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Abstract

For some years HERA has been supplying longitudinally spin polarised electron and positron (e±)
beams to the HERMES experiment and in the future longitudinal polarisation will be supplied to the
H1 and ZEUS experiments. As a result there has been a development of interest in complementing
the polarised e± beams with polarised protons. In contrast to the case of e± where spin flip due to
synchrotron radiation in the main bending dipoles leads to self polarisation owing to an up–down
asymmetry in the spin flip rates (Sokolov–Ternov effect), there is no convincing self polarisation
mechanism for protons at high energy. Therefore protons must be polarised almost at rest in a source
and then accelerated to the working energy.

At HERA, if no special measures are adopted, this means that the spins must cross several thousand
“spin–orbit resonances”. Resonance crossing can lead to loss of polarisation and at high energy such
effects are potentially strong since spin precession is very pronounced in the very large magnetic fields
needed to contain the proton beam in HERA–p. Moreover simple models which have been successfully
used to describe spin motion at low and medium energies are no longer adequate. Instead, careful
numerical spin–orbit tracking simulations are needed and a new, mathematically rigorous look at the
theoretical concepts is required.

This thesis describes the underlying theoretical concepts, the computational tools (SPRINT) and
the results of such a study. In particular strong emphasis is put on the concept of the invariant
spin field and its non–perturbative construction. The invariant spin field is then used to define the
amplitude dependent spin tune and to obtain numerical non–perturbative estimates of the latter. By
means of these two key concepts the nature of higher order resonances in the presence of snakes is
clarified and their impact on the beam polarisation is analysed. We then go on to discuss the special
aspects of the HERA–p ring and measures for minimising the perturbations to the spin motion (→
depolarisation) and thereby obtain first upper bounds on the permissible beam emittances needed to
maintain polarisation up to high energy in HERA–p.

Current e-mail address of the author: vogtm@mail.desy.de





Zusammenfassung

Seit einigen Jahren stellt HERA dem Experiment HERMES longitudinal polarisierte Elektronen oder
Positronen (e±) zur Verfügung und in Zukunft werden auch den Experimente ZEUS und H1 lon-
gitudinale Polarisation zur Verfügung stehen. Als Konsequenz daraus ist Interesse gewachsen, den
polarisierten e± Strahl durch polarisierten Protonen zu ergänzen. Im Unterschied zu e± wo eine
Asymmetrie der Übergangsraten zwischen parallelen und antiparallelen Spinzuständen bei der Syn-
chrotronstrahlung in den Hauptdipolen (Sokolov–Ternov Effekt) zu einer Selbstpolarisation führt, gibt
es für hochenergetische Protonen keinen realistischen Mechanismus zur Erzeugung von Polarisation
in Speicherringen. Deshalb müssen Protonen quasi bei Ruhenergie in der Quelle polarisiert und dann
auf die gewünschte Energie beschleunigt werden.

Wenn in HERA keine speziellen Maßnahmen ergriffen werden, bedeutet das, dass mehrere tausend
Spin–Orbit Resonanzen gekreuzt werden müssen. Das Kreuzen einer solchen Resonanz kann zu Ver-
lusten bei der Polarisation führen. Speziell bei hoher Energie ist dieser Effekte potentiell stark, da
die Präzessionsfrequenz der Spins in den starken Magnetfelder, die benötigt werden um den Strahl
zu fokussieren, sehr hoch ist. Hinzu kommt, dass die simplen Modelle, die lange Zeit erfolgreich be-
nutzt wurden, um Spindynamik bei geringer und mittlerer Energie zu beschreiben, bei hoher Energie
inadäquat werden. Statt dessen werden präzise numerische Spin–Orbit tracking Simulationen und
eine neue, mathematisch rigorose Herangehensweise an die physikalischen Konzepte erforderlich.

Diese Dissertation beschreibt die theoretischen Konzepte, die der Spindynamik in Beschleunigern
zugrunde liegt, die numerischen Werkzeuge (SPRINT) und die Resultate einer Studie führ den Beschle-
uniger und Speicherring HERA–p. Im besonderen wird das Konzept des invarianten Spinfeldes und
seine nicht–störungstheoretische Berechnung betont. Mit Hilfe des invarianten Spinfeldes wird der
amplituden–abhängige “spin tune” definiert und es werden nicht–störungstheoretische Methoden zur
Berechnung desselben eingeführt. Im weiteren wird unter Zuhilfenahme dieser beiden wesentlichen
Konzepte der Mechanismus, der zum Entstehen von Resonanzen höherer Ordnung im Beisein von
“snakes” führt, sowie der der Einfluss dieser Resonanzen auf die Spinbewegung erklärt. Im Anschluss
werden die spezielle Aspekte der Spindynamik in HERA–p sowie Maßnahmen zur Minimierung der
Störung der Spinbewegung (Depolarisation) diskutiert. In diesem Zusammenhang werden sich unter
anderem auch erste Abschätzungen für die maximalen Strahlemittanzen, bis zu denen Polarisation bei
hoher Energie gewährleistet werden kann, ergeben.
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Chapter 1

Introduction

HERA is the “Hadron Elektron Ring Anlage” at “Deutsches Elektronen–Synchrotron” (DESY) in
Hamburg. It consists of a proton (p) ring, currently operated at 920 GeV, and a concentric elec-
tron/positron (e±) ring, operated at 27.5 GeV. e±–p collisions from the counter rotating beams are
studied in the North and South interaction regions by the H1 and ZEUS experiments. The HERMES
experiment in the East has an internal target in the e± ring and the HERA–B experiment in the West
studies CP–violation using an internal target in the p ring.

The HERA e± ring was designed with a view to obtaining longitudinal spin polarisation via the
Sokolov–Ternov effect [ST64] and with the help of spin rotators [BB95]. A pair of rotators was
brought into operation in 1994 and since then HERA has been supplying up to 60% longitudinal
polarisation to the HERMES experiment [HC93]. The HERMES experiment is dedicated to providing
a deeper understanding of the spin structure of nucleons by studying collisions of polarised electrons
and positrons with polarised nucleons in an internal gas target. The total spin of the proton sp = 1/2

can be decomposed into the sum of partonic contributions and the orbital angular momentum

1

2
= ∆q + ∆g + Lorb

where ∆q and ∆g are given by differences of the parton densities of positive and negative helicity quarks
and gluons respectively. Here ∆q includes contributions from the valence quarks (“p+ = uud”), as
well as the sea quarks, mainly u, ū, d, d̄, s, s̄. It was found experimentally in 1988 by the European
Muon Collaboration (EMC) at CERN [EMC88] that the quark contribution to the proton spin is
much smaller, namely about 30%, than that predicted in the quark parton model. This has then been
confirmed by later measurements [ID96, BN95]. Therefore the major contribution to the proton spin
must come either from ∆g [HC00] or Lorb.

The partonic helicity distributions are functions of the kinematic variables x
B

which is the frac-
tional part of the momentum of the proton carried by the current quark and measured in the centre
of mass system, and Q2 which is the negative square of the 4–momentum transfer. To extract the
gluon contribution with sufficient accuracy one needs data in a kinematic region with low x

B
but with

Q2 still high enough to allow application of perturbative QCD. The latter constraint means that Q2

should be much bigger than Λ2
QCD where ΛQCD ≈ 200 MeV is the position of the Landau pole of the

running coupling. This is given in one–loop approximation by αs(Q
2) = 12π

(33−2Nflv) log(Q2/Λ2
QCD)

where

Nflv is the number of quark flavours active at Q2. The scattering parameters are related to the centre
of mass energy

√
s ≡

√
(pe + pp)µ(pe + pp)µ via

Q2 = x
B
y

B
s

where y
B

is the normalised energy transfer of the lepton in the laboratory frame. Since y
B
< 1

the kinematic region of an experiment is bounded by Q2/x
B
< s. In other words, increase of s

3



4 CHAPTER 1. INTRODUCTION

implies the ability to measure ∆g in regions of lower x
B

without decreasing Q2. For a reference
momentum of the e± beam of 27.5 GeV the centre of mass energy for the HERMES experiment is
little more than 7 GeV whereas in the collider experiments ZEUS and H1 we obtain

√
s ≈ 300 GeV

with a reference momentum of the proton beam of 820 GeV. It would therefore be very useful if the
high energy protons in HERA were polarised and indeed there is a strong interest in this possibility
[BN95, BD97, DG98, BR99b]. This thesis describes part of a study of the feasibility of providing such
polarised protons. The references just given contain reviews of a whole range of investigations that
could be undertaken with polarised protons.

An e± beam in a storage ring polarises itself by the Sokolov–Ternov (S–T) effect. This effect is
based on the spin flip rates due to synchrotron radiation being slightly different for up→down and
down→up in the main dipole fields. Neglecting possible depolarisation due to spin diffusion driven
by the stochastic nature of quantum emission, the S–T effect leads to an equilibrium polarisation in
a uniform magnetic field of

P
ST

=
8

5
√

3
≈ 92.38%

on a typical time scale of

τST =
8

5
√

3

m2
e|ρ|3
e2γ5

,

where |ρ| is the bending radius of the magnetic field and rationalised units1 have been used. This value
for P

ST
is valid only in the case |g/2−1| � 1 which is the case for electrons (≈ 0.115 10−3) but not for

protons (≈ 1.79). In fact for protons P
ST

is closer to 100% than for e± [JJ76]. However, since the time
scale for the build up of polarisation is proportional to m7/E5, even at high energy in HERA the build
up time is many orders of magnitude bigger for protons than for e± where it is of the order of 36 min.
Two other methods have been considered for generating proton polarisation at high energy, namely via
spin exchange with a polarised internal target [RM93, CM93, HM94] or electron beam or via resonant
use of the relativistic Stern–Gerlach force. See for example [CP95, CP95, YD90a, YD90b, KH96]. But
neither of them acts quickly enough or is practical in the real world of accelerator physics. Therefore
protons have to be polarised in the p or H− source of the accelerator complex and then accelerated
through the whole pre–accelerator chain up to the final working energy.

As we will see below, preservation of polarisation during acceleration to high energy is far from
trivial and concepts applicable in low energy rings are no longer adequate. Thus in this thesis a
formalism which is capable of describing the non–linear spin dynamics at high energy is introduced
and this is then employed to evaluate methods for overcoming loss of polarisation. Furthermore
this thesis provides an initial specification of the conditions needed to attain and maintain proton
polarisation at high energy in HERA.

The motion of the spin expectation value of a particle in electromagnetic fields is governed by a
classical precession equation of the form

Dt Ŝ = ~Ω × Ŝ

where the vector ~Ω, which was given by Thomas, Bargmann, Michel and Telegdi (T–BMT) [JF26,
LT27, MC55, BM59], depends on the electromagnetic fields at the particle and on its velocity and
energy. The implications of the T–BMT equation will be explained in some detail in chapter 2. See
appendix B for the mathematical notation.

If accelerators only had dipole magnets bending the orbit in one, generally horizontal, plane, then
spins would precess around the (vertical) direction normal to the plane exactly Gγ + 1 times in one
revolution around the ring where G = g/2 − 1 ≈ 1.79 is the gyromagnetic anomaly of the proton
and γ is the Lorentz–factor. In particular in magnetic fields perpendicular to the tangent vector of

1Throughout this thesis rationalised units, i.e. units in which c = ~ = 1, will be used.
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the trajectory the spin precesses Gγ times more than the orbital deflection angle around the constant
field direction. For protons this precession enhancement factor Gγ is increased by one integer each
523 MeV. As we will see later for protons at 820 GeV, 1 mrad of orbital deflection leads to about 90◦

of spin precession — in the high magnetic fields of the HERA–p ring spin motion is very sensitive
to the fields! However vertical spins would stay vertical. In other words the equilibrium polarisation
direction would also be vertical.

Even if an accelerator could be built with dipoles only, small spin perturbations due to small errors
in the field directions of the bending magnets could add up coherently to produce large deviations from
the vertical if the spin precession frequency were in resonance with the revolution frequency around
the accelerator

fspin = k0frev, k0 ∈ Z .

Such so–called imperfection resonances can be understood as follows: Normally the unperturbed
rotation around the vertical dominates spin motion, but if the precession frequency is an integer
multiple of the revolution frequency, the unperturbed spin transport map for one turn is the identity.
Then in that case even tiny perturbations will control the spin motion.

In a real accelerator with the radial magnetic fields in the vertically focusing and defocusing
quadrupoles the spin of a proton oscillating around the ideal orbit (design orbit) experiences oscillating
radial field components. These radial fields tilt the spins away from the vertical. On the design orbit
of a perfectly aligned ring the radial field components vanish. In a small domain around the design
orbit perturbations due to the radial fields can be treated as small. In this domain the tilt of the spin
w.r.t. the vertical direction acquired during traversal of a focusing quadrupole is small and might be
almost completely cancelled during traversal of the next defocusing quadrupole. But perturbations can
build up coherently to produce large deviations from the vertical when the spin precession frequency is
in resonance with the orbital oscillation frequencies of the particle at the so–called intrinsic resonances

fspin = k′ frev + k forbit, k′, k ∈ Z, k 6= 0 .

In a real misaligned ring with a distorted closed orbit the quadrupoles also contribute to the field
errors seen by the spins and thereby also drive imperfection resonances.

During acceleration up to 820 GeV several thousand spin–orbit resonances must be crossed and by
analogy with the nuclear magnetic resonance (NMR) technique mentioned below, it is clear that the
polarisation can easily be destroyed. So measures must be taken to preserve the beam polarisation
during acceleration. These primarily involve the inclusion of sets of magnetic devices called “Siberian
Snakes”. Furthermore one one must check beforehand that, independently of the acceleration process,
an acceptable level of polarisation can exist in principle at the final constant high energy.

The quickly oscillating radial fields experienced by spins together with the piecewise constant
perpendicular “holding” fields are analogous to the field configurations met in NMR techniques. In
the NMR case the effect on spin precession of an oscillating electromagnetic field perpendicular to
a constant magnetic holding field is described by decomposing the oscillating field into two counter
rotating constant fields with frequencies κ and −κ. In NMR only one of these rotating fields can be
in resonance with the spin precession frequency

f = geB/2m .

The influence of the other component is neglected. As we will see in chapter 2 the equations of
spin motion for such a system can then be solved analytically. NMR experiments exploit the fact
that when either the holding field or the frequency of the oscillating field are scanned through the
resonance condition, spins in a sample can flip and the resultant change in magnetisation can be
detected electronically. This tendency for spin flip when traversing a resonance is also the origin of
the depolarisation that can occur during acceleration mentioned above. In the case of an accelerator



6 CHAPTER 1. INTRODUCTION

with complete mid–plane symmetry any deviation of a spin away from the vertical results from the
coherent build up of small perturbations due to the radial fields in the quadrupoles. This build up
happens if the spin precession frequency is close to a frequency in the Fourier spectrum of the radial
field components evaluated on a synchro–betatron trajectory. The corresponding Fourier component
describes a rotating field. In low and medium energy proton accelerators this so–called single resonance
model (SRM) [CR80, FS60] has been very successful in describing depolarisation effects as well as in
suggesting cures for depolarisation.

For the SRM to be applicable the separation of adjacent excited harmonics must be large compared
to their “strength”, i.e. the resonances should not overlap. But the Fourier spectrum of the spin
perturbations of HERA–p at high energy contains such a large number of sufficiently strong harmonics
that the validity of the SRM must be questioned. Indeed tracking simulations at high energy in HERA–
p show that spins on betatron orbits with realistic amplitudes are in general far away from the vertical
even if the unperturbed spin precession frequency is kept away from frequencies with strongly spin
perturbing harmonics. In the high energy regime of HERA–p and for representative orbital amplitudes,
resonances can never be treated as isolated. Therefore in general many harmonics influence the spin
at a given precession frequency. The failure of the SRM for HERA–p is not only due to the high
working energy but is also due to the fact that even the unperturbed proton ring has no mid–plane
symmetry. Instead it has vertical bend sections around three of the four straight sections so that the
ring has a marked azimuthal asymmetry. When taking into account the positions of the vertical bend
sections as well as the different lattice layouts of the straight sections, HERA–p has only the trivial
superperiodicity of 1. So methods more general than the SRM are needed.

The starting point for the theoretical and numerical description of a polarised beam in a storage
ring is the finding of the stationary state of the beam. By definition, at equilibrium the phase space
density at a point in phase space and at a fixed azimuth in the ring is constant from turn to turn. Of
course “equilibrium” is an idealisation but it nevertheless represents a very useful starting point for
the discussion. If a corresponding stationary polarisation exists and is non–zero, then the value of the
polarisation and its direction at each point in phase space must be an invariant of the “one–turn map”
of coupled spin–orbit motion. This notion leads to the concept of the invariant spin field and the static
polarisation limit which describes a history independent bound on the equilibrium polarisation. It also
leads to the concept of the amplitude dependent spin tune and to an action–angle representation for
spin variables. In the past many (even most) attempts to define the equilibrium polarisation directions,
spin tune and spin–orbit resonance on synchro–betatron orbits were misleading and inconsistent. For
example the spin tune has very often been taken to be the rate of spin rotation around the field over the
phase space of unit eigenvectors with eigenvalue 1 of the one–turn spin map. Each of these eigenvectors
is reproduced under application of the one–turn map, but is generally not an eigenvector at the new
point in phase space and, seen as a function of the position in the ring, not a solution of the T–BMT
equation. Conclusions drawn from this erroneous premise have to be viewed with suspicion, although
they sometimes qualitatively reflect the reality. Thus in this thesis I will start from mathematically
clean definitions and only then derive the crucial properties for spin dynamics useful in high energy
accelerators. In particular, using the invariant spin field and the amplitude dependent spin tune at
constant reference energy, a periodic coordinate system can be assigned to each point in phase space.
In this coordinate system the spin precesses uniformly with constant projection on one of the base
vectors.

The study described in this thesis of how to maintain polarisation in HERA–p from injection at
40 GeV up to high energy covers three main aspects:

• Concepts describing the equilibrium polarisation state, already in use for e± polarisation but
new to the analysis of proton polarisation, are introduced and employed to derive structural
properties of proton spin dynamics at high energy.

• Computational tools have been developed in order to apply these concepts to real accelerator
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lattices. The computer code SPRINT which was developed for this purpose is based mainly on
single particle multi–turn tracking using symplectic 6–dimensional orbit maps and orthogonal
3–dimensional spin maps. It offers a wide range of methods for the analysis of spin motion in
accelerators.

• Various simulations for diverse HERA modifications were made in order to find optimal settings
and Siberian Snake layouts that allow acceleration of polarised protons with minimal losses
during acceleration and maximum equilibrium polarisation at the top energy.

Owing to the complexity of spin dynamics in HERA–p, even with an unperturbed machine, the
simulations in this thesis will exclude all effects of misalignment. In order to guarantee consistency
between different simulations I limit myself to studying the 1996 set of optics for HERA–p, so that
the effects of an “upgraded” lattice are ignored. In this context it should be noted that this type of
simulation typically takes days or even weeks “per run” even on modern fast workstations. Therefore,
and because the SPRINT code has been continuously extended and refined, some of the simulation data
produced at earlier stages might look less skillfully prepared than later data. — One does not jettison
the output of a month of CPU time just because one has found a more elegant way of producing
more data points with similar effort! The physics content of data coming from different stages of the
program development will always be consistent.

In chapter 2 I will review the basics of relativistic spin motion needed for the understanding of the
later chapters. Chapter 3 is devoted to the basic behaviour of spins in the presence of Siberian Snakes.
In chapter 4 I will introduce the concepts of the invariant spin field and the amplitude dependent
spin tune, relate them to the SRM and describe some computational methods. In particular, section
4.10 describes the effect of acceleration on a polarised beam using the concept of adiabatic invariance.
If the acceleration process were an adiabatic evolution through stationary polarisation states, then
almost no polarisation would be lost and the polarisation at the top energy would be very close to
the static polarisation limit. In chapter 5 the simulations made for HERA–p are presented. They
cover the consequences of various snake schemes and orbital tunes for fixed reference momenta and
for accelerated motion.

The most advanced project in the field of polarised protons to be approved so far is the RHIC–
SPIN[TR99] project at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Labo-
ratory. At RHIC, collisions of polarised protons on polarised protons at 2 × 250 GeV are planned
for 2001. During the preparation of this thesis I have performed simulations for RHIC. Although
these simulations cannot be discussed here due to time limitations, it should be noted that under
the assumptions of linear unperturbed orbital motion, attaining polarisation in RHIC is likely to be
much less problematic than at HERA. The main reasons for this are: the lower energy, the absence
of vertical bending magnets and the higher superperiodicity of RHIC compared to HERA–p.

Owing to the finite length of the Latin and Greek alphabets it will sometimes be necessary to use
the same symbol for different physical and mathematical quantities. However the meaning will always
be clear from the context.



Chapter 2

Introduction to spin motion in circular

accelerators

This chapter is devoted to a discussion of the basics of spin motion. We define the notion of beam
polarisation, present the equation of spin motion in electromagnetic fields and describe various ways
to parametrise spin vectors and spin transport maps. In particular we will introduce a coordinate
system in which spin precession restricted to the closed orbit is especially simple and discuss the effect
of small perturbations w.r.t. the periodic spin trajectory in this coordinate system.

In particle accelerators the phase space densities are small compared to the densities where re-
strictions imposed by the uncertainty principle and the Pauli Exclusion Principle become significant
and in all existing proton rings radiation effects can be neglected. Moreover, the wave packets are
very narrow compared to the typical spatial scales of the external electromagnetic fields. Then, by
applying Ehrenfest’s theorem to the expectation values of the orbital operators, the particle motion
can be treated as being classical and governed by a classical Hamiltonian which, for electromagnetic
fields, leads to the Lorentz force. It is not necessary to appeal to wave equations.

Although in accelerator physics one is always interested in a large ensemble of typically 1010 to
1013 particles, one usually begins calculations in the “single particle picture”, i.e. one neglects the
interaction between particles. That this is a realistic starting point is clear since the collective forces
from space charge are at most of order 1/γ2 and can be neglected at very high energy. Moreover, the
collective effects arising from wake fields can normally be neglected up to a certain beam intensity.
The beam–beam effect can in general not be neglected under collision conditions but to leading order
it merely produces a tune shift which can be compensated by an adequate setting of the correction
quadrupoles. Therefore in this thesis only external fields, i.e. fields from the magnetic beam line
elements and cavities will be taken into account. Of course, at a later stage noise, non–linear beam–
beam effects and other collective effects will have to be investigated.

The spin of a particle is an intrinsically quantum mechanical property but for a particle following
a classical trajectory, the expectation value 〈| Ŝ |〉 of the Pauli spin operator Ŝ representing the spin
observable in the instantaneous rest frame of a charged particle with spin 1/2 satisfies the T–BMT
equation to be given in the next section.

At high energy the Stern–Gerlach force in inhomogeneous magnetic fields exerted by the magnetic
moment

~µ =
ge

4m
〈| Ŝ |〉 , (2.1)

on the trajectory of the particle is very small [KH96] compared to the Lorentz force. Here e, m
are the charge and the rest mass of the particle respectively, g is the Landé factor and we have
introduced the Gothic font for operators in this and the next paragraphs. Thus the effects of the
Stern–Gerlach force are not considered to fall within the scope of this thesis. Therefore the orbital
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equations of motion (EOM) can be integrated before including spin dynamics. This means that the
spin of a particle is treated as a “spectator/passenger” experiencing varying electromagnetic fields as
the particle propagates through the accelerator on its trajectory. The effect of the orbital motion on
the dynamics of spin precession is called spin–orbit coupling and leads to the phenomena which are
the subject of this thesis.

The instantaneous polarisation ~P (t) =
∑N

i=1 ρ(i)〈i| Ŝ |i〉 is the ensemble average of the expectation

values of the Pauli spin operator Ŝ, where |i〉 is i-th single particle state with statistical weight ρ(i).

Alternatively we can write as usual [MS70] ~P = trace
(
hŜ
)
, where h = 1/2(1 + ~P · Ŝ) is the spin

density operator.

If ~P (t) 6= ~0 we may transform to a coordinate system in which e.g. ŷ = ~P/‖~P‖. In this coordinate
system one can write the projection of the spin operator on the ŷ–axis Sy as the difference of two
projectors P+ for “spin up” and P− for “spin down” (see equation (2.56h) for a matrix representation
P± of the projector P±), so that Sy = P+ −P− and P+ + P− ≡ 1. Taking the expectation with |i〉
and summing up over i we obtain the commonly used expression Py = (N+ −N−)/(N+ +N−) where
the N± are the summed expectations of P±. If the single particle states |i〉 are eigenstates of the P±,
i.e. P±|i〉 = either 0 or |i〉, then the N± can be interpreted as numbers of particles with spin up/down
w.r.t. the axis ŷ. In chapter 4 we will see that for proton beams in high energy accelerators a global
axis ŷ, so that the |i〉 are eigenstates of P±, does not exist in general but that usually a local axis
n̂(~q, ~p) in phase space can be found at least to a very good approximation.

The spin expectation value 〈i| Ŝ |i〉 evolves through the T–BMT equation as a classical dynamical
vector variable, whose length is conserved. Therefore in the remainder of this work we will treat spin
in classical terms and define a classical spin viewed in the instantaneous particle rest frame:

Definition 2.1 (Classical spin) A (classical) spin Ŝ is a unit vector in R3. The 2-dimensional
(real) manifold of spin vectors is the unit–sphere SR ≡ S2(R). SR, if viewed as a subset of R3

can be written as SR = {Ŝ ∈ R3 : ‖Ŝ‖ = 1} where we have used the Euclidean norm on R3 :
‖x̂‖ ≡

√
x2

1 + x2
2 + x3

3. A spin trajectory is a continuously differentiable (i.e. C1) map Ŝ : R → SR,

t 7→ Ŝ(t).

With this definition the instantaneous polarisation of an ensemble of N particles is

~Pens(t) ≡ P (t)P̂ (t) ≡ 1

N

N∑

i=1

Ŝi(t) =
〈
Ŝ
〉

ens
, (2.2)

where we have introduced the degree of polarisation P and the polarisation direction P̂ . Throughout
this thesis variable length vectors are symbolised by an “arrow” (~x) whereas unit vectors are symbolised
by a “hat” (x̂). In chapter 4 spin fields on phase space × ring azimuth will be defined so that the
discrete ensemble average is replaced by an integral over phase space.

It should be noted that instead of describing the evolution of the expectation value of the spin
operator in electromagnetic fields in terms of the evolution of a real unit 3–vector, it can as well be
described by the evolution of a complex 2 component spinor. This will be covered in greater detail in
section 2.2.1. Some of the literature which describes spin in accelerators in terms of spinors gives the
impression that the spinors are wavefunctions. Of course, in quantum mechanics where interference
of states and the Pauli principle are issues this the only adequate description. However, a classical
treatment of spin–orbit coupling with classical dynamical orbit variables does not become quantum
mechanical just by introducing spinors and calling the precession equation “Schrödinger equation”!
The classical precession equation for Ŝ describes the expectation value of Ŝ in a coupled spin–orbit
system. An equivalent spinor representation still only describes this expectation value and not the
evolution of wave functions.
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2.1 The T–BMT equation

The motion of the spin expectation value of a particle moving in electromagnetic fields and evaluated in
the instantaneous particle rest frame is described by the T–BMT equation [JF26, LT27, MC55, BM59]
(see also [JJ83, BM84, SL97, BH98c]), which in terms of our classical spin vector reads as

Dt Ŝ = ~ΩBMT(~r, ~β, t) × Ŝ

~ΩBMT ≡ − e

mγ

[
(1 +Gγ) ~B⊥ + (1 +G) ~B‖ −

(
Gγ +

γ

1 + γ

)
~β × ~E

]
, (2.3)

with the position ~r(t) and velocity ~β(t) of the particle and the magnetic and electric fields ~B(~r, t),
~E(~r, t) evaluated in the laboratory frame. Here we have introduced the gyromagnetic anomaly G ≡
g/2 − 1, which is approximately [pdg94] 1.79284739 for protons and 1.15965212 10−3 for electrons and
positrons, and the magnetic field vectors parallel and perpendicular to the particle velocity ~B‖ ≡
~β · ~B~β/‖~β‖2 and ~B⊥ ≡ ~B − ~B‖ respectively. Note that usually the gyromagnetic anomaly for leptons
is called a rather than G. In an accelerator one can normally apply the paraxial approximation,
since the transverse momenta are small compared to the momentum in the beam direction. Then
in transverse magnetic fields ~B‖ � ~B⊥ and a significant contribution to ~B‖ can only arise from the
longitudinal fields in solenoids. Moreover the electric field in conventional accelerators is non–zero only
in the RF–cavities where its main component is longitudinal. Therefore the term in 2.3 which contains
~B⊥ is the strongest contribution to the spin precession outside the solenoids. Since ~B × ~β = ~B⊥ × ~β,
the Lorentz force in purely magnetic fields can be rewritten with the kinetic momentum ~π = mγ ~β as

Dt ~π = − e

mγ
~B⊥ × ~π . (2.4)

This formal similarity with the T–BMT equation leads to the following conclusions for spin motion in
purely transverse magnetic fields:

1. Since the norms of both Ŝ and ~π stay constant we get, with π̂ ≡ ~π/‖~π‖, the relation dŜ =
(Gγ + 1)dπ̂.

2. Let S̃ be the spin vector measured in a coordinate system rotating with π̂. Then dS̃ = Gγdπ̂
where π̂ is evaluated in the laboratory frame. In other words if the orbit is deflected by φ in a
transverse magnetic field with constant direction B̂ then the spin is rotated by Gγφ w.r.t. the
orbit. For protons with ‖~π‖ = 820 GeV a deflection angle of 1 mrad causes about 90◦ of spin
rotation. For electrons/positrons at ‖~π‖ = 27.5 GeV 1 mrad corresponds to about 3.6◦ of
spin rotation. If a proton in an accelerator sees only vertical magnetic fields on its trajectory
and the paraxial approximation is valid, then in one turn around the ring the spin performs
Gγ full revolutions relative to the particle’s direction of flight. For a proton in a flat HERA–p
at a momentum of 820 (920) GeV this means about 1567 (1758) spin revolutions. For e± at
a momentum of 27.5 GeV in HERA–e without spin rotators a spin performs 62.5 revolutions.
Therefore we will occasionally call Gγ the spin enhancement factor.

3. Whenever the energy of a proton or an electron/positron is increased by about 523 MeV = mp/G
or about 441 MeV = me/a respectively, the spin performs one more revolution per turn around
the ring.

4. In the limit γ → ∞ the (spin precession rate)/(field integral) saturates. Asymptotically a field
integral of about 5.48 (4.62) Tm produces a 180◦ spin rotation for protons (electrons/positrons).

Ring–like accelerators are always built so that, no matter what bending field orientations are
involved, there is a closed orbit, i.e. a trajectory ~Z(t) ≡ ( ~R(t), ~p(t))T in phase space so that ~Z(t +
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1/f0) = ~Z(t) where f0 is the revolution frequency of the synchronous particle. In a perfectly aligned
ring this design orbit is defined by the holding fields of the bending magnets. The closed orbit
trajectory ~Z can be parametrised [VW97] by the generalised machine azimuth

θ ≡ 2πl

L
, Dt l = ‖Dt

~R‖ , L ≡
∫ t0+1/f0

t0

‖Dt
~R(t)‖dt , (2.5)

so that it is 2π–periodic ~Z(θ + 2π) = ~Z(θ).

In order to allow an expansion in small parameters the EOM are transformed to a curvilinear
coordinate system [HR87, MB90, BH94a, GH94, GH99b, CW98] w.r.t. the reference trajectory ~R(θ).
An actual trajectory in configuration space R3 is given by ~r(θ) = ~R(θ) + x(θ)x̂(θ) + y(θ)ŷ(θ) where x̂
and ŷ are unit vectors and form together with ẑ ≡ Dθ

~R/‖Dθ
~R‖ an orthonormal base of the R3. The x̂

and ŷ differ from the normal and conormal unit vectors of the Frenet–Serret coordinate system [VW97]
by being wound back by the integral torsion around ẑ which is the tangent vector of the Frenet–Serret
system. The actual trajectory in momentum space is then ~p(θ) = px(θ)x̂+ py(θ)ŷ + pz(θ)ẑ. The last
step is to introduce the scaled variables

x , a ≡ px
p0

, y , b ≡ py
p0

, τ ≡ (t0 − t)
K0

p0
, δ ≡ K −K0

K0
, ~z ≡ (x, a, y, b, τ, δ)T , ~z0 ≡ ~0 (2.6)

where K =
√
m2 + p2 − m is the “kinetic energy”, t0 − t is the time–of–flight difference w.r.t. the

synchronous particle and the index 0 has been used to indicate evaluation on the reference trajectory.
These pairs (x, a), (y, b) and (τ, δ) are canonically conjugate pairs [CS58, HR87, MB90, BH94a, HM96]
and are in general small. Note that δ as defined above is small only when the momentum difference
p − p0 is small compared to p0 whereas the perhaps more familiar looking δE ≡ (E − E0)/(E0) with
E ≡

√
m2 + p2 can be small even for finite p− p0 in the limit p0 → 0. Also note that in the literature

the independent parameter is usually not chosen to be θ but l as from 2.5.

We now introduce the canonical transformation ~f : R6 → R6, ~z 7→ (~r, ~p) ≡ ~f(~z) and the trans-
formation ~g : R6 → R6, (~r, ~p) 7→ (~r, ~β) ≡ ~g(~r, ~p) that acts as an identity on configuration space but
transforms the canonical momenta to the Lagrangian velocities. We also need

~κ ≡ x̂ cos λ+ ŷ sinλ,

ρ
, h ≡ 1 + xκx + yκy , β̃ ≡ ‖Dθ ~r‖ . (2.7)

Here ~κ and ρ are the vector of curvature and the instantaneous radius of curvature of the reference
trajectory respectively, λ is its torsion integrated from some reference θ0 to θ and β̃ is the “particle
velocity” in terms of the generalised azimuth. Then one finds [BH94a, GH94, GH99b, CW98] for the
transformed T–BMT equation

Dθ Ŝ = ~Ω(~z, θ) × Ŝ

~Ω(~z, θ) ≡
(
~ΩBMT( · , θ)h‖~p‖

β̃pz
− ~κ× ẑ

)
◦ ~g ◦ ~f (~z) (2.8)

Finally we split ~Ω(~z, θ) into the part arising from closed orbit motion and the part from synchro–
betatron motion

~Ω(~z, θ) = ~Ω0(θ) + ~ω(~z, θ) . (2.9)

Then the off–orbit part ~ω(~z, θ) is “origin preserving” in the sense that ~ω(~06, θ) = ~03 where ~0i is the
zero in Ri.

In chapter 4 we will derive parameters for spin motion which can be considered as action–angle
variables. Therefore it is useful to find a Hamiltonian for the T–BMT equation. A completely Hamil-
tonian treatment of spin motion is discussed in [DK73, KY86, BH94a, BH94b, BG98a]. Here we will
only mention two principle difficulties.
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1. Strictly speaking, the 2–dimensional manifold SR needs an atlas of at least 2 charts ξ̂1,2 : U ⊂
R2 → SR with U open [BG80, VW97, BG98a]. As an example the standard polar parametrisation
of SR interpreted as a subset of R3, ξ̂1 : (ϕ, ϑ) 7→ (sinϑ sinϕ, cos ϑ, sinϑ cosϕ), (ϕ, ϑ) ∈ [0, 2π) ×
[0, π) of the whole unit sphere has 2 singular points, namely the North- and the South–pole
and the domain of (ϕ, ϑ) is not an open set. One can of course restrict (ϕ, ϑ) to (0, 2π) ×
(0, π) which excludes the two poles w.r.t. the ŷ–axis as well as the meridian ϕ = 0 through
(0, 0, 1). Then one needs another chart which can be easily constructed by e.g. ξ̂2 : (ϕ, ϑ) 7→
(cosϑ, sinϑ sinϕ,− sinϑ cosϕ) over the same domain but which excludes the two poles w.r.t. the
x̂–axis and the meridian ϕ = 0 through (0, 0,−1). Nevertheless in order to describe spin motion
on the whole unit sphere one must be ready to switch between ξ̂1 and ξ̂2 (or some equivalent
charts) backwards and forwards. In [BG98a] this inconvenience is avoided by a Hamiltonian
description with a degenerate Poisson bracket in which all three dependent coordinates on SR

embedded in R3 are used. But we will in general use a non–Hamiltonian description with unit
3–vectors as dynamical variables. Wherever the symplectic structure of SR is treated we will
sacrifice mathematical rigour for a more comprehensible global 2–dimensional parametrisation
so that the behaviour in some neighbourhoods around the unavoidable singular points of the
parametrisation has to be discussed explicitly.

2. The T–BMT equation contains the orbital phase space coordinates. We neglect the Stern–
Gerlach force. Therefore the orbital Hamiltonian H (orb.)(~z, θ) does not contain the spin variables.
If one constructs a spin Hamiltonian H (sp.)(~z, q(sp.), p(sp.), θ) so that the complete Hamiltonian is
H(~z, q(sp.), p(sp.), θ) = H(or.)(~z, θ) +H(sp.)(~z, q(sp.), p(sp.), θ) and so that Dθ q

(sp.) = ∂p(sp.) H and

Dθ p
(sp.) = −∂q(sp.) H resemble the T–BMT precession equation, then one automatically obtains

a kind of Stern–Gerlach back reaction Dθ ~z = J∂~~z (H(or.) + H(sp.)). (See appendix A for an
explanation on this notation.) This can be circumvented by introducing the triangular system
[BG98a]: One solves the orbital EOM Dθ ~z = J∂~~zH

(or.) first and then obtains a 6 parameter

family of spin Hamiltonians H̃
(sp.)
~z0

(q(sp.), p(sp.), θ), i.e. one spin Hamiltonian for each set of orbital
initial conditions ~z(θ0) = ~z0.

We will briefly mention now two sets of canonical spin coordinates and the corresponding spin Hamil-
tonians. Assume we have some orthonormal basis (x̂, ŷ, ẑ) of R3 and represent every 3–vector ~v and
every spin Ŝ by its coordinate triple w.r.t. this basis, i.e. (vx, vy, vz) and (Sx, Sy, Sz) respectively.
Furthermore we choose one base vector, say ŷ, to be distinguished from the other two. One canonical
pair (α, β) is [BH92, BH94a, BH94b]

α = Sz

√
2

1 + Sy
, β = Sx

√
2

1 + Sy
, Ŝ =

(
β

√
1 − α2 + β2

4
, 1 − α2 + β2

2
, α

√
1 − α2 + β2

4

)
(2.10)

and with the Hamiltonian

H
(sp.)
~z0

(α, β, θ) ≡ ~Ω(~z(θ; ~z0), θ) · Ŝ(α, β) =

√
1 − α2 + β2

4
(Ωzα+ Ωxβ) +

(
1 − α2 + β2

2

)
Ωy (2.11)

the canonical equations Dθ α = ∂βH
(sp.) and Dθ β = −∂αH(sp.) lead to the T–BMT equation Dθ Ŝ =

~Ω × Ŝ [BH92]. The only singular point of this parametrisation is Sy = −1. If analogous coordinates
are used to describe deviations of T–BMT solutions from the periodic vector n̂0, to be treated later,
then in the limit α2 +β2 � 1 they reduce to those used in perturbation theory [AC80, SM86a, SM86b,
BH92, BH94a, BH94b]. See equation (2.99).

Another pair of canonically conjugate coordinates [KY86, BH94a, BH94b] can be found using the

generating function F (α,ϕ) = α2

2 tanϕ − ϕ. Then solving β = ∂α F , K = −∂ϕ F for K and ϕ one
finds

K = Sy = 1 − α2 + β2

2
, ϕ = arctan

Sx
Sz

= arctan
β

α
(2.12)
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and

(α, β) =
√

2(1 −K)(cosϕ, sinϕ) , Ŝ =
(√

1 −K2 cosϕ,K,
√

1 −K2 sinϕ
)

. (2.13)

With the Hamiltonian

H
(sp.)
~z0

(ϕ,K, θ) ≡ ~Ω(~z(θ; ~z0), θ) · Ŝ(ϕ,K) =
√

1 −K2(Ωz cosϕ+ Ωx sinϕ) + ΩyK (2.14)

the T–BMT equation can again be derived [KY86, BH94a, BH94b] from Dθ ϕ = ∂K H
(sp.) and DθK =

−∂ϕH(sp.). The chart defined by (2.13) has two singular points at Sy = ±1. But if a phase space
dependent rotation of the coordinate system (x̂, ŷ, ẑ) to another system (û1, n̂, û2) exists so that the
rotation vector Ω̃ of the T–BMT equation in the (û1, n̂, û2) system has the coordinate vector (0, ν, 0),
then a canonical change of coordinates (K,ϕ) 7→ (I,Φ) can be found [KY86] so that Dθ I = 0,
Dθ Φ = ν = const. and the map (I,Φ) 7→ Ŝ is 2π–periodic in Φ. Thus (I,Φ) are the spin action–
angle variables (see appendix A) of the spin system. In chapter 4 we will construct such a local basis
(û1, n̂, û2).

If the orbital motion is integrable with the action–angle variables ~J, ~Ψ ∈ R3, then (see section
A.1.3) ~Ω ~J,~Ψ0

(θ) ≡ ~Ω ~J(Ψ0 + ~Qθ, θ) is pseudo–periodic over the orbital tunes ~Q. Thus the precession

vector ~Ω(~z, θ) can be expanded in a generalised Fourier series that contains only the “frequencies”
k+~k · ~Q with k ∈ Z, ~k ∈ Z3. In particular ~Ω0(θ) from equation (2.9) is 2π–periodic and ~ω ~J,~Ψ0

(θ) (also

from (2.9)) contains only “frequencies” k + ~k · ~Q with, ~k ∈ Z3 − {~0}.

2.2 The T–BMT flow

An intrinsic property of a precession equation Dθ Ŝ = ~Ω× Ŝ is that the scalar product of two solutions
is an invariant of motion.

Dθ Ŝ1 · Ŝ2 = (~Ω × Ŝ1) · Ŝ2 + Ŝ1 · (~Ω × Ŝ2)

= (~Ω × Ŝ1) · Ŝ2 + (~Ω × Ŝ2) · Ŝ1

= (~Ω × Ŝ1) · Ŝ2 + (Ŝ1 × ~Ω) · Ŝ2

= (~Ω × Ŝ1) · Ŝ2 − (~Ω × Ŝ1) · Ŝ2 = 0 (2.15)

As a consequence not only the angle between Ŝ1 and Ŝ2 defined by ∠(Ŝ1, Ŝ2) ≡ arccos Ŝ1·Ŝ2 but also the

Euclidean norm ‖Ŝ‖ ≡
√
Ŝ · Ŝ is an invariant of motion. Additionally the T–BMT equation in the form

Dθ Ŝ = ~f(Ŝ, θ) with ~f(Ŝ, θ) ≡ ~Ω(~z(θ), θ)× Ŝ and with ‖~Ω‖ bounded fulfils a global Lipschitz condition,
i.e. there is a real positive constant L such that for all Ŝ1, Ŝ2 ∈ SR the condition ‖ ~f(Ŝ1, θ)− ~f(Ŝ2, θ)‖ ≤
L‖Ŝ1 − Ŝ2‖ holds, where the difference Ŝ1 − Ŝ2 is a bounded vector of R3 rather than a unit vector.
In accelerators the external fields are bounded inside the acceptance of the machine and if the orbital
motion is stable, then ~z is bounded too. Therefore in all realistic cases the global Lipschitz condition
is fulfilled by the T–BMT equation. We assume that ~Ω is piecewise continuous w.r.t. θ. Hence
[ems1, OF84] a solution of the T–BMT equation always exists at least locally and is unique.

The T–BMT equation can be rewritten in the standard form of a linear ordinary differential
equation (ODE)

Dθ Ŝ = Ω(~z, θ)Ŝ , Ω ≡




0 −Ωz Ωy

Ωz 0 −Ωx

−Ωy Ωx 0


 , (2.16)

where we have introduced the anti–symmetric real matrix Ω to represent ~Ω. The flow of a linear
ODE in d dimensions Dθ ~x = C(θ)~x is a linear map ~Mθf ,θi

: Rd → Rd, ~x 7→ ~Mθf ,θi
(~x) ≡ M θf ,θi

~x, so
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that ~x(θ) ≡ M θ,θi
~xi is a solution to the initial value problem (IVP) defined by the linear ODE and

~x(θi) = ~xi for all ~xi. Therefore, and since Ŝ ∈ SR ⊂ R3, the flow of the T–BMT equation must be an
orthogonal real map. The group O(3) of orthogonal real 3×3–maps consists of two distinct connected
domains i.e. the maps can have a determinant of ±1. The flow of a linear ODE is continuous w.r.t. θf ,
the determinant is a continuous map from the space of linear real maps to R and the T–BMT flow for
θf = θi is the identity. Therefore the T–BMT flow must be in the group of special orthogonal maps
SO(3).

The Lie algebra of anti–symmetric real 3 × 3–matrices is abbreviated as so(3) and generates the
SO(3) in the sense that for every R ∈ SO(3) there is an Ω ∈ so(3) and a θ ∈ R so that R = exp(θΩ).
We note that since the precession vector of the “triangular system” can be written as ~Ω(~z, θ) = ~Ω~z0(θ)
the T–BMT flow in general depends on the initial phase space coordinate of the trajectory along which
we integrate the T–BMT equation.

Definition 2.2 (T–BMT flow) The flow of the T–BMT equation or just the T–BMT flow is a map
R̂θf ,θi,~zi

: SR → SR, Ŝi 7→ R̂θf ,θi,~zi
(Ŝi) ≡ R(θf , θi; ~zi)Ŝi, with R being the realisation of R̂ in a

given orthonormal basis of R3 so that R(θf , θi; ~zi) ∈ SO(3) ∀θf , θi, ~zi and so that the spin trajectory

Ŝθi,~zi,bSi
(θ) ≡ R̂θ,θi,~zi

(Ŝi) fulfils

1. Dθ Ŝθi,~zi,bSi
(θ) = ~Ω(~zθi,~zi

(θ), θ) × Ŝ
θi,~zi,bSi

(θ) or equivalently

∂θ R(θ, θi; ~zi) = Ω(~zθi,~zi
(θ), θ)R(θ, θi; ~zi),

2. Ŝθi,~zi,bSi
(θi) = Ŝi or equivalently R(θi, θi; ~zi) = 1.

If it is clear which θi, ~zi and Ŝi are meant we will often omit these labels on the spin trajectory.

In the following we will in general perform calculations in some given basis of the R3 and identify
the map R̂ with the matrix R. The fundamental properties of the T–BMT equation are independent
of the particular basis chosen but for a properly chosen basis the coordinate vector (Ωx,Ωy,Ωz) and the
matrix realization R can sometimes be drastically simplified. It therefore seems worthwhile to discuss
the change of the T–BMT equation under an orthogonal change of coordinates. Let Ŝ′ = A(~z, θ)Ŝ
with some possibly azimuth and phase space dependent A ∈ SO(3), then the EOM for Ŝ′ is

Dθ Ŝ
′ =

(
AΩAT + (Dθ A)AT

)
Ŝ′ (2.17)

with Dθ A = (Dθ ~z)
T∂~z A+ ∂θ A.

2.2.1 Orthogonal and unitary representations

Although we treat spin motion classically, i.e. spins are represented by 3–dimensional unit vectors Ŝ
and the T–BMT flow is an SO(3) map, it is sometimes more convenient to use other representations
— in particular concerning the flow.

We begin by just mentioning some key properties of SO(3) maps. The special orthogonal group of
real 3× 3 matrices, SO(3) is the set of regular matrices R ∈ R3×3 which fulfil RTR = RRT = 1 and
det(R) = +1. They can be parametrised by the Euler angles (α, β, γ) via the elementary rotations

R1(ψ) ≡




1 0 0
0 cosψ − sinψ
0 sinψ cosψ


 , R3(ψ) ≡




cosψ − sinψ 0
sinψ cosψ 0

0 0 1


 . (2.18)

One can show [WH90] that the mapping of the Euler angles to the SO(3) matrices defined by [0, 2π)×
[0, π] × [0, 2π) → SO(3), (α, β, γ) 7→ R3(α)R1(β)R3(γ) is surjective.
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However, a more intuitive parametrisation of an SO(3) map is via its rotation axis r̂ and the angle
of rotation ψ. Unfortunately this parametrisation is not one–to–one since a rotation around r̂ by ψ is
equivalent to a rotation around −r̂ by −ψ. Nevertheless a similar parametrisation is quite handy in
analytical calculations as well as in numerical evaluation. This leads us to the group of the

Definition 2.3 (Unit–quaternions) We will call the unit sphere in R4, SH ≡ S3(R) = {q̄ ∈ R4 :
‖q̄‖ = 1}, q̄ ≡ (q0, ~q) with the product

āb̄ = (a0b0 − ~a ·~b, a0
~b+ ~ab0 + ~a×~b) , ā, b̄ ∈ SH , (2.19)

the set (or as we will see later: the group) of unit–quaternions. We introduce the following notation
for q̄ ∈ SH : q̄ ≡ (q0, ~q) ≡ (q0, q1, q2, q3) ≡ (cos ψ2 , sin

ψ
2 q̂).

Note that the “base quaternions” (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1) fulfil (1, 0, 0, 0)2 =
(1, 0, 0, 0) and (0, 1, 0, 0)2 = (0, 0, 1, 0)2 = (0, 0, 0, 1)2 = −(1, 0, 0, 0).

Theorem 2.1 Let ā = (a0,~a), b̄ = (b0,~b), c̄ = (b0,~c) be arbitrary unit–quaternions and 1̄ ≡ (1,~0) ,
then

‖āb̄‖ = 1 (2.20a)

ā(b̄c̄) = (āb̄)c̄ (2.20b)

1̄ā = ā1̄ = ā (2.20c)

(a0,~a)(a0,−~a) = (a0,−~a)(a0,~a) = 1̄ (an inverse ā−1 ≡ (a0,−~a) exists) . (2.20d)

In other words: the product, as defined in definition 2.3 is an inner operation (ā, b̄ ∈ SH ⇒ āb̄ ∈ SH)
and SH with this product is a group.

The parts (2.20c) and (2.20d) obviously follow immediately from definition 2.3, so that we only have
to show (2.20a) and (2.20b). Starting with

‖āb̄‖2 =
(
a0b0 − ~a ·~b

)2
+
∥∥∥a0

~b+ ~ab0 + ~a×~b
∥∥∥

2

= (a0b0)
2 + (~a ·~b)2 + a2

0‖~b‖2 + b20‖~a‖2 + ‖~a×~b‖2 (2.21)

and introducing a0 ≡ cos α2 , b0 ≡ cos β2 , ~a = sin α
2 â and ~b = sin β

2 b̂ we obtain

‖āb̄‖2 = cos2 α

2
cos2 β

2
+ cos2

α

2
sin2 β

2
+ sin2 α

2
cos2

β

2
+ sin2 α

2
cos2 β

2

(
(â · b̂)2 + ‖â× b̂‖2

)
(2.22)

which finally yields ‖āb̄‖ = 1 since (â · b̂)2 = cos2 φ and ‖â× b̂‖2 = sin2 φ with φ ≡ ∠(â, b̂). To prove
(2.20b) we have to handle many terms and therefore define

d̄a ≡ (a0,~a)(b0c0 −~b · ~c, b0~c+~bc0 +~b× ~c)

d̄c ≡ (a0b0 − ~a ·~b, a0
~b+ ~ab0 + ~a×~b)(c0,~c) , (2.23)

and show da,0 = dc,0 and ~da = ~dc separately. After evaluating the quaternion products for d̄a and d̄c
and cancelling the trivially identical terms in both expressions we obtain

da,0 = dc,0 ⇔ (~a×~b) · ~c = ~a · (~b× ~c) (2.24a)

~da = ~dc ⇔ (~a×~b) × ~c− (~a ·~b)~c = ~a× (~b× ~c) − ~a(~b · ~c) , (2.24b)

where the r.h.s. of the equivalence (2.24a) is true because the “hybrid” product (~x× ~y · ~z) is invariant
under cyclic permutations and the r.h.s. of (2.24b) is true since of (~a× ~b) × ~c = ~b(~a · ~c) − ~a(~b · ~c) and
~a× (~b× ~c) = ~b(~a · ~c) − ~c(~a ·~b). Thus the theorem is proved. 2

Note that for the proof of part (2.20b) we did not use the constraint that the norms of the
quaternions involved are unity. So with the standard vector sum and the product from definition 2.3,
R4 can be identified as the skew–field H of the quaternions.
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Definition 2.4 For all r̄ ∈ SH we define F : SH → R3×3, r̄ 7→ F (r̄) so that for R ≡ F (r̄) we have

Rij = (2r2
0 − 1)δij + 2rirj − 2r0εijkrk , (2.25)

where εijk are the components of the totally anti–symmetric Levi–Civita tensor in 3 dimensions and
Einstein’s sum convention has been used.

Obviously F is a quadratic form in the ri so that r̄ and −r̄ map to the same matrix R.

Theorem 2.2 For all r̄ ∈ SH the matrix R = F (r̄) ∈ SO(3).

We first prove RRT = 1 which is equivalent to RikRjk = δij . Introducing the abbreviation f ≡ 2r2
0−1

we obtain

RikRjk = (fδik + 2rirk − 2r0εiklrl)(fδjk + 2rjrk − 2r0εjkmrm)

= f2δij + 4(f + ‖~r‖2)rirj + 4r2
0εiklεjkmrlrm

= f2δij + 4(f + 1 − r2
0)rirj + 4r2

0(δijδlm − δimδjl)rlrm

= (f2 + 4r2
0(1 − r2

0))δij + 4(f + 1 − 2r2
0)rirj = δij , (2.26)

where we have omitted many terms that vanish due to the anti–symmetry of the Levi–Civita tensor.
The map R is given explicitly by

R = 2




r20 + r21 − 1
2 r1r2 − r0r3 r1r3 + r0r2

r2r1 + r0r3 r20 + r22 − 1
2 r2r3 − r0r1

r3r1 − r0r2 r3r2 + r0r1 r20 + r23 − 1
2


 . (2.27)

By using the constraint r2
0 + r21 + r22 + r23 = 1 one easily verifies that det(R) = +1. 2

Theorem 2.3 The range of the map F from definition 2.4 is SO(3).

We prove that for each R ∈ SO(3) we can find a r̄+ ∈ SH. We first compute the trace of R

trace (R) = 3(2r2
0 − 1) + 2‖~r‖2 = 4r2

0 − 1 ⇒ r+
0 = +

1

2

√
trace (R) + 1 (2.28)

and contract R with the Levi–Civita tensor

εijkRjk = −2r0εijkεjklrl = −4r0ri . (2.29)

If trace (R) 6= −1, then we obtain for r+
i , i = 1, 2, 3

r+i = − εijkRjk

2
√

trace (R) + 1
. (2.30)

If trace (R) = −1 so that r0 = 0, then Rjk = 2rjrk − δjk and we find r2
i = (Rii + 1)/2 so that for

trace (R) = −1 we have a non–vanishing

r+m = +

√
Rmm + 1

2
, (2.31)

for some m ∈ {1, 2, 3}. Here underlined indices indicate that they are not subject to contraction. We
then obtain

r+i =
Rmi

2r+m
, i 6= m . (2.32)

Therefore for every R ∈ SO(3) there is a r̄ ∈ SH.2

Recall that r̄− = −r̄+ is a also solution of R = F (r̄). Moreover we find that if trace (R) = −1 the
numerator of equation (2.30) vanishes as well as the denominator so that the singularity is possibly
manageable. We show now that ~r is always an eigenvector with eigenvalue 1 of R so that the singularity
is indeed manageable.
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Theorem 2.4 Let r̄ ≡ (cos ψ2 , sin
ψ
2 r̂) ∈ SH and R = F (r̄), then R describes a rotation around r̂ by

the angle +ψ.

In the trivial case of sin ψ
2 = 0 we have R = 1 and there is nothing to show. If ψ 6= 0 mod 2π then

~r = sin ψ
2 r̂ is a non–zero vector and

Rijrj = ((2r2
0 − 1)δij + 2rirj − 2r0εijkrk) rj

= ((2r2
0 − 1) + 2‖~r‖2)ri = ri , (2.33)

so that Rr̂ = r̂ and r̂ is an eigenvector of R with eigenvalue 1. Now we choose two unit vectors v̂⊥~r
and r̂ × v̂ so that (r̂, v̂, r̂ × v̂) is a right–handed orthonormal basis of R3 and obtain

v̂ · (Rv̂) = vi((2r
2
0 − 1)δij + 2rirj − 2r0εijkrk)vi

= vi((2r
2
0 − 1)vi − 2r0(v̂ × r̂)i)

= 2r2
0 − 1 = 2 cos

ψ

2
− 1 = cosψ (2.34a)

r̂ × v̂ · (Rv̂) =
1

sin ψ
2

εilmrlvm((2r2
0 − 1)δij + 2rirj − 2r0εijkrk)vi

=
−2r0

sin ψ
2

(δljδmk − δlkδmj)rlvmvjrk

=
2r0

sin ψ
2

‖~r‖2 = 2 cos
ψ

2
sin

ψ

2
= sinψ . (2.34b)

Therefore each vector in the plane perpendicular to r̂ is rotated by ψ. The theorem now follows from
(r̂, v̂, r̂ × v̂) being a basis of R3 and the linearity of R. 2

In fact this also shows that the apparent singularity in equation (2.30) is manageable and that
for every R ∈ SO(3) we can find a r̄ ∈ SH by solving the eigenproblem for R, diagonalising
R in a right–handed system of eigenvectors and identifying the positive rotation angle from the
eigenvalues (1, eiψ , e−iψ). The corresponding unit–quaternion is then just given by (cos ψ

2 , sin
ψ
2 r̂)

or −(cos ψ2 , sin
ψ
2 r̂), where r̂ is the normalised eigenvector with eigenvalue 1. Degeneracy occurs in the

case of the unit transformation R = 1 where every ~a ∈ R3 is an invariant of R but since the angle is
zero we then obtain r̄ = ±(1, 0, 0, 0). The case trace (R) = −1 corresponds to ψ = π.

There is a nice geometrical interpretation of R seen as a function of the rotation axis r̂ and the
angle ψ. An arbitrary vector ~v can be decomposed into a vector r̂(r̂ · ~v) parallel to r̂ and a vector
~v − r̂(r̂ · ~v) perpendicular to r̂. The parallel component is invariant under R and the perpendicular
component is rotated by ψ in the plane spanned by ~v− r̂(r̂ ·~v) and r̂× (~v− r̂(r̂ ·~v)) = r̂×~v. Therefore
~v is transformed by R into

~v′ = r̂(r̂ · ~v) + (~v − r̂(r̂ · ~v)) cosψ + r̂ × ~v sinψ . (2.35)

Then by introducing r0 = cos ψ2 and ~r = sin ψ
2 r̂ one arrives at definition 2.4 rather naturally.

Theorem 2.5 F as from definition 2.4 is a group homomorphism, in other words for ā, b̄ ∈ SH

F (āb̄) = F (ā)F (b̄) (2.36)

We define A ≡ F (ā), B ≡ F (b̄), fa = (2a2
0 − 1), fb = (2b20 − 1) and c0 = a0b0 − ~a ·~b. It suffices to

show that trace (AB) = 4c20 − 1 and εlijAikBkj = −4c0(a0bl + bla0 + (~a×~b)l).

AikBkj = (faδik + 2aiak − 2a0εiklal)(fbδkj + 2bkbj − 2b0εkjmbm)

= (fafb − 4a0b0~a ·~b)δij + 2fabibj + 2fbaiaj + 4~a ·~baibj + 4a0b0aibj

+4a0(~a×~b)ibj + 4b0ai(~a×~b)j − 2a0fbεijlal − 2b0faεijlbl (2.37)
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Therefore by using the anti–symmetry of the Levi–Civita tensor we obtain

trace (AB) = (fafb − 4a0b0~a ·~b) trace ( δ) + 2fa‖~b‖2 + 2fb‖~a‖2 + 4(~a ·~b)2 + 4a0b0~a ·~b
= 3

(
(2a2

0 − 1)(2b20 − 1) − 4a0b0~a ·~b
)

+ 2(2a2
0 − 1)(1 − b20) + 2(2b20 − 1)(1 − a2

0)

+4a0b0~a ·~b+ 4(~a ·~b)2

= 4(a0b0 − ~a ·~b)2 − 1 ≡ 4c20 − 1 , (2.38)

and

εlijAikBkj = −4(a0b0 − ~a ·~b)(~a×~b)l
+4a0 εlij εikn akbnbj + 4b0 εlij εjkn aiakbn − 4a0fbal − 4b0fabl

= −4c0(~a×~b)l
+4a0(~a ·~bbl − ‖~b‖2al) + 4b0(~a ·~bbl − ‖~a‖2bl) − (8a0b

2
0 − 4a0)al − (8b0a

2
0 − 4b0)bl

= −4c0(a0bl + bla0 + (~a×~b)l) . (2.39)

2

Note that F seen as SH → GL(R3) is a representation of SH on R3. It is certainly not faithful
since F (r̄) = F (−r̄) but it is an irreducible representation since the only subspaces of R3 which are
invariant under the SO(3) are {~0} and R3.

We will now derive an equation of motion for the spin transport map in quaternion notation
[GH96]. We start from

Dθ Rij = εilkΩlRkj , (2.40)

and by using (2.28), (2.29) and the convention (R↔ r̄) from definition 2.4 we find

trace (Dθ R) = εilk ΩlRki = −2r0εlki εnkiΩl rn = −4r0(~Ω · ~r) (2.41a)

εnij Dθ Rij = −εinj εilk ΩlRkj

= (δnkδjl − δnlδjk)ΩlRkj

= Rnl Ωl − Ωn trace (R)

= ((2r2
0 − 1)δnl + 2rn rl − 2r0 εnlk rk)Ωl − Ωn (4r2

0 − 1)

= −4r2
0 Ωn + 2(1 − ‖~r‖2)Ωn + 2(~Ω · ~r)rn − 2r0εnlk Ωl rk

= −2r2
0 Ωn + 2(~Ω · ~r)rn − 2r0εnlk Ωl rk . (2.41b)

Then we take the derivatives w.r.t. θ of the trace and the contraction of R with the Levi–Civita tensor
according to equations (2.28) and (2.29)

Dθ trace (R) = 8r0Dθ r0 (2.42a)

Dθ εnijRij = −4(rnDθ r0 + r0Dθ rn) . (2.42b)

Comparing (2.41a) with (2.42a) and (2.41b) with (2.42b) we have to distinguish between two cases :
r0 6= 0 and r0 = 0. If r0 6= 0 we immediately obtain

Dθ r0 =
Dθ trace (R)

8r0
= −1

2
~Ω · ~r (2.43a)

Dθ rn =
εnij Dθ Rij + 4rnDθ r0

−4r0
=

1

2
(r0Ωn + (~Ω × ~r)n) . (2.43b)

If r0 = 0 we obtain from (2.41b) and (2.42b)

−4rnDθ r0 = εnijDθ Rij = 2(~Ω · ~r)rn , (2.44)
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for all 1 ≤ n ≤ 3. There is at least one 1 ≤ k ≤ 3 with rk 6= 0 and hence we find again equation
(2.43a). Moreover

Dθ Rij |r0=0 = 2riDθ rj + 2rjDθ ri − 2εijk rkDθ r0 . (2.45)

Therefore we find with 1 = r2
0 + ‖~r‖2 = ‖~r‖2 and 0 = r0Dθ r0 + riDθ ri = riDθ ri

rjDθ Rij |r0=0 = 2Dθ ri (2.46)

Using equation (2.40) and the fact that ~r is an eigenvector of R with eigenvalue 1, we obtain

rjDθ Rij |r0=0 = εiklΩkRljrj = εiklΩkrl = (~Ω × ~r)i . (2.47)

We equate the right hand sides of (2.46) and (2.47) and adding 0 = r0
~Ω we have reproduced equation

(2.43b) in the case r0 = 0. Finally we can rewrite equations (2.43a) and (2.43b) in terms of 4–vectors
and obtain

Dθ r̄ = Ω4×4r̄ , Ω4×4 ≡ 1

2




0 −Ω1 −Ω2 −Ω3

+Ω1 0 −Ω3 +Ω2

+Ω2 +Ω3 0 −Ω1

+Ω3 −Ω2 +Ω1 0


 (2.48)

independently of the value of r0. We have explicitly constructed an EOM for r̄ that leads to a T–BMT
equation for F (r̄) and have therefore proved the

Theorem 2.6 If r̄(θ) is a solution of equation (2.48) with initial conditions r̄(0) = 1̄, then R(θ) ≡
F (r̄(θ)) is a solution of Dθ R = ΩR with initial conditions R(0) = 1.

The theorems 2.2 to 2.6 show that the description of classical spin motion via unit–quaternions is
equivalent to the use of SO(3) matrices in the sense that every quaternion has an equivalent SO(3)
matrix and that the quaternionic product is compatible with matrix multiplication. We will later
see that the usage of unit–quaternions is indeed much simpler for analytical and numerical purposes.
As an application we will now give explicit formulae for a rotation that transforms an arbitrary unit
vector â into an other arbitrary unit vector b̂, the group commutator and the similarity transform.
For |â · b̂| 6= 1 the rotation that transforms â into b̂ describes a rotation around â × b̂ by the angle
arccos â · b̂. Since (â, b̂, â× b̂) is a right handed basis of R3 for |â · b̂| 6= 1 the unit–quaternion must take
the form

q̄(b̂, â) ≡
(

cos

(
1

2
arccos â · b̂

)
, sin

(
1

2
arccos â · b̂

)
â× b̂

‖â× b̂‖

)
. (2.49)

It is easily verified that b̄ = q̄ā.

The group commutator [WH90, HN91]1 C̄ is defined so that āb̄ = C̄(ā, b̄)b̄ā. Therefore

C̄(ā, b̄) = āb̄ā−1b̄−1 . (2.50)

Since ā−1b̄−1 = (a0b0 − ~a · ~b, −a0
~b − ~ab0 + ~a × ~b) and setting cos Φ = â · b̂, ā ≡ (cos α2 , sin

α
2 â) and

b̄ ≡ (cos β2 , sin
β
2 b̂) we obtain

C0(ā, b̄) = a2
0b

2
0 + a2

0‖~b‖2 + b20‖~a‖2 + (~a ·~b)2 − ‖~a×~b‖2 (2.51a)

= cos2
α

2
cos2 β

2
+ cos2 α

2
sin2 β

2
+ sin2 α

2
cos2 β

2
+ sin2 α

2
sin2 β

2
cos 2Φ (2.51b)

1

2
~C(ā, b̄) = (a0b0 − ~a ·~b)~a×~b+ (a0

~b+ b0~a) × (~a×~b) (2.51c)

= (a0‖~b‖2 + b0~a ·~b) ~a− (b0‖~a‖2 + a0~a ·~b) ~b+ (a0b0 − ~a ·~b)~a×~b (2.51d)

1Not to be confused with the Lie–algebra commutator [a, b] = ab − ba.
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=

(
cos

α

2
sin

α

2
sin2 β

2
+ cos

β

2
sin

β

2
sin2 α

2
cos Φ

)
â

−
(

cos
β

2
sin

β

2
sin2 α

2
+ cos

α

2
sin

α

2
sin2 β

2
cosΦ

)
b̂

+sin
α

2
sin

β

2

(
cos

α

2
cos

β

2
− sin

α

2
sin

β

2
cos Φ

)
â× b̂ . (2.51e)

One easily verifies that C̄(ā, b̄) = 1̄ for â = ±b̂ which just reproduces the well known fact that plane
rotations commute and which can already be seen from the definition of the quaternionic product
(definition 2.3), since the only asymmetric term is the cross–product. In other words for arbitrary
fixed â the parametrisation F (cos ψ2 , sin

ψ
2 â) defines a reducible representation of SO(2) on R3.

The similarity transform T̄ā(b̄) ≡ āb̄ā−1 of b̄ for some given ā is given by

Tā,0(b̄) = b0
~Tā(b̄) = (a2

0 − ‖~a‖2) ~b+ 2~a ·~b ~a+ 2a0 ~a×~b

= cosα sin
β

2
b̂+ 2 sin2 α

2
sin

β

2
cos Φ â+ sinα sin

β

2
â× b̂ . (2.52)

Of course since the plane rotations commute, we expect T̄ā(b̄) = b̄ for â = ±b̂ which immediately
follows from equation (2.52) by setting â cosΦ ≡ b̂ and using the identity cosα = cos2 α

2 − sin2 α
2 .

Another representation of spins, inherited from quantum mechanics is the description by spinors
š ∈ SC ≡ {x̌ ∈ C2 : |x1|2 + |x2|2 = 1}. The action of a rotation on a spinor is a transformation by
a SU(2) matrix. The special unitary group of complex 2 × 2 matrices, SU(2) is the set of regular
matrices r ∈ C2×2 which fulfil r† r = r r† = 1 and det( r) = +1, where † signifies the hermitian
conjugate. These matrices can be parametrised as

r ≡
(

g h
−h∗ g∗

)
, (2.53)

with g, h ∈ C and |g|2 + |h|2 = 1. The corresponding Lie algebra [HN91, WH90] is the algebra of
anti–hermitian traceless matrices su(2) ≡ {m ∈ C2 ; m† = −m, trace (m) = 0}. If we set

m ≡
(
a b
c d

)
∈ su(2) , (2.54)

it is clear that <a = <d = 0, =a = −=d, <b = −<c and =b = =c. Therefore we can write
su(2) = iRσx + iRσy + iRσz = iRS2(R) · ~σ, with the Pauli matrices and the “3–vector” of the Pauli
matrices

σx ≡
(

0 −i
+i 0

)
, σy ≡

(
+1 0
0 −1

)
, σz ≡

(
0 1
1 0

)
, ~σ ≡

(
σx, σy, σz

)
. (2.55)

In other words a matrix representation of any element m of su(2) can be written as m = −iφ/2 m̂ ·~σ
with φ ∈ R and m̂ ∈ S2(R). Here we have chosen an indexing of the Pauli matrices for convenience
that differs from the usual one by a cyclic permutation ((x, y, z) → (y, z, x)). The Pauli matrices have
the following properties

σ†i = σi , ∀i ∈ {x, y, z} (hermiticity) (2.56a)

trace ( σi) = 0 , ∀i ∈ {x, y, z} (they are traceless) (2.56b)

σ2
i = 1 , ∀i ∈ {x, y, z} (they are unipotent) (2.56c)

{σi, σj} = 0 , ∀i, j ∈ {x, y, z}, i 6= j (anti–commutativity) (2.56d)
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[σi, σj] = 2iεijk σk (commutation relations) (2.56e)

⇒ σxσy = −σyσx = iσz , σyσz = −σzσy = iσx , σzσx = −σxσz = iσy

(~σ · ~a)(~σ ·~b) = 1(~a ·~b) + i~σ · (~a×~b) . (2.56f)

With σ+ ≡ σz + iσx , σ− ≡ σz − iσx , P± ≡ σ± σ∓
and ǔ = (1, 0)T , ď = (0, 1)T

we have σ+ǔ = σ−ď = 0 , σ+ď = ǔ , σ−ǔ = ď , (2.56g)

and P+ď = P−ǔ = 0 , P+ǔ = ǔ , P−ď = ď . (2.56h)

Note already here that the property (i σi)
2 = − 1 relates the Pauli matrices to the base quaternions

(0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1).

From the theory of Lie groups it is known that the matrix exponential restricted to a Lie algebra
yields the corresponding group and that this mapping is surjective

m ∈ su(2) ⇒ exp m ≡ exp

(
− i

2
φ~σ · m̂

)
∈ SU(2) (2.57a)

r ∈ SU(2) ⇒ ∃m ∈ su(2) : exp(m) = r . (2.57b)

Using equation (2.56f) with ~a = ~b = m̂ leads to

exp

(
− i

2
φ~σ · m̂

)
= 1

∞∑

k=0

(−1)k
(φ/2)2k

(2k)!
− i~σ · m̂

∞∑

k=0

(−1)k
(φ/2)2k+1

(2k + 1)!

= 1 cos
φ

2
− i~σ · m̂ sin

φ

2
≡ 1m0 − i~σ · ~m . (2.58)

Since
∥∥∥(cos φ2 , sin

φ
2 m̂)

∥∥∥ = 1 we conclude that m̄ ≡ (m0, ~m) is a unit–quaternion. Therefore

Definition 2.5 For all r̄ ∈ SH we define f : SH → SU(2), r̄ 7→ f(r̄) so that for r ≡ f(r̄) we have

r = 1r0 − i~σ · ~r =

(
(r0 − ir2) −(r1 + ir3)
(r1 + ir3)

∗ (r0 − ir2)
∗

)
, (2.59)

where the condition |(r0 − ir2)|2 + |(r1 + ir3)|2 = 1 directly follows from ‖r̄‖ = 1.

By comparing equation (2.59) with equation (2.53) it becomes clear that f is one–to–one with

f̄−1( r) = (<a,−<b,−=a,−=b) . (2.60)

Applying again equation (2.56f) we obtain with ā ≡ (cos α
2 , sin

α
2 â) and b̄ ≡ (cos β2 , sin

β
2 b̂)

f(ā) f(b̄) = 1

(
cos

α

2
cos

β

2
− sin

α

2
sin

β

2
â · b̂

)
− i~σ ·

(
cos

α

2
b̂+ â cos

β

2
+ sin

α

2
sin

β

2
â× b̂

)

= f(āb̄) . (2.61)

Therefore we have proved

Theorem 2.7 The function f defined above is a group–isomorphism between SU(2) and SH.

Although SH and SU(2) are group–isomorphous they are not “identical”. SU(2) is a classical matrix
group, i.e. its elements are naturally related to linear maps on vector spaces. The unit–quaternions
on their own do not imply any kind of linear maps. Nevertheless with the help of the functions F or
f respectively, linear maps can be assigned to each unit–quaternion in a group homomorphous way.
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A spinor š can be written as (cos ρ eiκ, sin ρ eiδ) where ρ, κ, δ are 3 arbitrary real numbers. A
spin vector Ŝ ≡ (sinα cos β, cosα, sinα sinβ) on the other hand only has 2 degrees of freedom. The
additional degree of freedom expresses the possibility of interference in quantum mechanics but is
almost redundant in the classical description of spin motion. However in section 4.3 phase factors
which are periodic functions of the orbital angles and which appear while propagating certain spinor
fields, will play a role in the computation of the amplitude dependent spin tune . In the following we
will occasionally use the notation š ≡ (u, d) ≡ (uR + iuI , dR + idI) with |u|2 + |d|2 = 1

Definition 2.6 For each spinor š ∈ SC we define Ĝ : SC → SR, š 7→ Ĝ(š) so that for Ŝ ≡ Ĝ(š) we
have

Ŝ = š† ~σ š

≡
(
2 cos ρ sin ρ sin(κ− δ), cos2 ρ− sin2 ρ, 2 cos ρ sin ρ cos(κ− δ)

)

≡
(
2(uRdI − uIdR), |u|2 − |d|2, 2(uRdR + uIdI)

)
. (2.62)

The norm of Ĝ(x̌) is unity for ‖x̌‖ = 1 and Ĝ is a real quadratic form in the spinor components. Thus
š and šeiλ yield the same spin vector. We exercise the freedom to choose uR ≡ u ∈ [0, 1] and uI = 0.
Then Ŝ = (2u

√
1 − u2 sin δ, 2u2−1, 2u

√
1 − u2 cos δ) so that u =

√
(Sy + 1)/2 and δ = arctan(Sx/Sz).

Hence for each Ŝ ∈ SR we find a spinor š = (u,
√

1 − u2eiδ). Therefore we obtain

Lemma 2.1 Ĝ is surjective.

Moreover the function Ĝ is compatible with spin transport by SO(3) and spinor transport by
SU(2) maps.

Theorem 2.8 Let r̄ be a unit quaternion, and š be a spinor, then

F (r̄)Ĝ(š) = Ĝ( f(r̄)š) . (2.63)

The proof is straightforward. We define R ≡ F (r̄), r ≡ f(r̄), Ŝ ≡ (Sx, Sy, Sz) ≡ Ĝ((u, d)),
(S′
x, S

′
y, S

′
z) ≡ R(Sx, Sy, Sz) and š′ ≡ (u′, d′) ≡ r(u, d). Using equation (2.59) we find

u′R = uRr0 − dRr1 + uIr2 + dIr3 , u′I = uIr0 − dIr1 − uRr2 − dRr3

d′R = dRr0 + uRr1 − dIr2 + uIr3 , d′I = dIr0 + uIr1 − dRr2 − uRr3 . (2.64)

Then by applying the explicit SO(3)–matrix from equation (2.27) to (2(uRdI − uIdR), |u|2 − |d|2,
2(uRdR + uIdI)) one can evaluate

RŜ − Ĝ(š′) = (1 − ‖r̄‖2)Ŝ = 0 . (2.65)

2

Obviously the normalisation of š and Ŝ does not enter the proof. Hence the theorem can be
extended to complex 2-vectors and real 3–vectors of arbitrary length. Note also that the isomorphy
between SH and SU(2) together with the relation R ↔ ±r̄ for all R ∈ SO(3) and r̄ ∈ SH is a,
perhaps unconventional, confirmation of the fact that the SU(2) covers the SO(3) twice.

We can make use of the isomorphism f that connects SH and SU(2) to derive the EOM for an
SU(2) transport map. Writing

r ≡
(
r11 r12
r21 r22

)
=

(
q0 − iq2 −q1 − iq3
q1 − iq3 q0 + iq2

)
= f(q̄) (2.66)
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and

q̄ =
1

2
(r11 + r22 , r21 − r12 , i(r11 − r22) , i(r12 + r21)) = f̄−1( r) , (2.67)

we obtain

Dθ r = f(Ω4×4f̄
−1( r)) = Ω2×2 r (2.68a)

with Ω2×2 ≡ 1

2

(
−iΩ2 −Ω1 − iΩ3

Ω1 − iΩ3 iΩ2

)
= − i

2
~σ · ~Ω . (2.68b)

In this section we have not only seen that from the classical point of view spin vectors and spinors
as well as SO(3)-,SU(2)- and unit–quaternion maps are equivalent descriptions, but we have explicitly
derived all the basic relations for describing spin motion in terms of these concepts. Furthermore we
have derived the tools for switching from one representation of classical spin dynamics to the other
whenever we like. In the following this will very often turn out to be beneficial since one or the other
representation allows a more elegant access to the solution of particular problems. As we will see in the
next section, unit–quaternions offer an especially simple opportunity for truncated power expansions
w.r.t. arbitrary parameters and immediate regularisation, i.e. conservation of orthogonality.

Finally, a word about tracking codes for maps: The composition of two SO(3) maps consists of 9
scalar products of REAL2 3–vectors and therefore needs 18 REAL+ and 27 REAL*. For the composition of
two SU(2) maps 4 scalar products of COMPLEX 2–vectors are performed. One should not be misguided
by the number of “only” 4 COMPLEX+ and “only” 8 COMPLEX* since that means 24 REAL+ and 32 REAL*

in the end. The composition of two SH maps needs only 12 REAL+ and 16 REAL* and is therefore twice
as fast as naive explicit SU(2) tracking! Moreover the memory needed to store the SO(3) and SU(2)
matrices is 9 respectively 8 REAL numbers per map in contrast to 4 REALs for a unit–quaternion.

2.2.2 Approximations to the T–BMT flow

In general it is not possible to solve EOM 1) of definition 2.2 analytically for all orbital initial conditions
~zi. Therefore it is indispensable to find adequate approximations to the exact T–BMT flow that
can be computed with reasonable effort. In this section we will derive, and comment on, various
approximation schemes. In the preceding section we have seen that SO(3), SU(2) and SH maps
are classically equivalent descriptions of the T–BMT flow. Therefore in the next two subsections
the symbol R means either the corresponding SO(3)–map, the SU(2)–map r or the unit–quaternion
map r̄. For the T–BMT driving term we use Ω to mean Ω3×3, Ω2×2 or Ω4×4 respectively. In a
subsequent subsection we will stress the remarkable feature of the unit–quaternions that they can easily
be “re–orthogonalised”.

Iterative computation of the flow

We assume that the T–BMT driving term in equation (2.8) along an orbital trajectory ~ξ(~zi, θ) that
starts at ~zi, as well as the T–BMT flow can be expanded into a power series w.r.t. the initial orbital
phase space point ~zi

Ω(~zi, θ) ≡ Ω0(θ) + ω(~ξ(~zi, θ), θ) ≡ Ω0(θ) +

∞∑

j=1

ω(j)(~zi; θ) (2.69)

2
REAL and COMPLEX here are symbols for machine representations of any particularly chosen precision. REAL+,

COMPLEX+, REAL* and COMPLEX* mean the machine operations for a REAL, or COMPLEX addition or multiplication re-
spectively.
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and

R(θf , θi; ~zi) = R0(θf , θi)


 1 +

∞∑

j=1

B(j)(θf , θi; ~zi)


 ≡ R0(θf , θi)

∞∑

j=0

B(j)(θf , θi; ~zi) , (2.70)

where the ω(j) and B(j) are homogeneous polynomials of order j in ~zi and R0 is the flow on the
design orbit with

Dθ R0(θ, θi) = Ω0(θ)R0(θ, θi) , R0(θi, θi) = 1 (2.71)

for θf ≥ θi and θf ≥ θ ≥ θi. Note that R0 is orthogonal (unitary) but that the B(j) as well as every

truncation of the series in equation (2.70) for j > 0 are not! In an accelerator the ~Ω0 is normally
piecewise constant and thus R0 can easily be computed analytically. Inserting the power series for Ω
and R into the EOM 1) of definition 2.2 with θ > θi and using equation (2.71) we obtain

Dθ

∞∑

j=0

B(j)(θ, θi; ~zi) = R−1
0 (θ, θi)

∞∑

j=1

ω(j)(~zi; θ)R0(θ, θi)

∞∑

j=0

B(j)(θ, θi; ~zi)

≡
∞∑

j=1

W (j)(~zi; θ)
∞∑

j=0

B(j)(θ, θi; ~zi) , (2.72)

where in the last step we have transformed the ω(j) into the rotating frame defined by the design orbit
flow R0. Assuming the convergence of both series in the product we compare the terms in equation
(2.72) order by order and obtain the convolution

B(n)(θf , θi; ~zi) =

n∑

j=1

∫ θf

θi

W (j)(~zi, θ)B
(n−j)(θ, θi; ~zi) dθ . (2.73)

Note that for the computation of B(n) only the B(k) of order lower than n are needed. This is
often called the absence of feed–down. Therefore equation (2.73) replaces the often cumbersome direct
integration of the EOM 1) of definition 2.2 by the iteration of quadratures — once the solution of
equation (2.71) is known. Nevertheless if the series (2.70) is truncated, the need for restoring the
orthogonality (unitarity) of R arises.

The approximation to leading powers in Gγ

After application of transformation (2.17) with Ŝ → RT
0 Ŝ and Ω → W = RT

0 ΩR0 + (Dθ R
T
0 )R0

and assuming that the T–BMT driving term is Lipschitz–continuous, a solution can be found by the
Picard–Lindelöf iteration scheme which can be rewritten as a θ–ordered exponential [SM86a, SM86b]
analogous to the von Neumann expansion in quantum mechanics.

R(θf , θi; ~zi) = T exp

(∫ θf

θi

W (~zi, ϑ)dϑ

)
1

≡
(

1 +

∫ θf

θi

W (~zi;ϑ) dϑ+

∫ θf

θi

W (~zi;ϑ)

∫ ϑ

θi

W (~zi;ϑ
′) dϑ′ dϑ

+

∫ θf

θi

W (~zi;ϑ)

∫ ϑ

θi

W (~zi;ϑ
′)
∫ ϑ′

θi

W (~zi;ϑ
′′) dϑ′′ dϑ′ dϑ+ . . .

)
1 , (2.74)

where the trailing “1” is redundant in the case of SO(3) and SU(2) matrices but symbolises 1̄ in the
case of unit–quaternion maps. We now recall remark 4) in section 2.1, and conclude that at high but
finite energy the dominating part of Ω is proportional to Gγ. It can be factored out of W to give

W (~zi;ϑ) ≡ Gγw(~zi;ϑ) ≡ Gγ

∞∑

j=1

w(j)(~zi;ϑ) , (2.75)
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where again the w(j) are homogeneous polynomials in ~zi. Then by inserting the power expansion of w

into equation (2.74) and arranging the terms w.r.t. the difference in the orders of Gγ and ~zi we obtain

R(θf , θi; ~zi) = 1 +

∞∑

k=1

B(j)(θf , θi; ~zi) (2.76a)

B(1)(θf , θi; ~zi) ≡ (Gγ)

∫ θf

θi

w(1) dϑ+ (Gγ)2
∫ θf

θi

w(1)

∫ ϑ

θi

w(1) dϑ′ dϑ

+ (Gγ)3
∫ θf

θi

w(1)

∫ ϑ

θi

w(1)

∫ ϑ′

θi

w(1) dϑ′′ dϑ′ dϑ+ . . . [O(Gγ) = O(~zi)] (2.76b)

B(2)(θf , θi; ~zi) ≡ (Gγ)

∫ θf

θi

w(2) dϑ+ (Gγ)2
(∫ θf

θi

w(1)

∫ ϑ

θi

w(2) dϑ′ dϑ+

∫ θf

θi

w(2)

∫ ϑ

θi

w(1) dϑ′ dϑ

)

+ (Gγ)3

(∫ θf

θi

w(1)

∫ ϑ

θi

w(1)

∫ ϑ′

θi

w(2) dϑ′′ dϑ′ dϑ

+

∫ θf

θi

w(1)

∫ ϑ

θi

w(2)

∫ ϑ′

θi

w(1) dϑ′′ dϑ′ dϑ

+

∫ θf

θi

w(2)

∫ ϑ

θi

w(1)

∫ ϑ′

θi

w(1) dϑ′′ dϑ′ dϑ

)
+ . . . [O(Gγ) = O(~zi) − 1] (2.76c)

B(j)(θf , θi; ~zi) ≡ . . . [O(Gγ) = O(~zi) − j + 1] (2.76d)

A more complete description of the computation of the B(j) can be found in [SM86a, SM86b]. In the
following we will call non–linear effects in the spin motion kinetic, in the sense that they are caused
by the formal structure of the T–BMT equation, if they arise from multiple integration of linear ~ω.
On the contrary we will call non–linear effects dynamic, in the sense that they are caused by the
particular dependence of the T–BMT driving term ~ω on ~zi, if they arise from single integration of
higher order terms inside ~ω.

