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Abstract

We calculate the leading power corrections to the decay rates, distributions and
hadronic spectral moments in rare inclusive B — X,£*£~ decays in the standard
model, using heavy quark expansion (HQE) in (1/m;) and a phenomenological model
implementing the Fermi motion effects of the b-quark bound in the B-hadron. We
include next-to-leading order perturbative QCD corrections and work out the depen-
dences of the spectra, decay rates and hadronic moments on the model parameters in
either HQE and the Fermi motion model. In the latter, we take into account long-
distance effects via B — X, + (J/v¥, ¢, ...) = X, £+ ¢~ with a vector meson domi-
nance ansatz and study the influence of kinematical cuts in the dilepton and hadronic
invariant masses on branching ratios, hadron spectra and hadronic moments.

We present leading logarithmic QCD corrections to the b — sy amplitude. The
QCD perturbative improved B, — <~ branching ratio is given in the standard
model including our estimate of long-distance effects via B, — ¢y — v and
B, = ¢y — ¢v — 77 decays. The uncertainties due to the renormalization scale
and the parameters of the HQE inspired bound state model are worked out.

Zusammenfassung

Wir berechnen im Standardmodell mit der Entwicklung schwerer Quarks (ESQ) Kor-
rekturen in (1/m;) zu Zerfallsbreiten, Verteilungen und hadronischen Momenten
des seltenen, inklusiven Zerfalls B — X,£t£~ . Dieselbe Analyse haben wir
im phinomenologischen Fermibewegungsmodell durchgefiihrt, welches die Effekte
des im B-Meson gebundenen b-Quarks beschreibt. In beiden Methoden zeigen wir
unter Einbeziehung nicht fithrender QCD—Korrekturen die Abhingigkeit der Spek-
tren, Breiten und Momente von den Modellparametern. Mit einem Vektormeson-
dominanzansatz modellieren wir im Fermibewegungsmodell die langreichweitigen
Beitrige der Charmoniumresonanzen, die durch B = X, + (J/¢, ¢/, ...) = X, ¢ ¢~
entstehen. Wir studieren den EinfluB kinematischer Schnitte in der invarianten Masse
des Leptonpaares und des hadronischen Endzustandes auf Verzweigungsverhiltnisse,
hadronische Verteilungen und Momente des Zerfalls B — X, ¢t£~ .

Femner prisentieren wir fiihrende logarithmische QCD—Korrekturen in der b — syy
Amplitude. Wir geben das QCD—verbesserte Verzweigungsverhiltnis von B, — 7y
im Standardmodell unter Beriicksichtigung unserer Abschétzung langreichweitiger
Beitrige durch die Zerfallsketten B, — ¢y — vy und B, — ¢9¥ — ¢y = vy
an. Wir schitzen die Unsicherheiten durch die Renormierungsskala und des B,
Bindungszustandsmodelles, welches der Theorie schwerer Quarks entlehnt ist, ab.
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Chapter 1

Introduction

Rare B decays probe the flavour sector of the standard model (SM) [1] and perturbative and non-perturbative
aspects of QCD. Since the first measurement of rare radiative B — K™v decays by the CLEO collabo-
ration [2] this area of particle physics has received much experimental [3] and theoretical [4] attention.
Flavour changing neutral current (FCNC) induced decays are of particular interest, since in the SM they are
governed by loop effects and depend sensitively on virtual particles like, e.g., the top quark and Cabibbo
Kobayashi Maskawa (CKM) matrix elements [5].

The theory of the effective Hamiltonian [6-10] (see section 2.2 for a discussion) H.ss ~ 3 C;O;
enables a description of low energy weak processes in terms of short-distance (Wilson) coefficients C;,
which can be calculated perturbatively. The (new) vertices O;, which are absent in the full Lagrangian, are
obtained by integrating out the heavy particles (W, t, ¢ in the SM ) from the full theory. Their coupling
strength is given by the C;, which characterize the short-distance dynamics of the underlying theory.

The Wilson coefficient CEIT corresponds to the effective bsy vertex. Its modulus |C$ﬂ| is constrained
by the measurement of the inclusive B — X v branching ratio at CLEO [11]. The CLEO result is in
agreement with the present theoretical SM prediction in B — X,y decay and moreover, can exclude large
parameter spaces of non-standard models.

The transition b — s+ £~ with £ = e, u, T involves besides the electromagnetic penguin b — sv* —
s€* £~ also electroweak penguins b — sZ%* — s€+£~ and boxes. They give rise to two additional Wil-
son coefficients in the semileptonic decay B — X,£+¢~ , Cg and Cyo. A model independent fit of the
short-distance coefficients Cy, C;o and C$ﬂ is possible from the following three observables [12]: The
B — X,y branching ratio B(B — X,7), the (partly integrated) invariant dilepton mass spectrum and the
Forward-Backward (FB) asymmetry [13] in B — X, £*£~ decays. They involve independent combina-
tions of the Wilson coefficients, which allows the determination of sign and magnitude of C.‘,’ﬁ, Cy and
Cjo from data.

The presence of charmonium resonances in the decay B — X,£* £~ complicates this analysis. The
cc states appear via B — X, + (J/¥, ¢, ...) & X, £+ £~ and can be taken into account in a phenomeno-
logical vector meson dominance (VMD) ansatz, which is assumed to hold near the J/%, v, ... peaks
[13]. Hence, kinematical cuts on the dilepton mass ¢ have to be imposed to remove the dominant res-
onance contributions and to disentangle the short-distance information from the long-distant one, €.g.,
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g < m3 T 4. Here ¢ is an experimental cut-off parameter and typically of order a few hundred
MeV. The restriction to certain regions of phase space explains the use of partly integrated spectra. The
net effect of the resonances is an additional error on the distributions and hinders the determination of
the short-distance coefficients C; from experimental data. Hence, they must be evaluated by taking into
account theoretical dispersion by using different phenomenological models [14] or further experimental
input.

The bound state nature of heavy hadrons can be explored within the B-system. Non-perturbative
power corrections in (Agcp/ms)™ are systematically obtained with the heavy quark expansion (HQE)
technique [15], parametrizing distributions, decay rates etc. in terms of higher order matrix elements,
denoted by Ay, A, for n = 2. We recall the HQE relation mp = mp + A — (A\; + 3X2)/2my + O(1/m})
between the physical B-meson and the b-quark mass, where A accounts for the “binding energy”. The
HQE method has been applied to semileptonic charged current B — X £y, [16] and FCNC B — X,y
[17] decays, and it is known that inclusive spectra are not entirely calculable with the HQE approach [16],
[18-21]. B-meson wave function effects have been estimated in B — X, .fv, [22,23] and B — X,y
[6,24] decays with a phenomenological Fermi motion model (FM) [22].

We present here a detailed analysis of inclusive B — X,£1 ¢~ decays in the SM with £ = e, u, (since
we neglected lepton masses in our calculation the result cannot be used in the 7 case), following similar
studies for charged current B — X £y, and radiative B — X7y decays.

This thesis contains the following points [18,25,26,14]:

e We calculate the 1/m? power corrections using HQE techniques in B — X,£+¢~ decays in the
dilepton invariant mass distribution. This corrects an earlier calculation [17] and has been confirmed
recently [27]. We find that the HQE breaks down near the high ¢? end-point, hence the spectrum
cannot be used in this region.

e Alternatively, we study B-meson wave function effects with a Gaussian FM. We present the dilepton
invariant mass distribution and the FB asymmetry and investigate the dependence on the FM model
parameters.

e We include c resonance effects in B — X,£* £~ spectra with the help of a VMD model and present
the distributions including next-to-leading order perturbative QCD corrections.

e We present 1/m; power corrections in the HQE approach and O(a,) perturbative corrections in the
hadron spectra and hadronic spectral moments in B — X,£*£~ decays.

o The explicit dependences of the lowest moments of the hadronic energy E'y and the hadronic in-
variant mass Sy, (E%), (S§) for n = 1,2 on the non-perturbative HQE parameters are worked
out. We find that the first two moments of the hadronic invariant mass in B — X,£*£~ decay are
sensitive to A and ), .

e We complement this profile of hadron spectra and moments in B — X,£*¢~ decays by an anal-
ysis in the FM. The hadronic energy spectrum is found to be stable against a variation of the FM
parameters, however, the hadronic invariant mass distribution depends significantly on them.



e We incorporate the charmonium resonances by means of the VMD model into the analysis of hadron
spectra and moments in B — X ,£7 ¢~ decays. The broadening of the resonances in the FM in the
hadron spectra is worked out. Also the cc resonances turn out to be important in the moments.

e We investigate the resulting uncertainties in spectra and moments in B — X,£*¢~ decays from
different parametrizations [28,29,18] of the resonant and non-resonant c¢ contributions.

e We work out hadron spectra, spectral moments and branching ratios in the FM with kinematical
cuts, as used in the CLEO analysis in their search for the decays B — X £*¢~ , £ = e, pu [30].
They imposed two kinds of cuts: one in the dilepton invariant mass to exclude the main bulk of
the J/, v/, ... resonances and another one in the hadronic invariant mass Sy < 3.24 GeV?, to
suppress the BB background. Our study of the B — X ,£*£~ branching ratios with cuts is of direct
use to estimate the efficiency of the remaining signal.

To summarize, we shall present spectra, decay rates and hadronic spectral moments in inclusive rare
B — X £*¢~ decays in the standard model. The dilepton mass spectra and the FB asymmetry presented
here are of use to extract the short-distance coefficients. We show that the uncertainties lying in different
parametrizations of the charmonium resonance effects are not the dominant ones. Hadron spectra and
moments in B — X ,£*£~ decays can be used to test HQE and FM and/or to determine their parameters.
‘We point out that the HQE, where it is valid, and the FM show very similar behaviour. Moreover, some of
their parameters can be related. In particular, the moments of the hadronic invariant mass in B — X,£+¢~
decays provide a complementary constraint on the non-perturbative HQE parameters A, A; to the one in
charged current semileptonic B — X ¢v, decays [31]. These decays can be used for a precise determi-
nation of these parameters. A related issue is the question of universality of the FM/HQE parameters for
b — ¢ transitions with final quarks ¢ = u,d, s or ¢ = c¢. This remains to be tested. Finally, relating
partly integrated hadron spectra of B — X,£*¢~ to semileptonic B — X,fv, decays, we expect the
cancelation of uncertainties resulting from bound state effects, thus this offers the possibility of a precise
determination of V.

Further, we study the exclusive mode B, — <+, which in the SM has a branching ratio in reach
of future B-facilities [3]. We improve earlier analyses [32-34] by including leading logarithmic QCD
corrections to the short-distance b — s+ amplitudes. We use the same effective Hamiltonian [6,7] as for
b — sv, which, as we will show, contains a complete set of operators for both decays. The B, — vy
decay rate gets enhanced under renormalization, like the B — X, decay rate [6]. Likewise, we obtain
a strong dependence on the renormalization scale of the B, — <<y observables, the branching ratio and
the CP ratio [35], the latter resulting from CP-odd and CP-even parts in the FCNC 2-photon amplitude.
Moreover, modeling B, bound state effects in a HQE inspired approach, we avoid the constituent quark
mass value m, ~ mg, as used in previous analyses.

In our analysis of B, — 7~ decay we take into account long-distance (LD) effects via intermediate
(neutral) vector mesons. Especially the contribution due to B, — ¢y and subsequent decay ¢ — « is
estimated and found to sizeably reduce the B; — <y branching ratio. We use QCD sum rules to evaluate
the B, — ¢y form factor and include the contribution from the gluon condensate. The VMD model is

employed for the ¢-meson photon conversion.
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Finally, we perform a VMD based calculation of the decay B, — ¢y — ¢y — -y, where we abbre-
viate ¢ = (J /%, ¢, ...). We compare the LD-contribution to B, — -y decay resulting from intermediate
¥ production with the one obtained by the interaction of the virtual charm loop with soft gluons [36].
We find that both amplitudes are in good agreement within the accuracy of the calculation. The contri-
bution due to intermediate charmonium resonances changes the B, — -~ branching ratio including the
intermediate ¢ contribution by less than 1%.

Our work in B, — <y decays [37,38] can be summarized as follows:

e We present leading logarithmic QCD corrections to the short-distance amplitude in b — sy~ decay.

e We model B, bound state effects in a HQE inspired approach, in contrast to the constituent quark
model, which is used in the literature.

e We estimate the LD effect due to the decay chain B; — ¢y — 7y, using QCD sum rules and VMD.
e We estimate the LD contribution through B, — ¢% — ¢y — 7~ using VMD.

We present the branching ratio and the CP ratio for B, — v+ decay in the SM, taking into account
improved perturbative O(a,) contributions and long-distance effects via intermediate vector mesons. Un-
certainties resulting from the renormalization scale and the bound state parameters are worked out.

Organization of the work

An introduction to rare B decays and the methods used is given in Chapter 2, where we discuss the
effective Hamiltonian theory, rare radiative B — X,y decays and long-distance methods in inclusive B
decays (HQET, FM and VMD). Chapter 3 is based on refs. [18,25,26,14]. Here we investigate inclusive
B — X,t*¢~ decays in the SM. We present branching ratios and various spectra, furthermore hadronic
spectral moments are estimated. In chapter 4 the exclusive channel B, — ~+ is analysed [37,38]. SM
based branching ratios and CP ratios in B, — v+ decay are given and their uncertainties are worked out.
Finally, chapter 5 contains a summary and an outlook. Input parameters, Feynman rules and utilities are
collected in appendix A. The power corrections to the structure functions of the hadron tensor ih B —
X €+ £~ decays are given in appendix B, together with auxiliary functions and the FM double differential
Dalitz distribution in the context of the dilepton mass spectrum and the FB asymmetry. Appendix C
contains analytic expressions used in the derivation of hadron spectra and hadronic spectral moment in
B — X,t*¢~ decays.



Chapter 2

Rare B Decays: Motivation and Methods

In this chapter we outline the flavour structure of the standard model (SM). We discuss the CKM mixing
matrix and motivate the importance of studying flavour changing neutral current (FCNC) b — s tran-
sitions. We introduce the necessary tool to include QCD perturbative corrections in weak decays, the
effective Hamiltonian theory. As an application of the former we discuss B — X,y decay as the most
prominent example of a rare B decay. Finally non-perturbative methods like the heavy quark expansion
technique, the Fermi motion model and vector meson dominance are sketched.

2.1 The Flavour Sector in the Standard Model

In the quark sector of the SM, there are six quarks organized in 3 families. The left-handed quarks are put
into weak isospin SU (2), doublets

=) =@, (), 6) e
(q('ioum i=1,2,3 ), \&), \¥/,

and the corresponding right-handed fields transform as singlets under SU (2) ;. Under the weak interaction
an up-quark (with Q,, = 2/3e) can decay into a down-quark (with Qs = —1/3e) and a W boson. This
charged current is given as
d
JC = —° (4,58, 7.V , 2.2
. \/§sin0w( ) 7uVexm | s 22)

“ e

where the subscript L = (1 — vs)/2 denotes the left-handed projector and reflects the V — A structure of
JCC in the SM. Here the weak mixing (Weinberg-)angle fy is a parameter of the SM, which is measured
with high accuracy [39]. The so-called Cabibbo Kobayashi Maskawa (CKM) matrix Vo as [S] describes
the mixing between different quark flavours. It contains the angles describing the rotation between the
eigen vectors of the weak interaction (¢’) and the mass eigen states (g)

d d

§ |=Vekm| s | - 2.3)
bl
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Symbolically, Vo ar can be written as

Vud Vus Vub
VC KM= Va Va Va > (24)
Vie Vis Vi

In general all the entries are complex numbers, only restricted by unitarity Vg MV(} xkm = 1. They are
parameters of the SM and can only be obtained from an experiment. Note that only three independent real
parameters and one phase are left after imposing the unitarity condition. Some parametrizations of Vo as
can be seen in ref. [39].

A useful parametrization of the CKM matrix has been proposed by Wolfenstein [40]

1- 32 A AX3(p —in)
Volfenstein = | —A 1- %1\2 AN? +0(AY). 2.5
AN(1-p—in) —-AN? 1 :
The parameters A, A, p and the phase 7 are real numbers. A is related to the Cabibbo angle through
A = sin 6¢ [39], which describes the quark mixing with 4 quark flavours. Since A ~ 0.221, the relative
sizes of the matrix elements in eq. (2.4) can be read off from eq. (2.5). As can be seen, the diagonal entries
are close to unity and the more off-diagonal they are, the smaller is the value of their corresponding matrix
elements. The parameter A has been determined from the decays b — cfv, and B — D*{y,, yielding
A = 0.8140.07. The measurement of the ratio |Vy3/V.s| = 0.08 + 0.02 yields v/p? + 72 = 0.36 £ 0.09.
Likewise the mass difference AMy; = M (B((il)) -M (B,(f)) ~ 0.46 (ps)~! constrains the combination
V(1 = p)Z+n?. The observed CP-asymmetry parameter ¢x = 2.26 - 10~2 constrains p and 7. The
precise determination of the parameters p and 7 is a high and important goal, since it corresponds to two
important questions:

e Does CP hold in the SM ?? A non zero phase 7 # 0 in the CKM matrix directly leads to CP
violating effects.

o The unitarity of the CKM matrix can be used to write down relations between its elements 32, V;; ka
= d;ix, %,k = 1,2, 3. There are 6 orthogonality equations possible ( # k), and each can be rep-
resented graphically as a triangle, a so-called unitarity triangle (UT) [41]. The sides and angles of
such an UT can be constrained by different types of experiments. For the UT given by the relation

VuaVea + VusVis + VsV = 0, (2.6)

there are 3 scenarios possible, which at present are not excluded experimentally and are a sign for
new physics: 1. the UT does not close, i. €., Y5_, a; # 0, where o; denotes the three angles of
the triangle. 2. 3°2_, a; = 0, but the values of the o; are outside of their SM ranges determined by
another type of experiment 3. Y3, a; = 0, but the values of the angles are inconsistent with the
measured sides of the triangle.

In the literature special unitarity triangles are discussed. A recent review over the present status on the
CKM matrix and the unitarity triangle is given by [4].



2.1.1 Flavour changing neutral currents and why do we look for them in the B-system ?

In the SM, the neutral current mediated through the gauge bosons Z°, v, g does not change flavour. There-
fore, the so-called Flavour changing neutral currents (FCNC) do not appear at tree level and are described
by loop effects. The subject of the present work is an analysis of such rare (FCNC mediated) B decays
in the SM. The quarks are grouped into light (u, d, s) and heavy (c, b, t) ones in the sense, that the mass
of a heavy quark is much larger than the typical scale of the strong interaction, Agcp ~ 200 MeV. The
sixth quark, the top, is too heavy to build bound states because it decays too fast. The special role of the
b-quark is that it is the heaviest one building hadrons. We will not discuss the “double” heavy B, and con-
centrate on B = (bg) meson transitions with light ¢ = u, d, s. Since the b-quark is heavy, the B-system
is well suited for a clean extraction of the underlying short-distance dynamics. Unlike the K-system,
long-distance effects are expected to play a subdominant role in B decays except where such effects are
present in a resonant form. :

The motivation to investigate b — s(d) transitions is to improve the knowledge of the CKM matrix
elements and to study loop effects. For the latter the interest is large, since there is no tree level FCNC
decay possible in the SM. The leading loops give the leading contribution and they are sensitive to the
masses and other properties of the internal virtual particles like e. g. the top. They can be heavy and
therefore can be studied in a rare B decay at energies which are much lower than the ones necessary for
a direct production of such particles. The idea is to compare the SM based prediction for a rare B decay
with an experiment. A possible deviation gives a hint not only for the existence, but also for the structure
of the “new physics” beyond the SM.

Further the B-system can be used as a testing ground for QCD, to check perturbative and non-
perturbative methods. One example is the decay B — Xy, which can be described in the lowest or-
der at parton level through b — sy. As a 2-body decay, the photon energy in the b-quark rest frame is
fixed: E, = (m? — m2)/2m, for an on-shell 7. A possible non trivial spectrum can result from gluon
bremsstrahlung b — svyg and/or a non-perturbative mechanism, which is responsible for the motion of
the b-quark inside the meson thus boosting the distribution. Such a bound state effect can be incorporated
with e.g., the Fermi motion model, see section 2.4.2 for a brief discussion.

Some rare B decays have already been detected. The channel B — K™y has been measured from
the CLEO collaboration some time ago [2], however the most prominent example of a rare B decay is the
inclusive B — X,7v [11], where X is any hadronic state with strangeness s = 1 and B is a mixture of
B* and B°(BP). The branching ratios are found to be

B(B — K*y)CLEO = 42408+0.6-1075, Q.7
B(B — X,7)HEQ = 23240.57+0.35-107%. 2.8)

Also the ALEPH collaboration has presented a preliminary result [42]
B(hs — X,7)ALEPH 3994 071+0.68-1074, 2.9)

where hy is any b flavoured hadron originating from Z° decays, Z° — hy X.
The calculation of the exclusive mode introduces large theoretical uncertainties due to the hadronic
matrix elements. The inclusive decay is under better control, leading to the following result in the recently
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completed NLO calculation [43], [44]
B(B = X,¥)NLo = 3.50+£0.33-107* . (2.10)

Comparing eq. (2.8) and eq. (2.10), the CLEO measurement is found to be 20 away from the theory,
but the SM cannot be ruled out. One has to look for other decay modes, since improving the theoretical
accuracy in B — X,y decay seems not at hand. After displaying the methods developed in B — X7,
two other rare B decays, B — X,£+¢~ with £ = e, u and the exclusive decay B, — v+ will be discussed
in chapter 3 and chapter 4 of this work, respectively. Both candidates have branching ratios ~ 10~¢
which are in reach of future B experiments. The aim of this thesis is to analyse these decays within the
framework of the SM and to present up to date predictions for measurable quantities (branching ratios,
distributions, asymmetries, etc) as accurately as possible with the present available techniques.

W, ¢
P ladada 'S
4 LY
v LN
’ (Y
’ [}
] |
b T S

Figure 2.1: A FCNC b — s diagram.

A typical diagram for b — s is displayed in Fig. 2.1 from where the CKM couplings can be directly
read off. The amplitude T is the sum over all internal up-quarks

T= ) N h=VaV;. 2.11)

f=wu,c.t

Using the CKM unitarity ) ;_, . ; A; = 0 and the smallness of V,;; yielding A, < A, we arrive at
T=XMT: = T.) + M(Ty = T;) = M(T: - To) (2.12)

for a b — s amplitude in the SM. In the D-system the FCNC transition rates (¢ — u) are much more
suppressed due to an inbuilt GIM mechanism [45]. Here we have

Tesu = ), VaVali
i1=d,s,b
= VoV (To — T,) + VeaVoy(Ta - T) (2.13)

in which the first term is CKM suppressed and the second one GIM suppressed since m? — m? < mi,.
The SM rates in the charm sector for decays such as D® — v+, D® — £+£~ are out of reach for present
experiments. If one nevertheless finds something in the rare charm sector, it would be a direct hint for the
desired physics beyond the SM.
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2.2 The Effective Hamiltonian Theory

As a weak decay under the presence of the strong interaction, rare B decays require special téchniques,
to be treated economically. The main tool to calculate such rare B decays is the effective Hamiltonian
theory. It is a two step program, starting with an operator product expansion (OPE) and performing a
renormalization group equation (RGE) analysis afterwards. The necessary machinery has been developed
over the last years, see [6—10], [46] and references therein.

The derivation starts as follows: If the kinematics of the decay are of the kind that the masses of the
internal particles m; are much larger than the external momenta p m? >> p?, then the heavy particles can
be integrated out. This concept takes a concrete form with the functional integral formalism. It means
that the heavy particles are removed as dynamical degrees of freedom from the theory, hence their fields
do not appear in the (effective) Lagrangian anymore. Their residual effect lies in the generated effective
vertices. In this way an effective low energy theory can be constructed from a full theory like the SM.
A well known example is the four-Fermi interaction, where the W-boson propagator is made local for
¢?> < m¥, (q denotes the momentum transfer through the W):

; | 1
SPRE TN i . b 2.14)
mw

where the ellipses denote terms of higher order in 1/my . ! Performing an OPE for QCD and electroweak
interactions, the effective Hamiltonian for a FCNC b — s+ transition in the SM can be obtained by inte-
grating out W, ¢, ¢. Up to O(i-) itis given as:

w

G 8
Hers(b— 7) = —47;& > Ci(w)Oi(w) , 2.15)
=1

where the weak couplings gw = ;% are collected in the Fermi constant G

Gr g
% = 8-‘1’7:‘;“’, 2.16)
Gr = 1.16639-107°GeV~2. .17

The on-shell operator basis is chosen to be [7,6]

01 .= (SLavubra)(CLsy*cLs),

O2 = (8LaYubrps)(CLpv¥cLa),

O3 = (SLavubra) Y. (3Ls7*aLs),
q=u,d,s,c,b

Oy = (Sraqubrs) . (GLs7"qra),
q=u,d,s,c,b

Os = (Sawubra) Y. (@re7"aRB),
g=u,d,s,c,b

'We remark here that the original way was reversed: The main historical step was to extrapolate the observed low energy
4-Fermi theory in nuclear B-decay to a dynamical theory of the weak interaction with heavy particle exchange.
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Os = (SLavubrs) D (3rsY"¢Ra),
g=u,d,s,c,b
Com v
07 = msaduy(mbR'*'m,L)baF“ ’
Os = 1—(;]75§0T;ﬁa,,,,(mbR+m,L)bgG°“", (2.18)

where L(R) = 1/2(1 F 75), 0w = 5[74,7.] and a, B are SU(3) colour indices. 7%, a = 1...8 are
the generators of QCD, some of their identities can be seen appendix A.2. Here F*¥, G**¥ denote the
electromagnetic and chromomagnetic field strength tensor, respectively. As can be seen from the operator
basis, only degrees of freedom which are light compared to the heavy integrated out fields (W, t, ¢), remain
in the theory. The basis given above contains four-quark operators Oy g, Which differ by colour and
left-right structure. Among them, the current-current operators O; and O, are the dominant four-Fermi
operators. A typical diagram generating the so-called gluonic penguins O3_g is displayed in Fig. 2.2. The
operators O~ and Og are effective b — sv, b — sg vertices, respectively. All operators have dimension
6. For b — s£*¢~ transitions the basis eq. (2.18) should be complemented by two additional operators
containing dileptons. They are discussed together with their corresponding Wilson coefficients in chapter
3

W, ¢

P Sttt

Figure 2.2: A gluonic penguin diagram.

The coupling strength of the introduced effective vertices O; is given by the (c-numbers) Wilson
coefficients C;(u). Their values at a large scale p = my are obtained from a “matching” of the effective
with the full theory. In the SM, the C;(mw ) read as follows [134]

Ci3.6(mw) = 0, (2.19)
Co(mw) = 1, (2.20)
373 — 272 —82% — 522 + 7z
C7(mw) = 4_(1.—__1—)7 Inz + 24(:2: = 1)3 ) (2.21)
—3z2 —z3 + 522 + 2z
Cg(mw) = m Inz + 8(.’5 = 1)3 ) (2.22)

with z = m?/m2,. It is convenient to define effective coefficients C-?g(p) of the operators O and
Os. They contain renormalization scheme dependent contributions from the four-quark operators O, ¢ in
Hess to the effective vertices in b — s and b — sg, respectively. In the NDR scheme 2 , which will be

2We recall that in the naive dimensional regularization (NDR) scheme the s matrix is total anti-commuting, i. e. {7s, Y} =
0, thus Ly, = y,.R.
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used throughout this work, they are written as [7]

CEM(y) = Ci(p) + QuCs(k) + QuNcCol(n) , 2.23)
Mu) = Cs(p)+Cs(p) - 2.24)

Here N. denotes the number of colours, N, = 3 for QCD. The above expressions can be found from

b Ors #

Figure 2.3: The diagram contributing to the one loop b — sy, b — sg matrix element, respectively.

evaluating the diagram shown in Fig. 2.3. Contributions from O; .4, which correspond to an y,L ® v, L
like insertion, vanish for an on-shell photon, gluon, respectively. The Feynman rules consistent with these
definitions are given in appendix A.3.

2.2.1 QCD improved o, corrections

Our aim is now to include perturbative QCD corrections in the framework of the effective Hamiltonian

theory. This can be done by writing down the renormalization group equation for the Wilson coefficients
3

d
napCilk) = :iCiw) » (2.25)

where vy denotes the anomalous dimension matrix, i.e., in general the operators mix under renormalization.
Solving this equation yields the running of the couplings C;(x) under QCD from the large matching scale
(here p = mw) down to the low scale u =~ m;, which is the relevant one for b-decays. Eq. (2.25) can be
solved in perturbation theory g2 = 4ra,:

PHITD 2e 2‘r,(?)+(167r2)""r,.1)+ (2.26)
Ci(u) = C(u)‘°’+ C(p)“’+ 227

The initial values of the above RGE are the C,-(mw), which in the lowest order in the SM are given in
eq. (2.19-2.22).

Let us for the moment concentrate on the special case that v is a number. Then the lowest order
solution is given by

C(p) = n*» C(mw), (2.28)

3. _ . Qi g, 0 dg o
with C; = Ci(p, g) we have eqmvalendypa—;c. = (pa—” +pa§ 8—9)
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as(mw)
= ; 2.29
y as(p) ' '

which can be easily checked by substituting it into eq. (2.25). In the derivation we have used the QCD g
function, which describes the running of the strong coupling:

iy et AN o B (2.30)
9)=pg9= "9 gabotfg) P+ -, .
with its lowest order solution

Selmw) = L (2.31)

as(/‘) e 1+ﬂ0%,r£)‘ln(1:¥’_) .

We see that our obtained solution eq. (2.28) contains all powers of o, (1) In(;£-). It is called leading
logarithmic (LLog) approximation and is an improvement of the conventional perturbation theory. In
general such a QCD improved solution contains all large logarithms liken = 0, 1, . .. (here with u'= m3)

o} (me) 0™ (), 232)

where m = n corresponds to LLog. A calculation including the next to lowest order terms is called next
to leading order (NLO) and would result in a summation of all terms with m = n — 1 and so on. In the
following we use the 2-loop expression for o, () which can be always cast into the form

i = e o)
. Boln(u?/A%cp) B3 In(p2/Adcp)

With Ny = 5 active flavours (note that we integrated out the top) and SU (N, = 3) the values of the
coefficients of the B function are

(2.33)

23 115
ﬁo—?, ﬂl——3—- (2.34)

They are given in appendix A.2 for arbitrary N, and N;. The strong scale parameter AQcp = Ag\gg % is

chosen to reproduce the measured value of o, (u) at the Z° pole. For a,(mz) = 0.112,0.117,0.122 we
have A(QS)C p = 160,214, 280 MeV, corresponding to the values of the input parameters listed in appendix
A.l. _

We recall that in LLog the calculation of the anomalous dimension and the matching conditions at
lowest order, 7(©), C{”) (my) is required. In NLO a further evaluation of higher order diagrams yielding
(), C’,-(l)(mw) is necessary and in addition the hadronic matrix elements (O;) have also to be known in
O(as).

In a general theory and also in the one relevant for rare radiative b decays given in eq. (2.15), the
operators mix and the matrix + has to diagonalized. In the latter case the (8 x 8) matrix v(°) has been
obtained by [8,9] and the running of the C;(u) in LLog approximation cannot be given analytically. The
LLog solution for the Wilson coefficients ready for numerical analysis can be taken from [47]. We display
the C; for different values of the scale p in Table 2.1. As can be seen, there is a strong dependence on
the renormalization scale u, especially for C; and C?ﬁ . Other sources of uncertainty in the short-distance
coefficients C; are the top mass and the value of a,(mz). We keep them fixed to their central values given
in appendix A.1.
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Ci(p) | p=mw | p=10GeV | p=5GeV | p=2.5GeV
o 0 ~0.161 | —0.240 —0.347
= 1 1.064 1.103 1.161
Cs 0 0.007 0.011 0.016
G 0 -0.017 | —0.025 -0.035
o5 0 0.005 0.007 0.010
&4 0 —0.019 | —0.030 —0.046
ceff | —0.196 Soa7t 1™ NN —0.353
cef | —0.008 -0.134 | —0.148 —0.164

Table 2.1: Leading order Wilson coefficients in the Standard Model as a function of the renormalization

scale p.

Here a comment about power counting in our effective theory is in order: As can be seen from Fig. 2.3
with an external photon, the insertion of four-Fermi operators generates a contribution to b — sv, which
is also called a “penguin”. It is a 1-loop diagram, but unlike “normal” perturbation theory, of order a2. To
get the ! contribution, one has to perform already 2 loops and so on. That means, the calculation of the
LO(NLO) anomalous dimension matrix was a 2(3)-loop task.

A comprehensive discussion of weak decays beyond leading logarithms can be seen in ref. [46]. The
main results of the NLO calculation in B — X~y decay will be given in section 2.3.

