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Abstract

Instantons are an essential and non-perturbative part of Quantum Chromodynamics, the theory
of strong interactions. One of the most relevant quantities in the instanton calculus is the
instanton-size distribution, which can be described on the one hand within the framework of
instanton perturbation theory and on the other hand investigated numerically by means of
lattice computations.
A rapid onset of a drastic discrepancy between these respective results indicates that the under-
lying physics is not yet well understood. In this work we investigate the appealing possibility of
a symmetry under conformal inversion of space-time leading to this deviation. The motivation
being that the lattice data seem to be invariant under an inversion of the instanton size.
Since the instanton solution of a given size turns into an anti-instanton solution having an
inverted size under conformal inversion of space-time, we ask in a first investigation, whether
this property is transfered to the quantum level.
In order to introduce a new scale, which is indicated by the lattice data and corresponds to
the average instanton size as inversion radius, we project the instanton calculus onto the four-
dimensional surface of a five-dimensional sphere via stereographic projection. The radius of this
sphere is associated with the average instanton size. The result for the instanton size-distribution
projected onto the sphere agrees surprisingly well with the lattice data at qualitative level. The
resulting symmetry under an inversion of the instanton size is almost perfect.
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Zusammenfassung

Instantonen sind ein essentieller und nicht-perturbativer Aspekt der Quantenchromodynamik,
der Theorie der starken Wechselwirkung. Eine der wichtigsten Größen innerhalb der Theorie
der Instantonen ist die Instanton-Größenverteilung, welche einerseits im Rahmen der Instanton-
Störungstheorie beschrieben und andererseits durch numerische Simulationen mittels Berech-
nungen auf dem Gitter bestimmt werden kann.
Ein rapide entstehende Diskrepanz zwischen den Ergebnissen dieser beiden Methoden, welche
vor einigen Jahren festgestellt wurde, deutet auf eine noch nicht völlig verstandene, physikalische
Ursache hin. Diese Arbeit untersucht die ansprechende Möglichkeit einer Symmetrie unter kon-
former Inversion der Raumzeit, welche zu dieser Abweichung führt. Die Motivation für diesen
Ansatz findet sich in der Invarianz der Gitterdaten unter einer Inversion der Instantongröße.
Das Instanton-Eichfeld mit einer bestimmten Ausdehnung wird unter einer konformen Inversion
der Koordinaten zu einem Antiinstanton mit invertierter Ausdehnung. In einer ersten Unter-
suchung fragen wir, ob sich diese Eigenschaft auch auf Quantenniveau finden lässt.
Weiters zeigen die Gitterdaten eine neue Skala auf, die der durchschnittlichen Größe eines In-
stantons als Inversionsradius entspricht. Um diese neue Skala in die Theorie einzuführen, projek-
tieren wir den Instanton-Kalkül auf die vier-dimensionale Oberfläche einer fünf-dimensionalen
Kugel mittels stereographischer Projektion. Die neue Skala erscheint in dieser Beschreibung als
Radius der Kugel. Das Ergebnis für die projektierte Instanton-Größenverteilung auf der Kugel
stimmt auf qualitativer Ebene überraschend gut mit den Gitterdaten überein. Die resultierende
Symmetrie unter einer Inversion der Instantongröße, wie sie von den Gitterdaten nahe gelegt
wird, ist beinahe perfekt.
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Chapter 1

Introduction

Quantum Chromodynamics (QCD), the theory describing the nature of the strong force, is the
basis for nuclear and hadron physics. Despite its appealing theoretical construction, which is
even more self-contained than Quantum Electrodynamics (QED), it takes a long way starting
from the Lagrangian to explain data from e.g. hadronic spectroscopy. The reason is that the
world around us cannot be understood by the bare use of perturbative QCD (pQCD) only.

The QCD vacuum is a very complicated and dense state of matter, made of strongly inter-
acting quarks and gluons. It is the non-perturbative aspects of QCD, which on the one hand play
an essential role but on the other hand have proven to be a much more difficult task than pQCD.
How should one understand the structure of hadrons without having a profound knowledge of
the vacuum first?

One of the most exciting events in the development of analytical, non-perturbative QCD was
the discovery of topological solutions of the Yang-Mills equations known as instantons. It is the
rich vacuum structure of non-Abelian theories that induces topologically non-trivial fluctuations
of the gauge fields. Due to these kinds of non-perturbative solutions, non-Abelian gauge theories
like the electroweak theory and QCD seem to have an enormous capacity encoded in the vacuum
structure. There are areas in physics, being completely inaccessible to perturbation theory, which
can be explored with the help of topological methods.

Being the simplest example of such fluctuations, instantons have been discovered by Belavin
et al. [1] in 1975. There exist other types of fluctuations too, such as merons, monopoles or
vortices [2, 3, 4]. Instantons are the best studied effect, though. Moreover there are strong
believes that they are the dominant fluctuations in the QCD vacuum. Physically they describe
tunnelling processes between vacua with different topological structure, reflecting their non-
perturbative nature.

They are believed to play a crucial role in various topics of both QCD and electroweak
theory. Instantons lead to the formation of a gluon condensate [5], cure the U(1) paradox [6, 7]
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and provide a beautiful mechanism for chiral symmetry breaking [8, 9, 10, 11, 12, 13]. In
the electroweak sector they are responsible for a violation of the baryon and lepton number
B + L [7, 6, 14], to mention just a few impacts of instantons.

Despite their undoubted importance for the theory of strong and electroweak interactions,
experimental evidence for instanton-induced processes is still lacking today. It was shown [15, 16,
17, 18] that the instanton-induced cross-sections lie within measurable range. Thus a thorough
analysis of new HERA data - and in the future also LHC data - might bring to the experimental
confirmation of such processes.

Organisation of the work

Chapter 2 serves as a guideline through this thesis. The main subject of this work will be
illustrated there. The chapter gives a detailed outlook on the ideas investigated in the course of
this thesis and motivates the methods applied.

In Chapter 3 we present a short overview of the theory of instantons. The focus is on their
role in QCD. We start with a brief description of the vacuum structure of non-Abelian gauge
theories like QCD in Sect. 3.1. The instanton solution in Euclidean space will be introduced
as well as their interpretation as a tunnelling process between topologically different vacua in
Minkowski space. A detailed discussion of instanton perturbation theory follows in Sect. 3.3.
The physical significance of instantons is the subject of the last section of this chapter, Sect. 3.4.

Thereafter, in Chapter 4, the preparations for the subsequent investigations on our symmetry
approach are made. Sect. 4.1 starts with a discussion of the simulation of topological phenomena
on the lattice. Moreover the properties of the instanton size distribution on the lattice and their
comparison to instanton perturbation theory are addressed in that section. Then, in Sect. 4.2,
we give a short overview of alternative approaches to the problem of the contradiction between
lattice data and instanton perturbation theory. At the end of this chapter we introduce the
conformal group and study the transformation laws for various fields in detail. These laws are
used intensively throughout this work. The invariance of the instanton potential at the classical
level is studied.

The invariance of the instanton calculus under conformal inversions at the quantum level is
the main topic of Chapter 5. We investigate the behaviour of a major part of the instanton
size distribution, which are the contributions from the zero modes, under conformal space-time
inversion. For that purpose we introduce the method of collective coordinates in Sect. 5.1. After
a derivation of the zero mode fraction for SU(3)- and SU(N)-instantons in Sect. 5.3, we study
the properties of zero modes under conformal space-time inversions and give results in Sect. 5.4.

Finally, in Chapter 6, we deal with one of our main issues: The introduction of a new scale,
which is indicated by the lattice data, into the instanton calculus. We begin with a discussion of
the breaking of the dilatation in Sect. 6.1 which goes along with the introduction of a scale into
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the theory. The rest of this section gives further motivations for our approach of projecting the
instanton calculus onto the four-dimensional surface of a sphere in five-dimensional Euclidean
space with a radius that corresponds to the average instanton size. In Sect. 6.2 we study the
stereographic projection in detail and state the transformation rules for vector and tensor fields.
The main results of this work are quoted in Sect. 6.3, where the zero modes are projected onto
the sphere with a radius that equals the average instanton size. The following section provides
consistency checks for our approach including a comparison with existing work in Sect. 6.4.1.
We make contact between the results for the inverted zero modes on the sphere and in Euclidean
space in the subsequent section. A rather lengthy excursus will be done in Sect. 6.4.3. The
purpose of this deviation from the straight line of argumentation is to illustrate why our approach
differs quite a lot from what has been done in the past.

The work finishes with concluding words and an outlook on topics that would be worthwhile
to investigate in the future.
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Chapter 2

Setting the Stage

This chapter serves as a guideline through this thesis. The question that will we will deal with
during the main parts of this work will be posed. Moreover it gives an outlook on the ideas
that have been investigated in the course of this work and provides motivations for the approach
chosen. From now on instantons will be denoted as I, anti-instantons as Ī.

One of the most relevant quantities in the I-sector is the so called instanton-size distribution
D(ρ), which gives the probability n(I) to find an instanton with a size of (ρ . . . ρ+dρ) in a volume
element d4z,

D(ρ) ' dn(I)

d4z dρ
. (2.1)

The I-size distribution can be linked directly to the vacuum-to-vacuum transition amplitude of
the tunnelling process as discussed in Eq. (3.32) of Sect. 3.3. In the context of so called instanton
perturbation theory the quantum field theoretical probability for this vacuum transition to take
place can be computed. This was first achieved in the seminal work by ’t Hooft [6]. One expands
the path integral for the generating functional of the Green’s functions about the known, classical
instanton solution, Eq. (3.16) in Sect. 3.1,

Aµ(x) = A(I)
µ (x) + Aqu

µ (x), (2.2)

instead of the trivial vacuum A
(0)
µ (x) = 0. Not surprisingly, one finds the unphysical result of a

divergent amplitude, see Eq. (3.41), in the infrared region, i.e. when the size of the instantons
becomes too large.

However, this problem does not occur in lattice simulations of QCD. There the theory is
probed numerically without any simplifying assumptions and thus includes all physics provided
by the Lagrangian of the theory simulated. The topological structure of the vacuum in SU(3)
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Figure 2.1: UKQCD lattice data [22, 23] (solid symbols) for the instanton-size distribution. The solid
line refers to instanton-perturbation theory [23] using ΛMSnf=0 = (238±19) MeV from [24]. The open

symbols display the according to ρ→ ρ2
peak/ρ inverted data symbols. The data seem to be symmetric

under an inversion of the instanton size.

and SU(2) lattice gauge theory with zero flavours (nf = 0) has been investigated by various
groups [19, 20, 21], notably the UKQCD collaboration [22]. Their high-quality lattice data,
analysed by Smith and Teper [22] and Ringwald and Schrempp [23], are depicted in Fig. 2.1. A
comparison to I-perturbation theory has been done by [23]. One can see that I-perturbation the-
ory (solid line) works perfectly, without any free parameter, until an I-size of 0.35 fm. Moreover
the lattice data show a radical suppression of large instantons. The extremely surprising feature
of the behaviour of the size distribution was the rapid breakdown of I-perturbation theory at an
I-size of ρpeak

∼= 0.5 fm. Furthermore the peak position, ρpeak, introduces a new, characteristic
length scale in the I-sector, indicating the breakdown of I-perturbation theory.

So far the physical mechanism leading to such a rapid onset of a drastic discrepancy between
lattice data and perturbation theory is not known. Clearly it would be of great importance to
gain some understanding of that issue, since this would have crucial consequences for our insight
to the vacuum structure of both the theory of electroweak and strong interaction.

9



10

This work is devoted to an investigation of exactly that question. Our approach will be the
appealing possible explanation [25] of a symmetry protecting instantons of becoming too large.
Near at hand is a potential symmetry under conformal inversion of space-time,

xµ → x′µ =
ρ2

peak

x2
xµ. (2.3)

The triggering motivation for this assumption is the fact, that the lattice data in Fig. 2.1
appear to be invariant under an inversion of the I-size,

ρ⇔ ρ′ =
ρ2

peak

ρ
. (2.4)

The size distribution in Fig. 2.1 is plotted against ln (ρ/ρpeak) to make the symmetry clearly
visible. Both, the original data symbols (� , • and N) and the according to Eq. (2.4) inverted ones
(open symbols) seem to fit onto one symmetric curve. The idea of such an inversion symmetry,
regarded as a relict of the conformal invariance of the whole I-sector, relies on two observations:

• First of all the Euclidean equations of motions are covariant under the conformal group
O(5, 1) and moreover the classical I-solution Eq. (3.16) is invariant under its subgroup
O(5) [26, 27], see Sect. 6.1.

• Secondly, as will be discussed out in detail in Sect. 4.3.3, at the classical level instantons
of size ρ in regular gauge change under a conformal inversion of the coordinates, Eq. (2.3),
to anti-instantons of inverted size ρ′ in singular gauge,

A′ (I)reg
µ (x, ρ) . = A(Ī)sing

µ (x, ρ′) (2.5)

That is to say that a transformation of the I-configuration under a space-time inversion
of Eq. (2.3) effectively means an inversion of the I-size ρ. It is exactly this symmetry the
lattice data is suggesting.

The first part of our investigation concentrates on the following question: Does the latter
property survive at the quantum level?
For that purpose a thorough study of the behaviour of the one-loop I-size distribution under
conformal inversion was made, it can be found in Chapter 5. Within this work we consider only
one major part of the I-size distribution, the zero mode fraction, under space-time inversion.
Zero modes correspond to the derivatives of the classical instanton potential with respect to
collective coordinates, see Sect. 5.1. Since the instanton gauge field possesses the intriguing
property under inversion, Eq. (2.5), this feature might be transfered to the zero modes. We
assume that the remaining non-zero mode part is not affected by a conformal inversion.
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According to our approach the typical size ρpeak of an instanton equals the radius of inversion.
Therefore one of the main aims of this work is to introduce this new scale into the I-calculus. It
should be emphasised, that this scale does not exist at all in conventional I-perturbation theory.

This will be done in the central part of this work, Chapter 6. There we shall see, that the
natural environment for studying the question of invariance under conformal space-time inversion
seems to be the 4-dimensional surface of a 5-dimensional sphere with radius ρpeak. In Chapter
6 the 4-dimensional Euclidean space is projected onto the surface of the sphere by means of
a stereographic projection. In this description of the I-calculus the new physical scale ρpeak

appears as the radius of the sphere and is thus introduced in the whole I-sector.
There exists a simple relation between the stereographic projection and conformal inversion

if the radius of inversion equals the radius of stereographic projection. On the one hand inversion
corresponds on the one hand to a mapping of the points outside the sphere to points inside the
sphere and vice versa in Euclidean space. On the other hand it represents a mapping from the
northern hemisphere to southern hemisphere and vice versa after projection to the sphere, see
Fig. 6.1 in Sect. 6.4.3.

In Sect. 6.3 we show that the computation of the zero mode part J(ρ), an important fraction
of the I-size distribution, on the sphere gives a result, that has indeed many of the features we
are looking for. We find invariance of J(ρ) under inversion of the coordinates. This leads to an
almost perfect symmetry under ρ → ρ′ and by that to a surprisingly good description of the
lattice data at the qualitative level.
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Chapter 3

Instantons in QCD - An Overview

The purpose of this chapter is to provide an introduction to instantons in non-Abelian gauge
theories, especially in QCD. There exists a wide range of literature on that subject, see e.g.
the following textbooks [28, 29, 30, 31] and reviews [32, 8]. Sects. 3.1 - 3.3 give a theoretical
overview of the methods used in the I-calculus. Sect. 3.4 deals with the physical importance of
instantons in gauge theories.

3.1 The vacuum structure of gauge field theories

Non-Abelian gauge theories such as QCD have a very rich vacuum structure. There is an infinite
set of classical, degenerate vacua that are topologically different. In order to make that visible
it is necessary to formulate the Yang-Mills theory, and by that also the theory of instantons, in
4-dimensional Euclidean space.

When studying gauge field theories, in particular pure Yang-Mills theories like we do for the
moment, and their semiclassical approximations, one is interested in field configurations with
finite action1,

SE =
1

2

∫
d4xTr [FµνF

µν] , (3.1)

since configurations with infinite action do not contribute to the functional integral. Hence the
field strength tensor Fµν must be of O (1/|x|3), in order for the action to vanish at infinity,

Fµν
|x|→∞−−−−→ 0. (3.2)

1For a definition of the Euclidean action see Appendix A.
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3.1. THE VACUUM STRUCTURE OF GAUGE FIELD THEORIES 13

This is trivially achieved by a gauge potential Aµ of O (1/|x|2), but due to gauge invariance of
the action this can also be accomplished by

Aµ(x)
∣∣
|x|→∞ = i

g
U †(x)∂µU(x) +O (1/|x|2) , (3.3)

where U(x) is a function from four-space to the gauge group G. The field defined by Eq. (3.3)
is often called pure gauge, since it arises from a gauge transformation

A′µ(x) = U †(x)Aµ(x)U(x) +
i

g
U(x)†∂µU(x) (3.4)

of the trivial potential Aµ(x) = 0.
It can be shown [30], that for every finite-action configuration there is actually a homotopy

class of such mappings. Two continuous functions f0(x) and f1(x) of one topological space to
another belong to one homotopy class if they can be continuously transformed into another by
means of a continuous function F (x, t), such that

F (x, t0) = f0(x) and F (x, t1) = f1(x). (3.5)

The different homotopic classes are characterised by an integer winding number nW , also called
Pontryagin index.

It should be stressed that the gauge group SU(2) plays an essential and also particular role
in that context. This is due to the fact that the boundary of Euclidean space is the three-sphere
S3. That means that topologically the group of space-time and the gauge group are equivalent.
For mappings f(x) from a three-sphere to SU(2) the winding number is given by

nW =
1

24π2

∫
d3x εijk Tr

[
f−1(x)∂if(x) f−1(x)∂jf(x) f−1(x)∂kf(x)

]
. (3.6)

Let us point out that in Eq. (3.3) the function U(x) does indeed represent a mapping from
three-spheres to SU(2) space. Thus it is possible to associate a winding number to every field
configuration in Euclidean space. It can be shown [30, 33], that this is true for every non-Abelian
gauge theory with the gauge group SU(N).

By defining a gauge-dependent current Kµ, the Chern-Simons current, we can express the
winding number in terms of gauge fields,

Kµ = εµνκλ Tr

[
1

2
Aν∂κAλ − ig

3
AνAκAλ

]
. (3.7)

One can easily check that

∂µK
µ =

1

4
Tr
[
F̃µνF

µν
]
. (3.8)

13



3.1. THE VACUUM STRUCTURE OF GAUGE FIELD THEORIES 14

Here we have introduced the dual field strength tensor

F̃µν =
1

2
εµνρσF

ρσ. (3.9)

The charge associated with this current, the so called topological charge Q, is

Q =
g2

4π2

∫

V 4

d4x ∂µK
µ

=
g2

4π2

∫

∂V 4=S3

K⊥d3x,

(3.10)

where we have applied Gauß’s theorem in order to change from an integration over the Euclidean
space-time V 4 to an integration over the surface ∂V 4 = S3. At the surface of the sphere the
gauge field is given by Eq. (3.3), where the current reads as

Kµ =
1

6g2
εµνκλ Tr

[(
U †(x)∂νU(x)

) (
U †(x)∂κU(x)

) (
U †(x)∂λU(x)

)]
(3.11)

Thus we see that the topological charge Q of the current in V 4 corresponds to the winding
number nW of the field on its surface ∂V 4 given by Eq. (3.6).

A physically realised configuration has to fulfil the condition of minimal action, which is
satisfied by a self-dual field strength tensor. This can be seen by the following consideration.

