Internal Report DESY F41 HASYLAB 81/01 January 1981

Eigen.under Property of	DESY	Bib ^r ioth ek library
Zugang: 1 9. Accessions:	MRZ.	1981
Leihfrist: Loan period:	7	Tag e days

OPTICAL PROPERTIES OF METALS I: THE TRANSITION METALS, 0.1 ≤ hv ≤ 500 eV⁺ Ti V Cr Mn Fe Čo Ni Zr Nb Mo Ru Rh Pd Hf Ta W Re Os Ir Pt

ЪУ

J.H. Weaver, C. Krafka D.W. Lynch and E.E. Koch

an a star

úr.

DESY behält sich alle Rechte für den Fall der Schutzrechtserteilung und für die wirtschaftliche Verwertung der in diesem Bericht enthaltenen Informationen vor.

DESY reserves all rights for commercial use of information included in this report, especially in case of apply for or grant of patents.

"DIE VERANTWORTUNG FÜR DEN INHALT DIESES INTERNEN BERICHTES LIEGT AUSSCHLIESSLICH BEIM VERFASSER."

c)

ACKNOWLEDGEMENTS

The authors are grateful for the encouragement of colleagues and the excellent support of their home laboratories. The optical measurements shown herein associated with two of the authors (Weaver and Lynch) often reflect collaboration with C.G. Olson of the Ames Laboratory. In our own original optical studies, we profited from the fine support of the Ames Laboratory, USDDE, and the Synchrotron Radiation Center, University of Wisconsin-Madison. We are grateful to M.J. Arttus for her dedication in preparing this manuscript; to B. Kaufner and W. Knaut for their skillful drawings of the many figures; to K. Weaver for encouragement; to colleagues who provided the results of their optical studies, published and unpublished; and to D.J. Peterman for computer assistance.

.

.

OPTICAL PROPERTIES OF METALS I: THE TRANSITION METALS, 0.1 ≤ hv ≤ 500 eV[±] Ti V Cr Mn Fe Co Ni Zr Nb Mo Ry Rh Pd

HF Ta W Re Os Ir Pt

J.H. Weaver and C. Krafka

Synchrotron Radiation Center, University of Wisconsin[†] Stoughton, Wisconsin 53589 USA

D.W. Lynch

Department of Physics, Iowa State University and Ames Laboratory USDOE⁺ Ames, Iowa 50011 USA

E.E. Koch

Hamburger Synchrotronstrahlungslabor HASYLAB, DESY Hamburg, West Germany

* in volume 11 we consider the lanthanides plus Sc and Y, the actinides, the noble metals, and A1.

+ Work supported in part by NSF DMR7821080 and DOE-OBES-W7405-Eng-82

TABLE OF CONTENTS

		Page
lorwort/Preface		. 1
cknowledgements	• • • • • • • •	HI
lst of Tables		. F
ist of Figures		. 2
. Introduction		. 7
1.1 General Comments		7
1.2 Definitions		10
1.3 Methods of Measurements and Errors		18
1.4 Use and Misuse of the Data		24
1.5 References	• • • • • • • •	27
. Optical Propertles of the 3d Transition Metals	• • • • • • • • •	31
τι		31
V		48
Cr		60
Мп Мп		71
Fe		78
Co		. 88
NI	• • • • • • • •	. 98
. Optical Properties of the 4d Transition Metals	•••••	112
Zr		112
Nb		130
МоМо		. 141
Ru		155
Rh		. 168
Pd	•••••	. 179
. Optical Properties of the 5d Transition Metals	•••••	. 191
HF		. 191
Та		211
W		222
Re		. 238
Os		252
lr		. 262
Pt	• • • • • • • •	. 271
		192

LIST OF TABLES

	Pag	le
Table 1.	List of abbreviations used in the figures and tables	30
Table 2.	Ti ~ Summary of experimental studies	31
Table 3.	V - Summary of experimental studies	48
Table 4.	Cr - Summary of experimental studies	60
Table 5.	Mn - Summary of experimental studies	71
Table 6.	Fe - Summary of experimental studies	78
Table 7.	Co - Summary of experimental studies	88
Table 8.	Ni - Summary of experimental studies	98
Table 9.	Zr - Summary of experimental studies	12
Table 10.	Nb - Summary of experimental studies	30
Table 11.	Mo - Summary of experimental studies	41
Table 12.	Ru - Summary of experimental studies	55
lable 13.	Rh - Summary of experimental studies	68
Table 14.	Pd - Summary of experimental studies I	79
Table 15.	Hf - Summary of experimental studies	91
Table 16.	Ta - Summary of experimental studies	11
Table 17.	W ~ Summary of experimental studies	22
Table 18.	Re - Summary of experimental studies 2	38
Table 19.	Os - Summary of experimental studies	52
Table 20.	Ir - Summary of experimental studies2	62
Table 21.	Pt - Summary of experimental studies	71

LIST OF FHURIS

-2-

- - -

_

_ _ _

Page

_

51a 1	Sketch of the reflectance of a free electance and	
rig. i	its dielectric function, and its loss function	13
Fig. 2	Survey of available data for T‡	33
Fig. 3a	Reflectivity of Ti	34
Fig. 3b	Reflectivity of single crystal Ti for $\check{E}ll\hat{c}$ and $\check{E}\bot\hat{c}$	35
Fig. 4a	ε ₁ for polycrystalline Ti	36
Fig. 4b	εı for single crystal Ti for Ēllĉ and Ēlĉ	37
Fig. 5a	ε ₂ for polycrystalline Ti	38
Fig. 5b	ϵ_2 for single crystal Ti for $\vec{\xi} \parallel \hat{c}$ and $\vec{\xi} \perp \hat{c}$	39
Fig. 6	Absorption coefficient for Ti	40
fig. 7	Survey of available data for V	50
Fig. 8	Reflectivity of V	51
Fig. 9	ϵ_1 for V	52
Fig. 10	ϵ_2 for V	53
Fig. 11	Absorption coefficient for V	54
Flg. 12	Survey of available data for Cr	62
Fig. 13	Reflectivity of Cr	63
Fig. 14	ε ₁ for Cr	64
Fig. 15	ε_2 for Cr	65
Fig. 16	Absorption coefficient for Cr	66
Fig. 17	Survey of available data for Mn	72
Fig. 18	Reflectivity of Mn	73
Fig. 19	ϵ_1 for Mn	74
Fig. 20	ϵ_2 for Mn	75
Fiq. 21	Absorption coefficient for Mn	76

- - -

•

LIST OF FIGURES (continued)

	Ρ.,	qe
Fig. 22	Survey of available data for Fe	79
Fig. 23	Reflectivity of Fe	80
Fig. 24	ε ₁ for Fe	B 1
Fig. 25	ϵ_2 for Fe	82
Fig. 26	Absorption coefficient for Fe	83
Fig. 27	Survey of available data for Co	89
Fig. 28	Reflectivity for Co	90
Fig. 29	ε ₁ for Co	91
Fig. 30	ε ₂ for Co	92
Fig. 31	Absorption coefficient for Co	93
Fig. 32	Survey of available data for Ni	Dł
Fig. 33	Reflectivity of Ni 16	03
Fig. 34	Reflectivity of Ni for $0 \le hv \le 6 eV$	04
Fig. 35	ε ₁ for Ni	35
Fig. 36	ε ₂ for Ni	96
Fig. 37	Absorption coefficient for Ni 10	D7
Fig. 38	Survey of available data for Zr	4
Flg. 39	Reflectivity of Zr II	15
Flg. 40a	ε _ł for polycrystalline Zr 11	16
Fig. 40b	ε_1 for Zr for $\vec{E} \perp \hat{c}$, $0 \le hv \le 6$ eV	17
Fig. 41a	ϵ_2 for polycrystalline Zr 11	8
Fig. 41b	ϵ_2 for Zr for $\xi \perp \hat{c}$, $0 \le hv \le 6 eV$,	9
Fig. 42	Absorption coefficient for Zr	20

LIST OF FIGURES (continued)

Page

Flg. 43	Survey of available data for Nb	1 32
Fig. 44	Reflectivity of Nb	133
Flg. 45	ε _l for Nb	134
Fig. 46	ε ₂ for Nb	135
Fig. 47	Absorption coefficient for No	136
Fig. 48	Survey of available data for Ho	144
Fig. 49	Reflectivity for Mo	146
Flg. 50	ϵ_1 for Mo	147
Fig. 51	ε_2 for Ho	148
Fig. 52	Absorption coefficient for Mo	149
Fig. 53	Survey of available data for Ru	156
Fig. 54	Reflectivity of Ru	157
Fig. 55	ε ₁ for Ru	158
Fig. 56	ϵ_2 for Ru	159
Fig. 57	Survey of available data for Rh	170
Fig. 58	Reflectivity for Rh	171
Flg. 59	ε _l for Rh	172
Fig. 60	ϵ_2 for Rh	173
Fig. 61	Absorption coefficient for Rh	174
Fig. 62	Survey of available data for Pd	181
Fig. 63	Reflectivity of Pd	182
Fig. 64	Reflectivity of Pd for $0 \le hv \le 6 eV$	183
Fig. 65	ε ₁ for Pd	184
Fig. 66	ϵ_2 for Pd	185
Fig. 67	Absorption coefficient for Pd	186

LIST OF FIGURES (continued)

	Page	
Fig. 68	Survey of avallable data for Hf	
Fig. 6 9	Reflectivity of Hf 193	
Fig. 70a	ε ₁ for Hf	
Fig. 70b	ε ₁ for polycrystalline Hf 195	
Fig. 71a	ϵ_2 for Hf	
Fig. 71b	ε ₂ for polycrystalline Hf197	
Fig. 72	Absorption coefficient for HF 198	
Fig. 73	Survey of available data for Ta	
Fig. 74	Reflectivity of Ta 214	
Fig. 75	ε ₁ for Ta 215	
Fig. 76	ε ₂ for Ta	
Fig. 77	Absorption coefficient for Ta 217	
Fig. 78	Survey of available data for W 225	
Fig. 79	Reflectivity of W 227	
. Fig. 80	Reflectivity of W for $0 \le hv \le 6 eV$	
Fig. 81	ε ₁ for W 229	
Fig. 82	ε ₂ for W 230	
Fig. 83	Absorption coefficient for W 231	
Fig. 84	Survey of available data for Re 239	i
Fig. 85	Reflectivity for Re 240	ļ
Fig. 86	ε ₁ for Re	
Fig. 87	ε ₂ for Re	
Fig. 88	Absorption coefficient for Re 243	ŀ

LIST OF FIGURES (continued)

Page

Fig. 89	Survey of available data for Os 253
Fig. 90	Reflectivity of polycrystalline Os
Fig. 91	El for polycrystalline Os
Flg. 92	ε ₂ for polycrystalline Os 256
Fig. 93	Absorption coefficient for 0s 257
Fig. 94	Survey of available data for Ir
Fig. 95	Reflectivity of Ir
Fig. 96	ε ₁ for Ir 265
Fig. 97	ε_2 for tr 266
Fig. 98	Absorption coefficient for Ir 267
Fig. 99	Survey of available data for Pt 273
Fig. 100	Reflectivity of Pt 274
Fig. 101	Reflectivity of Pt for $0 \le hv \le 3$ eV
Fig. 102	ε1 for Pt 276
Fig. 103	ε ₂ for Pt 277
Flg. 104	Absorption coefficient for Pt

INTRODUCTION

We have collected in this volume data on the optical properties of the elemental transition metals Ti-Ni, Zr-Pd, and Hf-Pt. A companion volume to follow will consider the optical properties of the noble metals and aluminum, the lanthanides including Sc and Y, and the actinides. A third volume will contain information on the alkali metals, the alkaline earths, Zn, Cd, Hg, Ga, In, T1, Sn, and Pb. In this way we will gather together for easy reference the optical properties of all the elemental metals as they are known currently, 1980.

In this data compilation we present tables summarizing the work that has been done for each element (techniques, sample preparation, spectral range, etc.). Figures for each element display the most frequently used optical quantities, i.e. the normal incidence reflectance or reflectivity, the real and imaginary parts of the frequency-dependent dielectric function, and the absorption coefficient. Tables of these quantities and the loss function are given for each element.

This data compilation covers the wavelength range 25 Å s λ s 25 µm, i.e. the photon energy range 0.05 s hv s 500 eV [hv(eV) = 12398/A (Å)]. Most of the published data fall between ~1 eV and ~6 eV, in the range where photomultiplier detectors and conventional laboratory sources are available. In the vacuum ultraviolet for 6 s hv s 30 eV, synchrotron radiation sources, rare gas continua, and discrete line sources have been used to measure the reflectance at near-normal incidence. For photon energies of ~30-200 eV, the absorption coefficient has been measured with synchrotron radiation -8-

for most of the transition metals but rarely at higher energy. Unfortunately, we have found that there is not a complete set of data for many of the transition metals throughout the entire range. Data for wavelengths shorter than about 25 Å are quite sparse because of the difficulty of obtaining monochromatic radiation, particularly between 1 and 3 keV. Monochromator development programs now underway at many synchrotron radiation facilities around the world should improve the situation within the next few years.

The comparative tables and figures which describe the available data point out regions where reliable data are not available or where the present data are still insufficient or ambiguous. In many cases when we seek to provide a set of "most reliable" optical data, we have chosen to use our own data, accumulated for nearly all of the transition metals over the last ten years. The reader can readily compare those tabular results to the rest of the literature through perusal of the figures. The advantage of this format has been twofold: first, we have studied these metals over a wide spectral range (typically 0.1 to 30 eV) and therefore the tabulated optical constants represent a single study rather than a patchwork of many and, second, the results were available to us in a format which was quantitatively more reliable than could have been duplicated by extracting numbers from journal-sized figures. We hope that the reader will forgive our chauvinism; there are cases, of course, where the results of others are superior. Before using our tables, the reader should consult the Methods of Measurements and Errors section and that devoted to The Use and Misuse.

The data have been obtained from a number of sources. To supplement the references collected by the authors over the years, we have searched via computer the abstracts appearing in Physics Abstracts and Chemistry Abstracts, the former from 1969 to present and the latter from 1970 to present. In addition we have solicited unpublished data from colleagues. We have omitted much of the data obtained in the 1950's and essentially all data obtained before 1950. We have generally excluded nonspectral optical data, e.g. values of the complex refractive index obtained ellipsometrically at the wavelengths of one or several spectral lines, and emissivity measurements at one wavelength. It is inevitable that we have overlooked some data or reference that we would like to have included. For such omissions we applogize.

The compilation has a large number of applications. For example, reliable optical constants are needed to design multiple-layer films for application in solar-energy-systems or reflecting optical elements. The data can be used to obtain spectral emissivities for measurements of the temperatures of hot transition metals. Of course, it can be used for a fundamental comparison between experimental optical properties and those calculated from first principles.

We begin with several definitions, then briefly discuss methods of measurement and the associated errors of each. Finally, before presenting the data in tabular and pictorial form, we offer several caveats about the use of the data.

-9-

-10-

DEFINITIONS

In a macroscopic view, the propagation of electromagnetic waves in an absorbing medium is governed by a frequency-dependent conductivity, $\sigma(\omega)$, and a frequency-dependent dielectric constant, $\varepsilon(\omega)^{1-6}$. These usually are combined into a frequency-dependent complex dielectric function $\tilde{\varepsilon} = \varepsilon_1 + i\varepsilon_2$, or a frequency-dependent complex conductivity, $\tilde{\sigma} = \sigma_1 + i\sigma_2$, with

$$\tilde{\epsilon}(\omega) = 1 + 4\pi i \tilde{\sigma}(\omega) / \omega$$
 (1)

and $\varepsilon_1 = \varepsilon$ and $\sigma_1 = \sigma$. Note that a metal, with its finite conductivity at $\omega = 0$, has $\varepsilon_2(\omega) \rightarrow \infty$ as $\omega \rightarrow 0$, but this causes no problems in the wave equation.*

For non-cubic materials, \tilde{o} and $\tilde{\epsilon}$ will be tensors^{7,8}, but for all elemental metals which have been measured this tensor is diagonal in the crystallographic axis system, and there are no more than three independent components. One should be aware, however, that evaporated films of noncubic metals may not always have isotropic optical properties, for there often is a preferred texture, with close-packed planes preferred. In the ensuing discussion we assume, for simplicity, an optically isotropic metal, either a cubic crystal or randomly-oriented grains in a polycrystalline film. Optical studies describe the response of matter to an applied electromagnetic field at optical frequencies (-10^{16} Hz). As discussed above, this is done through the frequency-dependent complex dielectric function, $\tilde{\epsilon}(\omega) =$ $\epsilon_1 + i\epsilon_2$ or, equivalently, the complex conductivity, $\tilde{\sigma}(\omega) = \sigma_1 + i\sigma_2$, which are used with Maxwell's equations, but which are descriptions of the material being studied. These are fundamental quantities, and can be calculated quantum mechanically from microscopic models of the solid. Either represents the elementary excitation spectrum, i.e., ϵ_2 (interband) or σ_1 (interband) provides a measure of interband absorption. ϵ_2 (interband) can be written as

$$\omega^{2}c_{2} = \frac{e^{2}\hbar^{2}}{3\pi m^{2}} \sum_{\mathbf{H}} \int_{0}^{\infty} d^{3}\mathbf{k} |\langle f|\rho|i\rangle|^{2} \delta(E_{f}(\bar{k}) - E_{j}(\bar{k}) - E_{j}(\bar{k}), (2)$$

where the electric dipole approximation has been used for the electron-photon interaction Hamiltonian, $|l\rangle$ and $|f\rangle$ are the initial (occupied) and final (empty) states, and \bar{k} , the electron wave vector, has been conserved through direct transitions.

A complete calculation of ϵ_2 from first principles is difficult, but can be simplified by assuming that matrix elements are independent of \bar{k} , i.e. are constant throughout the Brillouin zone. Then

$$\omega^{2} \epsilon_{2} \propto \sum_{a} \int_{a}^{\infty} d^{3}k \, \delta(E_{f}(\bar{k}) - E_{i}(\bar{k}) - \hbar\omega), \qquad (3)$$

which is termed the joint density of states (JDOS). The JDOS reflects the shape of the electronic energy bands, but obscures any information regarding transition probability variation.

Evaluations of equations (2) or (3) for the transition metals haveshown that structures in the experimental ϵ_2 can arise from extended volumes of k-space, and the importance of critical points is diminished in transition

-11-

^{*} The time-dependent Maxwell's equations are Fourier analyzed. In complex notation the time dependence of all fields is then either exp(iwt) or exp(-iwt). Either may be used and the resultant real parts of the fields, the measurables, are the same. The choice of sign does, however, affect the signs of the imaginary parts of the positive sign on the imaginary parts of the complex quantities above. This choice is more consistent with the microscopic interpretation of optical properties based on quantum mechanics. The other choice of sign also is widely used, however.

-12-

metals. Further, it has been shown that volumes of k space which are removed from high-symmetry lines can be the source of interband structures.

The dielectric function for the transition metals also includes contributions from intraband absorption. The free-carrier or intraband (or freeelectron or Drude) absorption is described by

$$\tilde{\epsilon}(\omega) = 1 - \frac{\omega_p^2}{\omega(\omega + 1/\tau)}$$
(4)

where ω_p is the free-electron plasma frequency and τ is the electronic relaxation time. The plasma frequency is defined by $\omega_p^2 = 4\pi Ne^2/m$, where N is the number of electrons of mass m per unit volume. For a freeelectron gas with $\omega \tau \gg 1$, the absorptivity reduces to $A = 2/\omega_p \tau$ which is small. In figure 1, the free electron dielectric function is shown qualitatively. At low energy, ε_2 is large and positive while ε_1 is large and negative. Both approach zero with increasing photon energy; ε_1 ultimately crosses zero at the plasma frequency and approaches unity at infinite frequency. In an experimental spectrum of the dielectric function for a real metal, the deviation from this simple behavior can be taken as an indication of interband absorption; see Fig. 1 for sketches of free carrier behavior.

For transition metals, where the d bands intersect the Fermi level, interband absorption begins at arbitrarily low energy, and it is impossible to separate the interband and intraband contributions completely. Nevertheless, it may be possible to fit the measured spectrum with a Drude-like spectrum over a limited energy range. The Drude parameters obtained in that way should not be taken too seriously. Nevertheless, they are often useful for separating approximately the low-energy interband and intraband contributions to $\bar{e}(\omega)$ facilitating comparison of theory with experiment.

Fig. 1 Sketch of the reflectance of a free electron gas, its dielectric function, and its loss function.

-14-

The real and imaginary parts of the dielectric function are not completely independent. They are related in an integral-transform Fashion by the so-called Kramers-Kronig or dispersion integrals:²⁻⁵

$$\epsilon_{1}(\omega) - 1 = \pi^{-1} P \int_{0}^{\infty} \frac{\epsilon_{2}(\omega') - \frac{4\omega\sigma(\alpha)}{\omega'}}{\omega'^{2} - \omega^{2}} \omega' d\omega'$$
(5)
$$\epsilon_{2}(\omega) - \frac{4\pi\sigma(\alpha)}{\omega} = \frac{-2\omega}{\pi} P \int_{0}^{\infty} \frac{\epsilon_{1}(\omega') - 1}{\omega'^{2} - \omega^{2}} d\omega'$$
(6)

where P denotes principal value. If a set of optical data such as $\varepsilon_1(\omega)$ and $\varepsilon_2(\omega)$ is self-consistent, it must satisfy the above relations, when suitable extrapolations to zero and infinity are appended to the data measured over some finite spectral range.

By letting $\omega \to \infty$, a limit in which we expect the electrons in the solid to behave as free electrons, we obtain the sum rule²,⁵

$$\int_{0}^{\mu} \omega \varepsilon_{2}(\omega) d\omega = 2\pi^{2} \quad \frac{Ne^{2}}{m} = \frac{\pi}{2} \omega_{p}^{2}$$
(7)

which forms a very useful test of the data. This is equivalent to the f-sum rule of atomic physics. It states that the integral of ε_2 weighted by ω is proportional to N, the number density of electrons in the sample. By integrating to a finite upper limit, partial sum rules are obtained, but their use is somewhat restricted by assumptions necessary for their use.

There are several other sum rules^{2,3} that are useful for testing data for consistency. These are

$$\int_{0}^{\infty} [\epsilon_{1}(\omega) - 1] d\omega = -2\pi^{2}\sigma(\sigma), \qquad (8)$$

which relates the real part of the dielectric function to the d.c. conductivity, and

$$\int_{0}^{\infty} (n(\omega) - 1) d\omega = 0 , \qquad (9)$$

which states that the average value of the refractive index is unity. These, and others⁹⁻¹², have been applied to optical data for aluminum and, to date, there are departures from self-consistency even when the best available data are used¹³.

The boundary conditions on the electric and magnetic fields, implicit in Maxwell's equations¹⁻⁶, give values for the reflected and transmitted fields in terms of the dielectric function, \tilde{e} , the angle of incidence, ϕ , and the state of polarization, s or p. If \tilde{r} is the ratio of reflected electric field to incident electric field at a vacuum-solid interface, then⁶

$$\tilde{r} = \frac{\tilde{E}_r}{\tilde{E}_i} = (\tilde{g} - 1)/(\tilde{g} + 1)$$
 (10)

In which $\sqrt{\epsilon} \sin \phi' = \sin \phi$. The phase shift upon reflection, 0, is included in \tilde{r} as $\tilde{r} = re^{10}$. At this point it may be useful to introduce the complex index of refraction, defined^{*} as

Then

 $\epsilon_1 = n^2 - k^2$ $\epsilon_2 = 2nk$ and $2n^{2} = (+_{11} + \sqrt{\epsilon_{1}^{2} + \epsilon_{2}^{2}})$ $2k^{2} = (-_{11} + \sqrt{\epsilon_{1}^{2} + \epsilon_{2}^{2}})$

^{*} \tilde{N} is sometimes written as n(1 + iK).

If $\phi \rightarrow 0$ then the reflectance at normal incidence becomes

$$R = |\tilde{r}|^2 = \frac{(n-1)^2 + k^2}{(n+1)^2 + k^2}.$$
 (12)

In any case, the measured reflectance is

$$\mathbf{R} = [\tilde{\mathbf{r}}]^2 \quad . \tag{13}$$

The absorption coefficient μ is

where λ is the wavelength in vacuum and $\mu dx = -di/l$ is the fractional loss of flux in distance dx, leading to the decay of the photon flux in the material as exp(- μx).

One can also study the optical properties of a solid with electrons rather than photons. The probability that a fast electron loses energy E in traversing a thin film of material with dielectric function $\tilde{\epsilon}(E)$ is proportional to¹⁴⁻¹⁶

$$tm(-1/\tilde{\epsilon}) = \epsilon_2/(\epsilon_1^2 + \epsilon_2^2) \tag{12}$$

By making suitable corrections to the measured intensity of the transmitted electron beam and by the use of a dispersion integral, it is possible to determine $\tilde{e}(E)$. (There are additional corrections to be made for surface effects, for Čerenkov radiation, and for cases in which the incident electron is not sufficiently energetic.)

If the photon energy becomes high, larger than $-50 \, \text{eV}$ depending on the material, the above expressions simplify to

with k << 1 and δ << 1. Then

$$\epsilon_1 = n^2 - k^2 = 1,$$
 (14)
 $R = \frac{(n-1)^2 + k^2}{(n+1)^2 + k^2} = \frac{\delta^2 + k^2}{4 - 2\delta} << 1,$
 $Im(-1/\epsilon) = \epsilon_2.$

A useful optical quantity in the visible and infrared is the spectral emissivity, $e(\omega)$, the fraction of blackbody radiation with a particular polarization emitted into a differential solid angle by the sample surface¹⁷. For an opaque sample with a flat surface this is equal to the absorptance, A = i - R, with the foregoing expressions giving R, the reflectance. (This is Kirchhoff's law.) The spectral hemispherical emittance is the sum of the integrals of the above emittance over 2π steradians for each polarization. The total hemispherical emittance at temperature 1 is the integral of the latter over the blackbody spectrum, divided by the blackbody spectral integral, both at temperature T. The hemispherical spectral emittance can be put into sloved form as¹⁸

$$\sum_{n=1}^{\infty} \frac{1}{\pi} \int_{n=1}^{\infty} e_{po1}(\omega, \alpha, \beta) \cos \alpha du = 4n - 4n^2 \ln(\frac{1+2n+n^2+k^2}{n^2+k^2})$$
(18)
pol hemis

$$+ \frac{4n(n^{2} - k^{2})}{k} \tan^{-1} \left(\frac{k}{n + n^{2} + k^{2}} \right)$$

$$+ \frac{4n}{n^{2} + k^{2}} - \frac{4n^{2}}{(n^{2} + k^{2})^{2}} \ln(1 + 2n + n^{2} + k^{2})$$

$$+ \frac{4n(n^{2} - k^{2})}{k(n^{2} + k^{2})} \tan^{-1} \left(\frac{k}{1 + n} \right) \cdot$$

where $d\Omega = \sin\alpha d\alpha d\beta$. α and β are the polar and azimuthal angles ($\alpha = \psi$, the angle of incidence used previously, and often there is no β -dependence). [The factor of π represents $\int_{\alpha} 1 \cos \alpha d\Omega$, the spectral hemispherical hemis

emissivity of a blackbody of unit spectral emissivity, i.e. the normalizing factor.]

METHODS AND MEASUREMENT AND ERRORS

In general, any measured quantity can be expressed in terms of ϵ_1 and ϵ_2 or n and k, but, since both real and imaginary parts of the dielectric function appear in the expression, two measurements are needed at each frequency to obtain two equations from which $\tilde{\epsilon}$ or \tilde{N} can be found. There are four general categories of measurement: (1) photometric, (2) photometric with dispersion integrals, (3) ellipsometric, and (4) electron energy loss with dispersion integrals. Space limitations preclude a detailed discussion of each, but a few general statements seem to be in order¹⁹.

(1) Photometric $^{20-40}$. Two quantitles involving the reflected photon flux, or possibly the flux transmitted through thin films, are measured. Examples are the reflectance of p-polarized light at two angles of incidence; the angle at which the p-polarized reflectance is a minimum and the value of $R^{}_{\rm D}$ there; and even $R^{}_{\rm D}$ and $dR^{}_{\rm D}/d\phi$ at some ϕ . More than two measurements may be made, e.g. R_p vs. ϕ , and the data fitted to $R_p(\phi)$. Experimental errors may involve all of the following: nonlinearity of the detector, nonhomogeneity and polarization sensitivity of the detector, failure to collect all reflected flux, and the use of different surface areas if two angles of incidence are used. These measurement errors may be very difficult to estimate. If an estimate can be made, it is relatively easy to determine how the errors will propagate to produce errors in n and k. Such an error analysis can be used to select the best, or at least better, quantities to measure for a sample of assumed optical properties. In general there is not a universal best method. The sample, its properties, and the wavelength region make some methods better than others.

(2) <u>Photometric with dispersion integrals² (5)⁶¹⁻⁵⁵</u>. Here one measures R at fixed ϕ (often near-normal incidence) and fixed polarization over as wide a frequncy range as possible. The real and imaginary parts of the reflection coefficient $\tilde{r} = re^{i\theta}$ or of

-19-

$$\ln r = \ln(re^{i\theta}) = \ln(\sqrt{R}e^{i\theta}) = \frac{1}{2}\ln R + i\theta$$
(19)

obey a dispersion or Kramers-Kronig integral. With suitable extrapolations beyond the range of the data, one can obtain $\theta(\omega)$ from $R(\omega)$. Errors in the measured reflectance then appear in the derived dielectric function as with other methods, but there are additional errors associated with the extrapolations. In general, the extrapolation errors affect the magnitude of ε_1 and ε_2 much more than they affect the positions and shapes of spectral structures. We have found, for example, that in No our dielectric function results obtained using dispersion integrals and measurements of $R(\omega)$ for 0.1-30 eV agree with $\tilde{\varepsilon}$ data obtained by photometric and ellipsometric methods to within 10%, while an error analysis yields an estimate of possible errors of up to 50%.

The availability of some transmission or electron energy loss data above 30 eV reduces the expected extrapolation errors, as does requiring the extrapolation to give reasonable values for the sum rule on v_2 in the region of the extrapolation. A "variation" of the Kramers-Kronig method is to fit a reflectance spectrum with a series of oscillators, whose dielectric function then is represented by that of the sum of oscillators⁵⁶⁻⁵⁷.

(3) Ellipsometric⁵⁸. The ratio of reflected electric fields for pand s-polarization is

$$\tilde{\mathbf{r}}_{\mathbf{p}}/\tilde{\mathbf{r}}_{\mathbf{s}} = (\mathbf{r}_{\mathbf{p}}/\mathbf{r}_{\mathbf{s}})\mathbf{e}^{\dagger}(\mathbf{0}\mathbf{p}\mathbf{-}\mathbf{0}\mathbf{s}) = \rho\mathbf{e}^{\dagger}\Lambda \tag{20}$$

The change in the state of polarization of reflected light can be measured.

~18-

-20-

giving ρ and Δ , from which \tilde{c} can be found. Ellipsometry has been carried out on metals since the time of Drude, but only relatively recently have data been taken at more than a few discrete wavelengths. Automatic ellipsometers now exist, often yielding \tilde{c} vs. ω directly with an on-line computer. Errors in ellipsometry can be different from those in photometry. The alignment of the polarizing elements is very important and can lead to errors. Ellipsometry is rarely carried out at energies above 6 eV for lack of effective polarizing elements.

(4) Electron energy loss¹⁴⁻¹⁶. As mentioned previously, energy analysis of energetic electrons passing through thin films can give $Im(-1/\tilde{\epsilon})$. This quantity is related to $Re(-1/\tilde{\epsilon})$ by a dispersion integral. Thus with suitable extrapolations, and possibly with a normalization factor based on other data, $\tilde{\epsilon}$ can be obtained. In the measurement of electron energy loss spectra one must substract out not only the surface losses but also multiple losses. In fact, the response of the solid to fast electrons is governed by the longitudinal dielectric function while the response to photons is governed by the transverse function. To date, experimental differences between them are negligible for purposes of this document.

All these methods are difficult to apply to metals in the infrared because $R \rightarrow 1$ for all ϕ and $\rho \rightarrow 1$. For photometric methods one can measure the absorptance, A = 1 - R, in methods (2) or use large angles of incidence in methods (1). In ellipsometry one can also use large angles of incidence and multiple (m) reflections to obtain $\rho^{m}exp(im\Delta)$. Finally, electron energy loss measurements usually do not have sufficient resolution to be used for metals in the infrared, i.e. $h\nu \leq 1 eV$, since the zero-loss spectrum may have a width of up to 0.5 eV.

Above ~30 eV the reflectance of all materials quickly fails to values below 0.01 except at large angles of incidence. The primary methods of determining $\tilde{\epsilon}(\omega)$ then consist of fitting R vs. ϕ for large values of ϕ , transmission measurements which give μ , or electron energy loss measurements which then require significant corrections for multiple scattering. The latter two require the use of dispersion integrals to get real and imaginary parts of $\tilde{\epsilon}$. New types of errors arise, such as pinholes in thin-film samples, increased scattering from surface roughness as the weelength decreases, and incompletely collimated radiation.

In all cases the most important kinds of error have not yet been mentioned. All methods make use of the Fresnel relations, derived for a flat smooth interface between two media. (This is so for the electron energy loss measurements, too, for the surface corrections rely on a description of the interface between the sample and vacuum.) Surface roughness, oxide films, and surface stresses all cause errors because the actual sample departs from the ideal strain-free material with a smooth. abrupt vacuum interface. The errors which can arise from these departures from ideality are different for each type of measurement. A rough surface. for example, will make the measured reflectance too low if any scattered radiation fails to reach the detector 59-63. A new structure, typically a reflectance dip, may appear in the reflectance if non-radiative surface plasmons are excited at the rough surface. Ellipsometric methods are less sensitive to roughness, but only insofar as the scattered radiation is not preferentially of one polarization. A transparent oxide will lower the measured reflectance, but in the infrared such an effect is negligibly small for a metal, while submonolayer coverages of transparent oxides can be measured ellipsometrically, causing significant error if unsuspected. In the ultraviolet, oxides are strongly absorbing and cause significant errors in all types of measurement, but those sampling the bulk more than the surface, e.g. electron energy loss measurements, are less sensitive to oxides.

-21-

In order to obtain the dielectric function of a metal a strain-free. clean, flat crystalline surface is needed. In principle, the surface should be cleaned in situ, with cleanliness verified by Auger spectroscopy, and checked for crystallinity, and perhaps strain, by LEED or high-energy electron diffraction (RHEED). This must be done in ultra high vacuum to insure subsequent surface cleanliness. Only then should the optical properties be measured. Unfortunately, such studies have not been performed for most metals in even limited spectral ranges. Moreover, in data taken just at one or at a few fixed wavelengths on truly clean surfaces, evaluations of surface roughness have not been made. Most surface cleaning techniques e.g., Ar⁺ bombardment followed by an anneal, can lead to roughened surfaces. Certainly the older techniques of cleaning by Ar* glow-discharge sputtering creates rough surfaces. One may have to choose between a rough, atomically clean surface and a smooth "dirty" one with a few monolayers of oxide, although in some cases a compromise may be reached. A compromise often used has been to electropolish the samples. This leaves a smooth, strainfree surface, but one with an overlayer of oxide, often containing Cl as well if perchloric acid, H₂CtO₃, is used as the electrolyte⁶⁴. Such treatment causes little error in the infrared reflectance, but above about 6 eV the 2p electrons of oxygen absorb and cause errors. Of course the amount of error varies from sample to sample because of the oxidation processes itself; the oxidation rate also varies for different crystalline faces of a single crystal.

Thin films may be evaporated onto flat substrates, but they are inherently strained, polycrystalline samples. Strain will broaden structure in the optical spectra and the polycrystalline character may introduce special effects due to grain boundaries or voids. Annealing of the film during deposition (hot substrate) or afterward will reduce the strain but at the expense of surface roughness. Recently it was shown that many conflicting spectra obtained on thin films of Au could be reconciled by assuming different degrees of porosity in the films, up to 102 maximum. In general, such voids lower the magnitudes of ε_1 and ε_2 , an effect which can be viewed in zero order as an averaging in the dielectric function of the film with that of the voids, approximated by vacuum⁶⁵. The spectra of many films measured over the years have agreed in shape but not in magnitude. In another view of grain boundaries in films the infrared energy dependence of $\tilde{\varepsilon}(\omega)$ has been interpreted with a two-medium model in which the grain boundary material has a lower electron density and a higher electron scattering (damping) rate^{66,67}.

For purposes of calculating mirror or interference filter performance, it may be desirable to use data taken on films, volds and all, in order to model better the performance of samples which will, in fact, be vapor deposited films. For this purpose, the tabular data reported in this volume are less suitable than some of the data we have shown in our comparison figures since the tabular data were measured with bulk samples. Furthermore, for some of the hcp metals we present tabular data for oriented single crystals with $\vec{E} \parallel \hat{c}$ and $\vec{E} \perp \hat{c}$ to display the optical anisotropy of the material. In principle, for a polycrystalline film with randomly-oriented grains, $\hat{\epsilon}(\omega) = 1/3 \hat{\epsilon}_{\pm}(\omega) + 2/3 \hat{\epsilon}_{\pm}(\omega)$, but in practice the film may grow preferentially with basal plane orientation along the surface (\hat{c} perpendicular to the surface).

-22-

-23-

USE AND MISUSE OF THE DATA

The data presented in this document represent our assessment of the literature. Some idea of the discrepancies between the data presented and other data is also given. A glance at some of the data we do not present but list only by reference will show that there can be extremely large discrepancies, not only in the magnitudes of $\tilde{\epsilon}$ and \tilde{o} but even in the occurrence and non-occurrence of spectral features. We believe that the data tabulated are good to within ±10% in most cases (except near places where ϵ_1 crosses zero, for which a relative error is meaningless). The potential user should keep this 10% figure in mind for critical applications. Exceptions can be identified by examination of the figures.

The data are intended to represent the optical properties of pure, flat, strain-free, oxide-free samples. Effects of overlayers can be calculated in a straightforward manner. Departures from flatness are another matter. Slight surface roughness can be handled but in extreme cases, such as gold black or dendritle tungsten surfaces, the optical properties of the sample do not resemble those of the metal at all, purely for morphological reasons. The data could, however, be used to model such materials and cermets unless the particle size becomes too small.

We should also mention that the data are appropriate only for the normal room temperature or liquid helium temperature phase of the material. The data for fcc Ni are not at all close to those for amorphous Ni (not given), nor can the data for bcc Fe be used for the high temperature fcc phase of that metal. The effects of magnetic ordering are less extreme, but are sometimes important. For example, the data for Cr taken at 4.2 K show a small peak near 0.1 eV which is a result of the antiferromagnetic ordering. As the temperature increases, this peak weakens and broadens and is very difficult to see at room temperature, even though Cr is still antiferromagnetic.

The functions $\tilde{\epsilon}$ and $\tilde{\sigma}$ can be calculated theoretically. As presented here they are local functions, i.e. the material is presumed to have no special effects due to the surface, and the anomalous skin effect has been ignored in obtaining $\tilde{\epsilon}$ from the measured data. This latter effect^{2,5} can be significant for single crystals at and below room temperature in the near, and especially the far, infrared. The data can be applied without correction to evaporated films, whose mean free path is usually short. To deal properly with single crystals in the infrared, whenever interband absorption does not dominate, one should abandon the $\tilde{\epsilon}$ concept and work with the reflectance itself or the surface impedance², $\tilde{Z} = (4\pi/c)\tilde{E}/\tilde{H}$, where the fields are the tangential components evaluated at the surface. Then $\tilde{r} = (4\pi/c-\tilde{Z})/(4\pi/c+\tilde{Z})$ at normal incidence.

Finally, we have presented room temperature or liquid hellum temperature data only. Many applications require data at high temperature, e.g., optical pyrometry and solar-thermal energy applications. Provided oxides or surface roughness do not increase at the higher temperatures, one can use the room temperature data for many applications. There are two ways to obtain the temperature dependence. One can make measurements, e.g. of the reflectance at all temperatures of interest, but in addition to the problems of enhanced oxidation and possible surface roughening at high temperature, problems with sample evaporation and the blackbody radiation of the sample itself arise. At temperatures above ~1000 K the emissivity is usually what is measured, by comparing the radiation from the sample with that from a cavity, often in the sample itself. The other method

4

-25-

measures directly the temperature derivative of the reflectance or absorptance of the sample, by modulation spectroscopic techniques with a calibration determined by a steady-state calorimetric method.

REFERENCES

- H. Born and E. Wolf, "Principles of Optics". (Pergamon Press, London, 1959).
- 2. F. Stern, Solid State Physics 15, 299 (1963).
- L.D. Landau and E.M. Lifshilz, "Electrodynamics of Continuous Media", (Addison-Wesley, Reading, Mass., 1965).
- 4. A.V. Sokolov, "Optical Properties of Metals", (Blackie, London, 1967).
- 5. F. Wooten, "Optical Properties of Solids", (Academic, New York, 1972).
- 6. H. Wolter, Handbuch der Physik 24, 461 (1956).
- 7. J.F. Nye, "Physical Properties of Crystals", (Oxford University Press, London, 1957).
- 8. C.S. Smith, Solid State Physics 6, 175 (1958).
- M. Altarelli, D.L. Dexter, H.M. Nussenzveig, and D.Y. Smith, Phys. Rev. B 6, 175 (1958).
- 10. A. Villani and A.H. Zimmerman, Phys. Rev. B 8, 3914 (1973).
- 11. M. Altarelll and D.Y. Smith, Phys. Rev. B <u>9</u>, 1290 (1974); B <u>12</u>, 3511 (1975).
- 12. D.Y. Smith, Phys. Rev. B 12, 5303 (1976).
- E. Shiles, T. Sasaki, M. Inokuti, and D.Y. Smith, Phys. Rev. B <u>22</u>, (1980) (in press).
- H. Raether, "Springer Tracts in Modern Physics", Vol. 38 (Springer-Verlag, Berlin, 1965).
- J. Daniels, C.v. Festenberg, H. Raether, and K. Zeppenfield, "Springer Tracts in Modern Physics", Vol. 54 (Springer-Verlag, Berlin, 1970).
- H. Raether, "Springer Tracts in Modern Physics", Vol. 88 (Springer-Verlag, Berlin, 1980).
- 17. H.P. Baltes, "Progress in Optics", XIII, 1 (1976) ed. E. Wolf.
- R. Slegel and J.R. Howell, "Thermal Radiation Heat Transfer", (McGraw-HIII, New York 1972) p. 109.
- 19. D.W. Lynch, J. de Physique Suppl. 77, 15-21 (1977).
- 20. 1. Simon, J. Opt. Soc. Am. 41, 334 (1951).

	REFERENCES (cont'd)		REFERENCES (cont*d)
21.	W.R. Hunter, J. Opt. Soc. Am. <u>55</u> , 1197 (1965).	45.	P.O. Nilsson and L. Munkby, Phys. Kond. Mat. 10 2
22.	W.R. Hunter, Appl. Opt. <u>6</u> , 2140 (1967).	46.	 B. Velicky, Czech. J. Phys. B 11, 787 (1961).
23.	D.G. Avery, Proc. Phys. Soc. (London) <u>B65</u> , 425 (1952).	47.	V.K. Miloslavskii, Opt. Spectroscop. 21, 193 (196
24.	R.E. Lindquist and A.W. Ewald, J. Opt. Soc. Am. <u>53</u> , 247 (1963).	48.	D.H. Roessler, Brit. J. Appl. Phys. 16, 1359 (196
25.	B.F. Armally <u>et al.</u> , Appl. Opt. <u>11</u> , 2907 (1972).	49.	G. Leveque, J. Phys. C 10, 4877 (1977).
26.	S.P.F. Humphreys-Owen, Proc. Phys. Soc. (London) <u>77</u> , 949 (1961).	50.	D.W. Berreman, Appl. Opt. 6, 1519 (1967).
27.	R.F. Potter, J. Opt. Soc. Am. <u>54,</u> 904 (1964).	51.	G.M. Hale, W.E. Holland, and M.R. Querry, Appl. 0;
28.	R.F. Potter, Appl. Opt. <u>4</u> , 53 (1965).	52.	C.W. Peterson and B.W. Knight, J. Opt. Soc. Am. 6
29.	0. Hunderi, Appl. Opt. <u>11</u> 1572 (1972).	53.	D.M. Roessler, Brit. J. Appl. Phys. 17, 1313 (196
30.	A. Balzarotti, P. Picozzi, and S. Santucci, Surf. Sci. <u>37</u> , 994 (1973).	54.	R. Klucker and U. Nielsen, Computer Phys. Comm. 6
31.	W.R. Hunter, J. Opt. Soc. Am. <u>54</u> , 15 (1964); <u>55</u> , 1197 (1965).	55.	
32.	U.S. Whang, E.T. Arakawa, and T.A. Callcott, J. Opt. Soc. Am. <u>61</u> , 740 (1971).	56.	H.W. Verleur, J. Opt. Soc. Am. <u>58</u> , 1356 (1968).
33.	U.S. Whang, E.T. Arakawa, and T.A. Callcott, Phys. Rev. B 5, 2118	57.	J. Rivory, Optics Commun. <u>1</u> , 334 (1970).
34.	(1972); B <u>6</u> , 2409 (1972). P.O. Nilsson, Appl. Opt. 7, 435 (1968).	58.	D.E. Aspnes, "Optical Properties of Solids, New De Holland, Amsterdam, 1976) ed. B.O. Seraphin, p. 79
35.	F. Abeles and M.L. Theye, Surf. Scl. <u>5</u> , 325 (1966).	59.	H.E. Bennett and J.H. Bennett, "Physics of Thin Fi (Academic Press, New York, 1967) ed. G. Hass and I
36.	G. Baldini and L. Rigaldi, J. Opt. Soc. Am. <u>60</u> , 495 (1970).	60.	H.E. Bennett and J.O. Porteus, J. Opt. Soc. Am. 5
37.	L. Ward and A. Nag, Brit. J. Appl. Phys. <u>18</u> , 277 (1967).	61.	
38.	L. Ward and A. Nag. J. Phys. D <u>3</u> , 462 (1970).	62.	J.O. Porteus, J. Opt. Soc. Am. 53, 1294 (1963).
39.	R.F. Hiller, A.J. Taylor, and L.S. Julien, J. Phys. D 3, 1957 (1970).	63.	D.W. Berreman, Phys. Rev. 163, 855 (1967); 8 2, 34
40.	J.E. Nestell and R.W. Christy, Appl. Opt. <u>11</u> , 643 (1972).	64.	A.J. Bevolo, B.J. Beaudry, and K.A. Gschneidner.
41.	R.A. MacRae, E.T. Arakawa, and M.W. Williams, Phys. Rev. <u>162</u> , 615 (1967).		Soc. (1980).

- 42. B.W. Veal and A.P. Paulikas, Phys. Rev. B 10, 1280 (1974).
- 43. D.E. Thomas, Bell Syst. Tech. 26, 870 (1947).
- 44. E.L. Krieger, D.J. Olechna, and D.S. Story, General Electric Corp. Report No. 63-RL-3458G, September 1963.

- 90 (1969).
- 1).
- 5).
- pt. <u>12, 48 (1973)</u>.
- 3, 1238 (1973).
- 6).
- , 187 (1973).
- evelopments", (North 99.
- ilms", Vol. 4 R.E. Thun, p. I.
- 1, 123 (1961).
- 81 (1970).
- Jr., J. Electrochem.
- 65. D.E. Aspnes, Phys. Rev. B 21, 3290 (1980).
- 66. O. Hunderi, Phys. Rev. B 15, 3419 (1973).
- 67. S.R. Nagel and S.E. Schnatterly, Phys. Rev. B 9, 1299 (1974).

Authors	Energy Range	Technique	Temperature		Sample	:	Dat	a Pres	entati	ion				<u> </u>	Ren	nark:	5
	(ev)		RT unless specified	E I	ulk luk	rep									т	1	
5	2 6-27 6	Ref)				····											
HB57	0.12-12.4	Ellips			E	~ ×	R.n.k										
BV K62	0.12-0.62	Ellips			×M	P	n.k.e	1.62.	R								
KC63	0.06-0.5	Ellips			XMF	P	n.k	11-21									
KCh63	0.31-2.61	Ellips			×MF	Р	n.k.a				Ì						
LSE64	109-539	Trans			E	ĸ	u.										
KC 65	0.05-5	Ellips			X MF	P	r n.k.o	.R.ει	. Eo . Im	(e ⁻¹							
LT66	0.06-0.25	Ellips			× MF	Þ	ε/λ.	-E1	2		1						
VAK67	3-14.4				×MF	Þ	R	•			tec	hn i que	s: po re of	olari eflec	imetr tanc (ielo	ry fo se fo	or 3 < hv < 5 eV or 4 < hv < 7 eV
KNB68	5-12	Ellips			× MF	,	R; KK lm(c+	: σ,1, 1) ⁻¹ ,0	π(ε ⁻¹) ^ε 1		dat	a take	en fr	rom V	/AK67	7, tl	nen KK analyzed
SHK69	40-300	Trans		×	E×	<	μ				opt syn	ical a chrotr	ibsor on r	optic adia	on me stion	asu: 1	ements with
AB71			1000-1700		×		e at	λ = 6	500 Å		еті	slvit	Ϋ́				
P071			1200-2200		×		٤H				emi	sivit	Ϋ́				
mm / 2	0.12-3.1	Ellips			X	'	n,k,ơ										
Sm72	1.96, 2.27	Ellips	~280-2100		x In	•	n,k				spu	terec	l, an	ineal	ed,	AES	
-30- List of abbreviations used in the figures and tables.	real and Imaginary parts of the complex dielectric function, ε̃(ω) = ε ₁ + iε ₂ Im(ẽ+1) ⁻¹ volume and surface loss functions Kramers-Kroniq analysis	absorption coefficient room temperature, -300 K index of refraction and extinction coefficient Minul = n + it	optical conductivity, o = c ₂ u/4π temperature; transmission (if it appears in data presentation column) absorptivity, A = 1 - R	reflectivity or reflectance	$\hat{\xi}$ = electric field vector; \hat{e} = crystallographic c-axis for hcp metals where c is orthogonal to the basal plane	emissivity, hemispherical emissivity, normal emissivity	amechanical polishing	ultra high vacuum (generally ~10 ⁻⁹ Torr or better)	transmission electron microscopy	low energy electron diffraction	Auger electron spectroscopy	reflection	multi-angle	ellipsometry	Argon-sputtering, generally implies post-sputtering annealing	electropolish	chemically polished
Table 1.	',, ^{,6} 2 - Im(ĉ ⁻¹),- Im KK	- <u>-</u> *		×	č∎¢, č1ĉ	N3(H3,3	жР 5.	: An	TEM	LEED	AES Trans	Refl	0-u	Ellips	Sput	EP	ð

- -

Authors	Energy Range	Technique	Temperature	Sample				Data Presentation	Remarks		
	(eV)		(K) RT unless specified	Film	X-tal	Bulk	Ргер		Ti		
5572	~0-30			. x				im(e ⁻¹)	technique: energy loss spectroscopy, AES		
9a874			1100-1800			×		$\epsilon_{\rm N}$ at λ = 6450 Å °	emissivity		
CH74	2.27	Ellips		×	×		uhv	R,n,k	ultra high vacuum, LEED, single crystal		
JC74	0.5-6.5	Trans, Refl		×			E×	n,k,ơ			
WeG74	2-130	Trans		×		ŀ	Ēx	КК: μ	technique: energy loss spectroscopy		
WGa74	2-120	Trans		×			Ex	u,im(ε ⁻¹); KK: ε ₁ ,ε ₂	technique: energy loss spectroscopy		
LOW75	0.15-30	Refl	4.2 K for hv < 4.4 eV RT for hv > 4.4 eV			×	EP	A,R; KK: ε ₁ ,ε ₂ ,σ, im(ε ⁻¹),im(ε+1) ⁻¹	technique: absorption measured by calorimetr for $hv < 4.4 eV$, reflectivity measured for hv > 4.4 eV with synchrotron radiation		
BFF76	0.5-5	Ref1		×		İ		R,n,k			
BDL77	0.03-3.1	Refl	ļ			×		R	also emittance 400 ≤ T ≤ 850 K		
CM77	1		1945			×		$\epsilon_{\rm N}$ at λ = 6530 Å	emissivity		
WRS80	2-25	Refl				×	Sput	R; KK: ε ₁ ,ε ₂	AES used to characterize Ti and TiO_x		
-32-							.n.				

÷

.

Fig. 3a Reflectivity of Ti. All spectra are for polycrystalline samples. LOW75; ---- KC65; -o-o- HB57; ---- VAK67; ---- WRS80;

-3**5**-

- 145 -

Fig. 4b ϵ_1 for single crystal TI for $\vec{E} \parallel \hat{c}$ (dashed line) and $\vec{E} \perp \hat{c}$ (solid line) by LOW (unpub).

-96-

Fig. 5a E₂ for polycrystalline Ti. — LOW75; ♥♥♥ H857; ♥♥♥ WRS80; AAA MM72; 000 KC65; ●● KC63; ΔΔΔ JC74.

.

-38-

-39-

Polycrystalline Titanium

publication by D.W. Lynch, C.G. Olson, and J.H. Weaver in Phys. Rev. B $\underline{11}$, 3617 (1975) based on the following tabulation

Energy (eV)	εl	¢2	n	k	lm(-1/č)	R(∳≈0)
0.10	-1525.31	1101.84	13.21	44.72	0.00	.416
0.13	-1258.94	/20.16	9.91	35,73	2.00	.973
0.10	-521.17	235.09	5,03	23,38	0.00	. 465
v.11	-440.25	192,20	4.4H	21.45	0.00	.963
9.12	-170.24	154.40	3,90	19,79	9,00	. +52
0.13	-120.15	127.15	1,44	14.23	0.00	. 969
9.14	-274.29	108.76	3.22	16.87	0.00	.451
0.15	-237.95	44.33	3.00	15.72	0.00	. 454
9.16	-294.28	42.hU	2.61	14.70	0.00	.951
0.17	-103.45	71.65	2.60	13.79	0,00	* 444
6.10	-101,49	62.34	2.41	12.94	0.00	. 945
0.19	-141.90	54.18	2.23	12.12	0.00	.444
0.20	-124.05	40.02	2.12	11.34	0.00	1934
0.21	-108.32	43.28	∠ .04	10.61	0.00	.931
0.22	-44.41	3J.hó	2.00	9.92	0.00	.42n
9.23	-82.15	30.75	1.94	9,27	0 40	. 916
9.24	-7.0.97	34.65	2.01	8.46	0 11	. 904
· 0.25	-61.37	33.23	2,05	ь.10	0.01	- 10 · 4 · 3
1.20	-52.80	\$1.51	2,08	7.56	0.01	/ 7
1.21	-44.65	27.94	2.00	6,98	0.01	• d n l
0.20	-29.92	10.14	1.43	5.65	0.01	. 444
4.29	7.91	25.37	4.15	3.06	0.01	.537
0.30	-57.91	127.04	6.39	9,94	0.01	_H \$ 3
9.31	-48,99	50.67	3.40	7.87	0.01	. 327
9.32	-43.10	46.19	3.17	7.29	0.01	. 424
0.33	-38.61	40.54	2.95	6.81	0.01	. 613
0.34	-31,50	36.81	2.02	6.52	0.01	_HU2
0.35	-31.10	33,49	2.74	6,21	0.02	.742
0.30	-28,00	31.02	1.67	5,93	0.02	.149
0.17	-25.26	24.25	2.54	5.65	0.02	.769
U.38	-22.28	26.92	2,52	5.35	9,02	. 754
0.39	-19,02	24.92	2.48	5.02	0.13	. / 5 1
0.40	-15.69	23.26	2.49	4,68	0.03	. 100
J.41	-12.12	22.09	2.56	4,32	0.01	
0.42	-8.64	21.43	2.09	3.48	0.94	
0,43	-5.30	21.19	2.68	3.0A	0.04	.548
u.44	-2.23	21.32	3.10	3.44	9.05	.561
0.45	0.67	21.75	3.15	3.25	0.05	.545
0.40	5.37	22.54	3.02	3,12	6.94	. 534
0.47	5.62	23.94	3.89	3.06	0.04	.534
U.44	7.31	25.51	4.11	3.10	0.04	.540
ú. 17	d.49	27.08	4.29	3.15	0,03	. 54P
U.5V	9.27	28.59	4.43	3,22	0.03	.555
6.52	10.16	30,95	4.h2	3.35	1,03	.564
0.54	10.04	33.09	4.13	3.50	0.03	.580
0.50	9.47	\$4.37	4.75	3_62	0.03	. 5 . 4 9
1.75	н. 67	15.13	4.74	3.71	0.03	*241
9.90	7.44	35.47	4.11	3.77	0.03	.591
4.4.2	7.0/	35.74	4.05	1.8J	0.03	<u>.</u> n91

Fig. 6

Absorption coefficient for Ti. ---- SHK69; --- WeG74.

Ti			-42-				TI			-43-			
Energy (eV)	11	' 2	n	k	հայ քել)	K(4≠U)	Energy (eV)	εı	' 2	n	k	Im(+17c)	K(4-V)
11 क छ थे	e . 0454	\$5.05	4.111	\$. 5 4	4.1.1	. :s(+ i	1-27	-1.44	а ма	1 09	4 3		
9.00	5.21	35,23	4.52	4,90	0.43	.544	3.01	-1.94	1.73	1 479	1.70	0.21	
0.93	4.57	14.n4	4.44	\$. 40	0.03	. b/l j	1.90	-1.86	1.65	1 06	1.73	0.21	.457
0.19	4.00	34.94	4.54	i, n	0.03	. 0 9 4	5.42	-1.41	1.57	1.05	1 1	1 22	.411
0.12	1.53	11.00	4.52	1.44	0.03	. ייי	1.95	-1.74	1.47	1.0.	1.57	0.21	4.4.4
17 . 24	1.41	31.01	4.25	3.84	0.04	.601	5.11	-1.63	1.41	1.04	1 54	() 2a	1.41
9.16	2.45	12.33	4.14	3.87	0.04	.548	1.49	-1.50	4.47	1.04	1.67	0.24	1.7 L 1
3.15	2.61	11.55	4.11	5.05	0.04	-54a	4.03	-1.4/	1.40	1 03	1 54		
11. 11.	F.79	30.H7	4.04	3.112	0.03	• 2 48	4.05	-1.39	4.24	1.03	1.57	1. 3.	
4.62	4.1.3	24.45	1.94	3_но	0.03	.544	4.08	-1.74	3.19	1.04	1 54	1 27	
11 . A 4	2.14	28.72	1.44	3.1.5	0.03	<u>.</u> 742	9.11	-1.21	1.15	1.04	1 5 3	41 2 1	.103
·*• * * *	1.52	51.34	1.43	3.73	9,93	• 3 K Y	4.13	-1.13	3.11	1 04	1 4 4	0.20	
1 e.	1.20	24.74	1.85	3.94	0.04	.540	4.10	-1.00	1.09	1.05	1 47	6 26	
11 - 14	1.11	27.00	3.но	1.65	0.04	.502	4.19	-0.49	1.05	1.05	1 45	4 40	2 2 1 1
9. tz	1.9a	21.27	3.77	3.62	0.04	. 574	4.22	-0.90	1.02	1.06	1 42	0 10	• • • •
9.14	11.44	26.83	3,73	3.60	0.04	.577	4.25	-9.61	4.01	1.07	1 40	1. 11	41.1
J.4n	₩ ₩ ₩	27.38	1.69	1.57	0.04	.575	4.28	-9.74	4.00	1.09	1.40	0.1	
11. H	4.10	25.93	1.65	1.55	0.04	.5/3	4.50	=V. n6	4.41	1 10	1 1 1	6 3 3	1.1.1
1.00	11.14	25.40	3.62	3.52	0.04	<u>-570</u>	4 . 14	-4.61	1.01	1.11	1 36	0.32	
1	0.57	24.59	3.54	3.46	0.04	. bn5	4.10	-11.5%	1.01	1.12	1 34	0.32	- 2-94 Diale
1.10	0.44	11.01	3.47	5.41	0.04	• 204	4.40	-0.50	1.02	1 1 1	1 1 2	6 3 4	1 2 1 H
1.15	9.31	22.7H	3.40	3.15	0.04	• 115	4.43	-0.45	3.02	1 14	1 3 3	0.32	2.404
1.20	4.3+	22.OH	3.35	3,30	0.05	.559	4 • 4 7	-11.45	1.02	1 14	1 1 2	1. 47	2.3
1.25	9.31	21.60	3.31	3.26	0.05	.547	4.49	-0.36	3.61	1.15	1 41	0.33	. 270
).30	0.10	21.31	3.28	3.25	0.05	. 2 + 0	4.51	-0.34	3.01	1.16	1 30	0.31	273
1.15	-1.23	21.07	3.23	3.2h	0.05	.547	4.50	-0.30	3.01	1.17	1 29	0.31	.20+
1.49	-0.73	20.76	3.17	3.20	0.05	5-9	4.59	-0.28	3.02	1.17	1 24	0.11	- 2 9 9
1.45	-1.44	20.41	3.08	3.31	6.05	.553	4.60	-9.26	2.96	1.16	1 27	0 . J 3	. 201
1.59	-2.15	14.91	2.95	3.32	0.05	• >>7	4.65	-4.22	2.44	1.17	1 26	6 34	. 200
1.55	-7.11	15.05	2.81	1.11	4.45	.554	4.73	-0.12	2.9n	1.19	1.24	0 41	-2
4.00	- 5. 36	18.09	4.74	4.JU	0.05	.504	4.77	-0.06	2.47	1 20	1 23	() 3.4	1.5
1.00	-3.52	17.19	2.55	3.24	0.to	.576	4.90	-0.05	2.98	1.21	1.23	0 44	
1.70	-1.95	10.43	2.54	3.23	0.0n	. >>/	4.84	-0.03	2.99	1.22	1.21	0 11	244
1.15	-4.08	15.48	2.44	3.17	V.fin	.554	4.50	-0.01	2.99	1.22	1.22	0.31	
1.40	-+.11	14.64	2.36	3.11	0.06	.550	4.42	0.90	2.99	1.22	1.22	0.44	240
1.45	-4.07	11.34	2.29	3.05	0.07	• 7 4 7	4.96	0.05	2.98	1.21	1.21	0.44	246
1.40	-4.00	13.27	1.22	2.99	0,07	. 740	5.00	0.05	9.UU	1.24	1.21	0.41	
1.95	-1.42	12.04	2.16	2.44	0.07	• 3 1 1	5.98	0.09	3.00	1.24	1.21	0.44	
2.10	- 1 . Ho	12.13	2.11	2.88	9.07	-5 HI	5.12	9.11	3.01	1.25	1.20	0.11	
2.10	-1.07	11.13	2.01	2.17	0.00	.520	5.17	9.14	3.01	1.25	1.20	0.11	.230
2.20	~3.41	10.26	1.95	2.47	4.09	<u>_504</u>	5.21	u.17	3,03	1.27	1.20	0.11	2.21
2.80	-1.09	9.54	1.16	2.55	0.04	.445	5.25	0.21	3.07	1.24	1.20	0 32	- 2.2 H
2.10	-2.63	H.97	1.01	2.41	0.10	• 4H J	5, JU	U.35	3.25	1.35	1.21	0.30	.271
2.59	-2.57	4.51	1.70	2.39	0.11	.471	5.34	-0.59	3.31	1.10	1.41	0.29	244
2.10	-2.34	0,16	1.75	2.34	0.11	.402	5.39	0.02	2.73	1.17	1.16	0.37	228
2.11	-2.30	7.84	1.71	2.29	0.12	• 4 hb	5.44	0.08	2.92	3.23	1.15	9.34	. 231
	-/./+	1.51	1.64	2.25	0.12	.4D1	5+44	0.10	2.45	1.24	1.19	0.34	.239
2.99	-2.21	1.23	1.53	2.21	0.13	+17	5.53	0.09	2.97	1.24	1.20	0.34	. 2 1 1
3.40	- / . 1 9	0.93	1.59	2.17	0.13	- + + 4	5.54	0.08	2.98	1.24	1.21	U.34	.214
3.19	-/./1	0.05	1.55	2.15	U.14	_ 4 l 2	5.04	0.06	2.96	1.23	1.21	0.34	. 2 15
3.20	- / . / 7	r) _ 94	1.50	7.12	0.14	- 4 FS	5.44	0.04	2.48	1.23	1.21	0,34	211
3. 1.1	-2.24	0.12	1.44	2.09	0.15	. 447	5.14	0.01	2.97	1.22	1.22	1.30	.214
1 4 19 19 4 - 19 19	- 1.35	h.r.o	1.17	2.00	9.15		5,79	-0.03	2.95	1.21	1.22	0.14	. 2 11
1.50	- 4. 17	5.25	1.10	2.01	0.15	. 1+3	5.81	-0.07	2.42	1.14	1.22	9.14	. 24 1
4 1 1	-7.51	4.03	1.24	1.46	0.17	. • • •	٦. ٩١	-0.09	2.07	1.19	1.22	0.35	4 4
	-2.11	4.45	1.1/	1.00	9.15	• 4 a ti	5.02	-9.15	2.18	1.15	1.21	0. 16	. 244
	-2,11	14 <u>a</u> 13 44	1.11	1.01	4-14		6.96	-9.15	2.71	1.13	1.20	9.37	.242

