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Abstract

We derive the Feynman rules for N=1, D=5 supersymmetric Yang-
Mills theory expressed in 4D superfields. As an application we calcu-
late the one-loop contribution to the vector superfield propagator and
derive the β-function.
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1 Introduction

The unification of the fundamental forces of nature is one of the great
aims of high energy physics. After the establishment of the electroweak
unification of Glashow, Salam and Weinberg and the development of
Quantum Chromodynamics as a gauge theory describing the strong
interaction much effort has been put to find a Grand Unified Theory
(GUT), a quantum field gauge theory with a simple gauge group from
which the electroweak and the strong interaction originate via spon-
tanious symmetry breaking down to the Standard Model gauge group
GSM ≡ SU(3)C × SU(2)L × U(1)Y .

The best discussed theory is the Georgi-Glashow model using the
smallest possible GSM embedding gauge group SU(5). The model suf-
fers from the fact that the the weak mixing angle θW disagrees with
experiment. The theory is severely restricted as the baryon number
violating decay of the proton has to be suppressed to agree with ex-
periment. Furthermore, from neutrino oscillation experiments Super-
Kamiokande, SNO and KamLAND there is strong evidence for right-
handed neutrinos which cannot be directly included in the matter
multiplets 5̄ and 10 of SU(5). These problems can be overcome by
choosing larger gauge groups. The best studied group is SO(10), oth-
ers are E6, E7 and E8 which all contain SU(5) as a subgroup. How-
ever there are two problems common to all GUTs mentioned above.
The Higgs fields have to be chosen in a representation of the gauge
group. Considering the Standard Model gauge groups which remain
after symmetry breaking, the Higgs multiplet gets split into weakly
charged Higgs fields as well as colour charged Higgs fields. The former
induce spontaneous symmetry breaking for the electroweak sector and
from unitarity bounds it follows that the electroweak Higgs has to have
a mass of the order of . 103GeV while the latter have to have a mass
of the order of 1015GeV in order to suppress baryon number violating
interactions yielding proton decay. The Higgs masses therefore have
to be fine tuned over 12 orders of magnitude. This problem is referred
to as the triplet doublet splitting problem.1

The second generic problem is also related to the small electroweak
Higgs mass. The Higgs mass gets renormalised by radiative corrections
in every loop order if there is no underlying symmetry forbidding the
correction. The radiative correction is of the order of the cutoff scale
which for a GUT is given by the the unification scale at ∼ 1016GeV,
another fine tuning is required which adjusts the divergences to almost
cancel from ∼ 1016GeV to ∼ 103GeV in every loop order.

1The name originates from the the Higgs color triplet and weak doublet in the minimal
SU(5) theory.
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This so-called hierachy problem can be solved in the framework of
supersymmetric GUTs. Here, the supersymmetry between bosons and
fermions yields cancelations between quadratic divergences appearing
in the calculation of loop contributions. Another advantage compared
to non-supersymmetric theories is that the unification of the couplings
and therefore the Weinberg angle calculated from the theories in the
framework of the minimal supersymmetric extension of the standard
model (MSSM) agrees with experiment.

In supersymmetric theories, a new question arises. A priori par-
ticles and their superpartners have the same mass which is a direct
consequence of the supersymmetry algebra. As this mass degeneracy is
not observed, supersymmetry must be broken. It is desirable to break
supersymmetry such that the non-renormalisation theorem still holds,
canceling the quadratic divergences. Such a soft supersymmetry break-
ing can be achieved by the Fayet-Iliopoulos and/or the O’Raifeartaigh
mechanism. However, these mechanisms are not able to reproduce a
mass spectrum in which all superpartners are heavier than the stan-
dard model particles as a generalised mass sum rule applies to such
spontaneously broken theories.

One way to realise supersymmetric theories in which the standard
model particles are lighter than their superpartners is to break super-
symmetry in a hidden sector and to mediate the breaking to the MSSM
sector. In supersymmetry this can be achieved by a mediator which
carries a charge and mediates the breaking via gauge interactions to
the MSSM sector (gauge mediated supersymmetry breaking) [1]. In
the local version of supersymmetry, supergravity, the gravity multi-
plet contains possible candidates for the mediating particle (gravity
mediated supersymmetry breaking) [2, 3, 4].

Three years ago, it has been proposed to consider a five dimen-
sional supersymmetric GUT compactified on the orbifold S1/Z2 × Z ′

2

[5, 6].2 The compactification yields Kaluza-Klein towers of states of
which only the zero modes are light while the masses of the excited
states are proportional to the inverse of the compactification radius.
By the discrete symmetries on the orbifold, the zero modes of the color
charged Higgs can be projected out, making them heavy and solving
the triplet doublet splitting problem. The breaking of the gauge group
down to the standard model group can be achieved by projections of
the discrete symmetries, as well, instead of using a Higgs mechanism

2Manifolds from which a discrete symmetry is divided out. The concept of compactifi-
cations on orbifolds is known for a long time from string theory as well as the possibility
to solve the triplet doublet splitting by it [7]. However, it has not been considered in a
purely field theoretic setup until recently.
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at the GUT scale.3

Orbifold GUTs provide a natural possibility for mediated super-
symmetry breaking, using one orbifold fixed point (brane) to locate
the MSSM, a different one to break supersymmetry and using a bulk
field to mediate the breaking (cf. [9] for an SU(5) supersymmetric
GUT with the gaugino as mediator). An extension of orbifold GUTs
to supergravity theories is possible including mediated supersymmetry
breaking (cf. [10]).

Due to these advantages orbifold GUTs attract a lot of attention
since 2000. Beyond the studies on SU(5) [6, 9, 11, 12, 13], SO(10)
theories in six dimensions compactified to four have been considered
[14, 15, 16].

For N=1, D=4 supersymmetry the superfield formalism exists
which has proven very useful. Superfields describe quantum fields and
their superpartners as well as auxiliary fields (which can be introduced
to linearise the supersymmetry transformations) as a single object in-
habiting the supersymmetric structure. In superfield formalism, super-
symmetry is manifest without the need of using infinitesimal super-
symmetric field transformations. Therefore most non-renormalisation
theorems for N=1 have been proven in superfields. Calculations in
superfields are simpler than in components as every superfield graph
contains several component field graphs which otherwise would have
to be computed separately. For loop calculations only scalar divergent
integrals occur as the superfields used for the supersymmetric exten-
sion of gauge bosons, fermions and Higgs bosons are scalar. Having a
manifest superfield formulation for five (or higher) dimensional orb-
ifold theories would mean a great simplification for calculation as well
as a conceptually powerful tool.

Unfortunately there is no known way to generalise superfields to
higher spacetime dimensions in full generality. However it is known
how to formulate a ten dimensional supersymmetric Yang-Mills theory
in 4D superfields [17], including the derivation of its Feynman rules.
In the development of orbifold GUTs, a similar formulation for a 5D
vector superfield has been developed [18], followed by the superfield
formulation for vector and matter supermultiplets in D=5 to D=10
[19]. So far gauge covariance has not been manifest for higher dimen-
sional super Yang-Mills theories. This inconvenience can be solved by
introducing a covariant derivative in x5 direction for 5D theories [20].

With this formalism of [20] it is possible to build up 5D supersym-
metric GUTs using superfields only. However, as far as we know, su-
perfields have not been used above the level of constructing the action

3For a complete classification of possible projections and low energy groups resulting
from this cf. [8].
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in five dimensional supersymmetric theories.4 Loop corrections have
been calculated in component fields after the compactified dimension
has been integrated out.

The aim of this dipoma thesis is to formulate a five dimensional
super Yang-Mills theory in 4D superfields, including a generalised
Faddeev-Popov procedure to derive its Feynman rules and to calcu-
late one-loop corrections in this formalism, thereby providing a basis
for 5D supersymmetric orbifold GUT calculations in superfields. The
orbifolding of the theory is not carried out in this thesis but will be
adressed elsewhere in detail. However, following [10] it is straightfor-
ward to extend our results to 5D theories on orbifolds.

This thesis is structured as follows. In Chapter 2 we give a brief
review of D=4, N=1 supersymmetry, following Wess and Bagger [21].5

In Chapter 3 we quantise the N=1, D=4 supersymmetric Yang-Mills
theory with chiral matter superfields. For this purpose we use the
Faddeev-Popov method outlined in [22, 23] and derive the Feynman
rules. Apart from the gauge fixing, the main new tools compared to the
calculation in a non-supersymmetric theory are superspace integrals
and, related to it, the use of D-algebra.6 We use methods of [22, 24]
to deal with this.7

As an application of the Feynman rules derived we calculate the
β-function of the theory at one-loop level. The result for the theory
without matter is well known (cf. [25]). This calculation therefore has
to be regarded as a check of our Feynman rules as well as a guide to
the five dimensional generalisation.

In Chapter 4 we use the formalism and the 5D action in superfields
of [20] and quantise a N=1, D=5 super Yang-Mills theory, following
the same procedure as in the 4D theory, i.e. using the Faddeev-Popov
method, defining the generating functional, calculating the superfield
propagators and reading off the vertices to derive the Feynman rules.
As in 4D we derive the β-function of the five dimensional theory and
compare it to the 4D result.

4The only exception we know is the supergravity one-loop calculation of [10] which has
been published while this thesis has been written.

5Their conventions are summarised in Appendix A.1. We will use them throughout this
thesis.

6algebraic relations of supersymmetry covariant derivatives in superspace
7A collection of D-algebra rules is given in Appendix B.2.
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2 Supersymmetry and Superfields

In the development of Quantum Field Theory it was a very important
issue to study symmetries for the S matrix by which all observables
are determined. In 1967, after several no-go theorems were found,
the Coleman-Mandula Theorem was published [26], saying that any
symmetry group of the S-Matrix has to be locally isomorphic to a
direct product of the Poincaré Group and an internal symmetry group
under some very general assumptions for a Quantum Field Theory and
the implicit assumption that all generators of the symmetry groups
form a commutator algebra. The direct consequence of the Coleman-
Mandula theorem is that there are no symmetries in a Quantum Field
Theory which change the spin of any state.

However, relaxing the assumption of the commutator algebra by
allowing anticommutators, as well, it has been shown that it is possible
to construct so called graded Lie algebras consistent with the other
assumptions of a Quantum Field Theory [27, 28]. Here, the symmetry
group is not a direct product of internal and spacetime symmetries.
The first example of such a theory was then constructed by Wess
and Zumino [29]. In 1975 Haag,  Lopuszański and Sohnius derived the
most general graded Lie algebra [30] for a so-called supersymmetric
Quantum Field Theory.

From that time on, supersymmetry has been studied intensively
as a direct possible extension to the Standard Model (the Minimal
Supersymmetric Model, MSSM), in its localised version (supergravity)
which naturally includes gravity, in the context of Grand Unification
as well as in cosmology8 and as a necessary ingredient of String theory
to include fermions (yielding Superstring theory).

In the following chapter we give a brief review on the supersym-
metry algebra and N=1 supersymmmetry in superfields. We follow
the conventions of Wess and Bagger [21] which are summarised in
Appendix A.1.

2.1 The Supersymmetry Algebra

Following the Haag- Lopuszański-Sohnius theorem, the possible sym-
metries and therefore the algebra of the symmetry group generators
of a non-trivial supersymmetric theory is severely restricted.

The most general supersymmetry algebra is

[Pm, Pn] = 0 (2.1a)

8The lightest supersymmetric particle, if stable, provides a candidate for dark matter.
Another field of studies are supersymmetric models for inflation.
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[Mmn,Mrs] = i(ηnrMms − ηnsMmr − ηmrMns+ ηmsMnr) (2.1b)

[Pm,Mrs] = i(ηmrPs − ηmsPr) (2.1c)

[T a, T b] = ifabcT c (2.1d)

[Pm, T
a] = 0 = [Mmn, T

a] (2.1e)

[Pm,Q
L
α] = 0 = [Pm, Q̄α̇L] (2.1f)

[QL
α,Mmn] =

1

2
(σmn) β

α QL
β (2.1g)

[Q̄α̇L,Mmn] = −1

2
Q̄Lβ̇(σ̄mn)β̇

α̇ (2.1h)

{QL
α, Q̄α̇M} = 2σm

αα̇Pmδ
L
M (2.1i)

{QL
α,Q

M
β } = εαβX

[LM ] (2.1j)

{Q̄α̇L, Q̄β̇M} = εα̇β̇X
†

[LM ] (2.1k)

[X [LM ], anything] = 0 (2.1l)

[QL
α, T

a] = SaL
M QM

α (2.1m)

[Q̄αL, T
a] = −S∗aM

L Q̄αM (2.1n)

X [L,M ] = aa[LM ]T a (2.1o)

where m,n, . . . are spacetime indices, α, α̇, . . . are Weyl spinor indices
(cf. Appendix A.1), a, b, . . . are indices of the internal symmetry group
and L,M, . . . = 1 . . . N label the supersymmetry generators. Pm are
the momentum generators, Mmn are the generators of the Lorentz
group and T a are the generators of the internal symmetry group. The
central charges X [LM ] are antisymmetric in the supersymmetry indices
L and M and therefore vanish for N=1.

In this thesis we only consider N=1 supersymmetry in four di-
mensions and N=1 supersymmetry in five dimensions which can be
represented by a four dimensional N=2 theory without central charges
(cf. Appendix A.2 and Chapter 4.1). Then, SaL

M ≡ 0 ≡ aa[LM ] and the
only non vanishing algebraic relations are (2.1b), (2.1c), (2.1d), (2.1g),
(2.1h) and (2.1i) where the last imposes supersymmetry i.e. a symme-
try between bosons and fermions which has been absent in theories
considering commutator relations as symmetry algebras only. Often
(2.1i) is called the supersymmetry algebra on its own.

Irreducible representations of the supersymmetry algebra are con-
structed by defining a Clifford ground state and applying the (properly
normalised) supersymmetry generators to it.
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For the Lorentz algebra (2.1a) to (2.1c) there are two Casimir
operators, P 2 and W2, where

Wm ≡ −1

2
εmnrsPnMrs (2.2)

which yield equal masses and spin for an irreducible Lorentz represen-
tation. In a non-trivial representation of the supersymmetry algebra,
particles of different spin occur due to [QL

α ,W2] 6= 0. The degeneracy
in mass is still valid as [QL

α, P
2] = 0.

The degeneracy in mass is not observed in nature as no superpart-
ners to the Standard Model particles have been observed and therefore
must be heavier. It can be lifted by spontanious supersymmetry break-
ing by a Fayet-Iliopoulos and/or a O’Raifertaigh term. This is however
not sufficient to lift the masses of all superpartners beyond those of
Standard model particles as the generalised mass sumrule

STrM2 ≡
∑

particles

(−1)2J (2J + 1)TrM 2
J = −2g(TrT a)Da (2.3)

applies (cf. e.g. [31]), where the sum is over the real on-shell degrees
of freedom of all particles, J is the spin of the particle, MJ is its mass
and Da is the vaccuum expectation value of the chiral auxiliary super-
multiplet. Therefore, as stated in the introduction, more sophisticated
mechanisms have to cure this problem.

2.2 Superspace

In the last section, the supersymmetry algebra has been presented as a
graded Lie algebra including commutators as well as anticommutators.
By introducing anticommuting spinorial 2-component parameters θα

and θ̄α̇ it can be rewritten as an algebra of commutators only. For
N=1 four dimensional supersymmetry it is possible to generate the
group of supersymmetry transformations from it in an analogous way
as elements of Lie Groups are generated by its Lie Algebra. But in
superspace, the group elements depend on spacetime as well as the
anticommuting parameters.

The supersymmetry group element can be defined by

G(x, θ, θ̄) = ei(−xmPm+θQ+θ̄Q̄) , (2.4)

where Qα and Q̄
α̇

are the supersymmetry generators9 One represen-
tation for the supersymmetry generators is found by realising that the

9If we do not write out the spinor indices, undotted indices are contracted from top to
bottom and dotted indices are contracted from bottom to top (cf. Appendix A.1).
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left multiplication of G(0, ζ, ζ̄) to a group element is generated by the
differential operators

Qα =
∂

∂θα
− iσm

αα̇θ̄
α̇∂m

Q̄α̇ = − ∂

∂θα̇
+ iθασm

αα̇∂m .

(2.5)

Qα and Q̄α̇ indeed satisfy the supersymmetry relation

{Qα, Q̄α̇} = 2iσm
αα̇∂m (2.6)

as expected for supersymmetry generators acting on the representation
space.

The right group multiplication can be generated by

Dα =
∂

∂θα
+ iσm

αα̇θ̄
α̇∂m

D̄α̇ = − ∂

∂θα̇
− iθασm

αα̇∂m

(2.7)

which anticommute with Qα and Q̄
α̇ 10 and furthermore satisfy

{Dα, D̄α̇} = −2iσm
αα̇∂m

{Dα,Dβ} = {D̄α̇, D̄β̇} = 0 .
(2.8)

Superfields F (z = (x, θ, θ̄)) are the elements of the representation
space of the supersymmetry group. As θ and θ̄ are Grassmann vari-
ables, the power series expansion of F in these variables is finite. As
the infinitesimal supersymmetry transformation is given by ζQ + ζ̄Q̄
and as the Q’s are first order differential operators, linear combinations
and products of superfields are superfields. As the D’s pairwise anti-
commute with the Q’s, constrained fields with D̄α̇F = 0 or DαF = 0
are superfields and their constraint is conserved under supersymmetry
transformations. Superfields which fulfill this constraint are called chi-
ral and anti-chiral superfields and are discussed in Chapter 2.3. They
are of importance as they can be seen as supersymmetric generalisa-
tion of fermions as well as of the Higgs. As the D’s are differential
operators, products and linear combinations of (anti-)chiral fields are
(anti-)chiral. Another constraint which is conserved by supersymme-
try transformations is V = V †. It defines the vector superfield. Vector
superfields can be seen as the supersymmetric generalisation of gauge
bosons and are discussed in Chapter 2.4 and 2.5 for the Abelian and
non-Abelian case.

10This is a simple consequence of the associativity of group multiplication.
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To construct Lagrangians from superfields it is useful to introduce
integrals over Grassmann variables by

∫

dη = 0 ,

∫

dηη = 1 . (2.9)

This definition can be extended to spinorial Grassmann variables by
defining the measure by

d2θ = −1

4
dθαdθβεαβ

d2θ̄ = −1

4
dθ̄α̇dθ̄β̇ε

α̇β̇

d4θ = d2θd2θ̄

(2.10)

leading to
∫

d2θ = 0 ,

∫

d2θθ2 = 1
∫

d2θ̄ = 0 ,

∫

d2θ̄θ̄2 = 1

(2.11)

and
δ(θ) = θ2 , δ(θ̄) = θ̄2 (2.12)

act like delta distributions on functions in ordinary integrals.
To construct Lagrangians from superfields, an object is needed

which leads to a supersymmetry invariant action. Demanding the La-
grangian to be invariant under supersymmetry transformation is a
too strong condition as this is fulfilled by constant fields only.11 The
only possibility left to get a supersymmetry invariant action12 is a
Lagrangian, which transforms like a spacetime density. For a general
superfield, this is given for the θ2θ̄2-component, while for chiral super-
fields it is true for the θ2-component and respectively, for anti-chiral
fields it is given for the θ̄2-component.

The most general action for N=1, D=4 supersymmetry can there-
fore be written in superfields by

S =

∫

d4x











∏

any fields





∣

∣

∣

∣

∣

θ2θ̄2

+

[(

∏

chiral fields

)∣

∣

∣

∣

∣

θ2

+ h.c.

]







=

∫

d8z











∏

any fields



+

[(

∏

chiral fields

)

δ(θ̄) + h.c.

]







(2.13)

where d8z = d4xd2θd2θ̄.

