Gliwice 2001-09-25

SILESIAN UNIVERSITY OF TECHNOLOGY

FACULTY OF AUTOMATIC CONTROL, ELECTRONICS AND COMPUTER SCIENCE

MSc thesis

Design and Implementation of an
XML-based Call-Tracking-System for
Monitoring and Improving
Business-Process Performance

Supervisor: PhD Henryk Malysiak Author:
Consultant: PhD Lars Hagge Oskar Werewka

Table of Content

Table of Content 3

Table of Content

BN O O\ =\ 3
TABLE OF CONTENT IN POLISH LANGUAGE ...ttt e 5
O LA IO] 5 L O I [\ 11
A CTo 7= =T To N o TU T oL s = TSP UTP 11
L2 OVEINVIBW ..ottt ettt e s e e et e st e e et e e s beesabe e sbeesabe e s beeaabessabeeeabeseabeesabesanbeesabesenbeesabesanbeesabesesansnbeseseennrenan 12
RCH D= T a1 AT o] 1= SRRSO RR PSRRI 14
2 REQUIREMENTS ANALY SIS .. ittt e as 17
b2 I N o 4 0o [0 T 1) OO USTRRRR 17
22TTSrequIremMentSal DESY ...t e bbbt e et b b s aeeae e e e e 19
2.3 TTSsystem main Use Cases (CapPalilities)ociiireiiiriineee e e e 22
2.3. 1 SYSTEIM SIUCTUIE ...ttt r bbbt b e bbbt bbbt e e n et bt e e e nn e n e b ane s 22
2.3.2 PrOVIOE SEIVICE USE CASEvvveeeitrieeeeretesstteesaetsesesesseeesssasesaassesesasseessssbeeesassesesasaeeessaseeessssesesarseeessrenes 24
2.3.3 PrOCEEM TASKS USE CASE ...eeeievvieeieirieeieteeeesetteeesatteeessesseeessssesesasseesesasseessssbeeesassaesesasaeeessaseeesasssesesarseeesserenes 25
3 SYSTEM ARCHITECTURE ... ettt e e et e e e e e e st e e s s b e e s e b e e aranaees 29
3.1 INtroduction tO SOftWAN € A5 CRITECLUI €ivveeeieeeeieeeeeee e ettt eseeeree e st eeessstresssesseeesasseesssaseeessasseessasseeesasseeessaneees 29
G2 = o o o 1o = T S 31
R I ST Ve 1 (= o (| =TSR UPTRR SRR 33
3.3 L OVBIVIBW ..ttt ettt ettt et e e e st e et e e s abeesabe e s ateeeabeesabeesabeesabeesabeesabeesabesaabeesabeesabeesabeesnbeesabesanbeesnres 33
3.3.2 Database MOAENveoiuieiiiee et be e st e et e e sabe s et e e eab e e sbe e eabe e abeenabe e abeeeare s 37
3.3.3 COCOON COMPONENES.vteuteeiriateesteesteeteastesseesteesteestee bt aseasseaaeeaseesbeebeasseasbesbeesbeesbeesbeabeabeenseenbensnensneas 39
3.3.4 Multi [anguage SUPPOIT QISCUSSIONeiuiiuiiuiiiiiiieie ittt sttt sttt b e bbbt e e e sbesbesne s 40
A EXIErNAl TT S COMPONENTS....ccuiiiiiitirieieitereeie ettt sttt st sttt sttt st b e bt s bt be st et b e se e st b e s be e e besbe e sbe b e 43
Y = I 1 A 1NN 1 L] N 47

4.1 1MPIemMENtAtioN AECISIONS.....c.iiuiiiierieirte ettt ettt sttt st b e st be b se b s b et e b e s b e e eb e sbeseebesbeseeseebesaenea 47

4 Table of Content

4.2 USEA tECANOIOGIES ...ttt et b e s bt b e bt eb e sb e st b e s b se bt ebeneenea 49
421 JAVA AN JAVA SEIVIELSei ittt st et sae e s e e e eesnennes 49
422 XIML NG XSttt bbbttt bbbt bbbttt bbb 51
4.2.3 D OO R VPO TR PTPOPRPO 53
424 SQL AN IDBC ...ttt bbb bbb bbbt 55

e O gTo oo o] o= TSP UR PP TRUPTRN 56
4.3.1 First implementation CYCIE ..ot bbb bbb e bbb 56
4.3.2 Second implementation CYCIE.. ..o ne s 57

I] =10 | 1 T PP OTTPPTOPPI 59

5.1 Overview Of 8ChIEVED SOIULIONc.ciiriiiiiereeie ettt et n e 59

I (o= AT (o= SRRSO 61

B REFERENGCES..... ..ottt ettt ettt s ekt st e e e be e e sh b e e e be e e sab e e enbe e e sbbeeanbneesnneeaa 63

7 TECHNICAL APPENDIXESottiitite ittt ettt ettt ettt ettt st e ke e sab e e sbb e e sabeeebe e e snbe e e sbneesnneeans 65

A8 1 [T USSR 65

7.2 SOUPCE COUE SAMPIES......cviiiieteiteeete sttt sttt sttt et b e et b st be b st bt s b et e bt s b et e bt b et e bt s b et e b s b et be s bt ebesbe e 68

Summary in Polish Language

Summary in Polish Language

Spistresci:
WSEEP W JEZYKU POISKIM.....ciiiiiiiiiie e
L WP OWAAZENIE......cociiiie ettt sttt st e st e e s se e ebe e s beesnseenseesnreens
1.1 Celi PIrZYCZYNY ..ot
1.2 Przeglad projektU........ccov oo
1.3 DTINICHE. ..ttt
2 ANAITIZAWYMAGAN.........cceiiiiieeiie et see e e e ae s e ste e sbe e e ae e sseesateesbesanneenseeenseeans
2. L VWS eeeteetteeetteteeeeeeeeeeeeeeeebeeheeeeeebeerereenens
2.2 Wymagania do TTS W DESYcoiiiiiii e
2.3 GHOWNE Przypadki UZYCIA.......cveerveeeiesierieieic st
2.3.1 SrUKLUFa SYSTEMU.....ecivieiiiieiiie ettt
2.3.2 Przypadek uzycia: udostepnianie UStUgI..........ccooerenenenineninnnnnns
2.3.3 Przypadek uzycia: wykonywanie zadan............cccoeeeveeiveeineinenn,
S AT CHITEKTUI @ SYSTEIMUL ...ttt nre
B R VY1) SRR TPRRPPR
3.2 DECYZ]JE PrOJEKIOWE.cueiiiiiitesiieie st
3.3 AICHITEKIUIA TTS. it
3.3.1 Wprowadzenie do architeKtury TTS.......ccccooiiinininininieeeeee,
3.3.2 MOdel danyCh........cccvieiiiiiicee e
3.3.3 Komponenty systemu COCOON............ccovveiiiieiieiinie e
3.3.4 Dyskusja systemu wielojezyKOWego..........cccccvevveiiieiieiiieeiie s,
3.4 Zewngtrzne KOMpPONENLY TTS.. ..o
T N gl o] 1= 0 0= o] = o= VSRR
4.1 Decyzje IMPIemMeNtaCyJNe.......ccoviiiirieieieieee e
4.2 Wykorzystane teChnologie............coveiiiiiiiie e
4.2.1 JAVA 1 JAVA SEIVIELS.....ooeiieeceece e
4.2.2 XML T XSttt
R 1 | S
4.2.4 IDBC i SQL...oiiiiiiieiieiieieseee et
4.3 WyDbOr zakresu implementaci.........ccocooeerereinenerine e
4.3.1 Pierwszy cykl implementacyjny.......ccccecvveeiieiiieiie e
4.3.2 Drugi cykl Implementacyjny.........ccocoeveniniineienene e
I AT AN 1 USSR
5.1 Przeglad otrzymanego rOZWIaZania...........ccererueruerienieneeieieniesie e

5.2 Uzyskane doSWIAACZENIE.c.ccvviiiiiiie ettt

6 Summary in Polish Language

B BiDHOgrafia.....ccueeeeeeiecce s
7 DOAAtEK TECNNICZNY ... it et
7.1 SEOWNICZEK. ..o
7.2 Fragmenty Kodu ZIOHOWEJO.c.coeieieirieieiieeee e s

Wprowadzenie

Deutsche Elektronen Synchrotron (DESY) w Hamburgu jest instytutem naukowym
prowadzacym badania w dziedzinie fizyki wysokich energii. W planach instytutu
znajduje sie budowa nowego akceleratora liniowego dtugosci trzydziestu kilometréw
0 nazwie TESLA. Projekt ten zostat zaprezentowany niemieckiemu rzadowi. Obecnie
oczekuje na wyrazenie decyzji o finansowaniu.

W trakcie przygotowan do projektu TESLA w 1999 roku wydziat DESY
odpowiedzialny gtéwnie za |IT, inzynieri¢ elektroniczna, mechaniczna oraz
zachowanie norm bezpieczenstwa zdecydowat o utworzeniu nowej grupy o nazwie
Information Management Process, Projects w skrocie IPP. Gtdwnym zadaniem
nowopowstatej IPP jest wprowadzanie nowych strategii w projektowaniu urzadzen
mechanicznych, tak by proces ten byt efektywnie wspierany za pomoca narzedzi
CAD.

Zidentyfikowano nastepujace procesy, ktore beda stanowi¢ gtowna czes¢ ustug
udostepnionych przez IPP dla innych grup w ramach instytutu:

Przygotowywanie stanowisk CAD.

Szkolenia uzytkownikow.

Pomoc techniczna.

Konserwacja stanowisk.

Dostarczanie dokumentacji oraz informacji biezacych.

agrwdE

W trosce o0 zapewnienie odpowiedniej jakosci oraz efektywnosci
wymienionych powyzej ustug oraz dla uzyskania biezacej informacji
0 bedacych w toku procesach specjalny system komputerowy powinien zostaé
wykonany i wdrozony w IPP. System ten powinien zbiera¢ dane dotyczace
kazdego wniosku o wykonanie okreslonej ustugi, oraz w miare postepow
w pracy zachowywac jej historig.

Cel i przyczyny:

Jest wiele czynnikdw swiadczacych o tym, ze wprowadzenie nowego systemu
odbije si¢ pozytywnie na jakosci ustug dostarczanych przez IPP. Komunikacja
wewnatrz grupy oraz pomigdzy grupa a jej klientami jest w znacznej mierze
oparta na poczcie elektronicznej. Jest ona dos¢ wolna i moze sta¢ sig¢ nuzaca,
kiedy wigksza ilos¢ pracownikéw wezmie udziat w rozwigzywaniu
okreslonego problemu. Dlatego potrzebny jest system, ktory stanie sig

centralnym miejscem zarzadzania informacja, w ktorym nastapi integracja
komunikacji jak i funkcji dokumentujacych. Bez wsparcia systemu, osoba, dla
ktorej IPP uruchomita proces musi pyta¢ odpowiedzialnych za niego
pracownikéw telefonicznie, jaki jest jego stan zaawansowania. W optymalnym
przypadku osoba ta mogtaby samodzielnie wydoby¢ ta informacje z systemu.
Kierownik IPP potrzebuje zestawu statystyk na podstawie, ktérych moze on
podejmowa¢ decyzje. Statystyki sa pomocne w identyfikacji powtarzajacych
si¢ bteddw w realizacji proceséw, umozliwiaja one ich uniknigcie oraz bardziej
precyzyjne planowanie przysztych inwestycji. Obecnie wykonywanie statystyk
w IPP jest raczej skomplikowanym zadaniem, kt6re w dodatku moze wykona¢
tylko specjalnie w tym celu oddelegowany pracownik. Doktadnosc¢
sporzadzonych dokumentéw i tak jest ograniczona, poniewaz po zakonczeniu
danego procesu wigkszos¢ detali zwiazanych z jego realizacja nie jest nigdzie
dokumentowana.

Oczekiwane korzysci z realizacji projektu:

Operator linii pomocy techniczneyj:

Osoba ta zachowa wigcej czasu, poniewaz bedzie rejestrowac informacje tylko
w jednym miejscu, nie bedzie musiata dzwoni¢ albo wysyla¢ poczty
elektronicznej do swoich wspotpracownikow aby ich powiadomié
0 rozpoczeciu nowego procesu. W dodatku operator jest odpowiedzialny za
kontrolg postepdw w pracy, musi sprawdza¢ on czy nie istnieja zalegtosci
w realizacji zadan. Kontrola ta bedzie znacznie utatwiona dzigki informacjom
dostarczanym przez system, nie trzeba bedzie telefonowac¢ do okreslonego
pracownika by dowiedzie¢ sig, co zostato zrobione.

Klienci IPP:

Do dyspozycji klientow zostanie oddana specjalna aplikacja dostepna
w intranecie. Za jej pomoca begda oni w stanie sami rejestrowac informacje
w systemie z pominigciem linii pomocy technicznej. W przysztosci bgdzie to
standardowy sposob rejestracji zadan kierowanych do IPP. Osiagniety zostanie
znaczny stopien automatyzacji. Klienci takze tatwo beda mogli sprawdza¢
stopien zaawansowana procesow ich dotyczacych. Koniecznos¢ telefonowania
czy pisania listow elektronicznych z pytaniami zostanie wyeliminowana,
w dodatku system bedzie dostgpny przez cata dobg.

Pracownicy IPP odpowiedzialni za wykonywanie procesow:
Dla kazdego pracownika zostanie dynamicznie utworzona lista zadan do
wykonania. Lista ta bedzie zawiera¢ informacje o wszystkich procesach,
w ktorych dany pracownik musi wykona¢ jakas cze$¢ pracy. Informacja ta
bedzie prezentowana w spos6b zwarty i w jednym miejscu. Pracownicy beda w
stanie okresli¢ swoje obciazenie praca w kilka sekund, dzigki czemu beda
lepiej zorganizowani.

Kierownik grupy:
Zbior statystyk bedzie generowany w sposéb automatyczny i w krétkim czasie.
Ponadto statystyki te beda si¢ odznacza¢ dobra dokiadnoscia wynikajaca

z relatywnie duzej ilosci danych gromadzonych przez system. Posiadajac je
tatwiej bedzie dostosowac IPP do stojacych przed nia wymagan.

