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The fundamental absorption spectrum of a solid yields in-
formation about critical points in the optical density of
states. This information can be used to adjust parameters

of the band structure. Once the adjusted band structure is
known, the optical properties and the density of states can
be generated by numerical integration. We review in this
paper the parametrization techniques used for obtaining band
structures sultable for density of states calculations. The
calculated optical constants are compared with experimental
results. The energy derivative of these optical constants is
discussed in connection with results of modulated reflec-
tance measurements. It is also shown that information about
density of empty states can be obtained from optical experi-
ments 1involving excltation from deep core levels to the con-

duction band.



A detailled comparison of the calculated one-electron
optical 1line shapes with experiment reveals deviations
which can be interpreted'as excipon'effects} The accu-
mulating experimental evidence pointing in this direction
is reviewed together with the existing theory of these

effects.

A number of simple models for the complicated interband
density of states of an insulator have been proposed.

Ve review in particular the Penn model, which can be used
to account for response functions at zero frequency, and
the parabolic model, which can be used to account for

the dispérsion of response functions in the immediate

vicinity of the fundamental absorption edge.
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1. Optical Properties and One-Electron Density of States

The optical behavior of semiconductors and insulators 1n the
near infrared, visible, and ultraviolet 1s determined by
electronic interband transitions. An additional intraband

or free electron contribution to the optical propertiles has

to be considered for metals. We shall discuss here the relation-
ship between the interband contribution and the density of
states. The interband contribution to the imaginaryApart of

the dielectric const?nt can be written as (in atomic units,

A =1, m=1, e = 1):

ef :
Sixug:: | A jf A,S- (1)

where wep = w, ~ wp 1s the difference in energy between the
empty bands (e) and the filled bands (f). The spin multiplicity

must be included explicitely in Eq. (1). The oscillator strength
ef

tensor~£A is related to the matrix elements of p through
pef = 2 < ¢ lpl e >< e |p| £ > “;%' The Bloch functions are

normalized over unitvolume. Degenerate statistics has been
assumed in Eq. (1) and spatial dispersion effects have been
neglected.

It is customary to take the slowly varying oscillator streﬁgth

out of the integral sign in Eq. (i) and thus write:
2 —
el(w):—z—‘”— F N (w) ; : (2)
W ‘

where F is an average oscillator strength and Nd the combined

optical density of states.



Structure in e (w) (Eq. (1)) appears in the neighborhocod of
critical points, where Xk”éf = 0. Such c¢ritical points can be
localized in a small regzbn of‘§’5pace or can extend over

large portions of the Brillouin zone over which filled and
empty bands are parallel (sometimes only nearly parallel). Once
the critical points which correspond‘to observed optical
structure are identified in terms of the band structure through
various devious and soﬁetimes dubious arguments, their energles

can be used to adjust parameters of semiempirical band structure

calculations.

Four different parametric techniques of calculating band struc-
tures have been used for this purpose: the empirical pseudo-
potential method (EPM)! the gjglmethodz the Fourier expansion

technique (FE)3? and the adjustable orthogonalized plane waves

method (AOPW)“.

Once reasonably reliable band structures are known it is
important to calculate from them the imaginary part of the
dielectric constant ci(w) and to compare it with experimental
results so as to confirm or disprove the initial teptative
assignment of critical peints and thus the accuracy of the

band structures. Rich structure is obtalned in both, experimen-
tal and calculated spectra and hence a rather stringent test

of the accuracy of the available theoretical band structure

is in principle possible.
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In order to calculate numerically the Integral of Eq. (1) it

is necessary to sample elgenvalues and eligenfunctions at a
large number of points in the Brillouln zone. The amount of
computer time required for Solving the band structure problem
with first—pfinciples méthods (OPW, APW,.KKR) af a general
point of the Brillouin zone makes such methods impractical
for evaluating Eq. (1) The parametric methods- (EPM, k-p, FE,
but not AOPW) require only the dilagonalization of a small
matrix (typically 30 x 30) and hence it is possible to=ample
the band structure at about 1000 points with only a few hours
of computer time. Cubic materials, in particular those with
Td,O, and Oh point groups, are simple in this respect: symmetry
reduces the sampling required for the evaluation of Eq. (1)
to only 1/48 of the Brillouin zone. Hexagonal and tetragonal
materials have relatively larger irreducible zones and hence
a larger number of sampling points 1s necessary if the reso-
lution of the calculation is not to suffer. Once the band
structure problem has been solved for all points of a reason-
ably tight regular mesh, the bands and matrix eleménts at
arbitrary points can be obtalned by means of linear or

quadratic interpolation.

