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Abstract

Dimensional reduction of various gravity and supergravity models leads to effec-
tively two-dimensional field theories described by gravity coupled nonlinear G /H coset
space o-models. This Thesis is devoled to an analysis of these models within the
canonical framework, exploiting the close relations to well-known integrable field the-
ories. A complete set of conserved nonlocal charges is derived from the transition
and monodromy matrices of the associated linear system. Their Poisson algebra is a
modified (twisted) version of the semi-classical Yangian double. The classical infinite-
dimensional symmetry group (the Geroch group) is generated by the Lie-Poisson action
of these charges. The structures completely extend to models with local supersymmetry,
taking into account all additional fermionic degrees of freedom. Canonical quantization
of the algebra of charges leads (o a twisted Yangian double with fixed central extension
at a critical level. The last chapter collects some results within the so-called isomon-
odromic approach to these models.

Zusammenfassung

Dimensionale Reduktion einer grofen Klasse von Modellen hoher-dimensionaler
Gravitation und Supergravitation fiihrt auf effektiv zwei-dimensionale Feldtheorien, ge-
nauer, auf gravitationsgekoppelte nichtlineare o-Modelle auf Quotientenrdumen G /H.
Die vorliegende Arbeit ist einer Untersuchung dieser Modelle gewidmet. Dies ge-
schieht im kanonischen Zugang, indem die engen Verbindungen zu bekannten integra-
blen Feldtheorien ausgenutzt werden. Ein vollstindiger Satz erhaltener, nicht-lokaler
Ladungen lit sich aus den Monodromien des zugehorigen linearen Systems ablei-
ten. Die Poisson-Algebra dieser Ladungen ist eine modifizierte (getwistete) Version des
semi-klassischen Yangian-Doppels. Die unendlich-dimensionale klassische Symmetrie-
Gruppe dieser Modelle (die Geroch Gruppe) wird durch die Lie-Poisson Wirkung der
Ladungen erzeugt. Simtliche Strukturen erweitern sich auf lokal supersymmetrische
Modelle unter Beriicksichtigung aller zusitzlichen fermionischen Freiheitsgrade. Die
kanonische Quantisierung der Algebra nichtlokaler Ladungen fiihrt auf ein getwistetes
Yangian-Doppel mit zentraler Erweiterung. Das letzte Kapitel enthilt eine Zusammen-
stellung von Resultaten im sogenannten isomonodromen Zugang zu diesen Modellen.
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1 Introduction

The so-called hidden symmetries, appearing in the dimensional reduction of gravity and
supergravity theories, have played an important role in the study of these theories over the last
thirty years. Based on earlier work [32, 93] it was Geroch who first realized the emergence of
an infinite-dimensional symmetry algebra in the two Killing vector field reduction of general

relativity [47]. Later on, this symmetry structure was found to be generic for a broad class

of models of dimensionally reduced gravity and supergravity theories [60, 62].

Upon reduction to two dimensions these models take the form of G /H coset space o-
models coupled to 2d gravity and a dilaton. Various coset spaces descend from different
models (see e.g. [67, 90, 62, 98, 14, 88, 45]), culminating in the E3(+g) /SO(16) which origi-
nates from dimensional reduction of maximally extended supergravity in eleven dimensions.
The infinite-dimensional symmetry algebra of these models has been identified with the loop
algebra which is associated with the Lie algebra g of G; the existence of a central extension
of this algebra has been noted in [61].

The interest in studying this class of two-dimensional models is (at least) a threefold.
First, these models enlarge the list of integrable models, exhibiting a new underlying al-
gebraic structure ((3.60), (3.61) below) which already deserves interest for itself: On the
classical side we face a surprising regularization mechanism of the Poisson algebra of non-
local charges — caused by the space-time coordinate dependence of the spectral parameter
(3.3), which is one of the distinguished properties of the model. On the quantum side, the
main interest is in the resulting algebra (5.5)—(5.9) below, which is a modification of the
well-known Yangian double [28]. The twist by which it differs from the normal Yangian
double essentially requires a new representation theory to be developed.

From the physical point of view, many of these models have received interest in the con-
text of so-called midi-superspace models whose quantization serves as an interesting testing
ground for many issues of quantum gravity. Despite the fact that dimensional reduction
represents an essential truncation of the phase space, the models under consideration are suf-
ficiently complicated to justify the hope that their exact quantization may provide insights
into characteristic features of a still outstanding theory of quantum gravity. In particular,
and in contrast to previously exactly quantized mini-superspace models, they exhibit an in-
finite number of degrees of freedom, which is broadly accepted to be a sine qua non for
any significant model of quantum gravity. Their quantization may thus lead to progress in
understanding the nature of quantum geometry and quantum black holes, reliability of semi-
classical methods, etc. . This belief is e.g. supported by the observation that already rather
simple and exactly soluble two-dimensional models of dilaton-coupled gravity capture and
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allow to further analyze several features that are expected to characterize quantum black hole
solutions of the full four-dimensional theory (gravitational collapse, Hawking radiation, in-
formation loss, etc., see [116] and references therein).

Finally, from a higher-dimensional perspective these models and techniques find appli-
cation in the study of gravitational string backgrounds and their symmetries, or describe the
behavior of extended objects after dimensional reduction. It is further tempting to speculate
about some higher-dimensional interpretation, where in a stringy setting the physical states
of the theory, quantized on the two-dimensional world-sheet, are reinterpreted as the one-

" particle excitations of a higher-dimensional theory (see [102] for more speculation in this

direction).

The interest in the symmetries of dimensionally reduced gravity originally arose in the
context of the so-called solution-generating techniques [32, 78, 47, 67, 51]. Over the years,
the point of view has changed. Rather than in producing new solutions to Einstein’s field
equations, nowadays, one is mainly interested in understanding the symmetry structures
themselves. In particular, the analysis of the classical phase space with its full symmetry
structure exhibited, is a necessary prerequisite for quantization. More precisely, a symmetry
group which acts transitively on the phase space while preserving the symplectic structure
may be identified with the classical phase space itself. The irreducible representations of this
group then carry the information about the underlying quantum system.

The understanding of the structure of dimensionally reduced gravity was significantly
improved by the revelation of the linear system [89, 7] which underlies the equations of mo-
tion. This established a first link to the integrable structures found in many two-dimensional
models. It opened the possibility to subsequently make use of the methods and techniques
which were developed in the theory of integrable systems (see [39] and references therein).
In fact, the dimensionally reduced gravitational field equations (the Ernst equation [35] and
its generalization to higher-dimensional Lie algebras) strongly resemble the equations of
motion of the nonlinear o-model [86, 121]; the main difference — apart from the coset struc-
ture — comes from the explicit appearance of the additional dilaton field in the gravitational
equations. This field arises as a generic feature of Kaluza-Klein type dimensional reduction,
measuring the size of the compactified (internal) manifolds. Throughout the following, it
turns out to play a pivotal role.

For the nonlinear o-models, it was soon realized that the arising (hidden) symmetries
were not symplectic and generated by nonlocal charges which obeyed a new type of charge
addition rules [86, 25], thus making manifest the nontrivial Hopf algebra structures of the
underlying symmetry algebras. Since then, infinite-dimensional quantum groups have ap-
peared to play a major role in lower-dimensional physics, providing a powerful description
of the quantum symmetries of many integrable models and field theories. The classical
symmetry generated by the nonlocal charges gains a natural description in the framework
of Lie-Poisson actions [113, 6]. In particular, this offers new perspectives in quantization
[11, 84] where the classical action turns into the adjoint representations of the underlying
Hopf algebras.

Since it will become important in the following, let us mention a prominent example of
the infinite-dimensional quantum groups, namely the Yangian algebra Y (g) associated with
a simple finite-dimensional Lie algebra g. Having turned up already in the early days of the
quantum inverse scattering method [114, 37], this algebra was rigorously defined within the
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1 INTRODUCTION

framework of Hopf algebras by Drinfeld [27], and later on appeared to underlie many two-
dimensional field theories (see [10, 12] and references therein). The Yangian algebra Y'(g)
may be considered as a deformation of the positive half of a loop algebra with nontrivial Hopf
algebra structure. A deformation of the full loop algebra emerges from the Yangian double
construction [28] which has been introduced in quantum field theory in [82, 11]. Like the
loop algebra, this structure admits a central extension [110].

It is the purpose of this thesis to carry out the canonical framework for the described class
‘of models of dimensionally reduced gravity by making use of the powerful tools that are pro-
vided by integrability and the emergence of quantum groups. The existence of a (modified)
Yangian symmetry in the classical theory eventually allows the complete quantization. The
results are essentially based on [72]-[77] and [104, 105].

The plan of the thesis is the following. In Chapter 2 we introduce the general class of two-
dimensional coset space o-models that shall play the main role in the text. The canonical
formalism is set up, including the fundamental Poisson brackets and the gauge algebra of
constraints. For illustration, we begin with a detailed discussion of the simplest model of the

series — the two Killing vector field reduction of general relativity — and show how in this

case the infinite-dimensional symmetry algebra arises.

Chapter 3 is devoted to the analysis of the classical integrability of the model. Starting
from the linear system, we identify integrals of motion encoded in the associated transition
and monodromy matrices. They are shown to be gauge invariant. We discuss, for which
sectors of the theory this set of nonlocal charges is complete. This is essentially related
to certain assumptions on the global behavior of the dilaton field. In the relevant sector
(corresponding to a cylindrically symmetric setting) the nonlocal charges turn out to carry
the values of the original physical fields on the symmetry axis. The Poisson algebra of
these charges is computed. Again, the dilaton field plays a key role in that it causes the
vanishing of certain ambiguities that are known to arise in the related structures in flat space
o-models. The resulting Poisson algebra is closely related to the Yangian double from which
it differs by a twist which is remnant of the underlying coset structure. We end up with
a reformulation of the classical model in terms of a complete set of nonlocal conserved
charges. This formulation reveals integrability and the classical symmetry structure in a
natural way. The Geroch group is recovered as the adjoint Lie-Poisson action associated
with these nonlocal charges.

Chapter 4 contains the generalization of the structure to the maximally supersymmetric
extension of the model, which gives rise to IV =16 supergravity coupled to an Eg(g)/SO(16)

coset space o-model. Nonlocal charges may be defined in analogy to the bosonic case. Re-

markably, they turn out to be supersymmetric, i.e. invariant under the full gauge superalge-
bra, and satisfy the same Poisson algebra as their purely bosonic counterparts. The essential
calculations are performed in all fermionic orders, i.e. including all cubic fermionic terms
that have been neglected so far.

In Chapter 5 we address the quantization of the model in terms of the nonlocal charges,
i.e. search for the quantum algebra which reproduces the Poisson algebra in a classical limit
while preserving certain extra properties (again related to the coset structure). We identify
this algebra for the coset spaces G/H = SL(N)/SO(N). The central result is given by the
algebraic structure (5.5)—(5.9) below. In contrast to the well-known centrally extended Yan-
gian double, the quantum R-matrices appear with a relative “twist” in the exchange relations
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which connect the two Yangian halves. A central extension of the algebra is required, whose
value is uniquely fixed.

Finally, Chapter 6 contains several results obtained within the so-called isomonodromic
framework, initiated in [71]. This approach has mainly been motivated by the apparent simi-
larity of the equations of motion in certain sectors of the models under consideration with the
deformation equations of monodromy preserving deformations [58]. Despite the rich mathe-
matical structure which culminates in a link to the Knizhnik-Zamolodchikov equations from
conformal field theory [68] (again slightly modified due to the underlying coset structure),

* we have so far not been able to embed this approach into the canonical framework which has

been elaborated in the rest of the thesis.
In Chapter 7 we briefly summarize the solved and some remaining problems.



2 Models of Dimensionally Reduced Gravity

In this chapter, we introduce the class of models that we are going to study in the sequel.
Originating from Kaluza-Klein type dimensional reduction of gravity and supergravity theo-
ries, they are casted into the form of two-dimensional G /H coset space o-models coupled to
dilaton gravity. We discuss in detail the simplest example of this series, the two Killing vec-

tor field reduction of four-dimensional Einstein gravity, which is embedded into the general

scheme with the particular coset space G/H = SL(2,R)/SO(2). For this model, we give
an elementary construction of the infinite dimensional symmetry algebra ;E due to Geroch
[47]. In the next chapter, we will recover this symmetry within the general setting. Finally,
we establish the general canonical formalism, including the Poisson brackets of the physical
fields and the conformal gauge algebra.

2.1 The two Killing vector field reduction of Einstein gravity

The existence of two commuting Killing vector fields in four-dimensional general relativity
gives rise to an essential simplification of the field equations and to a remaining model with
a remarkably rich symmetry structure. In the following, we will describe this reduction and
the arising of the symmetries.

Denote the four-dimensional metric by Gy and consider the decomposition into the
vierbein E,*

Gun = By EyPras @.1)

with the Minkowski metric nap = diag(1, —1,—1,—1). Vacuum general relativity in four
dimensions is described by the Lagrangian

i) = ~1BYRY 2.2)

where R and E® denote the curvature scalar of Gy and the determinant of the vierbein
Ej}, respectively. The action is manifestly invariant under diffeomorphisms generated by
vector fields &:

By = eNOnE + Byt oY, 2.3)
and Lorentz transformations generated by A € SO(1, 3):

Il R A (2.4)

2.1 The two Killing vector field reduction of Einstein gravity

Assume now the existence of two commuting Killing vector fields. For definiteness we
take them to be spacelike, one of them with closed orbits. This characterizes spacetimes with
cylindrical symmetry. It is convenient to adopt a coordinate system such that the Killing vec-
tor fields are given along coordinates a% and 'e%' respectively. In this system, the coefficients
of the metric depend only on the two remaining coordinates = and ¢. Further fixing the
freedom of Lorentz transformations, the vierbein is casted into the block triangular form:

A e s e &
ni=(5 7).
Greek indices «, p represent the coordinates x and ¢ whereas small Roman indices a, m
denote the coordinates ¢ and z associated to the Killing vector fields. We further parametrize
the constituent e,,* of (2.5) by its determinant p = dete, and an SL(2, R) matrix V:

e, =piV. (2.6)

Inserting (2.5) into the original Lagrangian (2.2) leads after some calculation (see e.g. [13])
and up to surface terms to the following effectively two-dimensional Lagrangian

L? = ~1pE@R® 4 LoE@p tr (9, MM 19, MM ™) @7
4 %pEmh""h"AanF:;F:,\ e %E('l)hﬁwp—laupaup ,

with

1}

Ny G“QCVﬂ’I]a[;
an (VVT)mn = pemnenb‘snb )
FLN=va Bl

il

The curvature scalar R®) here corresponds to the two-dimensional metric (P E®) accord-
ingly denotes the determinant of the zweibein e,,*.

From a lower dimensional point of view, the Lagrangian (2.7) describes two-dimensional
gravity h,, coupled to scalar and vector matter fields which descend from the remaining
components of the original higher-dimensional metric (2.5). The so-called Kaluza-Klein
vector fields Bj' enter the Lagrangian only via their field strengths Fj}; they will prove to
be auxiliary in the reduced theory. The matrix M combines the scalar fields which in two
dimensions appear similar to the nonlinear o-model coupled to gravity. They will play the
main role in the sequel. The presence of the dilaton field p in (2.7) is a typical feature of
Kaluza-Klein type dimensional reduction. In general context, this dilaton field measures the
size of the compactified dimensions of the higher-dimensional space-time (cf. (2.5), (2.6)).

At Jeast locally, the zweibein e,* may further be brought into diagonal form (conformal
gauge) exploiting the freedom of the diffeomorphisms and Lorentz transformations in z*:

e,*=6,expo, hu=nuwexp2o. (2.8)

"
In the following, we neglect possible global obstructions. We introduce light-cone coordi-
nates z¥ = 2%+ and similarly define V* = VO £ V! and Vi = (Vo = V4) for any vector
V* and covector Vj,, respectively. The two-dimensional metric A, then has components

hi_=—%}exp20. (2.9)



2 DIMENSIONALLY REDUCED GRAVITY

In this model, it is not possible to gauge away the conformal factor o since the Lagrangian
(2.7) is not Weyl invariant, i.e. it is not invariant under local rescaling of the two-dimensional
metric h,,. The o-model part of (2.7) is conformally coupled, but neither the coupling of the
Kaluza-Klein vector fields nor the two-dimensional dilaton-gravity part is Weyl invariant.
The reason for the latter is the multiplicative appearance of the dilaton field p, this is in
contrast to usual 2d gravity.

Inherited symmetries of the lower-dimensional theory

Some of the gauge symmetries (2.3), (2.4) of the original theory are still compatible with the
truncation (2.5), (2.8).

e Conformal transformations £*(z*) leave the form (2.8) invariant. According to (2.3)
the fields transform as

btV = £*0.V, (2.10)

detp = Eosp,
(5510 = 6*0i0+%ai§*.

o The special diffeomorphisms £™(z*) act as gauge transformations on the Kaluza-Klein
vector fields B}

0B = 0,8™ . (2.11)
o The linear diffeomorphisms £ = g, "«™ act as constant linear transformations on V:
6V =gV, with ¢ = (¢,") € SL(2,R) . (2.12)

Upon toroidal compactification, i.e. with periodic boundary conditions on the direc-
tions z™ only a discrete subgroup SL(2, Z) appears as gauge symmetry of the original
theory. In any case however, (2.12) remains a symmetry of the lower-dimensional
theory.

e The Lorentz transformations A,® = h,*(z*) act on V according to
oV =Vh(z*),  with h(z¥*) = (h,%)(z") € SO(2) . (2.13)

In abstract language, the physical degrees of freedom in V(z) parametrize the coset space
G/H = SL(2,R)/SO(2). The H gauge transformations are given by (2.13); the group G
acts linearly by (2.12). One may choose a fixed system of representatives of the coset space,
e.g. the triangular matrices V.'! The action (2.12) then provides a nonlinear realization of
SL(2,R):

8§,V = gV + Vhy(a") , (2.14)

!For general Lie groups one may correspondingly fix the orthogonal part of the Iwasawa decomposition of
the matrix V [52].

2.1 The two Killing vector field reduction of Einstein gravity

where a compensating SO(2) rotation h, is required to restore triangularity of V. This sym-
metry of the dimensionally reduced theory has been made explicit by Matzner and Misner
[93]. Note that the matrix M = VYV is invariant under (2.13) and transforms linearly under
(2.12).

Equations of motion

In conformal gauge (2.8) and after rescaling o a+% In p the Lagrangian (2.7) becomes

- (up to boundary terms again)

Lo = —a,,pa”a+§p(tr (a,,MM—laﬂMM—‘)+e~2vM,,,,.F,;';F"#"), @.15)

where the indices y, v are raised and lowered with the Minkowskian metric 7, now. The
explicit appearance of the conformal factor o shows, that (2.7) is not Weyl invariant. The
equations of motion for the fields involved are the following:

o The Kaluza-Klein vector fields Bj" satisfy:
o+ (e'z” panF,:',,) —
In two dimensions this yields
e‘z"panF,"; = const .

In the following we restrict to that sector of the theory where the constant is zero.
This is e.g. a necessary condition for asymptotically Minkowskian spacetimes.? The
Kaluza-Klein vector fields then are (locally) pure gauge (2.11). They may carry phys-
ical degrees of freedom related to nontrivial topology of the two-dimensional surface
parametrized by the z#. Neglecting these modes, in the following we restrict to the
case

Br=0. 2.16)

The metric (2.1) then acquires block diagonal form, which is equivalent to hypersur-
face orthogonality of the Killing vectorfields: the surfaces orthogonal to both Killing
vector fields are integrable. :

The dilaton field p obeys a free field equation:

Op=0. @.17)
Its general solution is given by p(z) = p*(z*) + p~(z7) , and allows to introduce a
dual field j

Alz) = p*(a*) —p(z7), (2.18)

2In addition, there are good arguments to believe that the rich symmetry structure of the model will not be
compatible with nonvanishing cosmological constants of this type [100].

8



2 DIMENSIONALLY REDUCED GRAVITY

defined up to a constant. Under finite conformal gauge transformations (2.10), the field
p transforms as

p ot (fHat) +o7(f (7)), (2.19)

with arbitrary functions f* and f~. Assuming certain monotony behavior of p* and
p~, one may fix this residual gauge freedom by identifying the dilaton field with one
of the two-dimensional world-sheet coordinates

Pt = e - (2.20)

The upper sign corresponds to a timelike dilaton field which appears e.g. in the context
of the cosmological Gowdy models [49]. The lower sign refers to a spacelike dilaton
field which has commonly been used in the description of gravitational waves with
cylindrical symmetry [69, 79, 3]. With radial coordinate p = r, the four-dimensional
line element the takes the familiar form

ds? = 20D (dt? — dr?) — r My (r, t)dz™dz™ , (2.21)

The distinguished coordinates (2.20) are often referred to as the Weyl canonical coor-
dinates.

The matter fields collected in the matrix M = VYT fulfill
3y (PO-MM™') +0_ (pdsMM™) =0. (2.22)

This is the so-called Ernst equation [35]. Except for the dilaton field p it agrees with
the equations of motion of the nonlinear o-model.

The conformal factor ¢ satisfies two first order equations:
05016 = Lptr (0 MM 'O MM™") | (2.23)

with 6 =0 — % In(84.p0-p). According to (2.10), ¢ transforms as a scalar under con-
formal transformations, making the conformal covariance of (2.23) manifest. Com-
patibility of these equations is ensured by (2.22). They determine the conformal factor
up to a constant, since they are of first degree. Rather than equations of motion of the
usual type, these equations form a set of (first-class) constraints. They are not derived
from (2.15) but descend from variation of the two unimodular degrees of freedom of
the 2d metric hy,, that appear as Lagrangian multipliers in (2.7). The second order
equation of motion for the conformal factor results from variation of the Lagrangian
(2.15) w.r.t. p:

0,06 = 0,0_0 = —tr (O MM~ o_MM™) (2.24)

The consistency of this equation with the first order equations (2.23) can be checked
using (2.17), (2.22) and (2.40).

2.1 The two Killing vector field reduction of Einstein gravity

The dual picture and the Geroch group

In addition to the gauge symmetries collected above, the two-dimensional model possesses a
rich symmetry structure leading to complete integrability. This underlying structure becomes
already manifest in a duality symmetry of the equations of motion, which we will describe
in this subsection. In particular, this implies the existence of a dual of the (gauge) symmetry
(2.12). Together with (2.12), it generates an infinite-dimensional symmetry group — the
Geroch group.

In the next chapter, we will give a closed realization of this infinite-dimensional symme-
try group and its action via the linear system and the associated transition matrices. Never-
theless, here we show how to generate the infinite-dimensional symmetry in an elementary
way by successively commuting the two dual symmetry groups. Apart from giving a his-
torical flavor, a construction of this type may turn out to be useful on the way to implement
further symmetries in absence of a complete picture.’

The duality symmetry of this model appears as follows [13]. Parametrize the matrix V as

3 7%
Vi (1 B) R S vl g 2.25)
0 1 g piad

where the gauge freedom (2.13) has been fixed to achieve triangularity. The equations of
motion (2.22) then yield

04 (A’p7'0_B) +0- (A% '0,B) = 0,

which gives rise to defining a dual potential Bp by

8:Bp = +A?p10:B. (2.26)
With the further definition [78]
1
_(1 Bp Az -0
VD=(0 1)(0 A_%) ; 2.27)

it follows, that the matrix V) satisfies the same equations of motion (2.22) with Mp =V, VZ.

This duality has two interesting consequences. First, note the different asymptotic be-
havior of V and Vp at p — oo. E.g. in Weyl coordinates (2.21), 4d-Minkowski space is
described by A=1, B=0. Thus, at radial infinity p — oo the matrices V and Vp behave as

1
p2 0 L )
V—)( 0 p%) , Vp— (0 1) ) (2.28)

for asymptotically Minkowskian spacetimes. In a similar way, V and Vp, differ on the sym-
metry axis p=0. We can hence describe the same physical situation by equivalent models
with different asymptotics.

3Since the Geroch group appears to be already transitive in the sector which we have described so far, addi-
tional symmetries can only enter when one restores more physical degrees of freedom. A promising candidate
are e.g. the topological degrees of freedom of the Kaluza-Klein vector fields B]}' and of the two-dimensional
metric h,,, relaxing (2.16) and (2.8), respectively. Their relevance in the further reduction to one dimension
has already been suggested in [100, 96].
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2 DIMENSIONALLY REDUCED GRAVITY

Second and more important, since Vp obeys the same equations of motion (2.22), there
is a dual symmetry to (2.14), which we denote by SL(2,R)p. Via (2.26) the action of
SL(2,R)p on the original fields ) can be constructed and turns out to be rather nontrivial.
This symmetry has originally been discovered by Ehlers [32] in the three-dimensional re-
duction of 4d-Einstein gravity. The most interesting property of the two symmetry groups
SL(2,R) and SL(2,R)p is that they do not commute but span an infinite-dimensional sym-
metry group — the so-called Geroch group [47]. On the algebra level, sl(2) and sl(2)p span
the affine algebra ;G
" Let us make this more explicit. Denote the generators of sI(2) by h, e, f. According to
(2.14) they act on V by left multiplication with the matrices

10 01 00
” i & 2
h'(o—l)’ = (o 0)' . (1 0)’ G

and a compensating so(2)-rotation induced by f. We now turn to the action of sI(2) p with
generators hp, €p, fp. Similarly to (2.14) they act on Vp as:

A% BpAi 0 A3
SpVp = hp = ( o _DA_;) , OepVb = elp = (0 A ) , (2:30)

0-A\ _ (-Bpat A}
fv”_VD(A 0)‘( 0 BoArt

Via (2.26), (2.27), this gives the action on V:

(SID VD

1 1 1 1
—piA": —p 2A2B
SV = ( "O Z*%A% > ==&V, 6,V =0, 2.31)
1 1 1 ; g
_ (pBpAT2 pT2Azgp
¥ = ( 0 —p‘%BDA%)’
with ¢p defined by
du¢p = + (pAT'9:A — p'A’BOLB) . (2.32)

Compatibility of these equations is again ensured by (2.22).