Sposob realizagji:

System zostat wykonany z uzyciem iteracyjnej metody konstrukcji
oprogramowania. W metodzie tej czas przeznaczony na realizacj¢ projektu jest
podzielony na tak zwane iteracje, o czasie trwania okreslonym w tym przypadku na
szes¢ tygodni. Skiad pojedynczego cyklu jest nastgpujacy:

e Poczatkowo pierwsze dwa tygodnie zostana spedzone na zbieraniu
wymagan uzytkownikdw.

e W nastgpnym tygodniu przeprowadzona bedzie analiza zebranych
wymagan. Na jej podstawie zostanie wykonany projekt architektury
systemu. Jest to pierwsza faza metody iteracyjnej. Architektura bedzie
w kolejnych cyklach ewoluowa¢ by zaadoptowa¢ zmiany jak
I pojawiajace sig nowe wymagania.

e Kolejne dwa tygodnie beda przeznaczone na implementacje. Zostanie
ona przeprowadzona tylko w wyznaczonym zakresie. W nastepnych
iteracjach zakres ten bedzie si¢ rozszerzac.

e W nastgpnym tygodniu bedzie wykonana weryfikacja techniczna oraz
uzytkownikéw. Bedzie przeprowadzone testowanie, dyskusje oraz
analiza spetnienia postawionych wymagan.

Jeden tydzien jest przeznaczony na udokumentowanie biezacej iteracji.

e W ostatnim tygodniu zostana zebrane nowe wymagania uzytkownikow,
co zamyka cykl. Jesli bgdzie to konieczne nastepny zostanie rozpoczety.

Iteracje powinny by¢ powtarzane do osiagnigcia odpowiedniego poziomu
funkcjonalnosci i niezawodnosci. Szesciotygodniowa jej dtugosé bedzie pozwalaé¢ na
fatwiejsza konserwacje, oraz dobre udokumentowanie systemu. Graficzne
przedstawienie cyklu jest pokazane na rysunku numer 1-1 (Fig. 1-1).

10

1 Introduction 11

1 Introduction

DESY in Hamburg is a research institute for high-energy physics and application of
synchrotron radiation. The institute is planning to build a new thirty kilometre long
linear collider, called TESLA. The TESLA project is currently proposed to the
German government and is waiting for approval.

In preparation for the TESLA project in 1999, DESY’s division for central services
has performed a business reengineering. The central division includes the IT services,
mechanical and electronic engineering and technical safety groups. As a consequence
of the business reengineering effort, a new group has been established to develop and
introduce new strategies for mechanical engineering to support the CAx systems. The
group is called Information Management Process, Projects (IPP).

IPP has designed its business processes and identified the following major services for
the CAD support:

CAD seat preparation

user training

user support/hotline

system maintenance
information and documentation

agrwNE

To measure the efficiency and quality of these services, and to obtain an up-to
date documentation of ongoing processes, a process monitoring system shall be
developed and introduced in IPP. The monitoring system shall create a “ticket”, i.e. an
information record for each service request, and log the history as the service request
is worked upon. This thesis describes the development and implementation of a
Trouble Ticketing System (TTS).

1.1 Goal and purpose

The main goal is to build a Help Desk system to support IPP group in
coordination and documentation of ongoing work processes. The system should be
helpful with maintaining and storing activity information. The TTS will provide both
internal and external users (further called clients) with the most recent information in
an easy way. It will also reduce the amount of mutual cooperators communication,
leaving them more time to their own responsibilities.

There are several purposes for introducing a new system. The communication
within service group and between service and service customers is currently based on

12

1 Introduction

phone and E-mail. This communication is relatively slow and can become tedious
when many people are involved. Therefore a system is needed which could be a
central point of information management to integrate communication and
documentation. As there is no such a central place where the information is stored,
clients will have to ask workers what they are doing when they want to know the state
of each process and each activity running. The system will instantly provide this
information without additional effort using an appropriate interface. The clients could
check what is going on whenever they want to, without needing to contact any IPP
worker. Also the supervisor needs to have statistics. Base on them he can improve
service or make more accurate planning. For now collecting data for such a statistics is
difficult, because usually after solving a problem the majority of details is simply
forgotten. In addition, to make a statistic a human being is needed. After introducing
TTS, all data will be collected automatically, and statistics will be generated whenever
needed without any interaction.

1.2 Overview

First, the scope of the work has to be defined; the most important point is to
understand ongoing processes and their lifecycles. With this knowledge it will be
possible to find out who will be able to use the system and who will be able to take
advantage of using it. It is recommended to talk to each worker in IPP group who will
probably use this system in the future. During this interviews workers will be asked
what is the wanted functionality (that will make work easier or faster), what are their
opinions, proposals, and how they are imaging working with the system. The result of
this stage will be users requirements database.

Second, the use cases have to be identified. Than user requirements analysis
has to be done, including dividing all requirements into three groups: the most
important functions that consists the main system functionality, less important features
useful but not absolutely necessary, and the least useful. There is done a prototype
system, which has to be simultaneously evaluated through realized use cases.

Having requirements and use cases database opens way to design system
architecture, which can implement them and is scalable, flexible, robust for changes
and maintainable. Next, implementation technologies have to be chosen, and then the
implementation, user trainings and documentation have to be done.

The expected results of the project were:

e Central database where the information about ongoing and finished processes
will be stored. Each process will consist of a subset of activities. Both
processes and activities will have a property that will indicate current state.
There will be option to configure the type all used process tickets and
activities, so the TTS will not be bound, to certain set of processes but will be
able to follow any well-defined process.

e An application, which will give access to information, stored in the central
database through any workstation in DESY. Because some portions of this
information maybe confidential, there will be some security mechanism which
will give full access only to registered users. The clients will have unprotected

1 Introduction

13

access to a chosen subset of information on purpose to relieve the hot line of
calls.
For registered users who are members of IPP, the application will provide
functions to:
1. To optimize time spent to get information out of TTS, an intuitive
representation mechanism will be provided. Workers needs to know
which task are to perform; this information will be organized like a
to-do list, which will be represented as a tree of process tickets.
2. Interface designed on purpose to enable hot-line operator to register
new problems as they appears.
3. Generating statistics for planning and controlling.
Supporting email subsystem. It will be enabled on a user request, and will
automatically provide the most recent information. For clients it means that
when status of process ticket or an activity change, there will be an instant
message. That allows clients to be up to date at lowest cost.

The expected benefits of the project were:

Hot-line operator:

Client:

The hot-line will save time, because all needed information will be
typed into one place, there will be no need to call or to send special emails to
any cooperators to inform them that they have a new tasks to perform. There is
also another benefit, because hot-line operator is responsible of controlling
work progress, he has to check if there are some activities which should be
done and are not. Now it could be done without asking adequate worker what
progress has been done.

Clients will be able to report their problems not only using hot line or e-
mail, but also web browser. This gives a standard way to report problems,
which relieves the hot line. In the future when clients got accustomed to this
way of reporting, the whole process could be well automated. Also whenever
wanted to know what the progress in a certain problem is, the client can just
ask TTS and receive all wished information.

Process worker:

The IPP worker who has a set of his responsibilities will have a to-do
list. That list will include all activities and process tickets aimed only for him.
He will have pointed out all new tasks. Thanks to it the person could assess the
workload with one glance and optimize the realization.

Supervisor:

The IPP manager will have all needed statistics. They will be made
automatically and more precisely, because the system will have accurate data.
Based on this it will be easier to plan future activities. Also no effort will be
needed to gather them.

14 1 Introduction

TTS will be built using iterative implementation method, which should consist of six
weeklong cycles:

e Initially during first two weeks user requirements will be collected.

e The next one-week will be taken by analyzing requirements and on that base
architecture will be designed. This is the first phase of the iterative method. The
architecture will grow to accommodate changes and new requirements.

e During next two weeks the implementation will be performed. But only in the chosen
scope. During following iterations the scope will extend.

e In the next week implemented changes will be verified technically and with users,
including testing, discussions and fulfillment of requirements.

e During one week the current iteration step will be documented.

Next week will be taken by upgrading user requirements. And the cycle will start
again from the beginning.

The cycle should be repeated as long as will be needed to reach sufficient functionality
and quality level. The six-week intervals enable good capacity for future upgrades to the
system.

Initial Tter ate
e ar-:hltg-:ture implermentation wetification documentation e
anahysis design upgrade
2 waaks 1 weak 2 waaks 1 weak 1 weak 1 weak

Fig. 1-1 Iterative method development life cycle.

There are several risks involved. Sometimes building a process management system
could result in possibly too strict and too complex system, which does not give user any
possibility to manipulate processes in a way, which was not foresaw. Such a system could not
help to work faster, instead requires typing more not necessary information and irritates users.
From DESY’s point of view this thesis does not have the only one goal of producing a useful
system. There is a requirement to use some new technologies, which should be introduced in
the future in DESY IT departments. Therefore some experience in those technologies is
needed and it is the reason why they should be used in this thesis. Lack of experience could
result in poor system architecture. Because not all technologies are now standardized or are
actually changing that could cause problems with scalability and changes introducing.

1.3 Definitions

TTS
Is an acronym for Trouble Ticketing System.

1 Introduction 15

Process Ticket

The term process ticket was created on the basis of definitions of technical and
business process:

Technical Process:

A technical process is an operation, which creates, transforms or
consumes energy, matter or information. Technical process is shown in

Fig. 1-2.
Process
energy v energy .
matter 1 tra nSfDr m matter
» Create >
.) inf .
information | N consume in urmatlun;

I control

Fig. 1-2 Technical process.

Business Process:

A business process is a set of activities, which are directed to the
same goal, provide use to a customer and have well defined input
and output.

Process Ticket:

A process ticket is information record for an instantiated (i.e.
running, executed) business process which contains a list of
actions necessary to finish the process, and which reward the
process history.

Activity
All process tickets in TTS will consist of a set of activities. A process
ticket will be considered as closed when all or a subset of its activities
will be done. An action is taken by a domain expert, and is desired to
solve a part of problem in a certain technical scope.

16 1 Introduction

User
Is a person, who is given the rights to access TTS, and is usually a
member of IPP group. This could be a domain expert, hotline operator
OT supervisor.

Client

Are DESY employees or guests who issue service request to IPP. They

are not registered as users and access only public parts of the system.
Domain Expert

Possess knowledge in some special areas. They are responsible for

solving problems in these areas. For example products related tasks.
Hotline Operator

Is a member of IPP who is responsible for collecting information from

clients, informing them about the work progress and dispatching

process tickets among domain experts.

2 Requirements analysis 17

2 Requirements analysis

2.1 Introduction

Developing a model for an industrial-strength software system prior to
its construction or renovation is as essential as having a blueprint for a large
building. Good models are essential for communication among project teams
and to assure architectural soundness. The models for complex system are built
because it is impossible to comprehend any such system in its entirety. As the
complexity of systems increase, so does the importance of good modelling
techniques. There are many additional factors of a project’s success, but having
a rigorous modelling language standard is one essential factor.

Goal: Govern changing and evolving system specification

The goal of collecting and analysing requirements is to gain all
information needed to first build the system model and then the system itself.
In the early stages the collected requirements are not very precise. After
analysing the first portion of them, more detailed interviews can be done.
Usually after showing to users the first prototype requirements are growing, it
IS because users can easily imagine what else the system can do for them. It is
important to early identify the most important features of the system, and to
separate them from these requirements, which are rather fancy wishes. This
separation allows concentrating on the most important elements.

Method: " How-to"

As the strategic value of software increases for many companies, the
industry looks for techniques to automate the production of software. It looks
for techniques to improve quality and reduce cost and time-to-market. These
techniques include component technology, visual programming, patterns and
frameworks. The industry also seeks techniques to manage the complexity of
systems as they increase in scope and scale. In particular, there are needs to
solve recurring architectural problems, such as physical distribution,
concurrency, replication, security, load balancing, and fault tolerance.
Development for the worldwide web makes some things simpler, but
exacerbates these architectural problems.

18

2 Requirements analysis

The Unified Modelling Language (UML) is a general-purpose visual
modelling language that is designed to specify, visualize, construct and
document the artefacts of a software system. The UML is simple and powerful.
The language is based on a small number of core concepts that most object-
oriented developers can easily learn and apply. The core concepts can be
combined and extended so that expert object modellers can define large and
complex systems across a wide range of domains. The UML is the visual
modelling language of choice for building object-oriented and component-
based systems.

The primary goals of the UML are as follows:

e Provide users with a ready-to-use, expressive visual modelling
language to develop and exchange meaningful models.

e Furnish extensibility and specialization mechanisms to extend
the core concepts.

e Support specification that is independent of particular
programming languages and development processes.

e Encourage the growth of the object tools market.

e Support higher-level development concepts such as components,
collaborations, frameworks and patterns.

e Integrate best practices.

TTS is not a huge system; there are use case and sequence diagrams.

A use case diagram is a graph of actors, a set of use cases, possibly
some interfaces, and the relationships between these elements. The
relationships are associations between the actors and the use cases,
generalizations between the actors, and generalizations, extend, and includes
among the use cases. The use cases may optionally be enclosed by a rectangle
that represents the boundary of the containing system. In fig. 2-1 an example of
use case diagram is shown.

AA

aite ustarmer

o O OO

billing serving consuming

Fig. 2-1 Restaurant use case diagram.

2 Requirements analysis 19

A sequence diagram presents an interaction, which is s set of messages

between objects or classes. A sequence diagram has to dimensions:

e The vertical dimension represents time.

e The horizontal dimension represents different objects.
The horizontal ordering of the lifelines is arbitrary. Often call arrows are
arranged to proceed in one direction across the page; however, this is not
always possible and the ordering does not convey information. In fig. 2-2 an
example of sequence diagram is shown.

the Bar - ~ a Menu # ~

Caiter cCustomer

say Hello

give rréenu L—|

' : read

s]

Drd;ér

pick

] deliver H
frepare bill |..|
< give bill

5 pai J
say gl:n%udhj,fe

]

Fig. 2-2 Restaurant service sequence diagram.

2.2 TTSrequirementsat DESY

Use Case identification starts when user requirements are collected. Use
Cases are helpful in many places during system design. The most important
feature is that they are useful to understand system behaviour better. They
support communication between workers responsible for design system
architecture and developers. They can be used for drawing diagrams, which can
be shown to visualize some aspects of the system.

