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ABSTRACT

The production and decay of supersymmetric particles is presented in this thesis. The search
for light mixing top squarks and neutralinos/charginos will be a major task at the upgraded
Tevatron and the LHC as well as at a future ete™ linear collider. The dependence of the
hadro-production cross section for weakly and strongly interacting particles on the renormal-
ization and factorization scales is found to be weak in next-to-leading order supersymmetric
QCD. This yields an improvement of derived mass bounds or the measurement ‘of the masses,
respectively, of neutralinos/charginos and stops at the Tevatron and at the LHC. Moreover, the
next-to-leading order corrections increase the predicted neutralino/chargino cross section by
+20% to +40%, nearly independent of the mass of the particles. The consistent treatment as
well as the phenomenological implications of scalar top mixing are presented. The corrections
to strong and weak coupling induced decays of stops, gluinos, and heavy neutralinos [including
mixing stop particles] are strongly dependent on the parameters chosen. The decay widths are
defined in a renormalization scheme for the mixing angle, which maintains the symmetry between
the two stop states to all orders. The correction to the stop production cross sections, depending
on the fraction of incoming quarks and gluons, varies between —10% to +40% for an increasing
fraction of incoming gluons. The dependence of the cross section on all parameters, except for
the masses of the produced particles, is in contrast to the light-flavor squark case negligible. The
calculation of the stop production cross section was applicable to the Tevatron search for particles
which could be responsible for the HERA anomaly.

ZUSAMMENFASSUNG

In dieser Arbeit wird die Produktion und der Zerfall supersymmetrischer Teilchen betrachtet. Die
Suche nach leichten mischenden top—Squarks und Neutralinos/Charginos ist eine der wichtigsten
Aufgaben am Tevatron und LHC ebenso wie an einem zukiinftigen et e~—Linearbeschleuniger.
Die Abhingigkeit der Wirkungsquerschnitte fiir die Produktion stark und schwach koppelnder
Teilchen von der Renormierungs— und Faktorisierungsskala ist in nichstfiihrender Ordnung re-
duziert. Dies erlaubt verbesserte Massenschranken oder eine verbesserte Massenbestimmung fiir
Neutralinos/Charginos und Stops am Tevatron und am LHC. Dariiber hinaus vergroern die Kor-
rekturen den vorhergesagten Wirkungsquerschnitt fiir Neutralinos/Charginos um +20% bis +40%,
nahezu unabhingig von der Masse der produzierten Teilchen. Weiterhin wird eine konsistente
Behandlung der Stop—-Mischung vorgestellt und deren phidnomenologische Konsequenzen unter-
sucht. Die Korrekturen zu starken und schwachen Zerfillen von top~Squarks, Gluinos und schw-
eren Neutralinos — insofemn sie top-Squarks enthalten — hingen signifikant von den gewdhlten
Parametern ab. Die Zerfallsbreiten enthalten die Definition des Stop-Mischungswinkels, welche
die Symmetrie zwischen den beiden Stop—Zustinden in beliebiger Ordnung Storungstheorie
erhilt. Die Korrekturen zu den Wirkungsquerschnitten fiir Stop—Produktion variieren zwischen —
10% und +40% und wachsen mit dem Anteil einlaufender Gluonen gegeniiber Quarks. Im Gegen-
satz zur Produktion massenentarteter Squarks ist die Abhingigkeit von Parametern iiber die Stop—
Masse hinaus vernachléssigbar. Die Berechnung des Wirkungsquerschitts fiir die Stop-Produktion
konnte am Tevatron auf die Suche nach Teilchen, die fiir die HERA-Anomalie verantwortlich sein
konnten, angewandt werden.

CONTENTS

Introduction

1 Supersymmetry
1.1 Supersymmetric Extensions of the Standard Model . ... ................
1.2 ‘The Minimal Supersymmoetric StandardModel . . . .o o v v o v v v i ve v o
L L e S R
122 SOFEBREBRIE o/ . o0 o s o siss sros o' nis a8 isvays s siE o e wdis e e
1323 Suneisymmste OB o 5 & . o toe s Bl 6 o 58 A i e e dee
124 \Wiixing SODPATHEIEE . .| v 2 2is ol v ovb sl ke 3 b i ot 2l o sicn b totte o 8
1.3 GUELanspired NARRISPBEIEIIL . .10 oo o lrsa s 5 ws oin e o doihl e a b Ton e e
1.4 Mass Spectrum and Experimental Limits . . . . . ... ...... Sy el s e e
1.5 Regularization and Supersymmetric Ward Identities . . . . .. .. ... .........

2 Production of Neutralinos and Charginos
2 S 1y B oT ool LY St AR A s o i
2.2 Nextto-leading OkderCrosgs SBEHONS: | . © ;< 'o's s 5 o wo mws s v 8sd oo s s
223 VirtalandReal GluonBRission: . . . -0 vv v v o iw o vl iid baeind e

2.3 " RERHMEY s obd G e kB a8 B el e e e u e el g by e | el i e e

3 Scalar Top Quark Decays
3] SOODEBICEAYS.. o - s aais s ki n 8 s [ S A e s SRS e o
A1 BomBecapWIBHE . ', . il o' v wiets ¥ u s e e e e oo e s e e b
3.1.2 Next-to-leading Order SUSY-QCD Corrections . . . . . . .o v oo v vw v o
32 WCHETIOTAYE < o ™0 0T W Nis o5 & 66 Th e & s e E e e il ie, et lnn i T ek 8 e e
R, e e e e L Al e R R Rl fes e e 8 [ 1 T
3.4 . Heayy Neutralint DIScay 10 SION8 . 5 « & oo 55 o'a o s 55/ s oo wrm ol o w50 ot o0

4  Production of Scalar Top Quarks
4.1 Diagonal Stop Pair Production . . . . ... ... ... ... .. .. ...
411 BorniCrosESeetIOn ¢ o o « s 6 ¢ 55 o065 5 s 08 8 Bew E B E w6 W E e .
4.1.2 Next-to-leading OrderCross Section . . . . . . . . .. v v v i i v n e o
GE3 REEBIS v o s v s s s s b e e s s e e e § e s e e 8 B SR
4.2 Non-diagonal Stop Production . ... . ... ... .... ... ... ... .. ... ..

21
21
23
23
24
25
27

30
30
30
31
32
33
35



R Parity Violating Squarks
5.1 Production in ep Collisions

Conclusions

SUSY Lagrangean
A.1 Feynman Rules for Supersymmetric QCD
A.2  Neutralinos and Charginos
A.3 R Parity breaking Squarks

Radiative Corrections

B.1 Phase Space and Partonic Cross SECtons . . . . .. . v o v v i i s e
B2 Hadronic and Differential Cross Sections . . . .. .. .o v oivie o ioinie on s
B.3  Scalar Integrals
B.4 Counter Terms

Analytical Results for the Stop Decay Width

45
45
47

51

55
55
58
62

63
63
68
70
73

75

INTRODUCTION

A fundamental element of particle physics are symmetry principles. The electroweak as well as
the strong interaction, combined to the Standard Model, are based on the gauge symmetry group
SU3)xSU@2)xU(1). The extension [1] of this concept to a theory incorporating global or local su-
persymmetry is a well-motivated step for several reasons:

The Standard Model has been well-established by the discovery of the gluon and the weak gauge
bosons, and by precision measurements at LEP and at the Tevatron, as well as at HERA. Currently,
there is no experimental compulsion to modify the Standard Model at energy scales accessible to these
colliders, provided the predicted Higgs boson will be found at LEP or at a future hadron or electron
collider. However, a set of conceptual problems cannot be solved in the Standard Model framework: The
mass of the only fundamental scalar particle, the Higgs boson, is not stable under quantum fluctuations,
i.e. loop contributions to the Higgs mass term become large at high scales and have to be absorbed
into the counter terms for the physical Higgs mass. This hierarchy problem leads to fine tuning of the
parameters in the Higgs potential, to avoid the breakdown of perturbative weak symmetry breaking.

Possible grand unification scenarios are based on a gauge group at some high unification scale, which
contains the different Standard Model gauge groups. Simple unification groups are the SU(5) [2] or
SO(10) [3], the latter favored in scenarios with massive neutrinos. Non-minimal scenarios may yield
intermediate symmetries and threshold effects, but as long as they include a simple unifying gauge group,
the three running Standard Model couplings have to meet in one point at the unification scale. The
requirement of one unification point and additional bounds from the non-observation of the proton decay
lead to difficulties in the Standard Model, when it is embedded into a grand desert scenario, and most
likely restrict the validity of the Standard Model to scales around the weak scale.

In supersymmetric extensions of the Standard Model the masses of scalar particles remain stable even
for very large scales, as required by grand unification scenarios. Quantum fluctuations due to fermions
and bosons cancel each other; the leading singularities also vanish in softly broken supersymmetric
theories. The hierarchy problem does therefore not occur in the extended supersymmetric Higgs sector.
Including an intermediate supersymmetry breaking scale, the minimal supersymmetric extension of the
Standard Model may be valid up to a grand unification scale without any fine tuning, being compatible
with grand desert unification scenarios. Given the strong and the Fermi coupling constant at low scales,
it predicts the weak mixing angle in very good agreement with the measured value [4]. For a large top
quark mass the renormalization group evolution can drive the electroweak symmetry breaking at low
scales. The minimal supersymmetric Higgs sector consists of two doublets, in order to give masses to up
and down type quarks while preserving supersymmetry and gauge invariance. Hence, after breaking the
weak gauge symmetry, five physical Higgs bosons occur. The non-diagonal CP even current eigenstates
yield a light scalar Higgs boson with a strong theoretical upper bound on its mass. In some regimes of the
supersymmetric parameter space this particle is accessible to LEP2, and the dependence of the theoretical
mass bound on low-energy supersymmetry parameters can be used to constrain the fundamental mixing
parameter tan /3.



In supersymmetric R parity conserving models the lightest supersymmetric particle is stable. This
LSP, which in many scenarios turns out to be the lightest neutralino, is a possible candidate for cosmo-
logical cold dark matter.

In analogy to the gauge symmetries one may extend the global to a local supersymmetry. This
invariance gives rise to higher spin states in the Lagrangean: a massless spin-2 graviton field and its
spin-3/2 gravitino partner appear [5]. The general Einstein-gravitation is implemented into a theory of
the strong and electroweak interaction. The so-obtained Kihler potential can in simple cases be derived
by superstring compactification [6].

The breaking of exact supersymmetry is reflected in the observed mass difference between the Stan-
dard Model particles and their partners. Due to the current mass limits, this mass difference is, in case
of strongly interacting particles, much larger than the typical mass scale of the Standard Model particles.
Assuming no mixing for light-flavor squarks, there are stringent mass limits on the squarks and gluinos
from the direct search at the Tevatron [7, 8]. Due to large Yukawa couplings, the partners of the third gen-
eration Standard Model particles may mix. Since more parameters of the supersymmetric Lagrangean
enter through the non-diagonal mass matrices and the couplings, the mass limits for these third genera-
tion sfermions are weakened. Moreover, all supersymmetric partners of the electroweak gauge bosons
and the extended Higgs boson degrees of freedom mix. The search for these weakly interacting particles,
nentralinos and charginos, at hadron colliders [7] has not reached its limitations and will complete the
limits obtained from the search at LEP2 [9]. The search for strongly interacting and also for light weakly
interacting supersymmetric particles is one major task for the upgraded Tevatron and the LHC. The in-
vestigation of mixing effects in the strong and weak coupling sector requires precision measurements at
hadron as well as at lepton colliders.

The reconstruction of supersymmetric particles from detector data is difficult in R parity conserving
theories, since two LSPs leave the detector unobserved. Moreover, hadron colliders do not have an in-
coming partonic state with well-defined kinematics, but the partonic cross sections have to be convoluted
with parton density functions. The derivation of mass bounds or the mass determination, respectively,
has to be performed by measuring the total hadronic cross section, if rather specific final state cascades
cannot be used to determine the mass. Especially for strongly interacting final state particles, the cross
sections depend on the factorization and renormalization scales through the parton densities and the run-
ning QCD coupling. The scale dependences lead to considerable uncertainties in the determination of
mass bounds. The next-to-leading order cross sections will improve the mass bounds not only by their
accuracy but also by their size. These hadronic cross sections for mixing supersymmetric particles at the
upgraded Tevatron as well as at the LHC will be given in this thesis.

Similarly to light-flavor squarks and gluinos, the search for top squarks with a non-zero mixing angle
will lead to stringent mass bounds, which are essentially independent of the mixing parameters and the
masses of other supersymmetric particles. However, it will most likely be impossible to measure the
mixing angle at hadron colliders directly, since the cross sections for the production of a mixed stop pair
are strongly suppressed. The analysis of mixing effects in the stop sector will be completed by the direct
measurement of the mixing angle in e*e™ collisions [10].

Regarding certain decay channels the direct search for gauginos and higgsinos at hadron colliders
resembles the search for weak gauge bosons. Although in most supergravity inspired scenarios not all
gauginos and higgsinos are light enough to be found at the upgraded Tevatron, the search for light neutral
and charged gauginos is promising and could improve the LEP2 results at the upgraded Tevatron and at

the LHC. Even if the leading order cross sections are independent of the QCD coupling, they depend
on the factorization scale through the parton densities. The next-to-leading order predictions will again
considerably improve the bounds derived for masses and couplings.

However, all search strategies for supersymmetric particles depend on cascade decays leading to
leptons, jets, and LSPs in the final state, the latter provided R parity is conserved. As long as the masses
of the particles under consideration are not known, the analysis of these multiple decay channels does
not give strong limits, e.g. on mixing parameters involved. But for a sufficiently large sample of events
including supersymmetric particles, the whole variety of possible decays and couplings will help to
determine the mass and mixing parameters of the supersymmetric extension of the Standard Model. The
measurement of low energy parameters can then be used to search for universal parameters, predicted by
grand unification or supergravity inspired scenarios.

Outline of the Thesis

Since the supersymmetric observables presented in the following analyses can, from a phenomenological
point of view, be treated independently, technical features are covered with their first appearance.

The general physics background is described in the first chapter. A short introduction into supersym-
metric extensions of the Standard Model is complemented by the discussion of special aspects concerning
mixing particles; the next-to-leading order treatment of the mixing angle [11] in the CP conserving stop
sector is presented, and the regularization prescriptions used for supersymmetric gauge theories are sum-
marized. The supersymmetric Feynman rules and a complete set of formulae considered useful for the
detailed understanding of the calculations are given in the appendices.

The production cross sections for neutralinos and charginos at hadron colliders are treated in chap-
ter 2. They include the virtual and real next-to-leading order corrections, the latter calculated using the
dipole subtraction method. The treatment of on-shell singularities is described in detail. The possible
improvement of the current analysis by using the next-to-leading order cross section is pointed out.

In chapter 3 the decay widths including mixing stop particles in next-to-leading order supersy mmetric
QCD [11] are given. They include weak and strong coupling stop decays as well as gluino and heavy
neutralino decays to a light stop. The treatment of the mixing angle follows the theoretical description in
chapter 1. The complete analytical results for the next-to-leading order stop decay width is presented in
the appendix.

The study of scalar top quarks is continued in chapter 4, where the production cross section at hadron
colliders is given for both of the mass eigenstates in next-to-leading order supersymmetric QCD [12].
One crucial point is the influence of the mixing angle and supersymmetric parameters, which are present
in the virtual corrections, on the experimental analysis and on the mass bounds. The real gluon emission
is calculated using the cut-off method.

For a light stop the production cross section at hadron colliders can be adapted to R parity violating
scenarios [14]. The resonance cross section for the production of R parity violating squarks in ep colli-
sions is calculated in next-to-leading order [13], and the search results for these particles at HERA and
at the Tevatron are combined. The influence of other search strategies for I? parity violating squarks is
reviewed.

The analytical calculations have been performed using the symbolic manipulation program

FORM [15], for the numerical integration routine VEGAS [16] was chosen, and the parton cross sections
have been calculated using the CTEQ4 [17] parton densities in leading and next-to-leading order.



1. SUPERSYMMETRY

1.1. Supersymmetric Extensions of the Standard Model

Global supersymmetry is a possible extension of the set of symmetries appearing in flat space-time gauge
theories. The most general extension of a Poincaré invariant theory would be an N-extended super-
Poincaré Algebra containing central charges [18, 1]. The supersymmetry generators Q i=1,.5N]
and their complex conjugate Q" transform fermionic into bosonic fields and vice versa, therefore obey-
ing an anticommutation relation. These anticommutators lead to a Z graded Lie algebra, containing the
supersymmetry as well as the Poincaré group generators and circumventing the No-Go theorem [19]'.
The dimension of the extension N determines the maximum spin present in the particle spectrum of
the theory. Renormalizability requires a maximum spin of one for global supersymmetry, which is
equivalent to N < 4. Including the graviton results a maximum spin two for local supersymmetry,
supergravity, and renders N < 8. For N = 1 this super-Poincaré algebra becomes particularly simple,
since the central charges vanish and the generators @Q, @ anticommute with themselves. Extended super-
symmetric theories have some remarkable features: for NV = 2 the particle spectrum can be calculated
non-perturbatively [20], N = 4 leads to a completely finite theory, and N > 5 contains gravitation.
However, the observed low energy particle spectrum and CP violation are only compatible with (N=1)
global supersymmetry. We will make use of the incorporation of global supersymmetry into local super-
gravity only by assuming certain characteristics of the mass spectrum at high scales, where unification is
required.

Since supersymmetric theories by definition contain scalar particles not only in the Higgs sector, the
behavior of scalar masses is of importance: In the Standard Model the scalar Higgs boson mass suffers
from UV divergent radiative corrections, proportional to g?A? where g is a gauge coupling and A is an
UV cut-off parameter. This cut-off parameter could be fixed by some scale where new physics appears.
Assuming the Standard Model not being an effective theory for mass scales around the weak gauge boson
mass, e.g. leads to a physical scalar mass of the order of the weak scale and higher order loop contribu-
tions of the order of the cut-off, which could be the Planck scale. These corrections have to be absorbed,
using fine-tuning of mass and coupling counter terms in the Lagrangean. The large corrections in the
Standard Model originate from gauge boson and top quark loops. In supersymmetric extensions addi-
tional corrections arising from the supersymmetric partners enter with a minus sign and weaken the UV
degree of divergence to a logarithmic behavior [§m/m o< log A%]. For broken supersymmetry another
term proportional to the mass difference between the Standard Model loop particles and their supersym-
metric partners arises. Assuming e.g. a grand desert SU(5) scenario® the natural shift of the scalar masses

'Any Lie group containing the Poincaré group and a compact inner symmetry group factorizes, i.e. the generators of the
Poincaré group and the inner symmetry group commute with each other. The extended Lie algebra becomes trivial.

*Though not all matter fields can be unified in one SU(5) multiplet. A more generic GUT model would be supersymmetric
S0(10), directly broken to the Standard Model gauge group. In contrast to SU(5), SO(10) unification with non-zero neutrino
masses may lead to the observed baryon asymmetry (21]. The numerical analyses e.g. of gauge coupling unification in grand
desert SU(5) and SO(10) scenarios are similar.
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Figure 1.1: The renormalization group evolution of the three Standard Model gauge couplings, assuming
a simple SU(5) GUT gauge group and a grand desert [22].

between the weak and the unification scale is limited to less than one order of magnitude [22].

Assuming a supersymmetric extension of the Standard Model, the evolution of the gauge couplings
can be evaluated, based on different scenarios. Embedding the Standard Model into a simple GUT gauge
group does neither fix the gauge group nor possible intermediate scenarios, i.e. SU(5) unification with a
grand desert is only one possibility. The evolution of the gauge couplings depends on threshold effects
and masses in intermediate unification models. However, it can be shown, that, using supersymmetry,
the gauge couplings unify up to a certain accuracy, Fig. 1.1. The unification of the three Standard Model
gauge couplings determines one of the three parameters involved [a, 2, = sin?,, a,] theoretically.
This prediction has to be compared to the measured value e.g. for the weak mixing angle in the MS
scheme. In contrast to the Standard Model, which for reasons described above will hardly be valid up to
a large unification scale, the predicted value for the minimal supersymmetric extension of the Standard
Model s2,(m;) = 0.2334 & 0.005 agrees very well with the measured value of 0.2316 - 0.0003 [4].
Any specific GUT scenario fixes the renormalization group evolution of all the masses and couplings.
The determination of a;(m ) from o and s again reflects the improvement of the Standard Model one-
scale GUT, which gives a,(m ;) = 0.073 £ 0.002, to the supersymmetric one-scale GUT, which yields
as(mz) = 0.129 = 0.010. However, the measured value of ay(m ;) = 0.118 4= 0.004 indicates, that the
minimal supersymmetric GUT prefers a slightly larger value; threshold effects may be responsible for
the difference. Very light gauginos and very heavy squarks might even for the SU(5) GUT model lead to
the measured value of o [22].

