Interner Bericht DESY H1-73/2 September 1973

Betatron Frequency Shifts for PETRA

by

A. Piwinski

1) Formulae for protons

The protons pass several electron bunches in one interaction region. The corresponding linear tune shifts produced by one bunch are given by¹⁾

$$\Delta Q_{xp} = \frac{N_{be} r_{p} \beta_{xp}}{2\pi \gamma_{p} \sigma_{x} (\sigma_{x} + \sigma_{t})} \sqrt{\frac{\pi}{2u}} e^{-u} \sum_{n=0}^{\infty} (2n+1) \left(\frac{\sigma_{x} \sigma_{t}}{\sigma_{x} + \sigma_{t}} \right)^{n} I_{n+1/2} (u)$$
(1)

$$\Delta Q_{zp} = \frac{N_{be} r_{p} \beta_{zp}}{2\pi \gamma_{p} \sigma_{t} (\sigma_{t} + \sigma_{x})} \sqrt{2\pi u} e^{-u} \sum_{n=0}^{\infty} \left(\frac{\sigma_{x} \sigma_{t}}{\sigma_{x} + \sigma_{t}} \right)^{n} \left(I'_{n+1/2}(u) - I_{n+1/2}(u) \right)$$
(2)

with
$$\mathbf{u} = \left(\frac{\mathbf{s}\Phi}{2\sigma_{t}}\right)^{2}$$
, $\sigma_{t}^{2} = \sigma_{z}^{2} + \sigma_{s}^{2} \tan^{2}\Phi$

 N_{be} = number of electrons per bunch, r_p = classical proton radius γ_p = proton energy in units of rest energy

- $^{\beta}x, z p = amplitude function for the protons in the point, where the protons pass the electron bunch$
- σ_{s,z,z} = standard deviations for longitudinal, horizontal and vertical dimensions of the bunch, 2Φ = angle between the beam directions, s = distance from the center of the interaction region.

The modified Bessel functions $I_{n+1/2}$ of order n + 1/2 can be represented by exponential functions.

The formulae are derived with $\gamma_{p,e}^2 >> 1$ and under the condition that the variation of the amplitude function is small within one bunch length, i.e. $\sigma_s^{<<}\beta_{x, z o}$. The variation from one bunch to the next may be arbitrary. For s = 0 the formulae simplify to

$$\Delta Q_{\text{xop}} = \frac{N_{\text{be}} r_{\text{p}} \beta_{\text{xop}}}{2\pi \gamma_{\text{p}} \sigma_{\text{x}} (\sigma_{\text{x}} + \sigma_{\text{t}})}$$
(3)

$$\Delta Q_{zop} = \frac{N_{be} r_{p} \beta_{zop}}{2\pi \gamma_{p} \sigma_{t} (\sigma_{t} + \sigma_{x})}$$
(4)

For s $\neq 0$ and an approximately round electron beam the tune shifts due to the long range forces are

$$\Delta Q_{xp} = \frac{N_{be}r_{p}\beta_{xp}}{2\pi\gamma_{p}\sigma_{x}(\sigma_{x}+\sigma_{t})} \frac{1}{2u} \left(1 - e^{-2u} + 3 \frac{\sigma_{x}-\sigma_{t}}{\sigma_{x}+\sigma_{t}} \left(1 - \frac{1}{u} + (1 + \frac{1}{u}) e^{-2u} \right) + 0 \left(\left(\frac{\sigma_{x}-\sigma_{t}}{\sigma_{x}+\sigma_{t}} \right)^{2} \right) \right)$$

$$\Delta Q_{xp} = \frac{N_{be}r_{p}\beta_{xp}}{2\pi\gamma_{p}\sigma_{t}(\sigma_{x}+\sigma_{t})} \frac{1}{2u} \left((4u+1)e^{-2u} - 1 + \frac{\sigma_{x}-\sigma_{t}}{\sigma_{x}+\sigma_{t}} \left(\frac{3}{u} - 1 - e^{-2u}(4u+5+\frac{3}{u}) \right) + \frac{1}{2u} \left((4u+1)e^{-2u} - 1 + \frac{\sigma_{x}-\sigma_{t}}{\sigma_{x}+\sigma_{t}} \left(\frac{3}{u} - 1 - e^{-2u}(4u+5+\frac{3}{u}) \right) + \frac{1}{2u} \left((4u+1)e^{-2u} - 1 + \frac{\sigma_{x}-\sigma_{t}}{\sigma_{x}+\sigma_{t}} \left(\frac{3}{u} - 1 - e^{-2u}(4u+5+\frac{3}{u}) \right) + \frac{1}{2u} \left(\frac{1}{u} + 1 + \frac{1}{u} \right) \left(\frac{1}{u} + \frac{1}{u} + \frac{1}{u} + \frac{1}{u} + \frac{1}{u} \right) \left(\frac{1}{u} + \frac{1}{u}$$

