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Abstract

The proton structure function F5(z,Q?) has been measured in neutral current deep
inelastic scattering of 27.5 GeV electrons and 820 GeV protons at the HERA collider
using the ZEUS detector. The data sample, collected in 1994, corresponds to an inte-
grated luminosity of 2.4 pb~!. By using a new kinematic reconstruction method, events
with a shifted interaction point and events with collinear photon radiation in the ini-
tial state, the accessible kinematic region is extended down to Q? as low as 1.5 GeV?
and to low y providing an overlap with measurements from fixed target experiments.
The kinematic region covered by these measurements is 1.3 < Q% < 15000 GeV? and
2.8-107° < z < 0.08. The strong rise of F, with decreasing z persists to the lowest Q2
and becomes more pronounced as Q2 increases.

The data are shown to exhibit double logarithmic scaling in z and Q2. The signif-
icance of this observation for unitarity bounds is discussed. The data are also shown
to exhibit double asymptotic scaling. Based on this the strong coupling is determined
to a,(M?2) = 0.115 £ 0.002(ezp.) £ 0.006(sys.) = 0.009(theor.) in next to leading order.
Using the next to leading order Altarelli-Parisi evolution a QCD analysis of the F> data
is performed. The Q? evolution of F; is found to be consistent with perturbative QCD
over the entire kinematic region. The gluon momentum distribution of the proton is
extracted and found to rise strongly at small z.
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Chapter 1

Introduction.

“What is matter made of ? " is simultaneously a simple and very fundamental ques-
tion. Several generations of scientists tackled this question and managed to give partial
answers revealing some of nature’s secrets. The general idea is to understand the char-
acteristics of matter from its building blocks and the interactions between them. The
current understanding of these is comprised in the Standard Model of elementary particle
physics reflecting the beauty of their underlying symmetries.

Deep inelastic lepton nucleon scattering (DIS) experiments have played a crucial role
in the understanding of hadronic matter. They have disclosed the structure of hadrons
being made out of constituents and the interaction between the latter. HERA now offers
the possibility to study the structure of the proton with a resolution of 10~'® m, about
three orders of magnitude smaller than the proton itself.

This thesis presents an independent measurement of the proton structure function F;,
using the HERA data collected with the ZEUS detector in 1994. Three complementary
analyses have been performed on a data set corresponding to an integrated luminosity
of 2.4 pb~!. They are based on events with a shifted interaction point (‘SVTX anal-
ysis’), events with collinear photon radiation in the initial state (‘ISR analysis’) and a
conventional analysis (‘NVTX analysis’).

The thesis is organised as follows:

e The second chapter gives an overview of the theory of deep inelastic scattering.
The concept of structure functions is introduced and related to the experimentally
measurable cross sections. Theoretical predictions for the evolution of the structure

functions are discussed.
e In the third chapter the HERA collider and the ZEUS experiment are described.

o Chapter four introduces the Monte Carlo simulation of the ¢p scattering process

and of the detector performance.

o The selection and reconstruction of the analysed events is described in chapter five,
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Particular emphasize is put on electron energy corrections which are necessary to

compensate the electron energy loss in inactive material in front of the calorimeter.

o Chapter six gives an overview of conventional reconstruction methods of event
kinematics. A new method, which incorporates their advantages and gives a good

resolution in the entire kinematic region, is introduced.

e The F, extraction from the measured events using several unfolding techniques is
discussed in chapter seven. Details on the investigations of systematic uncertainties

for the three analyses are given.

o The final F; results are presented in chapter eight. They are compared to other

F, data as well as to parametrisations obtained from global QCD analyses.

o In chapter nine the present F; data are analysed in the context of phenomenological
models. Also the determination of the strong coupling constant a, is carried out

in a model dependent way.

o In chapter ten a QCD analysis of the present F; data and NMC data is performed,
based on the Altarelli-Parisi evolution equations. The gluon momentum distribu-

tion in the proton is determined and its uncertainty estimated.

e A conclusion is given in chapter eleven.

Chapter 2

Deep-Inelastic Scattering.

2.1 A Short Historical Review.

The idea of investigating the structure of matter by scattering pointlike projectiles
ofl a target and measuring the distributions of quantities such as scattering angles or
energies goes back to Rutherford [1]. This famous experiment, in which a-particles were
scattered off a gold foil, showed that the mass of an atom is concentrated in a ‘nucleus’
much smaller than the atom.

However, when using spin-} particles, such as electrons, the scattering cross section
receives corrections to the Rutherford formula, which were calculated by Mott [2].

Electron scattering has been extensively used to investigate the structure of matter.
Already in 1913 Franck and Hertz [3] scattered electrons on various gases showing that
atoms have discrete energy levels.

In 1950, Rosenbluth calculated the cross section for elastic electron proton scattering,
assuming the proton to have spin % and allowing for an extended structure [4].

In 1953, Hofstadter et al. observed elastic electron proton (ep) scattering at the Mark
IIT line at Stanford 5] with electron energies up to 188 MeV. The results showed the ex-
citation of higher energy states in the nuclei, the resonances, and allowed a measurement
of the proton form factors for its electric charge and magnetic moment distribution. As
evidence for a distributed structure the proton form factor was found to drop sharply
with increasing momentum transfer, compared to that of a point charge, with a proton
radius estimated to be (0.740.2)107'® cm. The success of these early scattering exper-
iments led to the proposal for a two mile long linear accelerator, the Stanford Linear
Accelerator Center (SLAC).

In 1961, Gell-Mann and Ne'eman independently proposed the ‘Eightfold Way" [6],
a classification scheme to group the observed baryons and mesons with the same spin
according to their charge and strangeness, using SU(3) symmetry. As the classification
scheme had a missing entry for the spin % baryons, they predicted a particle with

charge -1 and strangeness -3. The discovery of this particle, the 27, in 1964 led to a
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wide acceptance of the Eightfold Way.

Also in 1964, Gell-Mann and Zweig independently proposed hadrons to be composed
of elementary constituents, called ‘quarks’ (7], providing a deeper understanding of the
Eightfold Way. The quarks, coming in three flavours up (u), down (d) and strange (s)
and carrying spin %, were assigned fractional charge: the u has +§ -e, the d and s have
—1 - ¢, where € is the charge of the proton. In the quark model, which was found to
reproduce the multiplet structure of all observed hadrons, each baryon consists of three
quarks, later called ‘valence quarks’, while mesons are composed of quark-antiquark
pairs.

However, in order to make the baryons’ wave function consistent with the Pauli
Exclusion principle, stating that no two identical fermions can occupy the same state, a
new quantum number, called colour, was introduced [8]. Quarks were assumed to come
in three colours (red, green and blue) where only quark combinations forming colourless!
particles can occur in nature. Despite this attempt to explain the ‘confinement’ of
quarks in hadrons and hence the failure to observe free quarks directly, quite a number
of physicists were rather sceptical about the reality of quarks, including even one of
their inventors?.

In August 1967, a long series of experiments on deep-inelastic (i.e. large energy
loss of the lepton) ep scattering experiments started at the Stanford Linear Accelerator
center (SLAC) [9].

The most famous result was that the deep-inelastic Structure Function, which can
be interpreted as the momentum distribution of the proton constituents, showed little
dependence on the momentum transfer, but depended only on the fractional proton
momentum carried by the struck constituent. This surprising feature, called ‘scale
invariance’ or simply scaling, is expected for scattering from a point-like object and was
found following a suggestion by Bjorken. In 1968, he had predicted the scaling of the

proton structure function in the deep-inelastic scattering region. However, he expected

it at high Q2 so when it was found at relatively low Q? it was called ‘precocious™

scaling. Confronted with the early SLAC data in 1968, Feynman explained the results
by applying his parton model [10]. This model assumes that the proton is composed
of free point-like partons, and that the electrons scatter from the partons incoherently.
In an application of the parton model, Bjorken and Paschos identified the partons with
the spin-3 quarks in 1969 [11]. The neutral gluons, the field quanta responsible for the
binding of the quarks, were added to the parton model in 1971 [12].

The identification of partons as quarks and gluons opened the door to the develop-

ment of a comprehensive field theory of quarks and gluons and their strong interactions,

'Quark combinations, i.e. particles. are colourless if the total amount of cach colonr cancels to zero

(red + anti-red. ...) or if all three colours are present to equal amounts (red + green + blue = white).
2“Such particles [auarks] presumably are not real but we may use them in our field theory anyway”

(Gell-Mann, 1964).

2.2 The DIS Variables

called Quantum Chromodynamics (QCD). QCD in conjunction with electroweak theory
constitutes the Standard Model of elementary particle physics.

A more detailed discussion of the history of deep-inelastic scattering and its results
can be found in [9, 13].

The first deep-inelastic ep scattering results from SLAC were followed by several
fixed target experiments at CERN and FNAL, using muon and neutrino beams of higher
energies. Up to the late 1980’s, the proton and neutron structure functions have been
measured with increased precision and in an extended kinematic region.

The World’s first ep collider HERA? follows this long tradition of deep-inelastic
scattering expérimenls. and, as the centre of mass energy at HERA is more than one
order of magnitude higher than at the fixed target experiments, it opens a new kinematic
regime. In contrast to many fixed target experiments the hadronic final state at the
HERA experiments is also the subject of detailed studies. Therefore HERA yields
qualitatively and quantitatively new insights into the structure of matter and allows
tests of the underlying theory in unprecedented detail.

2.2 The DIS Variables

The scattering of high energetic electrons off protons generally results in an inelastic
reaction, i.e. the proton disintegrates, and a large number of particles with a very
high total invariant mass can be produced in the final state. This process is called
‘deep-inelastic scattering’ (DIS).

There are two fundamental classes of DIS events (figure 2.1)
ey ety P x 2.1)

where X represents the spray of particles produced by the break-up of the proton

12°(Q* = -¢) WHQ" = —")

} X' } ()

Figure 2.1: Feynman diagrams of neutral current (left) and charged current (right) DIS.

*HERA = ‘Hadron-Elektron Ring Anlage'.



Deep-Inelastic Scattering.

(the ‘hadronic final state’). The 4-momenta of the incoming and scattered lepton are
k = (E,k),k' = (E',X) and those of the proton and the photon are p = (E,, p) and
g =(Ey,q).

In the first process the charge of the lepton is conserved, the intermediate vector
boson is neutral. This process is referred to as neutral current (NC) DIS. In the second
process the lepton converts to an (anti-) neutrino via the exchange of a charged vector
boson. Therefore this process is called charged current (CC) DIS.

At a given centre of mass energy /s the kinematics of inclusive DIS scattering are

completely described by two of the following three Lorentz-invariant quantities.

Q= = (k- kY ()
2

@ = 2’?_‘/ (2.3)

by s

Q? is the negative square of the momentum transfer and specifies the virtuality of the
exchanged boson. If Q% > 0 the exchanged boson can have longitudinal as well as
transverse polarisation, while Q% = 0 photons are only transversely polarised. If M is

the proton mass and Q? 3> (2Mz)? then the wavelength of the virtual photon is
h he _ 2Mz
lal ~ VAT+QT T Q?

where v = & is the photon energy in the proton rest frame.

(2.5)

Thus, for a given z, the wavelength of the photon is inversely proportional to Q?,
implying that with increasing Q? the virtual photon probes smaller distances.

z is the Bjorken scaling variable. In the parton model x can be interpreted as the
proton momentum fraction carried by the struck quark (see section 2.4).

In the proton rest frame y corresponds to the fractional energy transfer from the
lepton to the proton, y = Ljfl =¥

Ignoring the particle masses the three quantities are related via

Q* = s-z-y (2.6)

where s = (k 4+ P)? is the square of the centre of mass energy.
The square of the invariant mass W? of the hadronic final state X is related to z
and Q? by the momentum conservation at the hadronic vertex:
; ) ; 1
W= (PP = (Pt =Qh (3-1) 48 (2.7)

Throughout the rest of this thesis, the natural system of units is used, where h =

e=1.

2.3 DIS Cross Section and Structure Functions.

2.3 DIS Cross Section and Structure Functions.

As the masses of the W#- and the Z°-boson are large, 80.2 GeV and 91.2 GeV respec-
tively [162] their exchange is suppressed with respect to the photon exchange by a factor
(—5!:?"12? and the v — Z interference is suppressed by a factor (?;%7;—) Figure 2.2
shows the comparison of the NC and the CC cross section as measured by ZEUS [14],
clearly demonstrating this propagator effect at Q% < 2000 GeV2. At large Q? 2 M7, 4
the neutral current and the charged current cross section are found to be of comparable
size which is a direct result of electroweak unification. However, in most of the kine-
matic region considered in the present analyses, the single-photon exchange dominates

by far. In the following only NC reactions are considered.

-
o
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0 o'p NC (93+94)
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Figure 2.2: Measurement of the NC- and C'C-cross section by ZEUS.

In the single boson exchange approximation the cross section for deep inelastic ep

scattering can be factorised into a leptonic tensor L,, and a hadronic tensor I¥#¥
do ~ L,, W+ (2.8)

The leptonic tensor, which is symmetric in g and v, can be calculated exactly using
Quantum Electrodynamics (QED).
2
b U U (I -

Loye =22 [k‘,ky + ki kb, + (7) g,y] (2.9)
where the electron mass has been neglected and g,,, is the metric tensor. The ignorance
of the structure of the proton and hence the details of the interaction at the hadronic
vertex are parametrised in the hadronic tensor W#¥. The most general form of the tensor

Wv | taking Lorentz-invariance and the symmetry of L”Y in v and p into account is
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(13]
WE = Wl %p“p“ + i€ ppgs W3+ %q”q” + %(p“q” +4"p")
(2.10)
Imposing the conservation of the four-vector current yields
Wy = -% Wy and W,= (”q—;")2 Wa + l:; W (2.11)

The three remaining functions W), W, and W3 depend on two independent Lorentz-
invariant scalar variables, here chosen to be v and Q?. The dynamics of the strong
interaction are contained in the v and Q? dependence of the ;. Nowadays the slightly

different notation

Fi(z,Q) = M- -W(»n,Q?
F(z,Q%) = v-W(r,Q?) (2.12)
and F3(2,Q%) = v -Ws(v,Q?)

is used. The F; are called proton structure functions. As F3(z,Q?) describes the parity
violation contribution this structure function is small in the medium and low Q? range.
It only becomes relevant in the region Q% ~ M3.

The deep-inelastic ep — eX scattering cross section can now be written as

2,NC( % 4 2 2 2
S - 1163’—4[% 2F(2.Q%) + (1-9) Fz(z,Q’my—%)zFa(z.o’)]

(2.13)

or with the definition of Fj, = F; — 2z F\

2. NC( ‘ 2
%!52_” s 2:54 [Ve Pa(2.Q}) - FLF Y- 2F5(2,QY)]  (214)

where Yo = 1+(1-y)?

Within the single-photon exchange approximation, one may view inelastic electron scat-
tering as photoproduction by ‘virtual’ photons. As the effective photon mass ¢? is vari-
" able the exchanged photon may have longitudinal as well as transverse polarisation.
According to [140] the ep cross section can then be written as a photon flux and the
cross section ;.7 for virtual photon proton scattering, provided the lifetime of the pho-
ton is longer than its interaction time with the proton (see appendix 12). The total cross
section is the sum of the absorption cross section of transverse, o, and longitudinal,

o, virtual photons, a;‘o'," = o + or. These are related to the structure function as

N 215
Fl = i a @y (Z.l‘))
A g i i
bl = e O O (2.16)

2.4 The Naive Quark Parton Model.

The additional function
2

Q
Fr o= . B aF et % i
L 2—2zF e oL (2.17)
is only related to the absorption cross section of longitudinal photons. It is therefore

called Longitudinal Structure Function F,.

2.4 The Naive Quark Parton Model.

There are various approaches to understanding the experimental results on the structure
functions and the underlying structure of the proton. According to Feynman's parton
model [10], the proton is composed of free point-like constituents, called partons. In this
model the deep-inelastic ep scattering cross section is the incoherent sum of quasi-elastic
electron parton scattering.

Already in 1968, Bjorken predicted that the structure functions would depend only
on one dimensionless variable in the high energy limit Q? — oo,v = o0, but w = 3%41
finite (‘Bjorken limit’).

ey Prenimt g
Bjorken limit
R@) T Fe)

a behaviour known as ‘scale invariance’ or scaling.

As shown before (equation 2.3) the resolving power of the exchanged photon in-
creases with Q2. Assuming that the proton consists of point-like constituents, makes
scaling plausible since an increasing resolution does not improve the view of a point!

In the proton’s infinite momentum frame all transverse momenta are negligible and
the Bjorken scaling variable z receives a simple interpretation. z corresponds to the
fractional longitudinal proton momentum £ carried by the struck parton. Neglecting

the parton and proton mass, 4-momentum conservation implies for this fractionz

0~ m? Er+9)?=€p"-Q* +2p-¢
2
> Q =2
2p-q
In this frame, relativistic time dilation slows down the interaction rate of the partons,

> £ =

which can then be considered as non-interacting free particles.

The experimental results from SLAC showed the scaling behaviour very clearly (fig-
ure 2.3), F, (or alternatively vW;) does not exhibit any Q2 dependence.

In the parton model the structure function F; corresponds to the sum of the partons

momentum distribution z - f;(x) weighted with the square of their electric charge ¢;

Fyz) = 3 el filz) (2.18)

and Fy(x) 2%}'2(.:-) (2.19)
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Figure 2.3: vW; (corresponding to F;) as a function of Q* for w
at SLAC. The scaling behaviour is evident.

"; = 4, as measured

where the latter is known as the Callan-Gross relation [16]. A comparison to equa-
tion 2.17 shows that this relation implies that the cross section for longitudinally po-
larised photons vanishes, as would be the case for scattering ofspin-% partons (illustrated

in figure 2.4). In the Breit frame, where the virtual photon transfers only momentum

e
L

o] 4

Figure 2.4: Left: Coupling of a spin-% parton to a photon in the Breit frame. Right:
Ratio of E;-? from SLAC, showing that the proton constituents have spin-%.

but no energy, the struck quark has 3-momentum zq and —zq before and after the
collision with the photon respectively. Since the electromagnetic interaction is helicity
conserving, spin-} particles can only couple to photons of helicity %1, i.e. transversely
polarised photons, while spin-0 particles only couple to photons of helicity 0 [15].
Since the SLAC results (figure 2.4, plot taken from [17]) confirmed the C'allan-
Gross relation Feynman's partons were identified with Gell-Mann’s quark and the model
was called the Quark-Parton Model (QPM). The fractional charge of the partons was

confirmed using neutrino-nucleon scattering’ and the postulated number of 3 valence

*The ratio } ].[F;"(_r) + Ff"(a))da/ % f[F,'"(J-) + F3"(x))dx = 2/(Q%4Q%) were found to be 3.6+0.3

2.5 Outline of QCD. 11

quarks (uud/ddu) in the proton /neutron was experimentally confirmed using the Gross-
Llewellyn-Smith sum rule® [18].
If the proton consisted only of charged quarks, their momentum would be expected

to add up to the proton momentum
1
/o 2 Y filz) =1

However, experimentally a value of =~ 0.5 was found [19], implying that about half of
the proton’s momentum is carried by neutral partons. Direct evidence for the existence
of these partons, called gluons, was provided in 1979 at DESY via the observation of

three-jet events in e*e™ annihilation (20].

2.5 Outline of QCD.

In the 1970’s Quantum Chromodynamics (QCD) was developed as the field theory
governing the strong interactions between quarks and gluons and therefore between
hadrons in general. QCD is a non-abelian gauge theory based on the SU(3) symmetry
group. Each quark (see table 2.1) has three possible ‘charges’ (colours red (r), green
(g) and blue (b)) and the strong interaction can be mediated via the exchange of 8

different coloured gauge particles, called gluons, which transmit the colour force®. As

charge Quark (mass)

+

win

u (~4MeV) | c(~1.5GeV) [t (~175GeV)

d (~7MeV) | s (~ 135 MeV) | b (~ 5 GeV)

Wi

Table 2.1: The properties of the siz quarks.

a consequence of the non-abelian structure of QCD the gluons also carry colour charge
themselves and can therefore couple to each other. This self coupling of the gauge
bosons in QCD is the main difference to QED. In the latter the coupling constant a
increases slightly with Q2 while in QCD the strong coupling constant ay is large at small
Q? (large distances) and decreases at high Q? (small distances). The scale dependence

of a, is given by the renormalisation group equation and the QCD 3-function

Spi ay- 3(ay) = g LTI I T

£ dp 2 T A T s T wrER

[18] as compared to the quark model prediction % =36
“The Gross-Llewellyn-Smith sum rile f;: J‘f %(F;’" + F{") = f“' da (u, +d,) counts the number of
valence quarks in the nucleon. Experimentally a value of 3.2 + 0.6 was obtained in [18].

“The ghions always carry a combination of colonr and anti-colour such as rg. rb cte.
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with Bo=11- =Ny; ﬂ,:SI—?N/; By = 2857 — 9 N/+ﬁN,

3
where Ny is the number of (active) quark flavours with mass less than the energy scale

He
A solution of equation 2.20, in first order expansion, is

2y 127 Q¢
skt = (33-2N,)|nK§;’; gl
The QCD scale parameter Agcp represents the energy scale at which the strong cou-
pling constant becomes large. At a large energy scale Q?, a, vanishes logarithmically.
This behaviour of a, is known as ‘asymptotic freedom’ and allows the application of
perturbation theory to calculate scattering amplitudes.

Higher order solutions of a, and their treatment at quark mass thresholds are dis-
cussed in section 10.2.5.

The naive Quark-Parton Model has to be modified in QCD as quarks interact
through gluons, and can radiate gluons. Radiated gluons in turn can split into quark-
antiquark pairs (sea quarks) or gluons (figure 2.7).

In the infinite momentum frame of the QPM, this gluon radiation results in a trans-
verse momentum component of the quarks. Consequently quarks can also couple to lon-
gitudinally polarised photons and the Callan-Gross relation is no longer satisfied exactly.
The longitudinal structure function Fy, is not zero but lies in the range 0 < F < Fy.
Due to its origin, Fy, is largely dependent on the gluon distribution in the proton and is
therefore considered to be a good measure of the latter. Unfortunately the measurement

of Fr, is experimentally difficult, particularly at HERA.

proton proton substructure

increasing resolving power Q2

Figure 2.5: Schematic diagram of the scaling violations: The quark momentum densities
depend of the resolution Q* as processes such as gluon radiation or quark-antiquark
splitting can be resolved with increasing Q*. Two ezamples. the QCD Complon process

and the Boson Gluon Fusion process, are shown on the right hand side.

2.6 Factorisation. 13

Another, more important, consequence of the gluon radiation are scaling violations
of the structure functions, which now exhibit a logarithmic dependence on Q? at fixed
z. This is interpreted as follows: At low Q? the resolution of the exchanged photon is
rather broad, so that only just the quark substructure of the proton is ‘seen’ (figure 2.5).
At high Q?, however, a finer resolution is achieved and quark-antiquark pairs originating
from radiated gluons can be resolved. This means that the history of a quark before
it interacts with the photon becomes important. It could radiate a gluon and thus,
although the quark which is struck has momentum fraction z, the quark originally had
a larger momentum fraction y > z (the process know as the QCD Compton process).
Alternatively it may be that a gluon with momentum fraction y produced a ¢g pair
and one of these became the struck quark of momentum fraction z (the process known
as Boson Gluon Fusion). Therefore the quark and gluon distributions f(y,Q?) for all
momentum fractions y such that z < y < 1 contribute to the considered process. At
large z, where valence quarks dominate, the quark density and hence F, falls with Q2
as a result of the gluon radiation, while at small z the amount of ¢g pairs and gluons
in the partonic ‘sea’ increases, so that F rises with Q2. These scaling violations in
conjunction with a strong rise of F; at small z for fixed Q2 have been found by both
HERA experiments, ZEUS and H1 [108, 114].

It is this effect which allows studies of QCD in DIS since the parton being probed
may not be an ‘original’ constituent, but arise from the strong interactions within the

proton.

2.6 Factorisation.

In the QCD improved parton model a hadron scattering process is the result of an
interaction between the quarks and gluons (hadron-hadron scattering) or the leptons
and the quarks (DIS). The incoming hadrons can be viewed as providing ‘broad band’
beams of partons which carry varying fractions of the momenta of the parent hadrons.

The cross section for a hard scattering process initiated by two hadrons of 4-momenta

P, and P, can be written as
(P P) = ¥ [dadas filan ) fi(enn®) oislan s it @Y (221)
iJ

as illustrated in figure 2.6. The momenta of the partons which participate in the in-
teraction are zyP; and z,P, where the characteristic scale of the hard scattering is
Q% (1,22, 4%, Q%) is the short distance cross section for the hard scattering of
partons of type i and j. Since the coupling is small at high energy, this cross section
can be calculated in perturbation theory. It involves only high momentum transfers
and is insensitive to low momentum scales. [t is a purely short distance construct and

independent of the type of the incoming hadrons.
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Figure 2.6: The parton model description of a hard scattering process.

The functions f;(z, 4?) describe the distribution of longitudinal momentum fraction
z and parton type i at an energy scale u?. They depend on the type of hadron, but not
on the particular scattering process considered. Thus they are a ‘universal’ description
of the partons and their soft, long range interactions.

The separation of the scattering process in short and long range physics is called
factorisation and set by the factorisation scale p}.

In perturbative QCD the calculation of self energy diagrams such as a gluon splitting
into a quark antiquark pair and the recombining into a gluon yields divergent integrals.
These are dealt with by introducing a cut-off parameter u% such that only momenta
less than up are integrated over. The divergence is absorbed into the definition of the
long range parton distribution functions. The energy scale u%, defining the separation
between the finite and the divergent contributions in the renormalisation procedure
is called the renormalisation scale. In fact, in equation 2.21 the renormalisation and
factorisation scales are set equal. The common practice is to choose Q? as the relevant
scale for both and this is adopted in chapter 10.

In addition to this scale one also has the freedom to choose a renormalisation
scheme, defining how the divergences are absorbed. The most convenient scheme in
deep-inelastic scattering is the DIS scheme as the definition of the parton distribution

functions results in the relation
F@.QY) = Y e [24(2,Q%) +27(z,Q%)
i

to all orders. However, for theoretical calculations a more attractive scheme is the IS

scheme’, which is also used for the studies described in chapter 10. The parton densities

M35 = ‘minimal subtraction scheme’

2
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can be transformed from one scheme into the other via

1
97" (2, Q)

e/
2NI

[1 £ a,(Q”)C’{‘m] 29" + (@) T C{ P o g™
!

(@3 & ™ (2.22)

[1+ @)™ & 5+

gDIS(z‘ Q?)

where C,l" are coefficient functions and ® represents the convolution integral in z.

2.7 The DGLAP Evolution.

The evolution of the quark (gi(z)) and gluon distributions (g(z)) with Q? is quantita-
tively described in perturbative QCD by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
equation (160, 161]

SO _ 240 4y, () i )

d 5 2 o 2 14
N e )

where the splitting function P;(z) represents the probability of a parton j emitting a

parton i with momentum fraction z of the parent parton, when the scale changes from
Q? to Q% + dInQ?. These splitting functions, calculated to first order, are illustrated
in figure 2.7 and

i) :i;llt..2

Pul) = 3 [2+0-27]

Pute) = 41209

Pl = 6|4 b0

In the context of perturbative QCD two types of terms can become large and hence
important in the perturbation series in InQ? and in In L.

The DGLAP equations are formally derived in the leading logarithm approximation
(LLA) where terms of the form a? - (In Q?)", which give the dominant contribution at
large Q? and large z, are summed to all orders. In a field theory with asymptotic free-
dom such an approximation proves to be asymptotically exact. The amplitude for the
inelastic ep scattering process can be obtained as the sum of ladder diagrams of consec-
utive gluon emissions (figure 2.8). The finally struck quark evolves from the incoming
proton via this gluon emission thus losing, gradually, its longitudinal momentum. If,
the rungs of the gluon ladder are labelled 1 to n from the proton to the photon, the

fraction of longitudinal momentum z; carried by the rungs are ordered

Ty D> ® D s >ty
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Figure 2.7: The splitting functions P;; (f) that ezpress the probability of finding a
parton i inside parton j with a fraction f of the parent momentum. The two diagrams

on the left show the gluon radiation, the diagrams on the right gluon splitting.

while the transverse momenta of the emitted gluons increase strongly as going up the
ladder

Ko<k <.k <@

The solutions of the DGLAP equations give the parton distributions as a function of
z at any scale Q2, provided their z dependence at an input scale Q3 is known. The
latter can at present not be calculated but has to be determined experimentally. This
procedure is described in more detail and applied in chapter 10.

At small z logarithms ofi entering the cross section become important. In the mod-
erate z region, where a,(Q%) InQ? < 1 and 0,(Q*) In £ < 1, but 0,(Q*) InQ*In L ~ 1,
the so-called Double Leading Logarithm Approximation (DLLA) is used. In this ap-
proach leading terms in lni are summed when they are accompanied by leading In Q?,

resulting in a small z behaviour of the gluon density as follows [150]

zg(z, Q%) ~ ezpy[In [ln g—;] +In -:t-

where Qo is the starting scale. Given a long enough evolution length from Q3 to Q2,
this will generate a steeply rising gluon distribution at small z, even starting from a flat
gluon input at Q2. This rise is then faster than any power of In i, but slower than any
power of z. However, over a limited z,Q? range, as is the case at HERA, it may mimic

a power behaviour, zg(z,Q?) =~ z~*, where

_ [12In(t/to) S0
’\‘V_Ta'nln(l/z)' '_I"<A2)

In terms of the gluon ladders the DLLA approach takes all contributions into account

where strong ordering in z holds in addition to the strong k, ordering (figure 2.8).

€z, € € - X €€ (2.23)
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Figure 2.8: A ladder diagram, illustrating the parton evolution.
2.8 The BFKL Equation.

The steep behaviour of the gluon density and hence F; at low z has led to further de-
velopment in QCD. In the moderate-z region the DLLA approach already sums leading
lni terms if accompanied by leading In Q?. However, at low z it is also appropriate
to sum diagrams which are leading in In 1 independent of In Q?. This calculation has
been done by Balitsky, Fadin, Kuraev and Lipatov [21], resulting in the BFKL equation
which is named after them. Summing (a,-In %)" terms involves the evolution of a gluon
distribution which is not integrated over k; and the gluon ladder does not have to be
ordered in k; anymore (rather it involves a ‘random walk in &'). The unintegrated

gluon distribution f(z,k?) is related to the previously used g(z,Q?) via

y Q7 dk?
sglz. 0% = /0 G (k) (2.24)
"t
The BFKL equation
L2
df(z. k) _ /dk;’ KK - f(z kB = A f (2.25)
din()

describes the evolution of the unintegrated gluon density f(x, k?) in In 1'— Its solution
is dominated by the largest eigenvalue A of the kernel K. To leading order in In L and

fixed oy this solution is the steep power law behaviour

2g(2, Q) ~ f(Q%) -2~ with T 3%“" 2~ 0.5
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which is reflected in a similarly steep expectation for the behaviour of F; at low z.

This power law behaviour would violate unitarity in the limit z — 0. However, the
current form of the BFKL equation does not incorporate the running of a, with Q% and
the kernel has only been calculated to first order in In -l- Furthermore cut-offs have to
be introduced in the integral in the infrared and ultraviolet limit. These aspects have
been studied [22] or are currently being worked on [23].

2.9 Unifying DGLAP and BFKL.

DGLAP deals with @? evolution and is probably inadequate at very low z while BFKL
deals with i evolution and is inadequate at large Q2. Ultimately one would like to
achieve a ‘unified’ treatment of the z and Q? dependence of the parton distributions
and structure functions throughout the kinematic plane. Progress in this direction has
been made [24] by the development of the so-called CCFM equation. It is based on the
idea of coherent gluon radiation, which leads to angular ordering of gluon emission in

the gluon ladder
6, > 6

where ©); is the angle the ith gluon makes to the original direction. The maximum angle
of gluon emission is specified by an additional scale, which can be taken to be Q? of
the probing photon. Hence the quantity dealt with is the unintegrated scale dependent
gluon density f(z,k?,Q?). At small z the integral equation for f(z,k?,Q?) reproduces
the BFKL behaviour, while at moderate z it reproduces the DGLAP equation for the
integrated gluon density g(z,Q?) [25]. Numerical studies of the CCFM equation have
shown that the gluon slope is reduced by ~ 0.1 with respect to that of the BFKL
equation but a flat gluon input at Q still yields a steeper rise of F; at low z than would*
be obtained in the DLL approximation.

Technically the CCFM equation involves similar considerations to the BFKL equa-
tion concerning the incorporation of the running of a, and the UV and IR cut-offs.

Another approach to find an evolution equation that is valid over the whole kinematic
plane is the attempt to take subleading ln% terms into account. This ‘resummation’
of ln% terms effectively requires a recalculation of the splitting functions. They can

generally be written as

: _a e 1@t et (1)

z - P(z,a,) ,; mz:_:m Anm a7 (Q%) In 2 (2.26)

The sum over m is here taken to extend to negative values to represent the contribution
of terms which are non-singular as 2 — 0. Since, at present, not all coefficients A,
are known not all terms can be included in the sum. Depending in which terms are

important different approximations are made (see figure 2.9). Only considering terms
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Figure 2.9: The (n, m) plane with the DGLAP and BFKL summations indicated.

which are leading in In Q?, which gives the DGLAP equations, equation 2.26 is summed
over m. For n = 1 the leading log(Q?) approximation (LLA) is obtained, whereas
n = 1,2 gives the next to leading log(Q?) approximation (NLLA). However, at very
low z it is more appropriate to sum leading In % terms, i.e. terms for which n = m
(leading log} approximation - LL(1/z)). This approximation gives the BFKL equation
at LL(1/z). Also including terms with m = n — 1 yields the next to leading logi
approximation (NLL(1/x)). The common term between the two approaches is the one

with n = m = 1, which gives the double leading log approximation (DLLA).

2.10 Shadowing.

The considerations so far have yielded a steeply rising gluon density at small z. If this
were the asymptotic behaviour of the gluon density the unitarity bound would eventually
be saturated or even violated. Implications of the present data for the unitarity bound
are discussed in section 9.2.2.

The evolution equations discussed above are linear integro-differential equations as
they deal with the emission of gluons or their splitting into quarks or gluons. However,
as # — 0 the gluon density gets very large, the self-coupling gluons may annihilate, or
recombine to gluons. Such gluon shadowing or screening processes may compete with
the usual evolution and eventually saturate the gluon density.

A measurement at Q2 probes a parton of transverse size ~ 1/Q. Assuming a ho-
mogenous distribution of gluons in the proton the xg(x. Q?) gluons occupy a transverse

area .r_l/(.r,Qz){y';. If this area, which increases with decreasing x, gets comparable to
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the transverse area of the proton, = R?, shadowing effects are expected to set in

z -g(:,Qf)& 2 7R? (2.27)

For a proton radius R ~ 1 fm = 5 GeV~! and Q% ~ 10 GeV? this limit is reached
at zg(z,Q? = 250, which is well above the values found at HERA. However, in the
scenario of ‘hot spots’ [26] the relevant size for R might be the radius of a constituent
quark, ~ 0.4 fm. No strong evidence for such an effect has so far be seen at HERA.

In order to take the recombination of gluons gg — ¢ into account Gribov, Levin and
Ryskin added a quadratic correction to the evolution of the gluon distribution, yielding
the so-called GLR equation [27]

dizglz/@t" ¥ "G a,81/16 2

ARGt ). 905 2y _ % 51/10 2

TngramT = Q) - T [re(=.QY)]
This equation, however, can only be considered an approximation as possible inter-
actions of gluon ladders before the recombination are not included and multi-ladder

diagrams may also be important.

high density region
Ol
e

In (1/x)

non-perturbative
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Figure 2.10: Schematic representation of the applicability of various evolution equations
across the (z,Q?) plane. The full circles indicate the parton density ‘seen’ at a partic-
ular z and Q*. The critical line indicates the transition region between the dominance
of gluon radiation and splitting, described by the linear evolution equations, and the

saturation due to gluon recombination and shadowing.

The regions of phase space, where the different evolution equations can be applied,

is schematically shown in figure 2.10.
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2.11 Modern Parametrisations of Parton Densities.

The measurement of structure functions serves two main purposes, to test QCD as
the theory of the strong interactions and to extract the, as yet, uncalculable parton
distributions functions (PDFs). In this section the most recent parametrisations of the
parton densities are introduced. Most of them are obtained using the DGLAP evolution
equations to evolve parton densities to the measured values of Q2. The z dependence
of the parton densities are parametrised from a starting scale Q3. The parameters are
chosen by a x* minimisation over data from structure functions in deep-inelastic €, p or
v scattering; measurements of Drell-Yan production and W-asymmetry in pp collision

as well as prompt photon production in pNV — vX.
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Figure 2.11: The proton structure function F, according to the parametrisations of
the MRS group (left) and the CTEQ group, GRV and Donnachie-Landshoff (right) at
Q% =8.5 GeV2.

Martin-Roberts-Stirling (MRS)
The MRS parametrisation, obtained using the next-to-leading order DGALP evolution,
uses the following functional form for the quark and gluon distributions at the starting

scale Q2 in the MS renormalisation scheme
zfi(z) = Ai-zi(1-2)"(1+ vz +7iz) (2.28)

where fi(z) is a particular parton density and A;,d;,n; and ~; are the parameters to
be determined. Not all normalisations A; are free parameters, but some are fixed from
flavour or momentum sum rules. The charmed sea, assumed to be ¢(z, Q%) = 0 for Q2 <
m?, is generated by the boson gluon fusion process as included in the DGLAP equations
for massless partons. Pre-HERA prametrisations such as MRSD_ and MRSDg [134]
and the newer MRSA [135], which includes 1993 F, data from ZEUS and H1, start at
Q3% = 4 GeV?, whereas for the latest fits (MRSR) a low starting scale of Q2 = | GeV?
has been chosen. The main differences between the previous PDFs, apart from the data

sets included in the fit, is the choice of the parameter 8, which dominates the behaviour
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at small z
zg(z) ~ 2° MRSDj
zg(z) ~ 27%° MRSD_
zg(z) ~ 2703 MRSA

where MRSDj and MRSD’ span the range of exponents as expected from lower energy
DIS and hadron-hadron data or inspired by the solution of the BFKL equation respec-
tively. The MRSA parameters are by construction consistent with the 1993 HERA data.
Structure functions at Q% < Q3 have been determined by a backward evolution with a
suppression factor qu-:_ﬂ [136]). The & parameter for two of the four new MRSR fits is

R| R2 R3 R'l

As# Ag A=y

a, (M) 0.113 | 0.120 | 0.113 | 0.120

A (Mev) | 241 | 344 | 241 | 344

Table 2.2: Characterising parameters of the four most recent MRS parametrisations
MRSR.

varied independently for the gluon and sea quark distribution while in the other two,
and in the older fits, §, = &, was chosen. The data available at that time did not have
the precision to show any sensitivity to the expected small differences between &, and
8y. In addition to two different treatments of the d's the latest parton distributions
are also given for two different assumptions on the values of ay, 0.113 and 0.120, or
equivalenty of AS&‘D = 241 MeV or 344 MeV. This is motivated by the tendency of
HERA and TEVATRON data to prefer a larger value of a, than the high-z DIS data,
particularly that from BCDMS [164].

The MRSR parametrisation includes the 1994 HERA data on F; with its much
increased kinematic range (in particular to Q? as low as 1.5 GeV?) and its improved
precision.

A more detailed description of the MRS parametrisation is given in chapter 10. The

z dependence of the old and new parametrisations is shown in figure 2.11.

CTEQ-Collaboration
The *Coordinated Theoretical-Experimental Project on QCD’ (CTEQ) uses a very sim-
ilar approach to the MRS group. They parametrise their latest PDF, CTEQ4 [138],

except a special low-Q? set, at Q3 = 2.56 GeV2. For the quark distributions the same
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functional form as in equation 2.28 is chosen, whereas the gluon density is parametrised

as
zg(z) = Az (1 -2)™(1 + Agz™)

Previously (CTEQ3) a ‘minimal’ parametrisation with A, = 1 and §, = §; has been
used. CTEQ chooses a slightly different set of data constraining the strange distribu-
tions. They do not suppress the charm distribution below threshold but use the ‘variable

flavour technique’.

Gliick-Reya-Vogt (GRV)

Whereas the parton distributions of the MRS and CTEQ groups depend strongly on
the input parametrisations at Q2 this is, to a much lesser extent, the case for the GRV
group [102]. Their basic idea was that at very low starting scale Q% = 0.34 GeV? the
nucleon only consists of constituent valence quarks. With increasing Q? the gluon and
sea quarks would be generated dynamically from the valence quarks via the DGLAP
evolution equations. As not all relevant data, in particular the prompt photon data,
could be described adequately with this model, gluon and sea quark distributions had

to be added at the starting scale. But these distributions have a valence like shape
z9(z,Q}) = Az°(1 - 2)%;  27(2,Q}) = A'z°' (1 - 2)”

Charm is treated as a heavy quark. There is no concept of charmed parton distributions.
Their contribution to F; comes from the Boson Gluon Fusion process and is calculated
via the DGLAP evolution with massive quark coeflicient functions. The DGLAP evo-
lution from the very low starting scale Q2 ensures that the behaviour of the gluon and
sea quark densities at small z for the Q? range Q? 2 1 GeV?, as described by GRV, is

nearly a parameter free prediction of perturbative QCD dynamics.

Donnachie-Landshoff (DL)

In contrast to the parametrisations mentioned above the approach chosen by Donnachie
and Landshoff [103] is based on Regge theory. The dependence of hadron-hadron or
photon-hadron scattering cross sections as a function of the centre of mass energy square,

s, is parametrised as
Owt(8) = A-s+B.s7"

where 7 = 0.4524 and ¢ = 0.0808 [104] are the values obtained in a global fit. This
behaviour, exptrapolated to Q@ > 0, provides a parametrisation of F,. The region of
applicability is quoted to Q% < 10 GeV2.
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2.12 DIS Experiments.

A number of DIS experiments at SLAC, CERN and FNAL followed the first results on
(unpolarised) deep-inelastic structure functions at SLAC and contributed to the effort
of obtaining a fundamental and precise knowledge of properties of partons and of QCD.
They used electron, muon and (anti-) neutrino beams on a variety of targets.

The SLAC experiments used electron beams with an energy range 2.65 < E. <
20 GeV, on hydrogen and deuterium targets.

The CERN muon experiments EMC, BCDMS and NMC operated with beam en-
ergies 100 < E, < 280 GeV, substantially extending the kinematic range to Q? as
large as 300 GeV and low values of z ~ 7-10~3. They were complemented by the
(anti-) neutrino program where the experiments CDHSW, CHARM, WA235, WA39 and
BEBC-GGM studied the scattering of (anti-) neutrinos with 100 < E, < 280 GeV off
deuterium, iron, neon and other targets.

At FNAL the CCFR experiment used a neutrino beam of 30 < E, < 600 GeV
on an iron target and obtained structure function results at z as low as ~ 1072, The
high muon beam energy of 490 GeV, used at the E665 experiment, in conjunction with
special experimental techniques allowed structure function measurements to even lower
values of ¢ ~ 7-10~4. These, however, could only be reached at Q? <1 GeV.

The centre of mass energy at fixed target experiments, which were almost always

inclusive, is given by

Vi = V?-mtargerbeam

yielding a maximum value of \/s =~ 35 GeV. Their kinematic range in z and Q? is
shown in figure 2.12.
As HERA is an ep collider its centre of mass energy is related to the beam energies

via

Vs = V4E.E,

With the design energies of E. = 30 GeV and E, = 820 GeV a centre of mass energy of
Vs =~ 300 GeV is achieved. As illustrated in figure 2.12 HERA extends the accessible
kinematic range by almost two orders of magnitude in z and Q2. While structure
function measurements based on 1993 data were limited to Q? 2 6 GeV? and left a gap
to the fixed target region the 1994 data extend to Q? values as low as ~ 1 GeV? and
provide an overlap with the NMC and E665 data. Additional detector components and
special experimental techniques increased the HERA acceptance in 1995 even further
down to Q? ~ 0.1 GeV? and 2 ~ 2-107%. This vastly extended kinematic region is the
basis for exciting structure function results, a deeper insight into the structure of the

proton and a better understanding of QCD.

i e e——
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Figure 2.12: (z,Q?) range of various DIS ezperiments that contributed to structure

function data.

Further details about nucleon structure functions and their interpretation and role
in QCD can be found in [38, 37, 39].



Chapter 3

The ZEUS Detector at HERA.

3.1 The HERA Accelerator.

Figure 3.1: The ‘Volkspark’ in Hamburg surrounded by the HERA collider (dashed line).
The pre-accelerator PETRA, enclosing the main DESY site, is shown in the foreground.