∫
d4xTr

[
Fµν ± F̃µν

]2

≥ 0 (3.12)

Using
(
Fµν ± F̃µν

)2

= 2
(
FµνF

µν ± FµνF̃ µν
)

we obtain

∫
d4xTr [FµνF

µν] ≥
∣∣∣∣
∫

d4xTr
[
FµνF̃

µν
]∣∣∣∣ . (3.13)

Equality is thus achieved in the case of (anti-)self-duality,

Fµν = ±F̃µν . (3.14)

This implies that the Euclidean action is proportional to the topological charge,

SE =
1

2

∫
d4xTr [FµνF

µν] =
8π2

g2
|Q| . (3.15)

14



3.1. THE VACUUM STRUCTURE OF GAUGE FIELD THEORIES 15

Eq. (3.10) tells us, that Fµν cannot be zero over the whole volume V 4, it vanishes only on
the boundary S3. In 1975 Belavin et al. [1] found an explicit field configuration, the instanton
configuration, having all the properties needed,

Aµ(x) =
i

g

ρ2

ρ2 + x2
(∂µU(x))U †(x)

= − i

g

1

ρ2 + x2

σµx̄− xσ̄µ
2

.

(3.16)

U(x) is an element2 of the gauge group,

U(x) =
xµσ

µ

√
x2

∈ SU(2), (3.17)

and ρ is some arbitrary scale parameter, usually referred to as the size of the instanton. It
is straight forward to show that this solution fulfils the condition of Eq. (3.14). Thus in Eu-
clidean space instantons are solutions of the equations of motion with finite action. They are
characterised by their topological charge Q = 1.

The instanton solution in the form of Eq. (3.16) is written down in so called regular gauge.
Later on, it will be convenient to work in singular gauge which is obtained by the following
gauge transformation with U(x) = xµσ

µ/
√
x2 [26],

Aµ(x)→ Asing
µ (x) = UAµU

† +
i

g
U∂µU

†

= − i

g

ρ2

x2 (ρ2 + x2)
[σµxν σ̄

ν − xµ] .

(3.18)

In order to generalise the gauge group to SU(Nc), Nc being the number of colours, one has to
embed the SU(2)-instanton configuration in an appropriate way into SU(Nc) [34, 35, 36]. The
usual way to do this is as follows. One embeds the I-representation into the left upper corner
of an Nc ×Nc-matrix, such that all entries except those of the instanton are vanishing. Yet the
embedding has to guarantee the invariance of the instanton orientation in colour space. Therefore
we need to make a general, but constant SU(Nc)-gauge transformation of this Nc ×Nc-matrix,

(
ANc×Ncµ

)i
j

= (U)ik




(
A2×2
µ

)α
β

0 . . . 0

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0




k

l

(
U †
)l
j

= (U)iα
(
A2×2
µ

)α
β

(
U †
)β
j
.

(3.19)

2For the definition of σµ and σ̄µ in Euclidean space-time see Appendix A.
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3.2. THE INSTANTON AS A TUNNELLING PROCESS 16

Here the Greek indices are running from 1 to 2, whereas the Latin indices are running from 1
to the number of colours Nc. The matrices U i

α couple the colour indices i = 1, 2, . . . , Nc with
the spin indices α = 1, 2 in a non-trivial way. One needs 4Nc − 5 parameters [36] to describe
these matrices, see also Sect. 5.1. In the main Chapters. 5 and 6 of this work we will deal with
SU(3) instantons, since we aim for a comparison of our results with lattice computations that
have simulated the SU(3) vacuum.

3.2 The instanton as a tunnelling process

In this section we ask for the physical interpretation of the instanton solution. We will see that
in Minkowski space-time it corresponds to a quantum-mechanical tunnelling process between
vacuum states with different topological charge [37, 38]. The argumentation follows [38]. In order
to show this let us go to yet another gauge3 - the temporal gauge, where the time component
ought to be zero,

Atemp
0 (x) = 0, (3.20)

by means of a gauge transformation

Atemp
µ (x) = U temp(x)Aµ(x)U temp †(x) +

i

g
U temp(x)∂µU

temp †(x). (3.21)

U temp(x) is now the element of the gauge group necessary to achieve the temporal gauge. As a
consequence of this condition we find that

∂

∂x0
U temp(x) = −A0(x)U temp(x). (3.22)

Plugging in the instanton solution of Eq. (3.16) and solving the differential equation yields [29]

U temp(x) = exp

{
i

x · σ√
ρ2 + x2

[
arctan

(
x4√
ρ2 + x2

)
+ π

(
n +

1

2

)]}
. (3.23)

The spatial components of Eq. (3.16) vanish at infinity and thus at x0 = ±∞ we are left with

Atemp
i (x)

∣∣∣
x0=±∞

=
i

g
U temp †(x)∂iU

temp(x), (3.24)

where

U temp(x0 = −∞) = exp

[
iπ

x · σ√
ρ2 + x2

n

]
(3.25)

3We are still working in Euclidean space at this point.
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Figure 3.1: The instanton corresponds to a tunnelling process between degenerate vacua with different
winding number in Minkowski space-time.

and

U temp(x0 =∞) = exp

[
iπ

x · σ√
ρ2 + x2

(n + 1)

]
. (3.26)

The I-gauge potential A
(I)
i at x0 = −∞ belongs to the vacuum state |n〉 . After evolving in

Euclidean time A
(I)
i ends up at x0 = ∞ in the vacuum state |n + 1〉 . Hence we conclude that

the instanton configuration of Eq. (3.16) connects two vacuum states with different winding
numbers n and n + 1, respectively. The two states are separated by an energy barrier, see Fig.
3.1.

This brings us to the physical interpretation of the instanton in Minkowski time: It describes
a tunnelling process between two ground states differing by Q = 1 (or Q = −1 in the case of an
anti-instanton). This can be understood by the argumentation below. Classically there exists no
path between two vacua with different winding number. But quantum mechanics tells us that
tunnelling processes are allowed and they can be described with the help of classical paths in
imaginary time. Since it is the minimum of the Euclidean action, the instanton solution does
indeed describe such a path. One can calculate the barrier-penetration amplitude with the help
of the WKB-method. The leading term of the tunnelling amplitude is given by

P ∝ eSE = e
− 8π2

g2
|Q|

= e
− 8π2

g2 . (3.27)

Recapitulating one can say that instantons can be interpreted in two ways: On the one
hand they are solutions of the Euclidean equations of motions localised in space and time4. On
the other hand they are tunnelling processes between topologically different ground states in
Minkowski space.

4This is why ’t Hooft named them instantons in analogy to solitons in non-linear mechanics.
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3.3. PERTURBATIVE VACUUM-TO-VACUUM AMPLITUDE 18

3.3 Perturbative vacuum-to-vacuum amplitude

The transition amplitude for an I-induced tunnelling process can be calculated in the framework
of I-perturbation theory. A first approximation was already given by the WKB approach, see
Eq. (3.27). In order to fix the pre-exponential factor F of the path integral,

Z = F

∫
DAµ exp(−SE)

∣∣∣
Acl=A(I)

, (3.28)

the fluctuations around the classical path have to taken be into account. Thus one has to compute
the one-loop vacuum-vacuum amplitude about a single instanton [6]. The full calculation, being
extensive and elaborate, was carried out first by ’t Hooft [6]. For reasons of normalisation one
needs to divide by the same amplitude about the ordinary vacuum,

〈0|0〉(I) =
Z(I)

Z(0)
=

∫
DAµ exp(−SE)|Acl=A(I)∫
DAµ exp(−SE)|Acl=0

. (3.29)

In I-perturbation theory the general gauge potential Aµ is expanded about the classical

I-configuration A
(I)
µ (x, γ),

Aµ(x, γ) = A(I)
µ (x, γ) + Aqu

µ (x), (3.30)

where γ denotes the collective coordinates, parameters of the I-configuration, see Sect. 5.1.
This expansion is also known as the background field method, see [39, 40]. Still the strong
coupling constant αs has to be small just like in conventional pQCD. We make the assumption
that instantons are well separated from each other such that no interactions take place. This
simplification is called the dilute-gas approximation [38]. Plugging in Aµ(x, γ) the action becomes

SE =
1

2

∫
d4xTr

[
FµνF

µν
]

= Scl +
1

2

∫
d4xAqu

µ M
µν
A Aqu

ν + . . . , (3.31)

where Scl is the well-known action of the instanton field Scl = 8 π2/g2 and “ . . . ” contains the
remaining fermion and ghost fields not considered here. The term linear in Aqu

µ vanishes because
the instanton configuration satisfies the equation of motion and minimises the action.

In this work only the the zero mode contribution is recalculated in Sect. 5.3. It will be the
central quantity for our symmetry considerations later on. The complete computation requires
the use of various techniques such as regularisation of the amplitude and integration over the
collective coordinates (detailed discussion of the latter in Sect. 5.1), ending up with

〈0|0〉(I) =
Z(I)

Z(0)
=

∫
d4z

∫
dU

∫
dρD(ρ, µr), (3.32)
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3.3. PERTURBATIVE VACUUM-TO-VACUUM AMPLITUDE 19

where the I-size distribution D(ρ, µr) depends on the I-size ρ and the renormalisation scale µr.
The one-loop results of [6, 41] have been improved in [42], now including renormalisation

group invariance at two-loop level,

1

D(ρ, µr)

dD(ρ, µr)

d log µr
= O(α2

s). (3.33)

The result for the I-size distribution is found to be

D(ρ, µr)I−pert. =
1

ρ5
d

(
2π

αs(µr)

)2Nc

exp

{
− 2π

αs(µr)

}
(µrρ)b, (3.34)

where [16]

b = β0∆1 −∆2, ∆1 = 1 +
β1

β2

αs(µr)

4π
, ∆2 = 4Nc β0

αs(µr)

4π
(3.35)

and αs(µr) is the running coupling constant as function of the renormalisation scale µr at 2-loop
level,

αs(µr) =
4π

β0 log
(
µ2

r

Λ2

)


1− β1

β2
0

log
(

log
(
µ2

r

Λ2

))

log
(
µ2

r

Λ2

)


 . (3.36)

The parameter Λ is the usual scale of QCD fixed by measuring the coupling constant at a certain
scale like the mass of the Z-boson MZ . As in conventional perturbation theory β0 and β1 are
the first two coefficients of the β-function:

β0 =
11

3
Nc −

2

3
Nf , (3.37)

β1 =
34

3
N2
c −

(
13

3
Nc −

1

Nc

)
Nf . (3.38)

The result of Eq. (3.34) does not correspond to the full two-loop level, since the constant d is
known only at one-loop level. In the MS-scheme it is given by

d =
C1

(Nc − 1)! (Nc − 2)!
exp {−NcC2 +NfC3} (3.39)

with the numerical values for the coefficients

C1 = 0.466, C2 = 1.54 and C3 = 0.153. (3.40)
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3.4. PHYSICAL IMPACT OF INSTANTONS 20

However, in the form of Eq. (3.34) the dependence of the size distribution on the renormal-
isation scale µr is considerably reduced. Already at the one-loop level, see also Sect. 5.1, the
explicit µr-dependence cancels:

D(ρ)1−loop ∝
1

ρ5

(
2π

α (µr)

)2Nc

(ρµr)
β0 exp

{
− 2π

αs(µr)

}

=
1

ρ5

(
2π

α (µr)

)2Nc

(ρµr)
β0 exp

{
−β0

2
log

(
µ2

r

Λ2

)}

=
1

ρ5
(ρΛ)β0

(
2π

α (µr)

)2Nc

(3.41)

Eq. (3.41) shows an explicit dependence only on ρ and Λ at first order. However, the factor
(2π/α (µr))

2Nc including a strong dependence on µr, remains. One can see that the tunnelling
amplitude of Eq. (3.32) is divergent in the IR region for larger-size instantons at a fixed value
of µr which is depicted in Fig. 2.1 in Sect. 2.

3.4 Physical impact of instantons

Obviously the question arises whether it is possible to distinguish the topologically different
vacua physically. Sect. 3.4.1 deals with that issue. If this is indeed feasible, one will ask for the
physical effects of instantons (in QCD). This will be discussed in Sects. 3.4.2 till 3.4.4.

3.4.1 Instantons and light quarks

If one adds massless quarks5 to the theory there is indeed a physical observable, the axial charge,

Q5 =

∫

R3

d3x J5
0 (x, t), (3.42)

answering the above question of the distinction between the different vacua. J 5
0 (x, t) is the time-

component of the axial current defined below. Moreover the issue is related to the mechanism
of anomalies. In 1969 Adler, Bell and Jackiw (ABJ) [43, 44] found the so called axial anomaly.

Anomalies arise whenever symmetries are conserved at the classical level, but not at the
quantum level. In our case the axial U(1)A symmetry becomes anomalous under quantisation,
therefore the corresponding current, the axial current defined by the operator

Ĵ5
µ = ψ̄γµγ5ψ, (3.43)

5Of course this is an idealisation. However, since u-, d- and s-quarks are indeed very light quarks, this is a
legitimate approximation.
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3.4. PHYSICAL IMPACT OF INSTANTONS 21

is not conserved. This was found when computing loop diagrams involving external vector and
axial-vector currents. They cannot be regulated in such a way that all the currents remain
conserved [32]. The anomaly equation reads [45]

∂µJ
5µ = Nf

g2

16π2
Tr
[
F a
µνF̃

µν
a

]
, (3.44)

where Nf is the number of flavours added to the theory. We see that the ABJ-anomaly is related
to instantons, since the integrated right hand side of Eq. (3.44) is proportional to the topological
charge Q.

One might ask how instantons lead to the non-conservation of the axial charge. The difference
in the axial charge is given by the relation

∆Q5 = Q5(t =∞)−Q5(t = −∞)

= # (q + q̄)R −# (q + q̄)L

=

∫
d4x ∂µJ

5µ.

(3.45)

∆Q5 counts the difference between the number of left and right handed fermions and anti-
fermions, # (q + q̄)R and # (q + q̄)L, respectively. The above equation can be expressed by
means of the fermion propagator S(x, x),

S(x, y) = 〈x|(−i /D)−1|y〉. (3.46)

By using J5µ = 〈q̄|Ĵ5µ|q〉 and the properties of the trace we find

∆Q5 = Nf

∫
d4x ∂µ Tr [S(x, x)γµγ5] . (3.47)

We can write the propagator in terms of eigenfunctions i /Dψλ = λψλ of the Dirac operator,

S(x, y) =
∑

λ

ψλ(x)ψ†λ(y)

λ
. (3.48)

Plugging in Eq. (3.48) into Eq. (3.47) gives then

∆Q5 = Nf

∫
d4xTr

[∑

λ

ψλ(x)ψ†λ(y)

λ
2λγ5

]
. (3.49)
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Now for every non-zero λ, γ5ψ is an eigenvector of the Dirac operator with an eigenvalue −λ.
We conclude the contributions from ψλ cancele those from γ5ψλ and so only the zero modes
contribute to the axial charge,

∆Q5 = 2Nf (nR − nL) , (3.50)

where nL and nR are the number of left and right handed zero modes, respectively.
An important discovery of ’t Hooft [7] was, that the Dirac operator has indeed a right-handed

zero mode κ(I)(x) in the instanton background field,

/Dκ(I)(x) =
(
/∂ − i g /A

(I)
(x)
)
κ(I)(x) = 0. (3.51)

In an anti-instanton field we obtain a left-handed zero mode φ̄(Ī)(x). In Weyl representation
and in singular gauge the right-handed fermionic zero modes in an I-background field are given
by [6]

κ
(I)k
α̇ (x) =

1

π
ρ3/2εαβ (U)kβ

x̄α̇α
x4

(
x2

ρ2 + x2

)3/2

,

φ̄
(I)α̇
k (x) =

1

π
ρ3/2εβα

(
U †
)β
k

xαα̇

x4

(
x2

ρ2 + x2

)3/2

.

(3.52)

The left-handed zero modes can be obtained by conjugation of Eq. (3.52). See Appendix A for
a definition of the Weyl spinors.

Thus the ABJ-anomaly is saturated in the following sense6. A change in the topological
charge due to a tunnelling process goes along with the creation and annihilation of fermions of
a given chirality, the fermionic zero modes, violating the conservation of the axial current [7],

∆Q5 = 2Nf (nR − nL) = 2Nf Q. (3.53)

Since these fermionic zero modes have a definite chirality, quarks will flip their chirality as they
pass an I-region [32]. Therefore instantons induce processes that cannot be found in perturbative
QCD. This important characteristic provides an opportunity for measurable processes, see Sect.
3.4.3.

3.4.2 Instantons responsible for chiral symmetry breaking

At this point we are ready to discuss one of the most important effects of instantons in QCD:
They are believed to be responsible for spontaneous chiral symmetry breaking (SχSB). After all
it is SχSB producing 95% of the mass around us [8, 9, 10, 11, 12, 13].

6This is a consequence of the more general Atiyah-Singer index theorem, which relates the topological charge
with the difference in the number of left- and right handed zero modes, [46, 47].
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The U(1)A problem

Here the argumentation follows Ref. [48]. The massless QCD Lagrangian allows for the following
global symmetries:

SU (Nf )V : ψq → exp (iαqaλ
a/2)ψq

SU (Nf )A : ψq → exp (iβqaγ5λ
a/2)ψq

(U (1)V )Nf : ψq → exp (iαq)ψq

(U (1)A)Nf : ψq → exp (iβqγ5)ψq,

(3.54)

where ψq denotes the quark fields, q = u,d,s,.. . This symmetry, which is called the chiral
symmetry, is spontaneously broken,

SU (Nf )V × SU (Nf )A × U (1)V × U (1)A → SU (Nf)V × U (1)V , (3.55)

to the subgroup of vector symmetries with dimension N 2
f . The breaking of of SU (Nf)A generates

a multiplet of N2
f − 1 pseudoscalar Goldstone bosons. For a theory with three flavours these are

eight massless pseudoscalar mesons: π+, π0, π−, K+, K0, K̄0, K− and η8. The explicit breaking
of chiral symmetry by the QCD quark-mass term generates the experimentally observed masses
of these mesons. However, the global group U (1)A is not anomaly-free and therefore gives, even
in a theory with massless quarks, no massless Goldstone boson. For quite a while it was not
clear what happened to that Goldstone boson. This is the famous U(1)A problem.

There exists an important relation, the Witten-Veneziano relation [49, 50], which states
that the topological susceptibility χtop, which is the fluctuation of the topological charge density
Q(x) = ∂µ

(
ψ̄(x)γµγ5ψ(x)

)
, is proportional to the square of the pseudoscalar flavour-singlet mass

m0 and its decay constant f0,

χ
(Nf=0)
top ≡

∫
d4x〈Q(x)Q(0)〉 = 2f 2

0 m
2
0. (3.56)

As a consequence of this relation the mass for the pseudo-scalar meson (η ′ in SU(Nf = 3)) is
large compared to the masses of pions and kaons. Thus the U(1)A problem is solved by the
Witten-Veneziano relation, i.e. by means of instantons [6].

Chiral symmetry breaking through instantons

We know from the observation of a huge mass splitting between parity partners, that the chiral
symmetry must be broken spontaneously. An example would be the splitting between the vector
meson ρ (770 MeV) and the axial vector meson a1 (1260 MeV) [51], which is about 500 MeV.
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Actually this number indicates a very strong breaking, which cannot be explained by the quark-
mass terms alone. The quarks are too light. Now it is the fermionic zero modes of Eq. (3.52),
that are intimately connected with SχSB [8, 52]. When instantons interact through fermion
exchanges, zero modes can form a collective quark condensate. Therefore the quark condensate
is the associated order parameter [8],

〈q̄q〉 = −(250 MeV)3. (3.57)

One [32, 8] imagines that they form a potential well making the light quarks to form bound states.
Under the assumption of instantons being sufficiently randomly distributed in the QCD vacuum,
there is a non-zero density of eigenvalues near zero. This leads to a much stronger spontaneous
breaking of chiral symmetry than induced by the quark-mass terms and thus generates 95% of
the hadron masses.

3.4.3 Measuring instanton-induced processes

Since hadrons are collective excitations, one must have a good knowledge of the groundstate
of QCD in order to understand their structure. Thus also in the field of hadron spectroscopy
instantons are of extreme importance and their experimental verification, still lacking today,
would be a major step towards an understanding of the world of hadrons.

It has been shown by Ringwald and Schrempp [15, 16, 17, 18], that in principle it is possible to
discover I-induced processes via deep-inelastic scattering. The particle accelerator HERA offers
an excellent opportunity for the experimental search. It was found that both the rate of such
processes and the characteristic event signature can be theoretically predicted and moreover the
I-induced cross section lies within measurable range. A first analysis of HERA data showed a
significant excess of events in case of the H1 collaboration [53] while the corresponding analysis
by the ZEUS collaboration did not observe an excess [54]. Due to background, which is difficult
to control, a definite answer on that issue, however, was not yet possible.

