Interner Bericht DESY F41 HASYLAB 82-02 APRIL 1982

Untersuchung der Zerfallskanäle von Rumpfexzitonen

in Alkalihalogeniden mit Photoemissionsspektroskopie

Eigentum der Property of	DESI	Bibliothek library
Zugang: 2 5.	MAI	1982
Leihfrist: Loan period:	7	Ta. e days

von

Johannes Bahrdt

DESY behält sich alle Rechte für den Fall der Schutzrechtserteilung und für die wirtschaftliche Verwertung der in diesem Bericht enthaltenen Informationen vor.

DESY reserves all rights for commercial use of information included in this report, especially in case of filing application for or grant of patents.

"Die Verantwortung für den Inhalt dieses Internen Berichtes liegt ausschließlich beim Verfasser" Untersuchung der Zerfallskanäle von Rumpfexzitonen

in Alkalihalogeniden mit Photoemissionsspektroskopie

.

Experimentelle physikalische Diplomarbeit

des Fachbereichs Physik

der Universität Hamburg

vorgelegt von Johannes Bahrdt Hamburg 1982 Photoemission Investigation of the Decay Channels

of Core-Excitons in Alkali Halides

.

Abstract:

For the first time the relaxation shifts of excited core states have not been measured by means of comparing absorption and fluorescence energies but in photoemission. The method is based on the resonance decay of these excited states into a valence ionisation. The energy of the resulting photoemission electrons compared to the direct valence excitation was measured on single ergstals of Na- and bi- halides. The energy shifts range from 0 to $\infty 2$ eV. In a quantitative calculation for hill the bills exciton relaxation energy of 0.69 ± 0.13 eV is reproduced within the error limits.

INHALTSVERZEICHNIS

÷

Einleitung

1)	Apparative: Autbau und experimentelle Details	4
I)	Monochromator und Probenkammer	4
2)	XPS - eine neue Meßmethode am FLIPPER-Meßplatz	6
5)	Autladung	12
4)	Ketlexion	16
		20
11)	Theorie	20
1)	Exzitonenformalismus	20
2)	Zerfallskanäle von Exzitonen	25
3)	Konfigurationskoordinatenmodell	28
4)	Linienformen von Absorptionsstrukturen	35
(11)	Experimentelle Ergebnisse und Diskussion	41
I)	Übersichtsspektren	41
2)	Strukturen von Augerkanten	58
3)	Yieldspektren	72
4)	Augerzertall und Direkte Rekombination von Rumpfexzitonen	87
5)	Experimentelle Bestimmung von Relaxationsenergien	100
1V)	Berechnung der Relaxationsenergie am Beispiel von LiCl	108
1)	Energiebeiträge	109
۱.	1) Coulombenergie	110
ι.	2) Abstoßungsenergie	412
η.	3) Van der Waals - Wechselwirkung	116
2)	Test des Modells am Grundzustand des Citters	119
2.	1) Gitterenergie	119
2.	2) Kompressionsmodul	121
2.	3) Longitudinal optisches Phonon	122
3)	Ergebnisse für den angeregten Zustand	123
Zu	isaumentassung	142

Einleitung

Die Photoelektronenspektroskopie (PES) ist eine weit verbreitete Meßmethode zur Erforschung elektronischer Eigenschaften von Atomen, Molekülen und Festkörpern. Die Synchrotronstrahlung bietet durch ihr intensives kontinuierliches Spektrum im vaknum-ultravioletten Bereich die Möglichkeit, stark gebundene Niveaus zu analysieren. Beim Wiederaufbau des FLIPPER-Meßplatzes in der neuen Experimentierhalle des Hamburger Synchrotronstrahlungslabors (HASYLAB) im Frühjahr 1980 wurden die optischen Komponenten des Strahlführungssystems sowie des Planspiegelmonochromators FLIPPER weitgehend erneuert, wodurch die Photonenintensität gegenüber den früheren Messungen um einen Faktor 100 gesteigert werden konnte. Abb. (1.1.) zeigt, daß der Monochromator die Untersuchung von elektronischen Zuständen mit Bindungsenergien bis maximal 500 eV erlaubt. Um auch tiefer gebundene Niveaus der Beobachtung zugänglich zu machen, ist die Probenkammer mit einer 5 - keV - Elektronenkanone für Augermessungen ausgerüstet. Im Rahmen dieser Arbeit wurden die meßtechnischen Möglichkeiten der Apparatur durch den Einbau und die Inbetriebnahme einer kommerziellen Röntgenröhre erweitert. Einzelheiten dazu werden in Abschnitt 1.2. erläutert.

Die vorliegende Arbeit befaßt sich mit den verschiedenen Zerfallsmechanismen von Rumpfexzitonen in Alkalihalogeniden. Aus derartigen Untersuchungen kann man wesentliche Aussagen über die Wechselwirkungen resonanter Zustände mit dem Gitter erhalten. So lassen sich beispielsweise Informationen über die Stärke der Exziton-Phonon-Kopplung ebenso wie über die Bedeutung von Gitterrelaxationsprozessen gewinnen. Die Messungen - 2 -

wurden an Einkristallspaltflächen durchgeführt, weil die Hoffnung bestand, daß Einkristalle gegenüber den bereits früher untersuchten Aufdampfschichten (z.B. HKS68, HKSS68, NS69, NIS71) wesentlich besser definierte Proben sind. Da die Substanzen sehr große Bandlücken besitzen und damit ausgesprochen schlechte Leiter sind, mußte eine spezielle Versuchsanordnung gewählt werden, um Aufladungen der Proben während des Experimentes zu vermeiden. Darauf wird ausführlich im ersten Kapitel der Arbeit eingegangen. Im zweiten Kapitel werden die wichtigsten theoretischen Grundlagen zum Verständnis von exzitonischen Anregungen dargestellt. Die Linienformen von Absorptionsstrukturen können unter gewissen Voraussetzungen Aufschluß über Eigenschaften von Exzitonen geben. Diesem Punkt wird in Abschnitt II.4, besondere Aufmerksamkeit geschenkt.

Im folgenden Kapitel III werden die experimentellen Ergebnisse vorgestellt und diskutiert. Die der Photoelektronenspektroskopie zugänglichen Zerfallskanäle von Exzitonen, direkte Rekombination und Augerzerfall, werden eingehend behandelt.

Der weite Spektralbereich des Monochromators FLIPPER erlaubt die Untersuchung der Na2p- und Lils-Anregungen in Natrium- und Lithiumhalogeniden, sowie der Cl2p-Anregung in Alkalichloriden. Energieverteilungsmessungen im Bereich dieser Rumpfanregungen zeigen Überhöhungen bestimmter Photoemissionslinien für ausgewählte Photonenenergien. Die Überhöhungen sind auf direkte Rekombinationen von Exzitonen zurückzuführen. Es stellt sich heraus, daß die kinetischen Energien von Elektronen, die aus direkten Rekombinationen stammen, im Vergleich zu den kinetischen Energien entsprechender, direkt emittierter Elektronen geringer sind. Aus den Verschiebungen lassen sich unmittelbar Gitterrelaxationsenergien ermitteln, während bisher Relaxationsnergien nur aus einem Vergleich zweier unabhängiger Meßmethoden (Absorptions- und Lumineszenzmessung) gewonnen wurden.

- 3 -

Im Kapitel IV wird ein Modell beschrieben, das die Berechnung von Relaxationsenergien nach lokalisierten Anregungen erlaubt. Es wird sich zeigen, daß das Modell für den Fall der Li⁺1s2p-Anregung in Lithiumchlorid zu einer Relaxationsenergie führt, die überraschend gut mit dem experimentellen Wert übereinstimmt.

Ein weiterer Abschnitt dieser Arbeit ist der Interpretation von Augerstrukturen gewidmet. Die Gestalt von Augerkanten wird wesentlich von der Lage des erzeugten Loches bestimmt. Befindet sich das Loch am Alkali-Ion, so spiegelt die Augerstruktur im wesentlichen die gewichtete Selbstfaltung des Valenzbandes wieder. Die Ionisation eines Halogenidrumpfniveaus hingegen führt zu einem strukturierten Augerspektrum, das nur im atomaren Bild gedeutet werden kann. Offenbar hinterläßt das Augerelektron zwei korrelierte Löcher bzw. vier p-Elektronen in der äußeren Schale des zuvor augeregten Halogenid-Ions, die zu den Multipletts ³P, ¹D, ¹S koppeln. Es handelt sich demnach nicht um Bandzustände. Diese Multiplettaufspaltung tritt am deutlichsten im Augerspektrum (NOO) von Natriumjodid in Erscheinung. - 4 -

1. Apparativer Aufbau und experimentelle Details

1.1. Mouochromator und Probenkammer

Die Messungen wurden im Synchrotronstrahlungslabor Hamburg am Speicherring DORIS durchgeführt. Die Synchrotronstrahlung besitzt ein kontinuierliches Photonenspektrum vom infraroten bis zum harten Röntgenbereich. Der Planspiegelmonochromator FLIPPER liefert Photonen mit Energien zwischen 20 und 500 eV. Der Arbeitsbereich erstreckt sich also über mehr als vier Oktaven. Zur Unterdrückung höherer Ordnungen ist der Monochromator mit 6 Vorspiegeln ausgerüstet, die mit geeigneten Materialien bedampft sind. Dadurch wird schon vor dem Gitter eine Grobmonochromatisierung erreicht. Nähere Einzelheiten zum Aufbau und zur Arbeitsweise des Monochromators sind in den Arbeiten von Eberhardt und Kalkoffen (E78, K78) zu finden.

Abb.(I.I.) zeigt die Spiegelintensitäten der sechs Vorspiegel. Sie wurden mit einer goldbedampften Photodiode aufgenommen. Die Konstruktion der Diode und die Relevanz der Au-Photoausbeute bei der Bestimmung der Intensitätsspektren werden von Barth (B82) beschrieben.

Die Probenkammer enthält eine Reihe von Einrichtungen zur Herstellung sauberer Oberflächen unter UHV-Bedingungen (E78, K78). Darunter befindet sich eine Spaltanlage, die es ermöglicht, bei einem Druck von 1.10⁻¹⁰ Torr saubere Spaltflächen herzustellen. Dieses ist insbesondere bei der Untersuchung hygroskopischer Substanzen, wie z.B. LiCl, LiBr, NaCl, NaBr, NaJ vorteilhaft.

- 5 -

Abb.(1.1.)Spiegelintensitäten des Planspiegelmonochromators FLIPPER
unmittelbar nach dem Wiederaufbau des Meßplatzes. Die Auf-
lösungen beziehen sich auf eine Monochromatorspaltbreite
von 200 μ.

--- Photonenintensität des Spiegels I nach 3 Monaten Betriebsdauer.

Im Laufe dieser Arbeit werden Photoemissionsmessungen an den Alkalihalogeniden LiF, LiCl, LiBr, NaCl, NaBr, NaJ vorgestellt. Diese Stoffe sind ausschließlich Isolatoren. Ihre Bandlücken sind in Tabelle (I.1) aufgelistet. Da die Messungen an Einkristallen durchgeführt wurden, mußten besondere Wege beschritten werden, um Aufladungen zu vermeiden. - 6 -

Hierfür waren eine Probenheizung sowie ein Glühdraht zur Erzeugung langsamer Elektronen hilfreich. Näheres wird in Abschnitt (1.3.) erläutert. Der Doppelzylinderanalysator, Aufdampfofen und die übrige Ausstattung der Probenkammer werden in den Arbeiten von Eberhardt und Kalkoffen (E78, K78) beschrieben.

Tabelle (I.1.):Bandlücken der untersuchten Alkalihalogenide (\$73)in Elektronenvolt

Lif	13,6
LICI	9,3
LiBr	7,95
NaCl	9,0
NaBr	7,5
NaJ	5,9

1.2. XPS- eine neue Meßmethode am FLIPPER-Meßplatz

Bisher bot die Apparatur im wesentlichen zwei Meßmethoden. Mit Hilfe der Synchrotronstrahlung können Photoemissionsmessungen an Niveaus mit Bindungsenergien bis ca. 500 eV durchgeführt werden. Damit auch tiefergebundene Zustände experimentell untersucht werden können, ist in den Doppelzylinderanalysator eine 5 KeV – Elektronenkanone integriert, mit der Augerelektronenspektroskopie (AES) betrieben werden kann. Technische Einzelheiten zur AES sind in der Arbeit von Gerken (G79) zu finden. Zur Erweiterung des meßtechnischen Instrumentariums der Apparatur wurde im Rahmen der vorliegenden Arbeit eine industriell gefertigte Röntgenröhre der Firma PHI installiert und in Betrieb genommen. Die Röhre besitzt eine Al – Anode. Das charakteristische Ka_{1/2} Dublett, hervorgerufen durch den Prozeß

$$1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p \rightarrow 1s 2s^{2} 2p^{6} 3s^{2} 3p \rightarrow 1s^{2} 2s^{2} 2p^{5} 3s^{2} 3p$$

+ e + γ

hat eine Energie von 1486,7 eV und eine Breite von ca. 1 eV. Ein 2 µm dickes Al – Fenster unterdrückt weitgehend niederenergetische Bremsstrahlung und hindert zusätzlich Streuelektronen daran, in den Analysator zu gelangen. Der Photonenfluß beträgt bei maximaler Ausgangsleistung (600 W) in einem Abstand r (cm) ca. $\frac{3.5 \cdot 10^{14}}{r^2}$ Photonen pro cm² und Sekunde.

Der Photonenfluß nimmt also mit dem Quadrat der Entfernung ab. Die vom Analysator akzeptierte Fläche ist gegeben durch

- $A = \pi \rho^2 E_p / E_k \qquad (P74)$
- ρ = Radius der Analysatorblende
- $\mathbf{E}_{\mathbf{K}}$ = kinetische Energie der Elektronen nach Verlassen der Probe
- E_p = Energie, die die Elektronen nach Passieren der Retardierungsnetze besitzen müssen, um nachgewiesen werden zu können (= "pass-energy").

und hat für $E_P \approx E_K$ die Größenordnung mm². Um eine hohe Zählrate zu erhalten, wurde deshalb eine Schwalbenschwanzführung konstruiert, die es ermöglicht, die Röhre so nahe, wie es die geometrischen Randbedingungen (Röhre, Analysator) erlauben, an die Probe heranzuführen.

- 7 -

Abb. (1.2.) zeigt ein typisches XPS - Spektrum von LiF. Eine gespreiztere Darstellung (Abb. (1.3.)) des F Is Niveaus läßt eine Reihe von Satelliten erkennen. Deren Energielagen und relative Intensitäten sind in Tab. (1.2.) zusammengefaßt. Ihre Indizierung richtet sich nach der Terminologie von Davis et al (DMRW79). Der Satellit Kβ kommt durch den Übergang

$$1s^2 2s^2 2p^6 3s^2 3p + 1s 2s^2 2p^6 3s^2 3p + 1s^2 2s^2 2p^6 3s^2$$

+ e + Y

zustande. Bei den Strukturen Ka3/4, Kx5/6 haben wir es hingegen mit sogenannten "shake up" - Satelliten zu tun. Der physikalische Hintergrund für das Auftreten von shake up - Satelliten bei Photoemissionsmessungen wird ausführlich von Shirley (S78) beschrieben. Im allgemeinen sind zwei Effekte für ihr Erscheinen verantwortlich zu machen. Diese sind einerseits die FSCL (final state configuration interaction) und andererseits die ISCI (initial state configuration interaction). Der Formalismus der Konfigurationswechselwirkung trägt der Tatsache Rechnung, daß elektronische Übergänge, initiiert durch Photoneneinwirkung (bei Photoemission) bzw. spontan (bei Röntgenemission), sich nicht immer zwischen definierten Eigenzuständen vollziehen. Aufaugs- und Endzustände lassen sich häufig nur durch Linearkombinationen verschiedener Konfigurationen darstellen. Unter Einwirkung eines Photons ist die Übergangswahrscheinlichkeit zwischen einem speziellen Anfangs- und Endzustand (und damit die Intensität der zugehörigen Linie) durch das Matrixelement

$$\left\| \leq \psi_{\mathbf{f}} / \underline{\mathbf{A}} + \underline{\mathbf{p}} / \psi_{\mathbf{f}} \right\|^{2}$$

gegeben.

- 9 -

Dagegen lassen sich bei spontanen Übergängen die Intensitäten von shake up – Satelliten nur im Rahmen der Quantenelektrodynamik berechnen.

 E_{K} = kinetische Energie der spektroskopierten Elektronen.

Al - K - Satelliten

Tabelle (1.2.):

Ał K	^α 1/2	α ₃	"4	⁽¹ 5	α ₆	β	
relative energetische Lage	U	9,8	11,8	20,1	23,4	69,7	
relative Intensität	100	6,4	3,2	0,4	0,3	0,55	

(DMRW79)

Bei der Durchführung von Röntgenphotoemissionsexperimenten können die emittierten Elektronen kinetische Energien zwischen O eV und ca. 1500 eV besitzen. Aus diesem Grunde ist es notwendig, genauer auf die Analysatorschaltung einzugehen. Abb. (1.4.) zeigt, daß die am Channeltron anliegende Spannung proportional zur analysierten kinetischen Energie wächst, da sich die Analysatorspannung infolge der gegebenen Erdungsverhältnisse der am Channeltron angelegten Hochspannung additiv überlagert. Das Channeltron muß einerseits mit einer (altersbedingten) Mindestspannung betrieben werden, um saubere Signale zu liefern. Andererseits darf eine Maximalspannung von ca. 5 KV nicht überschritten werden, so daß die Notwendigkeit besteht, die Hochspannung des Channeltronnetzgerätes auf die relevanten kinetischen Energien abzustimmen. Im Experiment wurde die Hochspannung jeweils nach einer Änderung der zu analysierenden kinetischen Energie von ca. 100 eV um den gleichen Betrag nachreguliert. Ein vom Digital-Analog-Converter (DAC) gesteuertes KEPCO-Netzgerät, es wird in Abb. (1.4.) durch eine gestrichelte Umrandung hervorgehoben, würde für beliebige Nachweisenergien eine konstante Channeltronspannung gewährleisten. Ein solches Gerät stand jedoch bei den Messungen nicht zur Verfügung.

- 11 -

Abb.(I.4.) Analysatorschaltung für Photoelektronenspektroskopie. Das mit einer gestrichelten Umrandung versehene KEPCO-Netzgerät wurde in den Messungen nicht verwendet (siehe Text).

1.3. Aufladung

Wie schon erwähnt wurde, sind die untersuchten Substanzen ausschließlich Isolatoren mit Bandlücken zwischen 5,9 und 13,6 eV. Die Stoffe besitzen also nur eine verschwindend kleine Elektronenleitfähigkeit. Wird nun an einen Ionenkristall eine Spannung angelegt, so ist ein Strom zu beobachten, dessen Größe nur durch die Existenz nichtelektronischer Ladungsträger erklärt werden kann. Dekker (D64) legt in seinem Übersichtsartikel über Leitfähigkeit und Diffusion dar, daß in Alkalihalogeniden die Leitfähigkeit hauptsächlich auf der Beweglichkeit positiver Leerstellen beruht. Beispielsweise ist für KC1 bei 525⁰ C das Verhältnis (Leitfähigkeit pos. Ionen / Gesamtleitfähigkeit) ca. 0.88. Es sei erwähnt, daß die Anzahl positiver und negativer Leerstellen annähernd gleich groß ist. Mit Hilfe thermodynamischer Überlegungen leitet Dekker für die Ionenleitfähigkeit σ die folgende Formel her:

$$\sigma = \frac{v}{akT} \exp(-(\varepsilon + 1/2\Phi)/kT)$$

für aeE << kT

- mit E = elektrische Feldstärke
 - v = Schwingungsfrequenz der Ionen
 - a = Gitterkonstante
 - ε = Höhe des Potentialwalles zwischen 2 identischen Gitterplätzen
 - $\phi = \phi_{+} + \phi_{-}$
 - \$\phi_\$ = Energie, die zur Herstellung einer positiven/negativen Leerstelle notwendig ist
 - T = absolute Temperatur
 - k = Boltzmannkonstante
 - e = Elementarladung

Es wird deutlich, daß die Leitfähigkeit mit steigender Temperatur anwächst und damit die Gefahr der Probenaufladung bei Photoemissionsmessungen abnimmt. Abb.(1.5.) zeigt Energieverteilungskurven (EDC's) des Valenzbandes von LiBr, die bei Temperaturen zwischen 20⁰ und 200⁰ C aufgenommen wurden. Eine hinreichend hohe Probentemperatur brächte also Aufladungseffekte völlig zum Verschwinden, wenn dem Heizvorgang nicht durch Sublimation der Proben eine natürliche Grenze gesetzt würde.

- 13 -

bie Probentemperaturen betrugen deshalb nur ca. 250^o – 300^o C bei allen Messungen. Zusätzlich wurden die Substanzen zur Ladungskompensation mit langsamen Elektronen (5 eV) bestrahlt, die von einem glühenden Wolframdraht geliefert wurden.

Abb.(1.5.) Valenzbandspektren von LiBr bei verschiedenen Temperaturen. Die Verzerrung des Energieverteilungsspektrums bei niedrigen Temperaturen ist auf eine Aufladung der Probe zurückzuführen.

ber Vergleich von Energieverteilungsspektren mit unterschiedlicher Aufladung zeigt, daß sich Strukturen mit zunehmender Aufladung verbreitern und zu niedrigeren kinetischen Energien hin verschieben. Weder die Li- noch die Na-Halogeniden weisen im Bereich der ersten Rumpfanregungen (Lils bzw. Na2p Anregung bei ca. 60 bzw. ca. 33 eV) scharfe Strukturen auf, anhand derer die Aufladung kontrolliert werden könnte. Die äußeren s-Elektronen der Halogenide besitzen in diesen Energiebereichen einen zu geringen Wirkungsquerschnitt als daß ihre Breiten oder energetischen Lagen hinreichend genau bestimmt werden könnten. Die Valenzbänder hingegen erfahren beim Durchgang durch die prominenten Absorptionsmaxima der Lils- und Na2p-Anregungen (Tab. (111.9.)) aufgrund von direkten Rekombinationsprozessen (siehe Abschnitt 111.4.) Strukturveränderungen.

Spielen Aufladungseffekte eine Rolle, so zeigt sich dieses allerdings auch in einem Vergleich von Energieverteilungsmessungen bei gleichen Photonenenergien aber unterschiedlichen Photonenintensitäten. Änderten sich die Strukturen einer EDC bei beliebiger Variation der Spaltbreite des Monochromators nicht, so wurde davon ausgegangen, daß die betreffende Probe sich nicht auflud. Im Bereich der Na2p Anregung der Na-Halogenide konnte die Aufladung noch auf eine andere Weise kontrolliert werden. Abb.(I.1.) zeigt, daß Spiegel 4 ca. 4mal mehr 60 eV Photonen liefert als 30 eV Photonen. Diese 60 eV Photonen treten bei einer "30 eV Stellung" des Gitters als Photonen 2. Ordnung auf. Sie sind in der Lage, Na2P-Elektronen zu emittieren, deren kinetische Energien in der Nähe der kinetischen Energien der VB Elektronen liegen, welche durch Photonen erster Ordnung emittiert werden. Zeigt ein Vergleich von 2 EDC's bei Photonenenergien von hv und hv + hAv – eine Verschiebung der kinetischen Energie der Na2P Elektronen um 2 · Αν, so ist gewährleistet, daß die Aufladung bei beiden Messungen identisch ist (siehe Abb.(1.6.)).

Abb.(1.6) Valenzbandspektren von NaJ. Die Spektren wurden auf gleiche Bindungsenergien normiert. Durch höhere Ordnungen des Monochromators wurden Na2p Elektronen angeregt. Sie besitzen in dieser Darstellung bezüglich der Valenzbandelektronen niedrigere Bindungsenergien.

