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Abstract
In this work we discuss an important building block for the next-to-
next-to-next-to leading order corrections to the pair production of top
quarks at threshold. Specifically, we explain the calculation of the third
order strong corrections to the matching coefficient of the vector cur-
rent in non-relativistic Quantum Chromodynamics and provide the result
for the fermionic part, containing at least one loop of massless quarks.
As a byproduct, we obtain the matching coefficients of the axial-vector,
pseudo-scalar and scalar current at the same order. Furthermore, we cal-
culate the three-loop corrections to the quark renormalisation constants
in the on-shell scheme in the framework of dimensional regularisation
and dimensional reduction. Finally, we compute the third order strong
corrections to the chromomagnetic interaction in Heavy Quark Effective
Theory. The calculational methods are discussed in detail and results for
the master integrals are given.

Zusammenfassung
In dieser Arbeit wird ein wichtiger Baustein der Korrekturen der nächst-
nächst-nächst-führenden Ordnung zur Paarerzeugung von Topquarks
an der Schwelle behandelt. Insbesondere wird die Berechnung der
starken Korrekturen dritter Ordnung zum Anpassungskoeffizienten des
Vektorstroms in der nichtrelativistischen Quantenchromodynamik be-
sprochen und das Ergebnis für die fermionischen Korrekturen mit min-
destens einer masselosen Quarkschleife angegeben. Als Nebenprodukt
erhalten wir die Anpassungskoeffizienten des pseudoskalaren, skalaren
und des Axialvektorstroms zur gleichen Ordnung. Außerdem berechnen
wir die Dreischleifenkorrekturen für die Quark-Renormierungskonstanten
im Onshell-Schema in dimensionaler Regularisierung und dimensionaler
Reduktion. Schlussendlich berechnen wir auch die starken Korrekturen
dritter Ordnung zur chromomagnetischen Wechselwirkung in der Heavy
Quark Effective Theory. Die Rechenmethoden werden im Detail erläutert
und Ergebnisse für die Masterintegrale angegeben.
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Introduction

The top quark was discovered at the Tevatron in 1995. To date it is the heaviest
elementary particle with a mass of 170.9 ± 1.8 GeV [1]. Since this is much larger
than the mass of any other fermion and also roughly twice as large as the mass of
the electroweak gauge bosons, one can wonder whether or not the top quark really is
an elementary particle. Furthermore, if it is elementary, can its mass be generated
by the same mechanism than the mass of the other particles? After all, its mass is
almost six orders of magnitude larger than the electron mass. On the other hand,
the top quark is also essential for our understanding of the standard model itself.
The reason is that precision observables like the W-boson mass or the effective weak
mixing angle depend on the top-quark mass through radiative corrections. If we
want to reduce the errors on these quantities, it is therefore necessary to reduce the
error on the top-quark mass as well.

To address these and other issues, it is necessary to perform precision measure-
ments of the top-quark properties. Next to its mass, its total decay width and
Yukawa coupling are of special interest. Concerning the mass, it is expected that
the uncertainty will be reduced to about 1 GeV at the Large Hadron Collider (LHC).
However, the width and Yukawa coupling cannot be measured to a very good accu-
racy either at the Tevatron or at the LHC. This would change at a future Interna-
tional Linear Collider (ILC). Such a collider offers the unique ability to perform a
scan of the pair production threshold and thus to measure the corresponding cross
section with a very high experimental accuracy [2]. Next to an unrivalled determi-
nation of the top-quark properties, this also provides the possibility to extract the
strong coupling constant, αs, with high precision. For example, it is expected that
the top-quark mass can be measured with better than 100 MeV accuracy. However,
in order to extract these quantities from the measured cross section, it is mandatory
to have a theoretical prediction for the cross section which equals the measurement
in precision.

From a theoretical point of view, the calculation of the cross section is very
interesting, since the top quark pairs behave non-relativistically at threshold. It is
therefore necessary to employ the framework of a non-relativistic effective theory to
perform the calculations. This, in turn, offers the possibility to test this concept.
Furthermore, due to its large width, the top quark system is essentially perturbative,
meaning that non-perturbative effects are suppressed and perturbative calculations
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2 Introduction

should work very well.

The status of the theoretical evaluation of the top-anti-top production cross
section at threshold is as follows. The next-to-next-to leading order (NNLO) cal-
culation was performed by several groups and the results were compiled in Ref. [3].
It turned out that the NNLO correction is very large. Using so-called threshold
mass definitions one obtains a stable peak position. However, the overall normalisa-
tion is by far not good enough to perform precise extractions of the width and the
Yukawa coupling. Furthermore, the results have a large scale dependence and also
vary between the different calculational frameworks.

As a consequence, it is necessary to calculate even higher order corrections. This
can be done in two ways. On the one hand, one can calculate the cross section
to one order higher in fixed order perturbation theory, namely at next-to-next-to-
next-to leading order (N3LO), and on the other hand one can go beyond fixed order
perturbation theory and resum logarithms to next-to-next-to leading logarithmic
(NNLL) order. Partial results exist for both approaches. At the moment, the
uncertainty is estimated to be 6% [4] or 10% [5]. This number should be reduced to
about 3% in order to meet the expected experimental precision [2].

In this work we consider the third order strong corrections to the matching coeffi-
cient of the vector current in non-relativistic Quantum Chromodynamics (NRQCD).
In particular, we evaluate the fermionic part, containing at least one closed loop of
massless quarks. As a byproduct, we obtain the corrections to the matching coeffi-
cients of the axial-vector, pseudo-scalar and scalar current at the same order. Parts
of the results have been published in Refs. [6, 7]

The quark mass and wave function renormalisation constants in the on-shell
scheme are crucial inputs not only for our calculation of the matching coefficients,
but also for many other calculations. In particular, the relation between the pole
and minimally subtracted mass is an important quantity. While the former is the
appropriate definition for processes where the energy scale is much larger than the
quark mass, the latter is important for threshold processes. Therefore, it is necessary
to relate both mass definitions with high accuracy.

Both renormalisation constants and the relation between the pole and mini-
mally subtracted mass are known to third order in Quantum Chromodynamics
(QCD) [8–11] in the framework of dimensional regularisation (DREG). However,
they are not applicable in the context of supersymmetric theories, since DREG
breaks supersymmetry. It is therefore desirable to know these quantities also in
a regularisation scheme which preserves supersymmetry. A first step was done in
Refs. [12, 13], where the on-shell mass renormalisation constant was considered in
the framework of dimensional regularisation (DRED).

In this work we consider the third order QCD corrections to the quark on-shell
mass and wave function renormalisation constants in the framework of DREG and
DRED. The former constitutes an independent check on the analytical results in
the literature, while the latter is interesting in the context of supersymmetry. Our
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results for the former and the relation between the pole and minimally subtracted
mass in DRED have been published in Ref. [14].

The anomalous magnetic moment of the electron and the muon belong to the
most precisely measured quantities in particle physics [15, 16]. The former agrees
very well with the theoretical prediction, which leads to a very precise determination
of the fine structure constant α [17]. However, in the case of the muon, the theoret-
ical and experimental values disagree by more than three standard deviations (see
Ref. [18] for a recent review). If this behaviour remains in future experiments, it is
a strong hint for physics beyond the standard model.

The magnetic moments of heavy quarks can of course not be determined to
such accuracy. However, the couplings of top quarks to photons or Z bosons, are
very interesting due to the large mass of the top quark. This makes them very
susceptible to contributions from physics beyond the standard model. Furthermore,
due to their colour charges, quarks have a chromomagnetic moment as well. This
quantity is interesting in the context of Heavy Quark Effective Theory (HQET),
where it enters the matching coefficient of the chromomagnetic interaction. As such
it can be tested in lattice simulations.

Here we determine the third order QCD corrections to the chromomagnetic mo-
ment of heavy quarks. This computation also provides us with the matching coef-
ficient and anomalous dimension of the chromomagnetic interaction in HQET. As
byproducts we recalculate the three-loop contribution to the electron magnetic mo-
ment in Quantum Electrodynamics and determine the three-loop QCD correction
to the quark magnetic moment.

The structure of this work is as follows. In Chapter 1 NRQCD is introduced,
the calculation of the matching coefficients is explained in detail and the results
are given. Chapter 2 is concerned with the calculation of the quark mass and wave
function renormalisation constants in the on-shell scheme. In Chapter 3 we explain
the calculation of the chromomagnetic moment of a heavy quark. Our conclusions
are presented in Chapter 4 together with an outlook of what remains to be done. In
the Appendix we explain some of the calculational techniques in more detail. The
used program packages are introduced and we provide results for all needed master
integrals.





Chapter 1

Matching Coefficients

This chapter contains the main result of this thesis, namely the fermionic three-
loop corrections to the matching coefficient of the vector current. It is presented
in Section 1.2.3. Furthermore, the results for the matching coefficients of the axial-
vector, pseudo-scalar and scalar current are given to the same order in Sections 1.3–
1.5. Part of the results given in this chapter have been published in Refs. [6, 7].

1.1 NRQCD

In this section we explain the theoretical framework which is used to describe the
behaviour of top-anti-top quark pairs at the production threshold, non-relativistic
Quantum Chromodynamics (NRQCD) [19, 20] (see Ref. [21] for a recent review).
We explain why it is necessary to turn to an effective theory, how the theory is
constructed and how the cross section is calculated within this theory.

1.1.1 Why NRQCD?

If we consider the production of heavy quarks at threshold, we find that the relative
velocity of quark and anti-quark is of the order of the strong coupling evaluated
at the scale given by the quark mass times the velocity, v ∼ αs(mQv). Thus,
for heavy quarks the velocity is small. This leads to a problem when we calculate
processes like the threshold production cross section of heavy quarks, since two small
parameters are involved, the strong coupling and the relative velocity. In general,
we will encounter corrections proportional to (αs/v)

n, where n is the number of
loops of the considered diagram. Since numerator and denominator are of the same
order, the contributions of higher loop orders cannot be neglected. This spoils the
perturbative expansion.

On the other hand, the fact that the relative velocity is small, provides us with
the opportunity to apply the framework of an effective theory. This is based on the
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6 Chapter 1. Matching Coefficients

observation that the relevant scales of the problem, the quark mass (mQ), the quark
momentum (∼ mQv) and the kinetic energy (∼ mQv

2), are well separated. They
adhere to the hierarchy

mQ ≫ mQv ≫ mQv
2 ≫ ΛQCD , (1.1)

where ΛQCD is the typical hadronic scale.

By “integrating out” the hard modes of order mQ from QCD, we turn to an
effective theory which describes the behaviour of heavy quarks and anti-quarks at
energy scales which are smaller than their masses. In this theory the contributions
proportional to (αs/v)

n are automatically resummed to all orders in perturbation
theory.

1.1.2 Construction of (p)NRQCD

The symmetries of NRQCD are SU(3) gauge symmetry, rotational symmetry, charge
conjugation and parity. Additionally, there is a heavy-quark phase symmetry, which
imposes separate conservation of heavy quark and anti-quark number. Up to correc-
tions of order v2, there is also a heavy-quark spin symmetry, which independently
mixes the two spin components of the heavy quark and anti-quark. Since we are
dealing with a non-relativistic theory, NRQCD is of course not Lorentz invariant,
but only has the rotational symmetry mentioned above.

The Lagrangian of NRQCD is ordered in powers of 1/mQ. Each order can be
constructed by writing down all operators, which describe the low energy behaviour
of QCD (with respect to the hierarchy of Eq. (1.1)) at the specified order and are
allowed by the theory’s symmetries. Each operator is multiplied by a coupling
constant of the effective theory, the so-called Wilson or matching coefficient. These
coefficients are determined by requiring that NRQCD exactly reproduces the QCD
results at each order in the 1/mQ expansion.

There is, however, another way to construct the Lagrangian, which is more
intuitive. It is based on expansion-by-region in the form of the so-called threshold
expansion [22, 23]. With this method, the effective theory can be constructed by
considering expansions of QCD diagrams around the threshold region. The relevant
momentum regions are

hard: k0 ∼ mQ , ki ∼ mQ , (1.2)

soft: k0 ∼ mQv , ki ∼ mQv , (1.3)

potential: k0 ∼ mQv
2 , ki ∼ mQv , (1.4)

ultrasoft: k0 ∼ mQv
2 , ki ∼ mQv

2 , (1.5)

where k is a loop momentum of the considered diagram and i ∈ {1, 2, 3}. The
hierarchy of the scales is given by Eq. (1.1). The full result of a Feynman integral is
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given by the sum over the integrals of all momentum regions, where the integrands
are expanded accordingly.

The full theory, QCD, contains all momentum regions, whereas NRQCD does
not contain contributions from the hard region. In this way, it is easy to see that
the matching coefficients are determined entirely by the hard momentum region. To
illustrate this, let us consider an example with only two scales, hard and soft (an
example of such a theory is Heavy Quark Effective Theory (HQET) [24]). In the full
theory the Greens function Γ, corresponding to some operator, receives contributions
from both regions, while the Greens function Γ̃, corresponding to the same operator
in the effective theory, receives only soft contributions. The matching equation is
given by

Γ = C Γ̃ . (1.6)

At next-to leading order (NLO) we have

1 + Γh + Γs + . . . = (1 + CNLO + . . . )(1 + Γs + . . . )

= 1 + CNLO + Γs + . . . , (1.7)

where the ellipses denote higher order terms and the subscripts label the contribu-
tions from different regions. Thus, at NLO we immediately see that C = 1 + Γh.
Starting at next-to-next-to leading order (NNLO), there are interference terms on
the right hand side. In the full theory there are contributions where some loop
momenta are hard and some are soft. These mixed terms correspond exactly to
each other, so that the matching coefficient is determined to all orders by the hard
contributions of the full theory.

The construction of the effective theory with the method of expansion-by-region
is particularly useful since it also provides an implicit definition of NRQCD within
dimensional regularisation. This is especially important for the matching, since most
calculations in QCD are performed within this framework.

So far, we have only used the fact that the scale given by the heavy-quark mass is
much larger than all other scales. However, if we consider a physical process with a
typical scale of the order of the binding energy, mQv

2, NRQCD still contains degrees
of freedom, which cannot appear as physical states. From the effective theory point
of view, these scales should also be integrated out. The corresponding theory is
called potential NRQCD (pNRQCD) [25]. Next to the hard mode, the soft quarks
and gluons and the potential gluons are integrated out as well. The matching to
QCD is performed in two steps. In a first step pNRQCD is matched to NRQCD
at the soft scale and in a second step NRQCD is matched to QCD at the hard
scale. It is interesting to note that the potentials of the non-relativistic Schrödinger
equation appear as matching coefficients of four-quark operators in pNRQCD (hence
the name of the theory).

Let us for completeness mention that another effective theory, velocity NRQCD
(vNRQCD), was proposed in Ref. [26]. The theory contains potential heavy quarks
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and soft and ultrasoft gluons and light quarks. Only ultrasoft energies and momenta
are treated as continuous variables, while soft energies and momenta are treated as
discreet indices. For example, the heavy quark energy and momentum are written
as E = k0 and Pi = pi + ki, respectively, where pi ∼ mQv and k0, ki ∼ mQv

2. An
important difference to pNRQCD is the fact that vNRQCD is matched directly to
QCD.

1.1.3 tt̄ Cross Section in NRQCD

Let us first specify the power counting corresponding to the cross section in the
effective theory. At leading order (LO) the cross section is proportional to v due to
the phase space integral. Furthermore, it contains all terms proportional to (αs/v)

n,
n = 0, 1, 2, . . . , due to the resummation of these terms in NRQCD. The NLO cross
section contains all additional terms of order O (αs) and O (v). At NNLO terms of
order O (α2

s), O (αsv) and O (v2) have to be included as well.

To calculate the production cross section of top-quark pairs at threshold, it is
convenient to employ the optical theorem. Accordingly, the total cross section is
proportional to the imaginary part of current correlators. In particular, the cross
section for virtual photon and Z-boson exchange reads [3]

σγ,Z
tot (q2) = σtot(e

+e− → γ∗, Z∗ → tt̄)

=
4πα2

3q2

{

[

Q2
t −

2q2

q2 −M2
Z

vevtQt +

(

q2

q2 −M2
Z

)2
(

v2
e + a2

e

)

v2
t

]

Rv(q
2)

+

(

q2

q2 −M2
Z

)2
(

v2
e + a2

e

)

a2
tRa(q

2)

}

. (1.8)

where the vector and axial-vector coupling of the Z boson to a fermion f are given
by

vf =
T f

3 − 2Qf sin2 θw

2 sin θw cos θw
, (1.9)

af =
T f

3

2 sin θw cos θw
. (1.10)

α is Sommerfeld’s fine-structure constant, θw is the weak mixing angle and MZ is
the Z-boson mass. Qf and T f

3 denote the charge in units of the positron charge and
the third component of the weak isospin of fermion f , respectively. Rv and Ra are
given by

Rk(q
2) =

4π

q2
Im

[

−i
∫

d4x ei q·x〈0|T jkµ(x)j
µ
k (0)|0〉

]

, (1.11)

where k ∈ {v, a}, T denotes the time-ordered product and jµ
v and jµ

a are the vector
and axial-vector current, respectively.
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Figure 1.1: Total photon-induced cross section at threshold using the pole mass.
Dotted, dashed and solid curves correspond to LO, NLO and NNLO results, respec-
tively. The different lines of same order correspond to different values of the soft
scale. The plots are taken from Ref. [3].

Going to the effective theory, we have to replace the currents by their NRQCD
counterparts times the corresponding matching coefficients. Thus, to calculate the
cross section, we essentially need two ingredients: the matching coefficients and the
current correlators in NRQCD. The former are determined by a calculation in the
full theory, while it can be shown (see for example §125 of Ref. [27]) that the latter
correspond to the solution of the Schrödinger equation in the effective theory.

At the moment, the production cross section of top-quark pairs at threshold is
known at NNLO. The corresponding calculation was done by several groups [28–34],
both in velocity and potential NRQCD, and is summarised in Ref. [3]. Their results
for the total photon-induced cross section in the pole mass scheme are depicted in
Fig. 1.1. In the following, we briefly discuss the findings of Ref. [3].

The general shape of the cross section can be understood as being the remnant
of a would-be 1S toponium state. Due to its large width, which is of the order of
the ultrasoft scale, the top quark decays before it can form bound states. Therefore,
there is only one peak in the threshold region, in contrast with charm or bottom
quarks. Additionally, the peak is smeared out. The peak position is given by twice
the top-quark mass minus the binding energy of the top-anti-top system and can
thus be used to determine the top-quark mass. The shape, on the other hand,
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Figure 1.2: Total photon-induced cross section at threshold using the 1S (Hoang-
Teubner), the kinetic (Melnikov-Yelkhovsky) and the potential-subtracted (Beneke-
Signer-Smirnov and Yakovlev) mass. The plots are taken from Ref. [3].

depends on the total width, the Yukawa coupling to the Higgs boson and αs.

The different plots of Fig. 1.1 show that the NNLO result suffers from a large
dependence on the so-called soft scale, µs. In particular, this scale dependence grows
when one goes from NLO to NNLO. Furthermore, the convergence is quite bad. The
scale variation of the NLO result clearly underestimates the NNLO correction. This
also leads to a large uncertainty in the normalisation, which is estimated to be
20% [3]. In turn, this would lead to large theoretical errors in the extraction of the
top-quark parameters and αs.

The peak position also receives large corrections at higher orders. In Ref. [3] it is
therefore estimated that an extraction of the pole mass would have an uncertainty
of about 300 MeV, which is larger than the expected experimental uncertainty [2].
The uncertainty due to the different calculational methods is estimated to be about
80 MeV at NNLO. While this number is quite large, it is not the dominating error
source.

The problem with the pole mass is that it receives large corrections from energy
(distance) scales which are smaller (larger) than the physically relevant scale. This
is known as the renormalon problem [35,36]. As a result, any determination of the
pole mass will have an error of at least ΛQCD. To circumvent this problem, one can
turn to mass definitions which are better suited for short-distance physics.



1.1. NRQCD 11

For the tt̄ production at threshold, there are several possibilities to define a so-
called threshold mass. The ones which were used for the NNLO calculation are the
1S mass [29], the potential-subtracted (PS) mass [37] and the kinetic mass [38]. The
results are shown in Fig. 1.2. Compared to Fig. 1.1, the peak position is now more
stable. Thus, an extraction of those masses is far more precise. The uncertainty
is estimated in Ref. [3] to be about 100 MeV. Since the relationships between the
threshold masses and the mass defined in the modified minimal subtraction (MS)
scheme [39] are known to high precision1, it is also possible to obtain the latter with
a similar uncertainty.

The overall normalisation and scale dependence of the cross section also im-
proves when one turns to threshold mass definitions. However, both are still not
good enough to match the experimental precision in the extraction of the top-quark
Yukawa coupling, total width and αs. As a consequence, it is mandatory to calculate
even higher order corrections. There are basically two approaches to do this. On
the one hand, one can evaluate the next term in fixed order perturbation theory
and calculate the cross section at N3LO, and on the other hand one can go beyond
fixed order perturbation theory and resum logarithms to next-to-next-to leading
logarithmic (NNLL) order. In the end, it could very well be that both calculations
are necessary.

In recent years, quite a lot of effort has gone into the calculation of higher order
contributions, leading to quite a lot of results. Concerning the NNLL calculation,
there are partial results in the framework of vNRQCD [40,41] and pNRQCD [5,42].
These results already show a better scale dependence. However, the convergence of
the different orders is still not satisfactory. At N3LO, the pNRQCD Hamiltonian
was found in Ref. [43]. Corrections to the energy levels and the wave function were
calculated in Refs. [44–46].

Another important point is the correct inclusion of the top-quark width [47]
and of electroweak effects. The former has been addressed in Refs. [48, 49], where
absorptive parts of the matching coefficients were calculated. Concerning the latter,
the order O (α) corrections were calculated in Ref. [50] and the full Higgs mass
dependence of order O (ααs) of the matching coefficient of the vector current was
evaluated in Ref. [51].

To date, there are still some important ingredients missing. Next to the NNLL
corrections, the electroweak corrections of order O (ααs) have to be completed. For
the three-loop static potential there exists only a rough estimate [52] based on a
Padé approximation. Even though the contribution seems to be small, it is of
course desirable to have an exact calculation. At N3LO, ultrasoft corrections to the
wave function appear for the first time. The results for these contributions are still
not known. Furthermore, the matching coefficients of the vector and axial-vector
current are needed to order O (α3

s) and O (αs), respectively. These corrections are

1An essential ingredient in these relationships is the relation between the pole and the MS mass
(see for example Ref. [37]), which is discussed in Chapter 2.
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considered in the following.

1.2 The Vector Current

In this section we discuss the matching coefficient of the vector current. After
the definition of the currents in the full and effective theory in Section 1.2.1, Sec-
tions 1.2.2 and 1.2.3 explain the calculation and provide the results, respectively. A
discussion of the phenomenological impact of the result is given in Section 1.2.4.