11Considering the anticommutator of the supersymmetry generators, supersymmetry
invariance implies σm

αα̇∂mL = 0.
12up to surface terms
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2.3 Chiral Superfields

Chiral superfields are defined to fulfill the constraint

D̄α̇Φ = 0 . (2.14)

Applying the constraint to the component expansion of a general su-
perfield, it follows that

Φ = A(y) +
√

2θψ(y) + θ2F (y)

= A(x) + iθσmθ̄∂mA(x) +
1

4
θ2θ̄2

2A(x) +
√

2θψ(x)

− i√
2
θ2∂mψ(x)σmθ̄ + θ2F (x)

(2.15)

where A and F are complex fields, ψ is a Weyl spinor and ym ≡
xm + iθσmθ̄.13

Analogously for anti-chiral superfields the constraint is

DαΦ̄ = 0 , (2.16)

which yields the component expansion

Φ̄ = A∗(y†) +
√

2θ̄ψ̄(y†) + θ̄2F ∗(y†)

= A∗(x) − iθσmθ̄∂mA
∗(x) +

1

4
θ2θ̄2

2A∗(x) +
√

2θ̄ψ̄(x)

+
i√
2
θ̄2θσm∂mψ̄(x) + θ̄2F ∗(x)

= A∗(y) − 2iθσmθ̄∂mA
∗(y) + θ2θ̄2

2A∗(y) +
√

2θ̄ψ̄(y)

+
√

2iθ̄2θσm∂mψ̄(y) + θ̄2F ∗(y)

(2.17)

where y†
m

= xm − iθσmθ̄.
The most general renormalisable action of N chiral fields therefore

is14

S =

∫

d4x

{

Φ̄iΦi

∣

∣

∣

∣

∣

θ2 θ̄2

+

[

(

1

2
mijΦiΦj +

1

3!
λijkΦiΦjΦk

)

∣

∣

∣

∣

∣

θ2

+ h.c.

]}

(2.18)
with i, j, k = 1..N and mij and λijk symmetric.

Rewriting the action as a superspace integral leads to

S =

∫

d8z

{

Φ̄iΦi +

[(

1

2
mijΦiΦj +

1

3!
λijkΦiΦjΦk

)

δ(θ̄) + h.c.

]}

.

(2.19)

13Choosing y instead of x as super coordinate is convenient for calculations which in-
volve chiral superfields only, because in these coordinates, D̄α̇ becomes D̄

y

α = ∂
∂θα̇

which
simplifies computations.

14The contributing component for terms coupling more than 4 chiral fields are non-
renormalisable because they have mass dimension > 4.
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2.4 Vector Superfields (Abelian case)

Another constraint on superfields which leads to a supermultiplet of
phenomenological interest is reality condition

V = V † . (2.20)

Expanding the field in its θ-components yields

V =C(x) + iθχ(x) − iθ̄χ̄(x)

+
i

2
θ2 [M(x) + iN(x)] − i

2
θ̄2 [M(x) − iN(x)] − θσmθ̄vm(x)

+ iθ2θ̄

[

λ̄(x) +
i

2
σ̄m∂mχ(x)

]

− iθ̄2θ

[

λ(x) − i

2
σm∂mχ̄(x)

]

+
1

2
θ2θ̄2

[

D(x) +
1

2
2C(x)

]

(2.21)

where C, D, M and N are real scalar fields, χ is a Weyl spinor and
vm is a real vector field which will be identified with the gauge boson.

A supersymmetric generalisation of the Abelian gauge transforma-
tion is given by

V → V + i(Λ − Λ̄) (2.22)

where Λ is a chiral field.
The gauge transformations in component fields are

C → C + i(A−A∗)

χ→ χ+
√

2ψ

M + iN →M + iN + 2F

vm → vm + ∂m(A +A∗)

λ→ λ

D → D

(2.23)

so that the vector component transforms as needed for a gauge field.
By fixing all degrees of freedom of the chiral field except the

(A + A∗)-component, it is possible to gauge away C, M + iN and
χ, leaving the vector superfield with vm as the lowest component in
the θ-expansion, the gaugino λ and the auxiliary field D. The only
remaining gauge freedom is the ordinary gauge transformation for the
vector field component vm. One advantage of this so called Wess-
Zumino gauge is that all powers in V higher than V 2 vanish, which
simplifies calculations because matter fields couple non-polynomial to
the gauge field (cf. (2.27)).
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The remaining powers of V are

V = −θσmθ̄vm(x) + iθ2θ̄λ̄(x) − iθ̄2θλ(x) +
1

2
θ2θ̄2D(x)

V 2 = −1

2
θ2θ̄2vmv

m .

(2.24)

However this gauge breaks supersymmetry in the sense that a super-
symmetry transformation does not preserve the Wess-Zumino gauge.

The supersymmetry generalisation of the field strength tensor is
given by the (anti-)chiral, gauge invariant superfields

Wα = −1

4
D̄

2
DαV

W̄α̇ = −1

4
D2D̄α̇V ,

(2.25)

which include the standard field strength tensor Fmn as their θ- (or
respectively θ̄-) component in their component expansion.

To couple chiral superfields to the vector superfield, they have to
transform under the gauge group according to

Φ′
l = e−itlΛΦl

Φ̄′
l = eitlΛ̄Φ̄l

(2.26)

where tl is the charge of the lth chiral superfield. With these transfor-
mations, the kinetic term of the chiral superfields ΦΦ̄ is not invariant
under gauge transformations. This can be cured by modifying it to15

Lkin = Φ̄le
2tlV Φl . (2.27)

The most general renormalisable action with an Abelian gauge
group is therefore given by

S =

∫

d4x

{

1

4

(

WαWα

∣

∣

∣

θ2
+ W̄α̇W̄

α̇
∣

∣

∣

θ̄2

)

+ Φ̄le
2tlV Φl

∣

∣

∣

θ2θ̄2

+

[(

1

2
mijΦiΦj +

1

3!
λijkΦiΦjΦk

)

∣

∣

∣

θ2
+ h.c.

]}

.

(2.28)

Here mij and λijk are restricted by demanding gauge invariance.

15Choosing a factor itl in the exponent instead of i2tl would just rescale the vector
superfield. We choose it as in equation (2.26) as this leads to the textbook Langrangian
for the vector field component part.
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2.5 Vector Superfields (Non-Abelian) and
Coupling to Chiral Superfields

In this chapter, the concepts of the last chapter are generalised to a
non-Abelian compact gauge group G, which is generated from the Lie
algebra

[T a, T b] = ifabcT c . (2.29)

Here, the T a are the hermitian, traceless generators of the gauge
group, fabc are completely antisymmetric real structure constants and
the generators in the adjoint representation are chosen such that

Tr
(

T aT b
)

= kδab (2.30)

with k real.
The transformation of chiral superfields generalises to

Φ′
i = e−iΛij Φj

Φ̄′
i = eiΛ̄ij Φ̄′

j

(2.31)

with
Λij = T a

ijΛ
a , (2.32)

where g is coupling constant and the T a
ij are chosen in the representa-

tion appropriate for the chiral field multiplet.
To ensure gauge invariance of the kinetic term of the chiral action

Lkin in (2.27), the vector superfield multiplet has to transform as

e2gV ′

= e−iΛ̄e2gV eiΛ (2.33)

where
V = T aV a (2.34)

which by using Hausdorff’s formula leads to

δ(2gV ) = iLgV

[(

Λ + Λ̄
)

+ cothLgV

(

Λ − Λ̄
)]

(2.35)

as infinitesimal transformation of V . Here cothLgV denotes the power
series in LgV and LgV

(

Λ + Λ̄
)

=
[

gV ,Λ + Λ̄
]

.
Using

x coth(x) = 1 +
1

3
x2 − 1

45
x4 +O

(

x6
)

(2.36)

it follows that

δ(2gV ) =i

{

(

Λ − Λ̄
)

+
[

gV,Λ + Λ̄
]

+
1

3

[

gV,
[

gV,Λ − Λ̄
]]

− 1

45

[

gV,
[

gV,
[

gV,Λ − Λ̄
]]]

+O(g4)

}

.

(2.37)
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This expansion will be needed in Chapter 3 to calculate the 3- and
4-vertices of super Yang-Mills theory.

The supersymmetric field strength has to transform according to

Wα →W ′
α = e−iΛWαe

iΛ

W̄α̇ → W̄ ′
α̇ = eiΛ̄W̄α̇e

−iΛ̄
(2.38)

and is given by

Wα = −1

4
D̄

2
e−2gV Dαe2gV

W̄α̇ = −1

4
D2e−2gV D̄α̇e2gV .

(2.39)

Therefore, the most general, renormalisable action for a super
Yang-Mills Theory takes the form

S̃SYM = S̃gauge + Smat (2.40)

with16

S̃gauge =

∫

d4x
Tr

16kg2
(WαWα

∣

∣

∣

θ2
+ W̄α̇W̄

α̇
∣

∣

∣

θ̄2
)

=

∫

d8z
Tr

16kg2
(WαWαδ(θ̄) + W̄α̇W̄

α̇δ(θ))

(2.41)

and

Smat =

∫

d4x

{

Φle
2gV Φl

∣

∣

∣

∣

∣

θ2 θ̄2

+

[

(

1

2
mijΦiΦj +

1

3!
λijkΦiΦjΦk

)

∣

∣

∣

∣

∣

θ2

+ h.c.

]}

=

∫

d8z

{

Φ̄le
2gV Φl +

[

1

2
mijΦiΦjδ(θ̄) +

1

3!
λijkΦiΦjΦkδ(θ̄) + h.c.

]}

.

(2.42)

Here, as in the abelian case mij and λijk are restricted by
demanding gauge invariance in the way that they have to be invariant
tensors of the gauge group. For a theory with massive matter, the
only way of fulfilling this constraint is to choose a real representation
of the gauge group with mij = mδij. For a massless theory, a complex
representation can be chosen as well.

For later use, we split Smat into a free and an interacting part. The
free part is

S0,mat =

∫

d8z

{

Φ̄lΦl +

[

1

2
mδijΦiΦjδ(θ̄) + h.c.

]}

. (2.43)

16We write S̃SYM and S̃gauge because these actions will be modified in the next chapter
according to a generalised Faddeev-Popov procedure.
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The interacting part is

SINT,mat =

∫

d8z

{

Φ̄l

(

e2gV − 1
)

Φl +

[

1

3!
λijkΦiΦjΦkδ(θ̄) + h.c.

]}

.

(2.44)

3 Quantisation of Super Yang-Mills

Theories in Superfields

The aim of this chapter is to quantise super Yang-Mills theories in
superfields. To quantise the theory, the gauge has to be fixed. Then
we rewrite the action in terms of chiral and anti-chiral ghost super-
multiplets, applying a generalisation of the Faddeev-Popov procedure
proposed by [24]. This is done, using the conventions of [21, 23] and
by using Minkowskian path integrals. We also give the BRS transfor-
mations.

As a next step, the Feynman rules of the theory are derived, in-
cluding rules of D-algebra [22] in our conventions. These will then be
used to do a one-loop calculation for the gauge superfield propagator
leading to the β-function of super Yang-Mills theory (cf. [22, 25]).

3.1 Generalised Faddeev-Popov Procedure

and BRS Transformations

The action of a super Yang-Mills theory has been given in (2.41).
Expanding the supersymmetric field strength in the vector superfield
according to (2.39), and using (2.8) gives

S̃gauge =

∫

d8z
Tr

k

{

1

8
VDαD̄

2
DαV +

1

4
g(D̄

2
DαV )[V,DαV ]

−1

8
g2[V, (DαV )]D̄

2
[V, (DαV )] − 1

6
g2(D̄

2
DαV )[V, [V,DαV ]] +O(g3)

}

.

(3.1)

To quantise the theory, we follow a generalised Faddeev-Popov
procedure as outlined in [24] and in more detail in [22].

As in an ordinary Yang-Mills-Theory, the gauge has to be fixed to
calculate the propagator (cf. e.g. [32], [33]). In Wess-Zumino gauge,
terms of O(V 5) vanish up to spacetime derivatives as the lowest field
component is the θθ̄ component and due to the superspace integral and
two D’s and D̄’s acting, the only contributing part of the Lagrangian
is the θ4θ̄4 component. However, as pointed out in Chapter 2.4, Wess-
Zumino gauge breaks supersymmetry, so we follow a different path.
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Starting with the path integral for super Yang-Mills theory

Zgauge =

∫

DV eiS̃gauge[V ] , (3.2)

the gauge fixing is done by defining the gauge invariant integral over
the gauge group by

∆(V ) =

∫

DΛDΛ̄δ[F (V,Λ, Λ̄) − f ]δ[F̄ (V,Λ, Λ̄) − f̄ ] (3.3)

and inserting a factor of ∆−1(V )∆(V ) into (3.2). In (3.3), F is a chiral
function of the vector superfield and the gauge parameters such that
for any chiral f(x, θ) there is one and only one (V,Λ, Λ̄) with F = f
and analogously for anti-chiral F̄ and f̄ . An appropriate choice for F
and F̄ is

F (V,Λ, Λ̄) = −1

4
D̄

2
2gV

F̄ (V,Λ, Λ̄) = −1

4
D22gV .

(3.4)

Averaging over f and f̄ with a weighting factor DfDf̄e
2iTr
γk

∫

d8zf̄f

results in

Zgauge =

∫

DV∆−1(V )ei(S̃gauge [V ]+SGF[V ]) (3.5)

where

SGF[V ] =
1

8γ

∫

d8z
Tr

k
((D̄

2
V )(D2V )) (3.6)

To rewrite the inverse gauge group integral, we express the δ-
distributions as integrals over Λ′ and Λ̄′:

∆(V ) =

∫

DΛ̄′DΛ′DΛ̄DΛ exp

[

Tr

k

∫

d8z

{

Λ′

(

δF

δΛ
Λ +

δF

δΛ̄
Λ̄

)

δ(θ̄)

+Λ̄′

(

δF̄

δΛ
Λ +

δF̄

δΛ̄
Λ̄

)

δ(θ)

}]

=

∫

DΛ̄′DΛ′DΛ̄DΛ exp

[

Tr

k

∫

d8z

{

Λ′(−1

4
D̄

2
)(δ(2gV ))δ(θ̄)

+Λ̄′(−1

4
D2)(δ(2gV ))δ(θ)

}]

=

∫

DΛ̄′DΛ′DΛ̄DΛ exp

[

Tr

k

∫

d8z (Λ′ + Λ̄′)(δ(2gV ))
]

.

(3.7)

Then we use (2.35) and replace the (anti-)chiral gauge parameters
by (anti-)chiral anticommuting ghost fields, using that for Grassmann
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variables the inverse functional determinant can be expressed by

∆−1(V ) =

∫

Dc̄′Dc′Dc̄Dc eiSFP[V,c̄′,c′,c̄,c] (3.8)

with

SFP[V, c̄′, c′, c̄, c] =
Tr

k

∫

d8z(c′ + c̄′)(−i)(δ(2gV ))

=
Tr

k

∫

d8z(c′ + c̄′)
{

(c− c̄) + [gV, c + c̄]

+
1

3
[gV, [gV, c − c̄]] +O(g3)

}

(3.9)

The generating functional for super Yang-Mills theory, including
gauge fixing and ghosts is therefore

Zgauge =

∫

DVDc̄′Dc′Dc̄Dc eiSgauge (3.10)

with
Sgauge = S̃gauge + SGF + SFP (3.11)

which are given in (3.1), (3.6) and (3.9). For later use, we split this
action in a free and an interacting part.

The free part is

S0,gauge =

∫

d8z
Tr

k

{

1

8

[

VDαD̄
2
DαV +

1

γ
((D̄

2
V )(D2V ))

]

+ [c̄′c− c′c̄]

}

=

∫

d8z
Tr

k

{

−V2(PT − 1

γ
(P1 + P2))V + [c̄′c− c′c̄]

}

(3.12)

where in the first equation we used, that c′c and c̄′c̄ vanish under a
superspace integral and in the second equation, we did partial inte-
grations on the gauge fixing term and used the projector definitions
(B.15).

The interacting part is

SINT,gauge =

∫

d8z
Tr

k

{

1

4
g(D̄

2
DαV )[V,DαV ] + g(c′ + c̄′) [V, c + c̄]

−1

8
g2[V, (DαV )]D̄

2
[V, (DαV )] − 1

6
g2(D̄

2
DαV )[V, [V,DαV ]]

+
1

3
g2(c′ + c̄′) [V, [V, c− c̄]] +O(g3)

}

.

(3.13)
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The (anti-)chiral matter superfields and their interaction term with
the gauge superfield are not affected by the gauge fixing procedure.
Their generating functional is just given by

Zmat =

∫

DVDΦ̄DΦeiSmat (3.14)

with Smat from (2.42).
By gauge fixing, the gauge symmetry is broken. However, simi-

lar to ordinary Yang-Mills theory, a global symmetry is left, which
is manifested in the BRS transformation invariance [22]. The BRS
transformations in our conventions are

s(2gV ) = δ(2gV )(Λ → c, Λ̄ → c̄)

= iLgV [(c + c̄) + cothLgV (c− c̄)]

sc̄′ =
i

16(2g)2γ
D̄

2
D2(2gV )

sc′ =
i

16(2g)2γ
D2D̄

2
(2gV )

sc̄ = c̄2

sc = c2

sΦ = δΦ(Λ → c) = −i2gcΦ

sΦ̄ = δΦ̄(Λ̄ → c̄) = i2gc̄Φ̄ .

(3.15)

As for ordinary Yang-Mills theory (cf. [33]), all BRS transfor-
mations are nilpotent, except sc̄′ and sc′, which are only nilpotent
if the equations of motion are imposed. Otherwise, they only fulfill
s3c′ = 0 = s3c̄′.

To prove invariance of the action of a super Yang-Mills theory
SSYM = Sgauge + Smat we observe that the non-gauge-fixed action
S̃gauge +Smat is trivially invariant due to gauge invariance of the clas-
sical theory. It remains to show that SGF + SFP is invariant.

sSGF = s

{

1

(2g)28γ

∫

d8z
Tr

k
((D̄

2
2gV )(D22gV ))

}

=
1

(2g)28γ

∫

d8z
Tr

k
s(2gV D̄

2
D22gV ))

=
1

(2g)28γ

∫

d8z
Tr

k
s(2gV

16(2g)2γ

i
sc′)

= 2

∫

d8z
Tr

k
(s(2gV ))

1

2i
(sc′ + sc̄′)

= i

∫

d8z
Tr

k
(s(2gV ))s(c′ + c̄′) .

(3.16)
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We did several partial integrations and used s(FG) = (sF )G ±
F (sG), where the terms are subtracted if F contains an odd number
of grassmann variables.

sSFP = s

{

−i

∫

d8z
Tr

k
(c′ + c̄′)s(2gV )

}

= −i

∫

d8z
Tr

k
(s(2gV ))s(c′ + c̄′)

(3.17)

where we used that s(c′+c̄′) is grassmann-even and therefore commutes
with (s(2gV )). Hence, s(SGF + SFP ) = 0.

3.2 Derivation of Propagators and Feynman
Rules

In this chapter the Feynman rules for N=1, D=4 supersymmetry will
be derived, starting from the generating functionals Zgauge and Zmat

given in (3.10) and 3.14). We will first review the functional derivative
for chiral fields in superfield formalism, as this is the main new fea-
ture compared to non-supersymmetric quantum field theory.17 Then
the propagators and the generating functional will be derived for chi-
ral, ghost and vector superfields, following [24]. Using those, the 3-
vector-superfield-vertex will be calculated in coordinate- and momen-
tum space. Finally, the 3-chiral-superfield-vertex will be given and a
simplification for its Feynman rules will be derived.18

To do functional differentiation for chiral superfields, one has to
take into account that chiral fields are subject to the constraint
D̄α̇Φi = 0. This is done by varying the fields in the y-basis [21] (c.f.
Chapter 2.3: y = x+ iθσθ̄):

δ

δΦi(y, θ)
Φj(y

′, θ′) = δijδ(y − y′)δ(θ − θ′) (3.18)

by which the field variations remain chiral. For anti-chiral superfields
the variation takes the form:

δ

δΦ̄i(y†, θ̄)
Φ̄j(y

′†, θ̄′) = δijδ(y
† − y′†)δ(θ̄ − θ̄′) (3.19)

Expressing this in x-basis leads to (cf. [21, 22])

17For vector superfields, functional differentiation works exactly as in non-
supersymmetric quantum field theory.

