Interner Bericht DESY F36-87-01 Januar 1987

UNTERSUCHUNG VON EREIGNISSEN MIT LEPTONEN UND PHOTONEN MIT DEM CELLO-DETEKTOR BEI PETRA

von

Paul Grosse-Wiesmann

Eigentum der Property of	DESY	Bibliothek library
Zurgong 18. Accessions.	MAI	1987
Leihinst: Loan period:	7	Tago days

DESY behält sich alle Rechte für den Fall der Schutzrechtserteilung und für die wirtschaftliche Verwertung der in diesem Bericht enthaltenen Informationen vor.

DESY reserves all rights for commercial use of information included in this report, especially in case of filing application for or grant of patents.

"Die Verantwortung für den Inhalt dieses Internen Berichtes liegt ausschließlich beim Verfasser"

Untersuchung von Ereignissen mit Leptonen und Photonen

mit dem CELLO-Detektor bei PETRA

Dissertation zur Erlangung des Doktorgrades des Fachbereichs Physik der Universität Hamburg

vorgelegt von Paul Grosse Wiesmann aus Hiddingsel/Westfalen

> Hamburg 1985

<u>Inhaltsverzeichnis</u>

- 0. EINLEITUNG
- I. THEORETISCHE ASPEKTE
- I. 1 Vorhersagen der QED in der e^{*}e⁻ Wechselwirkung
- I. 2 Vorhersagen der elektroschwachen Wechselwirkung in e⁺e⁻ Streuung
- I. 3 Suche nach Phänomenen, die über das Standard-Modell hinausführen
- I. 3.1 Angeregte Leptonen
- I. 3.2 Supersymmetrische Leptonen und Photonen

II. MESSAPPARATE

- II. 1 Speicherring PETRA
- II. 2 Detektor CELLO
- II. 2.1 Magnetischer Innendetektor
- II. 2.2 Flüssig-Argon-Blei-Kalorimeter
- II. 2.3 Muonkammern
- II. 2.4 Trigger
- II. 2.5 Datenaufnahme-System
- III. ANALYSE DER EXPERIMENTELLEN DATEN
- III. 1 Filter
- III. 2 Rekonstruktion der Teilchenspuren
- III. 3 Reaktion ee + ee
- III. 4 Reaktion $ee \rightarrow \gamma\gamma$
- III. 5 Reaktion ee + ττ
- III. 6 Reaktion ee + 11yy
- IV. RESULTATE
- IV. 1 QED-Tests
- IV. 2 Elektroschwache Kopplungsparameter
- IV. 3 Grenzen für angeregte Leptonen
- IV. 4 Grenzen für instabile Photinos

V. ZUSAMMENFASSUNG

VI. ANHANG

- VI A A simple version for an Energy Trigger in CELLO
- VI.B The CELLO LAr Calorimeter Trigger 1983/84
- VI.C Simple Scintillator Shower Counter for the Hole between Barrel- and Endcap-Calorimeter

Gutachter der Dissertation:Prof. Dr. V. Blobel
Prof. Dr. M. Davier
Prof. Dr. E. LohrmannGutachter der Disputation:Prof. Dr. E. LohrmannSprecher des
Fachbereichs Physik und
Vorsitzender des Promotions-
ausschussesProf. Dr. J. P. KotthausDatum der Disputation:5. Mai 1986

٠. .

e • • • • •

•

J

.

.

•

Einleitung

In dieser Arbeit wird über experimentelle Tests des Standard-Models der elektroschwachen Wechselwirkung mit dem CELLO-Detektor bei PETRA berichtet.

Der Begriff Standard-Model ist zum Synomym für die Fortschritte der Elementarteilchen in den letzten beiden Jahrzehnten geworden. Alle bisher beobachtbaren Phänomene der Elementarteilchenphysik können mit folgenden Annahmen beschrieben werden:

- Quarks und Leptonen sind die fundamentellen Bausteine der Materie,
- aus dem Prinzip der lokalen Eichinvarianz können die Wechselwirkungsfelder und die sie vermittelnden Austauschteilchen abgeleitet werden.

Elektronen und Photonen und die Theorie ihrer Wechselwirkung, die Quantenelektrodynamik (QED), haben in dieser Entwicklung eine beispielhafte Rolle gespielt. Mit der QED war es zum ersten Mal gelungen, quantitativ und in sich konsistent Wechselwirkung zwischen Elementarteilchen zu beschreiben. Die Berechnung und Messung der anormalen magnetischen Momente des Elektron und Muon haben die Aussagekraft und die innere Konsistenz der QED in eindrucksvoller Weise demonstriert. In Streuprozessen bei großen Viererimpulsüberträgen wird das Postulat der Punktförmigkeit der Fermion-Photon-Kopplung getestet. Die gemessenen Wirkungsquerschnitte für Lepton- und Quarkpaarproduktion bei PETRA und PEP setzen obere Grenzen von ~ 10^{-16} cm für deren innere Struktur.

Ähnlich wie mit den Maxwell-Gleichungen in der Elektrodynamik zwei von der Erscheinung zunächst unterschiedliche Phänomene, Elektrizität und Magnetismus, auf eine gemeinsame Grundlage zurückgeführt werden, ist die Elementarteilchenphysik heute bemüht, die verschiedenen in der Natur beobachteten Wechselwirkungen in einer gemeinsamen Theorie zu beschreiben.

Bei der Vereinigung von elektromagnetischer und schwacher Wechselwirkung sind hierbei in den 60iger und 70iger Jahren Erfolge erzielt worden. Die schwache Wechselwirkung wurde 1934 von Fermi |FER34| in Analogie zur QED eingeführt, um den Betazerfall quantitativ verstehen zu können. Fermis Ansatz der schwachen Wechselwirkung erwies sich als erfolgreich bei der Beschreibung unterschiedlicher Prozesse. Beobachtbare Größen konnten mit einer einzigen Kopplungskonstante (G_F) beschrieben werden. Bereits in den 30iger Jahren gab es Versuche, schwache und elektromagnetische Wechselwirkung zu vereinigen. Yukawas Idee, Wechselwirkungen durch den Austausch von massiven Teilchen zu erklären [[]YUK35[]], lieferte mit dem Propagatoreffekt eine zwanglose Erklärung für die im Vergleich zur QED geringe Stärke der Fermi-Wechselwirkung beim Betazerfall. Trotz beeindruckender praktischer Erfolge war klar, daß der Fermi-Ansatz nur eine näherungsweise Beschreibung sein konnte. Divergenzen für die Wirkungsquerschnitte bei hohen Energien erwiesen sich im Gegensatz zu den Divergenzen in der QED als nicht renormalisierbar.

Ein entscheidender Unterschied zwischen elektromagnetischer und schwacher Wechselwirkung wurde mit der Paritätsverletzung im Betazerfall entdeckt [LEE56: |WU57 . Weitere Messungen und deren genaue Analyse zeigten, daß der geladene schwache Strom von der V-A Form ist. Hierdurch wird die Helizität der Teilchen zu einer wichtigen Größe. Während die QED nicht zwischen links- und rechtshändigen Teilchen unterscheidet, sind nur linkshändige Teilchen an den geladenen Strömen der schwachen Wechselwirkung beteiligt. Versuche, den geladenen schwachen Strom mit dem neutralen Vektorstrom der QED zu verbinden und die beiden in einer elektroschwachen Isospingruppe einzuordnen, scheiterten an der unterschiedlichen Rolle der Helizität in beiden Wechselwirkungen.

Mit der Einführung der schwachen Hyperladung (Y) und der zugeordneten U(1)_Y-Symmetrie gelang es Glashow 'GLA61', die vom geladenen Strom nahegelegte SU(2) Symmetrie im schwachen Isospinraum und die U(1)_{cm} Symmetrie der QED in der Symmetriegruppe SU(2)_L x U(1)_Y zusammenzufassen. In diesem Modell gibt es vier Vektorbosonen: das Triplet W⁺, W^o, W⁻ koppelt mit dem Kopplungsparameter g an den schwachen Isospin (T) der Fermionen; ein neutrales Vektorfeld B mit dem Kopplungsparameter g' an die Hyperladung (Y). Zwischen elektrischer Ladung, Isospin und Hyperladung gilt eine Gell-Mann-Nishijima ähnliche Relation

 $Q = T^{(3)} + Y$ (0.1)

Um die V-A Form der schwachen Wechselwirkung und den Vektorcharakter der QED zu beschreiben, müssen die physikalisch beobachtbaren neutralen Austauschteilchen Mischungen aus dem W^O und B-Feld sein:

$$A_{\mu} = \sin \theta_{w} W_{\mu}^{o} + \cos \theta_{w} B_{\mu}^{o} \quad (0.2)$$
$$Z_{\mu}^{o} = \cos \theta_{w} W_{\mu}^{o} - \sin \theta_{w} B_{\mu}^{o} \quad (0.3)$$

Die Forderung, daß das A_{μ} -Feld mit dem Photon und die W_{μ} ± Felder mit dem geladenen schwachen Strom identifiziert werden, führt zu folgenden Relationen für die Massen und Kopplungsparameter:

g
$$\sin \Theta_w = e = g' \cos \Theta_w$$
 (0.4)
G_F/ 2 = g²/8 M_w² oder M_w = 37.3/sin \Theta_w GeV (0.5)

Zusätzlich gibt es ein neutrales Z_{μ}^{0} -Feld mit unterschiedlichen Kopplungen für links- und rechtshändige Fermionen, die sowohl durch die Ladungs- und Isospinzuweisung als auch durch den Mischungswinkel Θ_{μ} festgelegt sind:

$$g_{L} = g (T_{L}^{(3)} - Q \sin^{2}\theta_{w})$$
 (0.6)
 $g_{R} = g (T_{R}^{(3)} - Q \sin^{2}\theta_{w})$ (0.7)

In Glashows Ansatz bleiben die Massen der Vektorbosonen Fremdkörper, und die Divergenzen des alten Fermi-Ansatzes sind nicht wirklich behoben. Insbesondere wird keine Vorhersage für die Masse des Z° Bosons und damit der Stärke des neutralen schwachen Stroms gemacht. Um die relative Stärke zwischen neutralem und geladenem schwachen Strom zu quantifizieren, führt Glashow folgende Relation ein:

$$\rho = M_w^2 / M_z^2 \sin^2 \theta_w \qquad (0.8)$$

p ist dabei ein nicht festgelegtes Parameter des Modells.

Mit dem Prinzip der lokalen Eichinvarianz und dem Mechanismus der spontanen Symmetriebrechung gelang es Salam |SAL64| |SAL68| und Weinberg |WEI67|, die Kopplungen zwischen den Vektorteilchen in eindeutiger Weise festzulegen und die Massenrelationen (0.5) und (0.8) in Zusammenhang mit dem Vakuumerwartungswert skalarer Higgsfelder zu setzen.

T' Hooft |TH071| konnte zeigen, daß das SU(2)_L x U(1)_Y Modell der elektroschwachen Wechselwirkung zusammen mit dem vorgeschlagenen Higgs-Mechanismus renormalisierbar ist.

In der einfachsten Version wird ein komplexes Doublett skalarer Higgsteilchen eingeführt. Um den Vektorteilchen Masse zu geben, werden drei der vier Higgsteilchen aufgebraucht; ein neutrales Higgsteilchen, dessen Masse nicht festgelegt ist, bleibt bei dieser Prozedur übrig. In dieser einfachsten Version des Higgsmechanismus ists $\rho = 1$ in der Relation (0.8).

Ursprünglich wurde das Modell nur für Leptonen entwickelt, und die Nicht-Existenz neutraler schwacher Ströme im K⁰-Zerfall war ein ungelöstes Problem. Durch die Annahme eines vierten Quarks konnten Glashow, Iliopoulos und Maiani |GIM70| dies zwanglos erklären. Quarks und Leptonen mehrerer Teilchen-Generationen können innerhalb des SU(2)_L x U(1)_Y Schemas eingeordnet werden.

Die entscheidenden neuen Vorhersagen sind:

- Existenz eines neutralen Stromes, der nicht von der V- oder
 V-A Form ist, sondern von den Ladungen der Fermionen und dem schwachen Mischungswinkel abhängt,
- Relationen zwischen den Massen der Austauschbosonen und dem schwachen Mischungswinkel,
- Existenz eines neutralen Higgsteilchens mit definierten Kopplungen an die Fermionen und Vektorbosonen,
- Eindeutiges Verhalten der Wirkungsquerschnitte bei hohen Energien.

Eindrucksvolle experimentelle Bestätigungen haben das

 ${\rm SU(2)}_L \times {\rm U(1)}_Y$ Modell zum sogenannten Standard-Modell gemacht. Die wichtigsten Erfolge sind:

- die Beobachtung der neutralen schwachen Ströme in Neutrino-Experimenten am CERN ¹HAS73¹,
- die Entdeckung des Charm Quarks in Brookhaven |AUB74| und Stanford |AUG74|,
- die Beobachtung paritätsverletzender Asymmetrie in Elektron-Deutron-Streuexperimenten am SLAC |PRE78|,
- die Beobachtung eines neutralen Axial-Vektorstroms in der Leptonpaarasymmetrie am Speicherring PETRA,
- aber vor allem die Entdeckung der schweren Vektorbosonen
 W und Z am pp-Speicherring am CERN |UA183| |UA283|.

Die erfolgreiche Anwendung der lokalen Eichinvarianz bei der Verbindung von elektromagnetischer und schwacher Wechselwirkung hatte Einfluß auf die Beschreibung anderer Wechselwirkungen. Mit der QCD gelang es, die Kräfte zwischen Quarks im Rahmen einer nicht-abelschen Eichtheorie durch den Austausch von Vektorteilchen, sogenannten Gluonen, zu erklären. Die Beobachtungen von 3 Jet-Ereignissen bei PETRA |SÖD82{ sind die wichtigsten experimentellen Hinweise auf die QCD.

Mit der Symmetriegruppe SU(3)_C x SU(2)_L x U(1)_Y werden die starke, elektromagnetische und schwache Wechselwirkung zwischen Leptonen und Quarks beschrieben.

Trotz der beeindruckenden praktischen Erfolge gibt es eine Anzahl von Fragen, die nur unbefriedigend mit dem Standard-Modell erklärt werden:

- Wodurch sind Anzahl und Massenspektrum der Teilchenfamilien bestimmt?
- Gibt es einen Zusammenhang zwischen den verschiedenen Kopplungsparametern, und wie kann die Gravitation in das Modell einbezogen werden?
- Was ist die Ursache für den Unterschied von links- und rechtshändigen Teilchen?
- Wodurch wird der Higgssektor festgelegt?

In der theoretischen Physik gibt es zur Zeit intensive Bemühungen darum, ein umfassendes Verständnis des Standard-Modells zu finden. Experimentelle Untersuchungen, in denen die Vorhersagen des Standard-Modells überprüft werden, und die Suche nach Phänomenen, die keinen Platz im Standard-Modell haben, können hierbei entscheidende Hinweise geben.

In dieser Arbeit wird über experimentelle Tests des Standard-Modells in e^+e^- -Reaktionen mit Leptonen und Photonen im Endzustand berichtet.

Im ersten Abschnitt wird die Phänomenologie der elektroschwachen Wechselwirkung in e⁺e⁻-Reaktionen diskutiert. Im zweiten Abschnitt werden die benutzten Meßapparate beschrieben. Im dritten Abschnitt wird die Auswertung einzelner Reaktionen mit Leptonen und Photonen im Endzustand im Detail diskutiert. Die wichtigsten Ergebnisse werden in Kapitel IV präsentiert. Im Anhang werden wichtige Beiträge für die Detektorentwicklung dokumentiert. Die meisten der in dieser Arbeit dargestellten Ergebnisse sind veröffentlicht, oder deren Veröffentlichung ist in Vorbereitung.

Die QED-Reaktionen ee \rightarrow ee und ee \rightarrow yy sind in [CEL81] [CEL82] und [CEL83] veröffentlicht; die Bestimmung der Kopplungsparameter der elektroschwachen Wechselwirkung aus den Reaktionen ee \rightarrow ee, $\mu\mu$, $\tau\tau$ in [CEL82]; die Vergleiche der Reaktionen ee \rightarrow eey und ee $\rightarrow \mu\mu\gamma$ mit der QED-Vorhersage in [CEL85]. Eine Veröffentlichung der Grenzen für angeregte Leptonen ist in Vorbereitung. Die Grenzen für instabile supersymmetrische Photinos sind in [CEL83] publiziert. Eine Zusammenfassung von Ergebnissen der CELLO-Kollaboration über elektroschwache Wechselwirkung ist als Buchbeitrag veröffentlicht [PGW83].

Der Aufbau des Detektors und seine wichtigsten Eigenschaften sind in [MJS81] dokumentiert.

Tabelle I.1

X = cos⊖ X_m = Integralgrenze

Leptonpaarerzeugung	$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4s} (1+X)$	$\sigma(\chi_m) = \frac{\pi \alpha^2}{s} (\chi_m + \frac{1}{3} \chi_m^3) ; \sigma_{tot} = \frac{4}{3} \frac{\alpha^2}{s}$
Photonpaarerzeugung	$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{s} \frac{1+\chi^2}{1-\chi^2}$	$\sigma(\chi_{\rm m}) = \frac{2\pi\alpha^2}{s} \left(\ln \frac{1+\chi^2}{1-\chi^2_{\rm m}} - \chi_{\rm m} \right); \sigma_{\rm tot} = \frac{2\pi\alpha^2}{s} \left(\ln \frac{s}{m^2_{\rm e}} -1 \right)$
Bhabhastrevung	$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4s} \left(\frac{3+\chi^2}{1-\chi} \right)^2$	$\sigma(x_{m}) = \frac{4\pi\alpha^{2}}{s} \left[\frac{4x_{m}}{1-x_{m}^{2}} + \frac{9}{4}x_{m} + \frac{1}{12}x_{m}^{3} + 2\ln\frac{1-x_{m}}{1+x_{m}^{m}} \right]$

integrierter bzw. totaler Wirkungsquerschnitt

differentieller Wirkungsquerschnitt

I.1 Vorhersagen de<u>r QE</u>D in der e⁺e⁻ Wechselwirkung

Ausgehend vom Wechselwirkungs-Lagrange-Operator

$$L_{ww} = q l \gamma_{\mu} l A_{\mu} = J^{\mu}_{em} A_{\mu}$$

und dem zugehörigen Feynman-Graph

$$J_{em}^{\mu} \rightarrow A_{\mu}$$

können die Wirkungsquerschnitte der QED für die Reaktion zwischen Leptonen und Photonen in der e⁺e⁻ Streuung berechnet werden.

Die drei Reaktionstypen in niedrigster Ordnung der störungstheoretischen Reihenentwicklung sind

e⁺e^ → L⁺L¯	Leptonpaarproduktion	(I.1.1)
e ⁺ e⁻ → γγ	Photonpaarproduktion	(I.1.2)
e⁺e¯ → e⁺e¯	Bhabhastreuung	(1.1.3)

In Tabelle I.1 sind die Graphen und die Rechenausdrücke für die totalen und differentiellen Wirkungsquerschnitte zusammengestellt. Die Größenordnung wird gewöhnlich durch den totalen Wirkungsquerschnitt für die Muonpaarproduktion charakterisiert:

$$\sigma_{ee+\mu\mu} = 86.8/s \text{ nb} (s \text{ in GeV})$$
 (I.1.4)

Abb. I.1 zeigt die Polarwinkelabhängigkeit der drei Reaktionen. Die Bhabhastreuung weist im Gegensatz zur Leptonpaarproduktion eine starke Vorwärts-Rückwärtsasymmetrie auf, da zusätzlich zum zeitartigen Photonaustausch auch der raumartige Photonaustausch möglich ist.

Reaktionen in der niedrigsten Ordnung der Störungstheorie (α^2) sind Idealisierungen und kommen in der Natur streng genommen nicht vor. Zusätzlich muß immer die Möglichkeit der Photon-

I.1

Abb. I.1

Polarwinkelabhängigkeit der Reaktionen ee + 11 und ee + yy

abstrahlung und Absorption von jedem geladenen Teilchen und die Vakuumpolarisation von Photonlinien mit betrachtet werden:

Der beobachtbare Wirkungsquerschnitt (σ_{exp}) kann als Wirkungsquerschnitt zur niedrigsten Ordnung (c_{o}) und einem Strahlungskorrekturbeitrag (δ_{rad}) dargestellt werden:

$$\sigma_{exp} = \sigma_{o} (1 + \delta_{rad}).$$

Die Strahlungskorrekturen in der Ordnung α^3 sind von der Größenordnung

Im PETRA-Energiebereich bei 14 GeV Schwerpunktsenergie sind dies 8.0% und bei 46 GeV 10.1%. Die Wahrscheinlichkeit für die Abstrahlung eines Photons der Energie K ist proportional 1/K. Die dadurch auftretende Infrarot-Divergenz kann durch eine ähnliche Divergenz bei virtuellen Photonlinien auf eindeutige Weise aufgehoben werden (Renormalisierbarkeit der QED). Bei virtuellen Photonlinien sind die beobachtbaren ein- und auslaufenden Teilchen identisch mit Prozeß in niedrigster Ordnung. Wenn ein reelles Photon abgestrahlt wird, verändert sich die Verteilung der ein- und auslaufenden Teilchen. Ab welcher Energie dies im Experiment nachgewiesen wird, hängt von den Akzeptanzkriterien und dem Auflösungsvermögen des Detektors ab. Eine strenge Trennung von Ereignissen in die beiden Kategorien mit bzw. ohne Photonabstrahlung ist nicht möglich. Bei der Berechnung der Strahlungskorrektur definiert man eine Abschneideenergie (K_{min}) für das Photon, ab welcher Ereignisse zum einen oder anderen Typ gerechnet werden.

Eine gemeinsame Betrachtung der beiden folgenden Diagramme erlaubt dann in Abhängigkeit von K_{min} die Berechnung der Strahlungskorrekturen:

$$\int_{soft} = -2\pi/\pi (\ln s/m_e^2 - 1) \ln E/K_{min}$$

$$\int_{vert} = 2\pi/\pi - (3/4 \ln s/m_e^2 - 1 + 76)$$

Die Feynman-Diagramme, die bis zur Ordnung α^3 in der Muonpaarproduktion auftreten, sind in Abb. I.2 zusammengestellt. Der Wirkungsquerschnitt kann dann in folgender Form dargestellt werden:

$$d\sigma/d\Omega_{exp} = d\sigma/d\Omega_{o} (1 + \delta_{soft} + \delta_{vert} + \delta_{vac} + \delta_{\theta} + \delta_{hard})$$

Die Interferenz zwischen dem Diagramm niedrigster Ordnung mit Vakuumpolarisationsdiagrammen führt für jede Fermionenschleife zu folgender Korrektur:

$$\delta_{vac} = 2\alpha/\pi \ Q_{f}^{2}$$
 (1/3 ln s/m_{f}^{2} - 5/9) für m_{f}^{2} << s

Bei 34 GeV Schwerpunktsenergie beträgt die Korrektur für die Schleifen des Elektrons 3.2%, des Muons 1.5% und des Taus 0.7%.

Bei der hadronischen Komponente der Vakuumpolarisation ist eine einfache analytische Berechnung z.B. unter Annahme des Quark-Parton-Modells nur näherungsweise richtig. Hier muß der Wirkungsquerschnitt für die Reaktion ee + Hadronen im Detail berücksichtigt werden. Über Dispersionsrelationen kann dann der Beitrag der hadronischen Vakuumpolarisation zur Strahlungskorrektur bestimmt werden [BER76]:

$$\delta_{vac}$$
 (s) = s/2 π^2 P $\int_{\pi}^{\infty} \sigma$ (ee + Hadronen)/(s - s' - if) ds'
 $4m_{\pi}^2$

Abb. I.3 zeigt die Größe dieses Beitrages in Abhängigkeit von der Schwerpunktsenergie. Bei 34 GeV ändert z.B. die Veränderung des Wirkungsquerschnitts um ∆R = 1 den Strahlungskorrekturbeitrag um 1%. Im Prinzip trägt auch der Wirkungsquerschnitt bei Energien größer als der Schwerpunktsenergie bei.

QED Feynman Graphen der Reaktion ee + $\mu\mu(\gamma)$ bis zur Ordnung α^3

Abb. I.3

Hadronische Vakuumpolarisation in der Muonpaarprodüktion

Höhere Ordnungen der Störungstheorie verändern nicht nur den totalen Wirkungsquerschnitt, sondern können auch zu winkelabhängigen Korrekturen und damit zu einer Asymmetrie führen. Solche Beiträge (δ_{Θ}) entstehen aus der Interferenz von Diagrammen, in denen Muonpaare mit gerader bzw. ungerader Ladungsparität erzeugt werden. Dies sind einmal Beiträge aus der Interferenz der Boxdiagramme I.2e mit dem Diagramm zur niedrigsten Ordnung; außerdem führt die Interferenz zwischen Anfangs- bzw. Endzustandsstrahlung zu cos0-abhängigen Korrekturen, deren Größe von der Abschneideenergie K_{min} abhängt:

$$\delta_{\Theta} = -2\alpha/\pi \ 4 \ \ln \ (\tan \ 0/2) \ \ln \ E/K_{min}$$

In Tabelle I.2 sind einige Zahlen zu den bisher diskutierten Beiträgen zusammengestellt.