1.2.1 The Matching Procedure

In the full theory, QCD, the vector current in coordinate space is defined as

jµ
v = ψ γµ ψ , (1.12)

where ψ is a four-component Dirac spinor. To find the corresponding operator in the
effective theory, this expression has to be expanded in the relative velocity v = p/mQ

of the quarks. This is most conveniently done in momentum space, where the vector
current is given by

Jµ
v = v (−~p) γµ u (~p) . (1.13)

v and u are Dirac spinors in momentum space. They can be decomposed into two-
component Pauli spinors in the form

v (~p) =

√

E +mQ

2mQ

(

~p·~σ
E+mQ

φ

φ

)

,

u (~p) =

√

E +mQ

2mQ

(

χ
~p·~σ

E+mQ
χ

)

, (1.14)

where E =
√

p2 +m2
Q is the energy of the quark and χ and φ are Pauli spinors

representing the quark and the anti-quark, respectively. Expanding the spacial
components of Eq. (1.13) to order v2, we obtain the leading order operator in the
effective theory

v (−~p) γi u (~p) =

(

1 +
~p 2

4mQ

)(

φ† (−~p · ~σ)

2mQ
, φ†

)

σi

(

~p·~σ
2mQ

χ

χ

)

+ O
(

v4
)

= φ† σi χ+
1

2m2
Q

φ†
(

~p 2σi − pi (~p · ~σ)
)

χ + O
(

v4
)

. (1.15)

The σi in Eq. (1.15) are the Pauli matrices. The time-like component of Eq. (1.13)
is zero up to higher orders in v and is not considered here. The matching coefficient
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of the leading operator (first term on the right hand side of Eq. (1.15)) is required
to order O (α3

s) for the N3LO evaluation of the cross section. Since the sub-leading
operators are suppressed by additional powers of v, their matching coefficients do not
have to be calculated to the same order in αs. In particular, the matching coefficients
of the dimension five operators2 (suppressed by v2) have to be calculated at one-loop
only. Since there are no contributions of closed fermion loops at that order, we do
not consider them in this work.

In order to obtain the matching coefficient, we compute vertex corrections in-
duced by the current in the full and effective theory. It is convenient to consider
renormalised vertex functions with on-shell quarks and perform an expansion around
the threshold q2 = 4m2

Q. Thus, we arrive at the matching equation

ZOS
2 Γv = cv Z̃2 Z̃

−1
v Γ̃v + . . . , (1.16)

where ZOS
2 is the quark wave function renormalisation constant in the on-shell

scheme and Γv denotes the proper structures of the vertex corrections. The cor-
responding quantities in the effective theory are marked by a tilde and the ellipses
denote terms of higher order in v. It is understood that the quark mass and the
strong coupling are already renormalised in Eq. (1.16). The former is renormalised
in the on-shell scheme while we choose the MS scheme for the latter. Z̃2 = 1 to the
order considered in this work.

Since cv only depends on the degrees of freedom which have been integrated out
of the effective theory, it is useful to apply the so-called threshold expansion [22,23]
to Eq. (1.16). This means that Γv is considered as a sum of the contributions from
the different momentum regions. With the exception of the hard region, where
energy and momentum are of the order of the quark mass mQ, all regions contribute
to Γ̃v as well. As a consequence, these contributions drop out and it suffices to
calculate the contribution from the hard region to get cv (see also Section 1.1.2).

Z̃v is an additional renormalisation constant for the vector current in the effective
theory. Since the vector current is conserved in the full theory it does not get
renormalised (cf. Ref. [53] for a recent discussion of this point). However, starting
from two-loop level the matching procedure begins to exhibit infrared divergences.
This is a consequence of the threshold expansion in dimensional regularisation. An
alternative would be to choose a cut-off for the momentum integrations. This would
result in a factorisation scale separating the soft and hard momenta. Here, we absorb
the infrared poles into the additional renormalisation constant Z̃v, which we define
in the MS scheme. Due to this, the matching coefficient becomes scale dependent.
In physical quantities this scale dependence is cancelled against the corresponding
contributions from the effective theory. Of course it is necessary to choose the same
regularisation method for the calculation of the effective theory quantities as well.

Let us now determine the structures of the vertex function Γµ which contribute
to Γv. The general tensor structure of a quark-anti-quark vector boson vertex at

2See for example Ref. [40] for an accurate definition of the two dimension five operators.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1.3: Sample Feynman diagrams contributing to the matching coefficient.
Bold lines denote massive quarks with mass mQ, thin lines denote massless quarks
and curly lines denote gluons. ⊗ denotes the coupling of the external current.

threshold is

Γµ = γµ F1 +
[γµ, q/ ]

4mQ
F2 +

q/ qµ

q2
F3 . (1.17)

Of these three form factors only those contribute which produce the correct struc-
ture in the non-relativistic expansion. This is obviously true for F1 as we know
from Eq. (1.15). Performing the analogous calculations with the other two tensor
structures, we find that Γv = F1 + F2.

1.2.2 Calculation

From the last section we know that we have to calculate vertex corrections induced
by the vector current. Sample Feynman diagrams are shown in Fig. 1.33. However,
from these diagrams we only need certain parts, namely the form factors F1 and F2 of
Eq. (1.17). The most convenient way to extract them is to use projection operators.
Since we do not need both form factors separately, we can use the projector

P̂ (v)
µ =

1

8(d− 1)m2
Q

(

−q/
2

+mQ

)

γµ

(

q/

2
+mQ

)

. (1.18)

Multiplying Γµ from the left with P̂µ and taking the trace gives the sum of F1 and
F2. Furthermore, after application of the projector, we only have to deal with scalar
quantities.

A further simplification of the diagrams can be achieved by taking advantage of
the special kinematics at threshold. Since we have on-shell quarks with momenta
q2
1 = q2

2 = m2
Q and q2 = (q1 + q2)

2 = 4m2
Q, q1 and q2 can be replaced by q/2. This

3All Feynman diagrams in this work were drawn with JaxoDraw [54].
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in turn allows to use partial fractioning to get rid of some massive lines. Let us
consider the scalar one-loop integral corresponding to Fig. 1.3(a) as an example.
We have

∫

ddk

((k + q1)2 −m2
Q) ((k − q2)2 −m2

Q) k2

=

∫

ddk

((k + q/2)2 −m2
Q) ((k − q/2)2 −m2

Q) k2

=

∫

ddk

(k2 + q · k) (k2 − q · k) k2

=
1

2

(
∫

ddk

(k2 + q · k) (k2)2
+

∫

ddk

(k2 − q · k) (k2)2

)

, (1.19)

where the two integrals in the last line are actually equal since they depend only on
q2. Thus, the vertex integral is effectively reduced to an on-shell propagator integral,
which, however, has an additional power of the massless propagator.

This procedure can also be applied at the two- and three-loop level. However,
since there are different types of diagrams we encounter more integral classes. In
particular, we can no longer neglect the sign of the external momentum, which means
that there will also be vertex integrals. All occurring integrals can be mapped on
the following functions:

J (1)(n1, n2) =
µ2ǫ

iπd/2

∫

ddk

(k2)n1(k2 + q · k)n2

,

J
(2)
± (n1, . . . , n5) =

(

µ2ǫ

iπd/2

)2 ∫
ddk ddl

(k2)n1(l2)n2((k − l)2)n3(k2 + q · k)n4(l2 ± q · l)n5

,

L
(2)
± (n1, . . . , n5) =

(

µ2ǫ

iπd/2

)2 ∫
ddk ddl

(k2)n1(l2)n2((k + l)2 + q · (k + l))n3(k2 + q · k)n4(l2 ± q · l)n5

,

J
(3)
± (n1, . . . , n9) =

(

µ2ǫ

iπd/2

)3 ∫
ddk ddl ddp

(k2)n1(l2)n2(p2)n3((k − l)2)n4((l − p)2)n5

× (l2 + q · l)−n8

((p− k)2)n6(k2 + q · k)n7(p2 ± q · p)n9

,

L
(3,nl)
± (n1, . . . , n9) =

(

µ2ǫ

iπd/2

)3 ∫
ddk ddl ddp

(k2)n1(l2)n2((k + l)2 + q · (k + l))n3(k2 + q · k)n4

× (p2 + q · p)−n9

(l2 ± q · l)n5(p2)n6((p+ k)2)n7((p− l)2)n8

. (1.20)
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A B C D

Figure 1.4: The different singlet topologies. The same coding as in Fig. 1.3 is
adopted.

The two-loop functions J
(2)
± and L

(2)
± have already been defined in Ref. [22]. The

three-loop functions J
(3)
± and L

(3,nl)
± contain irreducible scalar products which are

shown as numerators in Eq. (1.20). The corresponding indices can only adopt values
less or equal to zero. Furthermore, only two out of the three indices n6, n7 and n8

in L
(3,nl)
± can have positive values. The integrals J

(2)
+ , L

(2)
+ and J

(3)
+ are on-shell

propagator integrals whereas the integrals J
(2)
− , L

(2)
− , J

(3)
− and L

(3,nl)
± correspond to

vertices at threshold.

A new class of diagrams, which appears first at the three-loop level, are the
so-called singlet diagrams. In these diagrams the external quarks do not couple
directly to the external current. The different topologies are depicted in Fig. 1.4.
Actually, diagrams of this type also appear at the two-loop level. However, the
two gluons in these diagrams have to be in a colour-singlet state, which means that
Furry’s theorem [55] (see also Ref. [56]) is applicable. The sum of the two-loop
singlet diagrams is therefore zero.

The singlet integrals pose an additional complication. Since we cannot perform
the partial fractioning for these integrals in the way described above, we have to
consider the corresponding vertex functions. The topologies of Fig. 1.4 are mapped
on the functions

VA(n1, . . . , n12) =

(

µ2ǫ

iπd/2

)3 ∫
ddk ddl ddp

(k2 −m2
Q)n1(l2 −m2

Q)n2((k − l)2)n3((l − p)2)n4

× (p2)−n10((k − q2)
2)−n11((l + q1)

2)−n12

((p− k)2)n5((k + q1)2)n6((l − q2)2)n7((p+ q1)2)n8((p− q2)2)n9

,

VB(n1, . . . , n12) =

(

µ2ǫ

iπd/2

)3 ∫
ddk ddl ddp

(k2 −m2
Q)n1(l2)n2((k − l)2 −m2

Q)n3((p− k)2)n4

× (p2)−n12

((l − p+ k)2)n5((k + q1)2)n6((k − l − q2)2)n7((l + p+ q1)2)n8

× 1

((p− l − q2)2)n9((p+ q1)2)n10((p− q2)2)n11

,
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(a) (b)

Figure 1.5: Sample diagrams contributing to the mass renormalisation of the match-
ing coefficient. The same coding as in Fig. 1.3 is adopted. The cross denotes the
insertion of the quark mass renormalisation constant.

VC(n1, . . . , n12) =

(

µ2ǫ

iπd/2

)3 ∫
ddk ddl ddp

(k2 −m2
Q)n1((k − l)2)n2((l − p)2)n3((p− k)2)n4

× (l2)−n12(p2)−n12

((k + q1)2)n5((k − q2)2)n6((l + q1)2)n7((l − q2)2)n8((p+ q1)2)n9

× 1

((p− q2)2)n10

,

VD(n1, . . . , n12) =

(

µ2ǫ

iπd/2

)3 ∫
ddk ddl ddp

(k2 −m2
Q)n1((k − l)2)n2((l − p)2)n3((k + q1)2)n4

× (l2)−n10(p2)−n11((p− k)2)−n12

((k − q2)2)n5((l − q2)2)n6((k − l + p+ q1)2)n7((p+ q1)2)n8

× 1

((p− q2)2)n9

, (1.21)

respectively. Actually, it is possible to implement the partial fractioning in terms
of recurrence relations for the integrals [57]. This is discussed in Section A.4 in the
Appendix.

As it was mentioned above, the strong coupling constant and quark mass in Γv

of Eq. (1.16) are already renormalised. The former can be done quite easily by re-
placing the bare coupling constant by the renormalised one times the corresponding
renormalisation constant. The latter is more intricate since we are dealing with
on-shell integrals. The problem is due to the fact that we set (q/2)2 = m2

Q during
the calculation. As a consequence, it is not possible to identify the bare mass, which
needs to be renormalised, in the final result.

The solution to this problem is to consider the pole mass in the Lagrangian and
to calculate the counterterms explicitly by considering one- and two-loop diagrams
with zero momentum insertions. Some sample diagrams are displayed in Fig. 1.5.
The one-loop diagram with two counterterm insertions is not needed at the order
considered in this work. The vertex denoted by a cross has to be replaced by the



18 Chapter 1. Matching Coefficients

quark mass renormalisation constant in the on-shell scheme. The calculation of this
constant is discussed in Chapter 2.

The calculation is performed in dimensional regularisation with d = 4− 2ǫ. The
computation of the diagrams is almost entirely automatised due to the use of the
programs QGRAF [58], q2e [59], exp [60, 61] and MATAD [62], which are described in
Appendix C. In a first step, all occurring integrals are mapped onto the functions
defined in Eq. (1.20). The next step is to reduce all occurring integrals to so-
called master integrals, using integration-by-parts (IBP) identities [63]. In order to
find the solution of the recurrence relations in a systematic way, we used Baikov’s
method [64, 65] in the formulation of Ref. [66] at the one- and two-loop level, and
Laporta’s algorithm [67, 68] for the three-loop calculations. In case of the latter
method, we used the program Crusher [69]. Both methods are explained in detail in
Appendix A. For the three-loop fermionic non-singlet contribution to the matching
coefficients, we found twelve master integrals. The results are given in Appendix D.3.

The singlet integrals of Eq. (1.21) are significantly more complicated than the
non-singlet integrals of Eq. (1.20). Since we have to treat the former as three-point
functions, they contain more propagators. Thus, the corresponding IBP relations
are harder to solve. Still, the most complicated task is the calculation of the corre-
sponding master integrals. Since there are about 50 master integrals for the singlet
integrals alone, this task is not yet completed. The three-loop results in the fol-
lowing are thus only for the non-singlet diagrams. Since both diagram classes are
separately finite and gauge independent, they can be considered independently.

All calculations have been carried out in an arbitrary covariant gauge. The can-
cellation of the gauge parameter, ξ, in our final result serves as a welcome check on
the correctness of our calculation. Starting from the three-loop level, the wave func-
tion renormalisation constant in the on-shell scheme depends on the gauge parameter
(cf. Section 2.3). However, all colour factors which are needed here are indepen-
dent of ξ. It is interesting to note that the ξ-dependence of the genuine three-loop
diagrams is cancelled against terms stemming from the mass renormalisation. The
two-loop diagram with one insertion of the one-loop mass renormalisation constant
(cf. Fig. 1.5(b)) is indeed ξ-independent. The one-loop diagram (cf. Fig. 1.5(a)),
however, is not. This cancellation can already be observed at the two-loop level.

It is convenient to cast the results for the matching coefficients in the form

ci = 1 +
αs(µ)

π
c
(1)
i +

(

αs(µ)

π

)2

c
(2)
i +

(

αs(µ)

π

)3
(

c
(3,nl)
i + non-nl terms

)

+ O
(

α4
s

)

.

(1.22)
The three-loop term can be further decomposed in terms of the different colour
structures

c
(3,nl)
i = CFTFnl

(

CF c
FFL
i + CA c

FAL
i + TFnl c

FLL
i + TF c

FHL
i

)

, (1.23)

where CF = (N2
c − 1)/(2Nc) and CA = Nc are the eigenvalues of the quadratic

Casimir operators of the fundamental and adjoint representation of SU(Nc), respec-
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tively. In the case of QCD we have Nc = 3. TF = 1/2 is the index of the fundamental
representation, nf is the number of quark flavours and nl = nf − 1 is the number of
light-quark flavours, which are considered to be massless in our calculation.

1.2.3 Results

The known one- [70] and two-loop [71, 72] terms are given by

c(1)v = −2CF , (1.24)

c(2)v =

(

23

8
− 79

36
π2 + π2 ln 2 − 1

2
ζ3

)

C2
F

+

(

−151

72
+

89

144
π2 − 5

6
π2 ln 2 − 13

4
ζ3

)

CACF

+

(

11

18
nl +

22

9
− 2

9
π2

)

CFTF −
[

2 β0 + π2

(

1

6
CF +

1

4
CA

)]

CF ln
µ2

M2
Q

,

(1.25)

where MQ denotes the pole mass, β0 = (11CA/3− 4Tnf/3)/4 is the one-loop coeffi-
cient of the strong coupling’s β function and ζn denotes Riemann’s ζ function with
integer argument n. The terms proportional to β0 ln µ2

M2

Q

are connected to the choice

αs(µ) in Eq. (1.22) whereas the ones proportional to π2 ln µ2

M2

Q

originate from the sep-

aration of hard and soft scales in the construction of NRQCD. The former vanish
if αs(MQ) is chosen instead of αs(µ). The latter are cancelled by the corresponding
terms of the non-relativistic Greens function.

For the renormalisation constant Z̃v we obtain

Z̃v = 1 +

(

αs(µ)

π

)2(
1

12
C2

F +
1

8
CFCA

)

π2

ǫ

+

(

αs(µ)

π

)3

CFTnl

[(

1

54
CF +

1

36
CA

)

π2

ǫ2
−
(

25

324
CF +

37

432
CA

)

π2

ǫ

]

+ . . . , (1.26)

where the ellipses stand for non-nl and O (α4
s) terms.
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Our final result for c
(3,nl)
v reads

cFFL
v = 46.7(1) +

(

−17

12
+

61

36
π2 − 2

3
π2 ln 2 +

1

3
ζ3

)

Lµ +
1

18
π2L2

µ ,

cFAL
v = 39.6(1) +

(

181

54
− 67

432
π2 +

5

9
π2 ln 2 +

13

6
ζ3

)

Lµ +

(

11

9
+

1

12
π2

)

L2
µ ,

cFLL
v = −163

162
− 4

27
π2 − 11

27
Lµ − 2

9
L2

µ ,

cFHL
v = −557

162
+

26

81
π2 +

(

−55

27
+

4

27
π2

)

Lµ − 4

9
L2

µ , (1.27)

where Lµ = ln(µ2/M2
Q). The uncertainties assigned to the numerical constants in

cFFL and cFAL are due to the numerical evaluation of some of the master inte-
grals. The given values correspond to a conservative estimate. We want to stress
that the precision of these quantities is more than enough for all phenomenological
applications.

The coefficients in Eq. (1.27) correspond to an expansion parameter αs(µ), as
given in Eq. (1.22). Choosing αs(MQ) instead leads to

c̄FFL
v = 46.7(1) +

25

108
π2Lµ − 1

18
π2L2

µ ,

c̄FAL
v = 39.6(1) +

37

144
π2Lµ − 1

12
π2L2

µ ,

c̄FLL
v = −163

162
− 4

27
π2 ,

c̄FHL
v = −557

162
+

26

81
π2 . (1.28)

The dependence on Lµ in Eq. (1.28) is cancelled against contributions from the
effective theory. The Lµ terms agree with the ones of Ref. [73]4.

1.2.4 Phenomenological Analysis

Let us first take a look at numerical values for the individual contributions to the
matching coefficient. Inserting the numerical values for the colour factors we obtain
for µ = MQ

c(1)v ≈ −2.6667 ,

c(2)v ≈ −44.551 + 0.4074nl ,

c(3,nl)
v ≈ 121. nl − 0.823n2

l . (1.29)

4A typing error in Ref. [73] was pointed out in Ref. [7].
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In the case of the bottom quark we have nl = 4. Furthermore, we set Mb =
5.3 GeV [44]. To evaluate αs at the bottom quark mass, we use the program
RunDec [74]. Starting from αs(MZ) = 0.118 we obtain αs(Mb) = 0.2096, where
both are defined for five active flavours. Using these values, we obtain the following
result for the matching coefficient

cv(Mb) = 1 − 0.1780
∣

∣

NLO
− 0.1911

∣

∣

NNLO
+ 0.139

∣

∣

N3LO′
, (1.30)

where the orders in perturbation theory are indicated by the subscripts. The prime
in N3LO′ reminds us of the fact that only a part of this correction is known. From
Eq. (1.30) we see that the second-order correction is larger than the first-order one.
It is, however, almost cancelled by our new third-order term. At the moment, the
perturbative expansion does not seem to converge. However, this situation may
improve when the full third-order correction is known.

In the case of the top quark we have nl = 5 and Mt = 175 GeV. For the
strong coupling we find αs(Mt) = 0.1075, defined with six active flavours. Thus, the
numerical result for the matching coefficient is

cv(Mt) = 1 − 0.0912
∣

∣

NLO
− 0.0498

∣

∣

NNLO
+ 0.0233

∣

∣

N3LO′
. (1.31)

Also in this case the second- and third-order corrections are large compared to the
first-order correction, though not as large as in the bottom quark case. Still, the
NNLO correction amounts to more than 50% of the NLO one. This illustrates again
why it is necessary to perform the three-loop calculation.

Two important quantities, which depend on the matching coefficient of the vec-
tor current, are the leptonic decay width of the Υ(1S) state and the peak of the
normalised tt̄ cross section, R = σ(e+e− → tt̄)/σ(e+e− → µ+µ−). Therefore, we
want to discuss the impact of our new result on these quantities in the following.

The leptonic decay of the Υ(1S) state can be cast in the form [34,75–78]

Γ(Υ(1S) → l+l−) = ΓLOρ1

[

c2v(Mb) +
C2

Fα
2
s(µs)

12
cv(Mb) (dv(Mb) + 3)

]

+ . . . ,

(1.32)

where non-perturbative contributions are ignored. ΓLO = 4πNcQ
2
bα

2|ψC
1 (0)|2/(3M2

b ),
ρ1 = |ψ1(0)|2/|ψC

1 (0)|2, Qb = −1/3 and α is Sommerfeld’s fine-structure constant.

The Coulomb wave function is given by
∣

∣ψC
n (0)

∣

∣

2
= C3

Fα
3
sM

3
Q/(8πn

3). The re-
sult for ρ1 is given in Appendix E. µs denotes the so-called soft scale defined by
µs = CFMQαs(µs). Using RunDec we obtain αs(µs) = 0.2967 for µs = 2.0967 GeV,
where αs(µs) is defined with four active flavours.
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Inserting the perturbative expansion for ρ1 and cv into Eq. (1.32) we obtain

Γ1 ≈ ΓLO
1

(

1 − 1.70αs(Mb) − 7.98α2
s(Mb) + 30.0α3

s(Mb)
∣

∣

nl
+ . . .

)

×
[

1 − 0.30αs(µs) + α2
s(µs) (17.2 − 5.19 lnαs(µs))

+α3
s(µs)

(

−14.4 ln2 αs(µs) + 0.17 lnαs(µs) − 34.9
∣

∣

β3

0

)

+ . . .
]

(1.33)

≈ ΓLO
1

(

1 − 0.446
∣

∣

NLO
+ 1.75

∣

∣

NNLO
− 1.20

∣

∣

N3LO′
+ . . .

)

. (1.34)

In Eq. (1.34), Eq. (1.33) is expanded and terms of order α4
s are dropped consistently.

Apart from our new contribution to cv and the known third-order corrections to ρ1

we have also included all interference terms which are proportional to powers of nl.
The new corrections are responsible for the reduction of N3LO′ terms from −1.67
to −1.20 which amounts to about 47% of the Born cross section. The perturbative
expansion in Eq. (1.34) contains large coefficients, just as in the case of the matching
coefficient alone. This makes the application of perturbation theory questionable.
Still, for a definite conclusion one has to wait until the complete N3LO corrections
are available.

The peak of the normalised tt̄ cross section is dominated by the contribution
from the would-be toponium ground-state, which can be cast into a form similar to
Eq. (1.32)

R1(e
+e− → tt̄) = RLO

1 ρ1

[

c2v(Mt) +
C2

Fα
2
s(µs)

12
cv(Mt) (dv(Mt) + 3)

]

+ . . . .

(1.35)

The leading order term is given by RLO
1 = 6πNcQ

2
t |ψC

1 (0)|2/(M2
t Γt). The contri-

butions from the higher Coulomb-like poles and the continuum are not included in
Eq. (1.35).

The analog equations to Eqs. (1.33) and (1.34) read

R1 ≈ RLO
1

(

1 − 1.70αs(Mt) − 7.89α2
s(Mt) + 37.2α3

s(Mt)
∣

∣

nl

+ . . .
)

×
[

1 − 0.43αs(µs) + α2
s(µs) (16.1 − 5.19 lnαs(µs))

+α3
s(µs)

(

−13.8 ln2 αs(µs) + 2.06 lnαs(µs) − 27.2
∣

∣

β3

0

)

+ . . .
]

(1.36)

≈ RLO
1

(

1 − 0.243
∣

∣

NLO
+ 0.435

∣

∣

NNLO
− 0.195

∣

∣

N3LO′
+ . . .

