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Abstract

The subject of this thesis is the Regge limit of Quantum Chromodynamics. The scattering
of virtual photons at very large center of mass energy is studied in the framework of
perturbation theory. It is known that the approximation which resums leading logarithms
in the energy (the BFKL Pomeron) violates unitarity at asymptotically large energies. The
BFKL Pomeron describes the exchange of two interacting reggeized gluons in the t-channel.
We investigate unitarity corrections to the BFKL Pomeron which are characterized by a
larger number of gluons in the t-channel. They are described by n-gluon amplitudes which
obey a tower of coupled integral equations. We review the known results on the three—-
and four—gluon amplitudes. These results indicate that the unitarity corrections can be
cast into a 2 4 1-dimensional conformal field theory. It is the aim of this thesis to gain
further insight into this field theory structure by investigating higher n-gluon amplitudes.
We develop methods which allow to proceed to higher n-gluon amplitudes, and we study
the five— and six—gluon amplitudes. We pay special attention to the mechanism leading to
the reggeization of the gluon and to the field theory structure of the unitarity corrections.
The integral equation for the five—gluon amplitude is solved. Our investigation of the
mechanism of reggeization results in Ward type identities for the amplitudes. In addition
we find the color tensors describing the reggeization of the gluon in higher orders. The first
steps in the investigation of the six—gluon amplitude are performed, and further evidence
for a field theory structure of the unitarity corrections is found.

Zusammenfassung

Gegenstand dieser Arbeit ist der Regge—-Limes der Quantenchromodynamik. Im Rahmen
der Stérungstheorie wird die Streuung von virtuellen Photonen bei sehr hoher Schwer-
punktsenergie untersucht. Die Resummation fiilhrender Logarithmen in der Energie fiihrt
zu einer Naherung (dem BFKL Pomeron), die bei asymptotisch groen Energien Uni-
taritdt verletzt. Das BFKL Pomeron beschreibt den Austausch von zwei wechselwirk-
enden reggeierten Gluonen im ¢-Kanal. Wir untersuchen Unitaritdtskorrekturen zum
BFKL Pomeron, die durch eine gréfilere Anzahl von Gluonen im t¢-Kanal ausgezeichnet
sind. Sie werden beschrieben durch n-Gluonamplituden, die einen Satz von gekoppel-
ten Integralgleichungen erfiillen. Wir geben eine Zusammenfassung der bekannten Re-
sultate iiber die 3- und 4-Gluonamplituden. Diese Resultate legen nahe, dafl die Uni-
taritdtskorrekturen durch eine 2+ 1-dimensionale Feldtheorie beschrieben werden kénnen.
Ziel der vorliegenden Arbeit ist es, durch die Untersuchung hoherer n-Gluonamplituden
weitere Einsicht in diese feldtheoretische Struktur zu gewinnen. Wir entwickeln Metho-
den, die die Untersuchung hdherer n-Gluonamplituden zulassen, und analysieren die 5-
und 6-Gluonamplituden. Die Gleichung fiir die 5-Gluonamplitude wird gelost. Unsere
besondere Aufmerksamkeit richtet sich auf den Mechanismus der Reggeierung des Glu-
ons. Wir finden Ward-artige Identitdten fiir die Amplituden, die den Mechanismus der
Reggeierung néher beleuchten. AufBerdem finden wir Farbtensoren, die die Reggeierung
des Gluons in héheren Ordnungen beschreiben. Die ersten Schritte in der Untersuchung
der 6-Gluonamplitude werden unternommen. Es ergeben sich weitere deutliche Hinweise
auf eine zugrundeliegende feldtheoretische Struktur der Unitaritdtskorrekturen.
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Introduction

Quantum Chromodynamics is established as the microscopic theory of strong interactions
and has been successfully applied to a variety of phenomena over the past 25 years. But
even after this long period of intensive research a number of deep problems in QCD remain
to be solved. One of the major challenges is to understand the high energy behavior of QCD
in the Regge limit. The focus of Regge physics is to explore hadron scattering at very large
center of mass energies s and fixed momentum transfer ¢ of the order of a hadronic mass
scale. In pre-QCD times, Regge theory [1] was developed to describe hadronic scattering
processes at high energies. Regge theory was based on the fundamental principles of
analyticity, unitarity and Lorentz invariance. It was found that in the kinematic region of
the Regge limit, the behavior of scattering amplitudes is determined by the singularities
of the partial wave amplitudes A(w,t) in the plane of complex angular momentum w,
the so—called Regge poles and cuts. The optical theorem relates total cross sections to
the imaginary part of the forward elastic scattering amplitude. This sparks the interest
in Regge singularities contributing to elastic scattering, namely those associated with
t-channel exchanges carrying vacuum quantum numbers. The high energy asymptotics
of total cross sections receives its leading contribution from the rightmost singularity in
the complex w-plane with vacuum quantum numbers, referred to as the Pomeranchuk
singularity or Pomeron.

Starting from these concepts an impressive development in theoretical physics took
place. Inspired by Regge theory very successful phenomenological models were built to
describe high energy scattering. In 1967 Gribov invented a reggeon field theory [2] that
soon evolved into a subject of intensive study [3]. Further, it was possible to relate Regge
poles to the hadron spectrum by crossing symmetry which in turn is a consequence of
analyticity. All known strongly interacting particles were discovered to be reggeons, that
is to lie on remarkably straight Regge trajectories passing through the physical spin at the
squared mass of the particles. To the present day many of the findings of Regge theory
belong to the deep truths in in high energy physics. However, Regge theory was pushed to
the background when Quantum Chromodynamics was discovered to be the correct gauge
theory of strong interactions. With the advent of the Tevatron and the HERA machine the
interest in the Regge limit of hadronic scattering amplitudes was revived. A specific model
that very successfully describes total hadronic cross sections up to the highest available
energies at the Tevatron is the so—called soft Pomeron model [4]. This model is especially
simple and fits all available elastic scattering data by a function that slowly grows like a
power with the center of mass energy s, the exponent being 0.08.

To the present day a profound understanding of the Regge limit within the framework
of QCD is missing. The ultimate goal would be to calculate the position of Regge poles
and cuts in the w-plane from first principles. Due to the difficult mathematical structure
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of QCD this will not be possible for the foreseeable future. The main difficulty is that the
kinematical region of the Regge limit is characterized by high parton densities and there-
fore of genuinely non-perturbative nature. Moreover, the wealth of hadronic scattering
processes at very high energies is dominated by low momentum scales and perturbation
theory cannot be applied. The current knowledge of the non-perturbative regime of QCD
on the other hand is by far not sufficient to make unambiguous predictions for the Regge
asymptotics.

Fortunately there is a class of scattering processes that allow a perturbative treatment
even at high energies, namely hard scattering processes. They are distinguished by the
presence of a hard scale that ideally dominates the whole process. The cross sections of
such processes are rather small, but they are of very high interest form a theoretical point
of view. They make it possible to approach the difficult region of the Regge limit from
a side where perturbation theory is reliable. The hope is of course that the transition is
in a certain sense smooth. The best examples for such interesting processes are heavy
onium scattering and the scattering of highly virtual photons in which the virtualities of
the two photons should ideally be of comparable size. In the former process the hard
scale is provided by the large mass of the quark and the antiquark. Whereas that process
is of purely academic interest, the latter will be observable [5, 6] at the planned Next
Linear Collider (NLC) facility. Another process of similar, but less inclusive kind is the
production of hard forward jets in deep inelastic scattering, so-called Mueller jets [7].
They have been further investigated in [8, 9].

The hard scale ensures the smallness of the strong coupling constant a,. But its small-
ness can be compensated by large logarithms of the energy s, necessitating a resummation
of contributions of the order a;log(s). This approximation scheme is called the leading
logarithmic approximation (LLA). Lipatov and his coworkers applied it first to a massive
gauge theory [10] and then to QCD [11]. The resulting resummed amplitude has a cut in
the complex angular momentum plane. This singularity is the celebrated Balitskii-Fadin—
Kuraev-Lipatov (BFKL) or perturbative Pomeron. It arises as the solution of an integral
equation that resums an infinite amount of Feynman diagrams contributing in LLA. This
BFKL equation can be written as a Schrédinger equation for partial waves in transverse
momentum space. Its energy-like variable is the complex angular momentum w, and its
time-like variable is rapidity. The BFKL equation describes the t-channel exchange of a
bound state of two gluons. The amplitude has a ladder topology, the ladder rungs between
the two gluons are effective interaction kernels. The gluons are reggeized gluons [12], each
of them represents an infinite sum of Feynman diagrams. The reggeized gluons have been
identified as the appropriate degrees of freedom in high—energy QCD, and they can be
regarded as collective excitations of the Yang-Mills field. A striking feature of the BFKL
amplitude is its conformal invariance in impact parameter space. It was discovered in [13]
and made it possible to solve the BFKL equation also for the non-forward direction.

It became clear immediately that the leading logarithmic approximation is in conflict
with a profound principle of field theory, namely unitarity. The Froissart—Martin theorem
[14, 15] is derived from unitarity and states that total hadronic cross sections cannot grow
faster than logarithmic with energy. The total cross section of a scattering process in
LLA, however, grows like a power with the center of mass energy s. The corresponding
exponent as it results from the position of the leading singularity in the w-plane equals
WBFKL = @3 Ne/m4In2 ~ 0.5 (1 + wppky, is called the Pomeron intercept). Therefore the
BFKL Pomeron eventually violates unitarity at asymptotically high energies. The leading
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logarithmic approximation is in this sense inconsistent. A full understanding of the Regge
limit of QCD will certainly require a consistent framework, and the approximation scheme
has to be extended beyond the leading logarithms.

The growth of cross sections at high energies is connected with the increasing parton
densities inside the colliding hadrons that will inevitably lead to an overlapping of the
partons. It is intuitively clear that parton cascades can then no longer be regarded as
independent and recombination effects will become important. That will eventually lead
to saturation, thereby taming the growth of the cross sections. The leading logarith mic
approximation can be extended in a way that reflects this intuitive picture of unitariza-
tion. The resulting scheme is known as the generalized leading logarithmic approximation
(GLLA). In this scheme a minimal set of non-leading corrections is identified that leads
to a unitary scattering amplitude. The distinctive property of these unitarity corrections
is that a larger number of reggeized gluons is exchanged in the t-channel. To arrive at a
unitary scattering amplitude one has to sum these contributions with all possible num-
bers of t-channel gluons. The first attempt to include such corrections was made in [16].
The most complete and systematic approach to unitarity corrections was formulated by
Bartels [17, 18, 19]. It is ideally applied to the theoretically very clean process of highly
virtual photon (y*y*) scattering. With the help of ¢-channel unitarity relations one defines
partial wave amplitudes in two—dimensional transverse momentum space describing the
production of a given number n of gluons in the t-channel. The BFKL amplitude naturally
appears in this approach as the first approximation.

With the inclusion of contributions with more gluons in the t-channel a new question
arises, namely that of s-channel unitarity in the subchannels. If one decides to demand
unitarity only in the direct channel one has to take into account only contributions in
which the number of gluons in the t-channel is fixed. The corresponding partial wave
amplitudes obey the Bartels—-Kwieciiiski-Praszalowicz (BKP) equations [18, 20]. These are
Schrédinger type equations similar to the BFKL equation, but now including all pairwise
interactions of the n gluons. If on the other hand one demands unitarity also in all possible
subchannels, one is forced to take into account also contributions in which the number
of gluons changes in the t-channel. The corresponding integral equations were derived in
[19]. In addition to the pairwise interactions of the gluons they contain number-changing
transition kernels. Due to this the different n-gluon amplitudes are connected and the
integral equations are turned into a tower of coupled equations. It should be emphasized
that in this approach the full color structure is taken into account with finite N, i.e. no
simplifying assumptions concerning the gauge group are made.

The inclusion of contributions in which the number of gluons in the ¢-channel is not
conserved has highly non—trivial consequences and implies a very interesting structure.
The three- and four-gluon amplitudes were first investigated by Bartels and Wiisthoff in
[21, 22]. It was observed that the amplitudes consist only of very few basic elements. The
three-gluon amplitude was found to be a superposition of two-gluon states, as was a part
of the four—gluon amplitude. The remaining part of the four-gluon amplitude involves
a two—gluon state as well as an irreducible four-gluon compound state, described by the
BFKL and the four-particle BKP equation respectively. They are coupled to each other
by an effective two—to—four gluon vertex. The occurrence of this number—changing vertex
turns the quantum mechanical problem of the n-gluon compound states into a quantum
field theory. In fact, the whole structure of the three- and four-gluon amplitudes could
be interpreted in the framework of an effective field theory of unitarity corrections.
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This observation gives rise to the hope that the whole set of unitarity corrections can
be cast into the form of an effective field theory. From the results that have been obtained
so far, some of its fundamental properties can already be inferred. The field theory is
an field theory in two space-like dimensions and one time-like dimension. The latter
is realized as rapidity. The elements of the field theory are Green functions describing
the ¢-channel propagation of interacting n-gluon compound states, and number—changing
vertices. Soon after the two~to—four transition vertex had been derived it was discovered
that it exhibits conformal invariance in impact parameter space [23]. That immediately
leads to the conjecture that the unitarity corrections can even be described by a 2 + 1-
dimensional conformal field theory where the two space-like dimensions are now identified
with impact parameter space instead of transverse momentum space. Further evidence for
the interpretation of the unitarity corrections as a conformal field theory was found in [24]
where the triple Pomeron vertex was found to have the form of a conformal three—point
function. However, it is known that the conformal invariance is a property that does not
persist when next-to-leading logarithmic corrections are taken into account. The running
of the coupling constant is bound to break the conformal symmetry. It is nevertheless
worth the effort to study the symmetry, its breaking can then be investigated in a second
step.

A prerequisite for the emergence of the field theory structure is the fact that parts of
the amplitudes reduce to two-gluon amplitudes, i.e. have the analytic properties of super-
positions of BFKL amplitudes. This phenomenon generalizes the well-known reggeization
of the gluon and has therefore been termed reggeization as well. When the n-gluon am-
plitudes are used to reconstruct the full scattering amplitude via t-channel unitarity the
reggeizing parts of the amplitudes in fact lead to higher order corrections to the Regge
trajectory of the gluon.

The structure found in the unitarity corrections is very encouraging so far. But the
knowledge is still rather limited since up to this point only the amplitudes with up to
four t-channel gluons have been investigated. Only the simplest elements of the effective
field theory are known, and the general underlying rules for their construction have not yet
been understood. It is the main purpose of this thesis to extend our knowledge beyond the
three- and four-gluon amplitudes and to learn more about the properties of the effective
field theory of unitarity corrections. The natural next step is to investigate the five- and
six—gluon amplitudes. Within the framework of the integral equations this even seems to
be the only way to proceed. This is because the equations are coupled and do not allow
to find an amplitude without knowing the lower ones. The six-gluon amplitude will be
especially interesting since we expect new elements to occur only in amplitudes with an
even number of gluons. This is clearly suggested by the complete reggeization of the three—
gluon amplitude. We will pay special attention to reggeization since it is intimately related
to the emergence of the field theory structure. The color structure of the amplitudes will
be very important in this respect. We consider a very special scattering process, i.e.
7*y* scattering, and we will only be able to investigate the n-gluon amplitudes for a very
limited range of n. The hope is of course that the information gained under these special
conditions will be of more general nature. Before giving a more detailed outline of this
thesis, we briefly mention related results and complementary approaches to the problem
of the Regge limit of QCD.

In the recent past there has been impressive progress in the field of high energy QCD,
especially in the perturbative approach. The next-to-leading logarithmic (NLLA) correc-
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tions to the BFKL equation have been found in an almost decade-lasting effort [25]. Parts
of the calculation have also been performed indendently in [26]. The investigation of the
consequences has just started [27, 28]. The corrections to the intercept of the Pomeron
turn out to be large, but the qualitative picture is arguably not altered. The large-N, limit
of the BKP equations has been a field of very active research. Lipatov discovered that
the n-gluon compound state in the large-N, limit is an integrable system [29]. Faddeev
and Korchemsky proved its equivalence to the XXX Heisenberg model with noncompact
SL(2, C) spin zero [30]. These results allow to apply very powerful tools like the quantum
inverse scattering method and the Bethe ansatz, and very interesting results have been
obtained [31]. A further recent result is the resolution of the longstanding problem of the
Odderon in perturbative QCD. The Odderon is the C = —1 partner of the Pomeron, i.e.
it carries negative charge parity. In perturbative QCD it is described by a completely
symmetric three-gluon compound state that obeys the three—particle BKP equation. Its
conformal invariance had been used in [32] to place constraints on its wavefunction. Janik
and Wosiek recently calculated its intercept which turned out to be smaller than one [33].
Mueller formulated a very elegant approach to high energy QCD in which color dipoles play
an important role [34]. This color dipole picture of high energy onium—onium scattering
was shown to be equivalent to the BFKL Pomeron [35]. The dipole picture was also used
to study the unitarity problem [36, 37, 38]. Other approaches are the formulation of an
effective action for the Regge limit [39, 40], a similar approach also aiming at a simplified
effective theory for high energy scattering [41], and the method of operator expansion [42].
Approaches of a more non—perturbative kind are the eikonal approximation in a soft gluon
background [43], the model of the stochastic vacuum [44], and the semiclassical approach
[45]. This list is of course very incomplete. It is intended only to give an impression of the
methods that are currently used to study the Regge limit of QCD. The Regge problem is
extremely difficult, and probably none of the approaches mentioned above, including the
perturbative one, will by itself be sufficient to gain a full understanding.- Every piece of
information is highly welcome, and in this sense the different methods of attack should be
regarded as complementary. Most probably only a combined effort can eventually lead to
a complete picture of the high energy limit of QCD.

After this short review of related work I would like to give an outline of my thesis.
While doing so I also describe the main results of my work. 1 give a brief review of
the well-known BFKL equation and its basic properties in the introductory chapter 1.
I explain the origin of the n-gluon amplitudes and motivate their physical meaning in
chapter 2. Here I also present the integral equations that govern their behavior. This is
done in great detail since the integral equations constitute the main source of information
in the study of the unitarity corrections. The exploration of the five— and especially of
the six-gluon amplitude requires a huge computational effort. It is therefore necessary to
provide methods that allow to handle the integral equations for larger n in spite of their
complexity. It is mainly in this respect that chapter 2 contains original contributions. All
necessary tools to tackle the integral equations are presented in this chapter and in the
two technical appendices A and B supplementing it. Chapter 3 is designed as a compact
review of the three— and four-gluon amplitude. With the simple example of the four-gluon
amplitude I explain the general method which is used to attack the integral equations.
In brief, the method consists in splitting the amplitude under consideration into two
parts, one of which has to be guessed in a smart way. This part should of course consist
of known elements. The integral equations can then be used to derive a new equation



6 Introduction

for the remaining part. If the choice of the first part was indeed a good one the new
equation allows to gain further information about the second part. The application of the
method in the case of the four-gluon amplitude leads to the two—to—four gluon transition
vertex which will play a prominent role also in the analysis of the five- and six-gluon
amplitudes. The properties of the transition vertex are presented, and the field theory
structure of unitarity corrections is described in some detail. 1 emphasize that the very
occurrence of the field theory structure is closely related to the phenomenon of reggeization
in the amplitudes. Chapter 3 closes with a previously unknown property of the transition
vertex. It shows that the vertex can be constructed from well-known BFKL kernels in a
very intricate way. The remaining chapters consist entirely of original results. I turn to
the five-gluon amplitude in chapter 4. The corresponding integral equation can be solved,
and the five—gluon amplitude can be expressed in terms of two— and four-gluon compound
states. This finding constitutes a further generalization of the concept of reggeization. As
a by-product the mechanism leading to reggeization in a three-gluon subsystem is found
in its most general form. The knowledge of the amplitudes with up to five gluons allows
to gain deeper insight into the intricate interplay of color and momentum structure in
the process of reggeization. This issue is the focus of chapter 5. In the first part of that
chapter I present Ward type identities that connect a given n-gluon amplitudes with the
(n—1)-gluon amplitude. They arise when one of the transverse momenta in an amplitude
vanishes. In the second part of the chapter the color tensors are identified that accompany
the reggeization of the gluon in higher orders. In both parts I formulate conjectures on how
these results might generalize to higher n-gluon amplitudes and higher n-gluon compound
states. Chapter 6 deals with the six-gluon amplitude. The amplitude is split into two parts
according to the method mentioned above, and a new integral equation for the remaining
part is derived. I discuss its properties in detail. A piece in the equation is identified that
might possibly allow an interpretation as a two-to-six gluon transition vertex. I briefly
discuss the possible existence of a Pomeron-Odderon-Odderon vertex. The structure of
the new equation strongly suggests that a further reggeization takes place in the four-gluon
compound state. Such a reggeization might give rise to a generalization of the two—to—four
transition vertex to the color non—singlet. The practical application of this idea encounters
serious difficulties that are partly of conceptional origin. I describe these difficulties and
mention potential ways to a resolution of the problems. The problems connected with
the reggeization in the four-gluon compound state presently prohibit a full understanding
of the six—gluon amplitude. The new integral equation nevertheless provides evidence for
some of the conjectures I have put forward in chapter 5. Finally, there are two technical
appendices. Appendix A deals with contractions of tensors in su(N.) algebra. The method
is explained and a series of identities is given that have to the best of my knowledge not
been given in the literature before. Appendix B contains a combinatorial method that
I have developed in order to bring certain momentum space integrals occurring in the
analysis of the amplitudes to a standard form. The method is suited for implementation
on a computer. I conclude this thesis with a summary and an outlook.

Chapter 1

BFKL Equation and Violation of
Unitarity

In this introductory chapter we review the perturbative analysis of the Regge limit of QCD
in the leading logarithmic approximation (LLA). The corresponding amplitude for elastic
scattering was first derived in a massive gauge theory [10] and then also in QCD [11]. The
result is known as the perturbative or BEKL Pomeron. It has since been a field of active
and ongoing research. In this chapter we restrict ourselves to the basic facts about the
BFKL Pomeron, and we do not make any attempt on completeness. For more detailed
accounts of the BFKL theory we refer to the excellent reviews [40, 46, 47]. We start
with the BFKL equation and collect some basic formulae. We observe that the leading
logarithmic logarithmic approximation violates unitarity. We describe the reggeization of
the gluon in the high energy limit of QCD. Finally, we explain the conformal invariance
of the BFKL equation in impact parameter space.

1.1 The BFKL equation

The Regge limit is the kinematical region of very large center of mass energies s and fixed
momentum transfer ¢ of the order of a hadronic mass scale,

st ME y s (1.1)

The optical theorem relates total hadronic cross sections to the elastic forward scattering
amplitude,

1
Ttot = = Im Aa(s,t=0). (1.2)

It is convenient to use partial wave amplitudes. In the high energy limit this amounts to
performing a Mellin transformation

St+ico gy ( s

As,t)= is/ ——Aﬁ>w A(w, 1), (1.3)

§—ico %
thereby changing from energy s to complex angular momentum w. The high energy
behavior of the total cross section is then determined by the singularities of A(w,£) in
the w-plane, the so—called Regge poles and Regge cuts. The rightmost singularity gives
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the leading contribution and is identified with the Pomeron. As it describes an elastic
scattering process (see (1.2)) it carries vacuum quantum numbers.

If there is a hard momentum scale in the process the use of perturbation theory is
justified. The smallness of the strong coupling constant @, at large momentum scales can
at high energy be compensated by large logarithms of the energy. This leads to the leading
logarithmic approximation in which

ay € 1; oglog(s)~1. (1.4)

Under this assumptions an infinite number of Feynman diagrams contributes to the scat-
tering amplitude, and these contributions have to be resummed. This leads to the BFKL
equation. The longitudinal degrees of freedom decouple in high energy scattering, and
the dynamics takes place in transverse space only. The full amplitude can be written in
factorized form
2 21!
A@,) = [ s Gyt K ) (k' ) (1)

The functions ¢, ¢, are the impact factors of the scattered colorless states. The color
neutrality implies

$12(k=0,q9) = ¢12(k=q,q) =0, (1.6)
which is important for the infrared finiteness of the amplitude. The function @, can
be interpreted as the partial wave amplitude for the scattering of virtual gluons with
virtualities ~k?, —(q — k)?, —k%, and —(q — k’)? respectively. It is described by the
BFKL equation. The BFKL equation is an integral equation in the two-dimensional
space of transverse momenta and of Bethe-Salpeter type. In detail it has the form

wu(k, K@) = ¢°(k, K @) + / 5 g el a-lik -k du,Ksa). (1)

¢° is the inhomogeneous term,

8(k — k')
I gk e

The integral kernel, the so-called BFKL or Lipatov kernel, is given by

kK (q-1? (q-k)’P
Kprxn(La-Lk,q-k) = —Neg’ [q’— k-2 ~ (k=17

+(2m)°k*(a - K)* [B(k) + Bla - k)] 6P (k - k) .(1.9)

Pk, K;q) = (1.8)

The strong coupling constant is normalized to a, = f%. The function f in the kernel is
defined as

Neof &l K
B = 2 g? / - (1.10)

The function
ak?) =1+ B(k?) L3

is known as the gluon trajectory function. It passes through the physical spin 1 of the
gluon at vanishing argument k? = 0 because f(k? = 0) = 0. Since it is the function g
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that will frequently occur throughout this thesis we call it (in obvious abuse of language)
the trajectory function of the gluon as well.

The factor (—N) in the BFKL kernel is a color factor. If the two gluons entering
the amplitude ¢,, are not in a color singlet state the color factor Cy will be different. (If
the two gluons are not in a color singlet state the amplitude is not infrared finite. It is
then necessary to introduce a regularization. When dimensional regularization is used, for
example, the calculation has to be performed in 2+ ¢ dimensions.) In general Cr depends
on the xrreduc1ble representation I of the two gluons. If N, = 3 the factor C; equals —3,

2, 2, 0, 1 for the irreducible representations 1, 84, 8g, 10 + 10, 27, respectively. In
this thesis we will use the symbol Kppkj, for the BFKL kernel only if the two gluons are
in a color singlet.

The complex angular momentum w acts as an energy variable in the BFKL equation.
It can be shown to be conjugate to rapidity which thus acquires the meaning of a time
variable in the BFKL equation.

The general form of the solution of the BFKL equation can be derived from the integral
equation by iteration. Accordingly, the elastic scattering amplitude at high energies has
in LLA the structure of a gluon ladder in the ¢-channel,

) 3 (1.12)

number
of rungs

and the ladder rungs represent BFKL kernels.
For vanishing momentum transfer ¢ one obtains the BFKL equation in the forward
direction. It can be diagonalized by power functions

™) (k) = 2r/2 (k) "3 ¢~ (1.13)

with » € R, n € Z. The eigenvalues are

X(v,n) = Nea, [2¢( )— (1+T|"] + iu) - (I——ZM - iy)] s (1.14)

where 1 is the logarithmic derivative of the Euler I-function. The full solution of the
BFKL equation consequently reads

+o0 400
L= 3> i’:w———“ <00l (1.15)
n=—o0" % )

The eigenfunctions for non-zero momentum transfer ¢ are only known in impact parameter
space.

To conclude this section we mention the t-channel reggeon unitarity relation for the
BFKL amplitude. Let C(w;k, k’; q) be the amputated BFKL amplitude, i. e. the amplitude
¢ without the reggeon propagator (w — B(k?) — 8((q — k)?))~!

