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Abstract

We study higher order QCD corrections in small x Physics. The numerical imple-
mentation of the full NLO photon impact factor is the remaining necessary piece for
the testing of the NLO BFKL resummation against data from physical processes,
such as γ∗γ∗ collisions. We perform the numerical integration over phase space for
the virtual corrections to the NLO photon impact factor. This, along with the pre-
viously calculated real corrections, makes feasible in the near future first estimates
for the γ∗γ∗ total cross section, since the convolution of the full impact factor with
the NLO BFKL gluon Green’s function is now straightforward. The NLO correc-
tions for the photon impact factor are sizeable and negative. In the second part of
this thesis, we estimate higher order correction to the BK equation. We are mainly
interested in whether partonic saturation delays or not in rapidity when going be-
yond the leading order. In our investigation, we use the so called ‘rapidity veto’
which forbids two emissions to be very close in rapidity, to “switch on” higher order
corrections to the BK equation. From analytic and numerical analysis, we conclude
that indeed saturation does delay in rapidity when higher order corrections are
taken into account. In the last part, we investigate higher order QCD corrections
as additional corrections to the Electroweak (EW) sector. The question of whether
BFKL corrections are of any importance in the Regge limit for the EW sector seems
natural; although they arise in higher loop level, the accumulation of logarithms in
energy s at high energies, cannot be dismissed without an investigation. We focus
on the process γγ → Z Z. We calculate the pQCD corrections in the forward region
at leading logarithmic (LL) BFKL accuracy, which are of the order of few percent
at the TeV energy scale.



Zusammenfassung

Wir untersuchen QCD-Korrekturen höherer Ordnung für kleine Werte der Bjorken-

x-Skala. Die numerische Implementierung des vollen NLO Photon Impact Faktors

stellt den nötigen, noch fehlenden Teil dar, um die NLO BFKL Resummation mit

Daten aus physikalischen Prozessen, wie γ∗γ∗-Kollisionen, testen zu können. Wir

führen die numerische Integration über den Phasenraum für die virtuellen Kor-

rekturen zum NLO Photon Impact Faktor durch. Diese macht es zusammen mit

den vor Kurzem berechneten reellen Korrekturen möglich, in näherer Zukunft erste

Abschätzungen für den totalen γ∗γ∗-Wirkungsquerschnitt zu erhalten, da nun die

Faltung des vollen Photon Impact Faktors mit der NLO BFKL Greens-Funktion

direkt berechenbar ist.Die NLO Korrekturen für den Photon Impact Faktor sind

betragsmäßig großund negativ. Im zweiten Teil dieser Arbeit schätzen wir Korrek-

turen höherer Ordnung zur BK Gleichung ab. Unser Interesse richtet sich dabei

vor Allem auf die Frage, ob die partonische Sättigung beim Übergang zu höheren

Ordnungen zu größeren Rapiditäten verschoben wird oder nicht. In unserer Unter-

suchung benutzen wir zur Berücksichtigung von Korrekturen höherer Ordnung in

der BK Gleichung das sog. ’Rapiditäts-Veto’, das verbietet, dass zwei Emissionen

annähernd gleiche Rapidität besitzen. Aus analytischen und numerischen Analysen

schliessen wir, dass die Sättigung tatsächlich zu größeren Rapiditäten verschoben

wird, sobald höhere Ordnungen berücksichtigt werden. Im letzten Teil der Arbeit

untersuchen wir QCD-Korrekturen höherer Ordnung als zusätzliche Korrekturen

zum elektroschwachen (EW) Sektor. Natürlich stellt sich die Frage, ob BFKL-

Korrekturen im Regge-Limit für den elektroschwachen Sektor überhaupt wichtig

sind. Obwohl sie erst auf einem höheren Schleifen-Niveau auftauchen, tragen sie

für hohe Energien mit Logarithmen in der Energie s bei und können deshalb ohne

eine genauere Untersuchung nicht ausser Acht gelassen werden. Wir konzentrieren

uns hierbei auf den Prozess γγ → Z Z. Wir berechnen die pQCD-Korrekturen

in der Vorwärtsrichtung mit einer Genauigkeit des BFKL LO-Niveaus, die einer

Größenordnung von einigen Prozent bei Energien auf der TeV-Skala entspricht.
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Chapter 1

Introduction

Quantum Chromodynamics (QCD) is the well established theory for the de-
scription of the hadronic interactions. If we were able to solve QCD exactly,
we would then be in position to make theoretical predictions for any regime
of the strong interactions. Unfortunately, in reality this is not the case.
Thus, at the weak coupling limit (αs ≪ 1), we rely on perturbation theory
(pQCD) to calculate physical observables, whereas the only way so far we
have to investigate the strong coupling limit (αs ≫ 1) is on the lattice (lattice
QCD). High energy scattering, or else the so-called small x limit of hadronic
interactions:

(
s→∞
x→0

)
, can be described in terms of pQCD, given that a hard

scale Q2 is present in the process. Asymptotic freedom implies the vanishing
of the strong coupling constant, αs, in asymptotically high energies. After
renormalisation, αs is a function of that typical scale, Q2, of the scattering.
The validity of the perturbative expansion is ensured, exactly when the typ-
ical scale, Q2, is large enough to keep αs small, in other words when Q2 is a
hard scale. At the end, any computed observable is a convolution between
a hard perturbative piece and a soft piece of non-perturbative origin that is
determined by experimental measurements. Typically, at small scattering
angles, the longitudinal components of the momenta are huge and the scale
that ensures the smallness of the coupling lies in the transverse momentum
space. However, in the small x limit of the strong interactions one cannot
expect such a clean factorisation scheme between hard and soft Physics,
as outlined above, since more complicated patterns appear, e.g. diffusion
from hard transverse scales down to scales in the non-perturbative region.
In this thesis, we will be concerned about higher order (HO) terms of the
perturbative expansion.

A major step for the description of high energy scattering within per-
turbative QCD was the development of the Balitskii-Fadin-Kuraev-Lipatov
(BFKL) equation [1]. The largest contribution to amplitudes comes from
leading logarithms in s. By solving the BFKL equation, one can resum
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terms
αs ≪ 1, (αs ln s)n (1.1)

up to arbitrary powers of n, obtaining the so called 4-point gluon Green’s
function fω

1 in leading logarithmic approximation (LLA). The diagrams that
contribute have a ladder-like structure with two reggeized gluons exchanged
in the t-channel, whereas the rungs of the ladder depict real gluon emissions.
This ladder exchange, projected in the colour singlet channel is, in pertur-
bative QCD, the first approximation for the Pomeron, also called hard or
BFKL Pomeron. In the old Regge theory, the Pomeron (soft Pomeron) is
the leading reggeon with quantum numbers of the vacuum and of a non-
perturbative nature. It has an intercept αP(0) close to unity, describing
thus a weak power-like rise of the total cross sections:

σtot ∝ sαIP (0)−1 , αP(0) = 1.08 . (1.2)

The BFKL Pomeron in LLA has a much larger intercept (1 + ωBFKL) sug-
gesting a much steeper dependency of the total cross sections on the c.m.
energy:

σtot ∝ sωBFKL , ωBFKL = (4Nc ln 2)/π)αs ≈ 0.5, (αs ∼ 0.2) . (1.3)

The applicability of BFKL dynamics though is restricted by several fac-
tors. Thus, one could not possibly attempt to compare perturbative BFKL
predictions with hadronic total cross sections that carry an important ‘soft
input’ due to the size of the hadrons. In order to experimentally test the
validity of the BFKL framework, one needs to consider scattering processes
between two projectiles that have a sizeable transverse momentum of several
GeV. Various observables and processes have been suggested, namely HERA
forward jet production at HERA [2, 3], cross sections for Mueller-Navalet
jets at LHC [4] and most importantly virtual photon scattering at an e± e−

collider (e.g. ILC) [5, 6].
γ∗γ∗ collisions are an excellent probe of BFKL dynamics because they

do not involve any non-perturbative target. The off-shell photons fluctuate
into colour dipoles that can further interact strongly. If the transverse size
of the dipoles is small (high virtuality), then any soft effects are suppressed.
One can tune at will the virtualities of the projectiles, Q2

1 and Q2
2, such

that perturbation theory will be applicable. One could even try to lower the
virtualities to smaller values, switching on in that way soft effects, to study
the transition (or the interplay) between perturbative and non-perturbative
regimes. Data from LEP [7] for virtual photon photon total cross section
suggest indeed a steep rise with the scattering energy but not as steep as it
is suggested in (1.3). Actually, the data are more in favour of a rise with

1Also notated as G, which will be our preferred notation in Chapter 6.
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a power of ∼ 0.3 comparing to the ωBFKL ≈ 0.5. One is bound to wonder
what the corrections beyond the LLA are, and whether they alone could
lower the intercept close to the experimental value.

High energy or Regge factorisation implies that the total cross section
will be a convolution between a process dependent part and a process inde-
pendent part accounting for any energy dependence. The latter is the BFKL
Green’s function fω , namely the amplitude for the interaction between the
two reggeized gluons exchanged in the t-channel, whereas the former con-
sists of the so called impact factors: the coupling of the Green’s function
to the external projectiles. In our case of γ∗γ∗ → hadrons scattering, we
deal with the virtual photon impact factors. Higher order corrections in
the process under consideration can enter in two ways, either through the
impact factors or through the Green’s function.

Calculating next to leading logarithmic corrections to the BFKL kernel
was indeed a formidable project [8, 9]. The corrections proved to be very
large and negative, lowering the BFKL Pomeron intercept even to negative
values. Various studies [10] have shown that it is needed to take into ac-
count renormalisation group constraints and collinear contributions to the
BFKL kernel have to be resumed consistently. In such a unified picture the
behaviour of the intercept is tamed and its value is about 0.3, compatible
with the data.

However, as already mentioned, these are only one part of the corrections
to the σγ∗γ∗

tot . The NLO corrections to the Born impact factor have to be
computed as well for a complete analysis if one wants really to test the NLO
BFKL Pomeron against experimental data. The gluon Green’s function
carries a dependence on an arbitrary energy scale s0. We can understand
this as the energy that scales s in the arguments of the logarithms in order
they be dimensionless. In the next Chapter we will devote some effort to
sketch the derivation of the BFKL equation in order to show how this scale s0
makes its entry. However, the total cross section should be s0 independent,
which in turn implies that there must be an s0-dependence in the NLO
impact factor such that cancels the one entering from the BFKL kernel.
This indeed is the case.

Nonetheless, apart from that main motivation of testing the NLO BFKL,
the project of calculating the NLO impact factor is also very important in
other aspects. The cross section at the limit Q2

1 ≪ Q2
2 is known from the

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations [11] that re-
sum collinear logarithms. Knowing the collinear structure of the NLO im-
pact factor then opens a window for comparison between the collinear and
the k⊥-factorisation scheme. On the other hand, the NLO γ∗ impact factor
is important within the colour dipole picture. The colour dipole picture
and the notion of the photon wave function, provide an intuitive approach
to DIS-like processes. The photon wave function accounts for the proba-
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bility of the splitting of the virtual photon into a quark-antiquark pair, a
coloured dipole, which in turn interacts strongly with the hadron. The cross
section factorises in this case into short-time effects (strong interaction be-
tween dipole-hadron) and long-time effects (lifetime of the dipole). One is
justified to ask whether the dipole picture holds in higher orders, namely
whether we are able to expand the virtual photon in terms of higher Fock
components, like qq̄g, qq̄gg etc. The colour dipole approach was very useful
for the analysis of a series of HERA data in the small x region [12] and it
is the favourite framework for discussing non-linear evolution equations and
parton saturation which will concern us in the second half of this thesis.

The computation and analysis of the NLO corrections to the γ∗ impact
factor is also a demanding task that spans the last six years. The compu-
tation itself was divided into several steps. The calculation of the real and
virtual corrections [13, 14] was carried out first. In particular, the calcula-
tion of the virtual corrections has been done in such a way, that provides us
with the amplitude for γ∗ g∗ amplitude. Next step was the demonstration
of the cancellation of the ultraviolet and infrared divergencies to ensure the
finiteness of the result [14, 15]. The integration over phase space, for the
case of real corrections, has been done analytically in Ref. [15, 16], and
also a first numerical study of the behaviour of the real corrections was
presented in Ref. [16]. To calculate photonic total cross sections, a last
ingredient which is needed is the integration over phase space for the virtual
corrections. In the first half of the thesis, we will present the results for
exactly this integration, done numerically in this case, which along with the
previously completed phase space integration for the real corrections, sets
a full numerical implementation of the NLO γ∗ impact factor. The numer-
ical implementation, no matter how important it is for testing the BFKL
Pomeron is not the end of the story for the photon impact factor. There
are still open questions that have to do with the collinear structure of the
impact factor and higher order Fock components of the photon wave func-
tion which, however, require an analytic handling of the virtual corrections.
Although these will not be of concern in this thesis, they will have to be
addressed in the near future.

To perform the phase space integration we need to convolute the ampli-
tude from the one loop virtual corrections to the γ∗g → qq̄ vertex with the
Born one, sum over helicities and colour indices and finally integrate over
the loop momentum. For that purpose we have written a MATHEMAT-
ICA program that generates the code that serves as the integrand for the
loop momentum integration. The expressions were very lengthy and some
symbolic manipulation had to be done in FORTRAN environment. The nu-
merical integration was performed using the Monte Carlo routine VEGAS.
We have successfully gone through extended tests to ensure the correctness
of the calculation. Some of these tests required a specific ‘interplay’ between
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real and virtual contributions which adds to our confidence of having finally
numerically implemented the full NLO γ∗ impact factor for longitudinal
polarised photons correctly.

Going back now, to hadronic scattering, as it was previously stressed, the
applicability of BFKL dynamics is restricted. The reason is the presence of
a soft scale, the size of the hadrons. The scattering energies have to be high
but not very high. In asymptotia, BFKL predictions come in contradiction
with s-channel unitarity. A crucial step for the unitarization of the BFKL
Pomeron is considered to be the introduction of the afore-mentioned parton
saturation [17].

The total cross sections cannot rise forever and ever with increasing s
since the colliding hadrons have limited size. After a certain point, gluon
recombination effects are to be taken into account. In other words, multi-
parton contributions to the scattering from within the same hadron are
becoming relevant. They draw the gluon density lower to limited values.
This is the key idea behind parton saturation. BFKL of course still remains
valid for a large window of values of c.m. energies. It is at very low x that we
expect to observe saturation. Parton Saturation is described by evolution
equations that are not linear any more and thus quite complicated. At
LLA and in the large Nc limit, the best tool we have in terms of simplicity
and calculational functionality to study ‘saturated’ systems is the Balitskii-
Kovchegov (BK) equation [18, 19]. It is based upon the BFKL “kernel”. It
contains, nevertheless, a non linear term, that accounts for the gluon fusion.

So far, there is not a definite experimental verification of saturation.
There are hints at HERA but not a definite answer. Data fits exist, that
describe the HERA data with and without the use of saturation equally
well. Needless to say, that apart from the question of the phenomenological
relevance or not of saturation physics for near-future accessible rapidities, it
is also very important to understand its theoretical fundamental significance
in high energy scattering, since saturation is ‘touching’ non-perturbative
effects but from ‘above’, that is from really high energies.

An important quantity in parton saturation physics is the saturation

scale, Qs(Y ), a momentum scale as a function of the rapidity (energy). It
signifies at which scale non-linear effects (saturation effects) become impor-
tant. Its functional form is derived from the BK equation. It is not only from
a phenomenological point of view, but also from a more general theoretical
interest, that we want to check what is the impact of higher order correc-
tions to the saturation scale. Namely, whether they delay or bring forth in
rapidity the onset of saturation. Phenomenologically it would suggest the
‘correct’ region of rapidities to look for saturation. On the other hand, if the
significance of the HO corrections is very large, one is tempted to investigate
whether an approach of taking into account increasingly higher order terms
of the perturbative expansion can be an alternative to the notion of satu-
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ration. This last seems not to be very likely [20]. Nevertheless, as we have
mentioned already, BK and BFKL share the same kernel and since the NLO
corrections to the BFKL equation are large we have to ask ourselves what
is the impact of NLO corrections for the BK equation and in turn for the
saturation scale. Corrections to the BK equation can also come by relaxing
the assumption of large Nc-limit but these will not concern us in this thesis.

The phenomenological method we used to estimate higher order effects
to the BK equation was by introducing a rapidity veto [21] which forbids
subsequent emissions to be very close in rapidity and is known to mimic
higher order corrections to the linear BFKL equation [22, 23]. Firstly, we
introduce the veto constraint using analytical arguments and we estimate the
functional dependence of the saturation scale Qs on rapidity Y . Finally, we
perform a full numerical analysis by solving the BK equation in FORTRAN
for different values of veto and we estimate again the functional relation
between Qs and Y . The numerical and analytical approaches to the impact
of HO corrections to the BK equation are consistent.

In the last part of the thesis, we deal with higher order QCD correc-
tions seen from a completely different perspective. We are concerned with
their impact as additional corrections to the Electroweak (EW) sector of the
Standard Model. Accuracies of the EW experimental data are so high in
many cases, that in order to compare with theoretical predictions one has
to take into account next-to-next-to-leading order EW corrections. It seems
natural then the question whether pQCD corrections in the small x limit, or
equivalently BFKL corrections in the Regge limit are of any importance for
the EW sector. Naively, one would argue that they are not since they arise
at higher loop level. But in the kinematical limit that we are interested, we
know that gluon emissions can generate large logarithms in energy so the
answer is not straightforward. We investigate this question by considering
photon photon scattering in the vector boson production channel again and
in particular the process γγ → ZZ. We compute the one loop EW am-
plitude and the LLA BFKL corrections to it for different helicity channels.
The pQCD approach is based once again upon Regge factorisation but in
this case the process dependent part is the γ → Z impact factors also in
LLA.

The outline of this thesis is as follows: We are concerned with effects
in the small x kinematical region that come from higher order corrections
to linear and non-linear QCD evolution equations. The magnitude of these
effects is important for theoretical and phenomenological reasons. In Chap-
ter 2 we summarise the linear evolution equations in QCD. We sketch the
derivation of BFKL equation which will prove useful in the discussion of
s0 dependence. We give an account of NLO BFKL and we introduce the
method of the rapidity veto constraint. In Chapter 3 we present our results
for the phase space integration of the virtual corrections and consequently
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the numerical result for the full NLO impact factor. We also discuss the
computation of the σγ∗γ∗

tot . In the next Chapter we argue on parton satura-
tion and we describe the BK equation. It is in Chapter 5 that we estimate
the importance of HO corrections in the saturation regime. In Chapter 6
we present our results for the process γ∗γ∗ → ZZ. Finally, we will give a
brief summary and an outlook for future work.
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Chapter 2

Linear Evolution in QCD

In this Chapter we will discuss linear evolution equations in QCD, DGLAP
and BFKL. Apart from needing both to cover most of the domain of pQCD,
with DGLAP leading the evolution in lnQ2 and BFKL in ln(1/x), this intro-
ductory Chapter will serve multiple purposes. It starts with an introduction
to the parton model, discussed within Deep Inelastic Scattering (DIS)-like
processes. This will be helpful as a basic background concept, in which
collinear and small x logarithms emerge in an clear way and secondly, it
is needed in the discussion of the colour dipole picture in Chapter 5. It is
also the most natural way to initiate a discussion on parton densities and
in particular gluon densities. The discussion on DGLAP remains as brief
as possible and it is included not only for having a more complete view on
linear evolution schemes in comparison to non-linear evolution, which we
will discuss later, but also because it is relevant to the collinear resumma-
tion approach of the next to leading logarithmic corrections for the BFKL
equation. We extend the analysis on BFKL more as we want to point out
key notions that appear later on in the NLO computation of the impact
factor.

