
DEUTSCHES ELEKTRONEN-SYNCHROTRON

. DESY- THESIS-2000-018
May 2000

Enzymatic Simulation of Complex Processes

NOTKESTRASSE 85 - 22607 HAMBURG



DESY behalt sich aile Rechte fOr den Fall der Schutzrechtserteilung und fOr die wirtschaftliche
Verwertung der in diesem Bericht enthaltenen Informatibnen vor.

DESY reserves all rights for commercial use of information included in this report, especially in
case of filing application for or grant of patents. . .

To be sure that your preprints are promptly included in the
HIGH ENERGY PHYSICS INDEX,

send them to (if possible by air mail):

DESY
Bibliothek
NotkestraBe 85
22607 Hamburg
Germany

DESY-Zeuthen
Bibliothek
Platanenallee 6
15738 Zeuthen
Germany



ENZYMATIC SIMULATION OF

COMPLEX PROCESSES

Dissertation
zur Erlangung des Doktorgrades

des Fachbereiches Physik
del' Universitiit Hamburg

vorgelegt von
Jan Wlirthner
aus Hamburg

Datum del' Disputation:
Sprecher des Fachbereichs
Physik und Vorsitzender
des Promotionsausscbusses:

Prof. Dr. G. Mack
Prof. Dr. K. Fredenhagen
Prof. Dr. G. Mack
Prof. Dr. J. Bartels
14.4.2000



Computer simulations have become very important in todays sciences. The
theory of complex systems (short: systems them'Y) provides an appropriate
basis for abstract modeling sciences - in particular physics.
In this work a software package is introduced, which serves as a general
modeling and simulation tool.
Beginning with a brief introduction to systems theory, modern techniques
of software development are discussed. It is found that the object oriented
approach and the theory of complex systems share many concepts. Making
extensive use of object oriented techniques, a software has been developed,
which consists of three components: The core package, responsible for mod-
eling system theoretical scenarios, the presentation package, which provides
a user interface, and a language interpreter, a powerful scripting tool acting
as an interface hetween the core and the presentation.
As a general simulation tool, it may be imaginable to simulate processes of
life. This work concludes with a short description of life processes in nature
as well as a section about artificial life.
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A Modem Version of Platos Concept of Ideas

A biologist and a system theorist meet in a cafeteria and argue about their
disciplines. At some point the biologist utters thoughtfully: "Well, one of
the problems of biology is the lack of exactness. Physical quantities are well
defined. If you want to detennine a systems behaviour in time, you can use
the quantum physical framework and calculate exactly the way it develops.
Even fm" large systems one can use computel"s to cope with the large amount
of information. - In biology we might consider a flying bird and ask when it
will change its direction. But to calculate this, we needed a detailed physi-
cal description 01 a bird in terms of atoms and molecules, which we do not
have."
So they discuss, what such a definition in terms of atoms and molecules
might look like. But with any attempt to define a bird at the atomic scale,
they could think of a counter example that would not fulfill the defini-
tion, but still be said to be a bird. Just like Platos idea of a table is not
characterized by its material or shape, objects in general might as well be
characterized by their interaction with the environment rather than by their
internal struct ure.
They finally agree that such a inicroscopic definition might be useful in
physics, but definitely misses the point in biology, and that an interdisci-
plinary language to formulate problems from different disciplines might lead
to just the required level of exactness in each scale.



Thus the minimal structure of a theory must provide objects (things) and
relations between them in order to be thinkable by the human intellect.
To ensure consistency, category theory supplemented with locality is used
as a mathematical framework. By this means, I'elations are regarded as
directed and may be composed to form new relations. Furthermore objects
and their relations may act as objects themselves, called composite objects.

A General Interdisciplinary Language of Science

It is noticed that the assumptions are not specifical physical assumptions,
which allows other sciences to be described by this theory as well. Chemistly
is one of the few disciplines that makes use of a structural representation (ill.
terms of structure formulae), and might therefore easily be embedded into
this framework.
It is possible that theories of different disciplines have certain aspects in
common, which are not recognized because they are formulated in different
languages. Sharing one formulation, these common aspects may be revealed.
This leads to further abstraction and again helps to understand nature a
little better.The aim of scientific theories is to provide a model of nature. It is assumed

that only few fundamental principles underly all natural phenomena. In
order to increase generality, new theories have always been introd need along
with a reduction of presupposed structure and thus reduction of a priory
complexity. Einsteins principle of coordinate independence and the turning
away from the classical particle viewpoint in qnantum physics are good ex-
amples. A theory will be the more fundamental the less structure is assumed
a priory. This is plausible, because what is assumed is not explained. [13}
The Theory of Complex Systems (1bCS) tackles the challenge to cope with
a minimum of a priori structure. It intends to provide methods to describe
arbitrary systems intelligible for the human intellect. This is not only a very
sophisticated task, it also brings up the question: What and how does the
human mind think?
Characteristic for the system theoretical point of view is the attempt to get
to the idea of complex systems by ascribing structure not to the system
rather than to the describing object, in other words: structure arises in
the eye of the beholder. A basic assumption about the structure of human
thinking can be formulated informally as a pre-axiom:

The human mind thinks about relations
between things or agents. [13]

The idea of composite objects is very old. Houses are built of bricks, sen-
tences are built of words; also galaxies consist of stars, solar systems and
black holes, molecnles consist of atoms and so on.
As these examples show, this concept may be used in a constrnctive as well
as a descriptive way, which allows to view large systems on diITerent scales.
A naive thought suggests that the reason for introducing different scales lies
in the incapability of handling the vast amount of information at the most
microscopic level. The following examples show, why this is not the case.
The human mind has to deal with objects at different scales in everyday
life: The job of an orchestras director is questionable, unless the orchestra
is accepted as the directors musical instrument.
Chinese characters, as another example, are composed of a fundamental set
of characters, called radicals. In contrast to the musicians, the composite
chinese characters often obtain a different meaning wben combined. The
same happens on a even coarser scale: Combining composite characters,
they again obtain a different meaning (see figure 1.1).
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Figure 1.1: A) The chinese radicals ri and mu (meaning sun and tree) are composed
to the character dong (east: Where the rising sun can be seen through the trees). B)
This word for east (dong) combined with the word for west (xi) used as a composite
word means object (everything from east to west). One cannot understand a chinese
sentence only by translating the single characters!

Figure 1.2: A gas viewed at the microscopic and a macroscopic scale: The relevant
objects have different properties at different scales.

How the Concept of Composite Objects Implies Multiscale Phenomena
Composition of objects is always accompanied by introducing new scales.
Describing a real system one may ask how composite objects are identified,
or: What makes a composite object an object? The answer of course lies in
the objects interaction with its environment, the relations to its neighbours.

screen freezes, or even if the mousepointer still moves, but does not react to
mouseclicks, the system is said to crash. In such a case, the transistors and
microchips still work fine. A defect can definitively not be seen at this scale.
Why? Because the term crashed system is brought up by the user, who doe.s
not even necessarily know anything about the inner life of a computer. It is
more or less another term for: 'The user cannot use the system in this state
and rather has to do with the relations between the user and the machine
than with transistors and electrons.

A composite object is identified as an
object, when it behaves like an object.

While describing real systems, this identification is done by the observer,
which introduces cognition in a natural way: Composition of objects can be
considered as a cognitive process.
Furthermore it is important to notice tbat relations between composite ob-
jects may be of a new kind. As an example u'om physics, a bunch of
molecules may be considered as a gas (identified as such, because it dif-
fers somehow from other gases). While molecules differ from each other
by properties like position in space and momentum, gases differ in volume,
temperature, pressure, etc. The crucial point is that these gas properties,
their relations and their dynamics are not defined at the microscopic level
(just like the flying bird from the prologue). As a result, the same processes
can be described at two scales (see figure 1.2). Which one to use depends
on the question under consideration.
Another example is well known to everyone who works with computers -
a system crash. Tbe objects at the microscopic scale are electrons, wires,
transistors, and so on. At the macroscopic scale one has the operating
system that reacts to certain input (see figure 1.3). A system is said to
crash, if it does not respond to the user's input the way the user expects
it to. Different situations are possible: If the screen turns black, if the
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independent variables, being able to break down the problem to problems
with only one degree of freedom [29] (like separating variables to calculate
a Schrodinger equation).
One way to handle systems with many degrees of freedom is to run computer
simulations. Integration can be performed numerically without the need for
analytical approximations. Interesting but intractable terms don't have to
be omitted from models at the beginning of the modeling phase, further
more visualization techniques illustrate the structure of complex models [8].
Because of the discrete character of the compu ter memory, discrete processes
are candidates for numerical simulations rather than continous ones.
Obviously good examples come from lattice field theory. In performing
Renormalization Group steps, blocking and interpolation can be done nu-
merically [31, 6J. Multigrid methods [17J eliminate the problem of critical
slowing down.

During the recent years more and more problems are being tackled with the
help of computers, scientific as well as economic. The increasing develop-
ment of technologies allows to produce extremely complex problem scenarios
which require just as clever and elaborate strategies to solve. The progress
of technology seems to be too fast for the work on the solutions to cope with
these.
This is shown very impressively by the development of the Denver Inter-
national Airport [9J. The construction of this 4.2 billion' dollar project was
scheduled for the years 1989 until the end of 1993. To navigate this exten-
sive system, a very complex computer system was developed. Take off and
arival of airplanes were to be managed simultaneously. 193 million dollars
were spent just for the the luggage transportsystem. Laserscannel's to detect
luggage codes automatically, thousands of photocells to monitor the wagons
on a 21 km railway system were to be controlled by 300 computers.
The day the airport was going to be put into operation, a series of catastro-
phies occured: Luggage wagons were not transported correctly, luggage was
damaged or got lost. The airport was finally closed again and opening had
to be postponed by more than one year. The consequence was a loss of 1.1
million dollars per day.
The main reason for this catastrophy was found in the software system re-
sponsible for the luggage transportation. The complexity of todays software
grows so rapidly that its design and analysis becomes a very important issue.

Implementation Environments

While many simulations are critical in time and therefore implemented in
hardware-near computer languages like Fortran or C, there is a tendency to
use object oriented techniques, which correspond to the theory of complex
systems in a natural way. Since processors become still faster, and the de-
mands on simulations grow, using object oriented methods seems to be a
good way to handle the increasing complexity. K. Wilson already mentioned
the possibility to improve algorithm design using object oriented techniques
[30,24]. Unfortunately the lattice field theory community did not take much
notice of this advertisement until 1993, when code for Monte-Carlo simula-
tions of SU(N) lattice gauge theories was translated to the object oriented
programing language C++ by Moriarty et a1. [20, 24J.
For the simulation tool, which is introduced in this work, the language C++
is used. This allows to implement the systems theory's modular concepts in
a quite natural way.

The .occurrence of this desaster demonstrates the importance of elaborate
modeling techniques. The fact that it took such a long time to find the
bug on the other hand reveals the lack of appropriate analyzing techniques.
Both is being worked on hard during the recent years.

"For a theorist studying dynamical critical behaviour, {Critical
Slowing Down] is a fascinationg phenomenon,- but fOl' a practi-
cioner of Monte Carlo, it is a pain."

Many physical problems involve a very large number of degrees of freedom.
On the other hand, many theoretical methods apply best to models with



THE THEORY OF COMPLEX

SYSTEMS
Figure 2.1: Curvature in spacetime: The paralleltransporter is obtained from
composition of links.

The theory of complex systems provides the basis of this work. The main
concepts and the mathematical fonnulation are pictul·ed in this chapter. from an object X to an object Y will be denoted by: f : X -t Y.

Fwthermore the following properties will have to be fulfilled [16J:

1. Composition: Given two arrows f : X -t Y and 9 : Y -t Z there
exists an arrow

gof:X-tZ

This composition is associative. h 0 (g 0 f) = (h 0 g) 0 f

2. Adjunction: For each arrow I :X -t Y there exists a unique adjoint
arrow r :Y -t X. The adjoint of the adjoint of an arrow is the arrow
itself /** = I and the adjoint of a composed arrow is

As argued in the introduction, a general theory should have the least amount
of a priory structure possible. The system theoretical approach is to describe
complex systems as networks of objects related by directed arrows.
What kinds of physical systems fit into this concept? Systems discrete in
time and space are suitable. Each coordinate-point in space may be de-
scribed by an object. A lattice field might again be described by a lattice of
objects containing the field values, where the relations between these objects
might carry matrices describing parallel transporters (see figure 2.1).

3. Identity: For each object X there exists a unique arrow tx :X -t X
with the property

4. Locality: Some of the arrows other than identities are declared fun-
damental and also called links. All other non identity arrows f can be
made from links by composition and adjunction

To describe a system formally, a set of objects X, Y, ... and a set of directed
arrows, representing the relations, I, g, h, ... are needed. An arrow I pointing



A distance bewteen two objects is defined via the mtrumum num-
ber of links needed to compose an arrow between these objects. The
neighbo1.lrhoodof an object contains the object itself, the objects at a
distance of one link and the links connecting them.