Clwik, Ka) = (w - B(K?) = B((a - k)?) du(k, K q) (1.16)
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with ¢t = —q?. After a continuation to the physical region of the t-channel it is the possible
to show [10] with the help of the BFKL equation that

discC = [ a1 (zn)sfliﬁ(s (w=B0%) - B((a-1)

x Clwik, L q)C*(w; 1,k q) . (1.17)
The right hand side can be understood as a unitarity integral for the two-gluon amplitude

C. We will come back to the significance of such t-channel reggeon unitarity relations in
section 2.1 of the next chapter.

1.2 Violation of unitarity

The high energy asymptotics of the BFKL amplitude is determined by the rightmost
singularity in the plane of complex angular momentum w. Since the function x(v,n) (see
(1.14)) decreases with increasing n one can neglect the contributions with n # 0. Further
it is possible to make an expansion of x(v, 0) in v around zero to find the leading singularity
in (1.15). It leads to a power-like growth of the amplitude

A ~ s(twerkL) (1.18)

and the exponent as obtained from the calculation outlined above is

“’1?’5 4In205. (1.19)

WBFKL =
Consequently, the total cross section in the leading logarithmic approximation grows like
ot ~ S¥BFKL : (1.20)

This result is in conflict with the Froissart-Martin theorem [14, 15]. This theorem de-
rives a bound on the total hadronic cross section from unitarity. The theorem is thus a
consequence of a deep principle of field theory. In detail, the Froissart-Martin bound is

Otor < const. log?(s) . {1:21)

A power-like growth will eventually violate this bound at asymptotically large energies.
This observation is the starting point of the considerations in this thesis. Before we come
to this central issue in the next chapter we will describe a few more properties of the
BFKL equation.

1.3 Reggeization of the gluon

The phenomenon of reggeization in non-abelian gauge theories was discovered by Lipatov
[12] in 1976 when he made the following striking observation. The ¢-channel exchange in
the BFKL equation carrying the quantum numbers of a gluon, i. e. a color octet® exchange,
gives rise to a special solution. For antisymmetric color octet exchange the color factor

!'We speak of “octet’ to mean the adjoint representation also for general Ne.

1.4. Conformal invariance in impact parameter space Tl

in the kernel Kppky, is N¢/2 instead of N,. (In this color representation the amplitude is
not infrared finite and a regularization has to be applied.) Let us further assume that the
inhomogeneous term ¢y is a function of (kg +k2). Then the equation exhibits the solution

_ 802 (ki+ks)
T w—fki+ka)’

This solution has a pole and thus can be interpreted as describing the propagation of a
single particle with momentum (k; 4+ k;) and the quantum numbers of a gluon. In a
sense the gluon turns out to be a bound state of two gluons here. The fact that the gluon
is a composite state of gluons is often termed ’bootstrap’. It indicates that the correct
degrees of freedom in high energy QCD are not elementary gluons but so-called reggeized
gluons. The reggeized gluon can be understood as a collective excitation of the Yang-Mills
field. It will be one of the topics of this thesis to understand how higher ’Fock states’ of
the reggeized gluon field contribute to the reggeized gluon as a collective excitation (see
chapter 5).

When we interchange the two gluons in the color octet amplitude above we find that
its sign changes. This fact gives rise to the notion of signature. It characterizes the
behavior under the exchange of two gluons, that is the simultaneous interchange of color
and momentum labels. The reggeized gluons obviously carries negative signature.

¢°4 (k1 + k) (1.22)

1.4 Conformal invariance in impact parameter space

One of the most interesting properties of the BFKL equation is the conformal invariance
in impact parameter space. It was proven in [13] and made it possible to find the solutions
of the BFKL equation in the non—forward direction as well.

The Fourier transformation of the partial wave amplitude ¢, is defined as

6(q - ql)¢w(k1 k’; Q) = /d2pld2p2d2P1’d2P2'¢w(PlyPZ;PL’,PZ’) X
x exp (tkpy +i(q — k) p2 — ik’py — i(q’ — k') par) (1-23)

Fourier transformation space defines the BFKL equation in two-dimensional impact pa-
rameter space. It is convenient to write the vectors in this space in complex notation,
p = pz+ipy,. The BFKL kernel can then be shown to be invariant under the transforma-
tions

b
p—)p’:z’::i_d; ad—be=1. (1.24)

These transformations are characterized by the group

( oy ) €SL(2,C)/7, (1.25)

i.e. the group of projective conformal transformations. An arbitrary conformal transfor-
mation can always be obtained as the superposition of the following basic transformations:

translations: p—rp+d
rotations: p—rap; la|=1
dilatations: p—=Ap; AER,
inversions: p—p7t.
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This observation allows to expand the solution of the BFKL equation in conformal partial
waves,

:\f dv 1612 + 4n?

bu(p1, p2i prr, pv) or [4v? + (n— 1)?)[4v2 + (n + 1)?]

n=-00

1
X=X ./ &poE“"™ (p10, p20) E“™* (o0, pavo) - (1.26)

Here we use p;; = p; — pj. The representation functions E®") are given by

T s A* £ g 4

E\vm P10, P20) = ¢V, 1 (—-——) (‘——) 1.27
( ) o) p1op20/  \pioPig G0

with a constant ¢(v,n). The coordinate pg represents an additional parameter of the

functions E(*™), The parameters A and h are the conformal weights of the representation,

and we have

h=1-h*. (1.28)

The combination ~
h-h=n€l (1.29)

is the integer conformal spin of the state and its scaling dimension is given by
h+h=1+2€ER. (1.30)

These two relations also explain the notation E(*™ for the representation functions. The
representation functions can be understood as three-point correlation functions of a con-
formal field theory [40],

E®™ (p10, p20) = {p0,0(p1, 51)b0,0(p2, 52)O 1 (Po, P0)) » (1.31)

with the identities (1.29),(1.30) relating v, n, and h. The operators ¢y o can be inter-
preteted as elementary fields representing reggeized gluons. They have zero conformal
weight. The operator Oy, ; represents a composite state of two reggeized gluons that
emerges from the dynamics of the theory.

We limit ourselves to this short review of the basic properties of the BFKL equation in
impact parameter space. Conformal invariance has far-reaching consequences. It places
strong constraints on the correlation functions of the theory, for example. We will come
back to the questions related to conformal invariance in the BFKL equations and in the
unitarity corrections in chapter 3.

Chapter 2

Integral Equations for n-gluon
Amplitudes

The aim of this chapter is to set the stage for the analysis of unitarity corrections we
will carry out in this thesis. The physical process motivating our investigations is the
scattering of highly virtual photons at very large center—of-mass energy. Here the main
objects to be studied are partial wave amplitudes describing the production of a given
number n of reggeized gluons in the t-channel. The approach we will pursue in this thesis
heavily relies on the use of integral equations for the n-gluon amplitudes. We provide
all necessary tools for their study in this chapter. In the first section we concentrate on
the n-gluon amplitudes and motivate their physical meaning. After that we turn to the
integral equations. Since they are of utmost importance for the whole analysis of the
amplitudes we treat them in great detail and describe in turn all their building blocks in
the subsequent sections. In the literature the integral equations have so far been treated
only for up to four gluons. We want to study amplitudes with up to six reggeized gluons
and therefore have to extend the equations accordingly. The complexity of the problem
rapidly increases with the number of gluons in the amplitude under consideration. It is
thus highly desirable to develop suitable methods and to cast the formalism into a form
that allows to treat the problem in spite of its complexity. We pay special attention to this
aspect throughout this chapter and supplement it in this respect with the two appendices
A and B.

2.1 The n-gluon amplitudes

As the physical process to consider we choose the scattering of highly virtual photons at
very large center—of-mass energy and fixed momentum transfer. This process is not only
of theoretical interest. The total cross section of y*y*-scattering can be measured at the
the planned next linear collider (NI.C) facility where it occurs as a subprocess in electron—
positron (e*e™) scattering. There the total v*y* cross section will be sizeable and allow
for a very clean test of the the high energy regime of QCD [5, 6]. From a theoretical point,
of view the process is extremely interesting since the highly virtual photon with invariant
mass Q2 provides hard momentum scale in the process. Due to the asymptotic freedom
of QCD we are thus in a position to use perturbation theory as the framework for our
calculations. We are even able to describe the whole process perturbatively because both

13
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colliding particles have a large virtuality. Moreover, in v*y*-scattering we are not plagued
with the theoretical difficulties arising from the genuinely non—perturbative internal struc-
ture of the proton present in deep—inelastic electron—proton scattering. There is, however,
the problem of diffusion of momenta in the process. We will come back to this problem
momentarily. Already here we can state that the virtualities of the two photons should
be chosen to be large and of comparable size.

We are interested in the hadronic total cross section of y*y*-scattering that is related to
the elastic forward scattering amplitude via the optical theorem. In high energy scattering
the integrations over longitudinal momenta become trivial and the dynamics of the process
essentially takes place in the two-dimensional space of transverse momenta. At high energy
the small value of the strong coupling constant a; can be compensated by large logarithms
of the energy s, and the corresponding contributions have to be resummed. In leading
logarithmic approximation the elastic forward amplitude of y*y*-scattering is therefore
described by the BFKL amplitude, that is by the exchange of a compound state of two
reggeized gluons in the ¢-channel. The latter are coupled to the photons via (light) quarks,
i.e. each of the photons actually splits into a quark-antiquark pair which then undergoes
an interaction mediated by gluons. As we have seen in the preceding chapter, the power
behavior of the BFKL amplitude eventually leads to a violation the Froissart-Martin
bound (1.21) and results in a non-unitary scattering amplitude. (Strictly speaking, the
Froissart—Martin theorem was proven only for the scattering of on-shell hadrons. It is
widely believed to hold for the scattering of virtual photons as well, but a concise proof
is still Jacking in this case.) The restoration of unitarity necessitates the inclusion of a
certain class of higher—order corrections to the leading logarithmic approximation. This
is the main point motivating the introduction of n-gluon amplitudes. Eventually, we want
to find out how unitarity will be restored in the Regge limit of QCD. We will therefore be
concerned with asymptotically large center-of-mass energies s and do not pay very much
attention to phenomenological applications in this thesis. Though, it is well conceivable
that the first unitarity corrections might already be important for the interpretation of
the data to be taken at the NLC.

The use of the leading logarithmic approximation bears a problem concerning the use
of perturbation theory that is not obvious on first sight. When leading logarithms in the
energy s are resummed the longitudinal momenta along the gluon ladder are strongly or-
dered. But there is no constraint on the transverse momenta besides energy-momentum
conservation. Due to this there is a diffusion of transverse momenta [48, 49] that can
reach far into the infrared region. This is in sharp contrast to the resummation of lead-
ing logarithms in the momentum scale @* which results in the well-known Dokshitzer—
Gribov-Lipatov—Altarelli-Parisi (DGLAP) equation [50]. In the latter case the transverse
momenta are strongly ordered along the Jadder and diffusion does not take place. Diffusion
does occur in y*y*-scattering at high energy that is of interest to us. The contribution of
small momenta is still not small at the NLC, for instance. But the situation is quite fa-
vorable at least from a theoretical point of view. Choosing the virtualities of the colliding
photons large enough we can make the contribution from the dangerous low-momentum
region very small. This makes a perturbative calculation quite trustworthy. Therefore
7*y*-scattering is arguably the best possible process for the theoretical investigation of
high energy QCD. Ideally, the virtualities of the two photons should be of comparable size
to suppress DGLAP evolution.

The method suited to restore unitarity in the perturbative approach is known as the
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generalized leading logarithmic approximation, and we will pursue this method here. It
constitutes an approximation scheme in which a minimal set of non-leading corrections is
identified that leads to a unitary amplitude. In essence, the minimal set of contributions
required here comprises subleading logarithmic corrections with a larger number n of
reggeized gluons in the t-channel. These are what we call unitarity corrections. As we
will see in a moment, one has to sum over all possible n to fulfill the requirement of
unitarity. Quark exchanges in the ¢-channel are always suppressed by powers of the energy
s with respect to the corresponding gluon exchanges. They are not taken into account
in the generalized leading logarithmic approximation. Let us now try to understand how
such corrections may result in a unitary amplitude. The corrections will in general give
contributions to the scattering amplitude that grow like powers of the center-of-mass
energy s. The respective exponent will depend on the number n of reggeized gluons that
are exchanged and, like in the BFKL amplitude, be related to the spectrum of the n-gluon
state. Obviously, a finite sum of powers cannot grow slower with energy than a logarithm.
This already makes clear that we have to take into account an infinite set of contributions.
We have to sum over all possible corrections with n gluons. Let us assume that only
corrections with an even number n of gluons give rise to a new exponent. (We will find
good reasons for this assumption in the course of our investigations.) The sign of these
corrections is expected to alternate. The full amplitude then acquires the form

A(s) =i ) (~1)% Aus*" < const.log?(s) (2-1)
ne2lN

with some coefficients A,, and now it is well possible that in the high energy limit the
amplitude is bounded by a logarithm as indicated. The knowledge of how exactly the
mechanism sketched in (2.1) works is admittedly rather limited. In fact only the first
exponent, i.e. the BFKL exponent wppki, (1.19), is known. We refer the reader to [24]
for a more detailed description of how the second term in the series (2.1) can be obtained
once the spectrum of the four-gluon state is known.

The most complete approach to a systematic treatment of unitarity corrections was
formulated by Bartels [17, 18, 19]. Its aim is to arrive at an effective description of
QCD in the Regge limit in the spirit of a reggeon field theory [2, 3], the requirement of
unitarity being built in from the very beginning. Of course, the BFKL amplitude with
its two t-channel gluons should be incorporated into the whole approach as the lowest
order contribution. It appears natural to define partial wave amplitudes similar to the
BFKL amplitude but now with n reggeized gluons in the t-channel. In section 1.1 we have
seen the t-channel reggeon unitarity equation for the BFKL amplitude, cf. (1.17). It is
valid when the amplitudes are continued to positive ¢, that is to the physical region of the
t-channel. Its essence can be summarized symbolically as

disc, A(w, t) ~ CyC3 (2-2)

where C is an amputated amplitude. We include a reggeon propagator to arrive at
Dy = Ca(w—P(k1) —B(kz))~!. We have chosen a new symbol D, for the BFKL amplitude
here since we are now considering the special physical process of y*y*-scattering. The
amplitude D, obeys the BFKL equation (1.7) with a special choice of the inhomogeneous
term, namely the coupling of the two gluons to the photons via a quark loop. The unitarity
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relation (2.2) can be generalized to include n-gluon intermediate states. Symbolically, the
generalization has the form

00
disc, A(w,£) ~ Y CuChr. (2.3)
n=2

We include a reggeon propagator to find D, = Cp(w — Y0, A(k;))~!. Here the D,
describe the production of n on-shell gluons in the ¢-channel. They are non-amputated
amplitudes, i.e. have propagators on the external gluon lines. The correct treatment of
t-channel unitarity relations including multi-particle amplitudes is highly non-trivial. To
our knowledge the most complete survey of this extensive technology is (51], and the reader
is referred to that reference for the details. We will content ourselves here with having
motivated the physical meaning of the n-gluon amplitudes D, we are going to study.
Below we will outline the formal definition of the amplitudes D,,.

Once we take into account subleading corrections with more reggeized gluons in the
t-channel and consider multi-particle amplitudes like the n-gluon amplitudes D, there
exist of course subchannels of the scattering amplitude and we have to care about unitary
also in the subchannels. The approach initiated by Bartels is designed to ensure unitarity
not only in the direct channel but also in all subchannels. This implies that the number of
gluons in the ¢-channel gluons is not conserved. Due to that the set of integral equations
for the n-gluon amplitudes is turned into a tower of coupled equations including number—
changing integral kernels. (A detailed description of the integral equations will follow in
section 2.2.)

The non—conservation of the number of reggeized gluons in the ¢-channel evolution
contrasts sharply with the situation in the Bartels—-Kwieciriski-Praszalowicz (BKP) equa-
tions [18, 20]. The latter describe the t-channel evolution of a compound state of a fixed
number of reggeized gluons in the Regge limit. Their large-N, limit turned out to be
equivalent to a completely integrable model [29], namely the XXX-Heisenberg model with
conformal SL(2, C) spin s = 0 [30]. Although the BKP equations do not apply directly to
our n-gluon amplitudes D, they will play an important role in the effective field theory of
unitarity corrections that we are heading for. As we will explain in more detail in section
3.3 there will be different elements in the effective field theory. First we will have n-particle
Green functions, that is number—conserving elements. Their behavior will be governed by
the BKP equations. In addition, there will be number-changing elements which we will
call vertices. They arise as a unique feature of the approach pursued here, and turn the
quantum mechanical problem described by the BKP equations into a quantum field theory.

We will now outline the formal definition of the n-gluon amplitudes D,. The way
the amplitudes D, are defined is inspired by Regge theory. A condensed but still rather
extensive description of the methods that have to be used here can be found in [52], more
complete reviews are contained in [53] and [54]. The procedure starts from a physical
2 + = multi-particle scattering process. One identifies certain kinematical variables with
the wse of so—called Toller diagrams and hexagraphs. After defining partial waves one can
eventually get the desired amplitude by taking an appropriate mixed Regge and helicity—
pole limit. Although it is in principle possible we will not carry out this program for
the amplitudes under consideration in this thesis. The procedure becomes technically
complicated very quickly with the increasing number of gluons in the amplitude. Moreover,
the physical processes we would have to start with for larger n are very artifical and of
purely academic interest. However, the method outlined here appears to be very natural
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for a special phenomenological application of the four-gluon amplitude. In [22] a part of
the four—gluon amplitude D4 in which the four gluons form two pairs of color singlets was
used for the description of the process of high-mass diffractive dissociation in deep inelastic
electron—proton scattering. The rapidity gap between the proton and the diffractively
produced system is caused by a colorless exchange between the proton and the photon.
The latter is modelled by a two-gluon exchange. In the amplitude for this process the
initial state is therefore indeed a three—particle state, and the cross-section takes the form
of a three-to—-three scattering process. In [22] the appropriate limit for this process was
identified as the well-known triple Regge limit in which s > M? > Q* > A?}CD: where
M? is the invariant mass of the diffractively produced particles.

The n-gluon amplitudes are defined to have as external lines two photons and n gluons.
The photons are coupled to the gluons via their splitting into a quark—antiquark pair to
which the gluons are attached. Being n-gluon amplitudes the D, carry as arguments n
color labels @; in addition to the transverse momenta k; of the gluons. The color labels
correspond to generators t* of the gauge group SU(N.) in the adjoint representation.
As partial waves the D, have also as an argument the complex angular momentum w.
Since all D, will carry the same argument w we will suppress it in our notation. In our
notation we will suppress the photon momenta as well. The n-gluon amplitudes are thus
characterized as

Dol o salled) (2.4)
The transverse gluon momenta k; in the amplitude are all chosen to be outgoing. The
D,, are non-amputated amplitudes, i.e. they have propagators for the outgoing reggeized
gluons. Further they are multiply—cut amplitudes. We take discontinuities in the n — 1
energy variables defined from one photon and the ¢ first gluons (1 <i<n-—1),

! 2

S = (P’y';l + ZPJ') . (2-5)
=1

Here p,+;; and p; are the four-momenta of the left photon and the gluons, respectively.

The amplitudes D, can be defined for the non-forward direction

f:k,- £0 (2.6)
=1

as well. All results in this thesis will hold for the non—forward direction, and we will not
mention this in each case separately.

The simplest of the n-gluon amplitudes is Dy. It is identical with the well-known BFKL
amplitude discussed in chapter 1 (there it was denoted ¢). There the inhomogeneous term
in the BFKL equation was not specified. In D; it is given by the lowest order coupling of
the two t-channel gluons to the virtual photons through a quark loop. The two outgoing
gluons in the BFKL amplitude D3'®* are in a color singlet such that we can factorize the
color structure and define the momentum part D, by

D;laz (kl,kz) = 64102D2(k11 kg) . (27)
We repeat here two simple but very important properties of the momentum part (see

(2.7)) of the BFKL amplitude. The first is that it vanishes when one of its momentum

argument vanishes,
Ds(ki, ka) ;=0 = Da(ka, ka)lky=0 = 0. (2.8)
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The second is the symmetry in its two momentum arguments,
Dy(ki, ko) = Da(ka, ky) - (2.9)

Concluding this section, we introduce a shorthand notation for the arguments of D,.
Later we will use it for the arguments of other functions as well. In the case that an
argument of a function, say D, is a sum of two or more transverse momenta we will
only give the indices of these momenta, and a string of indices stands for the sum of the
corresponding momenta!. So we have for example

D2(12,3) = Dz(kl + k'),k;;) . (2.10)

2.2 Integral equations

In the preceding section we have introduced the main objects of our investigations, namely
the n-gluon amplitudes. In the present section we get to know the source from which we
will draw information about the amplitudes. This source of information is provided by a
set of integral equations. Hidden in them is an amazingly rich structure, and they will
help us to gain insight into the principles underlying the Regge limit of QCD.

The n-gluon amplitudes D,, obey a tower of coupled integral equations. They were
derived in [19] by means of s-channel dispersion relations. Not surprisingly, they bear some
resemblance to the BFKL equation. They are equations in two-dimensional transverse
momentum space. Like the BFKL equation they describe the ¢t-channel evolution of the
amplitudes under investigation. In this evolution, the complex angular momentum w again
plays the role of an energy variable. Its conjugate is rapidity, and it acquires the meaning
of the time-like variable in the evolution.

The integral equation for the two-gluon amplitude D3'*? is of course identical to the
BFKL equation,

2
(w - 5(1«)) B = UG X0 D e . (2.11)
=1

We have moved the trajectory functions to the left hand side of the equation to make the
generalization to larger n more transparent. The inhomogeneous term D,y denotes the
lowest order coupling of the two gluons to the photons via the quark loop. The quark loop
will be the subject of section 2.4. The integral kernel K,ﬁz,?{“} is, roughly speaking, the
BFKL kernel (1.9) without the gluon trajectory functions #. An exact definition of the
integral kernels will be given in section 2.6. The superscript {b} — {a} corresponds to
the color labels of the in— and outgoing gluons. The convolution symbol @ stands for an
integral [ :;l over the loop momentum and a propagators i}f for each of the two gluons
entering the kernel from above.
The integral equation for the three-gluon amplitude D3'***® has the form

3
(1= $80) p3m = ppgge 4 10259 .0+ Ky 0 D 2.1
1=1

!The notation is safe as long as we do not go beyond n = 9 gluons. This, however, is very unlikely for
the foreseeable future.
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The inhomogeneous term D3, is now the quark loop with three gluons attached to it.
In (2.12) we find for the first time a new kernel in the equation. I\'z{ﬂ;{“} is a transition
kernel from two to three reggeized gluons. The second term on the right hand side of the
equation therefore tells us that at some point in the t-channel evolution we can hawve a
transition from two to three gluons. The last term describes the evolution of a system
of three gluons, and the sum extends over all pairwise interactions of the three reggeized
gluons via the kernel K,ﬁz.?{“). Let us look at the term in which the first and second gluon
interact via a kernel. In this term the momentum and the color label of the third gluon
are not affected. The kernel should thus be understood to contain a factor d,,p,. The
symbol ® denotes again the integration over the loop momentum in the first two gluons
and propagator factors for each of them. The other terms are obtained in analogy.

The equations for higher n are built in a very similar way. They contain as the
respective inhomogeneous term the lowest order coupling of n gluons to the quark loop.
We denote this lowest order term as D(,,0). A detailed discussion of the quark loop and
explicit formulae for n < 6 will follow in section 2.4. In addition, the higher equations
contain also higher transition kernels Kz(g;: () from two to m gluons. A general formula
for arbitrary m as well as the explicit formulae for 7a < 6 are contained in section 2.6.

Since we will make use of the integral equations for up to n = 6 in this thesis, we now

state them explicitly. The general rule should then be obvious. For n = 4 we have

4
(w 8, Zﬁ(k‘)) ngzasaq dar D?;;:)z)aadq 4 K;ﬂ?{ﬂ) ® Dglbz oe ZKZ{:}»?(“} ® Dgxbzba
=1

+ I&,{b}—){u) ® Dblbzbah ; 213
22 4

for n = 5 the equation is

5
(- 23600) ppesmsenr = g 15 0 03
t=1

+ZI(2(£2:{11} ® Dglbzba e ZKZ{E;{(;} ® Dglbzba’u
+5° K5} @ phibababibs (2.14)

and finally for n = 6 the integral equation reads

6
(“ b Eﬁ(ks)> Diieassssss = Dagncisses 4 g LlHokg Dt

s=1
+Z K"ﬁl;’{“} ® Dglbibs 5 Z["éﬁr{“} ® Dzlbzbsbq
+ZK§2;(‘I) ® Dglb‘zbsbabs
+ZK'2{"’_Z;*{“) ® Dgxbzbshbsbs _ (2_15)
Here we again have to explain the meaning of the convolutions and the summation symbols.
In short, the sums contain all combinations of the respective amplitudes and kernels in

which the t-channel gluons do not cross. Before we give an example of the combinatorics
we write the integral equations in pictorial language. That makes the integral equations
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very catchy which is highly desirable since they are at the very center of the discussion in
the following chapters.

- ~ -
- ~

(w_‘z:}ﬁ(k"))\ \ + g (2.16)
(w—‘};ﬂ(ka)) ~’ x‘ +\’ +Z~’ 2.17)

o .m ’ (2.18)

+Z\’ +Z\/ (2.19)

(w—gﬁ(ke)) b, < T By +\’ +z\'
+Z\’ +Z\’
+Z\’ (220

In e;mh diagram only two gluon lines from the amplitudes enter a kernel. An integration
i ﬁ% over the loop momentum and a propagator l-ly for each of the two gluons entering
the kernel from above are implied again. The momenta and color labels of the other gluons
are not changed. With the help of the pictorial notation it is also very easy to understand
which combinations of amplitudes and kernels have to be convoluted such that ¢-channel
gluons do not cross. For example, the sum in the last but one term in the equation (2.18)
for the four-gluon amplitude extends over the four convolutions

Z‘Lﬁj';[ D]+ | Ba] +1 53] + | Bs] . O
! Fr |

‘We will now in turn discuss the elements occurring in the integral equations: the
inhomogeneous terms D,,0) representing the coupling of n gluons to a quark loop and the
integral kernels K5_,,. But before doing so, we first have to consider some color algebra.
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2.3 Color structure

In this section we collect some essential facts about color algebra. While doing so we also
introduce the so-called birdtrack notation® for structure constants. This diagrammatic
notation is extremely useful for the problem of contracting indices of arbitrary color ten-
sors. Such a powerful tool is highly welcome here since tensor contractions constitute an
essential part of the computations necessary in the study of the integral equations. The
diagrammatic method that serves this purpose is described in detail in appendix A.

We are interested in the structure of the gauge group G = SU(N,) with generators t*
(a=1,...,N2—1) in the Lie algebra su(N.). The algebra of generators is

[tn, tb] = 1 fapet® . (2.22)

For the case of su(3) the t* are given by the well-known Gell-Mann matrices A, t* = A%/2.
The antisymmetric structure constants f,pe can be expressed in terms of generators as

fabc = —fach = —21 [tr(tntbtc) i, tr(tctbta)] ’ (223)

diagrammatically

a a a a
g )\ e /& - /&5\ & }5\ S o
b e | b ¢ b ¢l e

The thicker oriented lines stand for quark color representations, the unorientated lines
correspond to gluon color lines. The f,4. are obviously invariant under cyclic permutations
of the indices. Normalization of generators is such that for the Killing form

i 1 y
tr(tett) = 30 or a——(‘}—-b =34 2 (2.25)

Using birdtrack notation the algebra (2.22) becomes

> > >
il FEdy T /L\ : (2.26)
a b a b i b
The anticommutator of two generators is
1
{tay tb} = —0gb + dapet®, (227)
Ne

and the symmetric structure constants dgp. are expressed in terms of generators as

ot = ooy = 2 [tr{°81°) + Le(t°01%)], (2.28)

a a a a
dabc = )\ = } =2 /ék + A . (2.29)
b c b ~c¢ b e b B

2 A more complete account of this notation can be found in [55] where it is also applied to other Lie
groups. Our normalization convention slightly deviates from [55].

in diagrams
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With this we have collected all basic elements of the birdtrack notation. For later use we
give the decomposition of a quark-antiquark state into a singlet and an adjoint represen-
tation (known as the Fierz identity),

1
8585 = 2t")3(t°)3 + 3954 (2.30)
c

where @, ..., 6 are color labels in the quark (fundamental) representation. In birdtracks

it becomes .
N =20 +7V-c}_(. (2.31)

We will slightly extend the birdtrack notation by the definition

{v}
[A]] 6% = L | +0® = fuum b€ (232)
{a}

for the contraction of the set of color labels {b} of an arbitrary color tensor ©*}. The
symbol  stands for the contraction of the set {b} in color space. The extension to more
than two elements in the set {b} is straightforward.