The algebraic structure of the symmetries becomes more transparent in their action on
the currents Jy = V'8,V . These are left invariant by s(2) and transform only under fp
according to

510 i(p‘lA"’BiB 204 )
D

0 —p"‘A28iB
£[VleV, Ju+Jl | £20:pV eV . (2.33)

This immediately gives rise to the next commutators (note that d annihilates Ji but not V):
£ [pVhY, Jp+JL | £ 20.p vy, (2.34)
F2[VHY, Je+JL | F40:pV V.
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2.2 Two-dimensional coset space g-models coupled to gravity and a dilaton

Upon further commuting, these transformations generate the affine algebra slp. As a vector
space this algebra is given by sly ® C[z,27!] & kC, where C[z, z7}] denotes the set of
Laurent polynomials in a formal variable z. The algebraic structure is:

[h®2™, e®2"] 2e@2™t%, o« [P fR]= =2fRemt, (2.35)
[e®2™, f®2"] = h®z™™" + k™m0

Il

The element k lies in the center of ;l; and is referred to as the central extension. The subal-
gebras s1(2) and sl(2) p are embedded into sl, as follows:

h=h®Z", e=e®?®, f=f®", (2.36)
hp=7(h)®L+k, ep=1(e)®z", fo=1(f)®z,

where 7 is the algebra-involution (h+— —h, e —f, f+— —e). These two subalgebras corre-
spond to the two nodes of the associated Dynkin diagram [64]. Together they obviously span
the full algebra (2.35). The transformations from (2.33), (2.34) correspond to the elements
s1(2)®z.

We close this section with a few remarks on properties of the Geroch group, which have
already shown up here.

Remark 2.1 The action of s{(2), on V in (2.31) involves two dual potentials By, (2.26) and
¢p (2.32) whose existence follows from the Ernst equation (2.22). By further commuting
the transformations from s[(2) and s1(2) p an infinite hierarchy of such dual potentials arises.
They have been observed already in the early history of the Geroch group [47, 67]. On the
level of associated charges, the construction of this hierarchy corresponds to the well-known
procedure [15] of successively generating nonlocal charges in two-dimensional integrable
models.

Remark 2.2 Equations (2.31) illustrate another property of the Geroch group. It is only the
half sl ® C[z] of the affine algebra (2.35) which acts nontrivially on the physical fields. The
other half sl, ® C[27"] describes the freedom of shifting the dual potentials (c.f. the action of
ep in (2.30)). Accordingly, the central extension k in (2.35) leaves V invariant. However, it
has been observed by Julia [61] that this central extension acts nontrivially on the conformal
factor o which is determined by V only up to a constant (2.23).

Remark 2.3 To honestly prove the existence of the affine symmetry (2.35) at this stage, one
would have to check the corresponding Serre relations between multi-commutators of the
generators (2.36) [100] as well as the absence of further relations between them. We refrain
here from doing so since later on we will present a closed approach which makes the affine
symmetry explicit.

2.2 Two-dimensional coset space o-models coupled to gravity and a
dilaton

Dimensionally reduced pure Einstein gravity described in the previous section already cap-
tures all the features of the class of models we are going to study. It is the simplest example

12



2 DIMENSIONALLY REDUCED GRAVITY

of the G/H coset space o-models that arise from dimensional reduction of various gravity
and supergravity models. More general, d-dimensional Einstein gravity with (d—2) com-
muting Killing vector fields [90] gives rise to a SL(d—2, R)/SO(d—2) coset space g-model.
Other examples with higher-dimensional coset spaces G/H come from Einstein-Maxwell
systems [67] and Einstein-Maxwell-dilaton-axion systems [45]. The largest exceptional —
and maybe most fundamental — coset space Eg(,g)/SO(16) arises from dimensional reduc-
tion of maximally extended N = 8 supergravity in 4 dimensions [60, 62, 98]. For general
reasons, related to boundedness of the energy, it is always the maximal compact subgroup H
“of G that is divided out in the coset.

Let ¥ be a two-dimensional Lorentzian world-sheet, parametrized by coordinates z#.
Let G be a semisimple Lie group and g the corresponding Lie algebra with basis {t4}. The
Cartan-Killing form in the fundamental representation is given by tr(tatg) and used to raise
and lower algebra indices. Denote by H the maximal compact subgroup of G, characterized
as the fixgroup of an involution 7 [52]. Lifting 7 to the algebra gives rise to the decomposition

£ dmced 2.37) -

g=hot  with T(€)={_§ forfet

which is orthogonal with respect to the Cartan-Killing form. For instance, for the coset space
G/H = SL(N,R)/SO(N), the involution 7 is defined by 7(X) = (XT)~! for X € G and
T(€)=—&T for € € g, respectively.

The physical fields of the model are mappings V(z*) from ¥ into the coset space G /H,
i.e. they are G-valued and exhibit the gauge freedom of right H-multiplication (cf. (2.13))

VYV - VH. (2.38)
The currents v—la,,v allow decomposition according to (2.37):

d,

n

=JMa=V'9V=Q,+F,; with Q,€h, P,et. (2.39)
These currents are subject to the compatibility relations

auQu ~ allQ[l = [Qquu] i [PmPu}
DB, — DyP,

0, (2.40)
0 )

1l

with the (H-)covariant derivative D, P, = 8, P,+[Qy, P,]. Under the gauge transformations
(2.38) they transform as i

Qe el S QA H Al 5 By BBl (2.41)
with H = H (z*) € H. The matrix
M=Vr(V)", (2.42)

is the analogue of the matrix containing the higher dimensional metric coefficients in (2.21).
It is symmetric under

M = (M), (2.43)
13
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and its current is related to the coset currents from (2.39) by
oMM = ZVP,,V“ =2D,VV7". (2.44)

It is the separate task of each dimensional reduction to two dimensions to eventually
cast the resulting model into the form of the corresponding coset space o-model. In the last
section this has been shown in detail for pure Einstein gravity with two commuting Killing
vector fields. See [67, 90, 62, 98, 14, 45] for more complicated examples.

The final form of the two-dimensional Lagrangians and the corresponding equations of
motion are a straight-forward generalization of (2.15)—(2.24) inserting the matrix M € G
from (2.42). The coset-structure becomes more transparent if we rewrite the currents in
terms of the coset currents from (2.39): ,MM~! = 2VP,V~! = 2D,VV~!. Summarizing,
we obtain the Lagrangian

LP = ~8,p0" + Lptr (PP) , (2.45)

and the equations of motion for

the dilaton field:
Op = 0, (2.46)
the conformal factor:
01p0r6 = 01p0yo — 30:0:p = Lptr(PaPy) , (2.47)
040_6 = —itr(PyP.) (2.48)
and the scalars building the coset space:
Dy(pP*) = Di(pP-)+D_(pP;) = 0. (2.49)

The discussion accompanying these equations in (2.17)-(2.24) can be adopted for the general
case here.

Remark 2.4 The Lagrangian (2.45) and the equations of motion for the currents Py resem-
ble the principal chiral field model (PCM) [86, 38] with the compact group G of the PCM
replaced by the noncompact coset manifold G/H and arising of the additional dilaton field
p. Itis mainly the appearance of p that accounts for the new features of these models in com-
parison with the flat space models. Equations (2.47) further show that p may not be chosen
constant without trivializing the matter part of the solution [99]. Since the Cartan-Killing
form tr(tatp) is positive definite on the coset £, 01 p=0 would require Py =0. It is also seen
from (2.10) that any solution with d4.p = 0 has some degenerate orbit under the conformal
gauge transformations. There is hence no smooth limit in which the dilaton-coupled model
would approach the PCM.

2.3 Canonical formalism
Poisson structure

In this paragraph, we derive the canonical Poisson structure from the Lagrangian (2.45). For
simplicity, we denote the spatial coordinate z* by z only and the timelike coordinate z° by ¢.

14



2 DIMENSIONALLY REDUCED GRAVITY

Moreover, we drop the argument ¢ in most of the following equations, keeping in mind, that
the Poisson brackets are defined at equal times.
For the conformal factor ¢ and the dilaton field p we directly obtain:

{p(z), 00 (y)} = {o(2), Bop(y)} = —0(z~y), (2.50)

i.e. the conjugate momenta to p and o coincide with dyo and dyp, respectively. These rela-
tions are equivalent to

{Oep(z),050(y)} = F30'(x—y),  {9:p(x),050(y)} =0.
In terms of the fields p and p from (2.18) the brackets (2.50) become
{p(), 000 (y)} = {B(x),010(y)} = —6(z—y) . (2.51)

There are also different ways to choose the canonical coordinates among the matrix en-
tries of M. One may e.g. parametrize the matrix M by coordinates like in (2.42) which take
into account the group properties and the additional symmetry (2.43) to then extract canon-

ical brackets from (2.45). For higher dimensional groups G however, such a set of explicit -

coordinates is hard to find and certainly not very practicable. The algebra valued currents
81 M M~ offer a suitable parametrization but hide the symmetry property (2.43).

It is thus most convenient to consider the currents (2.39) of the matrices V as basic vari-
ables. Definition (2.42) then ensures (2.43). Moreover, the choice of V as fundamental
objects is indispensable for coupling fermions to the model (cf. Chapter 4). The prize for
introducing the additional H-gauge freedom (2.38) in V is the appearance of the associated
constraints (2.55) below.

In a standard way [39], we obtain the canonical Poisson structure with coordinates J;.
Introduce the corresponding momenta

65 o

"= 7FQ4~7FP =
with
{/(2),m8(y)} =05 8(z—y), (2.53)

at equal times. The time derivative of J; is expressed in terms of Qg and Py via the relations
(2.40):

OD(QI + Pl) = 30-]1 = 61-]0 + [Jl,J()] = Vng .

The operator V is linear and antisymmetric with respect to the scalar product (tr f dz) The
relevant part of the action (2.45) thus reads

%/dxptr(PoPU) = %/d.'l)[)tl‘ (Povl_l(ag.fl))

-4 [zt (@n)ViR)

leading to
pPg = ~V17r = —617T " [Jl,’ll'] .
15
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Splitting this expression according to (2.37) implies

pFBy
0

_617rP ES [Qh 7rP] = [Pl, 7I'Q] : (254)
—~0ymq — [Q1,mq) — [Py, 7p] .

Il

The second equation defines a set of weakly vanishing constraints
P = @AtA = al7rQ o [Ql,WQ] S [P1,7|'p] &0, (2.55)
related to the gauge transformations (2.41).

Many calculations in the following are more conveniently performed in the index-free
tensor notation. Denote for some matrix 4%:

AEA@I and :151®A.

In components this takes the form (A ® I)%% = A%§<d and (I ® A)%ed = A5 | Define
accordingly the following matrix notation of Poisson brackets [39]:

{4, B }"b'cd = {a® B} (2.56)

for matrices A%, B*. Let Q,=1,® t* be the Casimir element of g, which due to orthogo-
nality of the decomposition (2.37) allows the splitting 2y = 5 4-€2¢. The canonical brackets
(2.53) in this notation become

(@), 7o)} =%da-v), {P@), Tr0)} =2i—1).

Equation (2.54) now yields the Poisson brackets for the physical fields:

— V(@) Qbla-1), @57
[, Pr(a)]

[, él(z)}é
[, 8()]sa—v) ~ 0.

{o@) Pota), v )}
{0(a) Po(2) , (1)}
{0 P@), P}
{#@) Po(a), Polw)}

6z—y),

(
(z—y) + Qe 0:0(z—y) ,

Il

Remark 2.5 An important feature to note about these Poisson brackets is the appearance of
a non-ultralocal term in the third equation. In the known flat space integrable models, the
presence of such a term is a good indicator for some breakdown of the conventional tech-
niques at later stage (see e.g. [24] for exploring the fatal consequences of the non-ultralocal
term in the PCM). However, in our model this term shows a surprisingly good behavior and
in fact supports the entire further treatment.

16



2 DIMENSIONALLY REDUCED GRAVITY

Constraint algebra

We have already discussed that equations (2.23) do not descend from variation of the La-
grangian (2.45) but rather as constraints from its ancestor (2.7), i.e. before imposing con-
formal gauge (2.8). This structure is the same in the general class of coset space o models
introduced above.

Diffeomorphism invariance of (2.7) allows to bring the 2d metric h,, to conformal gauge
(2.8). This gauge freedom is reflected in (2.7) by the fact that the components 7%y of the
2d energy-momentum tensor arise as constraints with the unimodular parameters of hy,
as Lagrange multipliers. In the language of canonical 2d gravity, these are the light-cone
combinations of the Hamiltonian constraint (cf. (2.61) below) and the (one-dimensional)-
diffeomorphism constraint; the associated Lagrange multipliers are the lapse and shift func-
tion of the two-dimensional (unimodular) metric [104]. In conformal gauge, these constraints
read

Tiy = 2040046 — ptr(PePy) = 0. (2.58)

After fixing the conformal gauge (2.8), the full model is thus given by the Lagrangian (2.45)
and the conformal constraints Ty... As first-class constraints the T34 generate the confor-
mal transformations (2.10) of (2.45). With the canonical Poisson brackets (2.50), (2.57) we
obtain:

{T1s(z),V(@¥)} = DiVé(z—y) = VPro(z—-y), (2.59)
{Tes(z), Pe(y)} = FPul(y)d'(z—y)+ DaPsd(z—y),

{Tas(z), Pr(y)} = DiPsid(z—y),

{Tea(2),0(y)} = Oxpé(z—y),

{Tix(2),6(y)} = 0+66(z~y),

where for the calculation of these equations one has to make use of the relations (2.40) as
well as of the equations of motion (2.49). Thus, the transformations

Serp = / dz €4(z) (Tes(z), @} = —hi 6% 0+ 6% Dup, 2.60)

reproduce (2.10) up to gauge transformations (2.41). The parameters h$ denote the confor-
mal dimensions of the field . This formula illustrates the interplay between the canonical
and the covariant framework. Canonically, the gauge parameter £* is defined as a function
of and integrated over the spatial dimension z. Upon using the equations of motion for ¢ and
restoring the time dependence of £€* according to 0+6F =0, the r.h.s. of (2.60) takes a con-
formally covariant form. In particular, constant time translations are generated by integrating
the Hamailtonian density

H = T++ +T__ ) (261)

over spatial z.
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The conformal constraints Ty, build two commuting copies of the classical Virasoro-

Witt algebra .
{Tix(x), T (y)}
{Tis(2), T2 (y)}

In the course of applying the canonical formalism to (2.45), we have further encoun-
tered another set of constraints (2.55), having its origin in the H-gauge freedom (2.38). The

Il

F(Tes(2) + Ta(0) 0 (5-) 262
0.

Il

" Poisson algebra structure of the generators @ 4 is inherited from the algebra b:

{®a(2),28(1)} = [a5 Tc(z)d(z—y) - (2.63)

In index-free notation (2.56) this reads
1 2 2

{2@), 2@} = [, 2@)]sa-v). 2.64)
Under @ the fields transform in an infinitesimal version of (2.38), (2.41):

/ dz {tr (h(z)2(z)) , @1 }

/d:z: {tr (h(x)é(z)),Pi}
The conformal constraints 7.4 are invariant under ®:

{Tes(z),2(y)} = 0. (2.66)

alh S [Q11 h’] ) (265)

[P:!:,h] 4

1l

In Dirac terminology [26] this means that all the constraints of the model are of the first
class, thus compatible and responsible for gauge transformations. The full gauge algebra of
constraints is given by (2.62), (2.63) and (2.66).

Remark 2.6 The action (2.65) of the constraints ® does not describe the full gauge freedom
observed in (2.38). According to the canonical formalism, & is just a function of the spatial
coordinate z and thus carries only half of the gauge degrees of freedom of (2.38). Actually,
the other half has been absorbed by the fact, that the field Q) from (2.39) has not shown up
within the canonical framework. Hence, it appears decoupled from the rest of the theory and
may be consistently put to zero.

Let us finally recall the possibility to fix the gauge algebra (2.62). As discussed in (2.20),
the conformal transformations may be used to map the system (at least locally) to Weyl
canonical coordinates, i.e. to identify the dilaton field p and its dual p with the coordinates
of the two-dimensional world-sheet. This is the precise analogue of adopting light-cone
gauge in string theory [50]. Reference [3] gives an exhaustive discussion of this gauge
fixing in the canonical treatment of models with cylindrical symmetry (2.21), handling all
the physical boundary conditions with great care. In the following we will mainly — i.e.
whenever necessary — stick to this particular choice of Weyl coordinates. Nonetheless, we
will argue that the essential arising structures are to some extent generic.

18



3 Integrability

In this chapter, we exploit the integrability of the model (in technical terms: the existence
of a linear system) to construct nonlocal integrals of motion from the associated transition
matrices. We prove the stronger fact, that these conserved charges are invariant under the
full gauge algebra (2.62), (2.63). In contrast to the nonlinear o-model which allows a similar
construction, there arise no ambiguities in the Poisson algebra of nonlocal charges here.
Rather, as a central result we obtain the algebra (3.60), (3.61) which is closely related to
the Yangian algebra known from various two-dimensional field theories [37, 10, 12]. This
is analyzed in detail for the two particular choices of Weyl coordinates (2.20). The infinite
dimensional symmetry group associated to these charges is revealed and their action on the
physical fields is given. The Geroch algebra is recovered as the Lie-Poisson action of the
algebra of g-valued functions on the complex plane. With some regularity assumptions on the
fields the symmetry group acts transitively. Finally, we illustrate the results for the Abelian
sector of the theory where due to linearization of the field equations the structures simplify
essentially.

3.1 The linear system and the monodromy matrix

The model (2.45) is integrable in the sense that it possesses a linear system [7, 89]. Le. the
equations of motion (2.49) appear as integrability conditions of the following family of linear
systems of differential equations, labeled by the spectral parameter -y:

V(@ 1,7) = V(z,t,1)La(2,1,7) 3.
with

5 1

V(z,t,7) € G, Li(z,t,7) = Q4+ + :F7Pi€g.

149
In addition, the spectral parameter <y has to satisfy the differential equations
25 1Fy o
7 t0ry = I_I%p 'axp, , (3.2)

which due to (2.46) are compatible and have the general solution

Hatw) = (w+ 5= Vr P =7 ) | 33)

with a constant of integration w. This constant may be understood as the underlying constant
spectral parameter of (3.1); in contrast we will refer to -y as the variable spectral parameter.

19
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Remark 3.1 The original currents contained in Ly (3.1) determine V) only up to left multi-
plication with a matrix depending on the constant spectral parameter w:

V(z,t,7) — S(w)V(z, ¢, 7), with S(w) € G. (3.4)
Later on we will encounter different possibilities how to eliminate this freedom.

Remark 3.2 The nonlinear o-model admits a similar linear system with constant spectral

~ parameter 7y [107, 121]. The coordinate dependence of -y in (3.1) turns out to be essential for

the entire following treatment, here. Its origin lies in the explicit appearance of the dilaton
field p in (2.49).

The spectral parameters

Here, we collect some useful formulas illustrating the interplay between the variable and the
constant spectral parameters -y and w.

The parameter +y lives on the Riemann surface defined by /(w+ j+p)(w+j—p), which

is a twofold covering of the complex w-plane with z*-dependent branch-cut. Transition
between the two sheets is performed by to y % The branch-cut connects the points
w=—p =+ p on the real w-axis, which correspond to y(w =—p=+p) = 1. The real w with
|w+p| < |p| are mapped onto the unit circle |y| = 1. Real w with |w + 5| > |p| are mapped
onto the real y-axis. The image of the axis #(w) =— is the imaginary axis in the y-plane.

Dividing the w-plane into two regions Hy and the 7y-plane into four regions D, D
according to Fig. 1, D4 and Dy, lie over H., respectively.

H, D+/—\
B
-1 1
=p=ip —p+p W
i o

Figure 1: The spectral parameter planes

Remark 3.3 Itis important that for fixed w ¢ R and continously varying p and j, the parame-
ter -y does not cross the boundaries which separate these regions. The limits of its trajectories
are given by

7p—0) = {20 » p—o0) = { i v p-rEoo) o {20 3.5

where the two values correspond to the two sheets of 7.
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3 INTEGRABILITY

Another useful formula is the inverse expression w(y) = $p(7+ %) — p, which e.g.
implies

2y
10y = ————r . (3.6)
P )
Two spectral parameters 7(z, t, v) and (z, t, w) at coinciding coordinates z, ¢ are related
by:
S = 2 ) =1W) O)w)-1) o
2 o) (w)

Monodromy matrix

The involution 7 which according to (2.37) defines the symmetric space G/H can be ex-
tended to an involution 7°° which acts on G-valued functions of the spectral parameter -y by
combining the action on G with a transition between the two sheets of y [61]:

(%) =+ (P) - G8)

This generalized involution leaves the connection L. () of the linear system (3.1) invariant.
Thus, it motivates the following definition [13]:

M) = V) (V) = Y (D)) - 39

The matrix M is called the monodromy matrix associated with 17(7). Due to the invariance
of Ly (7) under 7%, the linear system (3.1) implies

AM=0 = M=MMw), (3.10)

thus M depends on the constant spectral parameter w only. Its independence of the co-
ordinates in particular implies, that the monodromy matrix does not feel the z*-dependent

branch-cut of Figure 1.
According to Remark 3.1, the monodromy M is defined only up to the conjugation

M(w) = S(w)M(w) (S (w)) ,

with some S(w) € G. A preferred choice of eliminating this freedom has been introduced
by Breitenlohner and Maison [13] by demanding holomorphy of V() inside a domain in
the y-plane containing the unit disc Dy U D_. * This uniquely fixes V up to a constant
matrix. Whenever necessary, we will denote the corresponding solution of (3.1) by Vam.
The absence of singularities in the disc in particular allows to recover the original field V via

V(z) = Vam(z,7)ly=o0 - G.11)
The corresponding monodromy matrix
Muu(w(y)) = Veu(y) 7 (175&(7)) = Vam(7) T(l’}g,},(%)) (3.12)

“Roughly speaking, the invariance w(vy) = w(y~") allows to reflect all singularities at the unit circle by
multiplying V with a svitable S(w).
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is non-singular as a function of < in an annular region containing the unit circle |y| = 1.
The matrix Vgpm(y) may then be recovered from Mpy by solving (3.12) as a (generalized)
Riemann-Hilbert qu:torization problem on this annulus. Thus, Mgy contains the complete
information about V. Since it obeys

Mam(w) = 7%°(Mpy(w)) = 7 (Mpy(w)) , (3.13)

it can be represented as

Mpm(w) = Spm(w) 7(Spm(w)) - (3.14)
This implies that 17BM factorizes into
Vo (v(w)) = Som(w)Voz(r(w)) , 61

with a matrix Vaz(7(w)) which also solves the linear system (3.1). Its associated monodromy
(3.9) vanishes, i.e.

Voz(y) = 7% (i}sz(’Y)) . (3.16)

This solution of (3.1) has been used in the approach of Belinskii and Zakharov [7]. It is
defined up to left multiplication with H-valued matrices S(w) (for which 7(S)=S5).

3.2 Transition matrices and their Poisson algebra

The monodromy matrix Mpy, introduced in the previous paragraph, apparently is a good
candidate for generating nontrivial integrals of motion. At least in principle, it carries the
entire information about the original fields V. However, so far its usage as a canonical object
suffers from the fact that its definition is a rather implicit one, involving the holomorphy of
Vaum in the unit y-disc. A priori, it is not clear how to explicitly construct this object from
given fields V, thus we miss the information about the symplectic structure of the encoded
integrals of motion. However, in the next section we will be able to identify Mpy in the
canonical framework (cf. (3.40), (3.49), below). In this section, we introduce the transition
matrices of (3.1) as canonical objects. We extract the encoded integrals of motion and derive
their Poisson algebra.
The transition matrices associated to the linear system (3.1) are defined by

V7, t,y(z, t,w)) V(y,t,9(y, t, w)) 3.17)
v
,Pexp/ dZ Ll(z1t17(z) t,'U))) )
T

Ml

U(z7 y? t’ w)

Il

which are unique functionals of the connection Ly = % (Lo%L,) . The integrand in (3.17)
lives on the twofold covering of the complex w-plane with a branch cut which according to
Figure 1 varies on the real w-axis while 2z runs from z to y. Having in mind Remark 3.3, the
transition matrix U(z, y, t, w) is well defined for w ¢ R. It also lives on the twofold covering
of the w-plane and like L. it is invariant under the generalized involution 7°° introduced
in (3.8). In other words, U(z,y,t, w) is completely determined by its values on one of the
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3.2 Transition matrices and their Poisson algebra

sheets; its values on the other sheet are given by 7(U(z, y, {, w)). Until explicitly stated, we
shall in the following always consider the sheet with y€ D, UD_ inside the unit disc.
The values of U(z, y, t, w) on the real w-axis can be obtained from evaluating the limit

lill(l) U(z,y,t, wtie) with € € Ryg , (3.18)
&=

which may however give two different results for -+ and —.

_ Integrals of motion

Inspecting the time dependence of the transition matrices we can conclude how to extract
integrals of motion. Namely, the modified transition matrices

U(z, v, t,w) = V(@)U(z,v,t,w)V' (), (3.19)
satisfy

8U(z,y, t,w) = —Lo(z,t,v(z,t,w)) U + U Lo(y, t, vy, t, w)) , (3.20)
with .

gl 2y? 2
To = ViV vt s L payt. Tyt
1—o2 1—72
There are now several possibilities to construct integrals of motion:

e Assuming periodic boundary conditions for Py and P; on an interval [-%, £], (3.20)
shows that the eigenvalues of U (-%,%,t,w) are time-independent if also p and j are
periodic functions in z. Charges of this type have been studied in [91]. In general
however, assuming periodic boundary conditions on the physical fields Fy, P, and p
does not guarantee periodicity of the dual field p defined by (2.18). The variable
spectral parameter 7 then is not periodic in z, and it remains an open problem how to
extract proper integrals of motion from U. This is an essential difference to the normal

integrable systems with constant spectral parameter.
e The transition matrix U (20, Yo, t, w) itself becomes an integral of motion if
Lo(@o, t,7(z0, t, w)) = Lo(yo, t, 7(yo, t,w)) = 0. (3.21)
According to the form of Ly this happens in two cases:
- Po(zo) = Pi(zo) =0 and ~y(zp) # £1, (3.22)
- Y(wo) =0 and |Py(zo)| < o0, |Pi(zo)] < 0, (3.23)
and accordingly for 3. The first case (3.22) e.g. occurs for asymptotically vanishing

currents with |zo| — co. This may describe asymptotically Minkowskian spacetimes
(cf. (2.28)).

The second case (3.23) is even more interesting since it makes use of the field depen-
dence of the variable spectral parameter. According to (3.5) the crucial limits at which
7 tends to zero are p — 0 and p — +o0. The interpolating transition matrices thus
provide integrals of motion. é
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o If there is at least one point z, in spacetime, where according to (3.22) or (3.23)
Lo(wo, t, ¥(zo, t, w)) vanishes, the transition matrix

Vo (2,1, 7(z, t, w)) = Vw0, )U (20,2, 8, w) (3.24)

forms a solution of the linear system (3.1). We can then further extract its monodromy
matrix (3.9) as a canonical object, which itself is an integral of motion.

