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Abstract
The effect of the Variation of /' and / on the phase of the x-ray standing

wave field is discussed with the example of a semiforbidden GaAs(200) ref lection
and incident x-ray energies around Ga and As K edges. In noncentrosymmetric
crystals the phases of the structure factors contrifaute to the phase of the
standing wave field relative to lattice atoms in the unit cell. Generation
of standing waves with (006) and (006) reflections in a (OOl) -cut LiNb03
crystal and detecting Nb fluorescence yield demonstrates how the phases of
the structure factors F(006) and F(006) with respect to the origin at an
Nb atom can be determined. The phase determination does not require the
incident energy to be tuned very dose to an absorption edge.

1. INTRODUCTION

X-ray standing waves are generated in large perfect crystals when a plane
wave x-ray beam is diffracted from such crystals. The amplitude and the phase
of the wave field are derived from the dynamical theory of x-ray diffraction.
The phase of the wave field depends on the phase of the structure factor for
the corresponding hkl reflection from the crystal.
The position of the antinodes (or nodes) of the standing wave field within

the diffraction planar spacing in the crystal can be detected experimental ly.
This is to say that the phase of the standing wave field can be detected
relative to the atoms in the unit cell äs the antinodal (or nodal) position
is determined by the phase. The phase of the structure factor is determined
by measuring the phase shift introduced by the structure factor phase.
In the case of anomalous scattering the strong raodif ications of the dispersion

Parameters /' and /" in the neighbourhood of an absorption edge of one element
in the sample crystal causes a phase change in the structure factors. This
phase change can be easily followed by x-ray standing wave (XSW) measurements,
which identify the location of the diffraction planes within the unit cell.

published in:MResonant Anomalous X-Ray Scaltenng. Theory and Applications",
G. Materlik, C.J. Sparks & K. Fischer (eds.), Eisevier Science B.U., 1994,
p. 119-143.
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The article has been arranged in the following way. In section l we discuss
the phase problem in crystallography. Section 2 gives a brief description of
the dynamical theory of x-ray diffraction, structure factor phases and
anomalous dispersion. Experimental examples with GaAs(200) and LiNb03(006)
and (006) are presented in section 3, which is followed by the conclusions
in section 4.

2. THE PHASE PROBLEM

The crystal structure determination is äquivalent to the determination of
the electron density distribution in the unit cell. The complex scattering
density function at a point r in the unit cell is given by

p(r)-(l/I/)^/?„exp(-2niHT) , or (1.1)

r + ß)). where (1.2)
H

ißH) (1.3)

is the structure factor and V is the volume of the unit cell. The summation
runs over all reciprocal lattice points H.

The structure factor involves the strength of the elastic scattering and
the relative positions of the scattering atoms in the unit cell, and is
defined by

where /y is the scattering factor of the jth atom, r, its position vector and
exp(-My)is the Debye-Waller factor for the jth atom in a unit cell containing
N atoms. The atomic scattering factor /,- is given by

fj = f°i + f'j + if], (l -5)

where f] and /y are the correction terms due to resonance scattering and
absorption, respectively.

From Eq. (1.2) it is evident that p(r), i.e., the structure, is readily
determined if a complete set of structure factors - in both magnitude and
phase - is available. In ordinary diffraction experiments the structure factor
amplitudes, | FH \ are determined, but not the phases, ßw , and this constitutes
the phase problem. In the realm of the kinematical theory special techniques
based on multiple-Bragg diffraction, anomalous dispersion, \d etc.
have been used for the phase measurement. These methods are based on elastic
scattering. However, with the dynamical scattering method the phase and the
magnitude of each FH can be measured by detecting an inelastic signal in
addition to the elastic one.
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3. DYNAHICAL THEORY OF X-RAY DIFFRACTION

The kinematical theory treats the scattering from each volume element in
the sample äs being independent of that of other volume elements. Darwin[l]
was the first to notice this nonrigorous nature of the kinematical theory
and introduce a dynamical theory. In bis version of the dynamical theory of
x-ray diffraction, Darwin introduced multiple reflection from the lattice
planes involved in the diffraction. However, multiple scattering within a
plane was neglected. In spite of the half-qual itative nature of bis treatment,
his theory made some important predictions which are in many aspects the same
äs the predictions of rigorous dynamical theories introduced by Ewald[2] and
later by von Laue[3]. Ewald's theory is based on scattering by a periodic
structure consisting of point resonators or dipoles. Laue regarded the crystal
äs a continuously distributed electron density with positive charges localized
at the centers of the atoms. In Laue's approach the basic problem is to solve
the Maxwell 's equations in a medium with a periodic complex dielectric
constant. In this section we present a brief description of Laue's theory,
which has predominantly been used in x-ray diffraction.