The advantages of the effective theory compared to the full theory can be summarized as follows:

o The effective theory is the more appropriate way to include QCD corrections. Large logarithms like
In(p/mw) multiplied by powers of the strong coupling o, (), which spoil the perturbation series
in the full theory, can be resummed with the help of the RGE.

e On the level of a generic amplitude A= (Hegs) ~ 3; Ci(1)(O;) () the problem can be factorized
into two parts: The short-distance (SD) information, which can be calculated perturbatively, is en-
coded in the Cj, and it is independent of the external states, i.e. quarks or hadrons. The long-distance
(LD) contribution lies in the hadronic matrix elements. Both are separated by the renormalization
scale u. Of course the complete physical answer should not depend on the scale p, truncating the
perturbation series causes such a remaining dependence, which can be reduced only after including
higher order terms or a full resummation of the theory.

e As long as the basis is complete, the effective Hamiltonian theory enables one to write down a
model independent analysis in terms of the SD coefficients Cj;. This is true for SM near extensions
like the two Higgs doublet model (2HDM) and the minimal supersymmetric model (MSSM). Here
one can try to fit the C; from the data [12]). However, new physics scenarios like, e.g., the left-right
symmetric model (LRM) require an extended operator set [48,49,50]. Wilson coefficients in the
2HDM and in supersymmetry (SUSY) can be seen in ref. [51] and ref, [52], respectively.
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2.3 B — Xyv in the Effective Hamiltonian Theory

The effective Hamiltonian theory displayed in the previous section is applied to B — X7 decay. Several
groups have worked on the completion of the LLog calculation [8,9]. The anomalous dimension matrix
at leading order 7(0) and the lowest order matching conditions (eq. (2.19-2.22)) govern the running of
the LLog Wilson coefficients, denoted in this and only this section by Cfo) (), to separate them from the
NLO coefficients. We discuss the improvement of the theory in B — X, obtained from NLO analysis.
In the remainder of this work we treat the Wilson coefficients C;, ¢ = 1, ...8 in LLog approximation.

In the spectator model, the branching ratio for B — X,v in LLog approximation can be written as

L(b—osy)  |M? 6a

(o)eff, 2
T(b— cez.) |Val?wf(mc) ICz (w1, (2.35)

B(B = X,v) = By

where a normalization to the semileptonic decay B — X fv, to reduce the uncertainty in the b-quark
mass has been performed. Here B,; denotes the measured semileptonic branching ratio and the phase
space factor f(7.) with . = m./my for I'(B — X £fv,) can be seen in eq. (3.30).

As the branching ratio for B — X,y is mainly driven by C;o)eﬂ'(#)’ several effects can be deduced:

e Including LLog QCD corrections enhance the branching ratio for B — X, about a factor 2 — 3,
as can be seen in Table 2.1 (here denoted by C;(u)) and changing the scale from p = my down to

B~ mp.

e While the sign of C;o)eﬁ” is fixed within the SM, i.e. negative, it can be plus or minus in possible
extensions of the SM. A measurement of B(B — X,v) alone is not sufficient to determine the sign
of C;O)eff, or in general, the sign of C$ﬂ resulting from possible higher order calculations.

o The strong scale dependence of the value of C_$O)eff(“) causes serious problems in the accuracy of
the LLog prediction. Varying the scale between 7t < u < 2m; , results in an error in the branching

ratio of +25% [53], [7].

Because of the last point the NLO calculation was required. Several steps have been necessary for a
complete NLO analysis. Let us illustrate how the individual pieces look like: At NLO, the matrix element
for b — sy renormalized around p = my can be written as [7]:

M(b— 57) = —4%A,D<o7(mb»m , 2.36)

with
D = C§1(u) + 2528 5 (O My @1n 22 4 M (upri) @37

The r;7 are computed in ref. [43]. They contain the bremsstrahlung corrections [6], [54] b — svyg and
virtual corrections to the O, matrix element [43]. Especially the latter with an O, operator insertion
demands an involved 2-loop calculation, see Figs. 1-4 in [43), where the corresponding diagrams are
shown. It is consistent to keep the pieces in the parentheses in eq. (2.37), which are multiplied by a,(m;),
in LLog approximation.
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Now CET (1) has be be known at NLO precision,

CEl() = O () + 2L el 2.38)

As this job consists out of two parts, the work has been done by two groups: The O(a?) anomalous
dimension matrix was obtained in ref. [44], which required the calculation of the residue of a large number
of 3-loop diagrams, describing the mixing between the four-Fermi operators O, .. ¢ and O7s. The second
part, the NLO matching at 4 = mw has been done in ref. [55] and confirmed in ref. [56]. The NLO
calculation reduces the u = ((m;) scale uncertainty in varying 4 in the range % < u < 2m; drastically
to +4.3% [57] and suggests for B — X,y a scale g = 7t as an “effective” NLO calculation through

I'(B = X.7)ro(s = %) & (B - X,7)nLO - (2.39)

As a final remark on scale uncertainties it should be noted that in the foregoing the top quark and
the W have been integrated out at the same scale u = my, which is an approximation to be tested. It is
justified by the fact that the difference between a,(mw ) and a,(m;) is much smaller than the one between
a,(mw) and a,(m;). 4 The authors of [57] analysed the dependencies on both the W matching scale
pw = O(mw) and the one at which the running top mass is defined: m;(p:) and pw # p.. Similar to
the m; scale they allowed for pw, p: a possible range: ﬂzl < pr < 2m, where z = W, t. Their findings
are that the uw , u; uncertainty is much smaller (namely +1.1%, £0.4% at 4 ~ m; in NLO, respectively)
than the uncertainty in the scale around m; and therefore negligible.

2.4 Long-Distance Effects in Inclusive B Decays

In this section we sketch the methods to treat the LD effects in inclusive B decays. We have effects due
to the confinement of the quarks in a bound state and due to resonances. They will be explained more
detailed in the following chapters when and where necessary. For the evaluation of the exclusive channels
we refer to chapter 4 in which the rare mode B, — 7 is discussed, especially section 4.2.

There are mainly two different approaches to take into account the effects of the B-meson bound state,
the heavy quark expansion (HQE) and the phenomenologically motivated Fermi motion model (FM).
While the former is a field theory in the framework of the heavy quark limit of QCD and has an interest of
its own, the latter serves as a model of the data and has no intrinsic problems like end-point singularities
etc. like HQE. Both models have parameters which can be related to each other and as they are used as
inclusive methods, no form factors appear in the amplitudes. Inclusive decays are good from theoretical
point of view and a challenge for experimentalists: An inclusive final state X is an average over a suf-
ficiently high number of exclusive single (resonances) and continuous multi body states with the same
quantum numbers as X . Inclusive decays involve the calculation of quark level processes. The underlying
assumption of quark-hadron duality requires a large and dense enough populated phase space. By means
of a “smearing” procedure, the singular behaviour in a local form is avoided and the differential spectra
can be measured in a distribution sense.

4Using eq. (2.33) and the input parameters in Table A.1, we have a,(mw) = 0.12,a,(m:) = 0.11 and a,(ms) = 0.21.
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Another type of LD effect beside the bound state effect mentioned above, is due to resonances. A (¢g)
spin 1 state can hadronize from a virtual ¢g-loop. The conversion of such a vector meson into a photon is
described by the phenomenological vector meson dominance (VMD) model.

2.4.1 The heavy quark expansion of QCD

Consider a hadron containing one heavy quark @ in the limit mg — oo. The other ingredients, light
quarks and gluons, are seen as a light cloud around the heavy quark, sometimes also called the “light
brown muck” [58], which exchanges small momenta of order Agcp with Q for which a perturbative
expansion is not useful. The parameter Agcp characterizes the soft hadronic interaction scale. The heavy
quark inside the bound state is treated as a static source of gauge charge (colour and electric charge): Q is
so heavy compared to Agcp, that it does not recoil as a result of the soft exchanges, it sits at rest in the
hadron rest frame. This is the heavy quark limit of QCD.

New symmetries can be explored which are exact in the limit of an infinitely heavy quark: The light
degrees of freedom are insensitive to the mass, flavour and spin of the heavy quark! This brings an enor-
mous simplification of certain aspects of QCD, like the calculation of heavy quark matrix elements and
hadron spectroscopy. However, for a firm phenomenological analysis we need to go from the predictions
of heavy quark symmetry in the strict limit mg — oo to a theory which provides a controlled expansion
around this (academic) case. This can be done with the heavy quark expansion technique (HQET) in the
limit mg > Agcp. The necessary technology has been developed over the last decade and can be seen
in a selection of papers [15,16] and references therein. A nice review on the HQE technique is given in
ref. [59].

1/m; power corrections

Let us now switch to the system under consideration, the B-mesons. Since the b-quark is heavy, i. e.
mp ~ 4.8GeV > Agep ~ 200 MeV, the success of the spectator model in B = (bg) meson decays can
be understood. Moreover, corrections in inverse powers of m; to this can be systematically obtained with
the help of the HQET.

The light degrees of freedom in the B-meson give rise to the parameter A which accounts for the
binding energy of the bound state. In the limit of an infinitely heavy b-quark, i. e. my — co we have

ms=my+A, 240

where mp denotes the B-meson mass. Corrections to this can be calculated within the following set
up of HQE: The heavy b-quark momentum is written as p = myv + k, where k is a small residual
momentum of order Agcp. v denotes the velocity of the meson with momentum P = mpguv, which at
restis v = (1,0, 0,0). It follows that the relative movement between the heavy quark and the meson is
suppressed by powers of k/m,. Performing an operator product expansion up to operators with canonical
field dimension 5, the HQET mass relation modifies to [60]

_ 1 i :
m3=mb+A—2—(/\1+3/\2)+..., : (241)
mp
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Reference Method A [GeV] A1 [GeV?)

Falk et al. [66] Hadron Spectrum =~ 0.45 ~ —-0.1

Gremm et al. [31] Lepton Spectrum | 0.39+0.11 —0.19+0.10

Chernyak [67] (B> X t0) 0.28+0.04 —0.14+0.03

Gremm, Stewart [68] 0.33+0.11 -0.17£0.10

Li, Yu [69] Photon Spectum | 0.657032  —0.71%972
(B = X,7)

Table 2.2: Determinations of the parameters A and )\, from inclusive decay spectra.

where the ellipses denote terms higher order in 1/m;. In general, the next to leading power corrections in
HQET are parameterized in terms of these matrix elements of the kinetic energy and the magnetic moment
operators A; and A2, respectively. We can get the value of A from spectroscopy

sz. i sz

s =0.12GeV?. (2.43)

Ag =
The quantity A, is subject to a theoretical dispersion. Its value has been determined from QCD sum rules,
yielding A; = —(0.52 #+ 0.12) GeV? (Ball and Braun in [61]) and A; = —(0.10 £ 0.05) GeV? (Neubert
[62]). Further, the value for A; has been extracted from an analysis of data on semileptonic B decays
(B = X{uy), yielding A; = —0.20 GeV? with a corresponding value A = 0.39 GeV, as the two are
correlated [31]. For a review on the spread in the present values of these non-perturbative parameters
extracted from inclusive decay spectra, see Table 2.2, which is adopted from [63].

Now there is an intrinsic difficulty in the relation eq. (2.41). One can ask for the meaning of the “pole”
mass m;, and A ? First of all, they are non-perturbative parameters and they add up in the combination
given by eq. (2.41) to the physical B-meson mass. However, while the sum is fixed, there is a scheme
dependent “renormalon” ambiguity of order Agcp in both m; and A, which cancels out in physically
measurable quantities [64]. Assuming universality, the parameters my, A determined by one experiment
can be used to help the analysis of another decay, provided that one uses the same renormalization scheme
prescription.

The power corrections in B — X,y decay including 1/m} terms have been calculated in ref. [17].
The 1/m;3 corrections have been recently reported in ref. [65]. However, the use of the last calculation is
limited by the fact, that the matrix elements of the higher dimensional operators are almost unknown. In
B — X,€*¢" decaythel/ mg have been first calculated in ref. [17] (with massless s-quark) and corrected
in ref. [18] with full m,. The latter has been confirmed recently in the massless s-quark case in ref. [27].
Details of the HQET calculation are given in chapter 3.
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1/m. power corrections

With m, ~ 1.4GeV > Agcp the charm is still a heavy quark and also 1/m. power corrections are
subject of present B-physics. A theoretically interesting structure, an effective bsyg-vertex appears from
the diagrams displayed in Fig. 2.4 [36]. The amplitude of this operator can be expanded in 1/m.. The
power corrections in Agcp/m. to the B — X,y decay rate have been calculated first in ref. [70] and [71],
however with the wrong sign. This has been settled now in favor of [72,73,27]. The resulting correction
to the decay rate is found to be small:

6F(B == X_,‘)’) L Cz/\g
P(B» X QC.?ffmZ

~ +0.03 . (2.44)

The 1/m, expansion is an alternative description of the virtual charm loop to the traditional vector meson

Figure 2.4: The bsyg-vertex at lowest order in QCD.

dominance ansatz, (see section 2.4.3, Fig. 2.5) in regions of momentum transfer ¢ far away from the
resonances.
Pros and cons of the HQE approach

e systematic expansion in Agcp/mc

e well-defined limit of QCD

e unknown matrix elements of higher order operators

e expansion breaks down in some regions of the phase space

The last point above corresponds to an uncomfortable property of the HQE method: The development of
end-point singularities in inclusive decay spectra [16,18], hence only quantities smeared over a sufficiently
large phase space interval are calculable. Such a smearing is incorporated, e.g., in the Fermi motion model
[22], discussed in the next section.

2.4.2 The Fermi motion model

Another model to handle the effects of the bound state is the phenomenological Fermi motion model (FM)
[22]. The FM is defined through the requirement that the b-quark and the spectator quark ¢ four-momenta
add up to the B = (bg)-meson four-momentum. In the rest frame of the B-meson the quarks fly back to
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back with momentum p = py = —p,. From energy conservation follows than that either the spectator or
the b quark has to have a momentum dependent mass. In this work we choose m, to be a parameter of the
model and the b quark to have a p dependent mass. It reads

m(p) = mp® + my? — 2mp\/p? + me® ; p=|pl. (2.45)

The next assumption is that the momentum p obeys the Gaussian distribution function ¢(p) weighted with
the Fermi momentum pg

(2.46)

4 3.2
$(p) = ¥ exp( ppz) ,

with the normalization [;° dp p? ¢(p) = 1. The procedure to implement these wave function effects to a
general parton model distribution obtained in the b quark rest frame is as follows:
1. replace the b quark mass by m;(p)
2. boost the distribution into the B-meson rest frame and
3. fold the result with the wave function given in eq. (2.46).

For subsequent use in working out the normalization (decay widths) in the FM model, we also define
an effective b-quark mass by

il S /0m dp p* my(p)*¢(p))* /5. (2.47)

The two parameters of the FM model, the Fermi momentum pg and the spectator mass m, can be
fitted from data, however, up to now this procedure has not been very conclusive as still large ranges of
the parameters are possible. The question appears here whether the FM parameters do depend on flavour,
i. e, are they universal for B — X; + (7, leptons) with f = d,u, s, c transitions. Further relations
between the FM parameters (pr, m,) and the HQET parameters (;, A) can be obtained. However, there
is no analogue of the magnetic moment coupling A, in the FM.

We will return to the FM in chapter 3 to model the wave function effects in B — X, £ £~ decay.

2.4.3 Vector meson dominance

Vector meson dominance (VMD) provides a mechanism to convert a spin 1 meson, here generically de-
noted by V' = (¢q) into a photon [74]. The creation of a (¢g) bound state from a virtual ¢, § pair and its
subsequent conversion into a photon is displayed in Fig. 2.5. The intermediate vector meson propagator

Figure 2.5: The VMD conversion.
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equals 1/(m?%, — ¢% — imyT'i2"), where the imaginary parts takes the effect of a finite total width I'{?* of
the V into account. The matrix element of the constituent current is defined as

< 01§7,9lV (g, €") >= fv(¢®)mve) , (2.48)

and the photon interacts with the (neutral) bound state through the electromagnetic current JS™ = eQ,37,9
as:

<OV (g, €¥) >= eQq fv(g*)mve), . (2.49)

Here q,¢” are the momentum and the polarization vector of the vector meson V/, respectively and Qq
denotes the charge of the quark g in units of e. VMD conversion means that while V' — « also e“f ~yi€,
where ¢, is the polarization vector of the photon. The form factor at ¢?> = m¥ can be obtained from
measurement of the leptonic width

2Ar o
T(Vosete) = fﬁQq ki

e (2.50)

What about fy (¢%) at ¢> # m? ? For the calculation of the form factor at 0 < ¢° < m?%, there
exist different ways, which are neither straightforward nor unique. a) First of all data on photo production
¥YN — VN at ¢*> = 0 can be used. They indicate a large suppression of fy (0) compared to fy (m?)
only if the vector meson is heavy such as V = J/,4’. As in this case ¢ = m3/¢’ m3, to ¢> = 0
involves a large extrapolation in 2. It is not expected to be so significant for V = p,w, ¢ as ¢ = mf, etc.
is not far away from ¢? = 0. This is what all the methods listed here share, that fy(g%) decreases with
decreasing ¢2. b) Often a single-pole form is assumed to extrapolate the form factor to smaller values of
the momentum transfer

Sk s @.51)

e qz/m:ole

where m,,/. corresponds to the masses of higher resonances of the V. ¢) The approach by [75] is based
on a dispersion relation calculation. It yields an interpolation formula between fy (0) and fy (m?) where
both can be fixed by data. The situation for ¢ > m? is unclear.

The VMD mechanism has been applied to B — X,y decay to estimate the long distance contribution
through B — X,%' — X,v by [76,77]. Here %' = J/%,%/,...%(*) are the known six charmonium
resonances, see [39]. The ¢‘ — 7 conversion requires the knowledge of the form factor at g% = 0 for an
on-shell photon. It has been shown in ref. [76], that the methods a) and c) listed above yield a consistent
suppression at g2 = 0. The longitudinal degrees of freedom of the %* have been removed using the
procedure proposed by [77]. However, assumptions made remain as uncertainties in the calculation.

We will make extensive use of VMD in chapter 3 and chapter 4 to include long-distance effects from
intermediate vector mesons in B — X,£*¢~ and B, — v decays, respectively. However, in chapter 3
we estimate the resulting uncertainties which emerge from various theoretical approaches in implementing
the g?-dependence of the VMD-dominated amplitude.



Chapter 3

Inclusive B — X /¢~ Decay

This chapter contains a comprehensive analysis of B — X,£* £~ decay in the standard model (SM). We
include QCD improved O(a,) corrections, use heavy quark expansion techniques (HQET) and apply the
Fermi motion model (FM). Further, the long-distance effects via intermediate J/, v/, ... resonances are
taken into account with a vector meson dominance (VMD) ansatz.

3.1 Introduction

Flavour changing neutral current (FCNC) decays B — X,£*£~ and B — X, are governed in the SM by
loop effects. They provide a sensitive probe of the flavour sector in the SM and search for physics beyond.
In the context of rare B decays the radiative mode B — X~ has been extensively discussed in chapter 2.

In this chapter we address inclusive B — X,£*£~ decay with £ = e, u. Since we are neglecting
finite lepton masses we cannot apply our results to the r-case. The b — sf* £~ transition has been
studied earlier in the free quark model in refs. [78-80] in the lowest order in the SM context. The NLO
O(a,) improvement in the invariant dilepton mass distribution and the decay rate has been worked out in
refs. [9,47]. Leading (1/m?) power corrections in the HQET framework [15,16] in the invariant dilepton
spectrum in B — X, £+ £~ decay have been reported in ref. [18], correcting an earlier calculation [17].
This has been recently confirmed in ref. [27] for the massless s-quark case. Another interesting quantity
in B = X,¢*¢" is the FB asymmetry [13], also known at l/mg [18]). It can be used together with
the branching ratio of B — X,v and the dilepton spectrum in B — X,£*£~ for a model independent
analysis of the short-distance coefficients [12] in the search for SUSY effects [81-83], [S0]. The 1/ mf
power corrections to the left-right asymmetry [84,85] have been presented in [86] correcting an earlier
calculation of the same [85]. Both the FB asymmetry and the left-right asymmetry are defined in section
3.1.3. The longitudinal polarization of the lepton, Pz, in B — X, 7~ at the partonic level has been
worked out [87]; the other two orthogonal polarization components Pr (the component in the decay
plane) and P;, (the component normal to the decay plane) were subsequently worked out in [28]. The
O(1/m?) correction to the dilepton invariant mass spectrum in B — X,£*¢~ has also been calculated
in [88], however, the result differs in sign from the one in [27]. This controversy, which goes back to
the corresponding one in B — X+ decay (see section 2.4.1 for a discussion) has been settled in favor
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of [27]. It is known that inclusive decay spectra are not entirely calculable with HQET [19-21], [16],
especially, the expansion in powers of 1/m; diverges in the high dilepton mass g2 region in B — X, £+¢~
decay [18]. An alternative approach to take into account B-meson bound state effects is the FM model
[22]. In the FM a prediction for the entire ¢ range for the dilepton mass distribution and FB asymmetry
in B — X,£* £~ decay has been given ref. [18]. The sensitivity of the distributions on the FM parameters
is worked out there. Long-distance effects due to intermediate B — X, + (J/%, ¢/, ...) & X,£¥£~ have
been discussed in refs. [89,28,90] and recently [14]. Hadron spectra and hadronic spectral moments are
presented in refs. [25,26,14] in both the HQE approach and the FM.

This chapter is divided into two parts. The first one (this section up to and including section 3.4) based
on ref. [18], contains an introduction to B — X ,£*£~ decay, basic definitions and the O(c,) and 1/m?
corrected matrix element for b — s€* £~ Is is mainly devoted to the analysis of the dilepton invariant mass
distribution and the FB asymmetry. In doing that, we derive leading power corrections to the decay rates
and q? distributions in the decay B — X,£+£~ using heavy quark expansion (HQE) in (1/m;). Further,
wave function effects of the b-quark bound in the B-hadron are studied by us in the phenomenoldgica]ly
motivated Gaussian Fermi motion model. Using this model for estimating the non-perturbative effects,
we include the dominant long-distance (LD) contributions from the decays B — X, + (J/v,¢/,...) =
Xt ¢, Further, taking into account the next-to-leading order perturbative QCD corrections in b —
stt ¢~ , we present the decay rates and distributions for the inclusive process B — X, £~ in the SM.

The second part, starting from section 3.5 complements the study of B — X ,£* £~ decay and investi-
gates hadron spectra and hadronic spectral moments. It is mainly based on refs. [25,26,14]. We compute
the leading order (in a,) perturbative QCD and power (1/m?) corrections to the hadronic invariant mass
and hadron energy spectra in the decay B — X,£*£~. The computations are carried out using HQET
and a perturbative-QCD improved Fermi motion model which takes into account B-meson bound state
effects. We also present results for the first two hadronic moments (S%) and (E%), n = 1,2, working
out their sensitivity on the HQET and FM model parameters. In the FM, also the LD effects due to in-
termediate charmonium resonances are taken into account. We study uncertainties in the parametrization
of the cc effects. Further, we investigated the effect of the experimental cuts, used recently by the CLEO
collaboration in searching for the decay B — X,£* £~ [30], on the branching ratios, hadron spectra and
hadronic invariant mass moments using the FM model.

3.1.1 Kinematics
We start with the definition of the kinematics of B — X,£1 ¢~ decay at parton level,
b(ps) — 5(ps) (+9(py)) + € (p4) + £ (p-) (€B))

where g denotes a gluon from the O(a,) correction (see Fig. 3.2). We define the momentum transfer to
the lepton pair and the invariant mass of the dilepton system, respectively, as

g =opgtpa, 3.2)
s = ¢ (3.3)
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The dimensionless variables with a hat are related to the dimensionful variables by the scale m;, the
b-quark mass, €.8.,

PP TS . (3.4)
my

etc.. Further, we define a 4-vector v, which denotes the velocity of both the b-quark and the B-meson,
p», = myv and pgp = mpv. We shall also need the variable u and the scaled variable & = ;“E, defined as:
v = —(m-ps)’+(m—p-), (3.5)
@ = 2v-(py —P-), (3.6)

and further the kinematical phase factor

u(8;my) = \/(s — (mp + my)2)(s — (mp — my)?) . 3.7
The scaled variables § and 4 in the decay b — s€* £~ are bounded as follows,
—u(8,m,) < @ < +u(8,m,) ,
w(s,m) = 5- Q+m)BE- (1-m,)],
am? < < (1-m,)?. (3.8)

3.1.2 NLO-corrected amplitude for b — s¢*¢~

Next, the explicit expressions for the matrix element and (partial) branching ratios in the decays b —
s¢+ ¢~ are presented in terms of the Wilson coefficients of the effective Hamiltonian obtained by integrat-
ing out the top quark and the W bosons,

4G
Heps(b—s+€7€7) =Heps(b>s+7) - 7—2514:‘45 [Cs(1)Os + C10010] , (39

where H.s7(b — s+ <) together with the operators O;_ s and their corresponding Wilson coefficients
Ci(u) [7,6] can be seen in section 2.2. The two additional operators involving the dileptons Og and O;o

are defined as:
2

Og = 67r2§°’7“Lb°'Z7“e’
2
e -
O = te—8ar"Lhalyvst . (3.10)

A usual, CKM unitarity has been used in factoring out the product V;;V;;. Note that the chromomagnetic
operator Og does not contribute to the decay B — X,£* £~ in the approximation which we use here. The
Wilson coefficients are given in the literature (see, for example, [9,47]). They depend, in general, on the
renormalization scale u, except for Cyo. At leading logarithmic (LLog) approximation, we use the values
of the C; given in Table 3.1.

With the help of the effective Hamiltonian in eq. (3.9) the matrix element for the decay b — sf* £~

can be factorized into a leptonic and a hadronic part as,
Gra

M stte) = =LV [(G5T - Cwo) (1 L0) (B L)
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Oy T s 4 '8 Cé cett Co Cio c
—0.240 | 4+1.103 | +0.011 | —0.025 | +0.007 | —0.030 | —0.311 | +4.153 | —4.546 | +0.381

Table 3.1: Values of the Wilson coefficients used in the numerical calculations corresponding to the central
values of the parameters given in Table A.1. Here, C’fﬁr = C7 — Cs/3 — Cs, and for Cg we use the NDR
scheme and C®©) = 3C; + Ca + 3C3 + C4 + 3Cs + Ce.

+(C8% + Cio) (574 L b) (24" RE)
v -
—oce (§ i, Z—z(m,L + myR) b) (" l)] . Y
where we abbreviate (,‘9erf = cgﬁ’( §). We have kept the s-quark mass term in the matrix element explicitly
and this will be kept consistently in the calculation of power corrections and phase space. The above matrix

element can be written in a compact form,

M(b—stte—) = % VeV (I‘L“ LY 4+ TR, LR") : (3.12)

with
LYUR, = 14, L(R)2, (3.13)
P&elBoimynp [R'y,, (Cgﬂ' o Guork-3CET g) +2m, CET oy, gL] b. (3.14)

where we have already used massless leptons in substituting —2i0,,,¢* = [7,, ] by 27,4 in the term
proportional to CET.

The effective Wilson coefficient cgff (8) receives contributions from various pieces. The resonant c¢
states also contribute to Cgﬁ(é) and will be discussed in section 3.4; hence the contribution given below
is just the perturbative part:

CEM(5) = Con(3) + Y (5) . (3.15)

The function Y (§) represents the one-loop matrix element of the four-Fermi operators [47,9], see Fig. 3.1.

e s

Figure 3.1: The Feynman diagram responsible for the four-Fermi-operator contribution (depicted by the
blob) to the operator Og.
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It is written as:

Y(3) = g(hm,8)(B3C1+C2+3C3+Cs+3Cs+Cs)
1 1 Ny
-59(1,5) (ACs+4C,+ 30+ Cs) = 5g(o, 8) (Cs+3Cy)

2 4
+§(3C'3+C4+3C'5+C'6)‘55(301+02—C'3—3C4) ’ (3.16)
0 (NDR),
= ( ) (3.17)
-1 HV),

where (NDR) and (HV) correspond to the naive dimensional regularization and the 't Hooft-Veltman
schemes, respectively. We recall that while Cy is a renormalization scheme-dependent quantity, this de-
pendence cancels out with the corresponding one in the function Y (3) (the value of £, see above). The
function g(z, 8) includes the quark-antiquark pair contribution [9,47]:

9(z,3) = ——ln(——)-—1 z+27+ y——(2+y)\/ll—
x [©(1-y)(n it\/_'l—ur)+9( 1)2arctan\/§1__l], (3.18)
B = 2™ tuie
g(0,3) = = gln(“ 9lns-i-gur, (3.19)

where y = 422/3. As can be seen from the above equations, internal b-quarks ~ g(1,3), c-quarks
~ g(7., 8) and light quarks ¢, (with my, = 0 for ¢ = u, d, s) ~ ¢(0, 5) contribute to the function Y (3);
only the charm loop involves the dominant “current-current” operators O; and O,.

The O(a;) correction [91] from the one-gluon exchange in the matrix element of Og in the invariant
dilepton mass $ is represented by

n(8)=1+2F ( ) w($) , (3.20)
where
w(E) = _g,rz _ %Liz(é) % glnéln(l _§) - %‘2%1,1(1 3
25(14+3)(1-28), . 5+95-68
30-920+2) " T ea-9+29) G21)

Note that the function w(3$) is given with m, = 0. The one-gluon correction to Og with respect to the final
partonic energy and the invariant mass will be presented below in section 3.6.

In the order we are working only Oy is subject to a, corrections since the renormalization group
improved perturbation series for Cyg is O(1/a,) + O(1) + O(as) + . . ., due to the large logarithm in Cy
represented by O(1/e,) [47]. The Feynman diagrams, which contribute to the matrix element of Og in
O(a,), corresponding to the virtual one-gluon and bremsstrahlung corrections, are shown in Fig. 3.2.

With the help of the above expressions, the differential decay width becomes onusing p+ = (E4, p+),

1 Gp’d? s #py dp. L jLwv R R
= — |V L L : 322
i o VeVl Grar mmymEs (W w b +Wh I7) 62
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O

It =

Figure 3.2: Feynman diagrams contributing to the explicit order a, corrections of the operator Og. Curly

lines denote a gluon. Wave function corrections are not shown.

where W,,, and L, are the hadronic and leptonic tensors, respectively. The hadronic tensor W,f’,,/ R is
related to the discontinuity in the forward scattering amplitude, denoted by T,f‘.,/ R, through the relation
Wy, = 2ImT,,. Transforming the integration variables to 3, 4 and v - ¢, one can express the Dalitz
distribution in b — s¢* ¢~ (neglecting the lepton masses) as:

dar N 1 GF'z 02 7TI.1,4 - 2 L Luv R RMV
dadsd(v-4) 2mp 272 25672 gl 2 (T gt T e ) ' e
with
TUR, = j / d*ye=iv (B|T {r\L/"(y), TR (0)}| BY (3.24)
LHR = 3[R (s) v oM R(p-)| [8M/R(p-) v vH R (p4)]
spin
= 2 [p+“ p-" +p-"ps — g*(py -p-) F i P p,, P-p] ) (3:25)

where FI,II/ R? = I‘zf,’/ %= I‘,IZ/ " , given in eq. (3.14). The Dalitz distribution eq. (3.23) contains the ex-
plicit O (o, )-improvement, and the distributions in which we are principally interested in can be obtained
by straight-forward integrations.

Using Lorentz decomposition, the tensor 7, can be expanded in terms of three structure functions ! ,

Ty = =T1 guy + T2 v, v, + T3 €40 v q‘” 3 (3.26)

where the structure functions which do not contribute to the amplitude in the limit of massless leptons
have been neglected. After contracting the hadronic and leptonic tensors, one finds

PR LHBY = ? {2 AL 8 [(v @ %1‘42 - 5| MR .§ﬁT3L/R} : (327

We remark here that the T3 term will contribute to the FB asymmetry but not to the branching ratio or the
dilepton invariant mass spectrum in the decay B — X, ¢+¢~ .