Since ‖~zi‖ is considered to be a small quantity but Gγ is big at high energy the contributions
from B(j) decrease with j. Therefore at large enough energy and in every finite domain of phase
space around the design trajectory (~z = 0), the “leading order in Gγ” B(1) which only contains
combinations of w(1) usually dominates the spin motion. Additionally if w(j) ≡ 0 for j > k all
the B(j) with j > k vanish identically and hence Rk ≡ 1 +

∑k
j=1 B(j) is then an exact T–BMT

solution. So in principle for an arbitrary 3 W (~z, θ) one could try to find a fully orthogonal (unitary)
approximation by truncating the power expansion at the linear term W (1)(~z, θ) and summing up
B(1) only. Since B(1) contains only the linear part of W its non–linear behaviour is of purely kinetic
nature. This approximation would reflect the mathematical structure of the system, i.e. orthogonality
of the T–BMT flow, completely and the physical structure of the system, i.e. the explicit form of
the spin trajectory as defined by the electromagnetic fields, with an accuracy that increases with the
reference energy of the system. Unfortunately in general not even B(1) can be computed exactly, since
it is an infinite power series. Therefore the practical utility of this explicit expansion is quite limited.
Nevertheless we have seen that at high energy the dominant contribution to all orders in ~zi usually
comes from iteration of ~ω(1) and not from inclusion of higher order terms in ~ω!

We note that for Gγ → ∞ the series for B(j) diverges. This is not surprising because even for a
simple system like Dθ Ŝ = (0, Gγ, 0) × Ŝ which describes a uniform rotation around ŷ with revolution
“frequency” Gγ the limit Gγ → ∞ does not exist.

3Lipschitz–continuous of course.
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The SPRINT approximation

The entire spin–orbit simulations for this work were carried out using the computer code SPRINT [HV01].
In a multi–turn tracking code violation of orthogonality would lead to an unwanted and unphysical
blow–up or shrinking of the length of the spin vector. Therefore the crucial point in finding an ap-
proximation for the T–BMT flow is not the inclusion of higher orders in ~zi but re–orthogonalisation
of the map. The orthogonality or unitarity conditions for SO(3) or SU(2) maps read as RRT = 1,
det(R) = +1 and r r† = 1, det( r) = +1 respectively whereas the condition for a unit–quaternion is
simply ‖r̄‖ = 1. In this subsection (!) v̄ symbolises a real 4–vector representing an approximation of
a unit–quaternion and r̄ the corresponding unit–quaternion obtained by re–orthogonalisation. Once
we are given the truncated power expansion

v̄≤n(θf , θi; ~zi) =
n∑

i=0

v̄(i)(θf , θi; ~zi) , (2.77)

where the v̄(i)(θf , θi; ~z) are homogeneous polynomials in ~z, we can re–orthogonalise it to

r̄≤n(θf , θi; ~zi) =
v̄≤n(θf , θi; ~zi)

‖v̄≤n(θf , θi; ~zi)‖
, (2.78)

provided that ‖v̄‖ 6= 0. It has to be emphasised that this re–orthogonalisation method, although
looking most natural, is not unique. Every re–orthogonalisation method is equivalent to finding
an effective ~Ω(~zi, θi, θf ) ≡ µâ for a given ~zi which is treated as constant in [θi, θf ] so that q̄ ≡
( cos 1

2µ(θf − θi), sin 1
2µ(θf − θi)â) is “close” in some sense to v̄≤n(θf , θi; ~zi). This problem of the

arbitrariness of ~Ω is similar to the arbitrariness of the Hamiltonian in the construction of higher
order symplectic maps in orbital dynamics. In SPRINT the “closeness” condition is implemented by
constructing a new unit–quaternion r̄ ′ by choosing the rotation axis r̂′ as v̂ ≡ ~v/‖~v‖ and defining

r̄′ ≡ (c, sv̂) with c ≡ sgn(v0) cos arctan
‖~v‖
v0

, s ≡
∣∣∣∣sin arctan

‖~v‖
v0

∣∣∣∣ . (2.79)

The limits of v̂, c and s for v0 or ~v → 0 but with ‖v̄‖ 6= 0 are

lim
v0→±0

~v 6=~0

c = 0 , lim
v0→±0

~v 6=~0

sv̂ = v̂ , lim
~v→~0
v0 6=0

c = sgn(v0) = ±1 , lim
~v→~0
v0 6=0

sv̂ = ~0 , (2.80)

so that r̄′ is well defined for ‖v̄‖ 6= 0. This choice of re–orthogonalisation seems complicated but is
actually equivalent to equation (2.78) since with α2 ≡ ‖~v‖2/v2

0 we find

v0
‖v̄‖ =

sgn(v0)√
1 + α2

= sgn(v0) cos arctanα (2.81a)

~v

‖v̄‖ =
|α|√

1 + α2
~v = |sin arctanα|~v (2.81b)

even in the limits v0, ~v → 0 but ‖v̄‖ 6= 0. We define the deviation δ ≡ ‖r̄ − v̄‖ = ‖r̄ − ‖v̄‖r̄‖ =
|1−‖v̄‖ |. In the case of v̄(~zi) = r̄0 + ε̄(~zi) with an exact unit–quaternion on the design orbit r̄0 and a
given small 4–vector ε̄, δ is minimal if the scalar product of ε̄ and r̄0, seen as 4–vectors vanishes, i.e.

δ = |1 − ‖r̄0 + ε̄‖ | = |r̄0 · ε̄| +O(‖ε̄‖2) . (2.82)

The method of re–orthogonalisation can be applied to quaternionic spin maps of any kind, i.e. one–
turn maps (OTMs), transfer maps for single beam line elements, slices of beam line elements or
lumped beam line elements. Given a partitioning of the interval [0, 2π]: {θk|θ0 = 0, θk < θk+1,
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θN = 2π, 0 ≤ k ≤ N} where the θk are the effective boundaries of elements or slices of elements in the
sharp cut–off (SCOFF) approximation and given the corresponding transfer maps

r̄k(~zi) ≡ r̄(θk, θk−1; ~zi) , ~Tk(~zi) ≡ ~T (θk, θk−1, ~zi) (2.83)

for spin and orbit (see definition A.2) respectively, slice–by–slice forward tracking means

~T (θk, θj , ~zi)|k>j =




k⊙

l=j+1

~Tl


 (~zi) , ~T (θj , θj, ~zi) ≡ ~zi (2.84a)

r̄(θk, θj ; ~zi)|k>j =
k⊙

l=j+1

r̄l(~T (θl−1, θj , ~zi)) , r̄(θj , θj; ~zi) ≡ 1̄ , (2.84b)

where
⊙

denotes map composition in the case of orbital maps and quaternionic (non–commutative)
multiplication in the case of spin maps. The transformation of the orbital coordinates and the unit–
quaternion from slice k − 1 to the end of slice k is simply

(
~zf
r̄f

)
=

( ~Tk(~zi)

r̄k(~zi)r̄i

)
. (2.85)

The one–turn maps are

~T (θk, ~zi) = ~T (θk, θ0, ~T (θN , θk, ~zi)) (2.86a)

r̄(θk; ~zi) = r̄(θk, θ0; ~T (θN , θk, ~zi)) r̄(θN , θk; ~zi) . (2.86b)

In SPRINT slice–by–slice tracking is implemented to first order in ~zi for v̄ and ~z.

v̄k(~zi) = Γ̄
(0)
k + Γ

(1)
k ~zi , r̄k(~zi) =

v̄k(~zi)

‖v̄k(~zi)‖

∣∣∣∣
‖v̄‖6=0

, ~Tk(~zi) = T k~zi . (2.87)

The SPRINT method is actually similar to a discrete version of the leading power Gγ approximation of
equation (2.76b). If we transformed into the system rotating with R0 , which is not done in SPRINT,

then Γ̄
(0)
l + Γ

(1)
l ~z(θl) would be replaced by 1̄ + b̄

(1,1)
l where b̄

(1,1)
l ≡

∫ θl+1

θl
Gγw

(1)
4×4(θ; ~z(θl)) dθ 1̄. Here

w
(1)
4×4(θ; ~z(θl)) is the contribution of the transformed W 4×4 that depends linearly on ~z(θ) in the interval

[θl+1, θl], ~z(θ) is the linear orbit and b̄(1,1) corresponds to the first term in equation (2.76b) which is
linear in Gγ. See [CW98] for explicit formulae. Then we would replace the integrals in equation (2.76b)
by sums over intermediate θl. The resulting not yet re–orthogonalised quaternion in the rotating frame
would be

v̄(1,≤k−j)(θk, θj)=1̄ +

k−1∑

l=j

b̄
(1,1)
l +

k−1∑

l=j

b̄
(1,1)
l

l−1∑

l′=j

b̄
(1,1)
l′ +

k−1∑

l=j

b̄
(1,1)
l

l−1∑

l′=j

b̄
(1,1)
l′

l′−1∑

l′′=j

b̄
(1,1)
l′′ + · · ·

=
(
1̄ + b̄

(1,1)
k−1

)

1̄ +

k−2∑

l=j

b̄
(1,1)
l +

k−2∑

l=j

b̄
(1,1)
l

l−1∑

l′=j

b̄
(1,1)
l′ +

k−2∑

l=j

b̄
(1,1)
l

l−1∑

l′=j

b̄
(1,1)
l′

l′−1∑

l′′=j

b̄
(1,1)
l′′ + · · ·




· · ·

=

k−1⊙

l=j

(
1̄ + b̄

(1,1)
l

)
, (2.88)

where we omitted the initial phase space points ~zl for brevity. In SPRINT the above algorithm is changed

so that the on–orbit rotation is explicitly contained in the transfer maps, i.e. 1̄ + b̄
(1,1)
l → r̄

(0)
l (1̄ +
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b̄
(1,1)
l ), and so that r̄

(0)
l (1̄ + b̄

(1,1)
l ) is re–orthogonalised after each step instead of re–orthogonalising

v̄(1,≤k−j)(θk, θj) at the end. Slice–by–slice tracking enables us to minimise the deviation δ by refining
the slicing without changing the order of the per–slice approximation. In practice it turned out that
generally for a ring like HERA–p one slice per element gives a reasonable accuracy. Note that the
computing time used for tracking simulations is proportional to the number of slices in the chosen
representation of the lattice. In an accelerator like HERA–p there are typically 2000 beam line elements
in the lattice that contribute to ~ω(1), so that even without any slicing of elements the one–turn map
r̄(1,≤≈2000)(θ; ~z) as computed with SPRINT contains kinetic non–linearities up to about 2000-th order!

2.3 Spin perturbations

So far, approximate solutions to the T–BMT equation have been presented in general and somewhat
abstract terms as, for example, in (2.76a). Now we will analyse spin motion along synchro–betatron
orbits in more concrete terms and obtain formulae which are more explicit and suitable for physical
interpretation and which thereby motivate further approximations.

The main purpose of the analysis of spin dynamics in accelerators is to find ways to achieve a
steady state spin distribution on phase space with high polarisation. If accelerators only had vertical
magnetic guide fields, i.e. from the horizontal main dipoles, then spins would precess around the
vertical direction ŷ independently of the beam energy and the position in phase space. Therefore the
vertical spin component Sy would be conserved and the perpendicular component Ŝ⊥ would be rotated
Gγ times per revolution around ŷ. Real accelerators consist of various types of beam line elements
— not only horizontal bends. In particular the vertical guide field is complemented by the radial
magnetic field components from quadrupoles. With these additional fields the vertical component
of a spin on an orbital trajectory with non–zero vertical amplitude is no longer strictly conserved.
Moreover as we see from remarks 1 and 2 in section 2.1, with the high fields needed at high energy
the conservation of Sy can be strongly violated.

Since they will be important in the following, we will now define two concepts of accelerator physics
that classify the magnetic fields experienced on synchro–betatron trajectories in circular accelerators
(rings).

Definition 2.7 (Flat ring) A ring is called flat (planar), if the only magnetic fields experienced on
the design orbit (~z = ~0) are vertical. Thus in a flat ring tilted bends and solenoids are explicitly
excluded.

In a flat ring the reference trajectory has no torsion. Therefore the machine coordinates w.r.t. the
comoving basis vectors [HR87, MB90, BH94a, GH94, GH99b, CW98] x̂, ŷ and ẑ defined before equation
(2.6) are identical to the normal, conormal and tangent vectors of the Frenet–Serret system [VW97].
Once vertical orbit perturbations are introduced a ring is not flat any more.

Definition 2.8 (Mid–plane symmetric ring) A flat ring is called mid–plane symmetric, if in the
SCOFF approximation, i.e. as long as fringe fields can be neglected, the magnetic fields in the curvi-
linear coordinate system [HR87, MB90, BH94a, GH94, GH99b, CW98] defined before equation (2.6)
fulfil

Bx(x,−y, τ) = −Bx(x, y, τ) , By(x,−y, τ) = +By(x, y, τ) , Bz(x, y, τ) = 0 , (2.89)

where (x, y, τ) are the spatial components of ~z defined in equation (2.6). Thus in a mid–plane sym-
metric ring, in addition to solenoids, all tilted elements, e.g. tilted bends, tilted quadrupoles, tilted
sextupoles, tilted octupoles, etc., are excluded.
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We note that Maxwell’s equations require a longitudinal field component in the fringe fields of all beam
line elements that contain transverse fields. Thus a ring can at most in the SCOFF approximation
be mid–plane symmetric. Even if the ring were designed to be mid–plane symmetric, tilts of the
quadrupoles, etc., would introduce skew components to the fields and destroy the mid–plane symmetry.
In the following we will always neglect fringe fields and the effects of misalignments. In a mid–plane
symmetric ring one can show [KB82] that if ~z(θ) = (x, a, y, b, τ, δ) is a solution of the orbital EOM,
then z̃(θ) with x̃ = x, ã = a, τ̃ = τ and δ̃ = δ but ỹ = −y and b̃ = −b is also a solution of the
orbital EOM. The property of a ring, to be mid–plane symmetric or not, will turn out to be essential
in understanding the spectrum of the spin–orbit resonances to be defined later. Note that the absence
of flatness implies the absence of mid–plane symmetry. In general, rings are not necessarily flat4 so
that even on the design orbit Ŝy is not conserved.

2.3.1 The n̂0–axis

In an unperturbed machine the design orbit (~z ≡ ~0) is closed and thus the unit eigenvector n̂0 with
eigenvalue 1 of the one–turn spin map (OTM) on the design orbit.

R(θ;~0)n̂0(θ) = n̂0(θ) , (2.90)

which is sometimes called the spin closed orbit, is a periodic T–BMT solution so that

R(θ + n2π, θ;~0)n̂0(θ) = n̂0(θ) , ∀n ∈ Z . (2.91)

The n̂0–axis depends on the azimuth, the reference energy E0 and the geometry of the design orbit
only. The n̂0–axis is unique modulo a factor ±1 unless the spin OTM on the design orbit degenerates
to R = 1.

In the case of a flat ring we find n̂0|flat = ±ŷ and by convention the sign is fixed to n̂0|flat =
+ŷ. The concept of the n̂0–axis can easily be generalised to rings with misaligned quadrupoles and
a resulting distorted closed orbit. In this thesis we will in general neglect the effects of magnet
misalignments and the resulting closed orbit distortion so that synchro–betatron motion will take
place w.r.t. the (undistorted) design orbit unless explicit mention to the contrary is made. On the
design orbit the projection I0 ≡ Ŝ · n̂0 is an invariant which approaches Sy in the limit of a flat ring.
At an arbitrary point θ0 in the ring we choose a right–handed coordinate system of column vectors
(l̂0(θ0), n̂0(θ0), m̂0(θ0)) and by defining

(
l̂0(θ), n̂0(θ), m̂0(θ)

)
≡ R(θ, θ0,~0)

(
l̂0(θ0), n̂0(θ0), m̂0(θ0)

)
(2.92)

we obtain a coordinate system built from T–BMT solutions. The coordinate vectors l̂0 and m̂0 are
transformed by the OTM into

R(θ0,~0)
(
l̂0(θ0), m̂0(θ0)

)
=
(
l̂0(θ0), m̂0(θ0)

)( cos 2πν0 +sin 2πν0

− sin 2πν0 cos 2πν0

)
, (2.93)

where ν0 is computed from the eigenvalues (e+i2πν0 , e−i2πν0 , 1) of R(θ;~0) so that a rotation by +2πν0

means a mathematically positive rotation around n̂0. In this coordinate system a spin on the design
orbit does not precess since the scalar products (l̂0 · Ŝ, n̂0 · Ŝ, m̂0 · Ŝ) are invariants of motion. If
[ν0] 6= 0, the coordinate system (l̂0, n̂0, m̂0) is not 2π–periodic.

4e.g. HERA–p.
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But we can now define a new periodic coordinate system ( l̂(θ), n̂0(θ), m̂(θ)) = (l̂(θ + 2π), n̂0(θ +
2π), m̂(θ + 2π)) by uniformly winding back the rotation around n̂0:

A(θ) ≡




cos θν0 0 − sin θν0

0 1 0
sin θν0 0 cos θν0




(
l̂(θ), n̂0(θ), m̂(θ)

)
≡ R(θ, θ0,~0)

(
l̂0(θ0), n̂0(θ0), m̂0(θ0)

)
A(θ − θ0) , (2.94)

where R acts on the column vectors of (l̂0, n̂0, m̂0) and AT acts on the row vectors of (l̂0, n̂0, m̂0). In
this coordinate system a spin on the design orbit precesses uniformly with the on–orbit spin tune ν0.
Note that in order to preserve the periodicity of the coordinate frame we have the freedom to change
ν0 by an arbitrary integer. Thus only the fractional part [ν0] is uniquely defined by the eigenvalues
of R for fixed sign of n̂0. A rotation by 2πν0 around n̂0 is equivalent to a rotation by −2πν0 around
−n̂0. If we replace n̂0 with −n̂0 we have to replace [ν0] with 1 − [ν0]. So with arbitrary sign of n̂0

we have ν0 equivalent to ν0 + k and to k − ν0, k ∈ Z. We already know that in a flat ring the spins
on the design orbit precess Gγ times around ŷ per revolution so that it is convenient to call Gγ the
on–orbit spin tune of such a machine too. But we should always keep in mind that one can find a
periodic frame in which ν0 = [Gγ] + k for an arbitrary k ∈ Z. We will call the orthogonal matrix
N0(θ) ≡ (l̂(θ), n̂0(θ), m̂(θ))T the on–orbit spin normal form transformation since

R(θf , θi,~0) = N0(θf )
TR̃(θf − θi)N 0(θi) (2.95)

expresses R in a particularly transparent form. Introducing the on–orbit spin action I0 ≡ n̂0(θi) · Ŝi,
the on–orbit initial spin phase Φ0 ≡ arctan m̂(θi)·bSi

l̂(θi)·bSi
and ∆ ≡ θf−θi, we can write any T–BMT solution

on the design orbit as

Ŝ(θ; θi, Ŝi, ~zi = ~0) = n̂0(θ)I0 +
√

1 − I2
0

(
m̂(θ) cos(∆ν0 − Φ0) − l̂(θ) sin(∆ν0 − Φ0)

)
. (2.96)

Some care has to be taken whenever the I0 = ±1 since the relation Ŝ ↔ (I0,Φ0) becomes singular! In
terms of n̂0 and ν0, the unit quaternion for the on–orbit OTM is r̄0 = (cos 2πν0, n̂0 sin 2πν0)

2.3.2 The G–matrix and resonance strengths

We will now allow particles to be off–orbit, i.e. have a non–vanishing orbital amplitude. This will lead
to a perturbative ansatz for solving the T–BMT equation in a small domain around ~z = 0. Calculating
in the spin coordinate systems (l̂0, n̂0, m̂0) and (l̂, n̂0, m̂) for motion on a synchro–betatron trajectory
we write

Ŝ = β̃ l̂0 + Snn̂0 + α̃m̂0 ⇒ Dθ (β̃, Sn, α̃) =
(
~Ω − ~Ω0

)
× (β̃, Sn, α̃) (2.97a)

Ŝ = βl̂ + Snn̂0 + αm̂ ⇒ Dθ (β, Sn, α) =
(
~Ω − ~Ω0 + ν0n̂0

)
× (β, Sn, α) . (2.97b)

Equation 2.97b can be rewritten using (2.17) with A = ( l̂, n̂0, m̂)T = N0. We recall that ~Ω− ~Ω0 = ~ω
and by introducing ωl ≡ l̂ · ~ω, ωn ≡ n̂0 · ~ω and ωm ≡ m̂ · ~ω, the EOMs for the components are then

Dθ α = m̂ · (~ω + ν0n̂0) × Ŝ

= (−βn̂0 + Snl̂) · (~ω + ν0n̂0) = −β(ωn + ν0) + Snωl (2.98a)

Dθ β = l̂ · (~ω + ν0n̂0) × Ŝ

= (αn̂0 − Snm̂) · (~ω + ν0n̂0) = +α(ωn + ν0) − Snωm (2.98b)

Dθ Sn = n̂0 · (~ω + ν0n̂0) × Ŝ

= (βm̂− αl̂) · (~ω + ν0n̂0) = βωm − αωl . (2.98c)
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We note that the kind of canonical coordinates introduced in equation (2.10), called α ′ and β′ here for
clarity, when defined w.r.t. the (l̂, n̂0, m̂)–system are to first order identical to α and β. For α2+β2 � 1
we obtain

α′ = α

√
4

4 − α2 − β2
=1 α , β′ = β

√
4

4 − α2 − β2
=1 β . (2.99)

In order to decouple the equations for α and β we change to complex notation S± ≡ 1
2(α ± iβ) and

ζ ≡ ωm − iωl

Dθ S+ = i(ωn + ν0)S+ − i

2
ζ∗Sn , Dθ S− = −i(ωn + ν0)S− +

i

2
ζSn (2.100a)

Dθ Sn = −i (S+ζ − S−ζ
∗) (2.100b)

We now calculate the deviation of Ŝ(θ; 0, n̂0) from n̂0 up to first order in ~ω [CR80]. At 0-th order

in ~ω, i.e. ωn = 0, ζ = 0, the equations (2.100a) and (2.100b) simply reduce to Dθ S
(0)
+ = iν0S

(0)
+ ,

Dθ S
(0)
− = −iν0S

(0)
− and Dθ S

(0)
n = 0 and the solution is, using Sn(0) ≡ I0 and S±(0) ≡ 1

2 (α0 ± iβ0) ≡
1
2

√
1 − I2

0 e
±iΦ0

S
(0)
± (θ) =

1

2

√
1 − I2

0 e
±i(Φ0+ν0θ) , S(0)

n (θ) = I0 (2.101a)

α(0)(θ) =
√

1 − I2
0 cos(Φ0 + ν0θ) , β(0)(θ) =

√
1 − I2

0 sin(Φ0 + ν0θ) . (2.101b)

At first order in ~ω we find

Dθ S
(1)
n = −i

(
S

(0)
+ ζ − S

(0)
− ζ∗

)

⇒ S(1)
n (θ) = I0 −

i

2

√
1 − I2

0

(
e+iΦ0

∫ θ

0
ζe+iν0ϑ dϑ− e−iΦ0

∫ θ

0
ζ∗e−iν0ϑ dϑ

)

= I0 +
√

1 − I2
0 =

(
e+iΦ0

∫ θ

0
ζe+iν0ϑ dϑ

)
(2.102a)

Dθ S
(1)
± = ±iν0S

(1)
± ± iωnS

(0)
± ∓ i

2
(ωm ± iωl)S

(0)
n

⇒ S
(1)
± (θ) =

1

2

√
1 − I2

0e
±i(Φ0+ν0θ)

(
1 ± i

∫ θ

0
ωn dϑ

)

∓iI0
2
e±iν0θ

∫ θ

0
(ωm ± iωl)e

∓iν0ϑ dϑ (2.102b)

⇒ α(1)(θ) =
√

1 − I2
0

(
cos(Φ0 + ν0θ) − sin(Φ0 + ν0θ)

∫ θ

0
ωn dϑ

)

−I0=
{
e−iν0θ

∫ θ

0
ζe+iν0ϑ dϑ

}
(2.102c)

β(1)(θ) =
√

1 − I2
0

(
sin(Φ0 + ν0θ) + cos(Φ0 + ν0θ)

∫ θ

0
ωn dϑ

)

−I0<
{
e−iν0θ

∫ θ

0
ζe+iν0ϑ dϑ

}
. (2.102d)

We will return to equation (2.102a) later and now perform one more linearisation with equations
(2.102c) and (2.102d). If the spin perturbations are small then for α0 = β0 = 0 ⇒ I0 = 1 the variables
α(θ) and β(θ) will remain small in some interval [0, θ̃]. Therefore to first order in ‖(α, β)‖ we have
Sn(θ) =

√
1 − α2 − β2 =1 1 and we introduce the 8–dimensional spin–orbit vector

~Z ≡ (~zT, α, β)T . (2.103)
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At first order in ~Z equations (2.102c) and (2.102d) become

α(1,1)(θ) = α0 cos ν0θ − β0 sin ν0θ −=
{
e−iν0θ

∫ θ

0
ζ(1)(~z0, ϑ)e+iν0ϑ dϑ

}

≡ α0 cos ν0θ − β0 sin ν0θ + ~Gα(θ, 0) · ~z0 (2.104a)

β(1,1)(θ) = α0 sin ν0θ + β0 cos ν0θ −<
{
e−iν0θ

∫ θ

0
ζ(1)(~z0, ϑ)e+iν0ϑ dϑ

}

≡ α0 sin ν0θ + β0 cos ν0θ + ~Gβ(θ, 0) · ~z0 , (2.104b)

or with ∆ ≡ θf − θi and G ≡ ( ~Gα, ~Gβ)
T

(
α

β

)(1,1)

f

= G(θf , θi)~zi + D(θf , θi)

(
α

β

)

i

, D(θf , θi) ≡
(

cos ν0∆ − sin ν0∆
sin ν0∆ cos ν0∆

)
∈ SO(2) . (2.105)

Of course, equations (2.104a) to (2.105) are equivalent to the sum of the identity in (2.76a) and the
first term of B(1) which is proportional to Gγ in equation (2.76b). We can now present the totally
linearised flow M [AC79, AC80, BH94a, BH94b] for the spin–orbit vector ~Z

~Zf = M(θf , θi)~Zi , M 8×8 ≡
(

T 6×6(θf , θi) 06×2(θf , θi)
G2×6(θf , θi) D2×2(θf , θi)

)
, (2.106)

where we have omitted the superscript (1, 1) for brevity. The matrix T is the usual linear orbital flow,

i.e. ~z
(1)
f = T~zi, the matrix 0 reflects the fact that we ignore Stern–Gerlach forces [BH94a, BH94b]

and the matrices D and G describe the spin motion induced by the fields on the design orbit and the
spin–orbit coupling in the (l̂, n̂0, m̂)–frame respectively. The orbital part of M is symplectic if T is
symplectic, but the spin part is orthogonal only if ~zi = 0. In the case of one–turn maps we will often
write

D ≡ D(2π, 0) and G(θ) ≡ G(θ + 2π, θ) (2.107)

the D- and the G–matrix of the system viewed at θ.

Equations (2.102a) to (2.102d) contain the Fourier integral
∫ θ
0 (ωm(ϑ; ~zi)−iωl(ϑ; ~zi)) e

iν0ϑ dϑ where
ωm/l are the off–orbit contributions of the driving term of the T–BMT equation perpendicular to n̂0 in

the (l̂, n̂0, m̂)–frame evaluated along an orbital trajectory ~ξ(θ; ~zi) with initial conditions ~ξ(0; ~zi) = ~zi.
This integral does not depend on the particular choice of the integer part of ν0 since that is compensated
in the rotation of l̂ and m̂ around n̂0 by −2πν0 per turn. In fact a change in the choice of the integer
part of ν0, just implies a change in the (l̂, n̂0, m̂) coordinates used for describing the spin motion but
of course entails no change in the underlying physics.

In the equations (2.104a) and (2.104b) we have assumed ~ω to be a linear function of the initial
orbital phase space vector ~zi. Referring back to equations (2.102a) to (2.102d) it is clear that at first

order in ~ω the EOM for S
(1)
n , α(1) and β(1) could be solved in principle for an ω containing arbitrary

orders of ~zi. We note that the non–linearities included by this procedure would be purely dynamical
as explained in section 2.2.2 and therefore would not be the dominant non–linear contribution to spin
motion at high energy. Nevertheless it is possible to describe these dynamical non–linearities in terms
of the generalised Fourier spectrum of ζ. Therefore, and since it will help to prevent confusion about
the origin of higher order resonances it is useful to discuss the spectrum of ζ here. We assume that
the orbital motion is integrable, i.e. that there are action–angle variables ~J and ~Ψ with Dθ

~J = 0,
Dθ

~Ψ = ~Q( ~J) so that ~z = ~N( ~J, ~Ψ, θ) is 2π–periodic in ~Ψ|θ=const. and θ|~Ψ=const.. Then ζ(θ; ~zi) =

ωm(ϑ; ~zi)− iωl(ϑ; ~zi) is a pseudo–periodic function over the tunes ~Q since ~ω(θ, ~z)|~z=const., l̂ and m̂ are
periodic in θ (see appendix A). Therefore we can write ζ at each fixed reference energy as a generalised
Fourier series

ζ(θ; ~J, ~Ψ0, E0) =
∑

k0∈Z

∑

~k∈Z3−{~0}

ε
k0,~k

( ~J, ~Ψ0, E0)e
−i(k0+ ~Q·~k)θ . (2.108)
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We then define for arbitrary real κ

εκ( ~J, ~Ψ0, E0) = lim
ϑ→∞

1

ϑ

∫ ϑ

0
ζ(θ; ~J, ~Ψ0, E0)e

+iκθ dθ =

{
ε
k0,~k

: κ = k0 + ~k · ~Q
0 : otherwise

. (2.109)

The pseudo–periodicity of ζ implies that εκ vanishes identically for any κ that is not of the form
κ = k0 + ~k · ~Q, whereas the finite integrals in equations (2.102a) to (2.102d) in general are non–zero
for arbitrary ν0(E0). Note that the choice of ~Ψ0 in the action–angle transformation as well as the
phase of l̂(0) in the plane perpendicular to n̂0(0) are totally arbitrary so that the absolute phase of ε
is meaningless.

Putting the series (2.108) back into equations (2.102a) to (2.102d) we see that at ν0 = κ for
some κ = k0 + ~k · ~Q the corresponding term in the integral does not oscillate but instead builds up
linearly and indefinitely as θ increases at the rate εk0,~k = εκ. This is a typical manifestation of the

phenomenon of spin–orbit resonance, namely that the change of the projection of Ŝ on n̂0 from turn
to turn is maximal if the spin motion is coherent with the orbital motion or, more precisely, with a
harmonic of the T–BMT driving term ζ perpendicular to n̂0. In the perturbative regime, i.e. |ζ| � 1
this change is maximal if the on–orbit spin motion is coherent with the orbital motion

ν0(E0) = k0 + ~k · ~Q , for some k ∈ Z, ~k ∈ Z3 − {~0} . (2.110)

In the non–perturbative regime the change is again maximal if there is coherence between the spin
motion and the orbital motion but then the design orbit spin tune ν0 in equation (2.110) is replaced
by the amplitude dependent spin tune to be defined in chapter 4.

We will assume for clarity in the following that even in the presence of orbital inter–plane coupling,
the orbital eigenplanes 1, 2, 3 can be ordered so that plane 1 has the largest projection on the (x, a)–
plane, plane 2 has the largest projection on the (y, b)–plane and plane 3 has maximum projection on
the (longitudinal) (τ, δ)–plane. Therefore we exercise the freedom to refer to these planes as the x, y, z
planes which they would approach in the limit of vanishing inter–plane coupling. When equation
(2.110) is fulfilled we speak of intrinsic spin–orbit resonances. The integer |~k| ≡∑i |ki| is called the

order of the resonance. The first order resonances ν0 = k0 + ~k · ~Q with |~k| = 1, i.e.

ν0(E0) = k0 ±Qx , ν0 = k0 ±Qy , ν0 = k0 ±Qz (2.111)

are called linear intrinsic resonances. They arise from the term proportional to Gγ of B(1) in equation
(2.76b). In particular if ζ is a linear function of the orbital coordinates and the orbital motion is linear
as in (2.104a) and (2.104b), then because of equation (A.52c) ζ contains only harmonics with |~k| = 1.
Then equation (2.109) only yields non–vanishing Fourier coefficients εκ for |~k| = 1. The Fourier
coefficients εκ with κ = k0+~k · ~Q and |~k| = 1 are called the linear intrinsic resonance strengths [CR80].
This definition of the resonance strength is more general than the definition in [CR80]. There a flat
ring was explicitly assumed so that n̂0 = ŷ whereas equations (2.108) and (2.109) allow application to
arbitrary circular accelerators. Another equivalent way to obtain the resonance strengths is given in
[BG96]. Note that a shift in the choice of the integer part of ν0 causes an identical shift in k0 so that
the resonant energies E0 in (2.110) are invariant under changes of the integer part.

For |~k| = 2 in equation (2.110) there are two main sources of coherent degradation of Sn. First there
is the term in equation (2.76b) which is proportional to (Gγ)2. This term is the strongest contribution
to 2-nd order spin–orbit coupling at high energy but it is a kinetic higher order term that contains a
double integral over w(1) and is therefore not included in the Fourier analysis embodied by equations
(2.108) and (2.109). The second contribution is the term in equation (2.76c) which is proportional
to Gγ. It is a dynamical contribution which is included in equation (2.109). But at high energies
these dynamical effects are weak compared to the kinetic effects. Analogously, comparing equation
(2.76d) and (2.109), one easily sees that εκ> with |~k>| > 2 as defined in equation (2.109) only contains
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dynamical contributions to the |~k|–order spin–orbit resonance ν0 = κ> — and then only if ζ contains
|~k|-th order terms in the coordinates. Therefore the εκ of higher order than |~k| = 1, computed with
equation (2.109) are called the dynamical resonance strengths. We conclude that equation (2.109)
which is based on a first order perturbative expansion in ~ω can only treat dynamical higher order
resonances. In later chapters using the concept of the invariant spin field and the amplitude dependent
spin tune we will see how to identify and classify kinetic higher order resonances which have a much
stronger impact on spin motion in the high energy regime. We will therefore not put any emphasis on
non–linear dynamical resonance strengths here. However they might become significant in the case
where no linear intrinsic or higher order kinetic resonances are excited. Note that in the case of linear
intrinsic resonances the distinction between dynamical and kinetic contributions makes no sense.

In a ring with exact mid–plane symmetry there is no vertical dispersion, no linear transverse cou-
pling and n̂0 is vertical everywhere. Thus, among the linear intrinsic resonances only those including
the vertical tune Qy have non–vanishing strengths because only excitation of vertical motion leads a
spin to see radial fields along a trajectory and produce a non–zero ζ. If the vertical amplitude is zero,
horizontal and longitudinal oscillations can only lead to phase space dependent modulations of the
magnetic field strength B⊥ ≈ By (e.g. in the quadrupoles) and the “weight” Gγ in the T–BMT ~Ω.
They would therefore not introduce any tilt away from n̂0 but rather a phase space dependent change
of the number of spin precessions around n̂0 per particle revolution. Moreover, if we only consider the
solutions (2.102a), (2.104a) and (2.104b) a non–zero vertical amplitude modifies the spin motion but
does not modify the effects on the spin motion of horizontal and longitudinal orbital motion. The rea-
son for this is that the terms proportional to Gγ in equation (2.76b) only contain a single integral over
w(1) so that for example in (2.102a) the spin components develop independently. However, whenever
kinetic higher order effects are included, e.g. according to the terms proportional to (Gγ)2 in equations
(2.76b) or alternatively in (2.88), the effect of non–commutation of rotations around different axes
causes vertical motion to modify the effects on spin of horizontal and longitudinal amplitudes, even in
mid–plane symmetric rings and when ~ω depends linearly on ~zi. Thus in general the combined effects
on spin motion of all three modes of orbital oscillations can be very complicated.

If the ring has an exact superperiodicity of P ∈ N∗, i.e. ~Ω(θ+2π/P, ~z) = ~Ω(θ, ~z) and T (θ+2π/P ) =
T (θ) for all θ then ~Ω(θ, ~ξ(θ; ~z0)) is pseudo–periodic with the normalised orbital phase advance per
superperiod ~QP ≡ [ ~QP ] + ~NQ ⇒ ~Q = P ~NQ +P [ ~QP ]. Therefore ~Ω only contains Fourier harmonics at

κ = P (l0 +~l · ~QP ). We define the on–orbit spin tune for one superperiod

ν0,P (E0) ≡ [ν0,P (E0)] +Nν(E0) ⇒ ν0(E0) = PNν + P [ν0,P (E0)] , (2.112)

with some arbitrary integer Nν . Then (l̂(θ), n̂0(θ), ~m(θ)) as defined by equation (2.94) is 2π/P–
periodic. The resonance strengths are non–zero only at

[ν0,P (E0)] =
[
~k · ~QP

]
≡ k̃0(~k, ~Q ) + ~k ·

[
~QP

]
. (2.113)

The resonance condition for the full tunes is then

ν0 = P (k̃0 +Nν − ~k · ~NQ) + ~k · ~Q . (2.114)

Since Nν was arbitrary we can rewrite the condition as ν0 = Pk0 + ~k · ~Q. In the case of even weak
violation of the symmetry, e.g. by gradient errors in the quadrupoles or in the case of machines like
HERA–p where even in the unperturbed machine the “obvious” 4–fold symmetry is just approximate,
all types of intrinsic resonances are allowed although the additional ones are generally weaker than
the resonances that fulfil equation (2.113).

In a mid–plane symmetric ring in which the main dipole fields are all the same, then n̂0 = const. = ŷ
and the spins on the design orbit precess either at a constant rate Gγ in the dipoles or not at all, outside
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the dipoles. One may then choose a Nν so that ν0,P = Gγ/P . Then with an exact superperiodicity P
and to first order, only the resonances

Gγ = Pk′0 ±Qy (2.115)

with the full tunes Gγ and Qy appear. These resonances are called strong linear intrinsic resonances
[SL97]. See also equation (2.146).

Accelerators generally consist of arcs built from highly periodic, e.g. FODO, structures and straight
sections with various layouts. It can be shown [SL97] (see equation (2.148)) that resonances are
particularly enhanced if the spin motion is additionally coherent with the orbital motion in the periodic
arcs. Let M be the number of periodic cells in each of the P identical arcs of a mid–plane symmetric
ring and let Qy,C be the normalised vertical phase advance per cell. Then so–called super–strong linear
intrinsic resonances occur at

ν0(E0) = Pk′0 ±Qy ≈ PM (k′′0 ±Qy,C) . (2.116)

According to definition 2.8, the magnetic field components (apart from the fringe fields) in mid–
plane symmetric rings fulfil

Bx(x,−y, τ) = −Bx(x, y, τ) , By(x,−y, τ) = +By(x, y, τ) , Bz(x, y, τ) = 0 . (2.117)

Then it is well known [KB82] that whenever the trajectory ~z(θ) ≡ (x, a, y, b, τ, δ)(θ) is a solution of the
orbital EOM, the trajectory z̃ ≡ (x, a,−y,−b, τ, δ)(θ) is also a solution. Note that z̃ = Y −~z, where
Y − ≡ diag(1, 1,−1,−1, 1, 1) ∈ Sp(6). For an arbitrary real 3–vector or 3–vector field ~x we define

x̃ ≡ Y π~x , Y π ≡ diag(−1, 1,−1) ∈ SO(3) , (2.118)

and note that for a mid–plane symmetric ring equation (2.117) implies ~B(z̃) = B̃(~z). The vector field
~Ω(~z) as in the T–BMT equation equation (2.8) has four terms: the magnetic field components of the
T–BMT equation equation (2.8) ~B‖ ≡ ~v ( ~B ·~v)/v2 and ~B⊥ ≡ ~v× ( ~B×~v)/v2, the curvature term from

the design orbit ~Ωρ ≡ ~κ × ẑ which is purely vertical and phase space independent in an accelerator

with perfect mid–plane symmetry and the term due to the electric field ~Ev ≡ E(τ)ẑ × ~v. We assume,
as usual in accelerator physics, that the electric field is non–zero only in the RF–cavities and that
it is longitudinal and independent of x and y. The velocity ~v used here is: ~v ≡ (vx = ap0/mγ , vy =
bp0/mγ , vz = p0(1+δp)/mγ) and δp ≡ p−p0/p0 ≈ δ ≡ K−K0/K0 . By direct calculation one easily shows that

with (2.117) the four terms fulfil ~B‖(z̃) = B̃‖(~z), ~B⊥(z̃) = B̃⊥(~z), ~Ωρ(z̃) = Ω̃ρ(~z) and ~Ev(z̃) = Ẽv(~z).
Therefore we get

~Ω(z̃) = Ω̃(~z) . (2.119)

This immediately implies that the horizontal components of ~Ω contain only odd Fourier harmonics
in the vertical phase Ψy whereas the vertical components only contain even harmonics in Ψy. Since

by definition mid–plane symmetry implies flatness we know that ~Ω0(θ) = a(θ)ŷ and therefore that
n̂0 is vertical. Note that ~Ω(~0) = ~Ω(0̃) = Ω̃(~0) requires ~Ω0 ∼ ŷ. In a ring with vertical n̂0 only
the horizontal components of ~ω enter the resonance strength (2.109). Thus we have just proved the
following theorem:

Theorem 2.9 In an accelerator with perfect mid–plane symmetry all dynamical resonances are of odd
order in Qy, i.e. κ = kxQx + (2l − sgn(l) )Qy + kzQz with kx, kz ∈ Z and l ∈ Z∗.

For the spin and orbital trajectories we have

Theorem 2.10 If in an accelerator with perfect mid–plane symmetry (~z(θ), Ŝ(θ)) is a solution of the
combined spin–orbit EOM for the initial conditions Ŝ(0) = Ŝ0 and ~z(0) = ~z0, then ( Y πŜ(θ) , Y −~z(θ) )
is a solution for the initial conditions Y πŜ(0) = S̃0 and Y −~z(0) = z̃0.
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Since the symmetry of the orbital trajectories is well established in mid–plane symmetric rings, we
only have to prove the T–BMT part. To do that we note that ~z(θ) and z̃(θ) ≡ Y −~z(θ) are solutions
of the corresponding orbital initial value problems. At θ = 0 the statement of the theorem is true by
construction of the initial conditions. For θ > 0 we find from Ω̃(~z) = ~Ω(z̃)

Dθ Ŝ(θ) = ~Ω(~z) × Ŝ(θ) ⇔
Dθ Y πŜ(θ) = Y π (~Ω(~z) × Ŝ(θ)) ⇔

Dθ S̃(θ) = Ω̃(~z) × (Y πŜ(θ)) = ~Ω(z̃) × S̃(θ) , (2.120)

where we have used the abbreviation S̃(θ) ≡ Y πŜ(θ). 2

Corollary 1: In a perfectly mid–plane symmetric ring Y π commutes with the T–BMT flow in
the sense that Y π R(θf , θi; ~zi) = R(θf , θi; z̃i)Y π.

Corollary 2: In a perfectly mid–plane symmetric ring the quaternionic OTM r̄(θ; ~zi) ≡ (e0, o1, e2, o3)
is such that e0 and e2 only contain even harmonics in Ψy whereas o1 and o3 contain only odd har-
monics. Equivalently the SU(2) OTM r = f(r̄) is given by

( e11 o12
−o∗12 e∗11

)
, where e11 contains only even

and o12 contains only odd harmonics of Ψy.

We return to corollary 2 in section 4.8 where we use it for a more general discussion about which
resonances are allowed in mid–plane symmetric rings.

The transformation ~z → z̃ is symplectic and Y π is orthogonal with unit determinant. Therefore
both transformations are topologically connected to the identity. If the orbital motion is integrable
then ~z and z̃ are on the same torus ~J = const. and if ~z belongs to Ψy, then z̃ belongs to Ψy + π.
Therefore the parametrisation ~z(Ψy) with Ψx,Ψz = const. is a circle on the torus and ~z(Ψy + π) =
z̃(Ψy). We assume the orbital OTM to be continuous w.r.t. the angles Ψi so that it transforms any
closed curve in the phase space into another closed curve. Then this circle is transported by the
orbital OTM to the circle ~z(Ψ′

y ≡ Ψy + 2πQy) with Ψx + 2πQx,Ψz + 2πQz = const. which again

fulfils ~z(Ψ′
y + π) = z̃(Ψ′

y). We can now define infinitely many parametrisations of closed curves Ŝ(Ψy)

on the unit sphere so that Ŝ(Ψy + π) = S̃(Ψy). If the spin OTM is continuous w.r.t. the Ψi, these

curves are transported by the spin OTM to the closed curves Ŝ′(Ψ′
y) ≡ R(~Ψ)Ŝ(Ψy) which again fulfil

Ŝ′(Ψ′
y+π) = S̃′(Ψ′

y). In general the shape of these curves will change from turn to turn but in chapter
4 we will introduce for the case Jx = Jz = 0 special curves n̂(Ψy) whose shape is invariant under
the spin OTM and which in a mid–plane symmetric ring fulfil n̂(Ψy + π) = ñ(Ψy). The T–BMT

equation is linear in Ŝ. Therefore also −Y π commutes with the T–BMT flow in the sense of corollary
1 but it has determinant −1 and is therefore not topologically connected with the identity. Hence one
cannot construct closed curves with Ŝ(Ψy + π) = −Y πŜ(Ψy).

We now briefly mention another type of resonance with ~k = ~0 called imperfection resonances. In
every “real” accelerator the closed orbit is perturbed due to quasi–random dipole errors and misaligned
quadrupoles. In this paragraph we will distinguish between quantities measured w.r.t. the unperturbed
design orbit indicated by the label 00 and w.r.t. the perturbed closed orbit indicated by the label 0. If
the design orbit spin tune ν00 is an integer then the one–turn spin map evaluated on the design orbit
R00 is just the identity and n̂00 is arbitrary. Then the perturbed orbit spin OTM R0 and the spin
closed orbit n̂0 measured w.r.t. the “real”, perturbed closed orbit is dominated by the perturbations
even if they can be considered small. Nevertheless for any given, fixed lattice, no matter whether it
is perturbed or not, the on–orbit spin OTM R0, the spin closed orbit n̂0 and the perturbed on–orbit
spin tune ν0 can be computed at least numerically. However, the closed orbit perturbations are in
general not known beforehand, simply because “misalignment” and “errors” are statistical properties
of the manufacturing and commissioning process. — If they were predictable and controllable in a
deterministic way one could just as well set them up to be zero. The imperfection resonance strength
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εk0 is defined as the Fourier harmonic corresponding to ν00 = k0 of

ζ0(θ) ≡ (~Ω0(θ) − ~Ω00(θ)) · (m̂(θ) − il̂(θ)) , (2.121)

where m̂ and l̂ are defined by equation (2.94) and w.r.t. the design orbit. The imperfection resonance
strengths can be computed numerically for various random seeds of “misalignment” and field errors
and can to some extent be corrected by means of harmonic orbit bumps [BR99a]. Large imperfection
resonance strengths εk0 imply strong dependence of n̂0 on orbit distortions and potentially strong
deviation of n̂0 from n̂00 at ν00(E0) = k0. As we will see in section 2.4 the perturbed on–orbit
spin tune does not cross any imperfection resonance with non–vanishing strength but jumps from
ν−0 ≡ k0 − εk0 to ν+

0 ≡ k0 + εk0 at ν00 = k0. Therefore for non–integral resonance strength the
perturbed n̂0 is always uniquely defined.

The imperfection resonance strengths do not appear in the generalised Fourier expansion (2.108)
of ζ since it is to be performed w.r.t. an arbitrary but known spin closed orbit n̂0 or n̂00.

It is worth mentioning that once a lattice produces vertical closed orbit perturbations, the condition
in (2.119) is not fulfilled so that Theorem 2.9 does not rigorously apply to any “real” accelerator. But
if the vertical closed orbit perturbations are small and ν00 is not close to an integer, the strengths
of dynamical resonances including even multiples of Qy are significantly weaker than those including
odd multiples of Qy. On the other hand, if ν00 is close to a strong imperfection resonance, the effect
of the orbit perturbations on spin motion is particularly strong, i.e. n̂0 is strongly tilted from the
vertical, and then there is generally no reason why resonances including even orders in Qy should be
significantly weaker than odd ones.

Following a derivation by Hoffstaetter [GH99a] (see also [BR99a]) the first order resonance strengths
can be computed from the 8 × 8 linearised OTM of combined spin–orbit motion M . We first rewrite
the G–matrix

−G(θ)~zi =



=
{
e−iν0θ

∫ θ+2π
θ ζ(1)(~zi, ϑ)e+iν0ϑ dϑ

}

<
{
e−iν0θ

∫ θ+2π
θ ζ(1)(~zi, ϑ)e+iν0ϑ dϑ

}




=



=
{
e−iν0θ

∫ θ+2π
θ (m̂(ϑ) − il̂(ϑ))TW (ϑ)e+iν0ϑ dϑ

}

<
{
e−iν0θ

∫ θ+2π
θ (m̂(ϑ) − il̂(ϑ))TW (ϑ)e+iν0ϑ dϑ

}


~zi

= D

∫ θ+2π

θ
D−1(ϑ, θ)

(−l̂T(ϑ)

m̂T(ϑ)

)
W (ϑ) dϑ ~zi = D

∫ θ+2π

θ

(−l̂T0 (ϑ)

m̂T
0 (ϑ)

)
W (ϑ) dϑ ~zi

= DG0(θ)~zi . (2.122)

in terms of the 3 × 6-matrix W , so that ~ω(1)(~zi, θ) = W (θ)~zi, and the G0–matrix

G0(θ) ≡
∫ θ+2π

θ
(−l̂0(ϑ), m̂0(ϑ))TW (ϑ) dϑ . (2.123)

Here we have used the relations

(l̂, m̂) = (l̂0, m̂0)D
−1(θ − θ0) , (l̂, m̂)T = D(θ − θ0)(l̂0, m̂0)

T . (2.124)

In the following we also need

(m̂− il̂) = e−i(θ−θ0)ν0(m̂0 − il̂0) , R0(θ)(m̂0 − il̂0) = e+i2πν0(m̂0 − il̂0) . (2.125a)

Then for ν0 = k0 + ~k · ~Q and |~k| = 1 we obtain

εν0 = lim
N→∞

1

2πN

∫ 2πN

0
ζ(1)(θ, ~J,~0)e+iν0θ dθ
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= lim
N→∞

1

2πN

∫ 2πN

0
(m̂− il̂)TWe+iν0θ dθ ~z0

= lim
N→∞

1

2πN

∫ 2πN

0
(m̂0 − il̂0)

TW dθ ~z0 (2.126a)

= lim
N→∞

1

2πN

N−1∑

j=0

∫ 2π

0
(m̂0 − il̂0)

TRjTW dθ T j ~z0

= lim
N→∞

1

2πN

N−1∑

j=0

∫ 2π

0
eij2πν0(m̂0 − il̂0)

TW dθ T j ~z0

= lim
N→∞

1

2πN

N−1∑

j=0

ei2πjν0(i, 1)G0 T
j ~z0 (2.126b)

where we have abbreviated ~z0 ≡ ~z( ~J, ~Ψ = ~0). Equation (2.126b) can be further simplified [GH99a]
in the case of the linear orbital motion being stable by performing a normal form transformation (see
appendix A) so that

T = C−1 diag(ei2πq1 , · · · , ei2πq6)C with q2i−1 = [Qi], q2i = −[Qi] . (2.127)

Then if there is an n so that [ν0] + qn = 0 we can use the relation limN→∞
1
N

∑N−1
j=0 eij2πκ = δ0,[κ] and

find

εν0 =
(i, 1)

2π
G0 C

−1


 lim
N→∞

1

N

N−1∑

j=0

diag(eij2π(ν0+q1), · · · , eij2π(ν0+q6))


 C~z0

=
(i, 1)

2π
G0 C

−1 diag(· · · , 0(n−1), 1(n), 0(n+1), · · ·)C~z0

=
(i, 1)

2π
G0~cn

√
2Jne

iΨ0,n , (2.128)

where we have used the normalised complex eigenvectors ~ci of T . In the case that there is no ~k with
|~k| = 1 so that ν0 = k0 + ~k · ~Q, the resonance strength εν0 is identically zero. Note that the modulus
|εν0 | is independent of the initial phase.

Another way [GH99a] to proceed with equation (2.126b) again uses (2.124) and (2.125) and also
the product (

T 0
G D

)N
=

(
TN 0∑N

j=1 D
N−j G T j−1 DN

)
. (2.129)

Therefore we find

εν0 = lim
N→∞

1

2πN

N∑

j=1

ei2π(j−1)ν0(i, 1)G0 T
j−1 ~z0

= lim
N→∞

ei2πNν0

2πN

N∑

j=1

e−i2π(N−j)ν0(i, 1)G T j−1 ~z0

= lim
N→∞

ei2πNν0

2πN

N∑

j=1

(−i,−1)DN−j G T j−1 ~z0

= lim
N→∞

ei2πNν0

2πN
(~0T, i, 1)MN




~z0
0
0


 . (2.130)
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We have seen in (2.128), (2.130) that the linear intrinsic resonance strengths can be computed from
the total linear flow M without actually performing a Fourier decomposition. A numerical Fourier
decomposition as in equation (2.109) can become quite cumbersome at large Gγ since the integrand
must be evaluated at a large number of points θj, j = 1, · · · , N which will normally not be equidistant
and therefore not suitable for FFT–techniques. In fact matrix methods have other advantages over
the use of spin–orbit integrals [BR99a]. In [GH99b] a method for obtaining the G–matrix from the
linearised one–turn quaternion is discussed.

2.3.3 Spin–orbit coupling integrals

We will now motivate a method for analysing the first order dependence of spin motion on the orbital
motion that will turn out to give a remarkably simple and intuitive approach to decoupling spin motion
from the orbital motion in the case of flat or flattened (see definition 3.2) rings. The apparent simplicity
of treating symmetries in the framework of linear spin–orbit coupling integrals will in particular enable
us in chapter 3 to explain the first order effect of Siberian Snakes on spin motion in accelerators. It
should be noted here that this approach is well suited to performing analytic estimates in simple
models of rings or for highly periodic parts of rings but that, as explained in the previous section,
matrix methods are more efficient for numerical first order analysis.

The on–orbit spin action I0 ≡ n̂0 · Ŝ as introduced in equation (2.96) is conserved only on the
design orbit. For any finite orbital amplitude we obtain

Dθ I0 = (~Ω0 + ~ω) × Ŝ · n̂0 + Ŝ · ~Ω0 × n̂0 = ~ω × Ŝ · n̂0 = ~S⊥ × n̂0 · ~ω , (2.131)

where ~S⊥ = Ŝ − n̂0 n̂0 · Ŝ is the component of Ŝ perpendicular to n̂0. In the same manner as in the
last section we can perform perturbation theory in ~ω and obtain in 0–th order I0 = const. = I00 and
that ~S⊥ precesses around n̂0. We recall that in the (l̂0, n̂0, m̂0) frame of T–BMT solutions (2.92) a

spin on the design orbit does not precess and rewrite ~S
(0)
⊥ in terms of ~k0(θ) ≡ l̂0(θ) + im̂0(θ), ~k0 ∈ C3,

‖~k0‖ =
√

2 as

~S
(0)
⊥ (θ) =

√
1 − I2

00 <
(
~k0(θ)e

iΦ0

)
. (2.132)

Inserting ~S
(0)
⊥ into equation (2.131) we find

Dθ I
(1)
0 =

√
1 − I2

00 <
(
eiΦ0~k0 × n̂0 · ~ω

)
=
√

1 − I2
00 =

(
eiΦ0~k0 · ~ω

)
. (2.133)

Note that equation (2.133) has two unphysical unstable fixed points at I0 = ±1 introduced by the
polar decomposition of Ŝ. These fixed points reflect the fact that the derivative of I0, which is the
cosine of the angle between n̂0 and Ŝ, w.r.t. this angle vanishes for vanishing angle. Also note that
this first order approximation of I0 violates orthogonality since I0(θ) is not necessarily bounded for
arbitrary ~ω. We can modify it to preserve orthogonality by substituting the constant

√
1 − I2

00 in the

r.h.s of equation (2.133) with the variable

√
1 − (I

(1)
0 )2. The resulting ODE is still solvable and with

F (θ; Φ0, ~z0) ≡ =
(
eiΦ0

∫ θ

0

~k0(θ
′) · ~ω(θ′; ~z0) dθ

′
)

(2.134)

and −1 < I00 < +1 we obtain by separation of variables

arcsin Ĩ0(θ) − arcsin I00 = F (θ; Φ0, ~z0)

⇒ Ĩ0(θ) = I00 cosF (θ; Φ0, ~z0) +
√

1 − I2
00 sinF (θ; Φ0, ~z0) (2.135)
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which satisfies Ĩ0(θ) ∈ [−1, 1] and stays well defined also in the limit I00 → ±1! In fact this approxi-
mation just represents the rotation of Ŝ from its initial direction by the angle F . More precisely, the
angle between n̂0 and Ŝ, α̃ ≡ arccos I0 is given by

|α̃(θ) − α̃00| = |F (θ; Φ0, ~z0)| mod π . (2.136)

Therefore if we start with Ŝ(0) ‖ n̂0(0) and if |F (θ; Φ0, ~z0)| ≤ ε̃ < π for all θ the motion of α̃(θ)− α̃00 is
bounded in the interval [−ε̃,+ε̃] — in the above approximation. In the higher order approximations
mentioned in section 2.2.2 the deviation of the actual spin precession rate from ν0 (e.g. by the terms
−βωn and αωn in equations (2.98a) and (2.98b)) and the coupling between I0 and ~S⊥ are successively
included.

We note that following the definition in equation (2.123) we have

G0(0)~z0 =

(−F (1)(2π; π2 , ~z0)

+F (1)(2π; 0, ~z0)

)
, (2.137)

where F (1) indicates that ~ω = ~ω(1) is used. Also from equation (2.126a) for any linear intrinsic
resonance ν0(E0) = k0 + ~k · ~Q, |~k| = 1 we obtain

−iεν0( ~J, ~Ψ0, E0) = lim
θ→∞

F (1)(θ; 0, ~z0)

θ

∣∣∣∣∣
~z0( ~J,~Ψ0),E0

. (2.138)

We now assume that the orbital motion is linear, that the transverse phase space planes are
decoupled and that ~ω = ~ω(1) depends only linearly on the orbital coordinates. Under these assumptions
~ω(1) can be decomposed into the contributions due to radial (x), vertical (y) and longitudinal (z) orbital
motion.

~ω(1)(θ; ~J, ~Ψ0) ≡ ~ωx(θ; Jx,Ψx,0) + ~ωy(θ; Jy,Ψy,0) + ~ωz(θ; Jz,Ψz,0) . (2.139)

If the effects of ~B‖ and ~E in ~Ω can be neglected, these contributions can be written in terms of β–
functions βx,y, periodic dispersions ~xD, ~yD, the focusing function K and orbital phase advances ψx,y
[CY81, SM93, BR99a]

~ωj(θ; Jj ,Ψi,0) ≡ 1

2

√
2Jj

(
~ω+
j (θ)e+iΨj,0 + ~ω−

j (θ)e−iΨj,0

)
, j = x, y, z (2.140a)

~ω±
x (θ) = (Gγ + 1)K(θ)

√
βx(θ) e

±iψx(θ) ŷ (2.140b)

~ω±
y (θ) = −(Gγ + 1)K(θ)

√
βy(θ) e

±iψy(θ) x̂ (2.140c)

~ω±
z (θ) = (Gγ + 1)K(θ) (xD(θ)ŷ − yD(θ)x̂) e±iψz(θ) . (2.140d)

We now define the 6 linear spin–orbit coupling integrals 5 as the one–turn integrals

I±j (θ) =

∫ θ+2π

θ
~ω±
j (θ′) · ~k0(θ

′) dθ′ , j = x, y, z . (2.141)

An accelerator is said to be linearly spin matched [BR99a] at an azimuth θ0 if all the I±j (θ0) van-

ish. Then in first order perturbation theory in ~ω(1) a spin starting on an arbitrary synchro–betatron
trajectory ~ξ(θ; ~z0, θ0) with initial conditions Ŝ(θ0; ~z0, θ0) ≡ n̂0(θ0) will return after one revolution,
Ŝ(θ0 + 2π; ~z0, θ0) = n̂0(θ0). This linear approximation is of course only valid in a finite and normally
rather small vicinity of ~z0 = ~0 and it does not mean that Ŝ(θ; ~z0, θ0) = n̂0(θ) for all θ ∈ [θ0, θ0 + 2π].

5Don’t confuse the on–orbit spin action I0 with the linear spin–orbit coupling integrals I±
j !
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In an unperturbed ring with mid–plane symmetry, i.e. when ~k0 is in the horizontal plane and
yD ≡ 0, all contributions to the I±j which are proportional to ŷ or yD vanish identically. Therefore

only the vertical spin–orbit coupling integrals I±y survive and

I±,mps
x (θ) ≡ I±,mps

z (θ) ≡ 0 . (2.142)

Additionally we can set l̂0(0) ≡ x̂ and m̂0(0) ≡ ẑ at some reference azimuth θ0 = 0 and hence express
~k0(θ) in terms of x̂ + iẑ and the on–orbit spin phase advance φ(θ) in the Frenet–Serret comoving
coordinate system with

φ(0) ≡ 0 , φ(θ + 2π) − φ(θ) = 2πν0 . (2.143)

We find ~k0(θ) = (x̂+ iẑ)eiφ(θ) and therefore

I±,mps
y (θ) = −(Gγ + 1)

∫ θ+2π

θ
K(θ′)

√
βy(θ′) e

i(φ(θ′)±ψy(θ′)) dθ′ . (2.144)

If the ring has a superperiodicity P ∈ N∗, then with h(θ) ≡ −(Gγ + 1)K(θ)
√
β(θ) and T ≡ 2π/P the

condition h(θ + T ) = h(θ) holds. As a consequence of Floquet’s theorem (see appendix A) we have

φ(θ + 2π) − φ(θ) = 2πν0 , φ(θ + T ) − φ(θ) = Tν0 ≡ 2πν0,P (2.145a)

ψy(θ + 2π) − ψy(θ) = 2πQy , ψy(θ + T ) − ψy(θ) = TQy ≡ 2πQy,P (2.145b)

and hence [KS88b, VA98, GH99c, SL97]

I±,mps
y (θ) =

P−1∑

j=0

ei2πj(ν0,P ±Qy,P )

∫ θ+T

θ
h(θ′) ei(φ(θ′)±ψy(θ′)) dθ′

=
1 − ei2πP (ν0,P±Qy,P )

1 − ei2π(ν0,P ±Qy,P )

∫ θ+T

θ
h(θ′) ei(φ(θ′)±ψy(θ′)) dθ′

≡ ξP (2π(ν0,P ±Qy,P ))) I±,mps
y,P (θ) , (2.146)

where we have defined the complex amplification function

ξP (x) ≡ 1 − eiPx

1 − eix
with (2.147a)

|ξP (x)| =

∣∣∣∣∣
sin Px

2

sin x
2

∣∣∣∣∣ , <ξP (x) =
1

2

(
1 +

cos((P − 1)x) − cosPx

1 − cos x

)
(2.147b)

ξP (x)
∣∣∣
x=0 mod 2π

= P , ξP (x)
∣∣∣
x=l 2π

P
mod 2π,1≤l≤P−1

= 0 (2.147c)

and the spin–orbit coupling integral for one period I±,mps
y,P (θ). It is easy to show that |ξP (x)| is 2π–

periodic and that in the interval [0, 2π) it has one global maximum at x = 0 and P − 2 additional
local maxima. These additional local maxima strongly decay for sufficiently large P and for odd P
we have ξP (π)/ξP (0) = 1/P . Therefore we conclude

1. at the resonance ν0,P ± Qy,P = 0 mod 1 the spin–orbit coupling is particularly enhanced (see
(2.113)).

2. There are magic energies E±
P with ν0,P (E±

P ) ±Qy,P = l
P , 1 ≤ l < P where one of the I±,mps

y (θ)
identically vanishes. Assuming that Qy,P 6= 1/2 we can never make both integrals vanish simul-
taneously.
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We now assume that each superperiod consists of a 1/2 leading straight section from θ = 0 mod T
to θl mod T , an arc made of M identical cells (e.g. FODO cells) from θ = θl mod T to θt mod T and
a 1/2 trailing straight section from θ = θt mod T to T mod T . Then using TC = (θt− θl)/M we obtain

I±,mps
y,P (0 mod T ) =

∫ θl

0
h ei(φ±ψy) dθ +

∫ θt

θl

h ei(φ±ψy) dθ +

∫ T

θt

h ei(φ±ψy) dθ

≡ I±l + ξM(2π(ν0,C ±Qy,C)) I±,mps
C + I±t , (2.148)

where we have introduced the integral over one arc–cell I±,mps
C ≡

∫ θl+TC

θl
h ei(φ±ψ) dθ and the spin

and orbital phase advance per cell 2πν0,C = φ(θl + TC) − φ(θl) and 2πQy,C = ψy(θl + TC) − ψy(θl)
respectively. Obviously ν0,C ± Qy,C do not produce magic energies since they don’t affect the con-
tribution from the straight sections, but whenever ν0,C ± Qy,C = 0 mod 1 the contribution from the
highly periodic arcs is strongly enhanced (see (2.116)).

The six linear spin–orbit coupling integrals I±j , j = x, y, z can each be expressed in terms of

integrals over single complex orbital eigenmodes ~V ±
j (θ)e±iQjθ (see appendix A for the definition of

the orbital eigenvectors). This procedure can easily be generalised to coupled orbital motion in rings
without mid–plane symmetry [SM86b]. Each integrand is therefore an elementarily pseudo–periodic
function over one single tune ±Qj,P and its generalised Fourier coefficients can be generated by one–
turn integrals. Using equations (2.138) to (2.141) we can construct the linear intrinsic resonance
strength εk0±Qj

if ν0,P = k0 ±Qj,P and obtain

iεk0±Qj
(J,Ψ0, E0) =

√
2Jje

∓iΨ0,j lim
N→∞

1

2πN
ξN (2π(ν0 − k0 ∓Qj,P ))

1

2
I∓j (0)

∣∣∣
ν0,P (E0)=k0±Qj,P

=

√
2Jj e

∓iΨ0,j

4π
I∓j (0)

∣∣∣
ν0,P (E0)=k0±Qj,P

. (2.149)

Resonance strengths are in general not the same as spin–orbit coupling integrals — not even in the case
of a ring with perfect mid–plane symmetry. In particular ε

k0,~k
is the generalised Fourier component

of a function ζ which is pseudo–periodic over the tunes ~QP and therefore vanishes identically for all
ν0,P (E0) 6= k0 + ~k · ~QP . In contrast to the resonance strengths, the spin–orbit coupling integrals
which are one–turn integrals never vanish for all θ except at some magic energies. Nevertheless, if the
spin–orbit coupling can be decomposed into contributions from different elementarily pseudo–periodic
orbital modes and the I±j are evaluated at the resonant spin tune they provide a tool for obtaining the
generalised Fourier coefficients of the T–BMT driving term perpendicular to n̂0 in terms of one–turn
integrals. This is a second viewpoint on how equations (2.146) and (2.148) explain the significance of
the strong and super–strong resonances as defined in equations (2.113) and (2.116).

2.4 The single resonance model

So far we have treated spin–orbit coupling using the full ~ω and the approximations of (2.102a) to
(2.102d) and (2.133). However, if a particular resonance dominates the spin motion, then by noting
that the contribution to ~ω from this harmonic represents a vector rotating in the plane perpendicular
to n̂0, an exactly solvable model containing just a single resonance can be employed [CR80, SM88,
SM92, HH96, SL97]. Although this single resonance model (SRM) was originally motivated by the
calculation of first order resonance effects [CR80], it has wider applicability so that in the following
a general form will be presented. Since the model includes only one resonance the coupling between
spin and all but one phase space plane is neglected. The orbital motion is assumed to be integrable
so that one can either eliminate the dependence of ~Ω on the orbital phases [CR80, SL97] or on the
azimuth [SM88, HH96]. We will keep the phase as well as the azimuthal dependence and define the



2.4. THE SINGLE RESONANCE MODEL 43

SRM as

Dθ J = 0 , Ψ(θ) = Ψ0 +Qθ , Dθ Ŝ = (~Ω0 + ~ω) × Ŝ

~Ω0 = const. = ŷ ν0 , ~ω(Ψ, θ) = ε (x̂ sin(k0θ + kΨ + ψε) + ẑ cos(k0θ + kΨ + ψε)) , (2.150)

where k 6= 0 and k0 are integers, Q and ν0 may contain an integer part and where in principle ε ∈ R+

and ν0 ∈ R can be arbitrary functions of E0 and J . ψε is some real phase factor. We discuss a
physical interpretation of the model below but note here that if equation (2.150) is meant to represent
spin motion on a vertical betatron trajectory in a mid–plane symmetric ring, then k must be odd.
We will not perform any perturbation expansions within this model — since we can solve the EOM
analytically — but normally one assumes ε to be continuous w.r.t. J in some vicinity of J = 0 and
ε|J=0 = 0. Also ν0 is normally assumed to be independent of J so that it can be identified with the
on–orbit spin tune. The only constraints on (x̂, ŷ, ẑ) are that they form a right–handed basis and that
they are periodic in θ and Ψ. The most simple choices are the lab–system or the Frenet–Serret–system
which are trivially periodic. Then ~Ω is assumed to model the precession as described by the original
T–BMT equations in the lab- or Frenet–Serret–system respectively. Nevertheless the model is rather
general and we will occasionally use a more complicated periodic frame and drop the assumptions on
ε and ν0 in later chapters (e.g. 4.8). Note that ~Ω = ~Ω0 + ~ω is 2π–periodic w.r.t. θ and Ψ so that
~Ω(Ψ(θ), θ) is pseudo–periodic over Q or, to be more precise, elementarily pseudo–periodic over kQ
(see appendix A.1.3). Since ~Ω0 = ν0ŷ = const. we find n̂0(θ) = ±ŷ and without loss of generality
choose the sign to be +. In the limit ε→ 0 a spin is transported in the (x̂, ŷ, ẑ) frame by

R0(θf , θi) =




cos ν0∆ 0 − sin ν0∆
0 1 0

sin ν0∆ 0 cos ν0∆


 , (2.151)

with ∆ ≡ θf − θi. At θ0 = 0 we choose our right–handed coordinate systems (l̂(0), n̂0(0), m̂(0)) ≡
(l̂0(0), n̂0(0), m̂0(0)) ≡ (x̂, ŷ, ẑ). At any other θ ∈ R we obtain

(l̂0(θ), m̂0(θ)) = R0(θ, 0)(l̂0(0), m̂0(0)) = (x̂, ẑ)

(
cos ν0θ sin ν0θ
− sin ν0θ cos ν0θ

)
(2.152a)

⇒ ~k0(θ) = (x̂+ iẑ)eiν0θ (2.152b)

(l̂(θ), m̂(θ)) = R0(θf , θi)(l̂0(0), m̂0(0))

(
cos ν0∆ − sin ν0∆
sin ν0∆ cos ν0∆

)
= (x̂, ẑ) (2.152c)

⇒ ζ(θ) = ωz − iωx = ε e−i(kΨ0+ψε+k0θ+kQθ) . (2.152d)

Therefore we find

εκ = ε e−i(kΨ0+ψε) lim
N→∞

1

2πN

∫ 2πN

0
e−i(k0+kQ)θeiκθ dθ = ε e−i(kΨ0+ψε) δκ,k0+kQ , (2.153)

proving that our model (2.150) has indeed only a single resonance with the modulus of the strength
being ε.

The SRM can be interpreted in terms of dynamical k–th order spin–orbit coupling integrals. Since
~ω is pseudo–periodic over Q and elementarily pseudo–periodic over kQ it has only one generalised
Fourier coefficient which is proportional to the orbital amplitude to the k–th power. We introduce the
normal form orbital coordinates q =

√
2J cos Ψ and p = −

√
2J sinΨ and the two complex conjugate

eigenmodes ξ = q − ip =
√

2JeiΨ and ξ∗ = q + ip =
√

2Je−iΨ. A homogeneous complex k–th order
form in the complex eigenmodes then has the general form h+(θ)ξk(θ)+h−(θ)ξ∗k(θ) where h+ and h−

are two independent functions. We assume h± to contain only the k0–th harmonic of the revolution
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frequency, i.e. h± ≡ ε0e
±ik0θ and construct the contributions to ~ω from the two complex eigenmodes

as in equation (2.140a)

~ω =
1

2
(2J)

k
2

(
~ω(k)+ e+ikΨ0 + ~ω(k)− e−ikΨ0

)
, ~ω(k)± = ε0 (ẑ ∓ ix̂)e±i(ψε+(k0+kQ)θ) . (2.154)

In this interpretation we obtain a model of the J–dependence of ε as in equation (2.150) for a dynamical
k–th order resonance

ε = ε0 (2J)
k
2 e−i(kΨ0+ψε) , ε0 = const. . (2.155)

Now we define the two dynamical k–th order spin–orbit coupling integrals

I(k)±(θ) =

∫ θ+2π

θ
~ω(k)±(θ′) · ~k0(θ

′) dθ′

= ε0e
±iψε

∫ θ+2π

θ
(ẑ ∓ ix̂) · (x̂+ iẑ)ei(ν0±(k0+kQ))θ′ dθ′

= 2iδ±− ε0e
−iψε

∫ θ+2π

θ
ei(ν0−(k0+kQ))θ′ dθ′

= 2iδ±− ε0e
i(ν0−(k0+kQ))θ−iψε

ei2π(ν0−(k0+kQ)) − 1

i(ν0 − (k0 + kQ))
, (2.156)

where we have used (ẑ − ix̂) · (x̂+ iẑ) = 0, (ẑ + ix̂) · (x̂+ iẑ) = 2i and rather symbolically introduced
δ±− = 0 for I(k)+ and δ±− = 1 for I(k)−. At ν0 = k0 +kQ we find I(k)− = 4πε0e

−iψε and use of equations
(2.149) and (2.153) yields

i εk0+kQ(J,Ψ0, E0) =
e−ikΨ0(2J)

k
2

4π
I(k)−

∣∣∣
ν0(E0)=k0+kQ

. (2.157)

Two remarks are needed here.

1. The ~ω in equation (2.150) describes a rotating field. For k = 1 we could think of a ring made
of one long combined function magnet with constant horizontal curvature and constant focusing
strength K to obtain ~ω ∼ sin(k0 + Q)θ along the radial direction. If we drop either x̂ or iẑ
in equation (2.154) we obtain ~ω(Ψ, θ) ∼ ẑ cos(ψε + k0θ + Ψ) or ~ω(Ψ, θ) ∼ x̂ sin(ψε + k0θ + Ψ)
respectively. As one can easily see from equation (2.156), in such a system I− and I+ in general
are both non–zero and we would end up with 2 resonances at k0 +Q and k0 −Q with strength
ε/2 each. As it is, equation (2.154) just represents a rotating field for a resonance at ν0 = k0 +Q.

2. The key assumption of the SRM is that ~ω has only one generalised Fourier harmonic. We

could extend the model to full 6–dimensional orbital motion with ξj ≡
√

2Jje
iΨj , ~ω(~k)± =

ε0(ẑ∓ ix̂)e±i(ψε+(k0+~k· ~Q)θ) and would obtain a single resonance with strength proportional to the

|~k|–th order monomial (2 ~J)
~k/2 :=

∏
(2Jj)

|kj |/2 in the orbital amplitudes at position ν0 = k0+~k· ~Q.
These additional degrees of freedom would not introduce any new dynamics but only shift the
resonance position. The SRM is defined to contain one single harmonic of ~ω. This property is
embodied in the dependence of ~ω on θ and Ψ. The vector ~ω, evaluated along an orbital trajectory,
rotates in the plane perpendicular to n̂0 with the constant rate κ = k0+kΨ and is periodic w.r.t. θ
and Ψ. The extension simply implies ~ω/ε = x̂ sin(k0θ + ~k · ~Ψ + ψε) + ẑ cos(k0θ + ~k · ~Ψ + ψε) so
that ~ω rotates with the constant rate κ = k0 + ~k · ~Q and is periodic w.r.t. θ and the Ψi.

We will now solve the EOM (2.150) explicitly for constant ν0 and ε. For this purpose we introduce
the following abbreviations:

the resonance position κ ≡ k0 + kQ , (2.158a)
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the resonance phase φ(θ,Ψ) ≡ ψε + k0θ + kΨ , (2.158b)

with Dθ φ ≡ (∂θ +Q∂Ψ )φ = κ (2.158c)

the proximity parameter δ ≡ ν0 − κ (2.158d)

and λ ≡
√
δ2 + ε2 , (2.158e)

so that ~ω = ε(x̂ sinφ + ẑ cosφ). We note that φ mod 2π is 2π–periodic in θ as well as in Ψ so that
every 2π–periodic function of only φ is also 2π–periodic in θ and Ψ. This function, if evaluated along
a trajectory, would then be elementarily pseudo–periodic. Equation (2.150) can now be solved using
equation (2.17) where A is a rotation around ŷ by −φ(θ,Ψ):

A(θ,Ψ) ≡




cosφ 0 − sinφ
0 1 0

sinφ 0 cosφ


 ⇔ ā(θ,Ψ) ≡

(
cos

φ

2
, 0, sin

−φ
2
, 0

)
(2.159)

and

(Dθ A)AT =




0 0 −κ
0 0 0
κ 0 0


 and AΩAT =




0 −ε ν0

ε 0 0
−ν0 0 0


 , (2.160)

so that in the resonance precession frame we find

~Ωa = (0, δ, ε) , ∂θ ~Ωa = ∂Ψ
~Ωa = ~0 . (2.161)

In this frame the solution is just a rotation around n̂a = const. = ~Ωa/λ by the angle λ (θf −θi) so that
the flow in the resonance precession frame is independent of Ψ and reads in quaternion notation as

r̄a(θf , θi) =

(
cos

λ

2
(θf − θi), 0,

δ

λ
sin

λ

2
(θf − θi),

ε

λ
sin

λ

2
(θf − θi)

)
. (2.162)

Therefore the flow in the (x̂, ŷ, ẑ) frame is

r̄(θf , θi; Ψi) = ā−1(θf ,Ψi +Q(θf − θi)) r̄a(θf , θi) ā(θi,Ψi) (2.163)

or explicitly with ∆ ≡ θf − θi and φε(θf , θi) ≡ ψε + k0θi +
κ∆
2

r0(θf , θi; Ψi) = cos
λ∆

2
cos

κ∆

2
− δ

λ
sin

λ∆

2
sin

κ∆

2
(2.164a)

=

√
1 − ε2

λ2
sin2 λ∆

2
cos

(
κ∆

2
+ arctan(

δ

λ
tan

λ∆

2
)

)
(2.164b)

r1(θf , θi; Ψi) =
ε

λ
sin

λ∆

2
sin(φε(θf , θi) + kΨi) (2.164c)

r2(θf , θi; Ψi) = cos
λ∆

2
sin

κ∆

2
+
δ

λ
sin

λ∆

2
cos

κ∆

2
(2.164d)

=

√
1 − ε2

λ2
sin2 λ∆

2
sin

(
κ∆

2
+ arctan(

δ

λ
tan

λ∆

2
)

)
(2.164e)

r3(θf , θi; Ψi) =
ε

λ
sin

λ∆

2
cos(φε(θf , θi) + kΨi) . (2.164f)

Sometimes [SL97] the formulae (2.164b) and (2.164e) for r̄0 and r̄2 are considered more convenient
than (2.164a) and (2.164d). Both (2.164b) and (2.164e) are derived by using the (1, 1)–component
r11 = r0 − ir2 = (cos κ∆

2 − i sin κ∆
2 )(cos λ∆

2 − i δλ sin λ∆
2 ) of the corresponding SU(2)–matrix r = f(r̄).

Note that r0 and r2 are independent of Ψi and depend only on the difference of θf and θi. For
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a first order dynamical resonance we can recall the normal form coordinates q =
√

2J cos Ψ and
p = −

√
2J sinΨ and the J–dependence of ε = ε0

√
2J to find

r
(1),dyn
1 (θf , θi; qi, pi) =

ε0
λ

sin
λ∆

2
(sinφε qi − cosφε pi) (2.165a)

r
(1),dyn
3 (θf , θi; qi, pi) =

ε0
λ

sin
λ∆

2
(cosφε qi + sinφε pi) . (2.165b)

Thus on each fixed torus J = const. the exact flow r̄(1),dyn can be rewritten as an affine–linear function
of the normal form coordinates q and p. Nevertheless, due to the non–linear dependence on J which
is embedded in ε and λ, the flow is in general not linear in the orbital coordinates.

From equations (2.164a) to (2.164f) one immediately computes the one–turn map r̄(θ,Ψ) ≡ r̄(θ+
2π, θ,Ψ) ≡ (cos πµr, r̂ sinπµr) as:

r0(θ,Ψ) = cos πλ cos πκ− δ

λ
sinπλ sinπκ (2.166a)

r1(θ,Ψ) =
ε

λ
sinπλ sin(ψε + πκ+ k0θ + kΨ) (2.166b)

r2(θ,Ψ) = cos πλ sinπκ+
δ

λ
sinπλ cos πκ (2.166c)

r3(θ,Ψ) =
ε

λ
sinπλ cos(ψε + πκ+ k0θ + kΨ) , (2.166d)

which describes a rotation by the angle 2πµr(θ,Ψ) around the unit eigenvector r̂(θ,Ψ) with eigenvalue
1 of R(θ,Ψ). Strikingly r0 and r2 depend neither on θ nor on Ψ. Moreover from equations (2.166b)
to (2.166d) we see that r̂(θ,Ψ) is on a cone with half polar opening angle ϑr around +ŷ where

tanϑr ≡
√
r21 + r23
r2

=
ε| sinπλ|

λ cos πλ sinπκ+ δ sinπλ cos πκ
. (2.167)

Here 0 ≤ ϑr ≤ π is defined so that ϑr >
π/2 describes a cone with half polar opening angle π − ϑr

around −ŷ. Note that (cos φ2 , sin
φ
2 q̂) and (cos −φ

2 ,− sin −φ
2 q̂) are identical. In anticipation of chapter

4 we note that the periodic unit vector field r̂(θ,Ψ) is transformed by the OTM R(θ,Ψ) into r̂(θ,Ψ)
but for non–integral kQ it is not mapped into r̂(θ,Ψ + 2πQ) and hence it is not an invariant of the
spin OTM! In other words r̂(θ,Ψ) is not the n̂–axis of chapter 4. Moreover we will see in chapter 4
that the spin tune can in general not be computed from r0.

Following the notation introduced in definition 2.6 and equation (2.66) the spinor representation
of a vertical spin (Sy = 1) is y̌ ≡ eiξ(1, 0) with some arbitrary phase ξ ∈ R. It is transported by
the spinor OTM to y̌′ = ry̌ = eiξ(r11, r21). Since |r11|2 + |r21|2 = 1 and |r21|2 = r21 + r23 we find
S′
y = 1 − 2|r21|2 = 1 − 2(r2

1 + r23). We define the “vertical response function” Vε for the SRM with
strength ε or in general the “n̂0–response function” V ~J on some given invariant torus to be

V ~J(
~Ψ, θ) = 1 − 2‖~r ~J (θ; ~Ψ) × n̂0(θ)‖2 , −1 ≤ V ~J(

~Ψ, θ) ≤ +1 , (2.168)

where ~r ~J(θ;
~Ψ) is the vector part of the spin one–turn quaternion on the torus ~J = const. with initial

condition ~Ψ. For the SRM with n̂0 ≡ ŷ one immediately finds

Vε = const. = 1 − 2
ε2

λ2
sin2 πλ . (2.169)

This function has so–called nodal points [SL97] Vε = 1, ∂Ψ Vε = 0 whenever λ is an integer. At these
nodal points (and in general only at these) an initially vertical spin returns back to the vertical after
one–turn independently of the orbital phase. At pathological resonance strengths ε ∈ N a nodal point
appears, even exactly on resonance, i.e. δ = 0.
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It is interesting to look at some special and/or limiting cases. For an imperfection resonance
(k = 0 ⇒ [κ] = 0) we find substituting ν00 for ν0 and n̂00 for ŷ in (2.150)

r̄(θ,Ψ)
∣∣∣
k=0

=
(
± cos πλ, ± ε

λ
sinπλ sin(ψε + k0θ),

± δ

λ
sinπλ,± ε

λ
sinπλ cos(ψε + k0θ)

)
(2.170a)

| tanϑr| =
ε

|δ| , (2.170b)

where the sign “+/−’ is valid for even/odd κ = k0. Therefore n̂0 = sgn(δ)
λ (ε sin(ψε+k0θ), δ, ε cos(ψε+

k0θ)) and ν0 = sgn(δ)λ with δ ≡ ν00 − k0, are the perturbed spin closed orbit and the perturbed spin
tune in the limiting case of a single imperfection resonance. The factor sgn(δ) has been inserted so
that n̂0 → +n̂00 ≡ (0, 1, 0) and ν0 → +ν00 independently of the sign of δ in the limit ε→ 0.