TI			-44-				TI			-45-			
Energy (eV)	εŀ	e ₂	n	k	lm(~1/€)	R(ቀ≏0)	Energy (eV)	٤I	¢2	n	k	lm(-1/r)	R(4=0)
5.14	-9.10	2.06	1.12	1,19	0.37	. 244	4.54	0.05	1.79	0.94	0.40	11.54	.179
e.29	-0.16	2.00	1.11	1.14	0.38	.240	9.51	0.06	1.64	0.93	ປ. 90	4.59	140
14 + 2 ts	-4.16	2.54	1.09	1.16	0.39	+247	' , ú Ý	0.05	1.65	0.92	0,40	0.60	.140
5.30	-0.14	2.44	1,08	1.14	0.41	.232	4.70	0.04	1.63	0.91	0,049	0.61	.180
* = 46	=0*13	2.17	1.07	1,11	0.42	. 224	3.34	0.04	1.60	0.91	0.84	0.62	.1/4
*+===1	-9.12	2,32	1.05	1.10	0.43	.225	A . AS	0.03	1.50	0.90	0_8K	9.64	.189
9.50	-0.07	2.28	1.05	1.08	0.44	-219	9,39	0.02	1.55	0.09	U H I	0.65	1149
C . 11	-0.03	2.21	1.04	1.00	0.45	.212	10.09	0.02	1.51	0.87	0.86	0.66	.174
n. /4	0.07	2.10	1.04	1.03	0.46	. 20 4	10.16	0.02	1.48	0.06	0.95	0.64	_17H
0.91	U.96	2.13	1.05	1.02	0.47	• 7 A M	10.25	0.02	1.44	0.06	0.44	0.69	.176
0.00	0.09	2.10	1.05	1.00	0.47	• 3 4 4	10.33	0.02	1.42	0.85	0_03	0.71	.175
0.93	9.12	5.09	1.00	0.99	0.48	.144	10.42	0.02	1.38	0.84	0.82	0.12	.174
9.77	9.15	2.07	1.05	0,94	0,40	+140	10.00	9.03	1.15	0.83	0.01	0.74	.172
4.44	0.14	2.00	1.00	0.77	0.40	. 102	10.59	0.03	1.32	0.82	0.80	0.76	.179
7.004	9.17	2.91	1.07	4.77	0.40	4174	14.04	0.05	1.28	0.91	0.79	0,78	.167
1 1 4	N N . 1 A	2.00	1.07	0.97	0.40	174	19.70	0.05	1.25	0.01	0.78	0,60	.100
1 1 1	17 4 K K 11 3 4	2.97	1.07	0.95	0.48	175	10.47	0.05	1.21	0.80	0.76	0.82	194
1 11	9.24	2.04	1.08	0.95	6 AR	174	10.97	0.00	1.18	0,79	0.74	0.05	.154
2.45	0.29	2.04	1 06	0.94	11 AN	17)	11.07	0,10	1.14	0.79	7.72	0,87	.152
1.19	11 4.3	2.04	1 09	0.94	0 49	170		0.19	1.12	0.80	J. 70	0.04	-145
1 34		2.05	1 09	0 44	11.4.9	169	11.27	0.17	1,12	0.81	1.69	0.04	.1 19
7.42	0.43	2.00	1.10	0.94	0.40	.164	11.3/	0.18	1.12	0.81	0.69	0.87	-137
1.41	0.15	2.07	1.11	0.94	0.47	. 167	11.48	0.1/	1.12	0.81	0.69	V.8/	1 3 4
1.51	0.41	2.12	1.13	0.94	0.45	.165	11.38	7.10	1.10	0.00	0.0	0.89	. 1 40
1.56	0.13	2.17	1.08	1.01	0.46	193	11-09	V.10	1.07	9.79	0.10	0.92	. 1 1 9
Lol	U. 32	1.95	1.07	0.91	0.50	.163	11.80	0.10	1.04	0./8	0.17	4.71	
1.05	0.34	2.02	1.04	0.92	0.40	.165	11.74	0 10	1.41	0.77	0.05	0.10	. 1 3 2
1.16	0.35	2.03	1.10	0.43	0.48	.155	12 14	V.19 N 20	0.37	0,77	0.57	0.90 6.90	127
7.15	4.35	2.03	1.10	0.92	0.48	.103	12.07	4.20	0.97	0 77	0.65	n 44	177
1.00	0.37	2.05	1.11	0,93	0.47	.104	14.13	0.20	0.90	0.77	0.62	1 01	
7.05	0.37	2.06	1.11	0,93	0.47	.165	12.27	0.21	0.94	0.76	0.61	1.02	.124
7.40	0.35	2.07	1.11	0.93	0.47	.167	12.33	0.22	0.43	0.76	0.61	1.01	.122
7.45	0.36	2.07	1.11	0.93	0.47	.105	12.14	0.22	0.92	0.76	0.60	1 0 3	.120
1.49	0.35	2.UH	1.11	U.94	0.47	. Lod .	12.45	0.23	0.90	0.76	0.59	1.04	.119
4.45	0.33	2.08	1.10	0,94	ú.47	.159	12.50	0.23	0.89	0.76	0.59	1.05	.117
H.10	0.32	2.00	1.10	0,94	0.47	.170	12.58	0.24	0.80	0.76	0.58	1.05	.115
d.15	0.31	2.08	1.19	1,95	0.47	.171	12.65	0.25	0.87	0.76	0.57	1.07	. 113
8.21	0.30	2.07	1.09	1.95	0.47	.1/2	12.71	0.26	0.85	0.76	0.56	1.07	.110
1.21	0.24	2.07	1.09	1.45	0.47	.173	12.78	0.25	0.84	U.76	0.56	1.08	.109
d.32	0.27	2.05	1.09	0.95	U.4H	.1.14	12.94	0.27	0.83	0.76	0.55	1.08	.106
9°26	4.25	2.06	1.00	0.95	0.48	.175	12.91	0.28	0.82	0.76	0.54	1.09	.104
8.45	0.23	2.04	1.07	0,95	0.4d	.177	12,98	0.29	0,82	0.76	0,54	1.04	.102
4.55	0.21	2.03	1.06	0,96	0.49	+178 +13	13.12	0.30	0.80	0.76	0.52	1.10	_ 1/49
4.01	0.21	2.01	1.05	0.95	0.49	-178	13.16	0.31	0.79	0.76	9,52	1.10	.097
d.97	0.17	2.00	1.04	0.16	0.50	-191	13.25	0.32	0.78	0.76	0.51	1.10	.095
n.13	0.16	1.97	1.03	0.15	0.50	.181	13.33	4.32	0.77	0.76	0,50	1.10	.443
8.79	0.15	1.42	1.02	U. +3	0.51	.151	13.40	0.33	0.76	0,75	0,50	1.10	.091
4.40	0.15	1.93	1.02	U • • 4	0.52	• FRU	13.47	0,34	0.76	0.76	0.50	1.10	•040
0.+B	9.11	1.40	1.00	0.91	0.53	193	14.54	0.34	0.75	0.76	0.49	1.11	- UH Y
1.05	0.10	3.07	0.94	0.41	U_53	• 1 4 3	13.óz	0.34	0.73	0.76	0_46	1.12	.087
411	4.11	1.04	0.33	0.91	U.54		13.77	0.17	0./1	0.76	0.47	1.11	-092
A*14	0.09	1.43	0.48	0.43	U.54 6 EE	1 1 2	13.45	0.37	0.70	0,76	ı.46	1.12	.091
1.25	0.04	1.0)	0.41	0.91	U.55	• 1 7 / • 4 1	13.92	0.34	11.64	0.77	1.45	1.11	-016
1,32	0.00	1.11	0.96	U • V 1	0,5h 0 5h	.184	14.00	U.34	9.69	0.77	5.45	1.10	.077
4.34		1 + 7 T	רול איי ה	9.91	0,07	.101	14.08	0.39	0.68	0.77	7.44	1.10	.075
9.40	0.07	1,12	9.95	0.91	11.21	• 1 4 14	14.10	9.40	0.67	0.77	0.44	1.10	.074

П

•

_

ті			-46-				TI			-47-			
Energy (eV)	εI	£5	n	k	tm(-1/č)	R (+=0)	Energy (eV)	٤I	£2	n	k	lm(-1/ē)	R(¢=0)
14.25	0.4 1	0.00	0.77	0.43	1.04	.071	21.56	11.06	0.51	6 60	6.41		
14.33	0.42	0.65	0.77	0.42	1.08	Jin 9	11.15	0.87	U. B2	0.40	0,31		
14.41	0.43	0.64	0,77	0.+2	1.08	iind	21.74	6.67	0.61	0.99	0.91	1.54	. 11 2 3
14.50	U.4J	0.63	0.77	.0.41	1.07	065	22.13	U. 66	0.61	0.40	.4. 32	· · · · ·	. 12.5
14.24	0.44	0.62	0.78	0.10	1.07	. 063	22.11	0.85	U.64	V.75	(1, 17	0.57	
14.67	0.45	0.62	0.78	0.10	1.05	.063	22.54	0.84	0.64	0.90	0.33	0.57	
14.75	0.46	9.61	0.7B	0.35	1.05	.060	22.74	0.44	0.05	6 67	4.11	0.59	1121
14.84	U.47	0.60	0.79	0.31	1.03	.058	22.95	9.82	0.05	0.97	0 14	0.54	
14.93	0.47	0.60	0.79	0.31	1.03	.957	23.17	9.81	0.66	0 96	0.34	0.33	
15.02	0.47	0.59	0.78	0,31	1.03	056	23.19	9.19	0.66	0.95	0 44	0.62	
15.10	0.49	0.57	0.79	0.36	1.01	053	21.01	9.78	0.66	0.95	0.35	0.61	
15.21	0.50	0.57	0.79	0.36	1.00	052	₹ 3°44	0,15	9.66	0.94	0 35	0 - D A	4.4.4
15,10	0.50	0.56	0.79	0.35	0.99	050	21.07	0.73	0.64	0.92	0.15	0.69	
15.40	0.51	0.54	0.79	0.34	0.97	. 048	24.30	9.72	0 62	0 42	0 44	0.64	
15.99	0.52	0.53	0.80	0.33	0.95	.046	21.54	0.72	0.61	0.91	11.14	0.68	112
15,59	Ŭ.52	0.51	0.79	0,32	0.96	.045	27.04	9.71	0.60	0.41	11 43	0.69	
15.69	0.50	0.49	0.83	0.29	0.81	.034	21.55	0.64	0.59	0.89	0 13	0.71	
15,79	V.5B	0.54	0.83	0,33	0.86	.040	20.02	0.65	0.56	0.84	11 33	0.22	
15.89	0.58	0.52	0.83	0.32	0.85	.016	26,10	0.67	0.57	0.86	0.42	4 7a	
15.49	0.59	0.52	0.83	0.31	0.84	1037	20.37	U. h.	0.55	0.00	0 42	4 14	
10.10	0.60	0.51	0.03	0.31	0.83	.036	20.06	9.60	0.55	0.07	11 11	0.16	
16.20	0.60	0.50	0.83	0.30	0.82	.035	26.45	9.65	0.51	0.86	0.31	0.75	
16.30	0.01	0.49	0.03	0.29	0.00	.033	21.55	0.61	0.51	0.85	0.36	0 79	
16.40	0.63	0.4#	0.04	0.28	0.77	.030	27.46	9.61	0.49	0 64	0.30	0.40	
16.53	0.65	0.40	0.86	0.28	L.73	.020	29.17	0.61	0.46	0.83	0.24	0.00	
15.64	V.66	0,40	0.86	0.28	6.72	.028	28.50	V.61	0.43	0.62	0.26	0 77	- 111 - 124
16.75	0.67	0.47	0.86	0.27	1.71	.027	28.43	0.64	0.41	0.84	0.25	0.73	0.27
16.96	0.68	0.46	0.87	0.27	0.68	.025	40.00	0.65	0.37	0.84	6.22	0.15	
16.98	0.70	0.46	0.88	0.26	0.65	.023							
1/.10	0.72	0.46	4.83	0.26	0.63	.022							
17.21	0.73	0.46	0.A9	4.26	0.12	.022							
17.33	0.75	0.45	0.90	1.25	0.19	.020							
17.46	0.77	0.46	0.91	1.25	0.57	.019							
17.58	0.81	0.46	0.93	0.25	0.53	.017							
17.71	0.84	0.48	0.95	0.25	0.51	.017							
17.83	0.90	0,50	0.98	0.25	0.47	.016							
17,40	1.02	0.52	1.04	0.25	0.40	.015							
18.03	4,04	0.77	0.63	0.11	1.30	.105							
18,23	0.65	0.30	0,83	0.18	0.50	.019							
18.30	0.74	0.40	0.89	. 0.22	0.57	.017							
14.50	0.77	0.42	0.91	0.23	0,54	.017							
10.04	0.19	0.44	0.92	0.21	0.53	.017							
10./0	0.81	0.44	0.93	0.21	0.52	.016							
10.92	0.03	0.46	0.94	0.24	0.51	.016							
17.97	0.04	0,46	0,95	0.24	0.50	_01h							
12422	0.85	0,48	0.96	0.25	0.50	.016							
14.55	00.0	0.40	0,96	0.25	0.49	.016							
14 67	0.07 0.00	U.49	0.97	0.25	0.49	.017							
د بر ۲۰۰۰ د بر ۱۵	0.98	0.20	0.97	0.26	0.49	.017		•					
12.03 13.44	0.09	0.51	0.48	0.26	0.49	.017							
20.27	0.99	0,52	0.98	0.27	0.49	.018							
44.36 76.44	U. 69	U.34	U.96	0.27	0.49	.019							
4 11 + 12 7 2 11 - 64	0.90	U.34	0.99	0.28	0.49	.019							
20,00	0.91	U.30	0,99	0.26	0.49	*01A							
47+83 71 14	0.91	0.37	1.00	0,29	0.50	•050							
21.17	0.09	0.61	V.99	0.31	0.52	.023							
***31	A*9R	U.D.	V.99	0.31	0.53	-023							

	,								
-uthors	Energy Range	Technique	Temperature	İ	S	amp	ie	Data Presentation	Remarks
	(eV)		(K) RT unless specified	Fi Im	X-tal	Bulk	Prep		v
WL074	0.1-35	Refl	4.2 K for h> < 4.88 eV RT for h> > 4.88 eV			×	EP	A,R; KK: ε ₁ ,ε ₂ , m(ε ⁺¹),lm(ε+1) ⁻¹	absorption measured by calorimetry at $h_{\rm c}^2$ < 4.85 eV, reflectivity measured for $h_{\rm c}^2$ > 4.88 eV with synchrotron radiatic See also RCF80
CGS76	0.32-5.5	Trans, Refl		×			In	e	
SDL77	0.03-3.1	Refl				×	MP	R	Also emissivity for 400 < T < 850 K
GC 579	0.32-5.6	Trans, Refl		×			In	c	ultra high vacuum film deposition
NC80	0.5-6.5	Trans, Refl		×			Ex	n,k,σ	authors consider V values only slightly improved over JC74
NCC80	0.5-6.5	Trans, Refl		×			Ex	σ	
-64-									
								ļ	

-84-

Authors	Energy Range	Technique	Temperature		S	amp	le	Data Presentation	Remarks
	(eV)		(K) RT unless specified	Film	X-tal	Bulk	Prep		· V
BVK62	0.12-0.62	Ellips				x		n,k,ɛı,ɛ₂,R	
KC65	0.05-5	Ellips				×	мр	n,k,c	
LT66	0.06-0.25	Ellips				×	MP	ε2/λ,ε1	
LTA66	0.1-3.5	Ellips				×	мр	€2/Å, €1	
L e 67	0.1-4	Ellips				×	MP	ε ₂ /λ	data taken from LT66 and LTA66
VAK67	3-14.4					×		R	polarimetry for $3 < hx < 5 eV$, reflectance for $4 < hv < 7 eV$. and photoemission for 7.5 < hv < 14.4 eV
SHK69	40-300	Trans		×			E×	u	optical absorption measurements with synchrotron radiation
SR70	1-50	m-0		×			E×	R; $\varepsilon_1, \varepsilon_2, \operatorname{Im}(\varepsilon^{-1})$	optical constants determined by both KK analysis and two-angles of incidence technique.
\$\$72	0-30			×			Ex	im(e ⁻¹)	energy loss spectroscopy
B874			1100-1750			×		$\epsilon_{\rm N}$ at λ = 6450 Å	-
CGS74	0.32-5.5	Trans, Refl		×			In	Τ,σ	ultra high vacuum flim deposition
JC74	0.64-6.6	Trans, Refl		×			Ex	n,k,d	table of E,n,k
St74	0.8-4	Ellips	RT and 77			×	MP	ε2/λ,ε1	
WeG74	∿25-130	Trans		×			E×	<u>ل</u>	energy loss spectroscopy
WGa74	2-120	Trans		×				u,lm(ε ⁻¹); KK: ε ₁ ,ε ₂	energy loss spectroscopy

-15-

-05-

Fig. 9 E1 for V. --- WL074; --- NCB0; ---- St74; 800 SR70.

201 (12/2) vased on (n	e to Howing ta	bulation				
Energy (eV)	εl	ε ₂	n	k	lm(~1/č)	R(4=0)	
0.10	-1441.45	1177.20	12.83	45.89	0.00	, ч 7н	
0.12	-1428.27	741.24	9.51	38.97	0.00	.977	
.0.16	-868.69	346.81	5.77	30.03	0.00	.976	
0,20	-575.21	189.43	3.90	24.30	0.00	.975	
0.24	-404.94	114.63	2.82	20.32	0.00	. 974	
U.28	-246.58	73,91	2.13	17.35	0.00	.974	
0.12	-224.17	53.90	1.79	15.08	0.00	.970	
0.3b	-175.15	41 04	1.54	11.32	0.00	466	
0.40	-139.72	32.91	1.38	11.90	0.00	. 962	
0.44	-113,70	27.54	1.28	10.74	0.00	. 957	
0.48	-93.94	23.32	1.19	9.77	0.00	. 452	
0.52	-78.42	20.64	1.16	8.93	0.00	. 445	
0.56	-66.29	18.30	1.11	8.22	0.00	- 4 3 8	
0.60	-56.47	16.74	1.10	7.59	0.00	- 929	
u.64	-46.48	15.00	1.07	7.04	0.01	. 921	
0.60	-41.63	14.04	1.07	6.54	0.01	949	
0.72	-36.01	12.90	1.06	6.09	0.01		
0.16	-31.03	12.20	1.08	5.67	0.01	. ##2	
0.80	-26.91	11.70	1.10	5.30	0.01	.864	
0.85	-22.53	11.17	1.14	4.88	0.02	. 8 4 9	
0.90	-18.83	10.63	1.18	4.50	0.02	.811	
U.95	-15.52	10.30	1.25	4,13	0.03	.775	
1.00	-12.64	10.22	1.34	3.80	0.04	. 730	
1.05	-10.19	10.26	1.46	3.51	0.05	. h d 2	
1.10	-9.06	10.42	1.60	3.26	0.06	-632	
1.15	-6.18	10.69	1.76	3.04	0.07	.583	
1.20	-4.59	11.10	1.93	2.88	0.00	.543	
1.25	~3,31	11.61	2.09	2.77	0.08	.515	
1.30	-2.29	12.21	2.25	2.71	0.UR	498	
1.35	-1.02	12.88	2.38	2.70	0.08	. 491	
1.40	-1.24	13.50	2.48	2.72	0.07	.491	
1.45	-1.14	14.02	2.54	2.76	0.07	.495	
1.50	-1.18	14.36	2.57	2.79	0.07	. 444	
1.55	-1.32	14.56	2.50	2.82	0.07	503	
1.60	-1.46	14.64	2.57	2.84	0.07	.597	
1.65	-1.72	14.65	2.55	2.67	0.07	.511	
1.70	-1.94	14.51	2.52	2.08	0.07	.512	
1.75	-2.11	14,32	2.49	2.80	0.07	.514	
1.00	-2.29	14.10	2.45	2.84	0.07	-515	
1.85	-2.43	13.01	2.41	2.87	0.07	.515	
1,90	-2.50	13.44	2.36	2.85	0.07	-514	
2.00	-2,42	13,14	2.34	2.81	0.07	.504	
2.05	-2.37	12.92	2.32	2.78	0.07	.506	
2.10	-2.44	12.86	2.31	2.78	0.08	.506	
2.15	-2.47	12.81	2.30	2.79	0.08	.507	
2.20	-2.64	12.77	2.28	2.80	0.00	.510	
2.25	-2.84	12.68	2,25	2.81	0.00	.514	
2.30	-3.02	12.60	7.21	2.43	0.00	.510	
2.35	-3.34	12,52	2.19	2.06	0.07	.522	

Vanadium

publication by J.H. Weaver, D.W. Lynch, and C.G. Olson in Phys. Rev. B 10, 501 (1973) based on the following tabulation

-55-

v.

-56-

۷

-57-

foergy (eV)	εı	€ <u>2</u>	n	k	im(-1/≥)	R(+=0)	Energy (eV)	e1	£2	n	k	lm(-1/£)	R (4=0)
1.41	51.04	12.36	2.15	2.86	0.07	. 5 2 6	1.38	0.15	1.74	0.97	0.89	0.57	.170
2.45	-4.07	12.19	2.04	2.90	0.07	. 5 3 5	7.51	V.19	1.11	0.98	0.07	11.58	.164
2.50	=4.30	11.71	2.42	2.91	0.07	.540	7.65	0,19	1.70	V.4B	0.87	0.58	-162
4.55	-4.67	11.43	1.96	2.92	0.07	.546	1.79	0.23	1.47	0.48	0.85	0,59	156
2.00	-4.95	11.02	1.119	2.92	0.04	.552	7,95	0.23	1.65	0,98	0.64	0.59	-155
2.03	-5.14	10.56	1.81	2.91	0.00	.557	0.19	0.25	1.62	U.97	0.81	0.60	.152
1 14	+5.34	10.10	1.74	2.89	0.08	.561	4.26	0.29	1.59	U.98	0.81	0.61	116
2 25	-5 45	4 64	1.68	2.88	0.08	. 566	W.43	0.31	1.54	0.98	0.81	0.61	.143
2 445	-5 5 4	4 14	1.61	2.85	0.08	.569	A.61	0.29	1.59	0.98	0.81	0.61	.145
1 85	-5.60	N 16	1.55	2.83	0.48	.573	8.79	0.29	1.56	0.97	0.61	0.62	.144
2 AU	-5.00	H 24	1.48	2.80	0.08	.517	4.98	0.28	1.52	0.96	0.79	U.64	.142
1.45		7.85	1.42	2.76	0.00	.574	4.16	0,29	1.48	0.95	0,78	0.65	.139
1.00	-5.59	7.41	1.36	2.73	0.09	.582	9.46	0.29	1.44	0.94	0.77	0.61	.130
1.45	-5.54	7.00	1.30	2.69	0.04	-594	9.68	0,29	1.40	0,93	0.75	0.60	.134
1.10		6.61	1.25	2.64	0.09	.545	9.92	0.28	1.35	0.91	0.74	0.71	.133
1.15	-5 12	6 23	1.20	2.60	0.04	.586	10.08	0.31	1.31	0.91	0.72	0.72	.127
1 20	-5.17	5 90	1.16	2.55	0.10	.5#5	10.42	0.29	1.26	0.89	0.71	0.75	.126
1 20	-5 04	5 59	1 12	2.51	0.10	. 586	10.69	0.30	1.19	0.08	0.68	0.79	.124
3.00	-4 6 3		0.94	2.17	0.11	-586	10.4/	0.33	1.13	0.07	0.65	0.82	.112
J. 10	-1.03	1 76	0.87	2 17	0.13	.575	11.27	0.37	1.07	0.47	0,62	0.83	.102
3 . 19 1	-1.10	3 13	0.07	1 46	0.16	.541	11.59	0.44	1.03	0.88	0.58	0.82	091
2.10	-3.10	2.11	0 78	1 76	0.20	.503	11.92	0.47	1.04	0,90	0,58	0.80	.000
4 3 4	-2.50	2.10	0.70	1 68	0.22	417	12.04	0.47	1.05	0.90	0.58	0.00	.089
4.34	-1.92	2.03	0.90	1 60	0.25	449	12,20	U.4n	1.03	0.89	0.58	0.81	099
1.20	-1 10	2.37	0.21	1 53	4 21	474	12.46	0.47	1.01	0.89	0.57	0.81	
4.10	- 44	4. TP 12. Al	0.93	1 47	0 10	. 400	12.54	0.47	1.01	0.69	0.57	0.82	.086
4.4.4.9	-1.30	2,43	0 45	1 42	0 12	. 176	12.72	0.47	0.99	0.08	0.56	0.02	.085
4.30 	-1.14	2	0.03	1 39	N 34	355	12.92	0.47	0.98	0.68	0.55	0.83	.083
4.09	-1.5*	5.11	0.07	1.30	0.34	534	11.05	0.47	0.97	0.88	0.55	0.83	.082
4.79	-0.03	2.30	4.40	1.39	4 37	476	13.19	6.47	0.96	0.08	0.55	0.84	.083
4.00	-4.42	2.30	0.20	1.31	0.14	313	13.13	0.47	0,94	0.97	0.54	0.85	. 080
4.99	-9.87	2.33	4.71	1 36	0.10	4114	13.40	9.47	0.93	0.87	0.53	0.85	079
5.04	-0.10	2.47	4.71	1.20	0.39	- 304 304	13.62	0.48	0.92	0.87	0.53	0.86	.079
2.04	-0.12	2.21	0.31	1 23	0.41	201	13.78	0.48	0.90	0.87	0.52	0.87	.077
0.19	-0.00	2.20	V.7Z	1.23	0.43	245	13.93	0.48	0.49	0.96	0.51	0.87	.075
7.10	-0.01	2.23	14+7 <u>4</u>	1.41	0.42	. 205	14.09	0.49	0.87	0.86	0.50	0.87	.074
5.41	-0.00	2.21	0.03	1.17	0.43	211	14.25	0.50	0.86	0.86	0.50	0.87	.071
5.10	-0.51	2.19	0.93	1.10	0.43	262	14.42	0.50	0.85	0.86	0.49	0.87	.071
2.31	-0.45	2.10	0.99	1.13	0.44	256	14.59	9.50	0.84	0.86	0.49	0.86	. 070
2.49	-0.40	2.10	0.95	1.17	0,44	164	14.76	0.50	0.83	0.86	0.48	0.88	069
7.21	-0.42	2.15	0.94	1.19	0.45	52.30 34K	14.94	0.51	0.81	0.86	0.47	0.89	067
5.78	-4.55	2.11	0.95	1.11	0.45	.243	15.02	0.52	0.80	0.86	0.47	0.88	965
5.00	-9.29	2.11	0.96	1.10	0.47	.740	15.10	0.52	0.80	0.46	0.46	0.88	
5./9	-0.25	2.10	0.96	1.99	0.47	* 2 3 3	15.50	0.51	0.78	0.86	0.46	0.64	.062
5.62	-0.23	2.09	0.97	1.00	4 . 4 J	.411	15 20	0.51	0.78	0.46	0.45	0.88	. 862
5,90	-0.18	2.07	1.97	1.05	0.48	.223	15.90	0.51	0.77	0.45	0.45	0.89	-061
2.49	-0.17	2.07	0.98	1.05	0.48	. 2 4 5	16.10	0.53	0.75	0.85	0.44	0.89	.050
5.98	-0.14	2.04	0.48	1.05	9.49	.219	16.31	0.52	0.74	6.85	0.4	0.90	- 060
6.17	-0.12	2.02	0.98	1.04	0.49	.210	15.51	0.51.	0.74	0.04	0.41	0.90	059
5.20	-0,10	1.49	0.97	1.02	0.50	.212	16.97	0.53	0.71	0.04	0.47	0.91	. 157
5.36	-0.08	1.90	0.97	1.01	0.51	. 298	17 10	0.61	0.69	0.04	0 41	0.71	0.54
0.10	-0.04	1.93	0.97	0.99	0.52	.202	57 44	1,07	9407 044	0.01	0.41	0 42	054
0.n ⁽⁾	-0.03	1.90	0.97	0.98	0.53	.194	17637 47 64	7,53	U . D U	0.01	0 4 T I	0.72	-U73 //E/
0.05	9.40	1.87	0.47	0,97	0,53	.194	17.427	N 63	0.00	N 43	0.40	0.03	4 9 3 4 A 6 2 3
6,17	0.04	1.85	U.97	0.95	0.54	*144	1 7 • 17 9 4 M - 4 M	V.73	V+04	0 H0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1, 23	.052
6.48	0.00	1.43	1.97	0.94	0.55	.185	18,19	V.54	9.0J	V . N 2	U.38	0.72	+ UD1
1.00	0.10	1.80	0,90	0.92	4,55	.179		0.54	N.62	0.82	16.0	U.74 A 03	.044
7.12	0.13	1,79	0.98	0.91	4.56	.175	14.04	0.54	0.60	0.93	0.37	0,92	-04X

v			-58-			
Energy (eV)	εl	£2	n	k	lm(-1/ĕ)	R(↓=0)
14.10	9,54	0.59	0.82	0.36	0.42	. 141
14.07	0.55	0.57	9,82	0,35	0.91	.045
19.47	0.55	U.5h	0.82	0.34	0.40	.044
19.68	0.55	0.55	0,82	0.34	0.40	.114 1
19.44	4.50	0.54	0.81	0.33	0.40	
20.)u	0.56	0.52	0.81	0.32	0.90	. 041
24.15	0.5u	0.52	0.81	0.32	0.89	.040
29.37	9.50	0.51	0.81	0.31	0.88	- 0.49
20.44	u.57	0.50	0.81	0.31	0.47	. () 4.8
20.00	u.57	0.19	0.01	0.30	0.87	
29.44	4.51	0,49	0.81	0.30	0.86	- 0.36
21.01	Ч. 5ч	0,49	0.01	0,29	0.85	-0.16
21.19	9.54	0.47	0.81	0.29	0.85	-035
26.JM	9.5H	0.4n	0.81	0.28	0.03	.034
21.56	0.59	0.46	0.61	0.28	0.83	
21.75	0.59	0.45	0.02	0.28	0.82	.032
21.94	4,54	4,44	0.01	0.27	0.81	.032
22.14	0.59	0.43	0.01	0.27	0.81	.012
22.14	9.54	0.42	0.01	0.26	0.00	.0.11
22,54	0.60	9.41	0.01	0.25	0.78	.029
42.15	9.60	0.40	U.01	0.25	0.76	.028
22.96	0.61	0,40	0.02	0.24	0.75	.027
23.17	1.01	0.39	0.82	0,24	0.74	.026
23.33	4.02	0.36	0.82	0.23	0.72	.025
23.01	0.62	0.36	0.82	0.23	0.71	.025
23.44	0.03	0.37	0.82	0.22	0,70	.024
23.07	0.63	0.36	0.H2	0.22	0.68	.023
24.30	0.61	0.35	0.02	0.21	0.67	.023
24.33	0.64	0.35	0.03	0.21	0.66	.022
24.40	0.64	0.34	0.61	0.20	0,64	.021
23.91	1.00	11.33	0.83	0.20	0.62	.020
15 50	4.00	0.33	9.83	0.20	0.62	.020
25.60	9.00 0 bb	0,32	0.03	0.19	0.60	.019
25 AU	0.00	0.32	0.03	0.19	0.59	.019
2	0,00	0.31	0.03	0.19	0.58	.018
26.20	0.00	0.31	14 A A	0.10	0.57	.018
25.40	0.61	0.30	U.Q.4	0.10	0.56	.017
2n.6U	0.67	11 214	0 0 0	0.10	0.55	.017
25.80	6 68	4.20	0 44	0.17	0,59	.015
27.00	9.00 U.DH	0.26	0.94	0.14	9.52	.016
21.20	0.69	0.21	0.04	0 16	4.21	- 415
27.40	0.01	0.27	0.85	0.16	0.40	
21.00	0.54	0.26	U.85	0.16	0.40	
27.00	0.70	0.26	0.65	0.15	0.47	
28,00	0.70	0.26	0.85	0.15	0.40	.013
28.5v	9.71	0.25	0.86	0.14	0.44	
24,00	0:12	0.24	0.86	0.14	0.41	-011
54.20	u_11.	0.23	0.86	0.13	0.39	
10.00	U.71	0.22	u.87	0.13	0.37	.009
30.50	0.75	0.21	0.87	0.12	0.35	
31.00	0.15	0.20	0.38	0.12	0.33	.008
31.50	u.).	0,20	0.88	0.11	0.32	.907
52.00	9.17	1.19	0.114	0.11	0.30	.007
32.00	6.19	0.16	0.84	0.10	0,28	, uûn
33,09 34 50	0.40	0.16	9,90	0.10	0.26	.005
224.34	0.81	0.17	0,91	0.10	0.25	.005

v			-59-			
Energy (e¥)	ε1	£2	n	k	tm(-1/₫)	R(∳=0)
\$4.00	0.42	13. 1.11	9.91	0.10	0.25	1405
34.50	0.63	9.18	9.92	0.10	0.24	- 999
35.90	J. H4	0.17	0.92	0,09	0.24	.994
35.50	0.86	0.18	0.43	0.09	0.23	.004
30.00	0.07	0.1+	0.94	0.10	0.23	.004
10.50	0.87	0.19	0.94	0.10	0.24	.004
37.00	U_He	0.19	0.94	0.10	0.24	. 09-1
37.50	0.89	0.29	9.95	0.11	9.24	.004
30.40	0,89	0.21	0.95	9.11	0.25	. 110.4
10.50	0.89	0.22	0.95	0.11	0.25	004
37.00	0.04	0.22	0.95	0.12	0.20	-004
34.50	0.84	0.23	0.95	u.12	0.24	. 1848-4
49.00	0.44	0.24	0.95	0.13	0.28	

huthors	Energy Range (eV)	Technique	Temperature (K) RT unless specified	Sample				Data Presentation	Remarks
				Film	X-tal	Bulk	Ргер	 	Cr
\$\$72	0-30			×			E×	lm(s*1)	energy loss spectroscopy
Ud72	1-12	Refl	1			×	EP	R; KK: =:	
JC74	0.5-6.5	Trans, Refl		×			E×	n,k,c	table of E.n.k
Sz74	0.8-4	Ellips				×	EP	e2/2,e1	
wGa74	2-120	Trans		x			E×	$[1, Im(\varepsilon^{-1}); KK: \varepsilon_1, \varepsilon_2]$	energy loss spectroscopy
WeG74	2-130	Trans		×			£x	КК: Ц	energy loss spectroscopy
FLS75	0.08-4.13	Ref1		×			Ex	R; KK: n,k	
KI N75	0.058-4.9	Ellips	100-430			x	EP	σ	Cr and Cr-Fe alloys; EP and annealed at 973
KN75	0.07-4.1	Ellips	295			×	MP	ε ₁ ,ε ₂ ,R,σ,n,k	annealed 10 ⁻⁵ Torr, 1073 K
ST77	0.05-0.10	Ellips	295		×		MP	E2/2,E1	
GC S79	0.32-5.6	Trans, Refl		×			In	σ	uhv deposition
NC80	0.5-6.5	Trans, Refl				x	Ex	n,k	authors consider Cr values-significantly improved over results of JC74; substrate at 700°C during deposition
NCCBO	0.5-6.5	Trans, Refl		×			ł	σ	
OL Unp1	4-30	Refl				×	EP	R; KK: ε ₁ ,ε ₂ ,σ, im(ε ⁺¹),μ	synchrotron radiation

-09-

Authors	Energy Range (eV)	Technique	Temperature (K) RT unless specified	Sample				Data Presentation	Remarks
				Film	X-tal	Bulk	Ргер		Cr
Sa39	2.6-27.6	Ref1		x			Ex	R	
LSE64	109-539	Trans		×			ł	u .	
L T66	0.06-0.25	Ellips				×	MP	ε2/λ,ε1	
LTA66	0.1-3.5	Ellips				×	MP	$\epsilon_2/\lambda,\epsilon_1$	
HL67	0.015	Trans, Refl	RT, 107			×	1	R	
Le67	0.6-4	Ellips		ĺ		×	MP	ε2/λ	data from LT66 and LTA66
BHR68	0.62-2.5	Refl	80, 156, 200,		×		EP	R ³ ; КК: σ	
G168	2-5.6	m-9	300			×	MP	ε2/λ,ε1	
GSP68	4-40	m-9	300, 623	x			Ex	$R, \varepsilon_1, \varepsilon_2, Im(\varepsilon^{-1})$	plotted data is at RT, two angles incidence
KN6B	0.07-5	Ellips	293,420			×	MP	n,k,ơ	mechanically polished plus 450°C anneal at 10 ⁻⁶ Torr
M\$69	0.5-2.4					×	MP	R	absorption measured by calorimetry; Cr and Cr-Fe
SHK69	40-300	Trans		×			Ex	μ	optical absorption measurements
BD70	0.038-1.65	Refl	80, 300		×		E۶	KK: n,k	plotted data is at 300 K
BL70	0.08-5	Refi	4.2		×		EP	Α,R; KK: ε ₂ ,σ	absorptivity measured by calorimetry
JPT72	~0.08-~0.48	Refl	7.5 and 281			×		A	reflectivities measured relative to Au filt
LS72	~0.05-1.0	Ref1	30	Ì	×			R	

-19-

Fig. 12 Survey of available data for Cr

-63-

-62-

Fig. 15 c2 for Cr. — BL70 and OL (unpub); +++ KN68; --- GSP68; 000 NC80; DIII 8D70; — — JC75.

Fig. 14 c1 for Cr. --- BL70 and OL (unpub); +++ KN68; --- GSP68; 000 NC90; DDD B070; --- --- St74.

-65-

-119-
Chromium

composite tabulation from L.W. Bos and D.W. Lynch, Phys. Rev. B $\underline{2}$, 4567 (1970) and C.G. Olson and D.W. Lynch (unpub)

Energy (ei	/) ε ₁	ε2	n	k	lm(-1/2)	R(+=0)
0.04	-4030.87	1948.49	14.94	65.22	0.00	.987
0.06	-1315.04	1779.04	21.19	42.00	0.00	.962
0.08	-1596.05	1149.44	13.61	42.22	0.00	. 973
0.09	-1008.50	799.00	11.79	33.88	0.00	964
Ú.10	-746.14	703.19	11.81	29.76	0.00	.955
0.14	-460.80	807.03	15.31	26.36	0.00	. 936
0.10	-567.33	442.84	8.73	25.37	0.00	.953
0.22	-396,98	218.52	5.30	20.62	0.00	.954
9.26	-277.90	131.99	3.91	17.12	0.00	.951
0.30	-194,05	69.98	3.15	14.28	0.00	943
0.34	-134.94	69.15	2.89	11.97	0.00	977
0.38	-93.86	62.88	3.09	10.17	6.00	. 197
0.42	-68.40	62.16	3.47	8.97	0.01	.862
0.46	-53.41	61.09	3.72	8.20	0.01	814
0,50	-42.84	58.00	3.83	7.58	0.01	811
0.54	-34.39	55.36	3.92	7.06	4.01	.7.49
0.54	-28.11	53.35	4.01	6.65	0.01	.769
0.62	-23.77	50.70	4.01	6.31	0.02	743
0.66	-19.79	47.14	3.96	5.95	0.02	736
0.70	-15.17	44.79	4.01	5.59	0.02	715
0.74	-11.55	43.04	4.06	5.30	0.02	697
0.78	-8.26	41.50	4.13	5.03	0.02	680
0.02	-5.18	40.73	4.24	4.81	0.02	.665
9,86	-2.84	40.56	4.35	4.66	0.02	.655
0.90	-1.50	40.75	4.43	4.60	0.02	650
0.92	-1.01	40.57	4.45	4.56	0.02	647
0.96	-0.24	40.24	4.47	4.50	0 02	644
1.00	0.43	39.59	4.47	4.43	0.03	636
1.04	1.34	39.35	4.51	4.36	0.03	6 3 5
1.08	1.71	39.28	4.53	4.34	0.03	
1.12	1.99	39.06	4.53	4.31	0.03	.631
1.10	2.09	18.94	4.53	4.30	0.03	631
1.20	2.06	36.75	4.52	4.29	4.03	630
1.24	1.97	30.53	4.50	4.28	0.03	624
1.20	1.84	36.30	4.49	4.28	0.03	629
1.32	1.50	38.34	4.47	4.29	0.03	630
1.36	1.05	38.05	4.42	4.30	0.03	.631
1.40	0:50	37.75	4.38	4.31	0.03	521
1.44	0.14	37.38	4.33	4.32	0.03	632
1.40	-0.10	37.23	4.31	4.32	0.03	
1.50	-0.54	36,93	4.27	4.33	0.03	. 6 3 3
1.52	-0.91	36.64	4.23	4.34	3.03	
1.77	-4.37	33.53	3.44	4.37	0.03	610
2.03	-0.db	30,36	3.44	4.36	0.03	644
2.13	-0.04	29.21	3.34	4.38	0.03	
2.22	-9.30	28.92	3.18	4.41	0.03	. 656
2.33	-10.93	20.51	2.94	4.45	0.03	- 666
2.42	-12.30	24,53	2.75	4.46	0.03	. 677
2.53	-13,54	22,14	2.49	+.44	0.03	. 684
			-			

Fig. 16

Absorption coefficient for Cr.

- SHK69; --- WeG74.

Cr			-68-				Cr			-69-			
Energy (eV)	εJ	€2	n	k	im(-1/8)	R (+=0)	Energy (eV)	ει	£2	n	k	lm(-1/č)	R(4= 0)
2.63	-14.10	19,39	2.22	4.36	0.03	. 698	8.32	-0.42	1.40	0.72	0.97	0.66	.261
2.72	-13.86	16.76	1.99	4.22	0.04	.703	8.49	-0.29	1.37	0.74	0.92	0.70	.235
2.93	-13.22	14.65	1.80	4.06	0.04	.703	9.61	-0.21	1.36	0.70	0.89	0.72	.210
2.92	-12.39	12.67	1.65	3.89	0.04	.701	8.73	-0.14	1.36	0.78	0.07	0.73	.204
3,03	-11.39	11.47	1.54	3.71	0.04	.695	8.92	-0.04	1.34	0.81	0.83	0.75	.184
3.13	-10.39	10.46	1.40	3.54	0.05	.684	9,05	0.04	1.34	0.83	0.81	0.75	,170
3.22	-9.47	9.82	1.44	3.40	0.05	.670	9.25	0.15	1.33	0.86	0.77	0.74	.151
3.33	-8.87	9.46	1.43	3,31	0.06	.660	9.54	0.29	1.36	0.92	0.74	0.70	.132
3.42	-8.59	9.03	1.39	3.24	0.06	.657	9.76	0.37	1.39	0,95	0.73	0.67	.124
3.53	-8.37	6.48	1.33	3.10	0.06	.650	10.00	0.43	1.43	0.93	0.73	0.64	.120
3.63	-8.14	7.84	1.26	3.12	0.06	.661	10.25	0.46	1.44	1.00	0.72	0.03	.115
3.72	-7.81	7.18	1.10	3.04	0.06	.001	10.51	0.52	1.45	1.01	0.72	0.61	.112
3.93	-7.42	6.59	1.12	2.95	0.07	.660	10,78	0.57	1.45	1.03	0,70	0.60	.107
3.92	-7.01	6.06	1.06	2.05	0.07	.057	11.07	0.62	1.46	1.05	0.69	0.58	.103
4.03	-6.57	5.61	1.02	2.76	Q_0B	.651	11.27	0.69	1.47	1.07	0.69	0.56	.100
4.13	-6.18	5.23	0.98	2.67	0.08	.646	11.40	0.71	1.50	1.09	0.69	0.55	.100
4.22	-5.78	4.86	0.94	2.58	0.09	.639	11.70	0.74	1.52	1.10	0.69	0.53	.100
4,32	-5.38	4,55	0.91	2.49	0.09	.630	12.04	0.78	1.57	1.13	0.70	0.51	.101
4.40	-5.06	4.37	0.90	2.42	0.10	.620	12.28	0.79	1.62	1.14	0.71	0.50	.104
4.50	-4.72	4.20	0.89	2.35	0.11	.607	12.53	0.79	1.68	1.15	0.73	0.49	.108
4.60	-4.43	4.00	0.08	2.28	0.11	.598	12.70	0.76	1.73	1.15	0.75	0.40	.113
4.70	-4.12	3.80	0.86	2.21	0.12	.586	13.05	0.72	1.78	1.15	0,77	0.48	.119
4.80	-3.82	3,66	0.86	2.13	0.13	.572	13.33	0.65	1.80	1.13	0.80	0.49	.125
4.90	-3.54	3.54	0.86	2.07	0,14	.557	13.40	0,61	1.80	1.12	0,00	0.50	.128
5.00	-3.29	3.43	0.85	2.01	0,15	.542	13,70	0.54	1.79	1.10	0.02	0.51	.133
5.10	-3.03	3.35	v.8 6	1.94	0.16	.523	13.93	0.51	1.78	1.09	0.02	0.52	.135
5.21	-2.75	3.27	0.87	1.87	0.18	.503	14,25	0.44	1.74	1.06	V.82	0.54	.139
5.30	-2.53	3.27	0.90	1.03	0.19	.492	14.59	0.30	1.70	1.03	0.82	0.56	.142
5.39	-2.30	3.34	0.93	1.80	0.20	. 466	14.76	0.36	1.67	1.01	0.82	0.57	.142
5.51	-2.22	3.33	0.94	1.76	0.21	.452	14.94	0.33	1,63	1.00	0.82	0.59	.143
5.61	-2.12	3.33	0.95	1.74	0.21	.443	15.31	0.31	1.56	0.97	0.80	0.62	.141
5.71	-2.11	3.38	0.97	1.75	0.21	.440	15.50	0,29	1.53	0.96	0.00	0.63	.141
5,79	-2.07	3.37	0.97	1.74	0.22	.437	15.70	0.26	1.50	0.95	0.79	0.65	.141
5.90	-2.06	3.33	0.96	1.73	0.22	.437	16.10	0.27	1.42	0.92	0.77	0.68	.139
5.99	-2.12	3,26	0.94	1.73	0.22	.444	16.32	0.26	1.39	0.92	0.76	9.70	.137
6.11	-2.11	3.16	0.92	1.72	0.22	.446	16.53	0.27	1.36	0.91	0.75	0.71	.134
4.20	-2.07	3.02	0.89	1.69	0.23	.440	16.70	0.27	1.33	0.90	0.74	0.72	.133
6.29	-2.04	2.94	0.69	1.68	0.23	.446	16.99	0.27	1.31	0.90	0.73	0.73	.132
6.19	-2.02	2.03	0.85	1.65	0.23	.447	17.22	0.27	1.29	0.49	0.72	0.75	.131
0.49	-1.97	2.0/	0.82	1.63	0.24	. 449	17.46	0.27	1.26	0.88	0.72	0.76	.130
0.60	-1.09	2.50	0.80	1.59	0.25		17.71	0.25	1.24	. 0.8/	0.71	0.77	.129
0.70	-1.84	2.45	0.78	1.57	0.25	. 444	17.97	0.25	1.22	0.87	0.70	0.79	.129
0.41	-1.72	2.21	0.75	1.51	0.28	. 439	18.24	0.24	1,20	0.85	0.70	0.40	.130
0.44	-1.64	2.25	9.76	1.49	0.29	.429	10.51	0.23	1.17	0.84	0.69	0.83	.130
7.01	-1.5/	2.14	0.74	1.45	0.30	.425	14.79	0.22	1.14	0.83	0.68	0.85	.130
1.13	-1.49	2.03	9.12	1.42	0.32	.421	19.00	0.21	1.10	0.82	0.68	0.86	.131
7.21	-1.42	1.96	0.71	1.39	£1.0	.414	19.38	0,20	1.07	0,80	0.67	0.91	.132
1.29	-1.30	1.99	0.70	1.30	0.15	+410	19.66	0,19	1.02	0.78	9.00	0.95	.131
1.34	-1.29	1.82	0.69	1.33	0.17	.404	20.00	0.19	0.96	9.11	0.04	0.99	.130
1.57	-1.1/	1.70	9.67	1,2/	0.40	. 592	20,33	9.19	0.93	0.75	0.62	1.03	.12/
7.61	-1.06	1.63	0.66	1.23	0.43	. 378	20.07	0.20	0.89	U.74	V.60	1.0/	.124
7.70	-0.95	1,59	0.07	1.19	V.46	. 50 5	21.02	0.21	9.85	V./4	0.50	1.11	.121
7.80	-0.47	1,54	0.67	1.15	0.49	. 54 /	21.38	0.22	0.82	U.13	9.56	1.15	•11/
1.30	-0.77	1,50	9.68	1.11	0.51	. 5 50	21.75	0.22	0.78	9.72	0.54	1.19	.115
8.00	-1.63	1.4/	0.68	1.07	0.55	. 515	22.14	0.23	0.14	0.71	0.52	1.23	.112
8.19	-9.59	1.44	9.69	1,04	0.60	.296	22,55	0.24	0,70	U.70	0.50	1.28	-109
a,21	-0.50	1.42	0.71	1.00	0,63	- 514	22.95	0,25	0.00	9.69	N*49	1.33	.105

Cr

	Authors	Energy Range	Technique	Temperature		S	атр	le	Data Presentation	Remarks
		(20)		(K) RT unless specified	f i lm	X-tal	Bulk	Ртер		Mn
	Sa39	2.6-27.6	Refl		×			Ex	R	
	LT66	0.06-0.25	Ellips				×	МР	$\epsilon_2/\lambda, -\epsilon_1$	
	SHK69	40-300	Trans		×			Ex	μ	optical absorption with synchrotron radiation
	JC74	0.64-6.6	Trans, Refl		x			Ex	n,k,o	table of E,n,k
	St74	0.8-4	Ellips				x	MP	ε ₂ /λ,ε ₁	
	WeG74	2-130	Trans		x			Ex	КК: μ	energy loss spectroscopy
	WGa74	2-120	Trans		×			Ex	μ , im (ϵ^{-1}) ; KK: ϵ_1, ϵ_2	energy loss spectroscopy
-1/-										

.

			-20-			
L.	5	c2	c	¥	1m(-1/2)	R (+=0)
0	.26	0.62	0.68	0.45	1.36	101.
ō	.28	0.57	0.63	0.43	1.42	960
5	.30	0.51	0.67	0.19	1.43	680.
Ö	÷.	0.49	0.68	0.36	1.42	080
ō	. 35	0.45	0.68	66.0	1.36	.072
•	.F.	0.43	0.70	0.31	1.27	.063
ō	.42	0.40	0.71	0.28	1.18	055
þ	.45	0.38	0.72	0.26	1,09	048
ō	6 3	0.36	67.0	0.25	1.01	
Ö	.51	0.35	9.75	0.23	16.0	160.
0	54	0.34	0.17	0.22	68.0	260.
Ċ	56	66.0	0.78	0.21	0.78	010.

5

Fig. 20 ϵ_2 for Mn. +++ JC74.

Fig. 19 c1 for Mn. +++ JC74; ΔΔΔ St74.

-22-

-42-

OFLA HOM	F.B. JOINSON	and n.w. cont	3ty, 11195. 1	$vev. o \underline{j}, jo$	(17)	
Energy (eV)	ει	¢2	n	k	lm(-‡/≷)	R(∳≖0)
0.64	-20.27	46.29	3.84	5.95	9.02	.730
0.77	-14.98	40.90	3.78	5.41	0.02	.710
0.09	-11.88	36.65	3.65	5.02	ປູບ2	-643
1.02	-10.36	32.99	3.48	4.14	0.03	.673
1.14	-4.03	29.90	3,30	4.53	0.03	.002
1.26	-9.31	26.97	3.10	4.35	0.03	. 653
1.39	-8.65	24.83	2.97	4.10	U.04	.043
1.51	-9.23	22.01	2.83	4.03	9.04	.634
1.64	-8.00	21.11	2.70	3.41	0.04	.027
1.76	-7.42	19.81	2.62	3.78	0_04	. 517
1.86	-6.77	18.69	2.56	3.65	0.υ5	- à95
2.01	-6.23	17.77	2.51	3.54	0.05	.596
2.13	-5.66	16.94	2,47	3.43	0.05	.585
2.26	-5.38	15.92	2.39	3.33	0.06	.577
2.30	-5.05	14.99	2.32	3,23	U.06	.557
2.50	-4.80	14.13	2.25	3.14	0.06	.559
2.63	-4.57	13.40	2.19	3.06	0.07	.552
2.75	-4.43	12.58	2.11	2.98	0.07	.545
2.88	-4.17	11.95	2.00	2,90	0.07	• 5 3 o
3.00	-3.95	11.28	2.00	2.02	0.06	- 5 2 8
3.12	-3.67	10.74	1.96	2.74	0.08	.518
3.25	-3.44	10.25	1.92	2.67	0.09	. 203
3.37	-3.14	9.79	1,99	2,59	0.09	. 49⊣
3.50	-2.73	9.49	1.89	2.51	0.10	****
3.62	-2.51	9.16	1.67	2.45	0.10	.475
3.74	-2,20	8.85	1.46	5.39	0.11	.403
3.07	-1.92	8.63	1.86	2.32	9.11	451
3.99	-1.60	8.37	1.86	2.25	0.12	439
4.12	-1.34	8,15	1.96	2.19	0.12	. 427
4.24	-1.16	7.92	1.85	2.14	9.12	.417
4.36	-0.90	7.70	1.85	5.09	0.13	.400
4.49	-0.66	7.55	1.00	2.03	0.13	. 395
4.01	-0.54	7.36	1.85	1.99	0.14	. 389
4.74	-0.38	7.14	1.84	1.94	0,14	- 37H
4.86	-0.30	0.99	1,āJ	1,91	0.14	.372
4.98	-0.15	6.77	1.42	1.86	9.15	- 302
5.11	0.00	0.01	1.42	1.#2	0.15	. 124
5.23	0.07	5.43	1.81	1./9	0.15	. 348
5.10	0.07	0.27	1./*	1.76	1.19	. 3 . 2
5.40	0.03	0.02	1.7	1./3	U.17	
5.00	9.10	5.35	1./3	1.70	9.17	+324
5.73	0.17	5.14	1.12	1	0.17	. 323
5.65	9,29	2.34	1,70	1.04	9415	.314
2.24	n*50	5.18	1.2	1 - 0 1	··· 1 ··	
6.10	9.15	2.13	1.03	1.51	9.17	• 3 * / /
5.22	0.22	3.12	1.02	1.07	0.2	+ 31/1
2.12	9.22	t	1.74	1.74	0.41	• 4 7 7
n /	9.15	4.72	1.77	1.7.1	9 a K L	. 474
2.00	0.01	4.33	1,4-	1.47	·····	• (1 *

Hanganese

data from P.B. Johnson and R.W. Christy, Phys. Rev. B 9, 5056 (1974)

-

-78-

*

Authors	Energy Range	Technique	Temperature		Ş	алр	le	Data Presentation	Remarks
	(84)		RT unless specified	Film	X-tal	Bulk	Prep		Fe
Sa 39	2.6-27.6	Refl		×			Ex	R	
YK65	1.77-3.44	Ellips			×		In	n,k	crystal heated in H_2 to 800°C in uhv system
LT66	0.06-0.25	Ellips				×	MP	$\epsilon_2/\lambda, -\epsilon_1$	
LTA66	0.1-3.5	Ellips				×	MP	$\epsilon_2/\lambda,\epsilon_1$	
BS67	∿2.1-11.6	Refl				×	EP	R	
Le67	<4	Ellips				×	MP	ε2/λ	data from LT66 and LTA66
вкм69	0.07-4.89	Ellips				×		n,k,o	
SHK69	40-300	Trans		×			Ex	μ	optical absorption measurements, synchrotron radiation
ZR71			400-1100			x		٤H	calorimetry; emissivity calculated
JPT72	~0.08-~0.48	Refl	9, 290			x	-	A	reflectivities relative to Au film
JC74	0.5-6.5	Trans, Refl		×			Ex	n,k,σ	table of E,n,k
WeG74	2-130	Trans				×	Ex	КК: μ	energy loss spectroscopy
WGa74	2-120	Trans		×			Ex	$\mu, im(\epsilon^{-1}); KK: \epsilon_1, \epsilon_2$	energy loss spectroscopy
MRD76	2-27	Refl		×		×	in	R; KK: ε ₁ ,ε ₂	synchrotron radiation, Ar-sputtered in situ
ST77	0.05-0.1	Ellips		į	×		MP	- c1, c2	
WCL79	0.2-5	Refl	4.2 for hv < 4.4 eV			X	EP	А; КК: σ	absorptivity measured by calorimetry $h\nu < 4.4$ eV, plotted data extended with reflectance data of MRD76

-62-

Fig. 24 El, for Fe. ---- WCL79; 000 JC74; DDD YK65; --- - MRD76; --- We674; +++ 8KM69.

Fig. 23 Reflectivity of Fe. —— WCL79:□□□ YK65; •-•- BS67; ∆∆∆ JPT72; ■EMJC74; J-A WeG74; +++ BKM69; o-o-o MRD76.

-80-

-8-

Fig. 26 Absorption coefficient for Fe. --- WeG74; --- SHK69.

 Fig. 25
 ε2 for Fe.
 --- WCL79; +++ MR076; eee BKM69; DDD YK65; ΔΔΔ WeG74;

 000 JC74.

-83-

-82-

Fe

Iron

publication by J.H. Weaver, E. Colavita, D.V. Lynch, and R. Rosei in Phys. Rev. B <u>19</u>, 3850 (1979) based on the following tabulation

						24.2	4.83	-2,43
Energy (eV)	εl	٤2	n	ĸ	lm(-1/€)	K(#=U)	5.00	-2.18
							5.17	-2.04
0.10	-1052.70	424.30	6.41	33.07	0.00	.978	5.33	-1.82
0.13	-679.13	335.64	6.26	26.00	0.00	.967	5.50	+1.72
0.15	-481.49	285.48	6.26	22.02	0.00	.955	5.67	+1.52
9.17	-391.70	257.79	6.29	20.52	0.00	.947	54.5	-1 A0
0.20	-318.64	134.32	3.68	18.23	0.00	.958	5.05	-1 30
0.22	-715-90	148.27	4.80	15.46	0.00	.930	0.90 6 1 I	-1 31
0.24	-197.84	144.72	4.96	14.58	0.00	.920	6.17	-1.31
0 76	-162 22	136 16	4.98	11.68	0.00	911	6.33	-1.31
0.20	-143 73	133 34	4 76	12 49	0 00	904	0.50	-1.24
0 30	-131 63	111 37	4 97	12.05	0 00	997	0.0/	-1.10
0,30	-121.97	111-31	4,21	12.13	0.00	6094 944	5.83	-1.11
9.32	-110.64	103-13	4.73	11.33	0.00	_ 980 476	7.00	-1.00
PL.V	-90.94	102.55	4.70	10.91	0.01	.0/0	7.17	-0.94
0.30	-81.01	97.83	4.00	10,44	0.01	.887	7,33	-0.01
0,38	-80.04	93.33	4.03	10.07	0.01	.851	7.50	-0.71
0.40	-75.50	66.24	4,42	9,75	0.01	.854	7.67	-0.63
0.50	-47.17	66,32	4.14	8.02	0.01	.017	7.93	-0.57
0.60	-32.79	54.65	3,93	6.95	0.01	.783	0.00	-0.52
0.70	+23.73	46.63	3.78	6.17	0.02	.752	8.17	-0.47
0.80	-18.07	40.84	3.65	5.60	0.02	.725	8.33	-0.42
0.90	-14.18	36.32	3.52	5.16	0.02	.700	8.50	-0.37
1.00	-11.20	32.84	3.43	4.79	0.03	-678	8.67	+0.34
1.10	-9.33	30.07	3.33	4.52	0.03	.660	6 61	-0.31
1.20	-7.60	27.67	3.24	4.26	0.03	.641	B 00	-0.39
1.30	-6.51	25.72	3.16	4.07	0.04	. 626	9,07	-0.11
1 40	-5 23	24 1b	3.12	3.87	0.94	609	7.17	-0.27
1 50	-4 93	22 45	1 05	1.77	0.04	-601	9.33	-0.23
1 60	-3 91	21 60	3 00	3 60	0 04	.545	A*20	-0.23
1 70	-3.31	21.00	3.00	1 52	0.05	.577	9.0/	-0.20
1.70	-3.45	20.77	2.77	3.34	0.05	873	9-03	-0.13
1.00	-3.44	40.44	4.74	3.40	0.05	.J/J ELJ	10.00	-0.17
1.90	-2.90	19.50	2.69	3.37	0.15	. 303	10.17	-0.11
2.00	-3,12	19.20	2.87	3.30	0.05		10.33	-0.07
2,10	-3.28	18.64	2.60	3.34	0.05	. 752	10,50	-0.03
2.29	-3.61	19.23	2.74	3.33	0.05	.551	10.67	0.02
2.30	-4,12	17,65	2.55	3.34	0.05	.557	10.83	0.08
2.40	-4.41	16.93	2.56	3.31	0.06	.557	11.00	0.13
2.50	-4.87	16.29	2.46	3.31	0.06	.570	11.17	0.16
2.60	-5.45	15.44	2.34	3.30	0.06	.57n	11.33	0.17
2.10	-5.50	14.51	2.23	3.25	0.06	.5/5	11.50	0.16
2.80	-5.95	13.06	2.12	3.23	0.06	.584	11.67	0.15
2,30	-6.04	12.72	2.01	3.17	0.06	.530	11.93	0.13
3.00	-6.21	11.70	1.68	3.12	0.07	.543	12 60	0.13
4.19	-0.04	10.82	1.74	3.04	0.01	.589	13 17	0.11
3.20	-5.67	10.02	1.79	2.95	0.07	.576	13 11	0 11
1 10	-5.65	9_9H	1,62	2.47	8.04	.512	16433	V . I I
4 40	-5.35	8.63	1.55	2.19	0.64	. 565	12.30	0.02
3.444	-5 (1)		1 50	2 76	0.04	. 375	14+97	V.V8
3.77	- J. V. L	7 7.1	1 47	2 61	6 6 4		14.03	0.97
3.97		···/ 64 7	1 4 3	2 4 4	0.10		13.00	0.04
1.17		1,33	1.45	2.30	9.19	+ 247. 	13.17	0.09
3,93	*****	0.42	3,39	7.4 49	a*10	. 3 3 4	11,13	0.04

Energy (eV)	εı	ε ₂	n	k	lm(−1/č)	R(4= 0)
4.00	-4.01	6.22	1.30	2.39	0.11	.527
4.17	-3.59	5.71	1.26	2.27	0.13	.510
4.33	-3.24	5.34	1.23	2.18	0.14	. 494
4.50	-2.98	5.02	1.20	2.10	9.15	. 492
4.67	-2.74	4.68	1.16	2.02	0.16	.470
4.83	-2.43	4.42	1.14	1.93	9.17	. 451
5.00	-2.18	4.24	1.14	1.87	0.19	.435
5.17	-2.04	4.05	1.12	1.01	0.29	.425
5.33	-1.82	3.90	1.11	1.75	0.21	.408
5,50	-1.72	3.74	1.09	1.71	0.22	.401
5,67	-1,52	3.61	1.09	1.65	0.24	. 393
5.83	-1.40	3.53	1.10	1.61	0.24	. 373
6.00	-1.32	3,47	1.09	1.59	0.25	. 366
6.17	-1.31	3.38	1.08	1.57	0.26	.365
6.33	-1.31	3,23	1.04	1.55	0.27	. 365
6.50	-1,24	3.07	1.02	1.51	0.20	.350
6.67	-1.16	2.93	1.00	1.47	0.29	.351
5.83	-1.11	2,79	0.97	1.43	0.31	.346
7.00	-1.00	2.00	0.96	1.39	9.33	
7+17	-0.94	2.34	J.94	1.35	0.35	. 327
7.33	-0.81	2.19	0.94	1.30	0.37	.311
7.50	-0.71	2.30	0.94	1.20	0.39	.248
1.07	-0.03	2.33	0.74	1 21	0.40	1239 914
A 00	-0.57	2 23	0 64	1 19	0 43	373
a 17	+0.47	2.18	0.94	1.16	0.44	265
8.33	-0.42	2.14	0.94	1.14	0.45	.258
8.50	-0.37	2.10	0.94	1.12	0.46	.251
8.67	-0.34	2.06	0.94	1.10	0.47	.246
8.83	-0.31	2.02	0.93	1.08	0.48	.240
9.00	-0.28	1.99	0.93	1.07	0.49	.235
9.17	-0.27	1.95	0.92	1.06	0.50	.233
9.33	-0.25	1.90	0.91	1.04	0.52	.231
9.5u	-0,23	1.95	0.90	1.02	0.53	.226
9,67	-0.20	1,00	0.90	1.00	0.55	.221
9.03	-0.19	1.75	0.89	0.99	0.56	.218
10.00	-0.17	1.69	0.00	0.97	0.59	. 21 3
10.17	-0.11	1.63	0.87	0,94	0.61	. 203
10.33	-0.07	1.60	0.87	0.91	0.62	.196
10,50	-0.03	1.56	9.87	0.89	0.64	•104
10.67	0.02	1.53	0.88	0.07	0.65	.179
10.83	0.08	1.51	0.89	0.45	0.65	.170
11.00	0.13	1.52	0.91	0.03	0.65	-192
11.17	0.16	1.54	0.92	7.63	0.64	154
11.33	0.17	1.55	0,73	10 a C A	1 6 9 1 6 3	160
11.30	0 1E 7.10	1.20	0.33	0.74	4.03	160
11 03	V.12 A 13	1.00	0.73	1 6 L	0 54	1.57
12.00	0.13	1.54	0.91	0,84	0.65	.164
12.17	0.11	1.51	9.71 U.90	0.84	4.56	.165
12.34	0.11	1.46	0,23	0.43	9.67	-164
12.50	0.94	1.47	0.89	6.83	0.63	. 105
12.67	0.08	1.4.1	0,87	0,92	0.69	. the
12.03	0.07	1.39	9.36	0.81	0.71	.1~~
13,00	0.09	1.30	9.45	0.84	0.73	.162

1.31

1.30

0,94

0.24

11.79

0.74

0.15

0.75

•

.161

.1-0

.