18This is one of the advanced Feynman rules, derived in [24].
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δ

δΦi(z)
Φj(z

′) = δij(−1

4
D̄

2
)δ8(z − z′)

δ

δΦ̄i(z)
Φ̄j(z

′) = δij(−1

4
D2)δ8(z − z′)

δ

δΦ̄i(z)
Φj(z

′) =
δ

δΦi(z)
Φ̄j(z

′) = 0

(3.20)

which is only valid under a superspace integral.
To derive propagators and Feynman rules for chiral fields, the free

part of the chiral action S0,mat (cf. (2.43)) is rewritten, using (B.27,
B.28):

S0,mat =

∫

d8z

{

Φ̄lΦl +

[

1

2
mδijΦiΦjδ(θ̄) + h.c.

]}

=

∫

d8z
1

2
(Φ, Φ̄)iMij

(

Φ

Φ̄

)

j

(3.21)

with

Mij = δij

(

−mD2

42
1

1 −mD̄
2

42

)

. (3.22)

To calculate the propagator, (anti-)chiral sources are coupled in
the action. Again, using (B.27) and (B.28), this is done by adding

∫

d8z(Φ, Φ̄)i

(

−D2

42
0

0 − D̄
2

42

)

(

J

J̄

)

i

. (3.23)

From this point on, the calculation of the propagators is straight-
forward, i.e. calculating the equations of motion, defining the Green’s
function as its ”inverse” and calculating it. We refer to [21, 23]. The
result is:

∆ij = δij
1

2 −m2 + iε

(

mD2

4
D̄

2
D2

16
D2D̄

2

16
mD̄

2

4

)

δ(z − z′) . (3.24)

The generating functional for a free chiral theory leading to this
propagator is defined by

Z0,mat[J, J̄] =

∫

DV exp

{

iS0,mat + i

∫

d8z(Φ, Φ̄)i

(

−D2

42
0

0 − D̄
2

42

)

(

J

J̄

)

i

}

(3.25)
which can be rewritten by solving the equation of motion for (Φ, Φ̄)
and reinserting it into the generating functional.
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The result is

Z0,mat[J, J̄] = exp

{

− i

2

∫

d8z(J(z), J̄(z))i∆
GRS
ij (z, z′)

(

J(z′)

J̄(z′)

)

j

}

(3.26)
with the Grisaru-Roček-Siegel propagator

∆GRS
ij (z, z′) = δij

1

2 −m2 + iε

(

mD2

42
1

1 mD̄
2

42

)

δ(z − z′) . (3.27)

For the ghost superfields, the same calculation applies, except that
one has to take care of their odd Grassmann parity.19 In addition the
chiral ghosts are massless by construction which is protected against
radiative corrections. The calculation leads to the same propagator as
in (3.27) up to a sign:20

∆ab
gh(z, z′) = δab 1

2 + iε

(

0 1
−1 0

)

δ(z − z′) . (3.28)

The calculation of the propagator of the vector superfield is
straightforward from S0,gauge in (3.12). For simplicity, the gauge pa-
rameter γ is chosen to be γ = −1.21 The part of the action quadratic
in V then just becomes

S0,V =

∫

d8z
Tr

k
(−V2V ) (3.29)

The propagator is therefore22

∆ab
V (z, z′) = −1

2
δab 1

2 + iε
δ8(z − z′) . (3.30)

19This includes that sources for the ghosts are coupled by adding c
(

−D2

42

)

η +

η̄
(

−D2

42

)

c̄ = c
(

−D2

42

)

η − c̄
(

−D2

42

)

η̄ as this keeps the action hermitian.
20Note however, that a, b, . . . now label the generators in the adjoint representation

which may differ from the matter representation.
21the so called Super-Feynman-Gauge
22This definition of the vector superfield propagator differs from [21] by the factor of 1

2 .
While the convention of [21] leads to the standard normalisation of the component fields,
one has to take care to read off super vertices from the superfield action, as by truncating
the three-point functions, the numerical expression of the vertex becomes dependent of
the normalisation. Our choice is dictated by keeping the derivation of the Feynman rules
as conventional as possible.
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The generating functional for free superfields is then

Z0,SYM = exp

(

i

∫

d8z
Tr

k

[

−1

2
(J, J̄)i∆

GRS
ij

(

J

J̄

)

j

− 1

2
J a∆ab

V J b

−(η′, η̄′)a∆ab
gh

(

η

η̄

)

b

])

(3.31)

where J is the real supersource coupled to the vector superfield and
η′, η̄′, η, η̄ are the (anti-)chiral, Grassmann-odd supersources coupled
to the ghost superfields.

To calculate the Feynman rules for vertices, the generating func-
tional can be defined in the standard way:

ZSYM = e
iSINT(Φi→

δ

iδJi ,Φ̄j→
δ

iδJ̄j ,V a→ δ
iδJ a ,ca→ δ

iδηa ,...)
Z0,SYM , (3.32)

where (from (3.13) and (2.44))

SINT = SINT,gauge + SINT,mat

SINT,mat =

∫

d8z

{

Φ̄l

(

e2gV − 1
)

Φl +

[

1

3!
λijkΦiΦjΦkδ(θ̄) + h.c.

]}

SINT,gauge =

∫

d8z
Tr

k

{

1

4
g(D̄

2
DαV )[V,DαV ] + g(c′ + c̄′) [V, c + c̄]

−1

8
g2[V, (DαV )]D̄

2
[V, (DαV )] − 1

6
g2(D̄

2
DαV )[V, [V,DαV ]]

+
1

3
g2(c′ + c̄′) [V, [V, c− c̄]] +O(g3)

}

.

(3.33)

The n-vertices are then calculated as the amputated Green’s func-
tions of the 1-particle-irreducible part of

δnZSYM

(iδj(z1)) . . . (iδj(zn))

∣

∣

∣

J=J̄=J =η′=...=0
(3.34)

where j(zi) is the current of the respective field. To calculate the
vertices on tree-level, it is however easier to start from the effective
action. It is defined by (cf. [23])

ΓSYM[Φ, Φ̄, V, . . .] = i lnZ[J, J̄,J , . . .] − JΦ − J̄Φ̄ − J V − . . .

= SSYM[Φ, Φ̄, V, . . .] + loop corrections .

(3.35)

The n-vertices are then

iΓ
(F1,...,Fn)
0,SYM (z1, . . . , zn) =

iδnSSYM

δF (z1) . . . δF (zn)

∣

∣

∣

Φ=Φ̄=V =c′=...=0
, (3.36)
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where F (zi) are the fields interacting in the vertex. To get the vertex
in momentum space, (3.36) has to be Fourier transformed:23

iΓ
(F1,...,Fn)
0,SYM (p1, . . . , pn) =

∫

d4x1 . . . d
4xniΓn

0,SYM(z1, . . . , zn)e−i(x1p1+...+xnpn) .

(3.37)
The vertices in coordinate space contain the derivatives D and

D̄ (c.f. (3.39) and (3.41)). By Fourier transformation, they are
transformed into operators D(p) and D̄(p), defined in (B.30). In the
following, the 3-vector-superfield-vertex and its Fourier transform are
calculated. All others are similar and, knowing the first calculation,
can be read off from the action. They are given in the next chapter.

For the calculation of Γ
(V a,V b,V c)
0,SYM (z1, z2, z3), the only relevant term

of SSYM is

SV 3 =

∫

d8z
Tr

k

1

4
g(D̄

2
DαV )[V,DαV ]

= −ig
fabc

4

∫

d8z(D̄
2
DαV a)(DαV

b)V c ,

(3.38)

using V = V aT a and (2.30) for the adjoint representation.
Therefore,

iΓ
(V a,V b,V c)
0,SYM (z1, z2, z3) =

iδ3SV 3

δV a(z1)δV b(z2)δV c(z3)

∣

∣

∣

V =0

= g
fa′b′c′

4

∫

d8z
{

(D̄
2
Dαδaa′

δ8(z1 − z))(Dαδ
bb′δ8(z2 − z))δcc′δ8(z3 − z)

−(Dαδ
aa′

δ8(z1 − z))(D̄
2
Dαδbb′δ8(z2 − z))δcc′δ8(z3 − z)

+(D̄
2
Dαδaa′

δ8(z1 − z))δbb′δ8(z2 − z)(Dαδ
cc′δ8(z3 − z))

−(Dαδ
aa′

δ8(z1 − z))δbb′δ8(z2 − z)(D̄
2
Dαδcc′δ8(z3 − z))

+δaa′

δ8(z1 − z)(D̄
2
Dαδbb′δ8(z2 − z))(Dαδ

cc′δ8(z3 − z))

− δaa′

δ8(z1 − z)(Dαδ
bb′δ8(z2 − z))(D̄

2
Dαδcc′δ8(z3 − z))

}

.

(3.39)

Note that the sign of the permutation depends on the order of the
D’s, applied to the propagators (i.e. the contraction of the α-indices).

23as in Appendix B.2, the θ’s are untouched by the Fourier transformation
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The Fourier transformation leads to

iΓ
(V a,V b,V c)
0,SYM (p1, p2, p3) =

∫

d4x1d
4x2d

4x3iΓ
(V a,V b,V c)
0,SYM (z1, z2, z3)e−i(x1p1+x2p2+x3p3)

= g
fa′b′c′

4

∫

d4θd4x
{

((D̄
2
Dαδaa′

)(p1 − p)δ4(θ1 − θ))((Dα)(p2 − p)δbb′δ4(θ2 − θ))

δcc′δ4(θ3 − θ)δ4(x3 − x)e−i(x3(p1+p2+p3))

+5 other permutations}

= g
fa′b′c′

4

∫

d4θ
{

((D̄
2
Dαδaa′

)(p1 − p)δ4(θ1 − θ))((Dα)(p2 − p)δbb′δ4(θ2 − θ))

δcc′δ4(θ3 − θ)(2π)4δ(p1 + p2 + p3)

+5 other permutations}
(3.40)

where we have used the Fourier transformed D’s (B.30).
Some features in this calculation are true for all vertices, namely:

• In coordinate space, every vertex is integrated over
∫

d8z.

• In momentum space, every vertex is integrated over
∫

d4θ.

• Momentum is conserved in every vertex.

And, especially for this vertex:

• 3-vector superfield vertex = g fabc

4 × {6 permutations, in
which D2Dα, Dα are applied to the three vector superfield
propagators}.

For the chiral 3-vertex, a similar calculation yields

iΓ
(Φi,Φj ,Φk)
0,SYM (z1, z2, z3) = iλijk

∫

d2θd4x

{

(

−1

4
D̄

2
δ8(z − z1)

)

×
(

−1

4
D̄

2
δ8(z − z2)

)(

−1

4
D̄

2
δ8(z − z3)

)

}

= iλijk

∫

d8z δ8(z − z1)

(

−1

4
D̄

2
δ8(z − z3)

)(

−1

4
D̄

2
δ8(z − z3)

)

,

(3.41)

so by rewriting the
∫

d2θd4x to
∫

d8z, one of the chiral fields is not dif-

ferentiated by − 1
4D̄

2
. For external lines, however, the − 1

4D̄
2

is needed
to complete the external

∫

d2θd4x. The rules for (anti-)chiral vertices
are therefore:

• In coordinate space, every vertex is integrated over
∫

d8z.
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• In momentum space, every vertex is integrated over
∫

d4θ.

• For a chiral vertex with n internal lines, n-1 factors − 1
4D̄

2
act on

the propagators.

• For an anti-chiral vertex with n internal lines, n-1 factors − 1
4D2

act on the propagators.

In addition to the Feynman rules, stated above, there are rules for
external momenta and for internal loops, which follow from momen-
tum conservation.
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3.3 Table of Feynman Rules and D-algebra

In coordinate space, the Feynman rules are

• Draw all possible topologically inequivalent graphs of the order
in g which is to be considered.

• Multiply each graph with a symmetry factor 1
S where S is the

number of possibilities, mapping the graph onto itself by ex-
changing internal lines and vertices.24

• For each vertex integrate over

∫

d8z.

• For each external field integrate over

∫

d8zext.

• For a chiral vertex with n internal lines, n− 1 factors − 1
4D̄

2
act

on the propagators.

• For an anti-chiral vertex with n internal lines, n−1 factors − 1
4D2

act on the propagators.

• A ghost loop contributes a factor (−1).

• For internal lines write (propagators):

Φ̄i(z) Φ̄j(z
′) = D̄

2

4
im

2(2−m2)+iε
δijδ

8(z − z′)

Φ̄i(z) Φj(z
′) = i

2−m2+iεδijδ
8(z − z′)

Φi(z) Φj(z
′) = D2

4
im

2(2−m2)+iε
δijδ

8(z − z′)

V
a(z) V

b(z′) = −1
2

i
2+iεδ

abδ8(z − z′)

c̄
′a(z) c

b(z′) = − i
2+iεδ

abδ8(z − z′)

c
′a(z) c̄

b(z′) = i
2+iεδ

abδ8(z − z′)

24the safer way of determining the symmetry factor is to derive it directly from the
generating functional but for all calculations presented in this diploma thesis, this leads
to the same result as the rule stated.
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• The vertices in coordinate space are (including the integration
∫

d8z):

z1, i

z2, j

z3, k

z = iλijk

∫

d8z z1, i

z2, j

z3, k

z = i(λijk)∗
∫

d8z

z1, a

z2, b

z3, c

z, =
g fa′b′c′

4

∫

d8z
{

(D̄
2
Dαδaa′

δ8(z1 − z))

×(Dαδ
bb′δ8(z2 − z))δcc′δ8(z3 − z)

+5 permutations}

z2, b

z1, a

z3, c

z4, d

z =

−ig2fa′b′e′f c′d′e′
∫

d8z
{

1
6(D̄

2
Dαδa′aδ8(z1 − z))δb′bδ8(z2 − z)δc′cδ8(z3 − z)

×(Dαδ
d′dδ8(z4 − z)) − 1

8δa′aδ
8(z1 − z)(Dαδb′bδ8(z2 − z))

×D̄
2
(δc′cδ8(z3 − z)Dαδd′dδ8(z4 − z))+ 23 permutations

}

z1, a

z2, b

z3, c

z = gfabc
∫

d8z

z2, b

z1, a

z3, c

z4, d

z = − i
3g

2fabef cde
∫

d8z

z1, a

z2, i

z3, j

z = i2g(Ta)ij

∫

d8z

z2, j

z1, i

z3, a

z4, b

z = i4g2(Ta)ik(Tb)kj

∫

d8z

and vertices of the order O(g3) and higher.
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In momentum space the Feynman rules are

• Draw all possible topologically inequivalent graphs of the order
in g which is to be considered.

• Multiply each graph with its symmetry factor 1
S .

• pi are momenta flowing along internal lines, away from the ver-
tex.

• For each vertex integrate over

∫

d4θ.

• For each external field integrate over

∫

d4θext.

• For the external momenta, the overall factor is
[

∏

pext

∫

d4pext

(2π)4

]

(2π)4δ4
(

∑

ext
pext

)

.

• For every loop with momentum p running in it integrate over
∫

d4p

(2π)4
.

• For an [anti-]chiral vertex with n internal lines, n − 1 factors

[−1
4D2] −1

4D̄
2

act on the propagators.

• A ghost loop contributes a factor (−1).

• The propagators in momentum space are :

Φ̄i(−p) Φ̄j(p)
p

= D̄
2
(p)
4

im
p2(p2+m2)−iε

δijδ
4(θ − θ′)

p
Φ̄i(−p) Φj(p) = − i

p2+m2−iε
δijδ

4(θ − θ′)

Φi(−p) Φj(p)
p

= D2(p)
4

im
p2(p2+m2)−iε

δijδ
4(θ − θ′)

p
V a(−p) V b(p) = 1

2
i

p2−iε
δabδ4(θ − θ′)

p
c̄
′a(−p) c

b(p) = i
p2−iε

δabδ4(θ − θ′)

p
c
′a(−p) c̄

b(p) = − i
p2−iε

δabδ4(θ − θ′)
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• The vertices in momentum space are:

p1 p2

p3

θ1, i

θ2, j

θ3, k

θ

= iλijk

∫

d4θ
p1

p2

p3

θ1, i

θ2, j

θ3, k

θ

= i(λijk)∗
∫

d4θ

p1

p2

p3

θ1, a

θ2, b

θ3, c

θ
=

g fa′b′c′

4

∫

d4θ
{

((D̄
2
Dαδaa′

)(p1 − p)δ4(θ1 − θ))

((Dα)(p2 − p)δbb′δ4(θ2 − θ))δcc′δ4(θ3 − θ)
+5 permutations}× (2π)4δ4(p1 + p2 + p3)

p2

p1

p3

p4

θ2, b

θ1, a

θ3, c

θ4, d

θ =

−ig2fa′b′e′f c′d′e′
∫

d4θ
{

1
6((D̄

2
Dα(p1 − p))δa′aδ4(p1 − p))

δb′bδ4(p2 − p)δc′cδ4(p3 − p)((Dα)(p4 − p)δd′dδ4(p4 − p))
−1

8δ
a′aδ4(p1 − p)((Dα)(p2 − p)δb′bδ4(p2 − p))

D̄
2
(δc′cδ4(p3 − p)(Dα)(p4 − p)δd′dδ4(p4 − p))

+ 23 perm.} × (2π)4δ4(p1 + p2 + p3 + p4)

p1

p3

p2

θ1, a

θ2, b

θ3, c

θ = gfabc
∫

d4θ
p2

p1

p3

p4

θ2, b

θ1, a

θ3, c

θ4, d

θ = − i
3g

2fabef cde
∫

d4θ

p1

p3

p2

θ1, a

θ2, i

θ3, j

θ = i2g(Ta)ij

∫

d4θ
p2

p1

p3

p4

θ2, j

θ1, i

θ3, a

θ4, b

θ = i4g2(Ta)ik(Tb)kj

∫

d4θ

and vertices of the order O(g3) and higher.
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For the calculation of Feynman graphs, some of the rules in Ap-
pendix B.2 are needed. Their use is simplified by re-expressing them
as graphical rules, which can be applied directly to the graphs [24, 22].

The rules which are used in the next chapter are:

• Transfer rule (coordinate space)

D1αδ
8
12 = − D2αδ

8
12

m
z z

′

Dα = −
z z

′

D’α

• Transfer rule (momentum space)

D1α(p)δ412 = − D2α(−p)δ412
m

θ θ′

Dα(p) = −
θ θ′

D’α(−p)

• partial integration I

(D1αδ
8
12)δ813δ

8
14 = δ812(D1αδ

8
13)δ814 + δ812δ

8
13(D1αδ

8
14)

m

z1

z2

z3

z

Dα

= z1

z2

z3

z

Dα

+ z1

z2

z3

z

Dα

• partial integration II

(D2
1δ

8
12)δ813δ

8
14 = δ812(D2

1δ
8
13)δ814 + δ812δ

8
13(D2

1δ
8
14) + δ812(Dα

1 δ
8
13)(D1αδ

8
14)

m

z1

z2

z3

z

D
2

= z1

z2

z3

z

D
2

+ z1

z2

z3

z

D
2

+ z1

z2

z3

z

D
α

Dα

The rules are for D̄ are completely analogous.
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The D-algebra calculations of any Feynman graph can be per-
formed by using these rules and the anti-commutation-relations (2.7)
(in coordinate space) and (B.30) (in momentum space) to reshuffle all
D’s in a loop to only one propagator. There, by using the identities
(B.34), only terms O(D2D̄

2
) contribute under the superspace integral

and the loop is shrunk to a point in θ-space.25 This can be done for
all loops until all internal θ-integrations are performed.