If [κ] = 1/2 we obtain

r̄(θ,Ψ)
∣∣∣
[κ]=1/2

=
(
∓ δ

λ
sinπλ,

ε

λ
sinπλ cos(ψε + k0θ + kΨ),

± cos πλ,
ε

λ
sinπλ sin(ψε + k0θ + kΨ)

)
(2.171a)

| tanϑr| =
ε

λ
| tan πλ| , (2.171b)

where the sign “+/−’ is valid for even/odd κ− 1/2.

If 1/2 6= κ 6= 0 in equation (2.167), then ϑr is π/2 whenever λ fulfils the transcendental equation
δ
λ tanπλ+tanπκ = 0 with the additional constraint that λ 6∈ N. Therefore for any intrinsic resonance,
and for any order, the eigenvector of the spin OTM in the single resonance model tilts over into the
horizontal plane infinitely many times as δ is varied from −∞ to +∞! Nevertheless the widths (in δ)
of these peaks in tanϑr go to zero for δ → ±∞.

Exactly on resonance we have δ = 0 ⇒ λ = ε, δ/λ = 0 and ε/λ = 1 and hence

r̄(θ,Ψ)
∣∣∣
δ=0

=
(

cos πε cos πκ, sinπε sin(ψε + πκ+ k0θ + kΨ),

cos πε sinπκ, sinπε cos(ψε + πκ+ k0θ + kΨ)
)

(2.172a)

tanϑr

∣∣∣
δ=0

=
| sinπε|

cos πε sinπκ
. (2.172b)

Note that in general, i.e. when neither [ε] = 1/2 nor [κ] = 0, the rotation vector r̂ is not in the horizontal
plane when the system on resonance, i.e. δ = 0. For ε/δ → 0 we find λ→ |δ|, δ/λ → sgn(δ) , ε/λ→ 0
and get

lim
ε/δ→0

r̄(θ,Ψ) = ( cosπν0, 0, sin πν0, 0) , lim
ε/δ→0

tanϑr = 0 . (2.173)

Obviously when ν0 is “sufficiently” far away from κ compared to ε, then the spin motion is approx-
imately described by ~Ω0 and the OTM is just a rotation around ŷ by the angle 2πν0. In section 4.7
we will give a more precise definition for the effective width of a single resonance. Nevertheless, sup-
pose that we are given a system with many resonances {κi}1≤i≤n, pairwise “sufficiently” separated,
i.e. κi − κj � max(εi, εj), ∀1 ≤ i, j ≤ n, then we could hope to have a fairly good approximation of
the spin dynamics in that system by describing it piecewise with the SRM in some interval around
κi with the appropriate resonance strength εi. Under the assumption of well separated resonances
we will call the description of a spin–orbit system by piecewise application of a SRM with suitably
chosen parameters an isolated resonance model. This is one reason why the SRM is potentially so
useful. In section 4.8 we will motivate a heuristic model that generalises the SRM to systems in which
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the sources of spin perturbations are not well isolated. — This is another reason why the SRM is
important.

The n–turn map r̄n(θ,Ψ) ≡ r̄(θ + n2π, θ,Ψ) =
⊙n−1

j=0 r̄(θ,Ψ + j2πQ) is obtained from equations
(2.166a) to (2.166d) by simply replacing π with nπ. The unit eigenvector r̂n of the n–turn map seen
as a function of the orbital phase Ψ is on a cone around +ŷ with the n–dependent opening angle

tanϑr(n) =
ε| sinnπλ|

λ cosnπλ sinnπκ+ δ sinnπλ cosnπκ
. (2.174)

Note that as long as [Q] 6= 0 and k 6= 0, r̂n is not the image of the rotation vector of the OTM r̂ = r̂1

under n iterations of the OTM. Note also that in general, i.e. when both κ and λ are irrational, the
opening angle ϑr(n) at fixed Ψ, κ, δ and ε and for 1 ≤ n ≤ ∞ will cover almost the whole interval
[0, π] even far off–resonance. The significance of this property will become clear in section 3.2.3.

In the special case of an orbital resonance where nQ = m with n,m ∈ N all trajectories on the
torus close after n turns. Therefore the 2n–turn spin map is just the square of the n–turn spin
map and the field of unit eigenvectors r̂n(θ,Ψ) of the n–turn map is an invariant of motion. Since
nκ ≡ nk0 + nkQ = nk0 + km ∈ Z we find for the n–turn map

r̄n(θ,Ψ)
∣∣∣
nQ=m

= ±
(

cosnπλ,
ε

λ
sinnπλ sin(ψε + k0θ + kΨ),

δ

λ
sinnπλ,

ε

λ
sinnπλ cos(ψε + k0θ + kΨ)

)
(2.175a)

and hence r̂n(θ,Ψ)
∣∣∣
nQ=m

=
±1

λ

(
ε sin(ψε + k0θ + kΨ), δ, ε cos(ψε + k0θ + kΨ)

)
.(2.175b)

The global sign +/− in (2.175a) refers to m even/odd. But of course it does not enter the SO(3)
representation of the map. Additionally the sign of the eigenvector is of course totally arbitrary and
can be changed to sgn(δ) so that limε→0 r̂n(θ,Ψ)|nQ=m = n̂0 ≡ +ŷ.

Now that the basic mathematical methods have been established we are in a position to move on
and begin the discussion of spin motion in general rings.



Chapter 3

Siberian Snakes

As we have seen in section 2.3 and 2.4, in any real ring, i.e. in any ring containing not only horizontal
bends, radial and longitudinal field components experienced on synchro–betatron trajectories poten-
tially tilt an initially vertical spin away from the vertical. Even if these additional field components are
small compared to the vertical holding fields, the disturbance of spin motion can be large whenever
there is coherence between the spin precession and the perturbing field evaluated along a trajectory,
i.e. at some spin–orbit resonance ν0 = k0 + ~k · ~Q. Moreover since ν0 depends on the reference energy
E0, it is impossible to avoid resonances during acceleration unless special measures are taken. But this
problem could be immediately circumvented for the first order intrinsic and imperfection resonances
(ν0 = k0 + ~k · ~Q with |~k| = 1 or k0 respectively) if ν0 could be fixed independently of energy at a
value far enough away from all integers and all the [Qi]. ν0 can be made energy independent with
sets of magnetic devices called Siberian Snakes [DK75, DK78, DK79, DK89]. They are usually set up
so that ν0 = 1/2. Then with orbital tunes suitable for stable operation, i.e. incommensurable with
1 and somewhat away from the strong low order resonances, the low order spin–orbit resonances are
avoided as required. Snakes are also essential for running at fixed high energy.

However, it will become clear that although snakes are essential for attaining high polarisations,
at high energy the spin perturbations from the quadrupoles are so strong that resonances still have
a large influence. It is then not guaranteed that polarisation can be preserved even with snakes.
Nevertheless, it is found that some snake layouts are more effective than others.

In this chapter we will define the characteristics of Siberian Snakes and give a first notion of how to
use these characteristics to achieve the required impact on spin motion. We will explicitly derive the
quaternion maps for spin transport on the closed orbit through sections of accelerators that contain
Siberian Snakes and discuss to what extent local spin perturbations are cancelled due to the snakes.
Furthermore we will discuss the effect of snakes on spin–orbit coupling integrals and the modifications
that snakes impose on the spin one turn map of the single resonance model. One key result will be
the derivation of symmetry properties of the spin OTM in mid–plane symmetric rings in the presence
of certain combinations of Siberian Snakes.

An ideal Siberian Snake (≡ point–like or synthetic Siberian Snake) is a magnetic field configuration
that rotates a spin by π around some axis â, called the snake axis. This rotation is independent of
the reference energy and the orbital phase space vector ~z. The ideal Siberian Snake does not affect
the orbital motion, i.e. it can be treated as a drift, or a unit transformation in the case of a point–
like snake. In reality these ideal devices do not exist but can be manufactured in some rather good
approximation. A real Siberian Snake rotates the spin by an angle which is approximately π around an
axis which is approximately â and both are almost independent of energy and ~z. It always introduces
some coupling and/or extra horizontal and vertical dispersion and/or higher order multipoles that
affect the orbital transfer map. At low energy and for a longitudinal â solenoids can be used according
to equation (2.3). The coupling created by the solenoid has in general to be compensated by means
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of skew quadrupoles. But at high energy it is difficult to obtain the high field integrals required for
a solenoidal snake since ~Ωsol is proportional to (1 + G)/γ. Thus transverse (dipole) fields must be
used. But as pointed out in section 2.1, a spin rotation by π in a transverse field still requires a
field integral of about 5.48 Tm so that naive insertion of such a field would cause significant orbit
distortion. The (partial) solution to this dilemma is to use a local set of nested horizontal and vertical
closed bumps created by interleaving horizontal and vertical bends. Then, although the orbit closes,
the non–commutation of large spin rotations (see remarks 1 and 2 in section 2.1) around the radial
and vertical axes can be used to devise a system with the required rotation axis and spin rotation (π)
but with minimal distortion of the orbit outside of the snake. The ultimate and most compact form
of interleaving can be found in the helical dipole snakes to be used at RHIC [BS99].

Since the transverse component ~Ωtrv of ~Ω as computed with equation (2.8) is essentially inde-
pendent of energy, constant magnetic fields must be used. But the maximum closed orbit deviation
inside such a dipole snake of course does depend on energy via B⊥ρ = p/e where ρ is the radius of
orbital curvature, p is the (kinetic) momentum and e is the elementary charge. Hence dipole snakes
are impractical at low energy where ρ would be very small. Actually, with existing technology the
region between 5–10 GeV is sometimes called the “snake gap”, since neither solenoidal snakes nor
dipole snakes are practical. Dipole snakes of any kind create additional dispersion in both transverse
planes which then drives, for example, the longitudinal spin–orbit coupling integrals I±z and has also
to be matched to the rest of the ring to avoid a dispersion beat. We conclude that the simple presence
of a real snake, whether it is solenoidal or dipole–like, violates mid–plane symmetry and hence the
premises of theorem 2.9. Concepts for building real snakes, the required field symmetries and effects
on orbital motion can be found for example in [SL97, KS88a, LR94, AL95, AL96, TR94, EC94, EC96,
FP95, MS96a, MS96b, VP94, WF96, BS99, VA99].

Definition 3.1 (Point–like spin rotator maps) A linear spin–orbit transfer map
(Rs(~z,E0), T (E0)) is called a (point–like, ideal, synthetic) spin rotator map with snake axis r̂s, if T =
1 for all energies and Rs does not depend on energy and ~z. It is called a snake map (Siberian Snake
map, full snake map or just snake map), if the spin rotation angle is Ψs = π, i.e. the corresponding
unit–quaternion has the form

r̄s = (0, r̂s) (3.1)

The snake map is called “horizontal” if the snake axis is in the horizontal plane, i.e.
r̂s = (cos φs, 0,− sinφs) with the so–called snake angle φs. It is called “radial” if φs = 0 and “longitu-
dinal” if φs = π/2. The snake map is called “vertical” (sometimes also “Type III”) if r̂s = (0, 1, 0).

Spin rotators with 0 < Ψs � π/2 are sometimes called partial snakes and spin rotators with Ψs = π/2

are called 90◦–rotators. The SO(3) and SU(2) representations Rs and rs of an ideal snake map fulfil
trace (Rs) = −1 and trace ( rs) = 0 respectively.

3.1 The effect of Siberian Snakes on spin motion on the design orbit

We will now derive some simple but quite useful properties of snakes.

Lemma 3.1 Let r̂⊥ŝ be mutually perpendicular unit 3–vectors, s̄ ≡ (0, ŝ) the unit–quaternion for a
point–like snake and r̄ ≡ (ξ, ηr̂) with ξ2 + η2 = 1 an arbitrary spin rotation around r̂, then

r̄s̄ = s̄r̄−1 . (3.2)

Proof: r̄s̄ = (0, ξŝ+ ηr̂ × ŝ) = (0, ξŝ+ ηŝ× (−r̂)) = s̄r̄−1.2
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Lemma 3.2 (Steffen’s Lemma) [KS88a] An arbitrary horizontal Siberian Snake map with snake
angle φs can be decomposed into a radial Siberian Snake and a vertical spin rotator map with rotation
angle 2φs

(0, cos φs, 0,− sinφs) = (cosφs, 0, sinφs, 0) (0, 1, 0, 0) = (0, 1, 0, 0) (cosφs, 0,− sinφs, 0) . (3.3)

Note that (0, cos φs, 0,− sinφs) describes a rotation by π around the unit vector (cosφs, 0,− sinφs)
but that (cosφs, 0,± sinφs, 0) describes a rotation by ±2φs around ŷ. The proof follows immediately
from the definition of quaternion multiplication (definition 2.3).2

In the following we will often meet products of the form ā2h̄ā1, where ā1, ā2 are some rotations
by φ1,2 around the vertical and h̄ is a rotation around some horizontal axis ĥ ≡ (cos φ, 0,− sinφ)
by an arbitrary angle η. In principle the composition of these 3 rotations, seen as a SO(3)–matrix
R, is a representation R(φ2, η, φ1) of R by Euler angle like parameters (φ2, η, φ1) since ŷ and ĥ are
orthogonal by definition. Therefore (φ2, η, φ1) ∈ [0, 2π) × [0, π] × [0, 2π) generates the whole SO(3).
In an accelerator ā1,2 could be on–orbit spin maps for flat portions of the arcs and h̄ could be the
spin map of a horizontal snake or a horizontal perturbation. For later convenience we now will give
an explicit result

ā2h̄ā1 =
(

cos
φ2

2
, 0, sin

φ2

2
, 0
) (

cos
η

2
, sin

η

2
cosφ, 0,− sin

η

2
sinφ

) (
cos

φ1

2
, 0, sin

φ1

2
, 0
)

=

(
cos

η

2
cos

φ2+φ1

2
, sin

η

2
cos(φ+

φ2−φ1

2
), cos

η

2
sin

φ2+φ1

2
,− sin

η

2
sin(φ+

φ2−φ1

2
)

)
.(3.4)

We note that the only term in equation (3.4) that is anti–symmetric w.r.t. permutation of ā1 and ā2

is φ2 − φ1.

3.1.1 One horizontal Siberian Snake

Consider a flat ring with one Siberian Snake with snake axis in the horizontal plane at θ = 0. Then
the spin OTM on the design orbit with respect to the symmetry point (r̄0(θ = π)) is ās̄ā with the spin
map of one symmetric half ring ā = (cos πGγ

2 , 0, sin πGγ
2 , 0) and the spin map of the horizontal snake

s̄ = (0, cos φs, 0,− sinφs). Using either lemma 3.1 or equation (3.4) with η = π and φ1 = φ2 yields

r̄0(π) = (0, cos φ, 0,− sinφs) = s̄ . (3.5)

Therefore we find that cos πν0 = 0 ⇒ [ν0] = 1/2 and that n̂0(π) = ŝ independently of the energy. For
arbitrary θ we obtain with φ1 = θGγ and φ2 = (2π − θ)Gγ

r̄0(θ) =

(
0, cos(φ+

φ2 − φ1

2
), 0,− sin(φ+

φ2 − φ1

2
)

)
(3.6a)

= (0, cos(φ+Gγ(π − θ)), 0,− sin(φ+Gγ(π − θ))) , (3.6b)

showing that n̂0(θ) = (cos(φ + Gγ(π − θ), 0,− sin(φ + Gγ(π − θ)) in general depends on azimuth as
well as energy.

We will now analyse the effect of a small localised horizontal perturbation and define for an
arbitrary given point in a flat ring with one horizontal Siberian Snake

r̄0 ≡ ā3 s̄ ā2 p̄ ā1

āj ≡
(
cos

ΘjGγ
2 , 0, sin

ΘjGγ
2 , 0

)
, j = 1, 2, 3 , Θ1+Θ2+Θ3 = 2π (arcs)

s̄ ≡ (0, cos φ, 0,− sinφ) (snake)
p̄ ≡

(
cos ε

2 , sin
ε
2 cosϕ, 0,− sin ε

2 sinϕ
)

(perturbation) ,

(3.7)
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where the Θj are the horizontal bend angles of each arc section. In the case of no perturbation (ε = 0)
and no snake (s̄ = 1̄) the OTM is ā3ā2ā1 = (cos πGγ, 0, sin πGγ, 0) and we find for non–integral Gγ
that the n̂0–axis is uniquely defined (up to its sign) by n̂0(θ) = ŷ. For Gγ ∈ N∗ the OTM is the
identity so that the eigenproblem is maximally degenerate. Therefore every unit vector n̂ ′

0 ∈ SR is
invariant under r̄0|Gγ∈N and hence n̂0 is not uniquely defined.

In the case of a finite perturbation (ε > 0) but still without a snake we can use equation (3.4) with
φ2 → φ2 + φ3 and obtain with ∆′ ≡ (Θ3 + Θ2 − Θ1)Gγ/2 = (π − Θ1)Gγ

ā3 ā2 p̄ ā1 =
(
cos

ε

2
cos πGγ, sin

ε

2
cos(ϕ+ ∆′), cos

ε

2
sinπGγ,− sin

ε

2
sin(ϕ+ ∆′

)
(3.8a)

=1

(
cos πGγ,

ε

2
cos(ϕ+ ∆′), sinπGγ,− ε

2
sin(ϕ+ ∆′)

)
, (3.8b)

where we have introduced the notation “X =n Y ” meaning that X − Y = O(εn+1). The norm of the
linearised quaternion in equation (3.8b) is 1 +O(ε2) so that (3.8b) is a “unit–quaternion up to O(ε)”.
From equations (3.8a) and (3.8b) we see that as long asGγ 6∈ N, the n̂0–axis is ŷ+O(ε) or in other words
the angle α between n̂0 and ŷ is O(ε). If on the contrary Gγ ∈ N, then the n̂0–axis of the perturbed
system without a snake is (cos(ϕ+∆′), 0,− sin(ϕ+∆′)) and hence completely in the horizontal plane
independently of ε. Finally with the snake and the perturbation we use lemma 3.1 and equation (3.4)
and find with Σ ≡ (−Θ3 +Θ2 +Θ1)Gγ/2 = (π−Θ3)Gγ and ∆ ≡ (−Θ3 +Θ2−Θ1)Gγ/2 = (Θ2−π)Gγ

r̄0 = s̄ ā−1
3 ā2 p̄ ā1

= s̄
(
cos

ε

2
cosΣ, sin

ε

2
cos(ϕ + ∆), cos

ε

2
sinΣ,− sin

ε

2
sin(ϕ+ ∆)

)

=
(
− sin

ε

2
cos(φ−ϕ−∆), cos

ε

2
cos(φ−Σ),− sin

ε

2
sin(φ−ϕ−∆),− cos

ε

2
sin(φ−Σ)

)
(3.9a)

=1

(
− ε

2
cos(φ− ϕ− ∆), cos(φ− Σ),− ε

2
sin(φ− ϕ− ∆),− sin(φ− Σ)

)
. (3.9b)

We conclude: (1.) cos πν0 = − sin ε
2 cos(φ−ϕ−(Θ2−π)Gγ) does not depend on the position of the

viewpoint in the ring but only on the “distance” Θ2 between the snake and the perturbation. (2.)
The deviation of cos πν0 from cos π/2 is O(ε). (3.) The n̂0–axis is (cos(φ−Σ), 0,− sin(φ−Σ)) +O(ε).
(4.) In the special case of both the perturbation and the viewpoint being exactly π apart from the
snake (Θ1 = 0, Θ2 = Θ3 = π) we find ∆ = Σ = 0 and hence that r̄0 is energy independent. (5.) The
snake does not cancel the spin perturbation completely but ensures that the perturbation p̄ of O(ε)
has an impact on r̄0 which is not more than O(ε) independent of the energy.

Since with one horizontal snake even in a perfectly mid–plane symmetric ring n̂0 is in the horizontal
plane the radial and longitudinal spin–orbit coupling integrals I±x,z (2.141) no longer identically vanish.
We will see in section 3.2.1 that an even number of of horizontal snakes is needed to preserve mid–
plane symmetry. Moreover, due to the vertical fields of the main horizontal bends in the arcs, a n̂0 in
the horizontal plane is strongly depending on energy. In section 4.10 it will become clear that such
an energy dependence can lead to depolarisation during acceleration. We will see in the next section
that certain snake configurations fulfil both the conditions ν0 = 1/2 and n̂0 = ŷ in all the flat sections
of the ring. In section 3.2.2 we will see that we have additional freedom to choose the snake angles
such that certain spin–orbit coupling integrals are minimised.

3.1.2 An even number of horizontal snakes

We now consider a flat unperturbed ring with an even number of 2N snakes with snake axes in the
horizontal plane. We define the āj to be rotations around the vertical by ΘjGγ and the s̄j represent
horizontal snakes with snake angle φj analogously to equation (3.7). Without loss of generality we
define the on–orbit spin OTM seen at a viewpoint somewhere in the 2N -th arc between the 2N -th
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and the first snake as

r̄0 ≡ ā′2N s̄2N

2N−1⊙

j=1

(āj s̄j) ā
′
0 , (3.10)

where ā′2N ā
′
0 ≡ ā2N represents the arc between the 2N -th and the first snake.

Theorem 3.1 (Steffen’s theorem) [KS88a] In a flat unperturbed ring with an even number of hor-
izontal point–like Siberian Snakes as in equation (3.10)

1. the fractional part of the spin tune on the design orbit is given by

[ν0] =


±1

2π

2N∑

j=1

(−1)j(2φj +GγΘj)


 , (3.11)

where φj and Θj are defined analogously to equation (3.7) and [±x] indicates that the fractional
part is [x] for x ≥ 0 or 1 − [|x|] for x < 0,

2. if the design orbit spin tune is not an integer, then n̂0 = ±ŷ is uniquely defined up to its sign all
along the ring and the sign flips at each of the snakes and

3. the SO(3) spin OTM associated with r̄0 does not depend on the position of the viewpoint.

We first show that r̄0 does not depend on the position of the viewpoint inside an arc section. Due to
lemma 3.1 and since 2N is even we find r̄0 = ā′2N s̄2N ā

′−1
0

⊙2N−1
j=1 (āj s̄j) = ā2N s̄2N

⊙2N−1
j=1 (āj s̄j) =⊙2N

j=1 (āj s̄j), so that the OTM does not depend on the position inside an arc section. Therefore it
suffices to prove the theorem for ā′0 ≡ 1̄, i.e. at an initial viewpoint directly before the first snake.
With lemma 3.2 we rewrite each of the 2N arc/snake pairs as

āj s̄j =

(
cos

GγΘj + 2φj
2

, 0, sin
GγΘj + 2φj

2
, 0

)
(0, 1, 0, 0) ≡ c̄j s̄x , (3.12)

with s̄x ≡ (0, 1, 0, 0) and c̄j being a rotation by 2φj +GγΘj around the vertical. Thus we obtain

r̄0 =

N⊙

j=1

(c̄2j s̄xc̄2j−1s̄x) =

N⊙

j=1

(
− c̄2j c̄

−1
2j−1

)

= (−1)N (cos πν ′0, 0, sin πν
′
0, 0) , ν ′0 =

1

2π

2N∑

j=1

(−1)j(2φj +GγΘj) . (3.13)

Therefore the fractional part of the on–orbit spin tune is [ν0] = [±ν ′0], which proves part 1 of the
theorem. If [ν0] = 0, then r̄0 is the identity so that n̂0 is not uniquely defined and the SO(3) OTM
is the identity for all viewpoints. If [ν0] is non–zero, then r̄0 is a rotation around the vertical so that
n̂0 = ±ŷ in the whole ring. We define n̂0 ≡ +ŷ in the arc section j = 2N , which then according
to equation (3.13) fixes the fractional part of the on–orbit spin tune to [ν] ≡ [+ν ′

0]. Moving the
viewpoint to the next or preceding arc leads to ν0,± ≡ 1

2π

∑2N
j=1(−1)j±1(2φj + GγΘj) = −ν0 which

leaves cos πν0,± = cos πν0 invariant but converts sinπν0,± to − sinπν0. This shows that n̂0 flips its
sign at each snake, proving part 2. We recall that a rotation by φ around r̂ is always equivalent to a
rotation by −φ around −r̂. Therefore the SO(3) OTM is totally independent of the viewpoint, which
proves part 3 of theorem 3.1. 2

Corollary: If
∑2N

j=1(−1)jΘj = 0, then the on–orbit spin tune is independent of energy and if

furthermore
∑2N

j=1(−1)jφj = π/2 mod π, then [ν0] = 1/2.
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We thus have a layout which delivers the desired vertical n̂0 and ν0 = 1/2 mentioned at the end of
the last section.

As becomes clear from the derivation of theorem 3.1 the total spin phase advance on the design
orbit ∆Φ0 over two adjacent sections j and j ± 1 is energy independent if the horizontal bend angles
are equal, Θj = Θj±1. In a flat ring where at least the geometry, i.e. the distribution of horizontal
bends has an even superperiodicity PB = 2NB and with a number of snakes 2N , where N fulfils
2Nk = 2NB with k ∈ N∗, and snake placements that reflect this superperiodicity we have Θi = Θj

∀1 ≤ i, j ≤ 2N . Therefore the total on–orbit spin phase advance over each two adjacent sections
is energy independent. This is surely desirable since on–orbit perturbations which are periodic with
2π/PB will add up coherently if [∆Φ0/(2π)] = 0 — which will happen at certain energies if ∆Φ0 is
energy dependent. If additionally N can be chosen to be odd, then the choice |φ2j−φ2j−1| = π/2 which
leads to [∆Φ0/(2π)] = 1/2 is compatible with [ν0] = 1/2. In that case 2π/PB–periodic perturbations
accumulated in one double section will partially cancel in the next double section. Note that for even
N the condition [∆Φ0/(2π)] = 1/2 implies [ν0] = 0, which is not a suitable choice for polarised beam
operation.

In order to illustrate this cancellation we will now calculate the on–orbit spin map for a ring with
2N identical arcs ā with horizontal bend angle Θ0, 2N horizontal snakes s̄j with snake angles φj so that
the unperturbed on–orbit spin tune is 1/2 and with a local horizontal perturbation p̄ in one arbitrary
arc section. The unit–quaternions of type ā, s̄ and p̄ are defined as in equation (3.7). Without loss
of generality we index the snakes so that the first snake is downstream of the viewpoint. We divide
the ring into N “sections” ȳj with ȳj ≡ ās̄2j ās̄2j−1 = −(cos(φ2j − φ2j−1), 0, sin(φ2j − φ2j−1), 0) for all
sections without the perturbation and locate the perturbation somewhere in section k represented as

q̄k. We have to distinguish two cases: (1) q̄
(o)
k = ās̄2kā3p̄ā2s̄2k−1, with Θ3 + Θ2 = Θ0. This implies an

odd number of snakes between the viewpoint and the perturbation. (2) q̄
(e)
k = ā3p̄ā2s̄2kās̄2k−1, which

implies an even number of snakes between the viewpoint and the perturbation. The on–orbit spin
OTM for an arbitrary viewpoint between snake 2N and 1 is

r̄
(o,e)
0 = ā4 s̄2N ā s̄2N−1

N−1⊙

j=k+1

ȳj q̄
(o,e)
k

k−1⊙

j=1

ȳj ā1 , (3.14)

with Θ4 + Θ1 = Θ0. Introducing

ȳ> ≡
N⊙

j=k+1

ȳj ≡ (−1)N−k(cosφ>, 0, sinφ>, 0) , ȳ< ≡
k−1⊙

j=1

ȳj ≡ (−1)k−1(cosφ<, 0, sin φ<, 0) ,

ȳ≤ ≡
k⊙

j=1

ȳj ≡ (−1)k(cosφ≤, 0, sinφ≤, 0) , āi−j ≡ āi ā
−1
j , āi+j ≡ āi āj (3.15)

with φ> + φ≤ = φ> + φ2k − φ2k−1 + φ< = π/2 and neglecting the global signs, since they do not enter
the SO(3) representation of the map, we obtain with equation (3.4)

r̄
(o)
0 = ā−1

1 ȳ> ā s̄2k ā3 p̄ ā2 s̄2k−1 ȳ< ā1 = s̄2k ȳ
−1
> ā3+1−0 p̄ ā2−1 ȳ

−1
< s̄2k−1

= ±
(

0 , sin
ε

2
cos(ϕ+ φ< − φ> − φ2k − φ2k−1 +Gγ(Θ1 − Θ2)),

cos
ε

2
, − sin

ε

2
sin(ϕ+ φ< − φ> − φ2k − φ2k−1 +Gγ(Θ1 − Θ2))

)
(3.16a)

r̄
(e)
0 = ā−1

1 ȳ> ā3 p̄ ā2 s̄2k ā s̄2k−1 ȳ< ā1 = ȳ> ā3−1 p̄ ā2+1−0 ȳ≤

= ±
(

0 , sin
ε

2
cos(ϕ+ φ> − φ≤ +Gγ(Θ0 − Θ2 − Θ1)),

cos
ε

2
, − sin

ε

2
sin(ϕ+ φ> − φ≤ +Gγ(Θ0 − Θ2 − Θ1))

)
. (3.16b)
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In both cases the spin OTM is an exact π–rotation around some axis ŷ+O(ε). Therefore the two–turn
map is just −1̄ and the local perturbation is cancelled every two turns. The case with only two snakes
is included by setting φ> = φ< = 0. If there is more than one local perturbation and they are in
different “s̄ās̄ā”–sections, then the situation becomes more complicated. If N is odd, one can constrain
the snake angles to fulfil φ2k−φ2k−1 = π/2. Then each spin transfer map through a perturbed section is
of the form (3.16a) or (3.16b). Nevertheless if the local perturbation axes are considered uncorrelated,
then in general the 0-th component of the one–turn quaternion for more than one local perturbation
does not exactly vanish but is O(ε2). We will treat only the case of 2 perturbed sections (k1 and k2),
N odd and φ2k − φ2k−1 = π/2. Then the composition of the unperturbed “s̄ās̄ā”–sections before, in
between and after the perturbed sections depends on whether the number of the included sections is
odd or even. We find

ȳodd = ±(0, 0, 1, 0) ≡ ±s̄y , ȳeven = ±1̄ . (3.17)

For simplicity the small rotation angles of the two perturbations are set equal (ε1 = ε2 ≡ ε) but the
rotation axes are in the horizontal plane with independent angles ϕ1 and ϕ2. Moreover we set the
viewpoint directly before the first section. According to (3.16a) or (3.16b) the two perturbed sections
q̄1 and q̄2 are described by

q̄j = (0, ξcj , η,−ξsj) , j = 1, 2 , (3.18)

with ξ ≡ sin ε
2 , η ≡ cos ε

2 , cj ≡ cosαj and sj ≡ sinαj , where the αj depend on ϕj , φ2k, φ2k−1 and Gγ.
There are 4 cases to distinguish

±r̄0 = s̄y q̄2 q̄1 =
(
ξ2S2−1, −2ηξS−S+, −η2 − ξ2S2−1, 2ηξS−C+

)

±r̄0 = q̄2 s̄y q̄1 =
(
ξ2S2−1, 2ηξC−C+, η

2 − ξ2S2−1, −2ηξC−S+

)

±r̄0 = q̄2 q̄1 s̄y =
(
ξ2S2−1, 2ηξS−S+, −η2 − ξ2S2−1, −2ηξS−C+

)

±r̄0 = s̄y q̄2 s̄y q̄1 s̄y =
(
ξ2S2−1, −2ηξC−C+, −η2 − ξ2S2−1, 2ηξC−S+

)
(3.19)

with C2−1, S2−1 ≡ cos, sin(α2 − α1) and C±, S± ≡ cos, sin α2±α1
2 . We see that in all 4 cases the

deviation of cos πν0 from 0 is O(ε2) and that the deviation of n̂0 from ŷ is order O(ε).

If the two rotation axes of the perturbations are the same (ϕ1 = ϕ2) but the small rotation angles
are different (ε1 6= ε2), we parametrise the quaternion maps of the perturbed sections by

q̄j = (0, ξjc, ηj ,−ξjs) , j = 1, 2 , (3.20)

with ξj = sin
εj
2 , ηj = cos

εj
2 , c ≡ cosα and s ≡ sinα, and find for all four cases

±r̄0 = s̄y q̄2 q̄1 =
(
0, cξ2−1, −η2−1, −sξ2−1

)

±r̄0 = q̄2 s̄y q̄1 =
(
0, −cξ2−1, −η2−1, sξ2−1

)

±r̄0 = q̄2 q̄1 s̄y =
(
0, −cξ2+1, −η2+1, sξ2+1

)

±r̄0 = s̄y q̄2 s̄y q̄1 s̄y =
(
0, −cξ2+1, η2+1, sξ2+1

)
, (3.21)

where we introduced η2±1 ≡ cos ε2±ε12 and ξ2±1 ≡ sin ε2±ε1
2 . We now note that a π–rotation around

whatever axis, if applied twice, produces a unit operation! Therefore in the case of 2 different strengths
of perturbation (3.21) the cancellation in every 2n–turn map is exact whereas in the case of 2 different
axes of perturbation (3.19) the cancellation is not complete but r̄0 has a 0-th component of order
O(ε2).

To summarize the last two sections, one might say that Siberian Snakes, particularly an even
number of horizontal snakes and especially in rings with a superperiodicity of P = 2N with odd N
make it possible to reduce the effect of small local spin perturbations. But of course for large ε even
snakes cannot sufficiently control n̂0 and ν0.
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3.1.3 Siberian Snakes in rings with vertical bends

In the derivation of theorem 3.1 we explicitly required the accelerator to be flat, i.e. we required that
the only magnetic fields acting on the design orbit besides the fields inside the snakes were the vertical
holding fields from the horizontal bends. In this context flatness means less than mid–plane symmetry,
since it only constrains spin motion on the closed orbit. However, the proton ring of HERA (called
HERA–p) is built on top of the e±–ring in the arcs and in order to make e±–p collisions possible the
protons are bent to the level of the e±–ring in 3 of the 4 straight sections. Therefore in a ring like
HERA–p which includes vertical bends, Steffen’s theorem cannot directly be applied. To be more
precise, in the proof of theorem 3.1 we made use of lemma 3.1 and the fact that in a flat perfectly
aligned ring the on–orbit spin rotation axes are either vertical in the horizontal bends or are in the
horizontal plane in the horizontal snakes. Steffen’s theorem can be trivially extended to rings that
contain certain sections whose on–orbit spin transfer maps are either an arbitrary rotation around
the vertical, an energy independent rotation around some horizontal axis by π (= effective horizontal
snake) or a unit transformation (“spin drift”). The vertical bends in HERA–p do not themselves
cause problems. Indeed, since the protons in HERA-p have to be first bent down to and up into the
level of the e± ring upstream of the interaction point (IP) and then up to and down into the level
of the p–ring in the arcs downstream of the IP, the effective vertical bend angles would cancel on
each side of each IP, if the vertical bends were not interleaved with horizontal bends. In HERA–p the
down and up bends are interleaved with horizontal bends on each side of the IPs. Then owing to the
non–commutation of rotations around different axes the spin rotations caused by the vertical bends
do not cancel. Using equation (2.52) the transfer map through such a vertical bend section with two
embedded horizontal bending sections of equal bend angle is

q̄ ≡
(

cos
GγΘv

2
, sin

GγΘv

2
, 0, 0

) (
cos

GγΘh

2
, 0, sin

GγΘh

2
, 0
)

(
cos

GγΘh

2
, 0, sin

GγΘh

2
, 0
) (

cos
GγΘv

2
,− sin

GγΘv

2
, 0, 0

)
≡ v̄+ h̄ h̄ v̄−

=
(

cos
GγΘv

2
, sin

GγΘv

2
, 0, 0

) (
cosGγΘh, 0, sinGγΘh, 0

) (
cos

GγΘv

2
,− sin

GγΘv

2
, 0, 0

)

=
(

cosGγΘh, 0, sinGγΘh cosGγΘv , sinGγΘh sinGγΘv

)
. (3.22)

The rotation angle 2GγΘh is just the same as without vertical bends, but the rotation axis which
would be vertical in the absence of vertical bends is now strongly energy dependent. Since in the
planar arcs the spins rotate around the vertical and rotations around different axes do not commute,
even one vertical bend section in the ring would produce a non–linear dependence of n̂0 and ν0 on
the energy. Of course for each section of the type v̄+h̄h̄v̄− there must be a section of type v̄−h̄h̄v̄+ in
order to make the ring close.

Luckily the vertical bend sections in HERA–p have a symmetry point in between the 2 horizontal
bends. Therefore the effect of each vertical bend section can be compensated by placing a radial
Siberian Snake (s̄x ≡ (0, 1, 0, 0)) at the symmetry point [KS88a, AP97]. Using lemma 3.1 it becomes
clear that on the design orbit

v̄± h̄ s̄xh̄ v̄∓ = s̄x . (3.23)

Note that the compensation only works with radial snakes. Therefore each compensated vertical bend
section yields one horizontal snake which is fixed in position and snake angle. In the case of HERA–p
both vertical bend sections of each IP are directly adjacent to the straight sections — where here
“straight section” means that the total bend angle of the straight is zero, as long as the effect of
misalignments is neglected. Hence the combined spin transfer map on the design orbit of each of the
3 straights with its 2 compensated vertical bend sections is a unit transform. Therefore in the case
of HERA–p the two radial snakes around the IPs do not impose any constraints on the choice of
snake angles for the main snakes. From now on we will distinguish between Siberian Snakes used to
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compensate the effect of vertical bends sections which we will call flattening snakes and Siberian
Snakes that, by means of Steffen’s theorem, fix n̂0 = ±ŷ and ∂γ ν0 = 0, which we will call main
snakes.

In a ring with vertical bend sections compensated in the above way and with pairwise cancellation of
all flattening snakes and without main snakes, the n̂0–axis is vertical outside the vertical bend sections
but the on–orbit spin tune is not Gγ. Assume that by means of flattening snakes we have cancelled
away the total amount GγΘcomp of spin precession due to the horizontal bends inside compensated
vertical bend sections, then the fractional part of the spin tune on the design orbit is

[ν0]
∣∣∣
flattened

=

[
Gγ

2π − Θcomp

2π

]
=

[
Gγ

(
1 − Θcomp

2π

)]
. (3.24)

Definition 3.2 (Flattened ring) An accelerator in which — with the exception of Nv sections whose

accumulated horizontal bend angle is Θcomp — the n̂0–axis is vertical and [ν0] =
[
Gγ

(
1 − Θcomp

2π

)]
is

called a flattened ring.

Following the proof of Steffen’s theorem, it becomes clear that in the presence of compensated vertical
bend sections theorem 3.1 must be slightly modified.

1. The fractional part of the spin tune on the design orbit is given by

[ν0] =


±1

2π

2N∑

j=1

(−1)j(2φj +Gγ(Θj − Θcomp,j))


 , (3.25)

where Θcomp,j is the compensated horizontal bend angle of the j–th section.

2. If the design orbit spin tune is not an integer, then n̂0 = ±ŷ is uniquely defined up to its sign
all along the ring outside the compensated vertical bend sections.

3. The SO(3) spin OTM associated with r̄0 only depends on the position of the viewpoint inside
the compensated vertical bend sections.

Therefore in order to obtain an energy independent spin tune on the design orbit in a flattened ring,
the constraint

∑2N
j=1(−1)j(Θj−Θcomp,j) = 0 must be fulfilled, so that the positions of the main snakes

in a flattened ring have to be shifted w.r.t. the case of a naturally flat ring.

In a ring with uncompensated vertical bends the spin tune is a complicated function of energy and
no simple rules exist that predict the energies at which the resonance condition 2.110 is fulfilled. In a
flattened ring the resonance positions are shifted in energy w.r.t. an exactly flat ring. If the flattened
ring has an exact superperiodicity P then the fractional part of the spin tune for one superperiod is

[ν
(fl)
0,P (E0)] =

[
Gγ

P

(
1 − Θcomp

2π

)]
(3.26)

where we note that if the ring with uncompensated vertical bends was superperiodic then the com-
pletely flattened ring is also superperiodic and that the missing bend angle per superperiod is the same
for all superperiods. Since the off–orbit T–BMT driving term ~ω has only Fourier harmonics at κP =

P (k0+~k · ~QP ) as in equation (2.113), resonances are located at energies where ν
(fl)
0,P (E0) = k0+~k · ~QP . If

the superperiodicity is only approximate then the resonances that fulfil ν
(fl)
0,P (E0) = k0 +~k · ~QP are still

enhanced (strong resonances). Nevertheless, if in a flattened ring the majority M ′ of the M periodic
arc cells are still exactly flat, the spin tune per flat arc cell is still defined by [ν0,C ] = [GγΘC/(2π)]
so that the condition for a super–strong intrinsic resonances in the presence of M flat cells per arc
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is ν
(fl)
0,P (E0) = k0 ± Qy,P and ν0,C ≈ k′0 ± Qy,C . The resonance spectrum in a flattened ring is hence

not only simply shifted but also the relative positions of weak, strong and super–strong resonances
might be different from those in an exactly flat model of the ring, i.e. with the vertical bends simply
“switched off”.

In a distorted ring the closed orbit is normally never flat. Unfortunately the shape of the perturbed
closed orbit is in general neither fully predictable nor exactly reproducible from run to run. If the
typical rms closed orbit deviation is sufficiently small, then the spin perturbations due to radial fields
experienced on the perturbed closed orbit contribute significantly only at the imperfection resonances
ν0 ∈ Z. Thus for snake schemes which in the absence of distortion fulfil ν0 = 1/2 no serious spin
disturbance is then expected. This is no longer true for large imperfection resonance strength. Then
with [ν00] = 1/2 one is still not far enough away from the “snake–less” imperfection resonance ν00 ∈ N.
Equivalently, for sufficiently large rms closed orbit distortion and/or large asymmetries between the
perturbed horizontal bend angles of different arc sections between snakes, the premises of Steffen’s the-
orem become invalid and the resulting on–orbit spin tune becomes energy dependent. Snake schemes
for practical applications must therefore be tested to see how well they can handle misalignments and
closed orbit distortions.

3.2 The effect of Siberian Snakes on spin motion with finite orbital

amplitudes

In the last section we have discussed the effect of small perturbing rotations in the presence of snakes
for particles restricted to the design orbit. Now we will allow non–zero orbital amplitudes which are
small enough to allow us to assume that coherence between spin precession and orbital motion is still
described by equation (2.110), i.e. that the characteristic spin precession tune is still approximately
ν0.

3.2.1 Siberian Snakes in rings with perfect mid–plane symmetry

As we have seen in section 2.3.2, in a perfectly mid–plane symmetric ring we have ~Ω(θ, Y −~z) =
Y π

~Ω(θ, ~z), with Y − ≡ diag(1, 1,−1 − 1, 1, 1) ∈ SP(6) and Y π ≡ diag(−1, 1,−1) ∈ SO(3). Then
we found that n̂0(θ) = ±ŷ, that Y π R(θ; ~z) = R(θ; Y −~z)Y π and that dynamical resonances which
include even multiples of Qy are excluded. Now we must check whether point–like spin rotators, which
we represent by maps rather than by differential equations, destroy these properties or if the effects
of mid-plane symmetry can be preserved. Spin maps for point–like spin rotators are independent of
the position in phase space. A necessary condition for the preservation of the consequences of mid–
plane symmetry is then that the relation Y π R = RY π is preserved. This in turn requires that the
SO(3) group commutator Y π S Y π S

T between the snake map S and Y π is the identity. Translated
to quaternion maps of point like spin rotators s̄ this condition implies that the SH group commutator
(2.50) has to fulfil

C̄(ȳπ, s̄) ≡ ȳπs̄ȳ
−1
π s̄−1 = ±1̄ , (3.27)

with ȳπ = (0, 0, 1, 0). Note again that any two quaternions q̄ and −q̄ lead to the same SO(3) map.
Taking into account the explicit form of C̄(ȳπ, s̄) given in equations (2.51b) and (2.51e), and that ȳπ
itself describes a vertical full snake it is easy to see that only those spin rotators commute with ȳπ
which either represent arbitrary rotations around the vertical direction ȳψ ≡ (cos ψ/2, 0, sin

ψ/2, 0) or
horizontal full snakes h̄φ ≡ (0, cos φ, 0,− sinφ). Explicitly we obtain C̄(ȳπ, ȳψ) = +1̄ and C̄(ȳπ, h̄φ) =

−1̄. Moreover introducing S̃ ≡ Y πŜ we indeed find for Hφ ≡ F (h̄φ) = F (ȳ2φ)F (s̄x) ≡ Y 2φXπ
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where F is from definition 2.4,

Ŝ1 ≡




Sx
Sy
Sz


 Xπ−→




Sx
−Sy
−Sz


 ≡ Ŝ2

Y 2φ−→




cos(2φ)Sx − sin(2φ)Sz
−Sy

− sin(2φ)Sx − cos(2φ)Sz


 ≡ Ŝ3 (3.28a)

S̃1 =




−Sx
Sy
−Sz


 Xπ−→




−Sx
−Sy
Sz


 = S̃2

Y 2φ−→




− cos(2φ)Sx + sin(2φ)Sz
−Sy

+sin(2φ)Sx + cos(2φ)Sz


 = S̃3 . (3.28b)

We denote the subset of SH of rotations which commute up to a factor −1 with ȳπ by Y ≡ {s̄ ∈ SH :
C̄(ȳπ, s̄) = ±1̄} and find using s̄x ≡ (0, 1, 0, 0) and Steffen’s lemma 3.2

1. quaternionic multiplication is an inner operation on Y since
ȳψ1 ȳψ2 = ȳψ1+ψ2 , h̄φ1 h̄φ2 = ȳ2φ1 s̄xs̄xȳ−2φ2 = −ȳ2(φ1−φ2), ȳψh̄φ = ȳψȳ2φs̄x = h̄

φ+ψ/2
and h̄φȳψ =

s̄xȳ−2φȳψ = h̄
φ−ψ/2

,

2. 1̄ = ȳ0 ∈ Y and

3. for s̄ ∈ Y also s̄−1 ∈ Y since ȳ−1
ψ = ȳ−ψ and h̄−1

φ = −h̄φ.

Therefore we find

Lemma 3.3 Y is a subgroup of SH.

Unfortunately Y consists of two distinct domains which are each connected, i.e. it has a connected
subgroup Y+ ≡ {s̄ : ∃ψ ∈ R, s̄ = ȳψ} but for its complement w.r.t. Y, Y− ≡ Y\Y+ = {s̄ : ∃φ ∈
R, s̄ = h̄φ} the quaternionic product is not even an inner operation in Y−. For example in a mid–plane
symmetric (flat) ring with one horizontal snake, n̂0 is in the horizontal plane although the on–orbit
spin OTM (3.6a) which is of the form r̄0 = h̄φ is an element of Y. This shows that condition (3.27)
is not sufficient to guarantee that the spin OTM is compatible with mid–plane symmetry, i.e. that
the one–turn quaternion r̄ is given by (e0, o1, e2, o3) where the ei contain only even harmonics in the
vertical orbital phase Ψy and the oi contain only odd harmonics in Ψy as in corollary 2 to theorem
2.10. This property will turn out in section 4.8 to be the key to understanding the occurrence or
absence of even order kinetic resonances in certain rings with certain snake arrangements. Assume
that we are given a map q̄ = (e0, o1, e2, o3), then h̄φq̄ = (− cos φo1+sinφo3, cos φe0+sinφe2,− sinφo1−
cosφo3,− sinφe0 + cosφe2) is of the form h̄φq̄ = (o′0, e

′
1, o

′
2, e

′
3) and is therefore not compatible with

mid–plane symmetry. It is plain to see that q̄h̄φ has the same form. Nevertheless the composition of
(o′0, e

′
1, o

′
2, e

′
3) and (o′′0, e

′′
1 , o

′′
2, e

′′
3) yields a map of the form (e′′′0 , o

′′′
1 , e

′′′
2 , o

′′′
3 ) — and so does of course the

composition of (e′0, o
′
1, e

′
2, o

′
3) and (e′′0 , o

′′
1 , e

′′
2 , o

′′
3). We finally obtain

Theorem 3.2 If 2Nh point–like horizontal full snakes and/or Nv point–like vertical spin rotators are
inserted into a perfectly mid–plane symmetric ring, then

1. n̂0 = ±ŷ.

2. The spin OTM fulfils R(θ; Y −~z)Y π = Y π R(θ; ~z).

3. The one–turn quaternion map r̄(θ; ~z) is of the form r̄ = (e0, o1, e2, o3) where the ei contain only
even harmonics of Ψy and the oi contain only odd harmonics. Equivalently the SU(2) OTM
r = f(r̄) is given by

(
e11 o12

−o∗12 e∗11

)
, where e11 contains only even and o12 contains only odd harmonics

of Ψy.

In other words the insertion of 2Nh point–like horizontal full snakes and/or Nv point–like vertical spin
rotators does not destroy the mid–plane symmetry of the ring.
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3.2.2 Spin–orbit coupling integrals with 2N snakes

We now investigate the effect of snakes on spin–orbit coupling integrals. We start with an unperturbed
mid–plane symmetric ring with an even number 2N of horizontal snakes placed and oriented such that
ν0 = const. = 1/2 as explained in the corollary to theorem 3.1. Then for orbital tunes incommensurable
with 1 the resonance condition (2.110) cannot be fulfilled. One might even assume that for practical
orbital tunes the system is reasonably far away from any low order spin–orbit resonance. Since the
ring is assumed to be flat I±x and I±z vanish identically if we have point–like snakes. We note that
with realistic snakes which incorporate interleaved vertical and horizontal bends, helical dipoles or
solenoids the ring inside the snakes by definition is no longer flat [CY81] ! In any case the spin–orbit
coupling integrals I±y will generally not vanish for all energies and at all azimuths in the ring.

We divide the ring into 2N + 1 not necessarily identical sections so that the view point is at
θ0 ≡ θ2N+1 and the horizontal snakes are located at the θj, 1 ≤ j ≤ 2N . We introduce the spin phase
advance φj(θ) ≡ φ(θ)− φ(θj) and the orbital betatron phase advance ψj(θ) ≡ ψ(θ)−ψ(θj) beyond θj
and the phase advances φ̃j(θ) ≡ φ(θj+1) − φ(θj), ψ̃j(θ) ≡ ψ(θj+1) − ψ(θj) between θj and θj+1. Then
the vertical linear spin–orbit coupling integrals at θ0 without snakes are according to equation (2.144)

I±y,0(θ0) =
2N∑

j=0

ei
Pj−1

k=0
eφk± eψk

∫ θj+1

θj

h(θ)ei(φj(θ)±ψj (θ)) dθ , (3.29)

where we have used h(θ) ≡ −(Gγ+1)K(θ)
√
βy(θ). According to Steffen’s Lemma the spins are rotated

around the radial axis by π and around the positive vertical axis by the angle 2ϕj at the azimuth θj
of the j–th snake s̄j ≡ (0, cosϕj , 0,− sinϕj). Therefore we obtain [GH99b] for the spin–orbit coupling
integral with snakes

I±y (θ0) =

2N∑

j=0

ei(
Pj−1

k=0(−1)k(eφk+2ϕk)± eψk)

∫ θj+1

θj

h(θ)ei((−1)j (φj(θ)+2ϕj )±ψj(θ)) dθ , (3.30)

where we have introduced ϕ0 = φ̃0 ≡ 0 for convenience. Specialising to rings whose superperiodicity
was P = 2N before the snakes were introduced, shifting the view point to the position just before the
first snake θ0 → θ1 and distributing the θj uniformly (θj = 2πj/P ) we obtain with φ̃ ≡ φ̃k, ψ̃ ≡ ψ̃k
for all k and h(θ) = h(θ + π/N)

I±y (θ1) =

2N−1∑

j=1,odd

ei(±(j−1) eψ+2
Pj−1

k=1(−1)kϕk)
∫ θ2

θ1

h(θ)ei(−(φ1(θ)+2ϕj )±ψ1(θ)) dθ

+

2N∑

j=2,even

ei(−
eφ±(j−1) eψ+2

Pj−1
k=1(−1)kϕk)

∫ θ2

θ1

h(θ)ei(φ1(θ)+2ϕj±ψ1(θ)) dθ

= (I∓y,P )∗
2N−1∑

j=1,odd

ei(±(j−1) eψ+2
Pj

k=1(−1)kϕk)

+I±y,P

2N∑

j=2,even

ei(−
eφ±(j−1) eψ+2

Pj
k=1(−1)kϕk) (3.31a)

I±y,P ≡
∫ θ2

θ1

h(θ)ei(φ1(θ)±ψ1(θ)) dθ . (3.31b)

We note that in the superperiodic case 2Nψ̃ = 2πQy and
∑2N

k=1(−1)kϕk = πν0. Then we find by
(3.30) or, in the superperiodic case by (3.31a), that the spin–orbit system is on a first order resonance
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with strength proportional to I±y and given by equation (2.149) whenever ν = k0±Qy. In the resonant
case the spin–orbit coupling integral I±y is independent of θ except for a trivial phase factor.

As discussed in section 2.3.3, vanishing I±y (θ) means that to first order a spin parallel to n̂0(θ)
returns to be parallel to n̂0(θ) after each turn. The technique of choosing snake angles ϕj and orbital

phase advances ψ̃j so that I+
y and I−y vanish identically for all energies at one azimuth is called a

strong spin match [KS88a] or a snake match [GH99b, GH99c]. In [GH99b] it has been shown that 8
snakes are needed to obtain an energy independent snake match for arbitrary orbital tune in a fourfold
superperiodic ring. The 4 additional snakes have to be placed at θj+∆ so that the spin phase advance
from the beginning of each superperiod θj to θj+∆ is the same as the spin phase advance from θj+∆
to the beginning of the next superperiod θj+1. It was also shown in [GH99b] that in a ring with four
identical regular arcs but different straight sections (e.g. HERA–p) it is possible to exploit the global
asymmetry and obtain a partial snake match in which the strong contributions from the regular arcs
are cancelled independently of energy with only four snakes. Let ψ̃ij be the orbital phase advance

from the beginning of the i-th arc to the beginning of the j-th arc and note that the ψ̃ij contain
|i− j| identical contributions from the regular arcs and |i− j| different contributions from the straight
sections. It can be shown [GH99b] that energy independent cancellation of the contributions of the
regular arcs to the spin–orbit coupling integrals requires e.g. ψ̃13 = ψ̃24 = π. The vertical tune is given
by 2πQy = ψ̃13 + ψ̃24− ψ̃23 + ψ̃41 and therefore small changes in the phase advances of the 4 straight
sections allow cancellation of the regular arcs without changing the vertical tune. [KS88a] considers
the case of N identical pairs of snakes (snake–periods) and is therefore in principle more suited for
rings with a large number of snakes.

3.2.3 The single resonance model with 2 snakes

In section 2.4 we have introduced the single resonance model (SRM) and derived an explicit formula
for the flow (equations (2.164a) to (2.164f)) and the spin OTM ((2.166a) to (2.166d)). In this section
we will modify the SRM by placing 2 horizontal snakes with snake angles φ1 ≡ φ and φ2 = π/2 + φ1

at θ1 = 0 and θ2 = π so that ν0 = const. = 1/2. The spin OTM at θ = 0 is then

r̄(0,Ψ) = r̄srm(2π, π; Ψ + πQ) (0,− sinφ, 0,− cos φ) r̄srm(π, 0;Ψ) (0, cos φ, 0,− sinφ) , (3.32)

where r̄srm is defined in equations (2.164a) – (2.164f). In the following we want to compute the n–turn
map and therefore write down explicitly the one turn map at θ = 0 and Ψ + 2jπQ, 0 ≤ j ≤ n− 1

r̄(0,Ψ + 2jπQ) = (2ξ2SjCj, 2ξηcCj , 2ξ2C2
j − 1, −2ξηsCj) (3.33)

with

ξ ≡ ε

λ
sin

πλ

2
, η ≡

√
1 − ξ2 (3.34a)

( −1 ≤ ξ, η ≤ +1 , −1/2 ≤ ξη ≤ +1/2 )

Cj ≡ cos(φ− ψε − κπ − kΨ − 2kjπQ) , Sj ≡ sin(φ− ψε − κπ − kΨ − 2kjπQ) (3.34b)

c ≡ cos

(
φ+ κπ + arctan(

δ

λ
tan(

λπ

2
))

)
, s ≡ sin

(
φ+ κπ + arctan(

δ

λ
tan(

λπ

2
))

)
. (3.34c)

Note that ε ∈ R+ here is not considered to be a small quantity but the modulus of the resonance
strength as defined in equation (2.150). Obviously the spin OTM is in general not a π rotation so that
we cannot expect the perturbation due to the resonance to cancel at every even number of turns. In
passing we note that in analogy to the pure SRM the field of unit eigenvectors r̂(0,Ψ) of the OTM
(3.33) is not an invariant of the spin OTM unless kQ ∈ Z and that the net rotation angle µr around
r̂(0,Ψ) divided by 2π in one revolution defined by cos πµr = 2ξ2SjCj depends on the orbital phase
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Ψ. Therefore µr(Ψ) does not describe long term coherence and cannot be interpreted as the off–orbit
spin tune of the system. The vertical response function Vε of equation (2.168) at θ = 0 can be found
from (3.33) by setting j = 0,

Vε(Ψ, 0) = 1 − 4ξ2η2
(

cos(2[φ − ψε − κπ − kΨ]) + 1
)

. (3.35)

It has nodal points, Vε(Ψ, 0) = 1, at every even integer λ since ξ ∼ sin πλ
2 and an additional pathological

nodal point at δ = 0 in the case of integer ε since η =
√

1 − ξ2 and ξ(δ = 0) = 0 for even ε and
ξ(δ = 0) = 1 for odd ε.

For arbitrary given n ≥ 1, the n–turn map r̄n ≡ r̄(2nπ, 0;Ψ) can now be computed recursively by

r̄(2nπ, 0;Ψ) = r̄(0,Ψ + 2(n− 1)πQ) r̄(2(n− 1)π, 0;Ψ) . (3.36)

Following the prescription in [LT86, SL88, SL97], we define for the computation of the n–turn quater-
nion the “leading order” in ξ by r̄n =l.o. (a0, b1, a2, b3) where the ai contain ξ in 2-nd order and the
bi contain ηξ in first order. We have to note that (1.) an exact expression can in principle always
be obtained for finite n and (2.) that ξ is generally not a small quantity but can become O(1) if
ε ≈ 2l + 1 with l ∈ N. Nevertheless for ε < 1 we have maxδ∈R |ξ| = sin πε/2 at δ = 0 which justifies a
truncated power series expansion in ξ2 and ξη for the n–turn map. Then by induction one can show
in a straightforward manner that to “leading order” the n–turn map (n ≤ 1) is given by

r̄n =l.o.





( 2ξ2Γn , 2ξηcΣn , 2ξ
2Ξn − 1 ,−2ξηsΣn ) if n mod 4 = 1

( 2ξ2Ξn − 1 , 2ξηsΣn , −2ξ2Γn , 2ξηcΣn ) if n mod 4 = 2
( −2ξ2Γn ,−2ξηcΣn , 1 − 2ξ2Ξn , 2ξηsΣn ) if n mod 4 = 3
( 1 − 2ξ2Ξn ,−2ξηsΣn , 2ξ2Γn ,−2ξηcΣn ) if n mod 4 = 0

(3.37)

with

Γn ≡
n−1∑

j=0

SjCj , Ξn ≡
n−1∑

j=0

C2
j , Σn ≡

n−1∑

j=0

(−1)jCj . (3.38)

The “leading order” n–turn quaternion as in equation (3.37) is not properly normalised, but a unit
quaternion can easily be obtained by the method described in equation (2.78). This re–unitarisation
procedure does not affect the direction of the eigenvector ~r. In the limit ξ → 0 equation (3.37) reduces
to an alternation of arcs and snakes as in equation (3.10). If 0 < ξ � 1 then the corrections to
equation (3.10) imposed by (3.37) are O(ξ2) for the zeroth and vertical component of r̄n, and O(ξ)
for the horizontal components. For increasing n the horizontal contribution which is proportional to
Σn can build up, in this level of perturbation theory, if an orbital phase advance of π cancels the
alternating sign in equation (3.38). In fact one can show that

|Σn| =

{
| cos(φ− ψε − κπ − kΨ − kπQ) ξn(2π(1

2 − kQ))| , n mod 2 =1
| sin(φ− ψε − κπ − kΨ + kπQ) ξn(2π(1

2 + kQ))| , n mod 2 =0
. (3.39)

Here |ξn(x)| = | sin(nx/2)/ sin(x/2)| is the modulus of the complex amplification function defined in
equation (2.147a). Therefore to “leading order” the horizontal components of r̄n are enhanced by a
factor n if 1/2 ± kQ ∈ Z. It has been shown [LT86, SL88] that for |k| = 1 and for higher orders in ξ
one obtains enhanced build up of the horizontal components of r̄n whenever

ν0 ≡ 1

2
= l0 ± (2l + 1)Q , l ∈ N , l0 ∈ Z . (3.40)

This phenomenon has been named (2l + 1)–th order snake resonance [LT86, ST86, SL97] and it has
been claimed that even order snake resonances should not exist at all. We note that since the order
k of the Fourier harmonic put into equation (3.39) via (3.32) was arbitrary so that non–mid–plane



3.2. SPIN MOTION ON FINITE ORBITAL AMPLITUDES WITH SNAKES 63

symmetric rings are included (according to theorem 2.9), then already with l = 0 and k ∈ Z all kinds
of coherence conditions of type 1/2 = l′0 + l′Q with l′0, l

′ ∈ Z are obtained from (3.39).

This resonance analysis has two problematic points. First, for k 6= 0 and irrational orbital tune
Q the sequence of the eigenvectors r̂n of the n–turn maps r̄n does not describe the evolution of a
spin. Even if, for example, a spin at Ψ is set initially parallel to r̂2(Ψ), it will be transformed by the
two turn map to r̂2(Ψ), but the one turn map at Ψ will in general not transform it to either r̂1(Ψ)
or to r̂1(Ψ + 2πQ). Moreover r̂2(Ψ) is not r̂2(Ψ + 4πQ) and therefore a second application of the
two turn map starting at Ψ + 4πQ will in general rotate r̂2(Ψ) around r̂2(Ψ + 4πQ) by the rotation
angle 2πµr(Ψ + 4πQ). In chapter 4 we will find the appropriate tools to treat spin–orbit resonances
in the presence of snakes. Second, we have shown in equation (2.153) that the SRM contains only one
dynamical resonance at δ = 0. Moreover, in section 4.7 we will see that the SRM contains only one
resonance at all. We have seen in equation (2.174) that for irrational ε and κ the angle ϑr(n) that the
unit eigenvector of the n–turn map of the SRM without snakes makes with the vertical covers almost
the whole interval [0, π] as n approaches ∞. Thus the eigenvector tilts over into the horizontal plane
even at large distance δ. Therefore the sole fact that the eigenvector r̂n of the SRM with snakes tilts
over into the horizontal plane does not on its own indicate the existence of a new type of resonance.

Nevertheless, a key aim of the introduction of Siberian Snakes is to circumvent spin–orbit reso-
nances by fixing the on–orbit spin tune to a value where low order spin–orbit resonances are rather
unlikely because the orbital tunes required for stable machine operation would not fulfil equation
(2.110). Therefore setting the orbital tunes to a snake resonant value, i.e. [Qs.r.] = 2m−1/2n with
n,m ∈ N∗ and 1 ≤ m ≤ n, and particularly to a low order snake resonant value, trivially removes
the advantage of fixing ν0 = 1/2 — apart from probably seriously destabilising the orbital motion.
But it is clear even without analysing n–turn spin maps, that every snake resonant tune fulfils an
equation like (3.40). Therefore there is coherence between spin motion on or close to the design orbit
and orbital motion on a dense subset (although of zero measure) of the real tunes. Hence instead
of concentrating on the eigenvectors of n–turn spin maps one should rather ask how snakes influence
the frequency spectrum of spin motion on synchro–betatron trajectories, i.e. at which amplitudes can
a resonance condition be met, which orders of spin–orbit resonances still contribute to a significant
extent to spin motion and how big has the distance to such resonances to be in order to minimise spin
disturbance. These questions will be answered at least partially in chapter 4.

While studying polarisation losses during acceleration, S. Tepikian has found [ST86] that if one
accelerates through an energy which would correspond to the resonance condition ν0 = k0 ±Qy in the
absence of snakes, then the spin transfer matrix for accelerating through the same energy region in
the presence of 2N horizontal Siberian Snakes exhibits potential depolarisation whenever Qy fulfils an
odd order snake resonance condition. Potential depolarisation here means that a spin started vertical
at δ = −∞ and that can be tilted into the horizontal plane while being close to the resonance at
ν0(δ = 0) = κ will possibly not recover to the vertical at δ = +∞. Acceleration of spins will be
treated in the framework of adiabatic invariance in chapter 4.

In exact agreement with theorem 3.2 the one–turn quaternion from equation (3.33) with odd k
fulfils the conditions of mid–plane symmetry, i.e. we find r0 and r2 contain only even harmonics in Ψ
whereas r1 and r3 contain only odd harmonics. This can be seen using the relations 2 cos x sinx = sin 2x
and 2 cos2 x−1 = cos 2x. Note that, according to theorem 2.9, in mid–plane symmetric rings only odd
order dynamical resonance harmonics w.r.t. the vertical tune are allowed. If the model is supposed to
describe a ring without mid–plane symmetry, also even k are allowed and r1 and r3 may become even.

For the one–turn quaternion t̄ for the SRM with one horizontal snake π apart from the viewpoint
we find on the contrary

t̄(0,Ψ) = r̄srm(2π, π; Ψ + πQ) (0, cos φ, 0,− sin φ) r̄srm(π, 0;Ψ)

=
(
2ξηc′ sin(φ− ψε − κπ − kΨ), η2 cosφ+ ξ2 cos(φ− 2ψε − 2κπ − 2kΨ),
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2ξηs′ sin(φ− ψε − κπ − kΨ), −η2 sinφ+ ξ2 sin(φ− 2ψε − 2κπ − 2kΨ)
)

(3.41)

with c′, s′ = cos, sin
(
κπ + arctan( δλ tan(λπ2 ))

)
and ξ, η as in (3.34a). In contrast to (3.33) it is clearly

visible that for k odd t0 and t2 are odd whereas t1 and t3 are even, but one might argue that since n̂0(0)
is parallel to the snake axis and hence in the horizontal plane we have just observed an example of a
“rotated mid–plane symmetry like” behaviour. By transforming t̄ into the (l̂(0), n̂0(0), m̂(0))–frame,
we find

t̄′(0,Ψ) ≡ q̄(n̂0(0), ŷ) t̄(0,Ψ) q̄(ŷ, n̂0(0))

=
(
2ξηc′ sin(φ− ψε − κπ − kΨ) , 2ξηs′ sin(φ− ψε − κπ − kΨ),

−η2 − ξ2 cos(2[φ− ψε − κπ − kΨ]) , ξ2 sin(2[φ − ψε − κπ − kΨ])
)

(3.42)

where q̄(ŷ, n̂0(0)) is the quaternion that rotates n̂0(0) into ŷ as defined in equation (2.49) and q̄(n̂0(0), ŷ)
is its inverse. For odd k the components t′0 and t′1 are odd and the components of t′2 and t′3 are even.
Therefore we see that the one–turn quaternion t̄′ in the tilted frame mixes odd and even harmonics
in the components belonging to the diagonal and off-diagonal part of the SU(2) map t′ . This means
that the rotations that cause a tilt away from n̂0 contain both odd and even harmonics in Ψ and that
the system does not behave like a “rotated mid–plane symmetric” system. The n̂0–response function
at θ = 0 for the case of one horizontal snake is

Vε(Ψ, 0) = 1 − 2((t′1)
2 + (t′3)

2)

= 1 − 2ξ2
(
4η2s′2 sin2(φ− ψε − κπ − kΨ) + ξ2 sin2(2[φ − ψε − κπ − kΨ])

)
, (3.43)

and has nodal points at least at every δ for which λ is an even integer.



Chapter 4

The invariant spin field and the

amplitude dependent spin tune

In this chapter we will introduce the concept of the invariant spin field (n̂–axis, Derbenev–Kondratenko
vector) and the amplitude dependent spin tune. The concept of the n̂–axis n̂(~z, θ), which is a field
constructed from a family of special solution of the T–BMT equation, was originally introduced in
1972 by Derbenev and Kondratenko [DK72, DK73] in a quasi–classical description of the constructive
and destructive effects of the synchrotron radiation field on electron polarisation. In the presence of
the Sokolov–Ternov effect [ST64] and the counteracting spin diffusion the local polarisation ~Ploc at a
phase space point settles basically along n̂(~z, θ). The equilibrium value | ~Pequ| and the characteristic
polarisation/depolarisation time scales can be computed once the invariant spin field and its derivative
w.r.t. the relative energy offset δ of the particle are known all around the ring and all across phase space
[SM86a, SM86b, DK72, DK73]. But even at high energies up to some TeV the synchrotron radiation
for protons is usually so weak that Sokolov–Ternov build up as well as radiative depolarisation can be
neglected.

In low energy rings the proton spin dynamics is sufficiently well described by the SRM [FS60, CR80,
SM88, HH96]. In the single resonance approximation one can solve the EOM for the spin directly and
constraints on the working energy and acceleration procedures can be obtained in a straightforward
manner (see sections 2.4 and 4.10). But at high energies where the spin–orbit coupling integrals
are large the spin motion becomes so complicated that a better tool is needed. For example with
increasing energy the Fourier coefficients εκ of ~ω increase. At a certain stage the ‘width’ of some
stronger resonances, i.e. the energy range in which these resonances have a non negligible effect on
spin motion, start to overlap. Beyond this energy the assumptions made in the single resonance
model become invalid. The flow of the T–BMT equation of course can still be computed numerically
and one way to proceed is to do straightforward tracking with many particles for many turns to
study spin motion at high energy. Normally one starts with a vertically aligned ensemble of spins
in a given initial region in phase space. Even under static conditions, i.e. when all parameters of
the T–BMT equation remain constant, one will usually observe a strongly oscillating component of
~Pens ≡ 〈Ŝ〉ens viewed at subsequent revolutions around the ring. This indicates that for an initially
vertical spin ensemble, ~Pens is not invariant under the one–turn spin map (OTM). In other words such
an ensemble does not describe an equilibrium spin distribution. But we cannot understand variation
of polarisation without first understanding the equilibrium. For that we need the n̂–axis. In the field
of proton polarisation the n̂–axis was introduced by Yokoya [KY88] during the SSC project and then
extensively used here at DESY for the “Polarised Protons at HERA” project [DB95a, DB95b, BH96a,
BH96b, BH96c, BH96d, BH98a, BH98b, BV98, HV99, VB98, BH99a, BH99b].

In the following sections we will define the invariant spin field as a phase space and azimuth
dependent unit vector field that is invariant under the T–BMT one–turn map. We will then introduce
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the amplitude dependent spin tune. Knowledge of both the n̂–axis and the amplitude dependent
spin tune allow an action–angle representation of spin motion, a description of the stationary spin
distribution and a formulation of adiabatic invariance under variation of the lattice parameters and/or
the reference momentum.

For the rest of this chapter we will assume the orbital motion to be integrable, so that for every
azimuth θ there is a symplectic transformation from the coordinates ~z to action–angle coordinates ~J ,
~Ψ where the inverse transformation is periodic w.r.t. θ and the Ψi. See also definition A.10. Sometimes
we will silently assume the initial azimuth to be θi = 0. We will often associate the orbital flow on
the invariant torus T ~J , ~Ψ(θ; ~Ψ0) = ~Ψ0 + ~Q( ~J )θ with the vector of tunes ~Q( ~J ). Then every function of
the azimuth and the coordinates is, when evaluated along a trajectory, pseudo–periodic (see definition
A.13) with the tunes ~Q. We will assume the eigenplanes of linearised orbital motion to have a unique
maximum projection on one of the (x, a)-, (y, b)- and (τ, δ)–planes so that we may conveniently label
the eigenplane and the corresponding tune as the x-, y- or z–plane and as Qx, Qy or Qz respectively.
The domain A ⊂ P in which the motion is bounded at least for a large number of revolutions and in
which at least approximations of action–angle variables can be found, is called the dynamic aperture
of a lattice. If the dynamic aperture of a lattice is too small, the accelerator cannot be operated in
storage mode or even in slow acceleration mode. Thus the constraint of integrable orbital motion does
not imply any practical restriction for the applicability of the results derived in this chapter.

4.1 Basic properties of the invariant spin field and the amplitude

dependent spin tune

Dynamical variables, apart from trivial examples, are implicitly time dependent via the EOM. In
accelerator coordinates we replace the time variable by the generalised azimuth θ ≡ 2πl/L, θ ∈ R. A
solution, e.g. of the orbital EOM ~z(θ) is generally not periodic in θ.

Definition 4.1 (Lattice field) We will call a field ~f ~J : R3×R → Rd, (~Ψ, θ) 7→ ~f ~J(
~Ψ, θ) on the torus

~J = const. a lattice field if it is 2π–periodic in θ as well as in the Ψi. We will call it a lattice function
if it does not depend on the Ψi.

The periodicity w.r.t. ~Ψ implies that ~f ~J is a function of the phase space. We will sometimes symbolise

such a function by defining the domain to be T ~J ×R where T ~J is the torus ~J =const. The periodicity

w.r.t. θ implies that ~f ~J is a function of the position in the lattice. Examples for lattice functions are
the Courant–Snyder functions β(θ), α(θ), γ(θ) (d = 1) or the matrix of the orbital eigenvectors of
the linear orbital OTM (d = 36). Examples for lattice fields are the Lorentz force ~F ( ~J, ~Ψ, θ) and the
T–BMT precession vector ~Ω( ~J, ~Ψ, θ) (d = 3).

The spin field is the natural generalisation of a dynamical spin variable, which obeys the T–BMT
equation, to a field on the extended phase space P ? ≡ P × R. We will only discuss spin fields on the
torus T ~J

Definition 4.2 (Spin field) A C1 field f̂ ~J : T ~J×R → SR, (~Ψ, θ) 7→ f̂ ~J(
~Ψ, θ) on the torus T ~J is called

a spin field of some lattice field ~Ω ~J and some orbital flow ~Ψ(θ; ~Ψ0) = ~Ψ0 + ~Q( ~J )θ if it is a solution of:

Dθ f̂ ~J ≡ ∂θ f̂ ~J + ~QT∂~Ψ f̂ ~J = ~Ω ~J
(~Ψ, θ) × f̂ ~J . (4.1)

Normally we will presume that lattice fields and spin fields can be defined for ~J ∈ A ⊂ R3 where A
is connected and includes ~0. When it is clear which torus or which set of tori is meant, we will often
drop the subscript ~J .
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Lemma 4.1

1. Let f̂ be a spin field for given ~Ω and ~Q, then Ŝf̂ (θ;
~Ψ0) ≡ f̂(~Ψ(θ; Ψ0), θ) solves the initial value

problem Dθ Ŝ = ~Ω × Ŝ, Ŝ(0) = f̂(~Ψ0, 0) on the orbital trajectory ~Ψ(θ) = ~Ψ0 + ~Qθ.

2. Conversely if ξ̂~Ψ0
(θ), ~Ψ0 ∈ T is a C1 family of spin trajectories on the torus which obey the

initial value problem Dθ ξ̂~Ψ0
= ~Ω× ξ̂~Ψ0

, ξ̂~Ψ0
(0) = ξ̂

(0)
~Ψ0

, then ĝ(~Ψ, θ) ≡ ξ̂~Ψ− ~Qθ(θ) is a spin field for

~Ω and ~Q.

The proof of 1 is obvious:

Dθ Ŝf̂ (θ;
~Ψ0) = ∂θ f̂ + ~QT∂~Ψ f̂ = ~Ω(~Ψ(θ; ~Ψ0), θ) × Ŝf̂ (θ;

~Ψ0) . (4.2)

Since ~Ψ0 = ~Ψ(θ, ~Ψ0) − ~Qθ ∀ ~Ψ0, θ, there is one initial condition ĝ(~Ψ0, 0) = Ŝ~Ψ0
(0) = Ŝ

(0)
~Ψ0

for every

(~Ψ, θ). Moreover we find at (~Ψ′, θ′)
(
∂θ + ~QT∂~Ψ

)
ĝ|~Ψ′,θ′ = Dθ Ŝ~Ψ0

(θ)|~Ψ0=~Ψ′− ~Qθ′,θ′ = ~Ω(~Ψ′, θ′) × Ŝ~Ψ′− ~Qθ′(θ
′) = ~Ω(~Ψ′, θ′) × ĝ|~Ψ′,θ′ (4.3)

which proves 2. 2

Corollary: A spin field f̂ evolves on the torus by means of the T–BMT flow

f̂(~Ψ + ~Q∆, θ + ∆) = R(θ + ∆, θ; ~Ψ)f̂(~Ψ, θ) . (4.4)

A spin field is therefore equivalent to a continuously partially differentiable family of spin trajectories.
Now we can define the invariant spin field

Definition 4.3 (Invariant spin field) A spin field n̂ ~J is called an invariant spin field (also n̂–
axis or Derbenev–Kondratenko vector) if it is a lattice field, i.e. if:

n̂ ~J(
~Ψ, θ + 2π) = n̂ ~J(

~Ψ, θ) = n̂ ~J(
~Ψ + 2π~k, θ) with ~k ∈ Z3 . (4.5)

Since it is a spin field it obeys R ~J(θf , θi;
~Ψi) n̂ ~J(

~Ψi, θi) = n̂ ~J(
~Ψf , θf ). Definition 4.3 is equivalent to

the requirement that the n̂–axis is invariant under the spin OTM in the sense that

R(θ; ~Ψ)n̂(~Ψ, θ) = n̂(~Ψ + 2π ~Q, θ) . (4.6)

This means that the image n̂(T , θ) ≡ {n̂(~Ψ, θ) : ~Ψ ∈ T } of T on SR is an invariant of the spin OTM.
Since for any two T–BMT solutions Ŝ1 and Ŝ2 the scalar product Ŝ1 · Ŝ2 is an invariant of motion, for
any spin field f̂

P
(f̂)
dyn ≡ 1

(2π)3

∫

T
d~Ψ3 f̂(~Ψ, θ) · n̂(~Ψ, θ) ≡ 〈f̂ · n̂〉~Ψ (4.7)

is an invariant of motion. Furthermore

Plim(θ) ≡
∥∥∥∥

1

(2π)3

∫

T
d~Ψ3 n̂(~Ψ, θ)

∥∥∥∥ ≡ ‖〈n̂〉~Ψ‖ (4.8)

is an invariant of the OTM. In other words if infinitely many spins are aligned parallel to the invariant
spin field at some azimuth θ and uniformly distributed in ~Ψ, then after one revolution around the
ring they are redistributed on the torus according to the orbital phase advance 2π ~Q but Pdyn = 1 and
Plim(θ) remain unchanged. Therefore with an ensemble of spins aligned along their local n̂–axis the
polarisation on the torus does not depend on time — this is the stationary polarisation state. Because
of the periodicity constraint resonances show up in n̂ and Plim. We will discuss Plim and Pdyn later in
section 4.4.
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The evaluation Ŝn̂(θ) ≡ n̂(~Ψ(θ), θ) of n̂ along an orbital trajectory ~Ψ(θ) is sometimes identified
with the n̂–axis itself. Then the invariant spin field is often called the “periodic T–BMT solution”,
although for any trajectory ~Ψ(θ) Ŝn̂(θ) is only pseudo–periodic with the orbital tunes ~Q.

Since the orbital OTM T is origin preserving and both the orbit and spin maps do not depend on
~Ψ for ~J = ~0, the n̂–axis contains the n̂0–axis as a trivial case

n̂0(θ) = n̂~0(
~Ψ, θ) , n̂0(θ + 2π) = R0(θ)n̂0(θ) . (4.9)

Historically the above property of the n̂0–axis caused a lot of confusion: by analogy many have
taken the n̂–axis to be the unit rotation vector of the spin OTM even for ~J 6= ~0. Here we should stress
the point that the n̂–axis is, except for trivial examples, not the unit rotation vector r̂ of the spin
OTM R. The orbital OTM ~T ~J(θ;

~Ψi) and the spin one–turn matrix R ~J(θ;
~Ψ) are lattice fields. Hence

the rotation vector r̂ ~J(
~Ψ, θ) is a lattice field, but propagating it with the spin OTM with ~J 6= ~0 yields

R ~J(θ;
~Ψi)r̂ ~J(

~Ψi, θ) = r̂ ~J(
~Ψi, θ) (4.10)

and generally not R ~J(θ;
~Ψi)r̂ ~J(

~Ψi, θ) = r̂ ~J(
~Ψi+2π ~Q, θ). Therefore according to the corollary to lemma

4.1 r̂ ~J(
~Ψ, θ) is not a spin field and hence not an n̂–axis. Moreover it was already clear in chapter 2 and

3 that an evaluation r̂ ~J(
~Ψ(θ), θ) of r̂ ~J does in general not obey the TBMT–equation. r̂ ~J is of course an

n̂–axis if the tunes are integral [Qi] = 1, i = x, y, z, i.e. if the orbit system is on an integer resonance
in all planes. But if the tunes are incommensurable with 1 then r̂ ~J can in general not be an n̂–axis for
non–vanishing orbital amplitudes. This can also be seen be combining equations (4.10) and (4.6) to
r̂ ~J(

~Ψ, θ) = r̂ ~J(
~Ψ + 2π ~Q, θ) for all ~Ψ. Iteration yields the constraint r̂ ~J(

~Ψ, θ) = r̂ ~J(
~Ψ + 2Nπ ~Q, θ),

N ∈ N. Since {~Ψ + 2Nπ ~Q : N ∈ N} is a dense subset of T for incommensurable tunes, we see
that r̂ ~J(

~Ψ, θ) could not depend on ~Ψ. Therefore r̂ ~J can only be an n̂–axis in a spin–orbit system
with incommensurable tunes, if the n̂–axis does not depend on the orbital phases. In principle these
examples are trivial and have no significance for real accelerators. The presence of quadrupoles implies
spin–orbit coupling and therefore a phase dependent r̂ ~J . Moreover the orbital motion, in fact already
the closed orbit, is unstable under small perturbations for integral tunes. Figure 4.1 (left) shows r̂(Ψy)
on the unit sphere in HERA–p at 805 GeV for purely vertical motion on an invariant ellipse enclosing
a normalised emittance of 40 π mm mrad. The lattice is the 1996 luminosity optics of HERA–p
with 6 flattening snakes around the East- (O), South- (S) and North- (N) interaction points (IP) and
four horizontal snakes close to the O-, S-, W- and N–IP with snake angles measured from the radial
direction π/2, 0, 0 and 0. The viewpoint θ0 is at the O–IP and the vertical tune used for the simulation
was close to 32.2725.1 Most figures on spin motion in HERA–p in this chapter will actually use this
particular lattice and snake scheme, which we will call “3111”. The HERA optics and the snake
scheme are described in much more detail in chapter 5 and a table for the coding of snake schemes
used in this thesis is given in appendix C. Figure 4.1 (right) shows in “dark” the corresponding locus
of the invariant spin field, i.e. the result of successive application of the spin OTM on a spin initially
parallel to n̂(Ψy,i), and in “light” the locus of r̂. The n̂–axis was computed (see section 4.5) at one

point Ψy,i and then Ŝn ≡ n̂(Ψy,i, θi) tracked for 1000 turns leading to a closed curve on the unit
sphere, in other words for those M , N for which the distance [(M −N)Qy] on the invariant ellipse is
sufficiently small, the difference of n̂(Ψy,i + 2πMQy) and n̂(Ψy,i + 2πNQy) is small (see lemma 4.2).

The tracking of the Ŝr ≡ r̂(Ψy,i, θi) obviously leads to a cloud of points around the n̂–axis instead of a
closed curve. In Summary for systems with incommensurable orbital tunes, if r̂ is viewed as a lattice
field r̂(~Ψ, θ) = r̂(~Ψ, θ + 2π) as in figure 4.1 (left), it is not a spin field and on the other hand if r̂ ′ is
viewed as a spin field for the initial conditions r̂ ′(~Ψ, θi) = R(~Ψ, θi)r̂

′(~Ψ, θi) at θi as in 4.1 (right), it is
not periodic in θ and hence not a lattice field.

1But as “irrational” as possible in a floating point representation.
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Figure 4.1: Left: The rotation vector r̂(Ψy) in HERA–p at 805 GeV with enclosed vertical emittance of 40 π mm mrad
on the unit sphere. Right: Scatter–plot of successive iterations of the spin OTM on a spin initially parallel to r̂(Ψy,i)
(light) in comparison with the invariant spin field (dark).

