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OPTICAL PROPERTIES AND ELECTRONIC.DENSITY

• OF STATES*

Manuel Cardona
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and

DESY, Hamburg, Germany

The fundamental absorptlon spectrum of a solid yields In-

formation about critical points in the optical density of

states. This Information can be used to adjust parameters

of the band structure. Once the adjusted band structure is

known, the optical properties and the density of states can

be generated by numerical Integration. We review in this

paper the parametrization techniques used for obtaining band

structures suitable for density of states calculations. The

calculated optical constants are compared with experimental

results. The energy derivative of these optical constants is

discussed in connection with results of modulated reflec-

tance measurements. It is also shown that information about

density of empty states can be obtained from optical experi-

ments involving excitation from deep core levels to the con-

duction band.



uifaqua33no uouifs

'33JJJO

A*q paq.aoddns

uof q.daosqT3 XB^uauiBpunj aqq. jo

uf suof^ounj ssuodsaa jo uofsjsdsfp

aoj ^unoooB o^ pasn aq UGO qofi^M *-[spoiu o^ioqBaBd

*Äousnbaaj oaaz ^B suof^ounj esuodsoa aoj q.unoooü oq.

pssn a'q UBO qofqM 'tspoui uuoj sq^ a^inof^aBd UT M3fAaa a;.\d uasq 3ABq ao^^insuf u^ jo ss^^^s jo Ä^fsuap

aoj sxapoui s-[duifs jo asquinu v

jo

sjqq. uf Suf^ujod aouapfAa

aqj, 'sq.o3jjo uo^f^xs SB paq.3«idaa^uf aq 11120

si^aAaa ^uauifaadxa i^fM sodeqs

uoaq.oaxa-auo pa^Binoi'eo aq^ jo uos^a^dmoo peff^^3P V

- Z '



- 3 -

1. Optical Properties and One-Electron Density of States

The optical behavior of seniconductors and insulators in the

near infrared, visible, and ultraviolet is determlned by

electronic interband transitions. An additional intraband

or free electron contribution to tbe opt ical properties has

to be considered for metals. We shall discuss here the relation-

ship between the interband contribution and the density of

states. The interband contribution to the imaginary part of

the dielectric constant can be written äs (in atomic units,

(D

where w - = tu - m„ is the difference in energy between the

empty bands (e) and the filled bands (f) . The spin multiplicity

must be included explicitely in Eq . (1). The oscillator strength

ef tensor F is related to the matrix elements of p through -L-̂sA A_-w

Fef = 2 < f |p| e >< e p|f> oj~J,. The Bloch functions are f*̂, «̂, ^̂- e i

normalized over unitvolume. Degenerate statistics has been

assumed in Eq. (1) and spatial dispersion effects have been

neglected.

It is customary to take the slowly varying oscillator strength

out of the integral sign in Eq. (1) and thus write:

uo
p N. M

where F is an average oscillator strength and N^ the combined

optical density of states.



Structure in e.(w) (Eq. (1)) appears in the neighborhood of

critlcal points, where JL^e? = °* Such critical points can be

localized in a small region of k^space or can extend over

large portions of the Brillouin zone over whlch filled and

empty bands are parallel (sometimes oniy nearly parallel). Once

the critical points whlch correspond to observed optical

structure are identifi'ed in terms of the band structure through

varlous devious and sometimes dubious arguments, their energies

can be used to adjust parameters of semiempirical band structure

calculations.

Four different parametric t'echniques of calculating band struc-

tures have been used for this purpose: the empirical pseudo-

Potential method (EPM)1 the k-p_ method2 the Fourier expansion

technique .(FE)3 and the adjustable orthogonalized plane waves

method (AOPW)1*.