The rules for partial integration are valid for a single vertex. For a
full graph, however, they are only true up to a sign which depends on
the number of permutations of D’s in the integral expression which are
done by the partial integration. This depends on the choice of writing
down the integral from the graph.

A way of dealing with this ambiguity is to define an order in which
the integrals are written down, then doing the manipulations, ignoring
the sign of the expression and finally determining the sign by counting
the number of permutations and raising/lowering of indices which need
to be done to get the D’s in the original order [22].

3.4 Application: Calculation of the β-
Function

As an application of the Feynman rules derived in the last chapter
we calculate the β-function of super Yang-Mills theory to first loop
order. The result for a super Yang-Mills theory with massless chiral
multiplets coupled to it is known and can be found in [23, 25].

For the calculation of the β-function, it proves convenient to rescale
the vector superfield by gV → V . Then, the super Yang-Mills action
reads26

S′
SY M =

∫

d8z

{

Tr

16kg2

(

W ′αW ′
αδ(θ̄) + h.c.

)

+
Tr

8γkg2

(

(D̄
2
V )(D2V )

)

−i
Tr

kg2
(c′ + c̄′)(δ(2V ))

+Φ̄le
2V Φl +

[

1

2
mijΦiΦjδ(θ̄) +

1

3!
λijkΦiΦjΦkδ(θ̄) + h.c.

]}

(3.42)

where

W ′
α = −1

4
D̄

2
e−2VDαe

2V . (3.43)

25This is possible for all superfield graphs in any N=1, D=4 supersymmetric theory.
This theorem is also known a the non-renormalisation theorem of supersymmetry [24].

26cf. (3.11) and (2.42) for the gauge and matter contributions in the old normalisation
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In this normalisation, the kinetic term of the chiral superfields
is independant of the coupling constant g. Hence, the Φ̄ΦV -vertex
correction does not contribute to the renormalisation of the coupling
constant. To calculate the β-function to one-loop level it is therefore
sufficient to consider the radiative corrections to the vector superfield
propagator.

The new normalisation leads to modified Feynman rules. However,
performing the calculations for the radiative corrections with these
new Feynman rules is equivalent to using the Feynman rules given in
the last chapter and rescaling the result by gV → V .

For the radiative correction to the vector superfield propagator to
first loop order several loop diagrams contribute. They are listed in
(3.44). We calculate chiral loop contributions in Chapter 3.4.1. The
contributions from ghost and vector superfield loops are computed in
Chapter 3.4.2. With the results, we perform the rescaling and calculate
the β-function in Chapter 3.4.3.

The supergraphs contributing to the the vector superfield propa-
gator to first loop order are:

+ (3.44a)

+ (3.44b)

(3.44c)

+ +

(3.44d)
The main tools of our calculations will be the D-algebra rules in

Chapter 3.3 as well as the projector algebra (B.15) and the anticom-
mutator (B.31) and the identities (B.17) following from it to reduce
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expressions containing more than four D’s on a propagator and the
identity (B.34) to reduce the loops to points in spacetime. The re-
sult of the graphs are terms proportional to quadratic, “linear” and
logarithmic divergences in the loop momentum.27 To deal with the
divergences, we have to regularise the theory. Dimensional regulari-
sation is not appropriate for supersymmetric theories as by varying
spacetime dimensions, the number of generators of the Lorentz alge-
bra varies. For a non-supersymmetric theory, one can continue the
Lorentz algebra to arbitrary dimension preserving all symmetries ex-
cept for chiral symmetries (the so called γ5-problem). However, super-
symmetry is broken by dimensional regularisation as by varying the
number of Lorentz generators, the number of supersymmetry genera-
tors would have to vary, too. The most convenient way to regularise
in supersymmetry is therefore to analytically continue the momenta
and spacetime coordinates and treat momentum integrals as in dimen-
sional regularisation but to keep the spacetime dimension of all other
tensors and spinors fixed. This is the concept of dimensional reduction
[34, 35].

In general, dimensional reduction does not respect gauge symme-
try. However, dealing with scalar superfields only,28 there are no other
tensors but the momenta, so there is no difference between dimen-
sional regularisation and dimensional reduction in our case and the
gauge symmetry is maintained in the regularised theory. In Appendix
C we have listed all D-dimensional integrals we use in this thesis in-
cluding their four- and five-dimensional limits.

3.4.1 Contributions of Chiral Superfields

As can be seen in (3.44) there are three distinct chiral loop graphs
(the graphs in (3.44a) and the left graph in (3.44d)) contributing to
the one-loop correction of the vector superfield propagator.

The first step of the calculation of the left graph of (3.44a) can
be done using the graphical D-algebra rules given in the last chapter.
For the sake of legibility here and in what follows we write D2 and
D̄

2
on graphs to represent the − 1

4D2 and −1
4D̄

2
factors on the chiral

propagators.

27With “linear” divergences we mean expressions ∝
∫

d4k
(2π)4

km

(k2+m2)((k+p)2+m2) . Due to

(C.8) they do not yield linear but quadratic and logarithmic divergences.
28No superfield under consideration is carrying spinor or Lorentz indices. Only their

components do.
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The D-algebra then yields

θ θ
′

D
2

D̄
′2

D
′2

D̄
2

= θ θ
′

D
2

D̄
′2

D
′2

D̄
2

+
θ θ

′

D̄
2
D

2
D̄

′2

D
′2

+2

=
θ θ

′

D
2

D̄
′2

D̄
2

D
′2

+
θ θ

′

D̄
2
D

2
D̄

′2
D

′2

+4
θ θ

′

D̄
α̇

D
2

D̄
′2

D
′α

D̄α̇ D
′

α

+
θ θ

′

D̄
2
D

2
D̄

′2

D
′2

+
θ θ

′

D
2

D̄
′2

D
′2

D̄
2

(3.45)
where we used that in the end only graphs with no D’s on one internal
propagator and and even number of D’s on the other one29 survive,
according to (B.34).

In the last two graphs, an unequal number of D’s and D̄’s act on
the lower internal propagator. Therefore they do not contribute.

Using the Feynman rules, the first graph leads to30

p + k

k

V a(−p) V b(p)
θ θ′

D2
D̄′2

D̄2
D′2

j

i

=

∫

d4θd4θ′
d4k

(2π)4

((

−1

4
D̄

2
)

V a(−p, θ)

)

i2gT a
ij

(

(

−1
4D2

)

(

−1
4D̄

′2
)

δijδ
4(θ − θ′)

(

− i
k2+m2

))

i2gT b
ji

δjiδ
4(θ′ − θ)

(

− i
(k+p)2+m2

)

(

−1
4D′2

)

V b(p, θ′)

(3.46)

29which by anticommutation can be reduced to four D’s
30We always choose the loop momentum k to run counterclockwise.
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= 4g2
∑

A

TA(R)

∫

d4θ
d4k

(2π)4

(

−1
4D2V a(−p)

)

(

−1
4D̄

2
V a(p)

)

(k2 +m2)((k + p)2 +m2)

= 4g2
∑

A
TA(R) ×

{

1
2

∫

d4θ
d4k

(2π)4
V a(−p)(p2PT − 1

2DαDα̇pαα̇)V a(p)

(k2 +m2)((k + p)2 +m2)

}

(3.47)
where

∑

A TA(R)δab = T a
ijT

b
ji depends on the representation R in

which the matter fields are chosen. In the last step, we did several
partial integrations and used the projector property (B.16) and the

[D, D̄
2
] commutator from (B.32).

The third graph yields

p + k

k

V a(−p) V b(p)
θ θ′

D̄α̇D2
D̄′2D′α

D̄α̇ D′

α

j

i

= 4 ×
∫

d4θd4θ′
d4k

(2π)4

((

−1

4
D̄α̇

)

V a(−p, θ)

)

i2gT a
ij

((

−1
4D̄

α̇
D2
)(

−1
4D̄

′2
D′α
)

δijδ
4(θ − θ′)

(

− i
k2+m2

))

i2gT b
ji

δjiδ
4(θ′ − θ)

(

− i
(k+p)2+m2

)

(

−1
4D′

α

)

V b(p, θ′)

= 4g2
∑

A
TA(R) ×

{

1
2

∫

d4θ d4k
(2π)4

V a(−p)DαDα̇(k+p)αα̇V a(p)
(k2+m2)((k+p)2+m2)

}

,

(3.48)
where we again used (B.32). Using (C.9), this graph therefore cancels
the contribution proportional to p of the first graph.

Using the projector property (B.15), the second graph in (3.45)
leads to

p + k

k

V a(−p) V b(p)
θ θ′

D̄2D2
D̄′2D′2

j

i

= −8g2
∑

A
TA(R) ×

{

1
2

∫

d4θ d4k
(2π)4

V a(−p)(k+p)2V a(p)
(k2+m2)((k+p)2+m2)

}

(3.49)
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For the graph with the chiral superfields running anticlockwise, we
get the same result. However, this is not a topologically new graph as
it is just the graph with the chiral fields running clockwise and both
internal lines exchanged. Therefore (3.46) and (3.49) contibute just
once.

The right graph of (3.44a) only contributes in a theory where mas-
sive chiral supermultiplets are coupled to the gauge supermultiplet as
for the massless case, the ΦΦ and Φ̄Φ̄ propagators vanish.31

The calculation of the graph again includes some D-algebra. Using
the fact that the propagators are now (anti-)chiral and the projection
operators defined in (B.15), the calculation yields32

k

p + k

θ θ′

=

D̄2

k2

im
k2+m2

D2

(p+k)2
im

(p+k)2+m2

θ θ
′

D
2

D
2

D̄
2

D̄
2

=

im
(k2+m2

im
(p+k)2+m2

θ θ
′

D
2 D2D̄2

k2 = −P1

D̄
2D̄2D2

(p+k)2 = −P2

=

im
k2+m2

im
(p+k)2+m2

θ θ
′

D
2

D̄
2

=

im
k2+m2

im
(p+k)2+m2

θ θ′

D
2

D̄
2

i

j

= −8g2
∑

A
TA(R) ×

{

1
2

∫

d4θ d4k
(2π)4

V a(−p)m2V a(p)
(k2+m2)((k+p)2+m2)

}

(3.50)

31We point out that this is not the case in theD=5 theory where ΦΦ and Φ̄Φ̄ propagators
are always present due to the derivative in 5-direction appearing in the propagator (cf.
4.45).

32We only consider graphs contributing to the divergence.
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From the left graph of (3.44d) we get a contribution

k

V a(−p) V a(p)θ

D̄
2

D2

= 8g2
∑

A
TA(R) ×

{

1
2

∫

d4θ
d4k

(2π)4
V a(−p)V a(p)

k2 +m2

}

.

(3.51)

There is a slight subtlety in reading off the integral expression
from the Feynman graph as the term

∫

d4θ 1
16 D̄

2
D2δ4(θ− θ) occurs in

the θ integration. Deriving the loop from the generating functional,
it can be shown that this term has to be read as

∫

d4θd4θ′ 1
16δ

4(θ −
θ′)D̄

2
D′2δ4(θ − θ′) as one might have expected.

Collecting our results from (3.46), (3.49) and (3.51), we get

ΠΦ(p2) = 4g2
∑

A

TA(R)

∫

d4θ
d4k

(2π)4

{

1

2
V a(−p)

p2PT + 2((k + p)2 +m2) − 2(k + p)2 − 2m2

(k2 +m2)((k + p)2 +m2)
V a(p)

}

= 4g2
∑

A

TA(R) ×
{∫

d4k

(2π)4
1

k2 +m2

1

(p+ k)2 +m2

}

×
{
∫

d4θ
1

2
V a(−p)p2PTV

a(p)

}

(3.52)

Note that the quadratic divergences in the three graphs cancel
due to (C.9) and we are left with a logarithmic divergence only.
This is a necessary condition for the renormalisability of the the-
ory as a quadratic divergence would yield a term proportional to
m2
∫

d4θV a(−p, θ)V a(p, θ) due to (C.10b) and (C.10d) for which no
counterterm exists (cf. the analysis of counterterms in [23]).33

3.4.2 Contributions of Ghost and Vector Superfields

The contributions to the vector superfield propagator coming from the
pure super Yang-Mills theory are the supergraphs in (3.44b), (3.44c)
and the middle and right graph in (3.44d).

33The contributions from the ghost and vector superfield loops cannot contribute a term
proportional to m2

∫

d4θV a(−p, θ)V a(p, θ) either as only massless propagator occur.
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The tadpole graphs in (3.44d) lead to quadratic divergences which
vanish due to (C.10a).

For ghost loops we have to consider the graphs in (3.44b) as well
these two graphs with the vertices exchanged. Taking the statistics of
the ghosts into account yields

= −

.
(3.53)

These graphs therefore cancel.
For the left ghost loop in (3.44b) note, that there are two distinct

ways of assigning ghost fields to the graph which contribute the same
as can be seen from the Feynman rules.

θ θ
′

c̄(θ) c
′(θ′)

c̄(θ′)c
′(θ)

=
θ θ

′
c̄
′(θ) c(θ′)

c̄
′(θ′)c(θ)

.
(3.54)

As each of the graphs is symmetric under exchange of its vertices,
both contribute once.

The calculation of (3.54) is the same as in (3.46) except that
for the ghost loop we get an additional factor (−1) for the loop,
and a factor of (− 1

2)2 as each vertex contributes gf abc instead of
2ig(T a)ij . Furthermore, for the adjoint representation,

∑

A TA(R) be-
comes Tr(T aT b) = k which, according to (2.30) is just the definition
of the 2nd Casimir C2(G) ≡ k.

The “linear” divergences of the graph (3.44b) cancel in the same
way as for the chiral fields. The quadratic divergence of the graph does
not need to be taken into account because the ghosts are massless and
vanish in dimensional reduction because of (C.10a). We nevertheless
give the expression as we will need it for the calculation in five dimen-
sions:

= 4g2C2(G) ×
{∫

d4k

(2π)4
(k + p)2

k2(k + p)2

}

×
{

1

2

∫

d4θV a(−p)V a(p)

} (3.55)
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The tadpole ghost graph in (3.44d) leads to a quadratic diverce of
the same type. It does not cancel (3.55) but vanishes due to (C.10a)
as well.

Having no quadratic and linear divergences, the ghost loop contri-
bution to the vector superfield propagator is therefore

Πc(p
2) = 2 × (−1) × (− 1

2)2 × ((3.46) in adjoint representation)

= −2g2C2(G) ×
{∫

d4k

(2π)4
1

k2(k + p)2

}

×
{

1

2

∫

d4θV a(−p)p2PTV
a(p)

}

(3.56)

The last and most involved calculation is the one of the vector
superfield loop (3.44c). As every vertex contains six permutations in

which the D̄
2
Dα and the Dα act on the different propagators, there

are 36 graphs contributing to this loop. The topologically inequivalent
are34

θ θ
′

≡
(i)

θ θ
′

Dα D
′β

D̄
′2

D
′

βD̄
2
D

α

+

(ii)

θ θ
′

Dα D
′

β

D
′β

D̄
′2D̄

2
D

α

+

(iii)

θ θ
′

D
′β

D̄
′2

D
′

βD̄
2
D

α

Dα

+

(iv)

θ θ
′

D
′

β

D
′β

D̄
′2D̄

2
D

α

Dα

+

(v)

θ θ
′

D̄
2
D

α

D
′β

D̄
′2

Dα D
′

β

+

(vi)

θ θ
′

D
′β

D̄
′2D̄

2
D

α

Dα D
′

β

+

(vii)

θ θ
′

Dα D
′β

D̄
′2

D
′

β

D
α
D̄

2

+

(viii)

θ θ
′

Dα D
′

β

D
′β

D̄
′2

D
α
D̄

2

+

(ix)

θ θ
′

Dα D
′β

D̄
′2

D
α
D̄

2
D

′

β

+

(x)

θ θ
′

Dα

D
′β

D̄
′2

D
α
D̄

2
D

′

β

+

(xi)

θ θ
′

D
′

β

Dα

D
α
D̄

2

D̄
′2

D
′β

+

(xii)

θ θ
′

Dα D
′

β

D
α
D̄

2

D̄
′2

D
′β

(3.57)
The graphs (xi) and (xii) vanish as even after partial integration

there are no four D’s acting on one propagator when the other one

34In this calculation, there are no factors − 1
4 attached to the D’s acting on the propa-

gator.
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is free of D’s. The graphs (iv) and (vi) vanish because after using

the identity D̄
2
(p2)D2(p1)D̄

2
(p2) = −4(p1 + p2)2D̄

2
(p2)δ4(θ1 − θ2) (cf.

(B.32)), there is only D̄
2

acting on one propagator and no derivative
on the other one. Quadratic divergences can only occur in the graphs
(i) and (ii). Using the graphical D-algebra rules it can easily be seen
that they cancel.35 “Linear” divergences only occur in (i) and (iii) as
in all other graphs as these are the only graphs in which exactly three
D’s and three D̄’s can end up on the lower propagator. They cancel
by the same argument as the quadratic divergences.36

Furthermore, just considering the logarithmically divergent parts
of the graphs, we get (iii)=(v)=(vii)=(viii)=(x)=(ix) while (i)=-(ix).

The vector tadpole graph (3.44d) again leads to a quadratic diver-
gence which is canceled in dimensional reduction.

The one-loop contribution of the vector superfield loop to the vec-
tor superfield propagator is therefore 5 × (ix), where (ix) is

p

p + k

k

p
a e

θ θ′

Dα D
′β

D̄
′2

D
α
D̄

2 D
′

β

c f

db

(ix)

=

∫

d4θd4θ′
d4k

(2π)4

{

(

D̄
2
DαV a(−p, θ)

)

(

1

4
gfabc

)(

−1

2

i

k2
δbdδ(θ − θ′)

)

(

1
4gf

def
)

(

−1
2

i
(p+k)2 δ

ec
[

DαD̄
2
Dβδ(θ′ − θ)

])

DβV
f (−p, θ′)

}

= 1
64g

2fabcf bcf

∫

d4k

(2π)4
d4θ

(

D̄
2
DαV a(−p)

) 8

k2

1

(p + k)2
DαV

f (p)

= −2g2C2(G) ×
{∫

d4k

(2π)4
1

k2

1

(p+ k)2

}

×
{

1
2

∫

d4θV a(−p)p2PTV
a(p)

}

(3.58)
where we used the definition of C2(G).

35After partial integration of all D’s to the lower propagator, the D̄
′

are contracted once
top-bottom and once bottom-top yielding a relative factor of −1.

36Even if the quadratic and “linear” divergences would not cancel, in 4D, they would
not contribute due to (C.9) and (C.10a). However as the terms manifestly cancel without
using dimensional reduction, this will hold for this graph in the 5D theory as well.
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Adding 5×(ix) to the ghost loop term, we get the overall divergence

ΠV,c(p
2) = −4g2

(

1

2
+

5

2

)

C2(G) ×
{
∫

d4k

(2π)4
1

k2(p+ k)2

}

×
{

1

2

∫

d4θV a(−p)p2PTV
a(p)

}

(3.59)

3.4.3 The result for the β-Function

As discussed in the beginning of Chapter 3.4, we have to rescale the
theory by gV → V in order to calculate the β-function from the
radiative corrections to the vector superfield propagator only. The the
effective tree level action has been given in (3.42). Fourier transforming
it to momentum space, the kinetic part of the vector superfield reads

S
′(0)
V,kin =

1

g2
0

∫

d4θ
d4p

(2π)4

{

1

2
V a(−p)p2PTV

a(p)

}

(3.60)

where we write g0 to indicate that this is the bare coupling.
Using the results (3.52) and (3.59) from the last chapter and rescal-

ing it by gV → V , the effective action to first loop order reads37

S
′(1)
V,kin =S

′(0)
V,kin +

4

16π2

∫

d4θ
d4p

(2π)4

{

1

2
V a(−p)p2PTV

a(p)

×
[(

∑

A

TA(R)

)

B0(p2,m,m) − 3C2(G)B0(p2, 0, 0)

]}

(3.61)

where we used the definition (C.3) of the scalar two-point integral
B(p2,m0,m1) in dimensional regularisation.