Mit ⁵_{hard} wird der Anteil des Wirkungsquerschnittes berücksichtigt, in dem ein Photon mit einer Energie größer als K_{min} abgestrahlt wird, der aber aufgrund der experimentellen Kriterien zum Wirkungsquerschnitt gerechnet werden muß. Aus den Diagrammen I.2b und c kann der multidimensionale Wirkungsquerschnitt für die Reaktion ee → µµγ berechnet werden:

$$d\sigma \sim |A_{I} + A_{F}|^{2}$$

wobei A_I und A_F die Matrixelemente für Anfangs- bzw. Endzustandsstrahlung sind. Anfangszustandsstrahlung ist neben dem Infrarotanteil durch die Abstrahlung von Photonen entlang der einlaufenden Elektronen- und Positronenstrahlung und durch harte Photonabstrahlung, die die effektive Schwerpunktsenergie s' = s (1-K) herabsetzt, charakterisiert, Endzustandsstrahlung entsprechend durch die Abstrahlung von Photonen entlang der gestreuten Muonen.

Ī	√s (GeV) ^{δe} vert	δ <mark>μ</mark> vert	δ ^τ vert	^{бе} vac	δµ vac	δ ^τ vac	δ ^{had} vac
	14	6.9	3.2	1.2	2.9	1.3	0.4	3.2
	22	7.2	3.5	1.5	3.0	1.4	0.5	3.9
	34	7,5	3.8	1.8	3.2	1.5	0.7	4.6
	44	7.7	4.0	2.0	3,3	1.6	0.7	4.9

Tabelle I.2

Strahlungskorrekturbeiträge in der Ordnung $lpha^3$ der QED (in Prozent)

Der Interferenzbeitrag A_I A_F führt zu einer Ladungsasymmetrie, trägt aber nicht zum totalen Wirkungsquerschnitt bei. Vollständige Rechnungen zu allen hier diskutierten Beiträgen zu den Strahlungskorrekturen existieren in der Literatur |BER83| |TSA83|. Insbesondere Berends et al. haben für experimentelle Untersuchungen geeignete Integrationen über Phasenraumvariable durchgeführt.

Bei PETRA werden die Strahlungskorrekturen von den einzelnen Experimenten durch Monte-Carlo-Technik bestimmt |KLE82| |BER83|. In Abhängigkeit vom K_{min} wird der Wirkungsquerschnitt für die Reaktionen mit bzw. ohne Photonabstrahlung berechnet. Unter Berücksichtigung der Matrixelemente bis zur Ordnung α^3 wird dann die entsprechende Anzahl von Ereignissen der Typen ee + µµ und ee + µµγ generiert. Die Monte-Carlo-Methode erlaubt es, die Eigenschaften des Detektors, z.B. kleine Inhomogenitäten in der geometrischen Akzeptanz oder Materialien, die Photonkonversion verursachen, im Detail zu berücksichtigen.

Strahlungskorrekturen in der Bhabhastreuung sind sehr ähnlich zur Muonpaarproduktion, nur durch die Möglichkeit von raumund zeitartigen Diagrammen komplizierter. Vakuumpolarisationsbeiträge verändern in der Bhabhastreuung im Gegensatz zur Muonpaarproduktion, wo sie nur zum absoluten Wirkungsquerschnitt beitragen, die differentielle Form des Wirkungsquerschnitts. Abb. I.4 zeigt die cos0-Abhängigkeit der hadronischen Vakuumpolarisation in der Bhabhastreuung.

Abb. I.4

Hadronische Vakuumpolarisation in der Bhabhastreuung bei verschiedenen Schwerpunktsenergien

Abb. I.5 zeigt die Feynman-Graphen, die bis zur Ordnung α^3 in der Reaktion ee $\rightarrow \gamma\gamma(\gamma)$ beitragen. Ähnlich wie in der Leptonpaarproduktion können weiche Photonen und Vertexkorrekturen nur gemeinsam behandelt werden:

 $d\sigma/d\Omega_{exp} = d\sigma/d\Omega_{o} (1 + \delta_{soft} + \delta_{vert} + \delta_{3\gamma}).$

In der Ordnung α^3 kann die Reaktion ausschließlich mit Elektronen und Photonlinie beschrieben werden; sie gilt "daher als besonders "saubere" QED-Reaktion. In der Photonpaarproduktion

QED Feynman Graphen der Reaktion ee + $\gamma\gamma(\gamma)$ bis zur Ordnung α^3

treten solche Beiträge nur in höherer Ordnung der Störungstheorie auf.

Mögliche Verletzungen der QED werden traditionell durch Abschneideparameter (A) quantifiziert |DRE58⁺. Sie resultieren aus folgendem Formfaktoransatz:

$$F(q^2) = 1 + \frac{q^2}{q^2 - \Lambda^2}$$

Im Fall der Leptonpaarproduktion verändert der Formfaktor den totalen Wirkungsquerschnitt. In der Bhabhastreuung wird die differentielle Form des Wirkungsquerschnitts folgendermaßen modifiziert:

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{2s} \left\{ \frac{s^2 + u^2}{t^2} + \frac{2u^2}{s \cdot t} F(s) F(t) + \frac{t^2 + u^2}{s^2} F^2(s) \right\}$$

$$t = -s/2 (1-\cos\theta), \quad u = -s/2 (1+\cos\theta)$$

Die größte Abweichung erwartet man in dieser Reaktion dort, wo das zeitartige Diagramm wichtig ist und wo große raumartige Viererimpulsüberträge stattfinden, d.h. unter großem Winkel zur Strahlachse. Je größer der Viererimpulsübertrag ist, um so kleiner ist nach der Heisenbergschen Unschärferelation das raumzeitliche Auflösevermögen:

$$\langle \mathbf{r} \rangle^2 = \frac{1}{\Lambda^2}$$

Abschneidewerte von Λ = 200 GeV setzen Grenzen für die innere Struktur der Leptonen von 10 $^{-16}\,$ cm.

Bei QED-Tests der Photonpaarproduktion wird üblicherweise eine Parametrisierung des A-Abschneidewertes gewählt, die durch den möglichen Austausch eines schweren angeregten Elektrons entsteht:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\alpha^2}{\mathrm{s}} - \frac{1 + \cos^2 \Theta}{1 - \cos^2 \Theta} \{1 + \frac{\mathrm{s}^2}{2\Lambda^4} \sin^2 \Theta\}$$

(Über angeregte Leptonen siehe Näheres in Kapitel I.3).

In der elektroschwachen Wechselwirkung muß zusätzlich zur Kopplung der Fermionen an das Photon deren Kopplung an das massive Z⁰-Feld betrachtet werden:

$$J_{NC}^{\mu}$$
 $\rightarrow --- Z_{\mu}^{o}$

Der entsprechende Wechselwirkungs-Lagrange-Operator ist

$$L_{Z^{\circ} ff} = \frac{e}{4\sin\theta_{\omega}\cos\theta_{\omega}} \quad \overline{f} \gamma^{\mu} (v_{f}^{-a} f \gamma_{5}) f Z_{\mu}^{\circ}$$

Der neutrale schwache Strom enthält im Gegensatz zum rein vektoriellen elektromagnetischen Strom Vektor- und Axialvektor-Komponenten. Im Standard-Modell sind die Vektor- und Axialvektor-Konstanten v_f und a_f durch Isospin und Ladung der Fermionen und durch den schwachen Mischungswinkel $\boldsymbol{\theta}_{u}$ festgelegt:

$$a_{f} = 2 (T_{3L}^{f} - T_{3R}^{f})$$

 $v_{f} = 2 (T_{3L}^{f} - T_{3R}^{f}) - 4 Q_{f} \sin^{2} \Theta_{w}$

Aus der Einordnung der Fermionen in linkshändige Isospin-Doubletts und rechtshändige Singuletts können die Werte in Tabelle I.3 errechnet werden. Während die Axialvektor-Konstanten nur durch den schwachen Isospin festgelegt sind, hängen die Vektor-Konstanten zusätzlich von den elektromagnetischen Ladungen der Fermionen und dem Mischungswinkel $\boldsymbol{\theta}_{w}$ ab. Für Werte von $\sin^2 \Theta_w$ nahe bei 1/4 ist die Vektor-Kopplungskonstante für geladene Leptonen klein gegenüber der Axialvektor-Kopplungskonstante. Mit den Größen $\alpha,~M_{\chi}^{},~\sin^2\!\theta_{_W}$ und der Isospin und Ladungszuweisung ist die Wechselwirkung zwischen Fermionen und neutralen elektroschwachen Feldquanten festgelegt.

I.13

		a _f	بب ص	۲ ۲	$v_{f}(sin^{2}\Theta_{w} = .22)$	< t = 1 f + 3 f
	. 2	0		1	1	5
Leptonen	Ð	-1	1	-1+4sin ² 0 _w	-0.12	1.014
•	C	+2/3	н	1-8/3sin ² 0w	.41	1.168
Quarks	ס	-1/3	. स्व । ।	1+4/3sin ² 0	71	1.504

Standardmodell

Ē

Fermionen Tabelle I.3

der

Kopplungsparameter

Die Zerfallsbreite des Z° in Fermionenpaare errechnet sich zu

$$\Gamma_{Z^{\circ} \to f\bar{f}} = \frac{\alpha M_Z}{3(4\sin\theta_w \cos\theta_w)^2} (v_f^2 + a_f^2)$$

und der entsprechende totale Wirkungsquerschnitt ist

$$\sigma_{(ee+Z^{o}+f\bar{f})} = \frac{2\pi s}{M_Z^4} \frac{\Gamma_{ee} \Gamma_{f\bar{f}}}{M_Z^2} \left(\frac{s}{M_Z^2} - \frac{1}{M_Z^2} + \frac{\Gamma_Z^2}{M_Z^2}\right)$$

wobei $\boldsymbol{\Gamma}_{\boldsymbol{Z}}$ die totale Breite des Z° ist.

Wenn die Viererimpulsüberträge der betrachteten Reaktionen klein sind im Verhältnis zum Massenquadrat der Austauschteilchen, wird die effektive Kopplungsstärke für die Berechnung von Zerfallsbreiten und Wirkungsquerschnitte durch den kinematischen Propagatoreffekt dominiert. Um die Stärke des neutralen schwachen Stroms zu charakterisieren, ist es daher sinnvoll, eine effektive Kopplungskonstante (g) einzuführen:

 $\tilde{g} = 1/M_Z^2 1/(4\sin\theta_w \cos\theta_w)^2 = \rho \cdot G_F/8\sqrt{2\pi^2} = \rho \cdot 4.5 \ 10^{-5} [GeV^{-2}]$ Die endliche Masse und Breite des Z° werden mit folgender Größe berücksichtigt:

$$\chi(s) = \tilde{g} \cdot s \frac{M_Z^2}{(s - M_Z^2) + iM_Z\Gamma_Z}$$

Der totale Wirkungsquerschnitt wird damit

$$\sigma_{(ee+Z^{\circ}+f\overline{f})} = \sigma_{punkt} \left\{ |\chi(s)|^2 (v_e^2 + a_e^2) (v_f^2 + a_f^2) \right\}$$

Um die Paarproduktion von geladenen Fermionen in niedrigster Ordnung der elektroschwachen Wechselwirkung zu berechnen,

müssen die beiden Feynman-Graphen in Abb. I.6 gleichzeitig betrachtet werden.

Feynman-Graphen in niedrigster Ordnung der elektroschwachen Wechselwirkung für den Prozeß ee → μμ Reaktionsraten setzen sich aus drei Anteilen zusammen: dem Quadrat der Y- bzw. Z°-Amplitude und dem Interferenzbeitrag

$$\sigma = \sigma_{\gamma\gamma} + \sigma_{Z}\sigma_{Z} + \sigma_{\gamma}Z\sigma_{Z}$$

Ausgedrückt durch den punktförmigen Wirkungsquerschnitt der QED und der effektiven Kopplungskonstante \tilde{g} ist dies in der Näherung s << M_7^2

$$\sigma = \sigma_{\text{punkt}} \{c_1 + c_2 \ \tilde{g} \cdot s + c_3 \ \tilde{g}^2 \ s^2\}$$

wobei C_1 , C_2 , C_3 nur von Q_f , a_f und v_f abhängen.

Relativ zum QED-Beitrag wächst der Interferenzbeitrag proportional s und der rein schwache Beitrag proportional s² an. Gegenüber der QED ist der Interferenzbeitrag bei PETRA-Energien von der Größenordnung 10⁻¹ und der rein schwache Beitrag entsprechend 10⁻².

Unter Vernachlässigung von Polarisationseffekten ist der differentielle Wirkungsquerschnitt in niedrigster Ordnung

$$\frac{d\sigma/d\cos\theta}{d\sigma} = \frac{3}{8} \frac{\sigma_{\text{punkt}}}{\sigma_{\text{punkt}}} + \frac{1}{(1+\cos^2\theta)} \left[\frac{q_f^2 - 2q_f v_e v_f \chi(s) + (v_e^2 + a_e^2) (v_f^2 + a_f^2)}{\chi^2(s)} \right]$$

$$+ 2\cos\theta \left[-2q_f a_e a_f \chi(s) + 4a_e v_e a_f v_f \chi^2(s) \right]$$

Es gibt zwei beobachtbare Größen:

den totalen Wirkungsquerschnitt

 $R = \sigma/\sigma_{\text{punkt}} = R_{\gamma\gamma} + R_{\gammaZ^{\circ}} + R_{Z^{\circ}Z^{\circ}}$

wobei

$$R_{\gamma\gamma} = Q_f^2$$

$$R_{\gamma Z^{\circ}} = -2Q_f \chi(s) v_e v_f$$

$$R_{Z^{\circ} Z^{\circ}} = \chi^2(s) (v_e^2 + a_e^2) (v_f^2 + a_f^2)$$

und die Ladungsasymmetrie

I.17

wobei

$$A_{\gamma\gamma} (\Theta) = 0$$

$$A_{\gamma Z^{\circ}} (\Theta) = -4 \ \Omega_{f} \chi(s) \ a_{e}a_{f} \frac{\cos\Theta}{R(1+\cos^{2}\Theta)}$$

$$A_{Z^{\circ}Z^{\circ}} (\Theta) = 8 \ \chi^{2}(s) \ a_{e}v_{e} \ a_{f}v_{f} \frac{\cos\Theta}{R(1+\cos^{2}\Theta)}$$

Die gemittelte Ladungsasymmetrie

$$\langle A \rangle = \frac{\int_{0}^{1} \sigma \, d\cos \Theta}{\int_{1}^{0} \sigma \, d\cos \Theta}$$

ist entsprechend

 $\langle A \rangle = 3/8 A (\cos \Theta = 1)$

Beide Beobachtungsgrößen sind paritätserhaltend; nirgends geht daher das Produkt von Vektor- und Axialvektor-Kopplungskonstante ein. Das relative Vorzeichen von a und v ist durch den totalen Wirkungsquerschnitt und die Ladungsasymmetrie nicht bestimmbar.

Im Interferenzterm hängt der totale Wirkungsquerschnitt von den Vektor-Kopplungskonstanten und die Ladungsasymmetrie von der Axialvektor-Kopplungskonstante ab.

In der Leptonpaarproduktion erwartet man daher im PETRA-Energiebereich mit den Werten aus Tabelle I.3 eine unmeßbar kleine Veränderung des totalen Wirkungsquerschnitts, aber eine Ladungsasymmetrie von etwa -10%. Abb. I.7 und I.8 zeigen die Erwartung für den totalen Wirkungsquerschnitt und die Ladungsasymmetrie in Abhängigkeit von der Schwerpunktsenergie.

I.18

Totaler Wirkungsquerschnitt der Muonpaarproduktion in der elektroschwachen Wechselwirkung in Abhängigkeit von der Schwerpunktsenergie

(A)

Abb. I.8

Ladungsasymmetrie der Muonpaarproduktion in der elektroschwachen Wechselwirkung In der Bhabhastreuung ist die Situation durch die möglichen raum- und zeitartigen Diagramme komplizierter; andererseits gehen nur v_e und a_e in die Reaktion ein. Aus den Feynman-Graphen in Abb. I.9 kann der differentielle Wirkungsquerschnitt berechnet werden $\frac{1}{1}$ BUD75¹.

<u>Abb. I.9</u>

Feynman Graphen in der niedrigsten Ordnung der elektroschwachen Wechselwirkung für die Bhabhastreuung Ähnlich wie bei den Strahlungskorrekturen in der QED, können die Beiträge der schwachen Wechselwirkung parametrisiert werden

$$d\sigma/d\Omega = d\sigma/d\Omega_{QED} (1 + \delta_w (cosO))$$

Abb. I.10 zeigt die zu erwartenden Veränderungen ($\delta_{_{\rm W}})$ in der Bhabhastreuung für verschiedene Schwerpunktsenergien.

Mit $\sin^2 \Theta_w = .22$ und $v_e = -0.12$ sind die schwachen Beiträge im PETRA-Energiebereich nur schwer meßbar. Die Bhabhastreuung ist sensitiv auf v_e^2 und damit über die Beziehung $v_e = 4\sin^2 \Theta_w$ - 1 auf $\sin^2 \Theta_w$.

In der elektroschwachen Wechselwirkung müssen auch höhere Ordnungen der Störungstheorie, analog der Diskussion in der QED, berücksichtigt werden. Entsprechende Strahlungskorrekturen für Z^o-Austausch-Amplituden wurden für die Reaktionen ee \rightarrow $\mu\mu(\gamma) |WET83| |BÖH84| |BR084| und ee <math>\rightarrow$ ee(γ) |BÖH84| berechnet.

Im PETRA-Energiebereich sind diese Korrekturen im Vergleich zu den experimentellen Fehlern (statistischen und systematischen) und den bisher fehlenden α^4 -QED-Beiträgen nicht von entscheidender Bedeutung.

Abb. I.10

Veränderung des differentiellen Wirkungsquerschnitts in der Bhabhastreuung durch die elektroschwache Wechselwirkung I.3 Suche mach Phänomenen, die über das Standard-Modell hinausführen

Die Wechselwirkung zwischen Quarks und Leptonen wird mit dem Standard-Modell theoretisch widerspruchsfrei und praktisch erfolgreich beschrieben. Einige Fragen werden jedoch nur unbefriedigend im Standard-Modell erklärt.

Antworten auf solche Fragen können zu einem umfassenderen Verständnis der Elementarteilchenphysik führen. Bisher gibt es jedoch nur einzelne Ansätze:

- Quarks, Leptonen und schwere Vektorbosonen werden aus gemeinsamen Subteilchen aufgebaut ('composite models'),
- die verschiedenen Wechselwirkungen werden in noch umfassenderer Weise vereinigt ('grand unification'),
- Fermionen und Bosonen werden in Symmetriegruppen zusammengefaßt, um den Higgssektor besser zu verstehen;
 außerdem besteht die Hoffnung, dadurch die Gravitation mit den anderen Wechselwirkungen in Zusammenhang zu bringen ('Supersymmetrie').

In keinem der Ansätze gibt es bisher einen entscheidenden Durchbruch mit präzisen, experimentell nachprüfbaren Vorhersagen.

Durch experimentelle Verifikation des Standard-Modells werden Grenzen für die Entwicklung neuer Modelle gesetzt. Abb. I.11 vergleicht die Erwartung des Standard-Modells für den differentiellen Wirkungsquerschnitt der Bhabhastreuung bei verschiedenen Schwerpunktsenergien mit Modifikationen, wie sie in Modellen erwartet werden, in denen Elektronen aus Subteilchen zusammengesetzt sind. Durch den von PETRA neu erschlossenen Energiebereich ergeben sich weitere Einschränkungen für die Massenskale solcher 'composite models' 'EIC82'.

Die Suche nach neuen Teilchen ist ein anderer vielversprechender experimenteller Ansatz, um Phänomene zu finden, die über das Standard-Modell hinausgehen. In diesem Abschnitt wird über die Suche nach angeregten Leptonen und supersymmetrischen Leptonen und Photonen berichtet.

<u>Abb. I.11</u>

Veränderung des differentiellen Wirkungsquerschnitts in der Bhabhastreuung durch 'composite models'

I.3.1 Suche nach angeregten Leptonen

Wenn Leptonen oder Quarks aus Subteilchen zusammengesetzt sind, sollten ähnlich wie bei Atomen, Kernen und Mesonen angeregte Zustände vorkommen.

Um die Leptonenquantenzahl zu erhalten, erwartet man bei angeregten Leptonen eine Kopplung an den Leptongrundzustand und ein Photon. Eine direkte elektromagnetische Ankopplung 1st wegen der unterschiedlichen Nasse nicht mit der Forderung nach Eichinvarianz verträglich. Stattdessen kann die Ankopplung über das anormale magnetische Moment des angeregten Leptons erfolgen 'LOW57'. Der entsprechende Wechselwirkungs-Lagrangeoperator ist

$$L_{int} = \frac{\lambda e}{2m_{1*}} \overline{\Psi}_{1} \sigma_{\nu\mu} \quad 1* \quad F^{\nu\mu} + h.c.$$

Dabei ist $\lambda/m_{1^{\star}}$ ein freier Parameter, der die Stärke der Kopplung charakterisiert.

Aus dem obigen Ansatz läßt sich die Breite für das angeregte Lepton bestimmen |LIT70|

$$\tau_{1^{*} \to 1} = \frac{2}{\alpha \lambda^2 m_{1^{*}}} (1 - (m_1/m_{1^{*}})^2)^{-3}$$

Die Paarproduktion eines angeregten Muon oder Tau verläuft analog der Paarproduktion eines schweren Fermionenpaares. Der differentielle Wirkungsquerschnitt ist

$$d\sigma/d\Omega = \frac{\alpha^2\beta}{4s} \left\{ (1+\cos^2\theta) + (1-\beta^2) (1-\cos^2\theta) \right\}$$

Das Schwellenverhalten (~ β) erlaubt selbst mit verhältnismäßig geringer Luminosität Grenzen für die Paarproduktion bis dicht an die kinematische Schwelle. Die experimentelle Signatur ist ein akoplanares Leptonpaar mit zwei hochenergetischen Photonen, wobei jeweils ein Lepton-Photon-Paar die gleiche invariante Masse hat.

Bei der einzelnen Produktion eines angeregten Muons ist die Produktionsrate abhängig von der Stärke der anormalen Kopplung des angeregten Leptons an den Grundzustand und ein Photon

$$d\sigma/d\Omega = \frac{\alpha^2 \lambda^2}{2m_{1\star}^2} (1 - m_{1\star}^2/s)^2 \{ (1 - m_{1\star}^2/s) \sin^2\theta + 2m_{1\star}^2/s \}$$

Eine experimentelle Signatur ist eine Struktur in der invarianten Lepton-Photon-Masse (vergl. dazu Kapitel III.6). Grenzen für die Kopplungsstärke λ^2/m_{1*}^2 können hier bis zur Schwerpunktsenergie aus einem Vergleich der Lepton-Photon-Massen mit der QED-Erwartung abgeleitet werden.

Bei angeregten Elektronen sind durch die Elektronenlinien im Anfangszustand zusätzliche experimentelle Möglichkeiten gegeben. Die einzelne Produktion eines angeregten Elektrons ist durch raum- und zeitartigen Photonaustausch möglich. Der differentielle Wirkungsquerschnitt ist [TER83]

$$d\sigma/dt = -\frac{2\pi\alpha^{2}\lambda^{2}}{m_{e^{*}}^{2}s^{2}} \left\{ \frac{t^{2} + (t - m_{e^{*}}^{2})^{2}}{s} + \frac{s^{2} + (s - m_{e^{*}}^{2})^{2}}{t} \right\}$$

Der Wirkungsquerschnitt hat ein Maximum für kleine t-Werte, d.h. in extremer Vorwärtsrichtung. Der Zerfall des schweren Elektrons ist hier als koplanares Elektron-Photon-Paar beobachtbar [COU85]. In der Photonpaarproduktion kann anstelle eines Elektrons ein angeregtes Elektron ausgetauscht werden. Die Reaktion ee + $\gamma\gamma$ ist über den Propagator sensitiv auf angeregte Elektronenmassen, die über die Schwerpunktsenergie hinausgehen [LIT70].

I.3.2 Grenzen für supersymmetrische Leptonen und Photonen

Supersymmetrische Theorien verbinden Teilchen mit verschiedenen Spin, Boson und Fermionen werden in gemeinsamen Multipletts eingeordnet. Zu den bekannten Teilchen gibt es jeweils einen supersymmetrischen Partner, der sich um eine halbe Einheit im Spin unterscheidet |FAY77{.

