600$		$120 < Q^2 < 3600$	
	(G	eV 2)	(G	<u>eV ²)</u>	(G	eV ²)	(G	eV ²)	
Feat	R ₂₊₁	R2+1	R ₂₊₁	R 2+1	R2+1	R ₂₊₁	R2+1	R ₂₊₁	
	Daten 94	LEPTO61	Daten 94	LEPTO61	Daten 94	LEPTO61	Dates 94	LEPTO61	
0.010	11.5±0.9	10.9±0.4	14.0±0.8	13.6±0.3	12.8±1.2	14.6±0.5	12.9±0.5	13.2±0.3	
0.015	9.8±0.7	9.2±0.4	10.6±0.7	10.8±0.3	10.3±1.1	12.3 ±0.5	10.3±0.5	10.6±0.2	
0.020	7.8±0.7	7.8±0.4	8.9±0.6	8.9±0.3	9.2±1.0	10.2±0.5	8.5±0.4	8.8±0.2	
0.030	5.3±0.6	5.4±0.3	6.1±0.5	6.1±0.2	6.7±0.9	7.4±0.4	5.9±0.4	6.1±0.2	
0.040	3.9±0.5	3.8±0.3	4.4±0.5	4.5±0.2	4.7±0.8	5.6±0.3	4.3±0.3	4.5±0.2	
0.050	2.9±0.4	2.5±0.2	3.3±0.4	3.2±0.2	4.0±0.7	4.4±0.3	3.2±0.3	3.2±0.1	
0.060	2.1±0.4	2.0±0.2	2.3±0.3	2.3±0.1	3.0±0.6	3.4±0.3	2.3±0.2	2.4±0.1	

Tabelle 8.1: (2+1) Jetraten R_{2+1} (in %) korrigiert auf die Partonebene (R_{2+1}) in den drei Q^2 Intervallen und für den gesamten kinematischen Bereich. Die angegebenen Fehler sind die statistischen Fehler.

Als Strukturfunktion wurde MRSD'_ benutzt, die vorgegebenen Werte in LEPTO 6.1 wurden nicht verändert, bis auf den Parameter y_{min} , der von 0.015 auf 0.005 gesetzt wurde. y_{min} (PARL(8)) bestimmt das minimale y_{ij} der Partonen in erster Ordnung QCD.

Abbildung 8.6: Unkorrigierte Jetraten R_j und die Simulation mit LEPTO 6.1 (Detektorebene) für vier verschiedene Q^2 -Bereiche: $120 < Q^2 < 240$, $240 < Q^2 < 720$, $720 < Q^2 < 3600$ GeV² und $120 < Q^2 < 3600$ GeV².

ZEUS 1994

	120 < (G	$\overline{Q^2 < 2}$ ieV ²)	40	$240 < Q^2 < 720$ (GeV ²)		$720 < Q^2 < 3600$ (GeV ²)			$120 < Q^2 < 3600$ (GeV ²)			
Feut	R2+1	C.	C.	R ₂₊₁	C.		R ₃₊₁	C.	C A	R ₂₊₁	<i>C</i> .	C,
0.010	12.1±0.9	1.02	1.04	13.5±0.9	0.92	1.04	11.5±1.3	0.88	1.03	12.6±0.6	0.94	1.05
0.015	10.0±0.8	0.99	1.04	10.8±0.8	0.96	1.05	9.3±1.2	0.89	1.02	10.4±0.5	0.96	1.05
0.020	7.8±0.7	0.96	1.05	9.0±0.7	0.96	1.05	8.6±1.1	0.92	1.01	8.6±0.5	0.96	1.05
0.030	5.3±0.6	0.92	1.10	6.5±0.5	0.98	1.08	6.7±1.0	0.95	1.05	6.2±0.5	0.96	1.08
0.040	4.1±0.6	0.93	1.13	4.6±0.5	0.96	1.10	4.6±0.8	0.94	1.06	4.4±0.4	0.96	1.08
0.050	3.3±0.5	1.02	1.16	3.6±0.5	0.99	1.11	3.9±0.8	0.93	1.07	3.5±0.3	0.99	1.10
0.060	2.3±0.4	0.94	1.20	2.7±0.3	1.02	1.15	2.9±0.7	0.92	1.07	2.6±0.2	0.99	1.13

Tabelle 8.2: (2+1) Jetraten (in %) korrigiert auf die Partonebene (R_{2+1}) und Korrekturfaktoren für Detektoreffekte (C_d) und für Hadronisierung (C_h) in den drei Q^2 Intervallen und für den gesamten kinematischen Bereich. Die angegebenen Fehler sind die statistischen Fehler.

8.4 Korrekturfaktoren für Detektorakzeptanz und Hadronisierung

In der Tabelle 8.2 sind die korrigierten (2+1) Jetraten und die Korrekturfaktoren für die Detektorakzeptanz C_d und die Hadronisierung C_k angegeben. Beide Korrekturfaktoren sind kleiner als 20%.

Die Abbildungen 8.7 und 8.8 zeigen die Jetraten auf der Parton-, Hadron- und Detektorebene für LEPTO 6.1 als Funktion von y_{cut} in den einzelnen Q^2 .Bereichen. Die Korrekturfaktoren für die Hadronisierung und die Detektorakzeptanz sind auch für andere Monte-Carlo-Generatoren klein, verglichen wurde hier ARIADNE 4.06 (CDM+BGF) und HERWIG 5.8.

(b) $240 < Q^2 < 720 \ GeV^2$

Abbildung 8.7: Die Jetraten R_j , bestimmt mit dem JADE Algorithmus, für LEPTO 6.1 (MEPS) in % als Funktion von y_{cut} auf der Detektor-, Hadron- und Partonebene (obere Abbildung, zwei Q^2 -Bereiche). Die Korrekturfaktoren der (2+1) Jetrate für die Hadronisierung und die Detektorakzeptanz sind dargestellt für LEPTO 6.1, ARIADNE und HERWIG (Hadronisierung).

8.4. KORREKTURFAKTOREN FÜR DETEKTORAKZEPTANZ UND HADRONISIERUNG111

Abbildung 8.8: Die Jetraten R_j , bestimmt mit dem JADE Algorithmus, für LEPTO 6.1 (MEPS) in % als Funktion von y_{cut} auf der Detektor-, Hadron- und Partonebene (obere Abbildung, für zwei Q^2 -Bereiche). Die Korrekturfaktoren der (2+1) Jetrate für die Hadronisierung und die Detektorakzeptanz sind dargestellt für LEPTO 6.1, ARIADNE und HERWIG (Hadronisierung).

112KAPITEL 8. BESTIMMUNG VON as AUS JETRATEN MIT DEM JADE ALGORITHMUS

8.5 Vergleich zwischen QCD Rechnungen und LEPTO 6.1

Die Korrekturfaktoren für die Hadronisierung und die Detektorakzeptanz sind, wie gerade gezeigt wurde, klein. Die korrigierten Daten können nun mit den QCD Rechnungen verglichen werden. Alle drei verfügbaren QCD Rechnungen (DISJET, PROJET, MEPJET) können in LO oder NLO benutzt werden, um die Wirkungsquerschnitte auszurechnen.

Wichtig ist also ein Vergleich der QCD Rechnungen in LO mit den Ergebnissen von LEPTO 6.1. Die Resultate sollten gleich sein. Für diesen Vergleich wurde die Strukturfunktion MRSD'_ mit $\Lambda_{\overline{MS}}^{(4)} =$ 230 MeV benutzt. Die Ergebnisse sind in Tabelle 8.3 dargestellt. Der (2+1) Jet Wirkungsquerschnitt wurde mit dem JADE Algorithmus (JADE Schema) und einem Abschneideparameter $y_{cut} = 0.02$ bestimmt. Die Übereinstimmung der Ergebnisse zwischen allen drei verwendeten QCD Rechnungen (MEPJET, PROJET und DISJET) und LEPTO 6.1 ist in allen Q². Bereichen besser als 5%. Die

Q^2 (GeV ²)	MEPJET	DISJET	PROJET	LEPTO 6.1
	(2+1)	Jet Wirku	ingsquerschn	itt in pb
120-240	27.4	27.5	27.4	27.1
240-720	43.3	43.4	43.4	43.3
720- 3600	19.0	18.7	18.8	19.1
120- 3600	89.7	89.5	89.6	89.5

Tabelle 8.3: Der (2+1) Jet Wirkungsquerschnitt in LO für LEPTO 6.1 im Vergleich mit den Vorhersagen der QCD Rechnungen MEPJET, DISJET und PROJET. Als Strukturfunktion wurde MRSD_ benutzt, $\Lambda_{\overline{MS}}^{(4)} = 230 \text{ MeV}$.

Abbildung 8.9 zeigt die (2+1) Jetrate R_{2+1} in Abhängigkeit von dem Abschneideparameter y_{cut} . Verglichen werden die Vorhersagen von DISJET in führender Ordnung (LO) mit LEPTO 6.1 (ME) (obere Abbildung) und die Vorhersagen von DISJET in nächstführender Ordnung (NLO) mit LEPTO 6.1 (ME+PS) (untere Abbildung). Die Übereinstimmung der (2+1) Jetrate in LO zwischen DISJET und LEPTO 6.1 ist für alle betrachteten y_{cut} Parameter sehr gut. Die Partonschauer (PS) Option in LEPTO 6.1 ist eine gute Näherung der nächstführenden Ordnung in dem betrachteten kinematischen Bereich bei Benutzung des JADE Algorithmus.