To renormalise the theory we use the momentum subtraction
scheme (cf. [33]). We define the renormalised coupling g(µ,M) by

1

g2
0

=
1

g2(µ,M)
− 4

16π2

[(

∑

A

TA(R)

)

− 3C2(G)

]

B0(−M2, 0, 0)

(3.62)
where M is the renormalisation point.

37We only give the part relevant for the calculation of the β-function.
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Rewriting S
′(1)
V,kin as a function of g(µ,M) reads

S
′(1)
V,kin(g(µ,M) =

1

g2(µ,M)

∫

d4θ
d4p

(2π)4

{

1

2
V a(−p)p2PTV

a(p)

}

+
4

16π2

∫

d4θ
d4p

(2π)4

{

1

2
V a(−p)p2PTV

a(p)

×
[(

∑

A

TA(R)

)

(

B0(p2,m,m) −B0(−M2, 0, 0)
)

− 3C2(G)
(

B0(p2, 0, 0) −B0(−M2, 0, 0)
)

]}

(3.63)

which is finite as
(

B0(p2,m0,m1) −B0(−M2, 0, 0)
)

is finite (cf. Ap-
pendix C).

From (3.62), we calculate the β-function

β(g(µ,M)) ≡ M ∂

∂Mg(µ,M)

=
4

16π2

[(

∑

A

TA(R)

)

− 3C2(G)

]

g3(µ,M) .
(3.64)

Our result agrees with the result in [25].38

4 D=5 Super Yang-Mills Theory

In this chapter we will derive the Feynman rules for N=1 super Yang-
Mills theory in five dimensions, following the calculation in four di-
mensions in the last chapter as far as possible.

In five dimensions, several new issues have to be taken into account:

• 5D Lorentz algebra leads to different spinor representations. A
short review is given in Appendix A.2. We refer to [36] for a
review and summary on this topic which is sufficient for our
purposes. A more detailed discussion can be found in [37].

• There is no known 5D superfield formulation.

Therefore a straightforward generalisation from D=4 to D=5 is not
possible. However, it is possible to express higher dimensional super-
symmetric theories in terms of 4D superfields as has already been

38In comparing the results, note that our coupling constant is rescaled by a factor of 2
compared to [25].
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shown in 1983 [17]. A few years ago in the course of the search for
tools for supersymmetric orbifold GUTs this question has been re-
adressed [18, 19, 20].

In Chapter 4.1, we follow [20] in expressing an N=1, D=5 super
Yang-Mills theory in manifestly gauge invariant 4D superfields and fix
the gauge, adopting the gauge fixing function in [17]39 to derive the
Feynman rules of the D=5 theory in 4D superfields. The Feynman
rules are then summarised in Chapter 4.2. Finally, as an application
we use the Feynman rules to calculate the β-function for N=1, D=5
Super Yang-Mills Theory along the lines of the 4D case of Chapter
3.4.

4.1 D=5 Supersymmetry in 4D Superfields

Supercharges are Lorentz spinors. Having an 8-dimensional spinor rep-
resentation in D=5 (cf. Table 1 in Appendix A.2), there are eight
supercharges in N=1, D=5 supersymmetry. As shown in Appendix
A.2, the D=5 spinors can be decomposed into two D=4 spinors. This
implies for the supercharges that N=1, D=5 supersymmetry can be
expressed by an N=2, D=4 supersymmetry with an SU(2)R symme-
try which stems from the USp(2) automorphism group of the D=5
spinors (cf. Appendix A.2 and [37]).

To discuss D=5 supersymmetry in 4D superfields we need an off-
shell representation of the D=5 vector and chiral supermultiplet which
is described in the following two chapters. Due to the spinor represen-
tation this is analogous to finding N=2, D=4 off-shell representations
(cf. [25]).

In the following, the space-time coodinates will be denoted by
(x0, . . . , x3, x5 ≡ y) = xM .

4.1.1 The D=5 Vector Supermultiplet

The field content of an N=1, D=5 vector supermultiplet is a vector-
field vM , a real scalar Σ and an SU(2)R gaugino doublet λi

α, to which,
following [25], an SU(2)R triplet of real auxiliary fields is added for
the off-shell multiplet.

The off-shell action of an N=1, D=5 Super Yang-Mills theory is

39There the gauge fixing is done for a D=10 theory but it can be applied to D=5 in a
straightforward manner.
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given by (cf. [20])

S =

∫

d4x dy
1

2kg2

{

− 1

2
Tr(FMN )2 − Tr(DM Σ)2 − Tr(λ̄iiΓ

MDMλi)

+ Tr(Xa)2 + Tr(λ̄i[Σ, λ
i])
}

(4.1)

where DM = ∂M + iAM is the convariant derivative and FMN =
− i

g [DM , DN ] is the field strength tensor. The supersymmetry trans-

formations expressed in terms of symplectic 4-spinors λi are given in
[20] as well as in terms of 4D Weyl spinors λL and λR i.e. after using
the decomposition given in (A.18). We list them for completeness.

δξL
vm =iξ̄Lσ̄

mλL + iξLσ
mλ̄L

δξL
v5 = − ξ̄Lλ̄R − ξLλR

δξL
Σ =iξ̄Lλ̄R − iξLλR

δξL
λL =σmnFmnξL − iD5ΣξL + iX3ξL

δξL
λR =iσmF5mξ̄L − σmDmΣξ̄L + i(X1 + iX2)ξL

δξL
(X1 + iX2) =2ξ̄Lσ̄

mDmλR − 2iξ̄LD5λ̄L + i[Σ, 2ξ̄Lλ̄L]

δξL
X3 =ξ̄Lσ̄

mDmλL + iξ̄LD5λ̄R − ξLσ
mDmλ̄L

− iξLD5λR + i[Σ, (ξ̄Lλ̄R + ξLλR)]

(4.2)

where σmn = 1
4(σmσ̄n − σnσ̄m).

We only give the ξL transformations though the action under con-
sideration has an N=2 supersymmetry. Compactification on an orb-
ifold breaks half of the supersymmetry, such that in 4D only an N=1
supersymmetry40 survives. For the non-compactified theory, the D=4,
N=2 supersymmetry is not broken. We will see that the superfield for-
mulation reproduces the D=5 component field action. Therefore the
superfield action possesses the full D=4, N=2 supersymmetry though
only an N=1 supersymmetry is manifest.

The first crutial observation from the supersymmetry transforma-
tion is that vm, λl and (X3 −D5Σ) transform like the components of
a vector superfield in Wess-Zumino gauge

V = −θσmθ̄vm + iθ2θ̄λ̄L − iθ̄2θλL +
1

2
θ2θ̄2(X3 −D5Σ). (4.3)

The gauge transformation can be defined as in D=4 by41

e2gV → e−iΛ̄e2gV eiΛ. (4.4)

40with four supersymmetry generators
41This is in slight deviation to [20] in order to match with our conventions for the 4D

theory.
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The remaining components can be grouped such that their trans-
formation is just the one of a chiral superfield42

Φ = (Σ + iA5) +
√

2θ(−i
√

2λR) + θ2(X1 + iX2) (4.5)

if Φ transforms as
gΦ → e−iΛ(∂5 + gΦ)eiΛ. (4.6)

From this transformation, it was realised in [20] that
∇y ≡ ∇5 ≡ ∂5 + gΦ is a gauge covariant derivative in the 5-direction.
This is one of the main progresses compared to [19].

In our conventions for the vector superfield

∇ye
2gV = ∂5e

2gV − gΦ̄e2gV − e2gV gΦ (4.7)

the transformation is

∇ye
2gV → e−iΛ̄(∇ye

2gV )eiΛ. (4.8)

Using the covariant derivative, the D=5 action can be rewritten
in terms of 4D superfields only43:

S =

∫

d8z dy

{

1

4kg2
Tr

[

1

4

(

WαWαδ
2(θ̄) + h.c.

)

+
(

e−2gV ∇ye
2gV
)2
]}

(4.9)
where

Wα = −1

4
D̄

2
e−2gVDαe

2gV (4.10)

like in the 4D case.
It is remarkable that given the action (4.9), the component field de-

composition into V and Φ can be derived by demanding D=5 Lorentz
invariance of the Lagrangian and D=5 Lorentz covariance of the com-
ponent fields only.

From the field content, it is clear that the fields have to be split into
a vector and a chiral supermultiplet. vm is the only spin 1 field and
therefore has to form the θθ̄-component of V . From ξL-supersymmetry,
the gaugino is also fixed to be λL, λ̄L, so the only freedom in the
vector superfield components (4.3) is in the real auxiliary field D. We
demand it to be a D=5 Lorentz scalar. For the chiral field, the spinor
component has to be proportional to λR and the relative factor to λL

is fixed by D=5 Lorentz covariance. The linear combinations of the
scalars in (4.5) remain to be fixed. For now we call them A and F as
done in (2.15) for a chiral superfield.

42in the y-basis
43Compared to [20] we rescale 2V → 2gV and Wα → 1

2Wα.
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Now, inserting the component fields into (4.9), the equation of
motion for the D field is

Da = −
{

∂5δ
ac +

i

2
gfabc(A−A†)b

}

(A +A†)c . (4.11)

By demanding D=5 Lorentz covariance, the imaginary part of A
is identified to be the gauge field component in 5-direction, v5. We
call the real component Σ. Furthermore it is obvious that Da is not
a D=5 Lorentz scalar, but D′ = X −D5Σ is a scalar. Therefore the
only freedom left is the assignment of the SU(2)-triplet to the scalar
degree of freedom in D and the (complex) field F . Similar arguments
will be used to derive the component expansion of the hypermultiplet
in Chapter 4.1.2.

After this short interlude, we continue with the derivation of the
Feynman rules. Knowing the action (4.9), we can now follow the path
of the last chapter, meaning, expanding the action in powers of the
coupling constant, fixing the gauge and calculating the related ghost
action, introducing sources for the gauge field as well as for the ghosts
to derive the propagator from the path integral to finally read off the
vertices of the theory.

The super Yang-Mills action (4.9), expanded to second order in
the coupling constant reads

S =

∫

d8z dy
Tr

k

{

1

8
V DαD̄

2
DαV +

1

4
g(D̄

2
DαV )[V,DαV ]

−1

8
g2[V, (DαV )]D̄

2
[V, (DαV )] − 1

6
g2(D̄

2
DαV )[V, [V,DαV ]]

+
1

2
Φ̄Φ − (Φ + Φ̄)(∂5V ) + (∂5V )2

+igfabc
{

(∂5V )aV b(Φ + Φ̄)c − (Φ + Φ̄)aV b(Φ + Φ̄)c
}

−4g2fadef bce

{

1

3
(∂5V )aV b(∂5V )cV d − 2

3
(∂5V )aV b(Φ + Φ̄)cV d

+
1

2
(Φ + Φ̄)aV b(Φ + Φ̄)cV d

}

+O(g3)

}

(4.12)

where the first two lines are just the expansion known from the 4D
action while the last four lines stem from the ∇y-Term in (4.9).

In the quadratic part of the action a (Φ + Φ̄)(∂5V )-term appears
which mixes the V and Φ fields. To calculate the propagators, we
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choose a gauge fixing function which compensates this term44

SGF =
Tr

kg2

∫

d8z dy

{(

1√
ξ

√
2

D̄
2

4
gV +

√

ξ

2

D̄
2

42
∂5gΦ̄

)

×
(

1√
ξ

(
√

2
D2

4
gV +

√

ξ

2

D2

42
∂5gΦ

)} (4.13)

leading to the free action

S0 + SGF =
Tr

k

∫

d8z dy

{

− V 2

(

PT − 1

ξ
(P1 + P2)

)

V − V ∂5∂5V

− ξ

2
Φ̄
∂5∂5

2
Φ +

1

2
Φ̄Φ

}

+
Tr

k

∫

d8z

(

(Φ + Φ̄)V + V (∂5V ) − 1

2
Φ̄
∂5

2
Φ

)

∣

∣

∣

∣

∣

y

.

(4.14)

The y-surface terms result from partial intergrations. If the theory
is not compactified, they can be neglected. However closer inspection
shows that even for a compactified theory with a Z2 symmetry, the
surface terms vanish as Φ and V have opposite Z2 parity as well as
any field and its derivative in 5-direction.

The ghost action can be derived from the gauge fixing function

F =
Tr√
2k

1√
ξ

(

−D̄
2

4

)

(

2gV + ξ
∂5

2
gΦ̄

)

= 0 (4.15)

exactly as has been done in Chapter 3, i.e. defining the group measure
in the path integral, calculating it like in (3.7) and then replacing
the ordinary gauge transformation superfields by anticommuting ghost
superfields. The result is

SFP =
Tr

k

∫

d8z dy

∫

d8z dy

{

−i(c′ + c̄′)(δ(2gV ) − ξ
∂2

5

2
(c− c̄))

}

=
Tr

k

∫

d8z dy

{

c̄′c− c′c̄− ξc̄′
∂2

5

2
c+ ξc′

∂2
5

2
c̄ + g(c′ + c̄′) [V, c + c̄]

+
1

3
g2(c′ + c̄′) [V, [V, c− c̄]] +O(g3)

}

.

(4.16)

44In [17] the same type of gauge fixing is used for a D=10 super Yang-Mills theory.
It is pointed out that this fixing is similar to the Rξ-gauge in a spontaneously broken
(non-supersymmetric) Yang-Mills theory (cf. eg. [38]).
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To calculate the propagators, we again choose the super Feynman
gauge ξ=−1. The generating functional for the vector superfield is
then given by

Z0,V (J ) =
Tr

k

∫

DV exp

{

i

∫

d8z dy − V2V − V ∂2
5V + J V

}

= exp

{

i

2

∫

d8z dyJ a(z, y)∆ab
5,V (z − z′, y − y′)J b(z′, y′)

}

(4.17)

where the propagator ∆5,V in coordinate space is defined by

(∂2
5 + 2)∆ab

5,V (z − z′, y − y′) = −1

2
δabδ8(z − z′)δ(y − y′) (4.18)

in the usual way.45

The propagator is thus

∆ab
5,V (z − z′, y − y′) = −1

2
δabAV (z − z′, y − y′) (4.19)

where AV is a solution to

(∂2
5 + 2)AV (z − z′, y − y′) = δ8(z − z′)δ(y − y′) . (4.20)

If we do not compactify the y-direction or impose any boundary
conditions, the solution is just

∆ab
5,V (z − z′, y − y′) = −1

2

1

∂2
5 + 2

δabδ8(z − z′)δ(y − y′) . (4.21)

In 4-momentum space46 this leads to the propagator

∆ab
5,V (y − y′) = −1

2

1

∂2
5 − p2

δabδ4(θ − θ′)δ(y − y′) . (4.22)

The propagator for the Φ superfield can be calculated in analogy
to the chiral propagator in four dimensions. Rewriting the free action,
the free generating functional reads

45The factor 1
2 stems from the fact that in the free action, we have the kinetic term

−V 2V instead of − 1
2V 2V as in Chapter 3.

46i.e. we Fourier transform in x0, . . . , x3 and regard y as a parameter which is not being
transformed
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Z0,Φ(J, J̄) =

∫

DΦDΦ̄ exp

{

i

∫

d8z dy
1

2
(Φ, Φ̄)aMΦ

(

Φ

Φ̄

)a

+ (Φ, Φ̄)a

(

−D2

42
0

0 − D̄
2

42

)

(

J

J̄

)a
}

= exp

{

− i

2

∫

d8z dy(J(z, y), J̄(z, y))a∆ab
5,Φ(z − z′, y − y′)

(

J(z′, y′)

J̄(z′, y′)

)b
}

(4.23)

where MΦ is read off from the action (4.14) to be47

MΦ =
1

2

(

0 1 +
∂2
5

2

1 +
∂2
5

2
0

)

(4.24)

and the chiral propagator ∆ab
5,Φ(z − z′, y − y′) is defined by

1

4

(

D̄
2

0
0 D2

)

MΦ∆ab
5,Φ(z − z′, y − y′)

= −
(

−1
4D̄

2
0

0 −1
4D2

)

δabδ8(z − z′)δ(y − y′) .

(4.25)

To solve for the propagator we once again use the method of pro-
jection operators outlined in [21]. The result for the propagator is

∆ab
5,Φ(z − z′, y − y′) = 2δab

(

0 1
1 0

)

AΦ(z − z′, y − y′) (4.26)

where AΦ is (analogous to the Φ propagator) a solution to

(∂2
5 + 2)AΦ(z − z′, y − y′) = δ8(z − z′)δ(y − y′) . (4.27)

Without compactification of the y-direction the solution is

AΦ(z − z′, y − y′) =
1

∂2
5 + 2

δ8(z − z′)δ(y − y′) (4.28)

hence

∆ab
5,Φ(z− z′, y−y′) =

2

∂2
5 + 2

(

0 1
1 0

)

δabδ8(z− z′)δ(y−y′) . (4.29)

47in super Feynman gauge
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The propagator in momentum space reads

∆ab
5,Φ(y − y′) = − 2

p2 − ∂2
5

(

0 1
1 0

)

δabδ4(θ − θ′)δ(y − y′) . (4.30)

For the ghost propagator the calculation is analogous. As in Chap-
ter 3, the ghost terms in the action (4.16) have a factor of 2, compared
to the Φ terms in the action (4.9), leading to a factor of 1

2 in the propa-
gator and one has to take care for the differing statistics of the ghosts.
The ghost propagator in coordinate space is

∆ab
5,c(z − z′, y − y′) = δab

(

0 1
−1 0

)

Ac(z − z′, y − y′) (4.31)

with Ac defined in the same way as AΦ in (4.27) and (4.20) and the
same solution for non-compactified 5-direction.48

The vertices of the theory can be read off from the expanded action
(4.12). Most of them are an obvious extension of the vertices of the 4D
theory, given in Chapter 3.3. Note however that in the 5D theory there
is also a (∂5V )V (Φ + Φ̄)-vertex which is missing in the 4D theory. In
Chapter 4.3 it will become obvious that this vertex is crucial to cancel
quadratic divergences in the vector superfield propagator one loop
correction arising from the Φ loop and the ghost loop.

4.1.2 The D=5 Chiral Supermultiplet and its Coupling
to the Vector Supermultiplet

To find an off-shell formulation for the N=1, D=5 chiral multiplet,
again, the equivalence to the N=2, D=4 theory with a USp(2) sym-
metry described in the beginning of Chapter 4 can be used. Following
[25], the field content is given by a complex scalar SU(2)R doublet H i

and an SU(2)R singlet Dirac spinor Ψ which can be decomposed into
two Weyl spinors Ψ = (ψ, ψ̄c)T to which a complex scalar SU(2)R

doublet F̃i of auxiliary fields is added for the off-shell multiplet. The
supersymmetry transformations are (cf.[18])

δξH
i = −

√
2εij ξ̄jΨ

δξΨ =
√

2iΓM∂MHiεijξ
j +

√
2F̃iξ

i

δξF̃i =
√

2iξ̄iΓ
M∂M Ψ ,

(4.32)

48Note however that if different boundary conditions are imposed to the superfields V , Φ
and the ghosts, their propagators might differ even though their implicit definition (4.27)
is identical.
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for which the invariant action is

S =

∫

d8z dy
(

−(∂MH)†i (∂
MHi) − Ψ̄(iΓM∂M +m)Ψ

)

(4.33)

Note that no trilinear couplings occur. Ψ carries spin 1
2 and

SU(2)R-spin 0 while H i carries spin 0 and SU(2)R-spin 1
2 . Due to

the additional SU(2)R symmetry, all Yukawa coupling terms allowed
by the other symmetries49 are forbidden.