Generalizing (2.23) and (2.28) we define further tensors that are built from traces of
generators in the following way?®

diibistn o pfpyl | ) trte | ot (2.33)
1
foibabe 7 [tr(ere%2 .. .g0n) — tr(to .. .t22e0)). (2.34)

The definitions are valid for any n € IN. For n = 2,3, however, the tensors arising from
(2.33), (2.34) are proportional® to 8,4,, fobsbs, and db,b,b, Tespectively. For the cases
n = 2,3 we will stick to the conventional definitions of structure constants given earlier
in (2.23), (2.28). To avoid confusion, the notation with upper indices will be used only in
section 5.2 where the most general case will be needed.

The following three tensors are special cases of (2.33), (2.34). We will make extensive
use of them throughout this thesis. The tensor

dobed — @

tr(tetbectd) - te(etectbi®) (2:38)

£ 40 30)

3In appendix A we will for brevity refer to tensors built from traces over generators in this way as
’standard tensors’. To the best of our knowledge this term does not carry a fixed meaning in the literature
on Lie algebras.

*In detail we have according to (2.25), (2.28), and (2.23)

Il

= a (2.35)
o = %dm (2.36)
e = %fm. (2.37)

Obviously, one has to be very careful here in distinguishing between upper and lower indices.
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has been used already in [22] for the investigation of the four-gluon amplitude. We mow
add to this the two tensors

fohete = TR = Lureosteertse) - wr(eetdeeite)) (2.40)
1
L . %,
Pl - (241
and
dobedef — tr(t2bectdect!) + el eettbee) (2.42)

All three are invariant under cyclic permutations of the color labels (as are obviously all
tensors defined according to (2.33), (2.34)). It will turn out that these color tensors are
very well suited for the whole problem of solving the integral equations. When interpreting
the results in terms of reggeon color representations, the decomposition of these tensors
into the lower order tensors fape, dase and &, is also useful:

1 1

dobed  — 2_1V_cé°b6Ed + Z(dabkdkod — Jabk fred) (2.43)
1 1

= mr\r\—f-;(&f\—/‘?\), (2.44)

as is easily derived using (2.22) and (2.27). From this we get by cyclic permutation

da,bcd £

! 1
3N, Gaddbe + Z(dadkdkbc + fadk fse) - (2.45)

We further mention the property
dbacd o dabdc (2.46)

which turns out to be useful for calculational purposes. For f**** we have

1

fabclle o W(‘subfcdﬂ + fabc(sde)

+%(fabkdkcldlde + dabk frcidide + daskdret fide — favk fret fize) — (2.47)
1
A (An/N+NA)
+%(A‘?‘R+W+)\‘?’A—KT7\) (2.48)

and further identities can be obtained from (2.47) by making use of the invariance under
cyclic permutations. The tensor d***?¢f can be decomposed in a similar way,

1
4N2
+ 1

8N,

1
+1—f§ (dabkdrerdigmdmes — dabkdict fidm fines — dabk frctdiam fmes

dubcdc of ’5ub ch (Sej

(8abdeardres — Oab feak fres + davkrcdOes — fabk frcades)

—dabk frel fiamdmes — fabkAreiigm Fnes — fabkkel fidmdmes
_fabkfkcldldmdmc/ + fabkfkclfldmfmef) . (249)
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In birdtracks it becomes

ke o
4N2

c

t5i (AAR =AAA + KR~ - AAA)

+35 (RTTR -RTTA -KTTA-ATTA
“ATIA - ATTR -ATTR +ATTA) . 250)

and again other possible decompositions of d**¢¢f are obtained from this by cyclic per-
mutations.

To conclude this section on color algebra, we add a remark on invariant tensors. The n
gluons of the amplitudes D,, form an overall color-singlet. They can therefore be expanded
in color space into a linear combination of invariant su(/NV;) tensors. Invariant tensors in a
sim ple Lie algebra can generally be constructed from traces of group generators. Consider
a tensor

dubcde f

©%1-8n — tl‘(tal 3 .la") I (251)

This trace is obviously invariant under the action of a Lie group element U € G on the
generators
2 Ut U= I = Us (2.52)

where Uy is (by definition) the group element U in the adjoint representation. The invari-
ance of the tensor © therefore leads to

e O (2.53)

Let us choose the group element U to correspond to a generator ¢¢ via the exponential
map. On the Lie algebra the adjoint representation then acts as the commutator [¢¢,].
Therefore the infinitesimal version of (2.53) leads to the condition

n
cha.‘btr(tal ...tb...tn“) =i (254)
$221

t® being inserted at the ith position in the trace. Equation (2.54) is often used as the
defining property of an invariant tensor. Our tensors 6ap, fabe, dase, d**? etc. are obtained
as sum or difference of traces of the form (2.51) and thus invariant tensors fulfilling the
condition (2.54). The same holds for products of invariant tensors like §up foge. For the
structure constants fq44, the invariance condition (2.54) results in the well-known Jacobi
identity

Javk fred + fack foka + fadk froc = 0. (2.55)

2.4 The quark loop

Let us now consider the inhomogeneous terms in the integral equations (2.11)—(2.15). The
terms Di’;;‘(')‘;’" describe the lowest order coupling of n gluons to the quark loop. DE‘;':}) is
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the sum of four cut diagrams

Di50) (k1 ko) = @ @ , Q

(2.56)
The two gluons are attached to the quark loop in all possible ways to preserve gauge—
invariance. The s-channel cut (indicated in each diagram by the dotted vertical line)
implies that the cut quark lines are set on-shell. D"‘"’) depends on the transverse momenta
of the two gluons and on their color indices. The latter dependence is of course trivial and
we can define the momentum part Dyy,0)(ki, k) of this amplitude by

D3 ) (xy ka) = baya, Dizi0) (ki Ka) - (2.57)

An analytic expression for D(s,0)(k1, k2) was first found in [56]. Here we give only a special
case, namely the formula for transversely polarized photons and for the forward direction

k; = ky. It has the form

—2a(l —a)][1-2y(l -1
Daa(®) = Eef / /d 11-y)1)2][-1+a(1£a)m v

where we have replaced the momentum k; by the momentum ! measured in units of V@2,
@Q? being the squared invariant mass of the photon. The sum extends over the light flavors
of quarks which we have assumed to be massless. For longitudinally polarized photons
a similar formula can be obtained. The explicit formula for D(5,0) will not be used in
the following. We will only need the fact that in general D(y) is symmetric under the
exchange of its transverse momentum arguments

Da0)(k1, k2) = Dz0)(ke, k1) (2.59)

and vanishes whenever one of its two arguments vanishes,

Do)k k)|, o = Diayllen ko), _ = 0. (2.60)

In addition, it will be important for the consistency of the integral equations that
D2,0)(k1, k2) < const. log K? (2.61)

in the ultraviolet region, i. e. the growth with the momenta is not stronger than logarithmic.

For the amplitudes D(,) with n > 2 we again have to attach the n gluons to the
quark loop in all possible ways to preserve gauge invariance. But the fact that we are
dealing with multiply-cut amplitudes reduces the number of diagrams to consider. The
cuts forbid the crossing of t-channel gluons as indicated in figure 2.1. The ordering of the
gluons along the loop is thus fixed up to the possibility of coupling the gluons to the quark
or the antiquark. Therefore we have 2" cut diagrams for the inhomogeneous term D).

It turns out that all the amplitudes Df‘ )"“ can be expressed in terms of D(y), the
momentum part of D‘(’z‘;’) as defined in (2.57). To see how this reduction mechanism
works let us have a look at two neighbouring gluons along the quark loop. (They are not
necessarily neighbouring as arguments of the amplitude, c.f. gluons 1 and 3 in figure 2.1.)
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Figure 2.1: Cut amplitude contributing to the coupling of n = 4 gluons to a quark loop

In the high energy limit the quark—gluon vertices have to be contracted with a longitudinal
momentum p. The Dirac trace over the quark loop then contains

k

3 ‘g ~te(. g A ) (Y. (2.62)

X k;

The 6(k?) comes in since the quark has to be set on-shell. Using a Sudakov decomposition
k= aq +Pp+k with ¢ = g+2p, ¢?=p* =0, 2p-q=s, and k} = —k? one finds for

this expression

te(... #...) 8(8 - K*/(as)) =~ ; : (2.63)

ki + kj

This means that due to energy-momentum conservation only the sum k; + k; of the two
momenta enters. We can apply this to all gluons along the quark loop and thereby reduce
the momentum part of each diagram to one corresponding to a diagram in which only two
gluons are coupled to the quark loop. The color structure is not affected by this reduction.
A remark is in order concerning the contribution in which all gluons are coupled to the
quark line or the antiquark line. This term acts as a regularization term. As we will see
below it can be added and subtracted in such a way that the full Da:;‘ai’" can be expressed
in terms of Dyz,0).

Let us now see how the color structure of the quark loop amplitudes builds up. Ob-
viously, each diagram contributing to D(,,) contains a trace over n su(N;) generators.
The 2" diagrams come in pairs in the following sense. Consider a diagram with k gluons
coupled to the quark and n — k gluons coupled to the antiquark. Then there is also a
diagram with the k gluons coupled to the antiquark instead of the quark and the other
n — k gluons now coupled to the quark. The momentum structure of the two diagrams is
the same up to a factor (—1)™. (This is because the coupling of a gluon to a quark differs
from that to an antiquark by a sign.) The color part of the second diagram is again a trace
over generators t*, but in the trace they now appear in reversed order compared to the
first diagram. Adding the two diagrams one thus finds a color tensor of the kind d®1-dn
for an even number n of gluons and of a tensor of the kind f®% for an odd number
n of gluons (cf. (2.33), (2.34) for the definition of the d- and f-tensors). There are 2"~!
pairs of such diagrams. Having in mind that due to the photons at the two ends of the
loop the color tensor is not altered if the first or nth gluon is coupled to the quark instead
of the antiquark and vice versa, we conclude that the number of different color tensors
contributing to the coupling of n gluons to the quark loop is in general 2"~ if n > 3.
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The color structures for two and three gluons attached to the quark loop are more or less
trivial: in both cases there is only one color tensor (0a,a, and fa,ayaq, respectively).

We have seen that the diagrams contributing to the quark loop come in 2"~ pairs.
Among them there is one pair that is special. This is just the pair consisting of the two
regularization terms mentioned earlier in which all gluons couple to the quark line or the
antiquark line. A closer look shows that this last pair can be added and subtracted with
different color structures in such a way that the remaining 2"~! —1 pairs are regularized to

a)...an

give a D(5,0) each. Therefore the quark loop D(",’o) can be expressed as a sum of 2"~1 —1
amplitudes Dy, -

In this thesis, we will need the expressions for the quark loop with up to six gluons
attached. As explained, all of them can be written as the sums of Dyy,0) amplitudes. For
three gluons coupled to the quark loop we find

ajaza; 1
Di50)" (k1 kg, kg) = Eyfnma; [D(2,0)(12,3) = D(2,0)(13,2) 4 D(3,0)(1,23)],  (2.64)

where we use the notation introduced in (2.10). In the case of four gluons the amplitude
contains two different color structures,

D&l;((z)z)a“‘ (le1, kez, ke, k) =
= —gidma293as [D(2;0)(123,4) 4 D(2,0)(1, 234) — Dy2,0)(14, 23)]
—g2d®2119304 [D(2,0)(134, 2) + D(3,0)(124, 3) — D(2,0)(12, 34)
—D2,0)(13,24)] . (2.65)

When five gluons are coupled to the quark loop there appear four different color structures
in the corresponding amplitude,

Diggy™*** (ke ka, kg, kg, kes) =
= —ga{f""”""’"zs [D(z;o)(1234, 5)+ Dy9,0)(1,2345) — Dy2,0)(15, 234)]
ufisaolisaens [D(g;o)(1345, 2) - D(g@(l?, 345) + D(Z;O)(1251 34) — D(3,0)(134, 25)]
- forcanmasey [D(g;o)(1235, 4) — D(a,0y(14, 235) + D(z;o)(l45, 23) — D(2;0)(123,45)]
o SR NR 4G [D(g;o)(1245, 3) - D(g;g)(l.g, 245) + D(z;n)(l35, 24)
—D(g;o)(l24, 35)]}. (2.66)

For six gluons attached to the quark loop we find the following expression. Now eight
different color structures contribute,

D{ga%34%% (key, ks, kg, ka, ks, ke) =
= g*{d"e2%9%4%5%8 [D.0)(12345, 6) -+ Dyg,0)(1, 23456) — Diz,0(16, 2345)]
+d*201938405% [ ) (13456, 2) — Dy3,0)(1345, 26) + D,0)(126, 345)
—D(2,0)(12, 3456)]
+ dore20944%08s [ 1), (12346, 5) — D,0)(1234, 56) + D(5,0)(156, 234)
~D3,0)(15,2346)]
+d°2910994%35 [ )y 0 (1256, 34) — D(3,0)(1346, 25) + D(3,0)(125, 346)
+D2,0) (134, 256)] ++
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o drethatiaste [D(g;o)(l2456, 3)— D(g;o)(1245, 36) + D(g;o)(l36, 245)
—D(z;o)(ls, 2456)]

R [D(g;o)(12356, 4) - D(z;o)(1235; 46) + D(2;01(146, 235)
~Dia0)(14,2356)]

dodfaLantecass [—D(g;o)(1246, 35) - D(Q;())(1356, 24) + D(«z;o)(l24, 356)
+D(2;0)(135v 246)]

S ke f [—D(z;o)(1236, 45) — D(z;o)(l456, 23) + D(z;o)(123, 456)
+D(2;0)(145, 236)]} . (2.67)

2.5 Reggeon momentum diagrams

We now introduce a further diagrammatic notation for the momentum space integrals
occurring in our analysis of the integral equations. It will be applied in the next section
where we will present the integral kernels Kéﬂ,,—: 1@} With the help of so-called reggeon
momentum diagrams we hope to make our results more transparent and easier to read. A
reggeon momentum integral looks like the following example:

e ks —1

vertex A

propagator propagator (2.68)
(1-Xk)? (1= — ko — k3)™?
k] kz k3 kq

Wee now state the rules for translating these diagrams back to explicit integrals. At the
same time we apply the rules step by step to the above example.

(i) Assign momentum variables to all lines according to momentum conservation (see
diagram).

(ii) Write down an integral [ z%s over the loop momentum. (There is always a loop
since some amplitude, for instance D,, has to be attached to the upper two lines
and thus be written under the integral.)

(i) Find in the diagram the vertex which has two lines attached from above (vertex A
in (2.68)).

(iv) Write down the square of the sum of the momenta attached to this vertex from
below. (In our example (k; + k3)2.)

{(v) Write down propagators for the two lines attached to this vertex from above. (In
our example (1—k;)72(1 - k; — ko — k3)~2.)

For the digram (2.68) this results in

L (kz + ks)?
b =/ e om (2.69)

2.6. Integral kernels 29

These rules can easily be inverted in order to construct the reggeon momentum diagram
from a given momentum space integral. The reggeon momentum diagrams have to be
understood as integral operators. The integration has to be carried out with a function of
the two upper momenta. We emphasize that our notation implies only two propagators
for a given reggeon momentum diagram.

A few more examples of the diagrammatic notation for momentum space integrals are
contained in section 2.7.

2.6 Integral kernels

The integral kernels Kz(g;: {2} were calculated in [18] by means of s-channel dispersion
relations. As explained in section 2.2 the kernels are convoluted with different amplitudes
in the integral equations. Only two of the gluons in the respective amplitude actually
interact with each other. The kernel acts trivially on the momenta and color labels of the
other gluons. We will therefore discuss only the non—trivial action of the kernel here.

The kernel for the transition from two gluons with transverse momenta qy, qz and color
labels {6} = {by, b2} to m gluons with transverse momenta ki, ..., k; and color labels
{a} = {a1,...,am} is given by the general formula

qi, b qz, b2

I(;Q;"(u}(qh q2; klr ey km) =

ki,a” "7 Tk, am

2 2
m q ki+...+kn- )
fb;alclfclach .- 'fc,-,._lambg g l:(kl Fenel km)2 E=s 2( ‘(km - qz)2 .
—qf(kg-f-...ﬁ-km)z qfq%(kz - ...+km_1)2

(kl == qx)’ (kx = Q1)2(km = (h)2

] (210

For the kernels that are needed for up to six gluons in the ¢-channel this means in our
diagrammatic notation for color tensors and momentum integral kernels

H o*adad [>< -HU-N J (2.71)
o satad [X - M - I\l +h } (2.72)
bt otalad [X * H —H +hd ] (2.73)
brrrdoratad [ - K- +hd ] - @
bt otadad [X = /l(l - H\ +hd ](2'75)

Here the inverse propagators q7q3 are required in order to cancel the propagators im-
plied by our graphical notation. This is necessary because the kernels I\"z{ﬁ,—:{") in the
integral equations are defined without propagators; there the propagators come in via the

convolution denoted by the symbol ®.

K85 N qu, s (ki)

I

K8 qy, a2 {ki))

Kﬁl:{a)(m, qz2; {ki})

K1 gy, g2 (ki)

KM N qy, a5 (k)
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We emphasize that the kernel K371} is not identical to the full BFKL kernel (1.9) as
it does not contain the trajectory functions 4. In equation (2.11) they have been moved to
the left-hand side to make the generalization of this equation to n > 2 more transparent.
Also the kernels I(éiz: ) for n > 2 do not contain any trajectories and are not infrared
finite. It is only in the full integral equations that the divergences cancel.

2.7 Standard integrals

When convoluting the amplitudes D, with the kernels K5_,,, according to the integral
equations, we have to deal with a large number of momentum space integrals. It turns
out that all these integrals can be classified by a small number of standard integrals.
These five standard types of integrals are even sufficient for addressing the case of n-gluon
amplitudes for any value of n. (Strictly speaking this applies to the so—called reggeizing
pieces of the amplitudes as will be explained in the next section.) We will therefore give a
complete list of the five different standard integrals (or diagrams) which at the same time
serve as a few more examples of our notation.

All five standard integrals occur already when dealing with three outgoing gluons. We
therefore give the list for n = 3 here, the generalization to larger n being obvious. First
we have

3

d’1 k3
a(2,1) I\,/I / @m)3 (1-k)1 "z(kl TP = D2 (1, E k; - ) (2.76)

The first argument of the function a is the index of the momentum attached to the vertex
A from below. (As in section 2.5 vertex A is the vertex in the diagram with two lines
attached from above.) The momentum structure of the diagram is then fixed by giving one
of the other two outgoing momenta since the diagram has to be folded with a symmetric
function of the upper two momenta, namely with the BFKL amplitude D;. We choose
the outgoing momentum with the lowest index as the second argument of the function
a thereby completely fixing the corresponding momentum integral since the momentum
carried by the third outgoing gluon line can easily be inferred from the total number of
gluons. Therefore our notation for a has to be supplied with the total number of ¢-channel
gluons it describes. (In the case of more than three gluons we here choose the group
of momenta containing the lowest index as the second argument of a.) Applying this
notation, our earlier example given in (2.68) would be assigned the expression a(23,1)
when applied to D,. In section 2.5 the reggeon momentum diagrams stood for integral
operators. In this and in the following sections we use the same diagrams also for the
convolution with BFKL amplitudes. The meaning should be clear from the context. The
function a and the functions b, ¢, s, ¢ to be defined below always mean the integrals with
D, included. The second type of diagram is

d’l K, + ky)? 3
Sy = M ./27«‘3121— (k + k)2 3 D2 l’zkj_l (2.77)

=1

The third one is the contact term
3

2= = [ ;1:;3120(1 + kg ka)2 - (1, S - 1) ity

2] lk j=1
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which is local in impact parameter space. The integrals a, b, and ¢ correspond to real
corrections, that is to s-channel gluon production.

Further we have two integral types corresponding to virtual corrections. These are
factorizing and are connected with what we already know as the trajectory function f§ of
the reggeized gluon:

=3 | = [ Gepr e ke
- Nfgzﬁ(k,+k2)D2(k1+k2,k3) (2.79)
and
00 = NI~ gt
= N Nt (kl)Dz(kx+kz.k3) (2.80)

This means that the bubble diagrams correspond to gluon trajectory functions f for the
line they are drawn on.

It suggests itself here to write the BFKL kernel using the standard integrals introduced
above. When the kernel is applied to the BFKL amplitude D, we find

I

N.g? [0(12) ~b(1) = b(2) + 51(1) + %t(‘z)] (2.81)

NJ[X—H—I\M%{) |+%| ¢] (2.82)

The notation introduced here makes implicit use of the fact that the BFKL amplitude
D, is symmetric in its two momentum arguments. Without this assumption it would, for
example, be necessary to give explicitly a third argument to fully specify the integral a
in (2.76). We have chosen to restrict the short-hand notation to the case of a symmetric
function since in the remaining chapters we will only apply it to the case of Dj.

As an example of how the convolutions of n-gluon amplitudes with kernels can be
reduced to the standard integrals may serve

D(li +12,13) ® K23(12, Ias k2, ks, k) = 9°[0(234) — a(23,1) - b(34) + a(3,12)] . (2.83)

This can be easily checked using the explicit definition (2.72) or (2.70) of the kernel. When
studying the n-gluon amplitudes DE we encounter a problem connected with these convo-
lutions in momentum space. For each convolution it is rather easy to find a representation
in terms of the standard integrals, as the above example shows. The actual problem is the
rapidly increasing number of convolutions we have to deal with when coming to larger n.
We will explain this problem in more detail in the following chapters. For n = 5 gluons
the problem is at the edge of being tractable by hand. For n = 6 gluons the problem has
to be attacked with the help of some computer power. It is exactly for this reason that we
introduce the classification of momentum space integrals in this section. In appendix B
we give an algorithm suited for implementation on a computer, for instance in the PERL
script language. The example above is intended to illustrate that the notation imdeed
allows to handle the rather complicated integrals in compact form.

Kprxy ® D,
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Closing this section, we remark that even the five standard types of integrals mentioned
above are not completely independent if we take our definitions (2.76)-(2.80) literally.
Relations between them occur in the case that one of the outgoing legs of the diagrams
has zero momentum. One finds, for example, that the function b emerges from a when
the arguments of a exhaust the outgoing gluons, that is for three gluons we would get

a(1,23) = b(1). (2.84)
Simnilarly, for three outgoing gluons
b(123) = c(123) . (2.85)

In addition, we find the function ¢ from s when the second argument of s vanishes, for

example
s(1,-)=1t(1). (2.86)

In spite of these relations we prefer to treat the five integral types as fundamentally
different because they correspond to very different locality properties in impact parameter
space. The function ¢, for instance, corresponds to a contact interaction whereas the
function a contains a non-locality.

This concludes our discussion of the elements of the integral equations and we can now
proceed to solving them (at least partially).

Chapter 3

Three and Four Gluons, the
Transition Vertex Vo_y4

In this chapter we collect the known results on the three- and four-gluon amplitudes that
will be extensively used in the following chapters. At the same time the review of the
four-gluon amplitude offers the opportunity to present in this comparatively simple case
the method we use for attacking the integral equations. We start with the three-gluon
amplitude. The corresponding equation can be solved exactly. We then come to the four—
gluon amplitude and explain how the integral equation can be used to gain insight into
its structure. The analysis of the four-gluon amplitude leads us in a natural way to the
two-to-four gluon vertex V,_y4 that plays a prominent role in the analysis of the integral
equations also for higher n-gluon amplitudes. Its properties are described in some detail.
The field theory structure of the unitarity corrections with up to four t-channel gluons
is discussed. We emphasize that its emergence is closely related to the phenomenon of
reggeization. In section 3.4 we explain the conformal invariance of the transition vertex.

Besides the known results the present chapter also contains one new result. In section
3.5 we show that the two-to—four transition vertex Vz,4 can be written as a sum of
convolutions of free propagators and BFKL kernels. The corresponding representation is
given explicitly and the potential significance of the result is briefly mentioned.

3.1 The three-gluon amplitude

The amplitudes with three and four gluons, D3 and Dy were first investigated in [21, 22].
It was found that the integral equation (2.12) for the three gluon amplitude can be solved,
the solution being

il
D5 (k, kay ka) = 59 farasa [D2(12,3) = D2(13,2) + Do(1,23)], (3-1)

which can be shown by direct computation. In addition to performing the color algebra
contractions and the convolutions in momentum space one has to make use of the integral
equation (2.11) for the two-gluon amplitude D,.

The result (3.1) means that an actual three-gluon state does not appear. In the
contrary, the amplitude turns out to be a superposition of two-gluon states. We call this
phenomenon the reggeization of the amplitude. It generalizes the notion of reggeization

33
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previously attributed to the fact that the BFKL equation in the color octet channel can
be solved by a pole-ansatz and thus describes a one-reggeon state. In the case of the
three-gluon amplitude reggeization again occurs in a channel corresponding to the adjoint
representation, i.e. in the octet channel for the case of N, = 3. We should emphasize
that the reggeization of Dj is a property of the momentum space part of the amplitude.
The analytic properties correspond to those of a superposition of two—gluon compound
states. Nevertheless, D3 remains a three-gluon amplitude carrying three color labels, i.e.
the color part of the amplitude is not affected.

It is worth noting that the solution (3.1) is obtained from the lowest order term (2.64)
by replacing the quark loop amplitudes D(s,9) by the full BFKL amplitudes D, while
keeping the color and momentum structure.

We did not give a proof of (3.1) here. In chapter 4 we will discover that the reggeization
of the three—gluon amplitude Ds is actually a special case of a more general identity. The
general case will be discussed in detail when the five-gluon amplitude is studied in that
chapter.

