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Abstract

In this thesis we calculate supersymmetry breaking scalar masses in two different orbifold

models in five and six space-time dimensions. We perform the full five-/six-dimensional

calculation. In five dimensions the result is infrared and ultraviolet finite. In six dimen-

sions a logarithmic ultraviolet divergence has to be cancelled by a brane counterterm.

The results are compared with a four-dimensional renormalisation group analysis.
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Zusammenfassung

In dieser Arbeit berechenen wir die supersymmetriebrechenden Massenparameter in zwei

verschiedenen Orbifoldmodellen in fünf und sechs Raumzeitdimensionen. Wir führen die

vollständige fünf- bzw. sechsdimensionale Rechnung durch. In fünf Dimensionen erhalten

wir ein infrarot- und ultraviolettendliches Ergebnis. In sechs Dimensionen benötigen

wir einen “Brane Counterterm”, um eine ultraviolette Divergenz zu absorbieren. Wir

vergleichen die Ergebnisse mit einer vier-dimensionalen Renormierungsgruppenanalyse.
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Chapter 1

Introduction

Is our world supersymmetric? In the simplest supersymmetric world, each particle has

a superpartner which differs in spin by 1/2 and is related to the original particle by a

supersymmetry transformation. Hence, supersymmetry links the fermionic to the bosonic

sector of the theory. Although there is as yet no experimental evidence for it, theories

with low energy supersymmetry have emerged as the strongest candidates for physics

beyond the standard model. But why is it generally believed that, at some energy scale,

there are deviations from the standard model at all? The standard model (SM) provides

a correct description of all microscopic nongravitational phenomena that we know of. It is

a gauge field theory of all known particles and their electroweak and strong interactions.

The standard model gauge group SU(3)c × SU(2)L × U(1)Y is spontaneously broken to

SU(3)c × U(1)EM by a nonvanishing vacuum expectation value (VEV) of a fundamental

scalar field, the Higgs field. Although no experiment is in conflict with the standard

model (except neutrino oscillations), there are some theoretical issues it fails to explain

which we briefly recall in the following.

Certainly a new framework will be required at the Planck scale MP = (8πGNewton)−1/2

= 2.4 × 1018GeV, where quantum gravitational effects become important. Suppose the

standard model to be an effective field theory defined below a cutoff scale Λ, beyond

which new ultraviolet physics sets in such that the effective low energy description is no

longer valid. But even as a low energy theory, the SM Higgs sector has two “naturalness”

problems. One is the gauge hierarchy problem associated with explaining the origin of

the electroweak scale when the natural cutoff is of the order unification or Planck scale

(∼ 1016 - 1018GeV). The second is the technical hierarchy problem. In the standard

model, the Higgs mass is subject to quadratically divergent radiative corrections of order

δm2
H ∝ Λ2 , where Λ is the ultraviolet cutoff of the theory. The “natural” value of the

Higgs mass is therefore O(Λ) instead of O(100 GeV). Since the mass correction is also

proportional to the corresponding Yukawa coupling, a weakly coupled scalar would not

necessarily suffer from this problem. In contrast to the fermionic case, there is no chiral
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6 Chapter 1. Introduction

symmetry to protect the scalar sector from obtaining these large corrections.

Supersymmetry provides a solution to the technical hierarchy problem, since all

quadratic divergences of the SM are cancelled by the corresponding diagrams with the

superpartners running in the loops.

The unification of all fundamental forces of nature is one of the great aims (if not

the aim) of high energy physics. The path to this unified scheme started with Maxwell’s

unification of electrostatics with magnetism and continued with the electroweak unifica-

tion of Glashow, Salam and Weinberg [1]. Inspired by these very successful theories and

the belief that the gauge couplings undergo renormalisation group evolution in such a

way that they meet at a point at a high scale, much effort has been put to find a grand

unified theory (GUT). A grand unified theory is a quantum field theory in which the

standard model gauge group is embedded into a larger simple gauge group like SU(5) [2],

SU(4) × SU(2) × SU(2) [3] or SO(10) [4]. From this simple gauge group the standard

model gauge group originates via spontaneous symmetry breaking. As pointed out in the

early 1980s [5], the minimal supersymmetric standard model (MSSM) allows for the unifi-

cation of the gauge couplings – in contrast to the standard model without supersymmetry.

The extrapolation of the low energy values of the gauge couplings using renormalisation

group running and the MSSM particle content shows that the gauge couplings unify at

the scale MG ∼ 3 × 1016 GeV [6].

Even though these theories are called grand unified theories, they do not include

gravity, which would of course be necessary to really obtain a unified picture of nature.

The inclusion of gravity is a very difficult task, since a no-go theorem forbids any direct

symmetry transformations between fields of different integer spin. This leaves supersym-

metric theories as the only field theoretical models [7], which might achieve a unification

of all forces. Since the supersymmetry algebra includes the space-time translation oper-

ator P µ, it includes the general coordinate transformations when it is gauged. Therefore

it is natural that a locally supersymmetric theory includes gravity (which then is called

supergravity or SUGRA). Supersymmetry does not only provide a framework to unify

all forces but also relates the exchange particles (bosons) to matter (fermions) via the

supersymmetry transformations. Since supergravity is not renormalisable, it cannot be

the fundamental theory of everything. But it can be regarded as the low energy effec-

tive theory of an underlying more fundamental theory. The only candidate for such an

underlying theory is superstring theory.

Besides the solution of the hierarchy problem and gauge coupling unification, there

are more hints pointing to supersymmetry. One of the most important successes of

supersymmetry is that it can provide a natural mechanism for understanding electroweak

symmetry breaking [8]. In the MSSM, the up-type Higgs soft mass-squared parameter is

driven to negative values via renormalisation group running due to the large top quark

Yukawa coupling. The minimum of the Higgs potential must break SU(2)L × U(1)Y ,
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which leads to a condition on the parameters of this potential. The condition m2
Hu

< 0 is

neither necessary nor sufficient for electroweak symmetry breaking, but it helps. Hence

the assumption of the “mexican hat” potential is more natural in the MSSM than in the

SM. Another important point is that supersymmetry can provide a natural candidate for

cold dark matter in the form of the lightest superpartner (LSP) if it is stable. All these

issues suggest that supersymmetry may indeed be a symmetry of nature and might soon

be directly discovered by experiment.

In supersymmetric theories a new question arises. A priori particles and their super-

partners are degenerate in mass which follows directly from the supersymmetry algebra.

If supersymmetric gauge field theories are to find realistic application in high energy

physics, both supersymmetry and gauge symmetry must be broken, because this mass

degeneracy is not observed and unbroken supersymmetry is ruled out. Although we know

that supersymmetry must be broken, the breaking mechanism is not yet understood and

depends on the form of the unknown underlying theory. But it is desirable that the break-

ing is of a certain type known as soft supersymmetry breaking, where soft means that

the quadratic divergences of the scalar self-energy still cancel. It can be shown that if a

renormalisable supersymmetric theory is broken spontaneously, i.e. that the Lagrangian

is supersymmetric but the vacuum state breaks supersymmetry, the corresponding terms

in the low energy effective Lagrangian are soft. However, in general only a subset of

all possible soft terms is realised in such a case. Hence the assumption of spontaneous

breaking puts constraints on the possible soft terms. In the simplest scenarios such

a spontaneous supersymmetry breaking can be achieved by the Fayet-Iliopoulos or the

O’Raifeartaigh mechanism. However, these mechanisms are not able to reproduce the

observed mass spectrum, since a generalised sum rule applies to such spontaneously bro-

ken theories such that the superpartner masses cannot be lifted to a phenomenologically

acceptable range. One way to circumvent this sum rule and to obtain a mass spectrum

that is in agreement with experiment is to assume that the theory can be split into at

least two sectors with no direct renormalisable couplings between them: The hidden

sector, in which supersymmetry is broken by a dynamical mechanism, and the visible

sector, which contains the standard model fields and their superpartners. Within this

framework, supersymmetry breaking is communicated from the hidden sector where it

originates, to the observable sector via suppressed interactions involving a third set of

fields, the messenger fields. A very natural way to achieve such a scenario is through

the introduction of additional spatial dimensions. These higher dimensional models are

motivated by string theories which require higher dimensional space-times, with the extra

dimensions being compactified with a small radius of compactification in such a way as

to make them consistent with the four-dimensional description we are familiar with. The

different sectors of the theory are then naturally given by four dimensional branes embed-

ded in the higher dimensional space-time. In the simplest case, the standard model fields
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are strictly confined to one brane, while supersymmetry is broken on another brane which

is separated in the extra dimension. This brane world scenario is a natural low energy

limit of string theory, if one of the extra dimensions is much larger than the others [9,10].

If this extra dimension is large compared to the higher dimensional Planck scale, the use

of only field-theoretic, and not intrinsically string theoretic, degrees of freedom can be

justified [11]. This field theory could be described as a five dimensional supergravity field

theory, perhaps with some additional bulk supermultiplets.

In this thesis we study a toy model in which we replace supergravity by a super-Yang-

Mills multiplet. This super-Yang-Mills multiplet in the bulk will serve as the messenger

field mediating supersymmetry breaking from the brane where the breaking originates,

to the brane to which the standard model fields are confined. The thesis is organised as

follows: In Chapter 2 we review a few basic properties of supersymmetric models, effective

field theory and orbifold compactifications. In Chapter 3 we calculate the supersymmetry

breaking mass of a specific model in five dimensions and compare the result with [12,

13], where the same quantity was calculated via a different approach. In Chapter 4 we

generalise the scenario of the five-dimensional case to six dimensions.



Chapter 2

Supersymmetry Breaking

2.1 Global Supersymmetry

The possible symmetries of the S-Matrix of a relativistic quantum field theory are strongly

restricted by the Coleman-Mandula theorem [14]. It states that, given some very gen-

eral assumptions, the only possible Lie algebra of symmetry generators is given by the

generators of the Poincaré group and an internal symmetry group.

Supersymmetry avoids the restrictions of the Coleman-Mandula theorem by extending

the structure of the Lie algebra to that of a graded Lie algebra. This graded Lie algebra

involves commutators as well as anticommutators and successfully embeds the Poincaré

group into its larger group structure without modifying the notions of local quantum

field theory. Haag, Sohnius and  Lopuszanski proved that the supersymmetry algebra is

the only graded Lie algebra of symmetries of the S-Matrix consistent with local quantum

field theory [15]. The supersymmetry algebra is given in Appendix B. The supersym-

metry generators Q, Q̄ transform as spinors in the ( 1
2
, 0) and (0, 1

2
) representation of the

Lorentz group and hence change the spin of the states they act on by 1/2. Therefore, the

irreducible representations of supersymmetry, the supermultiplets, contain both fermions

and bosons. Given the supersymmetry algebra, the supermultiplets can be constructed

systematically; this procedure is described e.g. in [16,17]. These supermultiplets by defi-

nition contain an equal number of bosonic and fermionic degrees of freedom, both in the

on-shell and off-shell case. The off-shell supersymmetry transformations represent the

supersymmetry algebra on the components of the multiplet, unconditionally and inde-

pendently of the dynamics, i.e. of a Lagrangian. Looking at the equations of motion for

the fields of a multiplet, they can be separated into two different classes, algebraic and

wave equations. The fields which are subject to algebraic equations are non-propagating

degrees of freedom and hence auxiliary fields, which are needed for the closure of the alge-

bra. These non-dynamical fields can be eliminated using their equations of motion which

9
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leads to the on-shell version of the supermultiplet. Nevertheless these auxiliary fields are

important for supersymmetry breaking since they play the role of order parameters as

we will see later.

In the construction of supersymmetric theories it is often convenient to work in the su-

perfield formalism where a superfield is equivalent to a supermultiplet for our purposes.

In this formalism, the supersymmetry algebra can be expressed entirely through com-

mutators when anticommuting spinorial parameters θα are introduced [17]. Superspace

generalises the notion of space-time and is the supersymmetry group supermanifold with

coordinates z = (x, θ, θ̄). Superfields are functions F (z) of superspace. The component

fields may always be recovered from superfields by power series expansion in θ- and θ̄-

coordinates. Since these coordinates anticommute, any power higher than θ2 vanishes

and the power expansion terminates. The superfield formalism exists for N = 1, d = 4

supersymmetry, where N = 1 refers to simple supersymmetry and d is the number of

space-time dimensions. Unfortunately there is no known way to generalise superfields

to higher space-time dimensions in full generality. Nevertheless some progress has been

made to formulate higher dimensional super Yang-Mills theories in this framework [18,19].

In this thesis we will work with component fields only.

The most important representations concerning this thesis are the chiral and the

vector superfields. A chiral superfield Φ = (φ, ψ, F ) contains a complex scalar φ, one two-

component chiral fermion ψ, and an auxiliary scalar field F . It is of phenomenological

interest as it can be seen as a supersymmetric generalisation of fermions as well as of

the Higgs bosons. The vector superfield V = (V a
µ , λ

a, Da) contains one gauge boson

V a
µ , a Majorana spinor λa (the gaugino) and a scalar auxiliary field Da. Here a labels

the gauge group generators. The vector superfield corresponds to the supersymmetric

generalisation of gauge bosons.