The ‘Hadron Elektron Ring Anlage’ (HERA) is the first lepton proton collider. HERA is
designed to accelerate electrons or positrons to 30 GeV and protons to 820 GeV energy,
vielding a centre of mass energy /s = 314 GeV. The beams are brought into collision at
zero crossing angle at four interaction points. The two main experiments, H1 and ZEUS,
are located in the north and south hall respectively. The remaining two halls have been
allocated to the HERMES and HERA-B experiments. HERMES is designed to study

the spin structure of the nucleon using the scattering of longitudinally polarised photons
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off polarised gas jet targets of hydrogen, deuterium or He®. Longitudinally polarised
photons are produced from the naturally occuring transversely polarised electrons using
spin rotators. HERA-B is designed to investigate CP violation in the B°B® system. It
uses a wire target for the production of B-mesons in the proton halo.

HERA is located under the ‘Volkspark’ in Hamburg, Germany, close to the main site
of the DESY laboratory (figure 3.1). It was commisioned in 1991, first ep interactions
were observed and recorded in H1 and ZEUS during spring 1992.

Trabrennbahn

e

Experimentierhalle -
sUozeus Prolonen-Bypass

Figure 3.2: HERA accelerator complez with four ezperimental halls (left) and the pre-
accelerator system (right).

Figure 3.2 shows a schematic layout of the HERA accelerator complex. Two sepa-
rate rings for electrons' and protons, using conventional and superconducting magnets
respectively, are housed in a 6.34 km long tunnel 10 — 30 m underground.

The proton acceleration chain starts with a H™ 50 MeV linear accelerator. Before
injection into the DESY III storage ring, the electrons are stripped off the hydrogen
ions, yielding protons. DESY III is filled with 11 proton bunches, having the same
bunch spacing as HERA, 96 ns, and accelerated to 7.5 GeV. The proton bunches are
then transferred to PETRAZ?. Seventy bunches are accumulated there and accelerated
to 40 GeV, then transferred to HERA. This process is repeated until HERA is filled
with up to 210 bunches. After acceleration to 820 GeV the proton beam lifetime is of
the order of several days.

The electron injection begins with the LINACs [ and II which accelerate the electrons
to 220 and 450 MeV, respectively, and fill the positron intensity accumulator (PIA)
with a single bunch of up to 60 mA. This bunch is then transferred to DESY Il

and accelerated to 7.5 GeV. The transfer to the PETRA II storage ring is performed

'From the middle of 1994 on positrons were accelerated instead of electrons in order to increase the
lepton heam lifetime. In the following clectron is used as a generic expression for the colliding lepton.

PETRA = ‘Positronen-Elcktronen Tandem Ring Anlage.’
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HERA parameters Design values 1994
electrons | protons positrons | protons
Energy (GeV) 30 820 27.52 820
Centre of mass energy (GeV) 314 300
Specific luminosity (cm~2s~'mA~?) 3.9-10% 3.4-10%
Instantaneous luminosity (cm~2s~!) 1.7-10% 3.0-10%
Integrated luminosity (pb) 100 6
Circumference (m) 6336
Magnetic field (T) 0.165 4.65 0.165 4.65
Injection energy (GeV) 14 40 14 40
Current (mA) 38 163 20 - 33 30- 55
Energy loss per turn (MeV) 127 1.4-107" [ 197 Tad- 10710
Number of bunches 210 153 + 15 | 133 + 17
Bunch crossing time (ns) 96 . 96
Beam o, (mm) at I[P 0.30 0.27 0.27 0.18
Beam o, (mm) at IP 0.06 0.09 0.06 0.06
Beam o, (mm) at IP 0.8 11 0.8 11
Injection time (min) 15 20 45 60

Table 3.1: HERA design parameters and performance during 1994 running

such that 70 bunches of 96 ns spacing are obtained. After acceleration to 14 GeV the
electron bunches are transferred to HERA until this is filled with up to 210 bunches.
After acceleration to 27.32 GeV the positron beam life time is about 8 hours3. In
practice not all bunches are filled. Unpaired bunches, called pilot bunches, can be used
to estimate beam related background rates, while empty bunches allow the estimation
of background rates originating from cosmic rays. In the 1994 data taking period HERA
operated with 153 ep bunches, 15 electron- and 17 proton-pilot bunches.

The design parameters and performance of the HERA machine during the 1994 data
taking period are summarised in table 3.1 [40, 41].

Since the first electron proton collisions in May 1992 the integrated luminosity deliv-
ered by HERA has been continously increased (see figure 3.3). In 1994 HERA delivered
~ 6 ph~! integrated luminosity. For about 2.5 pb~' ZEUS was operational, with all

main components in good conditions. The present analyses are based on this data set.

3For electrons a life time of only 2 - 3 hours could be achicved.
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Figure 3.3: Integrated luminosity delivered by HERA during the data taking periods 1992
- 1996.

3.2 The ZEUS Detector.

The ZEUS Collaboration is formed by more than 450 physicists and an equal number
of technicians, coming from 51 institutes in 11 countries.

The ZEUS detector is a hermetic (except for the beam-pipe holes) multipurpose de-
tector, designed to study lepton-hadron scattering and the structure of the proton. The
construction and installation of the detector in the HERA south hall was completed by
autumn 1991. Since then, several detector upgrades and modifications have taken place
as a consequence of the physics and technical understanding gained by the collaboration
during the first years of data taking.

The ZEUS coordinate system is defined as a right-handed orthogonal system with
the origin at the nominal interaction point (IP), and the z-axis pointing in the outgoing
proton direction (defined as forward direction). In this frame, the z-axis points towards
the centre of the HERA ring, the y-axis upwards. Thus, the proton beam polar angle is
0°, whereas the electron beam polar angle is 180°. The azimuthal angle ¢ is measured
with respect to the z-axis.

Figure 3.4 and 3.5 show the longitudinal and transverse (with respect to the beam

direction) layouts of ZEUS, respectively.
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Figure 3.4: Cross section of ZEUS along the beam direction.

A brief outline of the major detector components is given in the following. The
parts of the detector essential for the present analyses are desribed in more detail in the
following sections. A more general and complete description can be found in [42].

Starting from the centre, ZEUS consists of charged particle tracking detectors (Ver-
tex Detector, VXD, and Central Tracking Detector, CTD). The CTD is surrounded by
a superconducting magnet providing a field of 1.43 T. Forward and rear tracking cham-
bers (FTD and RTD) provide additional tracking information and particle identification
in the forward and rear direction. The tracking chambers are surrounded by a high res-
olution Uranium Calorimeter (UCAL). The UCAL is divided into three sections: the
FCAL in the forward direction, the RCAL in the rear direction, and the BCAL, a barrel
section surrounding the central region. The small angle rear tracking detector (SRTD)
is situated behind the RTD and covers the face of the RCAL to a radius of ~ 34 cm
around the centre of the beam-pipe hole. At a longitudinal depth of 3 X in the RCAL
the hadron-electron separator (HES), consisting of 3 x 3 cm? silicon diodes, is installed
for the discrimination between electromagnetic and hadronic showers originating from
low energetic particles (< 3 GeV). The UCAL is enclosed by muon identification cham-
bers (FMUI, BMUI and RMUI) on the inner side of the iron yoke. The yoke itself serves
as absorber for the backing calorimeter (BAC), which measures the energy of late show-
ering particles, and as the return path for the solenoid magnetic field flux. On the other
side of the yoke, the outer muon chambers are installed (FMUON, BMUON, RMUON).
Behind the main detector at = = —7.5 m an iron/scintillator VETOWALL is used to re-
ject beam-related background. The ('3 beam monitor, a small lead-scintillator counter,

located around the beam pipe at = = —3.15 m, monitors the synchrotron radiation
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Figure 3.5: Cross section of ZEUS perpendicular to the beam direction.

accompanying the beams and the timing and longitudinal structure of the proton and
electron bunches. At ~ 20 —90 m downstream in the proton beam direction the leading
proton spectrometer (LPS) and the forward neutron calorimeter (FNC) detect protons
and neutrons scattered through small angles, respectively. The proton remnant tagger
(PRT), a lead-scintillator counter, located at z = 5.1 m around the beam pipe, covers a
pseudorapidity® range 4.3 < 7 < 5.8 and provides information about the hadronic final
state particles in the very forward direction, i.e. about dissociating outgoing protons.
In the electron beam direction two small lead /scintillator calorimeters are installed at
—34 m and —104 m for the measurement of outgoing photons, used for the luminosity
determination, tagging of Q? ~ 0 scattering and radiative events.

The short time interval of 96 ns between the bunch crossing at HERA results in a
nominal rate of 10 MHz. ZEUS uses a three-level trigger system to reduce the rate to

a few Hz, a level at which data can be written to tape.

*The pseudorapidity is defined as n = - In(tan £).



32 The ZEUS Detector at HERA.

3.2.1 The Central Tracking Detector (CTD).

The central tracking detector (CTD) [43] measures the direction and momentum of
charged particles with high precision and estimates the energy loss dE/dx used for
particle identification. The CTD is a cylindrical drift chamber with an inner radius
of 18.2 cm, outer radius 79.4 cm and length of 205 cm, filled with a gas mixture of
argon, CO; and ethane. It covers a polar angle of 15° < © < 164° and consists of

72 radial layers, organised into 9 superlayers (see figure 3.6). The odd superlayers are

Outer
elactrostatic

; Inner
electrostatic
screen scraen

Figure 3.6: CTD wedge, showing the sense and field wires. The stereo angle for each

superlayer is also given.

axial layers which have sense wires parallel to the beam axis, while the even superlayers
are stereo layers, inclined at angles =~ +5° with respect to the beam axis, which allows
the determination of the z-position of the hits. For trigger purposes, the three inner
axial layers are additionally equipped with a z-by-timing system (o, >~ 4 c¢m) which
determines the z-position of a hit from the difference in arrival times of a pulse at
both ends of the chamber. With the 1994 calibration of the chamber, the resolution
of the CTD is around 230 gm in » — @, resulting in a transverse momentum resolution
of 0.005 pr & 0.0016 for long tracks. The z-vertex resolution for medium- and high-

multiplicity events is < 1.3 mm.

3.2.2 The Vertex Detector (VXD).

The vertex detector measures the event vertex and possibly secondary vertices, improves
the momentum and angular resolution of charged particles as determined with the CTD
alone and contributes to the pattern recognition. The VXD is a cylindrical drift chamber
surrounding the [P region with an inner radius of 10.9 cm and an outer radius of 15.9 cm,
equipped with 12 layers of 1.6 m long sense wires. In 1994 high voltage problems and
damage due to synchrotron radiation caused part of the VXD to be off. particularly

during the second half of the data taking period.
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3.2.3 The Uranium Calorimeter (UCAL).

The ZEUS calorimeter is a high resolution uranium-scintillator compensating calo-
rimeter [44]. The uranium calorimeter is one of the most essential detector components
for the reconstruction of ep-scattering events and plays a crucial role for the present
analyses. The UCAL is a sampling calorimeter, consisting of alternating layers of de-
pleted uranium® as absorber and scintillator ® as active material for readout purposes.
The thickness of the plates (2.6 mm scintillator and 3.3 mm = 1 X uranium) has
been chosen to optimize the compensation of the calorimeter. Compensation means
that electromagnetic and hadronic showers of equal energy yield equal response in the
calorimeter (e/h = 1). This characteristic is particularly important for the energy res-
olution of hadrons as hadronic showers have a statistically fluctuating electromagnetic
component. The energy resolution of the ZEUS calorimeter, measured under test beam

conditions, is

o(E) 35%

e o M a0
E vVE &%
for hadrons, and
a(E) 18% . v
e Tl
E " booe

for electrons, where the energy E is measured in GeV.

The calorimeter consists of three sections, covering different regions in the pseudo-

rapidity 7 = — In(tan %) With the exception of 20 x 20 cm? holes in the centre of
FCAL BCAL RCAL
n-range -4.0--1.0 -1.1- 0.74 0.72 - 3.49
©-range 2.2° — 39.9° | 36.7° — 129.1° | 128.1° — 176.5°
radiation length X, 25.9 24.6 24.3
absorbtion length A 7.14 4.92 3.99

Table 3.2: Angular acceptance and longitudinal depth of the UCAL.

the FCAL and RCAL, necessary to accomodate the HERA beam pipe, the calorimeter
is > 99.7% of 47 hermetic. The three calorimeter parts are divided into vertical (FCAL
and RCAL) or radial (BCAL) modules, which in turn are subdivided into towers of ap-
proximate transverse dimensions 20 x 20 cm? (see figure 3.7). The EMC sections consist

of four 5 x 20 ecm? cells (two 10 x 20 cm? cells in the RCAL). The HAC sections are cells

“An alloy of 98.4% 1%, 1.4% Nb and < 0.2% 172
®SCSN-38
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Figure 3.7: ZEUS FCAL module. The 20x20 cm? towers with their longitudinal division
into EMC and HAC section are shown.

on their own. Each tower is segmented longitudinally into an inner, electromagnetic
section (EMC) and two (RCAL only one) outer, hadronic sections (HAC1 and HAC2).

The longitudinal depth of the UCAL (table 3.2) is chosen such that 90% of all
recorded jets deposit at least 95% of their energy in the UCAL [45]).

Each calorimeter cell is read out on two opposite sides by two photomultiplier tubes
(PMTs) coupled to the scintillator via wavelength shifters. As the energies correspond-
ing to both PMTs are summed, the energy measurement is independent of the impact
point of the particle within the cell. Comparison of the two PMT signals allows the
determination of the horizontal impact point of the particles within a cell (see sec-
tion 5.4.4.2).

The calorimeter is calibrated on channel-by-channel basis using the radioactive decay
of U?3 which provides a constant reference signal. This calibration procedure is good
to 1%. The PMTs can be calibrated via light emission of known intensity from LEDs.
The rest of the electronic readout chain is calibrated using test pulses.

The calorimeter also provides accurate timing information with a time resolution
better than 1 ns for energy deposits greater than 4.5 GeV. The total time of a calo-
rimeter section (F/B/RCAL) is obtained from an energy weighted average of the times

of all PMTs with energy deposits greater than 200 MeV.
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3.2.4 The Small Angle Rear Tracking Detector (SRTD).

For a precise measurement of the scattered electron energy and angle, for low Q? events
in low-z DIS, additional tracking is needed to improve the calorimeter reconstruction
in regions close to the RCAL beam-pipe hole. It has also found to be useful to correct
for energy loss due to the presence of inactive material in this detector region (VXD
cables, flanges etc.).

The SRTD, installed at the beginning of 1994, is a scintillator strip detector at the
face of the RCAL (z = —148 cm) and covers an area of 68 x 68 cm? around the RCAL
beam-pipe hole (except for the 20 x 20 cm? hole itself) [46, 47). Figure 3.8 shows a
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Figure 3.8: Schematic diagram of the SRTD showing the orientation of the scintillator

strips, arranged in two planes and four quadrants.

schematic diagram of the detector layout. Charged particles are detected by two planes
of orthogonally arranged (z, y) strips with a 1 cm pitch which provide position and pulse
height information via an optical fibre-photomultiplier readout. Each plane is divided
into four quadrants.

SRTD hit information is used in conjunction with that from the C'TD for track re-
construction. More importantly the SRTD can detect the preshowering of particles in
the inactive material in front of the calorimeter. The energy deposit in the SRTD can
be used to correct for these energy losses, so that the SRTD serves as a presampler.
The SRTD also helps to reject background by providing a fast time measurement (reso-
lution ~ 2 ns) to the trigger, complementing the rejection by the €'5 and VETOWALL

counters.
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3.2.5 The Luminosity Monitor (LUMI).

The precise measurement of the time-integrated luminosity is a crucial aspect of all
cross section and therefore of all structure function measurements. The ep luminosity
at HERA is measured by the luminosity monitor using the rate of hard bremsstrahlung

photons from the Bethe-Heitler process [48].
ep = €py

The cross section for this process is high and well known from theoretical calculations

to an accuracy of 0.5%.

LUMINOSITY MONITOR 94

(cm)

o - o = BU BU 3U

-50 DETECTOR
o8 7 oL

ELECTRON
DETECTOR

(m)
(1 ATREIGE S £ E1 s P Dl R ol ]

0 10 20 30 14050, 60 701=80 90 100 110

Figure 3.9: The two luminosity calorimeters.

Figure 3.9 shows the setup of the two luminosity calorimeters [49]. The electron
calorimeter (LUMI-e) is a lead-scintillator sampling calorimeter. It is 23 X, deep and
read out via light guides and photomultipliers. Electrons that have lost part of their
energy via bremsstrahlung are deflected from the nominal beam orbit by the magnetic
field of HERA. These electrons leave the beam pipe via an exit window at z = —27 m
and are detected by the LUMI-e at = = —34 m. The geometrical acceptance is limited
to the detection of electrons with 0.2 Eyeqm < EL < 0.8 Epeym. The energy resolution is

”_(é;.l = "\%_4 with E measured in GeV. The electron position is determined by scintillator
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fingers at a depth of 7 X. The LUMI-e not only detects electrons from bremsstrahlung
processes but also from photoproduction events, where the electron scattering angle is
very small due to the negligible momentum transfer.

Photons radiated at angles ©, < 0.5 mrad with respect to the beam axis leave
the beam pipe undeflected via a copper/beryllium exit window at z = —92 m and
are detected in the photon calorimeter (LUMI-y). The LUMI-y is a lead-scintillator
calorimeter situated at z = —104 m and is protected against synchrotron radiation by a
3.5 Xo carbon/lead filter. The LUMI-v energy resolution under test beam conditions is
18%/\/E (GeV), which is reduced to 25%/\/E (GeV) by the filter. In the ISR analysis
the LUMI-v is not only used for the measurement of the luminosity but also for the

detection of collinearly radiated photons in the initial state.

3.3 The ZEUS Trigger and Data Acquisition System.

The short bunch crossing time at HERA of 96 ns, equivalent to a rate of ~ 10 MHz,
is a technical challenge and puts stringent requirements on the ZEUS trigger and data
acquisition system. The total interaction rate, which is dominated by background from
upstream interactions of the proton beam with residual gas in the beam pipe, is of the
order 10 — 100 kHz while the rate of ep physics events in the ZEUS detector is of the
order of a few Hz. Other background sources are electron beam gas collisions, beam
halo and cosmic events.

ZEUS employs a sophisticated three-level trigger system in order to select ep physics
events efficiently while reducing the rate to a few Hz [50, 51]. A schematic diagram of
the ZEUS trigger system is shown in figure 3.10.

The First Level Trigger (FLT) is a hardware trigger, designed to reduce the input
rate below 1 kHz. Each detector component has its own FLT, which stores the data
in a pipeline, and makes a trigger decision within 2 us after the bunch crossing. The
decision from the local FLTs are passed to the Global First Level Trigger (GFLT),
which decides whether to accept or reject the event, and returns this decision to the
component readout within 4.4 ps.

If the event is accepted, the data are transferred to the Second Level Trigger (SLT),
which is software-based and runs on a network of Transputers. It is designed to reduce
the rate below 100 Hz. Each component can also have its own SLT, which passes a
trigger decision to the Global Second Level Trigger (GSLT) [52]. The GSLT decides
then on accepting or rejecting the event.

If the event is accepted by the GSLT, all detector components send their data to
the Event Builder, which produces an event structure on which the Third Level Trigger
(TLT) code runs. The TLT is software based and runs part of the offline reconstruction

code on a farm of Silicon Graphics C'PUs. It is designed to reduce the rate to a few Hz,
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Figure 3.10: Schematic diagram of the ZEUS trigger and data acquisition system.

Events accepted by the TLT are written to tape via a fibre-link (FLINK) connection.
The size of an event is typically ~ 100 kBytes. From here on events are available for
full offline reconstruction and data analysis.

The trigger logic used for the online selection of DIS events, on which the present

analyses are based, is described in section 3.2.

Chapter 4

Monte Carlo Simulation.

4.1 Introduction.

Measurements of structure functions and cross sections require corrections for accep-
tance, efficiency and resolution effects of the detector and trigger system. As the detec-
tor components are highly complex and the trigger efficiency depends not only on the
trigger hardware and its algorithms, but also on the event topology, analytic calcula-
tions are too complicated and hence not pratical. Instead well established Monte Carlo
techniques are used to simulate all relevant aspects of the ZEUS experiment. The simu-
lation consists of two main parts. In the first part the ep-scattering process is simulated,
focussing on the variation of the cross section with the event kinematics and the final
state event topology. The second part simulates the detector and trigger response to
the constellation of outgoing particles according to the detector geometry and testbeam
results for the different components.

Not only the Born-level matrix element, but also QED and QCD corrections can
be factorised in the Leading-Log-approximation (LLA). This is the basic property of
higher order corrections which allows for a step-by-step procedure where the QED and
QCD effects are described in separate programs.

The main concepts of the different simulation stages and their implementation in

software packages is described in the following.

4.2 Electroweak Radiation at the Lepton Vertex.

On the Born-level the NC ep-scattering process is described by the single photon ex-
change between the electron and a quasi-free quark in the proton, as depicted in fig-
ure 4.1. The corresponding cross section is given by

d*a(eq — eq) 2ra’els

dzdy = [1+0 -7 (4.1)

39
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Higher order diagrams can lead to substantial corrections which have to be taken into
account in the analysis. The emission of additional particles, mainly photons, does
not only modify the cross section, but also affects the relation between event quantities
measured in the detector, such as the scattered electron energy and angle, and the event
kinematics at the hadronic vertex, where the proton structure is probed. Consequently
the size of the radiative corrections depends on the chosen reconstruction method. The

net effect is written as

d’c d2gBern )
BTy~ dmagr 1) W

where 4, indicates the radiation correction. z,,, and Q?,p,, are the so-called ‘apparent

kinematic variables’ as obtained when ignoring the photon emission.

[1] Born [2] 1SR FSR [4] vertex corr. (5] self energy

Figure 4.1: Feynman diagram of the Born-level eq — €q process (1) together with the
diagrams for the QED initial state radiation (2), final state radiation (3) and the vertez

correction (4). The diagram, giving rise to the so-called self-energy term is shown in

(3).

Figure 4.1 shows the Born-level ep-scattering diagram together with higher order
diagrams yielding corrections of O(a). Diagrams similar to (2 - 4) exist for the Z°- or
the W#-exchange in charged current events, but are not shown separately for simplicity.
The phenomena of initial state radiation (ISR), final state radiation (FSR) and the
vertex correction also exist at the hadronic vertex, but their effect is small due to
the dependence on the squared charge of the involved particles. It is absorbed in the
definition of the parton distribution functions in the proton and therefore not considered
in the cross section calculation. The divergence of the vertex correction term for small
photon energies, E.,, cancels the ones from the ISR- and FSR-diagram, so that a finite
correction is finally obtained.

Additional contributions to O(a)-corrections originate from interferences hetween
the Born diagram and two-photon exchanges (not shown) or the self-energy terms. In

the latter all charged fermions with m? < Q? have to be considered in the loop and this
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results in the Q%-dependence of the electromagnetic coupling aem.

The NC-DIS process eg — egy including photon and Z°-exchange and first order
electroweak radiative corrections has been simulated using the Monte Carlo generator
HERACLES [57). The program operates at the parton level. Events are completely
described by the flavour of the struck quark ¢ and the four-momentum of the final state

electron, quark and the potentially radiated photon.

HERACLES ISR photon spectrum

i 8§ 8 ¢ ¢ ¢

H.. 8
E,inGev

Figure 4.2: Left: ISR photon energy spectrum as generated using HERACLES. The
arrow indicates the upper limit, given by the electron beam energy. Right: Correlation
between the angular distributions of the scattered electron and the radiated photon. Two

clear bands, originating from ISR and FSR events, are visible.

Figure 4.2 shows the photon energy spectrum in ISR events as generated by HER-
ACLES. The electron beam energy of 27.52 GeV sets an upper limit on the photon
energy. The correlation between the final state electron and photon angle (figure 4.2,
right) shows two clear bands, one for events with ©, ~ O, (FSR) and one for ©., = 0
(ISR).

Figure 4.3 shows the radiative corrections as a function of y,,, for the electron recon-
struction method (section 6.3). For y,,, — 1 the scattered electron energy decreases so
that the available phase space for photon radiation increases and the resulting radiative
correction can be as large as 200%. At low-y only soft photons can be emitted, yielding
rather small radiative corrections unless z is very large.

In addition to the leading order diagrams, already taken into account in HERACLES,
the program HECTOR [93] can also evaluate all non-negligible second order leading
log terms as well as third order and higher order terms originating from soft photon
exponentiation. i

For the ‘pr'-method (section 6.6), which is used in the main Fy-analysis, the differ-
ence between the leading order and higher order calculations is abont 0.2% at Q? of a
few GeV? and rises to 0.3% at a few 100 GeV2. This difference is almost independent
of y [94].
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Figure 4.3: Radiative corrections in leptonic variables. Dotted lines: O(a), dashed lines:

O(a?), solid lines: in addition soft photon ezponentiation.

In the analysis of ISR events the cross section is O(a®) so that higher order cor-
rections are O(a'). These corrections have been calculated [100], but are not included
in HERACLES. However, additional final state radiation or the second emission of a
collinear photon in the initial state do not contribute to the radiative corrections due to
the electron and photon identification algorithms used in the present analyses. Hence

the radiative corrections are estimated to be at most 5 — 10%.

4.3 Parton Distribution Functions.

The DIS NC cross sections in the Monte Carlo data sets of all three analyses have
been generated according to the MRSA [135] structure function, modified at low-Q? as
described in [136], using the PDFLIB software package [62]. These parametrisations,
which have been obtained from fits to previous ZEUS and H1 measurements [109, 115]
and other data sets, describe the density of quarks and gluons, i.e. the partons, in the
proton at a given z and Q2. These parametrisations provide an adequate description of
the 1993- F; measurements at HERA.

However all Monte Carlo distributions, shown in the following chapters, have been
reweighted to the parametrisations obtained from NLO-QCD fits to the respective data
sets, as described in [118, 123, 124].
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4.4 QCD-Cascade and Hadronic Final State.

In contrast to the single electron line at the lepton vertex the situation at the hadron
vertex is more complicated. This is mainly due to the fact that the struck quark is not
a free particle. As it carries net colour it is bound to the proton remnant by the colour
flow. Also single free quarks are experimentally not observed but rather fragment into

jets of hadrons.

parton hadronisation
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Figure 4.4: Schematic diagram of the DIS ep-scattering process, showing the different

stages in the development of the hadronic final state.

Figure 4.4 shows the different stages of the virtual photon probing the proton struc-
ture and the development of the hadronic final state. The parton cascade is simulated
using the colour dipole model (CDM) [58] supplemented by the Boson-Gluon-Fusion
process (BGF). The BGF process is particularly important at low-z due to the strong
rise in the gluon density. In the CDM the colour dipole, formed by the struck quark
and the proton remnant, radiates gluons, which can in turn emit softer gluons or split
into quark-antiquark pairs.

The CDM-BGF model, as implemented in ARIADNE [59] provides at present the
best description of the observed DIS non-diffractive hadronic final state [144]. In ARI-
ADNE 4.06 diffractive events with a large rapidity gap, which have been observed in
[54, 53], are thought to originate from a colour singlet exchange which is simulated by
assuming that the struck quark originates from a colourless state in the proton, which
carries only a small fraction of the latter’'s momentum. The parameters of the model
are adjusted to be consistent with recent ZEUS measurements [56].

The output of the QCD-cascade serves as input to JETSET [60]. This program

simulates the production of colourless hadrons in the final state using the LUND string
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fragmentation model [61]. As partons move away from each other the colour strings
between them expand and eventually fragment into shorter pieces which do not have
enough energy to break further. Thereby hadrons are formed which are either long lived

or resonances which decay rapidly to such states.

4.5 Photoproduction Events.

In addition to the DIS Monte Carlo other Monte Carlo samples have been generated for
studies and estimates of the photoproduction background contamination in the NVTX
and the SVTX analysis. The minimum bias photoproduction events have been generated
with 0 < Q% < 4 GeV? at high-y (y > 0.6), using the PYTHIA 5.7 program [72]. Events
with smaller y do not contribute to the photoproduction background. The cross sections
are obtained from the ALLM parametrisations [139].

A summary of the Monte Carlo samples used in the three Fy-analyses is given in
table 4.1.

MC set Nr. events | Q? range | cross section | PDF para-
in GeV? in nbarn | metrisation
DIS - NVTX 1198287 | > 1.8 862.27| MRSA’
DIS - SVTX 250833 | 2> 0.5 3411.60 | MRSA’
DIS - ISR 96310 | > 0.5 78.32 | MRSA’
PHP - NVTX 346301 | 0.0 - 4.0 1148.0 ALLM
PHP - SVTX 87861 | 0.0 - 4.0 1129.5 ALLM

Table 4.1: Summary of Monte Carlo event samples used in the three Fj-analyses.

4.6 Detector Simulation.

All Monte Carlo events are subject to the ZEUS detector simulation and offline recon-
struction chain. The response of the different detector components, taking their material
and geometry into account, is simulated by the software package MOZART [63]. It is
based on the GEANT program [65] and incorporates the present understanding of the
detector and test beam results. The Monte Carlo samples considered here have been
processed by the MOZART versions 12.1, 12.6 or 12.7. The differences between them

do not affect components used in the presented Fy-analyses.
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The ZEUS trigger decision is based on component signals and is simulated by the
programme ZGANA [64]. The full offline event reconstruction, performed by the soft-
ware package ZEPHYR, takes all calibration constants into account and treats data and
Monte Carlo events in the same way. From here on the analyses do not differentiate

between data or Monte Carlo events.



Chapter 5

The Data Sample

5.1 Introduction.

In this chapter the preselection, selection and reconstruction of the three samples of 1994
data used in the measurement of the proton structure function Fy(z,Q?) are presented.

In order to extend the accessible kinematic range for the structure function measure-
ment to lower values of Q? two specific analyses have been performed. One is based on
a small data set (~ 38nb~! =45379 events), where the HERA setting was modified such
that the interaction point was shifted from the nominal position of z = 0 to z >~ 65cm,
yielding a larger detector acceptance for events with electrons scattered through a small
angle (‘shifted vertex - SVTX analysis’).

The other analysis uses the main sample of 2.4 pb™! (1285668 events) and exploits
the fact that for constant energy and angle of the scattered electron the 4-momentum
transfer Q2 depends linearly on the incoming electron energy (‘initial state radiation
- ISR analysis'). Therefore by selecting events with initial state photon radiation the
electron beam energy is effectively lowered, resulting in an increased acceptance for
low-Q? events.

The following description of the event reconstruction in the ZEUS detector focusses
on the main analysis with the vertex at the nominal interaction point at 4+3 c¢m, based
on the ~ 2.4 pb~! sample (‘nominal vertex - NVTX analysis’). Only for quantities
of particular relevance or different characteristics in the various data sets a separate
presentation is given.

In section 5.2 the event preselection and the requirements in the relevant trigger
filters are presented.

The event vertex reconstruction is discussed in section 5.3. The vertex is of par-
ticular importance for the detector acceptance and trigger efficiencies as well as the
reconstruction of kinematic variables via all angular quantities.

The essential tool in the identification of neutral current events is the electron finder.

C'rucial aspects such as its efliciency, the electron position reconstruction and the elec-
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tron energy scale as well as appropriate correction methods are described in section 5.4.

In section 5.5 details of the use of the two luminosity calorimeters in the ISR analysis
are given.

Subsequently the measurement of hadronic quantities and their corrections, partic-
ularly important for the ‘pr’-method, are presented in section 5.6. The presence in the
data sample of events with large rapidity gaps in the hadronic final state is also demon-
strated and the resulting distributions of kinematic variables are shown and compared
to those from the corresponding Monte Carlo samples.

Finally section 5.7 gives a discussion on backgrounds and appropriate subtraction
methods.
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5.2 Trigger and Preselection.

The main characteristics of a DIS event is the presence of the scattered electron in the
final state. All three trigger stages of DIS events are therefore almost entirely based on
the resulting electron signal in the calorimeter. The relevant quantites and their logical

combination are described in the following.

ELT

On the first trigger level the calorimeter trigger electronics provides several logical bits
that indicate the presence of energy deposits above certain thresholds in the electro-
magnetic or hadronic calorimeter section. The required combination of these, arranged

in the 1994 trigger slots, are:

o The RCAL-IsoE trigger [89] selects events with isolated electrons or muons in
the RCAL. A group of up to 4 trigger towers with electromagnetic or minimum

ionizing energy deposits is required to be surrounded by quiet trigger towers.

o The RMECth trigger requires the total electromagnetic energy deposit in the
RCAL to be > 3.75 GeV.

e The REMC trigger selects events with a total electromagnetic energy deposit in
the RCAL of > 2.0(3.4) GeV, where the trigger towers next to the RCAL beamhole

are ignored.

o The BEMC trigger selects events with more than 4.8 GeV total electromagnetic
energy in the BCAL.

o Events with electrons in the FCAL are not specifically triggered on the electro-

magnetic FCAL energy, but on the event transverse energy, ET.

The energy thresholds are tuned to obtain high trigger efficiencies with small background
contamination and controllable trigger rates. For the later run range, corresponding to
~ 60% of the luminosity one of the calorimeter FLT electronics cards (TEC) was not
fully functioning, resulting in a reduced trigger efficiency. Selection cuts accounting for
this effect are described in 5.4.4.1.

SLT
On the second trigger level a logical .OR. of the FLT bits is required. In addition the
quantity d is determined on the transputer network of the calorimeter SLT. 4 is defined

as
6 = E-P’=2Ei-P:'[=Zdi

where E -and P. are the total energy and total longitudinal momentum of an event,

and E; and P.; are the same variables, but now referring to all final state particles in
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an interaction. Since the positive z-direction in ZEUS has been chosen to point in the
forward (the outgoing proton) direction, energy and longitudinal momentum for forward
moving particles are essentially identical. Hence their contribution to § almost cancels
to zero. For particles moving in the rear direction energy and longitudinal momentum
are of opposite sign, so that their contribution to § is twice their energy.

& is a conserved quantity. Ignoring possible particle losses in the forward or backward
beamhole, & calculated from the initial state must be equal to the one from the final

state.

§ = (E o Pz)pro(an +(E- P.')elec(r‘on
= (EP_Ep)+(Ee_(_Ee))
= 2-E,

In all three analyses § is reconstructed from the calorimeter as
§ = Y Ei(l-cos®;)

where the sum is carried out over all calorimeter cells and the polar angle ©; is deter-
mined from the cell centre and the primary event vertex.

In fully contained DIS events d is expected to peak at twice the electron beam energy,
55.04 GeV. However, in photoproduction events the contribution from the undetected
electron is missing, resulting in much smaller values of 4, peaking below 30 GeV.

In order to account for initial state radiation, where a significant fraction of the event
E — P, can be carried down the beampipe by the radiated photon, the DIS-SLT requires
§' = E~ P, +2-EL“mi 5 24GeV. For studies of the é-distribution and photoproduction

background contamination a prescaled! branch with &’ > 15 GeV was added.

TLT
The third level trigger DIS filters used in the presented analyses require in addition to
the afore defined FLT and SLT conditions also at least one of the electron identification
algorithms ‘Local’ [97] or ‘Elec3’ [98] to find an electron candidate of 4 GeV or more.
In the following analyses only runs are considered in which the main detector compo-
nents were fully functioning (as determined by EVTAKE [90]) and in which the quality
of relevant quantities such as the event timing lie within reasonable limits (as specified
by DISTAKE94 [91]).
The luminosity of the finally selected runs corresponds to 2.40 ph=!(£1%) in the
NVTX and the ISR analyses and 58.13 nb™!(£2%) in the SVTX analysis [101].

'Prescaling by a factor N means that only one out of A identified events is actually accepred and
stored on tape.
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5.3 Vertex Reconstruction.

It is important to understand the vertex reconstruction, both for the calculation of the
detector and trigger acceptances as well as for the reconstruction of the event kinematics.
Electrons, scattered through a small angle, are less likely to be detected in the rear
calorimeter (RCAL) the closer their z-vertex is to the RCAL, since they simply vanish
in the rear beam hole. The vertex also affects the determination of the electron scattering
angle ©,, the hadronic angle v, and the quantity E — P., where E is the total energy
deposited in the calorimeter and P, is the corresponding total longitudinal momentum.
In addition the z-position of the event allows one to reduce background from beam-gas
and cosmic ray events. In contrast to fixed target experiments the event vertex in ZEUS
is determined predominantly from tracks originating from the charged particles of the
hadronic final state.

The event vertex reconstruction uses primarily the central tracking detector and, if
available, the vertex detector. The VCTRAK package [66] first performs the hit pattern
recognition and reconstruction of tracks which are then fitted to a common vertex. In
order to obtain a good vertex resolution, additional quality cuts are imposed on the
tracking vertex in the analyses. The vertex fit from at least one track is required to
give a x2,,/ndf less than 5. Otherwise the event vertex is set to the mean value of
the measured distribution, the nominal interaction point at +3 cm. For these events
the vertex could be inferred from the time of flight of the final state particles to the
FCAL and/or RCAL. The time resolution of ~ 1 nsec for energy deposits larger than
400 MeV together with the requirement Ec 4z > 5 GeV result in a vertex resolution of
~ 12 cm. However the timing behaviour of the ZEUS calorimeter is not yet simulated
to the required precision in the Monte Carlo and hence is not used.

The fraction of events without a tracking vertex after final selection cuts is 22% for
the NVTX analysis, 29% for the SVTX analysis and 28% for the ISR analysis.

Figure 5.1 shows the z-vertex distribution for the selected DIS data sample. The
Monte Carlo vertex distribution has been generated according to a minimum-bias pho-
toproduction sample in order not to bias the z-dependence of the tracking acceptance by
the event kinematics and topology of DIS events. The width of the distribution reflects
the length of the proton bunch. The z-vertex distribution is well reproduced in the
central detector region and at z ~ +70cm. This second peak is due to = 3% (5% in the
SVTX case) spill over protons from the main bunch that arrive one bucket, i.e. 4.8 nsec,
early (‘satellite bunch’) and can hence give rise to ep-interactions at z = +70cm (‘satel-
lite events’). In the outer region a small discrepancy between data and Monte Carlo
can be seen, where the Monte Carlo contributes more events than the data. This is
presumably due to inclusion of beam-gas background in the photoproduction reference

sample. In order to reduce any resulting uncertainty a vertex cut
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Figure 5.1: z-vertez distribution for the selected DIS-data sample. Overall good agree-

ment between data (points) and Monte Carlo (histogram) can be seen, even for events

without a tracking vertez, where the z-vertez is set to +3 cm.

—=50cm < zyx < 100ecm standard cut

or —28cm < zyy < 40cm  systematic check for satellite contribution

is applied.

At low-Q? the electron is scattered through too small an angle to be seen by the
central tracking detector. Due to the alx-dependence of the cross section these events
dominate the data sample. Hence the tracking vertex efficiency is a strong function
of the direction of the hadrons in the detector as given by the kinematic variable y or
the hadronic angle 4. Figure 5.2 shows the tracking efficiency and the corresponding
vertex resolution as functions of these hadronic variables.

The tracking vertex efficiency drops very quickly for events with log,o(y) < —1.2,
which corresponds to v, =~ 60°. This is also reflected in the vertex resolution, which
grows from ~ 1.4 mm at high y to several cm at low y, where an additional systematic
shift of 5 — 10 mm towards the backward direction shows up. Although the overall
agreement in track vertex efficiency between Monte Carlo and data is good, the efliciency
is found to be slightly higher in the data than in the Monte Carlo at these low values

of y. This effect is taken into account in the systematic error calculation.
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Figure 5.2: Track-vertez efficiency in z as a function of y, vn and the z-vtz (top row).
The corresponding resolutions for Monte Carlo (open circles) and data (closed circles)

are shown in the bottom row.

The strong impact of the hadronic final state, which is boosted in the forward
direction, on the tracking vertex efficiency can also be seen from its z-dependence. The
closer the vertex is to the FCAL the less likely is a track vertex reconstruction, since the
hadrons do not leave tracks in the CTD at such small angles. The efficiency drops from
90% for vertices at the rear CTD end to 60% for ones at the forward end. Simultaneously
also the vertex resolution increases from ~ 2.3 mm to more than 3 mm.

Since the tracking based vertex reconstruction gives about 1 mm wide distributions
in z and y (see figure 5.3), while the actual beam width is only = 50 pum, the x- and
y-vertex is always set to the mean of the corresponding distribution measured for the
run range under consideration, 0.13mm in z and —0.15 mm in y.

The agreement between Monte Carlo and data in the z- and y-vertex distribution
is reasonable, but not perfect. This is partially due to noise in the CTD. Another effect
is, that the vertex chamber information can only be used for part of the data, while it
is always present in the Monte Carlo. The small shoulders at z = 0 and y = 0 in the
Monte Carlo are due to the tracking algorithm introducing pseudo-tracks at the origin
in order to achieve a higher stability of the vertex fit.

The distribution of track multiplicities agrees very well between Monte Clarlo and

data for low track multiplicities, in particular the number of events without track is
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Figure 5.3: The z- and y-vertez distributions (left) for Monte Carlo (histogram) and
data (dots) show reasonable agreement. The arrows indicate the vertez position which is
set for all events. The track and vertez track multiplicity (middle) for Monte Carlo and
data as well as the distribution of \?,./ndf for Monte Carlo and data and the :-vertex

resolution as a function of x?,,. are shown. The dashed lines indicate the analysis cut.

well reproduced. However the data contain significantly more events with more than 20
tracks, presumably due to detector noise and event overlays with cosmics and beam-gas
events.

In contrast to this the distribution of the on-vertex track multiplicity shows good
agreement over the entire range. This quantity implicitly determines the quality of the
vertex fit and hence is important to be reproduced correctly.

The resulting x2/ndf-distribution is also well simulated. Due to the dependence of
the z-vertex resolution on the \?/ndf, as shown in the top right plot of figure 5.3, a
\2/ndf < 5 is required in all three analyses.

Figure 5.4 shows the relevant tracking quantities for the SVTX analysis. The main
characteristic is the peak in the z-vertex distribution at 70cm. The satellite effect, giving
rise to ep-scattering events at z >~ 130 cm can also be seen. The vertex distribution is
very well reproduced by the Monte Carlo. In order to reduce the influence of noise and

spurious tracks, a vertex cut of

23cm < zvyx < 200cm
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Figure 3.4: Tracking quantities of particular importance in the SVTX analysis.

is applied.

The tracking vertex efficiency is in very good agreement with the one obtained
from the NVTX sample in the common vertex region. Since it drops to ~ 30 — 40%
at 130 cm, a large fraction of satellite events do not have a tracking vertex, which is
then set to 67 cm, the default value in this analysis. The overall z-vertex resolution is
correspondingly slightly degraded. .

The track and vertex track multiplicities show essentially the good agreement be-
tween Monte Carlo and data as already seen in the NVTX case. However the fraction
of events without tracking vertex differs by 14.0%, and the fraction of events without
tracks at all by 9.4%. This effect is conservatively taken into account in the systematic

error determination.
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5.4 Electron Identification and Reconstruction.

5.4.1 Introduction.

The signature of neutral current DIS events is the presence of a scattered electron in
the final state. Thus correct and efficient identification of the electron and precise
reconstruction of its position and energy are of vital importance for the analysis of
DIS events. Momentum conservation requires the scattered electron to balance the
transverse momentum of the current jet, resulting in an azimuthal back-to-back event
topology. Consequently the electron is well-isolated and relatively easy to find over a
large part of the accessible (z,Q?) plane. However at high y (low z), where the energy
transfer from the electron to the struck quark is relatively large, the current jet goes in
the rear direction and the scattered electron has rather low energy. The resulting overlap
of hadronic activity and the electron in the detector makes it difficult to separate them
and identify the latter. Low energy electrons can also give rise to showers, very similar
to hadron-initiated ones; the scattered electron can interact with inactive material, such
as mechanical support structures or cables in the inner detectors, and start showering
before entering the calorimeter. The resulting signal in the calorimeter is a broad,
hadronic-like shower, that is difficult to identify as an electron. At such low energies the
situation is complicated even further; electromagnetic showers from 7% — ~+ decays or
low energetic hadrons in photoproduction can fake electron signals in the calorimeter

and give rise to background, which has to be suppressed.
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Figure 5.5: Left: SINISTRA probobability for Monte Carlo (histogram) and data (dots).
Right: Scatter plot of calorimeter energy versus SINISTRA probability. The full line
indicates the energy dependent probability cul while a fized cut at 0.9 is shown as dashed

line.
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5.4.2 The Algorithm.