1.4. Reflexion

Haensel et al zeigen (HKS68 und HKSS68), daß die Li- und Na-Halogenide im Bereich der Lils- bzw. Na2p-Anregung starke Absorptionsstrukturen aufweisen. Sprüssel (S81) berechnet aus forentzförmigen Testoszillatoren die zugehörigen Reflexionsspektren. Es zeigt sich, daß die Reflexionsmaxima gegenüber den Absorptionsmaxima zu höheren Energien hin verschoben sind. Die Größe der Verschiebung ist abhängig von der zugehörigen Oszillatorstärke, sowie der Verteilung der benachbarten Oszillatorstärken. Es werden im weiteren Verlauf der Arbeit relative Intensitäten von Energieverteilungsspektren verglichen werden, die bei Photoneneuergien vor und in den prominenten Absorptionsmaxima aufgenommen wurden. Trotz der Verschiebung der Reflexions- gegenüber den Absorptionsstrukturen können die Reflektivitäten der untersuchten Substanzen bei der Auswertung nicht vernachlässigt werden, da über die Größe der Verschiebung keine Angaben gemacht werden können: denn es existieren weder Reflexionsmessungen an Einkristallen in den interessierenden Energiebereichen noch gibt es absolute Absorptionsmessungen über hinreichend große Energiebereiche, aus denen durch Kramers-Kronig-Analysen Reflektivitäten berechnet werden könnten. Deshalb wurde der Versuch unternommen, die Reflektivitäten experimentell zu bestimmen. Dazu wurde oberhalb der Probe eine Golddiode (PDII, siehe Abb. (1.7.)) angebracht. Der von den reflektierten Photonen hervorgerufene Photoclektronenstrom wurde über einen Vorverstärker von einem Carv-Elektrometer gemessen (Abb. (1.7.)). Die Probe wurde positiv vorgespannt, um einerseits den Aufbau einer negativen Raumladung vor der Photodiode zu vermeiden, und andererseits Photoelektronen am Austritt aus der Probe zu hindern. Durch den Vergleich der Photoemissionsströme aus der Photodiode oberhalb der Probe und der Diode, die in den direkten Strahl geschwenkt werden kann (PDI, siche Abb. (1.7.)), ist es möglich, absolute Reflektivitäten zu bestimmen (Abb.I.8.). Es ist jedoch zu beachten, daß nur dann vernünftige Reflexionsdaten zu erwarten sind, wenn a) der Einfallswinkel der Photonen auf beide Dioden gleich groß ist und b) die Photoausbeuten beider Dioden übereinstimmen. Da insbesondere die zweite Forderung nur schwer auf ihre Richtigkeit überprüft werden konnte, dienen die gemessenen

- 17 -

Reflektivitäten nur zur ersten Orientierung. Allerdings wirkt sich die Verwendung ungenauer Reflektivitäten bei der Auswertung der Spektren nicht besonders gravierend aus, da bei allen Messungen der Winkel zur Normalen 55⁰ - 60⁰ nicht überschritt. Die bei diesen Winkeln auftretenden relativ schwachen Reflektivitäten sind nur eine Korrekturgröße. Starke Reflektivitäten werden dagegen erst bei streitendem Photoneneinfall erwartet.

PD1/H = Photodioden

C = Collector

Abb.(1.8.) Reflektivitäten im Bereich der Li⁺ls - Anregung

von LiF bei verschiedenen Photoneneinfallswinkeln θ bezüglich der Normalen. Die Reflektivitäten wurden mit der in Abb.(1.7.) dargestellten Versuchsanordnung gemessen.

11. Theorie

H.I. Exzitonenformalismus

Eine ausführliche Beschreibung der Eigenschaften von Exzitonen wird von Knox (K63) gegeben. Im folgenden werden lediglich die wichtigsten Grundlagen dargestellt.

Unter einem Exziton versteht man gauz allgemein ein gebundenes Elektron-Loch Paar. Gebunden bedeutet dabei nicht unbedingt, daß die Bindungsenergie des Exzitons bezüglich des Leitungsbandbodens megativ ist. Es existieren durchaus Exzitonen, die durch Autoionisation des Elektrons ins Leitungsband zerfallen können (siehe Abschnitt 11.2.). Man unterscheidet zwischen Frenkel- und Wannier-Exzitonen (F31,W37). Während sich Elektron und Loch beim Frenkel-Exziton am gleichen Atom (Ion) befinden, ist das Elektron im Wannier-Exziton mehrere Gitterabstände vom Loch entfernt.

Die Energie einer exzitonischen Anregung wird durch den Hamiltonoperator (Gleichung (II.I.)) dargestellt.

$$H_{o} = -\sum_{i} \frac{b^{2} \mathbf{v}_{i}^{2}}{2m} + \sum_{i} U(\mathbf{r}_{i}) + \sum_{i < j} \sum_{j} \frac{e^{2}}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} + H_{s} Gl.(11.1.)$$

kin.Energie Elektron-Kern-, Elektron-Elektron Spin-Spin der Elektronen Kern-Kern- WW WW Gitterschwingungen werden dabei vernachlässigt. Zur Diagonalisierung des Hamiltonoperators bieten sich zunächst zwei Möglichkeiten an: Ausgehend von der Einelektronennäherung kann die Wellenfunktion des Exzitons aufgebaut werden aus antisymmetrisierten Produkten von a) N atomaren Eigenfunktionen (N-1 Zustände m an den Orten $\underline{R} \neq \underline{K}_i$, ein Zustand n am Ort \underline{R}_i):

$$\Phi_{mn}$$
 ($\underline{\mathbf{R}}, \underline{\mathbf{R}}^{\dagger}\underline{\boldsymbol{\beta}}$), $\underline{\boldsymbol{\beta}} = \underline{\mathbf{R}}_{\mathbf{j}} - \underline{\mathbf{R}}_{\mathbf{i}}$ G1. (11.2.)
 $\underline{\mathbf{R}}_{\alpha} = \text{Gittervektoren}$

b) N Blochfunktionen (N-I Zustände <u>k</u> \neq <u>k</u>_h im Band m, ein Zustand <u>k</u>_e im Band n):

$$\Phi_{mn}$$
 (k-K,k), K = k_e - k_h G1.(11.3.)
k_a = Vektoren im reziproben Gitter

Eine bequemere Darstellung ist jedoch die c) Exzitonendarstellung:

$$\Phi_{\text{nun}} (\underline{k}, \underline{\beta}) = N^{-1/2} \sum_{\underline{k}} e^{-i\underline{\beta}\underline{k}} \Phi_{\text{nun}} (\underline{k}-\underline{k}, \underline{k})$$
 C1. (11.4a)

oder auch

$$\Psi_{mn}(\underline{K},\underline{\beta}) = N^{-1/2} \sum_{k} e^{i\underline{K}\underline{R}} \Phi_{mn}(\underline{R},\underline{R};\underline{\beta}) \qquad G1.(11.4b)$$

- 21 -

Alle drei funktionssätze

$$\Phi_{mn} \quad (\underline{R}, \underline{R} + \underline{\beta})$$

$$\Phi_{nn} \quad (\underline{k} - \underline{K}, \underline{k})$$

$$\Phi_{mn} \quad (\underline{K}, \underline{\beta})$$

stellen vollständige Systeme dar, aus denen durch Linearkombination der exzitonische Zustand gewonnen werden kann. Frenkelexzitonen sind durch die Identität: $\beta = 0$ charakterisiert. Wannierexzitonen dagegen werden durch die Linearkombination (G1.(11.5)) dargestellt:

v = Numerierungsindex der verschiedenen Wannierzustände

Die Berechnung der Faktoren $U_{mn \vee \underline{K}}(\underline{\beta})$ und der Eigenwerte der Wannierzustände wird von Knox (K63) beschrieben.

Im folgenden möchte ich mich auf den Frenkelschen Exzitonentyp beschränken, da sich die vorliegende Arbeit im wesentlichen mit Anregungen dieser Art beschäftigt (z.B. Li⁺1s2p- oder Na⁺2p3s-Anregung). Knox (K63) zeigt, daß unter Berücksichtigung der Spin-Spin-Wechselwirkung der <u>K</u>-abhängige Teil des Energieerwartungswertes

G1.(11.6.)

$$\begin{cases} \langle \Phi_{mn} & (\underline{K}, \underline{0}) | H_{O} | \Phi_{mn} & (\underline{K}, \underline{0}) \rangle \\ (H_{O} \text{ ist durch GL}, (\Pi, \Pi, I,) \text{ definiert}) \end{cases}$$
Hautet:
$$E(\underline{K}) = \sum_{\substack{k \in \underline{0} \\ \underline{K} \neq \underline{0} \\ k \neq \underline{0}}} 2\delta_{\underline{N}} \sim n\underline{0}m\underline{K} | \underline{g} | n\underline{0}n\underline{K} \rangle =$$

Summiert wird über alle Gittervektoren.

Es bedeuten: $\delta_{\mathbf{M}} = \mathbf{I}$ falls $\Phi_{\mathbf{mn}}(\underline{K},\underline{0})$ ein Singlettzustand ist $\delta_{\mathbf{M}} = 0$ falls $\Phi_{\mathbf{mn}}(\underline{K},\underline{0})$ ein Triplettzustand ist

|nQ>, |mR>, |mQ>, |nR>= atomare Einteilchenzustände m bzw. n an den

Gitterorten O bzw. R

$$g = \frac{e^2}{|\underline{r}_1 - \underline{r}_2|}$$

 $r_{1/2}$ = Ortskoordinaten derEinteilchenzustände

e = Elementarladung

Betrachtet man zur Vereinfachung eine lineare Kette, sowie lediglich die Wechselwirkungen mit nächsten Nachbarn, so vereinfacht sich Cl.(11.6.) zu Gl.(11.7.):

$$E(K) = 2\cos Ka \left[2\delta_{N} < nOma | g | mOna > - < nOma | g | namo > \right]$$

$$a = Gitterkonstante \qquad I \qquad II$$

Die Größe der in eckigen Klammern stehenden Differenz D = I-fl bestimmt die Exzitonenbandbreite B: B = 4·D Die Terme I und fl symbolisieren die beiden Transfermechanismen des

Exzitons (siehe Abb.(11.1.)

Die thermische Geschwindigkeit v eines Exzitons ist von der Größenordnung (K63):

$$v \approx \sqrt{\frac{3kT}{\mu}}$$

k = Boltzmannkonstante

T = absolute Temperatur

µ = effektive Masse des Exzitons

Abb. (11.1.) Ein Exziton am Gitterpunkt (Q) kann durch die beiden Mechanismen (I,II) zum Gitterpunkt (R) wandern.

Die effektive Masse p eines Exzitons ist im Spezialfall der linearen Kette gegeben durch:

$$\frac{1}{\mu} = \frac{1}{\hbar^2} - \frac{\partial^2 E(K)}{\partial K^2} = -\frac{2a^2}{\hbar^2} \cos K a + D$$

ft = Planck'sches Wirkungsquantum/20.

Für Core-Exzitonen, von denen diese Arbeit handelt, sind die Matrixelemente 1 und 11 und damit auch die Differenz D klein. Die effektive Nasse der Exzitonen wird also groß und damit die thermische Geschwindigkeit klein sein. Ist die Lebensdauer dieser Exzitonen hinreichend groß, so wird man deshalb eine Gitterrelaxation während der Dauer der exzitonischen Anregung erwarten können. 11.2. Zerfallskanäle von Exzitonen

Abb.(II.2.) zeigt die für die untersuchten Substanzen wichtigen Zerfallskanäle.

Der Augerzerfall ist dadurch charakterisiert, daß ein Elektron einer äußeren Schale das erzeugte Loch auffüllt und gleichzeitig ein weiteres Elektron durch die freiwerdende Energie insLeitungsband gehoben wird. Dieses Elektron wird in der PES nachgewiesen. Ist das exzitonische Elektron an diesem Prozeß beteiligt, so spricht man von direkter Rekombination des Exzitons. Die direkte Rekombination ist also nichts anderes als eine spezielle Form des Augerzerfalles. Zerfällt das Exziton hingegen durch einen Augerprozeß ohne Mitwirkung des zuvor angeregten Elektrons, so erhebt sich, falls das Exzitonenniveau unterhalb des Leitungsbandbodens gelegen ist, die Frage nach dem Verbleib dieses Elektrons. Denn nach der Vernichtung des Loches ist eine weitere Existenz innerhalb der verbotenen Zone unmöglich. Es sind prinzipiell 3 Mechanismen denkbar. Einerseits kann ihm ein Teil der beim Rekombinieren des Loches freiwerdenden Energie zugeteilt werden, so daß es ins Leitungsband gehoben wird. Das macht sich in einer Verringerung der kinetischen Energie des emittierten Augerelektrons bemerkbar, Andererseits könnte es aber auch mit einem beim Augerprozeß entstandenen Loch einen gebundenen Zustand (Exziton) bilden. Zhurakovskii et al (ZGE/8) beschreiben den Augerzerfall des Cl2p - Exzitons im NaCl (siehe auch Kapitel 111). Das Endprodukt dieses Zerfalls besteht aus einem gebundenen Komplex zweier Valenzbandlöcher und des exzitonischen Elektrons. Die Bindungsenergien solcher Quasipartikel beträgt für Alkalihalogenide ca. 0,1 - 0,4 eV. Die Autoren räumen jedoch die Möglichkeit ein, daß sich der dreier-Komplex nach kurzer Zeit in ein Valenzbandexziton und ein Loch aufspaltet.

- 25 -

Rekombination

33258

Abb.(11.2.): Die Zerfallskanäle Direkte Rekombination und Augerzerfall können in der Photoelektronenspektroskopie untersucht werden. Es wird deutlich, daß bei Vernachlässigung von Gitterrelaxationsprozessen direkt emittierte VB-Elektronen gleiche kinetische Energien besitzen wie Elektronen, die aus der dargestellten Direkten Rekombination stammen.

zerfall

in der Photoelektronenspektroskopie deutet eine Intensitätszunahme einer Photoemissionslinie beim Durchgang durch die Anregungsenergie des Exzitons darauf hin, daß Elektronen des zugehörigen Niveaus an einer direkten Rekombination teilhaben. Sieht man von Relaxationseffekten während der Lebensdauer des Exzitons ab, so besitzen die direkt angeregten Elektronen und die durch direkte Rekombination emittierten Elektronen die gleiche kinetische Energie. Die Stärke beider Zerfallskanäle, der direkten Rekombination und des Augerzerfalls, wird durch das Augermatrixelement bestimmt:

$$M = \left[-\chi_{\mathbf{f}}^{\dagger}(\underline{\mathbf{r}}_{1}) \psi_{\mathbf{f}}^{\dagger}(\underline{\mathbf{r}}_{2}) - \frac{e^{2}}{|\underline{\mathbf{r}}_{1} - \underline{\mathbf{r}}_{2}|} \chi_{i}(\underline{\mathbf{r}}_{1}) \psi_{i}(\underline{\mathbf{r}}_{2}) d\underline{\mathbf{r}}_{1} d\underline{\mathbf{r}}_{2} \right]^{2} = GI.(11.8.)$$

 $\chi_i(\underline{r}_1), \chi_f(\underline{r}_1) = Anfangs- und Endzustand des Elektrons I$

 $\psi_i(\underline{r}_2)$, $\psi_f(\underline{r}_2)$ = Anfangs- und Endzustand des Elektrons 2

Findet eine direkte Rekombination unter Einbeziehung von Elektronen eines breiten Bandes (z.B. Valenzband) statt, so liegt es auf der Hand, daß auch ohne Gitterrelaxation keine gleichmäßige Überhöhung des Niveaus zu erwarten ist. Denn in das Augermatrixelement gehen entscheidend die räumlichen Verteilungen der Elektronen des Bandes ein, die für Elektronen unterschiedlicher Energien (unterschiedlicher <u>k</u>-Vektoren) sicherlich verschieden sind.

Abgesehen von den beiden eben beschriebenen Zerfallsmechanismen wird die Lebensdauer eines Exzitons dadurch begrenzt, daß das angeregte Elektron unter Aussendung eines Photons in das Grundniveau zurückkehren kann. Dieser Prozeß wurde jedoch im Rahmen der vorliegenden Arbeit experimenteil nicht untersucht, da die vorhandene Apparatur bisher keine Möglichkeit für energieaufgelöste Lumineszenzmessungen bietet.

Zuletzt soll noch auf einen vierten Zerfallskanal hingewiesen werden, der allerdings nur bei Exzitonen, deren Energien oberhalb der Anregungsschwellen liegen, von Bedeutung ist. Nakai et al (NIS71) identifizieren die Absorptionsstrukturen b (HKSS68) der Na-Halogenide mit Exzitonen, welche am X Punkt der Brillouin-zone ankoppeln. Der Vergleich der energetischen Lagen dieser Strukturen mit den entsprechenden Anregungsschwellen (Tab.(111.10.)) zeigt, daß die Exzitonen oberhalb des Leitungsbandbodens anzusiedeln sind. Die Elektronen können sich also nach Durchdringung eines Potentialwalles frei im Leitungsband bewegen. Diesen Vorgang nemnt man Autoionisation.

Die hier durchgeführten Experimente beschränken sind jedoch ausschließlich auf Exzitonen, die unterhalb des Leitungsbandbodens lokalisiert sind.

11.3. Konfigurationskoordinatenmodell (KK-Modell)

Gitterrelaxationsprozesse lassen sich im Konfigurationskoordinatenmodell auf besonders anschauliche Weise beschreiben. Deshalb soll ant dieses Nodell näher eingegangen werden. Die Ausführungen stützen sich großenteils auf die Arbeit von Markham (M59).

Der Gesamthamiltonoperator II des Gitters läßt sich darstellen durch:

$$H = T + T_{c} + V(\underline{r},\underline{R}) = G1.(11.9.)$$

kin.Energie kin.Energie Elektron-Elektron-, der Kerne der Elektronen Elektron-Kern-Wechselwirkung

r, & = elektronische, bzw. nukleonische Ortskoordinaten

Zur Berechnung der Eigenvektoren und Eigenwerte macht man üblicherweise einen Produktansatz (Born-Oppenheimer-Nährung):

$$\psi = \phi(\underline{r}) - \chi(\underline{R})$$

 $\phi(\underline{r}), \chi(\underline{R}) = elektronische bzw. nukleonische Wellenfunktionen$

Sieht man <u>k</u> zunächst als konstanten Parameter an, so lassen sich die Eigenwerte $\varepsilon_n(\underline{R})$ des Operators (Gl. (11.10.)) berechnen:

Die Gleichgewichtslage des Gitters (\underline{R}_0) ist definiert durch:

$$\frac{\partial E_n(\underline{R})}{\partial X_i} \bigg|_{\underline{R}_0} = 0, \forall X_i$$

X. = karthesische Koordinaten der Kerne

Zur Bestimmung der nukleonischen Wellenfunktionen $\chi(\underline{K})$ entwickelt man den Hamiltonoperator (G1.(11.9.)) zweckmäßigerweise um die Gleichgewichtslage (\underline{R}_{α}) des Gitters:

$$H = \varepsilon_{n}(\underline{R}_{o}) + \sum_{j} \frac{\partial \varepsilon_{n}(\underline{R})}{\partial X_{j}} \int_{\underline{R}_{o}} x_{j} + \frac{1}{2} \sum_{i,j} \frac{\partial^{2} \varepsilon_{n}(\underline{R})}{\partial X_{i} \partial X_{j}} \Big| \frac{x_{i}}{\underline{R}_{o}} x_{j} + GL(11,11.)$$
$$+ T(\dot{X}_{i}, \dot{X}_{j})$$

 $X_i = zeitliche Ableitung der karthesischen Koordinaten <math>X_i$.

Dieser Ausdruck kann durch Transformation der X_i auf Normalkoordinaten q₀₁ vereinfächt werden:

$$\mathbf{H} = \mathbf{v}_{\mathbf{n}}(\underline{\mathbf{R}}_{\mathbf{0}}) + 1/2 \sum_{\mathbf{0}\underline{\mathbf{f}}} (\mathbf{p}_{\mathbf{0}\underline{\mathbf{f}}}^2 + \omega_{\mathbf{0}\underline{\mathbf{f}}}^2 - \mathbf{q}_{\mathbf{0}\underline{\mathbf{f}}}^2) \qquad \qquad \mathbf{G}_{\mathbf{1}}.(11.12.)$$

$$\mathbf{p}_{\mathbf{0}\underline{\mathbf{f}}} = \frac{\mathbf{h}}{\mathbf{i}} \frac{\partial}{\partial \mathbf{q}_{\mathbf{0}\underline{\mathbf{f}}}}$$

$$\omega_{\mathbf{0}\underline{\mathbf{f}}} = \text{Frequenz der Mode } (\sigma, \underline{\mathbf{f}})$$

Die Indizes 0 und <u>f</u> kennzeichnen dabei die verschiedenen Phononenzweige sowie die unterschiedlichen Schwingungsmoden eines Zweiges. In einem Kristall mit r Atomen (lonen) pro Elementarzelle gibt es 3 akustische und 3^{*}(r⁻¹) optische Zweige (M72).

Ans GL. (11.12.) wird klar, daß die nukleonischen Wellenfunktionen die Eigenvektoren des harmonischen Oszillators sind. Die Eigenwerte von II (GL.(11.9.)) sind demnach gegeben durch:

$$\forall \chi |_{U_{\Pi}}(R_{0}) + 1/2 \sum_{0 \downarrow} \nu_{0 \downarrow}^{2} + \omega_{0 \downarrow}^{2} q_{0 \downarrow}^{2} | \psi_{X} \rangle = G1. (11.13.)$$

$$= \iota_{\Pi}(R_{0}) + \iota_{0 \downarrow} \hbar_{\omega_{0 \downarrow}} - (n_{0 \downarrow} + 1/2)$$

$$n_{0 \downarrow} = \frac{1}{\exp(\hbar \omega_{0 \downarrow} / kT) - 1} = Phononenbeset zungszahl der Mode (0, j).$$

Im folgenden sind die beiden Indizes $0, \underline{f}$ durch den einen Index j ersefzt. Die Eigenwerte des elektronischen Hamiltonoperators h_e (G1.(II.10.)) für den Grundzustand ($\iota_{\underline{g}}(\underline{R})$) und einen angeregten Zustand ($\iota_{\underline{a}}(\underline{R})$) sind verknüptt durch G1.(II.14.):

$$\epsilon_{a}(\underline{R}) = \epsilon_{g}(\underline{R}_{0}^{g}) + \frac{1/2}{j} \sum_{j} \frac{\omega_{j}^{2}}{(g)} q_{j}^{2} + GI.(II.14.)$$

$$+ \Delta \epsilon(\underline{R}_{0}^{g}) + \sum_{j} \epsilon_{j} q_{j} + \frac{1/2}{jk} \sum_{k} \epsilon_{jk} q_{j} q_{k}^{k} +$$

+ höhere Entwicklungsterme

 $\underline{R}_{o}^{a/g}$ = Gleichgewichtslage des angeregten/Grundzustands des Gitters

 $\Delta \varepsilon$ (<u>R</u>) = Energiedifferenz des angeregten und Grundzustandes an der Stele (<u>R</u>)

$$\varepsilon_{j} = \frac{\partial \Delta \varepsilon}{\partial q_{j}} \left| \frac{\mathbf{k}^{B}}{\mathbf{k}^{O}} \right|^{B}$$
$$\varepsilon_{jk} = \frac{\partial \Delta \varepsilon}{\partial q_{j}} \left| \frac{\partial q_{k}}{\mathbf{k}^{O}} \right|^{B}$$

- $\omega_i(g)$ = Schwingungsfrequenzides Kristalls im Grundzustand
 - q_a = Normalkoordinaten des Grundzustandes

Unter gewissen Voraussetzungen (M59) ist eine weitere Transformation der Koordinaten q_i möglich. G1.(11.14.) vereinfacht sich dann zu G1.(11.15.)

$$\varepsilon_{a}(\underline{R}) = \varepsilon_{g}(\underline{R}_{0}^{g}) + \Delta\varepsilon(\underline{R}_{0}^{g}) + \qquad G1.(11.15.)$$

$$+ \frac{1}{2} \sum_{j} \omega_{j}^{2}(a) q_{j}^{2} + \sum_{j} \varepsilon_{j} q_{j}$$

$$\omega_{j}^{2}(a) = \omega_{j}^{2}(\underline{R}) + \varepsilon_{j} \qquad G1.(11.16.)$$

Damit ergibt sich die Gleichgewichtslage q_j(a) des Gitters im angeregten Zustand bezüglich der Gleichgewichtslage q_j(g) = 0 im Grundzustand:

$$q_j(a) = -\varepsilon_j/\omega_j^2(a)$$
 G1.(11.17.)

Besonders eintache Ergebnisse sind zu erwarten, wenn man die Voraussetzung macht, daß bei einer lokalen Anregung des Gitters jeweils nur eine Schwingungsmode j (mit Frequenz $\omega_j(a)$ bzw. $\omega_j(g)$ für angeregten und Grundzustand wichtig ist, d.h. lediglich ein ε_j ist $\neq 0$. Es liegt nahe, diese spezielle Mode mit der sogenannten "breathing mode" zn identifizieren, die dadurch charakterisiert ist, daß die nächsten Nachbarn des Anregungszentrums periodische und gleichphasige Schwingungen ausführen.

