
Inte mal Report
DESY F36-76/01
February 1976

SOFPDP - A Deluxe Debugging Aid for PDP-8

»ESY Bibliothek

W. A. McNeely, Jr.

TABLE OF CONTENTS

1. INTRODUCTION l

2. APPLICATIONS AND RESTRICTIONS 2

3. LOADING PROCEDURE 3

4. THE STATUS DISPLAY 4

5. KEYBOARD FUNCTIONS 6

6. DEBUGGING WITH SOFPDP 9

APPENDIX: Numerical Input 16

SOFPDP was inspired by the soft works of Claes Oldenburg.

- l -

1. INTRODÜCTION

SOFPDP i s a PDP-8 pro gram whi ch can Interpret!vely execute the

machine code of other PDP-8 programs. An arbi trary PDP-8 program, which

will be called here an "object" program, may be checked for errors by

running it in Software Simulation under SOFPDP. The major prerequisite

for such Operation is that the PDP-8 memory be l arge enough to accomodate

both SOFPDP and the object program at the same time.

An object program running in Software Simulation takes on a slow-

motion appearance, caused by the extra CPU time invoIved in simulating

each individual object instruction. Interaction with such a program,

therefore, requires some patience on the part of the user. For this one

small price, however, the user acquires an unprecedented degree of control

over the object program.

Debugging is facilitated in SOFPDP by the use of "traps", which

react whenever pre-defined conditions are fulfilled in the course of

execution. When a trap i s encountered, SOFPDP ceases to simulate the

object program and goes into a "command mode". In this modo, the user

may exercise a wide variety of options for studying or changing the ob-

ject program. Among those options is the possibility to single-step the

object program in Simulation and thereby follow its development in

microscopic detail.

The traps in SOFPDP are unusual in that they operate from outside

the object program, not within it (äs in the case of "break point" type

debugging routine s). The advantages which this approach offers are fully

exploited in SOFPDP. Thus, the traps which the user arranges prior to

simulated execution, called "planned" traps, are singularly versatile.

In addition to the planned traps, "involuntary" traps operate automat-

ically to protect SOFPDP from destruction-prone object programs (among

other things). Moreover, the user may prompt SOFPDP into the command

mode at any time, a non-trivial Option which i s known here äs the "spur-

of-the-moment" trap. The net effect of these various traps is to make

SOFPDP highly flexible, virtually indestructible, and responsive at all

- 2 -

times to the user' s wishes.

An exceptionally powerful feature of SOFPDP i s the "traceback"

Option, under which the last 10 instructions from the object program

(and other pertinent data) may be recalled for examination0 This allows

the user to determine the steps which brought the object program to its

current s täte c, This feature, when used in conjunction with traps, off er s

the user the chance to salvage information from even the grimmest type

of Software disaster in the object program0

SOFPDP is probably most useful whenever a new program must be check-

ed out under pressure , e 0 g. , during an experimental run a t DESYe (This

type of Situation normally prec lüde s the use of quiet contemplation,

which is still the best deterrent against errors.) SOFPDP also has its

place in more relaxed Situation s , äs in helping the user to gain a better

understanding of how the PDP-8 works» SOFPDP has already proven its use-

ful npss in the experimental operations of F31 and

SOFPDP occupies a füll 4K memory bank in the PDP-8 core storage0

As pnrtial compensation for such a large requirement on core space,

SOFPDP can run on any available memory bank (other than bank 0)0 It is

necessary that the object pro gram can function meaningfully in the ab-

sence of the bank occupied by SOFPDP. That bank is presented to the ob-

ject program, in certain respects, äs a non-existent bank. If the object

program uses that bank for data storage, but functions tolerably well

when that bank is physically absent, then debugging wi th SOFPDP i s f or-

mally possible<, At DESY, SOFPDP may be used on banks l, 2, or 3, depen-

ding on the size of the machine (and, in some cases, on the version of

the K 5 H Supervisor SUPER).

Simulated execution under SOFPDP is typically about 250 times slover

than normal execution„ Object programs which are critically sensitive to

real time, therefore, may produce misleading resul t s when run under SOFPDPo

For example, any hardvare or Software clock will appear to run about 250

times faster than normal. In most cases, however, the object program has

no explicit real time dependence. The F5H Supervisor SUPER is real time

independent for all peripheral devices except the DEC tape drives, for

which reason SOFPDP siraulates the tape drive Controller. Input from the

teletype keyboard reader, if entered too rapidly by the u.ser, may become

lost or garhled. With an object program based on SUPER, the user can be

sure that the program is ready for the next keyboard character by check-

ing that the display loop is active.