3.1. Dynamical theory

Dynamical theory of x-ray diffraction has been discussed in details in
several books[4-6], There is an often used review article by Batterman and
Cole[7] which brings out the physical aspects nicely. Here we briefly discuss
the theory.
Propagation of a plane electromagnetic wave through a perfect crystal which

can be considered neutral in the absence of an external field, produces
displacements of negative charges and consequently gives rise to polarization,
which in turn determines the effective field at any point r inside the crystal.
The parameters that determine the wave field inside the crystal, such äs
dielectric constant e(r)or electric succeptibil ity x(O» must have the same
periodicity äs that of the crystal lattice. These parameters also should be
complex in order to take the absorption of the electromagnetic waves into
account. The wave field is determined by solving Maxwell's equations.
In the dynamical theory the electric displacement D (related to the electric

field vector E by D = e E) at a point inside the crystal, is written äs

D = exp(icA>Oexp(-2JUK0T)£Dwexp(-2rtiH-r), (2.1)

where ou i s the angular frequency of the incident radiation, K0 i s the incident
wave vector inside the crystal and DH is the H-th Fourier component of D.
With the introduction of the Laue condition

K„=K O+H, (2.2)

Eq. (2.1) can be written äs

T). (2.3)
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Eq. (2.3) describes the multiwave solution of the dynamical theory äs
contributions of an infinite number of plane waves with wave vectors KH,
which correspond to an infinite set of reciprocal lattice vectors H.

In most of the experiments on x-ray diffraction one deals with two beams
- the incident beam and one diffracted beam corresponding to a single H. In
this case Eq. (2.3) retains only two terms:

D = exp(fuoO[D0exp(-2:ruKo*r) + Dwexp(-2jnKwT)], (2.4)

where D0 and Dw correspond to the incident and the diffracted beam respectively.
The ratio of the field amplitudes DH/D0 , which depends on the angle of

incidence of the plane wave x-ray beam and the orientation of the crystal
surface with respect to the diffracting planes, can be expressed äs

DH/D0=-\b 1/2 C
1/2

where the normalized angular parameter

(2.5)

( }

takes both aforementioned conditions into account:

AG = 6-9 f i , (deviation f rom the Bragg angle) and

6 » costy0/cosij jH .

(2.7)

(2.8)

The definition of b for the Bragg geometry is explained in Figure l where
(p, the asymmetry angle, is the angle between the crystal surface and the
diffraction planes.
For the Symmetrie (<p = 0) Laue case b = +1, and for the Symmetrie Bragg case

b = -1. -p is a complex quantity because the structure factors FH an^ FH are
in general complex. In Eq. (2.5) C is the polarization factor and is given
by C = l for a-polarization (D perpendicular to the plane of incidence) and
C = cos26 for rc-polarization (D in the plane of incidence). In Eq. (2.6) T
= K2re/nV with the classical electron radius ra and V is the volume of
the unit cell.

In what follows we shall restrict our discussion to the Symmetrie Bragg
case. The ratio DH/D0 can be written in the polar form

i (v- f ( t )w ) )p (2.9)

where v and $H are defined by the relations:

1/2 exp(iv),
-4-
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Inctdent
Beam

Diffracted
Beam

Figure 1. Asymmetrically cut crystal
usually used in the monochromator to
generate a quasi-plane wave incident
x-ray beam.

and

1/2 /r \i/2
t l ̂  « l

=l U;
1/2

(2.11)

The reflectivity is given by

The field intensity inside the crystal is, from Eq. (2.4)

(2.12)

. l o )

0 , H = K„-K0 [fron,
and z is the depth of the point represented by the position vector

soTu'tlön! M the CryStal SUrfaCe' Eq" (2'13) rePresents « Standing wa^e
For a centrosymmetric crystal, if the origin is chosen at a center of

symmetry, and in the case of no absorption (i.e., /' . 0), \FH\ \Fj,\d
Pw = ~ßff=0, i.e. 4iH = 0 and the intensity is

Within the angular reglon of strong reflectivity v varies from n to 0 äs the
angle of incidence advances across the reflection, and

•5-



v = n for r\ > l ,

v = 0 for rT<-l. (2.15)

From Eq. (2.14), the condition for an antinode (i.e. the maximum intensity)
is:

v-2rtHT = ±7iii , n = 0,2,4 ..... (2.16)

For v = n the antinodes are at r H - [( l ± n}/2}dH and for v = 0 the antinodes
are at rw - ±(rc/2)dw. (r H is the component of r in the direction of H. That

is, HT-rw/dw;d„- 1/|H|.)
That is, at the high angle side, where v = 0 , an antinode coincides with

the origin. However, if the structure factor has a nonvanishing phase (ßw / 0),
which is in general true for noncentrosymmetric and absorbing crystals, the
condition for the antinode is

v + <|>w-2jiHT = 0 (for n = 0), (2.17)

V + <J> W

i.e., rw = — d w . (2.18)

For an absorbing crystal there is no region of total reflection, and the
phase v varies continuously and is no longer constant for |rj' l- l • However,
the asymptotic limits of v can be determined. It can be shown that

ßw + ß?7
lim...» v = n + - g-̂ , (2.I9Q)

and

ß« + ßw
lim..... v= "2 ", (2. 190)

These yield the limiting values of v+({)w:

ß w + ß w ß w - ß w.,„ v-H(( ) w = n^ — - — + — - — = n + ß„ , and (2.20a)

l i m n ^ _ „ v + (t)w = ß w . (2. 200)

The positions of the antinodes are therefore, from Eq. (2.16), (2.17) and
(2.18), at [(l ±rc)/2+ß„/2n]d„ and (±n/2-*- ßw /2n)dw for TI'-»«> and
r ) ' _ j _ c o r respectively. At r | ' -»-oo the positions of the antinodes coincide
with those of the diffraction planes [8].