)

, (1.37)

where αs(µs) is defined with five active flavours. We obtain αs(µs) = 0.1398 with
µs = 32.625 GeV. The fermionic corrections to cv are responsible for a reduction of
the third-order coefficient from −0.268 to −0.195 and thus amount to moderate 7%
of the leading order term. Similarly as for the bottom-quark case also for the top
quark the perturbative series is alternating and the third-order coefficient tends to
stabilise the expansion. It is interesting to note that after the inclusion of our new
terms the total correction amounts to less than 1%.
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(a) (b) (c) (d)

Figure 1.6: The two-loop singlet diagrams contributing to the matching coefficient
of the axial-vector current. The same coding as in Fig. 1.3 is adopted.

1.3 The Axial-Vector Current

The general approach to the calculation of the axial-vector current, and indeed of
the other currents, is the same as for the vector current. Therefore, we will restrict
ourselves in this and the following sections to point out only the differences.

The axial-vector current in the full theory is given by

jµ
a = ψ γµγ5 ψ . (1.38)

The operator in the effective theory corresponding to the spacial components of
Eq. (1.38) is

j̃i
a =

1

2mQ
φ†
[

σi, ~p · ~σ
]

χ + O
(

v3
)

, (1.39)

which is already of order v. Contrary to the vector current, there is also a non-zero
time-like component at order v0, namely

j̃0
a = φ† χ + O

(

v2
)

. (1.40)

Since this is the same operator as the one of the pseudo-scalar current, we postpone
its discussion to the next section. However, most of what is said in this section about
the calculation of the matching coefficient of the spacial component also applies to
the time-like component. The matching equation for both cases is similar to the one
of the vector current

ZOS
2 Γ(0,i)

a = c(0,i)
a Z̃2 Z̃

−1
a Γ̃(0,i)

a + . . . , (1.41)

where c
(i)
a = ca and c

(0)
a = cp.

In Section 1.2.2, we noted that there is no contribution from singlet diagrams to
the matching coefficient of the vector current at the two-loop level. This statement
is not true for the axial-vector current. Here, we get a finite contribution from these
diagrams, which are depicted in Fig 1.6. The diagrams can be mapped onto the
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following functions

VE(n1, . . . , n7) =

(

µ2ǫ

iπd/2

)2 ∫
ddk ddl

((k − q2)2)n1(k2 −m2
Q)n2((k + q1)2)n3((k − l)2)n4

× (l2)−n7

((l + q1)2)n5((l − q2)2)n6

,

VF (n1, . . . , n7) =

(

µ2ǫ

iπd/2

)2 ∫
ddk ddl

(k2)n1(k2 + 2q2 · k)n2((k + q1 + q2)2)n3

× (l2)−n7

((k − l)2 + 2q2 · (k − l))n4(l2 + 2q1 · l)n5(l2 − 2q2 · l)n6

. (1.42)

To reduce these functions to master integrals, we used the program AIR [79], which
implements Laporta’s algorithm. We found seventeen master integrals. If the addi-
tional recurrence relations of Appendix A.4 are used, the number of master integrals
is reduced to nine. The results for all master integrals are given in Appendix D.2.

To ensure the cancellation of anomaly-like contributions, we have to consider the
current

jµ
a = t̄ γµγ5 t− b̄ γµγ5 b (1.43)

for the singlet contribution, where t and b denote the top and bottom quark, respec-
tively. The contributions from the lighter quarks cancel in the difference of up-type
and down-type quarks. Eq. (1.43) also leads to a difference between the matching
coefficient for top quarks and the matching coefficient for bottom quarks. The rea-
son is that in both cases the difference of up-type and down-type quarks has to be
considered. In the former, the top quark is massive and on-shell while the bottom
quark is massless. In the latter case, however, the bottom quark is massive and
on-shell but the mass of the top quark cannot be neglected. To evaluate the first
term on the left hand side in Eq. (1.43) we perform an asymptotic expansion (see
for example Ref. [23]) in mt ≫ mb, keeping only the leading term.

The occurrence of γ5 presents an additional complication due to the use of di-
mensional regularisation, since it is an intrinsically four dimensional object [80,81].
This means that the two defining properties of γ5,

Tr{γ5γ
µγνγσγρ} = −4i εµνσρ1 , (1.44)

{γ5, γµ} = 0 , (1.45)

where 1 is the unit matrix in Dirac space, are incompatible if d 6= 4. In the case of
the non-singlet diagrams it is safe to use an anti-commuting definition of γ5 [82]. For
the singlet diagrams, however, this would lead to wrong results, since the property
of Eq. (1.44) is essential in the evaluation of these diagrams. Therefore, we use the
’t Hooft-Veltman prescription in the formulation of Ref. [83]. This means that we
have to perform the replacement

γµγ5 →
1

3!
εµαβδγαγβγδ (1.46)
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in the vertex corresponding to the external current and in the projector. The ε tensor
of the vertex is then stripped off and absorbed into the projector, where we can use
four-dimensional identities for the contraction of ε tensors to rewrite them in terms
of products of metric tensors. Only the γ matrices are kept in the actual vertex.

Another important difference to the vector current is the fact that the leading
operator of the spacial components is already suppressed by one power of v. This
poses a complication for the calculation since we now have to expand the diagrams to
first order in v. In practice this means that we choose q1 = q/2+ p and q2 = q/2−p
and expand to first order in p. As a consequence, the tensor structure and thus the
projector become more complicated as well. The proper structure is projected out
by multiplying

P̂ (a,i,ac)
µ = − 1

8m2
Q

{

1

d− 1

(

q/

2
−mQ

)

γµγ5

(

q/

2
−mQ

)

+
1

d− 2

(

q/

2
−mQ

)

mQ

p2
((d− 3)pµ + γµ p/ ) γ5

(

q/

2
+mQ

)}

(1.47)

from the left and taking the trace. Note, that we have chosen a reference frame
where q · p = 0 [22].

As we pointed out above, it is not possible to use an anti-commuting γ5 for
the calculation of the singlet diagrams. For the calculation of these diagrams it is
therefore necessary to change the projector accordingly. We now have

P̂
(a,i,HV )
αβδ =

1

8m2
Q(d− 2)

{(

q/

2
−mQ

)

(gναgσβgρδ − gναgσδgρβ − gνβgσαgρδ

+gνβgσδgρα + gνδgσαgρβ − gνδgσβgρα)

×
[

mQ

p2

1

(d− 3)
((d− 1) γνγσγρ p/ + (d− 5) p/ γνγσγρ)

×
(

q/

2
−mQ

)

+
1

18(d− 1)
γνγσγρ

(

q/

2
+mQ

)]}

,

(1.48)

where the indices α, β and δ correspond to Eq. (1.46).

Even though it is possible to use an anti-commuting definition of γ5 in the non-
singlet case, in principle one can use the replacement of Eq. (1.46) and the projector
of Eq. (1.48) in this case as well. According to Ref. [83], this requires an additional,
finite renormalisation. After this we indeed find the correct result at the one-loop
level. At two loops, however, we find a difference in the term proportional to C2

F .
This is due to the fact that the prescription of Ref. [83] is only valid for infrared
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finite quantities. Since this is not the case here, it would be necessary to modify the
additional renormalisation constant.

For the renormalisation constant Z̃a we obtain

Z̃a = 1 +

(

αs(µ)

π

)2(
5

48
C2

F +
1

24
CFCA

)

π2

ǫ

+

(

αs(µ)

π

)3

CFTnl

[(

5

216
CF +

1

108
CA

)

π2

ǫ2

− (0.6321(1)CF + 0.4036(1)CA)
π2

ǫ

]

+ . . . ,

(1.49)

where the ellipses stand for non-nl and O (α4
s) terms.

Our one- and two-loop results for the matching coefficient of the axial-vector
current read

c(1)a = −CF , (1.50)

c(2)a =

(

23

24
− 9

8
π2 +

19

24
π2 ln 2 − 27

16
ζ3

)

C2
F

+

(

−101

72
+

35

144
π2 − 7

12
π2 ln 2 − 9

8
ζ3

)

CFCA

+

(

7

18
nl +

20

9
− 2

9
π2 +X

(a)
sing

)

CFTF

−
[

β0 + π2

(

5

24
CF +

1

12
CA

)]

CF ln
µ2

M2
Q

, (1.51)

with

X
(a)
sing = −23

72
π2 +

2

3
π2 ln 2 − 2 ln 2 +

2

3
ln2 2 + iπ

(

1 − 2

3
ln 2

)

(1.52)

for top quarks and

X
(a)
sing =

55

24
+

19

72
π2 − 2

3
π2 ln 2 − 3

4
ln
M2

b

M2
t

+ O
(

M2
b

M2
t

)

(1.53)

for bottom quarks.

The fermionic part of Eq. (1.51) agrees with the result of Ref. [84]. The results
for the singlet contribution agree with the results of Ref. [82]. In both of these
references the form factors were calculated off threshold. The extraction of the
other colour structures of Eq. (1.51) is therefore not so easy since they also contain
contributions from other momentum regions.
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Our three-loop result reads

cFFL
a = 28.1(1) + 6.6513(1)Lµ +

5

72
π2L2

µ ,

cFAL
a = 23.2(1) + 5.2384(1)Lµ +

(

11

18
+

1

36
π2

)

L2
µ ,

cFLL
a = − 65

162
− 2

27
π2 − 7

27
Lµ − 1

9
L2

µ ,

cFHL
a = −415

162
+

20

81
π2 +

(

−47

27
+

4

27
π2

)

Lµ − 2

9
L2

µ . (1.54)

We only give the result for αs(µ). The result for αs(MQ) or any other scale can be
obtained easily with the usual renormalisation group techniques.

1.4 The Pseudo-Scalar Current

The pseudo-scalar current is defined as

jp = ψ iγ5 ψ . (1.55)

The corresponding operator in the effective theory is

j̃p = −iφ† χ+ O
(

v2
)

. (1.56)

Thus, we have j̃p = −i j̃0
a from Eq. (1.40). Since both currents correspond to the

same operator in the effective theory, they must have the same matching coefficient.
Still, the calculation in both cases is quite different. The fact that we get the same
result is therefore a good check on the correctness of our calculation.

An important difference is the fact that the pseudo-scalar current has an addi-
tional renormalisation constant in the full theory. The matching equation therefore
reads

ZOS
2 Zp Γp = cp Z̃2 Z̃

−1
p Γ̃p + . . . . (1.57)

Zp, the renormalisation constant of the current in the full theory, is just the mass
renormalisation constant. Since we have chosen the on-shell scheme to renormalise
the mass in Γp, Zp = ZOS

m .

The projectors for the proper combination of the tensor structures are also dif-
ferent for the two cases. For anti-commuting γ5 we have

P̂ (p,ac) = − 1

8m2
Q

(

q/

2
−mQ

)

γ5

(

q/

2
+mQ

)

, (1.58)

P̂ (a,0,ac)
µ =

1

8m2
Q

(

q/

2
−mQ

)

γµγ5

(

q/

2
+mQ

)

, (1.59)
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respectively. For ’t Hooft-Veltman γ5 we have to perform the replacement

γ5 →
i

4!
εαβρσγαγβγργσ (1.60)

for the pseudo-scalar current. For the time-like component of the axial-vector current
the replacement of Eq. (1.46) is performed. The projectors become

P̂
(p,HV )
αβρσ = − 1

128(d− 3)(d− 2)(d− 1)m2
Q

×
(

q/

2
−mQ

)

(γαγβγργσ + γσγργβγα

−γβγργσγα − γαγσγργβ)

(

q/

2
+mQ

)

(1.61)

and

P̂
(a,0,HV )
αβδ =

1

48(d− 3)(d− 2)(d− 1)m2
Q

×
(

q/

2
−mQ

)

(gναgσβgρδ − gναgσδgρβ − gνβgσαgρδ

+gνβgσδgρα + gνδgσαgρβ − gνδgσβgρα)

× γνγσγρ

(

q/

2
+mQ

)

, (1.62)

respectively, where the indices correspond to Eqs. (1.60) and (1.46).

For the pseudo-scalar current we have again contributions from two-loop singlet
diagrams. However, the diagrams with light fermions in the loop (cf. Fig 1.6 (c) and
(d)) are suppressed by the mass. Since we set the mass of the light quarks to zero,
we only get a contribution from the diagrams with a top quark loop (cf. Fig 1.6
(a) and (b)). For the zero component of the axial-vector current, we again have to
consider the combination of Eq. (1.43). The fact that we have the same result in
both cases, is a powerful check on the correctness of our calculation.

For the renormalisation constant Z̃p we obtain

Z̃p = 1 +

(

αs(µ)

π

)2(
3

12
C2

F +
3

24
CFCA

)

π2

ǫ

+

(

αs(µ)

π

)3

CFTnl

[(

1

18
CF +

1

36
CA

)

π2

ǫ2

−
(

1.0052(1)CF +
37

432
CA

)

π2

ǫ

]

+ . . . , (1.63)
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where the ellipses stand for non-nl and O (α4
s) terms. The two-loop contribution

agrees with the result of Ref. [85].

The one- and two-loop results for the matching coefficient read

c(1)p = −3

2
CF , (1.64)

c(2)p =

(

29

16
− 79

48
π2 + π2 ln 2 − 9

2
ζ3

)

C2
F

+

(

−17

48
+

17

48
π2 − π2 ln 2 − 3ζ3

)

CFCA

+

(

1

12
nl +

43

12
− 1

3
π2 +X

(p)
sing

)

CFTF

−
[

3

2
β0 + π2

(

1

2
CF +

1

4
CA

)]

CF ln
µ2

M2
Q

, (1.65)

with

X
(p)
sing =

5

24
π2 +

1

2
π2 ln 2 − 21

8
ζ3 + i

1

8
π3 . (1.66)

The one-loop result has already been obtain in Ref. [86]. The fermionic two-loop
part agrees with the results of Refs. [82, 87]. At the two-loop level the matching
coefficient has also been considered in the context of the Bc meson in Ref. [88]. Since
there are two mass scales involved, the calculation is significantly more complicated.
However, the master integrals were evaluated as an expansion in mc/mb so that it is
not possible to derive the result for the equal mass case. Also, there are no singlet
diagrams in the case of the Bc meson.

Our three-loop result reads

cFFL
p = 51.9(1) + 12.057(1)Lµ +

1

6
π2L2

µ ,

cFAL
p = 39.9(1) +

(

73

72
+

1

48
π2 +

2

3
π2 ln 2 + 2ζ3

)

Lµ +

(

11

12
+

1

12
π2

)

L2
µ ,

cFLL
p = − 41

108
− 1

9
π2 − 1

18
Lµ − 1

6
L2

µ ,

cFHL
p = −76

27
+

7

27
π2 +

(

−22

9
+

2

9
π2

)

Lµ − 1

3
L2

µ . (1.67)

1.5 The Scalar Current

In the full theory the scalar current is defined as

js = ψ ψ . (1.68)
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The corresponding operator in the effective theory is

j̃s = − 1

mQ
φ† ~p · ~σ χ+ O

(

v3
)

. (1.69)

Just as in the case of the axial-vector current, the leading operator is already sup-
pressed by one power of v. The matching equation is similar to the pseudo-scalar
case and reads

ZOS
2 Zs Γs = cs Z̃2 Z̃

−1
s Γ̃s + . . . . (1.70)

The renormalisation constant of the current in the full theory is again the mass
renormalisation constant, Zs = ZOS

m .

The proper combination of tensor structures of the vertex function is projected
out by multiplying

P̂(s) =
1

8m2
Q

{(

q/

2
−mQ

)

1

(

q/

2
−mQ

)

−
(

q/

2
−mQ

)

mQ

p2
p/

(

q/

2
+mQ

)}

(1.71)
from the left and taking the trace. 1 in Eq. (1.71) denotes the unit matrix in Dirac
space.

For the renormalisation constant Z̃s we obtain

Z̃s = 1 +

(

αs(µ)

π

)2(
1

6
C2

F +
1

24
CFCA

)

π2

ǫ

+

(

αs(µ)

π

)3

CFTnl

[(

1

27
CF +

1

108
CA

)

π2

ǫ2

− (0.8833(1)CF + 0.4036(1)CA)
π2

ǫ

]

+ . . . ,

(1.72)

where the ellipses stand for non-nl and O (α4
s) terms.

The one- and two-loop results for the matching coefficient read

c(1)s = −1

2
CF , (1.73)

c(2)s =

(

5

16
− 37

48
π2 +

1

2
π2 ln 2 − 11

4
ζ3

)

C2
F

+

(

49

144
+

1

48
π2 − 1

2
π2 ln 2 − 5

4
ζ3

)

CFCA

+

(

− 5

36
nl +

121

36
− 1

3
π2 +X

(s)
sing

)

CFTF

−
[

1

2
β0 + π2

(

1

3
CF +

1

12
CA

)]

CF ln
µ2

M2
Q

, (1.74)
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with

X
(s)
sing =

2

3
− 29

72
π2 +

2

3
π2 ln 2 − ln 2 + i

π

2
. (1.75)

The fermionic two-loop part agrees with the result of Ref. [87].

Our three-loop result reads

cFFL
s = 30.1(1) + 7.5621(1)Lµ +

1

9
π2L2

µ ,

cFAL
s = 21.4(1) + 4.0827(1)Lµ +

(

11

36
+

1

36
π2

)

L2
µ ,

cFLL
s =

73

324
− 1

27
π2 +

5

54
Lµ − 1

18
L2

µ ,

cFHL
s = −157

81
+

5

27
π2 +

(

−58

27
+

2

9
π2

)

Lµ − 1

9
L2

µ . (1.76)





Chapter 2

Renormalisation Constants

In the last chapter we already pointed out that the quark mass and wave function
renormalisation constants in the on-shell scheme are necessary ingredients for the
calculation of the matching coefficients. The former is needed to two-loop, the
latter even to three-loop order. The results are available in the literature. They
have been calculated to two-loops in Refs. [89,90] and to three-loops in Refs. [8–11]
in the framework of dimensional regularisation (DREG). However, the integrals
needed for this calculation form a subset of the integrals needed for the calculation
of the matching coefficient. The calculation of these renormalisation constants can
therefore be used as a check of a part of our implementation. Furthermore, our
calculation of the wave function renormalisation constant poses the first independent
check of the analytical result in the literature. Additionally, we calculate both
renormalisation constants in the framework of dimensional reduction (DRED) to
three-loops. These calculations are described in this chapter. Parts of the results
have been published in Ref. [14].

2.1 General Remarks

In this section we outline the calculation of the renormalisation constants. First, we
explain the regularisation schemes, DREG and DRED, and the on-shell, MS and DR
renormalisation schemes. The necessary formulae for the calculation are derived in
Section 2.1.3. In Section 2.1.4, we discuss the more involved renormalisation proce-
dure of the DRED calculation and provide results for the necessary renormalisation
constants.

2.1.1 Regularisation Schemes

In order to calculate the divergent integrals, which appear in quantum field theories,
it is necessary to specify a regularisation scheme. The most commonly used one is

33
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dimensional regularisation [80]. In this scheme, the number of dimensions is taken
to be a complex number d, which is different from four. Here, we make the usual
choice, d = 4 − 2ǫ. The momentum integrals are then carried out in d dimensions
and the limit ǫ → 0 is only taken in the final result. In this way, the divergencies
manifest themselves as poles in ǫ.

While DREG is a very useful calculational framework in non-supersymmetric
theories, it has been known for a long time to break supersymmetry (SUSY) (see for
example Ref. [91]). The reason is that the number of bosonic and fermionic degrees
of freedom in a super-multiplet do not match for d 6= 4. To remedy this, DRED was
proposed in Ref. [92] (see also Ref. [93]). In this framework, it is assumed that ǫ > 0.
Space-time is compactified to d dimensions in such a way that vector fields remain
four dimensional. Only the integration momenta are considered to be d dimensional,
which is enough to render the loop integrals ultra-violet finite.

It was, however, soon realised that DRED is mathematically inconsistent [94].
In Ref. [95], it was explained that a consistent formulation can be achieved if the
four, d and ǫ dimensional spaces are interpreted as infinite dimensional. This leads
again to explicit SUSY breaking. However, it has also been shown that the SUSY
restoring counterterms vanish in some calculations [96].

The advantage of DRED in practical applications is that the implementation is
very easy at the technical level. It is very convenient to introduce an additional
scalar particle, the so-called ε scalar, by splitting the gauge field into a d- and a
2ǫ-dimensional part. The actual calculations can now be performed just like in
DREG.

However, if DRED is applied to non-supersymmetric theories, for example after
some of the heavy SUSY particles have been integrated out, the situation becomes
more complicated. In this case the couplings of the qq̄ε and the four-ε vertex,
the so-called evanescent couplings, renormalise differently from the theory’s gauge
coupling. Therefore, one has to allow for new couplings in the theory.

In this work we apply DRED to QCD, where we use the implementation of
Refs. [97, 98]. In this case, we have to introduce four new couplings. The Yukawa-
type coupling of the ε scalar with a quark and an anti-quark is denoted by ge.
The three different four-ε scalar couplings are denoted by λi, i ∈ {1, 2, 3}. The
Lagrangian is given by

LQCD,DRED = Ld + Lǫ , (2.1)

where the d-dimensional part is the usual QCD Lagrangian in DREG. The (bare)
2ǫ-dimensional part is given by [97]

Lǫ =
1

2
(∂µε

a
σ)

2 + gs f
abc∂µε

a
σA

bµεc
σ +

1

2
g2

s f
abcfadeAb

µε
c
σA

dµεe
σ

−ge ψ t
aγσψε

a
σ − 1

4

3
∑

i=1

λiH
abcd
i εa

σε
b
σ′εc

σε
d
σ′ , (2.2)
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where Aa
µ is the gluon field, εa

σ denotes the ε-scalar field and ψ is the quark field.
µ is a d-dimensional index, σ and σ′ are 2ǫ-dimensional indices and ta denotes a
generator of the fundamental representation of SU(3). The Habcd

i are symmetric
under interchange of (a, b) and (c, d). Since the gauge group of QCD is SU(3), there
are three independent rank four tensors with this property. Our choice for these
tensors is

Habcd
1 =

1

2

(

facef bde + fadef bce
)

,

Habcd
2 = δabδcd + δacδbd + δadδbc ,

Habcd
3 =

1

2

(

δacδbd + δadδbc
)

− δabδcd . (2.3)

Furthermore, we introduce the notation αe = g2
e/(4π) and ηi = λi/(4π) for the

evanescent couplings in analogy with the gauge coupling. Since all terms which
involve only the ε scalars and no gluons are separately gauge independent, the
corresponding couplings renormalise differently, as we have already noted above.

2.1.2 Renormalisation Schemes

Renormalisation (see for example Ref. [99, 100]) is a necessary procedure in any
quantum field theory. It ensures that the parameters of the Lagrangian correspond
to the physical observables and that the divergencies are absorbed into unphysical
quantities, the so-called bare parameters. There is, however, some freedom in the
way how this is achieved. A consistent set of rules for the renormalisation of all
parameters of a given theory is called a renormalisation scheme. In the following,
we give a brief explanation of the schemes used in this work.

The quark mass and wave function renormalisation constants are defined as

mQ,0 = ZOS
m MQ , (2.4)

mQ,0 = Zx
mm

x
Q , (2.5)

ψ0 =
√

ZOS
2 ψ , (2.6)

where mQ is the mass of the quark field ψ, MQ is its pole mass, x ∈ {MS,DR} and
bare quantities are labelled by a subscript 0. In order to calculate these constants,
we have to put certain requirements on the pole position and residual of the quark
propagator.