Once reasonably reliable band structures are known it is

important to calculate from them the imaginary part of the

dielectric constant e.(w) and to compare it with experimental

results so äs to confirm or disprove the initial tentative

assignment of critical points and thus the accuracy of the

band structures. Rieh structure is obtained in both, experimen-

tal and calculated spectra and hence a rather stringent test

of the accuracy of the available theoretical band structure

is in principle possible.
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In order to calculate numerlcally the integral of Eq. (1) it

is necessary to sample eigenvalues and eigenfunctions at a

large number of points in the Brillouln zone. The amount of

Computer time required for solving the band structure problem

with first-principles methods (OPW, APW, KKR) at a general

polnt of the Brillouin zone makes such methods impractical

for evaluating Eq. (1> The parametric methods • (EPM, k-p, FE. *. '-• </.*j *

but not AOPW) require only the diagonalization of a small

matrix (typically 30 x 30) and hence it is possible to sample

the band structure at about 1000 points with only a few hours

of Computer time. Cubic materials, in particular those with

T£,O, and 0, point groups, are simple in this respect: symmetry

reduces the sampling required for the evaluation of Eq. (1)

to only 1/48 of the Brillouin zone. Hexagonal and tetragonal

materials have relatively larger irreducible zones and hence

a larger number of sampling points is. necessary if the reso-

lution of the calculation is not to suffer. Once the band

structure problem has been solved for all points of a reason-

ably tight regulär mesh, the bands and matrix elements at

arbitrary points can be obtalned by means of linear or

quadratic interpolation.

The method of Gilat and coworkers5 has become rather populär-

for the numerical evaluation of Eq. (1)S6. In the case of a

oubic material the Brillouin zone is divided into a cubic mesh

and the band structure problem solved at the center of these

cubes (sometimes a fincr mesh is generated by quadratic inter-

polation from the coarser mesh6). Wlthin cach cube of the mesh



the bands are linearily Interpolated and approxlmated by their

tangent planes. The areas of constant energy plane withln each

cube corresponding to a given u „ are added after multlplying

them by the correspondlng oscillator strength and thus the

integral of Eq. (1) is obtained.

The real part of the dielectric constant E„ can be obtained * _ r

from e. by using the Kramers-Kronig relations. It is also JL

possible to obtain e and _e.' simultaneously by calculating

the integral:

zir

with n small and positive. For n •+ + o the imaginary part

of Eq. (3) colncides with Eq. 1. Equation (3) can be evaluated

with a Monte Carlo technique. Points are gener-ated at random

in k space withln the Brillouin zone and the average value of *i*~

the integrand for these points calculated. The process can be

interrupted when reasonable convergence äs a functlon of the

number of random points is achieVed.7»8

We show in Fig. l the results of a calculation of e. from the

k-p band structure of InAs with the method of Gilat and Rauben- A** Ft"-~*

heimer.6 The band structure problem, includlng spin-orbit

effects, was solved at about 150 points of the reduced zone

(1/48 of the BZ). We have indicated in this figure the symmetry

of the critical points (or of the approximate regions of space)
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where the structure in £. origlnates. The experimental e.

spectrum, äs obtained from the Kramers-Kronig analysis of the

normal incidence reflectlvity9, is also shown. The agreement

between calculated and experimental spectra is good, with

regards to both position and strength of the observed structure,

with the exception of the position of the E« peak. This is to

be attributed to an improper assignment of the E? peak when

the 6 adjustable band structure parameters were determined. The

E2 peak had been attributed, following the tradition, to an X

critical point while it is actually due to an extended region

of k space centered around the U points.8 It should be a JW—

simple matter to readjust the band structure parameters to

lower the energy of the calculated E- peak by about 0.5 eV;

in view of the large amount of Computer time required to re-

calculate the energy bands thls has not been done. The structure

calculated around 6 eV, due mostly to spin-orbit Splitting of

the L, levels, has not yet been observed experimentally.

The conventional experimental determination of e. from normal

incidence reflection data9 suffers from considerable inaccuracy:

To the experimental error produced by possible improper surface

treatment and contamination one has to add the uncertainty in

the high-energy extrapolation of the experimental data required

for the Kramers-Kronig analysis. Some of these difficulties

are avoided by comparing the calculated reflectivity spectra

(obtained from E. with Fresnel's equation) with the experimental

results. This is done in Fig. 2 for GaSb: the experimental

data10 have not been Kramers-Kronig analyzed because of the
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small ränge of the energy scale. Two calculated spectra have

been plotted in this figure: one obtalned from the k-p band

structure6 and the other obtained from a non-local pseudo-

potential calculation with 14 adjustable parameters.n The

discrepancy between experimental and calculated curves at high

energy, a common feature of many zincblende-type materials12,

has two origins: the measured reflectivity should be low because

of increased diffuse reflectance at small wavelengths while

the calculated one should be high because of the finite number

of bands included in the calculation. In this region where

t -l is small, the contribution to E of transitions not in-
r ' r

cluded should lower the calculated reflectivity.