8.6 Methode zur Bestimmung von α_s

In Kapitel 1 wurde dargestellt, daß sich aus der (2+1) Jetrate

$$R_{2+1}=\frac{\sigma_{2+1}}{\sigma_{tot}},$$

mit

$$\sigma_{tot} = \sigma_{1+1} + \sigma_{2+1}$$

die starke Wechselwirkungskonstante α , bestimmen läßt. Die korrigierte (2+1) Jetrate wird mit den beiden NLO QCD Rechnungen PROJET und DISJET verglichen. Das Programm MEPJET wurde erst Ende des Jahres 1995 veröffentlicht. Deswegen wurde es nicht für alle systematischen Untersuchungen benutzt.

Bei beiden Programmen (PROJET und DISJET) wurden mit unterschiedlichen $\Lambda_{\overline{MS}}^{(5)}$ Werten die (1+1) und (2+1) Jet Wirkungsquerschnitte berechnet. Daraus läßt sich dann R_{2+1} berechnen. Aus dem $\Lambda_{\overline{MS}}^{(5)}$ Wert, der die beste Übereinstimmung mit der korrigierten (2+1) Jetrate ergibt, wird dann α_s bestimmt aus:

$$\alpha_s(Q^2, N_f) = \frac{1}{b_f \ln \left(Q^2 / \Lambda_{\overline{MS}}^2\right)} \left(1 - \frac{b_f' \ln \ln \left(Q^2 / \Lambda_{\overline{MS}}^2\right)}{b_f \ln \left(Q^2 / \Lambda_{\overline{MS}}^2\right)}\right)$$

Dabei sind b_f und b'_f gegeben durch

$$b_f = \frac{33 - 2N_f}{12\pi}$$
 und $b'_f = \frac{153 - 19N_f}{2\pi(33 - 2N_f)}$.

 N_f bezeichnet die Anzahl der Flavours.

Als Abschneideparameter y_{cut} wurde 0.02 gewählt, weil bei diesem Wert von y_{cut} zum einen die (3 + 1) Jetrate klein ist, d.h. Prozesse höherer Ordnung nur eine geringe Rolle spielen, und zum anderen die Statistik genügend groß ist. Die Abbildungen 8.10 und 8.11 zeigen, daß das Resultat der Anpassung von $\Lambda_{\overline{MS}}^{(5)}$ an die (2+1) Jetrate nicht stark vom benutzten y_{cut} abhängt, denn die Daten werden bei allen verwendeten y_{cut} . Werten von der NLO Theorie beschrieben. In den Abbildungen ist nur der statistische Fehler der Daten dargestellt. Obwohl beide Programme alle NLO Terme in ihrer Rechnung berücksichtigen, sind kleine Unterschiede bei y_{cut} . Werten kleiner 0.02 zu erkennen. Eine Erklärung dafür kann sein, daß die beiden Programme unterschiedliche Näherungen für manche dieser Terme verwenden. Der y_{cut} -Bereich wurde auf 0.01 bis 0.06 eingeschränkt, da für y_{cut} an Bedeutung gewinnen, die in den Beiden Rechnungen DISJET und PROJET vernachlässigt wurden. In MEPJET werden diese Terme berücksichtigt.

8.6.1 Anzahl der Flavours

In den QCD Rechnungen PROJET und DISJET wird das \overline{MS} -Schema als Renormalisierungsschema und Faktorisierungsschema benutzt. Die c- und b-Quarks im Proton, die einen Anstieg von QCD-Compton Ereignissen zur Folge haben, werden in den Parametrisierungen für die Strukturfunktion vernachässigt, solange die Masse (invariante Masse m_{ij} der beiden Stromjets) unterhalb der entsprechenden Quarkmasse liegt. Dies ist die Definition des \overline{MS} -Faktorisierungsschemas. Oberhalb der Massenschwellen werden die c- und b-Quarks im Matrixelement als masselos betrachtet. Die Anzahl der Flavours bei der Berechnung von α_s ändert sich, sobald die Masse größer ist als die Masse des entsprechenden Quarks (siehe Kapitel 1), d.h es werden 5 Flavours benutzt, wenn $Q^2 > m_t^2$.

Für den Boson-Gluon-Fusions Vertex wurden ebenfalls 5 Flavours benutzt, weil die invariante Masse der beiden Stromjets groß genug ist, um bb-Paare zu erzeugen, $m_{ij} > 4 \cdot m_b^2$. Als systematische Untersuchung wurde PROJET mit 4 statt 5 Flavours am BGF Vertex benutzt, der mit 4 Flavours angepaßte $\alpha_s(M_{Z^0})$ -Wert unterscheidet sich um 0.0025 von demjenigen, bei dem 5 Flavours berücksichtigt wurden. In dem kinematischen Bereich dieser Analyse ist der erwartete Anteil von massiven b-Quarks in der Protonstrukturfunktion kleiner als 2% [91].

Abbildung 8.9: Die (2+1) Jetrate R_{2+1} in Abhängigkeit von dem Abschneideparameter y_{cut} . Verglichen werden die Vorhersagen von DISJET in führender Ordnung (LO) mit LEPTO 6.1 (ME) (untere Abbildung) und die Vorhersagen von DISJET in nächstführender Ordnung (NLO) mit LEPTO 6.1 (ME+PS) (obere Abbildung).

Abbildung 8.10: Korrigierte (2+1) Jetraten R_{2+1} und NLO Vorhersagen für $120 < Q^2 < 3600 \text{ GeV}^2$.

Abbildung 8.11: Korrigierte (2+1) Jetraten R_{2+1} und NLO Vorhersagen für $120 < Q^2 < 240, 240 < Q^2 < 720, 720 < Q^2 < 3600 GeV^2$.

8.6.2 Ergebnisse der Anpassung von $\Lambda_{\overline{MS}}^{(5)}$ an die (2+1) Jetrate

In der Tabelle 8.4 sind die gemessenen Werte von α_{s} für die drei Q^{2} . Bereiche und den gesamten Q^{2} . Bereich aufgelistet. Die α_{s} . Werte sind berechnet aus den angepaßten $\Lambda_{\overline{MS}}^{(5)}$. Werten. Die Vorgehensweise wurde bereits in Kapitel 7 beschrieben. Mit verschiedenen $\Lambda_{\overline{MS}}^{(5)}$. Werten in PROJET und DISJET werden der (2+1) Jet und der totale Wirkungsquerschnitt berechnet. Daraus läßt sich die (2+1) Jetrate bestimmen. Der $\Lambda_{\overline{MS}}^{(5)}$. Wert, bei dem die gemessene und mit LEPTO 6.1 korrigierte (2+1) Jetrate mit der (2+1) Jetrate der QCD Rechnung übereinstimmt, wird benutzt, um α_{s} zu berechnen.

117

Eine ausführliche Diskussion der Ergebnisse und ein Vergleich mit den Ergebnissen aus Kapitel 7 folgt in dem Abschnitt 8.10.

Q ² (GeV ²)	< Q > (GeV)	Λ <u>(3)</u> (MeV)	$\alpha_s(Q)$	$\alpha_s(M_{Z^0})$
120 - 240	13.3	251 +108 +31 +115 -97 -74 -105	0.171 +0.015 +0.005 +0.016 -0.017 -0.012 -0.018	0.120 +0.007 +0.002 +0.007 -0.008 -0.008 -0.009
240 720	20.4	217 +90 +76 +119 -74 -60 -67	$0.152 \begin{array}{c} +0.011 \\ -0.011 \end{array} \begin{array}{c} +0.010 \\ -0.009 \end{array} \begin{array}{c} +0.014 \\ -0.009 \end{array}$	$0.117 \begin{array}{c} +0.006 \\ -0.007 \end{array} \begin{array}{c} +0.006 \\ -0.005 \end{array} \begin{array}{c} +0.008 \\ -0.008 \end{array}$
720 - 3600	35.5	$86 \begin{array}{c} +82 \\ -58 \end{array} \begin{array}{c} +30 \\ -47 \end{array} \begin{array}{c} +61 \\ -24 \end{array}$	$0.118 \begin{array}{c} +0.013 \\ -0.017 \end{array} \begin{array}{c} +0.006 \\ -0.017 \end{array} \begin{array}{c} +0.006 \\ -0.012 \end{array} \begin{array}{c} +0.010 \\ -0.006 \end{array}$	$0.103 \begin{array}{r} +0.010 \\ -0.013 \end{array} \begin{array}{r} +0.004 \\ -0.010 \end{array} \begin{array}{r} +0.004 \\ -0.004 \end{array}$
120 3600	22.1	208 +64 +57 +89 -53 -50 -75	0.148 +0.008 +0.007 +0.011 -0.008 -0.007 -0.012	0.117 +0.005 +0.004 +0.007 -0.005 -0.005 -0.007

Tabelle 8.4: Die gemessenen Werte von $\Lambda_{\overline{MS}}^{(5)}$ und α , für die drei Regionen von Q^2 und den gesamten Q^2 -Bereich. Der erste Fehler ist der statistische, der zweite gibt den experimentellen systematischen Fehler und der dritte den theoretischen systematischen Fehler an.

