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Abstract

We study the role of Quantum Mechanics in the physics of Free Electron Lasers.

While the Free Electron Laser (FEL) is usually treated as a classical device, we

review the advantages of a quantum formulation of the FEL. We then show the

existence of a regime of operation of the FEL that can only be described using

Quantum Mechanics: if the dimensionless quantum parameter ρ̄ is smaller than 1,

then in the 1-dimensional approximation the Hamiltonian that describes the FEL

becomes equivalent to the Hamiltonian of a two-level system coupled to a radiation

field. We give analytical and numerical solutions for the photon statistics of a

Free Electron Laser operating in the quantum regime under various approximations.

Since in the quantum regime the momentum of the electrons is discrete, we give

a description of the electrons in phase space by introducing the Discrete Wigner

Function.

We then drop the assumption of a mono-energetic electron beam and describe the

general case of a initial electron energy spread G(γ). Numerical analysis shows that

the FEL quantum regime is observed only when the width of the initial momentum

distribution is smaller than the momentum of the emitted photons. Both the ana-

lytical results in the linear approximation and the numerical simulations show that

only the electrons close to a certain resonant energy start to emit photons. This

generates the so-called Hole-burning effect in the electrons energy distribution, as it

can be seen in the simulations we provide.

Finally, we present a brief discussion about a fundamental uncertainty relation that

ties the electron energy spread and the electron bunching.





Zusammenfassung

In dieser Arbeit untersuchen wir Quantenaspekte des FEL. Normalerweise wird der

FEL klassisch (im Rahmen der Vlasov-Maxwell Theorie) beschrieben. Es gibt aber

ein Regime - definiert durch den Quantenparameter ρ̄ � 1 - wo Quanteneffekte

wichtig werden. Im eindimensionalen Fall wird gezeigt, wie sich in diesem Fall

der FEL durch ein Zwei-Niveau-System, das an das Strahlungfeld gekoppelt ist,

beschreiben lässt. Numerische und analytische Lösungen für die Photon-Statistik

werden präsentiert und diskutiert. Für die Beschreibung der Elektronen benutzen

wir wegen der gequantelten Energie der Teilchen die diskrete Wigner-Funktion.

Im zweiten Teil der Arbeit wird die Annahme eines mono-energetischen Elektro-

nenstrahls fallen gelassen, und wir beschreiben den allgemeineren Fall einer En-

ergieverteilung G(γ). Verschiedene Effekte u.a. ”Hole-Burning” werden beschrieben

und diskutiert. Die numerische Behandlung zeigt, dass das FEL Quantenregime

nur beobachtet wird, wenn die Breite der anfänglichen Elektronen-Impulsverteilung

kleiner ist als der Impuls der emittierten Photonen.

Abschliessend diskutieren wir fundamentale Quanten-Begenzungen für die En-

ergiebreite und das ”Bunching” der Elektronen.
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Introduction

The Free Electron Laser (FEL) is “a source of powerful and tunable coherent radi-

ation, potentially able to cover those regions of the electromagnetic spectrum which

are not accessible to conventional lasers” [1]. This description explains the great

interest in the scientific community that surrounds the Free Electron Laser, a co-

herent light source that is theoretically tunable in a continuous way to any possible

wavelength. These special properties of the FEL come from its basic design: a

relativistic electron beam is injected in the periodic magnetic field of an undulator

magnet, that is a series of magnets of alternating polarities usually called wiggler.

As a consequence of the Lorentz force, the electrons undulate transversally and thus

start to radiate in the longitudinal direction, generally in a incoherent way due to

their different position and velocity. The coupling between this spontaneous radia-

tion and the undulating motion of the electrons generates a ponderomotive potential

traveling along the wiggler. If its phase velocity is close enough to the velocity of

the electron beam, then a resonant process takes place that leads to the formation

of bunches in the electron beam. The electrons in the same bunch will then radiate

coherently. Since the wavelength of the emitted radiation will depend on various

variables such as the electron energy, the wiggler magnetic field and its period, this

shows how it is possible to tune the FEL in a continuous way by changing these

parameters.

Even if the first proposal of an FEL device [2] was written starting from from

quantum mechanics, the Free Electron Laser is considered by most as a completely

classical device and there are extensive works describing the FEL in the framework

of classical physics [3, 4]. Still, there have been many approaches to a quantum

6
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mechanical description of the FEL [5, 6, 7, 8]. This is partly due to the fact that

some of its properties can only be completely explained in a quantum framework,

like full spontaneous emission. Another reason is that some topics of interest in Free

Electron Laser physics are intrinsically quantum in nature, like photon statistics.

Following that line, my original aim was to study those properties of the FEL

that require a quantum mechanical treatment and to show how quantum mechanics

has a place in the analysis of the FEL. In addition to an outline of how quantum

physics allows to obtain certain results that cannot be described with a purely

classical analysis, the main and most important part of this thesis is dedicated to

the description and analysis of a Quantum Regime of the FEL. In this regime, the

FEL has a very different physical behaviour that can only be explained and described

using quantum mechanics. This particular property of the FEL was found by R.

Bonifacio and his research group of the University of Milano while I was beginning

to work on my thesis. The collaboration with this group allowed me to further

delve into this topic. Thus what distinguishes this work from most past quantum

approaches is that not only quantum mechanics is used to describe the FEL, but

completely new physics in the context of the Free Electron Laser are explored.

In the first chapter of this thesis I introduce the basic physics of the FEL, its

key parameters and its main known properties. In particular the FEL universal

dimensionless scaling, that will be adopted all through this thesis, is introduced:

in this scaling all the FEL variables are dimensionless quantities, to ease notation

and calculations. A brief summary of its principal regimes of operation is discussed

there, together with a review of what makes the FEL interesting compared to atomic

lasers.

In the second chapter I give a short review of some past descriptions of the

FEL, that were done using quantum physics and that can be found in literature.

These works show the importance of quantum physics in the analysis of the FEL.

In particular I describe the Hamiltonian approach that is the starting point of my

work in the following chapters: the FEL quantum Hamiltonian is derived under some

assumptions from the classical Hamiltonian that describes the interaction between

relativistic electrons and an electro-magnetic field, by going to the electron rest

frame and quantizing the electromagnetic field.

The introductory part of the third chapter is dedicated to how the quantum

regime of the FEL was found: from the FEL quantum Hamiltonian a model is de-

rived where the electron degrees of freedom are described by a Wigner function, a

quasi-probability distribution function usually used to describe semi-classical sys-
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tems in phase space. Numerical analysis of the evolution equation of the Wigner

function shows that the FEL electrons behave, within a certain range of its physical

parameters, as a two-level system coupled to a radiation field. Specifically, it is

possible to define a Quantum FEL Parameter ρ̄ whose value specifies if the Free

Electron Laser is in its classical regime (ρ̄ � 1) or in its quantum regime (ρ̄ � 1).

Since this particular behaviour first appeared only through numerical simulations,

I show in this chapter, as my own contribution, how the FEL evolution equations

reduce to those of a two-level system when ρ̄ � 1.

In the second part of the third chapter, I review the dynamics and properties

of a two-level system coupled to radiation. The solutions of the FEL equations in

this regime are discussed, under different approximations. Then, I show a numer-

ical simulation of the two-level system, obtained by diagonalizing the Hamiltonian

after having rewritten it in matrix form: this method [9] of numerical analysis is a

mathematical tool that, up to my knowledge, was never used before in this context.

The last part of this chapter introduces another mathematical tool, the discrete

Wigner function [10]. In the quantum regime the momentum of the FEL electrons

becomes a discrete variable, and thus the normal Wigner function, set in the classical

phase space of continuous variables, is not well suited to describe the FEL; the less

known discrete Wigner function has to be used for systems with discrete momentum.

In the fourth and last chapter of my thesis I discuss a more realistic model of the

FEL, introducing the complication of a generic energy distribution for the electrons

of the FEL. I describe how an energy distribution can be implemented in the models

used in the previous chapters and how to solve the resulting systems of equations.

In addition to that, it is shown how an important FEL parameter, that measures

the bunching of the electrons in the beam, is connected to the energy spread of the

electrons by an inequality relation that is derived by the Heisenberg uncertainty

principle.



Chapter 1

Classical FEL Description

1.1 Introduction to FEL physics

The FEL is a device that uses a relativistic beam of electrons passing through a

transverse periodic magnetic field to produce and amplify electromagnetic radiation

[3, 4, 2]. The periodic magnetic field is provided by the wiggler, an insertion device

usually realized as two arrays of permanent magnets with alternating polarities, or

as two helical coils with current circulating in opposite directions. The wavelength

of the emitted radiation depends on the period of the wiggler, the strength of its

magnetic field and the electron energy. This means that the FEL can be continuously

tuned in frequency, ranging from microwaves to X-rays: this tunability is one of the

main advantages of FELs over atomic lasers, where the wavelength is defined by the

difference between the energy levels of its active medium. Another advantage of the

FEL over the atomic lasers is that all its main processes happen in vacuum: in this

way there are no thermal dispersion effects caused by an active medium and very

high power levels and very short wavelengths can be obtained.

The FEL radiation can be characterized in two ways: basic spontaneous emission

from the direct interaction of the electron beam with the wiggler magnetic field,

and stimulated emission which happens when a radiation field copropagates with

the electron beam under certain conditions. We will introduce the basic physics of

these two processes using a one-dimensional model, as both can be fully understood

and explored even without taking into account three-dimensional effects, like the

electron emittance, the focusing induced by the wiggler or the transverse structure

of the electron beam.

9



1.1 Introduction to FEL physics 10

1.1.1 FEL Spontaneous Emission

The FEL radiation is synchrotron radiation, i.e. the radiation emitted by an electric

charge moving at relativistic speed when a transverse force is applied to it. This

radiation is much more intense, bigger by a factor γ2 (where γ is the electron energy

in rest mass units), than the one emitted when the electrons are accelerated along

the longitudinal axis.

In the FEL this transverse force is the Lorentz force

�F =
e

c
�v × �Bw = e �β × �Bw

generated by the wiggler magnetic field �Bw on electrons, which are traveling at speed

�v along the wiggler. Since the magnets of the wiggler have a periodic alternating

polarity, the electrons will wiggle, i.e. oscillate transversally (see picture) along the

same longitudinal trajectory. We identify the z-axis with this axis of oscillation.

Due to this configuration the emitted radiation will be confined in a narrow cone

along the z-axis, of angle of order ∼ 1/γ
√

Nw, where Nw is the number of wiggler

periods (i.e. the number of magnets) [1].

Figure 1.1: FEL Scheme

The intensity of the spontaneous emission is proportional to the electron current



1.1 Introduction to FEL physics 11

and its on-axis spectral distribution has the following shape1 [1]:

d2I

dΩ dω
∝ sinc2

(
πNw

ω − ωs

ωs

)
(1.1)

This shows that the spontaneous emission linewidth can be reduced simply by in-

creasing the number of wiggler periods Nw, as

Δω

ω
� 1

Nw
(1.2)

It also means that there is a ‘spontaneous’ frequency ωs = 2πc/λs where the

spectrum is peaked. The wavelength λs must be equal to the slippage that develops

between the radiation and the electrons while the electrons advance by one wiggler

period λw. At this particular wavelength, the radiation emitted by the electrons

at each wiggler period is in phase with that emitted at every other period, giving

positive interference and thus the maximum peak of the radiation. This requires

that the phase θ = (ks + kw)z − ωst is constant along the wiggler, i.e.

0 =
dθ

dz
= kw − ks

(
1

β‖
− 1

)
(1.3)

which gives

λs =
1 − β‖

β‖
λw � λw

2γ2
‖

(1.4)

Another widely used formula for the FEL wavelength is found solving the first

Lorentz-Newton equation, which describes the momentum of a relativistic charged

particle moving inside an electromagnetic field characterized by the vector potential
�Aw:

mc
d(γ�β)

dt
= e

(
�Ew + �β × �Bw

)
(1.5)

where

�Ew = −1

c

∂�Aw

∂t
(1.6)

�Bw = �∇× �Aw (1.7)

From equation (1.5) we can get an expression for the electron transverse velocity

(under the approximation that β⊥(0) = 0),

�β⊥ = −�aw

γ
(1.8)

1We use the compact notation sinc(x) ≡ sin x
x .



1.1 Introduction to FEL physics 12

where the dimensionless wiggler field

�aw ≡ e

mc2
�Aw =

aw√
2

(
ê e−ikwz + c.c.

)
(1.9)

has been introduced. Here aw is the important wiggler (or undulator) parameter

aw =
eλwBw

2πmc2
� 0.93 · Bw[T ] · λw[cm] (1.10)

From (1.4) and (1.8) it is possible to get

λs � λw
1 + a2

w

γ2
(1.11)

This result shows the high tunability of the FEL: the radiation peak wavelength

can be changed by varying different parameters, either the electron energy γ, the

wiggler magnetic field Bw or its period λw.

1.1.2 FEL Stimulated Emission

Stimulated emission takes place when a radiation field co-propagating with the elec-

tron beam is inserted in the wiggler. This field must have a wavelength close to the

resonance, as from Eq. (1.11):

λs � λw
1 + a2

w

γ2
(1.12)

Equivalently, given the wavelength λ of the radiation field, the particular electron

energy resonating with it can be defined as

γr =

√
(1 + a2

w)

2

λw

λ
(1.13)

This is important because, as already said about the peak wavelength of the stim-

ulated emission, when the electron energy and the radiation wavelength follow the

relation (1.13), the relative phase θ between the transverse oscillations of the elec-

trons and the radiation remains constant. Depending on the value of this relative

phase, one of two opposite processes can take place for each electron:

• the electron radiates, losing energy to the field and thus decelerating

• the electron is accelerated by the field, taking energy from it
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This can be seen by solving the other Newton-Lorentz equation coupled to (1.5),

i.e. the one describing the energy exchange between the electron and the field:

mc
dγ

dt
= e �E · �β⊥ (1.14)

This must be combined with the equation for the transverse velocity of the electrons

(1.8).

The total radiation field must be taken into account instead of only the one from

the wiggler:

�β⊥ = −(�aw + �aλ)

γ
= −�atot

γ
(1.15)

where the dimensionless radiation field is given by

�aλ ≡ e

mc2
�Aλ = − i√

2

(
ê aλ eiθ − c.c.

)
(1.16)

The resulting equation is

dγ2

dz
= −2π

λ
aw

(
aλe

iθ + a∗
λe

−iθ
)

(1.17)

Equation (1.17) shows how the value of θ rules if dγ2/dz is positive or negative, i.e.

if the electrons accelerate or decelerate.

If the first of these two processes dominates, then the inserted radiation field is

amplified by the FEL: this is what is called a FEL amplifier. The radiation field to

be amplified can be the very same field created through spontaneous emission by

the FEL itself, if the wiggler is long enough or if two mirrors at both ends of the

wiggler reflect the radiation back and forth along it: this last case is what is called

a FEL oscillator.

1.2 1D FEL Equations

In the previous section we have used the Newton-Lorentz equations for a charged

particle moving at relativistic speed in an electro-magnetic field with the only aim

to find some key resonance conditions and give a qualitative picture of the FEL

radiating processes. Now we will describe a set of closed equations representing the

evolution of the whole system.

The equations used until now only describe the electron dynamics; to close them

we need another equation for the evolution of the electromagnetic field. The vari-

ables we use are the electron phase θ = (kλ+kw)z−ωt, the electron energy γ and the
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dimensionless radiation field amplitude aλ (the wiggler field aw is externally fixed

and as such a parameter).

We take the one-dimensional approximation, which means we neglect any depen-

dence on transverse spatial coordinates: our variables depend only on the direction

of propagation z and the time t.

As sketched before, from Eqs.(1.5) and (1.14) we can derive the evolution of γ

and θ under certain physical assumptions:

• the wiggler field is much greater than the radiation field, aw � |aλ(z, t)|

• the relativistic limit 1 − β‖ � 1, which also means that dz � c dt

• during the interaction with the e.m. field, the electron energy stays very close

to the resonant energy, i.e. what is known as the Compton limit
γ − γr

γr
� 1

• we assume a helical wiggler and circularly polarized radiation, i.e. in Eq.(1.16)

the unit vector is ê = (x̂ + iŷ)/
√

2

In this way we obtain

dγ

dz
= −kλaw

2γr

(
aλe

iθ + c.c.
)

(1.18)

dθ

dz
= 2kw

γ − γr

γr
(1.19)

The evolution of aλ is derived from the wave equation for an e.m. field driven by an

electron current:[
∂2

∂z2
− 1

c2

∂2

∂t2

]
�Aλ =

e

mc2

[
∂2

∂z2
− 1

c2

∂2

∂t2

]
�aλ = −4π

c
�J⊥ (1.20)

where �J⊥ is the transverse component of the electron current (for a beam of N

electrons):

�J⊥ = e

N∑
j=1

c�β⊥ δ
(
�x − �xj(t)

)
(1.21)

Substituting (1.21) in (1.20) we get

[
∂2

∂z2
− 1

c2

∂2

∂t2

]
�aλ = −4πe2

mc2

N∑
j=1

�β⊥ δ
(
�x − �xj(t)

)
(1.22)
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We take for this field the Slowly Varying Envelope Approximation (SVEA) [1]∣∣∣∣∂aλ

∂z

∣∣∣∣ � |kaλ|∣∣∣∣∂aλ

∂t

∣∣∣∣ � |ωaλ|

This approximation allows to reduce the evolution equation to first order:[
∂2

∂z2
− 1

c2

∂2

∂t2

]
aλe

iθ � 2ik

(
∂

∂z
+

1

c

∂

∂t

)
aλe

iθ (1.23)

After substituting the transverse velocity �β⊥ from (1.15), the final equation becomes(
∂

∂z
+

1

c

∂

∂t

)
aλ =

kaw

2γ2
r

ω2
p

ω2
λ

〈e−iθ〉 (1.24)

where we have introduced the plasma frequency

ωp ≡

√
4πe2ne

me
(1.25)

ne is the electron density and the brackets 〈...〉 represent the average over all the

electrons:

〈f(θ, γ)〉 =
1

N

N∑
j=1

f(θj , γj)

1.2.1 Universal Scaling

It is possible and convenient to introduce a dimensionless scaling, called the universal

scaling, for all the quantities in the 1D FEL equations, so that no experimental pa-

rameters appear explicitely. This scaling will be used in this thesis unless explicitely

stated otherwise, to make formulae less cumbersome and clearer to read.

ρ ≡ 1

γr

(
awωp

4kwc

)2/3

(the FEL parameter) (1.26)

pj ≡ γj − γ0

ργr

� γj − γr

ργr

(1.27)

A ≡ ω

ωp
√

ργr

a (1.28)

lg ≡ λw

4πρ
(the gain length) (1.29)

lc ≡ λr

4πρ
(the cooperation length) (1.30)
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z̄ ≡ z

lg
(1.31)

z1 ≡ z − v‖t
lc

(1.32)

z̄ is simply the longitudinal position measured in gain lengths, while z1 is a scaled

“retarded time”.

The parameter ρ is extremely important and is often called the fundamental

FEL parameter, since the different FEL regimes are related to the value of ρ. We

will see in later chapters how a slightly modified parameter, ρ̄ ∝ ρ, is introduced

when dealing with quantum effects in the FEL.

Using the universal scaling the FEL equations assume then the more compact

form

∂

∂z̄
pj = −

(
Aeiθj + c.c.

)
(1.33)

∂

∂z̄
θj = pj (1.34)(

∂

∂z̄
+

∂

∂z1

)
A =

〈
e−iθ

〉
(1.35)

where j goes from 1 to N , the number of electrons.

This dimensionless form of the FEL equations has the advantage of being solvable

without having to specify the operating parameters - and once they are solved, the

scaling can be reversed to find the real physical quantities needed for an experimental

set-up.

This 1D model is sometimes called the Maxwell-pendulum model, as it can be

easily rewritten in a pendulum-like form: writing explicitely the real and imaginary

parts of the field A = |A| exp(iφ) and combining Eqs.(1.33) with (1.34) we get

∂2θj

∂z̄2
= −2|A(z̄, z1)| cos(θj + φ(z̄, z1)) (1.36)

The amplitude A and phase φ are not constant, their evolution is determined by

Eq.(1.35); due to this, equation (1.36) does not describe an ordinary pendulum.