During the past few years a lot of activity has been devoted to

the measurement and analysis of differential reflection spectra

obtained with modulation techniques.13~15 The wavelength (or

photon energy) derivative spectra14 should permit an accurate

analysis of the line shapes of the spectra of Figs. l and 2.

We show in Fig. 3 the temperature modulated reflection spectrum

(thermoreflectance) of GaSb15: it has been shown that for the

III- V materials15 this spectrum is very similar to the photon

energy derivative spectrum, difficult to obtain experimentally.

The corresponding photon energy derivative spectrum obtained

from the calculation of Fig. 2 is also shown in Fig. 3. The

calculated and experimental shapes of the E., EI+AI peaks show

discrepancies of the type attributed in See. 2 to exciton inter-

actlon. Derivative spectra for other germanium and zincblende
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type materials have been calculated by Walter and Cohen12

and by Iligginbotham16 .

The methods to calculate band structures from first principles,

without or with only a few adjustable parameters Cone17 or

three4) have recently achieved considerable success. However

the calculation of energy bands at one general point of the

BZ requires a lot of time so äs to make density of states

calculations prohibitive. Moreover, the evaluation of the

matrix elements required for Eq. l is difficult with first

principles techniques. It is nevertheless possible to use

first principles calculations at a few high-symmetry points

of the Brillouin zone to adjust the parameters of semiempirical

band structures from which the large number of sampling points

required for the evaluation of Eq. l can be obtained with

relative ease. The k-p technique has proved particularly use-

ful in this respectl>18>19 Matrix elements of p can be easily

evaluated from the eigenvectors in the k.p representation.

Spin-orbit interaction can also be easily included. This k«p

procedure has been applied to the relativistic OPV' band

structure calculated 'by Herman and Van Dyke for gray tin.?9.

Figure 5 shows the reflectivity of gray tin calculated by this

procedure with the method of Gilat and Raubenhcimer together

with experimental results.20 Comparison with other experimental

results for the germanium family suggests that the high-cnergy

end of the meas.ured spectrum is too low, probably due to sur-

face imperfections in the delicate crys-tals, grown from mercury

solution, which were used for this experiment.
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The k".p fitting procedure has also been applied to a first *jj \fj-

principles relativistic APVJ calculation of the band structure

of PbTe by Buss and Parada7. Figure 6 shows the reflectivlty

of PbTe obtained by this method with a Monte Carlo sampling

technique and Fig.'7 the absorption coefficient, both compared

with experimental data7»21»22. In both cases the semiquantitative

agreement between experimental and calculated data is remark-

ably good in view of the absence of adjustable parameters. The

calculated reflectivity is, at high energies, considerably higher

than the experimental one, '.äs discussed earlier for other mate-

rials. The E. peak of the experimental reflectivity spectrum

appears spllt in the calculated spectrum, possibly because of

inaccuracies in the first principles band structure. The cal-

culated E. structure appear.s due mostly to transitions along the j. t\ direction. The experimental E, structure has been assigned23

to the lowest gap along Z. The calculated E? peak corresponds

to an extended region of the BZ without definite symmetry, äs

inferred from electroreference measurements23 .

\e have so far discussed optical constants for cubic materials.

While calculations for matcrials with lower symmetry require

more Computer time, one has the extra reward of being able to

predict the experimentally ,observed anisotropy. Figure 7 shows

the two princlpal components of-;e. for trigonal Se äs calculated

by Sandrock24 from the pseudopotential band structure. The

similarity between calculated and experimental results, also

shown in Fig. 725> is especially remarkable in view of the

method used to determine the pseudopotential parameters:
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They were determlned from the pseudopotential parameters re-

qulred to fit the optical structure of ZnSe. Only a small ad-

justment was performed so äs to bring the calculated fundamental

gap (1.4 eV) into agreement with the experimental one (2.0 eV).