1.2. The Minimal Supersymmetric Standard Model

The Minimal Supersymmetric Standard Model [MSSM] adds a minimal set of supersymmetric partner
fields to the Standard Model [SM]. These fields contain scalar partners — sleptons and squarks — of all
chiral eigenstates of the Dirac fermions, incorporated into chiral supermultiplets. Absorbing Standard
Model gauge fields into vector supermultiplets leaves Majorana fermion® partners of the neutral U(1),

*Majorana fermions are defined as their own anli-particles, i.e. the Majorana spinor is constructed by combining two Weyl
spinors. Some arbitrariness may arise from the different treatment of electric and color charge, which leads to Majorana
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SU(2), SU(3) gauge fields and Dirac fermion partners of the charged SU(2) gauge fields, called gauginos.
The SU(3) ghost fields are defined by re-writing the Fadeev-Popov determinant; therefore they do not
receive supersymmetric partners, which enter by requiring the original Lagrangean being invariant under
a global supersymmetry transformation.

For reasons described later in this chapter the supersymmetric scalar potential cannot include conju-
gate fields. Hence, at least two different complex Higgs doublets have to be introduced to give masses
to up and down type quarks. They form five physical Higgs particles after breaking SU(2)xU(1) in-
variance. This extension of the Higgs sector is not generically supersymmetric. However these scalar
Higgs degrees of freedom have to develop partner fields. This yields neutral and charged Majorana/Dirac
fermions with the same quantum numbers as the SU(2) gauginos.

The supersymmetric Lagrangean in superspace can be constructed by extending the integration over
the Lagrange density from space-time to a superspace integration, i.e. by adding two Grassmann di-
mensions {6, #}. All superfields can be written as a finite power series in these Grassmann variables,
containing the component fields in the coefficients. Only two elements enter the supersymmetric La-
grangean: (i) the so-called F' term of a chiral supermultiplet, denoted as ®4. in the expansion of the
superfield in the Grassmann variable §; (ii) the D term of a vector multiplet Vg [11. The kinetic
real vector supermultiplet is defined as the product of a chiral supermultiplet and its conjugate ®;®;,
its D terms contain the F components of the chiral multiplets F F;, which is absorbed into the scalar
potential.

The most general ansatz for a superpotential formed by chiral supermultiplets relies on the fact, that
the product of two chiral supermultiplet is again chiral:

W{B}) = mij®;®; + \ijp®i®; D (1.1)

Higher orders in the polynomial would give mass dimensions bigger than four and therefore spoil renor-
malizability. The superpotential occurs in the Lagrangean as (W + W). The scalar potential in the
component-field Lagrangean* contains, after integration over the Grassmann variables, the non-Yukawa
terms arising from the superpotential W; it is defined as

OW(A)
0A;

B+ BW_EZ)
04;

V=- (F;F,- + F;) (12)

The Euler-Lagrange equations yield F} = —3dW(A)/0A; where A; are the sfermion fields in the su-

permultiplet. This fixes the most general scalar potential including chiral supermultiplets in the matter
sector of the Lagrangean:

V=Y IE? (1.3)
3

Including the gauge sector for a non-abelian gauge group leads to vector multiplets containing the
gauge fields and their partners. The scalar potential will also contain the D auxiliary component field

neutralinos and gluinos, but Dirac charginos. But it is just a name for the particles. Dirac charginos also yield fermion number
violating vertices.

“A product of a chiral superfield and a conjugate is not a chiral but a vector multiplet, as the kinetic superfield. The su-
perpotential therefore does not contain conjugate superfields and neither does the scalar potential contain conjugate component
Higgs fields.

terms of the gauge multiplet’

il 2
"> AR - e 2
V—Xj:lel +2‘;(D“) —iju«",l +2 ;(S'T‘*S) (14)
The D term is written for a general non-abelian SU(N) gauge group. S are the scalar fields transforming
under the fundamental representation of the corresponding gauge group, and 7' the generators of the
underlying gauge group.

1.2.1. R Parity

The most general superpotential as given in eq.(1.1) contains trilinear couplings of chiral matter super-
multiplets, like the Higgs, the quark, and the lepton supermultiplet. Couplings between the different
Higgs fields or between the Higgs field and corresponding lepton or quark supermultiplets are needed
to construct the two doublet Higgs sector in the scalar potential. Although these vertices conserve the
over-all fermion number, they may violate the baryon and lepton number and would lead to the same
effects as leptoquarks, e.g. proton decay [23]. In extensions of the Standard Model these operators are
forbidden by gauge invariance, as long as their dimension is less than six. The MSSM either needs to
suppress the different couplings or remove the whole set by applying a new Z, symmetry which changes
the sign of the Grassmann variables in the Lagrangean. The corresponding conserved charge is defined
as

R= (___1)3B+L+23 (1.5)

where B is the baryon number, Z the lepton number, and S the spin of the particle. This number is chosen
to give (+) for Standard Model particles and (—) for supersymmetric partners. The Higgs particles in
the two doublet model are all described by R = +1. Accounting for R symmetry in the supersymmetric
Lagrangean removes trilinear chiral supermultiplet vertices containing no Higgs superfield. The general
superpotential eq.(1.1) can be separated into an R parity conserving and an R parity violating part, which
read for one generation of quarks and leptons

W= Wg+ Wﬁ
Wr = PEHIL7 + \PDHIQ? + \VTH]Q’ - pHiH]
Wy = %,\LijF-l— NLIQD + %A”Uﬁﬁ 1.6

The contraction of two indices is defined by the antisymmetric (2 X 2) matrix €;;; L, Q are electron and
quark doublet superfields, E, D, U are the singlet superfields for the electron, d and u type quark; A\®P:V
are the Yukawa coupling matrices, and y is the Higgs mass parameter, which also defines the higgsino
mass [see appendix A]. The Yukawa couplings A, A’ violate lepton number, A" violates baryon number.

The combination (X’ - A”) leads to proton decay via an s channel d type leptoquark and therefore has
to be strongly suppressed. The conservation of R is therefore a sufficient condition for the stability of the
proton. However, this symmetry has been introduced ad hoc for weak scale supersyminetry as a less rigid
substitute for the conservation of some combination of B and L. The exact vanishing of (A’ - A”) is not

5The supermultiplet constructed from the gauge vector multiplet and including the field strength component field is chiral.
But its I term contains the I) component fields of the vector gauge multiplet.
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a necessary condition for a stable proton; i.e. if W is not removed by hand by demanding R symmetry
in the supersymmetry Lagrangean, then many different constraints can be imposed on combinations of
couplings and masses in the R parity violating sector. The limits from direct production at HERA as well
as from rare decays generically determine A - A/m?, dependent on the flavor of the squark considered.
The same holds for atomic parity violation. The bounds from neutral meson mixing influence A - A/m,
and the direct searches at hadron colliders and LEP are only sensitive to the mass, except for the analysis
of specific decay channels [24, 25].

Phenomenologically, exact R parity conservation leads to the existence of a stable lightest super-
symmetric particle (LSP), and allows for the production of supersymmetric particles only in pairs. For
cosmological reasons this LSP has to be charge and color neutral, which restricts the choices in the
MSSM framework to the lightest nentralino or the sneutrino. In GUT models exact R parity conserva-
tion is not necessary to obtain low-energy R parity conservation. For broken R parity the unstable 'LSP'

could therefore be long-living and charged, allowing for charginos, sleptons and even stops, as long as
the lifetime is small enough to circumvent the cosmological constraints.

1.2.2. Soft Breaking

If supersymmetry would be exact, the squarks and sleptons were mass degenerate with the Standard
Model particles. Since the gauge couplings have to respect supersymmetry in order to cancel the
quadratic divergences, breaking supersymmetry means enforcing a mass difference between Standard
Model particles and their supersymmetric partners. The mechanism of introducing mass terms by soft
breaking [26] at a given scale has to respect gauge symmetry, weak-scale R parity, stability of scalar
masses, and experimental bounds e.g. on FCNC. Soft breaking terms can be added to the superpotential
eq.(1.1) at any given scale. They exhibit the generic form

1 1
L = — (mg)ij C:Cj - 5 [(mllg)j /\j)\]' + h.c.] - [‘S‘Aijkcicjck + BpH, Hy + h.c.] .7
The component fields involved are generic scalars C', Majorana fermions A and the Higgs fields Hy, Hs,
which are again contracted using ¢;;. The possible set of parameters consists of:

— Scalar mass matrices (md);; [i,7 = 1,...n] for squarks and sleptons with n generations. The
diagonal masses can be chosen real, since (W + W) enters the Lagrangean.

— Three real gaugino masses (mys); [j = 1,2, 3].
— 27 complex trilinear couplings A;;jx[4, 4, k = 1, 2, 3] which conserve the R charge.
— Two masses for the Higgs scalars and a complex Higgs mass parameter uB H. f Hﬁ .

Evolving soft breaking mass terms by means of the renormalization group equations can lead to breaking
of the U(1)x SU(2) symmetry by driving one mass squared negative. This generalization of the Coleman-
Weinberg mechanism [27] links the large top Yukawa coupling to electroweak symmetry breaking.
1.2.3. Supersymmetric QCD

Particle Content

The search for directly produced supersymmetrié particles at hadron colliders is dominated by strongly
interacting final states. In these production processes the quantum corrections in next-to-leading order

are expected to be significant. Moreover, the corrections to the production of weakly interacting particles
at hadron colliders are dominated by strong coupling effects. Although the parton picture and thereby the
incoming state is not affected by the heavy supersymmetric partners of quarks and gluons, a consistent
description of virtual particle effects requires the inclusion of these particles.

The supersymmetric extension of the QCD part of the Standard Model is straightforward, since the
SU(3) invariance is unbroken. One chiral mass superfield ¢ contains the left handed quark doublets
(uz,d;) and their squark partners (i, d,). Two more superfields U, D connect the quark singlet fields
(uS,, &) to their partners (%, d5). The SU(3)¢ x SU(2)z, x U(1)y quantum numbers for quarks and
squarks are identical. Whereas the §;, is a SU(3) triplet, the g, is an anti-triplet and couples with (—~7'%)
to the quark and gluino, as can be seen in Fig. A.2. The gluon vector superfield mirrors the gluons to
gluinos (), which are real Majorana fermions and therefore carry two degrees of freedom®. The number
of generations is not restricted by supersymmetry. The CKM matrix for the quarks will in the following
be assumed to be the unity matrix. The same holds for the squark CKM matrix, which is not fixed by
first principles to be either diagonal or equal to the quark matrix.

The general mass matrix for up-type squarks is given by

P ( my+m2+(5 — 2s2) m cos(26) —my (Ag + pcot §) ) 18)
—~myq (Ag + pcot f) m+m2+ 252 m? cos(26)

For down type squarks cot 3 in the off-diagonal element has to be replaced by tan 3. The entries
Mg, My, Ag are the soft breaking masses. In the diagonal elements the quark mass still appears, as
in exact supersymmetry. The m, contributions arise from the different SU(2) quantum numbers of the
scalar partners of left and right-handed quarks. For light-flavor squarks this matrix can be assumed being
diagonal, since the chirality flip Yukawa interactions are suppressed. For the top flavor these off-diagonal
elements cannot be disregarded. Taking into consideration bottom-tau unification the ratio of the Higgs
vacuum expectation values tan 3 has to be either smaller than ~2.5 or larger than ~40. In the second
case, a large value for tan # compensates for the small bottom quark mass and yields a strongly mixing
sbottom scenario. The results for the stop mixing may be generalized to the sbottom case.

Neglecting additional mixing from a CKM like matrix, the chiral squark eigenstates are equal to the
mass eigenstates for the light flavors. If we furthermore assume the soft breaking mass being dominant
and invariant under SU(2), then the light-flavor mass matrix is proportional to the unity matrix, i.e. the
masses of the ten light flavor squarks are equal. As long as only strong coupling processes are considered,
we will have to deal with ten identical particles. This will not be the case for the scalar top sector as will
be shown in section 1.2.4.

1.2.4. Mixing Stop Particles

Diagonalization of Mass Matrices

For scalar top quarks the off-diagonal elements of the squark mass matrix eq.(1.8) are large. Any real
symmetric mass matrix of the form

M2, M?
M2=( 2 .m) 19
Mip Mig a5

5The matching of the degrees of freedom is a subtlety in dimensional regularization, see section 1.5.
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Figure 1.2: Feynman diagrams for the stop self energy in NLO, including mixing in the second and third
diagram, the top-gluino loop and the pure squark tadpole.

can be diagonalized by a real orthogonal transformation, i.e. a uniquely defined real rotation matrix. The
eigenvalues are

i
mh =3 [1&(/\42) F [Tr*(M?) - aDet(M?)]'/?] (1.10)
The cosine of the mixing angle can be chosen positive —/4 < 6 < 7 /4:
[Mis — Ml
/T (M?) - 4Det(M?)

2M3 g
/T (M?) — 4Det(M?)

cos(20) = sin(20) = (1.11)

There is no flat limit from different to equal mass eigenvalues for this diagonalization procedure, since the
diagonalized matrix would be proportional to the unity matrix and therefore commute with any rotational
matrix.

Stop Mixing

In the scalar top sector the unrenormalized chiral eigenstates are £,0,%zo. The chirality-flip Yukawa
interactions give rise to off-diagonal elements in the mass matrix eq.(1.8) i.e. the bare mass eigenstates
t10 and 5 are obtained by a leading-order rotation, as described above.

tio | _ cosfp sinfy i

( t20 ) 5 ( —sinfy cosfy ) ( tro ) (A

The mass eigenvalues and the leading-order rotation angle fl can be expressed by the elements of the
mass matrix. However, SUSY-QCD corrections, involving the stop and gluino besides the usual particles
of the Standard Model, modify the stop mass matrix and the stop fields. The Feynman diagrams are given
in Fig. 1.2. As described in appendix A, the coupling to a quark and a gluino as well as the coupling
between four squarks can switch the chirality state and therefore contribute not only to the diagonal but
also to the off-diagonal matrix elements’. This gives rise to the renormalization of the masses and of
the wave functions [;p = Ziljl % ;1. Any leading-order observables concerning the mixing top squarks
are linked by a re-rotation of 7 /2, denoted by P12, eq.(A.2). In next-to-leading order this symmetry
is broken by the mixing stop self energy. In order to restore this symmetry in any order perturbation
theory®, we choose a real wave-function renormalization matrix Z1/2, which is defined to split into a

"It can be shown that a correction to the mass matrix renders the NLO mass matrix complex symmetric and not hermitian,
as long as CP is conserved, i.e. only imaginary parts from the absorptive scalar integrals arise.

8 Any observable containing only one kind of external stop particles can be transformed by exchanging the stop masses
and adding (-) signs to sin(25) and cos(2§). This prescription P2 will be used for stop decay widths and for the hadronic
production cross section in LO and NLO later and is defined in eq.(A.2).
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real orthogonal matrix 72 (86) and a diagonal matrix Zji/nzs, ie. Z\?* = R(80) Z;i/:g.

can be reinterpreted as a shift in the mixing angle [11, 28], given by b0 — 66 = 6:

1 Z;;:{:n 0 cosf sinf tio 113
i <12 |\ _gind cosh ) \ i
2 0 4 Giag, 22 sinfd cos RO
This counterterm for the mixing angle allows the diagonalization of the real part of the inverse stop
propagator matrix in any fixed-order perturbation theory.

The rotational part

Re [DRh(")]) =(2'?)" [p* 1~ M +Re D) (2'17)
=(232)" [#*1 - RGO (M? + ReS0P) R(8D)] (23L3)

diag diag
=(2){2) Re D31 (0" (Zil2) (1.14)

This holds as long as the real part of the unrenormalized stop self-energy matrix ReZ(p?) and thereby
the whole next-to-leading order mass matrix is symmetric?. The mixing angle depends on the scale of
the self energy matrix

2Re B12(p?) : 2 Re X12(p?)

m?l - m;‘.’z + ReD23(p?) — Re y1(p?) m?l - mi

+ 0(¢% (1.16)

“tan (265(}72)) =

We fix the renormalization constants by imposing the following two conditions on the renormalized stop
propagator matrix: (i) the diagonal elements should approach the form 1/Dien, 7;(p%) — p* — m?j +

z'm;jl";j for p? — m?j, with mg denoting the pole masses; (ii) the renormalized (real) mixing angle ]

is defined by requiring the real part of the off-diagonal elements Dyen, 12(p?) and Dyen, 21(p?) to vanish.
The three relevant counter terms for external scalar particles are

_ ReZip(p?)
m?

§m} = ReBjj(m})  0Z;; =-ReBj(m}) 60" = o .17
4

iz

Thus, for the fixed scale p? the real particles #; and i, propagate independently of each other and do not
oscillate.

The so-obtained (running) mixing angle depends on the renormalization point ¢, which we will indi-
cate by writing §(Q?). The appropriate choice of @ depends on the characteristic scale of the observable
that is analyzed. The real shift connecting two different values of the renormalization point is given by
the renormalization group, leading to a finite shift at next-to-leading order SUSY-QCD

Crasmgm; cos(20)
SR
w(mg, mi-l)

é(Qﬁ -0(Q3) = Re[ B(Q2; mz, my) — B(Q1; mg, my) ] (1.18)

9The next-to-leading order SUSY-QCD correction to the stop mass matrix is
Sia(p?) = ~2nCra [s,5A(ms,) — 5,5A(mz,) + Bmgmeca; B(pima, me)| = B (p)
B (p?) = ~4nCras [(1+ 35 A(mz,) + s33A(ms,) — 2A(m5) — 24(m)
= 2(p* + mi )B(p; \,m;,) + 2(p" — mj — m] + 2mymus,5)B(p;my, m.)] =P Ea2(p’)
5i(p") = 0ii(p*) /09" ' (1.15)
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Figure 1.3: The dependence of 5(Q2) on the renormalization scale Q. The input mass values are:
my e = 150 GeV, mo = 800 GeV, Ag = 200 GeV, u > 0, for which the leading-order mixing angle
is given by 1.24 rad. The minimum of the correction corresponds to the threshold Q = mg + my in the
scalar integral.

This shift is independent of the regularization. In the limit of large scales the difference behaves as
log(Q?/Q"*). A numerical example is presented in Fig 1.3. As a noteworthy consequence of the running-
mixing-angle scheme, we mention that some LO symmetries of the Lagrangean are retained in the NLO
observables. For instance, if for only one kind of external stop particle one chooses @ = m;, the results
for the other stop particle can be derived by the simple operation Py, eq.(A.2), which then also acts on
the argument of the mixing angle.

Considering virtual stop states with arbitrary p?, the off-diagonal elements of the propagator matrix
can be absorbed into a redefinition of the mixing of the stop fields, described by an effective (complex)
running mixing angle G (p?) = 0o — 60,4 (p?). This generalization amounts to a diagonalization of
the complex symmetric stop propagator matrix Dyep, including the full self-energy %(p?), by a complex
orthogonal matrix R (80.q)'° exactly in analogy to eq.(1.14). The so-defined effective running mixing
angle is given by

~ siut dil 2512(p?) NLO = Im 5(p?)
Oest (p%) = o —  arct 3 2y .y B Eaap § :
e () = 0o g R m;‘-’l - m%2 + B22(p?) - Z11(p?) i g5 m?z = m?x g

The complex argument of the trigonometric functions leads to hyperbolic functions. From this point
of view the use of a diagonal Breit-Wigner propagator matrix is straightforward. For instance, in the
toy process tg — tg all NLO stop-mixing contributions to the virtual stop exchange can be absorbed
by introducing the effective mixing angle in the LO matrix elements. The argument of this effective
mixing angle is given by the virtuality of the stop particles in the s channel. This procedure also applies

!°Any real symmetric matrix can be diagonalized by a real orthogonal transformation O AQ where 0~' = OT. One
generalization is the complex unitary diagonalization of a complex symmetric matrix UT AU with Ut = U~!, where the
diagonal matrix is real and positive. Another one is the complex orthogonal diagonalization of a complex symmetric matrix
0T A0, O~' = OF where the diagonalized matrix is still complex. Note that a hermitian matrix can only be diagonalized by
a unitary transformation U~ AU.

to multi-scale processes like ¢§ — tf;§ or ete™ — f112, where the effective gf;,/vE1f, couplings
become non-zero due to the different scales of the redefined stop fields.