In the on-shell scheme we require the pole of the propagator to be at the position
of the renormalised mass. Its residual is required to be equal to −i. Thus, the full,
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renormalised quark propagator is given by

SF (q) =
−iZOS

2

q/ −mQ,0 + Σ(q,MQ)

=
−iZOS

2

q/ − ZOS
m MQ + Σ(q,MQ)

(2.7)

q2→M2

Q−→ −i
q/ −MQ

. (2.8)

In minimal subtraction (MS) schemes the renormalisation constants are defined
in such a way, that they only subtract the divergencies. This has the advantage
that the renormalisation constants are mass-independent. In the modified minimal
subtraction (MS) scheme the ln 4π and γE terms, which accompany the poles in ǫ,
are subtracted as well. The modified minimal subtraction scheme in combination
with DRED is called DR scheme.

In DRED we have to deal with an additional mass next to the one of the heavy
quark, namely that of the ε scalars. While there is no ε-scalar mass term in the La-
grangian (cf. Eq. (2.2)), radiative corrections introduce a mass at higher loop order.
Here, we renormalise this mass on-shell by requiring that it is zero in every order in
perturbation theory. This is the so-called DR

′
scheme [101]. It has the advantage

that the ε-scalar mass completely decouples from physical quantities. For super-
symmetric theories, the DR and DR

′
schemes are the same. The renormalisation of

the ε-scalar mass is discussed in more detail in Section 2.1.4.

2.1.3 Calculation

Both the mass and the wave function renormalisation constant can be calculated by
considering one-particle irreducible quark self-energy diagrams. Sample diagrams
are depicted in Fig. 2.1.

The general tensor structure of the quark self-energy diagrams in QCD can be
decomposed as

Σ(q,mQ) = mQ Σs(q
2, mQ) + q/ Σv(q

2, mQ) , (2.9)

where q is the momentum of the external quark. Again, it is useful to apply projec-
tors to get the necessary tensor structures. Here, we have

Σs(q
2, mQ) =

1

4mQ
Tr {Σ(q,mQ)} , (2.10)

Σv(q
2, mQ) =

1

4q2
Tr {q/ Σ(q,mQ)} . (2.11)

For the current calculation it is convenient to introduce the functions Σ1 = Σs + Σv

and Σ2 = Σv. In terms of these functions we can rewrite Σ as

Σ(q,mQ) = mQ Σ1(q
2, mQ) + (q/ −mQ) Σ2(q

2, mQ) . (2.12)
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(a) (b) (d)(c)

(f) (g)

(h)

(e)

(i) (j)

Figure 2.1: Sample self-energy diagrams contributing to the renormalisation con-
stants. Bold lines denote massive quarks with mass mQ and curly lines denote
gluons. In the closed fermion loops all quark flavours have to be considered.

To derive the formulae for the renormalisation constants, we consider, following
Ref. [11], the expansion of Σ around q2 = M2

Q. This is given by

Σ(q,MQ) ≈ MQ Σ1(M
2
Q,MQ) + (q/ −MQ) Σ2(M

2
Q,MQ)

+MQ
∂

∂q2
Σ1(q

2,MQ)
∣

∣

∣

q2=M2

Q

(q2 −M2
Q) + . . . , (2.13)

where the ellipses denote higher order terms. Note that we do not have to take
the derivative of the second term in Eq. (2.12) since this is of higher order than the

derivative of the first term. Using q2−M2
Q = (q/ −MQ)(q/ +MQ) and q/ +MQ

q2→M2

Q−→
2MQ, we finally obtain

Σ(q,MQ) ≈ MQ Σ1(M
2
Q,MQ)

+(q/ −MQ)

(

2M2
Q

∂

∂q2
Σ1(q

2,MQ)
∣

∣

∣

q2=M2

Q

+ Σ2(M
2
Q,MQ)

)

+ . . . . (2.14)

Inserting Eq. (2.13) into Eq. (2.7) and comparing to Eq. (2.8) we obtain the following
formulae for the renormalisation constants

ZOS
m = 1 + Σ1(M

2
Q,MQ) , (2.15)

(ZOS
2 )−1 = 1 + 2M2

Q

∂

∂q2
Σ1(q

2,MQ)
∣

∣

∣

q2=M2

Q

+ Σ2(M
2
Q,MQ) . (2.16)
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Thus, to obtain Zm we only need to calculate the sum of the two tensor structures
Σs and Σv for q2 = M2

Q.

A convenient way to obtain Z2 was introduced in Ref. [11]. If we consider the
momentum of the external quarks to be q = Q(1+ t) with Q2 = M2

Q, the self-energy
can be written as

Σ(q,MQ) = MQ Σ1(q
2,MQ) + (Q/ −MQ) Σ2(q

2,MQ) + tQ/ Σ2(q
2,MQ) . (2.17)

Let us now consider the quantity Tr{Q/ +MQ

4M2

Q

Σ}, which is just the sum of Σs(M
2
Q,MQ)

and Σv(M
2
Q,MQ), and expand to first order in t

Tr

{

Q/ +MQ

4M2
Q

Σ(q,MQ)

}

= Σ1(q
2,MQ) + tΣ2(q

2,MQ)

= Σ1(M
2
Q,MQ)

+

(

2M2
Q

∂

∂q2
Σ1(q

2,MQ)
∣

∣

∣

q2=M2

Q

+ Σ2(M
2
Q,MQ)

)

t

+O
(

t2
)

. (2.18)

To calculate Z2 we therefore have to compute the first derivative of the self-energy
diagrams and project again on the sum of Σs and Σv.

Just as in the case of the matching coefficients, the mass renormalisation is
taken into account iteratively by calculating one- and two-loop diagrams with zero-
momentum insertions.

If we consider only the nl part at the three-loop level, all occurring diagrams can
be mapped onto the “+”-integrals of Eq. (1.20). However, to do the full three-loop
calculation, we need seven additional integral classes1, namely

K1(n1, . . . , n9) =
(

µ2

iπd/2

)3 ∫
ddk ddl ddp

(k2)n1(l2)n2(p2)n3(k2 + 2q · k)n4((k + l)2 + 2q · (k + l))n5

× ((p− l)2)−n9

((k + l + p)2 + 2q · (k + l + p))n6((k + l + p)2)n7((k + p)2)n8

,

K2(n1, . . . , n9) =

(

µ2

iπd/2

)3 ∫
ddk ddl ddp

(k2)n1(l2)n2(p2)n3((k + l + p)2 + 2q · (k + l + p))n4

× 1

(k2 + 2q · k)n5(p2 + 2q · p)n6((k + l)2 + 2q · (k + l))n7

× 1

((l + p)2 + 2q · (l + p))n8((p− k)2)n9

,

1These integral classes will appear in the full calculation of the matching coefficient as well.
There, however, they will be accompanied by the corresponding vertex integrals.
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K3(n1, . . . , n9) =

(

µ2

iπd/2

)3 ∫
ddk ddl ddp

(k2)n1(l2)n2(p2)n3(k2 + 2q · k)n4(l2 + 2q · l)n5

× ((p− k)2)−n9

(p2 + 2q · p)n6((k + l)2 + 2q · (k + l))n7((l + p)2 + 2q · (l + p))n8

,

K4(n1, . . . , n9) =

(

µ2

iπd/2

)3 ∫
ddk ddl ddp

(k2)n1(l2)n2(p2)n3(k2 + 2q · k)n4(l2 + 2q · l)n5

× ((p− k)2)−n9

(p2 + 2q · p)n6((k + l)2 + 2q · (k + l))n7((p− l)2)n8

,

K5(n1, . . . , n9) =

(

µ2

iπd/2

)3 ∫
ddk ddl ddp

(k2)n1(l2)n2(p2)n3(k2 + 2q · k)n4(l2 + 2q · l)n5

× ((p− l)2)−n9

((k + l)2 + 2q · (k + l))n6((l + p)2 + 2q · (l + p))n7

× 1

((k + l + p)2 + 2q · (k + l + p))n8

,

K6(n1, . . . , n9) =

(

µ2

iπd/2

)3 ∫
ddk ddl ddp

(k2)n1(l2)n2(p2)n3(k2 + 2q · k)n4(l2 + 2q · l)n5

× ((p− l)2)−n9

((k + l)2 + 2q · (k + l))n6((l + p)2 + 2q · (l + p))n7((p− k)2)n8

,

K7(n1, . . . , n9) =

(

µ2

iπd/2

)3 ∫
ddk ddl ddp

(k2)n1(l2)n2(p2)n3((p− k)2)n4(k2 + 2q · k)n6

× ((k − l)2)−n5

(p2 + 2q · p)n7((k + l)2 + 2q · (k + l))n8((l + p)2 + 2q · (l + p))n9

,

(2.19)

where q2 = m2
Q and only one index out of n8 and n9 of K2 can adopt positive values.

Furthermore, the index n8 of J
(3)
+ can now adopt positive values as well.

The results for the on-shell renormalisation constants in DREG can be cast into
the following form

ZOS
i = 1 +

αs(µ)

π

(

eγE

4π

)−ǫ

δZ
(1)
i +

(

αs(µ)

π

)2(
eγE

4π

)−2ǫ

δZ
(2)
i

+

(

αs(µ)

π

)3(
eγE

4π

)−3ǫ

δZ
(3)
i + O

(

α4
s

)

, (2.20)
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where i ∈ {m, 2}. It is convenient to further decompose the three-loop contribution
in terms of the different colour factors

δZ
(3)
i = C3

F Z
FFF
i + C2

FCA Z
FFA
i + CFC

2
A Z

FAA
i

+CFTFnl

(

CF Z
FFL
i + CA Z

FAL
i + TFnl Z

FLL
i + TF Z

FHL
i

)

+CFTF

(

CF Z
FFH
i + CA Z

FAH
i + TF Z

FHH
i

)

. (2.21)

In the case of DRED we present the results for Nc = 3 only, since our implemen-
tation of the ηi couplings is only valid for SU(3). We cast the results in the following
form

ZOS,DRED
i = 1 +

(

eγE

4π

)−ǫ

δZ̃
(1)
i +

(

eγE

4π

)−2ǫ

δZ̃
(2)
i +

(

eγE

4π

)−3ǫ

δZ̃
(3)
i + . . . ,

(2.22)

where the ellipses denote higher order corrections. Furthermore, we decompose the
two- and three-loop results in terms of the different couplings as

Z̃
(2)
i =

(

αDR
s

π

)2

Xss
i +

αDR
s

π

αe

π
Xse

i +
(αe

π

)2

Xee
i , (2.23)

Z̃
(3)
i =

(

αDR
s

π

)3

Y sss
i +

(

αDR
s

π

)2
αe

π
Y sse

i +
αDR

s

π

(αe

π

)2

Y see
i +

(αe

π

)3

Y eee
i

+
3
∑

j=1

[αe

π

ηj

π

(αe

π
Y eej

i +
ηj

π
Y ejj

i

)]

+
αe

π

η1

π

η3

π
Y e13

i , (2.24)

where we suppressed the µ dependence for brevity.

2.1.4 Renormalisation in DRED

The main complication of the DRED calculation is the more involved renormali-
sation. In addition to the strong coupling αs also the evanescent coupling αe has
to be renormalised to two-loop order. The evanescent couplings ηi appear for the
first time at three-loop order and thus no renormalisation is necessary. For both
the heavy quark mass, mQ, and the ε-scalar mass, mε, two-loop counterterms are
necessary. Whereas the couplings are renormalised using minimal subtraction the
masses are renormalised on-shell. The corresponding renormalisation constants are
defined through

αDR
s,0 = µ2ǫ

(

ZDR
s

)2

αDR
s , (2.25)

αe,0 = µ2ǫ (Ze)
2 αe , (2.26)

mDR
Q,0 = MQZ

OS,DRED
m , (2.27)

(mε,0)
2 = m2

εZ
OS
mε
. (2.28)
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Recently, the quantities Ze and ZDR
s have been computed to three- [102] and

four-loop order [98]. The results have been presented in terms of the corresponding
β functions. For completeness we present in the following the two-loop results for
the renormalisation constants

ZDR
s = 1 +

αDR
s

π

(

eγE

4π

)−ǫ(

−11

24
CA +

1

6
TFnf

)

1

ǫ

+

(

αDR
s

π

)2
(

eγE

4π

)−2ǫ [(
121

384
C2

A − 11

48
CATFnf +

1

24
T 2

Fn
2
f

)

1

ǫ2

+

(

−17

96
C2

A +
5

48
CATFnf +

1

16
CFTFnf

)

1

ǫ

]

, (2.29)

Ze = 1 +
αDR

s

π

(

eγE

4π

)−ǫ(

−3

4
CF

)

1

ǫ

+
αe

π

(

eγE

4π

)−ǫ(

−1

4
CA +

1

2
CF +

1

4
TFnf

)

1

ǫ

+

(

αDR
s

π

)2
(

eγE

4π

)−2ǫ{(
11

32
CACF +

9

32
C2

F − 1

8
CFTFnf

)

1

ǫ2

+

[

7

256
C2

A − 55

192
CACF − 3

64
C2

F −
(

1

32
CA − 5

48
CF

)

TFnf

]

1

ǫ

}

+
αDR

s

π

αe

π

(

eγE

4π

)−2ǫ [(
3

8
CACF − 3

4
C2

F − 3

8
CFTFnf

)

1

ǫ2

+

(

3

32
C2

A − 5

8
CACF +

11

16
C2

F +
5

32
CFTFnf

)

1

ǫ

]

+
(αe

π

)2
(

eγE

4π

)−2ǫ

×
{[

3

32
C2

A − 3

8
CACF +

3

8
C2

F −
(

3

16
CA − 3

8
CF − 3

32
TFnf

)

TFnf

]

1

ǫ2

+

[

− 3

32
C2

A +
5

16
CACF − 1

4
C2

F +

(

3

32
CA − 3

16
CF

)

TFnf

]

1

ǫ

}

+
αe

π

(

eγE

4π

)−2ǫ(
η1

π

9

32
− η2

π

5

16
− η3

π

3

16

)

1

ǫ
−
(η1

π

)2
(

eγE

4π

)−2ǫ
27

256

1

ǫ

+
(η2

π

)2
(

eγE

4π

)−2ǫ
15

16

1

ǫ
−
(η3

π

)2
(

eγE

4π

)−2ǫ
21

128

1

ǫ
+
η1

π

η3

π

(

eγE

4π

)−2ǫ
9

64

1

ǫ
.

(2.30)

Here and in the following, we include factors (eγE/(4π))−ǫ, where γE is Euler’s con-
stant, in the MS and DR renormalisation constants to be consistent with the on-shell
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(a) (c)

(f)(d)

(b)

(e)

Figure 2.2: One- and two-loop Feynman diagrams contributing to the ε-scalar prop-
agator. Dashed lines denote ε scalars, curly lines denote gluons and solid lines denote
massive quarks with mass mQ.

quantities. Since a MS or DR renormalisation constant does not have O (ǫ) terms,
it is implied that these terms are dropped when the pre-factors are expanded in ǫ.
We also set Nc = 3 in all terms containing the couplings ηi since our implementation
of these couplings is only valid for SU(3).

We already pointed out above that we have to renormalise the ε-scalar mass
as well, even though there is no tree-level term in the Lagrangian. The relevant
Feynman diagrams contributing to the ε-scalar propagator show quadratic diver-
gences and therefore we only need to consider contributions from massive particles.
Thus, only diagrams involving a massive quark have to be taken into account. Some
sample diagrams are shown in Fig. 2.2.

At one-loop order there is only one relevant diagram (cf. Fig. 2.2(a)) which has
to be evaluated for vanishing external momentum. A closer look to the two-loop
diagrams shows that they develop infrared divergences in the limit mε → 0 (cf., e.g.,
Fig. 2.2(e)). They can be regulated by introducing a small but non-vanishing mass
for the ε scalars. After the subsequent application of an asymptotic expansion [23]
in the limit q2 = m2

ε ≪ M2
Q the infrared divergences manifest themselves as ln(mε)

terms. Furthermore, one-loop diagrams like the ones in Fig. 2.2(b) and (c) do not
vanish anymore and have to be taken into account as well. Although they are
proportional to m2

ε, after renormalisation they induce two-loop contributions which
are proportional to M2

Q, partly multiplied by ln(mε) terms. We want to stress that
in the sum of the genuine two-loop diagrams and the counterterm contributions the
limit mε → 0 can be taken which demonstrates the infrared finiteness of the on-shell
mass of the ε scalar.

Taking the infrared finiteness for granted, it is also possible to choose q2 = m2
ε =
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0 from the very beginning. Then the individual diagrams are infrared divergent,
however, the sum is not. We have performed the calculation both ways and checked
that the final result is the same. It is given by
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(2.31)

The overall factor nh in front of the one- and two-loop corrections shows that the
renormalisation of mε only influences those terms which contain a closed heavy
quark loop.

The counterterm diagrams for the ε scalars are generated just like the ones for
the heavy quarks by considering one- and two-loop diagrams with zero momentum
insertions in ε-scalar lines. Sample diagrams are shown in Fig. 2.3(a)–(c). Their
evaluation is straightforward. However, the diagram depicted in Fig. 2.3(d) poses a
technical problem. Since we take the ε scalars to be massless during the calculation,
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(a) (b) (c) (d)

Figure 2.3: Sample counterterm diagrams for the ε-scalar mass. The same coding
as in Fig. 2.2 is adopted.

this diagram vanishes since it contains a massless tadpole. On the other hand,
at first glance it appears that we need the counterterm for the diagram shown in
Fig. 2.4(f). Let us analyse the situation in more detail in the following.

If we consider the diagrams of Fig. 2.3(d) and Fig. 2.4(f) for massive ε scalars,
we can perform an asymptotic expansion in the limit mQ ≫ mε. Since the diagrams
factorise into a vacuum bubble and an on-shell propagator-type diagram, we can
consider these parts separately. The expansion for the latter is exactly the same for
both diagrams. It is given by the on-shell diagram evaluated for mε = 0 plus terms
which are suppressed by powers of the ε-scalar mass.

The expansion of the vacuum bubble is different for the two diagrams. For
the counterterm diagram there is only one contribution, namely a massive tadpole
integral with a counterterm insertion. From Eq. (2.31) we know that the latter is
proportional to m2

Q. In the case of the genuine three-loop diagram we have again
the massive tadpole, but now with an insertion of the ε-scalar self-energy diagram
depicted in Fig. 2.2(a) for non-zero ε-scalar momentum. The expansion of this part
produces again a contribution proportional to m2

Q, which is exactly the same as the
corresponding contribution of the counterterm diagram. The sub-leading terms in
the expansion are suppressed by powers of the ε-scalar mass.

So far, we have found the same contributions for the counterterm and the genuine
three-loop diagram up to terms with positive powers of mε. In the case of the latter
diagram there is however one more contribution, namely from the “naive” expansion
where mε is simply set to zero. Obviously, the counterterm diagram does not have
a contribution from this term. Thus, the sum of the genuine three-loop diagram
with non-zero ε-scalar mass and the counterterm diagram is given by the “naive”
expansion of the three-loop diagram up to terms of O (mε). Since we set mε to
zero in the end, we can neglect the counterterm diagram and simply calculate the
three-loop diagram for mε = 0, which is what we want to do anyway.

2.2 Mass Renormalisation

In this section we provide the results for the mass renormalisation constants in the
framework DREG and DRED.
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2.2.1 DREG Result

The one- and two-loop contributions to the mass renormalisation constant are
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where a4 = Li4
(

1
2

)

=
∞
∑

n=1

(2n n4)−1. We give the one- and two-loop results to O (ǫ2)

and O (ǫ), respectively. This is necessary for any three-loop calculation.
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The individual three-loop terms read
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Another important quantity is the relation between the mass renormalisation
constants defined in the MS and on-shell schemes. At O (α3

s), this relation was first
found in a semi-numerical way in Refs. [8, 9]. It was confirmed by the analytical
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calculation in Ref. [10]. To calculate this relation, we have to divide the renor-
malisation constant in the on-shell scheme by the renormalisation constant in the
MS scheme. The latter can be obtained by taking just the pole part of the quark
self-energy diagrams. Since this does not depend on the masses and momenta, the
calculation is significantly simpler. Thus, the mass renormalisation constant in the
MS scheme is even known at the four-loop level [103].

Another possibility is to make an ansatz and determine the coefficients by re-
quiring the relation between the two renormalisation constants to be finite. Using
this method we obtain
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(2.44)

Since the one- and two-loop results for the on-shell renormalisation constant are
given to the needed order in ǫ, it is now possible to derive the relation between
the MS and on-shell renormalisation constants. However, since the result is quite
lengthy, we refrain from listing it here.
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(a) (b) (c)

(f)(e)(d)

Figure 2.4: Sample three-loop diagrams contributing to the quark propagator which
have to be considered additionally in case DRED is used for the regularisation. The
same coding as in Figs. 2.1 and 2.2 is adopted.

2.2.2 DRED Result

If DREG is used for the regularisation, we have to calculate about 130 diagrams. Due
to the additional couplings involving the ε scalars, there are about 1100 diagrams
in the case of DRED. Some sample diagrams are depicted in Fig. 2.4.

We give the result for Nc = 3 only, since our implementation of the ηi couplings
is only valid for SU(3). Even though nh = 1, we keep the label in our formulae so
that it is possible to discern the contributions from diagrams with closed massive
quark loops.

Our result for the one-loop contribution to the on-shell mass renormalisation
constant in DRED reads
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The individual two- and three-loop contributions read
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216
ζ5 +

13

54
ln4 2 +

52

9
a4

−
(

13139

288
+

163

288
π2 +

5

18
π2 ln 2 − 5

12
ζ3

)

Lµ − 49

6
L2

µ − 3

4
L3

µ +

[

70799

7776

+
3119

2592
π2 +

11

81
π2 ln 2 − 2

81
π2 ln2 2 +

557

216
ζ3 −

61

1944
π4 − 1

81
ln4 2 − 8

27
a4

+

(

967

144
+

89

432
π2 +

1

27
π2 ln 2 +

7

9
ζ3

)

Lµ +
125

72
L2

µ +
11

72
L3

µ

]

nl −
[

2353

23328

+
13

324
π2 +

7

54
ζ3 +

(

89

648
+

1

54
π2

)

Lµ +
13

216
L2

µ +
1

108
L3

µ

]

n2
l −

[

5917

11664

− 13

324
π2 − 2

27
ζ3 +

(

143

324
− 1

54
π2

)

Lµ +
13

108
L2

µ +
1

54
L3

µ

]

nlnh +

[

125555

7776

−49387

7776
π2 +

586

81
π2 ln 2 +

1

81
π2 ln2 2 − 253

216
ζ3 −

41

972
π4 +

1

4
π2ζ3 −

5

4
ζ5

− 1

81
ln4 2 − 8

27
a4 +

(

1147

144
− 91

432
π2 +

1

27
π2 ln 2 +

7

9
ζ3

)

Lµ +
125

72
L2

µ

+
11

72
L3

µ

]

nh −
[

9481

23328
− 4

405
π2 − 11

54
ζ3 +

(

197

648
− 1

27
π2

)

Lµ +
13

216
L2

µ

+
1

108
L3

µ

]

n2
h , (2.49)

Y sse
m = −

(

107

72
− 5

108
nf

)

1

ǫ2
+

[

979

576
− 31

24
Lµ −

(

17

216
− 1

36
Lµ

)

nf

]

1

ǫ

+
57233

20736
− 5

864
π2 +

1

27
π2 ln 2 +

7

24
ζ3 +

517

144
Lµ − 17

48
L2

µ −
(

721

1728
+

7

432
π2

+
43

216
Lµ +

1

72
L2

µ

)

nl −
(

1009

1728
− 17

432
π2 +

43

216
Lµ +

1

72
L2

µ

)

nh , (2.50)
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Y see
m = −

(

1

12
− 1

8
nf

)

1

ǫ2
−
[

97

432
+

1

36
Lµ +

(

31

288
− 1

24
Lµ

)

nf

]

1

ǫ

+
197

2592
− 5

432
π2 − 5

36
ζ3 −

16

27
Lµ +

1

72
L2

µ +

(

193

1728
− 7

288
π2 +

5

36
ζ3

− 13

144
Lµ − 1

48
L2

µ

)

nl +

(

337

1728
+

1

288
π2 +

5

36
ζ3 −

13

144
Lµ − 1

48
L2

µ

)

nh ,

(2.51)

Y eee
m = −

(

1

324
− 1

108
nf +

1

144
n2

f

)

1

ǫ2
−
(

1

216
− 5

216
nf − 1

288
n2

f

)

1

ǫ

− 25

432
− 5

216
ζ3 −

1

108
Lµ −

(

23

576
− 1

72
Lµ

)

nf +
5

576
n2

f , (2.52)

Y ee1
m = −1

8

1

ǫ
, (2.53)

Y ee2
m =

5

36

1

ǫ
− 5

24
, (2.54)

Y ee3
m =

1

12

1

ǫ
, (2.55)

Y e11
m =

3

64

1

ǫ
− 9

256
, (2.56)

Y e22
m = − 5

12

1

ǫ
+

15

16
, (2.57)

Y e33
m =

7

96

1

ǫ
− 7

128
, (2.58)

Y e13
m = − 1

16

1

ǫ
+

3

64
. (2.59)

The one-loop corrections to ZOS,DRED
m can be found in Ref. [12] and the two-loop

terms have been computed in Ref. [13], albeit for αe = αDR
s .

