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Abstract

The charm fragmentation function has been studied in deep inelastic ep
collisions with the H1 detector at HERA. The data were analyzed in the
kinematic range given by the photon virtuality 2 < Q2 < 100 GeV2 and
the inelasticity 0.05 < y < 0.7.
The differential cross section of D∗-meson production as a function of
two scaling variables sensitive to fragmentation, zhem and zjet, was mea-
sured in the D∗-meson visible range defined by cuts on pseudorapidity
|η(D∗)| < 1.5 and transverse momentum 1.5 < pt(D

∗) < 15 GeV. In
the case of the zhem observable, the momentum of the charm quark has
been approximated by the momentum of a suitably defined hemisphere
in the photon-proton center-of-mass frame, whereas in the case of the
zjet observable, the charm quark momentum was approximated by the
momentum of the reconstructed jet associated with the D∗-meson. A
transverse energy Eγp

t (D∗jet) > 3 GeV was required in the latter case.
Both distributions were used to extract the parameters of the non-
perturbative Peterson and Kartvelishvili fragmentation functions for the
Monte Carlo models RAPGAP/PYTHIA and CASCADE/PYTHIA and
for the next-to-leading-order massive QCD calculation HVQDIS.



Kurzfassung

In dieser Arbeit wird das Studium der Charm-Fragmentations-Funktion
anhand der H1-Daten in tief unelastischer Streuung beschrieben. Die
analysierten Daten liegen in dem kinematischen Bereich, der von dem
negativen Viererimpulsübertrag zum Quadrat 2 < Q2 < 100 GeV2 und
der Unelastizität 0.05 < y < 0.7 festgelegt wird.
Der differentielle Wirkungsquerschnitt der D∗-Produktion wird in
Abhängigkeit von zwei Skalenvariablen die sensitiv auf die Fragmenta-
tion sind, zhem und zjet, in dem sichtbaren Bereich der D∗-Produktion
gemessen. Dieser Bereich wird definiert durch die Pseudorapidität
|η(D∗)| < 1.5 und dem Transversalimpuls 1.5 < pt(D

∗) < 15 GeV.
Für die Observable zhem wird der Impuls des Charm Quarks anhand
einer geeignet definierten Hemisphäre im Photon-Proton Schwerpunkt-
system abgeschätzt. Bei der Observablen zjet wird der Impuls des Charm
Quarks aus dem Viererimpuls des rekonstruierten Jets definiert, der das
D∗-Meson beinhaltet. Für den Jet wird eine Transversalenergie von
Eγp

t (D∗jet) > 3 GeV gefordert.
Aus der Verteilung der Observablen werden die Parameter für die nicht
perturbativen Fragmentations-Funktionen von Peterson und Kartvel-
ishvili für die Monte-Carlo-Modelle RAPGAP/PYTHIA und CAS-
CADE/PYTHIA und für eine massive QCD-Rechnung (HVQDIS) in
nächst höherer Ordnung extrahiert.
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Introduction

During the last decades there has been large progress achieved in the field
of high energy physics, which led to the formulation of the standard model.
The standard model describes all known physics phenomena except gravity.
It includes the theory of electro-weak interactions and the theory of strong
interactions, also called quantum chromodynamics (QCD). The theoretical
predictions, for both theories, are usually based on perturbative calculations.
However in QCD, due to the nature of the strong coupling, only processes
with large momentum transfer can be calculated perturbatively, which limits
the predictive power of this theory.

An interesting opportunity for testing QCD offer the processes which
involve production of heavy quarks (charm and beauty), since the heavy
quark mass already provides a hard scale. This hard scale allows to extend
the range of applicability of perturbative calculations. Due to confinement,
single partons cannot be directly observed, as they are bound within hadrons.
This introduces a large uncertainty in the comparison of measured data on
exclusive production of charmed hadrons with theoretical predictions.

The transition of a heavy quark to a heavy meson (often referred to as
fragmentation) is usually described by phenomenological models, since it is
not entirely perturbatively calculable. One of the major characteristics of
this process is the energy fraction which is transferred from the quark to
the created hadron, which is given by the non-perturbative fragmentation
function.

According to the factorization theorem, the non-perturbative fragmenta-
tion function should be universal, i.e. independent of the charm production
mechanism. Up to now, the parameters of phenomenological models for frag-
mentation have been almost exclusively determined from e+e− annihilation
experiments, and are widely used in ep and pp collider experiments.

However, the factorization theorem has been proven only for a few pro-
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2 INTRODUCTION

cesses, since the mathematical apparatus is very demanding. Apart from the
question of theoretical proof, it is important to experimentally test whether
universality of the fragmentation function really holds.

In this thesis the charm fragmentation function has been measured in
deeply inelastic ep collisions at the H1 experiment. The charm events are
tagged by reconstructing a D∗±-meson via one of its decay channels. Since
the choice of a suitable observable sensitive to the fragmentation function is
not so straight forward in ep-scattering than for example in e+e− annihila-
tion, two different definitions have been investigated in parallel: the first in
close analogy to e+e− - the hemisphere observable, the other making use of
reconstructed jets - the jet observable.

The thesis is organized as follows. In the first chapter the theoretical
foundations are given. In the second chapter the experimental methods for
the measurement of fragmentation are introduced. A short description of
the H1 detector with main focus on detector components relevant for this
analysis is given in chapter 3. Then the data selection, reconstruction of
event kinematics, D∗±-meson tagging as well as the measurement of the
fragmentation spectra are discussed in chapters 4 and 5. In chapter 6 the
parameters of the non-perturbative fragmentation functions are extracted for
different Monte Carlo models and next-to-leading order calculations.



Chapter 1

Theoretical Framework

1.1 Quantum Chromodynamics

Quantum chromodynamics (QCD) is the theory of the strong interaction, one
of the four fundamental forces in nature. It describes the interaction between
quarks and gluons and at the same time gives a hint for their somewhat un-
conventional behavior of being bounded in the hadrons and not manifesting
themselves directly as other elementary particles (e.g. leptons) do. QCD was
developed in the 1970s as a field theory, where interaction between quarks is
mediated by a massless spin=1 boson, the gluon. The partons (quarks and
gluons) are found to have an additional degree of freedom called color charge.
The color charge is analogous to the electric charge, except that it has three
values rather than one (r=red, g=green and b=blue). Quarks carry only one
type of color whereas the gluons are bicolored, carrying one color and one
anticolor.

The major difference between QCD and quantum electrodynamics (QED)
is that gluons can couple to each other since they carry color, whereas in QED
the photons are chargeless. The consequence of gluon self-coupling is that
the strong coupling αs ’runs’ in the opposite direction to the electromagnetic
coupling and becomes very large at low momenta, ensuring that quarks and
gluons are confined within color singlet hadrons.

In principle QCD can completely predict the behavior of partons on
the basis of equations of motion which can be obtained from the QCD La-
grangian. But in practice this is far from being the case, as these equations
cannot be solved directly. One of the frequently used techniques, which leads
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4 CHAPTER 1. THEORETICAL FRAMEWORK

to testable predictions is the use of perturbation theory. For QCD processes
involving exchanges of sufficiently large momenta (hard subprocesses) αs is
small enough for the perturbative approach to be valid. The problem then
is to extend the domain of validity to soft processes, where the involved
momenta are smaller and αs becomes larger. To do this requires informa-
tion on the dynamics of partons inside the interacting hadrons as well as
how partons emerging from the hard subprocess turn into a jet of observ-
able hadrons. Appropriate descriptions of these two soft aspects of QCD
are expected to be universal according to the factorization theorem. After
having been measured in simple cases, they can be applied to all other QCD
processes.

1.2 Deep-Inelastic Scattering

Deep-inelastic scattering (DIS) plays an important role in our understanding
of the structure of matter. The proton structure can be investigated using
lepton-nucleon scattering where the boson emitted by the pointlike lepton
acts as a probe of the nucleon. This provides a much simpler probing mecha-
nism than in nucleon-nucleon collisions in which both participating particles
are compound objects and thus the determination of event kinematics gets
more difficult.

In DIS experiments at HERA, where electrons or positrons collide with
protons at high energy, the lepton (l) interacts in leading order with one of
the quarks in the proton by exchange of a virtual gauge boson (see figure
1.1). Depending on the exchanged boson, two major processes can occur.
The process, ep → eX, where the exchanged boson does not carry any elec-
tric charge (virtual photon or Z0 boson), is classified as neutral current
(NC). The second process, ep → νX, which leads to the exchange of an elec-
trically charged boson (W±) and a different final state (a neutrino instead
of a scattered electron) is classified as charged current (CC). In both cases
X stands for the hadronic final state which includes the proton remnant,
corresponding to the remainder of the proton which did not actively take
part in the hard interaction.
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Figure 1.1: Feynman diagram of deep inelastic ep scattering.

1.3 DIS Kinematics

The kinematics of a DIS event can be parametrized in terms of Lorentz
invariant quantities s, Q2, x, y and W defined as follows:

• The center-of-mass energy squared

s = (k + P )2 = 4EeEp + m2
e + m2

p ≈ 4EeEp (1.1)

is determined by the energies of the colliding beams Ee and Ep (in
this analysis it has a value of 101568 GeV2 with Ee = 27.6 GeV and
Ep = 920 GeV).

• The negative square of the four-momentum transfer or virtuality

Q2 = −q2 = −(k′ − k)2 (1.2)

represents the mass squared of the virtual boson. Q determines the
hardness or in other words the transverse resolving power of the inter-
action.

• The Bjorken scaling variable

x =
Q2

2Pq
(0 ≤ x ≤ 1) (1.3)
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can be interpreted in leading order as the fraction of the proton mo-
mentum carried by the struck parton in the infinite momentum frame
of the proton.

• The inelasticity

y =
qP

kP
(0 ≤ y ≤ 1) (1.4)

is the relative energy transfer from the lepton to the hadronic system
in the proton rest frame.

• The energy of the boson-proton center-of-mass system

W 2 = (q + P )2 = Q2(
1

x
− 1) + m2

p ≈ ys − Q2 (1.5)

is equal to the invariant mass of the hadronic final state X.

Neglecting the electron and proton rest masses, the kinematic variables
are related by Q2 = sxy. Hence for fixed s the kinematics of the inclusive
scattering process can be completely described by any set of two independent
variables out of Q2, x, y and W .

On the basis of the virtuality of the photon one distinguishes between
two kinematic regimes. Interactions with small momentum transfer squared,
Q2 ≈ 0, where the exchanged photon is almost real are called photopro-
duction processes. With increasing momentum transfer the wavelength of
the virtual photon decreases (λ ∼ 1/Q). For Q2 values typically greater
than 1 GeV2 the wavelength becomes smaller than the proton size, making
it possible to resolve its internal structure; this regime is called DIS.

1.4 Proton Structure

Neglecting the Z0 boson exchange contribution which is insignificant at pho-
ton virtuality below 1000 GeV2, the neutral current double differential cross
section for ep scattering (see e.g. [34]) can be written as a function of two
structure functions F1(x, Q2) and F2(x, Q2):

d2σNC

dxdQ2
=

4πα2
em

xQ4

[

xy2F1(x, Q2) + (1 − y)F2(x, Q2)
]

, (1.6)
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where αem is the electromagnetic coupling, and the quantities x, y and Q2

have been defined in the previous subsection. The structure functions are
interpreted as being related to the momentum distribution of the charged
partons within the proton, but they do not explicitly contain knowledge
about the nature of the interaction.

Since the exchanged virtual photon is massive (Q2 > 0), it can have all
three helicity states, λ = 0,±1. Hence the photo-absorption cross section
can be written as a sum of two contributions, σT and σL, which arise from
transversely (λ = ±1) and longitudinally (λ = 0) polarized photons respec-
tively. It is found that 2xF1 is proportional to σT and that F2 is proportional
to σL + σT . Introducing the longitudinal structure function

FL = F2 − 2xF1, (1.7)

which is related to the exchange of longitudinally polarized photons, equation
1.6 can be rewritten as

d2σNC

dxdQ2
=

4πα2
em

xQ4

[

(1 − y +
y2

2
)F2(x, Q2) − y2

2
FL(x, Q2)

]

(1.8)

The structure functions F2 is then extracted by measuring the differential
cross sections depending on x and Q2. FL can be determined by measuring
in addition the dependence on y at fixed x and Q2.

1.5 Quark Parton Model

The quark parton model (QPM) [30] was used to interpret the first measured
data of inelastic ep scattering at the end of the sixties. In this model the
proton is composed of charged pointlike spin 1/2 partons. For processes
with large Q2 where the hard interaction time scale is much shorter than
the interaction between the partons, the partons can be considered as non-
interacting. Therefore γ scatters incoherently, i.e. elastically on one of the
partons of the proton. In QPM the internal structure of the proton can be
expressed in terms of parton density functions fi(x) (PDFs), which denote
the probability to find a parton of type i inside the proton, carrying fraction
x of the proton’s momentum. The structure functions can then be written
as

F2(x) =

nf
∑

i=1

e2
i xfi(x) FL(x) = 0 (1.9)
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The sum runs over all nf quark flavors and ei is the electric charge of the i-th
flavor. In this ’naive’ model the structure function depends only on Bjorken
x and not on Q2.1

Although it was found in those early days of deep-inelastic scattering ex-
periments that the QPM described data quite well, it could not explain why
the quarks were bound inside the proton. Also the assumption that the pro-
ton consisted only of charged quarks was indirectly proven to be false, since
the sum over momenta of charged partons was found to be approximately
50% of the proton’s total momentum. The missing momentum had to be
therefore carried by neutral partons - the gluons, for which later at the e+e−

storage ring PETRA at DESY convincing evidence was found.
By introducing gluon radiation into the QPM picture, the scaling behav-

ior of the structure functions is violated as they now depend on both x and
Q2. The quarks in the proton can radiate gluons, and the gluons themselves
can radiate gluons or split into quark-antiquark pairs as illustrated in figure
1.2. These properties lead to scaling violation, but also to divergencies in
cross section calculations.

Figure 1.2: Feynman diagrams for gluon radiation processes: a) q → qg, b)
q → gq, c) g → qq̄ and d) g → gg.

1.6 Ultraviolet and Infrared Divergencies

One should distinguish between two types of divergencies, namely the ul-
traviolet and the infrared divergence. The ultra violet divergencies arising
from virtual loop corrections can be absorbed into the running of the strong
coupling αs(µr), which depends on the renormalization scale µr given by the
’hard’ scale of the interaction. In the lowest order αs is given by

αs(Q
2) =

12π

(33 − 2nf)log(Q2/Λ2
QCD)

, µr = Q (1.10)

1This property is called scaling (Bjorken scaling).
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where ΛQCD ≈ 0.2 GeV is an experimentally determined parameter, and nf

denotes the number of quark flavors considered in virtual loop corrections to
the gluon propagator. For Q2 � Λ2

QCD the coupling is small, and thus the
interaction is asymptotically free. With decreasing hard scale Q2 → ΛQCD,
the coupling becomes large (which presumably leads to confinement) and
perturbative expansions cannot converge.

In case of real gluon radiation the cross section can be divergent in two
regions. The case where the emitted gluon is moving in the direction of the
outgoing quark is referred to as collinear divergence, while soft divergence
refers to the case where the emitted gluon is soft, i.e. has low energy. It can be
shown that both cases are of the infrared type which means that they involve
long distances.2 The long distance part is mostly sensitive to the partonic
structure of hadrons and the hadronization mechanism. Unfortunately for
infrared divergencies there does not exist such an elegant solution like the
renormalization in the case of ultraviolet divergencies.

1.7 Factorization and Evolution Equations

Inspite of the plague of infrared divergencies it is possible to provide theo-
retical predictions within a perturbative quantum chromodynamics (pQCD)
scope: the infrared divergencies at long distances can be separated from the
hard interaction which is perturbatively calculable. This mechanism is called
factorization. According to the factorization theorem the long distance part
still contains infrared singularities but has the advantage of being universal
(independent of the type of hard subprocess).

The ’final state’ infrared divergencies3 can be absorbed into non-calculable
fragmentation functions (FFs). They are used to parametrize the transition
from partons to hadrons (see section 1.8 for more details). On the other
hand, ’initial state’ infrared divergencies4 are absorbed into parton density
functions (section 1.5). Schematically the total cross section for a produc-
tion of specific hadron h can then be written as a convolution of PDFs, hard

2From perturbative point of view the cross-section can be split into a short distance
part (hard scale involved), which is infrared and collinear safe, and a long distance part
(soft scale involved) which contains infrared and collinear singularities.

3This refers to gluon radiation from partons coming out of the hard subprocess.
4This refers to gluon radiation from partons entering the hard subprocess.
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partonic cross section σ̂ and fragmentation function Dh:

σ =
∑

i

∑

k

fi(x, µf) ⊗ σ̂iγ→kX(αs(µr), µf) ⊗ Dh
k(z, µf), (1.11)

where the index i runs over all partons entering the hard subprocess, and the
index k runs over partons emerging from hard subprocess. The long distance
part as well as the hard subprocess cross section σ̂ depend on the choice of
factorization scale µf (similar to µr) and the factorization scheme. Once the
PDFs and FFs are known at some starting scale µ0, they can be extended to a
different scale by the QCD evolution equations. The evolution equations are
derived considering the possible gluon radiation and gluon splitting processes.
Such process can occur several times which can lead to a gluon ladder in case
of initial state radiation as shown on figure 1.3 (left).

Q

CCFM

BFKL

1/x

 2

D
G

L
A

P

Figure 1.3: Left: gluon emissions in parton evolution, the so called gluon
ladder. Right: a schematic overview of the differences in the DGLAP, BFKL
and CCFM evolution schemes. The direction of particular evolutions are
drawn in the 1/x − Q2 plane.

