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Abstract

Quantum gravity is analyzed from the viewpoint of the renormalization group.
The analysis is based on methods introduced by J. Polchinski concerning the per-
turbative renormalization with flow equations. In the first part of this work, the
program of renormalization with flow equations is reviewed and then extended to
effective field theories that have a finite UV cutoff. This is done for a scalar field
theory by imposing additional renormalization conditions for some of the nonrenor-
malizable couplings. It turns out that one so obtains a statement on the predictivity
of the effective theory at scales far below the UV cutoff. In particular, nonrenor-
malizable theories can be treated without problems in the proposed framework. In
the second part, the standard covariant BRS quantization program for Euclidean
Einstein gravity is applied. A momentum cutoff regularization is imposed and the
resulting violation of the Slavnov-Taylor identities is discussed. Deriving Polchin-
ski’s renormalization group equation for Euclidean quantum gravity, the predictivity
of effective quantum gravity at scales far below the Planck scale is investigated with
flow equations. A fine-tuning procedure for restoring the violated Slavnov-Taylor
identities is proposed and it is argued that in the effective quantum gravity context,
the restoration will only be accomplished with finite accuracy. Finally, the no-cutoff
limit of Euclidean quantum gravity is analyzed from the viewpoint of the Polchinski
method. It is speculated whether a limit with nonvanishing gravitational constant
might exist where the latter would ultimatively be determined by the cosmological
constant and the masses of the elementary particles.
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Zusammenfassung

Die Quantentheorie der Gravitation wird untersucht vom Blickwinkel der Renor-
mierungsgruppe. Die Analyse basiert auf Methoden von J. Polchinski bezüglich der
pertubativen Renormierung mit Flussgleichungen. Im ersten Teil der Arbeit wird
das Programm der Renormierung mit Flussgleichungen vorgestellt und erweitert auf
den Fall effektiver Feldtheorien mit endlichem UV Cutoff. Dieses wird durchgeführt
für eine skalare Feldtheorie durch Einführung zusätzlicher Renormierungsbedin-
gungen für einige der nichtrenormierbaren Kopplungskonstanten. Es stellt sich
heraus, dass man auf solche Weise eine Aussage über die Prediktivität der The-
orie auf Skalen weit unterhalb des UV Cutoffs bekommt. Insbesondere können
nichtrenormierbare Theorien in dem entwickelten Rahmen problemlos behandelt
werden. Im zweiten Teil wird die übliche kovariante BRS Quantisierung der Gravita-
tion durchgeführt. Eine Cutoff-Regularisierung wird eingesetzt und die daraus resul-
tierende Verletzung der Slavnov-Taylor Identitäten diskutiert. Nach der Herleitung
der Polchinski-Renormierungsgruppengleichung für Euklidische Quantengravitation
folgt eine Analyse der Prediktivität effektiver Quantengravitation auf Skalen weit un-
terhalb der Planckskala mit Hilfe der Flussgleichungen. Eine ”fine-tuning”-Prozedur
zur Wiederherstellung der Slavnov-Taylor Identitäten wird vorgestellt und es wird
dargelegt, dass im Kontext der effektiven Quantengravitation die Wiederherstell-
lung nur mit endlicher Genauigkeit gelingen kann. Zuletzt folgt eine Analyse des
No-Cutoff Limes der Quantengravitation im Rahmen der Polchinski-Methode. Es
wird spekuliert, dass ein solcher Limes für nichtverschwindendene Werte der Grav-
itationskonstante existieren könnte, wobei letztere dann bestimmt wäre durch die
kosmologische Konstante und die Massen der Elementarteilchen.
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Chapter 1

Introduction

One of the most intriguing unsolved problems in contemporary physics is the unifica-
tion of Einstein’s theory of gravitation, general relativity, with quantum mechanics.
It is well-known that the traditional approach to such a quantum theory of gravity,
i.e. the covariant quantization program which treats general relativity as a flat-
space field theory, leads to severe conceptual difficulties. In particluar, it turns out
that the theory is perturbatively nonrenormalizable [41] [13]. This means an infinite
number of free parameters has to be fixed. For this reason, Einstein gravity was
long considered a failure as a quantum field theory, and different strategies have
been pursued. Among those are string theory and loop quantum gravity. However,
until today none of these approaches has been fully successful.

In the recent years, there have been some renewed efforts concerning the quan-
tization of general relativity along the lines of ”conventional” quantum field theory.

On the one hand, there have been attemps to treat quantum gravity as an ef-
fective field theory [9] in the framework of perturbation theory. An effective theory,
unlike a truly fundamental one, cannot be valid up to arbitrary scales. For the case
of quantum gravity, the limiting scale is the Planck energy (∼ 1.2 · 1019 GeV ) as
indicated by the size of the gravitational constant. In the effective field theory ap-
proach, the nonrenormalizability of general relativity is not an issue, and it has been
shown that quantum corrections to Newton’s potential as well as the Schwarzschild
and Kerr metrics can be derived [3] [5]. However, one has to content oneself with
predictions of finite accuracy, and one does not get new insights on the physics above
the Planck scale.

On the other hand, the nonperturbative properties of (Euclidean) quantum grav-
ity have been studied using the renormalization group flow equations [33]. Evidence
for the existence of a non-Gaussian fixed point in the space of couplings has been
found which would render the theory nonperturbatively renormalizable along the
lines of Weinberg’s ”aymptotic safety” scenario [46]. In particular, one may hope
that only a finite number of free parameters has to be fixed, corresponding to a fi-

1



2 CHAPTER 1. INTRODUCTION

nite number of dimensions of the UV critical surface [20]. Applications to cosmology,
black hole physics and the structure of spacetime have been discussed [21] [35] [34].
However, in order to perform the analysis, the space of actions has to be truncated.
Thus, one cannot completely rule out the possibility that the non-Gaussian fixed
point is only an artefact of the truncation.

One could ask if there is any relation between the effective field theory approach
(which implicitly relies on the Gaussian fixed point) and the nonperturbative renor-
malization group analysis. In particular, the latter (being the more general one)
should have a certain domain where the former is valid.

Asking so one is led to a paper by Polchinski [31] concering the perturbative
renormalization of scalar φ4 theory by means of the renormalization group flow equa-
tions. In Polchinski’s proof of renormalizability, no Feynman diagrams are needed
and the cumbersome analysis of overlapping divergences employing Zimmerman’s
forest formula is avoided. Instead, the task is accomplished by bounding inductively
the solutions of the renormalization group flow equations, which are a system of
first order differential equations. It is crucial for the analysis that the couplings are
small, i.e. that one is in the vicinity of the Gaussian fixed point. The method has
turned out to be particularly simple and also transparent from a conceptual point
of view.

It is therefore not surprising that Polchinski’s work has stimulated various con-
tributions over the following years. Among those are a simplified and mathemeti-
cally rigorous version of Polchinski’s original proof employing physical renormaliza-
tion conditions [17], extensions to composite operator renormalization [15] [16] and
Symanzik’s improved actions [47], and a proof of the perturbative renormalizability
of QED via flow equations [14]. Finally, also the perturbative renormalization of
spontaneously broken Yang-Mills theory has been accomplished [18] in the frame-
work of the flow equations.

The reader notices that an analysis of quantum gravity along the lines of the
Polchinski method is still missing. This is what the present work is about.

Since Polchinski’s concepts implicitly rely on the Gaussian fixed point (as does
perturbation theory), it seems likely that for such an analysis one will again be con-
fronted with the perturbative nonrenormalizability of general relativity. However, it
will be shown that it is possible to extend the method of renormalization via flow
equations to the case of a (perturbatively) nonrenormalizable theory if one treats it
as an effective field theory that has a finite cutoff. In fact, it will turn out that in
doing so, one obtains a statement on the amount of predictivity the effective field
theory has at scales far below the cutoff. One aim of the present work is therefore to
investigate the predictivity of effective quantum gravity at energies that are small
as compared to the Planck scale.

Applying a renormalization group analysis to quantum gravity, one has to sur-
mount another serious obstacle. The cutoff regularization that has to be imposed
in oder to obtain the flow equations inevitably violates the local gauge invariance of
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any gauge theory. For the case of general relativity, this means the symmetry under
general coordinate transformations will be broken. Since on the quantum level gauge
invariance is expressed in terms of BRS invariance and Slavnov-Taylor identities for
Green’s functions, one will end up with violated Slavnov-Taylor identities. It has
been shown [18] that the analogous problem appearing in the renormalization of
Yang-Mills theory with flow equations can be cured by a so-called fine-tuning pro-
cedure which ultimatively aims at the restoration of the Slavnov-Taylor identities in
the no-cutoff limit. In the present work, a similar procedure for effective quantum
gravity will be proposed. The important difference to the Yang-Mills case lies in the
fact that since a finite cutoff has to be retained, the restoration of the Slavnov-Taylor
identities will only be accomplished with finite accuracy.

Although the results that are obtained from our analysis are already known from
the ”conventional” treatment of Einstein gravity as an effective field theory [9] using
dimensional regularization etc., in our opinion the investigation with flow equations
has the benefit to be particularly systematic and transparent while employing the
”modern” language of the renormalization group. In fact, the methods that are
developed in this work for investigating effective field theories with flow equations
should be applicable to any effective field theory, not just gravity. Comparing to a
full nonperturbative renormalization group treatment à la [33], our results will only
be valid near the Gaussian fixed point. However, we do not need to truncate the
space of actions, and it will be shown that for generic initial conditions the effective
Lagrangian of quantum gravity is attracted towards a finite dimensional submanifold
in the space of possible Lagrangians at scales far below the Planck scale.

Finally, it has turned out that the Polchinski analysis of quantum gravity allows
for an interesting speculation concerning the no-cutoff limit of the theory. In the
framework of the flow equations, a nonrenormalizable theory is defined as a theory
with field and symmetry content such that no renormalizable interactions, except
for kinetic and mass terms, are permitted. In the no-cutoff limit, such theories
become free when an analysis à la Polchinski is applied. We find that quantum
gravity without a cosmological constant is nonrenormalizable in the described sense,
as it has already been conjectured by S. Weinberg in his book on quantum field
theory [45]. However, for nonzero values of the cosmological constant the situation is
different because some renormalizable interactions are introduced. This gives rise to
the speculation whether quantum gravity with cosmological constant has a no-cutoff
limit with nonvanishing gravitational constant. Moreover, since in the no-cutoff limit
the nonrenormalizable running couplings are determined by the renormalizable ones,
the value of the gravitational constant should then be determined by the cosmological
constant. It is furthermore pointed out that a related situation may be produced
by coupling massive fields to gravity, leading to the speculation of a gravitational
constant that is determined by the cosmological constant and the masses of the
elementary particles. The latter might indicate a deeper relation between the Higgs
mechanism and the gravitational force.
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The structure of the thesis goes as follows. In chapter (2), we will give an intro-
duction into the key concepts of renormalization with flow equations. Furthermore,
the strategy for extending the method to effective field theories is outlined, ultima-
tively leading to estimates concerning the predictivity of effective theories at scales
far below the cutoff. The overview in chapter (2) should serve as some kind of map
through the inductive proofs carried out in perturbation theory in the next two
chapters.

The perturbative renormalization of scalar field theory via flow equations is re-
viewed in full detail in chapter (3). We proceed along the lines of [17] who presented
an improved and considerably shortened version of Polchinski’s original proof [31].
As compared to their version, we include the following generalizations. Instead of
φ4, we will consider φ3 +φ4 theory1. Moreover, nonvanishing bare values of the non-
renormalizable couplings are allowed for from the very beginning, and an alternative
proof of the uniqueness of the no-cutoff limit is employed. These generalizations will
turn out essential when the concepts are applied to effective quantum gravity in
chapter (6).

In chapter (4), the extension of the Polchinski method to effective field theories
is developed rigorously for a scalar field theory following the strategy described in
chapter (2). To do so, the vertex functions of an effective potential being the solu-
tion of the Polchinski renormalization group equation are expanded in generalized2

perturbation theory. New bounds for the vertex functions are established in an at-
tempt to unify the results of [47] and [17], and additional renormalization conditions
for some of the nonrenormalizable couplings are imposed at an arbitrary renormal-
ization scale. These will be referred to as ”improvement conditions”. We prove
that there exist small initial conditions for the nonrenormalizable couplings at the
bare scale such that appropriately chosen improvement conditions can be met. The
main advantage of our approach as compared to [47] is that the case of vanishing
renormalizable couplings does not pose any problems and thus also nonrenormaliz-
able theories can be treated. Finally, it will be established that the improvement
conditions lead to an enhanced predictivity of the effective field theory at scales far
below the cutoff.

In chapter (5) we turn to quantum gravity. The standard covariant BRS quan-
tization procedure for Euclidean Einstein gravity is reviewed, as it can be found
for instance in [39] and [6]. Our dynamical variable is a perturbation of the metric
density

√
g gµν around flat space. Unlike the authors mentioned, we allow for non-

vanishing values of the cosmological constant3. A momentum cutoff regularization

1Thus, we do not restrict ourselves to couplings assigned to operators with even numbers of
fields.

2This means perturbation theory in the renormalized renormalizable and some bare nonrenor-
malizbale couplings.

3The problems that arise due to the cosmological term when gravity is treated as a flat-space
QFT are discussed, as well as possible resolutions.



5

for the generating functional of quantum gravity is introduced and the resulting
violation of the gauge invariance and hence the Slavnov-Taylor-identities (STI) is
discussed. We review a fine-tuning procedure that has been shown [18] to cure the
analogous problem occuring in the perturbative renormalization of Yang-Mills theory
via flow equations, and propose first implications of a similar procedure for quan-
tum gravity. Finally, the Polchinski renormalization group equation for Euclidean
quantum gravity is derived.

The concepts developed in chapters (3) and (4) are applied to Euclidean quantum
gravity in chapter (6). A bare action containing all field invariants that are permitted
by general coordinate invariance is introduced, and the relation to higher derivative
gravity is discussed. It is argued that in the effective field theory approach the
known unitarity problems [39] will not appear. As a first step of the analysis, we
disregard the violation of the Slavnov-Taylor identities and establish bounds for
vertex functions of the gravity effective potential in generalized perturbation theory.
It is shown that by introducing appropriate notations, we may proceed in close
analogy to the case of the scalar field theory considered in chapters (3) and (4). A
set of (for the time being) arbitrary renormalization and improvement conditions is
imposed. By inverting the renormalization group trajectory, it is argued that the
improvement conditions force the cutoff of effective quantum gravity to be the Planck
scale. Finally, we establish that the family of theories described by the arbitrary
renormalization and improvement conditions is predictive at scales far below the
Planck scale with finite accuracy.

We then proceed to the restoration of the STI. Introducing bare regularized BRS
variations, the violated Slavnov-Taylor identities (vSTI) are worked out. Bounds
for vertex functions carrying the nonlinear BRS variations as operator insertions
are established, and we note that a crucial difference to the Yang-Mills case lies in
the fact that the gravity BRS fields contain nonrenormalizable parts. By imposing
renormalization and improvement conditions for the BRS variations, it is proven that
the dependence of these vertex functions on the bare initial conditions is suppressed
at scales far below the Planck scale4. It turns out that the violation of the STI can
be described in terms of vertex functions carrying a space-time integrated operator
insertion having canonical dimension 5. It is therefore argued that the STI can
be restored to finite accuracy if one particular set of arbitrary renormalization and
improvement conditions for the couplings and BRS variations can be determined
such that the relevant and leading irrelevant parts of the vertex functions describing
the violation of the STI are driven small at scales far below the Planck scale. Here,
”small” means the order of accuracy to which the theory is predictive.

In the last section of chapter (6), we consider the no-cutoff limit Λ0 → ∞ of
quantum gravity from the viewpoint of the analysis with flow equations. The vertex
functions of the gravity effective potential are expanded solely in the renormalizable

4This is similar to the statements concerning the predictivity of the effective theory.
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couplings, and their boundedness and convergence is established in the limit Λ0 →
∞. Applying the same program to the vertex functions carrying the nonlinear BRS
variations as operator insertions, we observe that the nonrenormalizable parts of
the gravity BRS fields will go away in the no-cutoff limit if smallness of the bare
BRS couplings is imposed. It is shown that if the latter constraint is dropped,
convergence of the BRS vertex functions may still be proven. Proceeding with the
restoration of the STI, we argue that for zero renormalized cosmological constant
ΛK = 0 the theory will become free as Λ0 → ∞, and that the latter statement is
compatible with gauge invariance. It is speculated whether a nonzero cosmological
constant ΛK 6= 0 might lead to a nonvanishing value of the gravitational constant in
the no-cutoff limit, and it is pointed out that the gravitational coupling should then
become determined by the cosmological constant. Finally, we observe that a similar
effect might be obtained by coupling massive fields to gravity, leading to speculations
if the gravitational constant is given in terms of the cosmological constant and the
masses of the elementary particles as Λ0 →∞.

In chapter (7) we conclude with a discussion and an outlook. Some relations of
our results to the ”conventional” treatment [9] of quantum gravity as an effective
field theory as well to the nonperturbative analysis employing the renormalization
group flow equations [33] are given.



Chapter 2

Overview of the Method

In this chapter we will give an introduction into renormalization with flow equations
and into effective field theories from the viewpoint of the renormalization group.
Both topics will be investigated in full detail in perturbation theory in chapters (3)
and (4). This overview serves as some kind of map through the perturbative woods.

2.1 The Wilson/Polchinski Renormalization Group Equa-
tions

Let W (J) be the generating functional of an Euclidean Quantum Field Theory
(QFT) involving a scalar field φ and the action S(φ),

W (J) =
∫
DφeS(φ)+〈J,φ〉. (2.1)

J denotes an external source, and the scalar product 〈, 〉 refers to some position or
momentum space integration. The functional (2.1) contains all information of the
QFT. Suppose that we are only interested in the physics below some scale Λ. We
split up the fields according to their momentum degrees of freedom:

φ = φL + φH

φH : k2 > Λ2

φL : k2 < Λ2. (2.2)

In addition, we restrict the source term1 to momenta below Λ,

J = 0 for k2 > Λ2. (2.3)

1This is not an essential ingredient. See Appendix (A.4) for details.

7
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If we integrate out φH , we are left with a functional integral with an upper frequency
cutoff Λ and an effective action Se(φL):

W (J) =
∫
DφLDφHeS(φL+φH)+〈J,φL〉

=
∫
DφLeSe(φL)+〈J,φL〉 (2.4)

where
eSe(φL) :=

∫
DφHeS(φL+φH). (2.5)

Generally, Se will contain all possible interactions of the fields φL and their deriva-
tives as a compensation for the removal of the Fourier modes φH .

The change of Se while integrating out field modes is described by a renormaliza-
tion group differential equation (RGE). This is the Wilson equation for the effective
action:

−Λ
d

dΛ
Se(Λ) = F(Se(Λ)). (2.6)

In the following, we will consider Polchinski’s version [31] of the RGE (2.6). There-
fore we write2

Se(φ,Λ) = −1
2
〈φ,∆−1

Λ φ〉+ L(φ,Λ) (2.7)

where ∆Λ is the propagator of the QFT multiplied with some cutoff function K(k2/Λ2),
and L(φ,Λ) is a (not necessarily local) interaction term. The cutoff function is taken
to be

K(z) =


1 , 0 ≤ z ≤ 1

smooth , 1 < z < 4
0 , 4 ≤ z.

(2.8)

Hence, K(k2/Λ2) suppresses the propagation of field modes with momenta k2 > Λ.
If we demand invariance of W (J) under a change of the cutoff Λ as is implied by
eq. (2.4),

Λ
d

dΛ
W (J) != 0, (2.9)

it turns out that the effective potential L(φ,Λ) must satisfy Polchinski’s equation.
In coordinate space it reads

−Λ
d

dΛ
L =

1
2

∫
x

∫
y

(
Λ

d

dΛ
∆Λ

)(
δL

δφ(x)
δL

δφ(y)
+

δ2L

δφ(x)δφ(y)

)
.

(2.10)
2In chapter (3), we will employ a slightly refined version of (2.7), see eq. (3.1).
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Eq. (2.10) has a simple graphical interpretation: as modes are removed from the
propagator, compensating terms must be added in the effective potential L(φ,Λ).

Let Oi(x, φ) be local composite field operators and let DOi denote their canonical
dimensions3. We define initial conditions (a ”bare potential”) at some scale Λ0 which
from now on will be referred to as the UV cutoff of the QFT:

L0(φ,Λ0) =
∑

i

ρ0
i

∫
x
Oi(x, φ). (2.11)

The coefficients ρ0
i are called ”bare couplings”. They have canonical dimensions

Dρ0
i

= d−DOi (2.12)

where d is the number of space-time dimensions. Solving the Polchinski RGE (2.10)
employing the initial conditions (2.11) now yields a trajectory

[Λ,Λ0] → L(φ,Λ,Λ0, ρ
0
i ) (2.13)

which, in turn, leads to a generating functional depending on the initial conditions4

at Λ0:

W (J,Λ0, ρ
0
i ) =

∫
Dφe−

1
2
〈φ,∆−1

Λ φ〉+L(φ,Λ,Λ0,ρ0
i )+〈J,φ〉. (2.14)

It is always possible to perform a (position-space) derivative expansion of the effec-
tive potential L(φ,Λ) into local composite field operators and a nonlocal remainder
term R(s),

L(φ,Λ) =
∑

Dρi≥−s

ρi(Λ)
∫

x
Oi(x, φ) + R(s)(φ). (2.15)

ρi(Λ) are running coupling constants with associated canonical dimensions Dρi =
d − DOi , and s ∈ N is some index. See Appedix (A.2) for more details on the
expansion (2.15).