3. LOADING FROCEDURE

SOFPDP is initially loaded from systcm tape in the Standard way.

(The editor text for SOFPDP is available from F58.) On the display ap-

pears the message:

MOUNT TIIE DESTRED SYSTEM TAPE!

WHICH BANK IS FREE?

If the desired object program is on a different system tape, then that

tape should be prepared for loading. The user nmst now decide which

memory bank i s available for SOFPDP. The corresponding bank number i s

entered on the teletype. Immedi ately the above message disappears, and

the system tape moves into position for loading a program from its direc-

tory. (SOFPDP i s simulating the Standard tape loader at this point.)

The user now enters, in the usual way, the name of the object program,

plus RETURN. When the system tape has finished its motions, signifying

that the object program is loaded, then SOFPDP goes into the command mode

and displays several l ine s of Information, the bottom line of which reads

LOADING COMPLETED

- 4 -

SOFPDP is ready, at thi s point, to begin work. The displayed Information

is called the "status display" and is explaincd in detail in Section k

below. Section 5 outline s the acceptable keyboard commands, and Section 6

discusses practical techniques of debugging with SOFPDP.

4. TUE STATUS DISPLAY

The "status display" is a concise summary of the state of the object

program, and of the traps, vhich appears automatically when SOFPDP i s in

the comniand modo. The format is illustrated below, where fictitious

numeri cal values have been inserted in order to raake a clearer example:

PROGRAM CGUNTER

IXSTRl CTION

INTERPRETED AS:

ACCUMULATOR

ION l INH.

TAD

•371

0

07043

1034

00034

LINK

REQ.

D. F. 0

(00034) = 3

0 MQ 0 SC

0 BUF. 0 MODE

0

0

WINDOW: (12420) = 1243 (OCT)
= 1699 (DEC)

-4535 (OCT)

-2397 (DEC)

TRAPS:

p 06000 07177 (x)
T 1034 1034 (X)

W 3244 3242

TRACERACK: STEP

PLANNED TRAP ENCOUNTERED

The individual items of this display are explained below. Note that the

numbers involved, unless otherwise specified, are in octal notation.

PRO GRAM C GUNTER gives t he addre s s of the current object ins 1 ruc tion.

INSTRÜCTIOJS is followed by the PDP-H machine code of the current object

ins truc tion, and D. F. gives the extended meinory da t a f ield whi ch u pplies

if the instructioii uses indirect addre s Fi

INTERPRETEI) AS_:_ indicate s the act i on intended by the current ob jec t

instruction, an a c t i o n wh i c h h a s not y e t be e n c a r r i e d out a t th i a p o i n t .

Instruction codes 0, l, 2, 3» ;* » and ; are decoded äs AND, TAT), ISZ, DCA,

JMP, and JMS, respectively, followed by the absolute addre s s of the

storage location which the instructioii references. In addition, the con-

tents of that location are displayed in the f ormat (address) = contents.

Instruction code 6 i s normal ly indicaled here orily äs TOT. Tnptruction

code 7 microinst r uctiori s are decoded in PAL -4 symbol ic langua^e, where

the time sequence in combined microinstruction? runs from left t o right.

AC£ÜMljLATiOR,_LI_NK,_M^,_SCi give the current contents of the object pro-

gram * s accumulator , l ink, mul tiplier quotient, and « tep counter , respec-

tive ly.

give further, somewhat more technical, Infor-

mation about the object pro gram. ION i s nonzero vhen the object pro gram

Interrupt i s enabled, IXH. is nonzero when that intnrrupt i s inhibited,

REQ. is nonzero when an Interrupt requect is present, and BIT. ff±vex the

contents of the object pro gram Interrupt buf f er . MODE i s 0 f o r m n de A,

and l for mode B, of the PDP-8/e extended ari thme tic el ement .

WINDOW: displays the contents of a prnselected nddress in the format

(address) = contents. The contents appear in both octal and decimal no-

tation, and in each case äs positive numbers äs we 1 1 äs two ' p-r,omp I ement

negative numbers . (Thi s part of the s t a tu s di spl ay i s ref erred t o later

äs the "window".)