In these analyses the neural network SINISTRA [67] is used for the electron identifi-
cation. SINISTRA is based on islands of calorimeter cells. An island is defined as a
group of cells that are contiguous to the cell with the highest energy (a 3 x 3 array is
the largest possible island). Only electromagnetic islands are processed by the network
and tested for their probability of originating from an electron. The input consists of
the PMT energies in the 3 x 3 calorimeter towers around the highest energy cell of the
island. In the RCAL 9 x 4 EMC + 9 x 2 HAC = 54 variables are projected to one
output variable, Ps;, which can take values from 0 to 1. The output is interpreted as
the probability that an island is the scattered beam electron (Ps; ~ 1) or of hadronic
origin (Psy ~ 0). In order for a candidate to be called an electron the probability,
assigned by the network, is required to be

Ps; > 0.9
in the SVTX analysis. In the NVTX and ISR analysis a cut at
Ps; > 09 - 1.5 x e~ "® = P(Epaw)

is set, where E,,, is the candidate’s energy as measured by the calorimeter in GeV.
The energy dependent cut takes correlations between the calorimeter energy Epa and
the probability Ps; into account. Hence effects leading to energy loss of the electron
and a consequential drop in identification probability, do not lower the electron finding
efficiency to the same extent. More importantly discrepancies in electron energy loss
between Monte Carlo and data no longer lead to large discrepancies in the electron
finding efficiency.

Figure 5.5 shows the SINISTRA probability distribution for Monte Carlo and data.
The agreement is reasonably good.  The cuts applied are indicated as full
(Psr > P(Eraw)) and dashed (Psy > 0.9) lines.

5.4.3 Electron Finding Efficiency.

The fact that the scattered electron has to penetrate inactive material in the detector
before reaching the calorimeter results in preshowering and hence a considerable energy
loss and a broadening of the electromagnetic shower in the calorimeter. These deviations
from ideal electron signals in the calorimeter can mislead the electron finding algorithm,
which becomes inefficient particularly at low electron energies.

Several studies indicate that the Monte Carlo does not describe all characteristics
of the detector in full detail. In particular the distribution and composition of inactive
material in the detector is simplified and seems to be incomplete in some regions close

to the beam-pipe. As an example the distributions of the number of cells assigned to
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the electron, indicative of shower
width, is shown in figure 5.6. As

a consequence one might question
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curately enough. In order to ad- 1000 [Z] DIS Monte Carlo
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lected by their kinematic character-

istics alone, have been studied.
Because of their relatively clean 00
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In elastic QED-Compton events the incoming electron scatters off a quasi-real pho-

ton (¢ > 0; see figure 5.7). Due to the finite scattering angles both, electron and photon
can be detected in the calorimeter. As the four-momentum transfer to the proton (¢) is
approximately zero, it is essentially undeflected. From energy and momentum conser-
vation the final state electron and photon balance each other in transverse momentum
and carry the conserved event (E — P.), while the proton stays intact and is lost in the
forward beamhole.

X(p)

X(p)
Figure 5.7: Feynman diagrams of the elastic QED-Compton process.

The elastic QED-Clompton event sample has been selected with the following cuts:
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Figure 5.8: QED-Compton event in the ZEUS detector. The scattered electron leaves a
track in the CTD, while the photon deposits 14.3 GeV in the calorimeter (left). One of
the electromagnetic clusters is also detected in the SRTD (right).

e at least two electromagnetic islands with SINISTRA probability > 0.5 and
energy > 5GeV.

o both islands have to be at least 3 cm away from the edge of the calorimeter beam

hole (referred to as ‘box cut’).

e total event energy when ignoring the photon and the electron islands: Epap <
2 GeV

o E — P, > 30GeV
o | Ap,| < 4GeV obtained from the two highest energetic islands

o |Ap, | < 4 GeV obtained from the two highest energetic islands

In order to be as unbiassed as possible in the efficiency extraction a so-called ‘trigger-

electron’ is required to have:

Blontr—omil0 GeV
Ps; > 09
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Figure 5.9: Electron finding efficiency (left) of SINISTRA for data (closed circles) and
Monte Carlo (open circles) with a fized probability cut at 0.9. The discrepancy between
data and Monte Carlo for low energy electrons is also seen in the ratio of efficiencies,
the efficiency correction, as illustrated in the right hand plot. A fit to a second order

polynomial is shown as solid line

If such an electron is found its position and energy determine the parameters of the
second electromagnetic island, which is considered the test object. The electron finding
efficiency of the neural network SINISTRA is then tested by counting how often the

test object is identified as an electron, requiring

either Ps; > 0.9
E,
or P S 00 = e

where the calorimeter energy Ecar is specified in GeV. This procedure has been re-
peated for box cuts of 4 and 5 cm in order to test the stability of the method against
the varying thickness of dead material in this region. No significant box cut dependence
has been observed. The ratio of the electron finding efficiency in the Monte Carlo and
the data for the different scenarios is fitted to a second order polynomial for electron
energies below an energy E°, which is also varied in the fit. For energies larger than E°
the ratio of efficiencies is unity.

The results are shown in figure 5.9 and 3.10. As can be clearly seen the energy
dependent SINISTRA-probability cut not only gives a significantly higher efficiency for
low energy electrons, but more importantly reduces the discrepancy between data and
Monte Carlo efficiency. Taking the anti-correlation of the SINISTRA probability and
the electron energy loss into account in the manner described, reduces the efficiency

uncertainty.



60 The Data Sample

w [ g 1.5 [
1 e ® EA~S -0—.0:.0:0-0-0-0 = L
& E 14 E P> P(E)
0.8 8§13
ﬁ‘ o .
0.6 F 12
C 1.1 |
0.4 [ © QEDC MC
C 1 *_#*'H-—m
0:2: = 4 QEDC DATA 0.9
:LA.|....|“H1....LI E..,.l..,LLMJ,IA...u
. 5 7.5 104,125,415 i 5 1.5 10 125 15
uncorrected E,, in GeV uncorrected E., | in GeV

Figure 5.10:  Electron finding efficiency (left) of SINISTRA for data (closed circles)
and Monte Carlo (open circles) with an energy dependent probability cut. The efficiency
is significantly higher than that for the fized probability cut at 0.9. And even more
importantly there is essentially no discrepancy between data and Monte Carlo efficiency

observed as can be seen from the right hand plot.

For a fixed probability cut at 0.9 an efficiency correction of

1.0 4 0.006128 - (Ecar — 9.469)? for Ecar < 9.469 GeV
1.0 for Ecar > 9.469 GeV

is obtained (see figure 3.9).
In the SVTX analysis the electron finding efficiency in the Monte Carlo is actually
reduced by

1.436 — 0.04269 - Ec 41 +0.001022- E% 5, for Eca < 20 GeV
1.0 for Ecar > 20 GeV
which had been obtained in an earlier study. This function is used here in order to stay
consistent with the ZEUS SVTX analysis.

No efficiency correction needs to be applied in the NVTX or ISR analyses, as for

these the energy dependent probability cut is used.
5.4.4 Positron Position Measurement

5.4.4.1 SRTD Region

In addition to the event vertex the impact point of the scattered electron in the calo-
rimeter provides the second space point, from which the electron scattering angle is

reconstructed.
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In the SRTD region (—34.0 < z.; < 32.0cm; —33.3 < ye < 32.7cm; 2 < —140.0cm)
the electron position reconstruction is entirely based on the SRTD, events without any
SRTD information are discarded. With respect to calorimeter cracks, where the electron
position can be determined to less than 1 mm, the SRTD position reconstruction has
been shown to have a resolution of ~ 3 mm. This and further details concerning the

electron position reconstruction using the SRTD are described in [68].

SRTD alignment

Due to the large and rapidly varying cross section at low-Q?, misalignments of the SRTD
and RCAL give rise to substantial systematic effects in different detector regions. Since
the two L-shaped SRTD halves are physically mounted on the face of the RCAL, their
position relative to the latter is fixed and measured precisely. Therefore, although only
the SRTD is mentioned in the following, the results also apply to the RCAL. In order
to determined the relative and absolute position of the two SRTD halves, an alignment
study based on the event rate symmetry has been performed [69].

Assuming the rate of DIS events to be completely ¢-symmetric with respect to the
ep-interaction point, a comparison of the rates in different detector regions should reveal
possible detector misalignments. For this study the runs 9362 - 9766 were analysed.
In these runs all considered calorimeter cells and relevant trigger modules were fully
functioning, no systematic effects of calorimeter energy mismeasurements are known.

The set of Monte Carlo events has been generated with the structure function
MRSD” [134] and the detector simulation MOZART, version NUM12V1.

Figure ( 5.11) shows the four regions used in the event rate measurement. The
event rates as a function of distance to the (x,y) interaction point were determined
using events satisfying:

e The electron finder SINISTRA with a probabilty cut at 0.9;

e E— P, >35GeV for photoproduction background rejection;

E. > 20GeV in order to minimize systematic effects due to inactive material and

corresponding energy loss (E, is the electron energy after SRTD correction);

The study is restricted to the SRTD, CAL-only events are ignored;

region 1 = (2.+1.0) < —13.0cm and |y.+0.3| < 7.0cm (2. and y. are the electron
position as reconstructed by the SRTD); see figure 5.11;

region 2 = (z. 4+ 1.0) 2 13.0cm and |y. + 0.3 £ 7.0cm

region 3 = |x.| < 5.0cm and (y, + 0.3) > 13.0cm (the z.-cut is tighter in order
to stay away from the SRTD cracks and a masked-off SRTD strip):

region 4 = |z, < 5.0em and (y. + 0.3) < —13.0cm.
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Figure 5.11: Left: The SRTD as seen from the interaction point. The grey shaded areas
indicate the regions 1 to 4 used for this rate study. The two L-shaped SRTD/RCAL

halves are seperated by cracks. Right: Schematic diagram of the alignment algorithm
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Figure 5.12: SRTD alignment in data. The histograms represent the event rate in the

right SRTD half (region 2), the dots the one in the left half (region 1).

based on event rate symmetry with respect to the beam.

The comparison of the different halves is done in the following way:

According to the detector survey the relative distance of the two L-shaped detector
halves is 2 mm larger than assumed in the position reconstruction and the Monte
Carlo simulation. This is taken into account by moving the right SRTD half in the

data by +2 mm in the positive z-direction;

A transformation into a coordinate system, in which the (z,y)-vertex lies at the
origin (primed system), is performed. Event rates are expected to be a function of

the radial distance to the origin only;

Plot the event rates versus:
-X in region 1

+x in region 2

+y in region 3

-y in region 4

in the new coordinate system;

Assuming a possible shift of the SRTD by 4. or d,, which are varied over a range
of several millimeters, a set of event rate distributions is obtained. A \?/ndf is
calculated for every 4 value by comparing the rate distributions in regions 1 and 2
and regions 3 and 4 respectively;

Example plots for the z-shift determination in data and Monte Carlo are shown in
figures 5.12 and 5.13. The behaviour of \2/ndf as a function of & reveals possible

shifts of the SRTD, which is shown in figure 5.14.
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Figure 5.13: SRTD alignment in MC. The histogram represents the event rate in the
right SRTD half (region 2), the dots the one in the left half (region 1).

As can be seen the x?/ndf in the Monte Carlo reaches a minimum of ~ 1 without
any shifts in z and y. This result demonstrates that the rate symmetry method works,
since the Monte Carlo geometry is consistent in the event generation and reconstruction
by construction. However in the data a clear shift of ~ 4 mm in z is found, while a
possible shift in y as small as ~ —1 mm might be seen.

As a result of this study in the event reconstruction the left SRTD half is shifted in
z-direction by 4 mm, the right by 6 mm, which is consistent with other studies [70].

However a later alignment study based on the tracking detectors [124] showed, that
the relative shift of the two SRTD halves is —2 mm rather than the assumed +2 mm.
This results in a total correction of 3 mm for the left and 3 mm for the right SRTD half,
which is used in the SVTX, NVTX and the ISR analyses.

For a large fraction of the 94 data (run 9767 - 10263) a TEC-card of the calorimeter
first-level trigger was not functioning, resulting in a depletion of detected electrons in
that region. In principle this effect can be reproduced in the trigger simulation ZGANA,
but for some of the Monte Carlo files used the necessary information is missing. In order

to take possible edge effects in adjacent trigger towers into account, events with
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Figure 5.14: x? perndf as a function of the shift 6, (left) and 8, (right) for Monte Carlo
(open circles) and data (full circles).

-37.0cm < Xq < —-5.0cm and
—37.0cm < yo < -7.0cm

are therefore cut out in the Monte Carlo and data. As a systematic check the Monte
Carlo events in the affected TEC region are reweighted according to the fraction of data
luminosity, for which the TEC was fully functioning. No significant effect on the final
F; has been found.

For almost all 1994 runs considered, one of the two photomultiplier tubes (PMT) in
an electromagnetic cell in the RCAL was not functioning. In the offline reconstruction
this PMT information could be ignored and the cell energy be reconstructed by doubling
the energy of the remaining PMT, the procedure usually applied in cases of a ‘dead’
PMT. In order to stay consistent and to take the corresponding effects on the trigger
into account, the trigger simulation ZGANA had to be re-run with this modified energy

calculation. As a simpler solution events with

6.0cm < X¢ < 32.0cm and
-33.0cm < ya < -17.0cm

are cut out.

These two geometrical cuts change the shape of the electron scattering angle distri-
bution and hence the Q2-distribution, but they are well reproduced in the Monte Carlo
(see section 6.9).

In the region close to the beampipe the reconstruction of the electron impact position

and energy is poor, due to energy leakage into the beam hole. Figure 5.15 shows the
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Figure 5.15: Measured and true electron energy compared to the one reconstructed using
the Double Angle approach as a function of distance to the beam. The RCAL cell next
to the beamhole covers an z-range of 9 — 29 cm (dashed line), the final boz-cut is applied
at 12 cm (dotted line).

effect of the electron energy loss as a function of its distance z to the beam for |y| < 10cm.
The reconstructed energy is compared to the generated one and to

sinyy
siny, + 8in®, — sin(vn + O,)

EDA 5 2Ee

which is the electron energy as reconstructed from the angles of the scattered electron
and the hadronic final state 2. The effect in the other regions around the beam hole is
essentially identical. As suggested by these results the electron impact point is required
to be at least 3 cm away from the inner, 1 cm from the outer SRTD edge and 2.5 cm
from the SRTD cracks, separating the two halves.

Figure 5.16 shows the acceptance of the SRTD with the imposed cuts and the faulty
trigger tower and cell. Absolute as well as relative uncertainties in the SRTD position

of £1 mm are taken into account in the systematic checks.

5.4.4.2 Inner RCAL Region

The electron impact point in the RCAL outside the SRTD is determined using the energy

sharing between the two sides (Ep.p and E. ) of a calorimeter cell, as implemented

A reconstruction prescription for the hadronic angle 5, from measured quanrities is given in 6.5,
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Figure 5.16: Left: Scatter plot of the electron impact position in the SRTD region. The
two ‘L’-shaped regions indicate the nominal acceptance for the two SRTD halves. The
cells affected by the dead trigger tower and the dead PMT are indicated by dashed lines.

Right: Energy imbalance as a function of the relative z-position in a calorimeter cell.

in the routine ELECPO [71]. The imbalance, defined as

imbalance = M (3.1)

Eiest + Evight

is strongly correlated with the relative electron position in the calorimeter cell (see
figure 5.16). Since ELECPO was tuned to HES information, where the HES position
in the data was shifted by ~ 3 cm in z-direction with respect to the one assumed in
the reconstruction, a systematic check with and without this shift was done. Possible
systematic shifts of the reconstructed radius value of the electron impact point by up

to 2 mm are hence accounted for.

5.4.4.3 Outer RCAL and BCAL Region

In the entire BCAL and FCAL and RCAL outside a radial distance of 70cm from the =-
axis, the electron position is determined from the extrapolation of a matched track to the
electron z (in F/RCAL) or radius-position (in BCAL), if available. A track is matched
if the extrapolated position is within 5 cm of the electron position as reconstructed by
ELECPO.

Figure 5.17 shows the distributions of the electron scattering angle ©,; for all events
and for events with a matched track in Monte Clarlo and data. Although they are
consistent within errors the resulting track matching efficiency as a function of ©,, is
systematically higher in Monte Carlo than in data. Since this effect is not investigated
any further a matched track is not required for an electron in these calorimeter regions,

but only used for a precise position reconstruction.
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Figure 5.17: Upper left: Distribution of the electron scattering angle ©, for all events
(histogram) and for events with a matched track (dots) in Monte Carlo. Upper right:
corresponding distributions for data. Lower: Track matching efficiency as a function of

0. for data (closed circles) and Monte Carlo (open circles).

Using these techniques the resolution obtained in the electron scattering angle ©,
varies between 0.1° and 0.2° (see figure 5.18). Figure 3.19 shows the scattering angle
distributions for all three analyses. Good agreement between Monte Clarlo and data is
found. The kinks in the NVTX and ISR distributions are due to the geometrical cut on
the trigger tower and one additional RCAL cell.

5.4.5 Positron Energy Measurement

The measurement of the scattered electron energy plays a crucial role for the kinematic
reconstruction of DIS events, especially for the *electron only” reconstruction method.

This method has a better intrinsic resolution than the *donble angle” or purely hadronic
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Figure 5.18: Electron scattering angle resolution in the different detector regions.

1400
1200
1000
800
600
400
200
40 160 " =0 175 140 160
©, in degrees ©, in degrees ©, in degrees

Figure 5.19: Electron scattering angle distributions after final cuts for the NVTX, SVTX
and ISR analysis.

methods and is therefore of vital importance for 1994 DIS analyses which reach down
to Q? = 3.5 GeV2 As shown in many analyses the ZEUS detector Monte Carlo
(MC) does not seem to describe the entire characteristic of the detector details, yielding
a discrepancy in the electron energy spectra and resolution between MC and data as
shown in figure 5.20. Both distributions show clear effects of energy loss as can be
seen from the peak position deviating from the electron beam energy, 27.5 GeV. Also
a broadening of the peak is evident, indicating a better energy resolution in the Monte
Carlo compared to the data.

The models to explain this mismatch either assume that the difference in energy loss
as seen in the calorimeter (CAL) is entirely due to missing inactive material between
the interaction point and the CAL in the Monte Carlo or entirely due to an energy scale
mismatch between data and MC, or a mixture of the two.

As shown in the ZEUS low Q? F; analysis from the 1994 shifted vertex runs [112]
this effect can be corrected very well, using the preshower information from the SRTD
[68]. Figure 5.21 shows a summary of this correction method. In Kinematic peak events
(a definition of these is given in the following subsection) the scattered electron has ap-

proximately the electron beam energy (27.5GeV), hence providing test beam conditions.
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Figure 5.20: Electron energy spectra from MC' (histogram) and data (full circles). Stan-
dard final DIS cuts are applied, no electron energy correction is performed. The electron
energy spectrum in the data peaks at a lower value and is broader compared to the MC
indicating that the energy loss and resolution is not completely simulated in the MC.
Both distributions show a clear signature of energy loss. The arrows indicate the elec-

tron beam energy.

The loss in the electron energy as measured in the calorimeter is strongly related to the
preshowering of the electron in high voltage cables or mechanical support structures
before reaching the calorimeter. This effect can be quantified by the resulting shower
signal in the SRTD. Fitting the relation between the calorimeter and the SRTD signal
for kinematic peak and other kinematically constrained events provides an electron en-
ergy correction which is good to 1% at 27.5 GeV and 2% at ~ 10 GeV. The obtained

energy resolution is

olE) _ 2%

E vVE
Although the discrepancy of the electron energy spectra gets smaller outside the
SRTD region it clearly persists (see figure 5.20).
Outside the SRTD the energy of electrons with a radial distance of at most 70 cm
from the (z,y)-origin in the RCAL can be corrected using a method based on the
kinematic peak events. In the outer part of the RCAL and the entire BCAL an energy

correction based on a calibration from the C'TD tracks is applied.

5.4.5.1 Kinematic Peak Correction

As shown in earlier studies[80, 81] the discrepancy in the energy loss between data and

MC can be corrected based on kinematic peak (KP) events.
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Figure 5.21: For kinematic peak events the strong correlation between the electron energy
loss and the SRTD signal (top left) is used to correct the electron energy. The result
is good to 1 — 2% (top right and bottom left). The lower right plot shows the energy

resolution as a function of the energy.

At low y, the electron energy exhibits the so-called kinematic peak behaviour. In
this region, the electron energy is essentially at the electron beam energy, 27.52 GeV,
independent of z and Q? (see figure 5.22). Appropriate cuts can isolate this region.

All standard DIS cuts are applied to reject background:
o E—P. > 35GeV

e 16.cm box cut (only RCAL is used)

o E. > 10GeV

Cuts are then made in Q?, measured with the double angle method (Q3, ) in order
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Figure 5.22: (z,Q%) plane. left: The electron isolines from 5 to 25 GeV, from 30 to
75 GeV and at 26.8 GeV, 27.5 GeV and 28.4 GeV are shown. right: Events in the
kinematic peak region (grey area) are selected using the cuts Q* = 100GeV? and 16 cm
boz cut (dashed-dotted line) and y = 0.03 (dotted line).

not to be too sensitive to the electron energy scale. Events are rejected if Q%, >

100 GeV?, hence removing the higher electron energy tail in the energy distributions.
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Figure 5.23: Electron energy distribution of the kinematic peak sample. Compared to
the true Monte Carlo (histogram) and the measured Monte Carlo (open circles) the
data distribution (closed circles) is considerably shifted to lower energies and is broader,

indicating a degraded resolution.

The distributions of the true electron energies from the Monte Carlo after cuts shows
a sharp peak a the electron beam energy 27.52 GeV (see figure 5.23). Events with initial
state radiation give rise to the low energy tail while most of the photons from final state
radiation are included in the electron cluster by the electron finder. The measured
energy distributions for the kinematic peak sample are shown as open circles for the
Monte Clarlo and closed circles for the data. The peak in the data is below the MC' peak

peak by 4.67% while the data spectrum is significantly broader indicating a distorted
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energy resolution.
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Figure 5.24: True (top left) and measured electron energy (lop right) after Q% , and
standard DIS cuts versus yyp and radial distance from the z-axis. The values shown

are obtained from fits to slices in yyp and radius.

As can be seen from figure 5.24 the mean electron energy of the MC' KP sample as a
function of the radius on the face of the RCAL overshoots that of the data everywhere.
More importantly the difference is not constant, but shows a clear structure with a max-
imum discrepancy between RCAL radii of 16 and 26 cm indicating that the discrepancy
is, at least in this region, due to an inaccurate description of the inactive material in
the Monte Carlo. Figure 5.24 also shows the mean true electron energy as a function of
ysB. Below y = 0.03 the true electron energy becomes constant and essentially reflects
the electron heam energy. Plotting the mean measured electron energy as a function of
ysB shows that below y;5 = 0.03 the electron energy becomes independent of y. Also
the true electron energy as a function of radius on the face of the RC'AL is depicted.

Evidently there is no significant dependence on the electron impact point. Therefore
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the kinematic peak sample provides an almost monoenergetic set of events giving the

opportunity to investigate the spatial dependence of the energy loss by the CAL.

S EPE D
<100 30 60 40 20

Figure 5.25: (r,@)-bins on the face of the RCAL in which the Xq is eztracted and in
turn the correction applied. The grey area indicates the position of the SRTD with a
13 em boz cut. The overlap of the SRTD with the (r,¢) bins allows a test of the method.

By construction the KP sample provides a ‘test beam’ at 27.52 GeV. Using small
(r, @) bins on the face of the RCAL the sample is binned such that the amount of ma-
terial traversed by the electron before reaching the RCAL in each bin is approximately
constant (figure 5.25). The energy loss as determined from the peak of the measured
energy spectrum in each bin in combination with results from CERN test beam mea-
surements on energy loss characteristics allows one to correct the electron energy.

The innermost bins overlap with the SRTD, allowing a test of the method. Fig-
ure 5.26 and 5.27 show examples of measured energy spectra for data and MC in bins
outside the SRTD. The spectra are fit to a gaussian with an exponential tail.

For these studies the energy loss parametrization as given in (80], based on CERN
testbeam data with varying amounts of material in front of the CAL, is used (see figure
5.28).

Sy + 2(0.0037e 9B 275 4 0.034¢0387 £ ;0.31) (5.2)

meas
Emzns

where 2 represents the amount of material traversed, measured in radiation lengths.
For the KP sample Ey. is taken to be 27.52 GeV (the electron beam energy) and
Eneas is obtained from the peak of the fits to the spectra. Hence an X value for each
bin in data and MC' can be obtained. In turn the true electron energy can be evaluated

for all measured electron energies in the KP bins.
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Figure 5.26: Ezample of data K'P sample electron energy spectra in GeV in correction

bins. The distributions are fitted to a gaussian with an exponential tail.
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Figure 5.27: Erample of Monte Carlo KP sample electron energy spectra in GeV in

correction bins. The distributions are fitted to a gaussian with an exponential tail.

5.4 Electron Identification and Reconstruction.
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Figure 5.28: Parametrisation of the ratio between the true electron energy E,,.,. and
measured electron energy Epeqs as a function of Ey.., and the amount of penetrated

inactive material X traversed.

In order to obtain good agreement between data and MC a correction based on the
measured X values is not sufficient. The MC has to be smeared, bin by bin, such that
the energy resolution is modelled as well as the energy loss. From the widths of the
gaussian fits to the measured energy spectra in data and MC a bin-by-bin smearing is
calculated assuming the percentage increase of the energy resolution from MC to data
to be energy independent.

The kinematic peak correction can be tested with kinematically constrained events
like QED-Compton events and elastically produced DIS p's. The correction, which is
only sensitive to the energy loss in a small RCAL-bin averaged over many events, can
also be compared to the SRTD energy correction, which corrects electron energies on
an event-bhy-event basis exploiting the presampler effect.

Figure 5.29 shows the comparison of electron energies reconstructed using the kine-
matic constraint of the QED-Compton events with the KP corrected energy. The KP
correction tends to give a slightly higher energy value, but this effect gets smaller for

electrons outside the SRTD, where the energy resolution of the KP correction gets
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Figure 5.29: Comparison of KP energy correction with energies constrained by kine-
matics for all QED-Compton events (left) and only the ones with electrons outside the
SRTD (right).

better.

Figure 5.30 shows a comparison of KP corrected energies to the generated or the
SRTD corrected ones as a function of electron energy and radius on the face of the
RCAL. The KP-method tends to overcorrect the electron energy loss for low electron
energies slightly, but electrons with energy less than 10 GeV are not included in the
F,-measurement anyway. The KP-corrected energies agree with the generated and the
SRTD corrected values to 1% at 27.52 GeV and to ~ 2% at 10 GeV. Evidently no
dependence of this agreement on the radius on the face of the RCAL is found.

Figure 5.31 shows the percentage deviation of the KP correction in data compared
to the Monte C'arlo KP correction for KP events (27.52 GeV) as a function of scattering
angle ©. The data correction is overall about 2.3% higher than the Monte Carlo cor-
rection (full line), indicating a possible energy scale discrepancy. In addition to that a
bump structure in the correction ratio in the SRTD region (r.h.s. of dotted line) shows
that there is presumably some inactive material missing in the Monte Carlo detector

description.

5.4.5.2 Energy Calibration based on Tracking

Due to the Q% , < 100 GeV? cut the KP sample runs out of statistics at an RCAL
radius of = 70 cm. Therefore, outside this region the KP energy correction cannot he

applied anymore. However, as particles that hit the outer RCAL or BCAL traverse
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Figure 5.30: KP correction as a function of electron energy: The top plot shows the ratio
of KP corrected over generated electron energy. The correction is good to + 2% (dotted
line), at higher energies even better. The middle plot demonstrates the good agreement
between the KP- and the SRTD correction. Only below 10 GeV deviations of more than
2% are observed. The bottom plot shows that there is no systematic deviation of the KP

corrected energies from the generated values as a function of radius.

six superlayers or more in the CTD their momentum is very well determined from
the tracking. Performing a calorimeter-track matching the CAL energy loss or the
energy scale can therefore be calibrated. The advantages of this method are that the
CAL energy is completely independent of the momentum reconstruction of the CTD
tracks and that a comparison of data with data and Monte Carlo with Monte Carlo can
be done independently. The disadvantages and characteristics, that have to be taken
into account, are that final state radiation photons are mostly included in the CAL
measurement but not in the tracking, tracks might not only be matched to electrons but
also the background signals and electrons can already lose energy due to bremsstrahlung
in the beampipe wall, the VXD or the inner wall of the CTD.

For this study the data set is selected by the following requirements:
o The electron candidate has to be found by SINISTRA with a probability Ps; > 0.9;
e /= P. > 35GeV and y. < 0.95 for background rejection (see section 5.7);

o Asin 1994 the VXD was slightly misaligned all tracks in data and Monte Carlo
have heen re-fitted ignoring any VXD hits in order to minimize systematic effects

on the momentum reconstruction;

o [ixtrapolating tracks via a helix fit to the end of the magnetic field map in the
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Figure 5.31: Percentage deviation of the KP correction in data compared to the Monte
Carlo KP correction for KP events (27.52GeV ) as a function of scattering angle ©. The
data correction is overall about 2.5% higher than the Monte Carlo correction (full line),
indicating a possible energy scale discrepancy. In addition to that a bump structure
in the correction ratio in the SRTD region (r.h.s. of dotted line) shows that there is
presumably some inactive material missing in the Monte Carlo detector description.

inner part of the detector and using a tangential straight line for the following
at most 10 cm to the face of the CAL one and only one track must match the
electron candidate within 5 cm. For systematic checks the track was also required
to originate from the event vertex, but no significant effect on the final result has
been observed.

In order to perform the calibration study in detector regions with approximately
constant amount of material, the data set is subdivided according to the electron impact
point to be at a radius of 70 — 100cm, 100 — 120cm or greater than 120cm in the RCAL
or the electron to be in the BCAL.

For each of these spatial bins clectron energy bins of 5 — 10 GeV, 10 — 15 GeV, 15—
20GeV and 20—30GeV are defined. In each bin the percentage deviation of the electron

energy measured in the calorimeter, Eg 47, with respect to the tracking determination,
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Eivk, is sampled. Examples of the resulting distributions for 100 < radius < 120 cm in
the data and Monte Carlo are shown in figure 5.32 and 5.33 respectively. The central
peak positions are determined by fits to gaussian with exponential tails to account for
the final state radiation effects.
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Figure 5.32: Comparison of the Monte Carlo calorimeter and the tracking energy in bins
of Ecar 5—10GeV (upper left), 10 — 153 GeN (upper right), 15 — 20 GeV (middle left)
and 20 — 30 GeV (middle right). The amount of traversed material is cxtracted from a

fit to the resulting ratio of energics as a function of calovimeter energy (bottom plot).
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energies. However, the correction has to be supplemented by additional smearing of the

Monte Carlo energies.
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Figure 5.33: Comparison of the data calorimeter and the tracking energy in bins of
Ecar 5—10GeV (upper left), 10 — 13 GeV (upper right), 15— 20 GeV (middle left) and
20 — 30 GeV (middle right). The amount of traversed material is extracted from a fit to

the resulting ratio of energies as a function of calorimeter energy (bottom plot).

The ratios obtained, EELL:Z‘ as functions of E¢ 4y are fit to the function given in
equation ( 5.2), where the only free parameter is the amount of dead material, which
causes the observed energy loss. Asin the KP-correction this quantity for a given detec-

tor region allows one to determine the correction of the measured to the true electron

Monte Carlo E%‘:L-
5-10(10-15| 15—20 | 20— 30 | rad.len. | smear.
GeV GeV GeV GeV Xo in %
RCAL 70 — 100 1.028 1.010 1.008 1.008 0.700 20
RCAL 100 - 120 1.078 1.054 1.042 1.030 1.569 25
RCAL > 120 1.143 1.115 1.107 1.069 2.213 22
BCAL 1.044 1.016 1.005 1.009 0.950 15
DATA ik
5-10]|10-15|15-20 | 20- 30 rad.len.
GeV GeV GeV GeV Xo
RCAL 70 — 100 1.071 1.079 1.033 1.018 1.650
RCAL 100 — 120 1.129 1.117 1.154 1.080 2.209
RCAL > 120 1.250 1.226 1.200 1.165 2.871
BCAL 1.082 1.083 1.076 1.066 1.894
BCALpaparBCALue | 36% | 6.6% | T.1% | 3.6%

Table 5.1: Summary of the tracking energy calibration. In the different RCA L and
BCAL regions the ratios of energies as obtained from the tracking and the calorimeter
as well as the extracted amount of material in Xo and the applied energy smearing in
the Monte Carlo are given. The applied corrections vary by ~ 6% between data and

Monte Carlo, indicating a potential energy scale mismatch.

A summary of the results from the tracking calibration is given in table 3.1. the
general tendency of increasing energy loss with increasing RCAL radius due to cryo-
tubes, cabling and mechanical support structures in the data is well reproduced by the
Monte Carlo. The obtained correction factors vary between ~ 1 — 14% in the Monte
Carlo and 2 — 25% in the data. The extracted amount of traversed radiation lengths in
the data is about 0.4 — 0.9X larger than in the Monte Carlo. But more importantly

the energy corrections in the BCAL. where the amount of material in front of the
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calorimeter is relatively small and its geometrical distributions is well defined (mostly
the superconducting coil), are overall about 6% larger in the data than in the Monte
Carlo, indicating an energy scale mismatch.

1 — 1.5% energy loss effects due to the electron traversing the beampipe and the

inner detector walls are not corrected for. Similar results have been found in [86].
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Figure 5.34: Electron energy spectrum for data (dots) and Monte Carlo (histogram) after
calibration using the tracking correction for different regions in the RCAL and BCAL.
a) RCAL radius 70 —100c¢m, b) RCAL radius 100 — 120 cm, ¢) RCAL radius > 120cm,
d) BCAL edge = < =90 cm and ¢) rest of the BCAL.
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Figure 5.35: Electron energy spectrum for data (dots) and Monte Carlo (histogram) after
correction using the SRTD (top), the KP correction (middle) or the tracking correction

(bottom).
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Figure 5.34 shows a comparison of the electron energy spectra in'the different detec-
tor regions after the tracking energy calibration. In all regions very good agreement in
peak position and width between data and Monte Carlo is found, providing confidence
in the applied corrections.
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Figure 5.36: Electron energy distributions after final cuts for the SVTX and ISR anal-

yses.

The comparison of the corrected energy spectra for the NVTX data sample using the
SRTD, the KP-correction or the tracking calibration is shown in figure 5.35. Very good
agreement between data and Monte Carlo is found for all three correction methods.

Due to the increased statistics of the 1994 DIS data sample with respect to previ-
ous years it has been possible to apply electron energy corrections in the entire RCAL
and the BCAL. This fact allows the kinematic event reconstruction and hence the F;-

measurement only based on the electron scattering angle and energy in the entire acce-

sible (z,Q?) space for the first time in ZEUS.

The electron energy spectra after the afore mentioned corrections for the SVTX and
the ISR analyses are shown in figure 5.36. The data distributions are well described by

the sum of the DIS Monte Carlo and the expected background contributions.
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5.5 Luminosity Calorimeters.

The position and energy reconstruction of the emitted photon plays a crucial role in the
ISR analysis. No special photon finder is run on the data of the luminosity calorimeter,
but rather its total energy is determined. The position and hence angle reconstruction
is based on a centre of gravity algorithm, which determines z- and y-coordinate of the
photon separately from hits in the grid of the scintillator fingers in the calorimeter.

However, the simulation of this detector component is complicated. The usual sim-
ulation of calorimeter showers is, mainly for processing time and particle multiplicity
reasons, terminated according to parametrisations, which are tuned to test-beam data.
In order to shield the luminosity photon calorimeter against synchrotron radiation, a
carbon-lead filter (~ 3.5 X) is placed about 1 m in front of it. Particle showers, that
start in this filter, can therefore be terminated before a full development in the actual
calorimeter is simulated. Therefore the energy measurement in the photon calorimeter
is simulated separately from the standard ZEUS detector simulation, according to pa-
rameters obtained from the data [74].

1000
800
600
400
200

Figure 5.37: Distribution of the photon impact points in x and y in the photon luminosity
calorimeter for Monte Carlo events before (left) and after reweighting (right).

Due to the rather small geometrical acceptance of the luminosity photon calorimeter
and its long distance from the interaction, it is particularly sensitive to the beam tilt and
divergence. As the standard simulation has heen done using average values, an adequate
description of the beam divergence in z and y is obtained only after reweighting the
Monte Carlo events to the distributions found in the data (see figure 5.37).

The resulting distributions of the reconstructed - and y-photon positions in the
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Figure 5.38: Distributions of the photon impact point in  and y comparing data (full
circles) and Monte Carlo (histogram).

luminosity calorimeter are shown in figure 5.38. Adequate agreement between data and
Monte Carlo can be seen. However, the small discrepancies and fluctuations are due
to the shower terminators in the Monte Carlo and of no particular importance for the
present analysis, as the photon position is not explicitly used in the reconstruction.

The photon energy can be directly measured in the luminosity calorimeter, but it
can also be estimated from quantities reconstructed in the main calorimeter as

ESAL = E,. (1 " %) (53)

The photon energy spectrum from the direct measurement and a comparison to this
estimate from the main calorimeter, after all selection cuts, are shown in figure 5.39.

The shaded histograms represent bremsstrahlung background (see section 5.7). Very
good agreement between data and Monte Carlo obtained after adding the bremsstrahlung

background is evident.
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Figure 5.39: Left: Spectrum of photon energies as reconstructed by the lumi-photon calo-
rimeter after final event selection. The sum of the bremsstrahlung background (shaded
histogram) and the DIS Monte Carlo is displayed as open histogram and describes the
data (full circles) very well. Right: Difference in photon energy as reconstructed from
the main detector and measured in the photon-lumi calorimeter. Again the data are well
described by the sum of the bremsstrahlung background and the DIS Monte Carlo.
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5.6 Hadronic Event Parameters.

5.6.1 Introduction.

Since ZEUS is essentially a 4m-detector, not only the scattered electron, but also the
hadronic products in the final state are detected. Their energies as well as their angles
can be reconstructed in the calorimeter. These together with the energy and angle of
the scattered electron provide an overconstrained system for the reconstruction of the
kinematic variables z, y and Q?, of which only two are independent.

This fact is exploited in the NVTX analysis (see section 6.6), whereas the SVTX
and the ISR analyses are almost entirely based on the reconstruction of the electron.

The hadronic final state reconstruction is performed using the calorimeter and the
event vertex. All calorimeter cells, which are not assigned to the scattered electron,
are interpreted to be part of the hadronic system. The following three quantities are
reconstructed from these cells:

6 = Y En- P
3
7 2
Prp = J (Z P:,h) + (Z Py.h)
h h
Phy -8
T

The angle v, characterises the hadronic energy flow. In the naive parton model ~4 is
the polar angle of the struck quark.

5.6.2 Noise Simulation.

The reconstruction of kinematical variables suffers from meaurement errors introduced
by the detector. One major aspect is the noise of the calorimeter due to its radioac-
tivity. As all non-electron cells are declared to be part of the hadronic system, the
reconstruction of hadronic variables, in particular 4y, is affect by the noise.

At low y, where the final state hadrons move predominantly in the forward direction,
8y is very small and hence particularly sensitive to calorimeter noise. For y ~ 0.01 the
hadronic é, = 0.5GeV, while a noisy cell with 250 MeV energy signal close to the RCAL
beampipe contributes another 0.5 GeV to 8, and distorts the measurement by 100%.

As the low-y region provides an overlap with fixed target data, precise measurements
there are of vital importance in order to obtain a complete picture of the proton structure
and its gluon content. Consequently the experimental conditions, including the detector
noise, have to be well described by the Monte Clarlo.

Since it was found that the noise description in the BEMC, FEMC, FHAC1 and
FHACO sections of the calorimeter is not adequate in the simulation, the following

procedure has been proposed in [76]:
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In the run range considered for the NVTX analysis, random trigger and passthrough
events, which are essentially empty as far as ep-scattering or beam-gas events are con-
cerned, are selected. This sample provides a representative picture of the calorimeter
noise, taking run-by-run variations into account. For this sample the number of noisy
cells per event and the cell energy versus the imbalance of the two PMTs in a cell (fig-
ure 5.40) are sampled for the ten different calorimeter regions (R/B/FEMC, R/FHACO,
R/B/FHAC1 and B/FHAC2).
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Figure 5.40: Calorimeter noise in the BEMC section. Left: Number of noise cells per
event. Right: Energy versus imbalance for these cells.

The noise in Monte Carlo events is finally replaced by calorimeter entries randomly
generated according to the distributions measured in the data.

This procedure has been followed in essence. In order to investigate effects due to
noise variations with cell position, for example for cells close to or far away from the
beampipe, the number of noisy cells has been sampled as a function of their position
in the calorimeter. However, the improvement in description compared to the position

independent procedure has been found to be small.

5.6.3 Noise Cuts.

Calorimeter noise originates from several sources, for example the radioactivity of the
uranium or noise in the PMTs or readout electronic. Certain cells also tend to produce
mini-sparks, where one of the two cell PMTs frequently gives a large signal.

The latter can be identified via their hit frequency. The uranium and electronic noise
produce cell energy distributions, that peak at low values. Nevertheless high energy tails
overlap with an energy region populated by deposits originating from ¢p-interactions.
Different cut combinations have been studied [77, 78].

In order to reduce the contamination of the data sample by this noise. affected cells
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are removed according to criteria identifying calorimeter noise. These criteria, used in

the analyses presented here, are

E.n < 100 (150) MeV for isolated EMC (HAC) cells
relative imbalance > 0.8 for isolated cell with energy < 0.7 GeV

and particularly noisy cells are removed explicitely

In the SVTX analysis the FCAL modules 7 and 8 are exceptionally noisy. As this
analysis is almost entirely based on the electron reconstruction and focusses on the kine-
matic region, where the final state electrons as well as the hadrons move predominantly
in the rear direction, these modules are cut out completely and ignored in the recon-
struction of hadronic event variables. The effect on 4, the only quantity where hadronic

energy enters the analysis, has been found to be negligible in a Monte Carlo study.

5.6.4 Hadronic Energy Scale.

In the determination of hadronic event parameters the hadronic energy measurement
and its reproducibility in the Monte Carlo play a crucial role. Because of the collimation
of hadronic energy into jets and the unknown distribution over charged and neutral
particles it is not possible to select well defined hadrons for energy correction studies.
Instead the hadronic energy scale is studied using global event quantities, such as the
transverse momentum of the hadronic final state (pr,,) and of the scattered electron
(pr,e) or 8x. As the latter can be reconstructed or, if necessary, be corrected very

precisely (see section 5.4) it serves here as a reference scale.
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Figure 5.41: ';—-;%-distribulion in Monte Carlo (histogram) and data (full circles). The

peak in the data is clearly shifted to larger values of 3/!_, indicating an energy mismatch.

In an ideal measurement p7,, must equal pr, as a consequence of energy and mo-

mentum conservation. Particle losses in the forward or rear beamhole are expected to
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affect the measurement of pr, only little as their transverse momentum is relatively
small. However, d, is reduced which in turn can also affect the reconstruction of the
hadronic angle v4. Particle losses are also simulated in the Monte Carlo, so that these
effects should be reproducable.

Figure 5.41 shows the distribution of x;—r = ’;—:f for events, which pass the final se-
lection cuts. The overall characteristics such as shape and width, are in good agreement
between Monte Carlo and data.

But the data distribution appears to be slightly shifted to higher values of 3;:_1‘
indicating a possible scale mismatch. In order to investigate, whether this effect is to
be attributed to the energy scale, missing material in the detector simulation or other
effects, the peak position of the r’};—distribution, as obtained from a gaussian fit, has

been studied as a function of the hadronic angle 4. The results are shown in figure 5.42.
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Figure 5.42: ;ﬂ; peak position as a function of v, in Monte Carlo (open circles) and
data (full circles).

The peak position in Monte Carlo and data is fairly independent of 5, apart from
the extreme region close to the FCAL- and RCAL-beampipe. Here the effect of particle
losses in the beamhole is clearly visible. But more importantly S;_T in the data tends
to be larger than in the Monte Carlo in certain detector regions. In the FCAL, i.e. at
small v, H}? is well reproduced by the simulation, but in the RCAL a mismatch can
be seen, which becomes a significant discrepancy in the BCAL. As there is only very
little inactive material in front of the calorimeter in the BCAL, i.e. the beampipe, inner
and outer wall of the C'TD and the solenoid, the scenario of inadequate description
of material can be excluded. The discrepancy in 3,’,—T between data and Monte Carlo
amounts to ~ 4 — 6% in the BCAL and ~ 1 — 3% in the RCAL. These figures are
consistent with the size of the overall electron energy correction in the corresponding

calorimeter sections.
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In [82], where the calorimeter energy has been compared to the track momentum
for hadronic particles isolated in phase space, a deviation of up to 9% in the measured
energy with respect to the Monte Carlo has been found.