-6-



Therefore, the detection of the position of the antinode with respect to
an origin in the unit cell (for example, a particular atom) enables one to
determine ßw. The position of the antinode can be detected easily by monitoring
a secondary process (e.g. f luorescence) which, in the dipole approximation,
is proportional to the field intensity on the fluorescing atom.

3.2. Phase measurements with dynamical diffraction

In this section we shall discuss the phases of crystal structure factors
with reference to two Systems, namely GaAs and LiNbO^. We shall write down
expl icit structure factors , which wi 1 1 be used to explain experimental results
presented in section 4.

3.2.1. GaAs(200)

In this section it will be demonstrated, based on the work in Ref. 8, that
the changes in the phase of the structure factors due to anomalous scattering
can be followed by the x-ray standing wave (XSW) technique. When the incident
x-ray energy is in the vicinity of the absorption edge of a constituent
element in the crystal, the dispersion parameters /' and /" in the atomic
form f actor / of the relevant type of atoms are strongly modified, which in
turn modif ies the structure factors [confer Eq. (1.4) and (1.5)]. While
performing an XSW experiment with a particular hkl reflection the structure
factors F(hkl} and F(hk~l} determine the electric field amplitude inside
the crystal, and their phases determine the periodic position of the antinodes
of the standing wave field in the crystal [Eq. (2.18)]. The periodic position
of the antinodes can be determined by detecting a secondary Signal, such äs,
photoelectron or f luorescence from any type of atoms in the crystal. We shall
discuss the experimental procedure and results in section 4.

Let us take the example of a GaAs crystal. The projection of the atomic
positions in the (011) plane is illustrated in Figure 2. In a reference
System where the Ga atoms in the unit cell are at positions (000) + fcc and
the As atoms at positions (1/4,1/4,1/4) + fcc, the complex structure factor
F H = FH + iF"H for a (111) and a (200) reflection become:

-/«); (2. 21 a)

-/;,). (2. 210)

The phase of a structure factor F H is defined by:

' (2.22)

The phases of the structure factors F(lll), /r(TTT), F (200) and F(200)
are thus given by



Im]-

Figure 2. Structure of GaAs

[OT|]

(2.23)

and

:(200)= tan -i (/Ca JAsJ

(/Ca + /Ca f As}

(2.24)

Before we discuss the dependence of the phase on / and / of the constituent
elements in the GaAs crystal and their role in determining the position of
the diffraction planes, let us discuss a simple case, namely, Ge with no
absorption.
The schematic structure of GaAs is shown in Figure 2. For a Ge crystal all

the Ga and As atoms would be replaced by Ge. Then from Eq. (2.23), we obtain

'(111)

Ce

/u + -f + -fT Ce J Ce ̂  7 Ce

With /Ce = 0 in the case of no absorption

(2.25)

n
= T —

4
(2.26)



This phase depends on the choice of origin. Here the origin has been chosen
to be on a Ge atom on the upper layer of the (111) Germanium bilayers (identical
to a Ga site äs shown in Fig. 2). If the origin were chosen to fae at the
midpoint of a Ge-Ge bond in a bilayer, one would obtain ß<ni) = 0. These
different choices of origin leading to dlfferent phase values of the structure
factors do not change the relative positions between the antinodal planes
and the atomic planes. For example in the first case, the position of an
antinode, from Eq. (2.11), (2.15) and (2.18), for TJ* = - l (i.e.v = 0) is at

r =--d,,, (2. 2.7}' (in) s ' v. £..£•' )

and with the second choice of origin at

r(111) = 0 . (2.28)

Both these positions in the respective coordinate Systems indicate a plane
halfway between the Ge-Ge bond in the bilayer.
The phase defined so far for Ge is purely of geometric origin. Now, let us

introduce the absorption parameter f'Ce. The modification thus introduced in
the structure factor Fmis shown schematically in Fig. 3. The phase of the
structure factor thus obtained is ß̂ 15. Near an absorption edge f'&a also will

change to /ce(2)(/c<>C2)</Ge) which in turn will change the structure factor
with the new phase ß*2). The phase changes from ßwto ßS/'or to ß$/2) are purely
due to the elastic scattering process and are not of geometric origin. These
phase changes will shift the positions of the antinodes with respect to the
atomic positions in the unit cell. The antinodal planes approach the diffraction
planes for -p'-»-». This means that there is an energy dependent shift of
the position of the diffraction planes even in centrosymmetric crystals.

For GaAs(200), one sees from Eq. (2.21b) that (200) is a "semiforbidden"
reflection äs differences of nearly equal quantities: /Ca~/^s./ca~/°s and
/ca~/^* make both F200 and Fzoo almost zero. These differences can be
drastically modified near the absorption edges of Ga and As leading to a
dramatic Variation in the phase value ß-(200). Fig. 4 shows the / and /
values of Ga and As near their absorption edges with the computed ß(2oo) [from
Eq. (2.24)]. These phase variations have been monitored in x-ray Standing
wave experiments, which will be discussed later.

3.2.2. LiMbOs(006) and (006)

The case of LiNbÜ3 is being presented äs our original work which has not
been published before. LiNb03 crystal has been chosen for the phase measurement
for the following reasons.
(a) At room temperature LiNbO? has no centre of symmetry (space group

R3c).