Since its upgrade HERA II delivers substantially more statistics, so that in the near future
instanton search results may be found giving a decisive answer to that issue. There exists also
an ongoing project focused on the investigation of the discovery potential for instanton processes
at the forthcoming LHC [55, 56].

3.4.4 Instantons in electroweak theory

Instanton-solutions occur in all SU(N) gauge theories, thus also in the electroweak theory, which
is a SU(2)L×U(1) gauge theory coupled to a Higgs doublet. There the coupling constant is small
and the instanton action is large meaning that the semi-classical approximations (e.g. WKB) are
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Figure 3.2: Anomalous instanton-induced process in electroweak theory [57, 58].

under control [32]. Electroweak instantons have fermionic zero modes, as well. Their presence
also in that case is connected to the axial anomaly [44]. A typical process, as depicted in Fig.
3.2, would be

q + q → 7q̄ + 3l̄. (3.58)

In particular these processes lead to a violation of the baryon and the lepton number, B and L
respectively [7, 6, 14],

∆B = ∆L = −ngenQ, (3.59)

where ngen is the number of generations. Unfortunately the tunnelling events are usually very
rare. In order to increase the tunnelling rate, scattering processes with collision energies close to
the barrier height of the I-field energy were studied, see e.g. [59]. It was hoped that the strong
suppression of tunneling events may be overcome at energies of about 10 TeV [57, 58] leading
to the dramatic phenomenon of baryon number violation, but most probably this will not be
observable [32, 60].
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Chapter 4

Suppression of Large Instantons due to
Symmetry?

In this chapter we return to our central problem concerning the suppression of large instantons
discussed at the beginning in Chapter 2. The following discussion serves as a preparation for the
subsequent investigations within our symmetry approach. We start in Sect. 4.1 by giving a more
detailed discussion of the lattice data. We address alternative ways to our approach in Sect.
4.2. The last part, Sect. 4.3, gives an overview of conformal transformations and deals with the
behaviour of the I-configuration under conformal inversion. It will be the major motivation for
the idea investigated here.

4.1 Instantons on the lattice

The most direct and thus very important tool for the investigation of the QCD vacuum consists
in numerical simulations on the lattice. The underlying theory, including perturbative and
non-perturbative aspects, is numerically simulated essentially without simplifying assumptions1.
Therefore one can learn something about large size instantons from lattice computations.

The basic idea is to compute the path integral in Euclidean space-time explicitly after having
reduced the infinite number of field variables to a finite number. This is done by descretising
space and time via the introduction of a hypercubic equally spaced lattice in space and time
with coordinates

xµ → x(i, j, k, t) = (ie1 + je2 + ke3 + te4) a, (4.1)

1Thus interactions of instantons and anti-instantons are fully included.
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Figure 4.1: A characteristic snapshot of the Lagrange density ∝ F 2 and the topological charge
density ∝ F F̃ before (a,b) and after cooling (c,d) [62]. Three instantons (positive topological
charge) and two anti-instantons (negative topological charge) are clearly visible in the cooled
samples.

where a is the lattice spacing, the distance between neighbouring points on the lattice, see
e.g. [61].

However, simulations of extended topological phenomena on the lattice suffer from difficul-
ties due to perturbative fluctuations on very short scales ∼ a. This has the effect of covering
completely the interesting physics, since topological effects are expected to be of much larger
wavelength. To cope with these problems the technique of cooling the fields [22] has been in-
vented, where locally2 the lattice fields over distances much larger than a but still small compared
to ρ are smoothed out. In Fig. 4.1 a typical lattice configuration is shown [62]. One clearly sees
the differences between uncooled and cooled quantities. This method eliminates quickly the
unwanted non-topological quantum fluctuations with short wavelengths. What is left is indeed
dominated by instantons [32].

Unfortunately the process of cooling does not leave the topological charge unchanged via two
effects. On the one hand instantons, that are too small, will be erased and on the other hand
instantons and anti-instantons can annihilate. Thus one tries to minimise the number of cooling

2by minimising the plaquette action locally
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Table 4.1: “Equivalent” pairs (β, ncool): The cooling radius is similar [23].

β ncool rcool

6.0 23 0.447(2)
6.2 46 0.460(2)
6.4 80 0459(2)

sweeps ncool.
Now we want to discuss the continuum limit for the I-size distribution for this lattice data.

This is a bit finical since a cooling sweep is not, in general, a procedure that scales with β =
2Nc
g(a)2 [63] , the coupling strength on the lattice. However, one can indeed find pairs of the coupling
strength and the number of cooling sweeps, for which the size distribution does scale in shape
and normalisation. These pairs were found to be (β, ncool) = (6.0, 23) , (6.2, 46) , (6.4, 80) and
called “equivalent” in Ref. [22].

The question is whether these pairs have some physical significance. It was shown by Ring-
wald and Schrempp [23] that they can indeed be interpreted in a physically meaningful way. In
order to demonstrate this, an effective “cooling radius” rcool is defined as

rcool = const (
√
ncool)

1+δ
a, (4.2)

where δ is supposed to be small and a is the lattice spacing used for the UKQCD data [22]. By
means of a qualitative random walk argument the size of the area, which is cooled after ncool

cooling sweeps, is determined by the cooling radius rcool. The three “equivalent” pairs (β, ncool)
are found to have a very similar value for the cooling radius rcool, see Table 4.1.

With the help of the cooling radius the instanton ensemble on the lattice can be characterised,
since, as it was shown in Ref. [23], almost all quantities extracted in Ref. [22] scale with rcool.
This also holds for the average I-size: If the average I-size 〈ρ〉 is plotted only as a function of the
number of cooling sweeps ncool for fixed values of β = 6.0, 6.2 and 6.4, respectively, one obtains
three widely spread curves, see Fig. 4.2(a). The amazing observation of [23] was that 〈ρ〉 fits
onto one single smooth curve for all available values of (β, ncool) when 〈ρ〉 is plotted as a function
of the cooling radius rcool. This can be seen in Fig. 4.2(b). The important characteristic of that
curve is the plateau which is reached for 〈ρ〉 ' 0.5 fm. In Ref. [23] this has been interpreted by
in the following way:

By increasing the cooling radius rcool step by step, the ultraviolet fluctuations of short wave-
length O(a) are filtered out first. As a consequence, the effective average I-size 〈ρ〉 begins to
rise. When the cooling radius is further increased most of the unwanted fluctuations smooth
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(a) (b)

Figure 4.2: In Fig. (a) The average I-size 〈ρ〉 for β = 6.0 [�], 6.2 [•], 6.4 [N] is depicted as a function of
the cooling radius ncool. The “equivalent” data [22] are marked by a circle. The dependence on ncool

for fixed β is in general strong except for the “equivalent” data. In Fig. (b) The average I-size 〈ρ〉 is
plotted for all available values of ncool as a function of the cooling radius rcool of Eq. (4.2). 〈ρ〉 scales
nicely on one smooth curve. There is a clear indication of a plateau corresponding to 〈ρ〉 ' 0.5 fm [23].

out. We begin to enter the region of a plateau in 〈ρ〉, where the smaller fluctuations have already
been eliminated but instantons, having a characteristic extension with physical significance, are
not yet strongly affected. The region of the plateau corresponds to 〈ρ〉 ' 0.5, which is ex-
actly the peak position of the I-size distribution, see Fig. 2.1. Eventually, also these topological
fluctuations will start to be erased and thus the average I-size rises again.

From the above argumentation it can be concluded that the plateau region is the correct
regime for the investigation of instanton effects on the lattice, see [23]. The “equivalent” pairs
(β, ncool) of Ref. [22] are found to be precisely situated around the plateau. By using these data
sets it is possible to perform the continuum limit for the size-distribution relatively safely, i.e.
with only little influence from cooling. In Ref. [23] the remaining dependence on a, already quite
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small, of the “equivalent” data for the size distribution was parameterised as,

(ρ)5 dnI+Ī
d4x dρ

= function

(
ρ

〈ρ (a)〉

)
. (4.3)

The continuum limit3 a → 0 was then carried out in a quite reliable way by rescaling the
arguments

ρ→ 〈ρ(0)〉
〈ρ(a)〉 · ρ. (4.4)

The result for the average instanton size [23] was found to be

〈ρ(0)〉 = 0.518(5) fm, (4.5)

which is in agreement with Refs. [19, 64, 20]. The typical size of an instanton is found to be
somewhat larger than advocated in Ref. [32, 21]. Investigations on finite volume effects, which
become important for large instantons, have been done. They are shown not to have any impact
on the results [22].

For the average distance R̄II between two instantons and R̄IĪ between an instanton and an
anti-instanton, the UKQCD collaboration [22] found

R̄II ∼ 0.49 fm, (4.6)

R̄IĪ ∼ 0.45 fm. (4.7)

From the ratio

〈ρ(0)〉
R̄

∼ 1 (4.8)

we conclude that the real vacuum must be dense and instantons, on average (for ρ ' 〈ρ(0)〉), are
strongly overlapping. The dilute-gas approximation, however, works almost perfectly for smaller
size instantons, i.e. until an instanton size of ρ ∼ 0.35 fm.

For a quantitative comparison with I-perturbation theory, which was done in [23, 17], the
3-loop form of αMS was used. The 2-loop renormalisation group invariance of DI+Ī(ρ) leads to
a virtual independence of the renormalisation scale µr. Still it is strongly dependent on ΛMS.
For the investigation of the continuum limit in Ref. [23] accurate lattice results of the ALPHA
collaboration [24] for nf = 0, ΛMS,nf=0 = (238± 19) MeV, were taken. It is worthwhile to
mention that the predictions of I-perturbation theory are parameter-free. For this reason the
agreement in shape and normalisation with lattice data is striking, see Fig. 4.3. As already
pointed out before, these lattice data show some very interesting features.

3In [23] 〈ρ(a)〉 was extrapolated linearly in a2, i.e. 〈ρ(a)〉=〈ρ(0)〉 − const · a2.
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Figure 4.3: Continuum limit [23] of “equivalent” UKQCD data [22] for the (I + I)-size distribution at
(β, ncools) = (6.0, 23) [�], (6.2, 46) [•], (6.4, 80) [N]. The solid line corresponds to the predictions from
I-perturbation theory [23, 17] at two-loop level of Eq.(3.34). The 3-loop form of αMS with ΛMSnf=0

from ALPHA [24] was used. The renormalisation scale is about µr ' 1/0.18 fm−1. (a) The double
logarithmic display makes the expected (approximated) power law ∼ ρ6 evident. I-perturbation theory
is reliable for ρ . ρcut = 0.35 fm. (b) In the linear display the sharp maximum of the distribution is
clearly visible. The agreement in shape and normalisation of I-perturbation theory and lattice data is
impressive.

Summarising the discussion of Sect. 2, we have:

• Larger-size instantons are strongly suppressed.

• I-perturbation theory (without any free parameter) is reliable till ρ . ρcut ≈ 0.35 fm, but
then breaks down surprisingly rapidly.

• The I-size distribution has a sharp maximum at ρpeak ' 0.52 fm.

• The size distribution seems to be invariant under an inversion of the I-size,

ρ⇔
ρ2

peak

ρ
.
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4.2 Alternative approaches to a suppression of larger instantons

There are numerous reasons why instantons are considered to play a crucial role in QCD. But
to really pin down their significance, one has to determine the total tunnelling rate in QCD.
Unfortunately the dilute-gas approximation in Sect. 3.3 is not able to answer this issue, since
the integration of Eq. (3.41) over ρ diverges. Also the integration over the position z yields a
divergent factor V → ∞, which, however, can be interpreted as usual by expecting the vacua
only to have a finite energy density E/V . There is no such explanation in the case of the
instanton size ρ to save the situation.

As mentioned before, this work is devoted to a possible understanding of larger instantons.
Over the years this problem has been attacked from various sides. So let us first mention
alternative explanations for this break-down as the typical size of an instanton becomes large.
The reason for this divergence lies in the collapse of the dilute-gas approximation, which assumes
that instantons are well separated such that they do not interact with each other. If instantons
are too large, they will start overlapping. This assumption is then clearly violated. That is to
say since the average size of the instanton is of the order of the typical separation R between
instantons, it is more appropriate to speak of an instanton liquid [32] than of an instanton gas.
Thus, next to the tunnelling rate, the size of the average instanton is a very important quantity
in the I-sector and plays a key role when describing the characteristics of the QCD vacuum.

In the past one could find two possible explanations for the suppression of larger-size instan-
tons in the literature:

• Higher loop perturbative fluctuations start to grow. However, the two-loop corrections to
the semi-classical result are not known so far.

• Non-perturbative effects become important, e.g. multi-instanton effects in the instanton
liquid model [32]. This approach is based on Refs. [38, 65]. In that model instantons
obtain their finite average size due to interactions among each other.

However, in these models it is not clear why the dilute-gas approximation works perfectly till
an I-size of about 0.35 fm and then breaks down so rapidly. The idea of an invariance under
conformal space-time inversion,

xµ → x′µ =
ρ2

peak

x2
xµ, (4.9)

being behind the strong suppression is a new approach, that would provide an answer to that
issue.
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4.3 Instantons and conformal inversion

Conformal transformations, conformal inversions in particular, play an essential role in this work.
Therefore let us give a short overview of the conformal group and the corresponding transfor-
mations in the following section, Sect. 4.3.1. In Sect. 4.3.2 we introduce the transformations
laws, which will be used intensively in this work. We address the issue of the behaviour of the
I-field under conformal inversion in Sect. 4.3.3.

4.3.1 Conformal transformations

Before giving the actual definition of a conformal transformation let us point out the following
aspect. Conformal transformations can be viewed in two different ways, in an active and in a
passive way [66]. In what follows we are dealing with so called active transformations, e.g. in a
fixed basis the components of a vector change. Active transformations are also known as point
transformations since they transform points of functions in a given frame of reference.

They have to be sharply distinguished from passive transformations, where indeed one does
change the frame of reference. In this second formulation not only the components of a vector
but also the basis vectors change. The importance of this distinction lies in the different physical
interpretation of the two formulations. The purpose of passive coordinate transformations is to
describe physics in different frames of reference. Of course, physics should not depend on the
coordinate system. In contrast to the passive formulation we want to study what happens to
physics under certain active transformations, namely conformal inversions, in a given frame of
reference.

A conformal transformation of the coordinates is defined as an invertible mapping x→ x′ =
f(x), which leaves the line element invariant up to a scale factor σ(x) [67, 68],

ds2 = σ(x) ds′2. (4.10)

In our approach conformal transformations are active space-time transformations x→ x′ = f(x),
which have to satisfy the condition [67, 68],

gµν(x)
∂xµ

∂x′κ
∂xν

∂x′λ
= σ(x) gκλ(x

′). (4.11)

σ(x) is sometimes also called conformal factor. The epithet conformal derives from the fact that
the transformations under the corresponding group preserve angles.

The set of conformal transformations in 4 space-time dimensions forms a 15-parameter Lie-
group with the Poincaré group as a subgroup. It is made up of inhomogeneous Lorentz trans-
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formations Linh, dilatations D and special conformal transformations K:

Linh: xµ → x′µ = Mµνxν + aµ,

D: xµ → x′µ = λxµ,

K: xµ → x′µ =
c2

b2

xµ + aµ

b2
x2

1 + 2ax
b2

+ x2a2

b4

(4.12)

The transformation relevant for our approach is the conformal inversion of space-time,

Ib2 : xµ → x′µ =
b2

x2
xµ. (4.13)

In principle one could take a factor a, where a is allowed to be positive or negative, instead of b2.
Both, b2 and |a|, are called the radius of the inversion [69, 70]. The inversion has an exceptional
role among the conformal transformations, since the set of conformal transformations quoted
in Eq. (4.12) can be constructed by means for inhomogeneous Lorentz transformations and
inversions only [69, 70].

The special conformal transformation can be composed by an inversion yµ = b2/x2xµ, followed
by a translation Ta : zµ = yµ + aµ and another inversion, x′µ = c2/z2zµ:

K = Ic2TaIb2 (4.14)

The dilatation can be made up with the help of two inversions having different radii, see also
Sect. 6.1,

Ib2 : xµ → x′µ =
b2

x2
xµ

Da2/b2 = Ia2 Ib2 : x′µ → yµ =
a2

x′2
x′µ

=
a2

b2

x
µ

= λxµ.

(4.15)

However, the inversion cannot be part of the conformal algebra, since it is a discrete transfor-
mation, meaning that it cannot be expressed in terms of an infinitesimal transformation. Thus
there exists no generator for the conformal inversion.

In Appendix B a list of relevant scale factors is given in Table B.2, a list of the generators of
the conformal group in Table B.1 and also the conformal algebra can be found there.
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4.3.2 Transformation laws

Scalar fields transform under conformal transformations as follows [68]

φ(x)→ φ′(x′) =

∣∣∣∣
∂x′

∂x

∣∣∣∣
−∆/d

φ(x)

= σ(x)−
2∆
d φ(x),

(4.16)

where d is the dimension of the Euclidean space time and ∆ is the scaling dimension defined by
the behaviour of the scalar function under dilatations x′ = λx [71],

φ′(λx) = λ−∆φ(x). (4.17)

The transformation law for a covariant vector field is given by

A′µ(x′) =
∂xν

∂x′µ
Aν(x) =

√
σ(x)I ν

µ (x)Aν(x). (4.18)

The corresponding contravariant vector field has to transform as [66],

A′µ(x′) = σ(x)
∂x′µ

∂xν
Aν(x) =

√
σ(x)Iµν(x)Aν(x), (4.19)

where the scale factor σ(x) appears when pulling up the index with the help of the metric ten-
sor gµν(x′)4. We observe that co- and contravariant vector fields transform alike, as expected
since we work in Euclidean space. This would not be the case if we considered passive coor-
dinate transformations. Furthermore the length of a vector is not invariant under conformal
transformations, in fact it is stretched by the scale factor,

A′µ(x′)A′µ(x′) = σ(x)Aµ(x)Aµ(x). (4.20)

The generalisation to second order tensors is straight forward:

F ′µν(x
′) =

∂xρ

∂x′µ
∂xσ

∂x′ν
Fρσ(x),

= σ(x)I ρ
µ (x) I σ

ν (x)Fρσ(x)

F ′µν(x′) = σ2(x)
∂x′µ

∂xρ
∂x′ν

∂xσ
F ρσ(x),

= σ(x)Iµρ(x) Iνσ(x)F ρσ(x),

F ′µν(x′)F ′µν(x
′) = σ2(x)F ρσ(x)Fρσ(x).

(4.21)

4In the case of a passive transformation this factor would not be included.
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4.3.3 Instantons under space-time inversion

Finally we are ready to consider the behaviour of the I-configuration under conformal space-
time inversion of radius b. This property was discussed first by Jackiw and Rebbi [26]. Let us
compute its behaviour explicitly using the notation of ’t Hooft symbols for the SU(2)-instanton
gauge field, the Pauli matrices are denoted by σa, see Appendix A.

A′µ(x′, ρ) =
∂xν

∂x′µ
A(I)reg
ν (x, ρ)

=
√
σ(x)I ν

µ (x)A(I)reg
ν (x, ρ)

=
x2

b2

(
δνµ −

2xµx
ν

x2

)
2

g

xσ

ρ2 + x2
ηaνσ

σa

2

=
2

g

ρ′2

x′2
x′σ

ρ′2 + x′2
ηaµσ

σa

2

= A(Ī)sing
µ (x′, ρ′).

(4.22)

As claimed in Sect. 2, we now have checked that under conformal inversion an instanton field
in regular gauge of size ρ changes to an anti -instanton field in singular gauge of size ρ′, where
we have defined

ρ′ ≡ b2

ρ
. (4.23)

That means that a coordinate inversion Eq. (4.13) actually has the effect of an inversion of the
instantons size, which is the symmetry indicated by the lattice data.