Consequently the energy scale in the BCAL and RCAL have been corrected by 6%
and 2.5% respectively in the data reconstruction of hadronic quantities. The resulting
3;_1 distributions are shown in figure 5.43. From these the uncertainty on the energy

scale correction is estimated to be 3%.
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Figure 5.43: rp‘; distribution in different v, region for Monte Carlo (histogram) and

data (full circles).

Following the same approach, corrections for the hadronic angle v4 and yjp = TJL“:
where 8, = (E' — P.)s have been determined. The resulting distributions are depicted
in figure 5.44.

* data
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T

Figure 5.44: 34- and yyg-distributions for Monte Carlo (histogram) and data (full cir-
cles).
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Both hadronic quantities are well described by the simulation. Qnly the difference
of the lorgitudinal hadronic energy and momentum, i.e, yip ~ (E - P.)s, shows a
small discrepancy between data and Monte Carlo in the ysp-range 1072 — 10~!, The
possible effect on £, is covered by the systematic errors.

5.8.5 Large Rapidity Gap Events.

Studies of the first HERA data, recorded in 1992, revealed the presence of a new class of
events in DIS [119]. These events, which contribute about 10% of the S sample, are
characterised by the absence of energy deposits in the forward direction. An example
event in figure 5.43, recorded in 1994, demonstrates the topology.
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Figure 5.43: A typical 1994 LRG event in the ZEUS detector, The absence of energy
deposits cround the FCAL beamhole, originaling from the proton remnant, contrasts the
topology of usual DIS events.

In regular DIS events the proton breaks up, its remnant moves in the forward di-
rection and deposits energy in the inner ring of the FCAL close to the heampipe, The
region between the remnant and the current jet, which originates from the struck quark,
is filled with hadrons resulting from the colour flow hetween the two. Gaps without par-
ticle flow between the current jet and the proton remnant are exponentially suppressed.

The direction of the outgoing final state hadrons is described using the pseudora-
pidity

= |[tn9]
n = njtan =
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where © is the polar angle of the particle. A selection method for this new class of events
is based on the quantity 7., where Tmaz 18 the largest n-value for any calorimeter cell

with at least 400 MeV energy, i.e. for the celt closest to the cutgoing proten direction.
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Figure 5.46: nac-distribution for daia (full circles) compared to the Ariadne §.06 Monte
Carlo (histogram).

Values of fmaz = 4.3 are observed for energy deposits at the edge of the FCAL.
Larger rapidity values can be obtained when a few calorimeter cells around the FCAL
beam hole are combined to form a cluster with reconstructed position in the beam hole.

The new event class with essentially no energy in the forward direction yields very
small or even negative f,,,,-values. They have an unpopulated region in their rapidity
distribution and hence are called flarge rapidity gap (LRG}'-events.

The events are interpreted as diffractive 3 dissociative scattering, which is mediated
via the exchange of a colourless object, usually called the pomeron.

Figure 5.47 shows schematic diagrams contrasting the regular and the large rapidity
gap DIS events. IP denotes the colourless object in the proton, off which the virtual
photon scatters. 22 is the usuval squared 4-momentum transfer of the electron, whereas
t describes the 4-momentum transfer at the proton vertex.

In this picture the outgoing protor should stay intact for a considerable fraction of
LRG events, This has been confirmed by tagging the final state proton and reconstruct-
ing its momentum in the leading proton spectrometer [120, 121).

As the fraction of large rapidity gap events in the sample of DIS events has beep
shown to be almost independent of Q? [122), the process is considered to be leading
fuisd.

fLarge rapidity gap events have been observed in all three analyses,

B . .
The expression “diffractive’ indicates rhe analogy berween rhc final srare parricle faw in hadren

searrering and rhe phensmena of diffraction parterns in oprics.
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axsan

Figure 5.47: Final state particle flow as a function of the pseudorapidity n for regular
DIS events (left) and for large-rapidity gap events (right).

F; is defined to be the inclusive structure function. Therefore the LRG events are
included in the analysed event sample. As shown in figure 5.46 the LRG events have
been added to the Monte Carlo description of the ep-scattering provess using the colour
dipole model, as implemented in the ARIADNE 4.06 Monte Carlo [59].
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5.7 Backgrounds.

The selected DIS data sample is contaminated by two classes of background events.
The one class can be identified on event by event basis as background and hence be
removed from the sample. The other class gives rise to events that are essentially
indistinguishable from DIS events and must therefore be subtracted statistically.

The largest and most important background source in the NVTX and the SVTX
analyses are photoproduction events. In the ISR analysis the background originating

from bremsstrahlung processes dominates.

5.7.1 Photoproduction Background.

Photoproduction events are characterised by Q?-values close to zero. Even though
the electron is scattered through a very small angle and lost down the rear beampipe,
isolated hadrons or photons from #°-decays can be misidentified as an electron.

The majority of photoproduction background events can be suppressed using the
quantity & (section 5.2) by requiring

§ > 38GeV

This cut also removes hard initial state photon radiation events from the sample, where
il

Tumi- Il these events

the loss in & due to the photon escaping down the beampipe is 2 F
are not rejected they can cause large migrations in the reconstruction of the kinematic
variables.

Since the ISR analysis focusses particularly on these events, the & calculation has to
include the final state photon. Therefore the quantity 6" =8+ 2- E} . is determined.
All selection cuts are imposed on this variable instead of 4.

Also an upper cut is imposed, in order to remove background events from electron
beam gas interactions or cosmic muons, which can leave large energy deposits only in

the rear calorimeter
¢ < 65GeV

Nevertheless, some photoproduction events pass these selection cuts. Their contri-
bution to the measured cross section has to be subtracted statistically. Several methods

have been used in order to estimate this remaining background:
e Tagged photoproduction

o Photoproduction Monte Carlo




28 The Data Sample

5.7.1.1 Tagged Photoproduction.

A subsample of the photoproduction background events can be identified as such and
tagged due to the detection of the scattered electron in the luminosity electron calo-
rimeter. In order to exclude bremsstrahlung events no signal should be seen in the
luminosity photon calorimeter. Hence a cut on E},.; < 3 GeV is imposed. Due to the
very restricted geometrical acceptance of the electron luminosity calorimeter, the effi-
ciency of tagging such events depends on the scattered electron energy and angle, and
hence on 4. In order to get a good energy response from the luminosity calorimeter a
cut of 7.5 < Ef,.; < 20GeV is applied. Hence 15—40GeV of the events’ § is lost, which
leaves a é-range of about 15 — 40 GeV for this method to give a reasonable estimate of

the photoproduction background from the tagged data.

- w 80
= - C
600 _ all PHP events 70 E
500 - 60 —
400 F e 3
- 40 F
300 F 3
: 30
200 — 20 _
100 10 F
0 - 0 'IIIIIALIIJIAJILLJL
30 40 50 60 25 30 35 40 45
din GeV din GeV

Figure 5.48: Left: é-distribution for all (open histrogram) and the tagged (shaded his-
togram) photoproduction Monte Carlo events, that pass the DIS selection. Right: Re-

sulting inverse tagging efficiency as a function of 4.

The electron tagging efficiency, however, is extracted from a photoproduction Monte
Carlo 4.5. Figure 5.48 shows the §-distribution for all and the tagged photoproduction
events in the Monte Carlo. The ratio of the distributions is the inverse efficiency, to

which a second order polynomial plus a constant term is fitted.

5.7.1.2 Photoproduction Monte Carlo.

Samples of 346301 and 87861 minimum bias non-diffractive photoproduction events
have been generated using the PYTHIA 5.7 [72] event generator and the ALLM [139)
parametrisation. The samples correspond to a cross section of 1148 nb.

As hadrons usually have to enter the rear part of the calorimeter in order to fake an
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electron, the photoproduction events were generated in the kinematic region ygen > 0.6,
which corresponds to a photon-proton centre of mass energy of W 2 190 GeV. Only
events which have some chance to give rise to background are considered at all. As a
consequence of the y-cut, which effectively sets an upper limit on the scattered and lost
electron energy, this method can only be applied above § =~ 30 GeV as seen in the main
calorimeter.

In order to reduce the size of data storage and the corresponding processing time
for the photoproduction Monte Carlo sample, only events that satisfy the trigger pres-
election and have the DIS DST bit set are written out. These events are then analysed

following the same reconstruction chain and selection criteria as DIS events.
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Figure 5.49: é-distribution at high-y. Good agreement between the tagged photopro-

duction and the photoproduction Monte Carlo is observed, which allows the background

estimation in the data compared to the DIS Monte Carlo.

Figure 5.49 shows the ¢ distribution at ym..s > 0.2 for data (closed circles), DIS
Monte Carlo (open histogram), photoproduction Monte Carlo (stars) and the tagged
photoproduction events (open circles). At d-values larger than ~ 350 GeV the DIS-Monte
Carlo agrees well with the data, while it undershoots at low § due to the background
contamination in the data. The flattening of the photoproduction Monte Carlo at
4 < 38 GeV is a consequence of the y;.,. > 0.6 cut on the generator level. In the 4-
distribution between 32 and 43 GeV the background estimates from the tagging method
can be used as a cross check. Good agreement with the photoproduction Monte Carlo
is found for § > 38 GeV. At § =~ 35 GeV the sum of DIS Monte Carlo and tagged
photoproduction amount to the number of events measured in the data.

The different methods give consistent results. But due to the limited statistics of
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tagged events the photoproduction Monte Carlos are used in the background determi-
nation of the NVTX as well as the SVTX analysis.

From the comparison of the different methods the uncertainty on the photoproduc-
tion background determination is estimated to be +100% and —50%. The resulting
uncertainty in F; is accounted for by the systematic errors.

5.7.2 Bremsstrahlung Background.

In the ISR analysis the main source of background is the accidental coincidence of a DIS
or photoproduction event with bremsstrahlung events of the Bethe-Heitler process ep —
epy. Unless the bremsstrahlung electron is seen in the luminosity electron calorimeter,
the origin of the photon can not be identified, so that it is attributed to the event in
the main detector.

Figure 5.50 shows the energy spectrum of bremsstrahlung photons as measured in
the luminosity photon calorimeter [74]. Events with the bremsstrahlung electron tagged
in the luminosity electron calorimeter (Ef,,.; > 3 GeV), shown as shaded histogram,
can be vetoed very efficiently for 11 < E,, < 17 GeV.

The remaining background has to be subtracted on a statistical basis. It is estimated
in the following way, as suggested in [75]:

According to the DIS event selection criteria, but without the requirement of a
tagged photon and the &’-cut, an event sample is selected. It consists predominantly
of non-radiative events (see peak in upper right &’-distribution of figure 5.50). In order
for this sample to describe the background, its events are randomly mixed with the
ones of the bremsstrahlung sample by attributing the latters’ energies measured in the
luminosity electron and photon calorimeter to the main event.

The &-distribution of the resulting sample (bottom plot in figure 5.50) peaks at
~ 64 GeV and extends from 10 GeV to 120 GeV.

This background sample is normalised by a fit to the &'-distribution of the data after
all cuts but the §’-cut are applied, in the range 67 to 94 GeV (figure 5.51). No DIS
events are possible here, taking energy and momentum conservation and the detector
resolution into consideration. Using this sample the bremsstrahlung background in any
distribution can be subtracted.

After correcting the energy of the scattered electron and hadronic final state the
event quantity § is extracted. Figure 3.52 shows the resulting distributions for the
three analyses. Adding the background estimates to the DIS-Monte Carlo a very good

description of the data is obtained.

5.7.3 Beam Induced Background.

Another considerable source of background arises from the proton or electron interac-

tions with residual beam gas, where the cross section for protons is larger than that for
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Figure 5.50: Upper left: E] .. spectrum for all and for electron tagged bremsstrahlung
events. Upper right: &' distribution for a sample of events passing all DIS cuts, but no
requirements on the final state photon are made (no Ej,,.. cut and no §' cut). Bottom:
&' distribution for the sample resulting from the random mizing of bremsstrahlung and
DIS events.

electrons. In these events, which are characterised by a large track multiplicity and a
high activity in the calorimeter, an isolated low-energetic deposit close to the RCAL
beampipe can be misidentified as an electron.

Proton beam gas events that originate upstream of the detector (in the negative

z-direction) can be identified using the calorimeter timing. The calorimeter times for



102 The Data Sample

%o e data

mixed sample

30 40 50 60 70 80 920 100
& in GeV

Figure 5.51: &' distribution for the data in comparison to the bremsstrahlung background

sample. The latter is normalised to the data in the §'-range 67 to 94 GeV.

FCAL, BCAL and RCAL are the energy weighted time, when the PMTs give a signal
for cells with energy deposits larger than 200 MeV. These times are corrected for the
final state particles’ time-of-flight. Therefore, for nominal ep interactions, trcar, trcAL
and their difference tpcar — trecar peak at zero (figure 5.53). However, for a proton
beam gas interaction that occurs upstream of the detector, the final state particles reach
the RCAL earlier and the FCAL later than for events originating from z = 0.

For electron beam gas events the situation is very similar, but the RCAL plays the
role of the FCAL and vice versa.

If the calorimeter energy deposits are large enough to determine the corresponding

times, they are required to be

[trcaL — trcaLl < 8 nsec
[trcaLl < 8nsec

|trRcarl < 8nsec

in order to reduce the beam gas background.

Remaining background from proton or electron beam-gas interactions around z = 0
has to be subtracted statistically. For this purpose the number of events, that pass
the final DIS selection and originate from unpaired proton or electron (pilot) bunches is
determined and scaled with the ratio of the currents in the paired and unpaired bunches.

Figure 5.54 shows the number of triggered DIS events as a function of their bunch-
crossing number. The combination of paired and pilot bunches results in the observed

pattern. Also shown is the ratio of currents for paired and pilot bunches.
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5.7.4 Fake FCAL Electrons.

In photoproduction events isolated objects in the FCAL can be misidentified as the
scattered electron. However, the available phase space for low energy electrons at high
Q? is very small in DIS events. Hence most of these events, which are all characterised
by a large y-value as reconstructed from the electron only, are background and have to

be removed from the sample. This is achieved by the requirement

Yelee < 0.95

5.7.5 Cosmic and Halo Muons.

Cosmic radiation is another background source to be considered. Muons as products
of interactions in the upper atmosphere penetrate the ZEUS detector almost vertically
and deposit very little energy in the calorimeter. However, in some cases the muon
interacts in the calorimeter and produces a shower, which mimics a scattered electron.
These cosmic events are characterised by a large EMC' energy deposit, while the number
of active cells and hence the total calorimeter energy are very small. Usually only two

tracks are reconstructed in the CTD.
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Figure 5.33: Difference of average FCAL and RCAL time versus RCAL time. No

contribution from beam-gas events can be seen anymore after final selection cuts are

applied.
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Figure 5.34: Left: Number of triggered events as a function of bunch number. The
observed pattern indicates the distribution of paired and pilot bunches. Middle and

right: Ratio of currents in the paired and pilot bunches.

Another source of background are the beam-associated halo muons. They leave
characteristic signals in FCAL and RCAL or hits in several adjacent cells in the BCAL,
that line up and can be matched to entries in the muon chambers.

Topological algorithms have been developed to identify the two types of muon back-

ground.

5.7.6 QED-Comptons.

Elastic QED-Compton events ep — epy are considered to be background, since they
are not simulated in the DIS Monte Carlo and are of no direct use in the study of
the proton structure. These events are characterised by two electromagnetic clusters
in the calorimeter with 15 GeV < E; + E; < 30 GeV, at most one track in the CTD

and essentially no energy deposit in the FCAL. Based on these criteria the events are
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identified and removed from the sample.

5.7.7 Sparks.

In the BCAL sudden discharges of the static charge between a photomultiplier and its
shielding (‘sparks’), which occur randomly, can yield ‘hot’ calorimeter cells, which fake
high-Q? electrons. Spark events are characterised by a large imbalance of the ‘electron’
calorimeter cell, as only one of the two PMTs produces a signal. Therefore these events

can easily be identified and removed from the sample.



Chapter 6

Reconstruction of Event

Kinematics.

6.1 Introduction.

An accurate reconstruction of the Lorentz-invariant kinematic variables z, y and Q? is
of crucial importance for the description of DIS events, in particular for the measure-
ment of proton structure functions. The kinematic reconstruction based on quantities
measurable in the ZEUS detector using several methods is described in this chapter.

A new reconstruction method, the ‘Pr’-method, is introduced. It exploits the re-
dundancy of the electron and hadron system and incorporates the advantages of the
conventional methods in different kinematic regions.

The accessible kinematic range has been extended to low-Q? using ISR events. Their
reconstruction also depends on the measurement of the emitted photon and is described
in a separate section ( 6.7).

The Monte Carlo is used to study the resolution and migration functions of the
kinematic reconstruction. The resulting distributions of the kinematic variables are

finally compared to those of the data.

6.2 Observables in DIS.

Figure 6.1 illustrates the basic neutral current electron-proton scattering process, where
k and k' denote the four-momentum of the incoming and the scattered electron respec-
tively. The four-momentum of the initial state proton is given by P, that of the hadronic
final state by P’. The latter includes the so-called ‘current jet’, into which the struck
quark fragments, and the proton remnant, which goes in the direction of the incoming
proton.

In the ZEUS coordinate system, where the initial proton moves in the positive z-
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Electron method

Jacquet-Blondel method

Figure 6.1: Basic ep scatlering process leaving signatures from the electron and the

hadron flow in the detector.

direction, and ignoring the particles’ rest mass these four-momenta can be written as:

E. E' E, Ex
0 E’ sin © cos¢ 0 P
k= K= P = PG (6.1)
0 E’ sin© sin ¢ 0 Pk
-E. E' cos©® E, Pz,h

E, and E, are the energies of the initial electron and proton respectively, E’, © and ¢
are the energy, polar and azimuthal angle of the scattered electron and Ej and P,
P, n and P, are the energy and momentum of the hadronic final state X, where a
summation over the final state particles is assumed.

When hadronic event parameters are used in the kinematic reconstruction it has to
be ensured, that any influence on it from the final state fragmentation, i.e. the rapidity
distribution or the number of jets, is negligible. Furthermore the loss of final state
particles, predominantly in the forward direction due to the centre of mass movement
in the ZEUS laboratory frame, must not distort the determination of event kinematics.
Therefore the difference of energy and longitudinal momentum &, = (E — P.) and the
transverse momentum pr,, = \/)m, which satisfy these requirements, are used.

It can then be assumed that the hadronic flow, i.e. the current jet, can be described
by a massless object of energy E; and angle 5, which can be calculated from 4, and
pr,h- In the naive quark parton model, £ and + are the energy and polar angle of the

outgoing struck quark.
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Figure 6.2: Topology of DIS events as a function of z and Q* showing the direction
of the scatterd electron (thin line) and the struck quark (thick line). The length of the

arrow is proportional to the particle’s energy.

The event topology of the outgoing particles, i.e. the scattered electron and the
current jet, in this quark parton picture, representing the lowest order QCD calculation,
is displayed in figure 6.2 for different values of z and Q2. The electron scattering angle
can be seen to increase with Q2. At high-z the outgoing current jet is very energetic,
indicated by the length of the arrow.

6.3 Electron Method.

The most straight forward method to reconstruct = and Q? or alternatively y and Q?
uses the energy E’ and angle © of the scattered electron only. This method, called

‘electron method’, is used in all fixed target experiments. Using the definitions of the
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variables z, y, Q% and s (section 2.2), the following expressions are obtained:

% = 2E.E'(1+cos®) =4E,E’ cos’ -2—
E' B 5150
Yo = 1— '2E',(l —cos@) =1- Esm 7
e
Tel' = 3’ = Elcgfz? 2]
SYel Ep(l = sin? 7)
It is to be noted that the relation
2
PT.el p
Qu=—"— (6.2)

1"'.'x’el

holds. The contours of constant energy or scattering angle in the (z, Q?) plane, accessible
at HERA, are displayed in figure 6.3.
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Figure 6.3: Contours of constant electron energy (left) and scattering angle (right) in
the (z,Q?) plane. The dotted lines represent contours of constant y (1, 0.1, 0.01) or
constant scattering angle in steps of 10°.

Small electron energies give high y-values, whereas energies much larger than the
electron beam energy yield a large Q2. The very low-Q? region, which is not covered
by the nominal vertex data due to the beam hole in the ZEUS calorimeter, specifically
a box cut of 13 cm around the rear beamhole, is indicated by the grey-shading in the
right hand plot. The lines at y = 1 represent the kinematic limit, given by the HERA
beam energies.

The resolution in # and Q? is in general good in regions, where the E’- and ©-isolines
are close together. However, for isolines far apart small variations in E or © result in

large shifts in = or Q2.
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The errors of the reconstructed z and Q? due to measurement errors of the outgoing

electron energy E’ and scattering angle © are given by:

Azy 1\* FAEN e /1 01’ .
Yy \K;) (5 +["“5*(;")°°‘5] b

AQ% \/(AE')Z 5§07 &g
z B + tan 2(L\e)

The z-resolution is good for y-values close to one. However, it deteriorates with decreas-
ing y due to the % amplification of the errors in the measured energy. This behaviour
restricts analyses based on the electron method to the high-y region y > 0.01, as the
electron energy scale is understood to ~ 1% at the electron beam energy 27.5 GeV.
The resolution in Q? is very good as long as the electron is far away from the RCAL
beamhole, i.e. at medium and high Q2. But at large ©-values the divergence of the

tan-function at 90° amplifies the error on the © measurement.

6.4 Jacquet-Blondel Method.

As both ZEUS and H1 are essentially 4m-detectors, in contrast to most fixed target
experiments, the event kinematics can also be determined from the hadronic final state
alone. This method, which is based on 8, and pr, can also be used for the kinematic
reconstruction of charged current events and was developed by Jacquet and Blondel
(83].

As the proton remnant is mostly lost in the forward beam-pipe, the hadronic quan-
tities pr,» and &, of the hadron flow in the event are a good approximation to those
of the current jet, pr; and (E — P.);. Hence the four-momentum of the hadronic final
state can be written as

Ej
o E; siny cos@; (6.3)
E; sinvy sin ¢;
E; cosy
With ¢ = k—4&' = — P+ P’ and using the definition of y from equation 2.4, one obtains:
By=Fojl o 05

= 6.4
YIB 3F, 3, (6.4)
Transverse momentum conservation, i.e. pr. = pr.a, and equation 6.2 imply:
2
TR, (6.5
QB ey )
Finally, @ p is given by:

TIB = - (6.6)
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The contours of constant current jet energy and angle in the (z,Q?)-plane are shown

in figure 6.4.
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Figure 6.4: Contours of constant jet energy (left) or hadronic angle (right). The shaded
regions are not accessible to ZEUS due to particle losses in the FCAL and RCAL beam-
hole.

In contrast to the electron method, the effect on the resolution in z from mea-
surement errors of the jet energy is small at high z, The resolution there is good and
deteriorates with decreasing z. However the FCAL beam hole at ¥ ~ 2.2° limits the
reach of this reconstruction method to y 2 1073. At very low z and high y a similar
limit is set by the RCAL beamhole (see grey shaded regions in right hand plot).

The resolution in z and Q?, using the current jet information, diverges at y ~ 1, as

can be see from the following expressions:

2
Azyjp  _ ( 1 )2 AE; [_ o y 1]2 Asn?
T 7% E + [—tan 2 + At ycot 2 (Ay) (6.7)
AQ3g (2-_.,)2 AE;\’ [ y -,]2 2
et {1 ST 2 + |2coty + cot | (Ay 6.8
Q?IB =7 Ej i I=73 2 ( I) ( )

At low y the z resolution is mainly determined by the energy measurement uncertainty.
The Jacquet-Blondel method does not make any assumptions, either on the inter-
nal structure of the proton or on the jet topology of the final state. It is therefore
independent of jet definition conventions.
However, the sum over the final state particles is approximated by summing over
the energy deposits in the calorimeter cells not assigned to the scattered electron. Not
only geometrical effects, such as the calorimeter granularity and cell size, but also the

presence of uranium noise in the detector distort the measurement of d, and prp, in
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particular at low y. These effects can introduce large migrations in the kinematic recon-
struction and require a very good understanding of the noise in the entire calorimeter

(see section 5.6.2).

6.5 Double Angle Method.

In the Double Angle method [84] z, y and Q? are reconstructed using the scattering
angles © and v of the final state electron and current jet, respectively. It is motivated
by the observation that angles are usually more accurately measured than energies and
is, to first order, independent of the calorimeter energy scale.

i . s o _ PTh . 4 A =8 i
Solving equation 6.5 for siny = o and equation 6.4 for 1 —cosy -d;-, one obtains

Q3p(1 - ysB) —4EXy}p
cos (6.9)
T T Qis(1—yup) + 4B
Prn = Oh
Lo oo (6.10)
Pt oh

In the naive quark parton picture and neglecting particle masses, energy and momentum

conservation of the scattering process yield:

2P+ Egv = E +E;
zP-E, = E'cos® + Ejcosy (6.11)
E'sin® = E;siny

The energy of the scattered electron E’ can now be expressed in terms of the angles ©

and v and the electron beam energy E., by solving equation 6.11 for E:

A s sin‘,
Ebu. % 2E’sin6+sin7~sin(6+-,)

(6.12)

Substituting the electron energy E’ in the formulae of the electron method by this

expression results in the Double Angle reconstruction of z, y and Q*:

2 sin (1 + cos ©)
“siny +sin© —sin(O© + v)
sin ©(1 — cos7)
= -1
12 sin 4 +sin © — sin(© + %) 514
2 ¥ E,_sin*, +sin© +sin(© 4 7) (6.15)
DA = TE,siny+sinO-sin(0©+17) it

Qba = 4E (6.13)

6.6 ‘Pr’-Method.

6.6.1 Introduction.

The *Pr'-method is a new way of reconstructing the kinematic variables, combining all

information on the scattered electron and the hadronic final state. It is the first attempt
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to exploit the overconstraint on the event kinematics from all quantities measured in the
hermetic detector and incorporates the advantages of the conventional reconstruction
methods in the different kinematic regions, resulting in the improved measurement of
y and Q? in the entire (z,Q?) plane. Due to the stability of the method the accessible
kinematic range has been extended to low y, where an overlap with the fixed target
data can be achieved.

The Pr-method was proposed in [85] and is used in the measurement of F; from the
1994 ZEUS data for the first time.

The Pr-method is based on a three-step correction, assuming energy and momentum

conservation, followed by the final reconstruction of z, y and Q2.

6.6.2 Pr-Balancing.

As described in section 5.4 the energy and position, and hence the scattering angle of
the final state electron can be measured very precisely. Since one only deals with a
single, charged particle, several methods based on tracking, kinematic constraints or
the presampler effect in the SRTD allow the correction for energy loss in the passive
detector material. If the electron or a large fraction of its shower in the calorimeter is
not detected, the event is not analysed any further.

The particles in the hadronic final state also suffer from energy loss while penetrating
passive detector material, which distorts the measurement of the event kinematics. As
the hadronic final state is usually a multi-particle system, which can also contain neutral
particles, energy corrections cannot easily be applied on the particle level; the position
reconstruction is entirely based on calorimeter cells.

However, assuming transverse momentum conservation, prx = pT,, the energy loss
in the hadronic system can be estimated from a comparison to the electron. QED final
state radiation does not play an important role as the photon is usually included in the
calorimeter object identified as the scattered electron. In initial state radiation events
the transverse momentum of the emitted photon can be neglected in comparison to that
of the electron.

Ignoring hadronic pr in the proton remnant and describing the hadronic final state,
i.e. the current jet, by a single massless object of energy E; and angle 7, it is clear
that energy losses affect the measurement of pr,» = Ejsin+ in the same way as that of

dn = Ej(1 — cosv). Therefore the measured yjp = 2—5& can be corrected by

PTel s
iy = Wwa—— (6.16)
o PT.h
This is the pr-correction.
This correction, which is applied on an event-by-event basis, is extracted from the

data.
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A current jet

Figure 6.5: Schematic diagram of the DIS event topology. The electron pr is balanced
by the current jet. The colour flow between the current and the remnant jet also implies

a particle flow in this region.

However, this picture is too naive. The colour flow between the struck quark and
the di-quark results in a hadron flow between the current jet and the proton remnant.
Consequently the hadronic system is not a well-collimated jet. Also effects from different
detector regions contribute to the overall energy loss. Therefore the event topology has

to be taken into account in the pr-correction. Equation 6.16 is hence generalised to
vy = vB/C (6.17)

where the correction function C is extracted from the Monte Carlo. In contrast to [85]

where the correction function was chosen to be a function of f%:'—‘, pr,h and 7y, the
PTh L2 ]

correction function is here chosen to be a function of the quantities Z5%, 74 and 7ne-,

where E7,. and ET, are the electron and event transverse energy.

Figure 6.6 shows the ratio #ﬂ- as a function of épr = f—:*:‘—' in bins of v, as extracted
from the Monte Carlo. Almost all events lie in the region 0.5 < dpr < 1.5. At low
% #ﬁ- rises almost linearly with dpr as expected from equation 6.16. The current jet
moves very close to the proton remnant in the forward direction, so that the rapidity
interval between the two, that could be filled with an additional hadron flow, is rather
small. Particle losses in the forward beamhole affect neither pr, nor é,. However,
at low ~ the calorimeter noise contributes considerably to d, and can even dominate.
This explains, why the correction is here larger than 1. With decreasing 5 the noise
contribution to yyg decreases and the effect of energy loss in passive material becomes

dominant, so that the correction falls below unity. The fact that with increasing =~

6.6 ‘Pr’-Method. 115

y.ll/ycm
=
T

0.8 400 _o_,_o_n_"_u O s ]
W —0—0—0-—0—0— i = T ]

06 P

® vp, =(020] O Yp, = [20,40]
*® ¥y, = (40,60 O Yp, =60,80]
04 O Yp, = [80,100] 4 Y, =[100,120]
2 You = [120,140) & Yp, = [140,160)
* Yo, = [160,180)
0.2 L ! 1 1 1 [ VRN | |
02 04 06 08 1 12 14 1.6 18 2
8,, =Pt ,/Pt,,

Figure 6.6: ‘pr -correction function as a function of épr for different regions of .

a larger fraction of the pr, gets carried by particles between the current jet and the
proton remnant while its contribution to &, decreases leads to a deviation from the
linear behaviour of the correction as a function of épr.

The naive interpretation of 4 as the angle between the current jet and the proton
remnant is only applicable in single-jet events. In case of multi-jet events energy loss
characteristics from many detector regions are mixed and average out the correction.

el
The ratio 'E%%’ is used to estimate the jet-structure in an event (see figure 6.7)

In events with 'E":’ri"" > 0.4 the transverse momentum and energy is shared between
the electron and the current jet, the hadronic final state is identified to have a single jet.
However, in events with EE,;J,;'; < 0.4 the hadronic energy must have been deposited in the
calorimeter in the form of several separate jets, that partially cancel their transverse
momentum in order to balance that of the electron. These events have multi-jet final
states.

For these two event classes the pr-correction has been extracted separately. As
shown in figure 6.7 for multi-jet events the correction on &, ~ yyp is only weakly
dependent on dpr, the expected linear rise is averaged out. Nevertheless the overall
characteristics of the correction to be larger than 1 at low-5 and to be decreasing with
increasing + can still be seen clearly.

For single-jet events, however, a much stronger rise of C with increasing épr is

found, which increases in slope with increasing 5. Due to the cleaner event topology
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Figure 6.7: ‘pr -correction as a function of dpr in different vy regions.. The ezpected lin-
ear behaviour is clearly seen for single jet events (open circles), while the pr-dependence

is averaged out for multi jet events, yielding an overall correction factor.

the correction for this single-jet event class gets close to the naive expectation from,
equation 6.16.

As only the functional form of the relative energy loss, as measured by épr, on ;V'-ff- is
extracted from the Monte Carlo and the quantities dpr, 44 and EE;:é; are measured in the
data, the pr-correction also results in a reduced dependence on the Monte Carlo model
of the hadronic final state simulation. For example, varying the fraction of diffractive
events in the Monte Carlo sample does not change F; significantly (as will be shown in

section 7.8).

6.6.3 X-Correction.

At high y the current jet moves in the rear direction. Here particle losses in the RC'AL

beamhole do not change py, considerably in contrast to d;. which is essentially reduced
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by twice their energy. The requirement of the event balancing in transverse momentum
can not correct for this effect.

But the y-reconstruction of the electron method provides a very good resolution at
high-y, This fact is exploited in the E-correction, which is the second correction step
of the pr-method. The E-correction, first presented in [87] and used by H1 [115, 116],
combines y.; and ysB.

2E
V£ = W =w (6.18)

BB +1-ya
The general idea is to replace the scale 2E, in the calculation of y;g by . For fully
contained events 6§ ~ 2E,, but in case of particle losses down the rear beamhole 5 and
§ are both reduced by the same amount, so that ys = ég is only weakly affected. In the
context of the pr-method the corresponding correction is:

I

T o 6.19
ya)y+ 1= Ye ( )

Y2) = Ya)
This corrrection is applied on an event-by-event basis and improves the y-resolution
particularly at high-y.
6.6.4 Kinematic Reconstruction of the pr-Method.
According to equation 6.2 one could now calculate Q? as

p%',el
1=y

Qhy = (6.20)

The transverse momentum of the hadronic system is here replaced by pr ., which must
be identical to prx due to momentum conservation, but is reconstructed with a better
resolution than the latter. However in this term the electromagnetic energy scale does
not cancel completely. Also the Q2-resolution turns out to be not particularly good.
Instead the Double Angle approach has already been shown to be independent of
energy scales to first order. Therefore the hadronic angle is recalculated, replacing pr,s

by the better determined pr and &y by the now corrected quantity 2Eg - y(y):

P — 4E2 -yl

Cos %
Ipr P%‘,el 4 453 g 9(22)

(6.21)
The kinematic variables z,,.,y,, and Q2. are then calculated as described in section 6.5,
using the Double Angle formulae.

Figure 6.8 demonstrates the improvement in migration and resolution of the y- and
Q*-reconstruction after the different steps of the pr-method. The first correction step,
imposing pr-balancing, centres the distributions around unity, whereas the second step,
the Y-correction, improves ther y-resolution particularly at high +, which corresponds
to high y. The Q*resolution of the pr-method is significantly better than using sz).

The pr-method is used for the kinematic reconstruction in the NVTX analysis.
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Figure 6.8: Resolution in y and Q? after the different steps of the pr-method. The first
correction centres the distributions around unity, whereas the second correction improves
the y-resolution particularly at high y. The final step to using the kinematic variables

Zyr Ypr and Q2 provides the best resolution in y and Q*.

6.7 Radiative Events.

The kinematic reconstruction methods presented so far assume the incoming electron to
have the electron beam energy and the scattered electron to have the energy measured
in the calorimeter (apart from detector resolution effects). However, because of QED
radiative processes (see figure 4.1) these assumptions are not fulfilled, resulting in two
effects: Firstly the reconstructed kinematic variables are systematically shifted. The
incoming or outgoing electron energy at the electron-photon ! vertex, which are relevant
for the reconstructed Q2 of the photon probing the proton structure, differ from the

assumed values. Secondly the cross section calculation has to be modified with respect

'The same is true for Z°%-exchange. For simplicity it is only referred to the photon as exchanged

boson.
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to the Born level. The latter is particularly important for the Monte Carlo simulation
of DIS events and has been discussed in section 4.2.

In Final State Radiation (FSR), a real photon is emitted from the final state electron.
In most cases the final state photon is emitted at very small angles with respect to the
scattered electron. Due to the finite granularity of the calorimeter and the electron and
photon preshowering in inactive material before reaching the calorimeter, the measured
electron energy effectively includes that of the photon. Hence the effects of FSR on the
kinematic reconstruction are relatively small.

In Initial State Radiation (ISR), a real photon of energy E. is emitted from the
initial state electron. If the photon is emitted collinearly (6. < 0.5 mrad) with respect
to the incident electron and escapes the main detector through the rear beamhole, the
electron energy becomes (E, — E.), where E, is the electron beam energy. The event
can be interpreted as a scattering process with reduced centre of mass energy. This
can also be seen in the event characteristics such as transverse energy (E7) or track
multiplicity (figure 6.9).

Due to the limited geometrical acceptance of the lumi-photon calorimeter only
~ 40% of the ISR photons are lumi-tagged.
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Figure 6.9: Distribution of transverse energy (left) and track multiplicity (right) for

radiative and non-radiative events. The Et distribution is normalised to the number of

events, the track multiplicity to the number of events without tracks.

The following part of this section refers specifically to the ISR analysis, unless noted
otherwise.

ISR events can in principle be identified from measurements in the main calorimeter
without requiring a photon in the luminosity photon calorimeter. The photon energy

can be reconstructed as

. 1
ESA - E, - 5(5 =) (6.22)
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In order to reduce the effect of possible energy scale mismatches, the expression can be
transformed, using transverse momentum conservation, to

ECAL = E, (1 - %) (6.23)
However the photon emission is not guaranteed to be collinear , so that the event
kinematics cannot be determined from the main detector alone. Therefore a tagged
photon in the lumi-photon calorimeter is required in the ISR analysis. The measured
energy, E., rather than its estimation ECAL, is used in the determination of the event
kinematics.

Here the electron method has been chosen for the kinematic reconstruction as it
suffers less from migrations at low Q?, the main focus of the ISR analysis, than the
Double Angle method.

Reconstructing z, y and Q% mistakenly assuming the incoming electron energy to be
the beam energy E., results in the so-called ‘apparent variables’. From these the true
ones can be obtained by substituting E. by (E. — E,). Hence the following relations
hold with z = EE'E’»:

_yel+z"l

Tel * Yel * = -
Ttrue = -!-I-:l—;'—f_——l; lerue = 'QZI: Ytrue = e (6.24)
so that
Q?rue = Ttrue " Ytrue* 28 (6.25)

Under the conditions of the ZEUS experiment, the accessible kinematic range is
limited at low Q? by the 13cm box cut around the rear beam hole, and the requirement
of a minimum electron energy, as measured in the calorimeter. The latter is chosen to
be 8 GeV instead of the 10 GeV used in the NVTX analysis as the maximisation of the
presently limited statistics has been found to be more important than a strict control
of possible systematic effects.

Given the experimental signature of a 10 GeV electron at a scattering angle of
© = 174° (both values are close to the standard selection cuts) figure 6.10 shows the
effect of initial state photon radiation. Already for the emission of a 5 GeV photon,
reconstructed in the lumi-photon calorimeter, the corresponding (z,Q?) values are not
accessible without using ISR events. For the emission of a 15GeV photon, Q.. reaches
values as low as ~ 1.4 GeV?, while for non-radiative events Q% ~ 3 GeV? is the lower
limit.

Figure 6.11 shows a scatter plot of the ISR data after final selection, for different
intervals in E.. One can clearly see the effect of a phase space extension to higher z and
lower Q? the larger the energy of the emitted photon. This effect is the main motivation
for performing the ISR analysis. It is complementary to the SVTX analysis as two

different methods have been applied to two statistically independent data samples.
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Figure 6.10: Impact of initial state photon emission for constant event signature in
the main detector (E. = 10 GeV; ©, = 174°). ISR events can be used to ertend the
accessible kinematic region to low Q*.

6.8 Resolution and Migration.

As the angles and energies of the final state electron and hadrons used in the kinematic
reconstruction have to be measured with the detector, which only has a finite granu-
larity and resolution, the kinematic variables z, y and Q? can only be determined with
finite resolution. In addition in some regions of the (z,Q?) plane systematic shifts are
introduced, i.e. events migrate from one (z,Q?) region to another. Even though these
effects, which can distort the cross section measurement in a particular (z,Q?) bin, are
corrected for using the Monte Carlo, the uncertainty on this correction can become an
important factor in the analysis. Hence resolution and migration have to be controlled
and kept as small as possible.

As already mentioned, the different reconstruction methods show different sensitivity
to measurement errors in the leptonic or hadronic event variables. These differences are
investigated by comparing the reconstructed z, y and Q2 to the true values in the Monte
Carlo. Figure 6.12 shows the comparison of reconstructed and true variables for the four
reconstruction methods considered.

The electron method yields a remarkable resolution in Q2, while its y-resolution
deteriorates quickly below y >~ 0.1 due to the increased sensitivity to the energy at
small y. This is also reflected in the z-resolution, which is good at low z, but rather
poor and systematically shifted to lower values at high z. The electron method is
suitable for measurements at low z and low Q? and is hence used in the SVTX and ISR
analyses. However the low-y region is not accessible for precise measurements using the

electron only.
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Figure 6.11: ISR data sample after final selection cuts. The more energetic the emitted

photon, the lower the effective centre of mass energy and hence the reached Q?.

The Jacquet-Blondel method shows a rather poor Q%-resolution. The reconstructed
Q? is also shifted to lower values, which introduces large migrations. However the y-
reconstruction is good down to y =~ 0.04. Below this value the hadronic activity in
the detector becomes very small and the uranium noise in the calorimeter becomes an
important factor. True low-y events are reconstructed at higher y. This effect can also
be seen as a systematic shift to lower values of z at high-z. Even though the Jacquet-
Blondel method is not favourable for general reconstruction of neutral current events,
its good y-resolution at medium and low y makes it superior to the electron method in
this particular region of phase space.

The Double Angle method, which was used in the F, measurement from the 93
ZEUS data [109), yields a reasonably good resolution in Q2. Its y-resolution at high
y is not as good as that of the electron method. But in contrast to the latter it stays
acceptable down to y ~ 0.04. At lower y-values the calorimeter noise dominates again
and distorts the y- and z-measurement. This method is suitable for measurements in
the entire accessible (z,Q?) region, but its reach down to low y, i.e. the region of the
fixed target data, is limited.

Finally the Pr-method combines the advantages of the three conventional recon-
struction methods. Its Q?-resolution is as good as that of the electron method. Its

y-resolution at high y is comparable to that of the electron method. But in contrast to
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Figure 6.12: Comparison of the kinematic reconstruction in z, y and Q?* using different
methods. The final selection cuts of the NVTX analysis have been applied.

the latter it stays good at medium y and adopts the stable behaviour of the Jacquet-
Blondel method at low y. Consequently this method yields the best resolution in z, y
and Q? and is chosen in the NVTX analysis.

A more quantitative picture of the resolution is provided in figure 6.13. The y-

resolution at low % is relatively large for all reconstruction methods. The hadronic
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Figure 6.13: Comparison of y- and Q*-resolutions for different reconstruction methods
in four v-regions (legend in the bottom plots). The ‘pr -method is always as good as the

best conventional reconstruction method in a given kinematic region.

or mixed methods suffer particularly from the calorimeter noise, resulting in an asym-
metric distribution with a long tail to higher values. The electron method is limited
by its sensitivity to the electron energy resolution. With increasing 7, the y-resolution
improves for all methods, but the peak is systematically shifted to lower values for
the Jacquet-Blondel method. At high-vy, the loss of hadronic particles in the RCAL
beamhole degrades the hadronic energy measurement, while the electron reconstruc-
tion provides a much improved y-resolution. The Pr-method does not suffer from large
systematic shifts in the peak position and its y-resolution is always comparable to the
best conventional method. A similar situation is found in the Q?-resolution, although
degradation effects are in general much smaller and do not result in large systematic
shifts.

The migration of events due to systematic shifts in the reconstruction of , y and
Q? is shown in figure 6.14. The tail of the arrow is the average value of the true (z, Q%)
in a bin (for the binning see section 7.2) and the head indicates the average value of the

reconstructed (z,Q?). It can again be seen that the electron method is good at high
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Figure 6.14: Migrations from the generated to the reconstructed (z,Q?) for the four
different methods. All final selection criteria of the NVTX analysis have been applied.

y, but suffers from large migrations at low y. The Double Angle method yields slightly
larger migrations at high y and low Q?, but is more stable at low y.The Jacquet-Blondel
method results in large migrations to lower @%. The Pr-method is the most stable in the
entire (z,Q?) plane and shows the smallest migrations. It is clearly the most favourable

reconstruction method for precise measurements of inclusive structure functions.

6.9 Distributions of the Kinematic Variables for the F,
Data Sample.
Good agreement between data and Monte Carlo in the distributions of quantities di-

rectly measured in the detector, such as energies and angles, has already been shown in

chapter 5. The resulting distributions of the kinematic variables, which are used in the
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F, measurement, are presented here. The distributions of the data, shown as full circles,
are compared to the sum of the DIS Monte Carlo and the background (open histogram),
which is the estimate from the photoproduction Monte Carlo for the NVTX and the
SVTX analyses and the bremsstrahlung background in the case of the ISR analysis.

The respective background estimates are shown separately as shaded histograms.
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The z-distributions are shown in figure 6.15. The overall agreement between data
and Monte Clarlo in the NVTX analysis is very good over the entire z-range covered. At
~ 103 the Monte Carlo overshoots the data slightly and small peak in the data at ~
10~2 is not reproduced by the simulation. The estimated photoproduction background
is very small and concentrates around z ~ 107, as this corresponds to the affected
low-Q? region.