Die Leptonen e, μ , τ erhalten skalare supersymmetrische Partner $\widetilde{e}, \ \widetilde{\mu}, \ \widetilde{\tau}$ und das Photon γ entsprechend einen Spin 1/2 Partner, das Photino $\widetilde{\gamma}$. Die supersymmetrischen Teilchen koppeln durch die Eichsymmetrie festgelegt analog den 'normalen' Teilchen an die Feldquanten der elektroschwachen Wechselwirkung. Produktion und Zerfall supersymmetrischer Teilchen sind durch Masse, Spin, elektromagnetische Ladung, schwachen Isospin und eine zusätzliche R-Quantenzahl bestimmt. Da die supersymmetrischen Partner der bekannten Quarks und Leptonen, wenn sie überhaupt existieren, schwerer als ihre 'normalen' Partner sind, muß die Supersymmetrie in den Teilchenmassen gebrochen sein.

Verschiedene Modelle setzen die Massenskala der supersymmetrischen Teilchen in Relation zur W- und Z-Masse. Bisher gibt es jedoch keine präzisen Vorhersagen für die Massen der supersymmetrischen Teilchen.

Eine experimentelle Suche nach supersymmetrischen Teilchen sollte demnach möglichst unabhängig von konkreten Modellannahmen sein.

Geladene skalare Leptonen koppeln an das Photon und können daher paarweise in e⁺e⁻-Annihilation erzeugt werden. Der differentielle Wirkungsquerschnitt ist

$$d\sigma/d\Omega = \frac{\alpha^2}{8s}\beta^3 (1 - \cos^2\theta)$$

Die Winkelverteilung und das Schwellenverhalten erlauben die Bestimmung von Masse und Spin.

Der totale Wirkungsquerschnitt ist bei Betrachtung eines getrennten Partners für links- und rechtshändige Leptonen

$$\sigma = 1/2 \beta^3 \sigma_{\text{punkt}}$$

Skalare supersymmetrische Leptonen zerfallen in ein supersymmetrisches Photino und den entsprechenden 'normalen' Leptonpartner, falls dieser Zerfall kinematisch möglich ist. Direkt oberhalb der Schwelle erwartet man daher ein akoplanares Leptonpaar mit fehlender Energie und fehlendem Impuls.

Die Produktion von Photinos verläuft analog der Photonpaarproduktion. Anstelle des Elektrons wird ein massives skalares Elektron ausgetauscht (siehe dazu Abb. I.12).

I.27

Der differentielle Wirkungsquerschnitt ist [FAY82]

$$d\sigma/d\Omega = \frac{\alpha^2}{16} \frac{s}{m_{\tilde{A}}^4} \tilde{s}_{\tilde{Y}}^3 (1 + \cos^2 \theta); \quad \beta_{\tilde{Y}} = \frac{P_{\tilde{Y}}}{\tilde{Y}} \frac{E_{\tilde{Y}}}{\tilde{Y}}$$

Dabei wird die Näherung $m_{2}^{2} >> s$ gemacht^{*)}. Der Wirkungsquerschnitt ist durch den massiven Propagator bestimmt und steigt proportional mit s an. Selbst für niedrige Photinomassen erwartet man daher nur bei hohen Energien einen gegenüber QED-Prozessen meßbaren Wirkungsquerschnitt.

In den meisten supersymmetrischen Modellen ist das Photino das supersymmetrische Teilchen mit der niedrigsten Masse und damit stabil. Da die Wechselwirkung von Photinos mit Materie der Wechselwirkung von Neutrinos vergleichbar ist, ist der direkte experimentelle Nachweis von Photinos schwierig. In e⁺e⁻-Reaktionen ist nur die indirekte Beobachtung über Bremsstrahlung im Anfangszustand möglich [FAY82].

Photinoproduktion ist damit über den Propagator auch sensitiv auf skalare Elektronenmassen, die über die Strahlenergie hinausgehen.

Wenn das Photino nicht das leichteste supersymmetrische Teilchen ist, ist der Zerfall in ein Photon und ein Goldstino (oder Gravitino) möglich |CAB81|. Die Lebensdauer hängt von der Masse des Photinos und einem Parameter d ab, der die Massenskala der Supersymmetriebrechung charakterisiert:

$$\tau_{\widetilde{Y}} = 8\pi d^2 / m_{\widetilde{Y}}^5$$

Ereignisse mit zwei Photonen im Endzustand und fehlender Energie und in fehlendem Impuls sind eine klare Signatur für instabile Photinos (siehe dazu Abb. I.13). Die Suche nach solchen Ereignissen erlaubt in Abhängigkeit von der Produktionsrate und der Lebensdauer Grenzen auf instabile Photinos.

Abb. I.13

Experimentelle Signaturen eines instabilen Photinos

I.29

^{*)} Eine Formel für den differentiellen Wirkungsquerschnitt, in der explizit skalare Elektronen- und Photinomassen berücksichtigt werden, findet sich bei Ellis et al [ELL83].

II. Meßapparate

Die in dieser Arbeit analysierten Reaktionen wurden mit dem Detektor CELLO am Elektronen-Positronenspeicherring PETRA bei DESY in Hamburg gemessen.

Der Betrieb von PETRA oder CELLO erfordert die Zusammenarbeit von einigen hundert Menschen. Als einzelner Physiker ist man im wesentlichen ein Benutzer und kann nur einen kleinen Teil zur Konzeption, zum Aufbau und Betrieb des Experimentes beitragen.

In diesem Kapitel werden der Speicherring PETRA und der Detektor CELLO aus dem Blickwinkel eines solchen Benutzers beschrieben.

.

II.1 Der Speicherring PETRA

the second s

Der Speicherring PETRA wurde 1978 nach zwei Jahren Bauzeit fertiggestellt ¹KOH82 . Zwei Elektronen- und Positronenpakete laufen in einer gemeinsamen Vakuumkammer und einem gemeinsamen Magnetführungssystem gegenläufig um. Zum Betrieb von PETRA ist eine Infrastruktur aus Linearbeschleunigern (LINAC I, II), Positronenakkumulator (PIA) und Synchrotron (DESY) erforderlich. Abb. II.1 zeigt eine schematische Übersicht der Beschleunigungsanlagen und Experimente bei DESY.

Umfang	2304 m
Magnetfeld Krümmungsradius	192 m
Länge der Beschleunigungsstrecke	4 x 108 m
Strahlenergie	7 - 23." GeV
Energieunschärfe	0.06 MeV E ² (E in GeV)
Anzahl der Bunche	2 e ⁺ + 2 e ⁻
Bunchabstand	3.8 µsec
Anzahl der Beschleunigungs- kavitäten	60

Tabelle II.1: PETRA Maschinenparameter

In Tabelle II.1 sind einige Parameter von PETRA zusammengestellt.

Die Strahlenergie (E_b) ist durch das Anwachsen der Synchrotronstrahlung mit E_b^4 /Radius beschränkt. In der Experimentierphase (1980/81) wurde eine maximale Schwerpunktsenergie von 36.7 GeV erreicht. Der Einbau von weiteren Beschleunigungskavitäten ermöglichte 1984 eine Schwerpunktsenergie von 46.8 GeV.

Untersuchungen an e⁺e⁻-Speicherringen sind durch die Zählrate beschränkt; daher ist die integrierte Luminosität von entscheidender Bedeutung.

Bis Ende 1980 wurden mittlere Werte von 60 nb⁻¹ pro Tag erreicht. Durch den Einbau von Quadrupolen sehr nahe an den Wechselwirkungspunkten ("Mini-ß") wurde 1981 dieser Wert auf 315 nb⁻¹ pro Tag erhöht |DEG82|. CELLO war von März 1980 bis August 1981 in der Wechselwirkungszone Nordost. Bei einer mittleren Schwerpunktsenergie von 34.2 GeV wurde 11.1 pb⁻¹ integrierte Luminosität erzielt. In der Zeit Sommer 1981 bis Sommer 1982 wurde CELLO durch den Detektor PLUTO ersetzt. Von Herbst 1982 bis Frühjahr 1984 wurde ein Energie-Scan von 39.6 bis 46.76 GeV durchgeführt.

In Tabelle II. 2 ist die von CELLO aufintegrierte Luminosität zusammengefaßt.

Schwerpunktsenergie (GeV)	Luminosität (pb ⁻¹)	Meßperiode
14	1.0	Juli/August 1981
22	2.6	Juni/Juli 1981
33 36.8	11.1	Juli 1980 - Juni 1981
39.8 - 46.7	22.5	März 1983 – November 1984

Longitudinale Polarisation ist für die Untersuchungen der elektroschwachen Wechselwirkung sehr nützlich, da die Helizität in der schwachen Wechselwirkung von entscheidender Badeutung ist. Bisher ist jedoch noch in keinem e⁺e⁻-Speicherring longitudinale Polarisation hergestellt worden.

Transversale Polarisation baut sich natürlich durch Synchrotronstrahlung auf und wurde unter besonderen Maschinenbedingungen beobachtet "SCH82". Wegen depolarisierender Eddekte ist im Luminositätsbetrieb ohne besondere Vorkehrung nicht mit transversaler Polarisation zu rechnen. Aus der Azimuthwinkelverteilung der Reaktionen ee $\rightarrow \gamma\gamma$ und ee $\rightarrow e^+e^-$ kann die transversale Polarisation bestimmt werden.

Tabelle II.2: Vom Detektor CELLO aufintegrierte Luminosität

II.2 Der CHLLG-Detektor

Die niedrigen Ereignisraten und die Gleichheit von Schuerpunkt- und Laborsystem in den e^{*}e⁻-Speicherring-Experimenten machen eine möglichst homogene Überdeckung des gesamten Raumwinkels um die Wechselwirkungszone mit Teilchennachweisgeräten wünschenswert. Die Erfahrungen insbesondere mit den Detektoren NARK I und PLUTO an den Speicherringen SPEAR und DORIS haben zylindersymmetrische Anordnung mit Solenoidmagnetfeld parallel zur Strahlachse zum sogenannten Standarddetektor gemacht.

Die wichtigsten Komponenten eines solchen Detektors sind:

- Ortskammern im Solenoidmagneten zur Messung des transversalen Impulses und der Richtung der geladenen Teilchen,
- Kalorimeter zur Energie- und Richtungsmessung von Photonen und zur Unterscheidung (elektromagnetisch-schauernder) Elektronen von Hadronen,
- Hadronenabsorber mit Kammern zum Nachweis von nicht schauernden Muonen.

CELLO wurde als ein solcher Standarddetektor in den Jahren 1976/77 für den damals im Aufbau befindlichen Speicherring PETRA von einer Gruppe französischer und deutscher Institute konzipiert |CEL76[†] |MJS81[†]. Abb. II.2 zeigt perspektivisch ein Bild des CELLO-Detektors.

Ist die Grundkonzeption des Detektors durch die Verwendung eines Solenoidmagneten weitgehend festgelegt, so können durch die Ausführungen im Detail besondere Schwerpunkte gesetzt werden. CELLO wurde auf eine möglichst umfassende und homogene Überdeckung des gesamten Raumwinkels und auf den Nachweis von Leptonen und Photonen optimiert; der Trennung der unterschiedlichen Hadronenarten wurde weniger Bedeutung beigemessen. Die Verwendung einer supraleitenden Spule kommt diesem Optimierungskriterium entgegen. Das Magnetfeld von 1.3 Tesla ermöglicht einen sehr kompakten Innendetektor, dadurch wird die Fläche des anschließenden Kalorimeters

relativ klein gehalten, und ein großer Teil des Raumwinkels kann von einem feinsegmentierten Kalorimeter und Muonkammern überdeckt werden. Abb. II.3 skizziert die polare Akzeptanz der einzelnen Detektorkomponenten. Abb. II.4 verdeutlicht die Strukturen des Detektors in der Tiefe. Die Untersuchung von Reaktionen mit fehlendem transversalen Impuls erfordert einen vollständig hermetischen Detektor (siehe dazu Anhang C). Deshalb wurde 1983 die Lücke zwischen Zentral- und Endkappenkalorimeter durch einen simplen Schauerzähler geschlossen ¹JFG83].

Longitudinal structure of CELLO

Abb. II.3: Polare Akzeptanz des CELLO-Detektors

Abb. 11.4: Tiefenstruktur des CELLO-Detektors

Anzahl der Akzeptanz Material Kammer Radius Drähte

(Cm)

 $(10^{-4} x^{0})$ |cos6|

II.2.1 Der magnetische Innendetektor

Jer zentrale Spurdetektor besteht aus zylindrischen, konzentrisch zur Strahlachse angeordneten Lagen von Drift- und Proportionalkammern. Abb. II.5 stellt die Tiefenstruktur dar, und Tabelle II.2 enthält die wichtigsten Daten.

Die fünf Proportionalkammern haben axiale Anodendrähte, und die beiden Kathodenebenen bestehen aus 90⁰ bzw. 30⁰ zur Strahlachse gedrehten Streifen. Durch Korrelation zwischen den Anodendrähten und den 30⁰- bzw. 90⁰-Streifen können Raumpunkte rekonstruiert werden. Sieben Driftkammern gestatten eine präzise Messung von Punkten in der Ebene der magnetischen Ablenkung und bestimmen die Impuls- und die Azimuthwinkelauflösung. Die analoge Auslese der Proportionalkammerkathoden gestattet eine präzise Koordinatenmessung in Z-Richtung und damit eine Messung des Polarwinkels. Um die Vertexauflösung zu verbessern, wurden Ende 1982 zwei Lagen zylindrische Driftrohre um das Strahlrohr installiert | BOD84 .

Über einen längeren Zeitraum und unter realen Datennahmebedingungen wurde eine Ortsauflösung von ~350 µm mit der Driftkammer und von ~600 µm mit den Proportionalkammerkathoden erreicht. Unter Einbeziehung des Wechselwirkungspunktes wird eine Transversalimpulsauflösung von ∆p/p ≃ 2% • p (p Impuls in GeV) erreicht.

Die 0- und 4-Auflösung kann an Bhabhaereignissen bestimmt werden. Sie beträgt ca. 2 mrad für beide Größen.

BP 1	10.9	128	-	60	
BP 2	11.4	128	-	60	
PC 1	17.0	512	-	34	
PC 2	21.0	512	ŧ	34	
DC 1	25.5	104	.974	8	
DC 2	30.4	128	.964	8	
PC 3	35.7	1024	.951	34	
DC 3	40.2	168	.939	8	
DC 4	45.1	192	.925	8	
DC 5	50.0	208	.910	8	
PC 4	55.3	1536	.893	34	
DC 6	59.8	256	.878	8	
DC 7	64.7	256	.862	8	
PC 5	70.0	1536	.844	34	

Tabelle II.3: Wichtigste Daten des Innendetektors CELLO

Abb. II.5: Der CELLO-Innendetektor a) Tiefenstruktur b) Driftzelle

II.2.2 Das Flüssig-Argon-Blei-Kalorimeter

Der magnetische Innendetektor ist von einem Flüssig-Argon-Blei-Kalorimeter umgeben. Abwechselnde Ebenen aus Blei (1.2 mm) als Konverter zum Aufschauern von Elektronen und Photonen und flüssiges Argon (3.6 mm) zum Nachweis der geladenen Teilchen der Schauerkaskade sind die Grundelemente eines Flüssig-Argon-Kalorimeters. Die Vorteile der Flüssig-Argon-Technik sind die Homogenität, Stabilität und Linearität der Energiemessung und die Möglichkeit einer sehr feinen longitudinalen und lateralen Segmentierung der elektronischen Auslese [WIL74].

Bei CELLO besteht der zylindersymmetrische Teil aus 2xB = 16 oktogonal angeordneten Bleimodulen, die sich in einem faßförmigen, mit Flüssig-Argon gefüllten Kryostaten befinden. Die beiden Enden des Zylinders sind von halbkreisförmigen Bleimodulen, sogenannten Endkappen, überdeckt (Abb. II.6).

Abb. II.6: Gesamtanordnung des Argon-Blei-Kalorimeters

Die Verwendung eines zylindrischen Kryostaten ist eine kältetechnische und mechanisch einfache Lösung. Das Isolationsvakuum von 10⁻⁴ Torr besteht aus einem Raum, und die toten Zonen zwischen einzelnen Modulen werden auf ein Minimum beschränkt.

Abb. II.7 verdeutlicht den Aufbau eines zylindrischen Moduls. Die Bleiebenen bestehen alternierend aus auf Hochspannung gelegten, 2 cm breiten Bleistreifen und geerdeten Bleiplatten.

dE/dx

Die 2.500 Signalstreifen eines Moduls sind longitudinal und lateral in 526 geometrischen Kanälen zusammengefügt. Es gibt in der Tiefe jeweils 5 Auslesebereiche mit Streifen, die 0[°], 90[°] bzw. 45[°] zur Strahlachse orientiert sind. Vor der ersten Bleiebene befinden sich jeweils 2x6 mm tiefe Argonkammern mit 0[°] bzw. 90[°] Streifen aus kupferkaschierten GFK-Platten.

Die Verwendung von Streifen ermöglicht mit verhältnismäßig wenigen elektronischen Kanälen eine gute Ortsauflösung, führt aber im komplizierten Ereignistopologien zu Ambiguitäten. Aus Mangel an elektronischen Kanälen wurden teilweise 2 geometrische Kanäle in einem elektronischen Kanal zusammengefaßt (wurden 1982 durch die Erweiterung der Elektronik um 50% beseitigt).

Die ladungsempfindlichen Vorverstärker sind direkt auf dem Deckel des Kryostaten angebracht, um kein zusätzliches Rauschen durch unnötige Kabelkapazitäten zu verursachen. Mit Transformatoren wird die Detektorkapazität an die Eingangskapazität des Feldeffekttransistors angepaßt. Das Signal zu Rauschverhältnis för minimal ionisierende Teilchen liegt je nach Detektorbereich bei 1:5 bis 1:20. Tabelle II.4 faßt die wichtigsten Daten der zentralen Module und ihrer elektronischen Auslese zusammen.

Mit kollinearen Bhabha-Streuereignissen wird die Energieeichung während der Datennahme durchgeführt. Die Energieauflösung beträgt ca. 5% über alle Module. Im unteren Energiebereich von 500 MeV bis 1 GeV kann sie mit 13%/ /E beschrieben werden 'GUY81'. Die Zellstruktur läßt aus den statischen Fluktuationen eine Energieauflösung von 7.5%/ /E erwarten.

Die Unterschiede zwischen dieser prinzipiellen Grenze der Auflösung und dem praktisch erzielten Wert liegen in toten Kanälen, unzureichender Kalibrierung, Problem der Digitalisierung und Material vor dem Schauerzähler. In dieser Arbeit werden nur bei der Suche nach Ereignissen mit fehlender Energie Anforderungen an die Energieauflösung gestellt. Die Ortsauflösung für Schauer bestimmt die Winkelauflösung für Teilchen vom Wechselwirkungspunkt. Bei bekanntem Vertex eines Ereignisses wird eine Winkelauflösung von ca. 5 mrad erzielt. Ohne Vertex ist die Winkelauflösung etwa 50 mrad.

•			1
	РЬ	Ar	mittlere
Dichte (gr/cm ²)	11.35	1.40	3.96
Schichtdicke (cm)	0.125	0.36	0.485
dE/dx (MeV/cm)	12.8	2.11	4.9
Strahlungslänge (cm)	0.56	14.0	1.95
Absorbtionslänge (cm)	18.5	80.9	43.3
Kritische Energie (MeV)	7.1	29.5	9.5
Molière Radius (cm)	1.7	10.0	4.4

Tabelle II.4: Wichtigste Daten des Argon-Blei-Kalorimeters CELLO

II.2.3 Die Muonkammern

Die Identifikation von Muon geschieht neben der Identifikation im Kalorimeter durch Proportionalkammern hinter 6-8 Absorptionslagen Material. Die Kammern bestehen aus Anodendrähten im Abstand von 1.3 cm und * 34⁰ zur Anode gedrehten Kathodenstreifen von 1.1 cm Breite. Raumpunkte werden mit einer Präzision von 6 mm rekonstruiert. Abb. II.8 verdeutlicht die Akzeptanz des Muonnachweises.

Abb. II.8: Akzeptanz des Muon-Nachweises

II.2.4 Trigger

Die umlaufenden Elektronen- und Positronenpakete kollidieren mit einem zeitlichen Abstand von 3.8 µsec im CELLO-Detektor. Die Digitalisierung aller Zählersignale und die anschließende Auslese des Detektors benötigt etwa 30-40 msec. Physikalisch interessante Prozesse haben eine Rate von weniger als 0.1 Hz. Um eine hohe Ausnutzung der Teilchenkollisionen zu erreichen, kann der Detektor nur mit einer Rate von max. 3-5 Hz ausgelesen werden. Untergrundreaktionen aus der kosmischen Strahlung, Wechselwirkung der Elektronenstrahlen mit dem Strahlrohr oder dem Restgas und Störung der empfindlichen Nachweiselektronik haben eine wesentlich höhere Rate. Mit Triggerprozessoren, die unmittelbar verfügbare Signale benutzen, wird der Detektor auf eine Elektronen-Positronen-Wechselwirkung voranalysiert.

Der CELLO-Trigger benutzt Signale des Innendetektors, des Kalorimeters und des Vorwärtsspektrometers. Abb. II.9 zeigt ein Schema des Triggers.

Abb. II.9: Schema des CELLO-Triggers (1980)

Die für die hier beschriebenen Reaktionen wichtigsten Trigger sind

- 2 Spuren vom Wechselwirkungspunkt im Innendetektor
- Kalorimeterenergie
- 1 Spur im Innendetektor und wenig Kalorimeterenergie.

Die Triggersignale sind innerhalb von 3 µsec nach der Teilchenkollision geformt und führen entweder zu einer Unterbrechung ("Interrupt") der Datennahme und einem Start der Auslese des Detektors oder zu einem Zurücksetzungssignal ("Reset"), das alle Zähler löscht und für die nächste Strahlkollision bereitmacht.

Im Spurtrigger werden die Signale der Anodendrähte und die 90⁰-Kathodenstreifen der 5 Proportionalkammern und die Signale von 2 Driftkammern benutzt 'HJB81 . Eine einfache Koinzidenzbedingung von mehreren Kammerebenen führt zu einer zu hohen Untergrundrate. Die einzelnen Kammersignale werden daher in topologischen, zusammenhängenden Sektoren geordnet und dann auf eine vom Wechselwirkungspunkt kommende Spurmaske analysiert.

Für den Kalorimetertrigger (siehe dazu Anhang) werden zunächst Energiesummen einzelner Module gebildet. Um den Aufwand gering zu halten und den Trigger störunanfällig zu machen, werden hierzu nur die 0⁰-Streifen der ersten 11 Strahlungslängen aufsummiert (1/6 der elektronischen Kanäle).

Mit einem ADC werden die Summensignale vom Rechner ausgelesen und können im Monitor und Filter benutzt werden. Für jedes Modul können über einen Mikrocomputer zwei Diskriminatorschwellen gesetzt werden. Abb. II.10 zeigt eine Übersicht der Kalorimetertriggerlogik. In der Runperiode 1980/81 wurden zwei Triggersignale zum CELLO-Gesamttrigger gesendet:

Schema des Kalorimetertrigger (1980/81

- 2 Module mit einer Energie größer als 2 GeV und der topologischen Forderung, daß beide Module um mindestens 45⁰ im Azimuth getrennt sind,
- 1 Modul mit einer Energie größer als 1.2 GeV.

Das erste Triggersignal startet ohne zusätzliche Bedingung

die Detektorauslese; das zweite Signal wird mit Bedingungen aus anderen Detektorkomponenten, z.B. einer r ϕ -Maske im Spurtrigger, verbunden. Typische Raten waren 0.1 – 0.5 Hz für den reinen Kalorimetertrigger, ca. 100 Hz für die Forderung 1 Modul und 0.5 Hz für die Koinzidenz dieses Signals mit einer r ϕ -Maske.

Leptonische Reaktionen führen hauptsächlich zu zwei geladenen Spuren, die gerade die Bedingungen des Spurtriggers erfüllen. Durch unabhäng…ge Trigger können hier eine hohe Nachweiswahrscheinlichkeit und kleine systematische Fehler erreicht werden.

Die Abbildungen II.11 und II.12 zeigen die experimentell bestimmte polare und azimuthale Nachweiswahrscheinlichkeit mit den 3 Triggern in der Bhabha-Streuung. Für Bhabha-Ereignisse wurde mit allen 3 Triggern eine Ansprechwahrscheinlichkeit von > 99.9% erreicht. In der Taupaarproduktion konnte durch die Kalorimetertrigger die Ansprechwahrscheinlichkeit von 81.0% auf 98.7% erhöht werden. Eine Analyse der Bhabha-Streuung erlaubt eine experimentelle Bestimmung der Triggerwahrscheinlichkeit für die Photon- und Muonpaarproduktion.