Just as in the DREG case, one can also consider the finite ratio ZOS,DRED
m /ZDR

m .

ZDR
m has been computed in Ref. [102] to three and in Ref. [98] even to four-loop

order. There, it is given in terms of the corresponding anomalous dimension. For
completeness, we provide the result for the renormalisation constant in Appendix E.
Dividing ZOS,DRED

m by ZDR
m we obtain indeed a finite result. Again, we do not list

the result for brevity. It can be found in Ref. [14].
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2.3 Wave Function Renormalisation

In this section we provide the results for the mass renormalisation constants in the
framework DREG and DRED.

2.3.1 DREG Result

At the one-loop level we have δZ
(1)
2 = δZ

(1)
m . The two-loop contribution to the wave

function renormalisation constant reads

δZ
(2)
2 =

[

9

32ǫ2
+

(

51

64
+

9

16
Lµ

)

1

ǫ
+

433

128
− 49

64
π2 + π2 ln 2 − 3

2
ζ3 +

51

32
Lµ +

9

16
L2

µ

+

(

211

256
− 339

128
π2 +

23

4
π2 ln 2 − 2π2 ln2 2 − 297

16
ζ3 +

7

20
π4 − ln4 2 − 24a4

+

(

433

64
− 49

32
π2 + 2π2 ln 2 − 3ζ3

)

Lµ +
51

32
L2

µ +
3

8
L3

µ

)

ǫ

]

C2
F

+

[

11

32ǫ2
− 127

192ǫ
− 1705

384
+

5

16
π2 − 1

2
π2 ln 2 +

3

4
ζ3 −

215

96
Lµ − 11

32
L2

µ

+

(

−9907

768
+

769

1152
π2 − 23

8
π2 ln 2 + π2 ln2 2 +

129

16
ζ3 −

7

40
π4 +

1

2
ln4 2 + 12a4

+

(

−2057

192
+

109

192
π2 − π2 ln 2 +

3

2
ζ3

)

Lµ − 259

96
L2

µ − 11

32
L3

µ

)

ǫ

]

CACF

+

[

− 1

8ǫ2
+

11

48ǫ
+

113

96
+

1

12
π2 +

19

24
Lµ +

1

8
L2

µ

+

(

851

192
+

127

288
π2 + ζ3 +

(

145

48
+

3

16
π2

)

Lµ +
23

24
L2

µ +
1

8
L3

µ

)

ǫ

]

CFTFnl

+

[(

1

16
+

1

4
Lµ

)

1

ǫ
+

947

288
− 5

16
π2 +

11

24
Lµ +

3

8
L2

µ +

(

17971

1728
− 445

288
π2

+2π2 ln 2 − 85

12
ζ3 +

(

1043

144
− 29

48
π2

)

Lµ +
5

8
L2

µ +
7

24
L3

µ

)

ǫ

]

CFTF . (2.60)

Again, we give the result to O (ǫ), which is necessary for three-loop calculations.
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The individual three-loop terms are given in the following

ZFFF
2 = − 9

128ǫ3
−
(

81

256
+

27

128
Lµ

)

1

ǫ2
+

(

−1039

512
+

303

512
π2 − 3

4
π2 ln 2

+
9

8
ζ3 −

243

256
Lµ − 81

256
L2

µ

)

1

ǫ
− 10823

3072
− 58321

9216
π2 +

685

48
π2 ln 2

+3π2 ln2 2 − 739

128
ζ3 −

41

120
π4 +

1

8
π2ζ3 −

5

16
ζ5 −

5

12
ln4 2 − 10a4

+

(

−3117

512
+

909

512
π2 − 9

4
π2 ln 2 +

27

8
ζ3

)

Lµ − 729

512
L2

µ − 81

256
L3

µ , (2.61)

ZFFA
2 = − 33

128ǫ3
+

(

95

768
− 33

128
Lµ

)

1

ǫ2
+

(

1787

512
− 131

512
π2 +

3

8
π2 ln 2

−5

8
ζ3 +

469

256
Lµ +

33

256
L2

µ

)

1

ǫ
+

136945

9216
+

29695

9216
π2 − 755

288
π2 ln 2

−235

72
π2 ln2 2 − 6913

384
ζ3 +

1793

3456
π4 − 45

16
π2ζ3 +

145

16
ζ5 −

55

144
ln4 2 − 55

6
a4

+

(

25609

1536
− 3335

1536
π2 +

71

24
π2 ln 2 − 37

8
ζ3

)

Lµ +
2155

512
L2

µ +
121

256
L3

µ , (2.62)

ZFAA
2 = − 121

576ǫ3
+

2009

3456ǫ2
−
[

12793

20736
+

3

128
ζ3 +

1

1080
π4 +

(

1

768
+

3

256
ζ3

− 1

4320
π4

)

ξ

]

1

ǫ
− 1654711

124416
− 4339

3456
π2 − 325

144
π2 ln 2 +

127

144
π2 ln2 2

+
5857

576
ζ3 −

3419

23040
π4 +

127

72
π2ζ3 −

37

6
ζ5 +

85

288
ln4 2 +

85

12
a4

+

(

− 13

768
− 1

256
π2 − 13

256
ζ3 +

17

27648
π4 +

1

144
π2ζ3 +

7

384
ζ5

)

ξ

+

[

−36977

3456
+

55

96
π2 − 11

12
π2 ln 2 +

167

128
ζ3 −

1

360
π4

+

(

− 1

256
− 9

256
ζ3 +

1

1440
π4

)

ξ

]

Lµ − 2671

1152
L2

µ − 121

576
L3

µ , (2.63)

ZFFL
2 =

3

32ǫ3
+

(

− 19

192
+

3

32
Lµ

)

1

ǫ2
−
(

235

384
+

7

128
π2 +

1

4
ζ3 +

41

64
Lµ +

3

64
L2

µ

)

1

ǫ

−3083

2304
+

2845

2304
π2 − 47

18
π2 ln 2 +

4

9
π2 ln2 2 +

473

96
ζ3 −

229

2160
π4 +

2

9
ln4 2

+
16

3
a4 +

(

−1475

384
+

133

384
π2 − 2

3
π2 ln 2 +

1

4
ζ3

)

Lµ − 179

128
L2

µ − 11

64
L3

µ ,

(2.64)
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ZFAL
2 =

11

72ǫ3
− 169

432ǫ2
+

(

313

1296
+

1

4
ζ3

)

1

ǫ
+

111791

15552
+

13

48
π2 +

47

36
π2 ln 2

−2

9
π2 ln2 2 − 35

72
ζ3 +

19

1080
π4 − 1

9
ln4 2 − 8

3
a4

+

(

169

27
− 1

18
π2 +

1

3
π2 ln 2 +

1

4
ζ3

)

Lµ +
469

288
L2

µ +
11

72
L3

µ , (2.65)

ZFLL
2 = − 1

36ǫ3
+

11

216ǫ2
+

5

1296ǫ
− 5767

7776
− 19

108
π2 − 7

18
ζ3

−
(

167

216
+

1

18
π2

)

Lµ − 19

72
L2

µ − 1

36
L3

µ , (2.66)

ZFHL
2 =

(

1

36
+

1

12
Lµ

)

1

ǫ2
+

(

− 5

216
+

1

144
π2 − 1

9
Lµ +

1

24
L2

µ

)

1

ǫ

−4721

1296
+

19

54
π2 − 1

36
ζ3 +

(

−329

108
+

25

144
π2

)

Lµ − 7

12
L2

µ − 5

72
L3

µ , (2.67)

ZFFH
2 = −

(

7

192
+

3

16
Lµ

)

1

ǫ2
−
(

707

384
− 15

64
π2 +

29

64
Lµ +

15

32
L2

µ

)

1

ǫ

−76897

6912
− 11551

20736
π2 +

7

18
π2 ln 2 − 1

2
π2 ln2 2 +

1763

288
ζ3 +

31

720
π4 +

1

2
ln4 2

+12a4 +

(

−2891

384
+

233

192
π2 − 2

3
π2 ln 2 + ζ3

)

Lµ − 143

128
L2

µ − 19

32
L3

µ ,

(2.68)

ZFAH
2 =

1 − ξ

192ǫ3
−
[

7

72
− 1

64
ξ +

(

41

192
+

1

64
ξ

)

Lµ

]

1

ǫ2
+

[

13

216
− 41

2304
π2

−
(

35

576
+

1

768
π2

)

ξ +

(

83

144
+

3

64
ξ

)

Lµ −
(

35

384
+

3

128
ξ

)

L2
µ

]

1

ǫ

+
49901

2592
− 36019

5184
π2 +

80

9
π2 ln 2 +

1

3
π2 ln2 2 − 77

16
ζ3 −

17

360
π4 +
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48
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−15

16
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1
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(
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1728
+

1

256
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+
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+

1

256
π2

)

ξ

]

Lµ

+

(
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+
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(
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1152
− 3
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ξ
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µ , (2.69)
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ZFHH
2 =

1

72ǫ2
−
(

5

432
+

1
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L2

µ

)

1

ǫ
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+

2
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−
(

481

216
− 5

24
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)

Lµ − 11

72
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6
L3

µ . (2.70)

Starting from the three-loop level, the wave function renormalisation constant de-
pends on the gauge parameter, ξ. The parameter in the above equations is defined
through the gluon propagator as

Dab
µν(k) = − i

k2

(

gµν − ξ
kµkν

k2

)

δab , (2.71)

where a and b are colour indices.

2.3.2 DRED Result

Just as in DREG, we have δZ̃
(1)
2 = δZ̃

(1)
m . The individual two and three-loop contri-

butions to the wave function renormalisation constant in DRED are given by

Xss
2 =

(
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nl

)

1
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[
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+
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+
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+
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+
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+
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Xse
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+
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+
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ǫ , (2.73)

Xee
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+
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+
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+
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+
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]

ǫ , (2.74)
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Y sss
2 =

−
(
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+
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+
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+
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+
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+
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+
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+
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+
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+
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+
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+
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h

}

1

ǫ
− 826919

10368
− 200605

15552
π2 − 2309

324
π2 ln 2 +
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335

648
ln4 2 +
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+

3

64
π2

+
39

64
ζ3 −

17

2304
π4 − 1

12
π2ζ3 −
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+
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+
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+
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+
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+
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+

(
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+

1

54
π2

)

Lµ +
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[
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+
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h , (2.75)
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Y sse
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Y see
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+
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Y eee
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1
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f
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(
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f , (2.78)

Y ee1
2 = Y ee1

m , (2.79)

Y ee2
2 = Y ee2

m , (2.80)

Y ee3
2 = Y ee3

m , (2.81)

Y e11
2 =

3

64

1

ǫ
− 21

256
, (2.82)

Y e22
2 = − 5

12

1

ǫ
+

65

48
, (2.83)

Y e33
2 =

7

96

1

ǫ
− 49

384
, (2.84)

Y e13
2 = − 1

16

1

ǫ
+

7

64
. (2.85)

Just like in DREG, the three-loop contribution to the wave function renormalisation
constant depends on the gauge parameter, ξ. Note, however, that there are no ξ-
dependent terms involving the evanescent couplings. In fact, the ξ-dependent terms
are exactly the same as in the case of DREG.



Chapter 3

Chromomagnetic Interaction

In this chapter we discuss the calculation of the chromomagnetic moment at the
three-loop level. As byproducts we obtain the analytical results for the anomalous
magnetic moment of electrons and quarks at the same order. While the former is
known, the latter result is new. The calculation is outlined in general in the following
section. The results for the electron and quark anomalous magnetic moments are
given in Section 3.2 and 3.3, respectively, while Section 3.4 contains the results for
the chromomagnetic moment.

3.1 Calculation

Just as in the case of the matching coefficient we have to consider vertex corrections
to the quark-anti-quark photon and gluon vertices to calculate the anomalous mag-
netic moment and the chromomagnetic moment, respectively. In this case, however,
the momentum of the photon or gluon vanishes, while the momenta of the quarks
are still on their mass shell. In the following, we will describe the calculation of the
chromomagnetic moment. However, everything applies for the electron anomalous
magnetic moment as well. In fact, the results for the latter can be determined from
the former by setting the colour factors to their corresponding values in Quantum
Electrodynamics (QED).

The tensor structure of the vertex is of course still given by Eq. (1.17). Let us
repeat the definition of the relevant form factors,

Γµ = γµ F1(q
2) +

[γµ, q/ ]

4mQ
F2(q

2) , (3.1)

where q = p1 − p2 is the gluon momentum and p1 and p2 are the momenta of the
quark and anti-quark, respectively. In colour space the vertex is proportional to ta.
However, since we can treat the colour structure separately from the Dirac structure,
we do not include it in Eq. (3.1) and the following.
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The chromomagnetic moment is given by µc = ZOS
2 F2(0), where we assume that

the quark mass and αs are already renormalised. The renormalised colour charge
form factor is given by εc = ZOS

2 F1(0) = 1. Thus, F1(0) is the inverse of the on-shell
wave function renormalisation constant, which was discussed in Chapter 2. Since
we already know the result for ZOS

2 , we can use the calculation of F1 as a check of
our implementation.

In order to extract the form factors, we use projection operators. To obtain
these operators, it is convenient to introduce the momentum p = (p1 + p2)/2, since
p · q = 0. With this definition we obtain (see for example Ref. [104])

F1(q
2) =

1

2(d− 2)(q2 − 4m2
Q)

×Tr

{

(p1/ +mQ)

(

γµ +
4mQ(d− 1)

q2 − 4m2
Q

pµ

)

(p2/ +mQ) Γµ

}

, (3.2)

F2(q
2) = − 2m2

Q

(d− 2)q2(q2 − 4m2
Q)

×Tr

{

(p1/ +mQ)

(

γµ +
4m2

Q + (d− 2)q2

mQ(q2 − 4m2
Q)

pµ

)

(p2/ +mQ) Γµ

}

.(3.3)

Since the projector for F2 develops a pole for q2 = 0, we cannot set q2 = 0 from the
beginning. Instead, we expand in q and keep all terms which are at most quadratic
in q. In the final result the limit q2 = 0 can be taken. Due to the expansion in q
all integrals are again the on-shell propagator-type integrals, which we encountered
before.

For the calculation of the chromomagnetic moment it is useful to employ the
background field method [105, 106] (see also reference therein). In this method the
gauge field in the classical action is split into a background field and a quantum field.
The former can only appear as an external field, while the latter appears only inside
loops. By choosing the background field gauge it is ensured that the background
field variable remains explicitly gauge invariant, even when radiative corrections are
included.

The technical advantage is that the number of diagrams, which have to be cal-
culated, is reduced. On the other hand, we now have additional vertices containing
background fields (see for example Ref. [105]). The vertex of a background field
with two gluons, for example, contains a term proportional to 1/(1 − ξ), where ξ
is the gauge parameter defined by Eq. (2.71), which does not appear in the usual
QCD Feynman rules. In some cases these terms can actually be used to simplify
the occurring expressions. If one Lorentz index of a gluon propagator is contracted
with kµ/(1 − ξ), where k is the gluon’s momentum, the ξ-dependent terms vanish,

kµ

1 − ξ
Dab

µν(k) = −i kν

k2
δab . (3.4)
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(a) (d)(b) (c)

Figure 3.1: Sample diagrams contributing to the electron anomalous magnetic mo-
ment in QED. Solid lines denote electrons and wavy lines denote photons. In (d) a
diagram of the so-called light-by-light contribution is depicted.

Dab
µν is the gluon propagator defined in Eq. (2.71). Thus, the number of terms in

the calculation is reduced.

The calculation is performed for an arbitrary gauge parameter in order to use
the cancellation of the gauge parameter as a check. However, since the expressions
for the individual diagrams are very large, we discard all terms with more than
linear ξ dependence at the three-loop level. In particular, this means that we also
have to expand the remaining 1/(1− ξ) terms in the limit ξ → 0 to order O (ξ2). If
this is done, our final result is gauge-parameter independent up to terms which are
quadratic in ξ. Furthermore, our calculation of F1 reproduces the gauge dependent
terms of ZOS

2 .

To calculate the colour factors, we have used the program described in Ref. [107]1.

3.2 Electron Magnetic Moment

The anomalous magnetic moment of the electron is one of the most precisely known
observables. It is experimentally known to 0.76 parts per trillion [15], which leads to
the most precise determination of the QED coupling α [17]. Naturally, this requires
a theoretical knowledge of the anomalous magnetic moment, which is of equal pre-
cision. Currently, the QED three-loop contribution is known analytically [67], while
the four-loop one is known numerically [108].

Here, we recalculate the three-loop term. Sample diagrams are shown in Fig. 3.1.
This calculation provides a check on our computation of the quark electro- and
chromomagnetic moments. In particular, we perform the renormalisation exactly
in the same way. This means that we renormalise α in the MS scheme and use
the renormalisation group equation to switch to α(Me), where Me is the electron
pole mass. For these two steps we can use the corresponding QCD formulae and
set CF = TF = nf = 1 and CA = 0. At this point the result is finite and devoid
of logarithms. However, in QED calculations α is renormalised on-shell. Therefore,

1We thank Philipp Kant for providing his interface between the setup described in Appendix C
and the program of Ref. [107].
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we have to switch from the MS scheme to the on-shell scheme by using [109]

α(Me)

π
=
α

π
+

15

16

(α

π

)3

+ O
(

α4
)

. (3.5)

The result for the electron anomalous magnetic moment in QED reads

ae =
α

2π
+
(α

π

)2
(

197

144
+

1

12
π2 − 1

2
π2 ln 2 +

3

4
ζ3

)

+
(α

π

)3
(

28259

5184
+

17101

810
π2 − 298

9
π2 ln 2 − 25

18
π2 ln2 2 +

139

18
ζ3

− 239

2160
π4 +

83

72
π2ζ3 −

215

24
ζ5 +

25

18
ln4 2 +

100

3
a4

)

+ O
(

α4
)

,

(3.6)

where α is renormalised in the on-shell scheme. The one-loop term was obtained
by Schwinger in Ref. [110]. The two-loop correction was found independently in
Ref. [111] and [112]. The analytical three-loop result was found in Ref. [67] and
confirmed in Ref. [11].

Using α = 1/137.0359911 [113] we find

ae =
1

2

α

π
− 0.328479

(α

π

)2

+ 1.18124
(α

π

)3

= 0.00116141− 0.00000177231 + 0.0000000148042

= 0.00115965 . (3.7)

The series in α is alternating and converges very well. This behaviour is con-
firmed by the numerical calculation of the fourth order correction, which yields
−0.0000000000503131 [108].

3.3 Quark Magnetic Moment

The magnetic moments of heavy quarks have not yet been determined experimen-
tally. For the bottom and the lighter quarks there are upper bounds from LEP1
data [114]. For the bottom quark this bound was found to be saturated by the two-
loop QCD correction in Ref. [115]. Thus, a more precise measurement at a future
linear collider should be able to determine the bottom-quark magnetic moment or
even find deviations from the standard model prediction.

The top-quark magnetic moment has not been measured so far. However, such a
measurement would be very interesting since the top-quark couplings to photons or
Z bosons are very sensitive to contributions from physics beyond the standard model.
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(a) (b) (c)

Figure 3.2: Examples of non-abelian diagrams contributing to the quark magnetic
moment. Solid, curly and dotted lines denote quarks, gluons and gluon ghosts,
respectively. The external wavy line denotes the photon.

Having this in mind, it is mandatory to have precise standard model predictions for
these couplings.

The diagrams which we have to consider in order to compute the quark magnetic
moment are essentially the same as the diagrams for the matching coefficient of the
vector current. Sample diagrams for the part with closed massless quark loops are
depicted in Figs. 1.3 and 1.4. However, due to the different kinematical situation,
we are able to perform the full three-loop calculation for the magnetic moment.
Therefore, we have to consider additional three-loop diagrams. On the one hand,
we have the abelian diagrams, which are also present in the QED calculation, and
on the other hand there are non-abelian diagrams with triple and quartic gluon
couplings and gluons ghosts. Examples of the latter are shown in Fig. 3.2.

The anomalous magnetic moment of a heavy quark reads

aQ

QQ

=
αs(MQ)

2π
CF

+

(

αs(MQ)

π

)2 [(

−31

16
+

5

12
π2 − 1

2
π2 ln 2 +

3

4
ζ3

)

C2
F

+

(

317

144
− 1

8
π2 +

1

4
π2 ln 2 − 3

8
ζ3

)

CFCA

+

(

−25

36
nl +

119

36
− 1

3
π2

)

CFTF

]

+

(

αs(MQ)

π

)3

a
(3)
Q + O

(

α4
s

)

, (3.8)

where QQ is the charge of the heavy quark in terms of the positron charge. The
two-loop result was already obtained in Ref. [116]. We agree with their result up to
an overall factor of four. Recently, aQ was also found to two-loops as the limit of the
off-shell calculation of the corresponding form factor [115]. We are in full agreement
with their result.
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Our new three-loop term is given by

a
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dFF
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Xll , (3.9)

where NF = Nc is the dimension of the fundamental representation of SU(Nc) and
dFF

33 = (N2
c − 1)(N2

c − 4)/(16Nc) [107]. Xll denotes the contribution from singlet
diagrams. It is given by

Xll =
5

9
+

931

54
π2 − 24π2 ln 2 − 2

3
π2 ln2 2 − 4

3
ζ3 −

41

540
π4

− 5

18
π2ζ3 +

5

6
ζ5 +

2

3
ln4 2 + 16a4 , (3.10)

where we only include the contribution from diagrams with closed heavy-quark loops.
In principle there are contributions from diagrams with massless quarks as well.
However, these are divergent and cannot be calculated in perturbation theory. This
divergence can also be seen in the light-by-light contribution to the anomalous mag-
netic moment of the muon [117], which contains logarithms of the electron mass.
In the case of quarks, however, we cannot introduce a mass to regulate the infrared
divergence in these diagrams.
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It is possible to obtain the electron result given in Eq. (3.6) from the expressions
in Eqs. (3.8)–(3.10) by setting CF = TF = 1, CA = 0, NF = 1, dFF

33 = 1 and nl = 0.
For example, we can see immediately that the result in Eq. (3.10) is equal to the
light-by-light contribution given in Ref. [118]. Furthermore, by taking the difference
of Eq. (3.6) and Eq. (3.10) we find the universal QED contribution to the lepton
magnetic moment.