Nevertheless for orbit resonances of sufficiently high order the orbital motion might be sufficiently
stable to allow operation. Therefore it is worthwhile to look at the general case of ~k · ~Q = k0, ~k ∈ N3,
k0 ∈ N with |~k| � 1 or equivalently N ~Q = ~0 mod 1 where N is the smallest common multiple of the
ki.

Theorem 4.1 (The n̂–axis on an orbital resonance) If in a combined spin–orbit system N ~Q =
(0, 0, 0) mod 1 for some N ∈ N then an n̂–axis exists. It is given by

n̂res(~Ψ, θ) = r̂(N)(~Ψ, θ) , (4.11)

where ±r̂(N)(~Ψ, θ) is the unit eigenvector with eigenvalue 1 (unit rotation vector) of the N–turn spin
map R(N)(θ; ~Ψ) and the sign has been chosen to make n̂res continuous.

If in addition R(N)(θ; ~Ψ) = 1 ∀~Ψ, an (almost) arbitrary spin field generated by propagating a contin-

uous family of spins Ŝ
(0)
~Ψ

at some θ0 which fulfils R(l)(θ0, ~Ψ)Ŝ
(0)
~Ψ

= Ŝ
(0)
~Ψ+2lπ ~Q

, 1 ≤ l ≤ N is an n̂–axis

and therefore the n̂–axis is not unique, otherwise the n̂–axis is unique up to a global sign.

The proof requires some care in order to guarantee continuity of n̂ and can be found in [GH99b].

A general proof for the existence of an invariant spin field for non–resonant tori has not yet been
found. In the SRM the n̂–axis can be computed analytically (see section 4.7). Furthermore, in many
cases of realistic lattices numerical approximations (see sections 4.3 and 4.5) of the n̂–axis can be
found. If an n̂–axis exists on a non–resonant torus and a particle starting at (~Ψ, θ) with a spin Ŝn̂
parallel to n̂(~Ψ, θ) is tracked by the combined spin–orbit OTM for m = 1, 2, . . . times, then due to
the incommensurability of the tunes the set Z ≡ {~Ψ + 2mπ ~Q mod 2π|m ∈ N} is dense on T at θ and
S ≡ {R(m)(θ; ~Ψ)Ŝn̂|m ∈ N} is dense on L ≡ n̂(T , θ). Since n̂ is assumed C1, knowledge of n̂ on a dense
subset of T suffices to determine n̂ completely. In order to obtain n̂ at θ ′ from Ŝn̂ one first computes
Ŝ′
n̂ ≡ R(θ′, θ; ~Ψ)Ŝn̂ at ~Ψ′ = ~Ψ+(θ′−θ) ~Q and then constructs the sets Z ′ ≡ {~Ψ′+2mπ ~Q mod 2π|m ∈ N}

and S ′ ≡ {R(m)(θ; ~Ψ′)Ŝ′
n̂|m ∈ N}. We have just proved
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Figure 4.2: The locus of the n̂–axis for the HERA–p 1996–luminosity optics with 6 flattening snakes around the O-,
S-, and N–IP and 4 snakes, from O to N: long., rad., rad., rad. (3111) at a reference momentum of 802.5 GeV and for
purely vertical motion. Top left: on the 1 σ invariant ellipse and top right: for 2.5 σ. Bottom left: n̂(Ψy) for 1 σ and
bottom right: ny(Ψy) for 2.5 σ.
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Theorem 4.2 If on some torus an invariant spin field exists for a spin–orbit system with orbital
tunes incommensurable with 1, then the invariant spin field on this torus is completely determined by
one spin Ŝn̂ ≡ n̂(~Ψ0, θ0) at one arbitrary (~Ψ0, θ0).

Therefore one may say that (Ŝn̂, ~Ψ0, θ0) is a seed of the invariant spin field. We now want to find
a method of quantifying the accuracy of a numerical approximation of the invariant spin field. Let
d1(â, b̂) ≡ arccos â · b̂. Then one easily shows for all b̂, â, ĉ ∈ SR

d1(â, b̂) = d1(b̂, â) , d1(â, b̂) ≥ 0 , d1(â, b̂) = 0 ⇒ â = b̂ , d1(â, ĉ) ≤ d1(â, b̂) + d1(b̂, ĉ) (4.12)

so that 0 ≤ d1 ≤ π is a metric on SR. Alternatively we can choose the metric d2(â, b̂) ≡ ‖â − b̂‖ =
2 sin(1/2d1(â, b̂)) with 0 ≤ d2 ≤ 2 to define a distance on SR.

Definition 4.4 (Pseudo–seed of the invariant spin field ) We will call a triple (Ŝ, ~Ψ0, θ0)
(ε,M)

at the Poincaré section at θ0 a pseudo–seed for an invariant spin field or a seed for a pseudo–n̂–axis
for at least M turns to accuracy ε > 0 when a C1 function f̂ : T → SR, ~Ψ 7→ f̂(~Ψ) = f̂(~Ψ + 2π~k),
~k ∈ Z3 exists and for 0 ≤ m ≤M

d
(
R(m)(θ0; ~Ψ0)Ŝ, f̂(~Ψ0 + 2mπ ~Q mod 2π)

)
< ε , (4.13)

where d is either d1 or d2.

In other words the spin Ŝ, when tracked from (~Ψ0, θ0) for less than M turns, stays inside a band of
width 2ε around some continuously partially differentiable function f̂ on the torus T . It is clear that
if an n̂–axis exists and (Ŝ, ~Ψ, θ) is a seed of that n̂–axis, then for arbitrarily small ε > 0 (Ŝ, ~Ψ, θ) is
a pseudo–seed (Ŝ, ~Ψ, θ)(ε,∞). Also if an n̂–axis exists and Ŝ is an approximation of n̂ at (~Ψ, θ) with
d(Ŝ, n̂(~Ψ, θ)) < ε then (Ŝ, ~Ψ, θ) is a pseudo–seed (Ŝ, ~Ψ, θ)(ε,∞). Even if no n̂–axis strictly exists we
might find some seed of a pseudo–n̂–axis (Ŝ, ~Ψ, θ)(ε,M). If ε can be chosen sufficiently small and M can
be chosen sufficiently large, then we might not be able to decide whether or not an exact n̂–axis exists.
The advantage of this definition is that ε can easily be estimated visually by tracking a pseudo–seed
for M turns and plotting the results on the Poincare section θ = θ0. We note that if only one orbital
amplitude is non–zero, the torus degenerates to a circle T1, i.e. a closed curve in R6. Since the image
of a closed curve under a continuous map is a closed curve we obtain

Lemma 4.2 If the orbital motion is restricted to one eigenplane, i.e. ~J → J and T → T1, then the
locus of the n̂–axis L ≡ n̂(T1, θ0) is a closed curve on the unit sphere SR.

Figure 4.2 (top) shows loci of the n̂–axis, n̂(T1, θ0) for the 1996 luminosity optics of HERA–p with the
same snakes as in figure 4.1. Both plots are for purely vertical orbit motion, i.e. Jx = Jz = 0. The
viewpoint is the O–IP. Figure 4.2 (bottom) shows the components of n̂(~Ψ). The left plots (top and
bottom) were created by tracking a particle on the invariant ellipse that corresponds to the typical
rms beam size σ. This means a typical enclosed normalised emittance of 4 π mm mrad. We recall
(appendix A) that a normalised emittance of 4 π mm mrad means a Courant–Snyder invariant ε = 4
mm mrad/βγ or an orbital action Jy = 2 mm mrad/βγ. The right plots (top and bottom) are for 2.5
σ. The pseudo–n̂–axis was computed using stroboscopic averaging (see section 4.5) at one point in
phase space and then tracked for 103 (left) and 104 (right) turns to fill the curve with sufficiently many
points. The curve in figure 4.2 (top left) is rather simple and the components nx, ny and nz shown
bottom left are clearly 2π–periodic functions of Ψy within the resolution of the plot 0 < ε < 10−3. If
we had tracked a spin with some noticeable angle η w.r.t. the n̂–axis evaluated at the starting point we
would have seen points scattered inside a band of width 2η around L. Note that tests have been made
with up to 106 turns which yield the same results on the accuracy of n̂ but lead to data files of hardly
printable size! Since HERA–p is not mid–plane symmetric, the locus of the n̂–axis does not fulfil the
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Figure 4.3: The n̂–axis for HERA–p as in figure 4.2 tracked for 104 turns but at 803.5 GeV and on the invariant 2.5
σ ellipse. Top: locus on unit sphere. Bottom: ny(Ψy) showing that n̂ is indeed at least a useful pseudo–n̂–axis.
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Figure 4.4: The n̂–axis for HERA–p as in figure 4.2 and 4.3 but at 800 GeV and with horizontal and vertical orbit
motion (both 1 σ) excited. Top: locus on unit sphere. Bottom: nz(Ψx, Ψy).
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constraint n̂(Ψy + π) = Y πn̂(Ψy) (see the paragraph after corollary 2 to theorem 2.10). Figures 4.2
and 4.3 show clearly that the mid–plane symmetry is broken by the vertical bends, even if flattening
snakes are applied to compensate the vertical bends on the design orbit. Thus approximations of
HERA–p incorporating mid–plane symmetry are certainly inadequate. In figure 4.2 (right) the curve
L (top right) is much more complicated then for 1 σ but it is still a closed curve up to the graphical
resolution. The plot of ny(~Ψy) (bottom right) is also clearly 2π–periodic although it is a much wilder
function than at bottom left. We conclude that the two numerically computed pseudo–n̂–axes shown
in figure 4.2 are accurate to a precision of less than 10−3 for more than 104 turns.

Figure 4.3 shows a much more exotic example of a pseudo–n̂–axis. The lattice, the snake scheme
and the viewpoint are the same but the reference momentum has been increased slightly to 803.5 GeV
and the vertical rms beam size is again 2.5 σ. The curve (top) is so chaotic that one might not dare
to call it a closed curve. Nevertheless ny(Ψy) (bottom) can be identified as a violently oscillating but
2π–periodic continuous function. Therefore figure 4.3 shows a further example of a pseudo–n̂-axis
that is accurate to the level of 10−3 for at least 104 turns. Figure 4.4 again shows the pseudo–n̂–
axis for the same set up but for vertical and horizontal motion excited at the same time. Both orbital
amplitudes correspond to an rms beam size of 1 σ. The longitudinal motion is not excited and the
reference momentum is 800 GeV. Since the invariant torus T2 now is a 2–dimensional manifold we
cannot expect the locus of the n̂–axis to be a closed curve. Indeed we see (figure 4.4 top) that the
tracked pseudo–seed covers an area on SR rather than a curve. Figure 4.4 (bottom) shows nz(Ψx,Ψy)
obtained by tracking the pseudo–seed, which turns out to be a function which is 2π–periodic in Ψx

as well as Ψy and obviously smooth. It is worth mentioning that in any non–linear treatment of spin
motion on synchro–betatron trajectories the horizontal amplitudes, do have an impact on the invariant
spin field because of the non–commutation of the rotations inside quadrupoles around x̂ due to vertical
displacements and around ŷ due to horizontal displacements. We conclude from figures 4.2 to 4.4 that
even in an asymmetric ring, with about 2000 beam line elements, at high energy, with more than
one non–zero orbital amplitude and close to a very strong intrinsic resonance (≈ 803.5 GeV) useful
seeds for pseudo–n̂–axes can in principle be found — no matter whether or not the existence of the
invariant spin field in such a case can be rigorously proved. From now on we will not distinguish any
more between n̂–axes and pseudo–n̂–axes.

Since the invariant spin field is a lattice field, the spin trajectory Ŝn̂(θ) ≡ n̂(~Ψ0 + θ ~Q, θ) is pseudo–
periodic with the tunes ~Q, i.e. it contains only integer combinations of the orbital frequencies. An
arbitrary spin trajectory Ŝ(θ) starting at the same point on the torus can be decomposed into Ŝ =
~S‖ + ~S⊥ where ~S‖ ≡ (Ŝ · n̂)n̂ and ~S⊥ ≡ Ŝ − ~S‖. Obviously ‖~S‖‖ ≡ I ≡ Ŝ · n̂ and ‖~S⊥‖ ≡

√
1 − I2

are invariants of motion and ~S⊥ precesses in the plane locally perpendicular to n̂. Since I = const.,
~S‖ is also pseudo–periodic with the tunes ~Q, but ~S⊥ contains in addition the frequency spectrum of
the precession around n̂. We now transform into a phase space and azimuth dependent orthonormal
right–handed coordinate system (ũ1(~Ψ, θ), n̂(~Ψ, θ), ũ2(~Ψ, θ)) which is 2π–periodic in θ as well as in the
Ψi and with

Ŝ′ ≡




s1
I
s2


 ≡ (ũ1, n̂, ũ2)

T Ŝ (4.14)

we find for the spin OTM in the new coordinates

Ŝ′
f = R′(θ; ~Ψi)Ŝ

′
i , R′(θ; ~Ψi) ≡




cos(2πν̃(~Ψi, θ)) 0 sin(2πν̃(~Ψi, θ))
0 1 0

− sin(2πν̃(~Ψi, θ)) 0 cos(2πν̃(~Ψi, θ))


 . (4.15)

The amplitude-, angle-, and azimuth dependent quantity ν̃ is called the pseudo spin tune. Since R ′

is a lattice function ν̃ is 2π–periodic in θ and ~Ψi. The ordering of the base vectors has been chosen
so that in the limit n̂→ ŷ one can choose (ũ1, n̂, ũ2) → (x̂, ŷ, ẑ). We note that R′ is a 3–dimensional
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representation of the Abelian group SO(2) (see section 2.2.1). Therefore we can write

~S⊥(θ + 2π) =
√

1 − I2=
(

(ũ1 + iũ2)
∣∣∣
(~Ψ+2π ~Q,θ)

ei(φ(~Ψ,θ)+Φ0)

)
, (4.16)

with s1(θ) =
√

1 − I2 sinΦ0, s2(θ) =
√

1 − I2 cos Φ0 and φ(~Ψ, θ) = 2πν̃(~Ψ, θ) being the spin phase
advance from θ to θ + 2π when starting at ~Ψ. Let ~Ω′ = (0, ζ(~Ψ, θ), 0) be the precession vector of the
T–BMT equation transformed to the (ũ1, n̂, ũ2) system, then

φ(~Ψ, θ) =

∫ θ+2π

θ
ζ(~Ψ + ϑ~Q, ϑ) dϑ ≡

∫ θ+2π

θ
ξ(ϑ) dϑ . (4.17)

Since ~Ω and (ũ1, n̂, ũ2) are periodic in ~Ψ and θ, ζ is also periodic. Therefore ξ is pseudo–periodic with
~Q. We split ξ into two parts

ξ(θ) = ξ(0)(θ) + ξ>(θ) =
∑

k0∈Z

∑

~k∈Z3

ξ
k0,~k

ei(k0+~k· ~Q)θ

=
∑

k0∈Z

ξ
(0)
k0
eik0θ +

∑

k0∈Z

∑

~k∈Z3

|~k|6=0

ξ>
k0,~k

ei(k0+~k· ~Q)θ (4.18)

and find that in the case that ~Q is strongly incommensurable with 1 (see definition A.6) and ξ has
an analytic extension, the integral of ξ(>) converges [ems3, LM88]. The integral over 2π of ξ(0) just

contributes with 2πξ
(0)
0 . Owing to the strong incommensurability of the tunes the integral does not

contain any terms with ~k · ~Q ∈ Z. Therefore φ(~Ψ, θ) can be written

φ(~Ψ, θ) = φ0,~0 +
∑

k0∈Z

∑

~k∈Z3

|~k|6=0

φ
k0,~k

ei(k0θ+
~k·~Ψ) . (4.19)

Since the only constraints on ũ1 and ũ2 were periodicity and local orthogonality to n̂ we can transform
(4.16) into another periodic orthonormal system (û2, n̂, û1) by rotating around n̂ with (û1 + iû2) =

eiχ(~Ψ,θ)(ũ1 + iũ2) so that

~S⊥(θ + 2π) =
√

1 − I2=
(

(û2 + iû1)
∣∣∣
(~Ψ+2π ~Q,θ)

ei(φ(~Ψ,θ)−χ(~Ψ,θ)+χ(~Ψ+2π ~Q,θ+2π)+Φ0)

)
. (4.20)

The factor eiχ has to be periodic in the Ψi and θ and therefore it has to be of the form

χ(~Ψ, θ) ≡ χper(~Ψ, θ) +~l · ~Ψ + l0θ , ~l ∈ Z3 , l0 ∈ Z (4.21)

where χper(~Ψ, θ) is 2π–periodic w.r.t. θ and ~Ψ. Fourier transforming (see A.55) κ(~Ψ, θ) ≡ φ(~Ψ, θ) −
χper(~Ψ, θ) + χper(~Ψ + 2π ~Q, θ + 2π) yields

κ(~Ψ, θ) = φ0,~0 +
∑

k0∈Z

∑

~k∈Z3

|~k|6=0

(
φ
k0,~k

− χper

k0,~k
(1 − ei2π

~k· ~Q)
)
ei(k0θ+

~k·~Ψ) , (4.22)

since the terms χper

k0,~0
do not contribute. When the orbital tunes are strongly incommensurable with 1

and φ(~Ψ, θ) has an analytic extension then one can eliminate all terms except φ0,~0 by choosing

χper

k0,~k
=

φ
k0,~k

1 − ei2π~k· ~Q
(4.23)



76 CHAPTER 4. THE N̂–AXIS AND THE SPIN TUNE

and the generalised Fourier series still converges [ems3, LM88]. We now define the amplitude dependent
spin tune ν ≡ φ0,~0/2π which only depends on the ~J = const. of the torus. After having eliminated all
the phase and azimuth dependent parts by properly choosing û1 and û2 we obtain

~S⊥(θ) =
√

1 − I2=
(

(û1 + iû2)
∣∣∣
(Ψ(θ),θ)

ei((ν+
~l· ~Q+l0)θ+Φ0)

)
. (4.24)

In this equation it becomes clear that we can apply an additional uniform rotation around n̂ by
θ(m0 + ~m · ~Q) and obtain a flow of the same form with ν ′ ≡ ν + m0 + ~m · ~Q. Additionally we can
perform a global rotation of the coordinate system around e.g. û1 by π and get ν ′′ = −ν. Therefore
ν is only unique up to a change of sign and an integer combination of the Qi and 1. The coordinate
vector Ŝ′′ ≡ (S1, I, S2)

T w.r.t. the (û1, n̂, û2)–system is transported by

Ŝ′′(θf ) = R′′
~J
(θf , θi)Ŝ

′′(θi) , R′′
~J
(θi, θf ) ≡




cos((θf − θi)ν( ~J )) 0 sin((θf − θi)ν( ~J ))
0 1 0

− sin((θf − θi)ν( ~J )) 0 cos((θf − θi)ν( ~J ))




(4.25)
or with I and Φ ≡ arctan S1

S2
the flow can be written

I = const. , Φ(θ) = Φ0 + θ ν . (4.26)

Therefore we have proved:

Theorem 4.3 If for a given spin–orbit system an invariant spin field exists on a torus ~J = const., if
the Qi( ~J ) are strongly incommensurable with 1 and if the spin precession frequency ξ(θ) in an arbitrary
periodic basis (ũ1, n̂, ũ2) has an analytic extension for all starting values ~Ψi, then

1. a periodic basis (û1, n̂, û2) exists in which the spin precesses uniformly with the amplitude depen-
dent spin tune ν( ~J ),

2. for all l0 ∈ Z and ~l ∈ Z3, ν ′( ~J ) ≡ ±ν( ~J ) + l0 + ~l · ~Q is also an amplitude dependent spin tune
and

3. the transformation Ŝ 7→ (I,Φ) ≡ (Ŝ · n̂, arctan û1·bS
û2·bS ) defines action–angle variables for the spin–

orbit system. Since the inverse transform is 2π–periodic in Φ, the spin–orbit system is integrable.

Equivalent definitions of the amplitude dependent spin tune can be found in [BH92, KY86] and
a similar theorem based only on one–turn maps is in [GH99b]. The amplitude dependent spin tune
defines another independent basic frequency of the spin–orbit system. The spin component Ŝ⊥(θ)
perpendicular to the n̂–axis is a pseudo–periodic function with the tunes ( ~Q( ~J ), ν( ~J )) only. It contains
not only the orbital frequencies but also ν. In order to describe long term coherence of spin motion
with the orbital degrees of freedom on a torus, not only ~Q but also ν is essential. The long term
coherence condition is then

ν( ~J ) = k0 + ~k · ~Q( ~J ) (4.27)

and it must be stressed that (4.27) contains ν( ~J ) and not ν0, Gγ or even worse the normalised
angle computed from the complex eigenvalues of the off–orbit OTM as often stated incorrectly in the
literature. Equation (4.27) is the modification to equation (2.110) needed to go beyond perturbation
theory announced in section 2.3.2.

It can be shown [KY86] that there is a canonical transformation from the coordinates (K,ϕ) in
(2.13) to the coordinates (I,Φ) introduced in theorem 4.3. Both sets of coordinates define a chart of
SR which is singular at K, I = ±1, i.e. the North- and South pole of the unit–sphere. Therefore it
is sometimes more convenient to use the coordinate pair (S1, S2) which is transported according to
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equation (4.25) and which we will call the spin normal form coordinates. Introducing the complex
scalar S ≡ (S1 + iS2) the notation is most compact

S(θf ) = ei(θf−θi)ν( ~J ) S(θi) . (4.28)

Assuming that ν( ~J ) and n̂ ~J(
~Ψ, θ) are continuous functions of ~J in some vicinity of the closed

orbit ~J = ~0 and that ν0 is not in resonance with the orbital tunes, one can choose the integers l0 and
~l defined in theorem 4.3 and the sign of ν so that lim ~J→~0 ν(

~J ) = ν0 and lim ~J→~0 n̂ ~J(
~Ψ, θ) = n̂0(θ).

Finally we can decide whether the invariant spin field is unique:

Theorem 4.4 (Uniqueness of the invariant spin field ) If an n̂–axis and two lattice fields û1,
û2 exist on a torus ~J = const. so that ν( ~J ) can be defined according to theorem 4.3 and ν 6= k0 +~k · ~Q
for all k ∈ Z and ~k ∈ Z3, then the n̂–axis is unique up to a global sign.

We assume that another invariant spin field n̂′ exists which differs from n̂ in some neighbourhood of
~Ψ0, θ0. We write n̂′(~Ψ, θ) in spin normal form coordinates w.r.t. the basis (û1, n̂, û2), i.e. n̂′(~Ψ, θ) =(
S′

1û1 +
√

1 − (S′
1)

2 + (S′
2)

2n̂+ S′
2û2

) ∣∣∣
(~Ψ,θ)

. The complex scalar S ′ does not vanish in some vicinity

of ~Ψ0, θ0 by construction. Since it represents an invariant spin field, it has to be periodic and owing to
the conservation of the angle between two T–BMT solutions it has to have constant modulus. With
S′ ≡

√
1 − (I ′)2 eiρ, I ′ = n̂′ · n̂ = const. and ρ(~Ψ, θ) ≡ ρper(~Ψ, θ) + ~l · ~Ψ + l0θ where ρper is periodic,

the invariance constraint (4.6) reads as

S′(~Ψ + 2π ~Q, θ + 2π) = ei2πν S′(~Ψ, θ)

⇒ 1 = ei(2π(ν−~l· ~Q)+ρper(~Ψ,θ)−ρper(~Ψ+2π ~Q,θ)) (4.29)

for all ~Ψ, θ. We conclude that since ~Q is incommensurable with 1, the periodic part of ρ does not
depend on ~Ψ. Therefore ρ = ρper

0 (θ) + ~l · ~Ψ + l0θ. Then we see that ν − ~l · ~Q has to be an integer in
contradiction with the premises of theorem 4.4. 2

A similar proof can be found in [GH99b].

We note that in contrast to the orbital tunes ~Q( ~J ) that can depend on the orbital actions, the
spin tune does not depend on the spin action but only on the orbital actions, i.e. ν( ~J). This has two
reasons: First, we only treated the “triangular system” as pointed out in [BG98a], i.e. without any
Stern–Gerlach back reaction of the spin onto the orbit. Therefore ∂I ~Q = ~0. Second, the T–BMT
equation is linear in the spin and hence ∂I ν = 0. If we were to include the Stern–Gerlach force, we
would expect new tunes (Q1, Q2, Q3, Q4) depending on all of the four actions (J1, J2, J3, J4) since in
the fully spin–orbit/orbit–spin coupled system the spin and orbit normal forms could in general not
be separated.

In the next sections we will discuss several methods to numerically compute the invariant spin
field and the amplitude dependent spin tune that have been proved useful during this project.

4.2 The linear approximation of n̂

In this and the following sections all quantities refer to the Poincarè section at one fixed θ0. We will
therefore omit the parameter θ0 wherever possible for brevity.

In section 2.3 we have found a completely linearised description of spin–orbit motion.(2.106). In
equations (2.103) and (2.106) we have defined the column 8–vector ~Z ≡ (~zT, α, β)T, where α = Ŝ · ~m
and β = Ŝ ·~l are the spin components perpendicular to n̂0 measured in the l̂, n̂0, m̂ system defined in
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equation (2.94). The OTM for ~Z at some given θ is to first order in the initial coordinates represented
by the 8 × 8 matrix

M8×8 ≡
(

T 6×6 06×2

G2×6 D2×2

)
, (4.30)

where T 6×6 is the linear orbital OTM, 06×2 reflects the absence of a Stern–Gerlach force in this
particular model D2×2 ∈ SO(2) is a rotation by 2πν0 around n̂0 and the “G–matrix” G2×6 contains

the spin–orbit coupling to first oder in ~Z. We define an arbitrary spin field f̂(~z) in linear order as ~F ≡
(~zT, α

(1)
f (~z), β

(1)
f (~z))T with

(α(1)
f

(~z)

β
(1)
f

(~z)

)
= L

(f)
2×6~z. Then the invariance condition (4.6) of the n̂–axis under

the OTM applied to its first order approximation ~N is

~N(T 6×6~z) ≡
(

T 6×6~z

L
(n)
2×6 T 6×6~z

)
= M8×8

(
~z

L
(n)
2×6~z

)
≡ M8×8

~N(~z) ⇔
(

16×6

L
(n)
2×6

)
T 6×6 = M8×8

(
16×6

L
(n)
2×6

)
.

(4.31)
Again we assume the linear orbital motion to be integrable and stable. Let now

A6×6 ≡ (~v+
x , ~v

−
x , ~v

+
y , ~v

−
y , ~v

+
z , ~v

−
z ) with T 6×6~v

±
l = e±i2πQl~v±l , l = x, y, z (4.32)

be the column matrix of the 6–dimensional eigenvectors of T 6×6, normalised so that A6×6 is symplec-
tic, i.e. (~v+

l )T J~v−l = 1 and (~v+
l )T J~v−l′ = 0 for l 6= l′. Furthermore let

C8×6 ≡ (~w+
x , ~w

−
x , ~w

+
y , ~w

−
y , ~w

+
z , ~w

−
z ) =

(
A6×6

B2×6

)
with M8×8 ~w

±
l = e±i2πQl ~w±

l , l = x, y, z (4.33)

be the column matrix of the six 8–component eigenvectors of M 8×8 which are associated with
the orbital tunes Ql. First we find with Λ6×6 = A−1

6×6 T A6×6 = diag(e+i2πQx , . . . , e−i2πQz ,) that
C8×6 Λ6×6 = M8×8 C8×6. Then multiplying (4.31) from the right with A6×6 yields

(
A6×6

L
(n)
2×6A6×6

)
Λ6×6 = M8×8

(
A6×6

L
(n)
2×6A6×6

)
(4.34)

showing that the columns of
( A6×6

L
(n)
2×6 A6×6

)
are eigenvectors of M 8×8. Since the upper 6 rows are identical

to those of C8×6, the lower 2 rows also have to be identical to those of C8×6:

~N(~z) = C8×6A
−1
6×6~z =

(
~z

B2×6A
−1
6×6~z

)
. (4.35)

Thus the form for L
(n)
2×6 which delivers

(α(1)
n

β
(1)
n

)
with the required periodicity to first order is fixed and

L
(n)
2×6 = B2×6A

−1
6×6.

With the eigenvectors ~w±
l ≡ ((~v±l )T, (~b±l )T)T of M 8×8, the ~b±l have to fulfil the constraint

G2×6~v
±
l + D2×2

~b±l = e±i2πQl~b±l ⇒ ~b±l = (e±i2πQl − D2×2)
−1G2×6~v

±
l . (4.36)

The above solution only exists if (e±i2πQl − D2×2) is regular, namely not at the first order intrinsic
resonances

ν0 = k0 + ~k · ~Q , |~k| = 1 . (4.37)

Moreover, whenever ν0 is sufficiently close to an intrinsic first order resonance condition, the corre-

sponding ~b±k gets large and the linearisation condition (α
(1)
n )2 + (β

(1)
n )2 � 1 is violated. Therefore the

range of validity is strictly speaking reduced to the cases where ‖n̂(~Ψ, θ) − n̂0(θ)‖ � 1 for all ~Ψ and
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θ. Moreover ‖n̂− n̂0‖ increases as the components of G2×6 increase, or equivalently, as the spin–orbit
coupling integrals of chapters 2 and 3.

It can be shown [GH99b, BH92] that the “amplitude dependent spin tune” at first order does
not depend on the orbital amplitude and is equal to

ν =1 ν0 . (4.38)

The linear approximation of the invariant spin field also SLIM–n̂–axis has been included in the
computer code SLIM which computes the equilibrium polarisation for e±–rings in this linear approxi-
mation. An explicit description of the SLIM algorithm and of extensions to higher order can be found
in [AC80, SM86a, BH92, BH94a, BH94b]. The SLIM algorithm is very fast because of its linearity and
is implemented in the code SPRINT for fast energy scans of the average opening angle of the linear
approximation of the invariant spin field on a torus.

4.3 Fourier expansion in the orbital angles

Every spin field f̂ on a torus ~J = const. evaluated at some given θ is a function of the phase space and
is hence periodic in ~Ψ. Therefore it can be Fourier expanded w.r.t. ~Ψ. The same argument applies to
the corresponding spinor fields f̌ related to f̂ = Ĝ(f̌) with the function Ĝ from definition 2.6. Recall
that f̌ and eiκf̌ with κ ∈ R lead to the same f̂ . If r ∈ SU(2) is the spinor OTM at θ, then for every
~Ψ the spinor field propagated once around the ring, f̌ |θ+2π = rf̌ |θ is again periodic in ~Ψ. Therefore

if f̌ |θ+2π is written as eiκǧ|θ, not only ǧ but also κ has to be a periodic function of ~Ψ. Let now ň′ be

an invariant spinor field so that n̂ = Ĝ(ň′). Then

r(~Ψ)ň′(~Ψ) = e−iπν̃(
~Ψ)ň′(~Ψ + 2π ~Q) (4.39)

with a 2π–periodic function ν̃. We assume that the orbital tunes are strongly incommensurable with
1. Then in analogy with (4.20) to (4.23) for χper there is a 2π–periodic function φ(~Ψ) with

2πν̃(~Ψ) − φ(~Ψ) + φ(~Ψ + 2π ~Q) = 2πν( ~J ) = const. (4.40)

so that ň(~Ψ) ≡ e
i/2φ(~Ψ)ň′(~Ψ) fulfils the constraint

r(~Ψ)ň(~Ψ) = e−iπνň(~Ψ + 2π ~Q) (4.41)

and ν is the spin tune. Equation (4.41) only contains 2π–periodic functions of ~Ψ. Fourier expansion

yields with r(~Ψ) =
∑

~k∈Z3 r~ke
i~k·~Ψ and ň(~Ψ) =

∑
~k∈Z3 ň~ke

i~k·~Ψ the invariance constraint

e−i2π
~k· ~Q ∑

~m∈Z3

r~k−~mň~m = e−iπνň~k . (4.42)

This can formally be interpreted as an infinite–dimensional eigenproblem for the eigenvector ñ ≡
(ň~k)~k∈Z3 of the eigenvalue λ = e−iπν . So far it is not clear for which classes of “matrices” (R∞)~k~m ≡
e−i2π

~k· ~Q r~k−~m the eigenproblem (4.42) is solvable, but numerical approximations with finite cut–off
M so that max~k |ki| ≤ M and max~m |mi| ≤ M have been shown to generate pseudo–n̂–axes of high
accuracy for sufficiently high M . This numerical algorithm was invented by Yokoya [KY99] and will
be called the SODOM-2 algorithm since it is based on the method implemented in the code SODOM

[KY92] which computes the equilibrium polarisation in e±–rings. The modern revised version is
implemented in the code SPRINT. The original version from 1992 used a parametrisation of ň that
explicitly guaranteed unitarity independently of the accuracy of the solution. This parametrisation
led to a non–linear fixed point equation. Solving this fixed point equation in general required ‖Ĝ(ň)−
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n̂0‖ � 1 and therefore failed for exotic invariant spin fields such as that presented in figure 4.3.
The modern revised version does not explicitly guarantee unitarity but checks whether the moduli
of the coefficients on the edge of (RM ), i.e. with max~k |ki| ≤ M , max~m |mi| ≤ M and |ki| ≈ M or

|mi| ≈ M , are small enough compared to those at the centre with ~k = ~m = ~0. Then the accuracy of
the pseudo–n̂–axis is sufficiently high and unitarity is almost preserved.

We know already from theorem 4.3 that the spin tune ν is not unique and therefore expect an

infinite spectrum of eigenvalues of the form λj = e−iπ((−1)sj ν+lj+~lj · ~Q) with eigenvectors ñj which belong
to spinors representing (−1)sj n̂. In particular the spinor m̌ ≡ iσxň which represents −n̂ corresponds
to −ν. This spectrum is discussed in great detail in [KY99]. In practice, to ensure lim ~J→~0 ν → ν0,
it turns out to be a good strategy [KY99] to use the eigenvalue λj which belongs to the eigenvector

ňj with largest ‖ň(j)
~0

‖. The family of spinor fields [KY92] ǔϕ = 1/√2(e
−iϕ/2ň− e+iϕ/2m̌) are, like ň,

functions of phase space (i.e. periodic in ~Ψ) and the represent unit vector fields Ĝ(ǔϕ) perpendicular
to n̂ for all ϕ. They also fulfil the constraint

r(~Ψ)ǔϕ(~Ψ) = ǔϕ+2πν(~Ψ + 2π ~Q) (4.43)

so that Ŝ⊥ precesses at rate ν w.r.t. the Ĝ(ǔϕ) for all ~Ψ. Each two such vector fields Ĝ(ǔϕ) and Ĝ(ǔϕ′)

have a constant included angle |ϕ − ϕ′|. Thus by setting û1(~Ψ) = Ĝ(ǔ0(~Ψ)), û2(~Ψ) = Ĝ(ǔπ/2(
~Ψ))

we have immediately computed the complete (û1, n̂, û2) coordinate system. The Fourier–expansion
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Figure 4.5: The locus of (left to right) û1, n̂ and û2 for the HERA–p 1996–luminosity optics with 6 flattening snakes
around the O-, S-, and N–IP and 4 snakes, from O to N: long., rad., rad., rad. (3111) at a reference momentum of 802.5
GeV and for 2 σ purely vertical motion computed with the SODOM-2 algorithm

is performed in both the old and the revised version by a discrete Fourier transform (DFT) using
the unit quaternions rather then explicit SU(2) matrices. In order to perform the DFT, the one–
turn quaternion is evaluated at orbital phases uniformly distributed on the direct product of the
1–dimensional tori T1.

Ψx,kx = kx
2π
Mx

, Ψy,ky = ky
2π
My

, Ψz,kz = kz
2π
Mz

0 ≤ kx ≤Mx − 1 , 0 ≤ ky ≤My − 1 , 0 ≤ kz ≤Mz − 1
M = MxMyMz .

(4.44)

Therefore the inverse DFT of an arbitrary solution ñ of equation (4.42) simultaneously yields the
(û1, n̂, û2)–system at M different points, uniformly distributed on the torus in sense just defined.

Figure 4.5 shows the loci of the û1, n̂, û2 fields for the HERA–p 1996–luminosity optics with the
same snake setup as in figures 4.2 to 4.4 at 802.5 GeV and on a vertical invariant ellipse with size 2
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σ. The fields were computed using the SODOM-2 implementation in SPRINT and M = My = 127. A
comparison with stroboscopic averaging (see section 4.5) in figure 4.6 shows that both methods agree
to a high precision. M = 127 is about the number of harmonics needed for this case. On the contrary,
when the vertical amplitude is increased to 2.5 σ, M = 127 does not suffice any more.

The SODOM-2 algorithm is only practical when only one orbital mode is excited. A nice feature
of the SODOM-2 algorithm is that the invariant spin field and the amplitude dependent spin tune are
computed simultaneously. When dmodes are excited the dimensionality of the truncated eigenproblem
(4.42) is

∏d
i Mi. Thus d > 1 either implies small Mi or an enormous computational effort to solve

the eigenproblem. All results of simulations with the SODOM-2 algorithm presented in this thesis were
computed with d = 1.

4.4 The static polarisation limit

As we have seen in the previous section the n̂–axis, given that it exists, is an invariant of the OTM.
The physics of this is that a sufficiently large spin ensemble initially aligned parallel to n̂ and uniformly
distributed in ~Ψ will return to itself after each revolution around the ring apart from a redistribution
of the particles in phase space. Therefore this spin ensemble defines a stationary polarisation state
and that is why we introduced n̂. In general and in the continuous limit the average polarisation of
a beam with spins aligned parallel to n̂ is ~Paligned =

∫
P ρ(

~J, ~Ψ)n̂ ~J(
~Ψ) d~Ψ3d ~J3, with the normalised

phase space density ρ. We assume that the orbital motion is purely Hamiltonian and integrable and
that the phase space density is stationary so that ∂~Ψ ρ = ~0. Then the beam average of an aligned spin
ensemble is

~Paligned =

∫

R+3

ρ( ~J )Plim( ~J )û〈n〉( ~J ) d ~J3 (4.45a)

with Plim( ~J ) ≡ 1

(2π)3

∥∥∥∥
∫

T
n̂ ~J(

~Ψ) d~Ψ3

∥∥∥∥ (4.45b)

and û〈n〉( ~J ) ≡ 1

(2π)3Plim( ~J )

∫

T
n̂ ~J(

~Ψ) d~Ψ3 if Plim 6= 0 . (4.45c)

Plim is called the static polarisation limit since it is the upper limit to the average stationary polarisa-
tion on the torus and û〈n〉 is the average polarisation direction on the torus. In mid–plane symmetric
rings (see the paragraph after corollary 2 to theorem 2.10) the invariant spin field fulfils the constraint
n̂ ~J(Ψx,Ψy + π,Ψz) = Y πn̂ ~J(Ψx,Ψy + π,Ψz). Thus in a mid–plane symmetric ring and with purely
vertical motion, the average polarisation direction is constant up to a sign

ûsym
〈n〉 (Jy) = ±n̂0 = ±ŷ, ∀Jy . (4.46)

An arbitrary spin ensemble, or an arbitrary spin field, in general does not describe a stationary
state. If the spin OTM is not the identity, the polarisation will fluctuate from turn to turn. Writing
the j–turn spin map as R(j), the local turn–by–turn averaged polarisation of an arbitrary spin field f̂
is

〈
f̂(~Ψ)

〉
= lim

N→∞
1

N + 1

N∑

j=0

R(j)(~Ψ − 2πj ~Q)f̂(~Ψ − 2πj ~Q) , (4.47)

i.e. the average over all trajectories that pass through ~Ψ. We will now show that Plim is actually the
maximum possible time averaged polarisation on the torus. For this purpose we need

Definition 4.5 (Strongly non–spin–orbit resonant) [GH99b] We call the spin–orbit system strongly
non–spin–orbit–resonant if there are positive real numbers c, ρ so that for all ~k ∈ Z3, ~k 6= ~0 and
χ~k ≡ [~k · ~Q− ν] the inequality min(χ~k, 1 − χ~k) > c|~k|−ρ holds.
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Note that definition 4.5 is weaker than strong incommensurabilty (definition A.6) of (ν, ~Q) with 1
since ν is not multiplied with an integer.

Theorem 4.5 [GH99b] If an n̂–axis and two lattice fields û1, û2 exist so that ν( ~J ) can be defined
according to theorem 4.3 and the spin–orbit system is strongly non–spin–orbit–resonant on a torus
~J = const., then any spin field defined by the initial condition f̂(~Ψ, θ0) = ĝ(~Ψ) which has an analytic

extension in ~Ψ, has at each ~Ψ a local turn–by–turn averaged polarisation
〈
f̂(~Ψ)

〉
parallel to n̂(~Ψ) and

the maximum
∣∣∣
〈
f̂(~Ψ)

〉∣∣∣ = 1 for all ~Ψ is obtained only for ĝ = n̂.

The lengthy proof can be found in [GH99b] and will only be sketched here. Since the periodic basis

(û1, n̂, û2) is explicitly assumed to exist we can write f̂(~Ψ) = (f (1)û1 + I(f)n̂+ f (2)û2)
∣∣∣
~Ψ

and find for
〈
f̂
〉
≡ û1

〈
f (1)

〉
+ n̂ 〈If 〉+ û2

〈
f (2)

〉
and the complex scalar f ≡ f (1) + if (2) that the j–th contribution

to the sum in (4.47) is

I
(f)
j (~Ψ) = I

(f)
0 (~Ψ − 2πj ~Q ) =

∑

~k

I
(f)

0;~k
ei(−2πj~k· ~Q+~k·~Ψ) (4.48a)

fj(~Ψ) = ei2πνfj−1(~Ψ − 2π ~Q ) =
∑

~k

f0;~ke
i(2πj(ν−~k· ~Q )+~k·~Ψ) (4.48b)

where I
(f)
0 (~Ψ) = n̂(~Ψ) · f̂(~Ψ) and f0(~Ψ) = f̂(~Ψ) · (û1(~Ψ) + iû2(~Ψ)), as phase space functions periodic

in ~Ψ. Finally the turn–by–turn averages yield

〈
I(f)

〉
= I

(f)

0;~0
+ lim
N→∞

1

N + 1

∑

~k 6=~0

1 − e−i2π(N+1)~k· ~Q

1 − e−i2π~k· ~Q
I
(f)

0;~k
ei
~k·~Ψ (4.49a)

|〈f〉| ≤ lim
N→∞

1

N + 1

∑

~k

2|f
0;~k

|
∣∣∣1 − ei2π(ν−~k· ~Q)

∣∣∣
. (4.49b)

The Fourier series in (4.49a) converges to a finite value due to the implicitly assumed strong incommen-
surability of the orbital tunes with one and f̂ being explicitly assumed to have an analytic extension.
The Fourier series in (4.49b) converges to a finite value because the spin–orbit system is explicitly

assumed to be strongly non–spin–orbit resonant. Therefore
〈
f̂(~Ψ)

〉
= n̂(~Ψ)I

(f)

0;~0
= n̂(~Ψ)n̂(~Ψ) · f̂(~Ψ, θ0)

which has a norm less or equal to 1 and equal to 1 if and only if f̂(~Ψ) = n̂(~Ψ). 2

We note that the instantaneous average polarisation on the torus ~Pf̂ (θ0) =
∫
T f̂(~Ψ) d~Ψ3 can be

bigger than Plim. Nevertheless operating an experiment at θ0 requires a large polarisation averaged
over the beam as well over a large number of bunch crossings. Therefore the usable polarisation of
the beam is always smaller then or equal to ‖ ~Paligned‖.

If we restrict ourselves to spin fields where the initial condition f̂(~Ψ, θ0) = ĝ(~Ψ) fulfils ∂~Ψ I
(f) =

∂~Ψ (ĝ · n̂) = ~0, then Pdyn of equation (4.7) is simply I (f). Since Pdyn is an invariant of the spin OTM
we obtain 〈

~P
〉

=

∫

R+3

ρPlim û〈n〉 Pdyn d ~J
3 . (4.50)

Now we will prove that a similar equation is true for arbitrary finite spin ensembles. Let {Ŝk}1≤k≤N
be an ensemble of spins at ~Ψk on the torus ~J = const. with Ik = Ŝk · n̂ ~J(~Ψk, θ0). The T–turn average

over each spin trajectory Ŝk(θ) yields

〈
Ŝk

〉
T

≡ 1

T

T−1∑

j=0

Ŝk(θ0 + 2πj)
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=
1

T

T−1∑

j=0

(
Ikn̂ ~J(

~Ψk + 2πj ~Q)

+
√

1 − I2
k

(
û1, ~J(

~Ψk + 2πj ~Q) cos(Φk + 2πjν) − û2, ~J(
~Ψk + 2πj ~Q) sin(Φk + 2πjν)

) )

=
1

T

T−1∑

j=0

Ikn̂ ~J(
~Ψk + 2πj ~Q) +

√
1 − I2

k <
{
~U ~J(

~Ψk + 2πj ~Q)ei(Φk+2πjν)
}

≡ Ik ~A
(T )
k +

√
1 − I2

k <
{
~B

(T )
k

}
, (4.51)

with ~U ~J ≡ û1, ~J + iû2, ~J . Using the periodicity of n̂ ~J and ~U ~J , i.e.

n̂ ~J(
~Ψ) =

∑

~l

~n~le
i~l·~Ψ , ~U ~J(

~Ψ) =
∑

~l

~U~le
i~l·~Ψ , (4.52)

and absorbing the dependence on the initial phases ~Ψk into ñ
k,~l

≡ ~n~le
i~l·~Ψk and Ũ

k,~l
≡ ~U~le

i~l·~Ψk we find

~A
(T )
k = ñ0,~0 +

1

T

∑

~l6=~0

ñ
k,~l

1 − eiT2π~l· ~Q

1 − ei2π~l· ~Q
and ~B

(T )
k =

eiΦk

T

∑

~l

Ũ
k,~l

1 − eiT2π(~l· ~Q+ν)

1 − ei2π(~l· ~Q+ν)
(4.53)

where ñ0,~0 is the average 〈n̂〉~Ψ ≡ Plimû〈n〉. If n̂ ~J has an analytic extension w.r.t. ~Ψ, i.e. the Fourier

coefficients ~n~l decay exponentially with |~l|, and the orbital tunes are strongly incommensurable with 1,
then in complete analogy to the proof of theorem 4.5 in section 2.2.8 of [GH99b], the i-th component

(i = x, y, z) of ~A
(T )
k − ñ0,~0 fulfils

∣∣∣
(
~A

(T )
k − ñ0,~0

)
i

∣∣∣ ≤ 1

T

∑

~l 6=~0

ñ
k,~l

2

|1 − ei2π~l· ~Q|
≤ 1

T

∑

~l 6=~0

ñ
k,~l

2c0|~l|−ρ0 ≤ A0

T
(4.54)

with some positive constants c0, ρ0 and A0. Therefore ~A
(T )
k converges linearly with 1/T to ñ0,~0 =

(2π)−3
∫
T3
n̂ ~J(

~Ψ)d~Ψ3 ≡ Plimû〈n〉. If furthermore ~U ~J has an analytic extension w.r.t. ~Ψ and the spin–
orbit system is strongly non–spin–orbit–resonant according to definition 4.5, then

∣∣∣
(
~B

(T )
k

)
i

∣∣∣ ≤ 1

T

∑

~l

Ũ
k,~l

2c|~l|−ρ ≤ A

T
(4.55)

with some positive constants c, ρ and A. Therefore ~B
(T )
k converges linearly with 1/T to ~0. We note

[LM88], that instead of demanding analyticity of n̂ ~J and ~U ~J it suffices to demand that n̂ ~J and ~U ~J are
Crn or CrU functions respectively with rn > ρ0 + 1 and rU > ρ+ 1. Thus we have proved

Lemma 4.3 If the periodic vector fields û1, n̂ and û2 exist on a torus ~J = const., if they are analytic
or sufficiently smooth [LM88], if the orbital tunes are strongly incommensurable with 1 and if the
spin–orbit system is strongly non–spin–orbit–resonant, then the T–turn average of an arbitrary spin
trajectory Ŝ(θ) with the spin action I = Ŝ · n̂ yields

lim
T→∞

〈
Ŝ
〉
T

= Plimû〈n〉I . (4.56)

Returning to our spin ensemble {Ŝk}1≤k≤N we find

〈
{Ŝk}1≤k≤N

〉
≡ lim

T→∞

〈
{Ŝk}1≤k≤N

〉
T

= Plim( ~J)û〈n〉( ~J)
1

N

N∑

k=1

Ik . (4.57)
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We note that P
(N)
dyn ≡ 1/N

∑N
k=1 Ik is an invariant of the spin OTM. The results of the last paragraphs

can be merged into

Theorem 4.6 (Factorisation theorem) Under the premises of lemma 4.3, for an arbitrary spin
ensemble {Ŝk}1≤k≤N on a given torus ~J = const. the turn–by–turn averaged ensemble polarisation can

be factorised into two parts. One part, Plim( ~J)û〈n〉( ~J) = 1/(2π)3
∫
T3
n̂ ~J(

~Ψ)d~Ψ3 is a static property
of the spin–orbit system. It does not depend on the history of the spin ensemble. The other part

P
(N)
dyn ≡ 1/N

∑N
k=1 Ik is defined by the history of the spin ensemble. Only the N invariants of motion

Ik of the 2Nconstants that determine the initial conditions Ŝk(θ0) = Ikn̂ + <{~UeiΦk}), contribute to
the turn–by–turn averaged ensemble polarisation. This polarisation is given by

〈
{Ŝk}1≤k≤N

〉
= Plim( ~J)û〈n〉( ~J)P

(N)
dyn . (4.58)

If the ~Ψk are uniformly distributed on the torus ~J = const. and the Ŝk(θ0) are given by Ŝk(θ0) =

ĝ(~Ψk, θ0) with some C1 spin field ĝ at θ0, then P
(N)
dyn → P

(g)
dyn in the limit N → ∞. We will therefore in

the following, whenever it is clear whether a spin field or a discrete ensemble is described,not distinguish

between Pdyn and P
(N)
dyn .

Sometimes it is more convenient to use the average half polar opening angle of the n̂–axis on a
torus

ϑn( ~J) ≡ 1

(2π)3

∫

T
arccos

(
n̂ ~J(

~Ψ) · û〈n〉( ~J)
)
d~Ψ3 (4.59)

instead of the static polarisation limit Plim. The opening angle describes the average spread of n̂ ~J . We

note that 0 ≤ ϑn ≤ π/2 in contrast to ϑn0 ≡ 1/(2π)3
∫
T arccos(n̂ ~J(

~Ψ) ·n̂0) d~Ψ
3 which fulfils 0 ≤ ϑn ≤ π.

In the case of n̂ ~J · û〈n〉( ~J) being independent of ~Ψ we get Plim = cosϑn. When the spread of n̂ ~J · û〈n〉( ~J)

w.r.t. ~Ψ is small then an average opening angle ϑn ≈ 60◦ corresponds to Plim ≈ 0.5.

Since the SODOM-2 algorithm, according to equation (4.44), generates the n̂–axis at M uniformly
distributed points on the torus simultaneously, Plim can be approximated without further tracking by

P SODOM−2

lim =
1

M

∥∥∥∥∥

M∑

i=1

n̂i

∥∥∥∥∥ (4.60)

whenever M is sufficiently big to obtain an approximation of the n̂–axis with reasonable accuracy.

4.4.1 The linear static polarisation limit and filtering of Siberian Snakes

In the range of applicability of the linear SLIM–approximation, according to equation (4.35) the n̂–

axis is given by
(α(1)

n (~z)

β
(1)
n (~z)

)
= BA−1~z = B~ξ. Here

~ξ ≡ (
√
Jxe

+iΨx ,
√
Jxe

−iΨx ,
√
Jye

+iΨy ,
√
Jye

−iΨy ,
√
Jze

+iΨz ,
√
Jze

−iΨz) (4.61)

is the complex vector of the orbital normal form coordinates and B ≡ (~b+x ,
~b−x , . . .) is defined by

equation (4.33). One easily obtains for the rms deviation of the linear n̂–axis from the n̂0–axis

∆(1)
n ( ~J ) =

√
〈(α(1)

n ( ~J, ~Ψ))2 + (β
(1)
n ( ~J, ~Ψ))2〉~Ψ =

√
2
∑

l=x,y,z

(~b+l ·~b−l )Jl . (4.62)

In the approximation that 〈arctan x〉 ≈ arctan〈x〉 and 〈1/(1 + x)〉 ≈ 1/(1 + 〈x〉), i.e. in the limit

〈(‖n̂ − n̂0‖ − ∆
(1)
n )2〉~Ψ → 0, the linear opening angle ϑ

(1)
n and the linear static polarisation limit P

(1)
lim

are

ϑ(1)
n ( ~J ) ≈ arctan ∆(1)

n ( ~J ) , P
(1)
lim( ~J ) ≈ 1

1 +
(
∆

(1)
n ( ~J )

)2 . (4.63)
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Close to first order intrinsic resonances α
(1)
n and β

(1)
n diverge. On the contrary, the normalised first

order quantities 0 ≤ ϑ
(1)
n ≤ π/2 and 0 ≤ P

(1)
lim ≤ 1 stay finite. Although the condition (α

(1)
n )2+(β

(1)
n )2 �

1 is needed for the applicability of the linear theory, the fact that ϑ
(1)
n becomes large can serve as an

indicator that higher order effects have become important. The SLIM algorithm is very fast. Therefore
it is the ideal tool for a first guess at the qualitative nature of spin motion for a given lattice and
energy range.

Linear automatic filtering of snake schemes

Equation (4.58) implies that in order to obtain a large beam average of the polarisation P lim should
be maximised. Moreover as we will see now, in accelerators with Siberian Snakes the snake angles
can be chosen to optimise Plim. No generally applicable strategies to maximise Plim beyond the linear

level are yet known but several first order methods can be applied in order to maximise P
(1)
lim .

In section 3.2.2 we have discussed snake matching [GH99b, GH99c] which defines constraints on
the snake angles which cause the spin–orbit coupling integrals to vanish or at least decrease under
certain symmetry requirements for the ring. Moreover the so–called strong spin match [KS88a] and,
restricted to the maximisation of Plim at constant energy, the harmonic spin match [CY81, BR99a]
provide means to minimise the spin–orbit coupling integrals or equivalently the G–matrix. In these
methods one exploits the fact that whenever the spin–orbit coupling integrals are small and the

system is sufficiently far from any linear intrinsic spin–orbit resonance then at least P
(1)
lim is high

[GH99b, BH92, BH94a, BH94b] since ‖n̂− n̂0‖ is small (see (4.36) and (4.62)).

Another, more direct way to maximise P
(1)
lim is by so–called linear filtering [GH99a, GH99b]. Here

the computational speed of the SLIM approximation is exploited to evaluate a large set of snake schemes
over a given momentum range. The automatic linear filtering algorithm which is implemented in the
SPRINT code is based on complete enumeration of snake schemes on a uniform discrete subset (grid)
of the continuous set of vectors of snake angles (φ1, . . . , φ2N ) ∈ [0, π)2N for 2N snakes. The procedure
is the following

1. The lattice is assumed to be flat or flattened in the sense of definition 3.2 but not necessarily
exactly mid–plane symmetric. The fixed snake positions θi are assumed to fulfil the minimal
condition

∑2N
i=1(−1)iΘi = 0 according to theorem 3.1 for energy independent design orbit spin

tune, where the Θi are the accumulated horizontal bend angles between snakes. A uniform
partitioning φ̃k = kπ/n, k = 0, . . . , n − 1 of the interval [0, π) for the snake angles φi and a
reference torus are specified. A snake scheme with 2N snakes is characterised by the 2N–tuple
(k1, . . . , k2N ). Then the i-th snake is either a horizontal snake with snake angle φi = φ̃ki

for
ki = 0, . . . , n− 1 or a vertical snake for k = n.

2. Eliminate all schemes that do not fulfil ν0 = 1/2 and n̂0(θ0) = ŷ.

3. Compute the average of the linear opening angle ϑ
(1)
n on the reference torus in a specified energy

interval for all schemes that survive step 2.

4. Then sort the schemes by increasing average ϑ
(1)
n .

The reason for applying the linear SLIM algorithm is that it is the fastest. If we neglect the vertical
snakes for the moment, then a scheme with 2N horizontal snakes has 2N−1 free snake angles that are
not constrained by step 2. With n snake angles from 0 to (n− 1)π/n this gives n2N−1 schemes to be
evaluated in step 3! The SODOM-2 algorithm which is relatively fast for 2–dimensional orbital motion
would also be a candidate for filtering. It contains higher order effects and additionally would allow to
filter for minimal spin tune shift ν(Jreference)−ν0, but filtering with the SODOM-2 algorithm is currently
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still too slow by far for automatic filtering. Also note that in principle it is possible to filter for minimal

change of ϑ
(1)
n (linear or non–linear) per energy step but this has not yet been implemented.

After the automatic filtering has been done one should check the “best” schemes with higher order
algorithms manually, i.e. perform various simulations with explicitly given snake schemes. Finally,
tracking under realistic ramp conditions is necessary to verify that the filtered schemes offer a maximum
of surviving Pdyn. The results of filtering and ramp–simulations for HERA–p will be discussed in
chapter 5.

4.5 Stroboscopic Averaging

We have shown in theorem 4.5 that for strongly non–spin–orbit resonant systems in which the n̂–
axis and the amplitude dependent spin tune exist, the turn–by turn average of an arbitrary sufficiently
smooth spin field at a given point on the torus settles along the n̂–axis at that point. This result can
actually be used to compute the n̂–axis. We choose a special spin field with f̂(~Ψ − 2πj ~Q) = f̂0 for
all j ∈ N. One particular choice for f̂0 is n̂0 so that for the local turn–by–turn average polarisation

P
(n̂0)
loc (~Ψ) of a spin field initially parallel to n̂0 we obtain

P
(n̂0)
loc (~Ψ) n̂(~Ψ) = lim

N→∞
1

N + 1

N∑

j=0

R(j)(~Ψ − 2πj ~Q)n̂0

= lim
N→∞

1

N + 1

N∑

j=0

j−1⊙

k=0

R(~Ψ − 2π(j − k) ~Q)n̂0

≡ lim
N→∞

A−
N (~Ψ)n̂0 . (4.64)

This is one form of the stroboscopic averaging algorithm of K. Heinemann and G. H. Hoffstaetter

[HH96, GH99b]. P
(n̂0)
loc (~Ψ) is called the stroboscopic average of n̂0 at ~Ψ. In theorem 4.5 we have explic-

itly assumed a unique invariant spin field to exist and then the only pitfall in the above construction

of the n̂–axis might be that P
(n̂0)
loc (~Ψ) = ~0, which means that A−

N (~Ψ)n̂0 → 0 for N → ∞ or in other

words n̂0 ∈ kern(A−
∞(~Ψ)). Nevertheless in all practical examples studied so far — even those with

Plim ≈ 0 and ‖û〈n〉 − n̂0‖ ≈ 1 — the choice of f̂ = n̂0 seemed to be at least not worse than any other.

In practice one does not know beforehand whether the invariant spin field exists but vanishing
of the stroboscopic average of some spin field f̂ implies that a beam described by this spin field has
vanishing local turn–by–turn averaged polarisation at ~Ψ.

It can be shown [HH96, GH99b] that whenever a positive ξ < π/2 exists so that for 1 ≤ j ≤ N + 1

the inequality ∠

(
R(j)(~Ψ − 2πj ~Q)n̂0 − n̂0

)
≤ ξ is fulfilled and the pseudo–n̂–axis defined by

n̂N(~Ψ) ≡ A−
N (~Ψ)n̂0∥∥∥A−
N (~Ψ)n̂0

∥∥∥
(4.65)

exists, then the invariance condition (4.6) is fulfilled up to

∆N ≡ ‖R(~Ψ)n̂N (~Ψ) − n̂N (~Ψ + 2π ~Q)‖ ≤ 4 sin ξ/2

(N + 1) cos ξ
. (4.66)

Moreover the accuracy ‖n̂N − n̂‖, given an n̂–axis exists, is proportional to 1/N . The premise that
the spin motion is bound to a subset of SR with opening angle ξ < π/2 turns out to be too strong in
practice. Invariant spin fields have been computed numerically to a reasonable accuracy (see figure
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4.3) which covered almost the whole unit sphere. Indeed equation (4.66) does not define an asymptotic
relation but a strict bound on ∆N for all N > 1.

Now we note that the n̂–axis for the time–reversed motion n̂−(~Ψ) fulfils the invariance constraint

R−1(~Ψ − 2π ~Q)n̂−(~Ψ) = n̂−(~Ψ − 2π ~Q) . (4.67)

Substituting ~Ψ′ = ~Ψ + 2π ~Q and multiplying with R(~Ψ′) one finds that this condition is equivalent to
the standard condition (4.6). So if n̂− exists it is also an n̂–axis of the forward system. Then we can
rewrite equation (4.64) to find the form of stroboscopic averaging implemented in SPRINT,

Ploc;N (~Ψ0)n̂N (~Ψ0) =
1

N + 1

N∑

j=0

j−1⊙

k=0

RT(~Ψ0 + 2πk ~Q)n̂0 = A+
N (~Ψ0)n̂0 , (4.68)

for some given point ~Ψ0 on the torus. Here Ploc;N is the N -turn approximation of P
(n̂0)
loc . If it does

not vanish, then n̂N (~Ψ0) is an approximation of the n̂–axis — given it exists. The spin ŜN ≡ n̂N(~Ψ0)
at ~Ψ0, θ0 is then the seed of a pseudo–n̂–axis. An approximation of the static polarisation limit can
then be computed as the average over successive applications of the spin OTM on this seed

P SPRINT

lim =
1

N ′ + 1

∥∥∥∥∥

N ′∑

i=0

R(i)(~Ψ)ŜN

∥∥∥∥∥ . (4.69)

The implementation of stroboscopic averaging described in equation (4.68) needs only forward
tracking which can in principle be performed without the explicit use of the orbital action–angle
variables. It can therefore easily applied even to non–linear orbit systems where the inverse orbit map
and the transformation to action–angle variables would be cumbersome to compute. In the current
version of SPRINT forward stroboscopic averaging is implemented in an adaptive way, i.e. the number
of tracking turns N is doubled until the numerical error δN ≡ ∠(n̂N , n̂N/2

) has decreased below a

user defined limit. The method of stroboscopic averaging has been shown [BH96a, BH96b, BH96c,
BH96d, VB98, BH98a, BH98b, BV98, BH98c, BH99a, BH99b, HV99] to be the most flexible and
most efficient method of computing n̂ in cases where invariant spin fields vary strongly over the phase
space like that presented in figure 4.3. The linear convergence with N and the simple structure of the
algorithm, namely forward tracking and the adding up of tracked spins obtained at consecutive turns
means that the algorithm converges linearly with the actual CPU–time consumption per simulation
run. In contrast to this, the SODOM-2 algorithm which is much faster than stroboscopic averaging
for moderately complicated invariant spin fields and when restricted to one degree of orbital motion,
i.e. where the Fourier coefficients of the OTM decay fast enough, solves an eigenproblem of order 2M
whenM harmonics in total are included. The typical CPU–time consumption of eigenproblem routines
is ∼ M3 for M dimensional matrices. Therefore for sufficiently complicated invariant spin fields the
SODOM-2 method with a fixed maximal number of harmonics M just fails but going to arbitrary
numbers of harmonics increases the CPU–time consumption ∼ M 3. But for stroboscopic averaging
the number of tracking turns needed in principle, i.e. apart from quasi–resonant orbital motion, does
not depend on the dimensionality of the orbital phase space motion. A drawback of stroboscopic
averaging of course is that we do not get the amplitude dependent spin tune for free as we do with
SODOM-2. Of course in their range of convergence SODOM-2 and stroboscopic averaging yield the same
result. Figure 4.6 shows ny(Ψy) on an invariant vertical ellipse that corresponds to a beam width of 2
σ for the 1996–luminosity optics of HERA–p with 6 flattening snakes and a longitudinal and 3 radial
snakes as used in figure 4.5. The function plotted with lines was obtained by the SODOM-2 algorithm as
implemented in SPRINT with M = My = 127 harmonics included. The crosses are results of computing
the n̂–axis at some point on the ellipse with stroboscopic averaging with N = 8000 turns and then
tracking the n̂–axis seed obtained for another 1000 turns to fill the curve. The resulting stroboscopic
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Figure 4.6: Comparison of ny(Ψy) for HERA–p as in figure 4.5 computed with the SODOM-2 algorithm (lines) and
stroboscopic average (crosses).

average Ploc at that point was 0.3474 and the numerical accuracy was ϑ8000 = 0.5664 mrad. Among
the 8000 turns, 2808 yielded a tracked spin which had an angle with n̂0 = ŷ of more then π/2. As
one easily sees, the two n̂–axes are identical up to the graphical resolution. It must be stressed that
two absolutely independent algorithms have obtained the same result within a few per–mille for such
a complicated system. The SODOM-2 run took about a third of the time of the stroboscopic average
run. The long range energy scans with SODOM-2 in this study included only vertical motion and only
needed a moderate number of harmonics for n̂, namely 65 ≤My ≤ 85, most of the time. Under these
conditions the gain in computational speed is about a factor 10. The invariant spin field as described
in the right half of figure 4.2 could not be reproduced with SODOM-2 and only 127 harmonics. In fact
it needs more than 250 harmonics and then SODOM-2 is slower then stroboscopic averaging.

A comment should be made about phase space sampling close to resonances. The SODOM-2 algo-
rithm, by definition, does not work exactly on orbital resonances. In fact, cases have been observed
where very close to low order orbital resonances the accuracy of the algorithm was poor. Stroboscopic
averaging does not explicitly forbid orbital resonances, but the number of turns needed to get a realis-
tic estimate of the turn–by turn average defined in equation (4.64) diverges close to low order orbital
resonances. This can be seen in the following way: We know from section 4.3 that it is necessary
to sample the periodic structure of the spin OTM with sufficient accuracy. When the tunes fulfil
[~k · ~Q] � 1 with sufficiently low order |~k| and the least common multiple of the ki is m, then successive
applications of the orbital OTM will stay inside m well separated domains on the torus for a long
time and the complement of the union of these domains will be badly sampled. Therefore low order
orbital resonances lower the computational accuracy of both algorithms, SODOM-2 and stroboscopic
averaging. When using the adaptive version of stroboscopic averaging one can of course beat the
problem by increasing the initial number of averaging turns. Note that the same argument applies to
the computation of P SPRINT

lim by single particle tracking.

4.6 An averaging method for the spin tune

Although the amplitude dependent spin tune can be obtained with the SODOM-2 algorithm, the first
algorithm for spin tune in this project was based on averaging of spin phase advances. We have
seen in the proof of theorem 4.3 that when the orbital tunes are strongly incommensurable with 1
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and for sufficiently smooth spin precession an amplitude dependent spin tune can be found which is
basically the constant term in the generalised Fourier expansion of the precession frequency measured
in some periodic orthonormal coordinate system consisting of n̂ and two other vectors ũ1, ũ2. We
have also seen that after transforming to the (ũ1, n̂, ũ2)–system the flow R̃(θf , θi, ~Ψi) can be written
in a 3–dimensional representation

SO(2) → GL(R3) ,

(
cos(x) − sin(x)
sin(x) cos(x)

)
7→




cos(x) 0 sin(x)
0 1 0

− sin(x) 0 cos(x)


 (4.70)

of the Abelian group SO(2) so that two arbitrary spin transport maps in this coordinates commute.
In SPRINT ũ1 is chosen to be the unit vector perpendicular to n̂ which lies in the (n̂, x̂)–plane with
positive x (radial) component. The vectors û1, û2 which also have to be perpendicular to n̂ and
therefore are in the same plane as ũ1 and ũ2 are obtained by rotating ũ1 and ũ2 around n̂ by ∆(Ψ, θ).
This rotation is described in the (ũ1, n̂, ũ2)–system by the periodic transformation matrix

A(~Ψ, θ) =




cos ∆ 0 sin∆
0 1 0

− sin∆ 0 cos ∆


 (4.71)

with a periodic transformation A that belongs to the same 3–dimensional representation of SO(2).
Therefore the spin flow in the (ũ1, n̂, ũ2)–system is

R̃(θf , θi)(~Ψ) = A(~Ψ + ~Qδ, θf )D(δ)AT(~Ψ, θi) (4.72a)

D(δ) =




cos(δν( ~J )) 0 sin(δν( ~J ))
0 1 0

− sin(δν( ~J )) 0 cos(δν( ~J ))


 , δ = θf − θi . (4.72b)

We will now compute the spin N–turn maps at some given θ0. The spin N–turn map in the
(ũ1, n̂, ũ2)–system starting at ~Ψ is given by

R̃
(N)

(~Ψ) =

N−1∏

k=0

R̃(~Ψ + 2kπ ~Q)

=
N−1∏

k=0

A(~Ψ + 2(k + 1)π ~Q)D(2π)AT(~Ψ + 2kπ ~Q)

= A
(
~Ψ + 2(N + 1)π ~Q

)
D(2Nπ) AT

(
~Ψ
)

(4.73)

and describes a rotation around the n̂–axis . The rotation angle is

φ(N)(~Ψ) = 2π
N−1∑

k=0

ν̃(~Ψ + k2π ~Q) = 2πNν( ~J) + ∆
(
~Ψ + 2(N + 1)π ~Q

)
− ∆

(
~Ψ
)

, (4.74)

where 0 ≤ ∆(~Ψ) ≤ 2π is the rotation angle of A(~Ψ) measured in the (ũ1, n̂, ũ2)–system. Therefore we
find, given that the (û1, n̂, û2)–system exists according to theorem 4.3, ν( ~J ) = limN→∞

1
N

∑N−1
k=0 ν̃(

~Ψ+

k2π ~Q) and that with

νN ( ~J ) ≡ 1

N

N−1∑

k=0

ν̃(~Ψ + k2π ~Q) (4.75)

the error |νN ( ~J ) − ν( ~J )| decays like 1/N .
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The spin tune ν is only unique up to an arbitrary integer plus an integer combination of the orbital
tunes. Thus changing to another starting coordinate system (ũ′

1, n̂, ũ
′
2) might lead to another spin tune

ν ′ = ν + l0 +~l · ~Q. Moreover there is no reason why the vector ũ1 constructed in the same way for all
system parameters, namely reference momentum, orbital amplitudes and lattice parameters should
reproduce the same branch of the amplitude dependent spin tune for all values of the parameters.
For one value of the system parameters, parametrised by λ, the algorithm finds ν|λ0

and for some
close–by by parameter λ0 + δλ the averaging method, using ũ1, ũ2 constructed in the same way as
at λ0, may yield ν|λ0+δλ

+ l0 + ~l · ~Q with some integers l0 and ~l. This will then produce a branch
jump of [ν] around λ0 . Figure 4.7 shows a spin tune scan with SPRINT for HERA–p with the 1996

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

814 815 816 817 818 819 820

ν

p0 / GeV

96-lumi-opt /  3111 /  2.5 σ vert. /  SPRINT

ν
ν + [Qy]

ν + 2 [Qy]
ν - [Qy]

ν + 2 [Qy] - 1

Figure 4.7: Scan of ν w.r.t. the reference momentum p0 with SPRINT for the HERA–p 1996 luminosity optics with 6
flattening snakes and the snake scheme 3111 and [Qy] ≈ 0.2725. Almost all of the spin tune jumps have been corrected
manually by plotting various branches of ν. The symmetric discontinuities around the resonance condition ν = 2[Qy]
cannot be resolved without violating limJy→0 n̂ → +n̂0.

luminosity optics and the 3111 snake scheme. The branch jumps have been manually compensated
by plotting the 5 branches ν, ν + [Qy], ν − [Qy], ν + 2[Qy] and ν + 2[Qy] − 1. The corrected spin
tune appears to be a piecewise continuous curve with symmetric discontinuities around the resonance
condition ν = 2[Qy]. In sections 4.7 and 4.8 we will find an explanation for this behaviour. We note

that any such discontinuity ν− = κ− ε→ ν+ = κ+ ε with κ = k0 + ~k · ~Q can in principle be resolved
by choosing ν ′+ = −ν+ + 2κ but that a sign change in ν in general requires limJy→0 n̂→ −n̂0.

Only the fractional part [ν̃] can be computed by means of the OTM. We assume that with properly
chosen ũ1, ũ2 the pseudo spin tune ν̃(~Ψ) is a periodic and continuous function of ~Ψ. But the fractional
part [ν̃] can have discontinuities. In some range of parameters, the integer part of ν̃ might be constant
on the torus, leading to a continuous [ν̃], but outside this range the integer part might fluctuate. When
averaging over ν̃(~Ψ), such discontinuities of [ν̃] produce wrong results that might be misinterpreted
as branch jumps. Therefore the integer part of ν̃(~Ψ) should be automatically corrected. For orbital
motion in one phase plane, this can be done by sorting the ν̃k ≡ ν̃(Ψ+2kπQ) by increasing orbital phase



4.6. AN AVERAGING METHOD FOR THE SPIN TUNE 91

Ψk ≡ Ψ+2kπQ and then mutually adding or subtracting 1 whenever |[ν̃k]− [ν̃k+1]±1| < |[ν̃k]− [ν̃k+1]|.
This method of pseudo spin tune averaging is implemented in SPRINT. The averaging method is
algorithmically similar to stroboscopic averaging since it employs multi–turn tracking starting from
one initial phase Ψ on the invariant ellipse. Computing the n̂–axis by stroboscopic averaging and/or
computing the amplitude dependent spin tune by pseudo spin tune averaging will in the following be
called the SPRINT algorithm. Figure 4.8 shows 2 pseudo spin tune functions [ν̃(Ψy)] for the HERA–p
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Figure 4.8: The pseudo spin tune function [ν̃(Ψy)] for the HERA–p 1996 luminosity optics in the same set up as in
figure 4.2 at a reference momentum of 805 GeV and for purely vertical motion. Left: On an invariant ellipse enclosing
a normalised emittance of 20 π mm mrad. Right: On an invariant ellipse enclosing a normalised emittance of 41 π mm
mrad.

1996 luminosity optics with 6 flattening snakes and 4 Siberian Snakes with snake angles as in all
figures shown so far. See figure 4.2 for the snake angles. A reference momentum of 805 GeV was
chosen. In both plots the design orbit spin tune ν = 1/2 is shown to guide the eye. Both plots are
for purely vertical orbital motion which is the only case for which the SPRINT algorithm can compute
the spin tune so far. The left plot is on an invariant ellipse which encloses a normalised emittance
of 20 π mm mrad corresponding to approximately 2.24 σ. The spread of [ν̃(Ψy)] is small so that no
integers have to be corrected. Note that ν̃ is almost symmetric around ν0 so that averaging over the
orbital phase phase yields only a small spin tune shift of |ν − ν0| ≈ 0.03. On the right the normalised
emittance is 43 π mm mrad corresponding to approximately 3.28 σ. Obviously here the integer part
of the pseudo spin tune decreases by 1 at Ψy/2π ≈ 0.54 and returns to its former value at Ψy/2π ≈ 0.81.
The amplitude dependent spin tune computed by averaging ν̃ after subtracting 1 when Ψy/2π is inside
[0.54, 0.81] is ν ≈ 0.435 whereas the spin tune obtained from the uncorrected ν̃ is much closer to ν0.
The amplitude dependent spin tune computed with the SODOM-2 method, which tends to have less
branch jumps is shown later in figure 4.16. It should be noted that the integer correction algorithm
in its current form can easily be confused in the case of violent oscillations of ν̃ and that therefore not
all branch jumps can be eliminated.

Having obtained an approximation of the spin tune νN on a torus where ~Q is strongly incommen-
surable with 1 and with the instantaneous spin precession frequency ζ(~Ψ, θ) being sufficiently smooth,

one can in principle construct the corresponding choice of û
(N)
1 (~Ψ, θ) by starting with û

(N)
1 (~Ψ0, θ0) =

ũ1(~Ψ0, θ0) and subsequently rotating the vector ũ1(~Ψ(θ), θ) around n̂(~Ψ(θ), θ) by the angle φ(θ, θ0) =∫ θ
θ0
ζ(~Ψ(ϑ), θ) dϑ −(θ−θ0)νN . If νN were exactly ν, then this procedure would yield in the limit θ → ∞

the periodic vector û1(~Ψ, θ) on a dense subset of the torus. To obtain the approximation û
(N)
1 (~Ψ, θ0) on

the Poincaré section at θ0 it suffices to construct û
(N)
1 (~Ψ + 2kπ ~Q, θ0) by rotating ũ

(N)
1 (~Ψ + 2kπ ~Q, θ0)

by the angle 2π
(∑k

i=1 ν̃(
~Ψ + 2kπ ~Q) − kνN

)
. If we write ν = l + [ν] and νN = l′ + [ν] + ε with
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ε ∼ 1/N � 1, we find that the absolute error of the rotation angle after k turns divided by 2π is
∣∣∣[kνN ] − [kν]

∣∣∣ =
∣∣∣
[
[k[ν]] + [kε]

]
−
[
k[ν]

]∣∣∣ (4.76)

which can take arbitrary values between 0 and 1 for sufficiently large k even when ε is reasonably
small. Therefore this procedure for computing the vectors û1 and û2 is numerically unstable and is
hence not recommended if ν is not known to high accuracy.

4.7 The n̂–axis in the single resonance model

So far the only non–trivial spin–orbit system for which an exact analytical formula for the invariant
spin field has been found is the SRM as described in section 2.4 without snakes.

When deriving the spin transfer quaternion (2.164a)–(2.164f) we found that the precession vector
~Ωa (see (2.161)) in the resonance precession frame (RPF) neither depends on Ψ nor on θ. The
coordinate transformation A (see (2.159)) to this frame is 2π–periodic in Ψ and θ. Therefore a
periodic spin field in the RPF is also periodic in any other frame which is obtained from the RPF by
a periodic coordinate transformation. In the RPF the invariant spin field is simply

n̂a ≡ ±(0, δ, ε)T

λ
= const. (4.77)

Transforming back to the original (x̂, ŷ, ẑ) system we find

n̂(Ψ, θ) = AT(θ,Ψ)n̂a =
sgn(δ)

λ
(x̂ε sin(ψε + k0θ + kΨ) + ŷδ + ẑε cos(ψε + k0θ + kΨ)) , (4.78)

where the sign has been chosen so that n̂
∣∣∣
ε=0

= n̂0 ≡ +ŷ is independently of δ. This result was already

obtained by Mane [SM88] for k0 = 0 and k = 1. Following a derivation by Heinemann and Hoffstaetter
[HH96, GH99b] one can choose

û′1(Ψ, θ) = sgn(δ) (−x̂ cosφ(Ψ, θ) + ẑ sinφ(Ψ, θ)) (4.79a)

û′2(Ψ, θ) =
1

λ
(−x̂δ sinφ(Ψ, θ) + ŷε− ẑδ cosφ(Ψ, θ)) (4.79b)

with φ(Ψ, θ) ≡ ψε + k0θ + kΨ, so that (û′1, n̂, û
′
2) is an orthonormal right–handed periodic basis with

the amplitude dependent spin tune ν ′(ε) = sgn(δ)λ. Since the spin tune is not unique, one may rotate
the (û′1, n̂, û

′
2)–system around n̂ by −φ(Ψ, θ) to obtain

û1(Ψ, θ) = û′1(Ψ, θ) cosφ(Ψ, θ) − û′2(Ψ, θ) sinφ(Ψ, θ) (4.80a)

û2(Ψ, θ) = +û′1(Ψ, θ) sinφ(Ψ, θ) + û′2(Ψ, θ) cosφ(Ψ, θ) (4.80b)

ν(ε) = sgn(δ)λ + κ = sgn(ν0 − k0 − kQ)
√
ε2 + (ν0 − k0 − kQ)2 + k0 + kQ . (4.80c)

The amplitude dependent spin tune ν(ε) defined in the (û1, n̂, û2)–system gives ν(0) = +ν0 indepen-
dently of δ. With this sign convention and for finite ε the spin tune jumps from κ − ε to κ + ε and
n̂ changes sign from ε(x̂ε sinφ + ẑε cosφ) to −ε(x̂ε sinφ + ẑε cosφ) when δ crosses 0. Of course one
can choose the sign differently so that ν as well as n̂ are continuous at δ = 0 for ε > 0, but then one
has the counterintuitive situation in which n̂ flips from n̂0 to −n̂0 at the resonance position ν0 = κ
when the resonance is not excited, i.e. ε = 0. Therefore the sign convention used above seems to be
reasonable.

The locus of the n̂–axis is on a cone around û〈n〉 = n̂0 with opening angle

ϑn(ε, δ) = arccos n̂ · n̂0 = arccos
|δ|
λ

(4.81)
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which for ε > 0 has one unique maximum ϑn = π/2 at the resonance position δ = 0. Note that spin
motion as described by the invariant spin fields shown in figure 4.2, 4.3 and 4.5 is by far beyond
the applicability of the single resonance model! We also note that in contrast to n̂ the unit rotation
vector r̂ lives on a cone whose opening angle ϑr (see equation (2.167)) can have local maxima even
far off–resonance. In particular ϑr does not always have a local maximum at δ = 0.

The static polarisation limit can easily be written in terms of the distance from the resonance of
the on–orbit spin tune δ = ν0 − κ as well as the distance of the amplitude dependent spin tune from
the resonance ∆(ε) = ν(ε) − κ

Plim =
|δ|
λ

=

√

1 −
(

ε

∆(ε)

)2

. (4.82)

In the literature and so far, for convenience, in this thesis the spin–orbit resonance condition for the
SRM has been taken to be δ = 0. However, the correct expression of resonance is given by (4.27)
and although ν0 can cross the condition δ = 0, the minimum of ∆(ε) is ε so that the resonance is
never strictly reached in this way. Nevertheless a minimum is reached at δ = 0 and P lim has a unique
minimum Plim = 0 at ν0 = k0 +kQ or in other words when ν is closest to k0 +kQ. Additionally we see
that limδ→±∞ Plim = 1, that Plim(δ) is monotonic on both sides of δ = 0 and that Plim(δ = ±ε) = 1/√2.
Therefore we may say that the characteristic width of the resonance is O(ε) in the sense that for |δ| � ε
the influence of the resonance on spin motion becomes weak. Models of accelerators where more than
one resonance is excited but in which all positions of the resonances with non–vanishing strengths are
well separated compared to their strengths are called isolated resonance models (see section 2.4).
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Figure 4.9: The functional dependence of [ν] and Plim on the distance parameter δ ≡ ν0 − κ for the SRM. Left: global
view to show the local character of the resonance. Right: zoomed view to explain the behaviour of [ν] and Plim close to
δ = 0.

Figure 4.9 shows [ν] (left ordinate) and Plim (right ordinate) for the plain SRM computed with
the SPRINT method. The parameters are k0 = 101, k = +1, ε = 0.2, ψε = 0, and Q =

√
5 − 2 ≈

0.2360679775. The left plot with −4 ≤ δ ≤ +4 shows that the resonance is local, i.e. that there are no
further minima of Plim apart from δ = 0. The right plot is a zoomed version that shows the behaviour
of ν and Plim close to the resonance κ = k0 + kQ. The amplitude dependent spin tune approaches
the resonance with ν ≈ ν0, then in a vicinity of ν = κ, with characteristic half width ε, it starts
levelling off to jump from κ − ε to κ + ε at ν0 = κ. In this region Plim has a pronounced minimum
Plim(δ = 0) = 0 and for |δ| → ∞ it monotonically approaches 1. This rather simple figure is meant
to train the eye since in the following we will often meet combined scans of ν and P lim as functions of
some system parameter.

The vertical response function Vε = 1−2(sin2 πλ) ε
2
/λ2 defined in equation (2.169) has nodal points

Vε = 1 whenever λ is an integer. At the nodal points n̂′(~Ψ, θ) ≡ n̂0(θ) is another possible n̂–axis. This
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is in agreement with theorem 4.4 since at the nodal points the amplitude dependent spin tune is on
resonance ν(ε) = m0 +kQ and the n̂–axis is therefore not unique at these δ. Nevertheless, in the SRM
these additional “resonances” have zero strength and therefore do not affect the polarisation. Integer
resonance strengths can be considered pathological since then a nodal point exists even at δ = 0. Note
that ν(ε) is not given by the µr from (2.166a).

4.8 The amplitude dependent spin tune and the static polarisation

limit in mid–plane symmetric rings

We will now analyse the differential algebra (DA) approximation of the (û1, n̂, û2)–system on the fixed
Poincaré section at some θ0 for mid–plane symmetric rings and with linear orbital motion. We assume
that the reader is familiar with the basic concepts of DA [MB92, BG92, BG93, GH94, BG98a, HV99]
and with the restrictions on the radius of convergence for DA normal form transformations. It is
convenient to formulate this normal form transformation in a SU(2) representation. In particular we
will show that in the case of a mid–plane symmetric ring a DA normal form transformation to the
(û1, n̂, û2)–system up to an arbitrary finite order m can be found even if the spin–orbit system is on
a “resonance”, in the perturbative sense of chapter 2, of the form ν0 = kxQx + 2kyQy + kzQz with
|kx| + 2|ky | + |kz| ≤ m.