II.24

Abb. II.12: Azimuthale Ansprechwahrscheinlichkeit der einzelnen Trigger für Bhabhastreuereignisse

Der Versuch, in der Meßperiode 1980/81 auf nur einen einzelnen Schauer im Kalorimeter zu triggern, führte zu zu großen Instabilitäten durch elektronische Störungen und Hochspannungsdurchschläge. Ein solcher Trigger war nur für einen kleinen Teil der Datennahme (ca. 20%) und mit einer Schwelle von 6 GeV realisiert.

1983 wurde nach sorgfältiger Entstörung der Kalorimeterelektronik und nach Aufbau einer Koinzidenz innerhalb eines Moduls ein Einphotontrigger mit einer Energieschwelle von 2.5 GeV in Betrieb genommen. Abb. II.13 verdeutlicht die Struktur des Kalorimetertriggers in der Meßperiode 1983/84 (siehe dazu Anhang S

Abb. II.13: Schema des Kalorimetertrigger (1983/84)

II.27

trigger

II.2.5 Datenaufnahme-System

Nach einem gültigen Triggersignal werden ca. 20.000 Detektorsignale digitalisiert. Die meisten Detektorkomponenten haben Prozessoren, die die Daten auf ihren wirklichen Inhalt überprüfen (z.B. Nullunterdrückung) und in einer dynamischen Struktur verpacken. Mit PDP-Rechnern werden die einzelnen CAMAČ-Branches ausgelesen und überwacht.Dabei werden Ereignisse aufgrund physikalischer Kriterien mit Flaggen versehen, um sie einer schnellen Auswertung zur Verfügung zu stellen. Die Ereignisse werden direkt zum DESY-Rechenzentrum geschickt und dort auf Magnetband gespeichert.

Jede Detektorkomponente hat einen Mikroprozessor (typisch LSI-11), der unabhängig von den PDP-Rechnern arbeitet und hauptsächlich zum Testen und Kalibrieren benutzt wird. Eine Einstellung und Überpröfung beispielsweise der für den Kalorimetertrigger notwendigen Signale ist ohne Mikroprozessor nur schwer möglich. Die ca. 1.000 Eingangssignale können in kleinen Untergruppen nacheinander gepulst und mit CAMAC-ADC und Mikroprozessor ausgewertet werden. Die Energieschwellen einzelner Signale können mittels Mikrocomputer verändert und die entsprechenden Raten untersucht werden.

Aus den Zählerinformationen der einzelnen Detektorkomponenten werden Teilchenspuren rekonstruiert und deren physikalische Größen wie Impuls, Energie, Ladung, Schauerverhalten, etc. auf DST-Magnetbändern ("data <u>s</u>ummary <u>t</u>apes") abgespeichert. DSTs sind eine praktische Voraussetzung, um Größen wie z.B. Wirkungsquerschnitte, Winkelverteilung und Energiespektren zu bestimmen oder um nach exotischen Endzuständen mit sehr niedrigen Raten zu suchen.

In diesem Kapitel werden das Filtern der Rohdatenbänder, die verwendeten Rekonstruktionsprogramme zur Erstellung der DSTs und die anschließende Analyse von Reaktionen mit Leptonen und Photonen im Endzustand beschrieben.

Tabelle III.1 und Abbildung III.1 illustrieren den Datenfluß und die Reduktionsrate in einzelnen Analyseschritten anhand von Beispielen.

	Rate [hz]	Reduktions- faktor
Strahlkreuzung	2.5 • 10 ⁵	
"hardware trigger"	2.5 - 10 ⁵	~ 10 ⁵
"software trigger"	Z	~ 10
Filter	z • 10 ⁻¹	~ 10
Selektionsprogramm für ee → ττ	2 · 10 ⁻²	10 2
"scan"	2 · 10 ^{−4}	4
Ereigniskandidaten	5 · 10 ⁻⁵	
		i

Tabelle III.1

Reduktionsfaktoren in den einzelnen Analyseschritten

DATA FLOW EXP 11

Abb. III.1

Beispiel für den Datenfluß in CELLO (Meßperiode März/April 1981. 7.6 pb⁻¹ Luminosität)

III.I Filter

Die vollständige Rekonstruktion eines Ereignisse benötigt auf einem Großrechner einige Sekunden CPU-Zeit. In der Praxis ist es daher unmöglich, alle getriggerten und auf RDTs geschriebenen Ereignisse zu rekonstruieren. Außerdem handelt es sich bei den meisten getriggerten Ereignisse um Untergrundreaktionen (vergl. dazu Abb. III.2). Interessante Wechselwirkungen haben eine vergleichbar niedrige Rate. Die Rate der Bhabhastreuereignisse im Zentraldetektor ist bei maximaler Luminosität weniger als 1 pro Minute. Die Paarproduktion von Quarks und Leptnnen ist etwa eine Größenordnung niedriger.

Mit Filterprogrammen wird die Anzahl der Ereignisse auf eine handhabbare Größe reduziert. Dabei können durch die Benutzung eines Rechners kompliziertere Bedingungen als im Trigger gestellt werden. Im Gegensatz aber zu aufwendigen Rekonstruktionsprogrammen sind Filterprogramme einfach und schnell. Z.B. benötigt der in diesem Abschnitt beschriebene Energiefilter 9 Millisekunden pro Ereignis, die vollständige Rekonstruktion eines Ereignisse hingegen ca. 5 Sekunden. Filterprogramme haben gegenüber Triggern noch einen weiteren Vorteil: Sie sind reversibel; Ereignisse, die im Filter verworfen werden, sind nicht endgültig verloren.

För die hier beschriebene Analyse wurde ein Filterprogramm entwickelt, das sich hauptsächlich auf Informationen des Kalorimeters stötzt. Ein Kalorimeter hat dabei den Vorteil, daß die analogen Signale direkt proportional zur Energie sind. Im Gegensatz dazu enthält die Anzahl der Treffer in einer Drahtkammer keine verwertbare Information. Selbst niederenergetische Spuren aus Reaktionen, z.B. mit dem Strahlrohr, verursachen eine große Anzahl von Treffern, dic nur durch zeitintensive Rechnerprogramme von wirklichen Vielspurereignissen unterschieden werden können.

<u>Abb.</u> 11<u>1.2</u> Untergrundreaktionen

a) + b): Spuren mit niedrigem Impuls und viele Treffer in den Drahtkammern.

- c): Störung der Drahtkammer und Kalorimeterelektronik,
- d): kosmische Reaktionen mit Energiedeposition im Kalorimeter.

Der Energietelter benutzt die kompakter und varverarbeiteten Informationen der Erögerprocessonen, 6 einalogen summen der einzelnen Kalorimetermodule sind als digitale Information (ADC-Wert) zuf den Rohdatenbandern vorhanden. Die Breite des Rauschens (Pedestalverteilung) betragt im Mittel 130 MeV für die einzelnen Module. Nach entsprechender Eichung mit niederenergetischen Elektronen und Bnabhastreuereignissen kann die Energieauflösung folgendermaßen beschrieben werden:

$$\Im_{E/E} = \left(\begin{array}{c} \frac{.13}{E} \\ + \frac{.15}{..E} \end{array} \right)^2 \\ + \left(.14 \right)^2 \left(\begin{array}{c} 1/2 \\ 1/2 \\ \end{array} \right)^{1/2} \\ Kalibrationsfehler bei \\ den Widerstandsnetzwerken$$

Abb. III.3

Energieauflösung der Kalorimetertriggersummen

Resultate der Procussoren des gerachten Sportinggers verden ebenfalls digitalisiert und vom Rechner ausgerosen. Die Anzahl der gefundenen r: und rz-Triggermasken steht aul den Rohdatenbändern zur Verfügung.

Der überwiegende Teil der Kalorimetertrigger (ca. 80%) wird durch die Störungen der empfindlichen Elektronik verursacht. In einem ersten Schritt werden solche Ereignisse durch ein einfaches Muster zu über 90% unterdrückt, ohne dabei physikalische Ereignisse zu verwerfen.

Nach diesem Reinigungsschritt besteht die Mehrheit der Trigger des Zentraldetektors aus geladenen Spurtriggern ohne signifikante Energie im Kalorimeter. Ohne eine weitere Reduktion hätte die Rechenzeit für eine Experimentperiode von 8 Wochen ca. 1000 Stunden CPU-Zeit betragen. Der Energiefilter benutzt die Kalorimeterinformation, um auch aus den geladenen Triggern solche herauszufinden, die zusätzlich Energie im Zentralkalorimeter deponieren. Die erforderliche Rechenzeit wird um einen Faktor 10 reduziert.

Ein Ereignis wird akzeptiert, wenn eine der folgenden Bedingungen erfüllt ist:

- mindestens zwei zentrale Kalorimetermodule mit einer Emergiedeposition größer als 1200 MeV,
- mindestens eine r¢-Triggermaske und mindestens ein zentrales Kalorimetermodul mit Energie größer als 1200 MeV,
- mindestens eine r¢-Triggermaske und mindestens zwei zentrale Kalorimetermodule mit einer Energiedeposition größer als 600 MeV,
- mindestens ein zentrales Kalorimetermodul mit Energie größer als 1200 MeV und

mindestens ein Endkappenkalorimetermodul mit Energie größer als 2000 MeV,

5) mindestens zwei zentrale Kalorimetermodule mit Energie größer als 600 MeV und

mindestens ein Endkappenkalorimetermodul mit Energie größer als 2000 MeV. Um zusätzlich das obenerwähnte Muster zur Unterdrückung von Ereignissen zu kontrollieren, werden Ereignisse, die in der PDP1 oder im schnellen IBM-Selektor als Bhabhaereignisse gekennzeichnet werden, unabhängig akzeptiert (Die auf diese Weise bestimmten Verluste sind kleiner als 10⁻⁴).

Mehr als 50% der vom Energiefilter akzeptierten Ereignisse haben ihren Ursprung in der e⁺e⁻-Wechselwirkung. Tabelle III. enthält eine Klassifizierung aus einer Sichtprüfung von Ereignissen.

Ereignisklasse	Anteil	Kommentar
ee + ee	~ 30%	
einzelne Elektronen	~ 15%	nützlich zur Kalibration
Zwei-Photon-Streuung	~ 10%	hauptsächlich ee → eeee
ee + qq	r 4%	
ee → γγ	∿ 1.5%	
ee → ττ	∿ 0.5%	
harte Bremsstrahlung	~ 1%	μμγ, qqγ
kosmische Ereignisse	∿ 20%	
Strahl-Wand, Strahl-Gas	~ 10%	rechenintensiv
elektronische Einstreuung	~ 10%	

Tabelle III.2

Ereignisklassen in den Energiefilter DSTs

Auf Basis der Energiefilter-DSTs konnlen die folgenden Analysen durchgeführt werden:

1) ee \rightarrow ee 2) ee \rightarrow $\gamma\gamma$ 3) ee \rightarrow $\tau\tau$ 4) ee \rightarrow qq(g)5) ee \rightarrow eX 6) ee \rightarrow γX

Über die Analyse der Reaktionen 1), 2), 3) und 6) wird in den folgenden Abschnitten detailliert berichtet.

Ereignisse ohne Schauer im Kalorimeter, z.B. aus der Reaktion ee + $\mu\mu$ oder aus Zweiphotonwechselwirkung, wurden vom Energiefilter nicht erfaßt. Solche Ereignisse konnten von RDTs mit Hilfe eines Filterprogramms selektiert werden, das – ausgehend von der Information des geladenen Spurtriggers – eine grobe Spuranpassung durchführte (Minipat). 1982/83 wurde eine allgemeine DST-Produktion durchgeführt, die Kalorimeter- und Magnetspektrometer-Teile des Filters kombiniert. Die Erfahrungen mit dem Kalorimeterfikter haben sich auch veiterhin insbesondere für schnelle Auswerteketten als nützlich erviesen.

In der Meßperiode 1980/81 wurden einzelne Photonen nicht im Trigger und Filter erfaßt. Für den 1983 installierten Einphotontrigger spielen kohärente Störungen eine geringere Rolle. Die Überwiegende Anzahl der Ereignisse stammt hier aus kosmischen Reaktionen und aus Hochspennungsüberschlägen innerhalb eines Kalorimetermoduls. Um für diese Trigger einen einfachen und effektiven Filter zu ermöglichen, werden aus unterschiedlichen Ebenen zwei Triggersummen gebildet. Zusätzlich werden die Summen zu einer gegenüber dem Signalmaximum ver-Zogerten Zeit ausgelesen. Mit einem simplen Filterprogramm, das nur diese Kalorimetorsummen und die entsprechenden verzögerten Summen benutzt (insgesamt 80 Zahlen), wird eine Unterdrückung der Einphotontrigger um einen Faktur 20 erreicht ER084¹. Die Rekonstruktion von Teilchenspuren ist bei CELLO in einem Rahmenprogramm (FRAME) unganisiezt, FRAME verwaltet die ent sprechunden Detektorkonstanten zu den jeweiligen Experimentperioden und ruft Unterprogramme für die einzelnen Detektorkomponenten auf. Die Ergebnisse werden in dynamisch organisierten Datenbänken abgespeichert (BOS-System), wenn möglich, werden Teilchenspuren in den einzelnen Komponenter 25 autor physikalischen Spur zusammengefaßt.

<u>Geladene Teilchenspuren</u> im Magnetspektrometer verden vom Unterprogramm CELPAT rekonstrulert. Zuerst versucht CELPAT, Spuren in der rö-Projektion, der Ebene der magnetischen Ablenkung, zu finden. Ausgehend von drei Treffern innerhalb einer aus der Wechselwirkungszone kommenden Straße, wird ein Kreis berechnet. Treffer, die dem Kreis zugeordnet werden können, werden bestimmt, und unter Einbeziehung der neuen Punkte wird eine Kreisanpassung versucht; diese Prozedur wird iteriert. Eine Spur wird letztlich akzeptiert, wenn eine bestimmte Anzahl von Treffern gefunden wird und der χ^2 -Wert der Anpassung einen bestimmten Wert nicht überschreitet. Nach erfolgreicher rö-Rekonstruktion werden Raumpunkte durch Korrelation der 30⁰- und 90⁰-Kathodenstreifen bestimmt. An diese Raumpunkte wird in der rz-Projektion eine Gerade angepaßt.

In einer Programm-Matrix können die Startstrategie und die Qualitätsanforderung an eine Spur verändert werden; in der Praxis muß ein Kompromiß zwischen falsch gefundenen Spuren, hoher Nachweiswahrscheinlichkeit und Rechenzeit gefunden werden. In den Bhabhastreuereignissen beträgt die Wahrscheinlichkeit für die Spurrekonstruktion 99.7%; zu falschen Ladungsvorzeichen durch Zuordnung falscher Treffer kommt es bei 0.5% der Spuren. Mit dem Programm CELGEOM wird eine Verbesserung der Spuranpassung von CELPAT versucht. CELGEOM berücksichtigt die Feldinhomogenitaten des Solenoidmagneten und benutzt, falls möglich, den Wechselwirkungspunkt in der Spuranpassung. Da der Hebelarm der Driftkammer bei CELLO sehr klein ist, verbessert die Einbeziehung des Wechselwirkungspunktes erheblich die Impulsauflösung.

Schauer im Blei-Argon Kalorimeter werden mit dem Programm LA BAK rekonstruiert. LATRAK bildet zunächst zweidimensionale Zellen aus den aktiver Kanälen einer Ebene durch Korrelation der 0^{0} -, 45^{0} - und 90^{0} -Streifen. Benachbarte Zellen in einer Ebene werden zusammengefaßt und auf Basis der Pulshöhe auf ein mögliches Doppelkluster untersucht. Wenn eine vorgegebene Pulshöhe überschritten wird, wird ein zweidimensionales Kluster akzeptiert und anschließend dessen Ladungsschwerpunkt und Schauerbreite berechnet. Zunächst wird dann versucht, den geladenen Spuren zweidimensionale Kluster zuzuordnen. Aus den zurückgebliebenen Klustern werden durch Korrelation in der Tiefe dreidimensionale Kluster gebildet. Die Richtung der so gefundenen Schauer wird in einer Geradenanpassung durch die Schauerschwerpunkte unter Einbeziehung des Wechselwirkungspunktes bestimmt.

Das Programm MUCH versucht, Spuren aus dem Magnetspektrometer mit Treffern in den Muonkammern zu korrelieren.

Die Ergebnisse der einzelnen Prozessoren werden in BOS-Datenbanken abgespeichert. In einem weiteren Programmschritt werden die Ergebnisse der einzelnen Detektorkomponenten zusammengefaßt und die wesentlichen Größen eines Teilchens in einer Datenbank (TBNK) abgespeichert.

III.3 Analyse der Reaktion ee → ee

Ereignisse der Bhabhastreuung haben eine klare experimentelle Signatur: Zwei kollineare, entgegengesetzt geladene Teilchenspuren mit großem Impuls, elektromagnetische Schauer mit Strahlenergie im Kalorimeter und kein Treffer in den Muonkammern. Um einen aussagekräftigen Test des Standardmodells durchzuführen, stehen dieser einfachen Signatur hohe Anforderungen an die Präzision der Messung gegenüber. Abb. III.4 verdeutlicht mit einigen Ereignisbeispielen, wie durch Materialien im Detektor die oben beschriebene Standardsignatur entstellt wird (ca. 10% der Ereignisse).

In einer Analyse der Bhabbastreuung können zwei Vorgehensweisen gewählt werden:

- eine möglichst vollständige Erfassung aller Ereignisse auch solcher, deren Signatur durch die Detektormaterialien verzerrt wird – und eine experimentelle Bestimmung der Nachweiswahrscheinlichkeiten,
- eine harte Definition von akzeptierten Ereignissen; die Verluste werden in Kauf genommen und in einer Monte-Carlo-Simulation berücksichtigt.

Abb. III.4 verdeutlicht die Vorteile eines Kalorimeters bei der Identifizierung von Bhabhaereignissen. In CELLO wird die Reaktion von 30⁰ bis 150⁰ Streuwinkel sowohl von einem Kalorimeter als auch von einem Magnetspektrometer gemessen. Das Kalorimeter erlaubt eine vollständige Selektion und ausreichende Trennung von Untergrundprozessen, und das Magnetspektrometer ermöglicht eine Trennung in Vorwärts- und Rückwärtsrichtung und kann außerdem zur Überprüfung des Kalorimeters benutzt werden. Hier wird deshalb das erste Vorgehen gewählt.

Zur <u>Selektion der Ereignisse</u> werden folgende Bedingungen verlangt:

- Energie im zentralen Kalorimeter ist größer als 1/3 der Schwerpunktsenergie,
- 2) Zahl der geladenen Teilchenspuren zwischen 2 und 6,

d): eine Spur wird vom Rekonstruktionsprogramm nicht gefunden.

zwei kollineare geladene Teilchenspuren mit teos ¹
 .86 und einem Akollinearitätswinkel kleiner als
 250 mrad.

Abb. II.5 bis III.7 verdeutlichen die entsprechenden Großen.

Um Vorwärts- und Rückwartsrichtung in der Streuung zu trennen, ist eine Ladungsbestimmung auch bei Spuren mit großem Impuls notwendig. Ein Kriterium für die Gute der Ladungsbestimmung ist die Anzahl der Ereignisse, in denen ein gleiches Ladungs vorzeichen gefunden wird. Nach CELGEOM (siehe vorherigen Abschnitt) haben 1.2% der Ereignisse bei is = 34 GeV und 0.9% bei \sqrt{s} = 22 GeV gleiches Ladungsvorzeichen. Eine Sichtprufung der entsprechenden Ereignisse zeigt, daß im 0.6% bei 34 GeV bzw. in 0.7% bei 22 GeV Fehler in der Mustererkennung (?uweisung von falschen Treffern) und in 0.6% bzw. 0.2% die Begrenzung der Ortsauflösung der Drahtkammern die Ursache für die falsche Ladungsmessung sind. Die folgenden, bezüglich der Ladungsbestimmung unsicheren Ereignisse werden einer Sichtprüfung unterzogen: Streuung in Rückwärtsrichtung, mehr als zwei geladene Teilchenspuren, beide Spuren mit gleichen Ladungsvorzeichen, Impuls einer geladenen Spur größer als 50 GeV. In 0.9% der Ereignisse bei 34 GeV und 0.5% bei 22 GeV ist eine eindeutige Vorzeichenbestimmung nicht möglich. Diese Ereignisse werden, entsprechend der gemessenen Verteilung, in Vorwärts- und Rückwärtsrichtung, aufgeteilt.

Aus der experimentell bestimmten Anzahl der falsch gemessenen Einzelspuren (Ereignisse mit gleichen Ladungsvorzeichen) wird die Verwechslungswahrscheinlichkeit mit kleiner als 10⁻⁵ abgeschätzt. Da jede Spur einzeln und unabhängig berechnet wird, sind korrelierte Fehler in der Vorzeichenbestimmung durch das Spurrekonstruktionsprogramm nicht zu erwarten. Abb. III.8 zeigt die Korrelation zwischen den gemessenen inversen Impulsen unter Berücksichtigung des Ladungsvorzeichens und der Vorwärts- und Rückwärtsrichtung. Es gibt keine Hinweise auf Korrelation zwischen großen inversen Impulsen, z.8. durch eine Verdrillung der zylindrischen Kammern. Der Untergrund durch Vorzeichenverwechslung ist selbst in der extremen Rückwärtsrichtung kleiner als 0.1%.

Abb. III.5

Anzahl der Spuren in Bhabhaereignissen. Das Histogramm ist die Erwartung aus einer Monte-Carlo-Simulation. Der Anteil der Ereignisse mit einer Spur wurde in der Analyse der Reaktion ee $\neq \gamma\gamma$ bestimmt.

Abb. III.6

Summe der Kalorimeterenergie in Bhabhaereignissen

Akollinearitätsverteilung der Bhabhaereignisse. Die durchgezogene Linie entspricht der Vorhersage der QED Monte-Carlo-Simulation (Ordnung α^3).

Abb. III.8

Korrelation der inversen Impulse in den Bhabhaereignissen, getrennt für vorwärts- bzw. rückwärts gestreute Spuren (Q = Ladung, P = Impuls). Um experimentelle <u>Verluste</u> zu errassen, wird die mit den obigen Kriterien durchgeführte Analyse durch zwei unabhän – gige Auswerteprogramme überprüft, die entweder hauptsächlich Kalorimeter- oder Magnetspektrometer-Informationen benutzten. Die hauptsächlich auf Kalorimeter-Informationen beruhende Analyse wird detailliert im nächsten Abschnitt beschrieben. Ereignisse, in denen Spuren vom Rekonstruktionsprogramm nicht gefunden werden (0.9%), konnten damit in die Analyse einbezogen werden. Die Verluste sind stark cos0-abhängig und betragen unter großem Winkel ca. 5%.

Bei der hauptsächlich auf Magnetspektrometer-Informationen beruhenden Analyse werden zwei Spuren aus der Wechselwirkungszone mit der Summe der Impulse größer als der Strahlimpuls und einem Akollinearitätswinkel kleiner als 250 mrad verlangt. Die Nachweiswahrscheinlichkeit für Bhabhastreuereignisse beträgt ca. 85%. Ereignisse mit Schauerrekonstruktionsfehlern (1.3%) werden dadurch berücksichtigt.

Verluste im Trigger werden mit drei unabhängigen Triggern bestimmt (siehe dazu auch Abb. II.10). Die Nachweiswahrscheinlichkeit des rein geladenen Triggers ist 80.0%, des reinen Kalorimetertriggers 95.4% und des kombinierten Triggers 98.3%; die Verluste können durch Kammernachweiswahrscheinlichkeit und die Lücken zwischen den Kalorimetermodulen verstanden werden. Um keine cos0-abhängigen Unsicherheiten durch Verluste im Trigger oder Filter zu haben, wird der Bereich unter 90° mit relativ großen Lücken im Kalorimeter (5 cm) in der Analyse nicht verwendet (d.h. |cos0| > 0.05).

Die Azimuthwinkelverteilung sollte ohne transversale Polarisation flach sein und ist somit ein Indikator für mögliche Verluste. Die Verteilung in Abb. III.9 wird gut mit einem flachen Verlauf beschrieben; die Meßpunkte in den azimuthalen Lücken zwischen den Modulen sind innerhalb des statistischen Fehlers mit einem flachen Verlauf der Kurve verträglich.

Azimuthwinkelverteilung der Bhabhastreuereignisse

Um <u>Untergrundbeiträge</u> zu bestimmen, werden Ereignisse, die die folgende Bedingung erfüllen, einer Sichtprüfung unterzagen:

- Kalorimeterenergie kleiner als 2/3 der Schwerpunktsenergie,
- Streuung in Rückwärtsrichtung,
- mehr als zwei geladene Teilchenspuren.