3.2 The four-gluon amplitude and the two-to-four transition
vertex Vo_,4

The method that we use to gain insight into the structure of the n-gluon amplitudes is,
in principle, very simple. One starts with a guess on what the solution or at least a part
of the solution might be. The full solution is then assumed to be a sum of the part we
have guessed and a remaining term. That ansatz is inserted into the integral equation and
a new integral equation for the unknown part is derived. So far this is always possible,
independent of how good or bad our guess was. But now the new integral equation will
tell. If the guess was not very good, the new integral equation will be very complicated
and it will not be possible to extract any further information. If the guess was good the
new integral equation is simple! and allows to gain further information on the unknown
part. Of course, this procedure is not uniquely determined. As we will see, the quark loop
is an excellent source of inspiration for the choice of an ansatz. Only in a later step in the
investigation of the six-gluon amplitude in chapter 6 we will for the first time have some
difficulties in finding a good guess. Let us now see how the method works in practice.
In [21, 22] the four-gluon amplitude was split into two parts,

Dy= D}t + Df, (3:2)

a reggeizing part Df and a part D] that for reasons to be explained below is called the
irreducible part of the four—gluon amplitude. The reggeizing part is — in analogy to the
three-gluon case — chosen as the superposition of two-gluon amplitudes,

D125 (I, kg, kg, ka) =
= —g%d®1%2%% [D,(1283,4) + Dy(1,234) — Dy(14, 23)]
—g2d®241%%4 [D,(134, 2) + D3(124,3) — D(12, 34) — Do(13,24)].  (3.3)

"The word "simple’ is obviously a critical point. Its exact meaning will hopefully become clear in the
course of the present section.
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Again, this is obtained from the lowest order term (2.65) by the replacement D(5,) — Ds.
The ansatz for the reggeizing part and thus the decomposition (3.2) is to some extend
arbitrary. Recently, a different ansatz for the reggeizing part was investigated in [57, 58].
That ansatz, as also discussed in [22], is more convenient for the analysis of high mass
diffractive processes. We will not further discuss other possible choices for the splitting
(3.2) of the amplitude here. All choices will, of course, lead to equivalent results for the
complete amplitude. The choice given above is singled out because it leads to a very
simple picture for the remaining part D, especially when interpreted in view of a field
theory structure of unitarity corrections. Moreover, the choice (3.3) is special in that it
satisfies the Ward identities to be discussed in section 5.1.

The natural next step is to derive a new integral equation for the unknown irreducible
part DJ. To this end we insert the ansatz (3.2),(3.3) for the full amplitude into the original
integral equation (2.13). The known result (3.1) for the three gluon amplitude is inserted
as well. Due to the choice of D,‘R we can then apply the equation (2.11) for the two-gluon
amplitude to the expression w DX on the left hand side. That exactly eliminates the lowest
order term D(4,0) on the right hand side and produces additional terms containing only the
convolution of Dy amplitudes with the kernel K.ﬁz;{“} or products of Dy with trajectory
functions (. Besides the terms containing D] all other contributions to the right hand
side consist of convolutions of two-gluon amplitudes D, with the integral kernels. Our
new equation thus takes the form

4
(w P ﬂ(k«’)) Dfmoa% (ke ko, ka, k) = V% Dy + 3 K1) @ Dihtatshe,
o
(3.4)

The sum on the right-hand side of this new equation extends over all pairwise interactions
of the four gluons. In the inhomogeneous term V;_,4 D, we collect all the terms containing
D, hence the notation. V,_,4 should be understood as an integral operator acting on the
two-gluon amplitude. As we will explain in more detail below, it describes the transition
from the two-gluon state to a fully interacting four-gluon system in the t-channel. The
explicit expression for the two-to—four transition vertex was computed in [21, 22]. To
arrive at this explicit result the following steps have to be done. First we have to contract
the color tensors of the amplitudes with those of the kernels. This is done along the
lines described in appendix A. The second step is to bring the momentum space integrals
to their standard form, that is to classify them according to the scheme explained in
section 2.7. Both steps result in lengthy calculations because of the large number of
contractions involved. The results of the su(/N;) tensor contractions are then multiplied
with the corresponding momentum space integrals. Finally, all terms can be collected
to give the vertex Vo_,4. Due to cancellations the resulting expression is comparatively
compact. Remarkably, all terms belonging to the color tensors d“12%3%4 and d*2%1%3% drop
out. One finds the following color and momentum structure for the vertex:

Va#®* ({q} ki ko, ka, ka) = bay050030,V ({95}, K, Ko; K3, Ka)
it 601“35¢254V({qj} 1K1, kai ks, k4)
+5°l“46“203V({qj}vklvk4;k2:k3) . (35)

The function V is the same in all three terms on the right hand side. The q; are the
two momenta entering from above. Since throughout this thesis Va4 is almost always
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contracted with a BFKL amplitude D, from above, we will omit these arguments in the
following and consider the quantity Vo_,4D;. The vertex function V (ky, ko; ks, k4) has the
explicit form

4
(VDa) (k1 ka; ka, ky) = % x {2[c(1234)
— b(123) — b(124) — b(134) — b(234) + b(12) + b(34)
+a(13,2)+ a(14,2) + a(23,1) + a(24,1)
—a(1,2) - a(2,1) - a(3,12) — a(4,12)]
H[£(123) + £(124) + £(134) + £(234) — £(12) — ¢(34)
—5(13,2) — 5(13,4) — s(14,2) — 5(14,3)
—5(23,1) — 5(23,4) — 5(24, 1) — 5(24,3)
+5(1,2) + 5(1,34) + 5(2, 1) + 5(2, 34)
+5(3,12) + 5(3,4) + s(4,12) + 5(4,3)]} (3.6)

where we have made use of the notation introduced in section 2.7.

Let us now describe the known properties of the vertex function V and of the full
transition vertex V4. The first observation is that V (ky, ks; ks, k4) is symmetric in its
first two and in its Jast two arguments

V(ki, kojka, ka) = Vi(ko,ki;ks, kq)
V(klx k?; k41 kﬂ) ) (3.7)

and symmetric under the exchange of the first pair of arguments and the second pair of
arguments (that is why our notation separates these pairs by a semicolon)

V (ky, ks ka, ka) =V (ks, ka; ki, ka) . ' (3.8)

T herefore, according to (3.5) the full vertex V,_,4 is completely symmetric under the
simultaneous exchange of color and momentum of the gluons.

The combination of integrals in V' Dy vanishes when one of the outgoing momenta
vanishes,

(VD2) (ky, ko; k3, k4)|ki=0 =0 (i € {1, iRy 4}) . (39)

T his result can be proven easily using identities of the kind mentioned at the end of section
2.7 and the fact that the BFKL amplitude D vanishes at zero-momentum argument. This
property of V D, is carried over to the full vertex,

(Vz_,qu)“la”s“ (kl, kz; k3, k4)lk;=0 =0 (1 € {1, e .,4}) . (310)

Further, the function V D, is infrared finite, that is the infrared divergences in the different
imtegrals contributing to (3.6) cancel in the sum. This can be easily seen after noticing
that already certain combination of very few standard integrals are infrared finite. For
imstance, the combination

b(1) %t(l) (3.11)

is infrared finite for any sum of momenta that is substituted for 1. The proof is obvious
by inspection of the corresponding integrals (see section 2.7). The factor 1/2 comes about
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because the integrand of the trajectory function f# (see (2.79) and (1.10)) exhibits two
divergences of the same form. Similarly, one can show that the combination

1 1
a(lz,ll) - 55(12,11)— *2‘5(12,13) (312)

is infrared finite separately for any partition of the momenta {k;} into three sums 1, I, Is.
Finally, the term c(l) is infrared finite separately since in this term (see (2.78)) the poles of
the propagators are cancelled by the zeros of the BFKL amplitude D, in the integral. The
finiteness of these three groups is completely independent of the total number of momenta
k; that are split into the groups denoted by 1;. It should be obvious from equation (3.6)
that the integrals in the vertex function come in exactly these infrared finite combinations.

Having discussed some nice properties of the transition vertex V2,4 we now come back
to the main problem of understanding the full four-gluon amplitude Dy. When the ansatz
(3.2) was made the goal was to arrive at a simple equation for the yet unknown part DJ.
A glance at the new integral equation (3.4) tells us that the ansatz inspired by the quark
loop was a very good guess. In fact, the equation contains only the vertex V,_,4 and a
homogeneous part. Therefore, the integral equation (3.4) for D] can now be iterated. The
structure arising from this is /

D} =Gy Vasa-Da, (3.13)
G4 being the Green function of the four-gluon state. The Green function obeys the BKP
equation with four ¢-channel gluons which is a four—particle Schrodinger equation. Its
Hamiltonian is given by the homogeneous part of the integral equation (3.4), i.e. by the
sum of all pairwise interactions 5,5 of the four gluons. Unfortunately, the eigenvalues
and eigenfunctions of the Hamiltonian are not known and (3.13) remains a formal solution
only. Though, some properties of the four-gluon state have been worked out in [24]. We
will return to the interpretation of the structure inherent in (3.13) momentarily in section
3.3.

Even without knowing an analytic formula for Dj we can deduce two important prop-
erties. Like the two-gluon amplitude, the irreducible part of the four-gluon amplitude
vanishes (modulo logarithms) when one of the outgoing gluon momenta is set to zero,

Dla1eaasas (k,,kg,kg,k,,)lk_o =0 (i€{l,...,4}). (3.14)
To prove this we proceed order by order in the iteration of the Hamiltonian } K5 5. The
identity holds in lowest order since the vertex itsell has this property (see (3.10)). In
the next order, (3.14) holds because Kj_,; also vanishes if one of the outgoing momenta
becomes zero, etc. Similarly, we can show that the irreducible part DI is completely
symmetric in the four gluons, that is under the simultaneous exchange of color and mo-
mentum,

Di By Lo kg, dog)l = D:uzamaw (K2, k1, k3, kq)
D‘{asazanu (ka. ks, k, k4)
D‘{a“lzasul(k:],kakav kl) i (3.15)

3.3 Field theory structure

Although we do not have an analytic expression for the irreducible part, we have gathered
by now quite some knowledge about the structure of the four—gluon amplitude D4. Ne-
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glecting for a moment color and normalization factors, this structure is illustrated in the
following diagram

Dy(ky, ko, kg, k) = ) (3.16)

The first part is the superposition of two-gluon states (the reggeizing part DF) coupled
to the quark loop. In the second (irreducible) part D} a two-gluon system couples to the
quark loop and then undergoes a transition to a four—gluon compound state via the vertex
V3-34. From this we learn that the complete amplitude consists of only a few basic building
blocks: a quark loop allowing the coupling of the t-channel gluons to external particles,
the two—gluon Green function (BFKL amplitude), the four-gluon Green function, and
the two—to—four transition vertex. The Green functions describe the quantum mechanical
propagation of bound states of t-channel gluons. With the transition vertex we have in
addition a number—changing element connecting different n-reggeon states. This turns
the quantum mechanical problem of n-gluon states into that of a quantum field theory of
reggeized gluons. All this happens in the 2-dimensional space of transverse momenta. The
complex angular momentum w plays the role of an energy variable. Its conjugate variable,
i. e. rapidity, plays the role of the time variable.

The structure of unitarity corrections becomes even more interesting when we change
from transverse momentum space to impact parameter space by means of a Fourier trans-
form. As was observed in [23] the transition vertex V5,4 in impact parameter space is
invariant under conformal transformations. (We will come back to the conformal invari-
ance in some more detail in the next section.) Recalling that also the BFKL amplitude
(and in a similar way the four-gluon Green function) is conformally invariant in two—
dimensional impact parameter space, we conclude that all the basic elements occurring in
the four—gluon amplitude exhibit conformal invariance. The occurrence of a field theory
structure and of conformal invariance gives rise to the hope that the complete set of uni-
tarity corrections can be cast into the form of an effective field theory. Its basic elements
should be n-gluon Green functions and number changing vertices. It should be a 2 + 1-
dimensional euclidian field theory. The two space-like dimension are the two dimensions
of impact parameter space, the time-like dimension is realized as rapidity. In addition,
we expect the effective field theory to be a conformal field theory. The latter property
would of course have far—reaching consequences and would allow to apply all the beautiful
and powerful methods from conformal field theory. We will briefly mention some of these
consequences in the next section.

So far only the simplest elements of a potential effective field theory have been found:
the two—gluon compound state, the two—to—four transition vertex V5_,4 and the four—gluon
compound state. An analytic formula for the latter is still missing. The concept of an
effective field theory has not been derived from first principles. It has to be tested and
further elements should be derived. To achieve this is seems natural to proceed to higher
n-gluon amplitudes. Exactly this constitutes the main goal of this thesis, namely to deepen
our understanding of the field theory structure of unitarity corrections by studying the
five- and six—gluon amplitudes. A very important ingredient for the emergence of a field
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theory structure is the phenomenon of reggeization. Without reggeization in the three—
gluon amplitude and in the part DJ of the four-gluon amplitude one would not have been
able to arrive at the simple structure (3.16). We will therefore pay special attention to
the mechanism of reggeization in the unitarity corrections.

3.4 Conformal invariance in impact parameter space

The most striking property of the transition vertex V3,4 is its conformal invariance in
impact parameter space which was proven in [23]. To explain it in a more detail let
us consider an amplitude A4 that is the convolution of the vertex V54 with a BFKL
amplitude ¢, from above and with a four—gluon state ¢4 from below. The latter is assumed
to be a solution of the four-particle BKP equation. The amplitude A4 has the form

2 4
Ay = /Hdqu‘Hdzki%(m,%) Vo ({a;} kay ko, ka, ka) X
j=1 i=1

2 4
X 31 2% (kq, ko, ka, ky) & (qu - Zk,’) g (8-17)
=1

i=1

We change from transverse momentum space to impact parameter space by means of a
Fourier transform,

2
$2(an,a2) = / 11 [dzpj' eiq”f'] $2(p1, p2r) (3.18)
=1
4
¢4 (kl; k21 k31 k4) — / H [d2pi C_ikipi] ¢4 (Pl y P2y P3y p.‘) (319)
=1

where the coordinates p are understood in complex notation as introduced in section
1.4. This procedure defines the Fourier transform of the transition vertex. Assuming the
conformal invariance of the functions ¢, and ¢4 one can prove the invariance of the whole
amplitude A4 and infer that the vertex in fact is conformally invariant. In this context
conformal invariance means the invariance under a simultaneous Mdbius transformation
of all coordinates p according to the map (1.24) in section 1.4. Motivated by the conformal
invariance, an operator representation for the transition vertex V,_,4 in impact parameter
space was worked out in [24, 59].

In [23] four subgroups of the integrals in the vertex function (3.6) were found that
are infrared finite separately. Their properties under conformal transformations in impact
parameter space were then considered separately to eventually prove the invariance of
the full vertex. These groups turned out to be suitable also for finding the operator
representation for the vertex [24, 59]. In [57] it was shown that the proof of conformal
invariance can be simplified by making use of a representation that can be found already
in [22] for the forward direction (3; k; = 0),

2
(VDy)(ky, ka; ks, ks) = 22-[0(1,23,4) +G(2,13,4) + G(1,24,3) + G(2, 14, 3)
—~G(12,3,4) — G(12,4,3) — G(1,2,34) — G(2,1,34)
+G(12,-,34)]. (3.20)
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This representation holds for the non—forward direction as well. The function G is

G(ky, ko, ks) = %2—[20(123) — 2b(12) — 2b(23) + 2a(2, 1)
+(12) +(23) — 5(2,1) — 5(2,3)] (3.21)

& 2;[2>< ~2J\/‘ —2I\i +2]
SIIR-AFIAT e

After Fourier transformation to configuration space, the function G was shown to be
conformally invariant by itself. The conformal invariance of V;_,4 can then be derived
easily. Therefore it might seem that the function G acquires a fundamental meaning as a
generalization of the BFKL kernel for the case of more than two reggeons. G is infrared
finite and it vanishes when the first or third argument vanishes, but it does not when
the second momentum becomes zero. A direct interpretation of the function G seems
difficult since a real two—to-three transition does not occur in the amplitudes. Only the
combination (3.20) of the functions G has all the nice properties discussed in section
3.2. We will meet the function G again in chapter 6 where a different combination of G
functions will occur. The function G is certainly valuable at least at as a calculational
tool.

The conformal invariance might turn out to be a general feature of the unitarity cor-
rections. The present situation seems in fact very promising concerning this issue. In case
an effective conformal field theory of unitarity corrections can be formulated the conse-
quences would be fantastic. Conformal field theories (CFTs) in two dimensions have been
a subject of very intensive and fruitful research in the past years, see for example [60, 61].
A result that is immediately relevant to the unitarity corrections is the fact that conformal
symmetry imposes very strong constraints on the correlation functions of the theory. An
example is the three-point function in a CFT. It is fixed up to a constant for a given set
of three conformal fields. In a general CFT there is a set of quasi-primary fields ®(z, Z)
that transforms under conformal transformations z — f(z) as

h/ar\ b
2,2 - (3) (f,i) 2(f(2),7(@)). (3.29)

Here the real-valued quantities h and k are the conformal weights of the state @, and &
does not indicate the complex conjugate of h. (For the relation of the conformal weight
to conformal spin and scaling dimension see section 1.4.) The three-point function G® =
(®4P,P3) has the form

1 1

Gz, %) = C1as : = (3.24)
z{lzl+h2—ha zg§+’la—h1 zi‘g-ﬂu—ha 2{."2\+52—53 z—ggi‘ﬁs—’llgfg*-ﬁl—ﬁz !

where 2; = z; — z;. Most interestingly, the transition vertex Va.,4 has exactly this form
when projected onto three BFKL eigenfunctions. In detail this projection is done by choos-
ing the functions ¢, and ¢, in 3.17 as given by conformal eigenfunctions E®*)(p;0, p20),

$2(pryp2) = EC(pye, parc) (3.25)
‘ﬁ:lmu“‘ (Plu P2y P3y P4) = 604 ﬂz‘sﬂaﬂq E(yn) i (le Pza)E(y") ‘(plh PZb) C (326)
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This result on the triple Pomeron vertex was found in [24]. The constant in the three-
point function (which is actually a function of the three conformal weights) was calculated
in [62, 63]. With this impressive result we conclude our short review of the conformal
invariance of the two—to—four transition vertex.

3.5 New representation for the vertex V,_,4

In this section we present a newly discovered property of the vertex V4. The new
result is of possible relevance to a more conceptional problem, namely the emergence of
conformal invariance in the vertex. The vertex V5,4 is a basic (in fact the first number
changing) element of the effective field theory. We have made the surprising finding that
it can nevertheless be built entirely from well-known BFKL kernels and free propagators
(1/k?). We do not present the full derivation of the new representation here. The basic
idea is to express the kernels K, ,,, with m < 4 in terms of two-to-two kernels K5_,,.
(This was done for the two—to-three kernel K>3 also in [64]%.) Then the color tensors
can be shown to arrange in such a way that that the kernel K,_,5 can be replaced in these
expressions by the full BFKL kernel including the trajectory functions #. The way the
BFKL kernels are convoluted with the propagators in the new representation does not
allow to read off the conformal invariance of the vertex immediately. Therfore our new
representation is probably not helpful for actual computations. But it is well conceivable
that it can contribute to the understanding of the conformal symmetry present in this
element of the effective field theory. It might also help to gain insight into the properties
of the vertex under crossing. Unfortunately, we are presently not able to reveal the deeper
meaning of our new result.

To display the formula, we first define K to be the product of a full BFKL kernel with
the two propagators entering from above,

-1 11
K(a1, q2; ki, ko) = Wa’q—%I(BFKL(Qh qz; ki, ko), (3.27)

where (cf. (1.9)) the kernel Kppkr, includes the trajectory functions 4. Using K the vertex
function V (see (3.6)) can then be written as

4

VD) k) = s | (II «ﬂ-) 5 (Z y ik,-)
=1 =1

i=1
X{ — [D2(ly + 12 + I3, 1a) + Da(ly + 1o + L, 13) + Do (b + 13 4 14, 1)
+Do(1, 12+ I3 + L) — Da(l + 12,13+ 14) — Da(ly + 13,12 + L)
=Dy (1 + 1y, 1 + 13)]
X [K (4, 12; ki, k2)8 (13 — ka)d(ls — ka) + K (13, 1; k3, ka)5(1y — ki) (12 — k2)]
+[Da(l + 12+ I3, 1) + Do (b, I + 13+ 1g) = Da(ly + 1y, Iz + 13)]
X [K (11, 13; k1, ka) 0 (12 — k2)8(ls — ka) + K (12, Ly; ko, ka)8(1y — ky)d(ls — ks)] +

2In that reference also the two-to-four kernel K24 was expressed in terms of the kernel K3.2. The
identity given there is not suited for deriving a new representation of the full vertex V2.4 in terms of full
BFKL kernels as we give it here. We have found a different way to express 2.,4 in terms of K22 which
can be seen in the last two lines of equation (3.28) below.
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+[Da(ly + 1+ 14, 13) + Da(l; 4+ 13+ 14,15) — Do(ly + 1o, 13+ Ly)
=Dy (I +13,12 + 14)]
X [IC(ll, 14;](1, kq)ls(lg o k2)5(13 = k3) + K(l2, 13;k2,k3)5(11 — k1)5(14 = k4)]}

: 27r)3/(Hd2 )J(j—ilj_gkj)

X [D2(1y + la,13) = Da(Ly +13,13) + Da(ly, 1z + 13)]
x{ [ (1, s ot + ko, Ka) = Kl = ket o Ko, ks)] (15 — ko)
— [K (1,155 k1 + ko, ka) — K (11 — kq, I3; ko, ka)] 6(12 — k3)
— K, 135 ke, ks + ka) — K1y, 13 — ka; ki, k3)] 6(1z — ko)
+ [ (12, by oo, s + Ka) = K(, I — ka Ko, Ks)] 6(0 — Ka) }

¢ s () (-

=1
X [K(11, lo; ki + ka, k3 + ka) — K(L — ka, lp; ko, ks + ka)
=K (L, 12 — ka; ki + ka, ka) + K (I — ki, 1z — ky; ko, ks)] (3.28)

Since this formula is rather complicated we try to make it slightly more transparent by
using a diagrammatic notation. We define a diagram for K, the BFKL kernel including
the propagators for the gluons entering from above,

q1 92
K(a1, q2; ki, ko) = H . (3.29)
5k

Let us further introduce a pictorial notation for the momentum argumehts of the BFKL
amplitude D,. We write

Dok +ka,ka+ka) = D2 (L L), (3.30)

and the generalization of the notation to other combinations of the four momenta k; is
obvious. Now equation (3.28) can be rewritten as

(VDy) (k1,ks; ks, ky) =
4

S {=[a (A1) +0: (W) +: (L) + (1)
=02 (AA) =22 (L) =2 (L)) [(HI) + (IIH)]
+[2a (A1) 2 (10) = 22 (AL ) < [(FHI) + (1)
02 (ML) + 22 (L) -2 (AX) - 22 (AL))]
<|(KH) + (HDI}

{22 (A1) =22 (L) + 02 (1A)]
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<[CHH) = (0l - (i) + ()
(1) + () + (1K) - ()]}

05 ()= (1K) () ()] o

Here an integration with the weight 1/(27)2 over the loop momentum is implied as are
the é-functions according to the gluon lines that are not involved in the interactions.



Chapter 4

Five Gluons

In this chapter we do the next step in the investigation of unitarity corrections in high
energy QCD. We want to study the five-gluon amplitude, thereby going now beyond pre-
viously known results. We prove that the five-gluon amplitude Djs is the superposition of
two-gluon amplitudes D; and irreducible four-gluon amplitudes DJ. This result consti-
tutes a further generalization of the concept of reggeization and we will gain first insight
on how reggeization works in higher n-gluon compound states. To arrive at these results
we first identify a reggeizing part DE in the full five-gluon amplitude and derive a new
integral equation for the remaining part D{. This step is technically very similar to the
corresponding procedure for four gluons as we have outlined it in the preceding chapter.
Though, the computational effort necessary here is already considerable. In the case of
four gluons we were able to iterate the integral equation for the remaining part and could
read off the structure of the solution already at this stage. The situation in the five-
gluon amplitude is more complicated at this point. Fortunately, we will be able to write
the inhomogeneous term of the new integral equation in terms of the known two-to—four
vertex V4. Using the known results on the four-gluon amplitude we are even able to
solve the equation. Remarkably, the solution does not require an analytic expression for
the four-gluon compound state which we are still lacking. A very important piece in
the solution of the integral equation for the remaining part D! is the mechanism leading
to reggeization in a subsystem of three gluons. The reggeization in the three-gluon am-
plitude discussed in section 3.1 now turns out to be a special case of that more general
mechanism of reggeization. We will be lead in a natural way to the conjecture that each
am plitude with an odd number of t-channel gluons exhibits full reggeization. We conclude
the chapter with a discussion of the results in the context of an effective field theory.

4.1 A reggeizing part and the integral equation for the re-
maining part
In the first step, our analysis of the five-gluon amplitude Ds follows very much the same
lines as the study of the three- and four-gluon amplitudes. To get started we identify a
reggeizing part DE of the amplitude and split the amplitude accordingly,
Ds=Df+DL. (4.1)
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With a well-chosen D we will come to a new integral equation for the yet unknown
quantity DL, Again, this decomposition is not unique. Our ansatz will lead to an equation
for Df that can even be solved. This situation is the best we can hope for and further
justification for the ansatz is certainly not needed. The natural choice for DE is once more
suggested by the inhomogeneous term Ds,0). This means that our ansatz has exactly the
same color and momentum structure as D(s,g) in (2.66), but we replace D(y,9) by D
resulting in

Dfterea0ae4es (1, koo ks, kg, ks) =
= —g®{fereama04as [,(1234,5) + D;(1,2345) — Dy(15,234)]
4 fo21930485 [ 1), (1345, 2) — Dy(12, 345) + Do(125, 34) — D,(134, 25)]
4 f192098594 D), (1235, 4) — Dy(14,235) + D (145, 23) — D3(123,45)]
4 fo192%49583 [ D), (1245, 3) — Dy(13, 245) + D (135, 24)
—D(124,35)]} . (4.2)

This is inserted into the integral equation (2.14). We insert into that equation the expres-
sions (3.1), (3.2), (3.3) for D3 and D4 as well. In order to find the new integral equation
for DI we have to simplify and collect all terms not involving Df and DJ. These terms
will contribute to the inhomogeneous term of the new equation for D and we will now
discuss them. From the left-hand side of (2.14) we get wD{, which can be treated using
the BFKL equation (2.11). Due to this, the inhomogeneous term D5 in (2.14) is ex-
actly cancelled and we get further terms involving only convolutions of D; functions with
kernels K345 or trajectories f. From the right-hand side of (2.14) we get contributions
of the type Koy5s @ Dy, 3, Ko34 ® D3, 5 K233 ® Df, and )" K742 ® D? All of these
can be written as sums of convolutions of Dy with the kernels Ks_;,,. The corresponding
contractions of color tensors are performed using the diagrammatic method described in
appendix A. In that appendix we also give the explicit formulae for some of the con-
tractions required. The total number of contractions needed here is close to one hundred.
Most of them can be obtained from those given in the appendix with a moderate amount of
work. The momentum integrals are brought to their standard forms as classified in section
2.7. The respective momentum integrals and color contractions are then multiplied and
can be collected. This last step amounts to collecting several thousand terms and sorting
them according to the different color tensors. At least in this step the use of a computer
algebra program is needed to cope with the large number of terms. In the analysis of the
six—gluon amplitude in chapter 6 we will need computer power also in order to be able to
deal with the huge number of momentum space integrals.

In the derivation of the new integral equation the terms involving D) remain un-
changed. They will be treated at a later stage of the analysis. The same is true for the
homogeneous term containing DZ. The combinations of the D} and D! amplitudes with
the kernels are therefore the same as in the original equation (2.14). We thus find the
following equation for the unknown part DZ of the five-gluon amplitude:

5
(“’ i Zﬂ(ki)> Df = 3 fororosdasas H(1,2,3;4,5)+ 3 K151} @ Dyhitatah
=1

+ZI(§32—’(“} ® D;bxbzbshbs ! (4.3)
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The first term on the right hand side is the result of the computation described above.
We will now treat it in more detail.

The first interesting observation concerns its color structure. All terms proportional
to f®19203%495 (and the other three permutations of this occurring in (4.2)) are cancelled
between the different contributions to this inhomogeneous term and drop out. Something
similar happened in the case of Dy where there is no term proportional to d*12%3%¢ in the
vertex V5_,4 and only lower tensors (i.e. products of §-tensors) contribute.

