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Abstract

The HERMES experiment is a large forward angle spectrometer located at the

HERA accelerator ring at DESY, Hamburg. This thesis presents the analysis of the

kinematic dependencies of ρ0 vector meson production on hydrogen and deuterium

targets. The relative gluon and quark contribution to the ρ0 production amplitude

is expected to depend on the kinematical variable xBj , and by measuring the ratio of

ρ0 electroproduction cross sections on deuterium and hydrogen from HERMES data

this dependence is confirmed. This thesis describes the methods used to extract the

cross section ratio from the HERMES data taken between the years 1996 and 2000

and compares the results with the theoretical predictions.

Until 2005 the missing mass resolution of the HERMES spectrometer was only suf-

ficient to allow exclusivity at the level of a data sample. The HERMES Recoil

Detector, installed in early 2006, is an upgrade which will augment the HERMES

spectrometer by establishing exclusivity at the event level and therefore improving

the resolution to which various kinematical variables may be reconstructed. Addi-

tionally, the Recoil Detector will contribute to the overall background suppression

capability of the HERMES spectrometer. These improvements will provide a strong

reduction in the statistical uncertainties present in the ρ0-analysis and other anal-

yses at HERMES. The Recoil Detector critically relies on its track reconstruction

software to enable its capability to provide event level exclusive measurements. This

tracking code is presented in detail.
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Chapter 1

Introduction

Our understanding of the substructure of matter has evolved considerably over the

last hundred years. Scattering experiments, beginning with those of Geiger, Marsden

and Rutherford, have provided invaluable insights into the fundamental building

blocks of matter. The incremental improvements in experimental design, coupled

with progressively more sophisticated theoretical formalisms have led to our present-

day understanding that all matter is constructed from combinations of six quarks

and six leptons. The familiar protons and neutrons which comprise most matter

are referred to as baryons and contain three quarks. Mesons are those particles

containing a combination of a quark and an antiquark. Baryons and mesons are

known as hadrons and are bound together by gluons, the gauge bosons of the strong

interaction described by quantum chromodynamics (QCD).

The existence of the constituent quarks from which hadrons are composed was first

postulated by Gell-Mann and Zweig in 1964. Deep-inelastic scattering (DIS) is

characterised by a large momentum and energy transfer between the beam and the

target such that the wavelength of the exchanged virtual photon is small enough to

resolve nucleon constituents. DIS experiments at SLAC in the late 1960s provided

the first evidence of this underlying substructure. The results of subsequent polarised

DIS experiments such as EMC and later E143 led to the startling revelation that

the quarks carried less than half of the spin of the nucleon. In sharp contrast to

the quark spin contribution expected from the Quark-Parton Model (∆Σ = 0.57),

the E143 experiment measures this contribution to be ∆Σ = 0.29 ± 0.09 [1]. The

remainder of the nucleon spin could be attributed to contributions from the quark

1
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and gluon angular momenta with the expression

1

2
~ = Sz =

1

2
∆Σ + ∆G + ∆L (1.1)

where ∆Σ = ∆u+∆d+∆s refers to the sum of the contributions from sea and valence

quarks and ∆G and ∆L are the gluon and quark angular momenta respectively.

The HERMES experiment (HERa MEasurement of Spin) was designed to study

the spin structure of the nucleon by measuring scattering interactions between a

polarised lepton beam and a polarised nucleon target. Precise measurements of the

spin polarised structure function g1 have been obtained at HERMES by analysing

measurements of double-spin asymmetries in inclusive lepton-nucleon scattering [2].

Spin asymmetries in different semi-inclusive processes can be measured in order to

separate the spin contributions from each quark flavour [3].

In addition to enabling spin physics studies, HERMES is capable of measuring vari-

ous meson production processes. Of specific interest to this thesis is exclusive vector

meson production, one of the processes that can be understood in terms of Gen-

eralised Parton Distributions (GPDs) [4]. GPDs link several exclusive production

processes and through their study may provide the first determination of the quark

and gluon angular momentum contributions to the spin of the nucleon. In this thesis

the exclusive, diffractive production of ρ0 vector mesons from positron and electron

scattering reactions on hydrogen and deuterium nuclei is studied in the HERMES

kinematic region. The ratio of the cross-sections of ρ0 meson production between

hydrogen and deuterium will provide an insight into the relative contribution to the

nucleon cross-sections from quarks and gluons.

The HERMES Recoil Detector is the latest planned upgrade to the HERMES exper-

iment. The Recoil Detector is designed to enhance the capabilities of the HERMES

spectrometer and expand the physics programme at HERMES, including the pro-

vision of an improvement to the resolutions of the kinematical quantities relevant

to the study of vector mesons. Its primary aim, however, is to enable the exclusive

measurements of scattering interactions at the event level. This capability, in addi-

tion to the improved background subtraction and angular acceptance, will greatly

increase the statistics available for the study of Deeply Virtual Compton Scattering

(DVCS) reactions, which provides the cleanest method with which to explore the

spin properties of the nucleon in the context of Generalised Parton Distributions.

This thesis will also present the details of the Recoil Detector with emphasis on the

offline software used to reconstruct tracks from scattering events.
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Chapter 2 will provide the physics theoretical background to the ρ0 analysis. A

selection of ρ0 production models will be explored, in addition to the reaction kine-

matics which are common to most analyses at HERMES. The link from exclusive

ρ0 production to Generalised Parton Distributions is also presented. A short sec-

tion is devoted to the physics motivation behind the Recoil Detector, containing a

discussion of DVCS.

Chapter 3 concerns the setup of the HERMES experiment. This chapter contains a

brief description of the HERA accelerator and some of its technical specifications,

the bulk of the chapter presents the technical details of the HERMES spectrometer

itself and its subcomponents. Special interest is paid to the Recoil Detector for which

a separate chapter (chapter 4) describing its design and subdetectors is appropriate.

The track reconstruction software for the Recoil Detector is presented in chapter 5.

Within are specific details of the track finding and track fitting algorithms used in the

reconstruction, both for cosmic ray tracks used in the winter 2005 test experiment,

and the curved proton and pion tracks which will be measured in the final setup

inside the HERMES spectrometer. The results of the tests of the tracking algorithms

are also presented, using Monte Carlo and real data where applicable.

Chapter 6 contains the results of the ρ0 analysis, and includes details of each step

taken in the procedure in order to obtain the final result. The comparison of the

ρ0 production cross-section ratio as seen in the HERMES data and its expected

theoretical behaviour is presented.



Chapter 2

Physics of Vector Meson

Production

In this chapter the specifics of exclusive, diffractive ρ0 meson production are de-

tailed. An introduction to the concepts relating to Deep Inelastic Scattering (DIS)

precedes a discussion of nucleon structure in which the separate formalisms of a

form factor-based approach and one based on parton distribution functions are pre-

sented. Next, the characteristics of diffractive interactions, and their relation to

classical diffraction in optics are presented. Following the subsequent discussion of

the various theoretical models describing vector meson production, the conceptual

unification of nucleon form factors and parton distribution functions is presented

via the Generalised Parton Distribution formalism. Finally, the physics motivation

behind the analysis of ρ0 production cross-section ratios is explained.

The natural units ~ = c = 1 will be used throughout this work.

2.1 Kinematics

The specifics of the kinematics relevant to the exclusive, diffractive ρ0 vector meson

production analysis share their features with those of deep inelastic lepton-nucleon

scattering. Figure 2.1 depicts exclusive vector meson production from electron or

positron scattering on a proton target.

The target nucleon is initially at rest in the laboratory frame, p and M denote its

four-momentum and mass respectively. The four-momentum of the incoming lepton

is denoted as k, that of the outgoing lepton as k′. After the interaction, the final

4
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Figure 2.1: Exclusive vector meson electroproduction.

hadronic state has a four-momentum and energy p′ and Ep′ and θ is the scattering

angle between the incoming and outgoing lepton momenta.

The interaction proceeds via the exchange of the virtual photon γ∗. Its four-

momentum q is given by

q = k − k′. (2.1)

The scattering kinematics are more usefully expressed as Lorentz-invariant quan-

tities, allowing ready comparison between the fixed-target kinematics of HERMES

and other experiments. The invariant quantity Q2 is also referred to as the pho-

ton virtuality and has positive values for a spacelike (virtual) photon. It is given

according to

Q2 ≡ −q2 = −(k − k′)2 (2.2)

and in the laboratory frame

Q2 ≈ 4EE ′sin2

(

θ

2

)

(2.3)

neglecting the lepton mass as k � me. Here the Bjørken scaling variable x is

introduced;

x ≡ Q2

2p · q =
Q2

2Mν
, (2.4)
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which in DIS is interpreted as the fraction of nucleon momentum carried by the

struck quark, in a reference frame where both the lepton and nucleon have very

large momenta - in the case of HERMES, the centre of mass system between the

lepton and nucleon is such a frame. Here, ν represents the energy transfer, in the

laboratory frame, from the beam lepton to the virtual photon, and is given according

to

ν ≡ p · q
M

lab
= E − E ′. (2.5)

The Bjørken scaling variable y is given as

y =
p · q
p · k

lab
=

ν

E
(2.6)

and represents the ratio of virtual photon and incoming lepton energies in the lab-

oratory frame. For the variables x and y, the allowed values are

0 < x, y ≤ 1. (2.7)

The squared centre-of-mass energy of the photon-nucleon system is given by

W 2 = (q + p)2 = M2 + 2Mν −Q2 = M2 +Q2 1 − x

x
. (2.8)

In DIS W 2 also represents the square of the invariant mass of the hadronic final

state. For x = 1, the last term in equation (2.8) shows that W = M which indicates

an elastic scattering event. The variable s denotes the square of the centre of mass

energy of the lepton-nucleon system and is given by

s ≡ (k + p)2 lab≈ M2 + 2ME. (2.9)

In the case of HERMES with a 27.5 GeV beam energy,
√
s = 7.2 GeV. The squared

four-momentum transfer to the hadronic vertex is given by

t = (q − v)2 = (p− p′)2, (2.10)

where v is the four-momentum of the vector meson. The second term gives, for
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exclusive scattering in the laboratory frame,

t = 2M(M − Ep′) (2.11)

which can be rearranged to give an expression for the recoiling target nucleon energy,

Ep′, as a function of t.

2.2 Elastic Scattering

Elastic scattering is characterised by the absorption of the transferred energy and

three-momentum by the target nucleon without excitation, and is depicted to lead-

ing order in figure 2.2(a). Elastic electron-proton scattering experiments in the 1950s

were the first to provide a way to determine the size of the proton [5]. At the photon

energies and hence lepton energies required for probing the nucleon effectively, the

scattering behaviour diverges from the classical Rutherford formula. The probing

leptons are relativistic, produce nuclear recoil and interact via their magnetic mo-

ment in addition to their charge. Appropriately, the Rutherford scattering formula

is modified to yield the Mott cross-section [6]:

(

dσ

dΩ

)

Mott

=
α2

em

4E2 sin4 θ/2

E ′

E
cos2 θ

2
(2.12)

where αem is the fine structure constant and E ′, E are as defined in section 2.1.

Equation (2.12) only applies, however, to a lepton scattering from a point-like proton

with corresponding magnetic moment. The Rosenbluth cross-section for elastic ep

scattering is a modification of the Mott formula taking these considerations into

account [7];

dσ

dΩ
=

(

dσ

dΩ

)

Mott

{

F1

(

Q2
)

+τ

[

F 2
2

(

Q2
)

+ 2
(

F 2
1

(

Q2
)

+ F 2
2

(

Q2
))2

tan2 θ

2

]}

, (2.13)

where τ = Q2/4m2, m is the mass of the proton, F1(Q
2) and F2(Q

2) are the em-

pirically determined Dirac and Pauli electromagnetic form factors respectively. For

small lepton energies, in comparison to the nucleon mass, equation 2.13 reduces to



2.3. Deep-Inelastic Scattering 8

the Mott-Rutherford formula for scattering of an electron by a fixed electrostatic po-

tential [8]. The form factors F1(2) appear in the scattering amplitude as transition

current matrix elements sandwiched between nucleon states and represent vector

(tensor) transitions between them.

More intuitively, these form factors may be represented by the Sachs electric and

magnetic form factors:

GE(Q2) = F1(Q
2) − τF2(Q

2),

GM(Q2) = F1(Q
2) + F2(Q

2) (2.14)

which, in the Breit frame (coincident with the lepton-nucleon centre of mass), are

related to nucleon charge and magnetisation densities for a given Q2. Further, the

charge distribution is obtained by taking the Fourier transform of GE. Additionally,

at Q2 = 0, GE(M) gives the proton charge (magnetic) moment while the slopes of the

form factors are used in the determination of the mean square proton radius. The

observed strong dependence of GE,M on Q2 provides direct evidence of the extended

charge and current distributions of the proton.

F  ,F1 2p p’

e’e

� ��������������
X

q(x)∆q(x),
p

e

e’

(a) (b)

Figure 2.2: Leading order Feynman diagrams for (a) Elastic ep scattering and (b) Deep
Inelastic Scattering. Parameterisation of the incalculable hadronic tensor W µν is ac-
complished respectively in terms of form factors F1,2(Q

2) and parton distributions q(x),
∆q(x) [9].

2.3 Deep-Inelastic Scattering

Increasing the virtuality (Q2) of the interacting photon in a scattering event im-

proves the resolution to which the target nucleon can be investigated. Inclusive
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lepton-nucleon scattering interactions in the Bjørken limit, where Q2 and ν are

much larger than the nucleon mass are useful processes for studying nucleon struc-

ture as the momentum and energy transfer become large enough to promote nucleon

fragmentation into multihadronic states. In DIS, a high-energy electron or positron

scatters on a nucleon as depicted to lowest order in figure 2.2(b).

The single-photon exchange approximation is adequate here as heavy boson ex-

change associated with weak processes lies outside the HERMES kinematic range

(the centre-of-mass energy at HERMES being 7.2 GeV2). Further, multi-photon ex-

change processes are suppressed by a factor of αem and can be accounted for through

the application of so-called radiative corrections.

The squared amplitude for Deep Inelastic Scattering can be written in terms of the

product of the leptonic and hadronic tensors Lµν and Wµν [10], corresponding to

the photon-lepton and photon-hadron vertices in figure 2.2(b). The cross-section

can then be expressed as

d2σep

dΩdE ′
=
α2E ′

Q4E
LµνWµν . (2.15)

While the leptonic tensor Lµν can be exactly calculated in quantum electrodynam-

ics, the hadronic tensor cannot and must be parameterised in terms of empirically

obtained structure functions and the hadron momentum p, hadron spin sh and the

virtual photon momentum q. Imposing parity conservation, translation and time

reversal invariance, hermicity and current conservation, the hadronic tensor is given

by

Wµν = W1

(

−gµν +
qµqν
q2

)

+
W2

M2

(

pµ − p · q
q2

qµ

)(

pν −
p · q
q2

qν

)

+iεµναβqαMSβG1 + iεµναβqα
[

(p · q)Sβ − (S · q)pβ
] G2

M
(2.16)

where gµν is the metric tensor, εµναβ is the totally antisymmetric Levi-Civita tensor

and S denotes the polarisation vector of the spin 1/2 target nucleon. The coefficients

W1,W2, G1, G2 are functions of Q2 and ν and are often expressed in terms of four

dimensionless structure functions:
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F1(x,Q
2) = MW1(Q

2, ν),

F2(x,Q
2) = νW2(Q

2, ν),

g1(x,Q
2) = M2νG1(Q

2, ν),

g2(x,Q
2) = Mν2G2(Q

2, ν) (2.17)

where the structure functions F1,2 are not to be confused with the form factors intro-

duced in section 2.2 and instead relate to the symmetric part of the hadronic tensor,

with the spin-dependent part being described by g1,2. The distance scale probed by

the virtual photon, which defines the resolution of the scattering process, displays

a 1/Q dependence arising from the relationship between Q2 and the wavelength of

the virtual photon. For fixed x,

λ =
~

|~q| =
~

√

ν2 +Q2

Breit
=

~

Q
. (2.18)

At low photon energies the electron scatters elastically from the nucleon - this is

adequately described by the form factors of section 2.2. The observed cross-sections

at higher Q2, however, are inconsistent with the elastic interpretation. As predicted

by Bjørken [11], the structure functions F1,2 and g1,2 exhibit scaling behaviour in the

DIS regime, that is, they are approximately independent of Q2 at fixed x as they

are functions of only x to leading order:

F1,2(x,Q
2)

DIS≈ F1,2(x),

g1,2(x,Q
2)

DIS≈ g1,2(x). (2.19)

The observation of this scaling behaviour provides direct evidence that, in the DIS

regime, the beam lepton scatters on small point-like constituents within the nucleon.

2.4 The Quark-Parton Model

Feynman’s interpretation of DIS data, coupled with the quarks postulated by Gell-

Mann and Zweig led to the development of the quark-parton model (QPM). This

picture provides an intuitive understanding of the phenomenon of scaling; an ex-
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tended object possesses a form factor which introduces a dependence on Q2. The

Q2 independence observed in DIS implies that the proton must contain point-like

objects. In the Bjørken limit where both Q2 and ν approach ∞ and x remains

constant, these constituent partons [12] (later identified as quarks) behave as free

particles due to the asymptotic freedom of QCD. The inelastic scattering observed

from the interaction between the beam lepton and the target nucleon can, in this

limit, be interpreted as elastic scattering between the lepton and the quasi-free

quarks within the nucleon. In this picture of DIS, the struck quark leaves the target

and fragments independently of the remainder of the nucleon.

In order to obtain the unpolarised DIS cross section, a sum over initial lepton and

hadron spin states must be performed to cancel out the anti-symmetric parts of the

leptonic and hadronic tensors. Appropriately, equation 2.15 becomes

d2σ

dxdQ2
=

4πα2

Q4

[

F1(x,Q
2)y2

(

1 − 2m2
e

Q2

)

+
F2(x,Q

2)

x

(

1 − y − Mxy

2E

)]

. (2.20)

The parton model is most simply formulated in an “infinite momentum” frame; for

example one in which the nucleon is moving with momentum approaching infinity

in the z-direction [7]. The relativistic time dilation results in the laboratory frame

observation that during the absorption of the virtual photon, insufficient time elapses

for any interaction between nucleon constituents to occur. In the infinite momentum

frame the masses and transverse momenta of the quarks may be neglected and so

the Bjørken scaling variable x (equation 2.4) can be interpreted as the momentum

fraction carried by the struck quark prior to the interaction relative to the total

nucleon momentum. Justification for this may be found in [7] and [13].

The structure functions of equation 2.20 can now be written in terms of parton

distribution functions (PDFs) qf (x,Q
2) which represent the probability of finding

a quark of flavour f with momentum fraction x inside the nucleon. The relation

between structure functions and PDFs may be obtained by comparing equation 2.16,

which gives the hadronic tensor in the lepton-nucleon interaction, with an equivalent

hadronic tensor in the elastic scattering cross section from quarks in the nucleon:
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F1(x,Q
2) =

1

2

∑

f

e2f (q
+
f (x,Q2) + q−f (x,Q2)), (2.21)

F2(x,Q
2) =

∑

f

e2fx(q
+
f (x,Q2) + q−f (x,Q2)), (2.22)

g1(x,Q
2) =

1

2

∑

f

e2f (q
+
f (x,Q2) − q−f (x,Q2)), (2.23)

g2(x,Q
2) = 0 (2.24)

where q+(−) denotes the probability of finding a quark with spin parallel (anti-

parallel) to the nucleon spin. In a more convenient notation, the unpolarised quark

distribution function is qf = q+
f + q−f and the polarised quark distribution function

is ∆qf = q+
f − q−f . Recalling the Q2 independence of nucleon structure functions in

the DIS regime, the structure functions may be expressed as

F1(x) =
1

2

∑

f

e2fqf (x), (2.25)

F2(x) =
∑

f

e2fxqf (x), (2.26)

g1(x) =
1

2

∑

f

e2f∆qf (x), (2.27)

g2(x) = 0. (2.28)

Combining equations 2.25 and 2.26 yields the famous Callan-Gross relation, the

experimental verification of which showed (by imposing helicity conservation) that

the partons have 1
2

spin, as expected of quarks:

F2(x) = 2xF1(x). (2.29)

From this relation, the momentum sum rule is obtained:

∑

f

∫

xqf (x)dx = 1. (2.30)

The sum rule asserts that the momentum of the nucleon is entirely due to the

summed contribution of the individual parton momenta. Experimentally, a weak
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scaling violation is observed due to quark interactions mediated by gluons, for which

the quark-parton model does not account. In fact, at Q2 ∼ 2 GeV2 the gluons are

responsible for 39% of the nucleon momentum [7]. The dynamical structure of nucle-

ons can be probed by further increasing the Q2 scale; in such regimes processes such

as gluon emission, quark-antiquark pair production and gluon splitting contribute

strongly to the Q2 dependence of the PDFs. Figure 2.3 shows the experimentally ob-

tained proton electromagnetic structure function F2 as a function of Q2 at increasing

x scale.
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Figure 2.3: Scale dependence of F2(x,Q2) [14].

At increasing Q2 the scaling violation is most pronounced for very low values of x.

In this region the increase in resolution allows the observation of qq̄ pair production,

prompting the increase in F2. At intermediate values of x the structure function
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remains roughly constant over a large Q2 range, this observation led to the idea of

scaling.

The evolution of the PDFs or structure functions are most simply described by

the singlet Altarelli-Parisi (or DGLAP) equations, which provide a generalisation

of the parton number densities to include gluon distributions [15]. It is possible,

from the DGLAP equations, to calculate PDFs at any Q2 scale where leading-order

perturbative QCD applies if the PDF at some value of Q2 is known.

2.5 Diffraction

High-energy particle scattering interactions display features which share the charac-

teristics of diffractive phenomena in optics, observed when an obstruction is placed

in the path of a coherent source of light. Huygens’ principle recognises that each

point of an advancing wave front is a source of secondary spherical wavelets, and that

the advancing wave as a whole may be regarded as the superposition of all secondary

waves arising from points already traversed. Wave-particle duality in quantum me-

chanics allows diffraction in high-energy scattering to be treated similarly; in which

case, the overall superposition is represented by the sum of probability amplitudes.

The distinctive shape of optical diffractive minima and maxima is also a feature

of diffraction in high energy physics processes. In scattering processes, those reac-

tions during which no internal quantum numbers are exchanged between the beam

and target particles are dominated asymptotically by diffraction. As with optics,

hadronic diffraction exhibits very steep momentum transfers or angular distribu-

tions, and the total cross section increases slowly with energy. Also, the slopes of

the angular distributions are observed to increase slowly with energy.

Different classes of diffractive reactions are depicted in figure 2.4. Figure 2.4(a) il-

lustrates elastic scattering, where both particles remain intact after the interaction.

Single diffraction is shown in figures 2.4(b) and (c), in this case either the target

or beam particle splits into several daughter particles, the sum of whose individ-

ual quantum numbers matches those of the parent particle. Figure 2.4(d) depicts

those events in which both interacting particles decay into particle jets after the

interaction, referred to as double diffraction.
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Figure 2.4: Different types of diffraction; (a) elastic scattering, (b) and (c) single diffrac-
tion, (d) double diffraction.

2.6 Optical Diffraction

A plane wave incident on a black, totally absorbing disk of well-defined radius R

provides the most simple model of diffraction. In this case the angular distribution

of the elastic scattering is the Fourier transform of the spatial distribution of the

obstacle, in which case the irradiance is given by [16]:

I(θ)

I(θ = 0)
=

(

2J1(x)

x

)2

≈ 1 − R2

4
(kθ2), (2.31)

where the first order Bessel function is denoted by J1, the wave vector k = 2π/λ and

x = kR sin θ ≈ kRθ for small values of θ. The distribution exhibits a peak at the

centre of the pattern, at θ = 0, and is symmetrical about the optical axis through

the centre of the object. Minima are seen at |x| = 3.83, 7.02..., figure 2.5 illustrates

optical diffraction.

Figure 2.5: Left, diffraction pattern from light incident on black, totally absorbing disk.
On the right is the illuminance distribution.
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Elastic hadron-hadron scattering exhibits a similar pattern. In the centre of mass

frame the squared momentum transfer between the two hadrons is t = (p1 − p′1)
2 =

(p2 − p′2)
2 and can be expressed as −t = q2 =

(

2p sin θ
2

)2
where pi are the four-

momenta corresponding to either hadron and θ is the scattering angle. The dif-

ferential cross-section for this process depends primarily on q, and is illustrated in

figure 2.6.

Figure 2.6: Differential elastic pp cross-section for different incident proton momenta [18].
The solid lines represent the expected behaviour from the optical model.

As prescribed in the optical model, the differential cross section can be expressed

in terms of the first order Bessel function J1, independently of the energy of the

incident particle [20]:

dσel

d|t| = πR4

∣

∣

∣

∣

∣

J1(R
√

|t|)
R
√

|t|

∣

∣

∣

∣

∣

(2.32)

where J1 has minima at R
√

|t| = 3.83, 7.02... and R is the nucleon radius. The

diffractive forward peak is clearly visible in figure 2.6 at |t| ≤ 1 GeV2. At |t| → 0



2.6. Optical Diffraction 17

there is only a weak dependence of the differential cross section on the incident

proton energy. The application of equation 2.32 gives a nucleon radius of R ≈
0.7 fm. Figure 2.7 depicts the differential cross section for elastic pp scattering as

calculated using equation 2.32. The qualitative features of figure 2.6 are also present

in figure 2.7 which demonstrates the applicability of equation 2.32 in this domain.

Quantitative predictions using the optical model are less reliable as it fails to predict

the ratio of elastic to total cross section and their energy dependence.
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Figure 2.7: Differential cross-section for elastic pp scattering calculated using equation
2.32.

The opaque black disk of the optical model does not provide a reasonable optical

description of the nucleon; an improvement can be made by modifying the disk to a

“grey” scattering centre with a Gaussian density distribution. The density reflects

the probability of a scatter occurring at some distance (radius) from the centre. The

appropriate modification to equation 2.32 is given by

dσel

d|t| =
dσel

d|t|

∣

∣

∣

∣

|t|=0

e−b|t|. (2.33)

The exponential slope given by the b parameter is related to the radius R of the

“grey” disk by b = R2/4. At small |t| the slope b can be obtained using straight

line fits to the plots of figure 2.6. At high energies b can no longer be interpreted as

a measure of the nucleon size, and provides a description of the strong interaction

between the two extended hadronic objects. Additionally, b can be interpreted as
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the quadratic sum of the Gaussian width of each nucleon:

b ∝ R2
1 +R2

2. (2.34)

The diffractive peak at low |t| has been observed in several hadron-hadron scattering

reactions. The optical model, however, neglects particle spin and so no dependence

of the reaction on hadron spin states is expected. Elastic pp scattering experiments

with polarised beams and targets have demonstrated large single and double spin

asymmetries, in contrast to the predictions of the optical model.