The interactions of supersymmetric theories are encoded in three functions of the

matter fields Φi: the superpotential W , the Kähler potential K and the gauge kinetic

function f . The superpotential W contains all the couplings necessary to describe all

interactions except gauge interactions, the Kähler potential determines the kinetic terms

of the chiral multiplet and the gauge kinetic function the kinetic terms for the vector

multiplet. Besides providing a non-canonical kinetic structure, the Kähler potential and

the gauge kinetic function can generate nonrenormalisable interactions as well.

Supersymmetry constrains the parameters of the Lagrangian since different terms

transform into each other under supersymmetry transformations. In addition to con-

straints from gauge invariance, W and f are further constrained to be holomorphic func-

tions of the fields, whereas the Kähler potential can be any real function. If we confine

our attention to renormalisable interactions only, the corresponding Lagrangian can be
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written as

Lint = −1

2
Wijψiψj +WiFi + c.c. (2.1)

where Wi = ∂W
∂φi
,Wij = ∂2W

∂φi∂φj
and the superpotential is generically given by

W = Yijkφiφjφk + µijφiφj. (2.2)

Y is dimensionless and µ has dimension of mass. Note that in superfield language we

could write the superpotential with the bosonic fields replaced by chiral superfields, giving

the same results for the couplings.

In globally supersymmetric theories the scalar potential is given by a sum of F -terms

and D-terms

V (φ, φ∗) = |Fi|2 +
1

2
DaDa (2.3)

where

F ∗
i =

∂W

∂φi
,

Da = −g
(
φ∗
iT

a
ijφj
)
.

(2.4)

The scalar potential is completely determined by the other interactions of the theory.

The F -terms are fixed by Yukawa couplings and fermion mass terms, and the D-terms

are fixed by the gauge interactions. T a is the generator of the considered gauge group.

The scalar potential is crucial for supersymmetry to be broken or unbroken respectively.

From the supersymmetry algebra it is easily derived that the energy can be written in

terms of the supersymmetry generators as follows:

P0 =
1

4

(
Q1Q̄1̇ + Q̄1̇Q1 + Q2Q̄2̇ + Q̄2̇Q2

)
. (2.5)

This operator is obviously positive semi-definite since 〈ψ|QQ̄|ψ〉 > 0 for any state

|ψ〉. Only states with a vanishing vacuum expectation value (VEV) are supersymmetric,

since Q̄|0〉 = 0 in this case. Therefore states with nonvanishing VEV (i.e. 〈V 〉 6= 0) break

supersymmetry spontaneously. This breakdown can be due to F - or D-term breaking (or

both), depending on which auxiliary field acquires a vacuum expectation value.

2.2 Supersymmetry in Higher Dimensions

In recent years the idea of additional compact space-time dimensions has become a popu-

lar feature in quantum field theories. Motivated by string theory the possibility of gauge

fields living in higher dimensions has been discussed to shed new light on long stand-

ing problems of particle physics such as the naturalness and hierarchy problem or the
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unification of gauge field theories with gravity. In order to be able to work with ex-

tra dimensions, we need to know how supersymmetric theories can be consistently built

in higher dimensions. Higher dimensional Lorentz algebras lead to different spinor rep-

resentations. Since supersymmetry by definition involves spinorial as well as tensorial

quantities, we have to know what spinors look like in higher dimensions. A short review

is given in Appendix C, in which we follow the lines of [16]. A more detailed discussion

can be found in [20]. Important for our discussion here is the complex dimension of the

spinor representation which is given by

D = 2d/2 for d even , (2.6a)

D = 2(d−1)/2 for d odd. (2.6b)

The increasing size of the spinor representations puts limits on the largest dimensions

which can possibly sustain supersymmetry at all. This is because dimensionally reduced

higher dimensional supersymmetric theories correspond to extended (N > 1) supersym-

metric theories in four dimensions. There are maximally extended theories, namely N = 4

super-Yang-Mills theory and N = 8 supergravity. These limits stem from the fact that

any multiplet of N -extended supersymmetry will contain particles with spin at least as

large as 1/4 N . The mass dimension of fields which describe particles increase with spin.

For spin ≥ 3/2 their presence requires the introduction of coupling constants with nega-

tive mass dimension which renders flat-space quantum field theories non-renormalisable.

In addition, gravity cannot be coupled consistently to particles with spin ≥ 5/2 which

leads to these well known limits. This translates to a limit on the total number of real

spinorial charges, which must not exceed 16 or 32 respectively. It is therefore of interest

to establish the smallest possible dimension of a spinor representation for a given space-

time dimension. There are two possible ways to reduce the number of dimensions of the

representation space. For even space-time dimensions we can impose chirality conditions,

since we have a non trivial Γd+1-matrix to form a projection operator. In this case the

number of dimensions can be halved. This is not possible for odd space-time dimensions

since in this case the Γd+1 ∝ �
. The other possible way to reduce the dimension is to

impose a reality or Majorana condition on the spinors. This can be done consistently

only in dimension one to four and in eight to twelve dimensions. Both conditions can be

simultaneously imposed only in dimension two and ten. Putting all the pieces together we

see immediately that the maximal space-time dimension for a supersymmetric Yang-Mills

theory is ten, for supergravity eleven.

In this thesis we concentrate on the case of one and two extra dimensions: In five-

dimensional space-time, the smallest spinor is a four component Dirac spinor with eight

real degrees of freedom. In the case of six dimensions, a chirality condition is possible and

we also have eight real degrees of freedom. Therefore a N = 1 supersymmetric theory in

d = 5, 6 corresponds to a N = 2 extended supersymmetry in four dimensions.
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2.3 Effective Field Theory

In higher dimensional theories the standard model gauge fields can interact only through

non-renormalisable interactions. This is because the gauge coupling in higher dimensions

has negative mass dimension. Therefore we have to treat these higher dimensional theo-

ries as effective theories with a cutoff Λ, which may be seen as the fundamental scale of

these theories. For the understanding of these higher dimensional theories it is therefore

important to know what we can learn from effective field theory. If widely separated

energy scales are involved, the low-energy dynamics of a theory can be studied indepen-

dently of the high-energy interactions [21]. Effective field theories are the appropriate

theoretical tool to describe low-energy physics (where low is defined with respect to the

cutoff Λ). These theories explicitly only take into account states with m < Λ while

the heavier excitations with M > Λ are integrated out from the action. This results

in a string of nonrenormalisable interactions between the light states which can be or-

ganised in a power expansion [22]. At a given order in this expansion, the low energy

theory is specified by a finite number of couplings, which allows for an order by order

renormalisation.

An effective field theory is characterised by some effective Lagrangian,

L =
∑

i

ciOi, (2.7)

where the Oi are operators constructed with the light fields. The information on any

heavy degrees of freedom is hidden in the couplings ci. The operators can be organised

according to their dimension, di, which fixes the dimension of the coefficients ci:

[Oi] = di → ci ∼ Λd−di , (2.8)

with Λ the cutoff of the theory and d the space-time dimension. At energies below Λ,

where the effective description is valid, the behaviour of the different operators is deter-

mined by their dimension. Three types of operators can be distinguished on dimensional

grounds. Operators with di < d are called relevant, operators with di = d marginal

and operators with di > d irrelevant. This classification corresponds to the suppression

by powers of 1/Λ as can be seen from Equation (2.8), e.g. the notion irrelevant means

highly suppressed at small energies. Nevertheless the irrelevant operators can be quite

important, since they contain the interesting information about the underlying dynamics

at higher scales.

2.4 Soft Supersymmetry Breaking

If supersymmetry exists it must be a broken symmetry, because an exact symmetry

would imply degenerate masses of particles and their superpartners which is ruled out by
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experiment. If supersymmetry is broken softly meaning that the quadratic divergences

still cancel, the superpartner masses can be lifted to a phenomenologically acceptable

range. One might wonder if there is any good reason why all of the superpartners of the

standard model particles can be heavy enough to have avoided discovery so far. There

is. All of the standard model particles would be massless in the absence of electroweak

symmetry breaking. In particular the masses of all quarks and leptons and of the W ±, Z0

bosons are given by a dimensionless coupling times the Higgs VEV, while the photon and

gluons are required to be massless by gauge invariance. Conversely all superpartners can

have mass terms in the absence of electroweak symmetry breaking.

Regardless if supersymmetry is explicitly or spontaneously broken in nature, there

should be an effective Lagrangian at the electroweak scale parameterised by a set of soft

supersymmetry breaking terms if the attractive features of supersymmetry are to be part

of physics beyond the standard model. This means that the effective Lagrangian can be

written as

L = LSUSY + Lsoft. (2.9)

For a review on the theory and experimental implications of the soft supersymmetrty

breaking Lagarangian see [23]. From an effective field theory point of view the basic

question is how to understand the explicit soft supersymmetry breaking encoded in the

effective Lagrangian as a result of spontaneous supersymmetry breaking in a more fun-

damental theory. But the mechanism of supersymmetry breaking and how it might be

implemented consistently within the (unknown) underlying theory is still not known.

The most straightforward approach is to look at spontaneous supersymmetry breaking

via a F - or D-term VEV at the TeV scale in the MSSM. But when looking at the particle

content of the MSSM it is easily seen that such a “visible sector” supersymmetry breaking

leads to a pattern of bosonic and fermionic masses which is experimentally excluded. This

can be inferred from the following sum rule for particles of spin J , the so called supertrace

relation
∑

m2
J=0 − 2

∑
m2
J=1/2 + 3

∑
m2
J=1 = 0, (2.10)

which is valid in the presence of tree level supersymmetry breaking. This sum rule holds

separately for each sector of quantum numbers, since the conservation of electric charge,

colour charge and global symmetry charges such as baryon and lepton number prevents

mass mixing between these sectors. For example consider the right-handed down type

quarks (charge -1/3 , colour e.g. red, baryon number 1/3 , lepton number 0) which

contribute to the sum 2 (m2
d + m2

s + m2
b) ∼ 2 · (5 GeV)2. Looking at the bosonic part of

the sum rule this implies that none of the bosons should have a mass of more than about

7 GeV which is certainly ruled out by experiment.
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The Hidden Sector Framework

Since all models with TeV scale supersymmetry breaking suffer from not generating suf-

ficiently large superpartner masses, alternatives to this simplest scenario have to be con-

sidered. In the hidden sector framework, supersymmetry breaking is communicated from

the hidden sector where it originates to the observable sector where the matter fields

live via suppressed interactions involving another set of fields, the messenger fields. The

results are effective SUSY breaking parameters in the observable sector. Because both,

the fundamental scale of supersymmetry breaking MS , and the scales associated with

the messenger interactions are much larger than the electroweak scale, renormalisation

group analysis is necessary in order to obtain the low energy values of the supersymmetry

breaking parameters. Many different phenomenologically viable models within this hid-

den sector framework have been considered in the past few years. They can be divided

into gravity mediation [24, 25], gauge mediation [26] and bulk mediation [27]. In grav-

ity mediation the supersymmetry breaking is mediated via (non-renormalisable) Planck

suppressed contact terms and as gravitational interactions are shared by all particles,

gravity might be a good candidate for the messenger field. In gauge mediation, new mes-

senger fields Si with standard model quantum numbers are introduced. Supersymmetry

is assumed to be broken dynamically such that non-zero F -term VEVs of the hidden

sector fields are generated. The spontaneous breaking of global supersymmetry implies

the existence of a massless Weyl fermion, the goldstino. The messenger fields couple to

the goldstino of the hidden sector, which generates non-zero FS terms. Supersymmetry

breaking is then communicated to the observable sector through radiative corrections

involving messenger field loops to the propagators of the observable fields. The feature

which makes these models very attractive is that the masses of the squarks and sleptons

depend only on their gauge quantum numbers, leading automatically to the degeneracy

of squark and slepton masses needed for the suppression of FCNC effects [28].

In bulk mediation, the hidden and observable fields live on different branes separated

in extra dimensions and supersymmetry breaking is mediated by fields living in the bulk

and propagating between the branes. In this thesis we will mainly concentrate on this last

case, where we have a super-Yang-Mills multiplet living in the bulk and supersymmetry

breaking is communicated via gauginos belonging to this super-Yang-Mills multiplet.

This is for obvious reasons often referred to as gaugino mediation [12, 13].

2.5 Orbifold Compactification

In all higher dimensional field theories, the extra dimensions have to be compactified in

some way to reproduce the four-dimensional world we live in. The simplest kind of com-

pactification in five dimensions would be to have the usual four-dimensional Minkowski
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space and the fifth dimension compactified on a circle. However, there is a serious draw-

back that makes such theories unsuitable as candidates for a physical theory. The problem

lies within the spinor representation in five dimensions. Unlike the four-dimensional case,

the Dirac spinor is an irreducible representation of the proper orthochronous Lorentz

group and not a reducible one. This implies that we cannot have a chiral Lorentz invari-

ant theory, which is unsuitable for the theory of weak interactions. One possible cure for

this problem is the introduction of an additional discrete space-time symmetry. In the

simplest case this results in the orbifold S1/ � 2, where the reflection symmetry y → −y
is introduced.