20 2 Requirements analysis

The basis to find use cases is a requirements database. Depending of the
system size it can be organized in different ways. Because TTS is rather a small
system all requirements can be grouped in one two pages long table.

There are defined five features of a single requirement:

e Priority, tells how important a requirement is. Sometimes is
could be difficult to find out the real value of this parameter
because users likes to tell that everything is very important.

e Difficulty, estimates how it will be difficult to fulfil a
requirement.

o Stability, tells if a requirement changes over time. It can happen
that people responsible for giving requirements in an
organisation will change something every week.

e Clarity, when it is difficult to say what exactly does meant to
realize a requirement then is has low clarity.

e Visibility, tells if realisation of this requirement will be visible
to the users, some internal algorithms in the system can be
completely hidden from users.

Requirements of a high priority or high visibility and high difficulty
have big risk. Such a requirements should be implemented first. If they will be
left to implement later in another cycle and the implementation will not be
successful it could be dangerous to the whole system realisation, users will
quickly get to know that there are problems or something is not working as it
should be. If requirements of high visibility and low difficulty will be
implemented first, this could make users accustomed that they can quickly get
something and in the later phase when difficult things of low visibility will be
implemented they will ask why nothing happens, or why the development
process is now so slow.

In Fig. 2-3 is a list of all user requirements for TTS. It was possible to
make an interview with each TTS user, there is a column called “Origin”,
which specifies the role of the user who gave the requirement.

Filtered process tickets list, where | am the owner of the open process ticket, or | am
the owner of at least one open activity.

High | Middle | High | High | High | Domain Exp.

Process Ticket should have a short remark (subject) one line field, where is possible
to type information which uniquely identifies the process ticket.

Low | Low | High | High | High | Domain Exp.

We should be able to configure for each process ticket a set of allowed activities and
statuses; it should be possible that one process have different activities set from
others. Also we should be able to configure a set of statuses for each activity, but
each activity can have a default statuses.

2 Requirements analysis 21

High Middle High High Low Domain Exp.

There should be specified person responsible for adding new keywords connected to
the process tickets, that person should also make the keywords comprehensive to
other users.

Low | Low | Middle | High | Low | Hotline Op

Quicker access for user to the new process tickets or activities, when user opens the
HelpDesk and log in, if it is possible the new ticket or activity should be in a different
color unless the user reads it.

Low | Middle | High | High | High | Hotline Op

It will be good when there will be a kind of remember, which can inform you when
one process ticket or activity is not closed within a certain amount of time.

Middle | Low | Low | Low | Low | Hotline Op

It can help when we can leave HelpDesk, and it will automatically refresh it, showing
the newest information concerning the logged user.

Low | Low | High High | High | Domain Exp

We should have a current number for process activities, it will inform us of the order
of activities, also for an activity we should have a standard field which point that
certain process ticket should have this activity by default. Also standard activities
should have a default sequence number.

High | Middle | High | High | Middle | Domain Exp

It will be good when there will be a main page which by default will contain open
process tickets, this page should have very simple access to the place where it is
possible to add new process tickets, because it is not needed in case when the user
calls us witch his problem.

Middle | Middle | High | High | High | Domain Exp

One user should have a possibility to view process tickets and activities belonging to
others users, and take actions to them.

High | Low | High | High | Low | Domain Exp
The system should have a multi language support.
Low | High | High | High | High | Managemnt

There should he a mechanism for informing clients that there are changes made to
their process tickets. This should be done by mailing them specific information.

Low | Middle | High | High | Low | Managemnt

Clients should have a limited access to the TTS, only for searching their process
tickets and reading its status and activities information.

High | Low | High | Middle | High | Managemnt

If somebody will search TTS the information showed to him should not be editable. If
he will introduce changes, he should use a special button which will open a page
designed on this purpose.

Low | Low | High | High | High | Managemnt

The users should be able to view all process tickets at once, without choosing a
special type of them.

High | Low | High | High | High | Managemnt

Users should have possibility to specify duration of working time on activity.

Low | Low | Middle | High | Middle | Managemnt

22 2 Requirements analysis

It should be possible to configure in a free manner the following objects: process
types, process statuses, activity types, activity statuses, keywords, programs,
computers, clients, client types, and notification types.

High | High | High | High | Middle | Managemnt
Is should be possible to add a new foreign language to the HelpDesk system.
Low | High | Middle | High | High | Managemnt

When a new process ticket is added, it should be created with his default set of
activities, and the activities should have their specified order.

High | Low | High | High | Middle | Managemnt

For each process ticket users should be able to add new activities from a set for this
process ticket type, and specify: start time (system should provide current value),
status (from allowed set of statuses), responsible worker, description and if needed
extern worker and/or extern call number.

High | Low | High | High | High | Managemnt
Users should be able to change process ticket data especially including status.
High | Low | High | High | High | Managemnt

Users should be able to delete, close or change any data connected witch process
activities.

High | Low | High | High | High | Managemnt

Users should be able to view and modify filtered process tickets according to: worker,
client, computer, programs, keyword, status, start time scope, subject and
description.

High | Middle | High | High | High | Managemnt

Fig. 2-3 Collected user requirements for TTS.

2.3 TTS system main Use Cases (capabilities)
2.3.1 System structure

TTS interacts with three actors; they are: a client who has a problem to solve, a
hotline operator who registers process tickets, and a domain expert who
actually solves the problem. There are to main use cases: provide service,
which services a client and proceed tasks for the domain experts. Provide
service includes three others sub use cases: request service for clients, notify
client to keep them up to date and dispatch ticket to distribute activities among
domain experts. The proceed tasks use case includes two sub use cases which
are: search tasks to tell domain expert what has to be done and update ticket
where domain expert changes activities or process tickets to mirror work
progress. The TTS use case main diagram is in fig. 2-4.

2 Requirements analysis 23

Client Hotline Dperator Domain Expert

=commiuinicate== ==comminicate== ==commundcate== ==co Unicate==

ide|Serice Progeed

z=zincluges= =<inclide== =2 =<inclyde== ==ljciude>=»

- O D

Request Service Motify Client Dispatch Ticket Search Tasks Update Ticket

clude==

Fig. 2-4 Main TTS Use Case diagram.

To better visualize the general TTS operational model two high level sequence
diagrams in Fig. 2-5 and Fig. 2-6 are shown. The first diagram applies to situation
when the hotline operator mediates between client and TTS to register a process ticket.
In second diagram an unaided client registers ticket. This variant has an advantage of
reliving hotline operator also registering process tickets will be possible around the
clock.

7=
Client Hotline Qperatar Domain Expert
¢ reguest o
' Sehice | register : :
' ' ticket) '
: ! dispatch !
' ' ticket '
proceed
: : tasks '
5 nitifyclignt ;

Fig. 2-5 High-level TTS sequence diagram.

24

2 Requirements analysis

e X

Client Domain Expert
register
v ticket) '
' dispatch !
! ticket '
proceed
: tasks '
i notify 5
: client :

Fig. 2-6 High-level TTS sequence diagram version without hotline operator.

2.3.2 Provide Service use case

This use case starts when a client contacts IPP group and gives
description of a problem. Use case ends when a problem is solved.

E % R egister ticket

Form
a Ticket Submittes

Save

X

- Data Base

I

/ H open :
3 i

- m Describe Problem
oo edit '
= :
2 g _ |_|
o £ submit :
n 1
I L
close !

Fig. 2-7 Request service scenario.

Request Service use case starts when a clients calls hotline operator or opens an
appropriate form and gives description of a problem, which has to be solved.
Use case ends when this description is approved and saved into the TTS.

Sequence diagram is shown in Fig. 2-7.

2 Requirements analysis 25

/_’I I‘I—\ Client process view /_’[i_\

. Form
CClient — ‘Data Base
: apen : . . :
P L getOpenClientTickets
Wiew Tickets ! :
close :

Fig. 2-8 Notify client scenario.

Notify Client use case starts in two cases. When there is a change made
to a process ticket. Or when a client opens a special form where he can read
status information about a process ticket. Use case ends in first case when an
email to a client is send containing status information about changes in a ticket.
In second case it ends when client closes the form. Sequence diagram for form
variant is in Fig. 2-8.

Dispatch Ticket use case starts when new process ticket is under
registration process. The hotline operator assigns the domain experts
responsible for this new ticket and its activities. Use case ends when hotline
operator submits the ticket.

2.3.3 Proceed Tasks use case

This use case starts when a domain expert will begin work and needs to get
information about his responsibilities. During work the information concerning
process tickets and activities is changed to reflect work progress. Use case ends
when the expert finishes work.

26

2 Requirements analysis

‘Diata Base

- Domain Expert

WiewhWorkerTickets WiewSingleTicket
Fortr Eartm
Domain Expert

: open : . :

' P ' getTicketzFor
Select Ticket :
adit L '
subrnit

open

Opens Problem Descriptich

close

L

clbze

IR

Fig. 2-9 Search tasks scenario.

SearchTickets Form

“iewTickets Form

ViewSingleTicket

: Data Base

Farm
open s s
Describe Guery ' E N
edit : : '
subrnit ! .
v Opens With Gluery ! !
OpEn i i '
P ' getTicketsFarGuery
close
Select Ticket

et

submit

U Opens With Selected Ticket
open |

close

PER—

i

1
close

]

Fig. 2-10 Search tasks scenario.

i

2 Requirements analysis

27

X

- Dommain Expert

Search Tasks use case starts when domain expert opens one of the two
forms. Where the first form enables to make an advanced search among tickets
see Fig. 2-10, and second shows all open tickets for a logged in expert see Fig.
2-9. Use case ends when the expert chooses one process ticket to work with.

aMotifyEngine
MotitEngine

WiewiWorkerTickets EditProcessTicket
Form Form
. Data Base
OpEn :
i getWorkerTickets . :
submit - '
i open ,) , ,
i : getTicket ' '
close \’ |_,_|
- edit .
subrnit |..| i
! : saveTicket ' '
<:<:n::reaite:=-:=—
nntify(ti'cketj |-.-|
::::destfng,r:-:: |-.-|

Fig. 2-11 Update ticket scenario.

Update Ticket use case starts when a domain expert opens a form to
modify a process ticket or an activity. It ends when the expert submits changes.
One possible flow of events for this use case is sown in Fig. 2-11.

28

3 System architecture 29

3 System ar chitecture

3.1 Introduction to softwar e ar chitecture;

Software System Architecture is a model of a software system that provides:

A description of the high-level structure of the system, including the
composition of the system's data and processing components, and the
relationships and interconnections among the components.

Guidance or rules on how new components should be added to the architecture,
and how the architecture should be evolved over time.

Rationale for why systems built using the architecture would satisfy
stakeholder requirements.

References to any standards or methods that are tied to or assumed by the
architecture, whether mandated by stakeholders or chosen as foundation
principles.

A description of the high-level dynamic behaviour of the system, showing how
the components would work together and synchronize their work over time to
satisfy end-user scenarios. This would be especially important for large
complex systems where behavioural issues (high-level state transitions,
performance characteristics, etc.) were critical for understanding and guiding
the system's construction.

A refinement of the structure and behaviour showing allocations and
relationships to physical hardware (processors, networking, etc.). This would
be especially important if a common platform strategy is desired.

A component is any software system or subsystem that can be factored out and

has a potentially standardizable or reusable exposed interface. Components in software
architecture can be identified at different levels of abstraction, and the components
identified at these different levels may not be in one-to-one correspondence. For
example, viewing architecture at one level of abstraction, object services may be
identified as components. Viewing the same architecture at a more detailed level, a
given service may be implemented by several distinct software modules, which may
be individually identified as components.

A good example of a low-level software component could be a container class

Vector from JAVA libraries; Vector’s interface is just a set of methods. Example from
a different level of abstraction could be the whole database system; the interface could
be then defined as a special language, for example SQL.

3 System architecture

Three-Tier architecture is a special type of client/server architecture consisting
of three well-defined and separate processes, each running on a different platform:

1. The user interface, which runs on the user's computer (the client).

2. The functional modules that actually process data. This middle tier runs on a
server and is often called the application server.

3. A database management system (DBMS) that stores the data required by the
middle tier. This tier runs on a second server called the database server.

1-tier 2-tier J-tier
quetes Farms
results subritted data /c%\
L 1
database Weh server web client
Erver Jave applications brawyser
Data management Business logic Representation

Fig. 3-1 Sample 3-tier system architecture.

The three-tier design has many advantages over traditional two-tier or single-tier
designs, the chief ones is that the added modularity makes it easier to modify or
replace one tier without affecting the other tiers. Separating the application functions
from the database functions makes it easier to implement load balancing.

In Fig. 3-1 one of many possible 3-tier architecture is shown. All data are stored in
the central database system. JAVA applications are running on a different server, and
this is the business logic. Then the client connects to the web server, and the browser
on his machine is responsible for forming data into something that the end user is able
to recognise. If for example a different RBDMS is needed it can be easily replaced
without changing the second and third tier.

A framework is a reusable design expressed as a set of abstract classes and the
way their instances collaborate. It is a reusable design for all or part of a software
system; a user interface framework only provides a design for the user interface of a
system. By definition, a framework is an object-oriented design. It doesn't have to be
implemented in an object-oriented language, though it usually is. Large-scale reuse of
object-oriented libraries requires frameworks. The framework provides a context for
the components in the library to be reused.

JAVA Applet is just one of many existing frameworks. An applet is a small
program that is intended not to be run on its own, but rather to be embedded inside
another application. The Applet class must be the super class of any applet that is to be
embedded in a Web page or viewed by the Java Applet Viewer. The Applet class
provides a standard interface between applets and their environment.

3 System architecture 31

3.2 Design decisions

Rapid changes in business and market strategy can require a complete
application or site overhaul as often as once a week, often forcing the developers to
spend days changing hundreds of HTML pages. The difficulty of managing
consistency across these pages has required a huge amount of time. Even if this less
than ideal situation were acceptable, no computer developer wants to spend his or her
life-making HTML changes to the pages.

With the advent of server-side Java, this problem has only grown. Servlet
developers where forced to spend long hours modifying their Java code to produce
required output.

The entire Java Server Pages (JSP) specification arguably stemmed from this
situation. However, JSP is not a solution, as it only shifts the frustration to the HTML
developer. In addition, JSP does not provide the clean separation between content and
presentation it promises.