The optical model is also adequate in its description of electron scattering from

heavier nuclei; this bears a stronger resemblance to the experimental situation at

HERMES than pp scattering does. Figure 2.8 shows the electron scattering cross

sections on calcium-40 and calcium-48 as a function of the scattering angle θ (related

to the kinematical variable t) in which the diffractive peak structure is readily seen.
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Figure 2.8: Differential elastic e 48Ca and e 40Ca cross sections as a function of scattering
angle θ [19]. The solid lines represent the expected behaviour from the optical model.
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2.7 The Vector Meson Dominance Model

Lepton-hadron interactions are related to the hadron-hadron interactions described

in the previous sections through the vector meson dominance model (VMD). The

initial description of the photon in quantum electrodynamics was a massless, zero

charge pointlike gauge boson which coupled to charged particles. At higher energy

scales, however, the photon was observed to fluctuate into electron positron pairs

during an interaction with a Coulomb field. Quantum field theory further allows

photon fluctuations into more complex virtual particle states such as hadrons, al-

though in this case the reaction is suppressed by a relative factor of α ∼ 1/137

compared with the bare particle.

Photon-proton interactions observed in scattering experiments in the 1960s showed

surprising similarities to the earlier hadron-hadron interactions. Both exhibit sim-

ilar resonant behaviour at the low and high ends of their respective energy scales,

and a similar |t| slope is observed. Also, photon and hadron interactions on compos-

ite nuclei exhibit shadowing effects, indicating that the interactions typically occur

on the same side of the nucleus as approached by the initial beam particle. These

observations could be understood by modelling the photon with a component which

interacts purely electromagnetically with the target, and one which takes part in

purely hadronic interactions. The physical virtual photon is described by the super-

position of a direct coupling bare photon |γB > with the hadronic state |γh >:

|γ >'
√

Z3|γB > +
√
α|γh > (2.35)

where Z3 assumes proper normalisation of |γ > which accounts for the electromag-

netic coupling to the target. It is several orders of magnitude smaller than the

hadronic coupling and so can be neglected [20]. The hadron states |γh > must

conserve the quantum numbers of the photon: JPC = 1−−, Q = B = S = 0 and

so the possible states of |γh > are constrained to unit spin vector mesons. Indeed,

large cross sections for the photoproduction of the light vector mesons ρ0, ω and φ

are observed and the vector meson dominance model assumes that the photon only

fluctuates into one of these three states (heavier vector mesons such as the J/ψ are

included in the so-called generalised vector meson dominance model [21]).

The vector meson dominance model successfully describes vector meson photopro-

duction. According to its prescription, before interaction with the target nucleon
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the photon fluctuates into a virtual vector meson state qq̄ for a duration [22]:

tf ≈ 2ν

Q2 +M2
V

(2.36)

where MV is the mass of the vector meson. If tf is sufficiently long to allow the

virtual vector meson to travel a distance much larger than the nucleon radius of

about 1 fm, the photon fluctuates long before it hits the target and the interaction

occurs between the virtual meson and the nucleon. Such a process is depicted in

figure 2.9.

p p

Vγ

Figure 2.9: Vector meson photoproduction according to the vector meson dominance
model. The photon dissociates into a virtual vector meson V which subsequently scatters
off a nucleon.

The hadronic term of equation 2.35 can be written as [23]:

√
α|γh >=

∑

V

e

fV

(

1 +
Q2

M2
V

)−1

|V > (2.37)

where |V > denotes the vector meson states and fV denotes the γ ↔ V coupling

constant. This is related in the VDM to the vector meson mass MV and to its

leptonic decay width ΓV
ee according to:

4π

f 2
V

=
3ΓV

ee

α2MV

. (2.38)

The Q2 dependence shown in equation 2.37 is entirely contained within the vector

meson propagator. The VDM cross sections are given separately for the cases of
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transversely and longitudinally polarised photons:

σγ∗p

T (Q2,W ) =
∑

V

e

f 2
V

(

1 +
Q2

M2
V

)−2

σV p
T (W ) (2.39)

σγ∗p

L (Q2,W ) =
∑

V

e

f 2
V

(

1 +
Q2

M2
V

)−2

ξ2
V

Q2

M2
V

σV p
T (W ) (2.40)

where σV p
T denotes the total cross section for the production of the transversely po-

larised vector meson. The ξ2
V factor is introduced to account for the fact that the

longitudinal V p cross section need not be the same as the transverse one. Appro-

priately, ξ2
V represents the ratio between the two cross sections and according to

the VDM it is predicted to be O(1) [24]. Experimental results on ρ0 production

however, indicate that the ratio is actually lower [25], [26]. Equation (2.40) asserts

that the longitudinal cross section vanishes at Q2 = 0, i.e. for real photons.

The vector meson dominance model gives the relation between the total virtual

photoproduction and the real photoproduction cross sections:

σγ∗p

(Q2,W ) =

(

1 + εξ2
V

Q2

M2
V

)(

1 +
Q2

M2
V

)−2

σγp(W ) (2.41)

where ε = ΓL

ΓT
is the ratio of longitudinal and transverse photon flux. The VDM

prediction of the ratio between the longitudinal and transverse photoproduction

cross section:

R =
σL

σT

= ξ2
V

Q2

M2
V

(2.42)

is given by taking the ratio of equations 2.39 and 2.40.

2.8 Regge Theory

Regge theory, used in particle physics, shows that it is useful to regard the angular

momentum l as a complex variable and relies on the idea of the analytical contin-

uation of the scattering amplitude into the complex angular momentum plane [27].

So-called Regge Poles, the singularities in the scattering amplitudes found in the

complex plane, correspond to either bound states or resonances depending on the
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angular momentum.

In Regge theory, an incoming particle of momentum p can be regarded as an outgoing

antiparticle of momentum −p. This is referred to as crossing symmetry and is

depicted in figure 2.10.

c̄a c

b d

a

db̄

Figure 2.10: The reaction a + b → c + d and its crossed equivalent a + c̄ → b̄ + d.

The reaction

a(pa) + b(pb) → c(pc) + d(pd) (2.43)

has a squared centre of mass energy and squared four-momentum transfer

s = (pa + pb)
2 > 0

t = (pa − pc)
2 < 0 (2.44)

where the scattering angle is related to t. Obtaining the equivalent crossed reaction

requires reversing the charge and momenta of a particle on the left and right hand

sides; appropriately, the crossed reaction

a(pa) + c̄(−pc) → b̄(−pb) + d(pd) (2.45)

has squared centre of mass energy and squared four-momentum transfer

s = (pa − pc)
2 > 0

t = (pa + pb)
2 < 0 (2.46)
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where again the scattering angle is related to t. The kinematic variables t and s

of the first reaction (relation 2.43) correspond to the squared centre of mass and

four-momentum transfer respectively of the crossed reaction (relation 2.45). The

first reaction is referred to as an s channel reaction, while the second is its t chan-

nel counterpart. Despite each reaction taking place in non-overlapping kinematical

regions in s and t, both are described by the same amplitude.

Through a representation depicted by the so-called Chew-Frautschi plots, Regge

theory introduces the idea of Regge trajectories; those hadronic states possessing

the same quantum numbers will form such a straight line trajectory, when the spin

of each state is plotted against the square of its mass. Appropriate to the description

of a straight line, a Regge trajectory is parameterised as:

α(t) = α(0) + α′t (2.47)

with α(0) the intercept and α′ the slope of the trajectory. Figure 2.11 shows a Chew-

Frautschi plot for the reaction π−p → π0n. The experimentally obtained results of

diffractive scattering processes are added to the Chew-Frautschi plot and equation

2.47 is fit to the measured data. The parity transfer in the reaction π−p → π0n

is positive and is given by ∆P = (−1)JP with J and P the angular momentum

and parity of the object exchanged in the t-channel. Conservation of the relevant

quantum numbers requires the reaction to proceed via ρ, a2 and ρ3 exchange, with

JP = 1−, 2+, 3−, all of which lie on the Regge trajectory passing through the

measured points. This Regge trajectory is almost identical to the ω/f trajectory

also shown.

Regge theory gives the total cross section as

σtot ∝ sα(t=0)−1 (2.48)

meaning that at high centre of mass energies s, the behaviour of the total cross

section is dominated by the highest lying Regge trajectories, corresponding to the

ρ/a2 and ω/f trajectories in figure 2.11. The measurement of their intercepts at

αρ,ω(0) ≈ 0.5 requires that the total cross section behaves according to σtot ∝
s−

1

2 , conflicting with the observed behaviour of the hadron-proton scattering total

cross section at high energy which remains approximately constant with energy and

exhibits a slow rise above ∼ 10 GeV. A Regge trajectory which reflects this behaviour

requires α(0) ≈ 1, while all known particles have α(0) < 1 and the exchanged
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Figure 2.11: Chew-Frautschi plot showing two different Regge trajectories corresponding
to natural parity exchange. The solid line is obtained by fitting equation 2.47 to exper-
imentally obtained meson points. The dashed line extending from the solid line is the
backwards extrapolation of the fit to t < 0, the data points in which region were ob-
tained from π−p → π0n scattering data [28]. The dotted line represents the trajectory
corresponding to Pomeron exchange.

particle needs to have the quantum numbers of the vacuum. The so-called Pomeron

trajectory satisfies these requirements and is parameterised as:

αP = 1 + ε + α′
P
t (2.49)

where αP(0) = 1 + ε and 0 < ε � 1. Assuming that vector meson cross sections

exhibit the typical behaviour of hadron-hadron cross sections, the intercepts of the

Regge and Pomeron trajectories can be described by the sum of two terms:

σtot = Xsε + Y s−η (2.50)

where X and Y are arbitrary normalisations. The exponents ε and η refer to

Pomeron and Reggeon exchange respectively and can be determined from fits to
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experimental data. Appropriately, the first term corresponds to Pomeron exchange

while the second term corresponds to the highest lying Regge trajectory. The expo-

nents are assumed to be independent of the interacting hadrons andX and Y depend

on the specific process. The values for the exponents, ε = 0.0808 and η = 0.4525

were determined by Donnachie and Landshoff [29] by applying a fit to pp and pp̄

data at
√
s > 10 GeV.

2.9 The Donnachie and Landshoff Model

Donnachie and Landshoff obtain the total ρ0 real photoproduction cross section by

combining their Regge type fits of hadron-hadron cross sections with the additive

quark model and vector meson dominance model. This was determined to be

σρ0p
tot = 13.6s0.0808 + 31.8s−0.45. (2.51)

Although this result describes the behaviour of the cross section with energy well,

the absolute magnitude is ∼ 15% higher than measured values. The discrepancy

arises from the insertion of the γ−V coupling constant fρ0 into the model, which is

related to e+e− decay. Measurements of vector meson photoproduction show a larger

coupling constant, its use with the Donnachie and Landshoff fits in the 9 < W < 18

GeV kinematic region provides a much better agreement with the data [30].

2.10 The Manayenkov Model

Manayenkov combines a light-cone wavefunction description of the γ∗ → qq̄ dissoci-

ation amplitude and a Reggeon exchange formalism describing the scattering of the

meson from the nucleon [43]. The production of the final vector meson state from

the scattered qq̄ is calculated with the aid of the parton-hadron duality concept.

The model reproduces cross sections with good accuracy atW > 4 GeV where Regge

theory applies. Predictions of the ratio of longitudinal to transverse production cross

section agree reasonably with world data at Q2 < 4 GeV2, where pQCD loses some

of its predictive power. This approach fails, however, at higher Q2 where pQCD

describes the data well.
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2.11 Generalised Parton Distributions

The recent introduction of Generalised Parton Distributions (GPDs), often referred

to as off-forward or skewed parton distributions, is the result of efforts to unite

the form-factor based study of the structure of the nucleon with the usual parton

densities. Both formalisms are now known to be limiting cases and moments of

GPDs. GPDs have received special attention since Ji’s discovery that the second

moment of two unpolarised quark GPDs is related to the gauge invariant total quark

angular momentum [4]. For the first time, this discovery offers a way to derive the

orbital angular momentum carried by quarks in the nucleon.

Inclusive DIS, ep → eX provides a convenient starting point to introduce some of

the concepts associated with GPDs. In the Bjørken limit where both the photon

virtuality Q2 = −q2 and the squared hadronic centre of mass energy (p+q)2 become

large at fixed xBj = Q2/(2p · q), the reaction amplitude factorises into a hard scat-

tering part, calculable in perturbative QCD, and a parton distribution representing

the probability of finding a parton with momentum fraction x.

The meaning of the relationship of GPDs to parton distribution functions is best

elucidated using virtual Compton scattering as an example, as depicted in figure

2.12(a). Here, no momentum is transferred between the left and right hand sides of

the diagram (t = 0). The optical theorem links the imaginary part of the Compton

amplitude γ∗p→ γ∗p to the inclusive γ∗p cross section.
 

(q) (q’)(q)(q)

x−ξx+ξ ξ+x ξ−x

∗γ ∗γ∗γ

p p’

γ

p

x

p

x

(a) (b) (c)

Figure 2.12: (a) The Born level diagram of the forward Compton amplitude, the imaginary
part of which gives the DIS cross section. The blob denotes the quark and antiquark
distributions in the proton. (b) The Born diagram for deeply virtual Compton scattering
in the region ξ < x < 1. In this case the blob is described by GPDs. (c) The same in
the region −ξ < x < ξ. In each case, a second diagram may be obtained by exchanging
photon vertices [31].

The factorisation of the dynamics into short (pQCD) and long (PDF, GPD) range

components is also applicable in the case where there is a finite momentum transfer

to the target for large Q2. Deeply virtual Compton scattering ep → eγp (DVCS),

depicted in figure 2.12(b), is an example of such a process. DVCS is the exclusive
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reaction in which the nucleon absorbs a virtual photon and produces a real photon,

leaving the target nucleon intact, and is one method of gaining access to GPDs.

Exclusive meson production, where the outgoing real photon in the DVCS handbag

diagrams is replaced with a vector or pseudoscalar meson, is another reaction allow-

ing access to GPDs. Where the meson quantum numbers permit, the gluon GPDs

enter at the same order in αs, the strong coupling constant, as those for quarks.

Figure 2.13 illustrates this.

γ∗

γ∗

M 

M

(b)

(a)

Figure 2.13: Diagrams of hard meson production showing the quark (a) and gluon (b)
contributions [31].

The nucleon structure information contained in these handbag diagrams can be

parameterised in leading order QCD in terms of the quark chirality conserving GPDs

Hq, H̃q, Eq and Ẽq for each quark flavour q = (u, d, s). The properties of each

GPD are listed in table 2.1. In addition to the variable x, the GPDs depend on

the invariant momentum transfer t and the so-called skewedness parameter ξ =

−∆+/2p+, which is the light-cone momentum fraction transferred to the target

nucleon. This notation was adopted from that used in the formalism of light front

dynamics [32] in which a particle with four-momentum pµ = (p0, p1, p2, p3) can be

represented in a system with momentum along the p3 axis approaching ∞, such



2.11. Generalised Parton Distributions 28

that:

p± = p0 ± p3 = constant. (2.52)

This notation is particularly convenient for use with reactions such as DIS as mo-

mentum transfers can be represented by simple Lorentz boosts. Additionally, at

high nucleon momenta the transverse and longitudinal components are naturally

separated.

GPD Properties Association

Unpolarised distribution
Hq(x, ξ, t) Nucleon helicity conserving Electromagnetic interaction

Access via DIS
Polarised distribution

H̃q(x, ξ, t) Nucleon helicity conserving Weak interaction
Access via DIS

Unpolarised distribution
Eq(x, ξ, t) Nucleon helicity flip Electromagnetic interaction

No access via DIS
Polarised distribution

Ẽq(x, ξ, t) Nucleon helicity flip Weak interaction
No access via DIS

Table 2.1: Properties of the four quark chirality conserving GPDs.

As depicted in figure 2.14, in the forward limit where t→ 0, ξ → 0

Hq(x, 0, 0) = q(x)

H̃q(x, 0, 0) = ∆q(x) (2.53)

the GPDs reduce to the usual quark unpolarised and polarised PDFs. This is not the

case for E and Ẽ which are inaccessible in DIS since these tensors disappear in the

forward limit. For equation 2.53, −1 ≤ x ≤ 1 and negative values of x correspond

to antiquark distributions according to:

q(−x) = −q̄(x)
∆q(−x) = ∆q̄(x). (2.54)
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Figure 2.14: The unpolarised up quark GPD Hu(x, ξ, t = 0) [33]. At ξ = 0 the GPD
reduces to the ordinary up quark PDF.

The first moments of the GPDs simplify to the flavour-dependent form factors [4,34]:

∫ 1

−1

dxHq(x, ξ, t) = F q
1 (t)

∫ 1

−1

dxEq(x, ξ, t) = F q
2 (t)

∫ 1

−1

dxH̃q(x, ξ, t) = gq
A(t)

∫ 1

−1

dxẼq(x, ξ, t) = hq
A(t) (2.55)

where F1(t) and F2(t) are the Dirac and Pauli form factors and gA(t) and hA(t)

are the axial vector and pseudoscalar form factors which arise in weak, rather than

electromagnetic, currents. The second moments of the unpolarised GPDs at t = 0

give:

1

2

∫ 1

−1

dxx [Hq(x, ξ, 0) + Eq(x, ξ, 0)] =
1

2
∆Σ + Lq = Jq (2.56)

where 1
2
∆Σ and Lq are the quark spin and orbital angular momentum contribu-

tion to the nucleon spin. As the former quantity is also accessed in polarised DIS

measurements, the measurement of the sum rule (equation 2.56) leads to the deter-
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mination of the quark orbital momentum contribution to the total quark angular

momentum. The relation

1

2
= Jq + Jg (2.57)

may subsequently lead to the total gluon angular momentum Jg. As equation 2.56

includes only unpolarised GPDs, the nucleon spin information can, in principle,

be accessed without a polarised beam or target via DVCS and exclusive meson

production.

2.12 Quark and Gluon Distributions

For the exclusive process γ∗p → ρp in the limit of large Q2 and fixed xBj and t

the longitudinal scattering amplitude factorises into a hard scattering kernel, gen-

eralised quark or gluon distributions and the light-cone distribution amplitude of

the produced meson [35] as depicted in figure 2.15. Additional factors arise from

power-suppressed corrections.

p p′

x′ x′-x
q

V

Figure 2.15: Factorisation theorem in exclusive vector meson electroproduction. The
rightmost circle represents the meson distribution amplitude, the leftmost circle represents
the hard scattering part and the lower blob represents the Generalised Parton Distribution
[35].

To leading order in αs the hard scattering term in the ρ0 production amplitude

from a proton is equal to that from a neutron. The meson distribution amplitude,

describing a ρ0 in both cases, is also equal. The ratio [31, 36] of ρ0 production

amplitudes in scattering from a neutron and a proton target, adopting the light-

cone notation given in section 2.11, is:
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(2.58)

where F q(+) = F q(x, ξ, t) − F q(−x, ξ, t) and F q(g) are related to the quark (gluon)

GPDs by:

F q(g) =
1

2P+

[

Hq(g)(x, ξ, t)ū(p′)γ+u(p) + Eq(g)(x, ξ, t)ū(p′)
iσ+α∆α

2m
u(p)

]

(2.59)

where P = p+p′

2
, u and ū are the nucleon spinor and its complex conjugate, m is the

nucleon mass and ∆ = p′ − p. Equation 2.58 demonstrates that to O(αs), the ρ0

meson production amplitude ratio on neutrons versus protons depends only on the

neutron and proton GPDs.
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Figure 2.16: Proton PDF as a function of xBj calculated using MRST2001LO parame-
terisation at Q2 = 1.5 GeV2. The solid curve (black) is the total quark PDF q(xBj), the
dotted curve (green) is the gluon PDF g(xBj). The alternating dashed and dotted (blue)
curve shows the up quark PDF, and the dashed (red) curve shows the down quark PDF.

From the behaviour of the usual quark and gluon densities, it is expected that

ρ0 production is dominated by gluons at very small xBj and quarks at very large

xBj [37], and it is natural to ask where the transition between those two regimes
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takes place. Analyses of Deep Inelastic Scattering have been performed from leading

order (LO) to next-to-next-to-leading order (NNLO) by groups such as CTEQ [38],

GRV [39], MRST [40] and ALEKHIN [41]. The MRST NLO and NNLO PDFs are

based on a 2001 LO analysis for which theoretical calculations of ρ0 production cross

section ratios on deuterium versus hydrogen are available. Using the MRST2001LO

parameterisation, the PDF for the proton is shown in figure 2.16. The nucleon PDFs

are used as an input to the GPD calculation which is described in reference [42].
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Figure 2.17: Longitudinal cross section ratio of ρ0 meson production on deuterium versus
hydrogen, calculated for Q2 > 1.5 GeV2 with MRST2001LO parameterisation as input to
the GPDs [42].

Previous analyses have indicated that quarks and gluons contribute to the ρ0 cross

section with comparable strength at xBj ≈ 0.1 [37]. This is consistent with the

point at which q(xBj) = g(xBj) in figure 2.16. Equation 2.58 suggests that the gluon

contribution to the scattering amplitude is the same for protons and neutrons. It

is then expected that the ρ0 production cross section ratio from a deuterium and

hydrogen target should be ' 2 at very low xBj and fall off at increasing xBj . The

behaviour of the cross section ratio has been predicted using the MRST2001LO

parameterisation and is depicted in figure 2.17. This behaviour is reflected in the

HERMES experimental data; the results are detailed in section 6.6.5.
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2.13 Perturbative QCD Models

While Regge theory describes vector meson production adequately at low |t|, the

formalism fails for hard processes in the regions of highQ2 and |t|. Perturbative QCD

models provide a good description of the data when the hard scale sets in. Section

2.12 introduces the idea of factorising the vector meson production amplitude into

perturbative and non-perturbative components.

2.13.1 The Model of Goloskokov and Kroll

Goloskokov and Kroll introduced an approach based on the gluon GPD H g to de-

scribe light vector meson electroproduction at low xBj [44]. Hg parameterises the

response of the proton to the emission and reabsorption of gluons and thus controls

the process. The present indeterminability of Hg requires an ansatz based on dou-

ble distributions to construct the GPD and the electroproduction amplitudes are

calculated at t ≈ 0 then multiplied by an exponential factor dependent on t.

This approach produces results which are consistent with low xBj data on ρ and φ

meson electroproduction measured by H1 and ZEUS for Q2 > 4 GeV2 and promises

to enable studies of t dependence of electroproduction, if the t dependence of GPDs

can be better understood. This approach must be improved when more detailed

cross section data become available.



Chapter 3

The HERMES Experiment

The HERMES (HERa MEasurement of Spin) spectrometer located at the DESY

(Deutsches Elektronen SYnchrotron) facility in Hamburg has, since 1995, measured

scattering reactions from polarised lepton beams on polarised or unpolarised gas

targets of various types. Presented in this chapter is the description of its exper-

imental setup, including external components such as the HERA storage ring and

the spin rotators required to achieve longitudinal beam polarisation.

3.1 The HERA Synchrotron

The 6.3 km circumference HERA storage ring is comprised of two separate acceler-

ators 10 to 25 m underground which provide the polarised lepton and proton beams

for the three experiments currently operating at DESY; H1, ZEUS and HERMES.

HERMES is the only remaining fixed-target experiment and makes use of the lepton

beam, which contains either electrons or positrons at 27.5 GeV. The collider exper-

iments H1 and ZEUS also make use of the 920 GeV proton beam orbiting in the

opposite direction, which is brought into collision with the lepton beam at interaction

points located within the experiments. Despite the original intention for HERA’s

lepton beam to contain only electrons, the accumulation of positively charged dust

along the beam path restricted the electron beam lifetime via Bremsstrahlung losses

and thus HERA was operated solely as a positron/proton accelerator during the

1995-1997 period. A vacuum system upgrade in 1998 re-enabled running with elec-

trons and so charge dependent electroweak processes could be studied at the higher

energy regions accessible by H1 and ZEUS.

The lepton beam is divided into 189 bunches ordered in three bunch trains and

34
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Figure 3.1: The DESY accelerators, also shown is the decommissioned fixed-target exper-
iment HERA-B.

separated by 96 ns, each with a length of 27 ps (8 mm). Every eleventh bunch

is known as a pilot bunch and is used to monitor and tune the beam parameters,

their bunch timing having been configured to avoid collision with the proton beam.

Average beam lifetime is around 10 hours for the lepton beam whereas the proton

beam has a lifetime exceeding 2000 hours but is dumped at the end of every fill.

Unpolarised protons and leptons are injected into HERA by the PETRA preacceler-

ator, which in turn requires beams supplied by the smaller booster rings and linear

accelerators (figure 3.1).

Transverse lepton beam polarisation is achieved spontaneously via the Sokolov-

Ternov effect [45]; electrons and positrons deflected by the magnets in the storage

ring emit synchrotron radiation with a dependence on the lepton’s initial spin state.

The emission of synchrotron radiation is known to possess an asymmetry in its small

spin-flip amplitude, while the emission associated with a spin-flip is strongly sup-

pressed, the effect accumulates over successive orbits and leads to a large overall
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polarisation. The polarisation P is defined as

P =
N ↓ −N ↑
N ↓ +N ↑ (3.1)

where N ↑ (N ↓) denotes the number of leptons with their spins aligned parallel

(antiparallel) to the vertical field supplied by the bending magnets. The rise in

polarisation has an exponential time dependence in accordance with

P (t) = PST · (1 − e
− t

τST ) (3.2)

where PST is the asymptotic maximum polarisation value (92%) which corresponds

to the asymmetry in the spin-flip amplitude, and the characteristic polarisation rise

time is given by

τST = PST

me

~c2re

ρ3

γ5
(3.3)

where ρ is the bending radius in the magnetic field, re denotes the classical electron

radius and γ = E
me

, with the beam energy E and the electron mass me. Under

ideal conditions and according to equation 3.3 the polarisation rise time at HERA

is around 40 minutes. Magnetic field inhomogeneities, stray off-vertical field com-

ponents and the presence of magnets with configurations besides dipoles, however,

give rise to depolarisation effects which impose a limit on the polarisation to values

below PST . Additional contributions to depolarisation arise from spin diffusion [46],

interactions between lepton and proton beams and magnet misalignments.