1.3 Electron Bunching

We have initially described spontaneous and stimulated emission as phenomena in

a single particle picture, treating all electrons independently. This applies for short

FEL amplifiers with low electron current, where there is not enough time for the
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initial random distribution of electron momenta around γr to change appreciably. In

this case, called the Madey’s small-signal regime, there will be some low gain in ra-

diation power if the average energy of the electron beam is slightly above resonance,

〈γ〉0 > γr, as a little more than half electrons will decelerate and radiate while a

little less than half electron will accelerate and absorb photons. In this regime the

radiated power is proportional to the number of electrons N .

However, if the wiggler is long enough and/or the electron current high enough,

then the electron beam will start to bunch: electrons faster than γr will decelerate,

slower electrons will accelerate, so that the electron energy will be driven toward

resonance. This energy modulation becomes space modulation, i.e. the electrons

start to bunch in packets on the scale of the radiation wavelength (microbunching),

around a phase that produces gain. As we have seen, a peaked phase distribution

means that the electrons will emit coherent synchrotron radiation at the resonant

wavelength.

In the next section we will see that under certain conditions the scheme men-

tioned above manifests itself in a collective instability in the system, where the

electrons keep self-bunching more and more until saturation effects take place, with

a consequent exponential growth of radiation; in this high-gain regime the radiated

power scales as N4/3.

The variable that represents how much the electrons become bunched is called

the bunching parameter or just bunching, and is given by

b ≡ 〈e−iθ〉 (1.37)

b is the measure of the longitudinal modulation of the electron beam on the scale

of the radiation wavelength. A bunching of zero represents a completely random

distribution of phases, while an ideal bunching of b = 1 can only be possible with

all electrons perfectly in phase. Eq.(1.35) shows how the bunching directly drives

the evolution of the radiation field.

1.4 The steady-state regime

Equation (1.35), describing the evolution of the radiation field A, contains two

derivatives, one in z̄ and one in the retarded time z1; this latter derivative represents

the propagation effects that arise from the difference between the velocity of the

electrons and of the radiation, i.e. the so-called slippage. If the slippage remains
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small during the interaction time inside the wiggler then these effects and thus the

derivative over z1 can be neglected.

It is possible to show that this is the case when the slippage length Nwλs is much

smaller than the electron bunch length lb: reversing the universal scaling, the ratio

between the coefficients of the time derivative and those of the space derivative is

Nwλs/lb ≡ S, defined as the slippage parameter. When S � 1 the time derivative

in Eq.(1.35) can be dropped and only space-dependence remains in the system’s

equations: one can follow the steady-state evolution of the system as it moves along

the z-axis of the wiggler, therefore the name of this regime.

From Eq.(1.27) it follows that at time zero the average dimensionless momentum

p is given by

〈p〉0 =
〈γ〉0 − γr

ργr
≡ δ (1.38)

We define this value as the detuning parameter δ. It is particularly useful to redefine

our variables so that the initial condition is zero:

p′j = pj − δ (1.39)

θ′j = θj − δz̄ (1.40)

A′ = Aeiδz̄ (1.41)

In this way the detuning parameter disappears from the initial conditions and enters

explicitely into the evolution equations, where we drop for brevity the primes:

d

dz̄
pj = −

(
Aeiθj + c.c.

)
(1.42)

d

dz̄
θj = pj (1.43)

d

dz̄
A =

〈
e−iθ

〉
+ iδA (1.44)

1.4.1 Linear approximation: exponential gain

The system of equations (1.42)-(1.44) can now be solved in the linear approximation,

taking a small initial condition A0 for the field and assuming a totally unbunched

(〈exp[−iθ]〉0 = 0) and perfectly cold, on resonance (pj(0) = 0 for every j) electron

beam. Differentiating in succession (1.42)-(1.44) and keeping only the linear terms

we obtain
d3

dz̄3
A − iδ

d2

dz̄2
A − iA = 0
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Its solution is

A(z̄) = A0

3∑
j=1

cje
iλj z̄ (1.45)

where λj are the three solutions to the cubic equation

λ3 − δλ2 + 1 = 0 (1.46)

If Eq.(1.46) admits three real roots, then the system is stable, as |A| will remain

constant. But if it instead has only one real root and two complex-conjugate ones,

then one of the latter two will cause an exponential growth of the field until non-

linear effects cannot be ignored anymore.

If instead of choosing an ideal cold beam where all the electrons have the same

energy 〈γ〉0 we take an initial energy distribution f(p0), then (1.46) is replaced by

the more general equation [1, 12]

λ − δ +

∫ +∞

−∞

f(p0)

(λ + p0)2
dp0 = 0 (1.47)

The cold case is re-derived taking the delta distribution f(p0) = δ(p0). Another

interesting simple case is that of a rectangular distribution of half-width σ

f(p0) =

⎧⎪⎪⎨
⎪⎪⎩

1

2σ
if −σ < p0 < σ

0 otherwise

which gives

(λ − δ)

[
λ2 −

(
σ

ργr

)2
]

+ 1 = 0 (1.48)

It is convenient in this case to introduce the energy spread parameter

μ ≡ σ

ργr

The exponential behaviour of A(z̄) is determined by the imaginary part of the roots

of Eq.(1.48). Fig.1.2 shows |Imλ| as a function of the detuning parameter δ for

different values of the spread μ.

Looking at Fig.1.2, the following remarks can be done:

1. the absolute maximum gain takes place at resonance, δ = 0

2. an energy spread (μ > 0) implies a lower growth rate, as well as a detuning

shift
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Figure 1.2: FEL growth parameter as a function of the detuning δ for different values

of the energy spread μ: (a) μ = 0, (b) μ = 0.5, (c) μ = 1, (d) μ = 5, (e) μ = 7, (f)

μ = 10. Taken from [1].



1.4 The steady-state regime 21

3. given a spread μ, the optimal gain occurs for the specific detuning δ = μ, while

a detuning too far away from μ produces no exponential gain

This means that the exponential gain is obtained only with an electron beam that

follows the contraints

σ

γr
≤ ρ

〈γ〉0 − γr

γr
≤ ρ

This is one of the reasons why ρ is called the fundamental FEL parameter.

A simple example of exponential gain is the solution of the cold beam case at

resonance; then the form of the scaled field intensity is

|A|2(z̄) =
|A|20
9

[
4 cosh2

(√
3

2
z̄

)
+ 4 cos

(
3

2
z̄

)
cosh

(√
3

2
z̄

)
+ 1

]
(1.49)

1.4.2 Collective behaviour

The 1D FEL equations (1.42-1.44) can be solved numerically: the solution for the

field intensity is shown in Fig.1.3, where again we have used the simple case of an

unbunched, cold beam on resonance. This numerical analysis shows that the ini-

tial exponential growth reaches its peak due to saturation when |A|2 ∼ O(1), as

confirmed by several FEL experiments. Due to the universal scaling, this result is

independent of the chosen physical parameters. Since the field intensity is propor-

tional to |E|2/ρn, where n is the electron density, then from the definition of ρ we

have

O(1) = |A|2 ∝ |E|2
n4/3

i.e. |E|2 ∝ n4/3 instead of n: this implies the existence of a collective behaviour in

the electron beam, as it does not grow linearly with the electron density as would

happen in the case of N independent processes.

The independence of the saturated field amplitude from its initial value gives us

another important information, related again to the importance of the ρ parameter.

The efficiency η of the FEL in converting the electron kinetic energy into radiation

can be defined as the ratio between the radiation power and the beam power, which

gives

η ≡ Prad

Pbeam
= ρ|A|2 (1.50)
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Since at saturation the dimensionless field amplitude |A| will be ∼ 1, independently

of other physical parameters (at least in the approximations assumed until now),

then the measure of FEL efficiency will be given by ρ.

Figure 1.3: Field intensity |A|2(z̄), numerical solution from Eqs.(1.42-1.44). N =

100, Re(A0) = Im(A0) = 0.01 Taken from [1].

1.4.3 SASE: Self Amplified Spontaneous Emission

The assumptions leading to Eq.(1.49) implied an initial input signal A0. In general,

the obtained results seem to indicate that without any initial signal (A0 = 0) there

would be no emission. However, even in the classical picture, the free electron laser

can radiate spontaneously in the high gain regime, starting from a small random

bunching b0 given by some noise in the electron phases: while the initial average

bunching is still zero, in some regions there can be some oscillations from which the

exponential growth can start.

Instead of directly looking for a differential equation for the field A, we repeat

the same steps but using the bunching b = 〈exp(−iθ)〉 as our variable. In the same

way as |A|2, the squared bunching |b|2 grows exponentially along the wiggler,

|b|2 =
|b0|2
9

exp
(√

3z̄
)

(1.51)



1.5 The superradiant regime 23

as expected given Eq.(1.44). This self-bunching process, that starts-up from noise

until saturation and that generates the exponential emission of radiation, is at the

core of SASE.

This result is obtained shifting the initial condition requirement from the field

to the bunching of the beam: instead of having a finite initial condition for the field,

a finite initial condition for the bunching is used. This is still a limit of the classical

picture: to find a completely spontaneous emission without any seeding of any kind

we will need to approach the FEL problem in a quantum framework.

1.5 The superradiant regime

The steady-state regime that we just described was based on the assumption of a

negligible slippage: the wiggler wasn’t long enough to make the difference in velocity

between the electrons and the radiation relevant, so that all sections of the electron

beam evolved identically. If we drop that assumption, and take into account the z1

derivative in the system equations (1.33)-(1.35), then a different kind of high-gain

regime is found, called superradiant regime [1, 13, 14], where the peak power scales

as n2, the square of the electron density.

This is possible because, contrary to the steady-state regime, now the radiation

propagates with respect to the electrons, interacting with different sections of the

beam: this means that near the trailing edge of the electron pulse there will a region

of length Nwλs, called the slippage region, where the electrons will radiate without

being affected by the radiation produced by the other electrons behind them. Thus

the steady-state saturation will not take place and the superradiant spike will keep

evolving until it will surpass all of the electron beam.

In general, if the electron pulse is long enough, the superradiant spikes will appear

together with the steady-state radiation: there will be superradiance in the slippage

region and the usual steady-state emission in the remaining part of the beam. It is

still possible to observe pure superradiance by tuning the system out of resonance:

in fact, while the steady-state regime requires a certain closeness to resonance to

produce exponential gain, the superradiant behaviour is always on resonance with

the electrons, being coherent spontaneous emission. So, when the system will be

detuned in such a way to prevent steady-state radiation, the superradiant spike will

travel over nearly unperturbed electrons, extracting energy from them with an even

greater efficiency than in the steady-state resonance.

These properties of the superradiant regime can be shown by finding a solution of



1.5 The superradiant regime 24

Figure 1.4: |A|2(z̄) for A0 = 10−4, δ = 4 and: (a) z1 = 10, (b) z1 = 20, (c) z1 = 30,

(d) z1 = 40 Taken from [12].
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Figure 1.5: SUPERRADIANCE: (Top) Emitted field at resonance δ = 0. (Bottom)

Emitted field out of resonance, δ = 2; only the superradiant pulse is amplified. Taken

from [12].
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the general 1D FEL equations (1.33)-(1.35). It is possible to simplify them through

the following substitutions

A(z̄, z1) = z1A1(y)

θ(z̄, z1) = θ(y)

y ≡ √
z1(z̄ − z1)

This reduces the system to ordinary differential equations

d2θ

dy2
= −

(
A1e

iθ + c.c.
)

(1.52)

y

2

dA1

dy
= 〈e−iθ〉 − A1 (1.53)

The numerical analysis of these equations (Fig.1.5) shows that

• the field is indeed superradiant, that is |E|2 ∝ n2 instead of n4/3

• the amplitude |A| of the superradiant peak is proportional to z1

• the width of the superradiant pulse is inversely proportional to
√

z1



Chapter 2

First approaches to the Quantum

FEL

The original proposal of an FEL [2] was formulated in a quantum framework; in

this early picture, an FEL was treated as light amplification induced by stimulated

Compton scattering. However, most of the theoretical work for the FEL was for-

mulated classicaly and the results obtained through quantum theory were rederived

using classical electrodynamics [16, 17]. Indeed, since most of the properties of ex-

isting FELs can be analyzed and found remaining in a strictly classical framework,

it is widely accepted that the FEL is an essentially classical device [18].

Anyway, a quantum mechanical analysis of the FEL starting from first principles

has been adopted more than once in literature. Such an approach is not only very

interesting from a theoretical point of view, but there are also some very practical

reasons to use quantum mechanics instead of classical mechanics when dealing with

the FEL:

• As seen in the previous chapter, a classical treatment yields an e.m. potential

A(t) proportional to its initial value A0; this means that spontaneous emission,

i.e. start-up from vacuum, is not possible unless somehow a small fluctuation

is introduced by hand as a non-zero initial potential. A quantum treatment

instead includes real spontaneous emission from quantum noise.

• Some physical questions require a quantum mechanical approach: for exam-

ple, photon statistics and the quantum coherence properties of the emitted

radiation.

• While for all existing FEL devices classical physics is a perfectly safe approx-

27
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imation, quantum effects could and do become relevant when operating in

different regions for the range of the experimental parameters. In particular

for very short wavelengths, the electron recoil from the emission of a pho-

ton cannot be neglected anymore when compared to the emission linewidth,

making a quantum mechanical treatment of the electron-photon interaction

necessary.

In this chapter we will provide a summary of some of the past treatments of the

FEL using quantum physics.

2.1 The Quantum FEL Hamiltonian

Most of the quantum approaches [5, 6, 7, 8] to the free electron laser are based on a

Hamiltonian formalism describing the energy exchange process between the electron

beam and the radiation field. The electrons are treated using operators correspond-

ing to the phase space variables (z, p), in a frame such that the electron motion is

non-relativistic [19], while the laser field is represented by the photon annihilation

and creation operators. The quantum Hamiltonian derived in this section will be

the starting point of our own work in the next chapter.

We start from the classical Hamiltonian describing N relativistic electrons inter-

acting with an electro-magnetic field; we neglect space-charge effects, and assume

that the electrons do not directly interact among each other. This gives the Hamil-

tonian

H =

N∑
j=1

√
m2

ec
4 +

[
c �Pj + e �A

]2
(2.1)

Here c is the speed of light and me, −e are the mass and charge of the electron. �P

is the canonical momentum and �A = �Aw + �Aλ the total field vector potential given

by the wiggler field �Aw and the laser field �Aλ. The axis ẑ is taken as the direction

of propagation of the fields.

The electrons travel along this direction as well and their momentum remains

perpendicular to the field vector potential at all times, i.e. �P · �A = 0 [22], and thus

the term in (2.1) containing P and A becomes

(
�P + �A

)2

= c2
(
P 2

z + P 2
⊥
)

+ e2
(
|Aw|2 + |Aλ|2 + 2 �Aw · �Aλ

)
We then make the following considerations:
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• The electron longitudinal momentum is much greater than the transverse mo-

mentum, Pz � P⊥, so that we can neglect P 2
⊥.

• The intensity of the wiggler field is much bigger than the laser field’s, |Aw|2 �
|Aλ|2 so that again we can neglect the latter term.

• The wiggler field |Aw|2 is a constant so we can just include it in the m2
ec

4 term,

renormalizing the electron mass as

m ≡ me

√
1 +

e2

m2c4
|Aw|2 = me

√
1 + a2

w

where aw = e|Aw|/mc2 is the wiggler parameter as defined in Eq.(1.10).

• The wiggler field is written as in (1.9)

�Aw =
mc2

e

aw√
2

(
ê e−ikwz + c.c.

)
(2.2)

with aw being the wiggler parameter, while the radiation field is decomposed

over the quantization volume V [21, 8]

�Aλ = −i

√
2π�c

kλV

(
aλê e−ikλ(z−ct) − c.c.

)
(2.3)

aλ is the dimensionless field amplitude. We will quantize it to obtain the

photon creation and annihilation operators.

(Here we have supposed that the radiation field is monoenergetic, i.e. all

radiation has a single wavelength, but every step of this derivation could be

repeated using a multi-mode field �Arad =
∑

λ
�Aλ)

Thus the Hamiltonian becomes

H =
N∑

j=1

√
m2c4 + c2P 2

j + 2e2 �Aw · �Aλ =

= mc2
N∑

j=1

√
1 +

P 2
j

m2c2
+ i

2ε

mc2
(aλeiθj − a∗

λe
−iθj )

where Pj ≡ Pz,j is the longitudinal momentum, θj = (kλ + kw)zj − kλct is the FEL

phase and

ε =

√
e2�λc

2V
aw � mc2 (2.4)
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We have included aw in the coupling energy ε because we’re not interested in quan-

tizing the wiggler field. Since |Aw|2 � |Aλ|2 it is possible to treat it as a classical

field [22].

Until now we were in the laboratory frame; we make then a Lorentz transforma-

tion, going to a frame whose velocity with respect to the laboratory frame is given

by the initial average energy γ0 of the electrons:

β ′ ≡
√

1 − 1

γ2
0

(2.5)

This frame is called the Bambini-Renieri frame [19].

The electron beam is injected in the wiggler with an energy very close to the

resonant one, so that in this frame it is nearly at rest. Thus it is possible to treat it

as non-relativistic beam (P ′
z � mc): using

√
1 + ε � 1 + ε/2 we get

H =
N∑

j=1

[
P

′2
j

2m
+ iε

(
aλe

iθ′j − c.c.
)]

(2.6)

where P ′ and θ′ are the variables in the Bambini-Renieri frame.

Before quantizing both the field amplitude and the electron variables, we re-

normalize the Hamiltonian to a dimensionless form, introducing the fundamental

FEL quantum parameter ρ̄ [5, 20]:

ρ̄ ≡ mcγr

�kλ

ρ = q ρ (2.7)

where we introduced the quantum recoil parameter

q = mcγr/�k (2.8)

i.e. the ratio between the electron and photon momenta (we drop the λ label from

k from now on, k ≡ kλ), and ρ is the FEL parameter defined in the first chapter

ρ =
1

γr

(
awωp

4kwc

)2/3

We express the momentum in units of photon momentum �k

p̄j ≡ q
γj − γr

γr
=

mc(γj − γr)

�k
(2.9)

This dimensionless momentum p̄ is different from the dimensionless momentum p

defined in the universal scaling (1.27), since

p̄ = ρ̄p (2.10)
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The final dimensionless Hamiltonian is

H =
N∑

j=1

[
p̄2

j

2ρ̄
− i

√
ρ̄

N

(
aλe

iθj − a†
λe

−iθj

)]
(2.11)

In Eq.(2.11) we have already transformed p̄, θ and aλ into operators, using the

commutation relations

[θj , p̄k] = i δjk (2.12)

[aλ, a
†
λ] = 1 (2.13)

Now aλ and a†
λ are the annihilation and creation operators of the laser photons.

It is useful to redefine the three variables of the system such that the average

momentum distribution is centered on γ0:

p̂j = p̄j − ρ̄δ (2.14)

θ̂j = θj − δz (2.15)

a = aλe
iδz (2.16)

where again δ =
γ0 − γr

ργr
. In fact it can be checked that

〈p̂j〉 =
mc(γj − γr)

�k
− ρ̄

γ0 − γr

ργr
=

mc(γj − γ0)

�k

We substitute the definitions (2.14)-(2.16) in (2.11) and use the integral of motion

d

dt

{∑
j

p̄j + a†a

}
= 0 (2.17)

to get the following dimensionless Hamiltonian

H =

N∑
j=1

[
p̂2

j

2ρ̄
− i

√
ρ̄

N

(
aeiθ̂j − a†e−iθ̂

)]
− δa†a (2.18)

From this Hamiltonian we derive the equations of motions for the electron and

photon operators:

dp̂j

dt
= −i[p̂j , H ] = −

√
ρ̄

N

(
aλe

iθj + a†
λe

−iθj

)
(2.19)

dθj

dt
= −i[θj , H ] =

p̂j

ρ̄
(2.20)

da

dt
= −i[a, H ] = iδa +

√
ρ̄

N

∑
j

e−iθj (2.21)
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In the following sections of this chapter, we will give a short summary of some

past quantum approaches to the FEL that, while not directly related to our own work

found in the next chapters, can give a general overview of how quantum mechanics

is connected to the FEL.