Defining the superfields50

H̃ =H1 +
√

2θψL + θ2F̃1

H̃c =H†
2 +

√
2θψR + θ2F̃ †2

(4.34)

the action can be re-written as [19]

S =

∫

d8z dy
{

¯̃HH̃ + H̃c ¯̃Hc +
(

H̃c(∂5 +m)H̃δ(θ̄) + h.c.
)}

(4.35)

The next step is to couple the chiral supermultiplet to the vector
supermultiplet. Let H̃ be in a representation of the gauge group. Then
the chiral multiplets transform according to

H̃ → e−iΛH̃ , H̃c → H̃ceiΛ̄ (4.36)

As in 4D, to keep the kinetic terms gauge invariant, they have to be
modified. Furthermore, the ∂5 derivative has to be replaced by the co-
variant derivative in y-direction ∇y. The action for the hypermultiplet
including the coupling to the vector supermultiplet is

S =

∫

d8zdy
{

¯̃He2gV H̃ + H̃ce−2gV ¯̃Hc +
(

H̃c(∇y +m)H̃δ(θ̄) + h.c.
)}

.

(4.37)
Before proceeding with the derivation of the super Feynman rules,

we have to point out one subtlety which has not been adessed in [19]
but is resolved in the discussion of the D=5 hypermultiplet in [20].
For the vector supermultiplet, we have seen that it was neccessary to
align the physical fields appropriately in the component fields in order
to keep D=5 Lorentz covariance for the component fields. It turns
out that after gauging the hypermultiplet, this issue has be taken into
account there as well.

49and therefore in D=4
50in y-basis
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Taking (4.37) as a starting point and calculating the component
field action using the superfields (4.34) leads to the equations of motion
for the auxiliary fields which are

F̃1 = −(∂5 + iA5)H2 + ΣH2

F̃ †2 = −(∂5 + iA5)H2 −H†
1Σ

(4.38)

and their hermitian conjugates.
They are obviously not D=5 Lorentz covariant, which can be cured

by redefining the auxiliary fields by

F1 = F̃1 + (D5 − Σ)H2

F †2 = −F̃ †2 − (D5 + Σ)H†
1

(4.39)

leading to the the gauged chiral superfields (cf. [20])

H =H1 +
√

2θψL + θ2(F1 +D5H
2 − ΣH2)

Hc =H†
2 +

√
2θψR + θ2(−F †2 −D5H

†
1 −H†

1Σ)
(4.40)

As for the vector supermultiplet, the asignment of the component
fields to H and Hc is therefore uniquely fixed if we demand 5D Lorentz
invariance.

Replacing the superfields H̃, H̃c by H, Hc in the action (4.37) it is
straightforward to calculate the action in component fields. The super-
symmetry transformations of the component fields can be computed,
applying ξLQL to the superfields. Therefore the 5D hypermultiplet
action in component fields can be rederived from the superfield for-
mulation.51

We will now proceed deriving the Feynman rules for the hypermul-
tiplet starting from the action (4.37). Its expansion reads

S =
Tr

k

∫

d8z dy
{

H̄H +HcH̄c

+Hc(∂5 +m)Hδ(θ̄) + H̄(−∂5 +m)H̄cδ(θ)

+g
(

2H̄V H − 2HcV H̄c +HcΦHδ(θ̄) + H̄Φ̄H̄cδ(θ)
)

+2g2
(

H̄V 2H −HcV 2H̄c
)

+O(g3)
}

(4.41)

51The ξR supersymmetry is a symmetry of the action. However it appears rather acci-
dential, starting from the superfield formulation.
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The vertices can be read off from the action so we are left with the
calculation of the chiral propagator. From the free part of (4.41), we
define the generating functional52

Z0,H(JH , J̄H , JHc , J̄Hc) =

∫

DHDH̄DHcDH̄c

exp

{

i

∫

d8z dy

[

(Hc, H̄)MH

(

H

H̄c

)

+(Hc, H̄)

(

−D2

42
0

0 − D̄
2

42

)

(

JHc

J̄H

)

+(H, H̄c)

(

−D2

42
0

0 − D̄
2

42

)

(

JH

J̄Hc

)

]}

= exp

{

−i

∫

d8 z dy(JHc , J̄H)i∆5,Hij(z − z′, y − y′)

(

J′Hc

J̄ ′
H

)}

(4.42)

where MH is

(MH)ij = δij

(

−D2

42
(∂5 +mi) 1

1 − D̄
2

42
(−∂5 +mi)

)

(4.43)

and the chiral propagator (∆5,H)ij is defined by
(

D2

42
0

0 D̄
2

42

)

(MH)ij(∆5,H)ij ≡ −
(

−D2

42
0

0 − D̄
2

42

)

δ8(z− z′)δ(y− y′)

(4.44)
As for the Φ propagator, using the method of projectors outlined

in [21], the propagator reads

(∆5,H)ij = δij

(

(m− ∂5)D2

42
1

1 (m + ∂5) D̄
2

42

)

AH (4.45)

where AH is a solution to

(∂2
5 + 2 −m2)AH(z − z′, y − y′) = δ8(z − z′)δ(y − y′) (4.46)

The solution for a non-compactified theory is

AH(z − z′, y − y′) =
1

∂2
5 + 2 −m2

δ8(z − z′)δ(y − y′) . (4.47)

Note that in contrast to the 4D theory even for a massless hy-
permultiplet there are chiral H cH and anti-chiral H̄cH̄ propagators
containing the 5-derivative.

52We denote J(z, y) ≡ J and J(z′, y′) ≡ J′.

54



4.2 Feynman Rules for D=5, N=1 Super
Yang-Mills-Theory

In this chapter, we summarise the Feynman rules derived in Chapter
4.1.1 and 4.1.2. The action is given in 4D superfields. Therefore all
rules of 4D D-algebra apply. Furthermore, all vertices of the 4D action
apart from the Yukawa couplings are contained in the D=5 action.

Differences in the Feynman rules are due to

• 5D Lorentz covariance, leading to propagators having an addi-
tional ∂5-term

• the covariant derivative ∇y in y-direction which introduces the
chiral field Φ as a part of the D=5 vector supermultiplet which
lead to

• new coupling terms of Φ with the vector superfield and the chiral
matter superfields appearing in the theory.

We once give the complete action for D=5, N=1 super Yang-Mills
theory in superfields, collecting the terms for the gauge fixed action
from (4.14) and (4.16), the super Yang-Mills interaction terms from
(4.12)and the chiral action terms from (4.41).
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S =
Tr

k

∫

d8z dy

{

− V2V − V ∂2
5V +

1

2
Φ̄
∂2

5

2
Φ +

1

2
Φ̄Φ

+
(

c̄′c− c′c̄ + c̄′
∂2

5

2
c− c′

∂2
5

2
c̄
)

+
1

4
g(D̄

2
DαV )[V,DαV ] + g(c′ + c̄′) [V, c + c̄]

+ igfabc
[

(∂5V )aV b(Φ + Φ̄)c − Φ̄aV bΦc
]

− 1

8
g2[V, (DαV )]D̄

2
[V, (DαV )] − 1

6
g2(D̄

2
DαV )[V, [V,DαV ]]

− 4g2fadef bce

{

1

3
(∂5V )aV b(∂5V )cV d − 2

3
(∂5V )aV b(Φ + Φ̄)cV d

+
1

2
Φ̄aV bΦcV d

}

+
1

6
g2(c′ + c̄′) [V, [V, c− c̄]]

+ H̄H +HcH̄c +Hc(∂5 +m)Hδ(θ̄) + H̄(−∂5 +m)H̄cδ(θ)

+ g
(

2H̄V H − 2HcV H̄c +HcΦHδ(θ̄) + H̄Φ̄H̄cδ(θ)
)

+ 2g2
(

H̄V 2H −HcV 2H̄c
)

+O(g3)

}

(4.48)

The vertices can be read off from it in the same way as it has been
done in the 4D theory. In the following summary, we only give the
vertex graphs.
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The D=5 Feynman rules in momentum space with y in coordinate
space, following from (4.48) are:

• Draw all possible topologically inequivalent graphs of the order
in g which is to be considered.

• Multiply each graph with its symmetry factor.

• pi are momenta flowing along internal lines, away from the ver-
tex.

• For each vertex integrate over

∫

d4θ dy.

• For each external field integrate over

∫

d4θ dyext.

• For the external momenta, the overall factor is
[

∏

pext

∫

d4pext

(2π)4

]

(2π)4δ4
(

∑

ext
pext

)

.

• For every loop with momentum p running in it integrate over
∫

d4p

(2π)4

• For an [anti-]chiral vertex with n internal lines, n − 1 factors

[−1
4D2] −1

4D̄
2

act on the propagators.

• A ghost loop contributes a factor (−1).

• The propagators are

p

H̄i(−p)

H̄c
i (−p)

Hj(p)

Hc
j (p)

= − i
p2−∂2

5+m2 δijδ
4(θ − θ′)δ(y − y′)

H̄i(−p) H̄c
j (p)

p
=

D̄
2
(p)
4

i(m+∂5)
p2(p2−∂2

5+m2)
δijδ

4(θ − θ′)δ(y − y′)

Hc
i (−p) Hj(p)

p = D2(p)
4

i(m−∂5)
p2(p2−∂2

5+m2)
δijδ

4(θ − θ′)δ(y − y′)

p
V a(−p) V b(p) = 1

2
i

p2−∂2
5

δabδ4(θ − θ′)δ(y − y′)

p
Φ̄a(−p) Φb(p) = 2 i

p2−∂2
5

δabδ4(θ − θ′)δ(y − y′)

p
c̄
′a(−p) c

b(p) = i
p2−∂2

5

δabδ4(θ − θ′)δ(y − y′)

p
c
′a(−p) c̄

b(p) = − i
p2−∂2

5

δabδ4(θ − θ′)δ(y − y′)
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• Vertices also present in the 4D theory

p1

p2

p3

θ1, a

θ2, b

θ3, c

θ

p1

p3

p2

θ1, a

θ2, b

θ3, c

θ
p1

p3

p2

V a(θ1)

Hc
i (θ2), Hi(θ2)

H̄j(θ3), H̄c
j (θ3)

θ

p2

p1

p3

p4

θ2, b

θ1, a

θ3, c

θ4, d

θ
p2

p1

p3

p4

θ2, b

θ1, a

θ3, c

θ4, d

θ

p1

p2

p3

p4

H̄j(θ2), H̄c
j (θ2)

Hc
i (θ1), Hi(θ1)

V a(θ3)

V b(θ4)

θ

• Vertices not present in the 4D theory

p1

p2

p3

θ1, a

θ2, b

θ3, c

θ

p1

p3

p2

θ1, a

θ2, b

θ3, c

θ

p1

p3

p2

θ1, a

θ2, b

θ3, c

θ

p1 p2

p3

θ1, a

θ2, i

θ3, j

θ p1

p2

p3

θ1, a

θ2, i

θ3, j

θ

• Note that no ΦΦΦ and Φ̄Φ̄Φ̄ vertices are present. These
(anti)chiral Yukawa couplings are forbidden by SU(2)R symme-
try (cf. Chapter 4.1.2).

In the Feynman rules given above, y is kept in coordinate space
while xm is Fourier transformed which proves useful in compacti-
fied theories.53 For our calculation in the next chapter for a non-
compactified D=5 theory it is of advantage to Fourier transform y
as well.

53By compactification in y-direction, D=5 Lorentz symmetry is broken and y is treated
as a parameter rather than a spacetime coordinate. For an example of this approach cf.
[10].
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The Feynman rules in full momentum space (pm, p5) are:

• Draw all possible topologically inequivalent graphs of the order
in g which is to be considered.

• Multiply each graph with its symmetry factor.

• pi are momenta flowing along internal lines, away from the ver-
tex.

• For each vertex integrate over

∫

d4θ.

• For each external field integrate over

∫

d4θ.

• For the external momenta, the overall factor is
[

∏

pext

∫

d4pext dp5,ext

(2π)5

]

(2π)5δ5
(

∑

ext
(pext, p5,ext)

)

.

• For every loop with momentum p running in it integrate over
∫

d4p dp5

(2π)5

• For an [anti-]chiral vertex with n internal lines, n − 1 factors

[−1
4D2] −1

4D̄
2

act on the propagators.

• A ghost loop contributes a factor (−1).

• The propagators in full momentum space are

p

H̄i(−p)

H̄c
i (−p)

Hj(p)

Hc
j (p)

= − i
p2+p2

5+m2 δijδ
4(θ − θ′)

H̄i(−p) H̄c
j (p)

p
=

D̄
2
(p)
4

i(m+ip5)
p2(p2+p2

5+m2)
δijδ

4(θ − θ′)

Hc
i (−p) Hj(p)

p = D2(p)
4

i(m−ip5)
p2(p2+p2

5+m2)
δijδ

4(θ − θ′)

p
V a(−p) V b(p) = 1

2
i

p2+p2
5

δabδ4(θ − θ′)

p
Φ̄a(−p) Φb(p) = 2 i

p2+p2
5

δabδ4(θ − θ′)

p
c̄
′a(−p) c

b(p) = i
p2+p2

5

δabδ4(θ − θ′)

p
c
′a(−p) c̄

b(p) = − i
p2+p2

5

δabδ4(θ − θ′)
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• The vertex graphs are the same as for non-Fourier transformed
y.

4.3 Application: Calculation of the 5D β-

Function

As an application in N=1, D=5 super Yang-Mills theory, we calculate
the β-function on one-loop level. Analogous to the the 4D calculation,
it is sufficient to consider the corrections to the vector propagator and
its superpartner to renormalise the coupling constant and therefore to
calculate the β-function if we rescale the gauge fields by a factor of
1/g. In the 4D theory, this just meant rescaling gV → V .

In the 5D theory, we have to rescale gΦ → Φ as well, because the
5D vectorfield multiplet is given by linear combinations of the com-
ponent fields of V and Φ. Therefore the radiative corrections relevant
for the renormalisation of the coupling constant at one-loop are cor-
rections to the V and the Φ superfield propagator. Furthermore, as
has been shown in chapter 3.4 the V and Φ superfields a priory mix
due to a Φ(∂5V )-term. The mixing term vanishes on tree level due
to a special choice for the gauge-fixing function which in turn takes
the 4D superfields V and Φ as well as the ghosts into a 5D Lorentz
covariant form.54 However, on one-loop level, there is a non-vanishing
contribution to the mixing term from the supergraph

(4.49)

which has to be taken into account.55 This term on its own is not 5D
Lorentz covariant as can easily be seen from the Feynman rules. The
same is true for the radiative correction to the V and the Φ propagator.

It should be possible to make the mixing contribution vanish and to
restore the V and the Φ superfield propagators 5D Lorentz covariant
by modifying the gauge fixing term in the one-loop effective action.
This is however not nessessary for the calculation of the β-function.
As the component fields of V and Φ are linear combinations of the
vector supermultiplet, the relative factors of the Φ̄Φ, the V Φ and the
V V counterterms are fixed. We will compute the radiative correction

54Before the gauge-fixing, the 5D vector multiplet is 5D Lorentz covariant but the 4D
superfields as a “collection” of component fields are not. For example, the five spacetime
components of the 5D vector field are split up.

55This is similar to the situation in a spontaniously broken gauge theory (cf. eg. [39]).
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to the vector superfield propagator in Chapter 4.3.1 and assume that
the other radiative corrections contribute such that the β-function is a
5D Lorentz scalar as it has to be. Using the first loop order correction,
we then compute the 5D β-function in Chapter 4.3.2.

4.3.1 Radiative Corrections to the Vector Superfield
Propagator

The contributing supergraphs to the correction of the vector superfield
propagator to first loop order are

+

(4.50a)

+

(4.50b)

(4.50c)

+ +

(4.50d)

+ +

(4.50e)
We first calculate the contributions from the gauge sector (graphs

(4.50b-4.50e)).
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From the action (4.48) it is obvious that the V V V , V c′c and V ΦΦ
vertices do not contain any p5. Therefore no new permutations of
derivatives appear, compared to the 4D calculation. The D-algebra
for the ghost-loop (4.50b) and the Φ-loop in (4.50e) in five dimensions
is identical to the computation in (3.46) in four dimensions as well as
the D-algebra for the vector-loop (4.50c) in 5D is identical to (3.58)
in 4D. The only differences are the propagators where 1

k2 has to be
replaced by 1

k2+k2
5

and numerical factors of propagators and vertices.

The results for the ghost-loop are

+ = 0

(4.51)
and

2×

= 4g2
[

−1
2C2(G)

]

×
{

1

2

∫

d4θ
d4k dk5

(2π)5
V a(−p,−p5)

[

p2PT − 2(k + p)2
]

V a(p, p5)

(k2 + k2
5)((k + p)2 + (k + p)25)

}

,

(4.52)
where the p2PT term is from (3.46), the “linear” divergences cancel
analogous to (3.46) and (3.51) and the quadratic divergence stems
from (3.49). The initial factor of 2 again comes from the two inequiv-
alent possibilities to assign ghost superfields to the graph.

For the Φ-loop, the same calculation applies except for factors on
vertices and propagators. This leads to

= 4g2 [C2(G)]

×
{

1

2

∫

d4θ
d4k dk5

(2π)5
V a(−p,−p5)

[

p2PT − 2(k + p)2
]

V a(p, p5)

(k2 + k2
5)((k + p)2 + (k + p)25)

}

.

(4.53)
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Analogous to (3.58), the vectorloop yields

(5×)

= 4g2
[

−5
2C2(G)

]

×
{

1

2

∫

d4θ
d4k dk5

(2π)5
V a(−p,−p5)

[

p2PT

]

V a(p, p5)

(k2 + k2
5)((k + p)2 + (k + p)25)

}

(4.54)
where the initial factor of 5 results from the number of topolgically
distinct graphs with permutated D’s and D̄

2
D’s (cf. Chapter 3.4).

Remember that the “linear” and quadratic divergences in this graph
cancel identically as has been shown in Chapter 3.4.

The “new” graph in (4.50e) from the (p5V )V (Φ̄+Φ)-vertex comes
in 2 × 2 permutations. One of them is

p + k

k

V a(−p,−p5) V b(p, p5)
θ θ′

D2 D̄′2

c

d

=

∫

d4θd4θ′
d4k dk5

(2π)5
[ip5V

a(−p,−p5, θ)] gfacd

(

ik5
1
2

i
k2+k2

5

)

δ(θ − θ′)(−gf cbd)
(

2 i
(k+p)2+(k+p)25)

2

)

(

−1
4D′2

)

(

−1
4D̄

2
)

V b(p, p5, θ
′)

= −4g2C2(G) ×
{

1

2

∫

d4θ
d4k dk5

(2π)5
V a(−p,−p5) [k5p5]V a(p, p5)

(k2 + k2
5)((k + p)2 + (k + p)25)

}

(4.55)
where the factor of (-1) in front of the second vertex comes from
the permutation chosen. The other three terms have factors of p5k5,
p2
5 and k2

5 instead of k5p5 in the numerator. The graph with Φ̄
propagating in the loop instead of Φ has to be taken into account for
hermiticity and leads to the same result.