Obtaining the effective polarisation rise time for HERA requires combining depolar-

isation effects with the Sokolov-Ternov effect. Expressing the result of this combi-

nation as a time constant τD, the effective maximum asymptotic polarisation Pmax

and effective rise time constant τ are given by

Pmax = PST

τD
τST + τD

, (3.4)

τ = τST

τD
τST + τD

. (3.5)

Typical beam polarisation at HERA reaches around 60% in τ ≈ 25 minutes, values

as high as 70% have been measured.

Some of the physics of interest to HERMES requires a longitudinally polarised beam

interacting with the target. Longitudinal polarisation is achieved by placing two spin
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rotators in front of and behind the spectrometer (figure 3.2).
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+e  beam
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longitudinal polarimeter (LPOL)

p beam

spin rotator

Figure 3.2: The HERA ring showing the positions of the spin rotators with the HERMES
spectrometer in between.

The polarisation of the leptons is modified through small successive angular deflec-

tions of the beam direction by horizontal and vertical dipole magnets leading to a

corresponding rotation about the spin axis. Figure 3.3 illustrates this process.

3.2 The HERMES Target

The HERMES experiment uses an internal gas target which operates in an unpo-

larised or polarised mode (figure 3.4). Polarised gas is injected into an open-ended

storage cell within the beam vacuum. This setup is necessary because rather than

operate with a bunch switching system to divert a portion of the beam towards

HERMES, the orbit of the HERA lepton beam passes directly through the HER-

MES spectrometer in the same beam pipe. Thus a low density target must be

employed in order to avoid significant losses in beam current.

Also, a polarised gas target enables fast polarisation reversal which reduces system-

atic uncertainties in the experiment, and ensures a low concentration of spectator

nuclei. For polarised operation, the atomic beam source (ABS) separates the spins

of dissociated molecular H2 with a Stern-Gerlach apparatus and injects the result-

ing polarised states into the beam vacuum (Figure 3.5). The mix of atomic versus

molecular states and target polarisation are monitored by the target gas analyser

(TGA) and Breit-Rabi polarimeter (BRP) respectively. To prevent beam-induced

depolarisation of the target gas a strong uniform magnetic field over the target re-

gion is provided by the target magnet [47]. The ABS is also capable of injecting

polarised deuterium into the target cell.
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Figure 3.3: Illustration of the principle for rotating spin via sequential beam interactions
with horizontal and vertical dipole magnets.

Figure 3.4: HERMES target cell schematic. Vacuum pumps ensure gas is only present
within the boundaries of the target cell.

3.2.1 The Unpolarised Gas Feed System (UGFS)

The UGFS injects unpolarised molecular gas in place of the ABS when HERMES is

running in the so-called high-density mode. High-density running is enabled during

the final hour of each lepton fill after the beam current has dropped from around

30 mA to approximately 10 mA. This mode of operation is due to the requirements

from the experiments at HERA running in parallel to HERMES; the beam current

must remain above a certain amount in order to allow H1 and ZEUS to operate.
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Figure 3.5: Schematic of the HERMES target cell with injection and monitoring apparatus.

The type of gas injected by the UGFS is changed between fills and running periods.

The gases used during 2004 were hydrogen, deuterium, helium, nitrogen, krypton,

neon and xenon. The density of the injected gases are only limited by the beam

lifetime requirements and the HERMES DAQ. This permits the collection of high

statistics for analyses of spin-independent processes in a short period of time.

3.3 The HERMES Spectrometer

HERMES makes use of a forward angle spectrometer surrounding the lepton (and

proton) beam line to measure leptons and hadrons from scattering reactions, en-

abling inclusive, semi-inclusive and exclusive analysis of nucleon spin structure. A

central horizontal iron plate in the magnet region separates the two symmetric por-

tions of the detector and serves to protect the beam from the magnet’s effect. A

diagram of the spectrometer is shown in figure 3.6.

The HERMES coordinate system has the z axis pointing along the beam direction,

the x axis horizontal and pointing outside the HERA ring and the y axis vertically

upwards. Track reconstruction is provided by the spectrometer’s front drift cham-

bers (FC), Drift-Vertex Chamber (DVC), back chambers (BC) and proportional

chambers (MC) which also help match tracks in the forward and backward regions

after deflection by the magnetic field. This deflection is one measure of track mo-

mentum, and the magnetic field is supplied by a large spectrometer magnet with

1.3 Tm integrated field strength [48].
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Figure 3.6: Schematic of the HERMES spectrometer, with the Recoil Detector and
Lambda Wheel upgrades also shown but not yet used in the present ρ0 analysis. The
PID detectors are shown in light shading (green), the energy deposition measurement in-
struments are shown in dark shading (blue). Tracking detectors are shown in intermediate
shading (red).

The spectrometer also possesses several instruments which provide particle identifi-

cation (PID). These are the Transition Radiation Detector (TRD) and a threshold

Cerenkov counter which in 1998 was replaced by a Ring-Imaging Cerenkov (RICH)

detector. The RICH was not used (in its standard mode of operation) in the present

ρ0 analysis, therefore a more detailed description in this chapter will be omitted.

Additional PID is provided by the electromagnetic calorimeter (CALO) which also

provides an energy measurement for leptons and photons [49], and the H2 hodoscope.

Although its primary function is to serve as part of the HERMES trigger system,

the H2 hodoscope has a lead curtain placed in front of it which enables its use as a

preshower detector.

The standard HERMES trigger for DIS events is provided by a combination of the

hodoscopes H0, H1, H2 and the CALO which makes the decision of whether to run

the trigger system as a lepton or hadron trigger, depending on the energy deposition.

Luminosity is determined by a dedicated monitor (LUMI) which detects Møller and

Bhabha scattering events from the beam-target interaction.

3.3.1 Tracking Detectors

The HERMES tracking detectors are categorised according to the regions across

which they are split. These are the front, magnet and back regions with the DVC
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and FCs at the front region outside the magnetic field, the MCs within the magnet

and BCs at its rear. The tracking chambers all possess three wire planes to allow

position reconstruction in the x, u and v directions (in their own coordinate systems),

enabling resolution of tracking ambiguities arising from coincident track impacts on

the detector surfaces. Figure 3.7 illustrates the geometry of the tracking detectors;

the x axis points vertically upwards with the u and v components at ±30◦ to the

x axis. The restricted horizontal length of the BCs necessitated the geometrically

identical construction of the different tracking detectors. This setup has the benefit

of permitting the use of fast track reconstruction algorithms [48].
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Figure 3.7: Drift chamber wiring scheme and the direction of their projections x, u and v.
z points along the beam direction. [50]

All HERMES tracking instruments installed prior to 2002 are two variations on

wire chambers which rely on electric field distortion by ionisation [51]; proportional

and drift chambers. The HERMES proportional chambers are the MCs and TRD

readout chambers and are constructed from arrays of anode wires inside a gaseous

medium enclosed by cathode plates. Charged particles traversing the detector ionise

the gas and a strong electric field quickly accelerates the resultant electrons towards

the anode. The accelerated electrons inelastically collide with other atoms caus-

ing further ionisation and subsequent repetitions of this process cause the so-called

Townsend Avalanche. Despite the large number of secondary events for each original

ion, the chamber is operated such that the number of secondary events is propor-

tional to the number of primary events [52]; this avalanche gives rise to a signal in

the anode wire(s) which is read out.

Drift chambers are similar in construction to proportional chambers, the difference

being a smaller electric field which is insufficient to create the Townsend Avalanche,

and leads to a slower drift of the ions toward the anode. The total electron drift

time, in this case, is used to locate the intersection point between the detector and

the track. The DVC, FCs and BCs are all drift chambers.
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Lambda Wheels

Installed in 2002, the Lambda Wheels (LW) detector system expands the HERMES

physics programme by increasing the acceptance of the HERMES spectrometer in

the front region, enhancing the reconstruction the tracks from charmed and strange

particles such as the Λ0, Λ+
c and J/Ψ [61].

Λ0 particles decay via the channel Λ0 → p+π− (64% branching ratio). The alternate

channel is the decay Λ0 → n + π0. The HERMES standard acceptance is only

sufficient to measure the decay proton and scattered beam lepton, at several Λ0

decay lengths (cτ = 7.89 cm) downstream from the target. The position of the

Lambda Wheel detectors increases acceptance to enable measurement of the pion

from the Λ0 decay [62].
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Figure 3.8: Lambda Wheel schematic [62].

Figure 3.8 is a schematic of the region surrounding the target and Lambda Wheels.

The detector consists of two wheel shaped silicon planes of diameter 34 cm posi-

tioned 45 cm and 50 cm downstream from the target, each divided into 12 identical

trapezoidal “paddle”segments (figure 3.9), enabling an 80% acceptance for Λ0 decay

events. Each paddle is a double sided 300 µm thick n-type silicon wafer, with 516

strips on each side oriented parallel to the oblique edges of each paddle, yielding a

93% active surface area.

Charged particles traversing the semiconductor material of the Lambda Wheel detec-

tor ionise the material resulting in the formation of electron-hole pairs. An external

electric field is applied which causes the positive and negative charges to drift in
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Figure 3.9: Comparison of Lambda Wheel size at z = 45cm with standard HERMES
acceptance at z = 0cm (solid box), z = −20cm (dotted box) and z = 20cm (dashed
box) [62].

opposite directions to electrodes, whereupon a signal can be read out. In contrast

to gas chamber detectors secondary ionisations do not generally occur in a semicon-

ductor; these detectors must possess very specific properties in order to produce a

useful signal-to-noise ratio [61].

3.3.2 Particle Identification

The HERMES PID system is capable of discriminating between scattered leptons

(electrons/positrons), pions and other hadrons, providing a level of hadronic con-

tamination in the lepton sample below 1% [48]. It consists of several subsystems.

Relevant to ρ0 analysis are the electromagnetic calorimeter, threshold Čerenkov,

transition radiation detector and the preshower supplied by the H2 hodoscope. Dur-

ing the years 1998 and 1999 no threshold Čerenkov PID was available as it was re-

placed by the Ring-Imaging Čerenkov detector. The later productions of 2000 and
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productions from subsequent years however, obtained the PID information relevant

to the present ρ0-analysis by relying on the ability of the RICH to operate as a

threshold Čerenkov counter simultaneously with its normal operation.

The Electromagnetic Calorimeter and Preshower Detector

The HERMES electromagnetic calorimeter discriminates between hadrons and e±

by comparing the difference in their ratio of energy deposition to momentum. The

construction of the calorimeter is shown in figure 3.10, it is composed of 840 (420

per half) identical lead-glass blocks of length 50cm (18 radiation lengths) and cross-

sectional area 81 cm2 (9 × 9 cm2), stacked in two 42 × 10 arrays [53].

The thickness of the lead-glass blocks allows the calorimeter to fully contain an

electromagnetic shower, which is produced by e± or photon interactions with the

material. In such an interaction, the shower propagates along the material and

radiates until the electrons and positrons lose enough energy to preclude further

radiation. Subsequent interactions are through atomic ionisation which proceed

until the e± stops. The ratio of the deposited energy in the calorimeter and prior

momentum measurement (with the spectrometer magnet) of the scattered lepton

Ecalo/p ' 1.

Hadronic showers tend to start further inside the material and cannot, in most

cases, be fully contained by the HERMES calorimeter. They are characterised by

an inelastic nuclear interaction length λ defined as the mean free path between

inelastic collisions and can be considered a rough analogy to the radiation length

X0 in electromagnetic interactions. The λ of a material, however, is typically an

order of magnitude larger than its radiation length. Hence, a hadron deposits only

a portion of its energy inside the calorimeter and so the ratio Ecalo/p < 1 [54].

The H2 hodoscope is positioned behind a 1.1 cm thick lead plate which provides

two additional radiation lengths bringing the total to 20X0 for the hodoscope and

calorimeter; this helps to contain an electromagnetic shower in its entirety. The

lead plate contributes very little, however, to the total nuclear interaction length λ

(6.4%λ alone) and so increases the difference between the profiles of each type of

shower. Figure 3.11 illustrates the response of the calorimeter and the separation

between electromagnetic and hadronic showers.
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Figure 3.10: H2 hodoscope (preshower) and the calorimeter.
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Figure 3.11: Normalised response of the HERMES calorimeter for hadrons (dark shad-
ing/blue) and e± (light shading/yellow) [54].

The Threshold Čerenkov Counter

The primary function of the HERMES threshold Čerenkov counter is to identify

which hadrons are pions, and makes use of the Čerenkov effect to achieve this [48].

A charged particle propagating within a dielectric medium emits so-called Čerenkov

Radiation when its velocity βc exceeds the phase velocity of light in the medium

c/n, where n is the refractive index of the material and c is the speed of light in

vacuo [55]. This radiation is emitted at an angle θ given by

cosθ =
c

nv
=

1

βn
(3.6)
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θ = arccos(
c

nv
) = arccos(

1

βn
) (3.7)

Equation 3.7 has no real solution for the case where c/n > v and so elucidates the

important result that for a given momentum, only particles with sufficiently small

mass (high enough β) will radiate. This enables discrimination of particles based

on mass thresholds when prior momentum measurement is available [56].

The Čerenkov counter is positioned between the two pairs of BCs and its schematic

is shown in figure 3.12. Its radiator box is constructed from a 1.17 m deep alu-

minium container with entrance and exit windows made from two layers of 100/30

µm mylar/tedlar foils separated by a 1 cm gap filled with continuously flowing nitro-

gen to avoid atmospheric gas diffusion into the radiator. Emitted Čerenkov light is

reflected onto 12.7 cm diameter photomultipliers by two sets of ten spherical mirrors.
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Figure 3.12: Side view of upper Čerenkov counter.

The momentum thresholds for pions, kaons and protons can be tuned by altering

the gas mixture inside the Čerenkov counter (the radiator). During the first year

of running, a nitrogen radiator was used yielding Čerenkov momentum thresholds

of 5.6, 19.8 and 37.6 GeV for pions, kaons and protons respectively. The nitrogen

radiator was replaced in 1996 with a 70% nitrogren/30% perfluorobutane mix, low-

ering corresponding thresholds to 3.8, 13.6 and 25.8 GeV [48]. Figure 3.13 shows
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the response of the threshold Čerenkov to hadrons and positrons. Leptonic contam-

ination of the pion sample between the pion and kaon thresholds is suppressed by

using the other PID detectors to separate leptons from hadrons.
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Figure 3.13: Normalised Čerenkov response above and below pion threshold in 1995 for
positrons (light shading/yellow) and hadrons (dark shading/blue). Intermediate shading
(green) represents overlap region [54].

The Transition Radiation Detector

The HERMES TRD separates hadrons and leptons by comparing the measured sig-

nal proportional to the Lorentz factor of a passing particle γ = E/mc2 with that

which is expected from hadrons and leptons at the HERMES kinematic region.

This quantity is accessible by measuring the transition radiation emitted by an ul-

trarelativistic particle traversing the boundary between two materials with different

dielectric constants ε. The mean energy of transition radiation is proportional to γ,

which at HERMES exceeds 104 for leptons and < 200 for hadrons; the response of

the TRD is shown in figure 3.14.

The TRD is constructed from six modules above and below the beam, each of

which contains a radiator and a Xe/CH4 filled proportional chamber [48]. The

6.35cm radiator consists of a series (around 300 per radiator) of two-dimensional
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Figure 3.14: Normalised response of the TRD. Dark shading (blue) represents hadrons,
light shading (yellow) represents leptons. Intermediate shading (green) is the overlap
region [54].
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Figure 3.15: TRD schematic.

layers of polyethylene/polypropylene fibre matrices [54]. This differs from earlier foil
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radiator design as the large size of the modules (325 × 75 cm2) made polyethylene

foils impractical; it is very difficult to ensure uniform foil separation with such

large module dimensions. The 2.54 cm thickness proportional chambers are 256

wire MWPCs, making each module a total of 10.16 cm thick when spacing gaps’

thicknesses are added. Figure 3.15 illustrates the construction of the TRD.

3.3.3 The Luminosity Monitor

The HERMES luminosity monitor (LUMI) is constructed from two calorimeter mod-

ules placed 7.2 cm downstream from the target cell on either horizontal side of the

beam pipe (Figure 3.16).

beam pipe

beam

60 mm
66 mm

88 m
m

Figure 3.16: HERMES luminosity monitor schematic. Size of boxes within grid illustrates
hit frequency per channel, and yellow shaded area shows the beam pipe acceptance [48].

A calorimeter module consists of 12 NaBi(WO4)2 Čerenkov crystals, each with

dimensions 2.2×2.2×20 cm3. The principle on which the HERMES LUMI operates is

the detection of Møller (e−e− → e−e−) and Bhabha (e+e− → e+e−) scattering events

from beam-target interactions, both of which are exactly calculable from Quantum

Electrodynamics including radiative corrections. Background is suppressed from

Møller and Bhabha events by imposing a requirement of at least 5 GeV deposited

energy in each half of the luminosity monitor. Figure 3.17 shows typical LUMI

response.

3.3.4 The HERMES Trigger

The trigger system in a high-energy physics experiment instructs the detector com-

ponents to perform digitisation and readout when an event of interest is detected.

Physics triggers required for studies at HERMES correspond to Deep-Inelastic Scat-

tering, photoproduction processes and additional triggers for detector monitoring
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Figure 3.17: LUMI response, with a Bhabha event shown in region above required de-
posited energy thresholds (dashed line).

and calibration [48].

DIS events are selected by the imposition of three requirements; hits in the ho-

doscopes (H0, H1, H2), sufficient energy deposition in two adjacent columns in the

calorimeter and both prior requirements in coincidence with the accelerator bunch

signal provided by the HERA clock. Photoproduction events are those with the

scattered lepton missing, and the corresponding trigger detects hadrons from low

Q2 events such as kaons, ρ, D0, J/ψ mesons and Λ0 resonances which decay into

a pair of charged particles. Such events satisfy trigger requirements when hits in

all three hodoscopes and hits in the back chamber BC1 are present in their upper

and lower halves, indicating a charged particle track in each half. As with the DIS

trigger, a coincidence with the HERA clock is also required.

3.3.5 The Gain Monitoring System

The response of a detector component varies with its age; continuous exposure to

radiation is particularly harmful to photomultipliers. Every detector instrument

equipped with photomultipliers (hodoscopes, calorimeter, luminosity monitor and

Čerenkov counter) contains light sources. The light from a 500 nm dye laser is sent

to the photomultipliers and to a reference counter photodiode. The intensity of the
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laser light is varied with a rotating wheel containing several attenuation plates, and

the response of the photomultipliers is compared with that of the photodiode which

has a stable gain. Hence the gain monitoring system can monitor relative changes

in gain over time and can also be employed to find dead channels.

3.3.6 Data Acquisition

The HERMES data acquisition (DAQ) system is based on a Fastbus backbone,

consisting of 10 front-end crates plus event collector and receiver crates connected

to an online workstation cluster via SCSI interfaces. Fastbus masters are provided

by CERN Host Interfaces (CHI), the readout performance of which is enhanced by

the equipped Struck Fastbus Readout Engines (FRE). An electronics trailer in close

proximity to the experiment houses the front-end electronics as well as the event

collector crate which is connected, via a Fibre Optical Link (STR330/FOL) to the

event receiver crate located in the HERMES counting room. In addition to standard

physics event data, monitoring, calibration and slow control information is passed

to the event receiver crate via additional VME and CAMAC branches connected to

the event collector crate.

During each fill of the storage rings the data are written to 9 GB staging disks

in EPIO (Experimental Physics Input Output) format. Between fills, the data are

copied to a local tape backup system and to a taping robot at the DESY main site via

an FDDI link. The CPU and IO bandwidth of the event distributing workstation,

an Alpha 3000X, determined the maximum DAQ thoroughput of 1.5 Mb/s. This

corresponds to a 150 Hz event rate on average, which was doubled after 1997 by

replacing the 175 MHz 3000X with a 266 MHz 5/266 [48].

3.3.7 HERMES Online Monitoring

During HERMES running, a shift crew has the responsibility of monitoring the

status of the experiment. The information needed to perform this task is provided

by the HERMES online monitoring system; a set of clients and servers which collect

and display relevant information. Additionally, the online monitoring keeps a record

of experiment calibration and operational parameters necessary for offline physics

analysis.

The data structure of the online monitoring system is based on ADAMO [57],

DAD [58] and PinK [59]. ADAMO, an entity relationship model for data handling,



3.3. The HERMES Spectrometer 52

provides the object structures in which to store information. DAD, the Distributed

ADAMO Database, complements ADAMO, enabling cross-platform accessibility of

ADAMO information via a client-server model. The GUIs employed for displaying

the information to the shift crew are specific DAD clients written in PinK which

is a Tcl/Tk interface to ADAMO and DAD objects. This system allows continu-

ous monitoring of the spectrometer, DAQ and HERA status by the shift crew at

a level of detail such that most problems can be quickly identified. More detailed

information is available through context-sensitive help accessible from the GUI.



Chapter 4

The HERMES Recoil Detector

4.1 Introduction

Installed during the final quarter of 2005, the HERMES Recoil Detector is designed

to significantly expand the physics programme of the HERMES experiment. The

Recoil Detector, currently in its commissioning phase, will enable the measurement

of exclusive processes from electron scattering reactions on a per event basis by

detecting the recoiling protons which previously had been inaccessible due to the

acceptance of the HERMES spectrometer. The present position and momentum

resolution of the HERMES spectrometer is insufficient to permit event level exclusive

measurements, exclusivity must currently be established with the application of

restrictive missing mass cuts to a data sample.

The study of GPDs at HERMES will be greatly aided by the addition of the Re-

coil Detector, one of whose primary aims is to detect protons from Deeply Virtual

Compton Scattering reactions (described in section 2.11). The protons measured by

the Recoil Detector may also arise from the competing Bethe-Heitler (BH) process

whose final state is identical to DVCS but can be exactly accounted for via quantum

electrodynamics. Figure 4.1 illustrates both processes.

Additionally, the Recoil Detector will improve the resolution of the kinematical

variable t = (p′ − p)2, where p and p′ are the four-momenta of the target and recoil

protons respectively. The improvement is at a level of around an order of magnitude

at low values of t, providing the opportunity to perform studies of t dependence.

Finally, the Recoil Detector will reduce background by rejecting events in which a

real photon is accompanied by a ∆ resonance production instead of a proton. The

53
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Figure 4.1: Left: Deeply Virtual Compton Scattering, where the proton absorbs a virtual
photon and emits a real photon. Right: the Bethe-Heitler process, where a real photon is
emitted by the incident lepton due to the interaction with the electric field of the proton.

∆ decays into a nucleon and a pion emitted back-to-back in the rest frame of the

∆, and so these decay products will usually possess a transverse momentum com-

ponent with respect to the recoil momentum. This is a violation of the coplanarity

with the reaction plane defined by the momenta of the virtual and real photons

(Figure 4.2). These events can be recognised and rejected, promoting a decrease

in the contamination of the sample [65]. The resulting effect is a reduction of the

systematic uncertainty associated with ∆ contamination to the level of the improved

statistical errors expected from unpolarised data taking. The expected effects of this

background suppression are shown in table 4.1.

Process detected passing pt-cut and PID passing total cut
TDR
BH/DVCS 68% 53% 52%
BH,∆ 47% 13% 8%
Present model
BH/DVCS 65% 52% 51%
BH,∆ 50% 8% 4%
BH,M > 1.4 GeV 44% 2% 1%
inclusive 44% 2% 1%
exclusive π0 44% 2% 1%

Table 4.1: Effects of exclusivity cuts expected in original Recoil Detector TDR [65] com-
pared with figures obtained with updated Monte Carlo event generator and detector ge-
ometry [49].



4.2. Detector Components 55

Θγ*γ

x

z

y

p

γ

γ*

e

e/

production plane

scattering plane

φ

Figure 4.2: Visualisation of the azimuthal angle φ between the scattering and the produc-
tion planes. [65]

4.2 Detector Components

The Recoil Detector contains three active subcomponents: a silicon detector around

the target cell within the beam vacuum, a Scintillating Fibre Tracker (SciFi) sur-

rounding the silicon and an outermost photon detector. Enclosing the active detec-

tors is a superconducting solenoidal magnet which provides a 1 Tesla longitudinal

field enabling momentum measurement by deflection and contributes to the sup-

pression of background from atomic electrons. A 3 dimensional CAD drawing of the

Recoil Detector can be seen in figure 4.3.

4.2.1 The Silicon Detector

The silicon detector measures the energy deposited by recoil particles from exclusive

processes such as DVCS passing through its semiconductor material. Momentum

is reconstructed via this dE/dx method for “slow” particles (110 − 500MeV/c).

In addition, the silicon detector provides up to two space points for determining

the bending radius of a charged particle in the magnetic field generated by the

Recoil Detector superconducting magnet. Hence, higher momentum particles (300−
1200MeV/c) can be reconstructed with this geometrical information and appropriate

tracking codes. Another major purpose of the silicon detector is to reject background

from events with intermediate ∆ resonances [51].

Monte Carlo studies [63] have shown that DVCS events, from which the scattered

lepton generates a trigger signal in the remainder of the HERMES spectrometer,



4.2. Detector Components 56

Iron Shielding

Cryostat

Photon
Detector

SciFi 
Detector

Silicon 
Detector

Target Cell

Flange

SciFi 
Connector Plate

C3 Collimator

Si Detector

Si Detector
Connectors

Cooling

Hybrid

SC Coils

Figure 4.3: CAD drawing of the Recoil Detector.

produce protons with polar angle 10◦ < θ < 80◦. The Recoil Detector is designed

to cover this region and as much of the 2π azimuthal acceptance as possible, a 4%

angular resolution suffices for the silicon detector as momentum reconstruction and

particle identification is calculated via energy deposition. This resolution translates

to approximately 1mm strip pitch when the silicon detector is mounted 50− 70mm

perpendicularly from the beam line [65].

The recoil particles are produced with momenta in the range 0.135 − 1.4GeV/c,

which corresponds to an energy range between 9 and 750MeV . This low energy

places a constraint on the amount of material which can be placed between the

silicon detector and the interaction point; the detector is mounted within a newly

constructed scattering chamber (figure 4.4) inside the HERA vacuum. With this

configuration a recoil particle avoids any encounter with thick-walled vacuum ves-

sels hence improving momentum resolution. However, this introduces a requirement

that the components of the silicon detector must be vacuum compatible. Usefully,

HERMES possesses expertise in operating silicon detectors within the HERA vac-

uum as both the Silicon Test Counter and Lambda Wheels have been employed in

such a situation. The developments of the HERMES NIKHEF group provided the

largest contribution to the design of the silicon detector [65].

A practical solution to the problem of time and manpower constraints for the HER-
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Figure 4.4: Recoil Detector scattering chamber (back) bolted to service chamber (front),
set up for use in 2005 test experiment.