2.2 Collective Operators

A linear analysis of the Hamiltonian (2.18) can be done introducing two collective

operators [21, 22, 23], the bunching operator

B =
1√
N

N∑
j=1

e−iθ̂j (2.22)

and the symmetrized momentum bunching

P =
1

2
√

N

N∑
j=1

(
p̂je

−iθ̂j + e−iθ̂j p̂j

)
(2.23)

Notice that in contrast to other past works [21, 22], this definition of P is correctly

symmetrized [23].

The equations of motion for these operators can be deduced from (2.19)-(2.21),

so that one obtains

dB

dt
= − i

ρ̄
P (2.24)

dP

dt
= − i

4ρ̄
B −

√
ρ̄a (2.25)

da

dt
= iδa +

√
ρ̄B (2.26)

In these equations the higher order terms have been neglected, specifically those

proportional to
1√
N

∑
j

pje
−iθjpj

and
a†
√

N

∑
j

e−2iθj

since in the linear approximation they do not give any contribution to the expecta-

tion values 〈B〉 and 〈P 〉 [23].
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The closed linear system given by (2.24)-(2.26) has solutions of the form

B(t) ∝ eiλt

where the λ are the solutions of the dispersion relation

(λ − δ)

(
λ2 − 1

4ρ̄2

)
+ 1 = 0 (2.27)

This equation corresponds to the classical cubic equation (1.47) for the case of a

square energy distribution of width 1/2ρ̄, i.e. in non-dimensionless units a spread

in momentum of �k/2. This can be interpreted as the intrinsic momentum spread

due to quantum mechanics.

I will continue the analysis of the quantum Hamiltonian (2.18) in Chapter 3. I

will now give a review of previous works about a few FEL topics that will be very

important in this work:

• The Interaction Picture Hamiltonian and Perturbation Theory

• Photon Statistics

• The Bosonic Approximation for the electrons

• Two-Level Systems

2.3 Interaction Picture: the Time-evolution Op-

erator

Photon statistics is a very important issue for free electron lasers and strongly con-

nected to quantum mechanics; most of the work of this thesis indeed revolves around

photon statistics. In the next chapter we will use the Interaction Picture to study

photon statistics in the quantum regime of FEL; a previous similar study was done

by Becker and Zubairy [8], using the time-evolution operator formalism. This oper-

ator can be used to find transition probabilities: if the system is in the state |i〉 at

the time ti, then the probability of finding it in the state |f〉 at time tf is

P (i|f) = |〈f |S(tf , ti)|i〉|2 (2.28)
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The formal definition of the time-evolution operator is

S(tf , ti) = T exp

{
− i

�

∫ tf

ti

HIP (t)dt

}
(2.29)

where T is the Dyson time-ordering operator and HIP (t) is the Interaction Picture

Hamiltonian, given by

HIP (t) = eiH0t/�HIe
−iH0t/� (2.30)

The full system Hamiltonian is given by the sum of the kinetic energy H0 and the

interaction potential HI :

H = H0 + HI (2.31)

H0 =
p̂2

2m
+ �ω(a†

l al + a†
waw) (2.32)

HI = i�g
(
a†

l awe−ikẑ − a†
wale

ikẑ
)

(2.33)

In this Hamiltonian the creation and annihilation operators of both the laser field

al and the wiggler field aw are used, and a specific frame has been chosen so that

the laser and wiggler frequencies coincide, ωl = ωw ≡ ω. It is important to notice

that the approximation of a one-electron Hamiltonian has been taken.

The usual commutation rules apply

[al, a
†
l ] = [aw, a†

w] = 1

[p̂, ẑ] = −i�

Inserting (2.32) and (2.33) into (2.30) the interaction picture Hamiltonian obtained

is

HIP (t) = i�g
(
a†

l awe−ikẑe−i(�k2+2kp̂)t/m − h.c.
)

= i�g
√

Nw

(
A†e−i(�k2+2kp̂)t/m − Aei(�k2+2kp̂)t/m

)
(2.34)

In (2.34) the semiclassical limit for the wiggler field has been taken, for the same rea-

sons expressed when deriving (2.18) - mostly summarized by the fact that |〈aw〉|2 �
|〈al〉|2. The operator A ≡ ale

ikẑ has been introduced for simplicity; notice that still

[A, A†] = 1 and A†A = a†
l al.

The time-evolution operator (2.29) cannot be exactly derived for the Hamiltonian

(2.34): this can be solved by treating p as a c-number instead of an operator, but

this extreme approximation would mean neglecting the electron recoil during the

photon emission and it is well known that this would amount to getting no gain.
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Becker and Zubairy try to get around this problem by expanding the time-evolution

operator around a c-number central value p0, up to the first order in (p̂ − p0):

S(tf , ti) � S0(tf , ti) + S1(tf , ti) (2.35)

S0(tf , ti) = T exp

{
− i

�

∫ tf

ti

HIP (t)dt

}∣∣∣∣
p̂=p0

(2.36)

S1(tf , ti) = − i

�

∫ tf

ti

S0(tf , t)T (p̂ − p0)

{
∂

∂p
HIP (t)

∣∣∣∣
p̂=p0

}
S0(t, ti)dt (2.37)

S0 is what would be obtained by treating the momentum as a c-number, while in S1

the quantum electron recoil is taken into account up to first order. The limit of this

treatment is that this linear approximation can only hold for the small-signal regime.

The time ordering of the zeroeth order term S0 can be easily calculated, since in

the case of a c-number momentum p0 the different times commutator is a c-number

too:

[HIP (t1), HIP (t2)] = 2ig2Nw sin

[
k

m

(
p0 +

�k

2

)
(t1 − t2)

]
The final result for S0 is then

S0(tf , ti) = exp [iΘ(tf , ti)] exp
[
J∗(tf , ti)A†] exp [−J(tf , ti)A] exp

[
−|J(tf , ti)|2

2

]
(2.38)

where

Θ(tf , ti) =
g2Nw

�2

[
(tf − ti)

β
+

cos(βtf) sin(βti) − sin(βtf) cos(βti)

β2

]
(2.39)

J(tf , ti) = −i
g
√

Nw

β

(
eiβtf − eiβti

)
(2.40)

β =
k

m

(
p0 +

�k

2

)
(2.41)

For simplicity the initial and final times are taken to be tf = T and ti = −T ,

where 2T = Lw/c is the interaction time along the wiggler length Lw. This way the

formulas simplify to

Θ(T,−T ) =
g2Nw

�2

[
2T

β
+

sin(2βT )

β2

]
(2.42)

J ≡ J(T,−T ) = J∗(T,−T ) =
2g

√
Nw

β
sin(βT ) (2.43)
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Using (2.38) in (2.37) one gets the first order term S1(T,−T ):

S1(T,−T ) � S0(T,−T )
{
− ig

√
Nw

k

m

∫ T

−T

e−iβt
[

(2.44)

{p̂ − p0 − �k[|J(t,−T )|2 + J∗(t,−T )A† + J(t,−T )A]}[A† + J(t,−T )]

−[A + J(T, t)]{p̂ − p0 − �k[|J(T, t)|2 + J∗(T, t)A + J(T, t)A†]}
]
dt
}

The resulting time-evolution operator depends on the choice of the central momen-

tum p0, but it is possible to show instead that, up to first order in the recoil, this

choice is arbitrary. This can be seen by taking the partial derivative of S(T,−T )

over p0, which after some algebra gives

∂S(T,−T )

∂p0

= O

(
k

m

)2

Now that S(T,−T ) is known, it is possible to use it together with (2.28) to get

transition probabilities, in particular to study photon statistics. The momentum

eigenstates |p, n〉 are chosen as the physical states, where n represents the number

of laser photons. It can be seen then that

p̂|p, n〉 = p|p, n〉 (2.45)

A|p, n〉 =
√

n|p + �k, n − 1〉 (2.46)

A†|p, n〉 =
√

n + 1|p − �k, n + 1〉 (2.47)

since eikẑ acts a translation operator for the electron momentum. As an example,

an initial state with zero photons is taken, and momentum p = p0 +�k/2. Then the

photon distribution function is given by

P (n) = |〈p − n�k, n|S(T,−T )|p, 0〉|2

=
J2n

n!
e−J2

{
1 − �k2

mJ

∂J

∂β
[n2 − (2n + 1)J2 + J4]

}
(2.48)

The average photon number and the photons distribution spread can be now calcu-

lated:

〈n〉 = J2 − �k2

m
J

∂J

∂β
+ δ (2.49)

Δn2 = J2 − �k2

m
(J + 2J3)

∂J

∂β
+ δ (2.50)

δ ≡ ig
√

Nw
�k2

m
J

∫ T

−T

e−iβt

×
{
2|J(T, t)|2 + 2|J(t,−T )|2 − J2(T, t) − J2(t,−T )

}
dt
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There was no need to include fluctuations in the inital conditions to get spontaneous

emission, while it would have been necessary if using classical physics.

Putting together the above equations, most terms cancel out and the following

equation is obtained:

Δn2 − 〈n〉 = −2�k2

m
J3 ∂J

∂β
(2.51)

Eqs.(2.51) and (2.43) show another quantum effect that can’t be found using classical

tools: the spontaneous emission radiation field is bunched for β > 0, i.e. when the

electrons are above resonance; and antibunched when below resonance, β < 0.

Even in the approximation of a single electron and up to first order in the quan-

tum recoil, a quantum mechanical treatment of the FEL allows to get information

otherwise barred to a classical analysis.

2.4 Dirac Equation

While most of the quantum treatments of the FEL usually started from the Hamil-

tonian (2.18) in the Bambini-Renieri frame (2.5) to avoid the complications of rela-

tivistic quantum mechanics, an approach was made by deriving the FEL interaction

Hamiltonian by general quantum electrodynamics [24].

The final result of this analysis shows how, under certain approximations, Quan-

tum Electro Dynamics leads to the usual Hamiltonian (2.18). Here we briefly sum-

marize its derivation. The starting point is the QED Hamiltonian representing the

interaction between a radiation field and charged particles:

HI = e

∫
jνA[l]

ν d3x (2.52)

Here jν is the four-vector current density operator, A
[l]
ν is the four-vector potential

of the emitted radiation and e the charge of the electron. Upper and lower indexes

are considered to be summed over when they’re repeated. The current density is

given by

jν = Ψ̄γνΨ (2.53)

where the γν are the Dirac matrices and Ψ the field operators defined by the solutions

of the Dirac equation:

Ψ =
∑

p

ψp(x
ν)bp (2.54)

The bp are the fermion creation operators, the label p representing momentum. The

ψp are the solutions of the Dirac equation [24]. The total four-vector radiation
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potential is the sum of the laser field A
[l]
ν and the wiggler field A

[w]
ν . The latter is

given by A[w]ν = (0, �Aw), where �Aw is the wiggler vector potential. For a circularly

polarized static wiggler along the ẑ axis, this is

�Aw = i

(
x̂ + iŷ

2

)
Awe−iφ + c.c. (2.55)

φ = k[w]
ν xν = kwz (2.56)

k
[w]
ν being the wave (four)vector of the wiggler field; kν = (0, 0, 0, kw) for a static

wiggler. In this case, with the approximation that for relativistic electrons

p2 � e2A2
w

the Dirac equation can be solved and one obtains

ψp ∝

⎛
⎝1 +

e (kνγ
ν)
(
A

[w]
ν γν

)
2k

[w]
ν pν

⎞
⎠ exp

{
− i

�
pνx

ν − i

2�

∫ kwz

0

e2A2
w

pνkν
dφ

}
(2.57)

From ψp it is possible to get jν and thus jνA
[l]
ν . Given the approximation of a

perfectly longitudinal momentum

pν =

(
Ep

c
, 0, 0, pz

)
Ep = γmc2

it simplifies to

jνA[l]
ν =

eA[w]νA
[l]
ν

mγV

∑
p,p′

exp−i

{
1

�
(pν − p′ν)x

ν +

∫ kz

0

e2A2
w

2�

(
1

kνpν
− 1

kνp′ν

)
dφ

}
b†p′bp

(2.58)

where m is the mass of the electrons, γ =
√

1 + (pz/mc)2 the relativistic factor and

V the quantization volume.

The laser field is written as the general superposition of all the plane-wave modes

ak travelling along the z-axis:

A[l]ν = (0, �Al) (2.59)

�Al = i

(
x̂ + iŷ

2

)√
�

ε0ck̃lV

∑
kl

eikl(z−ct)akl
+ h.c. (2.60)

where one has assumed that all the modes frequencies kl of the laser field are all

close to the central value k̃l, so that |k − k̃| � k̃ for all kl. The operators ak and
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a†
k are then the annihilation and creation operators for the laser field photons of

frequency ckl. For the case of a single mode FEL, this reduces to

�Al = i

(
x̂ + iŷ

2

)√
�

ε0cklV
eikl(z−ct)al + h.c. (2.61)

Substituting (2.58) and (2.61) into (2.52) and then integrating over d3x gives a more

explicit form of the interaction Hamiltonian. The integral over dφ gives an integral

over z between z = 0 and z = L, where L is the length of the wiggler:

HI =
e2Aw

2mγL

√
�

ε0cklV

∑
p,p′

e−i{(Ep−Ep′)/�+ck}tb†p′bpal

∫ L

0

exp

{
i

[(
1 +

a2
w

2γ2

)
p − p′

�
+ kw + kl

]
z

}
dz + h.c. (2.62)

The integral over z of the imaginary exponential can be approximated by a δ distri-

bution, which gives the condition

p′ = p +
�(kw + kl)

1 + a2
w/2γ2

(2.63)

One can define the detuning parameter1

μ ≡ (γ − γ0)

γ3
0

kl (2.64)

Under the assumption μγ2
0/kl � 1, one can linearly expand (Ep − Ep′)/�, so that

HI simplifies to

HI =
e2Aw

2mγ0

√
�

ε0cklV

∑
μ

exp

{
i

[
μ +

q

1 + a2
w

]
ct

}
b†μ+2qbμal (2.65)

where q = �kwkl/mcγ0 is the quantum recoil parameter.

Until now the electrons have been treated as fermions. This means they must

obey the exclusion principle, i.e. no two electrons can have the same quantum

numbers; this includes longitudinal and transverse momentum. Still, it is physically

acceptable to take all the following assumptions:

• There is no electron with both the same longitudinal and transverse momen-

tum as another electron.

1Notice that this isn’t the same detuning parameter δ that we have defined in (1.38) and which
will be used in the rest of this thesis.
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• The transverse momenta of all the electrons are negligible, so that the approx-

imation taken in (2.58) is respected.

• The longitudinal momentum spread is negligible, so that all the electrons can

be considered to have the same longitudinal momentum.

This allows to treat the electrons as bosons, since the labels that distinguish them

(to satisfy the exclusion principle) are neglected. The interaction Hamiltonian (2.65)

can then be rewritten by replacing the fermionic operator b†μ+2qbμ with a bosonic

momentum-shift operator:

HI = �g

N∑
j=1

eiθjei(μj+q)ctal + h.c. (2.66)

Here

• g =
e2Aw

2�mγ0

√
�

ε0cklV
is the coupling constant.

• θj is an operator defined such that eiθj raises the momentum μ of the quantity

2q, i.e. [μj, e
iθj ] = 2qeiθj .

This interaction Hamiltonian is equivalent to (2.34), generalized to the case of N

electrons, if θ is identified with kẑ, μ̂c with kp̂/m and q with �k2/2mc.

2.4.1 Second order perturbation theory

The interaction Hamiltonian (2.66) was used by Gea-Banacloche [24] in the attempt

to solve the evolution equation of the density matrix σ:

dσ(t)

dt
= − i

�
[HI(t), σ(t)] (2.67)

If the coupling constant g is small, this equation can be iterated to obtain a pertur-

bation series. Up to first order it becomes

dσ(t)

dt
= − i

�
[HI(t), σ(0)] − 1

�2

∫ t

0

[HI(t), [HI(t
′), σ(t′)]]dt′ (2.68)

In the 0th order term the initial density matrix is factorized as

σ(0) � σel(0) ⊗ σph(0) (2.69)
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representing the lack of correlations between the radiation field and the injected

electrons at time zero. A strong approximation is taken instead in the 1st order

term, assuming that

σ(t′) � σel(0) ⊗ σph(t
′) (2.70)

This amounts to neglecting any higher-order changes in the electron system; in other

words the electron recoil is taken into account only up to first order. Substituting

(2.70) into (2.68) the zeroeth order disappears due to the diagonality of σ(0) and

the equation for the photon density matrix becomes

dσph(t)

dt
= − 1

�2

∫ t

0

Trel[HI(t), [HI(t
′), σel(0) ⊗ σph(t

′)]]dt′ (2.71)

Using the interaction Hamiltonian (2.66) the final equation is

dσph(t)

dt
= −g2

∫ t

0

{〈
N∑

j=1

ei(μ−q)c(t−t′)

〉[
aa†σph(t

′) − a†σph(t
′)a
]

+

〈
N∑

j=1

e−i(μ+q)c(t−t′)

〉[
a†aσph(t

′) − aσph(t
′)a†]} dt′ + h.c.(2.72)

The brackets 〈...〉 represents the average over the electron degrees of freedom. As-

suming that the electrons’ momenta follow a distribution G(μ), those averages be-

come 〈
N∑

j=1

e∓i(μ±q)c(t−t′)

〉
= N

∫
G(μ)e∓i(μ±q)c(t−t′)dμ (2.73)

Once the evolution equation for the density matrix is obtained, it is then possible

to get the expectation value of any operator Ô acting on the photon states simply

using the well known identity

〈Ô〉 = Tr{σphÔ} (2.74)

For example, in the case of start-up from vacuum (σph = |0〉〈0|), the average number

of photons emitted after a single pass in the wiggler is

〈a†a〉 = 4g2T 2N

∫ (
sin[(μ − q)cT ]

(μ − q)cT

)2

G(μ)dμ (2.75)

where T = Lw/2c is half the interaction time. The number of photons grows as the

square of the interaction time: the lack of an exponential growth is the main limit

of using perturbation theory, since it will only give powers of T up to the order to

which the series was calculated to.
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2.5 Two-level Klein-Gordon equation

We’ll see in the next chapter how a quantum regime for FEL is found under cer-

tain conditions for the physical parameters; in such regime the free electron laser

behaves as a discrete two-level system (the electrons) coupled to radiation (the laser

field). Smetanin et al. [25, 26] have studied a model of a two-level FEL, starting

from a description of the free electron laser through the approximated Klein-Gordon

equation: (
∂2

∂t2
− c2 ∂2

∂z2
+

2e2

�2
�Aw · �Al +

m2c4

�2

)
Ψ(z, t) = 0 (2.76)

where Ψ(z, t) is the electron wave-function and �Aw, �Al are respectively the wiggler

and laser (classical) radiation fields.

The electron momentum is discretized, to represent excitations of the discrete

energy levels of an anharmonic oscillator [15]

pn = p0 + n�(ωw + ωl)/c

where p0 is the initial momentum, ωw and ωl are the frequencies of the wiggler

field and the laser field. The electron wave function can then be expanded as a

superpositions of wave functions each corresponding to one of those different energy

levels:

Ψ(z, t) =
∑

n

√
mc2

2V En
cn exp

(
i

�
[pnz − Ent]

)
(2.77)

where En =
√

p2
nc

2 + m2c4 is the energy of the momentum level n. Inserting (2.77)

in the Klein-Gordon equation (2.76) gives a system of equations describing an an-

harmonic oscillator with infinite levels:

i
dcn

dt
= gncn−1e

−iΔnt + gn+1cn+1e
iΔn+1t (2.78)

where

gn ≡ e2AwAl

√
EnEn−1

�

Δn ≡ ωl − ωw +
En−1 − En

�

Under certain conditions, the imaginary exponent Δn becomes extremely big when

n �= 0, so that all n �= 0 terms give no contribution to the solution of (2.78). This

reduces the infinite levels system described by (2.78) to a two-level system.
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In detail, using the definitions of En and pn, one can obtain

Δn � −4πNw

T

{
E0 − El + n�(ωl − ωw)

El

}
(2.79)

where Nw is the number of wiggler periods and T is the half interaction time Lw/2c.