The fact that an instanton changes to an anti-instanton is of no concern, since the size
distribution DI+Ī(ρ) simulated on the lattice is a sum of both, instantons and anti-instantons.
The (anti-) instanton contribution to the Lagrange density, since it is gauge-independent, shows
the same property [25],

L(I) (x, ρ)→ = L(I) ′ (x′, ρ)

= Tr
[
F (I)reg′
µν (x′, ρ)F (I)reg′µν (x′, ρ)

]

= Tr
[
U(x)F (Ī)sing

µν (x′, ρ′)U−1(x)U(x)F (Ī)singµνU−1(x) (x′, ρ′)
]

= Tr
[
F (Ī)sing
µν (x′, ρ′)F (Ī)singµν (x′, ρ′)

]

= L(Ī) (x′, ρ′)

(4.24)
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The action is of course invariant5, since it is independent of the I-size,

SE =

∫
d4x L(I) (x, ρ) =

∫
d4x′L(Ī) (x′, ρ′) =

8π2

g2
. (4.25)

As pointed out in Ref. [26], it is possible to put the instanton and anti-instanton solution
together by extending the gauge group to SU(2)(I) × SU(2)(Ī) ∼ O(4). One obtains a gauge
potential of the form

AI+Īµ (x) = − 2i

ρ2 + x2
Σµνx

ν, (4.26)

where

Σµν =
1

4i
[γµ, γν] =

1

4i

(
σµν 0
0 σ̄µν

)
. (4.27)

We switched back to the notation of the σ-matrices to make it clearly visible what is happening.
See Appendix A for a definition of σµν and the Dirac matrices γµ in chiral representation.
We notice that the instanton configuration is put into the upper left corner, whereas the anti-
instanton can be found in the lower right corner of the matrix representation. The effect of an
inversion with a radius equal to the size of the instanton, b = ρ, is to produce solutions where,
up to a gauge transformation, the upper and lower diagonal matrices are interchanged.

However, this is not what we are up to, since in that case no new scale enters the discussion.
The inversion radius we are interested in is b = ρpeak. As already claimed in Chapter 2 we propose
that the above relation Eq. (4.22) between smaller- and larger-size instantons is responsible for
the rapid breakdown of I-perturbation theory. So far this characteristic of the I-vector potential
was only found at the classical level. So obviously one has to ask the following question: Does
this symmetry, ρ⇔ ρ′, survive at the quantum level, that is to say does it show up in the I-size
distribution?

5Actually the Yang-Mills action is invariant under any conformal transformation.
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Chapter 5

Inversion Symmetry at the Quantum Level?

In this chapter we deal with our main issue: The behaviour of the zero mode fraction, a major
contribution to the I-size distribution, under a conformal space-time inversion. We start with
a detailed discussion of the gauge zero modes and their integration in the functional integral
by introducing the method of collective coordinates in Sect. 5.1. It follows a discussion on the
importance of the zero mode contributions in Sect. 5.2. We will write down the different types
of gauge zero modes explicitely in Sect. 5.3. In the last part of this chapter we will transform
the zero mode fraction under conformal inversion and give the results.

5.1 Collective coordinates and zero modes

The question stated at the end of the last section requires a thorough investigation of the
behaviour of the I-size distribution D(ρ) at one-loop level under a conformal inversion. In
this section we will focus on the importance and evaluation of the zero mode part. Thereafter
we consider the behaviour of the zero mode part under an inversion of space-time defined by
Eq. (2.3).

In the course of our computations we introduce the method of collective coordinates [72, 73],
to compute the functional integral near the nontrivial solution of classical equations of motion.
Usually this is done in Gaussian approximation. However, there can be directions in functional
space along which the solution can be perturbed without changing the action,

S[A(x; γ)]− S[A(x; γ + δγ)] = 0. (5.1)

These directions, which are called zero modes χ0, reflect the symmetries of our system. The
name derives from the fact that zero modes are eigenfunctions with zero eigenvalue, ε0 = 0,
of the operator MA, that appears in the expansion of the action to quadratic order about the
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classical field1 in Eq. (3.31):
Mµν

A χ0
ν = 0 (5.2)

The integration over the zero modes is non-Gaussian and therefore has to be treated carefully.
Zero modes appear whenever the action is invariant under a given transformation, whereas the

solution of the equations of motion is not. The parameters γi belonging to such transformations
are called collective coordinates.

In principal for every type of field in the Lagrangian zero modes can occur, thus one speaks
of e.g. fermionic, ghost or gauge zero modes. It should be stressed that in what follows we are
only dealing with so called gauge zero modes, which are the directions of the gauge potentials
in the functional space not changing the action. This is because we are working in pure Yang-
Mills theory. Therefore we will omit the epithet gauge when speaking of zero modes. Gauge
zero modes must thus be distinguished from the fermionic zero modes of Eq. (3.52), which were
eigenfunctions with zero eigenvalue of the Dirac operator.

The instanton field is dependent on its size ρ, on its position zµ and on its orientation in
colour space. The action, being constant, does not depend on any of these parameters. For the
gauge group SU(2) there would appear three colour zero modes being generated by the Pauli
matrices. Since we are considering SU(3) instantons the situation is somewhat different. This
problem was addressed first by Bernard [41]. One finds that there appear four additional zero
modes coming from the generators λ4, λ5, λ6 and λ7. The generator λ8 does not generate a zero
mode since it commutes with the generators λ1, λ2 and λ3, i.e. with the instanton field.

Since an instanton of size ρ changes to an anti-instanton of size ρ′ under conformal inversion
this transformation has the effect of a dilatation. Thus no new zero modes is associated with
it. Also the special conformal transformation does not generate a zero mode because it is a
composition of two inversions and one translation, see Eq. (4.14).

All in all we have

4 (position) + 1 (size) + (4Nc − 5) (orientations) = 4 Nc (5.3)

collective coordinates parameterising the instanton configuration, see also Sect. 5.3. The 12
collective coordinates of the I-configuration in SU(3) are denoted by γi.

1In our case this is the classical I-field.
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Since the action does not change under a variation of a collective coordinate, we have

S
[
A(I)(γ + δγ)

]
= S


A(I)(γ) +

∂A(I)

∂γ

∣∣∣∣∣
γ=δγ

δγ




= S
[
A(I)

]
+

δS

δA(I)

∂A(I)

∂γ

∣∣∣∣∣
γ=δγ

δγ

!
= S

[
A(I)

]
,

(5.4)

and thus

δS

δA(I)

∂A(I)

∂γ

∣∣∣∣∣
γ=δγ

δγ = 0. (5.5)

We find that the directions in functional space, which leave the action invariant, are the
derivatives of the gauge fields with respect to the collective coordinates γ,

χ0
µ(x) =

∂A
(I)
µ

∂γ
. (5.6)

At the end of this section we will see that this is an important relation for our symmetry
considerations.

Since zero modes are eigenfunctions of M with zero eigenvalue they blow up the functional
determinant. Hence we cannot perform a simple Gaussian integration. Instead we replace the
integration along the directions of the zero modes with an integration over the collective coor-
dinates. The argumentation given below follows Ref. [41]. We expand the quantum fluctuations
Aqu in terms of orthogonal eigenfunctions χi,

Aqu =
∑

i

ξiχi, (5.7)

where the eigenfunctions ought to have the norm

ui ≡ 〈χi|χi〉. (5.8)

Then we can write the measure of the functional integral as

DA = DAqu =
∏

i

( ui
2π

)1/2

Dξi. (5.9)
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Now we perform the Gaussian integration over the non-zero modes. We get

∫
DA e−SE =

∫
dξ

(i)
0

(
u

(i)
0

2π

)1/2

e−S
cl

[detM ′]−1/2, (5.10)

detM ′ being the functional determinant of the non-zero eigenvalues and ξ0(i) being the param-
eters of the zero modes. By inserting a “Faddeev-Popov unity” for each collective coordinate,

1 = u
(i)
0

∫
dγi δ

(〈
Aqu (γ) |χ(i)

0 (γ)
〉)

+ . . . (5.11)

we require the quantum field to be orthogonal to the zero modes. The dots represent terms of
higher order which are neglected. Rewriting the Faddeev-Popov unity of Eq. (5.11) gives

1 = u
(i)
0

∫
dγi δ

(〈
Aqu (γ) |χ(i)

0 (γ)
〉)

+ . . .

= u
(i)
0

∫
dγi δ

(〈∑

j

ξjχj

∣∣∣χ(i)
0 (γ)

〉)
+ . . . r

= u
(i)
0

∫
dγi δ

(
ξ

(i)
0 u

(i)
0

)
+ . . .

=

∫
dγi δ

(
ξ

(i)
0

)
+ . . . .

(5.12)

After integration over ξ
(i)
0 we are left with an integration over the collective coordinates and thus

avoiding the non-Gaussian directions in functional space.

∫
D Ae−SE =

∫
dγi
∏

i

(
u

(i)
0

2π

)1/2

e−S
cl

[detM ′]−1/2 + . . . (5.13)

When dealing with non-Abelian gauge theories it is necessary to fix the gauge. In our case
we are working in the background gauge with respect to the the classical field. However, the
derivative of the classical field will not, in general, be in the background gauge. Thus we have
to add an additional term,

ψ(i)
µ =

∂A
(I)
µ

∂γi
+D(I)

µ Λ(i), (5.14)
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where D
(I)
µ is the gauge-covariant derivative in the instanton field. Λ(i) is the gauge transforma-

tion we need to bring the (i)th zero mode into the background gauge, i.e.

D(I)
µ ψ(i)µ = ∂µψ

(i)µ − ig
[
A(I)
µ , ψ(i)µ

]
= 0. (5.15)

Finally we obtain for the one-loop vacuum-vacuum amplitude the following expression

〈0|0〉(I) =
Z(I)

Z(0)
=

∫ ∏

i

dγiJ (γ)Q (γ) eS
cl

=

∫
d4z

dρ

ρ5
dU ρ5J (γ)Q (γ) exp

{
− 8π2

αs(µr)

}
,

(5.16)

where J (γ) is the fraction coming from the zero modes. Since in the classical instanton con-
figuration small and large instantons can be connected through conformal inversion, one hopes
that this property somehow survives at the one-loop level. This idea is suggested by the relation
of Eq. (5.6), since the zero mode contributions, which are a major part of the size distribution
D(ρ), are given by the derivatives of the classical fields with respect to γ and by that D(ρ) may
inherit the symmetry property of the I-configuration. Q (γ) is the remaining part of non-zero
modes,

Q (γ) ≡
[detM ′

A(γ)]−1/2
∣∣
Acl=A(I)

[detM ′
A]−1/2

∣∣
Acl=0

. (5.17)

By comparison with Eq. (3.32) in Sect. 3.3 we confirm the following relation for the I-size
distribution,

D = J (γ) Q (γ) exp

{
− 8π2

αs(µr)

}

=
d 〈0|0〉(I)

dγ1 . . .dγ4Nc

⇔ dnI

d4z dρ
.

(5.18)

5.2 The importance of the zero mode part

In the above section we have seen that there are two main contributions to the I-size distribution,
the part coming from the zero modes J (γ) and the non-zero mode fraction Q (γ), which is the
ratio of the functional determinants of the path integral,

Q (γ) =
[detM ′

A(γ)]−1/2
∣∣
Acl=A(I)

[detM ′
A]−1/2

∣∣
Acl=0

. (5.19)
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It was shown by ’t Hooft [6] that

Q (γ) ∼
(

1

ρ µr

)Nc
3 SU(3)

=
1

ρ µr
. (5.20)

The zero mode part is of great importance, especially when considering supersymmetric QCD.
There all non-zero mode contributions cancel precisely to any order perturbation theory, see [74,
75]. The size-distribution D(ρ) is entirely given in terms of the zero mode part, as was shown
by Shifman, Vainshtein and Zakharov [75].

In case of standard QCD the the size-distribution in the region of the I-size we are interested
in, the average I-size ρpeak ' 0.5 fm, is still dominated by the zero mode part in the following
sense, as will be demonstrated in Sect. 5.3:

D(ρ)1−loop ∝ ρβo = ρ
11
3
Nc = ρ4Nc

︸︷︷︸
ZM part

· ρ− 1
3
Nc

︸ ︷︷ ︸
non-ZM part

(5.21)

In Sect. 5.1 we have shown, that the zero modes correspond to the derivatives of the classical
gauge field with respect to the collective coordinates γ,

ψ 0
µ (x) ∼ ∂A

(I)
µ (x)

∂γ
. (5.22)

Since the instanton field of radius ρ changes under an inversion to an anti-instanton field with

radius ρ′ =
ρ2

peak

ρ
, it might be possible that the above property of the instanton solution transfers

to the zero mode contribution. An investigation of this issue is is the topic of the subsequent
sections. In our approach we assume that the non-zero mode part is not affected by inversion.
We then might divide it out in the form of a factor ρ−Nc/3 [25].

5.3 Zero mode contributions for SU(3)

Now we come to our central studies of the dominant part of the size-distribution, the behaviour
of the zero modes under space-time inversion. First we have a look on the explicit form of the
zero modes. The computations for the gauge group SU(3) were done first by Bernard [41]. In
Sect. 5.4, each zero mode will be transformed under an inversion with radius ρpeak. Throughout
the following computations we will deal with SU(3)-instantons in singular gauge. As already
mentioned in Sect. 3.1, an SU(3)-instanton can be obtained by embedding the SU(2)-instanton
into the upper-left-hand corner of the fundamental representation of SU(3),

A(I)
µ (x) =

2

g

ρ2

(x− z)2 (ρ2 + (x− z)2)2 U(x) η̄aµνx
ν λ

a

2
U †(x) (5.23)
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where λa, a = 1, 2, 3 denotes the first three Gell-Mann matrices and zµ the instanton position.
Without loss of generality the the U -matrices2 describing the colour orientation will be set to
unity and the instanton position will be set to zero unless we consider the associated zero modes.

Dilatation Zero Mode

In order to obtain the dilatation zero mode, we have to differentiate the I-gauge field with respect
to the I-size ρ:

ψ(ρ)
µ (x) =

∂A
(I)
µ (x)

∂ρ

=
4

g

ρ η̄aµν x
ν

(x2 + ρ2)2

λa

2

(5.24)

This zero mode already is in the background gauge, since

D(I)
µ ψ(ρ) µ(x) = ∂µψ

(ρ) µ(x)− ig
[
A(I)
µ , ψ(ρ) µ(x)

]
= 0 (5.25)

Translation Zero Mode

To obtain the translation zero mode we first must include the translation parameter zµ, i.e. the
instanton position, in the instanton gauge potential. The instanton field is then given by

A(I)
µ (x, z) =

2

g

ρ2η̄aµν(x− z)ν
(x− z)2((x− z)2 + ρ2))

λa

2
. (5.26)

When differentiating A
(I)
µ (x, z) with respect to zν the translation zero mode becomes

ψ (z)
µ (ν, x) =

∂A
(I)
µ (x, z)

∂zν

∣∣∣
z=0

+Dµ(Aν(x))

= −∂νA(I)
µ (x) + ∂µA

(I)
ν (x) + ig[Aµ(x), Aν(x)]

= −8

g

ρ2

(ρ2 + x2)2

[
xµx

σ

x2
− 1

4
δσµ

]
η̄aνσ − (µ↔ ν)

= Fµν(x).

(5.27)

The term Dµ (Aν(x)) is necessary to bring the translation mode into background gauge. It is
chosen such that the translation zero mode appears as the field strength tensor fulfilling the
equations of motion,

D(I)
µ F µν(x) = 0. (5.28)

2The internal indices of the U -matrices are supressed in the above equation.

44



5.3. ZERO MODE CONTRIBUTIONS FOR SU(3) 45

Colour Zero Modes in SU(3)

In case of the gauge zero modes the collective coordinates correspond to the parameters of the
rotation in the space of the gauge group SU(3). The orientation of an instanton in SU(3) can
be described as

A(I)
µ (G) = G−1A(I)

µ G, (5.29)

where G is an element of the group. It is sufficient to consider infinitesimal changes in G with
parameters dti,

G+ δG =
(
I− idtiλi

)
G, i = 1, . . . , 8. (5.30)

λi are the generators of the gauge group. In our representation they correspond to the eight
Gell-Mann matrices. The seven3 gauge zero modes are then

ψ(k)
µ (x) =

∂A
(I)
µ [G]

∂tk
= −iG−1

[
A(I)
µ , λk

]
G, (5.31)

where k = 1, . . . , 7. These modes are not in the background gauge. However, we can bring them
into the correct form by adding a term Dµ Λ(k),

ψ(k)
µ =

∂A(I) [G]µ
∂tk

+DµΛ(k), (5.32)

with

Λ(k) =





−1
g

(
ρ2

ρ2+x2

)
λk, k = 1, 2, 3

1
g

[(
x2

ρ2+x2

)1/2

− 1

]
λk, k = 4, 5, 6, 7

(5.33)

As one can see there appear two different kinds of gauge zero modes. This is because the
generators λi, i = 1 . . . 7, of the gauge group SU(3) form two different kinds of multiplets under
the action of SU(2). We will denote the colour zero modes generated by λa, where a runs from

1 to 3, as ψ
(a)
µ (x), whereas the colour zero modes generated by λα with α running from 4 to 7

will be called ψ
(α)
µ (x). We find for the colour zero modes generated by λa

ψ(a)
µ (x) = Dµ

(
λa

g

x2

x2 + ρ2

)

=
ρ2

g(x2 + ρ2)2

(
2xµλ

a − i η̄bµνxν [λb, λa]
)
.

(5.34)

3The number of colour zero modes is seven instead of eight because the generator λ8 commutes with λ1 to
λ3, see Sect. 5.1.
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The colour zero modes ψ
(α)
µ (x) are given by

ψ(α)
µ = Dµ

(
λα
g

( x2

x2 + ρ2

)1/2
)

=
ρ2

g

1

(x2)1/2(x2 + ρ2)3/2

(
xµλα − i η̄bµν xν [λb, λα]

)
.

(5.35)

In the above equations the Latin indices a and b run from 1 to 3 and the Greek indices µ and
ν are space-time indices running from 1 to 4, whereas the Greek index α is an internal index
running from 4 to 7.

Total zero mode fraction

Now we are ready to compute the total contribution to the functional integral coming from the
zero modes. From Eq. (5.13) we know that this is the product of the normalisation integrals of
the zero modes4 [41]:

J (γ) =

(∏

i

1√
2π

)
(detU)1/2 , (5.36)

where

Uij = 〈ψ(i), ψ(j)〉 = 2

∫
d4xTr

[
ψ(i)
µ ψ

(j)µ
]

(5.37)

The computation of the normalisation integrals can be found in the Appendix C. Here only the
results are quoted. For the dilatation zero mode we find

‖ψ(ρ)(x)‖ =
4π

g
. (5.38)

Of course we obtain the instanton action for the normalisation integral of the translation zero
mode and thus

‖ψ(z)(x)‖ =
2
√

2π

g
. (5.39)

4Actually this is a simplification. However, provided that the gauge transformation Λ, necessary to bring the
zero mode into the background gauge, vanishes sufficiently rapidly at large distances, i.e. Λψµ < O

(
1/|x|3

)
, the

above relation, Eq. (5.36), is correct. This is the case for all our zero modes. See [41] for details.
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The normalisation integrals for the colour zero modes ψ(a)(x) and ψ(α)(x) depend on the instan-
ton size ρ:

‖ψ(a)(x)‖ =
4π

g
ρ (5.40)

‖ψ(α)(x)‖ =
2
√

2π

g
ρ (5.41)

Finally we find for the total zero mode contribution [41]

J (γ) =

(∏

i

1√
2π

)
(detU)1/2

=
‖ψ(ρ)‖ ‖ψ(z)‖4 ‖ψ(a)‖3 ‖ψ(α)‖4

(2π)6

=
214 π6 ρ7

g12
.