Let us evaluate the quark magnetic moment numerically for charm, bottom and
top quarks. Inserting the numerical values for the coefficients, we find

aQ

QQ

= 0.212207αs(MQ) + (0.841712 − 0.046908nl)α
2
s(MQ)

+
(

4.5763 − 0.585553nl + 0.014448n2
l

)

α3
s(MQ) + O

(

α4
s

)

. (3.11)

In the following, we use the values Mc = 1.6 GeV, Mb = 4.7 GeV and Mt =
175 GeV. The number of light-quark flavours nl is three, four and five for the charm,
bottom and top quark, respectively. To evaluate αs(MQ), defined with nl + 1 active
flavours, from αs(MZ) = 0.118, defined with five active flavours, we use the program
RunDec [74]. We obtain αs(Mc) = 0.3378, αs(Mb) = 0.2169 and αs(Mt) = 0.1075.
This leads us to

ac = 0.0478 + 0.0533 + 0.0758 = 0.1770 , (3.12)

ab = −0.0153 − 0.0103 − 0.0084 = −0.0340 , (3.13)

at = 0.0152 + 0.0047 + 0.0017 = 0.0215 . (3.14)

In the case of the charm quark, we see that the perturbative series does not seem
to converge at all. This is not unexpected since the charm quark is relatively light.
Thus, there are potentially large non-perturbative corrections to quantities at the
scale of the charm-quark mass. While the situation is better in the case of the bottom
quark, the corrections are still very large. The three-loop correction amounts to more
than 50% of the one-loop contribution. For the top quark, we find that our new
term contributes about 10% of the one-loop correction.

We have mentioned above that the LEP1 bound for the bottom quark was found
to be saturated by the two-loop correction. It is therefore interesting to see what
happens if we include our three-loop term. For this purpose, we have to evaluate ab

at MZ . We find

ab(MZ) = −0.0084 − 0.0066 − 0.0056 = −0.0206 . (3.15)

Since the three-loop correction is almost as large as the two-loop one this overshoots
the bound ab/Qb < 0.045 (68%C.L.) given in Ref. [114]. In this context we want to
mention again that contributions from closed light-quark loops could not be included
in our calculation. These contributions might decrease the three-loop correction. In
any case, a more precise measurement of ab would certainly be interesting.
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3.4 Quark Chromomagnetic Moment

The chromomagnetic moment of a quark is of particular interest in Heavy Quark
Effective Theory (HQET) [24], where it appears in the matching coefficient of the
chromomagnetic interaction. This matching coefficient and in particular its anoma-
lous dimension play a role in non-perturbative tests of HQET on the lattice [119].

The relevant part of the HQET Lagrangian reads [120, 121]

LHQET = . . .+
Cm(µ)

4mQ
QvGµνσ

µνQv + . . . , (3.16)

where Qv denotes a static quark field with velocity v, Gµν is the gluon field strength
tensor and σµν = i [γµ, γν ]/2. The matching coefficient of the chromomagnetic
interaction is given by the chromomagnetic moment in QCD through

Cm(µ) = Zcm (1 + µc) , (3.17)

where the HQET renormalisation constant Zcm is defined in the MS scheme with
nl active flavours. This has to be taken into account in Eq. (3.17) since αs in µc

is defined in the full theory with nl + 1 active flavours. The strong coupling αs in
Zcm has to be related to the coupling with one additional flavour through the use
of the QCD decoupling relation. Since Zcm is divergent the order O (ǫ) part of this
relation is necessary as well. For the two-loop calculation the decoupling relation is
given by [122]

α
(nl)
s

π
= −α

(nl+1)
s

π

[

1

3
Lµ +

(

1

36
π2 +

1

6
Lµ

)

ǫ+ O
(

ǫ2
)

]

TF + O
(

α2
s

)

, (3.18)

where the superscript denotes the number of active flavours.

The diagrams which we have to calculate in order to obtain the quark chromo-
magnetic moment consist of all diagrams which are needed for the electromagnetic
moment (with the external photon replaced by the background gluon) plus addi-
tional diagrams where the background field couples to gluons or gluon ghosts. Some
sample diagrams are depicted in Fig. 3.3. We want to stress that we include sin-
glet diagrams with massless quark loops in the calculation of the chromomagnetic
moment, even though these contributions are divergent. Contrary to the electro-
magnetic moment the chromomagnetic moment is not a physical quantity and thus
it may be divergent. In the computation of the matching coefficient all divergences
are absorbed into the renormalisation constant Zcm.
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(a)

(e) (f) (g)

(d)

(h)

(b) (c)

Figure 3.3: Sample diagrams contributing to the quark chromomagnetic moment.
Solid, curly and dotted lines denote quarks, gluons and ghosts, respectively. ⊗ rep-
resents the coupling of the background field. In the closed quark loop all flavours
have to be considered.

Our result for Cm reads
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. (3.19)

The two-loop result was already calculated in Ref. [123]. With the exception of the
π2CATF term we agree with their result. The difference in this term is due to the
inclusion of the order O (ǫ) terms in the decoupling relation for αs, which was not
done in Ref. [123].
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Our new three-loop term is given by
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dFF
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+
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+
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2
l + . . . , (3.20)

where the ellipses denote contributions from diagrams with closed heavy-quark loops,
which we have not been computed so far. dFF

44 = (N2
c −1)(N4

c −6N2
c +18)/(96Nc) [107]

and dFA
44 = Nc(N

2
c −1)(N2

c +6)/48 [103]. The n2
l part agrees with the result obtained
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in Ref. [124].

The anomalous dimension of the chromomagnetic interaction is found to be

γcm =
d lnZcm

d lnµ

=
α

(nl)
s

π

1

2
CA +

(

α
(nl)
s

π

)2
(

17

36
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A − 13

36
CATFnl

)

+

(

α
(nl)
s

π

)3
{(

899

1728
+

1

8
ζ3

)

C3
A +

3

8
π2 d

FA
44

NF

−
[(

65

216
+

1

2
ζ3

)

C2
A +

(

49

96
− 1

2
ζ3

)

CACF

+
1

36
CATFnl

]

TFnl −
1

2
π2 d

FF
44

NF
nl

}

+ O
(

α4
s

)

. (3.21)

The two-loop result agrees with the results of Refs. [123, 125].

For the numerical evaluation of Cm(MQ) and γcm, we choose the same setup as
in the previous section. We find

Cm(MQ) = 1 + 0.6897αs(MQ) + (2.218 − 0.1938nl + 0.0004nh)α
2
s(MQ)

+
(

11.076 − 1.7495nl + 0.0513n2
l + . . .

)

α3
s(MQ) + O

(

α4
s

)

,

(3.22)

where the ellipses denote contributions from diagrams with closed heavy-quark loops,
which are not yet included at the three-loop level. At the two-loop level these
contributions are labelled by nh. Their numerical contribution is small. For the
charm, bottom and top quark we find

Cm(Mc) = 1 + 0.2330 + 0.1869 + 0.2425 = 1.6624 , (3.23)

Cm(Mb) = 1 + 0.1496 + 0.0679 + 0.0500 = 1.2676 , (3.24)

Cm(Mt) = 1 + 0.0741 + 0.0144 + 0.0045 = 1.0931 . (3.25)

The pattern is very similar to the quark electromagnetic moment. In the charm-
quark case the series does not seem to converge, while the convergence is very slow
at best in the bottom-quark case. Only for the top quark do we find an acceptable
behaviour.

To numerically evaluate the anomalous dimension we need αs(MQ) with nl ac-

tive flavours. Using RunDec we find α
(3)
s (Mc) = 0.3348, α

(4)
s (Mb) = 0.2163 and

α
(5)
s (Mt) = 0.1074. From Eq. (3.21) we have

γcm = 0.4775αs(MQ) + (0.4306 − 0.0549nl)α
2
s(MQ)

+
(

0.8823 − 0.1472nl − 0.0007n2
l

)

α3
s(MQ) + O

(

α4
s

)

. (3.26)
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For the individual quark flavours this leads to

γcm(Mc) = 0.1599 + 0.0298 + 0.0163 = 0.2060 , (3.27)

γcm(Mb) = 0.1033 + 0.0099 + 0.0029 = 0.1160 , (3.28)

γcm(Mt) = 0.0513 + 0.0018 + 0.0002 = 0.0533 . (3.29)

Thus, as far as the anomalous dimension is concerned the convergence behaviour is
acceptable even for the charm quark.

An interesting phenomenological application is the mass splitting between the
ground-state vector and pseudo-scalar mesons containing a charm or a bottom quark,

R =
m2

B∗ −m2
B

m2
D∗ −m2

D

=
Cm(Mb)

Cm(Mc)
+ O

(

1

mQ

)

, (3.30)

which was also discussed in Ref. [125]. For this purpose we resum the logarithms in
Cm(µ) to next-to-next-to leading logarithmic (NNLL) order. In this case, R can be
written as (see also Ref. [126])

R =

(

αs(Mb)

αs(Mc)

)γ0/(2β0){

1 + r1

(
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αs(Mb)
− 1

)

αs(Mb)
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+
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r20 + r21
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(
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αs(Mb)

)2

− 1

)

+
r2
1

2

(

αs(Mc)

αs(Mb)
− 1

)2
]

(

αs(Mb)

π

)2

+O
(

ΛQCD

Mb,c

)}

, (3.31)

where the coefficients are given by

r1 = −c(1)m − γ0

2β0

(

γ1

γ0
− β1

β0

)

, (3.32)

r20 = c(2)m (nl = 4) − c(2)m (nl = 3) +
z2
16
, (3.33)

r21 = −c(2)m +
(c

(1)
m )2

2
+
z2
16

+
γ0

4β0

[

−γ2

γ0
+
β2

β0
+
β1

β0

γ1

γ0
−
(

β1

β0

)2
]

. (3.34)

c
(i)
m denotes the i-loop contribution to Cm considered for nl = 3. In r20 the number of

flavours for the two-loop coefficient is given explicitly. The term z2 = −71/(27)CATF

stems from decoupling in HQET [127, 128]. γi and βi denote the coefficients of
(αs/π)i+1 of the anomalous dimension and the β function, respectively. The latter
can be found in Appendix E. γi, βi, αs(Mc) and αs(Mb) are considered with four
active flavours. The values for the latter are given above. Inserting them we find

R = 0.8517 − 0.0739 − 0.0931 + · · · = 0.6848 + . . . , (3.35)
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where the ellipses denote terms of higher order and non-perturbative contributions.
The NNLL correction is larger than the NLL one, which means that the value for
R is decreased even further. Taking the experimental values for the meson masses
from Ref. [113] we find Rexp = 0.88. An explanation for the large difference may be
the behaviour of the perturbative series for Cm(Mc). The corrections are very large,
which makes the application of perturbation theory questionable. Since R is deter-
mined up to non-perturbative corrections only, it is conceivable that the difference
between the experimental and theoretical values are due to non-perturbative effects.





Chapter 4

Conclusions and Outlook

In this work we have calculated the fermionic non-singlet contributions to the
matching coefficients of the vector, axial-vector, scalar and pseudo-scalar current
in NRQCD at the three-loop level. The matching coefficient of the vector and
axial-vector current are of particular interest, since they are building blocks of the
top-anti-top production cross section at threshold. For the N3LO evaluation of this
cross section the former is needed to O (α3

s), while the latter is needed to O (αs).
Thus, our calculation is a first step towards the full three-loop computation. Nev-
ertheless, there is still quite some work to be done to calculate the singlet and the
non-fermionic contributions.

A further step in this direction is the calculation of the three-loop on-shell
propagator-type integrals. Moreover, this has allowed us to compute the three-loop
quark mass and wave function renormalisation constants in QCD in the framework
of dimensional regularisation and dimensional reduction. While the former consti-
tutes a check on the analytical results in the literature, the latter results are new.
They are of particular interest in the context of supersymmetry, where DREG can-
not be applied. Since almost all QCD calculations have been performed in DREG,
it is important to know how to related these quantities to their counterparts in
DRED. Furthermore, our calculation can be a starting point for further calculations
in supersymmetric theories.

Finally, we have calculated the third order strong corrections to the matching co-
efficient and the anomalous dimension of the chromomagnetic interaction in HQET.
In the course of this calculation we could correct an error in the previous two-loop
calculation of the matching coefficient. So far, we have not computed the three-loop
contribution from diagrams with closed heavy-quark loops. This will of course be
done in the future. As byproducts of this calculation we have obtained the three-
loop QCD corrections to the quark magnetic moment and recalculated the three-loop
QED corrections to the electron magnetic moment. As an extension of this work it
would be possible to compute the weak magnetic moment of heavy quarks to three
loops in QCD. This is especially interesting for top quarks since their couplings are
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very sensitive to contribution from physics beyond the standard model.



Appendix A

Integration-by-Parts

The integration-by-parts (IBP) algorithm was developed in Ref. [63]. It is the
method of choice in most multi-loop calculations today. For the calculations in
this work, two approaches were used which are based on the IBP relations, but offer
a systematic way to find a solution of the recurrence relations. In the following sec-
tion a brief general introduction to IBP relations is given. Baikov’s method [64,65] in
the approach of Ref. [66] is explained in Section A.2 and Laporta’s algorithm [67,68]
in Section A.3. In Section A.4, we introduce additional recurrence relations which
can be used to perform the partial fractioning mentioned in Section 1.2.2.

A.1 Basics

The method of calculating Feynman integrals by means of IBP relations is based on
the fact that the integral over a total derivative is zero in dimensional regularisation,

∫

ddk
∂

∂kµ
pµf(k, qi, mi) = 0 , (A.1)

where the function f depends on the external momenta qi and masses mi as well
as on the loop momentum k. p can be either a loop or an external momentum.
This identity can be used to construct recurrence relations for the integral with
arbitrary powers of the propagators in the following way. One writes down the
above relations for all combinations of loop and external momenta, performs the
derivatives and expresses the resulting scalar products in the numerator in terms of
the propagators. Taking the derivative of a propagator results in the power of that
propagator to be raised by one. If a propagator appears in the numerator due to
some scalar product, its power is lowered by one. For an h-loop Feynman integral
F with n external momenta and N propagators, this procedure results in h(h + n)
relations of the form

N
∑

i,j=0

ckij i+j−F (a1, . . . , aN) = 0 , (A.2)
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where the ai denote the powers of the propagators (also called indices) and k =
1, . . . , h(h + n). The dependence of F on masses and momenta is suppressed in
Eq. (A.2) and in the following. The operators i+ and j− raise and lower the indices
of the integral, respectively,

i+F (a1, . . . , ai−1, ai, ai+1, . . . , aN) = F (a1, . . . , ai−1, ai + 1, ai+1, . . . , aN) ,

j−F (a1, . . . , aj−1, aj , aj+1, . . . , aN) = F (a1, . . . , aj−1, aj − 1, aj+1, . . . , aN) ,

0± = 1 . (A.3)

The coefficients ckij depend on the indices and the kinematical invariants of the
integral. The coefficient ck00 can also depend on the dimension d. In general, there
can also be higher powers of the raising and lowering operators. However, this does
not change the algorithm described in this section.

The relations of Eq. (A.2) can be used to express any integral of a given class
as a linear combination of a subset of integrals of that class, the so-called master
integrals. The latter are the only integrals which have to be calculated explicitly.

As an example of this method, we consider the one-loop on-shell integral

J(a1, a2) =

∫

ddk

(k2)a1 (k2 + 2q · k)a2

, (A.4)

with q2 = m2. The first relation is derived by taking the derivative with respect to
kµ contracted with kµ, resulting in

0 =

[

∂

∂kµ

kµ

]

J(a1, a2)

=
[

d− 2a1 1+k2 − 2a2 2+
(

k2 + q · k
)]

J(a1, a2)

=
[

d− 2a1 − a2 2+
(

1− + 2−
)]

J(a1, a2)

=
[

(d− 2a1 − a2) − a2 1−2+
]

J(a1, a2) , (A.5)

where it is understood, that the operators in the square brackets are applied under
the integral sign. The dimension d appears due to the derivative of k with respect
to itself. Thus one arrives at an identity which can be used to reduce the first index
to zero, e.g. for a1 > 0 one has

J(a1, a2) =
a2

d− 2a1 − a2

J(a1 − 1, a2 + 1) . (A.6)

The second relation is derived by contracting the derivative with the external
momentum qµ, resulting in

0 =

[

∂

∂kµ
qµ

]

J(a1, a2)

=
[

(a1 − a2) − a1 1+2− + a2 1−2+ − 2a2m
2 2+

]

J(a1, a2) (A.7)
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This can be further simplified by inserting Eq. (A.5) to obtain

0 =
[

(d− a1 − 2a2) − a1 1+2− − 2a2m
2 2+

]

J(a1, a2) (A.8)

Since a1 = 0 can always be achieved by using the first relation, it is sufficient to
consider only this case. Thus the second term in Eq. (A.8) vanishes and we arrive
at the final relation

J(0, a2) =
d− 2(a2 − 1)

2(a2 − 1)m2
J(0, a2 − 1) , (A.9)

where the commutation relation

[

i±, aj

]

= ± δij i± (A.10)

has been used. The second relation allows to lower the second index. Since the
integral vanishes if a2 ≤ 0, it can be used to reduce a2 to one. Therefore, all
integrals of the type J(a1, a2) of Eq. (A.4) can be reduced to J(0, 1), the master
integral of this class. The coefficient of this integral is always a rational function
of the dimension, the indices and q2, the only kinematical invariant of this integral
class.

Since in any multi-loop calculation the number of integrals of a given class can
easily be of the order of a thousand, the reduction to master integrals is a huge sim-
plification. However, for more complicated integrals, the recurrence relations them-
selves become more complicated so that a solution by hand is not easily achieved.
In these cases a systematic approach to the solution of the recurrence relations is
crucial. In the present work, two methods were applied which are discussed in the
following sections.

A.2 Baikov’s Method

Baikov’s method was developed in Refs. [64,65]. In the present work, the approach
of Ref. [66] was used. This method along with the implementation for the present
calculations is explained in the following.

A.2.1 General Considerations

We consider a general scalar h-loop Feynman integral F with N internal lines and
n external momenta qi

F (a1, . . . , aN) =

∫

dd ki . . .d
d kh

Da1

1 . . .DaN

N

. (A.11)
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The propagators Di can be written as

Di =

h+n
∑

j=1
k≥j

Ajk
i pj · pk −m2

i , (A.12)

with pi = ki for i ≤ h and pi = qi−h for i > h. A solution to the recurrence relations
is found, if any integral can be expressed in terms of a set of master integrals,

F (a1, . . . , aN) =
∑

i

ci(a1, . . . , aN) Ii , (A.13)

where the Ii denote the master integrals and the ci are the corresponding coefficient
functions. The master integrals correspond to the integral F where all indices are
either zero or one, i.e.

Ii = F (ai1 , . . . , aiN ) , with aij ∈ {0, 1} . (A.14)

There are special cases where an index can be equal to minus one instead of zero or,
equivalently, equal to two instead of one. This is discussed below. From Eq. (A.14)
one can immediately see the normalisation condition for the coefficient functions

ci(aj1 , . . . , ajN
) = δij . (A.15)

It was shown by Baikov that the coefficient functions can be constructed as
integrals over some auxiliary parameters xi as

ci(a1, . . . , aN ) = N
∫

dx1 . . .dxN

xa1

1 . . . xaN

N

(P (x1, . . . , xN ))(d−h−1)/2 , (A.16)

where the normalisation factor N is determined using Eq. (A.15). The so-called basic
polynomial P is a polynomial of degree h in the parameters xi and the kinematical
invariants. According to Refs. [64, 65] it is given by

P (x1, . . . , xN ) = det

(

N
∑

i=1

Ãjk
i (xi +mi)

)

, (A.17)

where the determinant is taken with respect to j and k. The matrices Ãi are
constructed as follows. The coefficients Ajk

i of Eq. (A.12) are defined for j ≥ k ≥ 1.
If a pair of j and k is considered as one index and i as the other, one has a N ×N -
matrix whose inverse fulfils

N
∑

i=1

A
(jk)
i (A−1)

(lm)
i = δjlδkm . (A.18)
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Ãi is the symmetric extension of (A−1)jk
i to all values of j and k. A more practical

recipe to construct the basic polynomial is given in the example in Section A.2.2.

Strictly speaking, Eqs. (A.16)–(A.18) only hold if N = h(h + 1)/2, which is
only true for vacuum integrals. However, it has been shown in Ref. [129] that every
Feynman integral can be converted to a vacuum integral by introducing additional
propagators for the missing kinematical invariants. Since this also means that the
number of loops is changed to heff > h, heff instead of h has to be used in all of
the above equations.

So far we have not specified the boundaries for the integrals in Eq. (A.16). Ac-
cording to Refs. [64,65], the integration contours have to be chosen in such a way that
surface terms vanish, i.e. that the integrand vanishes on the integral’s boundaries.
This means that the boundaries are typically the roots of a quadratic polynomial.
A special case is the case where the index corresponding to the integration variable
is equal to one in the master integral. In this case the integration contour has to
be chosen as a closed circle around the origin in the complex plane. Using Cauchy’s
theorem one has in this case

∮

dxi

xai

i

(P (x1, . . . , xi, . . . , xN))z =

[

dai−1

dxai−1
i

(P (x1, . . . , xi, . . . , xN))z

]

xi=0

. (A.19)

A.2.2 One-loop Example

Let us again consider the one-loop on-shell integral of Eq. (A.4) as an example. To
convert this integral to the vacuum case, the external line has to be closed. This is
achieved by introducing a third propagator,

J(a1, a2) → J ′(a1, a2, a3) =

∫

ddk

(k2)a1 [(k + q)2 −m2]a2 (q2 −m2)a3

. (A.20)

The original integral is recovered by setting the third index equal to zero. The
number of loops is now effectively equal to two.

To find the basic polynomial, we set the parameters xi equal to the corresponding
propagators Di, neglecting the masses for the moment. Thus we arrive at a system
of linear equations,

x1 = k2 ,

x2 = k2 + 2q · k + q2 ,

x3 = q2 , (A.21)

which can be solved for the scalar products of the momenta. The basic polynomial
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is then

P (x1, x2, x3) = det

(

k2 q · k
q · k q2

)

xi→xi+mi

= det

(

x1
1
2
(x2 − x1 − x3)

1
2
(x2 − x1 − x3) x3

)

xi→xi+mi

=
1

4

(

4m2x1 − x2
1 − (x2 − x3)

2 + 2x1(x2 + x3)
)

, (A.22)

where the masses have been restored by shifting the xi appropriately. It should be
noted that an overall factor of the basic polynomial can always be dropped since
the coefficient functions are normalised according to Eq. (A.15) in the end. The
parameter x3 can be set to zero immediately since we are only interested in integrals
of the form J ′(a1, a2, 0).

The next step is to determine the possible master integrals. To do this, we
consider all combinations of zeros and ones for the indices. Here, we have three
possibilities, namely J ′(1, 1, 0), J ′(1, 0, 0) and J ′(0, 1, 0). The second one can be
discarded immediately since the integral is a massless vacuum integral and thus
vanishes in dimensional regularisation. To determine whether the first one can be
a master integral, we have to look at the corresponding coefficient function. The
rule for choosing the integration contour for an index equal to one is to integrate
over a circle around the origin. Thus, according to Cauchy’s theorem, we only have
to take derivatives with respect to the corresponding parameter and set it to zero
afterwards. Since P (0, 0, 0) = 0, J ′(1, 1, 0) cannot be a master integral.