The dielectric constant of antimony (trlgonal) for the ordi-

nary and the extraordlnary ray has also been calculated by a

similar procedure.26

The reasonable agreement obtalned between experimental and cal-

culated optical constants suggests the use of the corresponding

band structure to determlne the indlvldual denslty of states D(w):

The main work, that of diagonalizing the Hamiltonian at a large

number of polnts, has already been done. The programs required

to calculate Individual denslty of states are very similar to

those used for the evaluatlon of Eq. (l):w „ must be repaced

ef by the slngle band energles and F must be removed. As an example

we show In Flg. 8 the individual density of states of the 3

highest valence bands (slx includlng spln) and the 3 lowest con-

ductlon bands of gray tin.19 Direct Information about the Indi-

vidual density of states can be obtained by a number of methods

discussed in "thls Conference. We mentlon, in particular, optical

techniques involving transitlons from deep core levels to the

conduction band or from the valence band to temporarily empty

core levels (soft X-ray emision).27 If the sometimes question-

able assumption of constant matrix elements is made, the corre-

sponding spectra represent the conduction (for absorption spectra)

and the valence (for emission spectra) density of states because

of the smäll width of the core bands. Ue show in Fig. 9 the
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density of states of the conduction band of Ge calculate by

Herman et al.4 and the corresponding density of states for GaSb

äs obtained by the k-p method..6 The density of states for both *A*- I^UM

materials are very similar because of the similarity of their

band structures. We also shown in Flg. 9 the quantity e.w2 ob-

tained by Feuerbacher et.al.28 for Ge in the region of the

Mü f- edge. The origin of energies has been shifted so äs to make
" s t)

a comparison with the conduction density of states possible:

E.w2 should be proportional to D(w) under the assumptlon of

constant matrix elements of p. While the rieh structure of the

calculated density of states is not seen in the E.u2 curve, this

curve is reproduced quite well if the density of states is

broadened so äs to remove the fine structure. The required life-

tlme broadening of about l eV is not unreasonable for the M,. ̂
4 > 2

transltions. Using Eq. (2) with N, replaced by the conduction

density of states we obtain an average oscillator strength at

the maximum of e.w2 F = 0.15. This oscillator strength corre- 1 i*— *-*

sponds to the 20 4d electrons per unit cell and hence it should

be divided by 20 to obtain the average oscillator strength per

d-band. If one reasons that the transitions from 10 of the 20 d

bands to a given conduction band are forbidden because of the

spin flip involved while transitions from 5 of these 10 bands

are forbidden or nearly forbidden by parity, one finds for the

average oscillator strength of each one of the 5 allowed bands

F = 0.03, whlch corresponds to a matrix element of p = 0.13

(inatomic units): this value is quite reasonable in view of the

fact that the typical valence-conduction matrix element is 0.6.
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The small value of this matrix element explains why the d core

electrons are negligible in the k-p analysis of the valence

and conduction masses.

2. Exciton Effects

We have devoted See. l to a comparison of experimental optical

spectra with calculations based on the one-electron band structure

Exciton effects, i.e. the final state Coulomb interaction between

the excited electron and the hole left behind, are known to

modify substantially the fundamental edge of semiconductors and

insulators.29 Exciton modified interband spectra seem also to

occur in metals at interband edges which have the final state

on the Fermi surface.30 Experimental evidence for these effects

is reported at this Conference in the paper by Haensel et al.

We shall now discuss the question of exciton effects above the

fundamental edge of insulators and semiconductors with special

emphasis on the zincblende family. As mention in See. l the

gross features of these spectra are explained by the one-electron

theory. The exciton interaction is responsible, at most, for

small details concerning the observed line shapes. It is generally

accepted31*32 that the exciton interaction supprcsses structure

in the neighborhood of M, Critical points: the Coulomb attraction

with negative reduced masses is equivalcnt to a repulsion with

positive masses. Such a repulsion smoothes out critical point

structure: no M, critical point has been conclusively identifled

in the experimental spectra. The E. and E.+A. critical points of



figures 1-3 are of the M, varicty. Hence the line shape of the

corresponding e, spectrum should be characterlzed by a steep low-

energy slde and a broader high-energy slde. Figure 10 shows the

shape of the E peak observed at low temperature by Marple and

Ehrcnreich33 and by'Cardona3M . In order to avoid effects due to

the overlap of the E, and the E.+A, peaks it has been assumed

that they have exactly the same shape but shlfted by 0.55 eV. The

contrlbutlon of only E. has been extracted from the measured e.