In the following, we will often need dimensionless running coupling constants
which are defined by

λi(Λ) := Λ−Dρi ρi(Λ). (2.16)

Furthermore, it will turn out necessary to consider small deviations

δL(Λ) := L(Λ)− L(Λ) (2.17)

from a solution L(Λ) of the RGE (2.10). They obey a linearized Polchinski RGE:

−Λ
d

dΛ
δL =

1
2

∫
x

∫
y

(
Λ

d

dΛ
∆Λ

)(
2

δL

δφ(x)
δ

δφ(y)
+

δ2

δφ(x)δφ(y)

)
δL

:= M(δL). (2.18)
3See section (6.1.1) for the determination of the canonical dimension of a field.
4Sometimes we will just write sloppily W (J, Λ0) instead of W (J, Λ0, ρ

0
i ).
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2.2 Renormalization via Flow Equations

Let us begin by recalling what renormalizability of a Quantum Field Theory means.
Therefore, we have to distinguish between renormalizable (or relevant5) couplings
ρa and nonrenormalizable (or irrelevant) couplings ρn by their associated canonical
dimensions Dρi :

ρa : Dρa ≥ 0
ρn : Dρn < 0. (2.19)

The significance of this distinction will become clear throughout this section6. Hav-
ing employed an UV momentum cutoff regularization as proposed in the last section,
the renormalizability of a QFT can be summarized as follows.

Renormalizability: While taking the UV cutoff Λ0 to infinity holding the renor-
malizable couplings fixed at some renormalization scale ΛR < Λ0, all other quantities
of the theory must converge to limits as inverse powers of the UV cutoff.

Note that this in particular means that the running nonrenormalizable couplings
become determined by the renormalizable ones in the no-cutoff limit. We will come
back to this important point in more detail. If the field and symmetry content of
a theory is such that it does not permit any renormalizable interactions, that is no
couplings except for kinetic and mass terms, it is called nonrenormalizable [45]. As
we will discuss at the end of section (2.3), the running nonrenormalizable couplings
then vanish in the no-cutoff limit.

In the following, we will go through the essential steps of the renormalization
programme for the scalar field theory introduced in the last section employing the
method of flow equations proposed by Polchinski [31]. We begin by choosing the
initial conditions (2.11), i.e. the bare couplings ρ0

i , to lay on an initial surface in the
space of couplings whose coordinates are the bare renormalizable couplings:

ρ0
n = ρ0

n(ρ0
a). (2.20)

Hence, the dimension of the initial surface amounts to the number of renormalizable
couplings. A particular simple, but not necessary choice for the surface (2.20) would
be to take ρ0

n = 0.
The solution of eq. (2.10) now becomes

L = L(φ,Λ,Λ0, ρ
0
a). (2.21)

5We do not distinguish between marginal and relevant couplings.
6The meaning of relevant, marginal and irrelevant directions in the space of actions near a fixed

point is explained in Appendix (A.3)



2.2. RENORMALIZATION VIA FLOW EQUATIONS 11

As mentioned above, renormalization requires to fix the renormalizable couplings
ρa at some renormalization scale ΛR. This is done by specifying renormalization
conditions for them:

ρa(ΛR,Λ0, ρ
0
b) = ρR

a . (2.22)

The renormalization conditions imply that

Λ0
d

dΛ0
ρa(ΛR,Λ0, ρ

0
b) = Λ0

(
∂ρa

∂Λ0
+

∂ρa

∂ρ0
b

∂ρ0
b

∂Λ0

)
= 0. (2.23)

This leads to an implicit definition of the bare ”coordinates” ρ0
a as functions of the

renormalizable couplings, the UV cutoff and the renormalization scale:

ρ0
a = ρ0

a(ΛR,Λ0, ρ
R
a ). (2.24)

Eq. (2.24) means that we do not have to know about the initial values ρ0
a at the

bare scale Λ0 in order to solve the Polchinski RGE (2.10), but instead may use
the renormalization conditions ρR

a at some arbitrary renormalization scale ΛR as an
input7. This is a good thing, because typically the bare scale is not accessible to
any measurements.

If ∂ρa/∂ρ0
b is invertible, eq. (2.23) yields

∂ρ0
b

∂Λ0
= −

(
∂ρa

∂ρ0
b

)−1 ∂ρa

∂Λ0
. (2.25)

Therefore, at Λ = ΛR the quantity

V (Λ) := Λ0

(
∂L

∂Λ0
− ∂L

∂ρ0
b

(
∂ρa

∂ρ0
b

)−1 ∂ρa

∂Λ0

)
(2.26)

is the total derivative of L(ΛR) with respect to Λ0 holding the ρa(ΛR) fixed:

V (ΛR) = Λ0
d

dΛ0
L

∣∣∣∣
ρa(ΛR)=fixed

. (2.27)

Note that the last term on the RHS of (2.26) can be interpreted such that the part
of the original Λ0-dependence of L which is due to the renormalizable couplings is
subtracted of. Thus V (ΛR) points towards the irrelevant directions in the space of
couplings. This becomes even more obvious if we think of L as given by a derivative

7Together with the definition of the initial surface (2.20). However, it will turn out that within
certain limits, its exact form has no influence on the (renormalized) theory in the limit Λ0 →∞.
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expansion (2.15) with s = ∞. Then V (Λ) can be expressed in terms of running
couplings ρi(Λ):

Vi(Λ) = Λ0

(
∂ρi

∂Λ0
− ∂ρi

∂ρ0
b

(
∂ρa

∂ρ0
b

)−1 ∂ρa

∂Λ0

)
. (2.28)

Clearly, we have Va(Λ) = 0, which in turn means that all relevant components of
(2.26) vanish.

As is explained in Appendix (A.3), the nonrenormalizable directions in the space
of couplings correspond to negative eigenvalues of the linearized RG transformation
in the zero-coupling limit. Hence, deviations in these directions get damped away
in the infrared as powers of Λ/Λ0. Since there is nothing discontiuous about the
RG transformation as the couplings are changed, the latter will still be true for
sufficiently small couplings8. Thus, we expect that the quantity V (ΛR) should be
driven small as powers of ΛR/Λ0 for small enough couplings.

To prove this, we have to find a RGE for V (Λ). Since Λ0
∂

∂Λ0
L and ∂

∂ρ0
a
L both

satisfy the linearized Polchinski RGE (2.18), we obtain

−Λ
d

dΛ
V = M(V )− ∂L

∂ρ0
b

(
∂ρa

∂ρ0
b

)−1

Ma(V )

:= N(V ). (2.29)

In the next chapter, we will investigate in detail an equation similar to (2.29) in
perturbation theory. In order to get an idea of the results that can be expected of
such an analysis, we may approximate the operator N by the canonical dimension
Dρl

of the least irrelevant coupling ρl of the QFT:

N(V ) ≈ Dρl
V. (2.30)

This is justified for sufficiently small couplings by the reasoning above. By virtue of
(2.30), we may now easily integrate eq. (2.29). As integration limits we choose ΛR

and Λ0 and arrive at

V (ΛR) ≈ V (Λ0)
(

ΛR

Λ0

)−Dρl

. (2.31)

For some proper definition of a norm || ||, the local composite operators of the
effective potential (2.15) can be estimated as ||

∫
xOi(x, φ)|| ∼ Λ−Dρi . We assume

that
||V (Λ0)|| ≤ 1 (2.32)

corresponding to sufficiently small initial values of the nonrenormalizable couplings9:

ρ0
n ≤ ΛDρn

0 , Dρn < 0. (2.33)
8That is in the vicinity of the Gaussian fixpoint.
9Remember that only Vn(Λ) 6= 0.
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Note that in terms of the dimensionless couplings defined in eq. (2.16), eq. (2.33)
means λn(Λ0) ≤ 1. With eq. (2.27) we thus may write

|| Λ0
d

dΛ0
L

∣∣∣∣
ρa=fixed

|| ≤
(

ΛR

Λ0

)−Dρl

(2.34)

which again can be integrated with respect to Λ0. The result is

||L(ΛR,Λ′0)− L(ΛR,Λ′′0)|| ≤
(

ΛR

Λ′0

)−Dρl

−
(

ΛR

Λ′′0

)−Dρl

. (2.35)

From Cauchy’s criterion now follows the existence of a no-cutoff-limit limit10 Lcont(ΛR) =
L(ΛR,∞) which implies renormalizability as we have defined it at the beginning of
this section. For having fixed the renormalizable couplings via the renormalization
conditions (2.22), all other quantities of the theory (contained in L) converge to
limits as inverse powers of the UV cutoff Λ0. This result can also be expressed on
the level of the effective action:

||Se(ΛR,Λ0, ρ
0
a(ΛR,Λ0, ρ

R
a ))− Scont

e (ΛR, ρR
a )|| ≤

(
ΛR

Λ0

)−Dρl

(2.36)

where Scont
e (ΛR, ρR

a ) := limΛ0→∞ Se(ΛR,Λ0, ρ
0
a(ΛR,Λ0, ρ

R
a )). Note that once the

effective action is known, we may calculate the generating functional W (J) of the
QFT via (2.4) without needing to worry about divergences, because Scont

e (ΛR, ρR
a )

has an effective cutoff ΛR.
We would like to stress that it is not being said that the running nonrenormaliz-

able couplings ρn(Λ,Λ0) go to zero when Λ0 →∞, but that their values ρcont
n (Λ) :=

limΛ0→∞ ρn(Λ,Λ0) are determined by the renormalizable couplings ρa(Λ) in this
limit. This can be understood intuitively by noting that while integrating out field
modes, the renormalizable couplings generate new contributions to the nonrenor-
malizable ones.

Furthermore, it is crucial that the initial values of the nonrenormalizable cou-
plings are small in the sense of eq. (2.33). Keeping ρ0

n of inverse powers of some
smaller scale ΛD < Λ0 would destroy the convergence of Se to its no-cutoff limit
Scont

e since V (Λ0) would be blown up .
The results stated above, in particular the no-cutoff limits Lcont and Scont

e , are
independent of the exact choice of the initial surface in eq. (2.20) as long as the
initial values of the nonrenormalizable couplings are taken to be sufficiently small.
This can be seen as follows. Consider a given initial surface ρ0

n = ρ0
n(ρ0

a). An easy
way to change its ”shape” is employing a parametrization

ρ0
n → ρ̃0

n := tρ0
n, t ∈ [0, 1]. (2.37)

10We adopt the notation Lcont from [47].
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The case t = 0 corresponds to ρ0
n = 0, whereas t = 1 yields again the original

surface ρ0
n(ρ0

a). Moreover, we also allow for the ”coordinates” ρ0
a, i.e. the bare

renormalizable couplings, to depend on the parameter t:

ρ0
a = ρ0

a(t). (2.38)

The total dependence of the potential L on t, Λ and Λ0 now reads

L = L
(
Λ,Λ0, ρ

0
a(t), ρ̃

0
n(t, ρ0

a(t))
)

≡ L
(
Λ,Λ0, ρ

0
a(t), t

)
. (2.39)

In analogy to the definition of V (Λ) we define the quantity

W (Λ) :=
∂L

∂t
− ∂L

∂ρ0
b

(
∂ρa

∂ρ0
b

)−1 ∂ρa

∂t
. (2.40)

At Λ = ΛR, W is the total derivative of L with respect to the parameter t holding
the renormalizable couplings ρa(ΛR) fixed:

W (ΛR) =
d

dt
L

∣∣∣∣
ρa(ΛR)=fixed

. (2.41)

Thus, W (ΛR) describes the impact of a change of the shape of the initial surface à
la (2.37) on L while at the same time the coordinates ρ0

a are adjusted11 such that
their renormalized values ρR

a remain fixed at the renormalization scale ΛR.
Since W (Λ) has been defined in analogy to V (Λ), it obeys the RGE (2.29):

−Λ
d

dΛ
W = N(W ). (2.42)

We may proceed as in the analysis of V (Λ) and arrive at an equation corresponding
to eq. (2.31):

W (ΛR) ≈ W (Λ0)
(

ΛR

Λ0

)−Dρl

(2.43)

where Dρl
still denotes the canonical dimension of the least irrelevant coupling of

the QFT. As an initial condition for W at the UV cutoff Λ0, we again assume that

||W (Λ0)|| ≤ 1. (2.44)

This is justified for small initial values of the nonrenormalizable couplings à la eq.
(2.33). With eq. (2.41) we arrive at

|| d

dt
L

∣∣∣∣
ρa(ΛR)=fixed

|| ≤
(

ΛR

Λ0

)−Dρl

. (2.45)

11This means that we move to another point (ρ0
a(t), ρ̃0

n(t, ρ0
a(t))) on the initial surface.
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Integrating over t with integration limits 0 and 1 yields the result

||L(ΛR,Λ0, ρ
0
a(ΛR,Λ0, ρ

R
a , 1), 1)− L(ΛR,Λ0, ρ

0
a(ΛR,Λ0, ρ

R
a , 0), 0)|| ≤

(
ΛR

Λ0

)−Dρl

.

(2.46)

Since eq. (2.46) is valid for any initial surface ρ0
n(ρ0

a) = ρ̃0
n(1, ρ0

a(1)) as long as it
satisfies eq. (2.33), we conclude with the triangle inequality that for two different
initial surfaces ρ0,A

n (ρ0,A
a ) and ρ0,B

n (ρ0,B
a ) which are in accordance with eq. (2.33)

||L(ΛR,Λ0, ρ
0,A
a (ΛR,Λ0, ρ

R
a ))− L(ΛR,Λ0, ρ

0,B
a (ΛR,Λ0, ρ

R
a ))|| ≤

(
ΛR

Λ0

)−Dρl

.

(2.47)

Eq. (2.47) shows that the no-cutoff limit Lcont is independent of the choice of the
initial surface as long as the initial values for the nonrenormalizable couplings are
small in the sense of eq. (2.33).

Note that for finite Λ0, we can also interpret eq. (2.47) in the following way. At
the scale ΛR, the ignorance about the exact values of the bare couplings ρ0

n amounts
to an indetermination of the potential L(ΛR) of the order of (ΛR/Λ0)

−Dρl . This
”effective field theory” interpretation will become important in the next section.

2.3 Effective Field Theories from the Viewpoint of the
Renormalization Group

In addition to the renormalizable couplings ρa, one could think of fixing one or
more of the nonrenormalizable couplings ρn at the renormalization scale ΛR. This
defines additional renormalization conditions which we will refer to12 as improvement
conditions. We will give the motivations for pursuing such a strategy shortly. Before,
let us note that the nonrenormalizable couplings cannot be set to arbitrary values
since they are already determined by the ρa in the limit Λ0 →∞:

lim
Λ0→∞

ρn(ΛR,Λ0, ρ
0
a(ΛR,Λ0, ρ

R
a )) = ρcont

n (ΛR, ρR
a ). (2.48)

This has been shown in the last section, and in fact it is the reason why the ρn are
called nonrenormalizable. To be more precise, for small initial values ρ0

n(ρ0
a) in the

sense of eq. (2.33),
ρ0

n ≤ ΛDρn
0 , Dρn < 0,

a running dimensionless nonrenormalizable coupling λn satisfies at Λ = ΛR

||λn(ΛR,Λ0, ρ
0
a(ΛR,Λ0, ρ

R
a ))− λcont

n (ΛR, ρR
a )|| ≤

(
ΛR

Λ0

)−Dρl

(2.49)

12Following [47].
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where λcont
n (ΛR, ρR

a ) = limΛ0→∞ λn(ΛR,Λ0, ρ
0
a(ΛR,Λ0, ρ

R
a )) and Dρl

is again the
canonical dimension of the least irrelevant coupling of the QFT. Eq. (2.49) follows
from eqns. (2.35), (2.36) and a derivative expansion (2.15). It seems reasonable and
will be proven in perturbation theory in chapter (4) that the inversion is also true:

Let λNR
n be some real numbers which satisfy

||λNR
n − λcont

n (ΛR, ρR
a )|| ≤

(
ΛR

Λ0

)−Dρl

. (2.50)

Then there exist initial values ρ0
n(ρ0

a) which are small à la eq. (2.33) such that the
improvement conditions

λn(ΛR,Λ0, ρ
0
a(ΛR,Λ0, ρ

R
a )) = λNR

n (2.51)

can be met.
By fixing some of the couplings ρn to values ρNR

n at the renormalization scale
ΛR, the following two different aims may be pursued.

• The rate of convergence of the effective action Se(Λ,Λ0) to its no-cutoff limit
Scont

e (Λ) as Λ0 →∞ can be improved by keeping one or more of the nonrenor-
malizable couplings ρn(ΛR,Λ0) fixed at their ”continuum values” ρcont

n (ΛR).
This has been shown by C. Wieczerkowski [47].

• One or more of the nonrenormalizable couplings ρn can be fixed at the renor-
malization scale ΛR to values ρNR

n that differ from the values ρcont
n (ΛR) they

would take in the limit Λ0 → ∞ if no improvement conditions were specified
for them13:

ρNR
n 6= ρcont

n (ΛR). (2.52)

A possible motivation for this may be experimental input, since in some QFTs
it might turn out that the values of some nonrenormalizable couplings ρn(ΛR)
measured by experiments do not coincide with their respective ρcont

n (ΛR). Re-
member that the latter can in principle be calculated14 if the ρa(ΛR) are known.
In fact, this scenario seems to apply to the case of quantum Einstein gravity -
see chapter (6). As follows from eq. (2.49), we then cannot send the UV cutoff
Λ0 to infinity if the initial values ρ0

n for all nonrenormalizable couplings are
supposed to be small. We are therefore dealing with an effective field theory
which, unlike a fundamental theory, cannot be valid up to arbitrary scales.
However, we will show that even if we are forced to keep the bare scale Λ0

finite, we are still left with a theory that is predictive at scales Λ << Λ0 with
finite accuracy.

13The notation ρcont
n (ΛR) always refers to the case without improvement conditions for the

ρn(ΛR).
14In perturbation theory in the renormalizable couplings ρa(ΛR).
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We will now briefly review the first point, and then outline the strategy for the
second one.

Let again Dρl
denote the canonical dimension of the least irrelevant coupling ρl of

the QFT, and let s be some integer number which is henceforth called ”improvement
index”. Our aim is to introduce improvement conditions for those nonrenormalizable
couplings ρn that have canonical dimension 0 > Dρn > Dρl

− s, and to study
the impact of the improvement conditions on the convergence properties (2.36) of
the effective action. To distinguish the couplings for which renormalization and
improvement conditions have been specified from the others, we refine our notation
to the effect that couplings with canonical dimensions Dρi > (Dρl

− s) are denoted
by ρã, and those with Dρi ≤ (Dρl

− s) by ρñ. The initial surface in the space of
couplings is now taken to be

ρ0
ñ = ρ0

ñ(ρ0
ã). (2.53)

Its dimension amounts to the numer of renormalizable couplings plus the number of
nonrenormalizable couplings which have canonical dimensions 0 > Dρã > (Dρl

− s).
Consequently, the solution of the Polchinski RGE (2.10) becomes

L = L(φ,Λ,Λ0, ρ
0
ã). (2.54)

The renormalization and improvement conditions are defined as follows:

ρã(ΛR,Λ0, ρ
0
ã) =

{
ρR

ã , Dρã ≥ 0
ρcont

ã (ΛR, ρR
ã ), 0 > Dρã > (Dρl

− s).
(2.55)

In analogy to eq. (2.24), they lead to an implicit definition of the bare couplings

ρ0
ã = ρ0

ã(ΛR,Λ0, ρ
R
ã , ρcont

ã (ΛR, ρR
ã )). (2.56)

A repetition of the analysis in the last section using an extended version of the
quantity V (Λ) of eq.(2.26) ,

V (Λ) = Λ0

 ∂L

∂Λ0
− ∂L

∂ρ0
b̃

(
∂ρã

∂ρ0
b̃

)−1
∂ρã

∂Λ0

 , (2.57)

then yields s-improved convergence of the effective action:

||Se(ΛR,Λ0, ρ
0
ã(ΛR,Λ0, ρ

R
ã , ρcont

ã (ΛR, ρR
ã )))− Scont

e (ΛR, ρR
ã )|| ∼

(
ΛR

Λ0

)−(Dρl
−s)

.

(2.58)
We will now focus on the case where nonrenormalizable couplings are fixed to values
that differ from the ones they would take in the limit Λ0 → ∞ if no improvement
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conditions were specified for them, ρNR
n 6= ρcont

n (ΛR). We define renormalization and
improvement conditions

ρã(ΛR,Λ0, ρ
0
ã) =

{
ρR

ã , Dρã ≥ 0
ρNR

ã , 0 > Dρã > (Dρl
− s)

.