(5.42)

Generalisation to SU(Nc)

The generators of SU(Nc) form one triplet (in the case of SU(3) these were λ1,λ2,λ3) and
2 (N − 2) doublets (realised by λ4, λ5,λ6 and λ7 in SU(3)) under the action of SU(2), whereas
all the other generators are singlets, see [41]. Thus there will be 4 (Nc− 2) additional generators
of the form Eq. (5.35) to the eight zero modes coming from dilatation, translation and the first
three colour zero modes of Eq. (5.34). The total number of colour zero modes corresponds to
the 4Nc − 5 parameters [36] of the matrices U i

α coupling spin and colour indices in Sect. 3.1.
The result for the zero mode contribution in a SU(Nc) gauge theory is then [41]

J (γ) =
4

ρ5

(
2ρ
√
π

g

)4Nc

. (5.43)

From the above equation we can see that the zero mode fraction is indeed a major part. In
Eq. (3.41) we wrote down the size distribution including the zero mode and the non-zero mode
part:

D(ρ)1−loop ∝ ρβo = ρ
11
3
Nc = ρ4Nc

︸︷︷︸
ZM part

· ρ− 1
3
Nc

︸ ︷︷ ︸
non-ZM part

(5.44)

The factor ρ−
1
3
Nc is small compared to ρ4Nc in the region we are interested, which is ρpeak ∼ 0.5

fm.

47



5.4. RESULTS FOR THE ZERO MODE PART UNDER INVERSION 48

5.4 Results for the zero mode part under inversion

In Sect. 4.3.1 it was seen that the space-time inversion is a conformal transformation. We have
to apply the transformation laws of Eq. (4.18) for the dilatation and colour zero modes, since
these are clearly vector fields:

ψ′(ρ)µ (x′) =
√
σinv(x)I ν

µ (x)ψ(ρ)
ν (x)

=
2

g

ρ′3

ρ2
peak

1

(ρ′2 + x′2)2x
′ ν η̄aµνλ

a,
(5.45)

ψ′(a)
µ (x′) =

1

g

ρ′2

(ρ′2 + x′2)2

(
−2x′µλa − i η̄bµν x′ν

[
λb, λa

])
, (5.46)

ψ′(α)
µ (x′) =

1

g

1

x′2
ρ′

(ρ′2 + x′2)3/2

(
−x′µλα − i η̄bµν x′ ν

[
λb, λα

])
. (5.47)

In the case of the translation zero modes, having the form of the field strength tensor, the
correct choice of the transformation law is a delicate question [76]. We assume that these
modes transform not like a tensors (Eq. (4.21)), but rather as four vector fields under conformal
transformations.

ψ ′ (z)µ (ν; x′) =
√
σinv(x)I ν

µ (x)ψ(z)
ν (ν; x)

=
8

g

ρ′2

ρ2
peak

x′2

(ρ′2 + x′2)2

(
1

2
η̄aνµ +

x′νx
′σ

x′2
η̄aµσ

)
(5.48)

Let us now quote the results for the normalisation integrals of the inverted dilatation zero
modes ψ

′(ρ)
µ (x′) and the inverted colour zero mode ψ

′(a)
µ (x′):

‖ψ′(ρ)µ (x′)‖ =
4π

g

ρ2
peak

ρ2
=

4π

g

ρ′

ρ
(5.49)

‖ψ′(a)
µ (x′)‖ =

4π

g

ρ2
peak

ρ
=

4π

g
ρ′ (5.50)

Like in the last section the explicit integrals can be found in Appendix C. Unfortunately there
occurs a problem in the case of the inverted translation zero mode ψ

′(z)
µ (x′) and the inverted
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colour zero mode ψ
′(α)
µ (x′). They turn out to be divergent.

〈ψ′(z)µ (x′), ψ′(z)µ (x′)〉 =
2π2ρ4

peakρ
448

g2

∫ ∞

0

dR
1

R

1

(ρ2 +R2)4

︸ ︷︷ ︸
→∞

(5.51)

〈ψ′(α)
µ (x′), ψ′(α)

µ (x′)〉 =
2π2ρ4

peakρ
416

g2

∫ ∞

0

dR
1

R

1

(ρ2 +R2)3

︸ ︷︷ ︸
→∞

(5.52)

The divergence comes from the integration over 1/R at the point R = 0. This might be due to
a mapping of infinity to zero by inversion. In the next chapter we go to a compact space, where
one has to integrate over angles instead of the R-integration from 0 to∞. We will show that by
doing so one can solve the problem of these divergent normalisations.
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Chapter 6

Introducing a New Scale

Now we come to the main chapter of this work. We start with a motivation for our approach in
Sect. 6.1. In Sect. 6.2 we study the I-calculus on the surface of a 4-dimensional sphere. It is
followed by the main part of this work, Sect. 6.3 , dealing with the projection of the zero modes
onto the S4 sphere. We finish this chapter with consistency checks for our approach in Sect. 6.4.

6.1 Motivation

The breaking of the dilatation

As pointed out in Sect. 4.3.1, the inversion has an exceptional role within the conformal group,
since the inversion together with the translation composes both the special conformal transfor-
mation and the dilatation [69, 70],

Da2/b2 = Ia2 Ib2 : xµ → x′µ → yµ =
a2

x′ 2
x′ µ

=
a2

b2
xµ

= λxµ

(6.1)

The latter is very important in the course of our investigations. In Chapter 2 and Sect. 4.1 we
have seen, that the I-size distribution extracted from lattice data shows a sharp maximum at
ρpeak ' 0.5 fm. The peak position ρpeak ' 0.5 corresponds to a characteristic length scale of the
I-calculus that has not been present so far. Up to now it is neither understood where this scale
comes from nor what is the mechanism behind the rapid break-down of I-perturbation theory.
As already pointed out in Sect. 2, in this work we follow the approach of a residual symmetry
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under conformal inversion,

xµ → x′µ =
ρpeak

x2
xµ, (6.2)

leading to this characteristic shape of the size-distribution. In that context the inversion radius
plays a crucial role. Is not to be seen as a continuous parameter of the transformation of Eq.
(6.2), but rather as a fixed physical value related to the average size of an instanton. The radius
of inversion corresponds to the length scale ρpeak indicated by the lattice data.

As a consequence of this new scale the dilatation symmetry clearly must be broken. This can
be seen by the following consideration: If the radius of inversion is allowed to take one, physically
distinguished, value only, i.e. a = b = ρpeak, then the dilatation parameter λ has to be equal
to one. An invariance under dilatations is not possible anymore, the symmetry must be broken.
However, a symmetry under special conformal transformations as well as transformations under
the Lorentz group might be preserved. It is worthwhile to mention that the above breaking should
be distinguished from the well-known breaking of conformal symmetry via the renormalisation
procedure which introduces yet another scale, the renormalisation scale µr.

It should be noted that the this new scale corresponding to the radius of inversion is not
present in the conventional I-calculus. Thus one of our main aims is to introduce ρpeak into the
theory of instantons. This is what will be done in the following sections.

(Non-)Invariance under O(5)

Let us return for a short moment to the problem that occurred at the end of the last chapter.
There we have found that the normalisation integral for the zero modes ψ ′(z)(x′) and ψ′(α)(x′),
Eq. (5.51) and (5.52), after a conformal space-time inversion are divergent for the integration
limit R going to zero. This problem will be solved by projecting the 4-dimensional Euclidean
space onto the surface of a sphere embedded in 5-dimensional Euclidean space [77, 78], where
an additional “geometry” factor will appear in the normalisation integrals having the effect of a
regulator. The reason being that the sphere is a compact and curved manifold.

Actually there exists a whole formalism for the SU(2)-instanton calculus on a hypersphere
developed by Jackiw and Rebbi, see [26]. The motivation for this formalism was the following
observation: The combined instanton anti-instanton field of Eq. (4.26) is invariant under O(5)
transformations in Euclidean space. This can be seen by the consideration below.

The IĪ-solution of Eq. (4.26) is invariant under a combined space and gauge rotation gener-
ated by Jµν in 4-dimensional Euclidean space,

Jµν = Mµν + Σµν , (6.3)
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where Mµν are the generators of rotations and the Σ-matrices are

Σµν =
1

4i

(
σµν 0
0 σ̄µν

)
, (6.4)

see Eq. (4.27). Moreover the IĪ- solution of Eq. (4.26) is invariant under a combination of trans-
lation and special conformal transformation generated by Rµ = 1

2
(Kµ + P µ) plus an additional

gauge transformation,

Rµ = Rµ + Σµνxν. (6.5)

It turns out that the commutation relations for these modified generators Jµν and Rµ follow
that of Mµν and Rµ. This means, that the algebra closes on O(5). Thus the idea of Jackiw and
Rebbi was to formulate the theory in an O(5)-covariant fashion.

The advantage of this formulation lies e.g. in the much easier computation of the one-loop
amplitude [26, 79, 80, 81]. However, an O(5)-covariant theory of instantons is only possible if
one chooses the radius of the sphere to be equal to the size of the instanton ρ.

In this chapter we will study the O(5) formalism carefully and adopt it to our needs. The
crucial difference in our approach lies in the radius of the sphere. In contrast to what has been
done in the past, the radius of the sphere we consider corresponds to the average instanton size
ρpeak.

The radius of the sphere equals the radius of inversion: b = ρpeak. This new description offers a
solution for one of our main tasks: We will achieve the introduction of the desired scale ρpeak

into the instanton calculus by taking the radius of the sphere to be equal to the fixed parameter
ρpeak.

The limits ρ/ρpeak → 0 and ∞, respectively, will be very instructive and thus studied care-
fully. Due to a ρ/ρpeak scaling, smaller sized instantons on the sphere can be studied by either
considering the limit of a sphere with infinite radius, i.e. ρpeak →∞, or by investigating ρ→ 0
while ρpeak is fixed. By this we can check the consistency of our formulation with respect to the
results from Euclidean space. The behaviour of larger instantons on the sphere can be analysed
by looking at either a decreasing radius ρpeak or an increasing instanton size ρ.

However, we will not keep O(5)-invariance for two reasons. First of all because an O(5)-
invariance cannot be maintained if the radius of the sphere differs from the radius of the instanton
ρ. Secondly we will work with SU(3)-instantons for which an O(5)-invariant formalism does not
exist anyway, since the gauge group SU(3) is too large.

At the end of this chapter we will consider two more cases, which allow for important checks
of our approach:
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The radius of the sphere equals the instanton size: b = ρ. This allows for contact to existing
works and consistency tests for our calculations.

The radius of the sphere equals the inverted instanton size: b = ρ′ =
ρ2

peak

ρ
. In that case the

connection to the results for the inverted zero mode part can be made.

6.2 The stereographic projection

Let us study first how the instanton calculus can be “lifted” onto the 4-dimensional surface of a
5-dimensional sphere. This is done via stereographic projection [77, 78], which is defined by the
following active transformation, see Fig. 6.1,

Pb : xµ → ra = (rλ, r5) , (6.6)

where

rλ = b
2 b2 xλ
b2 + x2

,

r5 = b
b2 − x2

b2 + x2
.

(6.7)

From now on we will use Latin indices for the 5-dimensional space whereas the Greek indices
run as usual from 1 . . . 4.

In Fig. 6.1 a mapping of the two-dimensional Euclidean space onto the surface S2 of a
three-dimensional sphere via stereographic projection is depicted. In the above definition of the
stereographic projection the 4-dimensional Euclidean space is placed in the equatorial-plane,
r5 = 0, of the 5-dimensional sphere. A point P of the 4d-Euclidean space is projected onto
the sphere S4 by following a straight line g from the south pole S through the point P. The
intersection point of the straight line g and the sphere gives the projected point P′.

The radius squared of the sphere is given by

ra r
a = b2, (6.8)

which is a constraint on the transformation of Eq. (6.6) necessary to reduce the degrees of
freedom to four. At this point b is still an arbitrary scale.

The active transformation of Eq. (6.7) is a conformal transformation,

gµν(x) =
∂ra

∂xµ
∂rb

∂xν
δab

=
4b4

(b2 + x2)2
δµν .

(6.9)
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0
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PSfrag replacements
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g

Figure 6.1: Stereographic projection of the two-dimensional Euclidean space onto a two-dimensional
sphere S2 embedded in a 3-dimensional Euclidean space E3. The Euclidean space E2 is illustrated via
the equatorial-plane. A point P of the Euclidean space E2 is projected to the point P′ on the sphere
S2 by drawing a straight line g from the south pole S through P subtending the sphere at the point P ′.

Its scale factor is

σ(x)sp =
(b2 + x2)2

4b4
. (6.10)

6.2.1 5-dimensional spherical coordinates

In order to compute the relation of the area element on the sphere and the volume element in
Euclidean space we have to introduce spherical coordinates,

r1 = b sinψ sinφ sin θ sinα,

r2 = b sinψ sinφ sin θ cosα,

r3 = b sinψ sinφ cos θ,

r4 = b sinψ cosφ,

r5 = b cosψ,

(6.11)
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where

α ∈ [0, π],

θ ∈ [0, π],

φ ∈ [0, 2 π),

ψ ∈ [0, π].

(6.12)

The volume element is given by

d5r = b4 sinψ3 sinφ2 sin θdb dψ dφ dθ dα. (6.13)

Thus we can read of the area element of a sphere with radius b

dA
∣∣
b

= b4 sinψ3 sinφ2 sin θ dψ dφ dθ dα. (6.14)

The relation between the 4-dimensional Euclidean volume element and the area element on the
hypersphere turns out to be quite remarkable:

dA
∣∣
b

=
16 b8

(b2 + x2)4
d4x

=
1

σ(x, b)2
sp

d4x,

(6.15)

where σ(x, b)2
sp plays the role of a geometry factor. The proof is given below. Surprisingly, we

find that the factor 16 b8

(b2+x2)4 corresponds to the Lagrange density of the instanton,

L = −1

2
Tr [FµνF

µν] = − 8

g2

6 ρ4

(ρ2 + x2)4
, (6.16)

in 4-dimensional space for the case of b = ρ apart from a numerical factor.
We have obtained dA as follows. First we consider the transformation of xµ to rµ and compute

the volume element.

d4r ≡ dr1 dr2 dr3 dr4 =
16 b8(b2 − x2)

(b2 + x2)5
d4x (6.17)

The relation between dr(4) and the volume element in spherical coordinates is

d4r = b4 sin3 ψ sin2 φ sin θ cosψ dA dθ dφ dψ

= cosψ dA
∣∣
b

=
b2 − x2

b2 + x2
dA
∣∣
b
.

(6.18)

Plugging this into Eq. (6.17) gives the desired result Eq. (6.15).
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6.2.2 Projection of vector fields onto the sphere

To project the I-calculus onto the sphere one must know how to “lift” the I-vector potentials to
the surface of the sphere. In what follows we will derive the transformation laws for vector fields
under stereographic projection in general. This is done by applying the usual rules for conformal
transformations of vector fields, see Sect. 4.3.1. Later we will consider the special case of the
I-vector potential and, most importantly for our approach, the case of the zero modes in Sect.
6.3.

Let us start with the active transformation law for contravariant vector fields.

Âa = σ(x)sp
∂ra

∂xµ
Aµ(x), (6.19)

with

Âλ (r) =
b2 + x2

2b2
Aλ − x · A

b2
xλ,

Â5 (r) = −x ·A
b

.

(6.20)

Comparison of this result with references [26] and [82] shows agreement if the radius of the
sphere corresponds to size of instantons, i.e. b = ρ.

When it comes to the transformation laws for the covariant vector fields one has to be careful.
The application of the transformation law of Eq. (4.19) in Sect. 4.3.2 does not work. The reason
is that the operator ∂

∂ra
cannot be naively applied, precisely because the constraint rar

a = b2

is not included yet. This problem has not occurred for the contravariant vector fields since
the differential operator ∂

∂xµ
is well-defined. There no reduction of the degrees of freedom is

necessary. Since we want to stay on the surface of the sphere, only the angular derivatives must
appear. They are given by the angular momentum operators [77],

Lab = −i
(
ra

∂

∂rb
− rb

∂

∂ra

)
(6.21)

Therefore we have to replace the differential operator ∂
∂ra

by the operator la [82],

la = i rbLba

=
∂

∂ra
− 1

b2
ra (r · ∂) .

(6.22)

For the transformation of the covariant vector fields we then obtain

Âa(r) = la(x
µ)Aµ, (6.23)
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with

Âλ (r) =
b2 + x2

2b2
Aλ −

x · A
b2

xλ,

Â5 (r) = −x ·A
b

.

(6.24)

We find that co- and contravariant vector fields transform alike as we have expected. For the
contraction of the vector fields we get

Âa(r)Â
a(r) = σ(x)sp Aµ(x)Aµ(x), (6.25)

i.e. the length is stretched by the scale factor σ(x)sp. The equations (6.19) and (6.23) obey the
constraint

raÂ
a(r) = 0, (6.26)

which is necessary to reduce the degrees of freedom from five to four. The stereographic projec-
tion is done in such a way that this constraint comes naturally with the transformation rules to
ensure that the projected vector fields indeed stay on the sphere.

The instanton field in O(5)-covariant fashion

Since we know how to project vector fields, we are able to lift the I-vector potential onto the
sphere. In the case of b = ρ, i.e. the radius of the sphere is equal to the I-size, it is possible
to write the IĪ-potential in an O(5) covariant fashion, because the I Ī-solution of Eq. (4.26) is
invariant under O(5) transformations, see Sect. 6.1. In order to do so, one has to extend the
matrix representation of the gauge group O(4), defined by Eq. (4.27), to O(5) by defining the
matrix Σµ5

Σµ5 =
γµ
2
, (6.27)

where γµ are the Dirac matrices in the chiral representation, see Appendix A. Then the anti-
symmetric representation Σab = −Σba is isomorphic to the infinitesimal generators of the gauge
group O(5) [26]. After a rather lengthy but straight forward gauge transformation,

Â′ (I)a (r)
b=ρ
= U−1Â(I)

a (r)U + U−1irbLabU, (6.28)

where

U(r) =
ρ− 2Σµ5x

µ

(ρ2 + x2)1/2
, (6.29)
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we end up with the required form for the IĪ-solution,

Â′ (I)a (r) =
1

g
Σabr

b, (6.30)

in agreement with [26]. The IĪ-configuration of Eq. (6.30) looks indeed very simple. The
dependence on the collective coordinates is not visible. The whole dynamics seems to be put
into the area element dA which includes the geometry factor σ(x)sp. Let us stress again that
this is only possible in the case of ρ = b, i.e. when no new scale is introduced.

6.2.3 Projection of second-order tensor fields onto the sphere

The transformation law for a general second order contravariant tensor under an active conformal
transformation is straight forward:

F̂ ab(r) = σ2(x)sp
∂ra

∂xµ
∂rb

∂xν
F µν(x) (6.31)

The individual components of the tensor are here

(
F̂
)ab

=

( (
F̂
)λσ (

F̂
)λ5

(
F̂
)5σ (

F̂
)55

)
. (6.32)

Since we are mainly interested in the field strength tensor later on, we will restrict ourselves
from now on to antisymmetric second-order tensors, i.e. F ab = −F ba with

F̂ λσ(r) = σ(x)2
sp

∂rλ

∂xµ
∂rσ

∂xν
F µν(x)

= σ(x)sp

[
F ρσ(x)− 1√

σ(x)sp

xρ

b2
xµF

µσ − 1√
σ(x)sp

xσ

b2
xνF

λν

]
,

F̂ λ5(r) = σ(x)2
sp

∂rλ

∂xµ
∂r5

∂xν
F µν(x)

= −
√
σ(x)sp

xν
b
F λν(x) = −F̂ 5λ(r),

F̂ 55(r) = σ(x)2
sp

∂r5

∂xµ
∂r5

∂xν
F µν(x) = 0.

(6.33)

Therefore we get

F λσ(x) =
1

σ(x)sp

[
F̂ λσ(r)− xρ

b
F̂ 5σ − xσ

b
F̂ λ5(r)

]
. (6.34)
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Eq. (6.34) agrees with Ref. [77].
An active transformation of a second order covariant tensor is done as follows. We replace

the operator ∂
∂ra

by la = irbLba. We find

F̂ab(r) = la(x
µ) lb(x

ν)Fµν(x) (6.35)

with

F̂λσ(r) = σ(x)sp

[
Fλσ(x)− 1√

σ(x)sp

xλ
b2
xµFµσ(x)− 1√

σ(x)sp

xσ
b2
xνFλν(x)

]
,

F̂λ5(r) = −
√
σ(x)sp

xν

b
Fλν = −F̂5λ(r),

F̂55(r) = 0.