Formulating this more abstractly, the field theoretic orbifolding procedure is based

on a discrete symmetry group acting in physical space and in field space [29]. Consider

a higher dimensional quantum field theory defined on a manifold � 4 × C with both the

manifold C and the QFT possessing a symmetry under a discrete group K. The action

of K on the internal manifold C is geometrical,

K : (x, y) → (x, k[y]), (2.11)

where k[y] is the image of the point y under the operation k ∈ K with y the coordinates

of C. The action of K in field space is given by

K : Φi → R(k)ijΦj (2.12)

with Φ comprising all the fields of the theory and R(k) a matrix representation of the

symmetry group K. Declaring only field configurations to be physical which are invariant

under these two actions, we orbifold (or mod out) the theory by K. Modding out by just

the geometrical action results in a smaller physical space which is now C/K instead of

C. An orbifold is a space where K acts non-freely, i.e. the action of K has fixed points

(k(y) = y for some y ∈ C, k 6= 1). By freely we mean that non-trivial elements of K move

all points of C:

k[y] 6= y, ∀y ∈ C, ∀k 6= 1 ∈ K. (2.13)

When K acts in such a way, the space C/K is smooth and is again a manifold. In the non-

freely case the physical space C/K is not smooth having singularities at the fixed points.

Coming back to the simplest case of an orbifold S1/ � 2, fields living on this orbifold have

to be assigned a certain parity under the transformation of � 2. Fields with even parity

will have zero modes in addition to their Kaluza-Klein-towers whereas the zero modes of

fields with odd parity will be projected out. Therefore we can construct a theory, where

the left/right symmetry of the fermions constrained to an orbifold fixed point can be lifted

simply by assigning different parities to the left-/right-handed components of the Dirac

spinor. Additionally, as will be shown in the next chapter, this results in the reduction of

supersymmetry from N = 2 to N = 1 on the orbifold fixed points (remember that N = 1
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supersymmetry in five and six dimensions corresponds to N = 2 supersymmetry in four

dimensions).

Orbifold compactifications have also been used in the context of grand unified theo-

ries. Given the success of gauge coupling unification in supersymmetric extensions of the

standard model, theories which include both, supersymmetry and larger gauge groups,

are the most attractive candidates for effective theories below the Planck scale. The

basic idea is that such a grand unified theory naturally lives in higher dimensions and

the GUT gauge group is only broken down to the SM via symmetry violating boundary

conditions on an orbifold compactification. Such an orbifold GUT was first suggested by

Kawamura [30, 31]. He considered a SU(5)-GUT in five dimensions broken down to a

N = 1 supersymmetric model with standard model gauge group by a compactification

on S1/( � 2 × � ′
2). A more involved model of a supersymmetric orbifold GUT with gauge

group SO(10) was explored in [32, 33]. One of the advantages of grand unified theories

with gauge group SO(10) is that one generation of quarks and leptons, including the

right handed neutrino, fits into a single irreducible representation. Whereas the breaking

of SU(5) down to the standard model gauge group can be achieved in a five-dimensional

orbifold compactification, the breaking of SO(10) is more involved and favours a six-

dimensional space-time. The authors use the orbifold T 2/( � 2 × � GG
2 × � PS

2 ) to achieve

the breaking of the extended supersymmetry and of the GUT group SO(10).

In this thesis, we follow the lines of these orbifold GUTs and evaluate the supersym-

metry breaking mass term of matter fields living on one fixed point of an orbifold. In

the five-dimensional case we use the orbifold S1/ � 2. We only mod out the circle with

one � 2-transformation since we are not considering any specific gauge group here and

therefore do not need to care about a mechanism to break the gauge group down to the

standard model gauge group. We only want to break the unwanted extended supersym-

metry which results from dimensional reduction. For the same reason we use the orbifold

T 2/ � 2 in the case of six space-time dimensions.



Chapter 3

Gaugino Mediated SUSY Breaking

in a 5d Orbifold Model

In this chapter we want to calculate the supersymmetry breaking mass correction in a

five-dimensional theory. We study a toy model in which supergravity is replaced by a

super-Yang-Mills multiplet, living in a five-dimensional bulk. The setup of the theory

is the same as in [12]. The physical space is chosen to be R
4 × S1/Z2 with metric

ηµν = diag(1,−1,−1,−1,−1). The action of Z2 is given by the reflection symmetry

y → 2L − y. Such a space is known as an orbifold (see Section 2.5) and has two fixed

points, at y = 0 and y = L. These fixed points correspond to four-dimensional branes

embedded in the fifth dimension: the matter and the source brane, which correspond

to the visible and the hidden sector of the theory. The matter fields, quarks, leptons,

Higgs and their superpartners are localised on the matter brane whereas supersymmetry

is broken on the spatially separated source brane. While matter is strictly confined to

the orbifold fixed points the gauge bosons and gauginos can propagate through the bulk.

The main idea of gaugino mediated supersymmetry breaking is that the gauginos couple

to the source brane and become massive whereas the gauge bosons remain massless. In

contrast to the fermions the matter superpartners receive masses via loop contributions

through the bulk and hence supersymmetry breaking is mediated from the source brane

to the matter brane via these gaugino loop contributions.

3.1 Super-Yang-Mills Theory on R
4 × S1/Z2

In our theoretical setup, we have to couple the five-dimensional super-Yang-Mills multi-

plet to a four-dimensional boundary. A convenient strategy to see how this can be done

is to work in the off-shell formulation, including auxiliary fields [11].

The field content of the super-Yang-Mills multiplet, when extended to an off-shell

18
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multiplet by adding a SU(2)R-triplet Xa of auxiliary fields, is given by (AM ,Φ, ψi, Xa).

Here AM is a vector field, Φ a real scalar field and ψi a gaugino. The indices a, i are

internal SU(2)R indices with a = 1, 2, 3 and i = 1, 2. Note that off-shell the gauge field

has four and not five degrees of freedom, since one degree of freedom is removed by

a gauge-fixing condition. The symplectic Majorana spinors ψi are Dirac fermions and

satisfy the constraints

ψi = εijCψ̄Tj , (3.1)

with C the charge conjugation matrix given in Appendix C. This condition can conve-

niently be written as a decomposition of the 5d symplectic Majorana spinor ψi into two

4d Weyl spinors λL, λR:

ψ1 =

(
(λL)α
(λ̄R)α̇

)
, ψ2 =

(
(λR)α
−(λ̄L)α̇

)
, ψ̄1 =

(
(λR)α

(λ̄L)α̇

)T
, ψ̄2 =

(
−(λL)α

(λ̄R)α̇

)T
. (3.2)

The supersymmetry transformation laws for the fields of the super-Yang-Mills multi-

plet are given by [11]

δξA
M = iξ̄iγMψi,

δξΦ = iξ̄iψi,

δξλ
i =

(
σMNFMN − γMDMΦ

)
ξi − i (Xaσa)ij ξj,

δξX
a = ξ̄i (σa)ij γMDMψ

j − i
[
Φ, ξ̄i (σa)ij ψj

]
,

(3.3)

where the supersymmetry parameter ξi is a symplectic Majorana spinor. The members

of the multiplet are written as matrices in the adjoint representation of the gauge group,

AM = AMA TA, etc. The covariant derivative is defined to be DM ≡ ∂M − i [AM , · ] and

σMN ≡ 1/4
[
γM , γN

]
with γM the five-dimensional Dirac matrices. The Lagrangian of the

five-dimensional super-Yang-Mills multiplet left invariant under these transformations is

given by

L5 = −1

2
tr[(FMN )2] + tr(DMΦ)2 + tr(ψ̄iiΓ

MDMψ
i) + tr(Xa)2 − tr(ψ̄i[Φ, ψ

i]). (3.4)

Capital indices M,N run over {0, 1, 2, 3, 5}.

The minimal amount of supersymmetry in five dimensions corresponds to N = 2

extended supersymmetry in four dimensions. This complicates the coupling of higher

dimensional supersymmetric fields to four-dimensional ones. In order to break the un-

wanted N = 2 supersymmetry of the bulk gauge field to N = 1 supersymmetry at the

four-dimensional boundary, we compactify the extra dimension on the orbifold S1/ � 2. To

promote the Z2 symmetry of the orbifold to a symmetry of our theory, we have to specify

the Z2 parities of the component fields living in the bulk (leaving the bulk Lagrangian

invariant). The P assignments of the bulk fields can be chosen as follows:
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P = +1 P = -1

AM Am A5

Φ - Φ

ψi λL λR
Xa X3 X1,2

The � 2 breaks half of the supersymmetry by distinguishing the components of the

vector superfield. Only the fields with P = +1 are non-vanishing at the boundaries and

hence couple to the fields on the brane. In order to write couplings between the bulk

and brane fields we note that the N = 2 bulk fields with even parity with respect to the

branes correspond to a 4d vector multiplet, with Am, λL, and (X3 − ∂5Φ) as the vector,

gaugino, and auxiliary D field [11]. Therefore we can couple them to the boundary fields

in the same way as we would couple a four-dimensional N = 1 vector multiplet. The

action including fields on the boundaries can be written as

S =

∫
d5x
[
L5 + δ(y)Lm + δ(y − L)Ls

]
, (3.5)

with L5 the bulk Lagrangian for the five-dimensional super-Yang-Mills multiplet, Lm the

matter and Ls the source brane Lagrangian. Matter fields generalise to chiral super-

fields when working in a supersymmetric framework. This is the case since only chiral

supermultiplets can contain fermions whose left-handed parts transform differently under

the gauge group than their right-handed parts [28]. All of the standard model fermions

have this property, so they must be members of chiral superfields. Hence the boundary

Lagrangian of the matter brane should be the standard Lagrangian for a chiral model

built from supermultiplets (φ, ψ, F ) and coupled to a vector multiplet (A, λ,D):

Lm = Dmφ
†Dmφ+ ψ̄iσ̄mDmψ + F †F

−
√

2ig5(φ
†λLψ − ψ̄λ̄Lφ) + g5φ

†(X3 − ∂5Φ)φ .
(3.6)

Here the gauge fields (A, λ,D) were replaced by the boundary terms of the bulk fields

(Am, λL, X
3 − ∂5Φ).

The source brane Lagrangian is in general very complicated since it involves all the

fields necessary to break supersymmetry as well as couplings to the bulk gauge fields.

In this thesis we assume the leading supersymmetry breaking VEV to be a F -term of a

chiral superfield S living on the source brane at y = L. The leading term of the source

Lagrangian, which couples the chiral superfield S to the gauge fields living in the bulk is

of the form

Ls =
FS
M2

λαLλLα + h.c. + ... . (3.7)
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When integrating out the extra dimension for the zero mode, which leads to the light four-

dimensional gaugino, the resulting gaugino mass from the F -term of the chiral superfield

is given by

mλ =
FS

2LM2
. (3.8)

The factor of 1/(2L) originates from normalising the mass term relative to the kinetic term

making the kinetic term canonical again. The extra two in the denominator corresponds

to our definition of the orbifold propagator, where we will use a trick to extend the theory

to the whole circle again, though the physical space is given by the interval (0, L).

The calculation of the resulting supersymmetry breaking mass term on the mat-

ter brane is more involved. Since supersymmetry is by definition a symmetry between

fermions and bosons which results in degenerate masses, supersymmetry breaking can be

parameterised by the mass difference between the two species. We will concentrate on

the scalar self-energy first.

3.2 Self-Energy of the Scalar Field

The mass correction originating from higher order diagrams due to self-interactions of

the scalar field is expressed in terms of the function M 2(p2), the sum of all one-particle

irreducible diagrams with two external scalar lines. The full (interacting) propagator can

be expressed as a sum which forms a geometric series in this function M 2(p2). This means

the scalar propagator can be rewritten as

SF (p2) =
i

p2 −m2
0

+
i

p2 −m2
0

(−iM2)
i

p2 −m2
0

+ ...

=
i

p2 −m2
0 −M2(p2)

.

(3.9)

This propagator has two poles, which are shifted away from m0 by the M2(p2) term. The

physical mass is given by the location of these poles. Therefore the physical mass m can

be written as

m2 = m2
0 + δm2 = m2

0 +M2(p2 = m2) . (3.10)

Expanding M2(p2) around p2 = m2 we get

M2(p2) = δm2(m,m0,Λ) + (p2 −m2)
d

dp2
M2(p2)|p2=m2 + O(p2 −m2)2

= δm2 + (p2 −m2)
Z − 1

Z
+ O(p2 −m2)2

(3.11)

with Z the residue of the propagator known as field strength renormalisation. The last

step can easily be seen when comparing the exact two-point function

iZ

p2 −m2
+ (terms regular at p2 = m2) (3.12)
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to
i

p2 −m2
0 −M2(p2)

. (3.13)

The field strength renormalisation Z is particularly important when calculating S-matrix

elements. In general δm2 and Z can be infinite and the theory has to be renormalised.