The ρNR
ã are taken such that their dimensionless counterparts λNR

ã (Λ) := Λ−Dρã ρNR
ã

satisfy

||λNR
ã (ΛR)− λcont

ã (ΛR, ρR
ã )|| ≤

(
ΛR

ΛD

)−Dρl

(2.59)

where ΛD > ΛR is some scale. We demand that the initial values ρ0
ã, 0 > Dρã >

(Dρl
−s), remain small15 as defined in eq. (2.33). Thus, the UV cutoff of the theory

is now restricted to

Λ0 ≤ ΛD (2.60)

as follows from the discussion at the beginning of this section, leading to eqns. (2.50)
and (2.51). This fact can also be interpreted in the way that a measurement of the
values of the nonrenormalizable couplings at the scale ΛR defines the UV cutoff scale
of the theory to be Λ0 = ΛD. In the following, we will employ this view.

At scales Λ << ΛD, the theory remains predictive to finite accuracy. This can be
seen as follows. As we have done in eq. (2.37), we use a parametrization to change
the shape of the initial surface (2.53):

ρ0
ñ → ρ̃0

ñ := tρ0
ñ, t ∈ [0, 1]. (2.61)

Allowing also the coordinates ρ0
ã to depend on the parameter t, the total t-dependence

of the potential L becomes, in analogy to eq. (2.39),

L = L
(
Λ,ΛD, ρ0

ã(t), t
)
. (2.62)

We extend the definition of the quantity W (Λ) of eq. (2.40) to

W (Λ) =
∂L

∂t
− ∂L

∂ρ0
b̃

(
∂ρã

∂ρ0
b̃

)−1
∂ρã

∂t
(2.63)

15One might ask the question whether abandoning the requirement of small initial values for the
nonrenormalizable couplings ρ0

ã, 0 > Dρã > (Dρl −s), while keeping it for the ρ0
ñ, ∆ñ ≤ (Dρl −s)

, would allow to fix nonrenormalizable couplings ρã(ΛR) at values ρNR
ã 6= ρcont

ã (ΛR), where the ρNR
ã

satisfy eq. (2.59), even for an UV cutoff Λ0 ≥ ΛD. At least if one works in perturbation theory in
the nonrenormalizable couplings the answer is that this is not possible because then, counterterms
for all couplings in order to cancel the arising divergences are needed. The counterterms are the
initial values ρ0

ã and ρ0
ñ. Thus, if any divergence occurs that needs large ρ0

ã to be cancelled, there
will be others that require large ρ0

ñ.
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and repeat the corresponding steps that follow in section (2.2). In doing so, we
employ the assumption that the initial values ρ0

ñ are small. The result is

||L(ΛR,ΛD, ρ0
ã(ΛR,ΛD, ρR

ã , 1), 1)− L(ΛR,ΛD, ρ0
ã(ΛR,ΛD, ρR

ã , 0), 0)|| ≤
(

ΛR

ΛD

)−(Dρl
−s)

.

(2.64)

Again, we conclude that for two different sets of initial values ρ0,A
ñ (ρ0,A

ã ) and ρ0,B
ñ (ρ0,B

ã )
which are in accordance with eq. (2.33) we have

||L(ΛR,ΛD, ρ0,A
ã (ΛR,ΛD, ρR

ã ))− L(ΛR,ΛD, ρ0,B
ã (ΛR,ΛD, ρR

ã ))|| ≤
(

ΛR

ΛD

)−(Dρl
−s)

.

(2.65)

Eq. (2.65) shows that at the scale Λ = ΛR the ignorance about the exact values
of the bare couplings ρ0

ñ amounts to an indetermination of the potential L(ΛR) of
the order of (ΛR/ΛD)−(Dρl

−s). If we know about the potential L, we know about
the effective action Se which in turn allows us to determine the generating func-
tional W (J) of the QFT, see eq. (2.4). Hence, the knowledge of L(ΛR) to an
accuracy of (ΛR/ΛD)−(Dρl

−s) leads to a QFT that is predictive with an accuracy of
(ΛR/ΛD)−(Dρl

−s).
Comparing eq. (2.65) to eq. (2.47) where renormalization conditions only for

the renormalizable couplings have been specified, we furthermore see that the intro-
duction of the improvement conditions has led to an enhanced predictivity of the
effective field theory at scales Λ << Λ0.

Let us summarize the results of this section.

• The deviation of the values to which the nonrenormalizable couplings are fixed,
ρã(ΛR,Λ0, ρ

0
ã) = ρNR

ã , 0 > Dρã > (Dρl
− s), from the values ρcont

ã they would
take in the limit Λ0 → ∞ if no improvement conditions were specified for
them, defines an UV cutoff scale ΛD.

• Although we have to keep the UV cutoff Λ0 below the scale ΛD, for Λ0 = ΛD

the theory remains predictive to an accuracy of (ΛR/ΛD)(−(Dρl
−s)) at Λ = ΛR.

• As we fix more nonrenormalizable couplings at the renormalization scale, the
improvement index s increases and we achieve more predictivity.

This is the paradigm of effective field theories from the viewpoint of the renormal-
ization group. In particular, it may be applied to the case of a nonrenormalizable
theory which has been defined at the beginning of section (2.2) as a theory that
does not allow for any renormalizable couplings, except for kinetic and mass terms.
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The Fermi theory of weak interactions is a well-known example for such a theory,
as well as Einstein gravity without a cosmological constant- see chapter (6). In a
nonrenormalizable theory we have

ρcont
n (Λ) = 0 (2.66)

because there are no renormalizable interactions which generate new contributions
to the nonrenormalizable ones while integrating out field modes. Thus, the latter
die out according to their canonical dimensions in the limit Λ0 →∞. However, one
important point of this section was to show that ”a nonrenormalizable theory is just
as good as a renormalizable theory for computations, provided one is satisfied with
finite accuracy.”[25]



Chapter 3

Renormalization via Flow
Equations

The perturbative renormalization of scalar field theory with flow equations is re-
viewed. We proceed along the lines of G. Keller, C. Kopper, M. Salmhofer [17] who
presented an improved and considerably shortened version of Polchinski’s original
proof [31]. Compared to [17], our version contains the following generalizations. We
do not restrict ourselves to couplings assigned to operators with even numbers of
fields.1 This amounts to considering φ3 + φ4 theory instead of solely φ4. Moreover,
we allow for nonvanishing values of the nonrenormalizable couplings at the UV cutoff
scale from the very beginning and employ an alternative proof of the uniqueness of
the no-cutoff limit. The latter will turn out crucial for investigating the predictivity
of an effective field theory in the chapter (4). One can regard the present chapter
as a rigorous version of section (2.2).

3.1 Renormalization of scalar φ3 + φ4 field theory

3.1.1 RG inequalities for vertex functions

The central aim of this chapter will be to prove the boundedness and convergence of
solutions L(φ,Λ,Λ0) of the Polchinski equation (2.10) in the no-cutoff limit Λ0 →∞
while renormalization conditions for the renormalizable couplings are imposed at
some renormalization scale ΛR. This program will be carried out for a scalar field
theory in perturbation theory in the (renormalized) renormalizable couplings. As we
have pointed out in the last chapter, the potential L(Λ) corresponds to an effective
action Se(Λ) which in turn leads via eq. (2.14) to the determination of a generating
functional W (J) of a QFT. Remember that since Se(Λ) contains an effective cutoff

1We do not require the theory to be invariant under φ → −φ.

21
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Λ, we do not have to worry about possible divergences any more once finite bounds
for L(φ,Λ,Λ0) have been established for the limit Λ0 →∞.

In the following we will always work in momentum space. We begin by rewriting
the effective action (2.7):

Se(φ,Λ) =
∫

d4k

(2π)4

(
−1

2
φ(k)(k2 + B)K−1(k2/Λ2)φ(−k) + A

(2π)4

2
δ(k)φ(k)

)
+ L(φ,Λ).

(3.1)

K is the cutoff function defined in eq. (2.8). Note that in (3.1), we have included
terms linear and bilinear in the fields associated with couplings A and B into the
”free” part of the action. It will turn out that the definition of the effective potential
L following from (3.1) is more suitable for the upcoming proofs of boundedness and
convergence, as compared to the one associated with eq. (2.7) of chapter (2).

The redefinition of L leads to an additional term in the Polchinski renormal-
ization group equation, as compared to the original version (2.10). By requiring
invariance of the generating functional (2.14) under a change of the scale Λ we
obtain (in momentum space)

−Λ
d

dΛ
L =

1
2

∫
d4k(2π)4Λ

d

dΛ
∆Λ

(
δL

δφ(k)
δL

δφ(−k)
+

δ2L

δφ(k)δφ(−k)
+ Aδ(k)

δL

δφ(k)

)
(3.2)

where the regularized propagator is given by

∆Λ =
K(k2/Λ2)
k2 + B

. (3.3)

At this point, we will not prove the modified RGE (3.2), but instead refer the reader
to the proof of Theorem (7) where an analogous RGE for Euclidean quantum gravity
is established.

Furthermore we would like to point out that we do not require the renormaliza-
tion constant B of the ”mass term” in (3.1) to be positive. This poses no problems
to the analysis of the effective potential L(φ,Λ) as long as we keep Λ2 > |B|, as
can be seen from the RGE (3.2). Due to the properties (2.8) of the cutoff function,
Λ d

dΛ∆Λ has compact support Λ < k < 4Λ. Thus, only momenta k > Λ contribute
to the integral in (3.2) and therefore to a solution L(φ,Λ,Λ0) of the RGE2.

We will now focus on the analysis of the effective potential L(φ,Λ). Therefore,
we expand L(φ,Λ) in powers of the fields φ:

L(φ,Λ) =
∞∑

n=1

1
n!

∫
d4k1...d

4kn

(2π)4n−4
Ln(k1, ..., kn,Λ)δ4

(∑
i

ki

)
φ(k1)...φ(kn). (3.4)

2One can see Λ and Λ0 as an IR and UV momentum cutoffs for L(φ, Λ, Λ0) respectively.
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The expansion coefficients Ln(k1, ..., kn,Λ) are henceforth called vertex functions3.
As it is explained in Appedix (A.1), the (momentum-space) fields φ(k) have

canonical dimension Dφ(k) = −3. Thus from eq. (3.4) it follows that the canonical
dimension of the vertex functions is given by

DLn = 4− n. (3.5)

The Polchinski RGE (3.2) can be reformulated in terms of the Ln(k1, ..., kn,Λ) and
then be generalized to a RGE for momentum derivatives of vertex functions. The
resulting equation is

d

dΛ
∂pLn(k1, ...kn,Λ) = −

∑
p1,p2,p3:

∑
pi=p

n∑
l=1

(
∂p1

d

dΛ
∆Λ(K, Λ) ∂p2Ll(k1, ..., kl−1,K,Λ)

∂p3Ln+2−l(kl, ..., kn,−K, Λ)
)

+
1
2

(
n

l − 1

)
permutations

−1
2

∫
d4k

(2π)4
∂pLn+2(k1, ..., kn, k,−k, Λ)

d

dΛ
∆Λ(k, Λ)

−1
2
A ∂pLn+1(k1, ..., kn, 0,Λ)

d

dΛ
∆Λ(0,Λ). (3.6)

Here, we have defined K :=
∑

ki and employed the notation

∂p := ∂µ1
i1,j1

...∂
µp

ip,jp
(3.7)

where

∂µ
i,j :=

∂

∂kµ
i

− ∂

∂kµ
j

(3.8)

takes care of the fact that Ln(k1, ..., kn,Λ) makes only sense for
∑

i ki = 0.4.
Using Taylor’s theorem we expand the vertex functions Ln(k1, ..., kn,Λ) around

ki = 0. The expansions up to O(k0) and to O(k2) read5

Ln(k1, ..., kn,Λ) = Ln(0, ..., 0,Λ) +
n−1∑

i1,i2=1

kµ1
i1

kµ2
i2

∫ 1

0
dτ(1− τ)∂µ1

i1,n∂µ2
i2,nLn(k̃1, ..., k̃n,Λ)|k̃i=τki

(3.9)

3They are not identical to the conventional vertex functions of the 1 particle irreducible (PI)
effective action but instead are related to the connected amputated Green’s functions. See Appendix
(A.4) for details.

4Write Ln(k1, ...kn−1, Kn, Λ) with Kn := −
∑n−1

i=1 ki. Then d
dki

Ln = ∂
∂ki

Ln + ∂
∂Kn

Ln
∂Kn
∂ki

=
∂

∂ki
Ln − ∂

∂Kn
Ln.

5Terms with odd powers of momenta vanish because of the invariance of Ln under the orthogonal
group, see Appendix (A.2) .
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Ln(k1, ..., kn,Λ) = Ln(0, ..., 0,Λ) +
1
2

n−1∑
i1,i2=1

kµ1
i1

kµ2
i2

∂µ1
i1,n∂µ2

i2,nLn(k̃1, ..., k̃n,Λ)|k̃i=0

+
1
3!

n−1∑
i1,...,i4=1

kµ1
i1

...kµ4
i4

∫ 1

0
dτ(1− τ)3∂µ1

i1,n...∂µ4
i4,nLn(k̃1, ..., k̃n,Λ)|k̃i=τki

.

(3.10)

The last terms in (3.9), (3.10) are remainder terms, respectively. The expansion
coefficients in (3.10) give rise to the definition of running coupling constants6 ρa(Λ):

ρ1(Λ) := L1(0,Λ) (3.11)
ρ2(Λ) := L2(0, 0,Λ) (3.12)

ρ3(Λ) δµν := ∂µ
1,2∂

ν
1,2L2(k1, k2,Λ)|k1=k2=0 (3.13)

ρ4(Λ) := L3(0, 0, 0,Λ) (3.14)
ρ5(Λ) := L4(0, 0, 0, 0,Λ). (3.15)

These are equivalent to the coupling constants introduced in the position-space
derivative expansion (2.15), as is shown in Appendix (A.2). The corresponding
dimensionless couplings λa(Λ) are defined as in eq. (2.16). All couplings ρa are
renormalizable, i.e. their mass dimensions Dρa satisfy

Dρa ≥ 0 (3.16)

as follows from eq. (3.5). In an analogous way we may define nonrenormalizable
coupling constants ρn with Dρn < 0. This will be done in chapter (4). We now
impose renormalization conditions at some renormalization scale ΛR < Λ:

ρ1(ΛR) = 0 (3.17)
ρ2(ΛR) = 0 (3.18)
ρ3(ΛR) = 0 (3.19)
ρ4(ΛR) = ρR

4 (3.20)
ρ5(ΛR) = ρR

5 . (3.21)

Note that the ρi(ΛR), i = 1...3, are associated with the constants A and B appearing
in the ”free” part of the effective action (3.1) and the field strength renormalization.
For the dimensionless couplings, we introduce the notation7

λR
a (Λ) := Λ−Dρa ρR

a . (3.22)

6See Appendix (A.2) for details on the definition of ρ3(Λ).
7If we write λR

a , we always mean λR
a (Λ), and not λR

a (ΛR).
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The vertex functions Ln(k1, ..., kn,Λ) are being evaluated in perturbation theory in
the renormalized renormalizable couplings ρR

4 and ρR
5 :

Ln(k1, ..., kn,Λ) =
∞∑

r1,r2=0

(ρR
4 )r1(ρR

5 )r2L(r1,r2)
n (k1, ..., kn,Λ). (3.23)

Note that since the expansion parameter ρR
4 is dimensionful, the canonical dimen-

sions of the expansion coefficients L
(r1,r2)
n become dependent of the order in pertur-

bation theory in ρR
4 .

We will work mostly with dimensionless vertex functions. These follow from eq.
(3.5) as8

An(k1, ..., kn,Λ) := Λn−4Ln(k1, ..., kn,Λ). (3.24)

Accordingly, we may expand

An(k1, ..., kn,Λ) =
∞∑

r1,r2=0

(λR
4 )r1(λR

5 )r2A(r1,r2)
n (k1, ..., kn,Λ) (3.25)

where
A(r1,r2)

n (k1, ..., kn,Λ) := Λn+r1−4L(r1,r2)
n (k1, ..., kn,Λ). (3.26)

The perturbative expansion (3.25) makes only sense if the dimensionless couplings
are small. Therefore we impose as an additional constraint to the renormalization
conditions (3.17)-(3.21)

λR
a (Λ) ≤ 1. (3.27)

Note that because of the definition (3.22), this in particular means ρR
4 ≤ ΛR for

Λ ≥ ΛR and thus

λR
4 (Λ) ≤ ΛR

Λ
. (3.28)

Moreover, we remember that we have included terms linear and bilinear in the
fields asscociated with ”couplings” A and B into the ”free” part of the action in
eq. (3.1). From the RGE (3.6) then follows that for increasing order (r1, r2) in
perturbation theory in ρR

4 , ρR
5 of the vertex functions A

(r1,r2)
n (Λ) there will be graphs

involving increasing powers of A’s. Thus, for Λ−3A ≥ 1 the vertex functions will
become arbitrarily large at high orders (r1, r2). In order to avoid such behaviour and
remembering the discussion at the beginning of this section concerning the values
of B, we impose as conditions for B, A

|Λ−2B| ≤ 1 (3.29)
|Λ−3A| ≤ 1. (3.30)

8The dimensionless couplings λa(Λ) defined in (2.16) can also be introduced by replacing Ln in
the definitions (3.11)-(3.15) by An and by multiplying the result with powers of Λ that correspond
to the number of derivatives present.
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To 0th order in perturbation theory in λR
4 , λR

5 the vertex functions vanish:

A(0,0)
n (k1, ..., kn,Λ) = 0. (3.31)

Finally, we define an overall order in perturbation theory via

r := r1 + r2. (3.32)

Due to the compact support of dK/dΛ it is easy to see that there are constants C
and Dn such that ∫

d4k

(2π)4
‖Λ3 d

dΛ
∆Λ‖ < CΛ4 (3.33)

‖ ∂n

∂kn
Λ3 d

dΛ
∆Λ‖ < DnΛ−n (3.34)

where the notation ‖ ‖ is defined by

‖f(k1, ..., kn)‖ = max
k2

i≤4Λ
|f(k1, ..., kn,Λ)| (3.35)

for some function f of one or more momenta. We now rewrite the RGE (3.6) in
terms of the dimensionless vertex functions (3.24) and express the resulting equation
in perturbation theory in λR

4 and λR
5 . Applying the bounds (3.33) and (3.34) as well

as the condition (3.30) for the renormalization constant A, we arrive at the key RG
inequality

‖ d

dΛ
Λ4−n−r1∂pA(r1,r2)

n (Λ)‖ ≤ cn,p Λ3−n−r1

(
‖∂pA

(r1,r2)
n+2 (Λ)‖+ ‖∂pA

(r1,r2)
n+1 (Λ)‖

+
∑
...

Λ−p1‖∂p2A
(s1,s2)
l (Λ)‖‖∂p3A

(r1−s1,r2−s2)
n+2−l (Λ)‖

)
(3.36)

where we introduced the abbreviation

∑
...

:=
∑

p1,p2,p3:
∑

pi=p

n∑
l=1

r1,r2∑
s1,s2=0

1≤s≤r−1

. (3.37)

The inequality (3.36) is the starting point to deduce four more inequalities which
turn out to be crucial to show boundedness and convergence of the vertex functions
in the limit Λ0 →∞:
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1. We integrate eq. (3.36) down from the scale Λ0 to Λ. Using the triangle
inequality, we get

‖Λ4−n−r1∂pA(r1,r2)
n (Λ)‖ ≤ ‖Λ4−n−r1

0 ∂pA(r1,r2)
n (Λ0)‖

+ cn,p

∫ Λ0

Λ
ds s3−n−r1

(
‖∂pA

(r1,r2)
n+2 (s)‖+ ‖∂pA

(r1,r2)
n+1 (s)‖

+
∑
...

s−p1‖∂p2A
(s1,s2)
l (s)‖‖∂p3A

(r1−s1,r2−s2)
n+2−l (s)‖

)
.

(3.38)

Eq. (3.38) is now being differentiated with respect to Λ0. With regard to this
we note that

g(x, x0) :=
∫ x0

x
h(s, x0)ds =

∫ ∞

x
h(s, x0)Θ(x0 − s)ds (3.39)

for any function h(s, x0) and the step function Θ(x0 − s). Therefore

d

dx0
g(x, x0) =

∫ ∞

x

(
d

dx0
h(s, x0)

)
Θ(x0 − s)ds +

∫ ∞

x
h(s, x0)δ(x0 − s)ds

= h(x0, x0) +
∫ x0

x

(
d

dx0
h(s, x0)

)
ds. (3.40)

Consequently, we arrive at

‖ d

dΛ0
Λ4−n−r1∂pA(r1,r2)

n (Λ)‖ ≤ ‖ d

dΛ0
Λ4−n−r1

0 ∂pA(r1,r2)
n (Λ0)‖

+cn,p Λ3−n−r1
0

(
‖∂pA

(r1,r2)
n+2 (Λ0)‖+ ‖∂pA

(r1,r2)
n+1 (Λ0)‖

+
∑
...