		-86-			
εı	ε2	n	k	lm(-1/č)	R(4=0)
0.09	1.27	9.83	0.77	0.78	.159
0.09	1.24	0.62	0.76	0.90	.157
0.10	1.21	0.81	0.75	0.82	-154
0.11	1.18	U.81	0.73	0.04	.151
0.12	1.16	0.80	0.72	0.95	.149
0.13	1.13	0.80	0.71	0.87	.146
0.14	1.11	0,79	4.70	0.89	.144
0.15	1.08	0.79	0.69	0.91	.141
0.16	1.05	0.7B	0.67	0,93	.139
0.17	1.03	0.78	0.66	U.94	.135
0.19	1.01	0.78	0.65	0.96	.131
0.20	0.99	0.78	0.64	0.97	.124
0.20	0.9A	0.77	0.63	0.98	.126
0.22	0,95	0.77	0.62	1.00	.123
0.23	0.94	0.77	0.61	1.01	.119
0.25	0.92	0.77	0.60	1.01	.116
0.26	0.91	0.78	0.58	1.02	.112
0.27	0.90	0.78	0.58	1.02	.110
0.20	0.88	0.78	0.57	1.03	.107
0.28	0.07	0.77	0.56	1.04	.106
0.30	0.86	0.78	0.55	1.04	.103
0.30	0.86	0.78	0.55	1.04	.102
0.31	0.04	0.78	9.54	1.05	.100
0.31	0.83	0.78	0.54	1.05	. 499
0.32	0,82	0.77	0.53	1.06	. 497
0.33	0.01	0.77	0.52	1.06	.095
0.34	0.00	0.76	0.51	1.06	.092
0.34	0.79	0.78	0.51	1.06	.091
0.35	0.79	0.78	0.51	1.05	.090
0.35	0,70	0.78	0.50	1.06	.089
0.35	0.77	0,77	0.50	1.07	.084
0.35	0.77	0,77	0.50	1.08	.048
0.35	0.76	9.77	0.49	1.09	.087
0.35	0.75	0.77	U.49	1,10	.087
0.34	0.74	0.76	0.49	1.11	.098
0.34	0.73	0.76	U.48	1.13	.007

0.71

0.70

0.69

0.67

0.66

0.65

0.64

0.62

0.61

ù.60

0.56

0.57

0.56

0.54

0.53

9.52

0,50

0.41

0.4H

0.47

40.40

0.34

0.35

0.35

0.35

0.35

0,35

0.35

0.36

0.36

0.36

0.35

0.37

0.37

0.39

0.3ċ

0.30

0.39

9.49

0.40

0.41

0.41

0.75

0.75

0,75

0.74

0.74

9.74

0.14

0.73

0.73

0,73

0.72

9.72

9.72

1.72

0.72

0.72

9.71

9.72

9.72

9.72

9.72

0.47

0.47

0.45

0.45

0.44

9.44

0.43

0.43

0.42

0.41

U.40

0.39

U.3U

U.3H

0.37

0.30

0.35

0.34

U.34

0.33

9.32

1.14

1.15

1.16

1,17

1.17

1.18

1.20

1.21

1.21

1.23

1.24

1.24

1.24

1.24

1.25

1.25

1.25

1.22

1.22

1.22

1.20

.085

.005

.094

.UH3

.081

041

.080

.079

.074

.077

.076

.014

.073

.071

.u7a

0.54

.057

. 115-4

, 95.1

. 152

J59

Fe			0 -			
			-6/-			
Energy (eV)	E 1	€₂	n	k	lm(-1/2)	R(#=0)
23.00	0.42	0.45	0.72	0.31	1.19	.058
23.17	U.43	0.43	0.72	0.30	1.17	.050
23.33	0.44	0.42	0.72	0.29	1.15	.054
23.50	V.45	0.41	0.73	0.21	1.11	.050
23.67	0.45	0.41	0.73	0.20	1.10	.049
23.83	0.47	0.40	0.74	0.27	1.06	.047
24.00	0.47	0.39	0.74	0.27	1.94	.045
24.17	0.48	0.39	0.74	9.26	1.02	.044
24.33	0.48	0.39	0.74	9.26	1.00	.043
24.50	0.49	0.37	0.74	0.25	0.99	.042
24.67	0.50	0.37	0.75	0.25	0.96	.040
24.03	0.50	0.16	0.75	0.24	0.95	.037
25.00	0.50	0.36	0.75	0.24	0.94	.030
26.00	0.54	0.31	0.76	0.21	0.81	
27.00	0.57	0.28	0.78	0.19	0.69	-026
28.00	0.61	0.25	0.79	0.16	0.59	.021
29.00	0.63	0.23	9.81	0.14	0.50	.017
30.00	0.66	0.21	0.82	0.13	0.43	.014

Fe

Energy (eV)

13.50 13.67 13.83 14.00 14.17 14.33 14.59 14.97 15.90 15.17 15.33 15.50

15.67 15.83 16.00 16.17

16.33

16.67 16.93

17.00 17.17 17.33 17.50 17.67 17.83 18.00 18.17 10.33 18.50 18.67 18.83 19.00 19.17 19.33 19.50

19.67

19.83

20.00

20.17

20.50

20.67

20.83

21.00

21.17

21,33

21.50

21.67 21.33

22.00

22.17

22.33

22.00

22.67

Authors	Energy Range	Technique	Temperature		5	amp	le	Data Presentation	Remarks
	(eV)		(K) RT unless specified	FI Im	X-tal	Bulk	Prep		Co
KC63	0.06-0.5	Ellips				×	MP,EP	n,k	table λ,n,k
LT66	0.06-0.25	Ellips				×	MP	ε2/λ,-ε1	
LTA66	0.1-3.5	Ellips				×	MP	ε2/λ,ε1	
Le67	<4	Ellips				×	MP	e2/X	data from LT66 and LTA66
KNB68	5-12	Ellips						R; KK: σ , Im(ε^{-1}), Im(ε^{+1}) ⁻¹	data from VAK67, KK analyzed
YD568	0.05-11.8	Ref]		×				R; KK: $\varepsilon_1, \varepsilon_2, \mu$, im (ε^{-1})	
\$нк69	40-300	Trans		×			Ex	μ	optical absorption, synchrotron radiation
JC74	0.5-6.5	Trans,Refl		×		1	E×	n,k.ơ	table of E,n,k
WeG74	2-130	Trans		×			Ex	КК: μ	energy loss spectroscopy
WGa74	2-120	Trans		×		ł	Ex	μ , im(ε^{-1}); KK: ε_1 , ε_2	energy loss spectroscopy
ST77	0.05-0.1	Ellips			×	1	MP	-E1,E2	
WCL79	0.2-5	Ref1	4.2 for hv > 4.4 eV		×		EP	Α; ΚΚ: σ	absorptivity measured by calorimetry $h_V < 4.4$ eV, single crystal Eic and Elic. Also thermoreflectance
-88-									

-68-

-96-

-16-

Fig. 30 c_2 for Cq. Only the results of WCL79 are for single crystal Co (xxx is Ellĉ; ooo is $E \perp \hat{c}$); $\Delta \Delta \Delta$ JC74; $\Delta \Delta \Delta YDS68$.

-6-

-92-

•

-95~

Cobalt single crystal with EMc

- - -

_

.

- T

publication by J.H. Weaver, E. Colavita, D.W. Lynch, and R. Rosei in Phys. Rev. B 19, 3850 (1979) based on the following tabulation

Energy (eV)	εl	€2	n	k	im(-1/č)	R (4~ 0)
0.10	-1389,33	508.32	6.71	37.07	0.00	.982
0.13	-902,53	328.31	5.38	30.52	0.00	.978
0.15	-526,99	237,59	4.66	25.47	0.00	.973
0.17	-450.71	100.74	4.14	21.01	0.00	.967
0.20	-339.95	133.30	3.55	18.78	0.00	.962
0.25	-197.03	116.09	3.90	14.59	0.00	.933
0.30	-131.53	98.34	4.04	12.16	0.00	.907
0.35	-90.33	96.85	4.18	10.38	0.01	.876
0.40	-65.39	77.50	4.24	9.13	0.01	.847
0.45	-48.05	68,82	4.24	9.12	0.01	.819
0.50	- 32 . 27	63.48	4.41	7.19	0.01	.782
0.55	-21.42	61.01	4.65	6.56	0.01	.752
0.60	-13.48	60.17	4.91	6.13	0.02	.729
0.65	-8.99	60.67	5.12	5.93	0.02	.718
0.70	-6.78	61.24	5.24	5,85	0.02	.713
0.75	-6.52	61.62	5.26	5,85	0.02	.713
0.60	-8,02	60.94	5.17	5.89	0.02	.716
0.85	-7.04	59.37	5.10	5,82	0.02	.713
0.90	-11.01	58.83	4,94	5.95	0.02	.720
0.95	-12.97	55.56	4.70	5.92	0.02	.722
1.00	-14.41	52,19	4.46	5,86	0.02	.722
1.05	-14.92	48.69	4.24	5.74	0.02	.719
1.10	-14,86	45.63	4.07	5.61	9.02	.715
1,15	-14,67	43.05	3.92	5.48	0.02	.711
1.20	-14,27	40.87	3.81	5.36	0.02	.706
1.25	-14.12	39.09	3.70	5.28	0.02	.703
1.30	-14.12	37.46	3.60	5,20	0.02	.701
1.35	-14.27	35.89	3.49	5.14	U.02	.701
1.40	~14.56	34.29	3.37	5.09	0.02	.701
1.45	-14.89	32.53	3.23	5.03	0.03	.701
1.50	-14.99	30.68	3.10	4.96	0.03	.701
1.55	-14,96	28,84	2.96	4.87	0.03	.700
1.50	-14.69	27.08	2.84	4.77	0.03	.697
1.65	-14.21	25.50	2.74	4.66	0.03	. 693
1.79	-13.86	24.34	2.66	4.57	0.03	.690
1./5	-13,70	23.06	2.56	4.50	0.93	* ₽ ₿ ₫
1.09	-13,42	21.65	2.45	4.41	0.03	.697
1.00	-12.84	29.35	2.37	4.30	0.04	.682
1.99	-12.19	14,32	2.31	4.18	0.04	.675
1.77	-11.62	10.47	2.25	4.09	0.04	.661
2.00	-11,13	17.72	2.21	4.00	0.04	.004
2.10	-10.25	16.37	2.13	3.95	0.04	.654
2.29	-9.41	15,32	2.07	3.70	0.05	.542
2,30	-9.80	14.44	2.01	3,59	0.05	. 534
2.40	-8.43	13.60	1,95	3.49	0.05	.627
2.50	-8.04	12.81	1.88	3,40	0.05	.622
2.70	•7.16	12.05	1.01	1.32	0.06	.619
2.70	-7.53	11.19	1.73	3.24	0.05	.015
2.00	+7,05	10.43	1.66	3.13	0.07	.007

Energy (eV)	ε ₁	E2	n	k	lm(-1/č)	R (+=0)
2.90	-6.68	9.81	1-61	3.05	0.07	.600
3.00	-6.30	9.22	1.55	2.95	0.07	. 594
3.10	-6.01	8.67	1.51	2.88	0.08	.596
3.20	-5.70	8.17	1.46	2.80	0.08	.579
3.30	-5.39	7.70	1.42	2.72	0.09	.572
3.40	-5,07	7.26	1.38	2.64	0.09	.593
3.50	-4,76	6.86	1,34	2.50	9.10	.554
3.60	-4.44	6.49	1.31	2.45	0.10	.544
3.70	-4.10	6,20	1.29	2.49	0.11	.531
3.80	-3.81	5.95	1.28	2.33	0.12	.519
3.90	-3.54	5.73	1.26	2.27	0.13	. 507
4.00	-3.28	5.54	1.26	2.20	0.13	. 145
4.10	-3.05	5.38	1.25	2.15	0.14	483
4.20	-2.03	5.24	1.25	2.10	0.15	471
4.30	-2.66	5.13	1.25	2.05	0.15	. 461
4.40	-2.51	5.01	1.24	2.01	0.16	.452
4.50	-2.36	4.90	1.24	1.98	0.17	. 4 4 4
4.60	-2.22	4.82	1.24	1.94	9.17	435
4.70	-2.13	4.74	1.24	1.91	0.18	424
4,80	-2.04	4.65	1.23	1.88	0.18	423
4.90	-1.95	4.56	1.23	1.86	0.19	417
5.00	-1.87	4.49	1.22	1.83	0.19	. 411
5.10	-1.81	4.42	1.22	1.01	0.19	407
5.20	-1.76	4.35	1.21	1.79	0.20	403
5.30	-1.72	4.29	1.21	1.78	0.20	400
5.40	-1.71	4.23	1.19	1.77	0.20	. 394
5,50	-1.71	4.15	1.18	1.76	0.21	. 399
5.60	-1.72	4.07	1.16	1.75	0.21	. 400
5.70	-1.76	3.96	1.13	1.75	0.21	403
5,80	-1.79	3.81	1.10	1.73	0.21	406
5.90	-1.79	3.64	1.07	1.71	0.22	409
6.00	-1.76	3.47	1.03	1.68	0.23	407
6.20	+1.66	3.15	0.97	1.62	0.25	.401
6. 4 0	-1.47	2.99	0.94	1.53	0.28	. 386
b.60	-1.29	2.56	0.91	1.46	0.30	.368
6.00	-1.08	2.51	0.91	1.38	0.34	- 345
7.00	-0.92	2.39	0.91	1.32	9.36	. 326
7.20	-0.75	2.30	0.91	1.26	0.39	.305
7.40	-0.62	2.22	0.92	1.21	0.42	.286
7.60	-0.50	2.16	0.93	1.17	0.44	- 269
7.80	-0.39	2,11	0,94	1.13	0.46	251
9.00	-0,29	2.07	0.95	1.04	0.47	239
					· •	• - - •

-

Co ≹⊥ĉ

.

Cobalt single crystal with Ē⊥ĉ

publication by J.H. Weaver, E. Colavita, D.W. Lynch, and R. Rosel in Phys. Rev. 8 <u>19</u>, 3850 (1979) based on the following tabulation

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Energy (eV)	εı	€2	n	k	im(-1/č)	R (¢=0)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.10	-1013.25	377.34	5.43	32.36	0.00	.979
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.13	-646,91	247.56	4.70	25.88	0.00	.973
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.15	-438.65	181.23	4.24	21.37	0.00	.965
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.17	-310,66	145.32	4.02	18.08	0.00	.954
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.20	-226,40	120.11	3.87	15.53	0.00	.942
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V.25	-129.44	101.60	4.19	12.12	0.00	.904
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.30	-81.36	86.82	4.34	10.01	0.01	,865
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.35	-51.09	76.89	4.54	8.47	0.01	.023
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0-40	-32.93	68.69	4.66	7.39	0.01	.785
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.45	-18.06	62.77	4.86	6.46	0.01	.744
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.50	-6.37	59.48	5.17	5.75	0.02	.709
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.55	1.45	58.96	5,50	5.36	0.02	.690
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.50	6.51	59,70	5.77	5.17	0.02	.682
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.65	9.68	61.14	5.99	5.10	0.02	.680
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.70	10.80	63.94	6.15	5.20	0.02	.6R5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.75	9.26	66,64	6.19	5.39	v.01	.693
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.80	5,58	68.20	6.08	5.61	0.01	.702
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.85	0.60	67.99	5.96	5.80	0.01	.709
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.90	-4.11	66.03	5.57	5,93	0.02	.715
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,95	-8.00	62.48	5.21	6.00	0.02	.720
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.00	-11,92	57.42	4,83	5,94	0.02	.721
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.05	-13.11	52.35	4.52	5.79	0.02	.717
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.10	-12.79	48.24	4.31	5.60	0.02	.711
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.15	-12.46	45.36	4.16	5.45	0.02	.705
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.20	-12.39	43.00	4.02	5.34	0.02	.791
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.25	-12,35	40.88	3.90	5.25	0.02	.697
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.30	-12.33	39.02	3.18	5.16	0.02	.694
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 40	-12,43	17.41 16 ac	3.61	5.09	0.02	. 692
1.45 -13.54 34.08 3.41 5.00 0.03 .893 1.50 -13.62 32.11 3.26 4.93 0.03 .693	1.40	-12.85	30.00	3.55	5,05	0.02	.692
1+30 -13,04 34,11 3,26 4,95 0.04 .697	1.40	-13,34	34.00	3.41	5.00	0.03	.093
	1.65	-13.45	34.11	3.20	4.93	0.03	.692
	1 60	-13 79	30.27	3,14	4.83	0.03	
1.65 -13.47 20.78 3.03 4.74 0.03 0.87	1.65	-13.47	20.14	3.93	4.74	0.93	.08/
	1 20		27.30	2.93	4.00	0.03	.040
	1.75	-13.19	24 46	2.03	4.60	4.03	.004
	1.90	-13.04	23.21	2 61	4.34	0.03	.004
	1.45	-12.75	21 47	2.01	1 36	0.03	.0-3
	1.90	-12.41	20.63	2 41	4 27	0.04	.030
1.95 $+12.02$ 19.52 2.14 4.14 0.04 6.73	1.95	-12.42	19.52	2 14	4 1 H	0.04	673
2.00 -11.09 18.42 2.25 4.09 0.04 670	2.00	-11.09	18.42	2.25	4 69	0 04	670
	2.14	-10.52	16.60	2 1 3	1 84	0.04	660
2.20 +9.58 15.20 2.04 3.72 0.06 64m	2,20	-9.58	15.20	2,04	3.70	0.05	_6ds
2.30 -8.73 14.17 1.99 3.56 0.05 437	2.30	-8.73	14.17	1,99	3.56	0.05	613
2.40 -9.04 13.40 1.95 3.44 0.05 600	2.40	-9.04	13.40	1.95	3.44	0.05	.620
2,59 +7,54 12,74 1.90 3.34 0.06 511	2.50	-7.54	12.74	1,40	3 3	0,05	
2.50 -7.21 12.11 1.65 3.26 0.00 605	2 51	-7.21	12.11	1.65	1.26	0.95	-605
2.70 -7.00 11.41 1.79 3.19 0.06 1.002	2 70	- I . 9 Ú	11.41	1.79	3 1 4	0.05	
2.dl = 5.70 10.71 1.72 3.11 0.07 .54n	2. 44	-s.7u	10.71	1.72	3.17	0.07	. 54.

Energy (eV)	εl	E2	n	k	lm(-1/ē)	R(+=0)
2.90	-6.41	10.05	1.66	3.03	0.07	. 571
3,00	-6.09	9,43	1.60	2.94	0.07	.535
3.10	-5.78	8,87	1.55	2.85	9.08	.578
3.20	-5.48	0.35	1.50	2.78	0.08	.571
3.30	-5.18	7.86	1.46	2.70	9,09	.562
3.40	-4.83	7.44	1.42	2.62	0.09	.553
3.50	-4.52	7.07	£.39	2.54	6.10	.543
3.60	-4.23	6,73	1.36	2.47	0.11	.533
3.70	-3,94	6.43	t.34	2.40	0.11	.522
3,80	-3.67	6.18	1.33	2.33	0.12	.511
3.90	-1.42	5.96	1.31	2.27	0.13	.500
4.00	-3.10	5.78	1.31	2.21	0.13	.478
4.10	-3.01	5.61	1.30	2.17	0.14	.480
4.20	-2.85	5.44	1.28	2.12	0.14	.471
4.30	-2.67	5.28	1.27	2.07	0.15	.461
4.40	-2.51	5.14	1.27	2.03	0.16	.452
4.50	-2.36	5.02	1.26	1.99	0.16	.444
4.60	-2.22	4,92	1.26	1.95	0.17	.435
4.70	-2.13	4.83	1.26	1.92	0.17	.429
4.80	-2.04	4.73	1.25	1,90	0.18	.423
4.90	-1.95	4.64	1.24	1.67	0.18	.417
5.00	-1.80	4.5h	1.24	1.84	0.19	.411
5.10	-1.81	4.49	1.23	1.82	0,19	. 407
5.20	-1.75	4,41	1.22	1.40	0.20	.403
5.30	-1.72	4.55	1.22	1.79	0.20	.490
5.40	-1./1	4.20	1.21	1.78	0.20	. 399
5.50	-1.71	4.21	1.19	1.//	0.20	. 344
5 70	-1.12	4,12	1.17	1.70	0.21	. 400
5.00	-1 70	4,01	1.14	1.75	U.21	-403
5.00	-1.00	3.60	1.11	1.74	0.21	.405
5.90	-1 77	3.09	1.07	1.72	0,22	407
6 20	-1.67	3.54	1.07	1.07	***XJ	.407
6 40	-1.07	2 00	0.70	1.02	0.23	+401
6 60	-1 29	2.59	0.94	1 46	0.27	* 3 7 7
6 80	-1.47	2.03	0.92	1 10	0.30	. 300
7 00	-0.92	2 41	0.91	1 12	0.35	102
7.20	+0.76	2 31	0.91	1 26	0.30	105
7.40	-0.62	2.24	0.92	1 . 21	0.47	. 284
7.60	-0.50	2 17	600	1 17	0 44	260
7.80	-0.39	2.12	0.94	1.13	0.46	. 25 2
8.00	-0.29	2.08	0.95	1.09	0.47	. 234

Trans Refl	(K) RT unless specified	× Film	X-tal	Bulk	Prep		Ni
Trans Refl	4.2	×		ł			
Refl	4.2				In	μ	optical absorption with synchrotron radiation
1			×		EP	Α; ΚΚ: σ	absorptivity measured by calorimetry, data extended to 20 eV using data of others $h\nu > 4$ eV
Ellips				×		n,k,ε ₁ ,σ	table λ,n,k
Ellips	77, 290, 500		x		Heat	σ/c	heated ${\sim}10^{+7}$, ${\sim}670$ K in situ after MP
	400-1100			x		۶H	technique: caliorimetry; emissivity calculated
Ref1	8, 300			x		A	
Ellips			×		EP	n,k,σ,μ	table λ,π,k
Ellips				×	MP	R,n,k,o	heated $\sqrt{725}$ K, $\sqrt{10^{-6}}$ Torr ex situ after MP
Ref }	130, 295	×		×	EP, Sput	R	high precision reflectance with Al reference; electropolished, annealed, Ar sputtered and films
Trans, Ref	i l	Я			Ex	n,k,σ	Table E,n,k
Trans		×			Ex	КК: μ	energy loss spectroscopy
Trans		×			Ex	$\mu, im(\epsilon^{-1}); KK: \epsilon_1, \epsilon_2$	energy loss spectroscopy
	1300-1550	×			Í	ϵ at $\lambda = 6500$ Å	
Ellips	(×	Heat	σ	heated ∿750 K ex situ after MP
E11	ens lips	ans 1300-1550	ns x 1300-1550 x	ans x 1300-1550 x	ans x 1300-1550 x lips x	ans × Ex 1300-1550 × lips × Heat	ans λ Ex $\mu, im(\varepsilon^{-1});$ KK: $\varepsilon_1, \varepsilon_2$ 1300-1550 x ε at $\lambda = 6500$ Å lips x Heat σ

-<mark>8</mark>6-

-

Authors	Energy Range (eV)	Technique	Temperature		:	Sam	pie		Data Presentation	Remarks
			RT unless specified	Film	X-t-l		≝ Pi	гер		NI NI
Sa39	2.6-27.6	Refl		×		Ţ	Ε,		R	
Rob59	0.47-3.4	Ellips	88, 298, 473			,	EF	1	n,k,c1,c2	
EP063	0.1-11	Refl				,	EP		R; KK: $\varepsilon_1, \varepsilon_2$, im(ε^{-1}), σ	
DM65	0.1-1	Ellips		;		,	ų –		n,k	table λ,n,k
LT66	0.06-0.25	Ellips				×	MP		e2/2.e1	
Le67	<4	Ellips				×	MP		ε2/λ	data from LT66 and LTA66
LTA66	0.1-3.5						MP		ε2/λ,ε1	
N566	~0.1-3	Ellips				×	He	át	σ	heated $\sim 10^{-6}$, ~ 725 K after MP
6168	2-5.6	m≁θ				×	MP		ε ₂ /λ,ε1	
BG68 ···	0.1-1.24	Refl	4.2			×			A	absorptivity measured by calorimetry
FSH69	0.2-10	Refl				×			R	
SHK69	40-300	Trans		×	i		Ex		μ	optical absorption with synchrotron radiation
SP69	0.46-5.86	Ellips	77-770			×	He	at	ε ₂ /λ	heated in situ ~770 K after EP
VA69	4-24	Ref1		×			In		R; KK: n,k,ε ₁ ,ε ₂ , Im(ε ^{−1}),Im(ε+1) ^{−1}	also photoemission
SS70	0.5-12	Refl				×	He	•t	R	Ni and NiCu annealed in situ, also photoemission
St70	2-35	Ellips	77, 500			×	ĒP		a/c	

. .

-66-

Fig. 32 Survey of available data for Hi

Authors	Energy Range	Techn i que	Temperature		S	amp	le	Data Presentation	Remarks	
	(ev)		(K) RT unless specified	Film	X-tal	Bulk	Prep		N1	
st75	1.8-3.5	Ellips	4.2, 300			×	EP	R, c1, c2	high precision #	
MKN76	~2.5-5.0	Refl		×				KK: ε ₁		
MRD76	2-27	Refl		×		×	Sput	R; c1,c2	synchrotron radiation	
Sm77	1.96, 2.27	Ellips				×	Sput	n,k	extensive surface studies, MP, annealed, sputtered, AES	
ST77	0.05-0.1	Ellips	295		x		MP	ε ₂ /λ,ε ₁		
TD877	~0.4-6.5	Refl		×			Ex	КК: σ	differential beam studies of NICu; films annealed ∿675 K	
GSB78	0.37-3.1	Ellips	RT,1673, 1873			×	Melt	n,k,o	plotted dtat is at RT; table λ ,n,k	
SJ78	2-3	Ellips			x		Heat	$\epsilon_2(hv)^2, \epsilon_2/\lambda$	heated $\sim 10^{-7}$, ~ 700 K in situ after MP	
F\$\$79	0-150	Trans		×			Ex	KK: ε ₁ ,ε ₂ ,μ,R, Im(ε ⁻¹)	energy loss spectroscopy	
SJ79	0.46-5.7	Ellips	160-685		×	•	Heat	ε2/λ	heated in situ ∿10 ⁻⁹ , ∿700 K	
- 100										

Fig. 33 Reflectivity of NI. 000 LRW71; +++ JC74; ---- K172; 000 EP063; ΔΔΔ SS70; xxx VA69; VVV MR076; ▲▲▲FSS79; 000 GSS73; CICC DM65; BBM GSB78; ♥♥♥ SN71; ◊◊◊ JPT72; BBB VP73.

Fig. 32 Survey of available data for Ni

-102-

۰

Fig. 35 • c1 for Ni. ---- LRW71; +++ JC74; XXX K172; 444 VA69; 000 MRD76; #44F5579; +++ GS573; VVV GSB78; 000 SN71.

Fig. 34 Reflectivity of NI for 0 ≤ hu ≤ 6 eV. ---- LRW71; ----- FSS79; ΔΔΔ JPT72; □□□ VA69; ���KI72; +++ DH65; - --- VP73; xxx GSB78; ---- GSS73; --- JC74; coo SN71; eee SS70; ▲▲ EP063; VVV St75; ◇◇◇B668.

-101-

 Fig. 36
 ε2 for Ni. eee LRW71; +++ JC74; --- K172; xxx VA69; 000 MRD76; VVV FSS79; VVΨ GSS73; ΔΔΔ GSB78; ΔΔΔSN71.

4

ŧ

.

Nickel

.

publication by D.W. Lynch, R. Rosel, and J.H. Weaver in Solid State Commun. 9, 2195 (1971) using VUV reflectance from literature based on the following tabulation

Energy (eV)	εı	ε2	n	k	lm(-1/≧)	R(4- 0)
0.10	-2008.21	873.91	9.54	45.82	0.00	.983
0.11	-1679.25	678.58	0.12	41.70	0.00	.982
0.12	-1414.43	544.30	7.11	38.28	0.00	.981
0.13	-1204.89	454.96	6.44	35.31	0.00	.980
0.14	-1040.11	382.26	5.83	32.77	0.00	.979
0.15	-903.95	332.75	5.45	30.56	0.00	978
V.16	-794.89	286.10	5.00	28.63	0.00	.977
0.17	~698.48	251.24	4.68	26.84	0.00	.975
0.18	-616.88	224.46	4.45	25.23	0.00	.973
0.19	-547.89	204.67	4.30	23.80	0.00	.971
0.20	-488.59	105.00	4.12	22.48	0.00	.969
0.21	-434.83	175.40	4.13	21.26	0.00	.965
0.22	-391.90	165.99	4.11	20.22	0.00	.962
0.23	-354.15	159.46	4.14	19.27	0.00	.958
0.24	-322.31	153.52	4.16	10.43	0.00	.955
0.25	-294.62	150.21	4.25	17.68	0.00	.950
0.26	-272.59	146.36	4.29	17.06	0.00	.946
0.27	-253.62	142.05	4.30	16.50	0.00	.943
0.28	-237.13	137.40	4.30	15,99	0.00	.939
U.29	-222.59	132.03	4.26	15.51	0.00	.937
0.30	-208.87	126.17	4.19	15.05	υ.00	.934
0.31	-195.53	121.47	4.16	14.59	0.00	.930
0.32	-163.84	116.70	4.12	14.17	0.00	.927
0.33	-172.61	112.83	4.10	13,76	0.00	.924
0.34	-162.93	109.11	4.07	13.40	0.00	.921
0.35	-154.06	105.17	4.03	13.05	0.00	.918
0.36	-145.49	101.57	4.00	12,71	0.00	.914
0.37	-137,66	98.24	3.97	12.39	0.00	.911
0.38	-130.47	94.54	3,91	12,07	0.00	.900
0.39	-123.03	91.24	3.09	11.75	0.00	.904
0.40	-115.85	87.79	3.84	11.43	0.00	.900
0.45	-66,18	85.49	4.20	10.19	0.01	.872
0,50	-76.62	17.71	4.03	9.64	0.01	. 304
0.55	-64.35	69.57	3.90	6.92	0.01	*848
0.60	-54.99	64.04	3.64	6.35	0.01	.035
0.65	-49.03	58.49	3.69	7.92	0.01	. ú26
0.70	-43.03	53,76	3.59	7.41	0.01	.013
0.15	-30,64	49.80	3.49	7.13	0,01	.803
0,80	-35.06	46.03	3.36	6.82	0.01	.794
v,85	-31.77	42.56	3.27	6.51	0.02	./#5
0,90	-28.69	39.64	3.10	6.23	0.02	.77+
0,95	-26.10	37.13	3.11	5.98	0.02	. 164
1.00	-23.64	35.09	3.06	5.74	0.02	.753
1.05	-21.73	33.42	3.91	5.55	0.02	.143
1.10	-20.16	31.90	2.97	5.3ú	U.U2	.734
1.15	-19.02	30 . 50	2.91	5.24	0.05	.723
1.20	-17,69	29.05	2.85	5.10	0.02	.121
1.25	-16.04	27.77	2.80	4.97	0.03	.714
1.30	-16.00	20.57	2.74	4,85	0.01	. 105

Energy (eV)	¢1	€2	n	k	lm(-1/ē)	R(4=0)
1.35	-15.15	25.47	2.69	4.73	0.03	,701
1.40	-14.42	24.55	2.05	4.63	0.03	. 695
1.45	-13.99	23.62	2.59	4.55	0.03	.692
1.50	-13.52	22.63	2.53	4.47	0.03	.684
1.55	-13.02	21.72	2.48	4.30	V.03	.683
1.60	-12.65	20.92	2.43	4.31	0.04	.679
1.65	-12.45	20.07	2.36	4.25	0.04	.678
1.70	-12.27	19.05	2.28	4.18	0.04	.617
1.75	-11.07	10.05	2.21	4.09	0.04	.673
1.80	-11.48	17.11	2.14	4.01	0.04	.670
1.45	-10.99	16.24	2,08	3.91	0.04	.665
1.90	-10.51	15.47	2.02	3,82	0.04	.659
1,95	-10.06	14.77	1.96	3.74	0.05	.054
2.00	-9.65	14.07	1.92	3.65	0.05	.049
2.10	-8.67	12.91	1.85	5.40	0.05	-034
2.20	-7.85	11.96	1.00	3.33	0.06	+04V 405
2.30	-7.10	11.15	1.75	3.13	0.00	.003
2.40	-6.41	10.44	1./1	3.00	0.07	675
2.50	~5.8V	9.80	1,07	2.73	0.00	551
2.00	-3.13	7.30	1,05	2.01	0.00	.547
2.10	-4.63	9 49	1 63	2.61	0.10	.525
2 90	-1.72	8.16	1.62	2.52	0.10	.509
2.00	-3.36	7.97	1.61	2.44	0.11	495
3.10	-2.98	7.61	1.61	2.36	0.11	480
3 20	-2.67	7.40	1.61	2.30	0.12	467
3.30	-2.39	7.20	1.61	2.23	0.13	.454
3.40	-2.11	7.01	1.62	2.17	0.13	.441
3.50	-1.82	6.87	1.63	2.11	0.14	.428
3.60	-1.57	6.78	1.64	2.07	0.14	.416
3.70	-1.32	6.73	1.66	2.02	0.14	.495
3.80	-1.12	6.74	1.69	1.99	0.14	.397
3.90	-0.99	6.80	1.72	1.90	Ú.14	. 343
4.00	-0.93	6.00	1.73	1.90	0.14	. 392
4.10	-0.95	6.95	1.74	2.00	0.14	.394
4.20	-0.99	6.99	1.74	2.01	0.14	. 396
4.30	-1.12	7.04	1.73	2.03	0.14	.402
4.40	-1.31	7.02	1.71	2.06	0.14	409
4,50	-1.49	6.94	1.6/	2.07	V-14 0 14	471
4.60	-1.03	0.04	1.03	2.09	0.14	476
4.70	-1.90	0.00	1.57	2.10	0.14	. 115
4.80	-2.09	6.45	1.33	2 1 1	0.14	. 443
4.7U 5.00	-2.30	5 46	1.40	2 10	0.15	. 444
5.00	-2.50	5 50	1.33	2.07	0.15	451
5 20	-2.54	5.16	1.27	2.04	0.16	454
5.30	+2.51	4.80	1.21	1.99	0.16	454
5.40	-2.41	4.49	1.16	1 54	0.17	.449
5.50	-2.29	4.22	1.12	1 89	0.14	. 44 3
5.60	-2.16	3.99	1.09	1.63	0.19	.435
5.70	-2.04	3.78	1.05	1.70	u,20	. 120
5.40	-1.90	3.59	1.04	1.73	0.22	.417
5.90	+1.75	3.43	1.02	1.67	v.23	.405
6.20	-1.36	3.09	1.00	1.54	u,27	.371
6.40	-1.11	2.94	1.01	1.40	U_3A	. 345
6.6V	-0.93	2.84	1.01	1.40	0.32	. 325

-0.76

6.80

2.74

1.02

1.35

0,34

-110-

R(4=0)

.291

.282

.273

.265

.256

.248

.242

.235

.220

.220

.203

.194

.105

.175

.166

.155

.145

.129

.115

.111

-109

.100

.108

.107

.106

.106

.105

.105

.105

.106

.106

.106

.107

.107

.106

.105

.104

.103

.101

.098

,096

.092

.087

.082 .077 .071

.066

.061

.057

. 155

.053

.051

.052

.051

im(-1/č)

0.35

0.36

0.38

0,39

0.41

0.42

0.43

0.45

0.47

0.49

0.51

0.53

0.55

0.57

0.59

0,61

0.62

0.64

0.64

0.62

0.61

0.59

0.57

0.56

0.56

0.56

0.55

0.55

0.55

0.55

0.56

0.56

0.56

0.57

0.58

0.59

0.60

0.61

0.62

0.63

0.65

9.67

0.69

0.72

0.75

0.77

0.79

0.81

0.81

0.90

0.79

0.77

0.77

0.76

0.77

0.77

0.40

0.45

0.44

0.44

0.44

0.43

NI

-111-

ЯI Energy (eV) k 61 £2 n 7.00 +0.63 2.68 1.03 1.30 -0.56 7.20 2.63 1.03 1.27 -0.49 7.40 2.56 1.03 1.24 7.60 -0.43 2.46 1.02 1.22 -0.37 7.80 2.40 1.01 1.10 8.00 -0.31 2.33 1.01 1.15 -0.27 8.20 2.27 1.00 1.13 8.40 +0.24 2.19 0.99 1.11 8.60 -0.19 2.11 0.98 1.08 -0.15 8.80 2.03 0.97 1.05 -0.10 9.00 1.96 0.97 1.01 9.20 -0.05 1.89 0,96 0.99 0.96 9.40 0.00 1.03 0.95 9.60 0.04 1.76 0.95 9.60 0.10 1.70 0.95 0,89 10.00 0.14 1.64 0.95 0,87 10.20 0.20 1.58 0.83 0,95 10.40 0.26 1.52 0,95 0.00 10.60 0.37 1.48 0.97 0.76 10.80 11.00 11.25 ù.43 1.49 0.99 0.75 0.50 1.47 0.73 1.01 0.56 1.49 1.04 0.72 11.50 0.60 1.51 1.05 0.71 0.62 11.75 1.52 1.07 0.71 12.00 1.53 1.07 0.71 12.25 0.64 1.53 1.07 0.71 12.50 0.65 1.53 1.08 0.71 12.75 0.65 1.53 1.08 0.71 13.00 0.66 1.52 1.00 0.71 13.25 0.66 1,52 1.00 0.71 0.70 0.65 1.51 1.07 13,75 0.65 1.51 1.07 0.63 14.00 1.50 0.71 1.07 14.25 0.62 1.49 1.06 0.70 0.61 1.49 0.70 1.05 14.75 0.59 1.47 1.04 0.70 15.00 0.57 1.44 1.03 0.70 15.25 0.56 1.41 1.02 0.69 15.50 0.55 1.39 1.01 0.69 **0.54** 1.36 1.00 0.60 16.00 0.53 1.34 0,99 0.67 16.30 0.51 1.29 0.96 0.66 17.00 0.51 1.23 0.96 0.64 17.50 0.49 0.94 1.19 0.63 10.00 0.49 1.12 0.92 0.61 18.50 0.49 1.05 0.91 0.58 19.00 0.50 1.01 0.90 0.50 19.50 0.51 0.90 0.90 0.54 20.00 0.54 0.92 0.89 0.51 20.50 0.55 0.38 0.89 0.49 21.00 0.50 0.85 0.90 0.47

21.50

22.00 22.50 23.00

23.50

24.00

0.61

9.62

0.61

0.65

0.64

0.63

0.83

0.62

0.81

0.80

0.80

0.78

0.91

0.91

0.91

0.92

9.91

Energy (eV)	εl	ε ₂	n	k	im(-1/č)	R(+=0)
24.50	0.62	0.77	0.90	0.43	0.79	.051
25.00	0.61	0.74	0.89	0.42	0.80	.050
26.00	0.62	0.69	0.88	0.39	0.81	. 046
27.00	0.62	0.65	0.87	0.37	0.80	.042
28.00	0.63	0.62	0.87	0.35	0.80	.040
29.00	0.63	0.51	0.86	0.34	0.14	- 037
30.00	0.64	0.55	0.86	0.32	0.77	-034
35,00	0.68	0.41	0.86	0.24	0.66	.022
40,00	0.71	0.11	0.87	0.18	0.51	014
45.00	0.76	0.23	0.98	0.13	0 36	
50.00	0.03	0.18	0.92	0.10	1 25	.004
60.00	0.91	0.16	0.96	0.08	0 18	007
65.00	0.95	0.17	0.98	0.09	0 18	.002
68.00	0.91	0.24	0.96	0.12	0 22	.002
70.00	0.88	0.20	0.94	0.11	0.25	.004
75.00	0.88	0.16	0.94	0.09	0 20	
80.00	0.00	0.14	0.94	0.07	0.17	.003
90.00	0.89	0.11	0.94	0.06	0.13	.002

Authors	Energy Range	Technique	Temperature		S	amp	le	Data Presentation	Remarks
	(eV)		(K) RT uniess specified	Film	X-tal	Bulk	Prep		Zr
BDL77	0.03-3.1	Refl				×	MP	R	also emissivity 400-850 K
ŁO Unpl	0.12-30		4.2 K for h∪ < 4.4 eV RT for h∪ > 4.4 eV			x		R; KK: n,k,ε ₁ ,ε ₂ , im(ε ⁻¹),μ	absorptivity measured by calorimetry for $h\nu < 4.4 eV$, reflectivity measured for $h\nu > 4.4 eV$
:		- - - - -							
<u>+</u>									
•								1	
					l		1		

-112-

Authors	Energy Range	Technique	Temperature		Ş	amp	la	Data Presentation	Remarks
	(eV)		(K) RT unless specified	Film	X-tal	Bulk	Prep		Zr
Sa39	2.6-27.6	Ref 1		x			Ex	R	
KC63	0.06-0.5	Ellips				×		n,k	
KC65	0.05-5	Ellips				x	MP,EP	n,k,ơ	table λ,n,k
LT66	0.06-0.25	Ellips	1			×	MP	E2/1,=E1	
LTA66	0.1-3.5						мр	ε2/λ.ε1	
Le67	<4	-					MP	ε ₂ /λ	data from LT66 and LTA66
VAK67	3-14.4					×		R	polarimetry 3 < hv < 5 eV, reflectance 4 < hv < 7 eV, and photoemission 7.5 < hv < 14.4 eV
GL68	2-5.6	m- 0				x		ε ₂ /λ,ε ₁	
KN868	5-12	Ellips			•			R; KK: $\sigma_{1} im(e^{-1})$, $im(e+1)^{-1}$, $-e_{1}$	data from VAK67, KK analyzed
PDS70			1200-2000					$e_{\rm H}$ at $\lambda = 6560$ Å	
Ba874			1100-1800			×		$\varepsilon_{\rm N}$ at $\lambda = 6450$ Å	
L0W75	0.15-30	Refl	4.2 K for hv < 4.4 eV RT for hv > 4.4 eV				EP	A, R; KK: $\varepsilon_1, \varepsilon_2, \sigma_1$ im(ε^{-1}), im(ε^{+1}) ⁻¹	absorptivity measured by calorimetry hv < 4.4 eV, reflectivity measured hv > 4.4 eV
₩076	20-250	Trans		×			Ex	u I	optical absorption, synchrotron radition

Fig. 40b c1 for Zr. LOW (unpub) for single crystal Zr with Elc.

 ϵ_2 for Zr. LOW (unpub) for single crystel Zr with $\tilde{E} \bot \hat{c}.$

Fig. 41a \$2 for polycrystalline Zr. --- LOW75; *** KC63.

Energy (eV)	εl	¢2	n	k	lm(-1/č)	R(¢=0)
	-810 14	300 46	4 10	1 74	0.40	200
0.10	-376 06	130 .40	0,10	1.70	0.00	
0.13	-3/0.70	132.00	3.3/	1.30	0.00	.123
0.17	-106 20	7V.17 66 Eb	4.71	1.10	0,00	.080
0.20	-154 00	00.33	2.37	1.06	0.00	.054
0.24	-134.08	30.00	2.22	1.05	0.00	.031
0.29	-121.01	47.17	2.17	1.05	0.00	.047
V.20	-76.52	42.07	4.47	1.00	0.00	.052
0.20	-10.39	42.07	2.30	1.03	0.01	.039
0.30		42.37	2,07	1 20	0.01	.073
0.32	-47.03	43.44	2.60	1.20	0.01	104
0.34	-36 34	43.00	3.07	1.24	0.01	110
0.30	-33.74	42.70	3.17	1.24	0.01	.110
0.30	-31.07	37 64	3.00	1.20	0.02	105
0.40	-21.30	37.34	3.05	1 24	0.02	103
0.41	-24.80	33.00	3.03	1 2 2	0.02	102
0.42	-10 00	33.90	3.03	1.43	0.02	.101
0.43	-10.07	31.66	3.07	1.25	0.02	100
V. 44	-10.75	31.00	3.13	1.23	0.03	.108
0.45	-12.00	31.01	3,23	1.4/	0.03	.114
V.40	-4.00	30.07	3,30	1.30	0.03	.123
V.4/	-0.03	30.03	3,51	1.33	0.03	146
V. 48	-1 00	34.72	3.10	1.30	0.03	140
0.49	-1.02	31.08	3.72	1.40	0.03	.100
0.50	1.32	34.14	4.13	1.97	0.03	+1/2
0.52	4./0	33.20	440	1.30	0.03	.170
0,54	7.03	30.00	4 .70	1.73	0.03	221
0.30	8.IJ 8.00	41.19	5.01	1.00	0.02	240
0.30	6.00	44.10	3.19	1.64	0.02	343
0.60	0.34	40.30	5,10	1 41	0.02	246
0.01	3480	47.34	5,13	1 60	0.02	239
0.62	4.30	47.01	3.11	1,00	0.02	215
0.63	3.10	47.63	5.00	1.37	0.02	211
0.04	£4V3	47.73	3.00	1.30	0.02	227
0.03	-0.34	47.70	4.73	1.5/	0.02	221
1 69	-1 07	46 06	4.40	1.50	0 03	211
0.00	-1.7/	43.73	4.07	1 5 1	0.02	202
0 12	-3.10	43.54	4 41	1 49	0 02	143
0.74	-3.07	41.00	A 31	1 47	0.02	-186
0.74	-4.54	30 7-	4 31	1 45	0.02	180
0.70	-4.00	39.70	4 12	1 44	0.02	.174
0 00		30.73	4 03	1 477	1 01	- 168
V.8V n 83	-2.10	31.43	1.VJ 1.04	1 40	0.03	-162
V.04 0.94	-3.09 -3.60	33.77	3,79	1.40	0.03	.157
V.07		34.40	3.00	1.39	0.03	- 1 % 3
V.80 0 06	-4.30	33.43	3,71	1.31	0.03	151
0 44		32.40	3.13	1 . 37	0.03	140
0.90	-3,19	31.30	3,74	1 36	0.03	147
9 192 0.0.	-3,91	34.00	3.14	1.30	0.03	+ 1 4 4
V, 94	-1.VI	34.27	3470	L 4 3 D	A'A'	+1.48

polycrystalling results as published in D.W. Lynch, C.G. Olson, and J.H. Weaver, Phys. Rev. B <u>11</u>, 3617 (1975) -122-

2.35

2.45

2.50

9.86

9.49

9.12

-5,45

-5,34

-5,24

1.71

1.67

1.62

0.92

0.91

0.90

0.08

0.08

0.08

.027

,024

-123-

đ

Zr							Zr			- 12)-				
Energy (eV)	٤1	ε ₂	n	, k	lm(-1/ë)	R(#=0)	Energy (eV)	εŀ	٤2	n	k	lm(-1/č)	R(4-0)	
0.96	-2.71	29.76	3.69	1.36	0.03	. 145	2.55	-5.13	8.76	1.50	0.89	0.09	.023	
0.98	-2.44	29.32	3.67	1.36	0.03	.144	2.60	-5.03	8,39	1.54	0.88	0.09	.022	
1.00	-2.19	28.91	3.66	1.35	0.03	143	2.65	-4.91	8.03	1.50	0.87	0.09	.020	
1.02	-1.92	20.56	3.65	1.35	0.03	143	2.70	-4.76	7.69	1.46	0.86	0.09	.019	
1.04	-1.69	28.29	3.65	1.35	0.04	.142	2.75	-4.61	7.37	1.43	0.85	0.10	.018	
1.06	-1.47	28.10	3.65	1.35	0.04	.142	2.80	-4.45	7.08	1.40	0.84	0.10	.018	
1.08	-1.38	20.02	3.65	1.35	0.04	.142	2.05	-4.30	6.80	1.37	0.83	0.11	.017	
1.10	-1.32	27,95	3.65	1.35	0.04	.142	2.90	-4.13	6.54	1.34	0.82	0.11	.016	
1.12	-1.43	27,95	3,64	1.35	0.04	.142	2.95	-3.97	6.31	1.32	0.01	0.11	.016	
1.14	-1.65	27.88	3.62	1.35	0.04	.141	3.00	-3.81	6.11	1.30	0.81	0.12	.016	
1.16	-1.91	27.74	3.60	1.34	0.04	.139	3.10	-3.55	5.74	1.26	0.80	0.13	.015	
1.18	-2.19	27.57	3.57	1.34	0.04	.137	3.20	-3,32	5.40	1.23	0.78	0.13	.014	
1,20	-2.57	27.39	3.53	1.33	0.04	.134	3.30	-3.11	5.08	1.19	0.77	0.14	.014	
1.72	-3.02	27.07	3,40	1.32	0.04	.131	3.40	-2.91	4.79	1.16	0.76	0.15	.013	
1.24	-1.45	26.62	3.42	1.31	0.04	.127	3.50	-2,73	4.52	1.13	0.75	0.16	.013	
1.20	-3.75	20.05	3.36	1,30	0.04	.123	3.60	-2.56	4.26	1.10	0.74	0.17	.013	
1.40	-1.90	25.46	3,30	1.29	0.04	.119	3.70	-2.40	4.02	1.07	0.73	0.18	.013	
1.30	-4.40	49.00	3,25	1,27	0.04	.116	00 C	-2.23	3.19	1.04	0.72	0.20	.012	
1.34	-4.10	49.33	3.21	1.27	0.04	.112	3.90	-2.10	3.5/	1.01	0.71	0,21	.012	
1.34	-4.05	23.09	3.17	1.26	0.04	.110	4.00	-1.95	3.30	0.98	0.70	0.22	.012	
1.30	-3.00	23.93	3.14	1.25	0.04	.109	4.10	-1.01	3.1/	0,96	0.69	0.24	.012	
1 40	-1 81	23,00	3.12	1.25	0.04	.107	4 30	-1.67	2.99	0.94	0.69	0.25	.013	
1.42	-3.03	44.17	3.10	1.25	0.04	.106	4.40	-1.33	2.02	0.91	0.68	0.27	.013	
1.44	-3.62	22.37	3.03	1.24	0.04	.105	4.50	-1 30	2.05	· 0.07	0.67	0.29	.013	
1.46	-3.93	22 13	3.07	1.24	0.04	103	4.60	-1.50	2 33	0.87	0.65	0.32	.013	
1.40	-3.85	21.96	3.03	1.24	0.04	.102	4.70	-1.05	2.19	0.05	0.64	0.34	.014	
1.50	-3.92	21.82	3.04	1 23	V.U.	.101	4.80	-0.93	2.04	0.03	0.64	0.37	.014	
1.52	-4.06	21.69	3.00	1 23	0.04	.100	4.90	-0.80	1,90	0.79	0.63	0.45	.014	
1.54	-4.24	21.53	2.98	1.22	0.04	.034	5.00	-9.67	1.77	0.78	0.63	0.49	015	
1.56	-4.43	21.33	2.95	1.21	0.04	. V 3 / . A B B	5.10	-0.54	1.66	0.78	0.62	0.54	.015	
1.50	-4.63	21.10	2.91	1.21	0.05	.093	5.20	-0.42	1.54	0.77	0.62	0.60	.016	
1.60	-4.93	20.85	2.88	1.20	0.05	.093	5.30	-0.28	1.42	0.76	0.62	0.68	-016	
1.62	-5.03	20,59	2.84	1.19	0.05	.089	5.40	-0.14	1.31	0.77	0.62	0.75	.016	
1.64	-5.23	20.30	2.80	1.18	0.05	.085	5.50	0.00	1,22	0.78	0.62	0.02	-015	
1.66	-5.43	19.99	2.76	1.18	0.05	-083	5.60	0.14	1.14	0.00	0.63	0.86	.014	
1.68	-5.60	19.66	2.72	1.17	0.05	.081	5.70	0.29	1.06	0.83	0.65	0.80	.014	
1,70	-5.76	19.32	2.68	1.16	0.05	.078	5.80	0.43	0,99	0.87	9.66	0.85	.013	
1.72	-5.90	18.98	2.64	1.15	0.05	.076	5.90	0.63	0.92	0,93	0.68	0.74	.013	
1.74	-6.02	18.63	2.60	1.14	0.05	.073	6.00	0.80	0.90	1.00	0.71	0.62	.012	
1.76	-6.11	18.23	2.50	1.13	0.05	.071	6.10	0.95	0,90	1.06	0.73	0.53	.013	
1.78	-6.22	17.95	2.53	1.12	0.05	.069	6.20	1.08	0.90	1.11	0.75	0.46	.013	
1.80	-6.31	17.61	2.49	1.12	0.05	.067	6.30	1.23	0.90	1.17	0.77	0.39	.014	
1.85	-6.49	16.76	2.40	1.09	0.05	.061	6.40	1.36	0.92	1.23	0.78	0,34	.014	
1.90	-6.59	15,92	2.31	1.07	0.05	.056	6.50	1.49	0.95	1.20	0.80	0.30	.015	
1.95	-6.63	15.12	2.22	1,05	0.06	.051	6.60	1.62	0.96	1.33	0.91	0.27	.015	
2.05	-0.04	14.36	2.14	1.03	0.06	.047	6./U	1.75	1.03	1.37	0.83	0.25	.017	
2 10	-6.60	13.01	2.06	1.02	0.05	.043	9. 40	1.86	1.09	1.42	0.84	0.23	-918	
2 14 2 14	+0.51	12,69	1.99	1.00	0.06	.049	0.90 1 aa	1.97	1.17	1.46	0.85	0.22	.019	
2 20	-9.j6	12,22	1.93	0.98	0.06	.036	7.00	4.05	1.26	1.49	0.86	0.22	.029	
2.25	-9.1/	11.02	1.87	0.97	0.07	.034		4.1/	1.43	1.54	0.88	0,21	.022	
2.30	-3.9/	11.09	1.92	0.95	0.07	.032	7.40	4.43	1.24	1.58	U.H9	0.21	.023	
2.15	-3./0	10.04	1.78	0.34	0.07	.032	7.0V 7.0V	2.30	1+14	1.01	0.90	0,71	.024	
	-3.34	10.44	1.74	0.93	0.08	.029	1.90	4.34	1.00	1.03	0.90	0.21	.025	

8.00

8.20

8.40

2.04

2.20

2.37

1.66

1.67

1.68

0.91

0.91

0.92

0.21

0.21

.026

.020

.025

2.37

2.36

Zr

-124-

Zr

Energy (eV)	εı	¢2	n	k	lm(-1/≧)	R(+=0)	Energy (eV)	٤l	£2	n	k	lm(-1/ĕ)	R(4=0)
8 60	2.24	2.53	1.68	0.92	0.22	.026	19.80	1.51	1.09	1.30	0,91	0.31	.015
3.00	2 14	2.64	1.66	0.91	0.23	.026	20.00	1.50	1.14	1.30	0.81	0.32	.015
9.00	2 03	2.11	1.65	0.91	0.23	.025	20.20	1.40	1.20	1.30	0.01	0.33	.015
9 30	1 86	2.89	1.63	0.90	0.24	.025	20.40	1.45	1.26	1.30	0.01	0.34	.015
9.40	1 71	2 96	1.60	0.89	0.25	.024	20.60	1.42	1.30	1,29	0.80	0.35	.015
3,90	1.63	2.02	1 67	0.89	0.26	.021	20.80	1.37	1.35	1.20	0.00	0.36	.015
9.00	1 23	3 03	1.52	0.87	0.28	.021	21.00	1.32	1.38	1.27	0,00	0.30	.015
10 00	1 1 2	3 02	1.47	0.86	0.29	.020	21.20	1.27	1.40	1.26	0.79	0.39	.015
10.00	1.12	2 96	1.42	0.84	0.31	.018	21.40	1.22	1.43	1.24	0.79	0.40	.014
10.20	0 71	2 84	1.15	0.67	0.33	.015	21.60	1.17	1.44	1.23	0.78	0.42	.014
10 50	0.62	2 77	1.32	0.81	0.34	.016	21.80	1.12	1.44	1,21	0.78	0,43	.014
10.50	0.03	2 67	1.28	0.80	0.36	.015	22.00	1.07	1.44	1.20	0.77	0.45	.014
10.00	0.30	2 60	1 22	0.78	0.39	.014	22.20	1.02	1.43	1.18	0.77	0.46	.014
11 00	0.40	2.30	1.19	0.77	0.41	.014	22.40	0.98	1.42	1.16	0.76	0.48	.013
11.00	0.47	2 22	1 16	0 76	0 43	.013	22.60	0.94	1.41	1.15	0.76	0.49	.013
11.20	0.42	2 10	1 13	0 75	0.46	-013	22.80	0.90	1.40	1.13	0.75	0.51	.013
11.40	0.41	2 00	1 1 1	0 74	0.40	013	23.00	0.87	1.38	1.12	0.75	0.52	.013
11.00	V. 91	1 01	1 00	0.74	0 50	.013	23.20	0.84	1.36	1.10	0.74	0.53	.013
11.00	0.41	4 4 4	1.07	0.73	0.50	013	23.40	0.01	1.34	1.09	0.74	0.55	.013
12.00	L# . U	1.04	1 05	0.73	0.54		23.60	0.78	1.32	1.08	0.73	0.56	.013
12.20	V. 44	4.70	1.00	4 7 7	0.55	012	23.00	0.76	1.30	1.06	0.73	0.57	.013
12.40	0.42	1.14	1.03	0.74	0.53	012	24.00	0.74	1.28	1.05	0.73	0.59	.013
12.60	0.41	1.03	1.03	0.74	V.37 0 E0	.012	24.20	0.72	1.26	1.04	0.72	0.60	.012
12.80	0.41	1.59	1.01	0.71	0.39	.012	24.40	0.70	1.24	1.03	0.72	0.61	.012
13.00	0.40	1.33	1.00	0.71	0.01		24.60	0.68	1.22	1.02	0.71	0.63	.012
13.20	0.40	1.40	V.98	0.70	V.09	-012	24.80	0.66	1.21	1.01	0.71	- 0.64	.012
13,40	0.40	1.40	0.96	0.69	V.00	-415	25.00	0.64	1.19	1.00	0.71	0.65	.012
13.60	0.40	1,33	0.95	0.64	0.09	-013	25.20	0.62	1.17	0.99	0.70	0.67	.012
13.80	0.41	1.2/	0.93	0.66	0.71	- 413	25.40	0.61	1.15	0.98	0.70	0.69	.012
14.00	0.42	1.20	0.92	0.68	9.74	.013	25.60	0.59	1.13	0.97	0.69	0.70	.012
14.20	0.43	1.13	0.91	0.0/	0.77	.013	25.00	0.57	1.11	0.95	0.69	0.71	.012
14.40	0.45	1.05	0.89	0.67	0.00	.013	23,00	0.56	1.10	0.95	0.69	0.72	.013
14.60	0.49	0.98	0.89	0.67	0.82	.013	26.00	0.54	1.08	0.91	0.68	0.74	.013
14.80	0.54	0.92	0.90	0.67	0.81	.013	26.40	0 52	1.06	0.92	0.68	0.76	.013
15.00	0.60	0.87	0.91	0.67	0./8	.013	24.40	0.50	1.03	0.91	0.67	0.79	.013
15.20	0,64	0.04	0.92	0.60	0.15	.013	24.00	0 44	1.01	0.89	0.67	0.81	.013
15.40	0.69	9.81	0.94	0.68	0,72	-013	27.00	0.46	0.98	0.88	0.66	0.84	.013
15.60	0.73	0.79	0.95	0.69	0.68	.013	37 30	0.45	0.94	0.86	0.66	0.17	.013
15.80	0.77	0.76	0.96	0.69	0.65	-012	1 97 AO	0 44	0.90	0.85	0.65	0.90	.014
16.00	0.81	0.74	0.98	0.70	0.61	.012	27 60	0 44	0.07	0.84	0.65	0.92	.014
16.20	0.05	0.71	0.99	0.70	0.58	.012	27.80	0.44	0.83	0.83	0.64	0.94	-014
16.40	0.90	0.70	1.01	0.71	0.54	.012	21,00	0 45	0.80	0.83	0.64	0.95	.014
16.60	0.94	0.68	1.02	0,72	0.51	.012	28.00	0.45	0.78	0.82	0.64	0.96	.014
16.00	0.99	0.66	1.04	0.72	0.47	.012	20.4V 20.40	0 46	0 75	0.92	0.64	0.97	.014
17.00	1.04	0.65	1.06	0.73	0.43	.013	20,77	0 47	0 7 3	0 82	0.64	0.97	.014
17.20	1.09	0.65	1,09	0.74	0.40	.013	20.00	0 49	0 70	0.92	0.64	0.97	.014
17.40	1.14	0.65	1.11	0.74	0.38	.013	20.00	0 49	0 60	0.81	0.64	0.97	.014
17.60	1.19	V.66	1.13	0.75	0.36	.013	29.00	0.50	0.66	0.01	0.04	0.96	.014
17.00	1.23	0.67	1.15	0,76	0.34	+013	27.20	0.50	0.00	0.01	0.54	0.97	.014
18.00	1.20	0.70	1.17	0,76	0.33	.014	47+9V 30 60	0.50	0.62	0 83	0.54	0.95	.014
18.20	1.32	0.72	1.19	9.77	0.32	.014	\$4.DU	V.74 A 61	U, 02	v.u∡ a) 90	4.04	0.91	-014
18.40	1.36	0,75	1.21	0.78	0.31	.014	29.80	0,33	V.OV A 60	V.44 0 03	4 6.1	4 91	014
10.60	1.40	U.78	1.23	0.78	0.30	_014	30.00	0.22	V.59	0.82	U.04	7,71	.014
19.80	1.43	0.82	1.24	0.79	0.30	+UL4							
19.00	1.46	U.97	1.26	0.79	0.30	.015							
19.20	1.48	0.92	1.27	0.80	0.30	.015							
19.40	1.50	0.97	1.20	0,90	0.30	.015							
19.60	1.51	1.02	1.29	0.60	v,31	.015							

- 126-	•
--------	---

Zirconium single crystal with Elf

D.W. Lynch, C.G. Olson, and J.H. Weaver (unpub)

Energy (eV)	¢1	ε2	n	k	lm(-1/E)	R(+=0)	
6.51	-1.68	31.00	3.83	4.05	0.03	.618	
0.52	1.01	31.92	4.06	3.93	0.03	.609	
0.53	3.43	33.40	4.30	3.88	0.03	.606	
0.54	5.37	35.38	4.54	3.90	0.03	.609	
0.56	7.12	39.72	4.87	4,08	0.02	.623	
0.58	6.94	43.39	5,04	4.30	0.02	.638	
0.60	5,01	45.78	5.10	4.49	0.02	.649	
0.62	4.19	47.37	5.09	4.66	0.02	658	
0.64	2.28	40.19	5.03	4.79	0.02	.665	
0.66	0.21	40.32	4.93	4,90	0.02	.671	
0.60	-1.00	47.74	4.79	4.98	0.02	.675	
0.70	-3.57	46,59	4.65	5.01	0.02	.678	
0.72	-4.91	45.00	4.49	5.01	0.02	.679	
0.74	-5.83	43,19	4.34	4.97	0.02	.670	
0.76	-6.17	41.31	4.22	4.90	0.02	.674	
0.78	-6.16	39,65	4.12	4.81	0.02	.670	
0.80	-5.82	38,24	4.05	4.72	0.03	.665	
0.82	-5.46	37.19	4.01	4.64	0.03	. 660	
0.04	-5.14	36.38	3,98	4.58	0.03	.656	
0.86	-5.00	35,73	3,94	4.53	0.03	.653	
0.08	-4.93	35.09	3.91	4.49	0.03	.651	
0.90	-4.93	34.46	3.87	4.46	0.03	.649	
0.92	-4.94	33,84	3.82	4.42	0.03	.647	
0.94	-4.99	33,24	3.78	4.39	0.03	.645	
0.96	-5.11	32.64	3.74	4.37	0.03	.644	
0.98	-5.27	31.97	3.68	4.34	0.03	.643	
1.00	-5.32	31.21	3.63	4.30	0.03	.641	
1.05	-5.10	29.53	3.52	4.19	0.03	.634	
1.10	-4,95	28.14	3.44	4.09	0.03	.627	
1.15	-4.75	26,99	3.37	4.01	0.04	.621	
1.20	-4.62	26.01	3,30	3,94	0.04	.616	
1 30	-4.58	25.14	3.24	3.66	0.04	.612	
1.30	-4.80	24.30	3.17	3.83	0.04	.609	
1.33	-4.00	23.44	3.10	3.70	0.04	.605	
1.45	-4.63	22.68	3.04	3.73	0.04	.602	
1 50	-4.38	22.06	3.00	3.68	0.04	.598	
1.50	-4.70	41.39	2.95	3.00	0.04	.597	
1.55	-4.70	21.13	4.89	5.05	0.04	.598	
1 65	-2.33	20.00	.2.82	3.05	0.05	.600	
1 70	-2.01	19,90	4.13	3.04	0.05	.602	
1.75	-0.18	19.13	2.04	1.03	0.05	.604	
1.80	-4.17	10.JU	4.34	3.29	0.05	.605	
1.85	-0.14	11.90	2.43	3.5/	0.05	• 606	
1.90	-0,70	10.30	4.30	3.32	0.05	.606	
1.95	-0.73	13.00	2.20	3.4/	0.05	.605	
2.00	-0.07	14.03	2.10	3.41	0.05	.603	
2.05	-9411 MA 66	19-11	2 04	3433	V.06	.000	
2.10	-0.00	13.99	2.04	3.29	0.06	.597	
	-4*30	14.17	1.36	3.24	0.05	.595	

Zr Ē⊥ĉ						
Energy (eV)	٤I	ε ₂	n	k	lm(−1/ĕ)	R(+-0)
2.15	-6.41	12.17	1.92	3.18	0.06	. 591
2.20	-6.23	11.61	1.96	3.11	0.07	.587
2.25	-6.02	11.10	1.82	3.05	0.07	.583
2.30	-5.83	10.66	1.70	3.00	0.07	.578
2.35	-5,66	10.27	1.74	2,95	0.07	.574
2.40	-5.53	9.90	1.71	2.90	0.08	.571
2.45	-5.41	9.55	1.67	2.86	0.08	.568
2.50	-5.34	9.19	1.63	2.03	0.08	.566
2.55	-5.23	8.61	1.58	2.78	0.08	.564
2.60	-5.12	8.43	1.54	2.74	0.09	.562
2.65	-4.97	8.08	1.50	2.69	0.09	.558
2.70	-4.03	7.75	1.47	2.64	0.09	.554
2.75	~4,67	7.44	1.43	2,59	0.10	.550
2.90	-4.20	6.64	1,35	2.46	0.11	.535
2.95	-4.05	6.41	1.33	2.41	0.11	.530
3.00	-3.90	6.20	1.31	2.37	0.12	.524
3.10	-3.63	5.83	1.27	2.29	0.12	.514
3.20	-3.40	5.48	1.24	2.22	0.13	.504
3.30	-3.18	5.17	1.20	2.15	0.14	.495
3.40	-2.99	4.68	1.17	2.09	0.15	.496
3,30	-2.81	4.60	1.14	2.02	0.16	.479
3.00	-2.49	4.34	1.10	1,96	0.17	,469
3.00	-2.10	9.10	1.07	1.91	0.18	.460
3.90	-2.11	3.00	1.03	1.05	0.19	.451
4.00	+2.03	3.04	1.04	1.79	0.20	.442
4.10	-1.88	3.24	0.77	1.13	0.22	.433
4.20	-1.75	3.06	0.94	1 62	0.25	413
4.30	-1.62	2.88	0.92	1.57	0.26	403
4.40	-1.50	2.71	0.89	1.52	0.28	307
4.50	-1.37	2.55	0.87	1.46	0.30	- 380
4.60	-1.24	2.39	0.85	1.40	0.33	.368
4.70	-1.12	2.24	0.83	1.35	0.36	.354
4.80	-0.99	2.09	0.81	1.29	0.39	.340
4.90	-0.87	1.95	0.80	1.23	0.43	.324
5.00	-0.74	1.82	0.78	1.16	0.47	.306
5.10	-0.61	1.70	0.77	1.10	0.52	.296
5.20	-0.48	1.50	0.77	1.03	0.50	.264
5.30	-0.34	1.46	0.76	0.96	0.65	.239
5.40	-0.20	1.36	0.77	0.09	0.72	.211
5.50	-0.05	1.26	9.70	0.81	0.79	.181
5.60	0.09	1.10	0.00	0.74	0.04	.150
5.70	0.24	1.10	0.83	0.67	0.07	.121
5.80	0.40	1.03	0.87	0.59	0.05	.093
3.9U 4 AA	0.36	0.9/	0.92	0.53	0,77	.070
9.VV 4 10	0.75	0.93	0,98	0.47	0.60	-053
9.10 4 90	0.49	0.02	1.04	0.44	0.56	.045
6 3.1	1.04	U. 74 0 03	1.10	0.42	0.40	.041
6.40	1 . 1 0	0 01	1.10	V.40 0.10	0.41	-040
0.40 6-50	1.16	0,73	1.34	V. 39	9.35	.040
	1.17	V. 70	1.40	A. 14	U.32	.043

6.69

6.70

6.00

5.90

7.90

7.29

1.58

1.70

1.82

1.93

2.01

2.15

0.99

1.04

1.10

1.17

1,25

1.41

1.31

1.36

1.41

1.45

1.48

1.54

0.38

HE.0

0.39

0.41

0.42

0,46

0.29

0.26

0.24

0.23

U.22

0.21

.047

.051

.457

.003

.068

. .079

-128-

Zr Ĕ⊥ê

•

Zr Ē⊥ĉ

Energy (eV)	ει	¢2	n	k	lm(-1/č)	R(4=0)	
7.40	2.24	1.57	1.58	0.50	0.21	.089	
7.60	2.30	1.72	1.61	0.53	0.21	.097	
7.80	2.35	1.07	1.64	0.57	0.21	,105	
9.00	2.38	2.03	1.60	0.61	0.21	.113	
8.20	2.30	2,19	1.68	0.65	0.21	.121	
8.40	2.35	2.36	1.68	0.70	0.21	.129	
0.60	2.28	2.51	1.68	0.75	0.22	.136	
8.80	2.19	2.66	1.60	0.79	0.22	.144	
9.00	2.08	2.79	1.67	0.84	0.23	.150	
9.20	1.94	2.91	1.65	0.88	0.24	.158	
9.40	1.77	3.00	1.62	0.93	0.25	.164	
10,00	1.10	3.00	1.50	1.03	0.26	.183	
10.20	0.96	3.03	1.44	1.05	0.30	.187	
10.40	0.15	2.93	1.37	1.07	0.32	101	
10.50	0.00	2.05	1 31	1.06	0.35	190	
10.00	0 50	2.59	1.25	1.03	0.37	.186	
11.00	0.45	2.44	1.21	1.01	0.40	.161	
11.20	0.42	2.30	1.17	0.98	0.42	.175	
11.40	0.41	2.10	1.15	0.95	0.44	.169	
11.60	0.40	2.08	1.12	0.93	0.46	.163	
11.80	0.41	1.99	1.10	0.90	0.40	.157	
12.00	0.41	1.91	1.09	0.88	0.50	.152	
12.20	0.41	1.05	1.07	0.86	0.52	.148	
12.40	0.40	1.78	1.06	0.64	0.53	.145	
12.60	0.39	1.72	1.04	0.83	0.55	.141	
12.80	0.39	1.65	1.02	0.81	0.57	.137	
13.00	96.0	1.59	1.00	0.79	0.60	.133	
13.20	86.0	1.52	0.99	0.11	0.62	.130	
13.40	0.30	1.43	0.97	0.75	0.04	120	
13.80	0.36	1.37	0.95	0.70	0.70	.115	
14.00	0.39	1.25	0.92	0.68	0.73	.109	
14.20	0.40	1.17	0.91	0.65	0.76	.103	
14.40	0.43	1.10	9.90	0.61	0.79	.094	
14.60	0.46	1.03	0.89	0.58	0.81	.085	
14.80	0.51	0,96	0.89	0.54	0.41	.075	
15.00	0.56	0.91	0.90	0.51	0.79	.066	
15.20	0.61	0.08	0.92	0.40	0.77	.058	
15.40	0.66	0.04	0.93	0.45	0.74	.052	
15.60	0.70	0.01	0.94	0.43	0.71	.047	
15.90	0.74	0.79	0.95	0.41	0.60	.042	
16.00	0.70	0.76	0.97	0.39	0.64	.037	
10.20	0.62	0.73	0.98	0.37	0.00	.034	
10.40	0.07	0 70	1 01	0.30	0.57	.030	
16.00	0.95	0.70	1 03	0.34	0.49	.026	
17 00	1.01	0.67	1.05	0.32	0.45	.024	
17 20	1.06	0.65	1.07	0.31	U_42	.023	
17.40	1.11	0.60	1.10	u.30	0.39	.023	
17.00	1.16	0.67	1.12	0.30	0.37	.024	
17,80	1.21	U.68	1.14	0,30	0.35	.025	
18,00	1.20	0.70	1.16	0.30	0.34	.025	
18,20	1.31	J.72	1.18	0,30	0.32	.623	
18.40	1.35	0.75	1.20	ù.31	0.31	.UBU	
19.00	1.39	0.78	1.22	0.32	u,31	.v32	
18.30	1.43	0.62	1.24	0.33	0.30	.035	

Energy (eV)	E1	£2	n	k	lm(-1/€)	R(+-0)
19.00	1.45	0.86	1.26	0.34	0.30	.038
19.20	1.49	0.91	1.27	0.36	0.30	.041
19.40	1.51	0.96	1.20	0.37	0.30	.044
19.60	1.52	1.02	1,29	0.39	0.30	.047
19.80	1.53	1.00	1.30	0.41	0.31	.051
20.00	1.52	1.14	1.31	0.43	0.31	.054
20.20	1.51	1.20	1.31	0.46	0.32	.058
20.40	1.48	1.25	1.31	0.48	0.33	.961
21.20	1.33	1.43	1.29	0.56	0.38	.073
21.40	1.27	1.45	1.27	0.57	0.39	. 1175
21.60	1.22	1.47	1.25	0.59	0.40	-077
21.80	1.16	1.48	1.23	0.60	0.42	.079
22.00	1.11	1.48	1.22	0.61	0.43	080
22.20	1.07	1.48	1.20	0.62	0.44	092
22.40	1_02	1.48	1.19	0.62	0.46	083
22 60	0.98	1 47	1 17	0.63	0 47	084
22.90	0.94	1.45	1.15	0.63	0 49	084
21 00	0.90	1.44	1 14	0.63	0.50	.005
21 20	0.87	1 42	1.13	0.63	0.50	.005
22 40	0.07	1 41	1 11	0.63	0.51	.005
23.60	0.03	1 20	1 10	0.63	0.54	.005
22 90	0.00	1 37	1 00	0.63	0.54	.005
63.9V 34 AA	0.76	1 35	1 01	0.63	0.55	.045
24.30	0.70	1.33	1.04	0.03	0.50	.003
24.40	0.73	1.33	1.00	0.03	V.30 A 60	.085
24.40	0.11	1.31	1.03	V.01 0 63	0.37	.U83
24.60	0.09	1.29	1.04	0.02	0.60	.085
24.40	V.0/	1.20	1.03	V.62	n*p1	***22

•

Authors	Energy Range	Technique	Temperature	Į	54	mp	le	Data Presentation	Remarks	
	(ev)		(K) RT unless specified	Film	X-tal	Bulk	Prep		Nb	
KN 78	0.07-4.66	Ellips			x		EP	n,k,σ,ε1,ε2	table λ,n,k	
TLT78	6.6-23	m+0				x	Heat	$R_{\epsilon_1,\epsilon_2}, Im(\epsilon^{-1})$	foil heated to 2000 K in uhv	
GC \$79	0.32-5.6	Trans, Refl		×			in	σ	uhv	
NC80	0.5-6.5	Trans, Refl		×			Ex	n,k,a ·	substrate 975-1175 K	
NCC80	0.5-6.5	Trans, Refl		×			£×	σ		
LA Unpl	1.5-5.5	Ellips		×				ε ₁ ,ε ₂ ,n,k,R,μ	private communication	
KNB68	5-12	Ellips						R; KK: σ,im(ε ⁻¹), im(ε+1) ⁻¹	KK analyzed data from VAK67	
-101-										

.