Treignisse aus der Reaktion ee + qq(g) werden durch Schnitt 2) stark unterdrückt. Ein verbleibender Rest von 0.1% der Ereigniskandidaten wird in der Sichtprüfung verworfen. Taupaarereignisse werden wegen der niedrigen Multiplizität kaum durch Schnitt 2) unterdrückt, und Schnitte 1) und 3) verwerfen nur etwa 60% der Ereignisse aus dieser Reaktion. Insgesamt 0.9% der Ereigniskandidaten werden in der Sichtprüfung als Taupaarkandidaten klassifiziert; mit dem feinsegmentierten Kalorimeter können hadronische Schauer ($\pi^+\pi^\circ$) gut von harten Elektronen unterschieden werden (vergleiche hierzu auch Kapitel III.5). Ereignisse mit zwei Elektronen und fehlender Energie aus der Reaktion ee + eeee und ee + eeyy werden durch Schnitte 1) und 3) effektiv unterdrückt. Im Energiebereich zwischen 1/3 und 2/3 der Schwerpunktsenergie werden 0.1% dieser Reaktion zugeordnet und verworfen. Ereignisse aus der Reaktion ee $\neq \gamma\gamma$ mit zwei konvertierten Photonen und Ereignisse aus kosmischen Reaktionen mit einer geladenen Teilchenspur und Schauern im Kalorimeter bilden einen Anteil von weniger als 0.1%.

Der Fehler bei der Untergrundsubtraktion wird mit 0.1% unter kleinem Winkel und 0.5% unter großem Winkel abgeschätzt.

<u>Strahlungskorrekturen</u> werden mit einem Monte-Carlo-Programm von Berends und Kleiss [BER83b] bestimmt. Dabei werden QED-Korrekturen bis zur Ordnung α^3 berücksichtigt. In der Monte-Carlo-Rechnung werden die geometrische Akzeptanz und die Ound ϕ -Auflösung des Detektors simuliert. Abb. III.10 zeigt den polaren Verlauf der Korrektur. Die Resultate des Monte-Carlo-Generators werden mit einer analytischen Rechnung verglichen. Unterschiede ergeben sich an den Akzeptanzgrenzen des Kalorimeters, wo Randeffekte von der analytischen Rechnung

Strahlungskorrektur in der Bhabhaanalyse

nicht berücksichtigt werden. Für die Korrektur werden an den Randpunkten und im steilen Verlauf des Wirkungsquerschnittes die Monte-Carlo-Werte und unter großem Winkel aus Gründen der Rechenzeit die analytischen Werte benutzt.

Die Beiträge der Strahlungskorrektur, in denen ein hartes Photon abgestrahlt wird, können experimentell überprüft werden (siehe dazu auch Kapitel III.6). Abb. III.11 und III.12 zeigen, deß die Akollinearitäts- und Akoplanaritätswinkelverteilungen

Abb. III.11

Akollinearitätswinkelverteilung in der Bhabhastreuung

Akoplanaritätswinkelverteilung in der Bhabhastreuung

auch in dem Teil des Phasenraumes, der nicht für die Bestimmung des Wirkungsquerschnitts benutzt wird, durch das Monte-Carlo-Programm beschrieben werden. Aus der Unsicherheit der Strahlungskorrekturen resultiert der größte Beitrag zum systematischen Fehler. Im Energiebereich zwischen 33 und 36.7 GeV bei einer mittleren Schwerpunktsenergie von 34.2 GeV und einer Luminosität von 11.1 pb⁻¹ werden 16531 Ereignisse und bei 22 GeV Schwerpunktsenergie und einer Luminosität von 2.5 pb⁻¹ 11559 Ereignisse akzeptiert.

Der differentielle Wirkungsquerschnitt wird folgendermaßen berechnet:

$$\frac{d\sigma}{d\sigma} = \frac{il}{\sigma \cdot \epsilon \cdot L \cdot \Delta \Omega}$$

wobei

N	= Anzahl der Ereignisse
ΔSi	= entsprechendes Raumwinkelelement
^б таd	= Strahlungskorrekturen
ε	= Akzeptanz
L	= Luminosität

Die Abbildungen III.13 und III.14 zeigen den Verlauf des differentiellen Wirkungsquerschnitts für die beiden Schwerpunktsenergien. Beide Verteilungen werden durch die QED erklärt.

Der <u>systematische Fehler</u> wird in zwei Kategorien aufgeteilt, Punkt-zu-Punkt-Fehler und Normalisierungsfehler. Tabellen III.3 und III.4 geben eine Übersicht über die einzelnen Beiträge. Insgesamt werden ein Normalisierungsfehler von 2% und ein Punkt-zu-Punkt-Fehler von 1% bei der Berechnung von Abschneideparametern und Kopplungskonstanten benutzt.

Die Bhabhastreuung ist die wichtigste Kontrollreaktion für einen e⁺e⁻-Speicherring-Detektor wie CELLO. Die Übereinstimmung der Messung mit der QED-Erwartung zeigt ein hinreichend gutes Verständnis des Detektors und gibt Vertrauen, auch weniger eindeutige Reaktionen zu untersuchen.

Differentieller Wirkungsquerschnitt der Bhabhastreuung bei 22 GeV Schwerpunktsenergie

Differentieller Wirkungsquerschnitt der Bhabhastreuung bei 34 GeV Schwerpunktsenergie

Korrektur	Fehler	Bemerkung
Strahlungskorrektur	1.5%	Unsicherheit in der Vakuumpolarisation, keine ."-Korrekturen
Akzeptanz	0.5%	experimentelle Bestimmung der ⊖ und ± Auflösung, Abschätzung nicht gaußischer Beiträge
Untergrund	0.1%	entspricht der Größe der nicht auf Ereignisbasis abgezogenen Ereignisse
Versagen einzelner Detektorkomponenten	0.3%	Innendetektor 0.2%, Kalorimeter 0.2 , Trigger 0.1%
sonstige Fehler	1.0%	Fehler in der Datenkette; gemeinsames Versagen aller Komponenten

Tabelle III.3

Systematische Fehler bei der Luminositätsbestimmung

Korrekturen	cos0`.3	cos03	Bemerkung
Strahlungskorrektur	. 3%	. 6	's' und 't' Abnängigkeit der Vakuumpolarisation
Akzeptanz	.7%	: .1%	kritisch im steilen Verlauf des Wirkungsquerschnitts
Trigger + Kalorimeter	< .1 %	< .1%	keine
Spurfehler	< .1%	5%	Spurinetfizienz nur unter großem Winkel
Untergrund	< .1%	< .5%	· · · · · · · · · · · · · · · · · · ·

Tabelle III.4

Punkt-zu-Punkt-Fehlerabschätzung in der Bhabhaanalyse

Ereignisse mit zwei Elektronen und fehlender Energie können ein Hinweis auf die Produktion neuartiger Teilchen sein. Aus bekannter Quelle tragen hier nur Ereignisse aus der Taupaarproduktion bzw. aus der Reaktion ee + eeee und ee + eeyy bei.

Mit der zusätzlichen Signatur eines großen Akoplanaritätswinkels ist der Untergrund aus den beiden Reaktionen klein. Abb. III.12 zeigt, daß die Akoplanaritätswinkelverteilung gut durch die QED-Reaktion ee → eey beschrieben wird. Nach einem Akoplanaritätsschnitt von 30⁰ haben bis auf ein Ereionis alle ein zusätzliches Photon im Kalorimeter, um den fehlenden Impuls zu balancieren, oder der fehlende Impulsvektor zeict nicht in die Akzeptanz des Kalorimeters (6 Ereignisse). Das verbleibende Ereignis kann mit einem zweiten Photon in der Lücke zwischen Zentral- und Endkappenkalorimeter erklärt werden. Aus dieser Untersuchung läßt sich eine Grenze für die Produktion eines geladenen schweren Teilchens mit anschließendem Zerfall in ein neutrales, nicht wechselwirkendes Teilchen und ein Elektron ermitteln. Für eine Masse größer als 1/3 der Strahlenergie ist der Wirkungsguerschnitt mit 95% Konfidenzintervall kleiner als 1.2 pb.

Die Produktion eines solchen Teilchens mit niedriger Masse E führt zu kollinearen Elektronen mit unbalancierter Energie. In einer Suche nach folgender Ereignissignatur, $E_1 - E_2 > 0.4$ E_{strahl} und Akollinearitätswinkel kleiner als 20° , wird nur ein Ereigniskandidat gefunden. Er kann mit der Reaktion ee + $\tau\tau$ + ee4u erklärt werden. Daraus folgt eine Grenze von 3.1 pb für die Produktion eines Teilchens mit einer Masse kleiner als 1/3 E_{strahl} .

Ein aussagekräftiger Test der CED ist die Reaktion ee • YY. Sie verlangt eine präzise Hoosung des Wirkungsquerschnitte unter großem Streuwinkel, time Analyse dieser Reaktion muß sich im Gegensatz zur Shabhaanalyse ausschließlich auf die Informationen des Kalcrimeters stützen. Die Ähnlichkeit der Signatur beider Prozesse im Kalorimeter erlaubt jedoch eine direkte experimentelle Bestimmung der Trigger-, Selektionsund Rekonstruktionsverluste. Kleine systematische Fehler sind daher möglich.

Nach einer Vorselektion mit losen Kriterien werden alle Ereigniskandidaten einer Sichtprüfung unterzogen. Ein solches Vorgehen ist notwendig, um Ereignisse aus der Bhabhastreuung mit nicht rekonstruierten Spuren zu entfernen.

Die Kriterien der Vorselektion sind:

- 1) Kalorimeterenergie größer als 70% der Schwerpunktsenergie.
- 2) Anzahl der Spuren kleiner als 2 und, falls 2 Spuren, Akollinearitätswinkel größer als 170⁰.

Kriterium 2) unterdrückt effizient Bhabhaereignisse, erlaubt aber die Berücksichtigung von Ereignissen mit einem konvertierten Photon in der Analyse. Abb. III.15 zeigt einige Beispiele selektierter Ereignisse. In der Sichtprüfung werden sie folgendermaßen klassifiziert:

56.4% haben keine geladenen Teilchenspuren und mindestens zwei harte Photonen; 9.7% haben ein konvertiertes Photon im Innendetektor und mindestens zwei harte Photonen; 10.7% sind kollineare Bhabhaereignisse mit mindestens einer nicht im Rekonstruktionsprogramm gefundenen Spur; 11.1% sind akollineare oder akoplanare Bhabhaereignisse; 11.7% sind Reaktionen aus der kosmischen Strahlung.

Aus den Ereignissen, die dem Prozeß ee $\rightarrow \gamma\gamma(\gamma)$ zugeordnet werden, wird der differentielle Wirkungsquerschnitt bestimmt. Da die Analyse entscheidend auf dem Kalorimeter beruht, werden

18.1 GeV

a) Kollineares Photonpaar,

b) drei Photonen im Endzustand,

c) kosmische Teilchenspur mit zwei Schauern im Kalorimeter,

d) kollineares Photonpaar mit einem konvertierten Photon,

e) akoplanares Bhabhaereignis.

III.31

e – n

nur Photonen verwendet, die voll in die Akzeptanz der Kalorimetermodule treffen. Zur Bestimmung des differentiellen Wirkungsquerschnitts werden daher die folgenden weiteren Bedingungen verlangt:

- 3) mindestens zwei Schauer in der Akzeptanz eines Moduls, 0.05 < $|\cos \theta|$ < 0.85 und $|\Phi| |\Phi_{Rand}| > 2.5^{\circ}$,
- Akollinearitätswinkel zwischen den beiden Schauern mit der höchsten Energie kleiner als 15⁰.

Durch Bedienungsfehler der Schichtbesatzung kam es zu Meßperioden, in denen der Innendetektor keine Hochspannungsversorgung hatte. Um solche Perioden der Datennahme auszuschließen, wird außerdem verlangt, daß geladene Spuren zeitlich direkt vor einem akzeptierten Ereignis im Detektor nachgewiesen werden. Dazu wird folgendes verlangt:

 mindestens ein geladener Trigger 7.5 Sekunden und mindestens drei geladene Trigger 15 Sekunden vor einem akzeptierten Ereignis.

Mit diesem Kriterium werden drei Perioden mit 3, 4 und 6 Minuten ohne Spurtrigger gefunden. 0.9% der Bhabhaereignisse und 5.1% der ee + yy Kandidaten passieren Schritt 5) nicht. Die Hehrheit der verworfenen ee + yy Kandidaten (4.0%) kann den drei oben erwähnten Experimentperioden zugeordnet werden. Der Fehler durch diese Korrektur wird mit 0.8% abgeschätzt. Die <u>Verluste</u> beim Trigger, in der Selektion und der Schauerrekonstruktion werden für die einzelnen polaren und azimuthalen Winkelbereiche aus Vergleichen mit den Bhabhaereignissen bestimmt. Bhabhaereignisse werden dabei durch die im vorherigen Abschnitt beschriebene Magnetspektrometer-Selektion definiert.

Nach dem Kriterium 3) erhöht sich die Trigger-Nachweiswahrscheinlichkeit des reinen Kalorimetertriggers von 96.1% auf größer als 05.9%. Der Anteil der Ereignisse mit nindestens einem nicht rekonstruierten Schauer betrug 0.6%. Auf Ereignisse mit zwei konvertierten Photonen wird anhand des Materials im Strahlrohr und den ersten beiden Proportsonalkammern (7.6% + 0.5% Strahlungslänge) kerrigiert. Abb. IVT.10 vorgleicht die Anzahl der gemessenen einfach konvertierten Freignisse mit der Ervartung aus den Detektorwaterial; die Hessung ergibt mit 7.1 + 0.7% einer 8 rahlungslänge gute Übereinstimmung mit

produktion mit einem konvertierten Photon. Die durchgezogene Linie entspricht der Monte-Carlo-Erwartung.

den vorhandenen Materialien.

Hie bei der Bhabhareaktion sollte ohne transversale Polarisation die Azimuthwinkelverteilung einen flachen Verlauf haben. Abb. III.17 zeigt keine Hinweise auf vom Azimuthwinkel abhängige Verluste.

Strahlungskorrekturen bis zur Ordnung a³ werden mit einem Monte-Carlo-Programm von Berends und Kleiss |BER81b| bestimmt. Die im Honte-Carlo-Programm erzeugten Vierervektoren (2 bzw. 3 Photonen) werden mit der gemessenen Detektorauflösung verschmiert und den Akzeptanzkriterien unterworfen. Abb. III.18 zeigt den polaren Verlauf der angewandten Korrektur. Die harte Komponente wird durch die Akollinearitäts- bzw. Akoplanaritätsverteilung überprüft. Abb. III.15 und III.20 zeigen, daß beide Verteilungen durch die Erwartung der QED beschrieben werden können.

Angewandte Strahlungskorrektur in der Photonpaarproduktion

- - - -

Akollinearitätswinkelverteilung in der Photonpaarproduktion. Das Histogramm ist die QED-Vorhersage.

Abb. III.20

Akoplanaritätswinkelverteilung in der Photonpaarproduktion. Das Histogramm ist die QED-Vorhersage. Nach dem Akkolinearitätsschnitt von 15⁰ verden 1050 Ereignisse akzeptiert. Der <u>differentielle Hirkungsguerschnitt</u> wird folgendermaßen berechnet:

$$\frac{d\sigma}{d\Omega} = \frac{N}{\delta_{rad} \cdot \epsilon \cdot L \cdot M}$$

wobei

N = Anzahl der Ereignisse

40 = entsprechendes Roumvinkelelement

 δ_{rad} = Strahlungskorrekturen

ε = Akzeptanz

l = Luminosität

Die Luminosität wird aus der Bhabhastreuung (0.75 <|cos0| < 0.85) bestimmt. Abb. III.21 vergleicht den so bestimmten differentiellen Wirkungsquerschnitt nit der QED-Erwartung. Der <u>integrierte Wirkungsquerschnitt</u> im Bereich 0.05 <|cos0| < 0.85 beträgt

 $\sigma_{experimentell} = \sigma_{QED} (0.962 \pm 0.031 \pm 0.030).$

Tabelle III.6 erläutert die einzelnen Komponenten des systematischen Fehlers.

Sowchl die absolute Höhe als auch die differentielle Form des Wirkungsquerschnitts werden durch die Quantenelektrodynamik beschrieben. Neue Phönomene in neutralen Ereignissen können jedoch einen sehr kleinen Wirkungsquerschnitt haben (siehe dazu Diskussion in Kapitel I). Deshalb wurde nach Ereignissen mit zwei Photonen im Endzustand aus dem Zerfall eines massiven Teilchens in ein Photon und ein nicht wechselwirkendes Teilchen gesucht, also nach <u>Ereignissen mit 2 Photonen und</u> fehlender Energie.

Abb. III.22 verdeutlicht mit Beispielen, welche Ereignisse in einer solchen Analyse von einem möglichen Signal abgetrennt werden müssen.

Abb. III.21

Differentieller Wirkungsquerschnitt der Photonpaarproduktion bei 34.2 GeV Schwerpunktsenergie. Die durchgezogene Linie ist die QED-Erwartung.

(orrektur		Bemerkung
Strahlungskorrektur	1 %	keine Vakuumspolarisation, keine schwachen Beiträge
Normalisierung	1.8%	Unsicherheit der Bhabha-Luminosität
Akzeptanz	0.9%	Θ und φ Auflösung, Abschätzung nicht gaußischer Beiträge
Trigger	0.2%	Vergleich mit ee → ee
Selektions- und Rekonstruktions- verluste	1.8%	Vergleich mit ee → ee
Innendetektor- Versagen	0.8%	gleichzeitiges Versagen von CDC und CPC, Korrektur durch Zeitstruktur der Trigger

Tabelle III.5

·

Fehler in der ee + yy Analyse

Ċ

Abb. III.22

Beispiele aus der Suche nach Ereignissen mit zwei Photonen und fehlender Energie

- a) ee → YYY Ereignisse mit akoplanearem Photonpaar im Zentralkalorimeter. Drittes Photon, um den fehlenden transversalen Impuls zu balancieren, wird im Endkappenkalorimeter gefunden.
- b) Kosmische Teilchenspur mit zwei Schauern im Zentralkalorimeter.
- c) Ereignis aus der Reaktion ee → ee + fehlende Energie.
 Wegen Fehler in Driftkammerelektronik wird die Spur nicht rekonstruiert.

Zur Selektion werden die folgenden Kriterien verlangt:

- 1) zwei Photonen innerhalb der Akzeptanz der Kalorimetermodule .05 < $|\cos\theta|$ < .83 und $|\Phi - \Phi_{Rend}|$ > 2,5⁰,
- keine geladene Spur und Anzahl der Driftkammertreffer kleiner als 10,
- 3) $E_1/E_{Strahl} \cdot E_2/E_{Strahl} < 0.5 mit E_1 und E_2 Energie der Photonen,$
- 4) Akollinearitätswinkel zwischen den beiden Schauern kleiner als 15⁰ oder Akoplanaritätswinkel größer als 10⁰, und der Vektor des fehlenden Impulses zeigt in die Akzeptanz des Kalorimeters.

Schnitte 3) und 4) unterdruchen GED-Untergrund aus der Reaktion ee $\gamma_{11}(\gamma)$. Abb. IIf.23 zeigt die Korrelation zwischen den Photonenergien, falls Kriterium 3) nicht angewandt wird. Ereignisse, die Kriterien 1) bis 4) passierten, wurden einer Sichtprüfung unterzogen. 23 Ereignisse konnten als durch kosnische Reaktionen induzierte Ereignisse klassifiziert worden (siehe dazu Abb. III.22). Ein Ereignis kann mit Hilfe der Proportionalkammer-Informationen der Reaktion ee γ ee γ fehlender Energie zugeordnet werden. Es wurde vegen Versagen der Driftkammer (in etwa 0.3% aller Ereignisse) nicht automatisch verworfen. Ein echter Ereigniskandidat wurde nicht gefunden.

Die Nachweisvahrscheinlichkeit für den Trigger und die Selektion im unteren Energiebereich wird mit Ereignissen aus der Reaktion es + eese mit zwei niederenergetischen Elektronen bestimmt. Im Energiebereich zwischen 1.5 und 2.0 GeV betrug sie 73%, zwischen 2.0 und 3.0 GeV 86% und über 3.0 GeV 100%.

Um eine obere Grenze für den Prozeß ee + N°N° + $\gamma\gamma$ n°n° (mit n° ein nicht wechselwirkendes, masseloses Teilchen) zu bestimmen, wird eine Nonte-Carlo-Simulation durchgeführt. Für die Produktion wird eine 1+cos²0-Verteilung und für den Zerfall N° + γ n° eine isotrope Verteilung angenommen. Die Photonen werden in Energie und Richtung verschmiert und die Konversion am Strahlrohr berücksichtigt. Für leichte Teilchen ergibt sich mit 95% Konfidenzintervall eine obere Grenze für die Produktion von 1.1 pb. Diese Analyse erlaubt Einschränkung für massive instabile supersymmetrische Photinos.

Abb. III.23

Korrelation der Energie in Ereignissen mit zwei Schauern

und keiner Spur

III.5 Analyse der Reaktion ee 🛌 🗤

Wegen der kurzen Lebensdauer des Taus können Taupaprereignisse nur über ihre Zerfallsprodukte beubachtet verden. Direkt obevhalb der Produktionsschwelle geben nur die Zerfallskanäle in Leptonen eindeutige Signaturen. Im Energichereich von PEIRA, weit oberhalb der Produktionsschwelle, ist jedoch die Hehrheit der Zerfallskombinationen eindeutig. Kollineare schmale Teilchenbündel mit niedriger invarianter Masse und Multiplizitär, fehlende Energie und ein Akollinearitäts- bzw. Akoplanaritätswinkel sind klare Signaturen für Taupeare. Abb. III.24 zeigt mit einigen Ereignisbeispielen, wie die Reaktion im CELLO-Detektor gemessen wird. Mit dem Magnetspektrometer und dem feinsegmentierten Kalorimeter können Taupzare auf Ereignisbasis identifiziert werden. Bei PETRA ist damit zum ersten Mal eine nahezu vollständige und untergrundfreie Ereignisauswahl möglich, und die Reaktion kann mit einer ähnlichen statistischen Präzision wie in der Muonpaarproduktion gemessen werden.

Die Selektion wird getrennt für Ereignisse mit zwei bzw. mehr als zwei geladeren Teilchenspuren durchgeführt. Zur <u>Selektion</u> von Reaktionen mit <u>zwei geladeren Teilchenspuren</u> werden folgende Kriterien verlangt:

- 2 Spuren vom Wechselwirkungspunkt mit einem Impuls größer als 400 NeV und |cos0| < .86,
- invariante Masse der beiden Spuren größer als 3.5 GeV,
- Kalorimeterenergie kleiner als 60% der Schwerpunktsenergie,
- Akollinearitätswinkel größer als 1.5⁰ und kleiner als 25⁰,

Akoplanaritötswinkel größer als 0.7°.

Abb. III.25 und III.26 verdeutlichen, wie durch die Schnitte 3) und 4) effektiv Bhabhaereignisse unterdrückt werden.

Ereignisse mit zwei Elektronen werden in der Sichtprüfung verworfen, da für diese Zerfallskombination der Untergrund aus der Reaktion ee + eeee selbst nach Schritt 2) und 4) zu groß ist. Elektronen werden durch das Aufeinanderpassen von Spur und Schauer und durch das charakteristische elektromagnetische Schauerverhalten erkannt.

Abb. III.24

Ereignisbeispiele aus der Tau Analyse

Abb. III.25

Vergleich der Kalorimeterenergie der Bhabha- und Taupaarereignisse (die Bhabhaereignisse sind um einen Faktor 200 gegenüber den Taupaarereignissen unterdrückt).

Vergleich der Akollinearitätswinkelverteilung der Bhabhaund der Taupaarereignisse Alle 586 Ereignisse, die

die Schritte 1) bis 4) passieren, werden von zwei Personen^{*)} unabhängig einer Sichtprüfung unterzogen.

136 Ereignisse werden als Taupaarkandidaten akzeptiert. In der Sichtprüfung werden hauptsächlich die folgenden Ereignistypen verworfen:

Zwei Elektronen im Endzustand (40%); Bhabhastreuereignisse (25%), die durch Energieverluste zwischen den Modulen bzw. durch tote Kanäle Schritt 3) passierten; kosmische Mücnen (15%) mit einer durchgehenden Spur, die durch Einbeziehung des Wechselwirkungspunktes in die Spuranpassung einen Akollinearitäts- und Akoplanaritätswinkel vortäuscht; ee $\neq \mu\mu\gamma$ -Reaktionen (5%), die durch die hohe invariante Masse der $\mu\gamma$ -Paare und durch die Energiebilanz unter Einbeziehung des Muonimpulses erkannt werden.

In der Selektion der <u>Mehrspurereignisse</u> werden folgende Kriterien verlangt:

- 1) Anzahl der Spuren zwischen 3 und 8,
- 2) Summe der Spurimpulse größer als 5 GeV,
- 3) Energie im Kalorimeter kleiner als 25 GeV,
- alle Spuren müssen innerhalb eines Öffnungskegels von 60⁰ um die Spärizitätsachse liegen,
- die invariante Masse aus den geladenen Spuren muß für beide Jets kleiner als 2 GeV sein,

 Akollinearität zwischen den Jetachsen muß kleiner als 35⁰ sein.