spectrum and dlsplayed in Flg. 10. It 1s clear from this flgure

that the E. peak 1s steeper at high energies than at low energies,

against the expectations for an M. peak. Also in Flg. 10 we show

the results of a calculatlon by Kane32 of the effect of Coulomb

interaction on the E. line shape for CdTe, using the effective

mass approximation. The solution of effective mass Hamiltonian

with non-positive-deflnite mass is made easier by the fact that

the negative mass Calong the A direction) has a magnltude much

larger (about ten times) than the two equal positive masses. It

is posslble to use the adiabatic approximation31, i.e., to solve

the two-dimentional hydrogen atom problem with the third coordinate

äs a parameter and then solve the adiabatic equation for the

third coordinate. The agreement between the calculated and the

experimental line shapes of Fig. 10 is excellent.

Attempts have been made to calculate the dielectric constant in-

cluding exciton interactions at an arbltrary polnt of k space,

independently of the stringent restrictlons of the effective mass

approximation.35*36 Such calculation is possible if one truncates

the Coulomb interaction between electron and hole Wannier packets



- 15 -

to extend to a finlte number of neighboring cells. The extreme

and simplest case of a 6-function (Koster-Slater) Interaction

can be solved by band31 >3 5 and gives around an M, critical

point the shapes of E and c, shown in Fig. 11: For an M.

critical goint the Koster-Slater interaction mixes the M. one-

electron llne shape with the H1+1- The high energy side of the

e, peak becomes steeper, in agreement with Flg. 10. The line

shape observed for the E..-E..+A.. peaks in the reflectivity

spectrum is composed almost additively of the E. and E line

shape:at the energies of these peaks dR/de. and dR/de are al-

most equal. We also show in Fig. 11 the line shapes expected

for the reflectivity spectra of the E.-E.+A. peaks and for the

correspondlng differential spectra (dR/du). We show in Fig. 12

the photon energy derivative spectrum of these peaks in HgTe37:

the observed line shapes disagree with those expected from the

one-electron theory (equal positive and negative peaks) but

agree with those predicted in the presence of a Koster-Slater

interaction (Fig. 11). Similar results have been found for

other zincblende-type materials.37

3. Slmplified Models for the Density of States

As seeh in See. l the optical density of states^and thus the

dielectrlc constant, is a complicated function of frequency

and its calculation requires lengthy numerical computation.

For some purposes, however, it can.be approximated by simple

functions. In the viclnity of- a critical point of the MA

variety,for instance,the dielectrlc constant can be approxinated
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by:

.
0

if exciton effects are neglected. Exciton interaction can be

Included, withln the Koster-Slater model, by adding to i a

positive number smaller than one.

As shown in Fig. l, E. for the zincblende-type materials has

a strong peak (E?) in the neighborhood of which most of the

optical density of states is concentrated. The corresponding

transltions occur over a large region of the BZ, close to its

boundaries. In order to represent this fact, Penn38 suggested

the model of a non-physical spherical BZ with an isotropic gap

at its boundaries. The complex energy bands of the material

are then replaced by those of a free electron with an isotropic

gap w at the boundary of a spherical BZ. This gap should
o

occur in the vlcinity of the E~ optical structure. While this

model represents rather poorly the rieh structure of E. (Fig. 1),

it is expected that it should give a good picture of E at zero

frequency. The reshuffling of density of states involved in the

case of the isotropic model should not affect E (ÜJ = D) very much

because of the large energy denominators which appear in Eq. (3)

for w=o: the lowest gap u . usually much smaller than u ,
o

accounts only for a -very small fraction of the optical density

of states. Penn obtained with this model the static dielectric

constant for a flnite wavevectör q . The result can be approxi-

mates by the.analytlc expresslon:3Ö
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In Eq. 6) w is the plasma frequency obtained for the density

of valence electrons and u„ and k„ the corresponding free

electron Fermi energy and wave number. The dimensionless

quantityyis usually close to one .

i

Figure 13 shows Eq. (5) for Si compared with the exact results

of the Penn model.39 These results are obvlously independent

of the directlon of q. A small dependence on thls directlon Is
A—

found from a complete pseudopotentlal calculation by Nara40

(see also Flg. 13). The function e(o,q) 1s of interest for the

treatment of dielectrlc screening.