El is the emission line energy of the laser radiation, given by

El =
�(ωl − ωw)

2
+ mc2

√
ωl + ωw

2ωw
(2.80)

If the electrons are injected in the FEL with an energy E0 very close to El, then Δn

simplifies as

Δn � −4πNw

T

n�(ωl − ωw)

E0
(2.81)

The imaginary exponentials in (2.78) are then rapidly oscillating when

ΔnT � 2π (2.82)

so that the condition on the physical parameters becomes

2Nw
�(ωl − ωw)

E0

� 1 (2.83)

When this happens, only the level n = 0 is stable and the equations (2.78) reduce

to the two-level system

dc0

dt
= −ig0c−1e

−iΔ0t (2.84)

dc−1

dt
= −ig0c0e

iΔ0t (2.85)

Notice that Δ0 �= 0 since E0 − El can be neglected and Eq.(2.81) used only when

n �= 0.

To close the system the equations (2.84)-(2.85) must be coupled with an equation

for the radiation fields. This is given by the Maxwell equation(
∂2

∂z2
− 1

c2

∂2

∂t2

)(
�Aw + �Al

)
= −4π

c
�j (2.86)

where �j is the electron current

�j =
2e2

mc
( �Aw + �Al)〈Ψ∗Ψ〉el (2.87)



2.5 Two-level Klein-Gordon equation 44

The wiggler field is assumed to be an constant and the approximation of a slowly-

varying laser field is taken. Thus the equations (2.86) and (2.86) reduce to(
∂

∂z
+

1

c

∂

∂t

)
Al = i

2πe2Aw

ωl

√
E0E−1

∫ ∞

0

G(E0)c0c−1dE0 (2.88)

where G(E0) is the initial energy distribution of the electron beam.

An approximate solution of this problem is given [26] by neglecting Δ0, so that

the equations (2.84)-(2.85) have no explicit time dependence. This gives

c0(z) = c0(0) cos[χ(z)] (2.89)

c−1(z) = c−1(0) sin[χ(z)] (2.90)

where χ(z) is the solution of the partial differential equation

∂2χ

∂z2
=

(
2πnee

4E2
w

�ω2
l ωwm2c2

)
sin χ (2.91)

where ne is the electron density and Ew = −∇Aw is the wiggler field amplitude.

The solution of the equation for χ(z) can be written in terms of elliptic functions,

but that is left out since it is not interesting for our current purposes.

In the next chapter the physics of two-level system and its implications for the

FEL will be discussed at length.



Chapter 3

The Quantum Regime of FEL

The main core of this work revolves around the quantum regime of the free electron

laser. I will show how the quantum FEL parameter ρ̄, i.e. the product of the

quantum recoil parameter q (2.8) and the classical FEL parameter ρ (1.26), rules

the dynamics of the free electron laser: we will see that when ρ̄ � 1 a new completely

quantum mechanical behaviour takes place, where the dynamics of the system is the

same as that of a two-level system.

3.1 Occupation Number Representation

Our starting point is the Hamiltonian (2.18),

H =
N∑

j=1

[
p̂2

j

2ρ̄
− i

√
ρ̄

N

(
aeiθ̂j − a†e−iθ̂

)]
− δa†a (3.1)

I consider a base of eigenstates |p〉 of the momentum operator p̂ so that p̂|p〉 = p|p〉
(where p̂ is an operator and p a c-number). Since

[p̂, e±iθ̂] = ±e±iθ̂ (3.2)

then it follows that

p̂
(
e±iθ̂|p〉

)
=

(
e±iθ̂p̂ + [p̂, e±iθ̂]

)
|p〉

= (p ± 1)
(
e±iθ̂|p〉

)
⇓

e±iθ̂|p〉 = |p ± 1〉

45
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i.e. exp(±iθ̂) acts as a raising/lowering momentum operator. The variation of ±1

for the dimensionless momentum p corresponds to a variation of �k in dimensional

units, where k is the wavenumber of the radiation field.

Analyzing the interaction part of the Hamiltonian (3.1), two opposite physical

processes can be identified:

• a†e−iθ̂j → the jth electron loses �k of momentum, and one photon is created

• ae+iθ̂j → absorption of one photon by the jth electron and consequent momen-

tum gain of �k

This means that the electron momenta can only vary by steps of �k: barring an

initial energy spread (which I will take into account in Chapter 4), I assume that

all the electron momenta are multiples of �k, labeling the momentum eigenstates

by a discrete number, |n〉 ≡ |p〉. I can then define the occupation number states

|Nn〉, where Nn is the number of electrons with dimensionless momentum n, and∑
n Nn = N .

I neglect the fermionic nature of the electrons, so that I can define the bosonic

creation and annihilation operators ĉ†n, ĉn for these states. Treating the electrons as

bosons is justified since:

1. I assume that the effects caused by electron spin are negligible in our case.

2. The electrons are extremely far apart from each other in the beam, given its

low density, so that charge effects from direct electron-electron interaction do

not take place

I use the bosonic commutation rules for the electron operators ĉ†n, ĉn:

[ĉn, ĉ†m] = δnm (3.3)

Their action on the occupation number states is

ĉn|Nn〉 =
√

Nn|Nn − 1〉
ĉ†n|Nn〉 =

√
Nn + 1|Nn + 1〉

ĉ†nĉn|Nn〉 = Nn|Nn〉

I wish to rewrite the Hamiltonian (3.1) in the occupation numbers representation,

using the operators ĉ, ĉ†. To do that, I introduce the scalar field operator Ψ̂(θ):

Ψ̂(θ) =
1√
2π

+∞∑
n=−∞

ĉn〈θ|n〉 =
1√
2π

+∞∑
n=−∞

ĉneinθ (3.4)
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where |θ〉 and |n〉 are respectively the eigenstates of the operators θ̂ and p̂. Using

(3.3) I get the field commutation rules:

[Ψ̂(θ), Ψ̂†(θ′)] =
1

2π

∑
n,m

ei(nθ−mθ′)[ĉn, ĉ†m] =
1

2π

∑
n

ein(θ−θ′) = δ(θ − θ′) (3.5)

I rewrite the Hamiltonian using the formula

Ĥ =

∫ 2π

0

Ψ̂†(θ)H
(

θ,−i
∂

∂θ
, a, a†

)
Ψ̂(θ)dθ (3.6)

The main blocks of (3.1) are transformed in the following way:

N∑
j=1

p̂2
j −→

∫ 2π

0

1√
2π

∑
n

ĉ†ne−inθ

(
−i

∂

∂θ

)2
1√
2π

∑
m

ĉmeimθdθ

=
1

2π

∑
n,m

ĉ†nĉm

∫ 2π

0

m2ei(n−m)θdθ

=

+∞∑
n=−∞

n2ĉ†nĉn

and similarly

N∑
j=1

e+iθj −→
+∞∑

n=−∞
ĉn−1ĉ

†
n

N∑
j=1

e−iθj −→
+∞∑

n=−∞
ĉnĉ†n−1

The right-hand side operators represent the same physical processes as the left-hand

side ones. The first one gives the total electron kinetic energy, the second and the

third terms describe the increase and the reduction of the electron momentum by

�k.

The Hamiltonian becomes

Ĥ =
+∞∑

n=−∞

{
1

2ρ̄
n2ĉ†nĉn + i

√
ρ̄

N

(
a†ĉnĉ†n−1 − aĉ†nĉn−1

)}
− δa†a (3.7)

The Heisenberg equations for ĉ and a are

dĉn

dt
= −i[ĉn, H ] = −i

n2

2ρ̄
ĉn +

√
ρ̄

N

(
a†ĉn+1 − aĉn−1

)
(3.8)

da

dt
= −i[a, H ] = iδa +

√
ρ̄

N

∑
n

ĉ†nĉn+1 = iδa + gB (3.9)
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where g ≡
√

ρ̄

N
is the coupling constant and

B ≡
+∞∑

n=−∞
ĉ†nĉn+1 =

∫ 2π

0

Ψ̂†(θ)e−iθΨ̂(θ)dθ (3.10)

is called the bunching operator in analogy to (1.37). The “time” t I have used is

actually

t ≡ z̄ =
4πρ

λw

z =
z

lg

as defined in Eq.(1.31), i.e. the longitudinal position measured in gain lengths. This

definition of a dimensionless time variable will be used for the rest of the chapter.701

3.2 Evolution in Phase Space

I wish to describe our system in the phase space, through the use of the Wigner

function. I start from the definition:

W (x, p, t) =
1

2π

∫ ∞

−∞
e−iξpψ∗

(
x − �

2
ξ, t

)
ψ

(
x +

�

2
ξ, t

)
dξ (3.11)

where ψ(x, t) is the Schroedinger wave function. W has the dimensions of the inverse

of a momentum, since ξp must be a dimensionless quantity.

In our dimensionless phase space variables, (3.11) becomes

W (θ, p̄, t) =
1

2π

1

�k

∫ ∞

−∞
e−iηp̄ψ∗

(
θ − η

2
, t
)

ψ
(
θ +

η

2
, t
)

dη (3.12)

where the integration variable η is now a dimensionless quantity, and p̄ again is the

momentum expressed in units of �k, as defined in (2.9). Notice that W has still the

dimensions of an inversed momentum.

An evolution equation for the Wigner function was found in [20], by using the

theory of Preparata [5] as the starting point.

3.2.1 Preparata Equations

Preparata proposed [5] that the behaviour of the electrons in the FEL can be de-

scribed by a single wave function ψ, in the case of a large electron number, N → ∞.

The wave function ψ is derived from the field operator Ψ̂ defined in (3.4): by build-

ing a quantum field theory for Ψ̂, it turns out that the quantum fluctuations around
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the saddle point path are proportional to 1/
√

N and as such disappear in the limit

N → ∞. The dynamics of the electrons are then governed by the Schroedinger

equation
∂ψ

∂t
=

i

2ρ̄

∂2ψ

∂θ2
− ρ̄

(
Aeiθ − A∗e−iθ

)
ψ (3.13)

where

ψ =
1√
N

Ψ̂ (3.14)

so that ψ is normalized to unity:∫ 2π

0

|ψ(θ)|2dθ = 1 (3.15)

Eq.(3.13) is closed by coupling it to the equation for the scaled radiation field A

dA

dt
=

∫ 2π

0

|ψ(θ)|2e−iθdθ + iδA (3.16)

Here A has too been scaled,

A =
1√
ρ̄N

a (3.17)

The steps used by Preparata to derive (3.13) are briefly summarized in the Appendix.

3.2.2 Evolution of the Wigner Function

Using the Preparata equation (3.13), one can find a closed differential equation for

the Wigner function [20]. Its derivation can be found in Appendix B.

∂W (θ, p̄, t)

∂t
= − p̄

ρ̄

∂W (θ, p̄, t)

∂θ
+ρ̄
(
Aeiθ − A∗e−iθ

) [
W

(
θ, p̄ +

1

2
, t

)
− W

(
θ, p̄ − 1

2
, t

)]
(3.18)

The term p̄ ± 1
2

represents the electron momentum increased or reduced by �k.

Using (2.10), p̄ = ρ̄p, one gets the final form of the evolution equation for the

Wigner function:

∂W (θ, p, t)

∂t
= −p

∂W (θ, p, t)

∂θ
+ρ̄
(
Aeiθ + A∗e−iθ

) [
W

(
θ, p +

1

2ρ̄
, t

)
− W

(
θ, p − 1

2ρ̄
, t

)]
(3.19)

To close the system, (3.19) has to be coupled to an equation for the evolution of the

field A. I use the Wigner function property∫ ∞

−∞
W (θ, p, t)dp = |ψ(θ, t)|2 (3.20)
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and substitute it in the other Preparata equation, (3.16), obtaining

dA

dt
= iδA +

∫ ∞

−∞
dp

∫ +∞

−∞
dθ W (θ, p, t)e−iθ (3.21)

The phase space of this system is periodic over the variable θ, so that problems arise

[30] when using the Wigner function (3.12), since the integral runs from −∞ to +∞
instead of fixed periodic boundaries. This problem cannot be solved by simply

changing the boundaries of the integral, since then the Wigner function would not

have all of its required properties as a quasi-probability density distribution. A way

to solve this problem will be presented at the end of this chapter, using the discrete

Wigner function introduced by Bizarro [10].

3.2.3 Classical Limit: Vlasov Equation

The evolution equation for the Wigner function is found directly from the Preparata

equation for the ψ. It is possible to show that Eq.(3.19) has a classical limit that

appears when ρ̄ tends to infinity, that is indeed the expected physical result [20].

One first observes that

lim
ρ̄→∞

ρ̄

[
W

(
θ, p +

1

2ρ̄
, t

)
− W

(
θ, p − 1

2ρ̄
, t

)]
=

∂W (θ, p, t)

∂p
(3.22)

from the very definition of a partial derivative. Also, from (1.42) and (1.43) one has

θ̇ = p (3.23)

ṗ = −
(
Aeiθ + A∗e−iθ

)
(3.24)

Substituting these equations into Eq.(3.19) one gets

∂W (θ, p, t)

∂t
+ θ̇

∂W (θ, p, t)

∂θ
+ ṗ

∂W (θ, p, t)

∂p
= 0 (3.25)

i.e. the Vlasov Equation for a classical system.

While we have taken the limit for ρ̄ → ∞, the real requirement is only that

1/ρ̄ is much smaller than the scale of variation of p. Going back to physical non-

dimensionless quantities by reverting the universal scaling, this is equivalent to say-

ing that the momentum �k has to be negligible compared to the momentum of the

electrons!

When this is not the case, then it will not be possible to approximate that

finite difference as a derivative and the system will not be described by the classical

equations of the FEL.
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3.3 The Density Matrix and the Quantum Regime

In analogy to (3.4), ψ can be expanded in a Fourier series:

ψ(θ, t) =
1√
2π

∑
n

cn(t)einθ (3.26)

This time the cn are not operators but c-numbers, namely the probability amplitude

of finding an electron in the state |n〉, i.e. with dimensionless momentum n. Inserting

this expansion in the Preparata equation (3.13) one gets the evolution for the cn,

dcn

dt
= − i

2ρ̄
n2cn − ρ̄(Acn−1 − A∗cn+1) (3.27)

With the definition of the density matrix in the momentum representation,

σm,n = c∗mcn (3.28)

one obtains

dσm,n

dt
=

i

2ρ̄
(m2 − n2)σm,n

+ρ̄ [A(σm+1,n − σm,n−1) + A∗(σm,n+1 − σm−1,n)] (3.29)

The equation for the scaled radiation field can be rewritten as well using the density

matrix, inserting (3.26) in (3.16):

dA

dt
=
∑

n

σn−1,n + iδA (3.30)

The system (3.29)-(3.30) can be solved numerically. These simulations show that

the FEL behaves as a two-level system in momentum space, when ρ̄ � 1. This can

be seen in Fig.3.1: only the states of momentum n = 0 and n = −1 are occupied.

3.4 Interaction Picture Approach

The numerical results shown in the previous section are based on the assumption

that the Preparata approach is valid, namely that a single scalar field can be used

to describe the N electrons interacting with a common radiation field.

I use here a different approach to show how the FEL reduces to a two-level

system, starting from the Hamiltonian (3.7). The only requirement of this approach

is to take the bosonic approximation for the electrons.



3.4 Interaction Picture Approach 52

0 20 40 60
0.0

0.5

1.0

1.5

 

 

τ

|A
|2

-20 -15 -10 -5 0 5 10 15
0.00

0.05

0.10

0.15

 

 

P
n

n
0 10 20 30

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 

 

d
e
n
s
it
y

θ

0 20 40 60
0

1

2

3

 

 

|A
|2

τ

-4 -2 0 2 4
0.0

0.2

0.4

0.6

 

 

P
n

n
0 10 20 30

0.0

0.1

0.2

0.3

0.4

0.5

 

 

d
e
n
s
it
y

θ

0 50 100 150 200
0

2

4

6

8

10

 

 

|A
|2

τ

-4 -2 0 2 4
0.0

0.2

0.4

0.6

 

 

P
n

n
0 10 20 30

0.0

0.1

0.2

0.3

 

 

d
e
n
s
it
y

θ

Figure 3.1: Numerical solutions of the system (3.29)-(3.30) for δ = 1, A(0) = 10−4,

cn(0) = δn0 and: (top row) ρ̄ = 10, (middle row) ρ̄ = 1, (bottom row) ρ̄ = 0.2.

Numerical simulation taken from [20]. The left column shows the emitted radiation

|A|2(t). The middle column shows the occupation probabilities Pn = |cn|2 for the

electron momentum levels. The right column shows |ψ(θ)|2 when |A|2(t) is at his

first peak.
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My starting point is the Interaction Picture formalism, which can be used when

the Hamiltonian is the sum of two parts:

Ĥ = Ĥ0 + ĤI (3.31)

where ĤI is the interaction potential. In our case one has

Ĥ0 =
1

2ρ̄

+∞∑
n=−∞

n2ĉ†nĉn − δa†a (3.32)

and

ĤI = i

√
ρ̄

N

+∞∑
n=−∞

(
a†ĉnĉ†n−1 − aĉ†nĉn−1

)
(3.33)

It is then possible to define the interaction picture Hamiltonian

ĤIP (t) = eiĤ0t ĤI e−iĤ0t (3.34)

This is particularly useful because it allows to write perturbation series involving

only the interaction potential, which is usually proportional to a small coupling con-

stant. For an operator M̂ (which is not explicitely time-dependent) the perturbation

expansion is

M̂HP (t) = M̂IP (t) + i

∫ t

0

dt1[HIP (t1), M̂IP (t)]

+i2
∫ t

0

dt1

∫ t1

0

dt2[HIP (t1), [HIP (t2), M̂IP (t)]] + ... (3.35)

where

M̂IP (t) = eiĤ0t M̂SP e−iĤ0t (3.36)

is the operator in the Interaction Picture (M̂SP is the operator in the time-independent

form of the Schroedinger picture). The time evolution of M̂IP is usually easy to find

as it depends only on the non-interacting Hamiltonian Ĥ0:

i
d

dt
M̂IP = [M̂IP , Ĥ0]

A similar perturbation series can be written also for the transition amplitudes from

an initial state |i〉 to a final state |f〉 at time t:

φ(f, t|i, 0) = 〈f |
∞∑

m=0

(
1

i

)m ∫ t

0

dt1

∫ t1

0

dt2...

∫ tm−1

0

dtmHIP (t1)HIP (t2)...HIP (tm)|i〉

(3.37)
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or for the density matrix1:

σIP (t) = σ0 +
1

i

∫ t

0

dt1[HIP (t1), σ0] +
1

i2

∫ t

0

dt1

∫ t1

0

dt2[HIP (t1), [HIP (t2), σ0]] + ...

(3.38)

Using (3.32) and (3.33) in (3.34) (see Appendix C for the details) one gets the

interaction picture Hamiltonian for this system:

ĤIP (t) = i

√
ρ̄

N

∞∑
n=−∞

{
a†ĉnĉ†n−1 exp

[
i

(
2n − 1

2ρ̄
+ δ

)
t

]
− h.c.

}
(3.39)

The time-dependence of ĤIP (t) comes from an imaginary exponential and its Her-

mitian conjugate, whose argument is proportional to

2n − 1

2ρ̄
+ δ =

1

2ρ̄

(
mc(γn − γr)

�k
− 1

)

where mcγn is the momentum in physical units corresponding to the discrete mo-

mentum n.