Die 281 selektierten Ereignisse werden einer Sichtprüfung unterzogen. Bhabhaereignisse mit konvertierten Photonen und Energieverluste in den Lücken und hadronische Ereignisse mit niedriger Multiplizität der geladenen Spuren, aber hoher invarianter Masse der Jets unter Einbeziehung der neutralen Teilchenspuren, werden verworfen. 115 Ereignisse werden als Taupaarkandidaten akzeptiert.

 ^{*)} Die Sichtprüfung wurde zusammen mit H. Küster durchgeführt,

In der Sichtprüfung werden die 251 akzeptierten Ereignisse in Zerfallsklassen eingeteilt: Elektron (84); Muon bzw. Pion (109); eine geladene Spur mit zusätzlichen Photonen (175); eine geladene Teilchenspur mit zusätzlich konvertierten Photonen (37); drei geladene Teilchenspuren (9); fünf geladene Teilchenspuren (3).

Die Analyse berücksichtigt \$2% der Zerfallskombinationen. Nur die Ereignisse, in denen beide Taus in minimal ionisierende Teilchen bzw. Elektronen zerfallen, werden nicht erfaßt. Die experimentell bestimmten Verzweigungsverhältnisse ¦JOU84 |KÜ\$83| sind in Tabelle III.~ zusammengestellt.

Die <u>Nachweiswahrscheinlichkeit</u> für den Trigger wird experimentell bestimmt. Sie beträgt 98.7% ± 0.5% für die 2 Spurselektionen und 99.8% ± 0.2% für die Mehrspurselektion. Mit 92.1% ist die Nachweiswahrscheinlichkeit für den Trigger, der eine geladene Teilchenspur mit Kalorimeterenergie kombiniert, am größten.

Um die Nachweiswahrscheinlichkeit der Selektion zu bestimmen, wird eine einfache Monte-Carlo-Simulation der Reaktion durchgeführt. Vierervektoren der Reaktion ee $\rightarrow \tau\tau(\gamma)$ werden mit einem Programm von Berends und Kleiss [†]BER81a[†] erzeugt. Anschließend wird der Zerfall der Taus unter der Verwendung eines V-A-Matrixelements für den geladenen schwachen Strom simuliert [TSA71]. Die beobachtbaren Teilchen werden mit der experimentell bestimmten Detektorauflösung verschmiert und den oben angeführten Akzeptanzkriterien unterworfen.

Die Nachweiswahrscheinlichkeit für 2 Spurereignisse wird zu 46% ± 2% und für Mehrspurereignisse zu 61% ± 3% bestimmt.

Mit einem Monte-Carlo-Programm, das die Wechselwirkung mit den einzelnen Materialien des Detektors und die Ansprechwahrscheinlichkeit der einzelnen Meßkanäle simuliert, werden entsprechend 44% bzw. 58% für Nachweiswahrscheinlichkeit ermittelt [KÜS83].

Die Abbildungen III.27 und III.28 vergleichen die Honte-Carlo-Vorhersage für die Akollinearitäts- und Akoplanaritätswinkelverteilungen mit den gemessenen Daten. Sie sind in Übereinstimmung mit den Vorhersagen aus der QED und dem V-A-Matrixelement für den Zerfall.

Akoplanaritätswinkelverteilung der Taupaarereignisse. Das Histogramm ist die Vorhersage einer Monte-Carlo-Simulation der Reaktion ee > 113 und des anschließenden Zerfalls unter Annahme eines V-A-Stroms

Korrektur		Bemerkung
Strahlungskorrektur	2 %	Vakuumpolarisation, keine α^4
Normalisierung	2.2%	Bhabhastreuung
Akzeptanzrechnung	4 %	Monte Carlo
"scan"	2 %	Abschätzung durch 'scan' von Monte-Carlo-Ereignissen
Untergrundbeiträge	2 %	hadronische Ereignisse, Zwei-Photon-Streuung
Trigger	.5 %	Vergleich unabhängiger Trigger

Tabelle III.≯

Fehler bei der Bestimmung des totalen Wirkungsquerschnitts in der Reaktion ee + $\tau\tau$

rt Verzweigungsver adene Spur	<pre>sverhältnis sverhältnis (stat.) ± .019 (syst.) (stat.) + .021 (syst.) (stat.) + .013 (syst.) (stat.) + .021 (syst.)</pre>
-	
.228 + .025 (st	(stat.) + .021 (syst.)
.099 ± .017 (st	(stat.) + .013 (syst.)
.176 + .026 (st	(stat.) + .021 (syst.)
.183 ± .024 (st	(stat.) ± .019 (syst.)
adene Spuren .150 ± .020	
adene Spur .840 ± .020	
rt Verzweigungsver	sverhäl tnis

Tabelle III. 🤇

Experimentell bestimmte Verzweigungsverhältnisse im Tauzerfall

Die folgenden <u>Untergrundbeitröge</u> werden durch Honte-Carlo-Simulation bestimmt: Ereignisse mit einem Elektron und Muon aus der Reaktion es tert (2.5%) [VER81]; ee + $\mu\mu\gamma$ Ereignisse, in denen die invariante Masse zwischer Photon und Muon ein ρ voröäuscht (0.4%) [BER01a]; Ereignisse aus der Reaktion ee + egg (2.0%) [HJJ822]. Der Fehler bei der Untergrundsubtraktion wird mit 2% abgeschätzt.

Die Luminosität wird aus der Bhabhaanalyse bestamat (siehu dazu Abschnitt III.3). Bei einer integrierten Lusinssisät vom 7.2 pb ergibt sich für den totalen Winhungsquerschmitt "experim tell \pm "hfp (0.00 (stat.) \pm 0.00 (syst.))

Tabelle III.l faßt die einzelnen Kunponenten des systematischen Fehlers zusammen. In einer Anpassungsrechnung wird die Asymmetrie der Verteilung bestimmt. Sie beträgt:

Die Strahlungskorrekturen für den Proezß ee $\Rightarrow \tau\tau(\gamma)$ beinhalten eine Asymmetrie von +1.1%, auf die das Ergebnis bereits korrigiert ist.

Taupaare wurden bei CELLO auch ausgehend von geladenen Spurtriggern und dem Filterprogramm MINIPAT analysiert |CEL82 |JOU84|. Die entsprechenden Resultate sind

$$c_{exo} = c_{OED} (1.03 \pm 0.05 (stat.) \pm 0.07 (syst.))$$

und

Die beiden unabhängigen Analysen erlaubten eine Kontrolle von systematischen Effekten in der Selektion und der Klassifizierung von Ereignissen.

In den Daten oberhalb einer Schwerpunktsenergie von 40 GeV wird nach Ereignissen mit einem Taupaar und einen harten isolierten Photon gesucht. Um bei dieser Ereignis-Kategorie eine klare Trennung zu hadronischen Ereignissen zu erreichen, wird nur die Topologie mit zwei geladenen Spuren untersucht. Abb. III.29 zeigt ein Ereignisbeispiel aus dieser Reaktion.

Zur Auswahl der Ereignisse werden folgende Kriterien verlangt:

- 1) Summe der Spurimpluse größer als 10% der Strahlenergie
- 2) Kalorimeterenergie kleiner als 1.6 E
- mindestens ein Photon mit einer Energie größer als 40% der Strahlenergie

und, um die Verwechslung mit Photonen aus dem τ -Zerfall zu vermeiden,

 invariante Masse zwischen Photon und Spur größer als 1.5 GeV.

Alle Ereigniskandidaten werden einer Sichtprüfung unterzogen. 8 Ereignisse werden der Reaktion ee + $\tau\tau\gamma$ und 1 Ereignis der Reaktion ee + $\tau\tau\gamma\gamma$ zugeordnet. Aus einer Monte-Carlo-Simulation der QED-Reaktion ee + $\tau\tau\gamma$ erwartet man entsprechend 11 Ereignisse. Ereignisse mit einem Leptonpaar und einem harten Photon im Endzustand werden durch die QED in der Ordnung α^3 beschrieben. Die Reaktion zeichnet sich durch eine einfache überbestimmte Kinematik aus, die eine präzise Massenbestimmung möglich macht. Abb. III.30 zeigt Ereignisbeispiele aus diesen Reaktionen.

Zur <u>Selektion</u> der Ereignisse werden die folgenden Kriterien verlangt:

 genau zwei Spuren innerhalb der Akzeptanz des Zentralkalorimeters (|cos0|<.85) mit einem Impuls größer als 5% der Strahlenergie.

Der Akoplanaritätswinkel zwischen den Spuren muß größer als 2 $^{\rm O}$ und kleiner als 178 $^{\rm O}$ sein,

- ein Photonschauer innerhalb der Akzeptanz des Zentralkalorimeters (|cos0|<.85) mit einer Energie größer als 10% der Strahlenergie,
- ein minimaler Öffnungswinkel von 10⁰ zwischen Photon und beiden Spuren,
- die gesamte vom Magnetspektrometer oder Kalorimeter gemessene Energie ist größer als 60% der Schwerpunktsenergie,
- 5) die invariante Masse des geladenen Spurpaares ist größer als 5% der Schwerpunktsenergie.

Elektronen und Muonen werden durch das Kalorimeter und die den Eisenabsorber umgebenden Drahtkammern identifiziert. Abb. III.31 und Abb. III.32 zeigen die entsprechenden Größen im Kalorimeter und in den Nuonkammern.

Untergrund aus der Reaktion ee Prim wird durch die Kriterien 3) und 4) unterdrückt. Die Reaktion ee Prim wird durch den Schnitt 5) in der Nähe des Rho-Pols unterdrückt, bei hohen invarianten Massen ist die Produktionsrate durch den entsprechenden Formfaktor vernachlässigbar klein. Insgesamt ist der

Ereignisse aus der Reaktion e e \Rightarrow $-\mu$ μ γ (Abbildung III.35 verdeutlicht die lage der Ereignisse im Dalitz Plot)

Abb. III.32

Qualitätsfaktor des Treffers in der Muonkammer. Q ist das Verhältnis zwischen Distanz von extrapolierter zu gemessener Trefferkoordinate in den Muonkammern zu der aus der Vielfach-Streuung abgeschätzten Unsicherheit. Untergrund in der Reaktion ee → µµγ kleiner als 1% der Ereignisrate und, entsprechend für die Reaktion ee → eeγ, kleiner als 0.1%.

Bei vollständiger Messung aller Winkel und Impulse ist die Reaktion kinematisch überbestimmt (4C). Bei dieser einfachsten Ereignistopologie sind jedoch Winkelmessungen den Energieund Impulsmessungen überlegen. Die <u>Kinematik</u> der Reaktion ist daher im wesentlichen durch die Messungen der Winkel festgelegt (1C). Die verbleibende Überbestimmtheit ermöglicht es, ein im Anfangszustand abgestrahltes Photon entlang des einfallenden Elektronen- oder Positronenstrahls in der Kinematik zu berücksichtigen.

Abb. III.33 zeigt die Verteilungen dieses zweiten berechneten Photons für die beiden Reaktionstypen. Für die meisten Ereignisse wird ein Photon von wenigen Prozent der Strahlenergie gemessen. Neben einer schmalen Verteilung von Photonen mit niedriger Energie, deren Breite (1.3% der Strahlenerfie) im wesentlichen durch die Auflösung bestimmt wird, ist ein deutlicher Ausläufer der Verteilung zu höherer Energie zu erkennen. Dieses Verhalten wird quantitativ von den α^4 -Beträgen der QED erklärt. Die Energiebestimmung dieses zweiten Photons ermoglicht alcht nur eine bessere Bestimmung der Kinematik, sondern erlaubt auch eine präzise Definition der α^4 -Korrekturen für Anfangszustandsstrahlung.

Angeregte Zustände des Elektrons oder Muons können als Struktur in der Verteilung der invarianten Lepton-Photon-Masse untersucht werden. Unter der Annahme eines elektromagnetischen Übergangs erwartet man eine Zerfallsbreite von kleiner als 0.3%. Die Auflösung der Lepton-Photon-Masse ist daher von besonderem Interesse. Aus der bekannten Winkelauflösung der Photonen und der geladenen feilchenspuren erwartet sam eine Massenauflösung von

$$m = 250 \text{ MeV}$$
 (Estrahl/1/J $+ \frac{1}{\text{stran}}$ in GeV).

weitgehend unabhangig vom wert der Masse.

- -

Abb. III.33

Kinematisch rekonstruierte Energie eines zweiten Photons entlang der Strahlachse. Durchgezogene Kurve ist eine Monte Carlo Simulation der Anfangszustandstrahlung bei Berücksichtigung der Winkelauflösung des Detektors. Außerdem ist es möglich, die invariante Masse aus dem Rückstoß-Impuls des Zweiten Leptons zu berechnen ("missing mass"). Diese Methode hat für niedrige Leptonimpulse eine vergleichbare Präzision. Abb. III.34 vergleicht die Muon-Photon-Masse aus den zwei unabhängigen Methoden – Rückstoßimpuls bzu, gemessene Teilchenspurwinkel – wo sie eine vergleichbare Genauigkeit haben. Die Breite der Verteilungen III.33 und III.34 spiegelt die prözise Kinematik der Reaktion wieder und ist eine experimentelle Überprüfung der angegebenen Massenauflösung.

Abb. III.34

Differenz in der Bestimmung der invarianten Muon-Photon-Masse zwischen einer kinematischen Rekonstruktion des Ereignisses aus den Winkeln und der Berechnung der Masse aus dem Muon-Impuls $(p_{\mu} < 4 \text{ GeV})$. For einen Vergleich der gewessenen Ereinnisse wit der ALD. Ervartung verden die schen weiter oben ervahnter Goste Carlo Generators KLE82 verwendet. Von Tspill 1988s wurde eine Vorschrift entwickelt, wie auf einfache Weise vesentliche Beiträge der 4⁴-Strahlungskorrektur berücksichtigt werden können.

Um möglichst sensitiv für Phänomene außerhelb der QED zu sein, werden die Regionen des Phasenraums weggeschnitten, die durch triviale Erhöhung der Amplitude für Anfangs- bzw. Endzustandsstrahlung gekennzeichnet sind. In einer Dalitz-Plot-Analyse können solche Schnittkriterien übersichtlich definiert verden.

Die cesomte Information eines Ereignisses kann aus dem Dalitz-Plot $(M_{1_{1}}^2, M_{1_{1}}^2, M_{1_{1}}^2)$, der Orientierung der Ereignisebene zur Strahlachse und aus der Orientierung der Teilchen innerhalb der Ebene gewonnen werden. Die Regionen im Dalitz-Plot, die durch x^3 -QED Beiträde dominiert verden, sind niedrige Photonenenergie, Anfangs- bzw. Endzustandsstranlung, Abb. III.35 erläutert die kinematischen Beziehungen und zeigt die QED-Erwartung für den Prozeß ee + µµy. Durch Abstrahlung eines Photons im Anfangszustand wird die effektive Schwerpunktsenergie s' = s(1-K) herabgesetzt und dadurch die absolute Größe des punktförmigen Wirkungsquerschnitts heraufgesetzt. Man erwartet daher eine Anhäufung von Ereignissen mit niedriger Lepton-Lepton-Masse. Die Amplitude der Anfangs- bzw. Endzustandsstrahlung ist umgekehrt proportional dem Massenquadrat der Photon-Lepton-Massen. Für Anfangszustandsstrahlung führt dies zu Photonabstrahlung entlang der Strahlachse; für Endzustandsstrahlung gibt es eine deutliche Präferenz für Photonabstrahlung ent-

lang des auslaufenden Leptons. Für einen Vergleich der Dalitz-Plot-Verteilung mit dem GED

Monte Carlo werden daher die folgenden Kriterien verlangt:

6) M²Lepton, Photon/s > 0.01 und

M² Lepton,Lepton/s > 0.01

Abb. III.36 und III.37 zeigen die Dalitz-Plot-Verteilungen der eeγ und μμγ Ereignisse für drei verschiedene Energiebereiche. Da QED-Prozesse im wesentlichen vom s unabhängig sind, werden in s skalierte Variablen benutzt.

Dalıtz-Plot Verteilung der Reaktion es -es bei verschiedenen Schwerpunktsenergien. Einteilung in Regionen entspricht Tabelle III.8.

Dalitz-Plot Verteilung der Reaktion en sign. QED-Monte Carlo Simulation. Die eingezeichneten Punkte entsprechen den Freignissen in Abb. 111-30.

Abb. III.37 Dalitz-Plot Verteilung der Reaktion ee → μμγ bei verschiedenen Schwerpunktsenergien.

Für einen Vergleich mit der QED werden 3 Regionen definiert und die jeweilige Anzahl der gemessenen Ereignisse mit der QED-Monte-Carlo-Vorhersage verglichen.

Die Tabelle III.8 enthält die jeweiligen Zahlen für die Reaktionen ee ≠ eeγ und e∋ ≠ µµγ.

Nit einer Ausnahme stimmen die experimentellen Werte gut mit der QED-Erwartung überein: in der Reaktion ee + µµy wird bei hohen Schwerpunktsenergien für hohe µ-γ Massen ein Überschuß an Ereignissen beobachtet. Bei einer Erwartung von 3.9 Ereignissen aus QED-Reaktionen werden 12 Ereignisse beobachtet. Um die statistische Signifikanz des beobachteten Effektes unabhängig von der Einteilung des Dalitz-Plots in verschiedene Regionen zu machen, wird ein Kolmogorov-Test durchgeführt |EAD71|. Die Wahrscheinlichkeit, daß die $M_{\mu\gamma}^2$ /s-Verteilung für die Dalitz-Plot Regionen II + III in den Ereignissen über 33 GeV Schwerpunktsenergie durch die QED-Verteilung beschrieben wird, ist 1%. Diese Wahrscheinlichkeit steigt auf 2%, wenn die Unsicherheit in der Massenverteilung in die Richtung möglichst guter Übereinstimmung mit der QED ausgelegt wird.

Das beobachtete Energieverhalten spricht gegen einen neuen physikalischen Effekt. Bei einer Schwerpunktsenergie um $\langle\sqrt{s}\rangle = 34$ GeV werden bei einer QED-Erwartung von 1.6 Ereignissen 7 im Experiment beobachtet. Bei $\langle\sqrt{s}\rangle = 44$ GeV werden entsprechend 2.3 Ereignisse erwartet und nur 5 beobachtet. Um den Effekt genauer zu untersuchen, werden weitere Verteilungen im Detail untersucht.

Die Lepton-Photon-Massenverteilungen aus den Regionen II + III sind in Abb. III.38 und III.39 dargestellt. Es ist keine signifikante Struktur in der invarianten ey oder µy Masse erkennbar.

Abb. III.40 vergleicht die skalierte Photonenergie $K_{\gamma} = E_{\gamma}/E_{strahl}$ mit der Erwartung aus der QED-Verteilung für die Reaktion ee \neq µµ γ . Abb. III.41 zeigt die cos0-Verteilung der Photonen. Keine signifikanten Abweichungen von der QED-Erwartung werden beobachtet. Insbesondere die Ereignisse in Region III des Dalitz-Plot in der Reaktion ee \neq µµ γ haben eine cos0-Verteilung konsistent mit Photonabstrahlung im Anfangszustand.
reaction	√5° (GeV)		Region I	Region II	Region III
		data	8	9	0
	14 + 22	мс	7.0	7.4	1.4
		background	< 0.1	< 0.1	< 0.01
00-11-11		data	7	5	7
ee-hhi	33.1-36.7	мс	8.1	8.7	1.6
		background	< 0.1	< 0.1	< 0.01
		data	12	9	5
	40 -46,8	MC	12.2	12.5	2.3
!		background	< 0.1	< 0.1	< 0.01
		data	80	76	17
	14 + 22	MC	90.1	71.4	9.7
		background	< 0.1	< 0.1	< 0.1
00-004		data	98	85	8
ee-cey	33.0-36.7	мс	99.4	77.9	10.1
		background	< 0.1	< 0.1	< 0.1
r L		data	144	124	22
	40 -46.8	мс	161.2	126.4	16.3
		background	< 0.1	< 0.1	< 0.1

region I
$$.6 < M^2_{LL}/s < .9$$

region II $M^2_{LL}/s < .6$ and $M^2_{UY}/s < .8$
region III $M^2_{LY}/s > .8$
in addition $M^2_{UY}/s > .01$ and $M^2_{UU}/s > .01$

Tabelle III.8

Dalitz-Plot Verteilung in 3 Regionen.

Abb. III.38

Invariante Elektron-Photon Masse für die Ereignisse aus Region II + III des Dalitz-Plots. Durchgezogene Kurve ist eine Monte Carlo Vorhersage der QED-Reaktion ee + eey(y).

Invariante Muon-Photon Masse für die Ereignisse aus Region II + III der Dalitz-Plots.

Mit den existierenden experimentellen Daten des CELLO-Experimentes gibt es keine statistisch signifikante und physikalisch einfach einsichtige Interpretation des Effektes. Die Messungen eines weiteren PETRA-Experimentes zeigen keine entsprechenden Abweichungen [JAD85] und legen eine statistische Fluktuation als Erklärung des gemessenen Effektes nahe.

Abb. III.41

Polarwinkelverteilung der Photonen aus der Reaktion ee + 11y. Durchgezogene Kurve ist die QED Monte Carlo Vorhersage. Die Paarproduktion von angeregten Elektronen oder Muonen würde zu Ereignissen mit zwei Leptonen und zwei Photonen führen. Abb. III.42 zeigt Beispiele aus den Reaktionen ee + eeγγ und ee + μμγγ.

In der Selektion dieser Ereignisse werden zusätzlich zu den Kriterien der 11y Selektion die folgenden Bedingungen verlangt:

- a) mindestens 1 Photon mit einer Energie größer als 0.4 Estrahl
- b) ein zweites Photon mit einer Energie größer als 0.1 E strahl
 c) Öffnungswinkel zwischen allen Teilchenspuren größer als 10°.

Nach einer Sichtprüfung werden 2 ee \rightarrow ee $\gamma\gamma$ und 2 ee \rightarrow $\mu\mu\gamma\gamma$ Ereignisse akzeptiert. Vollständige Rechnungen für einen quantitativen Vergleich mit der Erwartung der entsprechenden α^4 -QED-Rechnungen fehlen. Paarweise produzierte angeregte Leptonen würden zu Lepton-Photon-Paaren mit gleicher invarianter Masse führen. Abb. III.43 zeigt die Korrelation der invarianten Lepton-Photon-Massen (zwei Einträge pro Ereignis).

Innerhalb der invarianten Massenauflösung ist keines der Ereignisse mit der Hypothese gleicher invarianter Masse verträglich. a)

b)

Abb. III.42

Ereignisbeispiele aus der Reaktion e e + $1 1 \gamma \gamma$ a) Ereignis mit 2 Huonen und 2 Photonen

b) Ereignis mit 2 Elektronen und 2 Photonen

Korrelation der Lepton-Photon Masse in den

Reaktionen e e \rightarrow e e $\gamma \gamma$ und e e $\rightarrow \mu \mu \gamma \gamma$

(2 Einträge pro Ereignis)

IV. Resultate

Aus den im vorherigen Kapitel beschriebenen Analysen können Aussagen über physikalische Modelle abgeleitet werden. Dies wird durch die Bestimmung von Parametern oder deren Grenzen ausgedrückt.

In diesem Kapitel werden die Bestimmung von QED-Abschneideparametern Λ und den elektroschwachen Kopplungsparametern a² und v² sowie die Ableitung von Grenzen für angeregte Leptonen und supersymmetrische Photinos beschrieben.

Es werden dabei die entsprechenden Resultate aus wissenschaftlichen Veröffentlichungen vorgestellt. Eine Aktualisierung durch neuere CELLO-Daten wird nicht vorgenommen; beim Vergleich mit anderen Experimenten werden jeweils Ergebnisse zitiert, die dem Zeitpunkt der CELLO-Veröffentlichung entsprechen.

IV.1 QED-Tests

QED-Tests umfassen die Aspekte der Punktförmigkeit der Lepton-Photon-Kopplung und die höhere Ordnung der Störungstheorie. Tests der Punktförmigkeit der Lepton-Photon-Kopplung werden durch die Bestimmung von Grenzen für Λ-Abschneideparameter ausgedrückt. Am Beispiel der Reaktion ee → γγ wird hier beschrieben, wie numerisch die Λ-Abschneidewerte bestimmt werden.