Abb.(11.3.) zeigt schematisch die Energien (Eigenwerte von h_e) des angeregten und Grundzustandes in Abhängigkeit der Konfigurationskoordinate Ψ_i .

Die Gitterrelaxationsenergie wird definiert als die Differenz der Anregungs- und Emissionsenergie. Geht man davon aus, daß der angeregte Zustand in die Gleichgewichtslage relaxiert, bevor er wieder zerfällt, so berechnet sich die Gitterrelaxationsenergie E_R folgendermaßen:

$$E_{R} = \frac{1/2}{\omega_{j}^{2}(a)} + \frac{1/2}{\omega_{j}^{2}(g)} bzw.$$
 61.(11.18.a)
$$E_{R} = \frac{1/2}{\omega_{j}^{2}} + \frac{1/2}{\omega_{j}^{2}(g)} bzw.$$
 61.(11.18.a)
(gleiche Kraftkonstanten) 61.(11.18.b.)

Der GL. (11.18) liegt das Franck-Condon-Prinzip (B78) zugrunde:

- senkrechte Übergänge sind am wahrscheinlichsten (bzw. eine Änderung der Kernkoordinaten folgt nur langsam einer elektronischen Zustandsänderung)
- das Überlappintegral der nukleonischen Wellenfunktion des Grundzustandes mit der eines angeregten Zustandes (und damit die Übergangswahrscheinlichkeit (M66)) ist dann am größten, wenn der angeregte harmonische Oszillator im klassischen Bild an der Stelle (R₀^B) seinen Umkehrpunkt besitzt (PW35).

Anregung und Zerfall von Exzitonen sind in der Regel mit der Erzeugung von Phononen am Anregungsort verbunden. Im Laufe der Relaxationprozesse werden diese Phononen wieder vernichtet. Die Anzahl der Phononen, die während der Relaxation des angeregten Zustandes vernichtet werden, wird durch den Huang Rhys - Faktor angegeben (M59):

$$S = 1/2 \frac{\varepsilon_j^2}{f_i \omega_j^3(a)} \quad \text{für } T = 0 \text{ K} \qquad \text{G1.(11.19.)}$$
$$= 1/2 \frac{\varepsilon_k}{f_i \omega_j} \quad \text{für } \varepsilon_{jj} = 0$$
$$\text{also } \omega_j = \omega_j(a) = \omega_j(g)$$

- 34 -

E_A = Absorptionsenergie

E = Emissionsenergie nach vollständiger Retuxation.

11.4. Linienformen von Absorptionsstrukturen

Toyozawa (T58,T60,T74,T80) hat eine umfassende Theorie über die Linienformen von exzitonischen Absorptionsbanden entwickelt. Er zeigt, daß die Linienform wesentlich bestimmt wird durch die Stärke der Exziton-Phonon-Kopplung. Für die Frenkelexzitonen wird der Kopplungsparameter G_{of} definiert durch:

$$\int \psi_{n\underline{K}}^{\cancel{h}} \frac{\partial^{\cancel{h}} e}{\partial q_{\sigma\underline{f}}} - \psi_{n^{+}K^{+}} d^{3}r = \delta(\underline{i} - \underline{K} + \underline{K}^{+}) \left(\frac{2\omega_{\sigma}}{\underline{h}}\underline{f}\right)^{1/2} G_{\sigma\underline{f}} - (n\underline{K}n^{+}\underline{K}^{+}) - Gi, (11, 20, 1)$$

- δ = Deltafunktion
- $\Psi_{n\underline{K}} = \Psi_{mn} (\underline{K}, \underline{O})$ (siehe Gl.(11.4.b) $h_e = \text{elektronischer Hamiltonoperator}$ siehe Abschnitt 11.3. $o\underline{f} = \text{Indizes zur Numerierung der Phononenmoden}$
- \underline{f} = Wellenvektor des Phonons (\underline{f} , σ)

Toyozawa berechnet für zwei Grenzfälle die Absorptionskoeffizienten $\mu(\omega)$ in Abhängigkeit der Kopplungsparameter G_{of}. Zur Unterscheidung dieser Fälle ist es notwendig, die Größe D_n einzuführen:

$$D_n^2 = \sum_{\substack{\sigma \underline{f} \\ \sigma \underline{f}}} \left[G_{\sigma \underline{f}} (n\underline{K} + \underline{f}, n\underline{K}) \right]^2 (2n_{\sigma \underline{f}} + 1)$$

$$G_{1.(11.21.)}$$

$$G_{\sigma \underline{f}}^1 = Phononenbeset zungszahl der Mode (o\underline{f}) (siehe G_{1.(11.13.)})$$

Der Grenzfall schwacher Exziton-Phononkopplung liegt vor, falls $D_n^{<< B}$, wenn B die Exzitonenbandbreite ist. Die Absorptionsstruktur hat dann lorentzförmige Gestalt. Im Grenzfall starker Exziton-Phonon-Kopplung dagegen $(\theta_n \sim B)$, wird das Absorptionsprotil durch eine Gaußkurve der folgenden Art beschrieben:

$$\mu_{-}(\omega) = C \cdot \frac{1}{D_{\mu}} \cdot \exp\left(-\frac{(\hbar\omega - E_{\mu})^2}{2D_{\mu}^2}\right)^2$$
 G1.(11.22.)

C = konstanter Faktor $E_{0} = \Delta c \left(K_{0}^{-B} \right) \text{ (siche GL (11.14.)}$ $\hbar \omega = \text{Photonenengie}$

(z.B. die breathing mode), so gilt:

$$\left| D_n^2 - \left| G_j \right|^2 (2n_j + 1) - \left| G_j \right|^2 \coth \frac{\pi \omega_j}{2kT}$$
 61.(11.23.)

k = Boltzmannkonstante

und die Halbwertsbreite HWB der Gaußkurve beträgt:

$$HWB = \sqrt{B + 1n^2} + |G_j| + \sqrt{\cot h - \frac{\hbar\omega_j}{2kT}} = G1.(11.24.)$$

Die physikalische Bedeutung von C_j wird mit der Berechnung der Absorptionslinientorm unter Zuhiltenahme des Konfigurationskoordinatenmodells (KK-Modells) und bei Berücksichtigung nur jeweils einer Schwingungsmode für angeregten und Grundzustand (breathing mode) mit den Frequenzen ω_a bzw. ω_p offenkundig. q_j kennzeichnet im folgenden die Auslenkung der nächsten Nachbarn des Anregungszentrums aus der Ruhelage im Grundzustand des Gitters. Die Absorptionswahrscheinlichkeit eines Photons mit der Energie E ist proportional zur Aufenthaltswahrscheinlichkeit des Grundzustandsoszillators am Ort q_j, an dem der Energieabstand der Parabeln von angeregtem und Grundzustand (im KK-Modell) den Wert E hat. Die Wahrscheinlichkeit p, daß der Oszillator s-fach besetzt ist, beträgt:

$$p(s) = e^{-s\beta} (1-e^{-\beta})$$
 G1.(11.25.)

 $\beta = \frac{\pi\omega}{kT}$

Damit ist die Aufenthaltswahrscheinlichkeit P am Ort \mathbf{q}_{i} gegeben durch:

$$P(q_j) = \frac{\Sigma}{s} p(s) \chi \frac{2}{s} (q_j)$$
 G1.(11.26.)

Die Eigenfunktionen der verschiedenen Auregungszustände X_S eines harmonischen Oszillators sind tabelliert. Markham (M66) kommt nach längerer Rechnung zum Resultat:

$$P(q_j) = \sqrt{\frac{\hbar}{fl\omega_g} \cosh \frac{\hbar\omega_g}{2kT}} \exp\left(-\frac{q_j^2 \omega_g}{\hbar \coth \hbar\omega_g/2kT}\right) \qquad G1.(11.27.)$$

- 38 -

Der energetische Abstand E der Parabeln von angeregtem und Grundzustandist gegeben durch GL.(11.15.):

$$E = E_0 := \Delta c(q_j) = \Delta c(0) = c_j q_j + 1/2 c_{jj} q_j^2$$

(As, c_j and c_{jj} worden in Abschnitt 11.3. definiert)

 ${\rm Damit}$ berechnet sich die Kontigurationskoordinate $|\mathbf{q}_j|$ in Abhängigkeit von E zu:

$$q_{j1/2} = -\frac{c_j}{\epsilon_{jj}} + \sqrt{\begin{pmatrix} c_j \\ c_{jj} \end{pmatrix} + \frac{2}{\epsilon_{jj}}} (E-E_0)$$
 G1. (11.28.)

Setzt man diesen Ausdruck in Gl.(11.27.) ein, so folgt für den Absorptionskoeffizienten $\mu(E)$:

$$\mu(E) = \exp\left(-\frac{2}{2} \frac{\frac{1}{j}}{\frac{1}{j}} - \frac{\omega_{\text{B}}}{\hbar \cosh(\hbar \omega_{\text{g}}/2kT)}\right) \qquad \text{GL.(11.29.)}$$

$$= \exp\left(-\frac{2}{\frac{1}{j}} (E-E_{\text{o}}) \frac{\omega_{\text{g}}}{\hbar \cosh(\hbar \omega_{\text{g}}/2kT)}\right)$$

$$= 2\cosh\left(\frac{2\epsilon_{j}}{\epsilon_{j}} \sqrt{\frac{\frac{1}{j}}{\frac{1}{j}} + \frac{2}{\epsilon_{j}}} (E-E_{\text{o}}) + \frac{\omega_{\text{g}}}{\hbar \cosh(\hbar \omega_{\text{g}}/2kT)}\right)$$

Unter der Annahme: $\bigcup_{j=1}^{n} = 0 \leftrightarrow \omega_g = \omega_a$ (Die Kraftkonstanten sind in angeregtem und Grundzustand gleich groß)vereinfacht sich Cl.(II.29.):

 $\frac{f_{\omega}}{2kT} <<1 \text{ kann die Funktion (coth) entwickelt werden, und man erhält$ $<math>\frac{2kT}{2kT}$ unter Verwendung von GL.(11.18.b.):

$$\mu(E) \sim \exp\left(-(E-E_0)^2 \cdot \frac{\omega_B^2}{\varepsilon_j^2 2kT}\right) = \exp\left(-(E-E_0)^2/2E_R kT\right) = G1.(11.31)$$

Ein Vergleich mit Gl.(11.23.) zeigt, daß für lokalisierte Anregungen

und $\varepsilon_{11} = 0$ gilt:

$$|G_j| = \sqrt{\frac{\hbar}{2\omega_g}} \cdot \varepsilon_j$$

Gl.(11.31.) bietet die Möglichkeit, aus der Halbwertsbreite der Absorptionsstruktur die Relaxationsenergie des Gitters zu berechnen:

$$E_{R} = \frac{(HWB)^2}{8 \ln 2 \cdot kT}$$

solange folgende Bedingungen erfüllt sind:

- 1) das Exziton muß eine große effektive Masse besitzen:
- d.h. die Exzitonenbandbreite B muß der Bedingung B <<D

genügen, denn andernfalls ist seine Beweglichkeit so groß,

daß das Gitter nicht hinreichend schnell auf die Störung

reagieren kann.

- 2) Es darf nur eine Schwingungsmode j bei der Anregung beteiligt sein.
- 3) Es muß gelten: $\epsilon_{jj} = 0 \leftrightarrow \omega_a = \omega_g$ 4) Die Bedingung: the

$$\frac{g}{2kT} \sim 1$$

muß erfüllt sein, damit die Funktion (coth) in Gl.(11.30.) entwickelt werden kann. 5) Die Lebensdauer des Exzitons muß genügend groß sein, damit einerseits der Refaxationsprozeß vor dem Zerfall abgeschlossen ist und andererseits die Lebensdauerverbreiterung der Absorptionsstruktur gegenüber der Phononenverbreiterung vernachlässigbar ist.

.

III. Experimentelle Ergebnisse und Diskussion

III.I. Übersichtsspektren

Die Abbildungen (III.1.) bis (III.6.) zeigen Energieverteilungskurven (EDC's) der Alkalihalogenide LiF, LiCl, LiBr, NaCl, NaBr, NaJ. Die Proben wurden mit Photonen konstanter Energie bestrahlt, und die austretenden Elektronen mit einem Doppelzylinderanalysator nach ihrer kinetischen Energie selektiert. Die Abzisse zeigt jeweils die Bindungsenergie der Elektronen bzgl. der Valenzbandoberkante.

Die Spektren weisen untereinander eine gewisse Ähnlichkeit auf. Da die negativen Ionen in diesen Substanzen ausnahmslos größer als die positiven Ionen sind, überlappen die äußeren p-Elektronen der Balogenidionen und bilden Valenzbänder mit Breiten von einigen eV.

In Abb. (111.7.) sind die Valenzbandspektren zum Vergleich zusammengestellt. Es zeigt sich, daß die Breite einerseits mit zunehmendem Halogenidgewicht zunimmt, andererseits sind die Valenzbänder der Natriumhalogenide deutlich schmaler als vergleichbare Valenzbänder (gleiches Halogenidion) der Lithiumhalogenide. Kowalczyk et al (KMLPS74) vergleichen ihrerseits die Valenzbandbreiten von Natriumund Kaliumhalogeniden. Es zeigt sich auch hier die Tendenz, daß für gleiche Halogenidionen die Breiten der Valenzbänder mit zunehmendem Gewicht der Alkaliionen abnehmen. Die Abhängigkeit der VB-Breite vom Quotienten der Ionenradien (siehe Tab.(111.13.)) ist verständlich, denn je größer der Überlapp der äußeren p-Elektronen der Halogenidionen ist, desto stärker sind die Elektronen delokalisiert. - 42 -

bie Potentialschwelle zu den benachbarten negativen lonen wirdgesenkt und damit die Beweglichkeit der Elektronen vergrößert.

Einen weiteren Hinweis für die starke Delokalisierung der äußeren Halogenidetektronen geben Kowałczyk et al (KLPS73): Die typische Doppelstruktur der Valenzbänder kann nicht durch die vergleichsweise kleine Spin-Bahn-Aufspaltung erklärt werden. Lipari und Kunz bestimmten mit Hilfe von Bandstrukturberechnungen die Zustandsdichte des Valenzbandes von NaCl (LK70). Zwar reproduziert das Ergebnis das experimentell bestimmte VB-Spektrum nur unvollkommen (176); dennoch weist eine Aufspaltung von ca. 2,5 eV darauf hin, daß die Doppelstruktur im Rahmen des Bändermodells erklärt werden muß.

Zwischen Valenzband und den ersten Streuelektronen weisen die Spektren (Abb.(111.1-111.6.)) einen mehrere eV breiten Bereich niedriger Intensität auf. Ein Blick in Tab.(1.1.) (Bandlücken) zeigt, daß diese Streuelektronen eine kinetische Energie besitzen, die etwa um die Bandlückenenergie niedriger ist, als die kinetischen Energien der aus der VB-Oberkante stammenden Elektronen. Tatsächlich kann in einem pertekten Kristall ein Elektron erst dann gestreut werden, wenn seine Energie lezüglich des LB-Bodens mindestens gleich der Bandlückenenergie vermindert um die Bindungsenergie des am tiefsten liegenden VB-Exzitons ist. Elektronen, die durch Photonen höherer Ordnungen angeregt werden, produzieren jedoch einen geringen Streuuntergrund, so daß die Intensität der EDC's direkt hinter dem Valenzband nicht exakt auf nult geht. Geht wan zu höheren Bindungsenergien, so folgen zumächst die äußeren s-Elektronen der Halogenidionen. Der Wirkungsquerschnitt zur Anregung dieser Elektronen ist, verglichen mit der Anregungswahrscheinlichkeit der p-Elektronen des Valenzbandes ausgesprochen klein. In Abschnitt 1.3. wurde schon darauf hingewiesen, daß sich die s-Niveaus zur Kontrolle der Aufladung aus eben diesem Grunde nicht eignen. Die relativen Wirkungsquerschnitte der äußeren s- und p-Elektronen ändern sich allerdings drastisch wit zunehmender Photonenenergie, wie ein Vergleich der Energieverteilungsmessungen von LiF bei 140 eV und 1487 eV in Abb. (111.1.) und (I.2.) zeigt. Der Wirkungsquerschnitt der Li2s-Elektronen ist bei einer Anregungsenergie von ca. 1500 eV schon um einen Faktor 5 größer als der Anregungsquerschnitt der Valenzbandelektronen.

Die Identifikation von Augerkanten geschieht durch Variation der Photonenenergie. Die kinetischen Energien von Elektronen aus direkten Anregungsprozessen wachsen mit zunehmenden Photonenenergien, während Elektronen aus Augerprozessen stets die gleichen kinetischen Energien besitzen. Auf die Strukturen der verschiedenen Augerkanten wird ausführlich in Abschnitt 111.2. und II1.4 eingegangen.

Die experimentell bestimmten Bindungsenergien bzgl. der VB-Oberkanten sind in den Tabellen(IIF.I.) bis (III.6.) zusammengestellt. Die Fehlergrenzen sind der jeweils letzten Spalte zu entnehmen. Ist der Meßfehler für ein bestimmtes Niveau (bedingt durch einen relativ kleinen Wirkungsquerschnitt) größer, so wird er extra aufgeführt. Zum Vergleich werden auch die Ergebnisse von Citrin et al (CT72) sowie Kowalczyk et al (KMLPS74) aufgeführt. Citrin et al legen den Nullpunkt der Energieskala

- 43 -

- 44 -

AW (Austrittsarbeit - Spektrometerfunktion) oberhalb des Leitungsbandhodens fest. Die Bindungsenergien von Kowalczyk et al beziehen sich auf die Oberkante des Valenzbandes (VB-OK). Die Abweichungen der eigenen Ergebnisse von den von Kowalczyk et al angegebenen Werten sind auf eine gewisse Unsicherheit in der Bestimmung der VB-OK zurückzutühren. Abgesehen davon zeigen sich Differenzen zwischen den Werten dieser Arbeit und denen von Kowalczyk et al lediglich in den Bindungsenergien der Valenzbandmaxima. Das ist jedoch nicht verwunderlich, denn Kowalczyik et al benutzten für ihre Experimente wesentlich höhere Anregungsenergien (ihre Ergebnisse stützen sich auf XPS-Daten) verglichen mit denen, die den eigenen Messungen zugrunde lagen. Somit sind für die erwähnten Differenzen die voneinander abweichenden, photonenenergicabhängigen Anregungswahrscheinlichkeiten unterschiedlich stark gebundener Valenzbandelektronen verantwortlich zu machen. Die von Citrin et al (CT72) angegebenen Bindungsenergien stehen ebenfalls in betriedigender Übereinstimmung mit den Werten dieser Arbeit.

Die Spin-Bahn-Autspaltungen der Niveaus Cl2p in LiCI und NaCl, Br3d in LiBr und NaBr sowie J4d in NaJ können durch Anpassungen mit Gaußkurven auf 0,05 eV genau bestimmt werden. Es wurden jeweils zwei Gaußkurven gletcher Breite und unterschiedlicher Amplitude für die Fitprozedur benutzt (siehe Abb.(111.2.-111.6.) Siegbahn (S67) gibt für einige dieser Dubletts die Aufspaltungsenergien an (siehe Tab.(111.2.-111.6.)). Die relativen Amplituden der Gaußkurven sind Tab.(111.7.) zu entnehmen. Es zeigt sich, daß die gemessenen Amplitudenverhältnisse lediglich um 5-10 % von den statistischen Werten abweichen. Es fällt auf, daß die Fit-Kurven im allgemeinen auf der Seite niedrigerer Bindungsenergien größere Abweichungen vom Experiment autweisen als auf der Seite höherer Bindungsenergien. Das mag zum Teil auf unsaubere Probenoberflächen zurückzuführen sein (176). Unterstützt wird diese Annahme dadurch, daß sich die experimentellen Spektren um so schwerer fitten lassen, je hygroskopischer die Substanz ist (NaJ ist hygroskopischer als NaBr, und NaBr ist wiederum hygroskopischer als NaCl). An dieser Stelle sei noch einmal darauf hingewiesen, daß die Probenkammer bei 130° C ausgeheizt wurde, die Kristalle anschließend unter einem Druck von 5 - 10⁻¹⁰ Torr gespatten und im Experiment auf ca. 200° erwärmt vurden.

Zum Schluß möchte ich noch kurz auf eine Besonderheit des LiF-Spektrums eingehen. Abb.(III.I.) zeigt zwei Energieverteilungsspektren (EDC's) von LiF bei Photonenenergien von hv = 61,9 eV bzw. hv = 140 eV. Beide EDC's weisen typische Energieverluststrukturen (CEV) auf. Die kinetischen Energien E_{K} der Elektronen im Bereich dieser CEV-Strukturen lassen sich tolgendermaßen bestimmen:

	$\mathbf{E}_{\mathbf{K}} = \mathbf{h}\mathbf{v} - \mathbf{E}_{\mathbf{B}} - \mathbf{E}_{\mathbf{G}}$
mit	hv = Photonenenergie
	E _B = Bindungsenergie bzgl. Valenzbandoberkante
	E _G = Bandlückenenergie
	E _v ≖ kinetische Energie der Elektronen bzgl. Leitungsbandboden

- 45 -

- 46 -

Es stellt sich heraus, daß die CEV-Strukturen mit Elektronen der Energie $E_K \approx 13$ eV verbunden sind. Roessler und Walker (RW67) haben die Reflektivität von LiF im Bereich der Valenzbandanregung gemessen. Über eine Kramers-Kronig-Analyse gewinnen sie das L_2 -Spektrum. Damit bestimmen sie die Anregungsenergie des am tiefsten gebundenen Valenzbandexzitons zu 12,61 eV. Dieses Ergebnis deutet daraut hin, daß die genannten CEV-Strukturen auf den Einsatz der Anregung von Valenzbandexzitonen zurückzuführen sind. Streuprozesse durch Interbandanregungen setzen erst bei Elektronenenergien von $E_K = 13,6$ eV ein.

Erläuterungen zu den Tabellen (111.1. - 111.6.)

- 1) Photoemissionsmessungen im VUV-Bereich.
 - Die Photonenenergien sind den Abbildungen (III.I. III.6.) zu entnehmen. Die Bindungsenergien beziehen sich auf die Valenzbandoberkante.
- Photoemissionsmessungen im VUV-Bereich (Photonenenergie hv = 120 eV).
 Die Bindungsenergien beziehen sich auf die Valenzbandoberkante.
- 3) XPS-Messung (Photonenenergie hv = 1486,7 eV). Die Bindungsenergien beziehen sich auf die Valenzbandobekante.
- 4) XPS-Messung (Photonenenergie hv = 1486, 7 eV). Der Nullpunkt der Energieskala liegt $\Delta W = (Austrittsarbeit der Probe - Spektrometer$ funktion) oberhalb des Leitungsbandbodens.
- 5) XPS-Messung an Halogeniden.
 - ΔE = energetischer Abstand der Partner des Spin-Bahn-Dubletts.

Abb. (111.1.) Übersichtsspektrum von LiF Die Ursache des charakteristischen Energieverlustes (CEV) wird im Text erläutert.

Tabelle(111.1.) LiF

	F2p (VB-Maxii	F2s 11.)	Lits	Fehler (eV)
1) diese Arbeit	1,85	23,8	49,9	±0,2
3) KMLPS74	3,54	24,90	50,77	±0,1
2) 674	2,1	23,5	49,8	±0,4

Energieniveaus aus EDC's (eV)

Abb.(111.2.) Übersichtsspektrum von LiCl. Der Fit des Cl2p_{3/2} - Cl2p_{1/2}-Dubletts wurde mit zwei Gaußkurven gleicher Breite durchgeführt (siehe Tab.(111.7.))

Tabelle (I	<u>11.2.)</u> :	Li Cl				
	Energieniv	/eaus au	s EDC's (a	≥V)		
	Cl3p (VB-Maximum)	C13s	Lils	^{C12p} 3/2	^{C12p} 1/2	Fehler (eV)
l) diese Arbeit	1,8	12,8	53,0	195,00	196,60	±0,2
4) CT72		20,8	60,7			±0,2
5) S67				ΔE =	2,U eV	

Tabelle(141.3.); LiBr

Energieniveaus aus EDC's (eV)

	874p (VB Maximum)	Br4s	Lits	Br3d _{5/2}	Br 3d 3/2	Fehler (eV)
l) diese Arbeit	1,54	13,8	54,8	67,17	68,22	± 0,2
5) S67				ΔE = I,	0 eV	

<u>Abb.(111.4.)</u> Übersichtsspektrum von NaCl. Der Fit des Cl2p_{3/2} - Cl2p_{1/2}

Der Fit des Cl2p_{3/2} - Cl2p_{1/2} - Dubletts wurde mit zwei Gaußkurven gleicher Breite durchgeführt (siehe Tab.(III.7.)).