Each order of the perturbation series (3.35)-(3.38) is then related to the integral∫ τ

0

exp

{
±i

(
2n − 1

2ρ̄
+ δ

)
t

}
dt =

∫ τ

0

exp

{
± i

2ρ̄

(
mc(γn − γr)

�k
− 1

)
t

}
dt

(3.40)

When ρ̄ becomes small, the imaginary exponential in (3.40) rapidly oscillates, so

that its contribution averages to zero. The only case when this does not happen is

when the numerator of the argument of the exponential is of the same order of ρ̄,

or smaller. When ρ̄ is smaller than unity, there is only one value of n that makes

the exponential stationary. This value, that I name ñ, is the one that makes the

argument of the exponential equal to zero:

2ñ − 1

2ρ̄
+ δ = 0

⇓

ñ = −ρ̄ δ +
1

2

In terms of the energy γ this corresponds to

mcγñ = mcγr +
�k

2
(3.41)

1At time t = 0 the three different pictures coincide, so that σ0 ≡ σHP = σSP (0) = σIP (0).
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Thus of the sum over n in (3.39) only the ñ-th term gives any contribution to the

perturbation series, and the system behaves as if its interaction picture Hamiltonian

were

ĤIP = i

√
ρ̄

N

(
a† ĉñĉ†ñ−1 − a ĉ†ñĉñ−1

)
(3.42)

When the system is tuned as in the simulations seen in Fig.3.1, the detuning is

δ =
1

2ρ̄
i.e. mcγ0 = mcγr +

�k

2
(3.43)

then the two momentum levels allowed for the electrons are

ñ → mcγ0

ñ − 1 → mcγ0 − �k

Thus, at resonance, an electron will only be able to emit a single photon, shifting

from the initial state to a lower energy state. Once in the lower energy state, it

will not be able to emit any more photons, but only to absorb one to go back to its

initial energy state.

3.5 Two-level systems

The Hamiltonian (3.42) I have just found is indeed the well-known interaction Hamil-

tonian of a two-level system coupled to radiation [28, 29]. For such a system, both

Ĥ0 and ĤI are constants of motion, as [Ĥ0, ĤI ] = 0. This implies that the interac-

tion picture Hamiltonian is time independent. It can be rewritten in a more compact

form:

HI = ĤIP = ig
(
a† R− − a R+

)
(3.44)

where I have defined the operators

R+ ≡ ĉ†ñĉñ−1 (3.45)

R− ≡ ĉñĉ†ñ−1 (3.46)

and the coupling constant g ≡
√

ρ̄

N
.

The R± operators follow the angular momentum algebra

[R+, R−] = D (3.47)

[D, R±] = ±2R± (3.48)
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Here D is the population difference operator

D ≡ ĉ†ñĉñ − ĉ†ñ−1ĉñ−1 (3.49)

According to (3.44), of all the electrons in the FEL, only those with momentum ñ

or ñ−1 interact with the photons of the laser field: thus I can consider all electrons

to be either in the energy level corresponding to ñ or ñ−1. An electron can go from

the lower level to the higher level, absorbing a photon, or from the higher level to

the lower level, emitting a photon.

This gives two constants of motion:

N̂ ≡ ĉ†ñĉñ + ĉ†ñ−1ĉñ−1 (3.50)

i.e. the total number of electrons, and

M̂ ≡ 1

2
D + a†a (3.51)

This equation implies that everytime a photon is created or destroyed, an electron

has changed its level and thus the population difference has changed by 2.

A pure state of this system is labeled by three variables: n2 and n1 as the

number of electrons respectively in the higher and lower state, and n as the number

of photons. In this way

N̂ |n2, n1, n〉 = N |n2, n1, n〉 where N = n1 + n2 (3.52)

M̂ |n2, n1, n〉 = M |n2, n1, n〉 where M = n +
1

2
(n2 − n1) (3.53)

Since N and M are constants, I can write n2 and n1 as functions of the number of

photons n:

n1 =
N

2
− (M − n) (3.54)

n2 =
N

2
+ (M − n) (3.55)

Thus one can label a state with only one variable: |n〉 ≡ |n, N, M〉. The operators

in the interaction Hamiltonian act on these states by raising or lowering its label:

aR+|n〉 = αn|n − 1〉 (3.56)

a†R−|n〉 = αn+1|n + 1〉 (3.57)

where

αn =
√

n n1(n2 + 1) =

√
n

(
N

2
+ M − n + 1

)(
N

2
− M + n

)
(3.58)
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3.5.1 Perturbation Series

I use the two-level system Hamiltonian HI in the perturbation series (3.38). HIP is

now time-independent, so the series simplifies greatly:

σ(t) = σ0 +
1

i
[HIP , σ0]

∫ t

0

dt1 +
1

i2
[HIP , [HIP , σ0]]

∫ t

0

dt1

∫ t1

0

dt2 + . . . =

= σ0 − it[HIP , σ0] +
(−it)2

2!
[HIP , [HIP , σ0]] + . . . =

=

∞∑
m=0

(−it)m

m!

m∑
k=0

(−1)k

(
m

k

)
Hk

IP σ0 Hm−k
IP = (3.59)

=

∞∑
m=0

(
t

√
ρ̄

N

)m m∑
k=0

(−1)k

k!(m − k)!

(
a† R− − a R+

)k
σ0

(
a† R− − a R+

)m−k

From the density matrix it is possible to extract the expectation value of any operator

by taking the trace of their product over the system degrees of freedom:

〈X〉 = Tr{σ(t)X} (3.60)

In the classical approach briefly described in the first chapter, I was looking for the

time evolution of the scaled field intensity |A|2. Its equivalent in this fully quantum

analysis is given by the average number of emitted laser photons. Using (3.59) and

(3.60) one gets

〈a†a〉t = Tr{σ(t)a†a} = (3.61)

=

∞∑
m=0

(
t

√
ρ̄

N

)m m∑
k=0

〈n0|
(
a R+ − a† R−)k a†a

(
a† R− − a R+

)m−k

k!(m − k)!
|n0〉

The states |n〉 are orthonormal, i.e. 〈n|m〉 = δnm. This together with (3.56) and

(3.57) means that

〈n|
(
a† R− − a R+

)k |n〉 = 0

when k is odd. Thus, only the even terms of the series (3.61) do not vanish:

〈a†a〉t =
∞∑

m=0

(
t

√
ρ̄

N

)2m 2m∑
k=0

〈n0|
(
a R+ − a† R−)k a†a

(
a† R− − a R+

)2m−k

k!(2m − k)!
|n0〉

(3.62)

This infinite series cannot be exactly summed, but it is possible to cut it at some

order for times t small enough. At second order, this gives

〈a†a〉t � n0 +
(
α2

n0+1 − α2
n0

) ρ̄

N
t2 (3.63)
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With an initial state where all electrons are in the upper level and there are no laser

photons (spontaneous emission), M = N/2 and n0 = 0, the emitted photons are

〈a†a〉t � ρ̄t2 (3.64)

This result shows how spontaneous emission is naturally found in a quantum picture,

even when there is no initial field.

It is possible to get a rough estimate of the time region of validity for the second

order approximation, i.e. for which times it is correct to cut the perturbation series.

This is done by taking the greater term in the series (3.62), which is

(
ρ̄ t2

N

)m 〈n0| (aR+)
m

a†a
(
a†R−)m |n0〉

m!2
=

(
ρ̄ t2

N

)m
(n0 + m)

m!2

(
m∏

j=1

αn0+j

)2

(3.65)

For the case of M = N/2 and n0 = 0, the coefficient αn can be approximated as

αn � n
√

N

where I also have taken the assumption that N � n. The highest term in the sum

over k in the series (3.62) is then(
ρ̄ t2

N

)m
mNmm!2

m!2
= m

(
ρ̄ t2
)m

(3.66)

To be able to cut the series at m = 1 I need to show that the order m = 2 is

much smaller than the order m = 1. Approximately, this is true when t � ρ̄−1/2.

Thus the smaller the parameter ρ̄ is, the longer it will be valid the second order

approximation. This is in agreement with the fact that the coupling parameter in

the interaction Hamiltonian is proportional to
√

ρ̄.

However, cutting the perturbation series at some order cannot give the typical

exponential growth behaviour that is typical of the SASE; to investigate it in the

quantum regime I need to use the two-level Hamiltonian in a different way.

3.5.2 Transition Amplitudes

Since the Hamiltonian in the interaction picture is time-independent, the perturba-

tion series (3.37), that allows to calculate transition amplitudes, assumes a simple
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and compact form:

φ(f, t|i, 0) = 〈f |
∞∑

m=0

(
1

i

)m ∫ t

0

dt1

∫ t1

0

dt2...

∫ tm−1

0

dtmHIP (t1)HIP (t2)...HIP (tm)|i〉

= 〈f |
∞∑

m=0

(−iHI)
m

∫ t

0

dt1

∫ t1

0

dt2...

∫ tm−1

0

dtm|i〉

= 〈f |
∞∑

m=0

(−iHIt)
m

m!
|i〉

= 〈f |e−iHI t|i〉 (3.67)

Again, I am mainly interested in photon statistics, specifically the transition ampli-

tude from an initial state with n0 photons and a final one with n photons:

φn(t) ≡ 〈n|e−iHI t|n0〉

Instead of directly trying to get an explicit expression for φn(t), I look for a finite

difference - differential equation, that could be solved numerically or even analitically

under some approximations. I differentiate the transition amplitude with respect to

time:
d

dt
φn(t) = 〈n|(−iHI)e

−iHI t|n0〉

and with (3.56) and (3.57), I obtain

d

dt
φn(t) = 〈n|g(a†R− − aR+)e−iHI t|n0〉

= g {〈n + 1|αn+1 − 〈n − 1|αn} e−iHI t|n0〉
= gαn+1φn+1(t) − gαnφn−1(t) (3.68)

where αn is given by (3.58). The φn will have to be normalized according to∑
n

|φn(t)|2 = 1

I make the following physical assumptions:

1. At time zero all the electrons are in the excited energy state ñ:

n2 = N n1 = 0

2. I consider only spontaneous radiation, that is the initial number of photons n0

is equal to zero.
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3. The number of electrons is very large, N � 1.

Then M = N/2 and equation (3.68) simplifies to

φ̇n(τ) =
√

N − n
[
(n + 1)φn+1(τ) − nφn−1(τ)

]
(3.69)

where I have also introduced the scaled time τ :

τ ≡ gt =

√
ρ̄

N

z

lg
(3.70)

Once the probability amplitudes φn(τ) are found, the average number of photons

emitted at time τ is given by

〈n〉τ =

N∑
n=0

n|φn(τ)|2

The sum over n runs from zero to N because those are the only allowed physical

states: once all electrons have shifted to the lower state and N photons have been

emitted, no more energy can be transferred from the electron beam to the laser field.

In general, if I had taken a different distribution of electrons in the two levels

and a different initial number of photons, the two extremes of the sum would have

been different, namely

nmin =

⎧⎪⎪⎨
⎪⎪⎩

n0 −
N

2
+ M if n0 >

N

2
− M

0 otherwise

nmax = n0 +
N

2
+ M

This is consistent with nmin = 0 and nmax = N for our chosen case of n0 = 0 and

M = N/2.

I will now apply some mathematical tools, described in [28, 29], to give two approx-

imated solutions to Eq.(3.69), one for short times and a more general one.

3.5.3 Short time solution

A solution of (3.69) can be found as long as the number of photons n can be ne-

glected compared to the total electron number N . This is valid long before the

first saturation peak of the FEL, where usually n is of the order of ∼ N . Eq.(3.69)

simplifies to

φ̇n(τ) =
√

N
[
(n + 1)φn+1(τ) − nφn−1(τ)

]
(3.71)
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and
√

N can be absorbed redefining time. Then the solution is (see [28, 29])

φn(τ) = (−i)n tanhn(
√

N τ) sech(
√

N τ) (3.72)

and the average photon number is

〈n〉τ = sinh2(
√

N τ) (3.73)

Since this solution is only valid for n � N , I can use (3.73) to specify this time:

sinh2(
√

N τ) � N ⇒ τ � τs =
ln 2N

2
√

N

In terms of physical units, this is equal to

z � zs �
√

N

ρ̄

ln 2N

2
√

N
lg =

ln 2N

2
√

ρ̄
lg (3.74)

For an electron beam of N ∼ 106 electrons and a quantum parameter ρ̄ ∼ 0.1 this

gives an estimate of

zs � 23 lg (3.75)

3.5.4 Long time solution: classical radiation field

A solution valid at all times for (3.69) is possible, provided that I make further

approximations. At the end, we will see how these approximations effectively cor-

respond to treating the radiation field as classical. Through some substitutions the

differential equation can be rewritten, into a simpler form; the details of the pas-

sages required to do this are in Appendix D. After these manipulations, one gets

the equation

Λ̇(ϑn, τ) = G(ϑn)
{

Λ(ϑn−1, τ) − Λ(ϑn+1, τ)
}

(3.76)

where

Λn(t) ≡ (−i)n
√

G(n) φn(t) (3.77)

The functions Λ(ϑn, τ) and the physical amplitudes φn(τ) are directly related, so

that finding one univocally gives the other. G(ϑn) is a fixed function, defined in

(D.3). The new variable ϑn is

ϑn ≡ arcsin

√
n

N
(3.78)
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The key passage now is to transform the discrete variable ϑn into the continuous

variable ϑ. This is acceptable because the variation of ϑn is very small:

Δϑn = ϑn+1 − ϑn � 1√
(n + 1)(N − n + 1)

(3.79)

in fact

Δϑn ≤ 1√
N

� 1

Thus I assume that the “angle” ϑn has continuous variation, and Eq.(3.76) becomes

∂Λ(ϑ, τ)

∂τ
= −G(ϑ)Δ(ϑ)

∂Λ(ϑ, τ)

∂ϑ
(3.80)

where

Δ(ϑ) =
1√

(1 + N sin2 ϑ)(1 + N cos2 ϑ)
(3.81)

G(ϑ) = (1 + N cos2 ϑ)
√

1 + N sin2 ϑ (3.82)

This equation can be solved by first changing to the variable

u(ϑ) =

∫ ϑ

0

dϑ′

G(ϑ′)Δ(ϑ′)

so that it takes the simple form

∂Λ

∂τ
= −∂Λ

∂u

Its solution is

Λ(u, τ) = Λ(u − τ, 0) ≡ Λ0(u − τ)

The function |Λ(u, τ)|2 can be intepreted as the probability distribution in the space

u, as it can be seen by ∫
|Λ(u, τ)|2du =

∑
n

|φn(τ)|2 = 1

where I have used the definition (3.77) of Λ(u, τ).

It is then possible to use |Λ0(u− τ)|2 to calculate all the moments of the photon

distribution :

〈nk〉t =
∑

n

nk|φn(t)|2 =

∫
nk(u)|Λ0(u − gt)|2du (3.83)
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The quantity n(u) is found by reversing the definitions of ϑn and u(ϑ):

n(u) = N cn2

(√
ρ̄ (u − T ), 1 − 1

N

)
(3.84)

where cn(x, k) is one the Jacobi elliptic functions, and

T � ln(4
√

N)√
N

(3.85)

The initial condition for the probability amplitudes can be approximated by a pure

state with zero photons, i.e. φn(0) = δn0. Going to the space of ϑ and then u, this

initial condition remains sharply peaked around a central value, so that

Λ0(u − τ) � δ(u − τ)

Inserting this into (3.83) and using (3.84), I finally obtain the mean photon number:

〈n〉t =

∫
n(u)δ(u − τ)du = N cn2

(√
ρ̄ (t − T ), 1 − 1

N

)
(3.86)

When the parameter k of the function cn(x, k) is very close to 1, as in our case,

its shape becomes that of an infinite series of identical sharp spikes. Each peak is

separated from its neighbour by 2T . Each spike in this train of pulses has the form

of an hyperbolic secant:

〈n〉j � N sech2
{√

ρ̄ [t − (2j + 1)T ]
}

(3.87)

j = 0, 1, . . .

Comparing this result to the numerical simulations of Eqs.(3.29) and (3.30) one can

see that there is a perfect match.

It is important to clarify the meaning of the approximations I used to obtain this

result. The equations (3.29)-(3.30) used a classical radiation field, represented by

the complex number variable A. Equation (3.86) instead comes from a model where

the annihilation and creation operators a, a† are used, i.e. a quantum discrete field.

Why then did I find the same result for |A|2 and 〈a†a〉?
The answer lies in the approximation of a continuous ϑ instead of a discrete ϑn,

essentially neglecting the discreteness of the photon number. It is then no surprise

that this corresponds to treating the radiation field as a classical one.
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Figure 3.2: The solid line is the analytical solution (3.86). The square dots are the

numerical solutions of the system (3.29)-(3.30). ρ̄ = 0.1
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3.5.5 Diagonalization of the Interaction Hamiltonian

I wish to avoid the approximation of a classical radiation field, as this could hide

some quantum effects rising from the discreteness of the photon number.

An interesting approach to the problem of finding the transition amplitudes for

a two-level system coupled to radiation is due to D.F. Walls and R. Barakat [9].

Briefly, since in such a system H0 and HI commute, it is possible to build a diagonal

representation of H , as H0 and HI have the same eigenstates. Once this diagonal

representation is found, it is straightforward to solve the associated Schroedinger

equation and get all the transition probabilities.

I assume again the case of a fully excited electron beam (n2 = N , n1 = 0) and

no initial radiation field (n0 = 0). The physical states (that are eigenstates of the

Hamiltonian) are

|n〉 ≡ |n; n2 = N − n; n1 = n〉

The Hamiltonian is given by taking (3.32) and (3.33) for the electron levels 0 and

−1:

H0 =
1

2ρ̄

(
ĉ†−1ĉ−1 − a†a

)
(3.88)

HI = i

√
ρ̄

N

(
a† ĉ0ĉ

†
−1 − a ĉ†0ĉ−1

)
(3.89)

Notice that the system is at resonance, δ =
1

2ρ̄
.

Since H0|n〉 = 0, I can take H ≡ HI . Grouping the states |n〉 in one single vector

−→
Ψ =

⎛
⎜⎜⎜⎜⎝

|0〉
|1〉
...

|N〉

⎞
⎟⎟⎟⎟⎠ (3.90)
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the Hamiltonian can take the matrix form H
−→
Ψ = H

−→
Ψ:

H = i

√
ρ̄

N

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 α1 0 0 0 .

−α1 0 α2 0 0 .

0 −α2 0 α3 0 .

0 0 −α3 0 .

. . . .

. .

. αN−1 0

. −αN−1 0 αN

. 0 −αN 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.91)

This matrix was derived from (3.56)-(3.57):

HI |n〉 = i

√
ρ̄

N
(αn+1|n + 1〉 − αn|n − 1〉)

where αn in this particular case is

αn = n
√

N − n + 1

H can be diagonalized, i.e. there is an orthonormal matrix U such that

UHU
	 = diag(λ0, λ1, . . . , λN) (3.92)

Since the matrix H is imaginary and anti-symmetrical, its eigenvalues λj are all real.

Notice that the λj already “include” the factor i
√

ρ̄/N . The eigenstates of H are

then given by
−→
Φ = U

−→
Ψ (3.93)

where the components of the vector
−→
Φ are the single eigenstates for each eigenvalue

λj:

−→
Φ =

⎛
⎜⎜⎜⎜⎝

|λ0〉
|λ1〉

...

|λN〉

⎞
⎟⎟⎟⎟⎠ (3.94)

so that

H|λj〉 = λj|λj〉 (3.95)

These states are orthonormal:

〈λj|λl〉 = δjl (3.96)
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I can then expand any physical state |n〉 as a linear combination of these eigenstates,

using (3.93):

|n〉 =

N∑
j=0

Ujn|λj〉 (3.97)

where Ujn are the elements of the matrix U.

I am ready now to evaluate the transition probabilities of our system: the prob-

ability of having n photons at time t is

|φn(t)|2 = 〈n|e−iHt|0〉 =

∣∣∣∣∣
N∑

j=0

Uj0Ujne
−iλjt

∣∣∣∣∣
2

(3.98)

where I had to expand both the initial and final state over the |λj〉.
While (3.98) is an analytically exact result, the only way to obtain the trans-

formation matrix U is through numerical computation. The big advantage of this

procedure is that once the components Ujn and consequently the eigenvalues λj are

determined, the evolution of the system at all times is exactly known, with no need

of further calculations.