For the determination of PDFs there exist several approaches of summing
the contributions from all ladder type diagrams. They are based on different
assumptions concerning the ordering of fractional longitudinal momenta xi,
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the transverse momenta kt,i, which are related to the virtualities k2
i and the

radiation angles θi of radiated partons. The DGLAP, BFKL and CCFM
evolutions are described in the following.

DGLAP In this approach [35] the partons in the gluon ladder follow a strong
ordering in transverse momenta k2

t,i � k2
t,i−1 � k2

t,i−2 � ..., while
for the fractional longitudinal momenta there is only a soft ordering
xi < xi−1 < xi−2 < .... The DGLAP formalism is applicable only, if
the longitudinal momenta xP are larger than the transverse momenta,
which is only valid in the region of large Q2 and intermediate to large
x.

BFKL In the regime of very low x and moderate Q2 the BFKL approach
[41] is more appropriate. In contrast to the DGLAP formalism, the
partons in the ladder follow a strong ordering in fractional longitudinal
momentum xi � xi−1 � xi−2 � ...., while the transverse momenta kt

are not ordered.

CCFM The CCFM approach [19] attempts to unify the treatment for both
the x and Q2 dependencies of the parton distributions throughout the
kinematic plane. According to CCFM, the emission of gluons is only
allowed in the angular ordered region of phase space. At small x the
CCFM evolution equation is ’equivalent’ to BFKL and at large x to
DGLAP evolution.

The difference between DGLAP, BFKL and CCFM approach is shown
schematically in figure 1.3 (right). DGLAP predicts the Q2 evolution of the
structure function (parton distribution functions measured as a function of
x at some starting value Q2

0 can be evolved in Q2), BFKL evolution in x,
whereas CCFM allows to evolve in Q2 and x at the same time.

1.8 Fragmentation

The fragmentation function formalism is to some extent similar to the treat-
ment of the parton density functions. The fragmentation process describes
in general how an energetic parton becomes a hadron (this is in fact the op-
posite scenario to that of PDFs). There are two independent aspects which
have to be described by the process of fragmentation.
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The first one involves the probabilities of a quark to hadronize into var-
ious types of hadrons. The second one deals with the probability density
distribution of the energy fraction z, which is transferred in the fragmenta-
tion process from parent parton to the newly created hadron. Usually this
fraction is defined as

z =
(E + pL)hadron

(E + p)parton

, (1.12)

where the energy is combined with the momentum component parallel to the
parton direction. This has the advantage of being invariant under a boost
along the parton direction.

As already mentioned in the previous section (see eq. 1.11), usually one
assumes that the fragmentation function can be factorized. The choice of µf,
which distinguishes between the long distance and short distance part of the
process, is theoretically not clearly defined and is in some sense arbitrary. The
precise definition of a FF for a parton i fragmenting to hadron h - Dh

i (z, µf)
depends on how much of the quark evolution, after its production, is absorbed
into the perturbative partonic cross section σ̂, and how much is assigned to
the FF itself. Therefore, fragmentation functions can be further decomposed
into perturbative and non-perturbative parts Dp and Dnp according to

Dh
i (z, µf) = Dp,i(µf) ⊗ Dh

np,i =

∫ 1

0

∫ 1

0

Dp,i(x, µf)D
h
np,i(y)δ(xy − z)dxdy

(1.13)
The perturbative FF Dp,i(z, µf) takes into account further final state

gluon emissions, and the non-perturbative FF Dh
np,i(z), which corresponds

to formation of bound hadron states is then considered to be universal.5 The
non-perturbative function is usually parametrized by different phenomeno-
logical models which will be discussed later.

The perturbative fragmentation function Dp,i(x, µf) diverges for light
quarks, but in the case of heavy quarks (charm and bottom), where the
quark mass mQ is significantly larger than the QCD scale Λ, better theo-
retical control can be achieved. In particular, the mass provides a physical
infrared cutoff for collinear radiation making a part of the fragmentation pro-
cess accessible to perturbative methods. Usually DGLAP inspired evolutions
are used in order to resum the perturbative part, defined by the evolution in
Q2 down to the scale of the heavy quark mass mQ.

5Universal here means depending neither on the type of hard subprocess, nor on the
scale at which parton was produced.
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1.8.1 Heavy Quark Fragmentation

Whereas light quark fragmentation is characterized by small energy transfers
to the created hadrons, following roughly the behavior z−1(1 − z)2, a quite
different dependence is expected for the fragmentation of heavy quarks into
hadrons. This can be readily seen from simple kinematic considerations as
first pointed out by Bjorken and Suzuki [13].
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q
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P=m  vQ

m vq

Q

q

H(Q q)

Figure 1.4: Fragmentation of heavy quark Q into heavy meson H(Qq̄).

When a light antiquark q̄ from the vacuum (or a diquark qq for baryon
production) gets attached to a fast moving heavy quark Q, it decelerates the
heavy quark in the fragmentation process only slightly, see figure 1.4. This
follows from the momentum conservation law and the requirement vQ = vq

for binding of Qq in a hadron. Thus Q and the heavy hadron H(Qq̄) (or
H(Qqq) respectively) should carry almost the same energy, resulting in a
fragmentation function that peaks near z = 1.

1.8.2 Phenomenological Parametrizations

Various attempts have been made to provide firmer predictions for fragmen-
tation functions having the behavior described above. Different functional
forms (parametrizations) of DH

np,Q(z) were proposed.6 Only the most fre-
quently used ones are discussed here.

1.8.2.1 Peterson Parametrization

The Peterson fragmentation parametrization [53] is based on the assumption
that the probability for heavy quark fragmentation is determined by the value

6In the following will be the subscript ’np’ for the non-perturbative FF dropped.
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of the energy transfer between the initial and final states ∆E = EH+Eq−EQ.
It is given by the following formula

DH
Q(z) =

N

z[1 − 1/z − εQ/(1 − z)]2
, (1.14)

The factor N normalizes the total probability for hadron formation to one,
and the parameter εQ describes the hardness of the fragmentation process
for quark type Q.

z
0 0.2 0.4 0.6 0.8 1

(z
)

H Q
D

0

2

4

6 = 0.03cε charm:   

= 0.003bε beauty:   

Figure 1.5: Peterson fragmentation functions for the c-quark Dc(z) and the
b-quark Db(z).

Although εQ is in principle a fixed quantity, since it is proportional to
m2

q/m
2
Q (the ratio of the effective light and heavy quark masses), in practice

it is regarded as a free parameter that can be adjusted to fit the data since
mq is not well defined. The Peterson model gives a fairly firm prediction for
the ratio εb/εc = m2

c/m
2
b ≈ 0.1. This is illustrated in figure 1.5.

1.8.2.2 Kartvelishvili Parametrization

Kartvelishvili et al. [40] determined the explicit form of the heavy quark
fragmentation function on the basis of the reciprocity between the fragmen-
tation function DH

Q (z) and the Q-quark density function in the heavy meson
H, which can be calculated using the Kuti-Weisskopf model [22]. Assum-
ing the validity of the ’reciprocity relation’ DH

Q(z) = fQ
H (z) at z ∼ 1, and
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the universality of the quark-antiquark sea, one obtains for the FF a simple
functional form

DH
Q (z) = Nzα(1 − z), (1.15)

where α is the fragmentation parameter, which should be, according to the
theoretical calculations, equal to 3 for the c-quark and 9 for the b-quark.

1.9 Charm Production in ep Scattering

In framework of this thesis the fragmentation of charm quarks into D∗±-
mesons is investigated. The charm quarks can be produced in ep collisions
via several processes (see figure 1.6):

• The virtual photon couples to a sea charm or anticharm quark coming
from the proton.

• The virtual photon interacts with a gluon in the proton to form a
charm-anticharm pair. This leading-order process in O(αs) is known
as boson-gluon fusion (BGF).

• The virtual photon fluctuates into partons (quarks and gluons) before
entering the hard interaction which then interact with a gluon from
the proton side. These processes are referred to as resolved processes
in leading-order (the previous two mechanisms are referred to as direct
processes, since the photon acts as a point-like object interacting with
a parton from the proton). Here the photon is parametrized by a
structure function, similarly as is the case for the proton.

The first H1 measurement [4] of cross sections for D∗± production indi-
cates that the dominant mechanism for charm production in DIS for 10 <
Q2 < 100 GeV2 is the boson gluon fusion process. The contribution to the
cross section coming from the charm sea in the proton is expected to be less
than 5%. In this analysis this production mechanism is therefore neglected.

A recent ZEUS measurement of dijet distributions [21] in charm events
indicates that at low Q2 a sizable contribution to the cross section originates
from resolved processes.
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Figure 1.6: Feynman diagrams for the charm production. Direct processes
(top): sea charm from proton (left), boson-gluon fusion (right). Resolved
processes (bottom).

1.10 Monte Carlo Generators

Monte Carlo (MC) generators are powerful tools used to calculate the de-
tector efficiencies and acceptance after cuts on quantities which have to be
introduced in order to identify a given physics process. Only then, direct
confrontation of data corrected for these effects with theory is possible.

The simulation of a physics event is done in two steps. In the first step
the underlying physics is generated, i.e. all final state particles with definite
four-momenta are produced. In the second step the response of the detector
to the created particles is simulated. In this chapter we focus only on the
first step.

Monte Carlo generators for ep reactions are usually based on QCD in-
spired models. The most wide spread types are LO+PS MC generators.
They contain (for illustration see figure 1.7) the leading order (LO) matrix
element (e.g. BGF), the initial parton showers (PS) which evolve the parton
entering the hard subprocess from proton side, and the final parton showers
which simulate QCD radiation down to a cut-off scale of typically around 1
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Figure 1.7: Schematic picture of the subsequent steps in the generation of an
ep event: LO matrix element (hard subprocess), initial and final state parton
showers (PS), hadronization of partons and decay of unstable particles.

GeV. Aspects of non-perturbative physics such as hadronization and initial
parton density functions are included using phenomenological models and
parametrizations.

In this analysis two Monte Carlo generators are used, RAPGAP version
3.1 [38] and CASCADE version 1.2 [37]. Both generators differ significantly
in their approaches of modeling initial parton showers.

RAPGAP uses DGLAP evolution together with on-shell matrix element.
The direct and resolved processes (figure 1.6) are generated separately and
added afterwards. In the latter processes the charm quark is treated as a
massive parton with mc = 1.5 GeV. The renormalization scale µ2

r = Q2 + p2
t

has been chosen. The parton density parametrizations used are CTEQ5L
[44] for the proton and SaS-G 2D [59] for the photon.

In the CASCADE MC the initial partons evolve according to the CCFM
equation. A consequence of the angular ordering of radiated partons in the
CCFM approach is that not only the photon but also the gluon entering the
boson-gluon-fusion is virtual (the matrix element is off-shell). Only direct
BGF processes are taken into account, but due to the CCFM approach some
effects of resolved processes are already implicitly included. Thus this ap-
proach is complementary to the one used by RAPGAP, and both are used
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to compare the underlying physics in this thesis. For the calculations the
renormalization scale µ2

r = 4m2
c +p2

t is chosen together with the unintegrated
gluon density set A0 [39].

After the parton shower, the final state consists of colored partons, which
are then non-perturbatively evolved into colorless hadrons. This transition is
described by phenomenological models as for example the Lund-string model
[8] which is incorporated in PYTHIA [62] . Both Monte Carlo programs,
RAPGAP and CASCADE, are interfaced to PYTHIA version 6.2 in order
to account for hadronization effects.

1.10.1 String fragmentation model

The string model is based on the idea that the chromodynamic flux between
two colored partons is not spread out, like the electric field is, but takes
the form of a narrow tube. This narrow tube can be well described as a
string which has a constant energy density per unit length (about 1 GeV per
Fermi).

As the primary partons move apart, the string stretches and its potential
energy increases linearly with the distance at the expense of the parton’s
kinetic energy. Once the potential energy in the string is sufficient to create a
quark-antiquark pair from the vacuum, the string will break into two shorter,
less energetic strings. The resulting strings themselves become extended, and
will break, until the original string is separated into many short pieces which
do not have sufficient energy to break further: these become the conventional
hadrons.

In order to generate the quark-antiquark pairs which lead to string breakups,
the Lund model invokes the idea of quantum mechanical tunneling. The tun-
neling probability is given by the Lund symmetric fragmentation function

f(z) ∝ z−1(1 − z)ae−
bm2

⊥

z , (1.16)

where m⊥ is the transverse mass
√

m2 + p2
⊥. The quantity z determines the

(E+pz) fraction of the string’s energy, which is transferred to the new hadron
created by the string’s breakup,7 and a and b are free parameters related to

7So in contrast to the independent fragmentation, i.e. Feynman Field [31], where the
energy fraction transferred to the hadron is determined from the parent quark alone, in the
string fragmentation approach the hadron can gain an additional energy from the other
partons bound in the string.
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the behavior of f(z) for z → 1 and z → 0. These parameters have been
determined from fits to experimental data.

String fragmentation is thus able to reproduce the limited p⊥ distribution
of particles in the jet, and also the suppression of strange quarks, as they
are heavier than u and d quarks. In case of heavy flavors, where harder
fragmentation is needed, PYTHIA offers as an alternative to function 1.16
the Peterson function (equation 1.14).

e

p

q

q

color string

Figure 1.8: Boson-gluon fusion process with indicated color strings.

In the case of BGF, which is supposed to be the dominant process for
charm production in ep scattering, the color strings are indicated in figure
1.8. A color octet gluon is removed from the proton leaving a quark and a
diquark-quark behind (proton remnants in a color octet state). The remnants
together with the colored partons from the hard interaction must form color
singlet states. Therefore two strings are formed: one connecting the quark
from BGF with the diquark, and one connecting the antiquark from BGF
with the remnant valence quark.

When additional gluons are emitted, the strings follow the color flow of
the parton shower by stretching via one or more gluons, which appear as
kinks on the string.

1.11 QCD NLO Calculations

The processes which involve production of heavy quarks offer the possibility
to test QCD within the perturbative scope also at small momentum transfers,



20 CHAPTER 1. THEORETICAL FRAMEWORK

as the heavy quark mass provides the essential hard scale in addition to the
already involved one (e.g. Q2, W or pt of the heavy quark). However, the
heavy quark production presents a challenge in pQCD, since the conventional
pQCD was developed for hard processes depending only on one hard scale.
There exist two standard schemes for the calculation of heavy quark processes
which try to reduce the two-scale problem into an effective one-scale problem
in diametrically opposite ways.

In the massive or fixed flavor scheme only three active flavors (u, d, s),
and the gluon, are assumed to be in the proton. The scheme is called massive
because the charm quark is treated as massive, however it is assumed that the
charm mass and the second involved hard scale are of the same order. Hence
the NLO calculations in this scheme are reliable only near the threshold.

In the massless or zero mass variable-flavor scheme the charm quark
is treated as massless like the light flavors. Hence it appears as the fourth
active flavor in the incoming proton parton density functions and it can
initiate a hard scattering. This approach is expected to be reliable only, if
the second scale involved is much larger than the heavy quark mass.

1.11.1 HVQDIS

In this analysis the HVQDIS program [36] is used for the NLO calculation
(O(α2

s) order) of charm cross sections. It is based on the massive scheme
as described above. The heavy quarks are produced at the perturbative
level, where the BGF process is dominant. In addition, a small fraction of
light quark induced processes with the emitted gluon splitting into a charm-
anticharm pair is present. The renormalization and factorization scales have
been chosen to be equal µ2

r = µ2
f = 4m2

c +Q2, the charm mass mc = 1.5 GeV,
and the proton PDF CTEQ5F3 [44] is used.

The charm quark is fragmented independently into a D∗±-meson accord-
ing to the Peterson or the Kartvelishvili fragmentation function (see equa-
tions 1.14 and 1.15). The fragmentation is performed in the photon-proton
rest frame, which allows to mimic the behavior of the beam drag effect (en-
ergy flow in proton direction) as is observed in the laboratory frame. The
D∗±-meson is produced on mass shell with three-momentum ~pD∗ = z~pc.

In order to improve the description of data the charmed hadron is given
transverse momentum with respect to the charm quark direction. The pt

spectrum follows an exponential behavior ∼ exp(−αp2
t ), with α = 6, corre-

sponding to mean value of < pt >≈ 350 MeV. The value of the α parameter
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was tuned to describe the average pt value observed in e+e− experiments at
low energies.

From the QCD point of view at NLO, the introduction of additional pt

is not apriori correct for comparison purposes, since it can mimic the effects
of higher orders terms in perturbative calculation. Therefore both variants
with and without additional transverse momentum are later used.
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Chapter 2

Experimental Methods for the
Measurement of Fragmentation

Usually the comparison of data on charm production with theory predictions
in case of hadron-hadron (resp. hadron-lepton) experiments is done assum-
ing the universality of charm fragmentation. Since fragmentation measure-
ments at hadron colliders are rather difficult, the trend is to use the precisely
measured fragmentation parametrization obtained in e+e− collisions for the
calculation of charm production in other processes. However, this is not suf-
ficient. In particular, one has to take care that these fragmentation functions
are used consistently, i.e. they have to be used together with an appropriate
QCD calculation (a fragmentation function extracted from e+e− data using
a MC model as described in chapter 1.10 should not be used with an NLO
calculation for a precision comparison). If universality should not hold then
there is no guarantee to obtain a good description in any current framework.

To test this assumption of universality with special interest in heavy fla-
vors, charm production has been studied within the framework of this thesis
in order to provide exact parametrizations of some theoretically motivated
functions.