The main problem with standard web publishing is that in HTML pages
content is mixed up with its representation. This implies that when the data change,
also the representation has to be changed, not only the data itself. Also when the
representation is modified, the data are edited too. | addition business logic has to be
added to it somehow, and sometimes it is inserted within comments. Comments are
not the right place for such an important system element.

The cure from this situation is to separate: data, business logic and

representation into different layers. So changes in one layer do not affect other layers.
To that purpose the whole set of XML and related technologies is created by the
World Wide Web Consortium.
What was called for was a means to generate pure data content, and have that content
uniformly styled either at predetermined times (static content generation), or
dynamically at runtime (dynamic content generation). It is possible then to create
within a company two different groups of employees, where first group will be
responsible for creating content and second will be busy with representing that
content. This two groups work in an independent manner, the representation group
does not have to know that there are new data added to the system, also the content
management group does not have to know how its data are represented.

The problem is that an engine must exist to handle content generation,
particularly in the dynamic sense. Having hundreds of XML documents on a site does
no good if there is no mechanism to apply transformations on them when requested.
There are also business logic components, which have to affect this transformation.

A web-publishing framework attempts to address these complicated issues. Just
as a web server is responsible for responding to a URL request for a file, a web-
publishing framework is responsible for responding to a similar request; however,
instead of responding with a file, it of then will respond with a published version of a
file. In this case, a published file refers to a file that may have been transformed with
XSLT, or converted into another format such as a PDF. The requestor does not see the
raw data that may underlie the published result.

The whole work in an application is to perform business logic and then the
XSL transformation to a XML document. So the developer has to decide, is he going
to implement his own platform to perform transformation and logic to different XML

32

3 System architecture

documents (lots of work and probably poor result in a short time) or he will search for
an existing solution. The second approach has some advantages: the developer can
consider his application far from XSLT details, the final product will be easier to
maintain by others because the framework will be well documented and some
developers will have an experience with it, finally there will be lots of ready to use
supporting libraries and examples. This results in a decision to use one of the existing
products.

The framework becomes the core TTS component. Web publishing using XML and
XSL transformations is now a new technology, therefore there are not very many
systems on the market and the list of good and stable ones is even smaller. Although
Java language offers an easy interface into the various XML tools used by web
publishing frameworks, additionally Java servlets offer a simple means of handling
web requests and responses.

The most important feature of a system is its stability. Nobody wants even a great
program, which is very fast and has many features, but breaks down once a day.
Unfortunately the great majority of frameworks are version 1.0 or 1.x. While a higher
version number is not a guarantee of stability, it often reflects the amount of time,
effort, and review that a framework has undergone. As far as there is a decision of
using Java as an implementation language there is no sense of investing time and
money into platform-specific technologies. If the framework is tied to a platform (such
as Windows), it is not a pure Java solution. The publishing framework must serve
clients on any platform; why be content with a product that can't also run on any
platform?

The last but not the least important factor is production presence of a framework. So it
is important to determine if it is used in production applications. If it is the case that a
vendor is not able to give a list of at least a few references, there is a risk of being a
pioneer with a product.

The choice is to use an open source framework called COCOON from Apache
Software Foundation, because of the following features:

e |t is pure Java solution and therefore it is platform independent. And
becomes a standard in open source world.

e COCOON is part of the Apache XML project and has default support for
its technologies, which are de facto standards.

e [tis now proven in many production installations.

e COCOON has support for World Wide Web Consortium new standard
technologies; distinguished form some commercial solutions, which are
working with company specific syntax in fact imitating W3C solutions.

e There is good support on a mailing list.

e Itis public domain, so there are not any licensing costs.

3 System architecture 33

3.3 TTSarchitecture

3.3.1 Overview

In Fig. 3-2 TTS architecture is shown. There are following conclusions from the
diagram. There is defined a data model, which tells what exactly is a process ticket, an
activity or what are the remaining data stored in the system. Data model is in package
called Tickets. The data model of course affects RDBMS package, because it is the
place where the model is directly implemented, but the shape of data affects also
transactions package, because in TTS each transaction must know how does it’s data
looks like. There is a set of transactions defined in the system. Each transaction is
responsible for performing business logic operations in certain scope. Depending on
decisions taken in this package a data set is prepared. Transactions communicate with
forms and form builder package. In fact transactions are executed in form builder, and
there they are preparing data, based on these data and description of a form from
forms package the resulting html code is generated, and then send to the user’s
browser. Forms package consists only of stylesheets. There is one stylesheet for one
transaction on purpose to visualize it. The form builder is Cocoon itself.

The production system consists of several external components. They are
Apache as a web server, Jakarta Tomcat as a servlet container, Cocoon as a web-
publishing framework, Oracle as a relational database management system and of
course a web client.

The web server is needed to serve others not dynamically generated elements,
such as images, documentation or static content. In addition Apache is much more
mature that Tomcat and integrating them both improves general system stability.
Tomcat runs servlets inside Apache; there must be a servlet container because Cocoon
is implemented simply as a servlet but particularly complex one.

n Fig. 3-3 one standard working cycle is shown. First when a browser sends a
request Apache checks what is wanted. If it is possible just serve a file to satisfy
browser it serves it, but in case when a dynamically generated content is asked Apache
sends a serviet request to Tomcat. Then by analogy if Tomcat is asked to run a simple
servlet it runs it and responses with generated data, but in case when a file with XML
extension is requested Cocoon’s service method is invoked.

34

3 System architecture

1
Forms
‘ﬂ-\"-_
"h* “tZ2w FormBuilder
— ! e
Transactions |.--=""
“ﬂ"-_
A --:[RDEMS
. -

Tickets

Fig. 3-2 TTS package diagram.

Inside Cocoon are special Java classes called Producers (PageProcuders) this
classes encapsulates business logic. When there comes a request populateDocument()
method of a producer is invoked. Inside this method an XMLDocument is created, this
document will be then transformed with an appropriate stylesheet to produce an html
output. Frequently to produce this document data from database are needed. To get
them an executeQuery() method of an SQLConnection object is invoked, this method
asks through JDBC bridge the database. Now, when the data are available, they can be
added to the document. Usually there are also other elements for example current time,
user name, some Ids and so on, added to the XMLDocument. When
populateDocument() returns, PageProducer is destroyed and document is transformed
with a stylesheet, which is read from a file. After transformation the document can be
left, so the garbage collector will take care of it. The XSLT it the last stage of making
a page, so the control is given back to Tomcat, which responds to Apache with the
stream of generated data, and Apache sends this stream back to the browser.

35

3 System architecture

H

USWEEE A5

=N gbt=ht=]

CinEap s

——

fu=wnoo g 1155

[uawa|a]ppe

B L r T T P

[fianbldishpanossa

H

=== T

[Tiuwnooqaendod

i
[
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
[
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

]
'
'
'
'
'
'
'
'
'
'

e
'
]
'
'
'
'
'
'
]
'
'
'
'
'
'
'
'
'
'
'
'
]
'
'
'
'
'
'
]
'
'
'
'
'
'
'
'
'
'
'
'
]
'
T
'
'
'
'
]
'
'
'

[zarbaljaanias

asuodzal BAlEE

Bnas Eanbal

azuodzal

1Fanbal

o e g e ey I

ETaI=1rg]

Ne LD gy T

UEN eI Ry

TaonpolJabhog

N[a[ua]ury]

Teamo |

SOy

asaolg

Fig. 3-3 High-level Cocoon operational diagram.

36

3 System architecture

The couple of a transaction and its stylesheet are called a form. From
the user point of view a form is just a browser with an open html form, which
allows performing some well-defined task. For example: adding new ticket,
adding a new activity to a ticket, closing tickets, deleting activities, logging
into the system and so on. From the developers point of view a form is a pair of
files. Where one file is an XSP page and second file is a stylesheet. There are
some libraries, which are included into stylesheets or XSP pages, and are
responsible for some specific tasks. An XSP library could be used for accessing
connection pooling, ensuring security, building combo boxes and so on. A
stylesheet library is rather a general template, which stores colours variables or
templates used for formatting errors messages, tickets, activities and combo
boxes in a standard way.

<<Farm»> LGl
YWiewSingleTicket YiewSingleTicket
| #MLOocument |=<
<GP EE
request YiewsingleTicket Tan - -
esql
response S Activityd L
redEditProcessActivi i
sessian | @redDeleteActivity) t
X o redAddProcessActivibed -
CaonnectionPoal |— cancel() S -
databaseConnection redEditProcessTicket() m _
: redCloseTicket) :
connechion populateDocumenty)

]

ROBMS

Fig. 3-4 High-level class diagram for ViewSngleTicket transaction.

In Fig. 3-4 is show a class diagram for ViewSngleTicket form. This
diagram can vary a little bit, from one form to another, but the general idea is
preserved. As it was told before there are two main elements, a stylesheet with
stereotype XS, and a transaction with stereotype XSP. The connection between
these two independent parts is the XMLDocument, which is generated within
transaction, and used together with stylesheet to produce html output.
Transaction relies on information stored in a database, which is shown as a
RDBMS package. Each transaction has access to following objects: request
(HttpServletRequest), response (HttpServiletResponse), session (HttpSession)
which are passed from Tomcat to Cocoon and are parts of Servilet API

3 System architecture 37

specification. Transactions, which are playing with database, have additional
objects: ConnectionPool, databaseConnection, connection. These objects are
used for communicating with database through connection pool, and are
inserted into a transaction class thanks to pool library. There is a set of standard
libraries: esqgl, util, request, response, session which are provided with Cocoon
distribution. There are some others libraries written to be used in TTS: cbox,
check, context, params, pool, security, these libraries are not tied to be used
only with TTS; they are implemented to do some general tasks. For details take
a look in Technical appendix.

3.3.2 Database model

TTS data model consists of sixteen tables. TTS is able to store
information about any well-defined process. Process tickets are stored in
HELPDESK _PROCESSTICKETS table. To each process ticket could be
assigned any quantity of activities. Activities are stored in
HELPDESK_PROCESSACTIVITIES table. Both process tickets and activities
have assigned a worker who is responsible of it. Workers data are stored in
HELPDESK_WORKERS table. A process ticket is just a representation of a
problem, which happened in a real world, so there is a client who has it,
information about clients, is stored in HELPDESK_ CLIENTS. From
organizational reasons clients are divided into groups, these groups are stored
in HELPDESK _CLIENTTYPES. W.ith process tickets is connected
information if its client wants the TTS to send an email in case of closing or
adding new activities to a ticket HELPDESK_NOTIFTYPES table. There are
also keywords to make an easy associations HELPDESK _KEYWORDS table.
Is also a list of computers in DESY HELPDESK_COMPUTERS table. And a
list of all supported programs HELPDESK_PROGRAMS table.

TTS allows storing information about different types of process. There
is a table called HELPDESK_PROCESSTYPES where a type of a process is
defined. What makes differences between processes it their name, their set of
allowed statuses and their set of allowed activities. Readable status names are
stored in HELPDESK_ _STATUS table; it is made on purpose to reduce
redundancy among statuses. When a new process type is added, there must are
new entries in HELPDESK_PROCESSSTATUS to allow this process type to
have an allowed set of statuses (open, closed, paused, etc.). The same is made
when adding new activities. Each activity has its type. Types of activities are
stored in HELPDESK_ ACTIVITYTYPES table. But there is connection
between activity type and process type. One activity type could be instantiated
only belonging to one type of process. Allowed statuses for a certain type of
activity are stored in HELPDESK_ACTIVITYSTATUS table.

In TTS data model are stored also information about user roles. There is
a table called HELPDESK_ROLES where each entry defines a new role. The
name of a role is used then in XSP transactions. Each transaction defines a set
of roles. Workers who possess at least one role from the list could perform this
transaction. Connection between roles and workers is build up in
HELPDESK_WORKERROLES table, where are stored workers and roles ids.

3 System architecture

38

[eZ) ZHTHET A
eI

53104 WS3I0d13IH

ERlex
al

HIFKINR
HIFRe

5310HHINHOM NSI0d13H

[a[Eplex]
QIEITHH AN

(05) ZdFHIETA
(01 ZdwHIE T A
[01) EXTHIETA
(07) ZdvHIHE7A
[0L) ZdwHIETA
[05) ZdFHoETA
(0T ZdwHIE T A

QHTAA0M=0IZ) T HIHT A

(07) ZdvHIHE7A
SN

[0E) ToTHIHT A
HIFRINr

Do d
al

0dd W530d713H

(05) Zd7HIHETA
(01 ZdwHIETA
[01) ZdwHIETA
(01 ZH7HIH T A
(0F) ZdwHIET A
M3

AMSHA
eler]
SMITINg
droEDA 530
E Ll

al

SHILNdWOD W530d13H

[0E) ToTHIHT A
H3FRINe

SMHOMAIN W530dT1IH

(05) T wHIETA
M3

AdALILOR
al

S3dALJILON WS30d13H

(05) THwHIT A
(01) ETHIHET A
(01) TTHIETA
(07) ZdwHIETA
(01) ZdwHIETA
(0E) THwHI T A
(0F) ELTHIHET A
g1 =l=

—d
ANAND2=00

BliE

(eler]
SIRITINE
[{IeEEREN
Ao AS3]
=i
WTFHEISN
Q34 A LLWITD

HIFRINr al

SHINHOM NS30d1IH

BB

IO
SMIdTINA
[{IeEERENE
dNOHaAS3d
L
dILS%1
QHOMASETd
AWTMEIEN
al

AiWsdo0dd=al

Ql431NdW00=al

Q-0 A3 A4=01

Q344 LJILON=0|

QiMan2=al

Tapou aseqEiEp S11 §-€ 514

OISR 0M=01

SN
LOO0F) S4wHIET A
[0Z) ZdwHI T A
(0E) ENTHIETA
31wa

31wa

MW
HIFWIA
(=
MW
=g

HIFWARIININDIS
MOILdIH253T
HrTTF LS
HIHHOAALES
AILAMS
ANLLETLS
ORI Tl
AISNL¥ LS
Q3dALALIALDY

A

QL IANLESID0E
al

SAILIALLIYSSID0Hd N530d13H

Qld3Ad0M=01

[RN RN PN Y P

[0E) ToTHIHT A

H3FRINe
S3dALINAITD WS30d13H

AdALLMITD
dl

(000%) ZHwHIET A
(05 1) e HIHT A
417

417

== =[]

BN

HIFINM

HIFINN

HIFINNN

== =[]

BN

HIFINM

HIFN

MOLLdIM2S30
L23rans
AWILaNI
ANILLEVLS
QTS
QEILOdRC D
QTACMAATH
Q3dAL4ILOMN
QMDA
QLRI
aAsSnLT1ls
Q34 A LSS0
dl

S1IMIN1S5320Ud WSIAdT13H

aiEnLy Le=al

34 L LALIT=0I0E] T T H I A

134 A LA LALLDY 9 =01

HIFRIN Jdwanw 1S
HIFRIN HIFWNMIIMNINDIS

ddALALIAILDY
EEE= LN Q34 AL55320Hd
HIFRIN dl

S3dALALIALLIY NS30d13H

aiEndy L==al

SNLYLISALIAILDY MS30d13H

AISNLF LSO T

Q3dALALALO,

dA LE

(05) Zd7HIETA
M3

SNLY1S WS30d13H

SNL7LS

3007

]

B = Cat) | W] S55300Hd WS30d13H

Qi34 LE320dd=01

=E(= N
HIEWIR

AISNLT LSAIADTTY
Q3dA LS50

(05) ZHPHIHRA
M3

FdA LSS0
dl

53dA155320Hd WS30d13H

3 System architecture

39

Rules for updating the database:

If there are already process tickets of certain type in the database, and
the process definition needs to be changed. Changing allowed activities or
activity types will affect existing process tickets. To avoid changes to existing
data, mark activities as obsolete and add new ones. The same applies to
allowed statuses, if they must be preserved, mark them as obsolete and add new
ones. The same rule applies to the rest of the configurations tables.