In this thesis we are mainly interested in the mass correction δm2. To evaluate it we

can do an analogous expansion as in Equation (3.11):

δm2 = M2(m2) = M2(m0) + (m2 −m2
0)

d

dm2
M2(m2)|m2=m2

0
+ O(m2 −m2

0)2. (3.14)

When calculating the mass correction this way, we have to be careful to consistently keep

the right orders of the coupling constant g. To order α ∝ g2, the mass shift is

δm2 = M2(m2) = M2(m0). (3.15)

What does this mass correction look like in our specific model? Writing out the

boundary Lagrangian (3.6) we see that the scalar field φ couples to the auxiliary field X 3

through the term g5 φ
†(X3 − ∂5Φ)φ. Integrating out the auxiliary field results in [11]

Lm = Dmφ
†Dmφ+ ψ̄Li σ̄mDmψL + F †F −

√
2 ig5(φ

†λLψL − ψ̄Lλ̄Lφ)

− g5φ
†(∂5Φ)φ− 1

2
g5(φ

†tAφ)2δ(0) .
(3.16)

From this expression we can read off the couplings of the complex scalar field φ. The

Feynman diagrams contributing to the self-energy of this field to one-loop order are given

by

φ

A

+ + φ
ψ

λ

+

Φ

+

Figure 3.1: Feynman diagrams contributing to the φ self-energy at one-loop order.
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As long as supersymmetry is unbroken, the φ cannot obtain a mass in perturbation

theory. This means that all these diagrams sum up to zero. The corresponding calculation

is explicitly done in [11], where the δ(0)-term enters as a counterterm cancelling the

singular behaviour of the Φ exchange diagram.

Only the gaugino obtains a supersymmetry breaking mass via the F -term VEV located

on the source brane. To calculate the leading term of the scalar self-energy, M 2
2 (p2), we

therefore consider the gaugino loop diagram starting from the matter brane with gaugino

mass insertions on the source brane (see Figure 3.2). The subscript 2 of the self-energy

refers to two mass insertions. All other fields including the massless gaugino do not know

about supersymmetry breaking and therefore still sum up to zero.

×

×

“matter brane” “source brane”

λ

ψ

φ

x1

x2

x3

x4

Figure 3.2: Loop diagram through the bulk.

We need an even number of mass insertions on the source brane, since otherwise we

cannot combine the spinor structure of our propagators with the mass insertion vertices.

In order to calculate this one-loop contribution we need the corresponding Feynman

rules, which we have to derive from the Lagrangian. We start by considering the five-

dimensional gaugino propagator.

3.2.1 The Feynman Rules

In our case it is convenient to use mixed propagators, where the coordinate of the com-

pactified dimension is kept in configuration space whereas the coordinates of the other

four dimensions are Fourier-transformed to momentum space. Since the interactions are

restricted to the branes, the y-integration over the interaction point is trivial.
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To derive a suitable propagator, we start with the kinetic term in our five-dimensional

Lagrangian,

tr[ψ̄iiγ
M∂Mψ

i] . (3.17)

Using the condition for symplectic Majorana spinors (3.1), we express this in terms

of ψ1 only. Taking into account the properties of the charge conjugation matrix (see

Appendix C) and after an integration by parts, we finally obtain

2 tr[ψ̄1iγM∂Mψ
1] . (3.18)

We define the trace over two group generators as usual, tr [tAtB] = 1/2 δAB. The kinetic

term is then canonical and we do not have to rescale the fields.

Given the fermionic term in the Lagrangian and choosing the following representation

of the Dirac Algebra

γµ =

(
0 σµ

σ̄µ 0

)
, γ5 =

(
−i 0

0 i

)
, (3.19)

the Dirac equation is given by

(
∂5 iσµ∂µ

iσ̄µ∂µ −∂5

)
ψ = 0 . (3.20)

From here we can calculate the five-dimensional propagator defined by

(
∂5 iσµ∂µ

iσ̄µ∂µ −∂5

)
SF (x− x′, y, y′) = iδ4(x− x′)δ(y − y′)

�
, (3.21)

which is

SF (x− x′, y − y′) =

∫
d4p

(2π)4

∫
dp5

2π

i
(
/p + iγ5∂5

)

p2 − p2
5 + iε

e−ip·(x−x′) eip
5(y−y′)

=

∫
d4p

(2π)4

i
(
/p+ iγ5∂5

)

2χ
eiχ|y−y

′| e−ip·(x−x′)

(3.22)

where χ is simply
√
p2 + iε. The integration over p5 was done using the residue theorem.

Starting from this uncompactified propagator, we somehow have to incorporate the

additional requirements of periodicity and reflection symmetry. Here we follow the ap-

proach by Puchwein and Kunszt [34]. A periodic propagator can be obtained by summing

over all winding modes, where the propagator SF (q, y + 2Ln, y′), which is now Fourier
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transformed in the four flat dimensions, winds n times around the circle:

ScF (q, y, y′) =

+∞∑

n=−∞

SF (q, y + 2Ln, y′)

=
i(/q + iγ5∂5)

2χ

+∞∑

n=−∞

eiχ|y−y
′+2Ln|

= (/q + iγ5∂5)
i cosχ(L− |y − y′|)

2χ sinχL
.

(3.23)

This formula is valid for y, y′ ∈ [ 0, 2L) only. Therefore the periodic property of this

propagator is hidden, but evaluating the sum with y replaced by y + 2Ln we would

get exactly the same result. The radiative corrections for the masses are dominated by

high energy effects, which implies small distances. As can be seen from Equation (3.23),

contributions with n > 0 are exponentially suppressed after Wick rotation. Therefore

the small n contributions dominate by far over large n. This is an advantage over a

Kaluza-Klein decomposition, where this is not the case [35]. Nevertheless, we can do the

sum explicitly, so we do not have to think about possible approximations.

The action of the Z2-symmetry on the fermions is implemented via

P5 ψ(x, y) = iγ5 ψ(x, 2L− y) = ψ(x, y). (3.24)

Here we replaced −y by 2L − y as to make the theory well defined again since the

periodic propagator we found was valid only for y, y ′ ∈ [ 0, 2L). One could now use the

same trick as in Equation (3.23) to get the propagator of the orbifolded space. In addition

to applying the group of translations by 2L to the propagator and summing over it, one

would also sum the contributions obtained by acting with � 2. This procedure would

result in the physical interval y ∈ [0, L]. However, calculations can be simplified when we

extend the theory to the full circle. Both ways of defining the theory are equivalent, it is

just a matter of convenience when doing calculations. An easy way to find a propagator

satisfying the boundary condition (3.24) is to note that we can write our fermion field ψ

in terms of an unconstrained field χ as

ψ(x, y) =
1

2

(
χ(x, y) + iγ5 χ(x, 2L− y)

)
(3.25)

automatically satisfying (3.24). Note that since both y and −y appear in this equation,

the propagator depends on both, the difference y − y ′ and the sum y + y′.

Putting everything together we see that both requirements are achieved by the fol-
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lowing propagator for a Dirac fermion ψ:

SorbF (q, y, y′) =
1

2

(
ScF (q, y, y′) + iγ5 ScF (q, 2L− y, y′)

)
,

= (/q + iγ5∂5)
i
[

cosχ(L− |y − y′|) − iγ5 cosχ(L− (y + y′))
]

4χ sinχL
,

(3.26)

where ScF (q, y, y′) is the Dirac propagator calculated above satisfying just the condition

of periodicity.

Since the gaugino loop we want to calculate starts and ends on a brane, we only need

the following special cases of the gaugino propagator:

SorbF (q, 0, L) = SorbF (q, L, 0) =
iPL6q

2χ sinχL
, (3.27a)

SorbF (q, L, L) = iPL

(6q cosχL

χ sinχL
+ 1

)
. (3.27b)

Now we turn to the vertices necessary in order to calculate the mass corrections. To

consistently read off the Feynman rules, we have to express the mass interaction term

(3.7) in terms of the Dirac fermion ψ1 instead of the Weyl spinor λL. This is easily done

via the condition for symplectic Majorana spinors (3.1). Note that we need both terms in

the Lagrangian to consistently write down the expression for our loop integral. Replacing

Weyl by Dirac spinors we obtain:

(λL)α (λL)α = −ψ̄2PLψ
1 =

(
ψ1
)T
C−1PLψ

1, (3.28a)
(
λ̄L
)
α̇

(
λ̄L
)α̇

= −ψ̄1PRψ
2 = ψ̄1CPR

(
ψ̄1

)T
. (3.28b)

The projection operators PL/R and the charge conjugation matrix C commute, cf. Ap-

pendix C. The correct expression for the mass insertion for a Dirac spinor is given by

× =

{
iFS/M

2 C−1 PL δ(y − L) (ψ) ,

iFS/M
2 C PR δ(y − L) (ψ̄) .

Here the vertex is proportional to PR or to PL, depending on between which fields we

insert this mass vertex.

The vertex between λL, ψ and φ comes from the following term in our boundary

Lagrangian (3.6), where we replace the Weyl spinor λL by the Dirac spinor ψ1 again:

Lm ⊃ −
√

2ig5

(
φ† (λL)α (ψL)α − (ψ̄L)α̇

(
λ̄L
)α̇
φ
)

= −
√

2 ig5

(
φ†ψTPLCψ

1 + ψ̄1PRCψ̄
Tφ
)
.

(3.29)
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From here we can now easily read off the Feynman expression for the vertex:

=

{ √
2g5PLCδ(y) (ψ) ,

√
2g5PRCδ(y) (ψ̄) .

3.2.2 The Loop Integral

In coordinate space we have to integrate over all possible space-time points for each

vertex. Since every vertex comes with a delta distribution δ(y − y ′), the y-integration

collapses and we only have to integrate over the uncompactified dimensions. A first

approximation for the massive gaugino propagator would be to use the minimal number

of mass insertions, in our case two. The self-energy in coordinate space with two mass

insertions, with ψ the superpartner of φ and Pψ(x, x′) the corresponding propagator is

given by (cf. Figure 3.2):

−iM2
2 (x1 − x2) =2g2

5

(
FS
M2

)2 ∫
d4x3d4x4 tr

[
PRC (Pψ(x1, x2))

T PLCS
orb
F (x1, x3, 0, L)

× CPR
[
SorbF (x3, x4, L, L)

]T
C−1PLS

orb
F (x4, x2, L, 0)

]

= − 2g2
5

(
FS
M2

)2 ∫
d4x3

∫
d4x4

∫
d4l

(2π)4 tr

[
i

/l + iε
e−il·(x1−x2)

∫
d4q

(2π)4

×
iPL/q

2χq sinχqL
e−iq·(x1−x3)

∫
d4m

(2π)4

iPR /m cosχmL

2χm sinχmL

× e−im·(x3−x4)

∫
d4n

(2π)4

iPL/n

2χn sinχnL
e−in·(x4−x2)

]

= − 2g2
5

(
FS
M2

)2 ∫
d4l

(2π)4

i

l2 + iε

∫
d4q

(2π)4

i

2χq sinχqL

i cosχqL

2χq sinχqL

× i

2χq sinχqL
e−i(l+q)·(x1−x2) tr

[
/lPL/q/q/q

]
. (3.30)

Here χp =
√
p2 + iε with p the corresponding momentum. Note that a closed fermion

loop contributes a factor of −1 since fermionic fields anticommute. We used the properties

of the charge conjugation matrix. Fourier transforming to momentum space,

M2(p2) =

∞∫

−∞

d4x eip·xM2(x) , (3.31)
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we get a delta distribution δ(p− l − q), thus the l-integral collapses and we are left with

−iM2
2 (p2) = − 2g2

5

(
FS
M2

)2 ∫
d4q

(2π)4

cosχqL

8χ3
q sin3(χqL)[(p− q)2 + iε]

tr
[
PR(/p− /q)/q/q/q

]
.

(3.32)

Unfortunately this expression has an infrared divergence, but we will see that this diver-

gence only results from approximating the massive gaugino propagator with two mass

insertions. We obtain a finite result when we consider the correct one-loop diagram which

is the sum of all diagrams with all different numbers of mass insertions. The correspond-

ing gaugino propagator can be written diagrammatically as

× × + × × × × + · · ·

= × × · ( 1 + × × + · · · ) .

We can evaluate the sum over all mass insertions explicitly as a formal geometric

series, the only propagator involved is SorbF (q, L, L). Note that the constant part of the

propagator does not contribute, because it is always sandwiched between PR and PL.