2.1 Fragmentation in e+e− Collisions

In electron-positron collisions charm is produced predominantly via the s-
channel process shown in figure 2.1. In this case the laboratory frame is at
the same time also the center-of-mass frame of the cc̄ system. In leading-

23
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order both quarks produced in the annihilation process are back to back, and
they carry half of the center-of-mass energy

√
s/2 = Ebeam.

There are many observables sensitive to the fragmentation function. The
natural choice is to measure the dependence of charm meson (D∗±-meson)1

production cross section as a function of the observable z, defined as

z =
ED∗√
s/2

=
ED∗

Ebeam
, respectively z =

|~pD∗|
|~pmax|

, (2.1)

where ED∗ and ~pD∗ are the energy and momentum of the D∗-meson, into
which the charm quark fragmented, and |~pmax| =

√

E2
beam − m2

D∗ is the max-
imal accessible momentum to the D∗-meson. These observables have clear
advantage that in leading-order dσ/dz is directly proportional to the non-
perturbative fragmentation function.

, Zoγ
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Figure 2.1: Left: Feynman diagram for charm production in e+e− collisions.
Right: kinematic configuration of cc̄-pair in the laboratory rest frame.

2.2 Fragmentation in ep Collisions

In electron-proton scattering charm is produced predominantly via boson-
gluon fusion. The most appropriate frame for studying fragmentation would
be the boson-gluon frame, where the kinematics looks as simple as it was
in case of e+e− annihilation (cc̄ is moving back to back), but unfortunately

1Due to the easy tagging, the D∗±-meson is the most frequently used charm meson.
Later for simplicity it will be referred only as D∗-meson assuming always both charge
conjugated states.
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this frame cannot be accessed experimentally. As an alternative remains the
boson-proton center-of-mass system (see figure 2.2), which is also called γp-
frame, where the proton and photon collide head on along the z-axis, both
of them carrying energy W/2.

e
c

c

p

c

c p
X

γ W

Figure 2.2: Left: Feynman diagram for charm production in ep collisions.
Right: kinematic configuration of cc̄-pair in the γp-frame.

We see that in case of ep interactions the situation is more complicated
than in e+e− annihilation, as the energy of charm quark is not known. In this
analysis we therefore study the dependence of the D∗-meson cross section on
two variables, both of them defined in such a way that under assumption of
no gluon radiation and an independent fragmentation of the quarks, dσ/dz is
directly proportional to the non-perturbative fragmentation function. In the
definition of the first variable zhem, the E+p (see equation 1.12) of the charm
quark will be approximated by the E + p of a suitably defined hemisphere
(referred to as hemisphere method). For the second variable, zjet, the E + p
charm quark will be approximated by the E + p of a suitably defined jet
(referred to as jet method).

2.3 Hemisphere method

If one looks at the kinematics of charm production via boson-gluon fusion in
the γp-frame, almost all charm and anticharm quarks are found to move in
the direction of the incoming photon. This is caused by the fact that while
the photon enters with its full energy into the hard subprocess, the proton
interacts via its gluons, which typically carry only a very small fraction of the
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proton’s momentum. Assuming no gluon radiation, the charm and anticharm
quarks are balanced in transverse momentum.

thrust

D* hemisphere

D*

Figure 2.3: Event topology in a plane perpendicular to the photon momen-
tum.

This topology suggests that it is possible to divide the event into two
hemispheres, one containing the fragmentation products of the charm quark,
the other of the anti-charm quark. To do that, first the projections of the
momenta of particles onto a plane perpendicular to the γp-axis are calcu-
lated (see figure 2.3). Then the two-dimensional thrust axis [15] is found in
this plane via an iterative procedure, where the absolute particle momenta
parallel to the thrust axis are maximized. The value of thrust is defined as

T =
max(

∑

i |pi‖|)
∑

i |pi|)
(2.2)

The value T = 1 corresponds to a back to back topology whereas T = 1/2
corresponds to an isotropic event.

With a plane perpendicular to the thrust axis the projected event is di-
vided into two hemispheres, one of them containing the D∗-meson and usually
other particles. For them we can define:

zhem =
(E + pL)D∗

∑

hem(E + p)
, (2.3)

where in the denominator the energies and three-momenta of all particles
with momentum projections in the D∗-hemisphere are summed, and pL is
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the D∗-meson momentum component parallel to the D∗-hemisphere momen-
tum vector. To suppress contributions from the proton remnant and initial
state radiation, particles pointing in the proton direction are discarded. This
method was initially proposed by [23], and has been modified for the purpose
of this analysis slightly.

2.4 Jet method

In the jet method the energy and direction of the charm quark is approxi-
mated by a reconstructed jet which contains the D∗-meson. One then arrives
at the following definition:

zjet =
(E + pL)D∗

(E + p)jet

, (2.4)

with pL being the momentum component of the D∗-meson parallel to the
jet axis. The jets are found in the γp-frame using the inclusive k⊥-cluster
algorithm [28], taking the mass of the D∗-meson into account. The D∗-jet is
required to have Et(D

∗jet)>3 GeV. The jet algorithm is described in more
detail in the next section.

The two methods differ in case of additional gluon radiation. Whereas the
hemisphere method sums up contributions from gluons with low as well as
high pt with respect to the charm quark direction, in analogy with the method
used in e+e− collisions, the jet method sums up only gluons with small pt.
The comparison of both methods thus provides a test of our understanding
of parton radiation.

2.4.1 Jet Algorithm

When energetic partons from the hard subprocess hadronize, one can observe
that the created hadrons remain collimated around the original parton direc-
tions (the higher the energy the parton has the more collimated the hadrons
are). These bunches of hadrons are called jets. They can be interpreted as
immediate link to the partons and thus can provide a deeper view of the
underlying parton interactions.

In order to find jets which provide a stable basis for theoretical predic-
tions, several jet finding algorithms have been developed [28]. A good jet
algorithm should fulfill the following criteria:
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• Infrared and collinear safety: the number of found jets and their prop-
erties should not change when one of the objects radiates a very soft
object, or splits into two collinear objects.

• The output of the jet algorithm should be invariant under a longitudinal
Lorentz boost. Since the invariance is not complete (only longitudinal)
one should take care that the jet reconstruction is performed in an
appropriate frame, like for example the γp or the Breit frame in case
of DIS.

One of the frequently used algorithms, fulfilling these criteria, is the in-
clusive k⊥-algorithm. This jet algorithm is also applied in this analysis using
the so-called E-recombination scheme2.

The jet algorithm starts with a list of objects (partons, hadrons or calorime-
ter cells, depending on which level the jet algorithm is applied) called pro-
tojets, which are characterized by their transverse energy Et, rapidity y =
1
2
ln(E+pz

E−pz
) and azimuthal angle φ. The protojets are combined in an iterative

procedure according to their distance in the y−φ plane and their transverse
energies into jets in the following steps:

1. For each protojet i and each pair of protojets ij the distances

di = E2
t,i , dij = min(E2

t,i, E
2
t,j)[(yi − yj)

2 + (φi − φj)
2]/R2

0 (2.5)

are calculated. R0 is an adjustable parameter related to the opening
angle of the jets. In this analysis the theoretically preferred value R0 =
1 has been used.

2. The minimum dmin of all di and dij is found.

3. If dmin is one of the dij’s, the corresponding protojets i and j are merged
into a new protojet k. There exist many possibilities how their kine-
matic quantities can be recombined. In the E-recombination scheme,
which is used in this analysis, the four-vectors of protojets i and j are
added

(px, py, pz, E)k = (px, py, pz, E)i + (px, py, pz, E)j (2.6)

2In contrast to other recombination schemes the particle masses are not neglected here,
the so called massive approach.
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4. If dmin is one of the di’s, the corresponding protojet i is considered as
a final jet and is removed from the list of protojets.

The procedure is repeated until there are no protojets left. The algorithm
yields a list containing typically many jets for each event. However, only the
jets with large Et values are of much physical interest, therefore a minimal
cut on Et of a jet should be demanded. Unfortunately limited statistics in the
data does not allow us to cut too hard in Et spectrum since it is exponentially
falling. A compromise value of Et,min = 3 GeV has been chosen, which still
guarantees a reasonable statistics of jet events in the data sample, as well
as reasonable correlation between the quark momentum on parton level and
the reconstructed momentum of the jet on hadron level.

In order to improve the correlation between the charm quark and the
reconstructed D∗-jet, the D∗-meson is treated as a stable particle (which
means that its decay products are removed from the protojet list and replaced
by the D∗-meson). In this way it is guaranteed that none of the decay
products will end up in one of the ’other’ jets and so sharing of energy of the
D∗-meson by two or more jets is avoided.

2.5 Fragmentation Observables on MC Gen-

erator Level

In this section the properties of both methods, described above, are stud-
ied with help of the RAPGAP Monte Carlo simulation. In particular the
correlations between the parton level and hadron level are investigated. For
charm quark fragmentation in the MC the Peterson parametrization with
ε = 0.04 has been chosen, and for the steering of the production of higher
excited charmed mesons such as D1, D2, etc. a set of parameters [55] tuned
by the ALEPH collaboration to their data has been used.

In this study (and also in the whole analysis) only events lying within
the kinematic range given by photon virtuality 2 < Q2 < 100 GeV2 and
inelasticity 0.05 < y < 0.7 are considered. Additional cuts on the D∗-meson
visibility: transverse momentum 1.5 < pt(D

∗) < 15 GeV and pseudorapidity3

3Pseudorapidity is defined as η = − ln(tan θ

2
). This kinematic quantity is often used

instead of polar angle θ because of its invariance under the boost along the z(beam)-
direction.
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|η(D∗)| < 1.5, which are basically imposed by the acceptance of the central
tracking system (section 3.2.1), are demanded as well.

2.5.1 Hemisphere observable

In order to study the sensitivity of the hemisphere observable to the generated
fragmentation value, the correlation between the generated fragmentation
value in the string breaking process zgen, and the reconstructed value zhem on
parton level4 and hadron level is investigated.

The obtained zgen and zhem distributions on parton and hadron level are
shown in figure 2.4 a, b and c. A more complete picture about the situation
can provide the correlation plots 2.4 d,e and f.

In spite of the expectation of hemisphere observable on parton level being
close to the generated zgen value, as it is not biased by hadronization effects,
the zhem spectrum shows strong tendency to reconstruct softer fragmentation
function even on parton level. Softening effects occur in events where D∗-
meson is produced in cascade decays of excited charm resonances, and thus
generated zgen value does not directly refer to the reconstructed D∗-meson,
and in events with atypical topology caused by hard gluon radiation.

The hemisphere spectrum on hadron level has similar behavior as on
parton level, but is slightly softer. The correlation between zhem on both
levels is reasonable.

The reason for entries at zhem > 1 in case of the parton level distribution,
which seem to be unphysical, is given by the nature of fragmentation process
as implemented in the Lund-string model [8]. Since fragmentation is not an
independent process, the D∗-meson can gain additional energy from nearby
partons in the same string and so end up with energy slightly larger than the
energy of the parent charm quark.

When studying charm fragmentation one should obviously take care that
the observable to be measured is not too much affected by initial state parton
showers and the beam remnants. If parts of the beam remnant and initial
parton showers would enter the hemisphere calculation (they enter into the
denominator), it would lead to a softer fragmentation spectrum. Therefore,
in order to suppress this contribution, a simple but powerful cut η > 0 of

4zhem on parton level means, that hemisphere momentum is calculated from partons,
whereas the D∗-meson itself is taken from hadron level, as on parton level no hadrons are
available.
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Figure 2.4: Hemisphere observable spectra : a) generated zgen spectrum, b)
zhem spectrum on parton level, c) zhem spectrum on hadron level, d) correla-
tions between zgen and zhem on parton level, e) correlations between zhem on
parton and hadron level and f) correlations between zgen and zhem on hadron
level.

all particles in γp-frame has been introduced (the spectra shown in figure
2.4 already contain this cut). The effect can be seen in figure 2.5, where the
energy weighted η distribution of all partons is plotted. The charm quarks
emerging from the hard subprocess together with final state parton showers,
which are essential for the fragmentation measurement, pass the cut without
being affected. On the other hand, most of the proton beam remnant and
more than half of the initial state gluons are cut out.

An attempt to increase the η cut did not bring any improvement, since
the pt-balance of remaining particles got worse, which negatively influenced
the determination of the charm quark hemisphere.
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Figure 2.5: Energy weighted η distribution of all generated partons in the
γp-frame.

In case of resolved processes the situation is more complicated due to the
presence of the photon remnant. In contrast to the proton beam remnant,
which can be completely excluded, the photon remnant populates the same
kinematic phase space as partons coming from the hard subprocess, and it
often contains a charm quark. According to the MC simulation in roughly
7% of all cases the tagged D∗-meson originates from the charm quark of the
photon remnant. Especially for these events the hemisphere method fails to
reconstruct the generated z value (in most cases yielding values for zhem ' 0).

In spite of the subtleties and deficiencies mentioned, the correlation of zhem

to the generated fragmentation value is still reasonable. Thus the hemisphere
method can be used for the extraction of the fragmentation parameter.

2.5.2 Jet Observable

Also for the jet method the correlation between the generated and recon-
structed fragmentation value on parton level and hadron level has been stud-
ied. The zjet distributions obtained on parton and hadron level, as well as
their correlation matrix are shown in figure 2.6.

The spectra show several differences with respect to the distributions
obtained previously by the hemisphere method (figure 2.4). In case of the jet
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Figure 2.6: Jet observable spectra: a) zgen spectrum, b) zjet spectrum on
parton level, c) zjet spectrum on hadron level, d) correlation between zgen

and zjet on parton level, e) correlation zjet on parton and hadron level and f)
correlation between zgen and zjet on hadron level.

method the fragmentation spectra are harder than those from the hemisphere
method, which is caused by the fact that in the jet less radiated gluons are
summed than in the D∗-hemisphere.

The correlation between zgen and zjet observable is very good. However, on
the hadron level a new characteristic feature appears - a large peak exactly
at z = 1. These entries correspond to jets, which consist only of the D∗-
meson itself. In general, since charm is at HERA mainly produced close
to the kinematic threshold, the charm jets are rather broad and not well
collimated. Therefore, the jet algorithm sometimes fails to find soft hadrons
belonging to the charm quark fragments. By increasing the cut on the jet
transverse momentum the fraction of these entries drops, but unfortunately
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the limited statistics in data does not allow to increase the cut on Et(D
∗jet).

This peak is just an artefact and must not be taken as evidence for an
extremely hard fragmentation as can be seen from the correlation plot 2.6
e (the horizontal line at zhadron

jet = 1 covers the interval 0.7 < zparton
jet < 1).

Nevertheless, since the zparton
jet for this subset of events is significantly harder

than the rest of the sample, these events should not be excluded, as they
may contain interesting information about the fragmentation process.



Chapter 3

H1 Experiment at HERA

3.1 HERA Accelerator

The HERA machine was build as the first lepton-proton accelerator with two
independent storage rings placed close to each other; one for protons and a
second for leptons. It is located at the DESY research center in Hamburg,
Germany. Since 1999 the HERA accelerator provides proton and lepton
beams with energies of 920 GeV and 27.6 GeV respectively, yielding in center-
of-mass energy

√
s ≈ 320 GeV. The leptons and protons are stored in bunches

which collide in 96 ns intervals in two interaction regions where the H1 and
ZEUS experiments are located.

3.2 H1 Detector

The H1 detector is one of two multi purpose detectors designed to study ep
collisions at HERA collider. It consists of several layers of detectors symmet-
rically placed around the beam pipe, allowing to measure energy and mo-
mentum of charged as well as neutral particles produced in collisions. Since
the beam energies are highly asymmetric, most of the particles are boosted
along the proton direction. Due to this feature the detector instrumentation
is enhanced in the proton (forward) direction.

At H1 a right handed coordinate system (figure 3.2) is used. The positive
z-axis is defined parallel to the proton beam direction (often referred as
forward direction) and the x-axis points towards the center of HERA ring.

35
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Figure 3.1: A schematic view of the H1 detector.
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Figure 3.2: The H1 coordinate system.

The main components of the H1 detector are shown on figure 3.1. The
beam pipe around the interaction point is first surrounded by silicon track-
ers (located in central and backward direction), then by forward and central
tracking chambers followed by a liquid argon calorimeter and muon chambers.
Between the muon chambers and the calorimeter is positioned the supercon-
ducting solenoid which provides a magnetic field of 1.15 T. The presence of
magnetic field is essential for transverse momenta measurement of charged
particles in the tracking chambers.

In addition several small detectors are located along the beam pipe to
provide a luminosity measurement, the tagging of photoproduction via de-
tecting the electron scattered under very small angles in the backward direc-
tion, and a measurement of the scattered proton or proton remnant in the
forward direction. More detailed descriptions can be found in references [1]
[2].

In the following only detector components related to this analysis, includ-
ing the trigger system, will be described.

3.2.1 Tracking System

The H1 tracking system (see figure 3.3) is designed to measure three-dimen-
sional particle trajectories within a large acceptance range. A part of it
is used also for triggering purposes. From a geometric point view it can
be divided into three parts: the forward tracking detector (FTD) covering
angular range 7o < θ < 25o, central tracking detector (CTD) covering range
15o < θ < 165o and the backward drift chamber (BDC) covering range
153o < θ < 177o.
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Figure 3.3: The H1 tracking system (r− z view): forward, central and back-
ward trackers.