Mit dem CERN-Programm MINUIT wird folgende χ^2 -Funktion minimalisiert:

$$\chi^{2}(\Lambda, A) = \sum_{\cos\theta_{i}}^{\Sigma} \left\{ \frac{\sigma_{\exp}(\cos\theta_{i}) - \sigma_{th}(\cos\theta_{i}, \Lambda, A)}{\Delta \sigma_{\exp}(\cos\theta_{i})} \right\}^{2} + \left\{ \frac{1. - A}{\Delta A} \right\}^{2}$$

Dabei bedeuten

Α

Α

σ

Λ

	entsprechende Abschneideparameter (siehe dazu Kapitel I)
	Normalisierung des Wirkungsquerschnitts
А	entsprechende Unsicherheit der Normalisierung
th	theoretische Erwartung
exa	experimenteller Meßwert
σexp	Fehler des experimentellen Meßwertes ohne Normalisie- rungsfehler

Die Grenzen zu 95% Konfidenzintervall für den Parameter A sind die Werte, an denen die χ^2 -Funktion um vier größer ist als der entsprechende Minimalwert ($\chi^2 = \chi^2_{min} + 4$).

Aus den in Kapitel $\underline{\mathbf{I}}$.4 beschriebenen Daten werden die folgenden Werte erhalten:

$$\Lambda_{2} > 59 \text{ GeV}$$
 und $\Lambda_{2} > 44 \text{ GeV}$.

Abbildung IV.1 vergleicht die gemessenen Werte mit dem entsprechenden Λ_1 -Abschneideparameter.

Tabelle IV.1 enthält Werte für A-Abschneideparameter aus der Bhabhastreuung |DIT81].

Abb. IV. 1

Der gemessene differentielle Wirkungsquerschnitt für Photonpaarproduktion normalisiert auf die QED-Vorhersage. Die eingezeichnete Linie zeigt die erwartete Abweichung für ein angeregtes Elektron.

Die Tests der höheren Ordnung der Störungstheorie werden nicht durch eine einfache Zahl quantifiziert. Die Übereinstimmung der Akolinearitäts- und Akoplanaritätsverteilung mit der QED-Erwartung zur Ordnung α^3 sind Tests mit einem statistischen und systematischen Fehler von wenigen Prozent. Die Bestimmung z.B. des Parameters α ist in der Präzision nicht mit anderen Methoden vergleichbar; jedoch wird die Störungstheorie bei bis dahin nicht erreichtem Viererimpulsübertrag getestet.

	∧ _↓ (GeV)	Λ_ (GeV)	
CELLO	83	155	
JADE	112	106	
MARK-J	96	179	
PLUTO	80	234	
TASSO	150	136	

Tabelle IV.1

QED-Abschneideparameter aus der Bhabhastreuung bei √s = 35 GeV |DIT81|

IV.2 Elektroschwache Kopplungsparameter

Im PETRA-Energiebereich ist die Ladungsasymmetrie in der Fermionpaarproduktion die einzige Größe, in der im Standard-Modell (mit $\sin^2 \Theta_w$ = .22) signifikante Abweichungen von der QED erwartet werden.

Die von CELLO bei 34 GeV Schwerpunktsenergie gemessenen Asymmetrien sind $-6.4\% \pm 6.4\%$ für Muonpaarproduktion und $-10.3 \pm 5.2\%$ für Taupaarproduktion in Übereinstimmung mit den Erwartungen des Standard-Modells der elektroschwachen Wechselwirkung von -9.2%.

In der Bhabhastreuung sind die Veränderungen durch den neutralen schwachen Strom im PETRA-Energiebereich weniger ausgeprägt, und a² und v² ergeben korrelierte Veränderungen des differentiellen Wirkungsquerschnitts. Durch die im Gegensatz zur Leptonpaarproduktion vergleichbar große Zählrate in der Bhabhastreuung kann auch mit niedriger Luminosität die Größe der Vektorkopplungskonstante eingeschätzt werden. Unter der Annahme der Leptonuniversalität der elektroschwachen Wechselwirkung werden aus der Bhabhastreuung und der Leptonpaarproduktion in einer gemeinsamen Anpassung a² und v² bestimmt.

Tabelle IV.2 enthält die entsprechenden Resultate. Abbildung IV.2 vergleicht den auf die QED-Vorhersage normierten differentiellen Wirkungsquerschnitt der Bhabhastreuung mit Abweichungen aus der elektroschwachen Wechselwirkung. Abbildungen IV.3 und IV.4 zeigen die gewichtete Ladungsasymmetrie für Muon- und Taupaarproduktion.

Abbildung IV.5 zeigt die 95% Konfidenzintervall-Konturen für a^2 und v^2 aus den Leptondaten des CELLO-Experiments. Aus den ebenfalls eingezeichneten Lösungen aus der Neutrino-Elektronstreuung ¹KRE82¹ wird die achsialvektordominante Lösung durch die CELLO-Daten mit mehr als 4 Standardabweichungen bevorzugt. Tabelle IV.3 vergleicht die Bestimmung der a²- und v²-Werte mit anderen e⁺e⁻-Experimenten.

Der gemessene differentielle Wirkungsquerschnitt für Bhabhastreuung normalisiert auf die QED-Erwartung. Die gestrichelte Linie entspricht dem Fitergebnis. Die gepunktete Linie entspricht der vektordominierten Lösung in der Neutrino-Elektron-Streuung.

Abb. IV.3

Die gewichtete Asymmetrie für Muonpaarproduktion. Die gepunktete Linie entspricht dem Fitergebnis für alle Leptondaten.

 $\widehat{\Theta} \quad 0.2 \qquad e^{\bullet}e^{\bullet} \xrightarrow{\tau^{\bullet} \tau^{-}} \langle \sqrt{s} \rangle = 34.2 \text{ GeV}$ $\widehat{\Theta} \quad 0.0 \qquad = 1 \qquad = 1$

Abb. IV.4

Die Vektorkopplungskonstante $v_1 = (4 \sin^2 \theta_w - 1)^2$ und die Masse des Austauschbosons M_{Zo} sind sensitiv auf den Mischungswinkel sin² θ_w . Tabelle IV.4 enthält die Ergebnisse einer Anpassung von sin² θ_w .

Tabelle IV.5 enthält alle PETRA- und PEP-Resultate zur Ladungsasymmetrie in der Muon- und Taupaarproduktion, zu denen das CELLO-Experiment einen Beitrag geliefert hat.

Daten	a ²	v ²	x ² /DF
Bhabha, Leptonpaare	1.21 ± .4	714 ± .35	27.7/38
Bhabha	1.21 ± 1.1	852 ± .63	24.6/27
Leptonpaare	1.10 ± 0.5	4 .23 ± .76	4.0/8
·	i		

 $\frac{\text{Tabelle IV.2}}{\text{Bestimmung der a}^2-\text{ und v}^2-\text{Parameter im CELLO-Experiment}}$ bei $\sqrt{s}=34~\text{GeV}$

LO 1.22±0.47 -0.12±0.33 εε, μμ, E 1.56±0.44 0.20±0.32 εε, μμ 0.16±0.88 - εε, μμ < II 0.96±0.64 <0.61 εε, μμ < J 1.12±0.36 0.04±0.44 εε, μμ,τ TO -0.76±0.96 -0.08±0.66 εε, μμ,τ 50 1.40±0.36 -0.16±0.24 εε μμ	Experiment	a ²	v ²	benutzte Reaktionen
E 1.56±0.44 0.20+0.32 ee, μμ 0.16±0.88 - ee, μμ < II 0.96±0.64 <0.61 ee, μμ < J 1.12±0.36 0.04+0.44 ee, μμ,τ TO -0.76±0.96 -0.08±0.66 ee, μμ,τ 50 1.40±0.36 -0.16±0.24 ee μμ	ELLO	1.22:0.47	-0.12'0.33	ee, µµ, t
0.16±0.88 - ee, μμ < II 0.96±0.64 <0.61 ee, μμ < J 1.12±0.36 0.04±0.44 ee, μμ,τ T0 -0.76±0.96 -0.08±0.66 ee, μμ,τ 50 1.40±0.36 -0.16±0.24 ee μμ	ADE	1.56±0.44	0.20+0.32	ee, µµ
< II 0.96±0.64 <0.61 εε, μμ < J 1.12±0.36 0.04±0.44 εε, μμ,τ T0 -0.76±0.96 -0.08±0.66 εε, μμ,τ 50 1.40±0.36 -0.16±0.24 εε μμ	1AC	0.16±0.88	-	ee, µµ
< J 1.12±0.36 0.04±0.44 ee, μμ, τ TO -0.76±0.96 -0.08±0.66 ee, μμ, τ 50 1.40±0.36 -0.16±0.24 ee μμ	IARK II	0.96±0.64	<0.61	ee, µµ
TO -0.76±0.96 -0.08±0.66 ee, μμ,τ 50 1.40±0.36 -0.16±0.24 ee μμ	ARK J	1.12±0.36	0.04+0.44	ee, μμ,ττ
50 1.40±0.36 -0.16±0.24 ee uu	LUTO	-0.76±0.96	-0,08±0,66	ee, μμ,ττ
	ASSO	1.40±0.36	-0.16:0.24	ee, µµ

Tabelle IV.3

Vergleich der a²- und v²-Bestimmung verschiedener Experimente |CELB2|

Die 95% C.L. Konturen für die Kopplungskonstanten a² und v². Die schraffierten Gebiete entsprechen den beiden möglichen Lösungen aus der Neutrino-Elektron-Streuung.

Daten	sin ² 0 _w	x ² pro Freiheitsgrad
Bhabha, Leptonpaare	.21 ± .14 .09	31.2/39
Bhabha	.22 ± .12 .10	27.1/28
Leptonpaare	.34 ± .10 .30	4.0/9

$$\sqrt{s} (GeV) = A_{\mu\mu}(exp) = A_{\tau\tau}(exp) = A_{11}^{GSW}$$
29 (PEP) = 5.9 ± 0.7 = 5.0 + 1.0 = 5.9
34.5 (PETRA) = -11.3 ± 1.0 = 7.7 + 1.9 = 8.7
42.5 (PETRA) = -18.1 + 2.7 = -12.8 ± 7.7 = -14.4

Tabelle IV.5

Lepton-Asymmetrie aller PETRA- und PEP-Experimente

.

IV.3 Grenzen für angeregte Leptonen

In den folgenden drei Prozessen wurde nach angeregten Leptonen (L*) gesucht:

1) die Paarproduktion von angeregten Leptonen

 $ee \neq 1*1* \neq 11\gamma\gamma$ $1 = e, \mu, \tau$

- 2) die Produktion einzelner angeregter Leptonen ee * 1*1 * 11y
 l = e, u, t
- Propagatoreffekt eines angeregten Elektrons ee → YY

Die entsprechenden Messungen werden durch die OED-Erwartung beschrieben. Experimentelle Hinweise auf angeregte Leptonen existieren nicht. Die Grenzen für angeregte Leptonen aus den verschiedenen Prozessen sind in Abbildung IV.6 für angeregte Elektronen und in Abbildung IV.7 für angeregte Muonen und Taus zusammengefaßt.

Für die Paarproduktion von angeregten Leptonen können Grenzen bis zur höchsten Strahlenergie von PETRA abgeleitet werden. Die Grenzen für e*, µ* und ⊤* sind 23.0, 23.0 und 22.7 GeV.

Die Produktion einzelner angeregter Leptonen ist proportional $(\lambda/m_{e^*})^2$. Entsprechend werden aus einem Vergleich der invarianten Lepton-Photon-Massen mit der QED-Erwartung Grenzen für $(\lambda/m_e)^2$ abgeleitet.

Für angeregte Elektronen wird oberhalb der Paarproduktionsschwelle von 23 GeV bis zu 42 GeV eine Grenze von ~ 10^{-7} GeV⁻² für $(\lambda/m_{e^*})^2$ erreicht. Aus der Reaktion ee + yy mit allen CELLO-Daten oberhalb von \sqrt{s} = 33 GeV wird ein A_+ -Abschneideparameter von 84 GeV abgeleitet. Daraus korrespondiert eine Grenze von ~ 10^{-4} für $(\lambda/m_{e^*})^2$ oberhalb von 42 GeV.

In der Suche von μ^* und τ^* wird oberhalb der Region, die durch Paarproduktion ausgeschlossen ist, für μ^* eine Grenze von $\sim 10^{-5}$ GeV⁻² und für τ^* von $\sim 10^{-4}$ GeV⁻² auf den Parameter $(\lambda/m_{\pi^*})^2$ abgeleitet.

Abb. IV.6

Die 95% C.L. Grenzen für angeregte Muonen oder Taus

Abb. IV.7

Die 95% C.L. Grenzen für angeregte Elektronen

IV.4 Grenzen für instabile Photinos

Die Untersuchung von Ereignissen mit zwei Photonen und fehlender Energie erlaubt Einschränkungen für massive instabile Photinos, die in supersymmetrischen Modellen vorhergesagt werden.

Die Nachweisbarkeit von instabilen Photinos hängt von der Produktionsrate ($\sim \frac{1}{4}$) und der effektiven Lebensdauer ($\tau_{\widetilde{\gamma}}/m_{\widetilde{\gamma}}$) ab. Abbildung IV.8 ^mē* zeigt die entsprechenden Grenzen des CELLO-Experiments. Bis zu einer skalaren Elektronenmasse m_ẽ = 80 GeV können Grenzen für ($\tau_{\widetilde{\gamma}}/m_{\widetilde{\gamma}}$) abgeleitet werden.

Innerhalb supersymmetrischer Modelle ist die Lebensdauer des Photinos mit dem Skalenparameter d der Supersymmetriebrechung verknüpft. Abbildung IV.9 zeigt die entsprechenden Grenzen für d und m $_{\widetilde{\gamma}}$ unter der Annahme einer Masse des skalaren Elektrons (m $_{\widetilde{e}}$) von 40 GeV. Die untere Grenze für die Photinomasse wird durch die effektive Lebensdauer $\tau_{\widetilde{\gamma}}/m_{\widetilde{\gamma}} \sim d^2/m_{\widetilde{\gamma}}^6$ bestimmt; die obere Grenze durch das Schwellenverhalten der Produktion ($\sim \beta^3$).

Wird die Massenskala der Supersymmetriebrechung in Verhältnis zur Symmetriebrechung der elektroschwachen Wechselwirkung gesetzt (d = $(100 \text{ GeV})^2$), wird eine Photinomasse von 100 MeV bis zu 13 GeV ausgeschlossen. Ebenfalls in Abbildung IV.9 dargestellt sind Grenzen, die aus kosmologischen Betrachtungen und aus J/ ψ -Zerfällen abgeleitet werden können ¹CAB81¹.

Abbildung IV.9 vergleicht die entsprechenden Grenzen aus verschiedenen PETRA-Experimenten und einem Beam-Dump-Experiment am Fermi-Laboratorium |YAM83].

Die 95% C.L. Grenzen auf das Verhältnis von Lebensdauer zu Masse für instabile Photinos in Abhängigkeit von der skalaren Elektronenmasse

Die 95% C.L. Grenzen für die Photinomasse in Abhängigkeit des Symmetriebrechungsparameters d

Die 95% C.L. Grenzen für die Photinomasse aus verschiedenen Experimenten

Zusammenfassung

Mit dem Detektor CELLO am Speicherring PETRA wurden bei Schwerpunktsenergien zwischen 14.0 - 46.8 GeV die Reaktionen

> ee \rightarrow 11 l = e, τ ee \rightarrow $\gamma\gamma$ ee \rightarrow 11 γ l = e, μ , τ ee \rightarrow 11 $\gamma\gamma$ l = e, μ , τ

untersucht. Die Daten können mit dem Standard-Modell der elektroschwachen Wechselwirkung beschrieben werden.

Aus der Reaktion ee + ll (l = e, μ , τ) werden die Vektorund Axialvektorkopplungskonstanten der elektroschwachen Wechselwirkung bestimmt (v² = -0.12 ± 0.33 und a² = 1.22 ± 0.47). Die Ambiguität zwischen Vektor- und Axialvektorlösung in der Neutrino-Elektron-Streuung wird aufgelöst.

Aus den Reaktionen ee + $\gamma\gamma$ und ee + $ll\gamma(\gamma)$ (l = e, μ , $\tau)$ werden Grenzen für angeregte Leptonen abgeleitet.

Die Untersuchung der Reaktion ee → γγ und fehlende Energie ermöglicht Einschränkungen für supersymmetrische Photinos.

Aufbau und Funktion des CELLO-Kalorimetertriggers werden dokumentiert.

A Simple Version for an Energy Trigger in CELLO

So far there will be no calorimeter trigger available, when we start data taking. All other PETRA-experiments show the importance of such a trigger device.

In this note we describe a minimal version of a liquid argon trigger which will be ready when we will move into the interaction region. With small hardware efforts, using the existing main amplifier summing circuits and standard NIM-electronics, we will get a workable trigger device. The smallest submit is one of the 20 modules.

In this note we describe

- 1) signal summation
- 2) fast logic decision
- 3) read-out of the total energy information
- 4) first version of a program using the trigger information.

1) Signal Summation

On a first step 16 channels of one main amplifier card are summed already at the card.

In a second step we use up to 4 x 16 channels per module. 4 is the maximum number of inputs in the linear FAN-IN, FAN-OUT (Le Croy LRS 428) which are available. We propose to sum the following layers U2, U4, U5, U6, each layer belongs to one main amplifier card. These layers are a representative sample in depth (see Fig. 1).

2) Logic Decision

The threshold decisions are done by an updating DESY-homemade discriminator. This discriminator could easily be used to give a logic 1, as long as the analog signal is actually over the adjusted threshold.

The analog sums have some dc-offset, one has to consider that when adjusting the thresholds.

The logic is described in Fig. 2. With the 2-fold 2 out of 4 decision in ϕ we require two energy depositions at least 45° separated.

The whole logic up to the MASTER-OR is done with overlapping AND and OR and Majority-Coincidences.

The output of the MASTER-OR is gated with a narrow timing signal at the expected pulse maximum.

3) Read-Out

In the analog part we monitor the sums per modul via LE Croy ADC (LRS 2249 A). The information of the trigger is available at the end of the liquid argon branch.

•

In addition, we are monitoring logical signals: output of discriminators, intermediate logical decisions, and final logical decisions (we use Le Croy 16-fold register LRS 2341).

These analog and logical signals can be used for a trigger monitoring.

4) Fast Physics Program

The energy sums per module give a representative overview of the energy flow in a triggered event. Fig. 4 shows an example of a routine which uses the trigger block information in order to select events.

Fig.3

Fig.1

Fig. 4

The CELLO LAr Calorimeter Trigger - 1983/84

The LAr calorimeter trigger used similar tools as in 1980/81. Due to the rewiring of the calorimeter modules (removal of ghoast channels), the hardware had to be rebuilt.

In addition, extension and improvement are envisaged:

- a one-module-trigger to allow triggering on a single photon of 2-3 GeV energy,
- enlargement of the longitudinal containment to improve the tau and multihadron efficiency for trigger and filter.

In this note, we describe in detail:

- hardware sums,
- logic for fast trigger decision,
- fast veto and delayed sums,
- read out block,
- how to control the trigger.

I. Hardware SUMs

The trigger hardware sums have proven to be useful not only for trigger purposes, but also for filters. In reality, the trigger sums are the essential tool for the filter of the fast physics chain and the calorimeter trigger part of the DST2.

There exist three sums per module: (see Fig. 1)

- SUMA: Covers the region between 1-17 $\rm X^O$ and is essentially a sum of the calorimeter energy.
- SUMB: Covers the region between 4-7 χ^0 and measures the electromagnetic energy at the region of the maximum.
- SUMC: Covers the region between 1-7 χ^0 and measures the electromagnetic energy with different electronic channels than SUMB.

7 X⁰

1 x0

Fig. 1: Different sums used in the calorimeter trigger

٧3

U2

93

U1

1

:6

32

SUMB and SUMC are optimized to allow coincidence for electromagnetic energy in one module and to give optimal signal to noise ratio and timing for the delayed sums.

At the beginning of the run period in autumn '82, we had disastrous electronic pick-up problems. In the winter shutdown, the noise reduced from typically 1.5 GeV per module to 300 MeV. Fig. 2 shows how the noise has improved in August 1983 by improving the grounding of the high voltage supply and the shielding of the preamplifiers. Now the noise level is well below 100 MeV for SUMB and SUMC, and around 100 MeV for SUMA (neglecting the 0₂-contamination problem).

b) after preamplifier shielding and ground loop removal September 1983

Fig. 2: Pedestal distribution in calorimeter module sums

· · .

III. Fast VETO and delayed sums

The LAr calorimeter electronics is quite sensitive to electronic pickup . We try to eliminate the noise sources as far as possible, but in practice such a procedure is never perfect.

Fig. 4 illustrates some typical examples of pickup.

The fact that the signals coming from electronic pickup are not in time with beam are used in the fast hardware VETO.

Whenever there are signals in the calorimeter just before the beam crossing, the detector is inhibited for 15 µsec (∞ 5 following beam crossings). With a dead time of ∞ .1%, the calorimeter trigger can be reduced by a factor 2 to 5 (a read out rate of 0.03 hz causes a comparable dead time).

Fig. 4: Explanation of pickup and VETO timing

Trigger 2 is completely dominated by cosmic showers. The time resolution of the argon is n800 msec. To read out the argon sum signal at a different time helps to reduce this cosmic background by a simple method. Fig. **5** explains the read out time of the delayed sums. It is selfevident that the delayed sum signal is a powerful tool against electronic junk and high voltage sparking. The use of the delayed sums for filter purposes is explained in a different note. (CELLO 0-74).

IV. Read Out

The analog signal SUMA, SUMB and SUMC and the delayed sum of SUMB and SUMC are digitized by a 10 bit CAMAC-ADC (Le Croy LSR 2249 A). The charge sensitive ADCs are used as peak sensitive ADCs by applying a gate of 20 msec width at the expected maximum of the signal.

The 64 discriminator signals are read out by 4 16-fold CAMAC-registers (Le Croy LRS 2341). In addition, the calorimeter trigger signals which are sent to CELLO Master Trigger Unit are stored by a 16-fold CAMAC-register. The ADCs and registers are used in a gate/reset mode. After each beam crossing, a gate is applied 1600 nsec later, and if there is no valid trigger 3200 nsec later, a reset is applied.

The read out is performed via the CAMAC Romulus system in the liquid argon branch (branch 5). Since the data pass a block address generator box, a block address and block word count — are added to each module.

Fig. 6 explains the details of the calorimeter trigger read out.

199

1.00

Modele |

1. J.M.F.

Hodyle 1

 $D^{(n)}$

nodul e

V. How to control the Calorimeter Trigger

At the PDP2, there exist histograms which contain the logical signals entering the trigger decision. For individual triggers (like 2, 3, 5, 6, 13, 14) it is shown which discriminator has fired. If a trigger rate runs away, you can immediately fix the module and the subsum which causes the problem. In addition, the pedestals of all three sums are histogrammed. Fig. 7 shows the relevant two histogram groups. One can get them by the following touch pannel commands: +Histogram steering; →Additional Histograms; →Pedestal SUMA or Register 1-9.

To determine the threshold (or more precisely, the efficiency as a function of the energy), a precise calibration of analog signals is necessary. Since a number of parameters enter the calibration of an argon calorimeter (e.g. high voltage, 0_2 -contamination, electronic gain), the most reliable way to determine the threshold is the use of welldefined showers. A single electron in the central detector from radiative Bhabha scattering is, considering the energy spectrum and the rate, a well-suited monitor reaction. In the range between 1 and 4 GeV, one expects ~ 500 events/pb⁻¹. Those events are independently triggered by a coincidence between a shower in the endcaps or forward calorimeter and one $r\phi/rz$ charged trigger mask. The registers and the ADCs allow precise off line studies.

VI. Experience

The experiment period Summer/Autumen 1983 was quite troublesome concerning the calorimeter trigger. In the summer, we had considerable electronic pick up problems. In August 1983, after improving the pick up situation, the liquid argon got polluted by oxygen. As a result we were forced to run extreme high voltages, and even then the charge collection was reduced by a factor 2 to 4.

Despite all these problems, the calorimeter trigger allows a precise measurement of Bhabha scattering and gamma pair production (the efficiency of the individual trigger over the whole period was 73% for the pure charged trigger, > 99% for LA1, > 99% for LA2, \sim 96% for 1 charged particle and LA3). Due to the instable situation, the threshold for LA3 varied between 2-5 GeV depending on module and run period. Trigger 6, a coincidence between LA3 and the charged trigger

Fig.8

track, in addition suffered from the large and instable background situation in the charged particle spectrometer. The condition '1 charged particle and LA3' is the essential trigger for scalar electron and scalar tau search and had the largest efficiency for tau pair production. Fig. 8 shows the experimentally determined efficiency for SUMA low wand SUMA_{high} in Exp. 26 and Exp. 23.

In January 1984, the argon pollution was reduced from 16 ppm to 4 ppm, and we expect charge collection of 60% to 80%. The thresholds and rates which can be expected are:

LA1: 2-3 GeV 0.5 hz LA2: 2x 1.5 GeV 0.1 hz LA3: ~ 1.5 GeV (50 hz) (~ 1 hz trigger 6)

In particular LA1 and LA3 open now a rich physics programme. LA1 enables CELLO to do the neutrino counting experiment and allows analyses which give up the vertex constraint charged particle track (e.g. long living neutrals). Although the condition lor mask increased in rate by a factor 100 compared to 1981, the threshold for the calorimeter energy coincidence requirement has a comparable level (the trigger efficiency for trigger 6 in the tau pair analysis was $\stackrel{>}{_{\sim}}$ 90% in 1980/81).