JRAJS : indicates the status of the three type s of planned traps which are

available to the user. These traps are denoted by the letters P, I, and

W, which stand for pro gram counter trap, instruction code trap, and

- 6 -

window trap, respectively. When the user enables one of these traps, then

the symbolic name of the trap is followed by two numbers and, possibly,

an X in parentheses. The two numbers indicate the ränge of values for

which the trap responds. The X in parentheses indicates that the trap

responds only in coincidence with the other traps, if any, which bear this

designation. Thus, in the example given above, there are two conditions

which will activate a planned trap: (l) when the program counter is in

the ränge from 06000 to 07177» inclusively, and simultaneously the instruc-

tion code is 103**» or (2) the (octal) contents of the address 12420, äs

displayed in the "window", deviate from the value 3243. The latter is

explained by the fact that the first number in the ränge of the window

trap, namely, 3244, is greater than the second number, 3242. The corre-

sponding ränge, in this case, is taken to be from 3244 to 7777» continuing

with 0000 to 3242.

TRACEBACK:_ STEP_ gives the number of steps by which the user has trans-

lated the status display into the past, by way of using the "traceback"

option. Step 0 refers to the present. If the traceback Option is not

enabled, then this line di sappears.

PLANNED J_RAP_ENC£UNTERED_ is one of several types of messages which may

appear near the bottom of the status display äs additional information.

In this case, the coincidence condition represented by the program counter

trap and the instruction code trap has been fulfilled.

KEYBOARD FUNCTIONS

The set of enabled keyboard functions (teletype commands) i s described

here. A comprehensive discussion of how to apply these functions is given

in Section 6 below.

Note that the following commands only apply when SOFPDP i s in the

command mode. When SOFPDP is simulating the object program, then tele-

type input is passed directly to the object program for processing. The

single exception to this rule i s the character f ?', which i s intercepted

- 7 -

by SOFPDP and taken äs a signal to Interrupt execution of the object pro-

gram (the "spur-of-the-moment" trap)0 The notation (+) means that addi-

tional numerical input is requested. The mies governing numerical input

are spelled out in the Appendix.

General ontrol Functioiis

G execute

? interrupt execution

RETURN execute a single instruction

CTRL/S execute the bootstrap loader in Simulation

CTRL/R execute the bootstrap loader in reality

Wi nd o_w_Co_mm a n_ds_

E set the window address (+)

SPACE increment the current vindow address

B decrement the current window address

windov address = contents of the program counter

A display the contents of the object program accumulator

D deposit contents (+) at the address given by the window

address

* deposit contents (+) repeatedly, where the window address

is automatically incremented after each entry, until a

second asterisk is entered to terminate the series

Cc>mmands

P e nable the program counter trap and enter its ränge (+)

I enable the instruction code trap and enter its ränge (-*•)

W enable the window trap and enter its ränge (+)

CTRL/P diaable the program counter trap

CTRL/I disable the instruction code trap

CTRL/W disable the window trap

X r p £ii l nt e the coinci dence condition among the traps. After

ontering X, the u=er may bring a given trap into a coinci-

dence condition by entering the syrabolic name of t hat trap

(P, T, or W) , or remove t hat trap from coincidence wi th

CTHI./OS 1» or W). RETIRX brings SOFPDP back to the normal

oommand mode .

("IH1./X removp any coincidenco condition among the traps. The

affected traps, i i any, revert to independent Operation.

T enab l P the traceback option

(•TltlyT di. säble the traceback option

('TRI,/ l! r o 1 1 the Status di splay one s tep backward in time . The ntun-

ber o i' steps so taken i s shovn on the status di splay (maxi-

inum : 1(1 > t eps) .

CTRly7] roll tlie Status display one step f o r ward in time (if it ha s

first been taken backward in time with CTRL/B)

i - r p L l aneous

L l o ad an addrcss (+) in the ob jec t pro gram counter

/ give the next teletype character to the object program for

processing. This command can be used to enter the special

control character '?' so that it will not be intercepted by

SOFPDP. One nrnst first, of course, bring SOFPDP into the

command mode for thi? purpose .

-T tlo not suppre.= P warning messages vhich ordinarily appear

when the bank occupied by SOFPDP is indirectly referenced by

the object program using AXD, TAD, ISZ, or DCA ins truc tions .

These me s sage s warn the user that the bank occupied by SOFPDP

is being presented äs a non-oxistent bank to the object pro-

gram. J is initially in effect by def aul t .