5. Composite Objects: A triple (!1, A, A) of a set of objects !1, a set
of arrows A, where A 3 a : !1 -+ !1 and a subset of fundamental
arrows A C A is called a system. An object 0 E !1 can contain an
inner structure and therefore itseU be a system, called a subsystem or
a composite objectl.

THE OBJECT ORIENTATION
PARADIGM

Dynamics

The dynamics acts locally on systems: The rules to manipulate a system
apply to an object within a neighboul'hood, i.e. no information from outside
the neighbourhood is used. Manipulation is done mostly by reassigning the
fundamental arrows. This way, motion on a one dimensional lattice space
can be treated as a fundamental rule in terms of composition of arrows, see
figure 2.2.

This chapter shall int7'Od1.lcethe concepts and terminology of the object
OI'iented approach as well as its relation to the concept of composite

objects.

Figure 2.2: Motion: The solid links with their adjoints represent neighbourhoods
between space points. The dashed arrow is not fundamental. Its adjoint is a link
establishing the relation of the object (above) and its position in space. A local
rule assigns a different set of fundamental arrows, allowing the interpretation of a
change in the objects' position in space (J' = b 0 f).

The idea of modularization has influenced many sciences during the recent
decades. Dividing problems in smaller subproblems, has proved to be an
efficient strategy. M ultigrid methods in numerical physics or separation of
variables in calculus are good examples.

Besides reassignment of fundamental arrows, birth and death are two im-
portant manipulations: Objects (and arrows) can be copied, and destroyed.
This is a very essentail point, in which systems theory differs from many
other network theories with a constant number of objects.
Further studies can be found in references [27J.

In computer science this concept became popular with the introduction of
object oriented languages, but it is not just a property of certain program-
ming languages, rather a new way of modeling.

While current operating systems and programming languages are designed
to fulfill the users needs, former systems at the early stages of computer
programming required the user to fulfill the systems needs. The way of
programming was very much oriented the way the hardware worked, which
required a fundamental distinction between data and operations on data.IAn iteresting analytical discussion on the concept of composite objects can be found

in reference [27)



ration provides the interface for Lhe classes instances: One cannot see, how
a certain operation is implemented, only the name of that operation, and
what kind of parameters it needs!
The data and opel'ations are referred to as data members and member-
functions or methods respectively. The declaration of a memberfunction,
i.e. its name, its parameters and the type of its return value, is called sig-
nature of that function. Finally, an interface is defined as the sum of all
signatures of a class.
Within a class definition, data members and methods can be declared pri-
vate and public. Data members and methods declared public buHd up the
interface and are thus accessable by other objeds, while declared private
they can only be used by method implementations within the same class!.

Data is static unless it is changed by an operation, while operaLions have no
state of their own and are only used to affect data.[21]
During the recent decades, computer hardware became faster, less expensive
and more capable of handling large programs, which required more modnlar
programming concepLs.
Modern technologies make it possible to take the programmers needs into
account. And since the separaLion of data and operations is somehow un-
natural, the object oriented approach unites Lhe operations with Lhe data
they operate on.

In object oriented computer languages, such a unit containing data and op-
erations is called an object. These objects are treated as black boxes. One
does not (and should not!) have to know the details an object carries, rather
than how to communicate with it. For that purpose, the object provides an
interface, which consists of operation declarations, oLher objects can call to
invoke an operation. This interface can be viewed as the surface of a black
box, while the objects' implementation details are inside (see figure 3.1). A
criterion for good object oriented programming is Lo decide what to put into
the interface and what belongs inside.

Encapsulation

The advantages of moduJarity have been mentioned before. Large problems
are easier to handle, once they are broken down into small parts. Thus,
one criteria for good object oriented software design is to separate different
parts of the model as much as possible. Among other things it is helpful to
make data members accessable only through methods. The internal state
of an object is then said to be encapsulated. This way, one has control,
where data is changed: Only within the implementation of the correspond-
ing class2. .

As an example, a program might solve a problem numerically, by apply-
ing different arithmetic operations to objeds of the type Real Number. It
might then be desirable to extend the application to complex numbers. With
structured programming methods, the multiplication rule for complex num-
bers had to be inseded any place, a multiplication occurs. With object
oriented methods, only the declarations had to be changed. The objects can
be instantiated from any class as long as the class provides a multiplication
within its interface. This separaLes the abstract multiplication occuring in
the program from the concrete implementation.
NoLe tlJat Lhe concepL of encapsulation is consistent with the systemtheo-
retical concept of composite objects!
Once a small but common problem is solved, the software can be used by

1 They can also be declared protected, meaning that child classes (s.b. inheritance)
have access to them, while declared private, child classes do not.

'It makes it a lot easier to answer questions of the type: I wonder where I set this
variable to zero!

operation4() 0
,/

A class can be seen as a tempi aLe that holds the absLract definition for
one or more objects, which are said to be instances of LhaL class. Such a
definition consists of declarations of data and operations on one hand, and
the implementation of the operations on the other hand. It makes sense to
distinguish between declaration aud implementation, since only the decla-



programs of all different kinds. This is of course very efficient. The code
can be reused in two ways: As Toolkits and as Fmmeworks.

and functionality. The parent class is also called baseclass, and the child
class is said to be derived from its baseclass.
Modeling a chess game one might write a class chessman. A property of
a chessman will certainly be the 2-digit position on the chessboard. The
individual types of chessmen (king, queen, bishop, etc.) might be defined in
classes derived from the class chessman (see figure 3.2). These classes might
provide operations that determine which moves are legitimate.

Code Reuse and Design Reuse

A toolkit is a set of related classes that provide general-purpose function-
ality (like hardware input/output libraries or a set of list classes) [4]. It
emphasizes code reuse. A toolkit has to be designed carefully, because it has
to work in many different applications to be useful.
A framework might be viewed as the complement of a toolkit: It consists
of cooperating classes that provide a reusable design for a specific class of
software (like a general editor framework) [4J The user of a framework has
to implement the concrete functionality, while the framework dictates the
overall structure of an application. Frameworks thus emphasize design ,'ewe
over code reuse. Designing a framework one has to make sure that the ar-
chitecture will work for all applications in the domain. That makes it even
harder to design frameworks than to design toolkits.

Polymorphism

Polymorphism is a concept which ensures that a call of a method reaches
the corresponding implementation within the class hierarchy. A child class
derived from a class having implemented a method may as well implement
a method with the same signature. This is called overloading. An object
can be declared as of the type of the baseclass, but instantiated from the
child class. This is very useful to handle abstraction, programming to an
interface rather than to an implementation. In this case, calling the over-
loaded method, it is not trivial for the compiler to decide whether to perform
the baseclaSs' implementation or the overloaded implementation of the child
class.
In C++, methods can be declared either virtual or not: A non virtual
declaration of the method always results in performing the baseclass' im-
plementation, where a virtual declaration results in performing the child
class' implementation.
Some object oriented computer languages enforce virtuality, stating that non
virtual declarations are not truely object oriented and lead to programming
bugs.

The simulation program, introduced in the next chapter, can be considered
as a general simulation framework. By adding new code (i.e, composing en-
zymes3, or even writing new enzymes in C++), this framework is adjusted
to the concrete problem that is to be simulated, Also in tills case, the subtle
point is to make sure it can be used for all kinds of simulations. The an-
sv'er of course is found in the absence of a priori structure in systems theory.

To push the concept of separation even further, inheritance - another con-
cept of the object oriented approach - is introduced, in order to separate an
interface from its implementation.

A class can be defined as a specialization of another class that already has
been defined [27J. This new class inherits all the properties and function-
ality of its parent class (i.e. it contains all data members and methods the
parent class contains). Additionally it can be extended by new properties

So far, there are two views on inheritance: Specialization and code reuse.
Code reuse can always be achieved by inheritance. But Inheritance does
not necessarily mean specialization. Consider a class square [22J. It has one
real value as its property, describing the length of a side. In order to reus'l
code, one might define a class rectangle by deriving from the class square and
extending it by another real value to describe the other side of the rectangle.
Of course a rectangle is not a specialization of a square (rather the other
way around). Therefore one should not use inheritance in this case.

3 An enzyme is an object responsible for a fundamental dynamical action on the system.
See next chapter.



Favol.w specialization over code reuse

In clean object oriented design, one distinguishes between abstraction and
extension, abstraction implying specialization and extension implying code
reuse. These two ways to view inheritance have to be treated differently in
softwaredesign.
While the concept of extension (or code reuse) makes perfect sense when
large amounts of code can be kept centralized in one class, it bas to be
treated extremely carefully. From its structure it is not as natural as tbe
specialization concept, and tllllS often leads to programming bugs.

In tbe chess example, one could request tbe position of a chessman-object, •
not knowing if it is a king, a knight or any other chessman. Next, one could
ask whether a move (e.g. invoked by the user) is legitimate for an object,
neither knowing the concrete object nor the rules for that object. This task
is done by the object itself: E.g. a checkMove() method is implemented
differently for the knight than for the !'Ookand so on.

Multiple Inheritance

It is thinkable that a class inherits its properties or interface from more
than one class. There are different opinions on multiple inheritance and it
bas always been a hot topic whether it should be allowed for clean object
oriented programming at all. Some computer languages, like Java, do not
support multiple inheritance, while C++ for example docs.
The problems of multiple inheritance are related to the problems of code
reuse: Each class has a special method called constructor which is called
when an object is instantiated. Deriving from two classes, which constructor
should be called first? This easily leads to programming bugs, which can be
avoided by implementing an empty constructor.
Now, if these two classes are derived from the same baseclass (see figure
3.3), operations implemented in its constructor are performed twice, where
only one object is created.
In the cbess example, one could argue that the possible Queen's moves are
the sum of the possible Rook's moves and the Bishop's moves. Thus it makes
sense to derive the Queen class from the Rook class and the Bishop class.
Now, the constructor of the chessman class creates and initializes a field to
store the position of that chessman. Not taking care of that, the new defined
Queen ends up with two positions on the chessboard (see figure 3.3). This
is of course nonsense.
To avoid these problems, abstraction is the right way out. Hthe constructors
are empty, nothing will be done twice. Thus as a statement to the multiple
inheritance discussion, one does not necessarily have to renounce multiple
inheritance, as long as one keeps in mind:

Figure 3.2: Inheritance: The arrow points always to the baseclass, which is set
italics, if it is an abstract class. The knight is a special case of a chessman, and the
chessman is an abstraction of the knights, rooks, bishops, etc.

example, instances of the class chessman do not make sense. The chessman
class is a good example for an abstract class, it only serves as a class to
derive from (see figure 3.2). The derived classes, implementing the methods
declared in the abstract class, are then called concrete classes.

An abstract class only provides an interface fOl' other classes.

Within the program, the interface of the abstract class can be used, without
knowing the concrete class an object is instantiated from.

The abstract classes can be understood as classes adding interfaces for fur-
ther functionality to a class.
One could provide functionality to several classes by having abstract Mixin
classes, implementing certain methods and properties [4], (see figw'e 3.4).



Having code reuse iil favour, this would be the right solution. On the other
hand, the structure has become rather complex, to keep a clean design.
In this case, code reuse should be neglected in favour of a less complex
structure, and a even better reason against such an implementation is the
fact that a queen simply is not a rook, combined with a bishop.

Figure 3.3: Multiple inheritance: This structure is dangerous: Operations common
to different chessman will be perfonned twice for the queen. Note that the cycle
is not problematic in this case, since the chessman class is abstract - even more
problems guaranteed, if it were not.

Figure 3.4: Mixin classes add properties and functionality to other classes by
multiple inheritance.

It always seemed desirable to have a diagramatic representation of complex
programs in order to reveal coarse mistakes. The importance of a good visu-
alization was realized from the very begining of computer programming. In
the early days this was achieved with the help of flowcharts: Graphical sym-
bols have been assigned to different program steps, while evolution in time
has been visualized by arrows connecting these symbols (see figure 3.6).
When programs became complex, structured pmgmmming became neces-
sary. Drawing flowcharts was one way to increase structure, another very
important point was to avoids leaving the program flow without return. The
program should always come to a finish point. Another kind of diagram was
introduced (Nassi-Schneidermann[lO)) to take care of that problem (3.6).

Making use of this, one can try to fix the chess example in the following
manner: Mixin classes I-Knight, I-King, f-Bisliop, I-Rook and I-Pawn are
derived from an abstract class chessmanlyness. They only implement the
method which verifies moves on the chessboard. A class chessman then
implements the position and anything memory is needed for. The concrete
chessmen are implemented by multiple inheritance: The knight is derived
from the classs chessman and I-Knight, and so on. Only the queen is derived
from three classes chessman, I-Bishop and I-Rook (see figure 3.5)4.