3.2.1.1 Central Tracking Detectors

The track reconstruction in the central region is performed with help of four
concentric cylindric drift chambers (the central jet chambers CJC1,CJC2 [16]
and the central z-chambers CIZ,COZ [27]) and a central silicon tracker (CST)
[54] which serves mainly for improving the event vertex reconstruction. Both
central jet chambers provide besides the trajectory measurement also the
measurement of specific energy losses dE/dx, which are in this analysis used
for particle identification.

The CJC1 consists of 30 cells each containing 24 sense wires, whereas the
outer CJC2 chamber consists of 60 cells with 32 sense wires running parallel
to the beam axis providing a good resolution in r − φ plane. The cells are
separated with planes of field shaping wires, which provide a homogeneous
electric drift field. The charged particles moving through the jet chambers
in the homogeneous magnetic field follow a helical trajectory, with radius
proportional to the transverse momenta pt with respect to the magnetic field
lines. The particles ionize the gas in the chamber and the free electrons
produced in ionization process drift towards to sense wires, driven by the
electric field formed with field-shaping wires. Due to the gas amplification
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the drifting electrons close to the sense wire initiate an ionization avalanche
generating a signal. The drift velocity and the time at which the signal is
registered at the sense wire determine the hit position in r−φ plane. In this
way a spacial resolution of about 170 µm can be achieved.

The z trajectory component can be obtained on the basis of charge divi-
sion between the ends of active sense wires. This method leads to a resolution
of 2.2 cm, which is much worse than the resolution in r − φ plane. Never-
theless it can be improved by including the hit information from inner and
outer z-chambers (CIZ and COZ), as the sense wires in both z-drift chambers
are stretched perpendicular to r − φ plane. This topology provides excellent
resolution of σz = 350 µm.

Close to the z-chambers are located multiwire proportional chambers CIP
and COP [45] which are used for triggering on events with significant number
of tracks pointing to the nominal vertex region in z plane.

3.2.1.2 Forward Tracking Detector

The FTD [17] is build up from three identical supermodules arranged along
the z-axis. Each of them consists of radial and planar drift chambers, propor-
tional chamber and a transition radiator. Till now the forward trackers are
not satisfactory understood within the Monte Carlo simulation. Therefore,
pure forward tracks which are not linked to any central tracks are not used
in this analysis.

3.2.1.3 Backward Drift Chamber

The backward drift chamber (BDC) [18] is mounted in front of the SPACAL
calorimeter. It is mainly used to improve the precision of the polar angle
measurement of the scattered electron in the SPACAL, and to distinguish
electrons from photons. The BDC consists of four double-layers drift cham-
bers with wires arranged in octagonal form. These layers are rotated by 11.5o

to each other, which enables to measure the φ coordinate. The resolution
of polar angle θ is better than 1 mrad with a systematic uncertainty of 0.5
mrad.
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3.2.2 Calorimeters

Calorimeters offer a complementary measurement to the tracker measure-
ment, allowing to detect the neutral particles which are for trackers ’invisible’
and to discriminate between leptons and hadrons. In sampling calorimeters
the energy measurement is achieved by putting layers of passive dense mate-
rial (called absorber), where the incident particles loose energy via produc-
tion of secondary particle showers, and layers of sampling material where the
deposited energy can be measured. The two most important calorimeters
in the H1 experiment are the liquid argon calorimeter (LAr), covering the
central and forward region, and the backward scintillating fiber calorimeter
SPACAL.

3.2.2.1 Liquid Argon Calorimeter

The LAr calorimeter [9] (see figure 3.4) is divided into inner electromagnetic
section with lead absorber plates and outer hadronic section with stainless
steel absorber plates in order to optimize the electron (photon) and hadron
energy measurement. In both sections liquid argon is used as an active
medium. The choice of argon brings several benefits: it is a noble gas with
high atomic density resulting in large ionization and guaranteeing a stable
performance of the calorimeter over years.

Figure 3.4: LAr calorimeter side view.

The charge produced during the ionization of argon atoms by secondary
particle showers is collected on cathode pads and the induced signal is read-
out. In total there are 44352 cells with 63488 electronic read-out channels.
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Granularity of the cells increases towards the forward direction, in order to
provide homogeneous coverage in pseudorapidity.

The LAr is a non-compensating type of calorimeter which means that
hadronic particles cause in average around 1/3-rd smaller energy deposit
than electromagnetic particles of the same energy. In order to account for
this behavior a weighting technique is applied during the reconstruction of
hadronic energy measurement.

The energy resolution of LAr calorimeter for electromagnetic showers is
σem(E)/E = 11.5%/

√

E[GeV]⊕1% and for hadronic shower of σhad(E)/E =

50%/
√

E[GeV] ⊕ 2%.

3.2.2.2 SPACAL

The primary function of the SPACAL calorimeter [47] is to trigger and
precisely measure the electrons scattered under small angles, and thus al-
low to study the low Q2 DIS events. It is a non-compensating scintillation
fiber calorimeter with an electromagnetic and hadronic part covering angular
range from 153o to 175.5o. Both parts are divided into cells, the electromag-
netic cells being smaller than the hadronic cells.

Scintillating fibers, which are aligned along the beam axis, are embed-
ded in a lead matrix. When shower particles pass the scintillation material,
scintillation light is emitted which is then collected at the end of the fibers
and guided to photomultipliers. The light is in photomultipliers converted
to electronic signals which are then amplified and read-out.

The achieved resolution for electrons is σem(E)/E = 7%/
√

E[GeV] and

for hadrons σhad(E)/E = 56%/
√

E[GeV].

3.2.3 Trigger System

At designed HERA luminosity around 1000 ep interactions are expected per
second, whereas DIS events occur only with couple of Hz frequency. However
the total interaction rate is completely dominated by non ep background
events (∼ 100 kHz) coming from beam-gas, beam-wall collisions, etc. ...

This constant data stream cannot be handled since the read-out rate as
well as the data transfer and storage capability is limited. Therefore a so-
phisticated trigger system which discriminates events of physics interest from
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background events is needed. The H1 trigger system consists of 4 levels 1

which are designed to successively reduce the rate from 10 MHz down to
hundreds of Hz (see figure 3.5). The reduction rate of the levels is inversely
proportional to the processing time needed for more and more complex cal-
culations.

Figure 3.5: The H1 multilevel trigger system.

3.2.3.1 Trigger Level 1

Due to the high bunch crossing frequency at HERA each 96 ns an interesting
interaction can possibly occur. Therefore it is essential that the level 1 trigger
(L1) provides a decision for each bunch crossing (BC) without causing a dead
time. This is achieved by feeding detector signals into pipelines whose length
varies form 27 to 35 bunch crossing intervals depending on the subdetector
system. In this way time is gained to obtain general event characteristics
on which hand a decision can be made. The information from different
subdetectors are in form of trigger elements delivered into central trigger logic
(CTL) where they are logically combined to various so-called subtriggers.
The subtriggers are available 24 BC after the real interaction time and the
L1 decision can be made. If any of the subtrigger conditions are fulfilled
an L1KEEP signal is sent to stop the pipelines, to protect them from being
overwritten, and the L2 trigger is initiated. From this moment the detector
is insensitive to further interactions and the dead-time starts.

1During the 2000 running period, which is analyzed here, the level 3 trigger system was
not yet implemented.
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3.2.3.2 Trigger Level 2

On the second level two independent parallel running systems have nearly
ten times more time (20 µs) to verify or falsify the L1 decision. The first
system is based on a neural network architecture L2NN and the second on
event topologies L2TT. They work with more detailed information delivered
by most of the trigger sub-systems. If the event is not rejected the L2KEEP
signal initiates the read-out of the whole detector (complete read-out takes
between 1-2 ms).

3.2.3.3 Trigger Level 4

On the fourth level full detector information is available, hence the online
event reconstruction can be performed. The detector information is filled
into a buffer and then is asynchronously processed on a PC-farm, so it does
not further contribute to the detector dead time.

If the decision of L1 and L2 triggers is confirmed, a L4 classification of the
event is done. If the event is classified as a interesting physics channel event
(’high Q2’, ’open charm’, ’diffraction’, ...) then it is being kept, otherwise it
is downscaled according to its Q2. The smaller the Q2 value is the larger the
downscaling factor is attributed. In this way the L4 output rate is reduced
to 10 Hz and the selected events are written on tapes.
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Chapter 4

Selection of D∗-Mesons

This chapter describes the selection of the analyzed data sets. First an
overview of the online selection, which is performed using a dedicated sub-
trigger, is given. Then the reconstruction of the event kinematics used for the
definition of the DIS phase space of this measurement and the reconstruction
of D∗-mesons is discussed.

4.1 Online Selection

The starting point of the analysis is the selection of the events of interest
from a huge amount of background events. This is done in two steps: First
a preselection is done online during the data taking. It is based on a trigger
decision which selects a certain class of physics events. Secondly, the final
selection is then done offline, where analysis specific cuts are applied, and
fine tuning is possible.

As has already been mentioned in chapter 3, the data are selected us-
ing the 4-level trigger system. This D∗ analysis makes use of one single
dedicated L1 subtrigger ST61. This subtrigger combines information from
several detector components, demanding a signal from the SPACAL trigger,
in coincidence with a charged track signal from the z-vertex and the DCRPhi
triggers. The basic definition of subtrigger ST61 is as follows:

ST61 = (SPCLe IET > 2||SPCLe Cen3)&DCRPhi THigh&zVtx sig (4.1)

• The SPACAL IET(inclusive electron trigger) subsystem is used to
detect events with a scattered electron in the backward region. In

45
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order to achieve high efficiency a so-called sliding window technique
is used: from 4x4 neighboring electromagnetic cells trigger towers are
built which overlap with each other in both x and y directions. If
the energy deposit in one of the trigger towers exceeds a threshold of
6 GeV, the trigger element is set to on. (More precisely, the condi-
tion that is demanded consists of a logical or between the energy de-
posit in the non-central and central region of SPACAL: SCPLe IET>2
||SPCLe IET Cent 3.)

• The DCRPhi Trigger uses as input digitized signals from 10 wire
layers of the CJC. They are compared with predefined track masks
corresponding to charged particle trajectories. The subtrigger ST61
requires the trigger element DCRPh THigh to be on, which means that
at least one track mask above a threshold of pt > 800 MeV is found.

• The z-Vertex Trigger decision is based on the CIP, COP and FPC.
The signals from the proportional chambers are divided into z and φ
sectors which are then used to obtain rough information about the event
z-vertex position. All possible combinations of particle trajectories are
constructed, and their intersections with the z-axis are filled into a his-
togram (see figure 4.1). Only particles originating from an interaction
point cause an excess in the corresponding histogram bin, whereas the
combinatorial background is randomly distributed. In this analysis the
zVtx sig trigger element is required, which implies a significant peak in
the z-vertex histogram.

COP

CIP

z-axis

FPC

+z

+43.9 cm

15

-43.9 cm

0

Figure 4.1: The principle of the z-vertex trigger histogram procedure.
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In addition, veto conditions from time-of-flight systems are applied to
suppress out of time background coming from beam-gas and beam-wall in-
teractions.

In order to keep L1 rates at a tolerable level prescale factors may be
applied on subtriggers. Prescale factor n means that only each n-th time,
when the subtrigger fires, is an event accepted and processed further. In the
analyzed 2000 data taking period the average prescale factor of ST61 is 1.2.

Since there is no additional L2 requirement for the ST61 subtrigger, the
events which passed L1 are then directed to level 4, where they can be down-
scaled once again according to their Q2 (an L4-weight is attributed to each
event, which is then later used in the off-line analysis). A photoproduction
or low Q2 event can still be saved, if one of the hadronic final state finders,
such as HQSEL [32] for open charm production, considers the event to be
interesting. HQSEL searches for various charmed hadrons in different decay
channels, for example the D∗ → Kππs channel which is used in this anal-
ysis. The D∗-candidates are identified by using the tracks reconstructed in
the central tracking detector with a rather loose set of cuts, which will be
discussed later.

4.2 Data Quality Cuts

4.2.1 Run Selection

The data used in this analysis were collected during the 2000 running period
when HERA collided 27.6 GeV positrons with 920 GeV protons (the run
range with shifted vertex position is not included). From the overall data
sample, only runs which fulfill certain quality criteria are selected.

• The runs flagged as ’poor’ are excluded. This flag is set, if either
calorimeters or trackers are not operational, or other serious problems
have been found such as readout inconsistencies of some of the detector
components, not properly loaded system, etc. ...

• Only data, collected during the time when all detector systems essential
for this analysis had fully operational read-out and high voltage on, are
taken. The relevant detector components are the CJC1 and CJC2, the
central and forward proportional chambers (CIP, COP and FPC), the
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LAr and SPACAL calorimeters, the BDC, the time-of-flight scintillators
and luminosity system.

• The integrated luminosity Lint per run, after high voltage and satellite
bunch corrections has to be larger than 0.1 nb−1.

With these requirements the total integrated luminosity of the analyzed
data sample is 43.35 pb−1, and after correction for the prescale factor of
subtrigger ST61 L = 36.23 pb−1.

4.2.2 Event Vertex

To reduce the number of background events coming from interactions of
the proton beam with the residual gas or with the beam pipe walls, which
can happen anywhere along the whole beam pipe, only events with a recon-
structed z-vertex in region close to the nominal z-vertex position are taken
into account (|zvtx| < 35 cm). The resulting zvtx spectrum is shown in figure
4.2.

Unfortunately the z-vertex position is not easy to simulate within the
Monte Carlo framework, because it depends a lot from the properties of
injected bunches during the HERA run operation. Hence good agreement
between the data and MC simulation should not be expected. However, it
is important to have a good description of the z-vertex position of the data
by Monte Carlo, since it can influence the reconstruction of the scattered
electron.Therefore the z-vertex position of Monte Carlo simulation have been
reweighted to describe the data.

4.3 Selection of DIS Events

This section describes the criteria applied to identify the scattered electron,
the reconstruction of kinematic variables as well as the final cuts for the DIS
event selection.

4.3.1 Scattered Electron

In low Q2 DIS events the incident electron is scattered at small angles into
the backward SPACAL calorimeter. Its energy is reconstructed from the
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Figure 4.2: Description of the z-vertex distribution by the Monte Carlo sim-
ulation before and after a reweighting procedure.

deposited energy in the form of a cluster in the electromagnetic section of
the SPACAL.

The largest source of background clusters, which fakes the electron sig-
nature, comes from hadronic final state particles moving in the backward
direction from the interaction point into the SPACAL. One source of misiden-
tified electrons is due to photons from π0 decays, π0 → γγ. Also hadrons,
due to fluctuations in the shower development, are sometimes misidentified
as electrons. Therefore, a small fraction of photoproduction events, where
the scattered electron goes unseen down the beam pipe, can be misidentified
as a DIS event (after applying all analysis cuts the fraction is below 1% [60]).

In order to reject background, the cluster with highest pt which passes
the following criteria, is selected as the scattered electron:

• Cluster energy
To suppress the contribution from backward moving hadrons, the center
of gravity of a reconstructed cluster and 90% of its energy has to lie
in the electromagnetic part of the SPACAL calorimeter. The cluster
energy must be larger than 8 GeV.

• Cluster radius
Since hadronic showers tend to be broader than electromagnetic ones,
laterally as well as longitudinally, a small cluster radius of 3.5 cm is
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required.

• BDC hit association
The BDC is used to reject background from high energetic photons
from π0 decays. Photons, unless converted in material, do not produce
any signal in the drift chamber in contrast to electrons, hence a track
segment in the BDC with a small projected distance from the center
of the SPACAL cluster is required (∆RBDC < 1.5 cm).

• Radial cluster position
To guarantee a fully contained shower in the calorimeter, electron can-
didates in the innermost SPACAL region rθ = (zclus − zvtx) tan θ < 9.1
cm are rejected. In contrast to a simple geometrical cut on ρclus =
√

x2
clus + y2

clus this cut allows a beam displacement between data and
MC simulation. In addition, events with energy deposits in Veto layers
and ρclus > 74 cm are rejected.

Because of better resolution the polar angle θ′e as well as the azimuthal
angle φ′

e are calculated from the track segment in the BDC instead of from
the SPACAL cluster1.

To account for trigger cells which did not work efficiently for long run-
periods, fiducial regions for the electron in SPACAL have been cut out [60].
The distributions characterizing the scattered electron, in events containing
a D∗-meson, are shown in figure 4.3 a-c). The MC simulation has been
corrected for the BDC inefficiency of 10% in the transition region between
the small and large BDC cells at cluster radius ρclus ≈ 27 cm, which is not
implemented in the standard detector simulation.

4.3.2 The Energy Balance

E − pz is a quantity characterizing the energy and longitudinal momentum
balance of an event. From energy momentum conservation before and after
interaction one obtains following relation

E − pz = Ep − pp,z + Ee − pe,z =
∑

i=hadrons

(Ei − pi,z) + (E ′
e − p′e,z), (4.2)

1Only the polar angle resolution of the BDC is better, but since the azimuthal resolution
is comparable with the one from SPACAL, for simplicity both quantities are taken from
the BDC.
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Figure 4.3: Scattered electron quantities for events containing a D∗-meson:
a) energy E ′

e, b) polar angle θ′e, c) azimuthal angle φ′
e and e) E − pz control

plot. Shown are data (full points) together with RAPGAP MC predictions
after zvtx reweighting (yellow filled area).

where the sum runs over all measured hadronic objects. The observed dis-
tribution is shown in figure 4.3 d. In the ideal case E − pz should be equal
to 2Ee ≈ 55 GeV.