We define for this paragraph ~q ≡ (Qx,−Qx, Qy,−Qy, Qz,−Qz), and the linear complex orbital

normal form coordinates ~ξi ≡ (ξ+
x , ξ

−
x , ξ

+
y , ξ

−
y , ξ

z
x, ξ

−
z ), ξ+

l =
√
Jle

iΨl , ξ−l =
√
Jle

−iΨl , Jl = ξ+l ξ
−
l

which when transported once around the ring become ~ξf = (ξ+
x e

i2πQx , ξ−x e
−i2πQx , . . .). Then the

monomial ~ξ
~k ≡ ∏6

j=1 ξ
kj

j , ~k ∈ N6 fulfils the constraint ~ξ
~k
f = ~ξ

~k
i e
i2π~k·~q. The (Jl)l=x,y,z = ξ+l ξ

−
l are

the orbital actions. We note that ~k · ~q = (k1 − k2)Qx + (k3 − k4)Qy + (k5 − k6)Qz. Introducing

k̃ ≡ (k2, k1, k4, k3, k6, k5) for every ~k ∈ N6 we find that (a~k
~ξ
~k)∗ = a∗~k

~ξk̃ and
∑

~k
a∗~k
~ξk̃ =

∑
~k
a∗
k̃
~ξ
~k. In

the next few paragraphs we will use the convention that xl is a polynomial up to order l, that x(l) is
a homogeneous polynomial of order l only and that the character e represents “even” functions in the
sense that their Taylor coefficients vanish for odd k3 − k4 whereas o represents “odd” functions in the
sense that their Taylor coefficients vanish for even k3 − k4. For a mid–plane symmetric ring theorem
2.10 and its corollaries and theorem 3.2 guarantee that the spin OTM in the ( l̂, n̂0, m̂)–system, given
to m–th order in the initial phase space coordinates, has the following properties:

rm ≡
(

em om
−o∗m e∗m

)
=0 r0 ≡

(
e−iπν0 0

0 e+iπν0

)
(4.83a)

em ≡
∑

~k∈N6

0≤|~k|≤m

e~k
~ξ
~k , e~k = 0 if k3 − k4 odd (4.83b)

om ≡
∑

~k∈N6

1≤|~k|≤m

o~k
~ξ
~k , o~k = 0 if k3 − k4 even , (4.83c)

where the real constant ν0 is the closed orbit spin tune. We will call such a matrix an even/odd matrix
up to order m. Note that since q1 = −q2, q3 = −q4 and q5 = −q6, there are contributions with k1 = k2,
k3 = k4, k5 = k6 which do not contain any orbital phases. The even/odd matrices form an algebra in
the sense that they build a C–vector space which is closed under matrix multiplication. The vector
space property is trivial and for the matrix product we find

(
e11 o12
o21 e22

)(
e′11 o′12
o′21 e′22

)
=

(
e11e

′
11 + o12o

′
21 e11o

′
12 + o12e

′
22

o21e
′
11 + e22o

′
21 o21o

′
12 + e22e

′
22

)
=

(
e′′11 o′′12
o′′21 e′′22

)
. (4.84)
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Our aim is to find a unitary transformation c so that

rm;m ≡ c(~ξf ) rm c
†(~ξi) =m

(
e−iπνm 0

0 e+iπνm

)
, c =

m⊙

j=1

exp( t(j)) , (4.85)

where νm is the m–th order approximation of the amplitude dependent spin tune or at least of the
pseudo spin tune ν̃. The t(j) are traceless anti–hermitian matrices so that the matrices exp( t(j)) are
unitary.

t(j) ≡
(

ig(j) iu(j)

iu(j)∗ −ig(j)

)
, exp( t(j)) =j ( 1 + t(j)) (4.86)

where g(j) is a real homogeneous polynomial of order j and u(j) is a complex homogeneous polynomial
of order j in ~ξ. We will show later that in a mid–plane symmetric ring, the g(j) can be chosen even
and the u(j) can be chosen odd so that t(j) is even/odd and exp( t(j)) is even/odd up to order m. Note
that each t(j) contributes potentially to all orders beyond j too since its exponential is involved. This
is called feed–up. Also note that only orders up to m have to be considered since rm is a spin map
only up to order m. With this c the spinor representing the n̂–axis is ň(~ξ) = c†(~ξ)

(1
0

)
because

rmň(~ξi) = rm c
†(~ξi)

(
1

0

)
= c†(~ξf ) rm;m

(
1

0

)
= e−iπνmň(~ξf ) (4.87)

analogously to (4.39). Suppose now that the transformation has been done to (j − 1)–th order. Then
the spinor OTM in the new coordinates is

rm;j−1 = exp(+ t(j−1)) · · · exp(+ t(1)) rm exp(− t(1)) · · · exp(− t(j−1)) =j−1

(
e−iπνj−1 0

0 e+iπνj−1

)
.

(4.88)
To j–th order rm;j is given by

rm;j(
~ξi) =j rm;j−1(

~ξi) + t(j)(~ξf ) r0 − r0 t
(j)(~ξi) . (4.89)

We now have to find a t(j) that eliminates as many j–th order coefficients as possible. That means

(
e−iπνj 0

0 e+iπνj

)
=j


 e′j + ie−iπν0

(
g(j)(~ξf ) − g(j)(~ξi)

)
o′j + ieiπν0 u(j)(~ξf ) − ie−iπν0 u(j)(~ξi)

−o′∗ + ie−iπν0 u(j)∗(~ξf ) − ieiπν0 u(j)∗(~ξi) e′∗j − ieiπν0
(
g(j)(~ξf ) − g(j)(~ξi)

)

 (4.90)

where the e′j and o′j are the j-th order terms of rm;j and include the accumulated feed–up of previous
steps. Therefore the e′j and o′j are in general not identical to ej =j em and oj =j om. If the spin–orbit

system is not on a spin–orbit resonance ν0 = ~k · ~q + k0 then we can eliminate all the o′j , leading to a
diagonal matrix rm;j up to order j. If, in addition, the orbital system is not on an orbital resonance
~k · ~q = k0 up to order j, then all phase dependent coefficients in e′j can be eliminated leading to a νj

that depends only on the orbital actions up to order j. This is done by choosing for all |~k| = j the
Taylor coefficients

g~k =
ieiπν0e′~k

1 − ei2π~k·~q
, u~k =

ieiπν0o′~k
1 − ei2π(~k·~q+ν0)

. (4.91)

Note that the additional ν0 in the exponent of the denominator of the u~k allows to eliminate the
off–diagonal terms with k1 = k2, k3 = k4 and k5 = k6. On a j–th order orbit or spin–orbit resonance
certain g~k or u~k cannot be chosen in this way but can be set to zero, thereby preserving a dependence
of rm;j on the orbital phases.



96 CHAPTER 4. THE N̂–AXIS AND THE SPIN TUNE

So far we did not use the even/odd character of em/om. If e′j and o′j are even and odd respectively,
i.e. their coefficients e′~k with k3 − k4 odd and o′~k with k3 − k4 even vanish identically, then on a
spin–orbit resonance with ν0 = kxQx + 2kyQy + 2kzQz and therefore even order in Qy the potentially
dangerous off–diagonal terms o′~k would be zero already from the previous steps. Therefore setting the
corresponding u~k = 0 would not leave any off–diagonal parts in rm;j. The corresponding diagonal
terms e′~k would in general be non–zero on these resonances but they can be eliminated if we assume

that the orbital system is not on a resonance of order j. Thus the homogeneous polynomials g (j)

and u(j) can be chosen to be even and odd in the same manner as em and om. Then t(j), exp( t(j))
and rm;j are even/odd matrices up to order m since the even/odd matrices are an algebra. This
means that the feed–up process does not destroy the even/odd character of the higher orders terms
of rm;j , and thus that for all orders up to m a vanishing denominator problem at resonances of type
ν0 = kxQx + 2kyQy + kzQz does not arise.

It is well known [BG92, BG93], and in particular independent of any even/odd assumptions on rm,
that if the system is neither on an orbital nor on a spin resonance of order up to m, a DA normal form
transformation into the (û1, n̂, û2)m system can be performed. Nevertheless, it might be interesting to
sketch the proof of Balandin and Golubeva [BG92, BG93] that the g(j) can be chosen real as demanded
by the unitarity of exp( t(j)) and at the same time eliminating the dependence of rm;j on the orbital
phases up to order j. By definition rm is unitary up to order m. Assume now that

rm;j−1 =

(
e−iπνj−1 0

0 e+iπνj−1

)
+

( ∑m
i=j e

′(i) ∑m
i=j o

′(i)

−∑m
i=j o

′(i)∗ ∑m
i=j e

′(i)∗

)
(4.92)

has been constructed to be unitary up to order m. Then the e′(j) fulfil the constraint

1 =m det( rm;j−1) =j 1 + e−iπν0e′(j)∗ + e+iπν0e′(j) (4.93)

where the e±iπν0 are the zeroth order terms in e±iπνj−1 . Let ~k have |~k| = j, then expanding e′(j) and

selecting the terms containing ~ξ
~k and its complex conjugate we find

0 = e+iπν0e′~k
~ξ
~k + e−iπν0(e′~k

~ξ
~k)∗ = e+iπν0e′~k

~ξ
~k + e−iπν0e′∗~k

~ξ
~k ⇒ e+iπν0e′~k + e−iπν0e′∗

k̃
= 0 . (4.94)

Therefore the g~k from equation (4.91) can be ordered in pairs

g~k
~ξ
~k + gk̃(

~ξ
~k)∗ =

ieiπν0e′~k
ei2π~k·~q−1

~ξ
~k +

ieiπν0e′
k̃

e−i2π~k·~q−1
(~ξ
~k)∗

= i

(
eiπν0e′~k
ei2π~k·~q−1

~ξ
~k −

(
eiπν0e′~k
ei2π~k·~q−1

~ξ
~k

)∗ )
∈ R . (4.95)

Thus the unitary of rm;j−1 implies that the g(j) =
∑

|~k|=j g~k
~ξ
~k, chosen according to (4.91), are indeed

real, and hence that t(j) is anti–hermitian and finally that rm;j is unitary.

We summarize the results of the last paragraphs in

Theorem 4.7 In a perfectly mid–plane symmetric ring, with possibly Nv vertical ideal spin rotators
and possibly 2Nh ideal horizontal full snakes, the DA normal form transformation does not contain
resonance denominators at ν0 = kxQx + 2kyQy + kzQz, i.e. at spin–orbit resonances that involve an
even order in Qy.

In chapter 2 we saw that mid–plane symmetry caused the resonance strengths εκ of even order dy-
namical resonances to vanish. In corollary 2 to theorem 2.10 we also saw that mid–plane symmetry
led to certain evenness/oddness properties for the elements of the SU(2) OTM r. But corollary 2
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refers to general solutions of the T–BMT equation so that theorem 4.7 refers to resonances from all
sources and not only dynamical resonances. Close to resonances, when the denominators become small
the DA normal form transformation and therefore the n̂–axis given by Ĝ( c†(1, 0)T) become strongly
varying functions of phase space. This in general implies low Plim close to resonances. If, as in the
case of an even order resonance in mid–plane symmetric rings, the resonant parts of the DA normal
form transformation can simply be set to zero, then the resonance does not contribute to the phase
space dependence of the n̂–axis and does not lower Plim. But it has to be stressed that for rings
without mid–plane symmetry, e.g. HERA–p, all orders in Qy contribute to resonance denominators
and hence affect spin motion. We have of course just found a perturbative argument why in mid–plane
symmetric rings even order resonances in Qy should not occur. A problem of this type of perturbation
theory is not only its restricted radius of convergence but even worse that the resonance conditions
on a torus with ~J 6= ~0 are given in terms of the on–orbit spin tune ν0 rather than in terms of the
amplitude dependent spin tune ν. In any case the perturbation theory collapses when the resonance
denominators in (4.91) vanish.

We have just seen that the n̂–axis computed with DA becomes a strongly varying function of phase
space whenever ν0 is in resonance with the orbital tunes ν0 = k0 + ~k · ~Q with ~k ∈ Z3, if we assume
mid–plane symmetry to be broken. But heuristically we expect that when using more sophisticated
approximations to the n̂–axis, the static polarisation limit is potentially reduced rather when the
coherence condition 4.27 with the amplitude dependent spin tune is fulfilled, or almost fulfilled, with
sufficiently low order ~k. Moreover there should be no vanishing resonance denominators in such an
approach. For example if the resonant terms appearing in a perturbative treatment of the SRM are
formally summed, one arrives at (4.78) [SM92]. Indeed we will see shortly in numerical examples that
Plim tends to have pronounced minima, in regions of the parameter space where

ν( ~J ) ≈ k0 + ~k · ~Q , moderate |~k| , (4.96)

and where ~k has to fulfil the condition ky = 2l + 1 in mid–plane symmetric rings. This behaviour
of Plim close to resonances can be motivated as follows: Assume that a special quasi–normal form
transformation for the spin

Ñ(~Ψ, θ) ≡




ũ1,x ũ1,y ũ1,z

ñx ñy ñz
ũ2,x ũ2,y ũ2,z



∣∣∣∣∣∣
(~Ψ,θ)

(4.97)

has been found which eliminates all but the closest by harmonic ~k in the sense that the transformed
spin S̃ ≡ Ñ Ŝ fulfils an EOM of the type (2.150) with x̂→ ũ1, ŷ → ñ, ẑ → ũ2 and ν0 → ν̃ ≈ const.

Dθ S̃ =
(
ν̃ñ+ εκ

(
ũ1 sinφκ(~Ψ, θ) + ũ2 cosφκ(~Ψ, θ)

))
× S̃ (4.98)

Equation (4.98) describes a SRM in the (ũ1, ñ, ũ2) system. We assume that ν̃ is close to κ = k0 +~k · ~Q.
Furthermore we assume ν̃ is sufficiently far from any resonance condition ν̃ = k ′0 + ~k′ · ~Q with the

harmonics with ~k′ 6= ~k that have been absorbed in the quasi–normal form transformation (4.97).
Therefore these harmonics do not contribute strongly to the inverse transform N T so that in the limit
εκ → 0 Plim in the (x̂, ŷ, ẑ)–system is a moderately varying function of the quasi spin tune ν̃. In the
periodic (ũ1, ñ, ũ2) system we can at least for ∂~Ψ ν̃ = ~0 compute the n̂–axis , the “ε–dependent spin

tune” and P̃lim measured in the (ũ1, ñ, ũ2) system

ν(εκ) = sgn(ν̃ − κ)
√
ε2κ + (ν̃ − κ)2 + κ (4.99a)

P̃lim =

√

1 −
(

εκ
(ν(εκ) − κ)

)2

. (4.99b)

We see that ν jumps from κ − εκ to κ + εκ whenever we let ν̃ cross κ and that P̃lim has a minimum
P̃lim → 0 of characteristic width ε at ν̃ = κ. Therefore when transforming back to the (x̂, ŷ, ẑ)–system
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we expect to see a more or les pronounced minimum at ν̃ = κ. It is clear that when the non–resonant
contribution to n̂ has already diminished Plim to a great extent, the dip due to the resonance cannot
be very deep, in other words Plim cannot be less than zero. This is of course not a strict proof since
we do not know whether the transformation Ñ exists but it serves as a heuristic argument for why
one should expect a pronounced dip in Plim whenever the spin–orbit system is close to a resonance in
the sense of equation (4.96).

The rotation vector r̂ of the spin OTM in the single resonance model with snakes has been analysed
in great detail in [LT86, SL88, SL97] but the invariant spin field has not yet been calculated analytically
to higher order for such models. Ptitsin and Shatunov [PS96] have given an expression for the n̂–axis in
linear approximation. Of course the SPRINT and the SODOM-2 methods can be used to numerically
compute the invariant spin field and the amplitude dependent spin tune for any model where the
spin OTM can be computed in some approximation. In section 3.2.3 we have computed the one–turn
quaternion for the SRM with 2 snakes. Analogously we can compute the one–turn quaternion r̄ for any
number N of point–like Siberian Snakes located at arbitrary positions {θi ∈ [0, 2π]|i = 0, . . . N − 1}

r̄(θ0,Ψ) =
N−1⊙

i=0

r̄srm(θi+1, θi; Ψ + (θi − θ0)Qy) s̄i (4.100)

where r̄srm is the spin transport quaternion of the SRM defined in equations (2.164a) to (2.164f) and
s̄i is an arbitrary point like spin rotator map as in definition 3.1.
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Figure 4.10: The dependence of Plim and ν on the orbital tune Qy in the SRM with 3 identical snake periods of 2
horizontal snakes.

We will now specialise to systems with either one or an even number 2N of horizontal snakes
distributed uniformly over the “ring”, i.e. with θi+1 − θi = π/N . Moreover we will only treat the
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case of a highly superperiodic model with P = 120 which we then divide into 10, 8, 6, 4 or 2
identical periodic sections. The model system without snakes is specified to have exactly one first
order intrinsic “parent” resonance at κ = 120 +Qy. Figures 4.10 and 4.11 show various scans of the
amplitude dependent spin tune (left ordinate) and static polarisation limit (right ordinate) performed
with the SODOM-2 method using SPRINT’s rampable optics system (ROS) to keep the distance δ from the
parent resonance constant while varying the tune Qy. This is done by actually scanning the reference
momentum while linearly interpolating the tune parameter between its minimum Qy(pmin, δ = const.)
and maximum Qy(pmax, δ = const.) value. We say that a resonance is excited whenever the amplitude
dependent spin tune crosses or visibly levels off and jumps over, a resonance condition defined by the
line κ = [kQy] and at the same time Plim has a pronounced minimum. If the order of the parent
resonance is odd as in our case, then the SRM can be regarded as a model of a mid–plane symmetric
accelerator. If we introduce an even number of horizontal snakes this quality is not changed according
to theorem 3.2. We therefore do not expect any even order resonances to show up in the tune scan.
For figure 4.10 the scan was performed for the SRM with 6 snakes arranged in 3 identical snake–
periods of 2 snakes and with a resonance strength of ε = 1.5. In each snake period the snake angle
φ was chosen to be ±45◦ in the top left plot and ±45.6◦ in the three other plots. The first striking
result is that with 3 ×±45◦ the amplitude dependent spin tune seems not to depend on Qy at all —
apart from small regions around the resonance conditions 1/2 = [(2l + 1)Qy], which happen to be low
order orbital resonance conditions. Moreover the spin tune in similar simulations but with different
resonance strengths ε did not show any dependence on ε. We recall that close to low order orbital
resonance conditions the SODOM-2 and SPRINT method can become inaccurate. The vanishing of any
spin tune shift

∆ν ≡ ν − ν0 = ν − 1

2
(4.101)

on the torus as in figure 4.10 (top left) was already proposed by Yokoya [KY88] for superperiodic
rings which allow an odd number of snake periods so that in each snake period the on–orbit spin
phase advance is π. As a test we can increase the snake angles to ±45.6◦. Then the design orbit spin
tune is 0.52 and assuming ν ≈ ν0 we expect the spin resonances ν = [kQy] to be separated from the
orbital resonances. Figure 4.10 (top right) shows a combined scan of ν and Plim for this modification.
Obviously not only ν 6= ν0 but moreover the amplitude dependent spin tune has become dependent
on the system parameters, i.e. the orbital tune Qy. We conclude that an on orbit spin phase advance
of (2l + 1)π per snake period seems necessary to prevent spin tune shift even in this simple highly
symmetric model. The resonances evidenced by dips in Plim can be identified from left to right as
3-rd, 7-th, 5-th, and 1-st order at Qy = 1/2, then 7-th, 11-th, 9-th, 5-th and 11-th order at Qy ≈ 0.95.
The 7-th order resonance close to Qy = 0.2 and the suspicious looking drop of Plim at Qy = 0.75
are zoomed in figure 4.10 (bottom left and right) respectively. On the left we clearly see that due
to the spin tune shift the 7-th order resonance has been split into a doublet almost symmetrically
around Qy = 3/14 ≈ 0.2143. The amplitude dependent spin tune levels of at the resonance lines
κ = 2− 7Qy jumps across it close to Qy = 0.212, levels off again at the line ν = 7Qy− 1, jumps across
it approximately at Qy = 0.217 and after leaving the resonant region varies only mildly with Qy. The
resonance lines κ = 7Qy − 1 and κ = 2 − 7Qy are not drawn in order not to diminish the visibility
of the functional dependence of Plim and ν on Qy. Exactly at positions of the jumps there are sharp
minima of Plim, thus showing the behaviour close to resonances which is predicted by the heuristic
model described below. Note that the spin tune behaves like a step function due to the restricted
number of digits of the carried in output file. On the right side of the bottom of figure 4.10 the region
around Qy = 0.75 is zoomed. Obviously the amplitude dependent spin tune crosses the resonance lines
κ = 2−2Qy and κ = 2Qy−1 without any actual signs of discontinuities or breakdown of Plim. Rather
the numerical algorithm becomes unstable in the vicinity of Qy = 3/4. The real spin–orbit resonances
did already appear in figure 4.10 (top left) but in order to distinguish them from the failures of the
numerical algorithm close to orbital resonances the introduction of a small disturbance of the snake
angles was needed. We conclude that the example studied shows various kinds of odd but no even
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order resonances. Note that these higher order resonances are not caused by any higher order terms
in ~ω since the parent resonance according to equation (2.150) was first order. We will call such higher
order spin–orbit resonances kinetic resonances because they arise from kinetic higher order effects
as explained in section 2.2.2 to distinguish them from higher order resonances already included in ~ω
which we will call dynamical resonances. Furthermore we will call the half of the symmetric spin
tune jump εκ = limν̃→κ |ν − κ| with ν̃ from (4.98) the kinetic resonance strength. Additionally it
should be noted here that adjusting the snake angles and thereby shifting the design orbit spin tune
from 0.5 to 0.52 did not change the global behaviour of Plim as a function of Qy with the exception
that the spin–orbit resonances were split into doublets.
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Figure 4.11: The dependence of Plim and ν on the orbital tune Qy in the SRM with 1 and with 4 horizontal snakes.

The plots in figure 4.11 show tune scans of ν and Plim for the SRM with one and with 4 snakes.
The top left of figure 4.11 has been computed with ε = 0.6 and with one longitudinal full snake at
the viewpoint whereas for the top right figure the snake rotation angle was reduced to 176◦, i.e. a
98% snake was used. We note that with one Siberian Snake n̂0 is in the horizontal plane. With the
single full snake there is obviously no spin tune shift. We therefore change the full snake to a 176◦

spin rotator. With this change and using equation (3.4) we find that with a spin rotator with rotation
angle ψ around an arbitrary axis in the horizontal plane the on–orbit spin tune depends on ψ and on
the on–orbit spin tune without snakes, δ + κ, via

cos πν0 = cos
ψ

2
cos π(δ + κ) ⇒ 0.49 ≤ ν0(δ)

∣∣∣
ψ=176◦

≤ 0.51 . (4.102)

With the 98% partial snake the amplitude dependent spin tune immediately develops a slight depen-
dence on the system parameters (here Qy) and is in particular moved away from 1/2.
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Figure 4.12: Comparison of Plim(ε, δ) for various snake schemes in the SRM
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Thus we are able to clearly identify the resonances in figure 4.11 (top right). Starting from the first
resonance just below Qy = 0.1 we find 6-th, 5-th, 4-th, 3-rd, 7-th order resonance doublets up to the
strong 2-nd order doublet around Qy = 0.25. Then from Qy = 0.3 to 0.45 we find a 5-th order doublet,
a numerical instability at Qy = 1/3 (which cannot be a spin–orbit resonance with this spin tune) and
7-th, 4-th and 6-th order resonances. The fact that even and odd resonances appear in a model based
on a mid–plane symmetric SRM and one horizontal snake numerically confirms that 2Nh horizontal
snakes are necessary in order to avoid even order spin–orbit resonances in mid–plane symmetric rings.
We note again that apart from the resonances of figure 4.11 (top left) being split into doublets in
figure 4.11 (top right) the global functional dependence of Plim on Qy has not changed under the
switch from a full to a 98% snake. Figure 4.11 (bottom) finally shows the SRM with 4 full Siberian
Snakes arranged in 2 snake periods of 2 snakes with a +22.5◦ and a −22.5◦ snake. This arrangement
has ν0 = 1

2 but no snake scheme with an even number of snake pairs can have a spin phase advance
per snake period which is equal to π, since then the on–orbit spin tune would be integral. Therefore
the condition given in [KY88] for the vanishing of the second order spin tune cannot be satisfied.
Correspondingly, we actually see an enormous spin tune shift varying from −0.08 at Qy = 0.05 to
almost 0.25 at Qy = 0.45. The resonances can be identified from left to right as 9-th, 5-th or 7-th
sitting on top of each other (around Qy = 0.12), 5-th, 3-rd at Qy ≈ 0.02, 5-th, 7-th and 3-rd order just
below Qy = 0.45. We note that due to the enormous spin tune shift the doublets have been separated
so far that they get interleaved with resonances from other doublets. Again, since the model was
mid–plane symmetric with an even number of horizontal snakes, no even order resonances show up.

We will now briefly compare the dependence of Plim on δ and on ε for the SRM with various snake
schemes. In particular we will investigate the behaviour of snake schemes with an odd number of
snake periods with 2 snakes each, so that we have the freedom to choose the spin phase advance per
snake period to be π and simultaneously ν0 = 1/2. These schemes are called Lee–Courant schemes
[LT86, SL88, SL97, EC94, EC96]. Furthermore we will investigate snake schemes in which we have
either explicitly changed the spin phase advance per snake period or in which the number of snake
periods is even so that ν0 = 1/2 disallows choosing the spin phase advance per snake period to be
π. The schemes with a snake number of 4 and 8 are of particular interest for HERA–p since HERA
has 4 straight sections and 4 arcs and therefore suggests a distribution of the snake positions that is
compatible with this “arc–periodicity”. Note that HERA is not superperiodic with P = 4 — only
the distribution of the horizontal bends is fourfold periodic. In all of the following simulations the
parameters of the parent resonance are k0 = 120, k = +1, Qy =

√
5 − 2 ≈ 0.2360679775 leading to

κ = 120.2360679775 and resonance strengths of ε = 0.8, 1.2, 1.5 and 2.1. Figure 4.12 shows P lim for 7
such schemes (and in one case also ν), all of them fulfilling [ν0] = 1/2 and n̂0 = ŷ:

1. A scheme with 2 Siberian Snakes and snake angles of ±45◦, called “1 X (be)”. This is a Lee–
Courant scheme and does not produce any spin tune shift. Plim is shown in the top–most (1-st)
row left.

2. A scheme with 3 snake periods of two snakes, each with snake angles of ±45◦, called “3 X (be)”.
This is also a Lee–Courant scheme and does not produce any spin tune shift. Plim is shown in
the 2-nd row left.

3. A scheme with 5 snake periods of two snakes, each with snake angles of ±45◦, called “5 X (be)”.
Again this is a Lee–Courant scheme and does not produce any spin tune shift. Plim is shown in
the 3-rd row left.

4. A 4–snake scheme with 2 snake periods of two snakes with snake angles of ±22.5◦, called “2
X (af)”, which is not a Lee–Courant scheme but has been suggested for HERA because it was
proposed to be similarly effective. The spin phase advance per snake period is 1

2π. Plim is shown
in the 1-st row right
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5. A snake scheme with 3 snake periods of 2 snakes but with snake angles of ±15◦, called “3 X
(±15 deg)”, so that the spin phase advance per snake period is 2

3π. Plim is shown in the 2-nd
row right.

6. An 8–snake scheme with 4 snake periods and snake angles of ±33.75◦, called “4 X (±33.75
deg)”. The spin phase advance per snake period is 3

4π. Plim(δ) shown in the 3-rd row right and
additionally ν(δ) is shown just below in the 4-th row right.

7. Another eight snake scheme with 4 snake periods and snake angles of ±11.25◦, called “4 X
(±11.25 deg)”. The spin phase advance per snake period is 1

4π. Plim is shown in the 4-th row
left.

Looking at the Lee–Courant schemes to the left of the first 3 rows of figure 4.12, it becomes clear that
for these type of schemes a larger odd number (1,3,5) of snake periods leads to smoother dependence
of Plim on δ even for large ε. Since they do not produce any spin tune shift and the orbital tune
Qy is chosen not to fulfil 1

2 = [(2l + 1)Qy] for any l of reasonable magnitude, the dependence of Plim

on δ is purely non–resonant. The other schemes which produce fairly big spin tune variation show
resonant behaviour, i.e. sudden drops of Plim to values close to 0 when the amplitude dependent spin
tune crosses or jumps over an odd order resonance condition. As an example the spin tune is plotted
for the “4 X (±33.75 deg)” scheme and for ε = 2.1 in the 4-th row to the right. When the spin
tune approaches the resonance it starts levelling off and then has a symmetric discontinuity around
κ = 2 − 7Qy at δ ≈ ±3.3 and Plim drops to 0 at these points. All the non–Lee–Courant type schemes
show resonant effects at certain resonance strengths. It is interesting to note that with the exception
of the “4 X (±33.75 deg)” scheme which can avoid resonance crossing up to ε = 1.2, increasing the
number of snakes in the non–Lee–Courant schemes hardly improves the situation — in this simple
model.

In order to demonstrate that the fundamental results of theorems 2.9, 3.2 and 4.7 are not restricted
to simple models like the SRM we will now discuss the amplitude dependent spin tune and P lim in a flat
model of HERA–p obtained by simply switching off the vertical bends. Figure 4.13 shows Qy–scans of
ν (left ordinate) and Plim (right ordinate) without snakes (top left), with one snake (bottom left) and
with 4 snakes. In all simulations the unperturbed 1996 luminosity optics without the vertical bends
and therefore without flattening snakes has been used. The lattice does not contain any solenoids
or skew elements, i.e. skew quadrupoles and vertical bends and is therefore mid–plane symmetric.
All simulations have been performed with purely vertical orbit motion on an invariant ellipse that
corresponds to a beam width of 2 σ. The top left scan of figure 4.13 was performed without snakes.
The resonances are from left to right: a 5-th order doublet, a 3-rd order doublet and a 5-th order
doublet. Then there is the big 1-st order resonance at approximately Qy = 0.425 and a 3-rd order
resonance at Qy ≈ 0.475. Figure 4.13 top right was produced with 4 snakes added. The snake scheme
is the 3111 type described earlier. Again we see only odd order resonances, namely from left to right
5-th, 3-rd, 7-th (weak), 5-th and the strong 1-st order resonance at about Qy = 0.45. Note that
the resonances are not visibly split into doublets due to the weak spin tune shift at this particular
reference momentum of 815 GeV. The region around Qy = 0.25 has been zoomed in the bottom
right figure, showing that the tiny dip in Plim is not the result of a spin–orbit resonance but of the
SODOM-2 method becoming unstable close to the low order orbital resonance Qy = 1/4. The resonance
lines κ = 2[Qy] and κ = 1 − 2[Qy] are crossed slightly before and after the dip which occurs exactly
at Qy = 1/4. No even order resonances show up even in such a complicated lattice as the flat HERA
without snakes or with an even number of horizontal snakes. Conversely, by inserting one horizontal
snake the mid–plane symmetry is immediately destroyed. Figure 4.13 bottom left presents a scan for
this case. The resonances are from left to right: 6-th, 5-th, 4-th, 3-rd, 8-th, 7-th, the strong 2-nd
order resonance at [Qy] = 0.25. Then 5-th, 4-th, 6-th and 8-th order resonances follow. Additionally
there are numerical instabilities at [Qy] = 2/5 and 1/3 neither of which fulfils the resonance condition
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Figure 4.13: The dependence of Plim and ν on the orbital tune Qy for a flat model of HERA–p. Top left: No snakes.
Top right and bottom right: 4 horizontal snakes. Bottom left: 1 horizontal snake.

ν = 1/2 = [kQy]. We note that even in this flat model of HERA no spin tune shift occurs in the case
where only one snake is introduced.

We conclude that the consequences for spin motion of the perturbative argument of theorem 4.7
based on theorem 3.2, can be extended to kinetic resonances which involve the amplitude dependent
spin tune in mid–plane symmetric rings. Moreover the exceptional behaviour of the OTM discussed
under the heading of “snake resonances” at (3.40) can now be appreciated in a wider context.
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4.9 Examples of the amplitude dependent spin tune and the static

polarisation limit in HERA

The real lattice of HERA–p is not mid–plane symmetric. The interleaved vertical and horizontal bends
used to bring the proton beam into the central plane of the electron machine at the beginning and
the end of the East (O), South (S) and North (N) straight sections break the mid–plane symmetry.
Moreover the non–periodic distribution of these beam line elements — the West (W) straight is flat
— reduce the possible superperiodicity of HERA–p to P = 1. Note that also the Courant–Snyder
functions in the straight sections are different. Inserting flattening snakes at the symmetry points of
the vertical bend sections as described in section 3.1.3 cancels the spin rotation of the vertical bends
only as far as spin motion on the design orbit is considered. Furthermore it does not restore the 4–fold
“arc–periodicity” since the arc octants with a flattened vertical bend section (NL, NR, OL, OR, SL,
SR) contribute less to the spin phase advance on the design orbit than those without (WL, WR).
Spin motion on synchro–betatron trajectories can therefore lead to kinetic and dynamic spin–orbit
resonances of all orders.
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Figure 4.14: Qy–scans of the 1996 luminosity optics. Left: without snakes. Right : with the 3111 snake scheme
described in figure 4.1.

In figures 4.10, 4.11 4.13 we have seen Qy–scans for basically mid–plane symmetric models. Figure
4.14 shows ν and Plim as functions of [Qy] for the original 1996 HERA–p luminosity lattice. Both
plots are with purely vertical motion on the 2 σ invariant ellipse. The left plot is without snakes at
819 GeV, the right plot is with 6 flattening snakes and the 3111 snake scheme. In both plots the
resonance lines κ+ = 2[Qy] and κ− = 1 − 2[Qy] have been drawn in order to show that Plim has
isolated minima wherever ν jumps across these lines. In the left plot (without snakes) the resonances
are from left to right: 5-th, 4-th, 7-th, 3-rd, a narrow 5-th order close to the 3-rd order, 4-th, the
2-nd order at the line κ−, 3-rd, then a long range without resonances that are visible on this scale
around [Qy] = 0.25, followed by 6-th, 5-th, 2-nd at the line κ+, 5-th, 4-th and the strong 1-st order
resonance at [Qy] ≈ 0.38. After crossing the 1-st order resonance there are a 3-rd, a 5-th and a 7-th
order resonance almost on the edge of the plot. We note that at all odd order resonance conditions
κ = [(2l + 1)Qy] merge at [Qy] = 1/2. The resonance doublets, which can be nicely identified because
ν ≈ 1/2, in the right plot (with the flattened 3111 scheme) are from left to right: 7-th and 6-th, both
of them with one resonance of the doublet either very weak or almost in the middle of two tune steps,
the 5-th order doublet around [Qy] = 0.1, 4-th, 3-rd with a 9-th order inside, a very weak single 7-th
order, the strong 2-nd order doublet with a 6-th order doublet inside around [Qy] = 0.25, then a 5-th
followed by a weak single 7-th, a 4-th and a 6-th directly before the strong 1-st order resonance at
[Qy] ≈ 0.43. We conclude that in HERA–p with or without snakes odd and even order resonances
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appear and that in general even and odd resonances with similar absolute order have similar strength.
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Figure 4.15: Tune scans of ν and Plim. Top: Plim for various invariant ellipses. Below the regions around [Qy] = 1/6

(left) and [Qy] = 1/4 (right) for the 1 (upper row) and 2 σ (lower row).
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Figure 4.15 shows a tune scan with the 1996 luminosity optics, 6 flattening snakes and the 3111
scheme at a reference momentum of 820 GeV for various invariant vertical ellipses. The big plot on
top shows Plim(Qy) for the vertical 1, 2, 3 and 4 σ ellipses. It is clearly to be seen that going outwards
in phase space strongly reduces the average Plim even off-resonance. The four small plots below show
zoomed scans of ν and Plim in the range around [Qy] = 1/6 (left) and [Qy] = 1/4 (right) for the 1 σ
(upper row) and 2 σ (lower row) ellipse. In order to show the resonant behaviour of ν and P lim the
resonance lines κ = 3[Qy], κ = 1 − 3[Qy] and κ = 2[Qy], κ = 1 − 2[Qy] are drawn. At this particular
energy the 2-nd order resonance is obviously weaker, i.e. less wide, than the 3-rd order resonance.
Comparing the separation of the 3-rd order doublet for different ellipses demonstrates that the tune
shift ∆ν = ν − ν0 increases with increasing emittance.
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Figure 4.16: Amplitude scans of ν and Plim at 805 GeV with [Qy] ≈ 0.2725 (top left), 0.2775 (top right) and 0.2825
(bottom left). For comparison the bottom right plot shows the averaged rotation vector and normalised rotation angle
and their spreads.

Figure 4.16 shows ν and Plim as functions of the orbital action Jy indicated by the normalised
emittance enclosed in the invariant ellipse. Note that 81 π mm mrad correspond to approximately
4.5 σ. The reference momentum was taken to be 805 GeV and the fractional vertical tune [Qy] was
chosen to be approximately 0.2725 (top left), 0.2775 (top right) and 0.2825 (bottom left). In all three
plots we find on the design orbit Plim(Jy = 0) = ‖ 1

2π

∫
n̂0 dΨy‖ = 1 and ν(Jy = 0) = ν0 = 1/2.

Note (again) that ν is taken from the left and Plim from the right ordinate. For comparison also the
phase averages and the spreads of the rotation vector of the spin OTM r̂ ≡ êR and the normalised
rotation angle µR are shown in 4.16 (bottom right). This plot is identical for all three [Qy]: 0.2725,
0.2775 and 0.2825. When increasing the enclosed normalised emittance the amplitude dependent
spin tune deviates more and more from ν0 while Plim smoothly decreases until ν approaches the first
resonance condition for the chosen orbital tune. For [Qy] ≈ 0.2725 (top left) the first resonance is
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κ2 = 2[Qy] and the spin tune starts levelling off from the resonance line until it has a discontinuity
ν− = κ2 − ε → ν+ = κ2 + ε symmetric w.r.t. κ at about 27 π mm mrad. At the same time Plim has
an isolated minimum. Increasing Jy even further, produces a maximum spin tune shift at about 43 π
mm mrad from which ν begins returning to ν0 for increasing εy. At about 58 π mm mrad ν performs
another symmetric jump around κ2 while Plim has an isolated minimum. The close–by resonance
κ− = 3− 9[Qy] is obviously not excited for these lattice parameters. For [Qy] ≈ 0.2775 (top right) the
first resonance line to be crossed is κ− which causes a narrow dip in Plim at about 4 π mm mrad. Note
that now κ− is not only visibly excited but of course changed its position compared to the plot with
[Qy] ≈ 0.2725. Due to the increased tune the first crossing of κ2 occurs at a larger amplitude, namely
32 π mm mrad and the second, downwards, crossing occurs already earlier at 51 π mm mrad. Finally
beyond 75 π mm mrad the doublet κ− and κ+ = 9[Qy] − 2 is crossed. Increasing the tune even more
to Qy ≈ 0.2825 (bottom left) not only moves the 2-nd order resonance κ2 out of the range of the spin
tune shift but shifts the crossing of κ+ to orbital amplitudes where the resonance is stronger excited.
Hence the minima of Plim when ν crosses κ+ are slightly broader. In the region between 30 and 50 π
mm mrad Plim has a smooth minimum as ν gets relatively close to κ2.
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Figure 4.17: Emittance scans at various reference momenta. Top left: 820 GeV, top right: 814 GeV, bottom left:
805.2 GeV, bottom right: 804.8 GeV.

Let 〈x〉 = 1/2π

∫
T1
x(Ψy) dΨy denote the phase average of x on T1 defined by Jx = Jz = 0,

Jy = const. and r̂(Ψy) and µR(Ψy) be the rotation vector and the normalised rotation angle of the

spin one–turn quaternion r̄(θ0; ~Ψ) ≡ (cos πµR, sinπµRr̂). Figure 4.16 (bottom right) contains the
following quantities for comparison with Plim and ν:

〈êR〉 ≡ ‖〈r̂〉‖ , σ(êR) ≡
√
〈arccos2(r̂ · 〈r̂〉)〉 (4.103a)

〈µR〉 , σ(µR) ≡
√
〈(µR − 〈µR〉)2〉 . (4.103b)
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If r̂ and µR were appropriate measures for analysing higher order resonances, then r̂ and µR would
show a behaviour similar to n̂ and ν. First of all, within the resolution of 4.16 (bottom right) 〈êR〉,
〈µR〉 and their spread parameters do not show any dependence on the chosen [Qy]. Second, 〈êR〉
appears to be a mild function of Jy and neither 〈êR〉 nor 〈µR〉 show any kind of resonant behaviour
although 〈µR〉 crosses κ± and at least for [Qy] ≈ 0.2725 also crosses κ2. Note that of course in the
limit Jy → 0 we obtain r̂ → n̂→ n̂0 and 〈µR〉 → ν → ν0 and that in the limit Qy → n/m n̂ approaches

±r̂(m) and [mν] approaches [〈µ(m)
R 〉] where r̂(m) and µ

(m)
R are the rotation vector and the normalised

rotation angle of the m–turn spin map. In addition the spreads σ(êR) and σ(µR) do not show any
singular behaviour at 〈µR〉 = κ±,2. It is remarkable anyway that at least in this example the relation
〈µR〉 − σ(µR) < ν < 〈µR〉 + σ(µR) holds. It must be noted on the contrary that the 1 σ–interval
around 〈µR〉 appears to be an over–estimation of the variation of ν. We may conclude that except
for trivial examples and despite the general opinion in the community, the rotation vector r̂ and the
normalised rotation angle µR are more or less useless quantities at finite orbital amplitudes and with
irrational orbital tunes.

Figure 4.17 demonstrates that the functional dependence of ν and Plim on Jy is not the same
for different energies. The orbit tune in all plots is [Qy] ≈ 0.2725. Figure 4.17 (top left) which
was obtained at 820 GeV shows in addition to the 2-nd order resonance a 20-th (!) order resonance
which has non–negligible strength. We note that resonances κ do not necessarily have to be noticeably
excited, i.e. εκ can be so small that with the chosen step size for scanning, the spin tune jump as well as
the drop of Plim are hidden in between two adjacent steps. We also note that although asymptotically
the resonance strengths have to decay with increasing order TO allow the existence of an n̂–axis and
an amplitude dependent spin tune , there is no reason why already for finite order the should decay
monotonically. To the right, at 814 GeV, Plim stays almost constant after crossing the 2-nd order
resonance. The two plots at the bottom of figure 4.17 demonstrate in comparison with figure 4.16
(top left) the potentially strong dependence of ν and Plim on the reference momentum. All three
simulations are just separated by 200 MeV in reference momentum, namely the were performed at
805.2 (4.17 bottom left), 805.0 (4.16 top left) and 804.8 GeV (4.17 bottom right). In spite of this
closeness in energy ν and Plim show totally different behaviour. Also, among the close–by resonance
lines κ2 and κ− always at most one is visibly excited.
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Figure 4.18: Momentum scans of ν and Plim for the 1996 luminosity optics with 6 flattening snakes and the 3111
scheme on invariant ellipses corresponding to 2.5 (left) and 3.0 σ (right) vertical beam width. The vertical tune is
approximately 32.2725.

Figure 4.18 shows scans of ν and Plim w.r.t. the reference momentum p0 between 814 and 820 GeV
for 2.5 (left) and 3 σ (right) vertical motion. The vertical tune was chosen to be Qy ≈ 32.2725. In this
limited momentum region (∆p0 = 6 GeV) ν as well as Plim appear to be almost periodic in p0 with
a period of about 2.2 GeV. This approximate periodicity can be explained in the following way: The
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spin tune on the design orbit for the flattened lattice without main snakes is not equal to ν flat
0 = Gγ

but, according to the modifications to theorem 3.1 induced by flattening as explained in definition 3.2,
νflttd
0 ≡ Gγ(1−Θcomp/2π). In HERA the proposed 6 flattening snakes would compensate about 362.496

mrad of the total horizontal bend angle of 2π per revolution. Therefore the on–orbit spin tune is
increased by an integer every 555 MeV instead of the 523 MeV of a flat ring. When we now add the 4
main snakes the spin tune on the design orbit becomes 1/2 but the spin phase advance in between snakes
is, neglecting the asymmetry of HERA with flattening snakes, approximately π/2ν

flttd
0 , increasing by

an integer every 2.22 GeV. We assume the dominant contribution to Plim and ν to be induced by the
almost periodically repeating structure “arc, straight section, snake”. Therefore in regions where no
extraordinary strong linear intrinsic resonances perturb the spin motion rather locally we may expect
ν and Plim to be almost periodic in E0 ≈ p0 with period about 2.2 GeV. In figure 4.18 (left) on the
2.5 σ invariant ellipse the spin tune crosses the resonance line κ+2 ≡ 2[Qy] at 6 different momenta. In
each case Plim has a sharp isolated minimum. Because of the approximately sinusoidal dependence on
p0 and because the distance κ+2 −ν0 is of the order of the spin tune variation, the resonance crossings
appear in close–by pairs in which both resonances have a similar strength. We note that when kinetic
resonances are crossed along a variation of the momentum they are normally crossed in close–by pairs
which are probably related in strength — provided the resonances are sufficiently far away from ν0

compared to the average of |∆ν| w.r.t. p0. The variation of the spin tune with energy is obviously
not symmetric w.r.t. ν0 and therefore the resonance line κ−2 ≡ 1−2[Qy] is not crossed although it has
exactly the same distance to ν0 = 1/2. Nevertheless Plim goes through a smooth minimum when ν gets
close to κ−2. In figure 4.18 (right) the vertical amplitude has been increased to 3 σ and the spin tune
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Figure 4.19: The possible spin–orbit resonance lines up to 20-th order.

shift at some momenta has sufficiently increased to let ν cross the resonance line κ−2 also. Moreover
the pairs of adjacent crossings of κ+2 are separated by a larger momentum range. We note that the
minima of Plim at resonance crossing are more pronounced when the non–resonant contribution to the
diminution of Plim is small, i.e. at the crossings of κ+2, than when the non–resonant contribution to
the diminution of Plim is already high, i.e. at the crossings of κ−2. When arguing for the existence
of kinetic resonances in section 4.8 we expected that when the minima of P̃lim as defined in equation
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Order n Q
(n)
m ≡ 2m+1/2n with Q

(n)
m ≤ 1/2 Q

(n)
1 (8 dig.)

1 1/2 .5

2 1/4 .25

3 1/6 (1/2) .16666667

4 1/8
3/8 .125

5 1/10
3/10 (1/2) .1

6 1/12 (1/4)
5/12 .08333333

7 1/14
3/14

5/14 (1/2) .07142857

8 1/16
3/16

5/16
7/16 .0625

9 1/18 (1/6)
5/18

7/18 (1/2) .05555556

10 1/20
3/20 (1/4)

7/20
9/20 .05

11 1/22
3/22

5/22
7/22

9/22 (1/2) .04545455

12 1/24 (1/8)
5/24

7/24 (3/8)
11/24 .04166667

13 1/26
3/26

5/26
7/26

9/26
11/26 (1/2) .03846153

14 1/28
3/28

5/28 (1/4)
9/28

11/28
13/28 .03571428

15 1/30 (1/10) (1/6)
7/30 (3/10)

11/30
13/30 (1/2) .03333333

16 1/32
3/32

5/32
7/32

9/32
11/32

13/32
15/32 .03125

17 1/34
3/34

5/34
7/34

9/34
11/34

13/34
15/34 (1/2) .02941177

18 1/36 (1/12)
5/36

7/36 (1/4)
11/36

13/36 (5/12)
17/36 .02777778

19 1/38
3/38

5/38
7/38

9/38
11/38

13/38
15/38

17/38 (1/2) .02631579

20 1/40
3/40 (1/8)

7/40
9/40

11/40
13/40 (3/8)

17/40
19/40 .025

m : 0 1 2 3 4 5 6 7 8 9

Table 4.1: The classical odd and even order snake resonances n Q
(n)
m = 1/2 + m, m, n ∈ Z+, n 6= 0 up to 20-th order

(n) and with Q
(n)
m ≤ 1/2, i.e. 0 ≤ 2m + 1 ≤ n. Those resonant tunes which are identical to lower order resonant tunes

are in parenthesis.

(4.99b) are transformed back to the lab–frame they might get partially washed out whenever the
non–resonant contribution to the invariant spin field already has a large spread.

Figure 4.19 shows all spin–orbit resonance conditions with a single orbit tune Q and up to 20-th
order in the rectangle defined by 0.2 ≤ Q ≤ 0.35 and 0.2 ≤ ν ≤ 0.8. When the spin tune on the design
orbit is 1/2, e.g. with properly placed and chosen snakes, then all resonance lines are symmetrically
distributed w.r.t. ν0. Whenever a resonance line crosses 1/2, the orbit tune is said to be on a classical
snake resonance or simply to be snake–resonant. We recall that in mid–plane symmetric rings with an
even number of horizontal snakes only odd order snake resonances in Qy have to be taken into account.
Even if the spin tune shift on some tori is large, as long as no coherent orbital modes are excited the
majority of particles is concentrated around the closed orbit. We have seen in figures 4.16 and 4.17
that the spin tune ν approaches ν0 smoothly when J approaches 0 and when there are no spin–orbit
resonances to be crossed on its way. When there is a resonance of finite strength close to J = 0
then Plim will be significantly reduced in some small neighbourhood of the closed orbit. Therefore
if the closed orbit spin tune is in resonance or close to being in resonance with the orbital tunes, a
large fraction of the particles of the beam contributes essentially nothing to the beam polarisation
and hence the beam average of the polarisation is low. Moderate order snake–resonant orbit tunes are
therefore not recommended for acceleration and storage. Table 4.1 shows the classical odd and even
order snake resonant tunes up to 20-th order. Those tunes which happen to be identical with a lower

order snake resonance are in parenthesis. Note that all odd orders contain Q
(2l+1)
l = 1/2.
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4.10 The acceleration process

So far we have only treated spin motion with constant parameters in the T–BMT equation such as
the Lorentz–γ of the synchronous particle γ0, the orbital actions ~J and various parameters of the
accelerator lattice, e.g. the tunes ~Q. We have found that when the parameters are kept constant and
the invariant spin field exists, the spin action I ≡ Ŝ · n̂ is an invariant of motion. Furthermore we have
seen that under certain circumstances the periodic (~Ψ, ~J ) dependent coordinate system (û1, n̂, û2)
exists so that one an define an action–angle pair (I,Φ) for spin motion. But if we assume that the
parameters are changed continuously (e.g. with time) on a curve in the parameter space so that for
each point on this curve the vectors û1, n̂ and û2 stay defined, it can in general not be guaranteed
that the spin action I is preserved. The reason for this is that for constant parameters the precession
vector ~Ω of the T–BMT equation is periodic with θ whereas for explicitly time dependent parameters
it is in general not. The spin obeys the T–BMT equation whether the latter is periodic or not, but
the (û1, n̂, û2)–system is only defined for periodic ~Ω.

The acceleration process is of particular interest since a spin ensemble prepared to be (almost)
completely aligned to the invariant spin field at injection at low energy has to be accelerated (ramped)
to the working energy. We will often use the word ramp instead of acceleration to indicate that
together with the reference γ0 other lattice parameters can be changed also.

4.10.1 The Froissart–Stora formula

If in the SRM described in section 2.4 and 4.7 the design orbit spin tune ν0 is set to Gγ0 and γ0 is
varied with time, then an acceleration process can be simulated. In this model the rate of change of
ν0 is usually chosen to be constant, with ν0(θ) = κ+αθ so that a single resonance at κ with strength

εκ is crossed at θ = 0. Then the ratio
〈bS(θf=+∞)·n̂0〉Ψ
〈bS(θi=−∞)·n̂0〉Ψ

has been calculated by Froissart and Stora

[FS60, CR80, SL97] to be

〈Ŝ(θf = +∞) · n̂0〉Ψ
〈Ŝ(θi = −∞) · n̂0〉Ψ

= 2e−( π
2
ε2/α) − 1 . (4.104)

We note that for δ ≡ ν0 −κ→ ±∞ the n̂–axis coincides with n̂0 and hence 〈Ŝ · n̂0(θi = +∞)〉Ψ can be
interpreted as Pdyn on the torus whose actions correspond to the resonance strength ε. For ε2 � α and
ε2 � α the ratio in (4.104) is ≈ 1 and ≈ −1 respectively. In the first case the n̂–axis tilts away from
n̂0 into the horizontal plane and back so quickly compared to the rate of precession of the spin that
the spin hardly sees any change of the n̂–axis in one precession. In the second case the n̂–axis moves
so slowly that at any intermediate time the spin will precess around it many times before the tilt of
the n̂–axis has significantly changed. Hence the small changes in ~S⊥ will almost average away and the
projection Ŝ · n̂ will hardly change. Some care has to be taken about the discontinuous change of n̂
at δ = 0 which was introduced in equation (4.78) in order to ensure limε→0 n̂ · n̂0 = +1 independently
of δ. If the acceleration is slow enough spins will follow the continuous function sgn(δ) n̂ and hence
slowly tilt over to −n̂0 at θf = +∞. We will treat adiabatic acceleration in more detail later. In
all other cases polarisation will be lost to some extent. This behaviour has been observed in many
low energy accelerators and therefore the model is quite popular and well understood. Unfortunately
at high energy, resonance strengths are increased due to the higher fields needed to focus the beam,
and as ε becomes larger the region in δ over which the resonance strongly influences the spin motion
becomes larger too. The single resonance model is based on the assumptions that the resonances are
isolated. At high energy this is no longer true.
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4.10.2 An equation for the spin action

In this section we will derive a formula for the spin motion in the (û1, n̂, û2)–system introduced in
section 4.1. Let

Dθ Ŝ = ΩŜ , ΩT = −Ω , Ω = Ω(~Ψ, θ, λ) (4.105)

be a T–BMT equation and Ω be a lattice field for constant λ ∈ A. The symbol λ represents some
one–dimensional parametrisation λ(t) of the free parameters of the T–BMT equation so that λ(R)
is a continuous curve in the parameter space A. We will later see explicit numerical examples in
which λ is the reference γ0, the vertical orbital action Jy or the focusing strength of a certain group
of quadrupoles in the lattice.

We assume that as in (2.17) for all constant λ0 ∈ λ(R) the spin normal form transformation

N(~Ψ, θ, λ) ≡




u1,x u1,y u1,z

nx ny nz
u2,x u2,y u2,z



∣∣∣∣∣∣
(~Ψ,θ,λ)

(4.106)

exists, so that the EOM for the coordinate vector Ŝ′ ≡ NŜ = (û1 · Ŝ, n̂ · Ŝ, û2 · Ŝ)T at constant λ is

Dθ Ŝ
′ =


(∂θ N +

∑

i=x,y,z

Qi∂Ψi
N)NT + N ΩNT


 Ŝ′

=




0 0 ν(λ)
0 0 0

−ν(λ) 0 0


 Ŝ′ ≡ Ω̃ Ŝ′ . (4.107)

Then the solution of the equations of motion in the (û1, n̂, û2)–system for constant λ parametrised via
the action–angle coordinates I and Φ(θ) = Φ0+νθ is Ŝ′(θ; I,Φ0) = (

√
1 − I2 cos Φ, I,−

√
1 − I2 sinΦ)T.

We note again that these action–angle coordinates define a chart of SR which is singular at I = ±1.

Now we furthermore assume that N is continuously partially differentiable w.r.t. λ and that we
are given a continuously differentiable parametrisation λ(θ) with Dθ λ = α(θ). Then the equations of
motion become

Dθ Ŝ
′ =


(∂θ N +

∑

i=x,y,z

Qi∂Ψi
N + α∂λ N)NT + N ΩNT


 Ŝ′

≡ (Ω̃ + η) Ŝ′ , (4.108)

with the anti–symmetric matrix

η(~Ψ, θ, λ) ≡ α(θ)




0 −û1 · ∂λ n̂ û2 · ∂λ û1

û1 · ∂λ n̂ 0 −n̂ · ∂λ û2

−û2 · ∂λ û1 n̂ · ∂λ û2 0



∣∣∣∣∣∣
(~Ψ,θ,λ(θ))

(4.109)

Note that since (û1, n̂, û2) is an orthonormal basis it may only be changed by a rotation of the base
vectors around the same rotation vector, namely ~η ≡ (n̂ · ∂λ û2, û2 · ∂λ û1, û1 · ∂λ n̂). The vector ~η can
be given in coordinate independent form [GH99b]

~η =
1

2
(û1 × ∂λ û1 + n̂× ∂λ n̂+ û2 × ∂λ û2) . (4.110)

By direct substitution one finds

Dθ I = α
√

1 − I2(η2 cos Φ − η1 sinΦ) ≡ αfI( ~J, I, λ; ~Ψ,Φ, θ̃) (4.111a)

Dθ Φ = ν + α

(
η2 +

I√
1 − I2

(η2 sinΦ + η1 cos Φ)

)
≡ ν + αgΦ( ~J, I, λ; ~Ψ,Φ, θ̃) . (4.111b)
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This coupled set of equations is obviously singular at I = ±1 so we must restrict the motion to the
subset of SR with 1 − I2 > δ, δ > 0. A similar set of equations was derived by Yokoya [KY88] by
perturbation theory and an asymptotic solution is given in the limit of slowly varying I. Hoffstaetter
has shown [GH99b] that in the system

Dθ




~J
I
λ
~Ψ
Φ

θ̃




=




0
0
0

~Q( ~J, λ)

ν( ~J, λ)
1




+ α




~f ~J(
~J, λ; ~Ψ, θ̃)

fI( ~J, I, λ; ~Ψ,Φ, θ̃)
1

~g~Ψ( ~J, λ; ~Ψ, θ̃)

gΦ( ~J, I, λ; ~Ψ,Φ, θ̃)
0




(4.112)

with ~f ~J and ~g~Ψ being the perturbations in ~J and ~Ψ due to the slow variation of λ and θ̃(θ) = θ,

the actions ( ~J, I) are almost adiabatic invariants (see definition A.15) if the Jacobian of the map
( ~J, λ) 7→ ( ~Q( ~J, λ), ν( ~J, λ)) has rank 4. This condition prevents each of the actions from staying long
enough in a region where the tunes are resonant and thereby destroy the adiabaticity. We now define
the averaged system (see equation (A.65))

Dθ

( ~K
Ĩ

)
= α

(~f ~K( ~K, λ)

0

)
, ~f ~K( ~K, λ) ≡ 1

(2π)4

∫

T4

~f ~K( ~K, λ; ~Ψ, θ̃) d~Ψ3dθ̃ ,

( ~K(0)

Ĩ(0)

)
=

( ~J(0)

I(0)

)
.

(4.113)
We note that the phase average of fI vanishes due to the form of its dependence on Φ.

Theorem 4.8 (Adiabatic invariance of I) [GH99b] If in the spin–orbit system (4.112) the func-
tions ~f ~J , fI, ~g ~J and gΦ are C1, 2π–periodic in ~Ψ, Φ and θ̃ and if these functions have analytic

extensions for ~Ψ, Φ and θ̃ inside a finite band around the real axis in C, and the determinant of
the Jacobian of ( ~J, λ) 7→ ( ~Q( ~J, λ), ν( ~J, λ)) does not vanish, then for every continuous function ρ(α)
with a

√
α ≤ ρ(α) ≤ b, a, b ∈ R+ the phase space P = R3 × (−

√
1 − δ,

√
1 − δ) × T4 is partitioned

P = G(α, ρ(α))
⋃ B(α, ρ(α)) for sufficiently small α so that

sup
0≤θ≤1/α

∥∥∥( ~J(θ), I(θ)) − ( ~K(θ), I(0))
∥∥∥ ≤ ρ(α) (4.114)

for initial conditions in G and ( ~J ′(θ), I(0)) being the solutions of the averaged system (4.113). Moreover
the Lebesgue measure of B is less then c

√
α/ρ(α), c ∈ R+ and for arbitrary small α we can chose δ

arbitrarily small.

The proof which is based on averaging in multi–frequency systems [ems3, LM88] can be found in
[GH99b]. Due to theorem 4.8 the spin action I is an almost adiabatic invariant in systems described
by equation (4.112). We note that the orbital actions might change even in the averaged system. This
is in good agreement with the fact that for example under acceleration ~Jβ0γ0 is an adiabatic invariant
rather then ~J .

Practically, “almost adiabatic invariance” means that, provided the parameters of the spin–orbit
system are changed sufficiently slowly, then the fraction of the beam in which the projection Ŝ · n̂
changes by more than some maximum acceptable number ρ can be made sufficiently small. Following
the argument that led to equation (4.99b) we assume that if the amplitude dependent spin tune is
close to a resonance the spread of n̂ over phase space is large and depends strongly on λ. Therefore
we expect those regions in parameter space where

ν(λ) ≈ k0 + ~k · ~Q , moderate |~k| (4.115)
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Figure 4.20: Top left: Energy scan of Plim and ν for HERA–p with flatteners and a 4 snake scheme (rad., 45◦, rad.,
45◦) with purely vertical motion at 0.75 σ. Top right: The dependence on the energy gain per turn of the final Pdyn

after ramping through the resonance at approximately 802.7 GeV. Bottom left: Tune scan of Plim and ν for HERA–p
with flatteners and a 4 snake scheme (long., −45◦, rad., 45◦) with purely vertical motion at 2 σ. Bottom right: The
dependence on the total number of turns of the final Pdyn after ramping through the resonance at [Qy] ≈ 0.2635.

to require particularly small α. This means that possibly no reasonable α, for example a ramp–speed
that is operationally feasible, can be found so that the polarisation losses are acceptable !

In section 4.9 we have seen many examples of more or less isolated kinetic resonances in the
parameter space. Thus one feels tempted to use the heuristic model of equation (4.98) once more
and try to see whether the Froissart–Stora formula (4.104) can be modified to explain and describe
the outcome of moving a spin–orbit system through one of these isolated resonances. Froissart and
Stora, who published their famous paper 12 years before the n̂–axis was invented by Derbenev and
Kondratenko, employed the SRM in a way which is equivalent to removing the sign change of n̂
at δ = 0. By directly solving the T–BMT equation they found an asymptotic formula (4.104) for
Pdyn(δ = +∞)/Pdyn(δ = −∞) which shows that the absolute value of the spin action |I| of all
particles on the torus described by ε is preserved in the limit of infinitely low and high ramp speed α.
For the ramp simulations of figures 4.20 and 4.21 we have adopted their sign convention. Within the
SRM the relation limδ→±∞ Plim = 1 and with the sign convention which is equivalent to the approach
of Froissart and Stora in particular limδ→±∞ n̂ = ±n̂0 is fulfilled. However, for infinitely fast variation
of the parameters I will in general not be preserved anymore if we start from and end up at a point in
parameter space where the invariant spin field already has a finite spread on the torus. Therefore one
should not expect equation (4.104) to be a good approximation outside the quasi adiabatic region.
Figure 4.20 shows two different ramp simulations. The top left plot is a combined momentum scan of ν
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an Plim. The simulation was performed using the 1996 luminosity optics of HERA–p with 6 flattening
snakes and 4 main snakes close to the IPs, namely radial snakes at the O- and W–IP and +45◦ at
the N- and S–IP. The vertical amplitude was chosen to be 0.75 σ, the momentum range was chosen
to cover the position of the strongest intrinsic resonance (without snakes) at about 803.5 GeV. The
two tune jumps are crossings of the 2-nd order kinetic resonance κ = [2Qy]. The half jump height is
ε ≈ (4.2 ± 0.1) 10−3 We note that Plim at 801 GeV is about 0.9716 whereas at 803.8 GeV Plim is only
about 0.6811 and that the slope of ν in the region from 802.5 GeV to 803.4 GeV is almost constant
except at the resonance itself at 802.8 GeV. We would now like to linearly vary the quasi spin tune ν̃
of equation (4.99a)

ν̃ = κ+ θα , α ≈ Dp0 ν̃|θ=0 Dθ E0 ≈ (.0135 ± 0.0020) 10−6 keV−1 (∆E0)turn , (4.116)

where β0 = p0/E0 ≈ 1 has been used and (∆E0)turn is the energy gain in keV per turn. The slope
Dp0 ν̃|θ=0 is estimated from a linear fit to ν in some momentum range around the resonance position.
At the start of the ramp 9 spins were uniformly distributed on the 0.75σ vertical ellipse and set parallel
to their respective n̂–axis to give Pdyn = 1. Figure 4.20 (top right) shows the final average of I for the 9
particles, which serves as an approximation of Pdyn, as a function of the energy gain per turn (crosses)
and the prediction using equation (4.104) with α = 0.0148 · 10−6keV−1 (∆E0)turn and ε = 4.2 · 10−3

(line). Note that α and ε are not orthogonal parameters in equation (4.104) which contains ε2/α
only. The agreement between the simulation and the heuristic extension of the Froissart–Stora result
to kinetic resonances is qualitatively excellent in the quasi–adiabatic region (∆E0)turn ≤ 1 · 105 keV
per turn and the quantitative agreement is consistent with the accuracy of the input quantities. We
note in particular that the estimate for the slope of ν̃ has some ambiguity since the slope of ν is
asymptotically not constant. Figure 4.20 (bottom left) shows a combined ν and P lim scan w.r.t. the
vertical tune with 2 σ purely vertical orbit motion at 820 GeV. The 1996 separation optics with 6
flattening snakes and the 3e1b snake scheme obtained by filtering and described in figure 4.19 was
used. Here Plim is about 0.78 at [Qy] = 0.272 and about 0.79 at [Qy] = 0.256. Plim and ν are almost
constant except for the crossing of the resonance κ(Qy) = 1−2[Qy] where we find the half jump height
ε ≈ (1.47 ± 0.04) 10−3. Note that the ramp was performed downwards from [Qy] = 0.272 to 0.256
and that the rate of change of the distance between ν̃ and κ is mainly given by the rate of change of
κ(Qy). Let ξ be a parametrisation of Qy with [Qy(0)] = 0.272 and [Qy(1)] = 0.265, Dξ Qy = const.
Then we obtain

α ≈ 2([Qy(1)] − [Qy(0)]) − ν̃(1) + ν̃(0)

2πN
≈ (3.9 ± 0.1) 10−3

N
, (4.117)

where N is the total number of turns required for the tune ramp while linearly interpolating between
[Qy(0)] and [Qy(1)] using again the rampable optics facility of SPRINT . At the start of the downwards
tune ramp 9 spins were uniformly distributed on the 2σ invariant ellipse with the spins set parallel
to their respective n̂–axis, giving Pdyn = 1. Figure 4.20 (bottom right) shows the approximation of
Pdyn for the ensemble average over the 9 particles as a function of N (crosses) and the prediction
of the Froissart–Stora formula with ε = 1.45 · 10−3 and α = 3.9 · 10−3/N . Again the qualitative
agreement is excellent, in particular in particular in the quasi–adiabatic region N > 20, and the
qualitative agreement is consistent with the errors of α and ε. We may conclude that the heuristic
model introduced in section 4.8 not only helps to understand the functional dependence of ν and P lim

on the parameters of the spin–orbit system but also enables us to identify those areas in the parameter
space which are potentially harmful when the system is steered from one stable state to another. It
furthermore enables us to quantify the degree of violation of adiabaticity when passing such a critical
area with a given speed.

The idea of generalising the Froissart–Stora formula to kinetic resonances was to a great extent
inspired by a comment by Andreas Lehrach which he made during a talk by the author.
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4.10.3 Anti–damping

The adiabatic invariance of the spin action I = Ŝ · n̂ actually suggests another method to compute
the invariant spin field at finite orbital amplitudes. The spin Ŝ of a particle on the design orbit
~J = ~0 and which is aligned parallel to n̂0 is tracked and over subsequent revolutions around the ring
the amplitudes ai =

√
Ji, i = x, y, z are slowly increased. As long as the process stays adiabatic

the spin will stay aligned along the invariant spin field on all tori that are crossed during this anti–
damping procedure. It will therefore generate a one parameter family Ŝn̂( ~J(θ), ~Ψ(θ), θ) of seeds of
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Figure 4.21: Top left: The locus of the n̂–axis for purely vertical motion as computed with stroboscopic averaging or

anti–damping at 16 π mm mrad. Top right: The locus of the n̂–axis computed with stroboscopic averaging and the locus
of the anti–damped spin at 43 π mm mrad. Bottom left: The vertical component of bS as it evolves under anti–damping
through the resonance ν = 2Qy at 805 GeV. Bottom right: The dependence of the final Pdyn on the total number of
turns required for anti–damping

pseudo–n̂–axes which will give the better approximations to the invariant spin field the slower the
anti–damping is performed. We note that equations (4.35) and (4.63) together with figures 4.16 and
4.17 suggest applying a linear variation of the amplitude rather than of the action close to ~J = ~0.
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At ~J = ~0, ∂ ~J B2×6A
−1
6×6~z(

~J) has a singularity of type 1/

√
‖ ~J‖ but the gradient w.r.t. ~z which is

proportional to the amplitudes is finite. A similar method which is based on the RF–dipole technique
used in [E880, MB99] was subsequently developed at BNL [AL99] to compute an approximation to
the invariant spin field.

Figure 4.21 (top) shows the locus of the pseudo–n̂–axis computed by anti–damping with 2000
turns in the 1996 luminosity optics at 805 GeV and with [Qy] ≈ 0.2725 on an invariant ellipse which
encloses 16 π mm mrad (left) and 43 π mm mrad (right). The amplitude dependent spin tune and
Plim are depicted in figure 4.16 (top left). The anti–damped invariant spin field on the 16 π mm
mrad invariant ellipse agrees to the level of less then 1 mrad with those computed with the SPRINT or
SODOM-2 method. Figure 4.21 (top right) shows the locus of the pseudo–n̂–axis obtained by anti–
damping to the 43 π mm mrad invariant ellipse (light crosses) and the locus of the invariant spin
field obtained by the SPRINT method (dark “X–es”). Obviously the anti–damped spin has performed
a partial spin flip while crossing the resonance at about 27 π mm mrad. Therefore when tracked at
fixed amplitude it generates a band around −n̂. Figure 4.21 (bottom left) shows the evolution of the
anti–damped Sy as a function of the enclosed emittance. Here we we note that the vertical orbit tune
is relatively close to the orbital resonance [Qy] = 3/11 = 0.27. Therefore each 11-th turn leads to a
similar orbital phase and as long as the spin motion is adiabatic Sy appears to lie on 11 distinct quasi–
continuous curves. While approaching the enclosed emittance that corresponds to the first resonance
crossing in figure 4.16, namely about 27 π mm mrad, the 11 curves not only start tilting over to the
lower hemisphere but also begin to decay. This demonstrates the partial spin flip of Ŝ for too rapid
anti–damping through the resonance. In figure 4.16 the resonance strength is ε ≈ (4.5± 0.1) 10−3 and
for the amplitude linearly increasing from zero, α is

α ≈ Dθ ν̃|εκ
= Dε ν̃|εκ

Dθ ε|εκ

Dε ν̃|εκ

πN

√
εκεN ≈ .021 ± 0.001

N
, (4.118)

where εκ and εN are the enclosed emittances of the resonant ellipse and the final ellipse and N is
the total number of turns used for anti–damping from 0 to εN . Figure 4.21 (bottom right) shows
the approximation of Pdyn by an ensemble average over 9 particles uniformly distributed over the
invariant ellipse as a function of N (crosses) and the prediction of equation (4.104) with ε = 4.5 · 10−3

and α = 0.02/N . Again the agreement of tracking simulation and the prediction of the extension of the
Froissart–Stora formula to kinetic higher order resonances is rather impressive in the quasi adiabatic
region N > 200.

Anti–damping is an effective way to compute the n̂–axis on a whole family of tori. The drawback
is of course are that once Ŝ · n̂ is reduced it is generally lost for all subsequent tori and that there
is no a–priori control mechanism for the accuracy of the n̂–axis in contrast to the SODOM-2 and
SPRINT methods. The spin Ŝ is always correctly anti–damped to every torus — no matter what its
final spin action is. Therefore one has to check the quality of the resulting pseudo–n̂–axis manually.
The principle of anti–damping was already employed in [SM86a, SM86b, BH92] where it was used
to derive an analytical perturbative formalism to compute the invariant spin field with the required
azimuthal periodicity.

Finally the ramp simulations in section 4.10 show that the spin tune jumps observed in static scans
using stroboscopic averaging or Fourier analysis and the kinetic resonances strengths associated with
these jumps have a significant physical meaning. Moreover they show that the impact of higher order
(kinetic) resonances in the presence of Siberian snakes on the acceleration process can be explained
in the framework of the invariant spin field and the amplitude dependent spin tune. The concepts
traditionally used in the literature, in addition to being based on false assumptions, fail to give
quantitative predictions on the dependence of the polarisation on the ramp speed through “snake
resonances”.



Chapter 5

Polarisation in HERA–p

In the previous chapters we have derived a consistent formalism for describing spin motion in high
energy proton accelerators and storage rings. In order to estimate the “Bounds on the Maximum
Attainable Equilibrium Spin Polarisation at High Energy in HERA” and push the limit as far as
possible, two major questions must now be answered.

1. Can modifications to the HERA–p lattice, beam parameters, and the collision energy be con-
ceived, which are consistent with the requirement of beam stability and high luminosity, and
which allow the invariant spin field at the interaction points (IPs) to be bundled, i.e. so that
Plim is large on all reasonably populated tori?

2. Are these modifications also capable of supplying a high beam average of I = Ŝ · n̂ after ramping
a fully polarised beam from the injection energy of 40 GeV to the collision energy and the
required optics with reasonable ramp speed?

This chapter addresses both questions on the basis of Hamiltonian, linear and unperturbed orbit
motion. Neither the effect of orbital misalignment nor of non–linear orbital motion and stochastic
effects like intra–beam scattering (IBS) or any other source of noise will be discussed. It is only
sensible to study such further complications after a way has been found to maintain polarisation at
the level of linear unperturbed orbital motion at high energy in HERA–p. HERA–p currently runs
at a reference momentum of 920 GeV. It will turn out in the following, that obtaining polarisation
around 820 GeV is already a challenge. We will therefore not study spin dynamics at higher energies
in great detail. To maintain internal consistency of the simulation data only the 1996 set of optics
(hp96in40, hp96zw300, hp96se820 and hp96lu820) was used. Simulations using the “lumi–upgrade”
optics to be commissioned in 2001, can be found in [GH99b]. The results are in any case similar.

5.1 The pre–accelerator chain

Since the only promising way to obtain polarised protons at HERA energy is by acceleration of
polarised protons from the source, it is necessary to address the second question stated above, i.e. the
question of whether polarisation is lost during acceleration and transfer, for the whole pre–accelerator
chain of HERA–p. Since this is not the topic of this thesis and preliminary results have already been
published in [SPC96, SPC99], the HERA–p pre–accelerator chain will be only briefly described here.

The pre–accelerator chain consists of the following stages: At the source H− ions are produced
at low energy and then transported via the low energy beam transport channel (LEBT) to the RF–
quadrupole (RFQ). In the RFQ the ions are accelerated to a kinetic energy of 750 keV. Then the
particles are transfered through the medium energy beam transport channel (MEBT) to the Alvarez–
type linear accelerator LINAC-III in which the kinetic energy is increased to 50 MeV. The high energy

119
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beam transport channel (HEBT) then transfers the ions to the synchrotron DESY–III. At injection
into DESY–III the ions are stripped to protons and adiabatically captured in the 11 RF–buckets.
During acceleration to the momentum of 7.5 GeV the frequency of the RF system is swept from about
3 MHz to about 10 MHz. At flat top 10 bunches are ejected into the transport line (P–Weg) from
DESY–III to PETRA–p. The eleventh bunch is destroyed during the rise time of the ejection kicker.
After 6×10 bunches have been filled into PETRA–p they are accelerated to a momentum of 40 GeV.
The acceleration procedure in PETRA–p takes some minutes. At 40 GeV all the 60 bunches can be
ejected at once into the transfer line (PR–Weg) to HERA–p. After 3×60 proton bunches have been
injected into HERA–p the complete filling is accelerated to 820 GeV, or even 920 GeV, in 25 to 30
minutes.

There is little point in having polarised protons unless the same or more luminosity can be achieved
at the same time. For Gaussian beams and matched beam sizes at the interaction points the luminosity
is given by

L =
1

4πe2f0Nb

IpIe
σxσy

, (5.1)

where e is the elementary charge, f0 is the revolution frequency, Nb is the number of colliding bunches,
Ip, Ie are proton and electron currents averaged around the ring and σx and σy are the horizontal
and vertical beam sizes of both beams. Thus high luminosity requires high currents, small β–functions
at the interaction points and small emittances. The proton current under luminosity conditions in
HERA–p is determined by the current from the source and the losses during the various acceleration
stages. The emittances of a proton beam are determined by the initial emittances from the source
and the potential subsequent increase produced by space charge forces, external noise, intra–beam
scattering and mismatches between the optical functions at ejection from one accelerator and injection
into the next accelerator. Strong quadrupoles with high β–functions close to the interaction points
(low–beta insertions) are required to squeeze the β–functions at the interaction points to the lowest
values. Moreover the beam lifetime must be high enough to maximise the integrated luminosity

∫
Ldt.

It clear that all modifications to be done on the pre–accelerator chain as well as on HERA–p in order
to achieve high polarisation must conform with the requirement for high luminosity.

5.1.1 The H− source

In order to maximise the bunch current in HERA–p, multi–turn charge exchange injection into DESY–
III is applied. Therefore an H− source is needed. Currently DESY only has an unpolarised magnetron
source that is able to produce about 60 mA of H−–ions. A volume source is also being commissioned.
A pulsed optically pumped polarised ion source (OPPIS) is under construction at TRIUMF and BNL
[ZL96, ZL99]. In order to attain the current luminosity and high polarisation, the goals for the
operational parameters for HERA should be

H− current ≥ 20 mA

polarisation ≥ 80 %

emittance (transv.) ≤ 2π mm mrad

pulse duration 100 µs

repetition rate 0.25 Hz

With this or a similar source and an optimised match to the RFQ and LINAC–III the injection current
into DESY–III, which is roughly 10—20 mA in 10 bunches at the present, could almost be preserved.
Since the beginning of the 1998 run period the DESY H− injection has had a switchable MEBT
connecting two low LEBTs and their respective RFQs with LINAC–III. So the change from polarised
to unpolarised operation could be made without long down–times. The polarisation direction produced
by the OPPIS is longitudinal, so that it would be best to mount the polarised source on the straight
arm of the switch–yard.
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5.1.2 RFQ, LINAC–III and transfer lines

Polarisation transport in the straight parts of the pre–accelerator chain is considered to be relatively
straightforward for the following reasons:

1. The spin enhancement factor Gγ is small due to the low energy.

2. At these energies the directional distribution of the invariant spin field at the entrance/exit of the
following/preceding circular accelerator will be tightly bundled, i.e. Plim ≈ 1 since the transfer
energy can be chosen to be off–resonance.

3. The strongest spin perturbations in circular accelerators arise from the periodic lattice where
small perturbations can coherently add up turn by turn. This is excluded for linear (single–pass)
structures by definition.

4. The transfer lines, the LEBTs and the MEBT do not change the reference energy of the beam.
Thus the spin action I is an invariant of motion.

Nevertheless there are still some topics to care about:

1. The spin enhancement factor Gγ for the PR–Weg is about 76. The impact of this should be
analysed separately.

2. In order to preserve luminosity the transfer efficiency has to be optimised.

3. The HEBT, the P–Weg, and the PR–Weg include horizontal, vertical, and otherwise tilted
bends. Hence they will apply an energy dependent rotation to the polarisation. Note also that
the polarisation from the OPPIS source would be longitudinal, but in the circular machines it
is preferably vertical. Thus spin direction tuners are needed to tune the polarisation axis and
compensate the effect of interleaved horizontal and vertical bends. Spin direction tuners are
simply spin rotators designed for the chosen beam line and operated at a single energy.

4. Since the spin action I is constant for constant energy, the spin transfer function must be matched
from the preceding to the following accelerator to maintain polarisation.

This implies for the following different stages of the pre–accelerator chain:

• LEBT, RFQ, MEBT and LINAC–III: It is not clear yet whether n̂0 has to be tuned at all.
Improving on transfer efficiency would help to maintain luminosity.

• HEBT: Probably the best place to rotate the polarisation vector n̂0 into vertical direction for
acceleration in DESY–III and PETRA–p.

• P–Weg and PR–Weg: The polarisation axis must be tuned to overcome the rotation from the
tilted and vertical bends.

5.1.3 DESY-III

DESY–III is a strong focusing flat synchrotron with a superperiodicity of 8. Each period consists
of 3 cells comprised of 2 focusing and defocusing combined function magnets (BD, BF). In addition
each period has 4 independent quadrupoles (QD1, QF1, QD2, QF2). Multi–turn injection is done
through a stripping foil. Since the injection is at 50 MeV kinetic energy and the ejection momentum
is 7.5 GeV, there are 14 imperfection resonances in the DESY–III energy range. DESY–III has 4 weak
intrinsic resonances with strength 0.002 to 0.01 corresponding to an invariant vertical emittance of 4π
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mm mrad [HV99]. The resonances are well separated so that the isolated resonance model is probably
applicable. The imperfection resonances can probably be overcome with a partial snake [AK96a]. The
intrinsic resonances can be overcome by applying tune jumps [AK96a], or resonance excitation with a
vertical RF-dipole [E880, MB99] can be used to ensure full spin flip at resonance crossing. To decide
which of these methods seems more promising, a more detailed analysis is necessary. The large tune
spread at injection caused by space charge forces as well as the observed emittance blow–up on the
ramp have to be taken into account, both for spin as well as for orbital stability.

5.1.4 PETRA–p

The situation for PETRA–p is more difficult. PETRA–p consists of 8 identical arcs, each with 13
FODO cells. There are 4 long straight sections (N, O, S, W) and 4 short straight sections (NO, SO, SW,
NW). However, the protons have to be bypassed around the RF–cavities used for e± acceleration in the
South straight section, so that the superperiodicity of PETRA–p is just 1 in the end, although there
is mirror symmetry with respect to the North–South axis. Thus there are many intrinsic resonances
in PETRA and they are up to 5 times stronger than in DESY–III. Therefore in the high energy part
of the ramp they are close to overlapping [HV99]. In that region only Siberian Snakes are expected
to preserve polarisation and at least two would be needed [AK96b]. Warm snakes would be about 13
m long [AK96b]. This has to be compared to the typical length of a drift space between quadrupoles
of 7.5m. For superconducting snakes a liquid helium supply line from HERA would be needed. So
further evaluations would be needed before a choice could be made. Snakes would be the best solution
at low energy too. But at 7.5 GeV the field integrals of solenoidal snakes would be impractically large
and dipole snakes would produce large orbit distortions. For further comments see [AK96b].

5.1.5 Polarimeters

Experiments using the polarised proton beam need accurate knowledge of the polarisation and for
that a polarimeter suitable for 820 GeV is required. But polarimeters are also needed at almost all
stages of the pre–accelerator chain for diagnostics. Even if the LEBT–RFQ–LINAC section can be
considered to be spin transparent, polarimeters are needed at the following places and energies:

• Source polarisation: the polarisation must be surveyed either directly after the source or some-
where before the HEBT. This implies an operating energy for the polarimeter somewhere in the
region of a few keV to 50 MeV.

• The polarisation must be measured after the HEBT or directly after injection into DESY–III in
order to adjust the matching of the polarisation direction. The required working energy is 50
MeV

• The polarisation at DESY–III must be measured at ejection to optimise orbit corrections, partial
snake and tune–jump or RF–dipole settings. At a momentum of 7.5 GeV polarisation measure-
ments (e.g. with elastic p–p scattering) already take a significant time. In order to optimise the
compensation of the intrinsic resonances step by step, a procedure to eject the beam at momenta
other than 7.5 GeV is necessary.

• A polarimeter is needed at the end of the P–Weg or at injection into PETRA.

• It must be possible to measure polarisation at various energies on the PETRA ramp from 7.5
to 40 GeV. If the P–Weg polarimeter were to be placed inside PETRA, it could possibly handle
the low energy end of this range. Note that PETRA cannot be cycled as quickly as DESY so
that the time for a polarisation measurement should be not much more than the beam lifetime
in PETRA at the required energy.
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• Since the time for polarisation measurements increases with energy, it makes no sense to have a
polarimeter in the PR–Weg. Thus the spin transfer through the PR–Weg can only be checked
with the HERA “low energy” polarimeter.

• The spin perturbations are expected to be worst in HERA. Therefore it must be possible to
measure the polarisation at any stage of the ramp. It is not clear yet how many polarimeters are
needed to cover the whole energy range from 40 to 820 GeV. In any case no tested technique is
known for 820 GeV but ideas are being investigated. For example Coulomb nuclear interference
(CNI) and inclusive pion production [GB99] are being considered.

A more detailed analysis on the pre–accelerator chain can be found in [SPC96, SPC99], but it should
be mentioned that a complete analysis, including spin tracking with snakes in PETRA, has not yet
been carried out.