The method of Gilat and coworkers® has become rather popular:
for the numerical evaluation of Eq. (1)*58. In the case of a
cubic material the Brillouin zone is divided into a cubic mesh
and the band structure problem solved at the center of these
cubes (sometimes a finer mesh is generated by quadratlc inter-

polation from the coarser mesh®). Within cach cube of the mesh



the bands are linearily interpolated and approximated by their
tangent planes. The areas of constant energy plane within each
cube corresponding to a given Wep are added after multiplying
them by the corresponding oscillator strength and thus the

integral of Eq. (1) 1s obtailned.

The real part of the dielectric constant e can be obtained
from €4 by using the Kramers-Kronig relations. It is also

possible to obtailn Ep and Ei'simultaneously by calculating

the integral:

f
e dV
é(w) I Z',-j, ’([ tu) . ((U*—“Zz ‘_k_ (3)

with n small and positive. For n » + o the imaginary part

of Eq. (3) coincides with Eq. 1. Equation (3) can be evaluated
with a Monte Carlo technique. Points are generated at rahdom
in‘& space within the Brillouin zone and the average value of
the integrand for these points calculated. The process can be
interrupted when reasonable convergence as a function of the

number of random points is achieved.’»,8

We show in Fig. 1 the results of a calculation of €y from the
k-p band structure of InAs with the method of Gilat and Rauben-
heimer.® The band structure problem; including spin-orbit
effects, was solved at about 150 points of the reduced zone
(1/48 of the BZ). We have indicated in this figure the symmetry

of the critical points (or of the approximate regions of space)
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where the structure in Eq originates. The experimental €4
spectrum, as obtained from the Kramers-Kronig analysis of the
normal incidence reflectivity?, is also shown. The agreement
between calculated and experimental Spectra is good,'with
regards to both position énd strength of the observed structure,
with the exception of the position of the E2 peak. This is to

be attriﬁuted to an improper assignment of the E2 peak when

the 6 adjustable band structure parameters were deterﬁined. The
E2 peak had been attributed, following the tradition, to an X
critical point while 1t 1s actually due to an extended region
of k space centered around the U points.® It should be a

simple matter to readjust the band structure parameters to

lower the energy of the calculated E2 peak by about 0.5 eV,

in view of the large amount of computer time required to re-
calculate the energy bands thls has not been done. The structure

calculated around 6 eV, due mostly to spin-orbit splitting of

the L3 levels, has not yet been observed experimentally.

The conventional experimental determination of €y from normal
incidence reflection data® suffers from considerable inaccuracy:
To the experihental error produced by possible Improper surface
treatment and contamination one has to add the uncertainty 1n
the high-enerpgy extrapolation of the experimental data required
for the Kramers-Kronip analysis. Some of these difficulties

are avoided by comparing the calculated reflectivity spectra

(obtained from e with Fresnel's cquatlon) with the experimental
results. This is done in Fig. 2 for GasSb: the experimental

data!® have not been Kramers-Kronig analyzed because of the



small range of the energy scale. Two calculated spectra have
been plotted iIn this figure: one obtained from the 512 band
structure® and the other obtained from a non-localvpseudo-
potential calculation with 14 adjustable parameters.!! The
discrepancy betweeﬁ experimental and calculated curves at high
energy, a common feature of many zincblende-type materials!?
has two origins: the measured reflectivity should be low because
of increased diffuse reflectance at small wavelengths while
the calculated one should be high because of the finite number
of bands included in the calculation. In this region where
er—l is small, the contribution to Ep of transitions not in-

cluded should lower the calculated reflectivity.

During the past few years a lot of activity has been devoted to
the measurement and analysls of differential reflection spectra
obtained with modulation techniques.!3715 The wavelength (or
photon energy) derivative spectral®* should permit an accurate
analysis of the line shapes of the spectra of Figs. 1 and 2.