8.7 Systematische Untersuchungen

Zur vernünftigen Fehlerabschätzung wurde eine umfassende systematische Untersuchung aller Selektionskriterien und Parameter vorgenommen. Der systematische Fehler wurde für jeden Q^2 -Bereich einzeln untersucht. Die systematischen Fehler lassen sich in vier Gruppen unterteilen:

- Die experimentellen Unsicherheiten.
- Der Fehler der Hadronisierungskorrektur.
- Unsicherheiten durch die Wahl der Partondichten.
- Die Wahl der Renormalisierungs- und Faktorisierungsskala.

Die Abbildungen 8.12 und 8.13 geben den systematischen Fehler an, der bei der $\Lambda_{\overline{MS}}^{(5)}$ Bestimmung gemacht wurde. Die Abbildung 8.12 zeigt die systematischen Fehler für den ganzen kinematischen Bereich, Abbildung 8.13 zeigt die systematischen Fehler in den drei Q^2 -Bereichen. Die systematischen

Fehler in den drei Q^2 -Bereichen sind - wie an der Abbildung zu sehen ist - korreliert. Der systematische Fehler wird aber kleiner für größere Q^2 -Werte. Die Unsicherheiten in der Partondichte sind geringer, weil die Strukturfunktionen für großes x besser bekannt sind. Der Fehler aus der Skalenunsicherheit ist geringer, weil auch dort (Faktorisierungsskala) die Strukturfunktion von Bedeutung ist.

8.7.1 Experimentelle Unsicherheiten

Die experimentellen Unsicherheiten wurden in fünf Gruppen unterteilt:

- (a) Die Unsicherheiten in der Ereignisselektion.
- (b) Der Fehler in der Energiebestimmung.
- (c) Die Bestimmung der (2+1) Jetrate.
- (d) Die Anpassungsmethode, um a, zu bestimmen.
- (e) Die Detektorkorrektur ist modellabhängig.

(a) Um den Fehler durch die Ereignisselektion zu bestimmen, wurde ein anderer Elektronensuchalgorithmus benutzt, EEXOTIC. Außerdem wurde der $E - p_z$ Schnitt variiert, es wurden nur Ereignisse zwischen 45 und 60 GeV selektiert, anstatt zwischen 35 und 60 GeV. Der y_{el} -Schnitt wurde ebenfalls von 0.95 auf 0.7 gesetzt.

(b) Ein weiterer Fehler entsteht durch die Unsicherheit in der Energiemessung. Hierzu wurde die im Kalorimeter gemessene Energie um ±5% variiert.

(c) In der Jetanalyse wurde $W_{vis}^2 = s \cdot (1 - x_{DA}) \cdot y_{JB}$ durch $W_{DA}^2 = s(1 - x_{DA}) y_{DA}$ und $W_{JB}^2 = s(1 - x_{JB}) y_{JB}$ als Referenzmasse in der JADE Definition ersetzt.

Weiter wurden die Zellen um die Strahlröhre zu Kondensaten zusammengefaßt, und diese anstatt der Zellen benutzt, um die Anzahl der Jets zu berechnen.

(d) Um die systematischen Fehler der Anpassungsmethode abzuschätzen, wurde eine Anpassung von $\Lambda_{\overline{MS}}^{(5)}$ mit $y_{cut}=0.03$ durchgeführt, der z-Schnitt wurde nicht bei 0.1 sondern bei 0.15 ausgeführt. Der statistische Fehler der (2+1) Jetrate für verschiedene Werte von y_{cut} ist stark korreliert, weil alle Ereignisse bei $y_{cut} = 0.05$ in jedem kleineren y_{cut} ebenfalls enthalten sind. Daher wird oft die differentielle Jetrate D_{1+1} , definiert als

 $D_{1+1}(y_{cut}) = [R_{1+1}(y_{cut} + \Delta y_{cut}) - R_{1+1}(y_{cut})]/\Delta y_{cut},$

für die Anpassung von $\Lambda_{\overline{MS}}^{(5)}$ benutzt. Diese Methode wurde in der vorliegenden Analyse ebenfalls als systematische Untersuchung betrachtet. Die Abbildung 8.14 zeigt die differentielle Jetrate in den untersuchten Q^2 -Bereichen.

(e) Um die Fehler in der Wahl des Modelles für die Korrektur der Detektorakzeptanz zu bestimmen, wurde ARIADNE 4.06 benutzt.

Von jeder einzelnen der fünf Gruppen (a) bis (e) wurde die größte Unsicherheit quadratisch addiert, um den systematischen experimentellen Fehler auszurechnen:

$$\Delta R_{2+1}^{sys.} = \sqrt{\sum_i (\Delta R_{2+1}^i)^2}$$

Statistischer Fehler Elektron finder $E - P_{1} > 45 \text{ GeV}$

- y. < 0.7 Energieskala (+5%)
- Energieskala (-5%) Bestimmung von W
- Benutzung von Kondensaten y_{se} Abhaengigkeit Differentielle Jetrate
- 0.15<z<0.85
- (e) Detektorkorrektur (ARIADNE) **Experimenteller syst. Fehler**
- Fragmentationsparameter $\sigma_n = 0.25 \text{ GeV}$ σ_n der Fragmentations $\sigma_n \neq 0.45 \text{ GeV}$ Funktion y_{min}=0.015 Min. y₁ der Partonen im ME Qe=4 GeV Minimum PS Virtualitaet k=0.7 GeV k, des getroffenen Partons Herwig cluster Hadronisierung

Hadronisierungseffekte

Unsicherheit in der Partondichte

0.4< $x_{\mu}^{R} = x_{\mu}^{r} = \mu^{2}/Q^{2}$ <2.0 (DISJET) 0.4< $x_{\mu}^{R} = x_{\mu}^{r} = \mu^{2}/Q^{2}$ <2.0 (PROJET) Skalenunsicherheit

Gesamtfehler

 $\alpha_{\bullet}(Q=22.1 \text{ GeV})$

Abhildung 8.12: Statistischer und systematische Fehler, $120 < Q^2 < 3600 \text{ GeV}^2$.

Abbildung 8.13: Statistische und systematische Fehler für die drei Q^2 -Bereiche: $120 < Q^2 < 240$. $240 < Q^2 < 720, 720 < Q^2 < 3600 \ GeV^2.$

8.7.2 Hadronisierungsfehler

Die Hadronisierungskorrektur wurde mit dem LEPTO 6.1 MEPS Generator durchgeführt. Dieser Generator benutzt das LUND Fragmentationsmodell zur Hadronisierung. Um den systematischen Fehler abzuschätzen, wurden folgende Parameter variiert:

- Die symmetrische Fragmentationsfunktion a, welche die longitudinale Quarkfragmentation steuert (siehe Kapitel 2), wurde zwischen 0.1 und 1.0 verändert.
- σ_{pT}, das die Transversalimpulsverteilung bestimmt, wurde zwischen 0.25 und 0.45 variiert.
- Der Einfluß von ymin (PARL(8)) bei Variation von 0.005 bis 0.015 wurde untersucht.
- Das Q_0 , bei dem der Partonschauer gestoppt wird, wurde von 0.8 auf 4.0 gesetzt.
- Der transversale Impuls des getroffenen Partons im Proton wurde von 0.44 auf 0.7 GeV erhöht.
- HERWIG 5.8, das ein anderes Hadronisierungsmodell als LEPTO 6.1 benutzt, wurde f
 ür die Korrektur der Hadronisierung benutzt.

Die meisten systematischen Fehler, die durch die Hadronisierungseffekte entstehen, sind klein, der größte Unterschied kommt von der Verwendung eines anderen Hadronisierungsmodells.

8.7.3 Einfluß der Partondichten

In der NLO Rechnung wurde als Parametrisierung für die Strukturfunktion MRSD' [60] benutzt. Alternativ wurden die Parametrisierungen

- MRSA [92]
- GRV HO [93]
- CTEQ 3M [94]
- verwendet. Der durch die Wahl der Strukturfunktionen entstehende Fehler ist sehr klein, weil die Strukturfunktionen in dem z-Bereich dieser Analyse sehr gut bekannt sind. Zur Renormierung wird in allen Parametrisierungen das \overline{MS} -Schema benutzt, d.h. die Parametrisierung wird bei einem festen $\Lambda_{\overline{MS}}$ -Wert durchgeführt. A. Vogt und Martin, Roberts, Stirling haben untersucht, wie stark der in der Parametrisierung benutzte $\Lambda_{\overline{MS}}$ -Wert die α_s -Bestimmung beeinflußt. Beide Publikationen [95] kommen zu dem Ergebnis, daß der angepaßte $\Lambda_{\overline{MS}}$, bzw. α_s -Wert nur sehr schwach vom benutzten $\Lambda_{\overline{MS}}$ -Wert in der Parametrisierung abhängt. $\Lambda_{\overline{MS}}^{(4)}$ in der Parametrisierung wurde in einem Bereich zwischen 150 und 400 MeV variiert.

Abbildung 8.14: Die gemessene differentielle Jetrate D_{1+1} in den drei Q^2 -Bereichen und in dem gesamten kinematischen Bereich. Die Daten sind auf die Parlonebene korrigiert. Nur der statistische Fehler ist gezeigt.