5.2 HERA–p

The HERA proton ring consists of 4 arcs and 4 straight sections. In the arcs the p–ring is located
above the e±-ring. The p- and e±–beams are only brought to collision in the South (S) and North
(N) straight sections. Therefore these straights include mini–beta regions and magnets for horizontal
beam separation. The East (O) straight contains the HERMES internal target experiment which only
uses the e±–beam. The β–functions for the p–ring are rather relaxed in the East. Nevertheless, the
East straight was originally designed for potentially colliding beam experiments and hence both beams
are separated only horizontally. Finally, in the West (W) straight the p–beam is used in the HERA–B
internal target experiment and has rather high β–functions and negative horizontal dispersion at the
IP. Figure 5.1 shows a sketch of the general layout of the HERA proton ring. The straight sections
are indicated as O, S, W and N. Actual collision points (S and N) are indicated by face–to–face
double arrows. The proton beam goes counter clockwise around the ring. The vertical bend sections
around the straight sections O, S and N are indicated by the filled rectangles. For later use, flattened
vertical bend sections are introduced as filled rectangles crossed by a perpendicular line. The full
and dashed lines at O and W indicate that these straight sections have different layouts. In order
to have both beams in one horizontal plane in the O-, S- and N–straights, there are sections made
from interleaved horizontal and vertical bends (and quadrupoles) at the ends of the arc octants OL,
OR, SL, SR, NL and NR, where L/R means left/right of the interaction point (IP) when looking in
the outwards radial direction. The vertical bends are located inside of the combined matching and
dispersion suppressor sections. When entering a vertical bend section from the arc, the beam is bent
downwards by a superconducting magnet (BV) by about 5.74 mrad. Then the beam encounters two
dispersion suppressor cell which are of the missing magnet FODO type. Each cell has two horizontal
bends (made from 2×BP3 and 2×BPA)1 which each produce a horizontal deflection of about 15.104
mrad and quadrupoles, i.e. QY/QV, QX/QW and QQ magnets (OQ in the East). Finally the beam
is bent back into the horizontal plane by three normal conducting vertical bends (BU00). We note
that at 820 GeV a 5.7 (15.1) mrad orbital deflection corresponds to approximately 1.4 (3.8) complete
spin precessions. Thus in order to make n̂0 vertical in the arcs the concept of flattening snakes
[KS88a, AP97] was introduced whereby 6 radial Siberian Snakes are placed at the symmetry points of
the 6 vertical bend sections, transforming their on–orbit spin transport maps into the maps of radial
snakes themselves. This flattening effect was explained in detail in section 3.1.3. These 6 distributed
snakes [BS99] then cancel themselves pair–wise since they are separated by straight sections only.

The HERA arcs outside the vertical bend sections consist of 24 FODO cells of which the inner 18
(with QP42/QP40 magnets) are strictly periodic and the outer 2 × 3 already belong to the matching
sections.

1These are the names used in the HERA–p optics files and are familiar to people running the machine.
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Figure 5.1: HERA–p with arc–octants OR, SL, SR,. . . and the straight sections O, S, W, N with vertical bend sections
around O, S and N.

We conclude that HERA–p is not a flat ring so that the on–orbit spin tune ν0 6= Gγ and n̂0 is
strongly energy dependent in the unmodified machine! Only 3 out of 4 straight sections are surrounded
with vertical bend sections, which immediately implies a superperiodicity P = 1. Even if the vertical
bend sections are flattened then even on the design orbit the superperiodicity is 1 since in the quadrants
WR–NL and SR–WL the spin phase advance is larger than in NR–OL and OR–SL owing to the effective
cancellation of the horizontal bends inside the flattened vertical bend sections. At high energy the
intrinsic resonances are potentially strong and because of the lack of symmetry they populate the
HERA–p energy range densely. Since during acceleration there are about 30002 linear intrinsic (Qy)
resonances to be crossed, we do not expect that acceleration of a polarised proton beam is feasible
without Siberian Snakes. In the vertical bend sections and just outside of them there is generally
enough space (10–14m) to place Siberian Snakes, whereas putting snakes at the centres of the arcs
would require additional hardware modifications. This implies that as far as the technical effort is
concerned, the natural number of snakes is: 4 main snakes plus 6 flattening snakes. Neglecting the
fact that the Courant–Snyder functions are left/right asymmetric close to the W–straight one finds
an approximate mirror symmetry w.r.t. the O–W–axis. So an optimal scheme for placing the main
snakes should reflect this level of symmetry.

HERA–p is not only a high energy proton storage ring but it is also capable of increasing the
reference momentum of the protons by a factor of more than 20. The protons are injected at a
reference momentum of 40 GeV into the injection optics and then accelerated up to 820 or even 920
GeV. The optic is not changed until 150 GeV. During acceleration from 150 to 300 GeV the injection
optics is changed to an intermediate optics at 300 GeV and from 300 to 670 GeV to the so–called
separation optics which then remains unchanged up to the final energy. The standard ramp procedure
contains various steps and takes about 20—30 minutes. Then, after acceleration of the e± beam the
beams are brought into collision and the optics are changed to their so–called luminosity settings. All

2since (820−40) GeV / 523 MeV ×2 ≈ 3000.
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optics changes are accomplished by linear interpolation of the magnet currents with respect to the
reference momentum. We call the overall procedure of accelerating the beam, changing the optics
and bringing the proton beam to collision with the e± beam, the ramp procedure or simply the ramp.
When simulating spin motion in HERA–p one therefore has to deal with a whole set of optics. In order
to optimise the working point for high Plim only the luminosity optics is needed whereas discussion of
the ramp process includes the whole sequence of different optics called the ramp sequence.

Of course all lattices in the ramp sequence share the same beam line elements and element positions.
The various optics are achieved by varying the focusing strengths of the quadrupoles. In order to be
able to place the main snakes at positions where there is enough space, i.e. directly adjacent to the
vertical bend sections, and fulfil the condition of the corollary to theorem 3.1 for energy independent
spin tune it is necessary to ensure that each of the 4 straight sections is “globally straight” in the sense
that

∑straight
hor. bends Θi = 0. Thus for this study the small bend angles of less than 1 µrad of the QB28

and OL11 magnets were set to zero and the bend angles of the QS10 and OS10 were changed from
0.4028 to 0.4976 mrad and from 0.3964 to 0.4290 mrad respectively. After these manipulations the
accumulated horizontal bend angle of each of the 4 straight sections was less than 1 µrad. Moreover
in order to allow simulations of spin motion at high energy for the unperturbed machine, i.e. with the
design orbit as reference trajectory, with sufficient accuracy, the bend angles of QP and BP3 magnets
had to be slightly adjusted. In addition the vertical bump for the fast beam dump system was set to
zero. By these manipulations the ring was closed, i.e.

∑
hor. bends Θi = 2π+ δx and

∑
ver. bends Θi = δy,

to a level of δx, δy < 10−3 µrad. Moreover with these modifications the 4 IPs are π/2 ± 10−2 µrad
apart. These modifications enable the calculations with snakes to be interpreted in an unambiguous
way. Naturally, at a later stage of this project the small bend angles must be reinstalled. Their effects
must be handled along with the effects of misalignments.

For convenience and to conform with the “HERA–slang” we introduce the following names for the
linear unperturbed optics with the geometric modifications mentioned above:

• hp96inj40 : the injection optics at 40 GeV.

• hp96zw300 : the intermediate optics at 300 GeV. The lattices hp96inj40 and hp96zw300 will
first be used at a later stage with modified tunes.

• hp96se820 : the “separation” optics at 820 GeV. The tunes computed with the lattice file are
Qx = 31.301693835, Qy = 32.308127270 and Qz = 0.625108440 · 10−3.

• hp96lu820 : the luminosity optics at 820 GeV. The tunes computed with the lattice file are
Qx = 31.278984723, Qy = 32.272532721 and Qz = 0.625108440 · 10−3.

It should be noted that the above tunes and the tunes produced by the unmodified lattices are the same
up to an absolute difference of 10−5. Moreover it should be noted that HERA is currently normally
operated at Qx ≈ 31.292 andQy ≈ 32.297 during the ramp and sometimes with interchanged fractional
tunes, i.e. Qx ≈ 31.297 and Qy ≈ 32.292 in storage and collision mode. But Qy ≈ 32.297, at least,
is not very likely to be suitable for operation with polarised protons since the 5-th order resonance
conditions κ = 5[Qy]−1 and κ = 2−5[Qy] are just separated by 0.015 from the design orbit spin tune
ν0 = 1/2 with snakes. That only allows the amplitude dependent spin tune to deviate by less than
0.015 from ν0.

Figure 5.2 shows the horizontal and vertical envelopes
√
βx,

√
βy and the horizontal and vertical

periodic dispersions xD and yD for the hp96lu820 and hp96se820 optics as functions of the generalised
azimuth θ for one turn around HERA. The Courant–Snyder functions have been generated using the
SPRINT code. The IPs are at θ = 0 (θ = 2π): O, θ = π/2: S, θ = π: W and θ = 3/2π: N. Note
that the official HERA lattice files run clockwise whereas the beam runs anti–clockwise3 . The upper

3This is just the way it is and the question of why it is as it is might forever go unanswered. . .
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two plots show the envelope functions
√
β. A side–effect of plotting

√
β instead of β is the relative

compression of large values of β in the low–beta insertions w.r.t. the small values of β in the periodic
arcs. The vertical envelopes have been plotted with a negative sign in order not to hide them under
the horizontal envelopes. The β functions at the S- and N–IP are βx = 7 m and βy = 0.7 m for the
luminosity optics and βx = 10 m and βy = 1 m for the separation optics. Therefore the β–functions in
the low–beta–insertions are relaxed from 1600 m and 1400 m under luminosity conditions to 1200 m
and 1000 m with the separation optics. With the exception of the West straight itself the β–functions
are mirror symmetric w.r.t. the East–West axis. The apparent vertical β–beat is an artifact of the
dotted line style and disappears when zooming the picture to a larger scale. The lower two plots show
the horizontal and vertical dispersion for the luminosity and separation optics. Note that the vertical
dispersion is non–zero only directly around the vertical bend regions surrounding the O-, S-, N–IPs.
Again, except for the W–IP, the dispersion is mirror symmetric w.r.t. the East–West axis.

Figure 5.3 shows strengths of the vertical linear intrinsic spin–orbit resonances for p0 from 500 to
1000 GeV for the luminosity optics on an invariant ellipse which encloses an invariant emittance of 16
π mm mrad. They were computed with SPRINT by using the eigenvector method (2.128). The topmost
plot is for HERA–p as it is, i.e. with the full effect of the vertical bend sections. The middle plot was
made with a flat version of HERA with the BU00 and BV magnets simply switched off in the lattice
file. The bottom plot was generated with the vertical bend sections compensated by inserting 6 point–
like flattening snakes at the symmetry point of each section. The resonance spectrum is described and
explained in great detail in [GH99b]. Here it will only be discussed briefly. For the non–flat HERA
(top) the resonance spectrum shows little regular structure. That is because of the energy dependent
tilt of n̂0. In the flat and flattened HERA (middle and bottom) the resonance spectra show more
periodicity w.r.t. p0. We note that since the superperiodicity of HERA is 1, no resonance condition
ν0 = k0 ± [Qy] is forbidden. The groups of 4 very strong resonances are the super–strong resonances
generated by the almost coherent interference of all periodic FODO cells in the arcs as shown in
equation (2.148). The strength of the strongest resonance in the group scales approximately with

√
γ

and the relative distribution of strengths inside the group repeats itself approximately from group to
group. The groups of super–strong resonances are at resonance conditions κi = k0 ± [Qy], i = 1, 2, 3, 4
such that

Gγ1,3
ΘB

π
≈ 2l − 1 ±QB , Gγ2,4

ΘB

π
≈ 2l ±QB , (5.2)

is most closely fulfilled. Here ΘB ≈ 30.21 mrad is the horizontal deflection angle caused by the bends
in one half FODO cell in the periodic arcs, i.e. by 4 QP and 4 BPA magnets, and QB ≈ 0.243 is
the vertical phase advance per cell divided by 2π. We assume, for the moment, that the FODO cell
has a symmetry point so that the spin phase advance φ as well as the vertical orbital phase advance
ψ are the same from the beginning of the cell to the symmetry point as from the symmetry point
to the end. Then for even i the phase advance φ ± ψ in the exponent of the spin–orbit coupling
integrals between a vertically focusing (2×QP42, QY, 2×QP42) and a defocusing (2×QP40, QX,
2×QP40) cluster of quadrupoles is 2πl. Thus the alternating sign of the focusing strength causes
the second half cell to cancel partly the contribution from the first half cell. Since βy is bigger in a
defocusing quadrupole than in a focusing quadrupole this cancellation can never be complete. If i is
odd, then this phase advance is 2π(l + 1/2) and the two half cells interfere constructively. Therefore
the resonances at γ2 and γ4, although they are super–strong according to equation (2.116), are not so
strongly enhanced as the resonances at γ1 and γ3. Table 5.1 lists the index i, the reference momentum,
Gγi, the integer GγΘB/π ± QB and the modulus of the resonance strengths |εi|, for the group of 4
super–strong resonances with l = 8 in the flat version of HERA–p. The resonance at 803.19 GeV
is the strongest resonance below 820 GeV. In a fourfold superperiodic model of HERA–p studied in
[GH99b] the resonance strengths |ε1|, |ε3| and |ε2|, |ε4| are pair–wise approximately equal. In this model
with superperiodicity 1 the spin orbit coupling integrals I+ and I− have different absolute values so
that we find |ε1| > |ε3| > |ε2| > |ε4| in the end. Since (5.2) is only a condition for enhancement of
nearby resonances there are usually clusters of relatively strong resonances around the super–strong
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Figure 5.3: 1996 luminosity optics : linear intrinsic resonance strengths for the original lattice with vertical bends
and without snakes (top), a flat model (BU00s and BVs switched off) (middle) and the original lattice with additional
Flattening Snakes at the centres of the vertical bend sections around the East, North and South IPs (bottom).
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i p0 / GeV Gγi
ΘB/πGγ +QB

ΘB/πGγ −QB |εi|
1 803.19 1534.73 15 1.32
3 829.64 1585.27 15 0.96
2 857.62 1638.73 16 0.68
4 884.07 1689.27 16 0.36

Table 5.1: The positions of the 4 super–strong resonances belonging to l = 8 for the flat version of HERA–p.

resonances. In the case of the flattened HERA–p the missing bend angle in the octants NL, NR, OL,
OR, SL and SR causes the symmetry to be broken so strongly that the super–strong resonance at
803.19 GeV decays into 5 resonances at 802.37, 802.93, 803.48, 804.04 and 804.6 GeV with strengths of
0.41, 0.38, 0.22, 0.68 and 0.97. These resonances are interleaved with weak resonances with strengths
of about 0.1. They represent an enhanced concentration of strong resonances around 803.5 GeV. We
will call such clusters of strongly enhanced resonances that occur in the flattened HERA–p ring at
momenta where the exact super–strong resonances are located in the flat ring super–strong resonances
also. The momentum range around 803.5 GeV will be discussed in more detail in section 5.3

The approximate envelope of the spectrum, εκ < ε0
√
γ is due to the adiabatic shrinking of the

phase space volume described in section A.2.3 and the proportionality of ~ω to (Gγ + 1) in the main
quadrupoles: ε ∼ (Gγ + 1)

√
Jy ∼ (Gγ + 1)/(

√
βγ) ∼ √

γ in the limit γ → ∞.

For the non–flat as well as for the flattened version of HERA–p, first order resonances involving
the horizontal and longitudinal tunes also exist. Their spectrum is explained in [GH99b]. In particular
they are much weaker, namely with εx < 0.03 and εz < 0.008.

The large number of super–strong and close–by strong vertical intrinsic resonances requires the
installation of Siberian Snakes in the ring. We note that in all three plots of figure 5.3 the “background”
resonances are particularly strong around 820 GeV!

5.2.1 Snake schemes

In the following we will discuss various snake schemes. The snakes are always modelled by point–like
spin rotator maps. Owing to the number of tested schemes and the number of parameters needed to
unambiguously characterize each of them, a convention to abbreviate the parameters was introduced.
The key to this coding is explicitly given in appendix C. All simulations except those for the ramps
in section 5.4.2 were done using the 1996 luminosity optics hp96lu820 or the 1996 separation optics
hp96se820 with the modifications explained above in section 5.2. All snake schemes include 6 radial
flattening snakes to compensate the vertical bend sections at the beginning of the arc octants OL, OR,
SL, SR, NL and NR. Note that since the straight sections are globally straight the flattening snakes
cancel each other pairwise and hence their only contribution to the spin tune apart from cancelling
the effects of the vertical bends is that each of them takes Gγ times 60.416 mrad spin precession angle
out of the total spin precession balance in theorem 3.1. The design orbit spin tune in HERA–p with
6 flattening snakes is

νHERA,6fs
0 ≈ Gγ

(
1 − 6 × 60.416mrad

2π

)
≈ E0

555MeV
. (5.3)

We will in general call a scheme with 6 flattening and 2N main snakes a “2N snake scheme”. Schemes
with 4 and 8 (main) snakes have been tested. All schemes have 4 main Siberian Snakes. Three of them
are placed at the beginning of the octants NL, OR, SR directly after the superconducting vertical BV
magnet as seen from the IP and the fourth is inside the straight section around the West IP. These
snake positions will be named after the closest IP, i.e. O, S, W and N. With these snake positions and
properly chosen snake angles, the design orbit spin tune is typically ν0 = 0.499955 ± 0.000003 in the
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energy range from 40 to 820 GeV. These snake positions are at places where drift spaces of about 10
m can be created without too much effort. The 4 additional snakes of the 8 snake schemes are placed
at the centres of the arcs, i.e. “on top of” the cryogenic supplies. We will call these positions SO, SW,
NW and NO. Because of the technical difficulties mentioned above, the 8–snake schemes are mainly
of theoretical interest but there are proposals for “bending snakes” that could replace dipoles in the
arcs [YD97].

If the results obtained with the SRM with snakes in section 4.8 can at some level be considered as
a guideline for HERA–p, then one might conclude that for uniformly distributed snake positions 10
snakes are “better” than 6 which are “better” than 2 but that 8 snakes are not necessarily “better”
than 4 which are rather “worse” than 2. Here “better” means that a snake scheme provides a larger
Plim averaged over ν0−κ even for larger resonance strength ε, that the spin tune spread is less and that
it generates fewer higher order kinetic resonances. The suggestion was made in [SPC99] to put 6 main
snakes in HERA–p. But it must be noted again here that it is far from clear that the isolated resonance
model is a useful approximation of spin dynamics in rings with strongly overlapping resonances as in
HERA–p. Owing to the low superperiodicity of P = 1 all intrinsic resonances are allowed in HERA.
The fractional vertical betatron tune is approximately 0.3, so that the separations ∆κ in units of ν0

the vertical linear intrinsic resonances are approximately 0.6 between k0 − [Qy] and k0 + [Qy] and 0.4
between k0 + [Qy] and k0 + 1 − [Qy]. Therefore in order to apply the isolated resonance model, the
resonance strengths have to be |εκ| � 0.4. Looking at figure 5.3 we find that in the neighbourhood
of the super–strong resonances there are many resonances with strengths which are of the order of
and greater than 0.4. Moreover in the high energy regime the “background” resonance strengths are
all of the order of 0.1 which is still not small compared with 0.4, if we take into account that the
opening angle ϑn of the n̂–axis in the SRM from equation (4.81) at δ/ε =1, 2, 3, 4 and 10 is 45◦, 26.6◦,
18.4◦, 14.0◦ and 5.7◦ respectively. Thus the opening angle created by any of the weakest resonances
of approximate strength 0.1, when treated as isolated, at a distance δ = 0.4 is 14.0◦. If the closest by
neighbour resonance is located at this distance, then the resonances must be treated as overlapping.
The simulations in section 4.8 were performed with P = k0 = 120 which implies very high symmetry
and allows 2, 4, 6, 8, 10, 12, 20, 24, 30, 40, 60 or 120 snakes to be uniformly distributed w.r.t. the
azimuth θ. HERA–p has 4 identical periodic arcs interleaved with 4 individual insertions which each
consist of a straight section and the adjacent matching sections with or without vertical bends at the
borders to the periodic arcs. If we, in a very crude approximation, neglect the differences between
the insertions, then HERA–p has a superperiodicity of 4. We will call this level of symmetry the
arc–periodicity Pa = 4. Now we assume a snake scheme which is uniformly distributed w.r.t. the
uncompensated bend angle per arc Θ̃ ≡ Θarc − Θcomp,arc (see section 3.1.3) as in the case of the
Lee–Courant schemes discussed in section 4.8 and which contains a number 2(2l + 1) of snakes which
implies that the number of snakes is not a multiple of 4. Such a snake scheme is then incompatible
even with the crudest approximation of symmetry in HERA–p. Therefore, and because of the technical
difficulties introduced by placing snakes in the arcs due to lack of drift spaces, schemes with 6 snakes
will not be discussed here.

In order to obtain longitudinal polarisation at the S- and N–IP 90◦ spin rotators have to be
included at the entrance and the exit of the S and N straight sections. There are some advanced ideas
[BS99] on combining flattening-, main–snakes and 90◦ spin rotators, in order to minimise the number
of additional magnets. Nevertheless, since no decision on explicit rotator schemes was made yet, the
simulations for this thesis do not contain any 90◦ spin rotators.

When equipping a flattened accelerator with 2N horizontal Siberian Snakes one can fix the design
orbit spin tune [ν0] = 1/2 and fix n̂0 to be vertical in all but the flattened vertical bend section. This
requires that the positions of the main snakes be chosen so that the uncompensated horizontal bend
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Figure 5.4: Standard 4–snake arrangements for HERA–p

angles Θ̃i ≡ Θi − Θi,comp. between the main snakes balance to zero

2N∑

i=1

(−1)iΘ̃i = 0 (5.4)

and that the snake angles φi fulfil the condition

2N∑

i=1

(−1)iφi =
π

2
mod π . (5.5)

Nevertheless for 2N horizontal snakes this leaves 2N − 1 free snake angles. How are the snake
angles to be chosen? Perhaps some special combinations of snake angles can maximise P lim at some
given working energy and minimise losses of the average spin action during the ramp procedure. To
investigate this we define the snake periodicity Ps to be the number of identical sub–sequences of snake
angles in the snake scheme. We also need the mirror parity M w.r.t. the O–W–axis. For the snake
angles φoctant, M = ±1 signifies

φSO = ±φNO , φS = ±φN , φSW = ±φNW , (5.6)
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Figure 5.5: 4–snake arrangements for HERA–p found by filtering

and M = 0 signifies no mirror symmetry at all. The schemes are (see appendix C for the naming
convention):

Schemes with four (main) Siberian Snakes

• Standard schemes which either have the maximal snake periodicity Ps = 2 for 4 snakes or are
built from the two basic horizontal snakes types, namely longitudinal and radial.

– 3111 : A longitudinal snake at O and radial snakes at S, W and N. This scheme has Ps = 1
and M = +1. It was first proposed in [SPC96] and a similar scheme with the snakes at O
and W interchanged was suggested even earlier in [BG96]. A schematic sketch of the 3111
scheme is presented in figure 5.4 (top left).

– 1b1b : Radial snakes at O and W and snake angles of +45◦ at S and N. This scheme has
the maximum snake periodicity Ps = 2 and is O–W even: M = +1. This and the next
scheme were motivated by the popular opinion that the snake periodicity should be as high
as possible and by the popular prejudice that HERA–p is 4–fold superperiodic. The 1b1b
scheme is depicted in figure 5.4 (top right).
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– afaf : Snake angles of +22.5◦ at O and W and −22.5◦ at S and N. It also has Ps = 2 and
M = +1. Actually afaf can be obtained from 1b1b by subtracting 22.5◦ from each snake
angle and multiplying the result with −1. The afaf scheme is depicted in figure 5.4 (bottom
left).

• 3222 : A longitudinal snake at O and 3 vertical snakes at S, W and N. This is not a standard
scheme since it only contains one horizontal snake. Therefore n̂0 is in the horizontal plane as
explained in section 3.1.1. The vertical snakes shift the spin phase advance between adjacent
sections of the ring and can therefore help to minimise spin–orbit coupling integrals at certain
energies. This scheme was obtained [BH96a, BH96c] in an early stage of filtering where only
radial, vertical and longitudinal snakes where taken into account. The filtering range was from
815 to 820 GeV. The 3222 scheme is shown in figure 5.4 (bottom right).

• 4–snake schemes found by filtering (see section 4.4.1) with snake angles ranging from 0◦ to 157.5◦

in steps of 22.5◦.

– 1d3c : A radial snake at O, a longitudinal snake at W and ±67.5◦–snakes at S and N [VB98].
This scheme minimised the linear opening angle with the luminosity optics hp96lu820 in
the range from 39.5 GeV to 821.5 GeV. The snake periodicity is Ps = 1 and the O–W
mirror parity is M = −1. 1d3c is shown in figure 5.5 (top left).

– 3e1b : A longitudinal snake at O, a radial snake at W and two ±45◦–snakes at S and N
[VB98]. This scheme minimised the linear opening angle averaged over the interval from
39.5 GeV to 821.5 GeV with the separation optics hp96se820. It has Ps = 1 and M = −1
and is shown in figure 5.5 (top right).

– 13ee : A radial snake at O, a longitudinal snake at S and two −45◦ snakes at W and
N. This fairly exotic and asymmetric scheme (Ps = 1 and M = 0) minimised the linear
opening angle in the energy range 815 to 820 GeV with the optics hp96lu820. It is shown
in figure 5.5 (bottom).

Schemes with eight (main) Siberian Snakes

• Standard schemes that were derived by generalising the 3111, 1b1b and afaf schemes to 8 snakes.

– 31111111 : A simple generalisation of 3111, namely a longitudinal snake at O with all
others (SO, S, SW, W, NW, N and NO) being radial. It has a snake periodicity of Ps = 1
and an O–W mirror parity M = +1. A sketch of 31111111 is shown in figure 5.6 (top left).

– 4X1a : Radial snakes at O, S, W and N and +22.5◦ snakes at SO, SW, NW and NO. This
is a generalisation of the 1b1b scheme with Ps = 4 and M = +1. It is shown in figure 5.6
(top right).

– 4Xpm1125 : +11.25◦ snakes at O, S, W and N and −11.25◦ snakes at SO, SW, NW and
NO. This is a generalisation of the afaf scheme to 8 snakes with Ps = 4 and M = +1. It is
shown in figure 5.6 (bottom left).

• 32121212 : A longitudinal snake at O, 3 radial snakes at S, W and N, and four vertical snakes
at SO, SW, NW and NO. This scheme is like 3111 with 4 additional vertical snakes at the centres
of the arcs. Again the vertical snakes change the spin phase advances between adjacent sections
and therefore change the dependence of the spin–orbit coupling integrals on energy. A sketch of
32121212 is shown in figure 5.6 (bottom right).

• 8–snake schemes found by filtering with snake angles ranging from 0◦ to 135◦ in steps of 45◦.



134 CHAPTER 5. POLARISATION IN HERA–P

���������
���
���������
���

���������
���
���������
���

��������������������
��������������������

���������
���
���������
���

	�		�		�	
	�	

�

�

�


�


���������
���
���������
���


�

�

�


�

���������
���

���������
���
���������
���

������
���
������
���

������
������
������
������

���������������
���������������

���������������
���������������

�������������������� ��������������
���������� �������������������������������������������������

����������������������������������������������������
���
���
�

   
   
   
 

!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!
"�"�"�""�"�"�""�"�"�""�"�"�""�"�"�""�"�"�""�"�"�"

#�#�#�##�#�#�##�#�#�##�#�#�##�#�#�##�#�#�##�#�#�#
$�$�$�$$�$�$�$$�$�$�$$�$�$�$$�$�$�$$�$�$�$$�$�$�$

%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%
&�&�&�&&�&�&�&&�&�&�&&�&�&�&&�&�&�&&�&�&�&&�&�&�&

N

S

W O

90 deg

0 deg
0 deg

0 deg

0 deg
0 deg 0 deg

0 deg

Scheme 31111111

'�''�''�'
'�'
(�((�((�(
(�(

)�)�))�)�))�)�))�)�)
*�**�**�*
*�*

+�++�++�+
+�+
,�,,�,,�,
,�,

-�--�--�-
-�-
.�..�..�.
.�.

/�//�//�/
/�/
0�00�00�0
0�0

1�11�11�1
1�1
2�22�22�2
2�2

3�33�33�3
3�3
4�44�44�4
4�4

5�55�55�5
5�5
6�66�66�6
6�6

7�7�77�7�77�7�7
8�88�8
8�8

9�9�99�9�99�9�99�9�9
:�::�:
:�::�:

;�;�;;�;�;;�;�;
<�<�<<�<�<<�<�<

=�=�==�=�==�=�=
>�>�>>�>�>>�>�>

?�?�?�??�?�?�?@�@�@�@@�@�@�@ A�A�A�AA�A�A�A
B�B�B�BB�B�B�B

CCC
CCC
CCC
C

DDD
DDD
DDD
D

E�E�E�E�EF�F�F�F�F

N

S

W O0 deg

0 deg

0 deg

0 deg
45 deg

45 deg
45 deg

45 deg

Scheme 4X1a

G�GG�GG�G
G�G
H�HH�HH�H
H�H

I�II�II�I
I�I
J�JJ�JJ�J
J�J

K�K�KK�K�KK�K�KK�K�K
L�L�LL�L�LL�L�LL�L�L

M�MM�MM�M
M�M
N�NN�NN�N
N�N

O�OO�OO�O
O�O
P�PP�PP�P
P�P

Q�QQ�QQ�Q
Q�Q
R�RR�RR�R
R�R

S�SS�SS�S
S�S
T�TT�TT�T
T�T

U�UU�UU�U
U�U
V�VV�VV�V
V�V

W�WW�W
W�W
X�XX�X
X�X

Y�YY�Y
Y�YY�Y
Z�ZZ�Z
Z�ZZ�Z

[�[�[[�[�[[�[�[
\�\�\\�\�\\�\�\

]�]�]]�]�]]�]�]
^�^�^^�^�^^�^�^

_�_�__�_�_`�`�``�`�` a�a�a�aa�a�a�a
b�b�bb�b�b

ccc
ccc
ccc
c

ddd
ddd
ddd
d

e�e�e�e�ee�e�e�e�ee�e�e�e�ef�f�f�f�ff�f�f�f�f

g�g�g�g�gg�g�g�g�gg�g�g�g�gh�h�h�h�hh�h�h�h�h

iii
iii
iii
i

jjj
jjj
jjj
j

k�k�kk�k�kk�k�kk�k�kk�k�kk�k�kk�k�kk�k�kk�k�k

l�l�ll�l�ll�l�ll�l�ll�l�ll�l�ll�l�ll�l�ll�l�l

m�m�m�m�mm�m�m�m�mm�m�m�m�mm�m�m�m�mm�m�m�m�mm�m�m�m�m
n�n�n�n�nn�n�n�n�nn�n�n�n�nn�n�n�n�nn�n�n�n�nn�n�n�n�n

o�o�oo�o�oo�o�oo�o�oo�o�oo�o�oo�o�oo�o�oo�o�o

p�p�pp�p�pp�p�pp�p�pp�p�pp�p�pp�p�pp�p�pp�p�p

q�q�q�q�qq�q�q�q�qq�q�q�q�qq�q�q�q�qq�q�q�q�qq�q�q�q�q
r�r�r�r�rr�r�r�r�rr�r�r�r�rr�r�r�r�rr�r�r�r�rr�r�r�r�r

N

S

W O

Scheme 4Xpm1125

+11.25 deg

+11.25 deg

+11.25 deg

+11.25 deg
-11.25 deg

-11.25 deg

-11.25 deg

-11.25 deg

s�ss�ss�s
s�s
t�tt�tt�t
t�t

u�u�uu�u�uu�u�uu�u�u
v�vv�vv�v
v�v

w�ww�ww�w
w�w
x�xx�xx�x
x�x

y�yy�yy�y
y�y
z�zz�zz�z
z�z

{�{{�{{�{
{�{
|�||�||�|
|�|

}�}}�}}�}
}�}
~�~~�~~�~
~�~

���������
���
���������
���

���������
���
���������
��� ���

���
���
�

���
���
���
�

���������������
������
���

��������������������
������
������

���������������
���������������

���������������
���������������

���������������������������� ��������������
��������������

���
���
���
�

���
���
���
�

N

S

W O

90 deg

0 deg

0 deg

0 deg

vert.

vert.

vert.

vert.

Scheme 32121212

Figure 5.6: Standard 8–snake arrangements for HERA–p
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Figure 5.7: 8–snake arrangements for HERA–p found by filtering
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– 33e111b3 : A longitudinal snake at O, a radial snake at W, two ±45◦–snakes at S and N,
two longitudinal snakes at SO and NO and two radial snakes at SW and NW. This actually
means 3e1b at the positions close to the IPs plus 2 radial and 2 longitudinal snakes at the
centres of the arcs. Among the 8–snake schemes it minimised the linear opening angle from
39.5 GeV to 821.5 GeV with the luminosity optics hp96lu820 and has a snake periodicity
of Ps = 1 and an O–W mirror parity of M = −1. It is shown in figure 5.7 (left).

– 2123bbbb : Clockwise from O to NO the snakes are vertical, radial, vertical, longitudinal
and 4 times +45◦. This scheme minimised the linear opening angle in the range from 815
to 820 GeV with the luminosity optics. It has Ps = 1 and M = 0 and is shown in figure
5.7 (right).

We note that for 4- as well as for 8–snake schemes long range filtering with the HERA lattices,
i.e. filtering over momentum ranges in which super–strong resonances as well as regions with “only”
background resonances are included, seems to give preference to schemes with odd mirror parity
M = −1 rather than with high snake periodicity.

5.3 Simulations with the unmodified orbital tunes

At an early stage of this study scans of Plim w.r.t. the reference momentum p0 where only performed at
high energy with the optics hp96lu820. The orbital tunes were taken from the official HERA–p optics
files, although at a later stage it turned out that modified orbital tunes might help to increase P lim.
One purpose of those scans was to find a snake scheme which maximises Plim on all tori with significant
particle density over some sufficiently wide momentum range close to the 1996 reference momentum
of 820 GeV. Another purpose was to estimate the potential for depolarisation during acceleration
through the region of the strongest linear intrinsic resonance around 803.5 GeV by looking at the
dependence of Plim on p0 in this momentum range.

All these scans were performed using the linear (SLIM , see section 4.2) and stroboscopic averaging
(SPRINT , see section 4.5) methods to compute the invariant spin field on various invariant tori and in
certain momentum ranges. The qualitative reason for possible depolarisation around 803.5 GeV, to be
presented in section 5.3.1 will be confirmed by ramp simulations in section 5.3.2. At that stage neither
the pseudo spin tune averaging (SPRINT , see section 4.6) nor the Fourier (SODOM-2 , see section 4.3)
methods for computing the amplitude dependent spin tune were implemented in the SPRINT code. At
a later stage the SODOM-2 method for computing n̂ as well as ν was employed to scan larger momentum
ranges with purely vertical motion. The results of these simulations will be presented in section 5.3.3.

All simulations were made taking the East interaction point (O–IP) as the viewpoint. The am-
plitude dependent spin tune is of course independent of θ but in general Plim does depend on the
viewpoint. Preliminary studies which will perhaps be published elsewhere indicate that P lim is a
weakly varying function of θ in the arcs, that the dependence of Plim on θ is strongest at the S and N
straight sections, that the variation of Plim with θ increases with increasing orbital actions and that
the explicit form of the θ–dependence depends on the snake scheme. Therefore in [GH99b] which
contains the data of more recent simulations, the S–IP was chosen as the viewpoint. We begin by
studying the static behaviour of Plim.

5.3.1 Momentum scans using stroboscopic averaging

Figures 5.8 and 5.9 show Plim for the 4–snake schemes 3111, 1b1b, afaf and 3222 (figure 5.8) and
1d3c and 13ee (figure 5.9) computed with the SLIM method from 800 to 820 GeV (top) and with the
SPRINT method, i.e. stroboscopic averaging, from 800 to 808 GeV and from 814 to 822 GeV (below).

Note that in the linear case P
(1)
lim is basically 1/(1 + ∆2) where ∆ is the linear deviation of n̂ from
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n̂0 and scales with the orbital amplitudes. See (4.63). The linear approximation is very fast but is
only capable of providing a first impression. The non–perturbative SPRINT method shows much more
structure caused by the higher order kinetic effects that are invisible in the SLIM approximation. In
both figures only vertical orbital motion is excited and the normalised vertical emittance enclosed
by the invariant ellipse is chosen to be εNy = 20π mm mrad. The momentum range of 800 — 821
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Figure 5.8: Standard 4–snake schemes: Plim for an enclosed vertical emittance of 20 π mm mrad. Top: Linear (SLIM )
approximation in the momentum range 800 to 821 GeV. Below: computed with the SPRINT method from 814 to 822
GeV (middle) and from 800 to 808 GeV (bottom).

GeV for the SLIM runs was chosen because it contains the 1996 HERA–p working point as well as the
strongest linear intrinsic resonance of HERA–p without snakes at about 803.5 GeV (see figure 5.3).
The momentum ranges for the stroboscopic averaging were chosen to be shorter, i.e. 8 GeV, because
of the larger computation time. The momentum step is 10 MeV in all simulations. As we can see
in figure 5.8, the linear Plim (top left) looks qualitatively similar for the conventional 3111, 1b1b and
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afaf schemes. The momentum dependence in the region above 810 GeV is relatively smooth and the
polarisation is approximately in the intervals [0.65, 0.85] for 3111, [0.65, 0.9] for 1b1b and [0.7, 0.85]
for afaf. The strong dip in the polarisation curve in the region around 803.5 GeV goes down to about
0.28. At the linear level this can be explained by the following argument: A linear intrinsic resonance
with purely vertical motion occurs at the reference momentum p0 whenever the spin tune ν(p0), which
is just ν0(p0) at the linear level, fulfils the condition ν0(p0) = k0 ± Qy. Siberian Snakes cause ν0 to
be independent of the momentum and in particular ensure that the condition ν0(p0) = k0 ± Qy can
never be fulfilled with a reasonable vertical tune. The spin–orbit coupling integrals are nevertheless
in general non–zero even with snakes. In other words Siberian Snakes cannot be expected to cancel
finite perturbations of the spin motion completely. The reason for enhancement of the super–strong
resonances in superperiodic rings is coherence between the contributions to the spin–orbit coupling
integrals of the regular FODO cells in the arcs close to an actual resonance condition ν0(p0) = k0±Qy
without snakes. Even if, with snakes and ν0 = 1/2 = const., no linear intrinsic resonance condition
can be fulfilled, the almost coherent adding up of the contributions of the regular cells in each section
between the snakes still occurs at approximately the same momenta as without snakes. We will
therefore call a large variation of Plim that arises when the spin–orbit coupling integrals are enhanced
due to the approximate coherence of the regular arc cells and which are at momentum ranges that
would include a super–strong resonance or a super–strong cluster of resonances if there were no main
snakes, a residual resonance structure (RRS). Note that the coherence condition for the strictly
periodic cells of each arc alone is, for HERA–p, not affected by the flattening snakes which are located
inside the matching sections. The phase relation between the spin–orbit coupling integrals of the 4
different quadrants on the other hand is affected by the flatteners as well as the snake angles of the
main snakes. Thus we cannot expect the centre of a RRS to be exactly at the same momentum as its
corresponding super–strong resonance or the centre of its corresponding super–strong cluster in the
absence of snakes.

Obviously the linear approximation to Plim reaches the edge of its applicability at these RRSs
since the condition ∆ � 1 is violated. In the following, when higher order kinetic effects are taken
into account, we will see that RRSs define the momentum ranges in which not only P lim is strongly
energy dependent and potentially low but also in which the amplitude dependent spin tune strongly
deviates from ν0 (see section 5.3.3) and in which the kinetic resonance strengths are particularly
enhanced. We note that by means of a partial spin match [GH99b] the residual resonance structures
can be eliminated on the linear level, but that in particular in these regions the kinetic non–linearities
become important. Furthermore inside these RRSs and on certain invariant tori the non–perturbative
SPRINT and SODOM-2 algorithms exhibit momenta at which they apparently both do not converge.
This might be caused by a simultaneous breakdown of the two independent algorithms but it might
as well be a sign of non–integrability of the spin–orbit system at these momenta and invariant tori.

The 3222 scheme shown in figure 5.8 (top right) differs strongly from the other 3 schemes already
in the linear approximation. First of all the momentum dependence of the polarisation is much less
smooth and covers a larger interval, approximately [0.65, 0.99]. In addition the minimum around 803.5
GeV goes down to 0.2 rather than 0.28. This is not surprising since the effect of partial cancellation
of spin perturbations is caused by the horizontal snakes (section 3.1.1 and 3.1.2) whereas the vertical
snakes mainly redistribute the magnitudes of the spin–orbit coupling integrals w.r.t. the reference

momentum. But note that P
(1)
lim reaches almost 1 for the scheme 3222 whereas for the 3 standard

schemes it is hardly more than 0.9 even at the local maxima.

For the non–perturbative Plim computed by stroboscopic averaging the differences between the
various snake schemes become clearer. Figure 5.8 (middle row) shows the momentum range from 814
to 822 GeV. The schemes 3111 (solid line), 1b1b (dashed line) and afaf (dotted line) are shown to
the left and 3222 is shown to the right. The snake scheme 3111 has the weakest variation in this
momentum range but 3222, although showing the largest variation, is the smoothest. In particular
the minima are the least narrow. The 1b1b and afaf schemes show many sharp pronounced minima
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indicating possible closeness to kinetic higher order resonances. The 3111 layout has only two close–by
(∆p0 ≈ 0.1 GeV) pronounced minima which suggest a resonance doublet at approximately 821 GeV.
The sharp minima of Plim with the 1b1b and afaf schemes can also be interpreted as resonance doublets
of larger separation (∆p0 ≈ 0.5 GeV) indicating a larger spin tune shift. The kinetic resonances will
be analysed in more detail in section 5.3.3. Figure 5.8 (bottom row) shows Plim inside and close
to the strong RRS from 800 to 808 GeV. In this region none of the schemes is able to maintain a
smooth dependence of Plim on the reference momentum. Between 803 and 805 GeV all curves show
various singular dips of the static polarisation limit indicating that possibly many kinetic resonances
occur there. It has to be noted that inside the RRS at points where Plim is close to zero also the
accuracy of stroboscopic averaging is potentially low. At some isolated points there was no sign
of convergence of the stroboscopic average — even after 8000 turns. Thus it is possible that for
certain parameters of the spin–orbit system the n̂–axis does not exist. Nevertheless large errors of the
numerical pseudo–n̂–axis never occur when Plim is sufficiently large. It is clear that the working point
for polarised e±–p collisions must not be inside such a RRS. Nevertheless during the ramp procedure
many residual resonance structures have to be crossed. For the discussion of possible depolarisation
during acceleration it is almost immaterial whether the invariant spin field exists and the parameter
space is filled with kinetic depolarising resonances or whether the spin motion is not integrable at
all. In both cases a large fraction of the initial polarisation is lost during acceleration through the
RRS. This is the reason why the strong RRSs, indicated by sudden drops of Plim are considered
potentially dangerous during the ramp procedure. For the discussion of the RRS around 803.5 GeV in
this section it was assumed that, although the ramp procedure in this energy range is performed with
the separation optics, the basic phenomena that are potentially responsible for polarisation losses
during the acceleration process can be studied also with the luminosity optics. That this seems a
good starting point can be seen by comparison of the Courant–Snyder functions for hp96lu820 and
hp96se820 in figure 5.2.

In figure 5.9 the schemes 1d3c and 13ee are compared. The momentum ranges and invariant
ellipses are the same as for figure 5.8. The linear Plim (top) shows the same smooth dependence
on the reference momentum above 810 GeV as for the 3 conventional schemes, but with a different
polarisation range: approximately [0.65, 0.97] for 1d3c and [0.7, 0.98] for 13ee. Both were chosen to
minimise the linear opening angle in a certain energy range, which is 39 to 821 GeV in the case of 1d3c
and 815 to 820 GeV in the case of 13ee. The most significant difference w.r.t. the “standard schemes”
is that the dip of Plim inside the RRS around 803.5 GeV only goes down to 0.5 (1d3c) and 0.4 (13ee).

Note that 13ee which was filtered for high energy only supplies a larger P
(1)
lim for p0 > 806 GeV but

that the minimum around 803.5 GeV is deeper. The non–perturbative scans of Plim in the momentum
range from 814 to 822 GeV (bottom left) show that the average Plim is still above the level of the
“standard schemes” but that there are minima which for both schemes show the onset of resonance
doublets at certain momenta. Around 804 GeV (bottom right) the RRS is clearly visible with the
low average Plim and the large number of sharp minima. Note that inside the RRS, Plim is larger for
1d3c than for 13ee. Again, inside the RRS where Plim approaches zero and oscillates strongly, the
accuracy of the computation of n̂ can become insufficient and at isolated momenta the stroboscopic
average might not even converge. Since these isolated momenta at which the algorithm breaks down
occurred with all snakes schemes, this is obviously a fundamental aspect of the lattice parameters and
the momentum range.

One may draw two conclusions from figures 5.8 and 5.9. First, at high energy, even outside the
strong RRS around 803.5 GeV and even with purely vertical motion, the linear approximation is
not sufficient to determine a possible working point and to detect potential sources of depolarisation
during acceleration. Second, with purely vertical motion the filtered schemes produce, even on the non–
perturbative level, a larger average Plim in the momentum ranges over which filtering was performed.

Figures 5.10 and 5.11 show the static polarisation limit computed with the SPRINT algorithm for
various invariant tori. The tori are characterised by the orbital amplitudes normalised by the rms



5.3. SIMULATIONS WITH THE UNMODIFIED ORBITAL TUNES 139

0

0.2

0.4

0.6

0.8

1

1.2

800 805 810 815 820

P
lim

1

p0 / GeV

96-lumi-opt /  Filtered-4 /  SLIM /  20π vert.

1d3c
13ee

0

0.2

0.4

0.6

0.8

1

1.2

814 815 816 817 818 819 820 821 822

P
lim

p0 / GeV

96-lumi-opt /  Filtered-4 /  SPRINT /  20π vert.

1d3c
13ee

0

0.2

0.4

0.6

0.8

1

1.2

800 801 802 803 804 805 806 807 808

P
lim

p0 / GeV

96-lumi-opt /  Filtered-4 /  SPRINT /  20π vert.

1d3c
13ee

Figure 5.9: Filtered 4–snake schemes: Plim for an enclosed vertical emittance of 20 π mm mrad. Top: Linear (SLIM )
approximation in the momentum range 800 to 821 GeV. Below: computed with the SPRINT method from 814 to 822
GeV (left) and from 800 to 808 GeV (right).

beam width σ in each eigenplane. The phase space distribution was assumed to be Gaussian. In
particular the symbol (ax, ay.az) means that the horizontal (vertical, longitudinal) amplitude is axσx
(ayσy, azσz).

1 σ corresponds to 4 π mm mrad in the horizontal and vertical planes and to about 1.8 π 10−2 m
rad in the longitudinal plane. The latter corresponds to a relative energy spread of about 1.2 · 10−4

and a bunch length of about 20 cm at 820 GeV.

Using equation (A.115) of the appendix and the relation Jaσ = a2J1σ we find that the fraction of
the beam contained in the phase space volume enclosed by the product of the invariant ellipse of aσ
in one eigenplane and the complete integral over the two other planes is

F1(a) ≡ 1 − e−a
2/2 ⇒ F1(1) ≈ 0.39 , F1(2) ≈ 0.86 , F1(2.45) ≈ 0.95 , F1(3) ≈ 0.99 . (5.7)

If we assume for simplicity that the distributions in the three eigenplanes are independent, then we
find that the fraction of particles contained inside the torus with axσx, ayσy and azσz, i.e. with
Jx < a2

xJx,1σ, Jy < a2
yJy,1σ and Jz < a2

zJz,1σ is

F3(ax, ay, az) = F1(ax)F1(ay)F1(az) ⇒
F3(1, 1, 1) ≈ 0.06 , F3(1.5, 1.5, 1.5) ≈ 0.31 , F3(2, 2, 2) ≈ 0.65 , F3(2.5, 2.5, 2.5) ≈ 0.87 . (5.8)

If one can demonstrate that all particles inside the (ax, ay, az)σ torus provide PdynPlim ≈ 1 at some
properly chosen working energy, then the beam average of the polarisation is at least F3(ax, ay, az). If,
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Figure 5.10: Standard 4–snake schemes: Plim(p0) computed with the SPRINT method in the momentum range from
814 to 822 GeV with invariant tori corresponding to (1,1,0), (1,1,1), (2,2,0) and (2,2,2)σ beam sizes.
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Figure 5.11: Filtered 4–snake schemes: Plim(p0) computed with the SPRINT method in the momentum range from 814
to 822 GeV with invariant tori corresponding to (1,1,0), (2,2,0) and (2,2,2)σ beam sizes.
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on the contrary, one can show that all particles outside the (ax, ay, az)σ torus provide PdynPlim ≈ 0,
then the beam average of the polarisation is at most F3(ax, ay, az). Here “inside” means that a particle
has orbital amplitudes a′i which all fulfil the constraint a′i ≤ ai whereas “outside” means that one of
the orbital amplitudes, say the k-th, has a′k > ak. A typical strategy to either verify or falsify the
assumption that polarised beam operation is possible at some energy and with some set of parameters
would be to create a large ensemble of particles so that the ensemble approximates a (truncated)
Gaussian phase space distribution of sufficient width and with spins initially parallel to the invariant
spin field and accelerate it from injection energy to the top energy. Then at the final energy and at
additional intermediate steps the ensemble average of PdynPlim could be computed and the evolution
of the approximate beam polarisation could be simulated. But much more can be learned from
simulations of individual tori. By scanning Plim(p0) and ν(p0) (e.g. in section 5.3.3) on these tori, not
only potential candidates for a working energy but also regions in momentum and orbital amplitudes
which contain higher order kinetic resonances and which therefore potentially diminish Pdyn during
the acceleration process can be identified much more specifically. The price one has to pay for this
is a significant increase of computing time. Therefore one can only sample the amplitude space with
a rather small set of triples (ax, ay, az). In this study we will take the somewhat conservative view
that for a high beam average of the polarisation it is necessary to ensure that P lim as well as Pdyn

are sufficiently high at least inside the (2.5,2.5,2.5)σ torus. Here I have simulated tori with (1,1,0),
(1,1,1), (2,2,0) and (2,2,2)σ. In contrast to the linear case (SLIM ), there is no simple scaling law for
the dependence of the polarisation on the emittances but generally the average P lim decreases if the
reference torus goes outwards in phase space. With the exception of the 3222 scheme there is, within
the numerical precision (<0.1 mrad in the opening angle ϑn), no difference between the polarisation
on the (1,1,0)σ and the (1,1,1)σ torus in this energy range. In figure 5.10 the polarisation curves for
the 3111 (top left), 1b1b (top right), afaf (bottom left) and 3222 (bottom right) schemes are shown.
The maximum achievable polarisation on the (1,1,0)σ torus is quite respectable, namely 0.85 to 0.95
and for 3222 it is still high with longitudinal motion (1,1,1) taken into account. When going to 2
σ in the horizontal and vertical planes one observes that the maxima of Plim are shifted to different
momenta. Therefore to find a momentum for operating HERA with maximum polarisation, care has
to be taken to optimise the average of Plim of all tori weighted with their particle density. Furthermore
sharp minima appear at certain energies for all the schemes, indicating possible kinetic resonances. A
large number of such dips is obviously disadvantageous for operation with polarisation. There is no
significant difference between the global behaviour of Plim for the (2,2,0)σ and the (2,2,2)σ tori for
3111, 1b1b and afaf but the number of singular dips is increased as the longitudinal mode is switched
on. On the one hand the increase in the number of sharp minima is biggest with 3111 and 1b1b, but
on the other the variation of polarisation with energy is lowest for 3111 compared to the other two.
The 3222 scheme obviously fails most when going from (2,2,0) to (2,2,2). Not only has the overall
average polarisation dropped but also the number of dips has significantly increased and there are
regions (e.g. around 819 GeV) where the polarisation curve appears to be almost discontinuous.

Figure 5.11 is analogous to figure 5.10 but for the filtered 1d3c and 13ee schemes. As already
expected from the linear energy scans (figures 5.8, and 5.9 top) the average polarisation is slightly
higher on the (1,1,0)σ and (1,1,1)σ tori than for the conventional schemes. As with the 3111, 1b1b
and afaf schemes the curves on both tori are identical up to the numerical precision. The interval

[P
(min)
lim , P

(max)
lim ] defined by the minimum and the maximum of the smooth approximation of Plim in the

momentum range from 814 to 822 GeV on the (2,2,0)σ torus and the (2,2,2)σ torus with the filtered
schemes (both about [0.2, 0.8]) is similar to the interval with 1b1b ([0.15, 0.75]) and afaf ([0.1, 0.65]).

Nevertheless, P
(max)
lim is higher for both filtered schemes. The variation of the polarisation with 3111

is lower in this momentum range: [0.35, 0.7]. Both, 1d3c and 13ee show strong differences between
(2,2,0) and (2,2,2). Not only is the number of singular minima increased when longitudinal motion is
taken into account, but also the extrema of Plim are shifted to different momenta, so that for noticeable
parts of the momentum range the polarisation is higher with longitudinal motion than without. We
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note in particular, by comparison of figure 5.9, which was produced with purely vertical motion at 20
π mm mrad, with the curves on the (2,2,0)σ torus in figure 5.11, which correspond to 16 π mm mrad
in the horizontal and in the vertical plane, that the average Plim can even be higher with slightly
larger vertical amplitudes as long as no horizontal motion is excited. Therefore, despite the popular
opinion that horizontal motion only affects the spin motion in the case of strong transverse coupling,
horizontal motion definitely has to be taken into account.
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Figure 5.12: Standard 4–snake schemes: Plim(p0) computed with the SPRINT method in the momentum range from
800 to 808 GeV. The invariant tori correspond to (1,1,0), (2,2,0) and (2,2,2)σ beam sizes.
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Figure 5.13: Filtered 4–snake schemes: Plim(p0) computed with the SPRINT method in the momentum range from 800
to 808 GeV. The invariant tori correspond to (1,1,0), (2,2,0) and (2,2,2)σ beam sizes.
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Figures 5.12 and 5.13 show Plim(p0) around the strong RRS at 803.5 GeV for the standard schemes
(5.12) and the filtered schemes (5.13). This momentum range was scanned to obtain an estimate for
the possible survival of polarisation during the final stage of the acceleration process. Considering
the (1,1,0)σ torus, the 3111 scheme (top left of figure 5.12) provides the smoothest P lim(p0) of all,
including the filtered schemes. In particular the 4–fold periodic schemes 1b1b and afaf and the scheme
13ee, which was obtained by filtering in the narrow momentum range from 815 to 820 GeV, fail
already for these moderate amplitudes. Using equations (5.7) and (5.8) this means that even the
innermost F1(1)

2 ≈ 15% of the beam might loose polarisation during acceleration. The 3222 scheme
(bottom right of figure 5.12) and the long range filtered scheme 1d3c also provide relatively smooth
polarisation curves. The (2,2,0)σ and (2,2,2)σ tori show many singular minima and points of weak
convergence. The density of these possible resonances or points of non–integrability of spin motion
increases typically by a factor of 5 to 10 when longitudinal motion is added. Therefore we might
expect that none of the tested 4–snake schemes is able to guarantee the survival of the spin action
I = Ŝ · n̂ during acceleration through the strong RRS around 803.5 GeV with the unmodified lattice
parameters.

Figures 5.14 and 5.15 show Plim(p0) for the 8–snake schemes described in section 5.2.1 in linear
(SLIM ) approximation (top) and using the non–perturbative SPRINT method for purely vertical orbital
motion on an invariant ellipse enclosing an emittance of 20 π mm mrad. These two figures are
analogous to 5.8 and 5.9 which were produced with 4 Siberian Snakes. The simulation data for the 3
standard schemes 31111111, 4X1b and 4Xpm1125 is displayed on the left side of the figure 5.14 and
the 32121212 scheme which contains 4 horizontal and 4 vertical snakes is shown on the right side.
The general impression is that the standard 8–snake schemes, at least on the linear level, smoothen
the dependence of Plim on p0 but that they hardly increase the average Plim in the momentum range
scanned. Note that with the scheme 32121212, which can be interpreted as 3111 with 4 additional
vertical snakes at the arc centres, the broad minimum at the RRS around 803.5 GeV which can be
seen in figure 5.8 is split into two more narrow minima around 802 and 805 GeV (top right of figure
5.14). This effect is caused by the shift of the spin phase advance between the adjacent octants in
each arc, which redistributes the strengths of spin–orbit coupling integrals w.r.t. different reference
momenta. According to an argument similar to the one used for the derivation of equation (2.146), the
spin–orbit coupling integral over one complete arc consisting of two identical halves is ξ2(2π∆±) times
the integral over one half, where ξ2 is the complex amplification function defined in equation (2.147a)
and ∆± is the normalised spin phase advance ± the normalised orbital phase advance over one half
arc. The modulus of ξ2 has a maximum whenever [∆±] = 0. A vertical snake produces an energy
independent extra spin phase advance of π at its position. Then the spin–orbit coupling integral over
the complete arc has a maximum whenever [∆±] = 1/2. Moreover the spin phase advance per arc is
increased by π so that the condition for constructive interference of the arcs is changed. The effect
is discussed in more detail in [GH99b, VA98] but the effect was actually observed for the first time
in[BH96a, BH96c].

The lower two rows in figure 5.14 show data produced with SPRINT momentum scans in the range
from 814 to 822 GeV (middle) and from 800 to 808 GeV (bottom). The three schemes with 8 horizontal
snakes provide a particularly smooth polarisation curve around the reference momentum of the 1996
luminosity operation (middle left), whereas the 32121212 scheme (middle right) shows clear candidates
for resonance doublets around 814.3 GeV, 817.6 GeV and 818.9 GeV. Note that comparison with 3111
in figure 5.8 (middle left) shows a clear difference between 3111 and 32121212. Unfortunately the
comparison also suggests that the four additional vertical snakes are rather disadvantageous in this
momentum range and in this region of phase space. The 31111111 scheme, although providing smooth
Plim, has the lowest average polarisation, namely about 0.4 in the range from 814 to 822 GeV of all
4- and 8–snake schemes. But it remains the smoothest when approaching the RRS around 803.5 GeV
(bottom left). The two schemes with snake period Ps = 4 show more pronounced minima which could
be candidates for resonance doublets around 802.4 GeV (4Xpm1125) and 805.5 (4X1a). The 32121212
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Figure 5.14: Standard 8–snake schemes: Plim for an enclosed vertical emittance of 20 π mm mrad. Top: Linear (SLIM )
approximation in the momentum range 800 to 821 GeV. Below: computed with the SPRINT method from 814 to 822
GeV (middle) and from 800 to 808 GeV (bottom).
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scheme provides the least smooth polarisation curve inside the RRS. This is not surprising since it
contains only four horizontal snakes.
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Figure 5.15: Filtered 8–snake schemes: Plim for an enclosed vertical emittance of 20 π mm mrad. Top: Linear (SLIM )
approximation in the momentum range 800 to 821 GeV. Below: computed with the SPRINT method from 814 to 822
GeV (left) and from 800 to 808 GeV (right).

Figure 5.15 contains the linear approximation of Plim (top) and Plim computed by the SPRINT al-
gorithm (bottom) in the momentum ranges used before but for the two 8–snake schemes obtained by
filtering. Note that 33e111b3 was obtained by filtering over a large momentum range (39.5 to 821.5
GeV) whereas 2123bbbb was obtained over the interval from 815 to 820 GeV. Both filtered schemes
supply a high average degree of polarisation from 814 to 820 GeV (bottom left) at the SLIM level as
well as with SPRINT. The average non–perturbative Plim in this range is 〈Plim〉p0 ≈ 0.94 for 33e111b3
and even 0.97 for 2123bbbb. Unfortunately both schemes fail to provide a reasonably smooth polar-
isation curve from 800 to 808 GeV (bottom right). The 2123bbbb scheme which was not filtered for
this region is the worst but even 33e111b3 shows a candidate for a resonance doublet around 805.4
GeV.

Figures 5.16 and 5.17 show Plim(p0) computed with the SPRINT method for the standard 8–snake
schemes (5.16) and the 8–snake schemes obtained by filtering (5.17) for the (1,1,0), (2,2,0) and (2,2,2)σ
tori in the momentum range from 814 to 820 GeV. In figure 5.16 all schemes with 8 horizontal snakes,
namely 31111111, 4X1a and 4Xpm1125 (from top left to bottom left) provide a high average P lim

on the (1,1,0)σ and (1,1,1)σ tori. One finds 〈Plim〉p0 ≈ 0.86, 0.91 and 0.93 for 31111111, 4X1a and
45Xpm1125 respectively and 〈Plim〉p0 ≈ 0.90 with much stronger modulation for 32121212 (bottom
right). When moving out to 2σ horizontally and vertically the average Plim drops noticeably for all four
schemes but with the exception of 32121212 the curves do not exhibit any singular minima. Among
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Figure 5.16: Standard 8–snake schemes: Plim(p0) computed with the SPRINT method in the momentum range from
814 to 822 GeV. The invariant tori correspond to (1,1,0), (2,2,0) and (2,2,2) σ beam sizes.
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Figure 5.17: Filtered 8–snake schemes: Plim(p0) computed with the SPRINT method in the momentum range from 814
to 822 GeV. The invariant tori correspond to (1,1,0), (2,2,0) and (2,2,2)σ beam sizes.
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the 3 schemes with only horizontal snakes the average polarisation on the (2,2,0)σ torus is highest for
4X1a, i.e. 〈Plim〉p0 ≈ 0.52 compared to 0.44 (4Xpm1125) and 0.30 (31111111). On the (2,2,2)σ torus
the two schemes with Ps = 4, namely 4X1a and 4Xpm1125, still provide a smooth polarisation curve,
although with a few percent less polarisation. On this torus the curve for the 31111111 scheme looks
similar to those for 4X1a and 4Xpm1125, but a closer look at the data reveals not only that P lim is
slightly more wiggly but also that the convergence of the stroboscopic average suffered. In certain
regions the approximation of the n̂–axis obtained from 16000 turns of stroboscopic averaging and the
approximation after 8000 turns had an angle w.r.t. each other of about 300 mrad, indicating that the
stroboscopic average did not converge until then. Note that whenever synchrotron motion is included
the low synchrotron tune Qz ≈ 0.6 · 10−3 requires about 1700 turns to be tracked in order to sample
the synchrotron period at least once. For 32121212 inclusion of the longitudinal phase space mainly
increased the number of visible singular dips by a factor of approximately 5.

In figure 5.17 the two filtered schemes are compared. On the (1,1,0)σ torus the average P lim with
33e111b3 (left) is 0.975 and with 2123bbbb (right) even 0.99. In this momentum range and with these
moderate vertical and horizontal amplitudes the linear filtering, which was performed for vertical
motion only, still produces snake schemes that provide higher average Plim than any schemes based
on “common wisdom”. But in figure 5.17 (right) the strong overall drop of Plim on the (2,2,0)σ torus
reveals the limitations of linear filtering. The 8–snake scheme 2123bbbb, which was filtered in the
narrow momentum range and which has an extremely asymmetric distribution of snake angles and of
horizontal and vertical snakes, produces not only a particularly low but also strongly varying P lim even
inside the region in which it was filtered. The isolated discontinuities of Plim from one smooth curve
to another smooth curve are not caused by lack of convergence of stroboscopic averaging or possible
resonances. Instead they are due to the fact that the adaptive computer routine, which averages n̂
over many turns to compute Plim, is being confused and taking too few turns for averaging. The mirror
symmetric scheme 33e111b3 provides the largest average Plim, about 0.75, on the (2,2,0)σ torus but
there are two hardly visible sharp minima of Plim at about 816.1 and 820.7 GeV at which the otherwise
good accuracy of the pseudo–n̂–axis falls below 100 mrad. When exciting the longitudinal degree of
freedom the overall polarisation drops by just a few percent but two series of sharp polarisation dips
appear in the ranges 815 to 816.5 GeV and 819 to 820.7 GeV. These dips might be caused by resonant
modulations of the spin enhancement factor Gγ0(1 + δ(θ)) due to the momentum oscillations on a
synchro–betatron trajectory. These sharp minima would then be related to synchrotron sidebands
[LB96] of a kinetic resonance condition between ν and the transverse orbital tunes. Note that there is
so far no algorithm, not even SODOM-2 , that is able to compute the amplitude dependent spin tune on
a phase space torus with more than than 1 dimension in the close vicinity of a spin–orbit resonance.

In figures 5.18 and 5.19 the same 8–snake schemes were scanned on the same set of tori but in
the range from 800 to 808 GeV. On the (1,1,0)σ torus the average of Plim is highest (about 0.85)
and the curve is smoothest for the 4X1a scheme (top right of figure 5.18). The 31111111 scheme (top
left) produces a smooth dip down to Plim ≈ 0.35 at 804 GeV but is also absolutely smooth. The
schemes 4Xpm1125 (bottom left) and the 32121212 (bottom right) both exhibit possible resonance
doublets around 802 and 804.2 GeV and around 805.4 GeV respectively. We note that the splitting,
due the vertical snakes, of the broad minimum of the RRS into two in the case of the 32121212 scheme
as suggested by figure 5.8 (top right) is not just an artifact of the linearisation but survives in the
non–perturbative regime even on the (2,2,2)σ torus. On the (2,2,0) and (2,2,2)σ tori all schemes show
a large number of sharp singular minima, but with the 4X1a scheme, which appeared to be best with
low orbital amplitudes, the polarisation vanishes almost completely in almost the whole momentum
range. Actually, the 31111111 scheme produces the least number of sharp dips but it is clear that
one tiny energy range, such that either a kinetic resonance is not crossed adiabatically or such that
the invariant spin field does not exist inside the range, is in principle enough to severely damage the
polarisation on the torus during acceleration.

The results of simulations performed with the SLIM and SPRINT methods and presented in this
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Figure 5.18: Standard 8–snake schemes: Plim(p0) computed with the SPRINT method in the momentum range from
800 to 808 GeV. The invariant tori correspond to (1,1,0), (1,1,1), (2,2,0) and (2,2,2)σ beam sizes.
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Figure 5.19: Filtered 8–snake schemes: Plim(p0) computed with the SPRINT method in the momentum range from 800
to 808 GeV. The invariant tori correspond to (1,1,0), (1,1,1), (2,2,0) and (2,2,2)σ beam sizes.
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section allow us to draw several conclusions.

1. The smoothness of Plim w.r.t. the reference momentum p0 in the range from 814 to 822 GeV can
be improved considerably when using 8 instead of 4 snakes.

2. In particular more horizontal snakes tend to improve the smoothness.

3. The average Plim in some given momentum range strongly depends on the chosen snake angles.

4. Moreover, even with 8 snakes, e.g. 31111111, the average Plim can be considerably smaller than
with 4 snakes with optimised snake angles, e.g. 1d3c — at least for moderate orbital amplitudes.

5. Having a low average Plim around 820 GeV does not imply particularly many singular minima
inside the RRS around 803.5 GeV. An example for this is the 31111111 scheme.

6. Nevertheless, as far as the behaviour of Plim in the strong RRS around 803.5 GeV is concerned,
8 snakes bring hardly any improvement in comparison with 4 snakes.

7. In a flattened ring like HERA–p with P = 1 and at high energy, maximising the snake periodicity
Ps does not improve Plim neither around 803.5 nor close to 820 GeV.

8. Linear filtering is able to improve Plim in the range of validity of the linear approximation, i.e. for
moderate orbital amplitudes.

9. Odd O–W parity seems to be profitable. In particular, all schemes obtained by long range
filtering, 1d3c, 3e1b, 33e111b3 have M = −1. The two which were tested in this section, namely
1d3c and 33e111b3 turned out to be the most successful in providing a large average P lim.

10. But far out in phase space linear filtering in general does not select schemes with sufficient
spin stability. In other words sharp dips in Plim indicating spin–orbit resonances may occur at
sufficiently large amplitudes even for the schemes obtained by filtering.

5.3.2 Ramp studies with the unmodified tunes

The static simulations, presented in section 5.3.1, suggest that the domain in the orbital phase space in
which spin motion can be controlled by 4 or 8 Siberian Snakes is small. The boundary of this domain
of “spin stability”cannot be determined with high accuracy on the basis of the simulations presented so
far. But if we take the existence of sharp minima in Plim as an indicator for spin–orbit resonances and
thus for potential depolarisation during the ramp, then most likely for all orbital amplitudes a i ≤ 1σ
the polarisation survives acceleration through the RRS around 803.5 GeV whereas for all amplitudes
ai ≥ 2σ the polarisation is lost. Nevertheless since no computational tools exist yet to clearly identify
and label kinetic spin–orbit resonances driven by 4- or 6–dimensional orbital motion, the indications
of the last section have to be verified with ramp simulations. These will be described in this and other
sections following. The simulations in this section were performed with the 4–snake schemes 3111,
1b1b, 1d3c and 3e1b using the separation optics hp96se820, and with the 8–snake scheme 33e111b3
using the luminosity optics hp96lu820. The scheme 3e1b has been obtained by filtering with the
hp96se820 optics, whereas 1d3c and 33e111b3 were filtered out with the hp96lu820 optics.

We will now present a method to simulate the evolution of the polarisation of an ensemble of
spins under variation of general system parameters. The system parameters such as field strength,
the reference momentum p0, etc. are parametrised by a common parameter λ as in section 4.10.2.
In this section the ramp is actually a pure acceleration process. By that we mean that the focusing
strengths and hence the Courant–Snyder parameters, are kept constant as p0 is increased so that the
field strengths of the magnets are proportional to p0. Therefore we could in principle replace λ by the
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more intuitive Lorentz–γ of the synchronous particle γ0. But since we want to employ this method
also for the simulations to be presented in section 5.4.2 where the lattice parameters and the energy
are changed simultaneously we will stick to λ in our explanation of the simulation method.

The ramp simulation is performed with an initial ensemble of N spins

Ŝ0
l ≡ Ŝl(θ = 0) = n̂ ~J(

~Ψ0
l , 0, λ(0)) , 1 ≤ l ≤ N , (5.9)

set parallel to the invariant spin field on the torus ~J = const. at the initial phases ~Ψ0
l . Then the

trajectories Ŝl(θ) evolve under

Dθ Ŝl(θ) = ~Ω
(
~J(θ), ~Ψl(θ), θ, λ(θ)

)
× Ŝl(θ) (5.10)

until θ = θk where 0 ≤ k ≤ kf is the number of steps at which the ensemble polarisation is to be to be

viewed. Note that during acceleration not ~J but ~Jγ0β0 is an adiabatic invariant (see section A.2.3).
In the case of ideal acceleration p0(λ(θ)) is strictly monotonic w.r.t. θ, i.e. invertible to θ(p0). At each
θk, or equivalently p0,k, we make a copy of the ensemble

ξ̂kl (0) ≡ Ŝl(θk) , 1 ≤ l ≤ N (5.11)

and propagate it with constant λk ≡ λ(θk) and ~Jk ≡ ~J(θk)

Dϑ ξ̂
k
l (ϑ) = ~Ω

(
~Jk, ~Ψ(ϑ), ϑ, λk

)
× ξ̂kl (ϑ) . (5.12)

Since (5.12) is applied with constant λ, the spin actions

Ikl ≡ ξ̂kl (ϑ) · n̂ ~Jk
(~Ψl(ϑ), ϑ, λk) (5.13)

are invariants of motion. The ramped turn–by–turn averaged polarisation or just the ramped polarisa-
tion

Prmp( ~Jk, θk;N,T ) ≡

∥∥∥∥∥∥
1

N

N∑

l=1

1

T

T∑

j=1

ξ̂kl (θk + j2π)

∥∥∥∥∥∥
(5.14)

can, if the system is strongly non–spin–orbit–resonant and if n̂, û1 and û2 are sufficiently smooth,
according to theorem 4.6, be written in the limit T → ∞ as

lim
T→∞

Prmp( ~Jk, θk;N,T ) = lim
T→∞

∥∥∥∥∥∥
1

N

N∑

l=1

Ikl
1

T

T∑

j=1

n̂ ~Jk
(~Ψl(θk + j2π), θk + j2π, λk)

∥∥∥∥∥∥

= |P (N)
dyn (p0,k)|Plim( ~Jk, θk, λk) . (5.15)

Therefore Prmp( ~Jk, θk;N,T ) can serve as an approximation for the product |Pdyn(p0,k)|Plim( ~Jk, θk, λk)

even for finite N , T . Note that in chapter 4 we have defined n̂ ~J → n̂0 in the limit ~J → ~0 so that
n̂ ~J(p0) changes its sign at each p0 where the amplitude dependent spin tune crosses a resonance
with the orbital tunes. Therefore adiabatically crossing a resonance implies a sign change of I l(θ) =
Ŝl(θ) · n̂ ~J(θ)(

~Ψl(θ), θ, λ(θ)). In order to apply the Froissart–Stora formula directly one has to change
this definition such that n̂ ~J is continuous at resonance crossing and therefore only fulfils the constraint
lim ~J→~0 n̂ ~J = ±n̂0. But with this definition of Prmp the global sign of the Ikl does not enter the result
so that the choice of the sign of n̂ ~J(p0) is irrelevant. In section 5.4.2 we will introduce an additional

quantity u
〈ξ〉
y which allows us to determine whether the average dynamic polarisation has changed its

sign or not.
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For the ramp simulations presented in this section the “quickest and dirtiest” approximation has
been used, namely N = 1. Note that the computing time is approximately proportional to the number
of tracked particles so that one is tempted to keep N small. The number of turns for averaging was
chosen adaptively between 400 and 3200. We call this the single particle multi–turn polarisation. The
approximation of Pdyn for a beam of typically 1013 particles by just a single spin action will turn out
to produce artifacts like apparently increasing polarisation after resonance crossing, but a qualitative
discussion of the depolarising effects of non–adiabatic crossing of kinetic resonances is still possible
and ambiguities can be dispelled by looking closely at the new tracking data to be presented in section
5.4.2. Although the approximation of a beam by just one particle is crude, it still has the advantage
compared to other simulations of spin ramps in the literature, that the turn–by–turn average of the
polarisation of the tracked “ensemble” is computed. Usually in the literature the polarisation of an
ensemble is approximated by the instantaneous average over the spins. Thus with that method the
components of Ŝl which are perpendicular to n̂ and which rapidly precess produce fluctuations of the
ensemble polarisation and therefore noisy polarisation curves. In contrast, the single particle multi–
turn polarisation is |I|Plim and therefore proportional to the stationary polarisation computed by an
aligned ensemble.

The ramp simulation was made for all schemes in the following way: In the momentum range
from 785 to 788 GeV the n̂–axis was scanned in order to find a good starting momentum where the
accuracy for the computation of the initial n̂–axis was high. On the torus ~J = const. one particle
was created with Ŝ parallel to the n̂–axis. The particle was accelerated with an energy gain per turn
of 13 keV. This is approximately 1.5 times the average energy gain per turn for the whole HERA–p
ramp procedure. In fact the ramp speed at high energy is higher, about 22 keV. The energy gain is
produced at each cavity crossing where the particle momenta are rescaled according to section A.2.3
and the orbit and spin maps are recomputed with the new reference momentum. SPRINT recomputes
the orbital and spin maps each time the particles traverse an RF–cavity. Therefore, and since all
cavities in HERA–p are in straight section WR interleaved only with drift lengths, the two 52 MHz
systems and the four 208 MHz systems have been replaced by one single cavity at the central position
between the four 208 MHz cavities. This procedure leads to the adiabatic shrinking of the phase space
volume and to the relation ~Jβ0γ0 = const. as described in section A.2.3. Note that since the orbital
maps are linearised in SPRINT only the product of cavity voltage and frequency enters the transfer
matrix (A.107) and (A.116). The θk were chosen so that the ramped polarisation was computed in
steps of 0.5 or 0.25 GeV. At the given p0,k the invariant spin field and Plim were also computed with
the SPRINT method for comparison. Note that in the meantime the ramp routines in SPRINT have
been refined so that automatised scans of Prmp can be provided with much smaller, and adjustable
step size. These refined routines and furthermore larger ensembles were used for the simulations in
section 5.4.2.

The procedure described has been used to simulate particle acceleration beginning somewhere
between 785 and 788 GeV with an initial Pdyn ≡ 1. In figures 5.20, 5.21, 5.22, 5.23, 5.24 and 5.25
the ramped single particle multi–turn polarisation Prmp is plotted versus the reference momentum
p0 for the snake schemes 3111, 1b1b, 3e1b, 1d3c and 33e111b3 and various invariant phase space
tori. The plots also include the static polarisation limit Plim in order to identify polarisation losses.

Figure 5.20 shows the ramp simulation for the 3111 scheme on the (1,1,1)σ torus (left) and the
(1.5,1.5,1.5)σ torus (right). The ramped polarisation stays close to the static polarisation limit until
the RRS around 803.5 GeV is met. Then compared to Plim the ramped polarisation drops by about
5% in the (1,1,1)σ case and by about 40% in the case of the (1.5,1.5,1.5)σ torus. Note that this RRS is
located at the strongest intrinsic resonance but that there are at least 31 resonances with comparable
strength and comparable density of neighbouring resonances to cross before reaching the 803 GeV
region! In figures 5.21 we have the ramp simulation for the scheme 1b1b on the (1,1,1)σ torus (left)
and the (1.5,1.5,1.5)σ torus (right). We see that this scheme, which has a higher snake periodicity
(Ps = 2 instead of 1 for 3111), fails already at 1σ. The polarisation drops to 30% after crossing the
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Figure 5.20: Scheme 3111: comparison between Prmp and Plim for 1.0 (left) and 1.5 σ (right) in all 3 planes.
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Figure 5.21: Scheme 1b1b: comparison between Prmp and Plim for 1.0 (left) and 1.5 σ (right) in all 3 planes.

RRS. In the (1.5,1.5,1.5)σ case one might gain the impression that the polarisation recovers, but after
a closer look at the tracking data it becomes obvious that this is an artifact of the single particle
simulation. Actually at (1.5,1.5,1.5)σ neighbouring resonances (up to approximately 808 GeV) are
enhanced so much that the direction of Ŝ averaged over 400 to 3200 turns at constant energy, which
is close to ±ŷ away from the resonances, changes its sign 3 times. The lowest absolute spin action
|Il| = 0 after the m-th resonance crossing occurs when the l-th spin Ŝl is perpendicular to n̂ ~J . If
the m+ 1-st resonance crossing is non–adiabatic then |Il| can only be increased and hence the single
particle polarisation recovers. Note that the actual change of the spin action during resonance crossing
along each orbital trajectory is sensitive to the initial orbital phases. During the simulations that lead
to figures 4.20 and4.21 the spread of the Il has been observed to be largest in cases where the final
Pdyn is approximately 0. So the fewer the number of particles accelerated the higher the possibility
that the depolarising effects of adjacent resonances lead to a fake recovery. But if a large number N
of spins is ramped non–adiabatically through a sequence of resonances the result will be a distribution
of the Il in the interval [−1,+1] that is almost symmetrical w.r.t. 0. Therefore the ensemble average
Pdyn = 〈Il〉l will usually vanish. Once |Pdyn| is reduced it is reduced for ever! On the contrary, if the
single particle multi–turn polarisation remains close to Plim, it is reliable.

Figure 5.22 shows the result of the ramp simulation for the filtered 3e1b scheme. For the (1,1,1)σ
torus (top left) the polarisation is almost exactly preserved. Unfortunately when going to (1.5,1.5,1.5)σ
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(top right) about 30% of the polarisation is lost. For (2,2,2)σ (bottom left) large polarisation loss
already occurs around 795 GeV. The “recovery” around 800 GeV is again an artifact of single particle
tracking as in the case of the 1b1b configuration. Finally, at (2.5,2.5,2.5)σ (bottom right) already the
static polarisation limit (Plim) is low. The polarisation decays immediately after starting the ramp.
Figure 5.23 shows Prmp for the scheme 1d3c which was obtained by filtering with the luminosity optics
hp96lu820. The ramp simulation was nevertheless performed with the hp96se820 optics. Although the
configurations 3e1b and 1d3c look quite similar, namely the longitudinal and radial snakes at O and
W are just interchanged and the ±67.5◦ snakes of 1d3c at S and N are converted to ±45◦–snakes, the
scheme 1d3c totally fails with the separation optics. The polarisation drops to roughly 20% already in
the case of (1,1,1)σ (left). On the (1.5,1.5,1.5)σ torus (right) the fraction Prmp/Plim seems to fluctuate
but again a closer look at the tracking data shows that the multi–turn average of the spin direction
changes its sign at many additional resonances after crossing the major resonance at 803 GeV. Hence
the fluctuating polarisation is again an artifact of single spin analysis. The results would be easier to
interpret with a large spin ensemble. But that would increase the computation time significantly.
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Figure 5.22: Scheme 3e1b: comparison between Prmp and Plim for 1.0 (top left) 1.5 (top right), 2 (bottom left) and
2.5 σ (bottom right) in all 3 planes.

Figures 5.24 and 5.25 show the ramp simulations for the 8–snake scheme 33e111b. It is obvious
from figure 5.24 that in case of the (1,1,1)σ torus (top left) the polarisation is preserved over the full
momentum range of the simulation. On the (1.5,1.5,1.5)σ torus (top right) the polarisation drops by
3%, but a few percent loss during acceleration through the RRS located at the strongest resonance
in the whole range of 40 to 820 GeV seems tolerable. In the (2,2,2)σ case (bottom) there are already
four momenta before the RRS at which losses occur

1. a drop of about 5% occurs directly at the beginning of the ramp,
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Figure 5.23: Scheme 1d3c: comparison between Prmp and Plim for 1.0 (left) and 1.5 σ (right) in all 3 planes.

2. around 792 GeV the polarisation drops by about 20%,

3. around 796 GeV the polarisation drops by another 40% and

4. around 800 GeV the polarisation drops to 0.

Each of these is separated by about 4.4 GeV. From equation (5.3) we know that the approximate
on–orbit spin tune for the flattened HERA without main snakes is ν0 = E0/555MeV. We have seen in
section 4.9 that with 4 main snakes the on–orbit spin phase advance between the main snakes increases
by 2π every 2.22 GeV and have observed a modulation with an approximate period of 2.2 GeV in
Plim(p0). Analogously we find 4.44 GeV for 8 main snakes and can easily observe in figures 5.16 to
5.17 and 5.24 to 5.25 a modulation with an approximate period of 4.4 GeV in Plim(p0). If we assume
that certain types of higher order kinetic resonances are enhanced in particular close to points where
the on–orbit spin phase advance between adjacent snakes reaches a certain value, then it is reasonable
that these resonances occur with approximately the same periodicity w.r.t. p0. Since even the filtered
8–snake scheme only preserves polarisation during acceleration through the strong RRS around 803.5
GeV with amplitudes of less than 1.5 σ in all three eigenplanes it is worthwhile to analyse the effect of
the different orbital modes in more detail. Figure 5.25 shows Plim and Prmp for tori where the orbital
amplitudes are not the same in all three planes. With the exception of the right plot in the middle
row all tori include 2 σ vertical motion. With purely vertical motion on the (0,2,0)σ torus (top left),
the polarisation survives almost completely. Also with additional 1 σ excitation in the longitudinal
plane (top right) the spin action is preserved. But with a horizontal amplitude of only 1 σ together
with 2 σ vertical motion, i.e. on the (1,2,0)σ torus (middle left), the polarisation is almost completely
lost already at about 803 GeV. Figure 5.25 (middle right) is for the (2,1,0)σ torus for comparison.
Here the polarisation only drops slightly by approximately 4%. The bottom row is for the (1,2,1)σ
torus (bottom left) and the (2,2,0)σ torus (bottom right). On both tori the polarisation decays at
approximately the same momentum as on the (1,2,0)σ torus (middle left), namely at about 803 GeV.
The evolution of Prmp is nevertheless different for all three tori. In particular the additional 1 σ of
longitudinal excitation produces a rich spectrum of sharp dips beyond the first depolarisation. We note
that in general the momentum resolution of these first ramp simulations does not suffice to explicitly
identify resonances by means of sharp minima of Plim. But figure 5.25 allows the conclusion that with
the 33e111b3 scheme around 803.5 GeV, polarisation losses on tori with 2 σ vertical amplitude are
mainly caused by additional horizontal excitation.

The outermost torus without polarisation losses using the 4–snake schemes 3e1d and 3111 has
amplitudes of 1σ in all three planes corresponding to enclosed normalised emittances of εnx = εny =
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Figure 5.24: Scheme 33e111b3: comparison between Prmp and Plim for 1.0 (top left), 1.5 σ (top right) and 2.0 σ
(bottom) in all 3 planes.

4π mm mrad and εnz = 1.78 10−2π m rad. The outermost torus without polarisation losses using the
8–snake scheme 33e111b3 has 1.5σ in all three planes, corresponding to εnx = εny = 9π mm mrad and
εnz = 4.00 10−2π m rad.

Although we have only sampled the phase space with a rather small number of tori, we can already
give a crude estimate for the achievable beam polarisation at high energy in HERA–p with the lattice
parameters studied so far. If we assume that polarisation losses vanish whenever one of the orbital
amplitudes is less than 2.0 σ, then according to equation (5.8) about 65% of the beam stays polarised.
Assuming an initial polarisation from the source of about 80%, that no polarisation is lost in the
pre–accelerator chain and Plim ≈ 0.9 up to 2σ in all planes and for some optimal reference momentum
p0 > 810 GeV the average beam polarisation is about 51%. This is an optimistic scenario. If we,
on the other hand, assume that polarisation losses occur whenever one of the orbital amplitudes is
greater than 1.0 (1.5)σ, then only 6% (30%) of the beam stays polarised. Under the same assumptions
as before the average beam polarisation is about 5% (24%). This scenario is surely too pessimistic.
Assuming that the maximum attainable polarisation is between 5 and 51% seems discouraging but in
section 5.4 modifications to the HERA–p tunes will be discussed that improve the situation to some
extent.