We show in Fig. 3 the temperature modulated reflection spectrum
(thermoreflectance) of GaSb!5: it has been shown that for the
IIi—‘V materials!S this spectrum is very similar to the photon
energy derivative spectrum, difficult to obtain experimentally.
The correspondlng photon energy derivative spectrum obtained
from the calculation of Fig. 2 is also shown in Fig. 3. The
calculated and experimental shapes of the El’ E1+A1 peaks show
discrepancies of the type attributed in Sec. 2 to exciton inter-

action. Derivative spectra for other germanium and zincblende
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type materials have been calculated by Walter and Cohen!?

and by Higginbotham!® .

‘'The methods to calculate band sfructures from first pripciples,
without or with only a few adjustable parameters (onel!? or
threed) have recently achleved considerable success. However
th¢ caléulation of energy bands at one general point of the

BZ requires a lot of time so as to make density of states
calculations prohibitive. Moreover, the evaluation of the
matrix elements required for Eg. 1 is difficult with first
principles techniques. It 1s nevertheless possible to use

first principles calculations at a few high-symmetry points

of the Brillouin zone to adjust the parameters of semiempirical
band structures from which the large number of sampling points
required for the evaluation of Eq. 1 can be obtained with
relative ease. Ther&xg\technique has proved particularly use-
ful in this respect!»18:1% Matrix elements of p can 5e easily
evaluated from the eigenvectors in the_g.g_representation.
Spin-orbit interaction can also be easily included. Thils k-'p
procedure has been applied to the relativistic OPU band
structure célculated’by Ferman and Van Dyke for gray tinle,
Figure 5 shows the réflectivity of gray tin calculated by this
procedure with the méthodvof-Gilat and Raubenheimer together
with éxperimental results.?® Comparison with other experimental
results for the germanium family suggests that the high-energy
end of the meésured spectrum 1s too low, prpbably due to sur-
face imperfections in the delicate crystals, grown from mercury

solution, which were used for this experiment.
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Thetgxg_fitting procedure has also been applied to a first
principles relativistic APV calculation of the band structure

of PbTe by Buss and Parada’. Figure 6 shows the reflectivity

of PbTe obtained by this method with a Monte Carlo sampling
technique and Fié.'? the abéorption coefficient, both compared
with experimencal data’,>21,22, In both cases the semiquantitative
agreement between experimental and calculated data 1s remark-
ably good in view of the absence of adjustable parameters. The
calculated reflectivity is, at high energles, considerably higher
than the experimental one, .as discussed earlier for other mate-

rials. The E, peak of the experimental reflectivity spectrum

1
appears split In the calculated spectrum, possibly because of
inaccuracies in the first principles band structure. The cal-

culated E, structure appeanrs due mostly to transitions along the

1
 direction. The experimental E, structure has been assigned?3
to the lowest gap along . The calculated E2 peak corresponds
to an extended repgion of the BZ without definite symmetry, as

inferred from electroreference measurements?3,

We have so far discussed optical constants for cubic materials.
While calculations for materials with lower symmetry requlre
more computer time, one has the extra reward of beilng able to
predict the experimentally observed anisotropy. Figure 7 shows
the two principal components of..fei for trigonal Se as calculated
by Sandrock?" from the pseudopotential band structure. The
similarity between calculated and experimental results, also
shown in Fig. 723, is especially remarkable in view of the

method used to determine the pséudopotential parameters:
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They were determined from the pseudopotential parameters re-
quired to fit the optical structure of ZnSe. Only a small ad-
Justment was performed so as to bring the éalculated fundamental
gap (1.4 eV) into agreement with the experimental one (2.0 eV),
The dielectric constant of antimony (trigonal) for the érdi-
nary and the extraordinary ray has also been calculated by a

similar procedure,?26

The reasonable agreement obtained between experimental and cal-
culated optical constants suggests the use of the corresponding
band structure to determine the individual density of states D{(w):
The main work, that of dlagonalizing the Hamiltonian at a large
number of points, has already been done. The programs required

to calculate individual density of states are very similar to
those used for the evgluation of Eq. (1):w ef must be repaced