Λ−p1
0 ‖∂p2A

(s1,s2)
l (Λ0)‖‖∂p3A

(r1−s1,r2−s2)
n+2−l (Λ0)‖

)

+cn,p

∫ Λ0

Λ
ds s3−n−r1

(
‖ d

dΛ0
∂pA

(r1,r2)
n+2 (s)‖

+‖ d

dΛ0
∂pA

(r1,r2)
n+1 (s)‖

+2
∑
...

s−p1‖ d

dΛ0
∂p2A

(s1,s2)
l (s)‖‖∂p3A

(r1−s1,r2−s2)
n+2−l (s)‖

)
.

(3.41)
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2. We integrate eq. (3.36) up from the scale ΛR to Λ and make use of the triangle
inequality:

‖Λ4−n−r1∂pA(r1,r2)
n (Λ)‖ ≤ ‖Λ4−n−r1

R ∂pA(r1,r2)
n (ΛR)‖

+ cn,p

∫ Λ

ΛR

ds s3−n−r1

(
‖∂pA

(r1,r2)
n+2 (s)‖+ ‖∂pA

(r1,r2)
n+1 (s)‖

+
∑
...

s−p1‖∂p2A
(s1,s2)
l (s)‖‖∂p3A

(r1−s1,r2−s2)
n+2−l (s)‖

)
(3.42)

Differentiating with respect to Λ0 now yields

‖ d

dΛ0
Λ4−n−r1∂pA(r1,r2)

n (Λ)‖ ≤ ‖ d

dΛ0
Λ4−n−r1

R ∂pA(r1,r2)
n (ΛR)‖

+cn,p

∫ Λ

ΛR

ds s3−n−r1

(
‖ d

dΛ0
∂pA

(r1,r2)
n+2 (s)‖

+‖ d

dΛ0
∂pA

(r1,r2)
n+1 (s)‖

+2
∑
...

s−p1‖ d

dΛ0
∂p2A

(s1,s2)
l (s)‖‖∂p3A

(r1−s1,r2−s2)
n+2−l (s)‖

)
.

(3.43)

3.1.2 Boundedness and convergence of the vertex functions

We begin by proving in perturbation theory in λR
4 and λR

5 the boundedness of the
norms ‖∂pA

(r1,r2)
n (Λ)‖ of the vertex functions as the UV cutoff Λ0 → ∞. Our

analysis is based on the work of Keller, Kopper and Salmhofer [17] who presented
improved bounds for the vertex functions as compared to the original version of
Polchinski [31]. We generalize their treatment to the case of φ3 + φ4 theory.

Theorem 1 (Boundedness I) Given the renormalization conditions (3.17)-(3.21)
and assuming initial conditions

||∂pA(r1,r2)
n (p1, ..., pn,Λ0)|| ≤ Λ−p

0

(
Λ0

ΛR

)r1

Pln

(
Λ0

ΛR

)
(3.44)

for n + p ≥ 5, to order r1, r2 in perturbation theory in λR
4 and λR

5

||∂pA(r1,r2)
n (p1, ..., pn,Λ)|| ≤ Λ−p

(
Λ
ΛR

)r1
(

Pln

(
Λ
ΛR

)
+

Λ
Λ0

Pln

(
Λ0

ΛR

))
(3.45)

where Pln(z) denotes some polynomial in ln(z) whose coefficients are taken to be
nonnegative and ΛR ≤ Λ ≤ Λ0.
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Proof 1 Since this proof will serve as a blueprint for the proofs of the upcoming
Theorems (2)-(6), it will be performed in full detail. The proof is done via induction
in both the overall order in perturbation theory, r = r1 + r2, and the number of
external legs, n, of the vertex functions A

(r1,r2)
n . This induction scheme is motivated

by the fact that the terms appearing in the key renormalization group inequality
(RGI) (3.36) satisfy

rLHS > rRHS ∨ rLHS = rRHS ∧ nLHS < nRHS . (3.46)

Furthermore we note that

A(r1,r2)
n (Λ) = 0 for n > 2r + 2 (3.47)

and remember eq.(3.31)

A(0,0)
n (Λ) = 0.

Thus, we are led to the following induction scheme:

• Induction start: (3.45) holds true for

{(r, n) : r = 0 ∧ n ∈ N} ∨ {(r, n) : r ≥ 1 ∧ n > 2r + 2} (3.48)

• Induction hypothesis: (3.45) holds true for

{(r, n) : r < r0 ∧ n ∈ N} ∨ {(r, n) : r = r0 ∧ n > n0} (3.49)

• Induction step: (3.45) holds true for

{(r, n) : r = r0 ∧ n = n0 ∀n0 ∈ N}. (3.50)

We will prove the induction step using the RGIs (3.38) and (3.42). To do so, we
will need the following

Lemma 1 Let P (n) denote some polynomial of degree n with positive coefficients,
and let a ≤ b, a, b ∈ R+ and m ∈ Z. Then

∫ b

a
dx P (n)(lnx)xm ≤


[
−xm+1P (n)(lnx)

]b
a

, m ≤ −2[
P (n+1)(lnx)

]b
a

, m = −1[
xm+1P (n)(lnx)

]b
a

, m ≥ 0 .

(3.51)
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Proof of Lemma 1 Using integration by parts one shows that

∫
dx (lnx)nxm =

{
(ln x)n

1+m xm+1 − n
1+m

∫
dx (lnx)n−1xm , m 6= −1

1
1+n(lnx)n+1. , m = −1 .

(3.52)

Thus Lemma (1) follows immediately for m = −1 and recursively for m ≤ −2. For
m ≥ 0 the recursion yields a polynomial in lnx that may have negative coefficients.
Let P̃ (n) denote some polynomial with coefficients of arbitrary sign, and P (n) the
corresponding polynomial with all coefficients made positive. Then

[
xm+1P̃ (n)(lnx)

]b
a
≤
[
xm+1P (n)(lnx)

]b
a

(3.53)

for a ≤ b, m ≥ −1. Thus Lemma (1) follows for m ≥ 0.

2

We now may proceed with the proof of Theorem (1) .

1. The case p + n ≥ 5:

We start with the RGI (3.38). On the RHS, we plug in eq. (3.44) as the initial
condition at Λ0 and eq. (3.45) as the induction hypothesis. The result is

‖Λ4−n−r1∂pA(r1,r2)
n (Λ)‖ ≤ Λ−r1

R Λ4−n−p
0 Pln

(
Λ0

ΛR

)
+Λ−r1

R

∫ Λ0

Λ
ds s3−n−p

(
Pln

(
s

ΛR

)
+

s

Λ0
Pln

(
Λ0

ΛR

))
︸ ︷︷ ︸

:=I1(Λ,Λ0)

.

(3.54)

With Lemma (1) it follows that

I1(Λ,Λ0) ≤ Λ−r1
R

[
−s4−n−pPln

(
s

ΛR

)
+

 Pln
(

Λ0
ΛR

)
Λ−1

0 ln(s) , p + n = 5

−Pln
(

Λ0
ΛR

)
Λ−1

0 s5−n−p , p + n ≥ 6

Λ0

Λ

.

(3.55)

Plugging this into (3.54) and multiplying the whole equation with Λn+r1−4

yields the bound (3.45) for n + p ≥ 5.
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2. The case n + p ≤ 4

We start with the RGI (3.42) and plug in eq. (3.45) as the induction hypothesis:

‖Λ4−n−r1∂pA(r1,r2)
n (Λ)‖ ≤ ‖Λ4−n−r1

R ∂pA(r1,r2)
n (ΛR)‖

+Λ−r1
R

∫ Λ

ΛR

ds s3−n−p

(
Pln

(
s

ΛR

)
+

s

Λ0
Pln

(
Λ0

ΛR

))
.

(3.56)

The renormalization conditions (3.17)-(3.21) serve as initial conditions at ΛR.
We begin with n = 4, p = 0 and vanishing external momenta ki = 0:

‖Λ−r1A
(r1,r2)
4 (0, ..., 0,Λ)‖ ≤ δr10δr21 + Λ−r1

R

∫ Λ

ΛR

ds s−1

(
Pln

(
s

ΛR

)
+

s

Λ0
Pln

(
Λ0

ΛR

))
︸ ︷︷ ︸

:=I2(Λ,Λ0)

.

(3.57)

With Lemma (1) it follows that

I2(Λ,Λ0) ≤ Λ−r1
R

[(
Pln

(
s

ΛR

)
+

s

Λ0
Pln

(
Λ0

ΛR

))]Λ

ΛR

. (3.58)

We thus arrive at the bound (3.45) for A
(r1,r2)
4 (0, ..., 0,Λ). Taylor’s theorem

(3.9) allows us to reconstruct A
(r1,r2)
4 (k1, ..., k4,Λ) where the remainder term

is already bounded since it corresponds to the case n + p ≥ 5.

We now proceed to n = 3, p = 0 and vanishing external momenta ki = 0:

‖Λ1−r1A
(r1,r2)
3 (0, 0, 0,Λ)‖ ≤ δr11δr20 + Λ−r1

R

∫ Λ

ΛR

ds
(
...
)
. (3.59)

With Lemma (1) we solve the integral and establish the bound (3.45) for
A

(r1,r2)
3 (0, 0, 0,Λ). Again, the generalization to A

(r1,r2)
3 (k1, k2, k3,Λ) follows

with Taylor’s theorem (3.9).

In the same manner, we treat the case n = 2, p ≤ 2, ki = 0:

‖Λ2−r1A
(r1,r2)
2 (0, 0,Λ)‖ ≤ Λ−r1

R

∫ Λ

ΛR

ds s
(
...
)

(3.60)

‖Λ2−r1∂2A
(r1,r2)
2 (k1, k2,Λ)k1=k2=0‖ ≤ Λ−r1

R

∫ Λ

ΛR

ds s−1
(
...
)
. (3.61)
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Thus (3.45) follows with Lemma (1) for A
(r1,r2)
2 (0, 0,Λ) and ∂2A

(r1,r2)
2 (k1, k2,Λ)ki=0.

These are the first two coefficients of a Taylor expansion (3.10) of A
(r1,r2)
2 (k1, k2,Λ)

around ki = 0. Since the remainder term corresponds to the case p + n ≥ 5,
the bound (3.45) is established for A

(r1,r2)
2 (k1, k2,Λ).

Finally, we treat the case n = 1, p = 0. Here, it suffices to prove (3.45) for
A

(r1,r2)
1 (0,Λ) since A1 is only defined for k = 0.

We thus have established the induction step for all n0 ∈ N.

2

The bounds (3.45) for the vertex fuctions A
(r1,r2)
n (Λ) would still allow an oscillatory

dependence on the UV cutoff Λ0. Therefore we will also prove convergence of the
vertex functions as Λ0 →∞. In Polchinki’s original version [31], this step amounts to
analyzing the quantity V (Λ) that has been defined in eq. (2.26) in the last chapter.
However, as Keller, Kopper and Salmhofer have shown [17], a major shortcut in the
proof can be achieved by pursuing a slightly different path. Instead of defining V (Λ)
as the total derivative of the effective potential L(Λ) with respect to Λ0 holding the
renormalizable couplings fixed and then analyzing associated vertex functions Vn(Λ)
by integrating a renormalization group inequality that can be deduced out of the
RGE (2.29), they start by integrating the RGIs for the vertex functions Ln(Λ) of
the effective potential L(Λ) and then differentiate the result with respect to Λ0. The
fixing of the renormalizable couplings at the renormalization scale is incorporated
through the initial conditions for the Ln(Λ) at Λ = ΛR.

We will follow the latter path and extend the analysis [17] to the case of φ3 + φ4

theory.

Theorem 2 (Convergence) Let there be renormalization conditions (3.17)-(3.21).
Assume that to order r1, r2 in perturbation theory in λR

4 and λR
5

||∂pA(r1,r2)
n (p1, ..., pn,Λ)|| ≤ Λ−p

(
Λ
ΛR

)r1

Pln

(
Λ0

ΛR

)
, (3.62)

and that for n + p ≥ 5

||Λ0
d

dΛ0
∂pA(r1,r2)

n (p1, ..., pn,Λ0)|| ≤ Λ−p
0

(
Λ0

ΛR

)r1

Pln

(
Λ0

ΛR

)
. (3.63)

Then

||Λ0
d

dΛ0
∂pA(r1,r2)

n (p1, ..., pn,Λ)|| ≤ Λ−p

(
Λ
ΛR

)r1 Λ
Λ0

Pln

(
Λ0

ΛR

)
(3.64)

where ΛR ≤ Λ ≤ Λ0.



3.1. RENORMALIZATION OF SCALAR φ3 + φ4 FIELD THEORY 33

Proof 2 Note that eq. (3.62) is a weaker version of the bound (3.45) and thus has
already been established in Theorem (1). We employ the same induction scheme as
in the proof of Theorem (1). In order to prove the induction step, we will use the
RGIs (3.41) and (3.43).

1. The case p + n ≥ 5:

We begin with the RGI (3.41). At the RHS, we plug in (3.62), (3.63) as the
initial condition at Λ0 and (3.64) as the induction hypothesis. The result is

|| d

dΛ0
Λ4−n−r1∂pA(r1,r2)

n (p1, ..., pn,Λ)|| ≤ Λ−r1
R Λ3−n−p

0 Pln

(
Λ0

ΛR

)
+ Λ−r1

R Pln

(
Λ0

ΛR

)
Λ−2

0

∫ Λ0

Λ
s4−n−pds

≤ Λ−r1
R Λ−2

0 Λ5−n−pPln

(
Λ0

ΛR

)
, (3.65)

which is equivalent to (3.64).

2. The case p + n ≤ 4:

We start with the RGI (3.43) and plug in (3.62) and (3.64) as the induction
hypothesis:

‖ d

dΛ0
Λ4−n−r1∂pA(r1,r2)

n (Λ)‖ ≤ ‖ d

dΛ0
Λ4−n−r1

R ∂pA(r1,r2)
n (ΛR)‖

+ Λ−r1
R Pln

(
Λ0

ΛR

)
Λ−2

0

∫ Λ

ΛR

ds s4−n−p.

(3.66)

Again, the renormalization conditions (3.17)-(3.21) for the renormalizable cou-
plings ρa serve as initial conditions at ΛR. Since these conditions mean that the
couplings ρa are kept fixed at the renormalization scale, their total derivatives
with respect to Λ0 vanish at Λ = ΛR:

d

dΛ0
ρa(ΛR) = 0. (3.67)

We therefore have

‖ d

dΛ0
ρ(r1,r2)

a (Λ)‖ ≤ Λ−r1
R Pln

(
Λ0

ΛR

)
Λ−2

0

∫ Λ

ΛR

ds s4−n−p (3.68)

where n, p have to be taken according to the definitions (3.11)-(3.15) of the
couplings ρa. Thus, eq. (3.64) follows easily for all d

dΛ0
ρa(Λ). In complete
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analogy to the strategy set forth in the proof of Theorem (1), we use Tay-
lor expansions (3.9) and (3.10) to expand A

(r1,r2)
n (k1, ..., kn,Λ) around ki = 0

and thus to reconstruct the full d
dΛ0

A
(r1,r2)
n (k1, ..., kn,Λ). Since all remaining

terms in the expansions correspond to the case n + p ≥ 5, the claim (3.64) is
established for n + p ≤ 4.

2

Given Theorem (2) and using Lemma (1), we may easily integrate eq. (3.64) with
respect to Λ0 in order to explicitly show the convergence of the vertex functions
A

(r1,r2)
n (Λ,Λ0) to a no-cutoff limit

Acont (r1,r2)
n (Λ) := lim

Λ0→∞
A(r1,r2)

n (Λ,Λ0). (3.69)

The result is the analogon to eq. (3.64):

||A(r1,r2)
n (p1, ..., pn,Λ,Λ0)−Acont (r1,r2)

n (p1, ..., pn,Λ)|| ≤
(

Λ
ΛR

)r1 Λ
Λ0

Pln

(
Λ0

ΛR

)
.

(3.70)

3.1.3 Uniqueness of the no-cutoff limit

In order to establish the boundedness and convergence of the dimensionless vertex
functions A

(r1,r2)
n (Λ) in Theorem (1) and (2), it has been necessary to specify initial

conditions at the UV cutoff scale Λ0. These are the momentum derivatives of the
vertex functions ∂pA

(r1,r2)
n (Λ0) for n+ p ≥ 5. We will now explicitly show in pertur-

bation theory in λR
4 and λR

5 that the no-cutoff limits A
cont (r1,r2)
n (Λ) do not depend

on these initial conditions as long as they are sufficiently small in the sense of eq.
(3.44).

We follow the strategy set forth in section (2.2). For a given set of initial condi-
tions à la (3.44),

||∂pA(r1,r2)
n (p1, ..., pn,Λ0)|| ≤ Λ−p

0

(
Λ0

ΛR

)r1

Pln

(
Λ0

ΛR

)
, n + p ≥ 5,

we construct another one via the parametrization

∂pA(r1,r2)
n (Λ0) → ∂pÃ(r1,r2)

n (Λ0) := t ∂pA(r1,r2)
n (Λ0), t ∈ [0, 1], n + p ≥ 5.

(3.71)

Obviously, t = 0 corresponds to the case ∂pA
(r1,r2)
n (Λ0) = 0, n + p ≥ 5, whereas

t = 1 leaves the original set of initial conditions unchanged. Thus, the ”running”
vertex functions become dependent on the parameter t:

∂pA(r1,r2)
n = ∂pA(r1,r2)

n (p1, ..., pn,Λ,Λ0, t). (3.72)
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We could now proceed as in section (2.2) and analyze the quantity W (Λ) defined
in eq. (2.40), that is the total derivative of the vertex functions with respect to
the parameter t holding the renormalizable couplings fixed at Λ = ΛR. Instead, we
will choose a strategy very similar to the proof of convergence of the vertex func-
tions in Theorem (2): we start by integrating the RGIs for the vertex functions,
thereby employing the renormalization conditions, and then differentiate the result-
ing inequalities with respect to the parameter t. The first step has already been
performed in eqns. (3.38) and (3.42), and we proceed to the second one.

1. Differentiation of (3.38) with respect to the parameter t yields

‖ d

dt
Λ4−n−r1∂pA(r1,r2)

n (Λ)‖ ≤ ‖ d

dt
Λ4−n−r1

0 ∂pA(r1,r2)
n (Λ0)‖

+cn,p

∫ Λ0

Λ
ds s3−n−r1

(
‖ d

dt
∂pA

(r1,r2)
n+2 (s)‖

+‖ d

dt
∂pA

(r1,r2)
n+1 (s)‖

+2
∑
...

s−p1‖ d

dt
∂p2A

(s1,s2)
l (s)‖‖∂p3A

(r1−s1,r2−s2)
n+2−l (s)‖

)
.

(3.73)

Note that in (3.73), the terms of (3.41) that stem from the differentiation of
the upper bound of the integral in (3.38) are missing.

2. Differentiation of (3.42) with respect to the parameter t yields

‖ d

dt
Λ4−n−r1∂pA(r1,r2)

n (Λ)‖ ≤ ‖ d

dt
Λ4−n−r1

R ∂pA(r1,r2)
n (ΛR)‖

+cn,p

∫ Λ

ΛR

ds s3−n−r1

(
‖ d

dt
∂pA

(r1,r2)
n+2 (s)‖

+‖ d

dt
∂pA

(r1,r2)
n+1 (s)‖

+2
∑
...

s−p1‖ d

dt
∂p2A

(s1,s2)
l (s)‖‖∂p3A

(r1−s1,r2−s2)
n+2−l (s)‖

)
.

(3.74)

Theorem 3 (Uniqueness of the no-cutoff limit) Let there be renormalization
conditions (3.17)-(3.21). Assume that to order r1, r2 in perturbation theory in λR

4

and λR
5

||∂pA(r1,r2)
n (p1, ..., pn,Λ)|| ≤ Λ−p

(
Λ
ΛR

)r1

Pln

(
Λ0

ΛR

)
, (3.75)



36 CHAPTER 3. RENORMALIZATION VIA FLOW EQUATIONS

and that for n + p ≥ 5

|| d
dt

∂pA(r1,r2)
n (p1, ..., pn,Λ0)|| ≤ Λ−p

0

(
Λ0

ΛR

)r1

Pln

(
Λ0

ΛR

)
. (3.76)

Then

|| d
dt

∂pA(r1,r2)
n (p1, ..., pn,Λ)|| ≤ Λ−p

(
Λ
ΛR

)r1 Λ
Λ0

Pln

(
Λ0

ΛR

)
(3.77)

where ΛR ≤ Λ ≤ Λ0.

Proof 3 The proof goes in complete analogy to the proof of Theorem (2) if the RGIs
(3.41) and (3.43) are replaced by (3.73) and (3.74).

2

We now may integrate the inequality (3.77) over t with integration limits 0 and 1:

||∂pA(r1,r2)
n (p1, ..., pn,Λ, 1)− ∂pA(r1,r2)

n (p1, ..., pn,Λ, 0)|| ≤ Λ−p

(
Λ
ΛR

)r1 Λ
Λ0

Pln

(
Λ0

ΛR

)
.