This quantity is very sensitive to particle losses in the backward direction
and therefore can be used to reduce the contamination from photoproduction
events, where the electron escapes down the beam pipe, by imposing a lower
limit. By applying an upper limit poorly reconstructed events are rejected.
In this analysis the range 40 GeV < E − pz < 75 GeV is required.
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4.3.3 Reconstruction of the Kinematics

Various methods are used for the reconstruction of the event kinematics [10],
which differ in their sensitivity to QED radiation, to the accuracy of the
energy scales and polar angle measurements. For this analysis the so-called
electron method has been chosen.

The electron method is based only on measurements of the energy E ′
e

and the polar angle θ′e of the scattered electron. The kinematic variables
defined in section 1.3 can be calculated using the following formulae:

Q2
e = 4E ′

eEe cos2 θ′e
2

ye = 1 − E ′
e

Ee

sin2 θ′e
2

(4.3)

This method provides very good Q2 and y resolution, which then degrades
towards lower y values, where accurate energy calibration becomes essential.
The measured inelasticity y and photon virtuality Q2 are shown in figure 4.4.
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Figure 4.4: Reconstructed kinematic variables for events containing a D∗-
meson: a) Q2, b) y. Shown are data (full points) together with RAPGAP
MC predictions after zvtx reweighting (yellow filled area).
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4.3.4 DIS Kinematic Range

The DIS kinematic range covered by this analysis is defined in terms of cuts
on Q2 and y:

2 < Q2 < 100 GeV2 0.05 < y < 0.7 (4.4)

The cuts on Q2 are determined by the geometrical acceptance of the
SPACAL calorimeter. The lower cut on inelasticity is applied to avoid the
region of poor resolution in the event kinematics by the electron method,
and the upper cut suppresses events with large QED radiative effects.

4.4 Reconstruction of D∗-mesons

The commonly used method for reconstruction of D∗-mesons (or any kind of
unstable hadrons) is to plot the invariant mass of the tracks identified with
a given decay channel. The tracks originating from the meson decay have to
obey energy conservation laws, and hence their invariant mass is equal to the
meson mass (due to detector resolution the reconstructed mass is smeared
around the central meson mass value according to a more or less Gaussian
distribution). On the other hand randomly combined tracks, not related
with a D∗-meson, contribute to the background which can be approximated
by a polynomial shape. Assuming a good enough invariant mass resolution
leading to a reasonable ratio of signal to background events, this simple
method allows to extract events with particular charm decays.

4.4.1 The D∗ Decay Mode

The D∗+ (D∗−) meson is an excited cd̄ (c̄d) state with mass m(D∗) = 2.010
GeV [24]. In the framework of this analysis it is reconstructed in the exclusive
decay channel

D∗± → D0π±
s → K∓π±π±

s (4.5)

The mass difference between the D∗ and D0 of 145.4 MeV is only slightly
above the pion mass mπ = 139.6 MeV. Therefore, the available kinetic energy
of the decay products is very small, and the D0 and π±

s are produced almost
at rest in the D∗ rest frame. When boosting to the laboratory frame most
of the D∗ momentum will be transferred to the D0-meson because of its
large mass compared to that of the pion. Hence, the pion coming directly
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from the D∗-meson decay has the smallest momentum among the three decay
particles (Kππs) and is being referred to as the ’slow’ pion (πs). Although
the branching ratio of this decay channel is small

BR(D∗± → K∓π±π±
s ) = BR(D∗± → D0π±

s )BR(D0 → K∓π±)

= (67.7 ± 0.5)%.(3.8 ± 0.09)%

= (2.57 ± 0.06)%, (4.6)

the advantages which it offers compensate for it.
Due to the tight kinematic constraint one can achieve a clear signal with

very good resolution, basically dominated by the pt(πs) resolution, when
plotting the invariant mass difference

∆M = M(K∓π±π±
s ) − M(K∓π±) (4.7)

as shown in figure 4.5 (left). Using this ∆M tagging technique [29], instead
of a simple invariant mass M(Kππs) calculation, the resolution is signifi-
cantly improved, since several measurement errors cancel at least partially.
In addition, the phase space for the combinatorial background, which grows
with increasing ∆M , is significantly suppressed.

4.4.2 D∗ Finder Algorithm

The D∗ decay products are measured in the central tracking detectors (CJC,
CIZ/COZ and CST). In order to reach a good signal to background ratio,
only well measured tracks fitted to the primary vertex are considered as K, π
or πs candidates.2 These tracks are used as input to the so-called D∗ finder
algorithm which works as follows.

D0 |M(Kπ) − M(D0)| < 70 MeV
pt(K) + pt(π) > 2 GeV

D∗ ∆M = M(Kππs) − M(Kπ) < 170 MeV
1.5 < pt(D

∗) < 15 GeV
|η(D∗)| < 1.5

Table 4.1: D∗-candidate kinematic cuts.

2Although the D0-meson is decaying weakly, due to very short mean decay distance of
cτ = 123 µm, the daughter tracks are fitted to the primary vertex of the event.
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In each event oppositely charged tracks are combined in pairs, assigning
them the pion and kaon mass hypothesis. If their invariant mass lies inside
the M(D0) mass window (see table 4.1) the search for a corresponding slow
pion continues. The remaining tracks with opposite charge to that taken as
the kaon are then added one by one, assuming the pion mass hypothesis, to
form the D∗-meson candidate.
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Figure 4.5: The ∆M invariant mass spectrum of selected ’right charged’
(RC) and ’wrong charged’ (WC) D∗-candidates for the 2000 data sample,
together with the results of the fit. WC D∗-candidates are artificially shifted
by a constant value to the right.

Due to limited geometrical acceptance and reconstruction efficiency of
the central trackers, the kinematic range of a D∗-candidate is constrained by
the cuts: |η(D∗)| < 1.5 and 1.5 < pt(D

∗) < 15 GeV.3 The invariant mass
spectrum with resonant peak of correctly identified D∗-mesons is shown on
figure 4.5 (left). Table 4.2 summarizes all kinematic cuts, together with the
track quality cuts used for each of the decay particles separately.

4.4.3 D∗ Signal Extraction

The number of D∗-mesons is obtained from a fit to the ∆M distribution. Un-
fortunately the signal peak sits exactly on top of a steeply rising background,

3These two cuts, together with the DIS cuts on Q2 and y, define the D∗ visibility range.
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Kaon Pion Slow Pion

pt > 0.25 GeV > 0.25 GeV > 0.12 GeV
Track length > 18.9 cm > 18.9 cm > 10 cm
Rstart < 30 cm < 30 cm < 30 cm
NCJC hits > 10 > 10 > 10
|d′

ca
| < 1 cm < 1 cm < 1 cm

∆z = |z′ca − zvtx| < 20 cm < 20 cm < 20 cm
|d′

ca
sin θ| < 0.5 cm < 0.5 cm < 0.7 cm

|∆z sin θ| < 18 cm < 18 cm < 18 cm

Table 4.2: Track selection cuts for Kππs candidates.

therefore, the so-called ’wrong charged’ background is used to stabilize the
background fit in the signal region.

The wrong charged background consist of wrong charged ’D∗’-candidates,
which are selected by the same algorithm and the same cuts as described
above, only instead of combining a positively and a negatively charged track
to reconstruct a D0-candidate, two like sign tracks are taken. This ’D0’-
candidate is then combined with an oppositely charged track, the ’πs’, to
form a wrong charged ’D∗’, a K∓π∓π±

s combination. The shape of the ∆M
distribution for wrong charged (WC) combinations agrees well with the shape
of the D∗-meson background in the right charged (RC) ∆M distribution as
can be seen in figure 4.5 (in order to be able to plot both RC and WC
distributions into one histogram the WC distribution is artificially shifted by
the constant value of m0 = 0.035 GeV to the right).

The ∆M distribution is fitted with a Gaussian for the signal and a power
law function for the background:

RC : x ∈ (mπ, 0.17), f(x) = ND∗

1√
2πσ

exp(−(x − µ)2

2σ2
)

+NbgNn(x − mπ)α

WC : x ∈ (mπ + m0, 0.17 + m0), f(x) = kNbgNn(x − mπ − m0)
α (4.8)

where ND∗ refers to the total number of D∗-mesons, σ and µ are the width
and mean of the signal peak, Nbg is the background normalization, α is
a parameter characterizing the steepness of the rising background, Nn =
(α + 1)/(0.17 − mπ)α+1 is the normalization factor for background function
and k is the relative normalization between RC and WC background. All
these variables are used in the fit as free parameters. The results of the fit
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on full 2000 data statistics are listed in figure 4.5. Overall the studied data
sample contains almost 2300 D∗-mesons.

For the ∆M fits in bins of differential distributions the mean position of
the D∗-peak is kept fixed to the µ value obtained from the global fit (see
figure 4.5).

4.4.4 Particle Identification

Further suppression of combinatorial background due to tracks with wrong
mass hypothesis assignment can be achieved by particle identification via
ionization losses.

The mean energy loss of a charged particle (except of electron) passing
matter is described by the Bethe-Bloch formula [25]:

−dE

dx
= 4πNAr2

emec
2z2 Z

A

1

β2
[
1

2
ln

2mec
2β2γ2Tmax

I2
− β2 − δ

2
] (4.9)

NA denotes Avogadro’s number, re the classical electron radius, me the
electron mass, z the charge of the incident particle, Z the atomic number,
A the atomic mass and I the effective ionization potential of the traversed
matter, and δ a correction for the density effect. The variable Tmax refers to
the maximum kinetic energy which can be transferred to a free electron in
a single collision. The Lorentz variables β = p/E and γ = 1/

√

1 − β2 are
defined as usual.

The ionization loss dE/dx depends only on the particle’s velocity (or βγ).
At small βγ values dE/dx decreases quadratically towards the βγ ≈ 4, where
a minimum is reached. This is followed by a slow logarithmic rise, which at
large βγ, due to density effects, ends in a plateau. Particle identification can
be done at H1 via measurement of ionization losses in the region of steep fall
∼ 1/β2 using the CJC detector. Due to detector and track reconstruction
effects and threshold requirements, the measured dE/dx values differ from
the theoretical expectations (equation 4.9). Therefore the measured values
need to be empirically parametrized

−dE

dx
= a1z

2β−a2(1 + a3e
−a4 log(0.25+βγ)) (4.10)

as given in [63]. At the same time run dependent corrections are applied in
order to achieve a better dE/dx description.
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For identification purposes it is convenient to plot the dependence of
dE/dx on the logarithm of the measured particle momenta, as the curves for
different particles (e.g. p, K, π) are then shifted with respect to each other
by log(m) as shown in figure 4.6 (left).
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Figure 4.6: Left: ionization loss dE/dx as a function of momenta for central
tracks in events with a D∗-candidate. The drawn curves show expected
< dE/dx > values for pions, kaons and protons. Right: ∆M invariant mass
distribution of the D∗-candidates after applying cuts on normalized dE/dx
likelihoods. The full curve denotes the fitted function as defined in section
4.4.3.

With the dE/dx information and the measurement uncertainties σ(dE/dx)
and σ(p), the likelihood of a track to be due to a K, π or p can be calcu-
lated. The sum of these likelihoods is normalized to unity. To suppress the
combinatorial background from tracks with obviously wrong mass assign-
ment, momentum dependent cuts on normalized likelihoods are applied on
D∗ daughter particles. The cut values listed in table 4.3 are adjusted in a
way that the combinatorial background is effectively suppressed and at the
same time the signal efficiency remains high .

In case of Kπ combinations from decays of D0-candidates only tracks
with reliable dE/dx measurements, i.e. with more than 10 dE/dx hits, are
accepted.

The signal to background ratio after particle identification cuts improves
from 0.73 to 1.05 (see figure 4.6 (right)).
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Momentum range Kaon Pion Slow Pion
LHn(K) LHn(π) LHn(π)

p < 0.7 GeV 5% 20% 5%
0.7 < p < 1.2 GeV 5% 5% 5%
p > 1.2 GeV – – –

Table 4.3: Lower cuts on the dE/dx normalized likelihoods applied on K, π
and πs candidates.

4.4.5 Signal Extraction in MC

In contrast to the data, with its large combinatorial background, the situation
with MC events is different, since the events are generated such that at least
one generated D∗-meson decaying into Kππs is present. But this does not
necessarily mean that background subtracted data can be directly compared
with Monte Carlo prediction.
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Figure 4.7: ∆M invariant mass distribution for Monte Carlo sample, with
the zoomed background region. The full curve denotes the fitted function as
defined in section 4.4.3.

As can be seen in figure 4.7 the ∆M distribution still contains a very
small fraction of background (roughly 2.6% in signal region) from random
track combinations which cannot be neglected. Performing the same kind of
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fit as in data, to obtain the number of reconstructed D∗-mesons is not the
right approach, since the signal shape is not any longer Gaussian4, which
leads to a large χ2.

Therefore, instead of fitting the signal, only simple statistical WC back-
ground subtraction is used. In the non-resonant region, ∆M > 0.155 GeV,
the relative right charge to wrong charge background normalization k is cal-
culated, which is then used in the signal region |∆M − µ| < 3σ to subtract
the wrong charge background:

Signal = RC − 1

k
WC (4.11)

4Even in the data the signal is not of a Gaussian shape (a small tail on right side of
the peak is present), but due to the large statistical errors the χ2 is acceptable. Besides
this feature, one can see that the resolution of track momenta is overestimated in MC
simulation, since the peak width is significantly smaller than in data.



Chapter 5

Fragmentation Measurement

In this chapter the experimental results obtained by the hemisphere and jet
methods, using so-called hadronic final state objects, are presented. In order
to be able to compare them with measurements done at other experiments
and to extract the fragmentation parameters, the measured distributions are
corrected for detector and QED radiative effects.

5.1 Hadronic Final State

For the hemisphere and jet methods, which have been introduced in chapter
2, it is essential to have events with a properly reconstructed hadronic final
state. In this analysis the information from the tracking system and the
calorimeter are combined to create hadronic final state (HFS) objects. These
objects are then used as input for the jet finder or for the thrust calculation
in case of the hemisphere method.

The HFS objects are built on the basis of the H1 Hadroo2 algorithm [52].
The algorithm benefits from the advantages of track and cluster measure-
ments in different regions of phase-space. In general charged particles at
low transverse momenta can be measured rather precisely in tracking cham-
bers. This precision decreases with growing pt. The calorimeter can measure
charged as well as neutral particles, which are quite frequently produced via
decays of unstable resonances (on average every third produced particle is
neutral). In contrast to the behavior of the tracking system, the uncertainty
of calorimeter cluster energy measurement decreases with increasing energy.

The Hadroo2 algorithm starts with a list of good quality tracks, fulfilling

61
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the so-called Lee-West criteria [43], and a list of LAr and SPACAL clusters.1

Various noise finders are applied to identify and remove noise related clusters
in addition to the noise suppression already done during the reconstruction
of clusters [2]. A neighboring track and cluster(s), which most likely belong
to the same particle, are merged to form an HFS object. Three different
configurations can occur: an HFS object is built out of a track and one or
several clusters, from a single track or from one or several clusters only.

Figure 5.1: Sketch of Hadroo2 algorithm for the construction of HFS objects:
a-b): the precisely measured track is kept and all calorimetric information is
removed. c-d): in addition to a track a non-track related energetic cluster
is found, hence two objects are created. e-f): the more precise calorimetric
cluster energy is used.

For each HFS object the algorithm compares the relative energy reso-
lution obtained from the tracker measurement (each track is assumed to
originate from a pion Etrack =

√

m2
π + p2

track) with the expected resolution of

1Isolated leptons like the scattered electron, which have already been identified, are kept
unchanged, and the corresponding tracks and clusters are excluded from any additional
treatment.
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Etrack, if measured by the calorimeter, taking possible fluctuations of each
measurement within its standard error into account.

In the case that the track resolution is better and its energy is found to be
compatible within 1.96 σ with the calorimetric energy deposition, the track
information is used (see figure 5.1 a,b).

If the track resolution is better, but the energy deposition in the calorime-
ter is much larger than expected from the track measurement, the track en-
ergy Etrack is subtracted from the matched cluster’s energy to avoid double
counting, and two HFS objects are created (figure 5.1 c,d). One object con-
taining the track information and a remaining cluster object with energy
equal Eclus − Etrack, which is assumed to come from one or more neutral
particles.

If the expected calorimeter energy resolution is more accurate than the
measured track resolution, the calorimeter information is used and the track
is discarded (figure 5.1 e,f).

The ratio of the reconstructed hadronic final state energy to the generated
energy, obtained by RAPGAP MC simulation (figure 5.2 a), shows that the
Hadroo2 algorithm performs well, since the ratio EHFS/Egen peaks close to
one. For events to be considered the generated particles were required to ful-
fill minimal detection criteria: either their energy was above noise threshold,
or for charged particles the transverse momenta passed the track selection
criteria.

The quality of hadronic final state reconstruction as well as the description
of data by Monte Carlo simulation can be further checked by looking at the
pt balance of the hadronic final state and the scattered electron. In the ideal
case, when all produced particles are fully detected, the ratio pt,had/pt,e equals
1. In reality, the measured distribution is smeared around the expected value
of 1, due to the detector resolution as shown in figure 5.2 b. The description
of the data by Monte Carlo simulation could be partially improved by an
energy calibration of hadronic clusters. Especially at low Q2, this appears
difficult and is not yet available.

5.2 Trigger Efficiency

The detector simulation used in this analysis already includes a simulation
of the trigger. But before drawing any conclusion from the comparison of
measured distributions with MC predictions, it is important to cross-check
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Figure 5.2: a) The ratio of the total energy of the HFS objects to sum of
the energy of the generated particles per event as obtained by Monte Carlo
simulation. b) The distribution of the measured ratio pt,had/pt,e in data
compared to Monte Carlo simulation (yellow filled area).

whether MC describes the trigger efficiencies correctly. If the description
turns out not to be satisfactory, correction factors need to be applied to MC
simulation.