The only master integral is therefore J ′(0, 1, 0) = J(0, 1) as we already know
from Section A.1. Now we are left with the task of constructing the coefficient
function of this master integral. So far we have

c(a1, a2, 0) = N
∫

dx1dx2

xa1

1 x
a2

2

(P (x1, x2, 0))(d−3)/2

= N
∫

dx1

xa1

1

[

da2−1

dxa2−1
2

(P (x1, x2, 0))(d−3)/2

]

x2=0

, (A.23)

since the second index of the master integral is equal to 1. After the derivatives have
been performed the integrand takes the form xα

1 (4m2 − x1)
β, where both α and β

depend on the dimension d. In this case, the integration contour has to be chosen
as a contour from zero to 4m2, yielding

4m2

∫

0

dxxα
1 (4m2 − x1)

β =
(

4m2
)α+β+1 Γ(α + 1) Γ(β + 1)

Γ(α+ β + 2)
. (A.24)

The choice of zero as one of the integration boundaries is only possible because the
dimension appears in the exponent α. Otherwise there would be singularities for
negative integer values, which would not be regularised.
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Since we expect the coefficient function to be a rational function of d and m2,
the Γ-functions and all non-integer powers have to drop out in the normalisation.
This is indeed the case and we now have an algorithm for the construction of the
coefficient function for arbitrary integer indices.

A.2.3 More Complicated Cases

The example in the last section is quite easy in the sense that there is only one
master integral. If there are more, one has to define a certain hierarchy between
them. The reason is that the coefficient functions of the master integrals are now
linear combinations of the coefficient function for the integral itself and the coefficient
functions of the integrals which are higher in the hierarchy. In the calculation of the
original coefficient function, this means that the integration over some parameters
can only be performed for non-positive integer values of the corresponding indices.

The hierarchy between the integrals is the following. Suppose we have two master
integrals I1 and I2 with indices a1i

and a2i
, respectively. Let Jj be the set of integers

with aji
= 1 for i ∈ Jj . The integral I1 is higher in the hierarchy than I2 if J2 is a

subset of J1.

To see how we can now construct the coefficient functions, let us assume that we
have only those two master integrals. Let us further assume that the set J1 has only
one more element than J2, and let us denote this element by k. The construction
of the coefficient function c1 of the highest master integral, I1, proceeds just as
described above. It is in the case of I2 that we encounter a difficulty. The integral
over xk can now only be performed if ak ≤ 0. Usually, one has an integral of the
type

B
∫

A

dxk x
a (xk − A)α (B − xk)

β , (A.25)

where a is integral and α and β are complex. In general, this integral is a hyperge-
ometric function 2F1. Since this is an infinite series, the coefficient function would
not be a rational function. However, if a ≥ 0 the infinite sum turns into a finite one
and we can use the result.

The problem is now to find a way to turn positive values of ak into zero or
negative values. The solution is to use once again IBP recurrence relations, but now
for the parametric integral. After the integrations over some parameters have been
performed using Cauchy’s theorem, we are left with an integral of the form

f(n1, . . . , nN ′, nd) =

∫

dx1

xn1

1

. . .
dxN ′

x
nN′

N ′

P (x1, . . . , xN ′)z−nd , (A.26)

where z = (d − h − 1)/2. For this integral, we can write down N ′ relations of the
type

0 =
d

dxi
f(n1, . . . , nN ′, nd) . (A.27)
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One more relation can be constructed by writing P z−nd as P ·P z−(nd+1). The latter
can in some cases be used to reduce nd to zero. Another relation can be derived from
the fact that the integral of Eq. (A.26) is a homogeneous function of the kinematical
invariants of the corresponding Feynman integral. According to Euler’s theorem we
have

(

N ′ −
N ′

∑

i=1

ni +m(z − nd)

)

f(n1, . . . , nN ′ , nd) =
∑

j

mj
d

dmj
f(n1, . . . , nN ′ , nd) ,

(A.28)
where m is the mass dimension of P andmj denotes the kinematical invariants of the
integral. This relation is just a special combination of the IBP relations. However,
it turned out to be very useful in the present work.

Using these relations, it is possible to reduce the index ak to non-positive values
and, since there is an integral which is higher in the hierarchy, to one. Thus, we find
a so-called auxiliary master integral corresponding to c02(a11

, . . . , a1N
), where c02 is

the coefficient function of I2 constructed according to the usual procedure. However,
in this case we have to consider the coefficient function as a linear combination of
c02 and c1,

c2(a1, . . . , aN) = c02(a1, . . . , aN ) + A · c1(a1, . . . , aN) . (A.29)

The coefficient A can be determined from the normalisation condition of Eq. (A.15).
We get

A = −c02(a11
, . . . , a1N

) . (A.30)

c02(a11
, . . . , a1N

) has to drop out for any set of indices if the combination of Eq. (A.29)
is used as coefficient function. This is a very powerful check on the consistency of
the implementation.

Even if one considers the highest integral of a certain hierarchy, it can happen
that it is not possible to perform some of the integrations. One possibility of this was
mentioned in the example in the previous section. If the exponent α in Eq. (A.24) is
a negative integer, singularities occur which are not regularised. Another example is
a basic polynomial which is cubic in some integration parameter. If these problems
cannot be circumvented by choosing a different order of integrations, it is necessary
to calculate the coefficient function algebraically, i.e. using only IBP relations.

In Section A.2.1, we mentioned the possibility that a master integral has an index
which is not equal to zero or one. Since we do not consider this case when we list
the possible master integrals of the problem, this has to come out of the calculation.
Indeed, this is the case. Suppose that we have a master integral I = F (1, 1, 0),
but that the problem has also a different master integral I ′ = F (1, 1,−1). If this
is the case, we will again encounter similar difficulties as in the above cases in
the calculation of the coefficient function corresponding to I. The solution of the
corresponding recurrence relations will again yield an auxiliary master integral. In
this case, however, it will not vanish if a linear combination with other coefficient
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functions is considered. Instead, we now have to construct the coefficient function for
I ′. This is done exactly as for I. The only difference is the normalisation condition.
In this way we have introduced an additional master integral into the problem.

The IBP relations for the parametric integrals have a structure very similar to
the relations for the Feynman integral itself. However, since some integrations can
always be performed using Cauchy’s theorem, one has to deal with a smaller number
of indices. Even though the values of these indices are usually higher, this can be
a significant simplification. Furthermore, if the integrations are possible for certain
values of the indices, the solution to the recurrence relations has to be constructed
for some special cases only, which again simplifies the problem. Still, the solution
by hand is tedious at best. Thus, it is desirable to let a computer do this work.
As it turns out, this is possible. One can apply Laporta’s algorithm also to these
relations. In the present work, the program AIR [79] was used for this task.

A.2.4 Implementation

All calculations in this work were carried out using the computer algebra system
FORM [130]. However, it turned out to be convenient to first implement the algorithms
for the integrals in Mathematica. The reason is that almost all needed Mathematica-
code can be generated automatically. This is very useful when one tries to determine
the best order of integration. Afterwards everything can be translated to FORM and
the Mathematica version can be used for debugging.

As an example, we give the FORM code for the calculation of one-loop on-shell
integrals with one massive and one massless line, which is also discussed in Sec-
tion A.2.2.

***********************************************

* *

* integration procedure for topVAtt1l *

* *

***********************************************

** jpint1l(a,b) = 1 / (k^2 + k.q)^a / (k^2)^b

** q^2 = 4*m^2

** z = (d - 3)/2 = 1/2 - ep

** basic polynomial is P(x1,x2) = x1^2 - 2 x1 x2 + x2 ( x2 - 4 m^2 )

* express integral through coefficient function
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id jpint1l(jpa?,jpb?) = [jp_dx1]^(jpa-1)*[jp_polly](0)*

invfac_(jpa-1)/jpx2^jpb*[jp_check]^(jpa-1);

.sort

* differentiate basic polynomial

#do i = 1,1

id [jp_dx1]*[jp_x1] = 1 + [jp_x1]*[jp_dx1];

id [jp_dx1]*[jp_polly](jpa?) = jpznum(jpa,1)*(2*[jp_x1] - 2*jpx2)*

[jp_polly](jpa-1)

+ [jp_polly](jpa)*[jp_dx1];

id [jp_dx1]*[jp_check] = 0;

if (count([jp_dx1],1)!=0) redefine i "0";

.sort

#enddo

id [jp_check] = 1;

id [jp_x1] = 0;

.sort

* perform parameter integration

id jpx2^jpa?*[jp_polly](jpb?) =

(-1)^jpb*[jp_-1^z]*4^(jpa+2*jpb+1)*[jp_4^2z]*

(M1^2)^(jpa+2*jpb+1)*[jp_mm^2z]*jpGamma(jpa+jpb+1,1)*

jpGamma(jpb+1,1)*jpiGamma(jpa+2*jpb+2,2);

.sort

* normalisation

multiply, 1/4*jpiGz(1,1)^2*jpGz(1,2)*jpznum(1,2)/

[jp_-1^z]/[jp_mm^2z]/[jp_4^2z]/M1^2;

.sort

* reduce Gamma functions

#include Gamma

.sort

* express z through ep

id jpznum(jpa?,jpb?) = nom(jpa+jpb/2,-jpb);

id jpzden(jpa?,jpb?) = deno(jpa+jpb/2,-jpb);
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id [jp_z] = nom(1/2,-1);

* insert master integral

multiply, -Gam(-1,1)*M1^2*eM1;

.sort

The derivative with respect to x1 ([jp x1]) is implemented as a commutation rela-
tion with the differential operator [jp dx1]. The object [jp check] is used to check
whether there are still derivatives to be taken. In this way it is possible to use the
more efficient #do-#enddo loop instead of repeat-endrepeat. jpGamma(a, b) denotes
Γ(a + bz) and jpiGamma is its inverse. Both functions are reduced to jpGz(1, b) =
Γ(1 + bz) and its inverse by repeated use of the identity Γ(x+ 1) = xΓ(x). This is
done in the file Gamma. jpznum(a, b) denotes a + bz and jpzden is its inverse. nom

and deno are the corresponding MATAD functions for polynomials in ǫ. Since there is
only one master integral for this integral class, the insertion of this master integral
is simply done by multiplying the coefficient functions with the result of Eq. (D.1).

A.3 Laporta’s Algorithm

Laporta’s algorithm [67,68] uses the fact that in practical applications it is usually
enough to know the reduction for a finite number of integrals. If one plugs in
values for the indices, the IBP equations form a linear system of equations. The
unknowns are the integrals themselves and the coefficients are rational functions of
the dimension and the kinematical invariants. This system can be solved in terms
of the simplest integrals using Gauss’ algorithm. A solution is found if all needed
integrals can be expressed in terms of these simplest integrals. These are defined to
be the master integrals of the integral class under consideration.

An essential ingredient for this method is the definition of an ordering between
integrals with different values of the indices. This is needed to define which integrals
are easier and which are more complicated. From experience it is obvious that inte-
grals with less lines, i.e. more indices smaller or equal to zero, are less complicated
than integrals with more lines. Furthermore, an integral with less dots on the lines
or with less scalar products in the numerator is considered to be easier as well. Us-
ing these rules, each integral is assigned a weight which determines its complexity.
The equations are solved in such a way that more complex integrals are expressed
in terms of less complex ones.

Many different programs which implement this method are mentioned in the
literature. However, to date there is only one program which is publicly available,
AIR [79]. This program was used for two-loop calculations in the present work, both
for Feynman integrals and for parametric integrals occurring in Baikov’s method.
It is, however, not able to perform the full reduction at the three-loop level. Here,
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we used the program Crusher [69], which is written in C++ and uses GiNaC [131]
for simple manipulations like taking derivatives of polynomials. The rational func-
tions, which appear as coefficients of the integrals, are handled with the help of
Fermat [132], where the interface described in Ref. [133] has been used. The main
features of the program are the automatic generation of IBP relations, the full sym-
metrisation of the occurring integrals and the possibility to expand the integral
coefficients in ǫ during the calculation. In the latter case, the master integrals are
chosen to be ǫ-finite [134].

A.4 Partial Fractions

In Section 1.2.2 we mentioned that it is possible to implement the partial fractioning,
which is used to simplify the vertex integrals, via recurrence relations. Here we
explain how this is done. For this purpose, let us consider the one-loop vertex
diagram depicted in Fig. 1.3(a) as an example. The corresponding scalar integral is
given by

V1(a1, a2, a3) =

∫

ddk

(k2 + 2q1 · k)a1(k2 − 2q2 · k)a2(k2)a3

. (A.31)

The partial fractioning for this integral is derived in Eq. (1.19) of Section 1.2.2.
With this knowledge, we can immediately write down a recurrence relation which
accomplishes the same thing. The integral itself is replaced by one half times the
sum of two integrals where the power of one of the massive propagators is lowered
by one and the power of the massless propagator is raised by one. Thus, we arrive
at the following relation

0 = 1 − 1

2

(

1−3+ + 2−1+
)

. (A.32)

However, if we do not know how the partial fractioning works for some integral,
we have to find an alternative way to find the corresponding recurrence relation.
This is indeed possible for the integrals considered in this work [57]. Even though
we distinguish q1 and q2 when we write down the integral, we know already that
we can set q1 = q2 = q/2. This fact can be used to derive the desired relation.
Starting from 0 = q1 · k − q2 · k, we derive the recurrence relation in the usual way
by expressing the scalar products through the propagators.

0 = q1 · k − q2 · k
=

1

2

(

(k2 + 2q1 · k) − k2
)

+
1

2

(

(k2 − 2q2 · k) − k2
)

=
1

2

(

1− + 2−
)

− 3− . (A.33)

Multiplying Eq. (A.33) with −3+, we arrive at Eq. (A.32).
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The advantage of the above derivation is that it works for any integral. If we
are dealing with a multi-loop integral, we can write down one relation for each loop
momentum. These relations can be used in addition to the IBP relations in the
Laporta reduction of the integral. As a result, we will in general find less master
integrals than without these relations. We have verified this through an explicit
calculation, using the program AIR, of the two-loop singlet integrals of Eq. (1.42)
and the non-singlet integrals corresponding to Figs. 1.3(b) and (c). In the latter

cases, we found only the master integrals of J
(2)
± and L

(2)
± . This shows again that

the relations are equivalent to the partial fractioning.





Appendix B

Mellin-Barnes Integrals

In this chapter we describe the evaluation of Feynman integrals using Mellin-Barnes
integrations [135, 136]. Most of the master integrals needed for the present work
were calculated using this method. It turned out to be convenient to choose the
Feynman parameter representation [137] of the integrals as a starting point. This
representation is explained in the next section. The actual Mellin-Barnes method
is described in Section B.2. For a more detailed introduction to both topics see e.g.
Ref. [138].

B.1 Feynman Parameters

Feynman parameters [137] can be used to rewrite a product, where the individual
factors are raised to different powers, as a sum of the two factors raised to some
power. The basic formula is1

1

Aα1Bα2

=
Γ(α1 + α2)

Γ(α1)Γ(α2)

∞
∫

0

dx dy δ(x+ y − 1)
xα1−1 yα2−1

(Ax+By)α1+α2

. (B.1)

If A and B are propagators of a Feynman integral, the terms in the denominator can
always the rewritten in the form 1/(k2 −C2) by completing the square. Here, k is a
loop momentum and C depends on the Feynman parameters. Thus, the integration
over the loop momentum can be performed.

For a general h-loop Feynman integral with N internal lines, the Feynman pa-

1The usual form follows if the integration over y is performed using the properties of the δ

function.

89
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(a) (b) (c) (d)

a2

a1

q q

Figure B.1: One-loop on-shell integral with arbitrary powers of the propagators.
Solid lines are massive with mass m and dashed lines are massless. In (a) the
integral itself is depicted. (b) and (c) show the summands of the U function. (d) is
the only contribution to the V function.

rameters can be introduced using the formula

F (a1, . . . , aN) = (−1)a
(

iπd/2
)h Γ(a− dh/2)

∏

i Γ(ai)

×
∞
∫

0

∏

i

dxi δ

(

∑

i

xi − 1

)

(
∏

i x
ai−1
i

)

Ua−(h+1)d/2

(U(
∑

i xim2
i ) − V )

a−dh/2
, (B.2)

where a =
∑

i ai and the integration over the loop momenta has already been
performed. The functions U and V encode the topology of the integral. They are
defined as

U =
∑

T∈T1

∏

i/∈T

xi , (B.3)

V =
∑

T∈T2

∏

i/∈T

xi(qT )2 . (B.4)

T1 denotes the set of all trees of the corresponding diagram, i.e. the maximally
connected subgraphs without loops. T2 denotes the so-called two-trees, i.e. the set
of trees with two connectivity components. ±qT is the momentum flowing into one of
these connectivity components. Due to momentum conservation it is not important
into which of the two components qT flows.

An important tool is the Cheng-Wu theorem [139], which states that one can
choose any subset of Feynman parameters in the argument of the δ function in
Eq. (B.2). This can lead to significant simplifications for the evaluation of the
integrals.

Let us again consider the one-loop on-shell integral of Eq. (A.4) as an example.
From Fig. B.1 we know that we have U = x1 + x2 and V = q2x1x2. Using Eq. (B.2)



B.2. Mellin-Barnes Representation 91

and q2 = m2 we can now write down the Feynman parameter representation of J ,

J(a1, a2) = (−1)a iπd/2 Γ(a− 2 + ǫ)

Γ(a1) Γ(a2)

×
∞
∫

0

dx1 dx2 δ(x1 + x2 − 1)
xa1−1

1 xa2−1
2 (x1 + x2)

a−4+2ǫ

((x1 + x2)x2m2 −m2x1x2)a−2+ǫ
.

(B.5)

Performing the integration over x2 with the help of the δ function, we find that the
integral over x1 is just Euler’s Beta function,

J(a1, a2) = (−1)a iπd/2 Γ(a− 2 + ǫ)

Γ(a1) Γ(a2)

1
∫

0

dx1
xa1−1

1 (1 − x1)
a2−1

(m2(1 − x1)2)a−2+ǫ

= (−1)a iπd/2 Γ(a− 2 + ǫ)

Γ(a1) Γ(a2)
(m2)2−a−ǫ

1
∫

0

dx1 x
a1−1
1 (1 − x1)

3−2a1−a2−2ǫ

= (−1)a iπd/2 Γ(4 − 2a1 − a2 − 2ǫ)

Γ(a2) Γ(4 − a− 2ǫ)

Γ(a− 2 + ǫ)

(m2)a−2+ǫ
. (B.6)

Thus, we find an analytical result for the integral with arbitrary powers of the
propagators. Whereas the algorithm of Appendix A only works for integer powers
of the propagators, the result of Eq. (B.6) also holds for complex values.

The above example is, of course, an easy one. For more complicated integrals it
is not possible to find analytical results to all orders in ǫ. However, for the master
integrals of the present work, it turned out that the Feynman parameter representa-
tion is a very convenient starting point for the evaluation. In particular, this means
that we introduce an additional Mellin-Barnes integration if an integration over the
Feynman parameters cannot be performed immediately. This method is explained
in detail in the following section.

B.2 Mellin-Barnes Representation

Using the Mellin-Barnes [135, 136] method one can rewrite a sum as a product by
introducing an additional complex integration. The basic formula is

1

(A+B)λ
=

1

2πi

1

Γ(λ)

+i∞
∫

−i∞

dz Γ(λ+ z) Γ(−z) Az

Bλ+z
. (B.7)

The integration contour has to be chosen in such a way that poles of Γ functions
with a Γ(. . .−z) dependence are separated from poles of Γ functions with a Γ(. . .+z)
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dependence. Afterwards the contour can be closed to the left or right and the integral
can be evaluated using Cauchy’s theorem, i.e. by summing up the residuals.

If one is dealing with a Mellin-Barnes representation of a Feynman integral, the
crucial point is the treatment of the poles in ǫ. In the case of a finite integral, the
choice of the integration contour is straightforward. It is then possible to expand the
integrand in ǫ and evaluate the Mellin-Barnes integral using Barnes lemmas or by
summing up the residuals. However, if there are poles in ǫ, they manifest themselves
by the so-called glueing together of poles in the complex plain. Due to this, it is
not possible to find a contour which separates the poles with a “-z” dependences
from poles with a “+z”. In this case, one has to successively change the “nature”
of one or more poles until a contour is found. This is done by replacing the integral
over the original contour by the sum of the integral over a shifted contour and the
residual at the point where the glueing occurred.

Recently, two algorithms [140, 141] have been proposed, which automatise the
whole procedure in the formulation of Ref. [136]. The program described in the latter
reference, MB, is publicly available and has been used for the numerical evaluation
of the master integrals in this work.

Let us consider the master integral I
(2)
3 = J

(2)
− (0, 0, 1, 1, 1) (cf. Appendix D) as an

example. Starting from the Feynman parameter representation given in Eq. (3.50)
of Ref. [138], we introduce one additional Mellin-Barnes integration

I
(2)
3 = −m2

Q

(

µ2

m2
Q

)2ǫ

Γ(2ǫ− 1)

1
∫

0

dξ

∞
∫

0

dt
[t+ ξ(1 − ξ)]3ǫ−3

[t(1 − 2ξ)2 + ξ(1 − ξ)]2ǫ−1

= −m2
Q

(

µ2

m2
Q

)2ǫ
1

2πi

+i∞
∫

−i∞

dz Γ(2ǫ− 1 + z) Γ(−z)

×
1
∫

0

dξ (1 − 2ξ)2z[ξ(1 − ξ)]1−2ǫ−z

∞
∫

0

dt tz[t+ ξ(1 − ξ)]3ǫ−3 . (B.8)

The integral over t can now be performed. Writing the integral over ξ as two times
the integral from 0 to 1/2 and using the substitution ξ → (1 −

√
1 − x)/2, just as
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in Ref. [138], we obtain

I
(2)
3 = −m2

Q

(

µ2

m2
Q

)2ǫ
2

4ǫ Γ(3 − 3ǫ)

× 1

2πi

+i∞
∫

−i∞

dz Γ(2ǫ− 1 + z) Γ(−z) Γ(1 + z) Γ(2 − 3ǫ− z)

×
1
∫

0

dxxǫ−1 (1 − x)z−1/2 . (B.9)

Now we can also perform the integration over x. The result is the following one-fold
Mellin-Barnes representation for the master integral

I
(2)
3 = −m2

Q

(

µ2

m2
Q

)2ǫ
2 Γ(ǫ)

4ǫ Γ(3 − 3ǫ)

× 1

2πi

+i∞
∫

−i∞

dz
Γ(2ǫ− 1 + z) Γ(−z) Γ(1 + z) Γ(2 − 3ǫ− z) Γ(z + 1/2)

Γ(ǫ+ 1/2 + z)
.

(B.10)

The evaluation can now, for example, be done with the program MB. Using the
following Mathematica program, we have numerically checked the known analytical
result.