'Of course there is another catch to it: The rook can do a rochade, which the queen is
not supposed to do.

5Gain of structure is usually achieved by prohibition rather that recommendation of
programming style[4).
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The UML suggests a vast variety of diagram types to cover all properties of
the system from different points of view. They can be divided into diagrams
describing tbe static parts of a system:

• Class Diagrams

• Object Diagrams

• Deployment Diagrams

and those describing the dynamic parts of a system:

• Collaboration Diagrams

• Statechart Diagrams

In this work, only three of these are presented. Good descriptions of the
remaining diagram types can be found in the references [3] and [27].

Figure 3.6: A) A typical flowchart diagram for a program containing one loop and
an if clause. B) A Nassi-Schneidermann diagram for the same prOb'fam.

Though these diagram types emphasize the benefits of structured (sequen-
cial) programming techniques, they are also limited to these. With object
oriented languages, a more modular visualization is needed.
In order to understand both the structure and the function of the objects
involved in a complex software system, it is impossible to capture all the
subtle details in just one view [2]. Different types of diagrams are used to
resemble structures of class objects, inheritance mechanisms, individual be-
haviour of objects, dynamic behaviour of the system as a whole, etc. Each
diagram type can be understood as a projection of the whole system.
Unfortunately no standard exists, describing the symbols to use for object
oriented models, though different descriptions only differ in detail. The no-
tation chosen here is the one used for the Unified Modeling Language (UML)
[3].

Most important for this work are class diagrams. They show the relation-
ships between classes and between instances of them.

A class is visualized by a rectangle, including the class name, as well as data
members and methods relevant for the context of the diagram (see figure
3.7 and 3.8).
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It may be useful to diagram when instances of a certain class are able t~
create instances of another class. This is called realization and visualized
by dashed line with an open triangle at its end.

Further it might be interesting for any kind of association, to know how
many instances of one class is associated with how many instances of the
class it is associated to. This is done by specifying a multiplicity number
to each end of an association, where "*,, or "0..*" means zero or more, and
"1..*" means one or more (see figure 3.8).

Associations

There are two kinds of relationships: Hierarchy (representing the hierarchy
of classes) and association (representing relationships between instances of
the associated classes).
Hierarchy (inheritance) is visualized by an open arrow, pointing in the
direction of generalization: to the base class. This type of relation can be
understood as an is-a relation, for an instance of the child class is a (special-
ization of an) instance of the base class: A knight is a chessman (see figure
3.2).
There are numerous types of associations [3], visualized by a straight line
from one class to another. Most important are weak and strong ownership
aggregations. They can be used, to represent a whole/part relationship, in
which one class represents the whole, which consists of smaller parts. These
aggregations represent a has-a relationship, meaning that an object of the
whole has objects of the part (see figure 3.8).
Weak ownership aggregation is visualized by a straight line with an open
diamond at the beginning. Instances of classes related via weak ownership
may exist independently from each other.
Strong ownership aggregation (also called composition) is visualized by
a straight line starting off with a closed diamond. Destruction of the whole
(an instance of the class attached to the diamond) leads to destruction of
part.

l ~Publication I

Figure 3.8: A very brief model to illustrate the different kinds of associations:
The university has one or more departments, as well as one or more students. The
departments cease to exist when the university gets closed, while the students of
course Iive on.

3.3.2 OBJECT DIAGRAMS

Though class diagrams show the relationships not only between classes but
also between their instances, they do specify how many instances are actually
created at what point of time.
Object diagrams show a set of objects and their relationships at one point
in time [3J. Like class diagrams they address the static design view or static
process view of a system, but from the perspective of real cases. rn this sense,
object diagrams can be understood as instances, or concrete applications of
their abstract class diagrams.



Object diagrams commonly contain objects and links.
Objects are visualized by rectangles, containing the object name, separated
by a colon from the class name, it is instantiated from, and both names
underlined. If necessary, the objects data members and their values can be
added below, separated by a horizontal line (see figure 3.9).
Links are visualized by straight lines, connecting two objects (see figure 3.9).

a black box even more. So sequence diagrams describe a set of objects and
the time ordering of messages sent and received by them.
This is visualized in a table that shows objects arranged horizontally and
messages, ordered in increasing time vertically [3]. An objects lifetime is
presented by a vertical dashed line. Messages are presented by arrows start-
ing at the object sending out the message and ending at the receiv.ing object.
Typically these arrows are drawn horizontally, since sending messages usu-
ally does not take much time. In special cases though, they may be drawn
at different angles to visualize duration.
During focus of control, i.e. when an object sends or receives a message,
a rectangle is shown, instead of the dashed line (see figure 3.10). Objects
may exist from the very beginning to the end of the entire process, these
are drawn at the top of the diagram, with dashed lines drawn to the very
bottom. Objects may also be created during the process. Their lifelines
start with the receipt of a message named < < c7'eate>>. They might as well
be destroyed, receiving a message <<destroy> >. An x is placed at the end
of the lifeline.
When the state of an object changes, its icon is drawn again at the right
vertical position, containing the new state (see the l'extfield object in figure
3.10).

DESIGN PATTERNS:

OBJECT ORIENTATION AT A HIGHER LEVEL

"Each pattern describes a pl'Oblem which occurs over and over
again in our environment, and then describes the COl-e of the
solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same
time twice."

The fact that Christopher Alexander used this quotation describing patterns
in buildings and towns, although it fits to the context of software design as
well, shows that design patterns are part of a more abstract concept. In
many constructive processes patterns evolve quite naturally: What distin-
guishes the experienced chess player from the novice is the repertoire of chess
techniques, which one to use depending on the chess partner. Experienced

As a diagram type, visualizing a systems behaviour, sequence diagrams show
the objects lifetimes, and their dynamical interactions.
In object oriented thinking, invoking an objects operation is often viewed
as sending a message to an object. This emphasizes the objects picture of



~I Each programmer usually has many patterns in mind, based on his pro-
gramming experience.
Once having chosen a design pattern, many decisions are already taken. To
decide which pattern to use is therefore very subtle. As a consequence in the
case of a bad choice problems might occur, often resulting in inflexibility.
If for example the operations of a software are implemented in member func-
tions of all kinds of classes, implementing an Undo function is a very tougll
and complex job in this situation. In a redesign, operations could be encap-
sulated inside classes derived from an abstract class GeneralOperation. This
way, it can easily be kept track of all operations that are performed, and it
is quite easy to implement even a multilevel-level Undo function. This idea
may be kept in a pattern which addresses problems where operations shall
be reversible.
Two very commonly used patterns are introduced below. More of them can
be found in [4].

«deslroy» *
«deslr°Y»

In many cases multiple use of inheritance leads to multiple implementation
of the same code. This happens, e.g. when inheritance is used to specialize
with respect to one property, and used again on the child classes to specialize
with respect to an independend second property.
Resuming the above example of a chess program, it might be useful to
have a graphical as well as a textual presentation for each chessman. The
inheritance tree branches once to specify the kind of chessman and again to
specify the presentation. It does not matter which specification is done first
(see figure 3.11): Each chessman has to be implemented twice, once in each
presentation.

Figure 3.10: A sequence diagram representing the dynamical behaviour of a pro-
gram which creates a window containing a quit-button and a textfield with the
message "welcome" and terminating when the button is pressed.

novelists rarely design their plots from scratch, rather they follow patterns
like TI-agically Flawed He/'o (Macbeth, Hamlet, etc.) or The Romantic Novel
or others [4]. Behind all this is what is true for many disciplines, including
programming:

the most important thing to know is not to solve
every problem from first principle [4J.

This holds not only for code, but also for design. This way the concept
of code reuse is extended to design reuse, which is independend of concrete
code, even of the computer language: Design patterns are often expressed in
terms of diagrams. The most popular ones are given names, so programmers
can refere to them uniquely. Furthermore it must be noted to what kind of
problem they can be applied to and what consequences they bear.

This problem often occurs in context with technical aspects (e.g. when more
than one graphicslibrary is used). The solution to this is given by the Bridge
Pattern, which addresses the problem by putting the two specifications (like
the chessman abstraction and the presentation) in separate class hierarchies.
This gives the impression of something like an abstmct implementation (see
figure 3.12).

The Abstract Factory Pattern

The great benefit of virtual methods is the ability to treat objects of differ-
ent classes the same by using the interface of their baseclass. The decision
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Figure 3.11: Inheritance is not always the most flexible solution: Each chessman
has to be implemented in a textual and a graphical version.
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which concrete class to use still has to be made somewhere: At the point
where the object is instantiated. Due to the lack of a virtual constructor,
there is no way to avoid it.
Now it is often desirable to make a decision only once, e.g. at the startup of
the program (which might be a decision concerning the kind of presentation,
or what language to use to communicate to the user).
The Abstmct Factory Patter'n shows the way out of the dilemma: One ob-
ject, the factory, is used to instantiate all objects concerned by this decision.
Their instantiation occurs at no other place outside the factory. Where such
an object shall be created, a message is sent to the factory to invoke the
desired instantiation. This way, the instantiation of an object is kept inside
a method of a factory. These of course can be virtual, and are often referred
to as virtual constructors.
Thns, an abstract factory provides the interface containing one factory
method for the instantiation of each class concerned. Concrete factories
are then derived from it, to implement the instantiation of the different con-
crete classes.
This pattern is used by the SyCL presentation, see figure 4.7. The decision,
whether a graphical or a textual presentaion shall be used is made at the
startup of the program via a command line parameter.

Figure 3.12: The Bridge Pattern keeps the chessman abstract and the presentation
in separate class hierarchies. The boxes connected by dashed lines show some
important implementation details: An object of the abstract class chessman has
access to an object of the abstract class chessmanImp. Implementing the chessmans
method showMeO via imp~showMeImpO means that each call of the chessmans
showMeO method is delegated to a chessmanlmp object in order to perform its
showMeImpO method. And since this is virtual, the showMelmpO method of the
concrete chessmanbnp implementation is called.

The hard part about object oriented design is to decompose a system into
objects. There are many diHerent approaches. Modeling a part of the real
world, the objects found during analysis can be translated directly into de-
sign. Dealing witb an abstract system, one could write down the problem
in sentences, single out the nouns and verbs and write classes to capture
tbe nouns and methods to capture the verbs. One cou Id also focus on the
collaborations and responsibilities in the system [4J.
Otber, more technical criteria like encapsulation, granularity, dependency,
flexibility, performance, evolution, reusability are often conflicting, where
design patterns again help to make coarse decisions.
Though many objects come from tbe analysis model, many reliable design
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Figure 4.2: The three packages: The core library at the bottom is totally hidden
from the user, who communicates with it via the presentation package. The lan-
guage interpreter acts as an interface between the core library and the presentation.

valences need adjoints. If they are not fundamental, they are declared vir-
tual. In system theoretical diagrams, fundamental and virtual valences are
represented by solid and dashed arrows respectively:

o~
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Note that the radical owns the valences, pointing towards it, and the valences
own their sources (see figure 4.4). Thus a sweep through the system i;
performed backwards.According to the theory, the two central classes are those representing ob-

jects and arrows. For reasons of effectivity, the environmental structure of
an object is separated from its (possible) inner structure. Therefore two
classes are needed.
The class Radical captures the objects environmental structure, it strongly
owns a list of arrows, while the class Object carries information about the
inner structure, like a complete subsystem or a numerical value1. A radical
strongly owns an object (see figure 4.3). In system theoretical diagrams, the
object-radical separation is ignored. A circle is used to represent an object,
possible values are drawn inside.

To run simulations, it is not very efficient to create an instance for every
corresponding arrow. Instances of the class Valence usually represent the
fundamental arrows (see figure 4.3). In special cases the status of a valence
can be set to vi,·tuaP representing non fundamental arrows. This is neces-
sary when valences lack fundamental adjoints. For implementational reasons

1Numerical values can be understood as abbreviations of subsystems represented by
the value in an arbitrary way. The fact that values like transcendent numbers cannot be
represented by a finite discrete system does not really restrict the application, since values
of transcendent numbers are always truncated in computer simulations.

2This virtuality of valences in contrast to fundamelltality is not to be confused with
the virtuality of member functions in cont~xt with the object oriented approach.
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Figure 4.4: A) An object diagram of the basic components. B) The system theo-
retical diagram for the same scenario.

As a special case, a valences target may be the same as its source. These
kind of valences are called loops. Their adjoints are of course loops as well.
In special cases, loops can be selfadjoint.



The system theoretical way of programming is to compose
new enzymes by combination of mechanisms.