In the ISR analysis the Monte Carlo describes the data fairly well for z > 1073,
However at lower z the simulation tends to overshoot the data. The background, here
originating from bremsstrahlung overlay events, is larger than for the non-radiative
analyses and shows up mainly at 107% — 1073, The overall description of the data is

adequate.
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The SVTX analysis covers a much smaller range in z than the NVTX one. The small
background from photoproduction events is found below z =~ 10~*. Adding it to the

DIS Monte Carlo results in a very good description of the data over the full accessible

z-range.
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Figure 6.16 shows the Q2-distributions. The simulation of the NVTX data is again
very good. The small photoproduction background is found at Q? below 10 GeV?, as
expected. The kink in the Q2-distribution at ~ 30 GeV? is fully reproduced by the
Monte Carlo and is the result of the extended box cut, removing events in the region of
the mal-functioning calorimeter trigger card.

The Monte Carlo in the ISR analysis overshoots the data slightly at low-Q?, while
it provides a good description of the data above Q% ~ 5 GeV2. Since bremsstrahlung
background is not due to misidentification of the scattered electron but results from
random overlays in the lumi-photon calorimeter, it covers the entire Q*-range

The Monte Carlo description of the Q%-distribution in the SVTX analysis is very

good over the whole accessible range, while the photoproduction backgronnd is ex-



128 Reconstruction of Event Kinematics.

tremely small.
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The y-distributions are finally shown in figure 6.17. In the NVTX and the SVTX
analyses the photoproduction background is clearly concentrated at high-y, which cor-
responds to low electron energies. Here the probability of misidentifying hadrons as
electrons is largest. The y-distribution in the NVTX analysis reaches down to values
as low as y ~ 1073, where the calorimeter noise contribution to the hadronic signal
becomes very important. The good agreement between data and Monte Carlo pro-
vides confidence in the simulation of these detector effects. As lower electron energies
can also result from a larger energy range of emitted photons in the final state, the
bremsstrahlung background in the ISR analysis contributes most at high y, too. Apart
from a small region below y ~ 0.1 the NVTX data are very well reproduced by the
simulation, while the Monte Carlo overshoots the data in the ISR analysis slightly at
high y. The Monte Caarlo description of the SVTX data is again very good.

The effects of the small mismatches between data and Monte Carlo distributions on
the final F; values are taken into account in the determination of the systematic errors

(section 7.8).

Chapter 7

Extraction of F.

7.1 Introduction.

Using the 1994 ZEUS data the kinematic range in (z,Q%) has been extended to Q?
as low as 1.5 GeV? by using the new detector component SRTD, by moving the ep-
interaction point towards the FCAL (SVTX-analysis) and by using initial state radiation
events (ISR). In addition the higher luminosity of HERA during the 1994 data taking
period has given an increase in the number of events by a factor of ~ 5 with respect
to the 93 data, allowing precise determinations of cross sections. This chapter presents
three different measurements of the proton structure function F, using these 1994 data.
The nominal vertex-analysis (NVTX) uses the new reconstruction method (pr) for
an accurate measurement in the entire (z,Q?) plane, while the shifted vertex analysis
(SVTX) focusses on the low-Q? region and profits from the increased detector acceptance
for low-scattering angle electrons. Finally the initial state radiation analysis (ISR)
exploits the fact, that hard initial state photon radiation effectively lowers the incoming
electron beam energy and so gives access to lower Q?-values.

For the determination of F, as a function of z and Q2 the kinematic plane is
subdivided into bins. After a discussion on the selection of these bins (section 7.2), the
estimation of the background remaining after final selection cuts is given in section 7.3.
The extraction of F; from the measured number of events in the bins using unfolding
techniques (sections 7.4 and 7.5) is tested in section 7.6. A description of the statistical
and systematic error determination is given in the sections 7.7 and 7.8 respectively.
The results are presented, described and compared to other measurements in the next

chapter.

129
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7.2 Bin Selection.

In order to obtain the most precise picture of the proton structure the number of analysis
bins should be as large as possible. However, this choice is limited due to the following

requirements:

e The bins must have enough events so that statistical fluctuations are not impor-
tant. Also the size of the statistical errors has to be reasonably small ( < 10%, but
in a few bins of the NVTX analysis ~ 20%) for a meaningful measurement.

Due to the O‘-;-dependence of the neutral current ep-cross section the rapidly falling
event statistics is the limiting factor at high-Q2. Large migration effects can result
in an event depletion of a particular region in the (z,Q?) plane. This effect limits
the event statistics at high-z.

The selection cuts allow only certain (z,Q?)-values to be reconstructed. The re-
quirement of a minimum electron energy of E. > 10 GeV (8 GeV in the ISR
analysis) sets a limit at low z for medium and low Q? values. The geometrical
acceptance of the detector, in particular the box-cut, limits the event statistics at
low Q2.

The resolution in the reconstructed z and Q? as well as systematic migrations

in these variables due to particle losses, photon radiation or the finite detector
resolution and granularity (see chapter 7) require a minimum bin size for a reliable
and statistically independent measurement of F; in the bins. An adequate fraction
of events produced in a certain bin must be reconstructed in the same bin. This
can be achieved by requiring, that the bin widths, S(z) and §(Q?), satisfy

S(z) 2 o(2) (7.1)

5@QY) 2 o(@ (.2)

where o(z) and o(Q?) are the resolutions of the kinematic variables z and Q?, as

shown in the previous chapter.

The quality of the bins can be quantified using the following definitions of acceptance

and purity:
y # events, generated in bin i and passing the final event selection
acceptance(i) = g
# events generated in bin i
¥ events, generated and reconstructed in bin i
purity(i) = # 3 (7.3)

# events reconstructed in bin i

Both quantities are determined using the DIS-Monte C'arlo and take values between 0
and 1. The acceptance is mainly a measure of the effect of event selection and detector
acceptance on the data sample, whereas the purity indicates if the events measured

in a bin are contaminated with event migration from adjacent bins. It is therefore
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sensitive to the resolution and systematic shifts in the reconstruction of z and Q2. In
the analyses presented here the acceptance is required to be > 30%. However, for most
bins the acceptance is > 50%. Good bins are required to have a purity of 2 30%.
A few exceptional bins in the ISR analysis, which are nevertheless very stable against

systematic checks, can have a purity of ~ 18%.
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Figure 7.1: Purity and acceptance in % for the selected NVTX (pr) bins. The deterio-

rating vertez- and hence Q*-resolution at low y requires a larger Q*-binning.

Figure 7.1 shows the (z,Q?) bins in the NVTX analysis, selected according to the
above quality criteria. As can be seen the acceptance is generally larger than 40%, only
in the lowest Q2 bins it does drop to ~ 34%. Also the purity is very high, in most bins
> 40%. Only at low y does it fall below 40%, in two bins even below 30%. But since
these bins are stable against systematic checks, they are included in the set of accepted
bins. This choice of bins has been made using the pr-method. The fact that at low
y a coarser binning, in particular in Q?, is chosen is mainly due to the deteriorating

z-vertex resolution in this region (see section 5.3).
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In section 3.4.5 several methods of correcting the scattered electron energy have been
presented. As a consequence F, can be measured from the 1994 ZEUS data, using the
electron method for the first time in the entire (z,Q?) plane. As the electron method
shows characteristics significantly different from that of the pr-method, in particular at

low y, a special binning has been chosen here.
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Figure 7.2: Purity and acceptance in % for the selected NVTX (el)-bins. The deterio-

rating z-resolution at high = limits the el-measurement to the high-y region.

The bins only populate the medium- and high-y region, as shown in figure 7.2. Both
the acceptance and the purity are again rather large. But due to the deteriorating
z-resolution towards high-z the bin width in z is here larger than for the pr-bins.

The good bins for the SVTX analysis are presented in figure 7.3. The main analysis
here has also been done in (z,Q?)-bins. But in order to test the analysis procedure
for its dependence on the simulation, in particular the electron energy corrections and
general migrations in the electron method, an alternative binning in (y,Q?) has also

been chosen (see right hand side of figure 7.3).
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Figure 7.3: Left: Purity and acceptance in % for the selected SVTX bins. The standard
analysis has been done in (z,Q?) bins (left). An alternative binning in (y,Q?) has been

chosen for a check of migration and resolution effects.

The purity in these bins is found to be large and 30% even in the lowest-y bins.
Only one (y,Q?) bin at Q% = 3 GeV? yields a purity of 21%. Also the acceptance is
large and can reach values > 70%. But as the SVTX analysis has only been done in
the SRTD-region, the geometrical acceptance of this detector component sets limits on
the minimum and maximum Q2. Hence the acceptance in the bins corresponding to
the inner and outer detector region can drop to 15 — 20%. These bins are nevertheless
accepted as they will be shown to be stable against systematic checks.

The (z,Q?) bins used in the ISR analysis are shown in figure 7.4. They are slightly
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Figure 7.4: Purity and acceptance in % for the selected ISR bins. Due to the reduced

centre of mass energy a lower y-region is accessible than using non-radiative cvenls.
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larger than the ones in the SVTX analysis, mainly due to the limited event statistics
and additional resolution effects from the lumi-photon calorimeter. In comparison to
the SVTX bins it can also clearly be seen that the ISR bins cover a lower-y region,
despite using the electron method. This is a consequence of the effective reduction in
the centre of mass energy resulting from the photon emission. The acceptance in all
but one ISR bins is > 40%. The purity is generally larger than 30% and only drops in
exceptional bins at low-y to 15 — 20%.

The z- or Q*-value at which the measured F; is finally quoted are chosen for conve-
nience and can differ slightly from the mean measured values in the bins. This is taken

into account in the extraction of Fj.

7.3 Remaining Backgrounds.

After the final event selection the samples contain a small number of background events

which are not due to deep inelastic neutral current scattering:

o The amount of background not associated with ep-collisions is determined from
pilot or empty bunches, as described in section 5.7. It amounts to less than ~ 1.5%
in all bins of the NVTX analysis. No such background is found in the SVTX
analysis, it is estimated to be less than 1%.

Due to the additional requirement of a reconstructed photon in the lumi-photon
calorimeter, the non-ep background in the ISR analysis is negligible, except for the

lowest Q? bins, where it amounts to 5 — 7%.
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Figure 7.5: Photoproduction Monte Carlo background evenls passing the final selection

cuts. They populate only the high-y region, mainly at low-Q?*.

7.3 Remaining Backgrounds. 135

e The contamination of the final event samples from photoproduction background is
estimated from the photoproduction Monte Carlo. The number of events passing
the selection cuts is determined in every bin, so that the background can be sub-
tracted statistically.

The distribution of the estimated photoproduction background in the (z, Q?) plane
is shown in figure 7.5 for the NVTX analysis. In the SVTX analysis a similar dis-
tribution is obtained. The background clearly concentrates at high-y and low-Q?,
as expected. In these bins its contribution relative to the number of measured
events is found to be at most 6% in the SVTX and the NVTX analyses. Poten-
tial photoproduction background is included in the bremsstrahlung sample used
in the ISR analysis for background subtraction. Based on the é-distribution its

contribution to the finally selected event sample is estimated to be negligible.

In the ISR analysis the bremsstrahlung background, selected and normalised as
described in section 5.7, is subtracted statistically in each (z,Q?) bin separately.
Its relative contribution to the measured events is below 10%, except the lowest z

bins, where it can be up to 24%.

The total background contribution to each bin is given with the final results on Fj in
tables 13.1 to 13.11.
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7.4 Unfolding.

After background subtraction the measured number of events in the (z,Q?) bins, i.e.
the measured cross section, do not yet reflect the neutral current ep-scattering cross
section and hence the proton structure function F;. Here, as in any other experiment,
the distributions of experimentally measured quantities differ from the corresponding
real distributions due to finite detector resolutions and certain assumptions made in the
kinematic reconstruction method. Furthermore the ZEUS trigger system and the final
data selection criteria result in a probability < 100% to observe an event in the detector.
The general procedure to correct the observed data for these smearing, migration and

acceptance or efficiency effects is commonly called ‘unfolding’.
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Figure 7.6: Schematic diagram of the unfolding technique. Measured quantities, distorted

by detector resolution and acceptance, are corrected for these effects.
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(74)

where z,,z3,...,z, are the characteristic event parameters and the expression
T (21,29, ... Tni Th,Thy ooy 2y) is the so-called transfer-function. This very general de-
scription can be simplified by considering g; and m; to be the generated and measured
number of events in bin i and j respectively. The transfer function is then described by
a matrix Tjj, so that

m;;\IC ol Z(Tiyc) !I'.;_\l(.‘ (7.5)

o
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The aim of the unfolding procedure is to find the correct values for the true or generated
number of events, g;, if the measured event numbers, m;, are given and the transfer
matrix 7;; is known from Monte Carlo studies.

There are several approaches to unfolding, a subset is discussed in the following.

7.4.1 Bin-by-Bin Unfolding.

Only considering net event migrations from or into a bin, the transfer matrix is simplified
to a diagonal matrix. The bins are no longer correlated and can be treated separately.
With the correction factor

1 # events generated in bin i
e g
Y : # events measured in bin i

(7.6)

which is obtained from the Monte Carlo, the number of generated events, g;, can be

approximated by the unfolded event number

uPots = (MC . pData .7

Due to varying contributions in different kinematic regions, the correction factors
can vary considerably between different (z,Q?) bins.

The method is straight forward and fast. However, small differences in the resolution,
migration or acceptance between the Monte Carlo and the data can result in significant
fluctuations of the unfolded number of events around the generated value.

As only net migrations are considered, this method requires the Monte Carlo simu-
lation to describe the data very well in all phase space regions from which the measured
events originate. In order to reduce the dependence of the method on the structure
function, used in the generation of the Monte Carlo events, the algorithm can be ex-

tended iteratively. Given that the initial structure function in the simulation describes
(1)

the data adequately, the unfolded event numbers after the first iteration, u; ', are good
approximations to the generated ones, g;. Based on the former, F, can be extracted
and used as input data to a next-to-leading order QCD fit program [118, 123]. After
reweighting the Monte Carlo to the structure function resulting from this fit, the correc-
(2)

tion factors ¢;”’ are determined again, yielding an improved estimate of the generated

number of events:
uf-“ = c}ﬂ em; (7.8)

The iteration procedure can be repeated until a stable result is obtained.

In the case of the F; measurements presented here, for which the Monte Carlo events
have been generated according to the MRSA structure function, the second iteration
results differ from the first iteration ones by less than 2%. Any further iteration does

not change the unfolded number of events significantly, so the result is stable,
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7.4.2 Matrix Inversion.

Let m and g be the column vectors, representing the measured and generated number
of events, m; and g;, and T' be the transfer matrix T};. The generated number of events

can be obtained by inverting equation 7.5.
AR (TMC)" mPata (7.9)

This method is mathematically precise. However, the matrix inversion does not always
yield physically meaningful results as the transfer matrix is not necessary regular. Small
differences in resolution, migration or acceptance between Monte Carlo and data can
produce large fluctuations in the unfolded event numbers. Due to these numerical

instabilities this method is not considered any further.

7.4.3 Matrix Unfolding.

In contrast to the matrix inversion, where the transfer matrix is determined from the
Monte Carlo and then inverted, a matrix that describes the relation from the measured
to the generated event numbers directly can be constructed from the Monte Carlo sim-
ulation. This approach avoids the numerically unstable matrix inversion. But as in the
bin-by-bin unfolding this method relies on the Monte Carlo representing approximately
the actual proton structure function F3, since contributions from all bins are taken into
account in the unfolding of the event number in a particular bin.
Let M be the matrix

# events (generated in bin i & measured in bin j), before cuts
# events (measured in bin j), after cuts

MHC (7.10)

An estimate for the number of events, generated in bin i and measured in any bin, is

then given by

ﬁiDaln = Z “"l{‘f’c . Tll?“n (7.11)
Jj

where mf-’““' is again the number of events measured in bin j after cuts. But a second
step in the unfolding is required as events may be generated in bin i but not measured
anywhere (because the trigger might not have accepted them, the scattered electron
might not have been identified etc.). This additional correction for the efficiency of
identifying DIS events at all has to be applied to every bin separately

gMCelfi # events (generated in bin i), before cuts
. # events (generated in bin i), before cuts & electron found

(7.12)
The number of events, generated in bin ¢, can therefore be estimated by
uPits = 5"-"0‘&”'. cpn (7.13)

= NOEIN 3 ygNC  yyPata
J
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As the unfolded number of events now depends on the measured event number in several
bins, small differences in resolution, migration and acceptance between Monte Carlo and
data do not yield large fluctuations. The resulting cross section and hence the F; values
tend to be smooth. But the unfolded event numbers and F; values are now correlated
between bins.

In order not to smooth the extracted F; too much and bias the result to the shape
of F, as described by the Monte Carlo (see section 7.6), this method is only used for

general cross checks for consistency of the different methods.

7.4.4 Bayes Unfolding.

Another unfolding method is based on the Bayes probability theorem and has been
published in [88]. In contrast to the afore described matrix unfolding, which describes
the relation from the measured to the generated event numbers, the Bayes unfolding
describes the relation from the generated to the measured event numbers. Now the

matrix elements are defined as

MC # events (generated in bin j & measured in bin i)
Bij = - = > (7.14)
# events (generated in bin j)

and interpreted as the conditional probability for an event, being generated in bin j,
to be measured in bin i. Also the total probability, a;, of an event, which is generated
anywhere, to remain in the final sample of events measured in bin i is determined

equivalently to equation 7.12.

1
MC MC  _MC
! - Z,- BYC . g (7.15)

Exploiting Bayes' theorem the generated events g; are reweighted iteratively until the
resulting measured events in the Monte Carlo, mM¢

Data
i

, give a good description of the
measured events in the data, m{??'®. The reweighted generated events are then taken
as the unfolded true event distribution in the bins.

This unfolding method was also used in the ZEUS-F, measurement from the 1993
data. As it takes correlations between bins due to resolution or migration into account
by using a matrix, the finally unfolded event numbers are correlated, too. The corre-
sponding F; again tends to be smooth and slightly biased in shape to the input Monte
Carlo structure function. However after several iterations this hias disappears.

The Bayes unfolding is used to estimate the systematic uncertainties on Fy due to
the choice of the unfolding method.

The central F; values in all three analyses have been obtained using the iterated
bin-by-bin unfolding.

A simple test of the three unfolding algorithms considered here is presented in sec-

tion 7.6.
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7.5 From the Cross Section to Fj.

In the single-photon-exchange approximation of deep inelastic scattering the double
differential cross section for inclusive neutral current ep scattering is given in terms of

the structure functions F;:

2 -
LA = 2o [ Fle. @) - 17 Fule. Q) FY- P2, Q1) (14 6:(2,Q1)

(7.16)

where Yy = 1+ (1 — y)? and 6,(z,Q?) is the electroweak radiative correction to the
Born level cross section. Since y*Fr and F3, which also include contributions from
Z°-exchange, and §, are expected to be small in the kinematic range of the present
measurements, this equation can be rewritten as

d’g(e*p) _ 2ma’Yy

dzdQ? - zQ*
The 6;(z,Q?) are corrections which separate the contributions from Fy, Z°-exchange
and QED-radiation.

Neglecting the Z°-exchange the corresponding expression for deep inelastic ep scat-

Fy(2,Q% - (1= 6L F b3) - (1 +6,) (7.17)

tering with photon radiation in the initial state is

3
g = @ P S (he o - Ry a9

where € = li‘ﬁ%, is the relative polarisation of the exchanged virtual photon, and

z = Z<2E1 i5 the fraction remaining of the incoming electron’s energy after the photon
5 g g 8Y

radiation. Integrated over the photon emission angle ©. < ©g, where the collinear

approximation is valid, this probability can be written as

et
e My l—zI m:  1-z

W

(7.19)

where E, is the energy of the incoming electron, m, is its mass. Integrating over z, the
accepted range of photon energies, yields
d*a
dz dQ?

In all three analyses the produced or unfolded number of events, N;, in bin i is

Fy(z,Q% - (1 +61) (7.20)

proportional to this cross section and the Luminosity £ of the data sample

/1 szrlt WdQ? (7.21)

= - 0;

Ny

h

where the integration is performed over the bin boundaries.
Assuming that the structure function dependence on = and Q? in the Monte Carlo

resembles that of the data, which has been achieved with the iterative reweighting

7.5 From the Cross Section to F. 141

procedure, the values of the different structure functions (here data and Monte Carlo)

can be related to the ratio of events produced in the bin:
IVI-D“M CDnla d?ala
e il e i (7.22)
L
FZDM"(I.QQ)&%’; ” (1 ¥ JEG‘G % 53Dalu)(l o 6’_Data)
FMC(2,Q) % - (1 - 6/° 7 610)(1+ 6410

F‘,D""‘(z, QZ)
F%(2,Q%)

MC
ai,yzneraled

The last step, cancelling out all correction factors, assumes that the Monte Carlo sim-
ulation describes the relative contribution to the cross section from Fr, Z° and QED
radiation correction correctly. The first two assumptions have to be made as neither Fj,
nor F3 have been measured in the HERA range so far and are therefore based on QCD
and the electroweak force in the standard model.

Higher order QED radiative effects, not included in HERACLES, were estimated to
be 0.2 — 0.5% using the program HECTOR [93]. These corrections are not included in
the presented analyses.

As the NVTX and SVTX Monte Carlo samples were generated including Fy,, Z°-
exchange and O(a) photon radiation, the respective corrections are applied implicitely.
Only in the ISR analysis, where the contribution from Ff, has not been included in the

generated Monte Carlo sample, an explicit correction for it has to be applied.

NP ' OF, =0
FPee = p;fc___. (14 61) withé, = —==2 (7.23)
"’:ﬁ’;med Jpaco

As Fy, is reduced by y? its contribution is largest at high-y. The corrections in the

corresponding bins are less than 7%.
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7.6 Test of the Fy-Extraction.

In order to test and compare the unfolding methods the Monte Carlo event sample has
been divided into two statistically independent samples. One is treated as data and
unfolded with corrections obtained from analysing the other sample. This has been
carried out four times, reweighting the samples independently to the structure function
parametrisations MRSD0’ or MRSD”.. The results obtained are shown with statistical

errors in comparison to the structure function curves in figure 7.7.
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Figure 7.7: Test of the unfolding methods. Monte Carlo event samples, reweighted to
the structure functions MRSD0' (two last columns) or MRSD’ have been unfolded using
corrections from other Monte Carlo samples, which have been reweighted to different

structure functions. The resulting Fy is shown at Q* = 10 GeV?2.

The four top plots depict the unfolded F3, using the bin-by-bin correction method.
The points scatter slightly around the curve. But no bias towards the structure function
used in the correction sample can be seen.

The four middle plots show the F; as extracted by the matrix unfolding. Apart from
the lowest-z point in the rightmost plot, which suffers from a statistical fluctuation, all
points are exactly on the line and yield a smooth F;.

The four plots at the bottom display the F; after the first step of the Bayes unfolding.
A small deviation from the input structure function can be seen in the second plot, where
the MRSDO0’ parametrisation has nevertheless been clearly recovered.

The results for all three unfolding methods are in very good agreement with the
input structure function. Even if very different data and correction samples are chosen,
there is essentially negligible bias, providing confidence in the F; results obtained from
the 1994 ZEUS data.
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7.7 Statistical Error.

The statistical error of F3 in a particular bin is calculated taking three contributions into
account, the real data, the DIS-Monte Carlo and the photoproduction or bremsstrahlung
background with:

N°* = number of observed events in the bin

including background

NPATA - pumber of data events measured in the bin
= Nobs_ Nel"’{-,IP
NMC = number of Monte Carlo events contributing to the
measurement in the bin (every event counted as 1)
a; = cross section weights for DIS-Monte Carlo events
N,Aj’f = effective number of DIS-Monte Carlo events in the bin
S 15
T (0]
NPHP = number of PHP-MC or bremsstrahlung events in bin
3i = cross section weights for PHP-Monte Carlo or bremsstrahlung events
Nf}f,”J = effective number of PHP-Monte Carlo or bremsstrahlung events in the bin

‘;VPHP

(El‘:l ,B.) 4
T (82)

The resulting error on F; is calculated from these as:

AR, (JNDATA)’ SNMEN?
- N obs + Ne};lflP 1
w (vobs — NEHP) Berelloff

” 2
L A
Nobs 4 K_NVN'V—L

Yorey . B2) NMC, o
4 53 = (a)) 7
i NPHP N\ * v NyMe ) (7:24)
Nobs _ !Z;-l ’3'! ( i=1 I)‘,')
7 E:‘.. (3’.’)

For increasing Monte Clarlo statistics lim yarc o (Neys) — 20, so that the Monte
Carlo contribution gets negligible in this case, as intuitively expected. This procedure

is also described in [95].
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7.8 Systematic Uncertainties.

A crucial aspect of the F; analyses is a realistic estimation of the systematic errors
entering from different sources. Numerous checks have been performed in order to
test the stability of F;. For each case in turn a quantity entering the analysis, such
as calibrations, correction functions, alignment etc., is varied within errors and the
full event selection and F; extraction is repeated. Also the background estimation is
repeated and subtracted consistently.

The bin-by-bin variations in F, from the central value, added in quadrature sepa-
rately for the positive and negative deviations, have been used to estimate the systematic
errors. In the following these systematic checks are described for the three analyses in

turn.

7.8.1 Systematic Checks in the NVTX Analysis.

In the NVTX analysis the systematic checks are subdivided into seven categories.

Event Vertex

o As the detector acceptance and trigger efficiency for a given electron scattering
angle is a function of the z-vertex, good agreement between the data and Monte
Carlo z-vertex distributions is crucial. In particular the satellite region, yielding
an increased acceptance at low-Q?, has to be well simulated. In order to estimate
the uncertainty on the satellite luminosity and acceptance, a stricter vertex cut of
—28 < zyr < 40 cm has been applied. The effect on F; is typically 1 — 3%, in
some bins above Q2 = 100 GeV? up to 7% deviations can be found.

o Asshown in chapter 5 there is a small discrepancy in the tracking vertex efficiency
between data and Monte Carlo for events with a hadronic angle 4, < 40°. The
effect of this on the resolution of the reconstructed kinematic variables is tested
by reducing the Monte Carlo efficiency by 1% or increasing it by 3%. The effect
is about 0.5% and hence negligible.

The event z-vertex as reconstructed in the Monte Carlo is shifted by +4 mm,
representing the tracking vertex resolution for the inclusive DIS data sample. This
has the effect of < 0.8% changes in F;.

Detector Alignment

o The fiducial cut at the inner edge of the rear calorimeter and SRTD (box cut),
which guarantees good containment of the electron shower in the detector, is in-
creased from 3 to 4cm for data and Monte Carlo. The results in the lowest Q*-hins

change by 3.5%, while all other bins are essentially unaffected.
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e To account for an uncertainty in the relative position of the two halves of the rear
calorimeter and the SRTD, their position in the data is varied by + 1| mm each,
representing a smaller and larger gap between the two halves. At Q? < 20 GeV?
the resulting F, varies typically by 1.5%, higher Q2 bins are stable.

o The radius value of the electron impact point in thé calorimeter is varied by +2mm.
These checks also account for a possible systematic shift in the z-position of the
electron in the rear calorimeter as determined by ELECPO. For bins at Q? >
20 GeV? the effect is 1 — 1.5%, the lower Q? results do not change as they are
based on the SRTD.

o For events with a matched track the resulting electron scattering angle is varied
by + 0.2°, which is the effective resolution of the electron scattering angle as

reconstructed from tracks. The variations in F, are negligible.

e The absolute position of the SRTD in the data with respect to the Monte Carlo
position is shifted by +2 mm. At Q2 = 6.5 GeV? the effect on F; is ~ 2% and
~ 0.5% in all other bins at Q? < 20 GeV?2. The higher Q? bins are stable.

Positron Finding Efficiency and Energy Scale

o In the Monte Carlo simulation the reconstructed electron energy in the RCAL is
increased and decreased by a linear function (2% at 5 GeV and 1% at 27.5 GeV).
The BCAL scale is varied by + 3%. These numbers represent the current under-
standing of the CAL energy scale. The observed variations in F, are 1 — 2%.

o The electron energy correction in the RCAL is obtained from a mixture of a 2.5%
energy scaling in the data followed by a subsequent kinematic peak correction.
At 20 € Q% < 120GeV? the effect is less than 1%, the other Q? regions are not

affected at all, since they rely on different correction methods.

o Although the anti-correlation of electron energy loss in the calorimeter and the
probability as given by SINISTRA is taken into account, yielding consistent elec-
tron finding efficiencies for data and Monte Carlo, a systematic check with the
Monte Carlo efficiency reduced by 1% above 15 GeV and about 3% at 10 GeV is
performed. No effect is seen at Q2 > 35 GeV2. At lower Q? variations of ~ 1%

are found, except for the low-z bins, where they increase to ~ 3%.

Hadronic Energy Scale

e The energy scale of all entries in the calorimeter, which are not assigned to the

scattered electron, is varied by +3%. This variation is applied as a global scale as
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well as for the different calorimeter parts (FCAL/BCAL/RCAL) separately. The
value of 3% is obtained from comparisons of q&;— between data and Monte Carlo
after electron energy and hadronic scale correction. The change in F; is typically

~ 4% at very high and low y, while bins at medium y are stable to within +1%.

Hadronic Energy Flow

e The cut on 6, = -’;5:— is removed, allowing for events in which most of the hadrons
.
are lost in the forward beampipe (‘non-contained events’). This has a negligible

effect on Fj.

The hadronic correction function in the ‘PT’-method shows a significantly different
behaviour for ‘single-jet events’ (EE,":"T > 0.4) and ‘multi-jet events’ (-5‘.; < 0.4),
which is accounted for in the standard correction. As a systematic check this
dependence is ignored, relying more strongly on the Monte Carlo simulation of the

hadronic final state. This check results in 1%-variations of F.

In order to check the dependence of the F-results on the simulation of the hadronic
‘ final state and in particular of diffractive events their contribution is reweighted
to 20% and 0%, while keeping the cross section unchanged as a function of z and
Q? constant. For the latter additional reweighting is required, since the fraction
of diffractive events in the Monte Carlo depends slightly on z and Q2. The results
‘ are in general stable to within £1%, only the low-z bins at Q% < 4.5 GeV? show

variations of 5%.

The hadronic correction function in the ‘PT’'-method is not taken from sampling
the E — P, loss as a function of P; loss etc., but a polynomial fit to this function
is performed and applied, smoothing the correction. The effect on F; is less than

1%.

Photoproduction Background Subtraction

o Although the determination of the photoproduction background contamination of
the data sample using the PYTHIA Monte Carlo gives consistent results with the
8-fit method, a comparison with tagged photoproduction events yields an uncer-
tainty of +100% and —30%. The subtracted photoproduction background is varied
by this amount. F; is affected by ;g‘o at high y and Q? < 20 GeV? and stable

elsewhere.
Miscellaneous

o Assmall differences in the resolution and migration of kinematic variables can lead

to large fluctuations of Fy, in particular at y ~ 1072, where the y-distribution is
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rapidly falling, the F;-measurement has been repeated using the Bayes unfolding
method. Resulting variations are typically below 1%, only some F-values at low-y

change by up to 10%.

Even though hadronic event parameters enter the NVTX electron analysis only via
the d-cut, identical checks have been performed in this analysis and added in quadrature
to obtain the systematic errors.

Figure 7.8 shows the relative deviation from the central F-value as a function of y
for the first six categories and Q2 < 100 GeV?. In the diagram of the total systematic
error the +5% range is indicated by horizontal lines.

The statistical errors amount to 2 — 4% for most bins and can grow to 8% at high
y. For the majority of bins at 5-10~2 < y < 5-10~! the total systematic error is below
5%. For larger values of y it increases to >~ 10%. At low values of y the total systematic
error can get as large as 8 — 10%, mainly due to the contribution from electromagnetic
and hadronic energy scale uncertainties.

A similar plot for Q? > 100 GeV? is shown in figure 7.9.

The systematic errors shown do not include the uncertainty in the measurement
of the integrated luminosity (+1.5%), the overall trigger efficiency (£1.0%) or the un-
certainty due to higher order electroweak radiative corrections (£0.5%). These effects
result in a combined normalisation uncertainty of 2% in F,, which is also not included

in the quoted errors in table 13.1 and 13.6

group at b* ct a” b= c
| 0.1111 0.0225 -0.7331 | - 0.2399 - 0.1166 1.7702
2 - 1.5631 0.0024 — 1.3691 - 0.1024 —
3 0.4737 - 0.3952 — | - 0.6364 0.5158 —
4 0.7555 - 0.5623 — |- 0.7374  0.6382 —
3 - 1.4477 - 0.2003 — | 0.6239 - 0.4781 —
6 0.6807 -~ — | 0.6807 - —

Table 7.1: Parameters describing the envelopes of positive and negative deviations of Fy

by the siz categories of systematic checks.

Since the systematic errors on Fy in the NVTX analysis are strongly y-dependent,
this behaviour has been investigated and parametrised. These parametrisations do

not only allow the consideration of correlated systematic errors in phenomenological or
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QCD-analyses of the data, but they can also be used for case studies of future high- g 20 ; r
luminosity measurements with ZEUS, where systematic errors will play a crucial role. g vertex alignment

For the six different categories of systematic checks the following functional forms - 10 £ _
have been fitted to the percentage errors ér:-"l [%) & E. e '_..:.._._ . '_w_:-.» Els _
;g L Ly Fieaa ;-,s...?v:‘.a:',;::.m.!.;g‘ =
§ F
£
group 1 (vertex) :  a1/(logug y) + by - (logyo ¥)° + €1 z '
: [

group 3 (alignment) : o5 4 by (I8gs 3) 20 el i L e 7 I ST (R ST
EM scale L

group 3 (EM scale) :  a3/(logyo y) + b - (logyo ¥)? 10 Hf\D scale

group 4 (HAD scale) :  ay/(logo y) + by - (logyo ¥)?

0F :
group 5 (HAD flow) : a5 + bs - (log,o ¥) r 2 —
- = = \
group 6 (PHP) : as/(logyq v) v g g ',
20 F——l v il vl g
The envelope of positive and negative deviations are parametrised by a*, b, ¢* and 10 . HAD flow : PHP
a~,b™, c* respectively. Their values obtained from a fit to the NVTX data are given in C siak
table 7.1. 0 : i -Z ey o
Due to their nature systematic errors do not shift F, in the same direction for - St
each bin or have the same effect in every region of the (z,Q?) plane. In order to -10 — _ !
provide a deeper insight into the effect of systematic checks in different (z,Q?) and L i !
their contribution to the total error, a different way of displaying the effect of these -20 R I bttt il
checks has been chosen. Figures 7.10 and 7.11 show the selected (z,Q?) bins 32-times, statistical error
once for every systematic check. Bins in which the F; obtained for a particular check 10 _ _ .t
is stable to within £1.5% are left white, while bins in which F; increases by more than L s ) ke SRR ;;lf;%fii--;:
1.5% are shown in light shading. Bins yielding an F3, which is reduced by more than . ‘ _ ”Qz‘< 100GeV1 W
1.5% compared to the central value are shown in dark shading. .10 T E
For example reducing the electron energy increases F by more than 1.5% in the b
low-y bins and decreases F; at high y, while a positive change in the energy scale has 220 ”'3 sl e a— siul m .““,.'-3 et e a— piil P
the opposite effect (see check 15 and 16 in figure 7.10). Increasing the photoproduction 10 10 10 " (;'9 10 - (y)l
background estimate reduces Fj at high y and medium or low Q? while decreasing the 2 10
background effects essentially the same bins in the opposite way. Figure 7.8: Relative systematic error of the NVTX F, determined with the pr-method,

for different categories of systematic uncertainties for bins with Q* < 100 GeV?.
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Figure 7.9: Relative systematic error of the NVTX Fy, determined with the pr-method,

for different categories of systematic uncerlainties for bins with Q? > 100 GeV?,
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For every check the selected
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than 1.5%.
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than 1.5%.
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7.8.2 Systematic Checks in the SVTX Analysis.

The SVTX analysis is restricted to the SRTD region and is particularly sensitive to
the z-vertex simulation. Since the kinematic reconstruction uses the electron method,
hadronic event parameters enter the analysis only via the é-cut. Therefore the categories
considered for the systematic checks are the determination of the electron scattering
angle, uncertainties from the electron identification and energy scale. Hadronic and

background effects and various general analysis checks are also done for consistency.

Electron Scattering Angle

o The z-vertex, as reconstructed in the Monte Carlo, is shifted by +4 mm, which is
the tracking vertex resolution for the inclusive data sample. The effect on F is
typically about 1%, except at Q% = 15 GeV?, where it is 3%.

The efficiency of reconstructing a tracking vertex decreases with y, as the hadrons
move in the forward direction and tend not to leave sufficient hits in the CTD.
In the data 70% of the events have a tracking vertex compared to 73% in the
Monte Carlo. The vertex of events without a tracking vertex is set to the nominal
shifted vertex position, 67 cm. The potential systematic bias in the vertex and
hence Q? reconstruction is conservatively estimated by increasing the weighting
of the satellite or nominal shifted vertex events, assuming that the vertex ineffi-
ciency originates entirely from these two regions respectively. The variations in F,

decrease from 4.5% at high z to less than 1% at low-z.

As the cross section at such low-Q?, covered in this analysis, is rapidly changing
with @2, the precise alignment of the detector components plays a crucial role. For
this reason the electron positions reconstructed in the two SRTD halves have been
varied by +2 mm, representing the uncertainty on their relative position. Shifts
in (z,y) of (42 mm;+1.5 mm) and (-2 mm; —1.5 mm) of the SRTD as a whole
gives the variations in F, due to the absolute position uncertainty of the SRTD.

The resulting F, changes by less than 3% at low-z and ~ 1% at high z.

Electron Energy and Finding Efficiency

o According to the present understanding of the calorimeter energy scale, it is varied
by a linear function (2% at 5 GeV and 1% at 27.52 GeV). These shifts have a
< 5% effect on F; for the low-z bins and 6 — 9% for the high 2 bins. The increase

in the fluctuation towards low-y is expected, as discussed in section 6.3.

e The minimum probability for an object to be identified as an electron by the neural
network has heen lowered from 0.9 to 0.8. This variation results in changes of F;

by < 2.5%, except a 4% effect at the lowest x, lowest Q2 hin.
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¢ In addition, an independent electron finder (EEXOTIC, [96]), which had been
used in the ZEUS-F; measurement from 1993 data, has been used as a check of
the neural network SINISTRA. Consistent results have been obtained in the region,
where the efficiencies of both finders are reasonably high. However, the variation
of F; can be up to 20 and 16% in the low-z bins of the two lowest Q*-rows and is

by far the dominating source of uncertainties in this region.

The electron finding efficiency is varied within the errors of its determination based
on the QED Compton study (section 5.4.3). The effect is negligible, apart from the
low-z bins, where it can be as much as 3%. Possible energy dependent variations

of the trigger efficiency are also accounted for by this check.

Background and Hadronic Final State

e The fiducial cut on the electron position at the inner edge of the calorimeter to
discard events, where the scattered electron is not fully contained in the detector,
has been increased from 3 to 4 cm. This results in a 3% change in F; for the lowest
y-bins and the lowest Q2-bins.

The photoproduction background estimate has been changed by +100% and —50%.
The effect in F is 2 — 6% for the low-z bins and negligible in all other bins.

e As the é-cut also tests to some extent the simulation of particle losses in the
beam-pipes, i.e. the hadronic particle flow, the contribution of diffractive scatter-
ing events to the total cross section has been increased from 9% to 15%, yielding
at most a 3% effect in Fj.

Varying the é-cut from 35 GeV to 32 or 38 GeV checks the estimate of photopro-
duction background contamination, QED radiative effects and the hadronic energy

flow. It results in 3% effects on F; at low z and low Q2.

Miscellaneous

o The agreement between data and Monte Carlo in the :-vertex distribution and
effects from possible discrepancies have been tested by setting all z-vertices in
data and Monte Carlo to the primary interaction point, z = 67 cm. The effect is
~ 15% at high Q% and < 3% for all other bins except one at Q? = 1.5 GeV?2.

o The electron energy scale and photoproduction background contamination have
been checked by varying the electron cut from 10 to 8 and 12 GeV. The resulting

change in F, is up to 3% at high y and negligible elsewhere.
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e The tracking reconstruction in the data, which uses a slightly older version than
in the Monte Carlo, has been repeated with the code used in the latter in order to

obtain consistent data sets. The effect on F; is ~ 3%.

o Effects of possible differences in smearing and migration between data and Monte
Carlo have been checked by using the Bayes unfolding. The variations of F; can

be as large as ~ 10% in the low z bins.

o As the bin-by-bin unfolding assumes the structure function in the Monte Carlo to
give a good description of the data, the sensitivity of the results to it is checked
by reweighting the Monte Carlo to the GRV(94) structure function. This changes
F, by ~ 2% in the low z bins, the other bins are stable to within £0.5%.

In this last category only the Bayes unfolding check has been included in the sys-
tematic error determination, in order not to obtain strongly correlated errors. The
underlying effects are nevertheless covered by the other checks.

Figure 7.12 shows the deviation from the central F; values in the analysed (z,Q?)
bins for the different systematic checks. The 0,4 range is indicated by dashed lines,
the £15% range by dotted lines. Checks resulting in a deviation of more than 40,
are labelled.

Identical checks have been performed for the SVTX analysis in (y,Q?) bins. The
final systematic errors are given in tables 13.9 and 13.10.

In addition to the above errors, there is an overall normalisation uncertainty of 3%
due to the uncertainty in the trigger efficiency and the measurement of the luminosity.
These errors are not included in the tables 13.9 and 13.10.
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7.8.3 Systematic Checks in the ISR Analysis.
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Photon Reconstruction

According to the uncertainty in the lumi-photon calorimeter calibration, its scale
is varied linearly (3% at 5 GeV to 0.4 % at 27.52 GeV). The effect on Fj is 5—15%.

The resolutions of the reconstructed kinematic variables are also dependent on
the resolution of the lumi-photon calorimeter and in particular the latter’s sim-
ulation. The photon energy resolution in the Monte Carlo is degraded from
26.5%/+/E(GeV) to 28.5%/+/E(GeV), resulting in typically 4% variations of F;.

The Monte Carlo description of the lumi-photon calorimeter acceptance is mainly
limited by geometrical shadowing from magnets. In the Monte Carlo a contour
cut, extracted from bremsstrahlung data [99], is applied on the projected generated
impact point of the photon in the lumi-calorimeter. This independent determina-
tion of the geometrical acceptance of the lumi photon calorimeter has a 5 — 8%

effect on F;.

The description of the bremsstrahlung background and the photon energy scale
are tested by increasing the required minimum photon energy from 6 to 7 GeV.

The effect on F; is 3% at low y and grows to 11% at high y.

Background and Miscellaneous

The &-cut has been varied, testing the description of the hadronic final state and
the impact of higher order corrections in the Monte Carlo. This check is also
sensitive to the photoproduction background contamination of the data sample

and has a negligible effect on F3.

The tagging efficiency and the bremsstrahlung background description are tested
by dropping the requirement that the lumi electron energy be less than 3 GeV.

Variations in F; are up to 7% at high y and decrease to 3% at low y.

In the standard analysis the Monte Carlo is reweighted to a NLO-QCD fit, obtained
from the 1993 ZEUS-F; and the iterated ISR F, data. The dependence of the
structure function, represented by the Monte Carlo, is tested by reweighting it to
the NLO-QCD fit to the 1994 ZEUS-F;, data. The resulting F; is stable to within
+2%.

The determination and normalisation of the bremsstrahlung background is of cru-
cial importance as it contributes considerably to the measured number of events.
A conservative estimate of the effects from potential normalisation uncertainties is
obtained by varying the bremsstrahlung background by £10%. The effect on F,

is negligible at low y and at most 3% at high y.
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e The dependence of the Fp-result on the Monte Carlo structure function and the
simulation of resolution and migration effects is tested by using the Bayes unfolding

technique. The variation in F, can be as large as 10%, but is typically ~ 5%.

Figure 7.13 shows the deviation from the central F; values for the different systematic
checks. The +0,,¢ range is indicated by dashed lines, the £15% range by dotted lines.
Checks resulting in deviations larger then fo4,, are labelled.

The total systematic errors are listed in table 13.11. The overall normalisation
uncertainty of 3% due to the uncertainty in the luminosity measurement (2.5%), the
trigger efficiency (1%) and the Monte Carlo normalisation (1%) are not included in the
systematic errors. The effect of additional QED radiative corrections not included in
the HERACLES Monte Carlo generator is small compared to the experimental errors
[100].
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Figure 7.13: Systematic errors of the ISR Fy, determined in (z,Q?) bins, for scveral
checks in different categories of systematic uncerlainties. Checks yielding a deviation of

more than +ay, are labelled.

Chapter 8

Final Results on F,.