by the single band energies and Fef

must be removed. As an example
we show in Fig. 8 the individual density of states of the 3
highest valence bands (six including spin) and the 3 lowest con-
duction bands of gray tin.!? Direct information about the indi-
vidual density of states can be obtaired by a number of methods
discussed in this conference. We mention, in particular, optical
techhiques involving transitions from decep core levels to the
conduction band or from thg valence band to temporarily empty
core levels (soft X-ray emision).?’ If the sometimes question-
able assumption of constant matrix elements is made, the corre-
sponding spectra represent the conduction (for absorption spectra)

and the valence (for emission spectra) density of states because

of the small width of the core bands. We show in Fig. 9 the
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density of states of the conduction band of Ge calculate by
Herman et al.* and the corresponding density of states for GaSb
as obtained by the &tg method.® The density of states for both
materials are very similar because of the similarity of their
band structures. We also shown 1in Fig. 9 the quantity eiwz ob-
tained by Feuerbacher et .al.?® for Ge in the region of the
.MM,S edge. The origin of energies has been shiféed so as to make
a comparison with the conductlon density of states possible:
cimz should be proportional to D(w) under the assumption of
constant matrix elements of p. While the rich structure of the
calculated density of states is not seen in the eiwz curve, this
curve 1s reproduced quite well if the density of states 1is
broadened so as to remove the fine structure. The required l1life-
time broadening of about 1 eV 1s not unreasonable for the MH,S
transitions. Using Eq. (2) with Ng replaced by the conduction
density of states we obtain an average oscillator strength at
the maximum of eiwz F = 0.15. This oscillator strength corre-
sponds to the 20 4d electrons per unit cell and hence it should
be divided by 20 to obtaln the average oscillator strength per
d-band. If one reasons that the transitions from 10 of the 20 d
bands to a given conduction band are forbldden because.of the
spin flip involved while transitions from 5 of these 10 bands
are forbidden or nearly forbidden by parity, one finds for the
average oscillator strength of each one of the 5 allowed bands

F = 0.03, which correéponds to a matrix element of p = 0.13

(in atomic units): this value is quite reasonable in view of the

fact that the typical valence-conduction matrix element 1is 0.6.
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The small value of this matrix element explains why the d core
electrons are negligible in the k:RAanalysis of the valence

and conduction masses.

2. Exclton Effects.

We have devoted Sec. 1 to a comparison of experimental optical
spectra with calculations based on the one-electron band structure.
Exciton effects, i.e. the final state Coulomb interaction between
the excited electron and the hole left behind, are known to
modify substantially the fundamental edge of semiconductors and
insulators.2?? Exciton modified interband spectra seem also to
occur in metals at interband edges which have the final state

on the Fermi surface.30 Expérimental evidence for these effects

is reported at this conference 1n the paper by laensel et al.

We shall now discuss the question of exciton effects above the
fundamental edge of insulators and semiconductors with special
emphasis on the zincblende family. As mention in Sec. 1 the

gross features of these spectra are explained by the one-electron
theory. The exciton interaction is responsible, at most, for

small details concerning the observed line shapes., It 1is generally
accepted3!>32 that the exciton interaction suppresses structurc

in the neighborhood of M ¢ritical points: the Coulomb attraction

3

with negative reduced masses 1is equivalont to a repulsion with
positive masses. Such a repulsion smoothes out critical point

structure: no M, critical pecint has been conclusively identified

5
in the experlmental spectra. The Ei and E1+A1 critical polnts of
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figures 1-3 are of the M1 variety. Hence the line shape of the
corresponding €y spectrum should be characterlized by a steep low-
energy side and a broader high-energy side. Figure 10 shows the

shape of the E, peak observed at low temperature by Marple and

1
Ehrenreich33? and by Cardona3“. In order to avoid effects due to
the overlap of the E1 and the E1+A1 peaks it has been assumed
that they have exactly the same shape but shifted by 0.55 eV. The
contribution of only E1 has been extracted from the measured €4
spectrum and displayed in Fig. 10. It 1s clear from this figure

that the E, peak 1s steeper at high energies than at low energles,

1
agalnst the expectations for an M1 peak. Also in Flg. 10 we show
the results of a calculation by Kane3? of the effect of Coulomb
interactlion on the E1 line shape for CdTe, using the effective

mass approximation. The solution of effective mass Hamlltonlan

with non-positive-definite mass 1s made easier by the fact that

the negative mass @long the A direction) has a magnitude much
larger (about ten times) than the two equal po;itive masses. It

is possible to use the adiabatic approximation3!, i.e., to solve

the two-dimentional hydrogen atom problem with the third coordinate
as a parameter and then solve the adiabatic equation for the

third coordinate. The agreement between the calculated and the

experimental line shapes of Filg. 10 is excellent.