Values are implemented via an abstract class Value. Among different types
of values, most important are those capable of algebraic operations. Derived
from the class Value the abstract class Algebraic Value declares these op-
erations within its interface and thus ensures correct composition of valences
and parallel transportation (of objects along valences). A radical also owns
an algebraic value. In contrast to objects, the radicals values are used to
store invariauts which are parallel transported trivially.

Enzymes and Predicates

Instances of the class Enzyme are objects with the ability to manipulate
the system locally: They have a method actO, which is called with two pa-
rameters, an object and a valenceJ. The object specifies the position within
the system, while the valence can be viewed as a direction in which to act.
Many enzymes do not use this second parameter.
There is only a finite number of fundamental enzymes, also called microen-
zymes, responsible for all dynamic behaviour of a system. All other actions
are achieved by sequential application of fundamental enzymes.
As special values, instances of the class Predicate can be used to restrict an
enzymes action to fulfill a condition. Predicates can be combined logically.
A pair (enzyme,predicate) is called a mechanism.

Mechanism (just as enzymes) take an object and a valence as parameters.
Having their action compleded, they also return an object and a valence,
e.g. as input parameters for a following enzyme inside a composite enzyme.
Most enzymes jnst pass their parameters to their successors, only few (like
the ..FRS enzyme) return a different pair. To assure locality it is important
that the parameter valence is directed toward the parameter object.

Figure 4.5: A more detailed class diagram of the core classes. The presentation
classes are shown in 4.7. A class diagram of the language interpreter is shown in
4.8. The complete list of all classes can be found in appendix A.

a matching key, enzymes may pass a membrane. The classes Key and An-
tiKey are derived from Predicate to let enzymes verify keys as well as
other predicates before they act (see the aFRK enzyme for further explaina-
tion).
Special enzymes can push objects inside or outside of membranes, by reas-
signing membranes. This way, a subsystem can grow or shrink.

To increase a systems structure, subsystems can be introduced. To separate
the inside of a subsystem from the outside, valences can carry membranes.
The class Membrane contains a textual representation of a key. Only with

'Both are elements from the system may be manipulated by the enzyme.



?iAD, ?nAD: isWithFundamentalAdjoint, isNotWithFundamen-
talAdjoint - Checks whether a valences adjoint is
fundamental or virt ualPredicates can provide conditions on an enzymes parameters to be fulfilled

for the action to take place. Depending on the type of enzyme, predicates
can act in two ways:

• A condition has to be fulfilled by the radical, valence pair for the
enzyme to act.

?iLP, ?nLP: isLoop, isNotLoop - Checks whether a valences source
and target are identical.

• Some enzymes (like -.AMR, -YML, ..RMV)involve all the radicals valences
in their action, (i.e. they have an implicit Im'All quantor). In this
case, the predicate restricts the action to those valences that fulfill the
condition.

?iSA, ?nSA: isSelfAdjoint, isNotSelfAdjoint - For loops, checks
whether a valences adjoint is the valence itself.

?iSP, ?nSP: isSpike, isNotSpike - This is TRUE, if a valences adjoint
is the only valence pointing to that valences source.

Since mechanisms can be composed to new enzymes, also called enzyme
chains, an enzyme of the first type can be wrapped (with or without a
predicate) inside an enzyme chain. This enzyme chain is an enzyme of the
first type and can again be combined with a predicate.
As an example: loop = _AMR{?iLP} performs the -.AMRaction only with
looped valences as parameters. The resulting chain (loop) can be combined
with another predicate like ?hFK: The enzyme only acts if the radical is the
central part of a fork structure:

?hFK, ?nFK: hasFork, hasNoFork - Checks whether the radical
is inside a fork structure.

In the following figures, the object acted on by the enzyme is marked with
a small dot inside.

The _CPO enzyme probably performs the most elementary action, neccessary
to let a system be self'referential and therefore reach a degree of complexity
which is neccessary to cope with complex systems.
When it is applied to an object, this object is copied with all its internal
structure and a link of type identity is created between them.

?FLS, ?TRU: alwaysFalse, alwaysTrue - These predicates are mainly
used for test pUIposes or to provide defaultvalues.

?iLK. ?nLK: isLink, isNotLink. ?iLK gives TRUEif a valence is
fundamental and FALSEotherwise.

This enzyme deletes an object, and also the valences connected to it and
their adjoints.

?iID, ?nLK: isIdentity, isNotIdentity - Gives TRUEif a valence is of
type IDENTITY. (This is the case for valences created
in a copy process).



If there are any virtual valences pointing to the object, the -RFU enzyme is
applied to, they become fundamental.

-RMV, -RTV: Remove Valences

The ...RMV enzyme removes all valences (and their adjoint valences) pointing
to the object, it is applied to. To remove only one valence, the enzyme -RTV
(remove this valence can be used. It removes the parameter valence and its
adjoint.

This enzyme creates fundamental adjoints to all valences pointing to the
object, -MAD is applied to, which have no fundamental adjoint.

_VML: Compose Valences by Performing a Left Multiplication

The _VML enzyme takes an object 0 and a valence m, which must be pointing
to this object, as parameters. All other valences v, pointing to 0 and fulfilling
the condition, are composed with the adjoint am of m to amov, where their
values become am * v, and their new target changes from 0 to the target of
am.Sometimes it becomes desirable to turn fundamental valences into virtual

valences, in order to hide a link from mechanisms that move through a
system (like shockwaves). Virtual valences are used by the SplitFork and by
lattice growth enzymes (see below).
The -MVV enzyme needs an object and a valence as parameters. This valence
gets a virtual status.

o
H ~mov
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If the adjoint valence of v is virtual, two virtual valences would remain.
As argued above, only links and arrows whose adjoints are links shall be
represented. In such a case, the _VML enzyme acts in the following way:

_MA V: Make Adjoint Virtual

The -MAV works analogous to the -MVV enzyme. It needs an object and a
valence as parameters. This valences adjoint becomes virt ual.

o
H ~mov

o 0



_AMR: Compose Adjoints of Valences by Performing a Right Multipli-
cation

Analogous to the _VML enzyme, also the -AMR enzyme takes an object 0 and
a valence m, which must be pointing to this object, as parameters. For all
valences v f m, pointing to 0 and fulfilling the condition, the adjoints av of
v are composed with m to form av 0 m with values av * m.

_Sag: Report Sources to Agenda

For all valences v fulfilling the condition and pointing to the object 0, the
_Sag enzyme is applied to, it reports enzymes and the pairs consisting of
the source of v and zero (as the absence of a valence) on which they are
supposed to act to the list agenda. This often is more practical than the
-Rag enzyme.

o~
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YOM, YIM: Pushing Outside a Membrane, Pushing Inside a Mem-
brane

These enzymes are used to rearrange membranes within a system. To create
subsystems or to let them grow, shrink, or die, membranes can be rearranged
to push an object, given as a parameter, inside or outside a membrane.

o~
t!~o 0

Making use of the agenda the adaptFork enzyme performs a sweep through
the whole system or parts of it, depending on possible predicates and mem-
branes. For instance, enclosing a part of a system by a membrane con-
structed with a key {.1}, the aFRK enzyme has to carry the same key to
sweep through the whole system (see figure 4.6). In order to block the en-
zyme only at a membrane with a certain key {. x}, an AntiK ey {-. x} can
be used.
Further enzymes, appended sequencially to the adaptFork, act on each ob-
ject it passes.

The YRS enzyme needs an object 0 an a valence v as parameters. The
returned object-valence pair is the source of v combined with the adjoint of
v.

--Rag: Report to Agenda

This enzyme reports enzymes and the object,valence pairs on which they
are supposed to act to a list agenda. With this mechanism, sweeps through
the whole system can be performed4

(While the agenda serves to implement the software on a single processor machine, it
is thinkable to extend this concept by enzyme management to be used OIl multiprocessor
machines.

When invoked and connected to an object of type string, this Enzyme reads
out that string and produces an enzyme with that coding. This may be used
to code enzymatic programs within the system.



design small, led to an extremely inflexible structure: Switching between
presentations was very complicated this way, since objects had to be de-
stroyed and recreated whereby certain information had to be remembered
somehow. liJ.uther more, changes made in the core classes had to be made
as well in the derived presentation classes. All this made it necessary to
choose a different design.
So far strong ownership seems to be the best solution. The abstract factory
pattern [4J allows a clean separation of the core elements and their presenta-
tions. Since a presentation requires the existence of the element it presents,
strong ownership is favoured over weak ownership. An indirect control mech-
anism might be even more flexible, but performance will as well decrease.
Still this design can easily be extended to run different presentations.

Figure 4.6: A system consisting of four objects a, b, c and d connected to each
other. YIM{ .i} applied to a and b creates a membrane around a and b with the
key {.i}, defining a subsystem. aFKR{.i }.lJUT applied to any of the objects sweeps
through the whole system and outputs each object it passes, aFKR{ .2}_OUT applied
to a or b only sweeps through the subsystem, but applied to c or d, it sweeps through
the whole system again.

More than one possible presentations can be realized. The decision which
one to use is done at only one point in the program code: One of many con-
crete factOl"ies is created, which takes care of creating any other instances
in context with the presentation, see figure 4.7.
The elements and their presentations are assigned to each other in both
ways. Since a core element without a presentation does make sense, e.g.
to keep the over all presentation clean, a presentation only weakly owns its
core element. Both directions are necessary, allowing the user to manipulate
the system via the user interface.

Once a simuJation is invoked, there are many possibilities to present the
obtained information. Some of the questions are: Shall the user interface
be bid irectional? (i.e. shall the information just be presented, or should the
user be allowed to influence the system via the presentation interface?) Is
it necessary to interact with the simulation at runtime? How strong should
elements of the core library be related to the elements of the presentation?
Aiming for flexibility, the first two questions have to be answered with yes.
The question of how strong the relationship should be is rather crucial.
Should the elements be related via ...

Two presentations are implemented so far. One is textual, based on the
command line interface, the other one is a full graphical presentation, shown
in appendix F.

• Inheritance: The presentation is the core element,

• Strong ownership: The core element has a presentation,

• Weak ownership: The core element has a presentation with an exis-
tence of its own,

Looking for an apropriate answer involves to see if any design patterns
favouring one or another strategy. Inheritance, as an attempt to keep the



character strings which make up the sentences are transformed into trees of
objects, which are easy to handle by the interpreter. This transformation is
done by a software called parsel·.
Very frequent applications are pattern matching problems, in which the
input string is checked against abstract syntax trees, which represent the
grammar.
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'(> expression '»
alternation ::= expression 'I' expression
sequence ::= expression 't' expression
repetition ::= expression '.'
literal :: = 'a' I 'b' I ... I 'z' I { 'a' I 'b' I ... I 'z' }*

Each line represents a mle, assigning the right hand side to the symbol on
the left. The elements 'I', '&' and ,*, mean logical 'or', 'and' and repeti-
tion respectively (as declared selfreferentially ). Characters enclosed in single
quotes are uninterpreted.
The symbol expression is called the start symbol and literal is called ter-
minal symbol- the smallest unit - used to define simple words. Implementing
a grammar like this, a class is defined for each rule. Symbols on the right
hand side of the rules are instance variables of the classes. Five classes are
needed for this grammar: An abstract class RegularExpression and four
subclasses AlternationExpression, SequenceExpression, Repetition-
Expression and LiteraIExpression. Note that all but the last contain
subexpressions, which allows recursion.
Different grammars concentrate on dilTerent aspects of the problems under
consideration. For system theoretic problems, a less complex grammar is
chosen that proved to be very powerful:

Figure 4.7: Class hierarchy of the SyCL presentation classes. Details of core classes
are hidden inside the box client which is not a class. The abstract factory pattern
is used here.

element
list
quote
atom

::= list I atom
::= ,(, element. ,),
::= 'quote' atom
.. = 'a' I 'b' I ... I 'z' I '+'

{ 'a' l'b' I ... I 'z' }*

If a particular kind of complex problem occurs very often, it might be
worthwhile to express instances of the problem as sentences in a simple
language[4]. Solving a problem then means to interpret the sentence, for
which an interpreter is needed.
Based on a certain grammar which defines a simple language, the inter-
preter represents and interprets sentences in that language. 1b be efficient,

The 'quote' is to be understood as a single quote. It is not implemented as
a class of its own, but instead as a property of the class Atom, meaning
an atom can be quoted or not. This.becomes interesting when elements are



interpreted: Quoted elements remain uninterpreted.
In object oriented softwaredesign, a well known interpreter pattern (sug-
gested in ref.[4]) has shown to work fine in most cases. To implemeut a
parser and interpreter for the SyCL program package, this pattern is used
in combination with a composite pattern [4J and extended by one more ab-
straction in the way shown in figure 4.8.

• ObjectAtom: Holds a SyCL object in weak ownership.