8.7.4 Skalenabhängigkeit

Der größte systematische Fehler ist die Unsicherheit in der Wahl der Renormalisierungs- und Faktorisierungsskala. Als Skala wurde Q^2 gewählt. Um den Fehler durch die Wahl der Skala abzuschätzen, wurden die Faktorisierungsskala μ_f und die Renormalisierungsskala μ_r von $0.4 \cdot Q^2$ bis $2 \cdot Q^2$ variiert und die Anpassung von $\Lambda_{\overline{MS}}^{(5)}$ auf die (2+1) Jetrate zur $\Lambda_{\overline{MS}}^{(5)}$. Bestimmung wiederholt. Die Skalenabhängigkeit wird größer bei kleinerem Q^2 . In DISJET wurde ein etwas größerer Fehler als in PROJET festgestellt. Wie Abbildung 8.15 zeigt, stimmen beide Programme bezüglich der Renormalisierungsskala. Die Abbildung 8.16 zeigt die Skalenabhängigkeit in PROJET aufgetragen gegen die (2+1) Jetrate $R_{2+1} = \frac{\sigma(2+1)}{\sigma(\alpha)}$. Beide Abbildungen zeigen einen größeren Variationsbereich als den für die Abschätzung des systematischen Fehlers benutzten Bereich.

Abbildung 8.15: Abhängigkeit von $\Lambda_{\overline{MS}}^{(5)}$ von der Wahl der Renormalisierungs- und Faktorisierungsskala.

Es ist nicht offensichtlich, daß Q^2 die geeignete Skala ist, um den Einfluß der Renormalisierungs- und Faktorisierungsskala auf die störungstheoretische QCD Rechnung zu testen. Alternativ bietet sich das Quadrat des transversales Impulses p_T^2 der Jets oder das Quadrat der invarianten Masse m_L^2 der zwei

Abbildung 8.16: Abhängigkeit der (2+1) Jetrate, $R_{2+1} = \frac{\sigma_{(2+1)}}{\sigma_{100}}$ von der Wahl der Renormalisierungsund Faktorisierungsskala für NLO (PROJET). ρ ist der Faktor, mit der die Skala geändert wurde $(\mu_f^2 = \mu_r^2 = \rho \cdot Q^2)$.

$ \frac{Q^2}{(\text{ GeV}^2)} $	< Q > (GeV)	$\langle p_T \rangle$ (GeV)	<u> < 775</u> < 775	$\langle m_{ij} \rangle$ (GeV)	<u><mu></mu></u> <q></q>
120 - 240	13.3	8.8	0.66	21.6	1.62
240 - 720	20.4	10.9	0.53	26.3	1.29
720 - 3600	35.5	14.2	0.40	33.2	0.94
120 - 3600	22.1	11.3	0.51	28.2	1.28

Tabelle 8.5: Die Mittelwerte von Q, m_{ij} und p_T und die Verhältnisse in den einzelnen Q^2 -Bereichen und dem Gesamtbereich.

Jets an, um die Skalenabhängigkeit zu untersuchen. Als ein einfacher Test wurden die Verhältnisse $\langle p_T^2/Q^2 \rangle$ und $\langle m_{ij}^2/Q^2 \rangle$ bestimmt und daraus die Änderung in der Skala, d.h. die Unsicherheit in α_i abgeschätzt. Typischerweise lag das Verhältnis zwischen 0.4 und 2 für den gesamten Q^2 -Bereich, d.h. der Fehler ist durch die Fehlerabschätzung der Skalenunsicherheit mit abgedeckt (siehe Tabelle 8.5).

Für jede Gruppe in den Abbildungen 8.12 und 8.13 wurde die größte Abweichung in positiver und negativer Richtung vom gemessenen Wert ausgewählt und quadratisch addiert. Der systematische Fehler ist vergleichbar mit dem statistischen Fehler. Der systematische Fehler wird getrennt betrachtet für experimentelle Unsicherheiten und die theoretischen (Hadronisierung, Partondichte, Skalenabhängigkeit) Unsicherheiten. Zusammenfassend läßt sich sagen, daß der systematische Fehler bei kleinerem Q^2 größer ist. Der größte systematische Fehler ist durch die Wahl der Renormalisierungs- und Faktorisierungsskala gegeben. Der systematische Fehler durch die Hadronisierungseffekte wird bei kleinern Q^2 auch deutlich größer.

8.8 Weitere systematische Untersuchungen

Die Anpassung von $\Lambda_{\overline{MS}}^{(5)}$, um den Wert von α , zu bestimmen, wurde bereits mit zwei QCD Rechnungen (PROJET und DISJET) durchgeführt. Das neue Programm von E. Mirkes und D. Zeppenfeld (MEPJET), das es erlaubt, denselben Jetalgorithmus, der in der experimentellen Analyse benutzt wird, zu verwenden, soll ebenfalls für die Anpassung des $\Lambda_{\overline{MS}}^{(5)}$ Wertes benutzt werden.

Mit einer neuen Version von LEPTO - LEPTO 6.3 · wird die gemessene (2+1) Jetrate korrigiert und mit der mit LEPTO 6.1 korrigierten (2+1) Jetrate verglichen.

Außerdem wird die Variation der (2+1) Jetrate durch verschiedene Rekombinationsschemata im JADE Algorithmus betrachtet. Die Effekte in MEPJET und den gemessenen Daten sollte gleich sein, damit eine α_s . Bestimmung unabhängig ist von der Wahl des Rekombinationsschemas.

Schließlich werden die Ergebnisse der α_4 . Bestimmung mit dem K_{\perp} Algorithmus aus Kapitel 7 den Ergebnissen dieses Kapitels gegenübergestellt werden, um zu zeigen, daß der resultierende Wert für die Kopplungskonstante unabhängig vom Jetalgorithmus ist.

8.8.1 Anpassung von $\Lambda_{\overline{MS}}^{(5)}$ an die (2+1) Jetrate mit MEPJET

Die Abbildung 8.17 zeigt die auf die Partonebene korrigierten Daten im Vergleich mit den theoretischen Vorhersagen von MEPJET in NLO. Es gibt eine gute Übereinstimmung zwischen den Daten und MEPJET. Bei den x_p, p_T und m_{ij}. Verteilungen ist kein Unterschied zu den Vorhersagen von PROJET oder DISJET in NLO erkennbar. Die z-Verteilung zeigt ein stärkeres Maximum bei $z \sim 0.02$ als bei den Vorhersagen von PROJET und DISJET. Dies ist nicht nur ein Effekt des feineren Binnings im Histogramm. Bestätigt wird dies auch durch den größeren (2+1) Jet Wirkungsquerschnitt ohne Anwendung eines Schnittes auf die Variable z (siehe die Abbildung 8.6). Der Schnitt auf die Variable z wurde auch eingeführt, um eine Übereinstimmung zwischen Theorie und Experiment zu erzielen. PROJET und DISJET zeigen über den gesamten z-Bereich einen K-Faktor nahe bei t. MEPJET stimmt in LO und NLO nur für z > 0.1 überein. Dies entspricht genau dem Verhalten, welches LEPTO 6.1 zeigt: Der Effekt des Partonschauers - eine Näherung für die NLO Korrekturen - ist nur bei z < 0.1zu schen. Auch die Extraktion der Kopplungskonstanten o. mit MEPJET ist konsistent innerhalb des angenommen systematischen Fehlers (siehe Tabelle 8.6). In dem Programm MEPJET wurde das JADE Algorithmus im JADE Schema als Jetalgorithmus gewählt. Dieses ist am ehesten vergleichbar mit dem Jetalgorithmus, der bei PROJET und DISJET benutzt wird. Eine Anpassung von $\Lambda_{MS}^{(5)}$ an die gemessene und korrigierte (2+1) Jetrate im gesamten betrachteten kinematischen Bereich mit MEPJET ergibt statt $\Lambda_{\overline{MS}}^{(5)} = 208 \ MeV$ (DISJET/PROJET) $\Lambda_{\overline{MS}}^{(5)} = 210 \ MeV$ (MEPJET). Der resultierende Wert für die Kopplungskonstante ist für MEPJET

$$\alpha_s(M_{Z^0}) = 0.1167$$
.

Für DISJET und PROJET ergibt sich

$$\alpha_s(M_{Z^0}) = 0.1165$$
.

Die Abbildung 8.18 zeigt die Abhängigkeit der (2+1) Jetrate von der Wahl der Renormalisierungs- und Faktorisierungsskala für MEPJET. Das Verhalten ist vergleichbar mit den Vorhersagen von DISJET. In LO ist dieser systematische Fehler wesentlich größer.

Abbildung 8.17: Die Vorhersagen von MEPJET für die z-Verteilung (ohne z > 0.1 Schnitt). Die x_p , pr und m_{ij} -Verteilung mit dem Schnitt auf die Variable z.

	$\sigma_{tot}(pb)$	σ ₂₊₁ (pb)	σ ₂₊₁ (pb)	(2+1) Jetrate
		ohne z-Schnitt	z > 0.1	z > 0.1
LO (PROJET)	1139.7	160.2	94.9	8.33%
NLO (PROJET)	1080.3	166.5	92.7	8.58%
LO (DISJET)	1139.1	160.2	95.1	8.35%
NLO (DISJET)	1132.1	175.5	97.1	8.58%
LO (MEPJET)	1140.4	160.3	95.1	8.34%
NLO (MEPJET)	1080.5	213.1	93.1	8.61%

Tabelle 8.6: Der totale und der (2+1) Jet Wirkungsquerschnitt und die (2+1) Jetrate in LO und NLO (PROJET und MEPJET). Als Strukturfunktion wurde MRSD_ benutzt, $\Lambda_{\overline{MS}}^{(5)} = 208$ MeV.

Abbildung 8.18: Abhängigkeit der (2+1) Jetrate $R_{2+1} = \frac{\sigma_{(2+1)}}{\sigma_{tot}}$ von der Wahl der Renormalisierungsund Faktorisierungsskala für MEPJET in LO und NLO.