Attempts have been made to calculate the dlelectric constant in-
cluding exclton interactions at an arbiltrary point ofﬂE_space,

indebendently of the stringent restrictions of the effective mass
approximation. 35,36 Such calculation is possible if one truncates

the Coulomb interaction between electron and hole Wannier packets



- 15 -

to extend to a finite number of neighboring cells. The extreme
and simplest case of a é-function (Koster-Slater) interaction
can be solved by hand3! 35 and gives around an My critical
.point the shapes of € and ?i'shown in F}g. 11:_For an Mi
critical point the Koster-Slater interaction mixes the Mi one-
electron iine shape with the Mi+1' The high energy side of the
€y peak becomes steeper, in agreement with Fig. 10. The 1lilne
shape observed for the El-—E1+A1 peaks in the refleétivity
spéctrum %s composed almost additively of the €y and £n line
shape:at the energies of these peaks dR/dei and dR/deP are al-
most equal. We also show in Fig. 11 the line shapes expected
for the reflectivity spectra of the E1*E1+91 peaks and for the
corresponding differential spectra (dR/dw). We show in Fig. 12
the photon energy derivative spectrum of these peaks in HgTe3”:
the observéd line shapes disagree with those expected from the
one-electron theory (equal positive and negative peaks) but
agree with those predicted in the presence'of a Koster-Slater
interaction (Fig. 11). Similar results have been found for

other zincblende-type materials.3?

3, Simplified Models for the Density of States

As seen in Sec. 1 the optical density of states,and thus fhe
dielectric constant, 1is a compliéated funct ion of frequency
and its calculation requires lengthy numerical computation.
For some purposes, however, it can be approximated by simple
functions. In the vicinity of-a critical point of the M

variety, for instance,the dielectric constant can he approximated
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by

I/'

€ ch’“(u)-u%) z +coms*aw+ ()

if exciton effects are neglected. Exciton interaction can be
included, within the Koster-Slater model, by adding to % a

positive number smaller than one.

As shown in Fig. 1, €y for the zincblende-type materials has

a strong peak (EZ) in the neighborhood of which most of the
optical density of states 1s concentrated. The corresponding
transitions occur over a large region of the BZ, close to its
boundaries. In order to represent this fact, Penn3® suggested
the model of a non-physical spherical BZ with an isotropic gap
at its boundaries. The complex energy bands of the material

are then replaced by those of a free electron with an isotropic
gap We at the boundary of a.spherical BZ. Thls gap should

occur in the vicinity of the E, optlcal structure, While this

2

model represents rather poorly the rich structure of e, (Fig. 1),

i
1t is expected that 1t should give a good picture of €n at zero
frequency. The reshuffling of density of states involved in the
case of the isotroplic model should not affect er(w=o) very much
because of the large energy denominators which appear in Eg. (3)
for w=o: the lowest gap wo; usually much smaller than wg’
accounts only for a -very small fractlion of the optical density

of states. Penn obtained with this model the static dielectric

‘constant for a finite wavevector q . The result can be approxi-

e

mates by the analytic expression: 38
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e(w--o;fi)--u(%’g—)zF 1+ L E 3—*”‘}'2 ()

In Eq. G)QP 1s the plasma frequency obtained for the density
of valence electrons and wp and kF the corresponding free
electron Ferml ehergy and wave number. The dimensionless
quantity ?Vis usually close to one.

Figure 13 shows Eq. (5) for Si compared with the exact results
of the Penn model.3? These results are obviously independent
of the direction of 3: A small dependence on this direction is
found from a compleﬁe pseudopotential calculation by Nara*l
(see also Fig. 13). The function e(o,q) 1s of interest for the

treatment of dielectric screening.