(6.36)

Again co- and contravariant components transform alike. The contracted tensors are stretched
by a factor σ(x)2

sp.
In analogy to the case of vector fields (Eq.(6.26) also antisymmetric second-order tensors

fulfil a constraint. It is
raF̂

ab = 0. (6.37)

Thus the number of free parameters for Fab(r) is ten which is equivalent to the number of degrees
of freedom of Fµν(x).

The above relations are valid for general antisymmetric second-order tensors on the sphere.
It is worthwhile to mention that it is not clear whether the field strength tensor of the Euclidean
space Fµν(x) keeps its tensor-property when projected onto a sphere with a radius that differs
from the I-size, i.e. b 6= ρ. Due to the breaking of dilatation in that case also the tensor-
characteristics might be lost, which means that Fµν(x) would transform as four vector fields
under a stereographic projection of Eq. (6.6). Invariance of the action under that transformation
would not be guaranteed anymore:

SS4 =
1

2

∫
dA
∣∣
b
Tr
[
F

(I)
ab (r)F ab (I)(r)

]

=
1

2

∫
d4x

1

σ2(x)sp

σ(x)sp Tr
[
F (I)
µν (x)F µν (I)(x)

]

=
1

2

∫
d4x

1

σ(x)sp

Tr
[
F (I)
µν (x)F µν (I)(x)

]

6= SE.

(6.38)
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The field strength tensor in O(5)-covariant fashion

It is possible to write the field strength tensor in O(5)-covariant form being then a totally
antisymmetric rank-three tensor [77, 26] in case of a sphere with radius equal to the size of
instantons, i.e. b = ρ,

F
(I)
abc(r) =

1

ρ

(
iLabÂ

(I)
c + ra

[
Â

(I)
b , Â(I)

c

])
+ cyclic permutations of a, b, c. (6.39)

After a gauge transformation F̂
′ (I)
abc (r) = U−1(r)F

(I)
abc(r)U(r) with

U(r) =
ρ− 2Σµ5x

µ

(ρ2 + x2)1/2
, (6.40)

the field strength tensor gets the simple form [82]

F̂
′ (I)
abc (r) =

i

ρ
(raΣbc + rcΣab + rbΣca) , (6.41)

which is dual to the rank-two tensor [77],

F̂
(I)
ab =

1

6
εabcdeF

cde (I). (6.42)

The I-action in that case is invariant since the conformal scale factor cancels with the factor
coming from the Jacobian of the stereographic projection,

SS4 =
1

2

∫
dA
∣∣
ρ

Tr
[
F

(I)
ab (r)F ab (I)(r)

]

=
1

2

∫
d4x

1

σ2(x, ρ)sp
σ2(x, ρ)sp Tr

[
F (I)
µν (x)F µν (I)(x)

]

=
1

2

∫
d4xTr

[
F (I)
µν (x)F µν (I)(x)

]

= SE.

(6.43)

6.2.4 Normalisation integrals on the sphere

The purpose of this section is to prepare the necessary transformation rules for vector fields and
their normalisation integrals transformed under an inversion in Euclidean space followed by a
stereographic projection. This sequence of transformations will be used extensively in the next
section for various special radii of the sphere, thus we give the general transformation rules at
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this point. We start with quoting the behaviour of the conformal factor of the stereographic pro-
jection and of the area elements under conformal inversion in Euclidean space first. Throughout
this section the radius of inversion is denoted by b,

Ib2 : xµ → x′µ =
b2

x2
xµ (6.44)

whereas d indicates the radius of the sphere,

Pd : xµ →
{
rµ = d d2−x2

d2+x2

r5 = d d2−x2

d2+x2

. (6.45)

Fields transformed under a stereographic projection of Eq. (6.45) are denoted by hats, the prime
marks a quantity transformed under an inversion of Eq. (6.44).

The relation between the conformal factor of the stereographic projection at the point xµ
and the point x′µ = b2

x2xµ is as follows

σsp (x′, d) =
(d2 + x′ 2)

2

4 d4

=
d′ 4

x4

(d′ 2 + x2)
2

4 d′ 4

=
d′ 4

b4
σ−1

inv (b, x) σsp (x, d′) ,

(6.46)

where d′ = b2

d
. Thus the area element defined in Eq. (6.14) of Sect. 6.2.1 transforms under a

conformal inversion in Euclidean space as

dA′
∣∣
d
≡ d4x′σ−2

sp (d, x′)

=
b8

d′ 8
d4xσ−2

sp (d ′, x)

=
b8

d′ 8
dA
∣∣
d ′.

(6.47)

If the radius of inversion is equal to the radius of the five-dimensional sphere, i.e. b = d = d ′,
the area element is invariant,

dA′
∣∣
b

= dA
∣∣
b
. (6.48)

For the radius of the sphere at the point x′µ being equal to the instanton size ρ we find the
following relation for the area element,

dA′
∣∣
ρ

=
b8

ρ′ 8
dA
∣∣
ρ′ , implying immediately dA′

∣∣
ρ′ =

b8

ρ8
dA
∣∣
ρ
. (6.49)
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Let us study normalisation integrals for vector fields B̂(r), which are projected onto a sphere
with radius d. They are defined by

∫
dA
∣∣
d
B̂a (r) B̂a (r) ≡

∫
d4x σ−1

sp (x, d) Bµ(x)Bµ(x)

=

∫
d4x

4 d4

(d2 + x2)2Bµ(x)Bµ(x).
(6.50)

We see that in the normalisation integral an additional conformal factor coming from the stere-
ographic projection appears, which has the effect of a regulator. We will return to that issue in
the next section.

We transform the vector field Bµ(x) in Euclidean space under a conformal inversion, see also
Eq. (4.19),

B′µ(x′) =
√
σ(x, b)inv

∂x′µ

∂xλ
Bλ(x), (6.51)

and project it onto a sphere with radius d by applying Eq. (6.19),

B̂′ a (r′) =
√
σ(x′, d)sp

∂r′ a

∂xµ
B′µ(x′). (6.52)

The normalisation integral for B̂′ a (r′) is then given by

∫
dA′
∣∣
d
B̂′a (r′) B̂′ a (r′) =

∫
dA′
∣∣
d
σsp (x′, d) B′µ(x′)B′µ(x′)

=
b8

d′ 8
d′ 4

b4

∫
dA
∣∣
d′ σ(b, x)−1

inv σsp (x, d ′) σ(b, x)inv Bµ(x)Bµ(x)

=
b4

d′ 4

∫
dA
∣∣
d′ σsp (x, d ′) Bµ(x)Bµ(x)

=
b4

d′ 4

∫
dA
∣∣
d′B̂a (r) B̂a (r) .

(6.53)

Again we find invariance in case of equal radii for inversion and stereographic projection, i.e.
b = d = d′.
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6.3 Introduction of the new scale

We now come to the main part of this work. Let us begin with a summary of the important
“corner stones” of our symmetry approach so far and give an outline on our forthcoming strategy.

We have shown in Sect. 4.3.3 that the instanton solution with radius ρ changes under
an inversion in Euclidean space to an anti-instanton solution with radius ρ′. The idea of our
symmetry approach is that this property might be “inherited” by the quantum level, i.e. by the
I-size distribution D(ρ). The reason being that a very important contribution to D(ρ) comes
from zero modes, which correspond precisely to the derivatives of the classical instanton field,
showing the desired behaviour, with respect to the collective coordinates.

As we have pointed out in Sect. 5.2, in supersymmetric QCD the size distribution is deter-
mined by zero mode contributions only, the non-zero mode part cancels exactly to any order
perturbation theory [74, 75]. In case of conventional QCD these contributions still form the
dominant part, see Eq. (5.21) in Sect. 5.2. Thus our investigations focus on the zero mode part.

The lattice data, however, show the full instanton size distribution including both the zero
mode contribution J(γ) and the non-zero mode part Q(γ). For a reasonable comparison of our
calculations with these data, we have to pay attention to Q(γ), as well. The non-zero mode part
is given by the ratio of the functional determinants and is proportional to [6]

Q(γ) ∼ 1

ρµr
. (6.54)

In our approach we assume that the non-zero mode part is not affected by a conformal inversion.
We then might either divide it out by the factor (ρpeak/ρ)(Nc/3) in the lattice data [25] or include

it in our considerations by multiplying with (ρpeak/ρ)(Nc/3).
However, when we were studying the behaviour of the zero mode contribution under inversion

in Euclidean space we found that the normalisation integrals were divergent, see also Eqs. (5.51)
and (5.52) in Sect. 5.4,

〈ψ′(z)µ (x′), ψ′(z)µ (x′)〉 =
2π2ρ4

peakρ
448

g2

∫ ∞

0

dR
1

R

1

(ρ2 +R2)4

︸ ︷︷ ︸
→∞

〈ψ′(α)
µ (x′), ψ′(α)

µ (x′)〉 =
2π2ρ4

peakρ
416

g2

∫ ∞

0

dR
1

R

1

(ρ2 +R2)3

︸ ︷︷ ︸
→∞

,

(6.55)

due to the integration over 1/R at R = 0. Thus we need some kind of regulator mechanism.
Our solution to that issue is as follows. We compute the zero modes in Euclidean space first

and then lift them by means of stereographic projection to a sphere with radius ρpeak. In the last
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section we have given the normalisation integrals for vector fields projected onto such a sphere.
These integrals include a conformal factor σsp(x), which has precisely the effect of a regulator as
we will see later on. This is because the sphere is a compact manifold. Thus we can determine
the zero mode part projected to the sphere and study its properties under conformal inversion.

Most importantly, the process of projection allows for the introduction of the new scale ρpeak,
which is indicated by the lattice data, into the theory. The average instanton size ρpeak appears
as the radius of the sphere. The radius of inversion equals then the radius of the sphere of
stereographic projection.

The crucial question will be whether eventual symmetries under a space-time inversion turn
into symmetries under an inversion of the I-size. After all this is the symmetry the lattice data
seem to obey. In order to compare our results on the sphere with the lattice data we multiply the
zero mode fraction on the sphere with ρpeak/ρ in analogy to 1/ (ρµr) in Euclidean space coming
from the non-zero mode part Q.

As before fields transformed under a stereographic projection are denoted by hats, e.g. ψ̂(r),
the prime labels quantities transformed under an inversion in Euclidean space, e.g. ψ ′(x′).

Projection of the zero modes

The procedure described above is done straight forward in the case of the dilatation zero mode
ψ

(ρ)
µ (x), and the colour zero modes ψ

(a)
µ (x) and ψ

(α)
µ (x), since these are clearly vector fields.

In case of the translation zero mode ψ
(z)
µ (x) this is a more delicate affair, since so far it

is not clear, whether these zero modes transform as four vector fields under the stereographic
projection of Eq. (6.7) or as one tensor field. We assume, that they transform vector-field like.

For the normalisation integrals of the zero modes projected on the sphere we have to evaluate
the following expression applying Eq.(6.50):

〈
ψ̂ (r) , ψ̂ (r)

〉
ρpeak

≡
∫

dA
∣∣
ρpeak

Tr
[
ψ̂a(r)ψ̂

a(r)
]

=

∫
d4x σ−1

sp (ρpeak, x) Tr [ψµ(x)ψµ(x)]

=

∫
d4x

4 ρ4
peak(

ρ2
peak + x2

)2 Tr [ψµ(x)ψµ(x)]

(6.56)

Notice the additional conformal factor σsp (ρpeak, x), which was not included in the normalisation
integrals in Euclidean space, which were given by

〈ψµ(x), ψµ(x)〉 =

∫
d4xTr [ψµ(x)ψµ(x)] . (6.57)
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We compare Eq. (6.56) to the normalisation integral of the inverted zero modes ψ̂′(r′) projected
onto a sphere with radius ρpeak,

〈
ψ̂′ (r′) , ψ̂′ (r′)

〉
ρpeak

=

∫
dA′
∣∣
ρpeak

Tr
[
ψ̂′a(r

′)ψ̂′a(r′)
]

=

∫
d4x′

4 ρ4
peak(

ρ2
peak + x′2

)2 Tr
[
ψ′µ(x′)ψ′µ(x′)

]

=

∫
d4x σ−2

inv(b, x)
4 ρ4

peakσinv(b, x)
(
ρ2

peak + x2
)2 σinv(b, x) Tr [ψµ(x)ψµ(x)]

=

∫
d4x

4 ρ4
peak(

ρ2
peak + x2

)2 Tr [ψµ(x)ψµ(x)]

=

∫
dA
∣∣
ρpeak

Tr
[
ψ̂a(r)ψ̂

a(r)
]

=
〈
ψ̂ (r) , ψ̂ (r)

〉
ρpeak

.

(6.58)

Since the radius of the sphere and the radius of inversion are equal, we find that they are
invariant! There is no difference between the normalisation integrals of the projected zero
modes, ψ̂a(r), and of the projected and an additionally inverted zero modes, ψ̂′a(r

′). As a
consequence the troublesome zero modes inverted in Euclidean space, the translation zero mode
ψ′ (z)(x′) and the colour zero mode ψ′ (α)(x′) turn out to be finite after an inversion.

The invariance is due the factor σinv(x) coming from the transformation of the conformal
factor of stereographic projection,

4 ρ4
peak(

ρ2
peak + x′2

)2 =
4 ρ4

peak(
ρ2

peak + x2
)2σinv(x). (6.59)

This leads to a cancellation of all factors σinv(x) in Eq. (6.58). We see immediately, that this
behaviour could not be found for the projection of tensor fields, since we would get an additional
factor σinv(x), see Sect. 4.3.2.

In Table 6.1 the normalisation integrals for all types of zero modes are listed. The results of
the integration, somewhat complicated functions, are given in Appendix E. All normalisation
integrals can be written as functions of κ,

κ ≡ ρ

ρpeak

. (6.60)
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Table 6.1: Normalisation integrals 〈ψ̂, ψ̂ 〉ρpeak
of Eq. (6.58) for zero modes projected on a sphere with radius

b = ρpeak. The results of the integration, somewhat complicated functions, are given in Appendix E. In the
limit of small instantons on the sphere we obtain the results from Euclidean space stretched by a factor of
2. The zero mode normalisations in Euclidean space are denoted by ‖ψ‖E, the ones on the sphere by ‖ψ̂‖.

Kind of zero mode Normalisation integral on the sphere Limit for small instantons on sphere

〈ψ̂, ψ̂ 〉ρpeak
κ→ 0

Dilatation ψ̂ (ρ) 4·48
g2 ρ

′ 6 ∫ d4x x2

(ρ2
peak+x2)2(ρ′ 2+x2)4 ‖ψ̂(ρ)‖ ' 8π

g
= 2‖ψ(ρ)‖E

Translation ψ̂ (z) 4·48
g2 ρ

4
peakρ

′ 4 ∫ d4x 1
(ρ2

peak+x2)2(ρ′ 2+x2)4 ‖ψ̂(z)‖ ' 4
√

2π
g

= 2‖ψ(z)‖E

Colour ZM ψ̂ (a) 4·48
g2 ρ

4
peakρ

′ 4 ∫ d4x x2

(ρ2
peak+x2)2(ρ′ 2+x2)4 ‖ψ̂(a)‖ ' 8π

g
ρ = 2‖ψ(a)‖E

Colour ZM ψ̂ (α) 4·16
g2 ρ

4
peakρ

′ 2 ∫ d4x x2

(ρ2
peak+x2)2(ρ′ 2+x2)3 ‖ψ̂(α)‖ ' 4

√
2π
g
ρ = 2‖ψ(α)‖E
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Figure 6.2: UKQCD lattice data [22, 23] for the instanton-size distribution D(ρ) ρ5. D(ρ) ρ5, a dimen-
sionless quantity, seems to be symmetric under ρ↔ ρ′ = ρ2

peak/ρ.

From Eq. (6.58) we conclude that the dominant part of the I-size distribution D(ρ) on the
sphere is invariant under conformal space-time inversion of radius ρpeak in Euclidean space. Now
we come to the crucial question: Does the invariance of the total zero mode fraction under space-
time inversion imply an invariance under inversion of the instanton size ρ? For it is precisely
this behaviour the lattice data indicate, see Fig. 6.2, and which is suggested by our symmetry
approach. That is to say we are interested in whether the total zero mode contribution

Ĵ(κ) =
1

(2π)6 ‖ψ̂(ρ)
a ‖ × ‖ψ̂(z)

a ‖4 × ‖ψ̂(a)
a ‖3 × ‖ψ̂(α)

a ‖4 (6.61)

on the sphere is invariant under the following transformation:

ρ↔ ρ′ = ρ2
peak/ρ. (6.62)

In order to answer this question, we consider first the various types of zero mode contribution
individually. In Figs. 6.3 - 6.6 the normalisation integrals of the four different types of zero
modes are plotted against ln (κ). It is visible at first sight, that, except for the colour zero mode

ψ
(a)
a (r) shown in Fig. 6.5, the individual normalisations are not invariant under the required

transformation

ρ→ ρ′ ⇔ κ→ 1

κ
⇔ ln(κ)→ − ln(κ). (6.63)
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Figure 6.3: Normalisation ‖ψ̂(ρ)‖ of the dilatation zero mode ψ̂(ρ) on the sphere.
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However, when we look at the total zero mode fraction Ĵ(κ), we find the following, very
promising results depicted in Fig. 6.7:

• Larger sized instantons are strongly suppressed.

• Despite the fact that three of the four types of zero mode contributions are asymmetric
under

κ↔ 1/κ, (6.64)

the total zero mode fraction times κ5, Ĵ(κ) κ5, is nonetheless approximately invariant
under this transformation!1 The peak position is shifted from the centre only by a value
of ln (κmax) = 0.34 corresponding to κmax = 1.414 ∼

√
2.

Following our approach, which assumes that the non-zero mode part Q(κ) is not affected by an

inversion, we include Q(κ) by multiplying a factor2 1/κ. The peak position of Ĵ(κ) κ4 is now at
a value of ln (κmax) = 0.1812 with κmax ' 1.19. If we then make the following substitution in
the total zero mode fraction,

κ→ 1.19κ, (6.65)

we can move the peak position to the center as can be seen in Fig. 6.8. The symmetry is virtually
perfect ! Fig. 6.9 shows that the size distribution on the sphere and the inverted distribution are
visually almost indistinguishable over thirteen orders of magnitude.

Two possibilities are near at hand for explaining such a shift:

• The shift could be the effect of the renormalisation procedure. The invariance under space-
time inversion eventually transfers best to an invariance under an inversion of the instanton
size, when working in an appropriate renormalisation scheme. A good candidate for such
a scheme would be the “instanton renormalisation-scheme” introduced by Ringwald and
Schrempp [23].

• The radius of the sphere can be redefined. In Euclidean space the peak position ρpeak '
0.6 fm of the dimensionless quantity D(ρ) ρ5 is about 1.19 ρ̃peak with ρ̃peak ' 0.5 fm being
the peak position of the actual size distribution D(ρ). A priori the radius of the sphere
does not need to correspond to the peak position of the size distribution on the sphere
Ĵ (κ) 1/κ but might also be associated with the peak position of κ4 Ĵ (κ).

1In Euclidean space the factor (ρµr)
5

is often multiplied to the instanton size distribution of dimension [fm]
−5

in order to obtain a dimensionless quantity. In analogy to that we multiply the zero mode fraction on the sphere
with κ5.

2The corresponding non-zero mode fraction in Euclidean space is proportional to 1/ (ρµr).

70



6.3. INTRODUCTION OF THE NEW SCALE 71

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

P
S
frag

rep
lacem

en
ts

ln (κ)

Ĵ
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Figure 6.7: Total zero mode contribution Ĵ(κ) times κ5 on the sphere. The factor κ5, which allows for
a comparison with the lattice data, leads to a better symmetry. The peak is shifted from the center by
a value of 0.34.

Let us discuss next some important analytical properties of the total zero mode part Ĵ(κ).

Since Ĵ(κ) is dependent only on κ, which is the ratio of the I-size ρ over the radius of the sphere
ρpeak, the following limits are identical:

κ→ 0 :

{
The radius of the sphere ρpeak goes to infinity while the instanton size ρ is fixed.
The instanton size ρ goes to zero while the radius of the sphere ρpeak is fixed.