The sum over all additional terms is given by

∞∑

n=0

[(
FS
M2

)2
(
q2 cos2(χqL)

4χ2
q sin2(χqL)

)]n
=

[
1 −

(
FS
M2

)2
(
q2 cos2(χqL)

4χ2
q sin2(χqL)

)]−1

. (3.33)

Performing the trace (cf. Appendix A)

tr
[
PR(/p− /q)/q/q/q

]
= 2q2q · (p− q) (3.34)

and then Wick rotating our expression in order to be able to use spherical coordinates

we obtain

M2(p2) = 2g2
5

(
FS
M2

)2 ∫
d4q

(2π)4

q · (p− q) cosh qL

4q sinh3(qL)(p− q)2

[
1 +

(
FS
M2

)2(
cosh2(qL)

4 sinh2(qL)

)]−1

= 2g2
5

(
FS
M2

)2 ∫
d4q

(2π)4

q · (p− q) coth(qL)

4q(p− q)2

[
sinh2(qL) +

1

4
cosh2(qL)

(
FS
M2

)2
]−1

.

(3.35)

This expression is now well defined even for q and p equal to zero. Now we can

calculate the mass correction to order α with the help of Equation (3.15):

δm2 = M2(m0) = M2(0) . (3.36)
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We find

δm2 =
g2
5

16π2

(
FS
M2

)2
∞∫

0

dq q2 coth(qL)

[
sinh2(qL) +

1

4
cosh2(qL)

(
FS
M2

)2
]−1

. (3.37)

Because we cannot perform the integration in a closed form, we have to make a suitable

expansion. This will be done in the following section.

3.2.3 Perturbative Evaluation of the Loop Integral

To evaluate this mass correction, we first look at the denominator of the loop integral,

∞∫

0

dq
q2 coth(qL)

sinh2(qL) + a2 cosh2(qL)
=

1

L3

∞∫

0

dt
t2 coth(t)

sinh2(t) + a2 cosh2(t)
(3.38)

with a2 = F 2
S/4M

4. Depending on the loop momentum, one term will dominate the

other. Therefore we will split up the integral into two parts and write a perturbative

expansion.

I(a) = Iε(a) + I∞(a) =

ε∫

0

dt
t2 coth(t)

sinh2(t) + a2 cosh2(t)
+

∞∫

ε

dt
t2 coth(t)

sinh2(t) + a2 cosh2(t)
(3.39)

with ε = arccoth a. This choice ensures that in the first integral the a2-term is always

bigger whereas in the second integral it is always smaller than the other term. Consider

first the integral I∞. Here we can expand the denominator as follows:

1

sinh2(t) + a2 cosh2(t)
=

1

sinh2(t)

∞∑

n=0

(−1)na2n cosh2n(t)

sinh2n(t)
(3.40)

Now we can integrate term by term. Starting with the n = 0-term, we obtain the following

expression for I∞(a)

I0
∞(a) =

[
−t coth(t) − t2

2 sinh2(t)
+ ln[sinh(t)]

]∞

ε

=

(
ln(1/2) +

√
1 + a2

a
arcsinh(a) +

1

2a2
arcsinh2(a) − ln(a)

)
.

(3.41)

For small a, arccoth(a) ∼ a and hence this expression simplifies to

I0
∞(a) ∼

(
ln(1/2) +

3

2
− ln(a)

)
. (3.42)



30 Chapter 3. Gaugino Mediated SUSY Breaking in a 5d Orbifold Model

The next order calculation yields for small a

I1
∞ = −1

2
+ O(a). (3.43)

All other orders give a contribution

In∞ =
1

2
(−1)n/n+ O(a) . (3.44)

We can sum up all n > 0-contributions yielding

∞∑

n=1

In∞ =
1

2

∞∑

n=1

(−1)n

n
=

1

2
ln(1/2) . (3.45)

Therefore the full result up to O(a) is given by

I∞(a) = − ln(a) +
3

2

(
1 + ln(1/2)

)
. (3.46)

Now we turn to the integral Iε, where we do an analogous expansion as in the case

just considered. The result is given by

Iε =
1

2

∞∑

n=1

(−1)n+1

n
=

1

2
ln(2) (3.47)

plus higher order terms in a. Hence the mass correction up to terms constant in a is

given by

δm2 =
g2
5

16π2

(
FS
M2

)2
1

L3

(
− ln

(
FS

2M2

)
+

3

2

(
1 + ln(1/2)

)
− 1

2
ln(1/2)

)

=
g2
4

2π2
m2
λ

(
− ln (2mλL) +

3

2

) (3.48)

where we used (3.8) and the following relation between the coupling constants in four

and five dimensions:
1

g2
4

=
2L

g2
5

. (3.49)

The leading term for small value of FS/M
2 = 2mλL is clearly given by the logarithmic

term.

3.2.4 The High Momentum Approximation and

Four-Dimensional Renormalisation Group Running

A different approach to evaluate the scalar mass correction is pursued in [12]. The

authors notice that the theory behaves differently depending on the energy in question:
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The theory is five-dimensional for scales larger than the compactification scale 1/L and

effectively four-dimensional for smaller scales. The effective four-dimensional theory is

obtained by integrating out the extra dimension at the compactification scale and contains

the zero modes of the bulk fields. Therefore the approach in [12] is, to perform the integral

given above (3.37) with the compactification scale as an infrared cutoff. This gives the

scalar mass correction at the compactification scale. Of course the infrared cutoff renders

the expression infrared insensitive. Therefore no infrared divergence shows up in [12]

and the gaugino propagator does not have to be resummed. Nevertheless we start from

the full expression (3.37). To turn this mass correction at the compactification scale

into a physically meaningful quantity describing physics at the electroweak scale, the

authors employ renormalisation group equations to run this mass correction down. In

this section we will follow their approach and compare the result with the result we

obtained by evaluating the full five-dimensional integral over all momenta.

Introducing the infrared cutoff 1/L is similar to approximating the integral for mo-

menta q > 1/L. Doing this approximation we obtain

δm2 = g2
5

(
FS
M2

)2
1

4π2

∫
dq q2 1

e2qL
(

1 +
(
FS

M2

)2)

≈ g2
5

(
FS
M2

)2
1

4π2

∫
dqq2e−2qL

(3.50)

using ( FS

M2 )2 � 1. Hence the mass correction is given by

δm2 = g2
5

(
FS
M2

)2
1

16π2L3
=

g2
4

2π2
m2
λ . (3.51)

We see, that the scalar mass correction at the compactification scale is suppressed by

the third power of the brane separation, which can be absorbed in the four-dimensional

coupling and gaugino masses.

In the approximation of pure gauge interaction, the one-loop renormalisation group

equations can be written as [28]

16π2 d

d ln(pL)
m2
φ = −8 g2

4 |M |2 (3.52)

for each scalar φ where we omitted group theoretical factors. The renormalisation group

equations get additional contributions, if the Yukawa couplings cannot be neglected, like

in the case of the third family squarks and sleptons. M is the corresponding running

gaugino mass parameter given by

M(q) =
g2
4(q)

g2
4(q0)

mλ , (3.53)
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where q0 is the input scale. An important feature of Equation (3.52) is that the right-

hand side is strictly negative. Therefore the scalar mass grows as it is evolved from the

compactification scale down to the weak scale. Using these equations to run down the

scalar mass correction to the gaugino mass scale we obtain to order α

δm2 = − g2
4

2π2
m2
λ

(
ln(mλL) − 1

)
. (3.54)

Clearly without supersymmetry breaking this expression is zero since mλ = 0 in this case.

Comparing the mass correction at the compactification scale with the mass correction

obtained from four-dimensional renormalisation group running, we see that we can neglect

the contribution from the high scale since the compactification scale is typically a factor

100 below the Planck scale [12]. Therefore the largest contribution comes from the

logarithmic term. This means that the extra dimension only sets the scale from which

the four-dimensional renormalisation group running starts.

Comparing this result (3.54) with the result obtained earlier (3.48), we see that the

factor multiplying the logarithmic term is identical and the only small difference is in the

constant terms. However, since we used different approximations small deviations are

quite natural and the main result is that both methods yield the same leading term.

Instead of using the renormalisation group equations we could also calculate the four-

dimensional part of the mass correction. The zero mode of the five-dimensional prop-

agator reduces to the ordinary four-dimensional Dirac propagator after integrating out

the extra dimension. The resulting integral seems to be both, infrared and ultraviolet

divergent. The infrared divergence can be cured as before when summing over all mass

insertions. The ultraviolet divergence has to be regularised and renormalised. This is in

contrast to the five-dimensional theory where everything is finite. Of course we know that

the four-dimensional theory is valid only up to the compactification scale, so we have a

physical cutoff in our scenario. When integrating up to the compactification scale we get

δm2 =
g2
4

16π4
2π2m2

λ 4

1/L∫

0

dq
q

q2 +m2
λ

= − g2
4

2π2
m2
λ ln(mλL),

(3.55)

which is the same result for the infrared part as before (3.54).

3.3 The Fermion Self-Energy

To be able to calculate the supersymmetry breaking mass, we have to subtract the con-

tribution of the fermion self-energy from the scalar self-energy calculated above. The
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corresponding gaugino loop differs only in the scalar field φ running in the loop instead

of the fermionic field ψ:

×

×

“matter brane” “source brane”

λ

φ

ψ

x1

x2

x3

x4

Figure 3.3: Fermionic self-energy with two mass insertions.

This diagram results in the following expression when summing over all mass insertions:

M(p) = 2g2
5

(
FS
M2

)2 ∫
d4q

(2π)4

tr[/q] cosh(qL)

8q sinh3(qL)[(p− q)2)]

[
1 +

(
FS
M2

)2(
cosh2(qL)

4 sinh2(qL)

)]−1

= 0

(3.56)

since the trace over an odd number of γ-matrices is zero (cf. Appendix A) and all terms

which are not proportional to tr[/q] are sandwiched between PL and PR (we have not

written them explicitly here). Therefore, the parameter for supersymmetry breaking,

which is given by the difference of the bosonic and fermionic mass correction, is equal to

the bosonic mass correction (3.48).
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Supersymmetry Breaking in Six

Dimensions

Orbifold compactifications have recently been applied to grand unified field theories,

in which the standard model gauge group is embedded into larger gauge groups like

SU(5) or SO(10) [30–33]. Whereas the breaking of SU(5) down to the standard model

gauge group can be achieved in a five-dimensional orbifold compactification, the breaking

of SO(10) is more involved and favours a six-dimensional space-time [32]. With the

increasing experimental evidence for neutrino oscillations, which implies neutrino masses

and mixings, this gauge group becomes particularly attractive. This is the case since

neutrino masses imply the existence of an additional particle, the right handed neutrino,

which can be unified with the corresponding quarks and leptons in a single representation

of SO(10). SO(10) contains SU(5) as well as the Pati-Salam group SU(4)×SU(2)×SU(2)

[3] and flipped SU(5) [36] as subgroups. The intersection of all these subgroups yields

the standard model gauge group with an additional U(1)-factor. Since SO(10) plays a

very important part in the discussion of grand unified theories, we will concentrate in this

chapter on how supersymmetry breaking may be communicated in the six-dimensional

case.

Similar to the five-dimensional case we will consider a super-Yang-Mills multiplet

living in the six-dimensional bulk of a M 4 × T 2/ � 2 orbifold. This orbifold has four

fixed points, corresponding to four-dimensional branes embedded in the bulk. We will

assume supersymmetry to be broken spontaneously at one of the fixed points and matter

to be confined to the three other branes. This setup is motivated by the SO(10)-GUT

model described in [33], where three sequential quark-lepton families are localised at

three different orbifold fixed points. The physical quarks and leptons are mixtures of

these brane states and additional bulk zero modes. We only need one � 2-symmetry to

break the extended N = 2 down to ordinary N = 1 supersymmetry at the orbifold

fixed points. In [33] additional � 2-symmetries are introduced to break the gauge group

34
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SO(10) down to the different subgroups stated above. Though very important for the

GUT-model, supersymmetry breaking is not affected by these additional � 2-symmetries.

4.1 Supersymmetric Yang-Mills Theory in Six

Dimensions

The six-dimensional N = 1 supersymmetric Lagrangian is given by

LYM
6d = tr

(
−1

2
FMNF

MN + i Λ̄iΓ
MDMΛi

)
(4.1)

with FMN = FA
MNT

A and Λ = TAΛA, where TA are the generators of the considered gauge

group in the adjoint representation. The capital indices M,N run over {0, 1, 2, 3, 5, 6}.

Furthermore, DMΛ = ∂MΛ − ig6[VM ,Λ], FMN = [DM , DN ]/(ig6) and ΓM are the six-

dimensional Dirac matrices. Here Λ is a left handed symplectic Majorana Weyl spinor,

i.e.

Λ =
1

2
(1 − Γ7)Λ (4.2)

and

Λi = εijC(6)Λ̄T
j (4.3)

where C(6) is the six-dimensional charge conjugation matrix given by

C(6) = iσ2 ⊗ C (4.4)

with C the charge conjugation matrix encountered before. Γ7 is the projection operator

given in Appendix C.

The action, including fields on the boundaries, is given by a similar expression as in

the five-dimensional case:

S =

∫
d6x
[
LYM

6d + δ(y − πRy)δ(z)L1
m + δ(y)δ(z − πRz)L2

m

+ δ(y − πRy)δ(z − πRz)L3
m + δ(y)δ(z)Ls

]
.