(3.78)

Since eq. (3.78) is valid for any set of initial conditions ∂pA
(r1,r2)
n (Λ0), n + p ≥ 5,

as long as they satisfy eq. (3.44), we conclude with the triangle inequality that for
two different sets ∂pA

A(r1,r2)
n (Λ0) and ∂pA

B(r1,r2)
n (Λ0) which are in accordance with

eq. (3.44) the associated ”running” vertex functions satisfy

||∂pAA(r1,r2)
n (p1, ..., pn,Λ)− ∂pAB(r1,r2)

n (p1, ..., pn,Λ)|| ≤ Λ−p

(
Λ
ΛR

)r1 Λ
Λ0

Pln

(
Λ0

ΛR

)
.

(3.79)

This result is the analogon to eq. (2.47) and shows that the no-cutoff limit of the
vertex functions A

cont (r1,r2)
n (Λ) is independent of the choice of the initial surface as

long as the initial values ∂pA
(r1,r2)
n (Λ0), n + p ≥ 5, remain sufficiently small.

For finite Λ0, eq. (3.79) means that at the scale Λ the ignorance about the
exact values of the bare vertex functions ∂pA

(r1,r2)
n (Λ0), n + p ≥ 5, amounts to

an indetermination of the ”running” vertex functions ∂pA
(r1,r2)
n (p1, ..., pn,Λ) of the

order of Λ
Λ0

Pln
(

Λ0
ΛR

)
.



Chapter 4

Effective Field Theories from
the Viewpoint of the
Renormalization Group

We investigate the predictivity of an effective field theory that has a finite UV cutoff
scale Λ0 by means of the renormalization group flow equations. Therefore, additional
nonrenormalizable coupling constants are introduced and the vertex functions of the
effective potential are expanded into perturbation series in the renormalized renor-
malizable and some of the bare nonrenormalizable couplings. This is referred to
as ”generalized perturbation theory”. New bounds for the vertex functions are es-
tablished in generalized perturbation theory in an attempt to unify the results of
[47] and [17], and improvement conditions for the nonrenormalizable couplings are
imposed at the renormalization scale ΛR. We prove that there exist small initial
conditions for the nonrenormalizable couplings at the UV cutoff scale Λ0 such that
appropriately chosen improvement conditions can be met. The proof is done in per-
turbation theory in the renormalized renormalizable couplings and in the deviations
of the renormalized nonrenormalizable couplings from the values they would take
at the renormalization scale ΛR for vanishing initial conditions at the UV cutoff
scale Λ0. The main advantage of our approach as compared to [47] is that the case
of vanishing renormalizable couplings does not pose any problems and thus also
nonrenormalizable theories can be treated. Finally, it is proven in generalized per-
turbation theory that the improvement conditions lead to an enhanced predictivity
of the effective field theory at scales Λ << Λ0 for a finite UV cutoff Λ0. The present
chapter can be seen as a rigorous version of the concepts introduced in section (2.3).

37
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4.1 Initial and improvement conditions for the nonrenor-
malizable couplings

4.1.1 Generalized perturbation theory and RG inequalities for ver-
tex functions

In this chapter, the main objective is to analyze the behaviour of the effective poten-
tial L(φ,Λ,Λ0) as additional renormalization conditions for some of the nonrenor-
malizable couplings are introduced at the renormalization scale ΛR. These come in
addition to the renormalization conditions for the renormalizable couplings, and are
again referred to as ”improvement conditions”. The analysis will be carried out in
perturbation theory in the renormalizable couplings and in some of the nonrenor-
malizable couplings.

In order to define nonrenormalizable coupling constants, we consider a Taylor
expansion of the vertex fuctions Ln(k1, ..., kn,Λ) introduced in eq. (3.4) around
ki = 0 up to O(k4):

Ln(k1, ..., kn,Λ) = Ln(0, ..., 0,Λ) +
1
2

n−1∑
i1,i2=1

kµ1
i1

kµ2
i2

∂µ1
i1,n∂µ2

i2,nLn(k̃1, ..., k̃n,Λ)|k̃i=0

+
1
4!

n−1∑
i1...i4=1

kµ1
i1

...kµ4
i4

∂µ1
i1,n...∂µ4

i4,nLn(k̃1, ..., k̃n,Λ)|k̃i=0

+
1
5!

n−1∑
i1,...,i6=1

kµ1
i1

...kµ6
i6

∫ 1

0
dτ(1− τ)5∂µ1

i1,n...∂µ6
i6,nLn(k̃1, ..., k̃n,Λ)|k̃i=τki

.

(4.1)

The expansion coefficients in (4.1) may be used to define the additional running
coupling constants1, which we will denote by ρã(Λ) in accordance with the notation
employed in section (2.3):

ρ6(Λ) δµν := ∂µ
i,3∂

ν
i,3L3(k1, k2, k3,Λ)|ki=0, i = 1, 2 (4.2)

ρ7(Λ) δµν := ∂µ
i,3∂

ν
j,3L3(k1, k2, k3,Λ)|ki=0, i 6= j = 1, 2 (4.3)

ρ8(Λ) := L5(0, ..., 0,Λ) (4.4)
ρ9(Λ) Iµνρσ := ∂µ

1,2∂
ν
1,2∂

ρ
1,2∂

σ
1,2L2(k1, k2,Λ)|ki=0 (4.5)

ρ10(Λ) δµν := ∂µ
i,4∂

ν
i,4L4(k1, k2, k3, k4,Λ)|ki=0, i = 1...3 (4.6)

ρ11(Λ) δµν := ∂µ
i,4∂

ν
j,4L4(k1, k2, k3, k4,Λ)|ki=0, i 6= j = 1...3 (4.7)

ρ12(Λ) := L6(0, ..., 0,Λ) (4.8)

1See Appendix (A.2) for details on the definitions of the couplings.
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where Iµνρσ := δµνδρσ + δµρδνσ + δµσδνρ. The couplings (4.2)-(4.8) are indeed
nonrenormalizable since their mass dimensions Dρã satisfy

Dρã =
{
−1 , ã = 6, 7, 8
−2 , ã = 9, ..., 12 ,

(4.9)

see eq. (3.5). In the following, we will restrict our considerations to the couplings
with Dρã ≥ −1, that is from now on ã = 1...8 unless stated otherwise.

For the bare nonrenormalizable couplings ρã(Λ0), we define initial conditions

ρã(Λ0) := ρ0
ã, ã = 6...8. (4.10)

In analogy to the notation introduced in eq. (3.22), we employ

λ0
ã(Λ) := Λ−Dρã ρ0

ã. (4.11)

The vertex functions Ln(k1, ..., kn,Λ) are expanded in perturbation theory in the
renormalized renormalizable couplings ρR

4 and ρR
5 introduced in eqns. (3.20)-(3.21)

and in the bare nonrenormalizable couplings ρ0
ã, ã = 6...8, of eqns. (4.10):

Ln(k1, ..., kn,Λ) =
∞∑

r1,...,r9=0

(ρR
4 )r1(ρR

5 )r2(ρ0
6)

r3(ρ0
7)

r4(ρ0
8)

r5L(r1,...,r5)
n (k1, ..., kn,Λ).

(4.12)

We refer to the expansion (4.12) as ”generalized perturbation theory”, in contrast
to the expansion (3.23) that is done only in the renormalizable couplings ρR

4 and
ρR
5 . The reason for using bare nonrenormalizable couplings as additional expansion

parameters is that in the integrations performed in the inductive proofs of upcoming
Theorems (4) and (6), the initial values for the nonrenormalizable couplings have to
be specified at the bare scale Λ0.

In the following, we will work with the dimensionless vertex functions An(Λ)
defined in eq. (3.24). With

A(r1,...,r5)
n (k1, ..., kn,Λ) := Λn−4+r1−(r3+r4+r5))L(r1,...,r5)

n (k1, ..., kn,Λ) (4.13)

and the definitions (3.22), (4.11) we may write

An(k1, ..., kn,Λ) =
∞∑

r1,...,r5=0

(λR
4 )r1(λR

5 )r2(λ0
6)

r3(λ0
7)

r4(λ0
8)

r5A(r1,...,r5)
n (k1, ..., kn,Λ).

(4.14)

The perturbative expansion (4.14) is sensible only for small dimensionless couplings.
Therefore we again impose eq. (3.27) as an additional constraint to the renormaliza-
tion conditions (3.17)-(3.21) and equally demand that the initial conditions (4.10)
are such that

λ0
ã(Λ) ≤ 1, ã = 6...8. (4.15)
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Note that because of the definition (4.11), this implies ρ0
ã ≤ Λ−1

0 , ã = 6...8, for
Λ ≤ Λ0 and thus

λ0
ã(Λ) ≤ Λ

Λ0
, ã = 6...8. (4.16)

To 0th order in perturbation theory in all coupling constants the vertex functions
vanish:

A(0,...,0)
n (k1, ..., kn,Λ) = 0. (4.17)

Finally, we define overall orders in perturbation theory via

r := r1 + ... + r5 (4.18)
rNR := r3 + r4 + r5. (4.19)

rNR gives the overall order in perturbation theory in the bare nonrenormalizable
couplings λ0

6, λ0
7 and λ0

8.
We rewrite the RGE (3.6) in terms of the dimensionless vertex functions (3.24)

and express the resulting equation in perturbation theory in the couplings λR
4 , λR

5 ,
λ0

6, λ0
7 and λ0

8. Applying the bounds (3.33) and (3.34) as well as the condition (3.30)
for the renormalization constant A we arrive at

‖ d

dΛ
Λ4−n−r1+rNR∂pA(r1,...,r5)

n (Λ)‖

≤ cn,p Λ3−n−r1+rNR

(
‖∂pA

(r1,...,r5)
n+2 (Λ)‖+ ‖∂pA

(r1,...,r5)
n+1 (Λ)‖

+
∑
...

Λ−p1‖∂p2A
(s1,...,s5)
l (Λ)‖‖∂p3A

(r1−s1,...,r5−s5)
n+2−l (Λ)‖

)
(4.20)

where

∑
...

:=
∑

p1,p2,p3:
∑

pi=p

n∑
l=1

r1,...,r5∑
s1,...,s5=0
1≤s≤r−1

. (4.21)

The RGI (4.20) is the analogon to the RGI (3.36) of chapter (3). Integrating (4.20)
with respect to Λ and differentiating the resulting RGIs with respect to Λ0, we can
easliy deduce RGIs that correspond to the RGIs (3.38), (3.41), (3.42) and (3.43) of
chapter (3). The same holds true for the RGIs (3.73) and (3.74). We leave this step
to the reader.
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4.1.2 Boundedness of vertex functions in generalized perturbation
theory

We establish new bounds for the norms ‖∂pA
(r1,...,r5)
n (Λ)‖ of the vertex functions

in generalized perturbation theory. These bounds can be viewn as the unification
of the improved bounds of Keller, Kopper and Salmhofer [17] and the results of
Wieczerkowski [47] concerning boundedness of vertex functions in generalized per-
turbation theory. The bounds established in Theorem (1) are included as the special
case of 0th order in perturbation theory in the nonrenormalizable couplings.

Theorem 4 (Boundedness II) Given the renormalization conditions (3.17)-(3.21)
and the initial conditions (4.10), and assuming that

||∂pA(r1,...,r5)
n (p1, ..., pn,Λ0)|| ≤ Λ−p

0

(
Λ0

ΛR

)r1

Pln

(
Λ0

ΛR

)
(4.22)

for n + p ≥ 6, to order r1, ..., r5 in perturbation theory in λR
4 , λR

5 , λ0
6, λ0

7 and λ0
8

||∂pA(r1,...,r5)
n (p1, ..., pn,Λ)||

≤ Λ−p

(
Λ
ΛR

)r1
(

Λ0

Λ

)rNR
(

δrNR,0 Pln

(
Λ
ΛR

)
+

Λ
Λ0

Pln

(
Λ0

ΛR

))
(4.23)

where Pln(z) denotes some polynomial in ln(z) whose coefficients are taken to be
nonnegative and ΛR ≤ Λ ≤ Λ0.

Proof 4 At first we note that to 0th order in perturbation theory in the bare non-
renormalizable couplings λ0

6, λ0
7 and λ0

8, that is for rNR = 0, Theorem (4) reduces
to Theorem (1) that has already been proven. We therefore proceed to the case
rNR > 0 and follow the induction scheme employed in the proof of Theorem (1),
that is the proof is done via induction in both the overall order in perturbation the-
ory, r = r1 + ... + r5, and the number of external legs, n, of the vertex functions
A

(r1,...,r5)
n . The induction start is now given by

{(r, n) : r = 0 ∧ n ∈ N} ∨ {(r, n) : r ≥ 1 ∧ n > 3r + 2} (4.24)

because of the perturbation theory in the bare couplings.

1. The case p + n ≥ 6: On the RHS of the analogon to the RGI (3.38), we
plug in eq. (4.22) as the initial condition at Λ0 and eq. (4.23) as the induc-
tion hypothesis. The integrals can be solved easily and as a result, (4.23) is
established.
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2. The case p + n = 5: Plugging eqns. (4.10) as initial conditions at Λ0 and
eq. (4.23) as the induction hypothesis into the analogon to the RGI (3.38), the
bound (4.23) can be proven for all expansion coefficients (4.2)-(4.4). We will
demonstrate this for the example n = 3, p = 2:

||Λ1−r1+rNR∂2A
(r1,...,r5)
3 (k1, k2, k3,Λ)|ki=0|| ≤ δr1δr61 + δr1δr71

+ Λ−r1
R ΛrNR

0

∫ Λ0

Λ
ds s−2 s

Λ0
Pln

(
Λ0

ΛR

)
.

(4.25)

Solving the intergral and multiplying the whole inequality with Λr1−1−rNR yields
(4.23).

3. The case p + n ≤ 4: The bound (4.23) has to be proven for the expansion
coefficients (3.11) -(3.15). We start with the analogon to the RGI (3.42) and
plug in eq. (4.23) as the induction hypothesis. Because we are treating the case
rNR > 0, all initial conditions at ΛR vanish. Solving the integrals establishes
the bound (4.23).

2

4.1.3 Inversion of the RG trajectory

At the renormalization scale ΛR we impose improvement conditions for the non-
renormalizable couplings ρã, ã = 6...12. The canonical dimensions of the couplings
for which improvement conditions are defined determines an improvement index s
that has been introduced in section (2.3):

s = 1 : ρã(ΛR) = ρNR
ã , ã = 6, ..., 8 (4.26)

s = 2 : ρã(ΛR) = ρNR
ã , ã = 6, ..., 12 (4.27)

...
...

We restrict ourselves to the case s = 1. In analogy to eqns. (3.22), (4.11) we
introduce dimensionless versions of the couplings (4.26):

λNR
ã (Λ) := Λ−Dρã ρNR

ã . (4.28)

For small initial values of the nonrenormalizable couplings as implied by eq. (4.15),

λ0
ã(Λ0) ≤ 1, ã = 6, ..., 8, (4.29)

the improvement conditions (4.26) cannot be chosen freely. It follows from Theorem
(2) and eq. (3.70) that for initial conditions à la eq. (4.29) we have

||λ(r1,r2)
ã (ΛR,Λ0)− λ

cont (r1,r2)
ã (ΛR)|| ≤

(
Λ
ΛR

)r1 ΛR

Λ0
Pln

(
Λ0

ΛR

)
, ã = 6...8,

(4.30)
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where λ
cont (r1,r2)
ã (ΛR) := λ

(r1,r2)
ã (ΛR,∞) and the index (r1, r2) refers to perturba-

tion theory in the renormalizable couplings λR
4 and λR

5 . Since the latter are small
according to eqns. (3.27), (3.28) we conclude that for small initial values (4.29) the
running nonrenormalizable couplings must satisfy at Λ = ΛR

||λã(ΛR,Λ0)− λcont
ã (ΛR)|| ≤ ΛR

Λ0
Pln

(
Λ0

ΛR

)
, ã = 6...8, (4.31)

in agreement to the discussion at the beginning of section (2.3).
In the following, it will be proven in perturbation theory that the inversion is

also true: for given improvement conditions (4.28) that satisfy

||λNR
ã (ΛR)− λcont

ã (ΛR)|| ≤ ΛR

ΛD
Pln

(
ΛD

ΛR

)
, ΛD > ΛR, ã = 6...8, (4.32)

there exist small initial conditions à la eq. (4.29) such that the improvement condi-
tions can be met:

λã(ΛR,Λ0) = λNR
ã (ΛR) (4.33)

for an UV cutoff scale Λ0 that obeys Λ0 ≤ ΛD.

We begin by expanding the running dimensionless coupling constants λã(Λ), ã =
6...8, in perturbation theory in the renormalized renormalizable couplings λR

4 and
λR

5 and in the bare nonrenormalizable couplings λ0
6, λ0

7 and λ0
8:

λã(Λ) =
∞∑

r1,...,r5=0

λ
(r1,...,r5)
ã (Λ)(λR

4 )r1(λR
5 )r2(λ0

6)
r3λ0

7)
r4(λ0

8)
r5 . (4.34)

Eq. (4.34) follows essentially from (4.14) and the definitions (4.2)-(4.4). Next,
we introduce auxiliary variables λã(Λ) which are defined as the values the running
dimensionless couplings take for vanishing initial conditions (4.10). This can also be
viewed as the 0th order in perturbation theory in the nonrenormalizable couplings:

λã(Λ) :=
∞∑

r1,...,r5=0
rNR=0

λ
(r1,...,r5)
ã (Λ)(λR

4 )r1(λR
5 )r2(λ0

6)
r3(λ0

7)
r4(λ0

8)
r5 (4.35)

where rNR is again the overall order in perturbation theory in the nonrenormalizable
couplings. Defining the deviations

∆λã(Λ) := λã(Λ)− λã(Λ) (4.36)

we may write

∆λã(Λ) =
∞∑

r1,...,r5=0
rNR≥1

λ
(r1,...,r5)
ã (Λ)(λR

4 )r1(λR
5 )r2(λ0

6)
r3(λ0

7)
r4(λ0

8)
r5 . (4.37)
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Furthermore, we note that

λ
(0,0,1,0,0)
ã = δã,6 (4.38)

λ
(0,0,0,1,0)
ã = δã,7 (4.39)

λ
(0,0,0,0,1)
ã = δã,8. (4.40)

Thus, for ã = 6...8

λ0
ã =

∞∑
r1,...,r5=0

rNR≥1
r=1

λ
(r1,...,r5)
ã (Λ)(λR

4 )r1(λR
5 )r2(λ0

6)
r3(λ0

7)
r4(λ0

8)
r5 (4.41)

and we finally arrive at

λ0
ã(Λ) = ∆λã(Λ)−

∞∑
r1,...,r5=0

rNR≥1
r≥2

λ
(r1,...,r5)
ã (Λ)(λR

4 )r1(λR
5 )r2(λ0

6)
r3(λ0

7)
r4(λ0

8)
r5 . (4.42)

Eq. (4.37) gives us the deviations ∆λã(Λ) in perturbation theory in the renormalized
renormalizable couplings λR

4 and λR
5 and the bare nonrenormalizable couplings λ0

6,
λ0

7 and λ0
8, whereas eq. (4.42) serves as the starting point for the inversion. This

will become clear in the following.
We expand the couplings λ0

6, λ0
7 and λ0

8 in perturbation theory in λR
4 and λR

5 and
in the deviations

∆λR
ã (Λ) := (ΛR/Λ)Dρã ∆λã(ΛR), ã = 6, ..., 8. (4.43)

The result is

λ0
ã(Λ) =

∑
λ

0 (l1,...,l5)
ã (Λ)(λR

4 )l1(λR
5 )l2(∆λR

6 )l3(∆λR
7 )l4(∆λR

8 )l5 . (4.44)

For ã = 6...8 we have

λ
0 (0,0,0,0,0)
ã = λ

0 (1,0,0,0...,0)
ã = λ

0 (0,1,0,0...,0)
ã = 0 (4.45)

λ
0 (0,0,1,0,0)
ã = δã,6 (4.46)

λ
0 (0,0,0,1,0)
ã = δã,7 (4.47)

λ
0 (0,0,0,0,1)
ã = δã,8. (4.48)

In order to keep the complexity of the upcoming equations under control, some
notations have to be introduced:

Ai1 := (A1
i1 , ..., A

5
i1), i1 = 1...r3 (4.49)

Bi2 := (B1
i2 , ..., B

5
i2), i2 = 1...r4 (4.50)

Ci3 := (C1
i3 , ..., C

5
i3), i3 = 1...r5, (4.51)
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the ”norms”

|Ai1 | := A1
i1 + ... + A5

i1 , i1 = 1...r3 (4.52)
...

and

T := A1 + ... + Ar3 + B1 + ... + Cr5 . (4.53)

We now plug the perturbative expansions (4.44) into eq. (4.42) and arrive at a
system of equations for the coefficients λ

0 (l1,...,l5)
ã (Λ) of the expansion (4.44):

λ
0 (l1,...,l5)
ã (Λ)

= ∆λ
(l1,...,l5)
ã (Λ)−

l1,l2∑
s1,s2=0

s1+s2≤l1+l2−1

∞∑
r3,r4,r5=0

rNR≥1

∞∑
A1...Ar3
B1...Br4
C1...Cr5=0

(
δT 1,s1

δT 2,s2
δT 3,l3δT 4,l4δT 5,l5

λ
(l1−s1,l2−s2,r3,r4,r5)
ã (Λ)λ0 A1

6 ...λ
0 Ar3
6 λ0 B1

7 ...λ
0 Cr5
8

)
−

∞∑
r3,r4,r5=0

rNR≥2

∞∑
A1...Ar3
B1...Br4
C1...Cr5=0

(
δT 1,l1 ...δT 5,l5λ

(0,0,r3,r4,r5)
ã (Λ)λ0 A1

6 ...λ
0 Ar3
6 λ0 B1

7 ...λ
0 Cr5
8

)

(4.54)

where ã = 6...8. Note that with l := l1 + ... + l5,

∆λ
(l1,...,l5)
6 (ΛR) = δl3,1δl,1 (4.55)

∆λ
(l1,...,l5)
7 (ΛR) = δl4,1δl,1 (4.56)

∆λ
(l1,...,l5)
8 (ΛR) = δl5,1δl,1. (4.57)

Eq. (4.54) is our key equation for the inversion of the RG trajectory, as is shown by
the following theorem.