'We use the convention Tr(7* 7" 7% 1P vs) = —4ie***?, with ¢*'2% = —1.
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Normalization

It has become customary to express the branching ratio for B — X,£+£~ in terms of the well-measured
semileptonic branching ratio B,; for the decays B — (X, X,)fv;, according to

dT(B = X,t+e-)

dB(B = X£t") = ’lF(B—)(Xc,Xu)fll()

(3.28)

This fixes the normalization constant By, which will be used throughout the following sections to be,

302 ViVl 1

BO = le 167!'2 |‘/CbI2 f(’fhc)}{(ﬁ’lc) '3

3.29)

Here f(m.) is the phase space factor for I'(B — X fv;) and the function x(7.) accounts for both
the O(a,) QCD correction to the semileptonic decay width [92] and the leading order (1/m;)? power
correction [15]. They read as:

f(me) =1 —8m?2 4 8m8 — m® — 24 m? Inm, (3.30)
and ;
K(he) = 14+ 222 “’(m") g(me) + hé:g) , (331)
where
Ao(m) (3.32)

_— 1A
hli) = M+ )[—9+24m — T2} + 128 — 16mf — T2milnmc| ,  (3.33)

and the analytic form of Ag(72.) can be seen in ref. [93]. Note that the frequently used approximation
9(z) = —%((7* - &)(1 - )2+ 2) holds within 1.4% accuracy in the range 0.2 < z < 0.4. The equation
g(2) = —1.671 + 2.04(z — 0.3) — 2.15(z — 0.3)? is accurate for 0.2 < z < 0.4 to better than one per
mille accuracy.

3.1.3 Asymmetries in B — X,{*{~ Decay

Besides the differential branching ratio, B — X,£*¢~ decay offers other distributions (with different
combinations of Wilson coefficients) to be measured. An interesting quantity is the Forward-Backward
(FB) asymmetry defined in [13,12]

dz, (3.349)

d.A(s) 1 428 da /0 d’B
ds o dsdz 1dsdz
where z = cos @ is the angle of £+ measured w.r.t. the b-quark direction in the dilepton c.m. system.

From the experimental point of view, a more useful quantity is the normalized FB asymmetry, obtained
by normalizing d.A/d$ with the dilepton mass distribution, dB/ds,

dA _dA dB

T 1 b (3.35)
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The asymmetry A, which we recall is defined in the dilepton c.m.s. frame, is identical to the energy
asymmetry Ag introduced in [81], as shown in ref. [18]. It is defined in the B rest frame as

_ (N(E- > Ey) - N(Ey > E-))

= (N(E->E;)+N(Ey >E_)) (3.36)

Here N(E_ > E,) denotes the number of lepton pairs whose negatively charged member is more ener-
getic than its positive partner, where E denote the £* charged lepton energy in the B rest frame. The FB
asymmetry is odd under charge conjugation in contrary to the differential branching ratio, which is charge
conjugation even. Both observables contain non overlapping information which together can be used to
test the SM.
Another quantity is the left-right-asymmetry [84,85,86], defined as
LR L R

d'gg = dz - ddi f; : (3.37)
with dBL /ds (dB®/d5) denoting the invariant dilepton mass distribution for B — X,£*£~ decay into
purely left-handed (right-handed) leptons. We can obtain dBX/%/d3 from the dilepton invariant mass
distribution dB/ds by the replacements

Ceﬁ C C Ceff 1
C§it 5 2L T2 ¢ Z0FD el stz (338)

2 2
Measurement of these asymmetries provides additional information on the underlying short-distance
physics.

3.14 Leading power (1/m;) corrections in the decay B — X,(t{~

We start with a discussion of the analyticity properties of the forward scattering amplitude T),,. They
are determined by cuts, depending on the external states. We consider real particle production in the
inclusive decay B — X,£*¢~ , thus we have pg = px + g, where pp, px denotes the 4-momentum of
the B-meson, final hadronic state X ,, respectively. The hadronic invariant mass is in the range

m} < pk < m}, (3.39)

and the physical cut runs along the real axis in the complex v - ¢ plane in the limits

2 g
‘/q2$v.qsw_ (3.40)
2mp

The phase space integration, which follows the above cut, is over intermediate physical states and hence,
depends on long-distance QCD. Moreover, at the upper bound of the cut, where p% ~ m?2, resonances are
dominating. In order to perform a reliable expansion in perturbative QCD, the contour of the integration
has to be deformed in such a way that a) it encloses the cut and b) stays away from it by a distance large
compared to Agcp (see Fig. 1 in [16] for the contour of integration). The expansion is valid except in
the corner of the Dalitz plot, where the hadronic invariant mass of the final state is small (the s-quark
in Fig. 3.3 is almost on-shell.) However, results of perturbative QCD are expected to be recovered after
suitable smearing.
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Operator product expansion

The next task is to expand the forward scattering amplitude 7, in eq. (3.26) in inverse powers of m;.
We employ HQE techniques which have been already sketched in section 2.4.1. The leading term in this
expansion, i.e., O(m) reproduces the parton model result. Let us describe how to get next to leading
power corrections. First we write the momentum of the heavy b-quark as py,, = mpv, + k,,, fix the four-
velocity of the external b-quark field to be v,, and treat the components of the “residual momentum” k, of
order Agcp. We obtain the condition p? = m? + 2myv.k + k2, which yields pZ = m? + O(k/ms). The
heavy quark remains almost on-shell under soft gluon exchange with the light degrees of freedom, there
is no anti-quark generated and the total b-number is conserved.
It is customary to define a field ~ with fixed velocity v through

h(z) = e™"*P,b(z) , (341)
with inversion D
T YR e e
b(z)=e [1 + z2mb + ] h(z) , (3.42)

and the projection operators Py = (1 % ¢)/2. For the Dirac field b(z) the following identities hold
Pb(z) = b(z) and P_b(z) = 0, which are corrected by terms of O(1/m;). Inserting this into the usual
QCD Lagrangian £ = b(i]) — m,)b we get the one in the HQET:

»CHQET = hiv.Dh + 6L, (3.43)
with 6L containing the corrections in 1/my:

= L A(D)%h - L Zy(Wh(iv.DYh + L Zy ()b o )
oL = 2mbh(zD) h 2mel(u)h(w°D) h+ 2me2(u)h 5 Guh+0(1/md). (3.44)

Here, G, = [iDy,iD,] denotes the gluon field strength tensor. 2 For definition of the renormalization
constants Z; 2(u) we refer to [17] and references therein. For the sake of completeness we give the
Feynman rules in the HQET in appendix A.3.1. The matrix elements of the above higher dimensional
operators are given as

2mB’\17

(B|h (i D)*h| B)

<B lﬁ %‘aﬂ" Guih

B> o i (3.45)

where B denotes the pseudoscalar B-meson, see section 2.4.1 for a discussion of the values of the pa-
rameters A; and A2. The second term on the r.h.s. of eq. (3.44) vanishes by the lowest order equation of
motion iv.Dh = 0. The on-shell condition of the heavy quark is m? = m? +2myv.k+ k2. Neglecting the
last term, we have the simple condition v.k = 0. This is equivalent to the lowest order EOM of a heavy
quark, thus we have the correspondence k <> 1 D.

*Note that here and only in this section we use this definition of the gluon field strength tensor G = G*%%, following the
conventions of ref. [17]. It is not consistent with the usual one appearing in QCD text books, eq. (A.10), denoted here by G972,
The two are related by GFLS = jgG9CD.
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Figure 3.3: The diagrams contributing to the operator product expansion.

Suppressing the Lorentz indices for the time being, this operator product expansion (OPE) can be
formally represented as:

[dtye i (BIT ), 00U B = - [(BIO B) + 51— (BIOW| B)
4z (BIOAIB) + -] - (3.46)

The expressions for the operators Op, O; and O, have been first derived in ref. [17], which we have
checked and confirm. They are given as:

Ov = ZBLi(f— d+m)Tsb, (3.47)
O, = %Brnarzmah - %(v — )Ry (¥ — § + m,)T2iDh | (3.48)
and
0, = 0 +09 + 00, (3.49)
where

360 2, S ae bt & doy , .
07 = Z(v-9)*(v— §°AT1(y - §+ M.)T2iDaiDgh — —AL1(¥ - §+ 1,2 (iD)%h
4 o
o gk §)PhT14°T2(iDaiDp + iDpiDy)h (3.50)
oo E 1 _—
o = —5MshT1i0apT2G Ph + ;iu“’\“ﬂ (v = §)»hT17,75T2Gagh , (3.51)

2- e do stk Pt
of) ~h(y’T17°T2 + T17°T27)iDgiDah — — (v = §)*hy°T1(¥ = § + 1hs)T2iDpiDah

4 o 2 ag
- 2—2(v - §)°hT (¥ -+ m,)l"g'ypzDazD,gh . (3.52)

Here z = 1+ 3§ — 2 (v - §) — 7? + i e. The operator O responsible for 1/m} corrections can be seen in
ref. [65].

The above O;, i = 0, 1, 2 are obtained by expanding the Feynman diagrams shown in Fig. 3.3, which
contributes to the time-ordered product on the Lh.s. of eq. (3.46). The diagram on the left is responsible
for the operators Op, Oy, 09) and (’)&2). To be definite, we write the intermediate s-quark propagator
using 4-momentum conservation p; = p, — ¢ = mpv — ¢+ k as

;_Pstms 1 ¥ — g+ K/mp +

P—mitic 'myz—24 K/mp+ 20 k/ms+K2/m2 " (3.53)
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and insert this into the diagrams Fig. 3.3. Expanding as well the propagator as the Dirac field b, which
sandwiches the amplitudes, as the normalization of the states in powers of k/m;, we obtain the desired
OPE. Note that the leading operator Oy is defined in terms of the “full” four-component field b. The other
two subleading operators (J; and O, are, however, written in terms of the two-component effective fields
h. In rewriting the operator O, from b — h fields by means of eq. (3.42), we obtain the operator 0.9).
Evaluation of the one-gluon diagram in Fig. 3.3 results in the operator ogg ),

The results of the power corrections to the structure functions T3, ¢ = 1, 2,3 can be decomposed
into the sum of various terms, denoted by T,-(j ), which can be traced back to well defined pieces in the
evaluation of the time-ordered product given above [18]:

Ti(vg,8)= 3. T9(v.4,3). (3.54)
4=01,2,58.9.6
The expressions for T,-(j ) (v.4, 8) calculated up to O(mp/m}) are given in appendix B.1. They contain the
parton model expressions T}(O)(v.é, 3) and the power corrections in the HQE approach which depend on
the two HQE-specific parameters A; and A defined in egs. (3.45). Note that the s-quark mass terms are
explicitly kept in T,-(j ) (v.g, 8). The origin of the various terms in the expansion given in eq. (3.54) can be
specified, as follows:

T (v.4,3) = (B|Oo|B) for A\ =X =0,

(B|Oo|B) - TV (v.4,3) ,

T (v.4,5) = (BIOY|B) for j=1,2,9,

TP (v.4, 3) (B|04|B) . (3.55)
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In the leading order in (1/m;) the matrix element of O; vanishes, but in the sub-leading order it receives
a non-trivial contribution which can be calculated by using the equation of motion [17]. The contributions
T,-(’) arise from the matrix element of the scalar operator bb, i.e use of eq. (3.58) given below. We recall
that the scalar current can be written in terms of the vector current plus higher dimensional operators as
(15]

AR TN ﬁl—z (D)2 = (viD)? = (i/2)0™ G| B + ... (3.56)
With our normalization:
(Blby,b|B) = 2(pB),4 , | (3.57)
it follows then
(B|bb|B) = 2mp(1 + -2%2—(,\l +3X2)) + O(mp/mj) . (3.58)

Other possible Lorentz structures like 7s, Y57y, 747 sandwiched between band b give zero after taking
the B-meson matrix element.

From the expressions for T,.(j ) givenin appendix B.1, we see that T,-(O) (1= 1,2, 3)are of order mg/my
and the rest T,-(l), T,.(‘s), T,.(2),T,-(’) and T,.(g) are all of order mp\;/my3 or mpAa/my>. Since the ratio
mp/my = 1 + O(1/my), we note that the Dalitz distribution in B — X ,£*£~ has linear corrections in
1/my.
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3.2 Power Corrections to the Dilepton Invariant Mass Distribution and FB

Asymmetry

The integration in the complex plane v - § can be done using the relation

o (—’—1)"—_15("-1)(1 —2v-G+5—m?) (3.59)
zn  (n—1)! i .

Further, the integrand should be multiplied by the function 8(4v - ¢ — 452 — 4?) responsible for the
correct integration boundary. > The resulting double differential branching ratio in B — X,£* £~ can be
expressed as,

dB s RS T 8
P T By ({[(l—mf) —32—112—5(2/\1(-1+2m3—m3—2s+s2)
+335(~14 6m2 — 5! — 85 +58))] (ICSHP* + [Crol?)

+ [4(1 = m? — i+ — 825 — 87 — 28?4 42 + i)

e 21(=1 + m? + i — ms + 25+ 10Mm25 + 5 + m2s?
3 s S s

+3 35(3 + 512 — 3 — 5mS + 45+ 2825 + 5352 + 5?s?) ) |
<8 [(é(l +m?) - (1-m?)?) + g;\l(—l +2m2 — i + 5+ m23)

+(5m2 — 5rd + 25 + 5m2s)| Re(CET) CET

+2 [2+ A1 +5 2] 4.5 Re(C§T) Cro

+4 [2 (14 m2) + A (1 + 12) + Ao(3 + 5?)] & Re(Cro) C§T} 6 [(3, 70,)* - 4]
—Ey(5,%) 8 [a(3,m,)? — 42| - En(5,0) &' [a(3,m,)? - 4%]) , (3.60)

where A, = A\;/m? and A; = A\p/m2. The auxiliary functions E;(3,%) (i = 1, 2), introduced here for
ease of writing, are given explicitly in appendix B.2. The boundary of the Dalitz distribution is as usual
determined by the argument of the #-function and in the (%, $)-plane it has been specified in eq. (3.8).
The analytic form of the result (3.60) is very similar to the corresponding double differential distributions
derived by Manohar and Wise in [16] for the semileptonic decays B — (X, X,,)€v,. Further comparisons
with this work in the V' — A limit for the single differential and integrated rates are given a little later at
the end of this section.

Finally, after integrating over the variable 4, we derive the differential branching ratio in the scaled
dilepton invariant mass for B — X,¢¥¢~,

dB 2 o . . G o L
& = 2B { [ga(g, m,)((1 — m2)2 + 5(1 + m?) — 25%) + §(1 — 4?4+ 6ms —amb + md -5
A
+m2s 4+ mis — mSs — 38% — 2m28% — 3mis? + 55° + 5?28 — 254)5@1_771)

+ (1 — 8m? + 18md — 16m8 + 5m8 — 5 — 3m25 + 9Mis — 5mSs — 1552 — 18252

3This corresponds to g2,,, = 4E4 E_, with lepton energies Ex = v - q/2 + u/(4my).
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s (o5 16

+ [gﬁ(é, ) (2(1 4+ m2) (1 — m2)? — (14 14m2 + m?)s — (14 m?)5?)

~157mi5? + 255 + 25m25° — 105*)

+§-(2 — 6m2 + 4m? + 4mS — 68 4 2m 10 — 53 — 12/m25 + 34Mmis — 1285 — 5m3s + 387

+297m25% + 29m25% + 3mSs? 4 8% — 10Mm25% 4+ mis® — 5 — m2s%)- (, . ) (-6 + 2m?
+20mm4 — 128 — 14m8 + 1010 4 35 4+ 16Mm25 + 62m}5 — 56MSs — 25Mm3s + 357
e U Ey Y giglinel PO B
+73m28% + 101 5? + 15m85? + 55° — 26m28° + 5mls® — 53¢ — smlst) —= 2
u(8, ;) 8

+ [8&(&, ms)((1 = m2)? = (1 + m2)3) + 4(1 — 22 + m? — 5 — m25) a(3,m,) M
+4 (=5 + 3078 — 40/ + 158 — § + 2125 + 25mi5 — 45Mm% + 1357 + 22/m25?

+45mi5? — 78° — 15Mm?5°) —(3-—)] Re(CET) Ceff} (3.61)
, S
The leading power corrected expression for the FB-asymmetry .A(3) is:
d—géﬂ = 2B { [2(u(s m,))?%5 + 3 3 6m? + 3ml + 25 — 6m25 + 35%) A,

+ (=9 - 6m? + 15 — 145 — 3025 + 155%) Ay Re(C§M) C1o
+ [4(a(§, )% (14 m?) + = (1 + m?2) (3 — 62 + 3mi 4 25 — 625 + 35%) ), (3.62)
+ 2(—7-3m2-5mt+ 15m§ — 105 — 24125 — 3073 + 957 + 15m25%) Ay| Re(C1o) CET }.

The results derived for the O(c,)-improved and power-corrected Dalitz distribution, dilepton invariant
mass, and FB-asymmetry in B — X,£*£~ are the principal new results in this section. It is useful to write
the corresponding expressions in the limit m, = 0. For the dilepton invariant mass distribution, we get

% = 2 Bo{[%(l —8)%(1+28) (2+ M)+ (1- 158 + 1053) ] (1§12 + |C1ol?)
o eff|2
+ [3(1 ~8)2(2+8) 2+ A1) +4 (-6 - 35+ 58°) ,\,] .2 i
+[4(1- 822+ A1) +4 (-5 - 65+ 787) &) Re(CST) CET} . (3.63)

The (unnormalized) FB asymmetry reads as,

% = -2Bo { [2(1 - 3%+ 2(3 + 25+ 35%) A1 + 5 (-9 — 145 + 155?) J\g] RefCS
+ [4(1 _8r 4 g(s +254+ 38%) A, + 2(=7 — 105 + 98 32] Re(Cio) c?ff} . (6

Our result [18] for the dilepton invariant mass distribution given in eq. (3.63) has been confirmed re-
cently by [27] in the m, = 0 limit and is in disagreement with an earlier publication [17]. (The differences
between the previous result eq. (3.21) of the paper by [17] have been discussed at length in [18].)

Concerning the invariant dilepton mass spectrum derived by us and given in eq. (3.61), we would
like to make the following observations: First, the leading order power corrections in the dilepton mass
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distribution are found to be small over a good part of the dilepton mass 5. However, we find that the
power corrections become increasingly large and negative as one approaches § — 3™%%, where §™%* =
(1 — 7n,)2. Since the parton model spectrum falls steeply near the end-point § — §™7, this leads to the
uncomfortable result that the power corrected dilepton mass distribution becomes negative for the high
dilepton masses. We show in Fig. 3.4 this distribution in the parton model and the HQE approach, using
the central values of the parameters in Table A.1. Further, the power-corrected dilepton invariant mass
distribution retains the characteristic 1/ behaviour following from the one-photon exchange in the parton
model. We note that the correction proportional to the kinetic energy term A1 renormalizes the parton
model invariant mass distribution multiplicatively by approximately the factor (1 + A;/(2m?)), which is
exact in the limit m, = 0 and no new functional dependence in $ is introduced (moreover, this factor
is hardly different from 1). Hence, the negative probability near the end-point is largely driven by the
magnetic moment term Az.

The normalized FB asymmetry, d.A(3)/d3, in the HQE-approach and the parton model are shown in
Fig. 3.5. We find that this asymmetry is stable against leading order power corrections up to § < 0.6,
but the corrections become increasingly large due to the unphysical behaviour of the HQE-based dilepton
mass distribution as § approaches §™%* (see Fig. 3.4). Based on these investigations, we must conclude
that the HQE-based approach has a restrictive kinematical domain for its validity. In particular, it breaks
down for the high dilepton invariant mass region in B — X,£*¢~ . This behaviour of the dilepton

0.0000125 ¢
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Figure 3.4: Dilepton invariant mass spectrum dB(B — X,e*e™)/d$ in the parton model (dashed curve)
and with leading power corrections calculated in the HQE approach (solid curve). The parameters used

are given in Table A.1.

mass spectrum in B — X,£+£~ is not unexpected, as similar behaviours have been derived near the
end-point of the lepton‘energy spectra in the decays B — X £y, in the HQE approach [16]. To stress
these similarities, we show the power correction in the dilepton mass distribution as calculated in the HQE
approach compared to the parton model through the ratio defined as:

dB/d3(HQE) — dB/ds(Parton Model)

HQE, » -
ot dB] d3(Parton Model)

(3.65)

The correction factor RHQE(S') for B = X,€*¢~ shown in Fig. 3.6 is qualitatively similar to the
corresponding factor in the lepton energy spectrum in the decay B — X £, given in Fig. 6 of [16]. We
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Figure 3.5: FB asymmetry (normalized) dA(B — X,e*e™)/d$ in the parton model (dashed curve) and
with power corrections calculated in the HQE approach (solid curve). The parameters used are given in
Table A.1.

note that we have been able to derive the power corrected rate for the semileptonic decays B — X fv,
obtained by Manohar and Wise in [16]. 4 In doing this, we shall reduce the matrix element for the decay
B — X,£* £~ to the one encountered in B — X £y, obtained by the replacements (V — A limit):

1
st = —Cu=3, (3.66)
celt — o, (3.67)

This amounts to keeping only the charged current V — A contributionin B — X,£*£~ decays.

Finally, since the HQE-improved expression for the decay rate cannot be given analytically due to the
Wilson coefficient cgff(g) which is a complicated function of 3, we give below the results in numerical
form:

rHQE - rb(1 4 e + e2dy) (3.69)

where I'® is the parton model decay width for b — s¢+£~ and the coefficients depend on the input
parameters. For the central values of the parameters given in Table A.1, they have the values ¢; = 0.501
and c; = —7.425. This leads to a reduction in the decay width by —4.1%, using the values of A; and A,
given in Table A.1. Moreover, this reduction is mostly contributed by the A;-dependent term. We recall
that the coefficient of the A, term c; is (almost) the same as in the semileptonic width I'(B = Xulv)
obtained by Bigi et al [15]

B (14 30, 95 670
where I'®; is the parton model decay width. This points towards the universality of this coefficient. The
coefficient of the A, term ¢, for b — s€+ £~ decay is larger than the corresponding one in the semileptonic
decay width. Hence, the power corrections in I'(B — X,fv;) and I'(B — X,£*¢~ ) are rather similar
but not identical.

“The HQE matrix elements in our convention and the MW ones are related by A\; = —2m2K3, 3X2 = —2m32Gp and
M+ 3)2 = —2my?Ey = —2ms? (K + Gs), likewise we have for the normalization of states | B) = +/2mp|B)™" .
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Figure 3.6: The correction factor R 9E (3) (in percentage) as defined in eq. (3.65) for the dilepton mass
spectrum dB(B — X,£*¢~)/d3. The parameters used are given in Table A.1.

3.3 Dilepton Invariant Mass and the FB Asymmetry in the Fermi Motion
Model

In this section, we present our estimates of the non-perturbative effects on the decay distributions in
B — X, £*¢~ . These effects are connected with the bound state nature of the B-hadron and the physical
threshold in the B — X,£* £~ in the final state. In order to implement these effects on the decay distri-
butionsin B — X,£T ¢~ , we resort to the Gaussian Fermi motion (FM) model [22] introduced in section
242.

In the Fermi motion model, the problem of negative probabilities encountered in the HQE approach
for the high dilepton masses near s — S, iS not present, which motivates us to use this model as a
reasonable approximation of the non-perturbative effects in the entire dilepton mass range. The success
of this model in describing the inclusive lepton energy spectra in B — (X, Xy)fv and B — X,y
strengthens this hope.

In the decay B — X,£*¢~ , the distribution dB/d3 depends on the Lorentz-invariant variable §
only. So, the Lorentz boost involved in the Fermi motion model (Doppler shift) leaves the dilepton mass
distribution invariant. However, since the b-quark mass mj(p) is now a momentum-dependent quantity,
this distribution is affected due to the difference (m;(p) — ms) (mass defect), which rescales the variable
$ and hence smears the dilepton distribution calculated in the parton model. For different choices of the
model parameters (pg, m,) corresponding to the same effective b-quark mass, m& which is defined in
€q. (2.47) the dilepton mass distributions should be very similar [23], which indeed is the case as we have
checked numerically but do not show the resulting distributions here.

The situation with the FB asymmetry is, however, quite different. Being an angle-dependent quantity,
it is not Lorentz-invariant and is sensitive to both the Doppler shift and the mass defect. We give in
appendix B.3, the Dalitz distribution ¢’T'(B — X,£*£~)/dsdu in the Fermi motion model.

As we calculate the branching ratio for the inclusive decay B — X,£*£~ in terms of the semilep-
tonic decay branching ratio B(B — X{v;), we have to correct the normalization due to the variable
b-quark mass in both the decay rates. We recall that the decay widths for B — X,£¥£~ and B — X{v,

P
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Figure 3.7: Differential branching ratio dB/ds for B — X £*¢~ (a) and normalized differential FB
asymmetry d.A(s)/ds (b) in the SM including the next-to-leading order QCD corrections. The dashed
curve corresponds to the parton model with the parameters given in Table A.1 and the solid curve results
from the Fermi motion model with the model parameters (pr, m,) = (252, 300) MeV, yielding an effective
b-quark mass m{’/ = 4.85 GeV.

in this model are proportional to (mfff)5 [24,6,53). Hence the decay widths for both the decays in-
dividually are rather sensitive to mfﬁ. This dependence largely (but not exactly) cancels out in the
branching ratio B(B — X,£+£~ ). Thus, varying m¢ in the range m& = 4.8 + 0.1 GeV results in
AT(B — X,£*¢~)/T = +10.8%. However, the change in the branching ratio itself is rather modest,
namely AB(B — X,£*£~ )/B = +2.3%. This is rather similar to what we have obtained in the HQE
approach.

The theoretical uncertainties in the branching ratios for B — X,£+£~ from the perturbative part, such
as the ones from the indeterminacy in the top quark mass, the QCD scale Agcp and the renormalization
scale u, have been investigated in the literature [9,47]. We have recalculated them for the indicated ranges
of the parameters in Table A.1. The resulting (SD) branching ratios and their present uncertainties are
found to be:

B(B = X,ete™) = (8.4+£1.9)x107%,
B(B = X,utp™) (5.7£0.9) x 1078,
B(B— X,rtr7) = (2.6+0.4)x1077, (3.71)

where in calculating the branching ratio B(B — X,7*7~), we have included the 7-lepton mass terms in
the matrix element [28]). These uncertainties, typically +20%, are much larger than the wave function-
dependent uncertainties, and so the theoretical accuracy of the SD-part in the SM in these decays is not
compromised by the non-perturbative effects.

We show the resulting dilepton invariant mass distribution in Fig. 3.7 (a) and the FB-asymmetry
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Figure 3.8: Differential branching ratio dB/ds for B — X £Y¢~ (a) and normalized differential FB
asymmetry d.A(s)/ds (b) using the Fermi motion model for three different pairs of the model parameters
(pr, mq) = (450,0) MeV (solid curve), (310, 300) MeV (long dashed curve), and (pr, m,) = (310,0)
MeV (short dashed curve) yielding the effective b-quark masses mgf I = 4.76 GeV, 4.80 GeV, and 4.92
GeV, respectively.

in Fig. 3.7 (b), where for the sake of illustration we have used the values (pr, my) = (252,300) in
(MeV,MeV), which correspond to an allowed set of parameters obtained from the analysis of the measured
photon energy spectrum in B — X7 , using the same model [94]. We see that the dilepton mass distribu-
tion is stable against Fermi motion effects over most part of this spectrum, as expected. We emphazise here
that the end-point spectrum extends to the physical kinematic limitin B — X ,£*£~ s™%% = (mp—mx)?
withmx = maz(mg, m,+m,) (m, is the spectator mass), which has to be imposed on the FM program.
It corresponds to the invariant hadronic mass of the lowest physical state with total strangeness number
s =1, m(X,) = mg, as opposed to the parton model, in which s™%% = (mj — m,)2. The two thresholds
can be made to coincide for only unrealistically values of m; and m,. The FB-asymmetry shows a more
marked dependence on the model parameters, which becomes significant in the high dilepton mass region.

As the parameters of the Fermi motion model are not presently very well-determined from the fits
of the existing data [94,95], one has to vary these parameters and estimate the resulting dispersion on
the distributions in B — X,£Y¢~ . We show in Figs. 3.8 the dilepton mass distribution (a) and the
FB asymmetry (b), respectively, indicating also the ranges of the parameters (pr,m,). The resulting
theoretical uncertainty in the distributions is found to be modest.

3.4 LD Contributionsin B — X //t¢~ (D)

Next, we implement the effects of LD contributions in the processes B — X,£7£~ . The issues involved
here have been discussed in [96,28,90]. The LD contributions due to the. vector mesons J/% and 3’
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Figure 3.9: Differential branching ratio dB/ds for B — X,£*£~ (a) and normalized differential FB
asymmetry dA(s)/ds (b) calculated in the SM using the next-to-leading order QCD corrections and Fermi
motion effect (solid curve), and including the LD-contributions (dashed curve). The Fermi motion model

parameters (pr, m,) in MeV are displayed in the figure.

and higher resonances, as well as the (¢¢) continuum contribution, which we have already included in
the coefficient CE1I, appear in the (517v,br)(éy*e) interaction term only, i.e., in the coefficient of the
operator Og. This implies that such LD-contributions should change Cj effectively, but keep C$ﬁ and Co
unchanged. In principle, one has also a LD contribution in the effective coefficient C?ﬁ; this, however, has
been discussed extensively in the context of the B — X,y decay and estimated to be small [97,77,76,98].
The LD-contribution is negligible in C,o. Hence, the three-coefficient fit of the dataon B — X,£t£~ and
B — X,v, proposed in ref. [12] on the basis of the SD-contributions, can be carried out also including
the LD-effects.
In accordance with this, to incorporate the LD-effects in B — X,£* £~ , the function Y (3) introduced
earlier is replaced by,
Y(8) =Y (3) =Y (3) + Yres(9) (3.72)

where Y., (8) accounts for the charmonium resonance contributionvia B — X,(J/%,¥,...) = X, ¢¥¢".
Its origin lies in the diagram displayed in Fig. 3.1, where the internal charm loop hadronizes before de-
caying into a photon. We take the representation [13],

E rT(V; = €Y7 ) my,
my,2 — §mp? — imy,Ty;’

Yo b}z f;n c® (3.73)

Vi=y(1s),...,(63)
where C(©) = 3C, + C3 + 3C3 + Cs + 3Cs + Cs. We adopt k = 2.3 for the numerical calculations [96].
This is a fair representation of present data in the factorization approach [99]; also the phase of x, which is
fixed in eq. (3.73), is now supported by data which finds it close to its perturbative value [100]. Of course,
the data determines only the combination x C®) = (.88. The relevant parameters of the charmonium
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Figure 3.10: Dilepton invariant mass distribution in B — X,£*€~ (a) and normalized differential FB
asymmetry dA(s)/ds (b) in the SM including next-to-leading order QCD correction and LD effects. The
solid curve corresponds to the parton model and the short-dashed and long-dashed curves correspond to

including the Fermi motion effects. The values of the FM parameters in MeV are indicated in the figure.

resonances (1S, ...,6S5) are given in the Particle Data Group [39], and we have averaged the leptonic
widths for the decay modes V — £+¢~ for £ = e and £ = pu. Note that in extrapolating the dilepton
masses away from the resonance region, no extra g2-dependence is included in the 7*(g?)-V; junction.
(The ¢-dependence written explicitly in eq. (3.73) is due to the Breit-Wigner shape of the resonances.)
This is an assumption and may lead to an underestimate of the LD-effects in the low-s region. However,
as the present phenomenology is not equivocal on this issue, any other choice at this stage would have
been on a similar footing.

The resulting dilepton mass spectrum and the FB asymmetry are shown in Fig. 3.9 (a) and Fig. 39 b),
respectively. We recall that the two curves labeled SD and SD+LD include explicit O (a,)-improirement,
calculated in the parton model [9,47] and non-perturbative effects related with the bound state nature of the
B-hadrons and the physical threshold in the final state in B — X,£*£~ , using the Fermi motion model.
In addition, the SD+LD case also includes the LD-effects due to the vector resonances, contributing
to Cgff as discussed earlier. The parametric dependence due to the FM is shown in Figs. 3.10 for the
dilepton mass spectrum (a) and the FB asymmetry (b), respectively, and compared with the case of the
parton model in which case no wave function effects are included. These figures give a fair estimate of the
kind of uncertainties present in these distributions from non-perturbative effects. In particular, we draw
attention to the marked dependence of the FB asymmetry to both the LD-(resonances) and wave function
effects, which is particularly noticeable in the region s > mf;,,. The dilepton invariant mass spectrum, on
the other hand, is very stable except at the very end of the spectrum, which is clearly different in all three
cases shown. This closes the first part of this chapter.

o
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Bridge

Concerning our approach to include resonant charm effects eq. (3.72), we compare it in section 3.10
with two other LD prescriptions, given in ref. [28] and [29] and estimate the resulting uncertainties in the
dilepton mass spectrum and the FB asymmetry. Further, we discuss a possible double counting, inherent in
our procedure adding SD and LD amplitudes. The determination of these uncertainties is very important,
as a measurement of the partly integrated spectra AB, AA in B — X,£7£~ decay will be used to extract
the SD coefficients, testing the SM.