8.8.2 Korrektur der Daten mit LEPTO 6.3

Alternativ zu LEPTO 6.1 wurde LEPTO 6.3 benutzt, um die Daten zu korrigieren. Hier sollen nur die Jetraten verglichen werden, die mit $y_{cut} = 0.02$ bestimmt wurden (siehe Tabelle 8.7). Der direkte Vergleich zeigt, daß LEPTO 6.3 eine größere Anzahl von (2+1) Jetereignissen findet. Allerdings ist der Korrekturfaktor, um die Daten auf die Partonebene zu korrigieren, vergleichbar mit LEPTO 6.1, so daß sich der Wert von α_s nur unwesentlich ändert. Nur im Q^2 -Bereich von 720 bis 3600 GeV² gibt es eine signifikante Abweichung von dem mit LEPTO 6.1 ermittelten α_s -Wert. Eine Anpassung des $\Lambda_{\overline{MS}}^{(5)}$ Wertes mit PROJET ergibt statt $\Lambda_{\overline{MS}}^{(5)} = 86 MeV$ für die Korrektur mit LEPTO 6.1 $\Lambda_{\overline{MS}}^{(5)} = 128 MeV$ für die Korrektur der Daten mit LEPTO 6.3. Der resultierende Wert für die Kopplungskonstante ist dann $\alpha_s(M_{Z^0}) = 0.109$.

Q ² Bereich	Daten 94	LEPTO 6.1		LEPTO 6.3			
(GeV^2)	$R_{2+1}^{Unkor.}$	R_{3+1}^{PAR}	R_{2+1}^{DET}	RK or.	R_{2+1}^{PAR}	R_{2+1}^{DET}	R. R. P. 1
120 - 240	7.8±0.7	7.8	7.8±0.4	7.8±0.7	8.3	8.6±0.5	7.5±0.7
240 - 720	8.9±0.6	9.0	8.9±0.3	9.0±0.7	11.9	11.7±0.5	9.1±0.7
720 - 3600	9.2±1.0	9.5	10.2 ± 0.5	8.6±1.1	14.2	13.4 ± 0.8	9.7 ± 1.2
120 - 3600	8.5±0.4	8.9	8.8±0.2	8.6±0.5	11.0	11.0±0.5	8.5±0.6

Tabelle 8.7: Die (2+1) Jetrate in den einzelnen Q^2 Bereichen für die unkorrigierten Daten R_{2+1}^{Unkor} und die (2+1) Jetrate auf der Parton- R_{2+1}^{PAR} und Detektorebene R_{2+1}^{DET} und die korrigierte (2+1)Jetrate R_{2+1}^{Kor} , für LEPTO 6.1 und LEPTO 6.3.

8.8.3 Rekombinationsabhängigkeit des JADE Algorithmus

Die α_s . Bestimmung wurde mit den Programmen DISJET und PROJET durchgeführt. Für die Analyse der Daten wurde der JADE Algorithmus (JADE Schema) benutzt. Die beiden Programme benutzen für die Rekombination der Vierervektoren im JADE Algorithmus ein masseloses Rekombinationsschema. Der in den theoretischen Programmen (DISJET und PROJET) benutzte Algorithmus ist vergleichbar mit dem JADE Schema.

Mit MEPJET ist es nun möglich, den JADE Algorithmus mit verschiedenen Rekombinationsschemata anzuwenden. Die Tabelle 8.8 zeigt, daß die Rekombinationseffekte, die in MEPJET gefunden wurden, vergleichbar sind mit den Effekten, die bei den Daten gesehen wurden. Der angepaßte $\Lambda_{\overline{MS}}^{(5)}$, bzw. α_s . Wert ist also nahezu unabhängig von der Wahl des Rekombinationsschemas.

Dieses Ergebnis ist besonders wichtig, weil das JADE Schema, das für die Datenanalyse benutzt wurde, nicht exakt gleichzusetzen ist mit dem JADE Algorithmus, wie er in DISJET und PROJET benutzt wird.

Rekombinationsschema	(2+1) Jetrate (MEPJET NLO)	(2+1) Jetrate (Daten 94)
E Schema	17.9	18.6±0.7
E0 Schema	8.1	8.3+0.5
P Schema	7.6	7.8+0.5
JADE Schema	8.6	8.6±0.5

Tabelle 8.8: Die (2+1) Jetrate für MEPJET NLO und die gemessenen Daten unter Benutzung verschiedener Rekombinationsschemata des JADE Algorithmus.

8.8.4 Vergleich mit der α , Bestimmung mit dem K_{\perp} Algorithmus

Eine interessante systematische Untersuchung ist es, nicht den JADE Algorithmus sondern den K_{\perp} Algorithmus zu benutzen, um die (2+1) Jetrate zu bestimmen und mit MEPJET zu vergleichen. Dies wurde bereits in Kapitel 7 dargestellt.

Für die Analyse in Kapitel 7 wurde der K_{\perp} Algorithmus im gleichen kinematischen Bereich verwendet, der auch für die α_s -Bestimmung aus Jetraten mit dem JADE Algorithmus benutzt wurde. Zum Bestimmen der (2+1) Jetrate R_{2+1} mit dem K_{\perp} Algorithmus wurde einmal als Referenzmasse Q^2 und einmal eine konstante Referenzmasse $s = 120 \ GeV^2$ benutzt. Die Ergebnisse der α_s -Bestimmung mit dem K_{\perp} Algorithmus sind in Tabelle 7.16 in Kapitel 7 zusammengefaßt. Die Ergebnisse sind konsistent mit der α_s -Bestimmung mit dem JADE Algorithmus.

8.9 Das "Laufen" von α_s

Die Abbildung 8.19 zeigt die gemessenen Werte von α_s für die drei verschiedenen Q^2 -Bereiche. Der statistische und der systematische Fehler sind eingezeichnet. Die QCD sagt voraus, daß die Kopplung mit wachsendem Q^2 kleiner wird. Die Resultate der α_s -Bestimmungen in den drei Q^2 -Bereichen bestätigen die vorhergesagte Q^2 -Abhängigkeit in eindrucksvoller Weise: α_s wird kleiner für ansteigendes Q^2 , konsistent mit einem laufenden α_s . Eingezeichnet sind auch die Kurven für konstantes $\Lambda_{\overline{MS}}^{(5)} = 100, 200, 300 MeV.$

Ein Fit auf laufendes α_s führt zu einem χ^2 von 2.2 für zwei Freiheitsgrade, welches einem Vertrauensgrad von 58.6% entspricht. Ein entsprechender Fit auf konstantes α_s führt zu einem χ^2 von 7.7 für zwei Freiheitsgrade, entsprechend einem Vertrauensgrad von 2.1%.

Abbildung 8.19: Die gemessenen Werte von α_s für drei verschiedene Q^2 -Werte. Der statistische Fehler entspricht dem dickeren Fehlerbalken, die dünnere Linie zeigt den statistischen und systematischen Fehler, quadratisch addiert. Die gestrichelten Linien zeigen α_s für $\Lambda_{MKS}^{(5)} = 100$, 200 und 300 MeV.

8.10 Resultate

Die Tabelle 8.9 zeigt die α_s -Werte für die drei Q^2 -Bereiche und für den kombinierten Bereich sowie die α_s -Werte extrapoliert zu $Q = M_{Z^0}$. Um die (2+1) Jetrate zu bestimmen, wurden der JADE Algorithmus $(y_{cut} = 0.02, W^2$ als Referenzmasse) und der K_{\perp} Algorithmus $(y_{cut} = 0.5, Q^2$ als Referenzmasse) und alternativ 120 GeV² als Referenzmasse) benutzt.

Q ² (GeV ²)	< Q > (GeV)	$\begin{pmatrix} \Lambda^{(5)}_{\overline{MS}} \\ (MeV) \end{pmatrix}$	α,(Q)	a , (Mz=)	Jetalgorithmus
120 - 240	13.3	251 +106 +31 +115 -07 -74 -105	0.171 +0.015 +0.005 +0.816 -0.017 -0.012 -0.018	0.120 +0.007 +8.002 +0.007 -0.008 -0.005 -0.009	JADE
		342 +153	0.184 +0.018 -0.019	0.126 +0.000	$K_{\perp}, s = Q^2$
		181 +58 -+6	0.159 +0.009 -0.006	0.114 +0.005	$K_{\perp}, s = 120 \ GeV^2$
240 - 720	20.4	217 +90 +76 +119 -74 -00 -07	0.152 +0.011 +0.010 +0.014	0.117 +0.006 +0.008 +0.008 -0.007 -0.003 -0.008	JADE
		268 ⁺¹²⁸	0.158 +8.014	0.121 +0.008	$K_{\perp}, s = Q^2$
		260 ⁺¹⁴ -59	0.157 +0.000 -0.000	0.121 +0.005	$K_{\perp}, s = 120 \ GeV^2$
720 - 3600	35.5	86 +82 +30 +81 -58 -47 -24	0.118 +0.013 +0.008 +0.010 -0.017 -0.012 -0.006	0.103 +0.010 +0.004 +0.004	JADE
		96 ⁺¹²⁶ 75	0.120 +0.017 -0.023	0.105 +0.013 -0.019	$K_{\perp}, s = Q^2$
		337 +106	0.148 +0.000 -0.000	0.126 +0 006 -0.005	$K_{\perp}, s = 120 \ GeV^2$
120 - 3600	22.1	208 +84 +57 +88 -53 -50 -75	0.148 +0.008 +0.007 +0.011 -0.008 -0.007 -0.012	0.117 +0.005 +0.004 +0.007 -0.005 -0.005 -0.007	JADE
		227 +118	0.151 +0.013 -0.013	0.118 +0.000 -0.006	$K_{\perp}, s = Q^2$
		251 +34 -16	0.154 +0.006	0.120 +0.004	$K_{\perp}, s = 120 \ GeV^2$

Tabelle 8.9: Die gemessenen Werte von $\Lambda_{\overline{MS}}^{(5)}$ und a_{\bullet} für die drei Regionen von Q^2 und den gesamten Q^2 -Bereich. Für die Bestimmung mit dem JADE Algorithmus ist der erste Fehler der statistische, der zweite gibt den ezperimentellen systematischen Fehler und der dritte den theoretischen systematischen Fehler an. Bei der Analyse mit dem K_{\perp} Algorithmus ist nur der statistische Fehler angegeben.