Theorem 5 (Inversion of the RG trajectory) For ã = 6...8 and l∆ := l3 + l4 +
l5 let

||∆λ
(l1,...,l5)
ã (Λ)|| ≤

(
Λ
ΛR

)l1 (Λ0

Λ

)l∆ Λ
Λ0

Pln

(
Λ0

ΛR

)
. (4.58)

Then to order l1, ..., l5 in perturbation theory in λR
4 , λR

5 and the deviations ∆λR
6 ,

∆λR
7 and ∆λR

8

||λ0 (l1,...,l5)
ã (Λ)|| ≤

(
Λ
ΛR

)l1 (Λ0

Λ

)l∆ Λ
Λ0

Pln

(
Λ0

ΛR

)
(4.59)

where ΛR ≤ Λ ≤ Λ0.
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Proof 5 The proof is done via induction in the overall order in perturbation theory
l = l1 + ...+ l5 of the couplings λR

4 , λR
5 and the deviations ∆λR

6 , ∆λR
7 and ∆λR

8 . We
note that

λ
0 (l1,...,l5)
ã (Λ) = ∆λ

(l1,...,l5)
ã (Λ) for l = 1, (4.60)

and thus the induction start is established. In order to prove the induction step, we
make use of eq. (4.54). The overall orders in perturbation theory |Ai1 |, |Bi2 |, |Ci3 |
of all coefficients λ

0 Ai1
6 , λ

0 Bi2
7 , λ

0 Ci3
8 appearing on rhe RHS of (4.54) satisfy

|Ai1 |, |Bi2 |, |Ci3 | < l. (4.61)

This follows from the constraints on the summation bounds appearing on the RHS
of (4.54). We thus plug eq. (4.59) as the induction hypothesis into the RHS of
eq. (4.54). The bounds for λ

(l1−s1,l2−s2,r3,r4,r5)
ã (Λ) and λ

(0,0,r3,r4,r5)
ã (Λ) follow from

Theorem (4) and the induction step can be established.

2

The couplings λR
4 , λR

5 are small as defined in eqns. (3.27), (3.28). If we demand also
smallness of the deviations (4.43),

∆λR
ã (Λ) ≤ 1, ã = 6, ..., 8, (4.62)

Theorem (5) implies that for

||∆λã(Λ)|| ≤ Λ
Λ0

Pln

(
Λ0

ΛR

)
(4.63)

we have

||λ0
ã(Λ)|| ≤ Λ

Λ0
Pln

(
Λ0

ΛR

)
. (4.64)

Let us remember that λã(Λ) refers to the case of vanishing initial conditions (4.10),
as follows from the definition (4.35). Thus, Theorem (2) and eq. (4.31) imply

||λã(ΛR,Λ0)− λcont
ã (ΛR)|| ≤ ΛR

Λ0
Pln

(
Λ0

ΛR

)
, ã = 6...8. (4.65)

Since ∆λã(Λ) = λã(Λ)− λã(Λ), we conclude with the triangle inequality that if

||λã(ΛR,Λ0)− λcont
ã (ΛR)|| ≤ ΛR

Λ0
Pln

(
Λ0

ΛR

)
, ã = 6...8, (4.66)

the bare couplings are small à la eq. (4.64). The conjecture discussed at the be-
ginning of this section in eqns. (4.32) and (4.33) has therefore been proven: there



4.2. PREDICTIVITY OF EFFECTIVE FIELD THEORIES 47

exist small initial conditions λ0
ã(Λ), ã = 6...8, such that the improvement conditions

λã(ΛR,Λ0) = λNR
ã (ΛR) for the nonrenormalizable couplings can be met as long as

they satisfy eq. (4.32) .

In eq. (4.44), we have expanded the bare couplings λ0
6, λ0

7 and λ0
8 in perturbation

theory in λR
4 and λR

5 and in the deviations ∆λR
ã , ã = 6...8. This approach is suitable

for analyzing the predictivity of an effective field theory for a given UV cutoff scale
Λ0, as will be shown in the next section. In particular, the special case where
the renormalized renormalizable couplings λR

4 and λR
5 are chosen to be zero can be

treated without problems.
However, if the aim is to fix nonrenrormalizable couplings at their continuum val-

ues λcont
ã (ΛR) in order to achieve improved convergence in the limt Λ0 →∞, this ap-

proach is problematic because of the Λ0-dependence of the deviations ∆λR
ã (Λ,Λ0), ã =

6...8. In this case, it seems reasonable to follow the strategy outlined by Wiecz-
erkowski [47] and to replace the expansion (4.44) by one that is done in the renor-
malizable couplings only2:

λ0
ã(Λ) =

∑
λ

0 (l1,l2)
ã (Λ)(λR

4 )l1(λR
5 )l2 . (4.67)

A repetition of the analysis outlined in this section then yields an equation3 similar
to eq. (4.54) and ultimately the analogon of Theorem (5) in perturbation theory in
the renormalizable couplings λR

4 and λR
5 .

4.2 Predictivity of effective field theories and improved
convergence

In order to investigate the predictivity of an effective field theory, we follow the
strategy set forth in section (2.3). For a given set of initial conditions à la (4.22),

||∂pA(r1,...,r5)
n (p1, ..., pn,Λ0)|| ≤ Λ−p

0

(
Λ0

ΛR

)r1

Pln

(
Λ0

ΛR

)
, n + p ≥ 6,

we construct another one via the parametrization

∂pA(r1,...,r5)
n (Λ0) → ∂pÃ(r1,...,r5)

n (Λ0) := t ∂pA(r1,...,r5)
n (Λ0), t ∈ [0, 1], n + p ≥ 6.

(4.68)

Obviously, t = 0 corresponds to the case ∂pA
(r1,...,r5)
n (Λ0) = 0, n + p ≥ 6, whereas

t = 1 leaves the original set of initial conditions unchanged. The ”running” vertex
2This essentially amounts to consider the equations beginning with eq. (4.44) in the case of 0th

order in perturbation theory in the deviations ∆λR
ã , ã = 6...8, and to withdraw eqns. (4.55)-(4.57).

3In [47], the part of this equation that corresponds to the last term of the RHS of (4.54) seems
to be missing.
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functions become dependent on the parameter t:

∂pA(r1,...,r5)
n = ∂pA(r1,...,r5)

n (p1, ..., pn,Λ,Λ0, t). (4.69)

Theorem 6 (Predictivity of Effective Field Theories) Let there be renormal-
ization conditions (3.17)-(3.21) and improvement conditions (4.26), meaning the im-
provement index is chosen to be s = 1. Assume that to order r1, ..., r5 in perturbation
theory in λR

4 , λR
5 , λ0

6, λ0
7 and λ0

8

||∂pA(r1,...,r5)
n (p1, ..., pn,Λ)|| ≤ Λ−p

(
Λ
ΛR

)r1
(

Λ0

Λ

)rNR

Pln

(
Λ0

ΛR

)
, (4.70)

and that for n + p ≥ 6

|| d
dt

∂pA(r1,...,r5)
n (p1, ..., pn,Λ0)|| ≤ Λ−p

0

(
Λ0

ΛR

)r1

Pln

(
Λ0

ΛR

)
. (4.71)

Then

|| d
dt

∂pA(r1,...,r5)
n (p1, ..., pn,Λ)|| ≤ Λ−p

(
Λ
ΛR

)r1
(

Λ0

Λ

)rNR
(

Λ
Λ0

)2

Pln

(
Λ0

ΛR

)
(4.72)

where ΛR ≤ Λ ≤ Λ0.

Proof 6 We note that (4.70) is a weaker bound than (4.23) and thus has already
been established in Theorem (4). We follow the by now well-known induction scheme
outlined in the proof of Theorem (1).

1. The case p + n ≥ 6: On the RHS of the analogon to the RGI (3.73), we
plug in eq. (4.71) as the initial condition at Λ0, eq. (4.72) as the induction
hypothesis and eq. (4.70). The integrals can be solved and as a result, (4.72)
is established.

2. The case p+n ≤ 5: The inequality (4.72) has to be proven for the derivatives
of the expansion coefficients (3.11) -(3.15) and (4.2)-(4.4) with respect to the
parameter t. We start with the analogon to the RGI (3.74) and plug in eq.
(4.72) as the induction hypothesis and eq. (4.70). All initial conditions at ΛR

vanish because the renormalization conditions (3.17)-(3.21) and improvement
conditions (4.26) mean that the couplings ρã, ã = 1...8, are independent of t
at Λ = ΛR. Solving the integrals establishes (4.72).

2
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We can integrate the inequality (4.72) over t with integration limits 0 and 1:

||∂pA(r1,...,r5)
n (p1, ..., pn,Λ, 1)− ∂pA(r1,...,r5)

n (p1, ..., pn,Λ, 0)||

≤ Λ−p

(
Λ
ΛR

)r1
(

Λ0

Λ

)rNR
(

Λ
Λ0

)2

Pln

(
Λ0

ΛR

)
. (4.73)

Since eq. (4.73) is valid for any set of initial conditions ∂pA
(r1,...,r5)
n (Λ0), n + p ≥ 6,

as long as they satisfy eq. (4.22), we conclude with the triangle inequality that for
two different sets ∂pA

A(r1,...,r5)
n (Λ0) and ∂pA

B(r1,...,r5)
n (Λ0) which are in accordance

with eq. (4.22) the associated ”running” vertex functions satisfy

||∂pAA(r1,...,r5)
n (p1, ..., pn,Λ)− ∂pAB(r1,...,r5)

n (p1, ..., pn,Λ)||

≤ Λ−p

(
Λ
ΛR

)r1
(

Λ0

Λ

)rNR
(

Λ
Λ0

)2

Pln

(
Λ0

ΛR

)
. (4.74)

As has been stressed before, the perturbative approach is sensible only for small
dimensionless expansion parameters à la eqns. (3.27) for λR

4 , λR
5 and (4.15) for λ0

6,
λ0

7, λ0
8. Theorem (5) and the thereof derived eqns. (4.66), (4.64) ensure that for

improvement conditions which satisfy (4.32), that is

||λNR
ã (ΛR)− λcont

ã (ΛR)|| ≤ ΛR

ΛD
Pln

(
ΛD

ΛR

)
, ΛD > ΛR, ã = 6...8,

the couplings λ0
6, λ0

7, λ0
8 are small in the sense of eqns. (4.15) as long as the UV

cutoff stays below the scale ΛD, Λ0 ≤ ΛD.
Coming back to the discussion at the end of section (2.3), we now have proven

that the ignorance about the exact initial values ∂pA
(r1,...,r5)
n (Λ0), n+p ≥ 6, amounts

to an indetermination of the ”running” vertex functions ∂pA
(r1,...,r5)
n (Λ) of the or-

der of
(

Λ0
Λ

)rNR
(

Λ
Λ0

)2
Pln

(
Λ0
ΛR

)
. Note that for small couplings λ0

6, λ0
7, λ0

8 in the
sense of eqns. (4.15), (4.16) this amounts to an indetermination of ∂pAn(Λ) of the

order of
(

Λ
Λ0

)2
Pln

(
Λ0
ΛR

)
. Compared to Theorem (3) and eq. (3.79) where only

renormalization conditions for the renormalizable couplings have been specified, the
improvement conditions (4.26) for s = 1 have thus led to enhanced predictivity.

We will now briefly comment on the case where the nonrenrormalizable couplings
ρã(ΛR), ã = 6..8, are fixed to their no-cutoff values ρcont

ã (ΛR) in order to achieve
improved convergence in the limt Λ0 →∞. Following [47], we then assume that the
initial conditions for the nonrenormalizable couplings are defined in perturbation
theory in the renormalizable couplings, see eq. (4.67). Consequently, also the vertex
functions are given in perturbation theory in the renormalizable couplings λR

4 and
λR

5 . Employing the RGIs (3.41) and (3.43) and following the path set forth in
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Theorems (6) and (2), improved convergence as compared to eq. (3.70) of the
vertex functions to their continuum limits can be established:

||A(r1,r2)
n (p1, ..., pn,Λ,Λ0)−Acont (r1,r2)

n (p1, ..., pn,Λ)|| ≤
(

Λ
ΛR

)r1
(

Λ
Λ0

)2

Pln

(
Λ0

ΛR

)
.

(4.75)



Chapter 5

Polchinski’s Equation for
Euclidean Quantum Gravity

The standard covariant BRS quantization procedure for Euclidean Einstein gravity
is reviewed, as it can be found for instance in [39], [6]. Unlike these authors, we
include a cosmological term. Our dynamical variable is a perturbation of the metric
density

√
g gµν around flat space, and in contrast to [41], [9], we do not work in the

background field method. We state the Slavnov-Taylor-Identities (STI) for quantum
Einstein gravity and deduce graviton and ghost propagators. The problems that
arise due to the cosmological constant when gravity is treated as a flat-space QFT
are discussed, as well as possible resolutions. A momentum cutoff regularization
for the generating functional is employed and the resulting violation of the gauge
invariance and hence the Slavnov-Taylor-Identities is discussed. We review a fine-
tuning procedure that has been shown [18] to cure the analogous problem occuring
in the perturbative renormalization of Yang-Mills theory via flow equations. The
ultimate aim of this procedure is the restoration of the STI in the no-cutoff limit.
First implications of an analogous procedure for quantum gravity are proposed.
Finally, we establish the Polchinski renormalization group equation for Euclidean
quantum gravity and discuss the properties that a solution of this RGE must have
in order to represent a valid candidate for a quantum theory of gravitation.
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5.1 Covariant quantization of Euclidean gravity

5.1.1 BRS quantization of Einstein gravity with a cosmological con-
stant

The Einstein-Hilbert action for Euclidean gravity with a cosmological constant is
defined as1

SEH =
1
λ2

∫
d4x

√
g (−4ΛK + 2R) (5.1)

where λ2 := 32πG is proportional to Newtons constant G and ΛK is the cosmological
constant. The canonical dimensions of λ and ΛK are

[λ] = Λ−1 (5.2)
[ΛK ] = Λ2 (5.3)

where Λ is some scale of mass. We would like to remind the reader of the definitions
of the geometrical quantities in the action (5.1):

g = det gµν (5.4)
Rρσ

µν = ∂µΓρσ
ν − ∂νΓρσ

µ + Γρ
αµΓασ

ν − Γρ
ανΓ

ασ
µ (5.5)

Γσµν =
1
2
(∂µgσν + ∂νgσµ − ∂σgµν) (5.6)

Rµν = Rα
µαν (5.7)

R = Rµ
µ. (5.8)

Obviously, the metric gµν is the only dynamical variable the Lagrangian depends
on. It turns out convenient to define the contravariant metric density (weight +1)

g̃µν :=
√

g gµν (5.9)

where gµν is the inverse metric, gµρgρν = δµ
ν , and to rewrite the action (5.1) in

terms of g̃µν . With

det g̃µν = g2 det gµν = g2g−1

= g (5.10)

and g̃µρg̃ρν = δµ
ν we find [6]

SEH =
1
λ2

∫
d4x

(
−4ΛK

√
det g̃µν − 1

2
g̃µν g̃αβ g̃γδ∂µg̃βγ∂ν g̃

αδ

+
1
4
g̃µν g̃αβ g̃γδ∂µg̃αβ∂ν g̃

γδ + g̃αβ∂µg̃αν∂ν g̃
µβ

)
. (5.11)

1See Appendix (A.6) for our conventions.
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The tensor density g̃µν is split up into a flat Euclidean background δµν and a per-
turbation part hµν :

g̃µν = δµν + λhµν . (5.12)

The quantity hµν will be our dynamical field variable. With 1
x = 1

x0
− 1

x2
0
(x− x0) +

1
x3
0
(x− x0)2 + ... we find

g̃µν = δµν − λhµν + λ2h α
µ hαν − λ3h α

µ h β
α hβν + ... (5.13)

where hµν = δµαδνβhαβ . In addition, because of detx = exp(tr lnx) and lnx =∑∞
n=1

1
n(−1)n+1(x− 1)n it follows that

√
det g̃µν = 1 +

1
2
λh− 1

4
λ2hµ

ρh
ρ
µ + λ2 1

8
h2 + .... (5.14)

where the notation hµ
µ = h has been employed2. Thus, we can expand the Einstein-

Hilbert action (5.1) in powers of hµν . Since we are expanding around flat space,
the scalar curvature R vanishes to 0th order in hµν . Furthermore, we would like to
stress that for ΛK 6= 0 the flat background is not a solution of the field equations
and we are left with a term linear in hµν in the action:

SEH =
∫

d4x

(
−4ΛK

λ2
+ L(1) + L(2) + L(3) + ...

)
. (5.15)

Here, L(1), L(2),... denote the Lagrangians linear, bilinear, etc. in h. The constant
term−4ΛK

λ2 will merely give rise to a multiplicative factor in the generating functional
of quantum gravity and we will drop it from now on. From Ref [6] and eq. (5.14)
follows3

L(1) = −2
ΛK

λ
h (5.16)

L(2) = ΛK

(
hµ

ρh
ρ
µ −

1
2
h2
)
− 1

2
∂µhνρ∂

µhνρ +
1
4
∂µh∂µh + ∂µhµρ∂νhνρ.

(5.17)

As shown in Appendix (A.7), the tensor density (5.9) transforms under infinitesimal
general coordinate transformations as

g̃µν → g̃µν ′ = g̃µν + LX g̃µν (5.18)

2Sometimes we will use the notation h also as an abbreviation for hµν .
3The contributions linear in h that stem from the expansion of R vanish because they are total

derivatives.
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where

LX g̃µν = Xρ∂ρg̃
µν + g̃µν∂ρX

ρ − g̃ρν∂ρX
µ − g̃µρ∂ρX

ν . (5.19)

LX denotes the Lie derivative with respect to a vector field X = Xρ∂ρ. Regarding
our gravitational field variable hµν , we define ”gauge transformations”

hµν ′ = hµν + λ−1LX g̃µν (5.20)
δµν ′ = δµν . (5.21)

Here, the freedom to ”shift” the changes induced by the coordinate transformation
on g̃µν between the parts δµν and λhµν has been exploited such that only the hµν

field is transformed and the flat Euclidean background δµν remains fixed. With eqns.
(5.12) and (5.19) it follows that

LX g̃µν = δµν∂ρX
ρ−δρν∂ρX

µ−δµρ∂ρX
ν+λ

(
Xρ∂ρh

µν+hµν∂ρX
ρ−hρν∂ρX

µ−hµρ∂ρX
ν
)

(5.22)
in agreement with Ref [39].

In order to quantize gravity, the gauge has to be fixed. As a gauge condition we
employ the harmonic gauge:

Fµ
ρσ(hρσ) = 0 (5.23)

with Fµ
ρσ = δµ

ρ∂σ. (5.24)

In the following, we will often use the abbreviation Fµ = Fµ
ρσ(hρσ). The Faddeev-

Popov procedure [30] then adds a gauge fixing term

SGF (h) = − 1
2ξ

∫
d4xFµFµ (5.25)

as well as a ghost term4

SGH(h, C, C) = −
∫

d4x Cµ

(
λ

δ(Fµ)′

δXν

)
Cν (5.26)

to the action where F (µ)′ = Fµ
ρσ(hρσ ′). With eqns. (5.22) and (5.24) we find

λ
δ(Fµ)′

δXν
= −δµ

ν∂
ρ∂ρ + λ

(
∂ρ∂νh

µρ + ∂ρh
µρ∂ν − δµ

ν∂σhσρ∂ρ − δµ
νh

ρσ∂ρ∂σ

)
(5.27)

in agreement with Ref [6].