3.5.6 Numerical computation: quantum effects

Computing numerically the matrix elements Ujn shows an interesting effect: using

equation (3.98) to get the transition probabilities and then evaluating the average

photon number, a quite different result from (3.86) is found. As it can seen in

Fig.3.4, the numerically found 〈n〉 starts by closely following the hyperbolic spike,

but at some point before saturation it starts to change and from the third spike

onwards the two results completely diverge.

This is due to the fact that this time the discreteness of the photon number

was not neglected, and thus quantum effects arise. Zooming out the numerical

calculation up to longer times, it is possible to see that the photon number undergoes

fixed periodical revivals, so that the seemingly quite chaotic behaviour on the short

time scale is replaced by a pattern on a longer time scale.

3.6 The discrete Wigner function

I will now go back to a description of the FEL in phase space, in order to obtain

further physical information about its quantum regime.



3.6 The discrete Wigner function 68

Figure 3.3: The solid line is the normalized photon number (3.86) found neglecting

its discreteness (semiclassical approximation). The Xs are the numerical data given

by (3.98). The first spike is quite similar, but soon they completely differ.
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Figure 3.4: Numerical data from (3.98), the photon number on a long time scale. A

pattern of quantum revivals appear.
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The definition (3.11) of the Wigner function, introduced to describe the evolution

of the quantum FEL, is normally used when dealing with non-periodic variables

(q, p). It is known [30] that problems arise with the Wigner function when applying

it to periodical variables, as it is in our case2. This can already be seen in (3.11),

where the integral over η runs from −∞ to +∞, but η is then summed or subtracted

from the angle θ, which ranges in the interval [0, 2π) due to the periodicity of the

wiggler.

To solve this problem, it is possible to define a discrete Wigner function, following

the work of Bizarro [10]:

Wk(θ) =
1

π

∫ +π/2

−π/2

e−2ikθ′ψ∗(θ − θ′)ψ(θ + θ′)dθ′ (3.99)

The momentum is now discrete instead of continuous, as represented by the label

k. It can be verified that this definition keeps the required properties of the Wigner

function as a quasi-probability distribution, such as:∫ +π

−π

Wk(θ, t)dθ = |ck(t)|2 (3.100)

+∞∑
k=−∞

Wk(θ, t) = |ψ(θ, t)|2 (3.101)

i.e. summing over one of the two variables give the probability distribution of the

other. This implies the normalization of the discrete Wigner function

+∞∑
k=−∞

∫ +π

−π

Wk(θ, t)dθ = 1 (3.102)

It is possible and useful to rewrite Wk(θ, t) as a function of the transition amplitudes

ck(t) using the Fourier expansion (3.26) of the Schroedinger wavefunction:

ψ(θ, t) =
1√
2π

∑
n

cn(t)einθ

Inserting this in the definition of Wk(θ, t) one obtains3

Wk(θ, t) =
1

2π

∑
n,m

c∗n(t)cm(t)e−i(n−m)θsinc

[(
k − n + m

2

)
π

]

2The periodicity of θ comes from the fact that the wiggler potential is itself periodical.
3sinc(x) ≡ sin x

x .
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=

1∑
μ=0

+∞∑
n=−∞

sinc
[(

k − n − μ

2

)
π
]
wn+μ/2(θ, t)

= wk(θ, t) +
+∞∑

n=−∞
sinc

[(
k − n − 1

2

)
π

]
wn+1/2(θ, t) (3.103)

where

wn+μ/2(θ, t) ≡
1

2π

+∞∑
j=−∞

c∗n+j+μ(t)cn−j(t)e
i(2j+μ)θ ; μ = 0, 1 (3.104)

I will call the functions wn(θ, t) (i.e. for μ = 0) integer and the functions wn+1/2(θ, t)

(i.e. for μ = 1) half-integer. I will show now the relevant properties of these functions

and why they are important for the analysis of the two-level FEL.

3.6.1 Some properties

These integer and half-integer functions wn+μ/2 are orthogonal to each other:∫ +π

−π

wm(θ, t)wn+ 1
2
(θ, t)dθ = 0 ∀ n, m

and contain all the information needed to determine Wk(θ, t). The classical probabil-

ities for the momentum and the phase can be derived directly from the wk+μ/2(θ, t)

too:

|cm(t)|2 =

∫ +π

−π

{wm(θ, t) + wm+ 1
2
(θ, t)}dθ (3.105)

|ψ(θ, t)|2 =
+∞∑

m=−∞
{wm(θ, t) + wm+ 1

2
(θ, t)} (3.106)

The expectation value of any quantum operator X̂ can be expressed through the

wm+μ/2(θ, t):

〈X̂〉 =

1∑
μ=0

+∞∑
m=−∞

∫ +π

−π

Xm+μ/2(θ) wm+μ/2(θ)dθ (3.107)

where the function Xm+μ/2(θ) is given by

Xm+μ/2(θ) ≡
∫ +π

−π

e−i(2m+μ)θ′〈θ + θ′|X̂|θ − θ′〉dθ′

≡
+∞∑

m′=−∞
e−i(2m+μ)θ′〈m − m′|X̂|m + m′ + μ〉
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3.6.2 Evolution equations

The importance of the integer and half-integer Wigner functions wk+μ/2(θ, t) is that

it is possible to find a partial differential equation describing their evolution, while

the same cannot be accomplished for the normal Wigner function Wk(θ, t).

I use the equations (3.27) for the amplitudes cn(t) together with the definition

(3.104) to obtain

∂wm+μ/2

∂t
= −

(
m + μ/2

ρ̄

)
∂wm+μ/2

∂θ
+ ρ̄

(
Aeiθ + A∗e−iθ

){
wm+ μ+1

2
− wm+ μ−1

2

}
(3.108)

This shows how each function wk+μ/2 is connected to its two neighbouring functions

wm+ μ+1
2

and wm+ μ−1
2

. It is important to notice that in this section I have reverted

to using the classical field A to represent the laser field, instead of the annihilation

and creation operators a and a†. This has been done for simplicity and to allow the

numerical simulation of the Wigner functions evolution.

The bunching of the electron beam can be written in this new formalism as well,

using Eq.(3.107):

〈e−iθ〉 =

+∞∑
m=−∞

∫ +π

−π

e−iθwm+1/2(θ, t)dθ (3.109)

so that Eq.(3.108) can be closed by coupling it to the radiation field by substituting

(3.109) in (1.44):

dA

dt
= iδA +

+∞∑
m=−∞

∫ +π

−π

e−iθwm+1/2(θ, t)dθ (3.110)

3.6.3 Two-level approximation

To apply this new formalism to the two-level system regime I consider that only c0

and c−1 have non-zero values, that is

ψ(θ, t) =
1√
2π

{
c0(t) + c−1(t)e

−iθ
}

Then from the definition of wk+μ/2 I have to take only the terms with μ = 0 and

k = 0,−1, or μ = 1 and k = −1

w0 =
1

2π
c∗0c0

w−1 =
1

2π
c∗−1c−1

w−1/2(θ) =
1

2π

{
c∗−1c0e

−iθ + c∗0c−1e
iθ
}
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and the discrete Wigner function becomes

Wm(θ) = wm +
(−1)m

(m + 1
2
)π

w−1/2(θ) (3.111)

The Wigner function appears now divided in a classical and a quantum part: the

wm are the classical probabilities of finding an electron in the momentum state m,

and the wm+1/2(θ) represent the quantum interference between the two states. For

m �= 0,−1 the Wigner function is made up only of interference terms proportional

to w−1/2.

I use as new variables the normalized population difference D and the bunching

B defined in (3.10):

D = n0 − n−1 = 2π (w0 − w−1) (3.112)

B = 〈e−iθ〉 =

∫ +π

−π

e−iθw−1/2(θ)dθ = c0c
∗
−1 (3.113)

where n0 ≡ c∗0c0 and n−1 ≡ c∗−1c−1 are the occupation probabilities of the two

momentum states.

From the equations (3.27) for the cn(t) and (3.110) for the field A one gets a set

of Maxwell-Bloch type equations:

Ḋ = −2ρ̄(AB∗ + A∗B)

Ḃ = ρ̄AD +
i

2ρ̄
B

Ȧ = B + iδA

I can rescale these quantities absorbing the ρ̄ and δ parameters:

A′ =
√

ρ̄Ae−iδt (3.114)

B′ = Be−iδt (3.115)

t′ =
√

ρ̄t (3.116)

θ′ = θ − δt (3.117)

The equations for the rescaled variables are

Ḃ′ = −i

(
δ − 1

2ρ̄

)
B′ + DA′ (3.118)

Ḋ = −2 (A′B′∗ + A′∗B′) (3.119)

Ȧ′ = B′ (3.120)
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At resonance δ = 1/2ρ̄ the three variables can be taken consistently as real since all

of their derivates will be real as well. Then the previous equations become

Ḃ′ = A′D (3.121)

Ḋ = −4A′B′ (3.122)

Ȧ′ = B′ (3.123)

This system of equations has two integrals of motion:

Λ ≡ A′2 +
D

2
(3.124)

Υ ≡
√

D2 + 4B′2

2
(3.125)

It can be solved (see D.12 to D.23) under the approximation of Λ2 � Υ2. The

solution for the squared field potential is

|A|2(t) =
2Λ

ρ̄
sech2

{√
2ρ̄Λ(t − tmax)

}
(3.126)

The time tmax is the point where |A|2 reaches its maximum. The values of tmax and

Λ depend on the choice of the initial conditions A′(0) and D(0). The population

difference D and the bunching B can then be found using the integrals of motion

(3.124) and (3.125). As previously seen in (3.87), the field intensity grows in time

as a squared hyperbolic secant, whose argument is proportional to
√

ρ̄. Thus the

smaller ρ̄ is, the slower will be the exponential growth of the emitted radiation.

I can now go back to the Wigner function (3.111): I rewrite it using the variables

(3.113)-(3.112):

w0(t) =
1 + D(t)

4π
(3.127)

w−1(t) =
1 − D(t)

4π
(3.128)

w−1/2(θ, t) =
1

π
B(t) cos θ (3.129)

and

W0(θ, t) =
1

2π

{
1 + D(t)

2
+

4

π
B(t) cos θ

}
(3.130)

W−1(θ, t) =
1

2π

{
1 − D(t)

2
+

4

π
B(t) cos θ

}
(3.131)

I have explicited the time-dependence to show more clearly how the evolution of the

Wigner function is directly given by the solution of the system (3.121)-(3.123).
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Figure 3.5: Quantum Regime ρ̄ = 0.1, δ = 1/2ρ̄ = 5. (a) Scaled field intensity

ρ̄|A|2 and electron bunching |B| vs z′ =
√

ρ̄t. . (b) w0(z
′) (continuous line), w−1(z

′)

(dashed line), w−1/2(z
′) (dotted line).
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Figure 3.6: Classical Regime ρ̄ = 5, δ = 0.
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3.6.4 Negative Wigner Function

For a classical system, the Wigner function is positive everywhere in phase space and

assumes the role of the probability density distribution, while for quantum system

this does not hold true and it can become negative in certain zones of the phase

space. It is then interesting to find out when W0,−1 becomes negative, i.e. when

the system displays a strictly quantum behaviour, due to the interference between

the two levels. I use the integral of motion (3.125), assuming an initially unbunched

beam (B = 0) and all electrons in the higher momentum level (D = 1), so that

D2 + 4B2 = 1 and thus

|B| =

√
1 − D2

4
=

√
n0n−1

Then I get

W0(θ, t) < 0 when
n−1

n0
> αθ ≡

π2

16 cos2 θ

W−1(θ, t) < 0 when
n−1

n0
<

1

αθ

or, using n0 + n−1 = 1 to get the most compact form,

Wm(θ, t) < 0 when nm <
1

1 + αθ

(3.132)

where nm = c∗mcm is the number of electrons in the level m.

It is now possible to get the values of n0 and n−1 that make both W0(θ) and

W−1(θ) negative; since n0 + n−1 = 1, one gets:

nm <
1

1 + αθ

1 − nm <
1

1 + αθ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⇒ αθ

1 + αθ
< nm <

1

1 + αθ
(3.133)

which implies also that

αθ < 1 =⇒ | cos θ| >
π

4
(3.134)

Eq.(3.133) implies that there will be quantum interference between the two different

momentum states only when the electrons are nearly evenly splitted between the

two levels. This is in accordance with the requirement that the oscillating part

of the discrete Wigner function is not negligible compared to its classical part: as
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w−1/2(θ) is proportional to the bunching B = ±√
n0n−1, its maximum is given by

n0 = n−1 = 1/2.

Notice that even if W0 and W−1 are negative, the total sum
∑

k Wk still gives a

positive value, that is |ψ(θ)|2, thanks to all the other infinite interference terms:

∑
k

Wk(θ) = w0 + w−1 +
w−1/2(θ)

π

∑
k

(−1)k(
k + 1

2

)
=

1

2π

[
1 + c∗−1c0e

−iθ + c−1c
∗
0e

iθ
]

= |ψ(θ)|2 (3.135)



Chapter 4

The Energy Spread

Until now we have considered a monoenergetic electron beam, where all electrons

entered the FEL undulator with the same momentum: a single fixed parameter, δ,

described the detuning between the resonant energy γr and the initial energy γ0 of

the electrons.

I wish to generalize the models used until now to include the more realistic

situation of an initial broad distribution for the electron energy, where each electron

will be allowed to have a different momentum upon entering the wiggler.

4.1 A simple inhomogeneous FEL model

A first approach starts from the Preparata model introduced in the last chapter,

using a complex wavefunction ψ(θ, z̄, z1) to describe the electrons and a dimension-

less classical radiation field A(z̄, z1) for the photons. The evolution of the system is

given by equations (3.13) and (3.16):

∂ψ

∂z̄
=

i

2ρ̄

∂2ψ

∂θ2
− ρ̄

(
Aeiθ − A∗e−iθ

)
ψ (4.1)

∂A

∂z̄
+

∂A

∂z1
=

∫ 2π

0

|ψ(θ)|2e−iθdθ + iδA (4.2)

Notice that propagation has been included in the equation for the radiation field

through the partial derivative in z1, and that I have gone back to the notation of the

universal scaling introduced in the first chapter, that is z̄ = z/lg is the longitudinal

position measured in gain length and z1 = (z− v‖t)/lc is the dimensionless retarded

time.

79
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The dependence on the detuning δ is shifted from the equation for the field to

the one for the wavefunction, through the substitution

Ā = Ae−iδz̄

so that the equation for the field becomes

∂Ā

∂z̄
+

∂Ā

∂z1
=

∫ 2π

0

|ψ(θ)|2e−iθdθ (4.3)

Before extending the model to take into account an energy distribution for the

electrons, it is convenient to expand ψ(θ, z̄, z1) in a Fourier series:

ψ(θ, z̄, z1) =
1√
2π

∑
n

cn(δ, z̄, z1)e
in(θ+δz̄) (4.4)

The coefficients cn(δ, z̄, z1) give the complex probability amplitude to find an electron

in the state of momentum n and detuning δ. That is, I am still using the discrete

momenta n, but with a continuous distribution of different detunings to represent

the different electron momenta. The evolution equation for the cn is found by

substituting (4.4) in the Schroedinger-like equation of the ψ:

∂cn(δ)

∂z̄
= −in

(
n

2ρ̄
+ δ

)
cn(δ) − ρ̄[Ācn−1(δ) − Ā∗cn+1(δ)] (4.5)

This equation is coupled to the generalized version of the evolution equation for the

radiation field:
∂Ā

∂z̄
+

∂Ā

∂z1
=

∞∑
n=−∞

∫ +∞

−∞
G(δ)c∗n−1(δ)cn(δ)dδ (4.6)

The difference between (4.6) and the previous mono-energetic case (see (3.16) for

example) is that this time the source of the radiation field, i.e. the right-hand side

of (4.6), has been weighted over the distribution G(δ). This must be a normalized

distribution centered around the resonant detuning δr = 1/2ρ̄, so that∫ +∞

−∞
G(δ) dδ = 1∫ +∞

−∞
G(δ) δ dδ =

1

2ρ̄

In this model the electrons can only gain or lose momentum one quantum step �k

at a time so that the detuning δ is a constant parameter for each electron, and thus

the distribution G(δ) does not change in time.
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4.1.1 Linear Analysis

The system of equations (4.5) and (4.6) can be solved under the linear approxima-

tion, taking no initial radiation field and all the electrons in the same momentum

state as the initial conditions:

Ā(z̄ = 0, z1 = 0) = 0

cn(z̄ = 0) = δn0

It is important to remark that having all electrons in the same momentum state

does not mean that all electrons have the same momentum: the detuning δ has to

be taken into account to obtain the physical momentum of the electrons, which is

given by

p = (n + 2ρ̄ δ)�k

In the linear approximation most of the electrons are considered to be in the initial

momentum state n = 0, so that the Eqs.(4.5)-(4.6) are linearized around the state

c0 = 1. Then one obtains

∂c+1(δ)

∂z̄
= −i

(
1

2ρ̄
+ δ

)
c+1(δ) − ρ̄Ā (4.7)

∂c−1(δ)

∂z̄
= −i

(
1

2ρ̄
− δ

)
c−1(δ) + ρ̄Ā (4.8)

∂Ā

∂z̄
+

∂Ā

∂z1
=

∫ +∞

−∞
G(δ)

[
c+1(δ) + c∗−1(δ)

]
dδ (4.9)

To solve this system one performs the Laplace transform over z̄ and the Fourier

transform over z1 of the radiation field

Ã(λ, κ) =
1

2π

∫ +∞

−∞
dz1

∫ +∞

0

dz̄Ā(z1, z̄) e−i(λz̄+κz1)

= −i
Ã0(κ)

D(λ, κ)
(4.10)

where Ã0(κ) is the Fourier transform of Ā0(z1) ≡ Ā(z1, 0) and

D(λ, κ) = λ − κ +

∫ +∞

−∞

G(δ)

(λ + δ)(λ + δ + 1
ρ̄
)

dδ (4.11)

I proceed by inverting the Laplace transform using residues, to get the Fourier

transform of the radiation field:

Ã(z̄, κ) = Ã0(κ)
∑

j

Res

(
eiλj z̄

D(λj, κ)

)
(4.12)
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where λj are the roots of the dispersion relation D(λj, κ) = 0 and κ represents the

spectrum of the radiation field. The dispersion relation can be rewritten in the

following way

λ − κ + ρ̄

∫ +∞

−∞

[
G

(
δ +

1

2ρ̄

)
− G

(
δ − 1

2ρ̄

)]
dδ

λ + δ + 1
2ρ̄

= 0 (4.13)

I change variables, defining first the generalized central detuning

Δ ≡ κ +
1

2ρ̄
(4.14)

and then shifting λ too by 1/2ρ̄:

λ̄ ≡ λ +
1

2ρ̄
(4.15)

Thus (4.13) becomes

λ̄ − Δ + ρ̄

∫ +∞

−∞

[
G

(
δ +

1

2ρ̄

)
− G

(
δ − 1

2ρ̄

)]
dδ

λ̄ + δ
= 0 (4.16)

In this way one can see how, in the limit ρ̄ → ∞, the classical dispersion relation

(1.47) is recovered, as the finite difference inside the integral becomes a derivative

that can be eliminated integrating by parts:

λ̄ − Δ +

∫ +∞

−∞

dG(δ)

dδ

dδ

(λ̄ + δ)
= λ̄ − Δ +

∫ +∞

−∞

G(δ)

(λ̄ + δ)2
dδ = 0 (4.17)

Again, those roots whose imaginary part is negative will provide the exponential

gain of the radiation field. An analytical solution of (4.13) is in general not possible,

except for some specific cases or under some approximations. An interesting case is

that of a broad distribution G(δ).