Equation (5) yields for g=o the electronic contribution to the

stétic dielectric constant:
| ®) , » %
eo-.;i-f—’y(mf’):[«l— ——-mw) (6)

The experimental values of e¢_ agree reasonably well with the

o
results of Eq. (6) using for wo the energy of the E, pealk . 3"
Equation 6 has gained recent interest as the basis of Phillips
and Van Vechten's theory of covalent bonding."'»>"%2,43 These

authors use Eq.(6)and the experimental values of €5 to define
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the average gap Wer With this gap and the corresponding gap

of the isoelectronic group IV materlal they can interpret .a

wide range of propertiles such as crystal structure“z, binding
energy,“? energies of interband critical points,“! non-linear
susceptibilitiesh“, ete. Aé an example we discuss the hydrostatic

pressure (i.e. volume) dependence of ¢_ for germanium and

0
silicon. According to Van Vechten®!, W for C, Ge, Si, and
a-Sn is proportional to (ao)-2-5 where a, 1s the lattice con-
stant. If one makes the assumption that this law gives also
the change in “g with lattice constant for a given material

when hydrostatic stress is applied one can calculate the volume

dependence of e_."! Neglecting the one in Eq. (6), a valid

o.
approximation for Ge and Si, one finds:

| Aeo_z_(AQMw:?__ Aﬂuwg)-_z[o.gs-o.so]: 0.66 ()

odv S\dy T Ay

Equation (7) explains the sign and the small magnitude observed
for (1/ co)(dco/dv). The experimental valuesof this quantity

are 1.0 for Ge and 0.6 for Si. 4145

According to Eq. (6) the average gap wo determines the elec-

tronic dielectric constant for w=o. As the lowest gap W, 1s

r exhibits strong dispersion.

This dispersion is due, in the spirit of Eq. (3), to the density

approached (wo << wg usually),re

of states in the vicinity of We o For the purpose of calculating
the dispersion of Epn immediately below Wy the density of states
can be approximated by that of parabolic bands with a reduced
mass equal to the reduced mass u at w g . These bands are assumed
to extend to infinity in 5 space: the unphysical contribution
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to e, for |k| » = should be small for w < w,, because of the
large energy denominators of Eq. (3). We thus obtain for
a cublc material the following contribution of the w, &ap to
the scalar dielectric constant below @4 (under the assumption

of an constant matrix element of p equal to P):%6

A€r= 2 (Z)tﬂ)yZ wf"",[ sz /g(w /“«’0): C:%(Q"/‘UO) (8)

172 1/2
with «6()():2—-(]”()1 _(l—-x) .

Equation (8) fepresents quite well the behavior of €, immediate-
ly below w_for the lead chalcogenides“” and a number of other
semiconductors“®. As an example we show in Fig. 14 the observed
dispersion of €n beiow w, at room temperature“? together with

a fit based on Eq. (8).“8 For the sake of completeness we have
included in the fitting equations not only the effect of wg (Eo)
but also that of its spin-orbit-split mate E;+Ao (also re-
presented by an expression similar to Eq. 8), the dispersion due
to the E1 and E1+A1 gaps, and that due to the main We gap
assuming ngE2. Thus the fitting equation, with three adjustable

1 n n . 48
parameters Co’ Ci’ C2 is:

€ (w)=1+ C. H;(xo)-k 7'_— (L%L)S/z‘f CXC )
Phocy+ () b (x,) )|+, (e, )

where: ’ 9)

wcs: w°'+A° ’ Xos‘:&')‘;; X

UUHS::UU 'fl& y >(“5’:£f§; ) X =
A (X)=4+ X0

L Elg
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The fitting values of CZ (6.602) and CH (2.791) are in qualita-

tive agreement with those calculated from the band parameters,*8

The parabolic model density of states can also be used to inter-
pret the strong diépersion in the plezobirefringence observed
near the lowest direct gap of Ge, GaAs,*® and other III-V7
semiconductors:5%,5! uniaxial stfess splits the top valence band