8.1 Introduction.

This chapter presents the results of the F, structure function measurement. The F
values including statistical and total systematic errors as well as bin ranges in z and Q?
or y and Q?, the measured number of events, the estimated number of background events
and the values of z and Q?, where F; is quoted, are listed in tables 13.1 to 13.11 for the
different analyses. Not included are the overall normalisation uncertainties, resulting
from the estimate of the ZEUS trigger efficiency and the luminosity measurement.

F; is plotted versus z for fixed Q? and compared to the published ZEUS results and
recent parton distribution functions separately for the three analyses. The results of the
NVTX analysis are also compared to fixed target measurements from BCDMS, E665,
NMC and SLAC. The scaling violations, as shown in plots of F; versus Q? for fixed z
are also demonstrated. Finally an alternative way of looking at the data in terms of the

total virtual photon-proton scattering cross section is presented.

161



162 Final Results on Fj.

8.2 Shifted Vertex F5.

The measured F; values from the SVTX analysis are listed in tables 13.9 and 13.10.
The analysis of this data set allows F; measurements at Q*-values as low as 1.5 GeV?
and z = 3.5 107% and therefore significantly increases the measured kinematic region.
Figure 8.1 shows F, versus z for fixed Q? obtained using the (z,Q?)- (red circles) and
(v, Q%)-binning (green triangles) in comparison to the published ZEUS results [112].
The statistical errors are shown as inner error bars, the total errors, which are the
quadratic sum of statistical and systematic errors, are shown as the outer error bars.
Apart from the highest z points at Q% = 4.5 GeV? and 6 GeV?, where F; is quoted at
slightly different z-values, the results of the (z,Q?)-analysis are in very good agreement
with the ZEUS measurement.

Even though statistically correlated the good agreement between the (z,Q?)- and
the (y, Q%)-analysis serves as an independent systematic check and confirms the results
obtained.

The rise of F, towards low z, as first reported in [108, 114] and confirmed in (109, 113]
is observed to persist down to Q? = 1.5 GeV2. However, the slope of this rise decreases
with decreasing Q? as expected, since F; has to vanish at Q% ~ 0.

The measured F; values are compared to the predictions of GRV(94) [102] which
are based on perturbative QCD using the DGLAP evolution equations. This model,
starting the evolution at a scale Q3 = 0.34 GeV? with valence-like spectra for the gluon
and sea distributions, describes the changing rise of the data well, even down to the
lowest z and lowest Q? point. But the GRV prediction generally tends to overshoot the
data slightly, in particular the low-z points.

In contrast to this the parametrisation of Donnachie and Landshofl [103] is the
extrapolation of a fit to Q% ~ 0 and hadron scattering data and inspired by Regge
phenomenology. This model is clearly ruled out for Q% > 2 GeV? and disfavoured at
Q% =1.5GeV?
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Figure 8.1: The measured F, from the SVTX analysis in (z,Q%) bins (red circles)
and in (y,Q?) bins (green triangles) compared to the results from the corresponding
ZEUS publications (yellow circles), the ezpectations from GRV(94) (steep red line) and
Donnachie and Landshoff (DL - flat black line). An overall normalisation uncertainty

of 3% is not shoun.
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8.3 Inmitial State Radiation-F;.

The F; results from the ISR analysis are listed in table 13.11. Figure 8.2 shows the
ISR measurement in comparison to the ZEUS publication [112] versus z for fixed Q2.
The inner error bars show the statistical errors and the outer the total errors. The two
measurements are in good agreement. Only at Q2 of 3.0 and 4.5 GeV? a discrepancy
shows up, but the points are nevertheless consistent within errors.

The ISR F; also shows the rise towards low-z down to Q? = 1.5 GeV2 Due to
the effective reduction in the centre of mass energy the ISR analysis reaches to higher
z than the SVTX analysis, hence providing a complementary measurement to the lat-
ter. However, due to the limited statistics, which also implies a limited control over
the systematic effects, the errors of the ISR F; are slightly larger than in the SVTX
analysis. This fact results in a reduced power of discrimination between the different
models. Nevertheless comparison with the curves shows that the Donnachie-Landshoff
parametrisation is excluded at Q? > 3 GeV? while the GRV prediction describes the
overall behaviour of F, rather well. As mentioned before, however, GRV tends to over-
shoot the data slightly. Due to the size of the errors at low z the ISR F; measurement
does not allow any discrimination between the two models at Q% < 3.0 GeV? as it is

spanned by them and consistent with both.
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8.4 Nominal Vertex F.

The results of the NVTX analyses, using the pr- or the E L-reconstruction methods are
listed in tables 13.1 to 13.8. Figures 8.3 to 8.5 show the results from both measurements
versus z for fixed Q% The rise of F; towards low z has been measured with much
increased precision. Both analyses are in very good agreement. But the E L-analysis
covers a smaller (z,Q?)-range and yields larger errors. Nevertheless this systematic
check provides confidence in the pr-results.

At Q? > 100 GeV? the errors can be seen to be dominated by the event statistics,
also resulting in larger fluctuations than observed in the low-Q? region. Despite the very
large event statistics some F,-points at low y deviate by one or more o of the total error
from the curve, which is well determined by the precise fixed target data in this region.
These effects play an important role in QCD-analyses of the F; data, the corresponding
extraction of the gluon momentum density and phenomenological fits, as will be shown
in chapter 10.

The ZEUS NLO QCD-fit, used for the reweighting of the Monte Carlo in the extrac-
tion of correction factors, describes the data very well down to Q? as low as 3.5 GeV?,
providing strong confidence in the applied efficiency and acceptance corrections and the
entire unfolding procedure (see also section 7.6).

Figures 8.6 and show 8.7 show the NVTX F, from Q% = 3.5 GeV? to 1200 GeV? in
comparison to the corresponding data from the ZEUS publication [110] and the 1993
ZEUS data [109]. As can be seen the covered z-range has been extended between 1993
and 1994 to high z, while the improved Q%-resolution and increased statistics allowed
a finer binning in Q?. Due to the installation of the detector component, SRTD, the
reach of the NVTX data to low Q? has been extended from 8.5 GeV? to 3.5 GeVZ. In
addition the total errors could be typically reduced by a factor of 2 — 3 compared to the,
1993 data.

Apart from a few fluctuating points the agreement between data from the NVTX
analysis and the ZEUS publication is very good over the entire (z,Q?) plane. This is
particularly pleasing as all major aspects of the analyses, such as energy corrections
etc., have been done independently, sometimes using alternative methods.

The NVTX F; is displayed in figures 8.8 and 8.9 together with the fixed target data
from BCDMS [128], NMC [129], E665 [130] and SLAC [131]. Several structure function
parametrisations are shown for comparison. The fixed target data has been interpolated
to the displayed Q?-values using the combined fit of NMC given in [132]. Thanks to
the pr-method the extension of the covered kinematic range towards low y provides an
overlap between the NVTX and the fixed target data in several Q%-bins. Filling the
gap between the fixed target and the HERA range is particularly important as a direct
check on the relative normalisation of the fixed target and collider experiments. This

is of further relevance as the normalisation uncertainty was found to play an important

8.4 Nominal Vertex F. 167

role [118, 123] between experiments in the extraction of the gluon density from 1993
ZEUS data. In the overlap region the NVTX and fixed target data can be seen to yield
reasonable agreement (see also figure 8.10).

The depicted structure function parametrisations of the MRS- [137] and the CTEQ-
groups [138] include preliminary or final 1994 Fy-data from ZEUS [110, 112] and H1
[116]).

The GRV(94) prediction describes the data very well for Q% > 70 GeV2. But
at lower Q? it tends to overshoot the data, in particular at low z. Nevertheless the
general characteristics, i.e. the shape of F3, are also adequately described in this region,
indicating that perturbative QCD using conventional DGLAP evolution equations can
described the current data and its low-z dynamics very well.

The MRS-R2 parametrisation fits the data very well in the entire NVTX region and
provides a good overall picture of the proton structure. It tends to be slightly lower
than the data below Q2 of 3 GeV?. This effect is discussed further in chapter 10.

The CTEQ4 parametrisation describes the NVTX data in shape and normalisation
very well all the way down to Q% = 3.5 GeV? and is essentially indistinguishable from the
MRS-R curves. Furthermore CTEQ4 also describes the F; data down to Q2 = 1.5 GeV?

very well (not shown here).
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Figure 8.3: The Fy from the NVTX analysis in (z,Q?) bins using the pr- (full circles)

or the EL-reconstruction method (open circles). The structure function of the Monte
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8.5 Scaling Behaviour.

The scaling of the proton structure function Fj, i.e. the independence of Q?, is valid
only in the naive Quark-Parton Model. In QCD, the quark densities in the proton
and hence also the proton structure functions, evolve with Q?, as a result of the gluon
bremsstrahlung from quarks and gluons and the quark pair production from gluons.

Figure 8.10 shows the F; versus Q? for fixed z as obtained in the NVTX analysis
(red rectangles) and earlier measurements at fixed target experiments (green circles).
For comparison the proton structure function parametrisation MRS-R2 is also depicted.
The scaling of F; can be clearly seen at z = 0.2, where it was initially found at SLAC.
However, towards lower z the scaling violation due to the increasing importance of the
gluon and its rising density in the proton becomes more and more apparent.

At medium and high z the good agreement between the fixed target data and the
ZEUS data can be seen in the overlap region, indicating the small size of normalisation
uncertainties.

The evolution of the parton densities and hence F; in Q? will be used in chapter 10

to extract the gluon density in the proton.
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Figure 8.10: F, versus Q* for fized values of = as obtained from the NVTX analysis
(red full rectangles), the SVTX and ISR analysis (red open rectangles) and the fized
target experiments (green circles). The ezhibited scaling behaviour of Fy at z = 0.2 is
contrasted by scaling violations at low x, where the rising gluon density dominates the

evolution,
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8.6 Total Cross Section.

The persistent rise of F; at low z for small Q? indicates that the photoproduction-like
regime has not yet been reached. A different way of looking at the data emphasizing this
fact is to express the DIS cross section as the product of the flux of virtual photons and
the total cross section o7 for the scattering of virtual photons on protons [140]. ajuf
is defined in terms of the cross section for the absorption of transverse and longitudinal

photons, o and oy, respectively, by

an? = or(z,Q% +o1(2,Q% (8.1)

The expression for F; in terms of or and oy, is

201 2
e = L o s re @t ] 62)

where M, is the mass of the proton. The separation into the photon flux and cross
section can be interpreted in a way similar to the interaction of real particles provided
that the lifetime of the virtual photon is large compared to the interaction time, or
z & 1/(2MyR,) where R, ~ 4 GeV~! is the proton radius (see appendix 12). At small
z the expression can be written in terms of the total virtual photon-proton centre of
mass energy W with W2 = M2 + Q*(1 - 2)/z = Q*/z

472

ol (W?,QY) ~ QZUFQ(I,QZ) for z < 1/(2M,R,) (8.3)

The measured F; data from the present analyses are converted to the total virtual
photon-proton cross section and displayed in figure 8.11 for Q? < 120 GeV? along with
low energy data and real photoproduction cross section measurements [142, 143]. In
order to guide the eye the recent parametrisation by ALLM [139] is shown.

The steep rise of F; at low-z for fixed Q2 is now seen as the rise in oj,” with 12
even at Q?-values as low as 1.5 GeV? in contrast to the cross section for real photons,
which exhibits only a slow rise similar to that seen in hadron-hadron total cross sections.

The slope of the rise of F; at low z, or alternatively of a7, at high W? is expected
to increase with Q2 in perturbative QCD. The NVTX, SVTX and ISR data are fitted to
the functional form Fy(z,Q?) = a(Q?) + b(Q?) - z=M?") in every Q? bin' and z < 0.02,
in order to quantify the Q*-dependence of the slope. A fit of the form F; ~ In L is also
performed and discussed further in section 9.2. In the fit the statistical and systematic
errors have been added in quadrature.

Figure 8.12 shows the result. The measure of the F, slope with z, A(Q?), is indeed
found to increase with Q2. With the current precision the rise of A with Q? is consistent

with a logarithmic rise. The full line indicates the best fit of the form

A o= ag+ ay - logo(Q?)

"This is done in order to quantify the rise even though the rise itself is expected to be slower than

any power of } and faster than any power of In %
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For total cross sections in hadron-hadron scattering and real photoproduction the value
of A has been determined to be ~ 0.08 [104]. Therefore the Q*-dependence of A(Q?) at
Q? 51 GeV? is expected to be weaker than logarithmic.

Despite the extension of the accessible kinematic range to low-Q?, the exact extend
of the transition region from photoproduction-like behaviour to behaviour described by
perturbative QCD cannot be determined from the 1994 ZEUS data, presented here,
alone. However, in order to study this transition region in more detail ZEUS has
installed a beam-pipe calorimeter (BPC) in 1995% which covers the range 0.1 GeV? <
Q? < 0.65GeV?. Preliminary results have been shown in [126, 127].

Using the shifted vertex data sets from 1995 F; can be measured in the region
0.45Q%*53 GeV2 Preliminary results of these measurements have been shown in
(111, 117).

2Srudies were done with a prototype in 1994 [125].

8.6 Total Cross Section. 179
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Figure 8.11: The total virtual photon-proton cross section versus Q* for different Q* val-
ues. The cross section values obtained from the F, values of the analyses described in this
thesis (big symbols) are shown in addition to data from fized target experiments (small
symbols). The region to the right of the dashed line corresponds to z < 1/(2- M, - R).
Also shown is the Q? behaviour of the measured cross section for real photoproduction.

The solid lines correspond to a recent parametrisation by ALLM.
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Figure 8.12: Q*-dependence of the exponent A\(Q?) as obtained in fits for the form
Fy ~2~M@) at fized Q* and z < 0.02.

Chapter 9

Phenomenological Analysis of Fj.

9.1 Introduction.

The prominent rise of the proton structure function F(z,Q?) at small z for fixed Q?
has been confirmed in an extended (z,Q?%) region with much increased precision, as
presented in chapter 8. This observation, which has stimulated numerous theoretical
ideas and investigations, is examined in more detail in this chapter.

In section 9.2 the double-logarithmic scaling behaviour of F, at small-z is presented.
The surprising success of this simple approach demonstrates the importance of logarith-
mic terms for the leading behaviour of F;.

In section 9.3 the double-asymptotic scaling (DAS) behaviour of F; is investigated,
the importance of sub-leading terms in the explicit solution of the low-z approximation
is demonstrated and the leading coefficient 3 of the QCD S-function is determined.
Given the double-asymptotic scaling of F;, the strong coupling constant a, is extracted
from a fit of the NLO-DAS functional form to the F, data in section 9.3.

Finally in section 9.4 the 1994 F; data are presented together with fixed target data
in a way proposed by Bjorken, to indicate whether the data favours DGLAP or BFKL

dynamics at small z.
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9.2 Double-Logarithmic Scaling.

9.2.1 The Scaling of the F; Data.

The rise of F; versus Q? for fixed z and versus z for fixed Q? is shown in the top
plots of figure 9.1 for the three F, measurements at three example values of z and Q?
respectively. The Q*-dependence of F, exhibits a logarithmic behaviour. The slope of
this rise vanishes at z ~ 0.08 and increases with decreasing z. Also the z-dependence

of F, shows a logarithmic rise, where the slope increases with Q2.

-~ =3 T ~ 2 4
hz'zs x=63"10° <91 18 é- Q'=65GeV? O
A AP e £ | | dencw e
] 14 f b1 @emces
s b F £y N
- - 3
5 W aa i 08 £ %o,e,tyy
0.75 3 RS 0.6 :_ % o b
05 F 2 o%emgnf| 04 | 53
025 F % =008 7 02 f '
0 Bl il o oiad o pand 0 bl .4.“....1 Y | lz,.ml l
1 10 10’ 10 10%10%10%10" 1
Q%in GeV X
- 25 o g
o 2.25 ;_|<01.01,Q'>’SGQV' ;’. 1.8 [ © measuredslopes
2 —‘: g,::g:x, S 16 [ o induced sopes
175 F 14
15 F 12 |
125 F e
1 F 08 F
075 F ‘Qo,-‘:f:m, 0.6 F
0.5 F ¥ O'E o lads
025 | F,=020140423%% 02 F ‘.iﬁw*
0 B g i o B 0 E o ol 2.;“.“ 3
1 2 3 1 10 0° 10

g ) Qzlin GeV

Figure 9.1: F, ezhibits a logarithmic rise in Q* for fized z (top left) and in = for fized
Q?. The suggested double logarithmic scaling is shown as a linear rise of Fy versus
the scaling variable € (bottom left). The good agreement in the direct and the induced
measurement of the z-slope can be seen in the bottom right plot.
As the rise in F, is the main focus of this study, only the limited phase space
z<107% Q> 5GeV?

is considered.
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The following considerations have been proposed in [145).

The observed rise of F; in z for fixed Q? is reflected in the fact that the data can
be well described by the function

@) = w(@)+un(Q")-log X&) o)

Given the current precision of the data higher order terms in log 1 are not necessary
to obtain a good fit to the data. The offset ug and the slope u; as well as v, which is
defined as the weighted average (In 1) and reflects the available z-range for a given Q?,
are functions of Q? and represent the functional form of Fj.

The data exhibits a linear rise in logQ? and log L. As the extrapolation of this
rise to lower Q? or larger z suggests the existence of a common fix point (zo, Q3) the

following ansatz is made

F(#,Q%) = at+m-¢ (92)
with the double-logarithmic scaling variable

£F < jon Q% -log z:_o (9.3)

The comparison of this form with equation 9.1 for z = z¢ and z = v(Q?) yields

u(@?) — a
Tog ()

This relation allows the comparison of the direct measured slope u; in equation 9.1 with

u (Q%) (9.4)

the induced one (equation 9.4) in the scaling approach.
110 out of 231 F; points from the three measurements lie in the considered phase

space region. A fit to the function, given in equation 9.2, yields

x? =336.10/110  using statistical errors only

x?=100.77/110  using statistical & systematic errors

The symbol & indicates the quadratic sum of the two error contributions.

The resulting parameters are

a = 0.241+£0.030
m = 0423+0.023
zg = 0.036+£0.005
Q% = 0.960+0.130
The good quality of the fit can be seen from the \?, and is also depicted in the

bottom left plot of figure 9.1. The scaling behaviour of F; in £ is clearly established. It

also gives a good description of the data at lower Q? down to 3 GeV2, In the bottom
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Figure 9.2: F, versus z for fized Q*. A fit to the points shown as big circles results in
the double-logarithmic scaling description, shown as full line. The low-Q* and high-z
points (small symbols) are not included in the fit.

right plot of figure 9.1 the directly measured slope u; is compared to the induced one.
Good agreement between the two determinations is found, confirming that equation 9.1
and 9.2 provide a consistent picture. The scaling behaviour of F; is shown in the more
familiar way versus z for fixed Q? in figure 9.2. Given the simplicity of the approach the
double-logarithmic scaling behaviour of F; is surprisingly well established and provides

a good picture of the proton structure at low z.
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9.2.2 Interpretation and Unitarity Constraints.

The success of the simple double logarithmic scaling approach raises the question
whether it can be understood in terms of physics and what its implications are.
Unitarity places a limit on the total proton-proton cross section at large energies,
known as the Froissart bound [146]
2
o < miz(ln i) (9.5)
where m, is the pion mass, s is the centre of mass energy squared and so is some
constant. However, since the numerical value of sg is not known the pratical use of
equation 9.5 is limited as for every cross section behaviour, measured in a restricted
energy range, a value sp can always be found such that the eqation 9.5 is satisfied.
Nevertheless, at asymptotically large energies, s — oo, the Froissart bound limits the
growth of the parton densities, and hence, the growth of F; at small z. As discussed
in [143, 37] the elastic gluon-gluon scattering cross section Agy, provides the dominant
contribution to the perturbative part of o,y and must clearly also satisfy the Froissart
bound. If the gluon density at fixed Q? rises such that

29(2,QY) < Bl (9.6)

where B is a constant, the resulting cross section Ao, rises with the centre of mass
energy square, s, such that Aoy, < (ln %1)2 ~ (Ins)2. Thus, this rise does not violate
the Froissart bound but could saturate it if the gluon density equalled the bound in
equation 9.6.

Such a behaviour of the gluon density at small z is given by the following contribution
to F via the photon-gluon fusion process (BGF) [147]

AFP = .4+;—;Zq;egaln%§|nf£ (9.7)
where A is a constant and the sum is carried out over all quarks with masses small
compared to Q. The BGF process gives the dominant contribution to F; at low z via
the strongly rising gluon density. This is reflected in the good description of the data by
the double-logarithmic scaling approach (equation 9.2) which has been chosen to exhibit
the same functional form as the BGF term (equation 9.7). A continuing good description
of the rise in F; towards asymptotically small z by the double-logarithmic scaling would
therefore indicate a saturation of equation 9.6 by the gluon density, resulting, in turn,
in a saturation of the Froissart bound.

Based on a calculation by Gribov [148] F; is found to behave [149] like
F x Q%hn % (9.8)

This result not only implies strong scaling violations but also saturation of the condi-

tion 9.6 by the gluon density.
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However, in order to investigate further whether the rise of Fy(z,Q?) is adequately
described by a functional form ~ In i. which saturates the unitarity bound, or if the
data prefer a stronger rise like 2=, which would violate unitarity asymptotically, or
the see whether the rise in F; becomes ‘softened’ by gluon recombination and screening
effects, measurements with much increased precision or at lower values of z will be

necessary.
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9.3 Double-Asymptotic Scaling.

9.3.1 Introduction.

The behaviour of the proton structure function at small z is related to the singularities
of the operator product expansion matrix elements. As a consequence of this relation
there are two specific predictions of NLO QCD as embedded in the DGLAP equations.
These predictions depend on whether the above mentioned singularities lie to the left

or the right of those of the anomalous dimensions’.

e One of these predictions has been considered and incorporated into parametrisa-
tions and fits to HERA data in [28]. If at a given starting scale Q3, sufficiently
large for perturbative QCD to be valid, structure functions behave like a power of

zforz =0
Fi(z,Q}) = £i(Q)zMO) 1 0@"), u < A\(Qd)

for i = S, G, then this behaviour is preserved by the evolution to all larger Q? so
that

Fi(2,Q%) "=’ fi(@Y)2~ for all Q* > Q3

Separating the proton structure function F; into a singlet and a non-singlet con-
tribution, F; = Fs 4 Fys, the small z behaviour is at leading order dominated by
the singlet term which is predicted to be

Fa(2,Q%) = Bs - [2,(@?)

with the free parameters Bg, AQcp and A; dy is a function of A. The parameter A

dy (140
]+( ).1_,\

depends on the starting scale Q3. However, it does not have a direct perturbative
dependence on Q2. However, A might indirectly depend on Q? via the number
of excited flavours. The non-singlet contribution to F; was also parametrised and
sub-dominant terms included. This was found to be important when fitting data
in the increased Q? range and the improved precision attainable in 1994 HERA
runs. This more sophisticated approach, extended to next to leading order, has
been shown to give a good fit to the data [29]. The dominant term has been found
to behave like z=*+ with A, ~ 0.34 £ 0.03 independent of Q2.

The other prediction is based on the assumption that at a low starting scale Q3,
which might be close to the non perturbative regime, the singlet and gluon distri-
butions are soft, i.e.

Fi(z,Q}) ~ 0(2°

'Under a transformation from x space to moment space the splitting functions, which describe

the gluon radiation or splitting and hence the QCD evolution. transform into terms called anomalous

dimensions.
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for i = §,G. Already in 1974 DeRijula et al. [150] found that under these
conditions perturbative QCD predicts a universal growth in the structure function
at large Q? and small z, faster than any power of In i and slower than any power
of % This result, which is a consequence of QCD being an asymptotically free
field theory, has been revived recently by Ball and Forte [151] in the investigation

of double asymptotic scaling.

In the following the second prediction and its implications are studied in more detail.
This choice should not be interpreted as a prejudice against the first prediction. At
present it cannot be decided which of the two alternatives is valid on the basis of

perturbative QCD alone. This has to be investigated in comparison to the data.

9.3.2 The Leading-Order Case.

Taking the low z approximation of the splitting function the leading-order Altarelli-
Parisi evolution equations [160] can be written as a two-dimensional wave equation
which propagates the gluon distribution from its boundaries into the asymptotic region.

Defining the two scaling variables

InZ21n -t—, p=/In 2-(l/ln-'— (9.9)
T to T to

with t = In %’— and zo and Q} as starting values explicit solutions of the gluon density

G(o,p) = zg(z,Q?) in the limit ¢ = oo are found. Apart from subasymptotic correction

factors the asymptotic growth of the gluon distribution drives a similar growth of the
structure function Fj:

b 1 a

F¥ (o, ~ N (-’-) i ex [‘2*0—5- (—)] 9.10

2(0,p) fpp,—wpr 3 (9-10)

where v = 21/N./Bo, the leading coefficient 3, of the QCD 3-function 3y = ‘—31Nt~ %n!,

§=(1+ 1—71—".,&‘,)/(1 - #‘{.‘-) and the function f(2), which depends on the details of the

starting distribution and tends to unity for sufficiently large p. Provided the small-

z behaviour of the starting distribution of the gluon at tq is sufficiently soft G(o,p)
increases exponentially with o for fixed p and is independent of p for fixed .
In order to compare the F, data with the correspondingly expected behaviour for

F;(a, p) the rescaling function
1
Re(o,p) = R.exp[6~(%)+§lna+lng] (9.11)
1

is defined, where R is an arbitrary normalisation factor. Then In(R% - F;) is predicted
to rise linearly with o, independently of p (in order to reduce the dependence of the
function f the cut p? > 2 is imposed). The slope of the rise is given by
12
2y = = 2.4

J3B-6n /N,
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for N, = 3 colours and n; = 4 flavours. Except for the initial assumption that the input
distributions are soft this slope is a parameter-free prediction of perturbative QCD.

Defining the rescaling function
Rp(o,p) = Rf-exp[-2y0] (9-12)

the leading behaviour in 9.10 is removed completely, so that Rp- F; = constant, Rp - F;
exhibits scaling in both ¢ and p (double asymptotic scaling ‘DAS’).

However, if the initial assumption on a flat input gluon distribution is not satisfied
the predicitions change drastically and no universal scaling can be found. The slope of
In(R% - F3) would not be constant but rise with p and In(Rf - F;) would not scale with

p and o but would rise with p and, strongly vary with o.
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Figure 9.3: The double asymptotic scaling of Rf - F; versus p and o in leading order is
shown in the top plots. R F; exhibils an ezponential rise with o and slope 25 (bottom
plot).

Figure 9.3 shows Rp - F, versus p and o for all three F; measurements. The values

zy = 0.1 and Q% = 1 GeV? are chosen according to the initial suggestion in [151]. For
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data with Q? > 5 GeV?, shown as full circles, the double asymptotic scaling behaviour
for a soft gluon input is found to be a dominant feature of the data. However, large
scaling violations are found for the low Q? points, indicating the importance of higher
order terms in this region and the short evolution path for DAS. The slope of In(Rf- F3)
from a fit to data with Q? > 5 GeV? and z < zg < 0.1, is 27esp = 2.19 % 0.02, which is
slightly smaller than the expected value, 2vgcp = 2.4.

The good quality of the fit is reflected in the x?*:

X 468/94 for statistical errors only

X 117/94 for statistical & systematic errors

Despite the slight deviation from the QCD prediction in 2y the double asymptotic
scaling behaviour of F; has been established. Assuming a soft gluon input at a low
starting scale Q3 and using the Altarelli-Parisi evolution equation in perturbative QCD
the explicit functional form of the double asymptotic scaling approach provides a very
economical description of the data. Only three paramters zo, Q3 and Agcp have to be

given or fitted.

9.3.3 The Next-to-Leading-Order Case.

With the increased precision of the 1994 F;, data it becomes apparent that leading order
DAS does not described the data perfectly as scaling violations are observed (figure 9.3).
Therefore the DAS formalism has been extended to a two-loop calculation which has

been presented by Ball and Forte in [152]. The scaling variables are now defined as

o=VE, p=\/€/C
vt e=n o c=n (2R

Where a, is calculated at second order. In leading order ¢ reduces to In (;‘;)

The structure function F; takes the asymptotic form

pranos 7 1 [_ (Z)]
F; 62 » \/Wexp 20 — 04 - (9.13)
9e_
[1— €4 (@a(to) — (1)) - ,,za.(z)) ?]
ny oy j
with
_u+iy _ (103 1
5+-— 7 s € = (f +3-T) /1-'30
2 _ %0y
L= ]0‘ 37T‘JQU

The rescaling functions also receive small corrections:

=1
Rp(a,p)- [l — ay(t) ((- ((+ K 7?]‘;2)) (_H/F]

R¥(0.p) - exp[250]

R¥(a.p)

RY'(a, p)
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The top plots of figure 9.4 show Rp-F; versus p and o in NLO. The double asymptotic
scaling behaviour is clearly established. But in contrast to the leading order case the
scaling in next-to-leading order works even down to Q? as low as 1.5 GeV2. Including
higher order terms obviously reduces the subasymptotic region. The straight line fit
to In (RF - F3) versus o has been done for 5 < Q? < 35 GeV? and Q? > 35 GeV?
separately, as the number of active flavours is 4 and 5 respectively. Also a cut on z < z¢
has been imposed. Ag‘é;‘) is fixed to 263 MeV while z¢ and Q3 are free parameters.
Points included in the fit are shown as full circles, other points are shown as open circles
or rectangles for completeness.

In the region of n; = 4 the fit yields

x? 158/56 for statistical errors only

X’ 46/58 for statistical & systematic errors
and the slope
2ezp = 2.39£0.07

which is in very good agreement with the value 2ygcp = 2.4, that is expected from
QCD. Therefore the measured value of the leading coefficient 3y of the QCD B-function,
Bo,exp = 8.35 £ 0.48, is also in very good agreement with the QCD prediction
Bo,gcp = 8.33.

In the region n; = 5 a similar picture is observed, although fewer points are available,
which in addition span a smaller range in ¢. The values of zo and Q3 are very close to

the ones for ny = 4. The fit yields

no convergence for statistical errors only

x> =13/18 for statistical & systematic errors
and the slope
ey = 248+0.13

while QCD predicts a value of 2ygcp = 2.50. These results imply 3p..p = 7.79 £ 0.81
while 399cp = 7.67 is expected from QCD. Again very good agreement between the
measurement and the QCD prediction is obtained. However, the relatively large exper-
imental error, which reflects the small o-range covered, does not allow a precise test of
:3((,"’=5). Nevertheless the double asymptotic scaling behaviour of F; has been confirmed
in next-to-leading order and the measurements of 3 are in very good agreement with

the parameter-free QCD prediction.
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Figure 9.4: The double asymptotic scaling of R - F) versus p and ¢ in nezt-to-leading
order is shown in the top plots. R -F, ezhibits an exponential rise with o and slope 2+
for 4 (middle plot) as well as 5 active flavours (bottom plot). Points included in the fit

are shouwn as full circles, others points as open circles or open rectangles.
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9.3.4 o,-Extraction from F; using NLO-DAS.

The observation that the F; data exhibit double-asymptotic scaling and the functional
form of F; at small z, predicted by next-to-leading order perturbative QCD, describes
the data well implies that the assumption of a soft input gluon distribution at the
starting scale Q3 is consistent with the data.

The rise in F; at small z is mainly driven by the three gluon vertex, which is
proportional to the strong coupling constant a, and the gluon density. As DAS has been
shown to work reasonably well, the working assumption of a soft gluon distribution at
Q2 is made. Hence it should be possible to measure a; using the HERA low z F, data,
as stated in (153, 152].

This approach has been followed by fitting the functional form 9.13 to the F, data.
The free parameters in the fit are the starting scales z and Q3, a normalisation factor
b and Ag'éz“) in the MS renormalisation scheme. a, is calculated iteratively in NLO,
ensuring the continuity of a, at the quark mass thresholds as done in NLO evolution
programs by the MRS group and R.K. Ellis [106, 107]. Details of this procedure are
described in section 10.2.5.

The perturbative and asymptotic region in phase space is defined by the require ments
Q% =5GeV?, z < min(zo,0.1)
G
In the fit the quadratic sum of statistical and systematic errors is used. The central
fit gives
b = 3.511+0.08
zo = 0.127+0.009
5= 17215040170
AGE=D = 2784 20 Mev
with X2 = 252/177.

where b is the normalisation constant in equation 9.13.

Figure 9.5 shows the resulting running coupling a; as a function of Q. The central
fit is shown as full line, the error band, originating from the experimental errors in F,
as dashed lines.

Figure 9.6 shows the resulting fit to F; together with the measured data points.
The low-Q? measurements from the SVTX and the ISR analyses are depicted as open
circles, the NVTX analysis as full circles. The fit gives a good description of the data
in the Q%range from 6 — 5000 GeVZ2. However, the onset of a slight undershooting of
the low-z points at Q% = 6 GeV? becomes more drastic at Q2 of 4.5 or 3 GeV'2. In
this region higher order terms clearly need to be included in the calculations. Below

Q% = 2.15 GeV? no curve can be shown as this is the starting scale Q2.
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Figure 9.5: The running strong coupling a, as a function of Q*. The full line shows the
coupling corresponding to the central A value obtained in the NLO DAS-fit, the dashed

lines indicate the uncertainty from the ezperimental errors on Fj.

From figure 9.6 it can also be seen that the somewhat large x? is dominated by a
few points at low y and Q? of 35,60 and 70 GeV?. Removing these points from the
data set by the requirement y > 0.05 yields

x? = 182/146

where the obtained A(ﬁ’;‘) = 293+33 MeV is in good agreement with the central value.

Only considering statistical errors yields A4 = 16 MeV, while A.,, = 29 MeV
includes all experimental effects on the F; measurement. However, in order to estimate
the systematic error on A%).g the sensitivity of the fit to the selection of the data set
and parameters of the fitting procedure, such as quark mass thresholds, have to be
taken into account. The following systematic checks on the fitting procedure have been

performed (see figure 9.7):

e The mass of the b-quark, which enters in the threshold treatment of ay, has been
varied from 4.74 GeV to 4.2 and 5.0 GeV. The average effect on A is about
10 MeV.
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Figure 9.6: F, versus z for fized Q* together with the DAS-a, fit. The NVTX data are

shown as full circles, the low-Q? data as open circles.

o The Q%-range has been restricted to 5 < Q% < 120 GeV? and = < 0.5 2o has been

required. The average deviation from the central A-value is 28 MeV.

o Varying the minimum Q2? in the data set from 5 to 4 or 7 GeV? results in A-

variations of £70 MeV. This behaviour is not surprising as deviations of the

central fit to the data have been observed to show up in the low-Q? region. But

this region is expected to dominate a, determinations as the log(Q?) terms vary

most rapidly there.
Q% ~ 6 GeV2.

Also the precision of the present F, data is highest around
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Figure 9.7: Impact on the extraction of Ag'é;“ of systematic changes in the quark mass

threshold or the used data set.

e Requiring z < 0.05 or y > 0.05 affects A by about 18 MeV, whereas a cut of
y > 0.003 leaves A stable to within 5 MeV.

Adding the different systematic error contributions in quadrature yields the final

result %

A("/=4)

S = 278+ 29(exp.) + T9(sys.) MeV (9.14)

Following the convention of quoting the corresponding a,-value at the mass of the
Z°, Mz = 91.187 GeV [162], and including the theoretical error quoted in [153] results

in
a,(M2) = 0.115+0.002(exp.) + 0.006(sys.) + 0.009(theor.) (9.15)

This result is in good agreement with the agextraction from DAS fits to HI data
[166). a5 (M2) = 0.113+0.002(stat)£0.007(sys). Also good agreement with the a-value

9.3 Double-Asymptotic Scaling. 197
determination | a,(M2)
DAS fit 0.115 £ 0.007
BCDMS 0.113 £ 0.005
CCFR? 0.111 + 0.006
Ball-Forte 0.122 £ 0.004
world average | 0.118 £ 0.006

Table 9.1: a,(M2) as determined in different experiments from DIS compared to the

world average. Theoretical errors are not specified.

from scaling violations and sum rule studies of fixed target DIS data in v-scattering mea-
surements of F; and F3 (CCFR : [163]) and p-scattering measurements of F, (BCDMS
: [164]) and the world average [165] is obtained (see table 9.1).

Despite these results is has to be noted that the a,-determination from the DAS-
fits is model-dependent. It relies on the assumption of a soft gluon distribution at
the starting scale Q3 and is based on low-z approximations. According to Ball and
Forte the fitting procedure used here is not fully legitimate, but rather a full two-loop
evolution following the prescription given in [153] should be used. Nevertheless, given
the current precision of the data, the latter gives compatible results to the simpler

approach (equation 9.13) adopted by H1 and used here.

2The CCTR collaboration announced recently [163] that mainly due to neutrino heam energy cor-
rections their result changes to a,(M?) = 0.119 £ 0.004
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9.4 The Bjorken Plot.

-
An important open question concerning the mechanism for the small-z dynamics at ] 3'*;
HERA is whether the rise in F; towards low z can be entirely described by the DGLAP . e ] (B
[160, 161] evolution equations or if the onset of BFKL dynamics can be seen. The N% E 3 E ] "5
latter is expected to yield a strong rise of F; at low z of F ~ z=* with A ~ 0.3 — 0.5, 4 § g § b
provided there is enough phase space for building up the power-law behaviour. Such an § = - ¥ i
observation would be of fundamental importance as it had a qualitative impact on the §' § §' ;‘ —
understanding and description of the data in terms of perturbative QCD. =] ]
In order to observe tendencies towards BFKL dynamics more clearly, Bjorken sug- 'i'*; N;'*; 1
gested [149] plotting log (F3), or equivalently log(Q?) - a7, , versus log (Q?) for fixed dr B 1
W2, as shown in figure 9.8. The fixed target data, shown as small symbols, as well __Ng
as the 1994 F, data presented in this thesis (large symbols) on this plot form curves
concave down. However, if any part of the curve at high W? changed its curvature and il
went up, this would be a signal of BFKL behaviour, as that is the only way to approach o o "% "% ]
the Gribov bound. The photoproduction cross section as measured by ZEUS [142] is 3 300 1
shown as full line for guidance. § g g g 4=
In the presently available data no such tendency is visible, and there seems to be Loy 5
no need yet for BFKL dynamics in the evolution of the inclusive structure function § § g % ]
F,. However, other studies have shown the data to be compatible with a z=* rise of S UL 1
the gluon density and the proton structure function F; at low z [30, 24] or obtain an z 3 i i |
improved description of the data when also including leading log L terms [32]. More - -
exclusive measurements might be more successful in revealing the presence of BFKL
dynamics at the z-values accessible at HERA [31]. ]
°.0 . |
ie
=
gz223 2 % 8 8 gemr e w v
—
(;A?D qm)g0 O

Figure 9.8: Bjorken plot: The fized target data (small symbols) as well as the 94 F, data,
presented in this thesis, show a concave down curved behaviour. The photoproduction
cross section is shown as full line for guidance. A change of this curvature at high W?

can be interpreted as a signal for BFKNL dynamics.



Chapter 10

QCD-Analysis of the Fy-Data.

10.1 Introduction.

The precise measurement of the proton structure function Fj in a wide (z,Q?) region
using the ZEUS detector (see chapters 4 to 8) in combination with a wealth of accurate
measurements of the proton and deuteron structure function F} and Fy in fixed target
experiments provide a detailed picture of the structure of hadronic matter. The study of
these data offers the opportunity to perform tests of QCD to unprecedented precision.

This chapter presents a QCD analysis aiming at the determination of the next-to-
leading order (NLO) gluon momentum distribution in the proton. The method applied
is the following (figure 10.1):

e A set of parton distribution functions (PDFs) is parametrised as a function of z at
a starting scale Q3. One of these PDF's describes the gluon momentum distribution

in the proton.

o Starting at Q2 the PDFs are evolved upwards in log Q? using the NLO DGLAP
equations [160, 161]. As a result of this procedure the PDFs are stored on a grid

in z and Q2.

o For all F; data points considered the corresponding theoretical value is constructed

from the grid. Their comparison is quantified in a x? value.

o This procedure is iterated until a set of PDF parametrisations at Q2 is found that

minimises the total x?.

Section 10.2 describes the details of the NLO evolution program and the data sets
used.

The results of the fits are presented in section 10.3. Comparisons to the data as well
as to global QCD fits are given. The contribution from different experimental errors, as

well as the uncertainty in a,, to the error of F; and in particular to the glion momentum
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Figure 10.1: Schematic diagram of the applied QCD fit: At a given Q* the integral
over z provides information about the evolution T‘,’o—:a-y from which F3(Q* + AQ?) is
calculated and so on.

density are discussed. Finally a comparison of first F§"*"™ measurements at HERA to

the current prescription of the NLO QCD fit is given.
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10.2 The NLO-Evolution.

This study uses the NLO evolution program of the MRS group, which has been kindly
provided by R.G. Roberts. Only minor modifications have been performed, mainly in
order to reduce the processing time of the evolution, namely a different way of taking
experimental normalisation uncertainties into account and a change in the internal book-

keeping structures.

10.2.1 The Data Sets.
The following data sets are used:

o F} from the 1994 ZEUS data as presented in this thesis. Data points of all three
analyses (NVTX, SVTX and ISR) are included in the fit. The data set covers a
range of 1.5 — 5000 GeV? in Q% and 3.5- 1075 — 5.1-10~! in z. The normalisation
uncertainty of the three subsets are 2% for the NVTX, 3% for the SVTX and 3%
for the ISR data. The point by point variations of F} for each systematic check,
as discussed in section 7.8, are taken into account for the NVTX data. Statistical

and total systematic errors are considered for the SVTX and the ISR data.

F} and F§ as measured by NMC [133]. The measurements, obtained from
90, 120, 200 and 280 GeV muon beam energy runs, cover a kinen}atic range
of 0.8 — 62.3 GeV? in Q2% and 0.0035 — 0.479 in z. The normalisation uncertainty
is 2.5%. Point by point variations for 10 systematic checks have been provided by

NMC and are taken into account.

F} and F§ from BCDMS [128]. The data cover the kinematic region 7.5-230 GeV?
in Q2 and 0.07 — 0.75 in z. The normalisation uncertainty is 3%. Only statistical
and total systematic errors are provided, error correlations for different systematic
checks are not given. The BCDMS data tend to dominate the QCD fit due to
its high precision (total errors £ 2%) and is therefore only included in systematic

checks, but not in the central fit.

F? and Fy from E665 [130). This data set covers the range 0.23 — 64.3 GeV? in Q?

and 8.9-107*—0.39 in z, where its normalisation is known to within 1.8%(F}) and

1.9%(1:‘5’). As only statistical and total systematic errors are available the data

are only included in order to investigate systematic effects in the fit.

In order to minimise possible higher twist effects, which would be expected to be
relevant at low Q2 and high z, a minimum Q2 of 2 GeV? is required for the fixed target

data.
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10.2.2 The Quality of the Fit.

In order to quantify the quality of the NLO fit the following definition of x? has been
chosen:
2

. npmznll (Fgula(z'.‘Q?) - f(set;) £ sz"t(l,’, Q?))2 + "fl:‘ (l :j(])) “0.1)

X 'poml ghnorm

i=1 Jj=1

where F§ae and F{" are the measured and calculated structure function values respec-

point

tively; of is the statistical error or a combination of statistical and systematic errors

of a particular data point i; 07°™

is the normalisation uncertainty of the data set j; set;
is a function uniquely specifying the data set that a particular data point i belongs to
and f(j) defines the normalisation of the data set j. The second term in equation 10.1
guarantees that the normalisation factor, if left as a free parameter, stays around unity
within reasonable bounds as specified by the normalisation uncertainty. The first sum
runs over all data points, the second sum over all data sets included in the fit. The best
fit is specified by a set of parameters, that define the parametrisations of the parton
distribution functions (PDF) at Q3, and that set of normalisations, that minimise the

total x2.

10.2.3 Parametrisations of the Parton Distribution Functions.

The univeral parton distributions f;(z,Q?) have to be parametrised at a sufficiently
large Q2, from where they can be evolved to higher Q? using the next-to-leading order
Altarelli-Parisi equations in perturbative QCD. As the dynamical parton model of GRV
[102] has been found to described the F; data rather well down to Q% = 1.5 GeV? the
starting scale for this study is chosen to be Q3 = 1 GeV?. Here the parton distributions

are parametrised as

zu, = Aya™ (1-2)" (1+ vz + 7u2) (10.2)
zd, = Agz™ (1 -2)™ (1 + eav/T + vaz) (10.3)
zS = A,z7™ (1-2)" (14 VT + 72) (10.4)
zg = Agz™Y (1-2)" (14 ¢vT +72) (10.5)

where the valence distributions u, = u — @ and d, = d — d and the total quark sea
S = 2(T+4 d + 5 +¢). Despite the fact that the sea S and the gluon ¢ are both singlet
quantities they evolve slightly differently as 37%7 =Pyus+... 30.;“:” = Py Dg+...
in general. Therefore A, and A, are allowed to vary independently.