(THL/ -T suppress the warning messages (and the involuntary trap

assoc iated with them)

- 9 -

6. DEBUGGING WITH SOFPDP

Before turning to SOFPDP, the user should provide himself with some

kind of listing of the object program, preferably an assembler listing,

If only a PAL-4 listing is available, then it will be necessary to use

the asserabler-produced listing of the relocatable control section (RCS)

origins to establish absolute addresses.

At the completion of the loading procedure, SOFPDP i s ready for

action in the command mode. The status display shows the first instruc-

tion which is up for Simulation. The very first instructions in the

objec t program are usually not relevant to the error in question. (For

example, the first instructions in any program which uses the F58 Super-

visor, SUPER, belong to a rather lengthy initialization of that Super-

visor.) In any case, however, the object program is in a completely

virgin state at this point. This opportunity should be used to examine

or make change s using the "window", to set up one or more planned traps,

or to enable the traceback Option. These features of SOFPDP are discussed

in separate sub-sections below.

The command for starting simulated execution is 'G'. The status

display disappears and is replaced by the display Output, if any, from

the slow-moving object program. Execution proceeds in this manner until

a trap i s encountered, which ine lüde s the possibility for stopping with

the command f ?' at any time (the "spur-of-the-moment" trap). Wben a trap

is encountered, SOFPDP returns to the command mode. Until the command

mode is reached in this way, all teletype input except '?' is passed on

to the object program for processing. In the command mode, single object

instructions may be executed vith the command RETURN.

It is quite easy to reload the object program under SOFPDP control.

The command 'CTRL/S1 starts SOFPDP executing the tape bootstrap loader

in Software Simulation. Once the object program is reloaded, the status

display returns with the message LOADING COMPLETED appended, and the user

may raake a fresh start. If, however, the user wishes to exit SOFPDP com-

pletely, then he may start the bootstrap loader in normal execution with

- 10 -

t li o command ' CTHI./ft' . (One mus t, of course, first bring SOFPDP into the

coinmand niode.)

The "window" (see Section 4) fulfills a variety of needs in debug-

It is used to exarnine or change the contents of storage locations

in the ob.ject program and, to some extent, in SOFPDP itself. For exara-

p l n , the vindow may be used to check the connection between the editor

t ext for the object program and the assembled code, and simple errors may

be corrected by depositing new contents. Important locations raay be con-

timiously and autoraatically monitored by using the "window trap".

The re sults of the window appear on the status display. The address

«hown there in parentheses i s called the "window address". The window

nddress may be set to an arbi trary extended memory address under the com-

mand 'E' (see Appendix for the rules governing numerical input). The

commands SPAOE and 'B1 conveniently increment and decrement, respectively,

thf curren t window addres s. The command '. ' sets the window address

ei|ua L t o the addres s of the current instrtiction äs given by the pro gram

c o u n t e r.

The command 'A' sets the window address equal to the address of the

object program accumulator, which is an address inside SOFPDP. In this

case, the window address is denoted on the status display by the word

A('(TM ins tead of a numerical address. From thi s s tarting point, the

command SPACE may be used to bring other elements of the object program

(LINK, >IU, SC, ION, etc.) into the window, where the order corresponds

to the arrangement of those elernents on the status display, where they

also appear äs permanent features. Again, starting from ACCUM, the com-

mand 'R' bringe, in turn, the elements D.F., INSTR, and PC into the win-

dow. Beyond these elements, in either direction starting from ACCUM, the

window address is again denoted by a numerical address, namely, of an

ordinary location inside SOFPDP.

- 11 -

The contents of the selected location appear on the status display

in several different formats. Those contents may be changed by using the

command 'D'. (Of the locations inside SOFPDP itself, only those which

are identified äs being elements of the object program, by means of sym-

bolic rather than numerical window addresses, are subject to change under

fD*.) The command '** is more convenieiit whenever several consecutive

locations should be altered. Under '*f, the user gives new contents

exactly äs with 'D', with the difference that each new entry automatically

brings up the next consecutive location for alteration. Input contimies

in this way until the user supplies another f*' in order to terminate the

series.

Th£ Planne (l Traps_

The key to successful debugging is judicious use of the planned

traps. Suggestions for using the planned traps are given here, although

i t i s irapossible to devise a strategy which covers every possible case.

It is a matter of intuition and trial-and-error, äs well äs experience,

to find the best configuration of traps for a particular problern.