The total contribution of the graph is therefore

ΠV,Φ = −8g2C2(G)×
{

1

2

∫

d4θ
d4k dk5

(2π)5
V a(−p,−p5)

[

(p + k)25
]

V a(p, p5)

(k2 + k2
5)((k + p)2 + (k + p)25)

}

(4.56)
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A few remarks on the divergences are in order. Speaking of
logarithmic, “linear” and quadratic divergences in this context,

we mean terms proportional to
∫ d4k dk

5

(2π)5
X

(k2+k2
5)((k+p)2+(k+p)25)

with

X = 1, km and k2, respectively, in analogy to the four dimensional
theory. In five dimensions, these terms are not 5D Lorentz covariant
as the k5 component expressions are missing in the numerator. If the
apropriate k5-terms are added, it is obvious from power counting ar-
guments that these expressions lead to divergences of linear, quadratic
and qubic order. However, using dimensional reduction in five dimen-
sions, these terms lead to finite contributions as can be seen from the
identities (C.11a) and (C.11b) in the appendix.

The quadratic divergences arising from the ghost and Φ-loop are
not Lorentz covariant. However the divergence added by the V Φ-loop
contributes exactly the missing (k + p)2

5 term. Using (C.11a) with
m = 0 shows that

ΠΦ,quadr + Πc,quadr + ΠV Φ = −8g2C2(G)

×
{

1

2

∫

d4θ
d4k dk5

(2π)5
V a(−p,−p5)

[

(p + k)2 + (p+ k)25
]

V a(p, p5)

(k2 + k2
5)((k + p)2 + (k + p)25)

}

= 0 .

(4.57)

The V , Φ and ghost tadpole graphs all lead to contributions pro-
portional to

Π(V,Φ,c) tadpoles ∝
∫

d4θ
d4k dk5

(2π)5
V a(−p,−p5)V a(p, p5)

k2
(4.58)

which vanish in dimensional reduction.
Adding up all remaining contributions from (4.52), (4.54), (4.53),

(4.55) yields the one-loop correction to a D=5 Super Yang-Mills theory
without matter coupled to it which is

Π5D
V,c,Φ = 4g2C2(G)

[

1 − 1

2
− 5

2

]

×
{

1

2

∫

d4θ
d4k dk5

(2π)5
V a(−p,−p5)p2PTV

a(p, p5)

(k2 + k2
5)((k + p)2 + (k + p)25)

}

.

(4.59)

Comparing (4.59) to the pure gauge contribution of 4D super Yang-
Mills theory in (3.59) which reads

Π4D
V,c = 4g2C2(G)

[

−1

2
− 5

2

]{

1

2

∫

d4θ
d4k

(2π)4
V a(−p)p2PTV

a(p)

k2(k + p)2

}

we note that the contributions from the 5D ghost- and V -loop are
what one would have guessed knowing the 4D result. The Φ superfield
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reduces the 5D contribution from 3C2(G)× . . . to 2C2(G) × . . . as one
would expect for a chiral field in the adjoint representation in four
dimensions.

Note that this expression is not 5D Lorentz covariant.

The one-loop hyperfield contribution to the vector superfield prop-
agator is given in the two graphs in (4.50a) and the left tadpole graph
in (4.50d). The calculation of both graphs can directly be taken from
the 4D theory. The cancelation of the “linear” divergences works in
the same way. Note however that from the hypermultiplet propagators
and the H̄V H and HcV H̄c vertices there are two distinct assignments
of chiral fields to the left graph which from the Feynman rules can be
seen to contribute the same.

Thus the contribution from the left graph in (4.50a) is

θ θ
′

D̄2 D′2

D̄′2D2

H̄(θ) H(θ′)

H̄(θ′)H(θ)

+
θ θ

′

D2 D̄′2

D′2D̄2

H̄
c(θ) H

c(θ′)

H̄
c(θ′)H

c(θ)

= 2 × 4g2 [
∑

A TA(R)]

×
{

1

2

∫

d4θ
d4k dk5

(2π)5
V a(−p,−p5)(p2PT − 2(p+ k)2)V a(p, p5)

(k2 + k2
5 +m2)((k + p)2 + (k + p)25 +m2)

}

(4.60)
For the right graph in (4.50a) it seems that there is just one way

to assign the fields H and Hc to the graph. However, as we will show,
it is not hermitian. Like for the V Φ-loop, the mirror graph is therefore
not equivalent and has to be taken into account as well.

The contribution of one of the graphs is

p + k

k

V a(−p,−p5) V b(p, p5)
θ θ′

H̄ H̄c

HcH

= −8g2 [
∑

A TA(R)]

×
{

1

2

∫

d4θ
d4k dk5

(2π)5
V a(−p,−p5)

[

(m+ i(p+ k)2
5)(m− ik2

5)
]

V a(p, p5)

(k2 + k2
5 +m2)((k + p)2 + (k + p)25 +m2)

}

(4.61)
where the numerator is the product of the numerators of the propa-
gators. It yields (m+ i(p+ k)2

5)(m− ik2
5) = m2 + (p+ k)5k5 + imp5.
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The contribution of the other graph is

p + k

k

V a(−p,−p5) V b(p, p5)
θ θ′

Hc H

H̄H̄c

−8g2 [
∑

A TA(R)]

×
{

1

2

∫

d4θ
d4k dk5

(2π)5
V a(−p,−p5)

[

(m− i(p+ k)2
5)(m + ik2

5)
]

V a(p, p5)

(k2 + k2
5 +m2)((k + p)2 + (k + p)25 +m2)

}

(4.62)
where the numerator is (m− i(p+ k)2

5)(m + ik2
5)= m2 + (p+ k)5k5 − imp5.

The total contribution of the massive hypermultiplet-loop is thus
given by

ΠH,mass = 2 × (−8)g2

[

∑

A

TA(R)

]

×
{

1

2

∫

d4θ
d4k dk5

(2π)5
V a(−p,−p5)

[

m2 + k2
5 + p5k5

]

V a(p, p5)

(k2 + k2
5 +m2)((k + p)2 + (k + p)25 +m2)

}

(4.63)

The hypermultiplet tadpole graph in (4.50d) has the result

2×

= 2 × 8g2 [
∑

A TA(R)]

×
{

1

2

∫

d4θ
d4k dk5

(2π)5
V a(−p,−p5)V a(p, p5)

k2 + k2
5 +m2

}

.

(4.64)

Completing the numerator of (4.63) by (−p5k5 − p2), this term
cancels the quadratic divergent parts of (4.64) and (4.60).

The total contribution of the hypermultiplet-loops to the vector
superfield propagator is therefore
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Π5D
hyp = 4g2

[

2
∑

A

TA(R)

]

×
{

1

2

∫

d4θ
d4k dk5

(2π)5
V a(−p,−p5)

[

p2PT + 2p2
5 + 2p5k5

]

V a(p, p5)

(k2 + k2
5 +m2)((k + p)2 + (k + p)25 +m2)

}

(4.65)

Comparing (4.65) to the matter superfield contribution of 4D super
Yang-Mills theory in (3.52) which reads

Π4D
chiral = 4g2

[

∑

A

TA(R)

]

×
{

1

2

∫

d4θ
d4k

(2π)4
V a(−p)

[

p2PT

]

V a(p, p5)

(k2 +m2)((k + p)2 +m2)

}

it is obvious that a hypermultiplet in five dimensions contributes the
same as two chiral supermultiplets in four dimensions as one might
expect from the fact that the 5D hypermultiplet can be expressed as
an 4D SU(2)R superfield doublet.

Like the gauge-loop contribution (4.59), the hypermultiplet-loop
contribution is not 5D Lorentz covariant.

As has been discussed in the beginning of Chapter 4.3, the radia-
tive correction of the vector superfield propagator is sufficient for the
calculation of the β-function, knowing, that it is a 5D Lorentz scalar.
5D Lorentz covariance of the complete radiative correction has to be
restored by the corrections to the Φ superfield propagator and the
Φ(∂5V ) mixing term. Thus, the Lorentz covariant radiative correction
to the vector superfield propagator following from (4.59) and (4.65) is

Π5D
V,LC = 4g2 ×

[

2
∑

A

TA(R)

]

×
{

1

2

∫

d4θ
d4k dk5

(2π)5
V a(−p,−p5)

[

p2 + p2
5

]

PTV
a(p, p5)

(k2 + k2
5 +m2)((k + p)2 + (k + p)25 +m2)

}

+ 4g2 × [−2C2(G)]

×
{

1

2

∫

d4θ
d4k dk5

(2π)5
V a(−p,−p5)

[

p2 + p2
5

]

PTV
a(p, p5)

(k2 + k2
5)((k + p)2 + (k + p)25)

}

(4.66)

By this the Lorentz invariant radiative correction to the Φ super-

67



field propagator is fixed to be

Π5D
Φ,LC = 4g2 ×

[

2
∑

A

TA(R)

]

×
{

1

2

∫

d4θ
d4k dk5

(2π)5
Φ̄a(−p,−p5)Φa(p, p5)

(k2 + k2
5 +m2)((k + p)2 + (k + p)25 +m2)

}

+ 4g2 × [−2C2(G)]

×
{

1

2

∫

d4θ
d4k dk5

(2π)5
Φ̄a(−p,−p5)Φa(p, p5)

(k2 + k2
5)((k + p)2 + (k + p)25)

}

(4.67)

4.3.2 The Result for the 5D β-Function

In general, a five dimensional theory is non-renormalisable as the cou-
pling constant has mass dimension −1/2. Nevertheless, the theory can
be regarded as an effective theory and, as for the four dimensional the-
ory, the coupling depends on the energy scale.

In order to calculate the β-function from the radiative correction
to the vector supermultiplet only, we have to rescale gV → V and
gΦ → Φ. The Fourier transformed tree level action then reads56

S
5D (0)
V,kin =

Tr

kg2
0

∫

d4θ
d4p dp5

(2π)5

{1

2
V a(−p,−p5)

[

p2 + p2
5

]

PTV
a(p, p5)

+
1

2
Φ̄(−p,−p5)Φ(p, p5)

}

(4.68)

Using our results (4.66) and (4.67) from the last chapter, the rele-
vant part of the one-loop effective action is

S
5D (1)
V,kin = S

5D (0)
V,kin +

4

16π2

∫

d4θ
d4p dp5

(2π)5

{[

1

2
Φ̄(−p,−p5)Φ(p, p5)

+
1

2
V a(−p,−p5)

[

p2 + p2
5

]

PTV
a(p, p5)

]

×
[

2

(

∑

A

TA(R)

)

B0(p2,m,m) − 2C2(G)B0(p2, 0, 0)

]}

(4.69)

As in the four dimensional calculation, we use the momentum sub-

56Again, we only give the part relevant for the computation of the β-function.
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traction scheme and define the coupling g(µ,M) by

1

g2(µ,M)
≡ 1

g2
0

+
4

16π2

[

2

(

∑

A

TA(R)

)

− 2C2(G)

]

B0(−M2, 0, 0) .

(4.70)
Note that in five dimensions, all divergences are absorbed by di-

mensional reduction and the integrals B0 are already finite.
From the definition of the coupling (4.70) we can calculate the

dependence of the coupling from the renormalisation point using the
result for the scalar two-point integral in five dimensions (C.11b):

M ∂

∂Mg(µ,M) =
1

32π

[(

∑

A

TA(R)

)

− C2(G)

]

M
µ
g3 . (4.71)

In contrast to the four dimensional β-function, this expression ex-
plicitly depends on µ and M. To avoid this explicit dependance, we
rescale the coupling

ḡ ≡
√

M
µ
g . (4.72)

and define the five dimensional β-function as a function of ḡ

β5D(ḡ) ≡ M ∂

∂M ḡ(µ,M)) , (4.73)

leading to our final result for the β-function to one-loop order

β5D(ḡ) =
1

2
ḡ +

1

32π

[(

∑

A

TA(R)

)

− C2(G)

]

ḡ3 . (4.74)

As the four dimensional β-function, β5D contains a term cubic in
the coupling constant which depends on group theoretical factors only.
The change of these factors from four to five dimensions has already
been discussed in the previous chapter. As a result, the cubic term
of the 5D β-function vanishes if one massless hypermultiplet in the
adjoint representation is coupled to the gauge supermultiplet.

Apart from group theoretical term, (4.74) contains a power-law
running term proportional to ḡ, which is determined by the mass di-
mension of the gauge coupling constant, independant of the gauge
group and of matter coupled to the gauge multiplet.

5 Summary and Outlook

In this diploma thesis we have derived the Feynman rules for a D=5,
N=1 supersymmetric Yang-Mills theory in terms of four dimensional
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superfields and have used this formulation to derive the β-function of
the theory.

As a starting point, we have used the superfield formulation of
the five dimensional theory given in [20]. In the beginning of Chapter
4.1.1 we have given a brief review of the basic ideas and concepts
presented in [20] and have shown that the distribution of the fields
in the five dimensional vector multiplet on the component fields of
the four dimensional vector superfield V and the chiral superfield Φ
is determined if one demands the component fields to be 5D Lorentz
covariant on tree level. We have dealt with the five dimensional massive
chiral hypermultiplet in an analogous way in the beginning of Chapter
4.1.2.

The five dimensional theory has been quantised following the pat-
tern of the known quantisation of a four dimensional N=1 supersym-
metric Yang-Mills theory which has been reviewed in Chapter 3. An
important new feature of the five dimensional theory is the Rξ-like su-
persymmetric gauge fixing (4.15) which eliminates the Φ(∂5V )-mixing
term in the action and at the same time makes the V , Φ and ghost
superfield propagators 5D Lorentz covariant.

Having the gauge fixed action, we have defined the generating func-
tional and from it, the superfield propagators as the two-point Greens
functions of the theory. We point out that for a theory, compactified
on a manifold or an orbifold, the same procedure holds. The compact-
ification is manifest in the boundary conditions of the propagators
only. In Chapter 4.3.1 we have calculated the propagators for a non-
compactified 5-direction. The Feynman rules for the vertices have been
read off from the action. From the derivation from the generating func-
tional it can be seen that the vertices are independant of the boundary
conditions for the propagators.

As one main result of this thesis, the Feynman rules for the D=5,
N=1 supersymmetric Yang-Mills theory are given in Chapter 4.2.

As an application, we have calculated the β-function of the theory.
This turns out to be technically more involved than the analogous cal-
culation in four dimensions. Apart from additional graphs which have
to be considered we find one-loop level contributions to the Φ(∂5V )-
terms which on tree level has been gauged away. Due to the properties
of the gauge fixing, these mixing terms also effect the 5D Lorentz con-
variance of the four dimensional superfields. We point out that this is
a purely technical problem. It is convenient to work with 5D Lorentz
covariant superfields on a given loop level but physically, 5D Lorentz
covariance is demanded for the fields of the 5D vector multiplet and its
loop corrections, not for a special distribution of its degrees of freedom
on the superfields V and Φ.
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We have calculated the one-loop contribution to the vector super-
field propagator. Knowing that both superfields V and Φ stem from
the 5D vector supermultiplet, this result is sufficient to determine the
dependance of the coupling from the renormalisation scale on one-
loop level. From it, we have defined and calculated the β-function to
be (4.74)

β5D(ḡ) ≡ M ∂

∂M ḡ(µ,M))

=
1

2
ḡ +

1

32π

[(

∑

A

TA(R)

)

− C2(G)

]

ḡ3 .

Comparing the result with the four dimensional β-function, the
main differences are the presence of a power-law contribution in β5D

resulting from the mass dimension of the gauge coupling and the nu-
merical difference in the group theoretical factors by which the cubic
part of β5D cancels if one massless hypermultiplet in the adjoint rep-
resentation is coupled to the gauge multiplet while in four dimensions,
three massless matter multiplets are needed to make the cubic term
(and therefore the whole β-function) vanish.

A special field of interest where the formalism developed in this
thesis can be applied is the study of higher dimensional supersym-
metric theories compactified on orbifolds as has been motivated in
the introduction. For an unbroken supersymmetric five dimensional
gauge theory on an orbifold the derived Feynman rules can be used if
the propagators are recalculated according to the boundary conditions
induced by the compactification and the parity assignment from the
orbifold projection. An example for this can be found in [10].

To use the superfield formalism for more realistic models, a next
step would be to include gauge and supersymmetry breaking. Gauge
breaking by orbifolding can be implemented easily as its origin is the
assignment of orbifold parities to the gauge fields which is again im-
plemented by the boundary conditions to the superfield propagators.
For supersymmetry breaking we are not at the stage to comment on
specific ways on implementing the variaty of supersymmetry breaking
mechanisms. Ref. [10] provides an example for which it is possible.

Another direction for further work is the generalisation to higher
spacetime dimensions. Already in 1983 in [17], a superfield formulation
for an D=10, N=1 supersymmetric gauge theory is given and the
Feynman rules are derived. From [19] it can be seen that many of the
concepts of the ten dimensional theory also apply to lower spacetime
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dimensions, including the five dimensional theories as the simplest
case.

As mentioned in the introduction, there are promising setups for
GUTs using SO(10) on a six dimensional orbifold [14, 15, 16]. Having
a superfield formulation of higher dimensional supersymmetry might
simplify further studies on this.
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A Conventions and Notation

A.1 Spinors in Four Dimensional Spacetime

In this diploma thesis the conventions of [21] are used. The D-
dimensional spacetime metric is

ηmn = diag(−1, 1, . . . , 1) (A.1)

The Γ-matrices are chosen in the Weyl representation and read in
D=4

γm =

(

0 σm

σ̄m 0

)

(A.2)

where σm = (−1, σi) and σ̄m = (−1,−σi) and σi are the Pauli matri-
ces.

In four dimensions, there are two inequivalent spinor representa-
tions ( 1

2 , 0) and (0, 1
2). Their generators are given by

(

1

2
, 0

)

generators: (σmn) β
α =

1

4

(

σm
αα̇σ̄

nα̇β − σn
αα̇σ̄

mα̇β
)

(

0,
1

2

)

generators: (σ̄mn)α̇
β̇

=
1

4

(

σ̄mα̇ασn
αβ̇

− σ̄nα̇ασm
αβ̇

)

(A.3)

Their representation spaces are the left- and righthanded Weyl
fermions ψα and ψ̄α̇ which can be combined to a Dirac spinor

ΨD =

(

ψα

χ̄α̇

)

, Ψ̄D =
(

χα, ψ̄α̇

)

(A.4)

The tensors εαβ and εα̇β̇ are invariant under SL(2,
�

) and can be

used to raise and lower indices. Choosing ε12 = ε21 = ε1̇2̇ = ε2̇1̇ = 1
one can define raising and lowering by

ψα = εαβψβ

ψα = εαβψ
β

σ̄mα̇α = εα̇β̇εαβσm
ββ̇

.

(A.5)

With these definition one finds

ψχ ≡ ψαχα = −ψαχ
α = ψαχα ≡ χψ

ψ̄χ̄ ≡ ψ̄α̇χ̄
α̇ = −ψ̄α̇χ̄α̇ = ψ̄α̇χ̄

α̇ ≡ χ̄ψ̄ = (χψ)† .
(A.6)
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A.2 Lorentz Algebra and Spinors in Higher
Dimensions

In this appendix we summarise some results on higher-dimensional
Lorentz algebra which are of importance for this thesis. Most of them
can be found in [36] and in some more detail in [37, 40]. For the case
of D=5 which is explicitly given in the end of the chapter we refer to
[18, 20].