MES Recoil Detector project was to rely on tested designs for the silicon microstrip

detectors and readout chips. 99× 99 mm double-sided 300 µm thick TIGRE detec-

tors manufactured by MICRON Semiconductor are used in the design of the silicon

detector as they are the largest ones available. Each side of the TIGRE detector is

separated into 128 strips of 758 µm strip pitch, with the strip direction on a side

orthogonal to the other.

The silicon detector consists of 16 TIGRE microstrip detectors divided into 4 identi-

cal modules mounted in a tilted cuboid shape with square cross-section (figure 4.5).

Each module (Figure 4.6) is subdivided into two layers of two TIGRE detectors

separated by 15 mm in a staggered configuration with the outer layer positioned

slightly downstream from the inner. Present in the upstream end of each module

is the detector hybrid, a circuit board containing readout chips and electronics for

each TIGRE sensor.

4.2.2 The Scintillating Fibre Tracker

While the silicon detector performs measurements based primarily and most accu-

rately on energy deposition, the scintillating fibre tracker (SciFi or SFT) reconstructs

track momentum by measuring the degree of track deflection in the magnetic field

supplied by the superconducting magnet. The silicon detector, with its relatively

poor angular resolution coupled with the low number and small separation of its

planes, is insufficient to perform this task alone. The SciFi provides momentum de-
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Figure 4.5: Schematic of the silicon detector from downstream end perspective.

Figure 4.6: Photograph of one layer of a silicon module shown from the top (n side, upper
photo) and bottom (p side, lower photo). The inner layer has the n side (top portion)
facing the beam line, the outer layer has the n side facing away from the beam line.

termination and particle identification for recoil protons and (charged) pions in the

momentum range between 0.3 and 1.4 GeV. It is expected that optimal momentum

resolution of the SciFi will be achieved for particle momenta above 0.4 GeV.

Particle identification with the SciFi is achieved by measuring the amount of scin-

tillation light produced by an incident particle traversing the scintillating material.

The SciFi is located around the scattering chamber outside the beam vacuum, its an-

gular coverage is 2π around the azimuth and in the polar angle ranges from 90◦ down

to a cutoff determined by the polar angular acceptance of the Lambda Wheels [65].
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Figure 4.7: Side view of the Recoil Detector with the cross-section of the SciFi barrels and
photon detector shown [66]. Part of the magnet’s cross section is shown in dark shading
(grey), the photon detector is shown in light shading (green). The Sci-Fi barrels are the
thin layers (red) below the photon detector.

The scintillating fibre tracker is constructed from two concentric cylindrical modules

(barrels) with inner radii of 109 mm (SciFi1) and 183 mm (SciFi2) respectively,

each with a thickness of 4 mm and a length of 280 mm. Figure 4.7 illustrates the

placement of the SciFi barrels inside the Recoil Detector.

Each barrel consists of two layers of 1 mm diameter scintillating fibres, a parallel

layer oriented along the beam direction and a stereo layer at a 10◦ angle to the

parallel layer (figure 4.8). The stereo layer enables, in addition to the transverse

momentum and azimuthal φ track parameter, measurement of the longitudinal mo-

mentum component and polar track angle θ. Each layer is further divided into two

sublayers of two fibre rows per sublayer, the upper row being staggered to fit the

grooves formed by the spaces between the fibres in the lower row.

The fibres which comprise each barrel are held together with a glue which provides
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Figure 4.8: Illustration of segments of inner and outer SciFi barrels.

sufficient stiffness for the structure to be able to support itself. The fibres are

attached to a supporting ring at either end, at the downstream end the fibre tips

are mirrored and polished to prevent light losses and the ring is attached to the flange

of the HERMES pumping cross. Upstream the fibres connect with clear light guides

via connectors which are attached to an aluminium support ring (figure 4.9). The

light guides are fibres which are fabricated from the same material as the scintillating

fibres. In this case, however, there is no dopant present to produce scintillation light.

The light guides connect to 64 channel Hamamatsu photomultipliers (PMT). A total

of 78 PMTs is used to read out the 4992 channels of the SciFi [64].

4.2.3 The Photon Detector

The photon detector improves the capability of the Recoil Detector of suppressing

background by rejecting events in which an intermediate ∆-resonance is produced.

This is achieved by detecting at least one of the photons into which a neutral pion

emitted from a ∆-decay subsequently decays. Direct measurement of π0 particles

becomes possible upon detection of two separate decay photons. Also, the first layer

of the photon detector augments the pion/proton separation capability of the SciFi,

a pion rejection factor of 10 is expected for momenta up to 800MeV/c [65]. Finally,

the photon detector provides a method by which to align the subcomponents of the
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Figure 4.9: Upstream end of the Scintillating Fibre Tracker, not to scale.

Recoil Detector by acting as a trigger for cosmic ray events.

The photon detector is constructed from six layers, alternating between a tung-

sten converter layer from which incident charged particles produce electromagnetic

showers, and a scintillator layer which detects these showers. Figure 4.10 illustrates

the geometry of the photon detector, and figure 4.11 is a photograph of the detec-

tor taken during its construction. The inner layer is segmented into 60 trapezoidal

blocks aligned parallel to the beam axis, the middle and outer layers are segmented

into 44, aligned at +45 and −45 degrees to the beam. Scintillation light produced

by incident photons or cosmic ray particles is collected by two light guide fibres in

grooves on the sides of each scintillator block. The light guides are connected to 64

channel Hamamatsu PMTs and the signal is read out via ADCs, the signals from

which can be used to perform PID in some cases and distinguish tracks from elec-

tromagnetic showers. The photon detector is positioned between the second layer

of the scintillating fibre tracker and the recoil magnet, its extent having inner and

outer radii of 190mm and 250mm respectively [67].

The photon detector efficiency is constrained mainly by geometry. It is known that

decay photons are often emitted at low polar angles. Photons emitted at 220 mrad

will enter the standard HERMES acceptance while up to 400 mrad photons will

be detected at all. Despite the 2π azimuthal coverage of the photon detector, its

length is restricted to roughly that of the Recoil Detector. Detection probabilities

are calculated to lie between 77 and 80% for a single photon, the situation is much

worse for a pair of photons from the same vertex and in this case the probability

lies between 18 and 20% [49].
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Figure 4.10: Schematics of the photon detector [67]. Upper diagram is shown from
upstream perspective with numbering scheme, lower diagram shows longitudinal cross-
section. Grey shading represents tungsten preshower layer, blue represents scintillator
material.

4.2.4 The Superconducting Magnet

The primary purpose of the Recoil Detector superconducting magnet is to provide a

means for the SciFi to measure track momentum by bending charged particle tracks

in a 1 Tesla magnetic field. Additionally, the magnet protects the silicon detector

from background electrons emitted from Møller scattering events by allowing these

electrons to spiral forward in the magnetic field.

The superconducting solenoid design was chosen for a variety of reasons. Most

importantly, the restricted space available for the Recoil Detector required the least

bulky solution. Also, a 20% or better field homogeneity is required to ensure the

momentum resolutions of the silicon and SciFi detectors are smoothly connected.

Finally, a 0.7 Tesla field strength near the beam line is adequate to sufficiently reduce

Møller background. Knowledge of field inhomogeneity is important for tracking and

is discussed in section 5.6.3. The magnet was constructed by the Efremov Institute
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Figure 4.11: The photon detector during its assembly. The scintillator strips of the outer
layer are visible, as are the wavelength shifting fibres and the connector ring.

in St. Petersburg, it is shown in figure 4.12.

4.2.5 The Target Cell

The Recoil Detector employs a target cell design which is similar to the previous

polarised HERMES target. The only mechanical difference is the active length

which has been reduced from 40 cm to 15 cm. Its upstream end is positioned

5cm downstream from the centre of the old HERMES target. The cell is a thin-

walled aluminium tube (50 µm) with an elliptical cross-section of 2.1 cm (0.9 cm)

major (minor) axis length, the low momentum cutoff of the silicon detector being

determined by the thickness of the cell wall. The main difference between the

HERMES target and the new Recoil target which replaces it is that the latter only

contains unpolarised gas, which is injected through a small capillary under the cell

which runs along the length of the tube. A water-cooled mass is thermally coupled

to the upstream end of the cell to counter the heating effect of the HERA accelerator



4.2. Detector Components 64

Figure 4.12: Photograph of the Recoil Detector superconducting magnet.

(heating power estimated at 15 Watts) [65]. A photograph of the target can be seen

in figure 4.13.
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Figure 4.13: Upstream end of the Recoil Detector target. The beam enters the elliptical
tube opening into the page.



Chapter 5

Track Reconstruction Algorithms

for the HERMES Recoil Detector

In order to fulfil its objectives the HERMES Recoil Detector, described in chapter

4, requires dedicated tracking software in addition to that used by the HERMES

spectrometer. Several different approaches to track finding and fitting with the

Recoil Detector are proposed in this chapter, and performance results from tests

with early Monte Carlo data and test experiment cosmic ray data are presented.

As the distinction can often be subtle, throughout this chapter a “hit” refers to a

particle impact on a detector surface which deposits sufficient energy to be measured.

Depending on the geometry of the specific detector, a hit may give only limited

position information. A “space point” or “point” refers to a particle impact on a

detector surface which has been fully reconstructed by combining the hits on that

detector, giving a three dimensional position measurement in addition to energy

deposition.

5.1 Introduction

5.1.1 Basic Aspects of Tracking

Track reconstruction or tracking in the context of a particle physics experiment refers

to sorting position and energy deposition signals from various particle detectors into

disjoint subsets enabling the identification of products from particle interactions and

the measurement of their corresponding kinematical properties. Generally tracking

can be split into the two separate tasks of track finding and the subsequent fitting

66
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to the found track. Exceptions can be found in global methods such as Kalman

Filtering [68] where the two tasks are performed simultaneously.

The task of track finding given a set of position measurements is to split this set

into subsets such that the following conditions apply:

• Each subset contains measurements which, with some reasonable probability,

are caused by the same particle.

• One, possibly empty, subset contains all measurements which cannot be asso-

ciated with particles with sufficient certainty. These measurements may arise

from accidental signals, distorted measurements, ambiguities in the associa-

tion with tracks, weaknesses of the track model or from deliberately excluded

tracks [69].

Subsets of detector signals (hits or space points) must demonstrate a strong sim-

ilarity to an expected track model, which is a function satisfying the equation of

motion of the particle. The problem is essentially one of pattern recognition, which

is trivially performed by the human brain even in the presence of noise, disconti-

nuities (“kinks”) in the track shape, vertices and overlaps. The large quantities of

data produced by modern experiments require tracking software which attempts to

perform pattern recognition as effectively as the eye, only enormously faster.

Track fitting is concerned with the estimation of the parameters (such as track

curvature and coordinates of intersection with axes) of a given subset of hits (a

“track candidate”) which have previously been found to match an expected track

model. In addition to this, a track fit provides a measurement of the quality of

the fit to the track model (via, for example, the familiar χ2). This requires the

consideration of:

• The geometrical configuration of the detector, the resolution of its active sub-

components and its operational specifics (such as magnetic fields).

• A mathematical model which provides a sufficiently accurate approximation

of the particle trajectories [69].

Track fitting, in contrast to track finding, is far more effectively performed by a

computer than by eye, which is typically only able to fit straight lines to data with

any accuracy. Additionally, a preliminary fit to a track candidate complements the
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track finding procedure as iterative refinements can be made if the candidate is

discovered to yield a poor quality of fit or low fit probability.

Following a successful application of the tracking algorithms, individual tracks are

resolved and the remaining hits, which are not associated with any tracks, can be

regarded as background.

5.1.2 Requirements for Tracking with the Recoil Detector

The HERMES Recoil Detector presents a challenging environment in which to per-

form tracking. Due to time constraints, the tracking software, a functioning Monte

Carlo code and the detector itself were developed in parallel which left many un-

known potential requirements. Consequently, a set of tracking codes were created

with differing capabilities which would be employed according to the needs of the

final experiment. Some requirements, however, were evident prior to investigations

with the Monte Carlo. The tracking code was to be capable of:

• finding tracks in the presence of noise from background and combinatorials

arising from multiple track impacts on segmented detector surfaces.

• Performing track fitting in a magnetic field expected to exhibit an inhomo-

geneity of around 10%.

• Finding tracks with low redundancy. The maximum number of possible detec-

tor space points (in 3-space) for the Recoil Detector is 5 including the primary

vertex.

• Fast execution speed, generally required of tracking code.

5.2 HERMES Software Organisation

Prior to a detailed discussion of the tracking for the Recoil Detector, this section

will provide a description of HERMES software conventions, the structures of which

determine the operational constraints on the recoil tracking software.
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5.2.1 HERMES Event Structure

The HERMES data production chain consists of several steps invoking many sep-

arate pieces of software in order to produce experimental data samples containing

sufficiently high-level information for physics analysis. The data production begins

with the HERMES DAQ (Data AcQuisition), a set of codes based around an event

builder which responds upon receiving a detector trigger signal indicating that an

interesting event has been detected by the spectrometer. The DAQ also responds to

so-called scaler events which occur every 10 seconds and contain weakly time depen-

dent information such as luminosity and trigger dead time. Trigger and scaler events

are recorded by the DAQ as EPIO (Experimental Physics Input-Output) files [70].

In addition to that which is recorded by the DAQ, information regarding hardware

parameters which change on a slow time scale is written to ADAMO files by the

HERMES slow control. The slow control records measurements such as vacuum

pressures, high voltage readings and phototube gains (measured by the Gain Mon-

itoring System) every few minutes. The DAQ and the slow control make up the

online portion of the HERMES data production chain, subsequent steps are carried

out by offline software; the main production.

A simplified flowchart of the main production is shown in figure 5.1. The HER-

MES Decoder (HDC) reads the EPIO files created by the DAQ, which contains

basic readout information from each subdetector. HDC converts this into calibrated

quantities, such as wire hit positions and energy deposition, using the information

provided by calibration and geometry servers. HRC (HERMES ReConstruction)

reads information piped from HDC and produces tracking and particle identifica-

tion information for the portion of the spectrometer downstream of the Lambda

Wheels. XTC (eXternal Tracking Code) performs tracking for the remainder of the

spectrometer, in particular the Lambda Wheels and the Recoil Detector. Finally,

the writeDST program synchronises the tracking information from HRC and XTC

with the slow control and creates the µDST files which are used in the physics

analysis.

The code for performing Recoil Detector tracking is inserted into XTC. This is a

natural choice, the position of XTC within the production chain allows additional

tracking information to be provided from HRC (for example, the reconstructed pri-

mary vertex).
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Figure 5.1: Simple illustration of HERMES main production chain.

5.2.2 Monte Carlo

The Monte Carlo setup at HERMES consists of two separate components, the Gen-

erator Monte Carlo (GMC) and the HERMES Monte Carlo (HMC). GMC simulates

physics events which are tracked through a simulation of the spectrometer by HMC.

The resulting file format is such that the Monte Carlo can be used as a substitute

for HDC output (and the DAQ which precedes it), a flowchart showing part of the

Monte Carlo production chain is shown in figure 5.2.

GMC can be used with various different physics process generators as required. The

DVCS/BH generator, for example, produces the Deeply Virtual Compton Scattering

and Bethe-Heitler processes which are of interest to the Recoil Detector, and the

PYTHIA generator is used in the analysis of ρ0 cross-sections to obtain estimates

for non-exclusive background rates.

HMC uses calls to the GEANT package to propagate the particles generated by GMC

through the HERMES spectrometer. A detailed simulation of the spectrometer

must be supplied to HMC, this is accomplished by the HDB (HERMES DataBase)
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Figure 5.2: Flowchart of HERMES Monte Carlo production chain.

program. A detector simulation must be stored in a geometry file containing the

dimensions, material composition and location of every detector component. HDB,

taking the geometry file as input performs various consistency checks (e.g. ensuring

no component overlaps are present) and creates a new geometry file in the format

required by the geometry server. The information stored in the geometry file is

also used by HDC, HRC and XTC via the aforementioned geometry, mapping and

calibration servers.

5.3 Structure of Recoil Tracking in XTC

In addition to the tracking, XTC contains subroutines which perform tasks such

as clustering for the subdetectors, space point reconstruction and interfaces to the

ADAMO libraries which provide the database scheme for HERMES. The structure

of XTC relevant to recoil tracking is shown in figure 5.3.
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Figure 5.3: High level flowchart of the recoil XTC code.

5.4 Clustering and Space Point Reconstruction

A charged particle which passes through a segmented detector (e.g. a microstrip

or fibre detector) generally deposits energy in a region which spans more than one

strip or fibre. Clustering refers to a procedure applied to each subdetector (silicon,

SciFi, photon detector) in which detector signals from physically adjacent strips or

fibres are combined in order to obtain a more accurate estimate of the position (in

the coordinate system of the detector plane) where the incident particle struck. A

clustering routine also typically uses calibration information to convert the detector

signal from ADC pulses into an energy deposition measurement.

Space point reconstruction is the application of a transformation of the calculated

position on the detector plane into the coordinate system required by the tracking
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algorithm. Additionally, the space point reconstruction code may search for match-

ing hit information, such as clustered hits on either side of a double-sided silicon

detector (as performed for the silicon detector).

5.4.1 Silicon Detector

The silicon detector, described in section 4.2.1, consists of 16 square silicon wafers

(TIGREs) each with an area of approximately 100 cm2. A TIGRE has 128 strips on

each side, the orientation of the strips on the n and p sides are at a relative angle

of 90◦ with the strips on the p side oriented parallel to the beam axis. A schematic

of the numbering scheme and orientation is shown on figure 5.4.
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Figure 5.4: Schematic of silicon detector layout from front perspective. [0] denotes the n
side of the silicon wafer, [1] denotes the p side. The strip numbering convention for n side
is indicated by the numbers 1-128, the convention for the p side is numbered 1-128 with
the low end upstream. The beam enters into page at the origin [51].

Clustering for the silicon detector in XTC is performed using a relatively simple

algorithm. A search is performed in numerical order on strips 1 to 128 on the n

and p sides of each TIGRE. Upon encountering a struck strip, further consecutive

struck strips are sought. The procedure stops when no further consecutive strips

are encountered, or a maximum of six consecutive strips are found.

The next step in clustering is the calculation of the position where the particle

struck. Figure 5.5 illustrates a situation where three particles strike a single TI-
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GRE, producing peaks in the ADC spectra as shown. For each individual peak

the clustering algorithm calculates a mean value using a “centre-of-mass” approach

(figure 5.6).
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Figure 5.5: Illustration of signals expected from an event with three strikes on a single
TIGRE. The pulse height is in arbitrary units for illustrative purposes, and is normalised
to 1. Noise has not been included for clarity.

The result of applying the clustering routine to the entire silicon detector is a set

of position measurements in the local coordinate system, and the associated pulse

value which is the sum of the ADC values from each struck strip across each cluster.

In order to produce a position measurement in 3-space, and provide information for

momentum reconstruction with energy deposition, it is necessary to use calibration

information to convert the summed ADC value into a deposited energy. In this

case, the calibration information was provided by test beam studies carried out at

the Tandem Accelerator Facility in Erlangen [71].

The energy deposited on a silicon module by a passing charged particle is given by:

Edep =
S

gck
(5.1)

where S is the digitised output of the ADC, g is the amplifier gain and c is the con-

version factor of the ADC. The calibration factor, k, varies between silicon detector
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Figure 5.6: Zoom picture of middle peak in figure 5.5. Also shown is the calculated mean
value.

modules. In practice, the ADC output is split into a high gain and low gain channel

in order to increase the dynamic range of the silicon detector and correspondingly,

k has been calculated as kl and kh at the Tandem facility for the low and high

gain channels respectively. As a single test module was investigated in Erlangen,

it is estimated that k should vary by ±20% between detector modules [72]. This

variance, while important for measuring energy deposition, does not result in in-

consistent space point reconstruction between modules as the ratio kh

kl
in principle

should remain fixed.

Reconstructing space points in 3-space requires a passing charged particle to deposit

energy on both sides of a silicon detector wafer. The ADC values on either side of

a silicon module are correlated and so can be matched, and a coordinate transfor-

mation can be performed using information from the mapping server. In practice,

however, this is made more difficult by a variation in detectors’ responses. Investi-

gations have shown that, in addition to variations between modules and wafer sides,

the ratio of the signals in the n and p sides of a silicon module also vary with strip

number as shown in figure 5.7. A calibration server provides XTC with a map of

individual strip parameters so that energy depositions on either side are more easily

matched. XTC matches two signals on opposing sides of a TIGRE if the corrected
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signals match by an amount better than 20%.

5.4.2 Scintillating Fibre Tracker

Performing clustering and space point reconstruction is simpler in the case of the

SciFi than the silicon detector. In the absence of correlated energy deposition in-

formation from alternate detector layers the clustering relies on a simple search

for adjacencies only, calculating the struck position by using the unweighted mean.

Matching hits between the stereo and parallel layers of each SciFi barrel relies on

searching for clusters of hits which lie physically close to one another. A simple

schematic of the SciFi detector is shown in figure 5.8, and table 5.1 lists the prop-

erties of each layer.

Layer Name Orientation Fibres
SFI1 parallel 659
SFI2 parallel 659
SFI3 stereo 660
SFI4 stereo 660
SFO1 parallel 1098
SFO3 stereo 1090

Table 5.1: List of properties for inner (SFI[1-4]) and outer(SFO[1,3]) SciFi layers.

Both inner and outer SciFi barrels are comprised of four layers, two parallel and

two stereo. However, for the outer barrel the decision was made to combine the

same-orientation layers, that is, the SFO1 and SFO2 layers were combined, as were

the SFO3 and SFO4 layers, thus the numbering scheme is not consecutive.

Clustering for the SciFi begins with the combination of strips in individual layers.

Before clusters on the parallel layer are matched with those on the stereo layer, the

inner SciFi barrel requires an additional step; the clusters on SFI1 and SFI2, which

now have the position value of a single strip, are combined in order to yield a position

measurement (in local coordinates) which is the average of the two. Clustering for

the parallel layers SFI3 and SFI4 is performed by a similar method to this.

The combination of clustered hits on the parallel and stereo fibre layers can lead

to problems with combinatorials. Following the geometry of the stereo layer fibres,

at 10◦ to the beam axis, the path of a single stereo fibre crosses 44 parallel fibres

on the inner SciFi barrel and 45 fibres on the outer barrel. The inner and outer

parallel layers being comprised of 659 and 1098 fibres around their circumference
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Figure 5.7: Calibration values for one of the silicon sensors versus strip number for n side
(top) and p side (bottom). The errors are obtained a from Landau-Gauss convolution fit.
Errors larger than ∼ 3% arise from low statistics, increased noise or a defective strip. The
data were obtained at the DESY T22 test beam [73].
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Figure 5.8: Simplified SciFi front cross-section schematic with silicon detector also shown.
SF[I0][1-4] refers to the naming and numbering scheme for SciFi inner and outer barrels,
layers 1-4 [51].

respectively, the search for a matching stereo layer hit must cover approximately

± π
4.7

radians away from the position of the hit in the parallel layer for the inner

barrel, and ± π
7.7

radians for the outer. Any clusters satisfying this condition are

combined and transformed into cylindrical polar coordinates. The components r, φ

are easily obtained from the known geometry of the SciFi. The z coordinate is

obtained according to [74]:

z =
RSciF i∆φ

tan10◦
(5.2)

where RSciF i is the radius of the struck barrel and ∆φ = |φparallel − φstereo|.

5.4.3 Photon Detector

The photon detector is described in section 4.2.3. As with the silicon and SciFi

detectors, clustering and space point reconstruction for the photon detector is per-

formed in XTC. Unlike the silicon and SciFi, however, the photon detector is not

used for the tracking of protons and pions; the tungsten layers which encourage a

strong deformation in the track shape and the limited resolution of the scintillator

blocks preclude the use of the photon detector as a tracking detector. However, the

photon detector provides a trigger for cosmic ray events and a pair of initial space
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points from which to begin a search for subsequent cosmic space points on the inner

detectors. Figure 5.9 shows the naming scheme for the photon detector, and table

5.2 lists the properties of each layer.

SGIA

SGIC
SGIB

SGI1
SGI2
SGI3

Figure 5.9: Simplified photon detector front cross-section schematic. SGI[A-C] is the
Monte Carlo naming convention for the preshower layers, the SGI[1-3] naming convention
for the scintillator layers is retained for use with XTC [51].

Layer Name Orientation Strips
SGI1 parallel 60
SGI2 stereo +45◦ 44
SGI3 stereo −45◦ 44

Table 5.2: List of properties for SGI[1-3] photon detector layers. The sign convention for
stereo layers are; + clockwise, − anticlockwise.

Clustering for the photon detector is performed in each layer separately. Figure 5.10

illustrates an example event in which energies are distributed along several strips,

with one instance of two closely spaced tracks creating an overlap of clusters. In this

scheme local maxima of energy deposition are sought in groups of consecutive strips.

Non-maximal energies in surrounding strips are assigned to the local maximum, in

the case of an overlap, the energy measured in the strip which corresponds to the

local minimum is split and assigned to the two maxima. The split is computed

according to e−x, where x is the mean distance of the energy-maximal strip to the

energy-minimal strip in units of strip width [75]. The position where the particle

struck is estimated with an energy-weighted mean calculation over the strip cluster.
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Figure 5.10: Illustration of clustering algorithm for the photon detector. The dashed line
shows the energy-weighted calculated mean position. [75]

Space point reconstruction for the photon detector proceeds similarly to that for the

ScFi. Some differences, however, arise due to the presence of an additional stereo

layer. Additionally, the photon detector measures energy deposition but this is not

useful for matching clusters on separate scintillator layers as the preshower layers

between them weaken the correlation.

A particle which is measured by all layers will generate a total of 4 space points,

one in layers SGI1 and SGI3 and two in SGI2. The two space points in SGI2 are

present as the stereo layers above and below it each provide different values of z.

The radial thickness of each layer allows the particle to travel further along the

tangential surface of the detector, consequently the φ and z values drift across the

3 scintillator layers. This is illustrated in figure 5.11.

A position in 3-space can be reconstructed from hits in at least two of the three layers.

Matching hits to their partners in the different layers is performed by searching for

hits which are separated by a perpendicular distance of less than 5 cm. Prior to this

another clustering step is required; in the presence of two space points in the SGI2

layer (as figure 5.11 shows), again, the energy-weighted mean position is calculated.