Equatlon (5) ylelds for q=o the electronlc contribution to the
i— '

static dielectrlc constant :

The experimental values of e agree reasonably well with the

results of Eq. (6) uslng for u> the energy of the Ep peak.34
D

Equation 6 has gained recent interest äs the basis of Phillips

and Van Vechten!s theory of covalent bonding. M > **2 j43 These

authors use Eq.(6)and the experimental values of e to define
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the äverage gap u . With this gap and the corresponding gap
o

of the isoelectronlc group IV materlal they can Interpret -a

wide ränge of properties such äs crystal structure*42 , binding

energy,*13 energies of Iriterband crltical points,1*1 non-linear

susceptibilities1{if, etc. As an example we discuss the hydrostatic

pressur.e (I.e. volume) dependence of e for germanium and

silicon. According to Van Vechten1*1 , u for C, Ge, Si, and
o

a-Sn is proportional to Ca0)~2'5 where a 1s the lattice con-

stant. If one makes the assumption that this law gives also

the change in u with lattice constant for a given material
S

when hydrostatic stress is applied one can calculate the volume

dependence of c ,1*1 Neglecting the one in Eq. (6), a valid

approximation for Ge and Si, one finds:

\0

TcT\T~L\±v '~~£v~

Equation (7)explains the sign and the small magnitude observed

for (l/ c0)(deQ/dV). The experimental valuesof this quantity

are 1.0 for Ge and 0.6 for Si.*11»1*5

According to Eq. (6) the average gap u determlnes the elec-
s>

tronlc dlelectric constant for w=o. As the lowest gap w is O S. Q

approached (Ü)Q « u usually), e exhibits strong dispersion.

This dispersion is due, in the spirlt of Eq. (3), to the density

of 'states in the vicinity of u . For the purpose of calculating

the dispersion of E immediately below u , the density of states

can be approximated by that of parabolic bands with a reduced

mass equal to the reduced mass \i at w . These bands are assumed

to extend to infinity in k space: the unphysical contribution



to E for l kl -»• •» should be small for u < u , because of the r ' — o

large energy denominators of Eq. (3). We thus obtain for

a cubic material the following contribution of the u gap to

the scalar dielectric constant below u (under the assumption

of an constant matrix element bf p equal ~t o P) :tt6

- 2" l f W l • J ^

J/2
with- O-*)

Equation (8) represents quite well the behavior of e immediate-

ly below w for the lead chalcogenides47 and a number of other M 7

semiconductors1*8 . As an example we show in Fig. l^J the observed

dispersion of e below w at room temperature49 together with

a fit based on Eq. (8).1*8 For the sake of completeness we have

included In the fitting equations not only the effect of tu (EQ)

but also that of its spin-orbit-split mate E_+A (also re-

presented by an expression simllar to Eq. 8), the dispersion due

to the E1 and E1+A1 gaps, and that due to the main u gap j, -i j. f~,

assuming w =E?. Thus the fitting equation, with three adjustable
ti -̂

Parameters C^, C^, C^ is: "8

(9) where: ^^

l
(f
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The fitting values of C£ (6.602) and C£ (2.791) are In qualita-

tive agreement wlth those calculated from the band parameters.1*8

The parabolic model density of states can also bo used to inter-

pret the strong dispersion in the piezobirefringence observed

near the lowest direct gap of Ge, GaAs,**8 and other III-V?

