Interner Bericht DESY H1-73/2
september 1973
A. Piwinski

1) Formulae for protons

The protons pass several electron bunches in one interaction region. The corresponding linear tune shifts produced by one bunch are given by ${ }^{1)}$

$$
\begin{align*}
& \Delta Q_{x p}=\frac{N_{b e^{r} p^{\beta} x_{p}}^{2 \pi \gamma_{p} \sigma_{x}\left(\sigma_{x}+\sigma_{t}\right)} \quad \sqrt{\frac{\pi}{2 u}} e^{-u} \sum_{n=0}^{\infty}(2 n+1)\left(\frac{x_{x}{ }^{-\sigma} t}{\sigma_{x}+\sigma_{t}}\right)^{n} I_{n+1 / 2} \text { (u) }{ }^{n}(u)}{} \tag{1}\\
& \Delta Q_{z p}=\frac{N_{b e^{r}} \beta_{z p}}{2 \pi \gamma_{p} \sigma_{t}\left(\sigma_{t}+\sigma_{x}\right)} \sqrt{2 \pi u} e^{-u} \sum_{n=0}^{\infty}\left(\frac{\sigma_{x}{ }^{-\sigma_{t}}}{\sigma_{x}+\sigma_{t}}\right)^{n}\left(I_{n+1 / 2}^{\prime}(u)-I_{n+1 / 2}(u)\right) \tag{2}
\end{align*}
$$

with $u=\left(\frac{s \Phi}{2 \sigma_{t}}\right)^{2}, \quad \sigma_{t}^{2}=\sigma_{z}^{2}+\sigma_{s}^{2} \tan ^{2} \Phi$
$N_{b e}=$ number of electrons per bunch, $\quad r_{p}=c l a s s i c a l$ proton radius
$\gamma_{p}=$ proton energy in units of rest energy
$\beta_{x, z} p=a m p l i t u d e$ function for the protons in the point, where the protons pass the electron bunch
$\sigma_{s, z, z}=$ standard deviations for longitudinal, horizontal and vertical dimensions of the bunch, $2 \Phi=$ angle between the beam directions, $s=$ distance from the center of the interaction region.

The modified Bessel functions $I_{n+1 / 2}$ of order $n+1 / 2$ can be represented by exponential functions.

The formulae are derived with $\gamma_{p, e}^{2} \gg 1$ and under the condition that the variation of the amplitude function is small within one bunch length, i.e. $\sigma_{s} \ll \beta_{x, ~ z ~ o . ~ T h e ~ v a r i a t i o n ~ f r o m ~ o n e ~ b u n c h ~ t o ~ t h e ~ n e x t ~ m a y ~ b e ~ a r b i t r a r y . ~}^{\text {. }}$ For $s=0$ the formulae simplify to

$$
\begin{align*}
& \Delta Q_{x o p}=\frac{N_{b e} r_{p} \beta_{x o p}}{2 \pi \gamma_{p} \sigma_{x}\left(\sigma_{x}+\sigma_{t}\right)} \tag{3}\\
& \Delta Q_{z o p}=\frac{N_{b e} r_{p}{ }^{\beta} z_{o p}}{2 \pi \gamma_{p} \sigma_{t}\left(\sigma_{t}+\sigma_{x}\right)} \tag{4}
\end{align*}
$$

T.
,

For $s \neq 0$ and an approximately round electron beam the tune shifts due to the long range forces are

$$
\Delta Q_{x p}=\frac{N_{b e} r_{p} \beta_{x p}}{2 \pi \gamma_{p} \sigma_{x}\left(\sigma_{x}+\sigma_{t}\right)} \frac{1}{2 u}\left(i-e^{-2 u}+3 \frac{\sigma_{x}-\sigma_{t}}{\sigma_{x}+\sigma_{t}}\left(1-\frac{1}{u}+\left(1+\frac{1}{u}\right) e^{-2 u}\right)+0\left(\left(\frac{\sigma_{x}^{-\sigma_{t}}}{\sigma_{x}+\sigma_{t}}\right)^{2}\right)\right)
$$

$$
\begin{align*}
& \Delta Q_{z p}=\frac{N_{b e} p_{p} \beta_{z p}}{2 \pi \gamma_{p} \sigma_{t}\left(\sigma_{x}+\sigma_{t}\right)} \frac{1}{2 u}\left((4 u+1) e^{-2 u_{-1}}+\frac{\sigma_{x}-\sigma_{t}}{\sigma_{x}+\sigma_{t}}\left(\frac{3}{u}-1-e^{-2 u}\left(4 u+5+\frac{3}{u}\right)\right)+\right. \tag{5}\\
&\left.+0\left(\left(\frac{\sigma_{x}^{-\sigma} t^{2}}{\sigma_{x}+\sigma_{\tau}}\right)\right)\right) \tag{6}
\end{align*}
$$