What is still missing of course is the degree of nontriviality of all these integrals of
motion. Assume e.g. that we had identified a solution 1752 in (3.24) then according to (3.16)
its monodromy matrix would carry no information at all. The content of the integrals of
motion will thus have to be checked separately whenever in the following we will construct
integrals of motion according to the procedure described above.

Conformal invariance

So far we have just shown, that certain transition matrices constructed from (3.19) are inte-
grals of motion, i.e. conserved in time. Constant time translation is generated by the integral
over the Hamiltonian density (2.61) (in the language of canonical gravity: by the Hamilto-
nian constraint integrated with a constant lapse function). In fact, meaningful observables
in the sense of Dirac should satisfy much more, namely be invariant under the full gauge
algebra (2.62), (2.63). In this paragraph we show that this is indeed the case for the integrals
of motion obtained above. B

First, we check the transformation behavior of the modified transition matrices U under
the H-gauge transformations (2.65). It is

{0@),0@yw)} =0, (3.25)

i.e. the modified transition matrices are H-singlets for arbitrary endpoints z and y. This
mainly distinguishes them from the normal transition matrices (3.17), which transform by
conjugation. The transformation behavior under the conformal constraints 7'+ may be ob-
tained from the general formula (3.29) below and yields

{T:k:l: (Z) ’ ﬁ(z()’ Yo, 'UJ)} = —f':t (20)[7(3:01 Yo, '(U) 6(‘2—"50) (326)

+ U, yo, w) L (40) (2 —1o) ,

with

a = VIV — o = 321 ypyt

+ = Vig -+ Tty .

This is the direct generalization of (3.20). The r.h.s. of (3.26) vanishes under the very same
conditions on g, yp that were discussed for (3.20). Le. all the integrals of motion obtained
in the previous section are indeed invariant under arbitrary conformal transformations, gen-
erated bt the Tly.4..
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3 INTEGRABILITY

Let us finally compute the Poisson bracket between the integrals of motion and the con-
formal factor o. An arbitrary transition matrix (3.19) satisfies

{U(x, y,v), 01o(z } = —U(z,2,v) 0, Ll(:r 7(v)) U(z Vi vk (3.27)

which in turn follows from (2.50), (3.29) and the fact that 9,L; = d;L,. By integration we
obtain

{17(930,.740,1)) ; (o(yo)—a(xo))} = —8,U(zo0,%0,v) , (3.28)

using that the connection L, vanishes at the critical points zg, yo. Thus we see, how the
conformal factor ¢ at the spatial boundaries provides a derivation operator of the integrals of
motion.

Poisson algebra of transition matrices

This paragraph is devoted to the (rather technical) calculation of the Poisson brackets be-
tween two transition matrices with pairwise distinct endpoints. A similar calculation has
been done for the PCM [24]. The results however differ in two essential points. First, the
underlying coset structure here implies the appearance of a twist in the resulting Poisson
algebra (3.46), (3.47). Second, the calculation for the PCM is obstructed by certain ambi-
guities which arise due to the non-ultralocal contributions of the original Poisson brackets
(2.57). They prevent a well-defined answer for the Poisson brackets between transition ma-
trices with coinciding endpoints. In particular this spoils the Poisson algebra of transition
matrices relating the spatial boundaries. In our model on the other hand, the coordinate de-
pendence of the spectral parameter — caused by the coupling of the dilaton field p in (2.49) —
yields an intrinsic regularization of these ambiguities at the spatial boundaries [77] provided
that we assume the proper asymptotic behavior of the fields p and j . We shall describe this
in detail.

Let U(z,y,v) and U(z', 3, w) be the transition matrices with spectral parameters v and
w, respectively, and pairwise distinct endpoints z, y and «/, y.% The definition (3.17) implies
the relations [39]

(Uu, X} = [ " d2 Uz, 9) { I m) » X} Uz ,0), (3.29)
P
for an arbitrary function X'.and
{ (}(131 Y,v) , (}(xlw v, w)} = /”dl /”,dz' (}(w,z,v) &(zﬁ Z, w)) x  (3.30)
(L. LEm ) (D) DEw),
with 11 =7(z,v), Re=7(7,w) .

SFor clarity, we drop the coinciding argument ¢ throughout this calculation. Nonetheless, so far all the
arising objects are time-dependent.
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3.2 Transition matrices and their Poisson algebra

Due to the coset structure of the model, it is a priori not obvious, that the Poisson algebra
of the connection L, of the linear system (3.1) is of a closed form. However, this turns out
to be true on the constraint surface (2.55):

1 2
{L1 {z;m) , In (Z',’)’z)} = (3.31)
Sy % e bio)]se-o
o 2’7%(1_73) 1 o
p(1—B)(n—7)(1-m72) [Q" Ll(m] Aol

277 (1-%) 2 ,
PA=1)(n—m)(1-n7) [Q' P ("’2)} (z—2)
- 2% N(1+93)  7(l+93) o
(1-)(1-%) ( p(z) o(2') ) 0,0(z—7) .

Inserting this into (3.30) and using (3.7) and definition (3.17) leads to

{I} (z,y,v), U (&9, w)} = (3.32)

/dz/ dZ
2’}’2( ) ! =)
/dz/ id P(1=73) (12— ’71)(1 —M72) SR
271(1 ) ! =
/dz/' A p(1- 71)(71—72)(1 Nnm) bl cice

Ll 2,2(p“(z)71(1+72)+p‘1( Z)n(l+17)) -
[ [a = D0=7) ol

= 0(z =) (8 + 0x)

with
e 1 2 % 3 1 2 i
Sy = U(:z,z,v)U(:z,z,w)Q,, U(Z,y,U)U(ZLy,w),
1 2 1 2
U(z,2,0)U (2, 2\w) Qe U(z,y,0)U (2,y,w) .

m
1]

Partial integration of the first three terms reduces the expression to boundary terms. There
arise additional terms from derivatives of the spectral parameter (cf. (3.2)). E.g. the second
term in (3.32) gives a contribution of

¥ 8117 (m—1)*+(1-m1)®)
A=) A=) n—7)*(1-17)?
71(1+7¥)72(471(71—72)(1 M72) + 2(1—12) (1 —2m72+13)) o
(m=72)*(1=m72)*(1—73)(1—93) L
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3 INTEGRABILITY

the third term yields the same with opposite sign and -y, and 7, interchanged. This combines
into a term proportional to p~28, p which is precisely cancelled by the contribution from the
last term in (3.32) (note the different arguments of the dilaton p). Altogether, there remain
the following boundary terms

{[}(1'1 y,‘U) ) [}(-T’, yl1 w)} o= (3.33)

1
iz

x { 0(z,2,) (U@, 7,0) 94 U(9,0)0 (@ vw))
+0@,3,9) (U@ 5w) 9 U001, v))
~ 0(z,v,v) (z‘z(z o) vw) % UG )
-0z y,9) ( (5,3,9)U (23, 0) Dy U(y,y’,w)) }

.’IZ.'L‘,y

v o3 2@ v)(1—72(z) w))
) @)
9(z, w)(1-7*(z,v))
¥(z,v)(1—72(z, w))
¥y v) (1 =7, w))
(¥, w)(1—72(yv))
7(%“’)(1—72(3/1”))
(Y, v)(1=72(y, w)) ’

1 2
(z,2'v) Qe U(z,y,0)U(2)y

Y =3

(o
H(wxy)(
(v

1 2
U(5,0) QU0 Eyw)

0(z y' y) Ulz, ) Uz v, w) D llf(y’,y,v))

9(1, v, y')
= ‘U—_w— ( (2,3,0)U (v, 0) % U(y,v) ))
where we have made use of the abbreviation:
L forz<y<z

G(zyy,Z)={ 0 ‘else (z# y# 2)

We are mainly interested in the modified transition matrices from (3.19). Their Poisson
brackets acquire additional contributions from

{llf(r,y,v) : 12)(1:')} 20(z, 7 y) v(z'v)

T @) 72(@h)
{a‘z(:),é(xcycw)} - SRt (s u) D@ % i),

1 2 T
Uz, z,v) V(') % U (2 y,v)

etc.
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The final result then is
i 2 b, 2 1 2
V7 @)V (@) S U (z,9,0) , U v, w) p V) V) (3.34)
1 ; 1 1 2
g adony {a<z,x,y)(u<z,z',u>n., 0 (#0,0) 0 (&,viw)

zzy)( Tz, w) U(zy,v)U(zy, ))
—0(z,9,9) ( xy,v)ny, w) U(yy, ))
0w (G Do) 9 Dwvo) |

e (x i y) Fzw,v) (&(xaz’av) N (lj(z"y’v)(}(x’,y',w))
9(3: z,y

X ) flz vw)( (2,2, w) % U (2,3,) T (I’y,’w))
0(;,1/1/ fWw,v ( (xyv)U(x,y,w)QeU(y y,v )
:_y) V) f,v, w)( (z, y,v)(}(z',y, ) Qe U (v, v5w ))

with @ from above and

1—2v(z, w)y(z,v)+72(z, w)

i )

This result superficially resembles the corresponding bracket arising in the PCM [24].
In fact, neglecting the coset structure (i.e. formally putting €2 = Q¢ = (2;) and dropping the
coordinate dependence of the spectral parameters ), equation (3.34) explicitly reduces to the
brackets appearing in the PCM.

At first sight, we thus face the same fatal problem: With distinct endpoints z, 2/, v, y” the
algebra (3.34) is uniquely and well defined, satisfying in particular antisymmetry and Jacobi
identities. The limit to coinciding endpoints on the other hand is obviously ambiguous. E.g.
it is easy to check that

) 2 )’ >
lim {U(l,y»v),U(l",y'»w)} # lim {U(Z,y»v),U(iE',y'»w)} ,
o>’ z<z!

since
flz,v,w) # fz,w,v) . (3.35)

In the PCM this ambiguity survives in the limit z, 2" — —00, y,y’ — co with no possibility
to cure this in accordance with antisymmetry and validity of the Jacobi identities [86, 24].
The corresponding transition matrices relating the spatial boundaries however are the main
objects of interest, since they encode the integrals of motion. Several procedures have been
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3 INTEGRABILITY

suggested to nevertheless make sense out of the classical Poisson algebra of the PCM [38,
31, 87].

In our model on the other hand, the coordinate dependence of the spectral parameter y
changes the situation drastically. Namely, since the function f(z, v, w) inherits this depen-
dence, the ambiguity (3.35) may “fade out” in a certain limit. This happens if at the end-
points z, =’ and y, ' the variable spectral parameter y becomes independent of the constant
one. such that (3.35) becomes an equality. These possible fixpoints of the spectral parameter
are 0, oo and i (cf. (3.5), (3.6)). In this case equation (3.34) shrinks to an algebra related to
‘Drinfeld’s Yangian [28]. We shall demonstrate this for the two choices of Weyl coordinates
(2.20) in the next section.

3.3 Nonlocal charges and their Poisson algebra

In this section, we analyze the integrals of motion obtained above for the two particular cases
of Weyl coordinates (2.20) assuming the vector field d,,p to be globally space- and timelike,

respectively. Evaluating the general result (3.34), we obtain the relevant Poisson algebra of

nonlocal charges. The same fundamental structures arise from somewhat different sides.

Nonlocal charges for a spacelike (radial) dilaton

For this paragraph, let us assume that the vector field d,p is globally spacelike. We can then
identify p with a radial coordinate =7 € [0, oo[. This is a common coordinate system for
the description of cylindrically symmetric gravitational waves [69, 79, 3]; the symmetry axis
is given by z=0. For pure Einstein gravity, we have already introduced these coordinates in
(2.21). The dual field p is identified with the time:

p=zel000, p=t. (3.36)

Let the physical currents Py, P; fall off sufficiently fast at spatial infinity z — oo with
VY — I and behave regularly on the axis z = 0. According to (2.28), in four dimensions we
can demand this for the currents which are either related to the original matrix V from (2.25)
or to the matrix Vp carrying some of the the dual potentials. A physically interesting class of
gravitational waves is e.g. described by restricting to regular Vj on the symmetry axis [17].

In the sense of (3.22), (3.23) there are thus two interesting points : x = oo satisfying (3.22)
and z = 0 with (3.23). According to (3.24) they give rise to the following two solutions of
the linear system:

i\}0(‘7“1 7(1:) ’U)))
Voo(, 7(z, w))
The second equality in (3.37) follows from the behavior of the moving branch cut (cf. Fig-
ure 1) in VU( ). The matrix Vo is the (unique) solution of (3.1) which as a function of v is
holomorphic in the unit disc D, UD_ and thus coincides with Vgy from (3.12). The solution
Veo(7) on the other hand is the unique one which is holomorphic in the lower half plane
D4UD_ or the upper half plane D_UD,, respectively, depending on the sign of Sw. In par-
ticular, Ve, (y(w)) as a function of w is discontinuous along the real w-axis since for z — oo
the branch cut blows up and cuts the w plane into two halves (cf. (3.18)).
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V(O) U(01 :c,'w) e 9BM(:C,"/(11,'U))) ) (3.37)
V(o0) U(o0, z,w) .

3.3 Nonlocal charges and their Poisson algebra

From (3.37) we extract the integrals of motion

Us(w) = 17017;1 = U(0,00,w), for we Hy, ie.for Sw20, (3.38)

where the index + refers to the discontinuity of Vs, along the real w-line. The Uy (w) are
(G-valued) holomorphic functions in H and H_, respectively, and related by

U (w) = Uz (@) - (3.39)

According to (3.24), further integrals of motion descend from the monodromy matrices
(3.9) of Vy and V.. They may however be expressed in terms of the matrices Uy (w): For
real w it is

MBM (w) = Mo(w)

3

2 tim (Vo(e,2(w+ie) (V3 (@77 i) ) )

£t (Vo(e,v(wie) (%5 (@,7(w—ie))) )

ity (01 () Veo(z, 7€) (Dol y(w—ic) U () )
Up(w) (U= (w)) (3.40)

Throughout this calculation it is important that z > |w+¢#|. This ensures that the limits
z— 00 and e— 0 interchange as well as y(w-+ie) = 7y~ (w—ie).

Vice versa, (3.40) can be understood as the essentially unique (Riemann-Hilbert) factor-
ization of Mpy into a product of matrices holomorphic in the upper and the lower half of the
complex w-plane, respectively. The symmetry (3.13) of Mgy further implies the relation

L

e
-

Il

(3:38)

(3.10)

Ui (w) (U1 (w)) = U-(w) 7 (U (w)) - (3.41)
Together with (3.39) this ensures reality of all matrix entries of Mpy on the real w-axis:

May(w) = Mpy(®@) . (3.42)
The monodromy M., associated to 1700 follows from (3.38) and (3.40):

Meo(w) = UpH(w) Up(w) forw € Hy . (3.43)

Summarizing, we find that all the the integrals of motion identified according to the
discussion in the previous section can be entirely expressed in terms of the Uy (w). So far,
we have however not answered the question of their physical content. For this purpose, we
bring them into a more illustrative form. Starting from definitions (3.17), (3.38)

N Po)

the ¢-independence may be exploited to calculate this expression for real w at the specific
value ¢ = —w (assuming regularity of the currents):

Us(w) = V(z=0,t) Pexp/ dz(Q1+ +z P - s

Up(w) = V(z=0,t=—w) Pexp /0de (Ql(:c, —w) * iPy(z, —w)) : (3.44)
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3 INTEGRABILITY

The ==-sign on the r.h.s. of (3.44) reflects the different limits lim,_, o 7(w=ie). On the real
w-axis Uy (w) thus naturally factorizes into the product of a real and a compact part. The
monodromy matrix Mgy captures the real part of (3.44):

Mpu(w) = V(e=0,t=—w) r(V " (z=0,t=—w)) (3.45)
2 M(z=0,t=-w), for weR,

whereas M, (w) carries the compact part of (3.44).

' Equation (3.45) provides a physical interpretation for the new integrals of motion. They
comprise the values of the original field M on the symmetry axis = 0. Having been
defined as spatially nonlocal charges for fixed ¢, they gain a definite localization in the two-
dimensional spacetime at fixed z.°

Moreover, this shows that they contain the entire information about the solution. Together
with the fact that Py(z = 0) = 0, which follows from the equations of motion (2.49), the
values on the symmetry axis z =0 allow to recover the field } everywhere. In some sense the

initial values on a spacelike surface have been transformed into initial values along a timelike

surface. Thus, the Uy (w) build a complete set of constants of motion for this classical sector
of solutions regular on the symmetry axis.

It remains to compute the Poisson algebra of the integrals of motion Uy (w). According to
their definition (3.38) we evaluate the general result (3.34) in the limit z, 2’ — 0, y, ' — co.
The first four terms become

Q 1 2
L G b))
v—w
for arbitrary indices = at the U’s.
The next two terms show the ambiguous behavior at coinciding endpoints. Depending
onz < ' or z > z' they give the coefficient

f@,v,w) or f(ziw,v),

respectively, leaving to different results for different ways of taking the limit 2’ — z. Here,
the difference with the PCM becomes manifest: Since the spectral parameters depend on the
spatial coordinates, in the limit z, ' — 0 both f(z,v,w) and f (2, w,v) tend to 1 (cf. (3.5)).
The sum

]:1_!2[ (0(:z’, z,y)f(z,v,w) + 0(z, 2, y) (2 w,v))

thus is independent of how this limit is taken, keeping e.g. x < z’ or z > z’ or also z = 2’
with 6(z, z,y) = 3.

In a similar way, the ambiguity from the last two terms vanishes. In the limit y, 3’ — oo,
the combinations f(y, v, w) and f(y', w, v) approach the same value. This common value is

S A similar relation holds for the monodromy matrix arising from timelike dimensional reduction (i.e. with
a Euclidean two-dimensional world-sheet ¥) in the regular regions of the spacetime [13]. In that setting,
singularities of the nonlocal charges in the spectral parameter plane are directly translated into singularities of
the original fields in space-time.
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however sensitive to the choice of indices + at the U’s, i.e. to the relative sign between the
imaginary parts of v and w. If y(v) and (w) lie in the same of the two regions D, and D_,
the function f(y, v, w) tends to 1, whereas it tends to —1 otherwise (cf. (3.5)).

Thus, we arrive at the following Poisson algebra:

{Uli (v), (]2:!: (w)} = [v Szﬂw ; (}i (v) Uzi (w)] : (3.46)
1 2 0 1 2 1 2 Qr
{Ui (v), U (w)} L —“w Us (v) U (w) — Uy (v) U (w)v _"w . (3.47)

with Qf = Q — Qy obtained from §2, by applying the involution 7 in one of the two spaces
s =t'®ts, W=7t @ta=t"@(ta).

Equations (3.46) build two semi-classical copies of the Yangian algebra that is well
known from other 2d field theories [10, 11, 12). By semi-classical we mean as usual that
the Poisson brackets (3.46) coincide with the commutator of the h-graded Yangian algebra
in first order h. The mixed relations (3.47) appear “twisted” by the involution 7 with respect
to those coming from the normal Yangian double.

Note that whereas (3.46) remains regular at coinciding arguments, (3.47) obviously be-
comes singular at v=1w. However, since U,. and U_ are defined in different domains, this sin-
gularity appears only in the limit on the real line and thus with a well-defined ie-prescription.
In other words, the Poisson algebra (3.46), (3.47) is compatible with the holomorphy prop-
erties of Ug(w). For consistency, it may further be checked that the algebra (3.46), (347) is
indeed compatible with the the restriction U (w) € G and with the symmetry (3.41).

Remark 3.4 Letus rcéall the Poisson bracket (3.28) between the conformal factor ¢ and the
integrals of motion Uy (w) obtained above:

{Uﬂ:(w)la(z:c’o)} = —6,,,Ui(w), (3.48)

where we have assumed that the value of the conformal factor on the symmetry axis is fixed
by the boundary conditions [3]. In the context of cylindrically symmetric 3d gravity cou-
pled to scalar fields, the conformal factor exp o at radial infinity has a well defined physical
meaning. It contains the deficit angle describing the nontriviality of the asymptotically flat
3d metric and provides a measure of the total energy of the system. The simple form of its
Poisson bracket with the new variables may have further consequences upon quantization
[76].

Finally, we can also compute the symplectic structure on the Breitenlohner-Maison mon-
odromy matrix Mpy, since we have identified this object within the canonical framework. It
follows from (3.46), (3.47) and (3.40) that its matrix entries form the closed Poisson algebra:

{./\14BM (v) , Mom (w)} = (3.49)

il 2 1 2 s

o prpe Mawm (v) Mam (w) + Mam (v) Mawm (w)v e
1 Q 2 2 1

= Msm (v)v e Mem (w) — MBM(w)v oy Mbam(v) .

The singularity at v=w is understood in the principal value sense.
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Nonlocal charges for a timelike dilaton field

Here, we deal with the case of a globally timelike vector field ,p, which allows to identify
p with the time ¢. Accordingly, 5 now describes the spatial coordinate x. The distinguished
location z =0 which has played the role of the symmetry axis 7 =0 in the previous paragraph
becomes now the origin ¢ = 0. With periodic spatial topology, this is the setting of the so-
called cosmological Gowdy-models [49].” We will, however, just treat the asymptotic case
z € ]—00,00[. The fundamental structures of the preceding section (the spacelike dilaton)
-reappear in this context from a somewhat different side. So, for this paragraph we fix

p=1t, p=2z€]—00,00. (3.50)
According to (3.24) the transition matrices again provide solutions of the linear system:
9_00(17,’)‘(7-0)) = V(——OO) U(—OO?.’L',’H)) 3 (351)

This time, the branch cut of Fig. 1 involved in the definition of the solutions (3.51) moves
along the real w-axis without changing its length. Both these solutions turn out to be holo-
morphic inside of the unit disc D UD_ in the y-plane, thus in fact it is

il

R SN
In particular, the objects
U(w) = Vewlz, 7(w)) Vit (@, v(w)) =1 (3.52)

superficially analogous to (3.38) are trivial here.
However, again we have identified Vay among the canonical objects. Its monodromy
matrix Mpy(w) for real w is given by

My (w) = lim (ﬁBM(x,7(w+ie)) 'r(i}gh},(x, ’y(w—ie)))) , (3.53)

for |w + z| < t. Unlike (3.40) there is no way to express this matrix directly in terms of
certain transition matrices. This is due to the fact that the limits € — 0 and 2 — oo do not
interchange in (3.53).

The matrix Mpy(w) can be given more explicitly. Since M (w) is independent of z and
t, we may evaluate it at z=—w and in the limit ¢ — 0. This yields:

Mpm(w) = lim ('Pexp /Idle(z,'y) P exp —/:dz T(Ll(z,’)’)))
= V(@E=-w,t=0) T(V_l(.’E:—’U),t:O))
= M(z=-w,t=0). (3.54)

Thus, Mpm(w) again coincides with the values of the physical field M at p=0.

7See [53, 94] for a recent treatment of the Gowdy model in Ashtekar variables. The two Killing vector
field reductions of pure Einstein gravity in terins of Ashtekar variables and the metric variables used here are
equivalent [95, 120]. The explicit formulas of [120] allow to translate the results from one setting into the other.
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After some calculation, the general result (3.34) further yields the Poisson algebra of the
Mgy here which turns out to coincide with (3.49):

{AlfhaM (v), X’tBM (w)} = | (3.55)

0 1 2 L 2 Q
e _gw Mam (v) Mam (w) + Mam (v) Mam (w);}—_—”w~
1 Q7 9 9 o
— Mam (v)—= Mam(w) — Mpm (w)—2 i (v) .

v—w W=l

This is by no means a consequence of (3.49), since the matrices Mpy in both contexts
descend from rather different definitions.

Via the Riemann-Hilbert decomposition of Mpy, discussed in (3.40), one can implicitly
obtain the matrices Uy. They will satisfy the Poisson-structure (3.46), (3.47). Thus, together
with (3.54) the final situation appears rather similar to the previous paragraph.

However, this result must be taken with some caution. Obviously, (3.54) looses its mean-
ing if M (z,t) diverges as ¢ — 0. Starting from arbitrary initial data at finite , this divergence
on the other hand is generic. What is actually described with (3.54) and (3.55) is the sec-
tor of the phase space where M (z,t) behaves regularly at ¢ = 0. Note, that the canonical
formulation obviously fails to cope with describing this truncated phase space: At t=0 the
framework breaks down with the vanishing Lagrangian (2.45), whereas at finite ¢ the con-
dition of regularity at £ = 0 poses highly nontrivial implicit relations between the canonical
coordinates and the momenta. Thus, the results of this paragraph should only be understood
as an indication for some fundamental meaning of the Poisson algebra (3.49), (3.55) beyond
the particular choice of Weyl coordinates (3.36).

Finally, let us mention another rather intriguing point of view for the coincidence of
(3.49) and (3.55). Recall the setting of the spacelike dilaton (3.36) addressed above. In addi-
tion to the canonical (equal-time) symplectic structure, we could have derived an alternative
Poisson structure with respect to the radius z.® The calculations of this paragraph show that
these two Poisson structures of one model coincide for the values of the original fields on
the symmetry axis z=0, i.e. for a complete set of observables. In this sense, these symplec-
tic structures are essentially equivalent. It is tempting to speculate about further exploiting
the fundamental structure (3.49) even in the case of a timelike dimensional reduction, i.e.
the reduction to stationary axisymmetric spacetimes, where the canonical time is no longer
present.

Summary

We have shown that the model (2.45) in Weyl coordinates (2.20) is completely described by
a set of integrals of motion Uy (w) defined as G-valued functions which are holomorphic in
the upper and the lower half of the complex plane, respectively. They are related by

Uy (w) = Uz (w) (3.56)

81n a covariant theory this is a quite natural idea which has been discussed in particular to describe static
settings [16]). For the Schwarzschild black hole e.g. one might doubt the distinct role of time in the canonical
formalism since x and ¢ change their character being space- and timelike, respectively, inside the horizon.
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and subject to the condition

Uy (w) 7(U-N(w)) = U (w) (U (w)) - (3:5T)
The physical quantities are encoded in their matrix product

Mpu(w) = Uy (w)r (U-H(w)) , (3.58)
‘which according to (3.45) coincides with the original field M (z, t) on the axis p=0:

MBM(w) = M(p(xvt)=0y ﬁ(.’L‘,t)=*ﬂ)) : (3.59)

In particular, (3.56) and (3.57) imply that Mpy(w) is a symmetric matrix with real matrix
entries on the real w axis. i

This structure has been revealed explicitly for the two definite choices of Weyl coordi-
nates (3.36) and (3.50), i.e. having fixed the gauge freedom of conformal transformations.
Since, according to (3.26), the Uy (w) are invariant under conformal transformations, this
structure extends also beyond these special choices. Its interplay with global properties of
an arbitrary dilaton field p remains to be studied.