+

Authors	Energy Range	Technique	Temperature		Sample			Data Presentation	Remarks
	(27)		(K) RT unless specified	Film	X-ta)	Bulk	Prep		Nb
KC65	0.05-5	Ellips				×		n,k,σ	
AU66	∿2.5-55	Trans	~2000			×	Heat	im(e ⁻¹)	energy loss spectroscopy at several temperatures
Ba66	0.6-2.6	Ellips			1	x		n,k	filamentary samples at several temperatures
LT66	0.06-0.25	Ellips				x	MP	e2/1,c1	
LTA66	0.1-3.5	Ellips				x	MP	e2/2,e1	
Le67	0.1-4	Ellips				x	мр	ε2/λ	data from LT66 and LTA66
VAK67	3-14.4					x	Ex	R	polarimetry $3 < hv < 5 eV$, reflectance $4 < hv < 7 eV$, photoemission 7.5 < hv < 14.4 eV
GLM69	0.12-3.1	Éllips	4.2, 78, 293			x	EP	n,k	plotted RT data, table λ ,n,k
WL073	0.1-36.4	Refl	4.2 K for h∪ < 4.5 eV RT for h∨ > 4.5 eV		x		EP	A,R; KK: £1,£2, Im(c ⁻¹)	absorptivity measured by calorimetry $hv \leq 4.5 eV$, reflectance $hv \geq 5 eV$ with synchrotron radiation. See also RCF80 and BL077
SCG75	0.32-5.5	Trans, Refl		x			In	σ	uhv evaporation
SCGP75	0.32-5.5	Trans		×			łn	т	uhv evaporation
CGS76	0.32-5.5	Trans, Refl		×			łn	σ	uhv evaporation
w076	20-250			×			Ex	ម	optical absorption measurements with synchrotron radiation
BOL77	0.03-3.1	Ref1				x	MP	R	also emissivity 400-850 K

Fig. 45 c1 for Nb. ----- WL073; TLT78; 000 GLM69; ΔΔΔ NC80; AAA KN78; xxx LA unpub.

-1961-

-135-

Energy (eV)	£1	ε ₂	n	k	lm(-1/≷)	R(+=0)
0.12	-2574.77	1701.03	15.99	53.20	0.00	.979
0.16	-1630.82	853.53	10.24	41.66	0.00	.978
0.20	-1112.03	494.79	7.25	34.14	0.00	.975
0.24	-803.91	316.12	5.47	28.80	9.00	.975
0.28	-604.16	212.42	4.26	24.95	0.00	.974
0.35	-391.64	124.40	3.11	20,03	0.00	.970
0.45	-237.62	71.15	2,28	15,50	0.00	.964
0.55	-157.19	46.47	1.03	12.67	0.00	.956
0.65	-109.67	33.33	1.57	10.59	0.00	.947
0.75	-79.07	25.42	1.41	9.00	0.00	.935
0.85	-58.04	20.87	1.35	7.74	0.01	.918
0.95	-43.10	18.09	1.35	6.70	0.01	.893
1.05	-32.21	16.04	t.44	5,86	0.01	.857
1.15	-24.44	16.00	1.55	5.18	0.02	.914
1.25	-19.69	15.25	1.65	4.63	0.03	.768
1.35	-13.97	14.51	1.76	4.13	0.04	.715
1.45	-9.78	14.37	1.95	3.60	.0.05	.650
1.55	-6.68	14.49	2.15	3.37	0.06	.595
1.65	-4.21	14.77	2.36	3.13	0.06	.552
1.75	-2.51	15.17	2.54	2.99	0.06	.527
1.65	-1.09	15.56	2.69	2.89	0.06	.519
1.95	-0.25	16.13	12.82	2.86	0.06	.505
2.05	0.12	16.56	2.89	2.87	0.06	.505
2.15	0.29	16.75	2.92	2,87	0.05	.505
2.25	0.32	16.03	2.93	2.87	0.05	.505
2.35	0.24	16.83	2.92	2.68	0.96	.506
2.45	₩0,04 -0,60	10./6	2.89	2.90	0.05	. 599
4.33	-0.52	10.74	2.83	4,74	0.06	.312
2.03	-0.90	15.93	2.19	2.90	0.00	.311
4.73	-1.14	14 43	3 50	2.00	0.07	507
4.03	-1.10	12 42	2.30	2.00	0.07	436
3.00	-0.00	13.73	2 49	2.00	0.07	475
3.10	-0.40	12.74	2.49	2 5 2	0.04	465
3.20	-0.40	11 99	2 44	2 45	0.00	453
3,30	0.04	11 71	2.46	2.39	0.09	.442
1 50	0.72	11.59	2.48	2.11	0.09	.435
3 60	1 10	11.51	2.52	2.29	0.09	.428
3.70	1.38	11.63	2.56	2.27	0.09	.426
3.40	1.52	11.81	2.59	2.28	0.08	.427
3.90	1.61	12.00	2.52	2.29	0.09	.429
4.90	1.57	12.29	2.64	2.33	0.08	.434
4.20	1.10	12.75	2.64	2.42	0.04	.447
4.40	-0.12	12.95	2.53	2,56	0.08	.457
4.60	-0 94	12.21	2.34	2.56	0.09	.470
4.80	-0.93	11.68	2.32	2.52	0.04	.465
5.00	-1.47	11.62	2.25	2.57	0.08	.475
5.20	-2.20	11.33	2.16	2.62	0.09	447
5 10	-1 14	10.73	2.00	2. od	0.09	. 505

Niobium
Nb			-138-				Nb			-139-			
Energy (eV)	٤١	٤2	n	k	lm(-1/č)	R(+=0)	Energy (eV)	ε1	٤2	-155- n	k	lm(-1/č)	R(+=0)
5.60	-3,05	9.66	1.01	2.67	0.09	.519	. 14.20	0.09	2.70	1.19	1.14	0.37	. 220
5.00	-4,06	8.49	1.63	2.60	0.10	.522	14-40	0.03	2.61	1.16	1.15	0.37	.225
6.00	-4.90	7.45	1.49	2.49	0.10	.520	14.50	-0.04	2.03	1.14	1.15	0.30	.229
6.20	-3,75	6.56	1.38	2.38	0.11	.512	14.80	-0.11	2.57	1.11	1.16	0.39	. 234
6.40	-3.34	5.89	1.31	2.25	0.13	.496	15.00	-0.10	2.50	1.08	1.16	0.40	. 230
6.60	-3.00	5.40	1.26	2.14	U.14	.400	15.20	-0.24	2.42	1.05	1.15	0.41	.242
6.90	-2.63	5.04	1,24	2,04	0.16	.460	15.40	-0.29	2.33	1.02	1.15	0.42	. 245
7.00	-2.32	4.82	1.23	1.96	0.17	.441	15.60	-0.12	2.24	0.99	1.14	0.44	.247
7.20	-2.14	4.67	1.22	1.91	0.18	.430	15.80	-0.36	2.14	6.95	1.13	0.45	.749
7.40	-2.10	4.49	1.20	1.68	0.10	.427	16.00	+0.37	2.05	0.92	1.11	0.47	.250
7.60	-2.12	4.20	1.14	1.85	0.19	.430	16.20	-0.30	1.95	0.89	1.09	0.49	.250
7.80	-2.05	3.80	1.07	1,78	0.20	.428	16.40	-0.38	1.65	0.87	1.06	0.52	.249
8.00	-1.82	3.44	1.02	1,69	0.23	.412	16.60	-0.36	1.76	0.85	1.04	0.55	. 746
8,20	-1.55	3.17	1.00	1.60	0.25	. 390	16.80	-0.35	1.67	0.82	1.02	0.57	. 244
0.40	-1.29	2.90	0,99	1,51	0.29	. 365	17.00	-0.33	1.59	0.80	0.99	0.69	240
0.60	~1,06	2.83	0.99	1.43	0.31	349	17.20	-0.31	1.51	0.79	0.96	0.64	236
8.70	-0.95	2.77	0.99	1.39	0.32	. 328	17.40	-0.28	1.44	0.77	0.93	0.67	230
0.80	-0.84	2.71	1.00	1.36	0.34	, 315	17.60	-0.24	1.37	9.76	0.90	0.71	. 224
a.90	-0.73	2.65	1.00	1.32	0.35	. 302	17.80	-0.21	1.31	0.75	0.87	0.75	.217
9.00	-0.63	2.61	1.01	1.29	0.36	.290	18.00	+0.17	1.25	0.74	0.95	0.79	209
9.10	-0.52	2.57	1.02	1.25	0.37	.277	18.20	-0.13	1.20	0.73	0.82	0.82	201
9.20	-0.42	2.54	1.04	1.22	0,38	.265	18.40	-0.09	1.16	0.73	0.79	0.86	.192
9.30	-0.30	2.52	1.06	1.19	0.39	.252	18.60	-0.06	1.12	0.73	0.77	0.89	-185
9.40	-0.24	2.52	1.07	1.18	0.39	.245	10.60	-0.02	1.08	0.73	0.74	0.93	.177
9.50	-0.15	2,50	1.08	1,15	0.40	.235	19.00	0.01	1.04	0.72	0.72	0.96	.170
9.60	-0.08	2.40	1.10	1.13	0.40	,227	19.20	0.05	1 01	0.73	0.69	0.99	.161
9.70	0.01	2.46	1.11	1.11	0.41	.218	19.40	0.07	0.99	0.73	0.68	1.01	.155
9.80	0.10	2.45	1.13	1.09	0.41	.209	19.60	0.09	0.95	0.72	0.66	1.04	.150
9,90	0.20	2.45	1.15	1.06	0.41	.200	19.00	0.12	0.92	0.72	0.64	1.97	.143
10.00	0.29	2.48	1.19	1.05	0.40	.194	20.00	0.14	0.89	0.72	0.62	1.10	.137
10.10	0.36	2.51	1.20	1.04	0,39	.190	20.20	0.16	0.86	0.72	0.60	1.12	.131
10,20	0.43	2.55	1.23	1.04	0.38	.187	20.40	0,19	0.83	0,72	0.57	1.15	.125
10.30	0,49	2.59	1.25	1.04	0,37	.185	20.60	0.20	0.79	0.71	0.55	1.19	.119
10.40	0.54	2.65	1.27	1.04	0.36	.185	20.00	0.24	0.75	0.72	0.52	1.21	.110
10.50	0.56	2.72	1.29	1.05	0.35	.107	21.00	0,28	9,72	0.72	0.50	1.21	.100
10.50	0.57	2.17	1.30	1.06	0.35	.190	21.20	0.32	0,69	0.73	0.47	1.20	.091
10.70	0.56	2.81	1.31	1.07	0.34	.192	21.40	0.35	0.67	0.74	0.45	1.17	.083
10.80	0.58	2.85	1.32	1.08	0.34	.195	21,60	0.39	0.65	0.75	0.43	1.14	.075
10.90	0.34	2.68	1.32	1.09	0.34	<u>.197</u>	21.00	0.42	0.63	0.77	9.41	1.10	.06H
11 10	0.52	2.90	1.32	1.10	0.33	.200	22.00	0.45	0.62	0.78	0.40	1.07	.063
11 20	0.50	2.92	1.32	1.11	0.33	.202	22.20	0.48	0.60	0.79	0.38	1.02	.056
11 30	0.47	2.93	1.31	1.12	0.33	.204	22.40	0.52	0.50	0.81	0.36	0.96	.050
11 40	0.47	2.94	1.51	1.12	0.33	.206	22.60	0.55	0.57	0.82	0.35	0.91	.045
11 60	0.42	2.93	1.30	1.13	0.33	.207	22.30	0.50	0.56	0.83	0.34	0.86	.041
11 90	0.34	5.91	1.20	1.13	0,34	.209	23.00	0.61	0.56	0.85	0.33	0.82	.03W
12.00	0.34	2,87	1.27	1.13	0,34	+210	23.20	0.64	0.55	0.86	0.32	0.77	.034
12.20	0.31	2.02	1,27	1.12	0.35	.209	23,40	0.66	0.54	0.87	0.31	0,74	.032
12.40	0 3 J	2.11	1.23	1.11	0.36	-207	23.60	0.69	0.54	0.08	0.30	0.70	+029
17.60	0.32	4.73	1.29	1.10	V. 36	.294	23.00	0,72	0.54	0.90	9.30	9.67	-027
17.80	9.32	2.10	1.24	1.03	U. 16	• ZUL	24.00	0.74	0.51	0.91	0.29	0.64	.025
13.00	0.30	2.70	1.24	1.04	0.35	.200	24.20	0.76	0.53	9.92	0.29	0.62	. U24
13.20	A 15	6.70	1.29	1.04	9.36	.200	24.40	0.79	0.53	0.93	0,28	0.59	.023
13.40	0.33	2.71	1 34	1 40	".Jb	.291	24.00	0.01	9.53	0,94	0.29	0.57	.025
13.60	1 2 -	2.11	1 2 2	4+40	0.35	• 294	X4.60	9.92	0.53	0.95	0.28	0.55	.071
13.80	0.21	7 14	1 22	1.12	66.V	. 295	25.00	9,85	0.52	0.46	9.27	9.53	.020
14.00	Ú. L.	2 12	1 20	1.13	0.30	- 213	23.20	0.00	0.53	9.97	9,27	0.51	.019
	4414	6974	4 • 4 "	4.17	··• • • •	+ ∡1 D	25.40	0.64	9.52	0.95	0.27	0,50	.019

- -

- -

Author	8	Ē	her	gy	Rai	ngi	1	Т	BC	hn i	qu	HB,	Γ	Ter	npe		tu	re	T		Ş	San	np i	•		Т	Da	tə	Pr	65	801	tat	io	n	T								i	Ren	H¢ r	ks	i			-	
	ļ			(61	9									R1 Sp) u 1 080	.K) in i i f	es]e	s d	ſ	Film	X-tal		BUK	Рго	P.																			H	0						
GS577							╡						7	73					╈	_	_		Ŧ			E			_						t	em (35	lv	ity	y			-					-			
ST77		Ô.	.05	-0.	1			E]]	11,	25											×			MP		-	٤1,	, e 2	/\																						
NC78		0.	5-0	6.2				Tre	101	ι,	Re	fl	ŀ							×			,	Ex		R	-									exa ter	im i npe	ne ra	d (tu	dei re	pei ; ;	nde x-t	sno ray	:e ∕d	of If	R fra	oi ac	i si	ubs na	trai nd '	Le Tem
6C579		0.	32-	-5.	6			Tra	Ins	ı,	Re	f1								x				In		ļσ										uhv	/ •	va	ро	ra:	tie	on	iı	n s	it	U					
Man80		t.	5-3	38				Tra	001											×				Ex		4	m(1	c-1);	K	K:	¢1	, C;	2,f		ene	irg	Y	10	55	51		:tı	ros	co	PY					
NC80		٥.	5-(6.5				Tra	Ins	ı,	Re	fl							Í	×				Ex		n	, k,	,σ								580		1 5	0	NC	78										
NCC80		0.	5-6	5.5			ŀ	Tra	101	i,	Re	fl								×				Ex		a										exi tel	im i Ipe	ne 18	d (tu	de re	pei	nde	enc	;e	of	R	Q	n și	ubs	tre	te
CS79		0.	08-	-0.	41															×				Ēx		R										chi	-	va	po	r -	deļ	pos	6 i 1	ted	M	0					
-641-																																																			
R(+-0)	.010 102	. 117	.016	.016 .015	.016	-015	.015				510-	015	.016	.016	-017	.017	.018	020	120.	470. 700	0.26	0.06	.026	.026	.027	.029	• 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	160.	.012	034	.u35	.036	.038	460. 210	140	E#0.	.944	.046	.049	.051	.053			190	.065	.063	151				
im(-1/E)	0.48 74 0	54.0	44.0	0.45	0.41	0.40	60					46.0	66.0	0.32	16.0	16.0	0.30	0.30	00		0.13		66.0	1.0	66.0					96.0	46.0	0.35	0.35	6	25.0	0.36	0.39	0.40	0.42	0.43	9 * • •	0.47		* n * • • •	0.64	0.71	9.77				
، العد ا	0.26	0.26	0.26	0.26	0.25	0.25	0.25	0,25			40.0	0.24	0.24	0.25	0.25	0.25	0.25	0.26	0.27				0.11	0.31	16.0	0.32	0.32			0.35	0.36	0.37	0.38			0.41	0.42	. 44	0.46	0.47	0 4 .0	6 6 6		76°0		0.50	. 4 . 0				
-0ţ1-	0°00	1.00	1.01	1.02	60.1	1.04	1.05	1.05 20		00.1		1.10	1.11	1.12	1.13	1.14	1.15	1.16	1.17				1.17	1.18	1.18	1.19	1.20	1.20	10.1	1.21	1.21	1.21	1.21			1.21	1.20	1.20	1.19	1.17	1.16	<u>.</u>	51.I 	1.1	00	56.0	0.42				
62	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.53					0.54	0.55	0.55	0.56	0.54	0.60	29°0					0.13	0.74	0.15		0.19		0.65	0.87	0.90	0.92	1 5.0		1.00	1.02	1.05	1.08	1.11	1.1	1.15	1.10	· · · ·		0 . Qri	0 H C				
L J	0.90	76°0	0.95	0.97	1.00	1.02	1.03	1.05	10.1	60°1			1.16	1.19	1.21	1.23	1.25	1.27	1.29	1.31			1.28	1.29	1.30	1.32	1.32	1. 2.2 1. 2.2		1.33	1.33	[[]]	1.32	1.51	1.90	1.28	1.27	1.23	1.20	1.15	1.11	1.05	1.01	0 ° ° 0	0.73	0. én	0.62				
Energy (eV)	25.60 35 80	26.00	26.20	26.40 36.60	26.80	27.00	27.20	27.40	09.12	28 00	28.00	28.40	28.60	2H.00	29.00	29.20	29.40	29.60	29.60				30.80	31.00	01.20	01.10	31.60	00.11	00-00	32.40	32.60	32.80	33.00	02.65		09.66	34.00	34.40	94.80	35.20	35.50	36.00	36.95	36.80 27 60		19.50	40.50	•			

ž

AUTHORS	Energy Range	Technique	Temperature		S	amp	le	Data Presentation	Remarks
	(ev)		(K) RT unless specified	Film	X-tal	Bulk	Prep		Мо
Sa39	2.6-27.6	Refl		×			٤x	R	
LFJ64	7.1 - 23.6	Ref 1				×	Heat	R	MP rolled samples, vacuum annealed
WJ64	2.14-5	m∽θ				x	In	R,n,k	heated ∿1800 K in situ, uhv
KC65	0.05-5	Ellips				×	MP	$n,k,\sigma,\varepsilon_1,\varepsilon_2,im(\varepsilon^{-1}),$ R	
AU66	2.5-55	Refl	~2000			×	Heat	Im(c ⁻¹)	energy loss spectroscopy at severa temperatures
Ba66	0.6-2.6	Ellips				×	Heat	n,k	filaments at various T
LT66	0.06-0.25	Ellips				x	MP	ε ₂ /λ,ε ₁	
LTA66	0.1-3.5	Ellips				x	MP	ε ₂ /λ,ε ₁	
квм67	0.07-12	Refl,Ellips				×	MP	A,n,k, ε_1 , σ , Im(ε^{-1}); KK: ε_1 , σ , Im(ε^{-1})	
JLM68	2.1-23.1	m-8				×	Heat	A,n,k, <i>ɛ</i> 1, ɛ2	heated \sim 2200 K in situ, \sim 10 ⁻⁹ Torr
Le67	0.1-4	Ellips			[MP	ε2/λ	data from LT66 and LTA66
KUS69	1.4-11	Refl			×			R; KK: ε ₁ ,ε ₂ (hν) ² , Im(ε ⁻¹)	
CMB70		ĺ	1900-2800					en,eH	emissivity
KL70	0.5-14	Refl		×		×	In	R; KK: $\varepsilon_1, \varepsilon_2, im(\varepsilon^{-1})$ im(ε^{+1}) ⁻¹	in situ film and EP bulk

-

.

-142-

.

Authors	Energy Range	Techn i que	Temperature		S	атр	le	Data Presentation	Remarks
			RT unless specified	Ē	X-tal	Bulk	Prep		Мо
Hu71	9.9-24.8	Ref1		×			Ex	R	
KNN71	0.06-4.9	Ellips			x		EP	R,n,k,ɛ1,ɛ2,ơ	see also KN78
UKK71	1-12	Refl			×		Heat	R; KK: $\epsilon_1, \epsilon_2 (hv)^2$	heatad ∿1700 K
Gr72	1.65-4	Trans, Refl		×			Ex	σ	
Vuj72			1000-2000					ε	emissivity
BK873			1000-2400				а.	swat $\lambda = 6450$ Å	emissivity
VP74	0.5-6	Refl			×	1	EP	R; KK: ε ₁ ,ε ₂	EP and sputtered in glow discharge of Ar in situ
WL074	0.1-35	Refl	4.2 for hv < 4.88 eV RT for hv > 4.88 eV			×	EP	A,R; KK: ε ₁ ,ε ₂ , im(ε ⁻¹),im(ε+1) ⁻¹	absorptivity measured by calorimetry for $h\nu < 5$ eV, reflectivity measured for $h\nu > 4$ eV with synchrotron radiation, see also We075
BLR76	~0-50	Trans			×			lm(ε ⁻¹)	energy loss spectroscopy
CGS76	0.32-5.5	Trans, Refl		×			In	σ	why evaporation in situ
W076	20-250	Trens		×			Ex	μ	optical absorption measurements with synchrotron radiation
BL077	0.1-25	Refl	4.2 for h∪ < 5 eV 300 K for h∪ > 5 eV			×	EP	Α,R; KK: σ	Nb, Mo of WL074; Nb-Mo alloy study with synchrotron radiation

Fig. 48 Survey of available data for Ho

Fig. 48 Survey of available data for Ho

Fig. 50 c1 for No. → WL075; +++ JLM68; ΔΔΔ VP74; ▲▲ANC80; eee UKK71; 000 KL70; □□□ KNN71; ★★★KC65; xxx KBM67; --- Han80.

Fig. 49 Reflectivity for Ho. —— WL075; xxx JLH68; eee KNN71; +++ UKK71; ΔΔΔ LFJ64; oog NC80; VVV Hu71; **vvv** VP74; ---- Man80.

-141-

-146-

 Fig. 51
 c2 for Ho.
 ---- WL075; ΦΦΦ KL70; XXX K8H67; +++ JLN68; □□□ KNH71;

 ΦΔΔ NC80; ΔΔΔVP74; OOD KC65; --- Man80.

-	150-
---	------

.

Ho

publication by J.H. Weaver, D.W. Lynch, and C.G. Olson in Phys. Rev. B <u>10</u>, 501 (1973) based on the following tabulation

Energy (eV)	εl	£2	n	k	lm(-1/ž)	-R(#=0)	2.00
							3 00
0.10	-4350.67	2538.73	18.53	68.51	0.00	.985	3 10
0.11	-3733.07	1972.43	15.64	63.07	0.00	.985	3 20
0.12	-3233.44	1565.27	13.40	58.42	0.00	.985	3.20
0.13	-2825.68	1243.51	11.44	54.37	0.00	.995	3.54
0.14	-2472.64	1010.43	9,96	50.71	0.00	.985	3.10
0.15	-2182.97	834,39	8.76	47.54	0.00	.985	3.50
0.16	-1940.24	691.92	7.74	44.72	0.00	.985	3.00
0.17	-1730.05	582.39	6.91	42.17	0.00	.985	3.70
0.10	-1553.25	495.19	6.21	39.90	0.00	.985	3.80
0.19	-1400.90	424.50	5.61	37.85	0.00	995	3.70
0,20	-1268.94	306.75	5.10	35.99	0.00		4.00
0.21	-1154.12	318,90	4.65	34.29	0.00	095	4.10
0.22	-1053.49	278.94	4.26	32.74	0.00	.903	4.20
0.23	-964.76	245.28	3.92	31.31	0.00	094	4.30
0.24	-885.78	216.57	3.61	29.98	0.00	984	4.40
0.25	-815.34	193.33	3.36	28.75	0 00	094	4.50
0.26	-753.33	173.57	3.14	27 63	0.00	6 7 0 4 Ou A	4.60
0.27	-697.80	155.40	2.92	26 58	0.00	.744	4.70
0.28	-647.23	140.34	2.74	25 69	0.00	.704	4.80
0.29	-601.63	127.15	2.58	24 66	0.00	.704	4.90
0.30	-560.32	116.27	2.44	23 80	0.00	.983	5.00
0.34	-430.24	83.13	2 00	20.84	0.00	.903	5.10
0.38	+117.29	62 82	1 70	10.04	0.00	.704	5.20
0.42	-269.84	51 79	1 57	19.44	0.00	.980	5.30
0.46	=220.21	43 43	1 46	10.30	0.00	.9/0	5.40
0.50	-181.54	17 14	1.10	13 55	0.00	.9/5	5.50
0.54	-151.03	33 20	1 76	13.33	0.00	-9/1	5.60
0.58	-126.76	30 40	1 34	14,30	0.00	.900	5.70
0.62	-107.13	20.10	1 30	11.39	0.00	.960	5.80
0.66	-91.40	27 61	1 4 3	9 47	0.00	. 952	5.90
0.70	-79 64	26 60	1 40	7.07	0.00	.942	6.00
0.74	-67 90	25 40	1 61	0,99	0.00	.932	6.10
0.78	-59 77	25.40	1.51	5.30	0.00	+921	6,20
0.82	-51 33	24 10	1.60	7.03	0.01	.906	6,30
0.66	-44 66	33.46	1,04	1.30	0.01	.*92	6.40
0.90	-18.90	22 60	1 74	6.49	0.01	- 8/0	6.50
1.00	-27.41	21 60	1 94	0.90 6 CO	0.01	.859	6.60
1.10	-10 07	20 80	2 15	3.30	0.02	.905	6.70
1.20	-11 00	20.42	2.13	4.00	0.03	.743	6.80
1.30	-6 14	20.03	2.77	7.22	0.04	.071	6.90
1.40	-7.54	20.17	2.15	3.74	0.04	.609	7.00
1.50	-1.00	214	3.13	3.90	0.05	.562	7.10
1.60	2 67	43447 35 71	3433	3.30	0.04	. 339	7.20
1.70		63.11 36 U1	3.11	3.41	0.04	. 20.	7.30
1.80	4.43	40,71	3.54	3.51	0.04	.570	7.40
1.40	1 1 1	61.21 36 36	3491	3.35	0,04	.5/6	7.50
2.00	1 1 7	20,10	3+14	7.24	9.04	+ 576	7.60
2.10	1.1/	43.77	3,00	5.52	0,04	.571	1.10
2.20	1.01 2.42	43.43	3.08	3.45	0.04	. 365	7.60
****	C.97	X3* 03	3.10	1.41	0.04	, 562	7.90

			-151-			
Energy (eV)	ε1 -	£2	n	k	lm(-1/č)	R(4=0)
2.30	1.34	27.34	3.79	3.61	0.04	.578
2.40	-1.39	27.17	3,59	3.78	0.04	.594
2.50	-2.61	25.03	3.36	3.73	0.04	. 591
2.60	-2.68	23.23	3.22	3.61	0.04	.582
2.70	-2.47	21,99	3.13	3.51	0.04	.573
2.80	-2.19	21.03	3.08	3.42	0.05	.565
2.90	-1.76	20,31	3.05	3.33	0.05	. 55ń
3.00	-1.47	19.07	3.04	3.27	0.05	.550
3.10	-1.13	19.51	3.03	3.21	0.05	.544
3.20	-0.82	19.39	3.05	3.10	0.05	.540
3.30	-0.76	19.47	3.06	3,10	0.05	.540
3.40	-0.82	19,52	3,06	3.19	0.05	.541
3.50	-0.96	19,60	3.06	3.21	0.05	.543
3.60	-1.17	19.72	3.05	3.23	0.05	.546
3.70	-1.47	19,87	3.04	3.27	0.05	.550
3.80	-1,70	20.11	3.04	3.31	0.05	.554
3,90	-2.35	20.64	3.04	3,40	0.05	.564
4.00	-3.26	21.11	3.01	3.51	0.05	.576
4.10	-4.97	21.36	2.91	3.67	0.04	.595
4.20	-6.52	20,08	2.77	3.77	0.04	.610
4.30	-0,22	19.96	2.59	3.06	0.04	.627
4.40	-9,35	18.55	2.39	3.88	0.04	.640
4.50	-10.07	17.10	2.21	3.07	0.04	.650
4.60	-10.48	15.77	2.06	3.84	0.04	.658
4.70	-10.87	14.48	1,90	3.81	0.04	.668
4.80	-11.07	13,14	1.75	3.76	0.04	.678
4.90	-11.08	11.86	1.61	3.70	0.05	.696
5.00	-10,98	10.61	1.46	3.62	0.05	.095
5.10	-10.69	9.40	1.33	3,53	0.05	.702
5.20	-10.20	8.36	1.22	3.42	0.05	.705
5.30	-7.00	7.50	1.13	3.31	0.05	.707
J.40 5 50	-9.09	6.81	1.97	3.20	0.05	.706
3.30	-0.00	0.22	1.01	3.09	0.06	.704
5.00	-1 63	5./3	0.90	2.99	0.05	. 104
5.70	-7.05	3.34	0.92	2.09	0.06	+074
5.00	-1.00	3.92	0.84	2.00	0.07	.000
6.00	-6.37	4 50	0.07	2.76	0.07	.007
6 10	-0.27	4 30	0.03	2.09	0.00	.0/4
6 20	-5,51	4.30	V.04 A 01	2.57	0.00	.093
6.30	-5.29	3 86	0.01	2.50	0.00	.451
6.40	-4.96	3 7 3	0.30	2 36	0.10	.051 641
6.50	-4.67	3.60	0 78	2.30	0.10	630
6.60	-4.41	3.49	0.78	2.24	0.11	614
6.70	-4.15	3, 39	0.78	2.18	0.12	.607
6.80	-3.90	3.33	0.78	2.13	0.13	.542
6.90	-3.70	3.29	0.79	2.09	0.13	.580
7.00	-3.52	3.25	0.60	2.04	0.14	.564
7.10	-3.36	3.24	9.91	2.00	U,15	.556
7.20	-3,25	3.22	0.01	1.98	0.15	.548
7.30	-3.16	3.19	0.92	1.96	0.15	.542
7.40	-3.13	3.14	0.81	1.95	0.16	.54?
7.50	-3.12	3.02	0.78	1,93	0.16	. 547
7.60	-3.00	2.23	0.75	1.90	0.15	.552

-2.91

-2.74

-2.65

2.64

2,58

2.47

0.73

9,71

0.70

1.65

1.81

1.77

0.17

0.19

9.19

.547

.542

Ho			-152-				Но			- 153-			
Energy (eV)	εı	£2	n	k	lm(-1/€)	R(+-0)	Energy (eV)	¢1	¢2	n	k j	im(-1/č)	R (+-0)
8.00	-2.52	2.37	0.69	1.73	0.20	.530	19.40	-9.48	1.30	0.67	9.97	9.67	. 274
0.20	-2.27	2.21	0.67	1.65	0.22	.512	19.60	+0.45	1.24	0.66	0.94	U.71	.275
8.40	-2.03	2.07	0.66	1.57	0.25	.495	19.80	-0.41	1,18	0.65	0.91	0.75	.270
0.60	-1.80	1.94	0.65	1.49	0.20	.475	20.00	-0.38	1,13	0,64	0.89	0.79	.264
8.80	-1.57	1.02	0.65	1.41	0.31	.450	20.20	-0.34	1.09	0.63	0.86	0.83	259
9.00	-1.34	1.74	0.65	1.33	0.36	.420	20,40	-0.31	1.05	0.63	0.84	0.98	252
9.20	-1.12	1.68	0.67	1.25	0.41	.395	20.60	-0.20	1.01	0.62	0.81	0,92	245
9.40	-9.94	1.63	0.69	1.19	0.46	.355	20.00	-0.25	0.90	0.62	0.79	0.96	240
9.60	-0.75	1.58	0.71	1.12	0.52	.320	21.00	-0.22	0.95	0.61	0.77	1,00	214
9,80	-0.56	1.54	0.74	1.05	0.57	.285	21.20	-0.19	0.92	0.61	0.75	1.04	.227
10,00	-0.30	1.52	0.77	0,99	0.62	.250	21.40	-0.17	0.89	0.61	0.73	1.08	.221
10,20	-0.20	1.51	0.81	0.93	0.65	.217	21.60	-0.14	0.87	0.61	0,71	1.12	.215
10,40	-0.04	1.51	0,86	0.88	0.66	.198	21.80	-0.12	0,05	0.61	0.70	1.15	.210
10.60	0.13	1.52	0.91	0.83	0.65	.162	22.00	-0.11	0.82	0.60	0.69	1.19	207
10.90	0.33	1.54	0.98	0.79	0.62	.138	22.20	-0.09	0.00	0.60	0.67	1.24	203
11.00	0.51	1.63	1.05	0.77	0.56	.125	22.40	-0.07	0.77	0.59	0.65	1,29	.198
11.20	0.65	1.75	1.12	0.70	0.50	.123	22.60	-0.05	0.75	0,59	9.63	1.33	. 195
11.40	0.76	1.90	1.18	0.00	0.45	.125	22.00	-0.03	0.72	0.50	0.61	1.39	190
11.60	0.79	2.08	1.23	0.65	0.42	.135	23.00	-0.01	0.69	0.50	0.60	1.44	185
11.00	0.77	2.21	1.25	0.89	0.40	.145	23.20	0.00	0.67	0.58	V.57	1.50	.180
12.00	0.73	2.32	1.26	0.92	0.39	.154	23.40	0.03	0.64	0.58	0.55	1.56	.173
12.20	0.67	2.39	1.26	0,95	0.39	.162	23,60	0.05	0.62	0,58	0,53	1.61	.166
12.40	0.61	2.43	1.25	0,98	0.39	.168	23.80	0.08	0.59	0,58	0.51	1.66	158
12.60	0.55	2.46	1.24	0,99	0.39	.174	24.00	0.10	0.57	0.50	0.49	1.70	.151
12,80	0.50	2.47	1.23	1.00	0.39	.178	24.20	0.13	0.55	9.59	0.47	1.72	.142
13.00	0.43	2.47	1.21	1.02	0.39	.102	24.40	0.16	0.53	0.60	0.45	1.73	.132
13.20	0.38	2.45	1,20	1.02	0.40	.185	24.60	0.18	0.52	0.60	0.43	1.73	.124
13.40	0,34	2.42	1.10	1.02	0.41	.106	24.80	0.21	0.50	0.61	0.41	1.70	115
13.60	0.31	2,39	1.17	1.02	0.41	.107	25.00	0.23	0.49	0.62	0,39	1.66	.106
13.90	0,30	2.35	1.15	1.02	0.42	.186	25.20	0.26	0,40	0.64	0.38	1,60	.098
14.00	0.29	2.32	1.15	1.01	0.42	.185	25.40	0.28	0.47	0.64	0.37	1.56	.092
14.20	0.20	2.29	1.14	1.00	0.43	.184	25.60	0.31	0,46	0.65	0.35	1.51	.085
14.40	0.29	2.26	1.13	1.00	0.44	.182	25.00	0.33	0.45	0.67	0.34	1.45	.079
14.60	0.31	2.24	1.13	0.99	0.44	.180	26.00	0.35	0.45	0.60	0.33	1.37	.072
14.80	0,31	2.24	1.13	0,99	0.44	.179	. 26.25	0.30	0.44	0.69	0.32	1.30	.056
15.00	0.32	2.25	1.14	0.99	0.44	.179	26.50	0.40	0.44	0.71	0.31	1.24	.060
15.20	0.32	2,26	1.14	0.99	0,43	.179	26.75	0.43	0.43	0.72	U.30	1.16	.055
15.40	0.32	2.20	1.15	0,99	0,43	.180	27.00	0.46	0.42	0.73	0.29	1.10	.050
15.00	0.31	2.31	1.15	1.01	0.43	.184	27.25	0.40	0.42	0.75	0.28	1.03	.045
15.80	0.27	2.34	1.15	1.02	0.42	.100	27.50	0.51	0.42	0.76	0.29	0.97	.041
10.00	0.22	2.3/	1.14	1.04	0.42	.194	27.75	0.53	0.42	0,78	0.27	0.92	.038
10.20		2.19	1.13	1.05	0.42	,290	29.00	0.55	0.42	0.79	0.27	0.88	.036
10.90	0.09	2.40	1.12	1.09	0.42	.207	20.25	0.57	0.42	0,80	0.26	0.84	.134
16.00	-0.00	8.40	1.10	1.10	0.42	.216	28.50	0.59	0.43	0.81	0.25	0.81	.031
10.90	-0.09	2.54	1.07	1.11	0.42	.225	28.75	0.61	0.43	0.82	Û.26	0.78	.030
11.00	-0.26	2.34	1.04	1,12	0.43	. 233	29.00	0.03	0,43	0.83	0.26	0.75	.024
17.29	-0.20	2.29	1.01	1.13	0,43	.241	29.25	0.65	0.43	0.84	0.26	0.71	.026
17.90	-0.33	2.22	0.48	1.13	0.44	.248	29.50	0.67	0.44	0.05	0,24	0.69	.025
11 90	-0.42	2.14	U. 94	1.14	U.45	.257	29.75	9.69	9.44	0.87	0.26	0.66	.023
71.00	-0 F.	4.95	0.90	1.13	0.46	,264	30.00	0.71	0.46	0.95	0.26	0.15	.923
10.00	-0.51	1.95	0.87	1.12	0.49	.270	30.25	0.73	9.47	0.89	0.26	0.63	.023
10.47	-0.54	1.05	0.83	1.11	0.50	.275	30.50	9.74	0.49	0.90	0.27	0.62	023
18-97	-0.53	1./5	0.00	1.10	9.52	- 246	30.75	0.75	0.51	0.91	9 .2 9	0.62	.023
19.00	-0.57	1.05	9.77	1.08	0.54	.243	31.00	0.75	0.53	0.32	0,24	J.62	.02+
14.30	-0.3n	1.55	0.74	1-15	0.57	. 235	51.25	9.75	0.55	0.92	0.30	0.63	.025
13.00	-0.54	1.40	0./1	1,02	0.00	. 274	31.50	9.75	0.56	0.92	0.31	0.64	.027
14*30	-0*21	1.48	U.bi	1.00	0.04	.242	31,75	9.74	0.54	0.92	0.31	0.65	.021

Но

	-155-	БГ К	IOW	547	CHR	KrL	1	Ł
······································		Unp 1.	8	~	1	70		707 S
		0.1-60	0.08-4	1.97-2	6.2-41	0.5-12		Energy
			.66	. 84				Range V)
		Refl	Ellips	Ellips	- 0	Rafi		Techniq
1-81	- <u>,</u> <u>.</u> .	नुश्रु हु ह						
		.2 for .2 for . < 4.4 eV . < 4.4 eV					RT unless specified	Temperature (X)
					×	×	Film	Ē
		×	×	×			X-tal	2
							Bulk	d tu
·		Ę	Ð	Heat	Ţ	5	Prep	ſ
· · · · · · · · · · · · · · · · · · ·		R; XX: n,k,e1,e2	N, K, 21, 22,0	R, n, k	R,n,k, E1, E2	79		Data Presentation
		absorptivity measured by calorimetr hv < 4.4 eV, reflectivity measured hv > 4.4 eV, Elc., Ellc	table l,n,k	also LEED, AES; heat 1800°C why	included substrate temperature vari	why evaporation in situ	PE	Rema r ks

•

10			-154-				
Energy (eV)	¢į	£2	n	k	lm(-1/ē)	R(+=0)	
32.00	0.73	0.59	0.92	0.32	0.67	.030	
32.20	0.73	0,60	0.91	0.33	0.69	.031	
32.40	0.71	0.60	0.91	0.33	0.69	.032	
32.60	0.70	0.60	0,90	0.33	0.70	.032	
32.90	0.70	0.59	0.90	0.33	0.71	.032	
33.00	0.70	0.59	0.90	0.33	0.71	.032	
33.20	0.70	0.50	0.90	0.32	0.70	.031	
33.40	0.71	-0.59	0.90	0.32	0.69	.030	
33.50	0.72	0.58	0.91	0.32	0.69	.030	
33.60	0.72	0.59	0,91	0.33	0.68	.031	
33.00	0.72	0.61	0,91	0.33	0.60	.032	
34.00	0.71	0.63	0,91	0.34	0.70	.034	
34.20	0.70	0.64	0.91	0.35	0,71	.035	
34.40	0.68	0.65	0.90	0.36	0.73	.037	
34.60	0.66	0.66	0.89	0.37	0.76	.040	
34.00	0.64	0.66	0.88	0.37	0.79	.042	
35.00	0.61	0.65	0.87	0.37	0.82	.043	
35.20	0.59	0.64	0.85	0.37	0.85	.045	
35.40	0.57	0.62	0.94	0.37	0.87	.045	
35.60	0.56	0.60	0.63	0.36	0.89	.045	
35.80	0.56	0.50	0.82	0.35	0,90	.044	
36.00	0.56	0.56	0.82	0,34	0,90	.043	
36.25	0.56	0.54	0.81	0.33	0.90	.042	
36.50	0.56	0.52	0.81	0.32	0.90	.041	
36.75	0.56	0.51	0.61	0.31	0.89	.040	
37.00	0.56	0.49	0.81	0.30	0.89	.030	
37.25	0.57	0.48	0.81	0.30	0.87	.037	
37.50	0.57	0.47	0.81	0.29	0.86	.036	
37.75	0.57	0.45	0.81	0.20	0.85	.034	
38.00	0.58	0.44	0.81	0.27	0.83	.033	
38.50	0.59	0.43	0.81	0.26	0.80	.031	
39.00	0.61	0.41	0.82	0.25	0.77	.029	
39,50	0.62	0.40	0.82	0.24	0.73	.026	
40.00	0.63	0.39	0.83	0.23	0.71	.025	
				-			
		•					
						•	

H

-159-

-158-

Ruthenium single crystal with Ellê

D.W. Lynch, CLB. Olson, and J.H. Weaver (unpub)

•	-	-						-10 67	12 60
Energy (eV)	•	6.	n	k	lm(-1/č)	R(4-0)	3.00	-10.37	12.09
Energy (cv)	۶1	•2	••				3.70	-10.12	11.17
a 10	-3849 40	4404 78	11 60	61 30	0 00	004	3.60	-9.74	10.40
0.15	-1107 04	1101.70	11.50	31.30	0.00	.704	3.70	-9.40	7.40
0.30	-1197.06	337.39	7.39	35.44	0.00	.9//	4.00	-0.00	0.8y
0.20	-/01.41	342.17	3.93	67.14	0.00	.7/0	4.10	-0.20	9.40
0.23	-401./3	215.31	4.89	22.04	0.00	.904	4.20	-7.01	7.94
0.30	-323.88	160.20	4.33	18.50	0.00	* 423	4.30	-/.+/	7.54
U.35	-239.55	124.09	3.89	12.95	0.00	.944	4.40	-/.11	1.14
0.40	-182.29	100.48	3.80	13.97	0.00	.933	4.50	-0.10	6.80
0.45	-142.11	93.22	3.17	12.39	0.00	.922	4.60	-0.40	0.4/
0.50	-111.02	70.34	3.18	11.04	0.00	.909	4.70	-9.10	6.19
0.55	-87.11	62.30	3.16	9.85	0.01	.887	4.80	-5.90	5.92
0.60	-68.18	50.31	3.28	8.89	0.01	.865	4.90	-5.56	5.67
0.65	-54.35	57,19	3.50	0.16	0.01	.839	5.00	-5.43	5,44
0.70	-46.67	55,93	3.62	7.73	0.01	.822	5.10	-5.24	5.20
0.75	-42.20	52.61	3.55	7.40	0.01	.912	5.20	-5,03	4.97
0.80	-37.58	47.94	3.42	7,02	0.01	.801	5.30	-4.84	4.73
0.85	-32,34	43,46	3,30	6.58	0.01	.786	5,40	-4,63	4.40
0.90	-26.90	39.81	3.25	6.12	0.02	.766	5.50	-4.39	- 4.27
0.95	-21,30	37.51	3.30	5.68	0.02	.740	5,60	-4.15	4.11
1.00	-16.86	36.13	3.39	5.33	0.02	.715	5.70	-3.94	3.98
1.05	-12.72	35.44	3.53	5.02	0.02	.691	5,80	-3.76	3.80
1.10	-9.93	35.33	3.66	4.83	0.03	.675	5.90	-3.59	3,74
1.15	-7.63	35.22	3.77	4.67	0.03	.662	6.00	-3.44	3.62
1.20	-6.1,3	35.15	3.84	4.57	0.03	.654	6.20	-3.15	3.42
1.25	-4.78	34.77	3.89	4.47	0.03	.645	6.40	-2.93	3.21
1.30	-3,62	34.47	3.94	4.38	0.03	.638	6.60	-2.70	3.00
1.35	-2.61	34.09	3.97	4.29	0.03	.632	6.80	-2.49	2.00
1.40	-1,39	33.71	4.02	4.19	0.03	.624	7.00	-2.29	2.59
1.45	-0,26	33.67	4.09	4.12	0.03	.610	7.20	-2.05	2.41
1.50	0.80	33.85	4.16	4,07	0.03	.614	7.40	-1.84	2.25
1.55	1.73	34.39	4.25	4.04	0.03	.613	7,60	-1.61	2.12
1.60	2.12	35.31	4.33	4.00	0.03	.615	7,90	-1.42	2.02
1.65	2.19	36.19	4.39	4.13	0.03	.619	9.00	-1.25	1.92
1.70	1,80	37.17	4.42	4.21	0.03	.624	8.20	-1.07	1.83
1.80	0.18	39.59	4.40	4.38	0.03	. 636	8,40	-0.91	1.75
1.90	-2.81	39.51	4.29	4.61	0.03	.651	8.60	-0.76	1.68
2.00	-0.77	39.66	4.04	4.81	0.02	.667	ਲੇ, ਚੱਪੋ	-0.63	1.60
2.10	-10.45	36.15	3.69	4.90	0.03	.679	9.00	-0.47	1.54
2.15	-11.43	34.16	3.51	4.87	0.03	-682	9,20	-0.3-	1.49
2.20	-12.06	32.32	3.35	4.82	0.03	.683	9.40	-0.21	1.44
2.25	-12.33	30.61	1.21	4.76	0.03	682	9.60	-0.07	1 40
2.30	-12.52	29.05	3.09	4.70	0.03	-691	9.40	0.06	1 36
2.15	-12.40	27.58	2.98	4.67	0.03	.679	19	0.20	1 34
2 40	-17.24	26.29	2.89	4.55	0 03	.677	10 20	0 11	1 2 3
2 50	-11.80	24 13	2 74	4 40	0 03	.671	10.20	4.45	1 3 4
2.60	-11.09	22.49	2.64	4.25	0.04	.651	10.40	0.57	1 26
2 10	-10.50	21.12	7 49	4.14	0 04	-656	10.00 10 in	0.57	1.33
2 20	-10.02	20 52	2 44	4 05	0.04	. 650	11 26	(] -	1.37
2 2 3	-10.04	20.43	2.49	4.01	0.04	-650	11.00	0.00 0.00	1.42
2 0.1	-10 SA	10 3.	3 36	4.03	0.04		1 i 40	0.04	1.90
3.00	-10-30	17.26	4.30	4.73	V.V4	.920	11.40	0.21	1.44

Energy (eV)

3.10

3.20

3,30

3.40

3,50

€j

-10.91

-11.16

-11.29

-11.13

-10.87

2.25

2.13

2.00

1.87

1.75

1.66

1.57

1.49

1.42

1.37

1.33

1.29

1.26

1.22

1.19

1.16

1.13

1.11

1.08

1.06

1.03

1.01

0.90

0.95

0.93

0.92

0.91

0.90

0.89

0.88

0.97

0.84

0.82

0.79

0.76

0.75

0.73

0.73

0.73

0.72

0.72

0.73

0.74

0.74

0,75

0.77

0.79

0,92

0,85

0.08

0.92

0.96

1.91

1.05

1.09

1.12

1.15

E2

19.13

16.93

15.61

14.33

13.18

k

4,00

3.96

3.91

3.03

3.74

3.65

3.55

3.45

3.35

3.24

3.16

3.08

3.00

2.93

2.86

2.79

2.73

2.67

2.61

2.50

2.51

2.46

2.41

2.35

2.29

2.23

2.18

2.14

2,10

2.05

1,98

1.91

1.04

1.77

1.69

1.61

1.54

1.46

1.39

1.33

1.26

1.20

1.14

1.00

1.02

0,97

0.91

0,86

0.81

0.75

0.72

0.59

0.67

0.66

U. n5

0.65

0.45

lm(-1/2)

0.04

0.04

0.04

0.94

0.05

0,05

0.05

0.05

0.05

0.06

0.06

0.06

0.07

0.07

0,01

0.00

0.08

0.08

0.09

0.09

0.10

0.10

0.10

0.11

0.11

0.12

0.13

0.13

0.14

0.15

0.16

0.17

0.10

0.20

0.22

0.24

0.27

0,30

0.33

0.37

0.41

0.45

0.49

0.54

0.59

U.64

9.64

0.71

0.73

0.73

0.71

0.67

0.63

9.59

0.55

0.52

6,49

R(+=0)

...1

.005

.471

.673

. +14

. 675

-673

.672

.658

.561

.655

.649

.641

.639

.613

.628

.622

.617

.612

.607

.604

.600

.597

.593

.586

.576

.567

.559

.552

.545

.531

.521

.510

.500

.489

.472

.455

.433

.411

. 391

. 166

. 342

.314

.245

.267

.243

.21/

.199

.107

.144

.125

.119

.197

.494

.095

.099

Ru Ěllô			-162-			
Energy (e¥)	εl	€2	n	k	im(~1/ē)	R(∳=G)
11.00	0.97	1.54	1.18	0.65	0.46	សភុម
11.60	1.03	1.59	1.21	9.66	0.44	-030
12.00	1.07	1.65	1.23	0.67	0.43	.092
12.20	1.09	1.70	1.25	0.68	0.42	095
12.40	1.11	1.75	1.26	0.69	0.41	. 198
12.60	1.11	1.00	1.27	0.71	0.40	.102
12.90	1.10	1.03	1.27	9.72	0.40	.104
13.00	1.10	1.86	1.20	0.73	0.40	.106
13.20	1.09	1.98	1.29	0.74	0.40	.108
13.40	1.08	1.90	1.28	0.75	0.40	.110
13.00	1.07	1.91	1.29	0.75	0.40	.111
13.90	1.07	1.91	1.28	0.75	0.40	.111
14.00	1 64	1.95	1.28	0.76	9.40	.114
14 40	1.04	1.94	1.27	v.76	0.40	.114
14.60	1.04	1 94	1.27	0.76	0.40	.114
14.80	1 04	1 94	1.27	0.76	0.40	.114
15.00	1.04	1.94	1.27	0.76	0.40	.114
15.20	1.05	1.95	1 20	0.75	0.40	.114
15.40	1.05	1.96	1.28	0 77	0.40	.114
15.60	1.06	1.97	1.29	0.77	0.40	115
15.80	1.09	1.98	1.29	0.76	0.39	115
15.00	1.09	2.03	1.30	0.78	0.39	113
16.25	1.10	2.06	1.31	0.79	0.38	-120
16.50	1.11	2.11	1.32	0.80	U.37	-123
16.75	1.11	2.10	1.33	0.82	0.36	.128
17.00	1.08	2.29	1.34	0.85	0.36	.136
17.25	1.00	2.39	1.34	0.89	0.36	.145
17.50	0.08	2.46	1.32	0,93	0.36	.155
17.75	0.75	2.50	1.30	0.96	0.37	.164
10.00	0.61	2.51	1.26	0.99	u.39	.173
10.23	0.47	2.48	1.22	1.01	0.39	.101
10.30	V.30	2.42	1.18	1.02	0.40	.185
19.00	0 10	2.35	1.14	1.03	0.42	.190
19.25	0 13	2.21	1.11	1.02	0.44	+192
19.50	0 0	2.41	1.08	1.02	0.45	.195
19.75	0.00	2.13	1.03	1.02	0.46	.199
20.00	-0.06	2.01	1.02	1.02	0.45	. 203
20.25	-0.11	1.91	0.95	1.02	0.30	.208
20.50	-0.14	1.92	0.92	0.99	0.52	-4()
20.75	-0.15	1.72	0.89	0.97	0.58	. 211
21.00	-9.15	1.63	0.86	0.94	0.61	. 204
41.25	-0.13	1,56	0.85	0.92	0.64	205
21.50	-0.13	1.49	0.83	0.90	0.67	.203
21.75	-0.11	1.43	0.81	0.88	0.70	.198
22.00	-0.09	1.36	0.81	0.86	U.72	. 193
21 10	-0.06	1.30	0.79	0.82	0.77	.187
23.00	-0.04	1,22	0.77	0.79	0.62	.192
24.60	-9.91	1.15	9,75	4.76	U.47	.175
24.50	4.00	7.03 T*0A	9.74	0.74	V.92	.171
25.00	0 9¥ 0 9	1.05	0.75	9.71	0.97	106
25.50	0.07 0.04	17.7C	0 60 V./L	0.69	1.02	-163 -
26.9u	0.07	11.72 (), mé.	0.63	9.65 A.5.3	1.08	-1ni
20.00	9,09	0.61	4.67	U.05 Ú. S.)	1.13	.154
27.09	0,12	0.76	9,67	0.57	1.29	• # • 7 . 1 4 4

.