• ValenceAtom: Holds a SyCL valence in weak ownership.

• EnzymeAtom: Holds a SyCL enzyme in weak ownership.

Note that a list has a strong ownership relation to its elements (The elements
are destroyed when the list is destroyed). Syntax trees generated with this
structure are very similar to those used by list processing languages like
LISP (see appendix C). A sample tree for an abstract SyCL expression

(functionl (function2 (enzymel objectl valencel) number2)
(function3 number3 number4)
numberl)

is shown in figure 4.9.

The Element class is abstract. It provides polymorphism by assuring that
evey object is of the type Element. An element can thus either be an ob-
ject of type List, which consists of further elements, or an object of type
Atom. The class Atom is abstract again. The following concrete classes
are derived from it.

• DoubleAtom: Holds a floating point value in strong ownership.

• StringAtom: Holds a character string value in strong ownership.

• FunctionAtom: Holds an integer value, which represents a function,
in strong ownership.

A list can consist of elements of any kind. To evaluate a list, the first ele-
ment has to be a function, or an enzyme, where the following elements serve



as parameters, which have to be evaluable unless they are quoted (i.e. they
start with a quote). A complete list of implemented functions can be found
in appendix D.
An enzyme acting on a system can be seen as the system theoretical equiv-
alent to a function acting on a list in a list processor. Thus the interpreter
implemented with.in this project does process both, lists and systems. The
class hierarchy just introduced takes care of the list processing, while the
SyCL classes manage the system processing. The essential idea about adding
a list processor to SyCL is to provide a powerful tool to setup the system
theoretical environment, invoke simulations and evaluate the results.
For convenience, variables can be defined. They are accessable to both the
interpreter and to SyCL itself.

Given this environment, programming means setting up a system and com-
posing enzymes and predicates to act on it. The following examples shall
illustrate this idea.

A very simple action may be to move valences pointing to an object to a
neighbouring object.
The enzyme move is defined by: move = -AMRJlMV{?nAD} -FRS JlFU and
its behaviour is shown in figure 4.10. The objects are denoted a, b and c.
Starting at object a with th.e valence m as a parameter, the _AMRenzyme
moves the source of the valence av from a to c, leaving a virtual valence
behind. Another virtual valence is attached to avo The predicate {?nAD}
ensures that JlMV removes only v, the valence without a fundamental ad-
joint. With -FRS the focus changes along the parameter valence m to object
c. Now n is the new parameter valence. Finally JlFU turnes the remaining
virtual valence into a link.

coIt _AMR

m.( v
0~O

a av b

Figure 4.10: The behaviour of the move enzyme. The object under focus is marked
with a small dot.



A Sweep Through a System

A very elementary operation on an arbitrary system is to create a copy. The
first approach is to perform a sweep through the system, making use of the
agenda, aud to copy each element during this sweep.
It is interesting to see how the directions in which to proceed can be de-
clared: As in a shockwave, the links that have just been passed shall not be
passed in backward direction immed iately afterwards. Rendering these va-
lences virtual reduces the neighbourhood (defined via fundamental valences)
to valences the sweep has not passed. Thus propagation is as simple as pro-
ceeding into the neighbourhood.
These virtual valences with fundamental adjoints delimit elements from the
neighbourhood and can therefore be understood as the prototypes of mem-
branes.
During a copy process, the structure occuring in these situations

--::::;:'0~ 0
o-o---- It

- ~b=:':':;:'o

--::::;:'fl~O J'RS
0-0---- ~ ---<>~~-- ---.:::.0.: =:.:.:;:. 0

--::::;:.»~O
0-0---- ~----- ~-----.:::.0.: • =:.:.:;:. 0

--::::;:. 0 ~O
0-0---- !t

~~0~O
--::::;:. 0 ~O

JMV{7;I~1 0- 0----
-~0~0

is called a fork and functions as a valve, keeping the sweep from moving
backwards.

4.5.3 sFKL: THE Loop PROOF SPLITFoRK

A closer look at the sFRK enzyme reveals that it causes trouble when there
are loops among the systems valences. To handle this problem, another
(loop-proof) enzyme can be found (see figure 4.12), it is composed via: sFRK
= .CPO .VML{?iLP&&?iAD} JRFU{?iLP} .AMR{?nLK} .VML{?iAD&&?nLP} .MAD
...PRS JRFU JRMV{?iID} .Sag{?nAD}.

The SplitFork enzyme responsible for a reproduction of a simple system
(without loops) is composed in the following manner (see figure 4.11): sFRK
= .CPO .AMR{?nLK} .VML{?iAD} .MAD...PRSJRFU JRMV{?iID} -Sag{?nAD}

It performs one step in the copying process of a system: The object, the first
enzyme is applied to is colored in this diagram. The .CPO enzyme copies it,
creates an identity valence and uses this as the valence-parameter, being
passed to the .AHR enzyme. This moves only the virtual valences to the
copied object, because the predicate {?nLK} has been specified. The action
of the following enzymes can be seen in figure 4.11. Finally the .Sag enzyme
reports the neighbourhood to the agenda. The remaining virtual valences
are rendered fundamental in the next step.

In contrast to the .sFRK enzyme loops get a special treatment (.VML{?iLP
&& ?iAD} JRFU{?iLP}) before the .AMRenzyme acts, and the .VMLenzyme
gets restricted to non loops.
Without this treatment loops within the system lead to loops in time: The
same objects are reported to the agenda again and again, the copy process
never ends.
Since virtuality is used to determine the sweep propagation, only systems
without virtual valences are replicated correctly. To get rid of this restric-
tion, another SplitFork can be implemented, which determines its propaga-
tion on the base of membranes.



4.5.4 latt: LATTICE GROWTH

A lattice shall grow by connecting a copy to itself; Given a (e.g. line~r) sys-
tem, copies are made and connected to each other sequencially. Afterwards,
the same procedure can be applied to the new (2-dimensional) system to
build a 3-dimensional one. This way, a lattice can be constructed, starting
from an arbitrary small system.
The enzyme 1att = _CPO _AMR{?nLK}3ML{?iAD} ..MAD-PRS JtFU _MVV
_Sag{?nAD} JtFU does make a copy while attaching each duplicated'object
to its original via an unidirectional link. This can be applied repeatedly to
let the system grow in one dimension. With a system sweep, adding adjoints
to the unidirectional links, this state is fixed and another application of the
latt enzyme lets the system grow in a higher dimension.

Cellreplication can be achieved by realization of the following idea; A cell
A gets triggered to replicate, for instance by a certain value of a gradient
to a neighbouring cell B. A copy C of A is made and placed between A
and B in order to smoothen the gradient. Therefore the fundamental links
between A and B are replaced by new fundamental links between Band C.
Furthermore C obtains new fundamental links to all neighbours, A and B
are both connected to (see figure 4.13 and 4.14).

Systems can be constructed in different ways, e.g. by making use of the
scripting language introduced earlier in this chapter, directly via the user
interface, or by a combination of both. To be able to reconstruct the work,
it is desirable to write a system into a file.
For this purpose it is necessary to linearize a system without loss of infor-
mation.
An internal id number is assigned to each object and valence to let a valence
remember its source, target and adjoint valence.

Among several ways of formatting the code, the eXtensible Markup Lan-
guage (XML) seems to be the proper choice [12]. It is a subset of the
Standardized Generalized Markup Language (SGML), which is very



powerful, but too extensive to be used in this case.
One of the benefits of XML is that it allows upward as well as downward
compatibility easily to be implemented.

Coding in XML

In XML, information is kept inside tags declared in a document type defi-
nition (dtd). They are notated in brackets, enclosing the tag name as well
as attributes. Besides attributes, other tags may also be included. For this
purpose, to the just defined start tag there also exists an end tag notated by
a slash infront of the name, enclosed in brackets.

As a special case, a tag containing no further tags, does not need an end
tag. It is notated by an extra slash in front of the close bracket.

Coding Systems

The SyCL dtd (listed in appendix B) defines the following tags and their
possible attributes.



• object: An object tag carries its id number and a position as at-
tributes. Value tags may be enclosed.

• valence: A valence tag carries its id number and the id numbers of
its source and target objects and of its adjoint valence as attributes.
Value tags may be enclosed.

• value: A value tag has no end tag. It carries the value type, the
dimenstion (in case of a matrix) and the content as attributes.

<object ID="7" POS="{-139,31,O}" >
<value TYPE=" MAT" DIMM="1" DIMN="1" CONTENT="1 " I>

</object>

To understand the methods used to genemte artificial life, which will be
discussed in the next chapte,', it is important to study the mechanisms

nature uses. This chapter shall give a sh07t description of the metabolism
and reproduction mechanisms in simple biological systems (see [1f).

In the second step, all valences are written. This way the system can easily
be reconstructed when reading from the file.

<valence ID="4" SOURCE="3" TARGET="2" ADJOINT="5" >
<value TYPE=" MAT" DIMM="1" DIMN="1" CONTENT="1 " I>

</valence>
Biological systems are observed with different complexity. What all living
creatures have in common is the fact, that they consist of cells characterized
by the ability of reproduction and metabolism. In fact the most simple life
forms are solitary cells that propagate by dividing in two [1], where higher
organisms provide a level at which cell clusters, specialized to specific func-
tions, interact in a complex manner.
Studying life processes starts by understanding the cell reproduction.

Reading the file, SyCL looks for the attributes. In case the format gets
extended, other tags and attributes are just ignored. The information given
can still be used. This ensures upward- as well as downward compatibility.

The First Organic Molecules

When life originated, it is assumed that there was not much oxygene on
earth, no layer of ozone to absorb the suns ultraviolet radiation [1]' but
electric discharge caused by lightning and heavy storms. Under these con-
ditions, simple organic molecules originated. Laboratory experiments in
which a mixture of C02, CH4, NH3 and H2 was heated with water and ener-
gyzed by electric discharge or ultraviolet radiation confirm this theory. It is
interesting to note that amino acids, nueteotides, sugars and fatty acids are
generated this way, for they play a major role in the living cell today. The



simple molecules under consideration are amino acids and nue/eotides.
There are four types of nucleotides, uracil, adenine, cytosine and guanine,
abbreviated U, A, C and G. They can associate by phospho diester bond to
form large polymeres, the ribonue/eic acid and desoxyribonue/eic acid - RN A
and DNA - molecules. The amino acids on the other hand can join together
by peptid bond to form large polymeres: A set of twenty amino acids con-
stitutes the universal building blocks of the proteip.s.

that errors occur in the replication process and imperfect copies of the orig-
inal will be propagated. This way, replicating systems of RNA molecules
undergo a form of natural selection. The two essential characteristics of
RN A molecules therefore are[l J:

Nucleotides: A, U, G, C
20 amino acids

polynucleotides: RNA, DNA
polypeptides: Proteins

• Informational: RNA carries information encoded in its nucleotide se-
quence, that is passed on with replication .

• Functional: RNA is folded in a unique way, that determines how it
interacts with other molecules and how it responds to different condi-
tions.

The informational characteristic is analogous to the genotype (the hereditary
information), the functional characteristic is analogous to the phenotype (the
geneic information of which natural selection operates) of an organism.

With the loss of water, spontaneous polymerization occurs. The resulting
molecules have random lengths and sequences. Furthermore, preferential
binding occurs between pairs of nucleotides: C with G and U with A. This
is a very important point for the origin of life, for it allows a simple repro-
duction of polynucleotides: Once a certain polynucleotide has formed and
spontaneous polymerization occurs, the existing polynucleotide binds other
nucleotides and functions thus as a template for new polynucleotides. This
mechanism applied twice results in the original polynucleotide: A copy has
been established.
For templating mechanisms to be efficient, catalytic mechanisms are re-
quired. These catalytic functions are provided by highly specialized proteins
called enzymes, but also RNA molecules have the potential to catalyse spe-
cific reactions, by folding up to form complex surfaces.
Folding of polynucleotides rises from the preferential bindings between the
nucleotide pairs. Two parts of the same polyuucleotide bind, when they are
complementary in their sequences, (see figure 5.1). The folding of polymeres

The development of an outer membrane procures an evolutionary advan-
tage. For a certain RNA to facilitate its own reproduction, it is necessary
for the proteins generated under control of that RNA to remain in the RNAs
neighbourhood. Furthermore, they could in a different environment facil-
itate other RNAs reproduction. This is assumed to be the origin of the
cell[lJ.
Compartment is easily achieved by simple amphipathic molecules, consisting
of one hydrophobic part and one hydrophillic part. Placed in water, these
molecules spontaneously aggregate to form bilayers, creating small closed
vesicles whose aqueous contents are isolated from the external medium.
Wlnle RN A is supposed to have come first in evolution, DNA has taken over
the primary genetic function at some point in time, after efficient protein
synthesis had been evolved. Proteins became the major catalysts, while
RNA remained as the major link connecting the two. Certain chemical dif-
ferences between RNA and DNA fit them to perform specialized functions.
DNA is more stable than RNA and therefore seems better suited to per-
manently store genetic information. This is partly due to a lack of a sugar
hydroxyl group, but also because DNA, unlike RNA, exists principally in a
double stranded form. This allows DNA molecules to be easily replicated,
as well as repaired, since the two complementary strands contain the genetic
information twice.