The Poisson algebra of the Uy (w) is given by

lhw,dw} = ;25 dodw), (3.60
{Ll’t(v),(};(w)} L v‘jﬂw Ui (v) U (w) — ﬁt(v)(};(w)vg_z;w. 3.61)

It gives rise to a closed Poisson algebra of the matrix entries of Mpwm:
1 2
{MBM (v), Mm(w) p = (3.62)

(9] 1 2 1 g Q
——sw Mawm (v) Mem (w) + Mawm (v) Mam (w)v—‘_{;

T T

Qr g 2 DIy
- M (v) === Mam (w) = Mom ()5 —— Mam(v) -

Remark 3.5 Upon formal expansion around w = 0o, the Poisson algebra (3.60) coincides
with the semi-classical Yangian structure which was introduced by Drinfeld [27] in the
framework of Hopf algebras. To describe the Yangian double [28, 82, 11] it is usually con-
venient to take two copies of (3.60) with formal expansions around w = 0 and w = oo,
respectively. In (3.60), (3.61) in contrast, the Uy (w) do not arise as formal power series but
as definite functions allowing holomorphic expansion in the upper and the lower half of the
complex plane, respectively. The formal expansions around w =0 and w =00 hence are no
appropriate parametrization.
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3.4 Symmetries: The Geroch group revisited

With the integrals of motion Uy (w) identified in the previous section, one can study the
symmetries which they generate via their adjoint action in the canonical Poisson structure.
As it turns out [75, 77], this yields a canonical realization of the Geroch group [47] with the
underlying Yangian algebra (3.60), (3.61). The transformations which close into an affine
algebra (the loop algebra g, cf. (2.35)) do not preserve the symplectic structure. This is a
particular example of the Lie-Poisson action of dressing groups generated by the transition

- matrices of integrable models [113, 6, 84]. For the integrable models studied so far within

the framework of the quantum inverse scattering method, the integrals of motion are encoded
in the eigenvalues of the transition matrices. Here, in contrast, the transition matrices U (w)
themselves are conserved charges.

The Geroch group and the linear system

In this paragraph, we sketch how the action of the Geroch group may be encoded in an action
on the linear system (3.1). Since our main goal is the canonical realization of the Geroch
group in the next paragraph, we keep the discussion rather brief, referring to [61, 13, 99] for
details.

We have seen the one to one correspondence between solutions V of the original equa-
tions of motion (2.49) and the associated solutions Vgy of the linear system (3.1). The latter
allow the factorization (3.15)

Vam(7) = Sem(w)Vez(7) (3.63)

into a matrix Spm(w) living in the w-plane and a matrix 1731(7) living in the y-plane and
iiwariant under the involution 7 from (3.8). Conversely, this equation shows how to obtain
Vpm(7y) from Mpy: Decompose Mpy according to (3.14) and determine the unique ng(fy)
invariant under 7°°, such that the product (3.63) as a function of «y is holomorphic inside
the unit disc. Thus, one obtains Vgm(y), which in particular is sufficient to reproduce the
original fields V according to (3.11).

This procedure describes the finite transformations of the Geroch group, which generate
an arbitrary solution 17BM from the vacuum solution 173M = I. They are parametrized by
G-valued matrices S(w). The group structure is simply given by matrix multiplication:
On a given solution Vem. S (w) acts by left multiplication which in turn induces a right
multiplication to restore the holomorphy inside the unit y-disc. The monodromy matrix
Mpy transforms as

Mam(w) = S(w)Mpm(w) 7(S7H(w)) . (3.64)

On the algebra level, this action takes the following form: Parametrizing the algebra
action by a g-valued meromorphic function A(w) we define

S Vam(7) = A(w)Vem(7) + Vem(1) Ta(7) , (3.65)

where Y5 (7) is the unique function invariant under 7°° which restores the holomorphy of
daVem(7) inside the unit disc. The infinitesimal version of (3.64) accordingly reads

(5AMBM(’LU) = A(w)MBM(w) = MBM(’LU) T(A(w)) . (3.66)
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We have now associated a finite transformation of the Geroch group to each element of
the phase space, by which it is generated from the vacuum solution. According to (3.63) the
Geroch group is generated by meromorphic functions S(w) mapping the complex w-plane
into the group G. Denote this group by G*. The phase space may be understood as an
infinite-dimensional coset space

G=/H>, (3.67)

.where H® refers to the subgroup of G-valued functions on the <y-plane invariant under 799
This subgroup describes the freedom of right multiplication of V() which leaves the asso-
ciated monodromy matrix (3.9) invariant.

The particular elements Vgy may be viewed as a certain representative system of this
coset space (3.67). Their H* gauge freedom is fixed (3.63) by demanding holomorphy in-
side of the unit disc in the y-plane. This is a generalization of the triangular gauge discussed
for the finite-dimensional coset space G/H in (2.25). The action of the Geroch group as
described above is the action of the coset space (3.67) on itself. In analogy to (2.14)Athe

linearized action on G*™ becomes highly nonlinear on the fixed representation system Vgy

of the coset space. On the algebra level, the action of the symmetry (3.65) is parametrized
by A € g*°, while T, € h* is required to restore the generalized triangular gauge.

Let us finally recover the structure of the Geroch group that we have encountered earlier
in the model of pure Einstein gravity. There, the Geroch group has been described as the
affine algebra g (2.35) with the action of the generators given in (2.14) and (2.33), (2.34). The
algebra g of meromorphic g-valued functions is formally related to g by Laurent expansion
around a given point wy.

With wy = oo the (truncated) Laurent expansion

Alw) = Ag+why +w?ho + ..., (3.68)

yields one half of the affine algebra. Since these A(w) introduce a singularity at -y =0 they
require a compensating transformation Y, according to (3.65) which acts nontrivially on
the physical fields eventually obtained from (3.11). The expansion (3.68) leads to explicit
recurrence relations for this action [99]. A closer check of (3.65) shows that indeed the
parameter A, describes the action (2.14) of the zero modes g®2°, whereas A, corresponds to
the action (2.33), (2.34) of the elements g®z in g. Thus, (3.65) generalizes the action (2.14)
of the zero modes of (2.35) to that half of the affine algebra which acts nontrivially on the
physical fields (cf. Remark 2.2). The other half of the affine algebra may be associated with
the Taylor expansion of A(w) around wy=o0 [61, 13, 99].

The canonical realization of the Geroch group

Here, we present the relation of the Geroch group described in the previous paragraph with
the integrals of motion Uy (w) that we have obtained in section 3.3. It turns out that this
provides a natural realization of the Geroch group via the canonical Poisson structure. For
definiteness, we assume the Weyl gauge (3.36) whenever necessary, such that, in particular,

9To properly define FI*® as a subgroup of G* one should regard (3.67) for fixed values of = and t, with y
and w related by (3.3). See [13, 63] for the mathematical details.
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the solution VM of the linear system is given by (3.37). As has been discussed above, the
entire symmetry structure also survives relaxing of this gauge choice.

Recall that the Uy (w) live in a matrix representation of G, in particular each matrix entry
thus represents an element of C(G). Define in this representation the matrix valued operator

Gi(w) = ady Ui (w), (3.69)

where “ad” denotes the adjoint action via the canonical Poisson structure. To be precise, the

~action of G+(w) on any phase space function f is defined as

GEw) f = {U™w), £} U™ (w),

in matrix indices @, b. Since the Uy (w) are integrals of motion, this action is a symmetry
of the equations of motion of the theory. It is illustrative to calculate the transformation
behavior of the monodromy matrix Mpy according to (3.58) and (3.60), (3.61):

T

1 Q
G1(v) x’lBM (w) = —2 Jf/tBM(w)_/\z/iBM(w) ! (3.70)

v—w v—w

This motivates the definition of the following symmetry operator
y dv dv
G[A] = tr (/b(% Av)Gi(v) + , 2 A(v) G_(v)) ; (3.71)

for any algebra-valued function A(w) € g, regular along the real w-axis and vanishing as
w— 00, where the path £ = £, U £_ is chosen to encircle the real w-axis, such that £y € Hy
and A(w) is holomorphic inside the enclosed area. Then, we obtain from (3.70)

G[A] Mpm(w) = A(w)Mpm(w) — Mam(w) 7(A(w)) , (3.72)

which coincides with (3.66). This already reproduces the infinitesimal action of the Geroch
group in the canonical framework. Moreover, (3.72) shows that the symmetry group (3.71)
acts transitively among solutions which behave analytically on the symmetry axis p = 0
(cf. (3.59)). L

Let us check, if we can also recover the action (3.65) on the solution Vgy of the linear
system. Evaluating the key formula (3.34) according to the definitions (3.71) and (3.37)
leads to:

G[A) Vom(a, t, v(w)) = A(w)Vau(z, t,7(w)) — Vam(z, t,7(w)) Talz, t,7(w)) ,

where
2 dv S
Talz,t,v(w)) = /tm[VBMAVBm]b am
1-7*(w) dv od: Fsoty ey
- Y(w) J 2mi(v—w) 1—-7*(v) [VBMAVBML >

with the algebra projections [.]y, [.]e corresponding to the decomposition (2.37). The matrix
A(w) depends on the constant spectral parameter w; in contrast, T (z, t,y(w)) depends on
the variable spectral parameter y and obviously satisfies

Ta(z, t,v(w)) = 7°(Talz, t,7(w))) = 7(Talz, t,y " (w))) -
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Thus, we find agreement with (3.65) and have in particular obtained a closed expression for
the compensating h*~rotation Y (7). Indeed, it follows from the form of T, (3.73), that the
right multiplication of Vgm with T removes all singularities caused by the left multiplication
with A(w) from the unit disc (note that the path £ surrounds the unit disc in the y-plane).

With the symmetry operator (3.71) at hand, we can directly calculate the infinitesimal
action of the Geroch group on all the original fields of the model. According to the general
formula (3.29) it follows that:

./, :—:_i (;7(1—2-— Ve [VBMAVBM} ) (3.74)

- (e Pt

The currents Py = 3 (P  Py) transform as:

GIA] V()

o dv 27y S
G[A] Ps(z) = [ - [p_(l—i—"/—)’_ [VB,},AVBM]b,Pi(z)] (3.75)
dv 4y%04p

— b YAV ]
¢ 2ni PE7(1-7) [P,
Equivalent forms of these infinitesimal symmetry transformations of the Geroch group have

been stated in [51, 119, 99].
The symmetry action on the conformal factor ¢ is given by

GlAJo = / bt (Aa vBMvBM) : (3.76)
| i

in accordance with the formula derived in [99]. Formula (3.76) is easily obtained from (3.27).
The algebraic structure of the symmetry operators (3.71) is most conveniently obtained
from (3.72), which immediately gives rise to

[cia,Glnal] = 6 (i1, 801] - 3.717)
Like in the previous paragraph the symmetry algebra is parametrized by meromorphic g-

valued functions. Half of the affine algebra (2.35) may again be recovered by formal Laurent
expansion around w=oo0.

Recovering the affine algebra
Definition (3.69) together with (3.60) yields
1
[6:),02)] = == [, G (o) + Ga(w)], (3.78)

The commutator on the r.h.s. encodes the half of an affine algebra in its Taylor expansion
around v =00, W =00 [39]:

Gi( ) I+ G1i+ G2i+
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which corresponds to the expansion (3.68) in the sense that:
G[Anw"] = 3(Gn4+Gn-).

This relation follows from evaluating (3.71). There is a slight subtlety here, since strictly
speaking the functions A(w) = A,w" do not belong to the class of functions for which we
have defined (3.71). As the integrand is singular at infinity, definition (3.71) depends on the
precise choice of the contour in this region, which has not been specified above. Expansion
of (3.74) around w = oo yields the action of these components on the physical fields. With

" the asymptotic behavior

W = 505
y(w " === u? pp + 3.79)
it is possible to expand Ve according to

Vom(z, t,7) = v(1+ Vit — = V. A (3.80)
with

Vi = /0 dy p(y)V (W) Po(y)V ' (y) -

Then, (3.74) yields the following action (up to gauge transformations (2.38)):

GAMw Y = AV, (3.81)
GAw®|V = [A, YY)V,
GlAw?| Py = F [pV7'AV, Pi] F 0sp [V (2)A2V(2)],

This coincides with the structure found in (2.31), (2.33) and (2.34) for g=sl(2). In particular,
it may easily be checked, that in this case the matrix YV, V! indeed covers the first dual
potentials (2.26) and (2.32).

The associated affine charges may be obtained from a formal expansion of the linear
system (3.1) in the following way: Interpreting (3.1) as a formal power series in w™?, the
particular transition matrix Vam(z, ¢, y(w)) from (3.37) admits an expansion according to
(3.80). Performing the limit z— oo in each of the coefficients separately leads to a series

U(w)EI+lU1+i2U2+..., with U, = lim V, . (3.82)
w w T30
The first two charges obtained this way are
U= / dz p(z)V(z) Py(z)V "\ (z) , (3.83)
0
G = 402+ 4 [ do [ ptalotw) [V(-T)PO(I)V—I(Z), V) P)V ()]

/ dz () V() Py ()" / dz p(z)F(z)V(@)Po(z)V\(z) .

It may be checked, that they generate the action (3.81). However, it is important to
notice that in general there is no relation between the formal power series U(w) defined
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in (3.82) and the integrals of motion Uy (w) from (3.38). This is due to the fact, that the
limits w — oo and z — oo do not interchange (manifest in the breakdown of the expansion
(3.79) at w = —t+=). In particular, all the U, are real, whereas the U (w) are complex
with (3.56). Nevertheless, the formal series U(w) generates the same action as the operators
(3.71) defined via the Uy (w).

Remark 3.6 The closed expressions (3.74), (3.75) of the symmetry action on the physical
fields contain the pivotal term [vgh}[Al/}BM] which is hardly computable explicitly. The affine
‘expansion (3.68) of the symmetry group has the seeming advantage, that it allows for explicit
expressions of the associated charges (3.83) and the action of the symmetry (3.81). However,
to obtain infinitesimal transformations which are integrated to physically meaningful solu-
tions, the entire formal power series in (3.68) has to be summed up, i.e. the same amount of
work is required. The closed form of (3.71) captures the structure of the full symmetry group.
In particular, it provides precise control over the deviation of this action from a symplectic
one (cf. (3.90) below) which later on becomes essential for the purpose of quantization.

Remark 3.7 We have given the canonical realization of the symmetry algebra (3.65). Ac-

cording to the discussion above this may formally be embedded into that half of the affine
algebra g (2.35) which acts nontrivially on the physical fields. There is no canonical real-
ization of the other half and the central extension k for the following reason: According to
Remark 2.2, the other half of the Geroch group leaves the physical fields V invariant and acts
by shifting the dual potentials encoded in a solution V of the linear system (3.1). However,
to set up the canonical framework we had to identify the particular solution Vpy as a unique
functional of the physical fields V, which e.g. enabled us to obtain the symplectic structure
(3.62). There is hence no canonical object which would transform nontrivially while the
canonical fields are left invariant.

In other words, to incorporate the other half of the affine algebra and the central extension
of (2.35), the phase space would have to be enlarged by additional gauge degrees of freedom
(corresponding to h* in (3.67)). So far, it is not clear how to achieve this canonically, say,
on the Lagrangian level. See [63, 102] for further discussion.

Lie-Poisson actions

Definition (3.71) implies that the action of the Geroch group is not symplectic. Rather,
this type of operator generates a Lie-Poisson action, i.e. an action which does not preserve
the Poisson structure on the phase space but on the direct product of the phase space with
the symmetry group. In this paragraph, we briefly recall the mathematical concept of Lie-
Poisson actions and show how the canonical realization of the Geroch group matches this
framework. For the details and proofs we refer to [6, 84].

The action of a Lie group G on a symplectic manifold M is a map

GxM—M; gxm—gm. (3.84)

It naturally induces a map C(M) — C(M) by f — fog; fog(m) = f(gm). The action
(3.84) is called symplectic, if for fixed g € G it is a Poisson map, i.e. it is compatible with the
symplectic structure on M:

{f1°gyf2°!]} — {f17f2}°9,
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for any two functions fy, f, € C(M). The infinitesimal version of this condition reads

(X1, o} + {11, X 2} = X{f1, o}, (3.85)

where X is the vector field related to the action of g € G and may be understood as an element
of the associated Lic algebra g. Every infinitesimal action of this kind is locally generated
by a charge

XHh={Q h}, (3.86)

and vice versa every action generated as (3.86) is obviously symplectic (due to the Jacobi-
identities). An example of a symplectic action in our model is e.g. given by the action of the
zero modes of the affine algebra (2.14), which is generated by the charges U, from (3.83).

For the subsequent generalization it is convenient to also state the dual version of (3.85).
The action f+ X f induces the dual map

§:C(M)»C(M)®g"; fréeCM)®g'; &(Xeg)=XT,

in terms of which a symplectic action (3.85) satisfies:

{gfl ) f2} + {fl'lgfz} Ls é{f},fz) 2 (3.87)
Let the group G now be a Lie-Poisson group, i.e. equipped with a symplectic structure
C(G) x C(G) = C(G), (3.88)

such that the group multiplication is a Poisson map. The Poisson structure naturally induces
a Lie-algebra structure on g* (loosely speaking obtained from the differential of (3.88)). The
space G' x M then is a symplectic space with the product symplectic structure:

{flyf?}GxM(gl m) e {fl(!m))f2(rm)}0(g) ot {fl(gy ')y fz(g, )}M(m) . (389)

To evaluate the r.h.s. the functions f; are understood as functions on G with parameter m
and as functions on M with parameter g, respectively. The action of a Lie-Poisson group on
a symplectic manifold M is called a Lie-Poisson action, if (3.84) is a Poisson map, where
G x M is equipped with (3.89). Compared with (3.87), the infinitesimal form of a Lie-
Poisson action gets an additional contribution:

{&ny fo} +{f1,€n) = Etnuny — Ennépl - (3.90)

The commutator on the r.h.s. refers to the Lie-bracket induced on g*. This explicitly shows
that a nonabelian Lie-Poisson action is not symplectic.

In our model the action of the generators Gy (w) is precisely of the form (3.90). Evalu-
ating definition (3.69) yields

{Ga(w)fi, fo} + {/1,Ga(w) fo} = Gi(w) {f1, fo} = [Gx(w)f1,Gi(w)fo] ,

where the commutator is understood for the matrix-valued action of G4 (w). This coincides
with (3.90). In fact every Lie-Poisson action is at least locally generated by an operator of
the form (3.69) [6, 84]; this is the nonabelian generalization of (3.86).
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In particular, dressing transformations in normal integrable systems are generated by an
operator (3.69) where U(w) denotes the transition matrix of the Lax connection, the eigen-
values of which give charges in involution. In our model in contrast the matrices U (w)
are integrals of motion themselves and parametrize the entire phase space. Rather than con-
structing the Lie-Poisson action (3.71) we could alternatively consider the pure symplectic
action of the matrix entries of the Uy (w) via Poisson brackets. However, though this action
is certainly symplectic, it allows neither explicit exponentiation nor a closed form of the
commutator algebra, in contrast to (3.72) and (3.77).

3.5 The Abelian sector

The results of this chapter simplify significantly if the group G is Abelian. In this case, all
equations linearize and allow an explicit solution. Thus, truncating the model to its Abelian
subsector may serve as a simple illustration or may be viewed as a testing ground for issues
like implementing further symmetries or approaching the quantization of the model.

Here, we illustrate this for G=U(1). In the context of four-dimensional Einstein gravity -

(2.21) this corresponds to a diagonal matrix Mg, i.e. cylindrical gravitational waves re-
stricted to collinear polarization. These solutions have already been discovered by Einstein
and Rosen [33]. Quantization of this sector has been studied as a midi-superspace model of
quantum gravity [79, 3, 4]. With Euclidean signature of the two-dimensional world-sheet,
this truncation is the one from stationary to static solutions of Einstein’s equations.

Like in (2.21) we choose Weyl coordinates (3.36), identifying the dilaton p with the
radius z. Parametrize M by

efig
M= s
(v )
The Ernst equation (2.22) in this case reduces to the cylindrical wave equation
—Blp 4100+ = 0, (3.91)

with general solution
il By s / ak (A4 (k) Jo(kz)e+ A (k) Tkz)e™) | 3.92)
0

where Jy denote Bessel functions of the first kind. Another representation of the general
solution of (3.91) is given by

wlet). = ?{—g:—l m(v) 7'16.,7(1)) = — f;;—:} 8,m(v) In(y(v)) , (3.93)

with the spectral parameter 7y from (3.3) and a path £ encircling the moving branch cut in the
w-plane (cf. Figure 1). This representation even allows for an explicit solution of the linear
system (3.1):

dv m(v)

/ Tl m 9yy(v) , (3.94)

o(y(w)) =
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where 7 is one diagonal component of In V.
The general solution of (3.91) is thus parametrized by a real function m(w) or by the
complex functions

Ay(k)=A_(k) with k£>0.
Let us illustrate their relation. On the axis z=0 it is

p(z=0,t) = /0 wdkA+(k)e““ + /D mdkA_(k)e“"‘ = m(w=~t) .

This is nothing but the decomposition of a function on the real line into the sum of two
functions holomorphic in the upper and the lower half of the complex plane, respectively.
Comparing this decomposition to the nonabelian case (3.40), (3.45) we see the embedding
of the abelian case according to

Mpu(w) = exp (mgw) —n?(w)) . (3.95)
- [ dk Ay (k)eti* 0
Ug(w) = exp( 0 0 _f:odkAi(k)eﬁk,)

Thus it follows immediately, that m(w) or equivalently the A. (k) form a complete set of
integrals of motion. Let us verify the symplectic structure in these variables. In terms of the
original fields  the Poisson structure (2.57) reduces to

il
{p(z), dp(y)} = Zd(x—y) g
With (3.92) this translates into
{As(k), A-(ka)} = =i(ki=ka),  {As(kr), As(kr)} = 0. (3.96)

For the Fourier transforms appearing in (3.95) this implies

o0 00
{/ dk, A+(k1)e+"’”” ’/ dkgA_(kg)e—ik"”} S 1 ,
0 0

v—w

and
2

v—w

{m(v) ,m(w)} = 3.97)

Upon exponentiation, this leads to the abelian version of (3.60), (3.61) and (3.62).
Moreover the action of the Geroch group takes a simple form in this abelian case. Ac-
cording to (3.90), in the abelian case we expect a symplectic action which is generated by

dv
G[A] = I%A(v)adm(u) N

with some function A(v). In the representation (3.93) this is easily seen to give rise to
dw o
GlA]p = f 5 Mw) 7 0 (w) - (3.98)
¢ 4T

44



3 INTEGRABILITY

This coincides with the abelian version of (3.74).
Quantization of the abelian sector is straightforward [3]. The Poisson algebra (3.96)
gives rise to a representation in terms of creation and annihilation operators

A_|0)=0 with A=Al (3.99)

Coherent quantum states may be constructed basically in the same way as in flat space quan-
tum field theory. However, a recent discussion has shown that, interestingly enough, these
_states do not provide coherence of all essential physical quantities [4, 46]. Even though
we know that the linearized structure (3.96) does not appear in the full nonabelian model,
(3.99) may give a hint on the nature of relevant representations of the operator algebra which
replaces the integrals of motion after quantization. We will return to this point in section 5.3.
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4 Supergravity

In this chapter, we show how the results obtained so far may be extended to locally
supersymmetric theories [105]. The simplest of these models descends from dimensional
reduction of N =1 supergravity in four dimensions and leads to an N =2 superextension of
the bosonic model described in section 2.1 (see e.g. [99]).

Here, we analyze maximally extended IV = 16 supergravity in two dimensions. This is
the theory obtained by Kaluza-Klein type dimensional reduction from N =1 supergravity in
eleven dimensions [21] via IV = 8 supergravity in four dimensions [22] and via the N = 16
theory in three dimensions [92]. A detailed description of the dimensional reduction to two
dimensions has been given in [62, 98, 103].

After introducing the model, we extend the canonical framework of section 2.3 to the
fermionic sector. We give the expressions for the generators of local supersymmetries in
all fermionic orders and work out the full NV = 16 superconformal constraint algebra which
extends the conformal algebra (2.62) of the bosonic sector. Finally, we construct nonlocal
charges associated to the linear system. Generalizing (3.26), they are shown to be invariant
under local supersymmetry and hence under the full constraint superalgebra. The Poisson
algebra of charges turns out to coincide with the structures that already appeared in the
bosonic sector.

4.1 'The model: N =16 supergravity in two dimensions

In this section, we describe the superextension of the bosonic model that we have treated in
the previous chapters and set up the canonical framework.

Let us state the field content of d =2, N = 16 supergravity. The matter sector consists of
128 bosons and 128 fermions which transform in inequivalent (left and right handed) spinor
representations of SO(16). The bosonic fields form the coset space G/H = Eg(45)/SO(16),
i.e. they are encoded in a matrix V € Fyg with SO(16) gauge freedom (2.38). We denote
the generators of the Lie algebra eg by X'/ = — X/ with I,J = 1,...,16 and Y* with
A=1,...,128, corresponding to the decomposition 248 — 120 @ 128 of eg into the adjoint
and the fundamental spinor representation of SO(16). The defining relations of eg are

[XIJ’XKL] = 6JleL £ 6’KX‘"‘ +6ILxJK el 6JL}(IK , (41)
PO = YT, YR = iR XY
where the '/ denote the SO(16)-I'-matrices
I e =0k + T - (4.2)
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4 SUPERGRAVITY

In the adjoint representation of eg these generators are normalized such that
w (XVXTE) = 12068,  w (YAYE) =6084".

The full coset structure of the bosonic sector has been described in section 2.2. According to
(2.39) the bosonic current V‘16,,V is decomposed into

V19,V = 1Q X" + PAY4, 4.3)

-exhibiting the SO(16) gauge field Q[ and the P;! transforming in the left handed spinor
representation of SO(16). The femuomc matter part is given by 128 physical fermions
which accordingly transform in the right handed spinor representation of SO(16); they are
denoted by x4 with A =1,...,128.

In addition, we have the gravitino 9/ and the “dilatino” 1} which descend from the 3d
gravitino and form the superpartners of the zweibein ef; and the dilaton p, respectively (cf.
(2.5),(2.6)). Before we state the Lagrangian, we introduce our spinor conventions in two
dimensions.