Ru ĒHĈ			-163-			
Energy (eV)	εı	€2	n	k	lm(-1/8)	R(+-0)
27.50	0.15	0.71	0.66	0.54	1.34	.132
28.00	0.10	0.67	0.66	0.51	1.39	.124
28.50	0.21	0.64	0.67	0.40	1.41	.115
29.00	0.24	0.62	0.67	0.46	1.42	.197
29,50	0,26	0.59	0.67	0.44	1.41	.191
30,00	0.27	0.57	0.67	U.43	1.43	.097
30.50	0.29	0.54	0.67	0.40	1.46	. 093
31.00	0.31	0.50	J.67	0.37	1.43	.084
31.50	0.34	0.48	0.68	0.35	1.39	.077
32.00	0.37	0.46	0.69	0.33	1.34	.070
32.50	0.39	0.44	0.70	0.31	1.28	064
33.00	0.41	0.43	0.71	0.30	1.21	058
33.50	0.44	0.41	0.72	0.29	1.15	051
34.00	0.46	0.40	0.73	0.27	1.04	.049
34.50	0.47	0.39	0.74	0.26	1.03	045
35.00	0.51	0.38	0.75	0.25	0.94	. 1 1 9
36.00	0.54	0.37	0.77	0.24	0.69	.035
37.00	0.57	0.36	0.79	0.23	0 80	010
38.00	0.59	0 30	0.00	0.22	0.75	027
39.00	0.62	0.35	0.02	0.22	0 70	024
40.00	0.64	0.36	0 83	0.22	0.66	022

•

Ruthenium single crystal with 🖡 🗘 ĉ

D.W. Lynch, C.G. Olson, and J.H. Weaver (unpub)

Emergy (a) c1 c2 n k lm(-1/2) R(4-0) 3,70 -13.00 11.65 0.10 -12440,73 1204.06 11.65 50.81 0.00 981 3,60 -11.24 9.81 0.15 -1161.96 509.65 8.19 33.13 0.00 .975 4.00 -10.75 9.13 0.220 -644.01 130.30 6.68 27.18 0.00 .965 4.10 -10.75 8.00 0.13 -133.40 186.25 4.43 14.45 0.00 .443 -4.44 7.23 0.40 -124.65 17.41 3.54 12.65 0.00 .443 -1.44 5.00 -7.65 6.70 0.45 -124.65 16.13 3.27 11.63 0.00 .913 4.60 -6.98 6.22 0.60 -7.63 6.70 -7.24 6.71 .965 0.60 -7.63 5.10 -6.22 5.68 0.70 -6.72 5.68 0						•		. 3,60	-13.70	12.88
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Energy (eV)	61	62	n	k	im(-1/ē)	R(#=0)	3.70	-13.00	11.69
$ 0, 10 - 2440, 7_3 1204, 10 + 11, 65 50, 41 0, 00 - 981 3, 90 - 11, 47 9, 81 0, 13 - 1161, 66 594, 55 8, 139 35, 13 0, 10 - 975 4, 00 - 10, 75 9, 13 0, 20 - 694, 61 363, 66 6, 68 27, 18 0, 00 - 950 4, 10 - 4, 00 - 10, 75 9, 13 0, 10 - 733, 10 166, 97 4, 94 19, 92 0, 00 - 950 4, 10 - 4, 93 7, 631 0, 10 - 733, 10 166, 97 4, 94 19, 92 0, 00 - 950 4, 10 - 4, 93 7, 631 0, 23 - 231, 16 141, 55 4, 13 1, 14 4, 68 0, 00 - 343 4, 44 - 4, 49 7, 23 4, 64 7, 73 4, 64 7, 73 4, 75 5, 70 0, 13 - 134, 41 131, 13 - 14 14, 66 0, 00 - 235 4, 60 - 7-65 6, 70 0, 13 - 124, 65 7, 61, 13 3, 27 11, 14 3, 0, 00 - 235 4, 60 - 7-7, 65 6, 70 0, 13 - 64, 94 3, 09 10, 50 0, 00 - 235 4, 60 - 7-7, 65 6, 70 0, 65 - 70, 73 - 66, 74 2, 90 - 6, 71 - 2, 98 0, 54 0, 00 - 235 4, 60 - 7-7, 65 6, 70 0, 65 - 76, 20 50, 47 2, 90 - 6, 71 0, 01 - 433 5, 00 - 6, 52 5, 68 0, 70 - 73, 65, 74 2, 90 - 6, 71 0, 01 - 433 5, 00 - 6, 52 5, 68 0, 70 - 73, 65, 74 2, 90 - 6, 71 0, 01 - 437 5, 10 - 6, 23 - 6, 63 5, 11 0 - 6, 24 6, 51 39 0, 75 - 76, 63 40, 59 2, 777 7, 73 3 0, 01 - 437 5, 20 - 6, 03 5, 11 0 - 6, 64 5, 51 0 - 7, 75 - 6, 63 3, 11 0 - 6, 15 7 5, 13 - 5, 10 - 4, 13 4, 06 0, 80 - 73, 90 3, 13 2, 73 6, 74 0, 0, 01 - 437 5, 20 - 6, 03 5, 11 0 - 6, 15 - 7, 13 4, 06 0, 80 - 73, 90 3, 16, 71 - 4, 29 0, 03 - 771 1 , 5, 20 - 6, 03 5, 11 0 - 6, 15 - 7, 13 4, 06 0, 80 - 73, 90 3, 16, 71 - 4, 29 0, 03 - 6, 70 - 5, 70 - 4, 73 4, 06 1, 62 - 29, 69 3, 17 - 4, 29 0, 03 - 6, 70 - 5, 70 - 4, 73 4, 06 1, 62 - 29, 85 4, 40 0, 33 - 6, 10 - 7, 10 - 5, 10 - 4, 13 - 3, 00 1, 15 - 7, 00 - 3, 14 - 4, 22 0, 0, 03 - 6, 71 - 5, 10 - 4, 13 - 3, 00 1, 15 - 7, 00 - 3, 6, 14 - 3, 70 - 7, 10 - 2, 12 - 2, 14 - 4, 14 - 4, 14 - 14 - 14 - 14 - 14$	37 10-7	-•	-					3.80	-12.24	10.66
	0.10	-2440.73	1204.06	11.05	50.81	0.00	.983	3.90	-11.47	9.81
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.15	-1163.96	589.65	8.39	35.13	0.00	.975	4.00	-10.75	9.13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V 20	-694.01	363.06	6.68	27.18	0.00	.966	4,10	-10.11	8,54
0.4033.57 1 46.97 - 4.94 18.92 0.00 - 950 4.30 - 4.30 - 4.93 7.61 0.45323.16 141.55 4.30 16.48 0.00 -933 4.4.0 - 4.40 - 4.44 7.23 0.40 - 195.40 113.11 3.90 14.51 0.00 -933 4.50 - 7.95 6.70 0.45 - 155.44 91.74 1.54 12.96 0.00 .925 4.50 - 7.55 6.70 0.45 - 124.65 76.13 3.27 11.63 0.00 .935 4.70 - 7.24 6.47 0.55 - 100.73 64.94 1.09 10.50 0.00 .935 4.70 - 7.24 6.47 0.55 - 100.73 64.94 1.09 10.50 0.00 .935 4.70 - 7.24 6.47 0.55 - 100.73 64.94 1.09 10.50 0.00 .903 4.80 - 6.74 5.96 0.67 - 67.50 50.47 2.90 9.54 0.01 .888 4.90 - 6.74 5.96 0.75 - 57.50 50.47 2.90 9.54 0.01 .888 5.10 - 6.72 5.68 0.70 - 55.47 45.10 2.42 7.90 0.01 .855 5.10 - 6.28 5.38 0.75 - 50.07 13.23 0.01 .835 5.10 - 6.28 5.38 0.75 - 50.03 13.42 2.73 6.12 0.02 .787 5.50 - 5.23 4.61 0.9516.55 29.89 2.97 5.03 0.03 .711 5.50 - 5.22 4.61 0.9516.55 29.89 2.97 5.03 0.03 .711 5.60 - 4.73 4.06 1.0011.92 29.90 3.17 4.59 0.03 .634 5.80 - 4.51 3.93 1.101.66 29.88 3.64 0.373 0.03 .634 5.80 - 4.51 3.93 1.101.62 29.93 3.17 4.29 0.03 .634 5.80 - 4.51 3.93 1.101.62 29.93 3.17 4.29 0.03 .634 5.80 - 4.12 3.68 1.25 - 6.20 29.75 3.41 4.22 0.03 .634 5.80 - 4.12 3.68 1.25 - 6.20 29.75 3.41 4.22 0.03 .634 5.80 - 4.21 3.80 1.15 2.07 29.85 4.00 3.73 0.03 .6389 6.00 - 4.12 3.60 1.25 6.00 33.15 4.51 3.66 0.03 .589 6.00 - 4.12 3.60 1.26 6.00 33.15 4.51 3.64 0.03 .589 6.00 - 4.60 - 3.26 3.077 1.40 3.13 8.51 4.51 3.64 0.03 .589 6.00 - 4.60 - 3.26 3.071 1.40 9.59 40.55 5.04 4.03 0.02 .618 7.60 - 7.60 - 2.52 2.42 1.40 - 9.59 40.55 5.04 4.03 0.02 .618 7.60 - 7.60 - 2.50 2.13 1.40 9.59 40.55 5.04 4.03 0.02 .618 7.7 6.60 - 0.20 1.13 1.41 47.42 4.96 4.78 0.02	0.25	-464 30	249.97	5.61	72.27	0.00	959	4.20	-9,5U	8.03
	0.40	-333 61	186.97	4.94	18.92	0.00	950	4.30	-8.93	7.61
	0.35	-253 16	141 50	4.30	16.48	0.00	.943	4.40	-8.44	7.23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.40	-195 40	113.11	3,90	14.51	0.00	.933	4.50	-7.95	6.94
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.45	-155.44	91.74	3.54	17.96	0.00	.925	4.60	-7.56	6.70
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.50	-174.65	26.13	3.27	11.63	0.00	.915	4.70	-7.24	6.47
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.55	-100.73	64.94	3.09	10.50	0.00	. 903	4.80	-6.98	6.22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 60	-42 08	56.78	2.98	9.54	0.01		4.90	-6.74	5.96
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 65	-17 50	50 47	3 90	A 71	0.01	473	5.00	-6.52	5.68
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.05	-55 97	45 10	2 82	7 90	0.01	055	5.10	-6.28	5.39
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.70	-33,67	40 60	2 77	2 2 2	0.01	433	5 20	-6 03	5 11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.73	-10.03	36 73	2 73	6 71	0.01	A15	5 30	-5.78	A 84
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00 A 46	-30.00	33.44	2.73	4 12	0.01	747	5.10	-5.51	4 64
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.05	-30.00	33.44	2.13	6 64	0.02	751	5.10	-5.31	4 41
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.90	-14.10	31.47	7 07	5.34	0.02	111	5.50	-3.44	4 21
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.90	-10,33	27.07	2.71	3.03	0.03	670	5.00	-4.73	7.41
1.03-0.2028.733.414.220.03.0343.03-1.05-1.0513.331.10-1.6628.683.693.910.03.5896.00-4.123.6661.152.0729.654.003.730.03.5896.00-4.123.6661.256.6033.154.513.660.03.5896.40-3.493.291.307.9034.634.663.720.03.5936.60-3.263.071.358.7135.754.773.750.03.5936.60-3.263.071.459.6237.794.933.830.02.6047.20-2.2562.4661.559.6139.735.043.940.02.6097.40-2.322.281.609.5940.955.084.030.02.6137.60-1.652.001.659.1641.995.114.110.02.6238.00-1.631.881.708.4643.195.124.220.02.6298.20-1.431.781.806.2145.425.104.450.02.6298.20-1.631.881.708.464.195.114.110.02.6238.00-1.631.881.708.4643.195.124.02.6298.20-1.431.711.806.2145.425.10 <td>1.00</td> <td>-6.20</td> <td>29.09</td> <td>3.17</td> <td>4.37</td> <td>0.03</td> <td>4044</td> <td>5.10</td> <td>-4.51</td> <td>3.03</td>	1.00	-6.20	29.09	3.17	4.37	0.03	4044	5.10	-4.51	3.03
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.05	-0.20	28.73	3.41	7,22	0.03	.039	5.00	-4.31	3,33
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.10	-1.00	20.05	3+63	3.31	0.03	.004	3.3V	-4.31	3.00
1.204.3431.374.283.600.03.5835.20-3.773.401.256.0033.154.513.660.03.5896.40-3.493.291.307.9034.634.663.720.03.5936.60-3.263.071.358.7135.754.773.750.03.5936.40-3.012.881.409.2336.854.863.790.03.6017.00-2.792.661.459.6237.794.933.830.02.6047.20-2.552.461.509.7238.864.993.890.02.6047.20-2.082.131.559.8139.735.043.940.02.6137.60-2.082.131.659.1641.995.114.110.02.6238.00-1.451.381.659.1641.995.124.220.02.6298.20-1.431.781.659.1641.995.124.220.02.6298.20-1.431.781.406.2145.425.104.450.02.6428.40-1.061.622.00-4.2646.664.615.060.02.6378.60-0.871.562.10-9.5339.403.945.000.02.6819.20-0.551.442.10-9.5339.403.94 <td< td=""><td>1.15</td><td>2.07</td><td>29.85</td><td>4.00</td><td>3./3</td><td>0.03</td><td>.383</td><td>6.00</td><td>-4.12</td><td>3.00</td></td<>	1.15	2.07	29.85	4.00	3./3	0.03	.383	6.00	-4.12	3.00
1.556.803.134.513.680.03.5896.80 -3.49 3.29 1.307.9034.634.663.720.035936.60 -3.01 2.881.409.2336.854.863.790.03.6017.00 -2.79 2.661.459.6237.794.933.890.02.6047.20 -2.56 2.461.559.6139.735.940.93.890.02.6047.40 -2.32 2.281.559.8139.735.043.940.02.6137.60 -2.08 2.131.609.5940.955.084.030.02.6187.40 -1.65 2.001.659.1641.995.114.110.02.6238.00 -1.63 1.881.708.484.915.124.220.02.6628.20 -1.43 1.711.901.8147.425.104.450.02.6628.40 -1.23 1.711.901.8147.425.104.450.02.66679.60 -1.06 1.622.10 -4.26 46.564.615.060.02.66778.60 -0.87 1.562.10 -4.26 5.030.02.6819.40 -0.37 1.402.25 -10.35 36.133.924.970.02.6819.40 -0.37 1.402.40 -9.53 39	1,20	4.94	31.37	4.29	1.60	0.03	.585	6.20	-3.77	3,40
1.307.9034.634.663.720.03.9930.60 -2.20 3.071.356.7135.754.773.750.03.6017.00 -2.79 2.661.409.2336.854.863.790.03.6017.00 -2.79 2.661.459.6237.794.933.830.02.6047.20 -2.56 2.461.509.7238.864.993.890.02.6097.40 -2.32 2.281.559.8139.735.043.940.02.6137.60 -2.08 2.131.609.5940.955.084.030.02.6187.80 -1.65 2.001.659.1641.995.114.110.02.6238.00 -1.63 1.881.708.4843.195.124.220.02.6428.40 -1.23 1.711.901.8147.424.964.780.02.666 -6.60 -1.06 1.622.00 -4.26 46.664.615.060.02.6829.00 -0.71 1.562.15 -3.89 40.925.090.02.6829.00 -0.71 1.502.15 -3.89 40.925.090.02.6829.00 -0.71 1.502.15 -3.89 40.925.090.02.6819.20 -0.55 1.442.10 -9.53 39.403.94 <td>1.25</td> <td>6.00</td> <td>33.15</td> <td>4.51</td> <td>3.68</td> <td>0.03</td> <td>.289</td> <td>6.40</td> <td>-3.49</td> <td>3.29</td>	1.25	6.00	33.15	4.51	3.68	0.03	.289	6.40	-3.49	3.29
1.338.7135.754.773.750.03.5976.80 -3.01 2.881.409.2336.854.863.790.03.6017.00 -2.79 2.661.459.6237.794.933.830.02.6047.20 -2.56 2.461.509.7238.864.993.890.02.6097.40 -2.32 2.281.559.8139.735.043.940.02.6137.60 -2.02 2.131.609.5940.955.084.030.02.6187.80 -1.85 2.001.659.1641.995.114.110.02.6238.00 -1.63 1.881.708.4843.195.124.220.02.6628.20 -1.43 1.711.806.2145.425.104.450.02.6628.40 -1.23 1.711.901.8147.424.964.780.02.666 0.60 -1.06 1.622.00 -4.26 46.645.060.02.6778.40 -1.23 1.711.901.8147.424.965.030.02.6829.00 -0.71 1.502.15 -8.89 40.424.055.030.02.6819.20 -0.55 1.442.01 -9.53 39.403.945.000.02.6819.40 -0.37 1.402.25 -10.55 <td< td=""><td>1,90</td><td>1.40</td><td>34.63</td><td>4.66</td><td>3.12</td><td>0.03</td><td>. 593</td><td>0.00</td><td>-3.20</td><td>3.07</td></td<>	1,90	1.40	34.63	4.66	3.12	0.03	. 593	0.00	-3.20	3.07
1.409.2336.854.863.790.03.6017.00 -2.79 2.061.459.6237.794.933.830.02.6047.20 -2.56 2.461.509.7238.864.993.890.02.6037.40 -2.32 2.281.559.8136.735.043.940.02.6137.60 -2.08 2.131.609.5940.955.064.030.02.6238.00 -1.63 1.881.708.4641.195.124.220.02.6238.00 -1.43 1.711.806.2145.425.104.450.02.6428.40 -1.23 1.711.901.8147.424.964.780.02.667 0.80 -0.87 1.622.00 -4.26 46.664.615.060.02.677 0.80 -0.87 1.562.15 -3.89 40.924.055.03 0.02 .681 9.20 -0.55 1.442.20 -9.53 39.403.945.00 0.02 .681 9.40 -0.37 1.402.20 -9.53 39.403.945.00 0.02 .681 9.40 -0.37 1.402.20 -9.53 39.403.94 9.00 0.22 .681 9.40 -0.37 1.402.20 -1.15 36.70 3.69 4.97 0.02 .681 9.40 -0.37 <td< td=""><td>1.35</td><td>8.71</td><td>35.75</td><td>4.77</td><td>3.75</td><td>0.03</td><td>.597</td><td>6.00</td><td>-3.01</td><td>2.88</td></td<>	1.35	8.71	35.75	4.77	3.75	0.03	.597	6.00	-3.01	2.88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.40	9.23	36.85	4.86	3,79	0.03	.601	7.00	-2.79	2.00
1.509.7230.864.993.890.02.6097.40 -2.32 2.281.559.8139.735.043.940.02.6137.60 -2.08 2.131.609.5940.955.084.030.02.6137.80 -1.08 2.101.659.1641.995.114.110.02.6238.00 -1.63 1.881.708.4043.195.124.220.02.6298.20 -1.43 1.781.806.2145.425.104.450.02.6678.40 -1.23 1.711.901.8147.424.964.780.02.6678.60 -0.87 1.562.00 -4.26 46.664.615.060.02.6778.60 -0.87 1.562.10 -8.99 40.424.055.030.02.6829.00 -0.71 1.502.15 -8.99 40.424.055.030.02.6819.40 -0.37 1.402.25 -10.35 34.133.824.990.02.6839.60 -0.20 1.372.30 -11.15 36.703.694.970.02.6839.60 -0.20 1.372.30 -11.15 36.703.694.970.03.68519.00 -0.35 1.442.40 -9.53 39.403.945.000.03.69519.00 -0.04 1.372	1.45	9.62	37.79	4.93	3.03	0.02	.604	7.20	-2.56	2.46
1.559.8139.735.043.940.02.6137.60 -2.08 2.131.609.5940.955.084.030.02.6187.60 -1.65 2.001.659.1641.995.114.110.02.6238.00 -1.63 1.881.709.4943.195.124.220.02.6298.20 -1.43 1.711.806.2145.425.104.450.02.6428.40 -1.23 1.711.901.8147.424.964.780.02.6678.80 -0.87 1.562.00 -4.26 46.664.615.060.02.6778.80 -0.87 1.562.10 -9.53 39.403.945.000.02.6819.20 -0.55 1.442.20 -9.53 39.403.945.000.02.6819.40 -0.37 1.402.25 -10.35 38.133.824.990.02.6839.60 -0.20 1.372.30 -11.15 36.703.694.97 0.02 .6839.60 -0.20 1.372.35 -11.72 35.143.564.94 0.03 .6851.00 0.04 1.372.30 -11.15 36.703.69 0.03 .78410.20 0.22 1.342.40 -11.96 33.633.44 4.98 0.03 .77710.60 0.47 1.422.	1.50	9.72	39.86	4.99	3.89	0.02	.609	7.40	-2.32	2,28
1.609.5940.955.084.030.02.6187.80 -1.85 2.001.659.1641.995.114.110.02.6238.00 -1.63 1.881.708.4843.195.124.220.02.6298.20 -1.43 1.791.806.2145.425.104.450.02.6428.40 -1.23 1.711.901.8147.424.964.780.02.6678.40 -0.87 1.562.00-4.2646.664.615.060.02.6778.40 -0.87 1.562.10-9.124.234.215.090.02.6829.00 -0.87 1.562.15-8.6940.824.055.030.02.6819.20 -0.55 1.442.20-9.5339.403.945.000.02.6819.40 -0.37 1.402.25-10.3538.133.624.990.02.6839.40 -0.37 1.402.30-11.1536.703.694.970.02.6839.40 -0.37 1.402.35-11.7235.143.564.940.03.68519.00 -0.41 1.372.35-11.7235.143.564.940.03.68519.000.041.372.40-11.9631.173.274.770.03.68110.200.221.342.40-11.	1.55	9.8L	39.73	5.04	3.94	0.02	.613	7.60	-2.08	2,13
1.659.1641.995.114.11 0.02 .6238.00-1.631.881.708.4043.195.124.22 0.02 .6298.20-1.431.781.806.2145.425.104.45 0.02 .6428.40-1.231.711.901.8147.424.964.78 0.02 .6428.40-1.231.711.901.8147.424.964.78 0.02 .6609.00-0.871.562.00-4.2646.b64.615.06 0.02 .6778.80-0.871.562.10-8.1242.434.215.09 0.02 .6829.00-0.711.502.15-3.8940.824.055.03 0.02 .6819.20-0.6551.442.20-9.5339.403.945.00 0.02 .6819.20-0.371.402.25-10.3538.133.824.99 0.02 .6839.60-0.201.372.30-11.1536.703.694.97 0.02 .6449.80-0.031.372.30-11.9633.633.444.98 0.03 .64519.000.041.372.35-11.9633.633.444.98 0.03 .64110.20 0.35 1.402.60-11.8629.303.144.66 0.03 .67710.60 0.47 1.422.60 <td>1.60</td> <td>9.59</td> <td>40.95</td> <td>5.08</td> <td>4.03</td> <td>0.02</td> <td>.610</td> <td>7.00</td> <td>-1.05</td> <td>2,00</td>	1.60	9.59	40.95	5.08	4.03	0.02	.610	7.00	-1.05	2,00
1.708.4043.195.124.220.02.6298.20 -1.43 1.701.806.2145.425.104.450.02.6428.40 -1.23 1.711.901.8147.424.964.790.02.6608.60 -1.06 1.622.00 -4.26 46.064.615.060.02.6778.80 -0.87 1.562.10 -9.12 42.434.215.090.02.6829.00 -0.71 1.502.15 -8.09 40.824.055.030.02.6819.20 -0.55 1.442.10 -9.53 39.403.945.000.02.6819.60 -0.37 1.402.25 -10.35 38.133.824.990.02.6839.60 -0.37 1.402.30 -11.15 36.703.694.970.02.6449.80 -0.04 1.372.30 -11.96 33.633.444.890.03.68519.00 0.02 1.342.40 -11.96 33.633.444.690.03.58110.400.351.402.60 -11.86 29.303.144.660.93.57710.600.4771.422.70 -11.86 29.303.144.660.93.57710.600.4771.422.60 -11.86 29.303.144.660.93.57710.600.4771.42	1.65	9.16	41.99	5.11	4.11	0.02	.623	8.00	-1.03	1.88
1.80 6.21 45.42 5.10 4.45 0.02 $.642$ 8.40 -1.23 1.71 1.90 1.81 47.42 4.96 4.78 0.02 $.667$ 8.60 -1.06 1.62 2.00 -4.26 46.66 4.61 5.96 0.02 $.677$ 8.80 -0.87 1.56 2.10 -8.12 42.43 4.21 5.09 0.02 $.682$ 9.00 -0.71 1.50 2.15 -8.89 40.82 4.05 5.03 0.02 $.681$ 9.20 -0.55 1.44 2.20 -9.53 39.40 3.94 5.00 0.02 $.681$ 9.40 -0.37 1.40 2.25 -10.35 38.13 3.82 4.99 0.02 $.683$ 9.60 -0.20 1.37 2.30 -11.15 36.70 3.69 4.97 0.02 $.683$ 9.60 -0.20 1.37 2.30 -11.72 35.14 3.56 4.99 0.03 $.685$ 19.00 0.04 1.37 2.30 -11.72 35.14 3.56 4.99 0.03 $.685$ 19.00 0.04 1.37 2.30 -11.72 35.14 3.56 4.99 0.03 $.685$ 19.00 0.04 1.37 2.40 -11.96 33.63 3.44 4.99 0.03 $.577$ 10.40 0.35 1.40 2.60 -12.06 31.17 3.27 4.77 0.03	1.70	0,40	43,19	5,12	4.22	0.02	.629	8.20	-1.43	1.70
1.90 1.81 47.42 4.96 4.78 0.02 $.666$ 9.60 -1.06 1.62 2.00 -4.26 46.66 4.61 5.96 0.02 $.677$ 9.80 -0.87 1.56 1.10 -8.12 42.43 4.21 5.09 0.02 $.682$ 9.00 -0.71 1.50 2.15 -3.89 40.82 4.205 5.03 0.02 $.682$ 9.00 -0.71 1.50 2.15 -3.89 40.82 4.055 5.03 0.02 $.681$ 9.20 -0.555 1.44 2.20 -9.53 39.40 3.94 5.00 0.02 $.681$ 9.40 -0.37 1.40 2.25 -10.35 38.13 3.82 4.99 0.02 $.683$ 9.60 -0.20 1.37 2.30 -11.15 36.70 3.69 4.97 0.02 $.683$ 9.60 -0.22 1.37 2.30 -11.72 35.14 3.56 4.99 0.03 $.685$ 19.00 0.04 1.37 2.40 -11.96 31.63 3.44 4.69 0.03 $.584$ 10.20 0.22 1.34 2.50 -12.06 31.17 3.27 4.77 0.03 $.661$ 10.40 0.35 1.40 2.60 -11.86 29.30 3.14 4.66 0.93 $.577$ 10.60 0.477 1.42 2.70 -12.10 27.10 2.99 4.59 <t< td=""><td>1.60</td><td>6.21</td><td>45.42</td><td>5.10</td><td>4.45</td><td>0.02</td><td>.642</td><td>8.40</td><td>-1.23</td><td>1.11</td></t<>	1.60	6.21	45.42	5.10	4.45	0.02	.642	8.40	-1.23	1.11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.90	1.81	47.42	4.96	4.79	0.02	• 960	9.60	-1.06	1.62
2.10 -8.12 42.33 4.21 5.09 0.02 $.682$ 9.00 -0.71 1.50 2.15 -8.89 40.82 4.05 5.03 0.02 $.681$ 9.20 -0.55 1.44 2.20 -9.53 39.40 3.94 5.00 0.02 $.681$ 9.40 -0.37 1.40 2.25 -10.35 38.13 3.82 4.99 0.02 $.663$ 9.60 -0.20 1.37 2.30 -11.15 36.70 3.69 4.99 0.02 $.644$ 9.80 -0.04 1.37 2.35 -11.72 35.14 3.56 4.94 0.03 $.685$ 19.00 0.04 1.37 2.40 -11.96 33.63 3.44 4.89 0.03 $.984$ 10.29 0.22 1.38 2.40 -11.96 33.63 3.44 4.69 0.03 $.984$ 10.40 0.35 1.40 2.60 -12.06 31.17 3.27 4.77 0.03 $.661$ 10.40 0.35 1.40 2.60 -11.80 29.30 3.14 4.66 0.93 $.577$ 10.60 0.477 1.42 2.70 -12.10 27.10 2.99 4.59 0.03 $.676$ 11.00 0.66 1.51 2.40 -12.10 27.10 2.99 4.59 0.03 $.676$ 11.00 0.66 1.51 2.40 -12.10 27.10 2.87 4.64 <	2.00	-4.26	46.06	4.61	5,96	0.02	.677	8.80	-0,87	1.56
2.15 -3.09 40.42 4.05 5.03 0.02 $.681$ 9.20 -0.55 1.44 2.20 -9.53 39.40 3.94 5.00 0.02 $.681$ 9.40 -0.37 1.40 2.25 -10.35 38.13 3.82 4.99 0.02 $.663$ 9.60 -0.20 1.37 2.30 -11.15 36.70 3.69 4.97 0.02 $.644$ 9.80 -0.04 1.37 2.35 -11.72 35.14 3.56 4.97 0.02 $.644$ 9.80 -0.04 1.37 2.40 -11.96 33.63 3.44 4.69 0.03 $.685$ 19.00 0.02 1.34 2.40 -11.96 33.63 3.44 4.69 0.03 $.944$ 10.20 0.22 1.34 2.50 -12.06 31.17 3.27 4.77 0.03 $.661$ 10.40 0.35 1.40 2.60 -11.80 29.30 3.14 4.66 0.93 $.577$ 10.60 0.47 1.42 2.70 -11.10 27.10 2.99 4.59 0.03 $.676$ 11.00 0.60 1.51 2.40 -12.10 27.10 2.47 4.59 0.03 $.676$ 11.20 0.74 1.56 2.40 -13.29 $26.5n$ 2.47 4.64 0.03 $.676$ 11.20 0.74 1.56 2.40 -15.15 24.71 2.64 4.69 <	5-16	-0.12	42.83	4_21	5.09	0.02	.682	9.00	-0.71	1,50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.15	-9.83	40.82	4.05	5,03	0.02	.681	9.20	-0.55	1.44
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.20	-9.53	39,40	3.94	5.00	0.02	.601	9.40	-0.37	1.40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.25	~10.35	38.13	3.82	4.99	0.02	. ú03	9.60	-0.20	1.37
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.30	-11.15	36.70	3.69	4.97	0.02	.644	9.00	-0.04	1.37
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.35	-11.72	35.14	3.50	4.94	0.03	.685	10.00	0.04	1.38
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.40	-11.96	33,63	3.44	4.89	0.03	.nH1	10.20	0.22	1.34
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.50	-12.05	31.17	3.27	4.77	0.03	.631	10.40	0.35	1.40
2,70 -11.67 28.11 3.06 4.59 0.03 .674 10.00 0.57 1.46 2,80 -12.10 27.10 2.99 4.59 0.03 .676 11.00 0.66 1.51 2,90 ~13.29 26.58 2.87 4.64 0.03 .696 11.20 0.74 1.56 3.00 ~15.05 24.77 2.64 4.69 0.03 .701 11.40 0.81 1.61	2.60	-11,80	29.30	3,14	4,66	0.93	.077	10.60	0.47	1.42
2,80 -12.10 27.10 2,99 4,59 0.03 .676 11.00 0.66 1.51 2,90 ~13.29 26.58 2,87 4,64 0.03 .696 11.20 0.74 1.56 3,00 ~15.05 24.77 2,64 4,69 0.03 .701 11.40 0.81 1.61	2.70	-11.67	28.11	3.06	4.59	0.03	.074	10.00	0.57	1.46
2,40 ~13.29 26.58 2.87 4.64 0.03 .696 11.20 0.74 1.56 3.00 ~15.05 24.77 2.64 4.69 0.03 .701 11.40 0.81 1.61	2.80	-12.10	27.10	2.00	4.59	v.03	.676	11.00	0.66	1.51
3.00 ~15.05 24.77 2.64 4.69 0.03 .701 11.40 0.81 1.51	2.40	-13.29	26.54	2.87	4.64	0.93	.696	11.20	0.74	1.56
	3,00	-15.05	24.71	2.61	4.69	0.03	.791	11.40	0.81	1.51

Ru Ēļĉ Energy (eV)

3.10

3,20

3.30

3.40

3.50

£1

-15.76

-15.95

-15.65

-15.11

-14.42

C2

22.29

19,89

17.70

15.81

14.22

-165n

2.40

2.19

2.00

1.84

1.71

1.60

1.50

1.41

1.35

1.29

1.25

1.21

1.18

1,16

1.14

1.13

1.11

1.09

t.06

1.03

1.00

0.97

0.94

0.91

0.90

0.00

0.87

0.86

0.85

0.84

0.02

0.81

0.78

0.76

0.73

0.79

0,60

0.67

0.66

0.66

0.65

0.66

0.65

0,68

0.69

0.70

0.73

0.77

0.92

0.00

J.90

0.94

0.99

1.94

1,08

1.11

1.14

k

4.64

4.55

4.43

4.30

4.16

4.03

3.90

3.17

3,64

3.53

3,42

3.31

3.21

3.13

3.04

2.97

2.91

2.86

2.81

2.75

2.70

2.64

2.58

2.52

2.45

2.40

2.34

2.29

2.24

2.20

2.11

2.04

1.97

1.89

1.82

1.75

1.67

1.59

1.51

1.44

1.36

1.29

1.22

1.15

1.09

1.02

0,95

0.89

0.94

0.01

0,77

0.74

0.72

0.71

4.10

0.79

0.70

lm(-1/&)

0.03

0.03

0.03

0.03

0.03

0.04

0.04

0,04

0.04

0.05

0.05

0.05

U.06

0.06

0.06

0.07

0.07

0.07

0.07

0.00

0.08

0.08

0.09

0.09

0.09

0.10

0.10

0.11

0.12

0.12

0.13

0.14

0.15

0.17

0.18

0.20

0.22

0.24

0.27

9.30

0.34

0.39

0.43

0.49

0.54

0.61

0.67

0.71

0.73

0.72

0.71

0.67

0.03

0.59

0.55

0.52

0.50

R(4=0)

.710

.717

./21

.123

.723

.722

.721

.719

.713

.707

.101

.694

......

.679

.670

.662

.656

.652

.650

.640

.646

.643

.640

.635

.627

.622

.613

.605

.598

. 591

.576

.564

.556

.545

.538

.527

.513

.496

.476 .454

.430

.493

.378

.346

.317

.286

.251

.216

.185

.153

.141

.127

.115

.105

.104

.192

Ru Ē⊥ĉ			-166-		4		Ru Ē <u>l</u> ĉ		
Energy (eV)	εi	ε ₂	n	k	lm(-1/€)	R(+=0)	Energy (eV)	εl	
11.60	0.87	1.66	1.17	0.71	0.41	102	27-50	0.05	0
11.40	0.92	1.72	1.20	0.72	0.45	104	28.00	0.08	0
12.00	0.96	1.79	1.22	0.73	0.43	107	28.50	0.11	
12.20	0.97	1.85	1.24	0.75	0.42	.111	29.00	0.15	0
12.40	0.99	1.90	1.25	0.76	0.42	.113	29.50	0.17	Ŭ
12.60	0.96	1.94	1.25	0.77	0.41	.116	30.00	0.18	0
12.80	0,99	1.97	1.26	0.78	0.41	.118	30.50	0.19	0
13.00	0.95	2.01	1.27	0.79	0.40	-121	31.00	0.21	0
13.20	0.97	2.03	1.27	0.81	0,40	.124	31.50	0.24	0
13.90	0.93	2.00	1 27	0.02	0.40	+127	32.00	0.28	· 0
13.80	0.90	2.11	1 26	0.63	0.40	.129	32.50	0.31	0
14.00	0.46	2.11	1.26	0.84	0.40	+131	33.00	0.33	0
14.20	0.87	2.10	1.25	0.84	0.41	1 3 2	33.30	0.33	0
14.40	0.87	2.10	1.25	0.84	0.41	.132	34.50	0.37	
14.60	0.86	2.10	1.25	0.84	0.41	.143	35.00	0.42	ŏ
14.80	0.85	2,10	1.25	0.84	0.41	.133	36.00	0.45	ŏ
15.00	0.65	2.10	1,25	0.84	0.41	.133	37.00	0.48	ŏ
15.20	0.85	2.10	1.25	0.64	0.41	.133	30.00	0.52	ŏ
15.40	0.86	2.11	1.25	0.84	0.41	.133	39.00	0.55	ŏ
15.60	0.06	2.12	1.25	0.85	0.41	-134	40.00	0.58	Ū.
15.80	0.07	2.13	1.26	0.85	0.40	-134			
16.00	0.99	2.14	1.27	0.85	0.40	.134			
10.20	0.09	2.22	1.28	0.87	0.39	.139			
10,30	0.80	2.29	1.28	0.09	0.38	.145			
10,75	0.01	2.35	1.28	0,91	0.38	.151			
17.25	0.67	2.40	1.28	0.94	0.38	.159			
17.50	0.67	2.93	1.2/	0.97	0.38	.165			
17.75	0.45	2.70	1.20	1.00	9.3 8	.175			
18.00	0.33	2.47	1 10	1.02	0.39	.102			
18,25	0.22	2.42	1.15	1.05	0.40	190			
10,50	0.15	2.35	1.12	1.05	0.42	*176			
18.75	0.09	2.28	1.09	1.05	0.44	.202			
19.00	0.04	2.23	1.07	1.05	0.45	205			
19.25	-0.01	2.18	1.94	1.05	0.46	209			
19.50	-0.06	2.12	1.02	1.04	0.47	.212			
19.75	-0.10	2.07	0.99	1.04	0.49	.215			
20.00	-0.15	2.01	0.97	1.04	U.49	.219			
20.25	-0.20	1.95	0.94	1.04	0.51	. 223			
20.50	-0.24	1,08	0.91	1.03	0.52	.228			
20.75	-0.27	1,80	0.66	1.02	0.54	.231			
21.25	-0.20	1.72	0.85	1.01	0.57	.234			
21.50	-0.30	1.04	0.82	0.99	0.59	.235			
21.75	-0,30 	1.50	0.80	0.97	0.62	-234			
22,00	-0.29	1.44	0.77	0,95	0.04	. 2 3 4			
22.50	-0.27	1.33	0.74	0.90	0.07				
23.00	-0.25	1.23	0.71	0.97	0.79	. 4 3 7			
23.50	-0.22	1.13	0.68	0.83	0.85	. 223			
24.00	-0.19	1.05	0.67	0.79	0.92	21 1			
24.50	-0.15	0,98	0.65	0.76	0,93	.212			
25.09	-0.12	0.92	0.64	0.73	1.07	. 205			
25.50	-0.09	0.86	0.62	0.69	1.14	.200			
25.00	-0.00	0.01	0.61	0 6	1.23	.194			
20.30	-0.03	0.10	0.00	0.63	1.35	.195			
21.00	ŭ ,ŭ ,	0.71	0.50	0.59	1.41	.177			

Ru E <u>l</u> ć			-167-			
Energy (eV)	ει	€2	n	k	im(-1/č)	R(+-0)
27.50	0.05	0.67	0.60	0.56	1.49	.165
28.00	0.08	0.6J	0.60	V.53	1.55	.155
28.50	0.11	0,61	0.61	0.50	1.59	.144
29.00	0,15	0.58	0.61	0.48	1.61	.134
29.50	0.17	0.57	0.62	0.46	1.61	126
10.00	0.18	0.55	0.62	0.45	1.64	.121
30.50	0.19	0.52	0.61	0.43	1.70	.120
31.00	0.21	0.48	0.61	0.40	1.74	-114
31.50	0.24	0.45	0.62	0.37	1.72	.104
32.00	0.28	0.43	0.63	0.34	1.65	.094
32.50	0.31	0.42	0.64	0.12	1.55	.081
33.00	0.33	0.41	0.65	0.31	1.49	077
33.50	0.35	0.39	0.66	0.30	1.42	071
34.00	0.37	0.38	0.67	0.20	1.34	065
34.50	0.39	0.37	0.69	0.27	1.28	060
35.00	0.42	0.36	0.70	0.26	1.18	.054
36.00	0.45	0.35	0.72	0.25	1.07	.047
37.00	0.48	0.34	0.73	0.23	0.97	.041
38,00	0.52	0.33	0.75	0.22	0.87	.015
34.00	0.55	0.34	0.77	0.22	0_81	- 0.14
40.00	0.58	0.35	0.79	0.22	0.77	0.21

· • -+

Authors	Energy Range	Technique	Temperature		S	amp	le	Data Presentation	Remarks
	(eV)		(K) RT unless specified	FILm	X-tal	Bulk	Prep		Rh
We75									discussion paper
W076	20-250	Trans		×			Ex	W	optical absorption measurements with synchrotron radiation
WOL77	0.2-50	Ref 1	4.2 for hv < 4.4 eV 300 for hv > 4.4 eV			×	EP	R; KK: ɛı,ɛ₂,ơ, Im(ɛ ⁻¹),im(ɛ+1) ⁻¹	absorption measured by calorimetry at $h\nu < 4.4 eV$, reflectivity measured at $h\nu > 4.4 eV$ with synchrotron radition; aqua regia + vacuum annealing
Da Unpl	∿5-34								energy loss spectroscopy
-169-									

-

•

-1-168-

Authors	Energy Range	Technique	Temperature		S	mр	le 🗋	Data Presentation	Remarks
	(eV)		(K) RT unless specified	FIIm	X-tal	Bulk	Prep		Rb
нт59	5.64-20	Refl					Ex	R	
MC61	6.2-24.8	Trans, Refl		×			in	R	
LP62	1.88-2.82	Ellips				x	MP	n,k	table λ , n, k at 4 energies of Rh-Pt alloys
DH64	0.06-5.64	Ref1		×			Ex	R	
BC67	0.11-3.1	Ellips				×	MP	n,k	
VAK67	3-14.4					x		R	polarimetry $3 < hv < 5 eV$, reflectance 4 < hv < 7 eV, photoemission 7.5 < hv < 14.4 eV
KN868	5-12	Ellips				x		R; KK: $\sigma_1 im(\epsilon^{-1})$, $lm(\epsilon+1)^{-1}$	data taken from VAK67, then KK analyzed
SR70	1-50	m- 0		×			Ēx	R; $\varepsilon_1, \varepsilon_2, \operatorname{Im}(\varepsilon^{-1})$	optical constants determined by both KK analysis and two angles of incidence technique
СНН71	6.2-82.6	m-8		×			Ex	R,n,k,e1,e2	plotted data are for substrate $T = 573$ °K; avap. at $\leq 10^{-6}$ Torr
Hu71	6.2-53	Ref 1		×			Ex	R	
CoH73	0.56-6.2			×				R,n,k	three techniques used: reflectance + transmittance, ellipsometric and multi-angle. Plotted data are for substrate T = 573°K
P\$73	0.5-11.7	Refl		×			In	R; KK: $\varepsilon_1, \varepsilon_2, \sigma$, Im $(\varepsilon^{-1}), Im(\varepsilon^{+1})^{-1}$	uhv film preparation in situ

ig. 58 Reflectivity for Rh. → WOL77; --- HC61; □□□ CHR73; eee Hu71; ■■■HT59; 444 SR70; ooo DH64; ▲▲▲ CHH71; +++ BC67; --- Da (unpub); xxx PS73.

Fig. 57 Survey of available data for Rh

Fig. 60 ε₂ for Rh. ---- WOL77; ΔΔΔ SR70; +++ CHH71; □□□ Da (unpub); ΔΔΔ PS73; 000 BC67; eee CHR73.

Fig. 59 ϵ_1 for Rh. ---- WOL77; ooo SR60; $\Delta\Delta\Delta$ CHH71; +++ Da (unpub); Add PS73; eee 8C67; CCC CHR73.

4115 (197	7) based on	the following (tabulation	-			
Energy (eV)	ει	ε ₂	n	k	lm(-1/€)	R(+=0)	
0.10	-4478.50	2565.33	18.48	69.43	0.00	. 986	
0.15	-2228.19	1117.16	11.50	40.58	0.00	.982	
0.20	-1327.94	648.54	8.66	37.46	0.00	.977	
0.25	-891.09	429.88	7.01	30.66	0.08	.972	
0.30	-638.97	303.34	5.85	25.94	0.00	967	
0.35	-475.63	234.24	5.22	22.43	0.00	961	
0.40	-369.43	107.84	4.74	19.80	0.00	955	
0.45	-294.14	157.51	4.45	17.72	0.00	948	
0.50	-240.71	134.97	4.20	16.07	0.00	.941	
0,55	-200.17	116.57	3.97	14.69	0.00	.934	
0.60	-167.40	104.53	3.87	13.51	0.00	.925	
0.65	-143.33	94.73	3.77	12.55	0.00	.916	
0.70	-123.86	86.11	3.67	11.72	0.00	.908	
0.75	-107.19	79.71	3.63	10.97	0.00	. 898	
0.00	-93.74	74.98	3.63	10.34	0.01	897	
0.05	-82.95	71.44	3.64	9,01	0.01	.876	
0.90	-74.53	67.70	3.62	9,36	0.01	.867	
0.95	-66.24	65,99	3.69	8,94	0.01	.855	
1.00	-61.37	64.40	3.71	0.67	0.01	. 848	
1.05	-57.36	62.70	3.72	8.44	0.01	.841	
1.10	-54.72	60.67	3.67	8.26	0.01	.837	
1.15	-52.53	58.29	3.60	8.09	0.01	. 834	
1.20	-50.78	55.70	3.51	7.94	0.01	.032	
1.25	-49.31	52.74	3,38	7.80	0.01	.031	
1.30	-47.60	49.75	3.26	7.63	0.01	.829	
1.40	-44.34	43.96	3.01	7.31	0.01	.827	
1.50	-40,85	38.69	2.70	6.97	0.01	.023	
1.60	-37,29	34.45	2.60	6.64	0.01	.818	
1.70	-34.24	30.63	2.42	6.33	0.01	.813	
1.00	-31.01	27.69	2.30	6.02	0.02	.805	
1.90	-28.34	25.29	2.20	5.76	0.02	.798	
2.00	-25.92	23.34	2.12	5.51	0.02	.789	
2.10	-23.86	21.75	2.05	5.30	0.02	.790	
2.20	-22.12	20.41	2.00	5.11	0.02	.172	
2.30	-20,64	19.14	1.94	4.94	0.02	.765	
2.40	-19.18	19.18	1.90	4,78	0.03	.756	
2.50	-18.05	17.48	1.00	4.65	0.03	.743	
2.60	-17,29	16.89	1.85	4.55	0.03	.743	
2.10	-16.87	16.18	1.80	4.49	0.03	.742	
2.90	-10.30	14.25	1.63	4.36	0.03	.743	
3.00	-19.03	13,10	1.53	4.29	0.03	.753	
3.10	-10,00	11.04	1.41	4.70	0.03	. /69	
3.20	-14 31	10.64	1.30	4.09	0.03	.764	
3.30	-14.31	9.00	1.29	3,97	0.03	.757	
3.40	-12 47	a . 22	1.11	3.84	0.03	.764	
3.54	-14.97	7.74	1.04	5.71	0.04	.769	
3.00	-11.09	1.UD 5.54	4.94 A DE	3.50	0.04	.764	
4 80	-11.92	0,14 6 10	0.93	3.45	0.04	.754	
2.00	-10+10	0.17	0.41	5.34	U_04	.751	

Rhod i um

publication by J.H. Weaver, C.G. Olson, and D.W. Lynch in Phys. Rev. B, 4115 (1977) based on the following tabulation

· • •

KN			-176-				Kn			-177-			
Energy (eV)	ει	£2	n	k	lm(-1/8)	R (+-0)	Energy (eV)	εl	ε ₂	n	k	lm(-1/č)	R(+=0)
3.90	-9.64	5.70	0.00	3.23	0.05	.747	14,20	0.97	2.29	1.32	0.07	0.37	-149
4,00	-9.00	5.19	0.06	3.12	0,05	.739	14.40	0.94	2,30	1.31	0.98	0.37	.142
4.10	-0.44	5.11	0.84	3,03	0.05	.731	14.60	0,91	2.31	1.30	0.89	0.37	.144
4.20	-7.93	4.89	0.03	2.94	0.06	.722	14.60	0.87	2.31	1.29	0.89	0.38	-146
4.30	-7.49	4.58	0.80	2.85	0.06	.719	15.00	0.83	2.30	1.28	0.90	0.38	.147
4.40	-6.97	4.39	0.80	2.76 .	0.06	.706	15,20	0.80	2.29	1.27	0.90	0.39	.148
4.50	-6.54	4.21	0,79	2,68	0.07	.696	15.40	0.76	2.25	1.26	0.90	0.40	.147
4.60	-6.12	4.06	0.78	2.60	0.08	.684	15.60	0.76	2.24	1.25	0.90	0.40	-147
4.70	-5.74	3,97	0,79	2,52	0,08	.670	15.00	0.75	2.21	1.24	0.89	0.41	.147
4.30	-5.41	3.86	0.79	2.46	0.09	.639	16.00	0.73	2.20	1.24	0,89	0.41	.147
9.90	-5.09	3.79	0.79	2.39	0.09	.845	16.25	0.72	2.10	1.23	0.89	0.41	.146
5.00	-4.84	3,69	0.79	2.34	0.10	CE0.	16.30	0.72	2,16	1.23	0.80	0.42	.145
5.20	-4.54	3.54	0.79	2.23	0.11	.613	10./5	0.71	2.15	1.22	0.00	0.42	-145
5.40	-3.93	3,41	0.80	2.14	0.13	. 5 7 1	17.00	0.71	2.14	1.22	0.88	0.42	-144
5.60	-3.01	96.E	0.80	2.06	0.14	.3/3	17.25	0.71	2.14	1.72	0.88	0.42	-144
5.80	-3.3/	3.13	0.79	2.00	0.15	.301	17.50	0.74	4.13	1.22	0.87	0.42	.143
6 30	-3,10	2.74	0.75	1.73	0.10		17.73	0.73	2.17	1.23	0.80	U.42	.144
6 40	-2.07	2.11	0,73	1.00	0.10	.344	10.75	0.74	2 23	1.23	0.00	0.41	-145
6.50	-2.03	2.30	0.70	1.60	0.19	- FLC-	10.60	0.73	2.23	1.24	0.90	U.40	.149
6.00	-2.30	2.31	0.00	1.07	0.24	.510	10.37	0.48	2.30	1.28	0.92	0.30	.100
3 00	-1 96	2.13	0.07	1 52	0 27	476	19.00	0.65	2.30	1 24	0.75	V.37 A 20	.104
7 24	-1.60	1 80	0.66	1 43	0.30	.452	19.00	0.30	2.43	1 21	1 02	0.39	191
7.40	-1.39	1.74	0.66	1.35	0.15	.423	19.50	0.29	2.47	1.10	1 05	0.40	103
7.60	-1.18	1.70	0.67	1.27	0.40	. 194	19.75	0.17	2.44	1.14	1.07	0.41	. 202
7.40	-0.98	1.62	0.68	1.20	0.45	. 363	20.00	0.03	2.38	1.10	1.09	0.42	213
8.00	-0.78	1.53	0.69	1.12	0.52	. 329	20.25	-0.09	2.30	1.05	1.09	0.43	.221
N.20	-0.56	1.48	0.71	1-04	0.59	.288	20.50	-0.19	2.18	1.00	1.09	0.45	. 230
8.40	+0.38	1.43	0.74	0.97	0.65	.252	20.75	-0.25	2.05	0.95	1.08	0.48	.233
8.60	-0.18	1.40	0.78	0.89	0.70	.212	21.00	-0.27	1.92	0.91	1.05	0.51	.234
0.00	0.00	1.30	0.83	0.83	0.73	.179	21.25	-0.28	1.01	0.88	1.03	0.54	.232
9.00	0.18	1.37	0.00	0.77	0.72	.148	21.50	-0.25	1.72	0.86	1.00	0.57	.228
9.20	0.36	1.39	0.95	0.73	0.68	.125	21.75	-0.24	1.64	0.84	0.97	0.60	.224
9.40	0.52	1.42	1.01	0.71	0.62	.110	22.00	-0.21	1.58	0.83	0.95	0.62	.219
9,60	0.65	1.48	1.07	0.69	0.57	.102	22.25	-0.19	1.54	0,82	0.93	0.64	.215
9.80	0.78	1.53	1.12	0.69	0,52	.098	22.50	40.19	1,50	0.01	0.92	0.55	.214
10.00	0.98	1.62	1.17	0.69	0.48	.098	22.75	-0.19	1.46	0.90	0.91	0.68	.213
10.20	0.96	1.69	1.21	0.70	0.45	.100	23.00	-9.19	1.42	0.79	0.90	0.69	.213
10.40	1.01	1.77	1.24	0.72	0.42	.104	23,25	-0,19	1.37	0.77	0.89	0.72	.214
10.60	1.06	1.94	1.26	0.73	0.41	.106	23.50	-0.19	1.32	0.75	0.87	0.74	.214
10.00	1.00	1.91	1.28	0.75	0,40	.110	23.75	-0.18	1.27	0.74	0.96	0.77	.212
11.00	1.10	1.96	1.29	0.76	0.39	.113	24.00	-0.17	1.23	0.73	0.84	0.80	.210
11.20	1.12	2.01	1.31	0.77	0.30	.116	24,25	-0.17	1.15	0.72	0.83	0.03	.210
11.40	1.12	2.07	1.32	0.79	0.37	.120	24.50	-0.16	1.14	0.70	0.81	0.06	.200
11.60	1.10	2.12	1.32	0.80	0.37	.124	24.75	-0.14	1.10	0.69	0.79	0.90	.206
11.90	1.00	2.14	1.32	0.81	0.37	,126	25.00	-0.12	1.06	0.69	0.77	0.93	.202
12,00	1.07	2.15	1.32	0,82	0.37	.127	25.25	-0.11	1.02	0.68	0.75	0.97	.199
12.20	1.06	2.16	1.32	0.02	0.37	.120	25.50	-0.09	0.99	0.67	0.74	1.00	.195
12.40	1.05	2.17	1.32	0.82	0.37	.129	25.75	-0.09	0,95	0.66	0.72	1.04	•193
12.60	1.05	2.17	1.32	0.82	0.37	.129	26,00	-0.06	0.92	0.66	0.70	1.08	.188
12,80	1.05	2.14	1.32	0.03	0.37	.130	20,25	-0.04	0,09	Q.65	0.68	1.12	.192
13,00	1.94	2.19	1.32	0.83	0.37	.131	26.50	-0.01	G.07	0.65	0.66	1.15	.175
13,20	1,94	7.21	1.32	U.84	U. 37	.132	20.75	0.01	0.85	0.65	0.65	1.17	.171
13.40	1,03	2.22	1.32	0.84	0.37	.133	27,00	0.02	0.63	0.65	0.64	1.20	.163
13,60	1.03	2.23	1.32	0.85	0.37	.134	27.25	0.04	0.81	0.65	9.62	1.23	.163
13.00	1.02	2.20	1.32	0.65	0.37	.136	27.50	0.05	0.40	0.65	9.61	1.25	.159
14,00	1.00	2.27	1.32	0.86	0.37	.138	27.15	0.07	3.73	0.65	0.60	1.27	.155

Rh

Rh

Authors	Energy Range (eV)	Technique	Temperature (K)		S I	릴		Data Presentation	
	(ev)		(K) RT unless specified	Film	X-tal	Bulk	Prep		
Sa 39	2.6-27.6	Ref1		×			x	~	
нт57	~2.07-4.1	Trans, Rafl		×			×	R, n, k	
Lo64	}-6	Trans, Refl		×	<u> </u>		X	R,Ť,∩,k,‴€]	
DH65	0.09-1.0	Ellips		<u> </u>		×		, k	
LTA66	0.1-3.5	Ellips		<u> </u>		<u>×</u>	Ð	ε2/λ,ε1	
LT66	0.06-0.25	Ellips				<u>×</u> .	Ŧ	ε ₂ /λ,-€1	
Ro66	3-60	3-		<u>×</u>			×	,ε ₁ ,ε ₂ , im(ε	<u>.</u>
BKW67	0.07-13	Rofl, Ellips				<u>×</u>	5	n,k,R₁σ,εュ,ε2 lm(e ⁻¹); KK:	d,£],¢2
Le67	*	Ellips		<u></u>		<u>×</u>	5	5 ₂ /λ	
VAK67	3-14.4			·	 ,	<u>×</u>		~	
R168	·vo.8-7.7	Ellips		<u>×</u>				1,k, lm(c ⁻¹)	
YS68	2.2-11.6	N _e f1		<u> </u>				i; KX; ει,ε2 m(ε ⁻¹),μ	• •
Da 69	5-75	Trans	<u> . </u>	<u>×</u>			×.	in(e ⁻¹)∉ KK:	E1.62
DFR70	2-30	Trans		X				m(c ⁻¹),c1,t	12. P

Rh			-178-			
Energy (eV)	ει	€2	n	k	lm(-1/2)	R{ 4= 0}
28.00	0.08	0.76	0.65	0.59	1.30	. 152
28.50	0.11	0.73	0.65	0.56	1.34	.144
29.00	0.13	0.71	0.65	0.54	1.37	.137
29,50	0.16	0.69	0.66	0.52	1.39	.130
30.00	0.17	0,67	0.66	0.51	1.40	.127
31.00	0.17	0.62	0.54	0.49	1.50	.127
32.00	0.17	0.54	0.61	0.44	1.69	126
33.00	0.22	0.44	0.60	0.37	1.82	110
34.00	0.34	0.39	0.65	0.30	1.46	074
35.00	0.41	0.39	0.69	0.28	1.23	054
35.00	0.45	0.40	0.73	0.27	1.09	.049
37.00	0.46	0.41	0.74	0.28	1.07	047
38.00	0.47	0.40	0.74	0.27	1 04	045
39.00	0,49	0.38	0.75	0.25	0.98	.041

•

Fig. 62 Survey of available data for Pd

Authors	Energy Range	Technique	Temperature		54	mp	le	Data Presentation	Remarks
	(eV)		(K) RT unless specified	Film	X-tal	Bulk	Prep		Pd
VAW70	2-24	Refl		x			In	R; KK: n,k,£1,£2,♂, im(£ ⁻¹),im(£+1) ⁻¹	∿10 ⁻⁸ Torr
DKM73	0.138-0.31	Ellips				×	EP	n,k	
DKM74	0.73-2.88	Ellips				×	EP	n,k,ø	
JC74	0.5-6.5	Trans, Refl		×			Ex	n,k,ơ	table of E.n.k
WG74	2-120	Trans		×				КК: μ	energy loss spectroscopy, then KK analysis
WB75	0.15-4.4	Refl	4.2			×	Heat	А; КК: о	optical absorptivity; aqua regia and heating ∿1300 K in He atmosphere
We75	0-30								discussion paper
W076	20-250	Trans		×			Ex	μ	optical absorption measurements with synchrotron radiation
LAT78	0.1-6.2	m-0		×			Ex	n,k	surface plasmon excitation
-081-									

-181-

i4 Reflectivity of Pd for 0 ≤ hυ ≤ 6 eV. —— WB75; ΦΦΦVAW70; ΦΦΦDFR70; eee YS68; xxx Ro66; 898 BKN67; ΔΔΔ VAK67; αφα JC74; +++ 0KM73; ΔΔΔ MT57; EMM Lo64; CDCD DM65.

-182-

-183-

Fig. 66 c₂ for Pd. — W875; xxx Ro66; ◊◊◊DKH74; ▲▲▲ Ri68; △△△ JC74; □□□□Lo64; 000 BKH67; eee DFR70; BBB Y568; +++ VAW70;

Fig. 65 ε_1 for Pd. — WB75; xxx Ro66: DKM73; coo JC74; AAA Lo64; AAA 8KN67; eee DFR70; BEEYS68; O O O VAW70.

-186-

publicat based on	ion by J.H. W the followin	eaver and R.L. g tabulation; c	Benbow in Pl lata above 4	hys. Rev. B eV from ot	12, 3509 (1) her groups	975)
Energy (eV)	εl	€2	п	k	lm(-1/ĕ)	R(¢=0)
0.10	-2914.61	447.22	4.13	54.15	0.00	.994
0.11	-2406.39	378.64	3.85	49.21	0.00	.994
0.12	-2019,55	324,33	3.60	45.08	0.00	.993
0.13	+1712.91	279.30	3.36	41.52	0.00	.992
0.14	-1469.42	254.73	3.31	38.48	0.00	. 991
0.15	-1273.08	224.57	3.13	35.82	0.00	. 990
0.16	-1100.90	212.20	3.17	33.45	0.00	989
0.17	-979.48	201.10	3.20	31.46	9,00	.997
0.18	-872.71	107.30	3.15	29.71	0.00	. 986
0.19	-779.59	172.30	3.07	28.09	0.00	.985
0.20	-697.50	163.07	3.07	26.59	0.00	.983
0.22	-569.33	149.17	3.10	24.06	0,00	. 979
0.24	-472,90	130,31	3,15	21.97	0.00	.975
0.26	-396.17	125,38	3.11	20.15	0.00	.971
0.20	-332.20	122.41	3.30	18.52	0.00	964
0.30	-285.46	122.99	3.56	17.27	0.00	955
0.32	-250,16	115.55	3.56	16.21	0.00	.950
0.34	-216.10	115.24	3.80	15.18	0.00	.940
0.36	-191.72	114.66	3.98	14.41	0.00	.932
0.38	-172.12	114.79	4.17	13.77	0,00	.923
0.40	-150.00	113.37	4.27	13.27	0.00	.916
0.42	-146.39	110.83	4.31	12.05	0,00	.911
0.44	-136.80	107,33	4.31	12.46	0.00	.906
0.46	-120.36	103.32	4.27	12.11	0.00	.902
0.46	-120.94	98,95	4.20	11.77	0.00	.899
0.50	-114.16	93,92	4.10	11.44	0.00	.896
0.52	~106,97	89.51	4.03	11.10	0.00	.891
0.54	-100.56	85.67	3.97	10.79	0.00	.087
0.50	-94.79	02.25	3.92	10.49	0.01	**83
0.58	-89.77	78.78	3.05	10.23	0.01	.880
0.60	-84.80	15.67	3.80	9,96	0.01	.876
0.01	-10.39	70.16	3.70	9.49	0.01	.860
0.00	-63.46	61 00	3.01	9.07	0.01	.860
0.72	-69 16	61.09	3.51	9.19	0.01	. 154
0.70	-63 71	3/.29 53 04	3.47	7.30	0.01	.847
0.90	-39.71	33.74	1.10	8.Un 1.70	9.91	. 641
0 99	-47.75	47 44	3.10	7.53	0.01	4739
0.92	-43 52	45 35	3.10	7.03	0.01	.027
0.96	-40.76	43.16	3.05	7 69	0.01	.04/
1.00	-18.52	41 1 1	2 00	6 BO	0.01	.310
1.05	*36.10	18 65	2 90	6 67	0.01	4711
1.10	-33,86	36.33	2.81	6.46	6.01	***** ****
1.15	-31.85	34.29	2.73	6.27	0.02	.745
1.20	-30.17	32.33	2.65	6.19	0.02	. 190
1.25	-28.53	30.54	2 53	5.93	0.02	.745
1.30	-27.19	28.95	2.5	5.74	0,02	711
1.35	+26.02	27.27	2.42	5 64	0.02	.778
1.40	-24.76	25.73	2.34	5,50	0.02	.774

Palladium

-187-

Pd			- 188-				Pd			-189-			
Energy (eV)	εı	¢2	n	k	lm(-1/č)	R(+-0)	Energy (eV)	εl	€2	n	k	lm(-1/2)	R (+-0)
1.45	-23.69	24.20	2.26	5.36	0.02	.771	8.00	0.25	1.28	0.88	0.73	0.75	.133
1.50	-22.50	22.69	2.17	5.22	0.02	.767	8.20	0.38	1.32	9.94	U.70	0.70	.117
1.55	-21.13	21.58	2.13	5.07	0.02	.760	8.40	0.42	1.34	0,96	0.70	0.68	.114
1.60	-20.12	20.59	2.08	4.95	0.02	.755	8.60	0.57	1.31	1.00	0.65	0.64	.097
1.65	-19.13	19.72	2.04	4.83	0.03	.749	8.40	0.64	1.36	1.04	0.65	0.60	094
1.70	-18.32	18.89	2.00	4.72	0.03	.745	9.00	0.72	1.38	1.07	0.64	0.57	090
1.75	-17.55	18.13	1,96	4.63	0.03	.740	9.25	0.79	1.42	1.10	0.65	0.54	.089
1.80	-16.91	17.40	1.92	4.54	0.03	.737	9.50	0.83	1.45	1.12	0.65	0.52	084
1.05	-16.36	16.53	1.86	4.45	0.03	.734	9.15	0.86	1.48	1.13	0.65	0.51	.089
1.90	-15.59	15.93	1.92	4.35	0.03	.729	10.00	0.88	1.49	1.14	0.65	0.50	.088
1.95	-15.00	15.22	1.78	4.26	0.03	.725	10.25	0.91	1.49	1.15	0.65	0.49	.087
2.00	-14.46	14.60	1.75	4.19	0.03	721	10.50	0.93	1.51	1.16	0.65	0.48	087
2.10	-13.43	13.49	1.67	4.03	0.04	.714	10.75	0.96	1.51	1.17	0.64	0.47	086
2.20	-12.53	12.44	1.60	3.98	0.04	707	11.00	0.98	1.52	1.18	0.64	0.46	0.96
2.30	-11.68	11.49	1.53	3.75	0.04	.700	11.25	0.99	1.54	1.19	0.65	0.46	0.87
2.40	-10.91	10.61	1.47	3.61	0.05	.693	11 50	1.00	1 54	1.19	0 65	0 46	0.87
2.50	-10.12	9.84	1.41	3.40	0.05	.685	11.75	1.00	1.56	1.20	0.65	0.45	000
2.60	-9.40	9.20	1.37	3.36	0.05	.676	12 00	1.00	1 57	1.20	0 66	0 45	
2.70	+A.7A	8.60	1.32	3.25	0.06	. 668	12 25	0.90	1.58	1.20	0.65	0.45	
2 80	-9 17	8 07	1.29	3.13	0.06	- 658	12 60	0 99	1 59	1 19	0.67	0 46	
3 90	-7 62	7 62	1.26	3.03	0.07	.648	12.30	0.90	1 59	1 19	0 67	0 46	001
3 00	-7 13	7 20	1.23	2.94	0.07	. 6 3 9	13.00	0.96	4 54	1 19	0 67	0 46	091
3 10	-6 69	6 97	1 20	2 85	0.07	- 6 10	13.00	0.90	1.57	1 10	0 67	0.46	001
3 20	-6.29	6 45	1.12	2.71	0.08	.622	13 50	0.95	1 59	1 19	0.57	0 47	1071
3.20	-5 89	5 11	1 14	2.68	0.00	.613	13.30	0.74	1 57	1 17	0.67	0.47	.472
3.30	-5 51	5 90	1 12	2.60	0.09	.602	13.73	0.93	1 57	1 1 7	0.67	0.47	.072
3.60	-5.51	5.55	1 10	2 6 7	0.07	591	14.00	0 00	1.57	1 16	0.67	0.47	.073
3.50		5.35	1 00	7 46	0 10	501	14.43	0.90	1.57	4 4 6	0.00	0.40	.094
3.00	-4 51	5.31	1 07	2 30	0.10	470	14.34	0.07	4.57	1.15	0.00	0.40	.073
3.90	-4.51	4 90	1 06	2.30	0 12	550	14.73	0.05	1.21	1.13	0.40	0.47	.090
3.00	-7 07	4.70	1.05	2.31	4 12	\$47	15.00	0.17	1.30	1.13	0.07	0.67	.070
3.30	-3.77	4.74	1.03	2.25	0.14	8.17	13.23	0.77	1,33	1 1 1 1	1.07	V.JZ 0.54	.430
4.10	-3.47	4.33	1.03	2.17	0.13	610	13.30	0.75	1.40	1.10	0.67	0.54	.070
4 20	-3.94	4 74	1 04	2.14	0.15	510	19.75	0.74	1.43	1.07	0.01	0.35	.074
4.20	-3.40	4.30	1.03	2.05	0.15	493	10.00	0.73	1.44	1.00	0.00	0.30	.072
4.40	-2.30	4.13	1.03	1 01	0.17	. 473	10.23	0.71	1.39	1.07	0.03	0.57	, 171
4.50	-2 60	4.07	1.03	1 04	0.17	493	10.30	V.73	1.34	1.00	0.63	0.30	.000
4.70	-2.07	4. 78	1.03	1.74	0.17	473	10./3	0.75	1.31	1.00	V.02	0.57	.092
4.70	-2.01	3,73	1.03	1.71	V.10	470	17.00	0.77	1.21	1.07	0.01	0.37	.071
1.07	-2.57	3,03	1.01	1.70	0.10	471	17.23	0.70	1.30	1.07	0.01	0,37	* 441
9.9U 5.00	-2.00	3.74	0.99	1.00	0.10	****	17.30	0.70	1.29	1.00	0.01	0.55	.080
5.00	-6.34	3.30	0.70	1.00	0.19	474	17.73	0.10	1.20	1.00	0.69	0.57	.075
5.10	-2.40	3.90	0.73	1.93	0.30	474	10.00	0.75	1.20	1.07	0.35	0.37	.077
5,20	-2.30	3.41	0.91	1 76	0.29	470	18.23	0.80	1.27	1.47	0.34	0.57	.077
5.30	-2.30	3.04	V.0/	1.75	0.21	463	10.50	0.00	1.27	1.07	0.59	0.30	.077
5.40	-2.17	2.47	0.63	1.70	0.22	. 403	18.73	0.80	1.27	1.07	0.54	0.30	.077
5.00	-1.70	2.64	9.61	1.02	0.24	.447	19.00	4.61	1.28	1.08	0.59	0.50	.077
3.60	-1.//	2.41	9.74	1.54	0.27	. 4 3 7	19.25	0.81	1.30	1.98	0.00	0.55	.0/4
6.00	-1.54	2.20	0.76	1.45	0.30	.410	19.50	0.80	1.32	1.04	0.61	0.55	.040
6.20	-1.33	2.04	U./4	1.37	U.J4	. 371	19.75	0.18	1.36	1.98	0.53	0.55	.044
6.40	-1.14	1.08	0.75	1.29	V. 19	.3/7	20.00	0.73	1.39	1.07	0.05	0.50	.033
0.00	-4.95	1.14	0.72	1.21	U.44		20.25	0.09	1.39	1.95	U. PA	0.54	.044
6.60	-0,/4	1.63	0,75	1.13	9.51	.310	20.50	0.62	1.30	1.03	0.57	0.60	.099
7.00	-0.51	1.54	0,71	1,05	0.57	.271	20.75	0.57	1.30	1.01	0.67	0.63	,101
7,29	-y.sj	1.47	0.75	0,98	0.63	.237	21.00	0.52	1.33	9,99	U.67	0.05	.103
7.40	=0_24	1,40	0.77	0.91	0.69	.223	21.50	0.46	1.25	0.95	0.65	0,70	.103
7.60	-0.10	1.35	0.79	0.85	0.74	• [4 2	22.00	0.42	1.17	0.41	0.64	9.76	.193
7.80	0.07	1.29	0.83	0.78	0.77	.163	22.50	0.40	1.09	0.на	0.62	J.A1	.191

Authors	Energy Range	Techn i que	Temperature		S	amp	le	Data Presentation	Remarks
	(eV)		(K) RT unless specified	Film	X-tal	Bułk	Prep		Hf
LT66	0.06-0.25	Ellips				x	MP	ε2/λ,ε1	
LTA66	0.1-3.5	Ellips				x	MP	$\epsilon_2/\lambda,\epsilon_1$	
Le67	<4	Ellips				x	MP	ε2/λ	data taken from LT66 and LTA66
GL68	2-5.6	m-0				×	MP	ε ₂ /λ,ε ₁	
ABF72			1000 <t<2200< td=""><td></td><td></td><td>×</td><td></td><td>ϵ at λ = 6500 Å</td><td>emissivity</td></t<2200<>			×		ϵ at λ = 6500 Å	emissivity
L0W75	0.15-30	Refl	4.2 K for hv < 4.4 eV 300 K for hv > 4.4 eV		×	×	EP	A,R; KK; $\varepsilon_1, \varepsilon_2, \sigma$, im(ε^{-1}), im(ε^{+1}) $^{-1}$	absorptivity by calorimetry for $hv < 4.4$ eV reflectivity for $hv > 4.4$ eV with synchrotron radiation
LT75	6.5-24.8	m−e				×	In	$R,n,k,\varepsilon_1,\varepsilon_2,im(\varepsilon^{-1})$	heating ~1820 K at ~10 ⁺⁰ Torr in situ
W076	20-250	Trans		×			Ex	μ	optical absorption measurements with synchrotron radiation
BDL77	0.03-3.1	Refl				x	}	R	also emissivity 400-850 K
LO Unpl	0.12~30		4.2 K for hv < 4.4 eV RT for hv \$ 4.4 eV		×		-	R; KK: n,k,¢1,¢2, Im(e ⁻¹),µ	absorptivity measured by calorimetry for $hv < 4.4 \text{ eV}$, reflectivity measured for $hv > 4.4 \text{ eV}$
					Į	. 1			

R(+-0) 091 096 096 096 lm(-1/ž) 0.86 0.91 1.00 1.02 0.95 0.92

-190-0.85 0.85 0.81 0.81 0.81 0.82

Pd Energy (eV) 23.00 23.00 24.00 25.04 25.04 25.04 25.40 25.40 29.20

Fig. 68 Survey of available data for Hf

Fig. 70a \underline{c}_1 for Hf. Results for single crystal Hf by LOW (unpub) for $\tilde{c} \parallel \hat{c} (---)$ and $\tilde{c} \perp \hat{c} (---)$ judged by the authors to be superior to their earlier published polycrystalline data LOW75 (Fig 70b); single crystal results shown in tabulation for Hf.

Fig. 71a <u>c</u> for Hf. Results for single crystal Hf by LOW (unpub) for Ellĉ (---) and ELĉ (----) Judged by the authors to be superior to their earlier published polycrystalline data LOW75 (Fig 71b); single crystal results shown in tabulation for Hf.