In most cases, the user knows where to start looking for a possible

error, äs, for example, in a subroutine which leads to chaos in the ob-

ject program whenever it is called up. Such cases call for application of

the program counter trap, which reacts whenever a predetermined point in

the object program is reached in the course of execution. To set such a

trap, the absolute address of the desired stopping point is entered uner

'P(. (Remember that the first address encountered in a subroutine is the

address iramediately following the entry point.) It is also possible to

give a ränge of addresses under 'P1 (see Appendix), such that each address

in that ränge becomes a stopping point. This feature can be used, for

example, to single-step through a subroutine with the command f G1 (instead

of RETURN), whereby any externally called subroutines will not be executed

in single-step fashion. Other uses of a finite ränge under 'P1 are men-

tioned below. The command 'CTRL/P1 disables the program counter trap.

The instruction code trap reac t s whenever a given machine code (or

a ränge thereof) i s encountered äs an instruction. The desired machine

code i s entered under ' I '. Thi s type of trap is useful for seeking out

all instances of usage of a relatively rare input-output transfer (IOT)

n l1 m i croins truc t i o n (üPfi) . For thi s purpose , i t i s desirable t o have on

hand a l i s t of the PDP-8 code 6 and code 7 instructions with their machine

codes. ' CTRTj/T ! di säble s the instruction code trap.

The instruction code trap is somewhat restricted by the fact that

the desired instruction may occur at unexpected points in the object

program, especially in the supervi sor. By switching the instruction code

Lrap into a coincidence condition wi th the program counter trap, however,

t Im activity of the instruction code trap can be restricted to the part

of the obje et program corresponding to the ränge of the program counter

trap. This is done by entering 'X1, followed by the symbolic trap names,

in thi s case 'T1 and 'P'. The traps participating in a coincidence con-

dition are tagged on the Status display with an X in parentheses. A trap

may be removed from a coincidence condi tion, once 'X' has been entered,

with CTRIV'(symbolic name). In any case, RETURN must be given in order to

ro turn \ the normal command mode. All traps may be at once removed from

any coincidence condition, from the command mode, with 'CTRL/X'.

The third type of planned trap, called the "window trap", i s by far

the m o st flexible. The window trap reacts whenever the Contents of the

location monitored by the window become equal to a preselected value, or

when those contents lie ins ide a preselected ränge of values. The desired

value or ränge of values is entered under 'W. The ränge may even be so

defined that the window trap triggers whenever the monitored contents

change from some preselected value, äs in the example of Section 4. When

the window displays one of the various object program elements, such äs

the object program accumulator, then the window trap operates on the con-

tents of that element. When those elements are INSTR and PC, then the

window trap becomes a second instruction code and program counter trap,

respectively. The window trap i s especially useful in a coincidence

condition. 'CTRL/W1 disables the window trap.

- 13 -

The

The "involuntary" traps in SOFPDP react automatically whenever

certain pathological conditions arise during execution. When this hap-

pens SOFPDP reverts to the command mode and indicates, by means of a

message a t the bottom of the status display, the nature of the problem.

In most cases, the user can continue execution, vhereby SOFPDP takes a

corrective action against the cause of the interruption. In some cases ,

however , the problem i s of such a severe nature that für the r execution

i s irapossible wi thout Intervention f rom the user (such äs reloading the

ob jec t pro gram) . The various type s of involuntary traps , in order of

increasing severity , are discussed separately below, preceded in each

case by the associated message:

INSTRUCTION = 0000

The machine code 0000 (literally, AND 0) is normally only encoun-

tered äs an instruction when the object program has strayed from i ts

proscribed region of core. If the traceback Option was previously

enabled, then the user can try to determine why this happened. Execution

may be continued, whereby SOFPDP carries out an AND 0.

INSTRUCTION CAUSES HALT

Any instruction which can be expressed äs the inclusive OR of 7̂ 02

with any even number causes a CPU halt in normal execution. This may

happen when the object program runs astray, or i t may be the result of a

HLT command in the object program, possibly combined with other micro-

instructions. In any case, SOFPDP does not execute a CPU halt. If the

user decides to continue from this point, then SOFPDP suppresses the bit

which is associated with a CPU halt in the microinstruction and executes

the instruction.