Tabelle(111.4.): NaCl

Energieniveaus aus EDC's (eV)

	Cl3p (VB-Maximum)	CI3s	Na2p	Na2s	C12p _{3/2}	^{C12p} 1/2	Fehler (eV)
l) diese Arbeit	1,24	13,2	28,0	60,8	196,35	197,96	±0,2
3)KMLPS74	1,47	12,58	27,03	59,77			±0,1
4)CT72	10,9	21,7	36,4	69,0			±0,2
5)\$67					∆ t ≈ 2,	0 eV	

Übersichtsspektrum von Naßr. Der Fit des $Br3d_{5/2} = Br3d_{3/2} = Dubletts wurde mit$ zwei Gaußkurven gleicher Breite durchgeführt (siehe Tab.(111.7.)).

		En	ergieni	reaus au	ıs EDC's (e	(V)				
	Br4p (VB-Maximum	Br4s 1)	Na2p	Nals	Br3d _{5/2}	Br3d _{3/2}	Br ³ p _{3/2}	Br3p _{1/2}	Fehler(eV) sofern nicht ar	ngegeben
l) díese Arbeit	1,23	12,9	28,7	61,5	66,75	67,84	181,2+0,3	188,2 <u>+</u> 0,5	10,2	
3) KMLPS74	1,67	12,83	28,21	61,00	ά ό ,2	-			110, 1	
4)CT72	9,4	20,4	35,8	68,4					±0,2	

Tabelle(III.5.):

NaBr

5) S67

F .

1,0 eV

ĥ

H 7,0 eV

Abb.(111.6.) Übersichtsspektrum von NaJ. Der Fit des J4d_{5/2} - J4d_{3/2} - Dubletts wurde mit

zwei Gaußkurven gleicher Breite durchgeführt

(siehe Tab.(111.7.)).

4)CT72	3) KMLPS74	l)diese Arbeit	0.4	Tabelle(I
8,0	1,67	, 43	5p VB-Maximum)	<u> </u>
17,5	11,21	11,1	JSs	Naj Energ
35,6	29,29	29,3	Na2p	;ieniveau
	47,68	47,7	J ^{4d} 5/2	s aus EDC's
	49,35	4.64	^{J4d} 3/2	(eV)
68,4	61,96	62,2	Na2s	
		121,2+	J4p	
±0,2	10,1	0,5 ±0,2	7ehler (eV) sofern nicht	
			angegeben	

5) S67

∆E = 0 eV

<u>1</u> О

111.97

E_B(eV)

4

- 56 -

untersuchten Alkalihalogenide.Beut-Arrhiefterung des Valenzbandes mit zunehmenden Halogenidgewicht bzw. abnehmendem Gewicht des alkalisions.

Tabelle(111.7.):

Amplitudenverhältnisse von Spin - Bahn - Partnern

	diese Arbeit (Abb.(111.21[1.6.)	statistische Werte)
^{C12p} 3/2 ^{2p} 1/2 in LiC1	1,92	2,0
^{Br3d} 5/2 ^{3d} 3/2 in LiBr	1,43	1,5
^{C12p} 3/2 ^{2p} 1/2 in NaCl	' 1,90	2,0
^{Br3d} 5/2 ^{3d} 3/2 in NaBr	1,74	1,5
^{J4d} 5/2 ^{4d} 3/2 in NaJ	1,6	1,5

111.2. Strukturen von Augerkanten

Sind an einem Augerprozeß die Niveaus i, j, k beteiligt, so ergibt sich die kinetische Energie der emittierten Elektronen zu

 $E_{kin} = E_i - E_j - E_k$

Unter Berücksichtigung der Analysatoraustrittsarbeit Φ_A erhält man (679):

$$E_{kin} = E_i - E_j - E_k - \Psi_A$$
 G1.(111.1.)

Diese Formel gilt jedoch nur unter Vernachlässigung von Korrelationsettekten, sowie Gitterrelaxationsprozessen während der Lebensdauer des Loches. Im allgemeinen wird jedoch einerseits das Gitter auf die geänderte Ladungsdichteverteilung nach der Ionisation eines Kumpfniveaus antworten; andererseits werden auch die beiden, beim Augerzerfall entstehenden Löcher nicht völlig unkorreliert sein. Beide Effekte kommen in einer Verschiebung der kinetischen Energie des Augerelektrons zu niedrigeren Werten zum Ausdruck. Im folgenden wird von Relaxations- und Korrelationsetfekten zunächst abgesehen; dieses wäre der Grenzfall reiner Bandzustände.

Gl.(111.1.) gilt in dieser Einfachheit nur für scharfe Niveaus $E_{i/j/k}$. Hat hingegen ein breites Band, z.B. das Valenzband, an einem Augerprozeß teil, so wird man auch im Augerspektrum eine breite Struktur erwarten. Gl.(111.1.) gibt dann lediglich einen Mittelwert für die zu erwartende kinetische Energie an. Unter der vereinfachenden Annahme, daß alte Niveaus E(k) des Bandes gleichermaßen mit dem Loch wechselwirken, stellt die Augerstruktur eine Selbstfaltung der Zustandsdichte dieses Bandes dar. Für ein besseres Verständnis der Augerstruktur müssen jedoch die räumlichen Ladungsdichteverteilungen der Niveaus E(k) berücksichtigt werden; außerdem werden die Strukturen durch die endliche Lebensdauer des Loches Verbreiterungen erfahren. Das Augerspektrum wird also durch eine gewichtete und lebensdauerverbreiterte Selbstfaltung der Zustandsdichte des Bandes beschrieben werden können.

Barth (B81) untersuchte Augerzerfälle an verschiedenen Molekülkristallen (BN, B_2O_3). Nach der Entfernung eines Rumpfelektrons zerfällt das entstandene Loch über einen Augerprozeß. Gleichzeitig entstehen zwei Löcher im Valenzband. Barth stellt fest, daß unabhängig davon, in welchem der beiden Basisatome die primäre Rumpfanregung stattgefunden hat, das Augerspektrum mit der gewichteten Selbstfaltung der Valenzbandzustandsdichte zu identifizieren ist.

Die Abbildungen (III.12.-111.14) zeigen Augerkanten nach Anregung des Lils-Exzitons in LiF, LiCl und LiBr. Über den Verbleib des exzitonischen Elektrons nach dem Augerzeifall wurde bereits in Abschnitt 11.2. gesprochen. Die Strukturen I werden verglichen mit ungewichteten Selbstfaltungen der Valenzbänder. Es zeigt sich, daß trotz Vernachlässigung der lokalen Ladungsdichteverteilung der Valenzbandelektronen am Anregungsort das experimentelle Ergebnis recht gut wiedergegeben wird.

- 59 -

- 60

Völlig andere Kesultate sind dagegen nach der Ionisation von Halogenidrumptniveaus zu beobachten. Obwohl die EDC's (Abb.(111.8.-111.11.)) bei Photonenenergien aufgenommen wurden, die fediglich die Emission von Elektronen aus einem der Spin-Bahnzustände ($Cl2p_{3/2}$ - $Cl2p_{1/2}$, Br3d_{5/2} - Br3d_{3/2}, J4d_{5/2} - J4d_{3/2}) erlauben, zeigen die Augerkanten eine deutliche Strukturierung. Zudem sind sie gegenüber der erwarteten Lage um einen erheblich größeren Betrag zu niedrigeren kinetischen Energien verschoben, als vergleichbare Augerkanten, welche auf den Zerfall von Alkalimetallrumpflöchern zurückzutühren sind (stehe Tab.(111.9.)).

Das Bändermodeli ist zur Beschreibung der äußeren p-Elektronen der Hafogenidionen in diesem Fall offenbar ungeeignet. Deshalb wurde der Versuch unternommen, die Augerstrukturen im Rahmen atomarer Überlegungen zu interpretieren. Die Argumentation folgt der Beschreibung von KLL-Augerprozessen viefer Elemente durch Siegbahn et al (S67). Unmittelbar nach dem Augerzerfall befinden sich in der äußeren Schale des Anregungszentrums vier p-Elektronen, die im atomaren Bild zu den Konfigurationen ³P, ¹D, ¹S koppeln. Die statistischen Gewichte der verschiedenen Konfigurationen werden durch die "fractional parantage coefficients" (S72) gegeben (Tab.(111.8.)). Die relativen energetischen Lagen der Kopplungstypen können für isolierte Atome oder Ionen den Moore'schen Tabellen (M49) entnommen werden (Tab.(111.8.)).

pie Anpassungen an die experimentellen Ergebnisse (Abb.(f11.8.-111.11.)) ertolgten allein durch Variation der beiden Parameter: Linienbreite und absolute energetische Lage des Multipletts. Die relativen Energielagen

entsprechen den Moore'schen Daten, während für die relativen Intensitäten der Linien die statistischen Werte, Tab. (111.8.), verwendet wurden. Die Zuordnung der Strukturen zu speziellen Konfigurationen bereitet für LiF, NaCl und NaJ nun keine Schwierigkeiten mehr, obwohl die relativen Intensitäten der verschiedenen Kopplungen von den statistisch zu erwartenden Werten abweichen (Abh(111.8.-III.11.)). Hingegen kann die niederenergetische Schulter der Augerkante von NaBr unter Benutzung der Moore'schen Daten (M49) nicht erklärt werden. Es erscheint wahrscheinlich, daß die Schulter der ¹S Konfiguration der vier p-Elektronen zuzuordnen ist, auch wenn diese Kopplung bei Moore fehlt. Es zeigt sich also, daß zur Beschreibung der Augerstrukturen (Abb. (III.8.-III.II.)) ein atomares Bild weit besser geeignet ist als ein Bändermodell. Obwohl die p-Elektronen ein breites VB bilden, also eine recht große Beweglichkeit im Kristall besitzen, sind sie dennoch mindestens für die Zeitdauer des Augerprozesses an einem Ion lokalisiert.

Bisher wurde noch nicht näher auf das Maximum II in Abb.(fIf.12.-111.14.) eingegangen. Seine energetische Lage spricht gegen die Vermutung, daß es sich um ein direkt emittiertes, äußeres s-Elektron des Halogenidions handelt. Ebensowenig kann es einem Augerprozeß der Art Isnsnp zugeordnet werden. Offensichtlich sind beide Maxima I und II auf den Augerzertall Isnpnp zurückzuführen. Zum Verständnis dieser Doppelstruktur ist es hilfreich, die Ausföhrungen von Sawatzky et al (S77, SL80) heranzuziehen. Die Autoren berechnen Augerstrukturen für einfach kubische Kristalle mit schwalen, s-symmetrischen Valenzbändern. Es stellt sich heraus, daß die Form des Augerspektrums^e ganz entscheidend durch die Stärke der Coulomb-

- 61 -

wechselwirkung der beim Augerzerfall entstehenden Löcher bestimmt wird. Ist diese Wechselwirkung (U) sehr klein verglichen mit der Bandbreite (B) des Valenzbandes, so können die Wellenfunktionen der Löcher durch ein Produkt von Ein-Loch-Zuständen dargestellt werden. In diesem Fall gleicht das Augerspektrum der Selbstfaltung des Valenzbandes. Ist die Wechselwirkungsenergie gegenüber der Bandbreite groß, so bilden sich gebundene Loch-Loch-Zustände. Die beiden Löeher liegen dicht zusammen, können sich jedoch ähnlich wie Valenzbandexzitonen frei im Kristall bewegen. Die Augerstruktur kann jetzt rein atomar gedeutet werden. Zwischen diesen beiden Grenzfällen liegt ein weiter Bereich, in dem das Augerspektrum eine typische Doppelstruktur aufweist. Das niederenergetische Maximum geht für wachsendes U in das atomare Spektrum über, während sich die höherenergetische Struktur mit abnehmendem U der Valenzbandselbstfaltung annähert.

Unter der Annahme, daß die Augerstrukturen (Abb. (111.12.-III.14.)) durch eine intermediäre Kopplung der Löcher (U≈B) zu deuten sind, liegt der Schluß nahe, daß die Coulombwechselwirkung mit zunehmendem Halogenidgewicht ebenfalls zuninmt; denn einerseits prägt sich die Doppelstruktur (1,11) beim Übergang vom LiF zum LiBr immer stärker aus, andererseits gleicht das Maximum 1 immer unvollkommener der Valenzbandselbstfaltung. Möglicherweise wird die Bildung von gebundenen Loch-Loch-Zuständen um so mehr begünstigt, je beweglicher das Alkaliion ist. Betrachtet man nämlich die Ionen als starre Kugeln, so kann sich das Li^{*}lon im LiCL und LiBr in dem durch die nächsten Nachbarn gebildeten Hohlraum frei bewegen, während es im LiF ebenso wie das Na^{*}Ion in den Na-Halogeniden NaCl, NaBr, NaJ mit den benachbarten Halogenidionen in Berührung steht; auch die genannten Na-Halogenide zeigen bei lonisation des Na2p – Niveaus lediglich eine einfache Augerstruktur, die durch die Selbstfaltung der Valenzbandzustandsdichte beschrieben werden kann.

- 63 -

Abb.(111.8.) Das Augerspektrum spiegelt die Multiplettaufspaltung der 3p - Elektronen des Cl⁺- Ions wieder. Für den Fit wurden die Moore'schen Daten (M49) und die statistischen Gewichte der verschiedenen p⁴-Konfigurationen verwendet. (Siehe Tab.(111.8.))

- 62 -

			relative,energetische Lage	statistisches Gewicht
			(eV) (N49)	(\$72)
GI.	:	³ P ₂	0	5/15
		3 _{P1}	0,086	3/15
		³ P ₀	0,123	1/15
		۲ ₀₂	1,444	5/15
		¹ s	3,458	1/15
Br⁺	:	³ P ₂	U	5/15
		3 ₈ 1	0,389	3/15
		۶ ۹۲	0,476	1/15
		$1\mathfrak{D}_2$	1,414	5/15
		۱ _s	dieser Wert fehlt bei Moore (N49)	1/15
+ נ.	:	³ Р ₂	υ	5/15
		³ Р	0,879	3/15
		3 ₄ 6	0,799	1/15
		10_2	1,702	5/15
		۱ _s	4,044	1/15
F [*]	:	³ P ₂	0	5/15
		3 ₆ 1	0,042	3/15
		3 _{Po}	0,061	1/15
		ι _{υ2}	2,587	5/15
		۱ _{So}	5,568	1/15

Abb.(III.9.) Der Streuuntergrund wurde vom Meßspektrum subtrahiert.

Das Augerspektrum spiegelt die Multiplettaufspaltung der 4p – Elektronen des Br⁺ – Ions wieder. Für den Fit • wurden die Moore'schen Daten (M49) und die statistischen Gewichte der verschiedenen p⁴-Konfigurationen verwendet. (Siehe Tab.111.8.). Die Konfiguration ¹S₀ bleibt bei Moore unerwähnt.

Abb.(111.11.)

Das Augerspektrum des Zerfalls F 1s2p2p weist eine deutliche Strukturierung auf, die durch eine Multiplettaufspaltung der 2p – Elektronen des F[†] – lons zu erklären ist. Für den Fit wurden die Moore'schen Daten und die statistischen Gewichte der verschiedenen p⁴ – Koufigurationen verwendet (siehe Tab.(III.8.)).

Abb.(111.13.) LitsVV - Augerspektrum von LiCl.

Der Streuuntergrund wurde vom Meßspektrum subtrahiert. Das Maximum II ist auf die Bildung eines gebundenen Zwei-Loch-Zustandes zurückzuführen.

- 69 -

АБЬ. (111.14.)	LilsVV - Augerspektrum von LiBr.
	Der Streuuntergrund wurde vom Meßspektrum subtrahiert.
	Das Maximum II ist auf die Bildung eines gebundenen
	Zwei-Loch-Zustandes zurückzuführen.

-	71	-		

(111.9.):	Korrelationsene	rgieu		
ſ (eV)	11 (eV)	4)(٤٧)	5)(eV)	
2,2 <u>+</u> 0,2 ⁻¹⁾		3,62	17,42	
3,4 <u>+</u> 0,2 ⁻¹⁾	8,7 <u>+</u> 0,2 ⁻¹⁾	3,80	13,01	
2,1 <u>+</u> 0,2 ¹)	6,4 <u>+</u> 0,2 ⁻¹)	3,56	11,84	
2,3 <u>+</u> 0,5 ²⁾	9,2±0,3 ³⁾	3,80	13,01	
3,9 <u>+</u> 0,5 ²⁾	7,9 <u>+</u> 0,3 ³⁾	3,56	11,84	
2,8±0,5 ²⁾	7,4 <u>+</u> 0,3 ³⁾	3,28	10,45	
	$(111.9.):$ $I (eV)$ $2,2\pm0,2$ $3,4\pm0,2$ $1)$ $2,1\pm0,2$ $1)$ $2,3\pm0,5$ $2)$ $3,9\pm0,5$ $2)$ $2,8\pm0,5$ $2)$	(111.9.): Korrelationsene I (eV) II (eV) $2,2\pm0,2$ 1) $3,4\pm0,2$ 1) $2,1\pm0,2$ 1) $2,1\pm0,2$ 1) $2,3\pm0,5$ $2,2\pm0,3$ $3,9\pm0,5$ $2)$ $7,9\pm0,3$ $3)$ $2,8\pm0,5$ $2)$ $7,4\pm0,3$ $3)$	(111.9.):KorrelationsenergienI (eV)11 (eV) $2,2\pm0,2$ 1) $3,62$ $3,4\pm0,2$ 1) $3,7\pm0,2$ $2,1\pm0,2$ 1) $6,4\pm0,2$ $3,9\pm0,5$ $2,9\pm0,3$ $3,9\pm0,5$ $2,8\pm0,5$ $2,8\pm0,5$ $2,8\pm0,5$ $2,8\pm0,5$	$(111.9.): Korrelationsenergien$ $I (eV) II (eV) 4)(eV) 5)(eV)$ $2,2\pm0,2 1) 3,62 17,42$ $3,4\pm0,2 1) 8,7\pm0,2 1) 3,80 13,01$ $2,1\pm0,2 1) 6,4\pm0,2 1) 3,56 11,84$ $2,3\pm0,5 2) 9,2\pm0,3 3) 3,80 13,01$ $3,9\pm0,5 2) 7,9\pm0,3 3) 3,56 11,84$ $2,8\pm0,5 2) 7,4\pm0,3 3) 3,28 10,45$

- Anregung des Lils Exzitons; Verschiebung des Augermaximums zu niedrigeren kinetischen Energien bezüglich des Maximums der Valenzbandselbstfaltung (zur Bedeutung von 1 bzw. 11 siehe Abb. (111.13. und 111.14.).
- 2/3) Ionisation eines Core Niveaus des Alkali (I) / Halogenid -(II) Ions; Verschiebung des Einsatzes der Augerkante gegenüber der erwarteten Lage.

.

- 4) Ionisationsenergie eines (negativen) Halogenions (Elektronenaffinität (WH79)).
- 5) Ionisationsenergie eines (neutralen) Halogenatoms (M49.).

- 72 -

111.3. Yield Spektren

Die Abbildungen (111.15. - 111.21.) zeigen Photoausbeute - oder yield-Spektren von Li- und Na - Halogeniden in den Anregungsbereichen der Rumpfniveaus Lils, Na2p und Cl2p. Gudat und Kunz (GK72) zeigen, daß sich unter gewissen Voraussetzungen yieldspektren und Absorptionsspektren gleichen. Es existieren schon eine Reihe von Arbeiten, die sich mit Absorptionsmessungen in diesen Energiebereichen beschäftigen (z.B. Lils-Anregung:HKS68, Na2p-Anregung: HKS568, N1571, 176). Es erschien dennoch wichtig, die Absorption noch einmal neu zu bestimmen, denn einerseits führten die genannten Autoren ihre Experimente an Aufdampfschichten durch, während sich die vorliegende Arbeit mit Einkristallen befaßt, andererseits ist für die Auswertung, insbesondere zur Ermittelung von Relaxationsenergien (siehe Abschnitt II1.5.) die Kenntnis der Halbwertsbreiten der prominenten Absorptionsmaxima bei Temperaturen von ca. 200⁰ C. notwendig.

Auf die Untersachung von Oberflächenzuständen, wie sie beispielsweise Rheder (R78) im Bereich der Na2p – Anregung von NaCl beobachtet hat, wurde aus Zeitgründen verzichtet. Die Nachweisenergie E_f des Analysators wurde bei der Aufnahme der Yieldspektren (Abb. (III.15.– 111.21.)) stets so gewählt, daß ledigtich Elektronen mit großen Austrittstiefen registriert wurden. Die Spektren spiegeln slo Volumenetlekte der Kristalte wieder.

Die energetischen Lagen und Halbwertsbreiten der Absorptionsstrukturen (A,B) bzw. (A',A) der Na- bzw. Li-Halogenide wurden ausnahmstos durch Anpassung von Gaußkurven an die Meßspektren ermittelt. Die Ergebnisse der Fitprozedur sind in Tabelle (III.10.) zusammengefaßt. Tabelle(III.11.) liefert die Mindestenergien, die zur Emission von Na2p-, Lils- und Cl2p - Elektronen ins Leitungsband aufgebracht werden müssen. Es zeigt sich, daß die Absorptionsstrukturen (Tab.(III.10.)) Anregungszuständen zuznordnen sind, die unterhalb des Leitungsbandbodens lokalisiert sind. Es herrscht Übereinstimming darüber, daß es sich dabei um gebundene Elektron-Loch-Paare, also Exzitonen handelt, die an kritische Punkte der Britlouin-Zone ankoppeln (NS69, NIS71, P74). Das gaußförmige Linienprofil der Absorptionsmaxima läßt darauf schließen, daß die exzitonischen Anregungen dem Grenzfall starker Exziton-Phonon-Kopplung zuzuordnen sind (vergleiche Abschnitt 11.4.). Der Übergang zwischen schwacher und starker Kopplung wird sehr schön an Hand der Absorptionsspektren von Na-Halogeniden (N1S71) bei flüssig-Stickstoff- und Raumtemperatur demonstriert. Während erstere durch lebensdauerverbreiterte Lorentzkurven beschrieben werden können, sind letztere durch phononen-verbreiterte Gaußprofile charakterisiert.

Die Anregungsenergien der Na2p- und Lils- Exzitonen decken sich bis auf wenige Prozent mit den Anregungsenergien der entsprechenden Übergänge in isolierten Ionen (M49):

 $Li^{\dagger}Is^{2} \rightarrow Li^{\dagger}Is^{2}p$ $Na^{\dagger}Is^{2}2s^{2}2p^{6} \rightarrow Na^{\dagger}Is^{2}2s^{2}2p^{5}3s$

Daher werden die Wellenfunktionen dieser Exzitonen in erster Näherung Im atomaren Bild berechnet werden können. Problematischer ist die Beschreibung des Cl2p - Exzitons in NaCl. Durch optische Anregung geht das Cl2p - Elektron in einen s-artigen Zustand über. Der ssymmetrische Boden des Leitungsbandes wird hauptsächlich aus Na3s -Niveaus gebildet. Das exzitonische Elektron wird sich daher vorwiegend in der Nähe der dem angeregten Cl⁻ - Ion benachbarten Na⁺ - Ionen aufhalten. Damit besitzt das Cl2p - Exziton verglichen mit den Na2p - und Lits - Exzitonen eine weit größere Ausdehnung (Wannier'scher Exziton-Typ) und kann sicherlich nicht mehr atomarer behandelt werden. - 74 -

Natriumhalogenide

Die typische Doppelstruktur (A,B) im Absorptionsspektrum der Natriumhalogenide wird ausführlich von Äberg und Dehmer (AD73) diskuliert. Die zugehörigen Rumptexzitonen (A,B) koppeln an den F -Pankt der Brillouinzone an. Bandstrukturrechnungen von NaCl sind in (KL71) zu finden. Für das Amplitudenverhältnis der Absorptionsmaxima (A,B) ist die Stärke der Elektron-Loch-Austauschwechselwirkung im Vergleich zur Spin-Bahn-Wechselwirkung entscheidend verantwortlich (0766). Im Falle reiner LS-Kopplung ist lediglich der Übergang $({}^{1}S_{0} + {}^{1}P_{1})$ dipol-erlaubt. Für reine jj-Kopplung dagegen spiegelt das Absorptionsspektrum die beiden möglichen Endzustandskonfigurationen des Loches $(2p_{3/2}, 2p_{1/2})$ wieder. Die relative Oszillatorstärke beider Übergänge beträgt 2 : 1. Ein Blick in Tabelle (111.10.) zeigt, daß das Amplitudenverhältnis der beiden Naxima sehr viel kleiner als I ist. Elektron und Loch weisen also intermediäre Kopplung untereinander auf, jedoch mit einem starken LS-Anteil.