Hafnium

s (andun)	upersede trose	01 LUW/5	Phys. Rev. 8	<u>11</u> , 3617 (1	975)]	
Energy (eV)	¢1	62	c	×	im(-1/č)	R (+-0)
0.52	-14.71	12.17	1.46	4.11	0 . 0 1	147
0.54	-10.80	12.08	1.64	1.67	50.0	
0.56	-7.43	12.06	1.64	J. 29	0.06	
0.58	-4.23	12.12	2.07	2.92	0.07	
0.60	-1.37	12.25	2.34	2.62	0.08	.485
0.62	1.38	12.48	2.64	2.36	0.08	445
0.64	11.6	13.08	2.94	2.22	0.07	164.
0.66	5.60	13.65	3.21	2.13	0.06	.428
89"0	7.74	14.27	3.46	2.06	0.05	.432
00	9.54	15.00	3.70	2.03	Ú.05	144.
0-72	11.22	15.83	3.91	2.02	0.04	.451
	12.78	16.92	4.12	2.04	10.0	-463
	14.17	18.06	10.9	2.10	0.03	.476
8	32.01	19.56	4 • 4 0	2.18	0.03	490
	10°0	21.30	4.61	2.31	0.03	.504
78-0	16.00	23.06	4.69	2.46	E J . O	.517
	15.54	24.45	4.72	2.59	E0.0	.526
		25.45	1.1	2.70	60.03	.533
		00°07	6 6 6	2.19	0.03	.537
	0 0 • 0 •	20.52	4.64	2.85	0.03	.541
	60.21	20.19	4.59	2.92	0.03	-543
	09.11	20.80	4.54	2.96	0.03	.545
	87-11	61.05	4.49	2.98	0.03	. 545
		71.07	4.45	00.6	0.03	-545
	CE.VI	10°07		3.02	0.03	.546
	7 .	20.02		3.04	0.03	.546
	85 ° 5	20.51		3.06	60.0	.547
		26.30	4.28	H0.E	0.03	.547
		59 67 59 67	4.18	9.10	0.04	.546
1 26			80.4	9.10	0.04	.544
	97.0		3.97	9°.6	0.04	.541
		10.51		3.04	0.04	.536
		27-22	9.19	3.00	0.04	.531
	01.0	21.97	1.12	2.95	0.04	.525
		21.29	1.65	2.91	4 n . 0	.520
				2,85	50*0	•514
				<pre>// / / / / / / / / / / / / / / / / / /</pre>	c).0	- 201
1.65		61°61	70.5	F 2	0.05 0.05	.500
				00.7	co. 0	E 5 4 -
			20.5	19.2	0.05	.438
		07 01		10.7	50.D	547,
	6146	C7 • 01	20°9	0 	0.05	.445
				e	 	ORt.
50.1			.01	50 . 2	0.05	¢84.
				50.2	0.05	657.
0.05					5.0	F57.
2.10		07 70 70 70	CO.C			• 20 4
2.15		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	50°0	10.9	0	.511
		10*17		14.3	cv.v	A14.

-199-

ł

-1961 -

	±.	
Hł	EI	lc.

-200-

HfĒ∥ĉ

-201-

Energy (eV)	εl	£2	n	k	lm(−1/ĕ)	R(+-0)	Energy (eV)	εı	€2	n	k	lm(−1/ē)	R(4=0)
2.20	3.52	21.07	3.53	2.99	0.05	.526	5.05	-0.88	4.50	1.37	1.66	0.21	. 352
2.25	2.50	20.92	3.43	3.05	0.05	.531	5.10	-0.84	4.50	1.37	1.65	0.21	. 348
2.30	1.61	20.58	3.34	3.09	0.05	.534	5.15	-0.80	4,44	1.36	1.63	0.22	.345
2.35	0.95	20,12	3,24	3.11	0.05	.536	5.20	-0.76	4.39	1.36	1.61	0.22	. 341
2.40	0.25	19.63	3,15	3.11	0.05	. 537	5.25	-0.71	4.33	1.36	1.60	0.23	.336
2.45	-0.30	19.17	3.07	3.12	0.05	.530	5.30	-0.66	4.28	1.35	1.58	0.23	.332
2.50	-0.81	18.72	2.99	3.13	0.05	.540	5.35	-0.61	4.23	1.35	1.56	0.23	. 328
2.55	-1.36	18.24	2.91	3.13	0.05	.542	5.40	~0.57	4.20	1.35	1.55	0.23	. 324
2.60	-1.78	17.66	2.83	3.12	0.06	.542	5.45	-0.53	4.16	1.35	1.54	0.24	. 321
2.65	-2.12	17.11	2.75	3.11	0.06	.542	5.50	-0.50	4.13	1.35	1.53	0.24	. 319
2.70	-2.41	10.60	2.68	3.10	0.06	.542	5.55	-0.48	4.10	1.35	1.52	0.24	.316
2.75	-2.72	16.12	2.61	3.09	0,06	.543	5,60	-0.45	4.07	1.35	1.51	0.24	.314
2.80	-3.01	15.61	2.54	3.00	0,06	,543	5.65	-0.44	4.04	1.35	1.50	0.24	.312
2.85	-3.24	15.10	2.47	3.06	0.06	.543	5.70	-0.44	4.00	1.34	1.50	0,25	.311
2.90	-3.46	14.68	2.40	3,04	0.06	.544	5.75	-0.45	3.95	1.33	1.49	0.25	. 310
2.95	-3.65	14.10	2.34	3.02	0.07	.544	5.00	-0.44	3.90	1.32	1.40	0.25	. 308
3.00	-3.03	13.61	2.27	3.00	0.07	.544	5.85	-0.44	3.83	1.31	1.47	0.26	. 306
3.05	-3.98	13.11	2.20	2.97	0.07	.544	5.90	-0.42	3.76	1.30	1.45	0.26	. 303
3.10	-4.12	12.62	2.14	2.95	0.07	.544	5.95	-0.40	3.69	1.29	1.43	0.27	.299
3.15	-4.26	12,10	2.07	2.92	0.07	.544	6,00	-0,36	3.62	1.28	1.41	0.27	.295
3,20	-4.35	11.54	2.00	2.89	0.08	.544	6.05	-0.33	3.57	1.20	1.40	0.28	.291
3.25	-4.35	10.97	1,93	2.84	0.08	.542	6.10	-0,30	3.51	1.27	1.30	0.28	.287
3.30	-4.28	10.44	1.87	2.79	0.08	.538	6.15	-0.27	3.45	1.26	1.37	0.29	201
3.35	-4.16	9.97	1.82	2.73	0.09	1534	6.20	-0.23	3.39	1.26	1.35	0,29	.278
3,40	-4.03	9.55	1.78	2.60	0.09	.528	6.25	-0.18	3.34	1.26	1.33	0.30	.273
3.45	-3.89	9.16	1.74	2.63	0.09	.523	6,30	-0.13	3.29	1.26	1.31	0.30	.267
3.50	-3.73	8.80	1.71	2.58	0.10	.517	6.35	-0.08	3.26	1.26	1.29	0.31	.263
3.55	-3.56	8.49	1,68	2,53	0.10	.510	6,40	-0.04	3.22	1.26	1.28	0.31	.258
3.60	-3.37	8.22	1.65	2.48	0,10	.503	5.45	-0.01	3.19	1,26	1.26	0.31	.254
3.65	-3.21	8.00	1.64	2.43	0.11	.496	6,50	0.03	3.15	1.26	1.25	0.32	.250
3,70	-3.08	7.01	1.63	2.40	0.11	.491	6.55	0.08	3.11	1.26	1,23	0.32	.245
3.75	-2.98	7.62	1.61	2.36	0.11	.486	6.60	0.12	3.00	1.27	1.22	0.32	,240
3.90	-2.80	7.43	1.60	2.33	0.12	.401	6.65	0.17	3.05	1.27	1.20	0.33	.236
3.85	-2,80	7.25	1.58	2.30	0.12	.477	6.70	0.21	3.03	1.27	1.19	0.33	.232
3.90	-2.72	7.98	1.56	2.27	0.12	.473	6.75	0.25	3.01	1.28	1.18	0.33	.228
3.95	-2.66	6.91	1,54	2.24	0.13	.469	6.80	0.29	2.99	1.20	1.16	0.33	.224
4.00	-2.60	6.71	1.52	2.21	0.13	.466	6.85	0.34	2,97	1.29	1.15	0.33	.220
4.05	-2.52	6.51	1.49	2.18	0.13	.461	6,90	0.38	2.95	1.30	1.14	0.33	.216
4.10	-2.41	6.32	1.48	2.14	0.14	.455	6.95	0.42	2.95	1.30	1.13	0.33	.214
4.15	-2.28	ő.lő	1.46	2.10	0.14	.448	7.00	0.45	2,95	1.31	1.13	0.33	.212
4.20	-2.18	6.02	1.45	2.07	0.15	.442	7.05	0.47	2.94	1.31	1.12	0.33	.210
4.25	-2.09	5.89	1.44	2.04	0.15	.437	7.10	0.50	2.93	1.32	1.11	0.33	.208
4.30	-2.00	5.76	1.43	2.01	0.15	.431	7.15	0.52	2.92	1.32	1.11	0.33	.205
4.35	-1.91	5.63	1.42	1.98	U.16	.426	7.20	0.55	2.91	1.33	1.10	0.33	.204
4.40	-1.83	5.51	1.41	1.95	0.16	.420	7,25	0.57	2,90	1.33	1.09	0.33	.202
4.45	-1.74	5,39	1.40	1.92	0.17	.414	7.30	0.60	2.89	1.33	1.09	0.33	.200
4.50	-1.63	5.27	1.39	1.69	0.17	.407	7.35	0.62	2.89	1.34	E.UH	0.33	.194
4.55	-1.53	5.18	1,39	1.06	0.18	.400	7.40	0.65	2.88	1.34	1.07	0.33	,197
4.60	-1.43	5.10	1.39	1.83	0.18	. 394	7.45	0.67	2.87	1.35	1.07	0.33	.195
4.65	-1.35	5.03	1.39	1.01	0.19	.398	7.50	0.69	2.87	1.35	1.06	0.33	.193
4.70	-1,27	4.95	1.39	1.79	0.19	.382	7.55	0.71	2.80	1.35	1.05	0.33	.192
4,75	-1.20	4.90	1.39	1,77	4.19	.377	7.60	0.73	2.06	1.36	1.05	0.33	.191
4.80	-1.14	4.54	1.38	1.75	6.20	.373	7.65	0.74	2.84	1.36	1,05	0.33	.189
4.85	-1.07	4.78	1.34	1,11	0.20	.16d	7,70	0.77	2.83	1.30	1.04	0.33	.197
4.90	-1.02	4.73	1.39	1.71	0.20	.364	7.75	0.60	2.81	1.36	1.03	0.33	.185
4.95	-0.97	4.61	1,38	1.70	0.21	.360	7.80	0.83	2.41	1.37	1.02	0.33	.184
5.09	-0.93	4.61	1.37	1.65	0.21	.35h	7.65	0.80	2.01	1.38	1.02	0.33	162
										-			

			-202-							-203-			
Hf Ēli€							HFĒU¢			-205-			
Energy (eV)	εı	€2	n	k	im(-1/ĕ)	R (#=0)	Energy (eV)	e l	E2	n	k	lm(-1/ē)	R(+-0)
7.90	0.89	2.01	1.39	1.01	0.32	. 100	12.90	-0.17	t_82	8.91	1.00	1) 5.A	994
7.95	0.92	2.82	1.39	1.01	0.32	.179	13.00	-0.17	1.78	0.90	0.99	0.54	222
0.00	0.94	2.83	1.40	1.01	0.32	.179	13.10	-0.16	1.73	0.89	0.98	0.57	220
d.US	0.96	2.84	1.41	1.01	0.32	.178	13.20	+0.16	1.69	0.88	0.96	0 59	214
9.10	0.99	2.85	1.41	1.01	0.31	.176	13.30	-0.15	1.64	0.87	0.95	0.61	216
8.15	1.01	2.06	1.42	1.01	0.31	.178	13.40	-0.13	1.60	0.86	0.93	0.62	212
8.20	1.02	2.67	1.43	1.01	0.31	.170	13.50	+0.12	1.55	0.65	0 92	0.04	200
8.25	1.04	2.89	1.43	1.01	0.31	.178	13.60	-0.10	1.51	0.84	0.90	0.64	- 205
8.30	1.05	2,90	1.44	1.01	0.30	.179	13.70	-0.08	1.48	0.84	0.90	0.00	.203
8.35	1.07	2.92	1.44	1.01	0.30	.179	13.80	-0.06	1.44	0.91	0.00	0.40	.401
8.40	1.08	2.94	1.45	1.01	0.30	190	13.90	=0.04	1 41	0.43	0.07	0.07	.190
8.45	1.00	2.95	1.45	1.02	0.30	.181	14.00	-0.01	1 39	0.03	0.05	0.71	.191
8.5 0	1.09	2.97	1.46	1.02	0.30	.181	14.10	0.07	1 36	0.03	V.83	0.73	.160
8.60	1.10	3.00	1.47	1.02	0.29	.183	14.20	0.05	1 24	0.03	0.01	0.74	.180
8.70	1.11	3.04	1.47	1.03	0.29	.184	14.30	0.05	1.34	V-63	V.01	0.74	.1/5
8.80	1.12	3.08	1.48	1.04	0.29	186	14.40	0.00	1 33	0.01	0.00	0.75	-172
8.90	1.11	3.13	1.49	1.05	0.28	199	14.50	0.00	1 33	0.83	0.00	0.75	.1/2
9.00	1.10	3.19	1.49	1.07	0.28	102	14.50	0.00	1 - 24	0.03	0.79	0.76	.1/1
9.10	1.07	3.24	1.50	1.08	0.20	107	14 70	0.06	1.20	0.62	0.78	0.78	.170
9.20	1.02	3.30	1.50	1.10	0.29	201	14.90	0.00	1.20	0.81	0.77	0,79	.169
9.30	0.97	3.34	1.49	1 12	0.20	206	14 00	0.07	1.22	0.01	0.76	0.01	.167
9.40	0.91	3.30	1.49	1 14	0.29	211	15 00	0.00	1.19	0.80	0.75	0.04	.164
9.50	0.03	3.42	1 47	1 16	0.20	-611	15.00	0.10	1.10	0.79	0.73	0.05	.160
9.60	0.73	3.45	1.46	1 10	0.20		15.10	0.11	1.13	0.79	0.72	0.87	.157
9.70	0.62	3.44	1 4 3	1 20	0.20	****	13.40	0.13	1.11	0.79	0.70	0.89	.153
9.00	0.52	3 41	1.45	1 21	0.20	. 2 2 7	15.50	V.14	1.08	0.78	0.69	0,91	.148
9.90	0.44	1 17	4 36	1 22	0.29	.230	13.40	0.10	1.95	0,78	0.67	0,93	.143
10.00	0.37	3 12	1 36	1 22	0.29	. 433	19.30	0.19	1.03	0.70	0.65	0,94	.130
10.10	0.30	1.28	1.30	1.22	0.30	.233	13.00	0.21	1.00	0.79	0.64	0.96	.132
10.20	0.24	3.40	1.37	1.44	0.30	.23/	15.70	0.25	0.90	0.79	0.62	0.96	.124
10.30	0 10	3 17	1,32	1.22	0.31	.238	15.80	0.29	0.98	0.01	0.61	0.94	.117
10 40	0 14	3.17	1.30	1.22	0.31	. 240	15.90	0.31	0.99	0,02	0.60	0.92	.112
10 50	0 10	3.11	1.25	1.22	V. 34	.240	16.00	0.32	1.00	0.63	0.60	0.90	.111
10.50	0.10	3.03	1.25	1.24	0.33	.241	16.10	0.32	1.01	0.83	0.61	0.90	.112
10.30	0.00	4.77	1.49	4.21	0.33	+241	15.20	0.31	1.00	0.83	0.61	0,91	.114
10.70	0.00	4.33	1.22	1.21	0.34	.242	16.30	0.30	0,99	0.02	0.61	0.92	.115
10.00	-0.00	X.	1.20	1.20	0.35	.742	16.40	0.30	v.97	0.81	0.60	0,94	.114
11.00	-0.03	2.82	1.18	1.19	0.35	.242	16.50	0.30	0.95	0.80	0.59	0.96	.113
11 10	-0.03	4.10	1.10	1.19	0.36	.242	16.60	Ŭ.30	0.92	0.00	0.58	0.98	.111
11 20	-0.07	2.11	1.15	1.18	0.37	.241	16.70	0.31	u_90	0.79	0.57	1.00	.108
11 20	-0.09	2,66	1,13	1.17	0.39	.24l	16.00	0.32	U.88	0.79	0.55	1.01	.105
11.30	-0.11	2.60	1.12	1.15	0.30	.241	16.90	0.33	0.85	0.79	0.54	1.02	.102

17.00

17.10

17.20

17.30

17.40

17.50

17.60

17.70

17.00

17.90

18.00

18.20

18.40

16.60

18.80

19.00

.

0.34

0.36

0.38

0.39

0.41

0.42

0.43

0.44

0.45

0.47

0.49

0.52

0.50

0.60

U,64

0.69

11.40

11.40

11.50

11.00

11.70

11.80

11.90

12.00 12.10 12.20

12.30

12.40

12.00

12.70

-0.13

-0.13

-0.14

-0.15

-0.16

-0.17

-0.17

-0.18

-0.18

-0.19

+0.19

-0.19

-0.19

-0.10

-0.10

-0.18

2,55

2.55

2.49

2.44

2.39

2.34

2,29

2.24

2,19

2.14

2.09

2.04

2.00

1.95

1,91

1.80

1.10

1.10

1.09

1.07

1.06

1.04

1.03

1.02

1.00

0.99

0.98

Ú.96

0.95

0.94

0.93

0.92

1.16

1.16

1.15

1.14

1.13

1.12

4.11

1.10

1.09

1.00

1.07

1.06

1.05

1.04

1.02

1.01

0.39

0.39

0.40

0.41

0.42

0.43

9.43

0.44

0.45

0.46

0.47

0.49

0.50

0.51

0.52

0.53

.241

.241

.240

.239

.238

.238

.237

.236

.235

.234

.233

.232

.230

.229

.227

.225

0.79

0.79

0.79

0.80

0.00

0.80

0.00

0.80

0.90

0.91

0.81

0.82

0.84

0.85

0.97

0.49

0.83

0.81

0.79

0.78

0.77

v.16

0.14

0.73

0.71

0.69

0.68

9.65

0.63

0.01

0.00

0.59

0.54

0.53

0.51

0.50

0.49

0.48

0.47

0.45

0.45

0.44

0.43

0.42

0.39

0.38

0.30

9.34

0.33

1.02

1.03

1.03

1.03

1.02

1.02

1.01

1.00

1.00

1.00

0.99

0.98

0.93

0.49

0.83

0.78

0.73

.102

.098

.094

.089

.086

.083

.040

.077

.075

.072

.009

.004

.057

.051

.445

.010

HFĒHÊ

.

Energy (eV)	εı	€2	n	k	lm(-1/2)	R(#=0)
19.20	0.71	0.59	0.90	0.33	0.70	.033
19.40	0.73	0.59	0.92	0.32	0.67	.031
19.60	0.76	0.59	0.93	0.32	0.64	.030
19.80	0.78	0.59	0.94	0.31	0.62	.028
20.00	0.80	0.59	0.94	0.31	0.60	.027
20.20	0.82	0.58	0.95	0.30	0.58	.026
20.40	0.84	0.50	0.96	0.30	0.56	.024
20.60	0.86	0.57	0.97	0.30	0.54	.023
20.80	0.88	0.58	0.98	0.29	0.52	023
21.00	0.90	0.57	0.99	0.29	0.51	.022
21.20	0.91	0.57	1.00	0.24	0.49	.022
21.40	0.93	0.57	1.01	0.20	0.48	.021
21.60	0.95	0.57	1.01	0.28	0.47	.020
21.80	0.97	0.58	1.02	0.20	0.45	.020
22.00	0.98	0.58	1.03	0.20	0.44	.020
22.20	1.00	0.58	1.04	0.20	0.43	.020
22.40	1.02	0.58	1.05	0.20	0.42	.020
22.60	1.04	0.59	1.06	0.28	0.42	.020
22.80	1.05	0.60	1.06	0.20	0.41	.021
23.00	1.06	0.61	1.07	0.20	0.41	.021
23.20	1.07	0.61	1.07	0.29	0.40	.021
23.40	1.08	0.62	1.08	0.29	0.40	022
23.60	1.09	0.64	1.09	0.29	0.40	.022
23.80	1.10	0.05	1.09	0.30	0.40	.023
24.00	1.10	0.65	1.09	0.30	0.40	.023
24.20	1.11	9.66	1.10	0.30	0.39	.023
24.40	1.12	0.67	1.10	0.30	0.39	.024
24.60	1.12	0.67	1.10	0.31	0.39	.024
24.80	1.13	0.68	1.11	0.31	0,39	.025

.

Hafnlum

.

single crystal with $\dot{E} \perp \hat{c}$. These results by 0.W. Lynch, C.G. Olson, and J.H. Weaver (unpub) supercede those of LOW75 [Phys. Rev. B <u>11</u>, 3617 (1975)]

Energy (eV)	¢1	ε ₂	n	k	lm(-1/č)	R(#=0)
0.51	-18.31	22.74	2.33	4.87	0.03	.735
0.52	-16.52	20.96	2.25	4.65	0 03	724
0.53	-14.49	19.46	2.21	4.40	0.01	705
0.54	-12.18	18.35	2.22	4.14	0.04	680
0.56	-7.93	17.14	2.34	3.66	0.05	.623
0.58	-3.76	16.52	2.57	3.22	0.06	550
0.60	-0.25	16.40	2.84	2.89	0.06	512
0.62	2.99	15.49	3.14	2.62	0.06	497
0.64	5.70	17.05	3.44	2.48	0.05	473
0.66	8.23	17.40	3.71	2.35	0.05	469
0.68	10.76	17 94	3 99	2 25	0.03	473
0 70	11 22	18 84	A 26	2 21	0.04	497
0.72	15.47	20.09	4 57	2 22	0.04	406
0 74	17 45	21 63	4 76	2 37	0.03	
0 76	10 28	21.03	4 07	2 3 3	0.03	.300
0.70 0.78	24 02	25 15	4 10	2.33	0.03	521
0.90	22 36	20,10	5.17	2.42	0.04	.030
V.0V	44.33	20.33	3.91	2.02	0.02	.004
V.94	22.33	34./0	3,33	2.07	0.02	.570
0.00	20.01	33.00	3,33 8 44	3.10	0.04	.242
0.80	16.71	30./3	2.90	3.30	0.02	.593
V.00	10.20	31.12	3.35	3.33	0.02	.244
0.90	14.12	31.19	5.22	3.02	0.02	.001
0.93	12.14	37.42	5.07	3.69	0.02	.603
0.95	10.69	18.81	4.95	5.72	6.03	.602
0.98	9.58	36.26	4,85	3.74	0.03	.602
1.00	8,57	35.79	4.76	3.76	0.03	.002
1.02	7.66	35.25	4.68	3.77	0.03	.602
1.05	6.01	34.71	4,59	3,78	0.03	.601
1.08	6.01	34.17	4.51	3,79	0.03	.601
1.10	5.18	33.60	4.43	3.00	0.03	.601
1.15	3,66	32.17	4,24	3.79	0.03	.599
1.20	2.54	30,41	4,07	3.74	0.03	-594
1.25	1.96	28.58	3.91	3.65	0.03	.587
1.30	1.78	26.96	3,79	3,55	0.04	.578
1.35	1.70	25.61	3.70	3.46	0.04	.570
1.40	1.77	24.29	3.61	3.36	0.04	.561
1.45	2.20	23.08	3.50	3.24	0.04	.550
1.50	2.78	22.25	3.55	3.13	0.04	.540
1.55	3.36	21.78	3.56	3.00	0.04	.532
1.60	3.75	21.61	3.58	3.01	0.04	.529
1.65	4.00	21.50	3.60	2.98	0.04	.525
1.70	4.29	21.59	3.63	2.98	0.04	.526
1.75	4.36	21.79	3.65	2.99	0,04	.527
1.80	4.25	22.11	3.66	3.02	0.04	.530
1.85	3.92	22.47	3,66	3.07	0.04	.515
1.90	3,31	22.81	3,63	3.14	0.04	511
1.95	2.55	22.92	3.58	3.20	0.04	.546
2.00	1.71	22.00	3.51	3.20	0.04	.551
2.05	9.91	22.01	3.43	3.30	ŭ. 04	.555

HF Ē⊥ĉ

•

-206-

-207-

HfĒ⊥ĉ							HFĒ⊥C			-			
Energy (eV)	٤ı	E2	n	k	lm(-1/č)	R (4-0)	Energy (eV)	εı	ε ₂	n	k	lm(-1/č)	R(4=0)
2.10	0.15	22.27	3.35	3.33	0.04	.558	4.95	-1.30	4.35	1,27	1.71	0.21	. 373
2.15	-0.56	21.05	3.26	3.35	0.05	.560	5.00	-1.23	4.30	1.27	1.69	0.21	. 367
2.20	-1.22	21.37	3.10	3.36	0.05	.563	5,05	-1.17	4.26	1.27	1.67	0.22	. 363
2.25	+1.05 -	20.86	3.09	3.38	0.05	.565	5.10	-1.12	4.21	1.27	1.65	0.22	358
2.30	-2.51	20.27	2.99	3.39	0.05	.568	5,15	-1.07	4.16	1.27	1.64	0.23	.354
2.35	-3.10	19.52	2.89	3.36	0.05	.569	5.20	-1.01	4.12	1.27	1.62	0.23	.349
2,40	-3.50	10.65	2.70	3.35	0.05	.569	5.25	-0.96	4.08	1.27	1.61	0,23	.345
2.45	-3.59	17.84	2.70	3.30	0.05	.565	5.30	-0.91	4.05	1.27	1.59	0.23	.341
2.50	-3.62	17.25	2.65	3.26	0.06	.562	5.35	-0.88	4.02	1.27	1.58	0.24	.338
2.55	+3.72	16.79	2.60	3.23	0,06	.560	5.40	-0.85	3.98	1.27	1.57	0.24	.335
2.60	-3.91	10.33	2.54	3.22	0.06	.560	3.45	-0.03	3.94	1.26	1.56	0.24	.333
2.00	-4.07	15.83	2.48	3.20	0.06	.560	5.50	-0.79	3.89	1.26	1.54	0,25	.329
2.70	-4.20	17.35	2.42	3.17	0.06	.559	3.33	-0.75	3.85	1.26	1.53	0.25	.325
2.73	-4.45	14.00	2.30	3.15	0.06	.559	3.60	-0.72	3.82	1.26	1.52	0.25	.322
2.00	-4.63	17.92	2.31	3.13	0.06	.558	3.03	-0.70	3.79	1.26	1.51	0.26	.320
2 00	-4.53	13.90	2.23	3.10	0.06	.550	3./0	-0.69	3.75	1,25	1.50	0.26	.318
2.30	-4.80	13.28	2.20	3.08	0.07	. 558	3./3	-0.67	3.71	1.25	1.49	0,26	.315
2.23	-4.00	13.13	2.14	3.07	0.07	. 359	J.8V K 46	-0.64	3.0/	1.24	1,49	0.26	.313
3.05	-5.06	12.00	2.08	3.03	0.07	.501	5.03	-0.63	3.62	1.23	1.47	0.27	.311
3.10	-5.08	11.50	1 04	3.02	0.07	.501	5.50	-0.64	3.30	1.22	1.46	0.27	.309
3.15	-5-05	11.05	1.04	4,70	0.07	.300	5.75	-0.67	3.30	1.21	1.44	0.20	.306
3.20	-4.97	10.56	1.40	2 94	0.07		6 05	-0.57	2.99	1.21	1.42	0.20	. 102
3.25	-4.85	10.11	1.78	2.03	0.08	.333	6.10	-0.54	2,30	1.20	1.41	0.29	. 296
3.30	-4.70	9.71	1.74	2.78	0.08	1334 847	6.15	+0.47	1.28	1.20	1.37	0.29	-299
3.35	-4.55	9.36	1.71	2.71	0.00	642	6.20	=0.43	3.20	1.17	1.30	0.30	. 294
3.40	-4.42	9.04	1.68	2.69	0.09	619	6.25	-0.40	1 18	1 19	1 34	0.30	-203
3.45	-4.29	9.74	1.65	2.65	0.09	.512	6.30	-0.36	3,13	1.19	1 32	0,31	- 490
3.50	-4.16	8.45	1.62	2.61	0.10	.529	6.35	-0.31	3.08	1.18	1 31	0.32	270
3.55	-4.03	8.19	1.60	2.56	0.10	-524	6.40	-0.26	3.04	1.18	1.29	0.32	265
3.60	+3.90	7.95	1.57	2.52	0.10	.519	6.45	-0.22	3.01	1.18	1.27	0.33	260
3.65	-3.78	7.72	1.55	2.49	0.10	.515	6.50	-0.17	2.97	1.18	1.25	0.34	.254
3.70	-3.67	7.50	1.53	2.45	0.11	.510	6.55	-0.12	2.94	1,19	1.24	0.34	.249
3.75	-3.56	7.29	1.51	2.42	0.11	.506	6.60	-0.07	2.92	1.19	1.22	0.34	.244
3.00	-3.46	7.10	1.49	2,38	0.11	.501	6.65	-0.03	2.91	1.20	1.21	0.34	.241
3.05	-3.35	6.91	1.47	2.35	0.12	. 497	6.70	0.01	2.89	1.20	1.20	0.35	237
3.90	-3.26	6.72	1.45	2.32	0.12	,493	6.75	0.04	2.87	1.21	1.19	0.35	233
3,95	-3.17	6.54	1.43	2.28	0.12	.489	6.00	0.07	2.86	1.21	1.18	0.35	230
4.00	-3.00	6.36	L.41	2.25	0.13	.484	6,85	0.10	2.64	1.21	1.17	0.35	.227
4.05	-2.90	6.10	1.39	2.22	0.13	.480	6,90	0.13	2.82	1.21	1.16	0.35	.224
4.10	-2.86	6.01	1.38	2.10	0.14	.474	6.95	0.16	2.80	1.22	1.15	0.36	.221
4.15	-2.75	5.85	1.36	2.15	0.14	.468	7.00	0.20	2.78	1.22	1.14	0.36	.217
4.20	+2.64	5.72	1.35	2.11	0.14	. 462	7.05	0.23	2.17	1.23	1.13	0.36	.214
4.40	-2.55	5.59	1.34	2.00	0.15	.457	7.10	0.26	2.75	1.23	1.12	0.36	.211
4.30	-2.45	5.45	1.33	2.05	ú.15	.451	7.15	0.28	2.74	1.23	1.11	0.36	.209
4.30	-2.34	5.32	1.32	2.02	0.16	.445	7.20	0.31	2.72	1.23	1.10	0.36	-206
4.40	-2.23	5.21	1.31	1.99	0.16	.438	7.25	0.34	2.70	1.24	1.09	0.36	.203
4 50	-2.13	5.12	1.31	1.96	9.17	.432	7.30	0.38	2.68	1.24	1.00	0.37	.199
4.55	-1 04	5.02	1.30	1.93	0.17	. 427	CL-1	0.42	2.68	1.25	1.07	0.36	.196
4.50	-1 07	4.92	1.29	1.91	0.18	.421	7.40	0.45	2.67	1.26	1.06	0.36	.194
4.65	-1.0/	4.03	1.49	1.48	0.14	.415	7.90	U.4.1	2.6/	1.26	1.06	0.36	.192
4.70	-1.70	4.14	1.40	1.03	U.18	.408	/.JV] 66	0.51	2.0/	1.27	1.05	0.30	.190
4.75	-1.07	7.00	1 39	1.42	V.19	.402	1.00	د د . v ع م	2.67	1.27	1.05	0.36	.189
4.80	-1.07	4.20	1.20	1.80	0.19	. 195	7.0V 7.4E	V.33 A E7	4.0/	1.28	1.04	0.30	-187
4.85	-1.31	4.74	1.20	1.17	0.20	• 38 A	7.03	U.3/ 0.60	2.00	1.28	1.04	0.36	.185
4.90		4.4/ 4.4)	1 23	1.13	0.20	. 384	7.70	0.40	2.65	1.29	1.03	0.36	.183
	-1-20	4.41	1.2/	1.73	0.21	. 379	1.10	0.02	2.64	1.29	1.02	0,36	.192

HFĒ⊥ĉ

•

•

-208-

HF ÊLÊ

-209-

Enargy (eV)	٤1	£2	n	k	lm(-1/ë)	R (4-0)	Energy (eV)	εı	E2	n	k	lm(-1/ĕ)	R(4= 0}
7.80	0.65	2.64	1.30	1.02	0.36	.180	13.20	-0.19	1.57	0.83	0.94	0.63	.211
7.85	0.68	2.63	1.30	1.01	0,36	.178	13.30	-0.18	1.52	0.82	0,92	0.65	.208
7.90	0.71	2.63	1.31	1,00	0.35	.176	13.40	-0.16	1.40	0.82	0.91	0.67	.205
7.95	0.74	2.64	1.32	1.00	0.35	.175	13.50	-0.14	1.44	0.81	0.89	0.69	.201
8.00	0.77	2.05	1.33	1.00	0.35	.174	13.60	-0.12	1.40	0.80	0.88	0.71	.196
8.10	0.80	2.67	1.34	1.00	0.34	.173	13.70	-0.10	1.37	0.80	0.86	0.73	.192
0.20	0.84	2.69	1.35	0,99	0.34	.173	13.00	-0.08	1.34	0.79	0.04	0.75	.180
0.30	0.88	2.71	1.36	0.99	0,33	.172	13.90	-0.06	1.30	0.79	6.83	0.77	.183
8.40	0.90	2.74	1.30	0.99	0.33	.173	14.00	-0.03	1.27	0.79	0.81	0.79	.177
0.50	0.93	2.77	1.39	1.00	0.32	.173	14.10	0.00	1.25	0.79	0.79	0.80	.170
8.60	0.95	2,80	1,40	1.00	0.32	.174	14.20	0.02	1.24	0.79	0.78	0.81	.165
8.70	0.97	2.84	1.41	1.01	0.32	.176	14.30	0.04	1.23	0.80	0.77	0.81	.162
9.80	0.98	2.80	1.42	1.02	0.31	.178	14.40	0.05	1.22	0.80	0.77	0.42	.160
8.90	0.98	2.93	1.43	1.03	0.31	.181	14.50	0.05	1.21	0.79	0.76	0.83	.160
9.00	0.98	2.90	1.43	1.04	0.30	.184	14.60	0.05	1.19	0.79	0.75	0.84	.159
9.10	0.97	3.04	1,44	1.06	0.30	.186	14.70	0.06	1.16	0.78	0.74	0.06	.157
9.20	0.93	3.11	1.45	1.08	0.30	.193	14.80	0.06	1.13	0.77	0.73	0.89	.154
9.30	0.87	3.17	1.44	1.10	0,29	.199	14.90	0.08	1,10	9.77	0.72	0,90	.150
9.40	0.79	3.21	1.43	1.12	0.29	.204	15.00	0.09	1.00	0.77	0.70	0.92	.147
9.50	0.71	3,24	1.42	1.14	0.29	.209	15.10	0.10	1.05	0.76	0.69	0.94	-144
9.60	0.63	3.25	1.40	1.16	0.30	.214	15.20	0.11	1.03	0.76	0.68	0.96	.140
9.70	0.55	3.26	1.39	1.17	0.30	.218	15.30	0.13	1.00	0.76	0.66	0.96	.135
9.80	0.46	3.25	1.37	1.19	0.30	.223	15.40	0.15	0.98	0.76	0.65	1.00	.130
9.90	0.36	3.23	1.34	1.20	0,31	.227	15.50	0.17	0.95	0.76	0.63	1.02	.125
10.00	0.28	3.19	1.32	1.21	0.31	.230	15.60	0.20	0.93	0.76	0.61	1.03	.119
10.10	0.21	3.12	1.29	1.21	0.32	.232	15.70	0.23	0.91	0.77	0.59	1.03	.112
10.20	0.15	3.07	1.27	1.21	0.33	+234	15.00	0.27	0.90	0.78	4.58	1.01	.104
10.30	0.10	3.01	1.25	1.21	0.33	.235	15,90	0.30	0.91	0.80	0.5/	0.99	.099
10.40	0.06	2,96	1.23	1.20	0.34	.235	16.00	0.31	0.93	0.81	0.58	0.96	.099
10.50	0.02	2.90	1.21	1.20	0.34	.236	16.10	0.31	0.94	0.81	0,59	0.96	.101
10.60	-0.02	2.84	1.19	1.20	0.35	.237	16.20	0.29	0.94	0.80	0.59	0.97	.103
10.70	-0.05	2.79	1.17	1.19	0.36	.237	16.30	0.28	0.92	0.79	0.58	0.99	.194
10.00	-0.08	2.73	1.15	1.19	0.37	.237	16.40	0.29	0.90	0.78	0.5/	1.01	.102
10.90	-0.10	2.68	1.13	1.18	0.37	.230	16.50	0.29	0.07	0.78	0.56	1.03	.100
11.00	-0.13	2.62	1.12	1.17	0.30	.237	10.60	0.29	0.85	0.77	U.55	1.05	.097
11,10	-0.14	2.56	1.10	1.16	0.39	.237	16.70	0.30	0.83	0.77	0.54	1.00	.095
11.20	-0.16	2.51	1.08	1.16	0.40	+237	16.80	0.31	0.81	0.//	0.53	1.07	.092
11.30	-0.18	2.46	1.07	1.15	0.41	.236	16.90	0.32	0.79	V.//	0.52	1.00	1082
11.40	-0.19	2.40	1.05	1.14	0.41	.236	17.00	0.34	0.77	0.77	0.50	1.09	.085
11.50	-0,20	2.35	1.04	1.13	0.42	.235	17.10	Ct.V	0.75	0.77	0.49	1.09	.081
11.60	-0.21	2,30	1.03	1,12	0.43	.235	17.20	0.37	0.73	V.//	0.40	1.00	
11.70	-0.22	2.25	1.01	1.11	0,44	.234	17.30	U.39	0.73	0.78	0,47	1.07	.073
11.80	-0.22	2.20	1.00	1,10	0.45	.233	17.40	V.4 0	0.12	0.70	0.45	1.00	
11.90	-0,23	2.15	0.98	1.09	0.46	.232	17.50	0.41	0.70	0.78	0.43	1.06	.000
11.90	-0.23	2.15	0.98	1.09	0.46	.232	17.00	0.42	0.07	0.79	0.43	1.05	.003
12.00	-0.23	2,10	0.97	1.08	0.47	.231	17.10	0.43	V.05	0.79	0.43	1.05	.063
12.10	-0.24	2,05	0.96	1.07	0.48	.230	17.00	0.45	0.00	0.79	0.42	1.04	.000
12.20	-0.24	2.01	0.94	1.06	0.49	.229	17.90	0.40	V.04	0.19	0.41	1.03	.037
12.30	-0.24	1.96	0.93	1,05	0.50	.229	18.00	0.48	V.03	0.60	0.39	1.01	.033
12.40	-9.23	1.91	0.92	1.04	0.52	. 226	10.10	0.50	0.41	V.0U	0.30	V.70 A 66	, vev.
12.50	-0.23	L.87	9.91	1.03	0.53	.225	10.2U	0.32		V 9-3	0.34	9.73	
12.60	-0.23	1.82	0.90	1.02	0.54	.223		V.34	0.00	0.92	0,3n	U.73	4044 041
12.70	-0.22	1.78	0.89	1.00	0.55	.221	18.40	V.35	0.33	0.82 0.82	0.30	0,90	.741
12.80	-0.21	1.74	0.86	0.99	0.57	• 219	10,50	U.5/	V.38	0.94	Ct.v	0.07	•014
12.90	-0.21	1.09	0.97	0.98	0.58	.217	[8.60	0.23	0.5/	V.44 0 ie	Pt.V	V.84	660.
13.00	-0.20	1.65	0.56	0.97	0.60	.715	18.70	0.01	V.3/	0.83 0.04	v. 55	0.01	.0.54
13.10	-0.19	1.01	0.45	0.95	0.61	.213	19*80	0.63	A*20	V.63	0.55	9.19	
						-							
Authors	Energy Range	Technique	Temperature		S	amp	ìe	Data Presentation	Remerks				
---------	-----------------------	-----------	---	------	-------	------	------	--	--				
	(•V)		(K) RT unless specified	FIIm	X-tal	Bulk	Prep	-	Ta				
LFJ64	7.1-23.6	Refl				×	Heat	R	heated in situ ~10 ⁻⁹ Torr				
AU66	~2.5-55	Refl	~2 00 0			×		Im(= ⁻¹)	energy loss spectroscopy at several temperatures				
8666	0.6-2.6	Ellips				×	Ex	n,k	filaments at various T				
LT66	0.06-0.25	Ellips				×	MP	ε2/λ,ε1					
Le67	0.1-4					×	мр	ε ₂ /λ	data from LT66 and LTA66				
LTA66	0.1-3.5					×	MP	ε2/λ,ε1					
JCF68	~78-~506	m-0		×			Ex	μ/ρ	soft x-ray absorption with synchrotron radiation				
JLM68	2.1-23.1					x	Heat	$R,n,k,\varepsilon_1,\varepsilon_2,lm(\varepsilon^{-1})$	heated ~2600 K at ~10 ⁻⁹ Torr				
HRS69	30-600	Trans		×			Ex	μ	optical absorption measurements with synchrotron radiation				
BB74		. ,	1200-2600			x		ε _N at λ = 6450 Å					
WL074	0.1-35	Refl	4.2 for hv < 4.88 eV RT for hv > 4.88 eV			×	EP	$A,R; KK: e_1,e_2, im(e^{-1}), im(e^{+1})^{-1}$	absorptivity measured by calorimetry for hu < 4.88 eV, reflectivity for hu > 4.88 eV with synchrotron radiation, see also RCF80 $^{\circ}$				
Zho74			>1000					E	amissivity				
KNN75	0.07-4.0 9	Ellips			×		EP	n,k,e1,a	(110) crystal				

Energy (eV) c_1 c_2 nk $(m(-1/\epsilon)$ R(4-0)19.000.670.560.980.320.760.9119.100.670.560.990.320.740.9119.100.710.560.990.310.790.2219.100.710.560.910.710.220.2219.100.710.560.910.710.720.2219.100.710.560.910.710.220.7219.100.710.560.910.290.220.2220.000.710.560.910.290.220.2220.000.810.560.910.290.220.2221.000.810.560.910.220.740.2221.000.920.970.220.740.2221.000.990.220.290.220.2221.000.990.220.220.440.2221.000.990.220.920.440.2221.000.990.220.290.440.2221.000.990.220.220.440.2221.000.920.920.220.440.2221.000.920.920.220.420.22<t

-210-

HF ÊLÊ

Authors	Energy Range	Technique	Temperature	s Sample D		le	Data Presentation	Remarks	
	(eV)		(K) RT unless specified	F11	X-tal	Bulk	Prep		Ţa
1176	0.5-5	Ellips	4.2			×	In	<pre>s₂ (interband)</pre>	heated to 2000 K in uhv
BDL77	0.03-3.1	Refl				x		R	also emissivity 400-850 K
HTT77	0.5-5	Ellips	4.2-1100	{		x	in	ϵ_2 (Interband)	heated to 2000 K in uhv
GC 579	0.32-5.6	Trans, Refl		×			In	σ	uhv evaporation
NC80	0.5-6.5	Trans, Refl		×			Ex	n,k,ơ	polycrystalline thin films, substrate T: 1275-1425 K
				ŀ					
12-									
Ŷ									
									•
				Į					
					Ì				
		[1						· ·

-213-

Fig. 74 Reflectivity of Ta. ---- WL074; eee NC80; +++ JLN68; --- BDL77; --- LFJ64.

-215-

-214-

-316-

Tantalum

publication by J.H. Weaver, D.W. Lynch, and C.G. Olson in Phys. Rev. 8 10, 501 (1973) based on the following tabulation

- ()						- 4 5	3.40
tnargy (eV)	ει	٤2	n	k	lm(-1/2)	R(4-0)	3.60
							3.60
0.10	-4042.00	2541.28	19.14	66.39	0.00	.981	4.00
0.11	-3484.86	1997.03	16.30	61.24	0.00	.994	4.20
0.12	-3033.13	1589.75	13.99	56.82	0.00	984	4.40
0.13	-2652.67	1281.37	12.11	52.91	0.00	084	4-60
0.14	-2331.10	1052.56	10.64	40 44	0.00	044	A 40
0.15	-2064.25	876.90	9.45	46 41	0.00	. 707	5 00
0.16	-1839.62	739.07	B 45	43 77	0.00	. 70 3	5.00
0.18	-1486 15	540 97	4 4 4	30.16	0.00	.783	3.20
0 19	-1345 40	140.07 140.84	6 20	33.10	0.00	.983	5.40
0.15	-1343.07	400.30	0.49	31.22	0.00	.983	5.60
0.20	-1229.20	109.07	3.11	35.40	0.00	.982	5.80
0.22	-1024.82	315.70	4.88	32.30	0.00	.982	6.00
0.29	-404.35	250.07	4,20	29.77	0.00	.982	6.20
0.26	-744,69	201.89	3.67	27.53	0.00	.981	6.40
0.20	-644.99	165.52	3.23	25.60	0,00	,981	6.60
0.30	-562.87	137.29	2,87	23.90	0.00	.980	6. 80
0.34	-438.95	101.03	2.40	21.09	0.00	.979	7.00
0.38	-352.12	76.56	2.03	18.87	0.00	.978	7.20
0.42	-289,01	59.89	1.75	17.06	0.00	.976	7.40
0.45	-239.37	47.86	1.54	15 55	0 00	976	7 60
0.50	-201.46	39.20	1.37	14 26	0.00	074	7 80
0.54	+171.42	12.78	1.25	13 16	0.00	072	9 00
0.58	-147.30	28.03	1 16	13 10	0.00	1972	8.00
0.62	-127 69	34 1A	1.15	14.17	0.00	.970	8.20
0.66	-111 17	21 22	1.00	11.30	0.00	.908	8.40
0.00	-07 62	41.43	1.00	10.59	0.00	.965	8.60
0.70	-96 08	19.03	0.96	9.92	0.00	.962	8.80
0.19	-36 20	17.10	0.92	9.32	0.00	.960	9.00
0.70	-/0.20	12.55	0.89	0.77	0.00	,956	9.20
0.82	-0/./1	14.29	0.86	8.27	0.00	.952	9.40
0.96	-60.32	13,22	0,85	7.81	0.00	.947	9.60
0.90	-53.76	12,30	0.84	7.38	0.00	.942	9.80
0.94	-40.06	12.05	0.86	6.99	0.00	.934	10.00
0.98	-43.29	11.69	0.08	6.64	0.01	.926	10.20
4,00	-41.11	11.40	0,89	6.47	0.01	.922	10.40
1.10	-32.19	10.68	0.93	5,75	0.01	.899	10.60
-1.20	-25.51	10.04	0.98	5.14	0.01	. 872	10.00
1.30	+20.36	9.27	1.00	4.62	0.02	.842	11.00
1,40	-16.15	8.67	1.04	4.15	0.03	.845	11.20
1.50	-12.71	8.09	1.09	1.73	0 04	140	11 40
1.60	-9.75	7.64	1 15	1 21	0.05	701	11 50
1.70	-7.20	7 30	1 24	2 45	0.03	* 4 0	11 40
1.80	-4 42	6 99	1 36	2.55	4.10	.049	11.30
1.90		7 .11	1.33	2.00	0.10	.309	12.00
2.00	- 4 - 30	7 76	4.77	4.44	0.13	.490	12.20
2.10	-0.01	7.20	1.03	1.33	0.14	. 384	12.40
3 20	1.05	1.14	2,10	1.84	0.13	.354	12.00
2.20	4.30	H.53	2.36	1.81	0.11	.351	12.60
2.39	3.10	9.51	2.56	1.46	0.10	.305	13.90
2.40	1.10	10.31	2.64	1.92	Ú.09	.378	13.20
2.30	1-03	19.87	2.75	1.98	0.08	.398	13.40
2.60	3.78	11.30	2.80	2.92	0.08	.395	13.60

••			-219-			
Energy (eV)	εl	ε ₂	n	k	lm(−t/ē)	R(+-0)
2.70	· 3,73	11.04	2.84	2.08	0.08	.405
2,00	3.54	12.20	2.85	2.14	0.00	.412
2,90	3.22	12,49	2.84	2.20	0.09	.420
3.00	2.06	12,60	2.01	2.24	0.08	.425
3.20	2.12	12.56	2.73	2.31	0.08	.432
3.40	1.37	12,18	2.61	2.33	0.08	.435
3.60	0.89	11.44	2.49	2.30	0.09	.430
3.60	0.84	10.67	2.40	2.22	0.09	,419
4.00	0.95	10.11	2.36	2.14	0,10	.406
4.20	1.27	9.69	2.35	2.06	0.10	.392
4.40	1.67	9.58	2.39	2.01	0.10	.384
4.60	2,00	9.81	2,45	2.00	0.10	.384
4.00	2.13	10.40	2.53	2.06	0.09	.394
5.00	1.77	11.35	2.58	2.20	0.09	.416
5,20	0,39	12.25	2.52	2.44	0.08	.450
5.40	-1.46	12.08	2.31	2.61	0.08	.480
5.60	-2.91	10,99	2.06	2.67	0.09	.501
5.00	-3.58	9.62	1.83	2.63	0.09	.510
6.00	-3.87	8.36	1.63	2.56	0.10	.515
6.20	-3.00	7.26	1.48	2.45	0.11	.512
6.40	-3.55	6.39	1.37	2.33	0.12	.504
5.60	-3.25	5.71	1.29	2.22	0.13	.492
0.00	-2.94	5.10	1.23	2.11	0.15	.479
7.00	-2.03	4./0	1.10	2.01	0.16	.462
7.40	-2.05	9.40	1.15	1.91	0.10	.445
7 60	-1 70	4.13	1.13	1.82	0.19	. 4 2 3
7.80	-1 50	3.72	1.12	1.13	0.21	. 100
8.00	-1.36	3,73	1.11	1.00	0.23	. 370
8.20	+1.14	3 45	1 12	1.61	0.24	350
8.40	-0.96	3.78	1.13	1 50	0.27	. 332
8,60	-0.79	3.32	1.14	1.45	0.29	. 317
8.80	-0.62	3.30	1.17	1.41	0.29	. 301
9.00	-0.53	3.33	1.19	1.40	0.29	.294
9.20	-0.46	3,34	1.21	1.38	0.29	.289
9,40	-0.44	3.35	1.21	1.38	0.29	.297
9.60	-0.42	3.34	1.21	1.30	0.29	.265
9.80	-0.42	3.32	1.21	1.37	0.30	.285
10.00	-0.44	3,30	1.20	1.37	0.30	.286
10.20	-0.45	3.27	1.19	1.37	0,30	.236
10.40	-0.47	3.22	1.18	1.37	0.30	.287
10.60	-0.50	3.18	1.16	1.36	0.31	.288
10.00	-0,52	3,12	1.15	1.36	0.31	.289
11.00	-0.55	3.06	1.13	1.35	0.32	.290
11.20	-0.58	3.00	1.11	1.35	0.32	.292
11.40	-0.61	2.93	1.09	1.34	0.33	.293
11.60	-0.64	2.95	1.07	1.33	0.33	.294
12 00	-0.4J	2.11	1.05	1.52	0.54	.245
13 30	-0.65	2.08	1.02	1.51	0.35	.295
12.40	-V.08	4.37	1.04	1.27	0.30	• 297
12.50		2.39	0.70	1.20	0.37	- 474
12.80	=0.64	2.14	0.04	1 94	0.37	- 272 794
13.90	-0.67	2.27	0.93	1.22	0 4 1	-237
13.20	-0.59	2.29	0.92	1.20	0.42	.247

-0.55

-0.52

2.15

2.12

0,91

0.91

1.10

1.15

0.44

0.44

.275

.272

- -

-

T#			-220-				Ta			-221-			
Energy (eV)	εl	ε ₂	n	k	lm(-1/č)	R (+-0)	Energy (eV)	e l	€2	п	k	lm(-1/≷)	R(+- 0)
13.30	+0.51	2.10	0.91	1.16	0,45	.270	24.60	0.61	0.41	0,82	0.25	0.76	.029
14.00	-0.52	2.08	0,90	1.15	0.45	.272	24.40	0.62	0.41	0.03	0.25	0.74	.027
14.20	-0.55	2.05	0.89	1.15	0.46	.275	25.00	0.63	0,41	0,03	0.25	0.72	.026
14.40	-0.59	2.00	0.07	1.15	0.46	.280	25.20	0.65	0.41	0.84	0.25	0.70	.025
14.60	' -0.61	1.95	0.85	1.15	0.47	.285	25.40	0.66	0.41	0.85	0.24	0.68	.023
14.80	-0.63	1.98	0.82	1.14	0.40	.209	25.60	0.68	0.42	0.86	0.24	0.65	.022
15.00	-0.65	1.80	0.00	1.13	0.49	.293	25.00	0.70	0.43	0.87	0.25	0.64	.022
15.20	-0.66	1.73	0.17	1.12	0.51	.297	26.00	0.70	0.44	V.00	0.25	0.64	.022
15.40	-0.66	1.04	0.75	1.10	0.52	. 300	20.20	0.60	0.45	0.07	0.20	0.65	.023
13.00	-0.63	1.37	0.72	1.06	V.34 A 67	, 301	20.40	0.69	0.45	0.07	0.25	0.00	.023
15.00	-0.63	1 42	0.10	1.00	0.57	204	26.80	0.69	0.44	0.87	0.25	0.00	.023
16 20	-0.02	1 35	0.66	1 07	0.67	304	27.00	0.70	0.43	0.87	0.25	0.64	.023
16.40	=0.57	1.28	0.64	0.99	0.65	. 302	27.20	0.71	0.42	0.88	0.24	0.62	021
16.60	-0.55	1.22	0.63	0.97	0.68	. 301	27.40	0.72	0.41	0.88	0.24	0.60	.020
16.80	-0.52	1.16	0.61	0.94	0.72	299	27.60	0.73	0.41	0.89	0.23	0.58	.019
17.00	-0.49	1.10	0.60	0.92	0.76	.296	27.80	0.74	0,41	0.89	0.23	0.57	.018
17.20	-0.46	1.05	0.58	0.89	0.80	.293	28.00	0.75	0.41	0.90	0.23	0.56	.017
17.40	-0.42	1.00	0.57	0.97	0.85	.289	28.20	0.76	0.41	0.90	0.22	0.54	.016
17.60	-0.39	0.95	0.56	0.84	0.90	.205	28.40	0.78	0.41	0.91	0.22	0.53	.016
17.80	-0.36	0.90	0.56	0.01	0.96	.200	28.60	0.79	0.41	0,91	9.22	0.52	.015
18.00	-0.32	0.86	0.55	0.79	1.02	.274	28.00	0,80	0.41	0.92	0.22	0.51	.015
18.20	-0.29	0.82	0.54	0.76	1.08	.268	29.00	0.81	0.41	0.92	0.22	0.50	.014
10.40	-0,25	0,79	0.54	0.73	1.15	.261	29.20	0.82	0.41	0,93	0.22	0.49	.014
18.60	-0.22	0.75	0.53	0.71	1.23	.254	29.40	0.83	0.41	0.94	0.22	0.48	_014
10.00	-0.19	0.72	0.53	0.68	1.31	.245	29.60	0.05	0.41	0.94	0.22	0.48	.014
19.00	-0.15	0.69	0.53	0.05	1.39	.236	29.80	V. 93	0.42	0.93	0.22	0.4/	.014
19.20	-0.12	0.66	0.52	0.63	1.48	.227	30.00	V.63 A 87	0.42	0.95	0.22	0.4/	.014
19.40	-0.08	0.03	0.33	0.60	1.00	-217	30.50	0 69	0.45	0.70	0.23	0.46	
19.00	-0.03	0.00	0.53	0.57	1.04	196	31.50	0.00	0.46	0.97	0.24	0.46	+7714
20 00	-0.02	0.50	0.53	0.55	1 79	185	32.00	0.89	0.47	0.98	0.24	0.46	015
20.20	0.05	0.50	0.54	0.50	1.85	.175	32.50	0.90	0.49	0.98	0.24	0.45	.015
20.40	0.07	0.51	0.55	0.47	1.91	.165	33.00	0.90	0.48	0.98	0.25	0.46	.015
20.60	0.11	0.49	0.55	0.44	1.95	.153	33.50	0.91	0.49	0.98	0.25	0.46	.015
20.80	0.14	0.47	0.56	0.42	1.95	.140	34.00	0,91	0.50	0.99	0.25	0.46	016
21.00	0.17	0.45	9.57	0,39	1.92	.127	34.50	0.91	0.51	0,99	0.26	0.47	.016
21.20	0.22	0.44	0.59	0.37	1.04	.113	35.00	0.91	0.52	0.99	0.26	0.47	_017
21.40	0.25	0.43	0.61	0.35	1.72	.100	35.50	0.91	0.53	0.99	0.27	0.48	.018
21.60	0.29	0.44	0.64	0.34	1.59	.0#9	36.00	0.90	0.53	0.99	0.27	0.49	.018
21.60	0.29	0.43	0.64	0.34	1.59	.088	36.50	0.90	0.54	0,99	0.27	0.49	.019
22.00	0.31	0.41	0.64	0.32	1.54	.081	37.00	0.89	0.55	0,99	0.24	0.50	.019
22.20	0.34	0,40	0.66	0.30	1.44	.072	37.50	0.68	0.55	0.98	9.28	0.51	.020
22.40	11.0	0.39	0.68	0.29	1.34	.065	34.00	0.8/	9.00	0.07	0.24	0.52	.021
22.60	0.49	0.37	0.69	0.27	1.24	.058	30.30	0.00	0.50	0.97	0.29	0.53	.021
22.00	U.44	V.30	0.71	9.20	1.13	.051	33.00	0.85	0.56	0.94	4 39	0.51	.022
23.00	0.52	0.30	0.75	0.24	1.91	.043	40.00	0.82	0.56	0.95	0.29	0.56	021
23 40	0.52	0.39	0.79	0.25	0.90	.030			****	••••			1445
23.50	0.56	Ú 40	0 79	0.25	0.84	.411							
23.60	0.57	0.42	0.80	0.25	0.14	.033							
23.70	0.56	0,41	0,80	0.27	0.85	.034							
23.00	0.56	0.43	0,80	0.27	0.85	.035							
23.90	9.56	0,42	0.79	0.27	0.66	.034							
24.00	0.56	0.42	0.80	0.26	0.85	.034							
24.20	0.50	0.41	0.00	0.26	0.82	.032							
24.40	0.59	0.41	0.81	ŋ,25	0.79	.030							

Authors	Energy Range	Technique	Temperature		S	атр	le	Data Presentation	Remarks
	(27)		(K) RT unless specified	FI Im	X-tal	Bulk	Prep		W
Vuj70								ε	emissivity
CM71	1.9-3.18	Ellips			×		Heat	n,k,e1,e2	table λ ,n,k; heat 2200-2600 K; LEED characterization
Hu71	6.2-41.3	Ref		×			Ex	R	
NKN71	0.06-4.9	Ellips			×		EP	n,k,o,A,e ₁ ,e ₂	
UKK71	1-12	Refl			×		Hea t	R; KK: ε ₁ ,ε ₂	∿1700 K in situ
CHR72	6.2-41.3	Refl		×			Ex	R	substrate T: 313-773 K, plotted data for T = 313 K, transmission = 15.3%, and fil thickness = 120 Å
LCS72	0.25-4.13	i	1200-2600			×	ļ	e _N	emissivity
NKN72	0.3-4.1	Ellips	77		×	ļ	E₽	n,k,a	
Rod72	1.13-1.77		1700-2300					ε	emissivity
Sm72	1.96, 2.27	Ellips	~280-2100		×		in	n,k	sputter-anneal; characterize with AES
Aks74	0.12-1.24		373-773		ĺ			٤ _N	emissivity
Zho74			>1000					¢	emissivlty

Authors	Energy Range	Technique	Temperature		S	emp	le	Data Presentation	Rema rks
			RT unless specified	FI Im	X-tal	Bulk	Prep		. w
Rob59	0.47-3.4	Ellips	RT,1100,1600			×	EP	n,k,£1,£2	
LFJ64	7.1-23.6	Refl				×	Heat	R	heated in situ ∿10 ⁻⁹ Torr
TSV65	2.66-17.6		1800, 2150 2520			x	Heat	n,k	thermal emission, plotted data is at $T = 1800$ K
AU66	∿2.5-55	Ref1	~2000			x	Heat	lm(c ⁻¹)	energy loss spectroscopy
Ba6 6	0.6-2.6	Ellips	300-2400			x	Heat	n,k	sample: cross-section filaments at various T
LP66	0.16-2.5	Ellips				x	MP	n,k,A	mechanically polished sinter samples
LT66	0.06-0.25	Ellips				x	MP	£2/1,£1	
LTA66	0.1-3.5	Ellips				x	MP	e2/2, e1	
Le67	0.1-4	Ellips				×	мр	ε2/λ	data from LT66 and LTA66
JLM68	2.1-23.1	m-0				×	Heat	$R,n,k,\varepsilon_1,\varepsilon_2,Im(\varepsilon^{-1})$	heat ~2800 K at ~10 ⁻⁹ Torr
см69	2-3.26	Ellips			x		in	n,k	heated 2200 K; LEED characterization (11
HRS69	30-600	Trans		×			Ex	υ	optical absorption measurements with synchrotron radiation
Kon69								E	emissivity
LCS70	0.31-3.1		1200-2600			×		£	emissivity

Fig. 78 Survey of available data for W

,

Authors	Energy Range	Technique	Temperature (K)		Si	amp	le	Data Presentation	Rema rks
	(67)		(K) RT unless specified	Film	X-tal	Bulk	Prep		¥
WOL75	0.15-33	Ref]	4.2 K < 4.4 eV 300 K > 4.4 eV			×	EP	R,A; KK: ε1,ε2, Im(ε ^{−1}),Im(ε+1) ^{−1}	absorptivity measured by calorimetry for $hv < 4.4$ eV, reflectivity measured for $hv > 4$ eV with synchrotron radiaton
HR76	0.25-3.1		<3300					E	emissivity
тт76	0.5-5	Ellips	4.2			x	Heat	٤ ₂	heat ~2000 K in uhv
W076	20-250	Trans		×			Éx	μ	optical absorption measurements with synchrotron radiation
HTT77	0.5-5	Ellips	4.2-1100	×			Heat	€2,E _N	also emissivity; heat to ~2000 K in situ
G\$77			773	×				£	emāssivity
GCS79	0.32-5.6	Trans, Refl		x			In	σ	evaporation in situ in why
NEBO	0.5-6.5	Trans, Refl				×	Ex	n,k,ơ	polycrystalline thin films, substrate T: 1423-1273 K
NCC80	0.5-6.5	Trans, Refl		×			Êx	σ	examined dependence of R on substrate temperature
W5680		-	340-1260		×			۴H	calorimetric; emissivity
-224-									

-225-

-227-

-226-

Fig. 80

-229-

-228-

Fig. 83 Absorption coefficient for W. ---- HRS69; --- W076.

Fig. 82 c2 for W. ---- WL075; xxx TSV65; --- TT76; +++ NC80; AAA CM71; AAA JLM68; eee LP66; coo NKN71.