2.1 DIS kinematics and the naive Parton model

Deep inelastic scattering (DIS) is the scattering of a lepton off a hadron
(typically a proton1):

L(l) + P (p) → L′(l′) +X(px) . (2.1)

We will assume that DIS is dominated by one photon exchange (neutral
current channel) γ⋆(q), Fig. 2.1. The total cross section for virtual pho-
toabsortion is proportional to the quantity F2 which will be in the centre of

1Later on in this thesis we will even consider scattering off a nucleus

9
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γ* (q)

l

l’

p
X

Figure 2.1: Deep inelastic scattering

our attention in the remaining of this Section:

σγ∗N (x, Q2) =
4π2αem

Q2
F2(xQ

2) . (2.2)

Let us first introduce the kinematical variables that are involved in the
inclusive reaction Eq. 2.1 (it can be described by three kinematic variables).
The c.m. energy squared is

s = (l + p)2 , (2.3)

whereas the photon virtuality is (negative)

q2 = −Q2 = (l − l′)2 . (2.4)

The c.m. energy for the photon-nucleon system is

W 2 = (p + q)2 , (2.5)

and the Bjorken scaling variable x is

x =
Q2

2p · q =
Q2

Q2 +W 2 −M2
p

. (2.6)

Let us also define

y =
p · q
p · l =

W 2 +Q2 −M2
p

s−M2
p

. (2.7)

If the transferred energy (difference between final E′ and initial E lepton
energies) is denoted by ν, in the proton rest frame, then it is y = ν/E. For
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p

γ*

Figure 2.2: Handbag diagram.

both x and y (also called “inelasticity”) it is 0 < (x, y) < 1 and they are
related by:

xy =
Q2

s−M2
p

≃ Q2

s
. (2.8)

We call deep inelastic the kinematical region where we can neglect the mass
of the proton Mp with respect to the hard scales involved. Another quantity
that we need to define and which will prove of great use in the second half
of this thesis is the rapidity Y of a particle.

Y =
1

2
ln
E + pz

E − pz
, (2.9)

where E is the energy of the particle and pz is the momentum component
along the z-axis. Rapidity transforms additively under Lorentz boosts along
the z direction. For very fast particles one can assume that

Y ≃ ln
2pz

m
, (2.10)

where m is the mass of the particle. To complete the introduction of our
notation conventions, let us define the “hat”̂convention which will refer to
partonic quantities e.g. ŝ will be the c.m. energy squared for the process γq
where q denotes a parton quark.

In the naive parton model, one assumes that the virtual photon scatters
off an internal constituent of the proton incoherently. These constituents
are treated as “free” particles. The total cross section for lepton-proton
scattering can be written as a contraction of a lepton tensor and a hadronic
tensor, and in terms of diagrammatic language the scattering is depicted by
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Figure 2.3: Proton’s parton distribution functions.

the “handbag” diagram as in Fig. 2.2. The latter is the relevant QCD de-
pendent object that we are interested in. It can be parametrised in terms of
two dimensionless structure functions F1(x,Q

2) and F2(x,Q
2). Soft physics

input enters into F1, F2 through the parton distribution functions (pdf’s)
fi(x), with i standing for quarks anti-quarks or gluons. The distribution
functions give the profile of the probability to find a parton in the proton
with a fraction of momentum x, as in Fig. 2.3. In the so called Bjorken
limit (ν,Q2 → ∞), x fixed, the structure functions scale and they become
functions of x only, as one can observe at Fig 2.4. They are proportional
to each other and their exact relation is given by the Callan-Gross formula:
F2 = 2xF1, whereas the relation between them2 and the pdf’s (fq(x), fq̄(x))
is given by:

F2(x) =
∑

q

e2qx(fq(x) + fq̄(x)) , (2.11)

where the sum implies summation over flavours of quarks and anti-quarks.

2.2 DGLAP evolution equations

The naive parton model serves well for a very first description of reality but
if one has a closer look things are more complicated. Starting from Fig. 2.4

2From now on, we will concentrate on F2(x).
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Figure 2.4: Bjorken Scaling

one can see that the scaling is not perfect for small x values and what is just
an indication there, becomes an overwhelming experimental reality in Fig.
2.5. F2 is Q2-dependent and higher order QCD corrections are the cause.
Let us consider the partonic process γ∗ q in Fig. 2.6, where a quark q is
stricken by the photon. If we suppose that the probability for the quark to
carry momentum fraction between ξ and ξ + dξ with 0 < ξ < 1, is q(ξ)dξ
then the cross section for the above process is

F̂ q
2 (
x

ξ
) = e2qδ(

x

ξ
− 1) . (2.12)

One can go from the partonic level to the hadronic one, by ‘loading’ all the
soft physics dependence on the pdf’s and contracting them to the calculable

F̂ q
2 (x

ξ ):

F2(x) =
∑

q,q̄

∫ 1

x
dξfq(ξ)F̂

q
2 (
x

ξ
) . (2.13)

What we see in Fig. 2.6 is the first order diagram in perturbative expan-
sion. One must take diagrams of corrections into account as in Fig. 2.7 or
alternatively in the “handbag” diagram setup as in Fig. 2.8. In order O(αs)
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Figure 2.5: Scaling Violation.
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quark (   )

Figure 2.6: γ∗ q scattering.

Figure 2.7: HO corrections to the upper left part of the handbag diagram.

Figure 2.8: Real gluon emission diagrams bringing in logarithmic in Q2

dependence.
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the corrections modify Eq. 2.12 by a term

F̂ q
2 (
x

ξ
,Q2) =

αs

2π
e2q(

x

ξ
)

(
P (
x

ξ
) ln

Q2

Q2
0

+ C(
x

ξ
)

)
, (2.14)

where Q2
0 is a lower momentum cutoff and C(x

ξ ) a calculable function. Some

remarks are in order. Firstly, the F̂ q
2 (x

ξ ) and through it F2 acquires a Q2 log-

arithmic dependence. Secondly, the divergent logarithm ln Q2

Q2
0

when Q2
0 → 0

is the result of the collinear singularity that arises when the gluon is emitted
parallely to the quark. We have chosen here to regularise the divergency with
the use of a cutoff but a more elegant way is through dimensional regulari-
sation. On a descriptive level, we can say that the idea is to introduce bare
pdf’s in which we absorb the singularities (pretty much as with the coupling
constant) paying the price of introducing a renormalisation scale µ depen-
dence. Since F2 is a physical observable, it cannot be dependent on µ. The
renormalisation group equation then demands for the quark distributions:

∂q(x, µ2)

∂ lnµ2
=

αs(µ
2)

2π

∫ 1

x

dξ

ξ
P (
x

ξ
)q(ξ, µ2) . (2.15)

This is the DGLAP equation, an evolution equation in scale. P (x
ξ ) is the

so called splitting function, the evolution kernel for Eq. 2.15, and it can be
expanded as a power series in αs:

P (
x

ξ
, αs) = P (0)(

x

ξ
) +

αs

2π
P (1)(

x

ξ
) + · · · . (2.16)

At leading order, DGLAP evolution equation resums contributions of the
type (αs lnQ2)n). The physical interpretation of the splitting function at

leading order, P
(0)
ab (x

ξ ), is that it gives the probability of finding a parton a
with longitudinal momentum fraction x inside a parton b with momentum
fraction ξ. We can have four splitting functions depending on a and b as
we can see in Fig. 2.9. For the complete DGLAP equations, apart from
the quark density q(x, µ2), one has to include the coupled gluon density

g(x, µ2). After setting t = ln Q2

µ2 for convenience, we define the non-singlet

distribution (qNS)
qNS = q(x, t) − q̄(x, t) , (2.17)

for which DGLAP equation takes the form:

∂qNS(x, t)

∂t
=

αs(t)

2π

∫ 1

x

dξ

ξ
Pqq(

x

ξ
)q(ξ, t) , (2.18)

and the singlet one

Σ(x, t) =
∑

flavors

[q(x, t) − q̄(x, t)] . (2.19)
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Figure 2.9: leading order splitting functions.

which evolves as:

∂

∂t

(
Σ(x, t)
g(x, t)

)
=

αs(t)

2π

∫ 1

x

dξ

ξ

(
Pqq(

x
ξ ) 2NfPqg(

x
ξ )

Pgq(
x
ξ ) Pgg(

x
ξ )

) (
Σ(x, t)
g(x, t)

)
.

(2.20)

To conclude with this Section, in the collinear scheme, one starts from
an initial transverse hard scale Q2 and eventually, due to the emission of
gluons evolves down to very small momenta. DGLAP therefore, as already
pointed out is an evolution equation in scale (actually a ‘revolution’ since we
evolve from large to small scales). As far as it concerns the parton densities,
by using DGLAP one can eventually have the pdf’s for any virtuality of the
photon Q2, assuming of course available an initial condition for the pdf’s
at a given initial scale Q2

init, from which on the evolution will start. The
way to get the initial condition at an initial scale, Q2

init, is by modelling the
distributions at that scale, since one cannot use pQCD to compute them.
Then by evolving them to different virtualities, the crucial test for whether
they are succeful or not, is how good a fit they give to the experimental data.
Since the form of the parton distributions in the initial scale can only be
guessed, modelled, or be obtained from experimental data, in other words, it
does not enter through a perturbative calculation, what we can test indeed
is the evolution of the Q2-dependence, which in turn of course is a test for
the pQCD evolutions equations. Going back to Fig. 2.5, one can see that
the fit to the data is almost perfect by using NLO DGLAP evolution.

Being able to produce pdf’s as accurately as possible which fit the existing
data and will fit data that will be obtained in the future is the main purpose
of what we call global analyses of DIS and related data. There are quite a few
parameterisations for the proton structure, e.g. MRST, CTEQ, GRV, that
differ in the parametrisation of the initial input to the evolution, the selection
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Figure 2.10: pdf’s from H1, ZEUS and CTEQ parametrisation.

of the data analysed, the treatment of the experimental errors, the way of
treating the value of αs etc. In Fig. 2.10 we see the parton distribution
functions from HERA along with curves from CTEQ parametrisation.

2.3 BFKL dynamics

We saw in the previous Section that by using the DGLAP evolution equation
one resums logarithms of the type (αs lnQ2)n (collinear resummation). In
this Section we will discuss the other very important evolution equation
in pQCD, namely the BFKL equation, which resums logarithms of energy,
that is terms like (αs ln s)n. The applicability of BFKL is guaranteed by
the presence of two sizable hard scales, one at the upper and one at the
lower part of the gluonic ladder, which are of the same order. That is the
reason why we will base our analysis on the derivation of BFKL equation
considering quark-quark scattering. Let us now proceed by demonstrating
the derivation of the BFKL equation in leading logarithmic approximation
(LLA) in a very simplified way [24, 25]. We will focus on the emerging
of terms ln(s

t ) in the colour octet channel and of terms like ln( s
s0

) when
considering real gluon emissions. This will make more transparent later the
study of real and virtual corrections of the NLO photon impact factor.
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Figure 2.11: qq scattering

BFKL equation

We shall start by considering q q scattering, whereas the physical content
that the equation acquires when seen in different physical processes will be
discussed later. Therefore, we will reserve our interest for the time being,
on how the famous logarithms in s make their appearance, seeing it from
an intuitive point of view. Throughout this Section (and actually the next
Chapter) we will use the Feynman gauge. Hereafter, we will omit the “hat”
notation, as it will be clear that we discuss issues on the partonic level and
the extra notation would merely be an unnecessary complication. Our main
three aims will be:

• Demonstrating the reggeization of the gluon.

• Defining the real emission BFKL kernel.

• Presenting the perturbative Pomeron and BFKL equation.

Some remarks are in order. The Pomeron, as we will see, can be attributed
to a gluonic ladder exchanged between the two quarks in the colour singlet
channel. The ladder consists of two reggeized gluons exchanged in the t
channel which interact with each other through real gluon emissions. Let us
consider the process in Fig. 2.11. We can write the momentum of the gluon
in Sudakov parametrisation:

q = α p1 + β p2 + q⊥ , (2.21)

where q⊥ denotes the transverse components of the gluon momentum. Then
for our kinematics, we define s = 2p1p2 and t = q2 = αβs − q2. From
now on, we will denote the transverse two-dimensional vectors by boldface
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characters. A reggeized gluon has a modified propagator by a factor sǫ(q2),
namely:

Dµν(s, q
2) = −igµν

q2

( s
k2

)ǫ(q2)
, (2.22)

with k2 ≪ s a typical momentum scale and 1 + ǫ(q2) the gluon trajectory.
The form of ǫ(q2) is defined later in Eq. 2.38. For the t-channel gluons we
decompose the metric tensor into:

gµν =
2

s
(p1µp2ν + p1νp2µ) + gµν⊥ . (2.23)

In our calculation here and in the next Chapter, we retain only the first term.
The rungs of the ladder are compromising non-local triple gluon vertices, the
so-called Lipatov effective vertices and are associated with the real emission
BFKL kernel. We remind at this point that we are in the kinematical region:

s≫ |t|, u ≃ −s . (2.24)

Our aim in the formulae to follow is to show how the important phenomenon
of the reggeization emerges and how one can obtain the tree level amplitude
for the q q → q q + (ng) process by iterating an essential “building block”,
namely the BFKL real Kernel. Important elements for this demonstration
are the optical theorem and the use of eikonal vertices. Let us focus on the
process in Fig. 2.11 Then for the upper vertex we have:

−igsū(p1 + q)γµu(p1) . (2.25)

Because of Eq. 2.24, q ≪ p1 and the above formula can be approximated as

−igsū(p1)γµu(p1) = −2igsp
µ
1 . (2.26)

Following the same reasoning for the lower vertex, the amplitude for the
process at hand will be

A(0)(s, t) = 8πast
α
ijt

α
kl

s

q2
= 8πast

α
ijt

α
kl

s

t
. (2.27)

Suppose now that we are interested in the second order in perturbation the-
ory for the qq scattering. As we want to retain only leading in s logarithms,
diagrams with self-energy and vertex corrections will be neglected since they
are sub-leading in ln s. The diagrams that give the relevant term are shown
in Fig. 2.12. Let us focus on the Fig. 2.12(a) diagram. We can calculate
the imaginary part of it by means of the so called Cutkosky rules and then
obtain the full amplitude by dispersion relations. Denoting the amplitude
by A(1)(s, t) we will have:

ImA(1)(s, t) =
1

2

∫
dΠ2A

(0)(s, k2)A(0)†(s, (k − q)2) , (2.28)
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Figure 2.13: qq scattering, one loop cut amplitude.

where A(0)(s, k2) and A(0)†(s, (k − q)2) are the tree amplitudes in Fig. 2.13
with the quark lines to be on shell at the cut points and A(0)† denoting the
hermitian conjugate of A(0). The two-body phase space

∫
dΠ is

∫
dΠ =

∫
d4k

(2π)2
δ((p1 − k)2)δ((p2 + k)2) . (2.29)

By introducing again Sudakov variables α,β and using bold face characters
for transverse two-dimensional vector components, we can write for k

k = α p1 + β p2 + k⊥ (2.30)

and then
d4k =

s

2
dαdβd2k . (2.31)

After a little algebra, finally one obtains for the phase space:
∫
dΠ =

1

8π2s

∫
d2k . (2.32)

The two tree level amplitudes in Eq. 2.28 are:

A(0)(s, k2) = −8πas(t
α
mjt

α
nl)

s

k2
(2.33)
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and
A(0)†(s, (k − q)2) = −8πas(t

β
mit

β
nk)

∗ s

(k − q)2
(2.34)

and thus the imaginary part of A(0)(s, t), with the help of Eq. 2.32, becomes:

ImA(1)(s, t) = 4α2
s (tαtβ)ij (tαtβ)kls

∫
d2k

k2(k − q)2
. (2.35)

By dispersion relations we can reconstruct the full amplitude which is:

A(1)(s, t) = −4
α2

s

π
(tαtβ)ij (tαtβ)kl ln(

s

t
)s

∫
d2k

k2(k− q)2
. (2.36)

We remind that we are tracing leading logarithms in s, and since s
t < 0 we

can write for a generic amplitude A:

A = ReA + iImA ∼ B ln
s

t
= B ln

s

|t| − iπB (2.37)

which finally means ReA = − 1
π ImA ln s

|t| . Thus, after defining

ǫ(t) =
Ncαs

4π2

∫
−q2 d2k

k2(k − q)2
, (2.38)

we can rewrite Eq. 2.36 as

A(1)(s, t) = −16παs

Nc
(tαtβ)ij (tαtβ)kl

s

t
ln(

s

t
) ǫ(t) , (2.39)

whereas for the Fig. 2.12(b) diagram in the crossed channel it will be:

A(1)
cross(s, t) = −16παs

Nc
(tαtβ)ij (tαtβ)kl

u

t
ln(

u

t
) ǫ(t) . (2.40)

By adding the last two relations and keeping in mind that u ≃ −s we obtain
the full one loop amplitude. Considering colour octet exchange, we can have
the one loop amplitude in terms of the tree level one as

A
(1)
8 (s, t) = 8πast

α
ijt

α
kl

s

t
ln(

s

|t| ) ǫ(t) = A(0) ln(
s

|t|) ǫ(t) . (2.41)

By going one level higher in corrections, in O(α3
s), we have to consider

many Feynman diagrams like the ones in Fig. 2.14 but fortunately not all
of them are accompanied by leading logarithms. Restricting ourselves at
this point to only the virtual-gluon contributions, we must compute the di-
agrams in Fig. 2.15. Using Cutkosky rules again, we have at our disposal
all the necessary elements to calculate the virtual corrections, namely con-
tributions from graphs with qq as intermediate states, in terms of the Born
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Figure 2.15: qq scattering, one loop virtual corrections.
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one. After multiplying the amplitudes in the left hand side of the cut line
with the hermitian conjugates of the ones in the right hand side, summing
over helicities and integrating over the phase space without forgetting the
on-shell conditions at the cut lines, we reach the result

A
(2)
8 (s, t) = A(0)(s, t)

1

2
ln2(

s

|t| ) ǫ
2(t) . (2.42)

The form of A
(2)
8 (s, t) and A

(1)
8 (s, t) suggests that we can write the amplitude

as an expansion:

A8(s, t) = A(0)(s, t)

(
1 + ln(

s

|t|) ǫ(t) +
1

2
ln2(

s

|t| ) ǫ
2(t) + ...

)
. (2.43)

We make the ansatz that the above generalises to:

A8(s, t) = A(0)(s, t)

(
s

|t|

)ǫ(t)

(2.44)

which is precisely the reggeization of the gluon. To see that, if we go back
and calculate the tree amplitude for one gluon exchange using as a gluon
propagator instead of the normal one the one from Eq. 2.22, taking also
into account Eq. 2.26, we will then obtain exactly Eq. 2.44. To conclude
with, our ansatz that considering the virtual gluon corrections leads to a
modification of the gluon propagator (reggeization), which was based on the
form of the first three orders of the expansion, is proven to be true to all
orders by the so called bootstrap equation.

Let us now proceed to considering the contributions from the real gluon
emission diagrams in Fig. 2.16. As we pointed out before, these are diagrams
with qqg intermediate states, that carry ln s terms and the ones that we have
to compute in LLA at O(α3

s). It turns out that instead of computing the
amplitudes of all these diagrams it suffices to substitute their contribution
by the diagram in Fig. 2.17 where the blob stands for the Lipatov effective

vertex which is gauge invariant and has a tensor structure. The Lipatov
effective vertex is an elegant way to sum over the contributions from the
graphs in Fig. 2.16. Using once more Sudakov decomposition, the momenta
of the two t-channel gluons are

k1 = α1p1 + β1p2 + k1⊥

k2 = α2p1 + β2p2 + k2⊥ . (2.45)

The kinematical region of importance for our study (i.e. tracing the leading
logarithms) is

1 >> α1 >> α2

1 >> |β2| >> |β1| (2.46)
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Figure 2.16: qq scattering with real gluon emission.
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26 2. Linear Evolution in QCD

and again by using Cutkosky rules we contract the tree level amplitude
from the diagram in Fig. 2.17 with its hermitian complex conjugate and we
integrate over the three-body phase space. Now the three-body phase space
after using Eq. 2.45 is

∫
dΠ3 =

s2

4(2π)5

∫
dα1dα2dβ1dβ2d

2k1d
2k2

δ(−β1(1 − α1)s − k2
1) δ(α2(1 + β2)s − k2

2)

δ((α1 − α2)(β1 − β2)s− (k1 − k2)
2) . (2.47)

Because of Eq. 2.46 we can approximate

1 − α1 ≃ 1,

1 + β2 ≃ 1

α1 − α2 ≃ α1, β1 − β2 ≃ −β2 . (2.48)

Then Eq. 2.47 becomes

∫
dΠ3 =

s2

4(2π)5

∫
dα1dα2dβ1dβ2d

2k1d
2k2

δ(−β1s− k2
1) δ(α2s− k2

2) δ(−α1β2s− (k1 − k2)
2) . (2.49)

It is from the rightmost delta function in (Eq. 2.49) that the ln s behaviour
of the real corrections arises. Indeed, after carrying out the integration over
β2, an (1/α1) factor will be generated in the integrand:

∫
dΠ3 =

1

4(2π)5s

∫ 1

k2
2/s

dα1

α1

∫
d2k1d

2k2 (2.50)

and finally performing the α1 integration yields a factor

ln

(
s

k2
2

)
= ln

(
s

s0

)
, (2.51)

where again s0 is a typical momentum, a typical normalisation scale for the
BFKL equation.