In the instance of multiple crossings between strip clusters such as figure 5.12, the

energy of the single cluster is split between the crossings. Ghost crossings between

strip clusters as shown in figure 5.13 are treated by removing the points which do

not have partners in the remaining layer [75].
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Figure 5.11: A charged particle leaving 4 space points in the photon detector [75].
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Figure 5.12: Two clusters in layer SGI2 crossing one cluster in layer SGI1. The energy
of the cluster on SGI1 is split between the clusters on SGI2 and assigned to each space
point [75].
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Figure 5.13: Two ghost points created by the crossing of two clusters on each of two
photon detector layers [75].

5.4.4 Data Tables

A Monte Carlo or experimental data event sample contains information stored in

several tables. In both cases, the tables dataSiliRec, dataSciRec and dataPhotoRec,
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shown in tables 5.3, 5.4 and 5.5 respectively, are present. These tables represent the

digitised response of each individual subdetector. In the case of Monte Carlo gener-

ated events samples, the table values are filled with simulated detector responses to

the simulated particle traversing the volume of the detector. In addition, the Monte

Carlo event samples contain an additional table, mcHit (table 5.6), which provides

the exact parameters of the interaction between the particle and the detector, in-

cluding the position of the space point in 3 dimensions. Other tables in the Monte

Carlo samples which were important for tracking are the mcTrack and mcVert tables,

containing exact generated track and vertex parameters respectively. The tests of

the tracking were performed by comparing the reconstructed track parameters with

the parameters given in the mcTrack table.

dataSiliRec
ID Entry number
iStrip Strip number 1-128/1001-1128
iADCHigh ADC value, high gain channel
iADCLow ADC value, low gain channel
rPulsHigh Energy deposition, high gain channel
rPulsLow Energy deposition, low gain channel
iCMHigh Common mode noise high gain channel
iCMLow Common mode noise low gain channel
dgDETS Detector component identifier

Table 5.3: ADAMO table for digitised silicon detector. Using the iStrip numbering con-
vention, 1-128 denotes n-side of the TIGRE, 1001-1128 denotes the p-side. This convention
is in place to make the best use of disk space.

dataSciRec
ID Entry number
iPMT PMT channel number
iADC ADC value
rPuls Energy deposition
dgDETS Detector component identifier

Table 5.4: ADAMO table for digitised SciFi detector.

5.5 Cosmic Ray Tracking

Besides those emitted during solar flare events, cosmic rays originate from outside

the solar system. Primary cosmic rays have a peak in their energy distribution
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dataPhotoRec
ID Entry number
iPMT PMT channel number
iADC ADC value
rPuls Energy deposition
dgDETS Detector component identifier

Table 5.5: ADAMO table for digitised photon detector.

mcHit
ID Entry number
X x-coordinate of space point
Y y-coordinate of space point
Z z-coordinate of space point
XEnter x-coordinate at volume entrance
YEnter y-coordinate at volume entrance
ZEnter z-coordinate at volume entrance
Module Module number
TOF Time of Flight (w.r.t HERA clock) at entrance
E Energy
rDE Energy loss
iGType GEANT particle type
iStak GEANT stack number
mcTrack Track associated with space point
mcVert Vertex associated with space point
dgDETS Detector component identifier

Table 5.6: ADAMO table listing space points from generated Monte Carlo tracks.

at about 0.3GeV and interact with atmospheric particles to produce muons which

make up the bulk of cosmic rays detected at sea level. Here the muons’ angular

distribution is proportional to cos2θ at their characteristic energy of Eµ = 3GeV .

The muon flux at sea level varies with geographical latitude, typical flux at DESY,

Hamburg is 100 events per square metre per second.

Cosmic ray muon events were used to test several characteristics of the Recoil De-

tector during the test experiment of 2005. Of particular relevance to tracking is

the detector alignment. Following the detector installation into the HERMES spec-

trometer, cosmic ray muons will still be used for such studies.
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5.5.1 Monte Carlo - CRAYG Cosmic RAY Generator

Early tracking routines were tested using cosmic ray events tracked by HMC through

the simulated HERMES Recoil Detector. This required a custom-written cosmic ray

muon event generator, CRAYG [76]. CRAYG generates muons in the energy range

2 < Eµ < 4GeV and with a cos2θ distribution, as can be seen in figure 5.14.
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Figure 5.14: Energy (left) and angular (right) distributions of muons generated by CRAYG
[76].

CRAYG simulates cosmic ray events by generating a pair of identical muons travel-

ling in opposite directions from a common vertex within the Recoil Detector volume.

This enables the most efficient use of processor time; most muons will pass through

active detector volumes in this setup, producing the same effect as a single muon

from an external vertex. The vertex position is a point selected by a random number

generator on a region in the (x, z) plane, as illustrated in figure 5.15.
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Figure 5.15: CRAYG generated muon pair with vertex constrained to (x, z) plane [76].
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CRAYG Monte Carlo samples contain one cosmic event per record, without simu-

lated background.

5.5.2 Track Finding

Track finding for cosmic rays relies on pattern matching to a track prototype given

by a parameterised line equation in 3 dimensions. The finding algorithm requires

two initial “seed” points, which are provided by the photon detector naturally as

it is used as the cosmics trigger. For testing with the Monte Carlo the seed points

are provided by a pair of hits on the outer layers of opposing silicon modules as

a digitised simulation of the SciFi and photon detectors was unavailable during

development of the CRAYG generator. The seed is obtained simply by performing

a search over individual detector planes.

A line in 3 dimensions can be written as the parametric equation:

~a = t~b + ~c (5.3)

where ~b can be interpreted as a vector identical (except, not at a fixed point in

the coordinate system) to the corresponding line, ~c as an offset vector and ~a as

the vector joining a point on the line and the coordinate origin. The t parameter

specifies the fraction of the length of ~b to which ~a points, 0 < t < 1 for points on the

line. External collinear points can have t < 0 or t > 1. This is illustrated in figure

5.16.

The line equation is split into components according to:

ax = tbx + cx

ay = tby + cy

az = tbz + cz

and the initial parameters ~b,~c are obtained from the two seed points:

cx = x1, bx = x2 − x1

cy = y1, by = y2 − y1

cz = z1, bz = z2 − z1
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Figure 5.16: A track (strong dashed line) and the vectors which describe it in Cartesian
coordinates. At t = 0, the pointing vector ~a is equivalent to the offset vector ~c.

where x1,2, y1,2 refer to the corresponding components of each space point. A space

point which is collinear with the line defined by the seed points satisfies the con-

dition that upon replacing ~a in equation 5.3 with its coordinates, the parameter t

remains the same for each component of the equation. A track finding algorithm

can therefore search through space points and recalculate t for each new set of x, y

and z components given by each point. The recalculated values tx, ty and tz must

agree to within a threshold defined by the detector resolution and the accuracy of

the alignment in order for the space point to be classified as belonging to the track.

Such a parameterisation, however, leads to practical difficulties in applying thresh-

olds. It is difficult to estimate the threshold difference acceptable for the agreement

between tx, ty, tz as t can only be considered a track “road width” in parameter

space. This idea can be elucidated by considering a point which lies exactly on the

x, y projection of the track but is displaced from the corresponding z coordinate of

the track at that point. In this case tx = ty but tz will have a different value and so

this parameterisation immediately shows which points are not collinear. As this is
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still difficult to visualise, the scheme is modified to allow simple tuning of the road

width.

Let a line in 3 dimensions be specified by the two points ~p1 = (x1, y1, z1) and

~p2 = (x2, y2, z2). The distance of the point ~p0 = (x0, y0, z0) from the line is given by:

d =
|(~p2 − ~p1) × (~p1 − ~p0)|

|~p2 − ~p1|
(5.4)

where terms enclosed in bars denotes the vector norm. The full derivation is pre-

sented in appendix A.1. Track finding in this scheme becomes the simple task of

comparing the distance between each other space point and the line defined by the

initial seed points. Tests of track finding performance are unremarkable as all Monte

Carlo samples are organised with a single track per event; obtaining 100% efficiency

is trivial due to the possibility of using wide road widths.

5.5.3 Track Fitting

Two different methods of track fitting have been tested with the CRAYG cosmic

generator, one of which was also applied to actual data taken during the cosmics

recoil test experiment. In this case momentum reconstruction is unimportant as

only geometrical information is relevant to alignment. The reconstructed track pa-

rameters are the vertex coordinates (y is constrained to zero) and the track angles

θ and φ, illustrated in figure 5.17.

3 Dimensional Fitting

This approach requires the minimisation (using the MINUIT package from CERN)

of an energy function which is defined by the line equation described by the track and

its associated points in 3-space. The method uses a least squares fit with errors mea-

sured orthogonally to the proposed line rather than measured in components [78].

The energy function is written in terms of a matrix whose smallest eigenvalue cor-

responds to the energy minimum. The 3-D fitting method is described in appendix

A.2.

The fitting routine was tested with 10,000 CRAYG generated Monte Carlo events,

with clustering implemented only for the silicon detector as no digitisation routines

were available for the SciFi and photon detectors. Space points in the photon detec-

tor and SciFi were not used. Figures 5.18 and 5.19 show the difference between the
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Figure 5.17: A cosmic ray track (strong dashed line) and the angles which define it within
the detector coordinate system. Vertex constrained to x, z plane (y = 0). φ is in fact
azimuthal angle defined between x-axis and projection of track on x, y plane, anticlockwise
and 0 < θ < π.

reconstructed and CRAYG generated primary vertices and track angles respectively.

2 Dimensional Fitting

An alternative approach is to combine 2 dimensional fits. A χ2 fit is performed on

the projection of the track on the x, y and the z, y plane. If the fits are successful

on the two planes the results are combined and track parameters are subsequently

retrieved. The χ2 fit proceeds according to the method described in reference [79],

section 15.3.

In the following notation, z can be substituted for x when the fit is being applied

in the z, y plane. The fit to the set of points is performed with errors on both axes.

Thus, for the straight line model y(x) = a+ bx the merit function is written as:

χ2(a, b) =
N
∑

i=1

(yi − a− bxi)
2

σ2
yi + b2σ2

xi

(5.5)

where σxi and σyi are the errors (standard deviations) of the x and y components

of the ith point. The weighted sum of variances in the denominator of equation 5.5

can be understood both as the variance in the direction of the smallest χ2 between

each data point and the line with the slope b, and also as the variance of the linear
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Figure 5.18: Difference in Monte Carlo generated vertex components and those recon-
structed by the 3D fitting of cosmic tracks. The y component is not shown as the vertex
is constrained to y = 0. The red curve shows a Gaussian fit.

combination yi − a− bxi of two random variables xi and yi,

V ar(yi − a− bxi) = V ar(yi) + b2V ar(xi) = σ2
yi + b2σ2

xi ≡ 1/wi. (5.6)

The sum of the square of N random variables, each normalised by its variance is

thus χ2 distributed. The task of track fitting in this case requires minimisation of

equation 5.5 with respect to a and b. The occurrence of b in the denominator of

equation 5.5 however, makes the resulting equation for the slope ∂χ2

∂b
nonlinear. The
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Figure 5.19: Difference in Monte Carlo generated vertex components and those recon-
structed by the 3D fitting of cosmic tracks. The red curve shows a Gaussian fit.

corresponding equation for the intercept, ∂χ2

∂a
= 0, remains linear and yields

a =

∑

i wi(yi − bxi)
∑

i wi

(5.7)

where wi is defined by equation 5.6. The parameters a and b are obtained by

minimising a one-dimensional function with respect to b while cross-checking with

equation 5.7 at each stage to ensure that the minimum with respect to b is also

minimised with respect to a. In this case Brent’s method is an appropriate solution

for performing the minimisation. This approach applies successive inverse parabolic

interpolations until convergence is achieved. Details of Brent’s method can be found
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in reference [79], section 10.2.
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Figure 5.20: Difference in the x (top) and z (bottom) vertex components reconstructed
with the 2D fit of cosmic tracks and Monte Carlo generated vertex components. The y
component is not shown as the vertex is constrained to y = 0. The red curve shows a
Gaussian fit.

This procedure was tested using the CRAYG Monte Carlo sample. At this stage,

the implementation of the SciFi detector into the Recoil Monte Carlo existed as

a set of barrel-shaped detector layers only. Consequently, clustered SciFi hits for

tracking were unavailable, but the space point position tracked by the Monte Carlo

could be used to test the 2 dimensional fitting routine. Reconstruction plots are

shown in figures 5.20 and 5.21.

The 2 dimensional method provided a significantly better reconstruction as the

minimisation stage of the 3 dimensional algorithm would frequently terminate at
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Figure 5.21: Difference in the track angles reconstructed with the 2D fit of cosmic tracks
and Monte Carlo generated track angles. The red curve shows a Gaussian fit.

local minima. The absence of abnormally reconstructed tracks, coupled with the

improved execution speed over MINUIT, resulted in the decision to use the χ2 2

dimensional method for cosmics tracking. A typical Monte Carlo reconstructed

event is shown in figure 5.22.



5.5. Cosmic Ray Tracking 93

-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20

Event 2

-20

-15

-10

-5

0

5

10

15

20

0 5 10 15 20 25 30 35 40

Event2

Figure 5.22: A Monte Carlo generated track producing hits in the silicon and SciFi detec-
tors. The red point is the primary vertex, the dotted line shows the reconstructed track.
The top diagram shows the x, y plane with the beam entering into page. The bottom
diagram is the z, y plane with the beam entering from the left.
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5.5.4 The Cosmic Ray Test Experiment

The cosmic ray test experiment, conducted between April and September of 2005,

aimed to collect cosmic ray data in order to study the separate subsystems of the

Recoil Detector. Usefully, the test experiment also helped to improve the under-

standing of the mechanical setup of the Recoil Detector and provided HERMES the

ability to anticipate some of the problems likely to arise during its installation into

the spectrometer.

The entire Recoil Detector (including magnet) was set up in the East HERA Hall

outside the interlock region. The detector was operated continuously in several data

taking modes, save for regular short periods when the detector modules needed to

be switched off to prevent damage (e.g. when ramping the magnet up and down),

or when other maintenance was being carried out. In total, 6610 runs were taken

during the operating period of the test experiment.

Scifi Inner

Photon Detector

SciFi Outer

y

x

Seed hit 1

Seed hit 2

Figure 5.23: Illustration of the region to which the search for a second seed space point
is constrained in a typical cosmic event. Dashed line shows path of track, red circles are
points left by the track. Search region is defined by opening angle between the photon
detector and the SciFi, and the first found seed point.
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The parameters for track finding in the test experiment were modified slightly.

Firstly, a restriction was placed on the seed search through the photon detector.

With its use as a cosmics trigger, an initial seed of two points was only selected

when their angular separation was such that the track must have passed through

the outer SciFi barrel (figure 5.23).

 (radians)φ
1 2 3 4 5 6

E
ve

n
ts

0

10

20

30

40

50

60

70

 (radians)θ
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

E
ve

n
ts

0

5

10

15

20

25

30

Figure 5.24: φ (upper) and θ (lower) distributions for a single cosmics data taking run
with the test setup.

This constraint resulted in a φ distribution of reconstructed tracks with strong peaks

at π/2 and 3π/2 and few counts elsewhere. This is shown in figure 5.24. The double

peak feature is seen as a track originating from above the recoil detector is, with

this setup, indistinguishable from a track originating below it.
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The θ distribution (figure 5.24) has a different profile to the CRAYG generated cos-

mics shown in figure 5.14. The convention for measuring θ in the CRAYG generator

is different to that in the track reconstruction; the tracking code measures track

parameters using the standard convention in cylindrical polar coordinates in which

0 ≤ θ ≤ π, whereas in CRAYG 0 ≤ θ ≤ 2π in order to separate the two muons

generated back-to-back.

It is expected that the θ distribution should be symmetric around π/2, something

which is not observed. The behaviour seen in figure 5.24 is due to the indistin-

guishability of a straight track at angles φ = φ, θ = π/2 − θ′ and one at angles

φ = φ + π, θ = π/2 + θ′. A typical tracked cosmic ray can be seen in figure 5.25,

which also demonstrates the space point reconstruction for the SciFi and photon

detectors.
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Figure 5.25: Event display [80] screen captures for an event with a single cosmic ray track.
Front cross section on the left, unrolled SciFi detector (upper) and photon detector (lower)
on the right. Hits on the photon detector are shown as coloured blocks, hits on the SciFi
are shown as encircled dots. The circle diameter shows the relative signal size in the SciFi.
Reconstructed space points on the right hand diagrams are shown as encircled crosses, the
dashed lines depict struck stereo layer fibres. Diagrams are not to scale.

5.6 Proton and Pion Tracking in the Magnetic

Field

As discussed in chapter 4, the primary functions of the Recoil Detector are, firstly,

to enable event-level exclusivity by detecting the recoiling proton from the beam-
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target interaction and secondly, to enhance background suppression by detecting

pions emitted from ∆ decays. In both cases the particles are emitted close to the

beam, all proton and pion tracking (referred to as curved tracking) described in this

section is performed with this constraint as an assumption.

The curved tracking has been tested with Monte Carlo event samples only. The

HERMES Recoil Detector Monte Carlo developed during the development of the

CRAYG generator has been employed for this purpose.

5.6.1 Recoil Detector Acceptance

The momentum and θ acceptance of the recoil detector are depicted in figure 5.26.

The φ acceptance is taken to be 2π due to the coverage of the scintillating fibre

tracker. In practice, however, this value is reduced for the purposes of curved track

finding as at least one space point in the silicon detector is required for such a track

to be found. Small gaps in φ are present in the acceptance of the silicon detector.
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Figure 5.26: Recoil detector acceptance in p and θ. [65]
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5.6.2 Monte Carlo

The curved tracking was tested with events produced by two generators. Firstly,

the gmc dvcs generator simply reproduces the final-state particle tracks originating

from a DVCS event: a positron, photon and proton in the case of HERMES, with

angular and kinematical distributions to match those empirically determined. No

background accompanies each event; all additional tracks in such an event originate

from an interaction between the particles generated at the primary vertex and the

material of the detector. The momentum and angular distributions of the generated

DVCS protons are shown in figure 5.27.

The gmc dvcs generator provides a useful means to test the track fitting routines.

Naturally, gmc dvcs samples were also useful during tests of the track finding code.

The track finding routine was initially tested with Monte Carlo events generated

by the PYTHIA program which can be used to generate high-energy physics events

from interactions between two incoming particles. PYTHIA provides an accurate

representation of event properties in a wide range of reactions, with emphasis on

those in which the strong interaction plays a role and so multihadronic final states

are produced [81]. In the case of HERMES, PYTHIA simulates positron-proton

interactions resulting in samples containing tracks from a variety of processes, of

which only a subset are useful for studies of tracking performance. The momentum

and angular distributions of π− and π+ events in a PYTHIA sample are shown in

figure 5.28.
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Figure 5.27: Momentum and angular distributions for a sample of gmc dvcs generated
protons. The shaded regions show the recoil detector acceptance.
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Figure 5.28: Momentum and angular distributions for a sample of PYTHIA generated π−

and π+ particles. The shaded region in the upper plot shows the approximate upper limit
of DVCS/Bethe-Heitler proton momentum at the HERMES kinematical region, and in
the middle plot shows the Recoil Detector Acceptance.
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The PYTHIA samples used to test recoil tracking did not contain proton tracks

inside the acceptance of the Recoil Detector. Restrictive cuts on the Recoil Detector

acceptance led to a large proportion of the statistics accumulated with PYTHIA

being rejected. Figure 5.29 illustrates the track multiplicity in one PYTHIA event

sample.

All events in which track multiplicity ≥ 1 in figure 5.29 are within the geometrical

acceptance of the Recoil Detector. Tracks outside the momentum acceptance are

included as the idealised space point reconstruction provided by HMC enables track

finding with XTC. Most tracks in the sample belong to charged pions, occasionally

a µ− or positron track is within the Recoil Detector acceptance (and in this case

will be tracked by XTC) but these events contribute only a small amount to the

overall multiplicity. The PYTHIA event samples test the ability of the track finding

routine alone to recognise the track shape.

A further test of the track finder was performed using the gmc dvcs generator.

Although gmc dvcs generates a DVCS event per record, with a single proton track,

a sample of 25,000 DVCS tracks could be combined in such a way that the resulting

sample contained 5,000 five-track events. The samples of events with 1 to 5 tracks

provided a fairer study of the effectiveness of the track finder as the track multiplicity

increased; the overall distribution of track parameters would be identical in each

case.
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Figure 5.29: Tracks in a typical PYTHIA sample satisfying the requirement that the sum
of the space points measured by the silicon and SciFi is ≥ 3.
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5.6.3 Magnetic Field

The Recoil Detector superconducting magnet generates a ∼ 1 Tesla magnetic field

in which charged particles are deflected. The SciFi detector expands the capability

of the Recoil Detector to reconstruct particle momenta by providing space points in

addition to those provided by the silicon detector and so measures the curvature of

the particle tracks in the magnetic field.

The momentum of a charged particle travelling in a homogeneous, longitudinal

magnetic field is proportional to its (constant) radius of curvature. The Recoil

Detector superconducting magnet produces an inhomogeneous field, however, so

tracking routines must be modified in order to reconstruct particle momenta more

accurately. For this purpose a magnetic field map is required.

Prior to the construction of the magnet, a field map was calculated by the Efremov

Institute, from this an input file for XTC was created. The calculated map describes

a rotationally symmetric solenoidal magnetic field which spans the entire z and r

range of the HERMES spectrometer at a resolution of 2 cm in both coordinates. This

resolution was judged to be insufficient as the magnetic field only affects charged

particle tracking for the Recoil Detector up to the radius of the outer SciFi (∼ 18.3

cm). The calculated field map is interpolated with a 2-dimensional cubic spline

function in order to obtain a field map with 1 cm resolution. This is shown in figure

5.30.

A comparison with a measured magnetic field map was unavailable until October

2004. Figure 5.31 shows a comparison between the calculated and measured mag-

netic fields. As the field was measured to 1 cm resolution, no subsequent interpola-

tion is required.

The interpolated calculated magnetic field compares well with the measured results

as can be seen in figure 5.31, all tests of the curved tracking in an inhomogeneous

field use the interpolated field map.

5.6.4 Track Finding

The track finding routine for proton and pion tracks in the magnetic field proceeds

similarly to the cosmics track finding described in section 5.5.2. In this case the track

prototype is given by a parameterised helix equation in 3 dimensions. The curved

track finding algorithm requires as input the complete “pool” of space points on all

surfaces of the silicon and SciFi detectors, and selects any three points (satisfying
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Figure 5.30: Calculated magnetic field component Bz (red circles) and result of interpola-
tion (blue dots). The magnetic field is depicted at r = 0 cm, the diagram covers the entire
z-length of the Recoil Detector.
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Figure 5.31: Measured (red circles) and interpolated calculated (blue triangles) magnetic
field component Bz inside Recoil Detector, at r = 0 cm [82].

certain cuts) to form a track seed which defines the helix.

One of the three seed points may be provided by the primary vertex which is recon-

structed by HRC. In the absence of the primary vertex, the three points must lie

in separate detector layers. In both cases the set must possess a maximum angular

separation defined by the curvature produced by particles at the lower momentum
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cutoff for the Recoil Detector. At ∼ 110 MeV, this cutoff translates to a maximum

bending angle of 0.785 radians inside the Recoil Detector. Figure 5.32 illustrates

the search region defined by the track seed.

Figure 5.32: Illustration of angle cut applied for track finding. Opening angle of circle
section (shaded region) defined by the primary vertex (central oval) and two seed space
points (green crosses) in this case in the silicon detector. This cut is also applied in the
opposite φ direction when searching for tracks from negatively charged particles.

This approach improves the speed at which tracks can be found, as space points

outside the region defined by the cut are not tested for compatibility with the helical

track model. In principle the opening angle should also provide for the angular

deviations from a helix caused by multiple scattering inside the detector materials,

however, this is not included as multiple scattering has not been accurately modelled

for the Recoil Detector and the track deflection in the magnetic field is expected to

be the dominant effect.

A point lying on a helix satisfies the following set of equations:

x = rcos(φ) + x0

y = rsin(φ) + y0

z = cφ+ z0
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where r is the helix radius, c is a constant which is related to the loop separation (the

gradient of z with respect to φ) and x0, y0, z0 are the coordinates of the origin of the

helix in an external coordinate system. Varying the parameter φ selects individual

points along the curve formed by the helix such that at φ = 0, the coordinates

x = r + x0, y = y0 and z = z0. For any space point in the detector ~a i,

~a i =







xi

yi

zi






≡







ri

φi

zi






(5.8)

the vector ~a =







x

y

z






is calculated according to the original helix equations

x = rcos(φi) + x0

y = rsin(φi) + y0

z = cφi + z0

such that the difference |~a − ~ai| gives the distance from the point to the helix.

Applying a threshold on this distance establishes a track road around the helix,

space points lying inside which are marked as belonging to the track defined by the

3 seed points.

Figure 5.33 demonstrates the efficiency of the track finder when reconstructing tracks

from PYTHIA. Efficiency remains high for up to four particles in the Recoil Detector

acceptance. Figure 5.29, however, shows strongly reduced statistics at multiplicity

= 3 (256 events have three tracks), stronger still at multiplicity = 4 (10 events have

four tracks), thus the large statistical uncertainty precludes any strong conclusions

about the effectiveness of the track finder in this region.

Figure 5.34, on the other hand, shows the efficiency of the track finder for DVCS

proton tracks. Efficiency is high for multiplicities up to five tracks although the

initial drop in efficiency in going from one to two tracks is greater than expected

considering the very high efficiency for a single track. This can be explained due

to the occasional contamination of a found track by space points which belong to

a separate track. A track is regarded as “found” if, and only if, all space points

belonging to the track are correctly recognised. Extra points are occasionally found
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Figure 5.33: Efficiency of track finder with increasing track multiplicity. Event sample
used was generated with the PYTHIA program.

when attempting to resolve two closely spaced tracks; the threshold distance be-

tween the track candidate and a space point is fairly large (1.1 cm) in order to

accommodate the expected deviation from the helical shape due to scattering and

magnetic field inhomogeneity. This feature is not present in figure 5.33, since in the

case of the PYTHIA sample almost all two-track events come from extremely fast

decays which naturally produce daughter particles back-to-back near the primary

vertex. Consequently the tracks are more likely to exhibit wide angular separation.

Appropriately, the steeper descent in figure 5.33 is seen at the boundary between

the two and three track bins where an additional decay may produce a track which

lies close to one of the tracks originating from the first decay. The difference in

track finding efficiency between the gmc dvcs sample and the PYTHIA sample is

less than 2%, as figures 5.33 and 5.34 show. This is due to the very different event

kinematics between the generated samples.

In the case of either the PYTHIA or the gmc dvcs event sample, these tests calculate

efficiency by only considering those tracks which are in the acceptance of the Recoil

Detector, originate from the primary vertex and leave sufficient space points (≥ 3)

in the subdetector volumes. Additionally, no background space points are present

during the track finding procedure.