1KeV20eV 1KeV 20eV 1KeV

rifor an cbsorption e

whtre f£f changrs lo

and ffQ

0.0 -

8 9 10 10.367 11 11.867 13 U15
PHOTON ENERGY E; (KeV)

Figure 3. Phase Variation of
structure factors with changes in the
anomalous d i spers i on parameters i s
shown in the complex plane.

Figure 4. Variation of the anomalous
dispersion parameters f' and f" for
Ga and As atoms around their K
absorption edges. The Variation of
the phase ß(200) of the GaAs(200)
structure factor with energy is also
shown.

(b) The quality of crystal perfection is usually much worse (more
strain, higher dislocation density) than that of the so-called
perfect crystals - Si, Ge, GaAs, GaP etc.

Because of reasons (a) and (b) LiNbÜ3 represents a general case and has been
chosen for a demonstration of the structure factor phase measurement using
x-ray standing waves.
Other reasons for chosing LiNb03 are:
(c)

(d)

LiNb03 undergöes a "phase transition, ferroelectric (R3c) to
paraelectric (/?3c), at 1210°C with displacement of the Nb and Li
atoms. Thus i t off er s the possibility of studying the applicability
of x-ray standing waves to bulk phase transition problems.
LiNbÜ3 has tremendous practical applications, Ti-diffused LiNb03
being the most widely used material for ferroelectric
opticaf-waveguide device fabrication. Nevertheless, very little is
known about the Ti position in the LiNbOs lattice and how it
correlates with the optical properties. Fe-diffused LiNbOs bears
great potential äs optical storage medium. The location of these
impurities can be precisely determined by the x-ray standing wave
methods.

-10-



The structure of LiNbO? is known. The unit cell (space group R3c) can be
described in rhombohedral or hexagonal coordinates. Here we will use the
hexagonal coordinate System. The unit cell contains six LiNbQ3 molecular
units, i.e., six Nb, six Li and eighteen 0 atoms. The general coordinates
are:
(0,0.0; 1/3.2/3,2/3; 2/3,1/3,1/3)+ \ ,y ,z\y ,x-y ,z\ y , x , 1/2+ z\ , 1/2 + z; y - x ,y , 1/2+ z \

Choosing the origin at an Nb atom, we get

Nb: x = 0, y = 0. z = 0; (2.29)

Li: x = 0, y = 0, z = Z Li\ • y = y v = y ? = 7 •

\j . J. — j\ i y — *0' •*• ^ o •

where Z/- = 0.2829,

and X0 = 0.0492 ; X0 = 0.3446 ; Z0 = 0.0647. (2.30)

The structure factor F(hkl} is g iven äs [Eq. (1.4)]:

-M,) , (2.31)

where j runs over all the atoms in the unit cell.
The structure factors for the (006) and (006) ref lections can be written

äs

(2-32)

+ /l l)ß i[ + (/o + / o )^o - /L^ i l - - / ^^ W b - / ö^o> . (2-33)

where
ANb = 6, AU- 6cos( 12jiZ tj), B Li = 6s[n(12nZ u), A0= 1 8 cos ( 12jiZ0) and

The phase of F(006) and F(006) are given by

- + ' B + + ' B ±
l -(006)

(2.34)

-n-



In these expressions the Debye-Waller factor exp(-Mj) has been absorbed in
the definition of fj.

For an incident x-ray beam of energy Ev = 8.3 keV,

/^- 1.70 , /°, = 31.44 , /S-5.46;

/„ = -5.91 E- 05 , /Wb = -0.29 , /0 = 4.29E-02; (2.35)

/„-3.12E-04 , /;b = 2.35 , />3.02E-02.

These values were calculated using the formulas of Cromer and Liberman[9].
By multiplying these values with appropriate Debye-Waller factors[10]:
exp(-Mii) = 0.957, exp(-MW(1) = 0.977 and exp(-M0) - 0.980, and
using them in Eqs. (2.31), (2.32) and (2.33) one gets the computed structure
factor values:

18 exp(i0.0363).

F (006)= 127.12 exp(i0.5624), and (2.36)

F (006)= 115.74 exp(-i0.3621).

Use of the interpolated values of /°, /'and /" from the tabulated values
at given energies in the International Tables ot X-ray Crystallography leads
to 2 % and 4 % smaller values of phase for F(006) and f (006), respectively.
The computed phases of DH/D0 for (006) and (006) ref lections and the phase
of [T]±(r]2- l)1'2] äs a function of the real part of the reduced angular
Parameter r\e shown in Figure 5. The asymptotic values of the phases are
attained at | -n/ 1-200. However, it is seen from the figure that the phase
Variation beyond | -n. ' \ l is very slow - especially slow beyond \r\' |>3.

The field intensities at r = 0, i.e. at the Nb site, can be calculated
using Eq. (2.13). These are shown in Figure 6 for two different incident
x-ray energies - one above and the other below the Nb K edge. The field
intensity profile can be measured by detecting a process proportional to the
field intensity, e.g. fluorescence yield, from an atom at r = 0. Therefore
the phase of the structure factor of the corresponding reflection, used in
the experiment, can be measured.