Figure 5.1: A RNA molecule folds up to a characteristic spatial geometry when
two parts of the same molecule bind to each other.



The single stranded RNA molecules control the protein synthesis in two
ways, as coding RNA molecules (messenger RNAs) and as RNA catalysts
(ribosomal and other non-messenger RNAs).
In higher organisms, most of the cells DNA molecules are arranged inside a
nucleus, which is separated from the other cell material by a double layer of
membrane. Cells with a nucleus are called eucal'yotic, whereas those without
a nucleus are called procaryotic.

In order to replicate, a cell must use atoms from its environment to syn-
thesize every type of organic molecule required by the cell. Hundreds of
enzymes collaborate in reaction chains, whereby the product of oue reaction
is the substrate for the next, and catalyze this process. These enzymatic
chains are called metabolic pathways.
An interesting aspect is the gain of energy through a sequence of reactions
known as glycolysis, the degeneration of glucose in the absence of oxygen
(i.e. anaerobical degeneration) on one hand, and respiration, the (aerobic)
oxidation of food molecules on the otherhand. The energy release through
respiration (complete degeneration of glucose to CO2 and H20) is much more
efficient than through anaerobic glycolysis, where glucose can be broken
down only to lactic acid or ethanol. Both processes drive the formation of
adenosine triphosphate, ATP, which is used by all cells as a source of energy.
For large cells the ratio of surface to volume is too small to achive the com-
plete metabolism by pushing the material through the pumps and channels
of the cell membrane. To manage that problem, large parts of the cell mem-
brane are carried directly into the cell by a process called endocytosis, and
the reverse process, exocytoses, where new cell membrane is built from the
membrane that is enclosed inside the cell.

• Plasma Membrane: The plasma membrane is a continous sheet of
phospholipid molecules in which various proteins are embedded. Some
ofthese serve as pumps and channels for transporting specific molecules
into and out of the cell.

The Cell Organelles

The cells boundary is its plasma membrane, which encloses the nucleus (in
eucaryotic cells) and the cytoplasm, where most of the cells metabolic reac-
tions occur. About half of the total cell volume is occupied by further com-
partments, the organelles, which are listed below for an eucaryotic animal
cell. The remaining space, which includes anything else, but the membrane
bounded organelles, is referred to as cytosol. A picture of an eucaryotic
animal cell is show in figure 5.2.

• Endoplasmic Reticulum: Flattened sheets, sacs, and tubes of mem-
brane extends throughout the cytoplasm of eucaryotic cells, enclosing
a large intracellular space. The ER membrane is in structural continu-
ity with the outer membrane of the nuclear envelope and it specializes
in the synthesis and transport of lipids, membrane proteins as well
as other material destined for export from the cell. The rough ER is
studded on its outer face with ribosomes engaged in protein synthesis.
The smooth ER lacks attached ribosomes. A major function is in lipid
metabolism.



• Golgi Apparatus: A system of stacked, membrane bounded, flattened
sacs involved in modifying, sorting and packaging macromolecules for
secretion or for delivery to other organelles. Around the Golgi Ap-
paratus are numerous small membrane bounded vesicles, which are
thought to carry material between the Golgi Apparatus and different
compartments of the cell.

• Lysosomes: Membrane bounded vesicles that contain hydrolytic en-
zymes involved in intracellular digestions. The membrane prevents
the lysosomes from attacking proteins and nucleic acids elsewhere in
the cell.

that survived the increasing amount of oxygen by a symbiosis with
aerobic bacteria.

Plant cells differ from animal cells generally by the lack of centrioles and
addition of three further organelles: The chlol'o!Jlasts consist of an internal
membrane system and chlorophyll, which gives them the capability to drive
photosynthesis. Vacuoles are large single membrane bounded vesicles occu- •
pying up to 90% of the cell volume, responsible for intracellular digestions.
The cell wall is composed of tough fibrils of cellusose laid down in a marix
of other polysaccharides.

• Peroxisomes: Membrane bounded vesicles that contain oxidative en-
zymes that generate and destroy hydrogen peroxide.

• Nucleus: Separated from the cytoplasm by an envelope consisting of
two membranes. All of the chromosomal DNA is held in the nucleus,
packaged into chromatin fibers by its association with an equal mass of
histone proteins. The nuclear contents communicate with the cytosol
by means of openings in the nuclear envelope, called nuclear pores.

Essential for reproduction of any simple or complex cellular organism is the
cell replication. The way cells reproduce is to duplicate their contents and
then dividing in two. It can be viewed as the smalles entity, that encloses
all that is necessary to reproduce itself.

• Centriole: A small cylindrical organelle. Centrioles exist in pairs, with
two centrioles at right angles to each other. Interphase, Mitosis, Meiosis

The life cycle of a cell can be divided into two parts, the interphase and
the cell division phase. During the interphase the cells genetic material is.
active, its nucleus is separated from the plasma by its membrane. The cell
grows to twice its mass. With the end of the interphase, the chromosomes
within the nucleus are duplicated but remain connected.
During the cell division phase or Mitosis, the necleus is duplicated and
cell division takes places. It is again divided into subphases, briefly described
here:

• Cytoskeleton: In the cytosol, arrays of protein filaments form networks
that give the cell its shape and provide a basis for its movements. The
main kinds of cytoskeletal filaments are mic1'Otubules, actin filaments
and intermediate filaments,

• Mitochondria: About the size of bacteria, mitochondria are the power
plants of all eucaryotic cells, harnessing energy obtained by combining
oxygen with food molecules to generate ATP.
They alone are responsible for respiration in the eucaryotic cell. TheH: gradient, required for ATP production, does not occur at the
plasma membranes (as it does for procaryotic cells), but is totally
deligated to the mitochondria. This results in a higher flexibility for
the plasma membrane, which is therefore capable of controlled changes
in the ion permeability for cell signaling purposes.
Since mitochondria show many similarities to aerobic bacteria (they
both contain DNA, generate proteins, reproduce by dividing in two,
make use of respiration and are similar in size and shape), it is thought
that eucaryotic cells descended from primitive anaerobic organisms,

• Prophase: The chromatin slowly condenses into well defined chromo-
somes, each consisting of two sister ch1'Omatids, created at the end of
the preceding interphase. Toward the end of the prophase the mitotic
splindle begins to form. It assembles initially outside the nucleus.

• Prometaphase: The nuclear envelope disrupts, breaking down into
small membrane vesicles. The spindle microtubules now enter the
nuclear region while the splindle poles move to opposite parts inside
the cell, keeping tension on the chromosomes.



• Metaphase: The chromosomes are eventually aligned in one plane
halfway between the spindle poles. Each chromosome is still held in
tension by the micro tubules, which are attached to opposite poles of
the spindle.

the long tenn.
'This reduction of the double set of chromosomes is called Meiosis. Mitosis
and Meiosis are triggered by the same molecules.

• Anaphase: 'Triggered by a specific signal, the microtubules separate
the chromatids from another. 'They are slowly pulled toward the spin-
dle poles.

Meiosis only occurs wiLh sexual reproduction. Asexual reproduction is there-
fore simpler, but on the other hand less flexible in changes of the genetic
material. Evolution takes place mostly by simple point mutations due to
errors during the copying process of DNA or RNA. 'This does not provide
many possibilities of meaningful changes.
Sexual reproduction in contrast involves many possibilities to rearrange the
genetic material during the meiosis, most important geneml recombination:
Genetic exchange takes place between homologous DNA sequences, usually
located on two copies of the same chromosome. 'This ensures that compat-
ible material is exchanged, manipulating genetic properties, not the overall
structure of a chromosome. 'This cmssing over increases the chance to sur-
vive in a changing environment.
DNA rearrangements occur not only during sexual reproduction. Besides
general recombination, site specific recombination is another important mech-
anism: Specific sites on the DNA are recognized by certain enzymes, opening
the molecule and inserting other DNA sequences.

• Telophase: Around each group of daughter chromosomes a new nu-
clear envelope is built and the condensed chromatin expands again.

• Cytokinesis: Between the two nuclei, cell membrane is built, leaving
two separated daughter cells.

'The regulation of this cycle is done by a protein known as MPF (mat-
uration promotion factor), which again is regulated by a protein namens
eye/in, see figure 5.3.

'These mechanisms allow a vast variety of changes during life and repro-
duction. It is a subtle task to balance between stability and flexibility in a
changing environment.

Figure 5.3: The correlated rise and fall in the levels of MPF and cyclin during a
cell cycle.

These periodic behaviour in time functions as a natural timer to trigger cell
rep!jcation.

Higher organisms that replicate sexually carry a double set of chromosomes,
one set given by the father, another one by the mother. During sexual re-
production, this double set must be reduced to a single set of chromosomes,
to prevent a duplication with each generation and thus infinite growth in



elements, the machine is made of, randomly distributed.
This machine was able to reproduce itself, by executing commands from a
construction plan that was encoded by certain carrier elements. After re-
constructing the machine itself, it transmitted the construction plan. It is
interesting to note that he had introduced this concept a few years before
the DNA molecule was discovered.
One of the main disadvantages of his concept was that most of the units
which had to be given in the reservoir, were far more complex than the ar-
chitechture of the machine itself. So this could not explain how life originates
from a reservoir of simple objects. Von Neumann disliked this too, so he
decided to choose a different (simpler) basis for his automaton: Continuing
the ideas from Stanislaw UJam, he developed the idea of the cellular au-
tomaton. On this foundation he created an object that was able to replicate
itself [11].

Chapter 6

Intuitively, a cellular automaton is a network of identical, uniformly inter-
connected objects, combined with a rule (the local map) which determines
their dynamical behaviour in a local manner. To each object, or cell, there
is associated a state variable, called the cell state, ranging over a finit set of
values, the alphabet; and a cells neighbourhood is defined as the set of cells
directly connected to it through the network.
With each time step (time and space are discrete!) the new state of each cell
is determined depending on the (former) states of the cells neighbourhood.
Thns, a cellular automatons laws are local and uniform (26J. In this respect,
they reflect two fundamental laws of physics.
An assignment of states to all cells is called a configul'ation. Applying a
local map to each cell results in a new configuration. Thereby a local map
defines a transformation, called the global map, on the set of configurations.

In context with artifical life, the most important person to mention is the
one who invented this discipline, John von Neumann.
Von Neumann regarded life as a reconstructable linkage of events and inter-
actions [11]. In his lecture The General and Logical Theory of Automata, he
suggested that a deeper understanding of automata led to a deeper under-
standing of the mechanisms of life itself. He also came up with a concept of
self replication. Information being the foundation of all life he was conviced
that a system of any kind up from a certain barrier of complexity should be
able to produce new systems even more complex than itself.
Von Neumann developed a concept for a self replicating automaton. Aside
from electronic material (logical switches and, 01', not and delay circuits),
his machine consisted of a manipulation unit (a roboter device, that could
obtain orders from the central processing unit, the CPU), a cut unit to dis-
connect elements on order of the CPU, a connection unit, a sensor unit that
detects elements and transmits their information to the CPU, and a cou-
ple of carrier elements relevant for the structure of the whole automaton
as well as the information memory. As a space for this machine to live in,
he assumed a large reservoir in form of an infinite sea, filled with the same

A cellular automaton is invertible, if its global map is invertible. Invertibil-
ity is to be understood as conservation of information. This is an important
point in context with dynamical systems, since it represents microscopic
reversibility [26]. When trajectories meet in phase space, which holds for
probably most cellular automata, it is of course not invertible.



Von Neumanns Selfreplicating Automaton

Von Neumann chose an alphabet consisting of 29 elements [1.1]. Starting
with a horizonless grid, with each cell in an inactive state, an organism was
introduced covering two hundred thousand cells. The details of this creature
were represented by different states of individual cells.
The organism consists of parts shaped like a box and a tail, where the
box contained suborganisms: A factory (arranging information from the
environment according to instructions from other suborganisms), a duplica-
tor (reading informational instructions and copying them) and a computer
(functioni ng as a control apparatus).
These components took up only a quarter of the creature's total number of
cells. The rest of the cells were in a single file line of 150000 cells, acting as
a blueprint for the instructions to construct the entire organism (see figw'e
6.1).

transition (drawn up by Von Neumann), the organism made a duplicate of
its main body; information was passed through an 'umbilical cord', from
parent to child. The last step in the process was the duplication of the tail,
and the detachment of the 'umbilical cord'. Two identical creatures, both.
capable of self-reproduction, were now on the grid [11].