Die Absorptionsdoppelstruktur (A,B) von NaF (IIKSS68) wurde im Yieldspektrum nicht beobachtet. Exzitonen können mit Yieldmessungen jedoch nur dann nachgewiesen werden, wenn Augerprozeß, direkte Rekombination oder Autoionisation wichtige Zerfallskanäle sind. Es ist somit wahrscheinlich, daß die Exzitonen (A,B) in NaF hauptsächlich durch Lumineszenz zertallen. - 75 -

Lithiumhalogenide

Eine Zuordnung der Lils-Exzitonen zu speziellen kritischen Punkten der Brillouinzone ist wir nur für LiF bekannt. Kunz et al (KMO69) unternahmen erstmals eine solche Zuordnung der Absorptionsstrukturen von LiF, verwendeten dafür jedoch recht ungenaue Bandstrukturrechnungen. Der Boden des Leitungsbandes liegt nicht am L-Punkt, sondern, wie es später Kunz et al (KMC73) zeigten, am Γ -Punkt der Brillouinzone. Eine detaillierte Interpretation des LiF-Absorptionsspektrums geben Zunger und Freeman (ZF77). Sie stützen sich dabei auf eigene Bandstrukturberechnungen. Die von Haensel et al (HKS68) mit A und B bezeichneten Strukturen bei 61,1 eV und 61,9 eV werden s- bzw. p-Exzitonen zugeordnet (die angeregten Elektronen besitzen s- bzw. p-Symmetrie), welche durch die Übergänge

$$Li^{\dagger}Is \Rightarrow \Gamma_{1c} \quad (A)$$
$$Li^{\dagger}Is \Rightarrow L_{3c} \quad (B)$$

erzeugt werden. Der L_{3c} -Punkt wird von Zunger und Freeman ca. 10 eV oberhalb des Leitungsbandbodens angesiedelt. Die Tatsache, daß das p-Exziton (B) bezüglich des Leitungsbandbodens positive Bindungsenergie besitzt (Tab.(III.II.)), deutet auf eine außergewöhnlich hohe Elektron-Loch-Wechselwirkung hin. Auf diesen Punkt ist bereits Gudat (G74) ausführlich eingegangen.

Die Interpretation der Struktur (A) wird erleichtert, wenn Elektronen-Energieverlustmessungen in die Diskussion einbezogen werden. Fields et al (FGS77) führten solche Experimente an LiF durch. Sie zeigen, daß das Maximum (A) mit zunehmendem Elektronenimpuls deutlich anwächst, und schließen daraus, daß dem Exziton (A) der Übergang

Li⁺1s² → Li⁺1s2s zu Grunde liegt.

- 76 -

Denn bei einer Anregung mit Elektronen sind die erlaubten Übergänge lediglich für kleine Elektronenimpulse durch die Dipolauswahlregel definiert. Die Tatsache, daß das Exziton (A) auch optisch angeregt Werden kann, erklären Fields et al mit der Beteiligung von Phononen an dem Übergang. Wenn diese Erklärung richtig ist, sollte die Anregungswahrscheinlichkeit des Exzitons (A) durch Photonen mit steigender Temperatur wachsen. Olson und Lynch (OL79) führten temperaturabhängige Transmissionsmessungen an LiF-Filmen durch und beobachteten tatsächlich ein Anwachsen der Struktur (A) beim Aufheizen der Probe. Damit wird die These von Fields et al (FGS77) bestätigt, wonach die Struktur (A) mit dem "verbotenen" Exziton (1s2s) zu identifizieren ist.

Prinzipiell ist noch eine andere Deutung des Dubletts (A,B) möglich, wonach dem Maximum A die 1s2p (${}^{3}P_{21G}$)- und dem Maximum B die 1s2p (${}^{1}P_{1}$)- Kontiguration zugeordnet wird. Den Moore'schen Tabellen können folgende Antspaltungen entnommen werden (N49):

$$\Delta E_{Li}^{(1s2p(^{1}P_{1}))} = 1s2p(^{3}P_{210}) = 0,93 \text{ eV}$$

$$\Delta E_{Li}^{(1s2p(^{1}P_{1}))} = 1s2s(^{1}S_{0}) = 1,45 \text{ eV}$$

Die experimentell ermittelte Autspaltung des Dubletts (A,B) von $\Delta E = 0,8$ eV kommt der Singlett-Triplett-Aufspaltung von 0,93 eV recht nahe. Eine Zuordnung der Maxima A und B zu den Konfigurationen ${}^{3}P_{210}$ bzw. ${}^{1}P_{1}$ ist jedoch problematisch, da in diesem Fall ein Mechanismus existieren muß, der das Interkombinationsverbot im Festkörper aufhebt. Zudem bedarf der experimentelle Befund der Elektronen-Energieverlustmessungen von Fields et al (FGS77), das Anwachsen der Intensität der Struktur A mit steigendem Elektronenimpuls, einer gesonderten Erklärung. Eine eindeutige Entscheidung zwischen den beiden Interpretationsmöglichkeiten des Dubletts (A,B), $({}^{3}P_{210}, {}^{1}P_{1})$ bzw. $({}^{1}S_{0}, {}^{1}P_{1})$ kann an dieser Stelle nicht getroffen werden, obgleich tetztere plausibler zu sein scheint.

Eine genauere Betrachtung des Absorptionsspektrums von LiBr zeigt eine kleine Schulter (A') auf der niederenergetischen Seite des prominenten Maximums (A). Auch das Absorptionsmaximum (A) von LiCl weist eine gewisse Asymmetrie auf, hinter der sich eine Doppelstruktur (A',A) verbergen könnte. Möglicherweise sind die Strukturen (A') von LiCl und LiBr in Analogie zur Deutung des Maximums (A) von LiF durch Fields et al (FGS77) bzw. Olson und Lynch (OL79) auf den Übergang

$$Li^{+}ls^{2} \rightarrow Li^{+}ls2s$$

zurückzuführen. Auch hier könnten temperaturabhängige Absorptionsmessungen zu einem besseren Verständnis beitragen. Solche Messungen wurden jedoch im Rahmen dieser Arbeit nicht durchgeführt, da die Temperatur nicht über einen hinreichend großen Bereich variiert werden konnte, ohne daß Aufladungseffekte zu vernachlässigen waren (siehe Abschnitt 1.3.).

- Abb.(111.15.) Elektromenausbeutespektrum (yield) von LiF im Anregungsbereich des Li⁺ls-Niveaus. --- Anpassung einer Gaußkurve an das Meßspektrum
 - (siehe Tab.(111.9.)).

<u>Abb.(111.16.)</u> Elektronenausbeutespektrum von LiCl im Anregungsbereich des Li⁺Is-Niveaus.

- ----- Meßspektrum
- --- Anpassung zweier Gaußkurven (gepunktete Kurven) an das Meßspektrum (siehe Tab.(111.9.))
- •-•- Im Rahmen eines Konfigurationskoordinatenmodells berechnete Absorptionsstruktur (siehe Kapitel IV).

- Abb. (111.18.) Elektronenausbeutespektrum von NaCl im Anregungsbereich des Na⁺2p - Niveaus.
 - --- Anpassung zweier Gaußkurven an das Meßspektrum (siehe Tab.(111.9.)).

- АББ. (111.17.) Elektronenausbeutespektrum von LiBr im Anregungsbereich des Li⁺ls - Niveaus.
 - --- Anpassung zweier Gaußkurven an das Meßspektrum (siehe Tab. (III.9.))

- 81 -

B

NaCl

YIELD

 $E_f = 10 eV$

34

3.015

- <u>Abb. (111.19.)</u> Elektronenausbeutespektrum von NaBr im Anregungsbereich des Na $^{+}$ 2p Niveaus.
 - --- Anpassung zweier Gaußkurven an das Meßspektrum (siehe Tab.(111.9.))

 $\begin{array}{c|c} & B & NaJ \\ YIELD \\ E_{f}=11eV \\ \end{array}$

- <u>Abb. (111.20.)</u> Elektronenausbeutespektrum von NaJ im Anregungsbereich des $Na^{+}2p$ Niveaus
 - --- Anpassung zweier Gaußkurven an das Meßspektrum (siehe Tab.(111.9.))

٠

Tabelle(III.10.): Absorptionsstruktur im Anregungsbereich der

Rumpfniveaus: Lils, Na2p, Cl2p (siehe Abb.(111.15.-21))

Tab.(111.21.) Elektronenausbeutespektrum von NaCl im Anregungsbereich des Cl⁻2p - Niveaus.

> --- Anpassung einer Gaußkurve an das Meßspektrum (siehe Tab.111.9.)

		A(eV)	B(A')(eV)	Temperatur T(K)	Linien- breite B(eV)	Amplituden- verhältnis A/B (A'/A)	Fehler (eV)
I)	Lif	60,8	61,6	573	1,20		0,2
2)	Lif	61,13	61,91				0,07
I)	LiC1	60,67	59,91	573	1,14	0,08	0,03
2)	Licl	60,75					0,07
I)	LiBr	60,42	59,67	573	0,87	0,22	0,03
2)	Li Br	60,44					0,07
1)	NaC1	33,05	33,34	473	0,26	0,24	0,02
3)	NaCl	33,16±0,05	33,43				0,02
I)	NaC1	201,18	i	573	0,82		0,1
	(C12p)					
I)	NaBr	33,01	33,25	473	0,19	0,29	0,02
3)	NaBr	32,96	33,21				0,02
I)	NaJ	32,94	33,13	473	0,18	0,29	0,02
3)	NaJ	32,79	33,11				0,02

I) diese Arbeit

2) HKS68

3) IIKSS68

 \mathbb{C} Berechnet aus 5 und eigenen Absorprionsdaten (siene Tab.(III.10.))

Subscanz	angeregtes Niveau	Bindungsenergien A l)	(eV) B(A') 1)	Anregungsschwelle 2)
NaC1	Na2p	2,95	2,66	36,0
NaBr	Na2p	2,69	2,45	35,7
NaJ	Na2p	2,26	2,07	35,2
Lif	Lils	3,60	2,30	64,4
Licl	Lils	1,63	2,39	62,3
LiBr	Lils	1,38	2,13	61,8
NaC1	C12p	2,12		203,3

Rump fexzi tonen und Anregungsschwellen (eV) der Rumpfniveaus Lils, Na2p und C12p

Tabelle(III.11.): Bindungsenergien (eV) bezüglich des Lei tungsbandbodens von Lils-, Na2p und C12p 1

111.4. Augerzerfall und Direkte Rekombination von Rumpfexzitonen In diesem Kapitel sollen die beiden Zerfallskanäle direkte Rekombination und Augerprozeß der Lils (A) - Na2p-(Dublett A,B) -Exzitonen sowie des Cl2p - Exzitons im NaCl diskutiert werden. Eine direkte Rekombination macht sich in Energieverteilungsspektren (EDC's) durch eine Überhöhung spezieller Niveaus beim Durchgang durch die Exzitonenanregungsenergie bewerkbar. Die Abbildungen (III.22. - III.27.) zeigen Valenzband - EDC's im Anregungsbereich der Lits- und Na2p - Exzitonen. Für Photonenenergien, die den Anregungsenergien dieser Exzitonen entsprechen, zeigen sich deutliche Valenzbandüberhöhungen im Vergleich zu Energieverteilungsspektren bei etwas kleineren Photonenenergien. Andere Zustände (beispielsweise die äußeren s-Niveaus der Halogenidionen) sind nicht meßbar an einer direkten Rekombination beteiligt. Erinnert man sich daran, daß die Zerfallswahrscheinlichkeit durch direkte Rekombination wesentlich vom Überlapp der Anfangs- und Endzustände bestimmt wird, so ist dieses Resultat durchaus verständlich; denn die VB - Elektronen besitzen eine weit größere räumliche Ausdehnung als etwa die erwähnten s-Orbitale.

Bildet man nach der Normierung auf die Bindungsenergie bezüglich der Valenzbandoberkante und einer Reflexionskorrektur die Differenz der Valenzbandspektren bei Photonenenergien, die gleich bzw. etwas kleiner als die Exzitonanregungsenergie sind, so erhält man die Energieverteilung der Elektronen, die aus der direkten Rekombination stammen. Diese Differenzspektren sind ebenfalls in den Abbildungen (111.22. - 111.27.) dargestellt. Zunächst ist zu bemerken, daß

- 86 -

- 87 -

verschiedene Vatenzbandzustände unterschiedlich stark an der direkten Rekombination teilhaben. Offenbar sind die Niveaus geringerer Bindungsenergie mehr an den Halogenid-lonen lokalisiert und weisen damit eine geringere Überlappung mit den Li⁴ls bzw. Na⁺2p Löchern auf als tiefer gebundene Valenzbandzustände.

bie Differenzspektren sind jedoch gegenüber dem Valenzband nicht nur verzerrt, sondern auch um Werte von einigen 0,1 eV zu niedrigeren kinetischen Energien hin verschoben. Diese Tatsache ist auf Gitterrelaxationen während der Lebensdauer der Exzitonen zurückzuführen. Der Gitterrelaxationsprozeß wurde bereits im Kapitel 11.3. am Konfigurationskoordinatenmodell erfäutert. Die Relaxationsenergien lassen sich damit aus einem Vergleich der energetischen Lagen der Valenzbandunterkante gegenüber der Unterkante des Differenzspektrums gewinnen. Sie sind in Tabelle (111.12.) aufgeführt.

An dieser Stelle sei noch einmal darauf hingewiesen, daß die beobachteten Energieverschiebungen nicht auf Aufladungseffekten der Proben beruhen. In Abschnitt (1.3.) wurde erläutert, welche Tests unternommen wurden, um eine solche Erklärungsmöglichkeit der Spektren auszuschließen.

Betrachtet man nun Energieverteilungsmessungen im Bereich der C1⁻ – 2p Anregung von NaCl (Abb.(111.28.), so zeigt es sich, daß das Valenzband bei der Anregung des Cl 2p – Exzitons keinerlei Überhöhung erfährt. Hingegen ist ein deutliches Anwachsen der C13s - Struktur zu beobachten. Auch hier weist die Verschiebung des Differenzspektrums zu niedrigeren kinetischen Energien auf eine Gitterrelaxation hin (Tab. (III.12.)). Es bleibt zu klären, warum eine direkte Rekombination des Exzitons unter Mitwirkung eines Valenzbandelektrons nicht stattfindet. Dafür ist eine genauere Betrachtung des Augermatrixelementes nützlich. Die Wahrscheinlichkeit für einen Übergang

$$\chi_i$$
 ($\underline{\mathbf{r}}_i$) ψ_i ($\underline{\mathbf{r}}_2$) $\rightarrow \chi_f$ ($\underline{\mathbf{r}}_i$) ψ_f ($\underline{\mathbf{r}}_2$)

ist gegeben durch:

$$M = \left| \iint \chi_{f}^{+}(\underline{r}_{1}) \psi_{f}^{+}(\underline{r}_{2}) \frac{e^{2}}{|\underline{r}_{1} - \underline{r}_{2}|} \chi_{i}^{-}(\underline{r}_{1}) \psi_{i}^{-}(\underline{r}_{2}) d\underline{r}_{1}^{-} d\underline{r}_{2} \right|^{2} G1.(111.2.)$$

Sei nun $X_i(r_i)$ der Zustand des exzitonischen Elektrons; dann ist $X_f(r_i)$ mit einem Leitungsbandzustand zu identifizieren. Denn das Cl2p – Loch wird während des Zerfalls mit sehr viel größerer Wahrscheinlichkeit mit einem Cl3p – oder Cl3s – Elektron rekombinieren als mit dem angeregten Elektron, da dieses einen wesentlich geringeren Überlapp mit dem Lochzustand besitzt, als die vergleichsweise stark lokalisierten Cl3p- und Cl3s – Zustände. Damit liegt folgende Zuordnung auf der Hand:

 $X_i (\mathbf{r}_1) = 2$ ustand des exzitonischen Elektrons $X_f (\mathbf{r}_1) = Leitungsbandzustand$ $\psi_i (\mathbf{r}_2) = Valenzband- bzw. Cl3s - Zustand$ $\psi_f (\mathbf{r}_2) = Cl2p - Zustand$

Unter der Annahme, daß die Ladungsdichteverteilungen der Zustände χ (r_1) und ψ (r_2) hinreichend gut voneinander getrennt sind ($r_2 << r_1$), kann der Term $\frac{e^2}{|r_1 - r_2|}$ nach Kugelflächenfunktionen entwickelt werden. - 90 -

Die Nährung $(r_2^{<<}r_1)$ ist gerechtfertigt, dem das exzitonische Elektron bevölkert hauptsächlich Na3s – Niveaus der Nachbarionen, und Leitungsbandzustände sind ohnehin stark delokalisiert. Andererseits besitzen die Cl3p – Elektronen in der Nähe der Cl – Zentren eine große Aufenthaltswahrscheinlichkeit (S57), während die Cl3s – Orbitale eine noch geringere räumliche Ausdehnung aufweisen. Die Entwicklung des Augermatrixelementes (G1. (T1.2.) lautet nun:

$$M = \sum_{im} \frac{4\pi i^2}{21+i} \langle \psi_i | r_2^{-i} Y_{1m}^+(\theta_2 \psi_2) | \psi_i \rangle \langle X_i | \frac{Y_{1m}^-(\theta_1 \psi_1)}{r_1^{-1+1}} | X_i \rangle \qquad \text{G1. (111.3.)}$$

Das erste Glied dieser Entwicklung (1 = 0) verschwindet, da die Zustände ψ_i und ψ_f orthogonal zueinander sind. Für 1 = 1 spiegelt Gl.(1113.) die Übergangswahrscheinlichkeit für elektrische Dipolstrahlung wieder. Terme höherer Ordnung können unter der Bedingung ($r_2 < r_1$) vernachlässigt werden. Für den Fall ψ_i = Cl3s - Zustand ist das Dipolmatrixelement 4 0, und wie beobachtet, tritt dieser Zerfallskanal auf. Es bleibt zu klären, warum der Zerfallskanal mit ψ_i = VB (Cl3p) - Zustand experimentell nicht nachgewiesen werden konnte; tatsächlich ist der Übergang Cl3 p \rightarrow Cl2p dipolverboten. (Davydov folgt einer ähnlichen Argumentation bei der Erklärung des Prozesses der inneren Konversion (D65)). Die Mitnahme weiterer Entwicklungsterme (1>1) gibt dem letzteren Zerfall dennoch eine (geringe) Oszillatorstärke.

Es überrascht zunächst, daß der Augerzerfall LVV des Cl2p - Exzitons größenordnungsmäßig die gleiche Wahrscheinlichkeit besitzt, wie die direkte Rekombination. Denn während des Augerzerfalls wird ein 2p - Loch von einem <math>3p - Elektron aufgefüllt. Dieser Vorgang wirdjedoch verständlich, wenn man sich vor Augen führt, daß für denLVV – Übergang die Annahme der räumlichen Trennung der Funktionen $<math>\psi$ und χ ($r_2^{<<}r_1$) nicht mehr erfüllt ist. Höhere Entwicklungsterme (1>1) des Augermatrixelementes liefern damit wesentliche Beiträge zur Oszillatorstärke des Augerübergangs.

Die Lits – Exzitonen können abgesehen von der direkten Rekombination ebenfalls durch einen Augerprozeß zerfallen. Die Augerstrukturen (Abb.(IIL12.-III.14.)) wurden schon im Kapitel III.2. erläutert. Sie sind gegenüber der erwarteten Lage zu niedrigeren kinetischen Energien hin verschoben. Die Korrelationsenergien der Maxima I und II sind in Tabelle (III.9.) aufgelistet. Ein Vergleich mit den Korrelationsenergien der multiplettaufgespaltenen Augerkanten (Abb.(III.8. – III.11.)) erhärtet die in Kapitel III.2. aufgestellte These, daß das Maximum II auf einen Augerprozeß zurückzuführen ist, dessen Endprodukt ein korrellierter zwei-Loch-Zustand ist.

Es bleibt anzumerken, daß die Na2p - Exzitonen keinen beobachtbaren Augerzerfall aufweisen, während dieser Zerfallskanal bei den Lits -Exzitonen nahezu 10 mal stärker ist als die direkte Rekombination. Diesem Ergebnis sollte jedoch keine allzu große Bedeutung beigemessen werden, da es bei konkurrierenden Zerfallsprozessen die Ausnahme ist, daß ihre Wahrscheinlichkeiten die gleiche Größenordnung besitzen.

~ 91 -

Abb.(111.22.) Energieverteilungsspektren (EDC's) des Valenzbandes von LiF bei Photonenenergien, die gleich (b) bzw. kleiner (a) als die Anregungsenergie des Rumpfexzitons B (siche Tab.(111.9.)) sind. Die Spektren sind auf gleiche Bindungsenergien normiert. Die Überhöhung des Valenzbandes tür hv = 01,8 eV (b) zeigt, daß das Exziton B unter Einbeziehung von Valenzbandelektronen direkt rekombinieren kann.

Abb.(111.23.) Valenzband - EDC's von LiCl bei Photonenenergien, die gleich (b) bzw. kleiner (a) als die Anregungsenergie des Rumpfexzitons A (siehe Tab.(III.9.)) sind. Die Spektren sind auf gleiche Bindungsenergien normiert.

- 94 -

Abb.(111.24.) Valenzband - EDC's von Lißr bei Photonenenergien, die gleich (b) bzw. kleiner (a) als die Anregungsenergie des Rumpfexzitons A (siehe Tab.(111.9.)) sind. Die Spektren sind auf gleiche Bindungsenergien normiert.

Abb. (111.25.) Valenzband - EDC's von NaCl bei Photonenenergien, die gleich (b) bzw. kleiner (a) als die Anregungsenergie des Rumpfexzitons B (siehe Tab. (111.9.)) sind. Die Spektren sind auf gleiche Bindungsenergien normiert.

Abb. (111.27.) Valenzband - EDC's von NaJ bei Photonenenergien, die gleich (b) bzw. kleiner (a) als die Anregungsenergie des Rumpfexzitons B (siehe Tab. (111.9.)) sind. Die Spektren sind auf gleiche Bindungsenergien normiert.

Abb. (111.28.)EDC's von NaCl bei Photonenenergien, die gleich (b)bzw. kleiner (a) als die Anregungsenergie des Cl2p -Exzitons (siche Tab. (111.9.)) sind. Die Spektren sindauf gleiche Bindungsenergien normiert. Die Überhöhungdes Cl3s - Niveaus für hv = 201,2 eV (b) zeigt, daßdas Cl2p - Exziton unter Einbeziehung von Cl3s -Elektronen direkt rekombinieren kann.

Tabelle (111.12.):	Relaxa	ionsenergi	ien			
Substanz	EDC	yield	1),2)	1),3)	1),4)	5)	6)
Li F	0,05 <u>+</u> 0,13	5,26	0,9	1,3	٥,2	9,84	
LICI	0,69 <u>+</u> 0,13	4,75	0,3			6,96	0,62
Libr	0,99 <u>+</u> 0,13	2,76	0,8			5,76	
NaCl	0,23 <u>+</u> 0,13	0,30				4,10	
NaBr	0,32 <u>+</u> 0,13	0,16				3,48	
NaJ	0,20 <u>+</u> 0,13	0,14					
NaCl (Cl2p)	2,1 <u>+</u> 0,3	2,45				2,14	

- 1) Absorption (HKS68)
- 2) Lumineszenz (AW75)
- 3) Lumineszenz (MSE73)
- 4) Lumineszenz (A81)
- 5) Relaxationsenergie berechnet nach Gleichung (III.4.)
- 6) Rechnung nach dem in Kapitel iV vorgestellten Modell

- 100 -

111.5. Experimentelle Bestimmung von Relaxationsenergien

In Abschn. 111.4, wurde bereits dargestellt, wie aus Energieverteilungsmessungen im Anregungsbereich von Rumptexzitonen Gitterrelaxationsenergien bestimmt werden können. Diese Energien sind in Tabelie (111.12.) in der mit EDC bezeichneten Spalte aufgeführt. Die Fehlergrößen werden wesentlich durch die ungenaue Kenntnis der Reflektivitäten bestimmt, Darauf wurde schon ausführlich in Abschnitt 1,4, eingegangen. Ein Vergleich der Relaxationsenergien zeigt zunächst, daß das Gitter auf die Anregung des Cl2p - Exzitons wesentlich stärker reagiert als auf die Anregung der Na2p - Exzitonen. In beiden Fällen bevölkert das exzitonische Elektron Na $^{+}3s$ - Zustände. Während jedoch das 2p - Loch des Na2p - Exzitons durch das 3s-Niveau gegenüber den nächsten Nachbarn gut abgeschirmt wird, ist die Abschirmung des Cl2p - Loches im Cl2p -Exziton aufgrund der starken Delokalisierung des angeregten Elektrons ausgesprochen gering.Damit wird die Diskrepanz der Relxationsenergien beider Exzitontypen verstandlich.