The trigger efficiency in data can be in general calculated by analyzing
events triggered by an independent subtrigger with sufficiently loose require-
ments. The efficiency can be expressed as the ratio of events passing all
analysis cuts, which were fired by the subtrigger STa to be studied and an
independent subtrigger STb as well, to the total number of events which were
fired by subtrigger STb:

εtrig =
NSTa&STb

NSTb

(5.1)

The subtrigger ST61 (see section 4.1) relevant for this analysis consists
of three independent parts: an energy deposition in the backward SPACAL
calorimeter and the track related DCRPhi and z-Vertex trigger elements
(TE). Hence they can be evaluated separately. The time of flight trigger
elements, used as a non-ep background veto in ST61, are assumed to be
100% efficient.

After cutting out SPACAL regions where photomultipliers with small gain
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caused smaller trigger efficiencies, the efficiency for electron identification
is nicely described by MC simulation and reaches almost 100%. This has
already been shown in several analysis, i.e. [61] which is based on the same
electron and D∗ selection cuts as this analysis.

The efficiency of the track related trigger elements for the data is de-
termined with a sample of events which contain besides a scattered elec-
tron also a D∗-meson candidate, and which were triggered with an inde-
pendent subtrigger. As independent subtriggers the inclusive electron mon-
itor triggers ST0, ST1, ST3, ST4 and ST9, for convenience referred to as
STall, were chosen. For calculation of the trigger efficiency error the formula

σ(ε) = ε
√

(σ(NSTb)
NSTb

)2 + (1 − 2ε)(σ(NSTa&STb)
NSTa&STb

)2 was used [33], since NSTa&STb

and NSTb in equation 5.1 are highly correlated as NSTa&STb is a subset of
NSTb.

The overall ST61 trigger efficiencies for data and MC are summarized in
table 5.1. The trigger efficiency of the MC simulation was calculated as the
ratio of events with a positive trigger decision to the number of all events
with a reconstructed D∗-meson.

TE condition data RAPGAP

DCRPhi THigh 98% 98%
zVtx sig 93% 94%
ST61 91% 92%

Table 5.1: Overall trigger efficiencies for data and Monte Carlo simulation.

The efficiencies of the DCRPhi and z-Vertex trigger elements for data and
Monte Carlo are shown in figure 5.3 as a function of the D∗ fragmentation
observables, zhem and zjet, and pt and η of the D∗-meson. The DCRPhi effi-
ciency is rather high as expected and is well described by MC simulation. For
the z-Vertex significance efficiency the distributions show small deviations,
which are, when taking into account statistical errors, of little significance.

Some of the SPACAL subtriggers used for the determination of the trig-
ger efficiencies contain besides the SPACAL trigger elements and time of
flight veto conditions also track based veto conditions, which can in principle
introduce a bias; in other words events triggered by the affected subtriggers
can be correlated to some extent with events containing the DCRPhi or z-
Vertex trigger elements, whose efficiencies are to be measured, and thus the
assumption of independence of equation 5.1 may not be fulfilled. Hence, an
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Figure 5.3: The measured efficiency of DCRPhi THigh (left column) and
zVtx sig (right column) trigger elements based on subtriggers ST0, ST1,
ST3, ST4, ST9 as a function of pt(D

∗), η(D∗), zhem and zjet compared with
detector simulation (yellow filled area).
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Figure 5.4: The measured efficiency of DCRPhi THigh (left column) and
zVtx sig (right column) trigger elements based on subtriggers ST0 and ST3 as
a function of pt(D

∗), η(D∗), zhem and zjet compared with detector simulation
(yellow filled area).



68 CHAPTER 5. FRAGMENTATION MEASUREMENT

extensive study was performed only with a subset of events triggered by
SPACAL subtriggers without any track veto condition requirement. These
are the subtriggers ST0 and ST3. Unfortunately the statistics for these
events is quite limited as they are heavily prescaled. Moreover, the ST0
and ST3 subtriggers do not include the inner part of the SPACAL, where
approximately one half of the events triggered by ST61 have their scattered
electron located. Therefore this study is considered only as a rough check.

The obtained DCRPhi THigh and zVtx sig trigger elements efficiencies
are shown in figure 5.4 for the same set of variables as before. Except for a
few bins there is very good agreement with the efficiencies determined using
the full subtrigger sample. Thus, one can conclude that the ST61 trigger
efficiency is sufficiently well described by Monte Carlo simulation.

5.3 Hemisphere Observable: zhem

Using HFS objects the hemisphere observable zhem can be calculated for
events containing a D∗-meson candidate. The HFS objects are boosted into
the γp-frame, where the hemisphere containing the fragmentation products of
the D∗ parent charm quark is determined on the basis of the two dimensional
thrust-axis, which is determined in the plane perpendicular to the virtual
photon direction (see section 2.5.1).

For events with two or more reconstructed D∗-candidates a sort of equal
treatment has been introduced, since in principle it is not possible to distin-
guish which of the D∗-candidates are real and which are due to the combi-
natorial background. For each D∗-candidate a corresponding zhem value is
calculated, so that in the end such kind of an event is equivalent to n events
(n being the number of D∗-candidates contained in the event) with the same
event kinematics but different D∗-candidates.2 In data the fraction of events
with two (three or more) D∗-candidates, due to the large combinatorial back-
ground, is at the 7.4% (0.8%) level, whereas in the charm signal Monte Carlo
simulation this fraction is negligible.

Since the Monte Carlo simulations (mainly RAPGAP) with default pa-
rameter settings failed to describe basic distributions such as pt(D

∗) or η(D∗),
the MC events had to be reweighted in order to correct for these deficiencies.
The reweighting procedure is described in appendix A.

2All D∗ related distributions are treated similarly.
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Figure 5.5: Description of hemisphere related observables in data by RAP-
GAP and CASCADE Monte Carlo models: a) zhem, b) the transverse energy
Et(D

∗hem), c) the pseudorapidity η(D∗hem), d) the pt balance in the current
hemisphere, e) the thrust value and f) the angle between constructed thrust-
axis and scattered electron vector in a plane perpendicular to the virtual
photon direction in γp-frame.
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Figure 5.5 a) shows the shape normalized zhem distribution after back-
ground subtraction for data overlayed with RAPGAP and CASCADE MC
expectation. Except for small discrepancies in the first and last zhem bins
the distribution is well described. The very low zhem bin in the interval
zhem ∈ (0., 0.2) is dominated by background events such that it was not pos-
sible to extract the small signal expected in data within reasonable error.
Hence, this bin was dropped. Towards higher zhem values the background
significantly decreases so that the highest bin is almost background free.

Figure 5.5 b-f) shows other interesting observables characterizing the
D∗-hemisphere: the transverse energy and the pseudorapidity of the D∗-
hemisphere in the γp-frame, as well as the pt balance of particles in the
current hemisphere, the thrust magnitude and the angle between the re-
constructed thrust-axis and the scattered electron measured in the plane
perpendicular to the virtual photon direction, which are important for the
hemisphere determination.

5.4 Jet Observable: zjet

Jets are reconstructed in the γp-frame using the inclusive k⊥-algorithm with
the E-recombination scheme (see section 2.5.2). As input hadronic final state
objects were used as for the hemisphere method.

The measured observable zjet as well as distributions of Et(D
∗jet), η(D∗jet)

and of the distance between D∗-meson and D∗-jet directions, ∆R(D∗jet −
D∗) =

√

(ηD∗jet − ηD∗)2 + (φD∗jet − φD∗)2, are in general very well described
by the MC simulations3 (see figure 5.6). Also the fraction of jets which con-
sist only of the D∗-meson itself (roughly 10%) is within the statistical errors
in very good agreement with MC prediction.

The region at small zjet values is, as it was the case for small zhem val-
ues, background dominated. Hence zjet has been measured only within the
interval zjet ∈ (0.3, 1.).

5.5 Correcting Data to Hadron Level

For further analysis it is convenient and useful to correct the measured dis-
tributions to hadron level. This includes detector as well as QED-radiative

3The Monte Carlo simulations are reweighted in observables pt(D
∗), η(D∗) and zvtx.
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Figure 5.6: Description of jet related observables in data by RAPGAP and
CASCADE Monte Carlo models: a) zjet, b) the transverse energy Et(D

∗jet),
c) the pseudorapidity η(D∗jet) and d) the distance between the D∗-jet and
D∗-meson vectors measured in η − φ plane.

corrections. Having the fragmentation spectra corrected to hadron level one
can easily compare them with predictions of various phenomenological mod-
els, fragmentation parametrizations and one can extract the fragmentation
parameters for Monte Carlo models and even NLO calculations.

The following procedure was carried out to correct data to hadron level:

• Beauty subtraction
In a first step the beauty contribution has been subtracted from the
already background subtracted data. For this purpose the RAPGAP
Monte Carlo prediction for beauty production including detector sim-
ulation has been used.
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• Hadron level corrections
The beauty subtracted data are then corrected for detector effects and
the D∗ → D0πs → Kππs reconstruction efficiency using the charm
Monte Carlo simulation reweighted in pt(D

∗), η(D∗) and zvtx as de-
scribed in appendix A. For this purpose a simple minded bin by bin
unfolding method have been used.

• QED corrections
Since theoretical models usually do not include higher orders of elec-
troweak interactions, like real photon emission by the incoming respec-
tively outgoing electron and the corresponding virtual corrections, the
measurement is corrected for these effects.

5.5.1 Subtraction of Beauty Contribution

The D∗-mesons coming from weak decays of beauty hadrons have a signifi-
cantly softer fragmentation spectrum than the D∗-mesons produced directly
in charm events. The RAPGAP Monte Carlo prediction for beauty produc-
tion has been used in this analysis to estimate this contribution. Figure
5.7 shows both measured fragmentation spectra normalized to luminosity to-
gether with the beauty MC expectation. According to the most recent H1
F c

2 and F b
2 measurements [7] carried out in a similar Q2 range as used in

this analysis, the RAPGAP beauty production cross section is in more or
less good agreement with data. In case of zhem the fraction of beauty events
contributing is around 1.7% and for zjet it is 2.2%.

While for the hemisphere distribution the beauty component is as ex-
pected clearly peaking at low zhem values, for the zjet distribution it is of
rather flat shape. Since the beauty jets are according to the MC simulation
broader than the charm jets, in some cases only part of the b quark fragmen-
tation products are collected within a D∗-jet, which leads to overestimated
zjet values. The more robust hemisphere method is not much affected by this
jet property.

5.5.2 Unfolding Method

The bin by bin unfolding method completely relies on a correct description
of the underlying physics processes and a correct simulation of the detector
response by the Monte Carlo. The correction factor for a certain bin i of the
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Figure 5.7: Luminosity normalized fragmentation spectra with indicated
beauty contribution as predicted by the RAPGAP MC: for the hemisphere
method (left), for the jet method (right).

measured data distribution can be expressed as a ratio of the bin content on
hadron level to the bin content on detector level

Ci =
Nhad

i

Ndet
i

(5.2)

This procedure works only, if the migrations of events from one bin into
other bins are reasonably small. Therefore, it is necessary to choose proper
binning for the observed quantities in order to reduce possible migrations.
To quantify the amount of migrations and to make sure that usage of bin
based corrections is appropriate, the following quantities are introduced:

purity : Pi =
Ndet&had

i

Ndet
i

(5.3)

stability : Si =
Ndet&had

i

Nhad
i

, (5.4)

where Nhad
i is the number of generated D∗-mesons (D∗-jets) within the visible

range in bin i, Ndet
i is the number of reconstructed D∗-mesons (D∗-jets) and

Ndet&had
i is the number of D∗-mesons which have been reconstructed and

generated in the same bin.
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Figure 5.8: The correlation matrix, purity and stability as a function of zhem

(top) and zjet (bottom) as obtained from the RAPGAP and CASCADE MC
simulations.

The bin widths have been adjusted in such a way that the purity is always
above 40%. This is the lower tolerable limit for bin by bin unfolding. The
purity, stability and correlation matrix between the hadron and detector level
are shown in figure 5.8.

Inclusion of QED radiative corrections implies modification of the equa-
tion 5.2. In general, two Monte Carlo simulations are used, one with QED
radiative effects implemented and a second one without. The total bin cor-
rection factor can be written as:

Ci =
Nhad

i

Ndet,rad
i

(5.5)

where subscript ’rad’ denotes the inclusion of QED radiative effects. Assum-
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ing that the QED and detector corrections can be factorized one obtains:

Ci =
Nhad

i

Nhad,rad
i

Nhad,rad
i

Ndet,rad
i

= CQED
i Cdet

i (5.6)

The radiative corrections are calculated using the HERACLES 4.63 [42] pro-
gram. Unfortunately this program can be interfaced only with the RAPGAP
MC for the generation of direct processes but not for resolved photon pro-
cesses. Therefore the CQED

i radiative correction factors for RAPGAP resolved
and also for CASCADE are taken to be the same as for RAPGAP direct.
Hence, the final formulas for RAPGAP and CASCADE correction factors
are as follows:

RAPGAP : Ci,Rap = CQED,had
i,RapDir

Nhad,rad
i,RapDir + 1

C
QED,had
i,RapDir

Nhad
i,RapRes

Ndet,rad
i,RapDir + 1

C
QED,det
i,RapDir

Ndet
i,RapRes

(5.7)

CASCADE : Ci,Cas = CQED,had
i,RapDir

1

C
QED,had
i,RapDir

Nhad
i,Cas

1

C
QED,det
i,RapDir

Ndet
i,Cas

=
Nhad

i,Cas
1

C
QED,det
i,RapDir

Ndet
i,Cas

(5.8)

where CQED,had
i,RapDir = Nhad

i,RapDir/N
had,rad
i,RapDir is the radiative correction factor on

hadron level and CQED,det
i,RapDir = Ndet

i,RapDir/N
det,rad
i,RapDir the radiative correction fac-

tor on detector level. In general the expression (1/CQED)NCas (respectively
(1/CQED)NRap,Res) either on hadron or on detector level stands for CAS-
CADE (RAPGAP resolved) MC corrected for QED effects.

In contrast to the jet method, where radiative corrections play just a
minor role (∼ 6%), the sensitivity of the hemisphere method to radiative
effects is significantly larger especially at low zhem values (∼ 3 − 8% and in
lowest zhem bin even 15%).

The fragmentation spectra corrected to hadron level are shown in figure
5.9. The data points contain besides the statistical error also the systematic
error which will be discussed in the next section.

5.6 Systematic Uncertainties

In order to study the sensitivity of the fragmentation spectra to systematic
uncertainties, many checks have been performed. Some of the uncertainties
arise from incomplete knowledge of detector effects, some from incomplete
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Figure 5.9: The fully corrected and shape normalized fragmentation spectra.
The hemisphere method observable zhem (left), the jet observable zjet (right).

knowledge of the underlying physics which is incorporated in the Monte Carlo
model, and some from the cuts and extraction methods used in this analysis.

To estimate the effects of a given systematic uncertainty, the Monte Carlo
simulation, with a quantity under investigation modified according to its
systematic uncertainty, is used to correct the measured data to hadron level.
The difference between the spectrum obtained in this way and the spectrum
obtained with the ’nominal’ MC simulation, is a measure for the systematic
error of a given source. Those systematic uncertainties which are considered
to be most important are discussed below.

5.6.1 Experimental Systematic Uncertainties

5.6.1.1 Hadronic energy scale

The uncertainty of the calorimetric hadronic energy scale propagates to the
reconstruction of HFS objects. Hence the energy of all hadronic HFS clusters
in the liquid argon calorimeter was scaled up and down by 5% [57] and the
energy of SPACAL hadronic HFS clusters by 7% [5]. This variation covers
the differences between data and Monte Carlo simulation. The obtained
systematic error for the zhem and zjet distributions is less than 5% and 4%



5.6. SYSTEMATIC UNCERTAINTIES 77

respectively, but is strongly correlated between the bins.

5.6.1.2 Energy and polar angle of the scattered electron

The energy and polar angle of the scattered electron is not only used to
determine the Q2 and y kinematic region of an event, but also to perform
the boost of the particle momenta from the laboratory frame to the γp-frame,
and hence can indirectly affect the fragmentation spectra.

To study the systematic effects the energy of the scattered electron has
been varied by ±3% for E ′

e of 8 GeV and by ±1% for 27.6 GeV [56][57].
For intermediate energies the size of uncertainty is assumed to be linearly
dependent on E ′

e. The resulting systematic error has been found to be less
than 1%.

Changing the polar angle θ′e by ±1 mrad, corresponding to BDC res-
olution, had only a small impact on the fragmentation spectra of roughly
0.5%.

5.6.1.3 Tracking efficiency

The uncertainty of the tracking efficiency can mainly affect the D∗ tag. Since
in this analysis the differential spectra are shape normalized, precise knowl-
edge of the overall uncertainty is not as important as the proper description
of the tracking efficiency in the η − pt phase space by the Monte Carlo sim-
ulation. An uncertainty depending on η and pt could distort the corrected z
spectra.

The tracking efficiencies as predicted by MC have been varied for the D∗

daughter particles according to two extreme scenarios. First, the tracking ef-
ficiency for low pt and large |η| was decreased and for central η and moderate
and high pt increased. In the second scenario the inverse variation was per-
formed. The magnitude of the variation was chosen to be larger in corners of
the phase space (small pt and forward-backward η region of the CJC cham-
ber) ∼ 4%, and smaller 2-3% in the central region which is expected to be
better simulated. These limits on the variation of the uncertainty are based
on an average track reconstruction inefficiency for D∗ → Kππs of ∼ 2% [23]
[60].