This method can provide a set of phases (ßw> with respect to the origin
at the fluorescing atom. The value of ßw depends on the choice of origin.
If we refer to another origin, we simply add an extra phase with ßH. This
is obvious from Eq. (1.4). Substituting r = rn + a in Eq. (1.4) we obtain
F H = /7wexp(-2jttH- a), where FnH is the structure factor with respect to
the origin, which is at a with respect to the old origin. The effect of this
is to multiply DH/D0 [Equ. (2.5)] by the factor exp(-2iuH - a). Therefore

-12-
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Figure 5. Variation of the phase v + 4>w äs a function of TI' at £"Y = 8.3 keV.

(a) for (006); (b) the phase of r\± (n2- l)t/2, i.e. v and (c) for O06.(d)
(006) reflectivity.

the phase with respect to the new origin ß« = ßw - 2nH • a, The Charge density

calculated from the new set of phases {ßw>will be identical to that calculated
from the set {ßw>.

In an XSW experiment, if the inelastic Signals from more than one type of
atom are detected, Information about their relative positions can be obtained
directly. The (006) and (006) reflectivity andr in both cases, the field
intensities at the Nb site and the 0 site are shown in Figure 7. These shapes
of the field intensities can be simultaneously measured by measuring, say,
0 and Nb fluorescence yields simultaneously. The plots shown in Figure 7 are
for an incident x-ray energy of 8 keV.
Now we wi 11 discuss some advantages of making measurements at lower energies.

As we notice from figures 6 and 7, the angular width of the reflectivity
curve is smaller at higher energies compared to that at lower energies. Most
of the single crystals usually have a mosaic spread. If the mosaic spread in
angle is comparable to or larger than the theoretical width of the rocking
curve, dynamical effects will be washed out. In this Situation, using x-rays
of lower energy the natural rocking curve width can be increased so that
mosaic spread is now smaller than the reflectivity width. In this Situation
the crystal is expected to show dynamical behaviour.
A second problem is associated with the energy of the detected fluorescence

photon. We will compare the cases with £Y = 20 keV and £y = 8 keV. At 20 keV
we are above the Nb K-edge. In this Situation one can detect Nb L photons äs
well äs Nb K photons. However, the cross section for Nb L photoionization
and radiative transitions are much smaller compared to Nb K and leads to a

-13-
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Figure 6. a) Reflectivity and b) the
standing wave field intensity at the
Nb site at two different i neiden t
energies - below and above the Nb
K-edge. In (b) ( ) and ( ) are
the field intensities for 18 keV
x-rays for (006) and 006
reflections, respectively. (—) and
(—) are the corresponding results
for 20 keV.

Figure 7. Theoretical (a)
reflectivities and (b) the standing
wave field intensities at the Nb
and the 0 sites. ( ) and ( —)
are the field intensities at the Nb
site and (-+-) and ( ) are the
field intensities at the 0 site for
(006) and (006) reflections,
respectively.

very small yield of Nb L f luorescence. To increase the yield of Nb L f luorescence
one needs to perform an experiment with an incident energy above and near
the Nb L absorption edge. At 20 keV incident energy Nb K fluorescence yield
is very large. However, the high energy (EKa = 16.58 keV) of the fluorescence
photons leads to a strong extinction effect, which is a function of the angle
(a) between the sample surface and the detector. In figures 6 and 7 the field
intensities at different sites are shown. These are valid only for atoms in
the surface region. As the incident x-ray beam penetrates into the crystal
there is an exponential damping of the intensity which is taken care of by
the factor exp(-iizz) in Eq. (2.13) where z is the depth from the surface
into the crystal. u.2 has an angular dependence within the region of ref lection:

-14-



sin Öß
(2.37)

A secondary signal (e.g. fluorescence, photoelectron, Auger electron etc.)
generated in an atom at a depth z also suffers absorption in coming out of
the sample. Both the effects of the primary and secondary extinctions can be
accounted for in estimating the angular dependence of the secondary signal
yield by multiplying the unattenuated f ield intensity by a quantity z0/f given
by [8,17]:

r f f\ r • f -v T "~ l / *̂ * *"i n Xzeff = [ti2(6) + M-out/sm (a)] , (̂ .38)

where n,011I is the linear attenuation coefficient for the outgoing secondary
signal, and a is the angle between the secondary signal detector and the
sample surface.
For 20.0 keV incident photon and for (006) reflection (d = 2.31 A):

H0 = 225.71 cm" . m(Of f-Bragg) = ji0/sin BB, (2.39)

HZ(T]' = 0) = 10247 cm"1. (2.40)

When Nb ATa (Eout = 16.58 keV) is detected

Hout = 58.17 cm'1. (2.41)

In Figure 8 we see the effect of the Variation on o. Even for a value äs
small äs 1° the distortion of the fluorescence angular yield is very large.
This poses a problem for accurate phase determination because for a large a
the angular Variation of the Nb Ka yield for (006) and (006) reflections
may look very similar. This poses a problem when the orientation is not known.