4Note that since δ(F µ)′

δXν = δ(F µ)′

δh′
ρσ

δh′
ρσ

δXν and
δh′

ρσ

δXν Cν = LCgρσ we have
∫

d4x Cµ

(
δ(F µ)′

δXν

)
Cν =∫

d4x Cµ

(
δ(F µ)′

δhρσ

)
LCgρσ. An expression of the latter kind was used by Ref [33].
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Let ε be an anticommuting constant parameter. One can check that the total
action

Stot = SEH(h) + SGF (h) + SGH(h, C, C) (5.28)

is invariant under the BRS transformations

δεh
µν = LC g̃µνε (5.29)

δεC
µ = λCν∂νC

µε (5.30)
δεCµ = ξ−1Fµε. (5.31)

These are in complete analogy to the corresponding BRS transformations of Yang
Mills theory [30]. We may define an extended total action S̃tot by introducing sources
βµν and τµ that couple to the nonlinear BRS variations (5.29) and (5.30):

S̃tot := Stot +
∫

d4x (βµνLC g̃µν + τµλCν∂νC
µ) . (5.32)

One can show that (5.29) and (5.30) are nilpotent,

δε

(
LC g̃µνε

)
= 0 (5.33)

δε

(
Cν∂νC

µε
)

= 0. (5.34)

Thus, also S̃tot is invariant under the BRS transformations (5.29)-(5.31) and the
BRS invariance can be stated in the form5

δεS̃tot =
δS̃tot

δβµν

δS̃tot

δhµν
+

δS̃tot

δτµ

δS̃tot

δCµ
+ ξ−1Fµ

δS̃tot

δCµ

= 0. (5.35)

Finally, we add a source term

SJ =
∫

d4x
(
tµνh

µν + σµCµ + σµCµ

)
(5.36)

to the action.
We are now ready to formally write down two unregularized generating func-

tionals for Euclidean quantum Einstein gravity:

W (J) =
∫
DhµνDCµDCµ eStot+SJ (5.37)

and an extended version

W̃ (J, βµν , τµ) =
∫
DhµνDCµDCµ e S̃tot+SJ (5.38)

5Since f(x + δx) = f(x) + ∂f
∂x

δx the invariance f(x + δx) = f(x) means ∂f
∂x

δx = 0.
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where we employed the notation

J = {tµν , σµ, σµ}. (5.39)

Note that W̃ (J, βµν , τµ) involves the composite field operators (5.29) and (5.30).
In addition, we introduce a generating functional Z(J) for connected correlation
functions,

W (J) = e−Z(J), (5.40)

and similarly an extended version Z̃(J, βµν , τµ).
The (extended) generating functional W̃ (J, βµν , τµ) as well as S̃tot are invari-

ant under the BRS transformations (5.29)- (5.31), whereas the source term SJ is
not. This leads to a condition for W̃ (J, βµν , τµ), the Slavnov-Taylor-identities (STI).
Introducing the BRS operator

D :=
∫

d4x

(
tµν

δ

δβµν
+ σµ

δ

δτµ
+ ξ−1σµFµρσ

( δ

δtρσ

))
(5.41)

they can be compactly summarized as

DW̃ (J, βµν , τµ) = 0. (5.42)

The STI (5.42) take the same form when they are written down in terms of the
functional Z̃(J, βµν , τµ),

DZ̃(J, βµν , τµ) = 0. (5.43)

For completeness sake, let us also define classical fields

hµν =
δZ̃

δtµν
(5.44)

ξµ =
δZ̃

δσµ
(5.45)

ξµ =
δZ̃

δσµ
(5.46)

and denote
Φ = {hµν , ξ

µ, ξµ}. (5.47)

The Legendre transform Γ(Φ, βµν , τµ) of Z̃(J, βµν , τµ),

Γ(Φ, βµν , τµ) =
∫

d4x
(
tµνh

µν + σµξµ + σµξµ

)
− Z̃(J, βµν , τµ), (5.48)

generates 1PI correlation functions. The Slavnov-Taylor-identities can be formulated
in terms of Γ(Φ, βµν , τµ):∫

d4x

(
δΓ

δβµν

δΓ
δhµν

+
δΓ
δτµ

δΓ
δξµ

+ ξ−1Fµρσ

(
h

ρσ) δΓ
δξµ

)
= 0. (5.49)

Again, (5.49) are in complete analogy to the Slavnov-Taylor identities of Yang-Mills
theory.
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5.1.2 The graviton and ghost propagators

In order to find the graviton propagator in harmonic gauge, we have to include the
gauge fixing terms (5.25) into the Lagrangian bilinear in the quantum fields, L(2).
We wish to obtain a free-field Langrangian of the form

Lf = −1
2
hµν∆−1

µνρσhρσ (5.50)

where ∆µνρσ is the graviton propagator. From eqns. (5.17), (5.14) and (5.25) follows
that

L(2) + LGF = −ΛK

(
1
2
h2 − hµ

ρh
ρ
µ

)
− 1

2ξ
∂µhµρ∂νhνρ

−1
2
∂µhνρ∂

µhνρ +
1
4
∂µh∂µh + ∂µhµρ∂νhνρ. (5.51)

If we choose the parameter ξ = 1
2 and use partial integration the above expression

simplifies to

L(2) + LGF = ΛK

(
hµρh

µρ − 1
2
h2

)
+

1
2

(
hνρ∂µ∂µhνρ − 1

2
h∂µ∂µh

)
.

(5.52)

By comparison with eq. (5.50) we conclude that

∆−1
µνρσ = −1

2
(δµρδνσ + δµσδνρ − δµνδρσ) (∂α∂α + 2ΛK)

≡ −Dµνρσ(∂α∂α + 2ΛK). (5.53)

To obtain the graviton propagator, ∆−1
µνρσ has to be inverted. The operator Dµνρσ

is symmetric in µ, ν and ρ, σ and under the combined operation µ ↔ ρ, ν ↔ σ. By
direct calculation one finds that

DαβµνDαβρσ =
1
2
(
δµ
ρ δν

σ + δµ
σδν

ρ

)
(5.54)

where again Dαβµν = 1
2

(
δαµδβν + δανδβµ − δαβδµν

)
. Thus we conclude that the

propagator for gravitons on a flat Euclidean background is

∆µνρσ(x− y) =
∫

d4k

(2π)4
eik(x−y)∆µνρσ(k2) (5.55)

where we have employed the Fourier transform

∆µνρσ(k2) =
1
2

δµρδνσ + δµσδνρ − δµνδρσ

k2 − 2ΛK
. (5.56)
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The expression (5.56) deserves some comments. It is known from the literature [49]
that in flat Euclidean space, the propagator for a massive spin 2 particle with five
physical degrees of freedom is given by

∆Spin2
µνρσ (k2) =

1
2

GµρGνσ + GµσGνρ − 2
3GµνGρσ

k2 + m2
(5.57)

where Gµν = δµν − (kµkν)/m2. As is explained in Appendix (A.6), to 0th order in
λ physical sources tµν satisfy

kµtµν = 0. (5.58)

Thus, if we consider the one-particle exchange amplitude between two physical
sources6 tµν and tµν ′ for the massive spin 2 state described by (5.57) we arrive
at

tµνt
µν ′ − 1

3 tt′

k2 + m2
(5.59)

with t = tµµ. On the other hand, the one-particle exchange amplitude derived with
the graviton propagator (5.56) reads

tµνt
µν ′ − 1

3 tt′

k2 − 2ΛK
− 1

6
tt′

k2 − 2ΛK
. (5.60)

By comparison it follows immediately that for ΛK < 0, the first term in (5.60)
corresponds to the exchange of a massive spin 2 particle. However, the second term
has the ”wrong sign” and must be associated with a repulsive interaction due to
a massive spin 0 ghost. This result is in agreement with [44]. For ΛK > 0 things
look actually worse: in this case one would naively conclude that (5.60) describes
the exchange amplitude of a massive spin 2 particle and a massive spin 0 ghost with
”masses” i

√
ΛK .

However, for ΛK = 0 there is no problem because then (5.56) is just the well-
known propagator for a massless spin 2 field with two degrees of freedom. Note
that there remains a difference between the graviton propagator (5.56) for ΛK = 0
and the massive spin 2 particle propagator (5.57) in the limit m → 0 even if they
are coupled to physical sources kµtµν = 0. This is known as the van Dam-Veltman-
Zakharov (vDVZ) discontinuity [43] [48] and is ultimatively due to the extra degrees
of freedom of the massive spin 2 state as compared to the massless case.

For ΛK 6= 0 the appearance of the ghost and the imaginary ”masses” i
√

ΛK

respectively disqualify the linearized theory described by the action

SL
EH =

∫
d4x

(
L(1) + L(2) + LGF

)
(5.61)

6For real sources tµν(k) we just have tµν ′(k) = tµν(−k).
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as a consistent quantum theory of gravity because negative probabilities, gravitons
travelling faster than the speed of light and other problematic behaviour will occur.
However, this can be seen as an artefact of our expansion around flat space that is
not a solution of the field equations for ΛK 6= 0 and thus does not represent the
ground state of the theory. In case of ΛK 6= 0, the solutions of the field equations
that correspond to the flat space solution for ΛK = 0 (i.e. that have the maximal
number of symmetries, 10 Killing vectors) are either de Sitter (ΛK > 0) or anti
de Sitter (ΛK < 0). See Appendix (A.6) for some more details. Indeed it can be
shown [29] that in an expansion around (anti) de Sitter space, the spectrum of the
theory with nonvanishing cosmological constant does not suffer from ghosts or other
pathologies and the gravitational field involves only two physical degrees of freedom.

In this work, we will not attempt to enter a deeper discussion involving quantum
field theory in curved spacetimes. However, it will turn out in the next chapter that
the case ΛK 6= 0 has some interesting implications for the renormalization group flow
of gravity. Therefore, we propose the following pragmatic point of view. It can be
argued [11] that a nonlinear completion7 of the action (5.61) such that ultimatively,
the full Einstein Hilbert action with cosmological constant (5.1) is restored,

SEH = SL
EH + V (h), (5.62)

should eliminate the ghost, the longitudinal polarisations of a massive graviton and
the wrong sign ”mass” terms respectively. This is due to the nonlinear interactions
in V (h) which are supposed to allow for a background rearrangement such that the
signature of the kinetic term of the ghost changes and a shift to the correct ground
state of the theory occurs. Then one effectively ends up with a QFT in curved
spacetime (de Sitter or anti de Sitter).

Thus, we will formally treat quantum gravity with (small) nonvanishing ΛK as
a QFT in flat Euclidean space, keeping in mind that a more accurate treatment
would amount to doing it in (anti) de Sitter space. Note that since we will work
with an (effective) IR momentum space cutoff Λ, the occurrence of the wrong sign
”mass” term in the propagator (5.56) for ΛK > 0 will not pose any problems from
a technical point of view as long as we keep Λ2 > ΛK .

Finally, it remains to derive the propagator ∆GHµν for the ghost fields C
ν , Cµ.

This one can be extracted out of the ghost term (5.26). Employing eq. (5.27) we
find

SGH(h, C, C) =
∫

d4xCµδµ
ν∂

ρ∂ρC
ν +O(λ) (5.63)

and thus

∆GHµν(x− y) =
∫

d4k

(2π)4
eik(x−y)∆GHµν(k2) (5.64)

7It is known [42] that an analysis of this kind can cure the the vDVZ discontinuity problem.
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where
∆GHµν(k2) =

δµν

k2
. (5.65)

5.2 Cutoff regularization and Polchinski’s equation

5.2.1 UV cutoff regularization of gravity and violation of the gauge
invariance

We begin by decomposing the total action (5.28) of Einstein gravity into the graviton
and ghost kinetic terms, a term linear in the field steming from the cosmological
constant and an interaction Lagrangian LEH

int

(
h, C, C

)
:

Stot =
∫

x
−2

ΛK

λ
h− 1

2
〈hµν ,∆−1

µνρσhρσ〉 − 〈Cµ
,∆−1

GHµνC
ν〉+

∫
x
LEH

int

(
h, C, C

)
.

(5.66)

In addition, we introduce an extended interaction Lagrangian L̃EH
int (h, C, C, β, τ)

involving the composite field operators LC g̃µν and Cν∂νC
µ by

L̃EH
int (h, C, C, β, τ) := LEH

int (h, C, C) + βµνLC g̃µν + λτµCν∂νC
µ. (5.67)

Note that from the definition (5.32) of the extended total action follows that

S̃tot =
∫

x
−2

ΛK

λ
h− 1

2
〈hµν ,∆−1

µνρσhρσ〉 − 〈Cµ
,∆−1

GHµνC
ν〉+

∫
x
L̃EH

int

(
h, C, C, β, τ

)
.

(5.68)

In order to be able to write down a renormalization group equation for Euclidean
quantum gravity, we have to employ a cutoff regularization. Let Λ be some scale.
We introduce a cutoff function8 K(−∂2/Λ2) which has the properties (2.8):

K(z) =


1 , 0 ≤ z ≤ 1

smooth , 1 < z < 4
0 , 4 ≤ z.

The UV regularization is done by multiplying the graviton propagator (5.55) with
the cutoff function,

∆µνρσ(x− y) → ∆Λ
µνρσ(x− y) := K(−∂2/Λ2)∆µνρσ(x− y). (5.69)

Similarly, we regularize the propagator (5.64) for the ghosts:

∆µνGH(x− y) → ∆Λ
µνGH(x− y) := K(−∂2/Λ2)∆µνGH(x− y). (5.70)

8One can think of K(−∂2/Λ2) as K(k2/Λ2) where k2 are the eigenvalues of the operator −∂2.
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At this point, some important comments are in order. A momentum cutoff regu-
larization inevitably violates the local gauge invariance of any gauge theory. To see
this, consider a homogeneous gauge transformation of some field φ(x),

φ(x) → Ω(x)φ(x). (5.71)

In momentum space the gauge transformed field is given by a convolution of the
field with the gauge transformation,∫

d4k Ω(p− k)φ(k), (5.72)

and consequently any division of momenta is lost. On the quantum level, the
gauge symmetry leads to BRS invariance of the total action and ultimatively to
the Slavnov-Taylor-Identities for the generating functional. Hence, if gauge invari-
ance is destroyed by the regulator, so will be the BRS invariance and we will end
up with violated Slavnov-Taylor-identities (vSTI).

This fact poses a serious obstacle to any kind of analysis of a gauge theory
involving RG flow equations. Moreover, since the STI are generated by nonlinear
BRS transformations of the fields, additional complications arise because composite
field operators will have to be renormalized, too.

In the case of the perturbative renormalization of Yang-Mills (YM) theory via
flow equations, it has been shown [18] that these problemes can be surmounted by
the following procedure which has as its ultimate aim the restoration of the STI
(and therefore the gauge invariance) of the theory in the limit Λ0 → ∞, i.e. when
the UV cutoff is taken away:

1. As a first step, one disregards the violation of the STI and establishes a finite
UV behaviour of the vertex functions of an effective potential L for the theory
at hand. Here, L is defined as in eq. (2.7). Since local gauge invariance
is destroyed in the regularized theory, the RG flow will generally produce
contributions to all those operators that are not forbidden by the unbroken
global symmetries, e.g. O(4) invariance. Thus, one has to add as counterterms
to L not only terms corresponding to the ”classical” interaction part of the
theory, but also all local renormalizable operators allowed by the unbroken
global symmetries. In general, the number of such terms is much higher than
the actual number of free parameters in the theory9.

Thus for an arbitrary set of renormalization conditions, a family of finite the-
ories is established. The procedure up to now is essentially the same as the
renormalization of a scalar field theory described in chapter (3).

9In the case of spontaneously broken SU(2) Yang Mills theory, there are 37 such counterterms
needed, whereas only 9 physical renormalization conditions exist [27].
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2. The second step consists of finding one particular choice for the set of renor-
malization conditions such that in the limit Λ0 → ∞ the theory satisfies the
STI, i.e. gauge invariance is restored. This so-called fine tuning procedure is
rather involved and, roughly speaking, goes as follows [18].

It turns out that the violation of the STI can be expressed through vertex
functions carrying a space-time integrated operator insertion which depends
on the UV cutoff Λ0. These vertex functions will vanish in the limit Λ0 →∞
if the set of renormalization conditions can be chosen such that the inserted
vertex functions have vanishing renormalization conditions for all of their rel-
evant local parts. However, it turns out that there can be more relevant parts
of these insertions10 than renormalization conditions describing the family of
finite theories mentioned above. In this case it has also to be shown that there
are linear interdependences between the relevant parts of the insertions. This
can be achieved by relating the BRS variation of the bare action (which can
be worked out explicitly) with the vSTI for the vertex fuctions by means of
the flow equations.

Clearly, the fine-tuning procedure involves the renormalization of composite
field operators, namley the BRS variations of the fields and the space-time
integrated operator insertion describing the vSTI. In the context of renormal-
ization via flow equations, this problem has been studied in [15], [16].

To summarize this second step once more from a slightly different point of view,
one could say that the STI determine all arbitrarily chosen renormalization
conditions of step one but the ”real” free parameters of the gauge theory.

Now let us come back to our analysis of quantum gravity as an effective field theory
by means of the RG flow equations. Since the cutoff regularization (5.69) violates
the invariance of the Einstein-Hilbert action (5.15) under the local ”gauge” transfor-
mations (5.20), the BRS invariance (5.35) of the (extended) total gravity action will
be broken and as a result, we will observe a violation of the Slavnov-Taylor-Identities
(5.42) and (5.49) respectively.

Thus, in order to arrive at a theory that yields sensible physical predictions, one
would expect that some kind of fine-tuning procedure as described above for the case
of Yang-Mills theory is needed also for quantum gravity in order to restore gauge
invariance and hence the STI in the end. However, the situation for gravity is some-
what different because contrary to the Yang-Mills case, the theory is perturbatively
nonrenormalizable (at least without cosmological constant). Thus, it will in general
not make sense to discuss the restoration of the STI in the limit Λ0 →∞, i.e. when
the UV cutoff is taken away. We will come back to this point in the next chapter
and propose a fine-tuning procedure adapted to the case of quantum gravity.

10Again for the example of spontaneously broken SU(2) Yang Mills theory, the insertion has
canonical dimension 5 and there are 53 relevant parts of it [27].
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For the time being, we will restrain ourselves to the implications of step one of
our discussion on the previous page for quantum gravity. This means that the cutoff
regularization (5.69) and the resulting violation of the gauge/BRS symmetry (5.35)
enforces the introduction of counterterms for all local renormalizable operators still
allowed by the unbroken global symmetries. In our case, this is just the Euclidean
O(4) invariance. Hence, a bare total gravity action Stot(Λ0) will be defined in the
following way:

Stot(Λ0) =
∫

x
A

(2π)4

2
h− 1

2
〈hµν ,∆Λ0 −1

µνρσ hρσ〉 − 〈Cµ
,∆Λ0 −1

GHµνCν〉+ L
(
h, C, C, Λ0

)
.

(5.73)

Note that we included an arbitrary renormalization constant11 A for the term linear
in the field h. Furthermore, it is understood that the cosmological ”mass term”
−2ΛK appearing in the graviton propagator (5.56) is replaced by another arbitrary
renormalization constant B1, and that the ghost propagator becomes equipped with
a ”mass” squared B2. See eqns. (5.79) and (5.80) for the new momentum space
propagators. Finally, we introduced the bare interaction term

L
(
h, C, C, Λ0

)
:=
∫

x
LEH

int

(
h, C, C

)
+ LC.T.

(
h, C, C, Λ0

)
. (5.74)

In eq. (5.74), LEH
int means the ”classical” interaction Lagrangian of quantum Ein-

stein gravity introduced in eq. (5.66), whereas LC.T.

(
h, C, C, Λ0

)
contains all local

counterterms necessary to cancel the upcoming divergences. Note that since LEH
int in-

volves (infinitely many) nonrenormalizable operators as will be explained in section
(6.1.1), in the standard perturbative treatment we would also need counterterms
corresponding to higher order field invariants (i.e. higher powers of the curvature,
such as R2) that are not present in LEH

int [41] [13]. This would be the case even if
a symmetry respecting regulator would be used, such as dimensional regularization.
However, if the theory is treated as an effective field theory with flow equations
along the lines developed in chapter (4), only a finite number of counterterms will
be needed depending on an improvement index s. This will become clear in the next
chapter.

By virtue of the definition (5.73), we may now easily write down an UV regular-
ized generating functional for quantum gravity:

W (J ; Λ0) =
∫
DhµνDCµDCµ eStot(Λ0)+SJ . (5.75)

Defining also an extended bare total gravity action S̃tot(Λ0) via

S̃tot(Λ0) =
∫

x
A

(2π)4

2
h− 1

2
〈hµν ,∆Λ0 −1

µνρσ hρσ〉 − 〈Cµ
,∆Λ0 −1

GHµνCν〉+ L̃
(
h, C, C, β, τ, Λ0

)
(5.76)

11The factor (2π)4/2 is chosen in order to obtain a nice RGE in the next section.
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where

L̃
(
h, C, C, β, τ, Λ0

)
:=
∫

x
L̃EH

int (h, C, C, β, τ) + L̃C.T.

(
h, C, C, β, τ, Λ0

)
, (5.77)

we arrive at the extended regularized functional

W (J, βµν , τµ; Λ0) =
∫
DhµνDCµDCµ e S̃

Λ0
tot+SJ . (5.78)

The latter can be used as a starting point for deducing violated Slavnov-Taylor-
Identities. Note that counterterms for the nonlinear BRS variations have been in-
cluded in (5.77).