There exist other renormalization schemes for the stop mixing angle, either fixing the scale of the
running mixing angle at some appropriate scale or absorbing certain diagrams e.g. contributing to the
production process ete” o flfg [29]. Any of these schemes can be regarded as a prescription to mea-
sure the mixing angle, either in the mixed production at et e~ linear colliders or in decay modes or
quantum corrections. The mixed production induced scheme however has the disadvantage of introduc-
ing the Zi;f; weak coupling constants into the QCD counter terms. The measured values of the mixing
angle can be translated from one scheme into another by comparing the counter terms. In Fig. 1.3 the
numerical effect of the finite renormalization can be seen to be small; the same holds for the different
renormalization schemes, which are numerically almost equivalent.

When fixing the counter term for the stop mixing angle 8, one can express the angle in terms of
the parameters appearing in the mass matrix eq.(1.8). The counter term §(sin(26)) can be linked to the
counter terms of these parameters:

iy 2my(Aq + pcotf)

8.
2 mI —ml

2 2
Soy5 _ _ 8(my —m) | me | 6(Ac+t pootf) (1.20)
845 m? —m? my A + pcotf

1 2
where 6z denotes the counter term of the parameter z. Since p and f appear in the scalar potential
only in the weakly interacting sector, they will not be renormalized in next-to-leading order SUSY-QCD.
However, § A; can be calculated from the mass and mixing angle counter terms. This reflects the fact,
that the system of observables used in the Feynman rules is non-minimal, i.e. the on-shell scheme for the
masses and the running mixing angle determine the renormalization of the couplings £;£,G° and £, A°,
where A, appears explicitly [30].

1.3. GUT inspired Mass Spectrum

Next-to-leading order calculations in the framework of light-flavor SUSY-QCD [8] only incorporate a
few free parameters: the Standard Model set and the gluino and the light-flavor squark mass. Including
mixing stops and the mixing neutralinos/charginos the number of low-energy parameters becomes large.
Hence, for a rough phenomenological analysis we will use a simplifying scenario, which could be a
SUSY-GUT scenario, either supergravity [5] or gauge mediation [31] inspired.

SUSY-GUT Scenario

Inspired by the unification of the three Standard Model gange couplings in supersymmetric GUT models
we will assume a relation between these couplings and the gaugino masses. Independent of the actual
form of the simple gauge group and the connected GUT scenario, the three Standard Model gauge groups
are embedded into, and independent of intermediate scale particles and thresholds, we can assume gange
coupling unification.

Mi(Q) _ Ma(Q) _ Ms(Q) _ ™1a(Mx) (1.21)

(Q) @@ 3@ ocur(Mx)
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where m, /, is the mass entry in the scalar potential, defined at the unification scale M. There the three
gauge couplings unify to aguT = 1/26. For the masses at the weak scale this leads to [33]

mg = My(mz) ~ 0.4 m,,
myy = My(mz) =~ 0.8 my/y
mg =~ M3(mz) ~ 2.6 ml/g (1.22)

~ However, the gluino mass is strongly dependent on the scale which can lead to a difference of 30%
between the pole mass m; and the running mass M3(Ms) [33]. For the derivation of these mass relations
it is only necessary to assume a simple unification gauge group arising at a scale Mx ~ 2 - 1016 GeV.
The gaugino mass unification can be tested experimentally at the LHC [32] as well as at a future linear
collider [10].

Mass Unification

In a supergravity inspired MSSM [mSUGRA] the scalar masses and the trilinear couplings are assumed
to be universal at the unification scale My 1. In simple supergravity models they depend on the gravitino
mass scale my/, and on the cosmological constant [S]. The universal parameters at the unification scale
My will be refered to as mg and Ap. The parameter 4B occuring in the Higgs sector of the scalar
potential [section 1.2.2] will be fixed by the choice of m, /2: Mo, Ao, tan B and the. Standard Model
parameters, and by the requirement of electroweak symmetry breaking, up to its sign. The light-flavor
squark masses can be expressed in terms of the universal scalar and gaugino masses, the other parameters
only enter the off-diagonal elements of the mass matrix eq.(1.8) and can be neglected

m3, 22 mg -+ 6.3m} , + 0.35D m, ~mj+5.8m3 ), +0.16D (1.23)
where D = m% cos(2f) < 0. For mSUGRA scenarios a general prediction for the light-flavor squark
mass can be given [33]

mg 2 0.85m; (1.24)

Approximate Solution

The stop masses can be expressed in terms of the top Yukawa coupling ¥; = h?/(4r). For small tan 8
they approximately read

Y, 7Y, 3 N2
2 ~m? B 2 L .t A
mi, ~my (1 2th) +mi, (6.3 - ¥R (Y,m) ) +0.35D
Y, 14Y m\?
2 2 t 2 t t
mt-ﬂ ~ mg (1 - Y,—IR) +m1/2 (5.8 - éY_,Iﬁ - (Y‘Iﬁ) ) +0.16D

Y:
A¢ o (1 . },t_;R') - 2m1/2

me = %h. (1.25)

" Several unification scales may arise as the gauge coupling unification scale and the string scale only few orders below the
Planck scale. Numerically the variation of the scale Mx between these physical scales leads to a small effect only.
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Figure 1.4: Some relevant masses in the approximate mSUGRA scenario for Ag = 300 GeV,tanf =
4, > 0; mg and m, , are varied between 50 and 400 GeV.

The IR fixed point of the top mass is Y® =~ 8a3/9 and Y;/Y;® varies from 0.75 to 1 dependent on
tan 3, becoming unity for tan 8 = 1. In this limit the universal scalar mass does not influence the lighter
right handed stop mass. If the doublet soft breaking mass is larger than the right handed soft breaking
mass, the £;, defined as the light stop, will be mostly right-handed and the angle will prefer values around
/2.

The higgsino mass parameter in this limit will be given as

u? 4 _r_ni =-md— lm2 -+ terms includin —Zt— (1.26)
F 2 0™ 9™1/2 g YtIR .

The analyses in the following chapters are carried out using this approximate mSUGRA renormalization
group solution'2. If not explicitly stated otherwise we will vary the high-scale parameters around one
central point:

myyy =150GeV  mg =100GeV Ao =300GeV tanf =4 ©>0
p=277GeV M, =122GeV  A; =355GeV

mgo =55 GeV  mygo =103 GeV mg =283 GeV  mgo =309 GeV
1 2 3 X4
Myt =100 GeV Myt =307 GeV

1 2

mg =401 GeV  mg =352GeV my =198GeV  m;, =427GeV sin(26) = - 0.97 (1.27)

In Fig. 1.4 some relevant low energy mass parameters are given as a function of mg and m, /5 to illustrate
the qualitative behavior described above. Typical features are the large mass difference between the stop
mass eigenstates, nearly independent of the value Ag, and the clustered neutralino masses, where the
two light states are gaugino-type and the two heavy states are higgsino-type. The latter results from

"2This is implemented in the initialization routine of SPYHTIA [34].
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the large value for p in the mSUGRA scenario. The lightest Higgs mass in this scenario in the given
approximation is larger than 100 GeV and will not be excluded by LEP2.

1.4. Mass Spectrum and Experimental Limits

Neutralinos and Charginos

Searches for neutralinos and charginos have been carried out at the Tevatron [7] as well as at LEP [9].
Due to low energy R parity conservation they can only be produced in pairs £?%7, X %7, and % 3.

If the lightest neutralino is the LSP, then the heavier particles have to decay via a cascade into the LSP.
However the two and three parton decay channels are strongly dependent on the mass spectrum:

B 20 R — R,

X3 — U, v

$ W e

X — b, it (1.28)

The decay )2_‘1? —* gq will be dominant if kinematically allowed, but in a SUGRA inspired mass scenario
this will be only the case for the two heavy neutralinos. Besides, the chargino can enter the neutralino
decay chain via )’(? — ;Zj’ H~, %W~-. One very promising final state for the mixed neutralino/chargino
production is the trilepton event

pp/pp — XF X5 — i U5 — 00l + Br (129)

where three charged leptons are present in the final state and the missing transverse energy F'r is based on
three invisible particles. The exclusion plot is given in Fig. 1.5. The cross section for chargino/neutralino
production times the branching ratio into the trilepton channel is given for different squark masses, the
gluino mass is fixed by the neutralino/chargino mass and the gaugino mass unification. The mass limits
for ii" can be read off the axis, they vary between 60 and 80 GeV.

Squarks and Gluinos

The gluino will in general be assumed heavy, as suggested by SUSY-GUT scenarios. The experimental
exclusion limits from the direct search for squarks and gluinos are given in the mass plane in Fig. 1.5.
The absolute lower limit on the gluino mass is m; > 180 GeV [7]. The decay channels considered for
the light-flavor squarks and for the gluinos are

§— X, ¢xF —riets+ Pr+---

§— q3%}, qTX— jets+ Pr+---

§— daxf  —jets+Pr+tee.

§— 0i — bE- (1.30)
The final state neutralino/chargino decays via a cascade to the lightest neutralino, which is assumed to
be the LSP. Products in this decay chain are denoted by the dots. If it is not kinematically forbidden, the

gluino can first decay into a squark and a quark, and vice versa. This leads to one more jet in the final
state. The stop decay channel of the gluino leads to a higher multiplicity of Standard model particles and
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Figure 1.5: Left: The CDF limits on o - BR for the )"(25@ production from the search for trilepton events,
eq.(1.29); Right: The CDF limits on the squark and gluino mass including the (jets+Pr) and the like-
sign lepton signal for the gluino pair production [7]. In part of the parameter space the NLO cross
sections have been used [8].

bottom jets. A typical signature for the Majorana gluinos arises from the decay via a chargino. Since the
gluino is a singlet under the electro-weak gauge group, it decays to )2,+ and X with the same probability,
leading to like-sign leptons in the final state of gluino pair production. A considerable Standard Model
background is not present for this signature.

Since supergravity inspired SUSY-GUT relations are used for the experimental search at hadron
colliders, there are no strong limits on the squark mass if the gluino mass exceeds 550 GeV, see Fig. 1.5.
The supergravity inspired GUT scenarios as described in section 1.3 do not allow for a gluino mass being
much larger than the light-flavor squark mass. In this region of the (m; — mj) plane only the general
unification of the gaugino masses can be kept. The mass of the lightest neutralino, assumed to be the
LSP, grows with the gluino mass and becomes large enough for the squark to decay into an LSP almost
at rest. The missing transverse momentum would then become too small to be measured.

The limits on the neutralino/chargino mass from the search at LEP could be translated into limits
on the gluino mass, using the gauge coupling unification eq.(1.22). Those are much stricter than the
Tevatron limits but model dependent.

Stops

The limits on the stop mass arise from a search for stop pairs decaying into £; — ¥} and are therefore
strongly dependent on the mass of the lightest neutralino. For a light stop mass this decay mode will be
dominant. In this mass regime the light stop can be produced at LEP ete~ — #;¢;, Fig. 1.6 [9]. The
production cross section depends on the mixing angle, arising from the £, Z coupling, and thereby also
the mass bound. As will be shown in chapter 4, the hadroproduction cross section is independent of the
mixing angle, and both analyses, at LEP and at the Tevatron, yield a mass bound on the lightest stop m;,
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Figure 1.6: Mass limits from the £y pair production at DO and LEP followed by the decay ) — cx9. The
dependence on the mixing angle enters through the coupling tt,Z at LEP.

around 79 GeV [9, 7). However, these limits are only valid as long as the ¥{ is light enough and the
decay channel &, — c¥? is dominant. Additional limits arising from the search for the decay t — £; %9
are strongly dependent on the branching ratio of this decay mode and therefore weaker than those from
the direct search. The different stop decay modes are described in chapter 3, and the direct search at
hadron colliders is investigated in chapter 4.

1.5. Regularization and Supersymmetric Ward Identities

Dimensional Regularization and Reduction

The MS renormalization scheme is by definition related to the regularization of infrared and ultravio-
let divergences in dimensional regularization (DREG) [35]. This regularization scheme respects gauge
symmetry and therefore the gauge symmetry Ward identities'>. It is less well-suited for supersymmet-
ric theories, since all Lorentz indices are evaluated in n dimensions, whereas the spinors are still four
dimensional. This leads to a mismatch between the degrees of freedom carried e.g. by a physical gluon
(n —2) and a gluino (2). A modified dimensional reduction scheme (DRED) has been introduced to cope
with this problem [37]. The number of space-time dimensions is compactified from four to = dimen-
sions, leaving the number of gauge fields invariant i.e. the gauge fields carry the n dimensional Lorentz
indices. The remaining (4 ~ n) dimensions form the € scalars. These particles render the -y algebra four
dimensional. The gauge bosons and the gauginos carry the same number of 4 degrees of freedom. The
DRED scheme will be used to illustrate the modified MS scheme. Except for the unsolved problem of
mass factorization in DRED [38, 8] it can be shown that both dimension based schemes are consistent
for calculations in the framework of supersymmetric gauge theories.

Starting with a Lagrangean L[W, A%, D] for a non-abelian supersymmetric gauge theory in the

Bwe will not focus on the problem of the chiral projector matrix +s, since consistent schemes have been developed [35, 36] to
deal with v traces in n dimensions. In one-loop order a naive scheme can be used, however for neutralino/chargino production
it has explicitly been checked that the ambiguous scheme dependent terms do not contribute [35].
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Wess-Zumino gauge one can show that the supersymmetric variation dg of the Lagrangean only vanishes
in the limit of (n — 4) dimensions, up to a total derivative [39]

§sLIWE, 2%, D] 224 o (1.31)

The component fields W indicate the gauge fields, and A the [Majorana] gauginos. This leads to the
‘Ward identity including the ghost and gauge fixing term Lg, where in n dimensions the variation 5L
has to be kept.

0=( /d"z 00 Gl 1.0 ik B b Bt 61

(X)= / W, }d{A}d{D}X & ¢oEHLatIW,tirtinD] (132)

Although DREG and thereby the MS scheme cannot be shown being inconsistent with supersym-
metry, they do not respect supersymmetry on the level of naively used Feynman rules. The problem is
similar to applying DRED to gauge theories: Evanescent couplings renormalize in a manner different
from the physical couplings . In NLO-DREG this results in a finite renormalization of Feynman diagrams
which restores supersymmetry explicitly. At higher orders these additional counter terms even include
poles in €.

Finite Renormalization

Explicit calculations show that Green's functions calculated from the MSSM Lagrangean using di-
mensional regularization may not respect supersymmetry. The supersymmetry transformation mirrors
e.g. the gauge coupling g(¢qg) to the gauge coupling g(GGg) and the Yukawa coupling §(¢Gg). In reg-
ularization schemes which respect supersymmetry, like dimensional reduction', the supersymmetric
limits of these couplings are identical in any order perturbation theory. In DREG the supersymmetric
limit of the Yukawa coupling differs from the gauge couplings at one loop level [40]

2
1=3]1+ 55 (500 -c0)] 133)
The Casimir invariants C are defined for the Dirac fermions in the fundamental (r), and for the gauge
boson and the Majorana gauge fermions in the adjoint (G) representation'. This difference has to be
compensated to render the calculation supersymmetric. Since the Standard Model quark-gluon coupling
9(qqg) is by definition the measured quantity, the Yukawa coupling will be shifted § — ¢ in the ex-
pression for the final observable. This finite shift is not a finite field theoretical renormalization of any
measured parameter and it is not only present for gauge vs. Yukawa couplings. It is an artifact arising
from the supersymmetry violation of naive dimensional regularization.

Supersymmetry relates the weak Higgs Yukawa coupling Y (¢gh) to the vertices Y (§Gh) and Y’ (ggh).
The three couplings Y in the supersymmetric limit and calculated in DREG are not identical in NLO

Y(ggh) = Y (@it [14 0] = Yiaah) [1+ 200 (134)
167 327

“The difference between DREG and DRED are € terms arising from DREG Dirac traces including gauge fields. They
combine with a pole 1/¢ in a scalar integral, leading to a finite contribution. These terms are exactly those leading Lo the
difference e.g. in eq.(1.34).

BThe SU(3) coupling gqg yields C(r) = Cr and C(G) = Ca = N.
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where in the case of weak coupling only C(r) occurs. These two finite differences o< e in couplings
mediated by G'r have to be compensated to make dimensional regularization compatible with supersym-
metry.

The usual parameterization of the Yukawa coupling constant is Y = mg, where g is defined in the
MS scheme and m is the pole mass, i.e. renormalized in the on-shell scheme. However, the pole mass
has to be calculated in the DREG scheme, and the mass appearing in the different couplings eq.(1.34) is
— in the supersymmetric limit — only numerically the same. In fact, the scalar mass set to m and the
fermion mass set to m behave differently in next-to-leading order, since the counter term for the scalar
and the fermion on-shell mass in DREG is not the same.

2
me = [1 4 lgTC(r)] mg (1.35)

This behavior breaks supersymmetry explicitly and has therefore be removed. The mass shift is respon-
sible for the difference between Y (ggh) and Y (§gh), and it renders the difference to ¥ (gGh) compatible
with the general difference between the gauge and Yukawa coupling as given in eq.(1.33):

9(qqh) = g(dh) = g(qgh v
= 9(dgh) = g(qgh) |1+ 555C(r) (1.36)

The observable coupling is again defined as in the Standard Model value Y (ggh).

2. PRODUCTION OF NEUTRALINOS AND CHARGINOS

2.1. Born Cross Sections

Partonic Cross Sections

Neutralinos and Charginos can be produced at hadron colliders in several combinations, all starting from
a pure quark incoming state

94 — %5
99 — XFX;
wd — %55
di — 0 @1

The first two processes are possible for a general quark-antiquark pair. For the latter, charge conservation
requires » and d type quarks in the initial state [41].

Two generic Born Feynman diagrams contribute [Fig. 2.1]: an s channel gauge boson (v, W, Z)
Drell-Yan like and (¢, u) channel squark exchange diagrams. Two final state neutralinos are produced
by the first diagram purely as higgsino-type. Final state charginos can couple to the s channel gauge
boson as gauginos and as higgsinos. For mixed neutralino/chargino production the s channel diagram
contributes to all current eigenstates as well. In the given approximation of a trivial squark CKM matrix,
the ¢, w channel squark couples flavor conserving to the incoming quark and will therefore be regarded
as light-flavored; the incoming quark originates in the parton density of the proton, and will consistently
be assumed massless. This makes the higgsino Yukawa coupling vanish for all possible final states. For
the gaugino-like charginos this coupling also vanishes in case of g, since the ¢g¥ coupling respects the
helicity eigenstates.

The LO partonic cross section &, which is proportional to the matrix element squared in the limit of
(n — 4) dimensions can for all possible final states be written as [The n dimensional Born cross section

|

e P
=1}

%

Figure 2.1: Generic Born diagrams for neutralino/chargino production
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is required for the NLO contribution.}
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where lg=t— m2 UG = U — mg— 2.2)

M is the W or Z mass of the s channel gauge boson. The coupling parameters A correspond to the
t,u channel couplings for the outgoing particles ¢, j and are defined in Tab. A.5. The charge conjugate
coupling A® is identical to A for the neutralinos. In the charglno case A; is the coupling for outgoing
X; containing the mixing matrix U, and A°; for an outgoing x containing V. The typical couplings
Cs, Ct follow from the Feynman rules Fig. 2 1

2 :
Xl e [+ )@+ R+ g

X5 s?
2(s — M?) 2(s — M?)?
8—(—8——) = Irl’) (I - |RI%)

Cs1 = (181 + 1) (ZI* + |RP?)