2) Formulae for electrons

For the tune shifts produced by an unbunched beam formulae are known only for the case where the beam cross section is round ${ }^{2)}$. Introducing different amplitude functions for the electrons and protons one obtains:

$$
\begin{align*}
& \Delta Q_{x}=\frac{N_{p} r_{e}}{2 \pi \gamma_{e}} \Phi_{x} F_{x}\left(\frac{\ell}{2 \beta_{o p}}, \frac{2 \Phi \beta_{o p}}{\sigma_{o}}\right) \tag{7}\\
& \Delta Q_{z}=\frac{N_{p} r_{e}}{2 \pi \gamma_{e} \Phi^{2} C} F_{y}\left(\frac{\ell}{2 \beta_{o p}}, \frac{2 \Phi \beta_{o p}}{\sigma_{o}}\right) \tag{8}
\end{align*}
$$

with

$$
F_{x}(a, b)=\int_{-a}^{a}\left(\frac{\beta_{o p}}{\beta_{x o e}}+\frac{\beta_{\text {xoe }}}{\beta_{o p}} \frac{1}{s^{2}}\right)\left(1-\exp \left\{-\frac{b^{2} s^{2}}{2\left(1+s^{2}\right)}\right\}\right) d s
$$

$$
F_{z}(a, b)=\int_{-a}^{a}\left(\frac{\beta_{o e}}{\beta_{o p}}+\frac{\beta_{o p}}{\beta_{z o e}} s^{2}\right)\left(\left(\frac{1}{s^{2}}+\frac{b^{2}}{1+s^{2}}\right) \exp \left\{-\frac{b^{2} s^{2}}{2\left(1+s^{2}\right)}\right\}-\frac{1}{s^{2}}\right) d s
$$

\square ？

\qquad


```
N
C = circumference
re}=\mathrm{ classical electron radius
\ell = lenght of the interaction region
\beta
                                in the center of the interaction region
```


3) Numerical values

If one assumes the following beam parameters

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{p}}=6,2 \cdot 10^{14}(\div 12 \mathrm{~A}), \\
& \mathrm{N}_{\text {be }}=1,4 \cdot 10^{9}(\div 115 \mathrm{~mA} \div 3 \mathrm{MW}) \\
& \beta_{\text {xop }}=\beta_{\text {zop }}=200 \mathrm{~cm} \\
& \beta_{\text {xoe }}=\beta_{\text {zoe }}=50 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
& \gamma_{\mathrm{p}}=120 \quad \gamma_{\mathrm{e}}=30000 \\
& \sigma_{\mathrm{xop}}=\sigma_{\mathrm{zop}}=\sigma_{\mathrm{xoe}}=\sigma_{\mathrm{zoe}}=0,016 \mathrm{~cm} \\
& \sigma_{\mathrm{s}}=1,5 \mathrm{~cm}, \quad \ell=21,5 \mathrm{~m} \\
& \mathrm{~s}=\mathrm{n} \cdot 30 \mathrm{~cm}, \quad \mathrm{n}=0, \pm 1, \pm 2, \ldots \pm 36
\end{aligned}
$$

one obtains for the tune shifts

$$
\begin{array}{ll}
\Delta Q_{x p}=3,9 \cdot 10^{-4} & \Delta Q_{z p}=-4,2 \cdot 10^{-5} \\
\Delta Q_{x e}=0,11 & \Delta Q_{z e}=-0,079
\end{array}
$$

With these values the luminosity is about $3 \cdot 10^{31} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}$.

If these tune shifts should be to large the transverse deflecting field at the interaction point $(\ell=2 \mathrm{~m}, \mathrm{R}=200 \mathrm{~m}, \mathrm{~B}(15 \mathrm{GeV})=2,5 \mathrm{kG})$ can be applied. In this case the interaction length is reduced by a factor of 10 which reduces the Q-shifts by an order of magnitude.

Acknow1edgement

```
The author is grateful to K.G.Steffen for helpful discussions.
```


References

1) A.Piwinski; Internal Report DESY H1/1 (1969)
2) E.Keil, C.Pellegrini, A.M.Sessler;

CRISP 72-34 (ISABELLE PROJECT) BNL 17017 (1972) .