The previous discussion introduced us to the notion of reggeization and
the logarithmic behaviour of the gluons that carry the interactions between
the two reggeized gluons in the t-channel. It is now time to show how this
knowledge can be incorporated in the general picture of a BFKL ladder
in the colour singlet exchange, how by iterating the amplitude of a real
gluon emission and using reggeized gluon propagators in the t-channel we
construct the perturbative Pomeron. Let us consider the diagram in Fig
2.18. It consists of n rungs (real emitted gluons) connected to the t-channel
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gluons via Lipatov effective vertices. The vertical gluons are subdivided into
n+1 reggeized propagators. The imaginary part of the amplitude, ImA(s, t)
for such a process will be given by contracting the two tree level amplitudes
to the left and right hand side of the cut and after integrating over the
n + 2-body phase space. Again tracking leading logarithms only suggests
a restriction of the kinematical configuration to the so-called multi-Regge

kinematics (MRK):

k2
1 ≃ k2

2 ≃ ...k2
i ≃ k2

i+1 ... ≃ k2
n ≃ k2

n+1 ≫ q2 ≃ s0,

1 ≫ α1 ≫ α2 ≫ ... αi ≫ αi+1 ≫ αn+1 ≫ s0
s
,

1 ≫ |βn+1| ≫ |βn| ≫ ... ≫ |β2| ≫ |β1| ≫
s0
s
. (2.52)

The integration over the phase space is nested and the way to turn the
multi-nested integral into a product of integrals is by working in the complex
angular momentum space ω by taking the Mellin transform of ImA(s, t)

f(ω, t) =

∫ ∞

1
d

(
s

s0

) (
s

s0

)−ω−1 ImA(s, t)

s
. (2.53)

Starting from f(ω, t), we can further define a function fω(k1,k2, t) which
as its arguments indicate, is the Mellin transform of the amplitude with the
integrations over the transverse momenta k1 and k2 still to be performed.
This is called BFKL Green’s function. Since t ≃ −q2, we will prefer in the
following the notation fω(k1,k2,q

2) in which we contain the propagators
k1

2 and (q − k2)2 and q2 stands for the momentum transfer. By taking
n = 1 in the ladder diagram in Fig. 2.18 and calculating the correspond-

ing f
(1)
ω (k1,k2,q

2) function and then setting n = 2 and calculating the

f
(2)
ω (k1,k2,q) and generally iterating this procedure one realizes that there

exists an integral equation which governs the behaviour of fω:

ωfω(k1,k2,q) = δ2(k1 − k2)

+
ᾱs

2π

∫
d2l

{ −q2

(l− q)2k2
1

fω(l,k2,q)

+
1

(l− k1)2

(
fω(l,k2,q

2) − k2
1fω(k1,k2,q)

l2 + (k1 − l)2

)

+
1

(l − k1)2

(
(k1 − q)2l2fω(l,k2,q

2)

(l− q)2k2
1

−(k1 − q)2fω(k1,k2,q
2)

(l− q)2(k1 − l)2

)}
, (2.54)

with ᾱs = Ncαs/π. In the case of zero momentum transfer, q2 = 0, Eq.
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Figure 2.18: Gluonic ladder diagram.
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2.54 becomes:

ωfω(k1,k2) = δ2(k1 − k2)

+
ᾱs

2π

∫
d2l

(l− k1)2

(
fω(l,k2) −

k2
1fω(k1,k2)

l2 + (k1 − l)2

)
, . (2.55)

We can rewrite the equation above very nicely as

ωfω(k1,k2) = δ2(k1 − k2) +

∫
d2l K(k1, l) fω(l,k2) , (2.56)

where K(k1, l) is the BFKL kernel:

K(k1, l) = 2ǫ(−k2
1) δ

2(k1 − l)︸ ︷︷ ︸
Kvirt

+
Ncαs

2π2

1

(k1 − l)2︸ ︷︷ ︸
Kreal

. (2.57)

Kvirt and Kreal are the parts of the kernel that correspond to the virtual
and real corrections respectively.

Solving BFKL equation will provide us with the BFKL Green’s function
from which we can reconstruct the imaginary part of the amplitude for q q
scattering in two steps. Firstly, we will need to take the inverse Mellin
transform and go back to s space:

f(s,k1,k2,q) =
1

2πi

∫ c+i∞

c−i∞
dω

(
s

s0

)ω

fω(k1,k2,q) (2.58)

and subsequently to perform the integrations over the k1 and k2 momenta
of the reggeized gluons:

Asinglet(s, t) = i(8παs)
2 s

N2
c − 1

4N2
c

∫
d2k1

(2π)2
d2k2

(2π)2
f(s,k1,k2,q)

k2
2(k1 − q)2

. (2.59)

The left hand side of Eq. 2.59 is not ImA(s, t) as one would expect, be-
cause the amplitude is purely imaginary for colour singlet exchange and thus
A(s, t) = i ImA(s, t).

Let us consider once more Eq. 2.59. The BFKL kernel Eq. 2.57 is
infrared finite, the Kreal and Kvirt are singular but their divergencies cancel
one against the other. The amplitude though is still infrared divergent
due to the gluon propagators 1

k2
2

and 1
(k1−q)2

. In practice, the quarks (or

scattering gluons) are not on mass-shell as we assumed here in sketching the
derivation of BFKL equation. In physical processes, as for example hadron
hadron collisions, the Pomeron couples to partons inside a hadron which
are off shell. To take into account the structure of the hadrons we need the
introduction of a quantity Φ which serves as the coupling of the Pomeron
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A

B

Figure 2.19: Regge factorisation for a generic hadronic process.

to the hadron and which is called impact factor. Then a hadronic elastic
amplitude between hadrons A and B (Fig. 2.19) will be written as

A(s, t) = i s C
∫

d2k1

(2π)2
d2k2

(2π)2
ΦA(k1,q)

f(s,k1,k2,q)

k2
2(k1 − q)2

ΦB(k2,q) , (2.60)

where C accounts for the colour factor3 of the process and the quantities
ΦA and ΦB are the hadron impact factors for the the hadrons A and B.
Whenever we have scattering of particles with Pomeron exchange, we also
have to consider impact factors for each of these particles. In general, impact
factors are non perturbative objects, non-calculable and thus subjects to
modelling. Nevertheless, all impact factors have to share a very important
universal behaviour, i.e. they regulate the infrared divergencies:

Φ(k,q)
∣∣∣
k−q→0

k→0
→ 0 . (2.61)

In this way, they cancel the singular behaviour of Eq. 2.60 which exactly
appears at these limits. Although the impact factors are non perturbative
objects, there is at least a particle for which the impact factor falls into the
realm of pQCD, namely the case of the virtual photon. The perturbative
calculation of the photon impact factor will be the subject of the next Chap-
ter. In the case of virtual photon scattering, the Eq. 2.60 which exhibits
the Regge factorisation, becomes:

σtot
γ∗γ∗ =

1

(2π)2

∫
d2r

r2

∫
d2r′

r′2

× ΦA(r, s0)

[∫ δ+i∞

δ−i∞

dω

2πi

(
s

s0

)ω

fω(r, r′, s0)

]
ΦB(r′, s0) , (2.62)

3For example, C = (N2
c − 1)/4N2

c for q q scattering
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where we changed notation from k to r for the reggeized gluon momenta.
To get the solution to (2.56), we could rewrite it in a symbolic form as

ωF = 1I + K ⊗ F , (2.63)

with K being the BFKL kernel from Eq. 2.57, and try to attempt to diag-
onalise the BFKL equation by finding the eigenfunctions φa of the kernel
K:

K ⊗ φa = ωaφa . (2.64)

If θ is the azimuthal polar coordinate of the momenta, then the eigenfunc-
tions can be expressed as:

φnν(|k|, θ) =
1

π
√

2
(k2)−

1
2
+iν einθ . (2.65)

The high energy behaviour of the total cross section is determined when
we consider the angular averaged kernel (averaged over the azimuthal angle
between k1 and k2) and then (k2

2)
γ−1 can be used as eigenfunctions such

that:
∫
d2kK(k1,k)(k2)γ−1 =

Ncαs

π
χ0(γ)(k

2
1)

γ−1 (2.66)

with the eigenvalues

χ0(γ) = 2ψ(1) − ψ(γ) − ψ(1 − γ), ψ(γ) = Γ′(γ)/Γ(γ)

and γ = 1/2+iν. The set of eigenfunctions, where the real ν ranges between
−∞ and ∞ is complete. The power rise of the total cross section then is
given by the eigenvalue χ(γ = 1/2) = 4 ln 2. Finally, one obtains the result
that we have already mentioned in the introduction:

ωBFKL =
4Nc ln 2

π
.

One is bound to think whether taking higher order corrections, that is be-
yond LLA, can change this value drastically.

2.4 BFKL at NLLA

At next-to-leading logarithmic approximation (NLLA) the new terms that
have to be resumed in addition are terms like αs(αs ln s)n. As in LLA, the
reggeization of the gluon also holds in NLLA. This is a key point in the
analysis, due to which one can use the same formula for the NLO BFKL
equation as for the leading order one, with different kernels and eigenvalues
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1−loop g emission2−loop trajectory pair production
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Figure 2.20: Contributions to the NLL approximation.

of course [8]. From now on, when the approximation is at NLLA level, we
will prefer the term NLO BFKL equation, instead of NLLA.

There are two sources of contributions to the NLO corrections: from
MRK and from another kinematical configuration that we call Quasi-Multi-

Regge-Kinematics (QMRK). In MRK, the next-to-leading order corrections
for the gluon trajectory and the RRG vertex have to be included. So, the
reggeized gluon trajectory has to be calculated in two loop approximation,
ǫ(2) [26], whereas, the real part of the kernel, Kreal gets contributions from
one-loop level gluon production [27].

A different way to obtain a term of the type αs(αs ln s)n is to lose a
logarithm of s starting from an amplitude at LLA. As we saw in the previous
Section, the key feature that generates these logarithmic terms is the strong
ordering in rapidity. Thus, if we allow for a state where two of the emitted
particles are close to each other, we are in the Quasi-Multi-Regge-kinematics
(QMRK): Eq. 2.52 still holds with the exception of a pair of particles. The
pair can be a pair of gluons but now we can aslo have a qq̄ pair so the vertices
(reggeon reggeon g g) [28] and (reggeon reggeon q q) [29] were computed. A
pictorial demonstration of the corrections at NLLA are shown in Fig. 2.20

The project of computing the next-to-leading corrections was an impres-
sive feat that took almost ten years to finish [8, 9]. When it was completed,
in the late nineties, it came as a surprise that the corrections compared to
LLA were very large with the discouraging feature that they even led to a
negative intercept for moderate αs. Various studies [10] had shown that the
reason for such a behaviour had its origin in the two particle production in
QMRK.

Since we impose no restrictions on the values of the transverse momenta
for the emissions, there can be final configurations possible where the trans-
verse momenta of the pair of particles are strongly ordered. This leads to
large logarithms of transverse momenta (collinear logarithms) that make
the expansion in αs ln s unstable. To eliminate these unphysical logarithms
one can perform a complete DGLAP resummation of these large logarithms
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which stabilizes the convergence of the expansion [30]. In that way, we are
led to an effective change in the dependence of ωBFKL on αs. For a typical
value αs = 0.2, the intercept turns out to vary between 0.3 and 0.4, which
is a promising result for applying NLO BFKL to phenomenology.

Apart from the renormalisation group improved kernel, another solution
to the problem, and the one which we will discuss in more detail here as we
will later use it in the second half of this thesis, originates from L. Lipatov
[21]. The idea is to impose a a restriction in the rapidity separation of the
produced particles, the so called rapidity veto effect [21, 22, 23]. Applica-
tion of the rapidity veto leads to the same results comparing with the ones
obtained from the collinear ressumed kernel.

The technical idea behind the rapidity veto is based on the artificial
suppression of the emission of gluons which are close in rapidity along the
BFKL ladder (Fig. 2.21). As we have seen, the logarithms in s arise from
the integration over the rapidities of the real and virtual gluons. At LL ac-
curacy, the limits of these rapidity integrations (arising from the integration
over phase space, as for example in Eq. 2.47) cannot be precisely defined.
In other words, we are allowed to shift the limits of integration by a small
parameter and still be within the validity of the LL approximation. If the
shift parameter, let us name it η, is much smaller compared to the whole
rapidity interval, η ≪ s then any modification that can possibly enter our
result after the integration over rapidities, will have to be beyond LL accu-
racy. In physical terms, this parameter can only be realized as a separation
in rapidity space between two subsequent gluon emissions (with rapidities
Yi and Yi+1) along the gluonic ladder, as in Fig 2.21, namely on top of all
the other requirements for the BFKL resummation, an additional constraint
must be taken into account: Yi+1 −Yi > η, where η is the so called veto pa-

rameter. Another way to look upon the whole procedure is to think that we
are allowed to redefine the energy that scales s in the logarithms, as long as
we keep that scale much smaller than s. Studies ([22, 23]) have shown that
a veto η with a value around 2 units of rapidity lowers the intercept from
0.5 down to 0.3 in consistency with the results from the collinearly ressumed
kernel. Actually, if we keep in mind that most of the problematic behaviour
of the NLO kernel originates at QMRK, when unphysical collinear loga-
rithms appear and have to be eliminated, the ‘regularizing’ role of the veto
should not come as a surprise. The standard BFKL equation is certainly
obtained at the limit η = 0.
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Figure 2.21: Imposing a rapidity veto for subsequent emissions.



Chapter 3

The NLO Photon Impact

Factor

In this Chapter we will firstly introduce the LO impact factor in order to
define our notation and to gain an intuitive idea of what the γ∗ impact factor
at NLO will be. We will discuss in brief the previously achieved results of
the NLO computation. We will finally present the newly obtained results
for the virtual contributions, namely, the numerical integration over phase
space. It has to be stressed that in this thesis, we deal with the numerical
implementation for the case only of longitudinally polarized photons.

We are primarily interested in γ∗γ∗ scattering. The building block we
need in order to calculate the first approximation of σtotal

γ∗γ∗ at fixed order,
is the γ∗g vertex at LO, see Fig 3.1. Then, using the optical theorem (s-
channel discontinuity) and projecting in the colour singlet, we need simply
to calculate the imaginary part of the diagram in Fig. 3.2 since for the
general scattering between A and B particles it is

σ
(0)
AB =

1

s
ImT

(0)
AB(s, t = 0) . (3.1)

The blobs at the points where the photons split into a qq̄ pair are merely

γ*

g

γ*

g

Figure 3.1: γ∗g vertex at LO



36 3. The NLO Photon Impact Factor

γ*

g

γ*

g

γ*

γ*

γ*

Figure 3.2: γ∗γ∗ at LO, fixed order

γ*

g

γ*

g

γ*

γ*

γ*

f

Figure 3.3: γ∗γ∗ at LO BFKL
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Figure 3.4: γ∗γ∗ total cross section from LEP [7].

denoting that the gluon can be coupled to the quark or the antiquark line.
Unfortunately, such an attempt does not give a good description of the data
behaviour. Data from LEP [7], shown in Fig. 3.4, indicate a rise with energy
and more precisely they favour a rise like W 0.3

γ∗γ∗ . The fixed order calculation
sketched above predicts a flat behaviour in energy as it can be seen in the
same figure, whereas a LO BFKL calculation (Fig. 3.3) clearly overshoots
the data.

Nevertheless, Fig. 3.1 will provide us with the basic notions in order
to introduce the LO and NLO impact factor for the virtual photon, since
the diagrams in that figure are the pictorial contributions of what we call
photon wave function interacting with a gluon. They give the probability
for the photon to split into a qq̄ pair and further on, to interact strongly
with the exchange of a gluon. The photon impact factor at LO will be
(again by using the optical theorem) that probability squared, projected
in the colour singlet and integrated over phase space. We usually denote
the photon impact factor by Φ(Q2, r2), where Q2 is the virtuality of the
photon and r

2 the transverse momentum squared of the exchanged gluon.
An additional superscript will denote the order in αs, namely Φ(0)(Q2, r2)
for LO and Φ(1)(Q2, r2) for NLO.

Summarising, the photon impact factor is a quantity that enters pro-
cesses which invoke virtual photon scattering. It depends on the exchanged
gluon momentum and the virtuality of the photon but not on s and should
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A A’

Figure 3.5: An auxiliary process that can be used to calculate the impact
factor for A.

be considered as a ‘partial cross section’. High energy factorisation implies
that the total cross section will be a convolution (generally integration over
the gluon momentum or momenta in the non-forward case) between the
impact factors and a process independent part that carries all the energy
dependence. In Fig. 3.3, the total cross section is a convolution between the
gluon Green’s function f and the upper and lower photon impact factors.

3.1 The LO impact factor

As we previously mentioned, the photon impact factor is obtained from the
energy discontinuity of the amplitude γ∗ + reggeon → γ∗ + reggeon. For
the Born level ( O(αs)), this discontinuity is simply the square of the sum
of the amplitudes from the Fig. 3.1, where the reggeon now is simply the
t-channel gluon. For a general definition of the impact factor of a particle
A, see Fig 3.5, we can state [15]:

ΦA =
δab

√
N2

c − 1

∑

A′

∫ 〈
Γa

A→A′Γb ∗
A→A′

〉
dφA′

sdβr

2π
, (3.2)

where summing over colour and helicity in the intermediate state A′ is to be
understood by the use of the 〈〉 notation whereas the factor δab√

N2
c −1

is the

colour projector. dφA′

sdβr

2π is the phase space measure for the A′ intermediate
state. Equivalently, in a short hand notation we could write

ΦA =
∑

A′

∫
|ΓA→A′ |2dφA′

sdβr

2π
(3.3)

including the colour projection in the square of the matrix elements. To
calculate the LO photon impact factor and most importantly the NLO cor-
rections, we will use an auxiliary process, namely γ∗q scattering. This is
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A A’

B B’

Figure 3.6: Generic A + B → A′ + B′ scattering

because, although we can represent the matrix elements for the Born piece
of the impact factors in terms of Feynman diagrams (Fig. 3.1), there is not
such a simple diagrammatic definition (in terms of Feynman diagrams) for
the virtual photon at NLO as we will see later. One then needs to calculate
the amplitude at NLO for γ∗q and after ‘stripping’ all the irrelevant pieces
of the calculated amplitude, one obtains the piece that will give the NLO
corrections after the integration over phase space. Therefore, let us start by
considering the scattering γ∗ + q′ → qq̄ + q′ (Fig. 3.7)

The amplitude for this process, as an expansion in the strong coupling
g, is

Tγ∗q = g2T
(0)
γ∗q + g4T

(1)
γ∗q . (3.4)

This comes naturally after using the Regge ansatz. That is, in the high
energy limit the amplitude for the scattering process A+B → A′ +B′ (Fig.
3.6) is described by the exchange of a reggeized gluon. It can then be cast
into the following form:

MAB =
s

t
Γα

A→A′

[(
s

−t

)ω(t)

+

(−s
−t

)ω(t)
]

Γα
B→B′ . (3.5)

Γα
A→A′ and Γα

B→B′ are the particle-particle-reggeon vertices, 1 + ω(t) is the
Regge trajectory of the gluon1 and the index α stands for the colour of the
reggeized gluon. For the process at hand in Fig. 3.7, Eq. 3.5 becomes:

Tγ∗q→q qq̄ =
s

t
Γα

γ∗→qq̄

[(
s

−t

)ω(t)

+

(−s
−t

)ω(t)
]

Γα
qq . (3.6)

1The change of notation from ǫ(t) to ω(t) here is necessary to be in accordance with
the series of papers of the previous steps of the NLO photon impact factor computation
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Figure 3.7: Kinematic variables for the process γ∗ + q′ → qq̄ + q′.