Secondly, we observe the following symmetry of the new inhomogeneous term we have
calculated. The sum extends over all (ten) possibilities to have a pair of gluons in a color
singlet. For each of these permutations of the gluons color and momentum labels are
exchanged simultaneously, i. e. the sum in (4.3) stands for

Zfa”l;aasﬂqﬂgH(l]?’ 3;41 5) = f01620360405H(1121 3;47 5)+fdlﬂzﬂq‘suaﬂsH(112)4;3l 5)
+ .. 402105 fagagas H(8,4,5;1,2). (4.4)

The function H is the same in all ten permutations. This symmetry is an outcome of
our computation, and it has not been used to derive (4.3). On the other hand, it is
not an unexpected property of the inhomogeneous term. Already in the corresponding
equation (3.4) in the four-gluon case the inhomogeneous term, i.e. the vertex V3,4, had
this symmetry.

A closer inspection of the function H reveals that it is actually a superposition of
vertex functions V' which we encountered in the discussion of the two-to-four vertex
Va-34. Namely,

H(1,2,3;4,5) = %[(vo2)(1z,3;4, 5)— (VD3)(13,2%4,5) + (VD,)(1,23;4,5)].  (4.5)

To obtain this striking result is was necessary to go through the full calculation of all
convolutions of amplitudes with kernels as described. It is only afterwards that we are
able to discover the simple structure in terms of V. Unfortunately, we do not know a way
leading to (4.3), (4.5) that avoids this tedious calculation.

4.2 Solving the equation for the remaining part

Up to this point, our analysis of the five-gluon amplitude followed essentially the same
lines as in the case of four gluons. Whereas there the new integral equation could simply
be iterated, this is not possible here. To find the solution for DI we now have to go beyond
the procedure applied for n = 3 and 4 gluons.

Taking a close look at the integral equation (4.3) for D{ we discover that its structure
bears a strong resemblance to the equation (2.12) for the three-gluon amplitude Dj.
In the second term on the right hand side of (4.3) a pair of gluons of the amplitude
D] is convoluted with two-to-three kernels. In the corresponding term in (2.12) it was
the two-gluon (BFKL) amplitude D, that was convoluted with the same kernel. There
the first term on the right hand side, i.e. D(s,), was the superposition of quark loop
amplitudes Dy, that are the lowest order terms in the ladder expansion of D,. In (4.3)
the corresponding term (4.4) is, according to (4.5), the superposition of functions V D,.
(In fact it is even the superposition of full two—to—four reggeon vertices Vo_,4D2 as we
will see below.) These vertex functions, in turn, constitute the lowest order terms in
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the ladder expansion® of the irreducible amplitude DI, cf. (3.13). More specifically, it is
for each of the ten terms in (4.4) that we find in a three-gluon subsystem exactly the
momentum structure that also determines D(z). The similarity is also evident for the
color structure, namely the three-gluon subsystem comes with a tensor fgp.

Clearly, this suggests to construct a solution D{ in analogy to the three-gluon ampli-
tude. While Ds is a superposition of BFKL amplitudes D; we now should choose DI as a
similar superposition of irreducible four-gluon amplitudes DZ. The following combination
of D} amplitudes is of this kind and in fact is a solution to equation (4.3). We will outline
the proof of this fact momentarily.

Dgumzasams (kly k'h ks, qu ks) i

X { far02e D524 (12,3,4,5) + fayape D} ™2*4%(13,2,4,5)

S faaiiDleaests (04, 903 BYoify s oDl 35584 (15,2, 3, 4)
¥ FonascDI#108 (1 93, 4 B 2, DE1s8s0s 1, 04,8 5)
4 foaaneldy C1o%B0(] OF 9 AV LR L D) BieRes () 34 B)
e Fegtab PR R, 2ol ) e Sl (1 2, A0 (4.6)

In each of the terms one pair (i, 7) of gluons is merged? into one gluon which then enters the
irreducible four-gluon amplitude from below. This gluon in D} has momentum (k; + k;)
and color label ¢. The merging of the two gluons in color space happens via a f4q;c tensor
(i < 7). The position in the amplitude DJ at which the ’composite’ gluon with color ¢
and momentum (k; + k;) enters does not matter since D is completely symmetric in the
four gluons, cf. (3.15). All possible pairs of gluons are treated in the same way. The way
pairs of gluons are merged (or arise from splittings) becomes more transparent when (4.6)
is written using birdtrack notation,

D200 (g, Ky, kg, Ky ) = 3

2
X{ [,L”I] * Dyt1Patb (12,3, 4,5) + UI\H] * D{tbabsbe(13 2 4, 5)
+UH\”*D“’1”2"="*(14,2,3,5)+[ | ]*D{"'bzbab*(ls,?,a,q
+ [U\H] x DIbibabsbs (1 93 4.5) 4 [U\[] « DItibabsh (1 24 3 5)
+[U\] x DItibabsbs (1 95 3 4) 4 [HJ\I] * Dlbibabsta(1 9 34 5)
]

+[||)L] % D}bbabsbe(y, 9 35, 4) 4 [|||/L x Dibibabsbe(y 9.3 40)}. (4.7)

!This statement has to be taken with some care, since the terms V' D, are of course not of lowest order
in the coupling constant g. In the contrary, D, already contains an infinite series of ladder diagrams. What
is meant here is that each diagram in the ladder expansion of D] starts with a full two-gluon ladder and
a vertex attached to this.

?Depending on the context one would like to use different words for the formula (4.6). From the point
of view of constructing the solution it is clearly a merging’ of two gluons, with the concept of a t-channel
evolution in mind one would prefer to speak of a ’splitting’ of gluons.
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We will come to the interpretation of this structure later in this chapter in section 4.3.

Now we explain how (4.6) can be shown to solve the integral equation (4.3). The
only pieces of information about the irreducible four-gluon amplitude D] we need for the
purpose of this proof are its complete symmetry in the four outgoing gluons, cf. (3.15),
and the integral equation (3.4) it fulfills. Fortunately, an analytic solution of the latter is
not required.

We start from the integral equation (4.3) derived previously and insert the conjectured
solution (4.6). On the left hand side then we find ten terms of the kind wD]. To these
we apply (3.4). Thereby we produce different terms and we first concentrate on the terms
involving the vertex function V. For example, applying (3.4) to

W farazeDI23%% (12, 3, 4, 5) (4.8)
produces, due to (3.5), the expression

farare(Va44D2)*2%%(12,3,4,5) = fa 03050405 (V' D2)(12,3;4,5)
+fayaz040asas (V D2)(12,4; 3, 5)
+ fayazas9azas (V D2)(12,5; 3,4) (4.9)

containing three different vertex functions V. Similar expressions are obtained from the
other wD] terms on the left hand side. In some cases a minus sign arises due to the
antisymmetry of the structure constant fu.. For instance, from the second term in (4.6),

FaraseD§ %% (13,2,4,5), (4.10)
in which the pair (1,3) of gluons is merged we get

_fanaaas ‘Saaas (VDZ) (13: 2;4, 5) % falaacu 5a2as (VD2) (131 4;2, 5)
+ fayasasOazas (V. D2) (13, 5;2,4) - : (4.11)

Therefore we find exactly the same thirty vertex functions that occur also on the right
hand side of (4.3) according to (4.4),(4.5). We have thus confirmed that the conjectured
solution (4.6) indeed reproduces the correct lowest order term in the integral equation,
namely the combination of vertex functions V D; given above. Moreover, we see that the
first term on the right hand side of the integral equation (4.3) is not only a superposition
of vertex functions V D but of full transition vertices V2_,4 (applied to D, as usual).

Let us now consider further terms in the integral equation (4.3) that we have not
treated yet, namely those involving the irreducible four-gluon amplitude Df. Having
applied (3.4) to the wD} terms on the left hand side the homogeneous term of that
equation produces convolutions of D,{ amplitudes with kernels Ko,5. In these first a
kernel acts on D{ and then the splitting of one gluon into a pair happens according to
the combinations in (4.6). On the right hand side of the integral equation (4.3) the last
term also gives us convolutions of D} amplitudes with kernels K3, but here the order
of the convolution and the splitting of gluons is interchanged: first one gluons splits into
two and then two of the now five gluons interact via a kernel K_,5. Among the terms just
mentioned a subclass cancels immediately. Consider the case that the two-to—-two kernel
acts between two gluons none of which undergoes a splitting (LHS) or has emerged from a
splitting (RHS). Then the order of interaction and splitting along the t-channel evolution
is irrelevant and these terms are in fact the same on both sides.

4.2. Solving the equation for the remaining part 49

The next terms in the integral equation that we look at are the products of Dj’s
with trajectories 3. These arise on the left hand side either from wD] via (3.4) or from
the original [Z?:,ﬂ(ki)] D! after (4.6) is inserted. Those in which the argument of the
trajectory function does not correspond to a gluon undergoing or arising from a splitting
cancel directly between these contributions. It can be easily checked that the others are
exactly cancelled by the terms from the right hand side in which the two gluons emerging
from a splitting interact with each other via a kernel /(5_;5.

It is a bit more complicated to study the expressions still left in the integral equa-
tion after the cancellations discussed so far. These are DJ’s undergoing a two-to-three
transition via the kernel K;_,3 on the RHS and convolutions of D,{ functions with kernels
K32 in which one of the gluons undergoing or emerging from a splitting is involved in
the interaction (both sides). The latter do no longer include such convolutions in which
the interaction is between the two gluons emerging from the splitting. In the terms un-
der consideration three of the five outgoing gluons participate in the splitting or in the
interaction. The other two gluons do not interact and can be in an arbitrary color state.
Among the five gluons there can be a total of ten different three-gluon subgroups, and we
will argue that the cancellation takes place in each of these subgroups separately. To this
end let us concentrate on one of these subgroups, say the one with the first three of the
outgoing gluons affected.

The mechanism that makes these contributions cancel between the two sides of the
integral equation is the same that already caused reggeization in the three-gluon amplitude
Dj3. This does not come as a surprise since it was just the similarity of the corresponding
integral equations that lead us to the ansatz (4.6). The identity actually bringing about
the reggeization of the three—gluon subsystem is in pictorial language
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Only the three-gluon subsystem is shown, and the horizontal lines at the top are meant
to suggest the irreducible amplitude D] that the gluons enter. The arrows indicate the
symmetry of this amplitude under the simultaneous exchange of color and momentum of
the two gluons. The kernels are the ones defined in section 2.6.

The splitting of a gluon is depicted here by the corresponding color diagram and is
meant to indicate the behavior in momentum space® as well. The terms on the left (right)
hand side of (4.12) are exactly the ones that occur on the left (right) hand side of the
integral equation (4.3). To prove (4.12), the convolutions are evaluated as described in
the preceding sections. However, here the situation is slightly complicated by the fact
that the two gluons entering from above can be in an arbitrary color state. In the case
of D3 these two gluons were in a color singlet state, effectively reducing all color tensors
to an overall fy,4,q,- Here we have to be more careful and treat three independent color
classes separately. (Of course, this could have been done already for D3 but there it was

3Strictly speaking, this is done in abuse of our notation that usually separates momentum and color
space. Confusion should hardly be possible here as all terms have been described in detail before.
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not necessary.) The three classes are

bt bt bt (4.13)

For some of the terms in (4.12) it is necessary to use the symmetry in the upper two
gluons which is a property of D). Each of the three terms on the left hand side of (4.12)
contributes to two of the three color classes in (4.13) via the Jacobi identity (2.55). Having
dissected the integral equation this far, it is finally a comparatively short calculation to
check that (4.12) holds. Thereby we have finished the proof that D! as given in (4.6) in
fact is the solution of the integral equation.

4.3 Interpretation of the result

In this chapter we have been quite successful in dealing with the integral equation for
the five—gluon amplitude. It was even possible to solve the equation. Now we want to
interpret our findings in view of a possible field theory of unitarity corrections. Let us
first summarize the essential results we have obtained in this chapter. We have split
the five-gluon amplitude into two parts. The first part was the reggeizing part DE that
is the superposition of two-gluon amplitudes Dy. We have found an integral equation
for the remaining part D{ and have solved it. It turned out that the remaining part is
the superposition of irreducible four-gluon amplitudes DJ. Neglecting all normalization
factors and color tensors, this situation can be sketched in the following way:

Ds(ky, ke, kg, ka, ks) = (4.14)

The first term on the right hand side is the reggeizing part DE of the amplitude (see
(4.2)). The sum extends over all partitions of the five gluons into two groups. The second
term is the one found in the preceding section. Here the sum includes all possible pairs of
gluons that then merge into one.

On first sight, it may seem that we did not discover anything new here. We only find
the known amplitudes Dy and Dj, and the well-known two—to—four transition vertex Va_y4.
There is no new transition vertex and no new irreducible amplitude that would include
a five-gluon compound state. But exactly this 'nothing’ is quite an intriguing result.
It shows that the five-gluon amplitude reggeizes completely. This result (4.14) clearly
constitutes a generalization of the concept of reggeization and proves that reggeization also
takes place in more complicated amplitudes. Especially interesting is the reggeization in
the second part that turns out to be a superposition of irreducible four-gluon amplitudes.
In this part all possible pairs of gluons can merge into one more composite reggeon and
we have to sum over all these pairs. The mechanism at work here is therefore exactly the
same as in the three-gluon amplitude.

Reggeization was an important prerequisite for the emergence of the two-to-four vertex
and thus of the field theory structure in the four-gluon amplitude. That the phenomenon
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of reggeization also occurs in the five-gluon amplitude gives us some confidence that the
idea of a field theory structure will be a good guiding line also for the investigation of the
six—gluon amplitude.

Given the fact that the three— and five-gluon amplitudes exhibit complete reggeization
caused by the same mechanism, one is naturally lead to the question whether the same is
true for each odd number n of gluons. Indeed, the mechanism leading to reggeization in
a three-gluon subsystem is very general. It is completely independent of the structure of
the quark loop that we started with in the analysis of the integral equations. In deriving
(4.12) we only made use of the fact that the amplitude to which the upper two gluons
are attached — in this case D — is symmetric in the two gluons. Therefore we can
conclude that for a given odd n one important condition for the reggeization of the n-
gluon amplitude is fulfilled as soon as the irreducible part of the (n — 1)-gluon amplitude
is symmetric. However, we have to keep in mind that this is only one of the two conditions
leading to complete reggeization. The second condition necessary for the reggeization of
D{ was that the inhomogeneous term in the integral equation (4.3) had the specific form
(4.5), i.e. could be written as a special superposition of transition vertices V54. For a
part of an arbitrary n-gluon amplitude with odd n to reggeize it is obviously necessary that
the respective inhomogeneous term has a very specific form. With our present knowledge,
we are not able to derive this specific form of the inhomogeneous term for general n. The
complete reggeization of amplitudes with an odd number of gluons is therefore only a
(plausible) conjecture.

We would like to add a remark that concerns our choice of notation. Actually, this
remark goes beyond a pure issue of notation. In the splitting of the four—gluon amplitude
into two parts in (3.2) the superscript 7 in D] was meant to indicate that this part of
the amplitude is irreducible — in contrast to the other part. For four gluons this was a
good choice of notation since that part in fact contains a new irreducible compound state
of four reggeized gluons. In the case of five gluons, we again split the amplitude into two
parts, cf. (4.1). The first part DF is a reggeizing one as the superscript R indicates. But
now we have discovered that the remaining part D! reggeizes as well! For this reason we
have avoided to call this part ’irreducible’. Nevertheless our notation makes perfect sense
when extended in an appropriate way. The first superscript I or R should be understood
as specifying the (non—)reggeization of the respective part with respect to the two-gluon
state. We can then introduce a second superscript to indicate the (non-)reggeization with
respect to the four-gluon state. (We will actually be forced to do so when considering the
six-gluon amplitude in chapter 6.) For a proper notation we should thus identify

Di=DLR, (4.15)

the second superscript now telling us that this part reggeizes with respect to the four-gluon
state. The notation can easily be extended to accommodate reggeization with respect to
a potential six—gluon state or even higher compound states.



Chapter 5

Ward Type Identities and
Reggeization Tensors

Equipped with solutions of the integral equations for up to five t-channel gluons we are
now in a position to study two novel aspects of their structure. Both concern the intricate
interplay of color and momentum structure present in the amplitudes. This interplay in
the high energy limit reflects the non-abelian character of QCD. It is thus expected to
reside at the very center of the field theory structure we are heading for. As we have seen,
the phenomenon of reggeization is intimately related to the emergence of a field theory
structure and actually a prerequisite for it. With the results of the present chapter, we
hope to do a step towards a deeper understanding of this relation. It is therefore quite
natural that both aspects we want to investigate here deal with reggeization. The first
aspect is the subject of section 5.1. It is of a more global nature and relates n-gluon
amplitudes of different n. In section 5.2 we encounter more local properties, namely the
color tensors accompanying the reggeization of a single gluon. }

So far we only know the structure of the amplitudes with up to five t-channel gluons.
Our aim in the present chapter is to extract from this limited set of results as much
information as possible. We then try to formulate conjectures how the observations made
here can be generalized to a larger number of t-channel gluons. At this stage, we will
not be able to decide which of the results found here are general features of the field
theory and which depend on the special process under consideration, i.e. on the coupling
of the n gluons to the photon via a quark loop. It is also conceivable that some of the
results are only valid for amplitudes with a small number of gluons and in general have
to be replaced by more involved relations. To settle these questions requires either to
derive similar results from a different starting point, for instance within an effective action
approach [39, 40], or the investigation of amplitudes with more gluons in the t-channel.
In this thesis, the study of the six-gluon amplitude in the next chapter will offer the first
opportunity to put our conjectures to the test.

5.1 Ward type identities
The Ward type identities to be discussed in this section relate n-gluon amplitudes of

different n and allow to gain further insight into the interplay between their color and
momentum structure. These identities of Ward type arise when we set one of the n gluon
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momenta k; to zero. Roughly speaking, the amplitude D, can in this case be expressed in
terms of the amplitude D,_;. The reduction is accompanied by an interesting behavior of
the corresponding color structure for which we can extract a general rule. This behavior
in color space does not only involve the gluons to which the one with vanishing momentum
is coupled in the original amplitude (for example in the reggeizing parts) but involves all
gluons of the amplitude. In this sense our identities constitute a global property of the
amplitudes. :

We will be able to find a formula valid for the reggeizing parts D? of the amplitudes
and for these we can even give a general proof for arbitrary n. For the remaining parts D}
we limit our study to the cases n = 4,5 as we know them from the preceding chapters. We
will then make a conjecture on how the the mechanism works for higher n here. If it can
be confirmed, the identities might provide a valuable tool for the further investigation of
the field theory structure of unitarity corrections. Specifically, we will find a characteristic
difference between the parts of the amplitudes that exhibit reggeization and such parts that
do not. Moreover, the identities obviously lead to strong constraints on the amplitudes.
Both facts might turn out to be very helpful especially for the investigation of higher
n-gluon amplitudes with n > 6 where a more complicated structure is expected to arise.
We will discuss the potential significance of the Ward type identities for the field theory
structure in more detail in subsection 5.1.3.

We start with considering the reggeizing parts DF and study for each n how the color
tensors rearrange in the case of a vanishing momentum k;. It seems to us quite instructive
to see the mechanism at work in concrete examples. With these we also hope to convey
the impression that the Ward type identities impose very strong constraints on the color
and momentum structure of the amplitudes. After that we state the general rule for the
amplitudes D in (5.17), (5.18) and sketch the proof for arbitrary n. Then we turn to the
amplitudes D! and D! and formulate the conjecture how higher DI have to be treated.

5.1.1 The reggeizing parts D

After recalling that the BFKL amplitude D, vanishes in case one of its momentum argu-
ments vanishes (see (2.8))

D3 (ky, ko) li,=0 = Da(ky, k2)|k,=0 =0, (5.1)

we consider first the reggeizing parts DE of the amplitudes D,,, with n ranging from 3 to
5. This includes also the full amplitude Dj since it consists of reggeizing pieces only. The
simplest relations hold for the case in which we set the first momentum k; = 0, namely
the vanishing of the amplitudes®,

R

F 0. (5.2)

Dslk,=o K D4R|

k=0 |kl=0 )

The same is true for setting the nth (i.e. the last) momentum to zero in the amplitude
D,

Dafy, 0= Df| DR 0. (5.3)

ky=0 i

ks=0

!Strictly speaking, we here make incorrect use of notation since the amplitudes D, are for different n
objects in different ), [su(Nc)] tensor spaces.
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We will see below that the identities (5.2) and (5.3), although seemingly trivial, fit well
into the more general rule that determines the color structure of our Ward—type identities.
When setting one of the momenta kg, ..., k,_; to zero the amplitudes do not vanish. For
the three-gluon amplitude we find

Dgla2a3|k2=0 =2 gfaxazaaD2(klyk3)
— [ 1 ]*D’“b’(kl ks) = [] ,L] #Dbb (k) (54)
In the second line we have used the 2-gluon amplitude including color labels, that is
Dbtz = 8,4, D, (see (2.7)). The way the color structure is written in the second line serves

to make the general rule for the color structure more transparent. For the reggeizing part
DE of the four—gluon amplitude we find

D‘lRal azazaq

gfa;a;cDmaa (kh k31 k4) (55)
s[4

This can be seen directly from the definition of DJ. For k; = 0 the two expressions in
square brackets in (3.3) become equal due to (2.8) and the color tensor in (5.6) is the
difference of the two color tensors in (3.3),

ko=0

* DiY2%s (k) kg ky) . 5.6
3

1
dabcd s dbacd — _‘afabkfkcd . (57)

as follows from (2.26). The color tensor corresponding to Dg, i.e. fy byh,, is an invariant
tensor. According to (2.54) the second line in (5.6) can thus also be written as

1P “,U * ‘/ll\] * D3 (ky, kg, ky) - (5.8)

For k3 = 0 we find in the same way

D‘Iialaga_ga‘

DRalazagu

gfaacucDalalc(kly kZ» k4)

[ |J\] * DUP (k) Ky ky)

’ “,U +L|] * D3 (ky, o, Keg) (5.9)

The Ward identities for the reggeizing part DE of the five-gluon amplitude arise in a
similar way. Setting one of the outgoing momenta to zero in (4.2), we find that the four
different momentum structures reduce to two. When k, = 0, for instance, the expressions
in square brackets in line 1 and 2 in (4.2) become equal up to a sign, as do the expressions
in square brackets in line 3 and 4. The corresponding pairs of color tensors can be added
using (2.22),

k3=0

Il

fﬂlazﬂaaqﬂs AN fﬂ2a103u4a5 dca3a4a5 510

fuluzc
fa‘a2a3a5a4 - fa1a2a4a5u3 - fa,agc Jascasas (5'11)
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Comparing with (3.3) we can thus write

o = gfmazCchaaams (kly ks, ky, ks)

2y u
=9 [U\“ +| U] +lﬂu * DRbrbababa (10, 1 ey, Ks) . (5.12)

DRa|a2a3a4a5
5

H] * D0 (Il Jeg, Ky, Ks)

For k4 = 0 similarly

DRam;aga.;as
5

=G iass DY 5% (ks g, K Ks)

i g[ ”/L] * D188 (K, kg, ks, Kes)

9 [H/L' +|)“\l +M|] *belbibabi(kl,kz,k:;,ks).(5.13)

The last lines in (5.12) and (5.13) are again implied by the fact that the color tensors in
DRbibababs 5r6 invariant tensors. For k3 = 0 we need the analogue of (5.10), (5.11) which
is shghtly more complicated. Applying (2.22) two times we get the two 1dent1ties

falazamsa:s = fa;asc (ce2040s +fa2aacdu1w4as (5.14

fa;a1a3u¢a5 gl fuxu2a3a5ﬂ4 o falngc J%29545% + faqaac ds?i%ios (5]5)

ky=0

falaga3a4a5

Using this we get from the formula (4.2) for the reggeizing part

D?axazaaaws L o0 . gfalaachm;“as (klr kz, k4, ks) 5 gfnzaschta,ca,as (kl) k2, k4 ) ks)
= g[ll\” +l*||:’*belb?babq(k1,kz,k4,k5)
i g[lll' +H/'L] *belebabd(klrkZ’yk‘lka)' ‘ (516)

The Ward identities collected here for the reggeizing parts DE of the n-gluon ampli-
tudes (n > 3) can be summarized as follows. For vanishing momentum k; the momen tum
part of the amplitude D reduces to DR |, the momentum ;Lrguments being the (n — 1)
remaining transverse momenta. (Here we again identify D = Dj since Dj reggeizes
completely, and DI | should be understood as Dy.) In color space the label a; of the
zero-momentum gluon has to be contracted via a Jaja;e tensor with the color labels of all
gluons j to the left, that is with j < ¢, and these contractions have to be added. The label
c has to be taken at the jth position in the amplitude DE ;. Since the amplitudes DF |
consist of invariant tensors in color space, we can alternatively contract the label a; with
all color labels a; to the right (7 > ¢) with a faiaje tensor. In the latter case the label cis
at the (j — 1)th position in the amplitude D . Casting this into formulae we have

B e )

ki=0

L
Ray...4;c...85...Gn CH)
=92faja,.ch_l‘ S i) RIS NER (5.17)
R . n T
=g Z fu.a]c u; ;‘;Jla (k],...,k,’,...,kn), (5.18)

Jj=i+1
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where the hat indicates that the corresponding quantity has to be left out. The formulae
include the special cases k; = 0 and k,, = 0 as well: the respective sum in (5.17) or
(5.18) is empty or it contains (n— 1) terms and vanishes due to the condition for invariant
tensors (2.54). These Ward identities for the reggeizing part of the n-gluon amplitude can
even be shown to hold for arbitrary n (see below). This is of course only true in the case
that we choose the reggeizing part DE to be obtained from the corresponding quark loop
D(np) by replacing D(y0) = D2 as discussed in section 3. Other choices for DE in the
decomposition into reggeizing part and irreducible part of the n-gluon amplitude will in
general violate the Ward identities.

In the preceding chapters explicit formulae for the reggeizing amplitudes have been
displayed only for up to five gluons. In addition, we will encounter the reggeizing part D§
of the six-gluon amplitude in the next chapter (see (6.2)). It can also be shown to fulfill
the Ward type identities (5.17), (5.18) following the same lines as for up to five gluons.
We even have the possibility to prove the Ward type identities for arbitrary n. Due to the
construction of the amplitudes DE from the quark loop (by the replacement D(3;0) = D)
it is sufficient to prove the identities for D(y,0). The quark loop is the sum of 2" diagrams?
as explained in section 2.4. Consider now two of these diagrams that differ in the coupling
of the ith gluon. It is coupled to the quark line in one and to the antiquark line in the other
diagram. Due to this the two diagrams have opposite sign. But otherwise the momentum
structure is the same when setting k; = 0. The color structure differs by the position of
the generator t* within the trace. Starting from one of the two diagrams we can shift
t* around the loop to the left (or to the right) by iterated use of (2.22). Doing so we
come across all gluons j with j < 7 since the cuts in the amplitude (see fig. 2.1) forbid
crossing of t-channel gluons. Therefore this procedure generates exactly the terms needed
for (5.17) containing a trace over (n — 1) generators contracted with a fo,a,c. (Although
it is a bit tedious, the correct signs can be checked without difficulty.) The two remaining
terms with a trace over n generators cancel due to the sign mentioned above. The second
form of the Ward identity (5.18) is obtained by shifting the generator ¢* around the loop
to the right instead of to the left.