Csa = X2 - Re [(¢+ r)(L+R)] + (167 + Ir{?) Re [ILI|R]

e &Re [(£~r)(L—R)]+

Cr= X, + M’ LR Cpz= X, + MZ {L
CT3—'X + Mz rL CT4= Xc+m2-TR
Xe=-Q only for )“(l')'(f 2.3)

The gauge boson-quark couplings r,£ are given in Tab. A.2, the neutralino-chargino couplings in
Tab. A4. Final state charginos require one subtlety in the matrix elements: either the ¢ or the u chan-
nel diagrams contribute to the amplitude with a fixed quark flavor, except for the pure neutralino case.
For two final state charginos, A only couples to u type, A° to d type quarks. In the mixed production
processes the couplings A and A€ have to be arranged making use of charge conservation.
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The factor of Cg3 in the Born cross section eq.(2.2) originates from the contraction of two CP odd
Dirac traces Tr(ysv*¥1v"¥2)Tr(ys7*$17"¥2), where the definition of the momenta is given in ap-
pendix B.1. Using a naive s scheme, this term cannot be fixed consistently. We therefore keep this
kind of structure in the Born, real gluon and virtual gluon contributions. The different choices for the s
scheme result in O(¢) corrections and do not contribute to the final expression, since the corresponding
diagrams are finite. The calculation performed in the consistent 't Hooft-Veltman scheme [35] agrees
with the naive calculation.

Hadronic Cross Section

The hadronic cross section for pp/pp collisions is given by a convolution of the partonic cross section
with the parton densities for the quarks in the proton, e.g. for two hadrons Hy H,

d(s,eh= 3 / dz; / do [ (2:,Q%) f12(25, @) + (Hy 0 H)] 855(2:2,5, @)
partonsij ¥ 70
24)

where k; and k are the incoming parton momenta, S = (k1 4 k2)? is the hadronic cm energy; m; are
the masses of the final state particles, and 7y = (my + m2)?/S is the kinematical limit. f,-H 7 are the
parton densities, forming the convoluted hadronic luminosity

‘7(‘97 Q2) = dT T Qz) &ii(‘rsi Qz)

partonsu; 7o
L r,@2) = 15 £)(r, @) + 15 ® £ (@)
&
redne)= [ £ rwals(5e?) | @5)

where the hadrons Hy, H; are implicitly fixed by the order of the convolution of the parton densmes For
identical incoming gluons a factor 1/2 has to be incorporated.

2.2. Next-to-leading Order Cross Sections

2.2.1. Virtual and Real Gluon Emission

The NLO cross section includes the radiation of real quarks and gluons and virtual gluons and gluinos.
The generic diagrams are given in Fig. 2.2 for the ¢7 incoming state. The additional ¢g and ¢¢ diagrams
are obtained by crossing one quark to the final and the gluon to the initial state. The virtual contributions
are regularized by dimensional regularization. Therefore a finite shift of the couplings eq.(1.34) has to
be applied to restore supersymmetry. The divergences appear as poles in ¢, as shown in appendix B.3.
The UV poles require renormalization; the only parameter in the Bomn term eq.(2.2) which undergo
the renormalization procedure is the squark mass, defined as the pole mass, i.e. in the on-shell scheme.
The soft gluon poles cancel with the real gluon emission. The phase space integration for the real
gluon emission is given in appendix B.1. These matrix elements have been computed using phase space
subtraction, i.e. the additional gluon phase space is integrated numerically. After subtracting the dipole
terms the remaining divergences are of collinear type and removed by mass factorization, appearing in
the subtraction term, see appendix B.1.
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Figure 2.2: Generic NLO diagrams for neutralino/chargino production, the self energy contributions are
not shown.

2.2.2. Mass Factorization

The parton densities eq.(2.5) form observable structure functions [e.g. F>], which contain divergences in
next-to-leading order QCD [54]. These divergences arise from the collinear radiation of gluons and have
a universal structure which is fixed by the Q2 evolution. They have to be absorbed into the definition of
the parton densities to render the physical structure function finite. In analogy to a UV renormalization
procedure it is possible to absorb additional finite parts into the re-definition. The minimal set is the MS
scheme, and it leaves the next-to-leading order contribution to the measured structure function with a
non-zero finite term. This minimal choice respects the required sum rules naively.

Due to the factorization theorem, the universal form of the partonic cross section in the collinear limit
is independent of the order of perturbation theory.

d%G;; dz; dx; dzﬁred
Su A az; [ 4z; Tii(z:, Im )
diadsy / / (2 Q") T (2,Q )( dbadsa ) g, ok

N 2y ¢
Tij(2,Q") = 6;6(1-2) - .= FPT——(II_ 2‘2) (%) Py(z) @6)

I';; is called splitting function and describes the splitting of a parton i to a parton j in the collinear limit.
It is evaluated perturbatively and consists of the trivial LO term and a divergent NLO contribution. The
appearance of the Altarelli-Parisi kernels P;; fixes the @ evolution, they are given in eq.(B.23). Other
non-minimal schemes lead to a finite renormalization T';; — T'y; + f;;. The reduced cross section gred is
finite and, as well as the splitting function, depends on the factorization scale Q. This scale dependence
should flatten after adding higher order perturbative contributions, since it is a perturbative artifact.
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Figure 2.3: Feynman diagrams for crossed channel production of neutralinos/charginos including on-
shell intermediate states, which have to be subtracted.

The renormalization of the parton densities has to cancel the remaining collinear poles in the matrix
elements and leave the final expression finite. The counter term which has to be added to the bare cross
section to obtain the reduced one in the MS scheme can be read off eq.(2.6)

dz MF n 2\ rl 4 4268 4268
O ( E) 4"? / __"i PI( ) 2 ’J + ij (z) s2 Tim )
dt2d84 27I'€ P(l 26) QF 0o Z dt dS dt2d84 2kim
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2.2.3. On-Shell Subtraction

Apart from the UV and IR divergences another kind of divergenceé can occur, due to on-shell inter-
mediate particles. After crossing the NLO production matrix elements, different incoming states may
contribute to the (xx+jet) inclusive final state

99 — XiX;q
99 — Xix;q (2.8)

As depicted in Fig. 2.3, these can proceed via an on-shell squark. A natural way of solving the prob-
lem would be introducing finite widths for all particles under consideration. However, a finite squark
width would spoil gauge invariance. In addition, it would yield a strong dependence of the next-to-
leading order production cross section on the physical widths of intermediate states. This dependence
would only vanish after including the decays into the calculation. Therefore we instead differentiate
between off-shell and on-shell particle contributions, the latter regarded as final states in the set of super-
symmetric production cross sections.

Considering an analysis of all production processes for two MSSM particles at hadron colliders this
differentiation removes a double counting of the on-shell contributions of the squark, as it would occur
in the case of general finite widths:

99 = §*Xi = OX5X6 neutralino pair production
99 = Gxi - BR(§ — gx;) squark neutralino production (2.9)

The on-shell squark contribution is subtracted from the crossed x;x; production matrix element, leaving
it as a contribution to direct 7 production, eq.(2.9). The off-shell contribution is kept for the first
of the processes under consideration. To distinguish these contributions numerically, one regularizes the
possibly divergent propagator by introducing the Breit-Wigner propagator (p?—m?) — (p®—m?2+4mT).
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Since this width can be regarded not as a physical property of the final state particle, but as a mathematical
cut-off, the matrix element can be evaluated in the narrow width approximation, regarding the final state
particles as quasi-stable.

Assuming an on-shell divergence in the variable M2, the hard production cross section in the narrow
width approximation reads

do Ers: ml'g/m P ) ol
o = o 99— 0x) (MLm%)Hmi—PZ—BR(q%qx’HO M? —mj
1 i 1
— o (g9g— @x:) BR(§— gx;) §(M* - m3) + 0 (M?—m2.> G
q

In case of the neutralino/chargino production M? = s3 4 m? and M? = s4 + m? are relevant for
the on-shell squarks, the extended set of Mandelstam variables is defined in appendix B. The leading
divergence is subtracted from the crossed channel matrix element, as described before. The complete
crossed channel matrix element can be written as [M|* = f(M?)/[(M? — m2)? + mZ'}]; then the
subtraction for an intermediate squark is defined as

F(?) f(m3)

= O(8 - (mg + m;)?) O(ms — m;) (2.11)
(M2~ mé)’ + m%[‘g- (M2 - mg-)2 + m%l"f- v 7 7

Since an over-all factor §(M? — m?) is absent in the subtracted term, the Breit-Wigner propagator has
to be integrated over the phase space variable 2. The matrix element, including the remaining phase
space integration is evaluated for M? = mz-.
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C NLO ]
et =
! oflpbl: pp — £5%+X

Vs=14 TeV
1.k i
= NLO ]
' ofpbl:pp - X 10 |
1 Vs=2 TeV |
-1
10 . e \ L L
0.2 0.4 1 2 "
Wm(g)

Figure 2.4: The renormalization/factorization scale dependence of the total cross section for 9 )Zf pro-
duction at the upgraded Tevatron and the LHC. There is no maximum in either of the next-to-leading
order curves, and the LO and NLO do not meet for a scale around the average mass. The SUSY scenario
determining the masses is given in eq.(1.27).
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The remaining non-leading divergences, arising from interference between finite and divergent Feyn-
man diagrams, are integrable and well-defined using a principal-value integration. Numerically this
principal value can be implemented by introducing a small imaginary part (M? — M? — i¢). Since the
matrix element squared may contain subtractions in more than one variable this imaginary part may lead
to finite contributions and has therefore to be taken into account.

2.3. Results

Scale Dependence

Since the leading order hadro-production cross section for neutralinos and charginos does not contain
the QCD coupling constant, it only depends on the factorization scale through the parton densities. This
renders the leading order scale dependence smaller than ~ 30%. The variation of the cross section with
the scale is therefore not a good measure for the theoretical uncertainty. In next-to-leading order, this
factorization scale dependence becomes weaker; however, an additional dependence on the renormaliza-
tion scale arises. For 1 = pup = pg this yields a generally weak scale dependence of < 20% at the
upgraded Tevatron and < 5% at the LHC. As can be seen from the leading order curves in Fig. 2.4, the
combination of factorization and renormalization scale dependence leads to a different behavior at the
Tevatron and at the LHC, due to different momentum fractions z contributing; in contrast to the strong
coupling induced processes a maximum cross section for some small scale does not occur, Fig. 2.4.

XY | Kunc )'c?)?f Kunc || X{%7 | Kinc if)?,_ Kinc

B | 1st | Qx| 135 | Bxr | 137 | ®twr | 133
%3 | 150 || %% | 133 | ®0%7 | 134 || xFws | 144
R | 135 | Qx| 135 || W | 133 | x| 14
x| 139 | X% | 190 || ®ixr | 198 || xiws | 132
053 | 144 | x| 138 || Rx%5 | 140
B | 135 | B | 251 | B | 265
B | 145 || Bk | 135 || Be | 134
X833 | 130 || xdxf | 131 || mixy | 132
X3%5 | 133
X4x§ | 138

Table 2.1: A complete set of K factors for neutralino and chargino production at the LHC. The masses
are chosen according to the default SUGRA inspired scenario, eq.(1.27). The renormalization and fac-
torization scales are set to the average final state mass. Although the K factors are of a similar size
1.3 -+ - 1.5 for each diagram contributing, large cancelations lead to huge corrections for the scenario
under consideration.



28 CHAPTER 2. PRODUCTION OF NEUTRALINOS AND CHARGINOS

Numerical Results

The production of neutralinos and charginos can be probed at the upgraded Tevatron, a pp collider with a
center-of-mass energy of 2 TeV, and at the future LHC, a pp collider with an energy of 14 TeV. The cross
section for several combinations of light neutralinos and charginos, which turn out to be gaugino-like in
the considered scenario, are given in Fig. 2.5. The size of the cross sections strongly depends on the
mixing matrix elements associated with the different couplings. This yields e.g. a larger cross section for
X1 pairs compared to )"(‘,’)2}" production. In general, the processes containing no final state chargino
are suppressed, independent of the masses, which are almost the same for ¥3 and )Zf ‘Whereas the cross
section for the production of positively and negatively charged mixed pairs are identical at the Tevatron,
they differ significantly at the LHC, due to non-symmetric parton luminosities. The dependence on
SUSY masses and parameters, which are not contained in the leading order cross section, like the gluino
mass, is weak in next-to-leading order. The virtual corrections are generically small [< 10%) compared
to the real gluon emission; however, they are not universal and even do not have a unique sign for the
different gaugino and higgsino-type outgoing particles.

The next-to-leading order K factor is consistently defined as K = onyr0/0Lo. It is dominated by the
gluon emission off the incoming partons and therefore similar for all considered processes and a constant
function of the masses, Tab. 2.1. Although the real gluon corrections to any diagram contributing to the
production process are of the order 1.3 - - - 1.5, large cancelations give rise to huge K factors. The same
effect occurs for the virtual corrections, which grow up to 50% e.g. for the 723;‘(; or the ¥95F channel.
Varying the common gaugino mass m, /, reduces the K factor to values expected by regarding the other
channels.

With an integrated luminosity of f £ = 20fb~! in run II, the upgraded Tevatron will have a maximal
reach for the mass of the produced particles when probing the ;23)21" channel. For masses smaller than
150 GeV, 10° to 10° events could there be accumulated. Although the ¥;¥; cross section is compatible
with the mixed neutralino/chargino channel for a fixed value of the common gaugino mass, the particle
masses, which can be probed, stay below 80 GeV in the considered SUGRA inspired scenario. The
same holds for the LHC, where for typical masses of the )2;" and %9 below 300 GeV and an integrated
luminosity of [ £ = 300fb™" a sample of 10* to 10° events can be accumulated. In the given scenario
the higgsino type neutralinos and charginos are strongly suppressed compared with the lighter gauginos.
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Figure 2.5: Some total cross sections for pairs of neutralinos and charginos at the Tevatron and at the
LHC as a function of my jy. The different masses of the particles involved are given on secondary axis.
The strongly suppressed heavy higgsino cross sections are not given. The 5(2 )Zf and X7 cross sections
are different due to the non-symmetric parton luminosities.



3. SCALAR TOP QUARK DECAYS

Scalar top quarks can decay into two or three on-shell particles via the strong or electroweak cou-
pling [42]. The possible two body decays are — kinematically allowed for an increasing stop mass
in typical mass scenarios:

ti— exd, bxt, 0, [2h, Ah, W, Htb, 7]
t; — wbxd, HYbx? ... (3.1)

The channels in brackets are possible only for the heavier stop, since the £; is assumed to be the lightest
scalar quark. The decay into a charm jet is induced by a one-loop amplitude, and will therefore be
suppressed, if any other tree-level two or three body decay channel is open. In the intermediate mass
range, when the b)'(:-F channel is still closed, the three particle decay into Wb5? is dominant. For a heavy
t, the strong decay mode including a final state gluino will be the leading one, as will be shown later in
this chapter.

3.1. Strong Decays

3.1.1. Born Decay Widths

Since the Yukawa ¢gg couplings are flavor diagonal, any decay involving a scalar top quark
{j—)t+f] [m;i>m,+m§]
§g—t+1t; andcec. [m§ > my+ m;j] (32)

includes a top quark in the final state, i.e. the strong decays will only be possible for large mass scenarios.
For the light stop £, the weak decays in eq.(3.1) will be the only kinematically allowed.

The calculation including the stop mixing and a massive top quark is a generalization of the light-
flavor decay width [43]. To lowest order the partial widths for the stop and gluino decay, eq.(3.2), are
given by by! :

L 2 AR
Pt —tg) = ﬁ/\lﬂ(m?‘a, m?, m_g) ['m%m —-m? - m_g + 2mym; sm(20)]
t2

)

2 == (NT-1md

(G — th NP md b, md) [md |~ m? — md & 2memg sin(20)]  (3:3)
The different factors in front are due to the color and spin averaging of the decaying particle, and the
crossing of a fermion line. Interchanging #; and f; in the two leading-order decay widths corresponds to
the symmetry operation Py in the Lagrangean, as described in section 1.2.4.

'A(z,y,2) = 2 + y* +2* - 2zy + 52 + yz)
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Figure 3.1: (a) Born diagrams for stop and gluino decays; (b) vertex corrections; (c) real gluon emission.
The correction to the gluino decay can be obtained by crossing the diagrams

3.1.2. Next-to-leading Order SUSY-QCD Corrections
Massive Gluon Emission

The NLO corrections [11] include the emission of an on-shell gluon, Fig. 3.1c. This gluon leads to IR
singularities which are regularized using a small gluon mass A, subsequently appearing in logarithms
log 2. The massive gluon scheme breaks gauge invariance for the non-abelian SU(3) symmetry. Hence
the scheme has to be extended by new counter terms if a non-abelian contribution arises from a three or
four gluon vertex, otherwise the SU(3) Ward identities would not be satisfied anymore. This is not the
case for the stop decays Fig. 3.1. The gluon behaves like a photon and its mass can be regarded as a
mathematical cut-off parameter. After integration over the whole phase space the small mass parameter
drops out and yields a finite sum of virtual and real gluon matrix elements. However, these massive
gluon matrix elements must not be interpreted as exclusive cross sections, since gauge invariance is only
restored for inclusive observables, i.e. the gluon integrated out.

In the considered process the logarithms of the gluon mass arise from the integration over the soft
and collinear divergent three particle phase space, eq.(B.7). The same kind of logarithms enter through
the virtual gluon contributions, e.g. the scalar three point function eq.(B.44) and cancel analytically.

Virtual Corrections

The virtual gluon corrections, including self energy diagrams for all external particles and vertex cor-
rections Fig. 3.1c, are also regularized using the massive gluon scheme. The additional UV divergences
have to be regularized dimensionally. The poles 1/¢ are absorbed into the renormalization of the masses,
the strong coupling, and the mixing angle, which are the parameters appearing in the Born decay width
eq.(3.3). The counter terms for mass renormalization in the on-shell scheme and the renormalization of
@, in MS can be found in appendix B.4. The mixing angle is renormalized by introducing the running
mixing angle and absorbing the mixing stop self energy contributions. This scheme restores the (f; > £2)



32 - CHAPTER 3. SCALAR TOP QUARK DECAYS

[ Lo ™, (g - LB )[GeV]

ﬂ

3 P L U v T e | PR W S W 1Y 0.:..[;-..! 1

107! 1 10 -1 05 0 AR
Wm(g) sin(28)
Figure 3.2: Left: Renormalization scale dependence of the gluino decay width for the same SUGRA
inspired scenario as chosen in Fig. 3.3: m; = 449 GeV,m;, = 847 GeV, sin(20) = —0.59, and
mg = 637 GeV. The renormalization scale is varied as a fraction of the mass of the decaying gluino;
Right: mixing angle dependence of this gluino decay, where the stop mixing has been varied over the
whole range, independent of the other low energy parameters.

symmetry Ppp in NLO. The dependence on the mixing angle in NLO can be described by a constant K
factor, Fig. 3.2, possibly large contributions from the gluino-top loop are absorbed into the definition of
the mixing angle. Renormalizing the strong coupling in the MS scheme breaks supersymmetry; adding
a finite counter term, derived in eq.(1.33), restores supersymmetry.

The Born decay widths are proportionalto A/2, i.e. the relative momentum of the produced particles.
One of the vertex correction diagrams is constructed by exchanging a virtual gluon between outgoing
color charged particles. Near threshold the exchange of a gluon between two slowly moving particles
picks up a factor A~1/2, the Coulomb singularity, which cancels against the phase space suppression
factor in the virtual correction matrix element. The NLO decay width therefore does not vanish at
threshold. The narrow divergence can be removed by resummation of the contributions near threshold.
Moreover, the screening due to a non-zero life time of the final state particles reduces the Coulomb effect
considerably.

The complete analytical expression for the stop decay width is given in appendix C. The numerical
results are shown together with the weak decays in Fig. 3.3.

3.2. Weak Decays

The possible weak decay modes including a stop will be dominant once the strong channels are kinemat-
ically forbidden. Although this region is not preferred by the mSUGRA scenario even the crossed top
decay could be possible, which leads to experimental limits on the branching ratio of this decay mode
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and thereby on the masses involved [7]

t;— t+)2? [m;j >my + mi;}
t_j ——-)b—}—)??' [m‘-’, >4 mb+m,-(j]
t— b+ [me > my, +mg,] 34

The Born decay width for the #; decay to a neutralino reads?

o " 2a
Lt~ t%3) = N Allﬂ(mgl,mf,m,’#ﬁ) [(m?1 —m? - m)zzj) (CE+C%) + 4m¢m,-(jCLCR]
. i .
Cr= ALcosé+ BLsiné
Cp, = Brcosf — Apsind (3.5)

The couplings A and B are given in Tab. A.5 for the neutralino involved. The £, decay can be derived
using the P2 operation. The decay channel producing a bottom quark and a chargino can be read off
using Tab. A.5 by setting the mixing angle to zero, as long as sbottom mixing is neglected. The NLO
calculation is performed exactly as for the strong decay channel, whereby some virtual and real correction
diagrams in Fig. 3.1 vanish for a Majorana particle without color charge. Again the finite shift eq.(1.34)
has to be added to the weak coupling vertex, no matter if a gaugino or a higgsino is involved.