3.3.3 COCOON components

#oPPage

FpopulateDocurment()

L

L BEPEE <apsPEe o SPEs <aiSPE
AddProcessTicketTzn | | EditProcessTicketTxn CloseTicket Txn SearchTickets Txn
addi savaChanges(redEditProcessActivity) searchy
canceld cancel() redDeleteActivity) cancel
populateDocumentd populateDocumenti) redAddProcessActivityd populateDocuments
cancel(
closed
redyiemSinoleTicketd
populateDocumentd

ZaEPE= <RSP c<HSP>

YiewTickets Tan YiewtWorkerTicketsTxn YiewSingleTicket Txn
eredAddProcessTicketd seredAddProcessTicket) redEditProcessActivity)
eredloging srredloing redDeleteActivity(
eredYiewSingleTicketd srredviewSingleTicketd redAddProcessActivity)
enredEditProcessTicket() s redEditProcessTicket() cancel)
eredClozeTicket(d eredClozeTicketd redEditProcessTicket(
SrredAddProcessActivityd predAddProcessactivityd redCloseTicketd
eredEditFrocessActivityd SeredEditProcessActivite populateDocumentd)
SredDeleteActivite]) =redDeleteActivite)

populateDocumentd populateDocumentd

L BEPEE <SP L<HEP
AddProcessActivity Ten| |EditProcessActivityTan DeleteActivityT=n
addd) saveChanges) redEditProcessActivityd
canceld canceld redAddProcessActivityd
populateDocumentt populateDocumentd canceld
deleted
populateDocumentd

40 3 System architecture

Fig. 3-6 Cocoon transactions diagram.
The developer sees only two types of components: XSP pages and stylesheets.
Fig. 3-6 shows transactions diagram. In terms of Cocoon’s terminology XSP

pages are called sometimes logic sheets.

List of all forms (XSP page and stylesheet):

XSP page

Stylesheet

Description

AddProcessTicket.xml

AddProcessTicket.xsl

Adding new process ticket.

EditProcessTicket.xml

EditProcessTicket.xsl

Editing process ticket.

CloseTicket.xml

CloseTicket.xsl

Closing process ticket.

SearchTickets.xml

SearchTickets.xsl

Searching tickets.

ViewTickets.xml

ViewTickets.xsl

Viewing a list of tickets.

ViewWorkerTickets.xml

ViewWorkerTickets.xsl

List of responsibilities.

ViewSingleTicket.xml

ViewSingleTicket.xsl

Ticket and its activities.

AddProcessActivity.xml

AddProcessActivity.xsl

New activity to a process.

EditProcessActivity.xml

EditProcessActivity.xsl

Editing existing activity.

DeleteActivity.xml
Login.xml

DeleteActivity.xsl
Login.xsl

Removing activity.
Loging into system.

List of all general stylesheets:

cbox.xs | Transformsdatainto a combo box.

error.xsl | Transforms error description into an error message.
style.xsl Stores colours data.

tickets.xsl | Transforms a general process ticket description.

List of all XSP libraries:

cbox.xsp.xsl
check.xsp.xsl
context.xsp.xsl
params.xsp.xsl

Prepar es and caches data for combo.xsl.

Checks input parameters against fulfilling a condition.
Provides support for introducing limited context to http.
Supports passing on input parameters to outputed html.

pool.xsp.xsl Gives access to database connections using pooling.
security.xsp.xsl | Allows or denides access depending on user roles.
login.xsp.xsl Supports login process.

3.3.4 Multi language support discussion

There is a requirement from the supervisor of making the TTS multilingual.
Unfortunately it appeared that it is not easy to do so. There are two architecture
proposals of system with multi language support and one without it.

3 System architecture 41

Languages Lahels

Language System Conthos
Views Views

Fig. 3-7 First system variant.

In Fig. 3-7 is the first proposal. It includes changing the data model, so
there is no open text it the configuration tables, instead of it there are two more
tables introduced (Languages Labels), one of them includes information about
which languages are supported and what are their names, in second are stored
all text labels present in the system. To give an easy way to get the data out of
this model a few database views are made (Language Views) which are sitting
on top of configuration tables, one view per one language dependent table.
There is second generation of views, this views depend on the first ones, and
gives the whole process tickets or activities description directly to the business
logic layer. Labels in interface also have to be translated. In business logic
language dependent data form cache classes called DBLabels (text labels) and
DBCombos (data for combo boxes) are added to the resulting XMLDocument.
When the XMLDocument is translated to get the html, all labels ids from
stylesheets are replaced with their representation in active language.

Advantages:

1. All language dependent data are stored in one place, which is a database
table.

2. There is provided an easy to use tool for adding new language support.

3. ltis fast, because there are two memory caches for labels.

Drawbacks:

1. Administrator has to use a special tool for adding and modifying labels.
Working directly with a table is difficult because of the data format. So
he has to learn it first.

2. The configuration table’s data consists of ids, which are numbers; there
are no more text descriptions, which can guide somebody who is
modifying them. When there is a need to reconfigure system, changes
must be done also to labels table, which is tricky and could cause
difficult errors.

3. There are several views in the database, which are building to perform
join queries between configurations tables and labels table. In addition
there is Cartesian product calculated which is slowing down
performance.

42

3 System architecture

Configuration

Tahles

4. Interface labels are included in the XMLDocument what slows
performance.

5. In the XSL stylesheet there are no textual labels, instead of them, there
are templates, which replaces itself with appropriate label. This makes
the whole stylesheet more difficult to read and maintain, especially for
non-developers.

6. The language transformation code is scattered in all places in the
system. Instead of it, there should be one language transformation layer.

7. After modifying system configuration the label and combo cache must
be invalidated.

Interface
Lahels Library

DB Configuration
Lahels Library

Duplicating Lahels

System Some IDs

Views

Fig. 3-8 Second system variant.

In Fig. 3-8 is the second proposal. In this variant the language
dependent information is moved from database into special stylesheets library.
Data taken out of the tables do not have textual information, but ids. These ids
are then copied in the business logic layer to the XMLDocument. There is one
more transformation added, where all ids in the source document are replaced
with theirs language dependent representation. This solution introduces a pure
language transformation layer.

Advantages:

1. There is a special language transformation layer in the system, which
does not affects its others parts.

2. All labels are stored in XSL files, which are in pure text format.

3. Queries results are language independent.

4. There is no special cache mechanism.

Drawbacks:

1. Configuration changes must be made in two places parallel, in database
and in appropriate stylesheet. This causes synchronization difficulty,
and may sometimes results in heavy errors.

2. The XMLDocument is not build in the intuitive way. It is because of
some indexes, which must be repeated to be replaced with text in
language translation layer.

3. There are two consecutive XSL transformations that could cause great
performance reduction.

3 System architecture 43

4. How in the first variant, the interface labels, all have to be inserted in
XMLDocument. The html forming stylesheet again does not have open
text inside.

Configuration
Tahles
Fig. 3-9 Third system variant.
In Fig. 3-9 is the third proposal. This variant does not support multi
languages.
Advantages:

1. Configuration tables will contain labels, so making an adaptation
becomes a doable task. Referential integrity will guard data from errors.

2. There is only one XSL transformation, which will perform well.

3. The stylesheets becomes simpler. They will also contain text labels,
which will guide administrators by making changes.

4. The whole system becomes much simpler, is very important by first
usage of a new technology. The maintenance work will be much easier.
It is the fastest version.

Drawbacks:
1. Multi language is not supported.

The requirement of multi language support is of low priority, and it has very
high risk. So there is a decision of dropping it from the implementation.

3.4 External TTS components

Web publishing framework COCOON

Cocoon is a 100% pure Java publishing framework that relies on new
W3C technologies (such as DOM, XML, and XSL) to provide web content.
The Cocoon project aims to change the way web information is created,
rendered and served. The new Cocoon paradigm is based on the fact that
document content, style and logic are often created by different individuals or
working groups. Cocoon aims for a complete separation of the three layers,
allowing them to be independently designed, created and managed, reducing
management overhead, increasing work reuse and reducing time to market.

44

3 System architecture

Fig. 3-10 COCOON architecture.

Description of components in Fig. 3-10:

Request — Wraps around the client’s request and contains all the
information needed by the processing engine. The request must indicate
which client generated the request, which URI is being requested and which
producer should handle the request.

Producer — Handles the requested URI and produces an XML document.
Since producers are pluggable, they work like subservlets for this
framework, allowing users to define and implement their own producers. A
producer is responsible is responsible for certain the XML document which
is fed into the producing reactor. It is up to the producer implementation to
define the function that produces the document from the request object.
Reactor — Responsible for evaluating which processor should work on the
document by reacting on XML processing instructions. The reactor pattern
is different from a processing pipeline since it allows the processing path to
be dynamically configurable and it increases performance since only those
required processors are called to handle the document. The reactor is also
responsible for forwarding the document to the appropriate formatter.
Formatter — Transforms the memory representation of the XML document
into a stream that may be interpreted by the requesting client. Depending on
other processing instructions, the document leaves the reactor and gets
formatted for its consumer. The output MIME type of the generated
document depends on the formatter implementation.

Response — Encapsulates the formatted document along with its properties,
such as length, MIME type, etc.

Loader — Responsible for loading the formatted document when this is
executable code. This part is used for complied server pages (principally
XSP) where the separation of content and login is merged and compiled
into a Producer. When the formatter output is executable code, it is not sent
back to the client directly, but gets loaded and executed as a document

3 System architecture 45

producer. This guarantees both performance improvement (since the
producers are cached) as well as easier producer development, following
the common compiled server pages model.

Processing instructions are:

<7cocoon-process type="xxx"?> for processing, and
<?cocoon-format type="yyy"?> for formatting

In a complex server environment like Cocoon, performance and
memory usage are critical issues. Moreover, the processing requirement for
both XML parsing, XSLT transformations, document processing and
formatting are too heavy even for the lightest serving environment based on
the fastest virtual machine. For this reason, a special cache system was
designed underneath the Cocoon engine and it is able to cache both static
and dynamically created pages.

Cache operation is simple but rather powerful:

e when the request comes, the cache is searched
o if the request is found:

= jts changeable points are evaluated

= if all changeable points are unchanged
e the page is served directly from the cache

= ifasingle point has changed and requires reprocessing
e the page is invalidated and continues as if it was

not found

= if the request is not found
e the page is normally processed
e itissent to the client
e itis stored into the cache

The special cache system is required since the page is processed with
the help of many components, which, independently, may change over time.
For example, a stylesheet or a file template may be updated on disk. Every
processing logic that may change its behaviour over time it is considered
changeable and checked at request time for change.

Each changeable point is queried at request time and it is up to the
implementation to provide a fast method to check if the stored page is still
valid. This allows even dynamically generated pages (for example, an XML
template page created by querying a database) to be changed and, assuming
that request frequency is higher than the resource changes, it greatly reduces
the total server load.

Moreover, the cache system includes a persistent object storage system,
which is able to save stored objects in a persistent state that outlives the JVM
execution. This is mainly used for pages that are very expensive to generate
and last very long without changes, such as compiled server pages.

46

3 System architecture

The store system is responsible for handling the cached pages as well as
the preparsed XML documents. This is mostly used by XSLT processors,
which store their stylesheets in a pre-parsed form to speed up execution in
those cases where the original file has changed, but the stylesheet has not
(which is a rather frequent case).

TOMCAT servlet container

Tomcat is the official Reference Implementation for the Java Servlet
and Java Server Pages technologies. The Java Servlet and Java Server Pages
specifications are developed by Sun under the Java Community Process.

Tomcat is developed in an open and participatory environment and
released under the Apache Software License. Tomcat is intended to be a
collaboration of the best-of-breed developers from around the world.

Apache HTTP Server

The Apache is open-source HTTP server for various modern desktop
and server operating systems, such as UNIX and Windows NT. Apache is a
secure, efficient and extensible server, which provides HTTP services in
synchronization with the current HTTP standards. Because Apache, Tomcat
and Cocoon are just a family of products from the same open source
foundation, they are well integrated.

RDBMS Oracle

Oracle in terms of TTS is just a relational database management system, which
implements SQL. Oracle is very stable and powerful platform, but could be
replaced with any other database with SQL and JDBC implementation.

Java Virtual Machine

Java virtual machine is a specification for software, which interprets Java
programs that have been compiled into byte-codes. The JVM instruction set is
stack-oriented, with variable instruction length. Unlike some other instruction
sets, the JVM's supports object-oriented programming directly by including
instructions for object method invocation. Because JVM is an implementation
of an interpreter, it is possible to execute Java programs on every operating
system, which has a version of virtual machine, designed to run in it. Thanks to
it TTS can perform on every serious type of server.