We have a look on the limits in detail:

Limit of small instantons on the sphere:

κ→ 0 ⇔ ρpeak →∞ ⇔ ρ→ 0 (6.66)

If the radius of the sphere goes to infinity we obtain the same values for the normalisation as
in Euclidean space, see Table 6.1 and compare to the ones in Sect. 5.3, except for an addi-
tional factor of 2 for every zero mode normalisation. It comes from the conformal factor of the
stereographic projection:

ψ̂aψ̂
a =

4 ρ4
peak(

ρ2
peak + x2

)2ψµψ
µ ρpeak→∞

= 4ψµψ
µ (6.67)

71



6.3. INTRODUCTION OF THE NEW SCALE 72

0

500000

1e+06

1.5e+06

2e+06

-1.5 -1 -0.5 0 0.5 1 1.5

Line1
Line2

P
S
frag

rep
lacem

en
ts

ln (κ/1.19)

Ĵ
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Figure 6.8: Centered total zero mode fraction Ĵ(κ) times κ4 on the sphere: Line1 shows the total
zero mode fraction plotted against ln (κ/1.19). Line2 shows the zero mode fraction plotted against an
inverted I-size, i.e. − ln (κ/1.19) . The factor κ4 includes the non-zero mode fraction proportional to
1/κ and a factor κ5 in analogy to the factor ρ5 in Euclidean space. The symmetry under κ ↔ 1/κ is
indeed startling.

The zero mode part Ĵ(κ) rises with O (ρ7) for small instantons as we expect from I-perturbation
theory.

Limit of large instantons on the sphere:

κ→∞ ⇔ ρpeak → 0 ⇔ ρ→∞ (6.68)

The behaviour for large instantons is even more interesting. We find that Ĵ(κ) is of O (1/ρ7),
i.e. it drops with the the same power!

Limit for κ = 1:

This corresponds to the case of ρpeak = ρ, which will be studied in detail in the next section.

The expansion of Ĵ(κ) about κ = 1 gives, as expected, the results of Sect. 6.4.1.
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Figure 6.9: Centered size distribution on the sphere: Line1 shows the total zero mode fraction plot-
ted against ln (κ/1.19). Line2 shows the zero mode fraction plotted against an inverted I-size, i.e.
− ln (κ/1.19) . The symmetry under κ ↔ 1/κ is visually hardly distinguishable over thirteen orders of
magnitude.

All in all we find a correct description of the I-size distribution at qualitative level. The zero
mode fraction on the sphere is not only approximately invariant under an inversion of the I-size.
Moreover we find that it raises and falls off with the correct power of the I-size ρ!

We must stress that this is only true if the translation zero modes transform as four vector
fields under conformal transformations. This result cannot be achieved if they transform as a
second-order tensor either under conformal inversion or conformal stereographic projection or
both.
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6.4 Consistency checks

The projection of the zero modes on a sphere with radius b = ρ, which will be addressed in the
subsequent section, enables us to establish contact to existing work. This sphere corresponds
to the one of Rebbi and Jackiw [26], no new scale is introduced. However, our method differs
from [26] when it comes to the order of computation steps. We determine the zero modes in
Euclidean space first and project them onto the sphere thereafter, whereas in Ref. [26] this was
done the other way round.

In this section we study the differences of the normalisation integrals between our approach
and the one in Ref. [26]. We begin with a discussion of our results for the “conventional”
projection b = ρ. Thereafter we make contact to the results for the inverted zero modes in
Euclidean space, which were missing so far. We make a rather lengthy digression in Sect. 6.4.3,
where we determine the generators for the zero modes on the sphere. In that course we explain
the disadvantages of the approach of Ref. [26]. In Appendix D we discuss the identification of
the zero modes on the sphere and their normalisation integrals.

6.4.1 The conventional projection: b = ρ

In this section we repeat the procedure of the last section. The difference lies in the radius of
the sphere which corresponds now to the size of the instanton, i.e. b = ρ.

〈
ψ̂ (r) , ψ̂ (r)

〉
ρ

=

∫
dA
∣∣
ρ

Tr
[
ψ̂a(r)ψ̂

a(r)
]

(6.69)

In Table 6.2 the results for the normalisations of the zero modes on the sphere are given. The
total zero mode fraction is

J(γ) =
1

(2π)6
‖ψ̂(ρ)(x)‖ × ‖ψ̂(z)(x)‖4 × ‖ψ̂(a)(x)‖3 × ‖ψ̂(α)(x)‖4

=
1

(2π)6

[√
2

5

4π

g

][√
6

5

2
√

2π

g

]4 [√
2

5

4πρ

g

]3 [√
2

3

2
√

2πρ

g

]4

=
1

(2π)6

(
2
√

2

5

)4
220 π12 ρ7

g12
.

(6.70)

We find the following results. The zero mode fraction projected on the hypersphere shows
the same dependence on ρ as in Euclidean space, see Eq. (5.42) in Sect. 5.3. The different

pre-factor
(
2
√

2/5
)4

in the normalisation comes from the process of projection. Its origin is a
pure geometrical one, see also Sect. 6.4.2.
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Table 6.2: Normalisations of zero modes projected on a hypersphere with radius b = ρ given by
Eq. (6.69). The normalisation integrals on the sphere agree with the ones in Euclidean space,

denoted by ‖ψ(ρ)
µ (x)‖E, apart from a different normalisation pre-factor, which has a geometrical

origin.

Kind of zero mode Normalisation integral Normalisation

〈ψ̂, ψ̂〉ρ 〈ψ̂, ψ̂〉1/2ρ

Dilatation ψ̂ (ρ)(r) 4·48
g2 ρ

2
∫

d4x x2

(ρ2+x2)6

√
2
5

4π
g

=
√

2
5
‖ψ(ρ)

µ (x)‖E

Translation ψ̂ (z)(r) 4·48
g2 ρ

4
∫

d4x 1
(ρ2+x2)6

√
6
5

2
√

2π
g

=
√

6
5
‖ψ(z)

µ (x)‖E

Colour ZM ψ̂ (a)(r) 4·48
g2 ρ

4
∫

d4x x2

(ρ2+x2)6

√
2
5

4π
g
ρ =

√
2
5
‖ψ(a)

µ (x)‖E

Colour ZM ψ̂ (α)(r) 4·16
g2 ρ

4
∫

d4x 1
(ρ2+x2)5

√
2
3

2
√

2π
g
ρ =

√
2
3
‖ψ(α)

µ (x)‖E

When comparing our results for the normalisations of dilatation and translation zero modes3

to the ones of Refs. [79] and [80], we find that they deviate only by a factor 24/34. This is
due our different approach, where we compute the zero modes in Euclidean space first and then
project them onto the, whereas in Refs. [79] and [80] this was done the other way round. The
procedure is not commutable. In Section 6.4.3 we will deal with that issue.

As the last point of this section we address the behaviour of these projected zero modes under

3Only this comparison is possible, since the colour zero modes on the hypersphere are not considered in
Refs. [79, 80].
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inversion in Euclidean space. We find after a straight forward computation

〈
ψ̂′ (r′) , ψ̂′ (r′)

〉
ρ

=

∫
dA′
∣∣
ρ

Tr
[
ψ̂′a (r′) ψ̂′ a (r′)

]

=
b4

inv

ρ′ 4

∫
dA
∣∣
ρ′ Tr

[
ψ̂a(r)ψ̂

a(r)
]

=
b4

inv

ρ′ 4

〈
ψ̂ (r) , ψ̂ (r)

〉
ρ′
,

(6.71)

where binv is the radius of inversion and ρ′ = b2
inv/ρ the inverted instanton size. The normalisation

integrals of the inverted zero modes projected onto a sphere with radius equal to the instanton
size ρ correspond to those of the uninverted ones projected onto a sphere with radius equal
to the inverted instanton size ρ′ times a factor ρ4/b4

inv. For a reasonable comparison with the
uninverted zero modes projected onto a sphere with radius ρ we have to project the inverted
zero modes onto a sphere with a radius that equals also the inverted instanton size. This will
be done in the next section.

6.4.2 Inverted zero modes and stereographic projection: b = ρ′

Since an inversion changes an I-configuration of size ρ to an Ī-configuration of size ρ′, one has
to project the zero modes ψ′(x′) transformed under inversion of radius ρpeak onto a sphere of
radius ρ′ = ρ2

peak/ρ. This allows for a contact to the results for the normalisation integrals of
the inverted zero modes in Euclidean space, which have been lacking so far.

〈
ψ̂′ (r′) , ψ̂′ (r′)

〉
ρ′

=

∫
dA′
∣∣
ρ′ Tr

[
ψ̂′a (r′) ψ̂′a (r′)

]

=
b4

ρ4

∫
dA
∣∣
ρ

Tr
[
ψ̂a (r) ψ̂a (r)

]

=
b4

ρ4

〈
ψ̂ (r) , ψ̂ (r)

〉
ρ

=
ρ′ 2

ρ2

〈
ψ̂ (r) , ψ̂ (r)

〉
ρ
.

(6.72)

Most importantly we find a finite normalisation for the translation zero mode ψ̂
′(z)
a and the

colour zero mode ψ̂
′(α)
a due to the compactness of the sphere. The additional conformal factor

σ(x)sp(x′, ρ′) has, as mentioned in Sect. 6.3, the effect of a regulator. These zero modes were
divergent before in the Euclidean space, see Sect. 5.4. Moreover we see that the powers of ρ′

for the dilatation ψ̂′(ρ)(x′) and the colour zero mode ψ̂′(a)(x′) correspond to our former results
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of Euclidean space, see Eq. (5.49) and (5.50). The contribution of these zero modes is then in
total,

J(γinv) =
1

(2π)6
‖ψ̂′(ρ)(x′)‖ × ‖ψ̂′(z)(x′)‖4 × ‖ψ̂′(a)(x′)‖3 × ‖ψ̂′(α)(x′)‖4

=
1

(2π)6

[√
2

5

4π

g

ρ′

ρ

][√
6

5

2
√

2π

g

ρ′

ρ

]4 [√
2

5

4πρ′

g

]3 [√
2

3

2
√

2πρ′

g

]4

=
1

(2π)6

(
2
√

2

5

)4
220 π12 ρ′ 7

g12

ρ′ 5

ρ5
.

(6.73)

It should be noticed that the same new pre-factor
(
2
√

2/5
)4

for the normalisation on the
sphere appears as for the projection with radius b = ρ. This means that it is a pure geometrical
factor.

The results for the inverted zero modes on the sphere with radius ρ′ are quite intriguing
though not as perfectly invariant as in case of b = ρpeak, when the radius of the sphere equaled
the radius of inversion. They show a dependence on ρ′ which corresponds to the same power as
the zero mode fraction before inversion but with inverted I-size and multiplied by an additional
ratio ρ′ 5

ρ5 .

6.4.3 Generators of conformal transformations on the hypersphere

In this section we make a rather lengthy digression. The purpose of this “deviation” from the
straight line of argumentation is to show why our strategy later on differs very much from what
has been done in the past. In order to do this we consider the appearance of the conformal
transformations and their generators in terms of the r-coordinates on the hypersphere. We will
see that there is a way to combine three generators to form the O(5) generators Sa, that will
be responsible for the dilatation and translation zero modes on the hypersphere. Thus one can
calculate the corresponding zero mode contributions on the sphere.

Dilatation

A dilatation in 4-dimensional space with the parameter λ is done as follows,

Dλ : xµ → x′µ = λxµ. (6.74)
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We consider the coordinates rµ and r5 separately, when stating the appearance of the above
transformation in terms of the r-coordinates:

D(5)
λ :





rµ → r′µ = λ
b2

λ2 2xµ

b2

λ2 +x2

r5 → r′5 = b
b2

λ2−x2

b2

λ2 +x2

(6.75)

We have to expand the transformation in terms of λ close to one, λ ∼ 1,

r′µ = (1 + ε)

b2

(1+ε)2 2xµ
b2

(1+ε)2 + x2
, (6.76)

where ε is arbitrarily small and dimensionless. Terms of the order O(ε2) are neglected. For the
expansion in ε one obtains

r′µ = rµ + ε
r5

b
rµ +O

(
ε2
)
,

r′5 = r5 −
ε

b

(
b2 − r2

5

)
+O

(
ε2
)
.

(6.77)

Hence the change in ra is

δrµ = ε
r5

b
rµ and δr5 = −ε 1

b
(b2 − r2

5). (6.78)

Now we can determine the generator of the dilatation on the hypersphere by considering the
change of a scalar field φ (r) under the required transformation,

φ(r′) = φ(r) +
∂φ(r)

∂ra
δra

=

(
1 +

ε

b

(
r5rµ

∂

∂rµ
−
(
b2 − r2

5

) ∂

∂r5

))
φ(r)

≡
(

1 + i D
ε

b

)
φ(r).

(6.79)

We can read off the generator from Eq. (6.79),

D = −i
(
r5 rµ ∂

µ − (b2 − r2
5)∂5

)
. (6.80)
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Translation

Although the translation in Euclidean space is simple,

Ta : xµ → x′µ = xµ + zµ, (6.81)

this is not the case for the corresponding transformation on the O(5)-sphere, see Ref. [77]:

T (5)
a :





rµ → r′µ = 1
N

(
rµ + 1

b
(b+ r5)zµ

)
,

r5 → r′5 = 1
N

(
r5 − 1

b2
z2

2
(b + r5)− 1

b
rνz

ν
)
,

(6.82)

where

N = 1 +
1

b3

z2

2
(b+ r5) +

1

b2
rµz

µ and z2 = zνz
ν . (6.83)

It should be noticed that this transformation law is nonlinear already at the order O(a).
Again we make an expansion, this time in terms of small zµ.

1

N
= 1− 1

b2
rνz

ν +O
(
z2
)

r′µ = rµ +
1

b

(
(b + r5) zµ −

1

b
rνz

νrµ

)
+O

(
z2
)

r′5 = r5 −
1

b2
rνz

ν (b + r5) +O
(
z2
)

(6.84)

Therefore

δ rµ =
1

b

(
(b+ r5) zµ −

rνz
ν

b
rµ

)
, δ r5 = −rνz

ν

b2
(b + r5) . (6.85)

Once more we consider changes of a scalar field to pin down the generator of the translation on
the hypersphere,

φ(r′) =

[
1 +

1

b

(
(b + r5) zµ −

rνz
ν

b
rµ

)
∂µ − 1

b2
rνz

ν(b+ r5)∂5

]
φ(r). (6.86)

We find for the generator of translation on the sphere

Pµ = −i
(

(b+ r5) gµν −
rµrν
b

)
∂ν + i

1

b
(b+ r5) rµ ∂5. (6.87)
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Special Conformal Transformation

We already know that the SCT is a composition of an inversion, a translation and another
inversion. To make life easier we consider here only the special case of equal radii for inversion
and the S4 sphere. This simplification will not affect our investigations of the behaviour of the
zero mode contribution under conformal inversion later on. In that particular case the coordinate
inversion on the sphere turns out to be very simple. The space-time inversion in Euclidean space,

I(4)
b2 : xµ → x′µ =

b2

x2
xµ, (6.88)

corresponds to the following transformation on the hypersphere

I(5)

b2 :





rµ → r′µ =
2 b2 x′µ
b2+x′ 2 = 2 b2 xρ

b2+x2 = rµ,

r5 → r′5 = b b
2−x′ 2
b2+x′ 2 = b x

2−b2
b2+x2 = −r5.

(6.89)

The connection between space-time inversion in Euclidean space and its appearance under
stereographic projection is depicted in Fig. 6.10, where a stereographic projection of a line onto
a one-dimensional surface of a two-dimensional sphere is depicted. The two points P and Q
defining the two distances x and x′, respectively are related by the condition of inversion with
radius b in Euclidean space,

x

b
=

b

x′
. (6.90)

In Fig. 6.10 we see that the projected points P′ and Q′ differ only in the sign of the coordinate
r5. An inversion in Euclidean space corresponds to an exchange of the northern and southern
hemisphere of S4. This means that the effect of an inversion can also be achieved by changing the
source point of the stereographic projection from the south to the north pole. The generalisation
to 5 dimensions is straight forward.

As a consequence of the simple form of Eq. (6.89) the SCT does not differ much from
translation on the hypersphere,

K(5) :





rµ → r′µ = 1
N ′
(
rµ + 1

b
(b− r5)zµ

)
,

r5 → r′5 = 1
N ′

(
r5 + 1

b2
z2

2
(b− r5)− 1

b
rνz

ν
)
,

(6.91)

where N ′ = 1 + 1
b3
z2

2
(b− r5) + 1

b2
rνz

ν . After an expansion in small zµ we have

δrµ =
1

b

(
(b− r5) aµ −

rνa
ν

b
rµ

)
and δr5 =

rνa
ν

b2
(b− r5) . (6.92)
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Figure 6.10: Relation between inversion and stereographic projection: The points P and Q define
the two distances x and x′. x and x′ are related by the condition of inversion. As a consequence the
projected points P′ and Q′ differ only in the sign of the coordinate r5. An inversion leads to an exchange
of the northern and southern hemisphere.

Applying the same techniques as above we find for the generators of the SCT,

Kµ = −i ((b− r5) gµν − rµrν) ∂ν − i
1

b
(b− r5) rµ ∂

5. (6.93)

O(5) generators Sa

As pointed out in Ref. [26], it is possible to combine the generators Pµ, Kµ and D together
such that they form O(5) generators Sa. These are now exactly the generators creating the
dilatation and translation zero modes in the O(5)-formalism. This is because the I Ī-field in
the O(5)-formalism is invariant under the transformations Jµν and Rµ. Thus it must be these
remaining five generators Sa producing these zero modes.
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The construction of Sa is done as follows:

iPµ
Cµ

b
+ i D

C5

b2
= −∂aCa +

1

b2
rbC

bra∂
a

+
1

b
(rµC

µ∂5 − r5C
µ∂µ) ,

(6.94)

where the parameters of translation zµ are now replaced by Cµ and the parameter of dilatation
λ by C5/b. The new parameters Cµ and C5 combine to the 5-dimensional vector Ca which has
the dimension of a length. Compare the above equation to

−iKµ
Cµ

b
+ i D

C5

b2
= −∂aCa +

1

b2
rbC

bra∂
a

− 1

b
(rµC

µ∂5 − r5C
µ∂µ) .

(6.95)

Thus we find the following generator,

Sa = −i

(
1

2
(Pµ −Kµ) , D

)

= −i
(
∂a + rarb∂

b
) (6.96)

with the corresponding coordinate transformation,

ra → r′a ' ra +
1

b2
rarbC

b + Ca. (6.97)

It should be mentioned that this transformation is not conformal. In Appendix D the derivation
of the translation and dilatation zero modes in the O(5)-covariant formalism and their normali-
sation integrals can be found. Comparison to the normalisation integrals of Refs. [79, 80] shows
agreement. However when it comes to our actual subject, the behaviour of the zero mode fraction
under conformal inversion, there occur two problems when working with these zero modes:

• First of all the zero modes generated by Sa can only be written down in a useful way for
equal values of the I-size and the radius of the sphere, b = ρ. This is not what we want
since in that case no new scale can be introduced.

• Secondly, a definition of colour zero modes in the O(5) formalism could be done for SU(2)-
instantons only, since it is not possible to lift the SU(3)-instantons onto the O(5)-sphere.
So far we have only derived the translation and dilatation zero modes. It is not so clear
how to write down the colour zero modes in the O(5)-formalism.

Since we are interested in SU(3)-instantons primarily we have embarked on another strategy,
by computing the zero modes in Euclidean space first and lifting them to the hypersphere of
stereographic projection thereafter.
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Chapter 7

Conclusion and Outlook

Being topological fluctuations of the gluon field, instantons represent an essential part of non-
perturbative QCD. The average I-size is one of the crucial quantities when characterising the
structure of the QCD vacuum. However, within the framework of I-perturbation theory it
it impossible to predict its numerical value since the integration over the I-size distribution
D(ρ) is divergent. Luckily enough lattice simulation show a physically reasonable behaviour
of D(ρ) indicating a sharp peak at an average I-size of ρpeak ' 0.5 fm and by that a sudden
deviation from one-loop analytical calculations. In this work the approach of a symmetry being
responsible for the rapid breakdown of I-perturbation theory was explored. For that purpose
a thorough investigation of the behaviour of the I-size distribution at one-loop level under
conformal inversion was made. The idea is that the regarded symmetry, a conformal inversion
of space-time, appears as an inversion of the I-size. Summarising the above results we can say
the following.