Initially, cellular automata were mainly used as toy models for phenomenol-
ogy of dissipative processes [26], as biological organization, self-reproduction,
chemical reactions and visual pattern processing.
John Conway was experimenting with cellular automata using an alphabet
that consists only of two states: Zero and one, which he called dead and
alive. Starting from statistically distributed configurations, most maps lead
to either infinite growth or quick death of cells alive. Conway found a local
map, that lead to an quasi-equilibrium, where statistically distributed con-
figurations lead to a non-zero stable number of living cells, possibly changing
periodically.

The Game of Life's neighbourhood consists of eight neighbouring cells, not
including the cell itself. The local map determines the state of a cell de-
pending only on the number of alive cells in the neighbourhood, neglecting
their exact position. Starting with a symmetric distribution of alive cells on
the grid, the system will always stay symmetric.
A cell can change its state in four ways: Change to zem (death), change to
one (birth), stay the same and inverl lhe slale. Depending on the number
of alive neighbours, the local map can be stated a table:

Figure 6.1: A schematic view of the selfreplicating automaton. The tail contains
150000 cells, coding the replication procedure.

number of state of the
alive neighbours center cell

0 0
1 0
2 no change
3 1
4 0
5 0
6 0
7 0
8 0

Once this automaton was embedded in the grid, each cell, as an individual
finite state machine, began to follow the rule that applied to if;. The effect
of these local behaviours caused a global behaviour to emerge: The self-
reproducing structure interacted with neighbouring cells and changed some
of their states. It transformed them into the materials - in terms of cell states
- that made up the original organism. The tail of the organism contained
instructions for the body of the creature. Eventually, by following rules of



1-
These rules can be interpreted in the following manner: Three alive neigh-
bours are needed for a new cell to be born, two are needed for a cell to stay
alive. A cell with less neighbours will die, surrering from underpopulation.
Any number greater than three leads to death as well in consequence of
overpopulation.

Experimenting with this environment, a lot of objects can be found, even
starting with random distributions. An object consisting of three alive cells
in a row (vertically or horizontally) is called a blinker, since it changes from
a horizontal to a vertical arrangement and vice versa.
A more complex structure is called a glider (see figure 6.2), changing in
shape and position until after four steps in time, it rearranges to its original
shape at a new position. These gliders move diagonally over the grid.

Thus the concept of a cellular automaton does not go well with the object
oriented paradigm. These problems can be overcome by porting a cellu-
lar automaton to the system theoretical framework: Most essential is to
construct the grid from objects. Neighbours can be defined in terms of fun-
damental arrows. This allows to manipulate the grid's geometry in any way:
Such a grid can differ in density, introducing singularities like holes (missing
objects) or accumulations (addidional objects), resulting in non constant
neighbourhoods. Wormholes can be introduced by connecting geometrically
separated objects by fundamental arrows. By adding loops, a cell can be its
own neighbour.

This has been implemented with SyCL. A grid is created by a SyCL script.
Each cell is implemented as an object connected to a position on the grid
by a unary link (see figure 6.4), which carries the state of the cell as a value.
For convenience this value is copied to the cell object.
Two enzymes are responsible for the dynamics:

• The dist enzyme does a sweep through the system multiplying the
valences carrying the state values with all neighbourhood valences (see
figure 6.4). It is composed from fundamental enzymes by
dist = aFRK fALL(-AMR{?nAD}){?iLKk&?iAD})

Many objects retain their shape and position periodically. They are called
oscillators (see figure 6.3).
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• The _CAM enzyme is fundamental. It collects the varues of the unary
links, eval uates them according to the local map and thereby sets the
state of a cell. To act on the whole system it has to be combined with
the AdaptFork:
ccam = aFRK _CAM

This way a fully functional cellular automaton is implemented, including
the ability to change the geometry of the system.
The SyCL script can be found in appendix D, example 5.

It might be interesting to experiment with cellular automata on different
scales as well. Blocking to a coarser lattice, the effective local map will not
be well defined in most cases. This problem might be solved by introduc-
ing stochastical maps: The update of each cell takes place with a certain

Object structures living on a grid of a cellular automaton are recognized as
such by the observer. In context with the automaton, there are no objects
other than cells. These cells are associated with specific positions on the
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organisms effectively run simultaneously.
In accordance with Darwinian evolution principles, the organisms mutate
and evolve. Replication of an organism is implemented via copying its pro-
gram code to another place in the memory space and starting a new process,
executing at the start of the copied block.
Copying program code, the code of another organism may be overwritten.
This provides a limited form of sexual reproduction: The organisms share
genes by the mechanism of one partially overwriting another. Another source
of mutation is given by a simulation of background radiation: Bits of the
memory are complemented at random with a controlable rate.
The program may be started with one or more organisms seeding the soup.
Alternatively, the system may be started sterile, with no organisms present.
Spontaneous generation of self-reproducing organisms has been observed af-
ter runs as short as 15 minutes.

o~o~o~o
pi p2 p3 p4

Figure 6.4: A) A view on a one dimensional grid with a neighbourhood consisting
of two objects. Each cell has a state of one as an example. B) Action of the dist
enzyme at position pI. C) Action of the dist enzyme on the whole system. D)
The state values collected by the ccam enzyme before evaluating the local map.
Note that the distribution (1, 2, 2, 1) is symmetric, but not homegenuous due to
the differing neighbourhood at the borders. E) After evaluation of the local map,
the two cells at the border die, while the other two stay alive.

The SyCL environment provides the essential elements to simulate artificial
life. It is essential to understand that by a clean separation of scales, one
does not have to start implementing atoms, molecules and their properties.
It suffices to start on the scale of interest, which is the scale on which evo-
lution takes place.
A simple approach may be to create a universe of different kinds of enzymes.
A SyCL script can be found in appendix E. Since some of the fundamental
enzymes are very specific, it may be reasonable to start with a given set of
enzymes.
They are randomly distributed and their relations as well.propability. It might as well be interesting to see how the propabilities of

the effective action correlate to those of the fundamental action.
lb start the simulation, each enzyme acts on the source of one of one its
valences with the adjoint valence as a parameter. It can be seen that the
system grows. Unfortunately no technique is implemented so far to analyse
the data for evolving structures. This is a point to be followed up in future.The Santa Fe Institute in New Mexico is well known for its research on ar-

tificial life. The Primordial Soup is a life simulation program, developed at
the SFI [5J.

An organism is represented by a piece of software, being executed over and
over. These software loops live in a shared memory space, the soup, with
the ability to self-reproduce. For time evolution, a multitasking interpreter
is used. One instruction is executed from each organism in turn, so that the



Further more a general timer and a way to mutate the material has to be im-
plemented. Mutation might be implemented via enzymes. One could start
with a random distribution of enzymes on the lattice, waiting for macro-
scopic systems to evolve, similar to the primordial soup project. On the
other hand, one might think of elaborate organisms capable of digestion,
DNA transcription, etc and start with these.
A fundamental enzyme digest already exists. Applied to an object 0, it
rearranges the links in a way such that each object of a (sub-) system is
connected to that object o. This ensures direct access to each object, and
can immediately be used when it is needed.

The solutions to technical problems are often found in nature. Integrating
evolution strategies into the system theoretical framework, the enzymatic
game of life might give solutions to problems of many disciplines, function-
ing as a universal problem solver.

The perspective for the System Class Laboratory can be divided into hard-
ware and software. On the hardwarelevel, a new processordesign is thinkable
to be based on systemtheoretic manipulations. Since only very few opera-
tions are fundamental, it might push the concept of the reduced instruction
set computel· (RISC) even further, resulting in an enormous increase of per-
formance.
On the softwarelevel, elaborate methods are needed to analyze the data.
Making use of the software, more composite enzymes (or macroenzymes)
can be deli ned, performing frequently occurring tasks.

As a special application, the enzymatic game of life can be continiued. A
lattice of objects can be defined to represent the space. Associated to each
object of the space lattice and connected via fundamental valences are

• a system representing the material in the environment of that point in
space.

To ensure conservation of material, the copy process would have to be ex-
changed by a process wh.ich takes the object to be replicated from the envi-
ronment. Incase of absence of a certain material, the process aborts. This
way the natural struggle for bare resources can be implemented in the sim-
ulation.



Appendix A
class Syclld (2)

class SyclRadical
class SyclValence

class SyclDoublyLinkedList (4)
class SyclLibraryOfEnzymes
class PredicateLibrary
class SyclLibraryOfEnzymes
class PredicateLibrary

class SyclClass (3)
class SyclObjectClass
class SyclReferenceClass
class SyclValueClass (1)

class SyclAlgebraicClass (1)
class SyclPredicateClass

class SyclMapCore (4)
class SyclBasicFunction
class SyclMultiplyByReal
class SyclRealFunction (1)

class SyclBasicRealFunction (1)
class SyclPower

class SyclSmoothStepFunction

class SyclMembrane (1)
class SyclStepMembrane

class SyclEnzymeComposite

class SyclGlnterp

class SyclPrefs

class SyclWindoll

class SyclCanvas

class SyclNode (1)
class SyclEnzymaticNode

class SyclNode (1)
class SyclEnzymaticNode

class SyclObject (3)
class SyclEnzyme (54)

class SyclAdaptFork



class Dirac
class SyclPropagatingDirac
class SyclAffineBeinEnzyme
class SycllnverseAffineBeinEnzyme
class SyclEnzymeChain
class SyclCleanAgendaEnzyme
class SyclConnectBranchedPathEnzyme
class SyclCopyObjectEozyme
class SyclCopyObjectsValueToRadicalEnzyme
class SyclDeclareRootEnzyme
class SyclUndeclareRootEnzyme
class SyclDecodeEnzyme
class SyclDeleteRadicalEnzyme
class SyclDotEnzyme
class SyclHelloEnzyme
class SyclMakeFundameotalAdjointEnzyme
class SycllnternalLoopEnzyme
class SyclMainEnzyme
class SyclMakePathEnzyme
class SyclAssembleSystemEnzyme (1)

class SyclLinkSystemEnzyme
class SyclRecoverSystemEozyme
class SyclMakeSystemEnzyme
class SyclValenceMultEnzyme
class SyclValenceMultLeftEnzyme
class SyclAdjointMultRightEnzyme
class SyclOutPathSuccEnzyme
class SyclOutPathLinkEnzyme
class SyclOutPathPrecEnzyme
class SyclOutputEnzyme
class SyclRemovePresentationEnzyme
class SyclCreatePresentationEozyme
class SyclSystemPresentationEnzyme
class SyclPresentRadicalEnzyme
class SyclPresentSourceEnzyme
class SyclProgram
class SyclProlongPathEnzyme
class SyclPushOutsideMembraneEnzyme
class SyclPushlnsideMembraneEnzyme
class SyclForAllValences

class SyclForAllTriangles
class SyclUntil
class SyclRemoveValencelfEnzyme
class SyclRemoveValenceOpenTriangleEnzyme
class SyclRemoveThisValenceEnzyme
class SyclRenderFundamentalEnzyme
class SyclRenderVirtualEnzyme
class SyclReportToAgendaEnzyme (9)

class SyclAdaptForkEnzyme (1)
class SyclPrepareAssemblyForkEnzyme

class SyclClimbTreeForkEnzyme
class SyclActOnLeavesEnzyme
class SyclBackvardForkEnzyme
class SyclBacktrackEnzyme
class SyclBackvardForkEnzyme
class SyclClimbTreeForkEnzyme
class SyclDeleteReportEnzyme
class SyclReportSourceToAgendaEnzyme

class SyclShovEnzyme
class SyclSourceActsEnzyme
class SyclSourcesRValueAddedEnzyme
class SyclSpecifyPrincipalPortEnzyme
class Sycl VValEnzyme
class SyclVAdjEnzyme

class SyclSystem
class SyclSystem

class Id (1)
class pElement (2)

class pAtom (8)
class pInt
class pDouble
class pString
class pError
class pFunction
class pObject
class pValence
class pEnzyme

class pList



class SyclPathLink (4)
class SyclPathBranching
class SyclAntiPathLink
class SyclAntiPathLink
class SyclAntiPathLink

class SyclPresentationFactory (2)
class SyclQtPresentationFactory
class SyclTextPresentationFactory

class SyclRadicalPresentation (2)
class SyclRadicalQtPresentation
class SyclRadicalTextPresentation

class SyclValue (3)
class SyclPredicateRep
class SyclAlgebraicValue (6)

class SyclEnzymeValue
class SyclListValue
class SyclMap (1)

class SyclRealMap
class SyclMatrix (4)

class SyclAffine
class SyclAffineTransformation (1)

class SyclAffineFrame
class SyclDouhle (1)

class SyclMaxPlus
class SyclInt

class SyclPredicate (2)
class SyclKey (1)

class SyclAntiKey
class SyclTrueForAllValences

class SyclStringValue
class SyclCoVector (2)

class SyclAffineVector (1)
class SyclPosition

class SyclCoVector3d

class SyclPresentation (2)
class SyclGraphics
class SyclText

class SyclValencePresentation (2)
class SyclValenceQtPresentation
class SyclValenceTextPresentation

class SyclValuePresentation (2)
class SyclValueQtPresentation (4)

class SyclBMatrixQtPresentation
class SyclIMatrixQtPresentation
class SyclDMatrixQtPresentation
class SyclStringQtPresentation

class SyclValueTextPresentation



The SyCL Document Type Definition

The following dtd defines the tags system, object, valence and value. For a
deeper insight in XML, see [12J