Expanding in g, we will have:

ω = g2ω(1) + g4 ω(2) , (3.7)

Γα
γ∗→qq̄ = g Γ

(0),α
γ∗→qq̄ + g3 Γ

(1),α
γ∗→qq̄ , (3.8)

Γα
qq = g Γ(0),α

qq + g3 Γ(1),α
qq . (3.9)

Because of the last four equations, we can identify in Eq. 3.4:

T
(0)
γ∗q = Γ

(0),α
γ∗→qq̄

2s

t
Γ(0),α

qq , (3.10)

and

T
(1)
γ∗q = Γ

(1),α
γ∗→qq̄

2s

t
Γ(0),α

qq + Γ
(0),α
γ∗→qq̄

2s

t
Γ(1),α

qq

+ Γ
(0),α
γ∗→qq̄

s

t
ω(1)

[
ln

s

−t + ln
−s
−t

]
Γ(0),α

qq . (3.11)

At Born approximation, we just keep the first term of the right hand side
of Eq. 3.4. The kinematical variables we will use in our calculation, are
as usual, q and p for the four momenta of the photon and the incoming
quark, the centre-of-mass energy s of the γ∗q scattering process, the photon
virtuality Q2 = −q2 and the Bjorken scaling variable x = Q2/2p · q. It will
serve us well in the future, when discussing the NLO virtual corrections,
to introduce some notation for the invariants of the process at a general
level, so we will denote the momentum transfers, as depicted in Fig. 3.8, by
t = r2, ta = k2 and tb = (q − k − r)2, whereas M2 is the invariant mass of
the outgoing qq̄-system. The momenta k and r can be written in a Sudakov
decomposition form with respect to the light cone momenta q′ = q−xp and
p with 2p · q′ = s :

k = αq′ + βp+ k⊥, r =
t

s
q′ − ta + tb

s
p+ r⊥ . (3.12)
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Figure 3.8: Invariants for the process γ∗ + q → qq̄ + q.

Two dimensional transverse momenta are denoted as k
2 = −k2

⊥ and r
2 =

−r2⊥. We stress once more that we are working in the high energy limit
(Regge limit):

t, Q2, ta, tb, M
2 ≪ s . (3.13)

Let us see how the Born impact factor can be obtained from T
(0)
γ∗q. At leading

order we may write, due to the reggeization of the t-channel gluon,

T
(0)
γ∗q = Γ

(0),a
γ∗→qq̄

2s

t
Γ(0),a

qq , (3.14)

with the Born level vertices being

Γ(0),a
qq =

1

s
ū(p− r, λq′) 6q′λau(p, λq) , (3.15)

Γ
(0),a
γ∗→qq̄ = −ieef

(
Ha

T

sta
− H̄a

T

stb

)
. (3.16)

The helicity formalism is used and the matrix elements Ha
T and H̄a

T are
defined as:

Ha
T = ū(k + r, λ) 6p 6k 6ε λav(q − k, λ′) , (3.17)

H̄a
T = ū(k + r, λ) 6ε (6q− 6k− 6r) 6p λav(q − k, λ′) , (3.18)
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with the λa being the generators of the colour group SU(Nc) and the ef the
electric charge of the lower quark.

After squaring the Born level vertex (Eq. 3.16) and averaging (summing)
over incoming (outgoing) colours and helicities we finally obtain:

|Γ(0)
γ∗→qq̄|2L = 4

√
N2

c − 1e2e2fα
3(1 − α)3Q2

(
1

D(k)
− 1

D(k + r)

)2

, (3.19)

for a longitudinally polarised photon, where D(k) = k
2 + α(1 − α)Q2. Re-

spectively, the sum over the two transverse photon polarisations is given
by

|Γ(0)
γ∗→qq̄|2T = 2

√
N2

c − 1e2e2fα(1−α)
[
α2 + (1 − α)2

]( k

D(k)
− k + r

D(k + r)

)2

.

(3.20)
The LO impact factor then, using Eq. 3.3, and the fact that the two-particle
phase space measure is

dφqq̄
sdβr

2π
=

dα

2α(1 − α)

dD−2
k

(2π)D−1
(3.21)

will be (we keep the spacetime dimensions D for later consistency):

Φ
(0)
γ∗;T,L =

∫
dD−2

k

(2π)D−1

dα

2α(1 − α)
|Γ(0)

γ∗→qq̄|2T,L (3.22)

or equivalently

Φ
(0)
γ∗;T,L =

∫
dD−2

k dα I2;T,L(α,k; r, Q) . (3.23)

where it is

I2;L(α,k; r, Q) =
2e2e2f

√
N2

c − 1

(2π)D−1
α2(1 − α)2Q2

(
1

D(k)
− 1

D(k + r)

)2

(3.24)
and

I2;T (α,k; r, Q) =
e2e2f

√
N2

c − 1

(2π)D−1

[
α2 + (1 − α)2

]( k

D(k)
− k + r

D(k + r)

)2

.

(3.25)
As we previously mentioned , it is only for the case of longitudinally po-
larised photons that we will present numerical results in this thesis, so in
our analysis from now on, we will concentrate on that polarisation configu-
ration.

One very important feature of Φ
(0)
γ∗;L(Q2, r2) is that it is dimensionless.

This comes formally from the fact that it presents a scaling property, namely
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it is not a function of Q2 and r
2 seen independently, but a function of their

ratio:

Φ
(0)
γ∗;L(Q2, r2) ≡ Φ

(0)
γ∗;L(

r
2

Q2
) . (3.26)

This fact and the symmetry of the squared matrix elements under the ex-
change q ↔ q̄, namely α↔ 1 − α, k ↔ −r − k, which translates into

I2(α,k; r, Q) = I2(1 − α,−r − k; r, Q) , (3.27)

are very important to keep in mind in the following, when we will discuss
numerical checks of the integration over phase space for the virtual correc-
tions. After integrating Eq. 3.27 over k, we get a relation with a α↔ 1−α
symmetry:

φ(α, r, Q) = φ(1 − α, r, Q) , (3.28)

where now φ is a function with still the α integration to be done.

Fig. 3.9 shows a plot of the Born photon impact factor as a function
of r

2/Q2. In this plot, we used Q2 = 15 GeV2 for the photon virtuality
which will give a typical value of the strong coupling αs ≈ 0.18 and we
varied r2. In the limit r → 0, Q2 fixed, the Born impact factor dies off
like Φ(0) ∼ r

2, so the impact factor regulates the total cross section in the
infrared limit as we saw in the Chapter 2. We get the same limit when we
assume Q2 → ∞, r

2 fixed. The large virtuality of the photon translates into
a very small transverse size of the dipole qq̄, so small that the dipole looks
needlelike and the interaction cross section vanishes. If we imagine that
the dipole interacts with a proton (DIS), the strength of the dipole-proton
interaction is proportional to the dipole size. With a very small dipole, the
proton will not be able to ‘notice’ it’s colour charges. This is known as
colour transparency.

3.2 NLO corrections

The NLO corrections to the photon impact factor can be represented in a
pictorial way as in Fig. 3.10. The project of calculating them was divided
into steps. Firstly, analytic results were obtained for the one loop corrections
to the coupling of the reggeized gluon to the γ∗ → qq̄ vertex. The process
used for that purpose was γ∗ + q → qq̄ + q [13]. The next step was the
calculation of the cross section of the process γ∗ + q → qq̄g + q with a large
rapidity gap between the fragmentation system qq̄g and the other quark.
From this calculation, the real corrections of the virtual photon impact fac-
tor in the next-to leading order were obtained [14, 15]. The cancellation of
infrared divergencies when combining the real and virtual parts was demon-
strated in Ref. [15], while the renormalisation of the ultraviolet divergencies
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Figure 3.9: Born impact factor. αs ≈ 0.18
.
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Figure 3.10: Corrections to the impact factor at NLO
.

took place in Ref. [13]. The last step so far, involved analytic manipulation
and numerical integration over phase space for the real corrections [16]. The
final step, and the one which will be presented in this thesis is the numerical
integration over phase space for the virtual corrections which will leave us
with a full NLO numerical implementation of the impact factor. We will
firstly discuss in brief the known results.

As we previously stated, to ‘extract’ the corrections one needs to use the
processes γ∗ q′ → qq̄ q′ for the virtual corrections and γ∗ q′ → qq̄g q′ for the
real ones. The relevant Feynman diagrams for the virtual corrections are
shown in Fig. 3.11 and for the real ones in Fig. 3.12. It is evident, that
for many of them, we can see similarities with the ones we used in Section
2.3, with a certain additional complication, namely the upper ‘part’ is not
a quark line but a vertex between a photon and a qq̄ pair.

The NLO corrections to the virtual photon impact factor have three
‘sources’. Two contributions will come from the process with the same
intermediate state as in the Born case, γ∗ q → qq̄ q′. From Eq. 3.11, we
see that corrections can enter in this case either through the vertex Γα

γ∗→qq̄

(Γ
(1),α
γ∗→qq̄), or because of the first term of the expansion of the gluon trajectory,

ω(1) (third term of Eq. 3.11). To these we will refer to as the ‘virtual’ part of
the NLO corrections. The third contribution is extracted from the process
which involves the production of a gluon in the intermediate state, namely
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(1) (2) (3) (4)
(5) (6) (7) (8) (9)
(10) (11) (12) (13) (14)
Figure 3.11: Virtual Corrections. One should also include the ones with the
quark- antiquark lines interchanged.

A1 A2 A3 A4 A5
B1 B2 B3 B4 B5

Figure 3.12: Real Corrections.



3. The NLO Photon Impact Factor 47

Fragmentation region of the photon

Fragmentation region of the quarkq

*

Rapidity
Gap

Large
One

Figure 3.13: Configuration with one large rapidity gap.

γ∗ q → qq̄g q′. These we will call ‘real’ part. The gluon, depending on
its rapidity, can divide the phase space into a configuration with one large
rapidity gap, as for example in Fig. 3.13 when it is emitted either in the
photon or in the quark fragmentation region, or with two large rapidity
gaps when emitted in the central region, as in Fig. 3.14. The only allowed
part of the phase space for the real part is the one with one large rapidity
gap and the gluon emission taking place within the fragmentation region of
the photon. To divide the phase space such that only the relevant ‘upper’
part will be considered, the introduction of an energy scale s0 was necessary
[14, 15].

This energy scale, s0, as we will see in the following Sections, is the same
as the one used in the BFKL equation, in Chapter 2. It serves as an energy
cutoff: gluons with rapidities above s0 belong in the fragmentation region of
the photon, see Fig. 3.15, and thus will be accounted for in the real part of
the NLO corrections. On the other hand, in Ref. [15], it was shown that the
very same s0 is the scale that regulates the logarithm in s that accompanies
the real emission BFKL kernel. Thus, in the NLO fixed order calculation
of the γ∗γ∗ total cross section, s0 enters through both the impact factor
and the LO BFKL kernel. However, at the end, the total cross section, at
fixed order, is independent of it. We will see that this fact provides us with
candidate test for checking the correctness of the final result for the NLO
impact factor.
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Figure 3.14: Configuration with two large rapidity gaps.

s0

Figure 3.15: The energy scale s0 sets the lower bound of the photon frag-
mentation region.
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A’

B’

*

*

r’

r

Figure 3.16: γ∗γ∗ scattering. In principal, there may be many more emitted
gluons but here we depict only one as this is relevant at NLO order and
also to illustrate the notation r and r

′ of the momenta of the reggeized
propagators.

The total cross section for γ∗γ∗ scattering is given by:

σγ∗γ∗ =
1

s
ImTγ∗γ∗(s, t = 0)

=

∫
dD−2r

(2π)D−2

∫
dD−2r′

(2π)D−2
ΦA(r, s0)ΦB(r′, s0)

f(s, r, r′, s0)

r2r′2
, (3.29)

where f(s, r, r′, s0) is the gluon Green’s function:

f(s, r, r′, s0) =

∫
dω

2πi

(
s

s0

)ω

fω(r, r′) . (3.30)

If we expand f(s, r, r′, s0) in ᾱs = αsNc/π
2, we get:

f(s, r, r′, s0) = δ(2)(r− r′) +
ᾱs

2π
Kreal(r, r

′) ln
s

s0
. (3.31)

Recalling that by expanding the photon impact factor in the strong coupling
gives

Φγ∗ = g2Φ
(0)
γ∗ + g4Φ

(1)
γ∗ , (3.32)

we can express the total NLO corrections (O(α3
s)) to the photonic cross
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section as:

σ
(1)
γ∗γ∗ =

1

s
ImT

(1)
γ∗γ∗(s, t = 0)

=

∫
dD−2

r

(2π)D−2
Φ

(1)
A (r, s0)

1

r4
Φ

(0)
B (r) +

∫
dD−2

r

(2π)D−2
Φ

(0)
A (r)

1

r4
Φ

(1)
B (r, s0)

+

∫
dD−2

r

(2π)D−2
Φ

(0)
A (r) ln(

s

s0
)2ω(1)(r2)

1

r4
Φ

(0)
B (r)

+

∫
dD−2

r

(2π)D−2

dD−2
r
′

(2π)D−2
Φ

(0)
A (r)

1

r4
Kreal(r, r

′)
1

r′4
Φ

(0)
B (r′) ln(

s

s0
) .

(3.33)

One would naively expect the logarithm in the third line of Eq. 3.33, to be
ln(s/r2), in accordance with the Regge ansatz and Eq. 3.11. Nevertheless,
this is not the case as in Eq. 3.33 there are contributions from two processes,
namely from γ∗q → qq̄ q and γ∗q → qq̄g q scattering, whereas Eq. 3.11 refers
only to the former. In other words, in the equation above, we do have a real
gluon emission which brings corrections to the total cross section and needs
to be taken into account.

The final expression of the impact factor at NLO is the assembly of all
the finite pieces. After renormalisation, the ultraviolet divergencies which
actually come only from the virtual part, are cancelled. The infrared diver-
gencies of the virtual part cancel against the ones from the real contribu-
tions. To isolate the soft and collinear divergencies of the latter, one needs
to introduce a scale Λ, which will finally drop out in the final result, but is
apparent in the intermediate stages [15]. Thus, the expression for the full
NLO corrections will involve, apart from t = −r

2, tα, tb, M
2, also s0, Λ,

Q2 and s. Especially for s, it appears explicitely in the finite expressions,
before phase space integration, but evidently any dependence on it finally
cancels out.

The s0-dependence of the NLO impact factor as we saw, has it’s origin at
the calculation of the real corrections. One expects, therefore, to have a clear
separation, i.e. the real part carries the s0 dependence while the virtual part
is s0-independent. However, it is necessary in order to serve an important
calculational purpose, to reshuffle the contributing to the corrections terms,
such that at the end we will have two pieces, both of which will exhibit the
scaling property. Both pieces must be a function of ratios of scales as in the
the LO impact factor case. This is very important because it makes possible
various checks of the correctness of the phase space integration. By doing
so though, we pay the price of distributing the s0 dependence in both the
virtual and real part, but this is not to disturb us at all2. To conclude with

2Actually, such a clear scheme where s0 ‘sits’ only in the real corrections is not even
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we present below the full NLO contributions:

Φ
(1)
γ∗ = Φ

(1,virtual)
γ∗

∣∣∣
finite

−
2Φ

(0)
γ∗

(4π)2

{
β0 ln

r
2

µ2
+ CF ln(r2)

}

+

∫ 1

0
dα

∫
dk

(4π)2
I2(α,k)

{
CA

[
ln2 α(1 − α)s0 − ln2M2

]

+ CA

[
−2 ln(r2) ln(

s0
r2

)
]

+ 2CF

[
8 − 3 lnα(1 − α)Λ2 + ln2M2 + ln2 α

1 − α

]}

+ CA Φ
(1,real)
γ∗

∣∣∣
finite

CA

+ CF Φ
(1,real)
γ∗

∣∣∣
finite

CF

. (3.34)

Presenting in this way the finite contributions from the diagrams to the
NLO impact factor has certain advantages. Most importantly, the first four
lines in Eq. 3.34 are scale independent (apart from the β0 dependent term
obviously, which controls the running of the coupling constant αs). To make
it even clearer, by scale independence we mean that the terms in the first
four lines (from now on, these will be referred to as virtual contributions
despite the fact that some terms have their origin at the diagrams of Fig.
3.12) are in total a function of the ratios s0

Q2 , Λ2

Q2 and r
2

Q2 . The same holds
for the last line separately, which we will call real contributions hereafter.
They were integrated over phase space in Ref. [16]. The missing ingredient

so far was the very first term in Eq. 3.34, namely Φ
(1,virtual)
γ∗ |finite. The

computation of this term will be presented in the next Section. The scale
independence property will enable us to test its calculation. Another way
one can interpret the scaling property is by stating that the only dependence
that the impact factor carries upon the renormalisation scale µ lies onto the
β0 ln r

2

µ2 term, as it was demonstrated in Ref. [15]. Before we proceed to

the next Section, where we will present the results for Φ
(1,virtual)
γ∗ |finite, some

remarks on what we should choose as the value of s0 are in order. One can
argue that we can chose an arbitrary fixed value, e.g. s0 = 10 GeV2 or
s0 = 50 GeV2, but another choice is probably more fortunate. We remind
that for the BFKL kernel, the usual choice is the symmetric

s0 = rr
′ . (3.35)

However, as we pointed out earlier, the scale s0 has to have the same value
for the NLO impact factor and the BFKL kernel and a choice as in Eq. 3.35
seems forbidden. It would mean that the upper impact factor would ‘know’

accurate. One can see in Ref. [15] that, for the cancellation of the infrared divergencies

of the vertex Γ
(1)
γ∗→qq̄ , one needs a piece from the gluon trajectory (Eq. 33 and 34 in Ref.

[15]), which brings an s0 dependence into the virtual part.
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about the lower one which does not make sense. We will show immediately
though that things are not as they seem. Combining once more the equations
3.29, 3.30, 3.31 but also using 3.35 we get:

σ
(1)
γ∗γ∗ =

1

s
ImT

(1)
γ∗γ∗(s, t = 0)

=

∫
dD−2

r

(2π)D−2

∫
dD−2

r
′

(2π)D−2
Φ

(1)
A (r, s0 = rr

′)
1

r2

1

r′2
Φ

(0)
B (r′)δ(2)(r − r

′)

+

∫
dD−2

r

(2π)D−2

∫
dD−2

r
′

(2π)D−2
Φ

(0)
A (r)

1

r2

1

r′2
Φ

(1)
B (r′, s0 = rr

′)δ(2)(r − r
′)

+

∫
dD−2

r

(2π)D−2

∫
dD−2

r
′

(2π)D−2
Φ

(0)
A (r) ln(

s

s0 = rr′
)2ω(1)(r2)

1

r2

1

r′2
Φ

(0)
B (r′)δ(2)(r − r

′)

+

∫
dD−2

r

(2π)D−2

dD−2
r
′

(2π)D−2
Φ

(0)
A (r)

1

r4
Kreal(r, r

′)
1

r′4
Φ

(0)
B (r′) ln(

s

s0
) , (3.36)

from which, after performing the integration over r
′ with the help of the δ

functions, we finally obtain:

σ
(1)
γ∗γ∗ =

1

s
ImT

(1)
γ∗γ∗(s, t = 0)

=

∫
dD−2

r

(2π)D−2
Φ

(1)
A (r, s0 = r

2)
1

r4
Φ

(0)
B (r) +

∫
dD−2

r

(2π)D−2
Φ

(0)
A (r)

1

r4
Φ

(1)
B (r, s0 = r

2)

+

∫
dD−2

r

(2π)D−2
Φ

(0)
A (r) ln(

s

r2
)2ω(1)(r2)

1

r4
Φ

(0)
B (r)

+

∫
dD−2

r

(2π)D−2

dD−2
r
′

(2π)D−2
Φ

(0)
A (r)

1

r4
Kreal(r, r

′)
1

r′4
Φ

(0)
B (r′) ln(

s

s0
) . (3.37)

Therefore, apart from a fixed value for s0, we can also use the choice s0 = r
2

for the impact factor while we use for the BFKL kernel s0 = rr
′. Actually,

Eq. 3.37 is what we, as before noted, would expect due the Regge ansatz.
Moreover, with this choice of s0, the third line in Eq. 3.34 vanishes and we
recover Eq. 169 in Ref. [15]. Nevertheless, what is the best scale choice
cannot be decided upon, without further investigation after contracting the
NLO photon impact factor with the NLO gluon Green’s function.

3.3 Φ
(1,virtual)
γ∗ , computational details

To compute Φ
(1,virtual)
γ∗ we need the Born vertex Γ

(0)
γ∗→qq̄ from Eq. (3.16) and

the NLO one Γ
(1)
γ∗→qq̄ which was calculated in [13]. Then it will be3:

Φ
(1,virtual)
γ∗ =

∫
dD−2

k

(2π)D−1

dα

2α(1 − α)

[
Γ

(1)
γ∗→qq̄ ⊗ Γ

(0)∗
γ∗→qq̄ + c.c

]
, (3.38)

3In this Section we will skip the superscript ‘virtual’, since it is clear that we are
referring to the virtual corrections.
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where the contraction ⊗ implies also summation over helicities as a trace.