- 2 -

Note August 1982

Simple Scintillator Shower Counter for the Hole between Barreland Endcap-Calorimeter

With a simple shower counter array we can close the acceptance hole between barrel and endcap shower counter.

The physical interests are:

a) enlarged acceptance for $ee \rightarrow \mu\mu$ and $ee \rightarrow ee$,

b) increased sensitivity for large missing p_t .

In this note we first describe a possible layout of such an array and finally discuss the improvements for the two mentioned reactions.

1) Shower Counter Description

In CELLO we have a hole in calorimetry between $.86~^<_{\rm O}$ cos0 $^<_{\rm O}$.91 in polar angle.

A simple lead-scintillator-sandwich mounted on the door iron could fill that hole. Such a device would consist of a ring of 1 m inner and 1.5 m outer diameter at a distance of \sim 2.5 m away from the interaction point (Fig. 1).

6-10 X^0 and poor sampling are completely sufficient for $e_{,\mu}$ separation and a γ veto system. The dimension of the counter depends on the space, which is finally available in that area. Fig. 2 shows a possible design.

II) Electroweak Interaction

Effects of electroweak interaction are large in extreme backward direction; at $\sqrt{s} = 40$ GeV the asymmetry at $\cos \theta \approx .9$ is expected to be 20%. The cross section for the reaction $ee + \mu\mu$ in the considered polar range is ∞ 6 pb at $\sqrt{s} = 40$ GeV. In a 2 years' run, one could achieve 5% precision in asymmetry (4 σ). In that polar region radiative corrections for the asymmetry are large (∞ 5%). A measurement of this effect would be an interesting check for the whole radiative correction procedure.

The proposed device allows efficient trigger and simple cosmic and Bhabha rejection (At \gtrsim 15-20 ns).

For ee \Rightarrow ee the polar angle lever arm would be increased. The polar region allows analysis based on track and shower counter information, therefore high precision ($\sim 1\%$) seems possible.

These are the signature for new exotic phaenomena. Fig. 3 illustrates some possibilities like

- neutrino counting [1],
- supersymmetric photino or scalar election search |2|,
- heavy neutral leptons.

The most serious background are higher order QED reactions like

êe → eeγ	(1)
ее ≁ үүү	(2)
ee → q q γ	(3)

Extremely dangerous are γ 's which hit the hole between endcap and barrel calorimeter, because they allow large missing p_{\perp} in the central detector (Fig. 4).

For the reaction (2), a Monte Carlo simulation is performed and presented in the next section. The background is in the order of \sim 10 pb. A search for the above discussed reactions needs a sensitivity below 1 pb; therefore a veto in the polar angle range between barrel and endcap is required.

IV. Monte Carlo Simulation for the Reaction $ee + \gamma\gamma\gamma$

The detector is subdivided into the following polar ranges:

barrel calorimeter	BC	$ \cos\theta < .866 \ \theta = 30^{\circ}$
hole	H2	.866 < [cosθ] < .927 θ = 22 ⁰
endcap calorimeter	EC	$.927 < \cos\theta < .990 \theta = 8^{\circ}$
hole	Н1	$.990 < \cos\theta < .993 \theta = 7^0$
forward tagger	FW	$.993 < \cos \theta < .999 \theta = 3^{0}$
b eam pipe	BP	.999 < cosθ

We simulated $\sim 400 \text{ pb}^{-1}$ at $\sqrt{s} \approx 40$ GeV using an event generator of Berends and Kk ss [3]. I photon in BC and $x\gamma > 0.1$ are considered.

Requiring EC, FW for the remaining 2 photons, 4031 events corresponding to σ \sim 10 pb remain.

Requiring EC, FW, H2, 807 events ($\sigma\sim$ 2 pb) remain.

.

Figs. 5a, b and c show the kinematic of the photon in the barrel calorimeter.

In the region $x_1 > .2$ and $|\cos \theta| < .8$, the QED cross section is zero. Without the proposed scintillator counter, the QED is well above 1 pb in the considered kinematical region.

Filling the hole 1 (H1) would even improve the situation.

No energy smearing is performed, and the azimuth holes are neglected.

- E. Ma et al., Phys. Rev. Lett. <u>41</u> (1978), 287
 K.J. Gaemers et al., Phys. Rev. <u>D19</u> (1979), 1605
- P. Fayet, Phys. Lett. <u>117 B</u> (1982), 460
 M. Gaillard et al., Phys. Lett. <u>116 B</u> (1982), 279
- [3] F.A. Berends and R. Kiess, Nucl. Phys. <u>B</u> 186 (1981), 22

Polar Acceptance of CELLO

Fig. 3

L°

a) present photon coverage

c) and with VETO capability between endcap and forforward calorimeter

Verzeichnis der T<u>abellen</u>

I.1	Rechenausdrücke der QED für die Reaktion
	$e^+e^- \rightarrow L^+L^-$, $e^+e^- \rightarrow \gamma\gamma$ und $e^+e^- \rightarrow e^+e^-$
I.2	Strahlungskorrekturbeiträge in der Ordnung a ³
	der QED
1.3	Kopplungsparameter der Fermionen im Standard-
	Modell
II.1	PETRA Maschinenparameter
II.2	Vom Detektor CELLO aufintegrierte Luminosität
II.3	Daten des Innendetektors
II.4	Daten des Argon-Blei-Kalorimeters
III.1	Reduktionsfaktor in einzelnen Analyseschritten
III.2	Ereignisklassen in den Energiefilter DSTs
III.3	Systematische Fehler bei der Luminositätsbestimmung
III.4	Punkt-zu-Punkt Fehlerabschätzung in der Bhabha-
	analyse
III.5	Fehlerabschätzung in der ee → γγ Analyse
111.6	Experimentell bestimmte Verzweigungsverhältnisse
	im Tauzerfall
III.7	Fehler bei der Bestimmung des totalen Wirkungsquer-
	schnitts in der Reaktion ee → ττ
III.8	Dalitz-Plot-Verteilung in der Reaktion ee → llγ
IV.1	Abschneideparameter der QED Tests
IV.2	Ergebnisse für a 2 und v 2 aus der Anpassung der
	Leptondaten des CELLO-Experiments
IV.3	Vergleich der a ² und v ² Bestimmung verschiedener
	Experimente
IV.4	sin ² 0 _u -Anpassung der Leptondaten des CELLO-Experiments
IV.5	Asymmetriemessung aller PETRA- und PEP-Experimente

-

Verzeichnis der Abbildungen

- Abb. I. 1: Polarwinkelabhängigkeit der Reaktionen ee → 11 und ee → γγ
- Abb. I. 2: QED Feynman Graphen der Reaktion ee \uparrow µµ(Y) bis zur Ordnung α^3
- Abb. I. 3: Hadronische Vakuumpolarisation in der Muonpaarproduktion
- Abb. I. 4: Hadronische Vakuumpolarisation in der Bhabhastreuung bei verschiedenen Schwerpunktsenergien
- Abb. I. 5: QED Feynman Graphen der Reaktion ee \Rightarrow YY(Y) bis zur Ordnung α^3
- Abb. I. 6: Feynman Graphen in der niedrigsten Ordnung der elektroschwachen Wechselwirkung für den Prozeß ee → μμ
- Abb. I. 7: Totaler Wirkungsquerschnitt der Muonpaarproduktion in der elektroschwachen Wechselwirkung in Abhängigkeit von der Schwerpunktsenergie
- Abb. I. 8: Ladungsasymmetrie der Muonpaarproduktion in der elektroschwachen Wechselwirkung
- Abb. I. 9: Feynman Graphen in der niedrigsten Ordnung der elektroschwachen Wechselwirkung für die Bhabhastreuung
- Abb. I.10: Veränderung des differentiellen Wirkungsquerschnitts in der Bhabhastreuung durch die elektroschwache Wechselwirkung
- Abb. I.11: Veränderung des differentiellen Wirkungsquerschnitts in der Bhabhastreuung durch 'composite models'
- Abb. I.12: Vergleich der Feynman Graphen für Photon- und Photinoproduktion
- Abb. I.13: Experimentelle Signaturen eines instabilen Photinos
- Abb. II. 1: Beschleuniger und Detektoren bei DESY
- Abb. II. 2: Perspektivisches Bild des CELLO-Detektors
- Abb. II. 3: Polare Akzeptanz des CELLO-Detektors
- Abb. II. 4: Tiefenstruktur des CELLO-Detektors
- Abb. II. 5: Der CELLO-Innendetektor
 - a) Tiefenstruktur
 - b) Driftzelle
- Abb. II. 6: Gesamtordnung des Argon-Blei-Kalorimeters

- Abb. II. 7: Aufbau eines Kalorimeter-Moduls
- Abb. II. 8: Akzeptanz des Muon-Nachweises
- Abb. II. 9: Schema des CELLO-Triggers (1980)
- Abb. II.10: Schema des Kalorimetertriggers (1980/81)
- Abb. II.11: Polare Ansprechwahrscheinlichkeit der einzelnen Trigger für Bhabhastrevereignisse
- Abb. II.12: Azimuthale Ansprechwahrscheinlichkeit der einzelnen Trigger für Bhabhastreuereignisse
- Abb. II.13: Schema des Kalorimetertriggers (1983/84)
- Abb. II.14: Schema der CELLO Datenauslese
- Abb. III. 1: Beispiele für den Datenfluß in CELLO
- Abb. III. 2: Untergrundreaktionen
- Abb. III. 3: Energieauflösung der Kalorimetertriggersummen
- Abb. III. 4: Beispiele aus der Bhabhaanalyse
- Abb. III. 5: Anzahl der Spuren in Bhabhaereignissen
- Abb. III. 6: Summe der Kalorimeterenergie in Bhabhaereignissen
- Abb. III. 7: Akollinearitätsverteilung der Bhabhaereignisse
- Abb. III. 8: Korrelation der inversen Impulse in den Bhabhaereignissen, getrennt für vorwärts- bzw. rückwärts gestreute Spuren
- Abb. III. 9: Azimuthwinkelverteilung der Bhabhastreuereignisse
- Abb. III.10: Strahlungskorrektur in der Bhabhaanalyse
- Abb. III.11: Akollinearitätswinkelverteilung in der Bhabhastreuung
- Abb. III.12: Akoplanaritätswinkelverteilung in der Bhabhastreuung
- Abb. III.13: Differentieller Wirkungsquerschnitt der Bhabhastreuung bei 22 GeV Schwerpunktsenergie
- Abb. III.14: Differentieller Wirkungsquerschnitt der Bhabhastreuung bei 34 GeV Schwerpunktsenergie
- Abb. III.15: Beispiele von Ereignissen aus der Analyse der Reaktion ee → γγ
- Abb. III.16: Anteil der Ereignisse in der Photonpaarproduktion mit einem konvertierten Photon
- Abb. III.17: Azimuthwinkelverteilung in der Reaktion ee • yy
- Abb. III.18: Angewandte Strahlungskorrektur in der Photonpaarproduktion
- Abb. III.19: Akollinearitätswinkelverteilung in der Photonpaarproduktion

- Abb. III.20: Akoplanaritätswinkelverteilung in der Photonpaarproduktion
- Abb. III.21: Differentieller Wirkungsquerschnitt der Photonpaarproduktion bei 34.2 GeV Schwerpunktsenergie
- Abb. III.22: Beispiele aus der Suche nach Ereignissen mit zwei Photonen und fehlender Energie
- Abb. III.23: Korrelation der Energie in Ereignissen mit zwei Schauern und keiner Spur
- Abb. III.24: Ereignisbeispiele aus der Tau-Analyse
- Abb. III.25: Vergleich der Kalorimeterenergie der Bhabha- und Taupaarereignisse
- Abb. III.26: Vergleich der Akollinearitätswinkelverteilung der Bhabha- und der Taupaarereignisse
- Abb. III.27: Akoplanaritätswinkelverteilung der Taupaarereignisse
- Abb. III.28: Akollinearitätswinkelverteilung der Taupaarereignisse
- Abb. III.29: Ereignis aus der Reaktion ee + $\tau \tau \gamma$
- Abb. III.30: Ereignisse aus der Reaktion ee $\rightarrow \mu\mu\gamma$
- Abb. III.31: Energiedeposition der Muonspuren im Blei-Flüssig-Argon-Kalorimeter
- Abb. III.32: Qualitätsfaktor des Treffers in der Muonkammer
- Abb. III.33: Kinematisch rekonstruierte Energie eines zweiten Photons entlang der Strahlachse
- Abb. III.34: Differenz in der Bestimmung der invarianten Muon-Photon-Masse zwischen einer kinematischen Rekonstruktion des Ereignisses aus den Winkeln und der Berechnung der Masse aus dem Muon-Impuls (p₁ < 4 GeV)
- Abb. III.35: Dalitz-Plot-Verteilung der Reaktion ee + $\mu\mu_{\gamma}$ QED-Monte-Carlo-Simulation
- Abb. III.36: Dalitz-Plot-Verteilung der Reaktion ee → eeγ bei verschiedenen Schwerpunktsenergien
- Abb. III.37: Dalitz-Plot-Verteilung der Reaktion ee → μμγ bei verschiedenen Schwerpunktsenergien
- Abb. III.38: Invariante Elektron-Photon-Masse für die Ereignisse aus Region II + III des Dalitz-Plots
- Abb. III.39: Invariante Muon-Photon-Masse für die Ereignisse aus Region II + III der Dalitz-Plots
- Abb. III.40: Energiespektrum der Photonen aus der Reaktion ee → μμ√

Literaturverzeichnis

- /AUB74/ J.J. Aubert et al., Phys.Rev.Lett. 33 (1974), 1404
- /AUG74/ J.E. Augustin et al., Phys.Rev.Lett. <u>33</u> (1974), 1406
- /BERB1a/ F.A. Berends, R. Kleiss, Nucl. Phys. B177 (1981), 237
- /BER81b/ F.A. Berends, R. Kleiss, Nucl.Phys. B186 (1981), 22
- /BER82/ F.A. Berends et al., Nucl.Phys. B202 (1982), 63
- /BER83/ F.A. Berends, R. Kleiss, Nucl. Phys. B228 (1983), 537
- /BOD84/ Bodo Sack, Diplomarbeit, Hamburg 1984
- /BÖH83/ A. Böhm in 'Electroweak Effects at High Energies', Ettore Majorana International Science Series, <u>Vol.21,</u> ed. H.B. Newman; New York 1985
- /BÖH84a/ M. Böhm, W. Hollik, Phys.Lett. 139B (1984), 213
- /BÖH84b/ M. Böhm et al., Phys.Lett. 144B (1984), 414
- /BR084/ R.W. Brown et al., Phys.Rev.Lett. 52 (1984), 1192
- /CEL81/ CELLO Coll., H.-J. Behrend et al., DESY 81-021, Phys.Lett. <u>103B</u> (1981), 148
- /CEL82a/ CELLO Coll., H.-J. Behrend et al., DESY 82-019, Z.f.Phys. <u>C14</u> (1982), 283
- /CEL82b/ CELLO Coll., H.-J. Behrend et al., DESY 82-020, Phys.Lett. 114B (1982), 282
- /CEL82c/ CELLO Coll., H.-J. Behrend et al., DESY 82-063, Z.f.Phys. C16 (1982), 301
- /CEL83/ CELLO Coll., H.-J. Behrend et al., DESY 82-080, Phys.Lett. <u>126B</u> (1983), 384
- /CEL85/ CELLO Coll., H.-J. Behrend et al., DESY 84~101, revised version accepted by Phys.Lett.B
- /CEL76/ H.-J. Behrend et al., 'Proposal for a 4π detector at PETRA', Hamburg 1976, unveröffentlicht
- /CAB81/ N. Cabibbo et al., Phys.Lett. 114B (1982), 287
- /DEG82/ D. Degèle, PRC-Vortrag, Hamburg 1982
- /DIT81/ P. Dittmann, V. Hepp, DESY 81-030
- /EIC83/ E.J. Eichten et al., Phys.Rev.Lett. 50 (1983), 811
- /ELL83/ J. Ellis, J.S. Hagelin, Phys.Lett. 142B (1984), 301
- /DAV82/ M. Davier, Proceedings of the 21st Int.Conf. on High Energy Physics, Paris 1982
- /FER34/ E. Fermi, Z.f.Phys. C88 (1934), 161

- Abb. III.41: Polarwinkelverteilung der Photonen aus der Reaktion ee + 11γ
- Abb. III.42: Ereignisbeispiele aus der Reaktion ee \rightarrow llyy
- Abb. III.43: Korrelation der Lepton-Photon-Masse in den Reaktionen ee + eevy und ee + $\mu\mu\gamma\gamma$
- Abb. IV. 1: Der gemessene differentielle Wirkungsquerschnitt für Photonpaarproduktion normalisiert auf die QED-Vorhersage
- Abb. IV. 2: Der gemessene differentielle Wirkungsquerschnitt für Bhabhastreuung normalisiert auf die QED-Erwartung
- Abb. IV. 3: Die gewichtete Asymmetrie für Muonpaarproduktion
- Abb. IV. 4: Die gewichtete Asymmetrie für Taupaarproduktion
- Abb. IV. 5: Die 95% C.L. Konturen für die Kopplungskonstanten a 2 und v 2
- Abb. IV. 6: Die 95% C.L. Grenzen für angeregte Muonen oder Taus
- Abb. IV. 7: Die 95% C.L. Grenzen für angeregte Elektronen
- Abb. IV. 8: Die 95% C.L. Grenzen auf das Verhältnis von Lebensdauer zu Masse für instabile Photinos in Abhängigkeit von der skalaren Elektronenmasse
- Abb. IV. 9: Die 95% C.L. Grenzen für die Photinomasse in Abhängigkeit des Symmetriebrechungsparameters d
- Abb. IV.10: Die 95% C.L. Grenzen für die Photinomasse aus verschiedenen Experimenten

- /GLA61/ S.L. Glashow, Nucl.Phys.22 (1961), 579
- /GIM70/ S.L. Glashow et al., Phys.Rev. <u>D2</u> (1970), 1285
- /GUY81/ G. Hopp, Diplomarbeit, Karlsruhe 1981
- /HAS73/ F.J. Hassart et al., Phys.Lett. 46B (1973), 138
- /HER83/ G. Herten, Doktorarbeit, Aachen 1983
- /HJB81/ H.-J. Behrend et al., Computer Physics Comm. 22 (1981), 365
- /HRS84/ HRS-Coll., D. Bender et al., Phys.Rev. <u>D30</u> (1984), 515
- /JAD82/ JADE Coll., W. Bartel et al., Phys.Lett. 108B (1982), 140
- /JAD83/ JADE Coll., W. Bartel et al., Z.f.Phys. C19 (1983). 197
- /JAD84/ JADE Coll., W. Bartel et al., Z.f.Phys. C24 (1984), 223
- /JAD85a/ JADE Coll., W. Bartel et al., Z.f.Phys. C26 (1985), 507
- /JAQ85b/ JADE Coll., Vortrag DPG-Tagung, München 1985
- /JFG83/ J.F. Grivaz, CELLO-Note
- /JOU84/ V. Journé, Thesis, Orsay 1984
- /KIM81/ J.E. Kim et al., Rev.Mod.Phys. 53 (1981), 211
- /KLE82/ R. Kleiss, Thesis, Leiden 1982
- /KOH82/ H. Kophaupt. G. Voss Ann.Rev. of Nucl. and Part. Sc. (1982)
- /KOP81/ B. Koppitz, Doktorarbeit, Hamburg 1981
- /KRE82/ W. Krenz, PITHA 82/26, Aachen 1982
- /KÜS83/ H. Küster, Diplomarbeit, Karlsruhe 1983
- /LEE56/ T.D. Lee, C.N. Yang, Phys.Rev. <u>104</u> (1956), 254
- /LIT70/ A. Litke, Thesis, Harvard 1970
- /MAC83/ MAC-Coll., E. Fernandez et al., Phys.Rev.Lett. <u>50</u> (1983), 1238
- /MJS81/ M.J. Schachter für die CELLO Collaboration Phys.Scripta, <u>Vol</u>.23 (1981), 610
- /MJS82/ M.J. Schachter, private Mitteilung
- /MKII83/ MARK II Coll., M.E. Levi et al., Phys.Rev.Lett. 51 (1983). 1941
- /MKJ84/ MARK J Coll., B. Adeva et al., Phys.Rep. <u>109</u> (1984), 133

/NAR83/ B. Naroska, Proc. of the 1983 Int. Symp. on Lepton and Photon Interactions at High Energies, Ithaca 1983

- /PGW83/ P. Grosse Wiesmann für die CELLO Collaboration in 'Electroweak Effects at High Energies', Ettore Majorana International Science Series, <u>Vol.21</u>, ed. H.B. Newman; Plenum Press, New York 1985
- /PLU83/ PLUTO Coll., Ch. Berger et al., Z.f.Phys. C21 (1983), 53
- /PLU85/ PLUTO Coll., Ch. Berger et al., Z.f.Phys. <u>C27</u> (1985), 341
- /PRE78/ C.Y. Prescott et al., Phys.Lett. 77B (1978), 161
- /SAL64/ A. Salam, J.C. Ward, Phys.Lett. 13 (1964), 168
- /SAL68/ A. Salam, Proc. 8th Nobel Symp., ed. N. Svartholm, Almqvist and Wiksell, Stockholm 1968
- /SAX84/ D.A. Saxon, 'Proceedings of Physics in Collision IV', Santa Cruz 1984
- /SCH82/ R. Schmidt, Doktorarbeit, Hamburg 1982
- /SÖD81/ P. Söding, G. Wolf Ann.Rev.Nucl. and Part.Sc. (1981), 231
- /TAS84/ TASSO Coll., M. Althoff et al., Z.f.Phys. C22 (1984), 13
- /TAS85/ TASSO Coll., M. Althoff et al., Z.f.Phys. C27 (1985), 279
- /TSA71/ Y.S. Tsai, Phys.Rev. D4 (1971), 2821
- /TSA83/ Y.S. Tsai, SLAC-Pub. 3129 (1983)
- /UA183a/ UA1 Coll., G. Arnison et al., Phys.Lett. <u>122B</u> (1983), 103
- /UA183b/ UA1 Coll., G. Arnison et al., Phys.Lett. <u>1268</u> (1983), 398
- /UA283a/ UA2 Coll., M. Banner et al., Phys.Lett. 122B (1983), 476
- /UA283b/ UA2 Coll., P. Bagnaia et al.,
 - Phys.Lett. <u>129B</u> (1983), 130

- /WDB84/ Wim de Boer, Proceedings of 'Physics in Collison IV', Santa Cruz 1984
- /WEI67/ S. Weinberg, Phys.Rev.Lett. 19 (1967), 1264
- /WET83/ W. Wetzel, Nucl.Phys. <u>B227</u> (1983), 1
- /WIL74/ W.J. Willis, V. Radeka, Nucl.Instr. and Meth. <u>120</u> (1974), 221
- /WIN83/ K. Winter in 'Electroweak Effects at High Energies', Ettore Majorana International Science Series, <u>Vol.21,</u> ed. H.B. Newman; Plenum Press, New York 1985
- /WU 57/ C.S. Wu et al., Phys.Rev. 105 (1957), 1413
- /YAM83/ S. Yamada, Proc. of the 1983 Int. Symp. on Lepton and Photon Interactions at High Energies, Ithaca 1983
- /YUK35/ H. Yukawa, Phys.Math.Soc. Japan <u>17</u> (1935), 48

Danksagung

Diese Arbeit entstand am DESY in Hamburg innerhalb der CELLO-Kollaboration. Allen, die zum Gelingen von PETRA und CELLO beigetragen haben, gilt mein Dank. Michel Davier, Wim de Boer und Günter Flügge haben durch Anregungen, Diskussionen und gemeinsame Arbeit viel zu dieser Arbeit beigetragen.

Beim Aufbau des Kalorimeters habe ich viel von Joachim Engler, Heiner Keim und Horst Oberlack, am Beginn der Datenanalyse von Dieter Apel, Peter Schacht und Hanna Schneider gelernt.

Die Untersuchung über elektroschwache Wechselwirkung entstand in Zusammenarbeit mit Venance Journé, Hermann Küster und Jérome Pamela; die Untersuchung über angeregte Leptonen in Zusammenarbeit mit François Le Diberder.

Frits Berends, Ron Kleiss und Staszek Jadach haben durch ihre Monte Carlo Programme den Vergleich zwischen Daten und Standard Model wesentlich erleichtert.

Prof. Dr. Buschhorn und Prof. Dr. Zeitnitz gaben mir eine Anstellung als wissenschaftlicher Mitarbeiter an ihrem Institut und ermöglichten damit diese Arbeit.

·