3.5 Introduction to Hadron Spectra and Spectral Moments in the Decay
B — X 0t~

In this second part of this chapter we present spectra in inclusive B — X,£+ £~ decay in kinematical vari-
ables different from the dilepton invariant mass g2, the hadronic energy and the hadronic invariant mass.
Further, we calculate lowest moments in these hadronic variables. We include perturbative O(e;,) correc-
tions, 1/m; power corrections by means of the heavy quark expansion technique (HQET) and studies in
the Fermi motion model (FM). This part is based on refs. [25,26,14].

A similar program of investigations [93,23], [101-103] has been run for the charged current induced
semileptonic B — X, .fv, decay. Here the main interest is focused on testing HQET and on the deter-
mination of the CKM matrix elements V; and V,,;. To be more specific, the HQE parameters A; and A
have been extracted from moments of the hadronic invariant mass spectrum in B — X, .fv, decay [66].
We recall that these non-perturbative parameters appear in the relation mp = mp + A — (A} 4+ 3)2)/2m,
between the mass of the B-meson to the b-quark mass (see section 2.4.1). Explicit calculation [25,26]
shows that also in B — X,£* ¢~ decay the hadronic invariant mass moments are sensitive to the HQET
parameters A\, and A. This provides potentially an independent determination of these quantities. We
think that the hadron spectra in B — X,£*¢~ and B — X,fv, can be related to each other over limited
phase space and this could help in improving the present precision on V,,; [39] and the parameters \; and
A [31,63). Of course, B — X, .£v, decays involve much less problems than FCNC B — X ,£+£~ decay,
as the charged current mode has simpler short-distance (SD) couplings and no c¢ resonances present in the
spectra. Besides these obvious differences, we will point out in the following sections similarities between
rare B — X,£*¢~ and the charged current B — X, .fv, decays.

What can we learn from the study of hadron spectra and moments in B — X,£* £~ ? Our motivation
is manifold:

1. Hadron spectra have an interest on their own, they complete the profile of B — X,£+£~ decay
which has been given in the previous sections, i. e. the dilepton invariant mass distribution
and the FB asymmetry.

2. In their search for B — X,£*£~ the CLEO collaboration [30] imposed a cut on the hadronic
invariant mass Sy to suppress the BB background in measuring the dilepton invariant mass
distribution. The hadronic invariant mass spectrum is absolutely necessary to acquire control
over the signal after a cut in Sp.
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3. A possible determination of non-perturbative HQE parameters A;, A from the first two mo-
ments of the hadronic invariant mass in B — X, £*¢~ decay, complementing the constraint
from the charged current B — X £fv, decay. The constraints from these decays can be used to
reduce the present dispersion on A; and A.

4. Test of the Fermi motion model in B — X £+ ¢~ decay.

The power corrections presented here in the hadron spectrum and hadronic spectral moments in B —
X, £t ¢~ are the first results in this decay.

3.5.1 Hadron kinematics

Besides the parton level kinematics already introduced in section 3.1.1, the corresponding kinematics at
hadron level can be written as:

B(ps) = Xs(pu) + £ (p+) + € (p-) - (3.74)

The hadronic invariant mass is denoted by Sy = p}, and E'y denotes the hadron energy in the final
state. The corresponding quantities at parton level are the invariant mass sg and the scaled parton energy
Ty = % In parton model without gluon bremsstrahlung, this simplifies to s = m? and zo becomes
directly related to the dilepton invariant mass zo = 1/2(1 — $ + 7»?). From momentum conservation the
following equalities hold in the b-quark, equivalently B-meson, rest frame (v = (1,0, 0, 0)):

o = 1-v-§, So=1-2v-G+35, (3.75)

Egy = mp-v-q, SH=m25—2va-q+s. (3.76)

The relations between the kinematic variables of the parton model and the hadronic states , using the
HQET mass relation, can be written as

S = A +3X
o R A__u+(m3_,\+l_+_2)zo+,,,,
2mp 2m >
Sy = m24 A%+ (m} —2Amp+ A%+ ) +3X2) (50 — 0?)
+ (2Amp — 2A% — X\, = 3X)zo + ..., (3.77)

where the ellipses denote terms higher order in 1/m;.

3.6 Perturbative O(a;) Corrected Hadron Spectrain B — X ¢(*{~ Decay

In this section the O(a,) corrections to the hadron spectra are investigated. Following the argument given
in section 3.1.2, only Oy is subject to a, corrections and the corresponding Feynman diagrams can be
seen in Fig. 3.2. The effect of a finite s-quark mass on the O(a,) correction function is found to be very
small. After showing this, we have neglected the s-quark mass in the numerical calculations of the O(a;)
terms.
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3.6.1 Hadron energy spectrum

The explicit order o, correction to Og can be obtained by using the existing results in the literature as
follows: The vector current Og can be decomposed as V = (V — A)/2+ (V + A)/2. We recall that the
(V — A) and (V + A) currents yield the same hadron energy spectrum [104] and there is no interference
term present in this spectrum for massless leptons. So, the correction for the vector current case in B —
X £+ ¢~ can be taken from the corresponding result for the charged (V — A) case [22,91], yielding

CE(20) = Cop(zo) + Y (z0) (3.78)

with
p(z) = 1+ %r—’a(z) . (3.79)
-~ . Gip) (3.80)

(3z — 422 — 2?2 + 3mlz) 3 /22 — m?2 '
where Y (zo) = Y (3) with § = 1 — 2z + 2. The expression for G (z) with m, # 0 has been calculated
in [91). The effect of a finite m, is negligible in G, (z), as can be seen in Fig. 3.11, where this function is
plotted both with a finite s-quark mass, m, = 0.2 GeV, and for the massless case, m, = 0. A numerical
difference occurs at the lowest order end-point zJ**% = 1/2(1 + m2) (for m; = 0), where the function
develops a singularity from above (zo > z3'**) and the position of which depends on the value of m,.
The function G, (z) for a massless s-quark is given and discussed below [91].

Gl 32{515(161:4 — 8423 + 58522 — 1860z + 1215) + (8z — 9) In(22)

2
+ 2(4z - 3) [%+Li2(1 —21:)]} for0<z<1/2,

Gi(z) = ﬁ(l — z)(322° — 136z* + 103423 — 294622 + 1899z + 312)
- % In(2z — 1)(642> — 4822 — 24z — 5)
2
+ z%(3 - 42) [% - 4Li2(%) +1In%(2z — 1) — 2In?(2z)| for1/2<z<1.(3.81)

The O(a,) correction has a double logarithmic (integrable) singularity for zo — 1/2 from above
(zo > 1/2). Further, the value of the order o, corrected Wilson coefficient Cgﬁ (zo) is reduced compared
to its value with a, = 0, therefore also the hadron energy spectrum is reduced after including the explicit
order a, QCD correction for 0 < zg < 1/2. Note that the hadron energy spectrum for B — X, £+¢~
receives contributions for 1 > z > 1/2 only ﬁ'om the order o, bremsstrahlung corrections.

3.6.2 Hadronic invariant mass spectrum

‘We have calculated the order a, perturbative QCD correction for the hadronic invariant mass in the range
m? < 3o < 1. Since the decay b — s + £+ + £~ contributes in the parton model only at 5o = 72, only
the bremsstrahlung graphs b — s+ g+ £+ + £~ contribute in this range. This makes the calculation much
simpler than in the full §p range including virtual gluon diagrams. We find

dB 2_a,1 (50—1)
Tl i

(93 = 4180 - 95 + 5553) + 3 In do(—3 — 530 + 953 — 249))CF . (3.82)
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Figure 3.11: The function G1(z) is shown for my, = 0.2GeV (solid line) and for the massless case
corresponding to eq. (3.81) (dashed line).

Our result for the spectrum in B — X,£* £~ is in agreement with the corresponding result for the (V — A)
current obtained for the decay B — X fv, in the my, = 0 limit in [93] (their eq. (3.8)), once one takes
into account the difference in the normalizations. We display the hadronic invariant mass distribution in
Fig. 3.12 as a function of sg (with sp = m;‘,’fxo), where we also show the Sudakov improved spectrum,
obtained from the O(a,) spectrum in which the double logarithms have been resummed. For the decay
B — X,flv,, this has been derived in [23], where all further details can be seen. We confirm eq. (17)
of [23] for the Sudakov exponentiated double differential decay rate 3‘12—13- and use it after changing the
normalization 'y — 30302 for the decay B — X,£* £~ . The constant By is given in eq. (3.29). Defining
the kinematic variables (z, y) as

¢ = 2’m},
' 1
v-g = (z+ 5(1 - z)%y)my, (3.83)
the Sudakov-improved Dalitz distribution is given by
—C—P—B—(B - XLt) = —Boga:(l — z2)%(1 4 222%) exp ( - % In?(1 - y)) (3.84)
4dasIn(1 - y) y) 201, L 20: atl } 2
(il - Feew + B - =G W},
where [23]
[8z%(1 — 22 — 2z%) Inz + 2(1 — 2%)3(5 + 42%) In(1 — 2?) — (1 — 2%)(5 + 922 — 62*)]
G(=) =
2(1 - z2)2(1 + 222)
472 4 2Liy(z?) — 2Li;(1 - 2%) (3.85)
vl 4 2-2(1-z)+x
2y} = /o dz(=—1n -

_(1-z)B+z+z2—2
(1+z)?

)[ln(l—z)—2ln2—z(12_z)+é]
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Figure 3.12: The differential branching ratio M%“H—l in the parton model is shown in the O(a;)
bremsstrahlung region. The dotted (solid) line corresponds to eq. (3.82), (eq. (3.87)). The vertical line
denotes the one particle pole from b — s€*£~. We do not show the full spectra in the range 0 < so < m}

as they tend to zero for larger values of so.

K [7(1+ z)(1+ 222%) "

T2+ 2)2(1 + 222) fionz (1-2)(3- 232)]) . (3.86)

The quantity  in eq. (3.86) is defined as k = 1/2%(1 — )% + 4z=.
To get the hadronic invariant mass spectrum for a b-quark decaying at rest we change variables from
(z,y) to (g2, so) followed by an integration over ¢2,

(mp—/30)? 2
dB_/b odde 1 387
4

dso m? 7 dzdy 2miz(1 - z)? "’

The most significant effect of the bound state is the difference between mp and m;, which is domi-

nated by A. Neglecting \;, ),, i.e., using A = mp — m;, the spectrum d_ds% is obtained along the lines as

given above for ?145," after changing variables from (z, y) to (¢2, Sy) and performing an integration over
¢>. Itis valid in the region mgﬂ‘a—%“_—zx—"’i < Sg < m} (or mpA < Sy < m%, neglecting m,) which

excludes the zeroth order and virtual gluon kinematics (sp = m?), yielding

(ma—VERY | g2
dB / B H da? d“B 1 (3.88)
4

dSy = m? q dzdy 2m,:fm3:z:(1—:z:)2 t

The hadronic invariant mass spectrum thus found depends rather sensitively on m; (or equivalently A),
as can be seen from Fig. 3.13. An analogous analysis for the charged current semileptonic B decays
B — X, 4y, has been performed in [101], with similar conclusions.
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Figure 3.13: The differential branching ratio ﬂg}%ﬁr—l in the hadronic invariant mass, Sy, shown
for different values of my in the range where only bremsstrahlung diagrams contribute. We do not show the

result in the full kinematic range as the spectra tend monotonically to zero for larger values of Sy < m%.

3.7 Power Corrected Hadron Spectrain B — X ,(t¢~ Decay

We start directly with the structure functions 7 of the hadronic tensor, which are calculated up to O (mp/m3)
in [18]. They have been decomposed into a sum of various terms, T;(v.4, 8) = 3°;=0,1,2,5,0,5 T,-(j ) (v.g,9)
where the individual parts T,-(j ) can be seen in appendix B.1. After contracting the hadronic and leptonic
tensors, one arrives at eq. (3.27). Now we are interested in a different set of kinematical variables. We
transform (v - ¢, §) — (zo, $o) with the help of the kinematic identities given in eq. (3.75), and make the
dependence on z¢ and $g explicit, ‘

TL/R‘", LL/R“”=m1,2 {2(1 rd 21‘0 + §0)T1L/R + [Ig - %'&2 - §0] TzL/R = (1 hand 2.’120 + §0)'& T3L/R

(3.89)
With this we are able to derive the double differential power corrected spectrum % for the decay

B — X,£*¢~ . Integrating eq. (3.23) over 4 first, where the variable % is bounded by

—2y/23 - 5 <@ < +2\/22 — 3o, (3.90)

we arrive at the following expression [26]

d’B 8 v " , z2 -5 E
m =—;Bolm :1:3 — S0 {(1 . 230 -+ SQ)Tl (So, .’L‘o) + 2 3 oTz(So, Io)} + 0(/\,‘0,) , (3.91)

where

T1(30,20) =

8 |-

{ (500403 +39) (15701 + 1w’
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+ (32(—2m3 — 280 — 41250 + zo + 5M2zo + S0T0 + M250z0) + 16(?;— +A2)

ICeff|2
i = S 2
X (=5—117m2 4+ 550 — so+ 10z¢ 4 22712z O:c 10m ) (o= 220 1 1)
=33 S5 oo 5 M eff ff
+ [ —=22 (2 + 0 — 70 — mlz0) — 48(Z2 + A2) | Re(CEX(3)) CE
Sp—2z0+1 3

8\ i =
+ o { ( 31 (250 — 3zo + 522) + 8A2(—230 + zo + 53:(2,)) (lC’gff(sN2 + |C’10|2)

324 ’ . > .2,
- (T‘(ﬁmf + 1230 + 187250 — 252 — 2252 — 3z — 21Mm2zo — 135020 — 19725070
— 3224 9222 + 5502k + 5mdezh + 4z3 + 4m?zd)

+ 327y(—2m2 — 2230 — 252 — 2282 + zo — ™Mzo — 5300 — 1125070 + 22

@k

+ 13m2z3 + 5sozd + 5m2sa?)) (%o — 220+ 1)2

—02%; bt gl sinpog 2 ; ,
+ ( 3 L (=312 — 539 + 2230 + 3zo + 62zo + 330z0 — T& — 5M’z])

) Re(CeH (3 eff
—  32X;(1h? + 3p + 2250 — zo + 2220 + 35070 — 375 — 5fnizg)) ‘;(CQ 223))57
. Eail 0
1t 2y [32Zo (| ~eff; 2 2
+ —hilso—28) { 5 (ICST +Cwol?)

+ ﬁ(—27h2_2§ —4ﬁl2§ +z +57h2$ +§ - +ﬁl2§ - ) |C$ﬁ'2
3 s 0 350 0 sTo 0Zo ’00(50—2:to+1)2

~198, . . e o RelCIE(0)) ORE
sl (5 + 80 — 2o — M3x0) T ;
E 1 A1 ;
T2(30, :Co) = ; { (16 40( 3 - Az)) (Icgﬁ($)|2 + IClolz)
+ 64+160( +2) (1+m2)ﬂ
’ 220+ 1
e

112} A
ey {( L(=1+z0) +1632(~ 3+5x0)) (1§ (3)12 + ICrol?)
4485, ; y Ll R e eff ;1) ceff
+ ( 3 (1 — zo) + 64X2(5z0 1)) (14 m3) g, - 6472 Re(CS" (3)) C¥
1. 256 E ceffj2
teanla (so—zo){ (Ic§H(3)12 + ol )+—(1+ 2)—%} . (392)

Here, z = 59— m2+ie, A = A\;/m? and A, = A2/m?. As the structure function T’ does not contribute to
the branching ratio, we did not consider it in the calculation of the hadron spectra. The Wilson coefficient
Cgﬁ(é) depends both on the variables zo and Sy arising from the matrix element of the four-Fermi-
operators. Here the normalization constant By, defined in eq. (3.29), expresses the branching ratio for B —
X,£* £~ as usual in terms of the semileptonic decays B — X £v,. The double differential ratio given in
eq. (3.91) agrees in the (V — A) limit given in egs. (3.66) - (3.68) with the corresponding expression
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derived for B — X £y, decay in [93] (their eq. (3.2)).
The hadron energy spectrum can now be obtained by integrating over 3p. Using eq. (3.59), the follow-
ing replacements are equivalent to taking the imaginary part

S =D |

T

1 h £

F - —6’(80 - mf) ’

1 29, S (3.93)

2—3 —p 2 So —my) . X

The kinematic boundaries are given as:
maz(m?, -1+ 2z +4m?) < 5 <z2,
m, < T %( —4m?) . (3.94)

Here we keep 7 as a regulator wherever it is necessary and abbreviate CST = CEf(5 = 1 — 220+ m2).
Including the leading power corrections, the hadron energy spectrum in the decay B — X,£*£~ is given
below:

dB 9,10) . 3 (9,10) , 3 (9,10 £f,
iz = 30{[9(() )+/\19£ )+/\29f£» )] (IC’S |2+IC'10|2)
eff|2 4 >
+ 657+ Mg + Aag 7’] - (1L o + 087 + Aag{™ + 359" Re(CEM) CET
@ " 2 d? Ceff 2
+ (a4 A2h§,9’)—'C? E 4 5@ ddCs 1
dsg
2 eff
& (A h(7 9)+/\ h(7 9)) dRe(CQ )Ceﬁ'+ ,\ k(79)d R;(g?Q )C-?ff}
0

S 1 af L
+ 8(e0 - 5(1+ M2 - 4ﬁz?))fs(Al, Ao) +8'(20 = 5(1+ 5 = 4m)) fir (M, Aa) . (3.95)

The functions g(9 m), g,(") (7.9) h(g) h(7 %) k(g) k(7 % in the above expression are the coefficients of the

1/ mb power expansion for different combinations of Wilson coefficients, with g (’ k) being the Towest
order (parton model) functions. They are functions of the variables zo and 7, and are given in appendix
C.1. The singular functions §, ' have support only at the lowest order end-point of the spectrum, i.e.,
at %% = 1(1 4+ m? — 4/m}). The auxiliary functions fs(A1,A2) and f5r (A1, A2) vanish in the limit

eff
A=A =0 They are given in appendix C.2. The derivatives of Ceﬂ are defined as ﬁﬁ— =

%C;e.eif(s = 1— 220+ 3p; 5o = Mm?) (n = 1,2). In the (V — A) limit our eq. (3.95) for the hadron energy
spectrum in B — X ,£* ¢~ agrees with the corresponding spectrum in B — X £y, given in ref. [93] (their
eq. (A1)). Integrating also over z, the resulting total width for B — X,£+£~ agrees again in the (V — A)
limit with the well known result [15].

The power-corrected hadron energy spectrum QE(_B%)_ (with Eg = myzp) is displayed in
Fig. 3.14 through the solid curve, however, without the singular 4,4’ terms. Note that before reach-
ing the kinematic lower end-point, the power-corrected spectrum becomes negative, as a result of the
A2 term. This behavior is analogous to what has already been reported for the dilepton mass spectrum
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Figure 3.14: Hadron energy spectrum Q(%)_ in the parton model (dotted line) and including
leading power corrections (solid line). For my/2 < Eo < my the distributions coincide. The parameters
used for this plot are the central values given in Table A.1 and the default values of the HQET parameters
specified in text.

95(3—:2‘,&1 in the high ¢? region [18], signaling a breakdown of the -”{—b expansion in this region. The
terms with the derivatives of cgff in eq. (3.95) give rise to a singularity in the hadron energy spectrum at
the charm threshold due to the cusp in the function Y (3), when approached from either side. The hadron
energy spectrum for the parton model is also shown in Fig. 3.14, which is finite for all ranges of Ej.

What is the region of validity of the hadron energy spectrum derived in HQET? It is known that in
B — X, £*€~ decay there are resonances present, from which the known six [39] populate the zo (or
E)) range between the lower end-point and the charm threshold. Taking this into account and what has
been remarked earlier, one concludes that the HQET spectrum cannot be used near the resonances, near
the charm threshold and around the lower endpoint. Excluding these regions, the spectrum calculated in
HQET is close to the partonic perturbative spectrum as the power corrections are shown to be small. The
authors of [27], who have performed an 1/m,. expansion for the dilepton mass spectrum ﬂB—';—q’QL‘i‘:l
and who also found a charm-threshold singularity, expect a reliable prediction of the spectrum for ¢? <
3m? corresponding to Ep > %t(1+ m2 — 3/m2) ~ 1.8 GeV. In this region, the effect of the 1/m; power
corrections on the energy spectrum is small and various spectra in B — X,£*£~ calculated here and in
[18] can be compared with data.

The leading power corrections to the invariant mass spectrum is found by integrating eq. (3.91) with
respect to zo. We have already discussed the non-trivial hadronic invariant mass spectrum which results
from the O(a,) bremsstrahlung and its Sudakov-improved version. Since we have consistently dropped
everywhere terms of O();a,) (see eq. (3.91)), this is the only contribution to the invariant mass spectrum
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also in HQET away from 5 = 7?2, as the result of integrating the terms involving power corrections
in eq. (3.91) over z, is a singular function with support only at 5o = 2. Of course, these corrections
contribute to the normalization (i.e., branching ratio) but leave the perturbative spectrum intact for 3o #

m2.

3.8 Hadronic Moments in B — X /t¢~ in HQET

We start with the derivation of the lowest spectral moments in the decay B — X ,£¥ £~ at the parton level.
These moments are worked out by taking into account the leading power 1/m;, and the perturbative O( )
corrections. To that end, we define:

ooy b oo | ooiaim W
M('I’(— = B_o /(30 4 m,) Ig‘ m dSodzo , (396)
for integers » and m. These moments are related to the corresponding moments (zJ* (3o — ?)™) obtained
at the parton level by a scaling factor which yields the corrected branching ratio B = BoM g’;;’l’ . Thus,

A ~ 2\n B n,m
(2 (30 — M2)™) = §° MED . (3.97)

The correction factor Bo/B is given below in eq. (3.103). We remind that one has to Taylor expand it in
terms of the O(a,) and power corrections. The moments can be expressed as double expansion in O(a;)
and 1/m; and to the accuracy of our calculations can be represented in the following form:

ME™ = pirm) 4 %’—ngA(”"") PR e BT g (3.98)
with a further decomposition into pieces from different Wilson coefficients for : = 0, 1, 2:
2
D™ = o*™Cg 4 prmCh 4 4T 4 5. (3.99)

The terms ™™ and 6,("'"') in eq. (3.99) result from the terms proportional to Re(CST)CEH and |CEH|?
in eq. (3.91), respectively. The results for a,("'"'), ﬂf”’m), 7‘("""), 65""") are presented in appendix C.3.
Out of these, the functions a,(-"'"') and ﬁ,("'"') are given analytically, but the other two 7,-"’"') and 5,("’"‘)
are given in terms of a one-dimensional integral over zg, as these latter functions involve the coefficient
CEM, which is a complicated function of zo.

The leading perturbative contributions for the hadronic invariant mass and hadron energy moments

can be obtained analytically by integrating eq. (3.82) and eq. (3.81), respectively, yielding

25 — 4x? 91 5
iy ST egene)alaii v piaM)an B
4 T - 675"’ 486’
1381 — 21072 (02) _ 2257 32072
= 1350 ol T 5400 e B3-100)

A(Orl)
The zeroth moment n = m = 0 is needed for the normalization and we recall that the result for A(%:0) was
derived some time ago [92]. Likewise, the first mixed moment A(11) can be extracted from the results
given in [93] for the decay B — X £v, after changing the normalization,
3

A(lyl) ==
50

(3.101)
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For the lowest order parton model contribution D(‘,"""), we find, in agreement with [93], that the first two
hadronic invariant mass moments (3 — m2), ((8o — m2)?) and the first mixed moment (zo(3p — ™?))

vanish:
D™ =0 forn=1,2 and D{"" = 0. (3.102)

We remark that we have included the s-quark mass dependence in the leading term and in the power cor-
rections, but omitted it throughout our work in the calculation of the explicit a, term. All the expressions
derived here for the moments agree inthe V — A liinit (and with m, = 0 in the perturbative a, correction
term) with the corresponding expressions given in ref. [93]. From here the full O(a,m,) expressions can
be inferred after adjusting the normalization 'y — Bo§03 . We have checked that a finite s-quark mass
effects the values of the A(™™) given in egs. (3.100-3.101) by less than 8% for m, = 0.2 GeV.

We can eliminate the hidden dependence on the non-perturbative parameters resulting from the b-

(n,m)
tHe-

to be consistent we keep only terms up to order m?/m? [66]. An additional m;-dependence is in the mass
ratios m; = ﬁ: Substituting m; by the B-meson mass using the HQET relation introduces additional
O(1/mp, 1/m%) terms in the Taylor expansion of eq. (3.97). We get for the following normalization
factor for B/By = Mﬁ‘i’fl:

quark mass in the moments M with the help of the HQET mass relation. As m, is of order Agcp,

B 32 m? 2
5 = %(_mg — 13m2 — 3(m}% — 2m?) 1n(4521—))c$ff +

2
3m

7 (mp — 8m)Co
B

3 (1+m3/m%) 4
+ /2 g d:cori—(-m — 4m?zo + 2myzl + 2m"’:c:?,)Re(Ceﬁ‘)Ce“Er
B

ms/mp

3(14mi/m}) 16 2 2 2 2.2 2 3y ~eff)2
-+ / dzg e (=3m?2 + 6mEz2 + 6m3z2 — 8m%z3)|CSY|

ms/mB 2B

@ 002, —64 eff A | 32 2 A’ |16 eff? CIO
+ A0+ —=cF m3+3c7 —ggb 1 =-(2~ 31(4 ))C =

I 16 A
4 /()dzo(64z§Re(C§ﬂ)C$ﬁ+ ?(3—4$0)$3|C§ﬁ|2)]m_;

16 m? 2
% [ 3 (4+9n(4 ,j,))c$ff g A (3.103)

mp

=

+ dzo(64(—1 — 4z0 + 722) Re(CSI)CEM + 16(—1 + 1522 — 2023)|CET|? 12_3 :
0 B

: . 2
Here, the - and A’ terms proportional to CEM” result from the expansion of 7
B

4 4 A A2 )\ 432
(m’)-l("")+2 s S (3.104)
mp mpg mp

The first two moments and the first mixed moment, (zo)B/Bo, (z3)B/Bo, (50 — m2)B/Bo, {(50 —
m2)2)B/By and (zo(30 — m?2))B/ By are presented in appendix C.4.

With this we obtain the moments for the physical quantities valid up to O(e,/m%, 1/m3), where
the second equation corresponds to a further use of m, = O(Agcp). We get for the first two hadronic
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invariant mass moments 3

(Su) = m?4+ A%+ (m} - 2Amp) (50 — m2) + (2Amp — 2A% — A1 — 3X2)(z0),
(S%) = m?+2A%2m? 4 2m?(m% — 2Amp) (50 — m?2) + 2m2(2Amp — 2A% — \; — 3)2)(z0)

+ (m} — 4Am3)((50 — m2)2) + 4N m%(z2) 4+ AAmE (2o (50 — M2)), (3.105)
(mp — 4AmB){(80 — M3)?) + 4A’mp(23) + 4Amp(zo(S0 — 3))

and for the hadron energy moments:

i a3 Ao e 3A
(Ex) =.A_;2+B_2+( _A+_1i___z)(zo),
E%Y = A2+ (2Amp — 2A% = \; — 3)2){(zo (3.106)
H

+(m% — 2Amp + A% + A; + 3)X;)(z2) .

3.8.1 Numerical estimates of the hadronic moments in HQET

Using the expressions for the HQET moments given in appendix C.4, we present the numerical results for
the hadronic moments in B — X,£+¢~ , valid up to O(a,/m%, 1/m%). We find:

A 2
(zo) = 0.367 (1+ 0. 148— -0. 204A-i‘5’- —0.030 2 _o. 017A— + 0. 884)‘—l + 36522 =,
mp ™ mp B B
A R* ,\
(z2) = 0.147 (1+ 0.32422 0.221L— ~0.058— — 0.034—+ 1. 206— +4.680—- Az =),
S A A A2
(zo(S0 — Mm2)) = 0.04131(1 + 0.083—A—) + 0.124—7 + 0.172—2,
mp
. A
(80 — 7 2)—0093 (1+0083—)+0641’\—+0589 ':; 2
mp
oK o ,\
((30 —m3)? =0. 0071—(1 +0. 083—) 0.196—- (3.107)
B

As already discussed earlier, the normalizing factor B/By is also expanded in a Taylor series. Thus, in
deriving the above results, we have used

B A A® A A

= = 25277 (1 - 1. 108— —0.083— - 0. 041——— +10. 546—1 -3. 439—2—) .

Bo mp mp my m}
The parameters used in arriving at the numerical coefficients are given in Table A.1 and Table 3.1.

Inserting the expressions for the moments calculated at the partonic level into eq. (3.105) and eq. (3.106),

we find the following expressions for the short-distance hadronic moments, valid up to O(a, /m%, 1/m3):

A o, 1_\ A2 /\1 /\2
mp ™ B B B

(Su) = mB

5Our first expression for (S% ), eq. (3.105), does not agree in the coefficient of (3o — 2) with the one given in ref. [93] (their
eq. (4.1)). We point out that m% should have been replaced by m? in this expression. This has been confirmed by Adam Falk
(private communication). Dropping the higher order terms given in their expressions, the hadronic moments in HQET derived

here and in [93] agree.
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A a A? /\1

(S%) = my(0. 0071— +0. 138——— +0.587—- — 0.196 (3.108)
mp w B B :
A? A A
(Eg) = 0.367Tmp(1 + 0.148— L9 352i— Y 691-L +0.012—5 +0. 024—l +1.070—%-
mpg m mp m B
A a /‘x A? X X
(E%) = 0.147m}(1 + 0. 324— .Y 128—— +2.954— + 2,740 — 0. 299—‘—+ 0. 162—2
mp ™ B B B

One sees that there are linear power corrections, O(A/mpg), present in all these hadronic quantities except
(S) which starts in 2 A

Setting m, = 0 changes the numerical value of the coefficients in the expansion given above (in
which we already neglected a,m,) by at most 1%. With the help of the expressions given above, we
have calculated numerically the hadronic moments in HQET for the decay B — X,£*£~, £ = u,e and
have estimated the errors by varying the parameters within their 10 ranges given in Table A.1. They
are presented in Table 3.2 where we have used A = 0.39GeV, A\; = —0.2GeV? and A\ = 0.12GeV?2.
Further, using a,(m;) = 0.21, the explicit dependence of the hadronic moments given in eq. (3.108) on
the HQET parameters \; and A can be worked out [25]

A A? ,\1
(Sg) = 0.0055m%(1+ 132. 61— +44. 14— +49.66 -

[\ A2 "
2 A1 4 it =T e % par
(S}) = 0.00048m%(1 + 19.41—+ 1223.41m% 408.39m%) ! (3.109)
A 2
(Eg) = 0.372mp(1+ 1. 64—A— +0. 011\— F0.02—1- ’\‘
m m
A A? A
(E%) = 0.150m%(1+ 2. ssi +2.68— — 0.29 3
B B

While interpreting these numbers, one should bear in mind that there are two comparable expansion pa-
rameters A/mp and o, /= and we have fixed the latter in showing the numbers. As expected, the depen-
dence of the energy moments (E}) on A and ), is very weak. The correlations on the HQET parameters
A; and A which follow from (assumed) fixed values of the hadronic invariant mass moments (Sw) and
(S%) are shown in Fig. 3.15. We have taken the values for the decay B — X,u*u~ from Table 3.2 for
the sake of illustration and have also shown the presently irreducible theoretical errors on these moments
following from the input parameters m;, a, and the scale u, given in Table A.1. The errors were calcu-
lated by varying these parameters in the indicated range, one at a time, and adding the individual errors in
quadrature. Further the correlation following from the analysis of data on semileptonic B — X £, decays
[31] is shown in Fig. 3.15 (ellipse). As can be seen, it gives a complementary constraint to the one from
B — X,¢*¢ decay [25], which allows in principle a precise determination of A, A; from data on the
latter.

The theoretical stability of the moments has to be checked against higher order corrections and the
error estimates presented here will have to be improved. The “BLM-enhanced” two-loop corrections
[105] proportional to a2, where 8o = 11 — 2n/3 is the first coefficient in the QCD beta function,
can be included at the parton level as has been done in other decays [93,68], but not being crucial to our
point we have not done this. More importantly, higher order corrections in o, and 1/ mg are not included
here. While we do not think that the higher orders in o, will have a significant influence, the second
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moment (S%) is susceptible to the presence of 1/m;j corrections as shown for the decay B — X {fv,
[106]. This will considerably enlarge the theoretical error represented by the dashed band for (S%) in
Fig. 3.15. Fortunately, the coefficient of the A/mp term in (Sy) is large. Hence, a measurement of this
moment alone constrains A effectively. Of course, the utility of the hadronic moments calculated above
is only in conjunction with the experimental cuts. Since the optimal experimental cuts in B — X, (¢~
remain to be defined, we hope to return to this and related issue of doing an improved theoretical error
estimate in a future publication. We remark here that care has to be taken in a general HQE calculation
with cuts. For an extraction of meaningful observables the calculation must be smeared by integration. If
the remaining phase space gets too restricted the OPE, which is based on parton-hadron duality, breaks
down. This happens for example near the high-¢g? end-point of the invariant dilepton mass spectrum in
B — X,¢*¢~ decay [18].