The amplitude for the Γ
(1)
γ∗→qq̄, namely T (1), was presented in Ref. [13] as a

sum of terms that are generated from each diagram in Fig. 3.11, plus the
diagrams that are obtained after interchanging the couplings of t-channel
gluons between quarks and antiquarks:

T (1) =
13∑

i=1

(
Ai + Āi

)
+A14 . (3.39)

A14 is symmetric with respect to interchanging quark-antiquark lines. in
Ref. [13], every term in Eq. 3.39 has been cast into the following form:

A#diagram =
1

ǫ2
A

(−2)
#diagram +

1

ǫ
A

(−1)
#diagram + A

(0)
#diagram , (3.40)

where the subscript #diagram runs from one to fourteen. After expanding
in ǫ for each A#diagram and the cancellation of the UV and IF divergences,
we are left with the corresponding for each diagram finite piece. The sum of

all these finite pieces is exactly the T
(1)
finite, that we need to contract with the

Born in order to get Φ
(1,virtual)
γ∗ . We will not present the whole result here

as it is very lengthy. Instead, we will present only the finite contribution
of diagram 4 in Fig. 3.11 in order to discuss some important points of the
calculation.

A
(finite)
4 =

1

(4π)2
(
−(Hα

T log(−t))
2Nc s tα

+
−2αHα

ε s tα log(−t) +Hα
T t log(−t)2

2Nc s (t− tα) tα

+
4Hα

T t
2 − 8Hα

T t tα + 5αHα
ε s t tα + 4Hα

T tα
2

2Nc s (t− tα)2 tα

− 5αHα
ε s tα

2 + αHα
ε s t tα log(−t)2

2Nc s (t− tα)2 tα

+
(−(αHα

ε s tα (3 t+ 2 tα)) +Hα
T (−2 t2 + t tα + tα

2)) log( t
tα

)

2Nc s (t− tα)2 tα

− Hα
T t

2 log(−tα)2 +Hα
T t tα log(−tα)2 − αHα

ε s t tα log(−tα)2

2Nc s (t− tα)2 tα
) .

(3.41)

Firstly, we need to say that for the NLO vertex, the helicity matrix elements
are five and not two as for the Born case, namely Hα

T , H̄α
T , Hα

ε , Hα
p and Hα

k .
The definitions for Hα

T , H̄α
T are as in the Born case, whereas it is [13]:

Hα
ε = ū(k + r, λ) 6ελα v(q − k, λ′), (3.42)

Hα
k = ū(k + r, λ) 6kλα v(q − k, λ′), (3.43)
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Hα
p = ū(k + r, λ) 6pλα v(q − k, λ′). (3.44)

Only four of them are independent because of the relation:

Hα
T + H̄α

T = sHα
ε − 2ε · pHα

k − 2ε · rHα
p . (3.45)

We have chosen to use Eq. 3.45 for substituting the value of Hα
ǫ in all of

our expressions. The summation over helicities as a trace, for the case of
longitudinal polarisation that is of our concern, is done with the help of the
following relations:

trHT ⊗ H∗
T

sta
= − 2αs

Q2D(k)

[
k

2 − α(1 − α)Q2
]2
, (3.46)

trH̄T ⊗ H∗
T

sta
= −2(1 − α)s

Q2D(k)

[
k

2 − α(1 − α)Q2
] [

(k + r)2 − α(1 − α)Q2
]
,

(3.47)

trHp ⊗ H∗
T

sta
=

2α(1 − α)s

QD(k)

[
k

2 − α(1 − α)Q2
]
, (3.48)

trHk ⊗ H∗
T

sta
= − 2

QD(k)

[
k

2 − α(1 − α)Q2
] [

k · (k + r) − α(1 − α)Q2
]
,

(3.49)

trHe ⊗ H∗
T

sta
= − 2

Q2D(k)

[
k

2 − α(1 − α)Q2
] [

k · (k + r) − α(1 − α)Q2
]
.

(3.50)
A next observation that we can draw from Eq. 3.41 is that we have

logarithms with dimenionsful arguments. Normally, one would expect ratios
of two dimensionful scales in the arguments of any function that appears
in the finite expressions for any diagram. Nevertheless, this needs not to
worry us at this point, because of what we stated in the previous Section,
namely the part of Eq. 3.34 that we named virtual corrections has the
scaling property. This was extensively and thoroughly checked. In other
words, one can imagine that every dimensionful argument of a logarithm is
scaled by the renormalisation scale µ, however, the combination of all the
logarithms from all the finite pieces of the virtual corrections cancels this
µ dependence, with the exception of course being the term that regulates
the running of the strong coupling constant. In our finite expressions for
the virtual corrections, we have also the presence of dilogarithms but in this
case the arguments are dimensionless.

Finally, the last remark we will make on Eq. 3.41 has to do with the
appearance of the ‘poles’ 1/(t− tα). In the complete set of our expressions,
we encounter the following spurious poles: 1/(t−tα), 1/(t−tβ), 1/(Q2 +tα),
1/(Q2 + tβ) and 1/(Q2 t+ tαtβ). They were introduced (as Gram determi-
nants) during the tensor decomposition of the loop integrals in the calcu-
lation of the amplitudes for the diagrams in Fig. 3.11. Before proceeding
in the numerical evaluation, we made lengthy and extensive tests to verify
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that these singularities are indeed spurious. By expanding in Taylor series
the contributions from every diagram, we have seen that indeed they cancel
for each diagram individually as one would expect. This was needed for one
more reason. The spurious poles are prone to introducing numerical insta-
bilities near the singular points of the phase space. One can then overcome
this, by using the Taylor expansion of the amplitude in the close vicinity of
the singular point instead of the full expression itself. However, we did not
need to use this option as the convergence was very good anyway. It might
be of use though, if one wants to push the accuracy well down to less than
one percent, which for the present needs is not required.

To perform the phase space integration, we have written a code in
MATHEMATICA which reads in the vertices, NLO and Born, makes the
contraction between the helicity matrix elements and finally calculates the
integrand which serves as the input for VEGAS, the integration routine we
used. The integrand is far too long (several tens of thousand of lines in
FORTRAN) to be presented in a printed form. We had tested the integra-
tion procedure by feeding in our MATHEMATICA routine and subsequently

integrating with VEGAS, not the only the whole Γ
(1)
γ∗→qq̄ vertex which is the

sum from the 14 different diagrams in Fig. 3.11, but also sole pieces from
individual diagrams. The convergence was extremely good in most of the
cases and we were able to achieve an accuracy better than one percent.

As we have already mentioned, we have used various checks for the con-
sistency and the correctness of the numerical integration, from trivial ones
up to quite involved. We will list here the most important of them. The
units of the scales are in GeV2 and of course the impact factor is dimen-
sionless. The numerical values below, are the output of the integration of

the first four lines of Eq. 3.34 and not of the Φ
(1,virtual)
γ∗ alone. It is the

numerical output of what we will refer to as the virtual corrections and will
denote by Φ(1),virt.

• s-independence

We have stated that all the energy dependence of the total cross section
is carried by the BFKL Green’s function. The impact factor should
carry no s dependence. However, as one can see in Eq. 3.41, s appears
explicitely in the expressions of the amplitudes. We have, therefore,
checked whether s drops out finally. That is exactly what we have
numerically verified, as can be clearly seen from the table below.

s Φ(1),virt

105 0.01413
106 0.01415
107 0.01415
108 0.01414
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Figure 3.17: α↔ 1−α symmetry. φ(α) is the α-unintegrated impact factor.

• α↔ 1 − α symmetry

This is a symmetry that has to hold after integrating over k but with-
out performing the over α integration, in accordance with the LO case,
Eq. 3.28. We remind here that α and 1 − α are the fractions of the
longitudinal momentum of the photon that are carried by the quark
and antiquark pair. The NLO corrections must and finally do follow
the same pattern as we can see from the table below. We have run
our code for r

2 = 75, Q2 = 15, Λ = 15 and s0 = 15. In the right hand
side column stand the values of the ‘α-unintegrated impact factor’
while in the left column are presented the corresponding values of α.
We plot the table in Fig. 3.17 to show the symmetry in a pictorial way.

α φ(α)

0.01 0.00249
0.1 0.01085
0.2 0.01468
0.3 0.01666
0.4 0.01751
0.5 0.01787
0.6 0.01759
0.7 0.01663
0.8 0.01471
0.9 0.01088
0.99 0.00248

• Φ
(1)
γ∗ |r→0 ∼ r

2

The NLO impact factor should also follow the behaviour of the Born
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one at the r → 0 limit. It is implied, that it should vary like r
2

or r
2 ln r

2 at that limit. We can safely state for the virtual part of
the corrections that it dies for very small r, although we cannot say
what exactly is its functional form (whether it involves logarithms).
To answer that we would need to push the numerical accuracy to the
extreme.

• Scale invariance

We present here a demonstration of the scaling property that we de-
scribed in details previously. We keep fixed the ratios s0

Q2 , Λ2

Q2 and r
2

Q2 ,
while we vary the actual values of each quantity. We note once more,
that we integrate the first four lines of Eq. 3.34, which is actually why
we need to specify values for Λ and s0.

r
2 Q2 s0 Λ r

2

Q2 Φ
(1),virt
γ∗

0.1 0.01 0.01 0.01 10 0.01860
1 0.1 0.1 0.1 10 0.01863
10 1 1 1 10 0.01865
20 2 2 2 10 0.01864
30 3 3 3 10 0.01864
50 5 5 5 10 0.01867

The above table is also a clear justification of why we were permitted
to use dimensionful arguments in the logarithms that appear in the

expressions that contribute to the Γ
(1)
γ∗→qq̄.

• s0-independence of the NLO fixed order σ
γ∗γ∗

tot

As was previously stated, s0 is a scale on which physical observables
cannot have any dependence. The dependence that the BFKL kernel
introduces into the calculation of a a total cross section cancels against
the one that is entering via the NLO photon impact factor. Thus, we
numerically check whether the pieces that carry explicitely or implic-
itly an s0 in Eq. 3.34 are, at the end of the day, independent of it.
That is indeed the case as we can see in Fig. 3.18. For this run of
the code we used r

2/Q2 = 5. The curve shows that the result is s0
independent (within deviations of the order of one standard deviation
of the numerical integration).

3.4 Plots for the full NLO impact factor

It is now time to present plots for the full NLO virtual photon impact factor.
Since the impact factor is an object that depends on the s0 scale, we will
present plots for two different values of s0. For each value of s0 we will show



58 3. The NLO Photon Impact Factor

0.01 1 100 10000
s0
������������
Q2

-0.02

-0.015

-0.01

-0.005

0
s0 part of the photonic total cross section

Figure 3.18: The part of the total γ∗γ∗ cross section that depends on s0,
plotted as a function of s0/Q

2.

two figures, one with the virtual contributions (first four lines of (3.34)), the
real contributions (last line of (3.34)) and the total NLO corrections plotted
together, and one with the full NLO impact factor. We have chosen to use
Q2 = 15 as the scale that sets the running of the coupling αs. The values
for s0 are:

• s0 = r
2, Fig. 3.19 and Fig. 3.20.

• s0 = 10, Fig. 3.21 and Fig. 3.22.

As we can see, the real corrections are very large and negative. This is
because, what we name at this point real corrections (last line of 3.34)
do not correspond to the whole phase space. We remind that the central
region is subtracted. On the other hand, the virtual part is also large and
with positive sign. The combination of the two, which gives the total NLO
corrections, is finally negative and large. Depending on the value of r

2/Q2

and s0, the corrections are larger than half the value of the Born or even
larger than the Born contribution itself, Fig 3.22. Actually, the shape of the
full NLO impact factor depends critically on the choice of s0. If we select
a fixed value for s0 then the smaller this value is, the larger the corrections
are, such that they drive the full impact factor to negative values, Fig. 3.22.
A large fixed s0 on the other hand has exactly the opposite effect. Lastly,
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Figure 3.19: Virtual, real and total NLO corrections to the photon impact
factor for s0 = r

2.
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Figure 3.20: The full NLO impact factor for s0 = r
2.
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Figure 3.21: Virtual, real and total NLO corrections to the photon impact
factor for s0 = 10.
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Figure 3.22: The full NLO impact factor for s0 = 10.
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from Fig. 3.19 we deduce that a choice of s0 = r
2 produces a more regular

behaviour for the full NLO result. Nevertheless, we state once more that
this discussion cannot be final before convoluting the NLO impact factor
with the NLO gluon Green’s function and make an extensive study.

3.5 Conclusions and Outlook

We have finally presented results for the full NLO virtual photon impact fac-
tor. The last missing ingredient for the numerical implementation was the
integration over phase space for the virtual contributions. In our classifica-
tion according to Eq. 3.34, the virtual contributions are large and positive,
while the real contributions are also large and negative. The total correc-
tions together are sizeable and negative. Nevertheless there are parameters
that can change this overall picture. One of course is the value for s0 which
plays quite an important role for the shape of the corrections. Another,
is the choice of the scale that regulates the running of as. A recent NLO
analysis for the electroproduction of two light vector mesons [31] deals ex-
actly with points like that. The above do not change the fact though, that
we finally have the numerical integration of the analytic expressions for the
NLO photon impact factor. The next step, during which the issues that
we touched above will be totally cleared out, is when we will convolute the
NLO gluon Green’s function [32] with the NLO impact factor to produce
total cross section and to which we are looking forward to.
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Chapter 4

Non Linear Evolution in

High Energy QCD

One of the most tantalising problems of Quantum Chromodynamics is the
prediction of growth of the total cross sections at high energies, which
emerges as a natural conclusion when one uses BFKL dynamics. In the
following, we will review the BFKL equation, which in the first half of this
thesis described the amplitude for the interaction between the reggeized glu-
ons in the t channel, in a different setup, namely in the dipole picture. The
BFKL equation, being a linear evolution equation, accounts only for gluon
emissions, in describing the evolution in rapidity for the gluon density. The
growth of the gluon density, as predicted from the BFKL equation, gives
a strong power-like growth of the gluon density, which results in a similar
behaviour of the cross section

f(x) ∼ x−λ , (4.1)

where x is the Bjorken scaling variable and λ = 4 ln 2Nc
π αs is the Pomeron in-

tercept in leading logarithmic approximation. This fact leads to the violation
of the Froissart-Martin bound, which stems from the general assumptions of
the analyticity and unitarity of the S-matrix, and states that the hadronic
cross sections can have at high energies at most a logarithmic behaviour
in s. For a DIS process it will be σtot < R2 with R ∼ ln s. Power like
behaviour of the cross sections is thus in direct contradiction with the s
channel unitarity and a unitarization of the Pomeron amplitude is needed.
In the early 80’s, Gribov, Levin and Ryskin [17] and a bit later Mueller and
Qiu [33] pointed out that a possible cure for the restoration of the unitarity
was gluon fusion which at high energies should not be neglected. The main
idea was that if gluon splitting leads to a very high gluon density, or in other
words to a very dense medium, then this cannot go on without reaching a
point at which the density saturates and gluon recombination effects are into
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the game. That is exactly the notion behind perturbative parton saturation1.
In Ref. [17], a new non-linear evolution equation was suggested to describe
the phenomenon of saturation:

Q2 ∂
2xG(x,Q2)

∂ ln 1/x∂Q2
=

αsNc

π
xG(x,Q2) − 4α2

sNc

3CFR2

1

Q2
[xG(x,Q2)]2 . (4.2)

The nonlinear term accounting for gluon fusion comes with a negative sign
and dominates for large gluon densities xG(x,Q2) leading to a suppression
of the linear term.

Next steps towards a theory for modelling saturation at high energies
were an approach by Balitsky [18] who constructed an infinite hierarchy of
coupled equations for Wilson line operators and an equation by Kovchegov
[19] derived independently in the colour dipole approach [34]. The Kovchegov
equation is a nonlinear equation for the dipole scattering amplitude valid
in the leading log 1/x approximation. In the mean field approximation,
the first equation of the Balitsky hierarchy decouples, and is equivalent
to the Kovchegov equation. Therefore, we shall from now on referring to
them as the Balitsky-Kovchegov (BK) equation. Clearly, BK equation is
also an approximation. A complementary approach initiated the JIMWLK
equation, an evolution equation that describes the change of the correlation
functions of the colour charge density in the hadron wavefunction [35, 36].
An effective theory which describes high parton densities within hadronic
and nuclear wave functions at small x is the Color Glass Condensate [37].
The outline of this Chapter is the following: We firstly discuss the notion of
parton saturation and then, within the dipole picture, we show the transition
from linear to non-linear evolution. We present numerical solutions for the
BK and BFKL equations using the same initial condition and we finally
conclude by defining what saturation scale is.

4.1 The notion of parton saturation

The steep rise of the parton density in high energy limits, or in other words
at x → 0 as predicted by BFKL, must be tamed in order not to violate
unitarity. It is precisely the strong growth of the gluon density that even-
tually leads to a situation in which individual partons necessarily overlap
and, therefore, finite density effects need to be included in the evolution. It
is then that we say that partonic gluon density saturates. The schematic
picture of the saturation phenomenon is shown in Fig. 4.1. It depicts the

1It is generally believed, that the parton saturation mechanism leads to the unitariza-
tion of the cross section at high energies. Unfortunately, the problem is quite complex
since the parton saturation is purely perturbative mechanism, while the Froissart bound
has been derived from general principles and it refers to the QCD as to a complete theory
of strong interactions including the non-perturbative effects.
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r ~1/Q

Saturation line

ln (1/x)

(Y)

Figure 4.1: Schematic view of parton saturation. Above the Saturation line
is the saturation region.

evolution in energy of the same hadronic system that is probed by two pho-
tons with different virtualities. The system in the left hand side is probed
by a photon with larger virtuality that the one of the photon in the right
hand side. The vertical axis is the rapidity, Y, axis whereas the horizontal
one measures the size of the partons. The size of the partons is the inverse
of the photon momentum, r ∼ 1/Q, and thus, in the right column, the par-
tons have a ‘bigger size’ than the ones in the left column. As we increase
the energy, we ‘produce’ more and more partons (gluons). In both columns,
the average size of the new produced gluons is bounded to be of the same
order as the initial ones. We must remember that in BFKL dynamics there
is strong ordering in rapidities but the transverse momenta are all of the
same order. For both systems a point is reached where the limited size of
the hadron will soon impose an upper bound to the number of gluons that
can be accommodated. Then the system becomes saturated and recombina-
tion effects need to be taken into account. The difference between the two
systems in Fig. 4.1 is that the one to the right becomes sooner saturated be-
cause of the initially bigger size of the partons. The Saturation line signifies
that in the region above it we are in the saturation regime2. Therefore, if

2We will see later that this ‘naive’ at first sight image we get from Fig. 4.1 is very close
to the image we draw after a precise numerical analysis, see Fig. 4.17.
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one wants to account for gluon fusion, apart from production diagrams, one
has to include additional diagrams which take into account gluon recombi-
nation. These diagrams look like the right hand side graph in Fig. 4.2 and
they are called fan diagrams. In these, multiple BFKL ladders start from
different partons in the hadron (one should imagine it somewhere below the
graph) and due to high density of gluons they cannot stay independent so
they recombine, resulting in a damped gluon density seen by the projectile
(which one should imagine somewhere above the graph). Inclusion of this
kind of diagrams leads to evolution equations which are nonlinear like for
example Eq. 4.2.

GG

p

γ*

G G

G

Figure 4.2: Left: linear evolution. Right: fan diagrams.