3.3. Results

In the calculation the renormalization scale of the process is fixed to the mass of the decaying particle.
Since the scale dependence should vanish after adding all orders of perturbation theory one expects the
variation of the width with the scale to be weaker in NLO than in LO. This is shown in Fig. 3.2 for the
strong coupling gluino decay.

The numerical results for the strong decay channels can be seen in Fig. 3.3. Assuming for illustration
a SUGRA inspired mass spectrum the light stop £; can decay only via the weakly interacting channels.
The strong decays are possible for the gluino and for the heavy stop. With increasing my/, the gluino
becomes heavier compared with the stop masses, i.e. the decay into the gluino.vanishes and the gluino
decay channel § — i3t + 1 opens. A kink in the NLO £, decay widths occurs at the production
threshold § — ¢y, where the gluino self energy exhibits a large discontinuity. It can be smoothed out by
introducing a finite width of the gluino. The Coulomb singularity is present in both of the strong decay
channels. However, it can be seen only in the stop decay, since the kink in the gluino self energy and the
Coulombic vertex contribution to the NLO decay width cancel each other numerically near threshold.
Since each of the large contributions is narrow, the phenomenological consequences are negligible.

The large difference in the size of the virtual corrections between the stop and the gluino decay is due
to 72 terms which are determined by the sign of (m; — mj) and arise through the analytical continuation
of the matrix element squared into the different parameter regions, Fig. 3.3. For the gluino decay they
give rise to destructive interference effects of the different color structures, and render the over-all NLO
corrections small. The size and the sign of the NLO correction to the gluino decay depends on the masses
involved. The K factor for the stop decay is always large and positive K = 1.35 - --1.9 decreasing far

2This decay width has also been calculated in NLO by other groups [29]; we have analyzed it for the sake of comparison
and to illustrate the running mixing angle. The three calculations are in

&
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Figure 3.3: Left: SUSY-QCD corrections to the strong decays iy — t and § — tt, -+1t; as a function of
the common gaugino mass. The masses of the particles involved are labeled in the additional axis. The
input parameters have been chosen as my = 900 GeV, Ag = 900 GeV, tan § = 2.5, & > 0, in order to
see the possible structures of the curves. The kink in the NLO stop decay width results from the gluino self
energy and could be smoothed by inserting a finite gluino width; Right: SUSY-QCD corrections to weak
decays of the light ty. The input parameters are the usual mgq = 100 GeV, Ag = 300 GeV, tanf =
4, > 0. Only the decay into the two lightest neutralinos and into the light chargino is possible in the
™y, range considered. Note that the mass of the X and the X3 are almost identical in the SUGRA
inspired scenario. The dashed line denotes the LO, the solid one the NLO results in both figures.

above threshold, the K factor for the gluino decay is in general modest and tends to be smaller than one,
K=08..-1.

The weak decay widths of the light stop ; are shown in Fig. 3.3. They are generically suppressed
compared to the strong decay widths, due to the coupling constant. This yields about one order of
magnitude between the different contributions. Moreover the typical weak coupling factor includes
mixing matrices of the neutralinos and charginos, which may lead to a further suppression. Given that
the masses of the four neutralinos cluster for the higgsino type and for the lighter gaugino type mass
eigenstates, even the decay width into the heavier neutralinos/charginos can exceed the width to the
lighter one [11]. Since the top quark is heavy, the b} decay mode is typically the first tree level two
particle decay kinematically allowed. The neutralino channels open only for higher stop masses, but
will then be of a comparable size. The NLO corrections exceed 15% for special choices of masses and
parameters only [29].
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3.4, Heavy Neutralino Decay to Stops

Heavy neutralinos will be produced at a future e e~ linear collider [10]. In most supergravity inspired
scenarios they are higgsino-like, and will therefore not decay into light-flavor quark jets. However, the
large top Yukawa coupling may open the decay channel ¥ — £1£ + 1t [j = 3, 4] for a light stop. The
analytical expression for this decay can be obtained from the stop decay width, eq.(3.5), by crossing the
stop and the neutralino.

: a
I —th) = _m_AIIZ(m%I, mf,m?—(’,) [(m?| —m? - mij) (C} +CE) + 4m,miiCLCn]

X

(3.6)
The couplings are defined as for the stop decay. The numerical result is shown in Fig. 3.4. Similar
to the strong decay width the neutralino decay to two strongly interacting particles exhibits a Coulomb
singularity, due to the exchange of a slowly moving gluon between the decay products. Especially for the
steeply rising decay of the second heaviest neutralino, this Coulomb singularity is very narrow, as can
be seen in Fig. 3.4. Unlike the gluino decay in section 3.1 the next-to-leading order corrections can be
of the order 10% and are positive over the whole mass range. The clustering of the masses of the heavy
higgsino-like neutralinos is a typical behavior in supergravity inspired scenarios, since the off-diagonal
entries of the neutralino mass matrix are small compared to fi.
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Figure 3.4: SUSY-QCD corrections to the weak decays of heavy neutralinosto a stop X§ — iy + i1 asa
function of the common gaugino mass. The masses of the particles involved are labeled in the additional
axis. The input parameters have been chosen as mg = 450 GeV, Ag = 600 GeV,tanf = 4,4 > 0,
in order to see the Coulomb singularity at threshold. The dashed line denotes the LO, the solid one the
NLO results.
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4.1. Diagonal Stop Pair Production

4.1.1. Born Cross Section

Diagonal pairs of stop particles can be produced at lowest order QCD in quark-antiquark annihilation
and gluon-gluon fusion:

qq — t1t; and 52?2
99— hify and Ff, (@.1)
Mixed pairs £, £, and f,%; cannot be produced in lowest order since the gtt and ggit vertices are diagonal
in the chiral as well as in the mass basis of the squarks involved. The relevant diagrams for the reactions
(4.1) are shown in Fig. 4.6 a. The corresponding cross sections for these partonic subprocesses may be
written as [44, 12]:

drolag — i) =
" = mpodn 5 3lm} 2mt m} 1-8
TONE I E {ﬂ <Z§+ ats ) T\ 3 T o2 lg<1+,6) SO

The invariant energy of the subprocess is denoted by /s, the velocity by # = /1 — 4m't5 /5. The cross
sections coincide with the corresponding expressions for light-flavor squarks [8]

A = 1 o 4mls 8 4 8u®
4n ﬂ 8u? 8u 8/.&
R [ TR (2 27s> ¥ (273 o)t

. o dngonT 5 31m2 2m} mi ( 1- ﬂ)
orolgg 4] = — {ﬁ(4s+ 2 ) T\ 5 +6s2 lg{ T35
2

Ul o A
K= my —mg

L=log((1-B+24%/s)/(1+B+24%/s))  (43)

in the limit of large gluino masses and for 2n; = 1. The main difference between these two cross
sections results from the flavor diagonal ¢4 coupling, which makes the ¢ channel gluino contribution for
the squark production eq.(4.3) vanish in case of stops. This yields a #° dependence of the g — &t cross
section. As described in section 1.2.3 an additional factor 2n; arises for the mass degenerate light-flavor
squark production.

37

Internal gluon propagators in the LO and the NLO calculation are evaluated in the Feynman gauge.
External gluons are restricted to their physical degrees of freedom. The sum over the physical polariza-
tions in the axial gauge is
ntkY + kPnY  n2k*kY

(nk) (nk)?
kP = 0 = k, P @4)

Pv= 3 e (k)er(k) =~ +

transverse DOF

with an arbitrary four vector n. In the final result this vector n drops out according to gauge invariance.
Using the Slavnov-Taylor identity (B.47) this is equivalent to using the polarization sum (—g**) and
removing the momenta k{' and kY from the tensor matrix element M** (ky, k).

4.1.2. Next-to-leading Order Cross Section

The incoming gluons in the virtual and real correction matrix elements are treated the same way as
in the Born matrix elements. The Feynman diagrams for the virtual gluon correction are shown in
Fig. 4.6 b,c. The masses are renormalized in the on-shell scheme, the coupling constant «, in the MS
scheme. The renormalization is performed in such a way, that the heavy particles (top quarks, gluinos,
squarks) decouple smoothly for scales smaller than their masses, as described in eq.(B.49). Note that
no vertex requiring a finite renormalization according to section 1.5 occurs in the Bom term, again in
contrast to the light-flavor squark production.

The calculation of the gluon bremsstrahlung matrix element has been performed in the cut-off
scheme, appendix B.1. The Feynman diagrams for the different incoming states gg, ¢g, g7, qg are given
in Fig. 4.6 d. The angular integrals have been calculated analytically, which leads to an analytic cance-
lation of the IR poles in € between the virtual correction, the real correction, and the mass factorization
matrix elements squared. The latter one is described in section 2.2.2.

At lowest order, the cross sections for £3£; and 35 production are given by the same analytical
expression, since the mixing angle does not occur. At next-to-leading order the ttg and four squark
coupling introduce an explicit dependence on the mixing angle. The Z,f2 cross section can be obtained
using the operation P, described in eq.(A.2). However, the dependence on the mixing angle turns out
to be very weak.

To perform a more detailed analysis the partonic cross section is expressed in form of scaling func-
tions

) {f,,( ) +dray () |/, [ &5 (n,m 8) + £ (n) + Fij (1) log <,’;—Z>]} @5)

t

where 7 are the incoming partons, (n = s/ (4m%) — 1) with the partonic cm energy s, m; generically
denote the set of masses entering the virtual corrections, and § is the stop mixing angle. For the sake of
simplicity we have identified the renormalization and the factorization scale yiy = pp = p. The scaling
function fP contains the Born term, f¥ 5 the virtual and soft-gluon contributions', f the hard-gluon
contribution, and f the scale dependence. The function f combined with the running of the strong
coupling constant and the scale dependence of the parton densities should yield a decreased dependence
on f.

!Dividing the real gluon contribution into soft and hard gluons leads of course to some ambiguity in the definitions of f Vits
and f¥. This is in detail described in appendix B.
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Figure 4.1: The scaling functions for the production of fh pairs as a function of ) = s/(4m?) — 1. The

variation of fV+5 Jor all possible values of the mixing angle 6 is indicated by the line-thickness of the
curves.

The scaling functions are shown in Fig. 4.1. The scaling functions f,4 are identical to fg,. Only the
scaling function fV+9 depends on the mixing angle § and on the additional squark and gluino masses.
The contribution of f¥*+5 compared to f¥ is small in general, and the dependence on the mixing angle
is suppressed. In contrast to the light-flavor squark production only the gluonic stop production cross
section is proportional to 3, whereas the ¢g collision leading to an s channel gluon exhibits an over-all
factor 83, as can be seen in eq.(4.2). A Coulomb singularity similar to the one for the stop decays in
section 3.1 appears: The scaling function fV+S approaches a non-zero limit near threshold n — 0.

The emission of soft gluons from the incoming partons leads to an energy dependence log 8 near
threshold. The leading log? 8 terms are universal and could be exponentiated. All scaling functions
approach a simple form in the limit # < 1:

B s
B 5= ”5’1
Vi _ gB 11 vis _ g8 L
fgg 33603 f qq 4&@
a0 = Joa [ g’ (86%) - 1°g(8ﬁ2)] fa="rn [ 71087 (86%) — 55— 10g(86%)
fu=-fp55 3 log(86") fa=-fg 37 log(867) (4.6)

In the high energy limit 7 3> 1 the LO cross section scales o 1/s, eq.(4.2). The NLO cross sections
involving at least one gluon in the initial state approach a finite value in this limit. This is caused by the
exchange of soft gluons in the t or u channel. Exploiting k7 factorization [45] the non-zero limits of the
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scaling functions can be determined:

g1 _ 2159 p__ 2159
99 T43200r 99 1944007
11 1

T e 4.7
foo=~730x o=~ S300r i
The ratio of fy, and f,, is given by 2N : Cr which are the color factors for the exchange of a gluon
between an incoming quark or one of the two incoming gluons, and the Born diagram, which in both
cases is the gg one.

4.1.3. Results

The hadronic cross section is obtained from the partonic by convolution with the parton densities,
eq.(2.5). The phase space integration for the Born cross section as well as for the real gluon emission is
given in appendix B.1.

Scale Dependence

The dependence on the scale 4 = pup = pp has been analyzed for the production of £; pairs both at the
upgraded Tevatron and at the LHC. The hadronic cross sections include o, and the CTEQ4 [17] parton
densities consistently in LO or NLO, which also enters the definition of the K factor K = onp0/0L0-
The scale dependence is shown in Fig. 4.2. The leading order dependence is monotonic and varies by
about ~ 100% for scales between mg, /2 and 2m;, . The increase for small scales results from the large
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Figure 4.2: Left: The renormalization/factorization scale dependence of the total cross section for t,
pair production at the Tevatron and the LHC. the maximum for the NLO cross section at the LHC is
reached only for very small scales; Right: Effect of the variation of the scale on the upgraded Tevatron
production cross section, as a function of the stop mass. The LO and NLO bands show the improvement
of the theoretical uncertainties in the derivation of mass bounds. The SUSY scenario determining the
masses is given in eq.(1.27).
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Figure 4.3: K factors for diagonal stop-pair production at the upgraded Tevatron and the LHC fora

..mmple of stop masses. Scale choice: y = my,. For a comparison of Tevatron and LHC also the LO
initial-state gg and qq fractions are given.

Yalue of the running QCD coupling in leading order. At next-to-leading order the variation with the scale
is reduced to ~ 30%. The monotonic behavior of the leading order curve is corrected in next-to-leading
order, yielding a maximum value at some small scale, Fig. 4.2.

Supersymmetric Parameter Dependence

The total hadronic cross sections at the Tevatron and at the LHC are given in Fig. 4.5. The masses in-
volved are fixed by a SUGRA inspired scenario eq.(1.27). All squarks except the top squark are assumed
to be mass degenerate. The mass range of the outgoing stop is varied independently of the other mass
parameters. The same is done for the mixing angle and for the gluino mass. The dependence of the cross
section on these internal mass parameters is small, as can be seen from the finite width of the central lines
in the ﬁg\_lres, i.e. the cross sections depend essentially on the outgoing masses and do not distinguish
between ¢3 and 5. The light-flavor squark and the gluino contributions appearing in the loops are de-
coupled even for numerically small masses. The search for stops therefore yields limits on their masses
independent of any other parameter, unlike the squark/gluino or the neutralino/chargino case.

One exception of this behavior is the kink in the next-to-leading order cross sections for the heavy
stops. Similarly to the decay width of a heavy stop to a gluino, Fig. 3.3, threshold contributions occur.
In the stop production case the heavy stop can decay into an on-shell gluino and a top quark. The kink
will be regularized by introducing a finite width for the stop, and for an analysis it has to be removed by
resummation. However, for the search for stops at the Tevatron this parameter region is not of interest.

The strong mass dependence of the K factor is due to different K factors for the quark and the gluon
channel, both of which are only weakly mass dependent. However the contribution of the two channels
varies strongly with the mass of the external particle, as can be read off Fig. 4.3. Whereas the gluonic K
factor is large (about 1.3), the quark K factor tends to be smaller than and close to one. Weighted with
the fraction of the incoming state these combine to the K factor given in Tab. 4.3. Since at the Tevatron
the contribution of the incoming quarks decreases as the stops become light, the K factor grows from

1.03 to 1.43 far from threshold. At the LHC the gluons dominate over the whole considered mass region
and the K factor varies between 1.27 and 1.50.

With cross sections between 0.1 and 100 pb the integrated luminosity [ £ = 20fb=* should be
sufficient for collecting a sample of 10% and 10° stop events, provided the particle exists and with a mass
less than 450 GeV. The LHC with an integrated luminosity of [ £ = 300fb™" could collect 10° to 10°
stop events in the mass range of 200 to 500 GeV.

The normalized differential cross sections with respect to the transverse momentum and the rapidity
is shown in Fig. 4.4. The transverse momentum of the outgoing stops is shifted to a softer regime by the
momentum carried by the additional jet in the final state. A naive description using the K factor would
not take into account this shift and therefore lead to large errors in the size of the cross section for a
certain value of pr. The rapidity distribution keeps almost the same shape in NLO as in LO. However, it
is not symmetric in NLO anymore.

4.2. Non-diagonal Stop Production

In hadron collisions mixed pairs #;¢; and #5¢; cannot be produced in lowest order, unlike in et e~ colli-
sions, since the involved coupling conserve the chirality eigenstate, which does not hold for the coupling
to a Z. The mixed production cross section is therefore O(). For a general mass scenario it is small
but difficult to calculate. In the diagonal production we observe that the limit of a decoupled gluino gives
a good approximation for the size of the cross sections. Therefore we calculate the production cross
section for 115 + #5t; in this limit. Only two one-loop diagrams contribute to the amplitude in the limit,
they are given in Fig. 4.6 e. They involve the production of diagonal stop pairs in gg fusion, which are
rescattered to mixed pairs by the four squark vertex. The incoming quarks are suppressed.
The evaluation of the loops yields

37 ofAlB
13824 27s3

where the subscript in the cross section 6., indicates the limit mz — co. The coefficient A1/2 is the usual
2-particle phase-space factor, i.e. A = [s— (mg, +mj,)*]|[s— (m;, —mg,)?], and @x = (B ~1)/(Be+1);

- = o~ - 2
Goolgg — Tt + 1] = sin?(40) m?l log?(zy) — m?z log?(z3) (4.8)

o[fb) Ogq a}rig‘i‘ T4 02!‘;’“
Tevatron | 17 0.201-10° 0202-103 || 0.087 .10  0.087-10°
i 0333 0337 0.016 0.016
hilart fafy = 0 <3 0.131-10~*
LHC | 4.137-10°  4.150-10% || 70.13 108  75.00-10°
oty 0.169-10 0.172-10% || 1.422-10° 145810
fils + 5t g 0 = 0.149

Table 4.1: Cross sections for diagonal and non-diagonal pair production at the Tevatron and the LHC,
using the default SUGRA-inspired scenario eq.(1.27). The non-diagonal results are given without the
mixing factor sin® (45).The superscript 'limit' denotes the asymptotic value of the cross section for large
gluino masses.
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the logarithmic discontinuities are defined properly by the infinitesimal shift s — s -+ i€ in fx. The
fraction 37/13824 originates from the color factor (N — 1)[5N? — 2(NV — 1)?]/[256 N3(N + 1)].

The cross section depends strongly on the mixing angle 6 through the overall factor sin2(4é). Nu-
merical values for the diagonal and non-diagonal pair cross sections are compared in Tab. 4.1. Note that
the mixed-pair cross section is given in this table without the mixing factor sin? (45). The values for the
cross section for producing mixed stop pairs in the large mj limit are very small at the Tevatron as well
as at the LHC.
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Figure 4.4: The normalized differential cross section for the production of ty pairs at the Tevatron. The
mass scenario using the central scale is defined in eq.(1.27).
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Figure 4.5: The total cross section forty and t; pair production at the Tevatron and at the LHC. The band
for the NLO results indicates the uncertainty due to the scale dependence. The mass scenario is given in
eq.(1.27). The line thickness of the NLO curves represents the variation of the gluino mass between 280
and 900 GeV and of the mixing angle over its full range. The kink in both of the cross section results
from the on-shell decay of the heavy stop to a very light gluino and a top, and can be regularized by

introducing a fi

nite stop width.
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Figure 4.6: Generic Feynman diagrams for the diagonal stop pair production: (a) Born diagrams for
quark and gluon incoming state; (b) vertex corrections; (c) box contributions; (d) real gluon/quark
emission for different incoming states; (e) mixed stop pair production in the limit of decoupled gluinos.
The self energy contributions are not shown.

5. R PARITY VIOLATING SQUARKS

5.1. Production in ep Collisions

Limits on the mass and the coupling A’ as defined in eq.(1.6) can be derived from the direct search at
different colliders. HERA ep scattering could produce squarks via the R parity violating coupling A’ to
quarks and electrons, where the flavor of the squark has to be chosen consistent with the whole set of
current bounds [53, 24, 25]:

eq— (5.1)

This resonant s channel production process can be described in terms of general scalar leptoquarks. The
Yukawa matrix A’ does not have to be diagonal in flavor or generations.

For the leading order hadronic cross section the convolution with the parton density, as defined in
q.(2.5) becomes trivial, since the energy-momentum conservation yields a factor §(1 — m?/(zS))

" A2
9L0 = Ym?
2
ULo——fP(S nu) Lo (5:2)

The parton densities ff are taken at the factorization scale , and possible flavors of incoming quark are
fixed by charge conservation and the charge of the outgoing squark.