Related issues in other decays have been studied in literature. The classification of the operators
contributing in O(1/m3), estimates of their matrix elements, and effects on the decay rates and spectra in
the decays B — X £y, and B — (D, D*){v, have been studied in [107,108,109]. Spectral moments of the
photon energy in the decay B — X, have been studied in [110]. For studies of O(1/m3) contributions
in this decay and the effects of the experimental cut (on the photon energy) on the photon energy moments,
see [65]. An HQE analysis of the first two hadronic invariant mass moments with a lepton energy cut has
been worked out in ref. [106].
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Figure 3.15: (Sy) (solid bands) and (S%) (dashed bands) correlation in (\1-A) space for fixed values
(SH) = 1.64 GeV? and (S%) = 4.48 GeV*, corresponding to the central values in Table 3.2. The curves
are forced to meet at the point Ay = —0.2 GeV? and A = 0.39 GeV. The correlation from B — X v, [31]

is also shown here (ellipse).

Finally, concerning the power corrections related to the c¢loop in B — X,£* £~ , it has been suggested
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HQET (SH) (Sk) (EH) (Ef)
(GeV?) (Gev*) (GeV) (GeV?)
ptp~ | 1.644+0.06 | 4.484+0.29 | 2.21+0.04 | 5.14 £ 0.16
etem | 1.7940.07 | 4.98+0.29 | 2.41 4 0.06 | 6.09 + 0.29

Table 3.2: Hadronic spectral moments for B — X,utu~ and B — X,ete™ in HQET with A =
0.39GeV, \; = —0.2GeV?, and )\, = 0.12 GeV?2. The quoted errors result from varying p, a, and the

top mass within the ranges given in Table A.1.

in [27] that an O(A%p/m?) expansion in the context of HQET can be carried out to take into account
such effects in the invariant mass spectrum away from the resonances. Using the expressions (obtained
with m, = 0) for the 1/m? amplitude, we have calculated the partonic energy moments A(z3), which
correct the short-distance result at order A\,/m?:

1/2(1—-4m?) i 2
A<Ig)% = —MA : d-'50273+2Re [F(r) (Cgeﬁ(3 St 2.’1:0) + 2C$ﬂ 3 + 420 + 230)] !

27m? 2z9-1
1—230
¢ = rrk (3.110)
;arctan § -1 i 2l lor!
F(r) = = oS = - (.111)
=2 1 ¥ ST :
In +ir ) -1 Tt
2\/r(r—1) 1+/1-1/r

The invariant mass and mixed moments give zero contribution in the order we are working, with m, = 0.
Thus, the correction to the hadronic mass moments are vanishing, if we further neglect terms proportional
to "A};f\ and ﬁ%z\;, with ¢ = 1, 2. For the hadron energy moments we obtain numerically

A(EH>1/m§ = mplA(zo) = —0.007 GeV ,
A(Ef)iym2 = mpA(zd) = —0.013GeV?, (3.112)

leading to a correction of order —0.3% to the short-distance values presented in Table 3.4.

3.9 Hadron Spectra in the Fermi Motion Model

In this section, we study the non-perturbative effects associated with the bound state nature of the B-
hadron on the hadronic invariant mass and hadron energy distributions in the decay B — X,£€7£~ . These
effects are studied in the Fermi motion model (FM) [22] introduced in section 2.4.2. In the context of rare
B decays, this model has been employed to calculate the energy spectra in the decay B — X, + 7 in
[6,24], which was used subsequently by the CLEO collaboration in their successful search of this decay
[11]. It has also been used in calculating the dilepton invariant mass spectrum and FB asymmetry in
B — X, 0*0- [18], see section 3.3.
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Comparison with HQET

The FM has received a lot of phenomenological attention in B decays, partly boosted by studies in the
context of HQET showing that this model can be made to mimic the effects associated with the HQET
parameters A and \; [111,16]. We can further quantify this correspondence. The HQET parameters are
calculable in terms of the FM parameters pr and m, with

kg /0°°dpp2¢(p)\/mg+p2,
T —/Owdpp“¢(p)=—gp%~- (3.113)

In addition, for m; = 0, one can show that A = 2pr/+/%. There is, however, no parameter in the FM
model analogous to A2 in HQET. Curiously, much of the HQET malaise in describing the spectra in the
end-point regions is related to A2, as also shown in [16,18]. _

The relation between mp, my, A, A; and A2 in HQET has already been stated (eq. (2.41)). With the
quantity mfff defined in eq. (2.47) and the relations in egs. (3.113) for A; and A, the relation

mp = mE + A — A/ (2mé) | (3.114)

is found to be satisfied in the FM model to a high accuracy (better than 0.7%), which is shown in Table
3.3 for some representative values of the HQET parameters and their FM model equivalents. We shall use
the HQET parameters A and ), to characterize also the FM model parameters, with the relations given in
egs. (3.113) and (2.47) and in Table 3.3.

pr, mg MeVMeV) | mE (Gev) | A, (GeV?) | A (GeV)
(450, 0) 4.76 0.304 0.507
(252, 300) 4.85 0.095 0.422
(310, 0) 4.92 0.144 0.350
(450, 150) 4.73 0304 0.534
(500, 150) 4.68 0.375 0.588
(570, 150) 4.60 -0.487 0.664

Table 3.3: Values of non perturbative parameters mfﬁ: A1 and A for different sets of the FM model
parameters (pr, m,) taken from various fits of the dataon B — X, + (J /v, ) decays discussedin [14].

Calculation of the hadron spectra

We turn to discuss the hadron energy spectrum in the decay B — X ,£*£~ in the FM model including the
O(a,) QCD corrections. The spectrum d—‘g—H(B — X,£*£7) is composed of a Sudakov improved piece
from C2 and the remaining lowest order contribution. The latter is based on the parton model distribution,
which is well known and given below for the sake of completeness:

dB i [4
% = B = {g(mg —2m?m} + m? + mfs + m2s — 25%) (|Cf,3ﬂ-(.<>')|.2 + |C10|2)
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16 4 - | 4 2 o2 |Ceff|
3 —(2m$ — 2mim? — 2mZm? 4 2m8 — mis — 14mIm?2s — mis — m7s? — m2s?)—L—
16(mj — 2m?m} + m — m}s — m2s) Re(C$M(s)) C§T} (3.115)
B, j al G I th|2 302 -
° T Ta 1927r3 1672 °’
GLVim? _ . 5
Ty = Tbab (me)k(mme) , (3.116)

where 1 is given in eq. (3.8). Note that in the lowest order expression just given, we have IC'S‘;'ﬂ.(s)l2 =
Y (s)|? 4+ 2CoRe(Y (s)) with the rest of Cgff(s) now included in the Sudakov-improved piece as can be
seen in eq. (3.84). To be consistent, the total semileptonic width I';;, which enters via the normalization
constant By, has also to be calculated in the FM model with the same set of the model parameters. We
implement the correction in the decay width by replacing the b-quark mass in I'y; given in eq. (3.116) by
m,,‘sz [18]. The hadronic invariant mass spectrum in the decay B — X,£*£~ in this model is calculated
very much along the same lines. The kinematically allowed ranges for the distributionsare my < Fy <
mp and m§{ < S £ m2B, and we recall here that the physical threshold has been implemented by
demanding that the lowest hadronic invariant mass produced in the decay B — X, ¢+ ¢~ satisfies mx =
maz(mg, my + m,). The results for the hadron energy and the hadronic invariant mass spectra are
presented in Figs. 3.16 and 3.18, respectively. We do not show the Sy distribution in the entire range, as
it tends monotonically to zero for larger values of Sy.
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Figure 3.16: Hadron energy spectrum in B — X ,£*£~ in the Fermi motion model based on the per-
turbative contribution only. The solid, dotted, dashed curve corresponds to the parameters (A1, A) =
(-0.3,0.5), (=0.1,0.4), (—0.15,0.35) in (GeV?, GeV), respectively.

A number of remarks is in order:
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Figure 3.17: Hadron energy spectrum in B — X,£*¢~ based on the perturbative contribution only, in
the Fermi motion model (dotted curve) for (pr, m,) = (252,300) (MeV, MeV), yielding mfﬂ = 4.85
GeV, and in the parton model (long-short dashed curve) for my = 4.85 GeV.

e The hadron energy spectrum in B — X,£*¢~ is rather insensitive to the model parameters. Also,
the difference between the spectra in the FM and the parton model is rather small as can be seen
in Fig. 3.17. Since, away from the lower end-point and the c¢ threshold, the parton model and
HQET have very similar spectra (see Fig. 3.14), the estimates presented in Fig. 3.16 provide a
good phenomenological profile of this spectrum for the short-distance contribution. Very similar
conclusions were drawn in [23] for the corresponding spectrum in the decay B — X,fv,, where,
of course, the added complication of the c¢ threshold is not present.

e In contrast to the hadron energy spectrum, the hadronic invariant mass spectrum in B — X,¢+¢-
is sensitive to the model parameters, as can be seen in Fig. 3.18. Again, one sees a close parallel
in the hadronic invariant mass spectra in B — X,¢¥¢~ and B — X,fv,, with the latter worked
out in [101]. We think that the present theoretical dispersion on the hadron spectra in the decay
B — X,£* ¢~ can be considerably reduced by the analysis of datain B — X, fv,.

e The hadronic invariant mass distribution obtained by the O(a;,)-corrected partonic spectrum and
the HQET mass relation can only be calculated over a limited range of Sy, Sy > mpA, as shown
in Fig. 3.12. The larger is the value of A, the smaller is this region. Also, in the range where it
can be calculated, it depends on the non-perturbative parameter m; (or A). A comparison of this
distribution and the one in the FM model may be made for the same values of m; and mfﬁ. This is
shown for my = 4.85 GeV in Fig. 3.18 for HQET (long-short dashed curve) to be compared with
the dotted curve in the FM model, which corresponds to m,,eff = 4.85 GeV. We see that the two

A ero———

-



61

] w
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10

Figure 3.18: Hadronic invariant mass spectrum in the Fermi motion model and parton model, based
on the perturbative contribution only. The solid, dotted, dashed curve corresponds to the parameters
(A1,A) = (-0.3,0.5), (=0.1,0.4), (—0.15,0.35) in (GeV?, GeV), respectively. The parton model (long-

short dashed) curve is drawn for my = 4.85 GeV.

distributions differ though they are qualitatively similar for larger values of S > 3 GeV2.

3.10 LD Contributionsin B — X (¢~ (ID)

This section is devoted to various aspects of the c¢ resonance effects. Following the procedure adopted in
[18], we include the long-distance (LD) resonance effects in the decay B — X, £+ ¢~ and simply add the
cc resonant contribution with the perturbative c¢ contribution expressed through the function g(ni., 8) in
section 3.1.2 (see, eq. (3.18)). Thus, in our method,

CEH(3) = Con(3) + Y (3) + Yres () - (3.117)

The function Y,.,(3) accounts for the c¢ resonance contribution via B — X,(J/¥, ¥, ..) = X, e+¢-
and can be seen in eq. (3.73). Note that in this approach, the effective coefficient cgﬁ(s) has a 3-
dependence, which is not entirely due to the propagators in the function Y,.,(3) as also the perturbative
cc contribution g(m,, §) is a function of §. In the resonant region, the perturbative part is not noticeable
due to the fact that the resonant part in cgff(g) completely dominates. However, when the ¢¢ pair is suffi-
ciently off-shell, the 5-dependence of the function Cgeﬁ(é) is not (and should not be) entirely determined
by the c¢ resonant contribution. This is the motivation of the representation in eq. (3.117).

We start with an analysis of the constraints from existing data on the FM model parameters. Especially
the question if the FM reproduces the measured J/+) momentum distribution in B = X,J/% will be
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dB(B-> X, J/¥)/d |kl arbitrary

Figure 3.19: Momentum distribution of J/+ in the decay B — X,J /v in the FM model. The solid,
dotted, dashed curve corresponds to the parameters (M, A) = (—0.3,0.5), (—0.3,0.53), (—0.38, 0.59)
in (GeV?, GeV), respectively. The data points are from the CLEO measurements [112].

investigated. Then we turn to the effect of the Lorentz boost on the hadron spectra including LD effects
according to eq. (3.117) and present Ey, Sy distributions for B — X,£* £~ decay in the FM. Further, we
study the uncertainties in the B — X,£* ¢~ spectra resulting from the ambiguities in the parametrization
of the LD effects. Differences in the distributions from different approaches to treat the c¢ resonances
are shown as well for hadron spectra as for the ¢? spectra discussed before, namely, the dilepton invariant
mass distribution and the FB asymmetry. Finally, the hadronic moments are calculated in the FM and
compared with the ones in the HQE approach for identical values of equivalent parameters.

3.10.1 Constraints on the FM model parameters from existing data

The FM model parameters pr and m, (equivalently A; and A) can, in principle, be determined from
an analysis of the energy spectra in the decays B — X,fv; and B — X, + 7, as all of them involve
the decay of a b-quark into (an almost) massless (u or s) quark. Assuming that the parameters of the
FM models are universal, these parameters can also be constrained from the lepton energy spectrum in
the decay B — X fv, and from the shape of the J/v- and ¢’- momentum distributions in the decays
B — X,(J/%,v"). We review the presently available analyses of the photon- and lepton-energy spectra
in B decays in the FM model (and HQET, as the two are very similar) and also present an analysis of the
J/+-momentum spectrum in B — X,J/%.

e Analysis of the photon energy spectrum in B — X, + 7y
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Figure 3.20: Hadron energy spectrumin B — X,€*¢~ including the resonance and perturbative contri-
butions in the Fermi motion model (dotted curve) for (A1, A) = (—0.1 GeV?, 0.4 GeV), and in the parton
model (long-short dashed curve) for my = 4.85 GeV.

The photon energy- and invariant hadronic mass distributions in B — X,y were calculated in the FM
model using the leading order (in a,) corrections in [24,6]. These spectra were used in the analysis of the
CLEO dataon B — X, + « [11], in which the values pr = 270 £ 40 MeV suggested by the analysis of
the CLEO data on B — X fv, were used, together with the effective b-quark mass mfﬁ = 4.87%0.10
GeV, which gave reasonable fits of the data. We translate these parameters in terms of A; and A using the
relations given in eqs. (3.113) and (3.114), yielding

A1 = —0.1179935 GeV?, A =0.40+0.1GeV. (3.118)

The same data was fitted in [94] in the FM model, yielding (pr, m,) = (0.45 GeV, 0 GeV) as the best-fit
solution, with (pr, m,) = (0.310 GeV, 0.3 GeV) differing from the best-fit solution by one unit in x2.
The quality of the CLEO data [11] is not good enough to draw very quantitative conclusions. The best-fit
values translate into

A =-03GeVZ, A=0.5GeV. (3.119)

o Analysis of the lepton energy spectrum in B — X {v,

A fit of the lepton energy spectrum in the semileptonic decay B — X fv, in the context of HQET has been
performed in [31]. Using the CLEO data [113], the authors of [31] find:

A\ =—-0.1940.10GeV?, A =0.39+0.11GeV. (3.120)

Since the FM model and HQET yield very similar lepton energy spectra apart from the end-point, one can
take the analysis of [31] also holding approximately for the FM model.
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Figure 3.21: Hadronic invariant mass spectrum in B — X €%~ including the perturbative and res-
onance contributions in the Fermi motion model. The solid, dotted, dashed curve corresponds to the
parameters (A, A) = (=0.3,0.5), (—0.1,0.4), (—0.15, 0.35) in (GeV?, GeV), respectively.

e Analysis of the J/%-momentum spectrum in B — X,J /9

An analysis of the J/v-momentum spectrum in B — X,(J/%, ") measured by the CLEO collaboration
[112] in the FM model has been reported in [114]. The authors of [114] addressed both the shape and
normalization of the J/-data, using the NRQCD formalism for the inclusive color singlet and color
octet charmonium production in B — X,J/v and the FM model. The preferred FM parameters from
this analysis are: (pr,m,) = (0.57 GeV,0.15 GeV), where m, only plays a role in determining the
position of the peak but otherwise does not influence the small momentum tail of the J/% momentum
distribution. This yields values of the parameter pr which are consistent with the ones obtained in [115]
pr = 0.54731% GeV based on an analysis of the CLEO data on B — X v, [113]. The central values of
pr in [115] as well as in [114] correspond to mfﬁ ~ 4.6 GeV, which is on the lower side of the present
theoretical estimate of m; pole mass, namely m; = 4.8 + 0.2 GeV [64].

We have redone an analysis of the J/v-momentum distribution which is shown in Fig. 3.19. As
shown in this figure, and also discussed in [114], the low-momentum J/%, in particular in the region
|k374| < 0.6 GeV, are problematic for inclusive decay models, including also the FM model. The |k, |-
spectrum appears to have a secondary bump; an inclusive spectrum behaving as a Gaussian tail or having
a power-like behavior « |k /,,,I“s in this region is hard put to explain this data. There are also suggestions
in literature [116] that the spectrum in this region is dominated by the three-body decay B — J/9¥Ap
and hence the bump reflects the underlying dynamics of this exclusive decay. In view of this, we have
taken out the first six points in the low-|k ;| spectrum and fitted the FM model parameters in the rest
of the |k /4 |-spectrum. The three curves shown correspond to the FM model parameters (pr, m,) =
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Figure 3.22: The real part (a) and the absolute value (b) of cgﬁ (8) are shown as a function of 3, where
Cgﬁ(.é) = Con(3) + Y (3) + Y;es(8). The solid line corresponds to Y (3) calculated using the perturba-
tive ct contribution g(m., $) given in eq. (3.18), and the dotted curve corresponds to using §(., ) in
eq. (3.121). The dashed one corresponds to the approach by [28].

(0.45 GeV, 0 GeV) (solid curve), (pr,my) = (0.45 GeV, 0.15 GeV) (dotted curve) and (pr, m,) =
(0.50 GeV, 0.15 GeV) (dashed curve). They all have reasonable x?, with x?/dof = 1.6,1.6 and 1.1,
respectively. Excluding also the seventh lowest point, the x? improves marginally, with the resulting x>
being x?/dof = 1.4, 1.4 and 0.94. Including the sixth point, the fits become slightly worse. However, they
are all acceptable fits. It is interesting that the best-fit solution of the photon energy spectrumin B — X,+
7, (pF,mq) = (0.45 GeV, 0 GeV), is also an acceptable fit of the |k ;/|-data. The corresponding A, A
and m; values from these two analyses are compatible within 1o with the HQET-based constraints from
the semileptonic B decays [31], quoted above. Thus, the values in eq. (3.119) appear to be a reasonable
guess of the FM model parameters. But, more importantly for the present study, the phenomenological
profile of the LD contribution B — X,(J/%, v/, ...) = X,£*£~ presented here is certainly consistent
with present data and theoretical constraints.

3.10.2 Effects of the Lorentz boost on the hadron spectra in B — X, (-

We now discuss the B-meson wave function effects in the FM model on the hadron spectra in B —
X, €t~ . Since the resonances in B — X,£% £~ are in the dilepton invariant mass variable s and not in
S, and noting that neither Ey (partonic energy) nor Ey are Lorentz-invariant quantities, it is expected
on general grounds that the effect of the Lorentz boost in the FM model on E-and Sy -distributions will
be more marked than what was found on the invariant dilepton mass spectrum in [18]. We recall that for
the dilepton invariant mass, the Lorentz boost involved in the FM model leaves the spectrum invariant
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Figure 3.23: Hadron energy spectrum in B — X,£*£~ including the resonance and perturbative
contributions in the Fermi motion model. In (a), the FM model parameters are fixed at (\,A) =
(—0.1 GeV?,0.4 GeV). The almost overlapping curves differ in the perturbative cc contribution with the
solid curve obtained using eq. (3.18) for g(m., 8), the dotted curve using g(., $) given in eq. (3.121).
The dashed curve corresponds to the approach by [28]. In (b), the solid, dotted, dashed curve corresponds
to the parameters (A1, A) = (-0.3,0.5), (=0.1,0.4), (=0.15,0.35) in (GeV?, GeV), respectively.

and there is only a subleading effect due to the momentum dependent b-quark mass. Not so in the hadron
spectra. In the hadron energy spectrum, the cé-resonances, which are narrowly peaked in the parton model,
are broadened by the Lorentz boost of the FM model. To show this, the hadron energy spectrum in the FM
model is compared with the spectrum in the parton model in Fig. 3.20 for identical values of m; and mbeﬁ 5
taken as 4.85 GeV. In terms of the hadronic invariant mass, the resonance structure is greatly smeared. The
reason is that each ¢2-bin contributes to a range of Ey and Sy. The different-g? regions overlap.in Sy
resulting in a smearing of the resonances over a wide range. This can be seen in Fig. 3.21 for the hadronic
invariant mass. Various curves illustrate the sensitivity of this spectrum on the FM model parameters.

3.10.3 Ambiguities in adding LD and SD contributions in B — X,{+{~

Since we are simply adding the short-distance (SD) and resonant charmonium amplitudes, it can not be
ruled out that possibly some double counting has crept in in the coefficient Cgeff(.§) , ONCe as a continuum
cc contribution and then again as J/%, ¢/, ... resonances. In the absence of a clear separation of the LD
and SD physics in the spectra, we can not plead the case one way or the other. In the meanwhile, the
question is whether the addition of the cc-continuum and resonating pieces as being done here and in
[18] compromises the resulting theoretical precision significantly. This can only be studied by comparing
the theoretical scenario in question with other trial constructions which have no c¢¢ double counting. For
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Figure 3.24: Dilepton invariant spectrum (a) and the (normalized) Forward-Backward asymmetry (b) in
B — X,t¥¢~ including the resonance and perturbative contributions in the Fermi motion model. The
FM model parameters are fixed at (A1, A) = (—0.1 GeV?,0.4 GeV). The curves differ in the perturbative
c€ contribution with the solid curve obtained using eq. (3.18) for g(™., 8), and the dotted curve using

g(me, 8) given in eq. (3.121). The dashed curve corresponds to the approach given in ref. [28].

example, one could retain in the perturbative function g(rn., $) just the constant part in § by replacing
g(m, '§) by §(rh, §), where

S T 8 8 8
g(me, 8) = -3 ln(% - §ln me + 37 (3.121)

This function (with 4 = m;) has been proposed in [29,28] as an alternative representation of the c¢
perturbative contribution and represents the (minimal) short-distance contribution. We denote this ansatz
for CST defined as CEE(3) = Con(5) + Y (3)(“g(the, 8) = §(1c, 3)”) + Yres(5) by LSW. Another
approach is based on a dispersion relation, as proposed by [28], here and in the following denoted by KS.
The KS parametrization of the c¢ resonant part differs from ours (eq. (3.72)), and the non-resonant part has
been extracted from data, see [28] for details. The advantage of the KS procedure is that there is certainly
no double counting. To study the difference numerically, we plot both the real part ReCSﬁ(é) and the
absolute value |C§ﬁ(§)| as functions of $ in Fig. 3.22 by using the complete perturbative expression for
g(m™, ) in eq. (3.16) (our approach) and §(7n., §) given in eq. (3.121) (LSW) and the KS parametrization.
Both figures (a) and (b) show that the KS curve is always below our, which is again always below the
LSW one. One sees from Figs. 3.22 (a) and 3.22 (b) that the difference in these functions in the variable
3 is visible. However, the three parametrizations of the perturbative c¢ part give almost identical hadron
spectra, with the resulting uncertainty in the hadron energy and the hadronic invariant mass spectra being at
most 12.1(4.5)% and 4.1(2.5)%, respectively. The difference between our approach and the KS one (first
numbers) is larger than the one between ours and the LSW one, given in parentheses. These differences are
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already difficult to see in the hadron energy spectrum in Fig. 3.23 (a); the effect on the hadronic invariant
mass is even less noticeable and hence is not shown. Since, other uncertainties on the hadronic distribution
are much larger, see, for example, Fig. 3.23 (b) showing the sensitivity of the hadron energy spectra on the
B-meson wave function parameters, the much talked about c¢-continuum related ambiguity in literature
is numerically small. Fig. 3.23 shows that it is not the dominant uncertainty in predicting the theoretical
profiles of hadron spectrain B — X, £t£~ .

LD uncertainties in the dilepton invariant mass and the FB asymmetry

We further analyse the uncertainties resulting from different parametrizations of the short and long-
distance amplitudes in g2-spectra which we have investigated in the previous section 3.4. We show in
Fig. 3.24 the dilepton invariant mass (a) and the Forward-Backward (FB) asymmetry (b) with all three
“SD+LD” approaches discussed before. Unfortunately, the difference between our and the KS one [28]
in the dilepton spectrum is maximal in the low-g? region below the J/v-peak, ¢> < 9GeV2. It amounts
up to 15%. In the other distribution, the FB asymmetry, the difference is found to be moderate over the
full q"’-range . It does not exceed 5% in the range 5GeV? < g’ < 9GeV?2. However, we remark here that
the position of the first zero of the FB asymmetry is affected by the parametrization of the c¢ states.

3.10.4 Numerical estimates of the hadronic moments in FM model and HQET

To underline the similarity of the HQET and FM descriptions in B — X,£t£~ , and also to make com-
parison with data, we have calculated the hadronic moments in the FM model using the spectra which we
have presented in the previous sections. The moments based on the SD-contribution are defined as:

(Xz) = ( / x5-28 ixy)/B  for X=S,E. (3.122)
Xz

The moments (X7 )z are defined by taking into account in addition to the SD-contribution also the con-
tributions from the c¢ resonances. The values of the moments in both the HQET approach and the FM for
n = 1,2 are shown in Table 3.4, with the numbers in the parentheses corresponding to the former. They
are again based on using the central values of the parameters given in Table A.1, and are calculated for
the same values of the HQET parameters A and ),, using the transcriptions given in egs. (3.113). Both
the HQET and the FM model lead to strikingly similar results for the hadronic moments shown in this
table. However, the moments (X7 )z with X = S, E are significantly lower than their SD-counterparts
(X% calculated for the same values of the FM model parameters. This shows, at least in this model
study, that the cc resonances are important also in moments. The hadronic invariant mass spectra in
B — X,£*{~ for both the SD and inclusive contributions are expected to be dominated by multi-body
states, with (Sg) ~ (1.5—2.1) GeV? and (Sy )z = (1.2 — 1.5) GeV? . Note that the difference in the nu-
merical values of the hadronic mass moments (Sg )z and (S%)z shown in Table 3.4 caused by different
LD parametrizations is less than 0.22%, 0.42%, respectively, as can be see in Table 3.6.
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(SH) (SH)z (S#) (SE)ec
(M1, A) in (GeV?, GeV) (GeV?) (Gev?)
(-0.3,0.5) 2.03(2.09) | 1.51 6.43 (6.93) | 3.10
(-0.1,0.4) 1.75 (1.80) | 1.36 4.04 (4.38) | 2.17
(—0.14,0.35) 1.54 (1.49) | 1.19 3.65(3.64) | 1.92
(Ew) | (Ew)a| (EE) | (ER)a
(A1, A) in (GeV?, GeV) (GeV) (GeV?)
(-0.3,0.5) 223(2.28) | 1.87 5.27(5.46) | 3.52
(-0.1,0.4) 2.21(2.22) | 1.85 5.19(5.23) | 343
(—0.14,0.35) 2.15(2.18) | 1.84 494 (5.04) | 3.39

Table 3.4: Hadronic spectral moments for B — X,u*p~ in the Fermi motion model (HQET) for the

indicated values of the parameters (A, A).

3.11 Branching Ratios and Hadron Spectra in B — X, (¢~ with Cuts on

Invariant Masses

In experimental searches for the decay B — X,£+¢~ , the short-distance contribution is expected to be
visible away from the resonances. So, cuts on the invariant dilepton mass are imposed to get rid of the
dilepton mass range where the charmonium resonances J/ and v’ are dominant. For example, the cuts
imposed in the recent CLEO analysis [30] given below are typical:

cutA : ¢* < (myy —0.1GeV)? =8.98GeV?,
cutB : ¢* < (myyy —0.3GeV)? =7.82GeV?,
cutC : ¢*> (my +0.1GeV)? = 14.33 Ge V2. (3.123)

The cuts A and B have been chosen to take into account the QED radiative corrections as these effects
are different in the ete™ and pu+pu~ modes. In the following, we compare the hadron spectra with and
without the resonances after imposing these experimental cuts. For the low-¢? cut for muons (cut A), the
hadron energy spectra and the hadronic invariant mass spectra are shown in Fig. 3.25 (a), (b) and Fig. 3.26
(a), (b), respectively. The results for the low-¢2 cut for electrons (cut B), are shown in Fig. 3.25 (c), (d)
and Fig. 3.26 (c), (d), respectively. Finally, the hadronic spectra for the high-¢2 cut (cut C) for ete~ and
p*u~ can be seen in Fig. 3.25 (e), (f) for the hadronic energy and in Fig. 3.26 (e), (f) for the hadronic
invariant mass. We see that the above cuts in ¢2 greatly reduce the resonance contributions. Hence, the
resulting distributions essentially test the non-resonant c¢ and short-distance contributions. These figures
will be used later to quantify the model dependence of the integrated branching ratios in B — X,£+¢~ .
As mentioned in [30], the dominant BB background to the decay B — X,£*¢~ comes from two
semileptonic decays of B or D mesons, which produce the lepton pair with two undetected neutrinos. To
suppress this BB background, it is required that the invariant mass of the final hadronic state is less than
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t = 1.8 GeV, which approximately equals mp. We define the survival probability of the B — X, £+¢~
signal after the hadronic invariant mass cut:

2

and present S(t = 1.8 GeV)) as the fraction of the branching ratio for B — X,£*£~ surviving these cuts
in Table 3.5. To estimate the model dependence of this probability, we vary the FM model parameters.
Concentrating on the SD piece, we note that the effect of this cut alone is that between 83% to 92%
of the signal for B — X,utu~ and between 79% to 90% of the signal in B — X,ete™ survives,
depending on the FM model parameters. The corresponding numbers for the inclusive spectrum including
the SD and LD contribution, here and in the following abbreviated as tot =SD+LD, is 96% to 99.7% for
both the dimuon and dielectron case. This shows that while this cut removes a good fraction of the BB
background, it allows a very large fraction of the B — X,£*¢~ signal to survive. However, this cut does
not discriminate between the SD and (SD+LD) contributions, for which the cuts A - C are effective. The
numbers for the survival probability S(¢ = 1.8 GeV) reflect that the hadronic invariant mass distribution
of the LD-contribution is more steep than the one from the SD contribution.

(A1,A) B-107% | B-10"® | Nos-cut | Nos-cut | cutA | cutB | cutC | cutC
GeV?, GeV ptp= ete” pwtp~ ete™ |utpu= |ete | ptu= | ete
(-0.3,0.5) 5.8 8.6 83% 79 % 57% 57% | 6.4% | 4.5%
(-0.1,0.4) 5.7 8.4 93% 91 % 63% 68% |8.3% | 5.8%
(-0.14,0.35) | 5.6 8.3 2% |9%0% |65% |67% |7.9% |5.5%

(=0.3,0.5)s0t | 562.5 563.9 96% 96 % 0.8% | 1.0% | 0.06% | 0.06%
(=0.1,0.4);0: | 564.0 565.6 99.7% |997% |0.8% |1.1% | 0.08% | 0.08%
(—0.14,0.35):0¢ | 566.5 568.2 99% 99 % 0.9% | 1.2% | 0.08% | 0.08%

Table 3.5: Branching ratios for B — X,£t€~ , £ = p, e for different FM model parameters are éiven in
the second and third columns. The values given in percentage in the fourth to ninth columns represent the
survival probability S(t = 1.8 GeV) defined in eq. (3.124) for different FM model parameters and cuts
on the dilepton invariant mass as defined in eq. (3.123). The subscripttot = SD + LD denotes that both
the short and the long-distance contributions are included in the branching ratios and S (t).