4.2 From BFKL to the BK equation in the colour

dipole picture

4.2.1 Colour dipole picture of DIS

Colour dipole picture [34] is a different approach to DIS with an important
feature: It provides a physically intuitive picture of the process by describing
low x DIS in the proton rest frame. The virtual photon splits into a quark-
antiquark pair at large distances from the proton target. It is then the qq̄
pair that interacts with the proton after long time. The interaction time
is much shorter than the life time of the pair and the pair appears to be
frozen during the scattering. This happens because due to the uncertainty
principal, the formation time will be τfor ∼ 1/∆Efor and respectively the
interaction time will be: τint ∼ Rp where Rp is the radius of the proton.
∆Efor proves to behave like x( ∆Efor ∼ x) and since we are in the x → 0
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region, τfor is much larger than τint, in other words we can assume that
what we practically have is fixed-size qq̄ pair scattering off a nucleon. The

x*

p

*

σ(x)

Figure 4.3: The qq̄ pair appears to be frozen during the interaction with the
nucleon.

total cross section for γ⋆p scattering will then be:

σγ∗p =

∫
dx dαψ∗(x, α)σqq̄(x)ψ(x, α). (4.3)

ψ(x, α) is the photon wave function that describes the fluctuation of the
photon into a colour dipole, namely a qq̄ pair, in which the quark and
anti-quark carry light cone momenta fractions α and (1 − α) of the virtual
photon. x is the transverse dipole size and σqq̄ is the cross section describing
the interaction between the dipole and the proton (Fig 4.3). In the proton

* *

p

Figure 4.4: Gluon cascade development in the proton rest frame.

rest frame, one must imagine that the development of the gluon cascade
starts from the initial dipole (Fig. 4.4).



68 4. Non Linear Evolution in High Energy QCD

4.2.2 BFKL in the dipole picture

Let us consider the wave function in the momentum space of a heavy quark-
antiquark pair, onium, shown in Fig. 4.5,

ψ(0)(k1, z1) , (4.4)

where k1 is the transverse momentum of the quark and z1 = k1+

p+
is the

fraction of light cone momentum carried by the quark (1 − z for the anti-
quark). Let us also denote with k0 the momentum of the anti-quark. It

scattering
centre

x1

x0
b 01

x01

impact parameter

(transverse size)

(position)

z

1−z

1

1

γ*

Figure 4.5: Heavy quark-antiquark dipole onium.

will be convenient to work in the transverse coordinate space since as we
mentioned before the transverse size of the initial dipole remains frozen
during the time of the soft gluon emissions, so if we average colour, and
helicity indices we will have for the wave function:

ψ(0)(x0,x1, z1) =

∫
d2k1

(2π)2
eix01·k1ψ(0)(k1, z1) , (4.5)

whereas for the impact factor it is:

Φ(0)(x0,x1, z1) =
∑

|ψ(0)(x0,x1, z1)|2 , (4.6)

where x0, x1 denote the positions (coordinates in configuration space) of the
quark and antiquark respectively, which form the end points of the dipole
and the sum is to be understood over all colour and polarisation indices. The
transverse size will be b01 = b0 − b1 and the impact parameter (position)
of the dipole: b01 = b0+b1

2 . In the following we will assume that there will
be no impact parameter dependence of our evolution equations3. Suppose

3This implies that we are dealing with an homogeneous target, and dipoles with size
much smaller than the radius of the target.
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now that the quark (antiquark) of the onium, emits a soft gluon 2. “soft”
means that z2 ≪ z1, (1 − z1). Then one finds that the wave function of this

0

2

1

Figure 4.6: Onium with an additional single soft gluon.

new state qq̄g, Ψ(1), is in relation to the onium wave function without any
soft gluons Ψ(0):

|Ψ(1)|2 = 4CF
αs

π

x2
01

x2
20x

2
12

|Ψ(0)|2 (4.7)

and the relation between the corresponding impact factors, Φ(1) and Φ(0) is:

Φ(1)(x0,x1, z1) =
αsCF

π2

∫ z1

z0

dz2
z2

∫
d2x2

x2
01

x2
20x

2
12

Φ(0)(x0,x1, z1) . (4.8)

We obtain this last relation after computing the four diagrams in Fig. 4.7
If we go one step further and we consider a state with two soft gluons 2 and

Figure 4.7: The diagrams that give |ψ(1)|2.

3, with strong ordering in rapidities being still valid, z3 ≪ z2 ≪ z1, (1− z1),
one understands that the situation becomes much more complicated since
the possible configurations for the emissions are now not four but many
more.4 Nevertheless, we can simplify things if we go to the large-Nc limit.
In this case, gluons can be represented by qq̄ double lines, and the non-
planar diagrams are suppressed with respect to the planar ones (planar are
the ones with no intercepting quark lines) by powers of 1

Nc
. By calculating

4Gluon 3 can now be emitted from the quark or the anti-quark or the gluon 2 etc.
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1

0

2

Figure 4.8: The planar diagram equivalent to the diagram in Fig. 4.6.

only the contributions from the planar diagrams one gets:

|Ψ(2)|2 = 2Nc
αs

π
(

x2
21

x2
31x

2
32

+
x2

20

x2
30x

2
32

)|Ψ(1)|2 . (4.9)

It is evident that the emission of one additional gluon is equivalent to the
splitting of the original dipole (0, 1) into two dipoles (0, 2) and (2, 1) with
the probability of branching given by the measure

d2x2
x2

01

x2
20x

2
12

. (4.10)

The above quantity is the BFKL kernel in the dipole picture:

K = (
αsNc

π
)

x2
01

x2
20x

2
12

. (4.11)

If the process of emissions of subsequent soft dipoles is iterated, then by

x

x

x2

1

0
0

2

1z1

z2

1− z1

Figure 4.9: Onium wave function which consists of two dipoles.

investigating the relation between wave functions with n and n+ 1 dipoles,
Mueller derived [34] the following differential equation for the scattering
amplitude of the dipole off the target:
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x

x1

0
0

1z1

1− z1

Figure 4.10: Onium wave function with arbitrary number of dipoles.

dN(x01,Y)

dY
= ᾱs

∫
d2x2 x2

01

x2
20 x2

12

[
N(x20,Y) + N(x12,Y) − N(x01,Y)

]
, (4.12)

where the evolution variable is the rapidity Y = ln(1/z). It has to be stressed
that only the contribution from the single scattering of one dipole on the
target has been included in the derivation. Eq. 4.12 is the dipole version
of the BFKL equation in the transverse coordinate space as derived in Ref.
[34].

4.2.3 BK

One can generalise Eq. 4.12 by taking into account multiple scattering of
many dipoles on the target, as in the right graph in Fig. 4.11 where the
target now is a Nucleus. This leads to the BK equation:

dN(x01,Y)

dY
= ᾱs

∫

ρ

d2x2

2π

x2
01

x2
02x

2
12

×

[2N(x02,Y) −N(x01,Y) −N(x02,Y)N(x12,Y)] . (4.13)

It was shown [38] that Eq. 4.13 for the dipole density, appears as a special
case of the nonlinear evolution equation which sums the fan diagrams for
BFKL Green’s functions in the Möbius representation. As with the GLR
equation (Eq. 4.2), the nonlinear term N(x20,Y)N(x12,Y) damps the am-
plitude for large N . We will make hereafter the additional assumption that
the applicability of BK equation can be extended for the case when the target
is a single proton. One has to stress that this multiple scattering is a com-
pletely incoherent process, i.e. dipoles scatter independently of each other
and there are no target correlations. This is quite an important simplifica-
tion which results in a relatively simple and closed evolution equation. The
BK equation has the following probabilistic interpretation. When evolved
in rapidity, the parent dipole with ends located at x0 and x1 emits a gluon,
which corresponds in the large-Nc limit to two dipoles with ends (x0,x2)
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p

* *

A

* *

Figure 4.11: Left: single dipole scattering BFKL (linear) evolution (4.12).
Right: multiple dipole scattering which results in nonlinear Balitsky-
Kovchegov evolution equation (4.13).

and (x2,x1), respectively. The probability of such emission is given by the
BFKL kernel

αsNc

π

x2
01

x2
20x

2
12

. (4.14)

The variation with the rapidity is given by adding the probabilities for scater-
ring of the new dipoles, minus the scattering probability of the parent dipole,
minus the non-linear term to avoid double counting. The BK equation en-
sures unitarity |N(r,Y)| ≤ 1 since for N(r,Y) > 1, the derivative with re-
spect to Y in Eq. 4.13 becomes negative. We must emphasise here that we
are referring to the unitarity for the scattering probability at a given impact
parameter. However, BK itself, also violates S-matrix unitarity (Froissart
bound) for scattering of a small projectile of size x0 on a target of size R0 for
rapidities Y > 1

αsNc
ln R0

x0
[39]. This is because the maximal value of the im-

pact parameter that contributes to the scattering grows exponentially with
rapidity Y.

4.3 Saturation scale and geometrical scaling

It is now well worthy to present solutions (numerical) of the BFKL (Eq.
4.12) and BK (Eq. 4.13) equations which will help us draw some very
important comments. Since they both are integro-differential equations, one
must start with an initial condition which will be fed in both of the equations
and then the evolution with rapidity can be studied. The initial condition
will be a profile function N(r,Y0), giving the amplitude for the scattering
of an initial dipole off a proton at a given rapidity Y0, whereas r ∼ 1

Q
paremetrizes the initial dipole size. Solving the two equations (BFKL and
BK), will provide us with the profile functions NBFKL(r,Y) and NBK(r,Y),
which give the scattering amplitude for a dipole with a size r at a new
rapidity Y. Since N(r,Y) depends on Y and r, the solution will be a two
dimensional surface. We present here the numerical solutions for BFKL and
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Figure 4.12: The initial condition used to numerically solve BK and BFKL
equations. It is given by Eq. 5.17.

BK in Fig. 4.13 and Fig. 4.14 respectively, as a two dimensional function
N(ln r,Y), while in Fig. 4.12 one can see the initial condition which was
used as an input for both BFKL and BK equations. For each point (ln r,Y)
the height N of the two dimensional surface gives the amplitude for the
scattering when the initial dipole has size r and the rapidity in the process is
Y. Upon a first inspection of Figs. 4.13 and 4.14, some very obvious remarks
can be derived. Although we start with an initial condition that respects
unitarity, recall that N stands for amplitude or in other words probability,
for BFKL equation the solution violates unitarity (exceeds 1), whereas the
solution for the BK respects unitarity (bounded by 1). Moreover, for BFKL
the solution grows very fast with rapidity and it soon leads to exponential
behaviour with respect to Y. Contrary, for BK the solution is always below 1
along the whole rapidity range. The solution for larger rapidities is certainly
bigger for a given r but it is exactly the non-linear term that takes care of
keeping the solution bounded by 1. One cannot speak of correct or wrong
equation. The safe conclusion is that the applicability of the two equations
is different. In high but not extremely high energies, BK and BFKL are
having the same behaviour.
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ln r

Y

0

20

40
N

ln r

Figure 4.13: Solution of the BFKL equation. The initial condition used is
the same as in Fig. 4.14. This is not obvious at first sight, because of the
different ranges of the vertical axes, N , in the two figures.

The three dimensional plots are appropriate to gain an intuitive picture,
however, in order to be more specific we need to have a closer look at the
behaviour of the solutions with respect to r and Y separately. So, if we
now suppose that we cut the surfaces along the ln r-axis for a given Y (Fig.
4.16) and respectively along the Y-axis for a given r (Fig. 4.15) we can
plot together the solutions for BK and BFKL. From Fig. 4.16, it is evident
that the curve for the solution of the BK equation saturates to 1 for large
rapidities, whereas the curve for BFKL exhibits an exponential behaviour
with respect to Y.5 We will mainly focus on Fig. 4.16 because we will use it
for introducing quantitatively the notion of saturation. We can see that the
curve for BK has distinct behaviours for small, medium and large r. In the
small r region, it follows closely the linear solution, which suggests clearly
that the non-linear effects in that region are small. For large r, the curve
approaches smoothly the value 1 and we say that we are in the saturation
region. This is the region where the non-linear effects are dominant and
ensure the restoration of the unitarity. In the middle between small and
large r we are in a transition region from linear to non-linear behaviour. We
suppose that there is a scale (in momentum space) after or around which

5Remember that since f(x) ∼ x−λ where f(x) is the cross section calculated with the
BFKL equation, and Y = ln 1

x
then f(Y) ∼ eλY.
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Figure 4.14: Solution of the BK.

the saturation begins to make itself manifest. We call this scale saturation

scale, Qs, and we define it as the scale where our non-linear solution (BK),
is 1

2 , namely

Q = Qs ⇒ N(r =
2

Q2
) ≡ 1

2
. (4.15)

We use the two-dimensional version of the uncertainty principle:

momentum =
2

distance
. (4.16)

If we now go back to the three-dimensional plot in Fig. 4.16 and we cut
the surface with a horizontal plane at height 1

2 , then what remains above
the plane is what describes the saturation regime and what remains below
describes the region where the non-linear effects are not dominant. Whats
more, the projection of the line along which the cutting plane intercepts the
surface-solution to the (ln r,Y) plane divides the later into two areas and
each point of the projection gives the saturation scale as Qs = Qs(Y). In
Fig. 4.17 we present the contour plot for the solution from Fig. 4.16. The
black curve-limit between the light and dark grey surfaces, is exactly the
projection of the cutting line onto the (ln r,Y) plane (saturation line) and
the dark grey area is the projection of the solution above the saturation line.

We will close this Section with some comments on a property that the
solution for the BK equation exhibits in the saturation region6, namely the

6Actually this property has been shown to extend its validity even to the region below
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Figure 4.15: Solutions of the BFKL and BK equations at a given r0, N =
N(r0,Y)

geometric scaling [40, 41]. Geometric scaling means that the amplitude
N(r,Y) becomes only a function of a dimensionless variable τ = r Qs(Y)
which is a combination between the saturation scale and the length r:

N(r,Y) = N(r Qs(Y)). (4.17)

A very strong demonstration of this phenomenon was achieved by the au-
thors in Ref. [40]. where they plotted combined HERA data on the total
γ⋆p cross section as a function of τ and they have shown that the data fall
on the same curve, Fig. 4.18.

the saturation line.
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Figure 4.16: Solution of the BK equation at a given Y as a function of ln r.

ln r

Y

Figure 4.17: Contour plot at N = 1/2.
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Figure 4.18: Geometric scaling.



Chapter 5

Higher Order Effects in Non

Linear Evolution from a Veto

in Rapidities

5.1 Introduction

The high energy behaviour of a parton system can be associated to the
Balitsky–Fadin–Kuraev-Lipatov (BFKL) dynamics [1] as we have previously
argued. At leading order (LO) the BFKL equation resums contributions of
the form (αs Y)n, with Y ∼ ln s being a rapidity variable. Linear evolution
gives rise to a Pomeron–like behaviour of the scattering amplitudes with an
intercept ωBFKL ≃ 0.5. This power growth of the amplitude with energy
violates s-channel unitarity at rapidities of the order of Y ∼ 1/αs ln 1/αs

[42].

A theoretical possibility for the high energy growth of the amplitudes to
be modified in a way consistent with unitarity is the idea of parton density
saturation [17], which accounts for the possibility of parton annihilation,
an essentially nonlinear effect. Present theoretical understanding views a
system of saturated partons as a new state of matter called Colour Glass
Condensate (CGC) (see e.g. Ref. [43] and references therein).

The fundamental quantity characterising the transition to the saturation
regime, we have argued in the previous Chapter, is the so–called “saturation
scale”, Qs(Y). The determination of the rate of growth with rapidity of this
saturation scale could be of a large importance for, e.g., structure function
extrapolations from HERA to LHC kinematics. In the context of the well–
known saturation model of Golec-Biernat and Wusthoff (GBW) [12], the
saturation scale grows exponentially as Qs(Y) ∼ exp(λY/2) with λ ≃ 0.29.

Within the LO approximation BK equation is a theoretical tool with
solid grounds in perturbative QCD suitable to study saturation phenomena
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at high energies. The BK equation reads as we saw:

dN(x01,Y)

dY
= ᾱs

∫

ρ

d2x2

2π

x2
01

x2
02x

2
12

×

[2N(x02,Y) −N(x01,Y) −N(x02,Y)N(x12,Y)] . (5.1)

Here, the impact parameter dependence of the amplitude will be neglected,
considering, in this way, a target of infinite size. ρ is an ultraviolet cutoff
needed to regularise the integral which does not appear in physical quanti-
ties.

The BK equation has been studied both analytically [44, 45, 46, 47] and
numerically [48, 49, 50, 51, 52, 53, 54, 55, 56]. Phenomenologically the BK
equation provides a good description of DIS data from HERA [49, 57, 41, 58].
We remind, that the linear part of the BK equation is obtained in the leading
soft gluon emission approximation keeping the strong coupling fixed and that
the large Nc limit is used in order to write the nonlinear term as a product
of two functions N . This limit is at the basis of the colour dipole picture
and, to a large extent, it corresponds to a mean field theory without dipole
correlations. The equation also neglects target correlations

It is very interesting to go beyond the original BK equation and relax
some of the underlying assumptions outlined above. At present there is
a large activity in this direction. Regarding the contribution of the Nc

corrections they can be estimated to be up to 15% [53]. In this work we
would like to focus on the higher order αs corrections which are relevant, in
particular, for phenomenological applications.

In principle, unitarity corrections based on LO estimates are expected
to be important at rapidities of the order Y ∼ 1/αs ln 1/αs, parametrically
earlier than the next–to–leading (NLO) corrections which set in at Y ∼
1/α2

s . It is also known that the NLO corrections to the linear BFKL equation
significantly decrease the Pomeron intercept thus postponing the arrival of
unitarity corrections to higher rapidities.

A complete nonlinear equation at NLO has not been derived yet. In
the conventional approach based on s-channel unitarity, the forward BFKL
kernel is known at NLO [8, 9]. A nonlinear evolution needs the knowledge
of the non-forward kernel [59] together with the NLO impact factor [60, 61,
16]. However, a NLO study of the triple Pomeron vertex entering the BK
equation has not been initiated yet. So far, the only exact result which
has been reported is due to Balitsky and Belitsky [62] who have been able
to compute a single NLO contribution with maximal nonlinearity, the N3

term.
There have been some attempts to get insight about saturation at NLO

using approximate methods. Triantafyllopoulos [63] has considered the
renormalization group improved NLO BFKL equation with the presence
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of a saturation boundary. His results show a decrease in the saturation scale
growth as a function of rapidity towards the value λ ≃ 0.3 observed ex-
perimentally. A similar type of study based on the NLO BFKL has been
recently reported in Ref. [64].

In this work we propose a new approach for the study of saturation effects
including NLO corrections. We will introduce a constraint in the rapidity of
the emitted gluons in the BK equation, a so–called “rapidity veto” [22, 23]
which, for the linear part of the equation, is known to reproduce the bulk of
the NLO corrections. In the next Section we revise how to introduce a veto
in rapidity in the linear BFKL equation and apply this constraint to obtain
an estimate of the saturation scale as a function of the veto. In Section
5.3 we apply the method of rapidity veto to the BK equation and study its
influence on the energy growth of the saturation scale. In the last Section
of this Chapter we present our summary.

5.2 The rapidity veto in BFKL and the saturation

line

In the following the introduction of a rapidity veto as in Ref. [22, 23] will
be shown. To impose the constraint that subsequent gluon emissions are
separated by some minimum interval in rapidity, η, can be done writing the
LO BFKL equation as an integral equation in rapidity, i.e.

f(Y, γ) =

∫
dY′ θ(Y − Y′ − η) ᾱs χ(γ) f(Y′, γ), (5.2)

where γ corresponds to a Mellin transform in transverse momentum space
and χ(γ) = 2Ψ(1)−Ψ(γ)−Ψ(1− γ) is the eigenvalue of the LO kernel. To
go to the representation in the ω plane we use the transformation

fω(γ) =

∫
dY e−ωY f(Y, γ). (5.3)

The gluon Green’s function as a function of s and transverse momenta, if we
want to recover the notation of Chapter 2, can be obtained by the following
transformations:

f(s,k1,k2) =

∫
dω

2πi

dγ

2πi

(
s

s0

)ω (
k1

k2

)γ 1

ω − χ(γ, ᾱs)
, (5.4)

where χ(γ, ᾱs) is the generic BFKL kernel. By combining Eq. 5.2 and Eq.
5.3 we have

fω(γ) = ᾱs χ(γ)

∫
dY′ f(Y′, γ)

∫

Y′+η
dY e−ωY, (5.5)
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Figure 5.1: Dependence of the LO eigenvalue of the kernel on the veto upon
ν.

therefore the effect of imposing the veto on the LO BFKL equation leads to
an eigenvalue which is determined by the solution to

ω = ᾱsχ(γ) e−ηω . (5.6)

It is worth noting that the solution to this equation respects the structure
of a maximum at γ = 1

2 + i ν for ν ≃ 0 so that this region dominates at
high energies. This is highlighted in Fig. 5.1 where the maxima are shown
revealing how the original value of the Pomeron intercept decreases from
about 0.5 to about 0.3 for a value of the veto of two units of rapidity. This
is in agreement with other predictions from studies of the NLO gluon Green’s
function [10].