4 Implementation

47

4 Implementation

4.1 Implementation decisions

Each computer system has to be well integrated into the destination
environment. It does not matter if it is a big airport or just one desktop PC
connected to the Internet via modem. TTS is not an exception from this rule.
Analysing DESY and IPP requirements for that reason results in following
conclusions:

Perfor mance:

The great majority of web-based applications in DESY uses common
gateway interface (CGI) with Perl as a programming language. However this
solution has some advantages, for example many workers know how to use
Perl, there are some drawbacks. The main is that CGl is rather slow, especially
on a slow web server. Low performance of an application could result in low
users acceptance. Therefore there is a need to find another solution. Java offers
an API called Servlet. Servlet is a Java class, which can be executed inside a
servlet container, which is a part of every Java enabled web server. Servlets
offer good performance. There are two reasons why Servlets are performant:
first today’s Java virtual machines can optimise executed code which can
perform as fast as C++, second servlets eliminate waste of time which is
needed for loading and executing an CGI application, because a servlet which
is once loaded stays in the memory ready to serve other clients. As far as
servlet can stay in memory it can handle open database connection, that
eliminate the need of opening a new connection for each request.

Maintability:

Today nobody will be able to sell a system in which introducing
changes will be extremely difficult. Or a system which configuration is hard
coded in thousands lines of code. Some classical languages such as C or C++
offer great opportunities to write code, which is difficult to understand or to
maintain. Presence of pointers allows programmers to write very tricky code,
also pointers force programmers to be busy with memory allocation. There is a
lack of garbage collector, which can assure that there will not be any memory
leaks. Therefore there is a decision to use JAVA as an implementation

4 Implementation

language. Java allows writing very readable code without pointers and memory
allocation. Java also is an object oriented language from its beginning with
great support for objectivity. Also presence of many standard libraries makes
programming much easier. But there is a problem; DESY does not have JAVA
developers. There is also a requirement, which tells that somebody who is not
familiar with core TTS technology Java should be able to do maintenance or
extending operations to the system. It seems to be an unworkable task, but the
doors are open thanks to a new quality, which comes with XML.

There are also other problems, which need to be solved. The usual way
of producing server side applications is to develop them on a test machine.
After reaching sufficient reliability level it can be moved to a production
server. It is fully possible that there will be a need to install TTS on different
type of production servers. Once it could be Windows NT machine the second
time Sun Solaris. Workstations usually are with Windows NT operating
system. This problem is solved automatically with choosing JAVA language
thanks to its main assumption of platform independence.

Availability:

DESY has about two thousands of workstations. There are many
different operating systems such as: UNIX, Sun Solaris, Linux or Widows,
working on many different platforms, for example: SGI, SPARC, INTEL.
Nobody wants to develop a special version of an application, to use it on each
different system type. It is possible to write a single Java application and install
it on workstations. But it is not convenient, before application the virtual
machine must be installed. There are systems, which need installing many
patches required to run Java on them. Also it is not exactly known from which
workstations users will access TTS. Fortunately there is one more solution. On
each system a working web browser is installed. Nothing more is needed that
to instantiate a single web server with Java inside, and this automatically
makes an application ready to use on every computer in DESY. This is exactly
what is wanted. So there is a decision to develop web-based application. But
there are several restrictions. A few employees in DESY are blind and have a
Braille monitors. Also a few users will use lynx for accessing TTS. There are
also many browsers, which do not support JAVA or support an old version;
therefore Java applets should not be used. As a result, there is one more
conclusion to use only pure HTML solution.

Stability

Computer system once installed should require as little work as possible. There
should are some safety mechanisms, which could guarantee that a system will
operate. For example if there are errors, information that they happened should
be written to a log file, and if system hangs up or will be closed it should be
automatically restarted. Using Java greatly increases stability. Java virtual
machine isolates running code from low-level hardware. So the possibility to
damage web server or operating system is greatly decreased. Also it is possible

4 Implementation 49

to install a security manager, which will protect host system from dangerous
actions taken by badly written programs.

Using servlets also increases stability; it is because of servlets live cycle. When
a fatal error occurs in a servlets an exception is throws. This exception goes up
to the servlet container, which terminates the servlet. But when a new request
will come to killed servlet it will be once again loaded into memory and will
operate, unless this critical situation happens again.

Database operations are also possibly source of problems. Some native
interfaces such as ODBC can even hang up the whole system. Java offers an
API, which is called Java Database Connectivity (JDBC). JDBC could be used
in two variants. First with usage of native methods. Second as a pure Java
solution, which uses JDBC Thin Driver, which has all advantages of isolated
Java code.

4.2 Used technologies

4.2.1 JAVA and JAVA Servlets

Java servlets are designed on purpose to replace CGI programs. They
offer better performance and safety. In this subsection an example of a small
servlet will be shown. Next to the example there will be a description of how
servlets are integrated into the web server environment.

import java.io.*;
import javax.servlet.¥*;
import javax.servlet.http.¥*;

public class HelloWorld extends HttpServlet {

public void doGet (
HttpServletRequest request,
HttpServletResponse response
)
throws IOException, ServletException
{
response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();
out.println("<html>") ;
out.println("<body>") ;
out.println("<head>") ;
out.println("<title>Hello World!</title>");
out.println("</head>") ;
out.println ("<body>") ;
out.println("<hl>Hello World!</hl>");
out.println("</body>") ;
out.println("</html>");

Fig. 4-1 Source code for “Hello World” example servlet.

50

4 Implementation

HttpServlet provides an abstract class to be subclassed to create an HTTP
servlet suitable for a Web site. A subclass of HttpServlet must override at least
one method, usually one of these:

doGet, if the servlet supports HTTP GET requests

doPost, for HTTP POST requests

doPut, for HTTP PUT requests

doDelete, for HTTP DELETE requests

init and destroy, to manage resources that are held for the life of the servlet
getServletinfo, which the servlet uses to provide information about itself

There is almost no reason to override the service method. Service handles

standard HTTP requests by dispatching them to the handler methods for each
HTTP request type (the doXXX methods listed above). Likewise, there's
almost no reason to override the doOptions and doTrace methods.
Servlets typically run on multithreaded servers, so a servlet must handle
concurrent requests and synchronize access to shared resources. Shared
resources include in-memory data such as instance or class variables and
external objects such as files, database connections, and network connections.

To communicate with the web server environment, two types of objects are
used: HttpServietRequest and HttpServletResponse. HttpServletRequest
extends the ServletRequest interface to provide request information for HTTP
servlets. HttpServletResponse extends the ServletResponse interface to provide
HTTP-specific functionality in sending a response, for example, it has methods
to access HTTP headers and cookies. The servlet container creates both an
HttpServletRequest object and an HttpServletResponse object and passes them
as arguments to the servlet's service methods (doGet, doPost, etc).

In Fig. 4-1 the simplest possible servlet is shown. The essential thing in
working with http servlets is that it always goes the same way. First,
HelloWorld servlet is a subclass of HttpServiet, and implements doGet method.
Second, a PrintWriter is taken from response object. Then the generated html
text is written into it. The result is shown in Fig. 4-2. It is visible, that
introducing even a small change requires editing Java code and its
recompilation.

<html>

<body>

<head>

<title>Hello World!</title>
</head>

<body>

<hl>Hello World!</hl>
</body>

</html>

Fig. 4-2 Html code generated in “Hello World” example servlet.

4 Implementation 51

What is worth mentioning about the HttpServiet is that it is a subclass of
more generic class called Serviet. It is an implementation of a servlet used to
work with HTTP. It is possible to write a servlet, which will be able to work
with any other protocol.

4.2.2 XML and XSL

Development of XML started in 1996 and it is a W3C standard since February
1998. The designers of XML simply took the best parts of SGML, guided by
the experience with HTML, and produced something that is no less powerful
than SGML, but vastly more regular and simpler to use.

XML is interesting because of two features. It allows to easy representing
structured data in a text format and it has a mechanism, which is provided to
transform between different formats of XML or even between XML and other
binary or text data formats.

An example of XML is in Fig. 4-3. It is standard internal format of a query
result set in TTS. To visualize this data a stylesheet in Fig. 4-4 is provided.
This stylesheet uses XSLT to produce an html document, which has a table
formatting, where one row is one record from the database. The result
interpreted in a browser is shown in Fig. 4-5.

<?xml version='1.0'?>
<?xml:stylesheet type="text/xsl" href="Library.xsl"?>

<ROWS>

<ROW ID="1">
<NAME>wOlntcad3</NAME>
<DESYGROUP>IPP</DESYGROUP>
<BUILDING>2b</BUILDING>
<ROOM>32</ROOM>

</ROW>

<ROW ID="2">
<NAME>ipppub3</NAME>
<DESYGROUP>IPP</DESYGROUP>
<BUILDING>2b</BUILDING>
<ROOM>32</ROOM>

</ROW>

</ROWS>

Fig. 4-3 Sample XML structure of data taken out from
HELPDESK_COMPUTERS table.

It is important to say that when new rows will be added to the source
data, the stylesheet will transform them. In case when a new format will be
needed, not a table but for example a combo box, the data stays intact, there are
changes only in the stylesheet.

|<?xm1 version='1.0'?>

52

4 Implementation

<xsl:stylesheet
xmlns:xsl="http://www.w3.0org/TR/WD-xs1"

xmlns="http://www.w3.org/TR/REC-html40"
result-ns="">

<xsl:template match="/">
<table border="1" bgcolor="#FFFFCC">
<tr>
<th>name</th>
<th>group</th>
<th>building</th>
<th>room</th>
</tr>
<xsl:apply-templates select="/ROWS/ROW"/>
</table>
</xsl:template>

<xsl:template match="ROW">
<tr>
<td><xsl:value-of select="NAME"/></td>
<td><xsl:value-of select="DESYGROUP"/></td>
<td><xsl:value-of select="BUILDING"/></td>

<td><xsl:value-of select="ROOM"/></td>
</tr>
</xsl:template>

</xsl:stylesheet>

Fig. 4-4 Stylesheet designed to represent data in a table.

| name |g‘uup |huil:li11g |1‘l2l oIn
wOlntcad?|[IPP 2b |32
ipppub3 (PP 2b |32

Fig. 4-5 Result of the transformation viewed in an html browser.

The transformation pattern is shown in Fig. 4-6. When an XML
transformation is needed, both documents the XML and XSL are read into
memory. When the document is read it is formed in a tree. Then both trees are
processed in XSLT Engine called sometimes an XSL processor. The result of a

transformation is another tree, which can be then used inside an application or
send to a file or over network.

4 Implementation

53

4.2.3

app

processing

XSLT Va

Engine g

Result Tree

Fig. 4-6 XSL transformation pattern.

XSP

XSP (eXtensible Server Pages) is Cocoon's technology for building web
applications based on dynamic XML content. Beyond static content, web
applications demand dynamic content generation capabilities, where XML
documents or fragments are programmatically produced at request time. In this
context, content is the result of computations based on request parameters and,
often, on access to external data sources such as databases or remote server
processes. This distinction in content origin extends the “traditional” regions of
web publishing (content and presentation) to also encompass that of logic.
Dynamic web content generation has traditionally been addressed by
embedding procedural code into otherwise static markup. This approach is
fully supported by XSP. An XSP page is a Cocoon XML document containing
tag-based directives that specify how to generate dynamic content at request
time. Upon Cocoon processing, these directives are replaced by generated
content so that the resulting augmented XML document can be subject to
further processing (typically an XSLT transformation). XSP pages are
transformed into Cocoon producers, typically as Java classes, though any
scripting language for which a Java-based processor exists could also be used.
Directives can be either XSP built-in processing tags or user-defined library
tags. XSP built-in tags are used to embed procedural logic, substitute
expressions and dynamically build XML nodes. User-defined library tags act as
templates that dictate how program code is generated from information
encoded in each dynamic tag.

In Fig. 4-7 and Fig. 4-8 are examples of two identical XSP pages. This
pages shows a caption informing how many times the page was accessed. This
is done very simply. As was told before; an XSP page is converted into a Java
class called a producer. Inside this class a static variable is declared and
initialized:

static private int counter = 0;

54

4 Implementation

Then a simple access method is provided, which returns actual value of the
counter and increases it:

private synchronized int count() {
return counter++;

}

It must be synchronized because it is possible that it can be accessed
concurrently by a few parallel requests. In the right place in the page this
method is executed, and its result is inserted into the document. This is done
using an XSP tag for evaluating expressions:

<xsp:expr>count () </xsp:expr>

The example in Fig. 4-7 follows exactly that scenario. In Fig. 4-8 a page is
shown, which does the same, but the whole Java code is hidden inside a
counter library. All pages in the TTS are made using libraries due to the
requirement of enabling a non-Java developer to maintain the system. In fact
there is not a single line of Java code in Fig. 4-8.

<?xml version="1.0"?>

<?cocoon-process type="xsp"?>
<?cocoon-process type="xslt"?>
<?xml-stylesheet href="page-html.xsl" type="text/xsl"?>

<xsp:page

language="java"
xmlns:xsp="http://www.apache.org/1999/XSP/Core"
>

<xsp:logic>
static private int counter = 0;

private synchronized int count() {
return counter++;

</xsp:logic>

<page>
<title>Simple XSP Page</title>
<p>
I've been requested
<xsp:expr>count () </xsp:expr>
times.
</p>
</page>

</xsp:page>

Fig. 4-7 Simple XSP page source code.

4 Implementation

55

<?xml version="1.0"?>

<?cocoon-process type="xsp"?>
<?cocoon-process type="xslt"?>
<?xml-stylesheet href="page-html.xsl" type="text/xsl"?>

<xsp:page
language="java"
xmlns:xsp="http://www.apache.org/1999/XSP/Core™"
xmlns:counter="http://www.tts.desy.de”

>

<page>
<title>Simple XSP Page</title>
<p>
I've been requested <counter:count/> times.
</p>
</page>

</xsp:page>

4.2.4

Fig. 4-8 The same XSP page as in Fig. 4-7 with usage of a counter library.

SQL and JDBC

The JDBC API is a Java API for accessing virtually any kind of tabular
data. The JDBC API consists of a set of classes and interfaces written in the
Java programming language that provide a standard API for tool/database
developers and makes it possible to write industrial strength database
applications using an all-Java API.

The JDBC API makes it easy to send SQL statements to relational
database systems and supports all dialects of SQL. But the JDBC 2.0 API goes
beyond SQL, also making it possible to interact with other kinds of data
sources, such as files containing tabular data.