(4.5)

We choose the source brane to be the fixed point (0, 0), since we want to have a gaugino

mediation scenario and in the corresponding GUT model the three sequential quark-

lepton families reside on the other orbifold fixed points. The Lagrangians for the matter

fields Lim are again the standard chiral Lagrangians used before (3.6), this time of course

with the boundary terms of the six-dimensional gauge fields.

We will also assume a source brane Lagrangian analogous to the one in the five-

dimensional case. The leading term of the source Lagrangian, which couples the chiral

superfield S (cf. Section 3.1) to the gauge fields living in the bulk is of the form
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Ls =
FS
M3

λαLλLα + h.c. + ... . (4.6)

Observe that in the six-dimensional case the gaugino λα has mass dimension 5/2 and

therefore we have to divide by M 3 to get a dimensionless action. The four-dimensional

gaugino mass resulting from the F -term of the chiral superfield is, when normalised to

give a canonical kinetic term,

mλ =
FS

4π2RyRzM3
, (4.7)

with Ry, Rz the radii of the torus. We extended the integration in the action to the full

torus which will be compensated by the definition of the orbifold propagator. In contrast

to the gaugino the gauge boson stays massless as before, hence supersymmetry is broken.

This breaking is again mediated via gaugino loops through the bulk.

4.2 The Feynman Rules

The Γ-matrices are most conveniently chosen to be (cf. Appendix A)

Γµ =

(
0 γµ
γµ 0

)
, Γ5 =

(
0 iγ5

iγ5 0

)
, Γ6 =

(
0 − �

�
0

)
(4.8)

and

Γ7 = Γ0Γ1 · · ·Γ6 =

(
− �

0

0
�

)
, (4.9)

with γ2
5 =

�
and {ΓM ,ΓN} = 2 ηMN = 2 diag(1,−1,−1,−1,−1,−1). Note that the

complex dimension of the Dirac matrices is n = 2d/2 for even dimension d, which means

that in our six-dimensional space-time we are dealing with eight-component spinors (cf.

Appendix C). With this representation of the Dirac matrices, the chiral spinor Λ = −Γ7 Λ

can be written as (ψ, 0)T , where ψ is now a four component spinor. The six-dimensional

symplectic Majorana condition reduces to the one obtained in the five-dimensional case,

with 4 × 4 C-matrix and four component spinors,

ψi = εijCψ̄Tj . (4.10)

Hence the couplings of the gaugino are analogous to the ones we already know:
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× =

{
iFS/M

2 C−1 PL δ(y)δ(z) (ψ)

iFS/M
2 C PR δ(y)δ(z) (ψ̄)

.

=

{ √
2g5PLCδ(y − yi)δ(z − zi) (ψ)

√
2g5PRCδ(y − yi)δ(z − zi) (ψ̄)

For the φψψ1-vertex the arguments of the delta distributions have to be adjusted to the

fixed point we consider. With the choice of Dirac matrices given above the equation of

motion simplifies to

i(/∂ + iγ5∂5 −
�
∂6)ψ = 0. (4.11)

Note that γi = −γi for spatial index i. The defining relation for the two-point function

is as before given by

i(/∂ + iγ5∂5 −
�
∂6)ψ = iδ4(x− x′)δ(y − y′)δ(z − z′) (4.12)

which leads to the following six-dimensional Dirac propagator in flat space:

SF (x− x′, y − y′, z − z′) =

∫
d4p

(2π)4

dp5

2π

dp6

2π

i(/p− γ5∂5 + i∂6
�
)

p2 − p2
5 − p2

6 + iε
e−ip·(x−x′)eip

5(y−y′)eip
6(z−z′).

(4.13)

We will work with propagators in the mixed representation again. This means that

we have to integrate over p5 and p6. The corresponding integral, Fourier transformed in

four dimensions, is most conveniently written in spherical coordinates:

SF (p, y − y′, z − z′) =
1

4π2

∞∫

0

dr r

2π∫

0

dθ
i(/p− γ5∂5 + i∂6

�
)

p2 − r2 + iε
eirw cos θ

=
1

2π

∞∫

0

dr r
i(/p− γ5∂5 + i∂6

�
)

p2 − r2 + iε
J0(rw)

= − i

2π
(/p− γ5∂5 + i∂6

�
)K0(−iχpw)

= −
i/p

2π
K0(−iχpw) − γ5

2π

χp(y − y′)

w
K1(−iχpw)

+

�

2π

χp(z − z′)

w
K1(−iχpw)

(4.14)
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where J0 is the Bessel function of the first kind, the Ki are modified Bessel functions,

χp =
√
p2 + iε and w =

√
(y − y′)2 + (z − z′)2. Basic properties of and integrals over

Bessel functions are reviewed in Appendix D.

In the gaugino propagator only the term proportional to /p will survive in the loop

integral, since the other terms will be multiplied by PLPR. Hence we will drop these non

contributing terms from here on. To obtain the periodic propagator, we have to sum over

all winding modes. Wick rotating to Euclidean space we obtain:

ScF (p, y − y′, z − z′) =
−i/p

2π

∞∑

n,m=−∞

K0

(
p
√

(y − y′ + 2πRym)2 + (z − z′ + 2πRzn)2

)
.

(4.15)

We leave /p in Minkowski space for now. After having done the trace over all Dirac

matrices we will Wick rotate the result before performing the loop integral. This means

we are effectively Wick rotating under the integral as usual. The gaugino propagator

is divergent when starting and ending at the point (0, 0) in the extra dimensions. This

divergence arises because we have taken the limit in which our brane is represented by

a delta distribution, i.e. it is infinitely thin. Nevertheless the brane might have internal

structure at short distance, and the divergence we encounter reflects the fact that the

field theory we consider is not a valid description of the physics at these scales. To

regularise the propagator we use a cutoff Λ. Since the divergence is logarithmic, it leads

to running couplings and renormalisation group flow even at the classical level [37]. For

small argument x, the Bessel functions can be approximated as follows:

K0(x) = − ln(x) − γE + ln(2) + O(x). (4.16)

Regularising the divergent propagator with a momentum cutoff results in

ScF (p, 0, 0) =
i/p

2π



ln
( p

Λ

)
−

∑

n,m6=(0,0)

K0

(
p
√

(2πRym)2 + (2πRzn)2

)

 . (4.17)

To renormalise this propagator we have to note that the source Lagrangian consists of

many terms among which we can have a term like (see [12]):

LS ⊃ α
FSF

†
S

M6
λ̄L/∂λL . (4.18)

This term is a localised brane kinetic term for the gaugino and leads to an additional

vertex at the orbifold fixed point (0, 0). When picking up the mass insertions at the

source brane we have to include this brane kinetic term as well, acting as a counterterm.

This means that the propagator with two mass insertions including the counterterm

diagrammatically looks like
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× × + ⊗

∝ ( FS

M3 )2/p
(
ln
(
p
Λ

)
+ c
)

+ α( FS

M3 )2/p .

We choose the coefficient α such that the divergent piece is cancelled and we obtain

ln(p/µ) instead of ln(p/Λ) in the formerly divergent propagator. Here µ is an arbitrary

renormalisation scale.

As with all higher dimensional field theories, the extra dimensions have to be com-

pactified in some way to reproduce the four-dimensional world we live in. In this thesis we

concentrate on the compactification on the orbifold M 4×T 2/ � 2 similar to the space of the

orbifold GUTs constructed in [32, 33]. The � 2-symmetry acting as (y, z) → (−y,−z) is

introduced to break the unwanted N = 2 supersymmetry of the four-dimensional theory

which is introduced by dimensional reduction from the six-dimensional case. The size of

the physical space is halved when acting with the � 2 transformation: The physical region

y

z

(−πRy,−πRz) (πRy,−πRz)

(−πRy, πRz) (πRy, πRz)

(a) Implementing the � 2-symmetry

y

z

(b) Identification of the edges

Figure 4.1: The � 2-Transformation acting on the Torus.

of this orbifolded space is obtained by identifying the edges of the rectangle as sketched

in Figure 4.1. This results in a “pillow” with four fixed points: (0, 0), (πRy, 0), (0, πRz)

and (πRy, πRz). The fixed points can be regarded as four-dimensional branes, similar to

the five-dimensional case.
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(0,0) (0,πRy)

(πRz,0) (πRz, πRy)

SUSY (φ, ψ)

(φ′, ψ′)(φ′′, ψ′′)

(AM , Λ)

Figure 4.2: The T 2/ � 2 orbifold with four fixed points.

Again we have to specify the � 2-parity of our fields to promote the � 2-symmetry to

a symmetry of our theory:

Vµ(x,−y,−z) = +Vµ(x, y, z) ,

V5,6(x,−y,−z) = −V5,6(x, y, z) .
(4.19)

Under the corresponding reflection (y, z) → (−y,−z) the two Weyl spinors of the gaugino

must have opposite parities to ensure the invariance of the Lagrangian:

λ1(x,−y,−z) = +λ1(x, y, z) ,

λ2(x,−y,−z) = −λ2(x, y, z) ,
(4.20)

which can be rewritten to

ψ(x,−y,−z) = −γ5ψ(x, y, z) (4.21)

with ψ = (λ1, λ2)
T . Hence we can write ψ in terms of an unconstrained field χ as follows:

ψ(x, y, z) =
1

2

(
χ(x, y, z) − γ5χ(x,−y,−z)

)
(4.22)

which causes the six-dimensional orbifold gaugino propagator to be of the same structure:

SorbF (p, y, y′, z, z′) =
1

2

(
ScF (p, y, y′, z, z′) − γ5ScF (p,−y, y′,−z, z′)

)
. (4.23)



4.3. The Self-Energy of the Scalar Field 41

4.3 The Self-Energy of the Scalar Field

We now want to calculate the scalar mass correction. For that, we have to evaluate the

loop diagram from the fixed point to which our scalar field is confined, to the source brane

(0, 0) where we have to pick up the supersymmetry breaking mass insertions. Again, we

have to resum the gaugino propagator in order to obtain an infrared finite result. Written

in a general form, the six-dimensional gaugino propagator, when resummed over all mass

insertions, is given by

S̃orbF (y, y′, z, z′) =

(
FS
M3

)2

SorbF (y, 0, z, 0) iCPR
(
SorbF (0, 0, 0, 0)

)T
iC−1PL S

orb
F (0, y′, 0, z′)

×
(

1 −
(
FS
M3

)2

SorbF (0, 0, 0, 0)CPR
(
SorbF (0, 0, 0, 0)

)T
C−1PL + · · ·

)

=

(
FS
M3

)2 SorbF (y, 0, z, 0) iCPR
(
SorbF (0, 0, 0, 0)

)T
iC−1PL S

orb
F (0, y′, 0, z′)

1 +
(
FS

M3

)2
SorbF (0, 0, 0, 0)C

(
SorbF (0, 0, 0, 0)

)T
C−1

.

(4.24)

We suppressed the four-momentum in this notation. Note that propagators on orbifolds

generally depend on both, y and y′, rather than on just the difference y − y′. Since

we cannot evaluate the sum over all winding modes explicitly, we will divide the loop

integral into an infrared and an ultraviolet part. For both regions we will perform suitable

approximations.

4.3.1 The Infrared Part of the Mass Correction

For small momenta we can approximate the sum (4.15) with an integral, as long as

the condition 2πRp � 1 is valid. Note that for the propagator starting and ending at

the same point in the extra dimensions we have to add an additional term (cf. (4.17)).

Approximating the sum we obtain

ScF (p, y−y′, z− z′) =
−i/p

2π

∞∫

−∞

dm dnK0

(
p
√

(y − y′ + 2πRym)2 + (z − z′ + 2πRzn)2

)

=
−i/p

2π

∞∫

−∞

du dw

(2πRyp)(2πRzp)
K0

(√
(u+ p(y − y′))2 + (w + p(z − z′))2

)
. (4.25)
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We can now shift variables and replace by spherical coordinates:

ScF (p, y − y′, z − z′) = −i/p

∞∫

0

dr r

(2πRyp)(2πRzp)
K0 (r)

=
−i/p

4π2RyRzp2
.