Spinor conventions We introduce «y-matrices in two-dimensions which satisfy the algebra
(in flat indices a, ()
%o =Tas +€ag? + Ve = Cag?’ @.4)

with €g; = —€%! = 1. An explicit realization is given by
P

(0 —i (-0 5o 405
'Yo~<i 0), 71—(0 i), 7—(1 0). 4.5)

We make use of the Majorana representation where the charge conjugation matrix is C = 7,
such that a Majorana spinor obeying 1 = ¥*C has two real components. We will use the
decomposition into Majorana-Weyl spinors

H1£7)w = (f;i) , N

and treat the one component spinors 9, as real anticommuting variables at the classical
level. Let us also give some useful rules for the transcription between two component and
one component notation:

Px = 2(ex- —¥-xs)  Prx= 20X +Yxs)
Pr+x 2x+  Pr-x=2%-x-
The fully covariant derivatives on the spinor fields are given by

D' ' + %w;.,,ge"‘ﬁ'yswl +Qy, @.7

DuXA = anXA'*'%wyaﬁeaﬂ’Ys IQIJFQJBXB

Il

Il

where the spin connection wyg is a function of the two-dimensional metric and its super-
partners [106].
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Lagrangian and equations of motion

The Lagrangian of d=2, N =16 supergravity is most conveniently obtained by dimensional
reduction of d=3, N =16 supergravity [92] as described in [98].

F e pE@R® 4 2pE(2)e“"E; Dyl — ipE(”_A'y” DuXA +1p F(2) puA P‘f
— pEOXAY P YT P — BT Pyl P2 .38)

. up to higher order fermionic terms. The first two terms of (4.8) describe two-dimensional

gravity and the N = 16 Rarita-Schwinger extension. The next two terms give the matter
couplings of the 128 fermionic and 128 bosonic fields, respectively; the last terms are of
Noether type to ensure supersymmetry of the action.

In addition, there arise several quartic fermionic terms which we omit here. Although
in principle they may be determined from the higher-dimensional theory, this computation
becomes rather lengthy due to additional fermionic contributions which arise from the elim-
ination of the Kaluza-Klein vector fields.!° Nonetheless, in (4.24) below we give the exact
expressions for the generators of the local supersymmetries, which are sufficient to recon-
struct all higher order terms systematically as well as to prove exact supersymmetry of the
conserved charges.

The action (4.8) is manifestly invariant under general coordinate transformation in two
dimensions, as well as under the SO(16) transformations

6,QY = Duw" = 8" + Q¥ — Q%™ , 4.9)
S Pf = iTiGuwPE,
(sw ,wI - ]J’l/)J

fxt = AT

with the SO(16)-parameter w“(z) = —w’(z).
In the following we employ the superconformal gauge

e, =0, expo, VI‘{ =iy, (4.10)

which naturally extends (2.8). In this gauge, the two-dimensional spin-connection from (4.7)
reads (up to bilinear fermionic terms)

Wiap = Feapls0 ,
such that in terms of the the one-component spinors introduced above, the covariant deriva-
tive

(6i k iwiaﬁe""’) Y = (0 + %651) Yr = Ox (1/;; exp(%a)) ;

may be absorbed by rescaling the fermions with the conformal factor. Like in the bosonic
case, the conformal factor then almost completely disappears from the Lagrangian except for
its explicit appearance in the two-dimensional curvature term coupled to the dilaton p.

100Jnlike in (2.16), here, the Kaluza-Klein field strengths do not vanish but are expressed through bilinear
fermionic terms, Their elimination from the Lagrangian then gives rise to additional quartic fermionic terms,
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4 SUPERGRAVITY

We next list the equations of motion in the superconformal gauge. The bosonic equations
(2.48), (2.49) are extended to

Il

2T, D_(p¥h 4 x4) — 200, Da (o _x2)  @.1D)
+ 2ipl s P2y ] — 2pT hp Py 9!

+ 4P ART G5 PEXE + 4PTABT {5 PEXEXE

Dy (pP?)+ D_(pP{)

0,0.5 = 8,00 = —3P{PA—i (xAD_xd +xADyxt)

modulo quartic spinor terms. The fermionic equations of motion read

Di(pixd) = Fipte IV, PL, 4.12)
Divy = —3xgTaPt
D:t(mbzla:) = 0,

modulo cubic spinor terms.

Like in the bosonic case, there are further equations that descend from the Lagrangian
(4.8) before (super)conformal gauge is adopted. They are to be regarded as constraints aris-
ing with the unimodular components of the 2d metric and the traceless modes of the grav-
itino, respectively, as Lagrangian multipliers. The resulting expressions are

Tay = —pPAPE+204p0s5 + 2ipPATY 4l xB + 2ipxADyxd @.13)
+ 2, D (p¥34) % 293 D (V1) ~ 0,
SL = —2D.(pwhy) + 20009, +20xAT PEF 20009, =~ 0, @4.14)

generating conformal and superconformal transformations. Modulo higher order fermionic
terms the superconformal transformations of the fields are given by

VLY = Fdadr) v, duxd = I PL,
Ssp = 2ipeltiy osis = plOupel (4.15)
duo = F2eiyl, dal = ZF(Diei+aiaefk),

with the parameter €/, obeying
Dyel =0 (4.16)

again modulo cubic spinor terms. These are the supersymmetry transformations which leave
the Lagrangian (4.8) invariant and are moreover compatible with the superconformal gauge
choice (4.10). As an algebra, these transformations close into an N = 16 superconformal
algebra which additionally contains the conformal and the local SO(16) transformations.
It is distinguished from the standard superconformal algebras by the fact that it is a soft
algebra, i.e. it appears with field dependent structure “constants”. This will be discussed in
more detail in the next section.
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Canonical Poisson brackets

The Poisson brackets of the bosonic sector of the model are obtained in the same way as
(2.50) and (2.57) above. With canonical momenta
v = S A S
6(80Q1")’ 6(6P")’
the relations (2.54) and (2.55) receive additional fermionic contributions and in components

take the following form

1 : i : i
P = - (DuI4 + JTVTGRPE) — iDL g x4 YA+ us_XAYA,  @.17)
and
oY = D" +irL PN (4.18)
= 2ip( Yoy — g 2J]~) — 5Tl (xixf + x’_‘xf) ~ 0.
The first relation gives rise to the bosonic Poisson brackets for the physical fields, the sec-

ond one defines the set of weakly vanishing first-class constraints generating the SO(16)
transformations. In analogy to (2.57) we obtain the Poisson brackets

{P(z),V(v)} —%,V(I)Y" §z-y), 4.19)

{PL(2), Q7 (0}

Il

1
& PP e-1)
1 1 1 1
+—TLQV §(z—y :t—-(———+-——
3o L4500 SN2 g ooyt o

i Sy AB A_B
o 16p il ip (X+X+ i X-Xf) d(z—y)

{Pi), PEW)} )6“’ P i

+ 35 Thb (i, — L) )
" '4i_pF’AJB (Vas¥rs +¥1_¥5_) 6(z—v)
o5z Dus 8z

i | o :le—ll;i 01p 618 8(z~y) - Elﬁ Ts®rs 6(z—y)
- ﬁ, 5Tt (i +xAE) d(s-v)

+ T (W, — v ) 6a-)

b #rﬁ,(w{mﬁ +45_v3_) 8(z~y),

{PAa), 0:0(0)) (P +ill (W - ¥ xB)) Sa-v),  @20)

{P(z),050()}

1
4p
1},3 (P,," +il%, (w£+xf & wé_xf)) é(z—-y) .
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The fermionic sector as usual requires a Dirac procedure since the fermionic canonical
momenta appear proportional to the fermions themselves. The final brackets are found to be

Il

(M@ . Ew)}
{d’:’t(x) »'/JzJi(?J)}

LAY -y 4.21
4p6 oz—y), 4.21)

Il

3 g
:i:4p6 z—y) .

-Due to the explicit appearance of the dilaton field in the r.h.s. of (4.21), this fermionic Dirac
procedure also gives rise to the following non-vanishing mixed brackets

{to0) bW} = —55d s, (422)
{h0(@) Valt)} = —3 Yadla-0),

while the form of Py in (4.17) gives rise to

Il

; 1
{Pi@). W) ¢2—rgé¢5i6(z—y),

{F'(z), viw)}

Il

BX:t é(z—y) .

Since most of these brackets look rather unwieldy, it may be worthwhile to look for
simpler canonical variables. E.g. the modified momenta

Bp = pPf — 2ipwh, mxdTh; + 2ip gl mxATY, 4.23)

commute with all the fermions and with 830. Moreover, we notice that the rescaled fermions
py and péx commute with dyo as well.

4.2 Constraint superalgebra

In this section, we establish the constraint superalgebra generated by the superconformal
transformations (4.15). As discussed above, this is the part of the original symmetry algebra
of (4.8) which is compatible with the truncation to superconformal gauge (4.10). These
transformations close into an N = 16 superconformal algebra which in addition contains the
conformal transformations generated by (4.13) and the SO(16) gauge transformations (4.9).
Closure of the supersymmetry algebra is known from general reasoning [106, 92].

To avoid overlap with the general discussion of the constraint algebra in the bosonic case,
we simply state the full expressions for the supersymmetry generators

SL = +Dy(p¥l,) — pBeo¥iy T pxiT) PL £ 0sp (4.24)
Fippd xaT"xs — § ooty (xdxd - xéxE)
+ 2pPl vy = 2ok s F 2pug is s — 2o vs Y
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including all cubic fermionic terms. These terms have been reconstructed from the require-
ment of closure of their algebra

{Sh(),81@)} = ~0" (iTux 7 208K — bAXETSEBRL) S(a—y)  (425)
F (V451 +¥1SLt) 8(z—v)
+ Ixdxd (T o7 + T50) 6(z-) ,

I

Il

{5i@=),82w)} = -6 (¢§‘+Si‘ + zb{‘_sf) §(z—y) (4.26)

+ (V581 +v1,5L) 8(a—v)

+3x4x8 Tk TEET) . KL 6(z—y) .
This again is an exact result, i.e. valid in all fermionic orders. The constraint superalgebra
consistently closes in terms of the Virasoro constraints 7. and the SO(16) constraints ®/.
‘We emphasize, that the closure of this algebra uniquely fixes all the cubic fermionic terms in
(4.24).

The supersymmetry generators (4.24) are the crucial operators here, since they span the

full constraint algebra. Thus, complete knowledge of these generators is sufficient to prove
gauge invariance of the nonlocal conserved charges in the next section. Moreover, with

(4.24) at hand we are in position to compute €.g. the quartic spinorial contributions to 77y 4
straight-forwardly. By means of the super-Jacobi identities

{{Sivs;{:}v (P} = {Si’ {Si,QO}} ) {Si? {Si, V’}} )

we can further directly obtain the conformal transformations generated by the T,y in all
fermionic orders.

With this in mind, we restrict to giving the rest of the superconformal algebra only up to
higher order fermionic terms again:

{Tis(z), Tax(y)} F (Tex(z) + Tex () 8'(z—v) , 4.27)
{Tea(z), Tx(y)} {TisPLPE®Y §(z—y),
{Tes(z),Si)} F3S1(y) 0'(z—y) + DxSL 6(z—y)

F ATKETL  PAxA®* L §(z—y),

I

Il

1" F’ Pi"xfoKLJ(:r—y),
% (J'KSJ(z) - §'55!(z)) é(z—v),
O

{Tes(2), S5 )}
{2"(2), 55 ()}
{<I>”(:c) ,T:!:;t(y)}
{<I>”(z),cl>’““(y)} s (5JKq>IL _ §IKpIL | §ILGIK _ 61[,@11() §(z-).

Il

The gauge transformations (4.15) and (4.9) are generated by
fagp = 2 /dz () {SL(x), o} , and b,p= /dx 151 (z) {87 (2), ¢} |
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respectively. Conformal coordinate transformations with parameter & = £*(z?) are gen-
erated as in the bosonic model (2.60). One can verify that again T} generates translations
along the z#* coordinates modulo a local SO(16) transformation with field dependent pa-

rameter Q17 .
Remark 4.1 For computation of the canonical Poisson brackets it is necessary to rewrite
T,y entirely expressed in terms of canonical variables. Le. the time derivatives of the
fermions in (4.13) must be expressed by their spatial derivatives, making use of the fermionic
.equations of motion (4.12)
. e
Di(P%Xi) iDl(f”Xi)-i QP’¢21FAA T
D:l:"/);’k = iDl¢i = %X:kFIAAP:? )

Di(p¥3s) = +£Di(pvss)
where the 1.h.s. exhibits conformal covariance whereas the r.h.s consists of canonical vari-
ables. The “‘canonical” form (in contrast to the covariant form (4.13)) of the energy-momen-
tum constraint is then given by

Tyy = —pPLP + 2000050 F 0,0:p+ ApPAT! 1oh X2 (4.28)

=k 2‘pXiD1Xi s 21¢1D1(P"/)21) it ‘)lm,"ziDl("/)i) )

again up to quartic fermionic terms.

Il

The constraint superalgebra (4.25), (4.26), (4.27) is a superconformal extension of the
Virasoro algebra (2.62) with N = 16 supercharges. In contrast to the superconformal alge-
bras which have been studied in string theory and conformal field theory, it exhibits some
rather unusual features. Thus, its existence does not contradict the well-known absence of
superconformal algebras with V>4 [108].

First of all, this model does not allow the complete splitting into chiral halves: S, and
S_ do not commute in (4.26). Another important property of (4.25) and (4.26) is, that they
obviously do not close into a linear algebra in the usual sense. Rather, on the r.h.s the
constraints S} appear with coefficients that explicitly involve the fermionic fields ¢ and 3.
This is an example of the “soft” gauge algebras arising in (super)gravity [106, 115].

In addition, no internal chiral currents appear here. A linear superconformal algebra
with IV supercharges requires an internal bosonic SO(N current. This is immediately seen
from the super-Jacobi identities involving {S”, {$”,S%}}. Vanishing of the ¢’ contribu-
tions necessitates the additional current. In (4.25) in contrast, these terms originate from
the additional contributions due to the field dependent structure constants on the r.h.s.. The
SO(16)-current ®'7 which is part of the gauge algebra in this model is obviously not chi-
ral. Its fermionic part splits into contributions with conformal weights A" =1 and h~ =1,
respectively. Nonetheless, according to (4.27) the total conformal weight of @'/ is zero. An
underlying reason for this compensation is the fact, that in our model in contrast to the su-
perconformal string theories not only the fermionic but also the bosonic fields carry SO(16)
charge.

We close this section by stating the super extension of the gauge fixing (2.20) of the
constraint superalgebra

t =gt pm=da, =0, (4.29)
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which may accordingly be referred to as the super-Weyl gauge. Indeed this completely fixes
the conformal and superconformal gauge freedom.

4.3 Nonlocal charges and their Poisson algebra

In this section we show that supersymmetric nonlocal conserved charges may be constructed
in the same way as for the bosonic case studied in the previous chapters. The starting point

. is the extension of the linear system (3.1) given in [98, 103]. With the full generators of

N =16 supersymmetry (4.24) at hand we show that this linear system does not receive any
quartic fermionic corrections but already generates the equations of motion into all orders.
The charges extracted from the transition matrices are invariant under the full gauge algebra
(4.27). Finally, we find that the Poisson algebra of charges coincides with the one obtained
in the bosonic sector (3.60), (3.61), (3.62).

Linear system

The supergravity equations of motion can be obtained as the compatibility condition of the
following extension [98, 103] of the linear system (3.1) for an Fg-valued matrix V:

Vi aV(r) = Li(y) = 1QY ()XY + BA(yY*, (4.30)

with the connection

2iy 32i
1J _ nlJ (7 B A B ’Y
i) = Q) — (T2y)? (8¢2i¢ il BX:!:X:I:) ) Yyt
5 1xy 4i7(1%7)
P = A
i('\/) ].Zt"/ P:i:+ (1&: ) B¢2ixi1

and the variable spectral parameter «y from (3.3).

We emphasize that despite the occurrence of higher order fermionic terms in the equa-
tions of motion, the connection of the linear system (4.30) is only quadratic in the fermions.
All the higher order fermionic terms are generated from it. In super-Weyl gauge (4.29) this
has explicitly been shown in [98], the general proof follows from the result (4.31) below.

Nonlocal conserved charges

Here, we extend the result (3.26) of the bosonic case to the model with local supersymmetry.
The modified transition matrices U (z,y,w) defined in (3.19) commute with the N = 16
supersymmetry generators under the same conditions that were already analyzed for (3.26)
and (3.20).

The behavior of the transition matrices (3.17) under supersymmetry transformations is
the following [105]

{ve v sie) = TEZD v sux siEUere) @3
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+ 20@2BY) B 1 U, 2 w)Y AUy w)

p(l =%
> i;’ 21! (U, y; w)YAS(z—y) — YAU (3, y; w)d(2—x))
i ::7'7) ¥y (U, y;w)X8(z—y) - XU (e, y;w)é(2—2)) ,

.with 6(z, z,y) from (3.33) above. This result is again valid in all orders of fermions, i.e.
includes all the cubic fermionic terms from (4.24). For the modified transition matrices Uit
immediately implies:

o 2 s iy # _
{U(z,y;w),Si(z)} ~ 1;’7 XiThy VYAV ) U(z,y3w)d(z—z) ~  (432)

- 11” X Tl U, 530) (Y AV) 8(e—y)
(1 :l: )2 A (VXUV—I) U('T v w)8(2—1)

(1 :I: )2 1/)& U(z,y, w) (VX”V“ ) d(z—y) .
The r.h.s. vanishes if either the physical fields vanish, or the variable spectral parameter vy
does while the fields remain regular (cf. (3.22), (3.23)). In complete analogy to the integrals
of motion obtained in the bosonic sector we may hence build conserved charges from the
transition matrices with fermionic contributions here.

A similar transformation behavior has been observed in the supersymmetric extension
of the nonlinear o-model [20, 23, 111, 36]. There, the bosonic nonlocal charges are invari-
ant under global supersymmetry. In our model, invariance under the local supersymmetry
is an indispensable condition for meaningful observables, since supersymmetry appears as
constraint.

In particular, (4.31) implies, that the connection of the linear system (4.30) does not’

receive any quartic corrections but captures the equations of motion in all fermionic orders:
So far, this had only been shown for the (iyx)? terms [98], i.e. in the super-Weyl gauge (4.29)
where these are the only quartic terms arising. Since by supersymmetry transformations
(4.15) any solution can be fixed to obey the super-Weyl gauge, the invariance of the linear
system under supersymmetry shows that indeed no quartic corrections arise in the general
case.

The rest of this section is spent for a sketch of the proof of (4.31). The general formula
(3.29) yields

U(2,z,v) {U(z,y,v),Si()} Uy, 2\v) = (4.33)
[ d0,20) {Latartaro) SLE} Ve 20

It is straightforward although lengthy to evaluate (4.33) using the form of the supersymmetry
generator (4.24) and the fundamental Poisson brackets (4.19)—(4.22). Up to the higher order
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terms in the fermions, this result has already been given in [101]. Thus it remains to check
the cubic fermionic terms.

Throughout this calculation, there appear four different sources yielding cubic fermionic
terms. First they descend from the brackets involving cubic terms in the supersymmetry
generators S1, second from bilinear fermionic terms in the Poisson brackets (4.19) between
Py and Py. Third, they arise from the Poisson brackets involving 8.0 in Si and at last,
cubic terms enter when partial integration of the ¢’ terms in (4.33) leads to the appearance of
the connection L, again.

To give an idea of the calculation we show the cancellation of the cubic terms propor-
tional to 19 49 1 X+ in (4.33). According to (4.21) and (4.22) we have

{Ll(’Y):Xi} = WI‘H gXl'ld(z—z')
sy, i
(=) a1 8=2),

such that the cubic term ), 4 xixi from (4.24) gives the contribution
—8iy?

PRI

to the r.h.s of (4.33). Next, there comes a contribution from the bracket between Py in Ly ()

and the px Py part of the supersymmetry constraint (4.24), which is due to the quadratic
fermionic terms in (4.19) and reads

{L1(7) , i pgsxaT ™ xa} — PIMCN wMelAvA, 438

» —8’)/2 .
{L1(7) ,:t2pxiFf,,;P£} = SAE =) DR T ibiaviax Y.  (435)

Making use of (4.2) the two terms (4.34) and (4.35) sum up to
8iy?
1£7)%(1—7?) T vhavdiady . (4.36)

Several further relevant terms arise from the Poisson brackets involving the pi, 1010
term in (4.24). Namely, {L,(7), 80} gives rise to several bilinear fermionic terms due to
the brackets (4.20), (4.22) and eventually also due to

/ Y(1F7) /
= ————= §(z—2).

Altogether they sum up to

16i7*(1 F 47 + %)
1) (1-%)

Finally, the integrand of (4.33) has terms proportional to 8,6(z—2’) due to

{L(7), 20020 Y3, } — R 437)

1
(L), 20 ;P2 > ” T Thax AyA9,6(z-7)
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and
4 !
{L1(t), F2001954 ) — *(u: o K X¥18,6(2—7) .

Upon partial integration in (4.33) and using (4.30) they give rise to

1l i 8iy*(1F i
0 Qi(b( ) AXi [_XKL,YA] =5 __’Y_(__l) I'\l F 1/)2;£¢21XA} A

FaEy) (17
and
" 8iy%(1
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The sum of these two terms yields (again involving some I'-matrix algebra (4.2))
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Adding the different terms (4.36), (4.37) and (4.38) finally leads to
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We see, how the terms of the type 1, .92 + x+ from all the different sources eventually cancel.
In a similar way all cubic fermionic terms in (4.33) can be shown to drop out. There remain
only those contributions which transform “homogenously” under the transition matrix, i.e.
which appear in the first line of the r.h.s. in (4.31).

Poisson algebra of charges

Eventually, we compute the Poisson algebra of the conserved charges that we have obtained
above. As it turns out, it is completely sufficient to compute the Poisson brackets of the con-
nection of the linear system (4.30). Namely, the result below coincides with (3.31) obtained
above in the bosonic sector (i.e. setting all fermions to zero, whereby (4.30) reduces to the
linear system (3.1).

A lengthy calculation gives the following Poisson brackets for the components of the
linear system

A 5 _ 2 f A MN AMN i
{@Fon, Q) = SIS M (@ )= QMY () 8(a—1),

(@, P} = g Tl PP 8a-)
N 1] DB
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4.3 Nonlocal charges and their Poisson algebra
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with v =7y(z, v), 72=7(y, w) , and the structure constants f

i K[‘  of s0(16). Translating

" this back into tensor notation (2.56) we arrive at
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and find them to be identical with the Poisson brackets (3.31) obtained above. Thus, we have
shown, that the integrable structure of the bosonic sector of this model completely extends
to its maximal supersymmetric version. The resulting algebra of observables will be (3.60),
(3.61) and (3.62) with Eg valued matrices Uy (w) and M (w), respectively.

In particular, the analysis of the symmetry structure from section 3.4 remains valid. With
the generators (3.71) of the affine symmetry at hand, it is straightforward to compute their
action on the fermionic fields, given by the Lie-Poisson action of the affine algebra eg. Let us
however mention an open problem about the supersymmetric version of these symmetries,
that is their transitivity. Whereas in the bosonic sector under certain assumptions on the
phase space we have directly seen that (3.71) generates the full phase space, it is a priori not
clear to which extent this statement holds in the supersymmetric case. This question is es-
sentially related to the completeness of the set of conserved charges, that has been answered
affirmatively only in the bosonic sector so far. Maybe, the full answer to this question has to
be postponed until a complete quantum model is at hand (see the discussion in [105]).
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5 Quantization

So far, we have achieved a complete reformulation of the classical model (2.45) in terms
of the transition matrices as new fundamental variables providing a complete set of integrals
of motion. This formulation reveals integrability and the classical symmetries in a beautiful
way. The goal in this chapter is to find the quantum algebra underlying the classical structure
(3.56)—(3.62). We restrict to the model with algebra g=sI(V). The particular case g=s[(2)
related to the two Killing vector field reduction of Einstein gravity described in section 2.1
is analyzed in further detail.

5.1 Quantum algebra

In this section, we present the algebra which upon quantization replaces the Poisson algebra
(3.60), (3.61) and (3.62). An essential additional ingredient is the requirement that the gener-
ators of the quantum algebra must be compatible with some quantum version of the relation
(3:57).

Let us recall the classical algebra of integrals of motion (3.60), (3.61) for g = sI(V). The
maximal compact subalgebra of g is ) = s0(IV) and the involution 7 is given by 7(£) = —£7.
Itis gy = Iy — &1 with the N x N? permutation operator I1y:

(HN)cb,cd - Jad(sbc )
Accordingly we define its twisted analogue 113, by
(H}—v)nb,cd = (_H’Zl;l £ %I)nb,Cd = _6ac6bd+%éabécd .

The notation H,’:,‘ here denotes transposition in one of the two spaces in which ITy lives.
The Poisson algebra (3.60), (3.61) then takes the form:

{hw. dw} = [[2todo), 61
{fw. dw} - Lhebw-tokwD, 6

The Uy (w) are related by complex conjugation (3.56) and further restricted by the group
property:
det Up(w) =1, 5:3)
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and the relation (3.57):
Mpym(w) = Up (w)UT (w) = U= (w)UF (w) = MEy(w) . (5.4)

Understanding the matrix entries of the Uy (w) as classical phase space functions, quan-
tization amounts to replacing (5.1), (5.2) by corresponding commutator relations of an -
graded algebra, such that these relations are compatible with certain quantum analogues of
(5.3) and (5.4). This problem admits the following essentially unique solution [77]:!

The quantization of the Poisson algebra (5.1)—(5.4) is given by the x-algebra generated
by the matrix entries of N x N matrices Uy (w) subject to the exchange relations

Ui () U (0) R(v—) 5.5)
(]2+ (w) Ul'_ (V)R (v—w+%ih) x(v—w), (5.6)

H(o ) th (o) T ()
R{v—w—if) T (v) Uy (w)

with

r (e ()

Nih Nik

R(v) = vl —ihlly , R"(v) = vl — iR}, x(v) = - , 5.7)
() (=)
with the usual I'-function satisfying T'(1) =1, I'(z+1) =zI'(z).
The condition of unit determinant (5.3) is replaced by the quantum determinant
1 = qdetU(w) (5.8)
= Y sgn(o)U " (w— (N-1)in) U (w— (N-2)ik) ... UY'"™ (w)
ceGN

and the quantum form of (5.4) is given by

Mau(w) = Uy (@)U (w) = (Up(@)UT(w))" = My(w), 5.9)

where “T” here simply refers to the transposition of the classical N x N matrices. The

x-operation is defined by
Up(w)* =U_(w), (5.10)
and builds a conjugate-linear anti-multiplicative automorphism of the algebra (5.5)5.9).