The resulting systematic error due to the uncertainty of tracking efficiency
was found to be for both zhem and zjet below 1% except for the first and last
bin of the zhem distribution where it reaches 2%.
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5.6.1.4 dE/dx cuts

Since the description of the normalized dE/dx likelihoods by the Monte Carlo
simulation is not satisfactory at larger track momenta, the dE/dx cuts for
suppression of combinatorial D∗ background have been switched-off in the
data and in MC as well. This resulted in ∼ 3 − 6% systematic uncertainty.

5.6.1.5 D∗ signal extraction

The systematic error due to the signal extraction in the data has been es-
timated by a different extraction procedure. The procedure is based on the
same fit of the ∆M invariant mass spectrum as has been described in section
4.4.3, but instead of relying on the number of D∗-mesons coming from the
Gaussian normalization, the number is calculated by subtracting the integral
of the fitted background function from the number of histogram entries in
the signal region (µ±3σ). In this way one is less sensitive to the not entirely
proper description of the signal shape by a Gaussian. On average the error
has been found to be about 4%.

5.6.2 Theoretical Systematic Uncertainties

5.6.2.1 Resolved fraction

To determine the systematic error due to the uncertainty of the size of the
resolved component, the nominal resolved photon fraction of 33% predicted
by the RAPGAP Monte Carlo was changed to 10 and 50%. The hemisphere
observable turns out to be much more sensitive to the resolved fraction than
the jet observable. It has been found that a part of the photon remnant is
contaminating the D∗-hemisphere, which has a direct impact on the hard-
ness of the measured fragmentation spectrum. The effect of varying the
resolved component was found to be below 6% for the zhem and 2% for the
zjet spectrum.

5.6.2.2 Beauty contribution

The nominal beauty contribution, which was taken according to the RAP-
GAP prediction, was increased by a factor of two. This leads to an effect on
the fragmentation spectra below 2%.
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5.6.2.3 Model dependence

Since the hemisphere related observables, as for example the pt balance of
the current hemisphere, are better described by the CASCADE MC, while
the description of the jet observables is as good as the one by RAPGAP, the
model dependence of the correction factors was investigated.4 Besides the
errors due to the dE/dx and the D∗ signal extraction the model dependence
is one of the most dominant sources of systematic uncertainty (3-5% effect).

sys. source zhem error zjet error

E ′
e 0.5% 0.8%

θ′e 0.5% 0.6%
EHFSclus 2.3% 2.2%
Track. eff. 0.7% 0.5%
dE/dx cut 4.0% 5.0%
Signal extraction 4.8% 4.6%
Res. fraction 3.0% 1.0%
Beauty fraction 1.6% 1.0%
Model dependence 3.4% 5.3%
<Total sys.err.> 8.3% 9.1%

Table 5.2: The list of the relative systematic errors averaged over the bins of
the zhem and zjet distributions.

The average systematic errors obtained are summarized in table 5.2. The
total systematic error σtot for a given bin is calculated as follows

σtot =

√

σ2
stat +

∑

i

σ2
i,sys , (5.9)

where the index i runs over all sources of systematic uncertainties. As can be
seen from figure 5.9, the statistical error σstat dominates over the systematic
uncertainties, except for the last zhem and zjet bins.

4The dependence on the fragmentation model has been briefly investigated using the
HERWIG MC [46], which in contrast to RAPGAP and CASCADE uses an alternative
model for fragmentation - the cluster model. Unfortunately this Monte Carlo failed to
describe the fragmentation spectra and hence was abandoned.
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It should be mentioned that some of the systematic errors are strongly
correlated between bins. Those are: the uncertainty of the hadronic energy
scale, the resolved fraction and the beauty component. They are shown in
figure 5.10. The remaining systematic errors are uncorrelated. The treatment
of the correlated errors will be discussed in more detail in chapter 6.
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Chapter 6

Results

Using fragmentation spectra corrected to hadron level, the charm fragmenta-
tion parameters of the Peterson and Kartvelishvili non-perturbative fragmen-
tation functions were extracted for the MC models RAPGAP and CASCADE
and for a NLO (massive) calculation as well. In the end the fragmentation
spectra were compared with e+e− measurements.

6.1 Extraction Procedure and Treatment of

Correlated Systematic Errors

For the extraction of fragmentation parameters, cross sections as a function of
zhem and zjet on hadron level were generated for various values of the respec-
tive fragmentation parameters. For the Peterson parametrization (equation
1.14) the value of ε was varied over a wide range from 0.01 up to 0.1, and
for the Kartvelishvili parametrization (equation 1.15) in the range of 2 to 7.
To determine the most optimal parameter value a method of least squares
[26] (often referred to as χ2 method) have been used. The χ2 between data
and model prediction was calculated using the full covariance matrix, tak-
ing statistical and uncorrelated systematic errors as well as correlations into
account:

χ2(ε) =
∑

jk

(zj − zMC
j (ε))S−1

jk (zk − zMC
k (ε)) (6.1)

The sum runs over all z bins, ε is the tunable fragmentation parameter and
S the covariance matrix with the following form

83
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S =







σ2
stat,1 +

∑

σ2
sys,1 +

∑

cor σ
′2
sys,1

∑

cor σ′
sys,1σ

′
sys,2 . . .

∑

cor σ′
sys,2σ

′
sys,1 σ2

stat,2 +
∑

σ2
sys,2 +

∑

cor σ
′2
sys,2 . . .

...
...

. . .







σstat,i denotes the statistical error, σsys,i the uncorrelated systematic error
and σ′

sys,i the correlated systematic error for i-th bin of the z spectrum. The
sources of systematic errors which were considered to be correlated are: the
hadronic energy scale uncertainty, the fraction of the resolved component
and the beauty component (see chapter 5.6).

The ±1σ error of the fitted parameter ε′ is then determined from the
shape of the χ2 distribution according to the rule χ2(ε′ ± 1σ) = χ2

min + 1.

The fragmentation parameters were fitted for RAPGAP and CASCADE
Monte Carlo models which use the same Lund-string fragmentation model as
implemented in PYTHIA 6.2. For extraction of the fragmentation parameters
the zhem and zjet distributions were shape normalized, in order to minimize
any sensitivity to the total D∗-meson production cross section, which is not
necessarily correctly predicted by Monte Carlo models.

6.2 Parameter Extraction for RAPGAP

First the parameter ε of the Peterson parametrization has been extracted.
The dependence of χ2 on the ε parameter for the zhem and zjet observables is
shown in figure 6.1 (each point corresponds to a fully generated Monte Carlo
set).

Close to the minimum, χ2 is expected to depend quadratically on the
parameter value, however over a larger range this is true only for a lin-
ear function of the parameter. In case of the Peterson parametrization the
dependence is slightly asymmetric.1 Therefore a superposition of two expo-
nential functions was fitted through the points lying close to the minimum
to obtain the best fit value and the 1σ confidence limits. In this way the
sensitivity to fluctuations as well as to the limited number of Monte Carlo
sets is being reduced. The results of the fits for the zhem and zjet methods
are ε = 0.022+0.007

−0.004 and ε = 0.040+0.013
−0.009 respectively. The comparison of the

1In case of the Kartvelishvili parametrization this asymmetry gets even smaller.
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measured fragmentation spectra with the model predictions for the fitted ε
values is shown in figure 6.1 as well.

The Kartvelishvili fits have been performed in analogy to the Peterson fits.
The dependence of χ2 on α together with the comparison of the measured
fragmentation spectra with the RAPGAP predictions are shown in figure 6.2.

Similarly as in the case of Peterson parametrization, the parameter values
obtained for both methods do not agree within their errors: α = 5.1+0.8

−0.7

for the hemisphere and α = 3.8+0.6
−0.5 for the jet method. This discrepancy

between the two methods, at a level of . 2σ, could be due to a statistical
fluctuation, however, it could also be a hint that the RAPGAP/PYTHIA
model or the simple one parameter fragmentation functions by Peterson and
Kartvelishvili are not able to describe the underlying physics sufficiently well
for the application of the two methods. The reasons for these not fully
consistent results are investigated in chapter 6.4.

Both parametrizations seem to describe the data equally good, as can be
seen from the value of χ2/Ndf which is close to one (see the summary of the
results in table 6.1).

Parametrization Hem. method Jet method
par. value χ2

min/Ndf par. value χ2
min/Ndf

Peterson ε 0.022+0.007
−0.004 5.3/5 0.040+0.013

−0.009 3.8/4
Kartvelishvili α 5.1+0.8

−0.7 4.2/5 3.8+0.6
−0.5 4.4/4

Table 6.1: Extracted fragmentation parameters for the RAPGAP/PYTHIA
MC.
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Figure 6.1: The χ2 dependence and the measured z-distributions for
the hemisphere (upper) and jet method (lower) compared to the RAP-
GAP/PYTHIA model predictions using the Peterson parametrization for
the non-perturbative fragmentation function.
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Figure 6.2: The χ2 dependence and the measured z-distributions for
the hemisphere (upper) and jet method (lower) compared to the RAP-
GAP/PYTHIA model predictions using the Kartvelishvili parametrization
for the non-perturbative fragmentation function.
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6.3 Parameter Extraction for CASCADE

The χ2 fits of fragmentation parameters for the CASCADE/PYTHIA Monte
Carlo model can be found in figure 6.3 for the Peterson and in figure 6.4
for the Kartvelishvili parametrization respectively. The extracted parameter
values are summarized in table 6.2.

The CASCADE model with its CCFM parton evolution prefers, according
to the χ2 fit, the same values of fragmentation parameters like the RAPGAP
model. Here again a discrepancy of . 2σ between the extracted values for
the hemisphere and jet method is observed.

Parametrization Hem. method Jet method
par. value χ2

min/Ndf par. value χ2
min/Ndf

Peterson ε 0.022+0.006
−0.004 2.7/5 0.041+0.014

−0.010 2.8/4
Kartvelishvili α 5.3+0.7

−0.6 2.2/5 4.0+0.6
−0.6 2.6/4

Table 6.2: Extracted fragmentation parameters for the CASCADE/PYTHIA
MC.
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Figure 6.3: The χ2 dependence and the measured z-distributions for
the hemisphere (upper) and jet method (lower) compared to the CAS-
CADE/PYTHIA model predictions using the Peterson parametrization for
the non-perturbative fragmentation function.
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Figure 6.4: The χ2 dependence and the measured z-distributions for
the hemisphere (upper) and jet method (lower) compared to the CAS-
CADE/PYTHIA model predictions using the Kartvelishvili parametrization
for the non-perturbative fragmentation function.
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6.4 Hemisphere Method Revisited

If the QCD based Monte Carlo models provide a correct description of all as-
pects of D∗-production2, then the jet and hemisphere methods should both
lead to the same extracted fragmentation parameter. In appendix B it is
shown that if MC event sample (’pseudo-data’) is used instead of real data,
then the values extracted with both methods are compatible. This test con-
firms the self-consistency of the hemisphere and jet method. Hence the dis-
crepancy of . 2σ between the extracted parameters (see table 6.1 and 6.2)
may signal inadequacies in one or more aspects of the model.

Since the hemisphere method does not explicitly demand any additional
cut, besides the usual D∗-meson visibility requirements, it contains in con-
trast to the jet method a big fraction of events produced close to the kine-
matic threshold. On one hand this yields twice the statistics of the jet
method, but on the other hand this makes the hemisphere method very
sensitive to a good description of the charm production close to threshold by
the MC models, which may not be the case.

In order to figure out whether this could be the reason for the observed
discrepancy, the hemisphere method events have been divided into two sub-
samples: one subsample containing events with Et(D

∗jet) > 3 GeV and a
second subsample containing the remaining soft QCD events. According to
the above mentioned hypothesis the value of the fragmentation parameter
obtained by the hemisphere method, applied to events containing a D∗-jet,
should be in agreement with the parameter value obtained by the jet method.

The description of the measured zhem distributions on detector level by
the RAPGAP and CASCADE Monte Carlo models is shown in figure 6.5.
For the sample without a D∗-jet a large excess of data over MC expectation
is observed in the last bin, while for the sample of events containing a D∗-
jet the excess of data is in the first bin. In general the zhem spectrum for
events with a D∗-jet is significantly softer than for the events without D∗-
jet. This behavior is mainly caused by the minimal transverse momentum
requirement pt(D

∗) > 1.5 GeV. Most affected are the events produced close
to the kinematic threshold, where basically only D∗-mesons carrying a large
fraction of the c-quark’s energy pass the transverse momentum requirement,
as well as the events where due to the soft charm quark fragmentation the

2This includes sufficient flexibility of the fragmentation function over the range in z
probed by the measurement.
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D∗-meson does not fulfill the former cut. In principle the more energetic
the parent charm quark is, the less the lower zhem bins are affected by the
pt(D

∗) cut and the zhem spectrum gets softer, which is in agreement with the
observation.
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Figure 6.5: zhem distributions on reconstructed level for subsample of events
which do not contain D∗-jet (left) and which do contain a D∗-jet (right).

Description of the other hemisphere related distributions for two former
subsamples of events by MC models can be seen in figure 6.6. Events with
a D∗-jet have a harder Et(D

∗hem) spectrum, are less pt balanced in the
current hemisphere, and according to the thrust distribution they have a
more pronounced back to back topology in a plane perpendicular to the γ
direction.

After performing the χ2 fits (see figure 6.7) the following fragmentation
parameters have been extracted for the RAPGAP/PYTHIA MC:

Sample without D∗-jet: ε = 0.014+0.006
−0.004, χ2

min/Ndf = 1.0/5
Sample with D∗-jet: ε = 0.040+0.010

−0.007, χ2
min/Ndf = 3.3/5

The extracted ε value using the sample of events containing a D∗-jet
is in very good agreement with the value obtained from the jet method,
whereas the ε value obtained from events which do not contain any D∗-jet is
significantly harder (∼ 2σ discrepancy).

This would indicate that either events produced close to the kinematic
threshold or events where the c-quark radiates a hard gluon and thus does
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Figure 6.6: Description of hemisphere related observables in data by RAP-
GAP and CASCADE Monte Carlo models on reconstructed level, shown for
subsample of events which do not contain D∗-jet (left column) and which do
contain a D∗-jet (right column): Et(D

∗hem), the pt balance in the current
hemisphere and the thrust value.
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Figure 6.7: The χ2 dependence and the measured zhem distributions for two
samples of events, one containing no D∗-jet (upper) and the other contain-
ing at least one D∗-jet (lower), compared to the RAPGAP/PYTHIA model
predictions using the Peterson parametrization for the non-perturbative frag-
mentation function.
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not fulfill the Et(D
∗jet) cut are not properly described by Monte Carlo sim-

ulation. This information is from the physics point of view important and
exciting as well, since agreement with the jet method at larger Et suggests
that the hemisphere method works properly.

6.5 Parameter Extraction for NLO Calcula-

tions

NLO QCD programs, like for example, HVQDIS provide a theoretical predic-
tion only on parton level in fixed O(α2

s ) without additional parton showers.
Therefore the fragmentation functions obtained for MC models cannot be
used, they need to be determined within the framework of the NLO cal-
culations itself. The fragmentation of a charm quark into a D∗-meson is
implemented as described in chapter 1.11.1. But for distributions like the
momentum of the D∗-hemisphere or D∗-jet additional hadronization correc-
tions need to be applied. There are two equivalent ways how this can be
done. First, one can correct the NLO calculations for hadronization effects,
or the second possibility is to correct the data to parton level.

Since the hadronization corrections can in principle depend on the hard-
ness of the charm fragmentation function, it would mean that for each NLO
calculation set with different fragmentation parameter they would have to be
determined separately. Therefore it is more convenient to choose the second
option where the hadronization corrections for measured data need to be
determined only once.

The hadronization corrections were calculated using the RAPGAP Monte
Carlo model , with incorporated Lund-string fragmentation model.3 For both
major zhem and zjet distributions bin based correction factors were determined
as a ratio of entries before and after the hadronization in a given z bin:
Ci = zparton

i /zhadron
i .4 In contrast to the calculations done on hadron level,

where the D∗-meson is used to determine the hemisphere (jet) belonging to
the parent charm quark, on parton level the hemisphere (jet) containing the
D∗ parent quark is directly chosen.

3For the purpose of this analysis the Monte Carlo simulation with a central fit value of
the fragmentation parameter ε = 0.04, which has been extracted in the previous chapter,
was used.

4This approach is valid only under assumption that hadronization corrections for
LO+PS Monte Carlo model are the same as for NLO theory calculations.
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Figure 6.8: Hadronization correction factors for zhem (left) and for zjet (right)
obtained by the RAPGAP/PYTHIA Monte Carlo model.

The hadronization corrections obtained are shown in figure 6.8. In case
of the hemisphere method the hadronization corrections are below 25%, but
depend on zhem. For the jet method the hadronization corrections are flatter
and less than 15% except for the last zjet bin, where they reach 50%. These
large hadronization corrections in the last bin are due to the jets consisting
only of a D∗-meson itself (zhadron

jet = 1), which has no analogy at parton level.

The data corrected to parton level are then compared with HVQDIS pre-
dictions for different fragmentation parameter values and a χ2 is calculated.
As has already been mentioned in section 1.11.1 two variants of fragmenta-
tion procedure have been investigated. In the first variant an additional pt

momentum component is attributed to the D∗-meson, besides a conventional
longitudinal momentum parallel to the charm quark direction, whereas in the
second variant this option is disabled, i.e. the D∗-meson is moving parallel
to the c-quark.