• The dominant part of the I-size distribution D(ρ) is divergent under a conformal inversion
since two out of four zero mode normalisation integrals are infinite.

• This problem can be cured by lifting the I-calculus on the 4-dimensional surface of a 5-
dimensional sphere via stereographic projection. The integration over the sphere, which is
a compact and curved manifold, leads to a finite result.

• In the case of equal radii for the sphere and the conformal inversion, i.e. b = ρpeak, we
find a zero mode contribution on the sphere which agrees surprisingly well with the lattice
data at qualitative level: Ĵ (ρ) raises with a power of ρ7 and decreases with 1/ρ7.

• Moreover we obtain a zero mode contribution on the sphere with b = ρpeak, which is
perfectly invariant under a space-time inversion. As a consequence, the size distribution
on the sphere is almost symmetric when it comes to an inversion of the instanton size.
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• After a substitution of the ration ρ/ρpeak with 1.19 ρ/ρpeak the symmetry under an inversion
of the instanton size of the size distribution on the sphere is nearly perfect over thirteen
orders of magnitude.

• In the limit of small instantons on the sphere we find the same zero mode contribution as
in Euclidean space times a factor two coming from the conformal factor of stereographic
projection. The same results are found in the limit of an infinite radius of the sphere while
the instanton size is fixed.

• We achieve the introduction of the new scale ρpeak into the I-calculus by means of the
above projection. It appears as the radius of the sphere.

• If we chose the radius of the sphere to equal the instanton size, i.e. b = ρ, we can make
contact to existing work. The values for the normalisations depend weakly on the sequence
of the projection procedure.

Concluding we can say that the dominating part of the size-distribution, the zero mode fraction,
on a 4d-sphere with radius b = ρpeak shows perfect invariance under conformal inversion of the
coordinates xµ and as a consequence turns into an almost perfect invariance under inversion of
the I-size ρ. Naturally there are many open questions which call for our attention:

• First of all the behaviour of the translation zero mode under conformal transformations
should be resolved, since our successful approach depends on the assumption of a vector
field-like transformation law.

• A further investigation of the physical meaning of the sphere and in particular its radius
ρpeak would be of great interest. This is related to the question of where the scales of
the strong interactions, e.g. the scale of confinement Λconf, the scale of chiral symmetry
breaking ΛχSB or the scale of saturation Qs, come from which can be found nowhere in the
QCD Lagrangian.

• The introduction of the inversion scale ρpeak should lead to a breaking of dilatation sym-
metry. So far it is not clear, how this breaking takes place. However, it is indicated by
the non-vanishing trace of the energy-momentum tensor since this goes along with the
breaking of that symmetry. A further investigation of the following relation could bring

some insight to this topic: ρpeak ∝ 〈0
∣∣αs
π
Ga 2
µν

∣∣〉−1/4 ∝
(
−θµµ

)−1/4
[25].

• Last but not least it would be worthwhile to continue the search for conformal invariance
in the I-sector and in QCD in general.
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Appendix A

Notations and Conventions

We define the Euclidean Dirac γ-matrices as

γµ =

(
0 σ̄µ
σµ 0

)
, γ5 =

(
−1 0
0 1

)
. (A.1)

They satisfy the Clifford algebra,
{γµ, γν} = 2δµν. (A.2)

As usual, the dot over an index distinguishes the left- and right-handed SU(2) representations.
The σ-matrices are given as

(σµ)αβ̇ = (−iσa, 1)αβ̇ , (σ̄µ)α̇β = (iσa, 1)α̇β , (A.3)

with the Pauli matrices in the standard notation,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.4)

They obey the algebraic relation
σµσ̄ν + σνσ̄µ = 2δµν . (A.5)

Furthermore we define
σµσ̄ν − σνσ̄µ ≡ σ̄µν . (A.6)

Euclidean Dirac spinors are decomposed in the Weyl basis according to

ψ =

(
κα̇
φα

)
, ψ̄ =

(
φ̄α̇ , κα

)
. (A.7)

The conjugate spinor ψ̄ is defined as
ψ̄ ≡ ψ†γ0. (A.8)
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Wick rotation

The connection between Euclidean space and Minkowski space, where the metric tensor is defined
as gµν = diag (1,−1,−1,−1), is obtained by means of analytical continuation. One replaces the
Euclidean Dirac γ-matrices according to

(γ4)E =
(
γ0
)

M
, (γm)E = −i (γm)M ,

(
γ5
)

E
= −

(
γ5
)

M
, (A.9)

and obtains the Dirac γ-matrices in Minkowski space-time in chiral representation:

γ0 =

(
0 1
1 0

)
, γm =

(
0 σm

−σm 0

)
, γ5 =

(
1 0
0 −1

)
. (A.10)

For coordinate vectors xµ and their conjugate momenta pµ we have the general replacements

x4 = ix0, (xm)E = + (xm)M ,

p4 = −ip0, (pm)E= − (pm)M . (A.11)

Applying these prescriptions, the volume elements change as
(
d4x
)

E
= i
(
d4x
)

M
,

(
d4p
)

E
= −i

(
d4p
)

M
, (A.12)

and the action is replaced by
SM = iSE. (A.13)

’t Hooft symbols

The ’t Hoof symbols are defined as [6]

ηaµν =





εaµν , µ, ν = 1, 2, 3,
−δaν , µ = 4,
δaµ, ν = 4,
0, µ = ν = 4.

(A.14)

The symbols η̄aµν differ from ηaµν by a change in the sign of the Kronecker deltas. The ’t Hooft
symbols obey the following relations:

3ηaµν = −ηaνµ, ηaµνη
µν
b = 4δab,

ηaµνη
aµλ = 3δλν , ηaµνη

aµν = 12,

ηaµν η̄
bµν = 0, ηaγµη̄

bγλ = ηaγλη̄
bγµ,

ηaµν =
1

2
εµναβη

αβ
a , ηaµνη

aγλ = δγµδ
λ
ν − δλµδγν + εγλµν ,

εµνλση
γσ
a = δγµηaνλ − δγνηaµλ + δγληaµν , ηaµνη

µλ
b = δabδ

λ
ν + εabcη

cλ
ν ,

εabcη
bµνηcγλ = δµγηνλa − δµληνγa + δνληµγa . (A.15)
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Furthermore the relation to the σ-matrices is

σ̄µσν = δµν + iηaµνσ
a,

σµσ̄ν = δµν + iη̄aµνσ
a.

(A.16)

Writing the singular gauge instanton field in terms of the ’t Hooft symbols gives

Aµ(x) = − i

g

ρ2

x2 (ρ2 + x2)
[σµx̄− xµ]

=
1

g

ρ2

x2 (ρ2 + x2)
η̄aµνx

νσa.

(A.17)
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Appendix B

The Conformal Group

Table B.1: Generators of the conformal group

Translation Pµ = −i∂µ

Dilatation D = −ixµ∂µ

Rotation Lµν = i (xµ∂ν − xν∂µ)

SCT Kµ = −i (2xµx
ν∂ν − x2∂µ)

The conformal algebra is specified by the following commutation relations:

[D,Pµ] = iPµ, [D,Kµ] = −iKµ,

[Kµ, Pν] = 2i (gµνD − Lµν) , [Kρ, Lµν ] = i (gρµKν − gρνKµ) ,

[Pρ, Lµν] = i (gρµPν − gρνPµ) , [Kµ, Kν] = 0,

[Lµν , Lρσ] = i (gνρLµσ + gµσLνρ − gµρLνσ − gνσLνρ) . (B.1)
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Table B.2: Scale factors of important conformal transformations

Inh. Lorentz transformation σ(x)L = 1

Dilatation σ(x)dil = 1
λ2

Inversion σ(x)inv = x4

b4

SCT σ(x)sct = b4

c4

(
1 + 2ax

b2
+ a2x2

b4

)2

Stereographic projection σ(x)sp =
(b2+x2)

2

4b4
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Appendix C

Normalisation Integrals of Zero Modes

Dilatation

〈ψ(ρ)(x), ψ(ρ)(x)〉 =

∫
d4x

8

g2
Tr(λaλ

a) η̄aµν η̄aµτ
xνx

τρ2

(x2 + ρ2)4

=
16π2

g2

(C.1)

〈ψ′(ρ)(x′), ψ′(ρ)(x′)〉 =

∫
d4x

ρ8
peak

x8

8

ρ4
peak g

2
η̄aµτ η̄aµσ xτx

σ x4ρ2

(x2 + ρ2)4
Tr (λaλ

a)

=
2π2ρ4

peakρ
248

g2

=1/(6ρ6)︷ ︸︸ ︷∫ ∞

0

dR
R

(R2 + ρ2)4

=
16π2

g2

ρ4
peak

ρ4

(C.2)

Translation

〈ψ(z)(x), ψ(z)(x)〉 =

∫
d4x

1

2
Tr [Fµν(x)F µν(x)] = Scl =

8π2

g2
(C.3)
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〈ψ′(z)µ (x′), ψ′(z) µ(x′)〉 =

∫
d4x

ρ8
peak

x8

x4

ρ4
peak

1

2
Tr [Fµν(x)F µν(x)]

=

∫
d4x

ρ4
peak

x4

48

g2

ρ2

(ρ2 + x2)4

=
2π2ρ4

peakρ
448

g2

∫ ∞

0

dR
1

R

1

(ρ2 +R2)4

︸ ︷︷ ︸
→∞

(C.4)

Colour zero modes ψ
(a)
µ (x)

〈ψ(a)(x), ψ(a)(x)〉 =

∫
d4x

ρ4

g2(x2 + ρ2)4

(
8x2 Tr (λaλ

a)

− 2 η̄bµρ η̄cµσ xρx
σ Tr ([λb, λa][λc, λ

a])
)

=
16π2ρ2

g2

(C.5)

Here we have used the following relation

2η̄bµαη̄cµνx
αxν Tr

(
[λb, λa][λ

c, λa]
)

= 2x2 δbc Tr
(
[λb, λa][λ

c, λa]
)

= −8x2 Tr
(
εbacε

badλcλd
)

= −32 x2.

(C.6)

〈ψ′ (a)(x′), ψ′ (a)(x′)〉 =

∫
d4x

ρ8
peak

x8

ρ4 x4

g2 ρ4
peak (x2 + ρ2)4

×
(
16x2 − 2 η̄bµρ η̄cµσ xρx

σ Tr ([λb, λa][λ
c, λa])

)

=
2π2 48 ρ4

peak ρ
4

g2

=1/(6ρ6)︷ ︸︸ ︷∫
dR

R

(R2 + ρ2)4

=
16π2

g2

ρ4
peak

ρ2

(C.7)
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Colour zero modes ψ
(α)
µ (x)

We make use of

η̄aµρ η̄bµσ xρx
σ Tr

(
[λa, λl][λ

b, λl]
)

= xρxσ (δab δ
ρσ − εabcη̄cρσ)

×
(
−4falmf

b ln Tr [λmλn]
)

= −4 x2falmfaln Tr
(
λmλ

n
)

Tr(λmλn) = 2 δmn,

(C.8)

where a, b = 1 . . . 3 and l, m, n = 4 . . . 7. The Greek indices run from 1 . . . 4. The structure
constants of SU(3) are denoted by falm. Now we can calculate the normalisation integral,

〈ψ (α)(x), ψ (α)(x)〉 =

∫
d4x

ρ4

g2

4x2 − 2 η̄aµρη̄bµσxρx
σ Tr

[
[λa, λl][λ

b, λl]
]

x2(x2 + ρ2)3

=
8π2ρ2

g2
.

(C.9)

〈ψ′ (α)(x′), ψ′ (α)(x′)〉 =

∫
d4x

ρ8
peak

x8

ρ4

g2ρ4
peak

x2

(x2 + ρ2)3
×


4x2 −

=−12x2

︷ ︸︸ ︷
2 η̄aµβη̄bµγxβx

γ Tr
(
[λa, λl]

[
λb, λl

])



=
2π2ρ4

peakρ
416

g2

∫ ∞

0

dR
1

R(R2 + ρ2)3

︸ ︷︷ ︸
→∞

(C.10)
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Appendix D

Zero Modes in the O(5)-covariant formalism

The O(5) covariant instanton,
Aa(r) = −i Σabrb, (D.1)

is not invariant under transformations of the form

r′a = ra +
1

s2
rarbC

b + Ca. (D.2)

Thus we can act with the transformation law given above on the instanton gauge field in order
to obtain an IĪ-field which depends now on new collective coordinates Ca. One need to check
whether the transformation law has to obey certain conditions, which are necessary to stay on
the surface of the hypersphere: The first constraint tells you that the norm of r′a has to be s,

r′ar
′a = s2 + C2 + 4riC

i +
3

s2

(
riC

i
)2 !

= s2. (D.3)

We get a quadratic equation in riC
i,

riC
i = −2

3
s2 ±

√
4

9
− 1

3
s2C2. (D.4)

The second constraint is the following:

r′aA
′a !

= 0

= −i
[
ΣamCarm

(
2 +

3

s2
riC

i
)] (D.5)
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Together with the first constraint we obtain two conditions in terms of s2:

riC
i = −2

3
s2

C2 =
4

3
s2

(D.6)

Eliminating s2 gives a descriptive geometrical interpretation

(
C + r

)2
= r2. (D.7)

This is the condition for the parameter Ca to ensure that we stay on the surface of the hypersphere
when performing the transformation of Eq. (D.2). Now we find a simple inverse transformation
and furthermore we can apply the constraints to the transformed gauge field.

ra = 3
(
r′a − Ca

)

A′a(r′) = −i
[1

3
Σamrm +

1

s2
raΣmnCmrc

]

= −i
[
Σam

(
r′m − Cm

)
+

9

s2

(
r′a − Ca

)
ΣmnCmr

′
n

]
(D.8)

Finally we are ready to compute the zero modes by differentiating with respect to Ca.

ψab(r′) =
∂A′a

∂Cb

= −i
[
− Σab +

9

s2
Σbmr′m

(
r′a − Ca

)
− 9

s2
δabΣmnCmr

′
n

] (D.9)

The computation of the norm ‖ψab(r′)‖ is rather lengthy.

ψab(r
′)ψab(r′) = −

(I)︷ ︸︸ ︷
ΣabΣ

ab +
27

s2

(II)︷ ︸︸ ︷
ΣbmΣbnr′mr′n +

9

s2

(III)︷ ︸︸ ︷
ΣbmΣnb

(
r′mCn + Cmr′n

)

+ 2
81

s4

(IV)︷ ︸︸ ︷(
ΣmnC

mr′n
)2

= I4×4

(
− 5 +

27

s2
r′2 − 9

s2
2
(
r′ · C) +

81

s4
2

2

81
s4
)

= 6 I4×4

(D.10)

The relation for the Σ-matrices are:
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(I) : ΣabΣ
ab = 5 I4×4

(II) : rbr
aΣcaΣ

bc = b2 I4×4

(III) : ΣbmΣnb (rmCn + Cmrn) = −2 raC
a I4×4 =

b2

3
I4×4

(IV) : ΣmnC
mrn Σpqc

prq =
2

81
b4

(D.11)

‖ψab(r′)‖2 =
1

2

∫
dATr

[
ψab(r

′)ψab(r′)
]

= 12

∫
16ρ4

(ρ2 + x2)4
d4x

= 25π2

(D.12)

This result was found by various other authors before by means of different techniques, see
[79, 80].
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Appendix E

Normalisation integrals on the sphere

Here the results for the normalisation integrals stated in Table 6.1 are given. All integrals are
expressed in terms of the ration

κ =
ρ

ρpeak
. (E.1)

Dilatation

〈ψ̂′ (ρ), ψ̂′ (ρ)〉 =
4 · 48

g2
ρ′ 6
∫

d4x
x2

(ρ2
peak + x2)2(ρ′ 2 + x2)4

= −768π2κ2 (1 + κ2) ln (κ)

g2 (κ2 − 1)5 (κ2 + 1)5 +
64π2 (κ4 + 10κ2 + 1)

g2 (κ2 − 1)4 (κ2 + 1)4

(E.2)

Translation

〈ψ̂′ (z), ψ̂′ (z)〉 =
4 · 48

g2
ρ4

peakρ
′ 4
∫

d4x
1

(ρ2
peak + x2)2(ρ′ 2 + x2)4

=
384π2κ4 (κ2 + 3) ln(κ)

g2 (κ2 − 1)5 (κ2 + 1)5 −
32π2 (17κ4 + 8κ2 − 1)

g2 (κ− 1)4 (1 + κ)4

(E.3)
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Colour zero modes ψ̂′ (a)(r′)

〈ψ̂′ (a), ψ̂′ (a)〉 =
4 · 48

g2
ρ4

peakρ
′ 4
∫

d4x
x2

(ρ2
peak + x2)2(ρ′ 2 + x2)4

= ρ2
peak

[
−768π2κ4 (1 + κ2) ln(κ)

g2 (κ− 1)5 (κ+ 1)5 +
64π2κ2 (κ4 + 10κ2 + 1)

g2 (κ2 − 1)2 (κ2 + 1)2

] (E.4)

Colour zero modes ψ̂′ (α)(r′)

〈ψ̂′ (α), ψ̂′ (α)〉 =
4 · 16

g2
ρ4

peakρ
′ 2
∫

d4x
x2

(ρ2
peak + x2)2(ρ′ 2 + x2)3

= ρ2
peak

[
128π2κ4 (2 + κ2) ln(κ)

g2 (κ− 1)4 (1 + κ)4 − 32π2κ2 (1 + 5κ2)

g2 (κ− 1)3 (1 + κ)3

] (E.5)
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[68] P. Di Francesco, P. Mathieu, and Sénéchal. Conformal Field Theory. Springer, 1997.

[69] M. Shintani. Space-time inversion as the origin of scale and special conformal transformations:
Starting from the space-time inversion. RRK 80-11.

[70] M. Shintani. Invariant systems under the space-time inversion - existence of two kinds of inver-
sion. Nuovo Cim., 71, 1982. RRK-82-2.

[71] V. M. Braun, G. P. Korchemsky, and Dieter Mueller. The uses of conformal symmetry in qcd.
Prog. Part. Nucl. Phys., 51:311–398, 2003.

[72] Jean-Loup Gervais and B. Sakita. Extended particles in quantum field theories. Phys. Rev.,
D11:2943, 1975.

[73] A.V. Yung I.I. Balitsky. Collective-coordinate method for quasizero modes. Phys. Lett. B,
168:113, 1986.

[74] D. Amati, K. Konishi, Y. Meurice, G. C. Rossi, and G. Veneziano. Nonperturbative aspects in
supersymmetric gauge theories. Phys. Rept., 162:169–248, 1988.

103



BIBLIOGRAPHY 104

[75] V. A. Novikov, Mikhail A. Shifman, A. I. Vainshtein, and Valentin I. Zakharov. Exact gell-
mann-low function of supersymmetric yang-mills theories from instanton calculus. Nucl. Phys.,
B229:381, 1983.

[76] G. ’t Hooft. (private communication).

[77] Stephen L. Adler. Massless, euclidean quantum electrodynamics on the five- dimensional unit
hypersphere. Phys. Rev., D6:3445, 1972. FERMILAB-PUB-72-058-T.

[78] Stephen L. Adler. Massless electrodynamics on the five-dimensional unit hypersphere: An am-
plitude - integral formulation. Phys. Rev., D8:2400–2418, 1973.

[79] Jr. Ore, F. R. How to compute determinants compactly. Phys. Rev., D16:2577, 1977.

[80] S. Chadha, P. Di Vecchia, A. D’Adda, and F. Nicodemi. zeta function regularization of the
quantum fluctuations around the yang-mills pseudoparticle. Phys. Lett., B72:103, 1977.

[81] A. A. Belavin and Alexander M. Polyakov. Quantum fluctuations of pseudoparticles. Nucl. Phys.,
B123:429, 1977.

[82] Jr. Ore, F. R. Quantum field theory about a yang-mills pseudoparticle. Phys. Rev., D15:470,
1977.

104