With the additional cut A (B) imposed on the dimuon (dielectron) invariant mass, between 57% to
65% (57% to 68%) of the B — X £+ £~ signal survives the additional cut on the hadronic invariant mass
for the SD contribution. However, as expected, the cuts A and B result in drastic reduction of the inclusive
branching ratio for the decay B — X,£+£~ , as they effectively remove the dominant c¢-resonant part.
In this case only 0.8% to 0.9% (1.0% to 1.2% of the inclusive signal survives for the cut A (B). The
theoretical branching ratios for both the dielectron and dimuon cases, calculated using the central values
in Table A.1 are also given in Table 3.5. As estimated in eq. (3.71), the uncertainty on the branching
ratios resulting from the errors on the parameters in Table A.1 is about +23% (for the dielectron mode)
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and +16% (for the dimuon case). The wave function-related uncertainty in the branching ratios is smaller,
as can be seen in Table 3.5. With the help of the theoretical branching ratio and the survival probability
S(t = 1.8) GeV, calculated for three sets of the FM parameters, the cross section can be calculated for all
six cases:

(i) no cut on the dimuon invariant mass [(SD) and (SD + LD)], (ii) no cut on the dielectron invariant mass
[(SD) and (SD + LD)], (iii) cut A on the dimuon invariant mass [(SD) and (SD + LD)), (iv) cut B on the
dielectron invariant mass [(SD) and (SD + LD)], (v) cut C on the dimuon invariant mass [(SD) and (SD +
LD)], (vi) cut C on the dielectron invariant mass [(SD) and (SD + LD)]. This gives a fair estimate of the
theoretical uncertainties on the partially integrated branching ratios from the B-meson wave function and
¢t resonances. This table shows that with 107 BB events, O(70) dimuon and (O(100) dielectron) signal
events from B — X,£*¢~ should survive the CLEO cuts A (B) with m(X,) < 1.8 GeV. With cut C,
one expects an order of magnitude less events, making this region interesting for the LHC experiments.
Given enough data, one can compare the experimental distributions in B — X,£+£~ directly with the
ones presented here.

3.11.1 Hadronic spectral moments with cuts in the FM

We have calculated the first two moments of the hadronic invariant mass in the FM model by imposing a
cut Sy < t? with ¢ = 1.8 GeV and an optional cut on ¢2.
2 2
(SE) = ( /,,: s Sk ‘gj{ ";‘q’g dSpdg®)/( ”;{ fSL};‘q’gdstq?) for ns=1.2. (3.125)
Here the subscript cutX indicates whether we evaluated (Sy) and (S%) with the cuts on the invariant
dilepton mass as defined in eq. (3.123), or without any cut on the dilepton mass. The results are collected
in Table 3.6. The moments given in Table 3.6 can be compared directly with the data to extract the FM
model parameters. The entries in this table give a fairly good idea of what the effects of the experimental
cuts on the corresponding moments in HQET will be, as the FM and HQET yield very similar moments for
equivalent values of the parameters. The functional dependence of the hadronic moments on the HQET
parameters taking into account the experimental cuts still remains to be worked out.
Further, we have calculated (Sy) and (S%) with a cut Sy < 3.24 GeV? and optional ones on ¢ (cut
A-C according to eq. (3.123)) with the approaches KS [28] and LSW [29] for (A;,A) = (-0.1,0.4) in
GeV?,GeV. They differ from ours (eq. (3.117)) in the parametrization of the resonant and non-resonant

cc contributions, as discussed in section 3.10.3. We compare the values of the moments for the same set
of FM parameters. Denoting our approach by y, we define by A the maximal deviation in % between
ours and KS and LSW, generically written as: A = maz(ly — LSW|/|y|, |y — KS|/|y|) and present it
in the last row of Table 3.6. We see that the uncertainties in the hadronic mass moments from different
“SD+LD” parametrizations are small, namely below 1.6% in the worst case.

3.12 Summary and Concluding Remarks on the Decay B — X ,{*/{~

In this chapter we have investigated distributions, decay rates and moments in rare inclusive B — X, £+~
decay in the standard model. In the first part, we have concentrated mainly on the study of distributions in
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FM No s-cut No s-cut cut A cutB cutC
parameters utu~ ete ptu~ ete” b A
(A1, A) (Su) | (SE) | (Sw) | (SE) | (Sw) | (SE) | (Sw) | (SE) | (Sm) | (Sh)
GeV?,GeV | GeV? | GeV* | GeV? | GeV? | GeV? | GeV* | GeV? | GeV* | GeV? | GeV*
(-0.3,0.5) |147 |287 [152 [305 |162 [337 [166 |348 |074 o069
(—0.1,0.4) 1.57 | 2.98 1.69 =} 337 1,80 51371 1.88 | 399 [0.74 | 0.63
(-0.14,0.35) | 1.31 | 234 |138 |255 147 |2.83 152 | 297 |0.66 |0.54
(-0.3,0.5):¢ | 141 | 2.61 141 |262 |161 |3.32 1.66 | 347 |0.74 | 0.68
(-0.1,0.4);: | 135 |214 |136 |215 [1.77 [3.60 | 187 |[394 |0.74 | 0.62
(=0.14,0.35);0¢ | 1.17 | 1.84 |1.18 | 185 [145 [276 | 151 |295 [066 |0.54
A (%) 0.15 |0.19 [(0.22 |0.42 [090 [1.56 |0.32 | 0.58 | 0.01 0.32

Table 3.6: (Sy) and (S¥) for B — X, £¥¢~, £ = p, e for different FM model parameters and a hadronic

invariant mass cut Sy < 3.24 GeV? are given with and without additional cuts on the dilepton invariant

mass as defined in eq. (3.123). The Sy-moments with cuts are defined in eq. (3.125). The subscript

tot = SD + LD denotes that both the short and the long-distance contributions are included in these

moments. The value of A estimates the uncertainty from different approaches to take into account the

effect of the cc continuum and resonances, see text.

the dilepton invariant mass g2, the differential branching ratio in this variable and the FB asymmetry. Our
findings can be summarized as follows [18]:

e We have calculated the leading 1/m) power corrections with HQE techniques in the dilepton in-

variant mass distributionin B — X,£* £~ decay and have explicitly kept the s-quark dependence.
Our calculation is at variance with an earlier one [17] in the limit m, = 0 and has been confirmed
recently by [27] for the massless s-quark case.

We find that the 1/m? corrections are stable over a good part of the dilepton mass spectmx;)-. How-
ever, near the high ¢? end-point the distribution becomes unphysical due to the HQE parameter A,
signaling a breakdown of the heavy quark expansion.

The B — X,£*£~ decay rate in the HQE method decreases by about 4% and the branching ratio
by about 1.5% from their corresponding parton model values.

Alternatively, we have implemented a Gaussian Fermi motion model in the decay B — X,£+£~ to
model B-meson bound state effects. We have analysed the dilepton invariant mass distribution and
the FB asymmetry within this framework, showing the dependence on the parameters of this model.
Non-perturbative effects are found to be perceptible in both distributions in the high g2 region.

The theoretical uncertainties in the short-distance branching ratios in B — X,£% £~ decay are found
to be +23% (£16%) for the electron (muon) case in the FM.
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e We have modeled the long-distance contributions from intermediate charmonium resonances with
a VMD ansatz and presented the dilepton invariant mass distribution and the FB asymmetry in the
FM, including next-to-leading order perturbative QCD corrections in figures.

We have completed the description of final states in B — X ,£* £~ decay in the second part of this chapter,
which is devoted to the study of hadron spectra and hadronic spectral moments. We summarize [25,26,14]:

e We have calculated the O(a,) perturbative QCD and leading O(1/m;) corrections to the hadron
spectra in the decay B — X ,£* ¢~ , including the Sudakov-improvements in the perturbative part.

e We find that the hadronic invariant mass spectrum is calculable in HQET over a limited range
Sy > mpA and it depends sensitively on the parameter A (equivalently m;). These features are
qualitatively very similar to the ones found for the hadronic invariant mass spectrum in the decay
B — X, v, [101].

e The 1/m;-corrections to the parton model hadron energy spectrum in B — X,£+£~ are small over
most part of this spectrum. However, heavy quark expansion breaks down near the lower end-point
of this spectrum and close to the cc threshold. The behavior in the former case has a similar origin
as the breakdown of HQET near the high end-point in the dilepton invariant mass spectrum, which
we have presented here and in ref. [18].

e We have calculated the hadronic spectral moments (S%) and (E%) for n = 1, 2 using HQET. The
dependence of these moments on the HQET parameters is worked out numerically. In particular, the
moments (S7;) are sensitive to the parameters A and ), and they provide complementary constraints
on them than the ones following from the analysis of the decay B — X £v,. The simultaneous fit
of thedatain B — X,£*+¢~ and B — X £y, could then be used to determine these parameters very
precisely. This is illustrated in Fig. 3.15.

e The corrections to the hadron energy moments A(Eg);/m2 and A(E});/m2 from the leading
O(A%cp/m?) power corrections have been worked out, using the results of [27). We find that
these corrections are very small. The corresponding corrections in A(SF); /2 vanish in the theo-
retical accuracy we are working.

e We think that the quantitative knowledge of A and \; from the moments can be used to remove
much of the theoretical uncertainties in the partially integrated decay rates in B — X,fv, and
B — X,ft¢~ . Relating the two decay rates would enable a precise determination of the CKM

matrix element V.

e As a phenomenological alternative to HQET, we have worked out the hadron spectra and moments
in B — X, £*¢~ in the Fermi motion model. We find that the hadron energy spectrum is stable
against the variation of the FM model parameters. However, the hadronic invariant mass is sensitive
to the input parameters. Present theoretical dispersion on this spectrum can be reduced with the
experimental measurements of the corresponding spectrum in the decay B — X, £v,, which will
determine these parameters. Conversely, with good measurements of the decay B — X,£¢~ , one
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could fix the input parameters in the decay B — X,£v, and determine the CKM matrix element
V.. rather precisely.

For equivalent values of the FM and HQET parameters, the hadronic spectral moments in B —
X+ ¢~ decay are found to be remarkably close to each other.

‘We have worked out the effect of the c¢ resonances in the effective coefficient cgff(s) on the hadron
spectrain B — X, £*¢~ , by parametrizing the present data on the resonant part from the decays
B — X,(J/¥,v,...). The resonances are incorporated at the parton level and the broadening
of these resonances from the wave function effects in the FM model are then worked out. These
spectra will provide an important test of the FM model in B — X,£1¢~ .

We find that the ¢ long-distance effects in B — X,£T £~ decay are also important in the hadronic
moments.

We have quantitatively studied possible double counting effects which may have entered in sim-
ply adding the resonant contribution via Breit-Wigner functions and the complete perturbative cc
contribution in the coefficient cgff(s) in B — X,£*¢~ . The numerical difference between this
approach, followed here [18,14], and alternative ones [28] and [29], are found to be small in the
dilepton invariant mass spectrum and negligible in the hadron spectra and moments. Theoretical
spectra are found to be more sensitive to the wave function effects, which dominate the uncertainty
in the shape.

We have worked out the hadron spectra by imposing the experimental cuts designed to suppress the
resonant c¢ contributions, as well as the dominant BB background leading to the final state BB —
X,£+£~ (+ missing energy). The parametric dependences of the resulting spectra are studied in the
FM model. In particular, the survival probability of the B — X,£* £~ signal by imposing a cut on
the hadronic invariant mass Sy < 3.24 GeV?, as used in the CLEO analysis, is estimated and its
model dependence studied. This quantifies the statement that with the indicated cuts, these spectra
essentially test the physics of the short-distance (and non-resonant ¢¢) contribution.

The CLEO collaboration has already been searched for inclusive b — s€* £~ decay with £ = e, u. Their
results are [30]:

B(b— se+e')CLEO & <Buadlis
B(b— sptp~)CLEO <« 58.1075. (3.126)

Comparing this with our estimates for the SD branching ratios in the decay B — X, ¢~ given in
eq. (3.71), we see that the above CLEO upper bounds are approximately one order of magnitude away
from the theoretical standard model prediction.
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Figure 3.25: Hadron energy spectrum in B — X,€*£~ in the Fermi motion model with the cuts on the
dilepton mass defined in eq. (3.123); (a),(c).(e) without and (b),(d),(f) with the cc-resonance contribution
corresponding to cut A,B,C, respectively. The solid, dotted, dashed curves correspond to the parameters
(A1, A) = (—0.3,0.5), (—0.1,0.4), (—0.15,0.35) in (GeV?, GeV), respectively.
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Chapter 4

The Decay Bs — vy

Besides the rare decays B — X,v and B — X,£*¢~ , B, — 7 is another potential candidate to explore
perturbative and non-perturbative aspects of QCD and test the standard model (SM). The L3 collaboration
has already been searched for B, — 7~ decay. Their upper bound is the best present limit of this channel
[117]

B(B, = 7y) < 1.48-107%. @.1)

The first theoretical analysis of a rare decay into 2 photons is contained in the pioneering work by Gaillard
and Lee [118], who considered Ks — <v7y. Exclusive B, — <~ decay has been investigated in the
lowest order in refs. [32—-35]. The branching ratio found is 4.5 - 10~7 in the SM context for m, = 0.5
GeV and other parameters given in Table A.1. The large value of the s-quark mass here results from using
the constituent quark mass m, ~ mg. As learned from studies of B — X,y decay, the flavour changing
neutral current (FCNC) b — sy vertex receives in leading logarithmic (LLog) QCD approximation a
large enhancement about a factor of 2-3. We suggest similar effects for the b — s+ transition. To see
whether B, — -y decay is worth more effort to be searched for at future experiments, a more advanced
analysis of its branching ratio is required. A branching ratio of order 10~ is a benchmark of a decay
to be measured at present B experiments like CLEO or Hera-B with reasonable statistics. Upgrades and
planned B-factories will be sensitive to branching ratios of order 10~8. However, the B, B, pair is too
heavy to be produced at the T (4s) resonance.

The B, — ~ final state consists of a CP-odd 7~ and a CP-even T amplitude. It offers, besides
the branching ratio, another observable, the so called CP ratio |T*|2/|T~|? [34,35]). With it CP violating
effects can be studied.

The work reported in this thesis, which has already been published [37], [38] differs from the previous
ones [35,33,32] withrespect to three points: a) We calculate and use the QCD-improved LLog amplitudes.
b) In contrast to previous works using the constituent quark model we model the bound state effects of
the B, meson through an heavy quark expansion technique (HQET) inspired approach following [16].
This introduces an additional dispersion on the B, — 7+ branching ratio and CP ratio, which serves as
an estimate of the hadronic uncertainties. c) We include long distance effects due to decay chains via
intermediate vector mesons in our analysis. To be definite, we estimate the additional contribution in the
decay B, — ++ through B, = ¢y followed by ¢ — < using Vector Meson Dominance (VMD) [74].
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Further, the B, — ¢ decay is modeled by inclusive b — s decay. Using the VMD model, the amplitude
for the chain process B, — ¢ — ¢y — <7 is presented.

Leading logarithmic QCD corrections for the short-distance part of the decay B, — < have also
been calculated by Chang et al. [119]). They fix A = mp, — m;, which corresponds to m, in the naive
constituent quark model, and the renormalization scale . = m;. We emphasize here that the decay rate
(and the CP ratio) is sensitive to both of these parameters and requires further theoretical investigation.
Soni et al. [120] calculated also LLog QCD calculations in B, — << and in addition in the decay
B — X,v~v. Analyses of B, — v decay in non standard models have been done in ref. [35] in the
lowest order and in ref. [121] including LLog QCD corrections in the two Higgs doublet model (2ZHDM),
in ref. [122] in the minimal supersymmetric model (MSSM) and in ref. [123] in the 2HDM with flavour
changing neutral currents allowed at tree level.

4.1 Leading Logarithmic Improved Short-Distance Contributionsin B; —
vy Decay

In this section we present the leading logarithmic QCD-improved rates for exclusive B, — vyv decay. We
use the free quark model and make the connection between quark and mesons states by means of the B,
meson decay constant fp,. Dot products of kinematical variables, which are not fixed by this are estimated
in an approach inspired by HQET.

QCD-improved rates in b-quark decays can in general be obtained through the following procedure:
Matching of the full theory with an effective theory at a scale p = mw, using an effective Hamiltonian
and performing an evolution of the Wilson coefficients from my down to u ~ O(m;), thus resumming all
large logarithms of the form o (mp) In™ (%), wherem < n (n = 0, 1,2, ... ). In theleading logarithmic
approximation, which we use here, m = n. In our case, which is B, — - now an enormous short cut is
possible from observing that the effective Hamiltonian in eq. (2.18) for b — s+ is identical for b6 — sy~
to this order of ;n-%v-:

1 e
Hepy (b= 57) = Heps (6~ o77) + () @2

The proof goes as follows: One can ask, if there are more operators needed for b — s+ than included
in H.z5(b — sv) and try to find an operator 5.X b with dim(X) < 3 and containing two photons! Here X
must be a gauge and Lorentz invariant structure made out of quark and photon fields, masses and covariant
derivatives D, = 0, +ieQ,A,. (For the moment we shall work in zeroth order of the strong interactions.)
When constructing the full set of physical operators, the equations of motion (EOM) can be used to reduce
the operator basis:

iDg=m,q, D,F* = eQ,qv"q, 0, F* =0. 4.3)

Here F#*, Fr = %e“""’" F,z denote the photon field strength tensor and its dual, respectively. For chiral
fermions we have the following EOM, which can be obtained with the identities given in eq. (A.41)

iPby = mybr , 5Lip = m,SL=m,5R. 4.4)
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Other useful identities in this context are:
1 1 ; :
D*>=p? - §quaF y Du= E(D'Yu +9uP) , [Dy, D] = ieQ,F,, . 4.5)

As aresult, using the EOM gives either a mass, a current or remains in the operator basis O; _g eq. (2.18)
or gives contributions to the FCNC self energy. The latter will be absorbed in the on-shell renormalization
and does not give any contributionto b — syy

2(p? =md)b=355(p%=m?)=0. 4.6)

s

Here p, p’ is the 4-momentum of the incoming b-quark, outgoing s-quark, respectively. To display the
foregoing we give some examples of EOM operator identities:

e F, sy*D"bL = %§a,,.,(mbR + m,L)bF* ~ O7
e 5(:0)% = m3sb
o my5D?b = —m35b — TteQ,50Fb

o 57, (D F*)b = eQq57.,b47"q

Since after applying the equations of motion there exists no gauge-invariant FCNC-2-photon operator
with field dimension < 6, the set of operators given in eq. (2.18) is a complete basis for both & — sy and
b — sy~ decay [10,51]. Hence all the results obtained for the former, a collection of which can be seen
in section 2.2, can be used for the latter, like the LLog evolution of the Wilson coefficients.

4.1.1 B, — ~~ decay in the effective Hamiltonian theory

Having convinced us that the set-up eq. (4.2) is correct, we can now turn to an explicit calculation of LLog
improved FCNC 2 photon amplitudes. The amplitude for the decay B, — v can be decomposed as
[32.33,35]

A(Bs = 717) = € (k1)€j (k2) (A* 9w + iA™ €uaphihy) @7
where the k; and € (k;) denote the four-momenta and the polarization vectors of the outgoing photons,
respectively !. Alternatively, we can write the amplitude in terms of photon field strength tensors:

A(B, > vy)=T*F,,F" +iT"F, F}"” . 4.8)

We have for real photons k? = 0, €;.k; = 0 with i = 1,2, k;.k; = m}_ /2 and further for a B, decaying
at rest the additional conditions ¢, .k, = €3.k; = 0. Then the following equations result:

At =-mj Tt, A= =2T". 4.9)

Also, in the rest frame of the B, meson, the CP = —1 amplitude A~ is proportional to the perpendicular
spin polarization €] X €3, and the CP = 1 amplitude At is proportional to the parallel spin polarization
€1.62. The ratio

4| A+|2

= |TH?/|T-]? = 2
rcp I l /l l m4B,|A—I2

(4.10)

!'We adopt the convention T'r(v*v* % vPys) = 4ie***?, with €' = +1.
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for ¢ = u,cand Q, = —1 for ¢ = d, s, . The QCD-corrected Wilson coefficients {n leading loganth:mc
approximation [6,7], Wthh are discussed in section 2.2, C_¢(p) and Ceﬁ(p) enter the amplitudes in
the combinations

Cu(p) Ca(p) = (C3(p) — Cs(u))Ne + Ca(p) — Ce(n) ,
Ce(p) = (Ci(p)+Cs(p) — Cs(p))Ne+ C2(p) + Ca(p) — Ce(p) »
Cs(p) = Ci(p) = (Cs(p) + Ca(p))(Ne + 1) = NCs(p) — Ce(n) »
D(p) = Cs(p)+Ce(p)N. . (4.12)

The Feynman rules used are given in appendix A.3. Note that the chromomagnetic operator Og does not
contribute here in this order of a,. The functions I(m,), J(m,) and A(m,) come from the irreducible
diagrams with an internal g-type quark propagating, see Fig. 4.1, and are defined as

2
I(my) 1+ mzq A(my) ,

m% —4m?
Jmg) = 1——g—LtA(m,),
2
B e, ot
Alm,) = ln(m3'+ mag s 1) —ir m,
: m —\/m — 4m? 4mg =
B, B, 7
2
4m?2
A(my) = - (2arctan(—mB—B')—7r) for o B; S 4.13)

Detailed analysis shows that the diagram Fig. 4.1 requires the calculation of three different types of inser-
tions: The current-current operators O; 2 only give a contribution to a charm loop. They have the structure
YuL ® v, L, which leads after integration over the internal quark momentum to the function I(m,) given
above. In contrast, each of the penguin operators O3_¢ has two possible insertions, a “direct” one and one
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after Fierz ordering of the fields. In the former just internal b- and s-quarks appear and the operators have
to be “turned” by +90° to generate a diagram consisting of one continuous b — s fermion line. In the
latter the four-Fermi operators, which contribute to all 5 active flavours ¢ = u, d, s, ¢, b, are rearranged
with the help of the Fierz transformation given in appendix A.3. This simplifies the calculation as it cir-
cumvents a trace over y-matrices. The procedure is legitimate since the resulting amplitude is (IR and
UV) finite. The operators O3 4 have the same Dirac structure as O; 2 ~ v,L ® 7, L which is reproduced
after Fierz transformation, see eq. (A.21). Therefore, here no new integrals appear. The operators Os ¢ are
of 7,L @, R type. “Direct” insertion leads to the functions A (my), J(m,) given above. They contribute
to the B, — -+ amplitude only via an internal s- and b-quark. Here care must be taken of the left-right
structure, which is different for the s- and the b-quark and results in the sign difference in the correspond-
ing term proportional to D(u) in the CP-even amplitude A* given in eq. (4.11). The Fierz transformation
of Os ¢ results in a scalar/pseudoscalar coupling ~ R ® L, see eq. (A.22). The analytical expression for
such an insertion is minus the one for v, L ® v, L, which can be checked after explicit calculation. From
here the minus signs in the functions eq. (4.12) can be understood.

The parameter A, enters eq. (4.11) through the bound state kinematics. At the quark and meson level,
the decay kinematics are given

b(p) — s(@)v(ky,a)v(ke€2), 4.14)
By(P) — ~v(ky,e1)v(ks,€2), (4.15)

respectively. A problem lies now in the intermediate propagators of the reducible diagrams, see Fig. 4.2,
where we need to evaluate p.k; and p’.k;, 1 = 1, 2. The answer cannot be given just by using kinematics,
energy/momentum conservation in a chosen frame and a model is necessary here. For definiteness, we
consider the decay B, = (bs) — 7. We write the momentum of the b-quark inside the meson as
P = mpv + k, where k is a small residual momentum, v is the 4-velocity, which connects the quark with
the meson kinematics through P = mp,v and P is the momentum of the meson. In the B, rest frame,
v = (1,0,0,0). Now following [16], we average the residual momentum of the b-quark through

<Ky > = (Al + 3/\2)va 5

3w e

2my
A

<kakp> = F(9ap — vavs) , (4.16)

m2

where A, A, are matrix elements from the heavy quark expansion. Using P = p — p/, P.k; = —*,
v.k; = 72+ and the HQET relation [16]

& 1
= Ay — —(A A :
mp, = mp + 2mb( 1+3X2) 4.17)
one gets:
mp, o
p‘ki = 2 (mBJ T A’) ]
mn -
p,'kt' T 5T 2B’ As ’
(mi')y?=p* = mi-3x,

(mif)2=p? = (mi/!) —m}, +2mpA, . 4.18)
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The non-perturbative parameter A, can be related to A, which has been extracted (together with \;) from
data on semileptonic B*, B° decays in ref. [31], and the measured mass difference Am = mp, — mp =
90 MeV [39], defining A, = A + Am. The matrix element ), is well determined from the B, — B,
mass splitting, A, = 0.12GeV2. With the help of eq. (4.17), the correlated values of A and A, can
be transcribed into a correlation between A,y and m;. We select 3 representative values 2 (mj, A,) =
(5.03,370), (4.91,480), (4.79, 590) in (GeV, MeV) to study the hadronic uncertainties of our approach.
Note that we assume here that A, A, are flavour independent. Furthermore, we have used the definition

< 0|5Y,7sb|Bs(P) > = ifs,P., 4.19)

which leads together with the off-shellness of the quarks inside the meson to the matrix element of the

pseudoscalar current
mp
< OIS‘YsbIB,(P) D = _1fB'-nT;-f-T+_7n_:lf . (4.20)
The auxiliary function g_ = g_(m{//, A,) is defined as
g- = mp,(mf + m N2 4 R, (m}, — (m{f + mefN)?) . @.21)

Note that in the limit A, — m, m:'f’f — my , and using mp, = my + m, we recover the result obtained
by the constituent quark model [32,33,35], ignoring QCD corrections. Using the above expressions, the
partial decay width is then given by :

1 &
[(B, = 77) = (4|AT]* + 5mi,|A7[) - (422)

32mmp,

Now, there are 2 new observations to be made:

First, the Wilson coefficients in eq. (4.11) depend on the scale u. Therefore, since the behaviour of these
short-distance (SD) coefficients under renormalization is known from the studies of B — X,v [43,44,6,7],
one can give an improved width for B, — v+ by including the leading logarithmic QCD corrections by
renormalizing the coefficients C,_g and C-?ﬁ from p = mw down to the relevant scale up =~ O(m;).
The explicit O(a,) improvement in the decay width I'(B, — <) requires the calculation of a large
number of virtual corrections, which we have not taken into account. Varying the scale u in the range
%‘1 < p £ 2my, one introduces an uncertainty, which can be reduced only when the complete next-to-
leading order (NLO)-analysis is available, similar to the recently completed calculation for the B — X,y
decay [43,44].

The second point concerns the strong dependence of the decay width I'(B, — yy) on A,, T ~ O(Kl?)
ineq. (4.22). It originates in the s-quark propagator in the diagram with an intermediate s-quark in Fig. 4.2.
In the earlier work the authors of e.g. [32] evaluated the decay width with m, = mp, assuming that the
constituent quarks are to be treated as static quarks in the meson. This is a questionable assumption. In the
HQET inspired approach, this gets replaced by A,, which is well-defined experimentally. This formalism
implies, that the decay width I'(B; — <) will involve the paramete: A, which avoids the unwanted
uncertainty on mg.

2We choose (A1, A) = (—0.09, 280), (—0.19, 390), (—0.29, 500) in (GeV?, MeV) from Fig. 1 in [31].
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Figure 4.1: The generic diagram contributing to b — sv+y in the effective theory due to the (Fierz ordered)

four-quark operators. The diagram with interchanged photons is not shown.
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Figure 4.2: The reducible diagrams contributing to b — sv~. The blob denotes the FCNC operator O7.

The diagrams with interchanged photons are not shown.

The branching ratio and the CP ratio as a function of the scale p for different values of (mj, A,) are
discussed in section 4.4 including the O--type long-distance (LD) estimate.

In the lowest order, which can be recovered at 4 = mw, C7 and C; are the only remaining non-
zero Wilson coefficients. The reducible diagram (1PR), which is proportional to C7, contributes to A%,
however, the irreducible one (1PI) (~ C2(mw) = 1), represented by the charm loop, enters only the
CP-odd amplitude A~. In contrast, in neutral pion decays 7% — v+ the electromagnetic vector coupling
results in an CP-odd amplitude and hence A* = 0 and the CP ratio ~ |A*|?/| A~|? vanishes. The authors
of [32], analysed the b — s~y transition in the lowest order in the full theory (SM). This amounts in the
calculation of in total 2 x 34 diagrams (the factor 2 is due to the diagrams with interchanged photons).
They further interpreted the total 1PI amplitude as a (local) FCNC 2 photon operator with canonical field
dimension 8:

Oy = (Qee)?s (FL0" Fy# + F2,0*F{) y5Lb. 4.23)

After applying the EOM to the photonic part of O.,, the following Lorentz structure is obtained in the B,
rest frame

X =[a.(f—¥)-he(h - )L, 4.24)
which leads to the relation O.,, = (Q.€e)?k;.k25X b and the 1PI amplitude:
4GF
A(Bs = yhpri(p = mw) = —W,\,Cﬂ(mw)(aﬂ) . (4.25)

Note that we used on-shell conditions for the photons. The initial value of the “Wilson™ coefficient is
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given as

1 1

Note that O.,, is the only operator with dimension < 8 after applying the EOM containing 2 photons and
2 fermions [33]. One can try to renormalize this dim 8 operator as a point. As a result, the leading order
anomalous dimension of O.,, vanishes.

4.2 QCD Sum Rule for the B; — ¢y Form Factor

In the description of exclusive B decays hadronic matrix elements < X |O;|B > are involved. Here X
is any hadron (with mass mx) and the amplitudes just mentioned are purely non-perturbative objects.
At present there are two methods to calculate them in a model independent way and, depending on the
mass value of X, one can be chosen. For so called “heavy-to-heavy” transitions, where X contains one
heavy quark, the heavy quark expansion technique (HQET) is most appropriate. Heavy quark symmetry
implies that the form factors, which appear in the Lorentz decomposition of a decay into a hadron with
certain spin, are all related to one single function, the Isgur-Wise function £ (v.v’) [124]. Here v, v/ denote
the velocities of the B, X, respectively. Moreover, it can be shown that at the zero recoil point, that is
where the final hadron is at rest in the rest frame of the decaying B, we have the normalization (1) = 1.
The behaviour of £(v.v”) for general values of the argument v.v” # 1 cannot be calculated. It is of non-
perturbative nature. The advantage is that there is just one universal function describing all transitions in
the heavy quark limit. From kinematical considerations one can get the possible range of the dot product
as v.v' = (m% + m% — ¢?)/2mpmx, where ¢> = (mpv — mxv’)2. The maximal momentum transfer
g2,z = (mB — mx)? corresponds to the minimal value of v.v’ = 1. The decay under consideration
Bs; — ¢ requires g> = 0 for an on-shell photon, and we have v.v’ = 2.73. For such “heavy-to-light”
decay an extrapolation too far from the zero recoil point is needed, and the QCD sum rule method is more
useful.

The decay B, — ¢y is CKM allowed and, in the language of the operator basis given in eq. (2.18),
involves the operator Oz, (see eq. (4.29) below). It has been studied in the literature in the framework of
Light-cone QCD sum rules [125], which is based on the approximate conformal invariance of QCD. Here
the sum rule is evaluated in terms of meson wave functions on the light-cone. These universal functions
with increasing twist replace the expansion in “classical” QCD sum rules into many vacuum expectation
values of operators with increasing dimension. We show the calculation of the form factor F; in the decay
B, — ¢ in the framework of the ordinary QCD sum rules [126], including the contribution from the
gluon condensate [37].

4.2.1 Calculation of the sum rule

The amplitude for the B, — ¢y transition A(B,; — ¢y) =< ¢y|H.ss|Bs > reduces to

A(B, = ¢y) = “Cmy < ¢(p')|50,,Rg"b|Bs(p) > 4.27)
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with the constant C
C= %#%:mc;’ﬁ(u) : )
where we just take the contribution due to the electromagnetic penguin operator O7
Or = T#gc,a,w(m,,}rz + myL)bo F* 4.29)

into account and put m, = 0, justified by m; < m;. Here € and q are the photon polarization and the
(outgoing) photon momentum, respectively. Lorentz decomposition gives further:

< ¢(9)|30,,Re"B|Bs(p) > = i€upee® PP Fi(d%)
+ (p.g - puq.€?)G(q?) , (4.30)

where p, p’ denote the four-momenta of the initial B,-meson and the outgoing ¢, respectively and efj is
the polarization vector of the ¢-meson. At ¢? =0 bbth form factors coincide [127] and it is sufficient
to calculate F; (0). Note, that the form factors introduced above are in general functions of two variables
¢? and p’?. Since the ¢ is on-shell, we abbreviate here and in the following unless otherwise stated
Fi(¢%) = Fi(¢%, p? = m)).