5.1.2 The amplitudes D! and D/

We now come to examining the Ward identities for that part of the n-gluon amplitude
which is not the superposition of two-gluon amplitudes. This requires n > 4 since only in
this case we have a non-vanishing part D! as defined in the preceding chapters. On the
other hand our knowledge of this part is rather limited: it is only up to n = 5 that we
know its structure, and even here we do not have an analytic formula for the four-gluon
state. Therefore we have to restrict ourselves to D and D! here.

For Df we have already found (see (3.14)) that it vanishes whenever one of the mo-
mentum argument vanishes. The study of the amplitude D! is surprisingly simple. It
fulfills Ward identities very similar to those valid for the reggeizing amplitudes DE, i.e.
(5-17) and (5.18). The only difference is well in agreement with what one would naturally
expect. Whereas the amplitude DF was reduced to a superposition of DE ’s when one

? As mentioned already in section 2.4 the two diagrams with all gluons coupled to the same line (quark
or antiquark) do not give rise to a separate D term in the reggeizing parts since in the quark loop they
act as regularization terms only. We can therefore disregard them for the present discussion.
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momentum was set to zero, Dé now reduces to a sum of DI amplitudes. In detail, we find

Déul"'a"‘(kl, A 2 .,k5)|

i=0

i-1 i g ) 3
ST MY el e | SURERE S (5.19)
i=t
5 . 2
@yelij..-d5...80n
=93 JuaeDa Koy Ks) (5.20)
j=i41

for any ¢ € {1,...,5}. Once we have found the amplitude D} in the form (4.6), only
two more ingredients are required for the proof. One is the vanishing of Dj for vanishing
argument (3.14), the other is the defining property (2.54) of invariant su(/N,) tensors. The
latter applies here since the four gluons in the irreducible amplitude D{ are in a color
singlet. With these two pieces of information at hand the calculation leading to (5.19)
and (5.20) is almost trivial.

5.1.3 Significance of the Ward type identities

The Ward identities discussed so far suggest an underlying pattern also valid for higher
n-gluon amplitudes. In this section we try to make an educated guess about the general-
ization of the identities to higher n. This is done in the form of several conjectures. Each
of the conjectures applies to a certain part of the amplitudes, for instance to the part of a
n-gluon amplitude that reggeizes into two-gluon amplitudes. Since the integral equations
only constrain the full amplitudes D,,, we will not be able to prove the conjectures for
the different parts separately. The main conjecture we make here is actually that it is
possible at all to split the amplitudes into different parts in such a way that the latter
fulfill the conjectures below. This main conjecture, however, can very well be put at test
by investigating amplitudes with more t-channel gluons or by deriving the field theory
structure from a different starting point. With this situation in mind, we now state what
we expect for the different parts of the amplitudes.

Our first conjecture is that the number—changing vertices of the effective field the-
ory (as they result from the appropriate splitting of the amplitudes into reggeizing and
non-reggeizing parts) vanish when one of the outgoing gluons has vanishing transverse
momentum. It is certainly true (see (3.10)) for the two-to—four transition vertex Vi_y4
which is up to now the only known number—changing element. In order to find out about
other number—changing elements we have to study higher n-gluon amplitudes. This will
be done in the next chapter for the six-gluon amplitude where we will try to find out
about a possible two—to-six transition. Unfortunately, we will not be able to arrive at a
final clarification of this issue. This is due to other conceptional problems we will come
across in that case. Here we mention only that these problems are connected with finding
a proper definition of what can be called an ’element’ of the field theory and refer the
reader to section 6.3.2 for more detailed discussion.

Connected with the preceding one is the conjecture that the non-reggeizing parts of the
amplitudes vanish if one of the outgoing gluons has zero momentum. Examples found so
far are the two-gluon (BFKL) amplitude D, and the irreducible part D} of the four-gluon
amplitude.
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The final and probably the most important conjecture concerns the reggeizing parts
of the amplitudes. If some part of a n-gluon amplitude can be written as a superposition
of non-reggeizing parts of lower amplitudes it should satisfy the Ward identities found in
the previous sections. However, we know from the way we have treated the amplitudes
so far that the choice of a reggeizing part is at our disposal. Therefore, this conjecture
amounts to a condition for a good choice of a reggeizing part. This brings us back to the
problem already mentioned in section 3.2 and we will now discuss it in more detail.

There is some freedom in decomposing the amplitudes D, into a reggeizing and re-
maining part as discussed in chapter 3. Our conjectures about the Ward identities should
be used as conditions for the sensible decomposition of the amplitudes into reggeizing and
irreducible parts. We expect such conditions to become especially helpful already in the
the course of investigating the six-gluon amplitude. To illustrate the potential significance
of the Ward identities let us briefly discuss the next step towards constructing the effective
field theory, namely the investigation of the six—gluon amplitude Dg. In the first step, the
quark loop offers sufficient inspiration for the sensible choice of a reggeizing part. However,
in the six-gluon amplitude a new problem will arise. After decomposing the amplitude
in the canonical way into reggeizing part and a remaining part, Ds = DE + D{, we will
find a new integral equation for Dé. We anticipate that here a further decomposition will
be required to fully understand its structure. Namely, the part D will most probably
contain a part that is the superposition of irreducible four-gluon amplitudes D

Di=D}* 4+ Di' =Y D]+ Dg'. (5.21)

This means that the part Dé'R is irreducible with respect to the two-gluon amplitude, but
it is reducible with respect to the four-gluon amplitude. But in this case we do not have
a quark loop suggesting a good choice for Dg’R. Exactly at this point the Ward identities
will be highly useful for the task of identifying a correct choice for the reggeizing part in
this decomposition. To summarize, we expect roughly the following structure to arise in
higher n-gluon amplitudes. There will most probably be irreducible m-gluon compound
states for all even m. Based on each of them there will be a hierarchy of reggeizing parts
of amplitudes, all of them reggeizing with respect to the same m-gluon compound state.
The amplitudes in each of these hierarchies should then obey Ward type identities of the
kind discussed in this section. Unfortunately, at the moment we do not know a way to
prove this conjecture at than to explicitly analyze the higher n-gluon amplitudes.

5.2 Reggeization tensors in color space

Whereas the preceding section was devoted to the study of the more global interplay of
color and momentum structure in the amplitudes, we now turn to more local properties
of the color structure. Namely, we will be able to assign to a reggeized gluon a kind of
’quantum number’ that specifies its behavior in the process of reggeization. The cleanest
environment to study the mechanism of reggeization is clearly provided by the two-reggeon
compound state or BEKL amplitude. To see how higher and higher 'Fock states’ of the
reggeized gluon occur we will therefore investigate the reggeizing parts DE of the n-gluon
amplitudes that consist of superpositions of two—gluon amplitudes. Here we will focus our
interest on the color structure of single terms. For the most part the present section will
deal with pure color algebra. One should therefore be very careful with the interpretation
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and not too quickly jump to conclusions that go substantially beyond the subject of color
structure. At the end of the section we will of course come back to the issue of interpreting
the results in a larger context.

In general the process of reggeization can be viewed in two different ways. To illustrate
this let us have a look at the reggeizing part D of the four-gluon amplitude (3.3). In
diagrammatic representation it is the first term in the right hand side of (3.16). In the
picture of t-channel evolution the amplitudes start with the coupling of two reggeized
gluons to the photons via a quark loop, then we have the propagation of the two—gluon
state in the t-channel, and finally one of the gluons (or both) split — or ’decay’ — into
two or more gluons. To the splitting of the reggeized gluons belongs a certain color tensor,
as given in (3.3) for Df. Viewed from a different angle, we can say that a group of gluons
in the reggeizing part Dff merges — or ’collapses’ — to make up a more composite gluon
which then enters the two-gluon compound state from below. We will use both pictures
in parallel here and, depending on the context, speak of ’merging’ or ’splitting’ to mean
the very same phenomenon of reggeization.

We will now turn to the case of arbitrary n and consider the reggeizing parts DR of
the amplitudes. From these we derive the color structure accompanying the merging of
a number of reggeized gluons into a single reggeon. This will lead us in a natural way
to a simple classification of the composite reggeons according to their decay properties.
Thereby, we hope to gain further insight on how reggeization works. However, we have to
keep in mind that the amplitudes D constitute only the simplest part of our amplitudes
and are derived from the special structure of the quark loop. In a second step we will
therfore have to find out whether the reggeization in more complex amplitudes like D}
works in the same way, that is whether it is accompanied by the same color tensors as in
the two-gluon amplitude. Only in this case we may speak of a general property of the
mechanism of reggeization.

Let us pick one of the terms in the reggeizing part DE(ky,...,k,). It consists of a
two-gluon (BFKL) amplitude D, with its two arguments made up from a group of the n
momenta each. Let us assume that the first of these groups contains ! gluons (1 < 1 < n—1)
and that the other group is made of the remaining m gluons (m = n — ). For simplicity,
we will further assume that the ! gluons in the first group are the first / gluons in the
amplitude with momenta ky,...,k;. Other terms in DE with a splitting into ! and m
gluons are then obtained by permutation of color and momentum labels. We can thus
characterize the chosen term by its momentum structure,

Dg(k]+...+k1,k1+1+...+kn). (5.22)

1 m

In this section we will not care about the sign of the special term in D we consider?. We
will also neglect the additional factor g"~2 that comes with the term above.

To find the color tensor corresponding to (5.22) for arbitrary n we have to remind
ourselves of the way the reggeizing parts DF were constructed. The individual terms in
DE were obtained by the replacement D30y = D3 in the quark loop amplitude. The
color tensor belonging to (5.22) can therefore be deduced from the corresponding lowest
order term in which n gluons are coupled to the quark loop. Specifically, in the term of

3Especially in the case of an odd number of gluons, the relative signs of the terms in D have to be
treated with care since the signs change when the order of the color labels in the tensor is reversed.
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interest in the quark loop there are two contributions: one with the [ gluons of the first
group coupled to the quark and the other m gluons to the antiquark, the second with
quark and antiquark exchanged. (This was described in more detail in section 2.4.) The
trace in color space taken along the quark loop then gives for the first contribution

(LT SR T (5.23)

Heze we have given new color labels to the gluons according to the group they are in. The
first I gluons now carry color labels b;, the m gluons in the second group have now been
assigned the color labels d; such that the connection with the original labels is

by =1, fons € {1,.. 51} 5 di = for g el .. m) (5.24)

The second contribution contains a trace in color space in which the generators occur in

reversed order,
Gt S i e o (5.25)

The relative sign between the two contributions depends on the total number n of gluons.
(This is because the coupling of a gluon to a quark or antiquark in the quark loop differ
by asign.) If n is even, they come with the same sign. So the color tensor we are looking
for is

dbl...buim...dl (5.26)

as defined in (2.33). If n is odd, the two color traces in (5.23) and (5.25) come with
opposite sign and we get a tensor of the form

fhrbidm ey (6:27)

as it was defined in (2.34). It should be noted that in both cases the color labels of the
one group come in ascending order in the tensor whereas those of the other group have to
be taken in reversed order.

Now we make a little digression. It will turn out useful to have a look at the color
structure arising from the successive emission of / gluons off a quark. In color space this
prowess is associated with

0 = 2r(eb L )+ ”1\17 te(th ...8%). (5.28)

c

The proof becomes almost obvious when we write this identity in birdtrack notation,

N N\
P 1 {559

’ — /ﬁk 3 /?3\ ) (5.29)
by b el b N

1

Applying the identity (2.31) to the right hand side we immediately find the left hand side.
Using the definitions (2.33), (2.34) of d and f tensors we can rewrite this as

B = [db,...b,c _]_l-fb,,“b,c] 4 _217 [db,...b, +ifbl.“b,] ) (5.30)
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A special case of that general fact is the well-known formula describing the successive
emission of two gluons off a quark,

s ;
tatb e '2‘ 'I\‘]_‘sab + (dabc it Zfabc)lc L (5‘31)
c

Here we have to have in mind* that the conventional normalization of structure constants
Sabe and dgp. differs from -our definition of d- and f-tensors with upper indices. Further,
we have to use d®® = 8,5 and f* = 0. A seemingly trivial special case of (5.30) is the
emission of a single gluon. Namely, if / = 1 only the first term on the right hand side give
a contribution, and due to d®® = §,; we end up with a trivial identity. Nevertheless, this
case is quite important for the consistency of the assignment of ’quantum numbers’ we
want to carry out.

Coming back to our main problem now, we apply these identities to the color tensor
of the term we have picked in DF. The color tensor of that term depends on the total
number 7 of gluons. For even n the color tensor associated with our term is the d-tensor
in (5.26). Applying (5.30) now to the first group containing ! gluons we arrive at

dbl...blu'm...dl et dbl...bgcdcd|,..dm+flx‘...bICfcd1...dm
L e e b el
bt gdi..dm Lozt £E1 oMol 5.32
+w, ¢ W LA (5.32)

For odd n the color tensor is the f-tensor in (5.27) and here the application of (5.30) to
the I gluons in the first group gives

fbl-wbldm---dl ey dbl---bleCdlmdm +fb|...b[cdcd;...dm
1 1.
G dbl...b[ dy...dm b\...b,ddl...dm . 533
2N, / 5 2ch e

The relative signs again depend on the order of gluons we started with due to the definition
of the f-tensor. We will not pay special attention to this detail here and concentrate on
the tensors in the four terms separately.

These two decompositions of the d- and f-tensors contain all possible combinations
of even and odd ! and m, and the reggeization tensors we are looking for can now be
extracted from the two decompositions. Obviously, the tensors describing the splitting
in the two groups are correlated. We will now try to assign a kind of quantum number
to the two reggeized gluons according to the way the respective reggeons split. This can
only make sense if we demand that the two gluons in the two-reggeon state carry the
same ’quantum number’. There will be four possible types of reggeons. We first want
to fix the type of a reggeized gluon with color label ¢ that does not split. This case is
included in the above identities as the splitting into one gluon ({ = 1 or m = 1) via a
d-tensor (since we had d®® = §,;). We want to call this type a reggeized gluon of type f
in the adjoint representation. Now we can read off from the first term in (5.32) that such
a reggeon decays into an odd number of gluons with a d-tensor. From the first or second
term in (5.33) we find that it decays into an even number of gluons with a f-tensor. This
assignment is consistent also if both [ > 1 and m > 1.

Secondly, there is also the possibility that a reggeized gluon with color label ¢ splits
into an even number of gluons via a d-tensor. We want to call such a reggeized gluon a

*We made a remark concerning this intricacy already in section 2.3, see equations (2.35) — (2.37).
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reggeon of type d in the adjoint representation. From the first lines in (5.32) and (5.33) we
find consistently that such a reggeon splits into an odd number of gluons via a f-tensor.
An interesting observation is that a reggeon of this type can only occur if it is composite
of at least two gluons. Otherwise the corresponding terms in the above identities vanish
due to f2 = 0. Consequently, such a reggeon can be found in the two-gluon state only if
both reggeons decay.

Now we proceed to the last two terms in the right hand sides of (5.32) and (5.33).
Here we observe that each of the two groups of reggeons has zero total color charge.
The corresponding composite reggeon is obviously in a color singlet state. This seems
rather counter—intuitive. But our main focus in this chapter is the color structure and we
therefore want to take the above identities seriously. Consequently, we have to treat these
singlet reggeons on equal footing with the reggeons in the adjoint representation discussed
before. Again, we can consistently define two different types, d and f. A singlet reggeon
of type f splits into an even number of gluons via a f-tensor and into an odd number of
gluons via a d-tensor. A d-type singlet reggeon decays into an even number of gluons via a
d-tensor and into an odd number of gluons via a f-tensor. Here we do not have a certain
decay mode we want to fix as of type d or f like in the case of the adjoint representation.
Therefore in the assignment we could as well interchange d and f. Like in the case of the
d-type reggeon in the adjoint representation the singlet reggeons are composite of at least
two gluons. They cannot occur in a term in D in which only one of the two reggeized
gluons in the two—gluon compound state decays.

We have been able to extract from the two color identities (5.32) and (5.33) in a
consistent way a classification of reggeized gluons in the reggeizing amplitudes DF. The
classification is valid for arbitrary n and all possible combinations of numbers [ and m
that merge into one the two gluons entering the two-gluon state. Let us summarize the
assignments of reggeon types and the corresponding reggeization tensors in the table 5.1.
I denotes the number of reggeized gluons that merge into a more composite one. The
diagrams for the color tensors are drawn with four and three legs here for illustration only.
Of course they represent the tensors of type d or f for an arbitrary number ! of gluons

reggeon type [ even l odd

R

R
R

R

Table 5.1: Reggeization tensors as obtained from the reggeizing parts D&

f, adjoint rep.

d, adjoint rep.

f, singlet

DDBDH

d, singlet
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as defined in (2.33) and (2.34). For ! > 3 (I > 4 for the singlet reggeons) the d- and
f-tensors in the table can be decomposed further into contractions of structure constants.
The corresponding formulae for up to { = 5 (I = 6 for the singlet reggeons) can be found
in section 2.3.

In the case of I = 2 the d-type reggeons can be interpreted as symmetric in the two
gluons, and the f-type reggeons are antisymmetric in the two gluons. This holds in the
adjoint representation as well as in the color singlet. However, this interpretation of d
(f) as symmetric (antisymmetric) has to be refined for I > 3 since then the tensors are
not completely (anti)symmetric in the [ color labels. Instead the symmetry of the d- and
f-tensors in individual pairs of gluons becomes more complicated.

In the reggeizing parts DE of the n-gluon amplitudes the different types of reggeons
in our classification occur inevitably at the same time, since the tensors (5.32) and (5.33)
contain them together. This is not necessarily the case in more complicated parts of
the amplitudes that contain a compound state of more than two reggeons. For example,
higher amplitudes will contain a part that does not reggeize with respect to the two—gluon
amplitude but does reggeize with respect to the four-gluon amplitude. An example is the
part DI of the five-gluon amplitude. It is well conceivable that in such amplitudes the
four reggeons in the compound state are less correlated than in the two-gluon state and
the reggeon types can occur independently.

The example of the part Dé of the five-gluon is, however, not sufficient to clarify the
situation. On the one hand, it confirms our classification: the four gluons in DJ are of
type f in the adjoint representation and one of them in fact splits into two with the temsor
that should be expected from our classification. On the other hand, we do not expect the
other types of reggeons to appear in D if our classification is right, since those require two
splittings in the whole amplitude. We thus have to go at least to the six-gluon amplitude
to study their behavior.

In this respect the f-type reggeon in the adjoint representation plays a special role. It
is the only type of reggeon that occurs in DX when only one of the two reggeons decays, i. .
when the other one splits trivially into one gluon. This observation leads us to suspect that
the f-type reggeon in the adjoint representation can appear in each possible compound
state. In the next chapter we will investigate the six-gluon amplitude and find hints that
agree with this conjecture. For the other types the correlation of the two reggeons in the
two-gluon compound state seems to be essential. It seems natural the expect that their
behavior in higher compound states is more complicated. Most probably, the knowledge
of the reggeizing parts D is not sufficient to fully understand these types. This will also
be confirmed by our investigation of the six-gluon amplitude in the next chapter.

At present, the classification developed in this section has the status of an observation.
We are not able to derive the decay tensors from first principles for any reggeon in any
amplitude. This would probably require a different approach. Possibly an effective action
framework [39, 40] offers a suitable starting point. Certainly, our findings have to be
tested in the investigation of higher n-gluon amplitudes. Especially the universality of the
concept outlined here is by no means obvious.

There is certainly a deeper connection with the notion of signature to be discovered
here. The reggeon of type f in the adjoint representation can be identified as a reggeized
gluon with the usual negative signature. The reggeon of type d in the adjoint represen-
tation can probably be identified with a reggeized gluon carrying positive signature. For
the singlet reggeons the situation is not so clear. It will of course be very interesting to
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understand this relation to signature also in the other cases. However, at present it seems
a bit too early to draw final conclusions. Before that the universality of the reggeization
tensors should be investigated. In addition the somewhat confusing situation with the
simglet reggeons should be clarified by finding a consistent interpretation for them.

Chapter 6

Six Gluons

In this chapter we turn our attention towards the six-gluon amplitude. We hope to find
answers to several questions by studying this amplitude. We expect that a transition from
two to six gluons can happen in two steps by successive two-to—four transitions. Since a
pair of gluons in the irreducible amplitude D] is not necessarily in a color singlet state
the second step in that transition will provide information on the two-to-four vertex in
the color non-singlet. It will also be interesting to find out if there is a direct transition
from two to six gluons, i.e. a new number—changing element of the effective field theory.
To find out about these questions will certainly require to understand the mechanism
of reggeization in the four-gluon state, as has been indicated already in the preceding
chapters. We will therefore be able to put the conjectures formulated in chapter 5 to
the test. In addition, the six-gluon amplitude offers the possibility of studying a possible

‘Pomeron-Odderon-Odderon vertex.

We use our tried and tested method to attack the integral equation for the six—gluon
amplitude. A reggeizing part is identified in section 6.1, and a new integral equation for
the remaining part of the six—gluon amplitude is derived in section 6.2 where we also
discuss its properties. A new piece is discovered in the equation that cannot be expressed
in terms of the known two-to—four vertex. This piece is the subject of section 6.3 where we
discuss its properties and prove its conformal invariance. We speculate on its role in the
effective field theory. In section 6.4 we try to identify a part of the six—gluon amplitude
that reggeizes with respect to the four-gluon state. Such a part would permit to apply
our procedure for dealing with the integral equations to the new integral equation found
in section 6.2. Unfortunately, the structure of that integral equation is rather intricate.
We encounter technical as well as conceptual problems which presently prevent us from
finding conclusive answers to the questions raised above. We speculate on possible ways to
resolve the occurring problems. In section 6.5 we investigate the possibility of a Pomeron—
Odderon-Odderon vertex and in fact find contributions to such a vertex in the integral
equation derived in section 6.2. Finally, we discuss the results obtained in this chapter in
the light of an effective field theory of unitarity corrections.

6.1 A reggeizing part

Encouraged by the success we have had so far with that procedure we again use the quark
loop amplitude D(g,9) to construct from it a reggeizing part DE as a superposition of

65
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two—gluon (BFKL) amplitudes. The full six-gluon amplitude is then split into two parts,
Ds= D+ DI, (6.1)

and it will be our first task to find a new integral equation for the remaining part D{. In
detail, the reggeizing part DE is

DRwmassasasas (i 1) kg ky, ks, ke) =

= g*{d*1929394959 ), (12345, 6) + Dy (1, 23456) — D,(16,2345)]
+ d*2%19394835 [ D, (13456, 2) — D (1345, 26) + D, (126, 345) — D, (12, 3456))]
+ d*19203949635 [ ), (19346, 5) — D5(1234, 56) + Dy (156, 234) — Dy (15, 2346))
4 929193949835 [ D), (1256, 34) — D;(1346, 25) + D (125, 346) + Do (134, 256)]
4 49319204505 [ D), (12456, 3) — Do (1245, 36) + D5 (136, 245) — D, (13, 2456)]
+ @*19293059504 [ D), (12356, 4) — Dy (1235, 46) -+ D, (146, 235) — Dy (14, 2356)]
+ d°2%193959084 [ D), (1246, 35) — D (1356, 24) + D, (124, 356) + D5 (135, 246)]
4 d®19293%09594 [_ D), (1236, 45) — D,(1456, 23) -+ D5(123, 456)

+D, (145, 236)]} (6.2)

as obtained from (2.67) by the replacement D(a,0) — Do while keeping the color and
momentum structure. This expression already indicates one of the major difficulties we
have to overcome during the treatment of the six—gluon amplitude: the large number of
terms we have to take care of.

6.2 The integral equation for the remaining part

The original integral equation (2.15) for the six-gluon amplitude is now used to derive
a new integral for the unknown part Df. The method in this step is exactly the same
as for the four- and five-gluon amplitudes. We insert into the integral equation our
complete knowledge on the reggeizing parts DR of the amplitudes D, with up to n = 6
gluons, including the ansatz (6.1),(6.2) for the six-gluon amplitude. The corresponding
formulae for n < 5 can be found in the preceding chapters. Then we apply the BFKL
equation (2.11) to the expression wD{ on the left hand side. This is possible because
D{ was chosen as a superposition of BFKL amplitudes, cf. (6.2). We thereby produce
convolutions of D, amplitudes with two-to-two kernels and products of D, amplitudes
with trajectory functions 8. The insertion of the reggeizing parts D of the amplitudes
on the right hand side leads to convolutions of D, amplitudes with the integral kernels.
We have to perform the corresponding contractions of color tensors and have to bring the
integrals to their standard forms as classified in section 2.7. The main problem consists in
the huge number of combinations of amplitudes with kernels. We have to perform close
to 250 contractions of color tensors, and we have to find the standard form of more than
3500 integrals. Whereas the color tensors can still be calculated by hand this is no longer
possible for the huge number of momentum space integrals. We have therefore developed
an algorithm for this purpose that is suited for the implementation on a computer. The
algorithm is explained in detail in appendix B. We have written a PERL script based
on this algorithm that produces an output which can directly be used as an input for a
computer algebra program like MAPLE. The tensor contractions are calculated with the
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help of the method described in appendix A. Some of the contractions are given explicitly
in that appendix. Many other contractions are obtained from these by permutations of the
gluon color labels. The computer algebra program is then used to multiply the resulting
sums of elementary tensors with the corresponding integrals, and to finally collect all terms.
In the final step more than 2-10? integrals have to be sorted according to their color tensor
coefficients. (This shows that our method of dealing with the integral equations will in
its practical applicability be limited to relatively small numbers n of gluons.) Having
collected all terms in the equation which contain the amplitude D, we have found the
inhomogeneous term of the new integral equation for D{.

In the derivation of the new integral equation the terms containing the irreducible
four-gluon amplitude D} and the second part D! of the five-gluon amplitude remain
unchanged. Their combinations with the kernels are the same as in the original equation
(2.15). The resulting integral equation for D{ is then found to have the form

6
(w - Zﬁ(h)) Df10assassses (i, Ly kg, ky, kske) =
=

= (Wmaeiasas ) (1) Ky ks, ky, koke)
3 Fosoans Toesese i1 2,334, 5, 6)
i Z d“""’aa“‘susasl(l’ 2,3,4;5, 6)
A Z faeea e R0 304 5 6)
4 Porfi e gpihhih 3 kP20 g plhistebs
+ k{50 @ pitibatabibsts a3

The first four terms on the right hand side are the result of the computation outlined
above. We will now describe them in detail.

The first observation we make is again that certain color structures are completely
cancelled in the equation. All terms proportional to d®19293%4¢59s (and the other seven
permutations of this occurring in (6.2)) are cancelled between the different contributions
to the inhomogeneous term and drop out. The same mechanism was observed in the
equations for the parts D] and D/ of the four- and five-gluon amplitudes for the tensors
1929304 and f0102033495 pegpectively.

As in the integral equations for D] and D{ the inhomogeneous term has a high degree
of symmetry which we will explain for each of the terms below. This symmetry is not only
nice by itself, but it is also a highly welcome possibility to check our calculation.

The first term on the right hand side of (6.3) differs in its structure from the other
terms and will be treated separately in section 6.3. Here we mention already that it is
symmetric in the sense that it is the sum of terms that are obtained from each other by
permutations of the gluons.