4.1.2 Broad distribution

It is expected that if G(δ) is a broad distribution then the imaginary part of λ is

small: increasing the spread, the gain should diminish. Thus the integral can be

simplified using the limit

lim
ε→0

(
1

x + iε

)
= P

(
1

x

)
− iπδ(x)
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Using it in (4.13), one obtains

Reλ � Δ − 1

2ρ̄
(4.18)

Imλ � −πρ̄

[
G

(
Δ +

1

2ρ̄

)
− G

(
Δ − 1

2ρ̄

)]
(4.19)

When 1/ρ̄ is much smaller than the width of G(δ) then classical limit is recovered,

Imλ � −π
dG(Δ)

dΔ
(4.20)

Since G(Δ) can be assumed to be symmetrical around its center 1/2ρ̄ (for physical

reasons, i.e. slower and faster electrons are equally distributed), its derivative will

be instead antisymmetrical and thus the gain too.

In general, Eq.(4.19) shows that the more negligible the step 1/2ρ̄ is when com-

pared to the width σ of the distribution G(δ), the smaller the difference in the

parenthesis will be; thus the gain will be proportionally smaller. In physical terms,

this means that if the initial energy spread is much greater than the photon momen-

tum �k, then the transition between the two momentum states 0 and −1 cannot be

resolved by the system. This sets a limit on the electron energy spread to observe

the quantum regime of the FEL, namely

σ � 1

2ρ̄
(4.21)

4.1.3 Lorentzian distribution

Eq.(4.13) can be solved exactly when G(δ) is a Lorentzian distribution:

G(δ) =
σ

π

[
σ2 +

(
δ − 1

2ρ̄

)2
] (4.22)

This way the integral in (4.13) has an analytical solution, giving the dispersion

relation

(λ − κ) (λ + iσ)

(
λ +

1

ρ̄
+ iσ

)
+ 1 = 0 (4.23)

In the quantum regime, ρ̄ � 1/σ, the three roots of this dispersion relation can be

evaluated approximately as

λ1 � −κ

2

(
1 +

σ

Γ

)
− i

(
Γ − σ

2

)
(4.24)

λ2 � −κ

2

(
1 − σ

Γ

)
+ i

(
Γ − σ

2

)
(4.25)

λ3 � iσ (4.26)
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where

Γ ≡

⎧⎨
⎩
√

(4ρ̄ + σ2 − κ2)2 + 4κ2σ2 + 4ρ̄ + σ2 − κ2

2

⎫⎬
⎭

1/2

(4.27)

Since for any ρ̄ > 0 one has Γ �= σ, there will always be an exponential solution. Its

gain will be given by

Imλ = −|Γ − σ|
2

(4.28)

Figure 4.1: |Im(λ)| from (4.28) as a function of κ. ρ̄ = 0.1 and four different values

of σ: 0, 0.1, 0.5 and 1.

Assuming that the radiation field A(z̄, z1) does not depend on z1, that is neglect-

ing the propagation with respect to the electron beam, then the spectrum in κ is

single valued, κ = 0. This can be seen from the definition of κ, with the Fourier

transform (4.10) of the radiation field. Then, the form of Γ simplifies:

Γ =
√

σ2 + 4ρ̄ (4.29)

If one also assumes ρ̄ � σ2/4 in addition to the assumption of ρ̄ � 1/2σ (4.21), i.e.

2
√

ρ̄ � σ � 1

2ρ̄
(4.30)
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then

Γ � σ +
2ρ̄

σ
These two inequalities do not contradict each other if ρ̄ is of the order of or smaller

than 0.1. The roots of the dispersion equation become

λ1 � −i
ρ̄

σ

λ2 � +i
ρ̄

σ

λ3 = +iσ

and the dominating solution for the radiation field is

A(z̄) ≈ A(0)
eiλ1z̄

(λ1 − λ2)(λ1 − λ3)
= − σ2A(0)

2ρ̄ (ρ̄ − σ2)
exp

( ρ̄

σ
z̄
)

(4.31)

If instead the distribution G(δ) is so narrow that σ � 2
√

ρ̄, then Γ � 2
√

ρ̄ and the

roots are

λ1 � −i
√

ρ̄

λ2 � +i
√

ρ̄

λ3 = +iσ

This gives the dominating solution

A(z̄) ≈ −A(0)

2ρ̄
exp

(√
ρ̄

2
z̄

)
(4.32)

4.2 Wigner Function approach

The Wigner function formalism is particularly useful to describe the energy spread

in the electron beam, since it does not require any particular retooling: the Wigner

function already describes a distribution in phase and momentum, so that only

different initial conditions have to be considered. I will show that it is possible to

rederive in this way the results of the previous section, where the distribution G(δ)

was introduced in the field equation as a generalization of the monoenergetic case.

The starting point is given by the evolution equations (3.19)-(3.21):

∂W (θ, p, z̄)

∂z̄
= −p

∂W (θ, p, z̄)

∂θ
(4.33)

+ρ̄
(
Aeiθ + A∗e−iθ

) [
W

(
θ, p +

1

2ρ̄
, z̄

)
− W

(
θ, p − 1

2ρ̄
, z̄

)]
dA

dz̄
= iδA +

∫ ∞

−∞
dp

∫ 2π

0

dθ W (θ, p, z̄)e−iθ (4.34)
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where I have already neglected propagation effects.

Since W (θ, p, z̄) is periodic in θ, we expand it in a Fourier series:

W (θ, p, z̄) =
1√
2π

∑
n

Wn(p, z̄)einθ (4.35)

W−n = W ∗
n , since the Wigner function is real. One obtains the evolution equations

for the coefficients Wn by substitution:

∂Wn(p, z̄)

∂z̄
= −inp Wn(p, z̄)

+ρ̄A

[
Wn−1

(
p +

1

2ρ̄
, z̄

)
− Wn−1

(
p − 1

2ρ̄
, z̄

)]

+ρ̄A∗
[
Wn+1

(
p +

1

2ρ̄
, z̄

)
− Wn+1

(
p − 1

2ρ̄
, z̄

)]
(4.36)

dA

dz̄
=

∫ +∞

−∞
W1(p, z̄)dp + iδA (4.37)

It has to be stressed that the Wn are not related to the discrete Wigner function

introduced in the last chapter, and that the index n represents the spatial harmonics

of the expansion of W (θ, p, z̄), and it is not some sort of discrete physical variable.

I assume an initially unbunched beam, i.e. independent on the phase θ; thus the

only non-zero harmonic can be W0:

W (θ, p, 0) = W0(p, 0) = G(p) (4.38)

This initial condition is the equivalent of the detuning distribution G(δ), from the

main definition of the Wigner function.

I show in Figs.4.2-4.4 some numerical solutions of the equations (4.36)-(4.37),

with a Gaussian distribution and no radiation field as the initial conditions.

I have to point out that, as we wrote in the previous chapter, using the con-

tinuous Wigner function in a periodic phase space is not formally correct: this is a

phenomenological approach, justified by the fact that in the linear regime it gives

the same results as the previous approach.

4.2.1 Linear Analysis

In the linear approximation I consider W0 as nearly constant

W0(p, z̄) � G(p) (4.39)
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Figure 4.2: Numerical simulations of (4.36)-(4.37) for ρ̄ = 0.1. It is possible to see

very clearly the detached momentum levels and the “hole-burning” effect.
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simulations with the Wigner code (steady-state)
ρ=0.3
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Figure 4.3: Numerical simulations of (4.36)-(4.37) for ρ̄ = 0.3. It is still possible to

see the “hole-burning” effect, but the momentum levels start to slightly overlap.
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simulations with the Wigner code (steady-state)
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Figure 4.4: Numerical simulations of (4.36)-(4.37) for ρ̄ = 0.5. It is not possible to

distinguish the discrete momentum levels anymore.



4.2 Wigner Function approach 90

and neglect the higher harmonics when compared to it. This way only the equation

for the first harmonic W1 remains:

∂W1(p, z̄)

∂z̄
= −ip W1(p, z̄) + ρ̄A(z̄)

[
G

(
p +

1

2ρ̄

)
− G

(
p − 1

2ρ̄

)]
(4.40)

Since the bunching and thus radiation field only depend on W1, the Eqs.(4.40) and

(4.37) form a closed set. To solve it, I use again the Laplace transform:

Ã(ζ) =

∫ ∞

0

e−ζz̄A(z̄)dz̄

W̃1(p, ζ) =

∫ ∞

0

e−ζz̄W1(p, z̄)dz̄

Equations (4.37)-(4.40) become

(ζ − iδ)Ã(ζ) = A(0) +

∫ +∞

−∞
W̃1(p, ζ)dp

(ζ + ip)W̃1(p, ζ) = ρ̄

[
G

(
p +

1

2ρ̄

)
− G

(
p − 1

2ρ̄

)]
Ã(ζ)

that once combined yield

Ã(ζ) = Ã(0)

⎧⎨
⎩ζ − iδ − ρ̄

∫ +∞

−∞

G
(
p + 1

2ρ̄

)
− G

(
p − 1

2ρ̄

)
ζ + ip

dp

⎫⎬
⎭

−1

(4.41)

W̃1(p, ζ) =
ρ̄

ζ + ip

[
G

(
p +

1

2ρ̄

)
− G

(
p − 1

2ρ̄

)]
Ã(ζ) (4.42)

From (4.41) it is possible to invert the Laplace transform, obtaining

A(z̄) =
∑

j

eiλ̄j z̄∏
l 
=j(λ̄j − λ̄l)

A(0) (4.43)

where the λ̄j are the roots of the usual dispersion relation

λ̄ − δ + ρ̄

∫ +∞

−∞

[
G

(
p +

1

2ρ̄

)
− G

(
p − 1

2ρ̄

)]
dp

λ̄ + p
= 0 (4.44)

Thus both the previous approach, where I used a weighting over a distribution of

detunings G(δ) in the Preparata equations, and this one, where the distribution

G(p) naturally appears as the initial condition of the Wigner function, lead to the

same result, at least in the linear regime.
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It is important to notice that in the starting equations (4.33)-(4.34) the detuning

δ was left in the equation for the radiation field. While this eased the following

calculations, it is just a mathematical tool. To get the physical radiation field we

have to shift back the detuning into the electron variables, in this case the Wigner

function. This translates into a shifting of the roots λ̄j:

λj = λ̄j − δ

Notice that this way the notation is consistent with the one used in the first section

of this chapter.

4.2.2 Hole-burning effect

Since the solution for the radiation field is the same as before, the assumption of a

Lorentzian distribution leads to the same results:

λ1 � −1

2

(
δ − 1

2ρ̄

)(
1 +

σ

Γ

)
− i

(
Γ − σ

2

)

λ2 � −1

2

(
δ − 1

2ρ̄

)(
1 − σ

Γ

)
+ i

(
Γ − σ

2

)
λ3 � iσ

In addition to the evolution of the radiation field, one can now extract more informa-

tion than in the previous case, by studying the evolution of the electron distribution

through the Wigner function. From (4.35) one has∫ 2π

0

W (θ, p, z̄)dθ = W0(p, z̄) ≡ P (p) (4.45)

so that W0 represents the probability distribution in momentum space for the elec-

trons. Instead of taking W0(p, z̄) = G(p) I now wish to elaborate it to a better

approximation. By inverting (4.42) one gets

W1(p, z̄) = −i
ρ̄

λ1 + p

[
G

(
p +

1

2ρ̄

)
− G

(
p − 1

2ρ̄

)]
A(z̄) (4.46)

≈ −i
ρ̄

λ1 + p

[
G

(
p +

1

2ρ̄

)
− G

(
p − 1

2ρ̄

)]
A(0)eiλ1z̄

(λ1 − λ2)(λ1 − λ3)

where I have substituted only the exponential part of A(z̄).
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For simplicity I set the system at resonance δ = 1/2ρ̄, W1 and the field A can

be written as

A(z̄) = − 2A(0)

Γ(Γ + σ)
exp

(
Γ − σ

2
z̄

)

W1(p, z̄) =

[
G

(
p +

1

2ρ̄

)
− G

(
p − 1

2ρ̄

)]
F

(
p +

1

2ρ̄

)
A(z̄)

where

F (p) =

√
Γ − σ − 2ip

Γ − σ + 2ip
(4.47)

G(p) =
1

π

σ

σ2 + p2
(4.48)

and Γ =
√

σ2 + 4ρ̄.

I take a Lorentzian distribution narrow enough to resolve the quantum step �k

between adjacent two momentum levels, i.e. σ � 1/2ρ̄. Thus in the linear regime

the absorption line G(p − 1/2ρ̄) will be very small compared to the emission line

G(p + 1/2ρ̄) and we can approximate W1 as

W1(p, z̄) ≈ G

(
p +

1

2ρ̄

)
F

(
p +

1

2ρ̄

)
A(z̄) (4.49)

Now one can use (4.49) in (4.36) for the case n = 0 to get an evolution equation for

W0:

∂W0

∂z̄
� 2ρ̄ Re

{
|A|2(z̄)

[
G

(
p +

1

ρ̄

)
F

(
p +

1

ρ̄

)
− G(p)F (p)

]}
(4.50)

This can be integrated, obtaining

W0(p, z̄) ≈ G(p) − 2ρ̄2|A|2(z̄)

{
G(p)K(p) − G

(
p +

1

ρ̄

)
K

(
p +

1

ρ̄

)}
(4.51)

where

K(p) =
1√

4p2 + (Γ − σ)2

This shows the so-called hole burning effect, in which the electrons nearer to reso-

nance, i.e. the center of the initial momentum distribution, shift to the displaced

distribution around p = −1/ρ̄.
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Figure 4.5: Plot of (4.51): W0 as a function of p at different times: first the lower

momentum level appears (left), and then the forming of the hole (right).

4.3 Bunching and energy spread uncertainty re-

lations

Starting from the basic commutation relation [θ, p] = i between the phase and the

momentum it is possible to show that some very general limitations link the bunching

and the energy spread together. We have seen previously how the momentum p has

discrete eigenvalues n = 0,±1, . . . in units of �k and thus normalized eigenfunctions

(2π)−1/2 exp(inθ). It is known [30] that, assuming these discrete eigenstates, it

is not possible to imply a uncertainty relation ΔθΔp ≥ 1/2 for the phase and

momentum from their commutation relation. However, it is instead formally correct

to use the periodic operators sin θ and cos θ to deduce uncertainty inequalities. The

commutators with momentum for those functions are

[sin θ, p] = +i cos θ (4.52)

[cos θ, p] = −i sin θ (4.53)

From those follow the relations

Δp · Δ sin θ ≥ |〈cos θ〉|
2

(4.54)
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Δp · Δ cos θ ≥ |〈sin θ〉|
2

(4.55)

which can be combined to get

(Δp)2
[
(Δ cos θ)2 + (Δ sin θ)2

]
≥ 〈cos θ〉2 + 〈sin θ〉2

4
(4.56)

One can now use the definition of the bunching

B ≡
〈
e−iθ

〉
= 〈cos θ〉 − i〈sin θ〉 (4.57)

inserting it in (4.56) to obtain a lower limit on the energy spread:

Δp ≥ |B|
2
√

1 − |B|2
(4.58)

It is important to notice that this relation is independent from FEL dynamics, since

it was derived from very general quantum mechanical first principles.

Eq.(4.58) can be reversed to get

|B| ≤ Δp√
(Δp)2 + 1/4

(4.59)

This relation sets an upper limit to how much bunched the electron beam can

become inside a free electron laser, depending on the energy spread. In particular,

the bunching can be close to unity B � 1 only when Δp � 1/2, that is in physical

units when the momentum spread is much bigger than the discrete linewidth �k/2

given by the photon momentum.

It is interesting to note that the usual Heisenberg uncertainty principle is recov-

ered when Δθ � 1, since then |B|2 � 1 − (Δθ)2 and Eq.(4.58) gives

ΔθΔp ≥ 1/2

4.3.1 Minimum uncertainty states

It has been previously shown that it is impossible to have a normalized state that

can minimize the general relation (4.56). It is however possible to define states [31]

that minimize one, and only one, of the two inequalities (4.52) and (4.53).

We choose to minimize (4.52). The minimum uncertainty states are then the

solution to the equation

(p + iγ sin θ) |ψλ(γ)〉 = λ|ψλ(γ)〉 (4.60)
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Figure 4.6: The relation (4.59) between the bunching B and the energy spread Δp:

the only allowed values are those below the solid curve.

where γ and λ are real parameters that obey the relation

λ = 〈p〉 + iγ〈sin θ〉

The solution to Eq.(4.60) is given by

|ψλ(γ)〉 =
1√

I0(2γ)

∑
n

In−λ(γ)|n〉 (4.61)

where the In(x) are the modified Bessel functions of order n and the states |n〉 are

the discrete eigenstates of the dimensionless momentum p.

Using the properties of the modified Bessel functions one can show that

〈p〉 = 〈ψλ(γ)|p|ψλ(γ)〉 = λ ∈ Z (4.62)

i.e. λ is the discrete expectation value of the momentum operator. From (4.62) one

gets

〈sin θ〉 = 0 (4.63)

and thus the bunching

B ≡ 〈e−iθ〉 = 〈cos θ〉 (4.64)

While this makes λ and γ independent, one can find

Δp =

√
γ

2

I1(2γ)

I0(2γ)
(4.65)



4.3 Bunching and energy spread uncertainty relations 96

so that γ is just a function of the energy spread:

• for γ = 0 the Jackiw states reduce to the momentum eigenstates |n〉 where

Δp = 0.

• for γ � 1 one obtains Gaussian wave packets with Δθ = 1/
√

2γ and Δp =√
γ/2.

It can be double-checked (see the Appendix for the calculations) that the state (4.61)

really minimize the uncertainty relation (4.52):

Δp · Δ sin θ =
〈cos θ〉

2
(4.66)



Conclusions

The aim of my work was to show which place quantum mechanics has in free electron

laser physics and understand when a quantum treatment of the FEL is preferable

instead of a classical one. In the first part of this thesis I gave a brief introduction

to classical FELs physics and then I proceeded to present a summary of the past

studies of the FEL using quantum physics. I used this summary to show how certain

topics in FEL physics require a quantum treatment, in particular photon statistics

and the problem of spontaneous emission (start-up from vacuum).

The main part of the thesis has been dedicated to the Quantum Regime of the

FEL that was recently discovered and that is currently the object of studies and

possible future experiments [20]. Numerical analysis has previously shown how the

electrons of the FEL, in a certain range of the physical parameters (specifically

when the Quantum FEL Parameter ρ̄ is much smaller than unity, i.e. when the

single photon momentum cannot be neglected compared to the electron momentum),

behave as a two-level system coupled to a radiation field. The electron momentum

has then to be treated as a discrete variable, varying only by fixed steps given by

the photon momentum; in particular only two momentum levels are occupied by

the electrons. I used then some tools from perturbation theory to show how the

Hamiltonian of a two-level system coupled to radiation could be derived from the

classical FEL Hamiltonian.

The two-level system Hamiltonian was the starting point of my further analysis:

first, I used a semiclassical approximation [28] to obtain an analytical solution for

the expectation number of the laser photons, that had the form of a train of identical

exponential spikes, each separated from the next spike by the same constant spac-
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ing. This was shown to be in complete agreement with the numerical results from

which the two-level system was initially observed. This semiclassical approximation

implied neglecting the discreteness of the photon number, as had been as well the

case in the original numerical simulations. I thus dropped such approximation, to

obtain a description of the system where both the electrons and the laser field were

treated quantum-mechanically. I used numerical analysis to investigate the system

behaviour, applying some mathematical tools (concerning matrix diagonalization

techniques [9]) that had never been used before in this context. This showed an

effect that had been masked by the semiclassical approximation: instead of a train

of identical spikes, this time the photon number featured a cyclical series of periodic

revivals. This phenomenon was not further investigated, but it could be the object

of a future study.

The results I had obtained up to this point mainly regarded the laser photons.

Thus I then focused on the other part of the FEL system, the electrons. I used

the Wigner Function formalism as my tool of choice to describe the electrons. To

avoid losing the discreteness of the electron momentum, which is a fundamental

characteristic of the quantum regime of the FEL, I introduced the discrete Wigner

function [10] and its special properties, and then derived its evolution equation,

coupled to the laser field, thus giving a description of the dynamics of the electron

beam in phase space. This also allowed me to obtain a closed set of Maxwell-

Bloch equations for the FEL, describing the evolution of the laser field, the electron

bunching parameter and the population difference between the electron levels. I gave

an analytical solution of this system of equations. Using the discrete Wigner function

formalism I was also able to give an estimate of which distribution of electrons among

the momentum levels would make the quantum effects more relevant.