(6)

+ 0 $\left(\left(\frac{\sigma_{x} - \sigma_{t}}{\sigma_{x} + \sigma_{\tau}}\right)\right)$

2) Formulae for electrons

For the tune shifts produced by an unbunched beam formulae are known only for the case where the beam cross section is round²⁾. Introducing different amplitude functions for the electrons and protons one obtains:

$$\Delta Q_{\mathbf{x}} = \frac{N_{\mathbf{p}} \mathbf{r}_{\mathbf{e}}}{2\pi\gamma_{\mathbf{e}}} \frac{1}{\Phi^{2}C} \mathbf{F}_{\mathbf{x}} \left(\frac{\lambda}{2\beta_{\mathbf{op}}}, \frac{2\Phi\beta_{\mathbf{op}}}{\sigma_{\mathbf{o}}} \right)$$
(7)

$$\Delta Q_{z} = \frac{N_{p} r_{e}}{2\pi \gamma_{e} \Phi^{2} C} F_{y} \left(\frac{\lambda}{2\beta_{op}} , \frac{2\Phi\beta_{op}}{\sigma_{o}} \right)$$
(8)

with

$$F_{x}(a,b) = \int_{-a}^{a} \left(\frac{\beta_{op}}{\beta_{xoe}} + \frac{\beta_{xoe}}{\beta_{op}} - \frac{1}{s^{2}}\right) \left(1 - \exp\left\{-\frac{b^{2}s^{2}}{2(1+s^{2})}\right\}\right) ds$$

$$F_{z}(a,b) = \int_{-a}^{a} \left(\frac{\beta_{zoe}}{\beta_{op}} + \frac{\beta_{op}}{\beta_{zoe}} - s^{2}\right) \left(\left(\frac{1}{s^{2}} + \frac{b^{2}}{1+s^{2}}\right) \exp\left\{-\frac{b^{2}s^{2}}{2(1+s^{2})}\right\} - \frac{1}{s^{2}}\right) ds$$

 N_{p} = number of protons of the beam

C = circumference

r_e = classical electron radius

 ℓ = lenght of the interaction region

 β_{op} , β_{xoe} , β_{zoe} = amplitude functions for protons and electrons in the center of the interaction region

3) Numerical values

If one assumes the following beam parameters

$$N_{p} = 6, 2 \cdot 10^{14} (\pm 12A),$$

$$N_{be} = 1, 4 \cdot 10^{9} (\pm 115 \text{ mA} \pm 3 \text{ MW})$$

$$\beta_{xop} = \beta_{zop} = 200 \text{ cm}$$

$$\beta_{xoe} = \beta_{zoe} = 50 \text{ cm}$$

$$\gamma_{p} = 120 \qquad \gamma_{e} = 30 000$$

$$\sigma_{xop} = \sigma_{zop} = \sigma_{xoe} = \sigma_{zoe} = 0,016 \text{ cm}$$

$$\sigma_{s} = 1,5 \text{ cm} , \qquad \ell = 21,5 \text{ m}$$

$$s = n \cdot 30 \text{ cm} , \qquad n = 0, \pm 1, \pm 2, \dots \pm 36$$

one obtains for the tune shifts

$$\Delta Q_{xp} = 3,9 \cdot 10^{-4}$$

 $\Delta Q_{zp} = -4,2 \cdot 10^{-5}$
 $\Delta Q_{xe} = 0,11$
 $\Delta Q_{ze} = -0,079$

With these values the luminosity is about $3 \cdot 10^{31} \text{ cm}^{-2} \text{ sec}^{-1}$.

- 3 -

If these tune shifts should be to large the transverse deflecting field at the interaction point (l = 2 m, R = 200 m, B(15 GeV) = 2,5 kG) can be applied. In this case the interaction length is reduced by a factor of 10 which reduces the Q-shifts by an order of magnitude.

Acknowledgement

The author is grateful to K.G.Steffen for helpful discussions.

References

1) A.Piwinski; Internal Report DESY H1/1 (1969)

2) E.Keil, C.Pellegrini, A.M.Sessler; CRISP 72-34 (ISABELLE PROJECT) BNL 17017 (1972).