The NLO contributions consist of virtual gluons, real gluon emission, and the crossed eg incoming
state. All other supersymmetric particles in this scenario are assumed to be decoupled, see appendix A.3.
Some generic Feynman diagrams for the matrix element can be derived from Fig. 3.1 by replacing the
external gluino by a positron and removing all internal gluino contributions!. After renormalization and
mass factorization the dimensionally regularized NLO cross section is finite and can be written as

2 Cra
ONLO = m?ff(:t) L0 [1_ 2 3(2] + A+ A,

as . 1 z
Ayi= ?ULO/ dy ff(y) { - -2—qu(2) logz +Cr(1+2)
x

e (5 () s

¥4

Dy= —ULO/ dyfq —{ — Pp(z) [log( AE +2] +2(1—z)logz+ 1} (5.3)

"The next-to-leading order calculation was performed in parallel to [46], and the results are in agreement
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Figure 5.1: Left: K factors for ed, eu — { as a function of the mass of the produced squark; Right: K
factor for the d type quark vs. the renormalization and factorization scale.

where z = m%/5S and z = z/y, and the renormalization and factorization scales are set pp = g = m.
The splitting functions F;; are defined in eq.(B.23), and the + distributions are given in eq.(B.24). The
NLO cross section is proportional to &1,0, i.e. the anomalous coupling drops out of the K factor. In the
formulae the factorization and renormalization scales have been identified with the squark mass.

The K factors for the production of an up-type and a down-type squark are given in Fig. 5.1. The
next-to-leading order correction for the HERA process is dominated by the gluon emission from an
incoming quark. They are positive in the whole mass region considered. The virtual correction as well
as the crossed channel are suppressed. Since the parton distributions enter the K factor, the different up
and down type valence and sea quarks receive different corrections.

The dependence on the factorization and renormalization scale can be made explicit in eq.(5.3) by
adding log u%p/m? to the (; term in the virtual correction and to the logarithms multiplied by By,
Additionally the mass m in the argument of the parton densities and the running coupling A’ has to be
replaced by p. The decrease of the scale dependence of the cross section is shown in Fig. 5.1.

The partial width for the decay of a R parity violating squark can be computed using the results for
the scalar top squark. The width for the decay channel

§g—req 5.4)

in NLO reads

3 P 27 Cra,
I'npo (7 — eq) = Te% [1 + (g - 2@) ’; e ] (5.5

This correction is small (~ 10%). If the R parity breaking coupling )\’ is small, then the squark will be
long-lived, and the NLO correction will not change this effect. A typical scenario could be a squark with
a mass of 200 GeV and a Yukawa coupling ' ~ e/10, which leads to a decay width of I' ~ 3 GeV.
Bound states however will only occur, if R parity conserving decay modes are kinematically forbidden.
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5.2. Production in Hadron Collisions

In contrast to the HERA production process the production of squarks at hadron colliders, R parity
conserving and R parity violating, is fixed by the QCD coupling, as long as the production process does
not involve any weakly interacting particles?. In the scenario under consideration all other non-Standard
Model particles are decoupled. The Feynman diagrams for the Born cross section [14] are the same as
for the stop pair production, Fig. 4.6a:

94/ 99 — 4 (5.6)

The Born cross section is given by eq.(4.2), the t channel diagram for quark-antiquark collisions is
in this case not suppressed by the incoming state but absent, due to the decoupling of the ghaino. The
strong coupling is independent of the flavor of the light squark, i.e. in case of hadroproduction all flavors
look identical, unlike Fig. 5.1. The calculation for R parity breaking squark production is the same as
for the stop pairs, the Feynman diagrams are given in Fig. 4.6 taking the limit of decoupling gluino
and removing the strong four-squark coupling. This follows from appendix A. The partonic NLO cross
section only depends on the partonic cm energy s and on the mass of the squark, leading to the [in this
case literal] scaling functions for the Born, virtual and soft, hard, and scale dependent contributions

2rh.2 2
iy = 2 {f.-? (n) + dmaxs(4?) [f.-‘; ) + £ (n) + s (n) log (%)] } eR)

q q
where 1, j denote the initial state partons. The factorization and the renormalization scale have been
identified, and = s/ (4m§) ~ 1. The numerical form and the structure of these scaling functions are
very similar to the stop case, Fig. 4.1, since the SUSY parameters except for the outgoing mass influence
the stop scaling functions only marginally, and the four-squark vertex only contributes to the numerically
suppressed virtual corrections. This result for the R parity violating squarks can also be obtained from
the even more general light-flavor squark production [8] in the limit of a large gluino mass. However,

2Other production channels [47] involve the weak coupling constant and more than two final state particles; their cross
sections are significantly smaller than the squark-antisquark production via an s channel gluon.
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005 F

Figure 5.2: Renormalization/factorization scale dependence of the total cross section pp — 4q at the
non-upgraded Tevatron. The arrow indicated the average invariant energy < s >1/2 in the hard subpro-
cess, which was used in the original analysis.
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Figure 5.3: Total hadronic cross section for the production of R parity violating squarks in hadron
collisions pp — 4. The leading order result is given for the renormalization/factorization scale ju = m.
In the first case also the values of a; and the parton densities have been taken in leading order. The K
Jactor for the smaller central scale m is comparably small.

the occurrence of the gluino mass in the Born term requires a numerically large gluino mass for the
analysis. And the four-squark coupling has to be removed as for the derivation from the diagonal stop
pair production. .

Exactly as for the stops, the scale dependence Fig. 5.2 in NLO leads to a maximum and an increasing
accuracy for the derivation of limits on the mass of the particles from non-observation. Since in leading
order any scale of the process can be considered, choosing the invariant energy of the final state z = /3
is possible. Especially if NLO calculations are not available the choice of the scale of the process leads
to considerable uncertainties, which is illustrated in this example: In NLO the choice of the factorization
scale is no longer free, since it must be a parameter defined in terms of external variables, which does
not allow for p = /5. The choice of . = /5 in next-to-leading order leads to an inconsistence of the
order a;, independent of the order of perturbation theory, in which the process has been calculated [48].
Another scale for the production of massive particles would be the final state mass m, which turns out
to be much smaller than /5 averaged with the weight of the cross section. The different K factors for
both choices of the scale are given in Fig. 5.2. For the typical behavior of the leading and next-to-leading
order cross section the large scale, /3, is far from the point of maximal convergence. This reflects the
appearance of logarithms log m? /%, which render the corrections unnaturally large.

The NLO cross section and the LO cross section for the central mass scale for the upgraded Tevatron
are given in Fig. 5.3. The variation of the cross section with the scale decreases from 100% to 30% if
the NLO result is used. Compared to the p = m leading order result this leads to a more accurate and
always higher mass limit, the improvement of the mass bounds however stays below 10 GeV for the
central scale.

Experimental Analyses

One of the design features of the ep collider HERA is the search for leptoquark-like particles, i.e. particles
which carry electron and quark quantum numbers, and can in case of scalars be identified with R parity
violating squarks. They can occur either in the s or in the ¢ channel and lead to an excess in the ep cross
section [49]. The decay channel of this squark strongly depends on the masses of the supersymmetric
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scenario considered, but may well include a high-pr electron. This signal is essentially background
free [23]. The interpretation of the combined data of ZEUS and H1 as R parity violating squarks leads to
combined limits on the Yukawa coupling A’ and the branching ratio BR to the observed high-pr electron
final state [The numbers are based on the data analyzed by fall 1997.].

etu :  MNvBR~0.017---0.025
etd :  MNv/BR~0.025---0.033
ets :  MNv/BR~0.15---0.25 (5.8)

Couplings to d and % would lead to a large enhancement in the e~ p run and are forbidden because of
their non-observation. Moreover, couplings involving a positron and an up-type quarks would lead to
electric charges, which do not occur for MSSM-type squarks. The coupling A’ has to be interpreted
as entries into the non-diagonal Yukawa coupling matrix, connecting down-type quarks to squarks and
electrons. The diagonal matrix element A}, ;, which would lead to the production e*d — i, is excluded
by neutrinoless double beta decay. Possible candidates for a resonance production are

etd — ép, i, ets =1L (5.9)

As depicted in section 1.2.1, atomic parity violation yields strong limits on A'2/m? for any lep-
toquark interacting with valence quarks. They can for a mass of ~ 200GeV be translated into
bounds on the Yukawa coupling matrix A’ < 0.055 [e*d] [24, 25]. Combined with the measured val-
ues at HERA, eq.(5.8), this yields lower limits on the branching ratio to the observed eq final state
BR 2 0.2---0.4 [e*d]. The limits obtained from atomic parity violation are derived for the presence of
only one particle being responsible for the possible deviation from the Standard Model. More than one
R parity violating squark influences this analysis, the result depending on the sign of interference terms
and thereby on the quantum numbers. The assumed left handed stop quark is in general a superposition
of two states with different mass and equal electroweak properties. This strengthens the bound on the
branching ratio:

m?
BR — BR (1 +tan? @ ;;L) (5.10)
2
At LEP, the obtained limits on A’ are relevant for sea quarks only [24, 25]. By the same token as for
atomic parity violation they start from X’ < 0.6 [e*s] and give BR. 2> 0.05---0.2 [e*s].

The data from the search at the Tevatron can be written — given the mass of ~ 200 GeV from the
HERA analysis — as an upper bound in the branching ratio BR. < 0.5 - - -0.7. Theoretically the compe-
tition between supersymmetric 1 parity conserving, and R parity violating decays makes it possible to
vary the branching ratio into the eq mode with the mass of the particles forming the decay chains.

In the case of ed — ¢r, the most important MSSM-like decay modes are cf(? and s)’(j-‘. Assuming the
gauginos being heavy [m).(;, > 200 GeV] insures that the branching ratio lies in the region of BR ~ 1/2.
The higgsino decays suffer from the small strange quark mass. For ed — £y, the strong decay channels
are forbidden, as depicted in section 3. The decays into t)'(? and b)'(;.* can be suppressed by large gaugino
and higgsino mass parameters. However, suppressing the whole set of possible stop decays, eq.(3.1),
yields some fine tuning of masses and mixing also in the sbottom sector. The coupling A’ for the es —
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iy, production channel is comparably large, which renders the different Yukawa coupling and gauge
coupling mediated decay channels of similar size, and thereby prevents from any fine tuning.

The interpretation of the HERA excess as R parity violating squarks is therefore not ruled out by the
bounds set by other experimental and theoretical analyses, but give an impression how different collider
experiments and non-collider experiments like atomic parity violation and search for neutrinoless beta
decay can altogether constrain the parameters in the same model. Incorporating all available data, HERA
itself is the only experiment able to remove this interpretation by non-confirming the excess.

6. CONCLUSIONS

In this work supersymmetric QCD corrections to decays involving scalar top quarks and to the hadropro-
duction of neutralinos/charginos and stops are presented. The decay widths as well as the production
cross sections calculated in perturbation theory exhibit an unphysical dependence on the renormalization
and/or factorization scales. In leading order this dependence is in general strong. Compared to a central
scale, which could be the mass m for the decay width and the hadro—production cross section of massive
particles, this leads to variations up to a factor of two for scales between m /2 and 2m. In next-to-leading
order this dependence is considerably weaker, i.e. in addition to the K factor, the next-to-leading order
results always improve the precision of the theoretical prediction used for the experimental analysis.

The basic properties of the scalar top sector are investigated by calculating the supersymmetric QCD
corrections to the strongly and weakly coupling decays, including a stop either in the initial or in the final
state. An elegant definition of a running mixing angle in next-to-leading order is given, in order to restore
the Born type symmetries between the stops in next-to-leading order observables. The mixing angle
counter term is compared to other renormalization schemes. Although the phenomenological motivations
for the various schemes are different, the numerical differences are shown to be small.

The different stop decay widths obey a strong hierarchy, starting with rare decay channels, and then
proceeding towards weak and strong two-body decays for an increasing mass of the decaying stop. The
strong decay will be dominant for a heavy stop state. The next-to-leading order corrections to the heavy
stop state decaying into a gluino are large ~ 30% and always positive, while for the gluino decay into
a top squark they turn out to be small and negative ~ —5%. This feature also arises for the light-
flavor squarks and is due to interference between different color structures and the different analytical
continuation of logarithms. The dependence of all decay widths on the mixing angle can be described by
a I factor, which stays constant for varying angle. The scale dependence of the decay widths is reduced
from a factor of two to about 50% in next-to-leading order.

The weak decays of a light stop into a neutralino and a chargino are analyzed, to illustrate the running
mixing angle. The next-to-leading order supersymmetric QCD corrections are small compared with
typical strong decays. Apart from special mass scenarios and threshold effects they are < 10%. In
contrast to the strong decays the sign of the correction is not fixed, it is strongly dependent on the mass
scenario considered. The same holds for decays of heavy neutralinos. They can be produced at e*e~
linear colliders and will in supergravity inspired scenarios be higgsino-like. Therefore the decay induced
by the top-stop Yukawa coupling can give large contributions, whereas the light-flavor final states are
strongly suppressed. The next-to-leading order corrections to these widths are moderate: ~ 10%.

The next-to-leading order production cross section for neutralinos and charginos can be used to derive
mass limits at the upgraded Tevatron and at the LHC. This yields an improvement of the mass bounds for
these particles obtained at LEP2. Although mass and mixing parameters could be derived from cascade
decays of strongly interacting particles, the only way to keep maximal independence of the choice of the
model is the direct search. Similar to the case of gluino production, on-shell and off-shell intermediate
particle contributions have to be distinguished. This is done in a manner, which naturally coincides with
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the experimental analyses. The different higgsino-like and gaugino-like contributions to the production
cross section can be analyzed and give a smooth picture of the next-to-leading order corrections. Al-
though the scale dependence in next-to-leading order is not as much improved as for strongly interacting
particles, where the dependence on the running QCD coupling arises in leading order, it stays below few
percent in next-to-leading order. The K factor for all possible final state neutralinos/charginos is nearly
constant for varying masses and corrects the leading order result by +20% to +50%. However, strong
cancelations between different diagrams may lead to large K factors in the mixed production channel,
strongly dependent on the mass and mixing parameters chosen.

The search for scalar top quarks is naturally the next step after the search for light-flavor squarks
and gluinos at the upgraded Tevatron and at the LHC. Since the QCD type couplings are invariant under
chiral transformations, and cannot distinguish between the right and the left stop, the production cross
section in leading order depends only on the mass of the produced particles. The mixing angle as well as
the mass of the light-flavor squarks and the gluino only enters through the virtual corrections. This de-
pendence is found to be much smaller than the scale dependence and thereby negligible. The corrections
to the diagonal stop pair production are different for quark and gluon incoming states. Whereas they are
small and negative ~ —5% for incoming quarks, they are large and positive ~ 50% for gluons. Since
even at the Tevatron only very heavy stops are produced mainly in quark-antiquark collisions, this mass
dependent K factor leads to an increase of the mass bounds derived in leading order. In addition to the
total cross section the differential cross sections are analyzed: The rapidity distribution at the upgraded
Tevatron can be described using a K factor, the transverse momentum distribution however is shifted to
a softer regime in next-to-leading order.

The search for mixed stop final states could be a means to measure the stop mixing angle directly
at hadron colliders. However, the cross section is based on a one-loop amplitude, and the calculation in
the limit of decoupled gluinos shows, that it is much smaller than the cross section for the production of
two heavy stop particles. The direct measurement of the stop mixing angle will be possible only in the
process et e — f1t,.

The calculation of the stop production cross section can be adapted to the search for supersymmetric
R parity violating squarks at the Tevatron. Similar to the HERA production process, the next-to-leading
order calculation for the hadroproduction gives rise to improved bounds on the mass and on the branching
ratio into the observed eq channel. However, this is not sufficient to close the window in the branching
ratio between the atomic parity violation and LEP on one side and the Tevatron on the other side, before
the excess completely vanishes by accumulating more HERA data.

All calculations have been performed in a supergravity inspired GUT scenario. This connects not only
the different gaugino masses, but also the masses of the squarks and the stops. All these particles can be
searched for at the upgraded Tevatron and at the LHC. In Fig. 6.1 the relevant cross sections are given as
a function of the mass of the produced particles. The weakly interacting particles are strongly suppressed
at the LHC; however, the search for leptonic events at hadron colliders is completely different from the
hadronic final states. Assuming a similar efficiency for the search for stops and light-flavor squarks the
search for both of them in parallel seems to be promising, in particular, since the search for squarks
is a two dimensional, the search for stops a one dimensional problem. The smaller stop cross section,
due to the missing ¢ channel gluino contribution and the fixed non-degenerate flavor, is compensated
by the small mass of the light stop state in typical scenarios. For gluinos, like-sign leptons in the final
state should improve the efficiency considerably, yielding all production processes given in Fig. 6.1 very
promising at the upgraded Tevatron and the LHC.
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Figure 6.1: The total cross section for pairs of squarks, gluinos, stops, and neutralinos/charginos
as a function of the mass of the produced particles. The usual SUGRA mass spectrum mg =
100 GeV,my 2 = 150 GeV, Ap = 300 GeV, tanf = 4, u > 0 is denoted by the arrows. The masses. of
X3 and %7 differ only by a few GeV in the small my regime. For the neutralino/chargino production
cross section the masses are consistently varied with my ;. The cross sections are given for the upgraded
Tevatron and for the LHC.
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A.SUSY LAGRANGEAN

A.1. Feynman Rules for Supersymmetric QCD

In this appendix we give a complete set of Feynman rules, as used in the calculation of the various
processes. Since fermion number violating processes have to be considered, the rules make use of a
continuous fermion flow [50], which has to be fixed once for any process. The Dirac trace has to be
evaluated in the opposite direction of this fermion flow. If not stated otherwise, we assume the fermion
flow being identical to the Dirac fermion flow e.g. for the quarks.

Using these Feynman rules makes it needless to introduce charge conjugation matrices. Moreover, the
relative signs of different diagrams contributing to the same process can be fixed: Any permutation of
the fermion flow of two external fermion lines gives rise to a factor (1) for the matrix element, due to
Fermi statistics and Wick ordering. To match the spinors for processes including two external Majorana
and two external Dirac fermions, all diagrams have to be evaluated with two different directions of the
fermion flow. We have checked explicitly that the two possible orientations of the fermion flow of two
combined diagrams lead to the same result.

By changing the orientation of the fermion flow, the signs of vertices with different types of couplings
[S, P, V, A] change:

coupling sign
scalar (S) giesl —as g
pseudo-scalar (P) CwCl= 4% W+
vector (V) Caa Gl = —’7;{ =
axial-vector (A) C (vs7,) C? = ('Ys“/u)T +

Table A.1: Transformation of couplings with the orientation of the fermion flow. C is the charge conju-
gation matrix.

Standard Model Feynman Rules

All momenta in the Feynman rules are defined incoming. The Standard Model couplings of quarks,
gluons, Fadeev-Popov ghosts and weak gauge bosons are given in Fig. A.1 in the Feynman gauge. The
generators of SU(3)¢ obey the relations

™ (1°7%) = %6"" [r,7%)] = igebr A1)

The fermion propagators are defined as i/(y — m + ic), where p is the momentum in the direction of the
fermion flow. The fermion number flow does not occur. The gluon propagator is —ig"” /(p® + ic).
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Figure A.1: Feynman rules for Standard Model quarks, gluons, ghosts and weak gauge bosons, the
dotted lines for scalars refer to Fadeev-Popov ghosts. The generic couplings £, r are defined in Tab. A.2;
PyrR are the chiral projectors (1 F vs) /2

Supersymmetric QCD Feynman Rules

The Feynman rules for supersymmetric QCD include, besides the Standard Model particles, the gluino
(§), the light flavor squarks (., §), and the mixing top squarks (f,, 2). Like in Fig. A.1, all momenta
are defined incoming. The coupling ¢¢g preserves the helicity of the quark and its scalar partner as
well as the flavor. In higher orders it has to be modified to restore the supersymmetric Ward identity, as
described in chapter 1.5. The same holds for the g coupling. In leading order we use g, for all strong
Standard Model and their supersymmetry transformed couplings.

The GGg(g) vertices preserve the flavor and the 'helicity' of the squark. Since only two squarks are
present, this coupling cannot mix the mass eigenstates.