Der Wert von a_s wurde im kinematischen Bereich $120 < Q^2 < 3600 \text{ GeV}^2$ mit dem JADE Algorithmus bestimmt zu:

$$\begin{aligned} \alpha_s(M_{Z^0}) &= 0.117 \pm 0.005 \, (stat) \stackrel{+0.004}{-0.005} \, (exp) \stackrel{+0.005}{-0.005} \, (had) \stackrel{+0.001}{-0.001} \, (pd) \stackrel{+0.005}{-0.006} \, (skala) \\ &= 0.117 \pm 0.005 \, (stat) \stackrel{+0.004}{-0.005} \, (syst_{exp}) \pm 0.007 \, (syst_{theorie}), \end{aligned}$$

wobei stat den statistischen Fehler, sys den systematischen Fehler bezeichnet, bestehend aus dem

experimentellen Fehler, ezp, dem Hadronisierungssehler, had, dem Fehler aus der Wahl der Partondichte, pd, und dem Fehler aus der Skalenabhängigkeit, skala. Im Endresultat wird der systematische Fehler getrennt in den experimentellen (ezp) und den theoretischen (*theorie*) Fehler aufgespalten.

Dem $\alpha_s(M_{Z^0})$ -Wert der Bestimmung mit dem JADE Algorithmus wird nun zur systematischen Fehlerabschätzung der α_s -Wert gegenübergestellt, welcher mittels des K_{\perp} Algorithmus gewonnen wurde (siehe Kapitel 7). Für Q^2 als Referenzmasse erhält man:

$$\alpha_s(M_{Z^0}) = 0.118 \pm 0.008 \, (stat)$$

Für konstante Referenzmasse ($s = 120 \ GeV^2$) ergibt sich:

$$\alpha_s(M_{Z^0}) = 0.120 \pm 0.004 (stat)$$
.

Alle drei Werte von α_i sind in guter Übereinstimmung.

Die Ergebnisse der α_s . Bestimmung mit dem JADE und dem K_{\perp} Algorithmus werden in den Abbildungen 8.20 und 8.21 verglichen. Für den K_{\perp} Algorithmus ist nur der statistische Fehler eingezeichnet.

Abbildung 8.20: Die verschiedenen Messungen zur Bestimmung von α_s aus der (2+1) Jetrate in einem kinematischen Bereich von $120 < Q^2 < 3600 \text{ GeV}^2, 0.01 < z < 0.1$. Die (2+1) Jetrate wurde bestimmt mit dem JADE Algorithmus, dem K_{\perp} Algorithmus mit konstanter Referenzmasse $(s = 120 \text{ GeV}^2)$ und dem K_{\perp} Algorithmus mit Q^2 als Referenzmasse. Für die mit dem K_{\perp} Algorithmus bestimmten α_s . Werte ist nur der statistische Fehler eingezeichnet. Die durchgezogene Linie zeigt den kombinierten Wert aller α_s . Messungen (LEP, H1, ZEUS, SMC,...).

Auffallend an der Abbildung 8.21 ist, daß die drei α_s -Werte, die mit dem K_{\perp} Algorithmus und konstanter Referenzmasse in den unterschiedlichen Q^2 -Bereichen bestimmt wurden, ein anderes Verhalten zeigen als die α_s -Werte, die mit dem JADE Algorithmus oder dem K_{\perp} Algorithmus mit Q^2 als Referenzmasse bestimmt wurden: Die mit dem K_{\perp} Algorithmus ($s = 120 \ GeV^2$) bestimmten $\alpha_s(Q^2)$ -Werte scheinen nahezu unabhängig von Q^2 zu sein. Es muß untersucht werden, ob dies mit der Wahl der Referenzmasse zusammenhängt. Möglicherweise wird die (2+1) Jetrate bei konstanter Referenzmasse für höheres Q^2 zu groß.

Dagegen zeigt die α_s -Bestimmung mit dem K_{\perp} Algorithmus und Q^2 als Referenzmasse in den drei Q^2 Intervallen eine gute Übereinstimmung mit den Resultaten der Analyse mit dem JADE Algorithmus und bestätigt ebenfalls das theoretisch postulierte "Laufen" von α_s .

Abbildung 8.21: Die gemessenen Werte von α_s für drei verschiedene Q^2 . Werte für den K_{\perp} Algorithmus mit konstanter Referenzmasse, bzw. Q^2 als Referenzmasse und den JADE Algorithmus. Für die mit dem K_{\perp} Algorithmus bestimmten α_s . Werte ist nur der statistische Fehler eingezeichnet. Die mit dem K_{\perp} Algorithmus bestimmten α_s . Werte sind aus Gründen der Übersichtlichkeit um ± 1 GeV gegen den gemessenen Q^2 . Wert versetzt.

In Abbildung 8.22 ist das Ergebnis der Bestimmung von α_s aus der (2+1) Jetrate mit dem JADE Algorithmus vom ZEUS-Experiment [22] aufgetragen und wird mit anderen Messungen, die in Kapitel I beschrieben wurden, verglichen. Der hier gemessene Wert von α_s ist in guter Übereinstimmung mit den α_s . Werten der anderen Experimente.

131

•

Abbildung 8.22: Verschiedene Messungen zur Bestimmung von α_s . Als gestrichelte Linie ist der Weltmittelwert eingezeichnet. Der Weltmittelwert von $\alpha_s(M_{Z^0}) = 0.118 \pm 0.006$.
Zusammenfassung

Die Kopplungskonstante α , der starken Wechselwirkung wurde beim Experiment ZEUS am Speicherring HERA gemessen.

135

Hierzu wurde in einem kinematischen Bereich von

$$120 < Q^2 < 3600 \ GeV^2, \ 0.01 < x < 0.1, \ y > 0.1$$

die (2+1) Jetrate aus Ereignissen der tiefinelastischen ep-Streuung bestimmt. Die Analyse beruht auf Daten, die 1994 mit dem ZEUS Detektor aufgenommen wurden, entsprechend einer Luminosität von $3.2 \ pb^{-1}$. Die Jets - eine Energieanhäufung in einem kleinen Winkelbereich - wurden mit dem JADE Algorithmus und dem K_{\perp} Algorithmus bestimmt. Die beiden Clusteralgorithmen wurden bezüglich ihrer Rekombinationsabhängigkeit, des Partonschauereffekts und der Beschreibung des Vorwärtsjets und des Beobachterjets ausführlich untersucht. Beide Algorithmen stimmen sehr gut mit den simulierten Daten auf Detektorebene und der Partonebene überein, so daß die Daten auf die Partonebene korrigiert werden konnten. Hierzu wurde der Monte-Carlo Generator LEPTO 6.1 benutzt. Die QCD Rechnungen liefern für den (2+1) Jet Wirkungsquerschnitt in führender Ordnung dasselbe Ergebnis wie der Monte-Carlo-Generator LEPTO 6.1.

Die korrigierten Daten wurden - im Falle des JADE Algorithmus - verglichen mit zwei QCD Rechnungen (PROJET, DISJET), die in nächstführender Ordnung der QCD gerechnet sind. Es wurde ein Schnitt auf die Variable z (z > 0.1) eingeführt, um eine Übereinstimmung der z-Verteilung zwischen den korrigierten Daten und den Vorhersagen von PROJET und DISJET zu erzielen. Außerdem wurden durch diesen Schnitt Ereignisse entfernt, bei denen ein Jet sehr nahe an der Strahlröhre gefunden wurde.

Der gemessene Wert von α_s mit dem JADE Algorithmus ist:

$$\alpha_s(M_{Z^0}) = 0.117 \pm 0.005 (stat) \stackrel{+0.004}{_{-0.005}} (exp) \stackrel{+0.005}{_{-0.004}} (had) \stackrel{+0.001}{_{-0.001}} (pd) \stackrel{+0.005}{_{-0.006}} (skala)$$

= 0.117 ± 0.005 (stat) $\stackrel{+0.004}{_{-0.005}} (syst_{exp}) \pm 0.007 (syst_{theorie}),$

wobei stat den statistischen Fehler, sys den systematischen Fehler bezeichnet, bestehend aus dem experimentellen Fehler, exp, dem Hadronisierungsfehler, had, dem Fehler aus der Wahl der Partondichte, pd, und dem Fehler aus der Skalenabhängigkeit, skala. Im Endresultat wird der systematische Fehler getrennt in den experimentellen (exp) und den theoretischen (*theorie*) Fehler aufgespalten. Eine α_s -Bestimmung konnte in drei Q^2 -Bereichen durchgeführt werden. Das Ergebnis ist konsistent mit dem "Laufen" von α_s , d.h. die von der QCD vorhergesagte Q^2 -Abhängigkeit der Kopplungskonstante wird bestätigt.