<!ELEMENT object (value).>
<!ATTLIST object

10 10 #REQUIRED>

<!ELEMENT valence (value).>
<!ATTLIST valence

10 10 #REQUIREO
SOURCE 10 #REQUIREO
TARGET ID #REQUIREO
ADJOINT 10 #REQUIREO>

<!ELEMENT value EMPTY>
<!ATTLIST value

TYPE COATA #REQUIRED
CONTENT COATA #REQUIREO>

<?XML version="1.0"?>
<!OOCTYPE SyCL SYSTEM "system.dtd">
<system>

<object 10="2" POS="{-139,31.0}" >
<value TYPE=" MAT" OIMM="l" OIMN="l" CONTENT="O " />

</object>

<object 10="3" POS="{18,45.0}" >
<value TYPE=" MAT" DIMM="1" OIMN="1" CONTENT="O " />

</object>

<object 10="6" POS="{33,-51.0}" >
<value TYPE=" MAT" OIMM="1" OIMN="1" CONTENT="O " />

</object>

<valence 10="4" SOURCE="3" TARGET="2" AOJOINT="5" >
<value TYPE=" MAT" OIMM="1" OIMN="1" CONTENT="l " />

</valence>

<valence 10="5" SOURCE="2" TARGET="3" AOJOINT="4" >
<value TYPE=" MAT" OIMM="1" OIMN="l" CONTENT="1 " />

</valence>

<valence 10="7" SOURCE="6" TARGET="3" AOJOINT="8" >
<value TYPE=" MAT" OIMM="1" OIMN="1" CONTENT="1 " />

</valence>

<valence 10="8" SOURCE="3" TARGET="6" ADJOINT="7" >
<value TYPE=" MAT" OIMM="1" OIMN="1" CDNTENT="1 " />

</valence>







(seta a 3)
(seta b 4)
(setv v 1 1 a b)
(setq vadj (adjoint v))

• (append expr Ii) appends the expression expr to the list Ii and re-
tums this list. The original list remains unchanged!

THE SyCL SCRIPTING

LANGUAGE

: (setq Ii '(this is a list))
'(this is a list)
: (setq li1 (append 'again Ii))
'(this is a list again)
:li
'(this is a list)
: li1
'(this is a list again)

The syntax of the SyCL Scripting Language is very similar to the LISP
syntax. To summarize the most important rules:

• Each expression can be either elementary (an atom), or a list.

• A list is a number of expressions, enclosed by parenthesis.

: (setq Ii '(this is a list))
'(this is a list)
: (car li)
this

• Evaluating a list, the first element is treated as a function, while the
other elements are treated as parameters and are usually evaluated
first.

• To avoid evaluation, an expression may be quoted, Le. it begins with
a single quote.

: (setq Ii '(this is a list))
'(this is a list)
: (car li)
(is a list)

• (connectto a x y z) searches the system for an object at the positioll
(x, y, z) aud assignes the variable a to it.

• (delete a) removes element a from the variable list and deletes it
(compare remove).

• (dump) dumps the elements from the variable list to std.out.

• (edit a b) changes the value of an object or valence a to the SyCL
value b.

Implemented Functions

The commands, this interpreter can execute are listed below. Enzymes can
be applied as well, taking an object or a list of an object and a valence as a
parameter.



• (enzyme expr) defines a uew enzyme fl"Om the expression expr. expr
has to be of the form xxxx=enz1enz1!enz3 .... and must be quoted in
order not to be executed as a command! The newly defined enzyme is
automatically inserted into the enzymelist as well as the enzyme menu
from the GUT.

• (for (n iO il) ( exprl expr2 expr 3 •.. » evaluates the expressions
exprl, eX'pr1!and expr3 ... with the variable n taking integer values
from iO to i1

: (enzyme 'move=_AMR_RMV{?nAD}_PRS_RFU)
o
: (enzymes)
(_DOT _OUT _DEC _MVV_CPO _RMV_RFU _MAD_VML_AMR _PRS
_Rag _Sag _DEL _POM _PIM aDEL aFRK ... sFRK move)

: (funlist)
(plus + minus - times • eval setq set oblist funlist car
cdr nth replacenth remove delete load seto setv setl
enzymes dump for list newo equal eq notequal neq lessthan
lth greaterthan gth if edit makeenz enzyme adjoint append)

: (enzymes)
(_DOT _OUT _DEC _MVV_CPO _RMV_RFU _MAD_VML_AMR _PRS
_Rag _Sag _DEL _POM _PIM aDEL aFRK ... sFRK)

• (greater than a b) or (gth a b) returns 1 if a is greater than b, an
empty list otherwise

(The exact output of course depends on the set of enzymes generated
by SyCL and by the user.)

• (if expr ( exprl expr2 expr3 ... » evaluates the expressions exprl,
expr1! and expr3 ... if expr is true

: (setq Ii '(plus 3 4))
'(plus 3 4)

(eval Ii) • (length Ii) returns the number of elements of the list list.

• (Iessthan a b) or (Ith a b) returns 1 if a is less than b, an empty
list otherwise• (equal a b) or (eq a b) returns 1 if a and b are equal, an empty list

otherwise
: (lessthan 4 3)
o

(if (equal a 3) «setq b 4)))
o
: b
4

: (setq Ii (list 3 4 5 6))
(3 4 5 6)
:Ii
(3 4 5 6)



• (load filename) loads and evaluates commands in a file filename.
This can be done more comfortably with a file-select box via the GUI
open file menu entry.

• (remove a) removes element a from variable list (compare delete).

(replacenth n Ii expr) replaces the nth element of a list Ii by exp1'
and returns this list. The original list Ii remains unchanged!

: (minus 3 5)
-2

: (setq Ii '(1 234»
'(1 2 3 4)
: (setq li1 (replacenth 2 Ii 'three»
'(1 2 three 4)
:li
'(1 2 3 4)
: li1
'(1 2 three 4)

• (newo a) creates a new SyCL object of SyCL value a and returns an
object element

• (run '( e v») lets the enzyme e act on the source of valence v.

• (set a b) same as setq, but evaluates a first
• (notequal a b) or (neq a b) returns an empty list if a and bare

equal, 1 otherwise

: (setq Ii '(this list has five elements»
'(this list has five elements)
: (nth 3 li)
five

• (nthval n a) returns the nth valence of the valences directed toward
the object a (counting from 0).

• (oblist) returns the list of variables

• (plus a b) (+ a b) returns the sum of a and b

• (setl I v a b) a and b have to be object elements. An unidirectional
valence is created between a and b with a SyCL values v. The valence
element is assigned to tbe variable I

• (rand n) returns an integer random number between zero (inclusive)
and n (exclusive). '

• (seto a ['int/'real/'bool/'enzJ ['vector m/'covector n/'matrix
m n) b... [x [y [z)lJ) creates a SyCL object with a SyCL value b
(evaluated) and assigns the object element to the variable a. Creating



a vector of dimension ill, a covector of dimension n, or a matrix of
dimension mxn requires mxn elements b! x, y, z can be appended to
specify coordinates.

Examples

• Example 1:
To create two objects (with values 3 and 4, at different positions) and
a valence (with values 1 and 1), type:

(seto a 3 100)
(seto b 4 0 100)
(setv v 1 1 a b)

(seto b 'int 'vector 3 4 5 6)
: b
456

• (setq a b) creates an expression, sets it to b (evaluated) and assigns
it to the variable a

• Example 2:
To create a ring of seven objects linked by valences, type:

(seto a 0)
(setq c a)
(for (x 1 6)

(seto b x)
(setv v 1 1 c b)
(setq c b)
(if (eq x 6) (

(setv v 1 1 c a)
)

)
)

)

: (setq a (times 3 4))
12
: (oblist)
(a)

• (setv v vO vI a b) a and b have to be object elements. A bidirectional
valence is created between a and b with SyCL values vO and vI for the
valence and its adjoint. The valence element is assigned to the variable
v

(remove b)
(remove c)
(remove v)

: (times 3 4)
12

• Example 3:
A simple 4x4 lattice is created by the following program:

• (valences a) returns the number of valences directed toward an object
a.

(setq li '()
(for (y 0 3)

(
(for (x 0 3)

(



(setv v 1 a ax)
)

))
(setq ax a)
(setq Ii (append ax Ii))
(if (neq y 0)

(

(if (neq x 0)
(

)
(setq ax a)
(setq Ii (append ax Ii))
(if (neq y 0)

(

(setq ay (car Ii))
(setq Ii (cdr Ii))
(setv v 1 1 a ay)

(setq ay (car Ii))
(setq Ii (cdr Ii))
(setv v 1 1 a ay)

(seta a 8)
CCPO a)

(enzyme 'dist=aFRKfALL(_AMR{?nAD}){?iLK&&?iAD})
(enzyme 'ccam=aFRK_CAM)

• Example 6:
In the following example, a system of three objects is created. The
object a is connected to both of the other objects. (see figure D.l).

(seta a 1)
(seto b 2 100)
(seta c 3 0 100)

• Example 4:
To apply an enzyme to an object:

• Example 5:
The lattice used for the cellular automaton (see chapter 6) is set up
by the following script: (setv m 1 1 a c)

(setq n (adjoint m))
(setq Ii '())
(for (y 0 5)

(

(seta a 0 (* x 60) (*y 40))
(seto b 0 (* x 60) (* y 40) 80)
(setl 1 1 b a)
(if (neq x 0)

(

(enzyme 'move=_AMR_RMV{?nAD}_PRS_RFU)

The enzyme move applied to the object a and a valence (direction)
m forces all valences except for m pointing toward a to move to the
object c which is the source of m. To see tllis happen, type:

(move '(a m))

This can of course be done in the opposite direction as well. Type:

(move ' (c n))

(for (x 0 5)
(



Appendix E

THE ENZYMATIC GAME OF

LIFE

(setq elist
,(sFRK _CPO _VML _AMR _MVV _MAV _PRS _RFU _MAD _CPO _CPO _RMV))

(setq enum (length elist))

(for (e 0 200) (
(setq x (- (rand 500) 250))
(setq y (- (rand 400) 200))
(seto a 'enz (nth (rand enum) elist) x y)
(setq ax a)
(setq Ii (append ax Ii))

))

(for (v 0 200) (
(setq 01 (nth (rand lilen) Ii))
(setq 02 (nth (rand Iilen) Ii))
(setv w 1 1 01 02)

) )



(for (t 0 2000) (
(setq obj (nth (rand lilen) Ii))
(setq val (nthval (rand (valences obj)) obj))
(run '(obj val))

))
Appendix F

To get an impression of the graphical user interface, a screenshot is' shown
in figure F.l. Due to constant development, the intructions how to use this
software can be found on the SyCL webpage [18).



This shows once more that many concepts of modern theories have a very
long tradition. Today we have the technology to apply them to computer
simulations.

Appendix G

It is interesting to see how the ancient greek philosophers have influenced
todays way to view the world. Not only Demokrit participated in physics,
establishing the particle view of the world by introducing atoms. Also Plato
and Aristotle, though many of their ideas have been rather contradictary,
had a subtle feeling for a natural way to handle complexity.

Platos concept of ideas resembles the modularity aspects of the object ori-
ented paradigm by stating that an object is uot defined by its concrete
properties rather than by an abstract idea: It is its functionality that lets
an object be recognized as such. Thus ideas may exist, without the necessity
of any existing instances.
This also interlaces the concept of encapsulation: You can use a tool, when
you know the idea of that tool, even if you dont know how it works internally.

The way Aristotle viewed the ideas is even closer to the system theoretic
point of view, pointing out that the human mind creates ideas of objects by
experience. Stated system theoretically: A composed object is identified as
an object, when it behaves like an object, or just: Structure is in the eye of
the beholder.
Applying this concept of composite objects (not only to concrete objects
but) to their abstractions (Platos ideas), results in an abstract describtion
of the inheritance aspect of the object oriented paradigm. Also this was
done by Aristotle. He said that the human mind identifies complex (com-
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