There are several things to note about the algebra (5.5)—(5.10) before we come to the
proof.

o The algebra (5.5)-(5.9) is isomorphic under rescaling of /& with positive real numbers.
Namely, this is absorbed by a rescaling of the spectral parameter w. Negative or com-
plex rescaling would violate the assumed holomorphy behavior of the Uy (w) at least
in the classical limit.'> We will in the following set i=1.

HFor simplicity we use the same notation for the classical and the quantum operators.

12Upon quantization, the holomorphy behavior of the classical functions Uy (w) translates into analyticity of
the action of the corresponding operators in dependence of the parameter w. This analyticity however depends
on the topology of the concrete representation space, which has not been fixed so far.
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QUANTIZATION

Depending on the sign of /i, there is hence a Zy-freedom in constructing (5.5)-(5.9).
This corresponds to the symmetry (+ > —) of the classical Poisson algebra (5.1)-
(5.4), which is obviously broken after quantization. This freedom might be fixed from
the later requirement of the existence of unitary representations.

o The algebra (5.5), (5.6) is no Hopf algebra. This follows already from the absence of
a trivial representation of (5.5), (5.6). Even stronger, due to the singularity structure of
(5.6) this algebra admits no finite-dimensional representations.

e The essential new ingredient of (5.5), (5.6) is the appearance of the twist 7 in the
mixed relations which has already appeared in the classical Poisson algebra. It is
basically this peculiarity which requires a new representation theory to be developed.
(Unfortunately, the notion of “twist” has been introduced for several different concepts
for quantum groups in general and even for the Yangians in particular.)

e The definition of the quantum determinant (5.8) is known from the sI(/N) Yangian

[56, 80, 97]. It encodes the generators of the center of the algebras (5.5). Here, we -

must in addition ensure that qdetUy (w) also lies in the center of the full algebra (5.5),
(5.6). It is this requirement which uniquely fixes the factor x(v—w) in (5.6).

o A central extension of the type appearing in the mixed exchange relations (5.6) (i.e. the
shift of the argument in the quantum R-matrix) has been introduced for quantum affine
algebras in [110] and explicitly for the Yangian double in [65, 54]. Here, its value is
uniquely fixed from the requirement of compatibility with (5.9). From the abstract
point of view, the central extension takes the critical value at which the antisymmetric
part of M generates a two-sided ideal (cf. (5.16) below), i.e. any representation of the
algebra (5.5), (5.6) factorizes over this ideal. A common shift of both arguments in
the R-matrices of (5.6) may be absorbed by redefinition of U, (w) and (5.9), (5.10),
introducing a relative shift in the latter.

The normal (untwisted) Yangian double has a critical value of the central extension at
which it possesses an infinite dimensional center [110]. As we shall discuss in the next
chapter, for N =2 the algebra (5.5)—(5.8) is in fact isomorphic to the normal centrally
extended Yangian double at this critical level.

Recalling remark 3.5, Drinfeld’s Yangian and its double are obtained from (5.5) by
expanding U, (w) and U_(w) around w = oo and w = 0, respectively. This however
does not match their holomorphy behavior in our model. Formally treating the algebra
(5.5) only in terms of the generating functions U (w) [40], we may however adopt
most of the results concerning the Yangian to this case.

In fact, for N =2, the algebra underlying (5.5) in our case is a degeneration A (s1(2))
of the scaling limit of the elliptic affine algebra A, 4(s1(2)) [44, 66]. Again, what
is eventually needed is a modification of this algebra in accordance with the twist of
(5.6).

e The symmetry property (5.9) together with definition (5.10) guarantees that the object
Mapm(w) = Uy (w)UT (w) is symmetric and invariant under the *-map. To be precise,
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as an N x N matrix it is symmetric, i.e.
Miu(w) = Mgjy(w) ,

and the matrix entries are invariant under the *-operation
Mihy(w) = (Miy(w))", for weR.

In a unitary representation these matrix entries will thus form self-adjoint operators.
Thus, Mpwm(w) is the natural quantum object that according to (3.59) underlies the
original classical field on the symmetry axis. It satisfies closed exchange relations

R(v—w) Man(0) B (w—v-+(1+2)i) Mam(w) 5.11)

x(v—w)

= X/IBM('U))RT (v—w+(1+2)i) /‘IABM(U)R(w ~ x(w—v)

which are obtained from (5.5), (5.6) and may be viewed as the quantization of (3.62).

The rest of this section is devoted to the proof of consistency of (5.5)—(5.10).

Associativity Denote by Yy the algebra generated by the the matrix entries of U (w),
respectively, with exchange relations (5.5). These are two copies of the well-known Yangian
algebra [27] which provides the unique quantization of the Poisson algebra given by (5.1).
Compatibility with associativity is equivalent to the Yang-Baxter equation

Ryp(u—v)Ri3(u—w)Raz(v—w) = Roz(v—w)Ryz(u—w)Ria(u—v), (5.12)

for the quantum R-matrices R;;, where the indices i, j denote the two spaces in which R;;
acts nontrivially.

Associativity of the full algebra (5.5), (5.6) is ensured by a modified (twisted) Yang-
Baxter equation for R’:

R,(u—v)R{3(u—w)Roz(v—w) = Ryg(v—w)R{z(u—w)R}y(u—v) . (5.13)

Validity of the classical version of this equation (i.e. modulo terms in A%) is a consequence
of the fact, that 7 is an algebra automorphism of g. For the quantum R-matrices R and R™ in
(5.7), the twisted Yang-Baxter equation (5.13) follows from

R (v+2%i) = —RO(-v), (5.14)

and (5.12) by applying transposition and a shift of the argument in the first space.
Thus, whereas the exchange relations for Y, are uniquely given by (5.5) [27], for the
mixed exchange relations (5.6) we may take the general ansatz

Bl Fall L1 T o) =t () O 0 (oot o sln—sd) (518
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5 QUANTIZATION

Central extension The resulting algebra must respect the symmetry (5.9) of M(w). More
precisely we demand the following: Denote the set of antisymmetric matrix entries of Mpy
by Z C U(Y; @ Y_). Then we require that Z spans a two-sided ideal in the sense that

(Y, @Y. )I=T(Y,®Y.). (5.16)

This relation ensures that the antisymmetry of Mgy may be consistently imposed without in-
ducing any further relations, i.e. any representation of Y. factorizes over Z. Equation (5.16)

-is not influenced by the choice of x but uniquely determines the values of the parameters c;
in (5.15) to be

Z|

a=-1, a=

This may be verified straight-forwardly e.g. by evaluating (5.15) and (5.9) in matrix compo-
nents. At these values of the c; the exchange relations between Uy and Mpy take the closed
form
1 2 2 < Fuooh
x(w—v)R(v—w) Uy (v) Mpm (w) = Mam(w)R™ (v—w+(1+%)i) Uy (v), (5.17)
2 1
Mem(w)R" (v—w+E£i) U- (v) x(v—w),

R(v—w—i) ia (v) p o (w)

and indeed imply (5.16). These relations provide a quantization of (3.70) and shall play an
important role for the quantum symmetries.

Quantum determinants The factor x(v) in (5.6) is finally fixed from the requirement that
the quantum determinants from (5.8) commute with everything such that the relations (5.8)
are consistent with the algebra multiplication. It is known [56, 80] that the qdetUy. span the
center of Y respectively, thus x (v) must ensure that they also commute with Y=

[adetUs (v), V4] = 0. (5.18)

Commutativity of qdetUy. with Y. essentially follows from the relation [97]

bl (wilrees ky Bl bl nitdeoble (e (M=)
gl % ok FAS | BT P o

where Ay denotes the antisymmetrizer in the IV auxiliary spaces. Upon successive use of
the exchange relations (5.5) this leads to

AnRor ... RowAn U (v) adetUs (w) Ax
= qdetUy(w)An Uoi (v)AnRoy ... RonAn
with
Rox = Ro(v—w+ (k=1)i)
63

5.1 Quantum algebra

With the additional relation

o N
Rt Hawhne = Koo Pane - - Hos Uviuw‘n(v—w+(k—l)i)AN, (5.19)
k=1 .

it follows immediately, that qdetUs. commutes with all matrix entries of Uy. The factor on
the r.h.s in (5.19) is most conveniently obtained from evaluating both sides on the particular

' vectore; @e; @ex®. . .Qey .

In a similar way, the mixed relations (5.6) eventually yield

AnRy, ... Roy Ay 74 (v) qdetlU.(w) Ay
= qdetU+(w)AN Uo_ ('U)ANR()II oo R;)’NAN 5
with
Ry = Roe(v—w+ (k—2)i), Rgy = Ry (v—w+ (k+2%—1)i) x(v—w+(k—1)i) .

From (5.19) we now obtain

Y= o .
AnR), ... RiyAn = e E(v—w + (k=2)i) Ay,
as well as (cf. (5.14))
Al ... Ry = LSl e it vyt
wRai .- Bip N~w—v—(N—1)i =1v w+ (k—=1)i)x(v—w+(k—1)i) Ay .

k

Combining these equations shows that (5.18) implies the functional equation

N & .
s v—i
gx(wkl) gl s o (5.20)

for x(v). Existence and uniqueness of the solution of this equation follows from the expan-
sion in the limit v — —ioco (corresponding to 2 — 0 with the condition that Sv < 0), where
the first coefficient is normalized according to

x(v)Nl—%(l—i—%)—i—O(u%), for v — —ioco,

in order to obtain the correct classical limit (5.2) from (5.6). The function x given in (5.7)
indeed is the unique solution of (5.20) with this normalization.
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5 QUANTIZATION

The *-structure It remains to check that the *-operation defined by (5.10) is a conjugate-
linear anti-multiplicative automorphism of the structure (5.5)—(5.9). Compatibility of (5.5)
and (5.6) with (5.10) obviously follows from R(7) = —R(—u), R"(@) = —R"(-u),
x(@) = x(u) and the fact that R and R” are symmetric under permutation of the two spaces.
Invariance of the restriction of unit quantum determinant (5.8) under the *-map follows from

qdet(Ux(w)* = Y sgn(@)Uf ™ (w)... Uz"® (w+(N-1)i)
€GN

qdet(Ug (w+(N-1)i)) ,

where for the second identity we have employed one of the many properties of the quan-
tum determinant [97]. Finally, compatibility of the symmetry relation (5.9) with the *-map
follows directly from invariance of this relation under *:

(U (w)UT ()" = (U3 (w)UT (w))" = Up(w)UT(w) forweR.
This finishes the proof of consistency of (5.5)—(5.10).

Il

52 g =sl{2)

To further illustrate the formulas of the preceding section, we will now discuss the particular
case g = sl(2). This is the model which we have described in detail in section 2.1 in the
context of the two Killing vector field reduction of pure 4d Einstein gravity. It deserves
interest as a midi-superspace model for quantum gravity; the corresponding quantum model
has been introduced in [76].

There are several reasons, why the case IV =2 is somewhat distinguished and simpler to
treat compared to higher N. E.g. the involution 7 is an inner automorphism of si(2)."* Re-
markably, this leads to an algebra isomorphism between our twisted and the normal Yangian
double, however this is no *-algebra isomorphism.

The exchange relations (5.5), (5.6) for N =2 read

R(v—u) U (v) Us(w) = Ui () Us (v) Rv—) 5.21)
Rv—w—1) Ul_ (v) I}+ (w)r= (}+ (w) Ul_ (V)R (v—w +i) x(v—w) , (5.22)

with R and R from (5.7), where the permutation operator IT and its twisted analogue I1" are
explicitly given by

IR= = e

(==
OO o
[ 3 = B =1
e S
RS = )
co=o
oo o
== =

Moreover, the function y may be evaluated from (5.7) and shrinks down to

v(v — 2i)

R

3n contrast, for N > 2 the involution 7(£) = —¢7 is the outer automorphism of si(N') which corresponds
to reflection of the Dynkin diagram.
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The quantum determinant is given by

qdetUp(w) = U (w-i)U2(w) — UL (w—i) U (w) (5.23)
U (w)U* (w—i) - U (w)UP (w—i) = 1,

and the matrix product
Mew(w) = Uy (w)UZ (w) = My (w) , (5.24)

is symmetric under transposition and satisfies (5.11).
As mentioned above, for g = sl(2) the involution 7 is an inner automorphism generated
by conjugation with

SR |
G o U
This allows to “retwist” the mixed relations (5.22) by the following transformation:

Uy (w) = Uy (w)oy , U_(w) = U.(w) . (5.25)

These retwisted generators satisfy the exchange relations of the normal Yangian double:

1l

U o) 2 (0 Bly—)., (5.26)
56 i 1o B vl i 5.27)

R(v—w) s (v) s (w)
B D G b

I

at the critical level k = —2. At this level the center of the Yangian double becomes infinite-
dimensional and is generated by the trace of the quantum current [110]

L(w) = [Uy(w)U=H(w)] . (5.28)
Evaluating this in terms of our matrix Mpy(w) from (5.24) yields
tr L(w) = Miag(w) — M (w) . (5.29)

Recall that the central extension of our structure was precisely determined by the requirement
(5.16). For N =2 the subspace Z is one-dimensional. An explicit calculation shows that be-
yond (5.16), Z even lies in the center of the algebra (5.21)—(5.22). Here we see the complete
agreement with the normal Yangian double at critical level. We have thus equivalence of the
twisted structure (5.21)—(5.22) with the untwisted (5.26)—(5.27), however supplied with the
somewhat peculiar -structure:

U (w)* = Uy () 0y .

For higher N this equivalence does not hold. Neither is there an algebra isomorphism be-
tween (5.5), (5.6) and the normal Yangian double, nor does a center emerge at our critical
level, rather criticality is expressed by (5.16).
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Remark 5.1 For explicit calculations it is sometimes useful to express the exchange re-
Jations (5.21), (5.22) in matrix components Ug*(w). The mixed relations (5.22) e.g. may
equivalently be written as

i? ab od i cd ab
11— — = —— 5.30
(1 (v—w)z) UL (0)Us(w) (1 e Ui (w)U2(v) (5.30)
i ad cbh bd yrem am
+— (U+ (w)UL(v) + 8" U™ (w)U® (u))
i2

(v—w)?
Interpreting the matrix entries of the U,. as creation and annihilation operators, respectively,
the r.h.s. of (5.30) can be viewed as sort of normal ordering [76].

+

g (U:"'(w)U:'"(u) . U;"'(w)U_ﬂ"'(u)) .

5.3 Representations and symmetries

In this section, we touch the question of representations of the algebra (5.21)—(5.24) that has
been obtained for g=sl(2). First, we note, that (5.21), (5.22) admit no evaluation represen-
tations of the type the normal Yangian (5.5) does [81, 19]. Replacing U, (w) by R-matrices
involving an additional (quantum) space, does not give a representation of (5.21), (5.22),
since by no combination of R and R” for Uy, (5.22) can be traced back to the twisted Yang-
Baxter equation (5.13). We have already mentioned above the absence of finite-dimensional
representations of (5.5), (5.6).

Recall the abelian sector of the theory. In terms of the operators A4 from (3.92), there is
a canonical Fock space representation (3.99). Classically, the embedding of these variables
into the full nonabelian model is obtained via exponentiation

00
U (w) = exp / dk Ay (k)etev (5.31)
0

Having quantized the abelian model, we may translate (5.31) back as an operator in (3.99)
and for illustration study its action on the vacuum |0). Whereas U (w) leaves the vacuum
invariant, U} (w) creates a coherent state corresponding to the classical field which on the
axis = 0 is peaked as a J-function around ¢ = —w. One may speculate, that similar
representations are relevant for the algebra (5.21), (5.22).

A general class of representations is obtained from the following construction. Let V'
be a finite-dimensional representation of the Yangian algebra Y_ of (5.21) (generated by the
U_(w)). A representation of the full algebra (5.21)-(5.24) is then given by the space

UV / u(m(zv ® (qdetUy (w)—id)V @ (qdetU_(w)—id)V) . (5.32)

where we start from the regular representation of U(Y,.) and subsequently divide out the
relations (5.23) and (5.24). The action of Y_ on (5.32) is obtained from the exchange re-
lations (5.22) (i.e. explicitly from (5.30)) and the defining action from Y_ on V. The fact
that U(Y4) ZV and U(Y,) (qdetUy (w)—id) V are representations of Y_ is merely a conse-
quence of (5.18) and (5.16), i.e. valid for any N. For the trivial representation Vp = C, the
representation (5.32) has the form of a direct generalization of (3.99).

To proceed with this class of representations, there are essentially three points to clarify:
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e What are the finite-dimensional representations of Y_?7
e Is the representation (5.32) irreducible or does it contain irreducible parts?
o Is the representation (5.32) unitary with respect to the *-structure given in (5.10)?

At least the first point can be answered completely, the finite-dimensional representations
of the Yangian are classified by highest weights. Even more explicit results are known for

_ the special case g = sl(2) [19]. All finite-dimensional irreducible representation are gen-

erated by evaluation representations. The latter are obtained from evaluating the quantum
R-matrix from (5.7) on the tensor product of a (classical) two-dimensional vector space and
an irreducible representation of su(2) [81]. To be precise, these representations are labeled
by an insertion point z and the dimension r+1 of the representation of su(2); the action of
U-(w) on a basis vy, .. ., v, is given by

—z—3@2r—k)ve (r—k+1)ve— )

33
(k4+1)vgyr  w—z+3(2r—k) v S

U(w)vy = f(w—zr) (w

where we have set v_; = 9,4, = 0. The factor f(w—z;7) is chosen such that it ensures the

relation (5.23); it may be expressed in terms of I'-functions. We denote this representation

by V,('). The action of Y_ on the tensor product v ® V,,(’) is given by the Hopf algebra

structure of the Yangian [27]:

U%(w) (v @u) = U™(w)u @ U™ (w)u, for . @u €V ® Vy(’) (5.34)

Remark 5.2 The general formulas (5.17) evaluated for N =2 yield

1 2 1
Uy ('U:F%i) Mam (w) U;l (‘UIF%'[) (5.35)

I

2
R (v—w—}i) Mam(w)R" (v—w-+3i) x(v—w+3i)

<1+LL) Msy (w) (I— ——‘“—) :

3.
v—w—j3l v—w+31

I

It can be checked that this “adjoint” representation of Y3 on the three symmetric matrix
entries of Mpy(wp) coincides with the evaluation representation V‘ﬁ?,) from (5.33).

The representation theory of the Yangian Y'(sl,) is essentially contained in the follow-
ing result [19]. Each finite-dimensional irreducible representation is isomorphic to a tensor
product of evaluation representations. A finite tensor product

N
v, (5.36)
m=1

is reducible iff there are m, n with 1 < m,n < N and j with 0< j < min (rp,, ;) such that
+i(2m — zp) = L(rm+ma) —j +1. (5.37)
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The representations (5.32) are thus labeled by the tensor products (5.36). Restrictions
on V™) may arise from the requirement of “holomorphy” of the action of the U_(w). As
discussed above the action of V(M) should depend analytically on w for w € H_, i.e. Sw<0.

We can further evaluate the structure of (5.32). Its simplest elements apart from V(™) are

given by the “single excitations”

N
U (wo) v, with v € VI = R V) . (5.38)

m=1

Obviously, they again form a representation of Y_, namely V,ﬁ) ® V™). The precise embed-
ding follows from

Ut () Mna(w0) V) = (U ()™ Mana(wo) (U 0))"™" ) U™ () V)
(5§5) (U_(w)am V!ﬁ)) (U:nb(w) V(N))

(.39 Ut (w) (Vug? ®V(N)) ’

where M gy (wo) VW) encodes a basis of linear combinations of (5.38).

According to the criterion (5.37), we see, that the vectors (5.38) for generic wy form an
irreducible representation of Y_ again. In particular, this implies that via the relation (5.23)
it is possible to obtain back all vectors from V) by further action of Y_ on (5.38). Thus,
there is only a discrete set of vectors among (5.38) — with wy related to one of the z,, from
(5.36) by (5.37) — that give rise to potential proper subrepresentations. It remains to study
these vectors separately. .

Having analyzed all vectors (5.38), one has almost the full information about irreducibil-
ity of the representation (5.32). This is due to the fact that “higher excitations”

Wl N B Uf“""(wo) Uk ,
are formal elements of the Y_ representation
VP ®...eVP VWM, (5.39)

According to (5.37), irreducibility of (5.39) is equivalent to the irreducibility of the pairwise
tensor products contained in (5.39) which reduces the analysis to (5.38).

In this way, the question of irreducibility of (5.32) can be answered. This may result
in further relations to be divided out from (5.32) and/or lead to further restrictions on the
basis representation V) from (5.36). The last question conceming unitarity constitutes a
more serious problem. At present, it is not clear if under certain assumptions, (5.36) can
be equipped with a scalar product such that it is compatible with (5.10) and (5.32) does not
contain states of negative norm. Having outlined the general programme of studying the
class of representations (5.32), we defer the full analysis to later investigations.

We close this section with a remark on the symmetry that may replace the Geroch group
(3.71) upom quantization. It is known [11, 84] that Lie-Poisson symmetries of the type (3.69)
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are realized as adjoint representations of the corresponding quantum algebra. In our case this
is precisely provided by the relations (5.35). Evaluating the r.h.s. leads to

i 2 1

Us (v—3iF i) Mam(w) U (v—2iFii) (5.40)
— K(w) (14 e -
g B v—w—i v—w+i

i 2 2 i i
+= I w) — 1§ :
2 ( Mo (w) M () ) (v—w-—i+v—w+i>
This explicitly shows that after projecting the first space onto a g-valued function A(v) the
Lh.s. becomes

1 1 1 i 1 2 }.1 1=
o (Ao o0, Sow()] U 0-4i340 ) |

with classical limit (3.69). The r.h.s. correspondingly reduces to (3.70) with the singularity
at v =w “quantum split” into

4 —5 l ! 2 : 5.41
v—w 2\v—w+i v-w-i/’ G40

where the shifts in the denominators are of order /. This may give an indication of how to
deform the integration path £ in (3.71) after quantization.

The picture obviously is far from being completed, however throughout this section we
have obtained several hints which features we suspect to eventually face. Let us emphasize
the repeated occurence of the discrete shifts in the w-plane — (5.23), (5.35), and (5.41). In
the gravitational context, where according to (3.59) the spectral parameter plane acquires
some space-time meaning, this may give rise to speculating about a natural arising of dis-
crete nonlocal structures [76]. Another allusion in this direction comes from (3.48) which
suggests to represent the conformal factor o at spacelike infinity by supplying (5.21)—(5.24)
with a derivative operator i6/8w. Its exponential exp o (related to the deficit angle and the
matter Hamiltonian in 3d cylindrically symmetric gravity) then translates into a discrete step
operator.
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6 Isomonodromic Structures in Dimensionally Reduced
Gravity

This chapter is somewhat decoupled from the rest of the thesis. Here, we present the
so-called isomonodromic approach to the model of dimensionally reduced gravity (2.45),
which has been initiated in [70, 71] and elaborated in [72, 74, 104]. One of the motivations
of this programme was the seeming dead end of the canonical formalism with the nonul-
tralocal Poisson brackets (2.57). With the results presented in the last chapters we have
however carried out the canonical approach to a much further stage which also appears to
naturally capture the classical symmetries of the model and thus to build a reliable basis for
quantization.

Still, the isomonodromic approach bears several interesting features. First, in relation
with the “two-time” Poisson structure to be introduced it is manifestly two-dimensional co-
variant. It allows application not only to Kaluza-Klein reduction of spatial dimensions but
also to those involving the timelike dimension (including e.g. stationary axisymmetric solu-
tions). Further highlights are the decoupling of the chiral halves in the deformation equations
(i.e. commutativity of the two Hamiltonian flows), the quantum group structure of the algebra
of observables and the link to (a modified version of) the Knizhnik-Zamolodchikov equations
from conformal field theory, which arise in the role of the Wheeler-DeWitt equations here.

6.1 Hamiltonian description of isomonodromic deformations

In this section, we describe a multi-time Hamiltonian formulation of isomonodromic defor-
mations of meromorphic connections on the Riemann sphere due to [58]. Quantization of
this system naturally leads to the Knizhnik-Zamolodchikov system [68].

We consider the space of holomorphic Lie-algebra valued one-forms on the punctured
Riemann sphere, that are meromorphic with simple poles on the whole sphere. These forms
may be viewed as connections on a trivial bundle. Introducing local coordinates on the
sphere by marking a point oo, an element A(7)dy of this space is uniquely determined by its
poles 7; and the corresponding residues A; taking values in g:

N

A
A(y) = ey (6.1)
; T
Holomorphic behavior at infinity is ensured by
Q=) A;=0. 6.2)
J
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There is a natural Poisson structure on the space of holomorphic connections on the punc-
tured complex plane, that may be formulated in the equivalent expressions:

{A?’Af} o 6'iijBCAiCr (6.3)
& {AM9),AP()} = —fABcL('Y,)Y‘:“iC('H—)’ (6.4)
& {Amaw} = [ro-m, A0+ Aw)], ©5)

with the structure constants f4%, of the algebra g and a classical r-matrix 7(7y) = T T
where 2y = t4®t, denotes the Casimir element of g.

The condition (6.2) that restricts the connection to live on the sphere, transforms as a
first-class constraint under this bracket: {Q*4, Q%} = 4%, Q°.

Holomorphic bracket from gauge fixed Chern-Simons theory

The holomorphic bracket (6.3) is induced by holomorphic gauge fixing of the fundamental
Atiyah-Bott symplectic structure. The first-class constraint (6.2) ensuring A(y) to live on
the sphere, arises naturally as surviving flatness condition, generating the constant gauge
transformations. Let us shortly describe this relation.

The space of smooth connections on a Riemann surface is endowed with the natural
symplectic form [5]

w=tr / 0A A GA
that gives the Poisson bracket

{a8(), 420} = 2@ (r-n), ©.6)

where the connection A is split into A, dy + A;d7 and the §-function is understood as a real
two-dimensional &-function: 6 (z + iy) = &(z)d(y).