WARNING: SOFPDP'S BANK IS PROTECTED

(CTRL/J SUPPRESSES THESE WARNINGS)

When the above message appears, i t means that the object pro gram i s

i.rying to access the bank occupied by SOFPDP u sing one of the instructions

AND, T AD, ISZ, o r I)CA. Execution may be continued, where the instruction

in question will have äs much effect äs if it were referencing a non-

oxistent bank. (Thus, AND and DCA only clear the accumulator, whereas

TAD and ISZ have no effect whatsoever.) In this way, the object program

can forraally share a bank with SOFPDP. This trap is not really "involun-

tary", because i t may be disabled with the command 'CTRL/J1 (and re-

enabled with 'J').

SORRY! THIS BANK IS OCCUPIED BY SOFPDP!

This message, which appears under several conditions, means that the

object program i s trying to access the bank occupied by SOFPDP in a way

which precludes fürther execution. This happens, for example, whenever

the object program seeks to transfer control to the forhidden bank with

a JMP or -IMS instruction. The other conditions which trigger this trap

all involve the attempt to störe data on SOFPDP's bank using some periph-

eral device. Those devices are the following: the CAMAC or IBM channels,

where execution halts at the associated SVC instruction (octal code 6732),

and the DEC tape uni ts, where execution halts at the instruction DTLB

(octal code 677*0»

DECTAPE ERROR

As mentioned earlier, SOFPDP simulates the DEC tape Controller. (it

was explained earlier that the object program must not be critically depen-

dent on real time. This affects the DEC tape Controller, in particular,

- 15 -

because the DEC tape uni ts are intrinsically dependent on real time.)

Thus, SOFPDP only carries out tape actions äs they become known frora

interaction with the objec t program. Vhen a hardware tape error occurs,

therefore, it i s qui te possible that SOFPDP ha s already led the ob jec t

program to believe that the tape transfer occurred flawlessly. Execution

may be continued after such an error, although the desired tape transfer

has been abandoned. The best course of action i s to break off operations

wi th SOFPDP and investigate the reason for the hardware tape error.

The user sometimes wislies to know how the object program managed to

reach a particular state, such äs encountering the instruction 0000 in

an unfamiliar part of core. If the traceback Option was enabled with the

command 'T' prior to such an evcnt, then the user may examine the preced-

ing 10 stepp. When the traceback Option i s enabled, however, the executing

speed in SOFPDP drops noticeably, and this is the reason why the traceback

is an optional feature.

Under the traceback option, all information on the status di splay

except the Information dealing with the window and the traps i s saved for

possible later examination, up to a maximum of 10 steps. The saved Infor-

mation i s viewed by inserting it again in the status display, or, in other

words, rolling the status di splay backward in time. The command 'CTRL/B1

rolls the status di splay one step backward, and simultaneously the munber

of steps indicated after TRACEBACK: STEP is incremented. 'CTRL/F1 rolls

the status display one step forward and decrements the number of steps

shown on the status display. Once the status display is translated into

the past with 'CTRL/B1, then any command other than 'CTRL/F' will, in

genera l, cause the status di splay to return to its original state (step 0)

before any other action is taken. The command 'CTRL/T' disables the

traceback.

- 16 -

APPENDIX: Numerical Input

Some of the teletype commands in SOFPDP request additional nuraerical

input from the user. The routine which mediates that input has the

following propertics:

1. The nature of the requested input i s always indicated. The current

value of the requested quanti ty appears, in a separate l ine , after

the word CURRENTLY.

2. The requested quantity may be either an address or the contents of an

address, depending on the context of the teletype command. In the

case of Contents, the input consists of up to four digits, possibly

preceded by the letter D to indicate decimal notation or by a minus

sign to indicate two's-complement negation, or both (in any order).

In the case of an address, the input consist-s of up to five digits,

where the left-most digit gives the bank number. If less than five

digits are given, then the bank number keeps its current value.

3« If only one quanti ty is requested, then the input is terminated with

RETURN. If two quanti ties are requested, äs in the case of the planned

trap ranges, then the first quantity i s terminated wi th a comma, and

the second quantity is terminated with RETURN. The first of two quan-

tities may, however, be terminated with RETURN, in which case the

second quantity takes its value from the first one by default. In all

cases, input which consists only of RETURN causes the requested quan-

tity or quantities to keep their current values.

4. The teletype command '*' starts a series of requests for contents,

where each entry in the series is terminated, äs usual, with RETURN.

If, however, an entry is terminated with '*', then that entry is

processed äs the final entry in the series,

5- RUBOUT deletes single digits (or literal prefixes) from the input.