The ¢Gg vertex Feynman rule is given for a light-flavor §, 5 with the corresponding sign and projector.
To obtain the rules for ¢; one has to add the contributions of the helicity eigenstates and multiply the L

L P
qqy Qe L
e
932 (T5 - Qsl,) | £[T3=0]
84/ Cly
= €
udW:;t .\7——2_5‘: 0

Table A.2: Couplings of quarks to weak gauge bosons as used in Fig. A.1.
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Figure A.2: Feynman rules for supersymmetric QCD. The dotted lines denote the squark Gy, Gn. The
tensors Sijk are defined in Tab. A.3; PLg are the chiral projectors AFys)/2

term with sin § and the R term with cos §. The mixing of the scalar top quark is described in detail in
chapter 1.2.4. The relevant terms for stop mixing in the Lagrangean include the coupling to the gluino
and the four squark coupling which arises from the D term in the scalar potential, described in eq.(1 M
They can be expressed using the permutation operator

Piz [{1 R Eg; Cj =¥ —S5, S5 = Ca-] (A.2)

which links the vertices including #; and ,

Ly = — \/igsT,’_!,' (1 + Plz) Ea [Ca' P — S PR] t; {l: 4+ he.
: ijkl 7 w5 ij 1 s
Ly = — %L (1 +P12) tl:tlj {C:E S;JH tlz fid2 [SZB_ Szjkl o Slel] By
+dey S;jkl (‘71.: Gut — Grk qnl)} (A3)
Gt

The sine/cosine of an angle f is as usually denoted by sg, cg. However, these vertices describe only
processes which are essentially diagonal either in f, or in £y. Four squark vertices, mixing ¢; and £, can

!"This coupling is not fixed by the requirement that the scalar top quark should carry a fundamental representation SU(3)
charge.
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be derived from the Lagrangean

2
g SR T MY
Ly = fszi (1f E25 + 12} 115) {CW-S;”" (Brgtu — Eaptar)
+ 2873 (@t du - dat ﬁm)} (A4)
P

The structure of the four squark coupling is given in terms of the flavor f; and the helicity of the Standard
Model partner h;. The two tensors used in Tab. A.3 are

i
5.»(;,2, = (5;15jk — —5ij5kl)

N
S,‘,-’,Zz = N_1;1 (6i48jk 4 0:5011) (A.5)
%id; 0 Siikt
qadq [hi=hi h=hi fi = f; f; = fi ~Si
G733 [hi =h hj = hi fi # f; f; # fi] -5,
4433 [hi # hj h; # hi) +S5)
flEquRQLR Feoi S-'(leZI
)
f1f2Girdin tol1Gindin 5 50
tyirtity tatatais —c: 5 ngl
fiytats t1t1baty +895C5 S-'(J?IZI
ZE baizhiiz —$2§%a5 S:‘(J?IZI
hitibala 1(,1;21 -3 S.'(,'ZIZI
t1taiit tatitaly - S§; 55.’2,

Table A.3: Tensors arising in the generic four squark coupling in Fig. A.2. The tensors S (M and @ are
defined in eq.(A.5).

A.2. Neutralinos and Charginos

Diagonalization for Neutralinos

The diagonalization procedure for Neutralinos is described e.g. in [51). The four Majorana neutralinos
()"(?) are defined as the mass basis of all neutral higgsinos, the photino, and the zino interaction eigen-
states. They are four component Majorana spinors, therefore the mass matrix is symmetric. It is possible
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to start from a non-diagonal matrix in the (BWs) basis or in the (7Z) basis. We denote the two possible
mass matrices as M and M’ for the two component states:

mg 0 —Mz54C8 MMzSwSA
s 0 My MzCwC —MzCySp (A6)
—MzSuCa  MzCyulp 0 — :
MzSwSe —MzCySp —-n 0

The corresponding unitary mixing matrices NV, N’ diagonalize these mass matrices, N in the (B W3) and
N' in the (7Z) basis?. In case the mass matrix is real, the mixing matrices N, N are also chosen to
be real, to keep the couplings from becoming complex i.e. in this special case the in general complex
unitary transformation becomes real and orthogonal. However, for CP invariant observables the typical
coupling factors must be purely real or imaginary for any complex unitary mixing matrix.

N*MN™! = Mdiag

N"™ M’ N :Mdiag N'ﬂ:NJ‘le-l-szSw
N'js = —Nj18y + Njzen
N'jz = Nj3
Nlja= N; (A.7)
2 Any complex symmelric matrix can be diagonalized to a real di 1 matrix by a unitary transformation U7 AU where

U' = U™, The diagonal malrix can be chosen real since phase factors can be absorbed into the unitary mixing matrix.

—iy* (LPy, + RPg)

aR) ‘ )
""""" e —iv/2(£A} R PLR + B} gPRL) v —iv/2(+ALrPrr, + BLrPLR)

Figure A.3: Feynman rules for neutralinos and charginos. The dotted lines denote a left or right scalar
quarks Gr,Gr. L, R are defined in Tab. A.4, A, B in Tab. A.5. Note that the q@X vertices for incoming
and outgoing squarks are linked.
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L R
)2?5(?2 5 s: B (Mi3NG5 — NiuN') L* [Wis & —Nis)
)2?)2,—7 ed;; *
itx;z v ;,ic: (Vzlvfl S %Vz'zvfz - J;jsﬁ,) L*[V = U]
KW, \/_%SW (WaaVs = VB (suat + cuia) V1) | L* [V = U, g = ~9N'a]
XX Wik 7—;; (‘ﬂ'&V,-z = V2 (s} + cuM'iy) le) L* [V = U, Mg = ~Nig)

Table A.4: Couplings of neutralinos and charginos to weak gauge bosons as used in Fig. A.3. The mixing
matrix U is defined in the photino-zino basis.

The mixing matrix is defined in terms of the arbitrary-sign eigenvalues of the mass matrix, m;:

Nia Cw Mp — M

Na ™ suma-—m;

Niz _ p(mg — mq)(ma — mi) — m3spep[(mp — maw)cl, + my — mi]
Ny — my8y(my — m;)(peg -+ misp)

Nig _ —mi(mp — mi)(mw — m;) — micgl(ms — ma)cl, + ma — mi
Na mzSw(ma — m;)(peg + misg)

N2 N\ 2 2]V
Niy = [1+ (%) + (x ) u (Z > ] Al

The entries of M gjag are not necessarily positive, if the mixing matrix is kept real, i.e. the eigenvalues
are only equal to the physical masses mg; up to a sign. It is possible to work with a Lagrangean including
negative mass eigenvalues ;. In the final expression these eigenvalues have to be substituted by their
absolute values m; — my, in order to express the analytical result in terms of physical masses. An
equivalent way of introducing these phases is to define a complex mixing matrix [97, 9'], in which a row
is multiplied by 4, if the corresponding eigenvalue is negative:

o {E.T[H [l=1,..,4] if eigenvalue my positive (A9

M [1=1,...,4] if eigenvalue my negative

The re-definition of N’ — 0’ is defined in analogy; in typical scenarios one of the higgsino eigenvalues
my [k = 3, 4] turns out to be negative, whereas the re-rotation 9 — 9’ only affects the gaugino part of
the mass matrix. Using this matrix 91, 97’ one can always stick to the positive mass values.

N M N = Diag (mg,)
N* M N = Diag (mg,) §=1,2,3,4 (A.10)
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AL AR By, Br

ux] QWi+ Lo (Ta - Qs2) | A3 [T =0] | 2ot} B}

X; 95uw@MNj1 + " 2 \13 st) 1 [T3=10] Imwsp 74 L

gl R 3

ddg? 95QWj + = Wsn (T3~ Qsl) | AL [Ty =0] | 572 9y By

i (o g gMy . gmy
du (% X - . ,
U(XJ)out V2 i 3 Imysg 02 2myeg 72
Sid o Sy _ M g | 9™y,
# (>‘J )out VB 9 2mWCpUJZ 2mysp KL

Table A.5: Couplings of neutralinos and charginos to squarks and quarks as used in Fig. A.3. The mixing
matrix N is defined in the photino-zino basis..

The masses of the four neutralinos are re-ordered by their size after diagonalization, where %7 is defined
being the lightest of the four. Combining the complex couplings including the matrix 91, 9’ leads to
exactly the same analytical results for CP invariant observables as using the matrix N, N'; the phase
factors from the negative masses now enter by collecting factors of 42 in the typical combinations of the
couplings and by anti-commuting the Dirac matrices. One advantage of the latter strategy is, that the
neutralino mass matrix is not fixed to real values by first principles [52].

Diagonalization for Charginos

Charginos (X; ;’(}") are the mass eigenstates of charged winos and higgsinos. The positive and negative
charge particles mix independently. Since the charginos are no Majorana particles the mass matrix is not
symmetric. Nevertheless the Dirac-chargino vertices can be fermion number violating.

. My \/im sg

The unitary diagonalization matrices for the positive and negative winos and higgsinos are V' and U, and
the eigenvalues of the diagonalized mass matrix can in general assumed to be real®. The mixing matrices
themselves are only real, if x is chosen to be real.

U* MV~ =Diag (mg;) j=1,2 (A.12)

Neutralino/Chargino Feynman Rules

The Feynman rules for the neutralinos and charginos are given in Fig. A.3. The gqy vertex is given for
left and right squarks, the coupling to the mixing scalar top quark is a superposition of both couplings,
as it is for the gluino case.

3 Any complex matrix can be diagonalized to a real and positive diagonal matrix using two unitary matrices U™ AV, If the
matrix A is real the matrices U and V can be chosen real.
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A.3. R Parity breaking Squarks

The breaking of R parity only adds new interaction terms to the Lagrangean, eq.(1.6), which are not
related to any of the Standard Model gauge symmetries. For any of these scenarios including non-MSSM
squark couplings, the QCD Feynman rules are still completely fixed by the requirement, that any squark
should be part of the fundamental representation of SU(3)¢, i.e. carries quark-type color charge [53].
Under the simplifying assumption of one light squark flavor, one can integrate out all heavy strongly
interacting supersymmetric particles and regard the R parity violating scenario as the extension of the
Standard Model by one leptoquark-like squark. Another difference between a scalar leptoquark model
and the MSSM squark sector occurs: The MSSM four-squark coupling originates from the D terms in
the scalar potential eq.(1.4). In the most general effective model this term need not be present. The
four-squark coupling will then be proportional to the weak coupling constant, and quadratic divergences
of scalar masses occur.

The coupling to any pair of Dirac and Majorana fermions can be identified with the most general param-

eterization of the tlti‘; coupling. However, the gge coupling constant is not fixed by any gauge coupling,
but results from the superpotential term eq.(1.6)

Lint = Negd + h.c. (A.13)

Since its Dirac structure is fixed by the helicity of the quark and the electron, the coupling can be param-
eterized as —i(Ar, P+ ArPR). For unpolarized particles this yields (A% + A%) in the HERA production
cross section and the decay width, likewise for leading and next-to-leading order, this means the coupling
completely drops out of the next-to-leading order QCD K factors.

Because the coupling A’ connects two strongly interacting particles, it has to be renormalized, e.g. in
MS. Furthermore, it runs in complete analogy to the running QCD coupling constant

N2 (M)

X (up) = ————
14 %t log 35

(A.14)

B. RADIATIVE CORRECTIONS

B.1. Phase Space and Partonic Cross Sections

(2 = 1) Production Cross Section

Assume the production of one final state particle in NLO
q(k1) + @(k2) = X1(p1)[+9(k3)] B.1)

with massless partons k;[j = 1,2, 3] and a massive particle in the final state p? = m?. The invariants are
the usual Mandelstam variables

§= 2(k1k2) = 2(k1k3) U = 2(k2k3) (B2)

These Mandelstam variables can be expressed in terms of the rescaled gluon emission angle ¢

y=3(1+e) €0
t=-s(l-71)y
u= —s(l-7)(1—y) (B.3)

where 7 = m?/s and ¢g = cos f. The formula for the cross section becomes [54]:

do?t ._7r(47r)‘2+¢ (ﬂ) R T MR? 4)
o = 5iTa-g \@ v(1-y)e §el "

K;; are the spin-color averaging factors, for the HERA process Keq = 1/(4N). For the gel:leral squark
production at HERA the integration over the gluon emission angle can be performed anally'tlcally. Poles
in € appearing in the soft/collinear phase space region cancel with the divergences arising from‘ t.he
virtual gluon contributions and with the mass factorization, i.e. the renormalization of the parton densities
described in section 2.2.2.

(1 — 2) Decay Widths

The calculation of the different decays has been performed in four dimensions. The general decay mode
is

X1(p1) = Xa2(p2) + Xa(ps)[+9(k)] ®B.5)
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where all particles are assumed massive p? = m?[j = 1,2,3] and k* = A% The Born and real gluon
emission decay width is !

1 AY*(m?,m2, m3)
B _ . 13969, 114y B|2
5 '167my m? ElM |
Nk d®py d3ps3 d®k 1
R_gr. b o f G PaG Py din L oy R
P =Ko 295 293 2k° =8 (1 +p2+pa+ k) ) | MF| (B.6)

K; = 1/N is the spin-color averaging factor for the decay of the squark. The integrals

L [ &Ppadpyd®k 2(kpi,) - - - 2(kpi,)

iy

iiim = 73 | 50 30 280 8 (p1+p2+patk) Ikn;,) - 2(kpy) (B.7)
can be found in the literature [55]2.
(2 —+ 2) Production Cross Section
The partonic production process of two massive particles can be written as
(k1) + q(k2) = X1 (p1) + Xa(pa)[+9(ks)] (B.8)

The k;[j = 1,2, 3] are assumed massless, the p;[j = 1,2] will in general have different masses my, ms.
Replacing quarks by gluons and vice versa does not have any effect on the kinematics. We introduce the
invariants:

8= 2(’51 kz)

ty=2(kipt)  w=2(kap1)  s4=2(ksp1)

t2 = 2(kap2) uz = 2(k1p) 53 = 2(kap2)

t'=2(ksks) W' =2(kiks) 55 =2(p1p2) + mi+md (B.9)

All momenta are chosen incoming: ky + k2 + k3 + p1 + p2 = 0. Only five invariants are independent:

83 = —ss—tl—ul—mf+m§

84 = —ss—tg—ug—m§+mf

8s= +s+t'+4

W= —~3—1) —uy

= —s~ty —uy (B.10)

From the relation s4 = s +t1 + u; — m% + m{ one can see that the limit s3,s4 — 0 is equivalent to
the Born kinematics. The differential cross section in the Born approximation therefore includes a factor
§ (54) .

dZ&B 7r(47r)—2+c totty — sm2 —-€ g
A O 2U2 B
= ST () e T ®.11)

'Asusual A(z, y, 2) = 2% + 1* + 2 — 2=y + 22 + yz)
2Note that in the formulae (D.11) and (D.12) of [55] the indices of the m3,1 term have to be interchanged
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with the n dimensional spin-color averaging factors for different strongly interacting incoming states
1 il 1
i Kw= 41— 2 (N? - 1)2 By = Nop = i1-gN({N?Z-1)

The matrix element for the real gluon emission corresponds to a differential cross section in four vari-
ables,

K= (B.12)

d2sR p(4n) 42 fhupy —sm3\ 70 g™ 2
2 = 2 4 R
=K ( ) == /d9§ | M| ®.13)

v dtadsy i 20 (1 — 2¢) sp? (sa +
The total partonic cross section is defined as
F Y de max 2 L
o= —_— = t —m24 2
¢ </¢;nin /0 dt2d34 1 AT M2 1 * to
txznin/max G _3 B m% it m% d:2Al/2(sx m%v mg) (B.14)

To integrate over the angle of the final state gluon analytically, one chooses different parameterizations
of the phase space. The angular integration is performed in the center-of-mass frame of p; and k3. One
of the three dimensional components of k3, k; or p; is taken parallel to the z axis. In the first case the
momenta are [38]:

ky = (~wi, .., 0, =psy, —pcy + w3)

kz = (—wz, ey 0, 0, —-‘w2)

k3 = (w3, ..., w3syS2, W3s) C2, W3C1)

p1 = (B, ..., —wsS1 Sg, —wW381 €z, —W3Cy)

P2 = (B3, ..., 0,psy, pcy) (B.15)

s, ¢; are defined as the sine and cosine of the angles 64, 0, . The angles ; are connected to the angular
integration for the additional gluon:

n i
/ i = / 0,57 / 8,53~ (B.16)
0 0

The non-invariant variables can be expressed in the invariants:

o S+ ug - s+t2 B S4
1= —F—— 2 = 3=
2\/54-{—m12 2\/.94+m21 2\/54+1n§1
sS4+ 2m’f ty + ug + 2m§
El = e—— EZ = —_—_—_—
24/84 +mj 2\/.<>'4-}-m§1
(t; + u2)2 = 4sm§ i 2] (54 - m% + mf) - S(uz + 2m§)

B.17)
2y/s4 +m? » (5 + t2)\/(t2 + u2)? — 4sm?

Inserting these equalities into the matrix element after partial fractioning leads to the typical integral [38]

1 1
aQ k,leN ;
/ (0. + bcx)k (A + BC] + CSICQ)’ G (B 18)

Note that it is not necessary to perform this integration analytically, if the divergent regions of phase
space are regularized e.g. by the subtraction method [56].
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Cut-off Method

The radiation of on-shell gluons leads to divergences in the phase space integration in two limiting cases:
(i) the gluon is soft, all components of its four vector vanish k, — 0[p = 0, 1,2, 3); (ii) the gluon is
collinear to another massless particle with the momentum p, i.e. k ~ p+k, with k; — 0. In both cases
the invariant vanishes, (pk) — 0, leading to infrared divergences in the matrix element. In the limit of a
soft gluon the invariants for the three body process approach

53— 0 =50 ty —+ ty 4+ m? —m?

5520 w20 uy—u+m?-md S5 =+ S (B.19)

The integration of real gluon matrix element is split into two regions, corresponding to soft and hard

gluons [38]:
Do
d e P
/ dtzds4 (/ + / ) “dtado,

A 25 25
d*G d*6
/o i dtadsy % -/A 3 dtydsy i
approx

In the second integrand the limit A — 0 has to be checked numerically. The soft gluon matrix element
in the first integrand is evaluated in the eikonal approximation, where the gluon momentum is neglected
compared to any other variable [§(s4)]. The angular integral is analytically evaluated using the angular
integrals eq.(B.18). In addition to soft poles in ¢ logarithms log’ A[j = 1,2] appear. These have to
be added to the final expression. To cancel the A dependence of the hard gluon part, these terms are
rewritten as

smax spax log(s®*/u?) a3t
/0 dsy log ( ) 5(34) A dsq [ sax — A 84

max max

& A E log? (s /u2) 21 2
/0 dsg log? (;7) 5(34)=/A dsi [ °gs;:;_f§‘)— °g(s“/“)] B.21)

S4

In addition to the soft singularities in the gluon emission matrix element collinear poles arise in next-to-
leading order. As long as the final state particles are massive, these have to be absorbed completely into
the renormalization of the parton densities, as described in chapter 2.2.2. The additional terms are of the

form
6MF a1 dz dz"z
P~ g 22
1 digdse o [ 7E+10g< QF' )]/ » 7 e dlzd&; B2
l

The splitting function P,; describes an incoming parton  changing to ;>

T 1-2 11 2
Pyy(z) =2Ca [ (1_$)++T— 1+m(1—z)] +6(1—g) [?CA— gTRn,]
3o\
Puole) = op 2t 020
Pyy(z) = Tr (2* + (1 - 2)°)
.’1:2
Py(z)=CFr (11J: : )+ (B.23)

3The color factors for the SU(3) ate N = 3,C4 = 3,Cp = 4/3,Tr = 1/2
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with the + distribution defined as

1-p8
(F(z)), = F(z) 01—z — p) — 6(1 — 2 - ) /o dEF(©) B.24)

in the limit 8 — 0; the parameter f separates soft from hard gluons. Numerically the + distributions can
be evaluated following
|

(B.25)

1 1-8 1-8
[ @ e, +s@) = [ i@+ e@) -1 [ [L(

where L = [ dzL(z) has to be calculated analytically and 5 — 0. The second part of the + distribution
eq.(B.24) contributes to the soft gluon part of the splitting function. After performing the integration
over the momentum shift = using the §(1 — z) term, the result follows the Born kinematics and cancels
the collinear divergences of the virtual corrections. The separating parameter can be linked to the cut-off
Aviafi = A/(s+t2) and = A/(s + uy) for a shifted momentum k or k;.