Zusätzlich wurde die Analyse mit der QCD Rechnung MEPJET wiederholt: Das Ergebnis für den gemessenen α_s . Wert stimmt auf 0.2% mit dem Ergebnis von PROJET und DISJET überein. Mit MEPJET konnten erstmals auch die Rekombinationseffekte beim JADE Algorithmus in der ep-Streuung untersucht werden.

Der (2+1) Jet Wirkungsquerschnitt, definiert durch den K_{\perp} Algorithmus, läßt sich in nächstführender Ordnung nur mit MEPJET bestimmen. Als wichtige systematische Untersuchung wurde gezeigt, daß das Ergebnis der α_s -Bestimmung aus Jetraten, bestimmt mit dem JADE Algorithmus, konsistent ist mit einer α_s -Bestimmung aus Jetraten, die mit dem K_{\perp} Algorithmus bestimmt wurden.

Das Resultat der α_s -Bestimmung mit dem K_{\perp} Algorithmus und einer konstanten Referenzmasse im selben kinematischen Bereich, der für die Analyse mit dem JADE Algorithmus benutzt wurde, ist:

$$\alpha_{s}(M_{Z^{0}}) = 0.120 \pm 0.004 (stat)$$
.

Wird Q^2 als Referenzmasse benutzt, ergibt sich für α_i :

$$\alpha_{I}(M_{Z^0}) = 0.118 \pm 0.008 (stat)$$
.

Es wurde gezeigt, daß sich bei einem gegenüber dieser Analyse ausgedehnten kinematischen Bereich keine befriedigende Übereinstimmung des (2+1) Jet Wirkungsquerschnittes zwischen MEPJET und LEPTO 6.1, bzw. LEPTO 6.3 in führender Ordnung erzielen läßt. Eine Korrektur der Daten mit LEPTO 6.4 und den in dieser Arbeit diskutierten Parametern sollte es ermöglichen, α , bei kleinerem Q^2 ($Q^2 < 120 \ GeV^2$) und kleinerem x (x < 0.01) mit dem K_{\perp} Algorithmus zu messen. Durch die Wahl einer konstanten Referenzmasse im K_{\perp} Algorithmus kann der experimentelle systematische Fehler klein gehalten werden.

Eine Ausdehnung des kinematischen Bereiches bei der Analyse mit dem JADE Algorithmus ist schwierig, weil der Partonschauereffekt bei kleinem z groß wird.

Interessant ist eine Wiederholung dieser Analyse mit den 1995 von ZEUS genommenen Daten. Etwa die doppelte Anzahl an Ereignissen steht zur Verfügung. Damit ist es möglich, den statistischen Fehler zu verringern und vor allem eine genauere Bestimmung von α_s bei hohem Q^2 ($Q^2 > 720 \ GeV^2$) vorzunehmen.

Eine wichtige Frage ist die Wahl der Renormalisierungs- und Faktorisierungsskala: Die Ergebnisse der α_s . Bestimmung mit dem K_{\perp} Algorithmus und einer konstanten Referenzmasse führen zu einem nahezu konstanten $\alpha_s(Q^2)$. Der mittlere transversale Impuls p_T und die invariante Masse m_{ij} der beiden Stromjets in den drei Q^2 . Bereichen sind ebenfalls nahezu konstant. Bei Benutzung von Q^2 als Referenzmasse oder dem JADE Algorithmus steigt p_T und m_{ij} in den drei Q^2 . Bereichen an. Eine Untersuchung der Ergebnisse mit p_T^2 oder m_{ij}^2 statt Q^2 für die Renormalisierungs- und Faktorisierungsskala sollte durchgeführt werden.

- Literaturverzeichnis [1] Particle Data Group, L. Montanet et al., Phys. Rev. D50 (1994) 1297. [2] M. Gell-Mann, Phys. Lett. 8 (1964) 214.
- [3] G. Zweig, CERN-TH 401 und 412 (1964).
- [4] R. P. Feynman, Phys. Rev. Lett. 23 (1969) 1415.
- [5] J. D. Bjorken, E. A. Paschos, Phys. Rev. 185(1969) 1975.
- [6] C. G. Callan, D. Gross, Phys. Rev. Lett. 22 (1969) 156.
- [7] S. L. Wu, Phys. Rept. 107 (1984) 59.
- [8] G. Altarelli, Phys. Rep. 81 (1982) 1.
- [9] F. Yndurain, The theory of quark and gluon interactions, Berlin: Springer (1993).
- [10] M. Virchaux, A. Milsztajn, Phys. Lett. B274 (1992) 221.
- [11] D. Gross, C. Llewellyn Smith, Nucl. Phys. B14 (1969) 337.
- [12] J. Bjorken, Phys. Rev. 148 (1966) 1467; Phys. Rev. D1 (1970) 1376.
- [13] CCFR Kollaboration, W. C. Leung et al., Phys. Lett. B329 (1993) 655.
- [14] D. Adams et al, SMC Kollaboration, Phys. Lett. B329 (1994) 399.
- [15] M. Kobel, DESY-F31-91-03 Measurement of the decay of the $\Upsilon(1s)$ and $\Upsilon(2s)$ resonances to muon pairs and determination of the strong coupling constant using the crystal ball detector (1991).
- [16] S. Bethke, Nucl. Phys. B, (Proc. Suppl.), 39B,C (1995) 198.
- S. Bethke and J.E. Pilcher, Ann. Rev. of Nuc. Sci. Vol. 42 (1992) 251;
 S. Bethke and S. Catani, Proceedings of the XXVII Rencontre de Moriond on Perturbative QCD and hadronic interactions, Ed. J. Tran Thanh Van (1992), 203.
- [18] CLEO Kollah., L. Gibbons, et al., CLNS-95-1323 (1995) A Study of Jet Production Rates in the four flavor continuum and a test of QCD.
- [19] G. Altarelli, CERN-TH-95-196 (1995) QCD at colliders.
- [20] H1 Kollab., T. Ahmed et al., Phys. Lett. B346 (1995) 415.

- [21] R. Nisius, PITHA 94/21 (1994), Doktorarbeit, Universität Aachen.
- [22] ZEUS Kollab., M. Derrick et al., Phys. Lett. B363 (1995) 201.
- [23] G. T. Jones et al., WA21 Kollaboration, Z. Phys. C25 (1985) 121;
 M. Arneodo et al., EMC Kollaboration, Z.Phys. C36 (1987) 527;
 M. R. Adams et al., E665 Kollaboration, Phys. Rev. D48 (1993) 5057.
- [24] M. R. Adams et al., E665 Kollaboration, Phys. Rev.Lett. 69 (1992) 1026.
- [25] J.G. Körner, E. Mirkes, and G.A. Schuler, Int. J. Mod. Phys. A4 (1989) 1781.
- [26] T. Kinoshita, J. Math. Phys. 3 (1962) 650;
 T. D. Lee, M. Nauenberg, Phys. Rev. D133 (1964) 1549.
- [27] G. Kramer, Theory of jets in electron-positron annihilation, Berlin: Springer (1984).
- [28] G. Ingelman and J. Rathsman, Z. Phys. C63 (1994) 589.
- [29] W. J. Marciano, Phys. Rev. D29 (1984) 580.
- [30] G. Altarelli, G. Parisi, Nucl. Phys. B126 (1977) 298.
- [31] W. Furmanski, R. Petronzio, Phys. Lett. B97 (1980) 437.
- [32] G. Sterman, S. Weinberg, Phys. Rev. Lett. 39 (1977) 1436.
- [33] S. D. Ellis, D. E. Soper, CERN-TH 6860/93 (1993).
- [34] JADE Kollab., W. Bartel et al., Phys. Lett. B119 (1982) 239;
 JADE Kollab., W. Bartel et al., Z. Phys. C33 (1986) 22;
 JADE Kollab., S. Bethke et al., Phys. Lett. B213 (1988) 235.
- [35] S. Catani, Yu. L. Dokshitser, B. R. Webber, Phys. Lett. B285 (1992) 291;
 S. Catani, CERN-TH-6895-93 (1993).
- [36] S. Catani, Yu. L. Dokshitser, M. Seymour, B. R. Webber, Nucl. Phys. B406 (1993) 187.
- [37] T. Brodkorb, J.G. Körner, E. Mirkes, G.A. Schuler, Z. Phys. C44 (1989) 415.
- [38] D. Graudenz, N. Magnussen, Proceedings of the HERA Workshop 1991 at DESY, eds. W. Buchmüller, G. Ingelman.
- [39] D. Graudenz, DESY-T-90-01 (1990).
- [40] S. Bethke, HD-PY 93/6 (1993).
- S. Bethke, in den Proceedings "QCD 20 years later", Aachen 1992, World Scientific 1993, 43;
 S. Bethke, J. Phys. G.: Nucl. Part. Phys. 17 (1991) 1455.
- [42] S. Bethke, Z. Kunszt, D. E. Soper, W.J. Stirling, Nucl. Phys. B370 (1992) 310.
- [43] S. Catani, Phys. Lett. B269 (1991) 432.
- [44] T. Hebbeker, Phys. Rep. 217 (1992) 69.