To summarize the results of these ramp simulations for HERA–p we conclude the following:

1. Crossing of the strongest RRS at 803.5 GeV seems possible with negligible polarisation losses
only for the inner part of the beam, namely up to about 1 or 1.5 σ.
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Figure 5.25: Scheme 33e111b3: comparison between Prmp and Plim for different invariant tori. Top left: (0,2,0)σ. Top
right: (0,2,1)σ. Middle left: (1,2,0) σ. Middle right: (2,1,0)σ. Bottom left: (1,2,1)σ. Bottom right: (2,2,0)σ.
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2. The outer parts up to the 95% emittances are still critical. The dynamic polarisation Pdyn drops
to zero even with the best schemes on the (2,2,2)σ torus when crossing the RRS around 803.5
GeV.

3. 8 snakes, even with properly chosen snake angles, seem to relax the situation only slightly. In
the following we will therefore restrict ourselves to 4–snake schemes.

5.3.3 Long range momentum scans using Fourier analysis

In section 5.3.1 we have observed that, in the limited momentum ranges for which the simulations were
performed, on certain invariant tori Plim shows pronounced sharp minima which are candidates for
higher order kinetic resonances as described in section 4.9. Furthermore in section 4.10 we have shown
evidence that a generalised Froissart–Stora formula for the change of Pdyn ≡< I > during acceleration
through a kinetic resonance may be applied. In section 5.3.2 it was demonstrated that the Pdyn is
potentially diminished when the RRS at 803.5 GeV is crossed during the ramp. Moreover we have
confirmed the weaknesses of linear filtering in momentum and amplitude ranges where ‖n̂ − n̂0‖ is
not small. In particular even the filtered schemes cannot provide sufficiently high P lim and sufficient
preservation of Pdyn when large amplitudes are taken into account at the assumed top energy of
approximately 820 GeV and when the RRS around 803.5 GeV has to be crossed. The automatic
filtering procedure described in section 4.4.1 can so far only be performed at the linear level. In
order to find measures to circumvent depolarisation and to increase Plim, we have to identify and
label the kinetic resonances that are relevant for the depolarisation during the ramp and that affect
Plim at possible working energies. Thus we need approximations of the invariant spin field and the
amplitude dependent spin tune that include higher order effects. We will now exploit the relatively
good performance of the SODOM-2 algorithm for simulating long range scans (500 to 1000 GeV) for
certain snake schemes with the luminosity optics hp96lu820 and the separation optics hp96se820.
Owing to time limitations we no longer include simulations with 8–snake schemes. The 8–snake
schemes, which are encumbered with considerable technical problems, have so far not shown sufficient
improvement to justify the effort. The SODOM-2 method is fast enough for doing long range scans and
accurate enough to describe spin motion close to higher order resonances, only if the orbital motion
is restricted to one eigenplane. Therefore in this section we will only discuss the effects of vertical
orbital amplitudes.

Figures 5.26 to 5.31 are all organised in the same way. Each figure shows Plim and ν as a function
of p0 in the momentum range from 500 to 1000 GeV for a given snake scheme and a given optics
(either hp96lu820 or hp96se820) with vertical amplitudes of 1, 1.5, 2 and 2.5 σ. Figures 5.26 to 5.29
were produced with the optics hp96lu820 whereas figures 5.30 and 5.31 were made with the optics
hp96se820. The momentum discretisation was chosen to be 10 MeV leading to 5 ·104 momentum steps
per SODOM-2 run. The first row shows Plim(p0) with 1 σ (left) and 1.5 σ (right) vertical amplitude.
Directly below the Plim–scans, in the second row, the corresponding amplitude dependent spin tune is
plotted versus p0, i.e. for 1 σ to the left and for 1.5 σ to the right. The third and fourth rows are made
in an analogous way but with 2 σ and 2.5 σ vertical amplitudes. The plots of ν also show the closest
by resonance conditions with order k < 10 drawn as straight lines. In the case of the luminosity optics
with the unmodified vertical tune, computed from the official lattice file, Qy ≈ 32.27253, there are
the 4 resonance conditions κ = 2[Qy], 1 − 2[Qy], 9[Qy] − 2 and κ = 3 − 9[Qy] close to ν0 = 1/2. The
2-nd order resonances lie at a distance of approximately 0.0451 from ν0 = 1/2, whereas the 9-th order
resonances are 0.0472 away. In the case of the separation optics with the unmodified vertical tune
from the official lattice file being Qy = 32.30812, there are only 2 lines κ = 5[Qy]−1 and κ = 2−5[Qy]
of order k < 10 close to ν0, namely at a distance of 0.0406. The SODOM-2 runs for up to 2 σ vertical
amplitude were performed with 63 Fourier harmonics and the simulations with 2.5 σ included 85
Fourier harmonics. It should be be noted here that in almost all simulations with sufficiently high
orbital amplitudes, depending on the snake scheme and the lattice, there were singular momenta where
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the number of Fourier harmonics was not enough to obtain a suitable accuracy of the invariant spin
field and the amplitude dependent spin tune. Nevertheless in these long range scans these points are
in the minority and do not invalidate the global qualitative results.

We define the averaged Plim over some momentum range R′ = [pmin, pmax], that does not contain
any residual resonance structures

〈Plim〉p0 ≡ 1

pmax − pmin

∫

R′

Plim(p0) dp0. (5.16)

When scanning the momentum for a good working point, we exclude the RRSs already from the
beginning. But we assume that for stable operation not only a narrow maximum of P lim close to 1 but
also a certain momentum range with high 〈Plim〉p0 and only moderate oscillations of Plim is necessary.
Moreover we define the spin tune spread ∆p0(ν) and the symmetrised spin tune spread ∆sym

p0 (ν) over
some momentum range R = [pmin, pmax]

∆p0(ν) ≡ max
R

ν − min
R

ν , ∆sym
p0 (ν) ≡ max

R
|ν − 1

2
| , (5.17)

where the branch of ν with limJy→0 ν = ν0 has to be used. In contrast to R′ the range R may include
residual resonance structures. For every resonance condition κ = [kQy] with distance ∆κ = κ − 1/2

from the design orbit spin tune ν0 with properly chosen snakes, there is another resonance condition
κ′ = 1 − [kQy] with the same order k and with ∆κ′ = −∆κ. Therefore the symmetrised spin tune
spread ∆sym

p0 (ν) determines the minimal distance that κ to ν0 = 1/2 may have so that neither of the
conditions ν = κ and ν = κ′ can be fulfilled.

The first set of figures, 5.26 to 5.29, was produced in order to find a suitable momentum range
for the storage and collision mode and to analyse the differences between various snake schemes. The
second set of figures, 5.30 and 5.31, gives an estimate of to which energy a polarised beam might
be accelerated without polarisation losses. Another purpose of figures 5.26 to 5.31 is to demonstrate
the evolution from a (hopefully) well–behaved spin–orbit system with a large average P lim, small
oscillation amplitudes and a low spin tune spread at low vertical amplitudes, to a possibly badly
behaved system with low average Plim, large oscillation amplitudes and a large spin tune spread with
spin tune jumps at low order resonances at high vertical amplitudes. For example figure 5.27 below
shows an astonishing “blooming” of resonance structure as the amplitude increases.

Figure 5.26 shows this evolution for the 3111 scheme with the optics hp96lu820. At 1 σ (first
row left and second row left) the average static polarisation limit 〈Plim〉p0 is about 95% except for 14
pronounced minima. Note that we have observed 19 super–strong resonances in figure 5.3 (bottom).
The dips in figure 5.26 are very close to these super–strong resonances with every fourth resonance
missing or comparable to the background oscillations of Plim. We therefore identify them as residual
resonance structures. The fact that some RRSs are missing can be explained as follows: According to
lemma 3.2 every horizontal snake can be decomposed into a radial snake and a vertical spin rotator
with a rotation angle that is twice the snake angle of the horizontal snake. Therefore schemes with
mixed snake angles have different spin phase advances in different arc sections between the snakes.
Even if the spin perturbations due to the periodic FODO cells of each arc add up coherently, the
combined effects of all four arcs can cancel to some extent. Therefore the spin–orbit coupling integrals
at the positions of the former linear intrinsic resonances can be significantly changed and a potential
RRS belonging to a super–strong resonance might in principle not appear. We note that P lim has
maxima close to 100% even near to the RRSs. The spin tune stays close to 1/2, namely in the interval
[0.48, 0.52]. The symmetrised spin tune spread over the whole range from 500 to 1000 GeV in figure
5.26 (second row left) is ∆sym

p0 (ν) ≈ 0.02. When increasing the vertical amplitude to 1.5 σ (upper
two rows right), the average Plim outside the RRSs is slightly reduced to about 85% and ∆sym

p0 (ν)
is increased to approximately 0.03. Moreover the drops of Plim at the RRSs are more pronounced
and additional strong dips directly adjacent to the main RRSs appear, e.g. around 803.5 GeV. The
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Figure 5.26: SODOM-2 scans of Plim(p0) and ν(p0) for 1, 1.5, 2 and 2.5 σ vertical amplitude with the luminosity optics
hp96lu820 and the snake scheme 3111.
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oscillation amplitude of Plim has increased by a factor of 2 in the region around 820 GeV. But still there
are momenta, e.g. just above 830 GeV where Plim ≈ 100%. With 2 σ vertical amplitude (lower two
rows left) certain RRSs, i.e. around 720, 803, 920 and 970 GeV have been joined by many neighbouring
minima of comparable depth. Even in regions at some distance from the strongest RRSs 〈P lim〉p0 is
hardly more than 80%. At momenta above 700 GeV there is only one region, from the RRS at about
830 GeV to the next RRS at about 860 GeV where 〈Plim〉p0 is above 80%. The amplitude dependent
spin tune shows certain singular jumps, e.g. around 830 and 920 GeV, which might be due to the
SODOM-2 algorithm switching between different branches ν + l[Qy]. But since they occur at the main
RRSs it is still possible that they are caused by symmetric jumps around higher order kinetic resonant
tunes. The symmetrised spin tune spread of the subset of data points that belong to a continuous
curve has increased to 0.04 and therefore ν is already dangerously close to the 2-nd and 9-th order
resonance conditions. At 2.5 σ vertical amplitude (lower two rows right), in between the pairs of RRSs
at 690 and 720 GeV, 803 and 830 GeV and the pairs from 920 to 980 GeV, a whole “forest” of sharp
and deep minima of Plim has grown. We just note that the region between 830 and 860 GeV still has
high Plim with relatively small oscillations. The spin tune shows a whole series of symmetric jumps
around the 2-nd order resonance 2[Qy] between 700 and 720 GeV — the spin tune jumps between
the disjoint segments of curve arcing upwards above 2[Qy] and the curve below 2[Qy]. In this region
the kinetic resonance strengths, i.e. the half height of the jumps, range from approximately 10−3 to
3 · 10−2. There are also series of symmetric jumps around 800 and 830 GeV, and between 900 and
940 GeV as evidenced by the “fish tails”. Again the kinetic resonance strength ε is not constant with
energy but has certain minima ε ≈ 0. If we totally neglected the effect of possible polarisation losses
during acceleration and the negative impact of the horizontal and longitudinal motion on P lim, then we
would conclude that the region from 830 to 860 GeV supplies good conditions for operating HERA–p
with polarised protons. Of course, due to the obviously many kinetic resonances between 700 and 820
GeV with 2.5 σ of purely vertical motion, it is not very likely that a reasonable fraction of the beam
can be accelerated to this energy without significant loss of polarisation.

The next two figures, 5.27 and 5.28 are presented as “horrifying” examples and to demonstrate that
high snake periodicity does not help but can even be harmful in the case of an asymmetric machine
like HERA–p. Figure 5.27 contains the results of simulations with the 1b1b scheme and figure 5.28
is for the snake scheme afaf. Both schemes have the highest possible snake periodicity, Ps = 2, for 4
snakes and with ν0 = 1/2. For 1σ vertical amplitude the average Plim outside the residual resonance
structures is above 95% and the oscillation amplitude outside the RRSs is small, approximately 5%
for both schemes. But the highly periodic schemes are the only ones tested so far that provide spin
tune jumps at the 2-nd order resonance conditions already for 1 σ vertical amplitude! In fact the
ramp simulation in figure 4.20 (top right) was performed with the 1b1b scheme at 0.75 σ. At the
low momentum end of the scans, these resonance crossings are at just two of the four RRSs, namely
the pair framing 600 GeV. With increasing momentum the spin tune shift becomes large enough to
meet the 2-nd order resonance condition at the third RRS of each set. At 1.5 σ almost every RRS
contributes a pair of resonances. With increasing orbital amplitudes, in more and more ranges of p0,
Plim begins to oscillate between 0 and its steadily decreasing maximal values. In particular the afaf
scheme at 2.5 σ produces strong oscillations of Plim between 0% and 90% almost everywhere beyond
630 GeV. At 2.0 and 2.5 σ with both schemes we observe regions in which almost every oscillation of
the amplitude dependent spin tune crosses the 2-nd order resonance. It is in precisely these regions
that the curve of Plim oscillates strongest. Thus, the two highly periodic schemes 1b1b and afaf are
definitely not capable of providing a large beam polarisation at high energy in HERA–p.

Figure 5.29 shows the results of the SODOM-2 simulations with the luminosity optics and the snake
scheme 1d3c, which was obtained by linear long range filtering with the optics hp96lu820. With 1σ
vertical amplitude, not only is the average Plim outside the RRSs with 97% the largest so far, but also
only every 4-th RRS generates a deep minimum of Plim. Actually only three out of four RRSs are
visible at all and only one is particularly pronounced with this low orbital amplitude. The symmetrised
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Figure 5.27: SODOM-2 scans of Plim(p0) and ν(p0) for 1, 1.5, 2 and 2.5 σ vertical amplitude with the luminosity optics
hp96lu820 and the snake scheme 1b1b.
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Figure 5.28: SODOM-2 scans of Plim(p0) and ν(p0) for 1, 1.5, 2 and 2.5 σ vertical amplitude with the luminosity optics
hp96lu820 and the snake scheme afaf.
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Figure 5.29: SODOM-2 scans of Plim(p0) and ν(p0) for 1, 1.5, 2 and 2.5 σ vertical amplitude with the luminosity optics
hp96lu820 and the snake scheme 1d3c.
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spin tune spread is about 0.02 and therefore approximately the same as for the 3111 scheme presented
in figure 5.26. We note that with the exception of the 3111 scheme all snake schemes produce relatively
large oscillations of Plim around a relatively low average particularly in the range from 800 to 830 GeV.
On the contrary, the scheme 3111 (figure 5.26) has the lowest 〈Plim〉p0 with just 1 σ vertical amplitude
in the whole momentum range from 500 to 1000 GeV among all tested schemes. With the scheme
1d3c and at 1.5 σ (figure 5.29) the average Plim outside the RRSs is reduced but there are still regions
around 550, 660 and 840 GeV in which 〈Plim〉p0 is more than 95% and the oscillations are small. The
strongest RRSs at 580, 690, 803 and 920 GeV have acquired some close–by minima of significant depth.
Moreover the background oscillations in the region between the strongest RRSs and the adjacent weak
RRSs at higher momentum are particularly large. The symmetrised spin tune spread ∆sym

p0 (ν) has
grown to 0.035 but is still sufficiently small to exclude crossing of the closest by low order resonances.
At 2 σ the amplitude dependent spin tune touches or crosses the resonance lines at several places,
namely near 580, 750, 803 and 920 GeV. In these regions 〈Plim〉p0 is significantly diminished. But
even at 2.5 σ the momentum regions around 570, 660 and 840 GeV provide 〈Plim〉p0 ≈ 95%, 85% and
83% respectively and with low oscillation amplitudes. If one did not have to care about acceleration
and if horizontal and longitudinal motion was neglected, one might select these momentum ranges as
possible working points for polarised luminosity operation in HERA–p.

The next two figures, 5.30 and 5.31, were produced for predicting regions of potential polarisation
losses during acceleration. The simulations were performed using the separation optics hp96se820.
Actually in the HERA–p ramp procedure the focusing strengths are interpolated from hp96zw300
at 300 GeV to hp96se820 at 670 GeV, but the variations are small. Moreover at the stage of the
development of SPRINT at which these simulations were performed, the Rampable Optics System (ROS )
was not yet implemented. Figure 5.30 presents the results obtained with the snake scheme 3111. With
1 σ vertical amplitude the overall shape of Plim(p0) is approximately the same as with with hp96lu820
in figure 5.26. The average Plim is hardly reduced but the oscillation amplitudes are about 1.2 times
larger with hp96se820 than with hp96lu820. Moreover each three out of four RRSs produce deeper
minima. Nevertheless, with the separation optics each 4-th RRS still almost vanishes and ∆sym

p0 (ν)
is approximately 0.02, as with the luminosity optics. Note that owing to the increased vertical tune,
which is 32.27253 for hp96lu820 and 32.30812 for hp96se820, the 2-nd order resonance condition is
out of the plotted spin tune range and the lowest order resonances in this range are κ = 5[Qy] − 1
and κ = 2 − 5[Qy] which are both at a distance of 0.0406 from ν0 = 1/2. The fact that the closest by
low order resonances are actually closer to ν0 than with the optics hp96lu820, i.e. about 0.041 instead
of 0.045, explains why Plim is decreased and shows stronger oscillation amplitudes even outside the
strong RRSs. At 1.5 σ the static polarisation limit is still relatively calm and ∆sym

p0 (ν) ≈ 0.03 does not
allow any crossing of low order resonances. At 2.0 σ the only obvious jumps of the spin tune across
the 5-th order resonance line are around 830 and between 920 and 930 GeV. In these regions P lim

is strongly oscillating and its average over the momentum is significantly reduced. Note that at the
RRSs around 690 and 720 GeV there are spin tune points outside the displayed range that might be
caused either by lack of convergence of the algorithm used, by switching between different branches of
ν or by the perturbing impact of resonances of order higher then 5. At 2.5 σ the amplitude dependent
spin tune crosses the 5-th order resonance repeatedly between the pairs of strong RRSs around 600,
700, 820 and 930 GeV. In each of these momentum ranges Plim is strongly oscillating and at least in
the latter three ranges 〈Plim〉p0 is below 50%. Therefore even with horizontal and longitudinal motion
not taken into account, we can see that acceleration with the 3111 scheme and the fractional vertical
betatron tune of approximately 0.31 is not possible beyond 580 GeV without depolarising a noticeable
fraction of the beam.
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Figure 5.30: SODOM-2 scans of Plim(p0) and ν(p0) for 1, 1.5, 2 and 2.5 σ vertical amplitude with the separation optics
hp96se820 and the snake scheme 3111.
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Figure 5.31: SODOM-2 scans of Plim(p0) and ν(p0) for 1, 1.5, 2 and 2.5 σ vertical amplitude with the separation optics
hp96se820 and the snake scheme 3e1b.
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The simulation data for the snake schemes 1b1b and afaf with the separation optics hp96se820
are not displayed because of lack of time, but the results are qualitatively the same, if not worse,
than the results obtained with the luminosity optics in figures 5.27 and 5.28. Both schemes generate
crossings of the 5-th order resonance at three of each four RRSs already with 1 σ vertical motion.
This just verifies the result from the simulation using the hp96lu820 optics, namely that both schemes
are not capable of providing any usable polarisation at high energy in HERA–p.

Figure 5.31 shows the results of the SODOM-2 momentum scans performed with the hp96se820
lattice and the snake scheme 3e1b. At 1 σ the average Plim outside the RRSs is larger than it was with
3111. We recall that the snake scheme 3e1b was obtained by linear filtering in the range from 39.5
to 821.5 GeV with the hp96se820 lattice. In fact over a wide momentum range the maxima of P lim

are close to 100%. The depths of the minima at the RRSs are distributed differently, compared to
snake scheme 3111 (figure 5.30). With both schemes every 4-th RRS almost vanishes but the strongest
among the other three out of each four is much more enhanced compared to 3111. The symmetrised
spin tune spread is approximately 0.02. At 1.5 σ the oscillations of Plim are increased. The average
outside the RRSs is nevertheless, with more than 90%, still higher than with snake scheme 3111 of
figure 5.30. At the strongest RRSs around 500, 610, 720, 830 and 940 GeV the tendency of P lim to
develop deep neighbouring minima can clearly be seen. Note that the RRS at 803.5 GeV analysed
in detail in section 5.3.1 is not among the strongest although the corresponding intrinsic resonance
strength for the flattened HERA–p without main snakes in figure 5.3 (bottom) is the strongest up
to that energy. On increasing the vertical amplitude to 2.0 σ we find that although the average P lim

decreases further there are still regions with maximal Plim close to 99%. In particular there are such
momenta just below 800 GeV. The number of neighbouring deep minima has continuously increased
especially around 720, 830 and 940 GeV, but at least below 800 GeV there are no visible signs of
the spin tune crossing one of the two close–by 5-th order resonances. Around 830 and 970 GeV ν
comes very close to κ = 5[Qy] − 1 and Plim oscillates strongly in these regions but the amplitude
dependent spin tune has no visible discontinuities, indicating that the kinetic resonance strengths are
weak. Increasing the vertical amplitude further to 2.5 σ finally generates broad regions from 750 to 770
GeV, from 800 to 830 GeV, from 920 to 950 GeV and from 970 to 1000 GeV in which Plim oscillates
violently. In these regions and in particular at the RRS at 690 GeV the amplitude dependent spin
tune crosses the 5-th order resonances. This snake scheme 3e1b is the only one among those tested
so far which does not show any kinetic resonances with 2σ vertical amplitude up to an energy close
to 800 GeV. Thus we expect it to allow acceleration of a polarised beam with purely vertical motion
to about 800 GeV. Nevertheless, in section 5.3.2 we have seen in figure 5.22 that with horizontal and
longitudinal motion polarisation is lost at the RRS at 803.5 GeV.

One way to maintain adiabaticity during the ramp and have high Plim at some constant collision
energy has not yet been exploited, namely the optimisation of the orbital tunes. In this section we
have seen that the amplitude dependent spin tune seen as a function of the reference momentum
oscillates around ν0 with some characteristic spread ∆sym

p0 (ν). If the resonance conditions [ν] = [~k · ~Q]

with moderate |~k| cannot be met, then the spin motion is most likely to be adiabatic, i.e. Pdyn ≈ const.
Therefore it is worthwhile to optimise the orbital tunes inside the bandwidth of orbital stability of
HERA–p. Owing to the limited computing power, it is not yet possible to perform long range scans of
Plim(p0) with more than one orbital mode excited to a significant value and with reasonable accuracy
close to a RRS. Moreover the amplitude dependent spin tune cannot yet be calculated with more
than one orbital mode in a RRS at all. Therefore, to get an estimate for the feasibility of polarised
protons in HERA at high energy, ramp simulations with snake schemes and optics, that have been
optimised on the basis of qualitative experience, have to be performed. In sections 5.4.1 and 5.4.2 a
hypothetical ramp table will be introduced that fixes at least the vertical tune to a value acceptable
for orbital stability during the acceleration and which is optimal in the sense that the space for spin
tune variations is maximised.
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5.4 HERA–p with modified orbital tunes

In sections 4.8 and 4.9 we have seen that Plim has a pronounced minimum of characteristic width εκ
whenever the amplitude dependent spin tune ν crosses a resonance condition κ = k0 + ~k · ~Q with a
kinetic resonance strength εκ. Moreover we have seen that Plim can be seriously diminished whenever
ν is sufficiently close to some κ with sufficiently large kinetic resonance strength. In section 4.10 we
have seen that whenever some parameter λ of the spin–orbit system is continuously changed so that ν
crosses the resonance condition κ, then the average spin action changes in the adiabatic limit according

to a generalised Froissart–Stora formula (4.104) with ε = εκ and the ramp speed α ≈ (Dλ ν̃)Dθ λ
∣∣∣
ν̃=κ

.

In sections 4.9, 5.3.1, 5.3.2 and 5.3.3 we have seen that the closeness to or crossing of higher order
kinetic resonances in HERA-p with 6 flattening snakes and 4 or 8 main snakes has a strong impact
on the maximum attainable polarisation at high energy in HERA–p. Therefore it seems quite natural
to try to find a set of orbital tunes such that the allowable symmetrised spin tune spread ∆sym

p0 (ν) on
all reasonably populated tori is maximal — under the constraint that this set of orbital tunes is still
acceptable for acceleration and storage. The limitations on the tunes due to the dynamic aperture
in storage mode are quite strong. In principle the transverse tunes should be kept very close to the
actual luminosity tunes [Qx] = 0.292 and [Qy] = 0.297 or to the interchanged tunes [Qx] = 0.297
and [Qy] = 0.292. Thus shifting at least the vertical tune as far as possible below the classical snake
resonant tune 3/10 is a potential source of improvement. This puts preference on [Qx] ≈ 0.297 and
[Qy] ≈ 0.292 with a tendency to seek even lower possible values of [Qy] and [Qx].

In this and the following sections we will restrict ourselves to a sequence of optics (ramp scheme)
with tunes optimised for ramping, since it became clear in section 5.3.3 that even with the old tunes
one can find a suitable working point at high energy although not in particular at 820 GeV. From figure
4.19 we conclude that the allowable ∆sym

p0 (ν) has local maxima at odd order orbital resonances. In
HERA–p, getting too close to the 4-th and 3-rd order resonances [Qx,y] = 1/4,

1/3 decreases the beam
life time significantly and accidental crossing of one of these two resonances leads to a complete loss
of the beam. Therefore the lowest odd order orbital resonance close to the standard tunes mentioned
above is [Qy] = 2/7 = 0.285714. A preliminary experiment [HPlb] after the e± beam was dumped
showed that the vertical tune can be set very close to 2/7 and even cross it without significant increase
of the beam loss rates at 920 GeV if no beam–beam effect from the e± beam is present. Thus the
order of the orbital resonance (7) is already high enough to allow beam operation at least during
the ramp procedure. Nevertheless, the order of the resonance is still low enough to potentially cause
problems with the evaluation of the turn–by–turn average of the ramped polarisation Prmp due to
a too crude sampling of the orbital phase space (analogous to section 4.5). Therefore the fractional
vertical betatron tune for all further simulations will be

[Qsim
y ] ≈ 0.286 (5.18)

which is slightly above 2/7. Figure 5.32 shows the resonance lines κ = [kQy] which are inside the range
0.27 ≤ [Qy] ≤ 0.305 and 0.4 ≤ κ ≤ 0.6 up to order 20 (which does not appear in this range). Note the
region free of resonance conditions indicated by the “diamond” in the middle of figure 5.32 around
Qy = 2/7. If ν0 = 1/2 and the influence of longitudinal and horizontal motion is neglected, then the
maximum allowable ∆sym

p0 (ν) is given by

∆sym
p0 (ν) <

1

2
− [kQy] , 1 ≤ k ≤ 20 , (5.19)

where the closest by resonance orders are k =5, 12 and 19. Table 5.2 contains the fractional vertical
tunes [Qy] at which the maximum allowable ∆sym

p0 (ν) around ν0 = 1/2 is 0.06, 0.05 and 0.04 when
the closest by resonance of order 19, 12 and 5 is taken into account. The higher the order of the
resonance which is not to be touched, the closer must [Qy] be to 2/7. In the 5-th column of table 5.2
the maximum allowable symmetrised spin tune spread is given for [Qy] = 0.286 and k =19, 12 and 5.
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∆sym
p0 (ν): 0.06 0.05 0.04 [Qy] =0.286

k [Qy] ∆sym
p0 (ν) :

19 0.2863 0.2868 0.2874 0.066
12 0.287 0.2875 0.2883 0.068
5 0.288 0.290 0.292 0.070

Table 5.2: Column 2 to 4 : Maximal [Qy] to allow ∆sym
p0

(ν) =0.06, 0.05 and 0.04 around [Qy]
∼
> 2/7. Column 5: The

maximum allowable symmetrised spin tune spread at [Qy] = 0.286.

Another constraint on the tunes is that the dynamic aperture be sufficiently large. In HERA-p the
beam loss rates are lowest when the machine is operated close to the difference resonanceQy−Qx =∈ Z.
In practice |[Qy] − [Qx]| ≈ 0.005 has been adopted for the ramp and storage in HERA–p. Therefore,
and in order that [Qx], at least, does not deviate too far from the optimal region 0.292 ≤ [Qx] ≤ 0.297,
the setting

[Qsim
x ] ≈ 0.291 (5.20)

will be used in the following.

In the standard HERA–p ramp procedure of 1996 the injection optics hp96inj40 is remains un-
changed until 150 GeV and then as the acceleration continues linear interpolation of the magnet
currents steers the parameters to those of the intermediate optics hp96zw300 at 300 GeV. From 300
GeV to 670 GeV the hp96zw300 is linearly interpolated to the separation optics hp96se820, which is
then kept unchanged until 820 GeV. Then, after the e±–ring has been filled and ramped, the lumi-
nosity optics hp96lu820 is obtained by linear interpolation of the magnet currents from hp96se820 to
hp96lu820 at constant energy. The complete proton ramp procedure from hp96inj40 to hp96se820,
without injection optimisation and filling takes 25 to 30 minutes. In order to make such changes to
the optics while simulating acceleration, the Rampable Optics System was developed4 and incorpo-

4The Rampable Optics System was neither taken from the optics code PETROS nor from the spin tracking code SITROS.
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step pi Qz,i source target trigger pf ∆p δE/ turn
GeV 10−3 lattice lattice points GeV GeV KeV

1 40 0.65894 hp96inj40 hp96inj40–90 – 90 50 3.0
2 90 0.91489 hp96inj40–90 hp96inj40–150 – 150 60 3.0
3 150 0.93635 hp96inj40–150 hp96zw230 8 230 80 6.3
4 230 0.83537 hp96zw230 hp96zw300 7 300 70 6.3
5 300 0.78714 hp96zw300 hp96zw400 4 400 100 16.5
6 400 0.77252 hp96zw400 hp96zw550 6 550 150 16.5
7 550 0.76020 hp96zw550 hp96se820–650 4 650 100 16.5
8 650 0.75513 hp96se820–650 hp96se820 – 820 170 22.3
9 820 0.62379 hp96se820 hp96lu820 – 820 0 0.0

END 820 0.62511 hp96lu820 — – — Aver= 8.8

Table 5.3: The modified ramp table for HERA–p

rated in SPRINT. The ROS modules not only implement the linear interpolation between two lattices
at given reference momenta but moreover allow to set trigger points at which the rates of variations
of the strengths of various elements are increased or decreased. This feature is particularly useful
since the orbital tunes are not linear functions of the quadrupole strengths and the transverse tunes
would actually cross the quarter integer resonance when naively interpolating between hp96inj40 and
hp96zw300. Thus the focusing strengths of certain quadrupoles (QP40 and QP42) have to be steered
explicitly to keep the transverse tunes close to their specified values. In addition 3 more “intermediate”
optics, hp96zw230, hp96zw400 and hp96zw550 have been generated to allow for a sufficient number
of possible break points on the ramp between 40 and 820 GeV. It should be noted that these addi-
tional intermediate optics were obtained by linear interpolation between the reference files hp96inj40,
hp96zw300 and hp96se820 and by subsequent tune correction. They were not explicitly matched to
minimise β- and dispersion–beat.

An attempt was made to mimic the real behaviour of the synchrotron tune during acceleration
as closely as possible — with the exception that from 650 to 820 GeV the synchrotron tune Qz was
reduced instead of increased in order to move possible low order synchrotron sidebands of the spin–
orbit resonances as close as possible to their parent resonances. Note that the effective strength of
synchrotron sidebands is enhanced for decreasing Qz [LB96]. Again, as in section 5.3.2 the 6 adjacent
cavities in HERA–p have been substituted with a single cavity at the centre of the positions of the
208 Mhz systems.

Table 5.3 shows the modified ramp table to be used in the following. The ramp table consists of
9 steps. During steps 3 to 7 up to 8 trigger points, modifying the rates of variation of the focusing
strengths of the QP40 and QP42 magnets, have been used to stabilise the transverse tunes. The
suffixes –90, –150 and –650 on the optics names indicate that the cavity strength was adjusted to
produce the correct synchrotron tune at the reference momenta of 90, 150 and 650 GeV respectively.
Columns 2, 7 and 8 contain the initial and final reference momenta and the total momentum increase
of the ramp step. The last column (9) contains the approximate energy gain per turn of the real
HERA ramp procedure of 1998/1999. The last entry in column 9 is the average energy gain per turn.
Although the ROS modules in SPRINT are able to interpolate between two lattices at constant reference
momentum, the last step from the hp96se820 to the hp96lu820 optics will not be discussed here. This
would only make sense if an optimal momentum for polarised e±–p collisions had been found.

Figure 5.33 shows the evolution of the orbital tunes during momentum variation according to the
modified ramp table 5.3. Qx and Qy are displayed to the left and Qz is shown to the right. Both plots

Neither of these programs is capable of simulating the effect of acceleration on orbit and spin — even without lattice
interpolation!



5.4. HERA–P WITH MODIFIED ORBITAL TUNES 171

0.285

0.286

0.287

0.288

0.289

0.29

0.291

100 200 300 400 500 600 700 800

Q
x 

, Q
y

p0 / GeV

modified-ramp-table

Qx
Qy

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

100 200 300 400 500 600 700 800

Q
z 

* 
10

3

p0 / GeV

modified-ramp-table

Qz * 103

Figure 5.33: The evolution of the orbital tunes during the ramp procedure with the modified ramp table.

show the behaviour of the tunes from 40 GeV with the optics hp96inj40 to 820 GeV with the optics
hp96se820. The 15 trigger points from 150 to 300 GeV can clearly be identified as cusps of the curve
Qx,y(p0) at which the vertical tunes come back to their “nominal” values. In between the cusps the
tunes drift away because of the non–linear dependence of the tunes on the lattice parameters. Note
that it is not yet possible to control the transverse tunes as exactly as in this simulation during a real
HERA ramp.

All further simulations were performed using the 3e1b snake scheme. The scheme was not only
obtained by linear long range filtering with the lattice hp96se820, but it also appeared most promising
during the simulations described in sections 5.3.2 and 5.3.3. The final reference momentum was chosen
to be 820 GeV although the discussions in sections 5.3.1, 5.3.2 and 5.3.3 did not really suggest this
momentum for luminosity operation with polarised protons. The main purpose of the ramp studies
in section 5.4.2 will be to ascertain the maximum momentum that can be reached with the optimised
tunes and the filtered 4–snake scheme.

5.4.1 Static evaluation of HERA with modified orbital tunes

In this section the Fourier based analysis of Plim and ν that was employed in section 5.3.3 is repeated
for the modified ramp table. The ROS modules are not only able to control interpolation between
various optics during real acceleration but also during static scans of the reference momentum.

Figure 5.34 shows the static polarisation limit Plim and the amplitude dependent spin tune ν
computed with the SODOM-2 algorithm over the complete momentum range of the HERA–p ramp
procedure. As in section 5.3.3 Plim and ν for the same vertical amplitude are displayed one above the
other. The vertical amplitudes are 1 σ (upper two left), 1.5 σ (upper two right), 2 σ (lower two left)
and 2.5 σ (lower two right). It can be observed in all 8 plots, that around 40 GeV the spin motion
in HERA–p with 4 filtered snakes is quite well behaved. Plim is close to 100% even at 2.5 σ and the
residual resonance structures (RRSs) are narrow and isolated. Even at the RRSs, at low energy the
symmetrised spin tune spread is small, for example ∆sym

p0 (ν) < 0.01 for p0 < 180 GeV. Note that owing
to the modified vertical tune no resonance conditions up to 19–th order occur in the plotted range of ν.
With increasing momentum the oscillations of Plim increase and hence Plim averaged over the regions
between the RRSs decreases. Nevertheless globally 〈Plim〉p0 is higher than with the original tunes in
figure 5.31. This is true for all amplitudes and even above 803.5 GeV. We note that because of the
modified tunes, with 2.5 σ vertical amplitude the region between the strong RRS at 720 GeV and the
RRS at 803.5 GEV is not filled with deep minima of Plim in contrast to figure 5.31. There is only one
region where the SODOM-2 algorithm did not converge. That is inside the RRS around 803.5 GeV with



172 CHAPTER 5. POLARISATION IN HERA–P

2.5 σ vertical amplitude. The non–convergence was verified with SODOM-2 using 128 Fourier harmonics
and stroboscopic averaging with more than 105 turns! There are two possibilities for the failure of
both algorithms in this parameter range. Either the effect of resonances of much higher order than
19 is so strongly enhanced that both algorithms fail for finite numbers of averaging turns or Fourier
harmonics respectively, or the spin motion in this region is not integrable or not even approximately
integrable at all. Nevertheless there is a momentum range directly below 800 GeV where ∆sym

p0 (ν) is
small and Plim has maxima close to 99% for all vertical amplitudes. Therefore the combined effect of
the optimised 4–snake scheme and the optimised ramp tunes seems to provide the possibility of high
beam polarisation at high energy in HERA–p, as long as the horizontal and longitudinal motions are
not taken into account.
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Figure 5.34: Modified ramp table : SODOM-2 scans of Plim(p0) and ν(p0) for 1, 1.5, 2 and 2.5 σ vertical amplitude.
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5.4.2 Ramp studies for the modified orbital tunes

In section 5.4.1 we have demonstrated that for 2.5 σ of purely vertical motion, with the snake scheme
3e1b obtained by linear long range filtering and with the modified tunes [Qsim

x ] ≈ 0.291 and [Qsim
y ] ≈

0.286, the symmetrised spin tune spread from 40 GeV to about 800 GeV is sufficiently small to avoid
the crossing of, or even closeness to, all kinetic higher order resonances up to 19-th order during the
HERA–p ramp procedure. Since our simulations were restricted to purely vertical motion we must test
the modified ramp table with all three orbital modes being excited at the same time. The only method
which is practically feasible for such a test over the whole momentum range with 6–dimensional orbital
motion is straightforward tracking, or to be more precise, acceleration with simultaneously varying
lattice parameters via the ROS modules of SPRINT .

While discussing the simulations presented in section 5.3.2 we have seen that acceleration studies
with just one particle and just a few momentum steps are relatively hard to interpret. On the contrary
tracking many particles and computing Prmp at many momentum steps with sufficient accuracy is quite
time consuming. In this section we will use an intermediate approach. The HERA ramp procedure
was simulated with various particle ensembles on various invariant tori and with different ramp speeds.
Let now (Mx ×My ×Mz) denote the number of initial orbital phases uniformly distributed in the
range [0, 2π) for the “horizontal’, “vertical” and “longitudinal” eigenplanes respectively. The complete
momentum range was simulated with

1. 5 times the original ramp speed as defined in table 5.3 and an ensemble of (1 × 2 × 2) = 4
particles,

2. 10 times the original ramp speed and

(a) (1 × 3 × 3) = 9 particles and

(b) (2 × 2 × 2) = 8 particles,

3. constantly 200 keV per turn and

(a) (1 × 3 × 3) = 9 particles and

(b) (2 × 2 × 2) = 8 particles,

4. 200 keV per turn up to 300 GeV and then with 5 times the original ramp speed and

(a) (1 × 9 × 1) = 9 particles for purely vertical motion and

(b) (2 × 2 × 2) = 8 particles.

The spins of the particle ensemble were set parallel to the n̂–axis at 40 GeV momentum and the initial
orbital phases.

Three particular regions around strong residual resonance structures, namely from 600 to 625 GeV,
710 to 740 GeV and 790 to 820 GeV were studied with the original ramp speed, i.e. 16.5 keV/turn
below 650 GeV and 22.3 GeV beyond 650 GeV. These regions were studied with (3 × 3 × 2) = 18
particles all on the same invariant torus and with 10 or 11 particles all at the same orbital phase but
placed on 10 (11) invariant tori so that the initial orbital amplitude linearly increases from torus 1 to
10 (11). In all simulations Prmp was calculated after every 100 to 1000 turns with initially 200 turns
for adaptive averaging (i.e. starting with T = 200 in (5.14)). Note that 4 to 18 particles are still not
enough to completely eliminate the artifacts from “few particle tracking” described in section 5.3.2,
but it should be taken into account that one such ramp simulation from 40 to 820 GeV took up to 2
weeks of CPU–time! In any case, the artificial effect of an apparent increase of the polarisation during
resonance crossing instead of the expected decrease is already averaged away to a greater extent with
4 particles than with just 1 particle.
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Figure 5.35 shows the results of ramp simulations on the invariant tori with (1,1,1)σ (top left),
(1.5,1.5,1.5)σ (top right) and (2,2,2)σ orbital amplitudes (all three plots below). On the (1,1,1)σ torus
no polarisation is lost w.r.t. Plim for all ramp speeds and all ensembles. Comparison with figure 5.34
(topmost left) shows that although figure 5.34 was produced with purely vertical motion, P lim of figure
5.34 is almost identical to Prmp of figure 5.35 (top left). In figure 5.25 we have seen that as long as
all orbital amplitudes, in particular the vertical amplitude, are small, the horizontal and longitudinal
amplitudes have an almost negligible impact on the invariant spin field compared to the vertical
amplitude. Comparison of the Prmp on the (1.5,1.5,1.5)σ torus with Plim at (0,1.5,0)σ in figure 5.34
(topmost right) shows that Prmp is still very close to Plim. Nevertheless, difference Plim−Prmp increases
continuously with momentum, namely up to 2% at top energy. This difference is not surprising since at
high energy and the further we go outwards in phase space the more important are the horizontal and
longitudinal amplitudes which were zero in figure 5.34. Moreover there are no sudden drops of Prmp

w.r.t. Plim. Since Prmp(p0) is the same for all simulated ramp speeds and ensembles, it is very likely
that the smooth decay of Pdyn w.r.t. figure 5.34 is caused by the enhanced opening of the invariant
spin field with increasing momentum once longitudinal and horizontal motion are introduced. The
middle row of figure 5.35 shows two representative examples of the simulation on the (2,2,2)σ torus.
With these orbital amplitudes we expect that the horizontal and longitudinal amplitudes significantly
decrease Plim w.r.t. the case of purely vertical motion. In the plot to the left the ramp was simulated
with 10 times the original ramp speed and an ensemble of 8 particles. Compared to P lim in figure 5.34
(3-rd row left), the ramped polarisation Prmp drops almost smoothly with energy indicating a static
effect of the increasing spread of the n̂–axis rather than lack of adiabaticity. The plot to the right
was obtained with 4 particles and 5 times the original ramp speed. It shows a sudden drop of Prmp

by about 5% at the RRS around 803.5 GeV. This drop clearly indicates that some kinetic resonance
has been crossed in a not completely adiabatic way. We note that the static SODOM-2 scans in figure
5.34 showed neither any obvious resonance crossings nor any candidates for non–integrability of the
spin motion up to 2 σ of purely vertical amplitude. Therefore it is very likely that the average spin
action was decreased during the crossing of a kinetic resonance which includes the horizontal and/or
longitudinal orbital modes. The fact that the final Prmp is larger with larger ramp speed indicates
that a kinetic resonance which is weak compared to the acceleration rate was crossed. The picture
at the bottom of figure 5.35 puts together the various curves of Prmp with different ramp speeds and
ensembles on the (2,2,2)σ torus in the zoomed momentum range from 800 to 820 GeV. Obviously
before entering the RRS around 803.5 GeV, all 5 curves are identical, but on exit they have a spread
of 5%. This clearly demonstrates that the resonance around 803.5 GeV is not crossed adiabatically.
Note that the bottom picture of figure 5.35 was obtained by zooming the last 20 GeV of complete
ramp simulations starting at 40 GeV. Therefore the fact that the 5 curves are identical up to the
graphical resolution before entering the RRS indicates the absence of depolarisation up to about 800
GeV on this invariant torus!

In [BG98b] similar simulations were performed with a model of HERA–p without vertical bends
around the O–IP, flattened vertical bend sections around the N- and S–IP and 4 main snakes, namely
a longitudinal snake at O and 3 radial snakes at S, W and N. The tunes were not modified. In these
simulations the polarisation on the (1,1,0) and (1,1,1)σ tori was preserved during acceleration to 820
GeV but on the (0,2,0) and (2,2,0)σ tori polarisation was lost completely around 750 and 600 GeV
respectively. This is consistent with the assumption that filtered snake schemes and modified orbital
tunes improve the preservation of polarisation on tori with large orbital amplitudes.

Figure 5.36 shows the results of the ramp simulations with the original ramp speed in momentum
ranges around the strong RRSs at 612, 721 and 803.5 GeV. The lattice parameters were interpolated
to the starting momenta of 600, 710 and 790 GeV. Then the spins of the particle ensemble were
set parallel to the n̂–axis at this momentum and the initial orbital phases and ramped through the
corresponding parameter range of the modified HERA ramp table. Figure 5.36 shows not only Prmp

defined in equation (5.14), but also the vertical component of the unit vector pointing in the direction
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Figure 5.36: Ramp simulations with the modified ramp table and the original ramp speed on various invariant tori
around the RRSs at 612, 721 and 803.5 GeV.
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of the ramped polarisation

u〈ξ〉y ( ~Jk, θk;N,T ) ≡ 1

Prmp( ~Jk, θk;N,T )

1

N

N∑

l=1

1

T

T∑

j=1

ŷ · ξ̂kl (θk + j2π) . (5.21)

Here we assume that Prmp( ~Jk, θk;N,T ) 6= 0. Far away from any RRS |u〈ξ〉y | is approximately 1 and
according to the adiabatic limit of equation (4.104) it should change sign during adiabatic resonance
crossing. Figure 5.36 (top left) shows Prmp(p0) during ramping from 600 to 625 GeV with 16.5 KeV
per turn. The 4 curves correspond to invariant tori of (1,1,1), (1.5,1.5,1.5), (2,2,2) and (2.5,2.5,2.5)σ
orbital amplitudes. The fact that on all tori up to (2,2,2)σ the ramped polarisation Prmp has max-
ima of between 90 and 99% and that these maxima have approximately the same height before and
after passing the RRS around 612 GeV, obviously indicates that on these tori the spin motion stays
adiabatic. On the (2.5,2.5,2.5)σ torus the polarisation vanishes almost completely close to the centre
of the RRS at 612 GeV. The curve of Prmp becomes extremely wiggly since for an ensemble of spins
almost completely perpendicular to their local n̂–axis , an enormous number T of tracking turns for
averaging Prmp is in principle required but could not be provided in the simulation run for the sake
of computational speed. Moreover since the polarisation was definitely lost after passage through the
RRS, the simulation on the (2.5,2.5,2.5)σ torus was stopped manually before 625 GeV were reached.

Figure 5.36 (middle left) shows u
〈ξ〉
y (p0) in the same momentum range and for the (1,1,1), (1.5,1.5,1.5),

(2,2,2)σ tori. On the (1,1,1)σ torus u
〈ξ〉
y stays always positive and close to 1 with the exception of

some fluctuations around 612 GeV. On both the (1.5,1.5,1.5)σ and (2,2,2)σ tori u
〈ξ〉
y changes its sign

twice, namely at the zeros of Prmp displayed in the plot directly above. This together with the ap-
parent preservation of the spin action demonstrates that actually two kinetic resonances are crossed
adiabatically. Two remarks are needed here. First, we have seen in earlier sections that inner tori,
due to their lower ∆sym

p0 (ν) are less likely to meet resonances than outer tori. The danger is of course
that, even if all kinetic resonances can be crossed adiabatically on all tori, on some tori the number of
adiabatically crossed resonances is odd whereas on others it might be even. Adiabatic crossing of each
such resonance implies that the spin moves from one hemisphere defined by the North pole û〈n〉 into
the other. In other words, if we choose the sign of n̂ ~J(p0) such that it fulfils lim ~J→~0 n̂ ~J = n̂0 = +ŷ,
then the spin action I changes its sign at the crossing of the kinetic resonance. Therefore, when
adding up the contributions of all tori to the beam polarisation, those tori on which an odd number of
resonances was crossed, contribute with a negative sign relative to those tori on which an even number
of resonances was crossed. Second, we have seen for example in figure 4.7 and in the SODOM-2 scans in
sections 5.3.3 and 5.4.1 that the amplitude dependent spin tune oscillates as a function of p0 around
some mean value close to ν0. If the symmetrised spin tune spread ∆sym

p0 (ν) is small enough to avoid
resonance conditions except for certain momenta inside the strong RRSs, then one might expect that
resonance crossings occur in pairs, i.e. “up” and “down”. These pairs are then typically (figure 4.7)
separated by less than 1 GeV, whereas the kinetic resonance strengths change on a scale of some
tens of GeV as can be seen in figures 5.26 to 5.31. If the two resonances of such a pair are close
enough so that their kinetic resonance strengths are approximately the same, and if the ramp speed
provides adiabatic passage through the first resonance, it is most likely to provide adiabaticity at the
second resonance of the pair also. Moreover the number of spin flips after complete passage through a
sequence of RRSs is even. Therefore the hope is that outside the RRSs the spin action has the same
sign on all tori. Nevertheless this has to be verified by suitable simulations. They will be presented in

figure 5.37. Figure 5.36 (bottom left) shows u
〈ξ〉
y (p0) during acceleration through the RRS around 612

GeV on the (2.5,2.5,2.5)σ torus. Here u
〈ξ〉
y changes sign already twice before the centre of the RRS at

612 GeV. Beyond 612 GeV u
〈ξ〉
y starts to oscillate violently but the modulations of these oscillations

indicate 2 or even 3 more resonance crossings. On exiting the RRS u
〈ξ〉
y has become negative, but

there is almost no dynamical polarisation left on the torus. Figure 5.36 (top and middle right) show
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Prmp(p0) and u
〈ξ〉
y (p0) on the tori up to (2,2,2)σ during acceleration from 710 to 740 GeV. In this

momentum range the lattice interpolation has already been completed except for variations of the
cavity voltage. Again we see that the maxima of Prmp before and after passage through the RRS
around 721 GeV are approximately of the same height on all tori, indicating adiabatic acceleration

in the complete region. Directly below (middle right) u
〈ξ〉
y (p0) is displayed. On all three tori u

〈ξ〉
y

strongly deviates from +1 during acceleration through the RRS around 721 GeV. In other words, the

unit vector of the ramped polarisation is strongly tilted from the vertical. On the (1,1,1)σ torus u
〈ξ〉
y

has a narrow isolated minimum of about −0.2 close to 721 GeV. On the (1.5,1.5,1.5) and (2,2,2)σ tori

u
〈ξ〉
y almost approaches −1, but in contrast to the RRS around 612 GeV, u

〈ξ〉
y is not constant between

the two spin flips. Note that inside the strong RRSs in a ring like HERA–p which is not mid–plane
symmetric, even the unit vector in the direction of the average n̂–axis , û〈n〉 can have a significant
deviation from the vertical. Therefore the signal for double resonance crossing is not so clear as it
was in the case of the RRS around 612 GeV. In figure 5.36 (bottom right) Prmp(p0) during accelera-
tion through the RRS around 803.5 GeV is displayed. On the (1,1,1) and (1.5,1.5,1.5)σ tori Pdyn is
preserved, but on the (2,2,2)σ torus the maxima of Prmp below the RRS are about 10% higher than
the maxima beyond 803.5 GeV. This indicates a drop of Pdyn by about 10% during passage of the
RRS. Comparing the depolarisation with different acceleration rates from figures 5.35 and 5.36 we
find that simulations with lower acceleration rates provide a slightly higher degree of depolarisation.
Therefore we can conclude that a kinetic resonance is crossed in the non–adiabatic limit of the gen-
eralised Froissart–Stora formula rather than in the adiabatic limit. We do not know the derivative
Dp0 ν̃ of the non–resonant contribution ν̃ to the amplitude dependent spin tune at the position of the
resonance. Therefore the actual kinetic resonance strength cannot be estimated from the dependence
of Pdyn on the acceleration rate. But we assume that the width of the resonant dip of Plim w.r.t. p0,
corresponding to the observed depolarising resonance, is small compared to the momentum range in
which the non–resonant approximation P̃lim changes more than the approximate 10 % polarisation
loss. As we have seen in figures 4.20 and 4.21, the non–adiabatic limit of the Froissart–Stora formula
is valid only if P̃lim is almost constant over the width of the resonance.
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Figure 5.37: Ramp simulations around the residual resonance structures at 612 and 721 GeV. Left: 11 particles with
linearly increasing orbital amplitudes from (1,1,1) to (1.5,1.5,1.5)σ. Right 10 and 11 particles with linearly increasing
orbital amplitudes from (0.1,0.1,0.1) to (1,1,1)σ and from (1,1,1) to (1.5,1.5,1.5) σ.

We have observed in figure 5.36 that the polarisation on certain tori may change its sign while
passing through a strong RRS. Owing to our general experience on the dependence of the amplitude
dependent spin tune on the reference momentum we have presumed that whenever kinetic resonances
are crossed because of an isolated strong swing of ν away from and back to ν0, they are crossed in
pairs with approximately the same level of adiabaticity. In figure 5.37 this hypothesis is tested in more
detail during acceleration through the RRSs around 612 and 721 GeV. Figure 5.37 (left) shows Prmp
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of an ensemble of 11 spins on a sequence of 11 invariant tori with orbital amplitudes of (1.0,1.0,1.0)σ,
(1.05,1.05,1.05)σ,. . . , (1.45,1.45,1.45)σ and (1.5,1.5,1.5)σ during acceleration from 600 to 625 GeV
with 16.5 keV per turn.

In figure 5.36 (middle left) we have seen that u
〈ξ〉
y ≈ const. = 1 on the (1,1,1)σ torus whereas u

〈ξ〉
y

changes its sign twice on the (1.5,1.5,1.5)σ torus. On both tori the acceleration process was almost
adiabatic. We therefore have to test if the acceleration stays adiabatic in the whole range of amplitudes
from 1 to 1.5 σ and if the spin is flipped an even number of times in the whole range.

For figure 5.37 (left), all 11 spins were located on a straight line in the amplitude domain defined
by (1, 1, 1)σ + x (0.5, 0.5, 0.5)σ, 0 ≤ x ≤ 1. If an isolated range in x of width larger than 1/10 exists
such that the spin action of a particle inside this range is changed from initially +1 to If and if all
other spin actions remain unchanged (If = 1) during the ramp, then the final Prmp from the ensemble
of 11 particles is equal to 〈Plim(p0,f )〉x (10 + If )/11. Thus a range of x of width 1/10 in which the
particle is partially (e.g. If ≈ 0.8) or completely (If ≈ 0) depolarised or flipped an odd number of
times (If ≈ −1) gives Prmp/〈Plim〉x ≈ 0.98, 0.9 or 0.8 respectively. Thus any effect leading to a change
of I by more than 20% for at least one particle should be clearly observable from the data. There is no
drop of Prmp, i.e. the maxima of Prmp are close to 99% before as well as after the RRS has been passed.
Therefore we conclude that none of the 11 spins flipped an odd number of times and none of them
suffered any decrease of I by more than 20%. In figure 5.37 (right) the same type of simulation has
been performed for the RRS around 721 GeV. Here two ensembles of 10 and 11 particles with linearly
increasing amplitudes from (0.1,0.1,0.1) to (1,1,1)σ and from (1,1,1) to (1.5,1.5,1.5)σ respectively have
been used in order not to bury the effect of each single particle in a too large ensemble. With both
ensembles the maxima of Prmp before and after acceleration through the RRS are about the same,
namely 99% and 97%, showing that none of the particles suffered from a change of I by more 10%

This simulation, like all the others in this thesis, does not provide any kind of strict proof for
the absence of depolarising effects during the complete ramp procedure or in the whole phase space
included in the chosen tori. It is still possible that at each of some singular energies some rather small,
possibly disjunct, subsets of tori get noticeably depolarised one after the other, or that the polarisation
direction in these regions is reversed w.r.t. the other tori. The parameter space defined by the direct
product of the momentum and the amplitude domain is 4–dimensional and the dependence of the
invariant spin field and the amplitude dependent spin tune on these parameters, even with fixed
orbital tunes, is in general too complicated for one to even try to sample it sufficiently densely with
static and ramp simulations. Nevertheless it seems unlikely that kinetic resonances that contribute
to depolarisation at one energy in one region of phase space stay confined to that region for all other
energies. Therefore long range scans of the reference momentum and long range ramp simulations
using a limited set of tori should provide a reasonably secure answer to the question of whether or not
depolarisation occurs inside the torus with the maximal amplitudes.

Figure 5.38 shows the results of ramp simulations with the modified ramp table on the (2.5,2.5,2.5)σ
torus for various ramp speeds and ensembles. The top row of plots was obtained by ramping the
ensembles with (1× 3× 3) (left) and (2× 2× 2) particles (right) and for a constant energy gain of 200
keV per turn. The middle row displays Prmp for the same ensembles but with 10 times the original
ramp speed from table 5.3. The bottom picture shows Prmp for the (1 × 2 × 2) ensemble and 5 times
the original ramp speed. Obviously the spin motion can only be stabilised by means of the chosen
snake scheme and orbital tunes below the RRS around 390 GeV. Comparison with Plim in figure 5.34,
which is of course over optimistic since it does not contain the effect of the horizontal and longitudinal
amplitudes, and the sudden drops of Prmp itself suggest that on passage through this RRS Prmp makes
in all but one simulation a sudden drop by 5 to 15%. For the ensemble with (1×3×3) particles ramped
with 10 times the real acceleration rate no visible drop of Prmp occurs. The next drop occurs at the
RRS around 580 GeV. Here almost all polarisation is lost with the (1 × 2 × 2) ensemble which is
closest to the original ramp speed. We note that the positions of obvious changes of |Pdyn| are the
same for all 5 simulation runs. With increasing momentum further non–adiabatic changes of |Pdyn|
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Figure 5.38: Ramp simulations with the modified ramp table on the (2.5,2.5,2.5)σ invariant torus.
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occur only at the RRSs around 612, 690, 720 and 803.5 GeV. The more the ensemble is depolarised,
i.e. |Pdyn| is reduced, the more likely it is that artifacts of “few particle tracking” show up. This
means that the apparent increases of Prmp must be corrected in the sense that for each sudden change

∆P ≡ |P frmp − P irmp|,
P f,corrrmp = max{0, P i,corrrmp − ∆P} (5.22)

rather than P frmp should be used as a conservative estimate of the beam polarisation after passage

through the RRS. Here P i
rmp and P frmp are the uncorrected few particle multi–turn polarisations directly

before and after the RRS. We find that P corr
rmp ≈ 0 and hence |Pdyn| ≈ 0 after the RRS at 721 GeV in all

5 cases! We therefore conclude that on the (2.5,2.5,2.5)σ torus the spin action I = Ŝ ·n̂ is not preserved
up to high energy. The actual level of depolarisation cannot be computed to a high accuracy with this
method, but nevertheless the above results imply a strong restriction on the possible beam average
of the polarisation. Imagine that Plim = 1 at some high energy working point for polarised e±–p
collisions at HERA–p. If Pdyn = 1 at this working point for all tori with all amplitudes less than 2.0
σ, and Pdyn = 0 for all tori with one amplitude greater than 2.0 σ, then the fraction of the beam which
remains polarised is F3(2, 2, 2) ≈ 65%. Thus with an initial polarisation of about 80% from the source
and no losses in the pre–accelerator chain we find P ≈ 0.8F3(2, 2, 2) ≈ 50%. If we assume Pdyn = 1
on all tori with all amplitudes less than 2.5 σ, and Pdyn = 0 for all tori with one amplitude greater
than 2.5 σ we obtain a beam average of P ≈ 0.8F3(2.5, 2.5, 2.5) ≈ 70%. Both estimates are valid
only within the simplification of linearised orbital motion and without inclusion of depolarising effects
driven by the closed orbit perturbations. In HERA–p rms horizontal and vertical orbit distortions
are typically 2 mm. In a flat model of HERA for this rms closed orbit the imperfection resonance
strengths at the positions κ0 ∈ N have been estimated to reach up to about 3 in [AC96]. Ramp
simulations [BG98b, NG99] assuming a horizontal and vertical rms closed orbit deviation of 0.5 mm
after applying the MICADO correction method, show noticeable loss of polarisation around 400 GeV
already on the (1,1,0)σ torus.

In fact the assumption that polarisation is lost whenever any of the orbital amplitudes exceeds 2
or 2.5 σ is surely too pessimistic. Already in section 5.3.2 we have seen that the vertical amplitudes
up to which no polarisation is lost can be increased if the longitudinal and horizontal amplitudes
are decreased and furthermore that rather large horizontal and longitudinal amplitudes do not imply
depolarisation, provided that the vertical amplitude is sufficiently small. Recall that the SODOM-2 scans
in figure 5.34 did not show any visible kinetic resonances or regions of non–integrability below 803.5
GeV. Figure 5.39 shows the results of ramp simulations with particles distributed on tori with either
purely vertical amplitudes, namely 2.5 and 3σ or just a small vertical amplitude (1σ) and large
horizontal and longitudinal amplitudes, namely 2.5σ. The ramp speed was 200 keV/turn until a
reference momentum of 300 GeV was reached. Then the ramp speed was reduced to 5 times the
original value given in table 5.3. For figure 5.39 (top left) an ensemble of 9 particles uniformly
distributed on the 2.5 σ ellipse in the vertical eigenplane was ramped from 40 to 820 GeV according
to the modified ramp table. Here a comparison with the corresponding static scan of P lim(p0) in figure
5.34 shows that for p0 < 803 GeV, Prmp = Plim up to the graphical resolution. This tracking result
verifies the assumption that whenever the spin–orbit system is integrable (û1, n̂ and û2 exist), or
almost integrable (the spin motion is well approximated by (4.25)), and no spin–orbit resonances are
crossed, the ramp procedure is adiabatic in the sense of theorem 4.8. In particular static scans of P lim

and ν w.r.t. p0 suffice to decide if integrability and absence of resonances can be guaranteed!

At the RRS around 803.5 GeV the polarisation on the (0,2.5,0)σ torus is almost completely lost.
Recall that with 2.5 σ vertical motion (figure 5.34 lower two right) there was a region inside this RRS in
which neither the SODOM-2 method even with 128 Fourier harmonics included nor the SPRINT method
with more than 105 averaging turns seemed to converge, although there was no kinetic resonance of
moderate order within the symmetrised spin tune spread in that momentum range. The sudden death
of polarisation exactly during passage through this region indicates that the non–convergence of the
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Figure 5.39: Ramp simulations with the modified ramp table on the invariant tori with (0,2.5,0)σ, (0,3,0)σ and
(2.5,1,2.5)σ

SPRINT and the SODOM-2 methods is not caused by any inadequacy of the algorithms used but either
by a pathological invariant spin field or even the non–integrability of spin motion in this parameter
range. Figure 5.39 (top right) shows Prmp(p0) for an ensemble of 9 particles distributed uniformly on
the 3 σ vertical ellipse. Here polarisation is lost successively during acceleration through the RRSs
around 470, 580, 610, 720 and 803.5 GeV. In fact we find Prmp ≈ 0 already beyond 720 GeV. In figure
5.39 (bottom) the ramped polarisation Prmp(p0) is displayed for an ensemble of (2 × 2 × 2) particles
on the torus with (2.5,1,2.5)σ orbital amplitudes. The polarisation is preserved even up to 820 GeV,
but note that only approximately 6% of the particles of the beam that are included in the (2.5,1,2.5)σ
torus are not already in the (2,2,2)σ torus which we already know provides high polarisation around
800 GeV.

In principle all tori with horizontal, vertical and longitudinal amplitudes between 2 and at least
3 σ have to be sampled by similar ramp simulations. Even if the discretisation of the amplitudes is
held to steps of 0.5 σ, which might still be too crude, there are 23 = 8 such tori to simulate. Due
to lack of time these simulations could not be done during the preparation of this thesis. Finally,
after the stability of polarisation on various tori is analysed, ramp simulations of large ensembles
of spins with a Gaussian distribution in all orbital amplitudes and with approximately the original
ramp speed should be done to produce realistic estimates for the polarisation at the chosen working
energy. Yet these conditions for simulations seem to be impossible to fulfil with existing computer
hardware. Nevertheless figure 5.39 shows that P ≤ 70% might be somewhat pessimistic.The fact
that particles on tori with amplitudes up to 2 σ in all three planes can be accelerated to about 800
GeV with 4 main Siberian Snakes is an improvement in comparison with the results from section
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5.3.2 where depolarisation already occurred on the (1.5,1.5,1.5)σ torus. The obvious problems during
acceleration through the RRS around 803.5 GeV suggest a target momentum of close to 800 GeV but
below 803 GeV. At this momentum we find Prmp ≈ Plim up to 2 σ in all planes. Let Plim(a) with
Plim(0) = 1 be the static polarisation limit at some optimal energy on the torus with (a, a, a)σ orbital
amplitudes. We now assume Plim ≥ Plim(a) for all tori (ax,ay,az) with ai ≤ a, i = x, y, z. Moreover
we assume that Pdyn(a) is Pinitial for all tori with ai < amax and that Pdyn(a) = 0 for all tori for which
at least one of the ai ≥ amax. We know that this is already a pessimistic approximation because it
neglects the contribution of tori with, for example, ay ≈ 0 and ax > amax. Given a discrete sample
A = {ak|k = 0, . . . ,m; a0 = 0, am−1 < amax < am}, of tori with akσ in all three planes, we can put
approximate bounds on the polarisation with the estimate

m−1∑

k=1

Plim(ak)
(
F3(ak, ak, ak) − F3(ak−1, ak−1, ak−1)

)
≤ P

Pinitial
≤

m∑

k=1

Plim(ak−1)
(
F3(ak, ak, ak) − F3(ak−1, ak−1, ak−1)

)
(5.23)

where F3 is defined in equation (5.8). The lower bound is given by the approximations am−1 = amax

and Plim(x) = Plim(ak) for x ∈ [ak−1, ak] whereas the upper bound is given by the approximations
am = amax and Plim(x) = Plim(ak) for x ∈ [ak, ak+1]. Inserting the maximal values of Prmp shown
in figure 5.36 (bottom right) close to 800 GeV as Plim(1) = 0.99, Plim(1.5) = 0.97, Plim(2.0) = 0.95
and extrapolating to Plim(2.5) = 0.90, we obtain as a crude approximation for the equilibrium beam
polarisation

62% ≤ P

Pinitial
≤ 85% , (5.24)

In order to increase the luminosity in HERA electron cooling of the proton beam in PETRA has
been proposed [BB99, WB99, GHS99]. In these proposals it is assumed that the counteracting effect
of intra–beam scattering prevents the horizontal emittance from being significantly reduced, but it is
expected that a reduction of the vertical emittance by a factor of 2 to 5 would be possible. Apart
from increasing the maximum luminosity, another effect of the reduced vertical emittance would, of
course, be that larger fractions of the beam are contained inside of tori with given amplitudes. If the
normalised emittance is reduced from εN to εN/κ, then the beam size is reduced from σ to σ/

√
κ.

Rescaling our results but keeping the horizontal and longitudinal emittances unchanged we have

m−1∑

k=1

Plim(ak)
(
F3(ak, ak

√
κ, ak) − F3(ak−1, ak−1

√
κ, ak−1)

)
≤ P

Pinitial
≤

m∑

k=1

Plim(ak)
(
F3(ak, ak

√
κ, ak) − F3(ak−1, ak−1

√
κ, ak−1)

)
(5.25)

and

71% ≤ P

Pinitial
≤ 89.1% for κ = 2 and 72% ≤ P

Pinitial
≤ 89.4% for κ = 5 , (5.26)

showing that decreasing the vertical emittance by more than a factor of 2 does not have any significant
effect on this crude estimate. If in addition the horizontal and the longitudinal emittances could be
reduced by a factor of approximately 1.5 in PETRA and the intra–beam scattering would not blow–up
the emittances before the ramp had completed in HERA, then polarisations of 86 to 96% of P initial

could be achieved. In any case electron cooling in PETRA seems to be helpful for providing the
highest polarisation at high energy.



Chapter 6

Summary and conclusion

The keys to the analysis of proton spin dynamics in high energy accelerators are the invariant spin
field n̂, the amplitude dependent spin tune ν and the adiabatic invariance of the spin action I ≡ Ŝ · n̂.
With these concepts the polarisation state of a stored beam can be decomposed into a static property
of the lattice and the energy, called the static polarisation limit Plim and a history dependent dynamic
property of the beam, namely Pdyn. In particular for an asymmetric lattice like HERA–P at high
energy where all first order intrinsic spin–orbit resonances are excited and many of them have a large
strength, simple models and their predictions based either on perturbation theory or on the assumption
of isolated resonances must fail.

In collaboration with Dr. G. H. Hoffstaetter and Prof. Dr. K. Yokoya, who supplied the core
routines for the revised SODOM-2 algorithm, a computer code for simulating spin dynamics, SPRINT ,
was developed. Besides linear modules for the computation of intrinsic resonance strengths, the linear

P
(1)
lim and linear filtering of snake schemes, and modules for straightforward tracking and acceleration,

SPRINT offers the non–perturbative tools for computation of the n̂–axis and the amplitude dependent
spin tune, explained in sections 4.3, 4.5, 4.6 and 4.10.3. These tools, Fourier analysis, stroboscopic
averaging, averaging of the pseudo spin tune, and anti–damping allow numerical approximations of
n̂ and ν to be computed in the domains in which spin–orbit motion is integrable. In their domains
of applicability all methods agree to a high level of accuracy. For the first time ever the complicated
structure of the invariant spin field in a ring like HERA–p at high energy could be simulated and
demonstrated.

In section 2.2.2 we have seen that at high energy when the spin enhancement factor Gγ is sufficiently
large, the major non–linear contributions to the flow of the spin precession equation are caused by
multiple iteration of the linear part of the source term in the precession equation and not by the
non–linear part of the source term. The non–linearities caused by the iteration of the linear part
of the source term, which are induced by the structure of the precession equation and not by the
explicit form of the source term were named kinetic non–linearities. In contrast to this the much
weaker non–linearities due to higher order contributions to the source term were named dynamical
non–linearities. It was shown that in a mid–plane symmetric ring, the horizontal component of the
source term can only have odd harmonics in the vertical orbital phase. Therefore in such a ring all
dynamical spin–orbit resonant spin tunes must contain an odd multiple of the vertical tune.

With the help of the formalism of unit–quaternions described in section 2.2.1 terse and intuitive
expressions for one–turn spin maps of simple models of rings were derived. Moreover it could be
shown that in a mid–plane symmetric ring without any (in chapter 2), or with an even number of
horizontal Siberian Snakes (in chapter 3), the components of the one–turn map have a definite mirror
symmetry w.r.t. the mid–plane. Then in chapter 4 the perturbative spin normal form method was
employed to show that “resonances” with the on–orbit spin tune, at which the algorithm fails due to
the large denominator problem, arise in mid–plane symmetric rings with or without an even number
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of horizontal snakes only when the closed orbit spin tune ν0 is an integer combination of the radial
and longitudinal orbital tunes plus an odd integer multiple of the vertical orbital tune. By this means
the so–called “snake resonances” that appear in the traditional literature were demystified and the
question of how, and in which order, they contribute to spin dynamics was clarified. In particular the
apparent contradiction between the fact that resonances of even order in Qy appear in simulations of
spin motion in HERA–p, which is not mid–plane symmetric, and the popular opinion that resonances
of even order in Qy should not occur, which is motivated by simulation of mid–plane symmetric
models, could be resolved.

The implications of the these results for the HERA–p accelerator are obvious. HERA–p contains
sections of interleaved vertical and horizontal bends around three of the four straight sections. The
effect of these vertical bend sections can be compensated completely by means of flattening snakes
only for spin motion on the design orbit. With finite orbital amplitudes the absence of the mid–plane
symmetry induces a variety of even order spin–orbit resonances.

In addition, a heuristic model was invented to motivate the observation that, whenever the ampli-
tude dependent spin tune has a symmetric discontinuity of height 2εκ around an integer combination
κ of the orbital tunes, Plim has a pronounced local minimum of characteristic width εκ. In particular κ
has to contain an odd integer times the vertical tune if the ring is mid–plane symmetric. This heuristic
model was verified with various numerical simulations using the single resonance model with snakes as
well as with various models of the HERA–p lattice. Moreover the evolution of the spin action during
continuous variation of the system parameters, so that ν crosses a resonance position κ, was simulated
for various types of parameters. It turned out that the degree of adiabaticity of such a process is
described well by the Froissart–Stora formula (4.104) with the definition of the resonance strength
generalised to kinetic resonances and with a rate parameter that reflects the actual slope of ν in the
vicinity of κ. The concepts of the invariant spin field and the amplitude dependent spin tune allow
higher order spin–orbit resonances to be identified and classified in a rather rigorous way.

The simple existence of flattened or non–flattened vertical bend sections around three out of four
straight sections implies that HERA–p has only the minimal superperiodicity P = 1. The distribution
of arcs and straight sections requires the number of main Siberian Snakes to be Ns =2, 4 or 8. If
results from the single resonance model can with any safety be generalised to an asymmetric ring
with strongly overlapping resonances like HERA–p, then they suggest Ns =2, 6 or 10. However, even
if HERA–p had the superperiodicity P = 4 with either all or none of the straight sections being
surrounded by vertical bend sections and all of the straight sections being identical, it would still not
be amenable to 6 or 10 main snakes.

Simulations show that, in general, schemes with 4 and 8 main snakes can provide a tightly bundled
n̂–axis only at certain energies and inside some finite region of phase space. In particular at energies
around those where the strongest linear intrinsic resonances of the HERA–p lattice without snakes
are located, Plim oscillates violently and has an explicitly low average value. Moreover around these
residual resonance structures the oscillations of the amplitude dependent spin tune produce the largest
deviation from its nominal value of ν0 = 1/2.

With the help of the linear filtering algorithm performed over large energy ranges, 4- and 8–snake
schemes were found that improve the average Plim outside as well inside the residual resonance struc-
tures to some extent. In non–perturbative scans of Plim and ν w.r.t. the beam reference momentum
p0 and during ramp simulations, it turned out that the schemes obtained by linear filtering are, by
far, more efficient than schemes based on naive rules of thumb. In particular all schemes tested with
maximum possible snake periodicity Ps = Ns/2 could not provide sufficient stability of the polarisation
even with small and purely vertical orbital excitation. On the contrary the schemes obtained by long
range filtering all have a Ps = 1 but an odd mirror symmetry w.r.t. the East–West axis.

Nevertheless even with the optimised snake schemes the fraction of beam in which polarisation
survived the ramp procedure in the standard setup of HERA–p from 1996 and with normalised 1σ
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emittances of 4 π mm mrad in both transverse planes and 1.8·10−2 m rad in the longitudinal plane was
about 6 to 30% with 4, and 30 to 65%, with 8 snakes. Therefore the orbital tunes were moved closer
to the 7–th order orbital resonance 7[Qy] = 2 at which the maximum allowed spin tune spread has a
local maximum. Simulations, employing the capability of SPRINT to interpolate between two different
beam optics during the acceleration, have shown that with these modified tunes the fraction of the
beam in which the polarisation is conserved during the whole modified HERA–p ramp procedure is
increased to about 62 to 85% with 4 snakes. Under the restrictions of the chosen model, i.e. linear
unperturbed orbital motion, a linear source term in the spin precession equation and the absence of
beam–beam interaction and any sources of noise, this result means that between 62 and 85% of the
initial beam average of the polarisation, i.e. of the polarisation of the beam injected into HERA–p at
40 GeV, will be available at high energy close to 800 GeV. The working energy of 1996, namely 820
GeV and the current working energy of 920 GeV do not seem realistic without further improvement.
One source of improvement may be the proposed [BB99, WB99, GHS99] electron cooling in PETRA.

Ramp simulations which included the effects of a perturbed closed orbit [BG98b, NG99] seem to
indicate that misalignment is a serious source of depolarisation even with moderate orbital amplitudes.
In the future the studies must be extended to include closed orbit perturbations and non–linear orbital
motion, at least in so far as the effect of orbital chromatic tune spread and the beam–beam effect
has to be included. Moreover the effects of the major sources of noise, i.e. intra–beam scattering
and power supply noise have to be studied in order to estimate the polarisation lifetime at the top
energy. However all of these additional complications can only be analysed seriously if the theoretical
concepts underlying spin dynamics are unambiguously defined and the stationary polarisation on the
level described in this thesis can be controlled.

In the near future, first experimental results on acceleration and storage of polarized protons in
RHIC will be available. RHIC will be operated at less than a third of the top energy of HERA–p, is
flat and has a higher superperiodicity (P=6). It will be interesting to see in how far the effects on
polarisation, e.g. partial depolarisation due to crossing of higher order kinetic resonances, as predicted
by the theory of chapter 4 and found numerically for the HERA–p ring in chapters 4 and 5, can already
be clearly resolved experimentally in RHIC.



Appendix A

Introduction to the orbital motion in

circular accelerators

Classical spin motion in accelerators is driven by the electromagnetic fields observed by the parti-
cles on their trajectories. The Stern–Gerlach forces that deflect the orbit, on the other hand, can
normally be neglected at high energy. So to sufficient accuracy the spin can be seen as a kind of
“spectator” travelling with the particle but not affecting the trajectory. Therefore spin motion in the
electromagnetic fields of accelerators can only be understood starting from the orbital dynamics.

In this appendix we will briefly summarize the principles of Hamiltonian motion in circular ac-
celerators. The first section is a review on some definitions and basic rules of classical Hamiltonian
dynamics [VA88, ems3, LM88, GH94, MH92]. It is meant to be fairly general and in particular does
not implicitly assume that the Hamiltonian system describes a particle in an accelerator. Many of
the concepts and results of the first section can be extended to systems without an explicit or implicit
Hamiltonian structure. The second section reviews the basic concepts of Hamiltonian orbital dynamics
in circular accelerators. It is meant to give the reader from outside the accelerator physics community
a notion of the standard concepts.

We will work in the approximation that there are no mutual interactions between particles.

A.1 Hamiltonian dynamics

Hamiltonian dynamics is usually defined via the concept of exterior forms on even dimensional sym-
plectic manifolds. This concept is mathematically rigorous and ensures a wide applicability of Hamil-
tonian theory. In this appendix the concept of symplectic maps is emphasised which allows to derive
formulae which can be easily embedded in numerical codes [MB90, GH94, MB92, MH92]. The subset
of Hamiltonian theory which is presented here is essential for orbital tracking, for the concept of the
invariant spin field and for the amplitude dependent spin tune.

A.1.1 Hamiltonian equations of motion and symplectic maps

The basic equations of motion (EOM) in a Hamiltonian system for the generalised coordinates q and
the corresponding canonical momenta p take the form Dt q

′ = ∂pH, Dt p = −∂qH with the Hamil-
tonian H(q, p, t). Here and in the following t is the free “time–like” parameter but not necessarily a
“physical” time. It will be more convenient to rewrite these EOM more compactly using the “symplec-
tic unit matrix” J . We will assume that all functions have the required smoothness. The coordinates
q of a solution will be assumed to be generally continuous and piecewise differentiable w.r.t. t. The
canonical momenta p will only be assumed to be piecewise continuous and piecewise differentiable
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w.r.t. t. A Hamiltonian function H is supposed to be continuously differentiable w.r.t the canonical
coordinates and momenta, and piecewise differentiable w.r.t. t. The symbol K refers either to the field
of real numbers, R or the field of complex numbers, C. For a system with 1 degree of freedom, i.e.
with a 2–dimensional phase space, we define J 2

J2 ≡
(

0 1
−1 0

)
. (A.1)

For n degrees of freedom we define J 2n ∈ SL(2n,K) as the 2n–dimensional block diagonal matrix

J2n ≡ diag( J2, . . . , J2) . (A.2)

For this definition, pairs of conjugate variables have adjacent indices in the orbit vectors ~z, i.e. z2i−1 ≡
qi and z2i ≡ pi. Later, when dealing with canonical transformations we will occasionally reorder the
components of ~z such that all configuration coordinates have indices 1 ≤ i ≤ n and all momenta have
indices n+ 1 ≤ i ≤ 2n to obtain

J̃2n ≡
(

0n 1n
− 1n 0n

)
. (A.3)

From now on we will suppress the subscript 2n for J and assume that the correct dimensional J is
used.

Definition A.1 (Hamiltonian system) A continuous dynamical system is called a Hamiltonian
system if it consists of a singly connected phase space P ⊆ K2n, n ∈ N, a “time”– domain R, a vector
field ~F : P × R → P, (~z, t) 7→ ~F (~z, t) with the EOM

Dt
~ξ(t) = ~F (~ξ(t), t) (A.4)

and if the Jacobian of J ~F is symmetric

(
∂~z ( J ~F )T

)T
= ∂~z ( J ~F )T (A.5)

We will call a function ~ξ : R → P, t 7→ ~ξ(t) a trajectory of that system if it is a solution of equation
(A.4). We will call P? = P × R the “extended” phase space.

Theorem A.1 For all functions H : P? → R, (~z, t) 7→ H(~z, t) the vector field ~FH ≡ J ∂~z H satisfies
equation (A.5).

The proof is simple : ∂~z J J ∂
T
~z H = −∂~z ∂T

~z H = (−∂~z ∂T
~z H)T. 2

With the help of the theory of potentials it can be shown that for each ~F which satisfies equation
(A.5) one can find a Hamiltonian H such that ~F ≡ J ∂~z H. From now on we will always assume that
this H is known and use the symbol (P?,H) to specify a Hamiltonian system.

Note that generally there is an infinite number of trajectories ~ξ(t) that correspond to different
initial value problems defined by equation (A.4) and by different initial conditions ~ξ(t0) = ~z0.

Definition A.2 (Flow of a Hamiltonian system) A map ~T : P × R2 → P, (~z; t, t0) 7→ ~T (~z; t, t0)
such that

∂t ~T (~z0; t, t0) = J ∂~z H(~T (~z0; t, t0), t) (A.6a)

~T (~z0, t0, t0) = ~z0 (A.6b)

for all (~z0, t0) ∈ P? and t ∈ R is called the flow of the Hamiltonian system (P ?,H).
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It can be shown [VA88, ems3, LM88, MH92] that the following two identities hold:

~T
∣∣∣
t2 ,t1

◦ ~T
∣∣∣
t1,t0

= ~T
∣∣∣
t2 ,t0

, ~T
∣∣∣
t0,t1

◦ ~T
∣∣∣
t1,t0

= ~Id . (A.7)

Definition A.3 (Symplecticity) A matrix M ∈ K2n×2n is called symplectic with multiplier κ ∈
R\{0} if

M J MT = κJ . (A.8)

A matrix M ∈ K2n×2n is called symplectic if κ = +1. A map ~M : P ⊆ K2n → K2n, ~z 7→ ~M(~z) is

called symplectic (with multiplier κ) if its Jacobian M(~z) with M ij(~z) ≡ ∂j ~Mi

∣∣∣
~z

is symplectic (with

multiplier κ) for all ~z ∈ P.

Lemma A.1 Let M, N ∈ K2n×2n be symplectic then:

1. the products M N and N M are symplectic

2. the inverse always exists and is given by M−1 = J MT JT = − J MT J ,

3. MT and M−1 are symplectic.

Using definition A.3, J−1 = − J = JT, det( J) = 1 and J2 = − 1, we conclude that

1. (M N) J(M N)T = M N J NTMT = M J MT = J .

2. M J MT JT = 1 ⇒ M−1 exists and M−1 = J MT JT = − J MT J .

3. − J MT J M = 1 ⇒
MT J M = J and M−1 J M−T = (MT J−1M)−1 = −(MT J M)−1 = − J−1 = J ,

which proves the lemma A.1. 2

Therefore (and because 1 is trivially symplectic) the symplectic 2n × 2n–matrices form a group,
which is denoted by the symbol SP(2n,K) or, if it is clear which field K is meant, just SP(2n).