For hard gluons the four momentum conservation §(s4) included in the Born differential cross section
can be used to remove the integration over the shift in the four momentum, i.e. the mass factorization
term cancels the collinear divergences arising from the virtual and from the real corrections.

Subtraction Method
The subtraction method [56] is used to calculate the neutralino production cross section, i.e. there are no
massive strongly interacting particles present in the final state and ¢ is the only incoming state.
Given a divergent real gluon matrix element, a subtraction matrix element o4+ is constructed for the
three particle final state, in order to remove the soft and collinear singularities point-wise from the gluon
emission phase space.
§ d26R d2 A3
digd&‘.; dtzd84

Z IMﬂl'I _ pld2 _ p231 (B26)

In case of only two initial state partons ky, k2 and one emitted gluon k3 the dipole terms

13,2 _ ik 13,2 B2
D = 22 (k1ks) V() ZIM lsubst1

. N B2
o i 21‘(.’62’03) ¥ ($) ZIM Isubsn (B27)

have to be added to ) ]MR12 The rescaling factor for the split incoming momentum is given as z =
(k1ky +ksky 4 kskz) /k1 k2 and re-defines the kinematics of the Born matrix element k/, p’; e.g. for D32

kll = k‘1
k; = kz
2, K + 2p; K’ Y
pi=p; - —”T’K—Jr—K%— (K +K') + 71’;2 K (B.28)
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with K = ky +ko+ks and K’ = k} 4 k. The result for D?>! is obtained by interchanging the incoming
quarks. The kernels V3% and V23! are of the form

V99(z) = 8 p* e, Py(z) = 87> e, C [ —2—— —(14+2z)+e(l-2) ] (B.29)

Since this subtracted real gluon emission matrix element is finite, d&% and d&4? can be evaluated in
n = 4 dimensions. However, this does not hold for the virtual corrections matrix elements, where one
has to use the dipole terms dé#?, which arise from the exact integration of the subtraction term dg*+
over the additional gluon emission phase space. This results in soft and collinear poles in ¢, therefore the
dipole moments for the calculation of the virtual subtraction term have to be evaluated in n dimensions.
The integrated soft and collinear gluon subtraction yields

% AN
@ / dz I(z,¢€) [ (s ) i + (s T )zkg (B.30)

The integration of V994 (z) and the mass factorization leads to the integration kernels for quark-antiquark
and quark-gluon incoming states:

s @) 2
Iog(z,6) = ;’—W[ﬂ(l—z)f({—g(ﬂ;—“—) (},+%+5_3@)

~ Byl )10g(Qp)+c ( (I.E’Lgl_(l__‘zﬂ)+_2(1_z)1og(1—z)+1-z>}

2
Iy (z) = ;—:rl:-—qulOg((l QF - )+2TRz(1—z)] (B.31)

Since using the subtraction method the gluon emission angles are integrated numerically the mass fac-
torization terms are not added analytically to the real gluon matrix element. Instead of using the §(s4)
distribution to remove the integration over the momentum shift z, it is kept for the phase space integra-
tion. The convolution is then performed numerically. The separation into virtual-soft and hard gluon
contributions is by no means unique.

B.2. Hadronic and Differential Cross Sections

For a general hadronic cross section the partons are treated as parts of a massive hadron h;[j = 1,2].
The hadronic variables are referred to as capital letters.

hy(Ky) + ha(K2) = X1 (p1) + Xa(p2)[+9(k3)] (B.32)

The additional gluon k3 is again assumed massless, the p;[7 = 1, 2] will in general have different masses
my, My. We introduce the invariants:

§=2(K:1K2) Ti=2(Kip) Up=2(kp)
Ta= 2([{2112) Uy = 2([{11’2) (B.33)
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All momenta are chosen incoming. After integration of the gluon emission angles the real emission
matrix element together with the parton densities is a differential cross section with respect to four
variables including some general function F:

Otat = / dﬁx/mm dh/

tmu _,m ax

dtz/ dsy F

min _ (m1+mg)?

" 4s
xmin i (ml + mz)z
< 4S$x

m?
sf{“": s+tg+m2 —ml+ =4

tmin/ma.x _ &+ m% i % = A1/2(51 m%: mg)
2 i 2

This can be rewritten for the on-shell subtraction in the s4 channel, when the final state particle X7 is
produced via decay of one on-shell squark [8]:

(B.34)

max X

Ttot = / dzl/ dl‘z/‘ d54/ dtgF

max _ 2
S s+4+mi —m? —24/sm3

t;"i“/m“ __s—& +mi —m}+ \/(s; 54+ mZ —m?)? — dsm] (B.35)
The integration variables 1, z are only used to compute the total hadronic cross section. Therefore the
subtraction in s3 involving the particle X can be obtained by exchanging p; ¢ p; in the subtraction
matrix element and in the phase space. This holds only if the gluon emission angle dS2 is integrated out
completely.
To be able to compute differential cross sections with respect to the transverse momentum of one of the
final state particles or the rapidity

2 2
TyUy — Sy _ taug — smy 1 ~log (Tz) (B.36)

ey
= 5 = e Vs 5 cb TR

the integration has to be ordered differently

max max

pT ml! _,4 b | *
Otot = /0 de/ dy/ dsy e dzy 2008 ——= o +T F
ey

pmax — 2\/§\/ (S = mZ — m})? — 4mim3

2
S+ m? - mj

24/5(p% + m3)
S = § 4+ Ty+ Uy +mj —m]
_s4—Tp—mj+mi

ik S+ U,

y™** = arcosh

(B37)
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with 29 = (54 — z,Us — m% + m?) /(2,8 + T2).

The subtraction of differential cross sections in the s3 channel requires a substitution of one of the two
angular integrations in d<2 [8], which is implicitly included in eq.(B.37). We refer to the integration
boundaries therein as s}, z1.

35 1 EA 1 T T
/ d54 / da:l / dQ = / d54 ./ d$1 / d6’1 / dé'gsl
0 z3 0 ] 0 0

S?‘x 1 Sm." w 2
e / dss / da, / Y dsy / dpy— 2t ’"13 (B.38)
0 wpin spin 0 84/s—s4—mi+mE

The integration borders are

sg,“=S+T2+Uz+m§—m§
2(S + Ty + Uz + m3)

min __ 1

TS + Up) (m2S + mils + s303)
— Ss3Tp — 2mjUs + m2m2U, — 3m3ssUs + m2s3Us — s2Us — 2miToUs — 253750,
ity (4m;s2 — 4m3m2S? + 4m}S§%ss + S22 + AmISPTy + 28%s5Ty + SPTE + 4miSU,

— 4m2m}SU; + 6m3Ss3U; — 2miSssUs + sSs2Us + 2miSToUs + 2m3STy U,

(-—Tg - Uy - 2m§ + (Tg -+ Uz)2 — 4m§S>

[— 2m3S + 2mimlS — 2m2Ss;s — Ss3 — 2miST,

1/2
+ 2853 T5Uz 4+ myUZ — 2mimiU2 + miU2 + 2m2s3U2 — 2missU7 + ng;) ] ]

min/max __ S3 S o " 2 = e AR
Sy4 _Z(mgzIS = mng i S3T2) I: ‘szg msz 33T2 2m21‘1$ 1‘1533 l‘]SUz

F ((—m%Tz —m}Ty — 53Ty ~ 2m3z,S — 1S53 — 22SU,)?

2 2 2 L3 *
—4mi(z1S + Ta) (miz1 S + miTe + 53’1‘2)) for s3 < 53

SP* = z1(S + U) + To + mj — m} for s3 > 3
o818+ Ty + 21Uz + mj —m} 2 2 2
B alriSk To syl m}) ( A o S \/(T2 +a1lh) 4m2m13)
(B.39)
B.3. Scalar Integrals

Dimensional Regularization

The analytical expressions for the virtual corrections contain scalar integrals which are multiplied by
polynomials including the Mandelstam variables. The scalar integrals A, B, C, D in case of dimensional
regularization [35, 57] are defined in n = 4 — 2¢ dimensions and are used to calculate the production
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processes of neutralinos/charginos and stops.

d"q “4—71
oo () = | o R TR
D((pdi (mid) = [ 5 -
S i(2m)" [¢2 — mi)[(g + p1)? — m3)[(g+ p12)? — m3)[(g + P123)? — mj)
Pijk = Pi + pj + Pk (B.40)

The definition of the one and two point functions A, B follows the same conventions. Using this in-
tegration measure, the non-absorptive virtual contributions are real and the integrals have got integer
dimension. The infrared and collinear divergences occur as poles 1/¢¥ [k = 1,2] [38, 8]. u is the
renormalization scale of the process.

As long as only CP conserving observables are calculated, the typical combinations of couplings in front
of the scalar integrals are real, therefore only the real part of the scalar integrals is needed. If, as described
in appendix A, we chose the parameters in the Lagrangean as being complex we also need the imaginary
parts of the scalar integrals.

The expressions for finite integrals have been taken from the literature [58, 55]. The divergent integrals
have been calculated using Cutkosky cut rules and dispersion relations [59], and most of them are also
present in the literature [8].

A typical singular scalar three point function occuring in the neutralino/chargino production cross section

is:
Gl 1 al . . (m}\ .
C(p1, k1;my, 0,0) = ;l—c [— ‘6‘105 (F};) -+ Lig ( ) - Lip (a—é—)
2

e
mZ
1, M? m? —t
log? [ —Z ) —1og2 [ =L =z %
K (m) o (mz>+‘°g(M2)‘°g(Mf>]
te=t—mg

M? = m2 — m? _ (B.41)

!

The definition of the momenta and Mandelstam variables follows appendix B.1. The factor in front
contains the typical MS terms

oL e (42

The scale M is either chosen as the mass of the outgoing particle or, for different masses in the final
state, as the averaged mass. The factor C, is a common factor of all virtual gluon contributions and can
be pulled out of all renormalization contributions, i.e. it occurs as an over-all factor in the regularized
and renormalized matrix element and can then be evaluated in the limit n = 4.
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One scalar four point function is

) LGl 1 i,
D(k2lk1)pll O)O)OImI) == sty [62 = F (log (M2> +]og (Mf) + IOg (MZ))
2 2
—~ 2Li, (1+£) — 2Li, (1+1‘_41> o Wi (1+ M1M2>
ty 12 m,,
272
— log (l+ it i )
MZM'Z M —sm?
[log (——sm3 ) —log (K/I—) log (MZ) -I—log( i )]
S -t
4= log (W) - —log (—nz) +2log (M2> log( :)
M2 M2 Mg M2
_log(Mz)log( ) log( )log( )] —~—(2

The log (1 + M2MZ /(sm?2)) multiplied with the terms in brackets originates from the analytical contin-
uation of the Dilogarithm [59]. This method of calculating scalar integrals omits the typical roots, which
appear by using the Feynman parameterization after partial fractioning. Thereby, large cancelations are
absent in our results, which improves the numerical accuracy.

(B.43)

Massive gluon regularization

For the massive gluon regularization scheme, as it is used for the calculation of the decay processes, the
conventions concerning the scalar integrals are exactly the same as for dimensional regularization in the
limit » = 4. In this case we obtain divergences in form of logarithms of the gluon mass log A? [59].
For linear divergences the log A% description can naively be translated into 1/¢, whereas for higher diver-
gences this is more involved.

For the gluino decay the divergent scalar integral

myma(l — 22 mim

+Li2(1—z,m )+L12(1—x. )+L1;( 3

4z log( ) gz] (B.44)

is used in the massive gluon regularization scheme. The factor C. is taken in the limit n = 4, and

C(p;,p;;ml,)\,mg) = -—&—-——)- [log(ze) [ log (_/ﬁ._) = %log(z,) =+ 210g (1 we= 23)]

pi =mi P = mj
i 4mim Fali
L el Loy SVl e ey {m1—ma} (B.45)

4
1- —(—l—z—;,_ "’:‘lj"m) +1
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For the stop production the same integral is needed in the case of equal masses and regularized dimen-
sionally. There the divergent logarithm has to be replaced by a linear pole log A — 1/¢ + log p%

2 1
Clpr,paima, 0,ma) = —Cee__ [log(z,) [-1 - 108 (L) - Jrog(a) +210g (1-2)|

mlmg(l - 2:3) mpma
. ] (B.46)
The same relation holds for the other scalar integrals used calculating stop decay widths.

B.4. Counter Terms
Renormalization of the external masses in the on-shell scheme preserves the Slavnov-Taylor identity [38]
B M, = M8t o« ky, ®B.47)

where M, is the matrix element for the production of two massive SU(3) charged particles in gluon
fusion and ME"t the ghost contribution, both of which are present in LO and NLO. This identity has
been used to calculate the ghost contribution of the stop pair production, as described in chapter 1.2.4.
The mass counter terms for a heavy quark ¢ and a squark ¢ are

ml® = m, [1 ¥ O‘aCF(

t
2 2
mgo) & iy [1 3 a,Cp (( o % i = log(dn) = log &&)l‘g

2] 2
Mg Ty
3m? 2m§ mg (m - m';l)2 2 mg
= *‘T*'—z*—“’g"‘f- T log 3
m? m? mg mg mg
(B.48)
The strong coupling is renormalized in the MS scheme
2
© = L R AV
95" = gs(kR) [1+ 5 (( - + 75 — log(4r) + log M2) 2
N, m! q f—1. m: 1 m,z 1 m‘? m?
— —log = — ——log =L — —log —+ — — log —2 — l :
e 6 g vh 12 & oy 127 g g s
il 2 2 1
where ﬁo = ?N = §N i g §'n,f i gnf (B49)

1R is the renormalization scale of the process, ny = 6 the number of quark and squark flavors. The
f function gets contributions from the gluons, the gluinos, the quarks, and the squarks. For the MSSM
the sign of this coefficient is the same as for the Standard Model. To decouple the heavy particles from
the running of «;, the massive logm? terms have to be subtracted i.e. the strong coupling constant is
effectively evaluated as the usual low energy Standard Model QCD coupling.
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In addition to these Standard Model like renormalization constants, which remove the UV divergences
from the virtual correction matrix element, finite counter terms have to be added to restore the supersym-
- metric Ward identity, as described in chapter 1.5. These are no counter terms observables arising from
divergent vacuum fluctuations in field theory, i.e. even the weak coupling will contain a new counter term
o a although physically G'r should stay unrenormalized in supersymmetric QCD.

C. ANALYTICAL RESULTS FOR THE STOP DECAY WIDTH

As an example, the analytical results for the decay of a light stop £; into top and gluino are given. The
decay width in next-to-leading order may be split into the following components:

Inro = I'to + Re (AT + AT + ATy + ATy + AT, + AT, + ATy + Al'gec) (C.1)
To allow for more compact expressions we first define a few short-hand notations:

_ AVi{m} , mj, md)

161rm‘;?l N (=

9 ped -
Habe = Me+mp —m2 0,5 = mymgsin(20)

where a,b,c = §,t,j with j representing fj. The different contributions defined in eq.(C.1) are listed
below:

lowest-order decay width!:
TLo = 8NCrma, (—pgu + 20,5) N = N|Mp|* (C.3)

top self-energy contribution:

ATy 1= ) A(my) + 2A(mg) — A(my,) — A(mg,)
+ pagB(pe; g, my,) + azg B(pe; mg, my,)

— 4m}a,;5[B(pi; mg, mz,) — B(pe; mg, my,)]

_ 2NCpra,Mp|?
i —m‘g_‘”{z(

+ 2m? [uge B(pe; mg, my,) + pgeaB(pe mg, my,) — 4m B(py; A, my)] }

16N NCirtal
S pan{ Almz,) = Almz,) — o B s, mi,) + i5eaBlpi mg, mz,) |

(C4)

where the definitions of the scalar integrals are given in eq.(B.40). When renormalizing exteﬁ:al masses
in the on-shell scheme the scalar function B(p; mq, my) = 0B(p; ma, my)/0p* appears.

!"The Casimir invariant for the gauge group SU(3) is Cp = 4/3
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gluino self-energy contribution (for 7y = 6 quark flavors):

AN Ta|M
AT = —mLQL( 1){—A(mg) + (m:;1 -+ mg)B(pg; mg, 0) + 2m2(m- —m )B(pg, mg, 0)}
2N Ta|Mg|?
- __%LI {ZA(m - A(m;l) - A(m;g) + p15:B(ps; m;l,mt) + poz:B(pg; mg,, mi)
g : E

— 4mlo,;(B(pg;, mg,, me) — B(pg; my,, mi))
+2m (501 B (pg; my, , ma) + pgea B (pgi may, mi)] }

4"/—1\"’%’_l—’\ﬁﬂ|~{( — 9 A(mj) — 4mEB(ps; A, mg) } )

diagonal stop self-energy:

AT :SCerraslMB'Z{B(pgl;m_,_;,mt) B(ptl X mt1)+2028 (ptl,mg,mt)

£ ,ugnB(Pilimﬁy mg) — 2mt-1B(pil;)\,m;1)} (C.6)

[The off-diagonal mixing contribution

128N NC2n2a? 4mim?
Al = P R, > 055 (m't ) — A(mg,) + L B(pz,; mg, me) (&%)
Sl 925

is absorbed into the renormalization of the mixing angle for § = 0( ) as described in chapter 1.2.4 ]
vertex corrections:

AT, = 64Nn2eiNC% [FIF + 0,5FF + agéF:{]
+ 32N r262N*Cr [F{‘ + o, FA + ong:f] + 8N'ma, | Mp|*FB C8)

with:

FF =2(m? + m3) B(p;, ; mz, ma) + (m?l +m? + mg)B(pgl; Aymg,)

+2(m§ - m?l)B(pt; A, my) — 2m,2B(pt;m5,m;2) - 4m§B(p§; mi, m;l)

+am2(m? — m2)C(py,, Pt Mo, mg, my,) + 2mf (mf, +m? — 2m3)C (py,, pes ma, Mg, mz,)
Ff = —2B(p;,; A, mz,) — 2B(pe; A, me) — 4B(pz,; mg, ma) + 2B(pii mg, my,)

+4B(pg;me, mz) + 450 C(ps, 0 e e, mg, my, ) + 2(m?, — m )C(py,, pr; M, Mg, mz,)

1
il {2’"?{3(:0:; mg,mg,) — B(pe; mg, mg, )] + pgen (g — 4m)C (pr, P may Mg, M, )
I3 :

= (ugerpgen — 2mi g — 2m3 pugia) C (py, , prs M, My, mfz)}
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Fft = = 2¢ g B(pz, s mg, mu) + 4(mf — m3 ) B(pg; A, mg)
+2m[B(ps; m;n my,) — B(pe; mg, my, )] + 4m} B(pg; ms, mz,)
—|-4m-(mg —-m; )C(ph,pt,mt, mg,my ) — 2m?(mtgl + m?2 - 2mt2)C(p;1,pt;mt, mg, mg,)
Fj =4e B(pg,; mg,my) — 4B(pg; X, mg) — 4B(pg; me, my,)
—4u§t1C(P;,,Pt; mg, Mg, 'm{,) = 2(’”% o mi)C(P{l.Pt;mn mg, mz,)
Ff= {2mt (B(pe; mg, my,) — B(pe; mg, my,)] + g (dm — p1501)C (P, » Pes ma, M, M7, )
4 (p'gﬂ:ugf? X7 2mt Hgtr — 2my #giZ)C(pt,)pil mg, Mg, mtz)}
FB =N [113C (pg,, pri mi,» Ay ma) — 3 C (05, Pt Mgy may A) — pageCo(py,  Pos Ay i, mg)]
—2CFpugC(pg,, Pt Mg, s A, M) (C.9)

corrections from real-gluon radiation:

a|Mp|?
AT, =S [(m2, = m) 15 = mi Ty, — mils; - 1)
1
a,Cr|Msg|? - 2 o?C% ;  alNCr 3
+ Tamim N [ mi Iy, — midn+ pogly, + I, - It} i mﬂmz, I+ — =l

(C.10)

renormalization of the coupling constant as defined in eq.(B.49):

_ No Mgl [ pdh 11 2 2 1
AP = o vE + log(4m) — log ;2—)] (?N— §N s e §n/> (o)

finite shift of the Yukawa coupling relative to the gauge coupling in MS, as described in chapter 1.5:

ATy = &%@—L(BN C) (C.12)

decoupling of the heavy flavors from the running strong coupling constant:

s 2 ) -1 /'L%% = i
[M5| {~————12 log ( + — 51 log + = log -
t1 t2
Liog (B2 4 Mo (PR
+61og (mf) + 6 log (mg (C.13)
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