Three of the four A; coefficients are determined by sum rules:

Ay [3 dz uy(z) =2
flavour sum rule

Ag: [l da dy(z) = 1
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1 - ~
Ag :/ dz [z-S(z)+z-uy(z)+z-dy(z)+2-9(z))]=1 momentum sum rule :’? 1 Tk
o
08 v? 08
A, is a free parameter in the fit. -
.6 0.6
At Q3 the quark sea is distributed onto the three light flavours as
04 04
27 = 04S5-A 02 | 02
2d = 045+A 10.6 0 . -~ -4 0 : »
i 10" T 1 1 107 10" 1 10
23 = 028 x Q¥/m}

: e N e ol 4ot o 2
with the general parametrisation z-A = z(d—7) = As 278 (1-z)* (1+7az +6a2?). Figure 10.2: The charm quark mass threshold behaviour is modelled via suppression

The suppression of the strange distribution to 20% of the quark sea is motivated factors Swq(z) (left) and Suq(Q?) (right).

by a next-to-leading order analysis on dimuon production by the CCFR collaboration

[153], which places limits on the strange content of the proton.

Evidence for d > @ (on average) comes from the NA51 Drell-Yan asymmetry in ¢ = S(z,Q% + V(z,Q%
n [156] and the measurements of the Gottfried sum by NMC [157]. The u,d flavour
pp/pn [156] 3 / Hansigh iy . singlet =2 +d+35+7%) +u, +d,
symmetry breaking term z - A is introduced, accounting for these results. Here § is
chosen to be zero for the time being as the precision of the currently available data does g
not yet require this term. (8, + dy)
uU v
The normalisation A, is determined from the requirement
1 dy,
/ de@-7) = %-;-sc
Y non-singlet | fN$ = 3}7q' —(c+9

where Sg = fol "7" (F§ — F}) is the ‘Gottfried sum’ as measured by NMC.

NS B <
The charm distribution is currently evolved as a massless parton from zero at -4 e o
Q? = Q2. As Q2 < m? this prescription would overestimate F§h*"™. Instead the sup- Js - -ﬁ;q’ + (u+7)
pression factors
2 md Table 10.1: Singlet and non-singlet quantities as evolved and stored on the (z,Q?) grid.
Swe(@) = [1-N{5F
! L 2z VazF141
e i [1 T Vit " <\/4z +1- 1)] singlet
Sue(z) = (1-2)° d g (z,Q? a,(Q?) ['dz z z
and m? = 3.5 GeV? (charm mass) are introduced to account for the threshold behaviour dg(z,Q) _ a,(QY) /1 dz £.QY) P ), )(:.0Y) - P z (9.5
of massive quarks (see figure 10.2). dlogQ?. = Tom ). 2 T BN P LR ol
: non-singlet
10.2.4 Q*Evolution of Singlet and Non-Singlet Quantities. ]
d¢N¥(2,Q%) ay(@®) [Mdz ns . z
The DGLAP evolution equations can be written separately for the gluon density ¢ and d log Q2 = 2% /r o (,Q%) - Pxs (‘__‘) (10.8)

the singlet quantities ¢°, whose Q? evolution depend on the gluon density, and the . R . P .
glet 9 iz, Q P & : ‘ with the NLO splitting function as given in [158].
non-singlet quantities ¢;¥>, that are independent of the gluon density: & e R y ] .
I'herefore the parton distributions are separated into singlet and non-singlet quan-

tites, which are actually evolved and stored on the (z,Q?) grid (table 10.1).



206 QCD-Analysis of the F;-Data.

corid =_;vs+ﬁ7qs e

§charm = SHQ(’) = SHQ(QQ) . eomid

cjlavaur £ ‘grid Y dcharm =c+¢-1.0- écharm
sllauaur % Nlr,‘l' 1L f’NS +0.2- geharm =s+3+0.2- Scharm

w4 T+ 0.4 . geharm

y/lavour ﬁvs i ﬁ7qa +0.4 . §charm

d/lauour = ql ki u/luuour - s]lauaur = c]luuaur =d+ H_‘_ 0.4- 6charm

Table 10.2: Flavour parton distributions as constructed from grid quantities.

The parton distribution functions of the different quark flavours in the M5 scheme
can be constructed from these quantities as shown in table 10.2

The additional quark sea contribution §°**"™  which is made available by the charm
suppression at Q% ~ m?, is distributed onto the three light flavours u, d and s in the
ratio 40 : 40 : 20 (compare to equation 10.6).

The integrals in equation 10.7 and 10.8 are solved numerically using gaussian in-
tegration. The resulting slope 77’%37 in combination with a given starting value of
the PDF f;(Q?) allows the determination of the value f;(Q? + AQ?), the PDF can be
evolved up to the highest Q? covered by data points. In principle the same procedure
could also be used for the evolution of the PDF to smaller Q? values. However, this is
neither necessary nor practical given the starting scale Q3 = 1 GeV? and the data set

considered.

10.2.5 Calculation of a,.

The precise calculation of the strong coupling constant a; in the entire Q*-range, i.e.
also across quark mass thresholds, is of vital importance for the evolution of the PDFs.
Formally integrating the Q? scale dependence of aj, given by the renormalisation group

equation, to next-to-leading order yields

3 ir 5 dr B
In X(i:)' —'500, = Eg n ,_300’, == :3; (10.9)

with 3p =11 — %N,, 3 =102 - %N, the first two coeflicients of the QCD 3-function.
Solving this equation iteratively, using Newton’s method, yields o‘,(Qz,n/ = 4) for
four active flavours. To ensure the continuity of ay at the quark mass thresholds [37],

essentially following the prescription of Marciano [159], a, is calculated as

o, (@) = a,(@%4) 3.5 GeV? < Q% < 30 GeV'?
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1 1 1 1
= + & 2 <3.5GeV?
Ge@ ~ w@d ama) amy 2
1 1
d + ; Q* > 30 GeV?

G e@) ~ a(@Qhs)

with m? = 3.5 GeV? and m = 30 GeV? the squares of the charm and the beauty

a,(m2,4) ~ a,(mf,3)

masses respectively.
Constructing the flavour parton distributions from the grid quantities and equa-
tion 2.22 allow the calculation of!

4
F; = §[u+ﬁ+c+t]+%[d+3+s+§] and
4 1
Fp = 5[d+3+c+t]+§[u+’n+s+3] so that
5 ] 4
Fi=(F+F)2 = lutT+d+d+5ls+3+5le+7)

These values are finally compared to the data points in the way described in sec-
tion 10.2.2. Further details about the program and the set of parameters referred to as
MRS-R1 to MRS-R4 can be found in [135, 137].

!'Shadowing corrections, taking the binding of the proton and the neutron in a deuteron into account.

are expected to be small and not applied ro Fj'.
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10.3 Results

10.3.1 The Central Fit.

The central NLO QCD fit includes NVTX and SVTX F} data as presented in this
thesis and the NMC F} and F{ data. As these data have been found to be rather
insensitive to the non-singlet, i.e. the valence parton densities, their corresponding
parameters are fixed to the values from the global QCD analysis with A% = 344 MeV
(MRS-R2 fit) [137]. The normalisations of all data sets are initially set to unity, their
variations is investigated in section 10.3.3. Only statistical errors on the measured F, are
considered, except for the NVTX data, where a quadratic sum of the statistical errors
and the systematic errors originating from the unfolding procedure is used. Systematic

uncertainties on F; and the PDFs are considered in a separate section 10.3.5

Table 10.3: Numerical values of the parameters describing the parton distribution func-
tions at Q3 = 1 GeV2. The values obtained in MRS-R2 are also listed for comparison.
Parameters in brackets are not directly fitted but determined from sum rules.

Figures 10.3 and 10.4 show the Fj resulting from the NLO QCD fit as solid line
together with the data fitted and the ISR F,. For Q% > 3 GeV? the fit describes the

data very well at low as well as at high z. Only at Q% < 2 GeV? does the fit tend to

Parameter | free ? | value error | MRS-R2
Ty - |0344 0.344
m : 0.61 0.61
™ £ 3.54 3.54
s 4 0.24 0.24
N — M2 - 0.66 0.66
A, + 036 £+ 0.19 | 0.37
s + | 7713 £ 086 |8.27
(Ay) =g 14.4
Mg i o 588 £ 295 | 5.51
"y ? 6.51 6.51
(Aa) 5 0.54 0.036
% + | 631 % 474 |6.37
15, + 040 £ 8.2 0.51
Y - | 209 29.9
5, + |-013 + 052 |-015
Y + 1533 + 319 | 1441
iy - -0.98 -0.98 i
€ - 7.37 7.37
€ + BT % 093 | 113
€ + -3.39 + 1.63 |-4.20
= + | 035 + 015 |0.30
7a - 64.9 64.9
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Figure 10.3: F, versus z from the NVTX data (closed circles), the SVTX data (open
circles) and NMC data (closed rectangles) together with the central NLO QCD fit (solid
line).

undershoot the low-z data from the SVTX and the ISR analyses due to the suppression
of the charm contribution. Nevertheless the fit is consistent with the data in this region
as the experimental errors are rather large at present.

The Q? dependence of Fj for fixed z is shown in figures 10.5 and 10.6. The SVTX
and ISR data are shown at z-values of the NVTX analysis, using the NLO fit for the
interpolation. The NLO fit describes the rise of the Fy data with Q2 in the NMC region
and HERA region very well, and in particular the change in the slope due to the scaling

violations, a salient feature of NLO QCD, is very well reproduced over four orders of
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Figure 10.4: F; versus z from the NVTX data (closed circles), the SVTX data (open
circles) and NMC data (closed rectangles) together with the central NLO QCD fit (solid
line).

magnitude in Q%.

The parameters of the central fit, describing the parton distribution functions at
Q? = Q% =1 GeV? are listed in table 10.3.

The quality of the fit is quantified by a total \? = 1292 for 727 data points. The
\2-contribution from the different data sets is given in table 10.4.

The large \? for the SVTX points is due to the undershooting of the fit helow
Q? ~ 3 GeV?, where most of the SVTX data have been taken. Furthermore the low-a

SVTX points tend to be slightly high compared to the curve and, if available, NVTX
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Figure 10.5: F; versus Q?* at fized z from the NVTX, SVTX and ISR data (large circles)
and the NMC data (small circles) together with the NLO QCD fit (solid line). The

scaling violations, resulting in an increasing slope at decreasing z, are well reproduced.

data, so that some points contribute y? 2 20. Taking into account that the fit has 10
free parameters a \?/ndf = 1292/(727 — 10) = 1.8 is obtained. This indicates that the
fit is adequate, but not brilliant. In order to study the origin of this effect the quantity

‘pull’, which measures the \? contribution per data point, is defined

; ; Fdata 2:,Q%) — F.”’ 2, Q? 2 . Fdata _ F/“
pull(z;,Q%) = sgn(l)‘( 2" Q‘)n,- 2 (20, Qi) with syn:l—ém

The pull distributions and scatter plots versus  and Q? for F} from the NVTX data
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Figure 10.6: F; versus Q? at fized z from the NVTX, SVTX and ISR data (large circles)
and the NMC data (small circles) together with the NLO QCD fit (solid line). The

scaling violations, resulting in an increasing slope at decreasing z, are well reproduced.

and the F¥ and Fj from the NMC data are shown in figures 10.7 and 10.8. The main
characteristics of all three pull distributions is a sharp peak at zero with width ~ 1,
as obtained from a local gaussian fit. This would be expected for a good fit. However,
in all three distributions tails up to 10 and down to -10 are observed, indicating the
presence of outlier in the data points or a significant deviation of the fit from the data
in a particular (z,Q?) region. The distribution of the pull as a function of z or Q* do
not show any evidence for a systematic mismatch between the data and the fit. The

NVTX points with the largest pull values lie around # 2 107" and Q? £ 15 GeV?. The
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Data Set. | x? / Bosinta

FY NVTX | 287/ 191
Fy SVTX | 237 /24
FY NMC | 418 /256

F¢ NMC | 350 /256

Total 1292 / 727

Table 10.4: x? per number of data points for the four data sets included in the central

fit. Only statistical errors are taken into account

10
& Ledt
Mesa snusEn
ZEUS F; RMS Me 6 F
60 ¥/ndt [TO W] 4 F
‘lcm. s 2
Mean SeME
Sigma 199 0
so -

&
T
L
Seébb
e
'
A
e

W il J
0 + 10
“EI
6 3 .
A ok
2 |
1 -
0
2 F
10 4 E
_‘ -
_s -
0 o L L .10 L " .
-10 -5 0 s 10 2 3 4
1 10 10 1
e 8 (Gev?

Figure 10.7: The pull distribution for the NVTX data indicating the x* contribution per
data point. A tendency to large pull values can be seen at x ~ 0.1 and Q* < 15 GeV?2,

corresponding NMC points are not concentrated in specific phase space regions. This
can be seen even better from figure 10.9, where the pull values are shown in the (z, Q?)
plane using different symbols for certain pull ranges. The NVTX data yield large pull
values at low y, where the detector noise has been found to cause fluctuations in Fj.
At Q? of 8 — 10 GeV? some pull values are found to be larger than 2 due to the small

statistical errors (~ 1.9%).
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Figure 10.8: The pull distribution for the NMC F} (top) and F§ (bottom) data sets,

indicating the x* contribution per data point.

10.3.2 Sensitivity to the Input Data.

Only including statistical errors for the NVTX data yields a \? = 673/191 where the
dominating contribution comes from the low-y points. Using the quadratic sum of

statistical and systematic errors for all data sets, now also including the ISR data in
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Figure 10.9: x? contribution per data point for the central fit from the NVTX data (big
symbols) and the NMC data (small symbols) in the (z,Q?) plane.

addition to the NVTX and SVTX Fj? and the NMC FJ* and F{¢, results in \? as
listed in table 10.5. Even though adding the systematic errors in quadrature improves
the x? sigificantly, indicating that the NLO fit describes the data better than the fit using
statistical errors only, the corresponding PDF parameters have not changed significantly.
However, if BCDMS F} and F§ data are included these data dominate the fit as
a consequence of the very small errors for the large number of data points (175 points
for F} and 157 points for F§) in a comparatively small (z,Q?) region. The y? for the
191 NVTX points in such a fit increases to 1417. The fits undershoots the low-z data
significantly. This is not too surprising, considering that a NLO analysis of the accurate
BCDMS data results in a A% value of 236 MeV [164], which is much lower than the
344 MeV used here (This observation has heen interpreted as an indication that a good
simultaneous fit to high-z and low-z data requires the inclusion of In 1 terms [32]).

Including in addition E665 data, which in general lies between the BCDMS and the
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Data Set | X? / Npoints

FP NVTX | 150/ 191
FPSVTX | 47/24
FY ISR 6/16
FP NMC | 276/ 256

F$NMC | 202/ 256

Total 681 / 743

Table 10.5: x* per number of data points for the five data sets considering statistical

and systematic errors.

HERA range in (z,Q?), yields a x? = 97 for 60F} points and x? = 86 for 53F§ points,
using statistical errors only.

Instead of using the F} measurements presented in this thesis, the published 1994
ZEUS or H1 data in combination with the NMC data has been fitted as well. The
resulting x? values are listed in table 10.6. The significantly differing behaviour of the
ZEUS and H1 data is mainly a result of ZEUS also measuring F, at very low y with very
small statistical errors and large systematic uncertainties. The H1 data only touches
the fixed target region but does not provide a large overlap. A less important reason
for different x? values between the two experiments are differences in the calculation of
the statistical and systematic errors. The x? values for NMC in conjunction with the
published ZEUS or H1 data are essentially identical to the ones obtained in the fit with
the NVTX data (see table 10.4 and 10.3).

Figure 10.10 shows the resulting F; curves at low Q? from the NLO fits to the data
presented here, ZEUS data or H1 data. The fit to the H1 data yields a considerably
stronger rise of F; at low z, whereas the ZEUS and the NVTX data give almost identical
results. Although taking statistical errors only or statistical and systematic errors into
account strongly affects the x? of the fit, the parameters and the curve itself stay
basically constant for all three data sets indicating the stability of the NLO QCD fit.

10.3.3 Sensitivity to the Normalisation.

In addition to the PDF parameters the normalisation of the different data sets can also
be left free. The following scenarios have been fitted in order to study whether there is

some need for normalisation corrections.
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Data Set X2 / M points

1994 ZEUS (stat) 653 / 188
1994 ZEUS (stat @ sys) | 258 / 188

1094 H1 (stat) 399 / 193

1994 H1 (stat @ sys) 97 / 193

Table 10.6: x? per number of data points from separate fits to ZEUS and NMC or H1

and NMC data for different error treatments.
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Figure 10.10: F; from the NLO QCD fit to a combination of NMC data with the
NVTX data (full line), ZEUS data (dashed line) or HI data (dashed-dotted line) at
Q* = 8.5 GeV? taking statistical (left) or statistical and systematic errors into account
(right).

o N;: A fit similar to the central one is performed, but the normalisation of the
NVTX, SVTX and NMC data is left free.

e Ny: As N; but the NMC normalisation is fixed to 1.0.

e N3: As N, but the ZEUS normalisation is fixed to 1.0.

The results are listed in table 10.7.

The \? variations for the ZEUS data can be quite substantial, whereas the NMC \?
is rather stable. Treating all normalisations as free parameters results in a downscaling
of NMC' data by 1.4%, while the NVTX data are scaled down by 5.4% and the SVTX
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Scena- x*/pes Navrx Nsvrx Nnme

rio | NVIX [ SVTX | NMC(p) | NMC(d)

Ny | 226/191 | 255/24 | 404/256 | 319/256 | 0.946 4 0.017 | 1.091+ 10° | 0.986 +0.016
No | 2317191 | 230/24 | 422/256 | 356/256 | 0.962+0.011 | 1.048 + 10° 1.0

N3 273/191 | 228/24 | 433/256 | 370/256 1.0 1.0 1.013+0.011

Table 10.7: x? dependence on the normalisation of the data sets.

data up by 9.1%. The NVTX and NMC values lie in the 1 — 20,,.m range, only the
SVTX normalisation receives a larger scale factor. But in the fit no strong sensitivity
to this normalisation is found, as can be seen from the large error.

Given the present normalisation uncertainties the normalisation scales vary within
reasonable bounds. But the results obtained indicate that an improved understanding of
the trigger efficiency and luminosity measurement as well as a larger overlap in kinematic

region between the data sets will be important for global QCD analyses.

10.3.4 Sensitivity to a,.

The NLO QCD fit requires as input the data points, the starting PDFs, the NLO
splitting functions and a,. It is clear that the fit results are sensitive to the choice
of a,. At large z the evolution of F; is determined by a convolution of the valence
quark distribution and ay, at low z the F; evolution is dominated by a convolution of
the gluon density and a,. In order to investigate the sensitivity of the fit to a, the
NVTX, BCDMS and NMC data have been fitted with the valence quark, sea and gluon
parameters left free. The statistical and systematic errors are added quadratically.
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Figure 10.11: \? contribution from the data sets of the ZEUS, BCDMS and NMC
ezperiments as a function of a,. Values obtained from F§ are shown as full circles,

values from F§ as open circles.
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The resulting x? for the different data sets are shown in figure 10.11. F} sets are
shown as full circles, F§ as open circles. The NVTX data (left plot) exhibits a rather
strong a, dependence. The minimum x? is reached for A%)g ~ 300 MeV, which is in
very good agreement with the A% ~ 278 MeV obtained in the NLO DAS fit. The
BCDMS F,’ data seems to favour A &~ 270 MeV, whereas the F‘é’ data yields its lowest
x? for A = 220 MeV. The NMC F} and Fj data also seems to favour A ~ 220 MeV.

The procedure applied is not completely suitable to determine ay, as the a, depen-
dence of the different data sets influence each other. The fit minimises the total x? and
is therefore dominated by the data set which is most sensitive to a,. Nevertheless the
general picture, that fixed target data seems to favour a low a, while HERA data tend

to prefer a value closer to the world average, is confirmed in the QCD fit.

10.3.5 Error Estimate on the PDFs, the gluon and F;.

Global QCD analyses are not only performed in order to study and test perturbative
QCD, but they also serve the purpose of extracting the universal parton densities in
the proton. This information can in turn, for example, be used to perform calculations
of QCD predictions for cross sections in Pp or pp collisions. The present uncertainty
in the PDFs is a considerable systematic error source for the measurements of the W-
mass. As pointed out in [105] this and other examples suggest that it is not sufficient to
extract PDFs from global QCD fits, but that a consistent treatment of the experimental
errors of the data sets is necessary to estimate the uncertainty on the PDFs and further
calculations from them.

In the presented study experimental errors are considered in the following way: For
the ZEUS F}, the 31 systematic checks of the NVTX analysis are combined with the
central NMC data; for NMC 10 systematic checks are combined with the central NVTX
data. This procedure results in 41 additional data sets. Performing 42 NLO fits (1
central and 41 systematic checks) and adding positive and negative deviations of the
resulting grid quantities and PDFs in quadrature provides an estimate of the uncertainty
in the PDFs.

Figure 10.12 shows the F, data versus z for four particular Q2 values together with
the NLO QCD fit. The central fit is shown as dashed line, the shaded error band
obtained from the presription described above indicates the uncertainty in F;.

As F is the quantity which is actually fitted it is hardly surprising that the error
band is rather small. Only at Q? = 1.5 GeV?, where the experimental errors are
relatively large and constraints from lower Q? are missing the uncertainty on F, from
the fit is as large as 20%.

Figure 10.13 shows the quark distributions as a function of = for Q% of 10 and
1000 GeV2. Since the data set considered is not sensitive to high-z PDFs, the corre-

sponding parameters are fixed, so that the estimated error on the PDFs at z > 102 is
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Figure 10.12: NVTX, SVTX, and ISR F, data versus z together with the NLO QCD

fit. The central fit is shown as dashed line, the uncertainty as shaded error band.

small. However, at Q% = 10 GeV? and z =~ 10~ or even lower the uncertainty on the
quark densities can be larger than 10%. At Q* = 1000 GeV? and z £ 1072 the u and
d-quark densities can only be determined to within 15%.

These z and Q? dependences of the quark density uncertainties are also reflected
in the gluon density. Figure 10.14 shows the gluon momentum distribution versus z at
small and medium Q2. Not only the evolution of the gluon density with Q? can clearly
be seen, but also its z-dependence. The error bands exhibit a prominent structure at
z>~1-3-10"2 and 1 - 21071, The origin of this feature is the overlap between
the two data sets, introducing fluctuations in F; from the different systematic checks.
The uncertainty in the gluon density at Q2 = 22 GeV? and z = 107" is =~ 24'%, where
the error band is also found to be strongly asymmetric. In comparison to previous

determinations of the gluon momentum distribution in the proton [118] the extension of
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Figure 10.13: Flavour parton distribution functions (PDFs) as a function of = for
Q% =10 GeV? (top) and Q* = 1000 GeV? (bottom). The uncertainty of the PDFs

as obtained from the fit are shown as shaded error bands.

the kinematic region of the F; measurements and the reduction of the errors on the data
points result in a significantly reduced uncertainty in the gluon distribution at small z.

A comparison of the gluon density obtained in this analysis to those of global QCD
analyses at Q% = 22 GeV? is shown in figure 10.15. The gluon density extracted in
this analysis follows very closely the one from MRSR2. Only at z <10~ MRSR2
lies slightly higher. Both parametrisations lie between those of MRSDg and MRSD_,
which represent extreme assumptions of pre-HERA predictions. This analysis is also
found to be in good agreement with CTEQ4, the latest parametrisation of the CTEQ
collaboration. The previous CTEQ fit, and GRV give gluon densities that are higher and
steeper than the one obtained here for z < 10=2. This, however, is partially due to the
fact that GRV and CTEQ3 use Ag'é;” values of 200 MeV and 247 MeV, respectively.
Since the gluon splitting and hence the scaling violations at small z are proportional
to the product of the strong coupling constant, a,, and the gluon density, these two
quantities are anticorrelated. This effect is demonstrated in figure 10.16, where the

gluon density of the central fit (A(;éz'” = 344 MeV) at low z is shown to be lower than

that of a fit with a smaller a, (A(Q"é?) = 241 MeV).
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Figure 10.14: Gluon momentum distribution zg(z) at four Q* values as extracted from
the NLO QCD fit. The uncertainty on zg(z) is shown as shaded error band, the inset
zooms into the region around z ~ 10~ where the overlap of the NVTX and the NMC
data produces the depicted feature in the error band.

10.3.6 F§he'™ Comparison.

Assuming the absence of intrinsic charm, the proton’s charm content originates entirely
from charm production via the boson-gluon fusion mechanism. The corresponding con-
tribution to Fy, namely F§he™ is an exclusive quantity in the sense that it is flavour
specific, even though inclusive of all decays. It provides an alternative handle on the
gluon density and allows additional tests of QCD. The precise measurement of F§h'™
at small z at HERA will eventually play a crucial role in furthering the understanding of
perturbative QCD and in the determination of PDFs and their uncertainties in general.

The first measurements of F§h"™ at large = were made by a FNAL collaboration
[167] and the EMC collaboration [168]. They were based on the identification of dimuon

and trimuon events in p*-iron interactions, which were dominantly caunsed by open
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Figure 10.15: Comparison of the gluon density obtained in this analysis with those from
global QCD analyses.
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Figure 10.16: Comparison of the gluon density obtained from the central fit (Ag’é;“ =

344 MeV ) to the one obtained in a fit with A(Q"c'-zﬂ reduced to 241 MeV.

charm production in which the charmed particles decayed semileptonically to muons.
This measurement has recently been complemented by H1 [169] and preliminary ZEUS
measurements [170]. Open charm production in DIS at HERA is tagged via the recon-
struction of charged D" mesons and their decays D** — D°z¥ with the characteristic
signature of the ‘slow pion’ with a momentum of only 40 MeV in the D** rest frame
and the subsequent decay of the D° into kaons or pions. Also measurements of inclusive
D° production via their semileptonic decays are being worked on.

Figure 10.17 shows the Fgh?"™ data from H1 and ZEUS at six Q? values together
with the F5h"™ as obtained from the NLO QCD fit described here. Although the central

fit tends to underestimate the data at low z, where a steep rise of F§"*"™ has been found,
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Figure 10.17: F§ha™ versus z for fizred Q* as measured by H1 (open and closed circles)
and ZEUS (closed rectangles) together with the NLO QCD fit (solid line). The uncer-
tainty on F§h™™ from the fit is shown as shaded error band. The ‘central’ fit is the
thick line.

the present precision on the data as well as the fit do not allow any strong conclusions
to be drawn. The result from the simplified charm treatment in the evolution and the
present data are in reasonable agreement. Nevertheless the increasing precision of future
F§har™ measurements and their exceptional importance for accurate QCD tests require
a refinement of the current charm evolution, in particular of the turn-on behaviour at
the mass threshold. At very high Q? the leading order contribution of the photon gluon

fusion (PGF) process "¢ — ¢ to F; behaves as Fy ~ a, (%) In(Q?/m?). Higher order
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corrections also behave as (a, In(Q?/m?))", so that fixed order perturbation theory
breaks down. Thus the charm quark will have to be included as a parton in the DGLAP
evolution. The exact next to leading order corrections to the PGF structure function
have been calculated in [33]. The consistent inclusion of the heavy quark mass in the
DGLAP splitting functions without losing the original parton interpretation has been
addressed recently in [34, 35]. Both studies are based on the generalised variable flavour
number formalism [36) which provides a consistent picture from the mass threshold to
the asymptotic region Q% — co. They find a better description of the experimental data
in their global analyses. These new fits and correspondingly the adopted treatment of
the charm quark in the DGLAP evolution await confrontation with more and more
precise F§h™™ data from HERA.
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Conclusion.

This thesis has presented an independent measurement of the proton structure function
F;, studies of phenomenological models describing F; and a determination of the gluon
momentum distribution in the proton.

The F, measurement is based on a data sample corresponding to an integrated
luminosity of 2.4 pb~! collected in 1994 with the ZEUS detector at HERA. It extends
the accessible kinematic range to lower and higher values of z and Q? compared to the
1993 data and provides an overlap with the fixed target region. F; has been measured
for 3.5-107% < z < 0.8 and 1.5 < Q* < 5000 GeV?2.

The low Q? data have been analysed using events with a shifted interaction point
or with collinear photon emission in the initial state. The analysis of the medium and
high Q? data has been carried out using a new kinematic reconstruction method which
provides an improved resolution. In the region of 3 < Q? < 100 GeV?, where the
statistical errors are ~ 2 — 4%, the systematic uncertainties have been reduced to below
5%, whereas the very low and the higher Q? regions are at present dominated by limited
statistics.

The most striking feature of the measured proton structure function F; is its strong
rise with decreasing z, which has been confirmed at medium and high Q? and has been
found to persist down to Q? as low as 1.5 GeV?. With increasing Q? this rise gets more
pronounced, which is a result of the strong scaling violations at low z. In the region of
overlap the present F; measurement is consistent with the fixed target data.

The latest parametrisations of the parton distribution functions (MRSR and CTEQ4),
which have been fitted to 1994 HERA and other data using the DGLAP evolution equa-
tions, describe the F; data very well and are in most of the (z,Q?) region essentially
indistinguishable. Previous parametrisations show deviations from the data mainly at
low Q%. The dynamical parton model of GRV, an almost parameter free prediction of
perturbative QCD using a very low starting scale and the DGLAP evolution equations,
is found to be able to describe the data adequately over the entire Q? range. The

Regge-inspired parametrisation of Donnachie-Landshofl, however, undershoots the F,
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data at low z and is ruled out at Q% > 2 GeV?.

F, at low z exhibits approximate logarithmic scaling in z and Q? which allows a
simple description of the data at low z. If this observation were found to persist to
asymptotically low z the unitarity bound could get saturated, but not violated.

The perturbative QCD predictions for the behaviour of F, at small z vary for the
two scenarios, where the z dependence of the input gluon distribution at a starting
scale Q3 is singular (~ 2~ ; A 2 0.3) or soft. The latter case is investigated in further
detail. The low z prediction that F, exhibits double asymptotic scaling is confirmed.
Furthermore it is found that this feature of the data is described better if the cal-
culations are carried out in next to leading order so that scaling violations, mainly
observed at low Q2, are reduced. Double asymptotic scaling provides a very economic
description of the data. Assuming a soft input gluon distribution the functional form
of F; at low z, as calculated in the double asymptotic scaling approach, has been found
to be sensitive to the value of the strong coupling constant a,. Exploiting this de-
pendence the expected function is fitted to the present F; data. The obtained value
of a,(M3) = 0.115 £ 0.002(ezp.) + 0.006(sys.) £ 0.009(theor.) is consistent with other

determinations of a, from DIS and the world average.

A QCD analysis of the present F data is performed. Using the DGLAP evolution
equations in next to leading order the measured (z,Q?) dependence of F, can be very
well described in the full kinematic range. Only at Q% < 3 GeV? a slight undershooting
of the data indicates that a refined treatment of the heavy charm quarks becomes
important in this region. From this QCD fit the gluon momentum distribution of the
proton is extracted taking the error correlation of the F, data into account. The gluon
density is found to be strongly rising at low z.

Low z DIS physics has been exciting recently through the interaction of theoretical
speculations and experimental HERA results. However, important questions remain to
be answered. In order to investigate further how low in z the conventional DGLAP
evolution can describe the data or if In % terms have to be included in the calculations
requires an improved precision of the measurements. The rise in the gluon density at
low z has to be determined with increased precision and needs to be complemented by
other studies, such as J/4 production and F§"*"™. A measurement of the longitudinal
structure function F, also possible using initial state radiation events, could serve as a
consistency check and provide confidence in the structure function results obtained so
far.

Electron proton scattering continues to be a powerful tool in the study of the struc-

ture of the proton and in testing QCD to unprecedented detail.



Appendix 12

The Photon Lifetime.

The deep inelastic electron proton scattering process, depicted in figure 12.1, can be

viewed as the scattering of virtual photons off the proton. The DIS ep cross section

| 28, |

1Q* = —¢%)

} X

Figure 12.1: The deep inelastic ep scattering (left) can also be viewed as scattering of

virtual photons off protons (right).

can be expressed as a product of the flux of virtual photons and the total cross section
a,':;,” for the scattering of virtual photons off protons [140]. This separation, however, is
only meaningful provided that the lifetime of the virtual photon is large compared tor

the interaction time [141]
Tlife > Tinteraction (12.1)

Let R, be the proton radius and 3 the photons relativistic velocity, v its energy and Q*
its invariant mass. In the proton rest frame the interaction time of the photon proton

scattering is then given by

e My _ 2Ry Wy
interaction = 5 e (p/ll) - \/m
2R,

. . o 2
with the Bjorken scaling variable z = 7%; and M the proton mass.

228
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The energy uncertainty of the photon is

Ay = (y/u’ +Q? - u)
QZ
2w
so that its lifetime turns out to be
1 v
ATife = T
.
T Mz

Therefore, the condition 12.1 on the photon lifetime implies that the considered separa-

tion of the ep scattering into photon flux and photon-proton cross section is only valid

if
/1 i ‘lJ\'QI’ﬁ

2R, M

or with R, ~ 4 GeV~!

P | st I
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Q7T Q7-range z z-range | events No.BG [ F» + stat. + syst. |
35| 30-40]63-10-°]50—8.0-10-°| 2352 ] 127.2(0.0) [ 0.973+0.058 %3 13%
35| 3.0-40(10-10-*|08-1.3-10-4| 3576 | 103.3(40.5) o.921¢0.039:3;§5§
45| 40-50|1.0-10-7 |08-1.3-10-7 | 4404 | 222.5(20.7) 0.991104025t§;“;5'
45| 40-50(16-10"% [ 1.3-2.0-10-4 | 4022 | 79.5(18.5) o.99uo.02418;8;§
45| 40-50(25-10"*]2.0-3.2-10"* | 2634 | 7.9(10.3) [ 0.91140.029% {50
65| 50—7.0| 1.0-10-7 | 0.8—1.3-10-7 | 2650 | 127.2(37.9) "190*0-034f§?°g§
65| 50-7.0[16-10"1|1.3-2.0-10-4| 7481 | 174.8(91.7) 1'“5*0'0‘9:'8%’?
65| 50-7.0]25-10"%|2.0-3.2-10"%| 7977 | 87.4(61.4) 1.03410.0:6‘:8;858
65| 50-7.0]40-10"%|32-50-10"*| 6052 | 0.0(129.5) o,sssio.ms‘:s;sy
65| 50-7.0|63-10-*[50-8.0-10-*| 5286 | 0.0(26.9) 0‘83910.0171’8;
65| 50—7.0[10-10"3[08-1.3-10"3 | 4643 | 0.0(10.3) 0'753*0‘015t83°§£
65| 50-7.0[16-10"3|1.3-2.0-10-3| 3944 | 0.0(37.1) 0.695104017‘_*8%%
65| 50-90]25-10"3|20-3.2-10-3| 8677 | 0.0(116.8) o.ssoio.omtg;m
65| 50-9.0[40-10-3 [ 3.2-8.0-10-3 | 16746 | 0.0(114.9) o.sgsio.oostg;m
65| 50-9.0]1.6-10"2 | 0.8—3.2-10-2 | 18495 [ 0.0(149.4) 0.46210‘00618;853
65| 50-9.0[40-10"2|03-13-10-"| 7326 | 0.0(92.6) | 0.382+ 0.008 * 7075
85| 70-90]16-10-7 [ 1.3—2.0-10-7| 2984 | 119.2(28.4) 1.24010.0311’§1m
85| 7.0-9.0(25-10*|2.0-32-10"*| 5639 | 95.4(50.2) 1.11710.022t8;83g
85| 70-9.0[40-10*[32-50-10"*| 5305 | 7.9(32.2) | 0.974+0.019% It
85| 70-9.0[6.3-10*|50-80.10"*| 5247 0.0(0.0) o.913¢o.017t§;8§§
85| 7.0-9.0]1.0-10"3]08—-13-10-3| 5029 [ 0.0(78.8) 0.83710.0171838Zg
85| 70-9.0[16-10"3[1.3-20-10-3| 3994 | 0.0(45.0) | 0.721 £ 0.017* 30
100 9.0—11.0 | 1.6-10 -7 [ 1.3—-2.0-10-% 644 | 55.6(0.0) 1.2901:0.071’:53gg
100 | 9.0-11.0{25-107% | 2.0-3.2-10-*| 3114 | 79.5(30.3) 1.17210.02918;054
100 9.0-11.04.0-107* | 3.2-5.0-10-* | 3632 | 15.9(41.0) [ 1.107 + 0.025* 3035
10.0 [ 9.0-11.0 [ 6.3-10~* [ 5.0-8.0-10-% | 3796 [ 0.0(70.7) | 0.960 + 0.021 + 3:93¢
100 | 9.0-11.0[10-1073 [ 0.8-1.3-10"3 | 3662 | 7.9(21.0) 0.85510,020tg;gf2
100 | 9.0-11.0| 1.6-1073 | 1.3-2.0-10-3 | 3138 | 0.0(1L.7) o.775¢040211§;gg3
10.0 | 9.0-11.0 [ 25-1073 [ 20-3.2.10-3 | 3403 | 0.0(20.2) | 0.728 +0.017 + 3317
100 | 9.0-13.0|6.3-10-3 | 3.2-8.0-10-3 | 11803 | 0.0(67.7) | 0.591 +0.007 * 3318
10.0 [ 9.0-13.0 [ 1.6-10-2 [ 0.8—-3.2-10-2 | 15734 | 0.0(70.3) | 0.504 + 0.006 * 3313
100 | 9.0-13.0 | 8.1-1072 ] 0.3-13-10~" | 6342 | 0.0(38.9) | 0.361 % 0.006 + 3333
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Table 13.1: The Fy(z,Q?) from the NVTX (pr) analysis. The bin boundaries of x and
Q? at which F, is determined are listed. The numbers of events before background sub-

traction as well as the estimated photoproduction background and

am-gas background

(the latter in brackets) for each bin are given. An overall normalisation error of 2% is

not included

230

[ Q7] Q%range z z-range | events | No.BG [ F; + stat. + syst. ]
120 [ 11.0-13.0[ 25-10-7 [ 2.0—3.2-10 -7 | 1746 | 79.5(0.0) | 1.314 % 0.0427 007>
12.0 [ 11.0-13.0 | 4.0-10-4 | 3.2-5.0-10-* | 2408 | 39.7(8.7) 1.12510.031’:8{83z
12.0 | 11.0-13.0 [ 6.3-10~* [ 5.0-8.0.10~* | 2657 | 23.8(31.4) 1.05810.027t8-m
12.0 | 11.0-13.0 [ 1.0- 103 | 0.8—1.3-10~3 | 2698 | 0.0(50.4) | 0.926 + 0.023 g6%
12.0 [ 11.0-13.0 | 1.6-10-3 | 1.3-2.0-10-3 [ 2217 [ 0.0(39.5) 0.785&0.023‘_’&833
12.0 [ 11.0-13.0 | 2.5-1072 | 2.0-3.2-10-3 | 2373 | 0.0(10.3) 0.73510.021t§5§§§
15.0 | 13.0—-16.0 | 2.56-10-7 | 20-3.2-10-7 956 | 31.8(19.8) | 1.464 % 0.061 * g oy
15.0 [ 13.0—16.0 | 4.0.10~* | 3.2-5.0.10-* | 2411 | 47.7(10.3) 1.30510.035:§;§1§
15.0 | 13.0—16.0 | 6.3-10~* | 5.0~8.0-10~% | 2610 | 39.7(19.7) | 1.056 + 0.026 * 3845
15.0 [ 13.0-16.0 | 1.0-1072 | 0.8—1.3-10-3 | 2678 | 0.0(0.0) 0.986:{:0.024f§j§§§
15.0 | 13.0-16.0 | 1.6-10~3 | 1.3-2.0-10-% | 2318 | 0.0(9.3) | 0.906 + 0.024 * 8931
15.0 [ 13.0-16.0 | 2.5-10-3 | 2.0-3.2-10-3 | 2399 | 0.0(10.1) 0‘82510‘02?f§{8§§
15.0 | 13.0-16.0 [ 6.3-1073 [ 3.2-8.0.10-3 | 4856 0.0(0.0) | 0.661 +0.013* g;§§§
15.0 [ 13.0-20.0 [ 1.6-10-2 | 0.8—3.2-10~2 | 13065 | 0.0(50.9) | 0.528 + 0.006 + §-911
15.0 [ 13.0-20.0 [ 8.1-10-2 | 0.3-1.3.10~! [ 5715 | 0.0(48.7) 0.354:!:0.006’_’?,‘_?,,7
180 | 16.0—20.0 | 4.0- 107 [ 3.2—5.0-10 -7 | 1762 | 55.6(10.6) | 1.469 & 0.046 T 5.9/
18.0 | 16.0-20.0 [ 6.3-10~* | 5.0-8.0-10~* [ 2182 | 39.7(19.3) 1,19710.033‘_'85
18.0 | 16.0—-20.0 [ 1.0-10-3 | 0.8—-1.3-10-3 [ 2357 | 0.0(28.3) l.036i0.029‘_’8:8§
18.0 [ 16.0—20.0 | 1.6-1073 | 1.3—-2.0-10~3 | 2025 | 0.0(0.0) | 0.938 +0.027+ 818¥
18.0 [ 16.0—20.0 | 2.5-1073 | 2.0-3.2.10~3 | 2095 | 0.0(0.0) | 0.876 +0.025* 8{852
18.0 | 16.0—20.0 [ 6.3-10-2 | 3.2—-8.0-10~3 | 3901 | 0.0(29.2) | 0.635+0.013* §A8
220 | 200-25.0 [ 4.0-10-7 [ 3.2—-5.0-10-7 | 1026 | 15.9(0.0) | 1.493 % 0.0657 0’
22.0 | 20.0-25.0 [ 6.3-10-* [ 5.0-8.0-10-% | 1620 | 15.9(18.6) | 1.305 + 0.042* 883
22.0 1 200-25.0 [ 1.0-10-3 [ 0.8-1.3-10-3 | 1726 | 15.9(0.0) | 1.150 +0.035* 3
22.0 | 200-25.0 [ 1.6-1073 [ 1.3-2.0.10-3 | 1575 | 0.0(9.8) | 0.977 +0.031} 885
22.0 | 20.0-25.0 [ 25-1073 [ 2.0-3.2.1073 | 1651 [ 0.0(0.0) | 0.889 +0.027+ (5
22.0 | 200-25.0 [ 4.0-10-3 [ 3.2-5.0.10-3 | 1465 | 0.0(0.0) | 0.752 +0.024 885
22.0 | 20.0-25.0 [ 6.3-10-3 [ 5.0-8.0-10-3 | 1600 | 0.0(0.0) | 0.702 + 0.022* 861
22.0 | 20.0-32.0 [ 1.0-10-2 [ 0.8-1.3-10-2 | 3039 | 0.0(10.8) | 0.596 +0.014+ 8858
22.0 | 200-32.0|25-10-2 [ 1.3-5.0.10"2 | 7313 | 0.0(9.5) | 0.474 £ 0.007+ mf
22.0 | 200-32.0[81-10-2[05-1.3.10-" | 2151 | 0.0(0.0) 0.34710.009’:%893
27.0 | 25.0-32.0 [ 6.3-10-7 [ 5.0-8.0. 10-7 | 1839 | 39.7(10.4) | 1.434 £ 0.0427 0"
27.0 | 25.0-32.0 | 1.0-103 | 0.8—-1.3-10~3 [ 1495 | 15.9(0.0) | 1.161 10'037:8:83
27.0 | 26.0-32.0 | 1.6-1073 | 1.3-2.0-10-3 | 1327 | 0.0(11.3) 1.165:!:0.0401’8: ,8
27.0 | 25.0-32.0 [ 25-1073 [ 20-3.2.1073 | 1193 | 0.0(13.3) | 0.894 + 0.0321'838‘g
27.0 | 25.0—-32.0 | 40-1072 | 3.2-5.0-10"3 | 1117 | 7.9(9.9) | 0.777 £0.029 31353
27.0 [ 25.0-32.0 | 6.3-1073 | 50—8.0-10"3 | 1164 0.0(0.0) | 0.647 £0.023% ;0%
35.0 | 320400 [ 63-10 7 | 50-8.0- 107 886 | 15.9(9.8) | 1.557  0.066 F o5
35.0 | 32.0-40.0 | 1.0-10-3 | 0.8—-1.3-10-3 | 1495 | 7.9(0.0) | 1.337 +0.043+ §18"
35.0 [ 32.0-40.0 [ 1.6-1073 [ 1.3-2.0-10-2 | 1115 [ 0.0(0.0) | 1.120 % 0.041 * 3.9¢
35.0 | 32.0-40.0 | 25-1073 [ 20-3.2-1073 | 1085 | 0.0(0.0) | 1.057 +0.040+ §-_§§
35.0 | 32.0-40.0 | 4.0-10-3 | 3.2-5.0-10-3 884 | 0.0(0.0) | 0.919 +0.039+ 5037
35.0 | 32.0—40.0 | 6.3-10-3 | 5.0-8.0-10-3 842 | 0.0(0.0) | 0.779+0.034*+ g;gi;
35.0 | 32.0-40.0 | 1.0-10-2 | 0.8-1.3.102 857 | 0.0(18.9) | 0.677 £0.036* 5:531
35.0 [ 32.0-50.0 | 1.6-10~2 | 1.3—2.0-10-2 | 1512 | 0.0(0.0) 0.58610.0191‘§j§ 2
35.0 | 32.0-50.0 | 2.5-1072 | 2.0-5.0-10~% | 2746 |  0.0(0.0) | 0.606 £ 0.015* &3
35.0 | 320-50.0 [ 8.1-1072 | 0.5-13-10~" | 1208 | 0.0(10.7) | 0.489 £ 0.017* 854
35.0 | 32.0-50.0 [ 2.0-10-' | 1.3-8.0-10! 376 0.0(9.8) | 0.378 £0.025+ 9 ‘ﬁ_