The value of the JDBC API is that an application can access virtually
any data source and run on any platform with a Java Virtual Machine. In other
words, with the JDBC API, it is not necessary to write one program to access a
Sybase database, another program to access an Oracle database, another
program to access an IBM DB2 database, and so on. One can write a single
program using the JDBC API, and the program will be able to send SQL or
other statements to the appropriate data source.

The JDBC 2.0 API extends what can be done with the Java platform.
For example, the JDBC API makes it possible to publish a web page containing
an applet that uses information obtained from a remote data source. Or an
enterprise can use the JDBC API to connect all its employees (even if they are
using a conglomeration of Windows, Macintosh, and UNIX machines) to one
or more internal databases via an intranet.

56 4 Implementation

JDBC technology-based driver ("JDBC driver") makes it possible to do
three things:

e Establish a connection with a data source.
e Send queries and update statements to the data source.
e Process the results.

Fig. 4-9 gives a simple example of these three steps:

Connection con = DriverManager.getConnection (
"jdbc:myDriver:wombat",
"myLogin",
"myPassword"
)
Statement stmt = con.createStatement () ;
ResultSet rs = stmt.executeQuery(
"SELECT a, b, ¢ FROM Tablel"
) ;
while (rs.next())
{
int x = rs.getInt("a");
String s = rs.getString("b");
float £ = rs.getFloat("c");

}

Fig. 4-9 Example of accessing a database via JDBC driver.
4.3 Choice of scopes

4.3.1 First implementation cycle

Because TTS is build using new technologies first implementation cycle
will contain the smallest set of features. What should be done first is to
implement the database model because it is rather complex. There is also no
way to reach some functionality level without implementing the whole
lifecycle of a process ticket. First cycle should be closed as soon as possible to
early get feedback from the users.

Use Case Implemented Scope
Request Service | Form where hotline operator can register a ticket.
Dispatch Ticket Full scope.

Search Tasks Only form where logged in expert can search his tickets.
Update Ticket Full scope.
Notify Client Left to be implemented in second cycle.

Fig. 4-10 Functionality chosen to be implemented in first cycle.

4 Implementation 57

Chosen fragments of use cases together consists the core functionality
of the system. The implementation will be quick and after it there will be a
chance of showing the system to the users and validate.

Form Function Scope
AddProcessActivity | Adding new activity to an existing process ticket.
AddProcessTicket | Adding (registering) a new process ticket.

CloseTicket Closing an open ticket and all its activities.
DeleteActivity Deleting an activity.

EditProcessActivity | Editing (updating) a process activity.

EditProcessTicket | Editing (updating) a process ticket.

Login Logging into the TTS.

ViewSingleTicket |Viewing (inspecting) one process ticket.
ViewWorkerTickets | Viewing all open tickets, which belongs to logged expert.

Fig. 4-11 Forms aimed to realize first implementation cycle functionality.

4.3.2 Second implementation cycle
TTS is not a huge system; therefore two implementation cycles should
be sufficient to reach the full functionality level. Although it is possible that
after closing second cycle there will be more new requirements to implement.

Following features should be added:

Use Case Implemented Scope
Request Service | Form where client can register a process ticket.
Dispatch Ticket Already implemented.

Search Tasks Advanced mechanism to search tasks among tickets.
Update Ticket Already implemented.
Notify Client Full scope.

Fig. 4-12 Functionality chosen to be implemented in second cycle.

After implementing selected features TTS will reach its full
functionality. It will be also possible to get feedback from some potential
clients. There will be probably a need to make some small improvements and
corrections, after which the user training in full scope can start.

To realize the rest of TTS functionality following forms should be

implemented:

Form Function Scope
SearchTickets Form for searching tickets according to chosen criteria.
SendEmail Sending information email to a client.
ClientViewTickets | Limited information record about a ticket for a client.

Fig. 4-13 Forms aimed to realize second implementation cycle functionality.

58

4 Implementation

In second implementation cycle also are planned some forms for generating
and viewing statistics for the IPP supervisor. Also administration tools for
making the configuration (setting process tickets parameters) easier than using
standard database access methods. Exact requirements for these features are
already now known.

5 Results

59

5 Results

5.1 Overview of achieved solution

The last TTS configuration consisted of installed Sun JDK version 1.3.0.0.2,
Tomcat version 3.1.1 and Cocoon version 1.8.2. There was Cocoon version 2
but it was under development and available only via CVS. Cocoon was
integrated into Tomcat and TTS was added to it. The thin JDBC driver was
installed to work with Oracle RDBMS version 8.1.6.2.0, also the Cocoon’s
connection pooling was configured.

Finally after closing first implementation cycle there was:

Files quantity Typeof file Total lines count
12 XSP page 1063
7 XSP library (logicsheet) 1035
11 XSL stylesheet 1198
4 XSL support library 694
3 SQL scripts 222
total: 37 total: 4212

Fig. 5-1 TTS code lines summary.

Originally TTS was operating on a Windows NT workstation, and then

shifted to a SPARC machine with Sun Solaris operating system. Additionally
TTS was successfully working with Sun’s JDK version 1.4 beta, on Windows
NT machine. Apache web server was not installed, because there was no
production installation, it was possible because Tomcat has an ability to operate
as stand alone server for testing. The database structure was created on two
Oracle accounts, one for TTS running on the Windows NT and second for TTS
on Sun Solaris. For both accounts the default data were provided.
System was very carefully implemented, several fragments of code where
changed many times or even eliminated. Compiling the XSP pages results in
12646 lines of Java code, which implemented the producers. The SQL script
for inserting default data into the database was 1091 lines long.

Below are two screenshots. The first one is a page where the worker is able to
read information concerning all his responsibilities. Originally process tickets

5 Results

are yellow activities are green. A process ticket was shown to a worker only if
he was responsible for the whole open ticket or at least one open activity within
it. The second screenshot is a page for registering new process tickets. The goal
of designing user interface was to make it as simple as possible. The pages are
very clean, there was putted a pressure to make the same thing look the same in
different places in the system. Therefore the template, which was responsible
for formatting process tickets and activities was moved to a separate file and
included in different stylesheets whenever, needed.

nternet Explorer

| Bl Edt v] T Help
Addiess [#] hp://locabhast6080/HelpDesk NViewworkeTickets.ul? ~| @6

Deine Verantwortlichkeiten =l

Ticket Anlegen Offene Ticketen Geschlossene Ticksten Anmelden
Typ System pflegen Stichwort: CADBAS allgemein Nummer 4 prem—
Status aufzenommen Start; 2001-06-25 04:14 Ende: 0001-01-01 00:00 nechaung
Kunde: Bandelmann, Ruediger Rechner: desywl3 Benachr: bei neuer Aktivitaet
Atbeiter. Martens-Stoever, Olaf Anwendung AuteCAD 2000 Edlitisran

Subject: Pracess Ticket | (Subjest)

Schliesen
Description of Process Ticket 1.
¥ MNeue Act,

Typ: Notwendigkeit pruefen Hummer 16 Ticket: 4 Ediitieren

Status: aufigenommen Start 2001-06-25 04:14 Ende 0001-01-01 00:00

Arheiter: Mariens-Sioever, Olaf’ Extarb: Edoall mull Loeschen |

This is an activity for you to perform (it belongs to 1 Process Ticket). Neue Act

Ty Amvender hetreuen Stichwort: CADBAS allgemein Nugmer: 1 s wo—
Statws: aufgenommen Start: 2001-06-25 02:54 Ende 0001-01-01 00:00 4”
Kunde: Bandelmann, Ruediger Rechner: desywl3 Benachr: bei neuer Aktivitaet
Atbeiter Mariens: Stoever, Olaf Anwendung: AuleCAD 2000 Editisren

Subject: Placess Ticket 2 (Subject)

Schliesen
Description of Process Ticket 2.
v MNeue Act

Typ Problem analysieren Nummer. 3 Ticket: 1 Editieren
Htatus: aufgenomumen Btast, 0001-01-01 00:00 Ende: 0001-01-01 00:00
Arbeiter: Martens-Stoever, Olaf Extarh; null Extcall null Loeschen |
This is an activity for you to perform (it belongs to ? Process Ticket). Meue Act
TicketAnlegen Otfene Ticketen Geschlossene Ticketen Anmeldan
Dt Bt o =l

‘€] Dane [[[f% Localinhanet

5 Results 61

| Fle Edt View Favoites Took Hep ‘
| Agdress [@) hip://localhost B080/HelpDesk /E diFracessTicket sl ~| @G
Neuer Process hinzufugen. n
Pracess Ticket Typ [Aanvender betreuen ‘
Wehle Status [auigenommen =]
Wehle Kunde |Buhnen, Ernst-Luchwig j
Welle Arheiter [Schristers, Kiaus-Peter =]
Wehle Rechner [desyz]
Wehle Benahrichiigung Typ [beinsuer Aktivimet 7]
Welle Stickvort [cADBAST DEAS =]
I P
StartDatam T
Ende Datum [ooormmonoy |
Thema/Beschriehung
CADBAZ-3D-Normteile
CADBAS-3D-Normteile: Ez ist ... moglich, ein 3D-Normteil ;I
aus der cadbas-Normceilbibliothek suszutragen, es zu &ndern und wieder
einzutragen.
=
Wechseln Abbrechen
Copyrigtt (¢} 2001 Detsches Eldbtronan Synchrotan, Himburg.
Al Rechte vorbebalten. zl
&] Dane [[[F% Cocal mtraret

There were written two manuals: “TTS Administrator Manual” and
“TTS User Manual”. The administrator manual was explaining with details
how to install TTS on a new server. How to manage user accounts. How to
configure process tickets, activities, statuses, roles, worker access rights and so
on. It was also explaining the structure of XSP page, and with details and
examples the library interfaces. There was also information where to search
solution in case of errors. The user manual was explaining what are processes
and activities in TTS, how to log into the system, how to register a new process
ticket, how to manage tickets and activities, how to search task to perform and
SO on.

5.2 Experience

Developing TTS results in a huge amount of experience. XML, XSL, XSP and
COCOON were all new technologies. Also building firsts prototypes gives
experience.

Used iterative method introduced order in the implementation process, but also
has some limitations. Using any method requires lots of experience and
discipline. However the second one is up to the developer the first can be only
gained in a long time. When the work on TTS started, XML was in DESY
completely unknown technology. Therefore scheduling was rather a guessing.
Also the architecture design was difficult because it was hard to say what is
exactly possible with XML and where in the system to use it. The time for

62

5 Results

implementation was three times longer than scheduled. Lots of example
programs were developed on purpose to only get an idea what and how can be
done. The general conclusion is that a method will work very well in case of
developing one more product, which is similar to earlier projects. Is such a
situation everything could be exactly planned and standardized. On the
contrary when there is a new type of problems to solve, or a completely new
technology, first there should be a simple hacking done. The program made in
this way should cover a narrow scope of the system functionality, and after
reaching a certain stage it should be thrown away. The gained experience
allows then to introduce a suitable software development method.

What else could be done? There are some ideas of making the system build out
of components. An example component could be a button, a combo box, a text
area, a process ticket or an activity. In such a system the XML could be used to
describe of which components a page consists. There is another possibility to
use XSLT inside components to get their representation depending on some
surrounding conditions. It is obvious that this variant will be much more
difficult o implement, although the hardest part will be to correctly identify the
components.

6 References 63

6 References
Books:

[1] Grady Booch, James Rumbaugh and Ivar Jacobson “ The Unified Modeling
Language User Guide” ADDISON-WESLEY

[2] Terry Quatrani “ Visual Modeling with Rational Rose and UML.”
ADDISON-WESLEY

[3] Brett McLaughlin “Javaand XML” O’REILLY & Associates, Inc.

[4] Jason Hunter and William Crawford “ Java Servlet Programming’
O’REILLY & Associates, Inc.

[9] George Reese “ Database Programming with JDBC and Java”
O’REILLY & Associates, Inc.

[6] David Flanagan “ Java Examplesin a Nutshell, Second Edition”
O’REILLY & Associates, Inc.

[7] David Flanagan “ Javain Nutshell, Second Edition” O’REILLY &
Associates, Inc.

[8] Bruce Eckel “ Thinking in Java, Second Edition” Prentice Hall

[9] Bruce Eckel “ Thinking in Patternswith Java” (electronic version)

[10] Andres S. Tannenbaum “ Computer Networks® Prentice Hall

[11] Robert Eckstein “XML Leksykon Kieszonkowy” Wydawnictwo Helion

Inter net sour ces:

[12] http://java.sun.com

[13] http://xml.apache.org

[14] http://xml.apache.org/cocoon/index.html
[15] http://jakarta.apache.org/tomcat/index.html
[16] http://jakarta.apache.org/turbine/index.html
[17] http://www.w3c.org/DOM

[18] http://www.w3c.org/MarkUp

[19] http://www.w3c.org/ XML

[20] http://www.w3c.org/Style/XSL

[21] http://www.w3c.org/TR/xpath

[22] http://www.w3c.org/XML/Linking

[23] http://www.w3c.org/XML/Schema

[24] http://www.bruceeckel.com

[25] http://www.rz.tu-ilmenau.de/~skoerner/HTML -Taglist

[26] http://webopedia.internet.com

64

6 References

7 Technical appendixes

65

7 Technical appendixes

7.1 Glossary

API

Class

Application Program Interface

The interface (calling conventions) by which an application
program accesses operating system and other services. An API is
defined at source code level and provides a level of abstraction
between the application and the kernel (or other privileged
utilities) to ensure the portability of the code.

The prototype for an object in an object-oriented language;
analogous to a derived type in a procedural language. A class may
also be considered to be a set of objects which share a common
structure and behaviour. The structure of a class is determined by
the class variables which represent the state of an object of that
class and the behaviour is given by a set of methods associated
with the class.

Classes are related in a class hierarchy. One class may be a
specialisation (a "subclass") of another (one of its "superclasses")
or it may be composed of other classes or it may use other classes
in a client-server relationship. A class may be an abstract class or
a concrete class.

Class Diagram

DOM

A view or picture of some or all of the classes in a model.
Document Object Model

A W3C specification for application program interfaces for
accessing the content of HTML and XML documents.