(4.26)

The orbifold boundary condition is implemented as before. This results in the following

massless propagators in this approximation:

SorbF (p, y, y′, z, z′) =
−iPL/p

4π2RyRzp2
, (4.27a)

SorbF (p, 0, 0, 0, 0) =
iPL/p

2π

(
ln

(
p

µ

)
− 1

2πRyRzp2

)
. (4.27b)

The first expression is not valid in the case that the propagator starts and ends at the

same point in the extra dimensions and has to be replaced by the second one. These

propagators are infrared divergent and we have to resum them over all mass insertions

in order to obtain a finite expression. Plugging these massless propagators into the

resummed propagator (4.24), we obtain

S̃orbF (p, y, y′, z, z′) =

(
FS
M3

)2 −iPL/p

4π2RyRzp2
iPRC

iPR/p
T

2π

(
ln

(
p

µ

)
− 1

2πRyRzp2

)

× iC−1PL
−iPL/p

4π2RyRzp2

[
1 +

(
FS
M3

)2
p2

4π2

(
ln

(
p

µ

)
− 1

2πRyRzp2

)2
]−1

= −
(
FS
M3

)2 iPL/p

32π5R2
yR

2
zp

2

(
ln

(
p

µ

)
− 1

2πRyRzp2

)

×
[

1 +

(
FS
M3

)2
p2

4π2

(
ln

(
p

µ

)
− 1

2πRyRzp2

)2
]−1

. (4.28)

In this infrared approximation we can neglect the logarithmic term simplifying the ex-

pression for the propagator,

S̃orbF (p, y, y′, z, z′) = −m2
λ

iPL/p

2π2RyRzp4

[
1 +

m2
λ

p2

]−1

, (4.29)

where we used (4.7). The scalar self-energy can be written analogously to the first line

of (3.30). By analogous we mean that the structure is exactly the same, only the vertices

and the propagators change and we already include the sum over all mass insertions.
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In order to obtain the mass correction, we set the external momentum on-shell, Fourier

transform in four dimensions and Wick rotate to Euclidean space. This leads to the

following expression for the infrared part of the scalar mass correction with a the cutoff

up to which the infrared approximation is valid:

δm2 = −2g2
6

2π2

(2π)4
m2
λ

a∫

0

dq q3 tr

[
/q

q2

PL/q

2π2RyRzq4

[
1 +

m2
λ

q2

]−1
]

=
g2
4m

2
λ

2π2

a∫

0

dq
q

q2 +m2
λ

=
g2
4m

2
λ

4π2
ln

(
a2 +m2

λ

m2
λ

)
∼ g2

4m
2
λ

2π2
ln

(
a

mλ

)

(4.30)

where we used a relation between the coupling constants in six and four dimensions

similar to (3.49),

g2
4 =

g2
6

4π2RyRz
. (4.31)

The last step in (4.30) uses that a ∼ 1/max(Ry, Rz) � mλ. This means that a corre-

sponds to the compactification scale with larger radius and hence to the point at which the

theory starts to look four-dimensional again. Comparing this with the result we obtained

from four-dimensional renormalisation group running (3.54) in the previous chapter, we

see that the coefficient of the logarithmic term is again the same. Therefore, the infrared

part of the mass correction obtained by calculating the six-dimensional loop is as before

equivalent to four-dimensional RG running. The ultraviolet part of the mass correction

will be calculated in the next section.

4.3.2 The Ultraviolet Part of the Mass Correction

in the Asymmetric Case (Ry � Rz)

Now we turn to the ultraviolet part of the loop integral. To find a suitable approximation

it is helpful to come back to the evaluation of the periodic gaugino propagator. It can be

advantageous not to perform the Fourier integrals explicitly as we did in Equation (4.14),

but to make use of the Poisson resummation formula. This formula relates a sum over a

function with the sum over the Fourier transform of this function:

∞∑

n=−∞

∫
dk

2π
e−ik2πRnF (k) =

1

2πR

∞∑

n=−∞

F (n/R). (4.32)
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The periodic propagator can be generally written in terms of the propagator in flat space

as:

ScF (p, y, y′, z, z′) =

∞∑

n=−∞

∞∑

m=−∞

SF (p, y + 2πRym− y′, z + 2πRzn− z′)

=

∞∑

n=−∞

∞∑

m=−∞

∫
dp5

(2π)

∫
dp6

(2π)

i(/p− γ5∂5 + i∂6
�
)

p2 − p2
5 − p2

6 + iε

× e−ip5(y+2πRym−y′) e−ip6(z+2πRzn−z′)

=
1

4π2RyRz

∞∑

n=−∞

∞∑

m=−∞

i(/p− γ5∂5 + i∂6
�
)

p2 − (m/Ry)2 − (n/Rz)2 + iε

× e−im(y−y′)/Ry e−in(z−z′)/Rz ,

(4.33)

where we used the Poisson resummation formula to obtain the last line.

There is no physical reason which of the summations over Kaluza-Klein modes should

come first. The two sums are absolutely symmetric and we can perform one of them

explicitly. The second sum cannot be evaluated in a closed form and we have to ap-

proximate it in one way or the other. In the asymmetric case Ry � Rz one could ask

the question whether one sum is more important than the other. This is indeed the

case since after Wick rotation the summands of the sum over m decrease much slower

than the summands of the other sum. Therefore we should sum over m in this case and

approximate the sum over n. Evaluating the sum over m we get

1

4π2RyRz

∞∑

n=−∞

(
∞∑

m=1

i(/p− γ5∂5 + i∂6
�
)

p2 − (m/Ry)2 − (n/Rz)2 + iε
2 cos(m(y − y′/Ry))

+
1

p2 − n2/R2
z + iε

)
e−in(z−z′)/Rz

=
i(/p− γ5∂5 + i∂6

�
)

4πRz

×
∞∑

n=−∞




cos
(√

p2 − n2/R2
z + iε (πRy − |y − y′|)

)

√
p2 − n2/R2

z + iε sin(πRy

√
p2 − n2/R2

z + iε)


 e−in(z−z′)/Rz

(4.34)

where we used
∞∑

n=1

cos(nx)

n2 − a2
=

1

2a2
− π cos a((2m + 1)π − x)

2a sin(πa)
(4.35)

for x ∈ [2πm, 2π(m+ 1)] and a /∈ � .



4.3. The Self-Energy of the Scalar Field 45

Since we want to calculate the loop contribution to the self energies of fields living

on the orbifold fixed points, we are mainly interested in the gaugino propagators going

from one fixed point to another. It is worth noting that the structure of the loop integral

is such that only terms proportional to /q will contribute. Therefore the derivative terms

drop out and we will neglect them from here on. Putting in the values for y and z, we

obtain the following propagator after a Wick rotation, with the high momentum limit

given in the second line:

Sc(p, πRy, 0, 0, 0) =
i/p

4πRz

∞∑

n=−∞

1√
p2 + n2/R2

z sinh(πRy

√
p2 + n2/R2

z )

≈
i/p

2πRz

∞∑

n=−∞

e−πRy

√
p2+n2/R2

z

√
p2 + n2/R2

z

.

(4.36)

Here we have to write the orbifold condition in a slightly different way, because the values

of y, y′ are restricted to the interval [0, πRy] after the summation:

SorbF (p, y, y′, z, z′) =
1

2

(
ScF (p, y, y′, z, z′) − γ5ScF (p, 2πRy − y, y′, 2πRz − z, z′)

)
. (4.37)

Only the propagator ScF (p, πRy, 0, 0, 0) is really periodic, since we just performed the

sum over m, not over n. This means that only in this case we can consistently apply

the orbifold condition. We see that for n > 0 the summands are exponentially damped.

Therefore we can try to approximate the sum with the lowest order term.

The mass correction for the scalar field confined to the fixed point (πRy, 0) can now

be written in the approximation of two mass insertions as

δm2 =
2g2

6

16π4

(
FS
M3

)2

2π2

∫
dq q3 tr

[
/q

q2
PL

1

8π3R2
z
/q ln(q/µ) e−2πRyq

]

= − 3

2π3
g2
4m

2
λ

Rz

Ry
ln(µRy) .

(4.38)

Since we considered the case Ry � Rz, only the limits Ry → ∞ and Rz → 0 make sense

and are well defined. We see that the ultraviolet part of the scalar masses is suppressed

and the dominant part of these scalar masses comes from the infrared part or equivalently

from four-dimensional renormalisation group running. As in the five-dimensional case

the mass correction for the fermionic fields on the orbifold fixed points is identically zero

and hence the bosonic mass correction is a supersymmetry breaking parameter by itself.

In the asymmetric case we considered here, the mass correction including infrared and

ultraviolet effects is given by

δm2 = −g
2
4m

2
λ

2π2

(
ln(mλRy) +

3Rz

πRy
ln(µRy)

)
. (4.39)
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When taking the limit Rz → 0 we reproduce the result obtained in five dimensions. In

contrast to the five-dimensional case this result is logarithmically scale dependent. Of

course a physical parameter should be independent of this scale, i.e. when summing over

all orders in the coupling g4, µ should drop out from the scalar mass correction. Never-

theless this is a fixed order expression, which can be renormalisation scale dependent. The

quest for the in some sense “optimal” scale is vital for meaningful applications but has

so far no generally accepted solution. Nevertheless this scale dependence is an indication

of the direction in which the perturbation theory is going, since one knows that the

higher-order terms must conspire to cancel it exactly.



Chapter 5

Summary and Outlook

Theories on orbifolded space-times offer promising breaking schemes for supersymmetry

as well as gauge symmetries. These orbifold constructions in higher dimensional theo-

ries lead quite naturally to hidden sector models possessing a nice geometrical picture

of sequestering. Hidden sector models in turn can lead to a viable superpartner mass

spectrum and hence are very attractive phenomenologically for mediating spontaneous

supersymmetry breaking to the MSSM particles.

In this thesis we calculated supersymmetry breaking mass parameters in an orbifold

model in five and six space-time dimensions. We obtained the supersymmetry breaking

masses using two different methods. The first method being the full five-/six-dimensional

calculation can be seen as the main part of this work. Starting with the five-dimensional

case, we derived the Feynman rules of our model and performed the loop calculation to

extend existing results in the literature. Here we find that the five-dimensional theory is

infrared and ultraviolet finite after resumming the gaugino propagator. The main con-

tribution to the mass correction stems from the infrared part of the loop integral. As a

second approach we turned to an approximation based on [12]. The authors realise that

the five-dimensional theory can be split into two regimes: For energies above the compact-

ification scale the theory is five-dimensional, while for energies below the compactification

scale the theory is effectively four-dimensional. The supersymmetry breaking parame-

ters calculated in the high energy part of the higher dimensional theories give initial

conditions for the four-dimensional renormalisation group. In this second approach we

obtained small supersymmetry breaking parameters for the sfermions at the compacti-

fication scale. Evolving these parameters down to the electroweak scale, the soft scalar

masses receive large positive flavour diagonal contributions from renormalisation group

running. Comparing the two different approaches, we find that both results are domi-

nated by infrared effects. Both yield the same leading terms, confirming the consistency

of our calculations.

Furthermore, we extended the theory to six space-time dimensions. In this case

47



48 Chapter 5. Summary and Outlook

the scalar mass correction has only been roughly estimated [13], without specifying any

details. Performing the corresponding calculation, we encountered a divergence arising

from short distance singularities which is not mentioned in [13]. We notice that the

theory can be renormalised with the help of a brane kinetic counter term, resulting in

the dependence of the gaugino propagator on an arbitrary renormalisation scale µ. This

µ-dependence carries through such that the mass correction in six dimensions depends

logarithmically on this scale parameter. The ultraviolet part is again suppressed. The

infrared part comes out analogously to the five-dimensional case, i.e. the six-dimensional

calculation yields the same result as the corresponding four-dimensional renormalisation

group running. Again, this infrared contribution dominates the supersymmetry breaking

mass terms.

A next step would be the inclusion of Higgs fields in the bulk, possibly leading to

additional contributions to the scalar mass parameters. Furthermore, one should include

supergravity effects as well, especially when considering higher energies.



Appendix A

Notations and Conventions

Throughout the thesis we have used a time-like space-time metric

ηmn = diag(1,−1, ...,−1). (A.1)

The four-dimensional Dirac matrices are chosen in the Weyl representation

γµ =

(
0 σµ

σ̄µ 0

)
(A.2)

satisfying {γm, γn} = 2ηmn. Here σm = (
�
, σi) , σ̄m = (

�
,−σi) and the σi are the Pauli

matrices. Though we mainly work in terms of Γ-matrices rather than σ-matrices, we

state their algebra for completeness:

σmαα̇σ̄
nα̇β = −ηmnδβα + 2(σmn) β

α (A.3a)

(σmn) β
α = 1

4
(σmαα̇σ̄

nα̇β − σnαα̇σ̄
mα̇β) (A.3b)

(σ0i) β
α = 1

2
(σi) β

α , (σij) β
α = −1

2
iεijk(σk) β

α (A.3c)

σ̄mα̇ασn
αβ̇

= −ηmnδα̇
β̇

+ 2(σ̄mn)α̇
β̇

(A.3d)

(σ̄mn)α̇
β̇

= 1
4
(σ̄mα̇ασn

αβ̇
− σ̄nα̇ασm

αβ̇
) (A.3e)

(σ̄0i)α̇
β̇

= 1
2
(σ̄i)α̇

β̇
, (σ̄ij)α̇

β̇
= 1

2
iεijk(σ̄k)α̇

β̇
(A.3f)

(σmn) α
α = (σ̄mn)α̇α̇ = 0 (A.3g)

tr(σmσ̄n) = −2ηmn (A.3h)

σmαα̇σ̄
β̇β
m = −2δβαδ

β̇
α̇ (A.3i)

(σm)αα̇(σm)ββ̇ = −2εαβεα̇β̇ (A.3j)
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σaσ̄bσc = ηacσb − ηbcσa − ηabσc + iεabcdσd (A.3k)

σ̄aσbσ̄c = ηacσ̄b − ηbcσ̄a − ηabσ̄c − iεabcdσ̄d (A.3l)

(σmn) β
α εβγ = (σmn) β

γ εβα (A.3m)

εmnklσkl = −2iσmn, εmnklσ̄kl = 2iσ̄mn (A.3n)

The Greek indices (α, α̇, β, β̇...) run from 1 to 2 and denote two-component Weyl spinors.