Table 13.2: NVTX-Fy(z,Q?) (pr). continued.
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Q7 Q%-range z z—ra%m__ events No.BG | Fy + stat. + syst.
200.0 | 185.0-240.0 [ 4.0-1073[3.2-5.0-10" 194 [ 0.0(10.9) | 1.099+0.101F S 10|
200.0 | 185.0-240.0 [ 6.3-10-3 | 5.0-8.0-10-3 261 | 0.0(59.3) | 0.752+0.064 * 8.8
200.0 | 185.0-240.0 | 1.0-10-2 [ 0.8—1.3-10~2 252 | 0.0(8.3) o.sss:eo.omtefggg
200.0 | 185.0-240.0 | 1.6-10-2 [ 1.3—-2.0-102 201 | 0.0(9.9) | 0.724 +0.066 * 355g§
200.0 | 185.0-240.0 | 25-10-2 [ 2.0-3.2-10-2 183 | 0.0(0.0) | 0.551+0.050% 818:‘
200.0 | 185.0—240.0 | 4.0-10-2 [ 3.2-5.0-102 200 [ 0.0(0.0) | 0.495 + 0.043 * 8838
200.0 | 185.0-240.0 [ 8.1-10-2 | 0.5—1.3-10"! 376 | 0.0(0.0) 0.42510.027:358??
200.0 | 185.0—240.0 | 2.0-10-! [ 1.3-3.2.10-! 98 | 0.0(0.0) 0.25510.031t§{§§§
250.0 [ 240.0-310.0 [ 40-10 -2 [ 32—-5.0-10-3 68 | 0.0(0.0) [ 1.395+0.219F 5132
250.0 | 240.0-310.0 [ 6.3-1073 | 5.0—8.0- 103 189 | 0.0(9.8) 112210.107t3i‘.§5’s
250.0 [ 240.0-310.0 | 1.0-10-2 | 0.8—1.3-10"2 194 [ 0.0(0.0) ogssio.osst&m
250.0 | 240.0-310.0 [ 1.6-10"2 [ 1.3-2.0-10"2 147 | 0.0(0.0) | 0 69710_07?r8;8§§
250.0 [ 240.0-310.0 | 25-1072 [ 2.0—3.2-10"2 137 | 0.0(10.1) 0484*0.052t8f337
250.0 | 240.0 - 310.0 [ 4.0-1072 | 3.2—5.0-10~2 147 | 0.0(0.0) | 0 555*0.0581§f§§
250.0 | 240.0-310.0 | 8.1-10-2 [ 0.5—-1.3-10~! 278 | 0.0(0.0) | 0.421+0.031 %5018
250.0 | 240.0-310.0 [ 2.0-10- | 1.3-32-10! 80 | 0.0(0.0) 0253&0.034t§'§5’
350.0 | 310.0-410.0 [ 6.3-10 3 | 5.0—8.0-10 3 138 [ 0.0(0.0) | 1.311£0-147 7 5055
350.0 | 310.0-410.0|1.0-10-2|0.8—1.3-10"2 153 | 0.0(0.0) | 0.862+0.087+ 5122
350.0 | 310.0-410.0 [ 1.6-102 | 1.3-2:0-10~? 123 | 0.0(0.0) | 0.725+ 0.082 * 5192
350.0 | 310.0-410.0 [ 2.5-10-2 | 2.0-3.2. 102 101 | 0.0(0.0) | 0.543 £ 0.066 * 5938
350.0 [ 310.0-410.0 [ 4.0-10-2 | 3.2-5.0- 102 118 | 0.0(0.0) | 0.617+0.072F 5333
350.0 | 310.0-410.0 (8.1-102 | 0.5—13-10"! 199 | 0.0(0.0) | 0.398 +0.035* 5:523
350.0 [ 310.0-410.0 { 2.0-10-' | 1.3-3.2.10"" 75 | 0.0(0.0) | 0.232+0.032* 3538
450.0 | 410.0-530.0 | 6.3-10 -3 | 5.0—8.0-10 -3 55 | 0.0(0.0) | 1.907 £ 0.366 T 0250 |
450.0 | 410.0-530.0 | 1.0-102 | 0.8—1.3-10~2 92 | 0.0(0.0) 0988:{:0.132f8i;88
450.0 | 410.0-530.0 [ 1.6-10~2 | 1.3-2.0-10"2 91 | 0.0(12.1) 0844:}:0.122f8'°1
450.0 | 410.0-530.0 [ 25-10-2 [ 2.0-3.2-10-2 92 | 0.0(0.0) | 0O 732&0.098t8-83§
450.0 | 410.0-530.0 [ 4.0-10-2 [ 3.2—-5.0-10~2 69 | 0.0(0.0) | 0.472+0 069t838§7
450.0 | 410.0-530.0 | 8.1-10-2 | 0.5-1.3-10"! 171 | 0.0(0.0) 0440:&0,04218{8g
450.0 | 410.0-530.0 [ 2.0-10"' | 1.3-3.2-10! 74| 0.0(0.0) ]| 0 300:&0.044’:§§Zg
650.0 | 530.0—710.0 [ 1.0-10-2 | 0.8— 1.3-10~2 89 [ 0.0(0.0) [ 1.263+0.1797 01
650.0 | 530.0—-710.0 | 1.6-10~% [ 1.3-2.0-10"2 74 | 0.0(9.8) 0806¢0.127t“a
650.0 | 530.0-710.0 | 2.5-10-2 | 2.0—3.2-102 68 | 0.0(0.0) 069010.106f8‘?,
650.0 | 530.0—710.0 | 4.0-10~% | 3.2—5.0-10~2 47 | 0.0(10.3) 047510.0951'8%’;ii
650.0 [ 530.0—-710.0 | 8.1-10-2 | 0.5—1.3-10"! 132 [ 0.0(0.0) 0467:&0.051’:30'3
650.0 [ 530.0-710.02.0-10-"' [1.3-32.10""! 68 | 0.0(10.3) 023310.0375%5,,
800.0 | 710.0—900.0 | 1.0-10-2 | 0.8—1.3-10-2 40 | 0.0(0.0) | 1.515+0.330 F 037
800.0 | 710.0-900.0 | 1.6-10~2 | 1.3—2.0-10"2 39 | 0.0(0.0) ozzoﬁio.lﬁzztg{,éL
800.0 | 710.0—-900.0 | 2.5-10-2 | 2.0-3.2-10~2 45 | 0.0(0.0) 0739:H).140t8°7S
800.0 | 710.0—900.0 | 4.0-10-2 | 3.2-5.0-10~2 29 | 0.0(0.0) | 0.41240 091’:88§§
800.0 [ 710.0-900.0 | 81-10-2 | 0.5—1.3.10"! 75 | 0.0(10.0) 0299:&0.043*_‘8'*?2
800.0 | 710.0-900.0 | 2.0-10-" | 1.3~ 3.2-10~! 35 | 0.0(0.0) 0273¢0.057t§;g§*
1200.0 | 900.0 — 1300.0 [ 1.6-10-2 [ 1.3—-2.0-10~2 48 [ 0.0(0.0) | 0.900+0.166 7 550
1200.0 | 900.0 — 1300.0 | 2.5-10~2 | 2.0—3.2-10 "2 45 | 0.0(10.8) 0,539i0.111t8-_‘§;
1200.0 | 900.0 — 1300.0 | 4.0-10-2% | 3.2—5.0-10 2 34 | 0.0(0.0) 0'463:!:0.0961810‘,5
1200.0 | 900.0 — 1300.0 | 8.1-10~2 | 0.5—1.3-10 " 62 | 0.0(0.0) 0.363;&:0.055f§j3§
1200.0 | 900.0 — 1300.0 | 2.0-10~' [ 1.3-3.2.10~! 42 | 0.0(0.0) | 0.21540.039 * 3520
1200.0 | 900.0 — 1300.0 | 5.1-10-! | 3.2—8.0-10"! 9] 0.0(0.0) | 0.107 +0.048* 015 |
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Q7 Q”-range @ z-range | events No.BG | F» + stat. + syst.
45.0 | 40.0-50.0 [ 1.0-10-3 [ 0.8—1.3-10~° | 1335 | 23.8(0.0) | 1.414=+ 0.051F o053
45.0 | 40.0-50.0 | 1.6-1073 [ 1.3—2.0-10~3 | 1117 | 23.8(0.0) | 1.139+ 0.042+ 5048
45.0 [ 40.0-50.0|2.5-1073 [ 2.0-3.2-1073 | 1087 | 0.0(10.5) | 1.065 0.041* 553
45.0 | 40.0-50.0 | 4.0-10-3 | 3.2—-5.0-10"3 876 | 0.0(10.2) | 0.899+ 0.0387 g'o5e
45.0 | 40.0-50.0 | 6.3-10-3 | 5.0-8.0-10~3 819 | 0.0(10.1) | 0.787+0.035F 8;§’3
45.0 | 40.0-50.0 [1.0-10-2 [ 0.8—1.3-10~? 832 | 0.0(10.3) | 0.684+0.030F §;o§:
60.0 [ 50.0-6501.0-10"3 [0.8-13-10"° 752 | 7.9(0.0) | 1.529+ 0.073F 303
60.0 [ 50.0-65.0|1.6-1072[13-2.0-10"3| 1122 | 15.9(0.0) | 1.244+ 0.046 * 3'_§‘§
60.0 | 50.0-650[25-10"3[2.0-32-10"3 | 1154 | 7.9(9.3) | 1.074+0.039F 8;"3‘
60.0 [ 50.0-65.0|4.0-1073 [3.2-5.0-10"3| 1014 | 0.0(0.0) | 1.023+ 0.0417F ggég
60.0 | 50.0-65.06.3-10-3|50—8.0-10-3 971 |  0.00.0) | 0.901 + 0.037+ 5%
60.0 | 50.0-650|1.0-10-2 | 08—-1.3-10-2 842 |  0.0(0.0) | 0.660+ 0.028t8-_°
60.0 | 50.0-650|1.6-10-2 [ 1.3—2.0-10-2 791 | 0.0(0.0) | 0.601+0.026F 8;3§§
60.0 | 50.0—650(25-10-2 [ 2.0-5.0-10"2 | 1682 0.0(0.0) | 0.658 + 0.021* 3; 41
60.0 | 50.0-65.0[81-1072|05-13-10"' | 1061 | 0.0(0.0) | 0.534+ 0.021+ §;§§*
60.0 | 50.0-65.0|2.0-10-!|1.3-8.0 10! 231 |  0.0(0.0) | 0.325+0.027F 554
70.0 | 65.0—85.0 | 1.6-10 3 | 1.3—2.0-10 3 783 | 15.9(0.0) | 1.279 % 0'057t§38§2
70.0 65.0—85.0 | 2.5-1073 | 2.0-3.2-10~3 | 1002 | 0.0(21.0) | 1.149+ 0.046 * g8
70.0 | 65.0—85.0 [ 4.0-10-3 | 3.2—5.0- 103 829 |  0.0(0.0) | 0.928+ 0.0407F g'g55
700 | 650-850(63-10-3|50-80-10-3 750 | 0.0(10.9) | 0.838 +0.039F 593
70.0| 65.0-85.0|1.0-10-2 | 08-13-10"2 767 | 0.0(0.0) | 0.77240.035F 502
70.0 | 65.0-85.0|1.6-10-2[13-20-10"2| 662 | 0.0(0.0) | 0.657+0.032* 018‘%‘;
700| 650-850[25-10-2]20-50-10-2| 1496 [ 0.0(0.0) | 0.613+0.020% §3§3§
70.0 65.0 -850 |81-10-%2|05-13-10"! | 1026 0.0(0.0) | 0.473+0.019% 505
700 | 65.0-85.0|20-10-']|13-80.10"! 232 | 0.00.0) | 0.261+0.021+ §;3§§
90.0 [ 85.0—110.0 | 1.6-10 7 | 1.3—2.0-10 3 308 [ 7.9(0.0) [ 1.425+0.103F 0 1%
90.0 | 85.0-110.0 [ 2.5-10-3 | 2.0-3.2.10-3 678 | 7.9(10.3) | 1.182+ 0.057+ 5335
90.0 | 85.0—110.0 [ 4.0-10-3 | 3.2—-5.0-10~3 641 | 0.0(29.6) | 0.989+0.050* 3953
90.0 | 85.0-110.0 [ 6.3-10~2 | 5.0-8.0-1073 618 0.0(0.0) | 0.956 4 0.049* g;g§~;
90.0 | 85.0-110.0 | 1.0-10~2 [ 0.8-1.3-10"2 625 0.0(9.8) | 0.809+ 0.041 5033
90.0 | 85.0-110.0 [ 1.6-10-2 | 1.3—-2.0-102 456 | 0.0(0.0) | 0.613+0.036% 81333
90.0 | 85.0-110.0|25-10-2|20-32-10"2 518 [  0.0(0.0) | 0.509 % 0.027 * 3957
90.0 | 85.0-110.0 | 4.0-10-2 | 3.2—5.0-10"2 569 |  0.0(0.0) | 0.573+0.031+ 5032
90.0 | 85.0-110.0 [8.1-10-2 | 05-1.3.10"! 779 0.0(0.0) | 0.423 + 0.019tg;g§g
90.0 | 85.0—110.0 | 2.0.10-! | 1.3-3.2.10" 170 | 0.0(9.4) | 0.246 % 0.023 % 5-07¢
120.0 [ 110.0 —140.0 [ 25-10~3 [ 2.0-3.2-10"3 445 | 15.9(20.1) 1.28010.079i§3é’§
120.0 | 110.0 - 140.0 [ 4.0-1073 [ 3.2-5.0-10"2 484 | 7.9(31.8) | 1.121+ 0.067+ 5007
120.0 | 110.0 - 140.0 | 6.3-10"2 | 5.0-8.0- 103 450 | 0.0(20.4) | 0.969+ 0.059+ §;03°
120.0 | 110.0-140.0 [ 1.0-10-2 | 0.8 - 1.3-10~2 400 | 0.0(0.0) | 0.791 + 0.050t81§1§
120.0 | 110.0 - 140.0 | 1.6-10~2 | 1.3—-2.0-10"2 296 0.0(0.0) | 0.580+ 0.041% {000
120.0 | 110.0 - 140.0 | 2.5-10-2 | 20—-3.2-10~2 387 | 0.00.0) | 0.610+ 0.039% ‘8’;"43
120.0 | 110.0 — 140.0 | 4.0-10~% [ 3.2—5.0-10~2 350 | 0.0(0.0) | 0.497 +0.033* 818§§
120.0 | 110.0—140.0 [ 8.1-10"2 [ 0.5-1.3-10"! 597 0.0(0.0) | 0.434 £ 0.0227 0o
120.0 | 110.0 - 140.0 | 2.0-10-! | 1.3-3.2-10~! 112 0.0(0.0) | 0.201+ 0.022F 595
150.0 | 140.0 - 185.0 [ 2.5-10-3 [ 2.0-3.2-10 3 157 0.0(0.0) | 1.476 £ 0.151 ¥ ) 137
150.0 | 140.0 - 185.0 | 4.0-1073 | 3.2-5.0-1073 361 | 15.9(5.7) | 0.998 + 0.066t§;‘3§
150.0 | 140.0 - 185.0 | 6.3-10~3 [ 5.0-8.0-10-3 389 | 0.0(10.7) | 0.941+0.061F 5%
150.0 | 140.0—185.0 [ 1.0-102 [ 0.8 - 1.3-102 376 0.0(0.0) | 0.825+ 0.054t§;§“3
150.0 | 140.0—185.0 | 1.6-10~2 | 1.3—2.0-10"2 297 | 0.0(0.0) | 0.722+ o‘osato-,o%‘,
150.0 | 140.0 - 185.0 | 2.5-10~2 | 2.0-3.2-10~2 339 0.0(0.0) | 0.686 + 0.048 + g;ggg
150.0 | 140.0 — 185.0 | 4.0-10~2 | 3.2-5.0-102 204 0.0(0.0) | 0.513 4 0.037t,,_,,f;
150.0 | 140.0 - 185.0 | 8.1-102 | 0.5—1.3-10"" 520 0.0(0.0) | 0.415+ 0.022 5012
150.0 | 140.0 - 185.0 | 2.0-10~" | 1.3-3.2.10~" 125 | 0.0(0.0) | 0.2734 0.030F 7032
Table 13.3: NVTX-Fy(x,Q?%) (pr). continued.

Table 13.4: NVT'X-Fy(x,Q?) (pr), continued.
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i Q7-range z z-range | evts [ No.BG | Fp + stat. + syst.
1500.0 | 1300.0 — 1800.0 [ 25-10-2 [ 20—-5.0-10-7 | 64 | 0.0(0.0) | 0.846 + 0.137F “;gé‘j
1500.0 | 1300.0 — 1800.0 | 8.1-10-? | 0.5-1.3-10~' | 48 | 0.0(0.0) | 0.550 + 0.102j818i?
1500.0 | 1300.0 — 1800.0 | 2.0-10-! | 1.3-3.2-10"! | 34 | 0.0(0.0) | 0.312+ 0.067 % 5’
2000.0 | 1800.0 — 2500.0 [ 4.0-10~2 [ 20-5.0-10-7 | 33 [ 0.0(0.0) | 0.672+0.149F ‘éjgﬂ
2000.0 | 1800.0 — 2500.0 | 8.1-10~2 [ 0.5—1.3.10=% | 21 | 0.0(0.0) | 0.334 +0.086 * 9,992
2000.0 | 1800.0 — 2500.0 [ 2.0-10-' [ 1.3-3.2-10-' | 32 | 0.0(0.0) | 0.453 +0.109* 713,
3000.0 | 2500.0 — 3500.0 | 8.1-10-2 | 0.2—-1.3-10-1 | 27 | 0.0(0.0) | 0.368 +£0.085F §"881
3000.0 | 2500.0 —3500.0 | 2.0-10~" | 1.3—-8.0-10' [ 21 | 0.0(0.0) | 0.404 £ 0.117 * 552
5000.0 | 3500.0 — 15000.0 [ 8.1-10-2 [ 0.2—1.3-10~T [ 30 [ 0.0(0.0) | 0.946 £ 0.248F §:653
5000.0 | 3500.0 — 15000.0 [ 2.0-10~' [ 1.3-8.0-10~' | 30 | 0.0(0.0) | 0.305 % 0.069 * 555, |

Table 13.5: NVTX-Fy(z,Q?) (pr), continued.

Q° Q”-range z z-range | events No.BG [ Fy + stat. + syst.
35| 30-40]1.0-10 7]06—14-10-7] 6621 | 254.3(79.9) ] 0.878+0.0277 85281”31
35| 3.0-40]1.7.10-*[14-25.10"*| 1859 0.0(69.0) | 0.817 +0.044F 5
45| 40-50]1.0-10-7|06-12-10-7 | 4284 | 238.4(50.8) 1.04510.02615'_62,
45| 4.0-50(17-10"*|1.2-21-10"%| 5943 | 103.3(104.4) 0.883:!:0A018f8j8§$
45| 4.0-50]27-10-4[21-40-10"%| 3739 0.0(64.9) 0.746:&0.021t¢8§_
65| 50-7.0]1.0-10-7 [08-12-10-7| 1741 | 63.6(29.4) [ 1.300+0.045F §:&2‘1‘
65| 50-7.0]1.7-10"%]1.2-2.1-10"* | 10349 | 222.5(141.8) 1.149;&0.0175;8;0
6.5 50-170]27-10-%]21-32-10"*| 8700 | 15.9(230.5) 0.969:!:0.016f§‘ﬂ§
65| 50-7.0[52.10"%]32-74-10"%] 13129 | 0.0(245.6) | 0.766 +£0.010* ¢,
85| 7.0-90[15-10-7[1.0-17-10-7[ 1540 95.4(0.0) 1'332*°'M7t§3ig§
85| 7.0-9.0[24-10"%|1.7-28-10"*| 5997 | 151.0(68.6) [ 1.161+0.022F 8878
85| 7.0-90(38-10"%|28-47-10"*| 7754 7.9(81.0) 1.03410.0161’8‘_?6‘;
85| 7.0-90]72.-10"*|05-10-10"3| 10800 [ 0.0(128.4) | 0.902+0.012% 1,’;'?_
100 90-11.0] 1.5-10~7 [ 1.2-21-10-" 925 63.6(0.0) | 1.354 + 0.064 T 3:%&’
100 | 90-11.0]24-10"%|21-33.10"*| 3280 | 63.6(20.6) [ 1.242+0.030+ 3871‘7'
100| 9.0-11.0]5.2-10-% | 33-58.10"" | 5471 7.9(93.2) | 1.042+0.019+ 5577
00| 9.0-11.0|72-10-* | 06—-16-10"3 | 0885 | 0.0(140.5) | 0.968 + 0.014 * §-13%
120 | 11.0-13.0 | 1.8- 107 [ 1.5-25-10"F 628 39.7(0.0) | 1.483+0.077F 8:?3?
120 | 11.0-13.0 [ 3.8-10-* [ 25-4.2-107* | 2684 | 71.5(38.7) 1.14010.030’:8'8;g
12.0 | 11.0-13.0 [ 5.2-10"* | 4.2-7.0-10"% [ 3455 7.9(31.6) 1.163:&040‘26f81°?§
120 [11.0-13.0]1.2:1072 ] 0.7-1.5-10"3 | 4842 0.0(88.1) | 0.891+0.017F 5113
150 | 13.0-16.0 | 2.4-10-7 [ 1.8-34-10"7 | 1277 47.7(9.8) 1.561*0.057’:?2;‘“0
15.0 [ 13.0-16.0 | 5.2-10-% | 34-5.7-10"* | 3104 | 79.5(10.3) 1.20310.023:8;843
15.0 [ 13.0-16.0 | 7.2:10% | 57-9.0-10"% | 3023 7.9(40.3) 1.09710.026:8;0,5
15.0 | 13.0-16.0 [ 1.2-10-3 [ 0.9-2.8-1073 | 7074 0.0(38.3) | 0.985+0.016+ §-13¢

Table 13.6: The measured Fy(z,Q?) from the NVTX (EL) analysis. The bin boundaries
of = and Q* at which F, is determined are listed. The numbers of events before back-
ground subtraction as well as the estimated photoproduction background and beam-gas
background (the latter in brackets) for each bin are given. An overall normalisation
error of 2% is not included

Jie}d Q%-range T z-range | events No.BG | F» + stat. + syst.

18.0| 16.0-20.024-10-¥[21-35-10" 444 | 31.8(10.6) | 1.514 £ 0.094 T ) 157
180 | 16.0-20.0|52-10-*|3.5-6.4-10-* | 2780 | 55.6(10.1) | 1.382 ¢ o.osstg-u‘
18.0| 16.0-20.0|7.2-107*|0.6-1.0-10"3 | 2500 [ 7.9(29.5) | 1.190+0.031* 85§§§
18.0| 16.0-20.0|1.2-10-3[1.0-1.8-10"% | 3335 | 0.0(29.3) | 1.074 +£0.025+ §'{,,

220| 20.0-25.0[3.8.-10"F[27-43.10"7 449 | 15.9(0.0) | 1.646 % 0.099F V51
220 20.0-25.052-10"*|43-6.2-10"4 [ 1313 | 7.9(8.7) | 1.42040.049 % (3
220 200-25.0]7.2-10"*[6.2-9.0-10"*| 1430 | 0.0(19.7) | 1.256 + 0.043* 4
22.0| 20.0-25.01.2-10"3[09-15-10"3 | 2095 | 0.0(22.6) | 1.105+0.030* 3383%
22.0 | 20.0-25.0|1.9-10"3|1.5-3.0-10"% [ 2727 | 0.0(0.0) | 0.956 +0.023* 81?55
270| 250-32.0[3.8.10-% [3.2-5.1.10-* 258 | 31.8(0.0) | 1.448 £ 0.144 7 ;799"
27.0 | 250-32.0]7.2.107*[51-7.6-10"*| 1652 | 55.6(10.4) | 1.398 + 0.043* ;3§§
27.0 | 250-32.0(9.0-107* [ 0.8-1.1-10"2 [ 1393 | 15.9(0.0) | 1.271 4 0.042F 3334

27.0| 25.0-320(15-1073 [ 1.1-1.9-1073 [ 1833 [ 0.0(19.8) | 1.145+ 0.034 + :8'5g
27.0 | 250-32.0(3.2:107°[1.9-57-10"3 | 3205 | 7.9(31.9) [ 0.871+0.019% 513
350 | 320-40.0[52.10-7[46-7.0-10—" 419 | 0.0(0.0) | 1.682 £ 0.102F 0 U5/
350 | 320-40.0[9.0-10-*(07-1.1-10"3| 1489 | 39.7(9.8) | 1.321 -.Lo.o-t.'z’:g?b”g
350| 320-4001.5.10-%|1.1-17-10-3| 1378 | 0.0(10.5) 1.20«110.04&853gg
350 | 320-400(1.9-107%[1.7-28-10"% | 1266 | 0.0(0.0) | 1.032+ 0.036t8; i
350 | 320-40.0/[3.2-10-%|28-52-10"3| 1467 | 0.0(0.0) | 1.031+0.034* §-?g;
450 | 40.0-50.0]7.2-10-%[5.7-9.0-10-7 438 | 15.9(0.0) [ 1.567 & 0.094 T 0 va7
450 | 40.0-50.0|1.2-10"3[09-1.3.10"%| 1120| 7.9(0.0) 1.41410.056~:83m
45.0 | 40.0-50.0 | 1.5-107% [ 1.3-2.0-10-3 | 1286 | 0.0(0.0) | 1.221 ;eo.owt&ggg
45.0 [ 40.0—-50.0 | 2.4-10-3 [ 2.0-3.0-103 | 1083 | 0.0(0.0) | 1.082+ o.o41t8;8%
45.0 40.0-50.0 [ 3.2-107% | 3.0-4.8-10"3 | 1080 | 0.0(10.1) | 0.936 + 0.035* §?§§
600 | 500-65.0]9.0-10-%|0.7-1.1-10-3 327 | 0.0(0.0) | 1.604 £ 0.122F J0%8
60.0 | 50.0-65.0|1.5-107% | 1.1-1.7-1073 | 1128 | 39.7(0.0) | 1.253 + 0.046’:8}598

60.0 | 50.0-65.0|1.9-10"3|1.7-28-10"3 [ 1471 | 0.0(0.0) 1.22310.040':818,

60.0 50.0—656.0 | 3.2.10-2 | 2.8-5.5-10-3 | 1876 | 0.0(9.3) 1408910.0321'(8,:?}?,

700| 65.0-850]1.5-10-° [ 09-1.7-10"° 587 | 15.9(0.0) | 1.320 £ 0.068 §ga0
70.0 65.0—-85.0[19-1073|1.7-28-10"3 | 1118 | 7.9(10.2) 1.24410.0471‘8;822

700 | 65.0-850(32-10"3|28-45.10"3| 1080 [ 0.0(20.3) | 1.022+0.039F g8s1

70.0| 650-85.0|54-10"3|45-7.0.-10"3 923 | 0.0(10.9) | 0.868 % 0.036* 8’;?3

700 | 650-85.0[1.2-10-2[07-1.6-10"2| 1575| 0.0(0.0) | 0.726 + n.nzstﬁ_{,?é
90.0 | 85.0-11001.5-10-3 [ 1.2-1.8-10~° 162 [ 0.0(0.0) | 1.457 £ 0.143¥ 0125
90.0 | 85.0-110.01.9-107% [ 1.8-28-10"2 666 | 0.0(10.3) 1.37110.068f8483*

90.0 [ 85.0-110.0[3.2.10%[28-45.10"2 757 | 0.0(10.2) | 1.069 + 0.049t8;§gg
90.0 | 850-110.0[54-10"3 [45-7.0.10"3 755 | 0.0(0.0) | 0.957 4 0.044 * 8;‘23
90.0 | 85.0-110.0{1.2-1072 [ 0.7-1.6-10"2 | 1242 | 0.0(9.2) | 0.746 %+ 0.027+ ;' 8l
120.0 [ 110.0—140.0 [ 24-10 3 [ 1.6-2.6- 10~ 273 | 7.9(20.1) | 1.549 £ 0.1287 3 %7
120.0 | 110.0 - 140.0 | 3.2-10-3 [ 2.6 -4.4-10-3 606 | 15.9(0.0) | 1.164+0.060F 844
120.0 | 110.0 - 140.0 [ 5.4-10-3 [ 4.4-8.2.1073 745 [ 0.0(30.9) | 1.040 + 0.049‘:8;'3iig
120.0 | 110.0 —140.0 [ 1.2-10-% [ 0.8 —2.1-10~? 891 | 0.0(20.5) 0.67810.0281§-§%§
150.0 | 140.0 - 185.0 | 2.4-10 -3 | 20-3.1. 102 142 [ 0.0(0.0) | 1.602£ 0.1757 9359
150.0 | 140.0 - 185.0 [ 3.2-1073 [ 3.1-4.8-1072 362 | 7.9(16.4) | 1.080 + 0.072i8}i§3
150.0 | 140.0 - 185.0 [ 5.9-10-3 [ 4.8 -8.0-10~3 515 [ 0.0(30.7) | 1.003 £ 0.058 * $52
150.0 | 140.0—185.0 [ 1.2-10-2 [ 0.8 —1.6-10~? 649 |  0.0(0.0) | 0.7524 0.037* J %5
150.0 | 140.0 — 185.0 [ 4.0-10-2 | 1.6 —4.5-10~? 631 | 0.0(10.4) | 0.509 + 0.025* §¢g§:
200.0 | 185.0 — 240.0 [ 3.2-10-3 [ 25-4.0-10 2 90 [ 0.0(0.0) | 1.243£0.1657 533 |
200.0 | 185.0 — 240.0 | 5.4-10-3 [ 4.0-7.5.10~3 377 | 7.9(30.9) | 0.979 4+ 0.066+ 8_|§‘
200.0 | 185.0 - 240.0 [ 1.2-107? [ 0.8-1.8-1072 | 534 | 0.0(28.2) 0.715:&0.039i§18§§
200.0 | 185.0 — 240.0 | 4.0-10~? | 1.8-5.0-10"2 438 0.0(0.0) 0.51710.03&3%};;

Table 13.7: NVTX-Fy(2,Q?) (EL), continued.
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Q7 Q%-range z z-range [ evts | No.BG [ Fp + stat. + syst
250.0 240.0-310.0 [ 3.7-10 3 | 3.2-4.8-10" 47 | 0.0(0.0) [ 1.478 £ 0.281 7} “g
250.0 240.0 - 310.0 | 54-107% | 48-8.2-10"3 | 219 | 0.0(0.0) | 1.181+0.102* 552
250.0 240.0 - 310.0 | 1.2-1072 | 0.8—1.7-10"2 | 330 | 0.0(9.9) | 0.8520.060* 5:552
250.0 240.0 — 310.0 [ 4.0-10-2 | 1.7-4.4-10"2 | 310 [ 0.0(9.8) | 0.442+0.031* 5552
350.0 310.0-410.0 [ 54-10-° [ 42-6.5-10-° | 75| 0.0(0.0) | 1.457 £0. 223‘§'§;‘
350.0 310.0-410.0 | 9.0-1073 [ 0.7-1.2-10-2 [ 207 | 0.0(9.8) | 0.913+0.082* ¢ sanl
350.0 310.0 —410.0 [ 21-10-2 | 1.2-3.1-10~? | 316 | 0.0(18.9) 060510043*‘§830
350.0 310.0 —410.0 | 4.0-10-2 [ 3.1-9.0-10-2 | 173 | 0.0(0.0) | 0.428 +0.039 *
450.0 410.0-530.0 | 7.3-10-3 | 5.0-88.10-3 | 67 | 0.0(0.0) | 1.586£0.267 ‘é éf?
450.0 4100-530.0 [ 1.2-10~2 | 0.9~ 1.6-10~2 | 144 | 0.0(0.0) | 1.083+£0.119% S
450.0 410.0 —530.0 | 2.1-10-2 | 1.6-3.5-10~2 | 187 | 0.0(0.0) | 0.737 +0.068 * § 833
450.0 410.0 - 530.0 | 4.0-10-% | 3.5—8.3-10"2 | 137 [ 0.0(0.0) | 0.515+0.054 % §: o7
650.0 5300~ 710.0 | 1.2.10-2 [ 0.7—1.3.10-7 | 89| 0.0(0.0) | 1.146 £ 0.161 ¥ 0 3 8’8
650.0 530.0 —710.0 | 2.1-10-2 [ 1.3-3.5.10-2 | 174 | 0.0(32.2) | 0.638 % 0. 066*8 o0
650.0 530.0 —710.0 | 4.0-10-2 [ 3.5-8.3-10-2 [ 128 | 0.0(0.0) | 0.671+0.076* 5
800.0 710.0-900.0 | 1.2-10-2 [ 0.9-1.8-10-2 | 62 | 0.0(11.3) [ 0.815%0. m+°' 3
800.0 710.0 - 900.0 [ 4.0-10-2 | 1.8—4.5-10"2 | 98 | 0.0(0.0) | 0.632+0.082F § ZS%
800.0 710.0 — 900.0 | 7.0-10-2 | 0.5—1.3-10~* | 57 | 0.0(10.6) | 0.254 % 0.042* 5'0;%
1200.0 | 900.0-1300.0 | 21-10-2 | 1.2—-2.6-10-2 | 82| 0.0(0.0) | 0855 0. 122*‘“’3§
1200.0 |  900.0 — 1300.0 | 4.0-10-2 [ 26—-8.0.10"2 | 92| 0.0(0.0) 048610061*
1200.0 | 900.0-1300.0 | 1.4-10~" [ 0.8—2.5-10"' | 46 | 0.0(0.0) | 0.313 +0.056* 8 ‘:;7_
1500.0 | 1300.0— 1800.0 | 2.1-10-2 | 1.6—-3.6-10-2 | 55| 0.0(0.0) | 0.958 % 0. 169+§H
1500.0 | 1300.0 — 1800.0 | 4.0-10-2 | 3.6 —8.6-1072 | 57 | 0.0(0.0) | 0.667 % 0. 112+8 =
1500.0 | 1300.0 - 1800.0 | 1.4-10-* | 0.9-1.9-10~' [ 37| 0.0(0.0) | 0.51140.112+%
2000.0 | 1800.0 — 2500.0 | 40102 | 23-44-10-2 | 31| 0.0(0.0) | 0.710=+0.1657 g_m
2000.0 | 1800.0 —2500.0 [ 7.0-1072 | 0.4—1.2-10~' | 32 | 0.0(0.0) | 0.499+0.110% 3033
2000.0 | 1800.0—2500.0 | 1.4-10-! | 1.2—-2.8-10-" | 23| 0.0(0.0) | 0.686 + 0.203 t ?, o
3000.0 | 2500.0 —3500.0 [ 7.0-10-2 [ 3.4-9.0-10-7 | 18| 0.0(0.0) | 0.431£0.124F 8833
3000.0 | 2500.0 —3500.0 | 1.4-10~' | 0.9-25-10- | 21| 0.0(0.0) | 0.470+0.134 * 5633
5000.0 | 3500.0 — 15000.0 [ 7.0-10-2 [ 0.5—1.1-10-" [ 19| 0.0(0.0) | 0. 71610218*552‘
5000.0 | 3500.0 — 15000.0 | 1.4-10~"' [ 1.1-3.0-10"" | 26| 0.0(0.0) | 0.398 +0.098 * ¥
5000.0 | 3500.0 — 15000.0 | 5.0-10~! | 0.3-1.0-10*° | 14| 0.0(0.0) | 0.136 +0.052F 5053

13 F, Tables.
Q% | Q?range z z-range | No.evts | No.BG | F; + stat. + syst.
15 13-19] 35 1075 28-52:10"" 263 16.9 | 0.782+0.053 3335
15| 13-19]12-10"*]|05-16-10"* 86 0.0 | 0.5810.065+ 5339
20| 19-27]65-10-%]4.0-9.0-10-% 664 |  20.0 | 0.893+0.038*5-9¢7
20| 19-27(12-10-*|09-2.0-10* 427 2.0 | 0.693+0.036+ 5987
30| 27-36/65.10"5[06-12-10"* 543 23.1 | 1.092+ 0.052* 5397
30| 27-36[20.100"*|1.2-23.10"* 655 2.0 | 0.926+0.041% 5978
30| 27-36[45-10-*[02-1.0-10-3 1042 0.0 | 0.734+0.026 * 3-35%
45| 36-560]12.10"*]|08-16-10"* 436 10.1 | 1.083+ 0.055* 3-932
45| 3.6-50[20-10-*|16-3.0-10"4 590 1.4 | 1.067 £ 0.048 + 3-955
45| 36-50[45-10"*|30-6.0.10"* 670 0.0 0.93310.040t8;8§2
45| 36-50(80-10-4|06-4.0.10-3 1121 0.0 | 0.802+0.026+ 5538
60| 50-70[1.2-10"*|1.1-18.10"* 257 7.3 [ 1.879£0,112F 2220
60| 50-70(20-10-*|18-32-10-* 358 3.0 | 1.069+0.061* 5935
60| 50-70]45-10"*]|32-56-10"4 375 0.0 | 0.919+0.051* 3023
60| 50-7.0(80-10"*|06-3.0-10"3 943 0.0 | 0.835+0.029F5:977
86| 7.0-10.020.10-4|1.5-3.0-10-* 218 3.2 | 1.48940.105* 3-993
85| 7.0-10.0[4.5-10-* [ 3.0-6.0-10"* 285 1.9 | 0.933+0.058* 5213
85| 7.0-10.0(8.0.10-*]06-1.2-10-3 326 0.0 | 0.943 4 0.056 * 3-353
8.5 7.0=10:01] 2.6-20-3| 1.2=7.0-10-3 516 0.0 | 0.675+0.031* 5952
12.0 | 10.0-14.0 | 4.5-107% | 25-6.0- 104 105 0.0 | 1.04140.103* 555
12.0 | 10.0-14.0 [ 8.0-10-* | 0.6 - 1.2-10~3 159 0.0 | 1.037+0.085% 5938
12.0 | 10.0~14.0 | 2.6.10-% | 1.2-5.0. 103 272 0.0 | 0.71940.045* 5953
15.0 | 14.0-20.0 [ 8.0-10-* [ 0.6—1.5-10~3 58 0.0 | 1.21040.161F 3227
15.0 | 14.0-20.0 [ 2.6-10-3 | 0.2—1.2. 102 157 0.0 | 0.975+0.079* 3978

Table 13.8: NVTX-Fy(z,Q?) (EL), continued.

Table 13.9: Fy-results from the SVTX-analysis in (z, Q%) bins. The estimated number of
photproduction background events is also tabulated. For each value of F; the statistical
and asymmetric systematic errors are given. The overall normalisation uncertainty of

3% is not included.
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Q*| Q%range z yrange | No.evts | No.BG | F, + stat. + syst.
15| 1.2-1.7]145-10"" | 2.00-6.00.10~" 194 12.3 | 0.745 % 0.058 * 398!
20| 1.7-25|13-10-*]1.28-2.99-10"" 334 2.0 | 0.656 % 0.038 ¥ 3933
20| 1.7-25|45.10"%|299-6.00-10"" 591 23.7 | 0.910 % 0.041* 3938
30| 25-35|43-10-4]055-128-10"! 672 0.0 | 0.708+ 0.031* 3333
30| 25-85]16.10-%1.28-299 10 973 3.0 | 1.0134 0037+ 3:953
30 25-35|8.7-10"%|2.99-6.00-10"" 614 22.9 | 1.053 + 0.048 * 5982
45| 35-50(43-10-4|055-1.28-10"" 933 0.0 | 0.999 % 0.037+ 3954
45| 35-50[28-10"4(1.28-2.99-10"! 826 0.7 | 0.961+ 0.036 ¥ $:953
45| 35-50]09-10"%|299-6.00-10"" 514 16.1 | 1.240 % 0.059 + :953
60| 50-7.0|08-10"30.55—1.28-10"" 572 0.0 | 0.839+ 0.038 * 3153
60| 50-70]28-10-*|1.28-299.10"! 543 1.3 | 0.989 + 0.046 ¥ 3931
60| 50-7.0]16-10"*|299-6.00-10-" 412 10.3 | 1.546 + 0.082F 3978
85| 70-100(1.2-10"3 | 0.55-1.28-10"" 382 0.0 | 0.839+ 0.046+ 398}
85| 7.0-10.0 431074 | 1.28—2.99.10" 355 1.3 | 0.985+ 0.055* 9955
85| 7.0-100|1.6-10-* | 2.99-6.00-10" 223 3.7 | 1544+ 0.108 + 3:9%8

12.0 | 10.0-14.0 | 1.8-10~% | 0.55-1.28-10"" 193 0.0 | 0.836+ 0.062+ 5987
12.0 | 10.0-14.0 | 8.0-10-* | 1.28—2.99 .10} 169 0.0 | 0.937 + 0.074 * 3343

Table 13.10: Fj-results from the SVTX-analysis in (y,Q?) bins. F, is reported close
to the centre of the bins and transformed into (z,Q?) for convenience. The estimated
number of photoproduction background events is also tabulated. For each value of F;
the statistical and asymmetric systematic errors are given. The overall normalisation
uncertainty of 3% is not included.

13 F, Tables.
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Q% | Q*range z z-range | No.evts No.BG | F, + stat. % syst.
15| 13-22(1.0-107*[07-15-10"* 260 | 14.3(0.0) | 0.661+0.066* 3133
16| 13-22]21.10-*]16-4.5-10-* 413 | 4.8(10.2) | 0.470+0.036 * 3242
15| 1.3—22 | 85-10~% | 04=1.7-10-3 209 | 1.8(0.0) | 0.386+0.042 5958
30" ‘22-38"'2.1-490-"|'1.6 - 3.0- 10=* 349 | 28.3(41.2) | 0.658 +0.055 + 3978
30| 22-38(4.2.10-*|3.0-9.0-10-* 591 | 18.8(10.3) | 0.689 +0.045* 3193
30 22-38|17.1073|0.9-3.6-10"3 308 | 7.5(0.0) | 0.530+0.048 * 33
45| 38<=65]21:10-*|1.5=38.0-10"* 187 | 38.9(0.0) | 0.806+ 0.090* 3258
45| 38-65)4.2.10-*]3.0-6.0-10"* 262 | 32.2(8.1) | 0.658 £0.062* 312
45| 38-6.5)/85-10-*|06-1.8-10"2 467 | 26.5(10.5) | 0.697 +0.051 * $:138
45| 38-65)|34-10"3(1.8-54-10"3 195 | 8.6(0.0) | 0.477 +0.060* 3954
85| 65-11.5]4.2.10"*|3.0-6.0-10~* 131 | 24.9(0.0) | 0.868 +0.124* 3139
85| 65—11.5|85-10-*|0.6-1.2-10-3 178 | 16.5(0.0) | 0.853+0.104 * 3281
86| 85—11.6] 1.7 10~ 1.2~ 8.6 10> 243 | 13.6(0.0) | 0.751+0.080 + §137
15.0 | 11.5—-20.0 [ 85-10"* [ 0.6-1.2-10°3 101 | 13.4(0.0) | 1.192 £ 0.207 * 3479
15.0 [ 11.5-20.0 | 1.7-10-% [ 1.2-2.4.10"3 118 | 9.7(0.0) | 0.886 £ 0.139 * 228
15.0 | 11.5—20.0 | 4.0-10-3 [ 2.4-7.2.10-3 132 | 7.3(0.0) | 1.012+0.162 337!

Table 13.11: Fp-results from the ISR-analysis. The estimated number of bremsstrahlung
background events is also tabulated. For each value of F; the statistical and asymmetric
systematic errors are given. The overall normalisation uncertainty of 3% is not included.
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