At 8.0 keV incident photon energy

^0 = 428.85 cm"1 , n2(Ti' = 0) - l l 163 cm"1. (2.42)

If we detect Nb L fluorescence photons, £tal = 2.166 keV, ££a2 = 2.163 keV
and £ißi = 2.257 keV cannot be separated with a Si(Li) detector resolution.
The strengest lines are La, and IßJ) the energies of which are below all L
absorption edges (Elm = 2.371 keV, ELn = 2.464 keV, ELl = 2.71 keV). Thus
the absorption coefficient for the La and Lß energies should be very similar.
We use the absorption coefficients for Eout = 2.26 keV in the calculation.
At 2.26 keV

cm"1 . (2,43)

-15-



In this case the fluorescence yield angular Variation (Figure 9) is not äs
sensitive to aas it is when Nb Ka fluoresence photons are detected.
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Figure 8. Theoretical curves showing
the effect of extinction on the
detected NbKa fluorescence yield.
ct-dependence i s very strong. The top
curve is obtained without taking any
extinction into account.

Figure 9. Theoretical curves showing
the effect of extinction on the
detected Nb L fluorescence yield.
Dependence on the angle between the
sample surface and the Si(Li)
detector, a, is small. The top curve
corresponds to no-extinction effect.

4. Experimental Examples

In this section we will first describe how to carry out an XSW experiment
and how a Synchrotron radiation source is particularly helpful in carrying
out such experiments. Then we will give examples of the topics discussed in
section 3.

4.1. How to carry out an XSW experiment

A
are
(i)

(iv)

typical XSW experimental set-up is shown in Figure 10. The main components

An x-ray source, which can be a sealed x-ray tube, a rotating anöde
x-ray source or a Synchrotron radiation source.

) A monochromator, which can be a single or a multicrystal assembly.
i) A detector, usually a NaI scintillation detector or an ionization

chamber, for detecting the diffracted beam and measuring its intensity.
An energy dispersive Si(Li) detector to detect fluorescence photons
from different atomic species or an electron detector.



(v) A fine angle control device for rocking the sample crystal within a
small angular region. This is usually attained by using the small
expansion of a piezoelectric crystal upon application of a high voltage
( = 1000 V) and transforming the linear displacement into an angular
displacement through a mechanical device.

(vi) A multichannel analyzer to record the Si(Li) energy spectrum.

NoI

GQ As

Figure 10. A schematic view of the experimental set-up of the ROEMO experimental
Station at HASYLAB.

The items (i) to (vi) just gives a guideline about the requirements. There
are indeed many more possible configurations.
In Figure 10 the slits Sl, 52 and S3 are to restrict the beam over a certain

region. The position of the slit S4 in front of the Si(Li) detector selects
the angle a, mentioned in the previous section. The ionization chambers II
and 12 detect x-rays and measure their intensities. The asymmetrically-cut
crystal in the double crystal monochromator assembly collimates the beam
which is already monochromatized by the first crystal. The monochromatized
and collimated beam is a good approximation to the plane wave used in the
theory. The sample crystal (here GaAs) is first set to a Bragg angle to obtain
the diffracted beam in the NaI detector. Then the sample is rocked back and
forth with the piezo device to obtain the rocking (reflectivity) curve. This
requires simultaneous measurements of the ref lectivity and of the corresponding
inelastically scattered photon energy spectrum in the Si(Li) detector for a
particular angle. With this brief description about the experiments let us
discuss the results of experiments on a few Systems.

4.2.1. GaAs(200)

When there is no phase contribution from the structure factors (i.e. <^H = 0)
we notice from Eqs. (2.15) and (2.18) that at the angle of incidence
corresponding to r\' = l (i.e., v = n) the antinodes are halfway between the
diffraction planes. As the angle of incidence increases TJ' continuously goes
to zero and decreases further. The antinodes move inwards and finally when

-17-



TI ' < - l the antinodes coincide with the diffraction planes. That is, äs the
angle of incidence is increased a given atom in the crystal is exposed to
different field intensities. If the position of this atom coincides with the
Position of the diffraction plane, the intensity on that atom will be maximum
for the high angle edge (iy = - 1) of the reflectivity curve and minimum at
the low-angle edge (TI'=I). Thus the fluorescence Signal will peak on the
high-angle edge. As we have discussed in section 3, the diffraction plane
Position varies with the Variation of f and f". In that case the shape of
the fluorescence yield angular profile also changes.
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Figure 11. Reflectivity and Ga Ka
fluorescence yield Variation with the
angle of incidence at different
incident energies around the Ga and As
K-edges. The angular ränge for each
XSW scan was = 50 p,rad.

ANGLE ( e-0B )

Figure 11 shows the reflectivity and the Ga Ka yield for a GaAs(200)
reflection. From Figure 4 we notice that depending on the incident energy
the phase ß20o can vary approximately within the region from n to -n. Figure
11 shows four Ga Ka fluorescence yield profiles. For the measurement at E°Ka
+ 25 eVr ß2oo = 0.8jiCß2oo/2ji+1/2=0,9). This makes the antinodal planes
move from rH = 0.9 cLH to rH = 0.4 dH äs the angle of incidence advances
across the rocking curve, resulting in high Ga Ka fluorescence yield at the
low angle side. At an incident photon energy of 11.0 keV the antinodal plane
movements are from 0.8 dH to 0.3 äH ,that is, both at the low-angle side
and the high-angle side Ga atoms are approximately at the same distance from
the nearest antinodal planes. This gives rise to almost equal yields on both
low-angle and the high-angle sides. For F, = EAKS- l .Sei/, ß200 = 0 and the
antinodes coincide with the Ga atoms on the high-angle side giving rise to
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high Ga Ka fluorescence yield. Beyond this incident energy, all the anomalous
dispersion effect gradually diminlshes and the modulation in the fluorescence
yield becomes very weak. This i s evident from the measurement at F, = £"̂ s + 20el/.
This example nicely explains how the anomalous dispersion parameters
/CQ. fca> f AS an^ / ~AS nave äffected the diffraction plane position with
respect to atomic coordinates in a unit cell. Of course for a known structure
this mode of measurement can also be used to determine / and /"äs a function
of K. The tunability of the energy of the Synchrotron x-radiation makes these
measurements possible.