semiconductors:50»51 uniaxial stress splits the top valence band

state (rQ) and a birefringence in the contribution of E to E'

results because of the selection rules for transitions from

the split bands. The main contribution to this piezobirefringence

1s expected to be proportional to ff(x), which diverges like

(w-ti) }~1/2 for u •*•<!>. Such behavior can be seen In the experimental

results (circles) of Fig. 15 obtained for GaAs at room temperature

Included in this figure Is the corresponding fit based on the

model of Eq. (9).48

The long wavelength, non-dispersive contribution to the piezo-

birefringence of Flg. 15 can be interpreted, at least qualita-

tively, in terms of the Penn model of Eqs. (6) and (7). Equation

(7) yields two contribution to the change in e one due to the

change in plasma frequency (i.e. carrier density) with stress

and the other due to the change in the Isotropie gap. The first

contribution should not exist for a pure shear stress. For a

hydrostatic stress the second contribution can be written in

tensor form äs:

— Ä£O - 5" e
€

*""* v Au* /VXU r v™^

0
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aouB^s^p sq^ sf ^>t) aaSd^i seuioooq ^ SB

autoooq o^ paiunssu s-p ^^ q.u d-e3 oq^ • Of doj^osfue sauioosq

Äaspunoq 23 a^^ J° ^ufod A'aea^fq.iB ÜB q,B d^3 ^

sssa^s asoqs B aa^un lepfosdf tl3 ssiuooaq 2G ißOfasqds sqj,

'lapom UUS.J aq^ jo suiaaqq. Uf Sufu^eui -[BOfsÄqd aesio B seq

iBJOuaS apnao sfiij; *scaa^s aasqs oand aoj

. T »*Vf

(8) '^3 ^^U^ a^^in^sod o/<\^ uf^a^s aq^ sf a
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1. Imaginary part of the dielectric constant of InAs äs cal-

culated from the k*p method ( )6 and äs determined •** tfs-

experimentally ( -)9. The group theoretical symmetry

assignments wer-e made with the help of the calculated

isoenergy plots.

2. Reflectivity of GaSb calculated from the k'p6 and from a

pseudopotentlal band structure11. Also, experimental re-

flectivity.10

3. Measured thermoreflectance spectrum of GaSb15 compared

with the energy derivative of the spectrum of Fig. 2.16

*l. Reflectivity of gray tin calculated from a first principles

OPW band structure fitted with the k-p method.19 Also MA* WA^

experimental results.20

5. Reflectivity of PbTe calculated from the APW-k-p band f^f^f- *r*fr

structure,7 compared with experimental results.21

6. Absorption coefflcient PbTe calculated from the APW-k«p7

band structure, compared with experimental results.21»22

7. Imaginary part of the dicletric constant of trigonal

selenium for both principal directions of polarization of

the electric field vector E äs calculated from the pseudo- rf-*- r

Potential band structure (histograms)2k and äs determined

experimentally.25



8. Individual density of states for gray tin, obtained from

the OPW-k'p band structure.19 The top of the valence band f~* k»-.

1s at 0 eV. The lowest valence band is not included.

9. Conduction density of states calculate for Ge1* and for

GaSb6 together with the function e.to2 obtained from ex-

perimental data in the vacuum uv28 (the horizontal scale

for the E.w2 curve has been shifted by 29.5 eV).

10. Contributlon of the E., gap to e. in CdTe äs measured at

low temperatures by Marple and Ehrenreich33 and by Cardona34.

Also calculation by Kane32 using the adiabatic approximatlon.

11. Modification in E and e. introduced by the Koster-Slater

exciton interaction in the neighborhood of an M. critical

point. Also, effect on the reflectivity under the assumption

•of an equal contribution of Ae and Ae. to the reflectivity

line shape.

12. Photon energy derivative spectrum of the reflectivity of

HgTe in the neighborhood of the E, and. E.+A, structure.37

13. Static dielectric constant e(o,q) obtained by Srinivasan39
v-—

for Si with the Penn model compared with the Interpolation

formula of Eq(5) and with the results of a pseudopotential

calculation by Nara1*0 for q along (lll).



1*J. Experimental results for e In GaAs below the fundamental

edge at room temperature49 (circles) and fitted curve

based on.a model density of states.

15- Plezobirefrlngence In GaAs for an extensive stress along (100)

(room temperature). The circles are experimental polnts.

The solid llne 1s a fit based on the model of Eq. 5.MÖ
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