Now we calculate the influence of this veto in rapidity on the saturation
scale. In the case of forward scattering the amplitude for a dipole of size
1/Q on a dipole of size 1/Q0 can be written as

N (Q,Q0,Y) =

∫
dγ

∫
dωN0 (γ) exp (−γL+ ωY)

1

ω − ᾱsχ (γ)
, (5.7)

with L ≡ lnQ2/Q2
0. The veto in rapidity is easily introduced via a modified



5. Higher Order Effects in Non Linear Evolution from a Veto in

Rapidities 83

kernel as in Eq. 5.6:

N (Q,Q0,Y, η) =

∫
dγ

∫
dωN0 (γ) exp (−γL+ ωY)

1

ω − ᾱsχ (γ) e−η ω
.

(5.8)
The saturation line, Ls ≡ lnQ2

s(Y)/Q2
0 with Q2

s(Y = 0) ≡ Q2
0, can be defined

as that with a stationary exponent:

−γLs + ω(γ, η)Y = 0, (5.9)

where the introduction of the veto enforces

ω(γ, η) = ᾱsχ(γ) exp (−η ω(γ, η)). (5.10)

At high energies the dominant region is that in the intersection with the
saddle point γ̄

−Ls +
ω(γ, η)

dγ

∣∣∣∣
γ=γ̄

Y = 0. (5.11)

The solution to this system of equations provides an implicit equation for γ̄:

χ′(γ̄)

χ(γ̄)
γ̄ − 1 = ᾱs η χ(γ̄) exp

(
1 − χ′(γ̄)

χ(γ̄)
γ̄

)
. (5.12)

Consequently, when the rapidity veto is imposed it develops a dependence
on the ᾱsη product, γ̄ = γ̄ (ᾱsη), and the saturation line reads now

Ls = ᾱs
χ(γ̄)

γ̄
Y exp

(
1 − χ′(γ̄)

χ(γ̄)
γ̄

)
≡ λ(ᾱs, η)Y. (5.13)

For a value of αs = 0.2 in Fig. 5.2 we have plotted the dependence of γ̄ on
the rapidity veto η. The effect of the constraint in rapidity is to increase
the value of this critical γ̄ from the well known γ̄ ≃ 0.63 (a value which is
obtained for η → 0 and/or in the limit of ᾱs → 0) to about 0.69 for η ∼ 2.5.
This is in agreement with the recent results for this quantity of Ref. [64]
where a resummed NLL BFKL equation was under study.

The evolution in energy is determined by the dLs/dY = λ(ᾱs, η) deriva-
tive. This λ term is calculated in Fig. 5.3 where it can be seen how the
effect of the rapidity constraint is to delay the onset of the saturation line
by means of decreasing λ at larger values of the veto. For zero veto it cor-
responds to the usual value of this linear coefficient of λ ∼ 0.93, which can
be calculated from Eq. 5.12 setting η = 0, αs = 0.2 and then introducing
the result for γ̄ in Eq. 5.13 reading λ = ᾱsχ(γ̄)/γ̄. At a rapidity constraint
of η = 2.5 we obtain λ ≃ 0.45, in agreement with Ref. [64] and larger than
that calculated in Ref. [63].
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These results have been produced in the case of linear evolution impos-
ing a constraint which reproduces higher order corrections and estimating
the position of the saturation line. In the following Section we introduce
the veto in rapidities directly in the non–linear BK equation and study the
consequences of this constraint on the evolution for phenomenological ra-
pidities. We will see that the power growth of the saturation scale is slower,
even for zero veto, mainly due to pre-asymptotic effects. We will then show
how the effect of the veto in rapidity is very similar to that found in this
Section: the effective power decreases as the veto is larger.

5.3 The rapidity veto in the BK equation

5.3.1 The fixed coupling case

To proceed with the numerical analysis it is convenient to write the BK
equation for fixed coupling in the integral form

N(x01,Y) = N(x01,Y0) + ᾱs

∫ Y

Y0

dY′

∫

ρ

d2x2

2π

x2
01

x2
02 x2

12

×
[
2N(x02,Y

′) − N(x01,Y
′) − N(x02,Y

′)N(x12,Y
′)
]
, (5.14)

with the initial condition being defined at the rapidity Y0. As it was said
above the rapidity veto prevents two emissions from being emitted close to
each other in rapidity space. In this work we impose this veto in both the
linear and non–linear parts of the BK equation. In this way we maintain the
locality of the recombination process, corresponding to the quadratic term.
Hence, the new equation simply reads

N(x01,Y) = N(x01,Y0) + ᾱs

∫ Y−η

Y0+η
dY′

∫

ρ

d2x2

2π

x2
01

x2
02 x2

12

×
[
2N(x02,Y

′) − N(x01,Y
′) − N(x02,Y

′)N(x12,Y
′)
]
. (5.15)

In the numerical implementation we work with the differential form of
this equation with veto, i.e.,

dN(x01,Y)

dY
= ᾱs

∫

ρ

d2x2

2π

x2
01

x2
02 x2

12

×

[ 2N(x02,Y − η) − N(x01,Y − η) − N(x02,Y − η)N(x12,Y − η)] , (5.16)

which highlights the non–locality in rapidity after the constraint has been
imposed. Expanding Eq. 5.16 in η (we assume η ≪ Y) one can easily
verify that the corrections introduced via veto are proportional to α2

s and
thus of the NLO.
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In the context of the BK equation the imposition of the veto has the con-
sequence of a small fluctuation above N = 1 when the function approaches
the unitarity bound. These small fluctuations do not grow with rapidity.
Technically this small violation of unitarity has its origin in the fact that
the evolution is not stopped at N(Y) = 1 since the derivative is computed
at a retarded rapidity Y − η, see Eq. 5.16. This small instability is not sur-
prising since our approach is only an estimate of the NLO corrections. To
fully preserve unitarity possibly we would have to introduce a correlation
between coordinates and rapidity. Connecting with this point it is worth
noticing that a generalisation of the BK equation proposed in Ref. [65] and
amounting to having extra 1 − N(x01, Y ) factor in front of the evolution
kernel would respect unitarity even in the presence of a rapidity veto. In
order to study the behaviour of the saturation scale, our analysis will be
centred around the transition region N ≃ 0.5, which is a region not affected
by the above issue.

Eq. 5.16 will be solved numerically for x ≤ x0 = 0.01, which corresponds
to rapidities above Y0 ≃ 4.65. With this goal in mind we need to specify the
initial conditions to the non–linear equation which, in principle, should be
fitted to experimental data. Motivated by the phenomenological accuracy of
the results in Ref. [49], the same initial conditions as those in that reference
are used in the present work. These conditions were fitted to low xF2 data
for the BK equation with no veto and read

N(r,Y0) = 1 − exp
(
−αsCF r

2 xGCTEQ/(πR2)
)
. (5.17)

Here αs is taken to be LO running at the scale 4/r2, and xGCTEQ is the LO
CTEQ6 gluon distribution also computed at the scale 4/r2. The initial con-
dition in Eq. 5.17 is smoothly extrapolated to N = 1 at very large distances
using the method proposed in Ref. [41] and implemented in Ref. [49]. The
parameter R stands for the effective proton size, R2 = 3.1GeV−2, an output
of the fit performed in Ref. [49]. For the numerical implementation of the
veto it is necessary to generate the initial conditions in a band of width η
between Y0 and Y0 − η. The reason for this becomes clear if we think the
evolution in rapidity Y as a process in which N(r,Y) is the input for the
next step which will give us N(r,Y + δY). In the non zero veto case in
order to compute N(r,Y+δY) one would need to consider N(r,Y−η+δY).
Hence, since we start at Y0 we need a band of initial conditions that will
span the space between Y0 − η and Y0. As there is no evolution in energy
along that band we assume the initial conditions to be independent of Y
and equal to N(r,Y0) on the band.

In Fig. 5.4 the first result for the solution to the BK equation is shown.
There it can be seen how the amplitude N starts at zero for small transverse
distances r (colour transparency) to reach the saturation regime N ∼ 1 at
r about 4 GeV−1. This trend is general for all values of the rapidity veto
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but, as a new feature, we observe how the arrival of the saturation of the
amplitude is delayed as the veto increases. This first plot was done for a
rapidity of 10 and a fixed coupling of αs = 0.2. In Fig. 5.5 we highlight how
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Figure 5.4: Solution to BK equation for different values of the veto as a
function of r, for Y = 10 and αs = 0.2.

in a region of larger rapidity, Y = 14 saturation arises earlier in r for the set
of initial conditions we have chosen. In this case of larger centre–of–mass
energy the effect of the veto is more dramatic, considerably delaying the
onset of saturation.

The major effect of the rapidity constraint comes when studying how
the BK amplitude evolves with energy. As the intercept in the linear part
is significantly reduced when higher order corrections are taken into ac-
count the saturation of the amplitude comes also later in rapidities. To
illustrate this point we plot Fig. 5.6, where we have chosen a typical value
of r = 0.75 GeV−1. Once again our estimated NLO corrections do delay
the onset of saturation. To make this statement more quantitative we now
proceed to study the saturation scale and its dependence with energy. Dif-
ferent definitions of the saturation scale can be associated with the step like
function N [41]. They might lead to different normalisations although the



88

5. Higher Order Effects in Non Linear Evolution from a Veto in

Rapidities

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.4 0.6 0.8 1 1.2 1.4

r  [GeV-1]

N

η=0

αs = 0.2

η=0.6
η=1
η=1.4
η=2

Figure 5.5: Solution to BK equation for different values of the veto as a
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energy dependence is qualitatively unique. For the sake of simplicity here,
as in Chapter 4, we adopt the choice proposed in [52] where it was taken at
a point where N reaches half:
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Figure 5.6: Solution to BK equation for different values of the veto as a
function of the rapidity Y, for r = 0.75 GeV−1 and αs = 0.2.

N(rs,Y) =
1

2
, (5.18)

with rs ≡ 2/Qs. For phenomenological applications the behaviour of lnQ2
s

with rapidity Y can be fitted linearly as in Eq. 5.13, i.e.,

Q2
s = Q2

0 e
λ Y. (5.19)

The numerical analysis of the rapidity dependence of this saturation scale is
carried out in Fig. 5.7. This plot reflects very clearly how saturation tends
to appear later in rapidity, in particular, for the veto which reproduces the
NLO intercept, η ∼ 2. We have also performed a linear fit to estimate the
linear power of Eq. 5.13, λ, this fit was done for phenomenological rapidities
between Y = 10 and Y = 15 so the expected value of the growth cannot
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be as large as in Fig. 5.3 due to pre-asymptotic effects1. In fact, λ is much
smaller at the beginning of the evolution for rapidities up to Y ≃ 10. In
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Figure 5.7: Rapidity dependence of the saturation scale for fixed αs and
different vetoes.

Fig. 5.8 we observe the transition power being of the order of 0.65 already
at zero η. This value is smaller than the equivalent obtained in Sec. 5.2.
Remarkably, the dependence on the rapidity veto is of the same functional
form as in Fig. 5.3 with λ reaching ∼ 0.31 at a veto of η = 2.5.

The main conclusion of this Section is to confirm the delay in energy
space of the arrival of saturation when estimated higher order corrections are
introduced in the BK equation with fixed coupling constant. The numerical
results when we introduce the veto on the BK equation are consistent with
those obtained from a more analytical approach in Section 5.2 based on
the BFKL equation with a constraint in rapidity. In the following section
the effect of this veto will be studied for phenomenological rapidities and
running the QCD coupling.

1The preasymptotic effects in saturation scale have been studied in Refs. [66, 46, 47].
The numerical size of these terms is large at lower rapidities with the asymptotic values
only reached at very large rapidities of the order of Y ∼ 100 (see [56] for a similar
discussion).
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5.3.2 The running coupling case

The BK equation was originally derived for constant αs, the introduction
of the running is part of the NLO corrections. At present the use of the
running αs in the BK equation can only be done by modelling. In previous
analysis introducing running seems to be phenomenologically favoured by
the data [49]. This is because the effect of running αs is to bring λ down to
about 0.3 in the phenomenologically relevant region of x ≥ 10−7. The main
concern of this Section is to study the stability of this value of λ ∼ 0.3 when
the veto is imposed on top of the running.

Similar to the initial conditions, αs is taken at the leading order running
with respect to the external scale 4/r2. At large distances αs is frozen at the
value ≃ 0.5. We have checked that our results are not sensitive to variations
of this value.

Let us start with Fig. 5.9 where we again show the region of small r for
the amplitude as calculated from the BK equation introducing the rapidity
constraint, this time running the coupling. As previously found the effect of
the higher order corrections is to delay saturation. The rapidity chosen for
this plot is 14. It is worth pointing out that the effect of the veto is reduced
if we compare Fig. 5.9 to Fig. 5.5, we will go back to this point soon below.

What about the energy dependence of the saturation scale? The answer
to this question is plotted in Fig. 5.10 where the saturation scale is shown
as a function of rapidity. The usual delay of the onset of saturation can be
again observed although the effect of the estimated higher order corrections
is smaller than for the case of fixed coupling in Fig. 5.7. To make this more
explicit we calculate the dependence of the λ power in Eq. 5.13 as a function
of the rapidity veto η in the case of running coupling 2 (Fig. 5.8 ). The
main conclusion is that the effect of the veto is not so big in the running
coupling case, taking λ from ∼ 0.37 for η = 0 to about 0.27 for η = 2.5.
This variation is much smaller than for the fixed coupling case.

The calculations in this Section teach us that once the coupling is allowed
to run the influence of other higher order corrections is diminished. The
prediction for the growth of the saturation scale with energy remains of the
order of λ ∼ 0.3 for phenomenological energies independently of the rapidity
veto.

As a final remark, we have checked that the solutions to the BK equa-
tion for both fixed and running αs cases exhibit the geometrical scaling
property [40]. Namely, the amplitude N(r,Y) is a function of the product
τ = r Qs(Y), that is N(τ). Scaling holds in the saturation domain τ > 2

2It is known from analytic studies that, contrary to the fixed coupling case, for running
coupling ln Qs ∼

√
Y . However, again due to large pre-asymptotic corrections [56], ln Qs

can be fitted linearly in rapidity for a limited range in Y relevant for phenomenology.
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and extends to a much broader region τ << 2. For the BK equation with
η = 0 scaling was shown in Refs. [50, 41, 51]. We have found that the
scaling is still present after introducing a non-zero veto, suggesting the full
NLO amplitude to be also a scaling function.

5.4 Higher order corrections and A dependence

for heavy nuclei

In our previous analysis, we estimated higher order corrections to the Balitsky–
Kovchegov equation by introducing a rapidity veto which forbids subsequent
emissions to be very close in rapidity and is known to mimic higher order
corrections to the linear BFKL equation. Assuming that the functional
dependence of the saturation scale, Qs, on the rapidity, Y, is of the form

Qs(Y) ∼ eλY, (5.20)

our numerical analysis was based on solving the BK equation for the case
of the proton and for rapidities between 4.6 and 15. We want to extend
here the numerical analysis for the case of Nuclei and for the same range of
rapidities, seeking to estimate what will be impact on the A dependence of
the Qs after introducing higher order corrections.

We make the ansatz that the dependence of the saturation scale Qs on
A is of the form:

Qs,A(Y) = f(Y)Ap(Y), (5.21)

where f(Y) is a function of rapidity that incorporates the main rapidity
dependence of the saturation scale. We are interested to see what is the
dependence of p on η if any.

We solved the BK equation for the case of realistic nuclei, namely for
ANa = 22, ACa = 40,AZn = 65, AXe = 131, and AAu = 197. We also had
the solution of the BK equation for the case of proton (A = 1) from our
previous analysis. For each nucleus, we considered both cases of fixed and
running as for different values of Veto, η, namely for η = 0, 0.6, 1, 1.4, 2
and 2.6. The initial conditions used for the case of nuclei were given by

NA(r,Y0) = 1 − (1 −N(r,Y0))
A1/3

. (5.22)

where N(r,Y0) is defined in Eq. 5.17.
From Eq. 5.21 we obtain

lnQs,A(Y) = C(Y) + p(Y) lnA. (5.23)

Our ansatz that in f(Y) is embedded the major rapidity dependence, will be
justified if plotting lnQs versus lnA for a certain rapidity, yields a straight



96

5. Higher Order Effects in Non Linear Evolution from a Veto in

Rapidities

0 1 2 3 4 5
ln A

2.4

2.6

2.8

3

3.2

l
n

Q
_
s

Figure 5.11: lnQs vs lnA. The points are obtained after solving the BK
equation for the different Nuclei and subsequently calculating the saturation
scales. For this plot Y = 15 and η = 0. The curve is a linear fit to the points.

line. In Fig. 5.11, for Y = 15, η = 0 and fixed as we plot the points
(lnQs, lnA) along with a linear fit (straight line). The points that corre-
spond to the heavy Nuclei lie all on the straight line, which is a factual
justification for Eq. 5.21 The point at lnA = 0 is obviously for the proton.
The same picture holds over the whole range of our rapidities and it also
holds when we switch the running of as on. Based on these facts, we tried
to figure out how p = p(Y) changes when we consider the solutions with
veto different than zero. For the case of fixed running coupling constant as

there is not a clear picture as we need better numerical accuracy. There is a
tendency for p to aquire smaller values with increasing Y, a trend that also
survives after imposing a rapidity veto. However, for the case of running as

things are more clear. At Y = 14.5 the value, of p is decreased by almost
30% comparing it with the one at Y = 5. Veto appears to make this decrease
smaller. We consider these first results as very interesting. We present them
here as a first insight. A fully quantitative analysis is needed though, before
we are able to see clearly what conclusions we can safely draw. For that, we
are bounded to increase the numerical accuracy of our code.

5.5 Conclusions

In this work higher order corrections to the Balitsky–Kovchegov equation
have been estimated. This estimate has been based on the introduction of
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a so–called “rapidity veto”, which forbids two emissions to be very close in
rapidity. It is known from Ref. [22, 23] that the introduction of a veto, η,
of ∼ 2.5 units of rapidity mimics the Pomeron intercept predicted by other
resummations of the NLO BFKL equation. We have estimated these higher
order corrections first using analytical arguments imposing the rapidity veto
on the LO BFKL equation obtaining a power growth of the saturation scale
of λ ≃ 0.45, for αs = 0.2, consistent with that calculated in Ref. [64] and
larger than that obtained in Ref. [63], our main result being Eq. 5.12 , Eq.
5.13 and shown in Fig. 5.3.

We have then pursued a numerical analysis of the introduction of the
rapidity constraint in the full Balitsky–Kovchegov equation for phenomeno-
logical rapidities, without using asymptotic arguments. For a fixed coupling
constant of 0.2 we observe that the power λ decreases from ∼ 0.65 for zero
veto to ∼ 0.31 for η = 2.5, with a dependence on the veto very similar to
the previous analytical study, the main result plotted in Fig. 5.8. When
running coupling effects are also taken into account the effect of imposing
the veto is not so important taking λ at no veto from ∼ 0.37 to ∼ 0.27 for
η = 2.5 (Fig. 5.8).

As follows from the present analysis the running coupling effects ac-
count for the bulk of the NLO corrections to the BK equation (see Fig.
5.8). Given that, as shown in Ref. [56], the dipole amplitude is not sensitive
to the way the running is introduced, this suggests that phenomenological
analysis including running coupling effects, as in Ref. [49], do provide re-
liable predictions. The results of this Chapter have been published in Ref.
[67].
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Chapter 6

QCD Corrections to γγ → ZZ

6.1 γγ → ZZ : Introduction

So far in this thesis we were concerned with higher QCD corrections and
their impact in the Strong sector of the Standard Model. In this Chapter,
we will investigate whether, pQCD corrections are relevant at all for the
Electroweak sector.

The correct extension of the Standard Model (SM) and the determina-
tion of the electroweak symmetry breaking mechanism are one of the basic
questions which have to be answered in the nearest future. Experimentally,
we expect the first data and insights concerning these questions after the
run of the Large Hadron Collider (LHC). Complementary, high precision
measurements will come from the Next Linear Collider (NLC) e.g. TESLA,
operating in the energy regime up to 1 TeV and providing a very clean envi-
ronment. In addition one may have the capability of running the NLC in a
γγ collision mode via Compton backscattering of laser photons off the linear
collider electrons. Apart from the advantage of the higher luminosity, the
energy of the initial photons can be determined more accurately than the
energy of photons radiated in the e+e− collider mode. One of the important
processes one will consider at the NLC is the production of vector bosons
such as γγ → ZZ [68].