Bemerkenswert ist weiterhin, daß, abgesehen vom LiF, die Relaxtionsenergien für Lils – Exzitonen deutlich größer sind als für Na2p – Exzitonen. Eine befriedigende Deutung dieses Sachverhaltes kann nur im Rahmen einer Berechnung der Gitterenergien von angeregtem und Grundzustand in Abhängigkeit gewisser Konfigurationskoordinaten erfolgen. Eine solche Rechnung, welche die einzelnen Energiebeiträge Coulombenergie, Abstoßungs- und Van der Waalsenergie berücksichtigt, wurde am LiCl durchgeführt und wird in Kapitel IV vorgestellt. Es wird sich herausstellen, daß das abstoßende Potential zwischen ungleich geladenen lonen einen wesentlich steileren Verlauf aufweist (der Reichweitenparameter des abstoßenden Potentials ist größer), als zwischen zwei Halogenidionen. Eine Betrachtung der klassischen lonenradien (Tab.(III.13.)) demonstriert, daß in Li-Halogenidendas Abstoßungspotential hauptsächlich auf die Wechselwirkung der Halogenidionen zurückzuführen ist, während in Natriumhalogeniden die Wechselwirkung der ungleichgeladenen Ionen den größten Beitrag zur Abstoßungsenergie liefert. Es ist also zu vermuten, daß für das unterschiedliche Kelaxationsverhalten nach Anregung der Lils- bzw. Na2p - Exzitonen die verschiedenen Reichweitenparameter des abstoßenden Potentials verantwortlich zu machen sind.

Unter der Voraussetzung, daß das Gitter vor dem Zerfall der Exzitonen vollständig relaxiert ist, stellt der Vergleich von Absorptions- und Lumineszenzspektren im Bereich der Lils – Na2p – bzw. Cl2p – Anregungen die genaueste Methode zur Bestimmung von Relaxationsenergien dar. Maiste et al (MSE74) berechnen für die Lebensdauer von Lils – Exzitonen bezüglich strahlendem Zerfall eine Zeitspanne von 10^{-11} – 10^{-12} Sekunden. Gitterrelaxationszeiten nach Anregung von F-Zentren in Alkalihalogeniden liegen in der Größenordnung 10^{-10} – 10^{-11} Sekunden (F64,WJ64). Es ist jedoch anzunehmen, daß Relaxationszeiten bei Anregung von lokalisierten Exzitonen geringer sind, da die nächsten Nachbarn in diesem Fall eine weit geringere Ladungsdichteänderung verspüren als nach einer F-Zentren-Anregung. Fowler (F64) zeigt, daß das F-Zentren-Elektron während der Citterrelaxation weit in den Kristall eindringt, die nächsten Nachbarn mithin eine Ladungsänderung von nahezu le registrieren. Die Annahme, daß das Gitter beim strahlenden Zerfall des Lils – Exzitons (a) nahezu vollständig relaxiert ist,

- 101 -

- 102 -

erscheint also nicht unvernühftig.

Es wurde bereits darauf hingewiesen, daß energieaufgelöste Lumineszenzmessungen mit der vorhandenen Apparatur nicht durchgeführt werden können. Lumineszenzuntersuchungen an Lithiumhalogeniden sind jedoch aus der Literatur bekannt (MSE73, MSE74, AW76,A81). Da kontinuierliche Lichtquellen, deren Photonenspektren die Anregungsbereiche der Lils -Exzitonen (A) (Ca. 60 eV) überstreichen, erst mit dem Bau von Speicherringen und der Nutzbarmachung der Synchrotronstrahlung zur Verfügung stehen, wurden in früheren Lumineszenzexperimenten vorwiegend Elektronenkanonen als Anregungsquelten verwendet (MSE73, NSE74,AW76). Ein Vergleich dieser Emissionsmessungen mit den Absorptionsdaten von flaensel et al (HKS68) liefert die in Tabelle (111.12.) aufgeführten Kelaxationsenergien. Es zeigt sich, daß die so ermittelten Werte nur für LiBr gute Übereinstimmung mit den eigenen Resultaten liefern. Im Falle von LiCl oder gar LiF ergeben sich dägegen erhebliche Abweichungen.

Aito et al (A81) benutzen für ihre Lumineszenzmessungen an LiF Synchrotronstrahlung als Lichtquelle. Die Ergebnisse der Autoren lassen lediglich auf eine Relaxationsenergie von ca. 0,2 eV schließen. Dieser Wert deckt sich im Rahmen der Fehlergrenzen durchaus mit dem eigenen Ergebnis.

Es bleibt zu klären, worauf die energetische Diskrepanz der exzitonischen Emissionsbande in den Arbeiten (MSE73,AW76) bzw. (A81) zurückzuführen ist.

Maiste et al (MSE74) demonstrieren deutlich den Einfluß von Strahlungsschäden auf die Lumineszenzspektren von Li-Halogeniden. Mit zunehmender Strahlungsdauer bzw. zunehmender Elektronenenergie erscheint eine Struktur bei ca. 54 eV. Sie ist auf den strahlenden Zerfall Lits2s2p → Lits²2s von atomarem Lithium zurückzuführen, wie Lumineszenzmessungen an metallischem Lithium (A81) zeigen. Auch Arakawa und Williams (AW76) weisen darauf hin, daß wachsende Strahlungsschäden einerseits das 61 eV Maximum von LiF verschwinden lassen, andererseits das 46 eV - Band, welches auf die Kekombination des Li⁺1s -Loches mit einem F-2p-Valenzbandelektron zurückzuführen ist, zu dem erwähnten 54 eV Maximum schieben. Zwar verwendeten Arakawa und Williams eine spezielle Meßmethode, die eine Verzerrung des Spektrums durch Radiolyse weitgehend unterbindet, aber dennoch ist es nicht auszuschließen, daß die exzitonische Struktur bei 61 eV gegenüber der energetischen Lage in reinem LiF verschoben ist.

Im folgenden sollen zwei Modelle zur Berechnung von Relaxationsenergien diskutiert werden:

a) Kontinuumsmodell

Der Kristall wird als ein kontinuierliches Medium mit elastischen und dielektrischen Eigenschaften betrachtet. Dabei tragen Elastizität und Dielektrizität akustischen und optischen Schwingungsmoden Rechnung (T80). Zur Berechnung der Relaxationsenergie in einem Ionenkristall ist eine Beschränkung auf optische Moden gerechtfertigt. Wird in einem Dielektrikum durch optische Anregung ein sphärischer Bereich mit Radius R und Ladung <u>+</u>e erzeugt, so beträgt die von der zusätzlichen Ladung induzierte Polarisationsenergie des Mediums unmittelbar nach der Anregung

- 103 -

während sie nach der ionischen Relaxation gegeben ist durch

$$E = \frac{e^2}{RB\pi \epsilon_0} \frac{1}{\epsilon_s}$$
 (ionische Polarisierung)

Die Gitterrelaxationsenergie (sie war definiert als Differenz zwischen Absorptions- und Emissionsenergie) läßt sich also mit Hilfe der Gleichung (111.4.) (DEK64) berechnen:

ε statische Dielektrizitätskonstante
 ε optische Dielektrizitätskonstante
 ε influenzkonstante

Identifiziert man R mit dem Ionenradius (Tab. (III.13.)) des anzuregenden Ions, so ergeben sich die in Tabelle(III.12.) aufgeführten Relaxationsenergien. Die Werte sind im allgemeinen größer als die experimentell ermittelten Energien. Lediglich im Falle des Cl2p – Exzitons ergibt sich eine gnte Übereinstimmung. Das ist jedoch nicht überraschend, denn Cl.(III.4.) berücksichtigt nicht die Abschirmung des entstandenen Loches durch das exzitonische Elektron. Während die Abschirmung des Loches der Lils- und Na2p – Exzitonen nicht zu vernachlässigen ist, ist das angeregte Elektron des Cl2p – Exzitons stark delokalisiert, so daß die nächsten Nachbarn des Cl – Ions eine Ladungsänderung des Anregungszentrums von nahezu le sehen.

Da über die Größe der Abschirmung nur qualitative Aussagen gemacht werden können, dient das Kontinuumsmodell lediglich zu einer oberen Abschätzung von Refaxationsenergien.

b) Konfigurationskoordinatenmodell (KKM)

In Abschnitt II.4. wurde bereits darauf hingewiesen, daß unter gewissen Voraussetzungen die Breite einer exzitonischen Absorptionsstruktur Rückschlüsse auf die Relaxationsenergie zuläßt. Die in Tabelle(III.12.) in der mit yield bezeichneten Spalte aufgeführten Werte wurden mit Hilfe der Gleichung(11.32.)

$$E_{R} = \frac{HWB^{2}}{81n2 + kT}$$

aus den Halbwertsbreiten der Absorptionsmaxima (Tab. (111.10.) ermittelt. Ein Vergleich dieser Energien mit den Relaxationsenergien, welche aus der Analyse von Energieverteilungsmessungen im Anregungsbereich der Exzitonen gewonnen wurden, zeigt eine zufriedenstellende Übereinstimmung für Na2p- und Cl2p - Exzitonen. Offenbar sind die in Abschnitt II.4, erwähnten Bedingungen für die Gültigkeit von Gleichung(II.32.) im Falle des Lits -Exzitons in Lithiumhalogeniden nicht erfüllt. Die Absorptionsstrukturen können einerseits lebensdauerverbreitert sein; andererseits ist es denkbar, daß der angeregte Zustand verglichen mit dem Grundzustand im Konfigurationskoordinatenmodell durch eine größere Kraftkonstante beschrieben werden muß. Beide Möglichkeiten führen bei einer Anwendung von Gleichung(11.32.) dazu, daß zu große Relaxationsenergien vorgespiegelt werden. Im nächsten Kapitel wird das Konfigurationskoordinatendiagramm von LiCl berechnet. Es wird sich zwar herausstellen, daß der angeregte Zustand tatsächlich durch eine größere Kraftkonstante zu charakterisieren ist als der Grundzustand; die volle Breite der Absorptionsstruktur wird jedoch allein aufgrund dieser Tatsache nicht erklärt werden können.

Tabelle(111.13.): klassische lonenradien R

Die Werte stammen aus (C69).

Abb.(111.29.) a) und b); Relaxationsenergien, die in dieser Arbeit experimentell bestimmt wurden (siehe Tab.(111.12.)).

c) und e):Relaxationsenergien, die aus einem Vergleich von Absorptions- und Lumineszenzdaten gewonnen wurden: 1) Absorptions (HKS68), 2) Lumineszenz (AW76), 3) Lumineszenz (AB1)

d) Relaxationsenergie, die im Rahmen eines Konfigurationskoordinatenmodells berechnet wurde (s. Kapitel IV).

IV. Berechnung der Relaxationsenergie am Beispiel von LiCI

In diesem Kapitel wird ein Modell vorgestellt, das die Berechnung von Gitterenergien in Abhängigkeit der Kontigurationskoordinaten q^{I} und q^{V} (siehe Abb.(IV.I.)) für Grundzustände und lokalisierte angeregte Zustände erlaubt. Ich beschränke mich dabei auf die Bestimmung derjenigen Beiträge zur Gitterenergie, welche von der relativen Lage der nächsten Nachbarn zum Anregungszentrum abhängen. Es genügt also, die Wechselwirkungsenergien dieser Nachbarn mit dem Kristall zu ermitteln. Das Modell entspricht bis auf 2 Punkte dem Ansatz, den Williams (W51) der Berechnung des Konfigurationskoordinatendiagramms von TI[†] dotiertem KCl zu Grunde legt. Einerseits geht in die nachfolgenden Rechnungen die p-Symmetrie des angeregten Elektrons explizit ein, während Williams eine räumliche Mittelung über den p-symmetrischen Endzustand vorniamt, so daß das angeregte fon s-Symmetrie besitzt. Andererseits bleiben in den eigenen Rechnungen ioneninduzierte Dipolund Quadrupol-Dipol-Wechselwirkungen unberücksichtigt, da sie nur einen geringen Beitrag zur Gitterenergie liefern.

Die Notivation für die nachfolgenden Rechnungen besteht darin, daß Informationen einerseits über die Verschiebung der nächsten Nachbarn des Anregungszentrums im angeregten Zustand gegenüber der Gleichgewichtslage im Grundzustand, andererseits über die Relaxationsenergie sowie die Linienform des Absorptionsmaximums (A) erwartet werden. Das Nodell wird auf die Anregung Li⁴is² \rightarrow Li⁴is² p in LiCl angewandt, ist jedoch ohne weiteres auf lokalisierte Kumpfanregungen in anderen Alkalihalogeniden übertragbar. Die Einschränkung auf lokalisierte Anregungszustände ist notwendig, denn nur in diesem Fall ist die Gleichsetzung der Ladungsdichteverteilungen des angeregten lons im Kristall und im isolierten Zustand gerechtfertigt. Die radialen Ladungsdichten von freiem Li⁺ und Cl⁻ sind in den Abbildungen (IV.2.) und (IV.3.) dargestellt. Sie wurden freundlicherweise von Herrn Gollisch (GBI) zur Verfügung gestellt. Die Normierung ist folgendermaßen gewählt:

 R^2 = radiate Ladungsdichteverteilung

n = Anzahl der Elektronen

Zunächst sollen nun die verschiedenen Beiträge zur Gitterenergie diskutiert werden. Anschließend wird das Modell am Grundzustand getestet und im dritten Abschnitt schließlich auf den angeregten Zustand angewandt.

IV.1. Beiträge zur Gitterenergie

Um der p-Symmetrie des (angeregten) 2p - Elektrons Rechnung zu tragen, ist es notwendig, seine Coulomb-, Abstoßungs-, und Van der Waals -Wechselwirkungen mit nächsten Nachbarn (Cl-Ionen) in longitudinaler und vertikaler Richtung (siehe Abb.(IV.I.)) getrennt zu berechnen. Diese Energieterme werden durch die Indizes

- s-pl bzw.
- s-pv gekennzeichnet.

Wechselwirkungsterme zwischen s-symmetrischen Ladungsverteilungen erhalten den Index

s-s

_ 110 _

IV.I.I. Coulombwechselwirkung

Die Contombwechselwirkung der dem Anregungszentrum benachbarten C1-tonen mit entfernteren tonen wird nach der Methode von Evjen (E32) bestimmt. Die Wellenfunktionen der C1-fonen und die ihrer nächsten und übernächsten Nachbarn überlappen jedoch, so daß hier das Punktladungsmodelt nicht mehr angewandt werden kann. In diesem Fall wird die Coulomb-Energie zwischen zwei fonen A und B in drei Anteile zerlegt:

- a) Coulombenergie E^a der Elektronen des fons B mit einer Punktladung, welche am Kernort des fons A lokalisiert ist und dessen Gesamtladung trägt (Summe aus Kern und Hülfenladung)
- b) Korrekturterm E^b zur Energie E^a, der berücksichtigt, daß sich einige
 Elektronenschalen der Ionen A und B überschneiden
- c) Coulombenergie E^{C} , die sich aus folgenden Komponenten zusammensetzt: i) Wechselwirkung E_{i}^{C} des Kerns B mit der in a) beschriebenen Punktladung, ii) Korrekturterme zu E_{i}^{c} und E^{a} , die dem Umstand Rechnung tragen, daß einige Elektronenschalen des lons A den Kern B bzw. gewisse Elektronenschalen des lons B umschließen.

Die Coulombenergie zwischen zwei Ionen A und B ist dann gegeben durch die Summe:

$$E_{Coul} = \frac{1}{4\pi\epsilon_{o}} (E^{a} + E^{b} + E^{c})$$
$$\epsilon_{o} = Influenzkonstante$$

Im lotgenden sind die Beiträge E^a , E^b und E^c für Ionen A und B gleicher und unterschiedlicher Symmetrie aufelistet. Es bedeuten:

a = Abstand der lonen A und B $Z_{A/B}^{K}$ = Kernladungen der lonen A/B k = +1 für r₂ ≤ a k = -1 für r₂ ≥ a

= Ladung der Elektronenhülle des Ions A $R^2_{\Delta/R}$ = radiale Ladungsdichteverteilungen der lonen A/B R² Bs(p) = radiale Ladungsdichteverteilungen der Zustände Li⁺ls(2p) $E_{s-s}^{a} = -(Z_{A}^{K} + Z_{A}^{H}) \left(\int_{B(s)}^{a} R_{B(s)}^{2} (r_{2}) \frac{r_{2}^{2}}{a} dr_{2} + \int_{B(s)}^{\omega} R_{B(s)}^{2} (r_{2}) \frac{r_{2}^{2}}{r_{2}} dr_{2} \right)$ G1.(IV.3.) $E_{s=p1}^{a} = \int_{-\infty}^{a} R_{Bp}^{2}(r_{2}) \frac{r_{2}^{2}}{a} (1 + \frac{2}{5} \frac{r_{2}^{2}}{a^{2}}) dr_{2} + \int_{-\infty}^{\infty} R_{Bp}^{2}(r_{2}) \frac{r_{2}^{2}}{r_{2}^{2}} (1 + \frac{2}{5} \frac{a^{2}}{r_{2}^{2}}) dr_{2} GI.(1V.4.)$ $E_{s-pv}^{a} = \int_{0}^{a} R_{Bp}^{2}(r_{2}) \frac{r_{2}^{2}}{a} (1 - \frac{1}{5} \frac{r_{2}^{2}}{a}) dr_{2} + \int_{0}^{\infty} R_{Bp}^{2}(r_{2}) \frac{r_{2}^{2}}{r_{2}} (1 - \frac{1}{5} \frac{a^{2}}{r_{2}}) dr_{2} GI.(1V.5.)$ $E_{s-s}^{b} = \int \int R_{A}^{a+r_{1}} r_{1}^{2} R_{B}^{2}(r_{2})r_{2}^{2} - \frac{(r_{1}+k(r_{2}-a))^{2}}{4ar_{1}r_{2}} dr_{2} dr_{1}$ G1.(IV.6.) $E_{s=p1}^{b} = \frac{1}{2} \int_{r_{1}=0}^{\infty} \int_{r_{2}=|a-r_{1}|}^{a+r_{1}} \kappa_{Bp}^{2}(r_{2})r_{2}^{2} \left\{ \frac{1}{r_{1}} \left[1 - \left(\frac{a^{2}+r_{2}^{2}-r_{1}^{2}}{2r_{2}a} \right)^{3} \right] + \frac{1}{2} \left[\frac{1}{r_{1}} \left[1 - \left(\frac{a^{2}+r_{2}^{2}-r_{1}^{2}}{2r_{2}a} \right)^{3} \right] \right] + \frac{1}{2} \left[\frac{1}{r_{1}} \left[\frac{1}{r$ G1.(1V.7.) + $\frac{1}{40a^3r_2} \int k(16a^5 - 16r_2^5 + 40a^3r_2^2 - 40r_2^3a^2) = r_1 (30a^4 + 30r_2^4 + 6r_1^4 + 60a^2r_2^2 - 20a^2r_1^2 - 20r_2^2r_1^2) \bigg] \bigg\} dr_2 dr_1$

$$\mathcal{E}_{s-pv}^{b} = \frac{1}{4} \int_{r_{1}=0}^{\infty} \int_{r_{2}=|a-r_{1}|}^{a+r_{1}} \mathcal{E}_{Bp}^{2}(r_{2})r_{2}^{2} \left\{ \frac{1}{r_{1}} \left[\left(\frac{-r_{1}^{2}+r_{2}^{2}+a^{2}}{2ar_{2}} \right)^{3} -3 \frac{r_{2}^{2}+a^{2}-r_{1}^{2}}{2ar_{2}} + 2 \right] - \frac{3}{GL} \left[\frac{1}{r_{1}} \left[\left(\frac{r_{1}^{2}+r_{2}^{2}+a^{2}}{2ar_{2}} \right)^{3} -3 \frac{r_{2}^{2}+a^{2}-r_{1}^{2}}{2ar_{2}} + 2 \right] - \frac{3}{GL} \left[\frac{1}{r_{1}} \left[\frac{r_{1}^{2}+r_{2}^{2}+a^{2}}{2ar_{2}} \right]^{3} -3 \frac{r_{2}^{2}+a^{2}-r_{1}^{2}}{2ar_{2}} + 2 \right] - \frac{3}{GL} \left[\frac{1}{r_{1}} \left[\frac{r_{1}^{2}+r_{2}^{2}+a^{2}}{2ar_{2}} \right]^{3} -3 \frac{r_{2}^{2}+a^{2}-r_{1}^{2}}{2ar_{2}} + 2 \right] - \frac{3}{GL} \left[\frac{r_{1}^{2}+r_{1}^{2}}{4ar_{1}} + \frac{r_{1}^{2}+r_{1}^{2}}{4ar_{2}} + \frac{r_{1}^{2}+r_{2}^{2}}{2ar_{2}} \right] - \frac{1}{r_{1}} \left[\frac{r_{1}^{2}+r_{1}^{2}+r_{1}^{2}}{4ar_{1}} + \frac{r_{1}^{2}+r_{1}^{2}}{4ar_{1}} + \frac{r_{1}^{2}+r_{1}^{2}}{2ar_{2}} + \frac{r_{1}^{2}+r_{1}^{2}}{2ar_{2}} \right] - \frac{r_{1}}{3ar_{2}} \left[\frac{r_{1}^{2}+r_{1}^{2}+r_{1}^{2}+r_{1}^{2}}{4ar_{1}} + \frac{r_{1}^{2}+r_{1}^{2}+r_{1}^{2}}{2ar_{2}} + \frac{r_{1}^{2}+r_{1}^{2}+r_{1}^{2}}{2ar_{2}} \right] \right]$$

c)

$$E^{c} = \int_{r_{1}=a}^{\infty} R_{A}^{2}(r_{1})r_{1}^{2} \cdot \left[\int_{r_{2}=0}^{r_{1}=a} R^{2}(r_{2})r_{2}^{2}dr_{2} - Z_{B}^{K}\right] \cdot \left(\frac{1}{r_{1}}-\frac{1}{a}\right) dr_{1} + G1.(1V.9.)$$

$$+\frac{(Z_{A}^{n}+Z_{A}^{n}) \cdot Z_{B}^{n}}{a}$$

mit R² = R_B² fallsB s-symmetrisch ist
R² = R_{BP}² + R_{Bs}² falls B das angeregte Ion Li⁺1s2p ist

IV.1.2. Abstoßungsenergie

...

Werden zwei ionen aufeinander zubewegt, so wächst mit zunehmender Überlappung der elektronischen Wellenfunktion die Abstoßungsenergie. Dieses ist auf das Paulische Ausschließungsprinzip zurückzuführen. Born schlägt für die Beschreibung der Abstoßungsenergie einen Ausdruck der Gleichung (IV.10.) vor (B19)

$$E_{rep} = B \frac{1}{a^n}$$
 G1.(1V.10.)

a = Abstand der Ionen

B und n können aus Kompressibilitätsmessungen bestimmt werden. n liegt in der Größenordnung n≈10. Bessere Übereinstimmung mit experimentellen Ergebnissen liefert jedoch ein exponentieller Ansatz:

$$E_{rep} = c + exp(-\frac{a-a_0}{\rho}) \qquad \qquad GI.(1V.11.)$$

c = Konstanter Faktor

a = Abstand der Atome/Ionen

Man nennt ρ den Reichweitenparameter des abstoßenden Potentials und a_o den Basisradius. a_o und ρ sind charakteristische Konstanten für ein spezielles Ion bzw. ein spezielles Ionenpaar. Pauling (P28) berechnet die Abstoßungsenergie zweier Wasserstoffatome im Rahmen der Störungstheorie. Es zeigt sich, daß für große Entfernungen die Abstoßungsenergie tatsächlich exponentieli vom Abstand der Ionen abhängt. Paulings Betrachtungen geben außerdem eine Information über die Form der Konstanten c iu Gl. (IV.II.); sie läßt sich darstellen durch Gl. (IV.12.)

c = b
$$(1 + \frac{Z_A}{N_A} + \frac{Z_B}{N_B})$$
 G1.(1V.12.)

b = konstanter Faktor

$$Z_{A/B}$$
 = Gesamtladungen der lonen A/B
 $N_{A/B}$ = Ladungen der äußeren Elektronenschalen der Ionen A/B
c ($i.i^+C1^-$) = b·1,375
c (Li^+,Li^+) = b·2
c ($C1^-,C1^-$) = b·0,75

Aufgrund dieser Überlegungen lautet der Ansatz für die Abstoßungsenergie:

$$E_{rep} = \left(1 + \frac{Z_A}{N_A} + \frac{Z_B}{N_B}\right) \cdot b \cdot exp\left(-\frac{a^{-a}o}{\rho}\right)$$
 G1.(1V.13.)