Raising and lowering of the indices can be done with the help of the ε-tensor. Choosing

ε12 = ε21 = 1, ε1̇2̇ = ε2̇1̇ = 1 (A.4a)

εαβεγα = δβγ , εα̇β̇εγ̇α̇ = δβ̇γ̇ (A.4b)

one can define raising and lowering via

ψα = εαβψβ, ψα = εαβψ
β ⇒ ψ1 = ψ2, ψ

2 = −ψ1 (A.5a)

ψ̄α̇ = εα̇β̇ψβ̇, ψ̄α̇ = εα̇β̇ψ
β̇ ⇒ ψ̄1̇ = ψ̄2, ψ̄

2̇ = −ψ̄1̇ (A.5b)

σ̄mα̇α = εα̇β̇εαβσm
ββ̇

(A.5c)

σmαα̇ = εα̇β̇εαβσ̄
mβ̇β. (A.5d)

With these definitions one finds

ψχ = ψαχα = −ψαχα = χαψα = χψ (A.6a)

ψ̄χ̄ = ψ̄α̇χ̄
α̇ = −ψ̄α̇χ̄α̇ = χ̄α̇ψ̄

α̇ = χ̄ψ̄ (A.6b)

(χψ)† = (χαψα)† = ψ̄α̇χ̄
α̇ = ψ̄χ̄ = χ̄ψ̄. (A.6c)

Here we used the fact that spinors anticommute.

Coming back to the framework of γ-matrices, we note that Dirac spinors ΨD contain

two Weyl spinors

ΨD =

(
χα
ψ̄α̇

)
. (A.7)

In five dimensions we use the following convention for γ-matrices

γm =

(
0 σm

σ̄m 0

)
, γ5 = −γ0γ1γ2γ3 =

(
−i 0

0 i

)
. (A.8)

Note that in this convention the γ5-matrix is different from the one used in the projection

operators PL/R.
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In the case of six space-time dimensions, the Γ-matrices are 8 × 8 matrices which we

choose to be

Γµ =

(
0 γµ
γµ 0

)
, Γ5 =

(
0 iγ5

iγ5 0

)
, Γ6 =

(
0 − �

�
0

)
, (A.9)

with the 4 × 4 γµ-matrices as given above and (γ5)2 = 1. Note that we changed the

convention of the γ5-matrix from the five-dimensional to the six-dimensional case. Finally

Γ7 = Γ0Γ1 · · ·Γ6 =

(
− �

0

0
�

)
. (A.10)

Traces over Dirac Matrices

When considering diagrams with fermions running in a loop, we have to take the trace

over all corresponding γ matrices. These can be evaluated as follows:

tr(
�
) = 4 (A.11a)

tr(any odd # of γ’s) = 0 (A.11b)

tr(γµγν) = 4gµν (A.11c)

tr(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ) (A.11d)

tr(γ5) = 0 (A.11e)

tr(γµγνγ5) = 0 (A.11f)

tr(γµγνγργσγ5) = −4iεµνρσ (A.11g)



Appendix B

The Supersymmetry Algebra

The supersymmetry algebra is a graded Lie algebra, i.e. it is given in terms of commutators

as well as anticommutators. The algebra consists of the translation generator Pm, the

generators of the Lorentz group Mmn, the supersymmetry generators QI
α and Q̄α̇I and

possibly the generators of some internal symmetry Lie group Ba. The Greek indices

(α, α̇, β, β̇...) run from 1 to 2 and denote two-component Weyl spinors, whereas the Latin

indices (m,n...) run from 1 to 4 and refer to Lorentz four vectors. The label I runs from

1 to some number N . If N > 1 one speaks of N -extended supersymmetry in contrast

to simple supersymmetry for N = 1. As discussed earlier, there are restrictions on the

maximal value of N which lead to maximally extended supersymmetric theories. The

generators satisfy the following algebra which can be found e.g. in [17]:

[Pm, Pn] = 0 (B.1a)

[Mmn,Mrs] = i(ηmrMns − ηnrMms − ηmsMnr + ηnsMmr) (B.1b)

[Pm,Mrs] = i(ηmsPr − ηmrPs) (B.1c)

[Ba, Bb] = ifabcBc (B.1d)

[Ba, Pm] = [Ba,Mmn] = 0 (B.1e)

[QI
α, Pm] = [Q̄α̇I , Pm] = 0 (B.1f)

[QI
α,Mmn] = 1

2
(σmn) β

α QI
β (B.1g)

[Q̄α̇I ,Mmn] = −1
2
Q̄β̇I(σ̄mn)β̇

α̇
(B.1h)

[QI
α, Ba] = (ba)

I
JQJ

α (B.1i)

[Q̄α̇I , Ba] = −Q̄α̇J(ba)
J
I (B.1j)

{QI
α, Q̄α̇J} = 2δIJσ

m
αα̇Pm (B.1k)
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{QI
α,QJ

β} = 2εαβZ
IJ with ZIJ = −ZJI (B.1l)

{Q̄α̇I , Q̄β̇J} = 2εα̇β̇Z
†
IJ (B.1m)

Equations (B.1a) to (B.1c) give the algebra of the ordinary Poincaré group, equa-

tions (B.1d) and (B.1e) the internal symmetry algebra. The fabc are the structure con-

stants and the coefficients ba form some matrix representation of this internal symmetry

group. The spinor properties of the Q’s are shown in eqs. (B.1g) and (B.1h), where the

σmn are the generators of the Lorentz group in the spinor representation. Note that the

appearance of Pm on the right-hand side of (B.1k) is not surprising, since it transforms

under Lorentz boosts and rotations as a spin 1 object while Q, Q̄ each transform as spin

1/2 objects. The mass operator P 2 commutes with the operators Q,Q† and with all

space-time operators, so it follows immediately that particles inhabiting the same irre-

ducible supermultiplet must have equal eigenvalues of P 2 and hence are degenerate in

mass. The remaining equations are non-trivial only in the case of extended supersymme-

try. The ”central charges” ZIJ vanish for simple supersymmetry and the only internal

symmetry which can act non-trivially (i.e. with nonvanishing matrix representation ba)

on the Q’s is a U(1) symmetry called R-symmetry.



Appendix C

Spinors in Higher Dimensions

When higher dimensional supersymmetric theories are considered, the first thing which

needs attention is how spinors look like in higher dimensions. In this Appendix we give

a short overview. Spinors form the representation space of the covering group of the

d-dimensional Lorentz group SO(1, d− 1), Spin(d). The representations of Spin(d) can

be obtained from representations of the d-dimensional Dirac algebra defined by

{Γa,Γb} = 2ηab
�

with a, b = 0, 1, . . . , d− 1 (C.1)

with ηab the d-dimensional Minkowski metric, ηab = diag(+,−, . . . ,−). A representation

of the group is formed by the matrices

1
2
Σab =

i

2
Γ[aΓb]. (C.2)

The complex dimension of this representation is

D = 2d/2 for d even (C.3a)

D = 2(d−1)/2 for d odd. (C.3b)

which grows exponentially with d. There are, however, conditions that can reduce the

dimension of the spinor representations as discussed already in Chapter 2.2: reality and

chirality conditions. In even dimensions the matrix

Γd+1 = Γ0Γ1 · · ·Γd−1 (C.4)

is non-trivial and can be used to define projection operators

PL,R = 1
2
(

� ± βΓd+1), (C.5)

where β = 1 for d = (2 mod 4) and β = i for d = (4 mod 4). These operators project

on the left- and right-handed spinors, which form subspaces half the size of the original
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representation. This is possible because Γd−1 and the Γa anticommute. In odd dimensions,

on the other hand, they commute and hence Γd−1 ∝ �
, so there are no chiral spinors in

odd dimensions.

The other possibility is a reality (Majorana) condition. It is usually stated as

ψc ≡ Cψ̄T = ψ (C.6)

where ψ̄ = ψ†Γ0 and C is the charge conjugation matrix satisfying

C−1ΓaC = −(−1)dΓTa and CT = C−1 = C† = ±C, (C.7)

where the sign in the last equation depends non-trivially on the dimension. This condition

can only be imposed in one to four dimensions and in eight to twelve dimensions. A

Majorana condition halves the representation. However, it is not necessarily compatible

with a chirality condition. Chiral Majorana spinors are possible only in d = (2 mod 8).

In four dimensions we can have either chiral (Weyl) or Majorana spinors, so the

minimal real dimension is 4 (since (C.3) lists the complex dimension and we can eliminate

half of the dimensions). In five dimensions, although the spinor dimension (C.3) is the

same, we can have neither chiral nor Majorana spinors, and so the minimal real dimension

of the spinor representation is 8.

There is, however, a possibility to impose a symplectic Majorana condition involving

two spinors ψ1,2 in five dimensions. This is the condition we used frequently in Chapter 3

and it reads

ψi = εijCψ̄Tj . (C.8)

The five-dimensional charge conjugation matrix is in our case explicitly given by

C = −iσ2 ⊗ �
2. As shown before we can decompose these spinors into two Weyl spinors

ψL,R as

ψ1 =

(
(ψL)α(
ψ̄R
)α̇

)
ψ2 =

(
(ψR)α

−
(
ψ̄L
)α̇

)
(C.9a)

ψ̄1 =
(
(ψR)α ,

(
ψ̄L
)
α̇

)
ψ̄2 =

(
− (ψL)α ,

(
ψ̄R
)
α̇

)
. (C.9b)

This gives an easy handle on the relation between theories formulated in terms of two

and four component spinors in five dimensions.

In six dimensions the real dimension is 16, but can be halved by imposing a chirality

condition. Furthermore the spinors can be subject to a symplectic Majorana condition

like in the five-dimensional case. These two conditions can be written as

Γ7Λ = −Λ (C.10a)

Λi = εijC(6)ΛT
j . (C.10b)
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where the six-dimensional charge conjugation matrix is given in terms of the five-dimen-

sional one as C(6) = iσ2⊗C. When using an appropriate representation of the Γ-matrices,

the spinor Λ can be written as a four component spinor due to the chirality condition.



Appendix D

Bessel Functions

Bessel functions are encountered in the evaluation of six-dimensional propagators when

Fourier transforming the two extra dimensions in order to obtain a mixed propagator.

In this Appendix we will give a very short and basic overview over the definition and a

few properties of Bessel functions. For a more detailed discussion we refer the reader to

e.g. [38].

Bessel functions are special cases of cylinder functions. The Bessel functions Jn(z)

and Yn(z) are linearly independent solutions to the differential equation

z2y′′ + zy′ + (z2 − n2)y = 0. (D.1)

For integer n, the Jn(z) are regular at z = 0, while the Yn(z) have a logarithmic diver-

gence at z = 0. Bessel functions arise in solving differential equations for systems with

cylindrical symmetry. Jn(z) is often called the Bessel function of the first kind, or simply

the Bessel function. Yn(z) is referred to as the Bessel function of the second kind or the

Neumann function (denoted Nn(z)).

The modified Bessel functions In(z) and Kn(z) are solutions to the differential equa-

tion

z2y′′ + zy′ − (z2 + n2)y = 0. (D.2)

For integer n , In(z) is regular at z = 0 whereas Kn(z) always has a logarithmic divergence.

Therefore we had to regularise the gaugino propagator when starting and ending at the

same point in the two co-dimensions.

The Bessel function of the first kind can be written as

Jν(z) =
zν

2ν

∞∑

k=0

(−1)k
z2k

22kk!Γ(ν + k + 1)
, [| arg z| < π]. (D.3)
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A very important integral representation we used is given by

J0(z) =
1

2π

2π∫

0

dt eiz cos(t) (D.4)

and by the relation

∞∫

0

dq
q

p2 − q2
J0(qr) = −K0(−ipr) , [ arg p2 6= 0, r > 0] . (D.5)

We also used the following integrals involving modified Bessel functions:

∞∫

0

dqq5K2
0 (aq) =

16

15a6
, Re(a) > 0 , (D.6a)

∞∫

0

dqq5 ln(q)K2
0(aq) =

c− 16 ln(a)

15a6
, Re(a) > 0 , (D.6b)

∞∫

0

dqq5K2
1 (aq) =

8

5a6
, Re(a) > 0 , (D.6c)

∞∫

0

dqq5 ln(q)K2
1(aq) =

c′ − 8 ln(a)

5a6
, Re(a) > 0 , (D.6d)

∞∫

0

dqqK0(q) = 1 . (D.6e)

Finally the derivative of the modified Bessel function Kn(z) is given by

∂zKn(z) = −1

2
(Kn−1(z) +Kn+1(z)) . (D.7)
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