Framework In object-oriented systems, a set of classes that embodies an

HTTP

Java

abstract design for solutions to a number of related problems.
HyperText Transfer Protocol

A protocol used to request and transmit files, especially webpages
and webpage components, over the Internet or other computer
network.

A high-level programming language developed by Sun
Microsystems. Java is an object-oriented language similar to
C++, but simplified to eliminate language features that cause
common programming errors. Java source code files (files with a
.Jjava extension) are compiled into a format called bytecode (files
with a .class extension), which can then be executed by a Java

66

7 Technical appendixes

interpreter. Compiled Java code can run on most computers
because Java interpreters and runtime environments, known as
Java Virtual Machines (VMs), exist for most operating systems,
including UNIX, the Macintosh OS, and Windows. Bytecode can
also be converted directly into machine language instructions by
a just-in-time compiler (JIT).

Java servlet Servlets are server extensions that are written in Java and are

RDBMS

Scenario

associated with particular URLs. When a request for the URL of a
servlet is received from a Web browser, the web server invokes
the servlet to process the request. Web server provides the servlet
with all the information it needs to process the request. It also
provides a mechanism for the servlet to send response
information back to the web browser. The Servlet API is used to
develop servlets. Servlets can be preloaded by web server or
loaded on the fly as they are needed

Relational Database Management System

A type of database management system (DBMS) that stores data
in the form of related tables. Relational databases are powerful
because they require few assumptions about how data is related
or how it will be extracted from the database. As a result, the
same database can be viewed in many different ways. An
important feature of relational systems is that a single database
can be spread across several tables. This differs from flat-file
databases, in which each database is self-contained in a single
table.

An instance of a use case — it is one path through the flow of
events for the use case.

Sequence Diagram

SQL

UML

URL

A diagram that depicts object interactions arranged in time
sequence.

Structured Query Language

An industry-standard language for creating, updating and,
querying relational database management systems. SQL was
developed by IBM in the 1970s for use in System R. It is the de
facto standard as well as being an ISO and ANSI standard. It is
often embedded in general purpose programming languages.
Unified Modeling Language

A non-proprietary, third generation modelling language. The
Unified Modeling Language is an open method used to specify,
visualise, construct and document the artifacts of an object-
oriented software-intensive system under development. The
UML represents a compilation of "best engineering practices"
which have proven successful in modelling large, complex
systems. UML succeeds the concepts of Booch, OMT and OOSE
by fusing them into a single, common and widely usable
modelling language. UML aims to be a standard modelling
language which can model concurrent and distributed systems.
Uniform Resource Locator

7 Technical appendixes

67

W3C

XML

XSL

XSLT

XSP

A standard way of specifying the location of an object, typically a
web page, on the Internet. URLs are the form of address used on
the World-Wide Web.

World Wide Web Consortium

The main standards body for the World-Wide Web. W3C works
with the global community to establish international standards
for client and server protocols that enable on-line commerce and
communications on the Internet. It also produces reference
software.

EXtensible Markup Language

A metalanguage written in SGML that allows one to design a
markup language, used to allow for the easy interchange of
documents on the World Wide Web.

EXtensible Stylesheet Language

A specification for separating style from content when creating
HTML or XML pages. The specifications work much like
templates, allowing designers to apply single style documents to
multiple pages. XSL is the second style specification to be offered
by the World Wide Web Consortium (W3C)(www.w3c.org). The
first, called Cascading Style Sheets (CSS), is similar to XSL but
does not include two major XSL's innovations -- allowing
developers to dictate the way Web pages are printed, and
specifications allowing one to transfer XML documents across
different applications. W3C released the first draft of XSL in
August 1998, and promotes the specifications as helpful to the
Web's speed, accessibility, and maintenance.

EXtensible Stylesheet Language Transformations
XSLT is the language used in XSL style sheets to transform XML
documents into other XML documents. An XSL processor reads
the XML document and follows the instructions in the XSL style
sheet, then it outputs a new XML document or XML-document
fragment. Not all companies use the exact same programs,
applications and computer systems. XSLT Recommendation was
written and developed by the XSL Working Group and became
ratified by the W3C on November 16, 1999.

EXtensible Server Pages

The XSP language is a core technology of Cocoon, XML-based
Web publishing in Java and one of the seven parts of the Apache
XML Project. XSP is used to build dynamic XML content. It was
originally created to allow Web authors to generate dynamic
content without forcing them to learn a programming language.
Because a Web document's content, style and logic are often
created by different working groups or individuals, Cocoon aims
for a complete separation of the three layers. Using XSP, content,
style and logic are separated into different XML files using an
XML DTD and are merged using XSL transformation capabilities

68 7 Technical appendixes

7.2 Sour ce code samples

Below (Fig. 7-1) is the source code of the “CloseTicket.xml”, XSP page.
Inside this page business logic is executed. There is no Java code, because it is hidden
inside libraries, and only public tags of these libraries are used. Every tag, which is not
a part of a library, is inserted inside the XMLDocument, which is prepared here and
destined to be the XML used by stylesheet transformation. The stylesheet is presented
below; also there is an example of a XSP library.

<?xml version="1.0"?>

<?xml-logicsheet href="/WEB-INF/taglibs/pool.xsp.xsl"?>
<?xml-logicsheet href="/WEB-INF/taglibs/check.xsp.xsl"?>
<?xml-logicsheet href="/WEB-INF/taglibs/cbox.xsp.xsl"?>
<?xml-logicsheet href="/WEB-INF/taglibs/security.xsp.xsl"?>
<?xml-logicsheet href="/WEB-INF/taglibs/params.xsp.xsl"?>
<?xml-logicsheet href="/WEB-INF/taglibs/context.xsp.xsl"?>
<?xml-stylesheet type="text/xsl" href="CloseTicket.xsl"?>

<?cocoon-process type="xsp"?>
<?cocoon-process type="xslt"?>

<xsp:page
xmlns:xsp="http://www.apache.org/1999/XSP/Core"
xmlns:esgl="http://apache.org/cocoon/SQL/v2"
xmlns:request="http://www.apache.org/1999/XSP/Request"
xmlns:util="http://www.apache.org/1999/XSP/Util"
xmlns:response="http://www.apache.org/1999/XSP/Response"
xmlns:session="http://www.apache.org/1999/XSP/Session"
xmlns:check="http://www.helpdesk.desy.de/check"
xmlns:cbox="http://www.helpdesk.desy.de/cbox"
xmlns:security="http://www.helpdesk.desy.de/security"
xmlns:params="http://www.helpdesk.desy.de/params"
xmlns:context="http://www.helpdesk.desy.de/context"
create-session="true"
>
<page>
<check:initialize/>
<params:initialize/>

<security:roless>
<security:rolesbenutzer</security:role>
<security:role>verwalter</security:role>
</security:roles>

<params:paramset>
<params:param>TICKETID</params : params>

</params:paramset >

<params:true>

<check:isnotnull param="CloseTicketClose" scope="closebutton"/>

<!-- make ticket and all its activities closed -->
<check:true scope="closebutton">
<!-- close ticket -->

<esqgl:connection>
<esgl :pool>HelpDesk</esql :pool>
<esgl:execute-query>
<esqgl:query>
UPDATE HelpDesk ProcessTickets SET StatusID = 2
WHERE ID =
<esqgl:parameter>
<request:get-parameter name="TICKETID"/>
</esql :parameters>
</esqgl:query>
</esgl:execute-query>
</esqgl:connection>
<!-- close tickets activities -->
<esqgl:connections>
<esqgl :pool>HelpDesk</esgl :pool >

7 Technical appendixes 69

<esgl:execute-querys>
<esqgl:query>
UPDATE HelpDesk ProcessActivities SET StatusID = 2
WHERE ProcessTicketID =
<esqgl :parameter>
<request:get-parameter name="TICKETID"/>
</esql :parameters
</esqgl:query>
</esqgl:execute-query>
</esqgl:connection>
<!-- redirect to the appropriate place -->
<response:send-redirect
location="/HelpDesk/ContextDispatcher.xml"/>
</check:true>

<check:false scope="closebutton">
<esqgl:connections>
<esqgl :pool>HelpDesk</esgl :pool>
<esgl:execute-querys>
<esgl:query>
SELECT * FROM helpdesk vprocesstickets WHERE ID =
<esqgl:parameter>
<request :get-parameter name="TICKETID"/>
</esql :parameters>
ORDER BY ID DESC
</esqgl:query>
<esgl:results>
<esgl:row-results>
<TICKET><esql:get-columns/></TICKET>
</esgl:row-results>
</esqgl:results>
</esgl:execute-query>
</esqgl:connection>
</check:false>
</params:trues>
</page>
</xsp:page>

Fig. 7-1 Source code of CloseTicket.xml XSP page.

Below (Fig. 7-2) the stylesheet for CloseTicket.xml XSP page is presented. The
task of it is to translate the XMLDocument generated inside CloseTicket.xml into an
html, which is then send to the user web browser. This stylesheet includes other library
stylesheets, which are used to transform ticket information, colours and so on.

<?xml version="1.0"?>

<xsl:stylesheet
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0"

>

<xsl:include href="WEB-INF/stylesheets/style.xsl"/>
<xsl:include href="WEB-INF/stylesheets/cbox.xsl"/>
<xsl:include href="WEB-INF/stylesheets/error.xsl"/>
<xsl:include href="WEB-INF/stylesheets/tickets.xsl"/>

<xsl:template match="/page">
<html>
<head>
<title>Willst du diser Process und alle ihre Activiteten schlisen?</titles
</heads>
<body BGCOLOR="{$bgcolor}"s>
<xsl:choose>
<xsl:when test="//error"s>
<xsl:call-template name="errors"/>
</xsl:when>
<xsl:otherwise>
<xsl:call-template name="header"/>
<xsl:call-template name="table"/>
<xsl:call-template name="footer"/>

70 7 Technical appendixes

<xsl:call-template name="copy-right"/>
</xsl:otherwise>
</xsl:choose>
</body>
</html>
</xsl:template>

<xsl:template name="header">

<h3 align="CENTER">
Willst du diser Process und alle ihre Activiteten schlisen?
</h3>
<hr width="70%"/>

</xsl:template>

<xsl:template name="table">
<xsl:call-template name="TICKETS">
<xsl:with-param name="ticketbuttons">yes</xsl:with-param>
<xsl:with-param name="activitybuttons">no</xsl:with-param>
<xsl:with-param name="ticketdescription">yes</xsl:with-params>
<xsl:with-param name="activitydescription">no</xsl:with-param>
<xsl:with-param name="activities">no</xsl:with-param>
<xsl:with-param name="userid"></xsl:with-param>
</xsl:call-template>
</xsl:template>

<xsl:template name="footer">

<hr width="70%"/>

<table align="center">
<tr>
<td>
<form action="/HelpDesk/CloseTicket.xml" method="POST" >
<xsl:element name="input'"s>
<xsl:attribute name="type">hidden</xsl:attribute>
<xsl:attribute name="name">TICKETID</xsl:attribute>
<xsl:attribute name="value">
<xsl:value-of select="/page/TICKET/ID"/>
</xsl:attribute>
</xsl:element>
<input type="submit" name="CloseTicketClose" value="Schliesen"/>
</form>
</td>
<tds>
<form action="/HelpDesk/ContextDispatcher.xml" method="POST">
<input type="submit" name="x" value="Abbrechen"/>
</form>
</td>
</tr>
</table>
</xsl:template>

</xsl:stylesheet>

Fig. 7-2 Stylesheet for CloseTicket.xml XSP page.

Below (Fig. 7-3) an example of a XSP library is presented. A library is a XSL
stylesheet (called a logicsheet because of its purpose), which is used to replace certain
tags inside the source document with Java code. Therefore it is present inside this
stylesheet. This code is then inserted into the producer generated from the XSP page,
which uses this logicsheet. Depending on the implementation of a library it can be
considered as a reusable component. All libraries made for TTS are rather general
purpose ones, and can be used in other Cocoon system.

<?xml version="1.0"?>

<xsl:stylesheet
version="1.0"

7 Technical appendixes

71

xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"

xmlns:xsp="http://www.apache.org/1999/XSP/Core"

xmlns:params="http://www.helpdesk.desy.de/params"
>

<xsl:template match="xsp:page">
<xSp:page>
<xsl:apply-templates select="@*"/>
<xXsp:structure>
<xsp:include>java.util.Hashtable</xsp:include>
</xsp:structure>

<xsp:logic>
// 1if all parameters are present
// then this variable will be set to true
boolean Request Page Parameters;
</xsp:logic>
<xsl:apply-templates/>
</xsp:page>
</xsl:template>

<xsl:template match="params:paramset">
<xsp:logic>
Request Page Parameters = true;
</xsp:logic>
<params>
<xsl:for-each select="params:param">
<xsp:logic>

if (request.getParameter ("<xsl:value-of select="."/>")==null)
Request Page Parameters = false;
<xsp:content>
<errors
Diese Seite soll nicht unmittelbar zugrifft werden.
</errors>

</xsp:content>
else

// this is necessary
// because the element name is
// not known now
xspParentNode = xspCurrentNode;
xspNodeStack.push (xspParentNode) ;
xspCurrentNode =
document .createElement ("<xsl:value-of select="."/>");

xspParentNode. appendChild (xspCurrentNode) ;
xspCurrentNode . appendChild (

document . createTextNode (

request.getParameter ("<xsl:value-of select="."/>")));

((Element) xspCurrentNode) .normalize() ;
xspCurrentNode = (Node) xspNodeStack.pop() ;

</xsp:logic>

</xsl:for-each>

</params>
</xsl:template>

<xsl:template match="params:initialize">
<xsp:logic>
Request Page Parameters = true;
</xsp:logic>
</xsl:template>

<xsl:template match="params:true">
<xsp:logic>
if (Request Page Parameters)

<xsl:apply-templates/>

</xsp:logic>
</xsl:template>

72 7 Technical appendixes

<xsl:template match="params:false">
<xsp:logic>
if (!Request Page Parameters)

<xsl:apply-templates/>

</xsp:logic>
</xsl:template>

<!-- default taglibrary template -->
<xsl:template match="@*|*|text () |processing-instruction()" priority="-1">
<xsl:copy>
<xsl:apply-templates select="@*|*|text () |processing-instruction()"/>
</xsl:copy>
</xsl:template>

</xsl:stylesheet>

Fig. 7-3 Source code of XSP security library.