In contrast to the pure proton sample of gmc dvcs, the PYTHIA sample includes

tracks from particles with positive and negative charge. π− particles, for example,

are abundant in the PYTHIA sample, making track misidentification more likely
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Figure 5.34: Efficiency of track finder with increasing track multiplicity. The event sample
in this case was obtained using the gmc dvcs generator.

due to the more common instance of shared hits between tracks. Unfortunately this

is difficult to check as applying a charge cut on the PYTHIA sample results in a

severe reduction in the statistics, and roughly zero occupation in the bins for which

the multiplicity is greater than two.

The performance of the track finding algorithm may also be sensitive to the angular

distribution of the generated tracks. The θ distribution of the gmc dvcs events

peaks at around θ = 1.1 (figure 5.27), corresponding to large transverse and small

longitudinal momentum components. The opposite is the case for PYTHIA events,

the θ peak being at around θ = 0.25 (figure 5.28). The acceptance of the recoil

detector begins at θ = 0.4 and the bulk of the PYTHIA statistics remain at these

comparatively low angles. A low transverse momentum component will promote the

distortion of the track shape from the expected helix because the inhomogeneous

field will affect the path of the particle more strongly. Consequently, these distorted

tracks may not be recognised by the track finder.

The gmc dvcs sample had the additional advantage of high statistics at all values

of track multiplicity. Imposing the cuts on the PYTHIA sample which would be

necessary in order to allow a fair comparison between generators would result in ex-

tremely low statistics at low multiplicity, and almost none at all at high multiplicity.

Further studies of the track finding performance are required before the algorithm

may be used reliably.
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5.6.5 Track Fitting

Track fitting for protons and pions with the Recoil Detector is concerned with re-

constructing particle momenta in addition to track angles and vertex coordinates.

Here the momentum is reconstructed by measuring the energy deposited by the

track in the silicon detector, or calculating the track curvature in the magnetic field.

The method of choice depends on the track momentum since below ∼ 0.5 GeV the

silicon detector provides a better reconstruction resolution. The silicon detector is

incapable of making accurate measurements at higher momenta due to those par-

ticles “punching through” the detector layers, in which case the track curvature is

measured.

Track Fitting in the Inhomogeneous Magnetic Field

Conventionally a track fitting algorithm may reconstruct the track parameters by

minimising the χ2 obtained by comparing a guess of the track shape, given by

the equation of motion of the particle in the magnetic field, with the space points

belonging to the track. Due to the inhomogeneous nature of the magnetic field in

the Recoil Detector, however, the track shape deviates from the usual form of a helix

with constant radius and the guesses must be modified accordingly.

Whereas ordinarily a track may be described by a helix, in an inhomogeneous mag-

netic field the track follows a smooth spiral (with a varying radius) which in this

case may be described by a set of parameters (the so-called state vector) propagated

by numerical integration through the magnetic field [83]. In the case of the Recoil

Detector, the geometry favoured a formalism modified from that given in [83] where

tracking was performed for a detector with parallel planes in the z-direction. Here

a cylindrical polar representation derived from [84] is adequate.

After propagation is performed, the resulting guess of the track parameters is ob-

tained and the χ2 is minimised according to a Newton-Raphson iteration method.

The procedure is graphically depicted in figure 5.35.

Parameterised appropriately, the state of the particle when it is at step n corre-
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Figure 5.35: Flowchart for track fitting procedure in XTC.

sponding to a distance r from the z axis on its path is given by its state vector;

~vn =

















φn

φ′
n

zn

z′n

λ

















(5.9)

where primed coordinates denote their first derivative with respect to r. The param-

eter λ is proportional to the inverse momentum of the particle and remains constant

during the propagation from the vertex to the outermost detector. The state vector

at n = 0 contains the usual track parameters which are iterated following a success-

ful propagation. At the beginning of the procedure, however, a first guess of ~v0 is
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required and is supplied by regarding the track as a straight line between the space

points closest to and furthest from the beam axis which belong to the track. The

first guess of the momentum is therefore infinitely large and λ = 0.

The state vector is updated as n is incremented (corresponding to an increased

radius). In XTC the step length is 1 mm requiring around 180 increments in n

between the beam axis and the outer SciFi layer. As the momentum given by

λn = λ0 remains fixed, the track direction is changed according to the particle

momentum and the magnetic field strength at the position given by the parameters

φn and r corresponding to step n. The equations of motion for a particle in a

magnetic field are derived from

d~p

dt
= q~v × ~B(~r) (5.10)

if energy loss is neglected. In cylindrical polar coordinates,

d2φ

dr2
= φ′′ = −2φ′

r
− rφ′3 +

qQ

pr
(z′Br + rφ′z′Bφ − [1 + r2φ′2]Bz) (5.11)

and

d2z

dr2
= z′′ = −rφ′2z′ +

qQ

p
(−rφ′Br + [1 + z′2]Bφ − rφ′z′Bz) (5.12)

where Bφ = 0 as the Recoil magnet is solenoidal, double primes denote a second

derivative with respect to r and

Q =
√

[1 + r2φ′2 + z′2]
q

p
= λ

as given by Bugge and Myrheim in reference [84]. Propagating the state vector from

the first to the last space point is accomplished by estimating the parameters of

~vn+1 when ~vn is given. Estimates are calculated using equations 5.11 and 5.12 and

improved by expanding them in the leading terms of a Taylor series.

Starting with φ′′ and z′′ as given by equations 5.11 and 5.12, at any value of n the

first derivatives of φn and zn are available from either the previous step (for n ≥ 1)

or from the values given to ~v0 at initialisation time. At n = 0 all components of ~v0
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and their second derivatives are known to maximum precision. For n > 0 estimates

are calculated according to:

h = rn+1 − rn (5.13)

φn+1 = φn + hφ′
n +

1

2
h2φ′′

n (5.14)

φ′
n+1 = φ′

n + hφ′′
n (5.15)

zn+1 = zn + hz′n +
1

2
h2z′′n (5.16)

z′n+1 = z′n + hz′′n. (5.17)

From these, new values of φ′′
n+1 and z′′n+1 are obtained by substituting the results

into equations 5.11 and 5.12. With the first two terms of a Taylor series better

estimates of φ, z and their derivatives are calculated;

φn+1 = φn + hφ′
n + h2(2φ′′

n + φ′′
n+1)/6 (5.18)

φ′
n+1 = φ′

n + h(φ′′
n + φ′′

n+1)/2 (5.19)

zn+1 = zn + hz′n + h2(2z′′n + z′′n+1)/6 (5.20)

z′n+1 = z′n + h(z′′n + z′′n+1)/2. (5.21)

Again the improved estimates of φ′′
n+1 and z′′n+1 are obtained as before by substitution

into equations 5.11 and 5.12.

The Newton-Raphson minimisation method requires knowledge of the partial deriva-

tives of ~vn+1 with respect to ~vn. The derivatives are conveniently given by the

components of a 5 × 5 matrix:

Mn+1,n =
∂~vn+1

∂~vn

=
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(5.22)

where the matrix entries explicitly calculated for this thesis are given in appendix
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A.3. Of particular importance is the matrix Mn,0 where

Mn,0 = Mn,n−1Mn−1,n−2...M1,0. (5.23)

Following successful track propagation through all detector layers, the initial state

vector ~v0 is updated according to Newton’s method:

~vN+1
0 = ~vN

0 − G−1g (5.24)

where the superscript on ~v now denotes the iteration and the subscript denotes the

stage of propagation. G is a 5 × 5 matrix given by

Gαβ = 2

points
∑

j

Mj,0
0αMj,0

0β

σ2
φ

+
Mj,0

2αMj,0
2β

σ2
z

(5.25)

where σφ and σz are the errors associated with the measurements of space point

positions, and g is a 5 component vector given by

gα = −2

points
∑

j

AjM
j,0
0α +BjM

j,0
2α (5.26)

and

Aj =
φm

j − φj

σ2
φ

(5.27)

Bj =
zm

j − zj

σ2
z

(5.28)

where the superscripted φm
j and zm

j indicate measured rather than estimated coor-

dinates. The subscript j in the unsuperscripted φj and zj refers to the values of φn

and zn closest to the corresponding measured coordinates.

The iteration proceeds until
χ2

N
−χ2

N−1

χ2
N−1

is sufficiently small or a maximum of 6 itera-

tions is reached. Typically the algorithm requires 3 iterations until convergence is

achieved. The covariance matrix is available from the fit as 2G−1.
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Homogeneous Circle Fitting

While the inhomogeneous fitting procedure accommodates the magnetic field inho-

mogeneity, the shape of high-momentum tracks in the recoil detector due to the

magnetic field is not greatly different from the case where the magnetic field is uni-

form. Consequently the reconstruction of the track momenta is simpler and the

circle approximation in the xy plane is adequate in this region. This method has

the advantage of a very fast execution speed, around 2 ms per track whereas the

inhomogeneous fit requires around 11 ms.

The fitting algorithm in this case is similar to the inhomogeneous algorithm, the

primary difference being a lack of a propagation stage. Again, χ2 is minimised

using the Newton-Raphson iteration method, with the state vector now describing

a circle in the xy plane. The z-component of the momentum is simply obtained by

measuring the θ track angle.

In principle this method could be easily extended to a helical fit in 3 dimensions by

modifying the state vector to represent a helix instead of a circle. Such a modification

may yield a momentum resolution on par with the inhomogeneous fit (for high track

momenta), and maintain the high execution speed. A full description of this method

can be found in reference [85].

Homogeneous Helix Fitting

A simple test of a hypothetical helix fitting algorithm can be performed with the

existing inhomogeneous algorithm simply by setting the magnetic field map values

to a constant, as in this limit the inhomogeneous algorithm reduces to a helix fit.

This number may be obtained by taking the average of the field strength over the

recoil detector volume, and optimisations can be subsequently applied depending

on the observed performance of the reconstruction. In this case, the Bz component

of the magnetic field was set to a constant 1 Tesla, and the remaining components

were set to zero, as would be the case for a perfect solenoidal field.

In practice, this approach is not considered for use with the Recoil Detector. The

method predictably provides a poorer reconstruction than the inhomogeneous method,

and no performance gain is experienced when a constant magnetic field is used with

a procedure which propagates a track through the field in small steps.
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Momentum Resolution

The gmc dvcs generated events are the most suitable for testing the fitting algo-

rithm, its easily identifiable final state protons possessing momenta in the range

appropriate to the Recoil Detector acceptance. Additionally, the gmc dvcs gener-

ator was used to produce estimates of the expected momentum resolution of the

Recoil Detector during its early design stages. All results shown use ideal space

point reconstruction (exact position measurements) as Monte Carlo samples with

digitised SciFi information was unavailable. This is the case for the TDR reconstruc-

tion as well as the XTC reconstruction (where the separate codes are compared).

Figure 5.36 shows the preliminary results of momentum resolution.
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Figure 5.36: Momentum resolution in several momentum bins calculated for Recoil Detec-
tor Technical Design Report [65]. Filled circles show the reconstruction from bending in
the magnetic field, the open circles (stars) show the reconstruction of π+ (proton) tracks
using the dE/dx method with the silicon only.

In this case the track momenta were reconstructed by measuring the radius of the

circle formed by projecting the track shape onto the x, y plane. The longitudinal

momentum component can be calculated from the transverse component and the

track θ angle. The fit was performed with the assumption of a homogeneous mag-

netic field. The momentum resolutions presented in the Technical Design Report

were calculated by taking the difference between the reconstructed and Monte Carlo

generated momenta (p and pmc respectively) over increasing momentum (pmc)bins

in Recoil Detector acceptance, and dividing by pmc. The inhomogeneous tracking

algorithm was tested in the same way and this is shown in figure 5.37.
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Figure 5.37: Momentum resolution over 9 equidistant momentum bins represented as a
proportion of Monte Carlo momentum.

In order to investigate the momentum resolution of the reconstruction, the σ of

the Gaussian fit in each momentum bin of figure 5.37 (and its error) is plotted

against the mean pmc, as shown in figure 5.38. The momentum resolution for the

inhomogeneous fit ranges from ∼ 0.22 to ∼ 0.19 below ∼ 350 MeV. From this up

to 1.2 GeV the resolution provided by the inhomogeneous fit is an improvement

over that predicted in the TDR. The lack of improvement at lower momenta arises

from the difficulty of reconstructing curved tracks in an inhomogeneous magnetic

field. The TDR reconstruction does not accommodate field inhomogeneity, but

during the generation of the Monte Carlo gmc dvcs events for testing the TDR

reconstruction the simulation of the magnetic field was homogeneous; at that time

an inhomogeneous field map was unavailable. In both cases the reconstruction

suffers at lower momenta as multiple scattering distorts the track shape. Fortunately

this is around the upper threshold at which momentum reconstruction via energy

deposition in the silicon detector is enabled.

A similar situation is seen when the homogeneous circle fit algorithm is employed.
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Figure 5.38: Momentum resolution in several momentum bins. Filled circles are results
calculated with the inhomogeneous fitting routine, unfilled circles are the TDR results for
comparison.

Figure 5.39 shows its performance compared with the TDR results. The performance

is much better above around 500 MeV, although the errors in each bin are somewhat

larger than those obtained from the inhomogeneous fit (figure 5.38). The poorer

performance can trivially be attributed to the homogeneous approximation, but the

resolution also suffers from the simple reconstruction of the z-gradient of the track.

A comparison of the homogeneous and inhomogeneous algorithms can be seen in

figure 5.47.

The performance of the homogeneous helix approach is shown in figure 5.40. The loss

in momentum resolution is not as pronounced as that exhibited by the homogeneous

circle fit, but clearly the homogeneous approximation remains the most significant

source of uncertainty. Its comparison with the circle fit can be seen in figure 5.47,

in this case the trade-off between resolution and the expected execution speed of

such an algorithm (following subsequent optimisation and removal of the particle

propagation routine) may be acceptable.

It can be seen in figure 5.37 that the mean value of the difference between recon-

structed and Monte Carlo momentum (∆p) drifts away from the expected value of

zero, towards the negative direction, at low momentum. At lower momenta this may

be a side-effect of the difference in the discretisation of the magnetic field between

the Monte Carlo sample and XTC. The path of the particles simulated by the HMC

Monte Carlo program is calculated using a magnetic field map of 2 cm resolution.
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Figure 5.39: Momentum resolution in several momentum bins. The filled triangles are
the results calculated with the homogeneous circle fitting routine, unfilled circles are TDR
results for comparison.
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Figure 5.40: Momentum resolution in several momentum bins. The unfilled triangles are
the results calculated with the homogeneous helix fitting routine, unfilled circles are TDR
results for comparison.

XTC, on the other hand, calculates particle momenta by measuring the degree of

bending in an interpolated magnetic field of 1 cm resolution. Due to weakening of

the magnetic field as r increases, the track bending radius will increase as the parti-

cle proceeds along its path. The integrated field strength of the 1 cm resolution field

map will, due to the binning, be smaller than that of the 2 cm field map. The field
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map in XTC is consequently weaker than that in HMC; the stronger bending pro-

duced by HMC in the stronger magnetic field will be measured in XTC as a strong

bend in a weaker magnetic field, therefore the reconstructed momentum will tend

to be lower than the momentum given by the gmc dvcs generator. Low momentum

tracks will naturally experience a stronger deflection and so are more sensitive to

this difference in the magnetic field maps.

Energy loss also introduces a negative bias in the mean value of ∆p. As HMC tracks

the particle through detector layers, the energy loss through successive interactions

with the material results in a progressive loss in track momentum and hence re-

duces the effective bending radius. Again, low momentum tracks are most strongly

affected, and XTC does not account for the effect of these interactions.

At higher momenta these effects are strongly reduced, and a positive bias is observed.

This effect may be present due to the limited detector radius. As track momentum

increases, its shape bears a stronger resemblance to a straight line which, in the

magnetic field, corresponds to either a neutral particle or a charged particle with

momentum approaching infinity. As the outer scintillating fibre barrel is only at

a distance of ∼ 20 cm from the vertex the measured deviation in such cases is

small and begins to approach the uncertainty in each position measurement. In this

situation a fitted track shape exhibiting only a slight bend may yield a low enough

χ2 to be accepted, resulting in a positive value of ∆p = p − pmc; the difference

between the Monte Carlo and reconstructed momenta.

It is crucial to correct this behaviour in the tracking code in order to ensure the

reconstructed momenta are accurate. These effects may be accounted for by in-

vestigating the correlation between the values ∆p and p. Figure 5.41 depicts this

relationship in nine equidistant momentum bins. The tendency for the mean to

gradually move from a negative to a positive value can be readily seen. In figure

5.42, the mean value of the Gaussian fit in each momentum bin of figure 5.41 is plot-

ted against p. The horizontal errors are the p bin widths and the vertical errors are

obtained from the error on the Gaussian mean. A third-order polynomial function

describes the relationship extremely well, and this function can be used with each

individual reconstructed momentum value to determine how large a correction must

be applied after the reconstruction. Figures 5.41 and 5.42 only reflect the ∆p vs p

behaviour exhibited in the inhomogeneous reconstruction but an identical method

may be used to correct the other fitting algorithms.
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Figure 5.41: ∆p in 9 momentum bins. The mean of the distribution gradually moves from
a negative to a positive value as momentum increases.
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Figure 5.42: Correlation between ∆p and p, using the inhomogeneous fit method. A
third-order polynomial function adequately describes the relationship.
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t Resolution

The kinematic variable t is given by t = (p′−p)2 where p′ and p are the four-momenta

of the target and recoil protons respectively. One of the goals of the recoil detector is

to improve the resolution to which t is reconstructed at low momenta, consequently

the t resolution for the inhomogeneous fit is also calculated. Figure 5.43 shows the

expected resolution to which t is reconstructed by the Recoil Detector calculated for

the TDR, with the measured t resolution of the remaining HERMES spectrometer

for comparison.
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Figure 5.43: Expected t resolution for the Recoil Detector (left) and measured t resolution
for the HERMES spectrometer (right). Filled circles show the resolution obtained using
the preliminary reconstruction described as before (see section 5.6.5).

Below ∼ 1GeV 2/c2 the resolution obtained with the Recoil Detector is better than

that obtained with the spectrometer alone, approximately an order of magnitude im-

provement is seen at low values of t. The inhomogeneous fitting procedure provides

a t resolution as shown in figure 5.44.

Figure 5.44 shows the σ value of the Gaussian fit performed on each bin in t, versus

the average value of −t in that bin. The procedure is similar to that in the case of

figure 5.38, the difference being the resolution is quoted absolutely in the case of t.

The fits to the bins in t are shown in figure 5.45.
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Figure 5.44: ∆t = t− tmc plotted against −tmc, obtained using the inhomogeneous fitting
algorithm.
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Figure 5.45: Gaussian fits to 9 equidistant bins in t.
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5.6.6 Momentum Reconstruction with the Silicon Detector

With the addition of digitisation for the silicon detector in the Recoil Detector

Monte Carlo, momentum reconstruction via energy deposition is enabled for protons

in the momentum range ∼ 100 − 500MeV/c. In XTC this is referred to as the

“slow” momentum reconstruction and is implemented in a configuration where the

algorithms may either complement or replace the inhomogeneous reconstruction at

low momenta. The implementation of the slow tracking in XTC is based on an earlier

piece of software [63], [76], [88] which provided only this method of reconstruction.

Consequently, the slow reconstruction may use either the straight line track finder,

in the case of a track without reconstructed space points in the SciFi, or the curved

track finder otherwise. In the latter case the inhomogeneous fit provides a useful

cross-check of the reconstructed momentum.

The momentum of a particle which deposits energy in the silicon detector is given

by p = p(Ecorr, α), where

Ecorr = Ecos(0.79α) (5.29)

and represents the corrected energy deposition, where E is the uncorrected energy

deposition and α is the angle the track makes with the vector normal to the plane of

the silicon detector. E is calculated with the calibrated ADC response of each silicon

detector multiplied by a constant. The corrected Ecorr has such an α dependence

as the particle passes through a greater amount of material at shallow angles to the

plane of the silicon detector. The 0.79 factor is an empirically determined constant

which corrects for the incremental loss in energy as the particle traverses the volume

of the detector layer. Its derivation can be found in references [86] and [87]. The

momentum is reconstructed using a look-up table generated with 300,000 Monte

Carlo events [88] which provides values of p from given Ecorr and α values. When

space points which are members of the same track are present on both the inner

and outer silicon layers, both energy depositions are obtained and an unweighted

average is calculated for the reconstructed momentum.

Figure 5.46 shows a comparison between the expected performance of the silicon de-

tector in the TDR and the momentum resolution obtained using the silicon energy

deposition code [88] implementation in XTC. The XTC results present an improve-

ment by approximately a factor of two over the expectations of the TDR at higher

momenta.
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Figure 5.46: TDR momentum resolution in the silicon (unfilled circles) compared with
results obtained using updated code in XTC (filled circles) [88].

An overall comparison between tracking in the TDR and XTC can be seen in figure

5.47. The reduction in resolution of the long tracking methods at low momenta is

compensated by the enabling of the dE/dx reconstruction in the silicon.
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Figure 5.47: Momentum resolution obtained with long tracking and silicon in TDR (un-
filled circles and squares respectively) compared with the inhomogeneous tracking (filled
circles), homogeneous circle tracking (filled triangles), homogeneous helix tracking (un-
filled triangles) and silicon tracking in XTC (filled squares).



Chapter 6

Results of the ρ0-Analysis

Presented in this chapter are the results obtained from the analysis of cross section

ratios of ρ0 vector meson production from deuterium and hydrogen targets. Prior

to this a full description of the methods used to extract the results from HERMES

data is presented, including data quality requirements, kinematic cuts and back-

ground subtraction. The final result is a comparison of the xBj-dependency of the

ρ0 electroproduction cross section ratio on deuterium versus hydrogen, seen in the

data, with the theoretical expectation. The latter is based on the calculated par-

ton distribution functions parameterised according to MRST2001LO, described in

section 2.12.

6.1 Data Quality

The reliability of the data produced during the running of the HERMES experiment

is heavily dependent on the performance of each subcomponent of the HERMES

spectrometer and on the quality of the beam provided by the HERA accelerator.

Data samples containing recorded events during a period of subsystem malfunc-

tion or instability are discarded during the analysis; only samples satisfying specific

performance criteria remain.

The HERMES data selection occurs at the level of fills, runs and bursts. Generally

the shift crew are responsible for identifying problems during each fill and recording

fill-level and run-level data quality information in the experiment logbook. Each

data production is further scrutinised and a “run-list” is produced containing all

run numbers which pass the selection criteria at this level. Because different anal-

yses may not require full functionality of certain detector components, a final data

125
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selection must be applied at burst level where slow control information is available.

Table 6.1 lists the data quality cuts used in the ρ0-analysis. The cuts were derived

from the Spin Density Matrix Element analysis [89] which were in turn derived from

the HERMES inclusive g1 analysis [90].

bit Quantity Criterion 96 97 98 99 2000
Live Time 50 ≤ τlive < 100% � � � � �

2 0 < τr21 ≤ 100% � � � � �

95 ≤ τArt ≤ 100% � � � � �

3 Burst Length 0 < tburst ≤ 11s � � � � �

4 Beam Current 8 ≤ Ie ≤ 50mA � � � � �

6 First Burst reject first burst in run � � � � �

7 Last Burst reject last burst in run � � � � �

8 µDST Problems reject bad timing � � � � �

burst records
9 Logbook data reject bad � � � � �

quality logbook bursts
10 Two state mode polarised,unpolarised � � � � �

11 unpolarised
17 GMS - Calorimeter check for dead � � � � �

data quality calorimeter blocks
18 GMS - H2 and check for zero bad blocks � � � � �

luminosity monitor
19 TRD data quality reject bad TRD bursts � � � � �

20 High Voltage trips reject FC and BC trips � � � � �

22 RICH High reject RICH HV trips � � �

Voltage trips

25 Čerenkov data reject bad � �

quality Čerenkov bursts
22 RICH data quality reject bad RICH bursts � � �

28 Beam Polarisation regular polarimeter � � � � �

Fit update

Table 6.1: The 1996 - 2000 data quality cuts.

6.1.1 Data Acquisition

As all HERMES data quality relies on the properly functioning DAQ system, the

application of cuts specific to the DAQ at burst level is appropriate here. Data

quality bits 2 3, 6 and 7 refer to data selection criteria which apply to the DAQ. Upon

receiving a trigger signal the DAQ begins the procedure to read out information from

the subdetectors. If, during the time period in which readout is occurring an event
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generates a subsequent trigger, this event cannot be read out as the DAQ is busy.

This fraction of time, referred to as the dead time, can be alternatively expressed

as the DAQ live time and is estimated from the fraction of accepted to generated

trigger events in a burst:

τlive =
Tacc

Tgen

. (6.1)

The selection criterion for τlive is shown in table 6.1. Additional quantities in this

category are τ21 and τArt. At HERMES the main physics trigger is generated

from coincident signals in the H0 and H1 hodoscopes, the H2 preshower and the

electromagnetic calorimeter. This is referred to as trigger 21, τ21 being the associated

quantity. The artificial live time τArt was calculated from a correction factor applied

to the total live time in order to account for missing events in the data stream.

At the beginning and end of each run the DAQ must perform miscellaneous ini-

tialisation and clean-up tasks. In order to remove events obtained during this time

the first and last bursts in each run are rejected. In addition, bursts which exhibit

timing problems are removed by imposing a burst length requirement as given by

data quality bit 3.

6.1.2 Tracking

Physics analysis at HERMES requires accurate reconstruction of particle tracks, pro-

vided by the various tracking detectors in the spectrometer and the Hermes Recon-

struction Code (HRC). HRC reconstructs tracks with a recursive pattern matching

approach using so-called tree lines which are the resultant combinations of tracking

chamber hits in each of the three wire directions (U,X,V).

The pattern recognition algorithm compares hit patterns recorded by the tracking

detectors with those in a database which stores patterns belonging to all possible

tracks. The storage of such tracks, 126 million in total [50], precludes any comparison

using a linear search due to the prohibitive CPU time which would be required

using this approach. The comparison is thus performed recursively using a tree

search, shown in figure 6.1, which performs comparisons at successively increasing

resolution.

The measured hit patterns are compared with a low-resolution pattern in the database.

The resolution is subsequently doubled and the child patterns from those parent pat-
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Figure 6.1: Illustration of the tree search algorithm. The procedure begins with a low-
resolution comparison (top), successive increases in resolution reduces the number of search
candidates at each level.

terns which matched the track in the previous step are searched for a match with

the track. The procedure continues until the track is matched with patterns at a

resolution which corresponds to that of the tracking detectors.