4.2.2. LiNbOs (006) and (O06)

The experiments that will be discussed in this section have been performed
at the ROEMO experimental Station of the Hamburg Synchrotron Radiation
Laboratory HASYLAB at DESY. The experimental set up was very similar to the
one shown in Figure 10. The first crystal in the monochromator was a Ge(220)
and the second was an asymmetrical ly cut Si(220) crystal. For an XSW experiment
one should preferably use a nondispersive set up, i.e., the monochromator
and the sample crystal in the ( + ,-) conf iguration and the dhki corresponding
to the monochromator reflection should be the same äs that for the reflection
from the sample crystal. This basically means using the same material for
the monochromator and the sample with the same (h/:/) reflection from both.
However, perfect enough LiNbOß crystals were not available for use äs a
monochromator. Our monochromator sample combination is slightly dispersive.
For Si, d22Q - 1-92 Ä and for LiNb03, dQQ6 = 2-31 A. Dispersion effects have
been taken into account in the analyses of the reflectivity, the fluorescence
yield and the electron yield profile.

The quality of available LiNb03 crystals is usually much worse than that
of good quality crystals like Si, Ge, GaAs etc. It is necessary to select a
reasonably good region of the sample by topographic methods. Prior to an XSW
experiment, topography [11] is routinely done even on good crystals like Si
and Ge in order to detect and avoid strained regions. Some topograms of LiNb03
are shown in Figure 12. In fact, topograms revealed dislocations, strain and
twinning in the LiNb03 single crystals. With the he l p of the topograms
reasonably perfect regions of the crystal were selected through the S3 slit
System (Figure 10) for the XSW experiment.

Figure 13 shows the structure[12-15] of LiNbOs [c = 13.8620 Ä, a = 5.1494
Ä] with the (006) planar spacing and the (006) diffraction planes. The
Position of the (006) diffraction planes varies sl ightly with incident energy
because of anomalous dispersion. This will be explained later with examples
at 18 and 20 keV (£%b = 18.99 keV) incident x-rays.
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Figure 12. Topograms of LiNb03 samples. (a) 1:1. Different parts of the
crystal reflecting at a slightly different angle of incidence. Four topograms
have been put together to show different reflecting parts of the crystal.
(b) 66x magnified.
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Figure 13. Structure of LiNbÜ3 showing the positions of the (006) diffraction
planes.

Figure 14 shows the (006) and the (006) ref lectivities and corresponding
Nb L fluorescence yields for an incident x-ray energy of 8.3 keV. For the
(006) case the ref lectivity is higher compared to (006) and the corresponding
normalized fluorescence yield is lower. This is what is expected äs shown in
the theoretical plots for several energies in Figures 6 and 7. At 8.3 keV
for Si(220) the Bragg angle is 22.90°. The asymmetry angle (p of the
asymmetrically cut Si(220) monochromator crystal was 20°. This gives b = -
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0.074. The width of the reflectivity curve for a symmetrically cut silicon
crystal for (220) reflection is 24.2 urad (5 arc sec.). Thus the divergence
of the incident beam on the sample was 6.4 urad (1,32 arc sec.)- For LiNbOß
(006) reflection, 6ß = 18.87° and the symmetrical reflection width is 24.7
prad. Therefore, there is a slight broadening of the reflectivity curve
because of dispersion and some smearing due to the finite argular width of
the incident beam on the sample.
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Figure 14. Reflectivity (+,A) and Nb L fluorescence yield (e ,•) Variation
with the angle of incidence. Solid and dashed lines are theoretical fits.

The field intensities at the 0 site for (006) and (006) reflections were
shown in Figure 7. The 0 position can be obtained by detecting 0 K a fluorescence.
For the low energy of the 0 Ka photons (525 eV) their absorption in air and
in the Be window of the Si(Li) detector is very strong. However, if the sample
is placed in a vacuum chamber and a windowless Si(Li) detector is used, 0 Ka
photon detection would be simple. From this experiment one would directly
get the relative positions of 0 atoms with respect to Nb atoms by analyzing
both 0 K« and Nb L Signals.

Figure 15 shows the results of a measurement where, instead of detecting
fluorescence photons, photoelectrons and Auger electrons have been detected.
A typical electron yield spectrum is shown in Figure 16. In this experiment
the sample was inside a gas flow proportional counter äs detector[16,17] in
which a flow of 90 % helium plus 10 % methane mixture was maintained.
Photoelectrons and Auger electrons emitted from the sample ionize the gas
resulting in a cascade which is collected at a 50 M-m thin gold-coated tungsten
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wire kept at a high voltage (= + 1000 V). The efficiency of the chosen gas
mixture is very high for ionization by keV electrons and very small (< l %)
for keV photons. The whole detector containing the sample was mounted on an
Eulerian cradle with a special stage for standing wave experiments. The
electron spectra were collected in a multichannel analyzer.
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Figure 15. Reflectivity (+) and the Nb L photoelectron yield (• ) Variation
with respect to the angle of incidence. Dashed and solid lines are theoretical
fit.