The same is true for the second term on the right hand side of the new integral
equation. The sum extends over all partitions of the six gluons into two groups each of
which contains three gluons,

Zfaxaznfﬂmsael’(lr 2,3;4,5,6) = fanazaafaaasasL(ly 2,3;4,5, 6)

+ fayaza4 fasasas L(1,2,4;3,5,6)
oot Farasos furasas L(1,5,6;2,3,4) . (6.4)
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The function L is the same in all terms in the sum and only its arguments are exchanged in
the different terms. A closer inspection reveals that the function L permits a decomposition
into vertex functions V known from the two-to-four transition vertex (see chapter 3),

L(1,2,3;4,5,6) = i—z[(vz),)(12,3;45,6)—(VDZ)(12,3;46,‘5)+(VDz)(12,3;4,56)
—(V.Dy)(13,2;45,6) + (V D3)(13,2;46,5) — (V D3)(13,2; 4, 56)
+(V D2)(1,23;45,6) — (VD2)(1,23;46,5)
+(VD;)(1,23;4,56)]. (6.5)

The sum in the third term on the right hand side of the integral equation extends over
all partitions of the six gluons into one group containing four and one group containing
two gluons,

Y dmeansedg,  1(1,2,3,4;5,6) = d"%%%5,,.1(1,2,3,4;5,6)
Fdn2es0ss, (1,2, 3,5;4,6)
F oot 0ayqpd®*%5%1(3,4,5,6;1,2).  (6.6)

Also in this case we find that the function 7 is the same in all terms in the sum. Remark-
ably, also this function can be written in terms of the vertex function V/,

1(1) 2,3,4;5, 6) = _gz[(VDZ)(lr 23455, 6) o (VDﬁ)(123l 45, 6) T (VD2)(141 23;5, 6)] e
(6.7)
The sum in the fourth term on the right hand side of the new integral equation (6.3),

Zdazalnaa46a5“](1,2'3,4; 5, 6) ) (68)

extends over the same permutations of gluons as the term discussed before (see (6.6)).
Again the function J is the same in all terms in the sum, and it can be written as a
superposition of vertex functions V as

J(1,2,3,4;5,6) = —g*[(VD2)(134,2;5,6)+ (V.D;)(124,3;5,6)
~(VDy)(12,34;5,6) — (VD5)(13,24;5,6)].  (6.9)

We would like to emphasize that the symmetry of the sums contributing to the inhomo-
geneous term of the new integral equation is an outcome of our calculation. We have not
used it to derive the new equation. That we find the symmetry in the resulting equation
gives us confidence that we did not make any errors in the long and tedious calculation
leading to (6.3). We also would like to stress that the representation of a part of the
inhomogeneous term as a superposition of well-known vertex function V is an outcome of
our calculation and was not used to derive the new equation. Unfortunately, we do not
know a way that directly leads to the comparatively simple structure arising in the terms
discussed above.

Before coming back to the terms in the equation that can be decomposed into vertex
functions V we discuss in the following section the first term on the right hand side of
equation (6.3).
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6.3 A new piece in the field theory

The first term on the right hand side of the integral equation (6.3) differs in its structure
from the other terms. We will therefore discuss it separately in this section. The study of
the other terms will be resumed in section 6.4. We start by giving an explicit representation
of the term under consideration and proceed by listing its properties. After that we
speculate on the place the new term might find in the effective field theory of unitarity
corrections.

6.3.1 Explicit representation and properties

The first term on the right hand side in (6.3) has the following color and momentum
structure:

(Wnlaza3a4a5na -D2) (klv k?a k31 k41 kS) ke) o Z dala;ugdnm;ag (WDZ)(]-l 21 3; 41 5: b) .
(6.10)
The sum extends over all (ten) partitions of the six gluons into two groups containing
three gluons each,

Z da;u;aadaqag,ug (WDZ)(1| 27 3;4) 51 6) i dam;agduﬂsas(WD'l)(lr 21 3;41 5v 6)
+ dayaz0,dagasas (WD2)(1,2,4;3,5,6) + ...
+ dayas06%azase4 (W D2)(1, 5,6;2,3,4) . (6.11)

The function WDy is the same in all permutations. (Again this is an outcome of our
calculation and was not assumed at any stage when the equation (6.3) was derived.) The
sum thus contains the same permutations of the six gluons as the second term (6.4) on
the right hand side of (6.3). For the notation to be consistent the function W®1@203e4¢s26
should be understood as an integral operator acting on a BFKL amplitude D,. It thus
carries two more momentum arguments q; for the momenta entering from above. We will
again suppress these two momenta in the following.

In contrast to the other terms in (6.3) discussed so far the function W does not permit
a decomposition into the vertex functions V known from the two—to—four transition vertex.
We therefore give its full momentum space representation as we have obtained it as a result
of our calculation. We again use the standard integrals defined in section 2.7. Then WD,
has the explicit representation

6
(W Dy)(ky, ka, ka; ka, ks, ke) = 51’—6 X
{2[c(123456)

— b(12345) — b(12346) — b(12356) — b(12456) — b(13456) — b(23456)

+b(1234) + b(1235) + b(1236) -+ b(1456) + b(2456) + b(3456)

+a(1245, 3) + a(1246, 3) + a(1256, 3) + a(1345, 2) + a(1346, 2) + a(1356,2)

+a(2345, 1) + a(2346, 1) + a(2356, 1)

— b(123) — b(456)

—a(124,3) - a(125,3) — a(126, 3) — a(134, 2) — a(135,2) — a(136,2)

—a(234,1) — a(235,1) — a(236,1) +

e e e
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— a(145,23) — (146, 23) — a(156, 23) — a(245, 13) — a(246, 13) — a(256, 13)

—a(345,12) — a(346, 12) — a(356, 12)

+a(12,3) + a(13,2) + a(23, 1) + a(45, 123) + a(46, 123) + a(56, 123)

+a(14, 23) + (15, 23) + a(16,23) + a(24, 13) + a(25, 13) + (26, 13)

+a(34,12) + a(35,12) 4 a(36, 12)

—a(1,23) — a(2,13) — a(3,12) — a(4,123) — a(5, 123) — a(6, 123)]
+[£(12345) + t(12346) + t(12356) + ¢(12456) + t(13456) + ¢(23456)

—£(1234) — t(1235) — t(1236) — ¢(1456) — t(2456) — t(3456)

—5(1245, 3) — s(1245, 6) — s(1246, 3) — (1246, 5) — 5(1256, 3) — (1256, 4)

—5(1345,2) — 5(1345, 6) — 5(1346, 2) — s(1346, 5) — s(1356, 2) — s(1356,4)

—5(2345,1) — (2345, 6) — s(2346, 1) — $(2346, 5) — (2356, 1) — 5(2356, 4)

+¢(123) + ¢(456)

+5(124, 3) + (124, 56) 4 (125, 3) + (125, 46) + s(126, 3) + 5(126,45)

+5(134,2) + (134, 56) + (135, 2) + s(135, 46) + s(136, 2) + s(136, 45)

+5(234, 1) + (234, 56) + (235, 1) + 5(235, 46) + 5(236, 1) + 5(236,45)

+ (145, 23) + (145, 6) -+ s(146, 23) + s(146, 5) + s(156, 23) + s(156, 4)

+ (245, 13) + 5(245, 6) 4 s(246, 13) -+ 5(246, 5) + 5(256, 13) + 5(256, 4)

+5(345,12) + s(345, 6) + s(346, 12) + 5(346, 5) + s(356, 12) + $(356, 4)

—5(12,3) — s(12,456) — s(13,2) — s(13,456) — s(23, 1) — s(23,456)

— 5(45,123) — s(45,6) — s(46,123) — 5(46, 5) — s(56, 123) — $(56,4)

— 5(14,23) — s(14, 56) — 5(15,23) — 5(15,46) — 5(16,23) — s(16, 45)

—5(24,13) — 5(24, 56) — 5(25, 13) — $(25, 46) — $(26, 13) — 5(26, 45)

—s(34,12) — 5(34,56) — 5(35,12) — s(35,46) — $(36, 12) — s(36, 45)

+5(1,23) + 5(1,456) + 5(2, 13) + s(2, 456) + s(3, 12) + 5(3, 456)

+5(4,123) + s(4, 56) + s(5, 123) + s(5, 46) + s(6, 123) + s(6,45)]} . (6.12)

On first sight this expression appears to be very complicated. Closer inspection reveals
that it has a series of very interesting properties. Some of them very much resemble those
of the function V we have described in sections 3.2 and 3.4. We will now study these
properties. At subsection 6.3.2 we will elaborate on the question how the new piece (6.10)
has to be interpreted in the context of the effective field theory structure of unitarity
corrections.

Let us first have a look at the symmetry properties of the function W. We find that
W is fully symmetric in its first three arguments

W (ky, ko, ka; ky, ks, ke) = W (ka, ki, ka; ky, ks, ke)
W (ka, ka, ki ka, ks, ke) (6.13)

as well as in its last three arguments,

W (ky, ko, ka; ka, ks, ke) = W (ky, ks, ks; ks, ky, ke)
= W(ki, ko, kaj ke, ks, ks) - (6.14)

6.3. A new piece in the field theory il

Notably, the color structure corresponding to that permutation of momenta, i. e. the tensor
dayaza3Qagasagy Nas exactly the same symmetry properties. Further, W is symmetric under
the exchange of the first three and last three arguments,

W (ky, ka, ka; ky, ks, ke) = W (ky, ks, ke; ki, ko, k) - (6.15)

From these symmetries of the function W and from the permutations that enter the sum
in (6.10) we can conclude that the full expression WW?19293¢a5a6(§ 2 3 4 5 6)is completely
symmetric in the six outgoing gluons, that is under the simultaneous exchange of color
labels and momentum arguments.

Next we look at the behavior of W when one of its momentum arguments vanishes.
Not unexpectedly, we find that W vanishes whenever one of the six gluons carries zero
transverse momentum,

W(klxk2|k3;k4yk5:k6)lki=o=0 (1 € {1,,6}) (616)

Starting from the explicit representation (6.12) the proof is straightforward. Of course,
we again have to use the relations between the different standard integrals mentioned at
the end of section 2.7 and the fact that the gluon trajectory function f(k) vanishes for
K="0.

Further we find that the function W is infrared finite. The proof just requires a
close inspection of the standard integrals occurring in (6.12). It is easily seen that the
integrals come in the infrared combinations (3.11) and (3.12) discussed already in section
3.2. (Again, the integrals in (6.12) have been arranged in a way that hopefully makes this
transparent.)

The function W cannot be decomposed into a superposition of vertex functions V'
known from the two-to—four vertex. But it turns out that a decomposition into a sum of
G-functions (3.21) is possible,

4
(W Dy) (K, a, ks; ka, ks, ko) = %x

[G(123, -, 456)

— G(12,3,456) — G(13, 2, 456) — G(23, 1, 456)
—G(123,4,56) — G(123,5,46) — G(123, 6, 45)
+G(1,23,456) + G(2, 13, 456) + G(3, 12, 456)
+G(123,45,6) + G(123,46,5) + G(123, 56, 4)
+G(12,34,56) + G(13, 24, 56) + G(23, 14, 56)
+G(12,35,46) + G(13, 25, 46) + G(23, 15, 46)
+G(12,36,45) + G(13, 26, 45) + G(23, 16, 45)
—G(1,234,56) — G(2,134,56) — G(3, 124, 56)
~G(1,235,46) — G(2, 135,46) — G(3, 125, 46)
~G(1,236,45) — G(2,136,45) — G(3, 126, 45)
~G(12,345,6) — G(12,346,5) — G(12, 356, 4)
— G(13,245,6) — G(13,246,5) — G(13, 256, 4)
- G(23,145,6) — G(23,146,5) — G(23, 156,4) +
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+G(1,2345,6) + G(2, 1345,6) + G(3, 1245, 6)
+G(1,2346,5) + G(2, 1346, 5) + G(3, 1246, 5)
+G(1,2356,4) + G(2,1356,4) + G(3, 1256, 4))] (6.17)

This decomposition has a very strong implication. The function G is conformally invariant
in two-dimensional impact parameter space (see section 3.4). Therefore, the decompo-
sition (6.17) immediately proves the conformal invariance of the function W in impact
parameter space. i

It is worth noting that all the properties of the new piece (6.10) have also been found
in the two-to—four transition vertex V,_,4 (see chapter 3). A closer look reveals that even
the construction of the functions V and W in (3.6) and (6.12) follows the same scheme.

6.3.2 Interpretation in view of an effective field theory

It is now natural to ask where the new piece (W D;)*192929425% finds its place in the
effective field theory of unitarity corrections. As we have seen in the preceding section
the new piece has properties that very much resemble those of the two—to—four transition
vertex Va_y4. It is fully symmetric in the six gluons, it is infrared finite, and it vanishes
when one of the gluon momenta vanishes. In addition, it is conformally invariant in impact
parameter space. It seems to be perfectly obvious that the new piece W@19203848506 jg 5
new two-to-six gluon transition vertex Va6, and that it constitutes a new element of
the effective field theory. However, it might be too early to draw this conclusion. There
is also a second possibility [65]. In this proposal a coupling scheme is chosen in the first
three gluons and in the remaining three gluons. Then the function W is split into several
parts according to the symmetry or antisymmetry under the exchange of the gluons 1 and
2, say, and under the exchange of the pair (12) of gluons with gluon 3, and analogously
for the other three gluons. Based on the result of this procedure it is possible to define
new two-to—four vertices with symmetry properties different from those of the well-known
two-to—four vertex V3_,4. Based on these one can in turn define new four—gluon amplitudes
that then become basic elements of the effective field theory. Due to this a direct transition
from two to six reggeized gluons is avoided. This second possibility has not yet been fully
investigated. Finally, there is a third possibility. As we will see in the following section, a
problem occurs when we try to understand certain contributions to the other terms in the
new integral equation (6.3). It is conceivable that the resolution of that problem might
possibly bring about an ’interference’ with the term under consideration in this section.
This is very unlikely since the other terms can be written as superpositions of the well-
known vertex functions V' whereas this is not possible for the function W. Nevertheless,
this third possibility can at present not be excluded.

To conclude this section, I can say that the interpretation of the new piece as a two-to—-
six gluon transition vertex is certainly very tempting. But the other possibilities are still
viable and deserve further study before a final interpretation of the new piece is possible.

6.4 Further reggeization

Now we come to discuss the other terms that are present in the new integral equation
(6.3) for the part D] of the six-gluon amplitude. In section 6.2 we have already shown
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that these term can be written as superpositions of well-known vertex functions V. We
will in this section disregard the new piece discussed in the previous section.

In chapter 4 we already encountered a situation similar to the one which we find
here in the integral equation (6.3). Also there the inhomogeneous term of the integral
equation for Dé could be written as a superposition of vertex functions V. It was a
characteristic indication for the occurrence of a further reggeization of the amplitude D{
with respect to the irreducible four-gluon amplitude D]. This idea even allowed us to find
the exact solution of the equation. We cannot expect that the remaining part D/ of the
six-gluon amplitude reggeizes completely. But the occurrence of the vertex functions in
the inhomogeneous term of its equation strongly suggests that a part of D} will reggeize.
To gain further insight we should therefore construct an ansatz for the remaining part in
order to simplify the integral equation (6.3). The remaining part D§ should thus be split
into a reggeizing part and an irreducible part,

Ol=pi® Lot (6.18)

where this time the term ’reggeizing’ refers to the reggeization with respect to the four—
gluon compound state, cf. the discussion at the end of sections 4.3 and 5.1. The reggeizing
part should be a superposition of irreducible four—gluon amplitudes, symbolically

DR = Dl (6.19)

The problem is now to find the correct color and momentum structure for the right hand
side of this symbolic equation.

We should have in mind that the inhomogeneous term in the integral equations for
D, that is the quark loop, is always an excellent source of inspiration for the choice of
a reggeizing part DE. To make a good guess for the reggeizing part Dé'R we should
therefore have a close look at the inhomogeneous term of the new integral equation (6.3).

Let us first look at the terms (6.7) and (6.9) containing the functions I and J. We will
pick one permutation in the sums (6.6) and (6.8) only, the other permutations can then
be treated in analogy. We see immediately that the color and momentum structure in the
first four gluons in the terms

a6, 1(1,2,3,4;5,6) (6.20)

and
dretiss g, (1,2, 3,4:506) (6.21)

is exactly the same that we know from DJ.
A second observation we make is a certain mismatch between [, and dy. tensors.
Whereas there are terms of the kind

2y Favsna Fucasen (1,3, 814, 5,6) (6.22)

present in the equation which can be written in terms of V' the corresponding terms with
dape tensors (the new piece, see section 6.3) cannot be written in a similar way. This
already indicates that the f- and d-tensors have to be treated differently.

In order to come from an ansatz of the form (6.19) to the cancellation of the inhomo-
geneous term in the integral equation we have to use the integral equation (3.4) for the
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irreducible part DJ of the four-gluon amplitude. We want to write the arguments of the
DJ’s in the ansatz in such a way that they have exactly the same momentum structure
which we find in the vertex functions V in (6.3). This is in complete analogy to the parts
DE in which the momentum structure was taken from the quark loop. In the case of 104
we could also keep the color structure. This was possible because the color structure of
the two—gluon amplitude D, was trivial, i.e. the two gluons were always in a color singlet
state. That allowed to factorize the two-gluon amplitude into a color part (d4,q,) and
a momentum part. Now the situation is more complicated since such a factorization is
not possible for the irreducible four-gluon amplitude. We have to use the full amplitude
Di"‘b’b"b‘. Since we certainly need the six color labels ay, ..., ag in the ansatz (6.19), the
mathematical procedure we have to use is the contraction with a tensor O,

©®10203a4a5a63b1 bbby D‘{blblbﬂbﬂ 2 (6.23)

The tensor © is an invariant tensor in the ten—fold tensor product @}, [su(N,)] of the Lie
algebra. It will obviously be very difficult to find the correct tensors for the contractions
in this huge tensor space. We have to hope that the situation is in a certain sense more
simple. It will be necessary to find restrictions on the tensors from the inhomogeneous
term in the new integral equation. Now a problem arises. In the term

dueaesess, (123, 4;5,6) (6.24)

for example the first four gluons are in an overall color singlet state, as are the last two
gluons. Obviously, the color tensor necessary for the contraction with D{ bibabsba i fixed
by the inhomogeneous term only in the case in which the gluons with labels b; and b, are
in a color singlet state. For the other irreducible representations we have no hint from
the inhomogeneous term which would restrict the tensor ©. This problem seems to be
a conceptual one in our approach. In the first step, that is for identifying a reggeizing
part DE in the n-gluon amplitude, the quark loop was sufficient to fix the reggeizing part.
Here it might be that the correct color tensor for the non-singlet states cannot be fixed
unambiguously. Possibly the solution of this problem requires a better knowledge of the
irreducible four-gluon amplitude Di.

In spite of this conceptual problem it is well possible that one can find a simple ansatz
that leads to further insight. In addition, we have the Ward type identities and the
reggeization tensors derived in chapter 5 that can hopefully help us to find an ansatz of
the kind (6.19) with a good choice of the tensors ©.

In section 5.2 we have found indications that a certain type of reggeized gluon has a
special meaning in that is can occur in any amplitude, namely the reggeized gluon of type
f in the adjoint representation. It seems natural to make an ansatz in which this reggeized
gluon plays an important role. To this end we split the amplitude Dé'R we want to guess
(see (6.19)) into three parts,

Pt st pli e (6.25)

The f-type reggeon can split into three gluons with a tensor d®1%29s, We therefore make

the ansatz
O§S = 5 g ploRkeies 1135 4.6, 6) . (6.26)

The sum extends over all possible groups of three gluons that are then merged into one
reggeized gluon entering the irreducible four-gluon amplitude DJ. If we insert this into
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the integral equation (6.3) and apply the integral equation (3.4) for DI to the inserted
term on the left hand side, those inhomogeneous terms on the right hand side are exactly
cancelled which contain a function V in which three momenta occur in a sum.

Since a f-type reggeon can also split into two gluons with a tensor f,,q,c we make the
following ansatz for Dg’ +

2
DI = L5 frane osasd DL (12,34,5,6). (6.27)

The sum extends over all possible pairs of pairs out of the six gluons. The two gluons of
each pair then merge into one reggeized gluon entering the amplitude D]. Let us now see
what happens when we insert this ansatz into the integral equation (6.3). We can then
again apply the integral equation for the amplitude D} to the term inserted on the left
hand side. This exactly cancels all terms on the right hand side contained in the functions
L. The latter are thus completely eliminated by the ansatz DSI’m. In addition, a part of
the inhomogeneous terms containing the functions I and J is cancelled. Using the identity
(2.43) we can split the tensor d*2°1%3%4 in (6.8) into fundamental dqpe, fabe, and d,p tensors.
(There are two decompositions of this kind possible. We should choose the one 'matching’
the momentum structures.) Then our ansatz Dé'm’ cancels all those terms on the right
hand side of the integral equation which contain a function V' that is multiplied with a
tensor of the kind fu, 450 e050400506+

The cancellations mentioned above are of course accompanied by the emergence of
other terms in the integral equation that contain convolutions of the function Di with
kernels and products of D,{ with trajectory functions . They will eventually contribute
to a new two-to—four gluon vertex that describes the transition of two of the four gluons
in Df to four outgoing gluons.

But there is also a further class of possible terms in the equation which cannot con-

tribute to such a vertex. In these terms a splitting of one gluon into two happens at the
same moment in rapidity in which two other of the gluons interact via a kernel K»_,3 to
give three gluons. Such terms are contained in the last but one term in the integral equa-
tion (6.3) when the known solution (4.6) of the five gluon amplitude is inserted. The ansatz
Dé’ﬂ has the advantage of cancelling such terms by virtue of the mechanism (4.12) that
brings about reggeization in a three-gluon subsystem. Such terms that contain a one-to—
two transition and a two-to—-three transition at the same moment in rapidity seem to be
very difficult to be interpreted in the sense of a field theory. Therefore their cancellation
is very appreciable in view of an effective field theory of unitarity corrections. We should
mention that the ansatz Dé‘Rl does not produce such terms.
The choices Dé'm, Dé'm of reggeizing parts seem to be very successful so far. Al-
though the inhomogeneous term in the integral equation contains information only for the
color singlet state of the two gluons that split (see discussion above) we have found a good
ansatz in both cases inspired by the reggeization tensors derived in chapter 5.

As we have already mentioned earlier the terms containing dgp. tensors should be
treated differently. This becomes clear when we try to make an ansatz similar to Dé‘ =
with dgpe tensors instead of the fup.,

2 .
o % 3 dayagodagaga D) 9 (12, 34,5,6) (6.28)
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This ansatz produces too many V’s in the integral equation. Each D] brings about three
functions V' according to the integral equation (3.4). But the equation does not contain
terms equivalent to the ones in the functions L with (6.5). It seems that the two gluons
can only split with d-type tensors if they are in a color singlet. But even with the help of
a projection

2
—% 3 " dayarctossa, DL %% (12,34, 5,6) (6.29)

we would produce too many V’s — this time with other color weights, but this does not
help. A possible way out might be to define a new four-gluon amplitude D{ by the integral
equation

4
(w - Zﬁ(kf)) Di1°2°%3% (ky Kok, ka) = 8aa30a504(V D2) (K, ki ks, ka)
i=1
+ S Kl @ pltibababe  (6.30)

The full amplitude DJ can then be obtained from the sum of three different D}’s. With
the function D] instead of D} an ansatz of the kind (6.28) might work. A similar ansatz
can then be formulated for the J,; tensor terms as well. With such an ansatz we will
be led to an equation for Dé" that contains the old two—to—four transition vertex acting
on two of the gluons in DI, but this is only true if the two gluons are in a color singlet
state. However, there will be more terms. Especially, there will be terms that contain a
two-to-three transition at the same time with a one-to-two transition. This seems to us
rather unattractive. In addition, there is an ambiguity in this ansatz since we actually do
not know how to use the d-type tensors of chapter 5 in the color non-singlet channel.

It seems natural to ask whether the Ward type identities found in chapter 5 can provide
help for finding a good ansatz of the kind (6.19). We will make an instructive observation
here. Let us to this end assume for a moment that

PR = plB | pLR2 (6.31)

is a reggeizing term, and let us see if it fulfills the Ward type identity. For this we set
one momentum argument to zero. Due to the large number of terms in (6.26), (6.27) the
calculation is a bit tedious, and we only describe the outcome here. The result is that the
ansatz PR does not fulfill the Ward type identity exactly. The outcome of
R

P . (6.32)
differs from the one expected from the Ward type identity (see section 5.1) only by terms
that do not contain fy. tensors. Roughly speaking we can say that the Ward type identity
is fulfilled modulo dypc and &,y tensors. This is of course the best we can expect since these
tensors have certainly not been taken into account correctly in PR (actually, they have
been left out completely). This 'partial’ applicability of the Ward type identity to P gives
us further confidence that the choices (6.26), (6.27) are the right ones for a reggeizing part
of the amplitude D). The prove of the ’partially’ fulfilled Ward type identity heavily
relies on the condition (2.54) for invariant tensors. This invariance condition contains
contractions of an invariant tensor with f,,. tensors since they have a special meaning for
the adjoint representation. A similar equation with dgp. tensors or even with . tensors
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does not exist. This certainly makes it technically very difficult to find an ansatz that
fulfills the Ward type identities also for the dgp. and &y tensors.

It was our intention in this section to give a survey of the results obtained so far in
the second step of the analysis of the six-gluon amplitude. We have encountered technical
as well as conceptual problems in finding a correct ansatz for the piece that reggeizes
with respect to the irreducible four-gluon amplitude. Specifically, the problems concern
the choice of the color structure of the ansatz. With the help of the results found in the
previous chapter we have been able to find at least a part of a promising ansatz. We have
outlined the problems related to the dgp. and &, tensors. So far our analysis shows that
the seemingly obvious choices for the part Dé’m of the ansatz are unlikely to lead us to
deeper insight on the field theory structure, and a more refined ansatz will be required.

6.5 On a possible Pomeron-Odderon-Odderon vertex

The Odderon is the C' = —1 partner of the Pomeron, i.e. it carries negative charge parity.
In perturbative QCD it consists of a compound state of three reggeized gluons described by
the three-particle BKP equation [18, 20]. The three gluons are in a completely symmetric
state, and the color part of the wavefunction is a dup. tensor. A natural question is whether
a BFKL Pomeron can be coupled to two Odderons. The six-gluon amplitude is the obvious
place to look for such a Pomeron-Odderon-Odderon vertex. The triple Pomeron vertex
arose from the two—to—four gluon transition vertex V5,4 when the latter was projected
onto three BFKL eigenfunctions (see section 3.4). We can therefore in analogy try to
project the inhomogeneous term of the new integral equation (6.3) onto two Odderon
wavefunctions from below. The inhomogeneous term in that equation consists of several
contributions, and we will concentrate here on the piece discussed in section 6.3. We
therefore ask whether the integral

6
/ (H d’k,-) (Were200495%8 1)) (1 Ky, ke, kg, ks, Ke)
i=1
Xda[azﬂgda4ﬂsa° Wl (kl) k21 ka) ‘1’2 (k‘h k51 ks) (633)

is different from zero. Unfortunately, the wavefunction ¥ of the Odderon is not known
explicitly. But conformal invariance places strong constraints on the wavefunction. In
[32] the wave function of the Odderon in impact parameter space was found to have the
general form

h
3
W(p1, p2, p3) = (%i?) W) . (6.34)
Pi0P20P30
h is the conformal weight of the Odderon state and z is the anharmonic ratio
¢ = P12P30 (6.35)
P13P20
with
Pij = pi—Pj- (6.36)

The wavefunction ¥ vanishes when two of the coordinates of the three gluons in the
Odderon coincide. This property of the Odderon drastically reduces the number of terms
in (We12930495e8 1)) that can give a non-vanishing contribution to the integral (6.33). If
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a term in (WD;) depends only on the sum of two momenta, say k; and kg, then this term
is after Fourier transformation to impact parameter space proportional to a delta—function
of the two corresponding coordinates, i.e. proportional to §(p; — p2). This implies a zero
in the Odderon wavefunction and the corresponding term does not contribute to (6.33).
Only very few standard integrals can actually give non-vanishing contributions. Some
of them give identical results in the integral (6.33) due to the symmetry of the Odderon
wavefunction. (They are in this sense equivalent to each other as far as their contribution
to (6.33) is concerned.) The possible contributions to the above integral can in this way
be reduced to the following infrared finite combination of standard integrals:

a(14,25) - %3(14, 25) ~ 75(14,36). (6.37)

We now have to look for these terms in the new piece (W®19223%49595 ),), Interestingly,
the first of the permutations in (6.11) — the color tensor of which exactly matches the
color structure of the two Odderons — does not contain terms equivalent to the above
combination. But the other permutations do contain such terms. For example, the term

Fajoans Quyaeas W D2) (1, 2,5;3, 4,6) (6.38)

contains exactly the terms (6.37). The corresponding color contraction gives a factor

N2-4\’

da1a2u5da3u4ngdulaza;,dn;a.r,a; ==, ( CI\’ ) (ch = l) . (639)

c
We can therefore conclude that the new piece described in section 6.3 admits a Pomeron—
Odderon—Odderon vertex. We do not study its properties any further here. It should
probably be possible to write it in the form of a conformal three—point function as it was
possible for the triple Pomeron vertex. We would like to mention that also some of the
other inhomogeneous terms in the integral equation (6.3) give non-vanishing contributions

when inserted in the integral (6.33) instead of (WD,).