-231-

1 1

٢

Tungsten

publication by J.H. Weaver, D.W. Lynch, and C.G. Olson in Phys. Bev. B $\underline{12}$, 1293 (1975) based on the following tabulation

Energy (eV)	£1	63	n	k	lm(-1/C)	R(=0)	1.30
	-1	-2			• • • •		1.35
0.06	-5684.92	5713.94	34.46	82.90	0.00	.983	1.40
0.07	-4752,86	3910,33	26.40	73.05	0.00	.983	1.45
0.08	-3956.81	2771.62	20.91	65.29	0.00	.983	1.50
0.09	-3305.86	2040.25	17.01	51.96	0.00	.983	1.55
0.10	-2795.56	1538.09	14.06	54.71	0.00	.983	1.60
0.12	-2049.44	937.37	10.10	46.38	0.00	.982	1.65
0.14	-1555.35	608.45	7.58	10.16	0.00	.982	1.70
0.16	-1212.35	417.97	5.92	35.32	0.00	.902	1.75
0.18	-967.62	297.27	4.72	31.46	0.00	.902	1.80
0.20	-785.64	219.03	3.87	18.30	0.00	.981	1.85
0.25	-497.24	114.72	2.56	22.44	0.00	.980	1.90
0.30	-332.28	67.10	1.93	18.32	0.00	.979	1.95
0.32	-283.67	59.10	1.72	16.93	0.00	.977	2.00
0.34	-243.85	53.68	1.71	15.71	0.00	.973	2.05
0.36	-212.76	53.47	1.02	14.70	0.00	.967	2.10
0.30	-189.11	51.59	1.96	13.98	0.00	.963	2,15
0.40	-170.02	51.26	1.94	13.18	0.00	.957	2.20
0.42	+155.81	48.43	1.92	12.63	0.00	.954	2.25
0.44	-143.25	44.13	1.82	12.11	0.00	.953	2 - 30
0.46	-131.49	39.12	1.69	11.59	0.00	.952	2.35
0.48	-120.01	33.97	1.53	11.06	0.00	.952	2.40
0.50	-108.67	29.50	1.40	10.52	0.00	.952	2.45
0.52	+97.84	26.00	1.30	9.98	0.00	.950	2 50
0.54	-87.71	23.24	1.23	9.45	0.00	948	2.50
0.56	-78.40	21.49	1.20	A 94	0.00	. 943	2.55
0.58	-69.90	19.85	1.17	8.44	0.00	918	2.04
0.60	-61.88	19.27	1.21	7.96	0.00	929	2 70
0.62	-54.96	19.33	1.28	7.52	0.01	.917	2.10
0.64	-49.09	14 41	1 76	7 14	0 01	904	2.10
0.66	-43.88	19.63	1.45	6.78	0 01	888	2.65
0.68	- 39. 34	19.61	1.52	6.45	0.01	.873	2 90
0.70	- 35, 92	19.50	1.59	6.13	0.01	. 856	2 95
0.72	~30.82	19.78	1 70	5 81	0.01	.914	3 00
0.74	+27.13	20.23	1.93	5.52	0.02	910	3 05
0.76	-23.66	20.76	1.97	5 21	0.02	.785	3 10
0.78	-20.97	21.37	2.12	5.03	0.02	.759	2 15
0.80	-18.60	21.55	2.22	4.81	0.03	. 7 3 8	3 20
0.82	+15.67	21.75	2.36	4.61	0.03	710	3.35
0.83	-13.90	22.11	2.47	4.47	0.03	692	3.20
0 #4	+12.22	22 94	2 62	4 17	0.03	674	3,30
0.85	-10 84	24 21	2 90	4 13	0.03	462	3.33
0.00	-10 54	25 40	2 42	4 13	0 03	5004	3,40
0.00	-10.31	26 13	2 00	4 30	0.03	560	J+43 } EA
0.01	-10.20	26 93	3.05	4 47	0.01	5000	7 TE 1.30
0.40 0.40	-10.20	20.73	3.03	4.44	0.03	.707	3.33
0.70 () _}	- L O C (A	57.00	3.1.4	4 A S	0.03	****	J.6V) 4 F
V.74 11 Jak	-7,70	61.70 57 a7	3.13	4.43	0.03	• T T V	2.02
V.77 A 44	-7.74 -0 60	6/.7/	3.13	4.73	0.03	.036	3.70
9,70	-7,70	41.11 27 4E	3.13	7,71	0.03	.070	5.15
V.73	-2-14	47.40	2.12	4.10	0.03	.023	

Energy (eV)	εı	εz	n	k	lm(-1/≷)	R(+=0)
1.00	-6.80	27.11	3.14	1.32	0.03	. 649
1,05	-7.91	26.04	3.11	1.19	0.04	.639
1.10	-7.00	24.63	3,05	4.04	9.04	. 627
1.15	-3.31	23,15	3.02	3.83	0.04	.608
1.20		41.00	3.00	3.04	0.04	.590
1.20	-4,45	20.00	3.03	3.37	0.05	.30J
1.35	0.78	19.63	3.20	3.07	0.05	637
1.40	2.07	19.44	3.29	2.96	0.05	-515
1.45	3.30	19.28	3,38	2.95	9.05	.505
1.50	4.32	19,38	3.48	2.79	0.05	.500
1.55	5.25	19.46	3.56	2.73	0.05	.496
1.60	6.28	19,69	3.67	2.68	0.05	.494
1.65	6.92	20.55	3.78	2.72	0.04	.500
1.70	0,99	21.39	3.84	2.79	0.04	.507
1 80	6 09	22 22	3.87	2.80	0.04	.514
1.85	5.46	22.15	3.76	2.95	0 04	520
1.90	5.05	21.71	3.70	2.94	0.04	.518
1.95	4.77	21.33	3.65	2.92	0.04	.516
2.00	4.61	20.86	3.60	2.89	0.05	.512
2.05	4.55	20,45	3.57	2.86	0.05	.509
2.10	4.49	20.09	3.54	2.84	0.05	.596
2.15	4.43	19.70	3,51	2.81	0.05	.502
2.20	4.60	19.24	3,49	2.76	0.05	.497
2.20	4.70	19.08	3,30	2.13	0.05	.494
2.35	4.70	18.94	3.49	2.72	0.05	493
2.40	4.52	18.80	3.45	2.72	0.05	491
2.45	4.30	18,54	3,41	2.71	0.05	491
2.50	4.20	18.11	3.38	2.68	0.05	. 487
2.55	4.26	17.73	3.35	2.64	0.05	.483
2.60	4.30	17.40	3.34	2.62	0.05	.480
2.65	4.34	17.19	3.32	2.59	0.05	.476
2.70	9.90	16.91	5.51	2.55	0.05	.472
2+12	4.34	16.74	2 21	2.33	0.05	4/0
2.85	4.85	16.38	3 31	2 47	0.05	464
2.90	5.02	16.25	3.32	2.45	0.06	461
2.95	5.21	16.20	3.33	2.43	0.06	460
3.00	5.37	16.22	3.35	2,42	0.06	459
3.05	5.51	16.27	3.37	2.42	0.06	459
3.10	5.66	16.37	3.39	2.41	0.05	-460
3.15	5.74	16.60	3.41	2.43	0.05	.462
3.20	5./6	16.82	3.43	2.45	0.05	.465
3.30	5 41	17.64	3.43	2,47	0.05	4909
3.35	4.97	17.65	3.43	2.60	0.05	.410
3.40	4.38	10.02	3.39	2.66	0.05	495
3.45	3.70	17.92	3.32	2.70	0.05	489
3.50	3.19	17.52	3.24	2.70	0.05	439
3.55	2.90	17.11	3.10	2.69	0.06	485
3.60	2.64	16.75	3.13	2.67	0.05	.482
3.65	2.59	16,40	3.09	2.65	0.05	440
1.70	2.42	15,00	3.05	2.62	9.00	.476
5.15	2.30	12.01	3,02	2.69	0.06	.472

2.41

15.30

2.99

2,56

0.0+

v			-234-				v			-235-			
Energy (eV)	ει	¢2	n	k	lm(-1/č)	R (+-0)	Energy (eV)	El	ε ₂	n	k	l⊕(-1/≥)	R(4-0)
3.85	2.46	15.06	2.98	2.53	0.06	.464	9.40	-1.17	3.09	1.03	1.50	0.28	. 352
3.90	2.52	14.79	2.96	2.50	0.07	.460	9.50	-1.06	3.05	1,04	1.47	0.29	.340
3.95	2.66	14.51	2,95	2.46	0.07	.455	9,60	-0.96	3.03	1.05	1.44	0.30	.329
4.00	2.83	14.33	2.95	2.43	0.07	.451	9.70	-0.85	3.02	1.07	1.41	0.31	.310
4.10	3.23	14.07	2.97	2.37	0.07	.444	9.00	-9.73	3.01	1.09	1.30	0.31	. 307
4.20	3.68	14.02	3.02	2.33	0.07	.440	9.90	-0.63	3.02	1.11	1.36	0.32	.297
4.30	4.00	14.21	3.07	2.31	0.07	.440	10.00	-0.52	3.05	1.13	1.34	0.32	.207
4.40	4.38	14.52	3.13	2.32	0.06	.442	10.10	-0.41	3.10	1.16	1.33	0.32	.278
4.50	4.02	14.99	3,19	2.35	0.06	.447	10.20	-0.34	3.16	1.19	1.33	0.31	.274
4.60	4.69	15.63	3.24	2.41	0.06	.455	10.30	-0.27	3.23	1.22	1.33	0.31	.271
4,70	4.6/	16.30	3.29	2,48	0.06	.464	10,40	-0.24	3,32	1.24	1.34	0.30	.270
4.d0	4.50	17.14	3.33	2.57	0.05	.475	10.50	-0.22	3.39	1,26	1,35	0.29	.271
4.90	4.19	10.10	3.37	2.68	0.05	.487	10.60	-0.22	3.47	1.27	1.36	0,29	.274
5.00	3.44	19.37	5,40	2.05	0.05	.505	10.70	-0.24	3.53	1.20	1.39	0.28	.270
5,10	2.10	20.50	3.38	3.05	0.05	1575	10.80	-0.28	3.59	1.29	1.39	0.28	.202
5.20	-7.05	21.40	3.27	3.27	0.05	.548	10.90	-0.32	1.05	1.29	1.41	0.27	.296
5.30	-2.05	21.39	3.11	3.43	0.05	.560	11.00	-0.37	3.04	1.20	1.42	0.27	.290
5.40		20.90	2.92	3,50	0.05	.586	11.10	-0.41	1.05	1.28	1.43	0.27	.293
5.30	-7 . 35	19.08	2,68	3.08	0.05	.604	11.20	-0.46	3.66	1.27	1.44	0.27	.247
3.DV 5.30	-1.18	11.90	2.43	3.70	0.05	.618	11.30	-4.51	1.00	1.26	1.45	0.27	.301
3.70	-0.00	10-13	2.20	3+07	0.05	.629	11.40	-0.30	3.66	1.25	1.46	0.27	.305
5.60	-9.00	14.41	2.00	3.61	0.05	+037	11.50	-0.62	3.64	1.24	1.47	0.27	.309
2.30	-9.01	12.90	1.83	3.52	0.05	.641	11.60	-0.00	3.01	1.22	1.48	0.27	.313
5,00	-0.03	11.03	1.70	3,42	0.05	.043	11.70	-0.72	5.51	1.21	1.44	0.27	.315
6.10 6.10	-0.04	10.24	1.58	1.11	0.05	.644	11.80	-0.78	3.34	1.20	1.44	0.27	. 319
6 30	-7 03	7.73	1.1/	3.44	0.06	.040	11.70	-0.94	3.49	1.16	1.48	0.27	. 521
6 40	-7.51	7 00	1,30	3.14	0.00	.043	12 20	-0.00	3.94	1.10	1.40	0.27	.323
6.40 6.60	-1 10	7 43	1.34	3.04	0.07	.040	12.40	-0.90	3.39	1.13	1.44	0.28	.327
6.50	-4 76	6 03	1.20	2.70	0.07	+033	12.70	-0.97	3.43	1.10	1.47	0.29	329
6 70	~6,70	6 46	1.16	2.0/	0.07	1031	12.00	-0.99	3.12	1.07	1.40	0.29	. 332
6.70 6.60	-0.41	6 00	1.10	2.70	0.08	+020	13 40	-1 00	2.77	1.04	1.49	0.30	
5 90	-0.04	5.00	1.12	2.10	0.08	.019	13.00	-1.00	4.9/	1.01	1.42	0.31	
1 00	-5,72	5.75	1.05	2.03	0.09	.013	13.20	-0.99	2.13	0.98	1.40	0.32	. 332
7 10	-5.10	5.44 E 10	1.04	2,30	0.09	.007	13,40	-0.93	2.04	7.70	1.37	0.33	. 3 4 9
7.10	-4 96	3.14	1.04	2.47	0.10	.378	13.80	-0.99	2.33	0.74	1 37	0.35	. 323
7 30	-4 57	4 4 6	1.01	2 36	0.10	- 293 623.	14 00	-0.81	2.43	0.92	1.34	0.30	. 320
7.40	-4.31	4.00	0 99	2.30	0.12	. 30 J	14.30	-0.31	2 27	0.91	1 26	0.40	304
7.50	-4.08	4.31	0.96	2 24	0.12	+3/3 665	14.40	-0.69	2 21	0.71	1 23	0.40	204
7.60	-3.85	4 14	0.95	2 1 8	0.12	.JUJ 884	14.60	=0.62	2 16	0.90	1 20	0.41	230
7.70	-3.62	1.97	0.94	2.12	0.13	.330	14.80	-0.55	2 1 2	0.90	1 17	0.43	276
7.80	-3.38	3.93	0.93	2.06	0.15	633	15.00	-0.47	2 10	0.92	1 14	0.45	264
7.90	-3.14	3.23	0.93	2.00	0.15	.JJJ 814	15.20	=0.40	2 11	0.93	1 1 1	0.46	268
8.00	-2.91	3 46	0 94	1 95	0.13	.310	15 40	-0 35	2 13	0.55	1 1 2	0.40	.233
0.10	-2.77	3 57	0.94	1 91	4 17	404	15.60	-0.33	2 17	0.97	1 12	0.45	246
8.20	-2.58	3.48	0.94	1.86	0 19	491	15.90	-0.32	2.20	0.98	1.11	0.44	246
0.30	-2.38	3.41	0.94	1.01	0.20	465	16.00	-0.34	2.24	0.99	1.14	0 44	249
8.40	-2.20	3. 37	0.96	1.75	0.21	.444	16.20	-0.37	2.26	0.98	1.15	0.43	252
0.50	-2.04	3.30	0.97	1.73	0.72	. 4 1 4	16.40	=0.42	2.27	0.97	1.17	0.43	260
8.60	-1.91	3.15	0.99	1.70	0.21	.422	16.60	-0.47	2,27	0.94	1,10	u.47	. 767
8.70	-1.79	3.33	1.00	1.67	0.23		16.00	-0.53	2.25	9.94	1.19	····	272
U.8 0	-1.64	3 12	1.01	1 45	0.74	. 401	17.00	-0.54	2,21	0.92	1 20	0.40	14/3
H.9 0	-1.61	3.10	1.02	1 61	0.24	101	17.20	-0.64	2,17	6.90	1 71	11.42	202
9.00	-1.54	3.26	1.01	1	0.25	389	17.40	-9.70	2,11	0.47	1.21	0.41	207
9.10	-1.44	3.21	1.02	1.57	0.26	474	17.60	-9.74	2.05	0.85	1.21	0.41	201
9.20	-1.35	3-17	1.02	1.55	0.23	369	17.80	+4.77	1.98	0.82	1.20	0.44	340
9.30	-1.25	3.14	1.03	1 52	0.27	160	18.00	-0.20	1.01	0.44	1.20	0.45	4319
						•			* * * * *	V • V V	1	·· • • ·	

¥.

¥

•

_

. . .

-236-

W

Energy (eV)	εl	¢2	n	k	lm(-1/č)	R (+-0)	
10.20	-0.83	1.03	0.77	1.19	0.45	. 325	
18.40	-0.84	1.74	0.74	1,18	0.47	.330	
19.60	-0.05	1,66	0.71	1.16	0.48	.335	
18.30	-0.84	1.58	0.69	1.15	0.49	.340	
19.00	-0.83	1.50	0.67	1.13	0.51	. 343	
19.20	-0.82	1.43	0.64	1.11	0.53	.347	
19.40	-0.81	1.36	0.62	1.09	0.55	.350	
19.60	-0.79	1.20	0.60	1.07	0.57	. 153	
19.80	-0.76	1.21	0.58	1.05	0.59	.324	
20.00	-0.12	1.15	V.30	1.02	0.02	.334	
20.20	-0.65	1 04	0.64	0.35	0.00	1322	
20.60	-0.63	1.04	0.57	0.97	0.07	347	
20.00	-0.57	0.95	0.52	0.92	0.77	. 342	
21.00	-0.54	0.91	0.51	0.89	0.82	.338	
21.20	-0.50	0.07	0.50	0.87	0.87	.331	
21.40	-0.46	0.94	0.50	0.84	0.92	. 325	
21.60	-0.43	0.01	0.50	0.62	0.97	.318	
21.00	-0.39	0,78	0.49	0.80	1.02	.312	
22.00	-0.36	0.76	0.49	0.77	1.08	.303	
22.20	40.32	0.74	0.49	0.75	1.14	.295	
22.40	-0,29	0.72	0.49	0.73	1.20	.287	
22.60	-0.26	0,70	0.49	0.71	1.25	.279	
22.80	-0.24	0.69	0.49	0.69	1.30	.272	
23.00	-0.22	0.67	9.49	0.60	1.35	.26/	
23.20	+0.20	0.63	0 49	0.66	1.41	.203	
23.40	-0.10	0.03	0.47	0.64	1.40	- 407	
23.80	-0.12	0.58	0.48	0.01	1.50	244	
24.00	-0.09	0.56	0.49	0.57	1.74	.234	
24.20	-0.07	0.54	0.49	0.55	1.81	.224	
24.40	-0.04	0.53	0.50	0.53	1.88	.213	
24.60	-0.01	0.52	0.50	0,51	1.94	.203	
24.80	0.02	0.50	0.51	0.49	1.98	.191	
25.00	0.04	0.50	0.52	0.48	2.00	.180	
25.20	0.07	0,49	0.53	0.46	2.02	.171	
25.40	0.09	0.48	0.54	0.44	2.02	.161	
25.60	0.12	0.47	0.55	0.43	2.00	.150	
25.80	0.14	0.47	0.56	0.41	1.97	.140	
20.00	V.10	0.40	0.57	0.40	1.92	.132	
26.20	0.20	0.46	0.38	0.39	1.67	.123	
26 60	0.20	0.45	0.37	0.30	1 70	411	
26.00	0.24	0.45	9.61	0.37	1.74	.105	
27.00	0.25	0.44	0.62	0.36	1.70	.099	
27.25	0.28	0.44	0.63	0.35	1.63	092	
27.50	0.30	0.43	0.64	0.34	1.56	.085	
27.75	0.32	0.43	0.66	0.33	1.49	.079	
.20,00	0.35	0,43	9.67	0.32	1.41	.073	
28.25	0.36	0,43	0.68	0.32	1.37	.070	
28.50	0.38	u_43	0.69	0.31	1.31	.065	
28.75	0.40	0.43	0.70	0,31	1.20	.061	
29.00	0.42	0_43	0.71	0.30	1.20	.057	
29.75	0.44	0.43	9.72	0.30	1.15	054	
29,50	9.45 0.45	0.44	0.13	0.30	1.11	.052	
29.73	U.40	U+44	0.74	0.30	1.00	.049	
30.00	V.4/	U.44	0.75	0.29	1.05	.01/	

•	Energy (eV)	εl	£2	n	k	lm(-1/č)	R(+=0)
	30.50	0.50	0.45	0.76	0.29	1.00	.044
	31.00	0.52	0.46	0.78	0.29	0.96	.042
	31.50	0.53	0.46	0.79	0.29	0.93	.040
	32.00	0.54	0.47	0.79	0.29	0.92	.040
	32.50	0.55	0.46	0.80	0.29	0.89	.037
	33.00	0.59	0.45	0.82	0.28	0.82	.033
	33.50	0.61	0.47	0.03	0.20	0.80	.032
	34.00	0.62	0.49	0.84	0.29	0.79	.032
	34.50	0.62	0,50	0.85	0.30	0.78	.032
	35.00	0.63	0.52	0.85	0.31	0.79	.033
	36.00	0.61	0.54	0.85	0.32	0.81	.036
	37.00	0.59	0.55	0.94	0.33	0.84	.039
	38.00	0.57	0.54	0.03	0.33	0.87	.040
	39.00	0.55	0.54	0.41	0.33	0.90	.042
	40.00	0.53	0.52	0.80	0.33	0.95	.045

Authors	hors Energy Range Technique Temperature		e Sample			le	Data Presentation	Remarks	
	(ev)		(K) RT unless specified	Fi Im	X-tel	Bulk	Prep		Re
LFJ64	7.1-23.6	Refl				x	Heat	R	
Ba66	0.6-2.6	Ellips	300-2400			x	Heat	n,k	cross-section filaments at various T
JLM68	2.15-23.09	Refl			ĺ	×	Heat	R; KK: n,k,c1,c2	heated ~ 2600 K at $\sim 10^{-9}$ Torr
HRS69	30-600	Trans		×			Ex	μ	optical absorption measurements with synchrotron radiation
R070	∿25-∿170	m-0		ĺ				R,n,µ	
Hu71	6.2-41.3	Refl		×			Ex	R	
CHR72	6.2-41.3	Refl		×			Ex	R	
Log72					×			ε	emissivity
NKN73	0.08-4.13	Ellips	77, 295			x	EP	n,k,σ,εl	table λ,n,k
Zho74			>1000					¢	emissivity
1176	0.5-5	Ellips	4.2			×	Heat	c ₂ (interband)	∿2000 K in uhv
WOL Unp1	0.1-60	Ref	4.2 K for hv < 4.4 eV RT for hv > 4.4 eV		×		EP	R; KK: n,k,c1,c2; È⊥ĉ and Èllĉ	absorptivity measured by calorimetry for $hv < 4.4 eV$, raflectivity measured for $hv > 4.4 eV$ with synchrotron radiation

-239-

Fig. 86 c1 for Re. Single crystal results shown as eas for Êlič and ood for Ê⊥ĉ by LOW (unpub). Polycrystalline results as follows: +++ TT76; ass NKN73; ΔΔΔ JLM68.

-240-

Fig. 87 c₂ for Re. Single crystal shown as --- for Ēliĉ and --- for Ē⊥ĉ by LOW (unpub). Polycrystalline results as foliows: ooo TT76; C□□CINKN73.

-242-

-243-

-244-

Rhenium single crystal with ENC

J.H. Weaver, C.G. Olson, and D.W. Lynch, unpublished

							2.77	. 1.10
Energy (eV)	£1	67	п	k	lm(-1/2)	R(#=0)	2.60	1.08
	- 4	- 4			•		2.55	1.03
0.10	-2567.21	618.75	6.06	51.03	0.00	. 991	2,70	1.19
0.15	-1131.18	316.57	4.66	33.96	0.00	. 984	2.75	1.45
0.20	-625.69	211.18	4.16	25.36	0.00	.975	2.80	1.78
0.25	- 387 . 89	162.12	4.03	20.10	0.00	. 962	2.05	2.31
0.30	-259.57	145.83	4.37	16.69	0.00	.943	2.10	2.86
0.35	-190.79	130.66	4.50	14.53	0.00	.925	2.95	3.23
0.40	-147.43	117.49	4.53	12.96	0.00	909	3.00	3.07
0.45	-118.24	106.71	4.53	11.78	0.00	. 893	1.05	2.62
0.50	-97.87	98.71	4.53	10.88	0.01	.879	3.10	2.08
0.55	-84.97	92.21	4.50	10.26	0.01	.867	3,15	1.57
0.57	-81.64	87.74	4.37	10.04	0.01	.865	3.20	1.24
0.60	-76.71	81.69	4.29	9.75	0.01	. 161	3.25	1.19
0.63	+73.32	80.24	4.20	9.54	0.01	.858	3, 30	1.36
0.65	-70.85	76.15	4.07	9, 15	0.01	.856	1, 15	1.53
0.68	-68.03	72.02	3.94	9.14	0.01	.854	3.40	1.76
0.70	-65.56	67.94	3.80	8.94	0.01	.853	3.50	2.31
0.73	-63 10	63 6A	3 65	8 75	0 01	451	3 60	2 45
0 75	-60 93	50 40	3 44	2 55	0 01	. 850	3 70	1.99
0 77	-57 31	55 60	3. 34	8.31	0.01	.848	3.80	1.59
0	-55 33	52 02	2 21	9 10	0 01	846	3 90	1 49
0 45	-50 17	45 30	2 96	7 69	0.01	941	4 00	1 60
0.05	-44 04	30 40	2 73	7.00	0.01	 	4.00	1 75
0.55	-10 64	37,47	2.73	6 79	0.01	476	4.10	1 49
1 00	- 37.34	34.73	2.30	6 36	0.01	111	4 30	1.00
1.05	-70 41	31,10 31,10	2.43	6,30	0.01	.01J 301	4.30	1.20
1.03	-25.51	20.30	4.37	5.70	0.02	./7/	1.40	-0.55
1.10	-23.04	20.00	2.37	5.01	0.02	761	4.JU	-1 43
1 20	-19 70	33.64	2.30	5,31	0.02	* 701	4.00 4.30	-1 44
1.20	-11.00	23.01	2.33	5.04	0.02	./42	4.70	-1.00
1 20	-14 35	22.20	2.37	9.10	0.03	./41	4.50	-1.37
1.30	-13 03	41./1	2.37	4.34	0.03	443	7.74	-1.43
1.33	-12.73	20.40	2.41	4.33	0.03	*013	J.UV 5 10	-1 63
1.45	711-14	20.12	2.44	4.13	0.04	+002	5.10	-2 00
1.47	-9.30	19.49	2.45	3.93	0.04	.093	5.20	-2.09
1.39	-0.11	10.92	2.50	3.19	0.04	.044	3.30	-2.39
1.33	-0.74	10.44	2.34	3.03	u.v5	.093	5.40	-3.05
1.00	-3,49	10.00	2.39	3.49	0.05	.38/	5.30	-3.25
1.07	-4.10	17.81	2.00	3.30	0.05	.5/0	5.60	-4.09
1.74	-3,37	17.05	2.70	3.21	0.05	. 307	5.70	-4.27
1.75	-2.43	17.50	4.70	3.17	0.06	.244	3+9U E)u	-4.47
1.60	-1.39	17.50	2.82	3.10	0.05	.517	2,30	-4.87
1.85	-1.12	17,46	2.86	3.05	0.06	.527	6.90	-4.63
1.40	-0.56	17.39	2,40	3.00	0.06	.529	5 - 20	-4.33
1.42	+U.IL	17.37	2.94	2.96	0.06	-212	· · · · ·	-4-13
2.00	0.93	17.32	2.47	2.91	0.96	.510	0.80	-3.61
2.15	0.65	1/.35	3.90	2.89	0.06	.507		-1.39
2.19	0,44	17.33	3.03	2.30	0.00	.504	1.20	-3.18
2.15	1.19	17,35	3,05	2,45	0.06	-502	7.49	-2,91
2.29	1.32	17.37	3.06	2.94	0.05	.501	1.50	-2,70
2.25	1.40	17.35	3,07	2.83	U.05	.309	7.40	-2.42

Energy (eV)	¢1	£2	n	k	im(-1/č)	R(+-0)
2.30	1.46	17.31	3.07	2.82	0,05	.499
2.35	1.51	17.25	3.07	2.81	0.06	.498
2.40	1.48	17.23	3.05	2.81	0.06	.498
2.45	1.37	17.13	3.05	2.01	0.06	.498
2.50	1.25	16.93	3,02	2.80	0,06	447
2.55	1.10	16.68	2.99	2.74	0.00	495
2.60	1.08	16.40	2.96	2.77	0.06	493
2.65	1.03	16.00	2.92	2.74	0.06	419
2.70	1.19	15.53	2.89	2.68	0.06	.442
2.75	1.45	15.16	2.99	2.63	0.07	.475
2.00	1.78	14,87	2.89	2.57	0.07	.468
2.05	2.31	14.65	2.93	2.50	9.07	460
2.90	2.05	14.79	2.99	2.47	0.07	.457
2.95	3.23	15,24	3.07	2.48	0.06	460
3.00	3.07	15.93	3.11	2.57	0.06	.470
05 د	2.62	16.22	3,09	2.63	0.06	.477
3.10	2.09	16.26	3.04	2.67	9.06	482
3.15	1.57	16.03	2.97	2.70	0.06	. 484
3.20	1.24	15.57	2.90	2.68	0.06	482
3.25	1.19	15.02	2.85	2.63	0.07	.476
3.30	1.36	14.60	2.03	2.58	0.07	. 469
3.35	1.53	14.36	2.83	2.54	0.07	.404
3.40	1.76	14.17	2.83	2.50	0.07	.459
3,50	2,31	14.06	2.88	2.44	0.07	.452
3.60	2.45	14.52	2.93	2.48	0.07	. 457
3.70	1,99	14,88	2.91	2.55	0.07	.400
3,00	1.59	14.64	2.86	2.56	0.07	. 467
3.90	1.48	14.31	2.82	2.54	0.07	. 164
4.00	1.60	14.11	2.61	2.51	0.07	.46U
4.10	1.75	14.23	2.84	2.51	0.07	.460
4.20	1.68	14.63	2.86	2.55	0.07	. 466
4.30	1.20	15.11	2.86	2.64	0.07	.477
4.40	0.38	15,36	2.81	2.74	0.07	.489
4.50	-0.65	15.19	2.70	2.82	0.07	.500
4.60	-1.42	14,50	2.56	2.83	0.07	.504
4.70	-1.68	13.66	2.46	2.78	0.07	.501
4.90	-1.57	13.07	2.41	2.71	0.03	.493
4.90	-1.43	12.82	2.39	2.68	0.00	.498
5.00	-1.44	12.81	2.39	2.60	0.04	499
5.10	-1.69	12.06	2.38	2.71	0.08	.493
5.20	-2.09	12.03	2.34	2.75	0.00	.500
5.30	-2.59	12,66	2.27	2,79	0.0H	.508
5.40	-3.05	12.37	2.20	2.81	0.04	.515
5.50	-3.56	11.99	2.12	2,83	0.98	.523
5.60	-4.00	11,45	2.02	2,84	0.00	.530
>. 70	-4.27	10.05	1.92	2.02	0.UA	.534
5.80	-4.49	10.27	1.03	2.90	0.09	-519
5,90	-4.67	9.02	1.74	2.17	0.05	•2+5
6.00	-4.63	8.95	1.65	2.71	0.09	541
6.20	-4.33	7.99	1.54	2.59	0.10	215
7.4V	-4.13	7.26	1.45	2.50	ú.10	. 520
0.30	-3.61	6.11	1.32	2.31	7.12	5.13
00	-1.39	5.54	1.25	2.21	9.13	. 500
r.20	-3.18	5.14	1,20	2.15	9.14	444
7,49	-2,91	4.79	1.15	2.00	9.15	• *e≯\$1}
7.50	-2.70	4.43	1.12	1.99	0.16	.479

4.04

1.08

0.16 1.16

1.8-

474 454

-245-

												,		-
Re Êllê			-246-				Re Ēlīĉ			-267-				
Energy (eV)	εı	εz	n	k	im(-1/€)	R (4=0)	Energy (eV)	εı	£2	n .	k	lm(-1/≷)	R(+=0)	
4.00	-2.14	3,79	1.05	1.80	0.20	. 435	19.40	-0.90	1.94	0.79	1.23	0.42	. 132	
9.20	-1.02	3.57	1.05	1.71	0.22	.411	19.60	-0.88	1.86	0.77	1.21	0.44	. 112	
8.40	-1.53	3.41	1.05	1.62	0.24	. 146	19.00	-0.87	1.70	0.75	1.19	0.45		
9.60	-1.26	3.29	1.06	1.55	0.27	.360	20.00	-0.A5	1.71	0.73	1.18	0.47	. 333	
9.90	-1.01	3.22	1.09	1.4H	0.28	.336	20.20	-0.03	1.65	0.71	1.16	U.48	.333	
9.00	-0.82	3.18	1.11	1.43	0.29	.317	20.40	-0.81	1,59	0.70	1.14	0,50	.332	
9,20	-0.65	3.13	1.13	1.39	0.31	.301	20.90	-0.77	1.48	0.67	1.11	0.53	.312	
9,40	-0.44	3.11	1.10	1.34	0.32	.281	21.20	-0.75	1.38	0.64	1.08	0,56	.334	
9.60	-0.35	3.14	1.10	1.32	0.31	.274	21.60	-0.71	1.20	0.61	1.04	0.60	, 335	
9.30	-0.24	3.11	1.20	1.29	0.32	.264	22.00	-0.69	1.10	0.58	1.01	0.63	.340	
10.00	-0.03	3.10	1.23	1.20	0.32	. 252	22.40	-0.64	1.08	0.55	0.97	0.69	.341	
10.20	0.00	3.14	1.20	1.20	0.32	.240	22.80	-0.58	0.99	0.53	0.93	0.75	-336	
10.40	0.07	3.10	1 20	1.20	0.31	.496	23.20	-0.53	0.91	0.51	0.89	0.62	. 3 3 4	
10.00	0.11	1 29	1.49	1.25	0.31	- 2 4 6	23.60	-0.4/	0.84	0.50	0,95	0.91	. 329	
11 00	0 08	3 31	1 30	1.20	0.30	247	24.00	-0.35	0.78	0.40	0.80	1.01	.319	
11.20	0.04	1.30	1.29	1 28	0.30	244	49.9V 24 JO	-0.35	0.75	0.48	0.76	1.12	. 307	
11.40	-9.01	3.20	1.28	1.20	0 31	252	25.20	-0.30	0.64	- 0.47	0.72	1.23	.295	
11.60	-0.05	3.21	1.26	1.28	0.31	. 252	25 60	-0.24	0.64	0.47	0.68	1.35	.262	
11.80	-0.05	3.12	1.24	1.26	0.32	.249	26.00	-0.15	0.50	0 47	1,00	1.49	+279	
12.00	-0.03	3.05	1.23	1.24	0.33	.244	26.40	-0.10	0.50	0.49	0.01	1.03	- 4 3 3	
12.20	0.00	3.00	1.22	1.23	0.33	.241	26.40	-0.06	0.53	0.49	0.57	1.00	1297	
12.40	0.02	2.95	1.22	1.21	0.34	.237	27.20	-0.02	0.50	0 40	0.54	2.00	100	
12.00	0.05	2.91	1.22	1.20	0.34	.233	27.60	0.02	0.48	0.50	0.49	2.00	103	
12.80	0.07	2.08	1.21	1.18	0.35	.230	20.00	0.06	0.46	0.51	0.45	2.13	176	
13.00	0.11	2.84	1.22	1.17	0.35	.225	29.00	0.14	0.42	0.54	0.39	2.15	.145	
13.20	0.14	2.02	1.22	1.16	0.35	.222	30.00	0.22	0.30	0.57	0.33	1.99	.114	
13.40	0,10	2.79	1.22	1.14	0.36	.210	31.00	0.30	0.35	0.62	0.29	1.66	.086	
13.60	0.21	2.78	1.22	1.13	0,36	.215	32.00	0.37	0.34	0.66	0.26	1.37	.965	
13.80	0.24	2.77	1.23	1.13	0.36	.212	32.50	0.38	0.34	0.67	0.25	1.29	.060	
14.00	0.28	2.77	1.24	1.12	0.36	.209	33.00	0.41	0.32	0.68	0.24	1.19	.054	
14.20	0.32	2.78	1.25	1.11	0.36	-206	34.00	0.48	0.31	0.12	0.21	0.96	.041	
14.40	0.37	2.81	1.27	1.11	0.35	.204	35.00	0.54	0.31	0.76	0.20	0.80	.031	
14.00	0.40	2,89	1.29	1-12	0.34	.206	36.00	0.59	0.31	0.79	0.20	0.71	.025	
14.60	0.36	2.97	1.29	1.15	0.33	.213	37.00	0.64	0.32	0.02	0.19	0.63	.021	
15.00	0.31	3.01	1.49	1.10	0.33	.218	38.00	0.69	0.34	0.85	0.20	0.58	.019	
15.20	0.19	3.00	1.29	1.17	0.33	. 225	39.00	0.74	86.0	0.89	0.21	0.55	.016	
15.50	0 10	3.07	1 26	1.20	0.32	.434	40.00	0.71	0.40	0.08	0.26	0.64	-022	
15,80	0.03	3.08	1.25	1.74	0 32	241	42 00	0,70	0.45	V.6/	0.26	0.05	.023	
16.90	-0.05	1.00	1.23	1 25	0.32	. 249	41.00	0 72	0.45	V.86	0.20	0.04	.022	
Lá.20	-0.14	3.06	1.21	1.26	0.33	.254	44.00	0 71	0.51	0.05	0.27	0.01	.023	
16.40	-0.21	3.02	1.19	1.27	0.33	-259	45.00	4.67	0 54	0.47	0.47	0.07	.025	
15.60	-0.29	2.99	1.16	1.20	0.33	.264	46.00	0.62	0.54	0,00	0.32	0.79	.031	
16.00	-0.30	2.94	1.14	1.29	0.33	.264	47.00	0.60	0.51	0.83	0.31	0 83	.015	
17.60	-0.62	2.71	1.04	1.30	0.35	.291	48.00	0.59	0.50	0.82	0.30	0.84	. 416	
17.00	-0.44	2.90	1.12	1.30	0.34	.275	49.00	0.57	0.49	0.81	9.30	0.86	.017	
17.20	-0.50	2.84	1.09	1.40	0.34	.280	50.00	0.56	0.48	0.80	0.30	0.94	034	
17.40	-0.5n	2.78	1.07	1.30	0.35	.206	51.00	0.54	0.48	0.79	0.30	0.92	040	
17.80	-0.61	2.64	1.01	1.30	0.36	. 296	52.00	0.51	0.47	0.76	0.30	0.94	.944	
19.00	-0.72	2.56	0.99	1.30	0.35	. 300	53.00	0.43	0.46	0.75	0.30	1.05	045	
19.20	-0.76	2.44	0.96	1.30	0.37	. 305	54.00	0.43	0.43	0.72	0.30	1.17	.055	
17.40	-0.4L	2.40	0.93	1.29	0.37	.311	55,09	0.39	0.34	9,69	0.27	1.27	.963	
10.00	-0.04 -0.07	2.32	0,94	1.29	U.J.B	. 516	54.00	0.39	0.32	0.66	1.24	1.24	0.51	
13.30	-0.87	2.23	0.81	1.24	0.19	* \$ <u>{ </u>	57,00	0.38	0.26	0.65	0.20	1.23	.05 *	
19.20	-0.9)	2.13	0.41	1 24	0.41	. 3/3	39,90	U . 5 J	0,21	0.65	0.16	1.05	.455	
47+40	-0.40	2.04		1.20	9.41	. 1 3 1	99+99	0.41	0.15	0.65	9.12	0.43	.050	

2.30

2.35

2.40

2.45

2.50

2.55

n

3.93

3.97

4.00

4.01

4.01

3.96

3.90

3.83

3.74

3.65

3.57

3.51

3.49

3.51

3,53

3.56

3.57

3.57

3.55

3,50

3.44

3.39

3.34

3.20

3.25

3.24

3.24

3.22

3.19

3.13

3.05

2.97

2,88

2.77

2.67

2.55

2.44

2.35

2.25

2.17

2.10

2.02

1,96

1.89

1.04

1.70

1.73

1.67

1.61

1.51

1.42

1.28

1.22

1.16

1.12

1.12

1.08

€2

19.20

19.63

20.36

20.07

21.66

22.02

22.19

22.09

21.83

21.29

20.61

19.90

19.25

19.11

19.12

19.28

19.57

19.94

20.11

20.12

19.93

19.26

18.65

18.38

18.20

10.30

10,74

10.01

18.68

18.09

17.57

16.97

16.29

15.48

14.76

13.36

12.74

12.14

11.60

11.08

10.60

10.13

9.70

9.27

8.82

8.01

7.26

6.08

5.37

5.09

4.67

4.44

4.10

€1 9.48

9.60

9.52

9.31

8.78

8.01

k

2.44

2.47

2.55

2.60

2.70

2.70

2.84

2.00

2.92

2.91

2.88

2.83

2.75

2.72

2.71

2.71

2.74

2.79

2.84

2.80

2.89

2.90

2,88

2.84

2.83

2.81

2.84

2.88

2.94

3.01

3.06

3.11

3.15

3.17

3.18

3.19

3.17

3.14

3.12

3.08

3.04

3.00

2.96

2.92

2.88

2.85

2.81

2,78

2.74

2.64

2.56

2.37

2.28

2.19

2.0×

1.98

1.93

lm(-1/č)

0.04

0.04

0.04

0.04

0.04

0.04

0.04

0.04

0,04

0.04

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0,05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.06

0.06

0.06

0.06

0.06

0.06

0.07

0.07

0.07

0.07

0.08

0.03

0.0R

0.08

0.09

0.09

0.09

9.10

0.12

0.12

0.14

0.15

0.17

0.17

R{#=0}

.4#1

,485

. 492

.447

.505

.519

.514

.516

.517

.515

.511

.505

.497

.494

.493

.494

.497

.502

.506

.509

.510

.510

.508

.503

.501

.499

.502

.507

.513

.520

.525

.532

.539

.544

.548

.553

.554

.555

.556

.555

.555

.554

.553

.552

.551

.550

. 549

.549

.540

.545

.541

.525

.517

.509

.493

. 464

. 463

-248-

Rhenium single crystal with Ēiĉ

D.W. Lynch, C.G. Olson, and J.H. Weaver (unpub)

Energy (eV)	£.,	En	n	k	lm(-1/8)	R(+-0)	2.60	7.16
rueral (cr)	-1	-2			• • •		2.65	6.34
0.10	-1816.64	364.47	4.25	42.83	0.00	.991	2,70	5.52
0.15	-778.04	184.09	3.28	28.08	0.00	.984	2.75	4.87
0.20	-416.01	135.30	3.28	20.66	0.00	.971	2.00	4.46
0.25	-252.76	112.85	3.47	16.27	0.00	.951	2.05	4.32
0.30	-166.75	100.42	3.73	13.44	0.00	.926	2.90	4.62
0.35	-117.68	90.77	3.93	11.54	0.00	.900	2.95	4.93
0.40	-87.19	#1.09	3.99	10.15	9.01	.075	3.00	5.16
0.45	-64.14	75.32	4.17	9.03	0.01	. 846	3.05	5.29
0.50	-49.42	71.64	4.34	8.26	0.01	.021	3.10	5.28
0.55	- 39, 90	68.74	4.45	7.73	0.01	.091	3.15	4.99
0.57	-36.37	67.84	4.51	7.53	0.01	.793	3.20	4.53
0.60	-34.27	67.07	4.53	7.40	0.01	.788	3,25	3.98
0.63	-13.09	66.05	4.52	7.31	0.01	,785	3.30	3.50
0.65	-33.00	64.42	4.44	7.26	0.01	.784	3.35	3.07
0.68	-13.13	61.88	4.30	7.19	0.01	.784	3.40	2.01
0.70	-33.19	58.56	4.13	7.09	0.01	.784	3.50	2.67
0.73	-32.61	54.74	3.94	6.94	0.01	.783	3.60	2,57
0.75	-31.33	50.00	3.77	6.75	0.01	.779	3.70	2.60
0.11	-29.27	47.60	3.65	6.53	0.02	.773	3,80	2.44
0.80	-27.40	44.91	3.55	6.32	0.02	.766	3.90	2.05
0.85	-23.91	40.40	3.39	5.95	0.02	.752	4.00	1.49
0.90	-20.77	36.58	3.26	5.61	0.02	.737	4.10	0.75
0.95	-17.72	33.37	3.17	5.27	0.02	.719	4.20	-0.03
1.00	-14.99	30.65	3.09	4.96	0.03	701	4.30	-0,82
1.05	-12.20	28.40	3.07	4.65	0.03	.678	4.40	-1.64
1.10	-10.00	26.74	3.95	4.39	0.03	.658	4.50	-2.39
1.15	-7.84	25.17	3.04	4.14	0.04	.636	4.60	-3.03
1.20	-5.70	23.97	3.08	3.89	0.94	.613	4.70	-3.70
1.25	-3,85	23.22	3.14	3.70	0.04	.593	4.00	-4.08
1.30	-2.42	22.78	3.20	3.56	0.04	.578	4.90	-4.30
1.35	-1.49	22.43	3.24	3.46	0.04	.567	5.00	-4.64
1,40	-0.98	21.07	3.23	3,30	0.05	.559	5.10	-4.74
1.45	-0.23	20.94	3.22	3.25	0.05	.545	5.20	-4.86
1.50	0.69	20.14	3.23	3.12	0.05	.532	5.30	-4.92
1.55	1.52	19.53	3.25	3.01	0.05	.520	5.40	-4.94
1.60	2.51	10.93	3.29	2.88	0.05	.507	5.50	-4.95
1,65	3.29	18.57	3.34	2.90	0.05	.499	5,60	-4.95
1.70	4.03	18.34	3.38	2,72	0.05	.491	5,70	-4.94
1.75	4.71	18.14	3.42	2.65	0.05	.495	5.80	-4.91
\$.80	5.30	17.99	3.47	2.59	U.05	.480	5.90	-4.91
1.85	5.75	10.05	3.51	2.57	0.05	.479	ó.00	-4,89
1.90	6.27	17.69	3.54	2.50	0.05	.473	6.20	-4.69
1.95	6.92	17.68	3.59	2.46	U.05	.471	ô.40	-4,50
2.00	7.33	17.64	3.63	2.43	0.05	.469	5.00	-3,97
2.05	7.82	17.75	3.09	2.41	0.05	.459	7.09	-3.70
2.10	8.21	17.92	3.74	2.40	9.05	.470	7.20	-3,42
2.15	8.55	18.07	3.78	2.39	0.05	. 471	7.40	-3.04
2.20	0.90	16.23	3.83	2.35	0.04	.472	7.03	-2.67
2.25	9.33	18.57	1.44	2.40	0.04	.476	7.30	-2,55

. .

Re ÊLĉ			-250-				Re Ē⊥ĉ			-251-			
Energy (eV)	εl	ε ₂	n	k	lm(-1/2)	R(4= 0)	Energy (eV)	c 1	€2	n	k	lm(-1/8)	R (+-0)
9.00	-2.24	3.84	1.05	1.83	0.19	.443	19 40	-1 0:		0.74			
8.20	-1.91	3.64	1.05	1.74	0.22	.419	19.40	-1.00	1.0/	0.71	1.25	0.40	.361
8.40	-1.60	3.49	1.05	1.66	9.23	. 397	19.80	-1.04	1.77	0.72	1.23	0.42	. 30.3
8.60	-1.30	3.36	1.06	1.58	0.25	. 372	20.00	-1 01	1.11	0.70	1 . 23	0.45	. 504
6.90	-1.16	3.26	1.07	1.52	0.27	.351	20.20	+0.95	1 54	0.65	1.17	0.43	- 307
9.00	-0.92	3.18	1,09	1.46	0.29	. 327	20.40	-0.92	1.47	0.64	1 15	0.47	4303
9.20	-0.74	3.13	1.11	1.41	0.30	.309	20.40	-0.84	1.35	0.61	1 10	0.53	157
9.40	-0.55	3.09	1.14	1.36	0.31	.290	21.20	-0.76	1.26	0.60	1.06	0.53	349
9.60	-0.36	3.06	1.17	1.31	0.32	.273	21.60	-0.70	1.19	0.58	1.07	0.53	. 342
9.00	-0.17	3.00	1.20	1.27	0.33	.258	22.00	-0.64	1.12	0.57	0.98	0.67	. 336
10.00	-0.41	3.00	1.49	1.29	0.33	- 299	22.40	-0.58	1.06	0.56	0.95	0.72	. 328
10.40	0.10	3 27	1.47	1.22	11 20	• 4 3 9	22.80	-0.55	1.00	0.55	0.92	0.77	. 325
10.40	0.29	3.42	1.35	1 25	0.39	230	23,20	-0.51	0.94	0.53	0.89	0.82	. 122
10.00	0.25	3.53	1.30	1 29	0.28	245	23,60	-0.46	0.88	0.52	0,85	0.89	.317
11.00	0.17	3.60	1.37	1.31	0.28	.253	24.00	-0.42	0.83	0.50	0.02	0.96	. 314
11.20	0.07	3.61	1.36	1.33	0.28	- 259	24.40	-0.38	0.78	0.49	0.79	1.04	309
11.40	-0.02	3.57	1.31	1.34	0.28	.264	24.80	-0.34	0.72	0.49	0.75	1.14	. 303
11.60	-0.03	3.50	1.31	1.34	0.29	.266	25.20	-0.29	0,68	0.47	0,72	1.25	,295
11.80	-0.14	3.42	1.28	1.33	0.29	.266	25.60	-0.25	0.63	0.47	0,68	1.37	.286
12.00	-0.16	3.32	1.26	1.32	0.30	.264	26.00	-0.20	0.60	0,46	0.64	1.51	.276
12.20	-0.14	3.24	1.25	1.30	0.31	.260	26.40	-0.15	0.56	0.46	0.61	1.66	.263
12.40	-0.13	3.18	1.23	1.29	0.31	.257	26.80	-0.11	0.53	0.46	0.57	1.82	,249
12.60	-0.11	3.11	1,23	1.27	0.32	.254	27.20	-0.05	0,50	0.47	0.53	1,96	.231
12.80	-0.10	3.07	1.22	1.26	0.33	.251	27.60	-0.03	0.48	0.48	0.50	2.08	.216
13.00	-0.08	3.02	1.21	1.25	0.33	.248	20.00	0.02	0.46	0.49	0.47	2.17	.190
13.20	-0,07	2.96	1.20	1.23	0.34	.245	27.00	0.10	0.42	0.51	0.41	2,28	-164
13.40	-0.04	2.90	1.20	1.21	0.34	.240	30.00	0.18	0.30	0.55	0 34	2.17	.129
13.60	-0.01	2.06	1.19	1,20	0.35	.236	32.00	0.20	0.35	0.54	0.29	1.03	.097
13.80	0.03	2.42	1.19	1.19	0.36	.231	32.50	0.31	0.33	0.64	0.26	1.47	.072
14.00	0.08	2.78	1.20	1.16	0.36	.225	33.00	0.30	0.33	0.67	0.25	1.37	.065
14.20	0.14	2.76	1.21	1.14	0.36	.219	34.00	0.35	0.32	0.07	0.24	1.27	.060
14.40	0.21	2.76	1.22	1.13	0.36	.214	35.00	0.50	0.31	0.70	0.22	1.03	.047
14.60	0.28	2.70	1.24	1.12	0.36	.210	36.00	0.56	0.30	0.77	0.20	0.00	.030
14.80	0.35	2.84	1.2/	1.12	0.35	.207	37.00	0.61	0.30	0 90	0,19	0.15	.027
15.00	0.38	2.94	1.29	1.14	0.33	.210	39.00	0.67	0.32	0.84	0.19	0.03	.023
15.20	0.35	00.t	1.31	1.17	9.32	.210	39.00	0.73	U.36	0.88	0.21	0.55	016
15.40	0.20	3 1 4	1 . 31	1.20	0.32	.220	40.00	0.70	0.44	0.87	0.25	0.65	021
14 90	V.21	3.41	1 20	1 26	0.31	. 234	41.00	0.69	0.44	0.97	0.25	0.66	.023
15.00	0.03	3.20	1 24	1.20	0.31	- 499	42.00	0.70	0.44	0.87	0.25	0.65	.023
16.20	-0 10	3 20	1 26	1 30	0.31	-431	43.00	0.71	0.46	0.99	0.26	0.65	.023
16.40	-0.25	3 30	1.74	1 33	0.30	- 237	44.00	0.70	0.50	0.88	0.28	0.68	. u26
10.60	-0.16	3.26	1.21	1.35	0.10	280	45.00	0.66	0.53	0.87	0.31	0.74	.931
16.00	-0.49	3.20	1.17	1.37	0.31	. 244	46.09	0.62	0.53	0.04	0.31	0.00	.035
17.60	-0.87	2.85	1.03	1.39	0.32	- 120	47.00	0.59	0.50	0.83	0.31	0.84	036
17,00	÷U.61	3.15	1.14	1.30	0.31	. 297	48.00	0.58	0.49	0.82	0.30	0.45	016
17.20	-0.73	3.07	1.10	1.39	0.31	. 307	49.00	0.55	0.48	0.91	0.30	0.07	037
17.40	-0.82	2.96	1.06	1.39	0.31	. 314	50.03	0,55	0.47	0.40	0.30	0.90	.019
17.30	-0.94	2.75	0.99	1.39	0.33	. 127	51.00	0.53	0.47	0.79	0.30	0.93	.049
19.00	-1.00	2.04	0.95	1.38	0.13	. 13+	52.00	0,50	0.46	0.77	0.30	0.99	.944
18.20	-1.04	2.52	0.92	1.37	0.34	.340	53.00	0.4/	0.45	0.75	0.30	1.05	<u>.</u> 044
1d.40	-1.97	2.41	0.89	1.36	0.35	. 346	54,00	0.43	0.42	0.71	0.29	1.19	.955
18.9U	-1.09	2.25	v.15	1.35	U_36	. 151	55.99 54 ma	0.13	0,37	0.59	9.27	1.27	.060
10.00	-1.10	2.17	U.02	1.33	0.37	. 155	20.00	6 L . U	0.31	9.66 0.77	0.23	1.23	.961
19.00	-1.10	2,06	0.79	1.31	0.34	.351	97.90 53 40	0 30	0.25	V.55	9.29	1+22	-050
19.20	-1*03	1.90	0.70	1.29	0.39	.369	40 AN	17 11	11 14	りょうもい さら	9.16	1,04	.455
							45444	v. 41	V. 10	C0.V	V.17	0.41	.050

Authors	Energy Range	tange Technique	e Technique Temperature (K)		re Semple		le	Data Presentation	Remarks
	(ev)		(K) RT unless specified	Film	X-tal	Bulk	Prep		Os
CHR73	6.2-41.3	m-0		×			Ex	R,n,k,¢1,\$2	table of λ,n,k
WOL Unpl	0.1-40	Refl	4.2 K for hv < 4.4 eV RT for hv > 4.4 eV			×	EP	R; KK: n,k,c1,c2	absorption measured by calorimetry for $h\nu < 4.4$ eV, reflectivity measured for $h\nu > 4.4$ eV with synchrotron radiation
-252-									
l l		l	1	ll					

-255-

-254-

Fig. 92 c2 for polycrystalline Os reported by LOW (unpub).

-257-

-258-

Polycrystalline Osmium

D.W. Lynch, C.G. Olson, and J.H. Weaver (unpub)

							2.95	0.48	37.75
Foeray (eV)	£1	67	n	k	im(-1/₹)	R(+-0)	3.00	+2.97	35.62
Luci 31 (er)	•	-			-		3.05	-4.90	32.41
9.10	-2506.77	409.56	4.09	50.23	0.00	.994	3.10	-5.38	29.52
0.15	-1120.81	195.24	2.90	33.60	0.00	.990	3.15	-5.26	27.42
0.20	-624.50	122.01	2.44	25.11	0.00	995	3.20	-4.85	26.04
0.25	-394.03	93.75	2.35	19.99	0.00	.977	3.25	-4.89	25.24
0.30	-268.65	13.93	2.23	15.54	0.00	.969	3.30	-5.17	24.42
0.35	-192.30	65.00	2.33	14.96	0.00	.955	3.35	-5.61	21.43
0.40	-145.71	60.31	2.45	12.32	0.00	940	3.40	-5.79	22.18
0.45	-115.54	53.62	2.43	11.02	0.00	.927	3.45	-5.50	20.96
0.50	-93.52	47.99	2.41	9.97	0.00	.913	3.50	-5,11	20.09
0.55	-77.73	42.47	2.33	9.12	0.01	901	3.60	-4.35	19.02
0.64	-65.21	37.02	2.21	8.37	0.01	.890	3.70	-3.88	18.43
9.65	-54.58	12.33	2.11	7.68	0.01	.877	1.80	-1.55	
J. 70	-45.50	28.50	2.02	7.04	0.01	.862	3, 90	=1.51	18 03
0.75	-37.69	25.68	2.00	6.46	0.01	.842	4 - 90	-1 90	10.03
0.40	-31.44	23.86	2.00	5.95	0.02	.820	4.10	-4-62	17 96
0.45	-26.30	22.11	2.01	5.51	0.02	.796	4.20	-5.46	17 43
6.40	-21.89	20.70	2.03	5.10	0.02	.769	4.30	=6.15	16 57
0.95	-18.24	19.45	2.05	4.74	0.01	.742	4.10	-6.94	15 41
1 00	-15 08	14 39	2 04	4 41	0.03	712	4.50	-0.04	14 70
1.05	-12 41	17 42	2 12	4 11	0.04	692	4.50	-6.91	17.20
1 10	-10 13	16 50	2 15	3 84	0 04	451	4.00	-6 73	13.31
1.15	-17.15	15 58	2 17	3 60	0.05	621	4 90	-0.12	14.30
1 20	-6.63	14 43	2 16	3 35	0.05	507	4.00	-0.62	11.70
1.25	~ 6.33	13 31	2.19	3.04	0.00	532	5 00	~0,04	11.44
1 30	-7.45	12 43	2 25	2 7 7	0.07	506	5 10	-6.71	10.02
1.30	-2.59	11 45	2 35	2 44	0.00	.300	5.10	-6.61	19.12
1.30	-0.51	11.05	2 40	2.10	0.07	4430	5 30	-6.31	9.48
1.40	1.43	11.10	3 46	2.23	0.05	. 117	5,30	-0.34	7.93
1.40	3.00	10.04	2.05	2.01	0.09	. 304	5.40	-0.17	8.44
1.50	4.74	10.24	4.04	1.00	0.03	. 30 9	3.30	-3.99	1.97
1,33	7 6 3	10.10	2.77	1.70	0.07	*10 0 C C	5.70	-7.91	7.32
1.37	7.04	10,40	3.21	1.03	0.06	.370	5.40	-3.39	7.12
1.00	0.0/	14 30	3.30	1.66	0.06	+ 179	5 00	-5.40	0.70
1.92	7.70	11.00	3.37	1.00	0.05	411	2.3U	-3,29	0.43
1.75	14.00	14.74	3.76	1.40	0.03	- 412	5.00	-4 70	0.12
1.75	19.89	13.34	3.70	1.00	0.04	.414	5.20	-4.70	5.44
1.90	19.99	13.04	3.70	1.03	0.04	. 4 4 3	0.40		4.43
1 00	11.97	13.00	3.77	1.01	0.04	. 44.2	5.50	-3.09	4.4/
1.90	11.50	17.12	3.01	1.75	0.04	.418	0.8U	-3,48	4.10
2 40	12.44	12.93	3,80	1.07	0.04	. 415	7.00	-3.11	3.00
2.00	13.29	12.79	3.90	1.54	0.04	4418	7.20	-2.19	3.72
2.05	14.44	12.43	4.11	1.50	0.03	4 9 4 9	7.40	-2.40	5.24
2.10	15.75	13.07	4.20	1.24	0.03	.432	7.09	-2.14	3.09
2.10	17.15	13.77	4.44	1.00	0.03	+ 4 4 4	7.80	-1-43	2.94
4.69	13.31	14.66	4.33	1.02	0.03	• • • • •	8.00	-1.59	2.92
2.23	14.21	15.79	4.07	1.70	0.01	.45/	8=29	-1-15	2.70
4.39	20.29	17.03	4.54	1.70	9.92		3.49	-1.95	2.02
2.37	21.20	13.64	4.91	1.41	0.02		a.o.)	-1.48	2.57
2.49	21.94	20.52	2.10	2.01	0.02	. 300	5.34	-0.59	2.53
2.+3	27.39	22.47	5.22	2.19	0.02	. 529	9.00	-9.50	2.50

0s

Energy (eV)

2.50

2.60

2.10

2.60

2.90

€1

22.25

20.82

17.25

11,44

4.11

-259-

€2

25.14

30.22

34.85

30.35

38.90

л

5.28

5.36

5.30

5,07

4.65

4.37

4.05

3.73

3.51

3.37

3.29

3.23

3,15

3.04

2.93

2.84

2.79

2.75

2.73

2.73

2.73

2.71

2.64

2.53

2.39

2.24

2.11

2.01

1,94

1,88

1.82

1.74

1.65

1.58

1.52

1.46

1.41

1.36

1.32

1.27

1.24

1.20

1.13

1.05

1.01

0.97

0.95

0.92

0,41

6.90

0.90

0.91

9.91

0.94

). 97

0.98

1.01

k

2.30

2.02

3.29

3.78

4.14

4.12

4.40

4.34

4.21

4.07

1.96

3,91

3.44

3.85

3.79

3.69

3.59

3.45

3.37

3.32

3.31

3.34

3.40

3.44

3.47

3.44

3.38

3.31

3.24

3.19

3.15

3.12

3.07

3.00

2.44

2.48

2.63

2.77

2.71

2.65

2.60

2.54

2.44

2.31

2.21

2,11

2.09

1.41

1.41

1.72

1.51

1.5

1,48

1.44

1,14

1.24

1.24

lm(-1/2)

0.02

0.02

0.02

0.02

9.03

0.03

0.01

0.01

0.03

0.04

0.04

0.04

0.04

9,04

0.04

0.94

0.05

4.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0,06

0.06

0.06

9.06

0.07

0.07

9.07

0.07

U.07

0.08

0.08

0.10

0.19

9.19

0.09

0.19

0.11

0.12

1.13

3.14

1.14

0.17

0.19

0.27

9.24

9.27

0.39

0.13

9.35

0.37

0.39

R(#=0)

.532

.557

.540

.603

.674

.032

.634

.638

.631

. 622

.014

.611

.610

.610

.607

.600

.591

.577

.56d

.562

.501

.555

.575

.584

.591

.599

.600

.599

.544

.592

. 593

.546

.549

.597

.595

.543

.591

.589

.595

.592

.57H

.575

.571

- 5-2

.544

.532

.514

.447

.415

.451

.42-

.4:)

. 175

. . . .

.31-

. 295

0s			-260-				0s			-261-			
Energy (eV)	εj	€2	n	k	lm(-1/č)	R (#=0)	Energy (eV)	e1	£2	n	k	lm(-1/8)	R (4=0)
9.20	-0,34	2.49	1.04	1.19	0.40	.255	20.40	-0.31	2,03	0.93	1.05	0.49	.240
9.40	-0.18	2.49	1.08	1.16	0.40	.238	29.60	-0.32	1.95	0.91	1.0%	0.50	.241
9.60	-0.00	2.52	1.10	1.14	0.40	.229	20,80	-0.32	1.60	0,99	1,05	0.52	.240
9.80	0.04	2.52	1.13	1.11	0.40	.217	21.00	-0.31	1.01	0.07	1.14	0.54	.238
10.00	0.14	2.54	1.16	1.10	0,39	.209	21.20	-0.31	1.75	0.86	1.12	0.55	.237
10.20	0.23	2.57	1.19	1.00	0.39	. 203	21.60	-0,30	1.64	0.03	0.19	0.59	.235
10.30	0.28	2.60	1.20	1.08	0.38	.201	22.00	-0.28	1.55	0.80	0.16	0.63	.230
10.40	0.32	2.63	1.22	1.09	0.37	.200	22.40	-0.25	1.46	0.70	0.93	0.66	.226
10.50	0.34	2.68	1.23	1.09	0.37	.201	22.80	-0.22	1.39	0.77	0.90	0,70	.220
10.60	U. J4	2.72	1,24	1.10	0.36	.203	23.20	-0.21	1.33	0.75	0.88	0.74	.217
10.80	0.32	2.70	1.25	1.11	0.36	.206	23.69	-0,18	1,27	0.75	0.86	0.77	.211
11.00	9.20	2.01	1.24	1.13	0.35	.213	24.00	-0.17	1.22	0.73	0.84	0.80	,209
11.20	0.20	2.81	1.23	1.14	0.35	+217	24.40	-0.15	1.17	0.72	9.82	0.14	.207
11.40	0 10	2.13	1.17	1.15	0.30	+243	24.00	-4.14	1.11	0.70	0.80	0.10	.205
11.80	0 12	7 55	1 1 5	1.12	0 30 V 30	.210	25.20	-0.12	1.00	0.09	1.11	0.10	100
12.00	0 15	2 49	1 15	1.10	0.40	1411	25.60	-0.11	1,00	0.0/	1.75	V + 1 9 1 05	105
12.20	0.19	2.41	1.14	1 66	0 41	199	20.00	-0.05	0.95	0.00	V.72	1.05	100
12.40	0.25	2.36	1.14	1.03	0 47	101	20.1V 36 An	-0.03	0.87	0.63	0 66	1.19	183
12.60	0.29	2.34	1.15	1.02	0.41	196	20.00	-0.03	0.04	0 65	0.62	1.24	.165
12.90	0.32	2.32	1.15	1.01	0.41	.183	28.00	0.06	0.76	0.64	0.59	1.30	.156
13.00	0.36	2.29	1.16	0.99	0.43	.178	28.40	0.09	0.73	0.64	0.57	1.35	.148
13.20	0.40	2.28	1.16	0.98	0.43	.174	28.80	0.12	0.71	0.65	0.55	1.37	.140
13.40	0.42	2.27	1.17	0.97	0.13	.172	29.20	0.14	0.69	0.65	0.53	1.40	1 1 4
13.60	0.44	2.27	1.17	0.97	0.12	.170	29.60	0.16	0.66	0.65	0.51	1.42	.128
13.80	0.46	2.26	1.18	0,96	0.12	.169	30.00	0.19	0.64	0.65	0.49	1.43	.121
14.00	0.45	2.26	1.17	0.96	0.43	.169	31.00	0.22	0.59	0.65	0.45	1.48	.111
14.20	0.44	2.23	1.17	0.96	0.43	.168	32.00	0.27	0.54	0.66	0.41	1.47	.095
14.40	0.45	2.19	1.16	0.94	0.44	.165	33.00	0.33	0.50	0.68	0.37	1.39	.079
14.60	0.47	2.15	1.15	0,93	0.44	.161	34.00	0.38	0.47	0.70	0.34	1.29	.068
14.00	0.50	2.11	1.16	0.91	0.45	.156	35.00	0.42	0.45	0.72	0.31	1.18	.057
15.00	0.55	2,09	1.16	0.90	0.45	.151	36.00	0.47	0,43	0.74	0.29	1.05	.049
15.20	0.59	2,08	1.17	0.89	1.45	.140	37.00	0.51	0.42	0.77	0.27	0.96	.040
15.40	0.63	2.07	1.18	0.87	5.44	-144	38.00	0.55	0.42	0.79	0.26	0.07	.035
15.00	0.70	2.07	1.20	0,96	C.43	-140	39.00	0.59	0.41	0.81	0.26	0.80	.031
15.00	0.70	5.03	1.22	0.86	0.42	+130	40.00	0,64	0.43	0.84	0.26	0.72	,02h
16 20	0.00	2.10	1.40	0.07	0.41	.140							
16 40	0.03	2 20	1.20	0.65	0.40	.142							
16.60	0.80	2.27	1.20	0.90	0.39	4147							
16.80	0.77	2.40	1.29	0 94	0.30	.134							
17.00	0.72	2.45	1.28	0.95	0.30	162							
17.20	0.68	2.48	1.27	0.97	0.37	167							
17.40	0.63	2.52	1.27	0.99	0.37	-172							
17.60	0.56	2.55	1.26	1.01	0.37	179							
17.00	0.49	2.56	1.24	1.03	0.30	-184							
18.00	0.42	2,57	1.23	1.04	0.38	199							
18.20	0.35	2,57	1.21	1.06	0.38	194							
18.40	0.27	2,56	1.19	1.08	0.39	200							
10.60	0.14	2.54	1.17	1.09	0.39	.205							
14.40	9.11	2.51	1.14	1.10	0.40	.210							
19.00	0.95	2.46	1.12	1.10	0.41	.214							
19.20	-0.02	2.42	1.10	1.10	0.41	.214							
19,40	-9.98	2,37	1.07	1.11	0.42	.223						•.	
19.60	-0.13	2.32	1.05	1.11	0.43	. 227							
19.80	-0.19	2.20	1.02	1.11	0.44	.231							
20.20	-0.25	2.11	0,96	1.10	0.47	.234							

Fig. 94 Survey of available data for in

Authors	Energy Range	Technique	Temperature	Sample		Sample		Data Presentation	Remarks
	(64)		(K) RT unless specified	File	X-tal	Bulk	Prep		ir
8a66	0.6-2.6	Ellips	300-2400			×	Heat	n,k	filaments at various temperatures
нјн67	6.2-24.8	m-0		×			Ε×	R,n,k	various substrate temperatures
SPS67	~7.7-41	Trans, Refl		×			Ex	R,T	laser-svaporated films
HRS69	35-300	Trans		×			Ex	μ	optical absorption measurements with synchrotron radiation
Hu71	n6.3-41	Ref1		×			Ēx	R	
KNN72	0.08-4.08	Ellips	77, 295			×	Ex	n,k,εլ,ε ₂ ,σ	MP and annealing at ~925 K ~10 ⁻⁶ Torr
We75									discussion paper
WOL77	0.2-40	Rafl	4.2 for hv < 4.4 eV 300 for hv > 4.4 eV			×	Ex	R; KK: $\varepsilon_1, \varepsilon_2, \sigma$, im (ε^{-1}) , im $(\varepsilon^{+1})^{-1}$	absorptivity measured by calorimetry for $h\nu < 4.4$ eV, reflectivity measured for $h\nu > 4.4$ eV with synchrotron radiation, sample bolled in aqua regia, heated in vacuo $\sim 10^{-7}$ Torr
61 Unp) -?92 -	∿1-25	m-0				×	Heat	R,£1,£2,n,k,Im(& ⁻¹), Im(£+1) ⁻¹	stud ies done at 2 x 10 ⁻⁹ Torr

-263-

Fig. 95. Reflectivity of ir. —— WOL77; ↔→ HJH67; oco Hu71; ∆∆∆ GI (unpub); eaesPS67; xxx Ba66; — - — MNH72; The results of HJH67 show the effect of substrate temperature on the vuv reflectivity.

-264-

-265-

Fig. 97 c2 for Ir. ---- WOL77; +++ GI (unpub); xxx Ba66; --- KNN72; eee and goo HJH67.