The starting point for the sum rule is the three-point function [128]

o P / d*2eP* Y < O|T[Jo(2)Tu(0)J5(v)][0 > 4.31)

where J, = .8, Js 2 @inbad T, = 5%0,‘,,q"b correspond to the electromagnetic, pseudoscalar
currents and the penguin operator, respectively. Performing now an operator product expansion (OPE)
of T,,, we obtain a perturbative term, the so-called bare loop, and non-perturbative power corrections,
diagrammatically shown in Fig. 4.3. The bare loop diagram can be obtained using a double dispersion
relation in p? and p?,

R T - . p(s, s :
= — d ds' ; : :
Drare = /:n : s /0 s e P + subtractions (4.32)
Technically, the spectral density p(s, s’) can be calculated by using the Cutkosky rule, namely, by replac-
ing the usual propagator denominator by a delta function:

7 — —2mi6(k? — m?)0(ko). As aresult we get

N, 4
'y c_ 4

p(S, S) = ?mbm . (433)
OPE enables us further to parametrize the non-perturbative effects in terms of vacuum expectation
values of gauge-invariant operators up to a certain dimension, the so-called condensates. We consider
up to dimension-5 operators; i.e. the quark condensate, gluon condensate and the quark-gluon (mixed)
condensate contributions (Fig. 4.3). This calculation is carried out in the fixed point gauge, i.e. A,z* = 0.

We get
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A A

Figure 4.3: Contributions of perturbation theory and of vacuum condensates to the B, — ¢y decay. The

dashed lines denote soft gluons.

5 e e e L i [ doo?
S O T ¥ >/0 f’-’/o y/o ac
(€1 + c2P? + caP?)e (i +d:P?+ds P7)
2 2
= 5 my m}
Tiim—5 = —-g<350Gs> +
im—5 2 [2(p2 - m§)3pl2 3(p2 e mg)zp,4
1
202 - md)2p? 4.34
t Gy (4.34)
where
ey = gy,
2 = mpzi(l-z-y),
¢z = mz223+y)(l-z-vy),
d = miz,
oy = z(l—z—y) )
d3 = y(l-z-y). @.35)
Here we used the exponential representation for the gluon condensate contribution:
1 B 1 /OO da a'n—le—aD (4 36)
D~ (n-1)lJo : :

The momenta P, P’ in eq. (4.34) are Euclidean.
For the calculation of the physical part of the sum rules we insert a complete set of on-shell states with
the same quantum numbers as B, and ¢ in eq. (4.31) and get a double dispersion relation
2

m B 1
Tt = —Bs5s m
s P e T

F,(0) + continuum , 4.37)
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where f, and fp, are the leptonic decay constants of the ¢ and B, mesons respectively, defined as usual
by

<Oalp> = myfpet,
< 0Js|Bs(p) > = fB,mp,/ms . (4.38)

We have absorbed all higher order states and resonances in the continuum.

Now, we equate the hadron-world with the quark-world by Tphys = Tpare + 13 + T4 + T5. Using
quark-hadron duality, we model the continuum contribution by purely perturbative QCD. To be definite, it
is the part in eq. (4.32) above the so-called continuum thresholds so and s;,. To get rid of subtractions and
to suppress the contribution of higher order states, we apply a double Borel transformation B [126] with
respect to p? and p’2. We make use of the following properties of the Borel transform:

’ 1 5 (-1 e—m’/M2
BlGr—ma®) = Gomn o i
B(e™®"") = (1 -aM?). (4.40)

Finally, this yields the sum rule:

Fi(0) = exp( B‘+M,2) 1/ ds/ ds'p(s, s')e~*/M*~s' /M7

fB, ¢m¢m

ik % (-m3/M?)1y mj my
g <58 > O —mg( T+ o m 2M2)]

- % <G> /x,,..,, N(z)dz} , 4.41)
: 0

- - ”2 . a
where 5 = min(s — m2, sh) and Zyar = ~i4~7. Here we used the parametrization
550 M2+ M

-

g<30Gs> =md<3ss> . 4.42)

The last term in eq. (4.41) is due to the gluon condensate contribution and the function N (z) is defined
by:

iex ( mg

48 P\ M2 (1 — z — s M2 /M)
+ SM*M7z — M*M"z* - 2M*M"?z? — M®2?)/(M*(-M" 4+ Mz + M?z)°)4.43)

N(z) YmIMSz(mZ M — aM M + 5M2M"z

4.2.2 Analysis of the sum rule

First we list the values of the input parameters entering the sum rules (eq. (4.41)), which are not included
in Table A.1: m3 = 0.8 GeV? [129], < §s >= —0.011 GeV? [130], 22 < G? >= 0.012 GeV* [126],
mg = 1.019 GeV and f; = 0.23 GeV [131].

We do the calculations for two different continuum threshold values so = 33 GeV? and sp = 35 GeV?
and take s; = 1.8 GeVZ. In Fig. 4.4 we present the dependence of F;(0) on M? and M" for sp =
33 GeV2. According to the QCD sum rules method, it is necessary to find a range of M2 and M"?, where
the dependence of F;(0) on these parameters is very weak and, at the same time, the power corrections
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Figure 4.4: The dependence of the decay constant F,(0) on the Borel parameters M* and M" for sy =
33 GeV2.

and the continuum contribution remain under control. From Fig. 4.4 and Fig. 4.5 follows that the best
stability region for F;(0) is 7 GeV? < M? < 9 GeV?, 2 GeV? < M" < 3 GeV? for sp = 33,35 GeV2.
We get:

Fy(0) =0.24 +0.02 . (4.44)

This agrees for our value of m; within errors with the result given in the literature, based on Light-cone
QCD sum rule calculations [125].

Numerical analysis shows, as also mentioned in [128], that the natural hierarchy of the bare loop,
the power corrections and continuum contributions does not hold due to the smallness of the integration
region, and the power corrections exceed the bare loop contribution. The gluon condensate contribution is
< 1% of the dim-3 + dim-5 condensate contributions and can therefore be safely neglected in numerical
calculations.

4.3 The B; — ¢y — 7y Amplitude using VMD

Starting with the amplitude for the decay B, — ¢ as input, we calculate the CP-odd and CP-even
amplitudes in B, — <y~ by using a ¢ — ~ conversion factor supplied by the VMD model. Here an
extrapolation of the B, — ¢y decay amplitude from p? = mj (needed for B, — ¢y) to p?> = 0
(required for B, — <) is necessary, such that the ¢ meson propagates as a massless virtual particle
before converting into a photon. Note that we suppressed in our notation the dependence of the form
factor Fy(¢%) = Fi(q?, > = m3) on the second argument p'2. We define here F} (Q?) = Fi(¢* = 0,Q?)
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Figure 4.5: The dependence of the decay constant F;(0) on the Borel parameter M? for fixed M at
so = 33 GeV? (solid) and so = 35 GeV? (dashed).

for virtual momenta Q2 = —p'2. We assume, that the form factor F; (Q?) is dominated by a single pole,
which is a good approximation for light mesons and write:
WP e
FI(Q ) 2 -Qz/m:ole &
Using an my,. of order 1.7 — 1.9 GeV, which corresponds to the mass of the higher resonances of the ¢
meson, we estimate F (0) = 0.16 + 0.02.
With the help of VMD [74,77,76] and factorization we can now present the amplitude for B, — 7.
Using the intermediate propagator W at Q% = 0, the ¢ — ~ conversion vertex from the VMD
mechanism

(4.45)

< 0|y em|o(P', €) >= €Q; f5(0)mge, (4.46)
and the A(B, — ¢) amplitude, see eq. (4.27), we get:
ABs =+ ¢ = 17) = € (k1)és(ka)(Afp, guv +iALp, Euvapkihs) , 4.47)
with the CP-even (A, , ) and CP-odd (A7, ) parts:
mp —ml _
ALDO., == 2meb——2——F1(0)
= VIR (0)14(0) "("‘f,;; 78 o8ty
Alp,, = 2mebF1( ) .
= 2L RO OGO 4.48)

where f4(0) = 0.18 GeV [75], Q, = —1 / 3and Cis deﬁned in eq. (4.28). The factor 2 stems from the
addition of the diagrams with interchanged photons. While for the analysis of the sum rule for B, — ¢y
we have used fg = fg(m3), here we take into account the suppression in f4(Q?) going from Q? = m}
to Q2 = 0. We treated the polarization vector ¢® as transversal and replaced € — €1, €® — €, ¢ —
ki, p’ = k,. The conversion factor y is defined as xy = eQ,’ 1509

M¢'
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Figure 4.6: Scale dependence of the ratio R(u) defined in eq. (4.50). The solid, short-dashed and long-
dashed lines correspond to the values (my, A,) in (GeV, MeV) as indicated in the figure. The dotted line
depicts the suggested choice of the scale u from B — X, studies in NLO [43,44,6,7]. The parameters
used are given in Table A.1.

4.4 Numerical Estimates of the z, (m;, A,) Uncertainties and the O; Medi-
ated LD Effects

We combine in this section the results obtained in the previous sections 4.1-4.3, i. e., the LLog QCD
corrections, the HQET inspired bound state model and the O7-type LD effects in B, — v+ decay. We
give numbers for the B, — <y branching ratio and CP ratio and discuss the dependences on and the
uncertainties due to the renormalization scale u and the bound state parameters (ms, A,).

Adding the O7-type LD amplitudes (eq. (4.48)) to the short-distance ones (eq. (4.11)), we obtain the
B, — v~ width including the B, — ¢y — 7 contribution:

1
327m B,

il - _
Ir'B, = “/"/)SD+LDO., = (4)A* + AIDO, |2 = §m43_|A + ALDO., %) . (4.49)

Here a comment about double counting is in order. The “LD” amplitudes considered here, which involve
the Wilson coefficient C7, also contain a piece from perturbation theory. It originates in the bare loop
diagram in the calculation of the sum rule and enters the value of the form factor F;. Without this pertur-
bative part, it is not possible to perform an operator product expansion; it corresponds to the leading term
in the sum rule and hence there is no way to avoid it. The “SD” amplitudes on the other hand include also
contributions from small momenta. As a consequence, by adding the perturbative and the non-perturbative
parts in eq. (4.49) there is certainly some double counting present. However, as usual, it is assumed that
the SD parts are small in regions where the LD ones are large and hence the effect of this is small.
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First we study the leading logarithmic u-dependence of the ratio

I'(Bs = v7)(1)sp+LDo,

5 4.50
(B, b 97 Mot 5D 500 e

R(p) = ¢

In the numerical analysis we neglect the masses of the light quarks, i. e. we use I(m,) = 1forg =
u,d, s and m,A(m,) = my,J(m,) = 0 in eq. (4.13). From Fig. 4.6 we find an enhancement factor
of 1.3 — 2.3 relative to the lowest order result obtained by setting 4 = mw, depending on the model
parameter (ms, A,). Varying u in the range 2.5 GeV < p < 10.0 GeV, gives an uncertainty AR/R(u =
5 GeV) =~ +(17,19,22)% for A, = (590,480, 370) MeV, respectively. Here one can argue, that the
choice p = Tt takes into account effectively the bulk of the NLO correction as suggested by the NLO
calculation for B — X,y [43,44].
Table 4.1 shows the combined x and model parameter dependence of the branching ratio

I'(Bs = 77)sp+LDo,
L tot (Bs)

The dependence of the form factor F (m'{},) on the b-quark mass has been extrapolated from Fig. 3 [125].
Here F; (0) = 0.14,0.15,0.16 has been used for m; = (5.03,4.91,4.79) GeV, respectively. Qualitatively,

B(B, — ‘Y'Y)SD+LDO7 = @.51)

u A, =370MeV | A, =480 MeV | A, = 590 MeV

(GeV) | my =5.03GeV | my = 4.91 GeV | mp = 4.79 GeV
2.5 |1.43-10"¢ 8.1-1077 5.0-1077
5.0 |[1.18-10°® 6.8-1077 43-1077
10.0 | 0.99-10"¢ 5.9-1077 3.8-1077

Table 4.1: Branching ratio B(Bs — vY)sD+LD,, for selected values (my, A,) and the renormalization

scale p.

the influence of the LD contribution through B, — ¢y — 7 reduces the width because of the destructive
interference of the LD + SD contributions. To quantify this, we define

B(Bs; = 7Y)sp+LDo, — B(Bs = 77)sD

K= 3 4.52
B(B. - 17)sp (3%

with I'(B; — v7v)sp given in eq. (4.22). We find, that x lies in the range:
-15% <k < -27% , (4.53)

depending mainly on (mj, A,). To summarize, lowering the scale u and A, enhances the branching ratio
B (Ba =¥ 77)'
The dependence of the CP ratio [35], [121], here including our LD O7-type estimate
+ + 2
4|A* + Afp,, | ,
mp,|A™ + Arp, I*

TCPSD+LDo; = 4.54)
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m A, =370MeV | A, =480MeV | A, = 590 MeV
(GeV) | mp = 5.03GeV | my = 4.91 GeV | mp = 4.79 GeV

2.5 | 0.79 (0.80) 0.88 (0.88) 0.89 (0.90)
5.0 |0.69(0.71) 0.73 (0.75) 0.70 (0.73)
10.0 | 0.61(0.63) 0.60 (0.63) 0.55 (0.60)
mw | 0.38(0.41) 0.33 (0.36) "0.26 (0.33)

Table 4.2: The CP ratio rcp sD+LDo, &iven in eq. (4.54) for selected values (ms, A,) and the renormal-
ization scale p. The values in parentheses correspond to rcp as defined in eq. (4.10) without taking into

account the Oz-type LD effects.

on the renormalization scale and on the bound state parameters can be inferred from Table 4.2. The values
of rcp without taking into account the LD contribution from the decay chain B, — ¢y — - are also
shown in parentheses. As can be seen, the O-type LD effects reduce the ratio [121]. Further including
the LLog QCD corrections enhance rcp sp+LDo, by a factor of 1.6 — 3.4 compared to the lowest order
result (u = my ), depending on the (m;, A,) parameter set. As a rule, both lowering x and increasing A,
enlarge the value of the CP ratio.

4.5 Estimate of the Long-Distance Contribution through b — s¢ in B, —
vy Decay

In this section we estimate the additional LD effect due to the dominant four-quark operators O; and O,
(see eq. (4.56)) through the B, — ¢ — ¢y — v chain decay. We use at quark level b — sy followed
by b — sv decay [76] and we pass to the hadronic level using the transition form factor F; (0) from the
amplitude A(B, — ¢) [37], [127] given in eq. (4.44). For both the conversions ¥y — v and ¢ — v
we employ the Vector Meson Dominance (VMD) model [76]. The conversion ¥ — < needs further
manipulation because of the strong contribution from the longitudinal part of the 1 meson. We extract the
transverse part using the Golowich-Pakvasa procedure [76], [77]. Further, we calculate the O, ;-type LD
effect to the B, — ¢y decay using the method given in ref. [36], namely, by taking into account the virtual
c-quark loop instead of the hadronization of the cc pair. This procedure was originally applied to estimate
the LD effect in B — K™+ decay and uses operator product expansion and QCD sum rule techniques.
Finally we present amplitudes for the decay chain B, — ¢¥ — ¢y — v7.

4.5.1 The chain process B, — ¢ — ¢y — 7y

We first consider the additional contribution to b — sy from b — s¥; — sv, where ¢; are allcc J = 1
bound states, see Fig. 4.7. The relevant part of the effective Hamiltonian describing this process is given
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-
V2

with the dominant four-Fermi operators

Hess = 4—=ViVa(C1(1)O1(p) + C2(1)O2(n)) . (455)

| e
Beg €pYu—5 ba

Ol &= §a7p

1- 1-
0, = 3v, 2"%57,, 2"51;. (4.56)

Here o, B are SU(3) colour indices and V,-g') are the relevant elements of the quark mixing matrix. The
initial values of the corresponding Wilson coefficients are Cy (mw) = 0 and C2(mw) = 1. To include
leading logarithmic QCD corrections we evaluate C 2(u) at the relevant scale, u = m; for B-decays, and
this takes into account short-distance effects from single gluon exchange. The analytical expressions can
be found in [6,7]. Further we have used the unitarity of the CKM matrix ViV = =ViiVa — V5, Vo and

(2]}
o

@l

Figure 4.7: The diagram contributing to B, — ¢ — ¢ry.

have neglected the contribution due to an internal u-quark, since V;,V,, < V3V = ;.
Using factorization, we obtain the inclusive decay amplitude for the process b — s [76] as

A(b = sp(ky, ) = —iC fy(m3)my57*(1 — v5)be¥ . @4.57)
Here
L —%A,ag(p) (4.58)
with, assuming naive factorization,
o) = Calu) + 2 59

where N. = 3 in colour SU(3) and k,, €% are the momentum and the polarization vector of the 1,
respectively. In eq. (4.57) we used the matrix element

< Oley,uclp(kr, ) >= fy(my)myel . (4.60)
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At this stage there is a critical remark about factorization in order, concerning the value of a2 (u) used.
The decay under consideration is a class II decay following the classification of [132]. In general eq. (4.59)
is written as
Ca(p)

Nc
where €; (¢) and €;(u) parametrize the non-factorizable contributions to the hadronic matrix elements.
agﬁ takes into account all contributions of the matrix elements in contrast to a2(u), which assumes naive
factorization €; (1) = e2(u) = 0. Especially e2(z), which is the colour octet piece, has sizable contribu-
tions to naive factorization in class II decays [99]. Furthermore, the additional problem is not to know the
correct factorization scale. In order to include the non-factorizable corrections we use the effective coeffi-
cient a§™, which is determined experimentally from the world average branching ratio of B — K (*)4 as
[99]

a§T = (Ci(w) +

) 1+ a(p)]+ Cz(p)ea(p) , (4.61)

aST=0.21. (4.62)
This choice restores the correct scale and is u independent. Writing the ansatz
eff _
az = Ci(my) +£C2(my) , (4.63)

it follows that £ =~ 0.41 withC;(m;) = —0.25 and Cz(m;) = 1.11 for the input values given in Table A.1.
For comparison, naive factorization would give a2(ms) = 0.12.

Our aim is to replace the 1 meson with the photon 7 and to construct a gauge invariant amplitude.
We remove the longitudinal component of the meson % and then e‘[j can be converted into the polarization
vector €] of the photon y. We utilize the Golowich-Pakvasa [76],[77] procedure making use of the Gordon
identity, namely v,7a = gua — 10,o. We start with the vertex 5v,(1 — 75)b and using the equation of
motion pb = myb and momentum conservation p = p’ + k;, we get

57,(1 - 75)b = mib{w«l +75)b+ 57,1 (14 75)b} 4.64)

where p, p’ are the momenta of the b- and s-quark, respectively. We neglect the first term in eq. (4.64)
since 2+ < 1 and p'*¢eX = 0, which follows from €Xp* = 0 in the rest frame of the b-quark and the
transversality condition €2k} = 0, where €. is the transversal polarization vector of the % meson [76].
The second term can be written as

mibgy,,yl (1+75)b= mib{§(1 + v5)k1,b — i50,0k5 (1 + 75)b} - (4.65)

Only the o, term in eq. (4.65) couples to the transversal component of the 3 and we obtain the corre-
sponding amplitude as

A(b — syT) = —2C fd,(mi)TZ—’:'Ea”akf RbeT (4.66)

where R = l%'m denotes the chiral right projection. Note that the coupling structure is the same as due to

a direct use of O7 = Lﬁ,-sor,.,,m;,RbF‘"’ [6,7] with the photon field strength tensor F** and m, = 0. For
the %7 — ~ conversion following the VMD mechanism we have

< 01T, etl¥T (K1, €7) >= eQcfy (0)myel | 4.67)
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where Q. = 2/3 and f,(0) is the coupling at k? = 0, see eq. (4.71). Using the intermediate propagator
of the ¥ meson at k? = 0, we get

A= spT = s7) = 2C £ (0) eQc S‘U‘mki" Rbez i (4.68)

The expression for the amplitude eq. (4.68) can be comp]eted by summing over all cc resonant states
¥(1S5),%(2S5),¥(3770),1(4040), 1(4160) and 1(4415)

T o eQc _ T
A(b — spT = sy)=2C Z; £2.(0) m: 50,akS RbeL . (4.69)
The various decay couplings fy, = fy, (m?,,..) are calculated using

_y 3my;
f2 =T > ete) oy 4:02 ; 4.70)

and the measured widths from [39] and given in Table 4.3.

i | fu:[GeV]
foas) | 0405
foasy |0282
fy(3r70) | 0.099
Forcn | 0605
Foaaso) | 0180
fy(aa1s) | 0.145

Table 4.3: Vector meson coupling constants used in the numerical calculations.

Now we have to extrapolate the couplings fy, (k) from k7 = mJ, to k} = 0. We use the suppression
factor [76]

k= f315)(0)/ fias)(my) = 0.12 @71)

obtained from data on photo production of the 1 and assume x to be universal for the other (higher)
resonances. > We now use eq. (4.69) to find the matrix element of B, — ¢y through the b — spT — sy
transition at quark level. The matrix element [127] is given as

< ¢(9')|50,a RESD|B,(p) > = ifuuwf¢"PpP'aF (k2)
+ (p.ky - puk1.e?)G(KD) , @.72)

and we get the amplitude

A(Bs = ¢y) = 2C_'e’1‘e¢"z f""( )ch{ze,,,,p,,k" E
2 _
i Sy TN @7

3This is consistent with x = 0.11 [75] based on a dispersion relation calculation.

+ 9w
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where €y, €? are the polarization vectors and k;, p’ are the momenta of the photon and ¢ meson, respec-
tively. We used G(k? = 0) = Fy(k? = 0) [127]. Note, that the form factors introduced above are in
general functions of two variables k{ and p”?>. We abbreviated here Fy (k7) = Fi(kf, p”? = m}) and use
the value F;(0) = 0.24 £ 0.02 [37] obtained in section 4.2.2.

VMD vs soft gluon interaction

Now we want to compare our result for A(B;, — ¢) eq. (4.73) with the same amplitude calculated by
the method worked out in [36]. This method is based on the new effective quark-gluon operator obtained
by the interaction of the virtual charm quark loop with soft gluons, in contrast to a phenomenological
description in terms of 1 resonances converting into a photon, as we used. In this approach, the operator
O, does not give any contribution to the matrix element of B, — ¢y for an on-shell photon. The Fierz
transformation of the operator O, reads (using eq. (A.13) and eq. (A.21))

O2 =1/N.0O;1 +1/2 Ooctet » (4.74)

where

1-17s
‘2

1 —
Ooctet = 4(E7 2T &) (Fru—52T°b) 4.75)

and T® = A°%/2 are the SU (3) colour generators. Then the only contribution comes from the colour octet
part Oocter. Using the operator O, as a vertex of the virtual charm quark loop, which emits a real
photon, and taking into account the c-quark-soft gluon interaction, a new effective operator is obtained.
The matrix element of this operator between B, and ¢ meson states gives the long distance amplitude of
B, — ¢y decay due to the O, operators and it is written as (see [36] for details; there the amplitude for
the decay B — K™+ is given)

2 2

m m ~
A'(By = ¢7) = 20" *{icuupe kP L+ —22o—2g,, 1}, (4.76)

where C’ = %%%—Amé‘)- . The form factors L and L are calculated using QCD sum rules [36],

2 2
my mp My
L= :

m a2 [P ~opt () oMY 0 ol M2
{48 % <G >_/mzb/M2dse [S M2+M,2(1 st)(l"l'sMg)]

7= 2 e N2 2 2
i m0<ss>mb_47ra,<ss> mp my _my
2 2
= my mB m¢
L = 2

m s 2 [ —mp MY m M7
R0 > | ahew e g (1~ 200+ 5]

2 = 2 & 2 2 2
mg < 8s > mj 16ra, < 55 > my mj mj
- 2 1 =2kyy- 4,
S 27 1+ aga)lexp(=g72)} {0
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The Borel parameters M and M’ are varied to find the stability region for L and L. We use in the
evaluation of the sum rules the input parameters given at the beginning of section 4.2.2 and Table A.1.
The stability region is reached for 6 GeVZ < M? < 9 GeV? and 2 GeV? < M"? < 4 GeV? and we get

L = (0.30+0.05) GeV?,
L = (0.354£0.05) GeV®. (4.78)
Writing the amplitude for B, — ¢y as

AV (B, = ¢7) = ¢ ¢*” (i€ po kip” A=) + g, A7) | 4.79)
and using eq. (4.73), (4.76) and (4.78), we can compare the coefficients obtained by the two different
methods and get

- 15
% < 10%,
+_ g+
MATA-l < 5%. (4.80)

This means, that the amplitudes agree within 10%.

In our approach, the structure of the transition b — sy — sy is proportional to 7, l¢;1="-Ic‘f‘ (see
eq. 4.66), since we removed the longitudinal part of the % meson from the amplitude. Further, the form
factors F; (k%) and G(k?) in eq. (4.72) are related for a real photon (k? = 0), F; (0) = G(0). Therefore, in
the amplitude A(B, — ¢) only one form factor appears, which is F} (0) in eq. (4.73). However, the form
factors L and L in .A’(B, — ¢v) given in eq. (4.76) are not related. They are calculated separately using
QCD sum rules and this causes the difference between the ratios in eq. (4.80). In spite of the fact that the
amplitudes A* and A’* are different from each other, they coincide within the given approximation and
theoretical uncertainties lying in both methods.

O, ,2-type LD amplitudes in B, — vy

We can now present the amplitude for B, — 7~ due to the chain reaction B, — ¢ — ¢y — vv. We use
the intermediate propagator at zero momentum transfer and the ¢ — v conversion vertex from the VMD
model,

< 01Jy etl(, €%) >= €Q, f5(0)mged , 4.81)

where the polarization vector eﬁ is treated as transversal. To apply the VMD mechanism to the amplitude
eq. (4.73), we have to know the form factor at F; (k¥ = 0,p’? = 0). We employ the extrapolated value
Fy(0) = F1(0,0) = 0.16 & 0.02 [37] from section 4.3. Then the amplitude can be written with p/ — ks,
€ = ¢ as

A(Bs = % = ¢ = 77) = & (k)5 (k2) (9w Al + ieuwashiF Ay,
with the CP-even A% and CP-odd A~ parts

oz) . (4.82)

? m% —m?
U oF(0) 1 £, (05—,

+
Ao,

.- C -
Afp,, = 4Xm_a,Fl(0)Z,.: f,(0)eQ. . (4.83)
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where C is defined in eq. (4.58) and the conversion factor ¥ is given as y = —eQ,—;@ Here f4(0) =

0.18 GeV [75] and Q, = —1/3. The extra factor 2 comes from the addition of the diagram with inter-
changed photons.

4.6 Final Numbers and Conclusion on the Decay B; — ~v

In conclusion, we have reanalysed the decay rate B; — ~y in the SM and we included leading logarithmic
QCD corrections. Our model to incorporate the bound state effects in the B, meson is inspired by HQET,
resulting in the parameters (mj, A,). The strong parametric dependence of the decay rate I'(B, — v7)
and the CP ratio r¢cp on (mg, A,) and on the renormalization scale u has been studied by us. Further we
investigated the influence of the LD contributions due to the chain B, — ¢y — 7~. Depending on A,,
the LD-contributions induced by the operator O7 become sizeable.

For typical values (mp,A,) = (5GeV,370MeV) and u=5 GeV, we get (including long-distance
effects through Ov) the branching ratio B(B; — v7)sp+LDo, = 1.18- 10, which is a factor 1.9 larger
compared to the lowest order estimate for the same values of the parameters. However, varying (ms, A,)
and p in the allowed range results in significant variation on the branching ratio (see Table 4.1), yielding

0.38-107° < B(B, — ¥7)sD+LDo, < 1.43-107° . (4.84)

Improving this requires NLO calculation in the decay rate B, — <~y and further study of the bound state
effects. The present best limit on the branching ratio in B; — v+ decay [117] given in eq. (4.1) is still a
factor = 100 — 400 away from the estimates given here.

Likewise the CP ratio rcp sp+LD,, is rather uncertain. Varying m;/2 < pu < 2m; and (my, 1_\,) in
the allowed range, we get in the SM

0.55 < rcpsp+LDor < 0.89. 4.85)

Further we presented a VMD model based calculation of the LD contribution to CP-even A* and
CP-odd A~ decay amplitudes for B, — -y decay due to the inclusive process b — s via B, — ¢ —
¢y — v decay. The conversions to photons from both the ; resonances and the ¢ meson lead to two
suppressions and make the amplitudes in eq. (4.83) smaller than the ones from the LD effect from the
B, — ¢y — 77y chain decay [37]. To quantify this we estimated the ratio

A+()(B = oY = Py = vY) eff f2(0
p=| +( ) | = 47r2QC :é‘ Z v (2 : (4.86)
o, (Bs = &Y = 717) ICFo () 5 ™
and found
2% < p< 4%, .87

while varying 7t < u < 2m; and allowing agff to have a theoretical error of 25% as stated in [99]. We
compared the LD-contribution to B, — 77 decay resulting from intermediate ; production with the one
obtained by the interaction of the virtual charm loop with soft gluons [36]. We see that both amplitudes
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are in good agreement within the accuracy of the calculation. The new LD contribution resulting from the
four-quark operators O, and O is smaller compared to the one of the operator O~ [37] and affects our old
estimate given in eq (4.84) for the branching ratio B(B; — 7Y)sD+LD,, [37] by less than 1%.

Another LD effect in B, — v+ decay is the one due to intermediate D,, D; mesons [133]. At quark
level this involves the four-Fermi operator transition & — c¢s. The calculation cannot be done by first
principles and hence is not straight forward, as the diagrammatic structure is the one of charmed mesons
in a loop, which are no fundamental particles. The B, D! D) vertex can be treated with a factorization
approach, which is an approximation. The next task is to give a prescription of the electromagnetic cou-
pling of the (charged) Dg") mesons, which can be solved by minimal substitution as a first approximation.
The authors of [133] found a contribution to the branching ratio B, — v+, which is even larger than the
SM short-distant one. The channel B, Dg.)—?w v~ surely needs further investigation.

“New physics”-effects in B, — -y decay are found to be small as in b — s+ they are mainly driven
by the Wilson coefficient CEH, for which a strong constraint from data on B — X, decay exists. This
has accordingly been studied in ref. [121] in the 2HDM and in ref. [122] in the MSSM. However, a small
enhancement of the branching ratio B(B, — 77) compared to the SM one is still possible in some regions
of the parameter space. In models with an extended operator basis the branching ratio and the CP ratio
can be much larger than the SM estimates [123].

Once the necessary machines are running, B, — -y will certainly get the same attention as the single
photon decay b — sv has at present. In particular, the branching ratio B(B; — yy) ~ O(107¢) is large
enough to be observed at the LHC.



Chapter S

Summary & Future

Rare B decays are one of the most active fields in recent particle physics. Its main theoretical principles
and developments of the last 40 years, which are still used, are roughly given as: Of course, the stan-
dard model (SM) (1961) [1] and the quark mixing (CKM) matrix (1963) [5]; further phenomenological
approaches like vector meson dominance (VMD)(1969) [74] and the Fermi motion model (FM) (1979)
[22]. The description of low energy weak processes (1981) [134] made progress with the inclusion of
QCD improved perturbative corrections by using renormalization group equation methods yielding the
effective Hamiltonian theory (1991) [6-8], [10], together with the onset of the heavy quark expansion
(HQE) (1990)[15].

We outlined these methods and applied them to the decays B — X, £*¢~ with £ = e, u and (partly)
to exclusive B, — vy decay. We presented quantitative SM based results in terms of distributions, decay
rates and moments which can be compared with experimental results.

Concerning B — X, £*£~ decays, the invariant dilepton mass spectrum and the Forward-Backward
(FB) asymmetry can be used to extract the short-distance coefficients from data in conjunction with the
branching ratio in B — X,y decay. In this work we have analysed these spectra and their present
uncertainties.

Further, apart from being a test of the SM, the decay B — X ,£* £~ can help to improve our knowledge
in certain aspects of long-distance effects:

a) HQE enables a description of B-meson bound state effects in terms of higher dimensional operator
matrix elements. We proposed in this thesis the determination of the non-perturbative HQE parameters
A and A, from moments of the hadronic invariant mass in B — X,£*¢~ decays, as it has been done
for the charged current induced decays B — X v, [66]). Given enough data, these parameters can be
extracted from B — X,£*¢~ decays and assuming universality, can be used in the analysis of, e.g., the
decay B — X,fv,. Likewise, B — X, ¢t ¢~ decay can be used to test the FM, which can be seen as a
model dependent resummation of the theory into a so-called shape function [19,135], and/or to determine
its parameters. We remark here that some of the HQE and FM parameters are related.

b) Long-distance (LD) effects occur in B — X, £+ £~ decays via the decay chain B — X,(J/¥,¥/,...)
— X,¢*¢~, which we have taken into account with a VMD ansatz. Since in the literature there is no agree-
ment about the implementation of this LD contribution together with the short-distance one, we compared
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our approach [18] with alternative ones [28,29] and estimated the resulting uncertainties in the observ-
ables. We find that these uncertainties are not the dominant ones in B — X ,£* ¢~ decay. Further we have
shown, that one can reduce the influence of the cc resonances by kinematical cuts. At present, only an
experimental analysis can identify the correct procedure to implement the charmonium resonances into an
a parton model based calculation in the decays b — s€*£-.