The condition of flatness is F' = dA + A A A = 0 and builds an algebra of first-class
constraints

{FA(7), FP(w)} = 4% FC(1)6® (y—n) -
generating the gauge transformations
A gAg~ +dggt . 6-7)

These brackets and constraints arise naturally from the Chern-Simons action. They may
be extended to punctured Riemann surfaces if the singularities of the connection restrict to
first order poles, leading to d-function-like singularities of the curvature.[118, 34]

In order to extend these structures to holomorphic connections, first the phase space has
to be enlarged in a natural way from real connections in terms of which Chern-Simons theory
is usually formulated, to one-forms that take values in the complexified Lie algebra, as the
split halfs A,dry and A5d7 described above already do. Then, also the gauge freedom (6.7) is
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6 ISOMONODROMIC STRUCTURES

enlarged to the corresponding complex gauge group. We fix this gauge freedom by choosing
the gauge A; =0 that makes flatness turn into holomorphy.
The bracket between constraints and gauge-fixing condition is of the form:
{F4(7), A7 ()} —§4P0,6® (y—p) + f4% AS (1) 0P (y~p) (6.8)
—8420,60) (- p)

This matrix can be inverted using 852 = —2mi6® (7). With the standard Dirac procedure
"[26] one further obtains the holomorphic bracket (6.4) for the remaining variables A, (7)
(43].

Note that because of the appcalance of the derivative 05 in (6.8), the holomorphic part
of the constraints F'4(7y) survives as a first-class constraint. Smce holomorphic functions on
the sphere are constants, this becomes

[ o= [oaranar =Y af =4, 69)
j ]

and generates the remaining gauge transformations (6.7) with constant g.

Hamil tonian formulation of isomonodromic deformation

We now describe isomonodromic deformation on the sphere in terms of the holomorphic
Poisson structure. Consider the system of linear differential equations:

Oy U(7) = A(7)¥(7) - (6.10)

For definiteness we choose some matrix representation of g on a vector space Vg, such that
() accordingly takes values in the exponentiated representation of the associated Lie-
group G.

As A(y) has simple poles, the function ¥(y) lives on a covering of the punctured sphere.
Let ¥ be normalized to W(co) = I, thereby marking one of the points co on this covering.
In the neighborhood of the points -;, the function ¥ is given by:

B(q) = Gi¥i(y)(y—w)"Ci, (6.11)

with U; (y) = I + O(y — ) being holomorphic and invertible. The relation to the residues
of the connection (6.1) is given by 4; = G:T;G; .

The local behavior (6.11) also yields explicit expressions for the monodromies around
the singularities:

W (y) — W(y)M;, foryencircling v;, with M; = C;' exp(2iT;) C; .

Note that the normalization ¥(oo) = I couples the freedom of r.h.s. multiplication in the
linear system (6.10) to the left action of constant gauge transformations (6.7) on ¥. Under
(6.7) thus ¥ transforms as ¥ +—» g¥g~! implying M; — gM;g~!

The aim of isomonodromic deformation [59] is the investigation of a family of linear
systems (6.10) parameterized by the choice of singular points -;, that have the same mon-
odromies. In other words, one studies the change of the connection data A; with respect to a
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change in the parameters of the Riemann surface that is required to keep the monodromy data
constant. Treating A(7y) and ¥() as functions of ~ and 7;, these isomonodromy conditions
impose a formal condition of -;-independence of the monodromy data 7} and C;.
This requires that the function 6; ¥ W~(7) has a simple pole in 7; : 1*
—A;

a¥(y) = e v(7)- (6.12)

Compatibility of these equations with the system (6.10) yields the classical Schlesinger

* equations [112]:

A;, A Al
6,'44_,' = M ) fOI’j :/5 1 y 6,'/1.; = — ’[—A”—A]] . (613)
i i i e
A multi-time Hamiltonian description of this dependence has been given in [58] with the

Hamiltonians

tr(A; A4, '
He= Z ) : (6.14)
J#
generating the commuting ;-flows (6.13) in the holomorphic Poisson-bracket (6.3), i.e.
Gedy= { A} o - {HiuHs} =0. (6.15)

The Poisson structure is interpreted as a multi-time structure in the sense that (6.3) is defined
for the residues A;({7;}) at coinciding -; and translated to different ; by means of (6.15).

Quantization and Knizhnik-Zamolodchikov system

As was noticed by Reshetikhin [109], quantization of this system leads to the Knizhnik-
Zamolodchikov equations, that are known as differential equations for correlation functions
in conformal field theory [68].

Quantization is performed straightforwardly by replacing the Poisson structure (6.3) by
commutators. Shifting the ;-dependence (6.13) of the operators A2 into the states on which
these operators act corresponds to a transition from the Heisenberg picture to the Schridinger
picture in ordinary quantum mechanics. In the Schrodinger representation the quantum states
|w) then are sections of a holomorphic V) = @), V; vector bundle over

Xo = CV \ {diagonal hyperplanes} .
The ;-independent operator-valued coordinates of A; are realized as
A =ihI®..0t!®...01 (6.16)

where 2 acts in the representation V;. In this Schrodinger picture the quantum states |w)
then obey the following multi-time '7,-—dynamics

Oi|w) = Hi|w) = lﬁz

J?f‘

Iw) (6.17)

14The derivative 6; here and in the following denotes 3/0y;, the derivative with respect to the position of the
singularity ;.
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Here, §4; = tr(t{! ® t;4) denotes the Casimir element {2, of the algebra g, acting on V;
and V;. The system (6.17) defines horizontal sections on the bundle of quantum states and
coincides with the famous Knizhnik-Zamolodchikov system [68].

Remark 6.1 System (6.17) may be equivalently rewritten in the Heisenberg picture intro-
ducing the multi-time evolution operator Uy ({7:}) (as the general solution of (6.17)) by

6,~UN = .H,'UN ) UN({"/,‘ = 0}) =i, (618)

Then in terms of the variables UnA{UR' the quantum equations of motion give rise to
higher-dimensional Schlesinger equations with the matrix entries A{ being operators in V.
These equations turn out to be a very special case of the general (dim Vg x dim V)-
dimensional classical Schlesinger system.

6.2 Isomonodromic sector in dimensionally reduced gravity

In this section, we introduce new fundamental variables for the system of dimensionally

reduced gravity studied in the previous chapters. In terms of the connection of the linear
system (3.1), the equations of motion bear some resemblance with the deformation equations
obtained in (6.13). This suggests to adopt the holomorphic Poisson structure (6.4) which
leads to a two-time Hamiltonian formulation of dimensionally reduced gravity.

Starting from the linear system (3.1) we consider the object

U(z,t,y) = V(z,t)v’(l’}’l(:r,t,'y)) . (6.19)
It satisfies the linear system
2 1
ey i S =
WU~ = 1z, VPV T2y MM~ | (6.20)

with the matrix M from (2.42). These linear differential equations have been the basis for
the isomonodromic ansatz.

The main objects we are going to consider as fundamental variables in the sequel are
certain components of the following g-valued one-form

A=duy!? (6.21)
In particular, we are interested in the components
A= Ady+ Aydat + A_dz™ = Aydw + Adzt + A_dz™ (6.22)

where (7,z%) and (w,2*), respectively, are considered to be independent variables. The
main object in the sequel will be the particular component A, for which we use the shortened
notation 4 = A,.

Moreover, we will restrict our study to that sector of the theory, where A is a single-
valued meromorphic function of -, i.e. that also A is single-valued and meromorphic in 7.
A solution W of (6.20) with this property is called isomonodromic, as its monodromies in the
~-plane then have no w-dependence due to (6.21). In fact, this sector of the theory already
covers the most interesting physical solutions.
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Further on, we immediately get the following relations:
MM = 27 0up A )| 6.23)
as a corollary of (6.20) and (3.2). Moreover, the linear system (6.20) and definition (6.22)
imply:

2 3 A 8
LSy o beia  AED Ay = g0, ZAGN - 1AFNAM)

ow 1y Ik

Aw

For asymptotically flat solutions of (2.22) the linear system (6.20) admits the normalization
W(y=o0) =T, (6.24)
which implies regularity of A at infinity:
A= 711)[20 YA(y) =0 (6.25)

The definition of A as pure gauge (6.21) implies integrability conditions on its compo-
nents, which in particular give rise to the following closed system for A(y):

0:A = [Ai 3 A] + 0,44 . (6.26)

The main advantage of this system in comparison with the original equations of motion
in terms of M (2.22) is, that the dependence on the coordinates z* is now completely de-
coupled. Once the system (6.26) is solved, it is easy to check that the equations (6.23) are
compatible and the field M restored by means of them satisfies (2.22). This decoupling
of 2t and z~ allows to treat (6.26) in the framework of a manifestly covariant two-time
Hamiltonian formalism, where the field A() is considered as the new basic object.

For this purpose we equip A() with the (equal-z*) Poisson structure from (6.5):

{A0 4w} = [, Aoy +Aw)] . 627)

The relations

{A(), p7l0spteA®(F1)} = 2[Ax(7), A()] , (6.28)
compared with the equations of motion (6.26) give rise to defining the Hamiltonians

Hy = 2p ' 0sptrA(F1),  with {H,H_}=0. (6.29)

We call the z%-dynamics that is generated by #{.. the implicit time dependence of the fields.
The remaining z*-dynamics is referred to as explicit time dependence.

In general, the variables A(y) themselves are explicitly time-dependent according to
(6.26) and (6.28). The motivation for introducing (6.29) originates from [70], where it has
been shown, that in essential sectors of the theory (simple pole singularities in the connection
A), it is possible to identify a complete set of explicitly time-independent variables. Let us
briefly recall this.
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First order poles In this simplest case considered in [70, 71] we assume that A(y) has
only simple poles, i.e.

A (xi) ,
Aily) =S =< (6.30)
o = Z 43 'YJ
where according to (6.20) all +; satisfy (3.2), i.e. 7 = v(z*,w;), w; € C. Then the

equations of motion (6.26) yield

w4 ¢ ; 631
6;tA =0 a:tpz ’yk)(l e ’Y]) kz:-;aﬂ:'yk akAJ ) ( 31)

with the ;. dependence from (6.13). The Poisson brackets (6.27) reduces to
{42 A7) = G, VAT, ' (6.32)

i.e. in this case, the residues A; together with the set of (hidden constant) positions of the

singularities {w;} give the full set of explicitly time-independent variables.

Comparing the equations of motion in this sector (6.31) with the isomonodromic de-
formation equations (6.13) suggests to understand the z* dependence of the residues as an
isomonodromic dependence generated by the two Hamiltonians (6.29).

Remark 6.2 Introduction of the Poisson structure (6.27) has been motivated from the math-
ematical point of view by the similarity of the equations of motion (6.31) with the isomon-
odromic formalism described in the previous section. However, a priori this structure is
not canonically derived from the original Lagrangian (2.45). Dimensionally reduced gravity
allows an alternative Chern-Simons Lagrangian formulation [72], such that (6.27) may be
obtained from (6.6) by holomorphic gauge fixing. An honest comparison to the canonical
Poisson stracture (2.50), (2.57) of (2.45) should be worked out on the space of observables,
where due to spacetime-diffeomorphism invariance at least no principal difference between
one- and two-time structures appears.

Due to the p, p dependence, the singularities +; have become field dependent and thus ex-
hibit explicit time-dependence in the sense of (6.29). In order to gain a complete Hamiltonian
description, we additionally introduce the following Poisson brackets

{ o, —-Bia} =040, 6.33)

where p* refer to the decomposition of p into left- and right-movers (2.17).!* The dynamics
in z* directions then is completely given by the Hamiltonian constraints C.

e
Lir o

Gy = —dio+pldptrdi(El) = ~ (6.34)
Oxp
Le. for any functional F' we have
dF°
E = {F,C} - (6.35)

15Despite their index the fields p* are obviously scalars under conformal transformations.
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Remark 6.3 The Hamiltonian constraints (6.34) are obviously related to the conformal con-
straints (2.58), as also the Poisson structure (6.33) is certainly inspired by (2.50). The fact,
that both, (6.34) and (2.58) differ by a factor of 9, p from their “canonical ancestors” is re-
lated to the nature of the two-time Poisson structure, e.g. required by conformal covariance.
The precise embedding of the two-time structure into the canonical formalism is still some-
what unclear. As remarked above, an honest comparison had to be performed on the space
of observables.

" Remark 6.4 The above reduction (6.31) of the original equations of motion shows a re-

markable general feature: the number of dimensions has been effectively reduced from two
to one. Recall that the initial values of the physical fields are usually given on a spacelike
hypersurface, whereas their evolution in the time direction is described by the equations of
motion. Here, on the contrary we have evolution equations for the time direction as well
as for the space direction and the two flows commute. The knowledge of the initial values
of A(7) at one space-time point is sufficient to reconstruct the whole solution by means of
(6.26).

This may be understood as follows: the spatial dimension which previously provided
the initial data has been traded for an additional dimension parametrized by the spectral
parameter. In fact, given the spectral parameter current A(vy) at fixed v=+1 on a spacelike
hypersurface (which according to (6.23) are nothing but the original currents) allows us
to evolve it in time by means of the equations of motion and into the «y-direction via the
compatibility equations (6.26). Vice versa, given A(v) at fixed space-time point but for all y
one can deduce its space evolution from the compatibility equations.

The isomonodromic ansatz (6.30) is finally employed to parametrize the behavior of the
spectral parameter current in the <-plane by a discrete (even finite) set of variables, such
that the original field theory reduces to an “/N-particle” problem (localized in the spectral
parameter plane). In this way we have arrived at an effectively one-dimensional description
of the 2d theory without giving up the nontriviality of the solutions.

Higher order poles The isomonodromic framework allows natural generalization to that
sector of the theory, where A(7y) is assumed to be a meromorphic function of 7y, which we
shall present here. A further extension of this framework to the full phase space of arbitrary
connections A, that is strongly inspired from the treatment of the simple pole case, has been
sketched in [104].

Assume that A(7) has higher order poles in the ~-plane:

Ak (z*
Aly )_ZZ ( ;k (6.36)
Jj=1 k=1 'Y Vi
The Poisson structure (6.27) in terms of A% has the form:
8 A8, (ASM 1 fork+1-1<1;
KA (A\B| _ Gl ey Sy
{(ah, ()} = { 0 fork+i—1>r; ° Bl
building a set of mutually commuting truncated half affine algebras.
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However, it turns out that for r; > 1 the variables A;‘ for k=1, ...r;—1 have non-trivial
Poisson brackets with 8.0, and, therefore, are not explicitly time-independent. The problem
of identification of explicitly time-independent variables can be solved in the following way.
Consider

Au(y) = 7A(~r),

which as a function of w is meromorphic on the twofold covering of the w-plane. Parametrize
- the local expansion of A,, around one of its singularities -y; as
W e ,
0
w(7) = Z T + O((w — w;)°) for T~ - (6.38)

Then we find that the coefficients A;'")k of the local expansion of A,, have no explicit
time dependence, i.e.

A i AT B (6.39)
They satisfy the same Poisson structure as the A;F (6.37):

(wk+l-1\¢
(w)k A (w)l\B - (s.'ijBC (A] ) fork+1-1< Tj 4
{ca®y, (ahe} {0 R 1 YD g 4640
Thus, also in this case one there is a complete set of canonical explicitly time-independent
variables.

The coset structure

To this point the isomonodromic ansatz has ignored the coset structure of the original model.
The solution M of (2.22) which is obtained from the new basic object A() via (6.23) will in
general not satisfy the original symmetry (2.43) which characterized the coset model. Thus,
the new description still carries too many degrees of freedom. Here, we show how to cure
this.

As functions of the original fields, the new variables A () have been defined only up to
the freedom (3.4) in the original linear system so far. The entire structure described above re-
mains invariant under this freedom. As it turns out [71], the restriction of this multiplicative
freedom which is consistent with the isomonodromic truncation of this chapter is the condi-
tion (3.16) used in the approach of Belinskii and Zakharov. In terms of the isomonodromic
objects, this condition reads

v()r(¥'())
7 AW) + M r(A)) M

The second equation is obtained from derivation of the first. In particular, this last equation
yields

V9A(y=£1)Y € ¢. (6.43)
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M, (6.41)

Il

0. (6.42)

6.3 Poisson algebra of observables

Recalling that 8. M M~ = 2V P, V! we see that this condition is indeed suffient to guar-
antee that the matrix M obtained by integration satisfies the symmetry (2.43). The condition
(6.42) takes a simpler form in terms of the variables A('y) VA(y)V~!, where it reads

7Am +7(Ad) = 0. (6.44)

Unfortunately the Poisson structure (6.27) is not automatically compatible with the con-
dition (6.42). We may however treat the whole system as a constrained system, where (6.42)

" then builds a set of second-class constraints. Applying the canonical Dirac procedure [26]

finally yields the following modified bracket on the phase space [74]

1

{Ae, 4w} = 1[2

gl

LA +A@W | (645)

fark ot 31 LIRREENRRY B

3% 15 A0 ~ 12 A

This structure indeed is compatible with (6.42). There remains the following set of first-class
constraints (contained in (6.44) at y— 00)

~

Ao +7(A) = lim (vA() +77(A() ~ 0, (6.46)

which via (6.45) generate the H-gauge transformations (2.65). This is the proper substitution
of (6.25) after implementing the coset structure.

Thus, we have reduced the degrees of freedom so as to match the situation of the coset
model.

6.3 Poisson algebra of observables

In the model as presented so far, observables can be defined in the sense of Dirac as objects
that have vanishing Poisson bracket with all the constraints including the Hamiltonian con-
straints (6.34), which even play the most important role here. In two-time formalism this
condition shows the observables to have no total dependence on 2. This is a general feature
of a covariant theory, where time dynamics is nothing but unfolding of a gauge transforma-
tion, and observables are the gauge invariant objects.

Regarding the connection A(vy) as fundamental variables of the theory, the natural objects
to build observables from are the monodromies of the linear system (6.21). They are given
as

W(y) = U(y) M, for -y running along the closed path £ . (6.47)

Due to their definition these objects have no total *-dependence; in the isomonodromic
sector which we treat here, the w-dependence is also absent.

For the simple pole sector let us denote by M; = My, the monodromies corresponding to
the closed paths £; which respectively encircle the singularities ; and touch in one common
basepoint. The remaining constraint of the theory which should have vanishing Poisson
bracket with the observables is the generator of the constant gauge transformations (6.25),
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under which the monodromies transform by a common constant conjugation. Thus the set
of Wilson loops

{tr 1;[ M;,

builds the set of observables for this sector of the theory.

The Dirac brackets (6.45) define a Poisson structure on the monodromy matrices M;.
Rather then directly computing this bracket, we alternatively first obtain the Poisson structure
"on the monodromy matrices which is implied by (6.27). The Dirac bracket on the space of
observables can then be deduced by simple symmetry arguments.

Let A(y) be a connection on the punctured plane v/{m,-.-,In}, equipped with the
Poisson structure:

k,(z‘l,,..,ik)} (6.48)

1 2 Qq 1 2 ¥
= g 6.49
{Amaw} = [2%, A0)+a0] (6.49)
Let further W be defined as solution of the linear system
0, (7) = A(M¥(7) s (6.50)
normalized at a fixed basepoint sy
U(sg) =1, (6.51)
and denote by M, ..., My the monodromy matrices of W corresponding to a set of paths
with endpoint sq, which encircle 1, . . ., yn, respectively. Ensure holomorphy of ¥ at oo by
the first-class constraint
Ao = lim yA(7) =0. (6.52)
Y00
Then, in the limit sy— 00, the Poisson structure of the monodromy matrices is given by:
1 2 1 1 2
{M,«,M,—} = in(MiQEM,-—M.»QgM.v), (6.53)
D 1 2 2 1 S U
{ M; , M; } = ir (M,- Q, M; + M; Qp M; — Qg M;M; — M M; Qg) (6.54)

forii.< go;

where the paths defining the monodromy matrices M; are ordered with increasing with
respect to the distinguished path [so— co].
Here, we collect several comments on this result, whereas for the proof we refer to [74].

Remark 6.5 The first-class constraint (6.52) generates constant gauge transformations of
the connection A in the Poisson structure (6.49). In terms of the monodromy matrices,
holomorphy of ¥ at co is reflected by

Mo=[[M=1, (6.55)

which in turn is a first-class constraint and generates the action of constant gauge transfor-
mations on the monodromy matrices in the structure (6.53) and (6.54). The ordering of this
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product is fixed to coincide with the ordering that defines (6.54). In accordance with (6.48),
the structure (6.53), (6.54) implies

{Me, e [] M, } =0. (6.56)
k

Remark 6.6 The evident asymmetry of (6.54) with respect to the interchange of 7 and j is
due to the fact, that the monodromy matrices are defined by the homotopy class of the path,

- which connects the encircling path with the basepoint in the punctured plane. This gives rise

to a cyclic ordering of the monodromies.

The distinguished path [so — co] breaks and thereby fixes this ordering. It is remnant
of the so-called eyelash that enters the definition of the analogous Poisson structure in the
combinatorial approach [43, 2], being attached to every vertex and representing some free-
dom in this definition. However, the choice of another path [sp — co] simply corresponds to
a global conjugation by some product of monodromy matrices: a shift of this eyelash by j
steps corresponds to the transformation

Mk =) (Mll..Mj)—le(Ml...Mj) 2

Therefore the restricted Poisson structure on gauge invariant objects is independent of this
path.

Remark 6.7 A seeming obstacle of the structure (6.53), (6.54) is the violation of Jacobi
identities. Actually, this results from heavily exploiting the constraint (6.52) in the calcu-
lation of the Poisson brackets. As therefore these brackets are valid only on the first-class
constraint surface (6.55), Jacobi identities can not be expected to hold in general.

However, the same reasoning shows, that the structure (6.53), (6.54) restricts to a Poisson
structure fulfilling Jacobi identities on the space of gauge invariant objects. On this space,
the structure reduces to the original Goldman bracket [48] and coincides with the restrictions
of previously found and studied structures on the monodromy matrices [43]:

10 2 1 1 2 12 T
{ M, M} = Mire Mot Mir_ M, —r_ MM — MiM; 7y (6.57)
T 1 2 2 1 i b e
{ M;, M; } = M7y M;+ M M; — 1y MiM; — M;M; 1,
for i< i)
where 7, and r_ =—IIrII are arbitrary solutions of the classical Yang-Baxter equation
[r12, Tas] + [r12, 713] + [r13, 23] = 0. (6.58)

and the symmetric part of r is required to be iy, With v = infl,, (6.57) reduces to
(6.53), (6.54) such that our structure is in some sense the skeleton, which may be dressed with
additional freedom that vanishes on gauge invariant objects. On the space of monodromy
matrices themselves, introduction of r-matrices may be considered as some regularization to
restore associativity, whereas the fact that (0 itself does not satisfy the classical Yang-Baxter
equation is equivalent to (6.53), (6.54) not obeying Jacobi identities.
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Remark 6.8 For eventually treating the coset model, the following additional structure is
important. There is an involution 7 on the set of observables, defined by the cyclic shift
M; + Misn, where N = 2n is the total number of monodromies. This involution is an
automorphism of the Poisson structure on the algebra of observables:

(F(X0), 7(Xa)} = 7 ({X1, X2}) , 6.59)

for X,, X, being traces of arbitrary products of monodromy matrices. This is a corollary
‘of Remark 6.6, as it follows from the invariance of the Poisson structure on gauge invari-
ant objects with respect to a shift of the eyelash that defines the ordering of monodromy
matrices. Like every involution, 7 defines a grading of the algebra into its eigenspaces of
eigenvalue ==1. In particular, the even part forms a closed subalgebra.

The final goal of this section is the computation of the Dirac bracket on the space of
monodromy matrices. Let us first state the implications of the coset structure on this space.
In the sector of simple poles, (6.41) implies that the singularities appear in pairs with

(6.60)

)

1
’y- o
4 Yitn
(where N = 2n is the number of singularities), while the corresponding monodromies are
related by

Mjin = 7(M;) . (6.61)

To apply the result (6.53), (6.54) the corresponding paths must be chosen pairwise symmetric
under 7y > % This uniquely relates the ordering of the monodromy matrices in (6.54) to the
ordering defined by (6.60).

The Dirac bracket now follows from simple symmetry arguments avoiding the direct

computation for objects that are invariant under G-valued gauge transformations (i.c. traces

of arbitrary products of M;). The involution 7% introduced by (3.8) acts on M; according to
(6.41) as follows:

(M) = 7(Mjtn) . (6.62)
Therefore, the set of all G-invariant functionals of M; may be represented as
Mg @ Mys , (6.63)

with eigenvalues +1 under 7%, respectively. Since 7 is an automorphism of the structure
(6.53), (6.54), the definition of 7 in (6.62) implies (taking into account Remark 6.8)

{Ms, Ms} C Ms {Ms, Mas} C Mas, {Mas, Mas} C Ms . (6.64)

The constraints (6.61) are equivalent to vanishing of Mas; therefore the part of G-invariant
variables surviving after the Dirac procedure is contained in Ms. The former Poisson bracket
(6.53), (6.54) on Ms coincides with the Dirac bracket.
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6.4 Quantization

In this section we describe different quatization procedures for the isomonodromic sector
of the model with simple poles. For simplicity and illustration we first recall the canonical
quantization of the Poisson brackets (6.32), where the coset structure (6.42) is ignored for a
while [71]. Like the quantization of (6.13) this yields a link to the Knizhnik-Zamoldchikov
system. We continue with identifying the quantum analogues of the monodromy matrices
in this representation and work out their algebraic structure. This may be compared with a

* direct quantization of the monodromy algebra (6.53), (6.54) or (6.57), respectively. Finally,

we give the necessary modifications to properly include the coset structure of the model
(6.42). '

Quantum connection

We briefly describe the quantization of the model in the isomonodromic sector with only
simple poles [71]. Straightforward quantization of the linear Poisson brackets (6.32) leads
to the following commutation relations:

(A2, AY] = ihdyf™4;,  [p%,0:0] = —ihk. (6.65)

Accordingly we represent the p* by multiplication operators, and further define

Al =int),  dro=ih (6.66)

i
ap* "’
where t]’»‘ acts on a representation V; of the algebra g. Thus, the quantum state 1(p*) in a
sector with given singularities depends on the fields p* and lives in the tensor-product

VM=V, ®...0 Vy, 6.67)

of N representation spaces.
The whole “dynamics” of the theory is now encoded in the constraints (6.34), which
accordingly play the role of the Wheeler-DeWitt equations here:

Ci =107, (6.68)
and can be written out in explicit form using (6.34), (6.29), (6.66):
i} 3 = oy Qir
— = 2ih e L I— () B 6.69
5= V) p ;uiqj)(m%) ¥(o*) (6:69)

where 2, is defined as in (6.17).
The other constraint that restricts the physical states arrives from (6.25); in the quantized
sector it is reflected by:

(3ot) wie*) =o0. 6.70)
J

The general solution of the system (6.69) is not known. However, these equations turn
out to be intimately related to the Knizhnik-Zamolodchikov system (6.17). Namely, if @,z
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is a V™) _valued function of 71, ... ,Yw. which solves (6.17) and the constraint (6.70), and
if further the -y; depend on 2% according to (3.3), then
N - 1:
0v; ) 21
= i 6.71
1/} ]EIl ( Bw,- <Pan ) ( )

solves the constraint equations (6.69) [71]. The Casimir operator §2;; defined above is as-
sumed to act diagonal on the states, for g=s{(2) for example, this is simply 2;; = $s;(s;—2),
‘classifying the representation.