In the last chapter of my thesis I dropped the approximation of a monoenergetic

electron beam and considered the effect of an initial electron energy distribution

in the quantum FEL. I approached the problem in two different ways, first using

the probability amplitudes coefficients to describe the electrons and weighting them

over a fixed energy distribution, and then using the Wigner function for a more

general approach, where the energy distribution simply entered as the Wigner func-

tion initial condition. I showed how in the linear approximation both ways give the

same results and in particular I studied the cases of a generic broad distribution

and of a Lorentzian distribution, for which I gave analytical solutions. I also pro-

duced numerical simulations of the coupled Wigner function and laser field evolution

equations for different parameters and initial conditions.
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Finally, I showed how the electron bunching and the electron energy spread are

connected by an uncertainty relation, such that there is an intrinsic quantum limit

on how much the electron beam can become bunched, depending on the electron

energy spread.
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Glossary

• Wiggler (or Undulator) Parameter

aw =
eλwBw

2πmc2
� 0.93 · Bw[T ] · λw[cm]

• FEL Parameter

ρ =
1

γr

(
awωp

4kwc

)2/3

• Gain Length

lg =
λw

4πρ

• Cooperation Length

lc =
λr

4πρ

• Bunching

B = 〈e−iθ〉electrons

• Quantum FEL Parameter

ρ̄ =
mcγr

�kλ
ρ
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Appendix A

Derivation of the Preparata

Equations

The starting point is (3.7), the FEL Hamiltonian written in the formalism of occu-

pation numbers in Fock space:

Ĥ =
+∞∑

n=−∞

{
1

2ρ̄
n2ĉ†nĉn + i

√
ρ̄

N

(
a†ĉnĉ†n−1 − aĉ†nĉn−1

)}
− δa†a (A.1)

From this picture I go back to the representation in terms of the scalar field operator

(3.4):

Ψ̂(θ) =
1√
2π

+∞∑
n=−∞

ĉn〈θ|n〉 =
1√
2π

+∞∑
n=−∞

ĉneinθ (A.2)

so that the Hamiltonian can be rewritten as

H =

∫ 2π

0

[
− 1

2ρ̄
Ψ̂† ∂2

∂θ2
Ψ̂ + i

√
ρ̄

N

(
a†e−iθ − aeiθ

)
Ψ̂†Ψ̂

]
dθ − δa†a (A.3)

To this Hamiltonian it is possible to associate the following Lagrangian density:

L(θ) = Ψ̂†(θ)i
∂

∂t
Ψ̂(θ)+

1

2ρ̄
Ψ̂† ∂2

∂θ2
Ψ̂(θ)−i

√
ρ̄

N

(
a†e−iθ − ae+iθ

)
Ψ̂†(θ)Ψ̂(θ)+

1

2π
a†i

∂

∂t
a

(A.4)

The path-integral representation of the generating functional of this Lagrangian

density is

Z[θ, θ∗; α, α∗] =

∫
[da da∗ dΨ dΨ∗] exp

{
i

∫ +∞

−∞
dt

∫ 2π

0

dθ

(L(t, θ) + (θΨ∗ + θ∗Ψ) + (αa∗ + α∗a))} (A.5)
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By rescaling a and Ψ as follows

A ≡ 1√
ρ̄N

a (A.6)

ψ ≡ 1√
N

Ψ (A.7)

the generating functional becomes

Z[θ, θ∗; α, α∗] =

∫
[dA dA∗ dψ dψ∗] exp

{
iN

∫ +∞

−∞
dt

∫ 2π

0

dθ(
L̄(t, θ) +

1√
N

(θψ∗ + θ∗ψ) +

√
ρ̄

2N
(αA∗ + α∗A)

)}
(A.8)

where

L̄(t, θ) = iψ∗ ∂

∂t
ψ +

1

ρ̄
ψ∗ ∂2

∂θ2
ψ − δA∗A − iρ̄

2
(A∗e−iθ − Aeiθ)ψ∗ψ +

iρ̄

4π
A∗ ∂

∂t
A (A.9)

From (A.8) it is possible to see how N takes the role usually of 1/�: then in the

limit N � 1 the path integrals will be dominated by the classical trajectories found

by the principle of stationary phase:

δ

∫
L̄ = 0 (A.10)

The equations of motion that minimize the action are

∂ψ

∂t
=

i

2ρ̄

∂2ψ

∂θ2
− ρ̄

(
Aeiθ − A∗e−iθ

)
ψ (A.11)

dA

dt
=

∫ 2π

0

|ψ(θ)|2e−iθdθ + iδA (A.12)



Appendix B

Derivation of the Wigner function

evolution equation

I start from the form of the Wigner function given in (3.12):

W (θ, p̄, t) =
1

2π

1

2�k

∫ ∞

−∞
e−iηp̄ψ∗

(
θ − η

2
, t
)

ψ
(
θ +

η

2
, t
)

dη (B.1)

I set

y ≡ θ +
η

2

z ≡ θ − η

2

and differentiate in respect to time

∂W

∂t
=

1

2π

1

2�k

∫ ∞

−∞
e−iηp̄

{
∂ψ∗(z)

∂t
ψ(y) + ψ∗(z)

∂ψ(y)

∂t

}
(B.2)

I substitute then the Preparata equation (3.13) for the time derivative of the wave

function:

∂ψ(y)

∂t
=

i

ρ̄

∂2ψ(y)

∂y2
− ρ̄

2

(
Aeiy − A∗e−iy

)
ψ(y)

∂ψ∗(z)

∂t
= − i

ρ̄

∂2ψ∗(z)

∂z2
+

ρ̄

2

(
Aeiz − A∗e−iz

)
ψ∗(z)

obtaining
∂W

∂t
=

1

2π

1

2�k

(
i

ρ̄
A +

ρ̄

2
B
)

(B.3)
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where

A =

∫ ∞

−∞
e−iηp̄

{
∂2ψ(y)

∂y2
ψ∗(z) − ∂2ψ∗(z)

∂z2
ψ(y)

}
dη (B.4)

B =

∫ ∞

−∞
e−iηp̄

{
A
(
eiz − eiy

)
− A∗ (e−iz − e−iy

)}
ψ∗(z)ψ(y)dη (B.5)

I have splitted the integral into two parts to calculate them one at a time. I start

with A; from the definition of y and z it follows that

∂η

∂y
= −∂η

∂z
= 2

so that

∂nψ(y)

∂yn
= 2n ∂nψ(y)

∂ηn

∂nψ∗(z)

∂zn
= (−2)n ∂nψ∗(z)

∂ηn

and A becomes

A = 4

∫ ∞

−∞
e−iηp̄

{
∂2ψ(y)

∂η2
ψ∗(z) − ψ(y)

∂2ψ∗(z)

∂η2

}
dη

= 4

∫ ∞

−∞
e−iηp̄

{
−∂ψ(y)

∂η

[
−ip̄ψ∗(z) +

∂ψ∗(z)

∂η

]
+

∂ψ∗(z)

∂η

[
−ip̄ψ(y) +

∂ψ(y)

∂η

]}
dη

= 4ip̄

∫ ∞

−∞
e−iηp̄

{
∂ψ(y)

∂η
ψ∗(z) − ψ(y)

∂ψ∗(z)

∂η

}
dη

= 2ip̄

∫ ∞

−∞
e−iηp̄

{
∂ψ(y)

∂y
ψ∗(z) + ψ(y)

∂ψ∗(z)

∂z

}
dη

where I have repeatedly used partial integration. I now substitute the partial deriva-

tives in A using
∂z

∂θ
=

∂y

∂θ
= 1

to get our final result for the first part of our equation:

A = 2ip̄

∫ ∞

−∞
e−iηp̄

{
∂ψ(y)

∂θ
ψ∗(z) + ψ(y)

∂ψ∗(z)

∂θ

}
dη

= 2ip̄
∂

∂θ

∫ ∞

−∞
e−iηp̄ψ∗(z, t)ψ(y, t)dη

= 2ip̄ 2π2�k
∂W (θ, p̄, t)

∂θ
(B.6)
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I then pass on calculating B:

B =

∫ ∞

−∞
e−iηp̄

{
A
(
eiz − eiy

)
− A∗ (e−iz − e−iy

)}
ψ∗(z)ψ(y)dη

=
(
Aeiθ + A∗e−iθ

){∫ ∞

−∞
e−iη(p̄+ 1

2)ψ∗(z)ψ(y)dη −
∫ ∞

−∞
e−iη(p̄− 1

2)ψ∗(z)ψ(y)dη

}

= 2π2�k
(
Aeiθ + A∗e−iθ

){
W

(
θ, p̄ +

1

2
, t

)
− W

(
θ, p̄ − 1

2
, t

)}
(B.7)

Inserting (B.6) and (B.7) into (B.3) I get the final equation for the wigner func-

tion:

∂W (θ, p̄, t)

∂t
= − p̄

ρ̄

∂W (θ, p̄, t)

∂θ
+ρ̄
(
Aeiθ − A∗e−iθ

) [
W

(
θ, p̄ +

1

2
, t

)
− W

(
θ, p̄ − 1

2
, t

)]
(B.8)



Appendix C

Derivation of the Hamiltonian in

the Interaction Picture

Here I show how the interaction picture Hamiltonian of the system (3.7) is

ĤIP (t) = i

√
ρ̄

N

∞∑
n=−∞

{
a†ĉnĉ†n−1 exp

[
i

(
2n − 1

2ρ̄
+ δ

)
t

]
− h.c.

}
(C.1)

Starting from its definition,

ĤIP (t) = eiĤ0t ĤI e−iĤ0t (C.2)

and substituting in it Ĥ0 and ĤI , the expression I get is

exp

{
i

[∑
n

n2

2ρ̄
ĉ†nĉn − δa†a

]
t

}(
a†ĉkĉ

†
k−1 − aĉ†kĉk−1

)
exp

{
−i

[∑
m

m2

2ρ̄
ĉ†mĉm − δa†a

]
t

}

(C.3)

apart from the coupling constants i
√

ρ̄/N and a sum over k.

The various ĉ operators all commute with a and a†, so that the exponentials can

be splitted into a photon and an electron parts, each acting only on the corresponding

operators of ĤI .

Using the following well-known theorem from operator algebra

exABe−xA = B + x[A, B] +
x2

2!
[A, [A, B]] + . . . (C.4)

and the commutation rules

[a†a, a] = −a

[a†a, a†] = +a†
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I get

e−iδ(a†a)taeiδ(a†a)t = a − iδt[a†a, a] +
(−iδt)2

2!
[a†a, [a†a, a]] + ... = a

∑
n

(iδt)n

n!
= aeiδt

and

e−iδ(a†a)ta†eiδ(a†a)t = a†e−iδt

Thus (C.3) becomes

exp

{
i

t

2ρ̄

∑
n

n2ĉ†nĉn

}(
ĉkĉ

†
k−1a

†e−iδt − ĉ†kĉk−1aeiδt
)

exp

{
−i

t

2ρ̄

∑
m

m2ĉ†mĉm

}

(C.5)

As [ĉ†nĉn, ĉ†mĉm] = 0, I can also split the sums in the remaining exponential:

exp

{
i

t

2ρ̄

∑
n

n2ĉ†nĉn

}
=
∏
n

exp

{
i

t

2ρ̄
n2ĉ†nĉn

}
(C.6)

The exponential exp

{
i

t

2ρ̄
n2ĉ†nĉn

}
commutes with ĉk, ĉ

†
k when n �= k, so that the

only terms that do not cancel each other are(
eitk2ĉ†kĉk/2ρ̄ ĉk e−itk2ĉ†k ĉk/2ρ̄

)(
eit(k−1)2 ĉ†k−1ĉk−1/2ρ̄ ĉ†k−1 e−it(k−1)2 ĉ†k−1ĉk−1/2ρ̄

)

=
(
e−itk2/2ρ̄ ĉk

)(
eit(k−1)2/2ρ̄ ĉ†k−1

)

= e−i(2k−1)t/2ρ̄ ĉkĉ
†
k−1

and (
eitk2ĉ†kĉk/2ρ̄ ĉ†k e−itk2ĉ†k ĉk/2ρ̄

)(
eit(k−1)2 ĉ†k−1ĉk−1/2ρ̄ ĉk−1 e−it(k−1)2 ĉ†k−1ĉk−1/2ρ̄

)

=
(
eitk2/2ρ̄ ĉ†k

)(
e−it(k−1)2/2ρ̄ ĉk−1

)

= ei(2k−1)t/2ρ̄ ĉ†kĉk−1

where I used again the theorem (C.4) and the commutation relations

[ĉ†kĉk, ĉk] = −ĉk

[ĉ†kĉk, ĉ
†
k] = +ĉ†k
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Now I have all the pieces of the interaction picture Hamiltonian: putting them

together I get

ĤIP (t) = i

√
ρ̄

N

∞∑
k=−∞

{
a†ĉkĉ

†
k−1 exp

[
i

(
2k − 1

2ρ̄
+ δ

)
t

]
− h.c.

}
(C.7)



Appendix D

Solution of the two-level equations

D.1 Transition Amplitudes

Here I show the necessary steps to transform Eq.(3.68) to Eq.(3.76). I start from

d

dt
φn(t) = g

(
αn+1φn+1(t) − αnφn−1(t)

)
(D.1)

where

αn =
√

n n1(n2 + 1) =

√
n

(
N

2
+ M − n + 1

)(
N

2
− M + n

)

I define the following two functions,

F (n) ≡ 2
√

2

n!
Γ
(
1 +

n

2

)
(D.2)

and

G(n) ≡ F (n) · F
(

N

2
+ M − n

)
· F
(

N

2
− M + n

)
(D.3)

Then I perform a change of variables

Λn(t) ≡ (−i)n
√

G(n) φn(t) (D.4)

This way the differential equation becomes

Λ̇n(t) = G(n)
{

Λn−1(t) − Λn+1(t)
}

(D.5)

The final step concerns the definition of the “angle” ϑn:

ϑn ≡ arcsin

√
2n

N + 2M
(D.6)
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and substituting it inside the equation in the place of the discrete variable n:

Λ̇(ϑn, t) = G(ϑn)
{

Λ(ϑn−1, t) − Λ(ϑn+1, t)
}

(D.7)

This is done to ease the passage to the continuous limit, since the variation Δϑn =

ϑn+1 − ϑn is very small for every n.

As a final note, the various functions and variables defined here assume of course

a simpler form in the physical case of main interest for us, that is M = N/2:

φ̇n(τ) =
√

N − n
[
(n + 1)φn+1(τ) − nφn−1(τ)

]
(D.8)

G(n) = F 2(n) F (N − n) (D.9)

ϑn = arcsin

√
n

N
(D.10)

Δϑn = ϑn+1 − ϑn � 1√
(n + 1)(N − n + 1)

≤ 1√
N

� 1 (D.11)

D.2 Solution of the A-B-D System

I want to show the solution of the system

Ḃ = AD (D.12)

Ḋ = −4AB (D.13)

Ȧ = B (D.14)

This system has two integrals of motion:

Λ ≡ A2 +
D

2
(D.15)

Υ ≡
√

D2 + 4B2

2
(D.16)

These constants can be used to rewrite the bunching as

B =
√

A2(2Λ − A2) + Υ2 − Λ2 (D.17)

Thus I obtain a single differential equation:

Ȧ =
√

− (A2 − Λ + Υ) (A2 − Λ − Υ) (D.18)

I take the case Υ2 = Λ2, which reduces the equation to

Ȧ = A
√

2Λ − A2 (D.19)
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This is solved by first taking the substitution A =
√

2Λ cos(x), which gives

ẋ = −
√

2Λ cos(x) (D.20)

and then y =
√

2Λ sin(x):

ẏ = y2 − 2Λ (D.21)

whose solution is

y =
√

2Λ tanh[
√

2Λ(t − t0)] (D.22)

Since y2 + A2 = 2Λ, I obtain the final result for the field:

A2 = 2Λ
{

1 − tanh2[
√

2Λ(t − t0)]
}

= 2Λ sech2[
√

2Λ(t − t0)] (D.23)



Appendix E

Jackiw States

E.1 Bessel Functions

In this appendix I will need some properties of the modified Bessel functions. In

the following equalities x is the argument of the Bessel functions unless otherwise

specified, and the sums run from −∞ to +∞:

∑
tnIn = exp

{
x

2

(
t +

1

t

)}
(E.1)

In−1 − In+1 =
2n

x
In (E.2)

In−1 + In+1 = 2
d

dx
In (E.3)

I−n = In (E.4)∑
k

Ik(x)Im−k(y) = Im(x + y) (E.5)

In particular from (E.2) follows

I2 = I0 −
2

x
I1 (E.6)

It is then possible to derive the following equalities:∑
In−λ = ex (E.7)∑
I2
n−λ = I0(2x) (E.8)∑

n In−λ =
∑

n In + λ
∑

In = λex (E.9)∑
n I2

n−λ = λ I0(2x) (E.10)∑
n2In−λ =

(
x + λ2

)
ex (E.11)
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∑
n2I2

n−λ =
∑(

n2 + 2nλ + λ2
)
I2
n =

∑
(n In)2 + λ2I0(2x)

=
∑(x

2
(In−1 − In+1)

)2

+ λ2I0(2x)

=
x2

4

∑(
I2
n−1 + I2

n+1 − 2In−1In+1

)
+ λ2I0(2x)

=
x2

2
[1 − I2(2x)] + λ2I0(2x)

= I0(2x) ·
{

x

2

I1(2x)

I0(2x)
+ λ2

}
(E.12)

∑
n In−aIn−b =

(
a + b

2

)
Ia−b(2x) (E.13)

where I have made some intermediate steps more explicit.

E.2 Minimum Uncertainty

The definition (4.61) of the Jackiw states is

|ψλ(γ)〉 =
1√

I0(2γ)

∑
n

In−λ(γ)|n〉 (E.14)

p|n〉 = n|n〉 (E.15)

For simplicity I drop the label γ

|ψλ〉 ≡ |ψλ(γ)〉

Notice that these states are not orthogonal:

〈ψλ|ψμ〉 =
1

I0(2γ)

∑
n

In−λ(γ)In−μ(γ) =
Iλ−μ(2γ)

I0(2γ)
(E.16)

To show that the minimum uncertainty equality

Δp · Δ sin θ =
〈cos θ〉

2
(E.17)

holds for these states, I need to calculate 〈sin2 θ〉, 〈p2〉 and 〈cos θ〉, since I already

know that 〈p〉 = λ and 〈sin θ〉 = 0.

First of all I notice that

e±iθ|ψλ〉 =
1√

I0(2γ)

∑
n

In−λ(γ)|n ± 1〉 = |ψλ±1〉 (E.18)
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Thus

〈cos θ〉 = B = 〈ψλ|e−iθ|ψλ〉 =
I1(2γ)

I0(2γ)

where I have used (E.16) and (E.18) together. In the same way by using the identity

sin θ = (eiθ − e−iθ)/2i I get

〈sin2 θ〉 = −〈ψλ|ψλ+2〉 − 2〈ψλ|ψλ〉 + 〈ψλ|ψλ−2〉
4

=
1

2

[
1 − I2(2γ)

I0(2γ)

]
=

〈cos θ〉
2γ

(E.19)

where I also used (E.6) in the last passage. In same way I find

〈p2〉 =
1

I0(2γ)

∑
n

n2I2
n−λ(γ) =

γ〈cos θ〉
2

+ λ2 (E.20)

These are all the expectation values that I need:

(Δ sin θ)2 = 〈sin2 θ〉 − 〈sin θ〉2 =
〈cos θ〉

2γ
(E.21)

(Δp)2 = 〈p2〉 − 〈p〉2 =
γ〈cos θ〉

2
(E.22)

and thus

Δp · Δ sin θ =
〈cos θ〉

2
(E.23)