Momentum reconstruction is performed using a look-up table generated using a

large amount of Monte Carlo generated particles tracked through the simulation of

the spectrometer and its magnetic field map. This technique yields a momentum

resolution better than ∆p

p
= 0.5% and an angular resolution better than 1 mrad.

Tracking Detectors

The reliability of the reconstructed track parameters used in the ρ0 analysis depends

on the performance of the tracking detectors which must be monitored. Data quality

bit 20 corresponds to a high voltage trip in the front and back tracking chambers,

which occurs when a drift chamber draws a current exceeding a certain limit. This

is usually caused by high background or by radiation produced as a side-effect of
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unstable beam conditions. In order to avoid permanent damage to the drift chamber

wires, the high voltage is switched off upon such an occurrence. Following a trip

and subsequent reactivation of the affected detector, the tracking plane experiences a

temporary reduction in efficiency. Consequently, bursts during which a high voltage

trip occurs are rejected.

6.1.3 Trigger and PID Detectors

The trigger efficiency and particle identification are affected by the performance

of the H1 hodoscope, the preshower H2 and the electromagnetic calorimeter. The

PID is also affected by the Čerenkov detector during 1996/7 (and the RICH which

replaced it after 1998) and the transition radiation detector. Performance informa-

tion for the preshower and calorimeter is provided by the Gain Monitoring System

(GMS) on a run-by-run basis, the development of faults in a GMS module or a

serious degradation can be determined from a comparison of the average gain of

the module with its nominal value [90]. Bursts recorded during periods when the

GMS contained so-called bad blocks are rejected. As with the tracking detectors

the bursts in which high-voltage trips in the RICH are present are also rejected.

Additionally, in order to ensure reliable PID the performance and stability of the

TRD and Čerenkov/RICH is monitored.

6.2 Event Selection

Following the application of the data quality cuts, the remainder is a reliable sample

of tracks originating from several different scattering processes, many of which are

studied at HERMES. A further set of cuts must be applied in order to select the

events of interest to the particular analysis. The data sample used for the ρ0-analysis

was obtained from the runs taken during the years 1996, 1997, 1998, 1999 and 2000,

when the target operated with polarised and unpolarised hydrogen and deuterium.

No distinction was made between unpolarised and polarised samples of the same gas

type as the ρ0 analysis is insensitive to beam or target polarisation. The data taken

between the years 2001 and 2004 were omitted from this analysis as the contribution

to the statistics (around 3,000 events in total) was comparatively small compared

to over 10,000 events in the 1996-2000 sample. Also, due to earlier analyses, the

1996-2000 data sample is much better understood.

The ρ0 has a short lifetime characteristic for a particle which decays via the strong
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interaction. The decay width of the ρ0 is 150.3±1.6 MeV [91] which corresponds, via

the relation τ = ~/Γ, to an expected lifetime of 4.4×10−24 seconds. Approximating

the distance travelled by the ρ0 before it decays as cτ yields 1.3fm which corresponds

to the scale of a nucleon. The ρ0 decays via the channel ρ0 → π+π− with a 100%

branching ratio. The analysis results were obtained by measuring the scattered

lepton and decay pions from the ρ0 decay. The recoil proton trajectory lay outside

the HERMES spectrometer acceptance during the relevant data taking years, the

HERMES Recoil Detector upgrade (see chapter 4) installed in late 2005 will provide

the increased acceptance required to measure recoil proton tracks for future analyses.

6.2.1 Track Selection

The reconstruction of scattering events in which a ρ0 is produced relies on the iden-

tification of three particle tracks; a π+, π− and the scattered beam lepton. The

primary method of identification is to study the responses of the HERMES PID de-

tectors which provide particle identification to a very high accuracy; the uncertainty

introduced due to particle misidentification can be regarded as negligible. The level

of contamination expected in a lepton sample is below 1% (see section 3.3.2).

HERMES PID quantities are calculated with a probability based analysis using a

Bayesian algorithm [96]. This method seeks to calculate the probability P (Hi|E, p)
that a track seen in a particular detector corresponds to either a lepton or a hadron

given a measured track momentum p and energy deposition E in the chosen detector.

According to Bayes’ theorem, this idea may be expressed as:

P (Hi|E, p) =
P (Hi|p)P (E|Hi, p)

P (E|p) (6.2)

where Hi represents the hypothesis that the track is left by a particle of type i which

can be a hadron or a lepton. The quantity P (Hi|p) is the prior probability that a

track with momentum p is of type i and P (E|Hi, p) represents the probability for

a particle of type i to deposit an energy E in the detector. In the denominator of

equation 6.2, P (E|p) gives the probability that a particle with momentum p will

deposit an energy E in the detector, and is given by:

P (E|p) =
∑

j=l,h

P (Hj|p)P (E|Hj, p) (6.3)
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giving

P (Hi|E, p) =
P (Hi|p)P (E|Hi, p)

∑

j=l,h P (Hj|p)P (E|Hj, p)
. (6.4)

At HERMES, the parent distributions P (E|Hj, p) are obtained from real data by

imposing cuts on the remaining PID detectors (i.e. those detectors other than the

one being considered) and assuming that their responses to a particular particle type

are uncorrelated. Using a simplified notation, the distribution P (E|Hj, p) = Lj.

The prior probabilities P (Hj|p) are equivalent to the flux factors φj of particle j.

The flux factors are calculated in terms of their ratio, Φ = φh

φl which represents the

number of incident hadrons divided by the number of incident leptons. In practice

this quantity is a function of momentum p and polar angle θ and is obtained using

an iterative procedure. The initial value Φ0(p, θ) is set to 1, this value in addition to

the parent distributions are applied to the data set and the total number of lepton

and hadron tracks are obtained. Φ1(p, θ) is taken to be the ratio of the number

of identified lepton and hadron tracks and is used in the next iterative step. The

iteration proceeds until convergence is reached.

For a particular detector, the positron probability is given by

Pe =
Le

ΦLh + Le
(6.5)

which is easily seen by expanding the sum in equation 6.4 and substituting the

parent distributions L and flux factors φ accordingly. From the logarithm of the

ratio of probabilities a PID quantity can be created:

PID = log10

(Pe

Ph

)

= log10

( Le

ΦLh

)

= log10

(Le

Lh

)

− log10Φ. (6.6)

In this scheme a PID > 0 indicates a greater likelihood that the particle is a

positron, PID < 0 indicates that the particle is more likely to be a hadron and

PID = 0 indicates either particle is equally likely. Neglecting the flux ratio Φ

results in a shift of log10Φ, and so Φ can be neglected when it is not a strong

function of p and θ.

The calculated PID quantities relevant to ρ0 analysis are known as PID3 and PID5;

these labels have developed historically. PID3 is given by the responses of the
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electromagnetic calorimeter, H2 preshower and Čerenkov:

PID3 = PIDcal + PIDpre + PIDcer = log10

(Lcal
e Lpre

e Lcer
e

Lcal
h Lpre

h Lcer
h

)

. (6.7)

The quantity PID5 is computed using responses from the six modules of the transi-

tion radiation detector (TRD) only and is given by

PID5 = PIDTRD = log10

(

∏6
m=1 LTRD,m

e
∏6

m=1 L
TRD,m
h

)

. (6.8)

The quantity PID3+PID5 is used for the separation of positrons and pions in the

ρ0 analysis. Its distribution in a sample of data is shown in figure 6.2.
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Figure 6.2: PID3 + PID5 distribution in the 1996/97 data [51]. This figure shows the
distribution without the inclusion of the flux term, and so is shifted by an approximate
PID3 + PID5 value of 1.

The PID cut used in the ρ0 analysis required PID3 + PID5 > 1 for leptons and

PID3 + PID5 ≤ 1 for hadrons. The statistics in this region are relatively low,

any contamination to either the hadron or lepton sample is minimal. In addition,

several other track-level cuts were used to further minimise systematic errors. Table

6.2 contains a list of relevant cuts.
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PID Cuts
e+ selection PID3 + PID5 > 1
π+/π− selection PID3 + PID5 ≤ 1

Fiducial Cuts
Horizontal front clamp |x| < 31 cm
vertical lower limit |y| > 7 cm
(septum plate)
Rear vertical clamp |y| < 54 cm
Back clamp check |x| ≤ 100 cm,|y| ≤ 54 cm
Calorimeter check |x| ≤ 175 cm

30cm ≤ |y| ≤ 108 cm
Vertex Cuts

Z vertex check |zvert| < 20 cm
Beam line distance |Dvert| < 0.75 cm

Table 6.2: PID and geometrical cuts on reconstructed tracks.

Fiducial cuts were imposed on the tracks at certain positions in the spectrometer in

order to reject events where tracks are scattered from dense spectrometer materi-

als. The front magnetic field clamp cuts ensure reconstructed tracks lie within the

acceptance defined by the apertures of the clamps, and the magnet septum plate

separating the top and bottom halves of the spectrometer is avoided by imposing

the vertical cut.

A cut is also made on the calorimeter position, ensuring that the track is entirely

contained within in order to allow the positron to deposit all its energy. This cut

enables the removal of tracks near the edges of the spectrometer where positron

identification efficiency is reduced.

The HERMES target is 40 cm long and has a triangular density profile centred

at z = 0. At z = ±20 cm it is therefore reasonable to expect that there is no

gas remaining in the target cell, and so the Z vertex cut excludes tracks with a

reconstructed Z vertex outside the target cell. The transverse target size is given

by the D vertex parameter and the cut is justified with the equivalent reasoning for

the Z vertex cut.

6.3 Kinematic Cuts

The ρ0 vector meson is produced in the reaction e+p→ e+ρ0p→ e+pπ+π−. Prior to

the installation of the Recoil Detector, the HERMES spectrometer detects only the
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pion pair and the scattered positron from the interaction, Pion pairs coming from

a ρ0 decay are selected through the application of a set of kinematic cuts. In this

section, each described cut is applied successively; all kinematic plots keep preceding

cuts.

6.3.1 ρ0-Event Selection

The first cut which is performed selects those events in which only three tracks are

present in the spectrometer; the aforementioned positron and pion pair. A peak in

the invariant mass distribution of the pion pairs indicates the presence of ρ0 mesons

in the sample. This quantity is simply calculated by combining the four-momentum

of each pion as given by:

M2π =
√

(pπ+ + pπ−) (6.9)

where pπ+ and pπ− are the four-momenta of the hadron pair calculated with the

assumption that both are pions. The invariant mass distribution of the two pion

system is shown in figure 6.3.
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Figure 6.3: Invariant mass distribution calculated from hadron pair with prior hypothesis
that hadrons are pions. Vertical lines indicate lower and upper cut on ρ0 mass, 0.6 <
M2π < 1GeV/c2.

Figure 6.3 shows the ρ0 peak at around 770 MeV as expected. The next lowest

peak corresponds to K0
S production, K0

S mesons possess a mass of 497.672 ± 0.031
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MeV and also decay into an oppositely charged pion pair with a branching ratio of

68.95± 0.14% [91]. The bulk of the distribution consists of products from processes

other than ρ0 production and is rejected according to the invariant mass cut 0.6 <

M2π < 1 GeV. A more comprehensive background subtraction procedure is described

in section 6.5

6.3.2 Selection of Exclusive, Diffractive Events

As the analysis concerns only the production of exclusive ρ0 events a method is

required to remove those non-exclusive events when some of the reaction products

are produced in a direction lying outside the detector acceptance. As non-exclusive

events may exhibit the same event topology as exclusive events, the quantity ∆E

was introduced and is given by:

∆E =
M2

x −M2
targ

2Mtarg

= ν − Ev +
t

2Mtarg

(6.10)

where M2
x = p′2 is the invariant mass squared of the recoiling baryonic system and,

in semi-inclusive A(e, e′V ) is given by:

Mx =
√

(p+ q − pv)2. (6.11)

Here ∆E can be regarded as a measure of exclusivity as for exclusive events, Mx =

Mtarg meaning the target remained intact after the interaction. For non-exclusive

events ∆E will therefore be greater than zero. In calculating ∆E for the ρ0 analysis

the target mass Mtarg was taken to be equal to the proton mass Mp. While this

is expected in the case of scattering from hydrogen, the target mass changes when

deuterium gas is used in the target cell. In the latter, the scattering reactions can be

either coherent (where the positrons scatter from the nucleus) or incoherent (where

scattering occurs on individual nucleons). For incoherent scattering the expected

target mass should be equivalent to the deuteron mass, but the limited spectrometer

resolution makes distinction between coherent and incoherent processes impossible

and so Mx was fixed to Mp. The ∆E distribution can be seen in figure 6.4.

The majority of events lie in the non-exclusive region of the graph and the application

of the cut at ∆E < 0.6 GeV rejects the events outside the exclusive peak. In practice

some negative values of ∆E are obtained due to the limited experimental resolution,

a lower cut of ∆E > −1GeV/c2 reduces the systematic error by rejecting any events
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Figure 6.4: ∆E distribution inside ρ0 mass window. The vertical line indicates the ∆E
upper limit for exclusive events, ∆E < 0.6 GeV.

below this for which the resolution of the spectrometer is poor and may arise from

large errors on the reconstructed track momenta.

Diffractive processes are selected through the application of a cut on t′, defined as

t′ = t− t0 (6.12)

where t0 is the maximum value of t permitted by the reaction kinematics and can

be interpreted as the longitudinal component of the momentum transfer. Diffractive

processes have a greater contribution at small values of t where t0 is small and so

t ' t′ in this region. The t′ distribution is shown in figure 6.5. Early analyses of

HERMES data have shown that non-exclusive background is present at −t′ > 0.4

GeV2 at a strength comparable with the exclusive signal [92]. The −t′ < 0.4 GeV2

cut satisfies the requirement that −t′ should be small to select diffractive events,

and serves as an additional exclusivity cut.

6.3.3 Rejection of φ-Mesons

The use of a prior assumption that the two hadrons which accompany the scattered

positrons are pions leads to the possibility of a small contamination of the ρ0-sample

due to the misidentification of the hadrons in the spectrometer. The capability

of the threshold Čerenkov to discriminate between hadron types is limited in the
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Figure 6.5: The t′ distribution inside the window defined by the ρ0 mass and exclusivity
cuts. Events are accepted as diffractive for −t′ < 0.4 GeV2 (vertical line).

momentum region of interest to the ρ0-analysis and so the production of φ-mesons

and protons contributes to the background. A φ-meson has a mass of 1019.456 MeV

and decays into a K−K+ pair with a 49.1±0.6 % branching ratio [91]. Other modes

of decay include φ → K0
LK

0
L (34.0 ± 0.5 %) and φ → ρπ + π+π−π0 (15.4 ± 0.5 %),

with a small fraction (< 3 % in each case) of φ-mesons decaying to ηγ, π0γ or e+e−.

The K± has a mass of 493.677 MeV and so the φ contamination in the ρ0 sample

can be minimised by recalculating the mass of the detected hadron pair with the

hypothesis that both are kaons:

M2K =
√
pK+ + pK− (6.13)

where pK± refers to the four-momenta of each kaon. The invariant mass distribution

calculated using equation 6.13 is shown in figure 6.6.

The correlation between the reconstructed φ and ρ0 invariant masses is shown in

figure 6.7.
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Figure 6.6: Invariant mass distribution calculated for each hadron pair assuming that
hadrons are charged kaons. The distribution is within the windows defined by the previous
invariant mass and exclusive, diffractive cuts. The vertical line indicates the upper limit
on the φ mass, M2K < 1.06 GeV.
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Figure 6.7: Scatter plot of reconstructed φ-versus ρ0-mass. The ρ0 mass window is defined
between the vertical lines. The plot shows that there are no events inside the ρ0 mass
window below the horizontal line defined by the M2K cut. Consequently, there is no
φ-meson contamination in the ρ0 sample.
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6.3.4 ρ0-Invariant Mass

The resulting invariant mass distribution of the ρ0 sample after the application of

preceding cuts is shown in figure 6.8. A non-relativistic Breit-Wigner function;

dN

dM2π

=
1

4

Γρ

(Mρ −M2
2π) + Γ2

ρ

(6.14)

where Mρ and Γρ denote the mass and width of the ρ0, is fit to the ρ0-peak. The

results obtained from the fit and those from the Particle Data Group [14] are shown

in table 6.3.4.
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Figure 6.8: Non-relativistic Breit-Wigner fit on the 2-pion invariant mass spectrum for an
exclusive, diffractive ρ0 event candidate sample.

Source Mass (MeV) Full Width (MeV)

PDG 775.8 ± 0.5 150.3 ± 1.6
BW fit 768.5 ± 0.5 159.5 ± 1.6

Table 6.3: Mass and full width of the ρ0-meson obtained from the Breit-Wigner fit and
PDG [14]. The PDG values are obtained by aggregating the measurements contributed
by various experiments.

The parameters obtained from the fit and PDG are in reasonable agreement. The ρ0

invariant mass spectrum to which the Breit-Wigner function is fitted has not been

corrected for background, but previous analyses indicate that this contribution to

the difference is very small [60]. A background subtraction would likely increase the



6.3. Kinematic Cuts 140

mass value as the background is expected to exhibit a negative linear dependence on

the reconstructed mass. The errors on the fit parameters quoted in table 6.3.4 are not

comparable to those errors quoted by the PDG, as they reflect only the uncertainties

in the fit and systematic contributions to error have not been accounted for.

6.3.5 Incoherence Cut

The angular distribution of diffractive interactions shows that such processes are

dominated by scattering at forward angles. The kinematical variable t′ = t − t0

(where t0 is the maximum kinematically allowed value of t) is related to the scattering

angle as −t′ is approximately equal to p2
t which is the square of the transverse

momentum of the ρ0 with respect to the direction of the virtual photon momentum.

The variable −t′ is small for diffractive scattering at forward angles and in this

region the cross-section has an exponentially decreasing dependence on −t′:

dσ

d|t′| ∝ e−b|t′| (6.15)

where the parameter b gives the exponential slope. This slope parameter is related

to the size of the interacting particles and so the −t′ distribution can be studied in

order to select only those events in which the target is an individual nucleon.

The analysis of the ρ0 cross-section ratios is concerned with the investigation of

the relative gluon and quark contributions to the vector meson electroproduction

amplitude. An incoherent process is one in which the beam lepton scatters from an

individual nucleon within a nucleus. In order to make a valid comparison between the

entirely coherent scattering process on the free protons in a hydrogen target and the

scattering process on bound nucleons in deuterium, the analysis must reject events

in which the beam positron scatters from the deuteron as a whole. In this scheme

the interactions with the deuterium target can then be considered as scattering from

free nucleons.

Due to the coherent and incoherent modes of scattering, two contributions to the

momentum transfer in exclusive, diffractive ρ0 production on deuterium are present.

The contributions, arising from the b parameter (equation 6.15) due to the difference

in the radii between a nucleon and the deuteron, are manifest as differing exponential

slopes in the −t′ distribution. Thus, in order to isolate the incoherent scattering,

the deuterium data are fit to a shape giving the sum of incoherent and coherent
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contributions [93]:

bNe
bN t′ + fAbAe

bAt′ (6.16)

where fA is the ratio of coherent to incoherent total events, ebN t′ (ebAt′) represents the

product of the ρ0 and the struck nucleon (nucleus) elastic form factors squared, and

bN (bA) is the incoherent slope parameter for each nucleon (nucleus) [94]. Figure 6.9

shows the double exponential behaviour and the transition from a strong coherent

contribution (P1 slope) to a dominant incoherent one (P3 slope) at around 0.05

GeV2.

Figure 6.9: Double exponential coherent and incoherent slopes on deuterium (upper) and
coherent slope on hydrogen (lower). The thick dashed line on the upper plot shows the
continuation of the incoherent slope.

The coherent contribution to the incoherent sample after the −t′ cut is estimated

to be 2%. This estimate is based upon the results of the exponential fits to the

deuterium −t′ distribution. The coherent background as a proportion of the total

sample for the region between −t′ = 0 and −t′ = tc where tc is the upper limit is
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given by

Cbg =
1 − eP1tc

P2(1 − eP3tc) + (1 − eP1tc)
(6.17)

where the parameters Pn correspond to the exponential fit parameters. The ap-

plication of the −t′ > 0.05GeV 2 cut removes the region with the greatest coher-

ent contribution which, according to equation 6.17, is estimated to be ∼ 24% for

0 < −t′ < 0.05GeV 2.

6.3.6 Statistical Cross-Checks

The exclusive, diffractive ρ0 events sought for the analysis in this thesis were ex-

tracted from the µDST files using software based on the C/C++ programming

languages, ADAMO functions and ROOT [98] libraries. In addition, ROOT was

used to create the graphical depictions of the analysis results in the thesis. For

a cross-check, a completely separate set of extraction and physics codes based on

the C programming language were developed by another author [95]. In this case

the results were depicted using the PAW [99] analysis framework. Throughout this

section the terms ROOT and PAW will be used to distinguish between the separate

approaches.

Statistical agreement between analysis codes is desirable as a cross check imme-

diately shows if one or both codes contains mistakes. The distributions of the

kinematic quantities Q2, xBj are compared for the two target gas types in figure

6.10.

It is readily seen that the kinematic distributions show excellent agreement between

the different analysis codes. In addition it is useful to compare the total number of

reconstructed ρ0 events following the kinematic cuts. This is shown in table 6.3.6.

The discrepancy in the statistics for both gas types is less than 1% and is also smaller

than the statistical error
√
N , and arises from slight differences in the PID cuts used

during the selection of 3 track events between ROOT and PAW codes. The PAW

code has a greater tolerance for 3 track events when the hadron and lepton PID all

lie slightly beyond the hadron or lepton PID threshold. In such an event, if all the

values are very close together, the track with the highest PID value is accepted as

a lepton track.
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Figure 6.10: Comparison of kinematic distributions between ROOT code (circles) and
PAW code (dashes) for deuterium (upper two) and hydrogen (lower two).

Gas Type ROOT code PAW code Discrepancy Statistical Error

Deuterium 6311 6330 19 79.7
Hydrogen 3964 3965 1 62.9

Table 6.4: Total numbers of exclusive, diffractive ρ0 mesons in the 1996-2000 data sample
for 1.5 < Q2 < 7GeV 2 and 0 < xBj < 0.25.

6.4 Detector Resolution

The ρ0 analysis discussed in this chapter will present the xBj dependence of the

ratio of ρ0 electroproduction cross-sections on deuterium versus hydrogen using a

variety of representations. The main result shows the ratio in bins of the kinematical

quantities xBj and Q2, thus a study of the spectrometer resolution in the respec-

tive quantities is appropriate. Additionally, limited statistics in kinematical bins

necessitate a binning scheme which adequately reduces statistical error across the

distributions in order to allow a convincing fit to be performed.
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In principle the minimum bin width in a kinematical quantity should be limited

to the detector resolution; the resolution in xBj and Q2 was examined in order to

produce a reasonable binning scheme. The resolution of the HERMES spectrometer

varies with xBj and Q2 and so was investigated in four equidistant bins in 0 <

xBj < 0.25 and 1.5 < Q2 < 7 GeV2. The resolution was calculated by comparing

the difference between the kinematic quantities generated by Monte Carlo and the

corresponding reconstructed quantities. Figures 6.11 and 6.12 show the Q2 and xBj

resolutions respectively.

E
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n
ts

Figure 6.11: Difference between Monte Carlo Q2 and reconstructed Q2 for 1.5 < Q2 < 7
GeV2. The resolution is given by the σ of the fit.

The plots suggest that a tentative binning scheme of 12×12 in Q2×xBj is sufficiently

coarse; the σ values inside the kinematical bins of figures 6.11 and 6.12 with the

widest distributions are smaller than the bin widths which would be given by a

12 × 12 scheme in the usual kinematical range. Specifically, the binning scheme

would provide bins of width 0.46 GeV2 in Q2 and 0.028 in xBj , both of which are

considerably wider than the resolutions of 0.048 GeV2 in Q2 and 0.01 in xBj .
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Figure 6.12: Difference between Monte Carlo xBj and reconstructed xBj for 0 < xBj <
0.25. The resolution given by the σ of the fit.

6.5 Background Subtraction

While the cut −1 < ∆E =
M2

x−M2
targ

2Mtarg
< 0.6 GeV serves to select only exclusive

events in the ρ0 sample, the spectrometer resolution in ∆E is insufficient to fully

suppress non-exclusive background from deep-inelastic scattering fragmentation pro-

cesses (figure 6.4). An additional method is required to account for the background

contamination in the ρ0 sample, and in this case the HERMES Monte Carlo provides

a useful method.

The background subtraction, calculated using a set of ROOT-based analysis codes

[98], proceeds according to the methods detailed in [60, 100, 101, 102, 103, 104] and

is similar to the background subtraction presented in [89]. Specifically, in order to

estimate the proportion of background in the ρ0 data, a Monte Carlo sample of

deep-inelastic scattering (DIS) events was created with the PYTHIA [81] generator.

The generated sample contained hadrons originating from fragmentation processes

but did not, however, include exclusive, diffractive events. The sample was tracked
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through the simulation of the detector using the GEANT-based HERMES Monte

Carlo (HMC, see section 5.2.2) using the same cuts which were applied to the ρ0

sample in the 1996-2000 data.

The amount of the DIS background present in the data could be estimated by

comparing the ∆E distribution of the two samples. The exclusivity cut in the data

sample is given by −1 < ∆E < 0.6 GeV. The amount of DIS background present

in the data sample is therefore given by the number of DIS events present in the

Monte Carlo sample inside the window defined by the ∆E cut.

Figure 6.13 shows the ∆E distribution in the data and generated Monte Carlo sam-

ple for deuterium. The Monte Carlo distribution shown was obtained by combining

the individual samples generated with a proton target and a hypothetical neutron

target. A similar distribution is seen using a hydrogen target, and this is shown in

figure 6.14.
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Figure 6.13: ∆E distribution in 1996-2000 data (black circles) and Monte Carlo (blue
crosses) for 0.025 < xBj < 0.08 using a deuterium target.

The amount of DIS events generated by the Monte Carlo and the DIS background

outside the ∆E cut in the data differ, however, due to the impracticality of gener-

ating a Monte Carlo sample with matching statistics. In order to obtain a realistic

estimate of DIS background inside the exclusive peak it is necessary to normalise

the Monte Carlo DIS sample to the data.

The normalisation applied to the Monte Carlo data ensures that a realistic amount

of events are present beneath the exclusive peak defined by the ∆E cut as seen in
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Figure 6.14: ∆E distribution in 1996-2000 data (black circles) and Monte Carlo (blue
crosses) for 0.025 < xBj < 0.08 using a hydrogen target.

the data. In figures 6.13 and 6.14, each bin of the Monte Carlo distribution was

multiplied by a constant cBg = Idata/Imc, where Imc (Idata) is the integral of the

∆E distribution between the limits 4 and 20 GeV in the Monte Carlo (1996-2000

data). The DIS background inside the exclusive cut can be estimated by performing

a subsequent similar integration between the limits defined by the ∆E cut.