Concerning the search of physics beyond the Standard Model, the fact
that the first perturbative contribution starts at one loop makes the process
γγ → ZZ sensitive to a number of investigations. One is the search for
the existence of anomalous triple and quartic vector boson couplings [69] or
vector boson Higgs couplings [70]. The natural order of magnitude of these
couplings [71] is small, so one needs to know the SM cross sections with a
precision better than 1%. In order to get a detailed understanding of the spin
structure of anomalous couplings, it is important to investigate the different
helicity states of the outgoing Z bosons. Because of the absence of the tree
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level contribution, this process is sensitive also to particles and new physics
phenomena contributing through radiative corrections [72]. This leads to
a method independent of and complementary to the direct production of
new particles. Again, high precision of the Standard Model cross section is
needed. In addition, the detection of CP violating phases [73] or effects due
to the exchange of Kaluza-Klein gravitons in large extra dimension scenarios
[74] have been discussed.

Another motivation to study the process γγ → ZZ is its sensitivity to
the Higgs sector. At high energies the biggest contribution to the cross
section comes from the production of transverse polarised Z bosons in the
kinematical limit of small scattering angles (helicity conserving channel).
The dominant contribution to the scattering amplitudes is due to W loops
and grows proportional to the scattering energy s. Compared to these lead-
ing contributions, the diagrams containing the Higgs contribution are sup-
pressed by s2. In contrast to this, in the production of longitudinal Z bosons
the Higgs plays a crucial role. In this channel, both the Higgs contribution
and the W loop are constant in s (up to powers of logarithms). For large
Higgs masses the s-channel Higgs exchange in the scattering amplitude of
γγ → ZLZL violates partial-wave unitarity [76, 75] and makes this helicity
non-conserving case sensitive to the Higgs sector. Therefore we need to know
the SM cross section with a high precision in order to disentangle different
symmetry breaking scenarios.

In summary, the process γγ → ZZ is an important tool to probe physics
beyond the SM. In order to see deviations, high precision is needed, both
on the experimental and on the theoretical side. A calculation at the lowest
available order may not be accurate enough. Since the cross section gains
its biggest contribution from small scattering angles, it is natural to ask
whether QCD corrections could play a role in this kinematical regime. At
high energies the most dominant corrections arise when the vector bosons
fluctuate into quark-antiquark pairs, described by the boson impact factors,
and these dipoles interact through gluon exchanges. At higher orders in αs

large logarithms in s emerge, leading to QCD corrections rising with the
scattering energy. At very high energies these corrections will be large and
cannot be neglected.

In this Chapter we address the question whether in the energy region of
the NLC QCD corrections need to be taken into account. For this purpose
we compute the differential cross section both for the electroweak and the
QCD parts. For the helicity conserving channel the QCD corrections have
been studied recently [77]. Here, we extend our analysis to the helicity non-
conserving channel. The electroweak part was computed first in Ref. [68],
but for our purposes we had to repeat the full one loop calculation. For the
helicity conserving case it turns out that QCD corrections in the region of
about 1 TeV are at the percent level and grow moderately with energy. For
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Figure 6.1: The BFKL exchange in the γγ → ZZ elastic cross section. In
this Chapter we change notation for the gluon Green’s function, to be in
accordance with Ref. [78].

the helicity breaking channel the QCD corrections to the differential cross
section, at about 1 TeV, are of the same order, but they grow much faster
with increasing energy.

6.2 QCD Corrections

The differential cross section including the QCD corrections reads:

dσ

dp2
T

=
1

16πs2
|AEW +AQCD|2 , (6.1)

with pT being the exchanged transverse momenta, whereas the corrections
to the pure electroweak amplitude are dictated by the interference term.
The calculation was performed in the Feynman gauge.

The electroweak part of the amplitude was first computed in a full one
loop calculation by Jikia [68] for Higgs masses over 300 GeV. In order to
compute the above mentioned interference term, the results of [68] have
been reproduced, however we used in this letter an up to date value of
the top quark mass and a Higgs mass of mH = 115 GeV. We adopted the
definition of momenta and polarisation vectors from [79]. The Feynman
diagrams were generated with FeynArts [80] and the resulting amplitudes
were algebraically simplified using FormCalc [79]. To evaluate the one-loop
integrals the package LoopTools [79, 81] was used. At small scattering angles
the main contribution to the amplitude comes from the bosonic loop of the
helicity conserving channel. These amplitudes are mainly imaginary and
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proportional to s in this kinematical limit, in agreement with the calculation
of [77] where a high energy approximation was used. For the helicity-flip
channels no contributions proportional to s survive, thus these amplitudes
are suppressed by one power of s compared to the helicity conserving cases.
If one of the Z bosons has transverse and the other longitudinal polarisation,
the amplitude is vanishing at the forward point (pT = 0) due to angular
momentum conservation.

The QCD part of the amplitude was calculated recently in Ref. [77],
where the reader will find analytic expressions for AQCD. In the small angle
region these emerge when vector bosons fluctuate into a quark-antiquark pair
and these dipoles interact through gluons. At the lowest order, when two
gluons are exchanged in the t-channel, one obtains a contribution propor-
tional to the scattering energy for both, the helicity conserving and helicity
flip amplitudes. The radiation of more gluons enhances the cross section,
since this higher order corrections provide large logarithms in energy, which
are rising with the scattering energy. These contributions cannot be ne-
glected at large energies. One possibility to take this into consideration is a
resummation described by the LO BFKL equation [1] which gives an upper
bound estimate of these effects.

The Feynman diagrams for AQCD are illustrated in Fig. 6.1. Due to
the high-energy factorisation one may calculate first the boson non-forward
impact factors Φ associated to the external particles and integrate these with
the BFKL Green’s function G. The BFKL Green’s function is the result of
the resummation of leading logarithms in energy, coming from diagrams of
ladder topology, built with non-elementary reggeized gluons [1]. The boson
impact factor is the convolution of the two boson wave functions which
describes the probability that a boson fluctuates into a quark-antiquark pair
[82]. The calculation was done for the kinematical region of small scattering
angles in the high-energy approximation. Thus, one may neglect terms
suppressed by powers of t/s, which simplifies the calculation significantly.

One important property of the helicity flip impact factors need partic-
ular attention concerning our further calculations: these impact factors are
in general non-zero, they vanish only for forward scattering, where pT = 0.
This comes from a different symmetry behaviour of the transverse and lon-
gitudinal wave functions. Writing these in a coordinate space formulation
[82], the longitudinal wave function is symmetric under the transformation
of the dipole size vector r → −r, while the transverse one is antisymmetric.
Since the dipole interaction is also symmetric under this transformation,
the convolution of this with a transverse and longitudinal wave function is
antisymmetric, leading to the vanishing result for pT = 0. For non-zero pT ,
this symmetry properties are broken, resulting in non-vanishing helicity flip
impact factors. Real and imaginary parts of the helicity flip impact factors
are oscillating with pT but shifted in a way that the absolute value of the
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amplitude gives a smooth function (Fig. 9 of [77]). The helicity flip impact
factors are constant in energy, thus the corresponding amplitudes are pro-
portional to the scattering energy s [77, 82]. Because the electroweak parts
of the helicity flip amplitude are suppressed by one power of s compared
to the QCD ones, the QCD corrections will increase rapidly with energy,
leading to significant corrections in the TeV energy regime.

6.3 Numerical Analysis

The order of magnitude of the QCD corrections is determined in a numerical
analysis. Here we consider full circular polarisation of the incoming photons.
For the QCD part of the amplitude, due to the huge rapidity separation
of the bosons, it is only important if the helicity is conserved or broken
in each impact factor. As a result, the amplitude ++ → TT is equal to
the amplitude +− → TT as well as to the amplitude with unpolarised
photons. The mass of the Higgs boson was set to mH = 115 GeV unless
a different value is stated and the parameters αW = α/s2W , α = 1/128,
mZ = 91.2 GeV, mt = 174.3 GeV and αs(MZ) have been used throughout
the numerical computations. Since in the QCD expressions [77] the quark
masses are always accompanied by the Z mass, they can be neglected in the
numerical calculations apart from the top quark mass. The inclusion of the
top quark mass reduces the QCD amplitude by 25%.

At high energies in the small angle limit one expects enhancements due
to the appearance of large logarithms, these have been resummed in the
BFKL scheme. The BFKL resummation was evaluated in the saddle point
approximation [77]. The resummed leading logarithmic (LL) QCD correc-
tions, as we previously argued, hold an uncertainty resulting from the scale
which is not fixed at this order of the calculations. The scale was set to
s0 = M2

Z in the numerical evaluations. We stress that the resummed LL
QCD corrections at the lower energies we consider, are overshooting what
is expected from the true contribution, nevertheless they provide a first es-
timate of these corrections.

In Fig. 6.2(a-d) QCD corrections to the differential cross sections relative
to the pure electorweak contributions are plotted. These relative corrections
are defined as:

∆ =

(
dσQCD+EW

dp2
T

− dσEW

dp2
T

)/
dσEW

dp2
T

(6.2)

and are presented as functions of p2
T /M

2
Z for centre of mass energies of 1

TeV and 3 TeV. At these energies p2
T /M

2
Z = 4 corresponds to values of cos θ
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Figure 6.2: QCD corrections to the differential cross section relative to the
pure EW contribution for different Z polarisations and centre of mass ener-
gies

√
s. The relative correction is defined as ∆ = (

dσQCD+EW

dp2
T

− dσEW

dp2
T

)/dσEW

dp2
T

.

(where θ is the scattering angle) of 0.90 and 0.99 respectively. Thus, for
rising energy the scattering angle will be continously smaller for the same
pT values. For a TESLA detector it was proposed that the tracker system
will reach values cos θ < 0.993, in this range one has a good measurement
possibility [83]. Moreover, the decay products of the Z bosons will carry
also transverse momenta, thus these particles can have bigger angles from
the beam pipe.

Fig. 6.2(a) shows QCD corrections for transverse polarised Z bosons.
The electroweak amplitude is mainly imaginary, in agreement with the re-
sult of [77] calculated in the high-energy approximation. Therefore, from
the QCD amplitude it will be also the imaginary part which mainly ac-
counts for the interference term. The relative corrections are of the order
of percent level in the helicity conserving channel. For higher pT they are
approximately one percent and they are rising up to a few percent while
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approaching the forward region, since the QCD amplitude gets more en-
hanced compared to the electroweak one. This is due to the fact that in the
transition to forward physics the perturbative QCD analysis is increasingly
affected by the long distance interactions, since the gluons are massless. The
slight rise of the corrections from 1 to 3 TeV is due to the LL BFKL resum-
mation and is dictated by the Pomeron intercept. Almost at the forward
region the imaginary part of the QCD amplitude changes sign and becomes
negative which is also visible in the relative corrections.

Next we discuss the helicity breaking cross sections. As discussed in the
previous Section, the most important property of the helicity flip amplitudes
is, that the electroweak parts are not anymore proportional to s as the
helicity conserving parts were, so they are suppressed by one power of s
compared to the QCD part of the amplitude. As a consequence the QCD
corrections in comparison to the electroweak part will increase rapidly with
the scattering energy, they vanish only for pT = 0. This appear in Fig. 6.2(c)
where the relative QCD corrections are plotted for longitudinally polarised
Z bosons. The corrections are first rising when pT is becoming smaller but
they vanish for pT = 0. For 1 TeV the corrections are less than 1%, but for 3
TeV they are rising up to 8%. This strong rise is dominating by the different
s dependence between the electroweak and QCD amplitude. The additional
rise coming from the BFKL resummation is negligible compared to this
effect. While the electroweak part of the amplitude was mainly imaginary
in the helicity conserving cases, here real and imaginary parts are of the same
order. The oscillations visible in the plot are coming entirely from the QCD
part of the amplitude, described in the previous Section. For higher Higgs
masses the real part of the electroweak amplitude gets an enhancement from
the Higgs pole contribution, thus the form of the corrections is changing.
This is illustrated in Fig. 6.2(d) where the calculation was done for a Higgs
mass of mH = 800 GeV.

In Fig. 6.2(b) relative corrections are plotted where one of the Z bosons
is transverse and the other longitudinally polarised. The most striking prop-
erty of these corrections is their magnitude, they can be as high as 100%
already at s = 3 TeV. This is due to the fact that here the EW part of the
amplitude is smaller but the QCD part is bigger in comparison with the
case where both Z bosons are longitudinally polarised. The enhancement
of the QCD part is coming from the helicity conserving impact factor Φ,
which is separated by a huge rapidity gap from the suppressed helicity flip
impact factor. On the other hand, the QCD part is vanishing for pT = 0
since the helicity flip impact factor does. Because of the dominance of the
helicity conserving impact factor, the oscillations coming from the helicity
flip impact factor are not visible any more. We observe here again correc-
tions which are rising if pT gets smaller. Both, electroweak and QCD parts
of the amplitude have to vanish for the case of forward scattering due to
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angular momentum conservation. Since the QCD part has its turning point
for bigger pT , approaching the forward point the corrections are decreasing.
We did not plotted corrections up to pT = 0 since Eq.(6.2) lacks of definition
at the forward point. Again, here the corrections are rising strongly with s,
since the electroweak amplitude is suppressed by one power of s compared
to the QCD one. The relative corrections are approximately one order of
magnitude bigger if s grows from 1 to 3 TeV. The rise resulting from the
BFKL resummation is again negligible in this context.

Next we display corrections to the integrated cross section. The high
energy approximation on which the QCD calculation is based, is for a kine-
matical range where s ≫ −t. Thus, for the corrections to the integrated
cross section we integrated only up to p2

T = 4M2
Z , since for high pT the

QCD calculation is loosing its validity. The solid line in Fig. 6.3 displays
these corrections for the helicity conserving case. In this integration range
the corrections are around one percent and they have a slight rise due to
the BFKL resummation, since (up to powers of logarithms) electroweak and
QCD amplitudes have the same behaviour in s. The dashed line is for cor-
rections with two longitudinal Z bosons in the final state. In this helicity
breaking part the electroweak amplitude is suppressed by one power of s
in comparison to the QCD amplitude, so the corrections are rising rapidly
with the scattering energy. The smallness of the corrections in the inte-
grated cross section is due to the fact that the corrections to the differential
cross section, Fig. 6.2(c), are changing sign with pT varying, presenting an
oscillating behaviour.

In Fig. 6.4 again corrections to the helicity flip cross section are plotted,
but here one of the Z bosons is transverse polarised. Due to the different s
behaviour of the amplitudes again a strong rise of the corrections with s is
present. These are very big, for higher energies the QCD part of the am-
plitude completely dominates this part of the cross section. The magnitude
of these corrections is mainly due to the helicity conserving impact factor
Φ of the QCD amplitude. The integration was done down to p2

T = 1/2M2
Z ,

because the relative corrections lose they meaning for pT = 0, since both
amplitudes are vanishing at the forward point.

6.4 Summary

In summary, we have computed QCD corrections for γγ → ZZ at high
centre of mass energies in the kinematical region of small scattering angles.
We have considered the exchange of BFKL gluon ladders which couple to
the incoming photons via γ → Z impact factors. The electroweak part was
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computed in a full one loop calculation, and a complete analysis involving
all helicity channels has been done.

In the helicity conserving channel the corrections are at the order of
a few percent for s = O(1 TeV) and they show a moderate rise with the
scattering energy. In the helicity flip channels the QCD corrections are at the
same level for s = O(1 TeV). However, since in this channel the electroweak
amplitudes are suppressed by one power of s compared to the QCD ones,
the corrections rise much stronger with the scattering energy. Already for
s = O(3 TeV) the QCD corrections are significant.

Concerning the QCD corrections we stress, that the LL BFKL contribu-
tion contains a noticeable scale dependence. For a more precise analysis one
has to use the next-to-leading BFKL Green’s function and next-to-leading
impact factors. One has also to look in the full SM two loop contribution,
in order to achieve precision at the percent level.

On the experimental side the separation of longitudinal and transverse
final state Z bosons clearly presents a demanding challenge. Only a sta-
tistical analysis of the angular distribution of the decay products of the Z
bosons allows to discriminate between the different polarisations. However,
as discussed in the beginning of this letter, a careful measurement of the
process γγ → ZZ with all its different helicity configurations is important
and should be pursued. The results of our study indicate that in the anal-
ysis of the measurements QCD corrections cannot be neglected and were
published in Ref. [78].
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Chapter 7

Summary and future work

In this thesis we studied the role of higher order QCD corrections in the
Regge limit and in the small x limit. The subject was discussed in the
context of three different issues. The main one was the total cross section
for γ∗γ∗ scattering that is driven by the BFKL dynamics. The key role
in this thesis was reserved for the object we name impact factor in high
energy physics, seen from different perspectives, in BFKL formalism as a
perturbatively defined object, in the colour dipole picture as the evolving
colour dipole.

The calculation of the photon impact factor and the study of its prop-
erties is a major project, ongoing for the last six years now. It is necessary
mainly for testing the BFKL Pomeron, but also for investigating important
questions like whether we can speak for higher order Fock components of the
photon wave function that would emerge naturally from the pQCD calcula-
tion, or what is the collinear limit of our calculation and what comparisons
we can perform between the k⊥ factorisation scheme and the collinear fac-
torisation. For testing the BFKL Pomeron, the numerical implementation of
the impact factor is necessary. The last step to this direction was the phase
space integration of the NLO virtual corrections, a step that we completed
and presented in this thesis. We have found that the total NLO corrections
are sizeable and negative. We cannot underestimate the mere fact that now
we are ready for the next step, namely to convolute the NLO gluon Green’s
function with the NLO impact factor, and be able to study photonic total
cross sections. Important questions like what is the optimal scale for the run-
ning of the coupling as well as what is the total significance of the collinear
resummation program of the NLO BFKL kernel, can be investigated within
that project.

In the second half of this thesis, higher order corrections to the Balitsky–
Kovchegov equation have been estimated. The dominant notion is the par-
ton saturation and the saturation scale. A main question was whether sat-
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uration delays in rapidity when higher order correction terms are taken into
account. To estimate that, our analysis was based on the introduction of
a so–called “rapidity veto”, which forbids two emissions to be very close
in rapidity and which mimics the Pomeron intercept predicted by other re-
summations of the NLO BFKL equation. From analytic investigation and
a full numerical analysis of the introduction of the rapidity constraint in
the full Balitsky–Kovchegov equation, we studied the implications for phe-
nomenological rapidities, without using asymptotic arguments. Finally we
were able to state that saturation does delay in rapidity, the last seen as
the dynamical variable, but the effect is much weaker in the case of running
coupling constant. It follows from the present analysis, that the running
coupling effects account for the bulk of the NLO corrections to the BK. The
fact that the dipole amplitude is insensitive to the way the running is intro-
duced, suggests that phenomenological analysis including running coupling
effects do provide reliable predictions.

The last part of the thesis was reserved for a transition from the Strong
to the Electroweak sector of the Standard Model. We computed QCD cor-
rections to the process γγ → ZZ at high centre of mass energies in the
kinematical region of small scattering angles. For this process, we consid-
ered the γ → Z impact factor at LO. The electroweak part was computed
in a full one loop calculation. A complete analysis, involving all helicity
channels, was done. From our findings, we have concluded that in the helic-
ity conserving channel the corrections are of the order of a few percent for
s = O(1 TeV) and they show a moderate rise with the scattering energy.
In the helicity flip channels the QCD corrections are at the same level for
s = O(1 TeV). The corrections become significant at CLIC energies. For a
more precise analysis one has to use the NLO BFKL Green’s function and
NLO impact factors. However, our work here was only a first attempt to see
whether leading logarithm BFKL can supply significant corrections in the
small x limit for EW processes. The results of our study indicate, that in the
analysis of the measurements of future colliders, QCD corrections cannot be
neglected.

We conclude this thesis by realizing that there are still many challenging
questions searching for answers. For some of these questions we have shown
that the photon impact factor and the precise estimation of the saturation
line on the kinematical plane are of great importance. However, by pro-
ceeding just a bit further, we reach puzzles like the understanding of the
BFKL Pomeron, its connection with the soft Pomeron or even the way that
saturation effects touch the very same problem of confinement. Puzzles that
are the occupants of the top positions of the ‘challenging projects’ list’ of
High Energy Scattering Physics.
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Garćıa and S. F. Novaes, Nucl. Phys. B411 (1994) 381; O. J. P. Éobli,
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