Quantum monodromy matrices

Having quantized the connection A(+y) as described in the previous section, it is a priori not
clear how to identify quantum operators corresponding to the classical monodromy matri-
ces in this picture. As they are classically highly nonlinear functions of the A;, arbitrarily
complicated normal-ordering ambiguities may arise in the quantum case.

We choose a simple convention, replacing the classical linear system

9,V () = A(M)¥(y), (6.72)

by formally the same one, where all the arising matrix entries are operators now, i.e. (6.72)
is an operator on Vp ® V() where V; denotes the (classical) vector space, already necessary
for the definition of (6.10), (6.20) and the (quantum) part V(™) has been defined in(6.67).

We have thereby fixed the operator ordering on the right hand side in what seems to be
a rather natural way. In the same way, we define the quantum monodromy matrices to be
given by

W(y) > ¥(y)M;, for~ encirclingv; , (6.73)

where the (quantum) W-function is normalized as
V(y) = (I + (’)(#)) y~#  aroundy ~ 00 . (6.74)

Remark 6.9 The normalization condition (6.74) generalizes the one we chose in the classi-
cal case (6.51) where the basepoint s, was sent to infinity. This generalization is necessary,
because the constraint (6.52) is not fulfilled as an operator identity in the quantum case,
which means, that the quantum W-function as an operator is definitely singular at v = co
with the behavior (6.74). Only its action on physical states, which are by definition annihi-
lated by the constraint (6.25) may be put equal to the identity for v=oo.

We are interested in the algebraic structure of the quantum monodromy matrices M
defined by (6.73). This follows from the observation [109] that the quantum linear system
(6.72) is related to the Knizhik-Zamolodchikov systems with NV and N+1 insertions, respec-
tively, by

‘I,(’Yt'ylr"';'yN) 57 ((I®Ul;l(’)‘l,...,’)’N))UN+1(’)’,’)’1,...,'}‘N) ] (675)
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with the evolution operators Uy from (6.18). Having Remark 6.1 in mind, the quantum linear
system may thus be understood as a mixture of the Schlesinger (6.13) and the Knizhnik-
Zamolodchikov (6.17) system, where the former corresponds to the classical vector space V;
with associated insertion -y and the latter corresponds to the quantum space (6.67).

In particular, (6.75) shows that the monodromies of (6.73) may be identified among the
monodromies of the Knizhnik-Zamolodchikov system with N + 1 insertions. It has been
shown by Drinfeld, that these monodromies in turn are related to the braid group representa-
tions induced by certain quasi-bialgebras [30, 29].

§ Putting all these things together [74] we obtain the following algebraic structure

1 2 2 1
R_M;R~' M; M; Ry M; R, (6.76)

1 2 2 1
R M;R;'M; = M;R,M;R;', fori<j,

with the R-matrices R, given by

1
R. =tR;w', R, =MNREM, 6.77)

where Ry is the universal R-matrix of the so-called Drinfeld-Jimbo quantum enveloping
algebra associated with g [27, 57] and u is some automorphism on Vy ® V(). The classical
limit of these K-matrices may be computed and yields

Ry = I®I + (ih)(in€y) + OL(K?) . (6.78)

Thus, we have obtained the quantum algebra of the quantum monodromy matrices by
identifying the corresponding operators inside the picture of the quantized holomorphic con-
nection A(y). The classical limit of this algebra coincides with the classical algebra of
monodromy matrices (6.53), (6.54). This shows the “commutativity” of the (classical and
quantum) links between the connection and the monodromies with the corresponding quan-
tization procedures. Let us sketch this in the following diagram:

Atiyah-Bott symplectic structure
{A2(7), AB()} ~ 64B6) (y—p)

holomorphic gauge
Regularized algebra Holomorphic connection Classical algebra
of monodromies {Af, AP} = 6, fAB, AG of monodromies
29 1 2 LR TSGR 1 2 i 2
{M;',Mj}= (M(T+Mj+...) lqulnﬁuu'on {M.',Mj}=l7l'(MngM]‘+...)

A2, AB) = ihé;; fAB, AG
[ i Jl i (o] quantization of the

quasi-associative 2y quantum monodromies nonassociative algebra
generalization via KZ-system

‘«  Quantum algebra of monodromies
3 2 1
Ry M; Ry M; = M; Ry My R}
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The dotted lines in this diagram depict the link to the usual way, quantum monodromies
have been treated. As was sketched in Remark 6.7., their classical algebra can be derived
from the original symplectic structure of the connection up to certain degrees of gauge free-
dom: for later restriction on gauge invariant objects, this algebra may be described with an
arbitrary classical r-matrix. A direct quantization of this structure is provided by a structure
of the form (6.76), where the quantum R-matrices live in the classical spaces only and admit
the classical expansion Ry = I + ifiry + O4(R?) [1, 2].

In contrast to this quantum algebra which underlies (6.57), the R-matrices in (6.76) — due

" to the automorphism u — also act nontrivially on the quantum representation space. Their
classical matrix entries may be considered as operator-valued, meaning, that the quantum
algebra can be understood alternatively as nonassociative or as “soft”. This is in some sense
the quantum reason for the fact, that the classical algebra (6.53), (6.54) fails to satisfy Jacobi
identities. However, note that (6.76) only describes the R-matrix in any fixed representation
of the monodromies; for a description of the abstract algebra, compare the quasi-associative
generalization in [2].

Quantum coset model

We have seen that the proper Poisson structure to be quantized for the coset model is (6.45).
This goes along the same line as the quantization of (6.27) described above.

Having solved the constraints (6.42), the number of degrees of freedom is effectively
reduced. The simple poles appear in pairs related by (6.60). Half of the residues of (6.30) is
represented according to (6.65), while the other half is obtained via

A = r(n) - (6.79)

The constraint equations (6.68) (the Wheeler-DeWitt equations here) take the form

e el L (O +vm) Qe (95 + 1) U £ (6.80
. At {jﬁ;(uw)(&m 2 ey | ) 680

with Q" from (3.47). Additionally, the physical states have to be annihilated by the first-class
constraint (6.46):

(th+ZT(tf)) w(p*) = 0. (6.81)

Modifying (6.71) we can establish a link between solutions of the quantum constraint
equations (6.80), (6.81) (i.e. physical states) and solutions of what we will refer to as the
Coset-Knizhnik-Zamolodchikov (CKZ) system [74]:

0pcxz . 1+ /7 T+ 1/v
%2 ik —L L Qi+ — Q7 fozis (6.82)
o ?; o }k: e R

The precise relation to (6.80) is the following:

87

6.5 Isomonodromic deformations and KZB equations on the torus

If Yexa is a solution of (6.82) obeying the constraint (6.81), and the 7, depend on p*
according to (3.3), then

W Ay, \ i
$= (7-“-4) Poxz » 6.83
. i (911)]- CKZ ( )

solves the constraint (Wheeler-DeWitt) equations (6.80).

The procedure of identifying observables may be outlined just as in the case of the prin-
cipal model. Again the monodromies of the quantum linear system are the natural candidates
for building observables and contain a complete set for the simple pole sector. The actual
observables are generated from combinations of matrix entries of these monodromies that
commute with the constraint (6.81). From general reasoning according to the classical pro-
cedure, relevant objects turn out to be the combinations of G-invariant objects, that are also
invariant under the involution 7°°.

6.5 Isomonodromic deformations and KZB equations on the torus

This section is based on [73]. We leave the concrete model of dimensionally reduced gravity
and like in section 6.1 study abstract isomonodromic deformations. The scheme presented
above allows natural extension to Riemann surfaces of genus one. Instead of the Knizhnik-
Zamolodchikov system (6.17) on the sphere, in this case we obtain the link to the Knizhnik-
Zamolodchikov-Bernard (KZB) system that has appeared in the study of the corresponding
higher genus conformal field theories [8, 9]. The conceptual novelty of twisted functions,
that is introduced in WZW conformal field theories on the torus in order to get a proper
description of the action of inserted affine zero modes in the correlation functions, enters the
game in a very natural way here.

In the context of dimensionally reduced gravity these structures may prove to be impor-
tant in an isomonodromic approach to two-dimensional world-sheets with nontrivial topol-
ogy. This extension would be indispensable for a “stringy” interpretation of the model.

Holomorphic gauge fixing

We start again from a smooth g-valued one-form A on the torus. To simplify notation and
without loss of generality we restrict to the case g = s1(2,C). In the explicit formulac we
will use standard Chevalley generators ¢%, t*. Denote the periods of the torus by 1 and .
Holomorphic gauge A5 = 0 can not be achieved in general. However, taking into account
our remarks from the previous section, the essential fact is,[41] that a dense subspace of
smooth (0,1)-forms can be gauged into constants of the form
e v (6.84)

T—7T

The holomorphic gauge condition would require an additional gauge transformation of
the kind g = exp(2wiAI=to3). This is obviously multi-valued on the torus, having a multi-
plicative twist: g — exp(2miAo3)g for 7y encircling the fundamental (0, 7)-cycle. The result
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of a gauge transformation of this kind is a twist in the remaining holomorphic (1,0)-form
A():

A(r+1)=A(r)  Aly+71)=e"24(y). (6.85)
In components this reads:

Ay+r)= A7) AE(y+r)=eHPaR).

Even though in principle gauge transformations must be defined globally single-valued
in order to conserve physics, in this case the proceeding is justified by the fact, that the non-
gauge-trivial part of Ay survives as an arising twist of the holomorphic connection A. This
is how the holomorphic gauge causes the appearance of twisted quantities in a rather natural
way.

Some meromorphic functions on the torus

Before we start to investigate isomonodromic quantization on the torus, let us collect some
simple facts about twisted meromorphic functions on the torus. A basic ingredient to describe
functions of this kind, is Jacobi’s theta-function:

0(,),) = Z eZni(%n’r-hw) )
nez
which is holomorphic, twisted as: 6(y+1) = 0(v), 0(y+r) = e~ "7+216(y) and has simple
zeros for -y € 3(7+1) + Z + 7.
Standard combinations are the functions [42]

4 _l,r
p(y)z%&—?%{—%%—iw, and o,(y) =

which have simple poles with normalized residue in v = 0 and additive and multiplicative
twist, respectively:

O —— %(7‘ -+ 1))0’(%(7’ +1))
Oy +3(r+1)0(A — 3(r + 1))’

ply +7)=p(r) —2ri,  ar(y+7)=e"0r(y).
Moreover, they satisfy
=1 =—m) s . al3) = =A%), (6.86)

and the identity
0oz —v) = or(z — ) (p(r = 1) = Py = 1) — oA (Y~ 2Jor(r 1) . (687)

These relations can be proved checking residues and twist properties. All the following
calculations rely on the fact, that meromorphic functions on the torus with simple poles are
uniquely determined by their residues if they are multiplicatively twisted, whereas functions
with additive or vanishing twist are determined only up to constants. In generic situation
there are no holomorphic twisted functions on the torus.
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Isomonodromic deformations

Equipped with these tools we can now start to describe the twisted meromorphic connection
A(7). Because of its twist properties (6.85), A(7) is of the form:

A5 = Yo Aon(r-m), A() = Y Al(r—v) - B (6.88)

Define again ¥ by the linear system

0Y(y) = A(7)¥(y) . (6.89)

The function ¥ will get monodromies M; and Mg from the right hand side, if -y encircles
7 or the (0, 1) cycle of the torus. If y runs along the (0, ) cycle, ¥ will exhibit an additional
left monodromy due to the twist (6.85) of A:

U(7) = €U (y) M) - (6.90)

Under isomonodromic deformation we will understand the invariance of the right hand side
monodromy data under the change of the parameters of the punctured torus, which are the
singular points -y; and the period 7. The connection data in this case are the residues A;, the
additive constant B® and the twist \.

Let us first investigate their +;-dependence. In addition to the residues of 3, T¥~! we
have to determine its twist around (0, 7) from isomonodromy conditions. Equation (6.90)
yields:

(a,-w-‘) () +» 2t adoa (a.-w—l) (7) + 27 A3

This determines the form of the ;-dependence of ¥ to be:

e &
(a09)"() = -Atountr-mw), ©91)
3
(awe=)' (m = —Alply—m) + B},
and further on yields the ;-dependence of the twist parameter \:
OX=4A}. (6.92)

We can now proceed as on the sphere in section 6.1. Compatibility of the equations
(6.89) and (6.91) implies the following Schlesinger equations on the torus:

84} = —Af A on(1i—m) + AT Afoan(ri—w), for j#i, (6.93)
A} = Y A A on(n—m) - Y AT Afo (-,
i i

AT = H2AF Aloso(vi—%) F2A]AFp(vj—1) £2B}AE, for j#i,
BAE = £2) AFASp(vi—;) F2)_ Al Afouan(1i—))
i#i i

F2BR AT & 2BYAT |

1 - &
B = 3 5 (A; AfOroor (vi—;) — A 4; 3AU2A(’7;‘—’Y-')) :

i
90
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and a curvature condition on the constants B;
aiBf = ajB? = %A;Afaz\”»(%‘—“/j) il %AfAfaAUL\(’Yj—%) . (6.94)

The equations (6.92), (6.93) and (6.94) build a system of differential equations that is
automatically compatibel, just as the Schlesinger equations (6.13) on the sphere are. This
may be directly checked by a rather lengthy but straightforward calculation, making repeated
use of (6.86) and (6.87). Compatibility is valid on the constraint surface

S A =0, (6.95)
7 J

that was already implied by consistency of the twist properties of A(+) with the ansatz (6.88).

This constraint here appears in a weaker form than on the sphere (6.2). This corresponds to

the fact that the gauge freedom (6.7) has been fixed more rigorously on the torus in order to

diagonalize the twist around the (0, 7)-cycle. Here, the remaining constraint (6.95) generates

those gauge transformations which are compatible with (6.84)

As on the sphere, it is possible to formulate the dependence (6.93) as a multi-time Hamil- -

tonian structure. The Hamiltonians read

H = Z (2A3A3 (v — ) + AF Aja_aa(vi— ) + A;A;'az,\(%' > ’Yj))
i
-2B°A} + 2B} A3, (6.96)
J
and generate the -;-flows (6.93) in the Poisson structure
{48, A7) = &% A0, - AMB} = 4. (6.97)

This structure arises from holomorphic gauge-fixing of the original bracket (6.6) in the same
way, as does the bracket (6.3) on the sphere. In particular, remembering the origin of A
(6.84), the second equation may be viewed as a reminiscent of (6.6) for the constant modes
of A, and A;.

In analogy with (6.5) this Poisson structure admits a generalized r-matrix formulation

{40, 4w} = [rr-m, A+ Aw)] - ortr-w)(4), 698

with the twisted r-matrix
r(7) = 3p(N(E ® %) + o (Nt @ t7) + o_an(1)(t” @ tY) . (6.99)

In some sense this restricts to a classical r-matrix formulation on the constraint surface
(6.95). Validity of the Jacobi identities is expressed by a twisted version of the classical
Yang-Baxter equation.

The Hamiltonians (6.96) show the role of the constants B; as parameters of gauge trans-
formations generated by the first-class constraint (6.95). This suggests to simply skip these
terms from the Hamiltonians, as is in fact done in the sequel, leading to the KZB equations.
As a consequence, these truncated Hamiltonians only commute up to (6.95), meaning that
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the generated «; dynamics of the connection data produces isomonodromic deformation only
up to certain shifts in the gauge orbit.

Finally we study isomonodromic deformation with respect to a change in the period 7 of
the torus. This can be done in complete analogy with the just treated case. From (6.90) the
twist of 8, ¥~ around (0, 7) turns out to be

(a,w-l) (7) +s e2mirados (arw—l) (7) — €A 8493 A () + 27id, Aoy ,

which leads to the following 7-dependence of the function :

4 S\ E 1
27I'l(a,-\1/‘1’ 1) (’)’) :FE Z A;-ta,\d:g._g,\(’y = "/J) ) ! (6100)
g

i (3,99) () % > 4oy = 1) = ply = 1)) + B,
J

and determines the 7-dependence of the twist parameter

Or=—31B3. (6.101)

2mi

Compatibility of (6.89) and (6.100) now yields additional Schlesinger-type equations:

. 1 " 1 .
2mif, A3 = . Z AL AT O\ oA (1) — g ZAi Atoron(vi—15), (6.102)
b, AF = iz AEA] (p(’)‘. 1) = p(ri~ 1]))
-F Z AA 6,\012,\(’)" ) £ 2B2AF
J
. 1 X _
2mid, B = 5 Z (A,"LA,' 3,30—2,\(%")'1) = A;6§UZA(7i—7j)) )

i,
together with a curvature condition for 5%0;B% — 8, B}. Again, compatibility of the whole
system of differential equations may be shown by a straightforward calculation.
With the Poisson structure already given in (6.97) this flow is generated by the Hamilto-
nian
; 1 £ 9
i, = 33 (ATAJ' Aro-a(m — 75) — A7 AT oo (v — ’Yj)) (6.103)
i#j
1
e Z AjA (p(% ) = pla- 7]')) +B'B*+2B})_ A},
1,] &

where again we will skip B2 under the above remarks.
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6 ISOMONODROMIC STRUCTURES

Quantization and Knizhnik-Zamolodchikov-Bernard system

The canonical quantization of the described Hamiltonian structure now directly leads to the
KZB-system, as we shall finally show. Quantization is again performed straightforwardly
with (6.97) being replaced by

(A8, AP] = iho; 2% AF,  [XB%] = jiA. (6.104)
In the y;-independent Schrijdinger representation of the operators they can be realized as

A} = ihl®..0t®...9I, B =-{ikj,, (6.105)

1

acting on quantum states |w) that are A-dependent sections of a V() = @), V; bundle over
X, = {fundamental domain of 7} ® CV \ {diagonal hyperplanes}.

The quantization of (6.93) and (6.102) in the Schrodinger picture provides this bundle
with the horizontal connection:

dilw) = Hi|w)

J#
46} lw) +ih ) O (1=, ) [w)

i,J

Il

2710, |w) = 2wiH, |w)

with

0% (1,1 A)
95(1, 7, A)

L@ @) + o_an (1)t ®17) + oan()(t7 @ 1),
}6,\0-2,\(7)(1‘,? ® t;) = ;}-3,\02,\(7)@; [429] t;')
+3 (P - p() oL,

acting non-trivially on V; and V;.

This is the KZB connection, found in [8] as system of differential equations for charac-
ter-valued correlation functions. The form (6.106) coincides exactly with the form presented
in [42] for s[(2,C). In particular, the term that includes the derivative with respect to the
twist parameter A is the explicit analogue of the action of affine zero modes on correlation
functions in WZW models. We stress again that in contrast to the system (6.17) on the sphere
these Hamiltonians only commute up to the constraint (6.95) which implies the fact that the
KZB-connection is flat only as a connection on the subbundle of states annihilated by 3,
see [42]. :

Let us close with the remark that this result suggests similar links between the quantiza-
tion procedure of isomonodromic deformations on higher genus Riemann surfaces and the
corresponding higher KZB equations [9]. See [55, 83, 117] for further work.
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7 Conclusions and Outlook

Let us briefly summarize the main results obtained in this thesis.

We have set up the canonical formalism for a general class of two-dimensional coset
space o-models coupled to dilaton-gravity, that arise from dimensional reduction of
various gravity and supergravity theories. The canonical Poisson structure (2.57) and
the gauge algebra of constraints (2.62)-(2.63) have served as the starting point for the
entire treatment.

A complete set of nonlocal integrals of motion has been identified classically among
the transition matrices of the associated linear system. They have been shown to be
invariant under the full gauge algebra of constraints (3.26). Moreover, in a rather
direct and unusual way they encode physical information (3.59), which in spite of
their spatially nonlocal origin (3.17) allows localization in the two-dimensional world-
sheet.

The classical Poisson algebra of these nonlocal charges is well-defined and in contrast
to the related structures in the flat-space o-models does not exhibit any ambiguities, in
spite of similar non-ultralocal terms in the fundamental Poisson brackets (2.57). The
coordinate dependence of the spectral parameter (3.3) plays an essential role for this
regularity. The resulting algebra (3.60), (3.61) is related to the (semiclassical) Yangian
double [27, 28].

Since the nonlocal charges parametrize the phase space (at least in the sector which
admits the particular gauge fixing (3.36)), the adjoint action of the algebra of charges
on itself describes a transitive symmetry. The well-known action of the Geroch group
is recovered as the associated Lie-Poisson action. This provides a canonical realization
of the Geroch group, which is an indispensable tool for later quantization.

We have shown that the entire structure allows generalization to the maximally super-
symmetric extension of the model. The /N =16 superconformal constraint algebra has
been worked out, and has been used to prove that the nonlocal charges — obtained in
analogy to the bosonic case — are indeed supersymmetric. As a byproduct, this result
has confirmed that the supersymmetric extension of the bosonic linear system (4.30)
given in [98, 103] does not receive any quartic fermionic contributions but already cap-
tures the full supersymmetric theory. The Poisson algebra of charges has been shown
to coincide with the one of the bosonic sector.
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7 CONCLUSIONS AND OUTLOOK

o Quantization of the classical structures has been achieved for the coset spaces G /H=
SL(N,R)/SO(N), resulting in a modified (twisted) version of the Yangian double
with a particular value of the central extension (5.5), (5.6). The pivotal classical object
— the monodromy matrix Mpy — has been recovered within the quantum algebra as a
classical matrix with self-adjoint operator entries (5.9).

The further program of classifying representations of the quantum algebra has been
outlined for the simplest case SL(2,R). Already on this level, one may recognize
several features (in particular, the repeated occurrences of discrete nonlocal struc-
tures), which e.g. distinguish the model from the quantization of its linear (abelian)
subsector. The latter has been under active investigation from the point of view of
midi-superspace models of quantum gravity [79, 3].

Within the isomonodromic approach initiated in [70, 71], we have analyzed the al-
gebraic structure of observables on the classical and the quantum level. For quan-
tization we have exploited the inherent link to a modified version of the Knizhnik-
Zamolodchikov equations (6.82) making the underlying coset structure manifest. In
the general framework of isomonodromic deformations, we have established a similar
link to the Knizhnik-Zamolodchikov-Bernard equations on the torus. So far, we have
not been able to embed these structures into the canonical framework.

There are many things which remain to be elaborated. An immediate aim is the study
of the representation theory of the algebra (5.5)-(5.9) according to the program outlined
in section 5.3. Certainly, the hope is that the requirement of unitarity with respect to the
x-structure (5.10) will strongly restrict the choice of representations.

Within the appropriate representations, the next goal would be the construction of some
analogue of coherent states. They should exhibit minimal quantum fluctuations around given
classical solutions. The discussion of the symmetry structure in sections 3.4 and 5.3 suggests
that the quantum counterpart of the Geroch group (5.40) will play a key role in generating
these states, giving rise to a Hopf algebra generalization of the coherent states’ concept.
Obviously, the usual (linear) framework of coherent states is too narrow to cope with the
quantization of Lie-Poisson symmetries. With coherent states at hand, one would finally be
in position to study in detail how quantization affects the known classical solutions of gravity
(at least under the above mentioned reservations).

For the maximally supersymmetric model described in Chapter 4 with the underlying
coset space G/H = Eg(4g)/SO(16), it remains to extend the quantization to higher-dimen-
sional and, in particular, the exceptional Lie algebras. The quantization given in section
5.1 has been strongly supported by many well-known properties of the Yangian algebras
associated with SL(N, R). Unfortunately, less is known about the related structures for Ey;
see however [18] for the construction of the associated R-matrix.

An interesting and somewhat complementary approach to the quantum model would in-
volve the construction of the nonlocal charges in a quantum model based on the original
physical currents (2.39), (2.57), rather then quantizing (3.60), (3.61) directly. In the sense of
[85, 10], one would have to establish the nonlocal charges and their algebra after quantiza-
tion and not before. Physical states would have to be identified in an “unphysical” Hilbert
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space as the kernel of the constraint algebra (2.62) and (4.27), respectively, while the quan-
tum nonlocal conserved charges serve as a spectrum-generating algebra relating these states.
So far, we have, in contrast, adopted a rather pragmatic point of view, by directly searching
for the possible quantum algebras that may underlie the classical integrable structure, tacitly
assuming that integrability survives quantization. This means e.g. that we have neglected
any effects of potential anomalies that may obstruct integrability and the nonlocal symme-
tries in the quantum theory. It is at this stage, that the maximally supersymmetric extension
described in Chapter 4 may play its full role (since on the level of conserved charges studied

" here, we have — somewhat surprisingly — not encountered any essential differences between

the resulting structures in the supersymmetric model compared with the purely bosonic sec-
tor).

In view of potential higher-dimensional interpretations of these models [102], it would
further be necessary to generalize the entire framework to arbitrary Riemann surfaces ¥
playing the role of the two-dimensional world-sheet. So far, it is even unclear how to ex-
tend the setting to the (seemingly modest) modification of periodic boundary conditions. As
we have discussed in section 3.2, in this class of models, periodicity of the physical fields
does not imply periodicity of the connection of the linear system (3.1). The construction of
conserved charges thus has to be modified in some rather nontrivial fashion. Since (3.59)
has shown a link between the world-sheet and the spectral-parameter plane, one would ex-
pect the structures (3.60), (3.61) and (3.62) to be eventually replaced by a Poisson algebra,
which should accordingly be compatible with some periodicity of the nonlocal charges in
the spectral parameter plane.

Another highly interesting generalization would include the extension of the framework
to those models which arise from a dimensional reduction that includes a timelike Killing
vector field, i.e. which are formulated on a two-dimensional world-sheet ¥ with Euclidean
signature. At present, it seems rather subtle to rigorously establish a canonical framework
in the sector of stationary solutions where the canonical time-dependence has been dropped
by hand. On the other hand, it is certainly this sector which contains the most interesting
physical solutions, in particular, the black holes.
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