-267-

-366-

Iridium

publication by J.H. Weaver, C.G. Olson, and D.W. Lynch in Phys. Rev. 8 $4115\ (1977)$ based on the following tabulation

F. (11)							5.10	-4.09
thergy (eV)	E1	£2	n	k	lm(-1/ē)	R(4= 0)	5.20	-3.85
							5.30	-3.61
0.10	-2863.28	3454.30	28.49	60.62	0.00	.975	5.40	-3.37
0.15	-1803.22	1383.59	15.32	45.15	0.00	.973	5.50	-3.14
0.20	-1154.96	694.50	9.69	35.34	0.00	972	5.60	-2.94
0.25	-784.80	194.84	6.85	28.84	0.00	969	5.20	-2 74
0.30	-561.50	250 49	5 16	24 25	0.00	967	5 90	-2 64
0 15	-415 50	170 77	4 11	21.43	0.00	064	5.00	-2.34
0.40	-314 40	123 53	3 49	10 04	0.00	.794	5.90	-3.35
0 45	-341 00	123,33	2.94	16.00	0.00	. 900	9.00	-2.40
0 60	-100 61	90.30	3.03	15.82	0.00	. 934	6.10	-2.09
0.50	-100.07	63.07	2.70	14.00	0.00	.944	0.20	-1.92
0.10	-120.33	54.50	2.19	11.58	0.00	.925	6.30	-1.70
V./V	-01.00	57.20	2.93	9.78	0.01	.895	5.40	-1.64
0.80	-04.1/	54.12	3.14	8.61	0.01	.062	6.50	-1.49
0.90	-51.92	50.21	3,19	7.88	0.01	.840	6.60	-1.37
1.00	-43.51	46.03	9.15	7.31	0.01	.022	6.70	-1.23
1.10	-37.61	41,59	3.04	6.04	0.01	.808	6.80	~1,10
1.20	-32,32	37.96	2.96	6.41	0.02	.791	6.90	-0.97
1.30	-28.72	34.63	2.85	6.07	0.02	.779	7.00	-0.87
1.40	-25,51	31.26	2.72	5.74	0.02	.767	7.10	-0.74
1.50	-22.05	28.53	2.65	5.39	0.02	.750	7.20	-0.64
1.69	-18.66	27.21	2.69	5.08	0.02	.728	7.30	-0.52
1.70	-17.00	26.46	2.69	4.92	0.03	.716	7.40	+0.41
1.80	-16.15	25.36	2.64	4.01	0.03	.710	7.50	-0.33
1.90	-15.34	24.06	2.57	4.68	0.03	.704	7.60	-0.25
2.00	-14.68	22.84	2.50	4.57	0.03	699	7.70	-0.12
2.10	-14.33	21.53	2.40	4.49	0.03	697	7.80	0 04
2.20	-13.93	20.06	2.24	4 10	0 03	695	7 90	0.04
2.30	-13.42	18 60	2 19	4 26	0.04	407	8 40	0.13
2.40	-12.84	17 11	2 07	4.14	0.04	- 474	9.10	0.44
2.50	-12.07	15 79	1 0.0	4 00	0.04	.007	9.10	0.31
2.60	-11 23	14 74	4 . 79	2.00	0.01	.002	0.20	0.39
2.70	-10 53	13 49	4 95	3.00	0.04	.0/3	9.30	0.40
2 90	-0 70	13.02	1.03	3.73	0.05	.003	8.40	0.52
2 00	-9.19	13.07	1.01	3.01	0.05	.035	8.50	0.60
2.90	-0.36	12.47	1.//	1.21	0.05	.045	· B. 60	0.65
3.00	-0.70	11.60	1.73	3.43	0.05	.640	8.70	0.71
3.10	-6.34	11.23	1.68	3,35	0.06	.635	8.90	0.76
3.20	-1.91	10.56	1.62	3.26	0.06	.629	8.90	0.02
3.30	-1.49	9,90	1.57	3.15	0.06	.621	9.00	0.89
3.40	-6.94	9.31	1.53	3.05	0.07	.610	9.10	0.93
3.50	-6.31	9.91	1.50	2.93	0.07	.595	9,20	0.96
3.60	-5.57	0.55	1.52	2.81	0.00	.573	9.30	0.99
3.70	-4.97	8.54	1.57	2.72	0.09	.553	9.40	1.02
3.80	-4.64	0.62	1.61	2.69	0.09	.541	9.50	1.05
3.90	-4.43	8,73	1.64	2.67	0.09	.535	9.60	1.00
4.00	-4.40	0.91	1.64	2.50	0.09	.535	9,70	1.09
4.10	-4.64	8.75	1.62	2.70	0.09	.541	9,80	1.09
4.20	-4.84	9.52	1.58	2.71	0.09	.549	9.90	1.08
4.30	-5.02	9.17	1.51	2.70	0.09	.556	19.00	1.07
4.40	-5.10	7.17	1.45	2.00	0.09	.561	10.20	1.01
4.50	-5.16	7.28	1. 17	2 65	0.00	567	10.10	D 05
			* * * * *	4.03	0.07	* 307	14140	v, 33

Energy (eV) El	¢2	 n	k	(~1/č)	R(4=0)
4.60	-5.06	6.84	1.31	2.60	0.09	.567
4.70	-5.04	6.36	1.24	2.50	0.10	.572
4.80	-4.83	5.87	1.18	2.49	0.10	.570
4.90	-4.57	5.49	1.13	2.42	0.11	.564
5.00	-4.34	5.16	1.10	2.35	0.11	559
5.10	-4.09	4.87	1.07	2.29	0.12	.551
5,20	-3.85	4.61	1.04	2.22	0.13	.543
5,30	-3.61	4,38	1.02	2.15	9.14	.533
5,40	-3,37	4.19	1.00	2.09	0.14	.522
5.50	-3.14	4.02	0.99	2.03	0.15	.510
5,60	-2.94	3.06	0.98	1.98	0.16	.499
5.70	-2.74	3.71	0.97	1.92	0.17	438
5.80	-2.54	3.60	0.96	1.06	0.19	.474
5.90	-2.37	3.52	0.97	1.82	0.20	.461
6,00	-2.26	3.39	0.95	1.78	0.20	.454
6.10	-2.09	3,27	0.94	1.73	0.22	.441
6.20	-1.92	3.17	0.94	1.68	0.23	.427
6.30	-1.70	3.08	0.94	1.63	0.24	.414
6.40	-1.64	2.99	0,94	1.59	0.26	.401
6.50	-1.49	2.92	0.95	1.54	0.27	.307
6.60	-1.37	2.84	0.94	1.50	0.29	.375
6.70	-1.23	2.77	0.95	1.46	0.30	.360
6.80	~1,10	2.71	0.95	1.42	0.32	.345
6,90	-0.97	2.66	0.96	1,38	0.33	.330
7.00	-0.87	2.61	0.97	1.34	0.35	.319
7.10	-0.74	2,56	0,98	1.30	0.36	.302
7.20	-0.64	2.52	0.99	1.27	0.37	.290
7.30	-0.52	2.47	1.00	1.23	0.39	.275
7.40	-0.41	2.45	1.02	1.20	0.40	.262
1.50	-0.33	2.42	1.03	1.18	0.41	.252
7.00	-0.25	2.3/	1.01	1.14	0.42	.241
7.74	-0.12	2.31	3.05	1.10	0.41	.225
7.00	0.04	2.30	1.00	1.06	0.44	.208
6 40	0.13	2.32	1.11	1.05	0.43	.201
8 10	0.22	4.34	4 45	1.03	V.43	.191
8.10	0.31	2.34	1.10	1.01	U.42	-145
8 30	0 46	2.33	1.10	1.00	0.41	+179
8.40	0.52	2 39	1.40	0.77	0.41	175
8.50	0.60	2 30	1 24	0.90 A 67	0.40	+1/1
8.60	0.65	2.41	1.26	0.97	0.37	164
8.70	0.71	2.4	1.27	0.95	0.39	162
6.80	0.76	2.45	1.29	0.95	0.30	160
8.90	0.82	2.47	1.31	0.94	0.36	150
9.00	0.89	2 50	1.33	0.94	0.36	157
9.10	0.93	2.54	1.35	0.94	0.35	159
9.20	0.96	2.58	1.36	0.95	0.34	159
9.30	0.99	2,62	1.30	0.95	0.33	160
9.40	1.02	2.65	1.39	0,95	0.33	.151
9.50	1.05	2.69	1.40	0.96	9.32	.101
9.60	1.00	2.74	1.42	0.97	Ú.32	.157
9,70	1.09	2,60	1.43	0.93	0.31	155
9.80	1.09	2.65	1.44	0 94	0.31	169
9.90	1.08	2.39	1.44	1.00	0.30	.172
19.00	1.07	2,94	1.45	1.01	0.30	.175

3.03

3.07

1,45

1.44

1.04

1.07

0.30

9.30

.182

.187

-269-

Authors	Energy Range	Technique	Temperature		S	amp	1#	Data Presentation	Remarks
_=	(67)		(K) RT unless specified	FIIm	X-ta)	Bulk	Prep		Pt
5a39	2.6-27.6	Ref1		×			Ex	R	
HT59	5.6-21.2	Ref1		×			Ex	R	
MC61	6.2-24.8	Trans, Refl		×			In	R	
JMC63	5.6-24.8	Refi		×			In	R,n, and k at $\lambda = 584,735,1216$ Å	substrate temperature 373 K
DH64	0.03-5.6	Refl	8 8 8	×			Ex	R	
Ba66	0.6-2.6	Ellips	300-1900			x	Heat	n,k	fllaments at various T
LT66	0.06-0.25	Ellips				х	MP	ε ₂ /λ,ε ₁	
LTA66	0.1-3.5	Ellips				×	MP	ε2/λ,ε1	
Le67	<4	Ellips				x	MP	ε2/λ	data from LT66 and LTA66
JCF68	~78-~506	Trans		x			Ex	¥/0	soft x-ray absorption
YSH68	0.06-21.2	Refl, m∽θ		×		i	Ex	R; KK: ¢1,¢2,µ, Im(¢ ⁻¹)	table E,R(0)
HRH69	6.2-12.4	Refl		×			Ex	R	varied substrates, substrate T, and thickness
Ro70	~25-~170	m-0		×			Ex	R,n,µ	
Hu71	6.2-41.3	Ref1		x			Ex	R	
JPT72	~0.08-~0.48	Refl	•			×	Ex	R	

	R (+-0)	.193	.209	.206	.208	.203	.206	502.	.199	141.					9714			129	.127	161.	.140	154	.16ô	.176	.197	.197	. 205	.210	.215		777 ·		.228	. 223	.219	.209	.290	.192	.181	- 1 7 4	-156	.158	.151	941.	.145		.11,	160.	.059 	440.	¥60.	
	lm(-1/E)	0.30	0.30	0.31	0.32	0.33			16.0									0.42	0.41	66.0	0.38	0.37	0.36	0.39	0+0	0.41	6 7 ° 0	0.46	0.49			67 O	0.10	0.76	0.83	0.90	0.96	1.03	1.09	1.15	1.20	1.24	1.29		1.38	54.1	24.1	1.60	1.25	1.12	68.0	
	¥	1.09	1.12	1.13	1.14	[1.1]	21-1	1.10	1.08		10.1				18.C			0.82	0.82	0.83	0.67	0.93	0.97	1.00	1.03	1.05	1,06	1.05	1.04			90.06	0.92	0.87	0.83	0.79	0.76	0.72	0.69	0.66	0.03		55°0		0.55					F 7 * 0	77.0	
-270-	E	1.43	1.41	1.38	1.34	1.31	87.1				21.1 2		1 . 1 7		61.1	1.20	1.21	1.23	1.25	1.28	1.30	1.30	1.27	1.24	1.20	1.15	1.10	•0• · ·	66.0			0.79	0.76	0.73	0.70	0.69	0.68	0.67	0.67	0.66	60°0				- 0 - C		70.0		3 ° ° °		6/* 0	
	62	3.12	3.15	3.12	3.05	07.7 1			10.7				 2.07	2.04	2.01	2.00	2.01	2.01	2.04	2.13	2.26	2.40	2.47	2.48	2.47	2.42	2.32	2.14 2.55	60°7		1.66	1.52	1.30	1.27	1.17	1.09	1.02	0.96	0.92	18.0	50°0		0.10		0.11			+ • • •	71°0		6.1	
	٤ļ	0.87	0.75	0.62	0.51				97 - 0 97 - 0			1.46	 0.59	0.64	0.70	0.75	0.79	68.0	0.89	0.94	0.93	0.83	0.67	0.54	0.38	12.0		50.0-			-0.26	-0.28	-0.26	-0.23	-0.20	-0.16	-0.12	-0.08	-0.03	10.0-					11-0			87.0)		fc.V	
<u>-</u>	Energy (eV)	10.60	10.80	11.00	11.20	11.40	10.11	00.11	12 40		00.21	09 01	14.40	14.80	15.20	15.60	16.00	16.40	16.80	17.20	17.60	18.00	18.40	16.80	19.20	19.60	20.00		21.50	22 00	22.50	23.00	23.50	24.00	24.50	25.00	25.50	26.00	00.02	21 EQ		20 50	29,00			00.00				00 UT		

Fig. 99 Survey of available data for Pt

Authors	Energy Range	Tachnique	Temperature	ľ	S	e mç	le	Data Presentation	Remarks					
	(87)		RT unless specified	Fi Im	X-tal	Rulk	Prep		Pt					
KNN72	0.17-4.7	Ellips	295, 77			×	Ex	n,k,R,ɛ1,ɛ2,σ	MP and annealed ~1025 K, 10 ⁻⁶ Torr					
L172	6.2-31	m-0		×			Ex	$R,n,k,\varepsilon_1,\varepsilon_2,lm(\varepsilon^{-1})$						
SR72	3-50	Refl		×			Ex	R; KK: $\varepsilon_1, \varepsilon_2, im(\varepsilon^{-1})$ Im $(\varepsilon^{+1})^{-1}, \mu$						
Aks74	0.12-1.24		373-773					e _N	emissivity					
HH74	6.2-82.7	Refl		×			Ex	R	substrate temperature 573 K					
HSH74			1100-1800					ε at λ = 6450 Å, λ = 5460 Å	emissivity					
WG74	2-~120	Trans		×			Ex	КК: μ	energy loss spectroscopy, then KK					
We75	0.1-30	Refl	4.2			×	EP	R; KK: ε ₂	sample boiled in auga regla; absorptivity measured by calorimatry for hv < 4.88 eV					
ST77	0.05-0.1	Ellips	295		x		MP	ε ₂ /λ,ε ₁						
HAH79	5.6-82.7	m-8		×			Ex	$R,n,k,\varepsilon_1,\varepsilon_2,im(\varepsilon^{-1})$	substrate temperature 313, 573 K; ∿10 ⁻⁵ Torr					
DHW80	0-120	Trans, Refl		×	x	×	In	μ	electron loss spectroscopy and optical					
-272-	· ·													

Fig. 100 Reflectivity of Pt. --- We75; xxx KNN72; --- SR72; --- DH64; 000 YSH68; eee JHC63; --- HAH79.

-275-

-274-

€2 for Pt. — — HAH79. Fig. 103 - Wa75; --- SR72; XXX KUN72; +++ L172; 000 YSH68;

€1 for Pt. — — HAH79. -- We75; --- SR72; xxx KNN72; +++ L172; 000 YSH68;

	G. Hass	and W.R. Hun	ter in the VUV	. кеv. В <u>11</u> , based on the	1416 (1975) e foilowing	using resul tabulation	ts of
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	inergy (eV)	εı	€2	n	k	lm(-1/č)	R(+-0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,10	-1825.31	1181.84	13.21	44.72	0.00	. 976
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.13	-1250.94	728.18	9,91	36.73	0.00	.974
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V.15	+903,90	509.65	8.18	31.16	0.00	969
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.17	-691.50	369.54	6 79	27.16	0.00	966
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.20	-538.86	262.03	5.90	23.45	0.00	962
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.22	-432.56	224.77	5.24	21.45	0.00	901
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.25	-354.25	182.48	4.70	19.40	0.00	954
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.28	-293.87	149.05	4.24	17.66	0.00	440
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.30	-245.74	126.85	3.92	16.16	9.00	945
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.32	-208.49	106.27	3.57	14.88	0.00	041
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.35	-175.95	89.67	3.28	11.66	0.00	- 241
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.38	-147.76	75.96	3.03	12 53	0.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.40	-121.61	63.92	2.81	11.18	0,00	• 9 3 9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.43	-96.56	59.91	2.92	10 25	0.00	.722
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.45	-77.61	56.35	3 0 3	9 31	0.00	.993
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.47	-59.29	in.47	3 36		0.01	.672
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.50	-44.21	60.25	3 41	7 74	0.01	.850
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.52	-36.30	63.70	4 30	7.40	0.01	- 013
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.55	-30.02	65.46	4.30 A 50	7.40	0.01	. / • 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.57	-23.88	67 00	4.96	1.14	9.01	.///
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.60	-19-15	60 26	3.00	0.84	0.01	.762
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.63	=16.36	71 66	2.13	0./5	0.01	.753
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.65	-13 90	72 63	3.34	6.70	0.01	.749
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.68	-13 26	75.03	3.34	0.00	0.01	.746
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.70	-14 07	10,10	J. 00	0./3	0.01	.748
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.73	-16 09	70.03	5./1	6.81	0.01	.751
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.75	-18 26	70.03	2.01	6.95	0.01	.756
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.17	-10.20	75.10	5.57	7.02	0.01	759
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.80	-21 44	70.02	3.44	7.04	0.01	.761
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.42	-22,42	19.74	2.31	7.04	0.01	.752
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.02	-22.93	14.51	5.17	7.01	0.01	.763
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.05	-34 14	/ /	5.05	6.98	0.01	.763
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00	-24.10	64.29	4.91	6.95	0.01	.764
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.30	-25.90	65.89	4.77	6.91	U.01	.765
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 00	-20.09	61.02	4.50	6,77	0.01	.761
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.00	-25.79	20.51	4.25	6.62	0.01	.152
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.03	-23.29	51,96	4.03	6.44	0.02	.75R
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.10	-24.11	48.15	3.06	6 24	0.02	.753
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.13	*23.29	44.99	3.70	6.08	0.02	.719
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.20	-22.48	42.02	3.55	5.92	0.02	.740
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.30	-20.61	30.41	3.29	5.61	0.02	.736
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.40	-18.00	32.92	3.10	5.32	0.02	.725
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.34	-17.23	29.51	2.92	5.07	0.03	.710
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.00	-15.79	26.76	2.76	4.84	0.03	. 705
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.79	-14.56	24.32	2.63	4.63	0.03	
1.90 -12.48 20.33 2.34 4.26 0.04 675 2.00 -11.24 18.73 2.30 4.07 0.04 664 2.10 -10.37 17.44 2.23 3.92 0.04 664 2.20 -9.49 16.40 2.17 3.77 0.05 642	1.40	-13.35	22.27	2.51	4.43	0,03	.046
2.09 -11.24 18.73 2.30 4.07 0.04 $.664$ 2.10 -10.37 17.44 2.23 3.92 0.04 $.654$ 2.20 -9.49 15.40 2.17 3.77 0.05 $.64$	1.90	-12.40	20.33	2.34	4.26	0,04	
2.10 -10.37 17.44 2.23 3.92 0.04 654 2.20 -9.49 15.40 2.17 3.77 0.05 654	1.00	-11.24	18.73	2.30	4.07	0.04	4064
2.20 -9.49 15.40 2.17 3.77 0.05 -642	2.10	-10.37	17.44	2.23	3.92	0,04	.654
	2.20	-7.47	15.40	2.17	3.77	0.05	- 0-12

nublication by LN L

-278-

			-280-				r.			-281-			
Energy (eV)	ε1	ε ₂	n	k	lm(-1/ẽ)	R(¢=0)	Energy (eV)	ε1	ε2	n	k	lm(-1/ĕ)	R(∳=0)
2.30	-9.05	15.37	2.10	3.67	0.05	.636	10.60	0.58	3.12	1.37	1.14	0.31	.207
2.40	-8.40	14.32	2.03	3.54	0.05	.026	10.30	0.57	3.02	1,35	1.12	0.32	.203
2.50	-7.61	13.42	1.96	3.42	9.06	.610	11.00	0.56	2.93	1.33	1.10	0.33	.199
2.60	-7.23	12.64	1.91	3.30	0.00	.005	11.20	0.56	2.84	1.31	1.08	0.34	.194
2.70	-6.73	11.95	1.87	3.20	0.06	. 595	11.40	0.58	2.75	1.30	1.06	0.35	.188
2.80	-6.28	11.33	1.83	3.10	0.07	.585	11.60	0.61	2.68	1.29	1.04	0.35	.183
2.90	-5.86	10.76	1.79	3.01	0.07	.575	11.80	0.64	2.62	1.29	1.01	0.36	.177
3.00	-5.47	10.24	1.75	2.92	0.08	,565	12.00	0.67	2.58	1.29	1.00	0.36	.173
3.10	-5.14	9.76	1.72	2.84	0.08	,556	12.20	0.70	2.53	1.29	0.98	0.37	.164
3.20	-4.80	9.31	1.68	2.76	0.08	.546	12.40	0.73	2.50	1.29	0.97	0.37	.165
3.30	-4.51	8.90	1.65	2.69	0.09	.537	12.60	0.75	2.47	1.29	0.96	0.37	.102
3.40	-4.21	8.51	1.63	2.62	0.09	.527	12.90	0.79	2.44	1.29	0.94	0.37	.158
3.50	-3.95	8,15	1.60	2.55	0.10	.518	13.00	0.82	2.43	1.30	0.93	0.37	.150
3.00	-3.6/	7.82	1.58	2.48	0.10	.507	13.20	0,84	2.43	1.31	0.93	0.37	.155
3.19	-3.44	1.55	1.56	2.42	0.11	.498	13.40	0.86	2.43	1.31	0.93	0.37	.154
3.80	-3.28	1.24	1.53	2.37	0.11	.491	13.00	0.86	2.44	1.31	0.93	0.36	.155
3.90	-3.03	6.96	1.51	2.31	0.12	.480	13.80	0.85	2.43	1.31	0.93	0.37	.155
4.00	-2.87	6.70	1.49	2.25	0.13	.472	14.00	0.85	2.43	1.31	0.93	0.37	.155
4.20	-2.48	6.21	1.45	2.14	0.14	.452	14.20	0,83	2.43	1.30	0.93	0.37	.156
4.40	-2.12	5.81	1.43	2.04	0.15	.432	14.40	0.81	2.42	1.30	0.93	0.37	.156
4.00	-1.80	5.43	1.39	1.95	0.16	.415	14.60	0.78	2.41	1.29	0.94	0.38	.157
5.00	-1.51	5.08	1.38	1.85	0.18	. 392	14.80	0.74	2.37	1.27	0.93	0.38	.157
5.00	-1.24	4.80	1.30	1.76	0.20	.372	15.00	0.79	2.31	1.27	0.91	0.39	.150
5.20	-0.35	4.50	1.36	1.67	0.21	.350	15.20	0.75	2.35	1.27	0.93	0.39	.155
5.40	-0.72	4.3/	1.30	1.61	0.22	.332	15.40	0,73	2.30	1.25	0.92	0.39	.153
5.10	-0.53	4.17	1.30	1.54	0.24	.315	15.60	0.73	2.27	1.25	0.91	0.40	.151
5 9.1	-0.30	4.00	1.36	1.50	0.24	. 304	15.80	0.74	2.23	1.24	0.90	0.40	.148
5.00	-0.39	3.98	1.30	1.47	0.25	.295	16.00	0.75	2.21	1.24	0.89	0.41	.140
5.90	-0.16	3.90	1.37	1.43	0.26	.285	16.25	0.76	2.19	1.24	0.88	0.41	.144
5.10	-0.08	3.85	1.38	1.40	0.26	.276	16.50	0.78	2.17	1.24	0.87	0.41	.142
6 20	0.12	3.00	1.38	1.37	0.26	.268	16.75	0.80	2.15	1.24	0.87	0.41	.140
6 30	0.15	3.15	1.39	1.35	0.27	.201	17.00	0.82	2.14	1.25	0.86	0.41	.138
6.40	0.25	3.09	1.40	1.32	0.27	.252	17.25	0.85	2.14	1.26	0.85	0.40	.136
6.50	0.43	3.00	1.42	1.29	0.27	.246	17.50	0.90	2.16	1.27	0.85	0.40	.135
6.60	0.51	3.66	1.45	1.28	0.27	.241	17.75	0.93	2.21	1.29	0.86	0.38	.137
5.70	0.54	3.00	1,45	1.20	0.27	.230	18.00	0.94	2.29	1.31	0.88	0.37	.142
6.80	0 64	3.07	1.47	1.25	0.27	.233	18,25	0.89	2.38	1.31	0.91	0.37	.150
6.90	0.68	3.00	1.47	1.24	0.26	.231	18.50	0.82	2.44	1.30	0.94	0.37	.157
7.00	0.71	3 72	1.49	1.24	0.20	.230	10.75	0.75	2.48	1.29	0.96	0.37	.163
7.20	0.69	3.73	1.50	1.24	0.20	. 230	19.00	0.65	2.52	1.28	0.99	0.37	.1/1
7.40	0.70	3.67	1 49	1.23	0.20	.231	19.20	0.56	2.53	1.25	1.01	0.38	.1//
7.00	0.71	3.62	1 49	1.23	0.20	. 220	19.50	0.40	2.53	1.23	1.03	0.38	.134
7.80	0.73	3.55	1 44	1.22	0.27	.225	17.70	0.37	2.52	1.21	1.04	0.39	.190
8.00	0.77	3.48	1 47	1.10	0.27	.221	20.00	0.20	2.50	1.19	1.00	0.40	-14/
8.20	0.80	3.43	1 47	1 17	0.27	. 210	20.25	0.17	2.40	1.15	1.07	0.40	.203
8.40	0.83	3.39	1 47	1 15	0.20	. 212	20.30	0.05	2.42	1.11	1.09	0.41	.212
0.00	0.97	3 35	1 47	1.15	0.20	.209	21.00	-0.05	2.30	1.07	1.09	0.43	.214
8.90	0.90	3.32	1 47	1 1 2	0.20	.205	21.00	-0.14	2.21	1.03	1.10	0.44	.220
9.00	0.93	3 30	1.43	1 12	0.20	.202	21.20	-0.23	2.16	0.99	1.10	0.40	. 2.54
4.20	0.94	3.44	1 42	1.12	0.20	.230	21.39	-0.29	2.93	0.94	1.08	0.40	- 237
9.40	0.94	3 34	1 43	1.12	(1.29	.198	22.00	-0.32	1.91	0.40	1.06	0.51	- 24:)
9.60	9.94	3 37	1.49	1 1 2	0.20	. 200	22.00	-0.33	1.79	0.87	1.04	0.54	.240
9.00	0.47	3 44	1 49	1.15	0.28	. 203	22.25	-0.32	1.09	0.94	1.01	0.57	-236
10.00	0.79	1.30	1.44	1.15	0.28	.201	22.30	-0.30	1.59	0.01	0.98	0.51	.235
10.20	0.54	1 31	1.45	1.15	0.24	.209	22.15	-0.28	1.51	0.74	0.95	0.04	.211
10.40	0.52	3.00	1.43	1.15	0.29	.211	23.00	-0.25	1.43	0.11	0.92	0.01	. 227
	01.50	3.22	1.40	1.15	0.30	.210	23.25	-0.22	1.30	0.15	0.84	0./1	. 220
Pt		-282-											
-------------	-------	----------------	------	------	----------	---------							
Energy (eV)	εı	ε ₂	n	k	lm(-1/ē)	R (4=0)							
23.50	-0.19	1.31	0.75	0.87	0.75	.213							
23.75	-0.16	1.26	0.75	0.94	0.78	.207							
24.00	-0.13	1.21	0.74	0.82	U.82	.201							
24.25	-0.10	1.17	0.73	0.RO	0.85	.194							
24.50	-0.07	1.13	0.73	0.77	0.88	.107							
24.75	-0.04	1.10	0.73	0.75	0,91	.101							
25.00	-0.01	1.07	0.73	0.73	0.93	.174							
25.25	0.02	1.04	0.73	0.72	0.96	.168							
25.50	0.04	1.02	0.73	0.70	0.98	.162							
25.75	0.07	1.00	0.73	0.68	0.99	.155							
26.00	0.09	0.99	0.74	0.67	1.00	.150							
26.25	0.11	0.98	0.74	0.66	1.01	.145							
26.50	0.13	0.96	0.74	0.65	1.02	.142							
26.75	0.14	0.95	0.74	0.64	1.03	.139							
27.00	0.15	0,94	0.74	0.63	1.04	.136							
21.25	0.16	0.93	0.74	0.62	1.05	.133							
27.50	0.17	0.91	0.74	0.62	1.06	.130							
27.75	0.19	U.90	0.75	0.61	1.06	.127							
28.00	0.19	0.90	0.75	0.60	1.07	.125							
28.25	0.20	0.89	0.75	0.59	1.07	.123							
28.50	0.21	0.88	0.75	0.59	1.08	.121							
28.75	0.22	0.87	0.75	0.58	1.08	.119							
29.00	0.22	0.87	0.75	0,59	1.08	.118							
29.25	0.22	0.87	0.75	0.58	1.08	.119							
29.50	0.21	0.67	0.74	0.58	1.09	.120							
29.75	0.20	0.05	0.74	0.58	1.11	.122							
30.00	0.19	0.04	0.73	0,58	1.13	.124							

.

	BIBLIOGRAPHY
AB71	A.V. Arutyunov, S.N. Banchila, and L.P. Filippov Properties of titanium at temperatures above 1000°K Teplo. Vys. Temp. <u>9</u> , 535 (1971)
ABF72	A.V. Arutyunov, S.N. Banchila, and L.P. Filippov Thermal, electrical, and emissive properties of hafnium in the high-temperature region Tepiofiz. Vys. Temp. <u>10</u> , 425 (1972)
Aks74	Ł.W. Aksyutov Normal spectral emissivity of gold, platinum, and tungsten InzhFiz. Zh. <u>27</u> , 197 (1974)
AU66	H.R. Aphölte and K. Ulmer Temperaturabhängigkeit der Charakterische Energieverluste in Niob, Holybdan, Tantal und Wolfram Phys. Lett. <u>22</u> , 552 (1966)
Ba66	B.T. Barnes Optical constants of incandescent refractory metals J. Opt. Soc. Am. <u>56</u> , 1546 (1966)
8a674	D.N. Barla and R.G. Bautista Effect of surface condition on the normal spectral emittance of titanium and zérconium between 1000 and 1800 K Metallurgical Trans. <u>5</u> , 555 (1974)
8874	D.N. Baria and R.G. Bautista Normal spectral emittance of vanadium and tantalum for different surface conditions at temperatures above 1000 K Netallurgical Trans. <u>5</u> , 1543 (1974)
8C67	G.A. Bolotin and T.P. Chukina Optical properties of rhodium in the infrared spectral region Opt. Spectrosc. <u>23</u> , 333 (1967) Opt. Spektrosk. <u>23</u> , 620 (1967)
6070	A.S. Barker, Jr. and J.A. Ditzenberger Optical studies of antiferromagnetism in chromium and its alloys Phys. Rev. B <u>1</u> , 4378 (1970)
BDL77	R. Blickensderfer, D.K. Deardorff, and R.L. Lincoln Normal total emittance at 400-850 K and normal spectral reflectance at room temperature of Be, Hf, Nb, Ta, Ti, V, and Zr J. Less common Metals <u>51</u> , 13 (1977)
BFF76	G. Blondeau, H. Froelicher, H. Froment, and A. Hugot-LeGoff Simultaneous determination of the optical indices of an absorbant film and its metallic substrate by statistical analysis of spectroreflectance data: application to the oxide/titanium system

-283-

.

٠

- 8668 N.A. Biondl and A.I. Guobadia Infrared absorption of aluminum, copper, lead, and nickel at 4.2 K Phys. Rev. <u>166</u>, 667 (1968)
- 8GK71 F.C. Brown, G. Gähwiller, and A.B. Kunz Extreme ultraviolet absorption and band density of NIO Solid State Comm. 9, 487 (1971)
- 8HR68 A.S. Barker, Jr., B.I. Halperin, and T.H. Rice Antiferromagnetic energy gap in chromium Phys. Rev. Lett. 20, 384 (1968)
- BKB73 D.N. Baria, T.S. King, and R.G. Bautista The effect of surface finish on the normal spectral emittance of molybdenum between 1000 and 2400 K High Temp.-High Pressures 5, 545 (1973)
- 8KH69 G.A. Bolotin, M.M. Kirillova, and V.H. Hayevskiy Interband optical absorption in ferromagnetic iron Phys. Met. Metall. 27, 31 (1969) Fiz. Met. Hetalloved. 27, 224 (1969)
- BKN67 G.A. Bolotin, M.M. Kirillova, L.V. Nomerovannaya, and M.M. Noskov Optical properties and Fermi surface of palladium Phys. Met. Metall. 23, 72 (1967) Fiz. Net. Metalloved. 23, 463 (1967)
- BL70 L.W. Bos and D.W. Lynch Optical properties of antiferromagnetic chromium and dilute Cr-Mn and Cr-Re alloys Phys. Rev. B 2, 4567 (1970)
- BL077 E.S. Black, D.W. Lynch, and C.G. Olson Optical properties (0.1-25 eV) of Nb-No and other Nb based alloys Phys. Rev. B 16, 2337 (1977)
- BLR76 Y. Ballu, J. Lecante, and H. Rousseau Energy loss spectra of Ma(100) clean and covered with oxygen Phys. Rev. B 14, 3201 (1976)
- 8567 A.J. Blodgett, Jr. and W.E. Spicer Experimental determination of the optical density of states in iron Phys. Rev. 158, 514 (1967)
- BSW78 R. Bruhn, B. Sonntag, and H.W. Wolff 3p-excitation of atomic Mn; Experimental evidence for the super Coster-Kronig decay Phys. Lett. 69A, 9 (1978)
- BVK62 G.A. Bolotin, A.N. Voloshinskii, H.H. Kirlliova, H.M. Noskov, A.V. Sokolov, and B.A. Charikov
 Optical properties of titanium and vanadium in the infra-red range of the spectrum
 Phys. Met. Metall. 13, 24 (1962)
 Fiz. Met. Metalloved. 13, 823 (1962)

- CGS74 G. Chassaing, P. Gravier, N. Sigrist, and R. Pierrisnard Etude de l'absorption optique du vanadium en couches minces Interpretation par la théorie des bandes d'ènergie Solid State Comm. 15, 1613 (1974)
- CGS76 G. Chassaing, P. Gravier, and M. Sigrist Electronic band structure and optical properties of vanadium, niobium and molybdenum thin films Thin Solid Films <u>35</u>, 125 (1976)
- CHH71 J.T. Cox, G. Hass, and W.R. Hunter Optical properties of evaporated niobium films deposited at various substrate temperatures in the vacuum ultraviolet from 150 to 2000 Å J. Opt. Soc. Am. <u>61</u>, 360 (1971)
- CHR72 J.T. Cox, G. Hass, J.B. Ramsey, and W.R. Hunter Reflectance of evaporated rhegium and tungsten films in the vacuum ultraviolet from 300 to 2000 Å J. Opt. Soc. Am. 62, 781 (1972)
- CHR73 J.T. Cox, G. Hass, J.B. Ramsey, and W.R. Hunter Reflectance and optical constants of evaporated osmium in the vacuum ultraviolet from 300 to 2000 Å J. Opt. Soc. Am. 63, \$35 (1973)
- CHR74 J.T. Cox, G. Hass, J.B. Ramsey, and W.R. Hunter Reflectance and optical constants of evaporated ruthenium in the vacuum ultraviolet from 300 to 2000 Å J. Opt. Soc. Am. <u>64</u>, 423 (1974)
- CH69 J.J. Carroll and A.J. Meimed Ellipsometry-LEED study of the adsorption of oxygen on (Oll) tungsten Surface Science 16, 251 (1969)
- CH71 J.J. Carroll and A.J. Melmed Optical constants of (011) tungsten in the visible region J. Opt. Soc. Am. <u>61</u>, 470 (1971)
- CH74 J.J. Carroll and A.J. Melmed Optical constants of titanium J. Opt. Soc. Am. <u>64</u>, 514 (1974)
- CH76 J.J. Carroll and A.J. Heimed Optical constants of (1120) ruthenium in the visible region J. Opt. Soc. Am. 66, 1050 (1976)
- CH77 A. Cezairliyan and A.P. Hiller Melting point, normal spectral emittance (at the melting point), and electrical resistivity (above 1900 K) of titanium by a pulse heating method J. Research Natl. Bureau Standards <u>82</u>, 119 (1977)

- DMW80 R.E. Dietz, E.G. McRae, and J.K. Weaver Core electron excitation edges in metallic Ni, Cu, Pt, and Au Phys. Rev. B <u>21</u>, 2229 (1980)
- EP063 H. Ehrenreich, H.R. Philipp, and D.J. Olechna Optical properties and Fermi surface of nickel Phys. Rev. <u>131</u>, 2469 (1963)
- FLS75 N. Fuschillo, B. Lalevic, W. Slusark, Jr., and A. Delahoy Optical properties of thin Au-Cr films and their application to solar energy conversion J. Vac. Sci. Technol. 12, 84 (1975)
- FSH69 J. Feinleib, W.J. Scouler, and J. Hanus Optical studies and band structure of Cu-Ni alloys J. Appl. Phys. 40, 1400 (1969)
- FSS79 L.A. Feldkamp, M.B. Stearns, and S.S. Shinozaki Electronic structure and optical constants of Ni by electron inelastic scattering Phys. Rev. B 20, 1310 (1979)
- GCS79 P. Gravler, G. Chassaing, and M. Sigrist Optical properties of thin films of bcc transition metals Thin Solid Films 57, 93 (1979)
- GI Unpl F.E. Girouard Unpublished
- GL68 R.H.W. Graves and A.P. Lenham Determination of the optical constants of uniaxial or isotropic metals by measurement of reflectance ratios J. Opt. Soc. Am. 58, 884 (1968)
- GLM69 A.I. Golovashkin, I.E. Leksina, G.P. Motulevich, and A.A. Shubin The optical properties of niobium Sov. Phys. JETP 29, 27 (1969) Zh. Eksp. Teor. Fiz. 56, 51 (1969)
- Gr72 P. Gravier Optical properties of thin films of Ho Thin Solid Films <u>11</u>, 135 (1972)
- GS77 H.S. Gurev and C. Selvage Optical properties of thin film refractory metals Proc. Soc. Photo-Optical Instr. Engineers 85, 32 (1977)
- GSB78 V.S. Guschin, K.M. Shvarez, B.A. Baum, and P.V. Gel'd
 Optical properties of nickel at high temperatures
 Soviet Phys. Solid State 20, 948 (1978)
 Fiz. Tverd. Tela. 20, 1637 (1978)
- GSP68 P. Girault, A. Seignac, M. Priol, and S. Robin Optical properties of chromium and lead in the far ultraviolet C.R. Acad. Sc. Paris 266, 688 (1968)

- BIBLIOGRAPHY (cont'd)
- CHB70 A. Cezairliyan, M.S. Morse, H.A. Berman, and C.W. Beckett High-speed (subsecond) measurement of heat capacity, electrical resistivity, and thermal radiation properties of molybdenum in the range 1900-2800 K J. Research Natl. Bureau Standards 74A, 65 (1970)
- CoH73 J.K. Coulter, G. Hass, and J.B. Ramsey, Jr. Optical constants and reflectance and transmittance of evaporated rhodium films in the visible J. Opt. Soc. Am. 63, 1149 (1973)
- CS79 G.E. Carver and B.O. Seraphin Chemical-vapor-deposited molybdenum films of high infrared reflectance Appl. Phys. Lett. <u>34</u>, 279 (1979)
- Da69 J. Daniels Bestimmung von optischen Konstanten an Palladium und Silber aus Energieverlustmessungen Im Energlebereich von 2 bis 90 eV Z. Physik 227, 234 (1969)
- Da Unpl J. Daniels Ph.D. thesis, University of Hamburg Unpublished
- DFR70 J. Daniels, C.v. Festenberg, H. Raether, and K. Zeppenfeld Optical constants of solids by electron spectrosocpy <u>Springer Tracts in Modern Physics</u>, Vol. 54, ed. by G. Höhler (Springer-Verlag, Berlin, 1970) p. 77
- DH64 L.F. Drummeter, Jr. and G. Hass Solar absorptance and thermal emittance of evaporated coatings <u>Physics of Thin Films</u>, Vol. 2, (Academic Press, Inc., New York, 1964) p. 305
- DJ68 P.F. Dickson and N.C. Jones Infrared spectral reflectances of metals at low temperatures Cryogenics 8, 24 (1968)
- DKH73 Zh. Duisebaeva, H.I. Korsunskii, and G.P. Motulevich Optical properties of pailadium Opt. Spectrosc. 34, 307 (1973) Opt. Spektrosk. 34, 535 (1973)
- DKH74 Zh. Duisebaeva, M.I. Korsunskii, and G.P. Motulevich Optical properties of palladium in the visible and near ir regions of the spectrum Opt. Spectrosc. <u>37</u>, 822 (1974) Opt. Spektrosk. <u>37</u>, 149 (1974)
- DH65 8. Dold and R. Hecke Optische Eigenschaften von Edelmatallen, Übergangsmetallen und deren Legierungen im Infrarot Optik <u>22</u>, 435 (1965)

- GSS73 N. Ya. Gorban, V.S. Stashchuk, A.V. Shlrin, and A.A. Shishlovskii Optical properties of nickel-iron alloys in the region of interband transitions Opt. Spectrosc. <u>35</u>, 295 (1973) Opt. Spektrosk. <u>35</u>, 508 (1973)
- HAH79 W.R. Hunter, D.W. Angel, and G. Hass Optical properties of evaporated platinum films in the vacuum ultraviolet from 220 Å to 150 Å J. Opt. Soc. Am. <u>69</u>, 1695 (1979)
- HB57 G. Hass and A.P. Bradford Optical properties and oxidation of evaporated titanium films J. Opt. Soc. Am. <u>47</u>, 125 (1957)
- HH74 G. Hass and W.R. Hunter Space Optics National Academy of Sciences, Washington, D.C. (1974) p. 525
- HJH67 G. Hass, G.F. Jacobus, and W.R. Hunter Optical properties of evaporated inidium in the vacuum ultraviolet from 500 Å to 2000 Å J. Opt. Soc. Am. 57, 758 (1967)
- HL67 R.S. Hughes and A.W. Lawson Search for an energy gap in chromium using infrared reflection and transmission Phys. Lett. 25A, 473 (1967)
- HR76 J.O. Hylton and R.L. Reid System for the measurement of spectral emittance at high temperature AIAA J. 14, 1303 (1976)
- HRH69 G. Hass, J.B. Ramsey, and W.R. Hunter Reflectance of the semitransparent platinum films on various substrates in the vacuum ultraviolet Appl. Optics 8, 2255 (1969)
- HRS69 R. Haensel, K. Radler, B. Sonntag, and C. Kunz Optical absorption measurements of tantalum, tungsten, rhenium, and platinum in the extreme ultraviolet Solid State Comm. 7, 1495 (1969)
- HT59 G. Hass and R. Tousey Reflecting coatings for the extreme ultraviolet J. Opt. Soc. Am. 49, 593 (1959)
- HTT77 8.U. Habedank, L.K. Thomas, and S. Thurm Temperature dependence of optical properties of Ta-W-Re alloys J. Phys. F: Metal Phys. 7, 2217 (1977)

- Hu71 W.R. Hunter Comparison of the VUV reflectance spectra of evaporated films of some second and third series transition metals for wavelengths less than 2000 Å Proc. Jil Int. Conf. Vac. Ultraviolet Rad. Physics, Tokyo (1971)
- JC74 P.B. Johnson and R.W. Christy Optical constants of transition metals: Ti, V, Cr, Hn, Fe, Co, Ni, and Pd Phys. Rev. B <u>9</u>, 5056 (1974)
- JCF68 P. Jaegle, F. Combet Farnoux, P. Dhez. M. Cremonese, and G. Onori Experimental and theoretical study of the absorption of ultrasoft x~rays in platinum and tantalum Phys. Lett. 26A, 364 (1968)
- JLM68 D.W. Juenker, L.J. LeBlanc, and C.R. Martin Optical properties of some transition metals J. Opt. Soc. Am. <u>58</u>, 164 (1968)
- JHC63 G.F. Jacobus, R.P. Madden, and L.R. Canfield Reflecting films of platinum for the vacuum ultraviolet J. Opt. Soc. Am. <u>53</u>, 1084 (1963)
- JPT72 J.C. Jones, D.C. Palmer, and C.L. Tien Infrared absorptivities of transition metals at room and liquidhelium temperatures J. Opt. Soc. Am. <u>62</u>, 353 (1972)
- KBN67 H.H. Kirillova, G.A. Bolotin, and V.H. Hayevskiy Interband transitions in molybdenum Phys. Het. Hetall. <u>24</u>, 91 (1967) Fiz. Het. Hetalloved. <u>24</u>, 95 (1967)
- KC63 H.M. Kirillova and B.A. Charikov Study of the optical properties of transition metals Opt. Spectrosc. <u>17</u>, 134 (1963) Opt. Spektrosk. <u>17</u>, 254 (1963)
- KC65 H.H. Kirillova and B.A. Charikov Quantum light absorption by certain transition metals Phys. Met. Netall. 19, 13 (1965) Fiz. Net. Metalloved. 19, 495 (1965)
- KCh63 H.M. Kirillova and B.A. Charikov Optical properties of titanium in the quantum transition range Phys. Met. Metall. <u>15</u>, 138 (1963) Fiz. Met. Hetalloved. 15, 315 (1963)
- KI72 N.H. Kirillova Electron interband transitions in nickel Sov. Phys. JETP <u>34</u>, 178 (1972) Zh. Eksp. Teor. Fiz. 61, 336 (1971)

- Kon69 B.A. Konyaev Determination of the emittance from the surface of tungsten Teplo. Vys. Temp. <u>7</u>, 1029 (1969)
- KrL70 K.A. Kress and G.J. Lapeyre Photoemission and optical investigation of the electronic structure of ruthenium Phys. Rev. B 2, 2532 (1970)
- KUS69 M.L. Kapitsa, Yu. P. Udoev, and E.I. Shirokikh Optical properties of molybdenum in the range of 2-10 eV Sov. Phys. Sol. State 11, 665 (1969) Fiz. Tverd. Tela. 11, 814 (1969)
- LAT78 J. Lafait, F. Abelès, M.L. Theye, and G. Vuye Determination of the infrared optical constants of highly reflecting materials by means of surface plasmon excitation-application to Pd J. Phys. F: Metal Phys. 8, 1597 (1978)
- LA Unpl E. Lluesma and D.E. Aspnes Unpublished
- LCS70 L.N. Latyev, V. Ya. Cheknovskoi, and E.N. Shestakov Monochromatic emissivity of tungsten in the temperature range 1200-2600°K and in the wavelength range 0.4-4 µm High Temp.-High Pressures 2, 175 (1970)
- LCS72 L.N. Latyev, V. Ya. Chechovskol, and E.N. Shestakov Tungsten as a standard material for monochromatic emissivity High Temp.-High Pressures 4, 679 (1972)
- Le67 A.P. Lenham Absorption of low-energy photons in the transition metals J. Opt. Soc. Am. <u>57</u>, 473 (1967)
- LFJ64 L.J. LeBlanc, J.S. Farrell, and D.W. Juenker Far-ultraviolet reflectance of several transition metals J. Opt. Soc. Am. 54, 956 (1964)
- Li72 R.C. Linton The optical properties of platinum and gold in the vacuum ultraviolet NASA Technical Note D-7061, October 1972
- Lo64 P. Lostis Détermination et étude des properiétés optiques des couches minces de palladium J. de Physique 25, 118 (1964)
- Log72 A.V. Logunov Thermophysical properties of single-crystalline rhenium in the high-temperature region Teplo. Vys. Temp. <u>10</u>, 988 (1972)

- KiN75 H.H. Kirillova and L.V. Nomerovannaya Features of infrared absorption in chromium and its alloys with iron Phys. Met. Metall. 40, 69 (1975) Fiz. Met. Hetalloved. 40, 983 (1975)
- KL70 K.A. Kress and G.J. Lapeyre Optical properties of molybdenum and ruthenium J. Opt. Soc. Am. 60, 1681 (1970)
- KN68 M.M. Kirlliova and M.M. Noskov Optical properties of chromium Phys. Met. Hetall. 26, 189 (1968) Fiz. Met. Metalloved. 26, 952 (1968)
- KN75 N.M. Kiriliova and L.V. Nomerovannaya Optical absorption in the system of chromium-vanadium alloys Opt. Spectrosc. <u>39</u>, 303 (1975) Opt. Spektrosk. <u>39</u>, 540 (1975)
- KN78 H.H. Kirillova and L.V. Nomerovannaya Optical properties of d transition metals with bcc lattices Sov. Phys. Solid State 20, 568 (1978) Fiz. Tverd. Tela. 20, 984 (1978)
- KNB68 M.H. Kirillova, L.V. Nomerovannaya, G.A. Bolotin, V.H. Mayevskiy, N.H. Noskov, and M.L. Bolotina Optical properties of transition metals in the vacuum ultraviolet band Phys. Met. Metall. 25, 81 (1968) Fiz. Met. Metalloved. 25, 459 (1968)
- KNN71 N.H. Kirillova, L.V. Nomerovannaya, and M.H. Noskov Optical properties of molybdenum single crystals Sov. Phys. JETP <u>33</u>, 1210 (1971) Zh. Eksp. Teor. Fiz. <u>60</u>, 2252 (1971)
- KNN72 N.H. Kirillova, L.V. Nomerovannaya, and H.H. Noskov Optical properties of Iridium at 77 and 295°K Phys. Het. Metall. <u>34</u>, 61 (1972) Fiz. Met. Metalloved. <u>34</u>, 291 (1972)
- KMN75 M.H. Kirillova, L.V. Nomerovannaya, and M.H. Noskov Interband optical absorption and the electronic structure of 5d metals Sov. Phys. Solid State 16, 1425 (1975) Fiz. Tverd. Tela. 16, 2181 (1974)
- KNN78 H.H. Kirillova, L.V. Nomerovannaya, H.H. Noskov, N.B. Gorina, V.P. Polyakova, and E.H. Savitskii Optical properties of a ruthenium single crystal Sov. Phys. Solid State 20, 994 (1978) Fiz. Tverd. Tela. 20, 1718 (1978)

- LOW75 D.W. Lynch, C.G. Olson, and J.H. Weaver Optical properties of Ti, Zr, and Hf from 0.15 to 30 eV Phys. Rev. B 11, 3617 (1975)
- LP62 I.Y. Leksina and N.V. Penkina Optical properties of dilute solid solutions of rhodium-platinum Phys. Met. Metall. <u>13</u>, 165 (1962) Fiz. Met. Metalloved. 13, 799 (1962)
- LP66 I.Y. Leksina and N.V. Penkina Optical properties of dilute tungsten-rhenium solid solutions Phys. Met. Metall. <u>22</u>, 104 (1966) Fiz. Met. Metalloved. 22, 264 (1966)
- LRW71 D.W. Lynch, R. Rosei, and J.H. Weaver Infrared and visible optical properties of single-crystal Ni at 4 K Solid State Comm. 9, 2195 (1971)
- LS72 N.A. Lind and J.L. Stanford Optical measurements of the antiferromagnetic energy gaps in chromium Phys. Lett. <u>39A</u>, 5 (1972)
- LSE64 A.P. Lukirskil, E.P. Savinov, O.A. Ershov, and Yu. F. Shepelev Reflection coefficients of radiation in the wavelength range from 23.6 to 113 Å for a number of elements and substances and the determination of the refractive index and absorption coefficient Opt. Spectrosc. 16, 168 (1964) Opt. Spektrosk. 16, 310 (1964)
- LT66 A.P. Lenham and D.M. Treherne Optical constants of transition metals in the infrared J. Opt. Soc. Am. <u>56</u>, 1137 (1966)
- LT75 L.J. LeBlanc and V.V. Truong Les propriétés optiques du hafnium dans l'ultraviolet à vide Canadian J. Phys. <u>53</u>, 1025 (1975)
- LTA66 A.P. Lenham and D.M. Treherne <u>Optical Properties and Electronic Structure of Metals and Alloys</u> ed. by F. Abelès, (North-Holland Publishing Co., Amsterdam, 1966) p. 196
- LO Unpl D.W. Lynch and C.G. Olson Unpublished
- Man80 R. Manzke Optical properties of molybdenum by electron energy loss spectroscopy Phys. Stat. Sol. B 97, 157 (1980)
- HC61 R.P. Madden and L.R. Canfield Apparatus for the measurement of vacuum ultraviolet optical properties of Freshly evaporated films before exposure to air J. Opt. Soc. Am. <u>51</u>, 838 (1961)

- NKN76 A. Horitani, K. Kondo, and J. Nakai Reflectance and wavelength-modulated reflectance measurements by a double beam-single detector system Japan J. Appl. Phys. 15, 1549 (1976)
- HH72 I.D. Mash and G.P. Motulevich
 Optical constants and electronic characteristics of titanium
 Sov. Phys. JETP <u>36</u>, 516 (1973)
 Zh. Eksp. Teor. Fiz. <u>63</u>, 985 (1972)
- HRD76 T.J. Moravec, J.C. Rife, and R.N. Dexter Optical constants of nickel, iron, and nickel-iron alloys in the vacuum ultraviolet Phys. Rev. B 13, 3297 (1976)
- MS69 C.E. McCain and K. Schröder Optical properties of chromium rich chromium iron alloys at room temperature J. Phys. Chem. Solids <u>31</u>, 878 (1969)
- HSH74 A.H. Madjid, R.L. Stover, and J.H. Martinez Normal spectral emissivity of platinum in the red and in the green in vacuum and hellum Phys. Kond. Matter 17, 125 (1974)
- HT57 D. Malé and J. Trompette Properiétés optiques du palladium en couches minces J. de Physique et le Radium <u>18</u>, 128 (1957)
- NC80 J.E. Nestell, Jr. and R.W. Christy Optical conductivity of bcc transition metals: V, Nb, Ta, Cr, Mo, W Phys. Rev. B <u>21</u>, 3173 (1980)
- NCC80 J.E. Nestell, R.W. Christy, N. Cohen, and G.C. Ruben Structure and optical properties of evaporated films of the Crand V-group J. Appl. Phys. 51, 655 (1980)
- NKN71 L.V. Nomerovannaya, H.H. Kirillova, and H.M. Noskov Optical properties of tungsten monocrystals Sov. Phys. JETP 33, 405 (1971) Zh. Eksp. Teor. Fiz. <u>60</u>, 748 (1971)
- NKN72 L.V. Nomerovannaya, H.M. Kirillova, and H.M. Noskov Optical absorption in tungsten at T = 77°K Sov. Phys. Solid State 14, 541 (1972) Fiz. Tverd. Tela. 14, 633 (1972)
- NKN73 L.V Nomerovannaya, H.M. Kirillova, M.M. Noskov, and G.A. Bolotin Optical and electrical properties of rhenium Phys. Met. Metall. <u>36</u>, 66 (1973) Fiz. Met. Metalloved. <u>36</u>, 1197 (1973)

- NS66 M.M. Noskov and 1.1. Sasovskaya Characteristics of Infrared absorption in copper-nickel alloys Opt. Spectrosc. 22, 358 (1966) Opt. Spektrosk. 22, 657 (1966)
- OL Unp1 C.G. Olson and D.W. Lynch Unpublished
- PD71 V.E. Peletskil and V.P. Druzhinin Experimental study of some physical properties of hafnium at high temperatures Teplo. Vys. Temp. 9, 539 (1971)
- PDS70 V.E. Peletskii, V.P. Druzhlnin, and Y.G. Sobol Emissivity, thermal conductivity, and electrical conductivity of remeited zirconium at high temperatures Teplo. Vys. Temp. 8, 774 (1970)
- PS73 D.T. Pierce and W.E. Spicer Optical properties of rhodium Phys. Stat. Sol. B 60, 689 (1973)
- RCF80 R. Rosei, E. Colavita, A. Franciosi, J.H. Weaver, and D.T. Peterson Electronic structure of the bcc transition metals: Thermoreflectance studies of bulk V, Nb, Ta, and α-TaH_x Phys. Rev. B 21, 3152 (1980)
- RG75 B.K. Reddy and T.C. Goel Total and spectral emittances and electrical resistivity of nickel at high temperatures Indian J. Appl. Phys. 13, 138 (1975)
- Ri68 M.S. Riedinger Determination of optical constants of palladium by ellipsometry H.S. Thesis, Vanderbilt University Unpublished (1968)
- Ro66 S. Robin Propriétés optiques de l'argent et du palladium dans l'ultraviolet lointain <u>Optical Properties and Electronic Structure of Metals and Alloys</u> ed. by F. Abelès (North Holland Publishing Co., Amsterdam, 1966) p. 202
- Ro70 J. Römer Experimentalle Bestimmung der optischen Konstanten aus Reflexionsmessungen im Gebiet des weichen Röntgenlichts Thesis, Hamburg University, 1970
- Rob59 S. Roberts Optical properties of nickel and tungsten and their interpretation according to Drude's formula Phys. Rev. 114, 104 (1959)

- Rod72 J.J. Rodgers Measurements of the spectral emissivity of tungstem using Fourier transform spectroscopy High Temp.-High Pressures 4, 271 (1972)
- Sa39 G.B. Sabine Reflectivities of evaporated metal films in the near and far ultraviolet Phys. Rev. <u>55</u>, 1064 (1939)
- SCG75 M. Sigrist, G. Chassaing, and P. Gravier Optical absorption of thin films of Nb between 0.32 and 5.5 eV Solid State Comm. <u>17</u>, 647 (1975)
- SCGP75 H. Sigrist, G. Chassaing, P. Gravier, and R. Pierrisnard Optical transmission of thin films of Nb (0.32-5.5 eV) C.R. Acad. Sc. Paris 280, 413 (1975)
- SHK69 B. Sonntag, R. Haensel, and C. Kunz Optical absorption measurements of the transition metals Ti, V, Cr, Mn, Fe, Co, Ni in the region of 3p electron transitions Solid State Comm. 7, 597 (1969)
- SJ78 H. Ph. Stoll and C. Jung Nouvelles données expérimentales sur l'absorption optique de nickel entre 2 et 3 eV J. Physique 39, 389 (1978)
- SJ79 M. Ph. Stoll and C. Jung Optical constants of nickel: (1) influence of temperature, (11) relation to bandstructure J. Phys. F: Hetal Phys. <u>9</u>, 2491 (1979)
- Sm72 T. Smlth Optical constants of clean titanium and tungsten surfaces as functions of temperature J. Opt. Soc. Am. 62, 774 (1972)
- Sm77 T. Smith Optical constants of copper and nickel J. Opt. Soc. Am. <u>67</u>, 48 (1977)
- SN71 I.I. Sasovskaya and M.M. Noskov Optical properties of nickel Phys. Net. Metall. <u>32</u>, 48 (1971) Fiz. Met. Metalloved, 32, 723 (1971)
- SN75 I.I. Sasovskaya and M.M. Noskov Optical properties of Ni-Cu alloys Opt. Spectrosc. 39, 64 (1975) Opt. Spektrosk. 39, 111 (1975)

- SP69 H. Shiga and G.P. Pells The optical properties of nickel above and below the Curie temperature J. Phys. C: Solid State Phys. 2, 1847 (1969)
- SPS67 J.A.R. Samson, J.P. Padur, and A. Sharma Reflectance and relative transmittance of laser-deposited inidium in the vacuum ultraviolet J. Opt. Soc. Am. 57, 966 (1967)
- SR70 A. Seignac and S. Robin Propriétés optiques de couches minces de rhodium et de vanadium dans l'ultraviolet lointain C.R. Acad. Sc. Paris B 271, 919 (1970)
- SR72 A. Seignac and S. Robin Propriétés optiques de couches minces de platine dans l'ultraviolet fointain Solid State Comm. 11, 217 (1972)
- SS70 D.H. Selb and W.E. Spicer Photoemission and optical studies of Cu-Ni alloys. II. Ni-rich and nearly equiatomic alloys Phys. Rev. B 2, 1694 (1970)
- 5572 G.W. Simmons and E.J. Scheibner Characteristic energy-loss spectra of titanium, vanadium, and chromium J. Appl. Phys. 43, 693 (1972)
- St70 H. Ph. Stoll Optical properties of nickel in the visible and near infra-red Solid State Comm. 8, 1207 (1970)
- St71 N. Ph. Stoll Optical spectrum and spin-orbit splitting of nickel J. Appl. Phys. <u>42</u>, 1717 (1971)
- St74 M.R. Steel Comparison of the optical properties of V, Cr, and Mn with nondirect transitions calculations J. Phys. F: Hetal Phys. 4, 783 (1974)
- St75 A.A. Studna High-resolution ellipsometric measurements of Ni from 1.8 to 3.5 eV Solid State Comm. 16, 1063 (1975)
- ST77 A.S. Siddiqui and D.H. Treherne Optical properties of some transition metals at infrared frequencies Infrared Phys. <u>17</u>, 33 (1977)

- TDB77 H. Tokumoto, H.D. Drew, and A. Bagchi Optical absorption of NiCu alloys Phys. Rev. B <u>16</u>, 3497 (1977)
- Th68 L.K. Thomas The normal spectral emissivity of tungsten-molybdenum alloys Phys. Stat. Sol. <u>28</u>, 401 (1968)
- TLT78 V.V. Truong, L.J. LeBlanc, and G.J. Turpin Optical properties of bulk niobium from 6.6 to 23 eV J. Opt. Soc. Am. <u>68</u>, 1017 (1978)
- TSV65 C. Tingvoldt, U. Schley, J. Verch, and S. Takata Di optischen Konstanten von Wolfram und Hafnium bei Glühtemperaturen Optik <u>22</u>, 48 (1965)
- TT76 L.K. Thomas and S. Thurm Optical properties of Ta-W-Re alloys from 0.5 to 5 eV J. Phys. F: Hetal Phys. <u>6</u>, 279 (1976)
- Ud72 Y.P. Udoev Optical spectra of metals of the chromium subgroup Opt. Spectrosc. 33, 185 (1972) Opt. Spektrosk. 33, 350 (1972)
- UKK71 Y.P. Udoeyev, N.S. Koz'yakova, and M.L. Kapitsa Optical properties of tungsten and molybdenum Phys. Met. Hetall. <u>31</u>, 229 (1971) Fiz. Met. Metalloved. <u>31</u>, 439 (1971)
- VA69 R.C. Vehse and E.T. Arakawa Optical and photoemissive properties of nickel in the vacuum uitraviolet spectral region Phys. Rev. 180, 695 (1969)
- VAK67 F.I. Vilesov, A.A. Azgrubskii, and M.M. Kirillova
 The photoemission method for obtaining mirror and diffuse reflection spectra in the vacuum ultraviolet region of the spectrum
 Opt. Spectrosc. 23, 79 (1967)
 Opt. Spektrosk. 23, 153 (1967)
- VAW70 R.C. Vehse, E.T. Arakawa, and H.W. Williams Optical and photoemissive properties of palladium in the vacuum ultraviolet spectral region Phys. Rev. B 1, 517 (1970)
- VP73 B.W. Veal and A.P. Paulikas Precision reflectance measurements between 2 and 3 eV in nickel int. J. Magnetism <u>4</u>, 57 (1973)

- VP74 B.W. Veal and A.P. Paulikas Optical properties of molybdenum Phys. Rev. B <u>10</u>, 1280 (1974)
- Vuj70 V. Vujnovic Tungsten emissive properties J. Opt. Soc. Am. <u>60</u>, 177 (1970)
- Vuj72 V. Vujnovic and B. Grzeta Analysis of the emissive properties of molybdenum from 1000-2000°K Fizika 4, 173 (1972)
- WB75 J.H. Weaver and R.L. Benbow Low energy interband absorption in Pd Phys. Rev. <u>12</u>, 3509 (1975)
- WCL79 J.H. Weaver, E. Colavita, D.W. Lynch, and R. Rosei Low energy interband structures in bcc Fe and hcp Co Phys. Rev. B 19, 3850 (1979)
- We75 J.H. Weaver Optical properties of Rh, Pd, 1r, and Pt . Phys. Rev. B 11, 1416 (1975)
- WeG74 C. Wehenkel and B. Gauthé Optical absorption coefficient of the first series transition metals between 20 and 130 eV Phys. Lett. 47A, 253 (1974)
- We075 J.H. Weaver, C.G. Olson, D.W. Lynch, and M. Plancentini Thermoreflectance of Ho from 0.5 to 35 eV Solid State Comm. 16, 163 (1975)
- WG74 C. Wehenkel and B. Gauthé Optical absorption coefficient of nickel, palladium, platinum, copper, silver, gold between 20 and 120 eV Optics. Comm. 11, 62 (1974)
- WGa74 C. Wehenkel and B. Gauthé Electron energy loss spectra and optical constants for the first transition series from 2 to 120 eV Phys. Stat. Sol. B 64, 515 (1974)
- Wie75 U. Wiesner Bestimmung des Emissionskoeffizienten non Reinsteisen Exp. Technik. Physik <u>23</u>, 363 (1975)
- WJ64 J.P. Waldron and D.W. Juenker Optical properties of clean molybdenum J. Opt. Soc. Am. <u>54</u>, 204 (1964)

-299-

BIBLIOGRAPHY (cont'd)

WL073	J.H. Weaver, D.W. Lynch, and C.G. Olson Optical properties of Nb from 0.1 to 36.4 eV Phys. Rev. B <u>7</u> , 4311 (1973)
WL074	J.H. Weaver, D.W. Lynch, and C.G. Olson Optical properties of V, Ta, and Mo from 0.1 to 30 eV Phys. Rev. 8 <u>10</u> , 501 (1974)
WOL75	J.H. Weaver, C.G. Olson, and D.W. Lynch Optical properties of crystalline W from 0.1 to 32 eV Phys. Rev. B <u>12</u> , 1293 (1975)
W076	J.H. Weaver and C.G. Olson Optical absorption in the 4d transition metals from 20 to 250 eV Phys. Rev. B <u>14</u> , 3251 (1976)
WOL77	J.H. Weaver, C.G. Olson, and D.W. Lynch Optical investigation of the electronic structure of bulk Rh and Ir Phys. Rev. B <u>15</u> , 4115 (1977)
WOL Unpl	J.H. Weaver, C.G. Olson, and D.W. Lynch Unpublished
WRS80	W. Wall, M.W. Ribarsky, and J.R. Stevenson Optical reflectivity and Auger spectroscopy of Ti and Ti~Al alloys J. Appl. Phys. <u>51</u> , 661 (1980)
WSGBO	L.A. Wojcik, A.J. Sievers, G.W. Graham, and T.N. Rhodin Total hemisphere emissivity Of W(100) J. Opt. Soc. Am. <u>70</u> , 443 (1980)
YDS68	A. Y-C. Yu, T.H. Donovan, and W.E. Spicer Optical properties of cobalt Phys. Rev. <u>167</u> , 670 (1968)
ҮК65	H.T. Yolken and J. Kruger Optical constants of iron in the visible region J. Opt. Soc. Am. <u>55</u> , 842 (1965)
¥568	A. Y-C. Yu and W.E. Spicer Photoemission and optical studies of the electronic structure of Pd Phys. Rev. <u>169</u> , 497 (1968)
YSH68	A.Y-C. Yu. W.E. Spicer, and G. Hass Optical properties of platinum Phys. Rev. <u>171</u> , 834 (1968)
Zho74	G.A. Zhorov Electrical resistivity and emissivity of some transition metals

and alloys in the high-temperature range

Teplo. Vys. Temp. 10, 1332 (1974)

.

ZR71

G.L. Zuppardo and K.G. Ramanathan Anomalous emissivities of nickel and iron near their Curie temperatures J. Opt. Soc. Am. <u>61</u>, 1607 (1971)

.