(* 2-loop sunset with one massless and two massive lines *)

(* at threshold *)

(* prefactor of the integral is (i Pi^(d/2))^2 mm^(1-2*ep) *)

<<~/mathematica/MB/MB.m;

(* define prefactor and integrand *)

MBprefactor = -Exp[2*ep*EulerGamma]*2*Gamma[ep]/4^ep/Gamma[3-3*ep];

(MBex = Gamma[2*ep-1+z]*Gamma[-z]*Gamma[1+z]*Gamma[2-3*ep-z]*

Gamma[z+1/2]/Gamma[ep+1/2+z]);

(* choose integration contour *)

rules = MBoptimizedRules[MBex,ep->0,{},{ep}];

cont = MBcontinue[MBex,ep->0,rules];
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(* expand in ep to order n; prefactor is included in this step *)

expr[n_] := MBmerge[MBexpand[cont,MBprefactor,{ep,0,n}]];

(* perform numerical integration *)

sun[n_] := MBintegrate[expr[n],{},Complex->True];

(* calculate poles analytically *)

(poles = FullSimplify[MBmerge[{expr[-1][[1]],

Barnes1[expr[-1][[2]],z]}]]);

The poles can even be evaluated analytically with the help of the first Barnes lemma.
The results we get are

poles[[1,1]] = 1/ep^2 + 2/ep

sun[2] = ep^(-2)

+ (1.9999999999994615 + 5.551115123125783*^-16*I)/ep

+ (8.547137367590192 + 7.867187803989317*^-15*I)

+ (14.133627433378415 + 1.737259225365051*^-9*I)*ep

+ (44.10934076701088 - 2.2737367544323206*^-13*I)*ep^2

Using the analytical result of Eq. (D.4), we get

I
(2)
3 = m2

Q

(

µ2

m2
Q

e−γE

)2ǫ
{

1

ǫ2
+

2

ǫ
+ 8.547137367665245

+14.13362743588118 ǫ+ 44.10934076704626 ǫ2 + O
(

ǫ3
)

}

, (B.11)

which is in excellent agreement.
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Program Packages

Calculations like the ones of this work are only possible due to the use of comput-
ers. We used a collection of existing program packages, which are described in this
chapter. The successive use of these packages allows an almost complete automa-
tisation of the calculations, starting with the generation of the Feynman diagrams
and ending with the evaluation of the corresponding integrals.

C.1 QGRAF

QGRAF [58] is a very fast Feynman graph generator written in Fortran. The output
format can be manipulated by providing a style file. Apart from this, the pro-
gram requires two files to specify which diagrams should be generated. One file,
“qgraf.dat”, contains general information about the considered process like the in-
coming and outgoing particles and the number of loops. For the calculation of the
matching coefficient of the vector current, the following file was used:

output = ’qlist.’ ; * name of output file

style = ’q2e.sty’ ; * name of style file

model = ’gammatt.lag’ ; * name of model file

in = ft,fT ; * incoming particles

out = a ; * outgoing particles

loops = 3 ; * number of loops

loop_momentum = k ; * name of loop momenta

options = onepi; * additional options, here: graphs

* should be one-particle irreducible

* only nl part

false = iprop[fq,0,0]; * require the presence of light quarks
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In the other file, one has to specify the model to be used. This means that one
has to state all occurring propagators and vertices. The model file for the calculation
of the matching coefficients is the following:

* propagators

[ft,fT,-] * top quark

[fq,fQ,-] * light quarks

[g,g,+t] * gluon (no tadpoles)

[a,a,+p] * photon (only external)

[ug,uG,-] * gluon ghost

[s,s,+] * dummy scalar for four gluon vertex

* vertices

[fT,ft,g]

[fQ,fq,g]

[fT,ft,a]

[uG,ug,g]

[g,g,g]

[g,g,s]

* for 3-loop only (n_l singlet diagrams)

[fQ,fq,a]

The program’s output is a list of all diagrams in the specified format. The
diagrams’ symmetry factors are given as well.

C.2 q2e and exp

q2e [59] and exp [60,61] are used to further process QGRAF’s output. exp is capable of
performing an asymptotic expansion for large or small masses and external momenta
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in the euclidean region. This is done in a diagrammatic way where the resulting
diagrams are mapped onto previously specified topologies. With the exception of the
singlet contribution for bottom quarks, we did not perform an asymptotic expansion
in the present work, but used exp only for the mapping. The output is given in a
FORM readable way. The Feynman rules corresponding to the different particles
are also inserted at this step. Furthermore, labels for diagrams with massive and
massless quark loops are inserted by q2e.

C.3 MATAD

MATAD [62] is a FORM [130] program designed for the calculation of massive tadpole
diagrams up to three loops. Here, we use a version which has been modified to be
used within the automatic setup described in this chapter. This makes the use of the
program very convenient even though we do not want to calculate massive tadpoles.
The program takes care of the whole Dirac algebra and computes the colour factors
of the diagrams. The only things which have to be supplied are topology files for the
calculation of the integrals. As an example, we give the FORM code for the calculation
of one-loop vertex integrals at threshold (cf. Section A.2.4 for the file VAtt1l).

*********************************************************************

* topology file for 1-loop vertex diagram at threshold *

* *

* {topVAtt1l;3;1;2;1;;(q1:1,3)(q2:2,3)(p1:1,3)(p2:3,2)(p3:2,1);110} *

*********************************************************************

** p3 = k,

** s1m1 = 1/(k^2 + k.q),

** s2m1 = 1/(k^2 - k.q),

** q^2 = 4*m^2

* express p1 and p2 through p3 and Q

id p1 = p3 + Q/2;

id p2 = p3 - Q/2;

.sort

* express remaining scalar products through denominators

id p3.Q = 1/s1m1 - p3.p3;
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* apply on-shell condition (euclidean)

id Q.Q = -4*M1^2;

id 1/Q.Q = -1/4/M1^2;

.sort

* use partial fractions to reduce the integrals to propagator type

if ( (count(s1m1,1)!=0) && (count(s2m1,1)!=0) );

id s1m1 = 1/[jp_den1];

id s2m1 = -1/[jp_den2];

id 1/s1m1 = [jp_den1];

id 1/s2m1 = -[jp_den2];

endif;

.sort

ratio [jp_den2],[jp_den1],[jp_diff];

id [jp_den1] = 1/s1m1;

id [jp_den2] = -1/s2m1;

id 1/[jp_den1] = s1m1;

id 1/[jp_den2] = -s2m1;

id [jp_diff] = 2*p3.p3;

id 1/[jp_diff] = 1/2/p3.p3;

.sort

* sign of external momentum does not matter

* for propagator-type on-shell integral

multiply,replace_(s2m1,s1m1);

.sort

* discard massless tadpoles

if (count(s1m1,1)<=0) discard;

.sort

* identify the integrals

** jpint1l(a,b) = 1/(k^2+k.q)^a/(k^2)^b = 1/(k^2-k.q)^a/(k^2)^b

id s1m1^jpa?*p3.p3^jpb? = (-1)^(jpa+jpb)*jpint1l(jpa,-jpb);

.sort
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* calculate integral with analytical formula

* id jpint1l(jpa?,jpb?) = (-1)^(jpa+jpb)*Gam(jpa+jpb-2,1)*

* Gam(-2*jpb-jpa+4,-2)*iGam(jpa,0)*

* iGam(-jpa-jpb+4,-2)/(M1^2)^(jpa+jpb-2)*eM1;

* ... or with Baikov’s method

#include VAtt1l

.sort

* expand in epsilon

#include redcut

#include expepgam

.sort





Appendix D

Master Integrals

In this chapter the results for all master integrals, which occur in the present work,
are provided and some details of their evaluation are presented. The integrals are
evaluated in dimensional regularisation with d = 4 − 2ǫ. The integral names cor-
respond to the ones given in Chapters 1 and 2. All results are given in Minkowski
space.

D.1 One-loop integrals

At one-loop level, there is only one master integral. It is shown in Fig. D.1. The
integral can be easily evaluated to all orders in ǫ using Feynman parameters (cf.
Appendix B). In fact, this can also be done for arbitrary complex powers of the
propagator. The result for the master integral reads

I
(1)
1 = J (1)(0, 1) = −m2

Q

(

µ2

m2
Q

)ǫ

Γ (ǫ− 1) . (D.1)

D.2 Two-loop integrals

There are four master integrals which are needed for the calculation of the non-
singlet contribution at the two-loop level. They are depicted in Fig. D.2. The

Figure D.1: One-loop master integral I
(1)
1 .
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Figure D.2: Two-loop master integrals for non-singlet the contribution. Bold lines
denote massive lines with mass 2mQ, thin lines denote massive lines with mass mQ

and dashed lines denote massless lines. All external lines are on-shell.

results read
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where γE is Euler’s constant, ζn denotes Riemann’s zeta-function with integer argu-

ment n and a4 = Li4
(

1
2

)

=
∞
∑

n=1

(2n n4)−1.

I
(2)
2 can be calculated for arbitrary complex powers of the propagators by means
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Figure D.3: Additional two-loop master integrals for the singlet contribution. The
same coding as in Fig. D.2 is adopted. A dot on a line denotes a squared propagator.

of Feynman parameters. The result for I
(2)
3 can be extracted from the expression

for the corresponding off-shell integral given in Ref. [142]. The result for I
(2)
4 can be

extracted from the result for L+(1, 1, 1, 1, 1) given in Ref. [109]. Both results have
been checked numerically with a one-fold Mellin-Barnes [135, 136] representation,

using the program MB [141] (cf. Appendix B for I
(2)
3 ).

For the calculation of the two-loop singlet contribution, we need thirteen addi-
tional master integrals. They are depicted in Fig. D.3. The results are
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where the iε stems from the usual Feynman prescription. I
(2)
5 –I

(2)
7 and I

(2)
13 are

products of one-loop integrals and are thus quite easy to calculate. I
(2)
8 and I

(2)
9 are

recursively one-loop, i.e. the two-loop integral can be calculated by the successive
evaluation of two one-loop integrals. For I

(2)
7 , I

(2)
9 and I

(2)
13 we used a one-fold Mellin-

Barnes representation for the triangle integral, which could be solved analytically.
For I

(2)
10 –I

(2)
12 we found a two-fold Mellin-Barnes representation. I

(2)
14 and I

(2)
15 belong

to the L
(2)
± -integrals and can thus be reduced further. In the latter case, we used

partial fractioning to make this reduction possible. I
(2)
16 can be determined from the

result given in Ref. [143].

The errors of the numerical values in Eqs. (D.11) and (D.11) correspond to twice
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Figure D.4: Three-loop master integrals for fermionic non-singlet contribution. The
same coding as in Fig. D.2 is adopted. A dot on a line denotes a squared propagator.

the Vegas error given by MB. Note that we were able to find an analytical results for
the singlet contributions even though we only have numerical results for the O (ǫ0)

terms of I
(2)
10 and I

(2)
11 . This was possible since we found relations between some

terms by requiring the results for the singlet contributions to be finite. We have
checked that these relations hold for our numerical values.

If one uses the additional recurrence relations discussed in Section A.4, the num-
ber of master integrals is reduced by eight (four for each topology). The integrals

which are no longer needed are I
(2)
7 , I

(2)
9 , I

(2)
11 –I

(2)
15 and I

(2)
17 .

D.3 Three-loop integrals

The twelve master integrals needed for the three-loop fermionic non-singlet contri-
bution are shown in Fig. D.4. They read
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(3)
2 , I

(3)
4 , I

(3)
5 and I

(3)
6 can be evaluated to all orders in ǫ and for arbitrary complex

powers of the propagators with the help of Feynman parameters. I
(3)
1 was calculated

in Ref. [11]. We have repeated the calculation described in the reference with the

program XSummer [144] and find complete agreement. The results for I
(3)
3 –I

(3)
6 can
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I
(3,f)
9 I

(3,f)
12

Figure D.5: ǫ-finite master integrals. The same coding as in Fig. D.2 is adopted.

be found in Ref. [67]. We have checked the result for I
(3)
3 numerically with the help

of a one-fold Mellin-Barnes representation and find complete agreement.

The master integrals I
(3)
7 –I

(3)
12 have been evaluated with the help of the Mellin-

Barnes method where the evaluation of the integrals has been performed with the
program MB. I

(3)
7 and I

(3)
8 can be expressed in terms of a one-fold Mellin-Barnes

representation and are thus known with a quite high precision. On the other hand,
I

(3)
10 is represented by a two-fold and I

(3)
9 , I

(3)
11 and I

(3)
12 even by a three-fold integra-

tion which results in less accurate results. The quoted uncertainties in the above
equations correspond to twice the Vegas error given by MB for the multi-dimensional
integrals and to a conservative estimate in case of the one-dimensional integrals I

(3)
7

and I
(3)
8 . The pole part of I

(3)
7 agrees with the result of Ref. [145].

From Eqs. (D.19)–(D.30), one can see that we have to expand some of the master
integrals to high orders in ǫ. The reason for this are so-called spurious poles in the
coefficient functions of these master integrals. Since the higher orders in ǫ are more
complicated to calculate and are thus known with less precision, it is useful to switch
to a so-called ǫ-finite basis of master integrals [134].

Since I
(3)
1 –I

(3)
6 are known analytically, a replacement is, of course, not necessary.

Furthermore, for I
(3)
7 and I

(3)
8 the numerical precision is sufficient for our calculation.

As far as the remaining four integrals are concerned, we found it convenient to replace
I

(3)
9 and I

(3)
12 by the integrals shown in Fig. D.5. Their numerical evaluation with

the help of MB is straightforward leading to the results

I
(3,f)
9 = J

(3)
− (0, 1, 1, 1, 1, 0, 1, 0, 1)

=

(

µ2

m2
Q

e−γE

)3ǫ
{

1

6ǫ3
+

3

2ǫ2
+

(

55

6
+

3

8
π2

)

1

ǫ
+ 64.678(8) + O (ǫ)

}

,

(D.31)

I
(3,f)
12 = J

(3)
− (0, 1, 0, 1, 1, 1, 1, 0, 1) =

(

µ2

m2
Q

e−γE

)3ǫ
{

2ζ3
1

ǫ
+ 8.1(2) + O (ǫ)

}

.

(D.32)
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Figure D.6: Additional three-loop master integrals for quark self-energy integrals.
The same coding as in Fig. D.2 is adopted.

Apart from integrals I
(3)
1 –I

(3)
6 , we need 13 more master integrals for the full

calculation of the renormalisation constants. These are depicted in Fig. D.6. Their
results are

I
(3)
13 = J

(3)
+ (0, 0, 0, 0, 0, 0, 1, 1, 1) = −m6

Q

(

µ2

m2
Q

)3ǫ

Γ3 (ǫ− 1) , (D.33)

I
(3)
14 = K2(0, 0, 0, 1, 1, 1, 1, 0, 0)

= m4
Q

(

µ2

m2
Q

e−γE

)3ǫ
{

3

2ǫ3
+

23

4ǫ2
+

(

105

8
+

3

8
π2

)

1

ǫ
+

275

16
+

133

48
π2 − 3

2
ζ3

+

(

−567

32
+

425

32
π2 − 8π2 ln 2 +

89

4
ζ3 +

19

320
π4

)

ǫ

+

(

−14917

64
+

10105

192
π2 − 60π2 ln 2 + 16π2 ln2 2 +

1575

8
ζ3 −

941

1152
π4

−3

8
π2ζ3 −

9

10
ζ5 + 8 ln4 2 + 192a4

)

ǫ2 + O
(

ǫ3
)

}

, (D.34)
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I
(3)
15 = K1(0, 0, 0, 1, 1, 1, 0, 1, 0)

= m4
Q

(
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m2
Q

e−γE

)3ǫ
{

1
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7
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4
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1
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7
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+

(

59437
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2
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480
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)
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+
256

3
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π6 − 1024

9
ln4 2

−8192

3
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)

ǫ3 + O
(

ǫ4
)

}

, (D.35)

I
(3)
16 = K2(0, 0, 0, 1, 1, 1, 1, 1, 0)

= m2
Q

(
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m2
Q

e−γE

)3ǫ
{

1
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+
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1

4
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)

1
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+ 20 + 4π2 − 3ζ3

+

(
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3
+ 32π2 − 16π2 ln 2 +
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3
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480
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)

ǫ

+

(
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3
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4
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5
ζ5 +
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3
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)

ǫ2 + O
(

ǫ3
)

}

, (D.36)

I
(3)
17 = K2(0, 0, 0, 0, 1, 1, 1, 1, 0)

= m4
Q

(

µ2

m2
Q

e−γE

)3ǫ
{
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+
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+

(
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8
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5
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3
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)
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(
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)

}

, (D.37)

I
(3)
18 = J

(3)
+ (0, 1, 1, 1, 0, 1, 1, 1, 1) =

1

m2
Q

(

µ2

m2
Q

e−γE

)3ǫ
{

−2π2ζ3 + 5ζ5 + O (ǫ)
}

,

(D.38)
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I
(3)
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=

(
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Q

e−γE

)3ǫ
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1
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)
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(
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)
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, (D.39)

I
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20 = K2(1, 0, 1, 0, 1, 1, 1, 1, 0)

=

(
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Q

e−γE

)3ǫ
{

1
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7

3ǫ2
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(
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3
+

1
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1
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+
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3
+
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3
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2
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π4

+

(
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3
+

21

4
π2 +

25

3
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169

288
π4 +

28

3
π2ζ3 − 78ζ5

)

ǫ+ O
(

ǫ2
)

}

, (D.40)

I
(3)
21 = K2(1, 0, 0, 1, 1, 1, 1, 0, 1)

=

(

µ2

m2
Q

e−γE

)3ǫ
{

1

6ǫ3
+

3

2ǫ2
+

(
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6
− 7

24
π2

)

1

ǫ
+

95

2
− 47

24
π2 − 29

6
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4

45
π4

+

(

1351

6
− 193

24
π2 + 4π2 ln 2 − 87

2
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2429

2880
π4 +
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6
π2ζ3 −

49

2
ζ5

)

ǫ

+O
(

ǫ2
)

}

, (D.41)

I
(3)
22 = K2(1, 1, 1, 1, 0, 0, 1, 1, 0)

=

(

µ2

m2
Q

e−γE

)3ǫ
{
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1

ǫ
+

1

3
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7

90
π4

+

(
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3
π2 − 12ζ3 −

41

90
π4 − 1

6
π2ζ3 + 44ζ5

)

ǫ+ O
(

ǫ2
)

}

, (D.42)
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1
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3ǫ2
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(
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+
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)

1

ǫ
+
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3
+

11

12
π2 +

1

3
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4
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(
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3
+
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3
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(
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}
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I
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=
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{
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)

1

ǫ
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(
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I
(3)
25 = K2(1, 1, 1, 1, 1, 1, 1, 1, 0) =

1

m4
Q

(

µ2

m2
Q

e−γE

)3ǫ
{

4π2 ln2 2 − 1

6
π4 + O (ǫ)

}

.

(D.45)

It turns out that it is useful to choose an integral with an additional scalar
product instead of I

(3)
25 . This was done in Ref. [11] as well. In our notation this

integral is given as

I
(3,sp)
25 =

(

µ2

iπd/2

)3 ∫
ddk ddl ddp

k2 l2 p2 ((k + l + p)2 + 2q · (k + l + p)) (k2 + 2q · k)

× (q · l)
(p2 + 2q · p) ((k + l)2 + 2q · (k + l)) ((l + p)2 + 2q · (l + p))

.(D.46)

If this replacement is not done, the integrals I
(3)
3 , I

(3)
15 and I

(3)
25 would have to be

calculated to one order higher in ǫ than the results given above. The result for the
additional integral is [67]

I
(3,sp)
25 =

1

m2
Q

(

µ2

m2
Q

e−γE

)3ǫ
{

−1

2
π2ζ3 + 5ζ5 + O (ǫ)

}

. (D.47)

The analytical results for the above integrals were taken from Ref. [11] (and

Ref. [146] in the case of I
(3)
25 ). We have checked the results numerically with the

help of the program MB. However, we did find some differences. Integral I
(3)
2 does

not appear in Ref. [11], although it is also needed for the calculation of the renor-

malisation constants. Furthermore, the result for I
(3)
6 in Ref. [11] is wrong, while

the correct result can be found in Ref. [67]. As it turns out, the result given in the

former reference corresponds to J
(3)
+ (0, 1, 1, 1, 1, 0, 1, 0, 0). Since there is a one-to-

one correspondence between the two integrals and they are both easy to evaluate,
it actually does not matter which is chosen to be the master integral.

Most of the master integrals of Ref. [11] were already calculated in Ref. [67].

However, it turns out that there are differences in the O (ǫ) terms of integrals I
(3)
19 –

I
(3)
24 . We have checked numerically that the results of Ref. [11] are correct.





Appendix E

Additional Formulae

ρ1 of Section 1.2.4

A crucial ingredient for our numerical analysis in Section 1.2.4 is the wave function
at the origin. Currently the second order is known completely [34, 75–78] and at
order α3

s the quadratically [147, 148] and linearly [41, 73] enhanced logarithms and
the corrections proportional to β3

0 [45, 46] are available.

The quantity ρ1 needed in Section 1.2.4 is given by

ρ1 = 1 +
αs(µs)

π

[(

4 − 2

3
π2

)

β0 +
3

4
a1

]

+
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)2{[

−CACF +
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3
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)
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]

π2 ln(CFαs(µs))

+
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3
π2 + 20ζ(3) +
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3
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(
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2
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3
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+
3

16
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3

16
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4
π2CACF +

(

33

8
− 13

9
S(S + 1)

)

π2C2
F

}

+

(
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π

)3{

π2C2 ln2 (CFαs(µs)) + π2C1 ln (CFαs(µs)) + Cβ3

0

0 + . . .

}

,

(E.1)

with

C2 =

(

−2CACF +

(

−4 +
4

3
S(S + 1)

)

C2
F

)

β0 −
2

3
C2

ACF

+

(

−41

12
+

7

12
S(S + 1)

)

CAC
2
F − 3

2
C3

F , (E.2)
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C1 =

[(
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9
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15
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36
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9
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27
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FTnl (E.3)

and

Cβ3

0

0 =

β3
0

[
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22

3
π2 + 112ζ(3)− 7

5
π4 − 12π2ζ(3) − 40ζ(5) − 16ζ(3)2 +

4

105
π6

]

,

(E.4)

where µs = CFmqαs(µs) is the soft scale. It is straightforward to obtain the result
for general αs(µ) using standard renormalisation group analyses. In Eqs. (E.1)–
(E.3) S is the spin quantum number which is equal to one in our applications. The
ellipses in Eq. (E.1) represent yet unknown corrections like, e.g., the pure ultrasoft
contributions.

The one- and two-loop coefficients of the static potential are given by [149,150]

a1 =
31

9
CA − 20

9
TFnl ,

a2 =

(
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. (E.5)
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QCD β function

The first three coefficients of the β function read [151,152]
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1
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. (E.6)

ZDR
m of Section 2.2.2

ZDR
m has been computed in Ref. [102] to three and in Ref. [98] even to four-loop

order, where it is given in terms of the corresponding anomalous dimension. It is
convenient to decompose ZDR

m in terms of the different loop contributions as

ZDR
m = 1 +

(

eγE

4π
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δz̃(1) +

(
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4π
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δz̃(2) +

(
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δz̃(3) + . . . , (E.7)

where the ellipses denote terms of higher order in perturbation theory.

The individual contributions read
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[150] Y. Schröder, Phys. Lett. B 447 (1999) 321 [arXiv:hep-ph/9812205].

[151] O. V. Tarasov, A. A. Vladimirov and A. Y. Zharkov, Phys. Lett. B 93 (1980)
429.

[152] S. A. Larin and J. A. M. Vermaseren, Phys. Lett. B 303 (1993) 334
[arXiv:hep-ph/9302208].





Acknowledgements

First of all, I would like to thank my supervisors Prof. Bernd Kniehl and Prof.
Matthias Steinhauser for giving me the opportunity to work on this interesting topic.
In particular, I thank Prof. Steinhauser for numerous discussion through which I
have learned a lot about particle physics in general and multi-loop calculations in
particular. I thank Prof. Jochen Bartels for agreeing to be the second referee for
the disputation.

I am indebted to Stefan Bekavac, Joachim Brod, Martin Främke, Alexander
Kune and Peter Marquard for carefully reading parts of the manuscript.

I thank Andrey Grozin, Peter Marquard, Luminita Mihaila, Andrei Onishchenko
and Dirk Seidel for fruitful collaborations. I am grateful to Pavel Baikov, Mikhail
Kalmykov and Vladimir Smirnov for helpful discussions and useful advice.

Throughout my dissertation, I have profited a lot from discussions (not al-
ways about physics) with several colleagues. In particular, I am thankful to Ste-
fan Bekavac, Joachim Brod, Michael Faisst, Frank Fugel, Philipp Kant, Torben
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