Due to the kinematic dependency of the DIS background, a Monte Carlo study in

several xBj bins was required. The background study was performed in six variable-

width bins across the range 0.025 < xBj < 0.25. The complete set of plots are

presented in Appendix B. The resultant calculated contributions to background are

shown in table 6.5.

xBj bin DIS Background DIS Background
hydrogen (%) deuterium (%)

0.025 < xBj < 0.08 6.7 5.5
0.08 < xBj < 0.102 7.68 7.7
0.102 < xBj < 0.124 14.2 12.6
0.124 < xBj < 0.168 23.5 16.4
0.168 < xBj < 0.19 30.2 23.3
0.19 < xBj < 0.25 30.2 26.5

Table 6.5: DIS background as a percentage of total events over xBj bins for hydrogen and
deuterium, calculated using integration method.
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6.6 Calculating ρ0 Production Cross-Sections

6.6.1 Luminosity

In this ρ0 analysis the cross-section ratios are calculated according to

R =
ND

NH

LH

LD
(6.18)

Where ND(H) and LD(H) are the absolute number of exclusive, diffractive ρ0 events

and integrated luminosity for deuterium (hydrogen) respectively. The integrated

luminosities reflect the total number of runs taken with the corresponding gas type in

addition to the target gas densities and beam flux. Equation 6.18 provides a method

of calculating the cross-section ratio in such a way that the result is independent of

experimental conditions.

The integrated luminosities LD(H) are calculated by summing the luminosities mea-

sured during all bursts which satisfy data quality cuts. The luminosity measurement

is provided by the HERMES luminosity monitor (LUMI, see section 3.3.3) which de-

tects Møller and Bhabha scattering events from the beam-target interaction. Thus

the LUMI only provides a measure of the target gas density in terms of the num-

ber of atomic electrons present in the target cell. For a given mass density of gas,

the target operating with deuterium will result in a LUMI measurement which is

half of that when the target cell operates with hydrogen despite both gas samples

possessing the same amount of nucleons. In practice, therefore, the LD quantity is

twice the integrated luminosity as counted from good quality µDST bursts in the

deuterium data sample. This approach allows the cross-section ratio to be expressed

as

R =
σincoh(p) + σincoh(n)

2σincoh(p)
=

1

2
+

1

2

σincoh(n)

σincoh(p)
. (6.19)

6.6.2 Systematic Uncertainties

The contribution to errors in the calculated ratio of ρ0 production from systematic

and statistical effects varies with the kinematic region. Although low statistics near

the limits of Q2 and xBj provide the greatest contribution in such regions, past anal-

yses reveal the presence of non-negligible systematic effects over the entire kinematic

range, the largest of which being the uncertainty in the integrated luminosities on
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hydrogen and deuterium. This uncertainty was previously determined to be ∼3%

for the data samples with each target gas type [105]. The greatest contribution to

this uncertainty is that on the luminosity monitor acceptance which cancels in the

ratio; ' 4% is therefore the maximal value for this uncertainty.

Additional sources contribute to the systematic uncertainty. After calculation of the

ratio of cross-sections, however, only a negligible remainder is present.

• A small uncertainty is introduced from the non-exclusive background subtrac-

tion. Previous HERMES analyses [93] have asserted this uncertainty to be

3%.

• Reconstruction and time efficiencies of the HERMES spectrometer contribute

2% to the systematic uncertainty [106, 107].

• A previous HERMES analysis [107] asserts that the error associated with ra-

diative corrections is less than 2%.

• The double-diffractive contribution to the incoherent ρ0 production cross sec-

tion is < 2% [108,109].

Ratios of cross-sections have been extensively studied in previous HERMES analyses.

The evaluation of systematic errors shows that the overall uncertainty is strongly

dominated by statistical errors.

6.6.3 Q2-and xBj-Correlation

The results of the xBj dependence of the ρ0 production cross-section ratios can be

presented in two ways: the dependence can be studied over all Q2 or in individual

Q2 bins. The former has the advantage in that statistics are preserved over xBj

kinematical bins, but the possibility exists that a correlation between xBj and Q2

requires a more restrictive binning scheme in Q2 which has the effect of reducing

the statistics in the xBj bins. The reliability of the results depends on the amount

by which the two kinematical quantities are correlated. Taking ratios against one

variable at a fixed value of the other helps to minimise the effect of some possible

correlation, the degree of correlation may be calculated by investigating the Q2, xBj

distribution in two-dimensions.

The procedure for studying the correlation requires the Q2, xBj distribution to be

plotted following the application of all previous kinematical cuts and background
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subtraction. A quadratic polynomial function

R(Q2, xBj) = A+BQ2 + CxBj +DQ2xBj (6.20)

giving the ratio of ρ0 production cross sections (see equation 6.19) was fit to the

measured data. Higher order polynomial fits resulted in extremely large errors on

the higher order term coefficients. In this procedure, the χ2 is minimised with

respect to the parameters A,B,C,D. As equation 6.20 shows, the fit parameter D,

associated with the Q2xBj term gives the correlation. The fit results are shown in

figure 6.15.
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Figure 6.15: Quadratic polynomial fit to measured 2 dimensional Q2, xBj background-
subtracted distribution. The plane of best fit and the error bars are not shown for clarity.

The parameter D is consistent with zero, however, the limited statistics lead to a

very large error associated with the correlation. Thus, in addition to a ρ0 production

ratio dependence study over all Q2, a more rigorous study over individual Q2 bins

is useful.
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6.6.4 Q2 Dependence

It is expected, from the behaviour of the quark and gluon PDFs, that the cross sec-

tion ratio for ρ0-electroproduction on deuterium versus hydrogen should not depend

on Q2 for fixed xBj . In order to test whether this hypothesis is reflected by the

data, it was necessary to investigate the xBj dependence of the cross-section ratio

in separate bins of Q2.

The cross-section ratio versus xBj is calculated in 12 bins of Q2 in the range 1.5 <

Q2 < 7 GeV2, each bin having a corresponding width of 0.458 GeV2. The xBj

distribution in each Q2 bin is further split into 6 variable-width bins. This binning

scheme was chosen in order to reduce statistical error by combining bins with low

occupancy. A linear fit to the measured ratio was performed in each Q2 bin. The

low statistics restricted the useful fit functions to those of low order and a linear fit

provides a simple indication of the trend of the ratio to either increase or decrease

with xBj . Figure 6.16 shows the cross-section ratios in increasing bins of Q2.
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Figure 6.16: Linear fits to xBj distribution of ρ0 production cross-section ratio in 12
equidistant bins of increasing Q2 in the range 1.5 < Q2 < 7 GeV2.

One result of the linear fit performed in each Q2 bin, the intercept parameter, gives
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the cross-section ratio at xBj = 0. The intercept is shown as a function of the mean

Q2 of the distribution inside the corresponding bin in figure 6.17.
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Figure 6.17: Intercept parameter from linear fits to the Q2 bins, corresponds to ρ0 pro-
duction cross-section at xBj = 0.

The hypothesis that the ratio should be independent of Q2 is tested by fitting a

straight line to the data distribution. The χ2 ' 1 value as shown demonstrates that

this model describes the data well. The Q2 dependence, obtained from the gradient

parameter p1 of the fit is consistent with zero within experimental error.

Presented in this way, however, the dependence is only valid for low values of xBj

which correspond to ρ0 production from gluon interactions. In order to test the Q2

dependence over all xBj it is necessary to modify the procedure as used for creating

figure 6.16. As before, the cross-section ratio versus xBj was calculated in 12 Q2

bins, however a constant rather than linear fit was performed. The constant fit

parameter in this case gives the average cross-section ratio over the xBj range in

each Q2 bin, figure 6.18 shows the average ratio as a function of mean Q2.

The linear fit to the measured mean cross-section ratios displays a slight downward

trend. This result, however, must be interpreted with care as figure 6.16 shows that

as the xBj distribution is calculated at increasing Q2, a corresponding increase in

the lower xBj cutoff value is introduced, having the effect of artificially lowering the

cross-section ratio.
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Figure 6.18: Fit parameter from constant fits to the Q2 bins, corresponds to ρ0 production
cross-section at 〈xBj〉 in each Q2 bin.

6.6.5 xBj Dependence

The region in which the quark contribution to the ρ0 production amplitude becomes

significant can be investigated by measuring the xBj dependence of the ρ0 production

cross-section ratio. As was determined in section 6.6.4, the ratio has no measurable

dependence on Q2 and so it is appropriate to explore the cross-section ratio over the

entire 1.5 < Q2 < 7 GeV2 kinematic range.

The xBj dependence of the ρ0 production cross-section ratio was studied using a

similar approach to that described in section 6.6.4. The cross-section ratio as a

function of Q2 is calculated in 6 variable-width bins of xBj in the range 0.025 <

xBj < 0.25. No data is present below the lower xBj limit. The Q2 distribution in

each xBj bin is divided into 12 equidistant bins. As there was no Q2 dependence

present for fixed xBj a constant fit was applied to the distribution in each xBj bin

as shown in figure 6.19.

In this approach the result is presented as the mean cross section ratio over all

Q2 in each xBj kinematical bin. An important quantity in this case is the mean

Q2 value as the Q2 distribution is skewed according to its corresponding xBj limits

within each bin. The Q2 distributions are shown in figure 6.20. In this case the Q2

distribution in the deuterium sample was used to calculate the mean as the statistics

in the hydrogen sample are lower. The mean values observed in the hydrogen sample
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Figure 6.19: Constant fits to Q2 distribution of ρ0 production cross-section ratio in 6
variable-width bins of increasing xBj in the range 0.025 < xBj < 0.25.

are consistent with those in the deuterium sample to an accuracy better than 1%,

thus this approach would not introduce more than a negligible amount of systematic

error.

Figure 6.21 shows the ratio of ρ0 electroproduction cross sections on deuterium

versus hydrogen according to equation 6.19, plotted as a function of mean xBj and

for 1.5 < Q2 < 7 GeV2.
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Figure 6.20: Q2 distributions in 6 variable-width bins of increasing xBj in the range
0.025 < xBj < 0.25.
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Figure 6.21: Ratio of ρ0 electroproduction cross sections on deuterium versus hydrogen
(upper plot) for 1.5 < Q2 < 7 GeV2. Corresponding mean Q2 values are indicated on
the lower plot. The dashed (blue) curve is the calculated ratio using the MRST2001LO
parameterisation (section 2.12) [42]. The solid line is the linear fit to the data. The bottom
plot shows the mean Q2 value in each xBj bin.
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6.7 Projected Results for 2005-2007

During 2005 the HERMES experiment accumulated around half as much data with

hydrogen and deuterium targets as in the 1996-2000 period. It is expected that the

high density unpolarised target used with the Recoil Detector will yield a substantial

amount of additional ρ0 events. Although the 2005 data have not been fully checked,

table 6.6 shows the approximate contribution to the total sample which the 2005

data and the high density target running with the Recoil Detector in 2006-2007 will

provide.

Period DIS Statistics DIS Statistics ρ0 Events ρ0 Events
hydrogen (Millions) deuterium (Millions) hydrogen deuterium

1996-2000 12.669 17.143 3964 6311
2005 6.3 7.2 1966 2650

2006-2007 33 7.2 10296 2650
Total 51.969 31.543 16226 11611

Table 6.6: DIS and ρ0 event statistics during different running periods. The 2006-2007
estimates of the ρ0 statistics are based on the past rates of 312 ρ0s per million DIS for
hydrogen, and 368 ρ0s per million DIS for deuterium. The DIS statistics for the 2006-
2007 period were obtained by estimating the effect of the increased target gas density
when running with the Recoil Detector [110].

The effect of the additional statistics to the ρ0-analysis is illustrated in figure 6.22.

Although the effect on the overall ratio and its kinematic dependence can only be

speculated on, the statistical uncertainty in each xBj bin will be reduced. The

corresponding error bars will therefore become smaller, as will the errors on the

linear fit.

The reduction in the size of the error bars is small at low xBj but larger at the higher

region. This error reduction remains smaller than expected as the size of the error

bars are dominated by the errors on the fits performed on the data in each xBj bin

(figure 6.23). In turn, the error on these fits depend on, in addition to the statistical

uncertainty of each data point, their spread. Increasing the statistics in such a

manner will reduce the statistical uncertainty of each data point of figure 6.23, but

may have a lesser effect on their distribution around the mean. Nonetheless, the

fit uncertainties in figure 6.22 are considerably smaller than those in the fit to the

current data in figure 6.21. Hence, a continuation of this analysis to the extended

data set would be profitable once the data become available.
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Figure 6.22: Effect of additional ρ0 statistics from the 2005 data sample and Recoil De-
tector in 2006-2007 on the xBj dependency of the cross-section ratio. The fit is in this
case performed on the new data points. The current data points, kept for comparison, are
shifted in xBj by +0.005 for clarity.

6.8 Conclusions

This analysis compared theoretical expectations of kinematical dependencies of ρ0-

electroproduction cross section ratios on deuterium versus hydrogen with data gath-

ered by HERMES between 1996 and 2000. The cross-check between the new ROOT

based analysis code and the old PAW based one on which it is based shows excellent

agreement both in statistics and in the comparison of kinematical distributions.

The theoretical prediction of the ratio, calculated with the MRST2001LO param-

eterisation, is applicable in the region Q2 > 1.5 GeV2. Below this threshold, the

MRST2001LO parameterisation is unable to make predictions. Thus, the main re-

sult shown in figure 6.21 uses this lower limit as a cutoff. The slope seen in the

data is steeper than the theoretical prediction. However as the plot shows, the error

in the slope is large compared to the slope itself. Crucially, the slope is negative,

indicating a gradual transition from a gluon to a quark main contribution to the

scattering amplitude.

The result is, as expected, sensitive to the binning scheme used, particularly the
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Figure 6.23: Effect of additional ρ0 statistics from the 2005 data sample and Recoil De-
tector in 2006-2007 on the Q2 distribution in separate xBj bins.

bin configuration at high xBj . In this region the statistics are low and so slight

modifications to bin widths and centres affect the slope significantly, although the

error on the slope remains approximately similar. The highest statistics are at low

xBj which corresponds to low Q2. Some preliminary investigations of the cross

section ratio were undertaken at 1.0 < Q2 < 7 GeV2 and 0.8 < Q2 < 7 GeV2; the

mean Q2 values in the low xBj bins did not drift significantly below the theoretical

1.5 GeV2 cutoff, this and the fact that DIS should exhibit Bjørken scaling means

that these preliminary studies are conceptually reliable. However, due to the lack of

statistics at high Q2, the error on the slope of the ratio was not significantly reduced.

The SDME analysis carried out with the 1996-2000 data set gave, with the set of cuts

specific to that analysis, a total of approximately 32,000 hydrogen and deuterium

events [89]. Applying similar cuts to the 2001-2004 data yielded approximately 3000

additional events, from this it can be expected that adding the extra three years to

this analysis would yield (with its more restrictive cuts compared with the SDME

analysis) only around 1000 additional events. Although the addition of the 2005

data would increase the available statistics for the ρ0 analysis by around 50%, at

the end of the period during which this work was undertaken the 2005 data set was

incomplete and its quality had not been determined. There are plans to incorporate

the 2005 data to the 1996-2000 set in order to improve the analysis once the data
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have been fully checked.

The unavailability of theoretical predictions of the ρ0-production ratio based on

parameterisations other than MRST2001LO limits the reliability of comparisons

between theory and what is observed experimentally. Although the theoretical PDFs

at leading order are similar to those at next-to-next-to leading order, MRST2001LO

and MRST2001NNLO may yield very different cross section ratios. The analysis

may be further improved by taking those results into consideration, as well as those

from parameterisations such as CTEQ, GRV and ALEKHIN. The cross section ratio

extracted from the HERMES data in this analysis indirectly introduces constraints

on future theoretical GPD predictions, and will serve as a useful cross check once

they are made available. It is readily seen that the leading-order approximation

does not describe the data sufficiently well.

It must be noted that this analysis compares the total cross section ratio measured in

HERMES data with the theoretical longitudinal cross section ratio. It is expected,

however, that σL

σT
, the ratio of ρ0 longitudinal and transverse cross sections should

be the same for hydrogen and deuterium targets. In fact, this is confirmed in the

HERMES 1996-2000 data [51].

The Recoil Detector is expected to improve the analysis of the ρ0-electroproduction

ratio. The improved resolution in t will allow a refinement of the diffractive cuts

while the exclusivity cut (∆E) may be removed leading to greater statistics. Fur-

thermore the establishment of event level exclusivity will provide a superior degree

of DIS background suppression.

The Recoil Detector will collect data during the years 2006 and 2007, after which

a continuation of this analysis with the additional statistics is likely to improve our

understanding of the behaviour of quark and gluon distributions in the nucleon.



Appendix A

Tracking

A.1 Point-Line Distance in 3 Dimensions

A line in 3 dimensions is defined by two points ~p1 = (x1, y1, z1) and ~p2 = (x2, y2, z2).

Let the point whose distance from the line is sought be given by ~p0 = (x0, y0, z0). A

vector along the line is given by [77]:

~v =







x1 + (x2 − x1)t

y1 + (y2 − y1)t

z1 + (z2 − z1)t






. (A.1.1)

The squared distance between a point on the line with parameter t and the point

~p0 is then

d2 = [(x1 − x0) + (x2 − x1)t]
2 + [(y1 − y0)

+(y2 − y1)t]
2 + [(z1 − z0) + (z2 − z1)t]

2. (A.1.2)

The distance is minimised by setting the derivative of equation A.1.2 with respect

to t to zero and solving for t to obtain

t = −(~p1 − ~p0) · (~p2 − ~p1)

|~p2 − ~p1|2
, (A.1.3)

where · and vertical bars denote the scalar product and the vector norm respectively.

Substituting equation A.1.3 into equation A.1.2 yields
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d2 = (x1 − x0)
2 + (y1 − y0)

2 + (z1 − z0)
2 + 2t[(x2 − x1)

(x1 − x0) + (y2 − y1)(y1 − y0) + (z2 − z1)(z1 − z0)]

t2[(x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2] (A.1.4)

which can be written as

|~p1 − ~p0|2 − 2
[(~p1 − ~p0) · (~p2 − ~p1)]

2

|~p2 − ~p1|2
+

[(~p1 − ~p0) · (~p2 − ~p1)]
2

|~p2 − ~p1|2
(A.1.5)

and simplified to

|~p1 − ~p0|2|~p2 − ~p1|2 − [(~p1 − ~p0) · (~p2 − ~p1)]
2

|~p2 − ~p1|2
. (A.1.6)

Using the vector quadruple product ( ~A × ~B)2 = ~A2 ~B2 − ( ~A · ~B)2 where × denotes

the vector cross product, and taking the square root,

d =
|(~p2 − ~p1) × (~p1 − ~p0)|

|~p2 − ~p1|
. (A.1.7)

A.2 3 Dimensional Line Fitting

The 3-D fitting method proceeds according to the prescription of D. Eberly. The

approach is detailed in reference [78] and is reproduced here.

As in equation 5.3, let the line be ~a = t~b+~c. ~Xi is then the set of vectors describing

the sample points to which the line must be fitted:

~Xi = ~c+ bi~b + pi
~b⊥i (A.2.8)

where bi = ~b · ( ~Xi − ~c) and ~b⊥i is a unit vector perpendicular to ~b. The coefficient

pi is thus the perpendicular distance between the point i and the proposed line.
~Yi = ~Xi −~c is defined as the vector joining point i with the previously defined offset

vector. The vector

~Yi − bi~b = pi
~b⊥i . (A.2.9)
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joins ~Xi to its projection onto the line, its squared length is p2
i = (~Yi − bi~b)

2. The

energy function which must be minimised represents the sum of squared perpen-

dicular distances pi to the proposed line; E(~c,~b) =
∑m

i=1 p
2
i . This function can be

written in terms of a matrix M(c) by substituting an expression for p2
i :

E(~c,~b) =
m
∑

i=1

(~Y t
i [I −~b~bt]~Yi). (A.2.10)

The ~b vectors are then moved outside the sum:

E(~c,~b) = ~bt

(

m
∑

i=1

[(~Yi · ~Yi)I − ~Yi
~Y t

i ]

)

~b = ~btM(c)~b. (A.2.11)

Given ~c, the matrix M(c) is determined by equation A.2.11. In 3 dimensions if

~c = (cx, cy, cz), M(c) is given by

M(c) = δI − S

where I is the 3 × 3 identity matrix, S is given by

S =







∑m
i=1(xi − cx)2

∑m
i=1(xi − cx)(yi − cy)

∑m
i=1(xi − cx)(zi − cz)

∑m
i=1(xi − cx)(yi − cy)

∑m
i=1(yi − cy)

2
∑m

i=1(yi − cy)(zi − cz)
∑m

i=1(xi − cx)(zi − cz)
∑m

i=1(yi − cy)(zi − cz)
∑m

i=1(zi − cz)
2







and

δ =

m
∑

i=1

(xi − cx)
2 +

m
∑

i=1

(yi − cy)
2 +

m
∑

i=1

(zi − cz)
2.

~btM(c)~b has a minimum corresponding to the smallest eigenvalue of M(c), which

in the case of cosmics track fitting is solved using the Jacobi method (the details

of which can be found in reference [79] section 11.1) and MINUIT. The vector

describing the track, ~b, is given by the eigenvector corresponding to the smallest

eigenvalue.
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A.3 Inhomogeneous Fitting Matrix Entries

Equation 5.22 in section 5.6.5 is given by

Mn+1,n =
∂~vn+1

∂~vn

=



















∂φn+1

∂φn

∂φn+1

∂φ′
n

∂φn+1

∂zn

∂φn+1

∂z′n
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∂λ
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. (A.3.12)

Explicitly, the components of M are

M00 = 1 M01 = h+ h2φ′′φ′

2
M02 = h2φ′′z

2
M03 = h2φ′′z′

2
M04 = h2φ′′λ

2

M10 = 0 M11 = 1 + hφ′′φ′

M12 = hφ′′z M13 = hφ′′z′ M14 = hφ′′λ

M20 = 0 M21 = h2z′′φ
′

2
M22 = 1 + h2z′′z

2
M23 = h+ h2z′′z

′

2
M24 = h2z′′λ

2

M30 = 0 M31 = hz′′φ
′

M32 = hz′′z M33 = 1 + hz′′z
′

M34 = hz′′λ

M40 = 0 M41 = 0 M42 = 0 M43 = 0 M44 = 1

where superscripts on φ′′ and z′′ as φ′′x, z′′x denote differentiating with respect to

the superscripted variable according to

φ′′x =
1

2

(

dφ′′
n+1

dx
+
dφ′′

n

dx

)

(A.3.13)

z′′x =
1

2

(

dz′′n+1

dx
+
dz′′n
dx

)

. (A.3.14)

The derivatives of the unprimed components φn+1 and zn+1 in rows 1 and 3 of the

matrix Mn+1,n are calculated by differentiating equations 5.14 and 5.16 respectively.

In practice better estimates of these derivatives are obtained by substituting φ′′
n with

1
2
(φ′′

n + φ′′
n+1) in equation 5.14, and substituting z′′n with 1

2
(z′′n + z′′n+1) in equation

5.16. Rows 2 and 4 of Mn+1,n are calculated by taking derivatives of equations 5.19

and 5.21 respectively.

The derivatives of φ′′ and z′′ are given as follows:



A.3. Inhomogeneous Fitting Matrix Entries 164

dφ′′

dz
=

Q

r
λ

[

z′
dBr

dz
−
(

1 + r2φ′2
) dBz

dz

]

dz′′

dz
= Qλ

(

−rφ′dBr

dz
− rφ′z′

dBz

dz

)

dφ′′

dz′
=

Q

r
λBr + z′λ

1

rQ

[

Brz
′ −Bz

(

r2φ′2 + 1
)]

dz′′

dz′
= −Qrλφ′Bz − λ (rφ′Br + rφ′z′Bz)

z′

Q
− rφ′2

dφ′′

dφ′
= −2Bzφ

′rQλ+ λφ′ r

Q

[

Brz
′ −Bz

(

φ′2r2 + 1
)]

dz′′

dφ′
= Qλ (−Bzrz

′ − rBr) + λφ′r2 (−Bzφ
′rz′ − Brφ

′r)
1

Q
− 2φ′rz′

dφ′′

dλ
=

Q

r

(

z′Br −
[

1 + r2φ′2
]

Bz

)

dz′′

dλ
= Q (−rφ′Br − rφ′z′Bz)

where the derivatives of Br and Bz are obtained numerically from the magnetic field

map.



Appendix B

ρ0-Analysis

B.1 Background Distributions for Hydrogen
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Figure B.1: ∆E distribution in 1996-2000 data (black circles) and Monte Carlo (blue
crosses) for 0.08 < xBj < 0.102 using a hydrogen target.
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Figure B.2: ∆E distribution in 1996-2000 data (black circles) and Monte Carlo (blue
crosses) for 0.102 < xBj < 0.124 using a hydrogen target.
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Figure B.3: ∆E distribution in 1996-2000 data (black circles) and Monte Carlo (blue
crosses) for 0.124 < xBj < 0.168 using a hydrogen target.
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Figure B.4: ∆E distribution in 1996-2000 data (black circles) and Monte Carlo (blue
crosses) for 0.168 < xBj < 0.19 using a hydrogen target.
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Figure B.5: ∆E distribution in 1996-2000 data (black circles) and Monte Carlo (blue
crosses) for 0.19 < xBj < 0.25 using a hydrogen target.
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B.2 Background Distributions for Deuterium
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Figure B.6: ∆E distribution in 1996-2000 data (black circles) and Monte Carlo (blue
crosses) for 0.08 < xBj < 0.102 using a deuterium target.
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Figure B.7: ∆E distribution in 1996-2000 data (black circles) and Monte Carlo (blue
crosses) for 0.102 < xBj < 0.124 using a deuterium target.
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Figure B.8: ∆E distribution in 1996-2000 data (black circles) and Monte Carlo (blue
crosses) for 0.124 < xBj < 0.168 using a deuterium target.
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Figure B.9: ∆E distribution in 1996-2000 data (black circles) and Monte Carlo (blue
crosses) for 0.168 < xBj < 0.19 using a deuterium target.
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Figure B.10: ∆E distribution in 1996-2000 data (black circles) and Monte Carlo (blue
crosses) for 0.19 < xBj < 0.25 using a deuterium target.
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