Finally, by means of building appropriate ratios of (partly) integrated spectra of rare B — X,£+¢~ and
semileptonic B — X, .fv, decays, the uncertainties resulting from bound state effects in the individual
decays are expected to cancel out to a large extent.

The essential points reported in this thesis are:

e The calculation of leading power corrections in spectra and hadronic spectral moments in the decay
B — X, £* ¢~ , including next-to-leading order perturbative O(a,) corrections [18,25,26,14].

o The presentation of leading logarithmic QCD corrections to B, — 7+ decay and an estimate of the
long-distance effects due to intermediate neutral vector mesons in B, — v+ decay [37,38].

Besides B, — <7, other exclusive decay modes relevant for future B-experiments are B, — £+£—,
B, — v and, of course, B — (K, K*)¢*¢~, B — (K, K*)vv. The transitions b — sv# are the cleanest
theoretically among other b — s decays. The expected branching ratio is larger (~ 4 - 10~° [136]; note,
that one has summed over all neutrino flavours) than the one from b — sft£~. However, the decay
b — svw is difficult to observe. Moreover, the inclusive B — X,7+ 7~ channel is interesting. In the SM,
its branching ratio is smaller than the one involving light lepton species (e, 1), however, in non-standard
multi-Higgs models it can be enhanced through large Higgs coupling of the 7-lepton.

Upgrades of present experiments and planned B-facilities like Hera-B, CLEO, BaBar and Belle are
about to start soon and they will be sensitive to branching ratios of order 10~¢ and below. For an overview
see Table 5.1.

This work will help the search for flavour changing neutral current B — X, £%¢~ and B, = vy
decays and in particular, will contribute to precise determinations of the HQET parameters and V,,; using
the inclusive decays B — X,£t¢~ and B — X,fv, in forthcoming B-facilities.
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Expt. Collider | Beams V5 | Year L (10 | o(bd) | bbpairs | Byer | o (bd)
(GeV) | online | em~'s71) (nb) | (107/yr) | (um) | /o(qq)
CLEO III | CESR ete” 10 | 1999 12 1 1.2 30 | 3-10!
CESR-1V 10 ? 30 1 30 30| 3-107?
BaBar PEP-II ete 1 10 | 1999 3-10 1 3-10| 270|3-107!
Belle KEK-B |ete ! 10 | 1999 3-10 1 3-10| 200]|3-107!
HERA-B | HERA pN 40 | 1998 — | 6-12| 50-100 | 9000 | 1-10~°
CDFII | Tevatron PP 1800 | 2000 0.2-1.0 105 | 20000 | 500 (1-10-3
DO
BTeV? 2004 0.2 5000
LHC-B}! | LHC P 14000 | 2005 0.15|5-10%| 75000 | 7000 | 5-10~3
Atlas 500
CMS

Table 5.1: Future B experiments. Parameters which do not change between different experiments at the

same collider are entered only once. t asymmetric beam energies, * forward detector. [3]
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Appendix A

Generalities

A.1 Input Parameters

Parameter Value Parameter Value
mw 80.26 GeV o! 129
mz 91.19 GeV as(mz) 0.117 £ 0.005
sin 0.2325 [VisVasl /| Ve 1
m 0.2 GeV By (10.4+0.4) %
m, 1.4 GeV A —0.20 GeV?
my 4.8 GeV Az +0.12 GeV?
m, 175 + 5 GeV Tit(Bs) | 4.09-10713 GeV
p mit fB, 0.2 GeV
AS)p | 02141388 Gev ms, 5.369 GeV

Table A.1: Values of the input parameters used in the numerical calculations, unless otherwise specified.

A2 QCD

The QCD Lagrangian reads in covariant gauge [137] (Aj,: gluon field)

Locp =

3

g=u,d,s,c,b,t

. it
(j(tﬂ = mq)q il ZGZVGGI-W - Lji:: =1 Eghosts )

where the gauge fixing term and the one for ghosts c*, ¢* are given as

1 a
Liiz = —ﬁ(a'A)z,

[:ghosts =

#9. D% .

The chromomagnetic field strength tensor and covariant derivative are written as

G = 0,A,—-0.A, +9f*ALAY ,

(A.1)

(A2)
(A.3)

(A4)
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D, = 8,-igT*A%, (A.5)
D% = §%9, - gf**=AZ, (A.6)

where f2%% are the structure constants of SU(3), defined by

[, 1) = i (A7)
We have the identities
[Dy, D)) = -igT*G3, , (A.8)
DD - DD = =g "Gy, . (A.9)
Often the abbreviation is used
Guw =G, T". (A.10)

T, a = 1,...,8 are the generators of QCD. They are related to the Gell-Mann (3 x 3) matrices A®
through T = 4~. The T obey the following relations (i, j, k = 1,2, 3)

Sp(T.) = 0, (A.11)
Sp(TTs) = ab/2 (A.12)
Ty = 2N ——08;i0k + 5,1:5,1, (A.13)
TSTS = 6iCr, (A.14)

with the invariant C'r is in an arbitrary SU(N,) given as

N2
Crp= N, (_ = forN.=3). (A.15)
The coefficients of the QCD beta function (see eq. (2.30)) are written as:
11N, - 2N
‘Bo = Tf : (A.16)
34N2 — 10N_.N; — 6CrN
F g 3 - L, (A.17)

Here, N, denotes the number of colours (V. = 3 for QCD) and N denotes the number of active flavours
(Ny = 5 for the effective Hamiltonian theory relevant for b decays).

A.3 Feynman Rules

The covariant derivative consistent with our definition of the operator basis and the corresponding Wilson
coefficients given in section 2.2 is [51]

D, =8, +igT* A% + ieQA, , (A.18)

where A°, A denote the polarization four-vectors of the gluon, photon respectively. Note that the sign
convention of the strong coupling here is opposite to the usual one appearing in QCD text books [137,
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138] given in eq. (A.S5), but can be made coincident with the substitution ¢ — —g. The Feynman rules
consistent with eq. (A.18) are given here with boson propagators in Feynman gauge. In a general gauge
with gauge parameter £ they are written as:
9w+ (€ = 1)k, k, /(K% + i€) A19
g k2 + ie : P
with € = 1, 0 corresponding to Feynman, Landau gauge, respectively. The rules should be complemented

q g
] < » zﬂ—mq+i66jk
7,9 B
SV —zp:"h&,b
a)”’ b,l/
K <779

—1eQVy, _igTIgj"/y

by
e cvaluate fermion lines against the momentum flow
e add a (—1) for a closed fermion loop and perform the trace over the string of y matrices

The rule for an O7 operator insertion is, using d,, = ig, for an out going photon and further ¢ - ¢ = 0 for
areal photon, and F*¥ = g+ AY — 9¥ A#

oF.= 0y F* =i, A= 27.4¢" . (A.20)
The Fierz transformation in d = 4 dimensions is defined as:

(017.L92)(337uL9s) = +(@17uL94)(37uLl02), (A.21)
(@17, L(R)42)(337.R(L)gs) = (-2)(71R(L)q4)(33L(R)g2) - (A22)

A.3.1 Feynman Rules in the Heavy Quark Limit of QCD

The effective Lagrangian in the limit of an infinitely heavy quark A with mass mg — oo is given by
Luger = hiv.Dh. Here v denotes the velocity (v? = 1) of a heavy quark A with momentum p =
mqu + k and small residual momentum k of order Agcp. These rules are consistent with the definition
of the covariant QCD derivative in eq. (A.5), which causes a sign difference in the quark gluon/photon
coupling compared to the weak effective Hamiltonian rules above, based on the convention eq. (A.18). A
heavy quark h is represented by a double line.
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h 14y 1
?-=-l’_ z_‘ZZt»-k+i65jk
7
: +ieQuy, +igTE;v,
J

A.4 Utilities

A variety of tools for 1-loop calculations is collected in the appendix of ref. [138].
Distributions

i i iqT
5(z) = o /R dge'=dq , (A23)
W 5 PV

B = o) (A25)

d:c = x) . -
Geometrical series

1 s 2 - n

i = l1Fots +§3(¢z) : (A26)

Fit quality x? (see also [39] statistics section), dof: degrees of freedom

data-curve
X2 == Z I erTor l2 ’ (A.27)
data points
2 2
X X
= = 4 (A.28)
dof Ngata points ~ VFit parameters

;}:7 should be around 1, if it is much smaller, the errors are underestimated, if it is large, the model fails.
Special Functions useful for loops

Poly logarithms:
(o o] Zk
Lia(2) = Y +=ilzl<1, (A29)
k=1
: z dt
Lisfe) & - / Tn(i-1). (A.30)
0
Spence function
. 1 dt
Sp(z) = Lig(z) = —/ Tin(1-2) (A31)
0
n? 72

n
=
(=)
N
Il

0, SP(1)= ? ) Sp(—l):— (A.32)
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2
Sp(z) = —-Sp(1-z)+ % —In(z)In(1 - 2)
2
Sp(s) = —Sp(;)~ = - 5In*(~2).
Useful identities for loops:
1. 141z 1. 142
arctan(z) = Eln = arctanh(z) = §ln T

Phase space element, d°p = |p)%d|p]d cos8de ,cos8 € [-1,+1] , ¢ € [0, 2x].

ST [atpsts? - m0(E) ; B= 7t

Dirac algebra identities, for more see ref. [139], especially the appendix.

1 ; .
{7;“71/} =294, Ow = 5[7;” 7V] y YuYv = Guv — W04y -

(A.33)

(A.34)

(A.35)

(A.36)

(A.37)

A useful tool within this context is the TRACER routine [140] running under the symbolic algebra program

mathematica.
Chiral projectors L(R) = (1 F vs)/2:

% =1, 9=,
(L(R))* = L(R), LR=RL=0, (L(R))!=L(R).

Further we have

Fermion fields

Y
YL(R)

Py = ("), ¥rr =LR)Y,

L(R)% = (L(R)¥)™0 = ¥'(L(R)) "0 = ¥™0R(L) = PR(L) .

(A.38)
(A.39)

(A.40)

(A41)
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B — X¢7¢~ Dilepton Invariant Mass

Distributions and FB Asymmetry

B.1 The Functions T\”) (v.§, )

In this appendix we list the functions T¥)(v.4,3), (i = 1,2,3) with j = 0,1,2,s, 9,6, (defined in
eq. (3.55)), representing the power corrections in b — s¢*£~ up to and including terms of order mp/mj.

The parton model contributions T,-(O) are given in egs. (B.1) - (B.3).

(B.1)

(B2)

(B.3)
(B4)

(B.5)

Tl(o)L/R B _l@{(l_ v-§)|CEE £ Crol?
+5 [(1+72) (2008 - 8(0 - 4) - 3) - 22 8] |CS 2
+§ [v G—5—m?(v- (j)] Re [(C§ﬁ¥ Clo)'c$ﬂ]} )
TZ(O)L/R = —gz—f {ICSﬁ%C Ciol* - % (1 + ﬁlf) |C$ﬁ|2} ;
O = 2B LR Cuof? - 5 2 (o) - 8] [1 - 2] ISP
_% (2 +1) Re [(C§T £ Clo)“C?ﬂ]} )
Tl(l)L/R = —%% (A1 +3X2) {[" - % ( =i+ ‘)2)] ICeﬂZF Col?
[k (s—z(v L ) - 5 (# - 28000 - 30 0 +2.0-9%)] @+ mdICET?
-(3-v-¢)m s Re(CST Clo)'C-?ﬂ} .
nOYR o 2TB G o) [i + o] [HEST ol + 3 (14 d)icsT
I PN EP

_si[l -2 (543000 - 2(0-9)] (1= mdicsT
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—v-§mi— Re(C F Cro)*Ce } , (B.6)
@t - B, { [ % (- -7+ S a-v-aicsT Cuol

—324—3 —435% — 12m28% 4 35z + 925z — 45%v - G — 4m28%v - G+ Tézv - §

+7m,sxv G+ 125v- ¢ + 207h3§v -§% — 6zv-§* — 6mizv - ¢* +48v-§°

+4m?v - ¢35 — 4zv - ¢ — 4mlzv - ¢ - 8v - ¢* — 8Mmlv - q“] |C'eﬁ.|2

+£§ [4§2 — 53z —48v -+ 4m2sv -G+ 3zv-§— 3mizv -G —45v-§° + 2zv- §°

+4v - §® — il - ¢°| Re [(CET  Cro) CET]} (B.7)
pE —;::—; A [:3 (s— (v-4) ) e % - %v-ﬁ]

(18 Col? - 1+ 102) ICeﬁI"’) , ®3)
T3(2)L/R —%:—;,\ {[:3 (s —(v- 9) e —] |C§ :FC'10|2

+§i’F [—45 + 55z + 85v - § — 6zv - §+ 48v - § — dzv - §* -8v-q3] (1 — m?) |cE)?

+.i3 [(45 - 32 — 4v- §?)(1 + m2) — 220 - §] Re [(C§TT 5 Cuo)” C?ﬂ]} : (B.9)
) s2x :’n“i (M +3X2) [(6 - v~ G)Re [(CET F Cro)* CEM] + 2702 CEH?] (B.10)
YR - g, (B.11)
LM = 2B (4 ax)Re [(C§T O 5] (8.12)
7,@"/F z12 :f A2 { (1-v-§)IC§T £ Crol?

+§—2 [s+3m25 + 5(v- ) (1 + ?) — 2 (v §)° (1 + m?)] |CETP?

+§(§ —v-§ (1-m?)Re [(CSTF cm)*ceﬂ]} (B.13)
T,@"/" x—fr’:—f i {-lcsff F Cof* - g (14 m3) |CFTP” — 4Re [(CST 5 Cro)"CST] } el
76" xi 22 % {ICTF Cuol + 5 [2(0-0) - 8] (1 - ) [CS TP

+: (14 m2) Re [(CST £ C10)* C?f‘]} , (B.15)
L0 = 2ZE 30 {2 - 5 -0 9?1087 Cuol

v i 6m28 + sz + m2sz + 4mlsv - G+ 4v- G2+ 4mlv- G+ 28v - ¢

+2m2sv - § — 200 - % - 2mZzv - ¥ — 4v - ¢ — 4dv - ¢°| |CET]?

4
—g[ —284+2v-4— 2mv G+25v-G—zv-§—2v-§

+2mlv- ¢ Re [(C§T  C1o)* C§1] } (B.16)
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2
LOYE = ZEoe ) [L- S 0-0-0)| 8T Rl - S @ +ad) IG5, ®1n

L/R mp :
T3(6) = ‘rn—bs (/\1 1 3/\2) {—;i' 1-v- q) ICQ + ClO|2
4 1 . L34 - S8 s %
g2 -0 9 -9 -8 1-ad s

~ 2 [2+2m? -z - 20 G- 2k g Re[(CET % Clo)‘C$ﬂ]} . (B19)

Here the variable z isdefined asz = 1+ § — 2 (v- §) — m? +ie.

B.2 Auxiliary Functions F; (s, 4) and E»(S, %)

In this appendix we give the auxiliary functions F (3, %) and E>(S, #), multiplying the delta-function
8[@(3, ™m,) — 4?%) and its first derivative 6[@(3, h,) — @?), respectively, appearing in the power corrected
Dalitz distribution d?B/d5di(b — s€*¢~) in the HQE approach given in eq. (3.60).

E\(5,8) = %{2}\, [1— 42 + 6 — 48 + 1 — 2025 + drinds — 2S5 + 2m?5° - 3*
+i? (1- 22 + md - 2m25 + 45+ 8%
+3 3 (1= 2 +8) [~1+ T2 — 11} + 5 + 115+ 1025 — 5’5 — 158
—5m2s? +58° 4+ a2 (1—5m,+53)]}
(IC’eﬁlz—i-ICl |2)
3 {2/\1 [1—3m +2m +2m —3m + m}! —10m23+18m s—6m s—2m
+16m35% — 6m2s% + 2misd — 5t — m2st
(l—m —m +m +4s+2m 5 —2m? s+s + “2'2)]
+3X; (1 —m2+3) [3+2m,—sm,—2rh,+5m,+3§—35m3§—27m:§—5m§§
—115% + 8m33% — 5% + 53° + 5m?s®
+? (3 + 82 + 5mf — 55 — 5m2s)| } |CEH]?
+8{23\1(1-4m3+6m‘3—4m§+m§-§-m3§+5m‘,‘5-3m§§+§2+3m:§2
—-5% — m?5%)
+h2(1 = 2 + 3) [4—3m3—6ﬁz§+5mf—6§—4m§'§—10m3§+252+5m3§2+a2]}
Re(C§™) c$T
+43i [-%J\l s+ Xg (7 - 2m2 — 5 +25 + 1025 552)] Re(CET) Cyo
+§'&[—4;\1 (1+ m?)

+3%z (5+ 2 -} — 5 + 25 + 425 + 105 — 352 — 5m2s?) | Cro" CET,  (B.1)

Ey(3,@) = gi\, (1-m2+ 5)2 a(3,my)? (1 - 2m2 + 1§ - 5 — @) (|CSTP? + |Col?)
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|Ceff|2
—m —m +m 8ms L ﬁzs + 1 +r?122) ioai S0 B8

+4 (1
(1-2m +mi-5-m s) Re(CS )C’eff
434 Re(Cgﬁ) Cro+ 81 (1+ m?2) Re(Cio) C-,ﬂ] : (B.2)

B.3 Dalitz Distribution d’T'(B — X,¢*¢~)/dsdu and FB Asymmetry in the
Fermi Motion Model

Figure B.1: Phase space boundaries for the u’ and p integrations with fixed values of s and u drawn for
s = 15 GeV? and u = 8.9 GeV2. The integration region (solid curve) is given by the intersection of u',
(short dashed) and *+u(s, p) (long dashed curve). The Fermi motion parameters used are (pr, m,) =
(450, 0) in MeV.

We start with the differential decay rate d°I'g/ds du dp, describing the decay b — s€*£~ of a moving
b-quark having a mass my = m;(p) and three momentum |p| = p with a distribution ¢(p), which will be
taken as a Gaussian [22],

dl'p Ymax o mb 1 d’I‘b
. : B.1
dsdudp /,.;ni_ mp P20 o amyts [dsdu’] o

Here, d?T,/dsdu’ is the double differential decay rate of a b-quark at rest and can be written in the case
of b — s€tf as

d’r, s Gy 1
— =V V;
dsdu’ Vi Vil 192 73 my3 16 2

and the three functions have the following expressions,
2
Fisp) = [(m?-m?)’ -] (18T +ICrol’)

6
m
+ 4 [mb"—m,2m52—m,4+#§—83m,2—32 (
b

[Fl (s,p) + F2(s,p) v’ + F3(s,p) o' ] : (B.2)

m’2 mbz ICeff|2
my? s +

258 [s (mz,2 + m,z) - (mbz — m, ) ] Re(C7 ffCej:f) ; (B.3)
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Fy(s,p) = 4sRe(CETCio) +8 (my? +m,?) CroCST,

2 2
~ (ICETP? + |Crol?) +4 {1 + ("" )

mp2

mp?
s

Fs(s,p) o

(B:4)

(B.5)

which can be read off directly from eq. (3.60) in the limit A; = 0; ¢+ = 1,2. Note that the Wilson
coefficient Cgeff also has an implicit m; dependence, as can be seen in the text. The integration limit for

u’ is determined through the equations

R
I

L Min (v, u(s,p)] ,

Uin = Max [u], —u(s,p)] ,

where E
uy = 2wt asmprra?,
B mB
Ey = \/mg'l'Pz ’
and

u(s,p) = \/[s - (mp + m,)z] [s - (mp — m,)z] $

(B.6)
B.7)

B.3)

(B.9)

(B.10)

A typical situation in the phase space is displayed in Fig. B.1. Integration over p gives the double

differential decay rate including the Fermi motion. The result is,

dZFB - 2 sz 302 Pmax
dsdu Ves Vsl 192 73 16 n2 ,/(; . mp2mp po(p)
o+ Jul 2 Amy?s
{FI (5,7) In [~oee TV s
Wi + Ui + 442 5

+F>(s,p) [\/17;,,“2 +4my2s — \/;lmin2 +4my2 s]

1
+F3(s,p) 5 [u:nax \/ w P AmpZs—ul \/ u;ninz +4my?s

I}

Note that the upper limit in p integration, pnmay is determined such that p satisfies,

Uax + \/ufmxz +4my?s
’ AN 2
Unin + \/umin +4 mp© S

—4mp%sin

u:nax(Pmam S, u) = u:nin (pmaxy S, u) .
Lastly, the normalized differential FB asymmetry including the Fermi motion becomes,
dz fi) dl'p du — ouph dl'p du

upp dsdu dsdu

e = dr Uph dl g )
ds ffuph dsju du + fO dsdu du

where

Uph = \/[s - (mB + mx)2] [s - (mB - mx)Z] ’
and
mx = Max[mg, m, + mg] ,

(B.11)

(B.12)

(B.13)

(B.149)

(B.15)
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with mq the spectator quark mass and mg the kaon mass. Since the calculations are being done for an
inclusive decay B — X,£*¢~ , we should have put this threshold higher, say starting from mg + m.,
but as this effects the very end of a steeply falling dilepton mass spectrum, we have kept the threshold in
B = X 16" atm(X,) = mg.



Appendix C

B — X ¢T¢~ Hadron Spectra and

Moments

(010 (D (19 pO) p(19) 1O) 1(1.9)

C.1 Coefficient Functions g, 5

These functions enter in the derivation of the leading (1/m?) corrections to the hadron energy spectrum
in B — X ,£*¢~ , given in eq. (3.95).

9,10
o219

9,10
o020

g£9,10)

o)
Y

o)

937’9)

g§7,9)

+ +

8

z2 - r“nZE-(—-?fnf + 320 + 32z — 423) , (C.1)
1:.5218

— (902 + 23m? — 18/m2z — 1823 — 52222 4 3623 + 20z3) , (C2)
z3 — m? 9

;E(mf + 23l — 3z — 21722y — 623 — 522z + 3623 + 20z3) , (C.3)
\/zd — m? 3
64

e - mg?(lomz + 1072 — 329 — 18Mm2z — 31hzo + 223 + 2/222) , (C4)

1 1 -8

—— — (9?2 4 34m? 4 104mS 4 1103 + 31m1°
P ) ’

1327mizo — 312mzo — 1803z — 1823 — 170223 — 58miz3 + T4mzl — 208zl
7223 + 56412z + 576miz] + 228mSz] — 11623 — 676m2zg — 436Mmizd — 20MmSz]
7223 + 240m3zg + 24mizy) , (C.5)

1 1 1
—6(27m3 + 933 + 978 + 31m3 — 329 — 633z,

Jz2 — m2 %0 — 3(1+m3) 3

189mizg — 129m8zo — 1823 — 1082z} — 62miz] — 20mS23 + 7223 + 324m?z)

1802z — 6023 — 152m2z3 — 20Mmlz]) , (C.6)
/22 — m2128(—2m2 + zo + Mm2z0) , (C.7
- 264(fn';’ + 3md + 2m2zy — 222 — 4m?zl) (C8)

’2 ~
zo—m’
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o™ le_ = 64(5m2 + 9m? — zo + 5z — 622 — 12m2z2) (C.9)
0 s .

p{%:10) 392 22 — ]m2(—12m? — 6m? + 920 + 1972z + 322 + 15m2z2 — 2823) , (C.10)
e % 22 — m2(—6m? + 3zo + 5mizo + 322 + 15Mm2z% — 20z3) (C.11)
{79 1§8 22 — m2(—8m? — 2m? + 320 — 3m2zo + 522 + 5m’zl) , (C.12)
hT9) 128 22 — 2 (—4m? — 6m? + 330 — 15m2zo + 722 + 15Mm2z?) , (C.13)
kgg,m) \/-"’o m2 (22 — 3z¢ — 312zo + 423) , (C.19)
k™) "256,/ 7 2 (—2/m2 + 2o + Mm3z0) . (C.15)

C.2 Auxiliary Functions fg(;\l,:\g), fJ,(:\l,Xg)

The auxiliary functions given below are the coefficients of the singular terms in the derivation of the
leading (1/m?) corrections to the hadron energy spectrum in B — X,£* £~ , given in eq. (3.95).

f5 (le X?)

-

fr(A1, A2)

2 i 5 %
Bo { [5(1 — #m2)3(5 — M)k,
2 i i e
S = P (=14 5 3a] (1§72 +ICrol?)
[%(1 + 12/} — 88} — 4m? — 36mim? — 736m;‘m§ + 5m? + 24mlm? + 720/mfm?

24m2m® + 160mim® — 5m® — 36mm® — 56mim 8) 7+ 3 ( _ 1k (-3

eff2
147} — 2?2 4 166m2m? + 8ml + 154m?m? + 2m8 + 50m?ms — 5m 8)/\2] IC I
I
5. PO s
[3(1 — 2T+ i)+ 5(1 - 213+ 15m§)A2] Re(CST) St
. 25,2d|CST?  8dRe(CST "
-1+ GUDL | SIRCR) gem 16
% 1 i
= Bols {501 — d)® (ISP + ICol?)
ICefflz
+ (=14 M) (=14 14m] + 1 + 52m{rhg + g + 14r1i; — M3) =
!
2.
# 2(i= m2)’ Re(CEM) C$ff} . (C.17)

C.3 The Functions o;, £;,7;, 6

The functions entering in the definition of the hadron moments in eq. (3.99) are given in this appendix.
Note that the functions o™™ and 8™ multiply the Wilson coefficients |CEff|2 and C2,), respec-
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tively. The functions ™™, 6™ ™) result from the Wilson coefficients CEf Re(CEM), |CEM2, respec-
tively. They cannot be given in a closed form since cgff is an implicit function of zo.

The functions o;

(n,m)

ago,o)

ag0,0)

ago'o)

a0V =

ag‘),l)

O

02

o0

o0

o0 _

ol _

o0

a‘()l,l)
aglyl)

C!’gl,l)

—( —8 — 2672 + 187! + 228 —11m8)+ ( 14 m2)3(1 4+ m?) In(4m?)

-6-33171"( 9 — 22 + m3) In(mm,) , (C.18)

1
§a(()o,o) (C.19)

’

= §(-4 + 38?2 — 421} — 26/MS — 15m3) + 16(—1 + m?)%(3 + 8?2 4 5ml) In(4m?)

32m2(—8 — 17m? — 2md + 5mf) In(m,) , (C20)
2 ’ . ) ;. 1 2 3 ,
5(—41 — 49?2 + 256m) — 128m8 — 43m8) + ?6(—1 + m2)3(1 + m2)?In(4m})
16
3
™ (C22)

mi(3 — m2 — 2mi) In(m,) , (C21)

4 3 2 . ] 16 ,
= g2+ 167m? + 1283 — 276m8 — 319m8) + R m2)%(3 + 14m? + 217?

g Z 32 . " i - »
10/m8) In(4m?) + 5 2(3 — 24m? — 18wt + mﬁ) In(72,) , (C23)

2
5 (<L 144m? + 45m? + 320m8 + 45m8) + ( 1+ m?)3In(4m?)

166

3
1

27(
51 + 5mS) In(4m?) + ™5 (18 — 38m? — 13m?) In(r,) , (C.25)

(8 + 3m?) In(mm,) , (C29)

127 — 278m?2 + 1075m? — 800m® +49m8)+ (1 m2)3(=7 - 17m?

= §(27 — 4672 + 16817} — 688mS — 1189m8) + - ( 1+ m3)?(3 + 2072 4 25m?) In(4m})

gﬁzﬁ (18 + 54?2 4 47m?) In(h,) , (C.26)
0, (C27
%( — 15972 — 11272 + 3048 — 45m8) — 339(—1 + m2)*(1 4+ m?2) In(4m?)
136 +(—39 — 7m2 + 6m?) In(mhy) , (C.28)
- 3(_93 — 46972 + 704! — 127m8) + ?(—1 + m2)%(3 4 8m? + 5m?) In(4m?)
%r‘n"@ + 3m2 + 2m?) In(mm,) , (C29)
-y (C.30)

2 I ; . 8 . g .
o e 13172 + 307m? — 41678 + 178mf) — gi-t» m?2)4(1 + 6m2 + 5m?) In(47mf)

lg—smg (9 = 352 — Tml) In(mm,) , (C.31)

2 - . ; ey " ¢ ]
= g(-60- 18572 + 1731 + 160mS + 70m3) + g+ m2)°(1+ m2)?(3 4 5m2) In(dm})
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16 4

4L : 13- 21m? - 13m4) In(m,) , (C32)
ol = o, s ok
B 125(119- 17672 — 1085m? + 4007m¢ + 835m%) + 2( — m3)° (1 + 77) In(47f)
4
- %m‘j(zs + 5m?) In(rm,) , (C.34)
o = 0. (C.35)
The functions 3{™™
B = (1 — 872 + 88 — M8 — 24t In(h,)) , (C.36)
0,0 0,0
( )=§(() ) (C.37)
B0 = _3 4 8m? — 24l + 248 — 5m8 — 24m? In(m,) , (C.38)
BN = 310 (7 —25Mm2 +160m) — 1607mS + 25m% —7m1° +1207m} In(ri,) + 120MmS In(rn,)) , (C.39)
ﬂ(o )y ﬂ(o o) (C.40)
B = -m3(7 — 2072 + 208 — 78 + 24 In(m,) — 48m2In(mm,)) , (C4n
A = 425 (2 = 313 — 307h] + 3075 + 37,° — 2} — 120/ In(rh,)) -
©2) 2;0 (43 — 135Mm2 4 126072 — 144078 + 4052 — 153710 + 20712 + 10807 ! In(rh,)
+ 840m In(7ny)) , (C43)
B = (13 315m2 + 15007m! — 1560mS + 3152 + 147m1° — 100712 + 36072 In (rh,)

+ 840m_, In(7n,)) , (C44)

(1 10)47 0 (C45)
ﬂ(w) 30(13 — 1352 — 16073 +320/m¢ —45m8 4+ 7m1°— 6007 In (1) —120MmSIn(m,)) , (C.46)
A0 — (3 92 + 16m3 — 48Mm8 + 45m8 — 7M1 4 241 In(h,) — 72 In(m,)) , (C47)
ALY = 0, (C.48)
ptY = 27 575(23 - 4573 + 10807m; — 14408 + 5858 — 2437 1° 4 40712 + 108072 In (1)

+ 600m In(7,)) , (C.49)

B = 513+ 457 — 1203 — 453 + 14T — 40mI? + 3603 In(rin,)

- 600m, In(mn,)) , (C.50)
29 _ (C.51)
(2.0) _ 16 101 25 12 ~ 61 (>
N 135( 1+ 9m? — 453 + 45m8 — 9l + m!? — 120m8In(mm,)) (C.52)
§2'°) =8 (C.53)

The functions 7(" m)

Note that in the expressions given below CST = C$fT(5 = 1 — 220+ m2). The lower and upper limits

e
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of the zo-integrals are: 2 = 1, and z§°* = 1 (1 + m? — 4mf).

mazx

7(()0,0) = 128/ 0} dzm /17(2) - 'ﬁ’zg(—Zﬁzz + 20 + ﬁzZzo)Re(Cgﬁ) y (C.54)
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64 Imaz
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mazx
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230 =22 / ° dzoy/z2 — m2(~2m? + mizo + mizo + 2m2z2 — 23 — m2z3) Re(CET) | (C.70)

3 Bm'n

29 _ g (C71)
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The functions 6™

32 ma:
500 = i dzoy/z2 — m2(—2m2 + 3z + 3m2zo — 422)|CEM|2 | (C.72)
500 = —6(0'0) (C.73)
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3 mnl -’E% ol Thg
+ 68m2a3 + 51z8 + T5mlzd — 10023)|CEH|? (C.80)
500 = ¢, (C.81)
32 max 1
o == dzo—20" 1) (ot | 3im3zg + itz — 2wzl — 323 — Iimiad
""ﬂ I(2) . mg
+ azd)|cehpz (C.82)
32 xmas
6.5,1'0) 3 r:-n dzo\/z3 — M2(—6m? + 3zo + 5m’zo + 323 + 15m2z) — 20:1:(,)|C'eﬁrl2 , (C.83)
s =0, (C.84)
s _ 32 (%" 1 -6 - 6 22 3 ~4 3
1 / dzo——— (4108 — 6mzo — 9223 — 15Mmiz2 + 272z + 21miz]
9 Im-n zg = Thg
+ 9z — 92z — 2725 — 15m2zd + 2028)|CET|? | (C85)
32 mo:
s = = mnhmdﬁ-MhMﬁmm+Mﬁﬁdﬁ+mﬁﬁd%ﬂ@%ﬂ&%)
5(()2.0) =0 (C87
12 mnz
%m=sf/ dzo\/2 — m2(—2m} + 32z + 3mizg — 22z} — 323
I‘Y’nlﬂ
— 3m2z3 + 4z8)|CcEH? | (C.88)

529 = 0. (C89)



121

C.4 Lowest Hadronic Moments (Parton Level)
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