Around a photon energy of 8 keV, we roughly estimate from Refs. 18 and 19
the ratio of the photoionization cross sections to be o]_(Nb) : oft(Nb) : O'K(O)
: ox(Li) = 4.4xl03 : 7.3xl02 : 6.6x10 : 1. Therefore, in the spectrum of
Figure 16 the contribution from electrons originating from 0 and L i i s
negligible and the dominant photoelectron contribution is from Nb L shell
ionization. Also, in this case, after photoionization, the atomic deexcitation
occurs predominantly[20] by Auger electron emission. The spectrum thus shows
two main peaks. At 8.3 keV incident energy, Nb L photoelectrons have energies
of 5.93, 5.84 and 5.59 keV corresponding to transitions from LHJ, LH and
LT edges, Nb(LMM) Auger electrons in the ränge 2.1-2.3 keV and Nb M
photoelectrons around 8 keV. In Figure 15, the electron yield over a fixed
region of channel numbers at the Nb(L) photoelectron peak from the 32 electron
yield spectra has been plotted.
At this point let us compare the results obtained by the detection of HbKa

(Figure 17} and Nb L fluorescence photons in the light of crystal perfection.
When the high energy Nb K^ photons (16.58 keV) are detected, one is probing
a larger depth of the sample compared to when the low energy Nb L photons
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Figure 16. An electron energy spectrum
from a LiNbÜ3 sample detected by a gas
proportional counter detector in which
the sample is built-in.

CHANNEL NUMBER

(2.16-2.26 keV) are detected. zmf/ (TI' = O) is 0.736 pjn and 628 Ä for Nb Ka
and Nb L photons, respectively, for et = 1°. For the Nb L photons even at a
= 50° Zeff (TT =0)is 0.687 um. These values are obtained from Eq. (2.37)-(2.43).
From the detailed analysis one can determine the degree of disorder in the
sample. In the present case a larger degree of disorder for the measurement
with Nb L fluorescence indicated that more disorder was left in the surface
region from inadequate polishing of the sample.

5. CONCLUSIONS

In this article we have discussed that x-ray Standing waves are formed
inside large perfect crystals when a diffraction condition is satisfied. As
the angle of incidence advances across the rocking curve the antinodes of
the x-ray standing wave move inward and eventually get fixed at a particular
Position with respect to the atomic coordinates in the unit cell. This position
is identified to be the position of a diffraction plane. The antinodal planes
have the same periodicity äs the periodicity of the diffraction planes. When
the incident energy of the x-ray beam is just near an absorption edge, the
anomalous dispersion parameters /' and /" undergo strong changes compared to
their values when the incident pnoton energy i s far away from the edge. The
changes in /' and /" in turn change the phases of the structure factors. The
value of the structure factor phase decides the position of the diffraction
planes, which can be measured in x-ray standing wave experiments by detecting
and analyzing an inelastic Signal, such äs fluorescence, photoelectrons or
Auger electrons generated at a particular type of atoms in the crystal while
the crystal is diffracting. Under a diffraction condition most of the photons
undergo elastic scattering. However, a small fraction of photons always
undergoes inelastic interaction, which is sufficient for the measurements to
determine the phase of the structure factors.
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Figure 17. Reflectivity (+) and NbKa fluorescence yield (a) for £\ 20.0
keV. Solid and dashed lines are theoretical fit. The results are for the
(006) reflection.

With the semiforbidden GaAs(200) reflection, phase Variation over a wide
region near the absorption edges have been demonstrated. A noncentrosymmetric
crystal LiNb03 containing a large number of defects, dislocations and strain
with a reasonably large um't cell (30 atoms) have been used to demonstrate
the generality of the x-ray Standing wave method for phase determination.
Again, the effect of anomalous scattering on the reflectivity and the angular
yield profile of the inelastic Signals have been explained in terms of the
phase of the structure factor.

It is known that congruent LiNbÜ3 crystals have antisite defects - about
6 % Nb atoms at the Li site. A quantitative estimate of the antisite defects
can be obtained from the measured phase of the Standing wave f ield. For LiNb03
6 % Nb atoms at the Li site introduces a 1.7 % shift in the Standing wave
phase, which is easily detected.
LiNbÜ3 also offers a very interesting Situation. When the c-axis is parallel

to the surface, this crystal exhibits a rotation of x-ray polarization [21],
Therefore the Standing wave field will be determined by a mixed polarization
state, even when the incident beam is 100 % a or n polarized. The absorption
of x-rays also depends on the relative angle between the c-axis and the
polarization direction of the incident beam. The anisotropies are quite strong
around the Nb K edge. Recently, in hematite (a-Fe2Ü3) crystals (space group
(/?3c) a fiftyfold enhancement in the diffracted signal for a forbidden
reflection was observed at an incident x-ray energy of 10 eV below the iron
K edge. Hematite also exhibited a rotation of polarization [22]. X-ray standing
wave studies in these cases would be interesting. Some Systems like hematite



would offer the possibility of studying the magnetic effect simultaneously.
A measurement of the magnetic effect excited by a Standing wave field has
already been reported [23].
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