Einer der beiden Parameter a_0 und b kann frei gewählt werden. Der andere ist dann eindeutig festgelegt. Man ordnet b überlicherweise (z.B. H37) den Wert b = 1·10⁻¹⁹ (Ws) zu.

Die Aufgabe dieses Abschnittes besteht darin, die Konstanten ρ und a $_{o}$ zu bestimmen.

Die Literatur (z.B. H37,C59) gibt lediglich Auskunft über gemittelte Werte von ρ . Eine Differenzierung zwischen verschiedenartigen Jonen-Paaren eines Kritalls wird nicht vorgenommen.

- 114 -

Die Berechnung von p stützt sich auf die Ausführungen von Williams (W51). Danach läßt sich die Abstoßungsenergie E_{rep} durch Überlappungsintegrale beschreiben:

$$E_{rep} = K \cdot (1 + \frac{Z_A}{N_A} + \frac{Z_B}{N_B}) + \frac{S^2}{a}$$
 G1.(1V.14.)

K = konstanter Faktor

$$S = \iint \sqrt{\psi_{A}^{2}(r_{1})} \cdot \sqrt{\psi_{B}^{2}(r_{2})} d^{3}r_{2} d^{3}r_{1} \qquad c1.(10.15.)$$

 $\phi^2_{A/B}$ = elektronische Ladungsdichteverteilungen der Ionen A/B

Der Vergleich von GL.(1V.13.) und (1V.14.) zeigt, daß sich die Konstante 1/p aus einer logarithmischen Auftragung des Ausdruckes $\frac{s^2}{a}$ über den Abstand a der Ionen gewinnen läßt.

Die Überlappungsintegrale für lonen gleicher und unterschiedlicher Symmetrie lauten:

$$S_{s-s} = \frac{1}{2a} \int_{r_{2}=0}^{\infty} \int_{r_{1}=|a-r_{2}|}^{a+r_{2}} R_{B}(r_{2}) \cdot R_{A}(r_{1})r_{1}r_{2} dr_{1}dr_{2} \qquad G1.(1V.16.)$$

$$S_{s-p1} = \frac{1}{2a} \int_{r_{2}=0}^{\infty} \int_{r_{1}=|a-r_{2}|}^{a+r_{2}/2} R_{B}(r_{2}) \cdot \frac{a^{2}+r_{2}^{2}-r_{1}^{2}}{2ar_{2}} R_{A}(r_{1})r_{1}r_{2} dr_{1}dr_{2} \qquad G1.(1V.16.)$$

$$S_{s-pv} = \frac{1}{4aa} \int_{r_{2}=0}^{\infty} \int_{r_{1}=|a-r_{2}|}^{a+r_{2}/2} \int_{\phi=0}^{360^{\circ}} G1.(1V.18.)$$

$$\sqrt{R_{Bs}^{2}(r_{2}) + 3 \cdot \cos^{2}\phi} R_{Bp}^{2}(r_{2}) \left(1 - \left(\frac{a^{2}+r_{2}^{2}-r_{1}^{2}}{2ar_{2}}\right)^{2}\right) R_{A}(r_{1})r_{1}r_{2} dr_{1}dr_{2}$$

a = Abstand der lonen

R²= radiale Ladungsdichteverteilung Die Indizierung ist die gleiche wie in Abschnitt IV.I.I. Abbildung (IV.4.) zeigt die logarithmische Auftragung von $\frac{S^2}{a}$ über a für unterschiedliche Ionenpaare. Die Steigungen der Geraden liefern die Reichweitenparameter ρ (Tab. (IV.1.)). Zur Bestimmung der Konstanten K (Gl.(IV.14.)) wird der nächste-Nachbarabstand für die Gleichgewichtslage des Gitters in Abhängigkeit von K aufgetragen (Abb. (IV.5.)). Dazu wird zunächst die Energie/Molekül in Abhängigkeit des nächsten Nachbarabstandes für verschiedene K berechnet (siehe Abschnitt IV.2.1.). Die Anpassung von Parabeln an die ermittelten Kurven liefert dann die Gleichgewichtslagen und zugehörige Energien des Gitters als Funktionen von K (Tab. (1V.2.)). Der tatsächliche nächste-Nachbar-Abstand kann der Literatur entnommen werden (K76). Er beträgt 4,8566 atomare Einheiten (a.E.). Das zugehörige K besitzt den Wert K = 6,892 (a.E. $\cdot eV$). Sind die Parameter K und ρ bekannt, so lassen sich durch einen Vergleich von GL (1V.13.) und (1V.14.) mühelos die Konstanten a_{α} (in Gl.(1V.13.)) bestimmen. Sie werden in Tab. (1V.3.) den von Huggins (H37) berechneten Basisradien gegenübergestellt. Huggins stellt thermodynamische Relationen auf, mit denen er unter Einbeziehung experimenteller Daten die Parameter a_{ρ} und ρ bestimmt. Den Rechnungen liegt ein Punktladungsmodell zugrunde. Es wird also nicht die Überlappung der elektronischen Wellentunktionen benachbarter lonen berücksichtigt, welche zu einer Erniedrigung der Coulombenergie gegenüber der Wechselwirkungsenergie zweier Punktladungen führt. Durch eine geeignete Wahl der Konstanten ρ und a erreicht Huggins trotz dieser Vereinfachung Übereinstimmung mit exp.Daten. Die eigenen Rechnungen beziehen hingegen die Überlappung von Wellenfunktionen bei der Bestimmung der Coulombenergie ein. Deshalb kann es nicht überraschen, daß die von Huggins angegebenen Reichweitenparameter und Basisradien erheblich von den eigenen Resultaten abweichen.

Da die Abstoßungsenergie mit wachsendem Abstand der Ionen stark abnimmt, beschränke ich mich für ihre Berechnung auf die Wechselwirkungen zwischen nächsten und übernächsten Nachbarn.

IV.I.3. Van der Waals-Wechselwirkung

Durch eine Störungsrechnung 2. Ordnung zeigte London (L3O) erstmals, daß sich die Dipol-Dipol-Wechselwirkung (E_{DD}) zwischen zwei Atomen folgenderwaßen beschreiben läßt:

$$(c_{BS} \sim System) = -\frac{3}{2} \frac{1}{a_{0}} \alpha_{A} \alpha_{B} - \frac{I_{A} \sim I_{B}}{I_{A} + I_{B}}$$
 61.(1V.19.)

- a = Abstand der Ionen A und B
- α_{A/B} = stat. elektr. Polarisierbarkeiten von A/B I_{A/B} = Ionisierungsenergien der Elektronen geringster Bindungsenergie

Die Dipol-Quadropol-Wechselwirkung wird ausführlich von Margenau (M31) diskutiert. Sie bleibt jedoch in den eigenen Kechnungen unberücksichtigt, da sie nur einen kleinen Beitrag zur Gitterenergie liefert. Mayer (M33) zeigt, daß die Dipol-Quadropol-Wechselwirkung in allen Alkalihalogeniden nicht mehr als 10 - 20 % der Dipol-Dipol-Wechselwirkung beträgt.

Kirkwood (K32) stellt eine einfache Relation zwischen der Elektronenanzahl eines Atoms,deren Polarisierbarkeit in x-Richtung und ihrem Trägheitsmoment bezüglich der x-Achse auf;

$$\alpha = \frac{4}{n \cdot la, E}, \quad 0 \frac{2}{x}$$
 G1. (1V. 20.)

mit n = Anzahl der Elektronen

$$\sum_{i=1}^{n} 0^{j} = \sum_{i=1}^{n} \overline{\frac{1}{x}}.$$

$$\begin{aligned} \theta_{\mathbf{x}} &= \sum_{j=1}^{\infty} \theta_{\mathbf{x}}^{\mathbf{J}} = \sum_{j=1}^{\infty} x_{j}^{\mathbf{J}} \\ &= \int \mathbf{r}_{j}^{2} \cos^{2} \mathbf{\mathcal{Y}} \varphi^{2} d\mathbf{r}^{\mathbf{J}} \\ \varphi^{2} &= \text{elektronische Ladungsdichteverteilung} \end{aligned}$$
 G1. (1V.21.)

Damit ergeben sich richtungsabhängige Polarisierbarkeiten. Die zugehörigen Trägheitsmomente $\theta_x^{S/p1/pv}$ lauten:

a) s-symmetrische Orbitale:

$$\theta_{x}^{s} = \frac{5}{15} \int_{0}^{\infty} R^{2}(r)r^{4} dr$$
 G1.(1V.22.)

b) p-symmetrische Orbitale mit Rotationssymmetrie zur x-Achse:

i) das elektrische Feld weist in x-Richtung

$$\theta_{\mathbf{x}}^{\mathbf{p}\mathbf{l}} = \frac{9}{15} \int_{0}^{\infty} \kappa^{2}(\mathbf{r}) \mathbf{r}^{4} d\mathbf{r}$$
 G1.(1V.23.)

ii) das elektrische Feld liegt in der y-z-Ebene

R^2 = radiale Ladungsdichteverteilung

Mit Hilfe der Gleichungen (1V.20.) - (1V.24.) wurden die Polarisierbarkeiten (Tab.1V.4.) von Li⁺1s² und Cl⁻ berechnet. Ledigtich für Li⁺1s² ergibt sich eine gute Übereinstimmung mit den experimentellen Daten von Pirenne et al (PK64). (Die Autoren bestimmten die Polarisierbarkeiten von lonen im Kristallverband) Die berechnete Polarisierbarkeit von Cl⁻ überschreitet hingegen den experimentellen Wert um mehr als das Doppelte. Dieses Ergebnis kann verstanden werden, wenn man sich vergegenwärtigt, daß Gl.(1V.20.) nur für isolierte Ionen gültig ist. Im Kristall werden

- 117 -

kleinere Polarisierbatkeiten erwartet, da mit zunehmender Polarisation eines Ions die Überlappung seiner elektronischen Ladungsdichteverteilung mit der benachbarter Ionen ebenfalls wächst. Berücksichtigt man die Tatsache, daß der die Abstoßungsenergie beschreibende Term S^2/a (G1.(IV.16.)) in der Gleichgewichtslage des Gitters für nächste Nachbarn (Li⁺Is²-Cl⁻) um einen Faktor 20 kleiner ist als für benachbarte Cl-Ionen (siehe Abb. (IV.4.)), so leuchtet es ein, daß G1.(IV.20.) für Li⁺ ein sehr viel besseres Kesnitat liefert als für Cl⁻.

Die folgenden Rechnungen benutzen die experimentellen Polarisierbarkeiten (PK67) von Li⁺Is² und Cl⁻. Die longitudinale und vertikale Polarisierbarkeit $\alpha_{1/y}$ des angeregten £i⁺ lons (1s2p) wurde mit Gl.(1V.25.) bestimmt

$$\alpha_{1/v} = \alpha_{exp} (Li^{+}1s^{2}) \cdot \frac{\left(\bigcup_{x}^{p1/v} (Li^{+}1s^{2}p) + \bigcup_{x}^{s} (Li^{+}1s^{2}p) \right)^{2}}{\left(\bigcup_{x}^{s} (Li^{+}1s^{2}) \right)^{2}} \qquad \text{G1.(1V.25.)}$$

$$\alpha_{exp} (Li^{+}1s^{2}) + \text{Potarisierbarkeit von } Li^{+}1s^{2} \text{ nach } (PK67)$$

$$\bigcup_{x}^{p1/v} (Li^{+}1s^{2}p) = \text{elektronisches Trägheitsmoment des } p-\text{Orbitals}$$
in longitudinaler/vertikaler Richtung
$$\bigcup_{x}^{s} (Li^{+}1s^{2}p) = \text{elektronisches Trägheitsmoment des } s-\text{Orbitals des}$$
angeregten $Li^{+}-\text{lons } (Li^{+}1s^{2}p)$

$$\bigcup_{x}^{s} (Li^{+}1s^{2}) = \text{elektronisches Trägheitsmoment der Elektronenhülle}$$

$$des Li^{+}-\text{lons im Grundzustand}$$

Zur Bestimmung von Van der Waals-Wechselwirkungen mit Gl.(IV.19.) ist weiterhin die Kenntnis der Ionisierungsenergien der Niveaus niedrigster Bindungsenergie notwendig. Tabelle (IV.5.) beinhaltet die Bindungsenergien bzgl. des Leitungsbandbodens der zur Rechnung wichtigen Zustände. Die Werte wurden aus eigenen Energieverteilungsmessungen und Bandlückendaten (S73) ermittelt. Die Van der Waals-Wechselwirkung nimmt mit der 6. Potenz des Abstandes der Ionen ab (Gl.(IV.19.)). Aus diesem Grunde werden lediglich Energiebeiträge zwischen nächsten und übernächsten Nachbarn berücksichtigt.

1V.2. Test des Modells am Grundzustand des Gitters

Abschnitt fV.1. verdeutlicht, daß die Rechnungen nur wenige experimentelle Daten benötigen:

a) nächster Nachbarabstand

b) Polarisierbarkeiten der Ionen Cl⁻ und Li⁺ im Kristallverband
 c) Bindungsenergien der Niveaus Is(Li⁺Is²), 2p(Li⁺Is2p), 3p(Cl⁻)
 Deshalb erscheint es ratsam, das Modell zunächst am Grundzustand des
 Gitters zu testen, bevor es auf den angeregten Zustand angewandt wird.

Die Literatur liefert experimentelle Daten der Gitterenergie, des Kompressionsmoduls und des longitudinal optischen Phonons. Alle drei Größen können durch Berechnung der in Abschnitt IV.1. dargestellten Energieterme bestimmt werden. Dieses soll im folgenden geschchen.

IV.2.1. Gitterenergie

Im Punktladungsmodell läßt sich die Energie pro Molekül durch Gl.(IV.26.) darstellen (H37).

$$E = -\frac{\alpha e^2}{ka_0} - \frac{c}{a_0} + b \cdot c_{+-} Mexp(\frac{r_{+} + r_{-} - a_0}{\rho}) + G1.(1V.26)$$

+ $1/2bc_{--} M'exp(\frac{2r_{-} - a_0 \sqrt{2}}{\rho}) + 1/2bc_{++} M'exp(\frac{2r_{+} - a_0 \sqrt{2}}{\rho})$

mit a = Madelungkonstante

a₀ - nächster Nachbarabstand c = Van der Waals - Konstante b = $1 \cdot 10^{-19}$ (WS) c₁ = $1 + \frac{Z_A}{N_A} + \frac{Z_B}{N_B}$ r₁ = Basisradien ρ = gemittelte Reichweitenparameter (H37)

M/M' = Anzahl nächster/übernächster Nachbarn

Da jedoch die Korrekturterme zur Coulombenergie, welche auf die Überlappung der elektronischen Ladungsdichteverteilungen benachbarter Ionen zurückzutühren sind, explizit berücksichtigt werden sollen, ist der Madelungterm $(-\frac{\alpha e^2}{ka_0})$ in Gl. (1V.26.) zu ersetzen durch Gl. (1V.27.) $E_{Coul} = -\frac{\alpha e^2}{ka_0} + \frac{6e^2}{ka_0} - \frac{6e^2}{k\sqrt{2}a_0} +$ Gl. (1V.27.)

siehe Abschnitt IV.1.2.

$$\left. \begin{array}{c} \mathbf{b} \in \mathbf{E}_{\mathrm{Coul}}(\mathrm{Li}^{+}\mathrm{Ci}^{-}) \right|_{\mathbf{a}=\mathbf{a}_{\mathrm{O}}} + \mathbf{b} \in \mathbf{E}_{\mathrm{Coul}}(\mathrm{Cl}^{-}\mathrm{Cl}^{-}) \right|_{\mathbf{a}=\sqrt{2}} \mathbf{a}_{\mathrm{O}}$$

Die Bedeutung der Terme $E_{Coul}(Li^{\dagger}Cl^{-})$ und $E_{Coul}(Cl^{-}Cl^{-})$ wurde in Abschnitt IV.1.1. erläutert. Natürlich müssen nun auch andere Reichweitenparameter ρ und Basisradien r_{\pm} verwendet werden. Die benutzten Werte sind in den Tabellen (IV.1. und IV.3.) autgeführt. Ihre Bestimmung wurde bereits in Abschnitt IV.1.2. beschrieben.

Die Energie pro Molekül errechnet sich dann zu-

$$E = -8,66 \text{ eV}$$
 (siehe auch Abb (IV.5.).

Sie kommt dem Literaturwert (K76) von

E - - 8,631 eV recht nahe.

IV.2.2. Kompressionsmodul

$$K = V \frac{\partial^2 U}{\partial v^2} |_{V_0}$$
 G1. (1V. 28.)

V = Volumen

U = Energie im Volumen V

 $V_0 =$ Volumen in der Gleichgewichtslage des Gitters

Es sei num E die Energie pro Molekül und a der nächste Nachbarabstand. Daun läßt sich Gl.(IV.28.) umformen zu Gl.(IV.29.):

Der Kompressionsmodul liefert durch Gl. (1V.29.) also den Vorfaktor des quadratischen Gliedes der Entwicklung (Gl. (IV.30.)) von E um die Gleichgewichtslage.

$$E(a) = E(a_0) + \frac{1}{2} \frac{\partial^2 E}{\partial (a^3)^2} (a^3 - a_0^3)^2 + \frac{1}{6} \frac{\partial^3 E}{\partial (a^3)^3} (a^3 - a_0^3)^3 + \dots GI. (IV. 30.)$$

In Abb.(IV.6.) ist die Energie pro Molekül gegen die dritte Potenz des nächsten Nachbarabstandes aufgetragen. Man kann erkennen, daß sich die berechneten Punkte nur in erster Nährung durch Parabeln beschreiben lassen, da die Kompression im Vergleich zur Dehnung des Kristalls größere Kräfte erfordert. Aus diesem Grund wird für die Anpassung an die berechneten Werte eine Funktion der Porm (G1.(IV.31.)) gewählt.

$$E(a) = E(a_0) + \frac{1}{2}k_1(a^3 - a_0^3)^2 + \frac{1}{6}k_2(a^3 - a_0^3)^3 \qquad GI.(IV.3I.)$$

Mit den in Tabelle (IV.6.) aufgeführten Parametern $E(a_0) k_1, k_2$ reproduziert Gl. (IV.31.) recht gut das rechnerische Ergebnis in dem Intervall 4.3 aE a < 5.4 aE (Abb. (IV.6.)).

Spangenberg et al (SH57) bestimmen experimentell die Geschwindigkeiten elastischer Wellen für verschiedene Kristallrichtungen. Daraus berechnen sie Kompressionsmodule vieler Alkalihalogenide. Für LiCl erhalten sie einen Wert von K = 3,155·10¹⁰ $\frac{Ws}{m^3}$. Aus G1.(1V.29.) folgt dann:

$$\frac{\partial^2 E}{\partial (a^3)^2} = 5,095.10^{-4} \frac{eV}{a.E.6}$$

Dieser Wert steht in guter Übereinstimmung mit dem Anpassungsparameter k_{μ} .

$$k_1 = 4,9 \cdot 10^{-4} \frac{eV}{a.E.6}$$
 (siehe Tab. (1V.6.))

IV.2.3. Longitudinal optisches Phonon

Schwingungsmoden, die sich dadurch auszeichnen, daß negative und positive lonen gegeneinander schwingen, und der Verschiebungsvektor parallel zur Ausbreitungsrichtung der elastischen Welle steht, nennt man longitudinal optische Phononen. Für Wellenlängen, die groß im Vergleich zum nächsten-Nachbar-Abstand sind, liefert die Lyddane-Sachs-Teller Beziehung (G1. IV. 32.) die Frequenz w_L dieser Moden

$$\frac{\omega T}{\omega L^2} = \frac{\varepsilon (\omega)}{\varepsilon (o)}$$
 G1. (1V. 32.)

 $ω_{\rm T}$, ε(o) und ε(···) sind experimentell bestimmbare Größen (K76). Die Frequenz des longitudinaloptischen Phonons für LiCI berechnet sich demnach zu $ω_{\rm L}$ = 7,5·10¹³ $\frac{1}{\rm s}$ In Abb. (1V.7.) sind die Energien pro Molekül in Abhängigkeit der relativen Verschiebung des Gitters positiver Ionen gegenüber dem Gitter negativer Ionen in die drei Kristallrichtungen (100), (110), (111) aufgetragen. Zur Berechnung der Energien wurden folgende Terme berücksichtigt:

a) Coulombwechselwirkung mit nächsten und dritt-nächsten Nachbarn

b) Abstoßungsenergie zwischen nächsten Nachbarn

c) Van der Waals Wechselwirkung mit nächsten Nachbarn

An die errechneten Werte lassen sich Parabeln anpassen. Damit können die Kraftkonstanten D bestimmt werden, die über die Relation (Gl. (1V.33.)

$$\omega = \sqrt{\frac{\nu}{\mu}}$$
G1. (1V.33.)

 μ = reduzierte Masse von Li⁺ und Cl⁻

zu den zugehörigen Frequenzen führen (siehe Tab.(1V.7.)). Sie weichen um ca. 30 % von der aus der Lyddane-Sachs-Teller (LDS) – Beziehung berechneten Frequenz ab. Vergegenwärtigt man sich jedoch, daß die LDS-Relation in einem makroskopischen Bild hergeleitet wird, das den Kristall durch ein isotropes dielektrisches Medium ersetzt (siehe z.B. BH54), so ist das Ergebnis dennoch befriedigend.

1V.3. Ergebnisse für den angeregten Zustand

Das vorangegangene Kapitel hat gezeigt, daß ein Modell, welches die in Abschnitt IV.I. diskutierten Wechselwirkungen berücksichtigt, viele Eigenschaften des Kristalls mit befriedigender Genauigkeit beschreiben kann. Diese Tatsache rechtfertigt die Anwendung des Modells auf den angeregten Zustand unter der Annahme, daß das p-Orbital des angeregten Li⁺-Ions durch nächste Nachbarn nur unwesentlich deformiert wird, also durch die

- 123 -

Ladungsdichteverteilung des p-Zustandes im isolierten ion dargestelltwerden kann.

Tabelle(1V.8.) zeigt die berechneten Gitterenergien des angeregten und Grundzustandes in Abhängigkeit der Konfigurationskoordinaten q^1 und q^v (siehe Abb.(1V.1.)). Die Energien sind für die Kristallkoordinaten $q^1 = q^v = 0$ aut 0 eV (Grundzustand) bzw. 60,7 eV (angeregter Zustand) (siehe Tab.(111.9.)) normiert. Den Daten können die Konfigurationskoordinaten der Gleichgewichtslage (q_0^1, q_0^v) des angeregten Zustandes entnommen werden. Nach der Gitterrelaxation haben sich die nächsten Nachbarn des Anregungszentrums in longitudinaler Richtung um

$$q_0^1 = 0,35 \text{ a.e.}$$

in vertikaler Richtung hingegen um

$$q_0^V = 0, 2 a.E.$$

vom Li⁺-ton entfernt. Die Gitterrelaxationsenergie (Differenz zwischen Anregungs- und Emissionsenergie) beträgt $E_R = 0,62$ eV. Dieses Ergebnis stimmt innerhalb der Fehlergrenzen gut mit der aus Energieverteilungsmessungen gewonnenen Relaxationsenergie von 0,69 eV (siehe Tab.(111.12.)) überein.