In view of the presently somewhat unclear situation with the inhomogeneous terms in
(6.3), especially with the new piece (see section 6.3), it seems too early for a conclusive
interpretation of such a Pomeron-Odderon-Odderon vertex in the context of an effective
field theory of unitarity correction.

6.6 The six-gluon amplitude and the effective field theory

In view of the problems and open questions mentioned in sections 6.3 and 6.4 it seems too
early to draw final conclusions concerning the interpretation of the six-gluon amplitude
in view of the effective field theory of unitarity corrections. Nevertheless, we have made
substantial progress in the study of this amplitude. We have identified a reggeizing part
DE that is a superposition of BFKL amplitudes. We have derived the integral equation for
the remaining part. All terms occurring in this new equation have been analyzed, including
the new piece that was even found to be conformally invariant in impact parameter space.
Unfortunately, its interpretation has not yet been clarified. We have then speculated on a
further reggeizing part of the six-gluon amplitude. Here we have encountered difficulties
that have prevented us from solving the problem. But we have found further confirmation
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for some of the conjectures which we have formulated in the previous chapter. Thereby we
have made some progress in the understanding of the phenomenon of reggeization. Finally,
we have found evidence for the existence of a possible Pomeron-Odderon-Odderon vertex,
but also here it seems too early for a conclusive interpretation.

The most important result of this chapter is contained in the integral equation for the
remaining part D{ of the six-gluon amplitude. The occurrence of the vertex function V'
in this equation is an extremely strong indication for the fact that further reggeization
with respect to the four-gluon compound state takes place in the six—gluon amplitude.
Exactly this is the necessary prerequisite for the emergence of the field theory structure
in the unitarity corrections.
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The subject of this thesis was the Regge limit of Quantum Chromodynamics. As the
physical process to consider we have chosen the scattering of highly virtual photons at
very large energy. This process is from a theoretical point of view very clean since it can
be treated within perturbation theory. In leading logarithmic approximation it is described
by the BFKL Pomeron corresponding to the exchange of a bound state of two reggeized
gluons in the t-channel. The BFKL Pomeron leads to a power-like growth of the total
cross section. Thereby it eventually violates the Froissart-Martin bound which is derived
from unitarity. According to this bound total hadronic cross sections cannot grow faster
than logarithmic with energy. This problem renders the leading logarithmic approximation
inconsistent. It necessitates the inclusion of subleading corrections to restore unitarity.

We have investigated unitarity corrections in the framework of the generalized leading
logarithmic approximation. The unitarity corrections comprise contributions with a larger
number of reggeized gluons in the t-channel. As a framework for our investigations we have
chosen the approach formulated by Bartels. In this approach a minimal set of subleading
contributions is identified that leads to a unitary scattering amplitude, and unitarity is
also restored in all subchannels. We do not make use of the large-N, approximation, i.e.
the full structure of the gauge group is kept. The objects of study in this approach are
n-gluon amplitudes obtained from the full scattering amplitude with the help of t-channel
reggeon unitarity relations. They are designed to describe the production of n gluons in
the t-channel coupled to the external photons via a quark loop. The n-gluon amplitudes
obey a tower of coupled integral equations that generalize the well-known BFKL equation.

The known results on the three- and four-gluon amplitudes suggested that the unitar-
ity corrections can be cast into an effective 2 + 1-dimensional conformal field theory. The
two space-like coordinates correspond to impact parameter space, the time-like coordinate
to rapidity. The first number-changing element of the effective field theory, the two-to—
four gluon transition vertex, had been found in the analysis of the three- and four-gluon
amplitudes. The aim of this thesis was to extend the knowledge about the effective field
theory. The study of the five- and six-gluon amplitudes is the natural next step towards a
better understanding of the unitarity corrections. The phenomenon of reggeization is very
important for the emergence of the field theory structure. We have therefore also tried
to gain more insight into the mechanism of reggeization. Especially the color structure of
the n-gluon amplitudes was of interest in this respect.

In order to study the five- and six—gluon amplitudes it was first necessary to develop
suitable methods that allow to treat the problem in spite of its complexity. The latter
is mainly caused by the huge number of convolutions of amplitudes with integral kernels.
We have used Birdtrack notation to accomplish the contractions in su(V,) algebra. A
classification of the momentum space integrals occurring in the equations has been per-
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formed, and we have developed an algorithm for the implementation of the momentum
space convolutions on a computer. The methods can be used for higher n-gluon amplitudes
as well.

The results on the three— and four-gluon amplitudes have been reviewed in this thesis.
The reggeization in these amplitudes was discussed. The general method used to tackle
the integral equations has been explained with the example of the four-gluon amplitude.
We have described the properties of the two—to-four gluon transition vertex and of the
irreducible four-gluon amplitude which are important also for the study of the higher n-
gluon amplitudes. The field theory structure has been explained and we have emphasized
its close connection with reggeization. The conformal invariance of the transition vertex
has been reviewed. A new representation of the vertex was given in which the vertex is
written as a sum of convolutions of BFKL kernels and free propagators only.

It was possible to solve the integral equation for the five-gluon amplitude. We have
found the amplitude to be a superposition of two-gluon and four-gluon compound states.
Stated differently, one part of the amplitude reggeizes with respect to the two—gluon state
and the other part with respect to the irreducible four-gluon amplitude. This result
generalizes the concept of reggeization to the higher level of the four-gluon compound
state.

‘We then turned to the phenomenon of reggeization. It was observed that the reggeizing
parts of the amplitudes with up to five gluons obey identities of a Ward type. These relate
a given n-gluon amplitude in which one momentum argument is set to zero to the (n —1)-
gluon amplitude. The Ward type identities were even shown to hold for general n for
that part of the amplitude that reggeizes with respect to the two—gluon state. We have
formulated conjectures concerning the generalization of the Ward type identities to higher
n-gluon amplitudes. The possible significance of the Ward type identities lies in the fact
that they place strong constraints on the color structure of the amplitudes.

It was possible to study the reggeization of the gluon in the two-gluon compound state
in very general form. The reggeized gluon represents an infinite sum of Feynman diagrams
in which many gluons arrange to form a collective excitation of the gauge field. We have
been able to find the color tensors accompanying this merging of gluons for all possible
higher "Fock states’ of a reggeized gluon that is part of a BFKL amplitude. This color
structure carries the main information about the mechanism of reggeization in the two—
gluon amplitude. It was possible to assign a kind of quantum number to the reggeized
gluon according to the way it is composite from gluons in color space. The possible
quantum number assignments include two reggeized gluons in the adjoint representation.
We have conjectured that one of these (the f-type reggeon, see section 5.2) acquires a
special meaning. Namely, we expect it to occur also in more complicated amplitudes,
like for instance in the irreducible four-gluon state, in the same manner as in the BFKL
amplitude. For the other types we expect a more complicated behavior in other amplitudes.
Evidence for this conjecture was found in the investigation of the six-gluon amplitude.

The six—gluon amplitude turned out to more difficult to understand than the lower
n-gluon amplitudes. We applied our so far very successful method to split off a reggeizing
part and derived a new integral equation for the remaining part. This step was the one
in this thesis that required the greatest computational effort. The inhomogeneous term of
the resulting integral equation consists of two pieces. One piece can be decomposed into
functions that are known from the two—to—four vertex. This part clearly indicates that
a further reggeization takes place. Due to technical and conceptional difficulties we have
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not been able to gain a full understanding of this further reggeization. Nevertheless, we
have found that it is possible to arrange all parts in such a way that a transition from
two to six gluons can happen via the repeated transition described by the known two—to—
four transition vertex. But this transition is uniquely determined only if the two gluons
undergoing the transition are in a color singlet state in both steps. The generalization of
the vertex to other color states causes serious problems. We have discussed some directions
that might lead to a resolution of these problems. Another piece was found in the new
integral equation that does not allow a decomposition in terms of the known two-to—four
vertex. We have discussed its properties in detail, including its conformal invariance.
This piece might allow an interpretation as a new two-to-six transition vertex, i.e. as
a new element in the effective field theory. However, a different interpretation seems
viable as well. Therefore, a conclusive interpretation of this new piece has to be deferred
until further study. Finally, we have speculated on the existence of a Pomeron-Odderon—
Odderon vertex. In fact, we have found terms in the six-gluon amplitude that do allow
such a coupling. But a full understanding of the possible occurrence of such a vertex
requires further investigation as well.

To summarize we can say that the amplitudes with up to five t-channel gluons are
by now quite well understood. We have made considerable progress in the understand-
ing of the phenomenon of reggeization. The first step towards finding the structure of
the six-gluon amplitude has been performed. The result clearly indicates that a further
reggeization takes place in the four-gluon compound state. This feeds the hope that the
field theory structure will persist also to these more complicated elements of the unitarity
corrections. The next step in the investigation of the six-gluon amplitude seems to require
more refined methods. We have to leave their discovery for future research.

It is conceivable that the use of the integral equations is not sufficient to resolve the
mentioned problems with the six-gluon amplitude. It would therefore be desirable to
derive the effective field theory structure from a different starting point as well. Lipatov’s
effective action approach might be best suited here. A different approach to the effective
field theory would be very advisable also from a practical point of view. The computational
effort necessary to investigate the n-gluon amplitudes increases very rapidly with n. The
six-gluon amplitude might already be at the edge of being too complex to be treated with
our method.

The study of the unitarity corrections with up to six reggeized gluons in the ¢-channel
has shown that their structure is very many—faceted. The Regge limit of QCD is a long-
standing and difficult problem and much hard work will still be required to unravel its
mysteries.

Appendix A

Color Algebra

In this appendix we focus on more technical details of the color algebra that is a recurrent
theme throughout this thesis. In section A.1 we explain how the notation introduced in
section 2.3 can be used to contract su(/N,) tensors of arbitrary rank. We have applied
the method for tensor contractions with up to six external gluon lines. Some of the basic
results needed for the investigation of the n-gluon amplitudes are collected in section A.2.

A.1 A method for contractions in su(NV,) algebra

When doing the calculations sketched in chapters 3 through 6 a standard task would be
to calculate contractions of the type

ﬁ\ = & fo 1 Fim fen - (A.1)

We will now outline an algorithm to solve problems of this kind. We restrict ourselves
here to contractions where the outgoing lines correspond to gluon color representations.
The method is, however, readily extended to arbitrary tensors involving quark represen-
tations as well. The following prescription can (and to avoid errors should) be carried out
diagrammatically.
Let us call ’standard tensors’ such tensors that are the sum or the difference of traces
of generators of the form
Ui ) I o ) (A.2)

like the ones defined in (2.33), (2.34). The typical examples that occur in the analysis
of the integral equations are fupe, dabe, d°°¢, fobede and debede/  The first step is to
express all standard tensors occurring in the diagram by their representation in terms
of generators, that is — diagrammatically speaking — by quark loops according to their
respective definitions. (Here the terms 'quark line” and ’gluon line’ refer to their respective
color representation only.) For each of the standard tensors we then get two quark loops.
The whole diagram is thus transferred to a sum of 2™ diagrams, m being the number of
standard tensors involved. Each of these diagrams contains only gluon lines and closed
quark lines. It is natural to call all gluon lines starting on some closed quark line and
ending on some closed quark line ’inner’ gluon lines.
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The key ingredient for our method is the decomposition of a quark-antiquark state
into a singlet and an adjoint representation mentioned already in section 2.3,

1
8985 = 2(t*)3(t*)s + TRRE (A3)
c
@, ..., 0 being color labels in the fundamental representation. In birdtracks it is
— 1
A (A1)
This is now in reversed order,
_peg ™
34 = ey a9

applied to all inner gluon lines. To do this properly one has to draw all quark loops in
the diagrams counterclockwise before. This is not a mathematical operation although it
might be quite some exercise in drawing. Applying (A.5) again considerably increases the
number of diagrams, but the advantage is that we now can read off the result. The reason
for this is the following. The use of (A.5) replaces each inner gluon line by two diagrams.
In the first one, the inner gluon line is simply left out and does not connect the two closed
quark lines! any more. In the second one, the two quark loops are cut and joined to one
closed quark line. Since we have applied (A.5) to all inner gluon lines, we are left with
diagrams that only contain closed quark loops on which the outer gluon lines end. We can
now join the diagrams back into rather compact expressions using the identity

& =w=n, (A.6)

the vanishing of the trace of su(/N;) generators,

O— =l = (A7)

and the definitions of the standard tensors given in section 2.3. The latter are supplied by

dabedies + fabefies 8 [tr(t2e%¢)tr(t/t2%) + tr(t°e®e®)tr(t9e°t!)] (A.8)

dabeddes — favefaes 8 [tr(ttbee)tr(tdeet)) + tr(tote®)tr(t/t1%)] (A.9)

which is readily proved using the definition of the structure constants. In general, it is
also necessary to use standard tensors of the type

for = —ite(oeeot?) — ()] (A.10)

debede ™ et ebicdee) I bttt deet) (A.11)

— that is f-type tensors with an even number of color labels or d-type tensors with an odd

number of color labels — to the ones mentioned below equation (A.2). For the identities

needed in this thesis (see next section) this is, however, not necessary.
In the case of the above example (A.1) the result of the procedure described here is

=-FFR g A -goh - AN AN A1)

In many cases the above prescription can be shortened: for instance if a subdiagram
can be reduced or equals zero, if the whole diagram can be obtained from some known
diagram by permutation of outgoing gluon lines, or by using properties of the involved
temsors like their invariance under cyclic permutations.

'They might be one and the same quark line, but that does not change our argument.
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A.2 Useful contractions of color tensors

In this section we collect a series of su(/V) identities? obtained with the help of the method
explained in the previous section. The list does not exhaust the contractions needed for
the calculations described in this thesis. Instead, we try to provide here a list of identities
from which many others can be derived by a short or at least a simple calculation, for
instance by permutations of the color labels or by combining different identities given here.
In some cases, also the use of explicit decompositions of the different d and f tensors (see
section 2.3) is useful. In particular, it should be possible to construct all contractions
actually needed for the analysis of the n-gluon amplitudes up to n = 6 discussed in this
thesis without going through the whole program described in the preceding section. The
definitions of all tensors used in this appendix and the normalization of su(N) generators
can be found in section 2.3.
For two external gluons we have

Jiakfr = —Nbap (A.13)
N%-4
dakdent = — Sab - (A.14)
For three external gluons the following identities hold:
N
Srat fibm fmek = _?fabc (A.15)
N
dkalflbmfmck = _?dabc (Alﬁ)
N? -4
diatdipm fnek = _2‘1v_‘fabc (A.17)
N%-12
diatdipmdmer = —5N abe- (A.18)

The use of the last two identities can be avoided for the problems under consideration in
this thesis. They have been added for the sake of completeness here. For considering the
case of four external gluons the following identities are helpful:

i
Sratfom fmen fadk = Ndade ar E(Jab‘scd + Gacbba + ‘Sad‘sbc) (A.19)
N 1
dklcafkamfmbl = —?dabai i Z ab‘scd (AQO)
1
" fram fmet = 7 (FabBed + baabic) (A.21)

The following identities apply to five external gluons:

fkalﬂbmfmcnfndafoek = Nfabcde
1
+Z(5ubfcde £ ‘sacfbde it Jadfbce F ‘sacfbcd

+ fadeObe + fachbd . facd'sbc o fabc‘scd
+fabd6cc m fubc‘sde) (A22)

?To avoid possible confusion of the subscript ¢ in N, with a color label ¢ we omit. the subscript and give
all results for su(N) in this appendix.
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N
A" fram fom frct = = [
iy
”g(aabfcdc ) 6acfbde + fade‘sbc + fubcadg) (A23)

1
dkdcfknm.fmbnfndl = _(Jucfbde = csnesz:d - fade‘sbc = facd‘sbe

8
+fnbe 6cd G fubc‘sde) (A.24)
N 1
fklcdefkamfmbl = _Efabc“ = g ab feda (A25)
1
fk“defknmfmcl = E(anfc:k < fade‘sbc T fabcéde) (A26)

Six external gluons require even a few more of these identities:

fkalflbmfmcnfndofoepfpjk = _Ndabc‘k/
3 (8as %) Bl 4 g 48,
+6afdbcde + dadejabc AE dacc/5bd @ dtr.cdjé'be
4 dacde be & dabc f ch Ze dabd/ Ju A dabde ch
+dabcj6d, ) dabceédf 3 dcbcd‘sej)
1
+§[(dabcddef e fabcfdej) =2 (dabddce/ i fubdfce/)

+(dabedeas + fave fedf) + (dabsdede + fabf fede)
+(dacddbes + facdfoef) + (dacedbaf + face foaf)
+(dacsdsde + focf fode) + (dadedics + fade focs)
+(dadfdce + fadf foce)

+(daesdscd + facf foca)] (A.27)

N
dkle!fkam Smbn fncofmil = —2'11“““]
i
+Z(5udede! + e/ + Saad®! + a2l 6y,
+d°ce!5(,d s dubel‘scd 4+ dabcdsel)

1
~ g [(dabedites + fobefues) + (daesdsci + foe foct)

+(dacddbes + facd foes)
+(dnbddccj + fubdfcef)] (A28)

1
A B o fost = "Z(Jaddbcej + d®®f Gy + %S 8oy + A 8y
+dabcdéej 4 6n!dcbde 4 dbadc‘;cf - dcadeabj)
1
+E[(dubddcef + fabdSees) + (dacddbes + facd foef)

+(dacfdbcd + fae[fbcd) = (dadcdbcf ) fudefbcj)
+(dacsdbde = facs fode)
+(dabdcde — fab fede)] (A.29)
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fkldef fkam fmbn fncl

fkde',fkamfmbn fndl

dkl‘:def fkam Jmbt

dk“de/ fkam fmcl

dkbdef Sram fmdi

_I;dabcdc/ £ _}I(Jabd:dc] i b-udbdc] _l_dudcj(sbc)

1

_1_6—(dﬂbcddej e fabcfdej) (A30)

- 21]; (6a‘:dbdzj & dade/(sbc + dabc/(scd ixe dbacd‘sc!)

1
+'1‘6[(dabcddej + fabeSaes) + (dacddbes — facd foef)

+(daesdica — faet focd)] (A.31)
—%d“"c"” - %tmd”“f (A.32)
41(5abd°de] + Bped®del)

"'11_6(dabcddej = fabefuey) (A.33)

_%(dabcdéef b chdarlef)

+ilg[(dabcddef — fabeSder)
+(da=fdbcd i faeffbcd)] (A.34)



Appendix B

A Combinatorial Method for the
Momentum Space Integrals

A main step in our investigation of a given n-gluon amplitude D, is to split it into a
reggeizing part D2 and a remaining part. The reggeizing part is a superposition of BFKL
amplitudes D,. Starting from this ansatz a new integral equation for the remaining part
of the amplitude is derived. In order to calculate its inhomogeneous term it is necessary to
convolute the reggeizing parts DJ* of the l-gluon amplitudes (with [ < n) with the integral
kernels Kﬁl;'{“} (I4+m -2 = n) according to the original integral equations. The number
of momentum space integrals emerging from these convolutions increases very rapidly
with n. Therefore a method is required that allows to perform the momentum space
convolutions with the help of a computer. In this appendix we present such an algorithm.
It relies on the classification of possible momentum space integrals given in section 2.7.
With the help of our algorithm the momentum space integrals can be brought to their
standard form. For obtaining a part of the results in this thesis we have implemented
the algorithm in the PERL script language. After that a computer algebra program (like
MAPLE for example) can be used to multiply the integrals with the corresponding color
tensors and to finally collect all terms.

The main purpose of our method is to reduce the problem of convoluting amplitudes
with kernels to a purely combinatorial task. We therefore use notation known from the
theory of sets in this appendix. Below we will give a rule for the treatment of the con-
volution of one specific term in the amplitude Df* with the transition kernel Ké'_’z;:{“}
(I +m — 2 = n), and only the momentum part of the kernel will be of interest in this
appendix. The method can then successively be applied to all possible convolutions of
individual terms in the reggeizing parts of the amplitudes with the integral kernels.

Let us now consider one specific term in the reggeizing part Df of the I-gluon am-
plitude. It is given by a BFKL amplitude that has two momentum arguments. Each of
them is the sum of a subset of the  momenta q;. Let us call these two subsets A and B,
respectively. Their union exhausts the [ momenta,

AUB:{qlr'“)ql}7 (Bl)
and each of them contains at least one element,

1< H#A, #B<1-1. (B.2)
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We will in the following identify a set of momenta with the sum of its elements. With this
identification the term in the amplitude Df* we want to consider is

#A #B
Dy(A, B) = D, <Z Bjr ), q,-,) . (B.3)
r=1 s=1

Now we want to convolute this term with an integral kernel. Only two of the I momenta
q; will actually be affected by the convolution. Let us call these two momenta v and w,

v,we{q,...,q} ; v#w. (B.4)

The kernel Kég;:{“} was given explicitly in section 2.6. We neglect the coupling constant
¢ and the color tensor for the purpose of this appendix. The momentum part of the kernel

is according to (2.70)
ik 4 ... bk )

Koym(v, w; kiu S .,k,'m) = (k,’l + ...+ k,'m)2 —

(kiy, — w)?
Vz(k,‘2 +...4+ k,‘m)2 Vzwj(k,'2 + ...+ k,‘m_‘)2 (B 5)
iy g, — o T T
The last term is not present if m = 2. The momenta k;, with (¢t € {1,...,m}) are m

of the n momenta that occur in the integral equation for D,. Due to the condition that
t-channel gluons do not cross in the integral equations (see section 2.2) they are ordered:

1<) < oo g 0. (B.6)

Which m of the n gluons in the integral equation enter the kernel from below depends
of course on the term we have chosen in the sums on the right hand side of the integral
equations (2.11)-(2.15). The quantity we want to calculate here is the convolution

I"Z-—)m(vvw;kl’“"'1kim)®D2(~AvB) 1 (B7)

where the symbol ® again includes an integral over the loop momentum and the two
propagators —};;17 The kernel acts trivially on the other [ — 2 momenta in the term
Dy (A, B). Our algorithm will leave them unchanged, that is after its application we are
still left with some q;’s in the standard integral. They have to be replaced in the end by
the respective k;’s. Mathematically speaking this is done by the one-to-one map

AUB\ {v,w} — {ky,...,ka} \ {kij,-. ., kin} (B.8)

which has to be applied in ascending order according to the occurrence of the momenta
on both sides. On the left had side we have the [ — 2 momenta in Dy(A, B) not aflected
by the kernel, on the right hand side we find the n — m = [ — 2 momenta that are not
attached to the kernel from below.

In addition, one more step has to be performed to finish the result after the rules
below have been applied. This is connected with the definition of the second argument of
the function a which was one of our standard integrals. As described in section 2.7 the
second argument of the function a is a sum of momenta which has to be chosen out of
two sums that occur in the integral. According to our definition the second argument of
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a is the group of momenta that contains the momentum k with the lowest index. In our
general treatment in this appendix it is not convenient to implement this condition from
the beginning. Instead we adjust the resulting standard integrals in the end. This is done
very easily. For example, if we have n = 4 and the algorithm below leads to the result

a(2, 34) then this should be replaced by a(2,1).

We will treat the four parts of the kernel in (B.5) separately now. The resulting

standard integrals have to be added in the end.

First part of the kernel
The first term in the kernel (B.5) is

P(v,w; ki, oo ki) = (ki + ...+ ki, )2,
and we want to bring the convolution
P(v,w; ki, ..., ki,) ® D:(A, B)
to its standard form. Let the set A" be
Al v
Then the different possible cases are

1. v and w are elements of the same set A or B.
We then denote this set (A or B) by C.

(a) #C=2
The integral is t(X).
(D) #C > 2
The integral is s(X,C \ {v, w}).
2. v and w are not elements of the same set A or B.
(&) #FA=1)A#B=1)
The integral is ¢(X').

(b) (#A=1)A(#B > 1)
The integral is b(X).

(€ #A>DAH#B=1)
The integral is b(X).

(d) FFA> 1) A(#B> 1)
The integral is a(X¥, A\ {v,w}).
Second part of the kernel
The second term in the kernel (B.5) is

o W2(k;1 +...+ k.‘m_l)2

Q(V,W,'kiu"'lkl'm)_ (k’ _w)2

(B.10)

(B.11)

(B.12)

and we want to bring the convolution
Q(v,w; ki, ..., ki,,) ® Dy(A, B)
to its standard form. Let now the set X’ denote
&= {kl'n .. °vkim—1} )
and let the set Y be
V= {ki,}.
Then the different possible cases are

1. v and w are elements of the same set A or B.
We then denote this set (A or B) by C.
The integral is s(X, (C\ {v,w})UY).

2. v and w are not elements of the same set A or B.
Let the set (A or B) containing v be C.
(a) #C=1
The integral is b(X).

(b) #C>1
The integral is a(X,C\ {v}).

Third part of the kernel

The third term in the kernel (B.5) is

ROV, Wik ) o ooy Ji ) == Tm—
and we want to Bring the convolution

R(v,w;ki,,..., ki) ® Dy(A,B)
to its standard form. Let now the set A" denote
o e R
and let now the set ) be
J=dki.}.

Then the different possible cases are

1. v and w are elements of the same set A or B.
We then denote this set (A or B) by C.
The integral is s(&, (C\ {v,w})U V).

2. v and w are not elements of the same set A or B.
Let the set (A or B) containing w be C.

(a) #C=1
The integral is b(X).

(b) #C>1
The integral is a(X,C\ {w}).

vZ(ki, + ...+ ki,)?

)
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(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)



92 Appendix B. A Combinatorial Method for the Momentum Space Integrals

Fourth part of the kernel
The fourth term in the kernel (B.5) is

V2W2(k,' +...4+ k;m_ )2
Srmidralel ST Sonies G

and we want to bring the convolution
S(v,w; ki, ..., ki) ® Da(A, B)
to its standard form. Let now the set X denote
b =l o dee e

and let now the set J be

Y= {kﬁ'l} .
Let in addition the set Z be

ZiElg .

Then the different possible cases are
1. v and w are elements of the same set A or B.

We then denote this set (A or B) by C.
The integral is s(X, (C\ {v,w})U YU 2).

2. v and w are not elements of the same set A or B.
Let the set (A or B) containing v be C.
The integral is a(X, (C\ {v})U ).

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)
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