The fitted values with and without additional pt generation for the hemi-
sphere and the jet observables are summarized in table 6.3. The shape of
both fragmentation spectra turns out not to be sensitive to the additional
transverse momentum of the D∗-meson.

An additional systematic error due to uncertainty of the hadronization
corrections has been considered for the extracted fragmentation parameters
listed in table 6.3. Since both fragmentation spectra on MC parton level
have entries at values z > 1 (see figures 2.4 and 2.6), which has no anal-
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Parametrization Hem. method Jet method
par. value χ2

min/Ndf par. value χ2
min/Ndf

Peterson (pt) ε 0.040+0.010
−0.007 45.4/5 0.057+0.014

−0.009 20.2/4
Peterson ε 0.042+0.012

−0.008 47.6/5 0.058+0.014
−0.009 20.6/4

Kartvelishvili (pt) α 3.6+0.4
−0.4 9.5/5 3.1+0.4

−0.4 6.1/4
Kartvelishvili α 3.5+0.4

−0.4 11.1/5 3.1+0.4
−0.4 6.4/4

Table 6.3: Extracted fragmentation parameters for HVQDIS NLO-
calculations. The quoted errors include the systematic error due to the
different treatment of hadronization corrections.

ogy in HVQDIS where the charm quarks are fragmented independently5, the
data have been corrected with alternative bin by bin corrections, where all
entries above 1 were put to the last zhem or zjet bin. The difference between
the extracted parameter values with the first and second set of hadroniza-
tion corrections gives the size of systematic uncertainty, which is then added
quadratically to the original error obtained by the χ2 fit. This uncertainty
turned out to be smaller than 1%, only for Peterson fit to the zjet distribution
does it reach 5%.

In order to check whether the last zjet bin, with the largest hadronization
corrections, does not push the fit result away from the parameter value pre-
ferred by the rest of the zjet spectrum, the fit has been repeated only with
the first 4 points. The extracted parameter values are softer than before,
ε = 0.072+0.012

−0.011 for Peterson and α = 2.8+0.4
−0.4 for Kartvelishvili parametriza-

tion, but still compatible within the quoted errors. So apparently the last
point does not seem to spoil the fit result.

The extracted parameter values for Peterson (figure 6.9) and Kartvel-
ishvili parametrization (figure 6.10) are softer than in the MC simulations.
This is in agreement with expectation, since the charm quark fragmentation
as implemented in HVQDIS does not take into account higher excited charm
resonant states, as is the case for MC simulation. The effect of the inclusion
(exclusion) of higher charm resonant states on the value of the extracted frag-
mentation parameter has been investigated with the Monte Carlo simulation

5Some entries at zhem > 1 can occur even in HVQDIS, but only if additional pt(D
∗)

is generated in the fragmentation process. This effect is only on a permille level, which is
one order of magnitude smaller than in RAPGAP MC, and hence negligible.
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Figure 6.9: The χ2 dependence and the measured z-distributions corrected
on parton level for the hemisphere (upper) and jet method (lower) compared
with HVQDIS prediction using the Peterson parametrization for the non-
perturbative fragmentation function and additional pt(D

∗) with respect to
the c-quark direction.
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Figure 6.10: The χ2 dependence and the measured z-distributions corrected
on parton level for the hemisphere (upper) and jet method (lower) compared
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(see appendix C). A general feature of the D∗-mesons produced directly in
the fragmentation process is that they carry on average larger a fraction of
the charm quark momentum than those D∗-mesons which are produced in
decays of higher resonances. Hence ignorance of higher resonances results in
a softer extracted non-perturbative fragmentation function.

When studying fragmentation at NLO level new features appear. The
Peterson parametrization is strongly disfavored by the χ2 of the fit. Moreover,
the discrepancy between the extracted parameter values by zhem and zjet

methods, which was in LO+PS Monte Carlo models around 2−3σ, decreases
to 1 − 2σ.

6.6 Comparison with e+e− Experiments

In order to draw conclusions about the universality of the charm fragmen-
tation function, the data and fitted fragmentation parameters have been
compared with measurements done at e+e− collider experiments.

Since the zhem observable has been designed in a way that includes gluon
radiation from the charm quark, it is comparable to the observable defini-
tions used at e+e− annihilation experiments (section 2.1 and 2.3). Therefore
the measured zhem distribution is compared with CLEO [11], OPAL [6] and
ALEPH [12] measurements (see figure 6.11).

One can see that despite the different definitions of z observables, the
shape of the measured spectra is quite similar.

Since cc̄-pairs at the CLEO experiment are produced at similar center of
mass energy (

√
s = 10.6 GeV) as the events covered by kinematic range of

zhem analysis, the comparison with this measurement is considered to be the
most relevant. At the OPAL and ALEPH experiments charm is produced
in the Z0 decays (

√
s = 91.2 GeV), so in principle a larger phase space for

gluon radiation is available which can have an impact on the shape of the z
spectrum, since the z observable is sensitive to perturbative effects.6

Except for a small shift towards larger z values, the shape of the z spec-
trum is in rough agreement with the data from CLEO. This shift could be
due to the visible range cuts applied on η and pt of the D∗-meson. In general
the increase of pt(D

∗) cut implies harder z spectrum.

6Indeed excess at low z values from OPAL arises from gluon splitting into cc̄. In the
ALEPH spectrum the gluon splitting component is already subtracted.
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Figure 6.11: Comparison of the fragmentation function measurement from
CLEO, OPAL and ALEPH with the hemisphere method measurement.

Whereas in e+e− measurements the spectra are extrapolated to the full
η(D∗) and pt(D

∗) range, in ep collisions extrapolation would introduce too
large uncertainty (due to much harder cuts which have to be applied in con-
trast to e+e− collisions) and hence is not performed. On the other hand even
after extrapolation both spectra would be most likely not equivalent, since
without pt(D

∗) cut the mean ŝ value of cc̄ pair drops, and thus measurements
would not cover the same kinematic region.

A better agreement between the CLEO data and zhem distribution is
observed when a sample of events with D∗-jet is considered (see figure 6.12).
For this subsample of events the mean center-of-mass energy of the cc̄-system
is higher,

√
ŝ ≈ 10 GeV, and thus closer to the

√
s of CLEO experiment.7

Furthermore, the size of corrections which have to be applied in order to
extrapolate the spectrum to the full η(D∗) and pt(D

∗) range, is smaller than
for the complete sample of D∗-mesons. For the extrapolation the CASCADE
Monte Carlo model has been used. As can be seen from figure 6.12, agreement
with CLEO data is anyway not achieved since the zhem spectrum gets after

7Ideal for comparison would be to restrict the data sample only to events from an
immediate vicinity of

√
ŝ = 10.6 GeV, but due to the lack of statistics this is not possible.
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Figure 6.12: Comparison of the fragmentation function measurement from
CLEO with the hemisphere method measurement obtained for the subset of
events with a D∗-jet. The empty circles correspond to an extrapolation of
the measured zhem to the full η(D∗), pt(D

∗) phase space, analogous to that
of the CLEO analysis.

the extrapolation much softer. However, this does not necessarily mean that
universality does not hold, since the definitions of observables as well as the
basic hard subprocesses are different and the extrapolation procedure may
have large uncertainties.

Nevertheless the same fragmentation parameter should describe the data
at different center-of-mass energies, since the evolution of the perturbative
component of the fragmentation function is in LO+PS MC simulations al-
ready accounted for (at least the dominant contribution). The extracted
parameter values for the JETSET package, which is often used in Monte
Carlo simulations for the treatment of hadronization effects, are listed in
table 6.4. The extracted values do not match, even not between e+e− exper-
iments themselves. However this should be not taken too seriously since the
fragmentation parameter depends a lot on the choice of other MC steering
parameters as well as on the inclusion of higher charm excited states (see
appendix C).

At this level of understanding it is too early to draw any conclusions
about the universality of fragmentation functions. A comparative analysis of
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type exp. Parametrization fit. value χ2
min/Ndf

e+e− OPAL Peterson ε 0.035 ± 0.007 ± 0.006 5.2/6
Kartvelishvili α 4.2 ± 0.5 0.4 11.5/6
Lund a 1.95+0.78

−0.53 ± 0.08
b 1.58+0.64

−0.42 ± 0.06 3.4/5
e+e− ALEPH Peterson ε 0.034 —
e+e− CLEO Lund a 0.18 —

b 0.40 —
e+e− BELLE Peterson ε 0.054 3003/54

Kartvelishvili α 5.6 1271/54
Lund a 0.58

b default 965/55
ep ZEUS Peterson ε 0.064 ± 0.006+0.011

−0.008 —
ep H1 zhem Peterson ε 0.022+0.007

−0.004 5.3/5
Kartvelishvili α 5.1+0.8

−0.7 4.2/5
ep H1 zjet Peterson ε 0.040+0.013

−0.009 3.8/4
Kartvelishvili α 3.8+0.6

−0.5 4.4/4

Table 6.4: Extracted fragmentation parameters for JETSET, from e+e−

(ALEPH [12], OPAL [6], CLEO [11] and BELLE [58]) and ep (ZEUS [48],
this measurement) data.

the e+e− and ep results, which is beyond the scope of this thesis, is essential.
As the definitions of z observables used in e+e− and ep experiments are
different, the most straight forward way would be to repeat an e+e− analysis
with a Monte Carlo simulation tuned to our data and then to compare the
obtained fragmentation spectrum with the e+e− data if it is able to describe
them. However this would require a detailed knowledge of the particular
e+e− analysis.
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Conclusions and Outlook

The fragmentation function of charm quarks fragmenting into a D∗-meson
has been studied in ep collisions using two different methods: the hemisphere
and the jet method. Observables of both methods are reasonably well de-
scribed by the Lund string fragmentation model, and both methods show a
strong sensitivity to the studied non-perturbative QCD aspects.

Using the method of least squares, the fragmentation parameters have
been extracted for the most frequently used Peterson and Kartvelishvili
parametrizations of non-perturbative fragmentation functions, taking sta-
tistical and systematic uncorrelated and correlated errors into account. The
parameters were extracted for the QCD inspired RAPGAP and CASCADE
Monte Carlo models, which include leading-order massive matrix elements for
charm production matched with collinear (RAPGAP) or kt-ordered (CAS-
CADE) parton showers, and for an analytical next-to-leading-order QCD
calculation (HVQDIS).

The results obtained with the hemisphere and jet method for the Peterson
and Kartvelishvili parametrizations, which are summarized in tables 6.1, 6.2
and 6.3, show discrepancies of approximately 2σ. This may signal inadequa-
cies in one or more aspects of the Monte Carlo models, but the possibility of
a statistical fluctuation cannot be excluded either.

Data corrected for detector acceptance have been compared to e+e− an-
nihilation measurements. Rough agreement with recent data from the CLEO
collaboration, collected at similar center-of-mass energies of the cc̄ system, is
observed. Nevertheless, before making a final statement about the universal-
ity of the fragmentation function, a consistent phenomenological analysis of
e+e− and ep data must be performed, as different definitions of observables
are used.

The results of this analysis provide an important test of our understand-
ing of heavy quark production. They can help to reduce the uncertainty due

105
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to c-quark fragmentation in other D∗ based charm analyses at ep experi-
ments. The extracted non-perturbative parameters should be used only with
corresponding perturbative QCD description and generator tuned quantities.

Inclusion of data from the HERA II running period would allow to reduce
the statistical and perhaps also the systematic uncertainty, and thus lead to
an increase in the precision of this type of measurement.



Appendix A

Reweighting Procedure

For the data unfolding to hadron level it is important to have a Monte Carlo
simulation which describes the data distributions reasonably well. In case
the deficiencies are not too large, a satisfactory description can be achieved
by applying a reweighting procedure to the MC simulation.

By means of the of measured distributions in data and in Monte Carlo
simulation an event weight is determined. First distributions of a given
observable x in data and MC simulation are fitted with a function F(x) of
an appropriate shape, and then the event weight is calculated as the ratio of
Fdata(x)/FMC(x) according to the generated x value in the MC event.

In case of the RAPGAP and CASCADE Monte Carlo simulations reweight-
ing in one observable was not sufficient. Altogether three observables were
reweighted: zvtx, pt(D

∗) and η(D∗). Whereas the first observable is related
to the detector simulation (section 4.2.2), the remaining two are directly sen-
sitive to the underlying physics implemented in the MC model. Under the
assumption that these quantities are uncorrelated, the total event weight is
given by the product of single weights

Wtot(zvtx, pt(D
∗), η(D∗)) = W (zvtx)W (pt(D

∗))W (η(D∗)) (A.1)

This assumption seems to be approximately correct, since already after the
first iteration a quite reasonable data description is achieved. For the zvtx

and η(D∗)1 distributions a Gauss function and for pt(D
∗) a steeply falling

1This variable is reweighted in the γp-frame, where the distribution has a simple Gaus-
sian shape.
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function have been fitted:

zvtx : F(x) = G(x, N, σ, µ)

pt(D
∗) : F(x) = Nxαexp(−βx) (A.2)

η(D∗) : F(x) = G(x, N, σ, µ)

In figure A.1 the pt(D
∗) and η(D∗) distributions are shown before and

after reweighting. Besides an improvement of the data description by MC in
the reweighted distributions, which is of course expected, also distributions
related to the reweighted ones, as e.g. Et(D

∗jet), η(D∗jet) and to some
extent also Et(D

∗hem), η(D∗hem) are positively affected. A spoiling of the
description of other distributions has not been observed.
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Figure A.1: The description of pt(D
∗) and η(D∗) distributions before and af-

ter Monte Carlo reweighting. Upper plots RAPGAP, lower plots CASCADE
Monte Carlo simulation.



Appendix B

Consistency Check of
Experimental Methods

To prove the internal consistency of hemisphere and jet method within a
Monte Carlo simulation, the following test has been performed.

The value of fragmentation parameter was extracted by minimizing the χ2

as described in section 6.1. But this time instead of the data the CASCADE
Monte Carlo with Kartvelishvili parametrization α = 5.0 was used with
statistics equivalent to the data statistics (this MC sample will be further
referred as pseudo-data). For simplicity only statistical errors were taken
into account during the χ2 calculation.

The χ2 dependence on fragmentation parameter obtained for the CAS-
CADE MC model is shown on figure B.1. Both methods lead to the same α
value which has been chosen also for pseudo-data. Hence a conclusion can
be drawn that both experimental methods are consistent within the Monte
Carlo simulation.
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Figure B.1: The χ2 dependence on fragmentation parameter α and the corre-
sponding z-distributions for the hemisphere (upper) and jet method (lower)
compared to the CASCADE/PYTHIA model prediction, using pseudo-data
instead of the real data.



Appendix C

Effect of Higher Charmed
Resonances

In many older charmed analyses done at HERA the effect of higher charmed
resonances used to be underestimated. Either too few higher resonances
were assumed, or they have been completely neglected, i.e D∗-meson was
assumed to come directly from charm quark fragmentation. However the
recent measurements, as e.g [49][50][51], show that the fraction of D∗-mesons
originating from decays of higher charmed resonances is quite sizeable and
hence should not be ignored.

In this work for steering the production of excited charmed states and
other hadronization parameters a set tuned by ALEPH collaboration [55]
to their data has been used. Overall about 27% of the D∗-mesons in the
kinematic range of this analysis come from decays of excited states. The list
of included excited states as well as the fraction of D∗-mesons resulting from
their decays is shown in figure C.1 (left). Some of them are seen also in H1
data [23] (see figure C.1 (right)) and the fitted fraction of the D∗-mesons
coming from D1(2420)0 and D∗

2(2460)0 resonance decays of around 8% is in
agreement with the Monte Carlo expectation.

Taking into account higher excited states the non-perturbative fragmen-
tation function FF (c → D∗) can be written as a superposition of a direct
fragmentation of the c-quark into D∗-meson FFp(c → D∗), and of a frag-
mentation of the c-quark into excited charm meson (let us call it D∗∗-meson)
which then subsequently decays to D∗-meson:

FF (c → D∗) = FFp(c → D∗)+
∑

i

FFp(c → D∗∗
i )⊗FF (D∗∗

i → D∗) (C.1)
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where the sum runs over all excited mesons decaying to D∗-meson. Usually
one assumes that all directly produced charm mesons are fragmented accord-
ing to the same fragmentation function FFp, independently from the meson
type.

The latter subset of D∗-mesons have significantly softer fragmentation
spectrum. The fragmentation spectra FF (c → D∗) and FFp(c → D∗) are
compared in figure C.2 in terms of zhem and zjet observables.

The inclusion of higher excited states therefore leads to the softer frag-
mentation spectra. Due to this feature the extracted non-perturbative frag-
mentation function is significantly harder for the Monte Carlo models with
incorporated higher resonances (see figure C.3). The extracted ε parameter
value moves from 0.022 to 0.038 for the hemisphere method and from 0.040
to 0.75 for the jet method.

This could possibly explain the difference between the Peterson param-
eter value of ε = 0.061 ± 0.0073(stat)+0.012

−0.008(syst.) extracted by the ZEUS
collaboration [48] with the jet method at higher jet energies Et(D

∗jet) > 9
GeV, and the parameter value extracted within framework of this analysis
by the jet method ε = 0.040 + 0.013 − 0.009.
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Figure C.3: The χ2 dependence and the measured z-distributions for
the hemisphere (upper) and jet method (lower) compared to the RAP-
GAP/PYTHIA model prediction without incorporated higher resonances
using the Peterson parametrization for the non-perturbative fragmentation
function.
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