- [45] B. R. Webber, CERN-TH-6871-93 (1993).
- [46] M. Seymour, KTCLUS Programmpaket, LUND Universität (1994).
- [47] ZEUS Kollab., M. Derrick et al., Zeitschrift f. Physik C67 (1995) 93.
- [48] G. Altarelli, R. K. Ellis, G. Martinelli, Nucl. Phys. B157 (1979) 461;
 G. Curci, W. Furmanski, R. Petronzio, Nucl. Phys. B175 (1978) 29;
 B. Humpert, W. van Neerven, Nucl. Phys. B184 (1981) 225.
- [49] S. Catani, Yu. L. Dokshitzer, B. R. Webber, CERN-TH-7099/93 Average Number of Jets in Deep Inelastic Scattering, November 1993.
- [50] G. Gustafson, Phys. Lett. B175 (1986) 453.
- [51] G. C. Fox, S. Wolfram, Nucl. Phys. B188 (1980) 285.
- [52] B. R. Webber, Nucl. Phys. B238 (1984) 492.
- [53] G. Marchesini, B. R. Webber, Nucl. Phys. B238 (1984) 1.
- [54] B. Andersson et al., Phys. Rep. 97 (1983) 31;
 T. Sjöstrand and M. Bengtsson, Comp. Phys. Comm. 43 (1987) 367.
- [55] L. Lönnblad, Z. Phys. C65 (1995) 285.
- [56] G. Ingelman, LEPTO, version 6.1, Proc. 'Physics at HERA', W. Buchmüller, G. Ingelman (eds.), DESY Hamburg 1992, vol. 3, p.1366.
- [57] A. Edin G. Ingelman, J. Rathsman unveröffentliches Programmanual: LEPTO version 6.3 The Lund Monte Carlo for Deep Inelastic Lepton-Nucleon Scattering.
- [58] A. Edin G. Ingelman, J. Rathsman unveröffentliches Programmanual: LEPTO version 6.4 The Lund Monte Carlo for Deep Inelastic Lepton-Nucleon Scattering.
- [59] T. Sjöstrand, CERN-TH 7112 (1993).
- [60] A.D. Martin, W.J. Stirling and R.G. Roberts, Phys. Lett. B306 (1993) 145.
- [61] B. Andersson et al., Z. Phys. C43 (1989) 625.
- [62] G. Marchesini et al., Comp. Phys. Comm. 67, (1992) 465.
- [63] H. Spiesberger, HERACLES, Version 4.5, unveröffentlichtes Programmanual (1995); Version 4.0 ist beschrieben in A. Kwiatkowski, H.-J. Möhring and H. Spiesberger, Comp. Phys. Commun. 69 (1992) 155.
- [64] T. Brodkorb and J.G. Körner, Z. Phys. C54 (1992) 519.
- [65] T. Brodkorb and E. Mirkes, Univ. of Wisconsin, MAD/PH/821 (1994).
- [66] T. Brodkorb, E. Mirkes, MAD/PH/820 Complete O(α²_s) in Deep Inelastic Scattering, February 1994.
- [67] D. Graudenz, Comp. Phys. Commun. 92 (1995) 65.

140

- LITERATURVERZEICHNIS
- [68] D. Graudenz, Phys. Lett. B256 (1991) 518.
- [69] D. Graudenz, Phys. Rev. D49 (1994) 3291.
- [70] K. Hagiwara, D. Zeppenfeld, Nucl. Phys. B313 (1989) 39.
- [71] E. Mirkes, D. Zeppenfeld, MADPH-95-916 Dijet Production at HERA in Next-to-Leading Order, November 1995.
- [72] W. T. Giele, E. W. N. Glover, Phys. Rev. D46 (1992) 1980.
- [73] H1 Kollab., I. Abt et al., DESY 93-103 The H1 Detector at HERA.
- [74] ZEUS Kollab., The ZEUS Detector, Technical Proposal, March 1986 ZEUS Kollab., The ZEUS Detector, Status Report, February 1993.
- [75] HERMES Kollab., A Proposal to measure the spin-dependent structure function of neutron and proton at HERA, January 1990 HERMES Collaboration, Technical Design Report, July 1993.
- [76] HERA-B Kollab., T. Lohse et al., DESY-PRC 94/02, May 1994 HERA-B An Experiment to study CP Violation in the B System Using an Internal Target at the HERA Proton Ring -Proposal.
- [77] J. Krüger, DESY F35-92-02, The Uranium Scintillator Calorimeter for the ZEUS Detector at the Electron-Proton Collider HERA.
- [78] J. Straver, Doktorarbeit (1991), Universität; Amsterdam, Design, Construction and Beam Tests of the High Resolution Uranium Scintillator Calorimeter for ZEUS.
- [79] T. Trefzger, Diplomarbeit (1991), Universität Freiburg, Präzisionsladungseichung des Lichteichungssystems am ZEUS-Detektor.
- [80] A. Freidhof, Doktorarbeit (1994), Universität Freiburg, Bestimmung der Ereigniszeit von ep-Wechselwirkungen durch Kalorimetrie am ZEUS-Detektor.
- [81] W. H. Smith, DESY 92-150-B (1992), The ZEUS Trigger System.
- [82] S. Bentvelsen, J. Engelen and P. Kooijman, Proceeding of the 1991 Workshop on Physics at HERA, DESY Vol.1 (1992) 23.
- [83] F. Jacquet and A. Blondel, Proceedings of the study for an *ep* facility for Europe, DESY 79/48 (1979) 391.
- [84] ZEUS Kollab., M. Derrick et al., Z. Phys. C68 (1995) 569.
- [85] H. Abramowicz, A. Caldwell, R. Sinkus, DESY 95-54 (1995).
- [86] T. Trefzger, DPG-Tagung Karlsruhe Jets (K₁ Algorithmus) in der tiefunelastischen Streuung bei HERA, März 1995.
- [87] T. Trefzger, S. Magill, B. Musgrave, ZEUS-95-029 Di-Jet Rates in DIS using the K_T Algorithm, März 1995.

- [88] T. Trefzger, I. Park, K. Honscheid, S. Söldner-Rembold, T. Tsurugai, A. Doyle, ZEUS-94-054 Determination of α_s from Multi-Jet Production in High (x, Q^2) Deep Inelastic Scattering at HERA, April 1994.
- [89] T. Trefzger, D. Acosta, J. Eisenmann, K. Joo, I. Park, T. Shah, ZEUS-95-134 Determination of the Strong Coupling Constant from Multi-Jet Events in DIS at HERA, Oktober 1995.
- [90] H. Spiesberger, DJANGO6, Version 2.1, unveröffentlichtes Programmanual (1995); Version 1.1 ist beschrieben in K. Charchula, G.A. Schuler and H. Spiesberger, Comp. Phys. Commun. 81 (1994) 381.
- [91] E. Laenen, S. Riemersma, J. Smith and W.L. van Neerven, Nucl. Phys. B392 (1993) 228;
 S. Riemersma, J. Smith and W.L. van Neerven, Phys. Lett. B347 (1995) 143;
 M. Glück, E. Reya, M. Stratmann, Nucl. Phys. B422 (1994) 37;
 A. Vogt, Workshop on Proton, Photon and Pomeron Structure, Durham, September 1995.
- [92] A. D. Martin, R. G. Roberts, W. J. Stirling, DTP/94-55 (1994).

[93] M. Glück, E. Reya, A. Vogt, DO-TH 94/24 (1994).

[94] CTEQ Kollaboration, MSU-HEP/41024 (1994).

[95] A. Vogt, Phys. Lett. B354 (1995) 145;
 A.D. Martin, W.J. Stirling and R.G. Roberts, DTP/95/48 (1995).

Danksagung

Prof. Dr. A. Bamberger danke ich für die Überlassung des Themas und die ausgezeichnete Betreuung dieser Arbeit. Seine anregenden Gespräche und Diskussionen sorgten für ein gutes Arbeitsklima.

Dr. A. Doyle und Dr. S. Söldner-Rembold waren mir sehr aufmerksame und hilfsbereite Ansprechpartner. Ihre fachliche Unterstützung und ihre Ratschläge waren eine große Hilfe.

Die Zusammenarbeit im JADE- α_s -Team mit Dr. J. Hartmann, K. K. Joo, Dr. I. Park, Dr. T. Shah und mit dem Argonne-Team (Dr. M. Derrick, Dr. S. Magill, Dr. B. Musgrave, Dr. J. Repond) war eine schöne Erfahrung. Der Austausch von Informationen und Erfahrungen hat sicher zum erfolgreichen Abschluß dieser Arbeit beigetragen.

Dr. D. Graudenz, Dr. E.Mirkes sei gedankt für die ausführlichen Erläuterungen zu den NLO QCD Rechnungen und die vielen wertvollen Anregungen.

Dr. J. Hartmann, Dr. H. Heßling, Dr. R. Klanner und Dr. S. Wölfle sei gedankt für die kritische Durchsicht des Manuskripts und den regen Gedankenaustausch.

Ebenfalls möchte ich allen Mitgliedern der Abteilung, die für ein schönes Arbeitsklima sorgten, danken.

Schließlich möchte ich mich bei meiner Frau Yvonne und meinen Eltern bedanken, die mich in jeder Hinsicht unterstützten. Sie alle haben mir in den letzten Jahren eine Atmosphäre bereitet, in der es möglich war, diese Arbeit zu einem positiven Abschluß zu bringen.

Mein Dank geht auch an Malina, die viel Freude in den Alltag gebracht hat.