1

state (ry) and a birefringence in the contribution of Eo to ¢

r

results because of the selection rules for transitions from

the split bands. The main contribution to this piezobirefringence
is expected to be proportional to f'(x), which diverges like
(w-—mo)"l/2 for w»w . Such behavior can be seen in the experimental
results (circles) of Fig. 15 obtained for GaAs at room temperature.
Included in this figure 1s the corresponding it based on the

model of Eq. (9).“8

The long wavelength, non-dispersive contributioﬁ to the pilezo-
birefringence of FPig. 15 can be interpreted, at least qualita-
tively, in terms of the Penn model of Egs. (6) and (7). Equation
(7) yields two contribution to the change in €, one due to the
change in plasma frequency (i1.e. carrier density) with stress
and the other due to the change in the isotropic gap. The first
contribution should not exist for a pure shear stress. For a
hydrostatic stress the second contribution can be written in

tensor form as:

é—ﬂé‘o = 55’;\ (10)
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where é_is the strain tensor. We postulate that Eq. (8)
remains valid for pure sheer stress. This crude generalation
has a clear physical meaning in therms of the Penn model.
The spherical BZ becomes ellipsoidal unter a sheer stress
and the energy gap at an arbitrary point of the BZ boundary
k., becomes anisotroplc. The gap at kF is assumed to become

F

larger as k., becomes larger (kF is the distance between

F
atomic planes perpendicular to kF). Equation 8 gives the

right sign for the long wavelength contribution to the
piezobirefringence of Pig. 15 but a magnitude about five times
larger. The agreement becomes better if the contribution of
the E0 edge to the long wavelength piezobirefringence, of
oposite sign to that predicted by Eq. 8“8, is subtracted

from the experimental results.

I am indebted to Drs. Buss, Kane, Phillips, and Van Vechten
for sending preprints of their work, prior to publication

and to the staff of DESY for thelr hospitality.
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Imaginary part of the dielectric constant of InAs as cal-
culated from the k-p method ()% and as determined
experimentally (------ =}°. The group theoretical symmetry
assignments were made with the help of the calculated

isoenergy plots.

Reflectivity of GaSb calculated from the $.Rﬁ and from a
pseudopotential band structurel!!. Also, experimental re-

flectivity.10

Measured thermoreflectance spectrum of GaSb!> compared

with the energy derivative of the spectrum of Fig. 2.16

Reflectivity of gray tin calculated from a first principles
OPW band structure fitted with the k-.p method.!? Also

experimental results.?20

- Reflectivity of PbTe calculated from the APW—E;Q’band

structure,’ compared with experimental results.?

Absorption cocefficient PbTe calculated from the APW-ke.p’

band structure, compared with experimental results.? 22

Imaginary part of the dicletric éonstant of trigonal

selenium for both principal directions of polarization of
the electric field vectorrg‘as calculated from the pseudo-
potential band structure (histograms)2* and as determined

experimentally. 25



10.

11.

13.

Individual density of states for gray tin, obtained from
the OPW15-£~band structure.!® The top éf the valence band

is at 0O eV. The lowest valence band is not included.

Conduction density of states calculate for Ge“ and for
GaSb® together with the function eiwz obtained from ex-
perimental data in the vacuum uv?® (the horizontal scale

for the ein curve has been shifted by 29.5 eV).

Contribution of the E1 gap to €y in CdTe as measured at
low temperatures by Marple and Ehrenreich33 and by Cardonad:.

Also calculation by Kane3? using the adiabatic approximation.

Modification in En and ey introduced by the Koster-Slater

exciton interaction 1in the neighborhood'of an M, critical

point. Also, effect on the reflectivity under the assumption

“of an equal contribution of e, and de; to the reflectivity

line shape.

Photon energy derivative spectrum of the reflectivity of

'HgTe in the neighborhood of the E, and E,+a, structure.?

Static dlelectric constant e(o,q) obtained by Srinivasan3?
for Si with the Penn model compared with the interpolation
formula of Eq(5) and with the results.of a pseudopctential

calculation by Nara“? for q along (111).
has



14, Experimental results for € in GaAs below the fundamental
edge at room temperature“? (circles) and fitted curve

based on a model density of states.

15. Piezobirefringence in GaAs for an extensive stress along. (100}
(room temperature). The circles are experimental points.

The solid line is a fit based on the model of Eq. 5.%8
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