Lemma A.2 Let M ∈ K2n×2n be symplectic then:

1. if λ is an eigenvalue of M of multiplicity l then 1/λ is also an eigenvalue of multiplicity l,

2. the determinant is det(M) = +1 ,

3. if λi 6= 1/λj, then the corresponding eigenvectors ~vi, ~vj are skew–orthogonal in the sense that
~vT
i J~vj = 0, for i 6= j

4. if M is furthermore non–degenerate, there is a symplectic possibly complex transformation C
such that CM C−1 = diag(λ1, . . . , λ2n),

5. if M is real and diagonalisable, then the eigenvalues come in

(a) quadruples : λ,λ∗,1/λ,1/λ∗ if |λ| 6= 1 and =λ 6= 0

(b) or in real pairs: λ = λ∗, 1/λ = 1/λ∗

(c) or in pairs on the unit circle λ = 1/λ∗, λ∗ = 1/λ.
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Since M−1 = J MT J−1, MT and M−1 are similar. Let pA(λ) be the characteristic polynomial of
A. Then pM = pMT = pM−1 . Since the eigenspace to a zero of pM is never empty, a ~v exists with

M~v = λ~v. Since M is regular, λ is not 0 and we obtain 1/λ~v = M−1~v. Hence if λ is an eigenvalue of
M , then 1/λ is an eigenvalue of M−1. But pM = pM−1 and therefore λ and 1/λ are both eigenvalues

of M and M−1 and the multiplicity is the same. This implies part 1. Every matrix M ∈ K2n×2n can
be transformed by a similarity transform to SM J S

−1 where S ∈ GL(2n,C) is a regular, generally
complex matrix and M J ∈ R2n×2n is the Jordan normal form of M . The Jordan normal form of a
matrix is in particular triangular with the eigenvalues on the diagonal. Since the determinant of a
triangular matrix is the product of the diagonal elements, since the eigenvalues of M come in pairs
(λ, 1/λ) and since the determinant is invariant under similarity transforms, we obtain det(M) = +1.
Part 3 follows from the relation (λiλj − 1)~vT

i J~vj = ~vT
i (MT J M − J)~vj = 0. If we assume that

M is non–degenerate, then the eigenvectors ~vi are linearly independent. We can then normalise the
eigenvectors to λ2i and sort them so that λ2i−1 ≡ 1/λ2i to give ~vT

2i−1 J~v2i = 1. Then C = (~v1, . . . , ~v2n)
is symplectic and diagonalises M , which proves part 4 for diagonalisable symplectic matrices. Note
for later use that this normalisation still leaves the freedom of n complex conjugate pairs of phase
factors for the n pairs ~v2i−1 ~v2i. Part 5 follows from part 1 and from the well known fact that the
zeros of a polynomial with real coefficients are real or come in complex conjugate pairs. 2

A 2 × 2–matrix M 2 is symplectic if and only if its determinant is 1, since for an arbitrary 2 × 2–
matrix we have

M 2 J2M
T
2 ≡

(
0 det(M 2)

−det(M 2) 0

)
. (A.9)

This result can easily be generalised to 2n× 2n matrices with n×n–block structure if one chooses the
basis of equation (A.3). A matrix

M2n ≡
(

An Bn

Cn Dn

)
(A.10)

is symplectic w.r.t J̃ if and only if

AnB
T
n − BnA

T
n = 0n (AnB

T
n is symmetric) (A.11a)

CnD
T
n − DnC

T
n = 0n (CnD

T
n is symmetric) (A.11b)

AnD
T
n − BnC

T
n = 1n . (A.11c)

Theorem A.2 The flow ~T (~z; tf , ti) of a Hamiltonian system (P,R,H) is a symplectic map for all
tf , ti ∈ R.

To prove this we introduce the Jacobians of ~T and ~F ≡ J∂~z H

(T )ij(~z; t, t0) ≡ (∂~z ~T
T)ji |~z;t,t0 = ∂j (~T )i |~z;t,t0 (A.12a)

(F )ij(~z; t) ≡ (∂~z ~F
T)ji |~z;t = ∂j (~F )i |~z;t . (A.12b)

Then, assuming ~T to be sufficiently smooth we obtain

∂t T (~z; t, t0)ij = ∂t ∂j ~T (~z; t, t0)i = ∂j ∂t ~T (~z; t, t0)i

= ∂j ~F (~T (~z; t, t0), t)i

= F (~T (~z; t, t0), t)il T (~z; t, t0)lj (A.13a)

∂t T (~z; t, t0) = F (~T (~z; t, t0), t)T (~z; t, t0) . (A.13b)

Now we define the matrix K ≡ T J TT. Obviously, since T (~z; t0, t0) = 1 we have K(~z; t0, t0) = J
and

∂t K(~z; t, t0) = F (~T (~z; t, t0), t)K(~z; t, t0) + K(~z; t, t0)F (~T (~z; t, t0), t)
T . (A.14)
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For each fixed ~z ∈ P and t0 ∈ R this is just a linear ODE which has a unique solution around t = t0.
Since ~F is a Hamiltonian vector field, i.e. J F = ( J F )T

F (~T (~z; t, t0), t) J + J F (~T (~z; t, t0), t)
T = 0 . (A.15)

Therefore K = J is a solution of (A.14). Since (A.14) is a linear ODE K = J is the unique solution
for all t. 2

A.1.2 Canonical transformations and integrability

When working with Hamiltonian systems it is useful to have methods for manipulating the EOM
without destroying their canonical structure.

Definition A.4 (Canonical transformation) A possibly time dependent transformation ~A : P1 ×
R → P2, (~z, t) 7→ ~A(~z, t) is called canonical with multiplier κ if for all t ∈ R the transformation ~at :
P1 → P2, ~z 7→ ~A(~z, t) is symplectic with multiplier κ. It is called a canonical transformation if κ = 1.

Lemma A.3 (Scale transformations) The constant scale transformations
(
z2i−1

z2i

)
7→

(
z2i−1

x2i = az2i

)
∀1 ≤ i ≤ n (A.16a)

(
z2i−1

z2i

)
7→

(
x2i−1 = az2i−1

z2i

)
∀1 ≤ i ≤ n (A.16b)

with 1 ≤ i ≤ n and a = const. ∈ K, a 6= 0 are canonical transformations with multiplier a, and
(
z2j−1

z2j

)
7→

(
x2j−1 = az2j−1

x2j = z2j/a

)
for some 1 ≤ j ≤ n

(
z2i−1

z2i

)
7→
(
z2i−1

z2i

)
∀1 ≤ i ≤ n, i 6= j (A.17)

with 1 ≤ i ≤ n and a = const. ∈ K, a 6= 0 is a canonical transformation.

All three transformations are block–diagonal with 2×2–blocks. By direct calculation one easily verifies
that

(1 0
0 a

)
J2

(1 0
0 a

)
=
(1 a
0 1

)
J2

(1 a
0 1

)
= a J2 proving that (A.16a) and (A.16b) are canonical with multiplier

a. The only 2 × 2–block in (A.17) which is not the identity, i.e. the j-th block, has determinant 1
which proves its symplecticity. 2

A widely used class of canonical transformations are those given in terms of generating functions.
In this context it is useful to define for the “old” coordinates (~z) and the “new” coordinates (~x)

~q = P odd~z , ~p = P even~z , ~Ψ = P odd~x , ~J = P even~x (A.18)

where P odd/even is the projector from the 2n–dimensional phase space P to the n–dimensional con-

figuration/momentum space. Note that at this stage ~J and ~Ψ don’t necessarily mean “action” and
“angle”!

Theorem A.3 (Generating functions) Any of the functions F (~q, ~Ψ, t), F (~q, ~J, t), F (~p, ~Ψ, t) or
F (~p, ~J, t) whereby the corresponding equation of

~p = +∂~q F (~q, ~Ψ, t) , ~J = −∂~Ψ F (~q, ~Ψ, t) (A.19a)

or ~p = +∂~q F (~q, ~J, t) , ~Ψ = +∂ ~J F (~q, ~J, t) (A.19b)

or ~q = −∂~p F (~p, ~Ψ, t) , ~J = −∂~Ψ F (~p, ~Ψ, t) (A.19c)

or ~q = −∂~q F (~p, ~J, t) , ~Ψ = +∂ ~J F (~p, ~J, t) (A.19d)
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can be solved in the form (~Ψ
~J

)
= ~AF (~q, ~p, t) ,

(
~q

~p

)
= ~A−1

F (~Ψ, ~J, t) (A.20)

generates a canonical transformation ~AF (~q, ~p, t).

We will prove this only for the first case of F (~q, ~Ψ, t). Definition A.4 implies that it suffices to show
that the generated transformation is symplectic for all t. By the premises of the theorem we can solve
equation (A.19a) and obtain

(~Ψ
~J

)
=

( ~Ψ

−∂~Ψ F (~q, ~Ψ, t)

)
≡

( ~Ψ

−~F~Ψ(~q, ~Ψ, t)

)
≡ ~f(~q, ~Ψ, t) (A.21a)

(
~q

~p

)
=

(
~q

+∂~q F (~q, ~Ψ, t)

)
≡

(
~q

~F~q(~q, ~Ψ, t)

)
≡ ~g(~q, ~Ψ, t) (A.21b)

(~Ψ
~J

)
= ~f(~g−1(~q, ~p, t), t) ≡ ~A(~q, ~p, t) ≡

( ~A~Ψ(~q, ~p, t)

~A ~J(~q, ~p, t)

)
(A.21c)

(
~q

~p

)
= ~g(~f−1(~Ψ, ~J, t), t) ≡ ~A−1(~Ψ, ~J, t) ≡

( ~A−1
~q (~Ψ, ~J, t)

~A−1
~p (~Ψ, ~J, t)

)
. (A.21d)

Showing that the Jacobian A of ~A is symplectic w.r.t J̃ can be enormously simplified [GH98] by using
the result of lemma A.1 for the inverse of a symplectic matrix. We want to show that

J̃ AT|~q,~p,t = A−1| ~A(~q,~p,t),t J̃ , (A.22)

where A and A−1 are given by

A|~q,~p,t = f |~g−1(~q,~p,t) g
−1|~q,~p,t , A−1| ~A(~q,~p,t),t = g|~f−1( ~A(~q,~p,t),t)

f−1| ~A(~q,~p,t) . (A.23)

The Jacobians of ~f , ~g and their inverses are

f =

(
0 1

−F
~q~Ψ

−F ~Ψ~Ψ

)
,
(
f
)−1

=

(
−F−1

~q~Ψ
F ~Ψ~Ψ −F−1

~q~Ψ

1 0

)
(A.24a)

g =

(
1 0
F ~q~q F ~Ψ~q

)
,
(
g
)−1

=

(
1 0

−F−1
~Ψ~q
F ~q~q F−1

~Ψ~q

)
, (A.24b)

where F ~q~Ψ ≡ ∂~Ψ ∂
T
~q F , F ~Ψ~q ≡ ∂~q ∂

T
~Ψ
F , F ~q~q ≡ ∂~q ∂

T
~q F and F ~Ψ~Ψ ≡ ∂~Ψ ∂

T
~Ψ
F . Now by simple matrix

multiplication one obtains

A =

(
−F−1

~Ψ~q
F ~q~q F−1

~Ψ~q

−F ~q~Ψ + F ~Ψ~Ψ F
−1
~Ψ~q
F ~q~q −F ~Ψ~Ψ F

−1
~Ψ~q

)
(A.25a)

A−1 =

(
−F−1

~q~Ψ
F ~Ψ~Ψ −F−1

~q~Ψ

F ~Ψ~q
− F ~q~q F

−1

~q~Ψ
F ~Ψ~Ψ

−F ~q~q F
−1

~q~Ψ

)
, (A.25b)

and finally by using the relation F T
~q~Ψ

= F ~Ψ~q and the symmetry of F ~q~q and F ~Ψ~Ψ we find that indeed

the Jacobian of ~A is symplectic everywhere in phase space where the defining equation (A.19a) can
be solved :

J̃ AT =

(
F−1

~q~Ψ
−F−1

~q~Ψ
F ~Ψ~Ψ

F ~q~q F
−1

~q~Ψ
F ~Ψ~q − F ~q~q F

−1

~q~Ψ
F ~Ψ~Ψ

)
= A−1 J̃ . (A.26)



194 APPENDIX A. ORBIT MOTION

This proves the symplecticity of ~A. 2

The other cases (A.19b), (A.19c) and (A.19d) can be proved in analogous ways. It should be noted
that this proof can be somewhat simplified if one has introduced the concept of differential forms as
in [VA88, ems3].

We will now restrict ourselves to origin preserving periodic Hamiltonian systems, i.e. Hamiltonian
systems where the EOM are of the form

Dt ~z = ~F (~z, t) (A.27a)

with ~F (~z, t+ τ) ≡ ~F (~z, t) ∀(~z, t) ∈ P? (A.27b)

and ~F (~0, t) ≡ ~0 ∀t ∈ R . (A.27c)

This implies that H(~z, t) is periodic with period τ and has, seen as a formal series in ~z, no contribution
linear in ~z. In case of periodic systems it is convenient to rescale the independent variable t to θ = 2π t

τ
so that the Hamiltonian EOM are

Dθ ~z = J∂~zHθ(~z, θ) (A.28a)

with Hθ(~z, θ) =
τ

2π
H(~z,

τ

2π
θ) . (A.28b)

In accelerator physics the parameter θ is called the (generalised) azimuth. From now on we will omit
the index θ for Hamiltonians in the new free “time” parameter θ. For linear periodic, not necessarily
Hamiltonian, systems

Dθ ~z = F (θ)~z (A.29)

the following theorem holds [ems1]:

Theorem A.4 (Floquet’s theorem) There is a change of variables ~z = C(θ)~x, which is linear in ~z
and where C(θ) is 2π–periodic in θ, which transforms the system equation (A.29) into a linear system
with constant coefficients Dθ ~x = Λ~x and correspondingly the flow of equation (A.29) is given by

T (θ, θ0) = C(θ) exp ((θ − θ0) Λ) C−1(θ0) . (A.30)

It is clear that periodicity of the Hamiltonian does not imply periodic motion. In fact the motion
is not even necessarily bounded.

Definition A.5 (One–turn map) For a 2π–periodic not necessarily Hamiltonian system we call the
map ~Totm : P? → P, (~z, θ) 7→ ~Totm(~z; θ)

~Totm(~z; θ) ≡ ~T (~z; θ + 2π, θ) , (A.31)

with ~T being the flow of that system, the one–turn map (OTM) of the system.

Often we will distinguish between one–turn map and flow just by the number of azimuth parameters,
i.e. we will use ~T (~z; θ) ≡ ~Totm(~z; θ) for the one–turn map and ~T (~z; θf , θi) for the flow. The OTM is of
course 2π–periodic in θ. The one–turn matrix of the linear periodic Hamiltonian system of equation
(A.29) is given by T (θ) = C(θ) exp(2π Λ)C−1(θ).

Definition A.6 (Incommensurability) We call the components Qi of a vector ~Q ∈ Rn incommen-
surable if ~k · ~Q 6= 0 for all ~k ∈ Zn, ~k 6= ~0.
We call the components Qi of a vector ~Q ∈ Rn incommensurable with 1 if ~k · ~Q 6= k0 for all ~k ∈ Zn,
~k 6= ~0, k0 ∈ Z.
We call the components strongly incommensurable if there are positive real numbers c, ρ so that for
all ~k ∈ Zn, ~k 6= ~0 the inequality |~k · ~Q| > c‖~k‖−ρ holds.
We call the components strongly incommensurable with 1 if the components of (1, ~Q) ∈ Rn+1 are
strongly incommensurable.
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For non–linear origin preserving Hamiltonian systems where the Jacobian T (~0, θ) of the OTM is
diagonalisable with eigenvalues λi ≡ ei2πQi on the unit circle and with strongly incommensurable
tunes Qi, one can show [ems1, ems3] that in some neighbourhood of ~z = ~0 there is a biholomorphic
change of variables that transforms the non–linear system to the linearised one. For ρ > n − 1 the
number of points ~Q for which one cannot find such a c is of zero measure [ems3, LM88]. Therefore for
almost all systems with diagonalisable Jacobian of the one–turn map the “qualitative” properties of the
exact flow can be derived from the linearised flow in some neighbourhood of ~z = ~0. While discussing
the tunes of a non–autonomous system which is 2π–periodic in θ and which is origin preserving we
will often abbreviate “(strong) incommensurability with 1” to “(strong) incommensurability”.

Definition A.7 (Stability) An origin preserving map ~M : P → P, ~z 7→ ~M(~z), ~M(~0) = ~0 is called
stable if for each ε > 0 there is a δ > 0 so that for all ‖~z‖ < δ and all N ∈ N+ the N–times iterated
composition of the map is bounded by ‖ ~MN~z‖ < ε.

Definition A.8 (Strong stability of a linear symplectic map) A linear map ~M : K2n → K2n,
~z 7→ ~M(~z) ≡ M~z is called strongly stable if it is stable and there is an ε > 0 so that all real symplectic
matrices N with max1≤k,l≤2n |(M )kl − (N)kl| < ε are stable.

Theorem A.5 [VA88] A real linear symplectic matrix M is strongly stable if all its eigenvalues are
non–degenerate and are on the unit circle.

If all eigenvalues λi of M are non–degenerate, then the eigenvectors ~vi can be normalised to form an
skew–orthonormal basis {v̂i}1≤i≤2n of K2n, i.e. v̂T

i Jv̂j = 0 for λi 6= 1/λj and ‖v̂i‖ = 1. Hence stability
follows directly from the relation ‖Mv̂i‖ = |λi| ‖v̂i‖ ≡ 1. Since the λi are non–degenerate one can find
pair–wise disjunct circular neighbourhoods in the complex plane around them. The eigenvalues from
the characteristic polynomial are continuous functions of the matrix coefficients. Therefore we can
choose ε sufficiently small, so that if N 6= M belongs to the ε–neighbourhood of M in the sense of
definition A.8, there is exactly one of the 2n eigenvalues ρi of N in one of these circular neighbourhoods
(conclusion A). Since N is real with ρi also ρ∗i is an eigenvalue. Therefore if |ρi| 6= 1, i.e. ρ∗i 6= 1/ρi,
there is another eigenvalue in this circular neighbourhood — which is in contradiction to conclusion
A. 2

We conclude that for real periodic linear Hamiltonian systems

Lemma A.4 If the one–turn matrix T (θ) is stable/strongly stable for some θ0, then it is stable/strongly
stable for all θ ∈ R.

Since T (θ) = T (θ, θ0)T (θ0)T (θ0, θ) = T (θ, θ0)T (θ0)T
−1(θ, θ0) the N–turn map is TN (θ) = T (θ, θ0)

TN (θ0)T
−1(θ, θ0). Therefore the linearity and periodicity of the flow implies its boundedness for all

θ, thereby proving the lemma. 2

Unfortunately in the case of non–linear periodic Hamiltonian systems with origin preserving one–
turn maps, statements about stability cannot be made in general. Integrable non–linear systems as
described below are stable. But although a wide range of non–linear systems have been proved to be
integrable and even stable under small perturbations, a general theorem for integrability and is not
known. In accelerator physics the domain in which the one–turn map is stable is called the dynamic
aperture of the accelerator.

We will now give a convenient definition of action–angle representations of t–periodic Hamiltonians.
There are more general definitions [GH94] but we are interested mainly in two special properties,
namely invariance of the action variable ~J = const. and periodicity of the canonical coordinates of P
w.r.t the angle: ~z( ~J, ~Ψ + 2π~k) = ~z( ~J, ~Ψ) ∀~k ∈ Nn.
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Definition A.9 (Action–angle variables) The phase space coordinates of a Hamiltonian system
(P?,HAA) are action–angle variables if the EOM read like

Dθ z2i−1 ≡ Dθ Ψi = ∂2iHAA ≡ κi( ~J) (A.32a)

Dθ z2i ≡ Dθ Ji = −∂2i−1HAA ≡ 0 . (A.32b)

Note that from the definition of ~κ = ∂ ~J H it follows that the Jacobian of ~κ is symmetric.

∂ ~J ~κ
T ≡ ∂ ~J ∂

T
~J
HAA = (∂ ~J ∂

T
~J
HAA)T ≡ (∂ ~J ~κ

T)T . (A.33)

The flow ~TAA is affine linear in θf − θi

~J(~Ψ0, ~J0; θf , θi) = const. = ~J0 (A.34a)

~Ψ(~Ψ0, ~J0; θf , θi) = ~Ψ0 + (θf − θi) ~κ( ~J0) . (A.34b)

Definition A.10 (Integrability) We will call a periodic origin preserving Hamiltonian system
(P?

1 ,H) integrable if there is a canonical transformation ~A : P1 × R → P2, (~z, θ) 7→ (~Ψ, ~J) so that

1. ~A transforms (P1,H) to action–angle variables, i.e. Dθ
~Ψ = ~Q( ~J), Dθ

~J = 0 and

2. ~A−1(~Ψ + 2π ~K, ~J, θ) = ~A−1(~Ψ, ~J, θ) for ~K ∈ Nn.

For an integrable system the phase space is foliated into different n–dimensional submanifolds. ~A
maps these submanifolds onto invariant n–dimensional tori T n which can be parametrised by the
vector of the actions. Each trajectory transformed by ~A winds itself uniformly around the torus
defined by its starting value of ~J . The rate of winding w.r.t. θ is fully determined by the value of
~Q. The Qi are called tunes in accelerator physics. If we consider for example an integrable system
with 2 degrees of freedom, then the invariant tori are defined by 2 parameters J1, J2 and the winding
rate of a trajectory is given by Q1(J1, J2) and Q(J1, J2). Now consider the case that both tunes are
independent of ~J and have values Q1 = 51/4 and Q2 = 71/3, and ~Ψ0 = ~0, θ0 = 0. Then Ψ1 mod 2π
traverses the interval [0, 2π) 51/4 times for each 2π period in θ. After 4 periods it comes back to 0 when
θ mod 2π = 0. Therefore the motion in the phase space plane corresponding to (J1,Ψ1) is 8π–periodic.
After 3 periods Ψ2 mod 2π has traversed the interval [0, 2π) 22 times and therefore the motion in the
phase space plane corresponding to (J2,Ψ2) is 6π–periodic. The vector ~Ψ mod 2π is regained after 12
periods and with these tunes the motion is 24π–periodic. If one tune were irrational, the trajectories
would never close on the torus and if they were incommensurable, the set of points L ≡ {~Ψ0 + R+ ~Q}
would be a dense subset of of the torus T 2. In the 24π–periodic example the trajectory is a closed
curve on the torus.

Theorem A.6 A real Hamiltonian system (P?
1 ,H) with a flow ~T that is linear in ~z and 2π–periodic

in θ

~T (~z; θ, θ0) ≡ T (θ, θ0)~z (A.35a)

T (θ + 2π, θ0 + 2π) = T (θ, θ0) (A.35b)

is integrable in the sense of definition A.10 if the one–turn map T (θ) ≡ T (θ+2π, θ) can be diagonalised
and all its eigenvalues λi are on the unit circle |λi| = 1

Let C(θ) be the complex 2π–periodic transformation that diagonalises T

C(θ)−1 T (θ)C(θ) = diag(λ1, 1/λ1, . . . , λn, 1/λn) ≡ D (A.36)
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with λi = ei2π[Qi], [Qi] ∈ [0, 1). The complex functions ~ξ(θ) ≡ C−1(θ)~z(θ) are called complex normal
forms. They transform under the OTM like ~xif = D~xii. The λi are azimuth independent since

T (θ′) ≡ T (θ′ + 2π, θ′) = T (θ′ + 2π, θ + 2π)T (θ + 2π, θ)T (θ, θ′) (A.37a)

= T (θ′, θ)T (θ)T (θ, θ′) (A.37b)

= T (θ′, θ)T (θ)T (θ′, θ)−1 (A.37c)

is a similarity transform which does not change the eigenvalues. In accelerator physics the [Q i] are
called the fractional tunes of the system and 2π[Qi] the corresponding phase advances per turn. Note
that these fractional tunes [ ~Q] from the eigenvalues of the one–turn map do not constrain the integer
part of ~Q. Since T (θ) is real, the eigenvectors, which are the column vectors of C, form complex
conjugate pairs ~c2j−1 = ~c∗2j . The real and imaginary parts ~b2j−1(θ) = <{~c2j−1(θ)} = <{~c2j(θ)},
~b2j(θ) = ={~c2j−1(θ)} = −={~c2j(θ)} are transformed by T like

T~c2j−1 = T (~b2j−1+i~b2j) =
(
cos 2π[Qj ] ~b2j−1 − sin 2π[Qj ] ~b2j

)
+i
(
cos 2π[Qj ] ~b2j + sin 2π[Qj ] ~b2j−1

)
.

(A.38)
Since T was assumed to be diagonalisable, the ~bi can be chosen to be a skew–orthogonal basis of R2n

and can be normalised to ~bT2j−1 J
~b2j = 1. This can be seen as follows: first ~bT2j−1 J

~b2k = 0 for j 6= k
since ~c2j+1 and ~c2j belong to eigenvalue λj but ~c2k+1 and ~c2k belong to eigenvalue λk which we have

assumed to be different. Moreover we have 4~bT2j−1 J
~b2j−1 = ~cT2j−1 J~c2j−1+ ~cT2j−1 J~c2j+ ~cT2j J~c2j−1+

~cT2j J~c2j = 0 and analogously find ~bT2j J
~b2j = 0. Finally we obtain 4i~bT2j−1 J

~b2j = ~cT2j−1 J~c2j−1−
~cT2j−1 J~c2j+ ~cT2j J~c2j−1− ~cT2j J~c2j = 2~cT2j−1 J~c2j so that we can choose a normalisation for the ~ci so

that the real matrix B(1) with column vectors ~bi is symplectic with multiplier 1. Note that we have
normalised the ~ci so that C is no longer symplectic with multiplier 1. Moreover the normalisation of
the 2n complex eigenvectors ~ci(θ) has still n free phase factors e±iψi(θ). The periodicity constraint on
C only requires that ψi(θ) = ψper.

i (θ) + kiθ where ψper.
i is 2π periodic and ki is an integer. Since the

system system (P?
1 ,H) is linear and 2π–periodic its flow can be written according to theorem A.4 as

T (θ, θ0) = C̃(θ) exp ((θ − θ0) Λ) C̃(θ0)
−1 where C̃(θ) is 2π–periodic in θ and Λ has constant coefficients.

In particular the OTM is T (θ) = C̃(θ) exp (2π Λ) C̃(θ)−1. Thus exp (2πΛ) = const. = C̃(θ)−1 C(θ) D
C(θ)−1C̃(θ) and therefore C̃(θ)−1C(θ) = is the product of a constant matrix and a θ–dependent matrix
P that commutes with the constant diagonal D for all theta. In other words P is diagonal itself. Since
the flow of a linear ODE is unique, and the choice of the ~ci in order to make B(1) symplectic is unique
up to the phase factors eiψj(θ), we conclude that there are phase functions ψi(θ) such that if we absorb
them in the in the normalization of the complex conjugate pairs ~c2j−1, ~c2j the transformation C(θ)

has a form such that T (θ, θ0) = C(θ)D̃(∆)C−1(θ0) with D̃ ≡ diag(. . . , ei∆([Qi]+ki), e−i∆([Qi]+ki), . . .).
Here we have defined ∆ ≡ θ − θ0. We now set Qi = [Qi] + ki. Then the column matrix of the real
eigenvectors B(1) transforms under the flow T (θ, θ0) like T (θ, θ0)B

(1)(θ) = B(1)(θ)R(∆) with block
diagonal

R ≡ diag( r1, . . . , rn) , ri ≡
(

cos ∆Qi sin∆Qi

− sin∆Qi cos ∆Qi

)
. (A.39)

An arbitrary vector ~z ∈ R2n can be written as ~z(θ) = B(1)(θ)~x(θ) with some coefficient vector ~x(θ).
Since B(1)(θ) is symplectic, the inverse A(1)(θ) ≡ (B(1))−1(θ) = − J B(1)(θ)T J always exists and is
symplectic. Therefore the transformation ~A(1) : R2n+1 → R2n, (~z, θ) 7→ ~x ≡ A(1)(θ)~z to linear real
normal form coordinates is a canonical transformation. In the normal form coordinates the flow is
just a set of rotations, or in other words T restricted on the subspace spanned by ~b2i−1 and ~b2i is a
rotation by the angle ∆Qi. Note that in the normal form coordinates the motion is fully decoupled.
Moreover, the actions

Ji ≡
1

2
(x2i−1(θ)

2 + x2i(θ)
2) (A.40)
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are invariants of the system and the angles

Ψi ≡ arctan

(
x2i−1(θ)

x2i(θ)

)
(A.41)

advance linearly with azimuth
~Ψ(θ) = ~Ψ0 + (θ − θ0) [ ~Q] . (A.42)

The transformation ~A(2) : R2n → Rn × R+,n, ~x 7→ (~Ψ, ~J) ≡ ~A(2)(~x) is symplectic since its block
diagonal Jacobian

(
∂~x ~A

(2)T
∣∣∣
~x0

)T

= diag(A
(2)
1 , . . . , A(2)

n ) (A.43a)

A
(2)
i =

(
x2i

x2
2i−1+x2

2i

− x2i−1

x2
2i−1+x2

2i

x2i−1 x2i

)
(A.43b)

is a symplectic matrix. The inverse transformation ~B(2) ≡ ( ~A(2))−1

x2i−1 =
√

2Ji sinΨi (A.44a)

x2i =
√

2Ji cos Ψi (A.44b)

is not only symplectic but indeed periodic in the Ψi. Therefore the transformation ~A ≡ ~A(2) ◦ ~A(1) :
R2n+1 → Rn×R+,n, (~z, θ) 7→ ~A(2)(A(1)(θ)~z) is symplectic, since its Jacobian A(~z, θ) = A(2)(~x)A(1)(θ)
is. Also the inverse ~B = ~B(1) ◦ ~B(2) is periodic in ~Ψ since ~B(2) is periodic and ~B(1) is linear in ~x.
Therefore we have proved the integrability of the system. 2

Two remarks are now in order. First, the transformation ~C to complex normal forms can always be
made if the flow is diagonalisable, which is true at least for non–degenerate eigenvalues — whether or
not the eigenvalues are on the unit circle. In the case of a pair of eigenvalues λi, 1/λi with |λi| 6= 1 one
can then find real normal forms that transform under the one–turn map like a rotation combined with
a dilation. One can even construct an action–angle pair J̃i = 1/2(x

2
2i−1 − x2

2i), Ψ̃i = arctanh(x2i−1/x2i
)

but the back transformation ~B(2) is not periodic since the motion is unbounded. Second, although ~B
is periodic in ~Ψ, and the one–turn map of the original system T (θ) is periodic in θ, the trajectories
~ξ(θ) are generally not periodic in θ.

~ξ(~z0; θ + 2πN, θ0) = B(1)(θ + 2πN) ~B(2)(~Ψ0 + (θ + 2πN − θ0) [ ~Q], ~J0) (A.45a)

= B(1)(θ) ~B(2)
(
~Ψ0 + (θ − θ0) [ ~Q] + 2πN [ ~Q], ~J0

)
(A.45b)

which is equal to B(1)(θ) ~B(2)
(
~Ψ0 + (θ − θ0) [ ~Q], ~J0

)
≡ ~ξ(~z0; θ, θ0) for some N = N~k only if the tunes

[Qi] are commensurable with 1, i.e.

∃~k ∈ Nn, ~k 6= ~0 : ~k · [ ~Q] = 0 mod 1 . (A.46)

The period is 2πN~k with N~k being the least common multiple of the {li ≡ |~ki|}1≤i≤n. The condition
implied by equation (A.46) is called orbital resonance. If the orbital motion is not on resonance the
motion is called pseudo–periodic.

A.1.3 Pseudo–periodic functions

Definition A.11 We will call a function f : R → C, θ 7→ f(θ) elementarily pseudo–periodic with
tune Q if f(θ+ 2π) = ei2πQf(θ) for some arbitrary non–integer real Q, i.e. with [Q] ∈ (0, 1). We call
a vector function ~f : R → Cn, θ 7→ ~f(θ) elementarily pseudo–periodic if all its components fi are
elementarily pseudo–periodic and the tunes are incommensurable.
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Since g(θ) ≡ e−iQθf(θ) is 2π–periodic and therefore has a Fourier series decomposition g(θ) =∑∞
k=−∞ fk e

ikθ, one can decompose f into different harmonics.

Definition A.12 For an elementarily pseudo–periodic f with tune Q we define the generalised Fourier
series

f(θ) =

+∞∑

k=−∞
fk e

i(k+Q)θ (A.47)

where the coefficients are given by

fk =
1

2π

∫ 2π

0
f(θ)e−i(k+Q)θ dθ . (A.48)

Note that the Fourier monomials ei(k+Q)θ for different Q are orthogonal over R but not over [0, 2π] as
in the case of eikθ. Also note that the monomials ei(k+Q)θ and ei(k

′+Q′)θ are orthonormal in the sense
that

lim
T→∞

1

2T

∫ +T

−T
ei(k+Q)θ e−i(k

′+Q′))θ dθ = δk+Q,k′+Q′ (A.49)

where the Kronecker symbol δx,y is 1 for x = y and 0 otherwise. Whereas the ordinary Fourier
monomials {eikθ}k∈Z are a complete basis of the (integrable) 2π–periodic functions, the generalised
monomials {ei(k+Q)θ}k∈Z are a complete basis of the elementarily pseudo–periodic functions with tune
Q.

In the following we will occasionally meet functions of the extended phase space ~f : C2n × R →
Cm, (~z, θ) 7→ ~f(~z, θ) that are 2π–periodic in θ and analytic or even simple polynomials in ~z. For a
linear Hamiltonian integrable system there is a 2π–periodic canonical transformation matrix C, as
defined in the proof of theorem A.6, so that ~z(θ) = C(θ)~ξ(θ) with ~ξ(θ) = (ξ0,1e

iQ1θ, . . . , ξ0,2ne
iQ2nθ)

with ξ0,2j−1 =
√
Jje

iΨj,0 = ξ∗0,2j. The components of ~ξ are elementarily pseudo–periodic functions
with tunes {qi}1≤i≤2n. If the system is real, then the tunes can be ordered in pairs Qi ≡ q2i−1 = −q2i,
1 ≤ i ≤ n. So the problem of finding the spectrum of the components of ~z boils down to finding the
spectrum of a linear combination of elementarily pseudo–periodic functions. Let

~z(θ) = C(θ)~ξ(θ) , Cij(θ) =

+∞∑

µ=−∞
Cij,µ e

iµθ , ξj(θ) = ξ0,j e
iqjθ . (A.50)

Then we obtain for each component of ~z

zi(θ) =

2n∑

j=1

+∞∑

µ=−∞
Cij,µξ0,j e

i(µ+qj)θ ≡
2n∑

j=1

+∞∑

µ=−∞
zij,µ(~ξ0) e

i(µ+qj)θ (A.51)

where q2i = −q2i−1 = Qi, 1 ≤ i ≤ n. We conclude that linear combinations of elementarily pseudo–
periodic functions are generally not elementarily pseudo–periodic but contain all the qi. Now let ~f (1)

be a linear form in ~z with a 2π–periodic matrix F

~f (1)(θ) = F (θ)~z(θ) (A.52a)

f
(1)
i (θ) =

2n∑

j=1

+∞∑

µ=−∞
Fij,µ

2n∑

k=1

+∞∑

ν=−∞
zjk,ν e

i(ν+µ+qk)θ

=
2n∑

k=1

+∞∑

µ=−∞




2n∑

j=1

+∞∑

ν=−∞
Fij,νzjk,µ−ν


 ei(µ+qk)θ
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≡
2n∑

k=1

+∞∑

µ=−∞
f̃ik,µ e

i(µ+qk)θ (A.52b)

≡
∑

~k

+∞∑

µ=−∞
f
i,~k,µ

ei(µ+~k· ~Q)θ , (A.52c)

with ~k ∈ Zn, |~k| = 1 and provided that the sum in brackets converges. Now let ~f (2) be quadratic in ~z
with a periodic F (θ)

~f (2)(θ) = F (θ)~z(θ)~z(θ) (A.53a)

f
(2)
i (θ) =

2n∑

j=1

2n∑

k=1

Fijkzjzk

=
2n∑

l,m=1

2n∑

j,k=1

+∞∑

µ=−∞

+∞∑

ν=−∞

+∞∑

ρ=−∞
Fijk,µzjl,νzkm,ρ e

i(µ+ν+ρ+ql+qm)θ

=
2n∑

l,m=1

+∞∑

φ=−∞




2n∑

j,k=1

∑

µ+ν+ρ=φ

Fijk,µzjl,νzkm,ρ


 ei(φ+ql+qm)θ

≡
2n∑

l,m=1

+∞∑

φ=−∞
f̃ilm,φ e

i(φ+ql+qm)θ (A.53b)

≡
∑

~k

+∞∑

µ=−∞
f
i,~k,µ

ei(µ+~k· ~Q)θ , (A.53c)

with ~k ∈ Zn, |~k| = 0, 2 and again provided that the sum over µ,ν and ρ converges. Therefore a
quadratic form in ~z contains all integer combinations of order |~k| = 0, 2 of the tunes ~Q. Similarly for
every ~f (m) which is m–multi–linear in ~z and has 2π–periodic coefficients we find

f
(m)
i (θ) =

2n∑

j1,...,jm=1

Fij1···jm(θ)

m∏

l=1

zjl(θ) (A.54a)

=

2n∑

j1,...,jm=1

+∞∑

µ=−∞
f̃ij1···jm,µ e

i(µ+
Pm

l=1 qjl
)θ (A.54b)

=
∑

|~k|≤m

+∞∑

µ=−∞
fi,~k,µ e

i(µ+~k· ~Q)θ . (A.54c)

We can now define general pseudo–periodic functions over a vector of tunes.

Definition A.13 (Pseudo–periodic function) Let ~f : Rn+1 → Rl, (θ1, . . . , θn+1) 7→ ~f(θ1, . . . , θn+1)
be 2π–periodic in the θi and the tunes (Q1, . . . , Qn) be incommensurable with 1. Then we call ~g :
R → Rl, θ 7→ ~f(Q1θ, . . . , Qnθ, θ) pseudo–periodic with the tunes (Q1, . . . , Qn).

It is clear that if the tunes are commensurable with 1, ~g is periodic rather then pseudo–periodic.
If ~f(~ξ, θ) is a function of the normal form coordinates ~ξ and the azimuth θ, then the function
f̃~ξ0(θ1, . . . , θn, θ) ≡ ~f(ξ0,1e

iθ1 , ξ0,2e
−iθ1 , . . . , ξ0,2n−1e

iθn , ξ0,2ne
−iθn , θ) generates a pseudo–periodic func-

tion ~g~ξ0(θ) ≡ f̃~ξ0(Q1θ, . . . , Qnθ, θ).
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Theorem A.7 Let (P?,H) be real, linear and integrable with tunes ~Q ∈ Rn incommensurable with
1. If ~f : P? ⊂ Cl × R → C2n, (~ξ, θ) 7→ ~f(~ξ, θ) is analytic in the complex normal form coordinates
~ξ around the origin ~ξ = ~0 and 2π–periodic in θ, bounded and piecewise continuous in θ, i.e. the
Taylor coefficients are 2π–periodic, then there exists a domain D ⊆ P with ~0 ∈ D such that the
pseudo–periodic function ~g~ξ0 : R → Cl, ( ~J, ~Ψ0, θ) 7→ ~f(

√
J1e

+i(Ψ0,1+Q1θ),
√
J1e

−i(Ψ0,1+Q1θ) . . . , θ) can
be decomposed into a generalised Fourier series

~g~ξ0(θ) =
∑

~k∈Zn

+∞∑

k0=−∞
~g
k0,~k

ei(k0+~k· ~Q)θ (A.55)

with

~g
k0,~k

= lim
T→∞

1

2T

∫ +T

−T
~g~ξ0(θ) e

−i(k0+~k· ~Q)θ dθ (A.56)

for ~z(~ξ0) ∈ D

There is an open ball B ≡ {~ξ : ‖~ξ‖ < a, a > 0} such that for ~ξ ∈ B the Taylor series

~f(~ξ, θ) =
∑

~l∈N2n

~F~l(θ)
~ξ
~l , ~ξ

~l ≡
2n∏

i=1

ξlii (A.57)

converges absolutely and uniformly. In the complex normal form coordinates the motion is described by
a uniform rotation in phase space and therefore ~ξ(θ) stays in B whenever ~ξ0 ∈ B. For this paragraph we
define ~Q± ≡ (+Q1,−Q1, . . . ,+Qn,−Qn). The normal form trajectory ~ξ(~ξ0; θ) = exp(idiag( ~Q±)θ)~ξ0

is elementarily pseudo–periodic with ~Q±. Therefore the (scalar) monomials

~ξ
~l(~ξ0; θ) = eiθ

~l· ~Q±
2n∏

i=1

ξli0,i (A.58)

are elementarily pseudo–periodic with tune ~k′(~l) · ~Q where {k′i(~l) = l2i−1 − l2i}1≤i≤n. The Fourier
integral ~g

k0,~k
as in equation (A.56) exists since ~g and the generalised Fourier monomials are bounded

and piecewise continuous. The corresponding integral for ~F~l(θ)
~ξ
~l exists because of the same argu-

ment. Moreover the Taylor series converges absolutely and uniformly in B so that we can interchange
integration and summation. The generalised Fourier monomials are orthonormal for incommensurable

tunes and hence the e−i(k0+~k· ~Q)θ in (A.55) projects out a sub series of the Taylor series of g~ξ0

~gk0,~k = lim
T−∞

1

2T

∫ +T

−T
~G~k(θ) e

−ik0θ dθ , ~G~k(θ) ≡
∑

~k′(~l)=~k

~F~l(θ)
~ξ
~l
0 . (A.59)

Since the series (A.57) converges absolutely, ~G~k(θ) is well defined. The series

G̃~k(θ) ≡
+∞∑

k0=−∞
~g
k0,~k

eik0θ (A.60)

converges in the quadratic mean to ~G~k(θ), i.e. G̃~k and ~G~k are the same except for a set of zero measure.
Since the union of countably many sets of zero measure has zero measure, the series

g̃(θ) ≡
∑

~k∈Zn

G̃~k(θ) e
i~k· ~Q (A.61)
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converges in the quadratic mean to ~g~ξ0 . Finally we set D = ~C−1(B, 0) where ~C is the normal form
transformation and have proved that ~g~ξ0 can be expanded in a generalised Fourier series with coeffi-

cients ~g
k0,~k

as in (A.55) and (A.56). 2

In integrable Hamiltonian systems we can replace the average over the surface of a torus T n with
incommensurable tunes by the long term average along a trajectory with arbitrary ~Ψ0.

Theorem A.8 [VA88] Let f : T n → K be bounded and piecewise continuous and ~Ψ(θ) = ~Q( ~J)θ with
incommensurable tunes ~Q then

(2π)−n
∫

T n

f(~Ψ) d~Ψn = lim
T→∞

1

T

∫ T

0
f(~Ψ0 + θ ~Q) dθ . (A.62)

A proof for this theorem is in [VA88]

A.1.4 Averaging of perturbations

We will now consider the effect of small perturbations on integrable Hamiltonian systems and find
approximate solutions by the method of averaging. We suppose that the unperturbed Hamiltonian H0

has already been transformed to action–angle variables in a phase space P = T n×Rn. The perturbed
Hamiltonian H is given by

H( ~J, ~Ψ, ε) = H0( ~J) + εH1( ~J, ~Ψ, ε) (A.63)

where we will generally assume the parameter ε to be small. It is clear from the definition of P that
H1 has to be periodic in ~Ψ. The EOM are

Dθ
~Ψ = ~Q( ~J) + ε∂ ~J H1( ~J, ~Ψ, ε) (A.64a)

Dθ
~J = −ε∂~ΨH1( ~J, ~Ψ, ε) . (A.64b)

Note that although the perturbation in the above system is autonomous, we can easily include non–
autonomous systems with H1(~Ψ, ~J, θ, ε) being 2π–periodic in θ. We define ~J ′ ≡ ( ~J, Jθ), ~Q

′ ≡ ( ~Q, 1)
and ~Ψ′ ≡ (~Ψ, ~Ψθ ≡ θ), and therefore obtain a system in the standard form of equations (A.64a),
(A.64b) with two extra EOM Dθ Ψθ = 1 and Dθ Jθ = −ε∂θH1.

In the unperturbed system ε = 0 the actions are constant and the angles are linear in θ. The main
idea of averaging is to approximate the above system by replacing equation (A.64b) with the averaged
equation

Dθ
~K = −ε ~F ( ~K) , ~F ( ~K) ≡ (2π)−n

∫

T n

∂~ΨH1( ~K, ~Ψ, 0) d~Ψ
n , (A.65)

which is considerably simpler since the new variable ~K is actually constant:

Theorem A.9 In the averaged system of equation (A.65) ~K is constant.

The proof, as in [ems3] is easy. When calculating the integral of each of the ∂Ψi
H1 over the torus T n

we can first integrate over Ψi :

∫ 2π

0
∂Ψi

H1 dΨi = H1( ~K,Ψ1, . . . ,Ψi = 2π, . . . ,Ψn, 0) −H1( ~K,Ψ1, . . . ,Ψi = 0, . . . ,Ψn, 0) = 0 ,

(A.66)
since H1 is 2π–periodic in each Ψi. 2

In systems Dθ
~Ψ = ~Q( ~J) + ε~g( ~J, ~Ψ, ε), Dθ

~J = ε ~f( ~J, ~Ψ, ε) where the perturbations are not Hamil-
tonian the theorem does not hold, but still the EOM in the averaged system are much simplified since
the new “slow” variables ~K are decoupled from the “fast” variables ~Ψ. It is clear that the combined



A.1. HAMILTONIAN DYNAMICS 203

system of equations (A.64a),(A.65) is generally not Hamiltonian any more. However Kolmogorov,
Arnold and Moser [ems3] have developed a method of successively applying canonical changes of co-

ordinates ( ~Ji, ~Ψi,H
(i)
0 ,H

(i)
1 ) → ( ~Ji+1, ~Ψi+1,H

(i+1)
0 ,H

(i+1)
1 ), ( ~J0, ~Ψ0,H

(0)
0 ,H

(0)
1 ) ≡ ( ~J, ~Ψ, ~J,H0,H1) so

that in the n-th step the Hamiltonian is

H(n)( ~Jn, ~Ψn, ε) ≡ H
(n)
0 ( ~Jn) + ε2

n

H
(n)
1 ( ~Jn, ~Ψn, ε) (A.67)

in the case of strongly incommensurable ~Q( ~J).

For ∂ ~J
~QT = 0, i.e. for linear systems and strongly incommensurable ~Q the difference between the

original slow variables ~J and the averaged slow variables ~K is bounded over intervals ∆θ < 1/ε.

Theorem A.10 If the tunes ~Q of the unperturbed motion are independent of ~J and strongly incom-
mensurable, the perturbation is analytic in its variables, periodic in θ (but not necessarily Hamiltonian)
and if ~J(θi) = ~K(θi), then there is a c > 0 such that

| ~J(θf ) − ~K(θf )| < cε, 0 ≤ θf − θi ≤ 1/ε . (A.68)

For the proof, as given in [ems3], we start with a change of variables ( ~J, ~Ψ) → ( ~K, ~Φ) defined by a
formal series of which we will only need terms up to O(ε). This proof includes a description of the
complete procedure of first order canonical perturbation theory. The EOM in the old variables are

Dθ
~J = ε ~f( ~J, ~Ψ, ε) = ε ~f( ~J, ~Ψ, 0) +O(ε2)

Dθ
~Ψ = ~Q+ ε~g( ~J, ~Ψ, ε) = ~Q+ ε~g( ~J, ~Ψ, 0) +O(ε2) . (A.69)

We choose an ansatz for the change of variables analytic in ε and close to a unit transform

~J = ~K + ε~u( ~K, ~Φ) +O(ε2)

~Ψ = ~Φ + ε~v( ~K, ~Φ) +O(ε2) . (A.70)

The ansatz for the EOM in the new variables which is constructed to contain the new fast variable ~Φ
only in O(ε2) is

Dθ
~K = ε ~F ( ~K) +O(ε2)

Dθ
~Φ = ~Q+ ε ~G( ~K) +O(ε2) . (A.71)

Taking the derivative of the transformation (A.70), inserting the transformation into the EOM (A.69)
and keeping only terms up to O(ε) we obtain up to first order in ε

ε ~f( ~K, ~Φ, 0) =1 Dθ
~K + ε

(
(∂ ~K ~u

T)T Dθ
~K + (∂~Φ ~u

T)T Dθ
~Φ
)

~Q+ ε~g( ~K, ~Φ, 0) =1 Dθ
~Φ + ε

(
(∂ ~K ~v

T)T Dθ
~K + (∂~Φ ~v

T)T Dθ
~Φ
)

. (A.72)

Finally by inserting the ansatz for the new EOM into equation (A.72) and again disregarding terms
in O(ε) we get the following relations:

~F ( ~K) = ~f( ~K, ~Φ, 0) − (∂~Φ ~u
T( ~K)T, ~Φ) ~Q

~G( ~K) = ~g( ~K, ~Φ, 0) − (∂~Φ ~v
T)T( ~K, ~Φ) ~Q . (A.73)

To solve the equation (A.73) we make use of the periodicity and analyticity of ~f and ~g. We define the
Fourier coefficients ~h0 and ~h~l for ~h representing either ~f or ~g, so that

~h( ~K, ~Φ) = ~h0( ~K) +
∑

~l∈Z,~l6=~0

~h~l(
~K)ei

~l·~Φ . (A.74)
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Moreover we define

~Ah ≡ ~h0( ~K) (the average of ~h w.r.t ~Φ) (A.75a)

~Ih ≡
∑

~l∈Z,~l 6=~0

~h~l

i~l · ~Q
ei
~l·~Φ (the incomplete integral of ~h w.r.t ~Φ). (A.75b)

The tunes are assumed to be incommensurable. Therefore the denominators in the series If and Ig
cannot identically vanish. Since ~f and ~g are analytic functions of ~Φ, their Fourier coefficients ~f~l and

~g~l decay [LM88] exponentially with |~l|, i.e. ‖ ~f~l‖, ‖~g~l‖ < cf,ge
−rf,g |~l|. The tunes are strongly incommen-

surable. Hence the denominators decay only like a power of |~l|. Therefore the series expansions of If
and Ig converge. One easily verifies that

(∂~Φ
~IT
h )T ~Q = ~h− ~Ah . (A.76)

We can now solve equation (A.73) to give ~F and ~G independent of ~Ψ

~F ( ~K) = A~f( ~K,~Φ,0)
, ~G( ~K) = A~g( ~K,~Φ,0) (A.77a)

~u( ~K, ~Φ) = I~f( ~K,~Φ,0)
, ~v( ~K, ~Φ) = I~g( ~K,~Φ,0) . (A.77b)

Therefore we have obtained a change in variables that transforms the exact EOM to the averaged EOM
(A.71) plus a perturbation of O(ε2) (A.70 ) and that differs from the unit transform by a quantity of
O(ε). Over an interval ∆θ ≤ 1/ε the deviation of the value of the slow variable ~K from the its value
in the unperturbed averaged system is at most of O(ε). The inverse transformation differs from unity
by a quantity of O(ε) Hence | ~J(θf ) − ~K(θf )| < cε over ∆θ ≤ 1/ε. This proves the theorem. 2

Note that Dθ
~K = εA~f( ~K,~Φ,0)

is up to O(ε2) the averaged system that we wanted.

For non–linear integrable systems ∂ ~J
~QT 6= 0 and thus the incommensurability condition cannot

hold for all values of ~Q. The tori where the tunes are incommensurable are called non–resonant. The
behaviour of the perturbed actions ~J is described by Kolmogorov’s theorem.

Definition A.14 An integrable system is called non–degenerate if the tunes are functionally indepen-
dent, i.e.

det
(
∂ ~J

~QT
)
≡ det

(
∂ ~J ∂

T
~J
H0

)
6= 0 . (A.78)

It is called isoenergetically non–degenerate if

det

(
∂ ~J

~QT ~Q
~QT 0

)
6= 0 (A.79)

In a non–degenerate system the non–resonant tori form a set of full Lebesgue measure on { ~J} ⊂ Rn.
Without proof I give here a version of Kolmogorov’s theorem [ems3].

Theorem A.11 (Kolmogorov’s theorem) If the unperturbed system is non–degenerate or isoener-
getically non–degenerate, then for a sufficiently small Hamiltonian perturbation “most” non–resonant
tori do not vanish even on long scales ∆θ but are only slightly deformed, so that in the phase space
of the perturbed system there are invariant tori densely filled with pseudo–periodic trajectories wind-
ing around them with incommensurable tunes. “Most” tori means that the Lebesgue measure of the
complement of their union is small when the perturbation is small. In the case of isoenergetically
non–degenerate systems the measure has to be taken w.r.t. each submanifold H = const. .
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A.1.5 Adiabatic invariants

We have seen that in the case of a linearly integrable system with perturbations periodic in θ the
actions of the unperturbed system change by only O(ε) over time scales of O(1/ε). Now we will touch
on the case where we have a Hamiltonian H(~z, λ) where the parameter λ is a slowly varying, generally
non–periodic, function λ : L ⊆ R → R, θ 7→ λ(εθ). For simplicity we set θi ≡ 0.

Definition A.15 (Adiabatic invariance) A function I : P × R → K, (~z, λ) 7→ I(~z, λ) is called an
adiabatic invariant if there is some positive constant c such that for an arbitrary trajectory ~ξ(~z0; θ)

|I(~ξ(~z0; θ), λ(εθ)) − I(~z0, λ(0))| < cε for 0 ≤ θ < 1/ε . (A.80)

We call the function I an almost adiabatic invariant if for each κ > 0 the Lebesgue measure of the set
of initial conditions ~z for which the variation of I along a trajectory exceeds κ over a time scale 1/ε
tends to 0 as ε tends to 0.

We assume now that the Hamiltonian system is integrable for all fixed λ(εθ) with θ ∈ L and has the
form

H(~z, λ(εθ)) = H0( ~J, λ(0)) + εH1(~Ψ, ~J, λ(εθ)) , (A.81)

where H1 is periodic in ~Ψ so that averaging can be applied. As we have seen above the actions are
constant in the averaged system. I will now without proof state two theorems [ems3]

Theorem A.12 If the Hamiltonian system (A.81) is non–degenerate, then the action variables ~J are
almost adiabatic invariants

Theorem A.13 If H0 in the Hamiltonian system (A.81) is linear, i.e. ∂ ~J
~QT = 0 and if the tunes

Qi(λ(εθ)) 6= 0 are distinct for all θ ∈ L, then there are as many independent adiabatic invariants
as there are degrees of freedom. The adiabatic invariants are quadratic functions of the zi(θ) whose
coefficients depend on λ and are 2π–periodic in θ.

A.2 Application to circular accelerators

In circular accelerators the particles are guided around the ring by electric and magnetic fields. In
particular, dipole fields keep the particles on globally circular orbits and combinations of focusing
and defocusing quadrupoles ensure that the beam cross section remains bounded. Acceleration and
longitudinal stability is provided by time dependent electromagnetic fields in RF cavities. In addition
to these “design” fields there are non-negligible field errors due to positional misalignment, iron yoke
saturation, field nonlinearities etc. Thus correction coils and extra multipole fields are provided for
corrective beam steering and correction of higher order effects. This thesis covers only effects of spin–
orbit motion related to the unperturbed particle motion in a machine without any misalignment and
field errors. The closed trajectory of the reference particle in storage mode, i.e. the trajectory of a
particle with just the right momentum and initial conditions to be a fixed point of the unperturbed
one–turn map is called the design orbit. The Lagrangian for a relativistic particle with charge e and
rest mass m, using time in the laboratory frame t, the 3–vectors ~r and ~β ≡ Dt ~r, and the scalar and
vector potentials φ and ~A is [HG89, HM96]

L(~r, ~β, t) = −m
√

1 − ‖~β‖2 − e
(
φ(~r, t) − ~β · ~A(~r, t)

)
. (A.82)

This Lagrangian can be transformed to the curvilinear coordinate system [HR87, GH94, GH99b,
CW98] introduced in chapter 2. Then the Hamiltonian is generated by H̃(~q, ~p, t) = [~β · ~p−L(~r, ~β, t)] ◦
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[~r, ~β](~q, ~p). A change of variables [CS58, BH94a, MB90, HM96] leads to the Hamiltonian H(~z, θ) in
its standard form in the field of accelerator physics, where ~z is defined in equation (2.6) and θ is
the generalised azimuth. The Hamiltonian is origin preserving and has a critical point at ~z = ~0,
i.e. H(~0, θ) = 0 and ∂~zH(~0, θ) = ~0 ∀θ so that ~z = ~0 is a closed periodic solution. The coordinates
~z can normally be regarded as small so that terms of higher order in ~z have less impact on particle
motion then low order terms. Nevertheless higher order terms can significantly decrease the dynamic
aperture (section A.1.2) so that the life time of a particle with a sufficiently large orbital amplitude
is small.

The methods developed in section A.1 can be directly applied to the Hamiltonian system defined
by (P?,H(~z, θ)) with (~0, θ) ∈ P? ⊆ R6 ∀θ.

A.2.1 Hill’s equation and Courant–Snyder parameters

In this section we will analyse the linear transverse motion in the absence of coupling of the transverse
planes and for a particle with δ = τ = 0. We only have to take into account the effects of dipoles and
quadrupoles. In the fully decoupled case the linearised EOM for (x, a) and (y, b) are analogous. The
second order equation of motion for x is

Dθθ x+ k(θ)x = 0 (A.83)

where k ≡ L2

4π2 (K + κ2), K = e/p0∂xBy is the field gradient normalised by the magnetic rigidity of
the reference particle, κ is the horizontal curvature κx defined in equation (2.7), and k is periodic
k(θ+2π) = k(θ). This type of oscillator equation with periodically varying k is called Hill’s equation.
We will only treat the case of horizontal motion here and note that we can obtain the vertical EOM
from the horizontal by replacing K with −K as dictated by the Maxwell’s equations and take κ = κy
instead of κ = κx. In a flat unperturbed ring κy vanishes identically. The canonical version of (A.83)
is

Dθ

(
x

a

)
=

(
0 L

2π
−2π

L k(θ) 0

)(
x

a

)
(A.84)

and this has a principal solution of the Floquet type (A.30). We note that x and Dθ x have the
dimension of a length whereas a and Dθ a are dimensionless. The factors L/(2π) and 2π/L are caused
by Dθ = (2π/L)Ds where s is the arc length of the reference trajectory. The next step would be to
perform one more canonical transformation with multiplier 2π/L to change from ~z = (x, a, y, b, τ, δ) to
the dimensionless phase space vector z̃ ≡ (x̃ ≡ (2π/L)x, a, ỹ ≡ (2π/L)y, b, τ̃ ≡ (2π/L)τ, δ). Moreover
the statement whether or not a quantity is “small” makes only sense for a dimensionless quantity.
Here Λ = 2π/L has been used to obtain a transparent connection between the formalism used in this
section and the standard formalism of accelerator physics in which the arc length s is taken as the
independent variable instead of θ. But in principle one has to introduce a physical scale Λ with the
same dimension first. Then x̃ ≡ x/Λ is dimensionless and thus independent of the system of units
used. In order for the truncated Taylor expansion of the EOM in the coordinates to make sense, the
physical scale Λ has to be chosen so that for x� Λ the contributions of higher order neglected terms
in x are small compared to the terms included into the truncated expansion. The results presented in
this section were obtained with x, y, τ , β and D having the dimension of a length whereas a, b, δ, θ, α
and being dimension less and with γ having the dimension of an inverse length. The quantities β, α,
γ and D are to be defined later. Either changing from θ to s or performing the scale transform ~z 7→ z̃
defined above would eliminate the many factors (2π/L)n and reduce the formulae to their standard
forms well known in accelerator physics.

We will assume that the linear motion is bounded and treat it in a way [HW93a] that is slightly dif-
ferent to the methods described in section A.1 but introduces the Courant–Snyder functions. Inserting
the ansatz

x(θ) =
√
ε̃β(θ) cos(ψ(θ) − ψ0) , (A.85)
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where β is assumed positive and 2π–periodic and ε̃ is some positive constant, into equation (A.83) we
obtain two conditions

β′ψ′ + βψ′′ ≡ (βψ′)′ = 0 (A.86a)

ββ′′ − 1/2β′2 − 2β2ψ′2 + 2β2k = 0 (A.86b)

where ′ denotes differentiation w.r.t. θ. Equation (A.86a) can formally be integrated giving

ψ(θ) − ψ0 =

∫ θ

θ0

cL

2πβ(θ)
dθ (A.87)

with some positive constant c which is normally chosen to be 1. Choosing c = 1 is an arbitrary
normalisation condition on β that fixes ε̃ as a function of x(θ0). Inserting (A.87) into equation
(A.86b) we finally obtain a non–linear second order differential equation for β

1

2
ββ′′ − 1

4
β′2 + β2k =

L2

4π2
. (A.88)

Introducing α ≡ −β ′π/L and γ ≡ (1 + α2)/β we can rewrite equation (A.88) as

α′ L
2π

= kβ − L2

4π2
γ . (A.89)

The functions β, α and γ are called the Courant–Snyder functions of the lattice. The ansatz (A.85)
is consistent for the real coordinate x only if β, once chosen positive at θ0, can never change its sign.
Inserting f(θ) =

√
β(θ)2π/L into equation (A.86b) we find

f ′′ + kf − 1

f3
= 0 . (A.90)

Now let 1/ 4
√
k � f0 > 0 and the derivative g ≡ f ′ with g0 ≡ f ′0 < 0 be finitely negative. Then

g′ = 1/f3 + O(f) > 0 for sufficiently small |f | and it approaches infinity as f approaches 0. Since g0

was assumed finitely negative, g changes sign before f approaches 0. Hence f and therefore β with
f0 ≡

√
2π/Lβ0 > 0 does not change sign.

In general one cannot solve equation (A.88) analytically but with the help of the Courant–Snyder
functions one can elegantly parametrise the trajectory (A.85), the flow and the integral of motion ε̃.
By introducing

c ≡ xi√
βi

, s ≡ ai
√
βi +

xiαi√
βi

⇒ x(θ) = c
√
β cosψ + s

√
β sinψ (A.91)

and by setting ∆ = ψf − ψi we obtain

(
xf
af

)
=




√
βf

βi
(cos ∆ + αi sin∆)

√
βfβi sin∆

αi−αf√
βfβi

cos ∆ − 1+αiαf√
βfβi

sin∆
√

βi

βf
(cos ∆ − αf sin∆)



(
xi
ai

)
. (A.92)

The periodic linear one–turn matrix can be parametrised in terms of the Courant–Snyder functions
as

T 2×2(θ) =

(
cosµ+ α(θ) sinµ β(θ) sinµ

−γ(θ) sinµ cosµ− α(θ) sinµ

)
(A.93)

where we have used µ = ψ(θ + 2π) − ψ(θ). One immediately verifies det(T 2×2) = 1 and

trace
(
T 2×2

)
= 2 cos µ = λ+

1

λ
= ei2π[Q] + e−i2π[Q] . (A.94)



208 APPENDIX A. ORBIT MOTION

Therefore the matrix is symplectic and stable in agreement with our assumption that the linear motion
is bounded. Note that in general solutions of Hill’s equation are not necessarily bounded, but a real ring
is never operated with such an optic. Moreover the OTM is strongly stable if [Q] ≡ [µ/2π] 6= 0. From
theorem A.10 we conclude that if [Q] is strongly incommensurable with 1 the invariant tori (circles)
are stable for a sufficiently small perturbation. In addition, if the one–turn matrix of equation (A.84)
is stable it can be expressed in terms of Courant–Snyder functions α, β, γ and the phase advance µ. So
once we are given the one–turn matrix for all θ we can easily compute the Courant–Snyder functions.
In the case of piecewise constant fields we can in principle even compute the OTM analytically. Let
χi ≡ 2πli/L ≡ θi+1 − θi be the azimuth range of the ring that the i–the beam line element occupies.
For θi+1 > θ > θi we have ki = const. Hill’s equation is then piecewise equivalent to the equation of a
simple harmonic oscillator. Then the single element transfer matrix is

T foc
i =




cos
(√

|ki|χi
)

L
2π

sin
“√

|ki|χi

”

√
|ki|

−2π
L

√
|ki| sin

(√
|ki|χi

)
cos
(√

|ki|χi
)




T drf
i =

(
1 li
0 1

)

T def
i =




cosh
(√

|ki|χi
)

L
2π

sinh
“√

|ki|χi

”

√
|ki|

2π
L

√
|ki| sinh

(√
|ki|χi

)
cosh

(√
|ki|χi

)


 (A.95)

for focusing (k > 0), drift (k = 0) and defocusing (k < 0) elements respectively. Quadrupoles focus

in one plane and defocus in the other with the sign of k = L2

4π2K depending on their polarity. Sector

bends focus in the plane of deflection with k = L2

4π2κ
2 and behave drift–like in the perpendicular

plane. Sector combined function magnets focus in the plane of deflection with k = L2

4π2 (K + κ2) and

in the other with k = − L2

4π2K. The focusing with κ2 is called weak and that with K is called strong.
Rectangular bends introduce extra edge focusing because the entry and exit boundaries are not in the
plane defined by the normal and co–normal vector of the reference trajectory. The one–turn map at
the entrance of the element with index 1 of a ring with m elements (including drifts!) is then just
T (θ1) = Tm Tm−1 · · · T 2 T 1.

When proving the integrability of stable linear systems we have shown before equation (A.39) that
T (θ) = B(1)(θ)RB(1)−1(θ), where R describes a phase space rotation by µ and B (1) ≡ (~b1,~b2) is the
real symplectic and periodic matrix made from the real column “eigenvectors” ~bi that are transformed
by T like T B(1) = B(1) R. In the 2–dimensional case we have

T 2×2(θ) =

(
b11 b21
b12 b22

)(
cosµ sinµ

− sinµ cosµ

)(
b22 −b21

−b12 b11

)

=

(
cosµ− (b11b12 + b21b22) sinµ (b211 + b221) sinµ

−(b212 + b222) sinµ cosµ+ (b11b12 + b21b22) sinµ

)
(A.96)

where we have used det(B(1)) = det(B(1)−1) = 1 in the second step. Comparison with equation
(A.93) yields

b211(θ) + b221(θ) = β(θ), b212(θ) + b222(θ) = γ(θ), b11(θ)b12(θ) + b21(θ)b22(θ) = −α(θ) . (A.97)

Equation (A.85) together with

a =1
2π

L
Dθ x = −

√
ε̃

β
(α cos(ψ − ψ0) − sin(ψ − ψ0)) (A.98)
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enables us to eliminate the phase ψ − ψ0 and find the Courant–Snyder invariant

γx2 + 2αxa + βa2 = ε̃ = const. (A.99)

Equation (A.99) is the equation of an ellipse in the (x, a) plane with area Aellipse = πε̃ ≡ ε. Note that
the area is independent of θ but the shape and orientation of the ellipse vary 2π–periodically with θ.
Comparing equations (A.97) and the ansatz (A.85) with the transformation to action–angle variables

(
x(θ)

a(θ)

)
=

(
b11(θ) b21(θ)
b12(θ) b22(θ)

)(√
2J sinψ√
2J cosψ

)
(A.100)

we find

ε̃ =
ε

π
= 2J . (A.101)

The Courant–Snyder invariant is defined as a property of a single torus. It is a common property of
all particles whose trajectories wind around the torus with J = ε̃/2. In the next subsection we will
introduce another property of ε̃.

Until now we have treated only fully decoupled motion, i.e. motion where any coupling of the two
transverse planes due to rotated quadrupoles and solenoids is absent and where we have neglected the
effect of off–momentum trajectories. Rotated quadrupoles and solenoids might be avoidable from the
theoretical point of view, but a mono–energetic beam is as impossible as a beam without betatron
oscillations. In the absence of vertical bends and vertical orbit distortions the relative energy offset δ
feeds into the horizontal motion.

Dθθ x+ k(θ)x =1 ξ(θ)δ . (A.102)

Here we have introduced ξ = L
2πκ

dδp
dδ

∣∣∣
δ=0

with the relative momentum offset δp ≡ (p − p0)/p0. If we

assume δ to be constant, as in a ring without RF–cavities, this is an inhomogeneous equation of the
Hill type. We can find a particular solution by means of a Green’s function

G(θ2, θ1) ≡ S(θ2)C(θ1) − C(θ2)S(θ1), C(θ) = T11(θ, θ0), S(θ) = T12(θ, θ0) (A.103)

where T (θ, θ0) is the flow of the homogeneous Hill’s equation (A.83). Using the relation CDθ S −
SDθ C = 1 one easily verifies [HW93a] that δD(θ, θ0) where

D(θ, θ0) ≡
∫ θ

θ0

G(θ, θ1)ξ(θ1) dθ1 (A.104)

is a particular solution of equation (A.102). Therefore we obtain for a given δ

~x(θ) ≡
(
x(θ)

a(θ)

)
=1 T (θ, θ0)~x(θ0) + ~D(θ, θ0)δ , ~D(θ, θ0) ≡

(
D(θ, θ0)

2π
L DθD(θ, θ0)

)
. (A.105)

The constant energy offset leads to a new periodic reference trajectory ~xδ =1 ~xDδ where

~xD(θ) = ( 1 − T (θ))−1 ~D(θ) (A.106)

is the 2π–periodic solution of ~x = T~x+ ~Dδ whereby T (θ) is the one–turn matrix and ~D(θ) ≡ ~D(θ +
2π, θ) and T (θ) and ~D(θ) being the linear one–turn matrix and the one–turn dispersion respectively.
The trajectory ~xD(θ) is called the periodic dispersion trajectory and is well defined whenever 1 − T
is regular, i.e. whenever the tune is not an integer. The spatial component xD ≡ (~xD)1 is called the
periodic dispersion. Usually the dispersion D̃ and periodic dispersion x̃D are defined in an analogous
way but by substituting the relative momentum offset δp ≡ (p − p0)/p0 and L

2πκ for the canonical
momentum δ ≡ (K −K0)/K0 (see 2.7) and ξ in equation (A.104).
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In addition the transverse variables feed into the longitudinal plane due to the path lengthening
resulting from the the transverse displacement and angles.

The longitudinal motion in the linear decoupled case can be shown [WR88, HW93a, HW93b] to
be also governed by a Hill type equation and therefore the one–turn map can be written in terms of
longitudinal Courant–Snyder parameters. Nevertheless it might be more instructive to look at the
longitudinal transfer maps of different elements. If we totally neglect the coupling of transverse and
longitudinal motion all elements except the RF–cavities behave like drifts:

T
(drf)
τδ,i =

(
1 li

(γ0+1)2

0 1

)
, T

(cav)
τδ,i =

(
1 0

−4π2frfUrfp0
LK2

0
1

)
, (A.107)

where K0 is the “kinetic energy” of the synchronous particle (δ = 0), frf and Urf are the RF–frequency

and RF–voltage respectively and where the sign of (T
(cav)
τδ,i )21 has been chosen to be focusing for positive

RF–voltage. The transport matrix for a cavity has been computed in the thin lens approximation
(χ→ 0). The first order approximation for the influence of the magnetic elements on the path length
is integral ∆L = L

2π

∫ 2π
0 (κxx + κyy)dθ along the dispersive orbit xDδ. We assume for simplicity that

the ring is flat ring with κy = 0. One then obtains [HW93a] for the relative change of the path length
to first order as

∆L

L0
=1 αpδp = αKδ , αp ≡

1

2π

∫ 2π

0
κx̃D(θ) dθ , αK ≡ 1

2π

∫ 2π

0
κxD(θ) dθ , (A.108)

where we have introduced the well known momentum compaction factor αp and the equivalent kinetic
energy compaction factor αK . The relative time of flight difference can be computed to first order

t− t0
t0

=1
∆L

L0
− ∆β

β0
=1 −(γ−2

0 − αp)δp (A.109a)

=1 −(γ−2
0 − αp)

dδp
dδ

∣∣∣∣
δ=0

δ =1 −
(
γ0 − 1

β2
0γ

3
0

− αK

)
δ . (A.109b)

Since (t−t0)/t0 = −p0τ/K0t0 , αK =1 αp
(γ0−1)/γ0β2

0
and t0 is the inverse revolution frequency f0, the

change of τ after one turn is then

∆τ =1 (γ−2
0 − αp)

(γ0 − 1)2

f0γ
2
0β

3
0

δ =1
γ0 − 1

f0β0γ0

(
γ0 − 1

β2
0γ

3
0

− αK

)
δ ≡ ηδ . (A.110)

As expected limp0→∞ αK/αp = 1. Therefore the combined linear effect of the dispersion in the whole

ring except for the cavities can be written as a longitudinal transfer matrix

(
1 η
0 1

)
.

The most striking consequence of (A.110) is that for αp > 0 there is a γt ≡ 1/
√
αp such that for

γ0 < γt a particle with δ > 0 gains relatively more speed than relative additional path length so that
it arrives early (∆τ > 0) whereas at γ0 > γt the lengthening of the path over–compensates the gain
in speed and a particle with more kinetic energy arrives late. This effect is called transition and γ t is
called “γ–transition”. Therefore in order that τ = δ = 0 is an elliptic fixed point the RF–phase must
be adjusted so that below/above transition a late particle gains/looses energy.

A.2.2 Fully 6–dimensional motion

We return now to the fully coupled motion. The transfer maps for the most important beam line
elements as used in SPRINT are derived in [CW98]. The 6 × 6 one–turn map for the unperturbed
machine, i.e. without any misalignment, has the following 3 × 3 block structure

T (θ) =




H Chv Dh

Cvh V Dv

Lh Lv L


 . (A.111)
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The 2× 2 matrices H, V and L describe, as in the uncoupled case, the dependence of the horizontal,
vertical and longitudinal variable on themselves. Dh and Dv includes the effect of horizontal and
vertical dispersion, whereas Lh and Lv describe mainly the effect of transverse excitation on the time
of flight variable τ . In completely mid–plane symmetric rings, particularly in rings without vertical
bending dipoles, Dv, Lv, Cvh and Chv vanish and in rings without RF–cavities the first column of
the Di and the second row of the Li vanish. The coupling between the horizontal and the vertical
plane is described by the matrices Chv and Cvh. Rotated quadrupoles as well as solenoids introduce
so–called linear coupling and destroy the mid–plane symmetry even in a ring without vertical bends.
In a rotated quadrupole the EOM take the form

Dθθ x+ kx+ k̃y = 0 , Dθθ y − ky + k̃x = 0 (A.112)

where k = 0 is the special case of skew quadrupoles, i.e. quadrupoles rotated by π/4. In rings
with horizontal and vertical bends and cavities, and even in the absence of solenoids and rotated
quadrupoles, a small transverse coupling arises from the cross talk between horizontal, vertical and
longitudinal degrees of freedom. Any horizontal offset in a region with non–vanishing horizontal
curvature creates a lengthening of the closed orbit and therefore feeds into the time of flight variable
τ . The same argument applies to vertical offsets in regions with vertical curvature. But the cavities
change the particle energy according to the arrival time at the azimuth of the cavity. Thus, if there is
horizontal and vertical curvature in the ring and from the view point θ0 to the azimuth of the cavity
both dispersions ~Dx(θcav, θ0) and ~Dy(θcav, θ0) do not vanish identically, then Cvh 6= 0 6= Chv even
without solenoids and rotated quadrupoles.

If the linear motion is bounded, i.e. if the all the eigenvalues λi of the one–turn map fulfil |λi| = 1,
then we can transform the system to normal form coordinates in which the different eigenplanes are
decoupled. Each plane has its own tune Qi and if the tunes are mutually different, then, according
to theorem A.13 the invariant tori are stable under small perturbations of O(ε) over a time scale
O(1/ε). If coupling between the transverse degrees of freedom is weak and dispersion is small in both
the horizontal and the vertical planes, then the eigenplanes are almost parallel to the (x, a), (y, b)
and (τ, δ) planes in Cartesian phase space. In mid–plane symmetric rings the vertical plane is almost
decoupled from the other two planes, at least if misalignments are ignored. Due to the dispersion
being mainly in the horizontal plane the horizontal and the longitudinal planes in phase space cannot
normally be seen as decoupled.

In analogy to the Courant–Snyder functions of the uncoupled case one can define the Mais–Ripken
lattice functions [MR82, FI92] through the normalised “eigenvectors” according to equation (A.38)

βi,j = b22i−1,2j−1 + b22i,2j−1

γi,j = b22i−1,2j + b22i,2j

−αi,j = b2i−1,2j−1b2i−1,2j + b2i,2j−1b2i,2j (A.113)

where 1 ≤ i ≤ 3 refers to the eigenplane and 1 ≤ j ≤ 3 refers to the plane in Cartesian phase space. In
the case of a block diagonal one–turn map, i.e. in the absence of any inter–plane coupling this reduces
to βi,j = δijβj , γi,j = δijγj and αi,j = δijαj . Even with fully coupled 6–dimensional motion it is in

general possible to associate each eigenplane spanned by (~b2i−1 and ~b2i) as in equation (A.38) with
the Cartesian plane (x, a), (y, b) or (τ, δ) on which the projection of ~b2i−1 and ~b2i is maximal. It is
therefore convenient to denote the planes by x, y and z as in the uncoupled case.

Let ρ̃( ~J, ~Ψ, θ) be the normalised particle density in phase space, which evolves under the Liouville
equation ∂θ ρ̃ + ~Q · ∂~Ψ ρ̃ = 0. If ρ̃ is stationary, i.e. ∂θ ρ̃ = 0, then ρ̃( ~J, ~Ψ, θ) is independent of ~Ψ

and can be written as ρ̃ = (2π)−3ρ( ~J). Since the normal form coordinates of the i-th eigenplane
~xi ≡ (

√
2Ji cos Ψi,

√
2Ji sinΨi) are monotonic functions of the Ji for constant θ we can define the
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particle content inside of a torus under stationary conditions as

N~ε = Ntot

∫

Ji<εi/(2π)

∫

T 3

ρ( ~J) d ~J3 (A.114)

where Ntot is the total number of particles. In this context ε ≡ πε̃ which describes a volume in phase
space is called emittance. We assume now that ρ can be factorised as ρ( ~J) =

∏
i ρi(Ji), so that the

normalised densities ρi for each eigenplane are double Gaussians in the normal form coordinates x2i−1

and x2i of that plane. Then we obtain with Ji = 1/2(x
2
2i−1 + x2

2i)

ρi(Ji) =
1

2Jσ,i
e
− Ji

2Jσ,i (A.115)

where
∫

R+ Jiρi(Ji)dJi = 2Jσ,i. The action Ji is given by half of the Courant–Snyder invariant ε̃i which
is the the area enclosed by the invariant ellipse in the i-th eigenplane divided by π

In fact various versions of the emittance — as a parameter characterising the particle distribution
of a proton beam — are in use. The most common definitions for the emittance are:

1. either 2π times the orbital action J̃i for which
∫

R2+

∫ eJi

0 ρ( ~J ) d ~J = 1− e−
eJi/(2Jσ,i) = 95%. There-

fore we find J̃i = Jσ,i ln(1/(1 − .95)2) ≈ 6Jσ,i. 2πJ̃i is called the 95%–emittance,

2. or 2π times the orbital action Jσ,i (J2σ,i) for which the trajectories have a maximum projection
on configuration space of 1 (2) standard deviations σ of the beam profile. These emittances are

called the 1-σ (2–σ) emittances. Since Jsσ,i = s2Jσ,i = s2, the integral
∫

R2+

∫ Jsσ,i

0 ρ( ~J ) d ~J is

1 − e−s
2/2. Therefore, if all other degrees of freedom are already integrated out, then the circle

in the normal form coordinates whose maximum projection on configuration space is 1 (2) σ
contains about 39% (87%) of the beam, and the 2.45 σ circle contains 95%.

In this thesis “emittance” always means the 1-σ emittance ! Note that
∫ Jsxσ,x

0

∫ Jsyσ,y

0

∫ Jszσ,z

0

ρ( ~J ) d ~J = (1− e−s2x/2)(1− e−s2y/2)(1− e−s2z/2) and thus, for example, that the torus with (sx, sy, sz) =
(1, 1, 1) contains only 6% of the beam.

A.2.3 Adiabatic phase space shrinking

In the previous sections we have only treated the case of constant reference momentum p0. The
coordinates (2.7) have been obtained by a rescaling process (x, px, y, py,−∆t,∆K) → (x, a, y, b, τ ≡
−K0/p0∆t, δ ≡ ∆K/K0) which is according to lemma A.3 a canonical transformation only if p0, K0 =
const. In a synchrotron the reference momentum is only changed in RF–cavities. It is not changed
in the rest of the ring, which makes up almost the whole lattice. Therefore the acceleration process
can be described as a composition of symplectic maps, describing the motion between cavities and
non–symplectic maps, describing the motion inside the cavities. In thin lens approximation the linear
transfer map of a cavity increasing the energy by ∆E is

T
acc/cav
∆E =




1 0 0 0 0 0
0 p1

p2
0 0 0 0

0 0 1 0 0 0
0 0 0 p1

p2
0 0

0 0 0 0 p1K2

K1p2
0

0 0 0 0 −4π2frfUrfp1
LK1K2

K1
K2




with
K2 ≡ K1 + ∆E

p2 ≡
√

(K1 + ∆E +m)2 −m2 .

(A.116)
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This matrix has a determinant det(T
acc/cav
∆E ) =

p31
p32

and the three sub–blocks acting on the three planes

(x, a), (y, b), and (τ, δ) have determinant p1
p2

. Therefore det(T
acc/cav
∆E ) with positive/negative ∆E causes

the phase space volume to shrink/expand. It has been shown [CS58] that in the case of linear orbital
motion which is integrable all along the ramp, even in the case of an additional continuous change of
the lattice parameters, the normalised actions β0γ0Ji, i = 1, 2, 3 in the 3 eigenplanes are adiabatic
invariants of motion. One often calls the εnrm

i = 2πβ0γ0Ji the normalised or invariant emittances.



Appendix B

Conventions

• We use rationalised units in which ~ = c = 1. Nevertheless, numerical values except for particle
momenta are given in the mKsA system.

mksA–System rationalised units

1 m 5.067728 1015 GeV−1

1.973271 10−16 m 1 GeV−1

1 kg 1.782663 10−27 GeV
1 s 1.519266 1024 GeV−1

6.582122 10−25 s 1 GeV−1

1 A 1.244367−5 GeV

e ≈ 1.602 10−19 As ≈
√

4π/137

• Sets in general are denoted by “caligraphic” S.

• Sets of “numbers” are denoted by “blackboard style” F. In particular Z is the ring of the signed
integers, N and N∗ are the sets of the non–negative and positive integers respectively, Q and R

are the fields of the rationals and the reals respectively and H is the skew–field of the quaternions.

• Closed intervals {x ∈ Ra ≤ x ≤ b} are denoted by [a, b], the open intervals by (a, b), semi–open
intervals by [a, b) and (a, b].

• For real numbers [x] means the positive non–integer part, i.e. x− [x] ∈ Z and 0 ≤ [x] < 1.

• The equality up to order n is indicated by =n, i.e. a(x) =n b(x) implies a− b = O(xn+1).

• Groups are denoted in “bold” and uppercase G, their corresponding Lie–algebras with the same
letter in “bold” but lowercase g.

• Vectors are denoted with an “arrow”: ~x, in particular ~Id is the identity map.

• The Euclidean norm of a real or complex vector is denoted by ‖~x‖ ≡
√∑

i |xi|2.

• For every n–tuple ~k of integers ki ∈ Z, 1 ≤ i ≤ n we define |~k| ≡
∑n

i=1 |ki|.

• Unit vectors are denoted with a “hat”: x̂ so that ‖x̂‖ is identically 1.

• Spinors are denoted with a “check”: x̌.
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• Matrices are denoted with an “underline”: X . Normally 6× 6 and 3× 3 matrices are written in
uppercase and 2 × 2 matrices in lowercase. In particular 1 is the identity matrix. We will often
identify linear maps with their matrix representation w.r.t. a given coordinate system.

• Unit quaternions are denoted with a “bar”: x̄.

• Let r̄ be a spin transport quaternion, then r is the corresponding SU(2)- and R the correspond-
ing SO(3) map.

• The “tilde”: x̃ and the “prime”: x′ have no predefined meaning. Their meaning is explained
wherever they are used.

• Complex conjugation is denoted with an “asterisk”: x∗.

• Transposition is denoted with a “roman T” superscript : XT.

• Hermitian conjugation is denoted with a “dagger” : x† and x̌†.

• ~J and ~Ψ are usually the orbital action–angle variables.

• I and Φ are usually the spin action–angle variables.

• The equations of motion in the accelerator are given w.r.t. the independent variable θ ≡ 2π l
L .

• The total derivative w.r.t. x is symbolised by Dx .

• Analogously the total second derivative w.r.t. x is symbolised by Dxx .

• The partial derivative is denoted by ∂x and the gradient w.r.t. ~x is denoted by ∂~x .

• The Jacobian of a vector function ~f(~x) is denoted by f ≡ (∂~x ~f
T)T.

• The space of n–times continuously partially differentiable functions is denoted by Cn.

• The commutative product is symbolised by
∏max
i=min whereas the “

⊙
” symbolises a non–commutative

product in the sense that the indexed operator starts at the right and stops at the left. Example:

n⊙

i=1

Ai ≡ AnAn−1 . . . A2 A1 .

• ∼ means proportional.

• ≡ indicates that new symbols are being defined



Appendix C

Key to the snake scheme coding

code φ/deg. θ/deg. α/deg. remark

1 0.0 0 0 rad.

a 22.5 0 45

b 45.0 0 90 → RHIC

c 67.5 0 135

3 90.0 0 180 long.

d 112.5 0 -135

e 135.0 0 -90 → RHIC

f 157.5 0 -45

2 0.0 90 — vert.

Table C.1: Table of types of Siberian Snakes used in snake arrangements for simulations of spin motion in
HERA–p. φ is the horizontal angle between the snake axis and the radial direction, α is the Steffen–angle 2φ
but taking into account that φ and π

2
− φ are equivalent, and θ is the polar angle between the snake axis and

vertical direction. Snakes with φ = ±45◦ are being built for the RHIC polarised proton project.

• All snake schemes start at the East interaction point (O–IP).

• The ordering of the snakes is clockwise around the ring — as in the lattice files.

• nX means that the sequence following is repeated n times. This convention is particularly useful
for highly periodic schemes with 6 or more snakes. For HERA this notation was not used to
“abbreviate” 4–snake schemes, i.e. 1b1b was used instead of 2X1b etc.

• For snake pairs of ±nn◦, ±mm.m◦ or ±ll.ll◦ so that the snake angles do not fit into the scheme
of table C.1, the abbreviations pmnn, pmmmm, pmllll are used.

• If not noted explicitly, the HERA–p snake schemes have as default 6 flattening snakes in the
vertical bend sections at the beginning of the arc octants OL, OR, SL, SR, NL and NR. [GH99b].
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