Zum Schluß soll untersucht werden, ob die Breite der Absorptionsstruktur im Rahmen des Konfigurationskoordinatenmodells bei Berücksichtigung nur einer Schwingungsmode (breathing mode) verstanden werden kann. Dazu wird die Gitterenergie als Funktion der Konfigurationskoordinate q $(q-4,8506 a.E. = q^{1}=q^{V})$ aufgetragen (Abb. (IV.8.)). Aus einer Anpassung mit Parabeln werden die Frequenzen des angeregten und Grundzustandes sowie die Gleichgewichtstagen ermittelt (Tah (IV.9.)) Werden diese Werte in die Gleichung (11.29.) eingesetzt, so gelangt man zu dem in Abb.(111.13.) dargestellten Absorptionsspektrum. Es stellt sich heraus, daß bei einer Beschränkung auf die breathing mode die volle Breite der Struktur durch Phononenverbreiterung allein nicht zu erklären ist. Möglicherweise liefert eine Einbeziehung mehrerer Moden bessere Übereinstimmung mit dem Experiment. Prinzipiell können natürlich auch kurze Lebensdauern bezüglich bestimmter Zerfallskanäle zu einer Linienverbreiterung führen. Es sei jedoch darauf hingewiesen, daß Gitterrelaxationsprozesse Zeiträume von $10^{-11} - 10^{-12}$ sec beanspruchen (WJ64,F64), während die Lebensdauer des angeregten Niveaus Li⁺Is2p von der Größenordnung 10^{-15} sec sein müßte, wollte man die Absorptionsstruktur durch Lebensdauerverbreiterung erklären. Eine befriedigende Deutung der Breite des Absorptionsmaximums kann deshalb an dieser Stelle nicht gegeben werden.

<u>Abb.(IV.2.)</u> Radiale Ladungsdichteverteilung eines isolierten Cl Ions im Grundzustand (G81).

 $\underline{Abb.(IV.1.)} \quad Zur \ Berechnung \ der \ Kelaxationsenergie \ bei \ Anregung \ des \\ \underline{Li^{\dagger}Is2p} = Exzitons \ in \ LiCl \ wurde \ die \ Gitterenergie \ in \\ \underline{Abhängigkeit} \ der \ Konfigurationskoordinaten \ q^{1} \ und \ q^{V} \\ berechnet. \ q^{1} \ und \ q^{V} \ kennzeichnen \ die \ Austenkungen \ der \ nächsten \\ Nachbarn \ des \ Anregungszentrums \ aus \ der \ Ruhelage \ (im \ Grundzustand \\ des \ Gitters) \ in \ longitudinaler \ (1) \ bzw. \ vertikaler \ (v) \ Kichtung \\ des \ Li + 2p \ Orbitals.$

<u>Abb. (1V.3.)</u> Radiale Ladungsdichteverteilung eines isolierten Li⁺-Ions im angeregten und Grundzustand (Li⁺ is2p bzw. Li⁺ is²) (C81).

<u>Abb.(IV.4.)</u>, Logarithmische Auftragung von $\frac{S^2}{a}$

(Siehe Gleichung (IV.14,15)) gegen den

Kernabstand verschiedener lonenpaare zur Ermittelung

des Reichweitenparameters p des abstoßenden Potentials (siehe Gl.(1V.13.)).

a<mark>l</mark> bzw. a²_o kennzeichnen den Abstand nächster bzw. übernächster Nachbarn im Gleichgewichtszustand des Gitters. - 130 -

<u>Abb.(IV.5.)</u> Auftragung des nächsten-Nachbar -Abstandes R_o des Gitters im Grundzustand sowie der Bindungsenergie pro Molekül gegen die Abstoßungskonstante K (siehe Gl.(IV.14.)). Der Literaturwert R_o = 4,8566(aE) liefert K = 6,892(aE·eV). Damit berechnet sich die Bindungsenergie pro Molekül zu E = 8,66 (eV).

Abb. (IV.6.) Auftragung der Bindungsenergie pro Molekül gegen die dritte Potenz des nächsten-Nachbar-Abstandes. An die berechneten Werte (x) wurde ein Polynom dritten Grades (Gl. (IV. 30)) angepaßt. Die Fitparameter sind Tab. (IV.6.) zu entnehmen. Daraus läßt sich mit Gl. (IV.29.) der Kompressionsmodul bestimmen.

<u>Abh. (IV.7.)</u> Auftragung der Bindungsenergie pro Molekül gegen die Verschiebung (Ax) der Untergitter positiver und negativer Ionen gegeneinander für die Kristallrichtungen (100) (110) und (111). An die berechneten Werte lassen sich Parabeln anpassen. Mit Hille von Gl. (IV.33.) wurden die Frequenzen der longitudinal optischen Phononen berechnet (Tab. (IV.7.)). Die Bindungsenergien pro Molekül sind für den Gleichgewichtszustand des Gitters auf O (eV) normiert.

- 133 -

Tabelle(1V.1.):Reichweitenparameter ρ des abstoßenden Potentialsin atomaren Einheiten (a.Ε.)(siehe G1.(1V.13.)).

.

.

Tabelle(IV.2.): Fit der Abstoßungskonstanten K

aus Gl.(IV.14.) (siehe Abb.(1V.5.))

lonenpaare	Ι/ρ (Ι/a.E.) eigene Rechnung	1/ρ(1/a.E.) (H37)	
Li ⁺ Is ² -Cl ⁻	1,487	<u>}</u>	
cı ⁻ - cı ⁻	0,964)	
(Li ⁺ 1s2p)1~C1 [~]	1,069		
(Li ⁺ 1s2p)v-C1 ⁻	1,162		

,

.

K(a.E. · eV)	R ₀ (a.E.)	E _o (eV)
6,5	4,7183	8,8874
6,6	4,7554	8,8259
6,7	4,7931	8,7650
6,8	4,8262	8,7094
6,9	4,8567	8,6560
7,0	4,8925	8,6042
7,1	4,9291	8,5522
7,2	4,9583	8,5063
7,3	4,9927	8,4591
7,4	5,0199	8,4168
7,5	5,0469	8,3752

 $R_0 = n \ddot{a} chster-Nachbar-Abstand$ des Gitters im Gleichgewichtszustand

 E_{o} = Bindungsenergie/Molekül für R = R_o

.

.

.

<u>Tabelle(1V.3.)</u>: Basisradien (a₀) aus Gleichung(1V.13.) in atomaren Einheiten

	а ₀ (а.Е.)	a _o (a.E.)	
	eigene Rechnung	1137	
Li ⁺ Is ²	- 0,783	1,077	
c1 ⁻	1,531	2,712	
(Li ⁺ 1s2p)1	2,159		
(Li ⁴ 1s2p)v	0,991		

<u>Tabelle(IV.5.)</u>: Ionisierungsenergien (eV) zur Berechnung von Van der Waals-Wechselwirkungen nach Gleichung(IV.19.)

	I (eV)		
Li ⁺ Is ²	62,3	I)	
Li [†] Is2p	1,6	2)	
c1 ⁻	10,9	3)	

1) Aus EDC (Tab. (III.1.) und Bandlückendaten (S73)

2) Aus Absorptionsdaten (Tab. (111.9.)) und 1)

 Bindungsenergie des VB-Maximums bzgl. des LB-Bodens; aus EDC (Tab.(III.1.)) und Bandlückendaten (S73).

<u>Tabelle(1V,4.)</u>: Polarisierbarkeiten zur Berechnung von Van der Waals-Wechselwirkungen nach Gleichung(1V,19.)

	α(a.E. ³) 1)	$\alpha(a, E, \frac{3}{2})^{-2}$	α(a.E. ³)	3)
Li [†] Is ²	U, 186	0,196	0,196	4)
c1 ⁻	51,231	20,650	20,650	4)
$(Li^{\dagger}1s2p)1$	40,014		42,021	5)
$(Li^{\dagger}4s2p)v$	4,949		5,197	5)

- 1) Rechnung nach der Gleichung (1V.20.)
- 2) experimentelle Werte nach (PK64)
- diese Polarisierbarkeiten wurden für die weiteren Rechnungen verwendet
- 4) experimentelle Daten 2)
- 5) Rechnung nach der Gleichung (1V.25.)

Tabelle(1V.6.): Fitparameter zur Bestimmung des Kompressionsmoduls (siehe Gleichung(1V.31.))

	Fitparameter	aus Kompressionsmodul I)
E _o	-8,66 (eV)	
3 ao	114,55 (a.E. ³)	
^k i	$4,9.10^{-4} \frac{eV}{a.E.6}$	5,095 $10^{-4} \frac{eV}{a.E.6}$
k_2	$-1,7 \cdot 10^{-5} \frac{\text{eV}}{\text{a.E.}}$	

I) SH57

•
Kristall- richtung	$\frac{1}{\omega_{\rm L}}(10^{13} \frac{1}{\rm s})$	1) 1‱ _L (meV)	$\omega_{\rm L}^{(10^{13} \frac{1}{\rm s})}$
100	5,841	38,4	
110	5,623	37,0	7,5
111	5,538	36,4	

1) eigene Kechnung

.

- - -

2) berechnet aus experimentellen Daten mit Hilfe der

Lyddane-Sachs-Teller-Relation (K76)

Ta b.(IV.8	.) Gittel	renergien	(in eV) de	is angeregt	en und Gru	indzustandes	in Abhän	gigkeit dí	er Konfigui	rations-
	koord:	inaten q ¹ 1	und q ^V (si	ehe Abb.(I	V.1)).					
				Grun	dzust	a n d				
q ¹ /q ^v	-0,10	-0,05	0,00	0,05	0,10	0,15	0,20	0,25	0,30	0,35
-0,25	0,125	0,087	0,063	0,027	0,057	0,059	0,077	0,100	0,149	0,191
-0,20	0,107	0,077	0,053	0,021	0,056	0,052	0,085	0,109	0,159	0,207
-0, 15	0,086	0,054	0,036	0°,009	0,036	0,049	0,084	0,104	0,163	0,211
-0,10	0,055	0,028	0,015	-0,020	0,026	0,039	0,068	0,103	0,160	0,208
-0,05	0,040	0,019	0,004	-0,019	0,026	0,035	0,079	0,110	0,166	0,225
0,00	0,032	0,002	0,000	-0,017	0,024	0,047	0,088	0,116	0,186	0,244
0,05	0,007	-0,003	0,007	-0,027	0,029	0,048	0,088	0,130	0,196	0,258
0,10	0,026	0,015	0,007	0,001	0,053	0,071	0,123	0,154	0,233	0,295
0,15	0,027	0,011	0,018	0,009	0,059	0,091	0,141	0,185	0,254	0,320
0,20	0,029	0,029	0,032	0,022	0,085	0,114	0,167	0,212	0,286	0,350
0,25	0,041	0,037	0,039	0,041	0,103	0,134	0,189	c, 238	0,310	0,385
0,30	0,059	0,054	0,068	0,067	0,133	0,166	0,224	0,272	0,354	0,428
0,35	0,071	0,077	0,089	0,093	0,158	0,196	0,252	0,310	0,392	0,465
0,40	0,101	0,107	0,123	0,126	0,196	0,232	0,298	0,355	0,437	0,517
0,45	0,129	0,138	0,155	0,163	0,23)	0,277	0,343	0,401	0,488	0,568
0,50	0,156	0,169	0,190	0,197	0,274	0,320	0,387	0,449	0,537	0,617
0,55	0,189	0,201	0,222	0,238	0,315	0,362	0,433	0,496	0,585	0,668
0,60	0,224	0,239	0,265	0,281	0,360	0,411	0,483	0,546	0,638	0,721
0,65	0,272	0,291	0,313	0,337	0,420	0,470	0,542	0,610	0,701	0,790

	43	
	ŝ	
	(i)	
	р	
	64	ļ
		ļ
	14	Ì
	ψ	
	د.	
	o	
	ψ	
	н	
	÷	I
	и	
	4	
	.:	j
1		
Ĺ		

Tabelle(IV.9.): Parameter des Konfigurationskoordinaten-Diagramms von LiCl (siehe Abb.(1V.8.)

- 141 -

	Grundzustand	angeregter Zustand
$\omega(10^{13} \frac{1}{s})$	3,82	4,30
ħω(meV)	25,14	28,30
٩ _. (a£)	0	0,249

 \mathbf{q}_{o} = Konfigurationskoordinate im Gleichgewichtszustand des Gitter

$$\omega = \sqrt{\frac{D}{\mu}}'$$

.

D = Kraftkonstante

μ = Masse der 6 nächsten Nachbarn des Anregungszentrums

- 142 -

Zusammenfassung

Es konnten erstmals Gitterrelaxationsprozesse während der Lebensdauer von Rumpfexzitonen unter Benutzung der Photoelektronenspektroskopie nachgewiesen werden, während sich die Bestimmung von Relaxationsenergien bisher auf einen Vergleich von Absorptions- und Lumineszenzmessungen stützte. Eine Überprüfung der eigenen Ergebnisse an Literaturwerten gestaltete sich problematisch, da den meisten Lumineszenzexperimenten Elektronenkanonen als Anregungsquellen zur Erzeugung von Exzitonen dienten. Es ist jedoch bekannt, daß sich Alkalihalogenidkristalle unter Elektronenbeschuß zersetzen. Dieses bleibt nicht ohne Einfluß auf die Lumineszenzspektren, wie es die Arbeiten (AW76) und (T81) am Beispiel der Li⁺1s2p Anregung von LiF demonstrieren. Die zugehörige Emissionsbande dieser Anregung liegt in Messungen, die schnelle Elektronen zur Exzitonenerzeugung benutzen (AW76), bei deutlich niedrigeren Energien als in Experimenten mit Synchrotronstrahlung (A81). Lumineszenzmessungen mit Synchrotronstrahlung im Bereich der Lils, Na2p und Cl2p sind mir jedoch außer für Lithiumfluorid (A81) nicht bekannt. Aus diesem Grunde wurde der Versuch unternommen, zunächst mit einfachen Modellen die experimentellen Ergebnisse zu untermauern.

Die Berechnung von Relaxationsenergien in einem Kontinuumsmodell stellte sich als ummöglich heraus, da die Stärke der Abschirmung des Loches durch das exzitonische Elektron nicht bekannt war. Im Rahmen eines Konfigurationskoordinatenmodells, welches gleiche Kraftkonstanten für angeregten und Grundzustand annimmt, wurden aus Absorptionsspektren von Natriumhalogeniden Relaxationsenergien gewonnen, die sich mit den aus Energieverteilungsmessungen ermittelten Werten decken. Für Lithiumhalogenide dagegen weichen die Relaxationsenergien, die mit Gleichung (II.32.) aus der Halbwertsbreite der Absorptionsstrukturen bzw. aus einem Vergleich von Energieverteilungsspektren im Anregungsbereich der Li⁺Is2p Exzitonen (siehe Abschnitt III.4.) gewonnen wurden, erheblich von einander ab. Deshalb wurde in Kapitel IV ein realistischeres Modell vorgestellt, das die Berechnung von Relaxationsenergien nach der Anregung von lokalisierten Rumpfexzitonen erlaubt. Coulomb-, Abstoßungsund Van der Waals-Wechselwirkungen werden explizit berücksichtigt.

Weiterhin beschäftigte sich diese Arbeit mit der Untersuchung von Augerstrukturen. Es wurde gezeigt, daß Augerprozesse, welche nach der Erzeugung eines Loches an einem Alkaliion auftreten, einer gänzlich anderen Interpretation bedürfen als Augerzerfälle von Löchern in Halogenidionen. Während erstere zwei unkorrelierte Löcher hinterlassen, das zugehörige Spektrum mithin durch eine gewichtete Selbstentfaltung des Valenzbandes beschrieben werden kann, führen letztere zu einem gebundenen Loch-Loch-Paar. Das Spektrum spiegelt in diesem Fall eine Multiplettaufspaltung in die Konfigurationen ³P, ¹D, ¹S wieder.

Nach der Erzeugung eines Rumpfloches im Li⁺Ion der Substanzen LiCl und LiBr wurde im Augerspektrum eine Doppelstruktur gefunden, die darauf hindeutet, daß in diesen Kristallen beide Augerprozesse, wenn auch mit unterschiedlicher Wahrscheinlichkeit, auftreten.

- 143 -

- 144 -

Literatur

- A81 0. Aita et al, Phys. Rev. B, Vol. 23, Nr. 11, 5676 (1981)
- AD73 T. Åberg, J.L. Dehmer, J. Phys. C: Solid State Physics, Vol. 6, 1450 (1973)
- AW76 E.T. Arakawa, M.W. Williams, Phys. Rev. Lett., Vol. 36, Nr. 6, 333 (1976)
- B19 M. Born, Verh. der DPG 21, 13 (1919)
- B78 B. di Bartolo, Luminescence of Inorganic Solids, Plenum Press,New York London (1978)
- B81 J. Barth, Augerzerfall von Rumpfanregungen in Ionen- und Molekülkristallen, Verh. DPG (VI) 16, 237 (1981)
- B82 J. Barth, Dissertation Univ. Hamburg (1982), wird veröffentlicht
- BH54 M. Born, K. Huang, Dynamical Theory of Crystal Lattices, University Press Oxford, Oxford (1954)
- C59 D. Cubicciotti, J.Chem. Phys. Vol. 31, Nr. 6, 1646 (1959)
- C69 H.R. Christen, Chemie, Otto Salle Verlag Frankfurt/Main, Hamburg (1969)
- CT72 P.H. Citrin, T.D. Thomas, J.Chem. Phys. Vol. 57, Nr. 10, 4446 (1972)
- D64 A.J. Dekker, Solid State Physics, McMillan + Co., London (1964)
- D65 A.S. Davydov, Quantum Mechanics, Pergamon Press, Oxford London Edinburgh New York Paris Frankfurt (1965)
- DMRW79 L.E. Davis et al, Handbook of X-Ray Photoelectron Spectroscopy, Perkin Elmar Corporation, Phys. Electr. Div. (1979)
- E32 H.M. Evjen, Phys. Rev. 39, 675 (1932)
- E78 W. Eberhardt, Dissertation Univ. Hamburg (1978)

- 145 -

- F31 J. Frenkel, Phys. Rev. Vol. 37, 17 (1931)
 J. Frenkel, Phys. Rev. Vol. 37, 1276 (1931)
 F64 W.B. Fowler, Phys. Rev. Vol. 135, Nr. 6A, 1725 (1964)
 FCS77 J.R. Fields, P.C. Gibbons, S.E. Schnatterly, Phys. Rev. Lett., Vol. 38, Nr. 8, 430 (1977)
 G74 W. Gudat, Dissertation Univ. Hamburg (1974)
- G79 F. Gerken, Diplomarbeit Univ. Hamburg (1979)
- G81 H. Gollisch, T.U. Clausthal-Zellerfeld, private Mitteilung
- GH68 D.L. Greenaway, G. Harbeke, Optical Properties and Band Structure of Semiconductors, Pergamon Press, Oxford (1968)
- GK72 W. Gudat, C. Kunz, Phys. Rev. Lett., Vol. 29, Nr. 3, 169 (1972)
- GKP74 W. Gudat et al, Phys. Rev. Lett. Vol. 32, Nr. 24, 1370 (1974)
- H37 M.L. Huggins, J. Chem. Phys. Vol. 5, 143 (1937)
- HKS68 R. Haensel et al, Phys. Rev. Lett., Vol. 20, Nr.6, 262 (1968)
- HKSS68 R. Haensel et al, Phys. Rev. Lett. Vol. 20, Nr. 25, 1436 (1968)
- 176 M. Iwan, Diplomarbeit Univ. Hamburg (1976)
- K32 J.G. Kirkwood, Physikalische Zeitschrift Nr. 2, 57 (1932)
- K63 R.S. Knox, Solid State Physics, Suppl. 5, Theory of Excitons,
 Academic Press, New York London (1963)
- K76 C. Kittel, Einführung in die Festkörperphysik, R. OldenburgVerlag, München Wien (1976)
- K78 G. Kalkoffen, Dissertation Univ. Hamburg (1978)
- KMC73 A.B. Kunz, D.J. Mickish, T.C. Collins, Phys. Rev., Lett.Vol. 31, Nr. 12, 756 (1973)
- KMLPS74 S.P. Kowalczyk, F.R. Mc Feely, L. Ley, R.A. Pollak, D.A. Shiriy, Phys. Rev. B Vol. 9, Nr. 8, 3573 (1974)

- - - - -

- 146 -

KM069

L30 LK71

M31 N33 N49

M59 M66

M721

MSE73

MSE74

NIS71

NS69

OL79

- 147 -

P28	L. Pauling, Z. f. Krist. <u>67</u> , 377 (1928)
P74	P.W. Palmberg, Journal of Electron Spectroscopy and related
	Phenomena <u>5</u> , 691 (1974)
P75	S. Pantelides, Phys. Rev. Vol. 11, Nr. 6B, 2391 (1975)
РК64	J. Pirenne, E. Kartheuser, Physica <u>20</u> , 2005 (1964)
PW35	L. Pauling, E.B. Wilson, Introduction to Quantum Mechanics,
	McGraw-Hill, New York London (1935)
R78	U. Rheder, Diplomarbeit Univ. Namburg (1978)
RW6 7	D.M. Roessler, W.C. Walker, J. Phys. Chem. Sol. 28, 1507 (1967)
\$57	G. Schoknecht, Z. Naturforschung <u>12a</u> , 983 (1957)
S67	K. Siegbahn, ESCA, Nova Acta Reg. Soc. Sc. Ups., Ser 1V, Vol. 20,
	225 (1967)
\$72	1.1. Sobel'man, Introduction to the Theory of Atomic Spectra,
	Pergamon Press,Oxford New York Sydney Toronto Braunschweig (1972)
S73	W.H. Strehlow et al, J. Phys. Chem. Ref. Dat. 2, 163 (1973)
S77	G.A. Sawatzky, Phys. Rev. Lett., Vol. 39, Nr. 8, 504 (1977)
S78	D.A. Shirly, Topics in Applied Physics, Vol. 26, 165 (1978)
S79	I.I. Sobel'man, Atomic Spectra and Radiative Transitions,
	Springer Verlag, Berlin Heidelberg New York (1979)
S8 I	C. Sprüssel, Dissertation Univ. Hamburg (1981)
SH57	K. Spangenberg, S. Haussühl, Z. f. Krist. 109, 422 (1957)
SL80	G.A. Sawatzky,A. Lenselink, Phys. Rev. B. Vol. 21, Nr. 5, 1790 (1980)
	P28 P74 P75 PK64 PW35 K78 RW67 S57 S67 S67 S67 S72 S73 S77 S78 S79 S81 S79 S81 S157 SL80

0767 Y. Onodera, Y. Toyozawa, J. Phys. Soc. Jap. Vol. 22, Nr. 3, 833 (1967)

- T58 Y. Toyozawa, Progr. of Theoret. Phys. Vol. 20, Nr. 1, 53 (1958)
 T74 Y. Toyozawa, in: Proc. IV. Int. Conf. on VUV Rad. Phys.,
 ed. by R. Haensel, E.E. Koch and C. Kunz, Pergamon-Vieweg,
 Hamburg (1974)
- T80 Y. Toyozawa, in: Relaxation of Elementary Excitations, ed.by
 R. Kubo and E. Hanamura, Springer Verlag, Berlin Heidelberg New York (1980)
- W37 G.H. Wannier, Phys. Rev. Vol. 52, 191 (1937)
- W 51 F.E. Williams, J. Chem. Phys., Vol. 19, Nr. 4, 457 (1951)
- WH79 C. Weißmantel, C. Hamann, Grundlagen der Festkörperphysik, VEB deutscher Verlag der Wissenschaften, Berlin (1979)
- WJ64 R.F. Wood, H.W. Joy, Phys. Rev. Vol. 136, Nr. 2A, 451 (1964)
- 2F77 A. Zunger, A.J. Freeman, Phys. Rev. B, Vol. 16, Nr. 6, 2901 (1977)
- ZGE78 A.P. Zhurakovskii, E.S. Gluskin, M.A. Elango, Sov. Phys. Sol. Stat., Vol. 20, Nr. 4, 633 (1978)

Danksagung

Die vorliegende Arbeit entstand in der Forschungsgruppe F41 am Deutschen Elektronensynchrotron DESY in Hamburg.

Mein besonderer Dank gilt Herrn Prof. Dr. C. Kunz für die Überlassung des Themas und die wissenschaftliche Betreuung der Arbeit. Den Herren Dipl.-Phys. J. Barth und Dipl.-Phys. F. Gerken danke ich herzlich für die Einweisung in den Meßplatz sowie zahlreiche Diskussionen.

Besonders danken möchte ich auch Herrn Prof. Dr. F. Williams, der mich zu den Rechnungen in Kapiteł IV ermutigte, sowie Herrn Dr. H. Gollisch, der die dafür benötigten Wellenfunktionen berechnete.

Allen Mitgliedern der Gruppe F41 sei für die freundliche Atmosphäre und gute Zusammenarbeit gedankt.

Weiterhin danke ich Frau A. Schmidt für die mühevolle Schreibarbeit und Frau M. Soerensen-Fehrs sowie Herrn J. Schmidt für die Photoarbeiten.

Ich versichere, diese Arbeit selbständig und unter ausschließlicher Verwendung der angegebenen Quellen angefertigt zu haben.