The Lorentz algebra in D dimensions is given by

[MMN ,MOP ] = i(ηNOMMP − ηNPMMO − ηMOMNP + ηMPMNO),
(A.7)

where M,N,O, P = 0 . . . (D − 1).
Spinor representations of the Lorentz algebra can be found by

defining the Dirac matrices Γ0, . . .ΓD−1 which satisfy the Dirac al-
gebra

{ΣM ,ΓN} = 2ηMN � . (A.8)

The spinor reprensentation of the Lorentz algebra is then given by

MAB =
i

2
Γ[AΓB] , (A.9)

so the task is to find a representation of the D-dimensional Dirac alge-
bra. It can be shown that the complex dimension n of the irreducible
representations of the Dirac algebra in D dimensions is given by

n =

{

2
D
2 for D even

2
D−1

2 for D odd
(A.10)

In [?] it is shown how to construct the representations recursively.
We only give the five-dimensional algebra in the end of the chapter.

As a next step, one has to consider whether the representation of
the Dirac algebra is irreducible i.e. if there is an (anti)automorphism
group which divides the representation space into invariant subspaces.
For the following we refer to [36, 37] and just list the main results.

One way of reducing the representation is by chiral projectors,
which in D=4 are given by

PL,R =
1

2
( � ∓ iΓ5) (A.11)

where
Γ5 ≡ Γ0Γ1Γ2Γ3 (A.12)
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A generalisation of Γ5 from D=4 to arbitrary dimensions can be
given by

ΓD+1 ≡ (i)
D
2 Γ0 · . . . · ΓD−1 (A.13)

From (A.8), it is obvious that for even D, {ΓD+1,ΓM} = 0 for any
M = 0 . . . D−1 while for odd D, [ΓD+1,ΓM ] = 0. By Schur’s lemma, it
follows, that for odd D, ΓD+1 ∼ � . Therefore in odd dimensions, ΓD+1

cannot be used to define chiral projectors, while for even dimensions,
chiral spinors exist.

Another way of reducing the spinor representation is to use the
Dirac algebra (anti)automorphism induced by the conjugation matrix
C. This leads to real, pseudoreal or complex spinor representations
depending on D. For real and complex representations (D = 0, 1, 2, 3, 4
mod 8), a Majorana condition

ψ = Cψ̄T (A.14)

can be imposed, while for pseudoreal representations (D = 5, 6, 7 mod
8) one can impose a symplectic Majorana condition

ψi = ΩijC ψ̄T
j (A.15)

where i, j = 1 . . . N and Ωij is a symplectic invariant metric.
All this is summarised in the following table.

Table 1: Spinor representations in various dimensions [36, 37]

Dimension 2 3 4 5 6 7 8 9 10 11
Real spinor dim. 4 4 8 8 16 16 32 32 64 64
Chiral spinors yes - yes - yes - yes - yes -
Reality condititon real real compl. psreal psreal psreal compl. real real real
Majorana spinors yes yes yes - - - yes yes yes yes
Ch. M. spinors yes - - - - - - - yes -
Min. spinor dim. 1 2 4 8 8 16 16 16 32 64

For the special case of D=5 we adopt the conventions of [20]57 in
which the Dirac algebra is given by

ΓM =

((

0 σm

σ̄m 0

)

,

(

−i 0
0 i

))

. (A.16)

57In D=4 they agree with [21] as ours do.
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The spinors are chosen in a pseudoreal representation with the
antiautomorphism group USp(2) (cf. [37]) leading to symplectic Ma-
jorana spinors ψi with the symplectic Majorana condition

ψi = εijC
(

ψ̄j
)T

(A.17)

where ψi, i = 1, 2 transforms under SU(2)R. Here, the symplec-
tic metric is just εij. The charge conjugation C can be chosen as
C =diag(iσ2, iσ2).

To be able to express D=5 supersymmetry in 4D superfields as
it is done in [19, 20] and reviewed in Chapter 4.1, it is necessary to
express D=5 symplectic Majorana spinors in terms of D=4 spinors
which can be established by the the decomposition

ψ1 =

(

(ψL)α

(ψ̄R)α̇

)

, ψ2 =

(

(ψR)α

−(ψ̄L)α̇

)

, ψ̄1 =

(

(ψR)α

(ψ̄L)α̇

)T

, ψ̄2 =

(−(ψL)α

(ψ̄R)α̇

)T

.

(A.18)

B Useful Identities

In the following section, some identities are listed which are used fre-
quently throughout this diploma thesis. Most of them can be found in
[21, 41] or follow by simple calculation.

B.1 4D Spinor Algebra

σm
αα̇σ̄

nα̇β = −ηmnδβ
α + 2(σmn) β

α (B.1)

σ̄mα̇ασn
αβ̇

= −ηmnδα̇
β̇

+ 2(σ̄mn)α̇
β̇

(B.2)

Tr(σmσ̄n) = −2ηmn (B.3)

σm
αα̇σ̄

β̇β
m = −2δβ

αδ
β̇
α̇ (B.4)

(σm)αα̇(σm)ββ̇ = −2εαβεα̇β̇ (B.5)

(σmσ̄n + σnσ̄m) β
α = −2ηmnδβ

α (B.6)

(σ̄mσn + σ̄nσm)α̇
β̇

= −2ηmnδα̇
β̇

(B.7)

(σmn) β
α εβγ = (σmn) β

γ εβα (B.8)

εmnrsσrs = −2iσmn, εmnrsσ̄rs = 2iσ̄mn (B.9)
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B.2 Identities involving θ’s, D’s and Super-
space Integrals

Let θα and θ̄α̇ be spinorial Grassmann variables.

θαθβ = −1
2ε

αβθθ , θαθβ = 1
2εαβθθ

θ̄α̇θ̄β̇ = 1
2ε

α̇β̇ θ̄θ̄ , θ̄α̇θ̄β̇ = −1
2εα̇β̇ θ̄θ̄

(B.10)

For convenience, we write σn
αα̇∂n = ∂αα̇, σn

αα̇vn = vαα̇, . . . on which
indices are raised and lowered by the ε-tensors, keeping in mind (A.5).
Then, the definition of the right supersymmetry generating operators
Dα and D̄α̇(2.7) read

Dα = ∂α + i∂αα̇θ̄
α̇ , D̄α̇ = −∂α̇ − iθα∂αα̇ (B.11)

where ∂α = ∂
∂θα and ∂α̇ = ∂

∂θα̇ are defined by

∂αθβ = δα
β , ∂αθ

β = δβ
α

∂α̇θβ̇ = δα̇
β̇

, ∂α̇θ
β̇ = δβ̇

α̇ .
(B.12)

Therefore

∂α = −εαβ∂β , ∂α̇ = −εα̇β̇∂β̇ (B.13)

and

Dα = −∂α + i∂α
α̇θ̄

α̇ , D̄
α̇

= +∂α̇ − iθα∂ α̇
α . (B.14)

From the D’s and D̄’s, a group of operators including projection
operators on (anti-)chiral fields can be constructed [21]:

P1 =
D2D̄

2

162
, P2 =

D̄
2
D2

162
PT = −DD̄

2
D

82
= −D̄D2D̄

82

P+ =
D2

42
1
2

, P− =
D̄

2

42
1
2

. (B.15)

Here P1 is a projector on chiral fields, P2 is a projector on anti-
chiral fields and PT is a projector on the so-called transverse super-
field.58 They fulfill

P1 + P2 + PT = 1 . (B.16)

The whole multiplication table reads

58another irreducible superfield
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P1 P2 P+ P− PT

P1 P1 0 P+ 0 0
P2 0 P2 0 P− 0
P+ 0 P+ 0 P1 0
P− P− 0 P2 0 0
PT 0 0 0 0 PT

where the elements from the first column are multiplied with the ele-
ments of the first row.

Further relations for the D’s are:

1

2
[Dα, D̄α̇] = −D̄α̇Dα − i∂αα̇

1

4
[Dα, D̄

2
] = −i∂αα̇D̄

α̇

1

4
[D̄α̇,D

2] = iDα∂αα̇

1

8
[D2

, D̄
2
] = −iDα∂αα̇D̄

α̇
+ 22

D2D̄
2
D2 = 162D2

D̄
2
D2D̄

2
= 162D̄

2

(B.17)

As the D’s are spinorial differential operators, there is a generalised
Leibnitz rule for them, acting on superfields:

Dα(FG) = (DαF )G± F (DαG) (B.18)

and therefore

D2(FG) = (D2F )G + F (D2G) ± 2(DF )(DG)

D̄
2
(FG) = (D̄

2
F )G + F (D̄

2
G) ± 2(D̄F )(D̄G)

(B.19)

with + for a grassmann-even and − for a grassmann-odd superfield
F .

An important yet obvious property of Dα concerning superspace
integration is that

∫

d4xDαF =

∫

d4x∂αF + surface terms . (B.20)

Using
∫

d4θ∂αF = 0 (B.21)

as a consequence of the definition of the Grassmann integral, one finds,
that

∫

d8zDαF =

∫

d8zD̄α̇F = 0 (B.22)
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up to surface terms. From this, we get a rule for partial integration
and some relations following from it:

∫

d8zFDαG = ∓
∫

d8z(DαF )G
∫

d8zFD2G =

∫

d8z(D2F )G
∫

d8FDD̄
2
DG =

∫

d8(DD̄
2
DF )G

∫

d8FD2D̄
2
G =

∫

d8(D̄
2
D2F )G .

(B.23)

For calculations of Feynman supergraphs the action of D’s (ap-
pearing in vertices and propagators) on δ8(z1 − z2) ≡ δ812 (appearing
in propagators) is important. Some identities in coordinate space are

D1αδ
8
12 = −D2αδ

8
12

D̄1α̇δ
8
12 = −D̄2α̇δ

8
12

D2
1δ

8
12 = D2

2δ
8
12

D̄
2
1δ

8
12 = D̄

2
2δ

8
12

D2
1D̄

2
1δ

8
12 = D̄

2
2D2

2δ
8
12

D̄
2
1D2

1δ
8
12 = D2

1D̄
2
2δ

8
12

...

(B.24)

Here, properties of δ(x1 − x2)-distributions like ∂l1δ(x1 − x2) =
−∂l2δ(x1 − x2) have been used.

Combining this with (B.23) leads to

(D1αδ
8
12)δ813δ

8
14 = δ812(D1αδ

8
13)δ814 + δ812δ

8
13(D1αδ

8
14)

(D2
1δ

8
12)δ813δ

8
14 = δ812(D2

1δ
8
13)δ814 + δ812δ

8
13(D2

1δ
8
14) + δ812(Dα

1 δ
8
13)(D1αδ

8
14)

...

(B.25)

By simple calculation, one also find the following identities for D’s
acting on δ412 = δ(θ1 − θ2)δ(θ̄1 − θ̄2):

D2
1δ

4
12 = −4e−i(θ1−θ2)σm∂m θ̄1

D̄
2
1δ

4
12 = −4eiθ1σm∂m(θ̄1−θ̄2)

D̄
2
1D2

1δ
4
12 = 16ei(θ1σm∂m θ̄1+θ2σm∂m θ̄2−2θ1σm∂m θ̄2)

D2
1D̄

2
1δ

4
12 = 16e−i(θ1σm∂m θ̄1+θ2σm∂m θ̄2−2θ2σm∂m θ̄1) .

(B.26)
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Two identities which will be used to rewrite the chiral action in
Chapter 3.3 are derived by using the above relations as well as the
projectors on chiral fields (B.15):

∫

d8z
1

2
mΦΦδ(θ̄) =

∫

d8z
1

2
mΦ

(

D̄
2
D2

162
Φ

)

δ(θ̄)

=

∫

d8z
1

2
mΦ

D2

162
Φ · (−4) + spacetime derivatives

=

∫

d8z

(

−Φ
mD2

82
Φ

)

+ spacetime derivatives .

(B.27)

Analogously for anti-chiral fields:

∫

d8z
1

2
mΦ̄Φ̄δ(θ) =

∫

d8z

(

−Φ̄
mD̄

2

82
Φ̄

)

+ spacetime derivatives

(B.28)
In order to get D-algebra rules in momentum-space,

a Fourier transformation on xi is performed, i.e. using

δ(x1 − x2) =
∫ d4p

(2π)4
exp[−ip(x1 − x2)], the identities (B.24) be-

come

D1αδ
4
12e−ip(x1−x2) = −D2αδ12eip(x1−x2)

D̄1α̇δ
4
12e−ip(x1−x2) = −D̄2α̇δ12eip(x1−x2)

D2
1δ

4
12e−ip(x1−x2) = D2

2δ12eip(x1−x2)

D̄
2
1δ

4
12e−ip(x1−x2) = D̄

2
2δ12e−ip(x1−x2)

D2
1D̄

2
1δ

4
12e−ip(x1−x2) = D̄

2
2D2

2δ12e−ip(x1−x2)

D̄
2
1D2

1δ
4
12e−ip(x1−x2) = D2

1D̄
2
2δ12e−ip(x1−x2)

...

(B.29)

In order to do calculations in momentum space only, the D-
operators can be Fourier transformed, too. Definition (2.7) in p-space
read:

Dα(p) = Dα(p, θ, θ̄) = ∂α + pαα̇θ̄
α̇

D̄α̇(p) = D̄α̇(p, θ, θ̄) = −∂α̇ − θαpαα̇

(B.30)

with the anticommutation relations

{Dα(p1),Dβ(p2)} = 0 = {D̄α̇(p1), D̄β̇(p2)}
{Dα(p1), D̄β̇(p2)} = −2(p1 − p2)αα̇δ

4(θ1 − θ2) .
(B.31)

80



With the definitions (B.30), we get further relations from (B.17):

[Dα(p1), D̄α̇(p2)] = −2{D̄α̇(p2)Dα(p1) + (p1 − p2)αα̇}δ4(θ1 − θ2)

[Dα(p1), D̄
2
(p2)] = −2(p1 + p2)αα̇D̄

α̇
(p2)δ4(θ1 − θ2)

[D̄α̇(p1),D2(p2)] = 2Dα(p2) · (p1 + p2)αα̇δ
4(θ1 − θ2)

[D2(p1), D̄
2
(p2)] = 4

{

(p1 + p2)2

+ Dα(p1) · (p1 + p2)αα̇D̄
α̇
(p2)

}

δ4(θ1 − θ2)

D2(p1)D̄
2
(p2)D2(p1) = −4(p1 + p2)2D2(p1)δ4(θ1 − θ2)

D̄
2
(p2)D2(p1)D̄

2
(p2) = −4(p1 + p2)2D̄

2
(p2)δ4(θ1 − θ2)

(B.32)

as well as the action of the D(p)’s on δ-distributions from (B.24):

Dα(p1)δ412 = −Dα(−p2)δ412

D̄α̇(p1)δ412 = −D̄α̇(−p2)δ412

D2(p1)δ412 = D2(−p2)δ412

D̄
2
(p1)δ412 = D̄

2
(−p2)δ412

D2D̄
2
(p1)δ412 = D̄

2
D2(−p2)δ812

D̄
2
D2(p1)δ412 = D2D̄

2
(−p2)δ812

... .

(B.33)

These relations will be used in Chapter 3.3 to shift D’s from one
vertex to another, leading to the so called transfer rules.

From (B.26) and (B.30) also follows that

δ412D2
1D̄

2
1δ

8
12 = δ412D̄

2
1D2

1δ
8
12 = δ412D1D̄

2
1D1δ

8
12 = 16δ812 (B.34)

which will be used to reduce loops in Feynman graphs to points in
θ-space.

C Integrals for Dimensional Reduc-

tion

In this appendix we give the integrals we used for dimensional reduc-
tion in the limits D=4 and D=5. As we deal with scalar superfields
only, dimensional reduction does not differ from dimensional regular-
isation.59

59For the original papers cf. [42, 43]. The scalar integrals we need are discussed in most
of the textbooks on Quantum Field Theory (at least for D=4). We used [38, 33, 44].
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The basic integral we need is

µ4−D

∫

dDl

(2π)D

1

(l2 +M)n
=

i

16π
(4πµ2)

4−D
2

Γ(n− D
2 )

Γ(n)
M

D
2
−n (C.1)

From it, one can read off the scalar one-point integral

A0(m) ≡ 16π2

i
µ4−D

∫

dD

(2π)D

1

(l2 +M)

i

16π2
A0(m)

= (4πµ2)
4−D

2 Γ(1 − D

2
)M

D
2
−1 .

(C.2)

We furthermore need the scalar two-point integral

B0(p2;m0,m1) ≡ 16π2

i
µ4−D

∫

dDk

2πD

1

(k2 +m2
0)((k + p)2 +m2

1)
(C.3)

It can be calculated from (C.1) with n = 2 by using the Feynman
parametrisation

B0(p2;m0,m1) =
16π2

i
µ4−D

∫

dDl

2πD

1
∫

0

dx
1

(l2 +M)2
(C.4)

with

l = k + px

M = (−p2x2 + (p2 +m2
1)x +m2

0(1 − x)) .
(C.5)

(C.1) yields

B0(p2;m0,m1) = (4πµ2)
4−D

2
Γ(2 − D

2 )

Γ(2)

1
∫

0

dxM
D−4

2 . (C.6)

Furthermore we use an identity for the two-point tensor integral

Bn(p2;m0,m1) ≡ 16π2

i
µ4−D

∫

dDk

2πD

kn

(k2 +m2
0)((k + p)2 +m2

1)
(C.7)

Using Lorentz decomposition it can be shown that

Bn(p2;m0,m1) =
pm

2p2

(

A0(m1) −A0(m0) − (p2 +m2
1 −m2

0)B0(p2;m0,m1)
)

(C.8)
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For the special case of m0 = m1 it follows that

µ4−D

∫

dDk

(2π)D

pm + 2km

(k2 +m2
1)((k + p)2 +m2)

=
i

16π2

[

pmB0(p2;m,m) + 2Bm(p2;m,m)
]

= 0

(C.9)

For D=4, the Γ functions in the integrals A0 and B0 have a pole
and A0 and B0 therefore diverge. To isolate the divergences, the ex-
pressions are expanded in δ = 4−D

2 , using Γ(δ) = 1
δ−γE+O(δ) with the

Euler constant γE = 0.577 . . . . In what follows, ∆ ≡ 1
δ − γE + ln 4π.

The results are (cf. e.g. [33])60

lim
D→4

A(0) = 0 (C.10a)

lim
D→4

A(m) = m2(∆ − ln
m2

µ2
) +O(δ) (C.10b)

lim
D→4

B0(p2;m0,m1) = ∆ + 2 − ln
m0m1

µ2

− m2
0 −m2

1

p2
ln
m1

m0
+
m0m1

p2

(

1

r
− r

)

ln r ,

where r =
p2 +m2

0 +m2
1 ±

√

(p2 +m2
0 +m2

1)2 − 4m2
0m

2
1

2m0m1

(C.10c)

lim
D→4

B0(p2;m,m) =

= ∆ + 2 − ln
m2

µ2























√

1 − 4m2

p2



ln
1+

√

1+ 4m2

p2

1−

√

1+ 4m2

p2

− iπ



 for − p2 > 4m2

2
√

−4m2

p2 − 1 arctan

[

(

−4m2

p2 − 1
)1/2

]

for − p2 ≤ 4m2

(C.10d)

lim
D→4

B0(p2; 0, 0) = ∆ + 2 − ln
−p2

µ2
+O(δ) (C.10e)

lim
D→4

B0(0;m,m) = ∆ + 2 − ln
m2

µ2
+O(δ) , (C.10f)

60The special cases for B0, namely m0 = m1, m0 = m1 = 0 and (p = 0,m0 = m1)
cannot be read off from the general solution in 4D but have to be calculated from (C.6).
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In D=5, only Γ(− 1
2) = −2

√
π and Γ(− 3

2) = 4
3

√
π appear in the

integrals we need for dimensional regularisation. Therefore no diver-
gences occur.

The 5D integrals can directly be calculated from (C.2) and (C.6).
In this thesis we only need the results for A0(m) and B0(−M2, 0, 0)

A0(m) =
2

3
π
m3

µ
(C.11a)

B0(−M2, 0, 0) = −π
8

M
µ

(C.11b)
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