5.2.2 Polchinski’s equation for Euclidean quantum gravity

In this section, we will work in momentum space. In the spirit of the effective action
(3.1) and our definition (5.73) of a bare gravity action, we introduce an effective
total action Stot(Λ) for quantum gravity referring to some scale Λ. To do so, we
employ regularized momentum space graviton and ghost propagators,

∆Λ
µνρσ(k2) =

1
2
K(k2/Λ2)

δµρδνσ + δµσδνρ − δµνδρσ

k2 + B1
(5.79)

∆Λ
GHµν(k

2) = −K(k2/Λ2)
δµν

k2 + B2
. (5.80)

Note that two arbitrary renormalization constants B1 and B2 (”mass” squares) have
been included in (5.79) and (5.80). Our effective action for quantum gravity takes
the following form:

Stot(Λ) =
∫

d4k

(2π)4

(
A

(2π)4

2
δ(k)h(k)− 1

2
C1h

µν(k)
(
∆Λ

µνρσ(k2)
)−1

hρσ(−k)

−C2 C
µ(k)

(
∆Λ

GHµν(k
2)
)−1

Cν(−k)
)

+ L
(
h, C, C; Λ

)
(5.81)

where L(h, C, C; Λ) is a not necessarily local interaction term depending on the fields
hµν , C

µ, Cµ and the scale Λ. We will refer to it as ”effective potential”.
The action (5.81) gives rise to an Euclidean quantum field theory described by

the generating functional

W (J) =
∫
DhµνDCµDCµ eStot(Λ)+SJ . (5.82)

The dependence of L(h, C, C; Λ) on the scale Λ is given by the Polchinksi RGE for
quantum gravity, which will be deduced in the following theorem.



5.2. CUTOFF REGULARIZATION AND POLCHINSKI’S EQUATION 65

Theorem 7 (Polchinski’s equation for Euclidean quantum gravity) Let Λ be
some scale, and assume12 that

J(k) = 0 for k2 > Λ2. (5.83)

Under a change of Λ the generating functional W (J) defined in eq. (5.82) remains
unchanged,

Λ
d

dΛ
W (J) = 0, (5.84)

if the effective potential L(h, C, C; Λ) satisfies

−Λ
d

dΛ
L =

∫
d4k

(2π)4

2
Λ

d

dΛ
∆Λ

µνρσ

(
δL

δhµν

δL

δhρσ
+

δ2L

δhµνδhρσ
+ Aδ(k)δµν δL

δhρσ

)
+
∫

d4k(2π)4Λ
d

dΛ
∆Λ

GHµν

(
δL

δCµ

δL

δCν
+

δ2L

δCµδCν

)
. (5.85)

Proof 7 Differentiation of W (J) with respect to Λ yields

Λ
d

dΛ
W =

∫
DhµνDCµDCµ

[∫
d4k

(2π)4

(
−1

2
hµνΛ

d

dΛ
(
∆Λ

µνρσ

)−1
hρσ

− C
µΛ

d

dΛ
(
∆Λ

GHµν

)−1
Cν

)
+ Λ

d

dΛ
L(h, C, C; Λ)

]
eStot(Λ)+SJ .

(5.86)

Due to eq. (5.83), J(k) has no overlap with dK
dΛ for a cutoff function which has the

properties (2.8). Moreover, we have13

(
∆Λ

µναβ(k2)
)−1∆αβρσ(k2) =

1
2
(
δρ
µδσ

ν + δσ
µδρ

ν

)
K−1 (5.87)(

∆Λ
GHµα(k2)

)−1∆αν
GH(k2) = δν

µK−1. (5.88)

Using K−2ΛdK
dΛ = −Λ d

dΛK−1 and neglecting field-independent terms which only
change W (J ; Λ) by an overall factor we therefore find that∫

d4k Λ
dK

dΛ

∫
Dhµν

δ

δhµν

[(
hµνK−1 +

(2π)4

2
∆µνρσ δ

δhρσ

)
eStot(Λ)

]
=
∫
Dhµν

∫
d4k

1
2

[
1

(2π)4
hµνΛ

d

dΛ
(
∆Λ

µνρσ

)−1
hρσ

+ (2π)4 Λ
d

dΛ
∆Λ

µνρσ

(
δL

δhµν

δL

δhρσ
+

δ2L

δhµνδhρσ
+ Aδ(k)δµν δL

δhρσ

)]
eStot(Λ).

(5.89)
12This is not an essential ingredient. See Appendix (A.4) for details.
13See also eq. (5.54).
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Employing the identity { δ
δCµ

, Cµ} = { δ
δCµ

, Cµ} = 1 and remembering that δ
δCµ

δ
δC

ν =

− δ
δC

ν
δ

δCµ we similarly have∫
d4kΛ

dK

dΛ

∫
DCµDCµ

[
δ

δC
µ

(
C

µ
K−1eStot(Λ)

)
+

δ

δCµ

((
CµK−1 + (2π)4∆µν

GH

δ

δC
ν

)
eStot(Λ)

)]
= −

∫
DCµDCµ

∫
d4k

[
1

(2π)4
C

µΛ
d

dΛ
(
∆Λ

GHµν

)−1
Cν

+ (2π)4Λ
d

dΛ
∆Λ

GHµν

(
δL

δCµ

δL

δCν
+

δ2L

δCµδCν

)]
eStot(Λ).

(5.90)

Hence, if we choose in eq. (5.86) the quantity −Λ d
dΛL as proposed by the Polchinski

RGE (5.85) we obtain

Λ
d

dΛ
W =

∫
d4k Λ

dK

dΛ

∫
DhµνDCµDCµ

[
δ

δhµν

((
hµνK−1 +

(2π)4

2
∆µνρσ δ

δhρσ

)
eStot(Λ)

)
+

δ

δC
µ

(
C

µ
K−1eStot(Λ)

)
+

δ

δCµ

((
CµK−1 + (2π)4∆µν

GH

δ

δC
ν

)
eStot(Λ)

)]
= 0. (5.91)

2

We would like to point out that the derivation of the Polchinski equation does not
depend on translational invariance of the effective potential [23].

The Polchinski RGE (5.85) for Euclidean quantum gravity can also be written
down in position space:

−Λ
d

dΛ
L

=
1
2

∫
xy

Λ
d

dΛ
∆Λ

µνρσ

(
δL

δhµν(x)
δL

δhρσ(y)
+

δ2L

δhµν(x)δhρσ(y)
+ Aδ(x− y)δµν δL

δhρσ(x)

)
+
∫

xy
Λ

d

dΛ
∆Λ

GHµν

(
δL

δCµ(x)
δL

δCν(y)
+

δ2L

δCµ(x)δCν(y)

)
. (5.92)

Please refer to [27] for a general derivation of position-space RGEs.
In analogy to the definition of the effective action in eq. (5.81), we may introduce

an extended effective action S̃tot(Λ) by employing an extended effective potential14

L̃
(
h, C, C, β, τ, Λ

)
. (5.93)

14It is understood that at some bare scale Λ0, the extended effective potential L̃ is given by eq.
(5.77).
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The latter involves again the couplings βµν , τµ to the BRS composite fields (5.29)
and (5.30) and leads to an extended generating functional W (J, βµν , τµ). One can
check15 that the dependence of L̃

(
h, C, C, β, τ, Λ

)
on the scale is again given by the

Polchinski RGE (5.85) if we perform the substitution

L(h, C, C; Λ) → L̃
(
h, C, C, β, τ, Λ

)
. (5.94)

If we would find a way to solve the RGE (5.85) for the (extended) effective potential,
employing the bare potential (5.77) as initial condition at Λ0, we would obtain a
trajectory

[Λ,Λ0] → L̃
(
h, C, C, β, τ, Λ,Λ0

)
. (5.95)

The solution L̃
(
h, C, C, β, τ, Λ,Λ0

)
then leads via eq. (5.82) to a generating func-

tional W (J, βµν , τµ; Λ0) of some QFT16. If this QFT would satisfy the following
conditions,

1. only a finite number of renormalization conditions at some renormalization
scale ΛR has to be imposed in order to retain a finite solution L in the limit
Λ0 →∞

2. the arbitrary renormalization conditions of the various couplings that arise
due to the symmetry breaking cutoff regularization can be chosen in such a
way that the generating functional W (J, βµν , τµ; Λ0) satisfies the STI (5.42) of
quantum gravity in the limit Λ0 →∞

3. crucial physical requirements such as the unitarity of the quantum theory are
satisfied

4. the observed coupling strenghts, i.e. of the cosmological constant ΛK and
Newtons constant G = λ2/32π, are reproduced correctly,

then we would presumably have found the quantum theory of gravitation. However,
it is well-known that so far, all attempts to find such a solution (at least in pertur-
bation theory) have failed in one or the other points stated above. We will discuss
this in more detail in the next chapter, and we will investigate the problem from
the viewpoint of renormalization via flow equations and the analogous treatment of
effective field theories proposed in chapter (4).

15Remember that the derivation of the Polchinski equation does not depend on translational
invariance of the effective potential.

16See Appendix (A.4) for a cleaner relation between L̃
(
h, C, C, β, τ, Λ, Λ0

)
and W (J, βµν , τµ; Λ0)

which does not need source terms that satisy the condition (5.83).
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Chapter 6

Euclidean Quantum Gravity via
Flow Equations

A bare action for quantum gravity containing all field invariants that are permitted
by general coordinate invariance is introduced. The relation to higher derivative
gravity is discussed, and it is argued that in the effective field theory approach the
known unitarity problems [39] will not appear. In the following, the methods that
have been developed in chapter (4) for investigating the predictivity of effective field
theories are applied to effective quantum gravity. As a first step, we disregard the
violation of the Slavnov-Taylor identities (STI) and establish bounds for the vertex
functions of the gravity effective potential in generalized perturbation theory in the
renormalized renormalizable and some of the bare nonrenormalizable couplings. It
is shown that by introducing appropriate notations, we may proceed in close anal-
ogy to the case of the scalar field theory considered in chapters (3) and (4). A
set of (for the time being) arbitrary renormalization and improvement conditions is
imposed. By inverting the renormalization group trajectory, it is argued that the
improvement conditions force the UV cutoff Λ0 of effective quantum gravity to be
the Planck scale MP . Finally, we establish that the family of theories described by
the arbitrary renormalization and improvement conditions is predictive at scales far
below the Planck scale with finite accuracy. We then proceed to the restoration of
the STI. Introducing bare regularized BRS variations, the violated Slavnov-Taylor
identities (vSTI) for the extended effective potential are worked out at the value
Λ = 0 of the floating cutoff. Bounds for the vertex functions carrying the nonlinear
BRS variations as operator insertions are established, and we note that a crucial
difference to the Yang-Mills case lies in the fact that the gravity BRS fields contain
nonrenormalizable parts. By imposing renormalization and improvement conditions
for the BRS variations, it is proven that the dependence of these vertex functions
on the bare initial conditions is suppressed at scales far below the Planck scale1.

1This is similar to the statements concerning the predictivity of the effective theory.
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The violation of the STI can be described in terms of vertex functions carrying a
space-time integrated operator insertion having canonical dimension 5. It is there-
fore argued that the STI can be restored to finite accuracy if one particular set of
arbitrary renormalization and improvement conditions for the couplings and BRS
variations can be determined such that the relevant and leading irrelevant parts of
the vertex functions describing the violation of the STI are driven small at scales far
below the Planck scale. Here, ”small” means the order of accuracy to which the the-
ory is predictive. In the last section of this chapter, we consider the no-cutoff limit
Λ0 →∞ of quantum gravity from the viewpoint of the analysis with flow equations
à la Polchinski. The vertex functions of the gravity effective potential are expanded
solely in the renormalizable couplings, and their boundedness and convergence is
established in the limit Λ0 →∞ while the STI are still violated. Applying the same
program to the vertex functions carrying the nonlinear BRS variations as operator
insertions, we observe that the nonrenormalizable parts of the gravity BRS fields
will go away in the no-cutoff limit if smallness of the bare BRS couplings is imposed.
It is, however, shown that if the latter constraint is dropped, convergence of the
BRS vertex functions may still be proven. Proceeding with the restoration of the
STI of quantum gravity, we argue that for zero renormalized cosmological constant
ΛK = 0 the theory will become free as Λ0 → ∞, and that the latter statement is
compatible with gauge invariance. It is speculated whether a nonzero cosmological
constant ΛK 6= 0 might lead to a nonvanishing value of the gravitational constant
in the no-cutoff limit, and we point out that the gravitational coupling should then
become determined by the cosmological constant. Finally, we observe that a similar
effect might be obtained by coupling massive fields to gravity, leading to specula-
tions if the gravitational constant is given in terms of the cosmological constant and
the masses of the elementary particles as Λ0 →∞. We ask whether this indicates a
Higgs-gravity connection.

6.1 The bare action for effective quantum gravity

6.1.1 Quantum Einstein gravity without a cosmological constant is
perturbatively nonrenormalizable

As it is explained in Appendix (A.1), the canoncial dimension of a field of some QFT
follows from the large momentum behaviour of its dedicated propagator. Thus we
can determine the canonical dimensions Dh, DC and DC of the graviton and ghost
fields hµν , Cµ and Cν introduced in section (5.1.1) by looking at their respective
momentum space propagators (5.56) and (5.65). We find that in d = 4

Dh = DC = DC = 1. (6.1)
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Let us now come back to the expansion (5.15) of the Einstein-Hilbert action with a
cosmological constant,

SEH =
∫

d4x

(
−4ΛK

λ2
+ L(1) + L(2) + L(3) + ...

)
.

In eqns. (5.16) and (5.17) we have already given the Lagrangians linear and bilinear
in the gravitational field h, L(1) and L(2). We will now derive some terms of higher
powers in h. From eq. (5.14) and Ref. [6] we obtain

L(3) = λΛK

(
−2

3
hµ

νh
ν
ρh

ρ
µ +

1
2
hhµ

ρh
ρ
µ −

1
12

h3

)
− λhµν

(
1
2
∂µhρσ∂νh

ρσ − 1
4
∂µh∂νh

+ ∂ρhµσ∂σhρν − ∂ρhµσ∂ρhνσ + ∂ρhµν∂
ρh

)
(6.2)

L(4) = λ2ΛK

(
− 1

96
h4 +

1
8
h2hµ

ρh
ρ
µ −

1
3
hhµ

νh
ν
ρh

ρ
µ

− 1
8
(hµ

ρh
ρ
µ)2 +

1
2
hµ

νh
ν
ρh

ρ
σhσ

µ

)
+ O(λ2) (6.3)

L(5) = λ3ΛK

(
−2

5
hµ

νh
ν
ρh

ρ
σhσ

λhλ
µ +

1
6
(hµ

ρh
ρ
µ)(hµ

νh
ν
ρh

ρ
µ) +

1
4
hhµ

νh
ν
ρh

ρ
σhσ

µ

− 1
16

h(hµ
ρh

ρ
µ)2 − 1

12
h2hµ

νh
ν
ρh

ρ
µ +

1
48

h3hµ
ρh

ρ
µ −

1
960

h5

)
+ O(λ3).

(6.4)

By virtue of eqns. (5.16), (5.17) and (6.2)- (6.4) we have now explicitly given all field
operators2 of quantum Einstein gravity with a cosmological constant up to canonical
dimension 5. Of course, the expansion does not stop there. In fact eq. (5.15) provides
us with an infinite sum of operators of ever increasing canonical dimension, involving
higher and higher powers of the gravitational coupling λ. Hence, the latter must
have negative canonical dimension, as was already pointed out in eq. (5.2).

The conventional wisdom is therefore that quantum Einstein gravity is pertur-
batively nonrenormalizable by dimensional analysis. Indeed it has been shown by
t’Hooft and Veltman [41], employing the background field method and dimensional
regularization, that the 1-loop divergence of pure gravity with ΛK = 0 is given by

1
8πε

(
1

120
R

2 +
7
20

RµνR
µν
)

. (6.5)

Here, the parameter ε = 4 − d is the deviation of the space-time dimension d of
4, and the overlined curvatures refer to the background metric gµν

3. Clearly, the

2Modulo the operators involving the ghost fields.
3In the background field method (BFM), one employs a splitup gµν = gµν + hµν of the metric

where gµν is the background field. The latter is often required to satisfy the classical field equations.
See [24] for a good review of the BFM.
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divergence (6.5) is not proportional to the original Einstein action (5.1), which is
the kind of behaviour one would expect from a nonrenormalizable theory.

However, for pure gravity with ΛK = 0 and a background field that satisfies
the Einstein equation (A.113), we have Rµν = 0 and thus the divergence (6.5)
disappears- pure gravity is one loop finite! This is no longer true in the presence of
matter fields, and furthermore it has been shown [13] that at two loops a divergence

209λ2

2880(16π2)2
1
ε
R

µν
γδR

γδ
ρσR

ρσ
µν (6.6)

of pure gravity appears which remains even after the Einstein equations have been
used. Hence, the conclusion seems inescapable: quantum Einstein gravity is pertur-
batively nonrenormalizable.

Note, however, that the inclusion of the cosmological term does not only provide
us with a term linear in h and some kind of ”mass” term in the action, with prob-
lematic consequences (see the discussion in section (5.1.2)), but also with additional
interactions, i.e. operators involving more than two fields. In particular, there ap-
pear two operators in L(3) and L(4) multiplied with the cosmological constant4 which
have canonical dimensions ≤ 4 and which are therefore renormalizable. This would
not have been the case had we only considered the expansion of the curvature scalar
R. Then, apart from the kinetic term, only operators with canonical dimension ≥ 5
appear in the action.

We will discuss systematically the various operators appearing in the expanded
gravity action in section (6.2.1). The inclusion of the cosmological term will then
lead to some interesting speculations in section (6.3).

6.1.2 The general action for gravity

The underlying principle of general relativity is the invariance of the theory under
general coordinate transformations. Hence, an action of a theory describing gravi-
tation should be gauge invariant in that sense. The Einstein-Hilbert action (5.1), of
course, meets this requirement. However, the principle of gauge invariance does not
define the theory completely, since infinitely many invariants can be constructed out
of the metric. In addition to the operators

√
g and

√
gR appearing in (5.1), there

are invariants
√

gR2,
√

gRµνR
µν ,

√
gR3 etc. Hence, the most general action for a

theory of gravitation takes the following form:

Sgrav =
∫

d4x
√

g

(
−4

ΛK

λ2
+

2
λ2

R + c1RµνR
µν − c2R

2 + ...

)
(6.7)

where c1, c2 are additional (dimensionless) coupling constants and ... means higher
powers of R, Rµν and Rµνρσ. Note that we did not include a term

√
gRµνρσRµνρσ in

4The operators have ”mixed” couplings λΛk and λ2ΛK .
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the action (6.7) because of the Gauss-Bonnet topological invariance in four dimen-
sions [39]: ∫

d4x
√

g
(
RµνρσRµνρσ − 4RµνR

µν + R2
)

= 0 (6.8)

for space-times topologically equivalent to flat space.
The experimental bounds on the couplings c1, c2 are very poor. From [9] we ob-

tain c1, c2 ≤ 1074, whereas the coefficients of yet higher powers of R have essentially
no experimental constraints. The basic reason for this is that at the energies acces-
sible at our present-day experiments, the curvature is so small that higher powers
of R are even smaller. We will demonstrate this behaviour in an explicit calulation
at the end of this section.

Thus, there is no real justification5 for preferring the Einstein-Hilbert action
(5.1) over the general action (6.7) in a theory of gravitation. It cannot be argued
on the basis of symmetry nor experimental input. Unlike in other theories, renor-
malizability is not a criterion, either: as has been discussed in the last section, a
quantum theory based on the Einstein-Hilbert term already involves infinitely many
nonrenormalizable operators.

We therefore refine our definition of a bare gravity action given in eq. (5.73) as
follows:

Stot(Λ0) =
∫

x
A

(2π)4

2
h− 1

2
〈hµν ,∆Λ0 −1

µνρσ hρσ〉 − 〈Cµ
,∆Λ0 −1

GHµνCν〉+ L
(
h, C, C, Λ0

)
(6.9)

where the bare interaction term L
(
h, C, C, Λ0

)
is now understood to contain all

interaction terms of the classical general action (6.7) expanded in powers of the
gravitational field h, as well as counterterms necessary to cancel the upcoming di-
vergences:

L
(
h, C, C, Λ0

)
:=
∫

x
Lgrav

int

(
h, C, C

)
+ LC.T.

(
h, C, C, Λ0

)
. (6.10)

Hence, our bare gravity action (6.9) contains an infinite number of coupling constants
ΛK , λ, c1, c2, .... In the next section, we will show that if we employ an effective field
theory approach with flow equations à la chapter (4), only a finite number6 of
counterterms has to be included in LC.T.

(
h, C, C, Λ0

)
. Remember that due to the

symmetry-breaking cutoff regularization, among these will be counterterms for all
operators allowed by the unbroken global O(4) invariance.

5One may, however, demand that the classical equations of motion for the metric tensor be
second order partial differential equations [22]. Then one is restricted to the Einstein-Hilbert term.

6Depending on the number of renormalization and improvement conditions that are imposed.
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The inverse regularized propagators appearing in (6.9) are still (the position-
space versions of) the graviton and ghost propagators (5.79) and (5.80) that have
been extracted out of the Einstein-Hilbert term. This means that contributions
bilinear in h that stem from the higher order field invariants in (6.7) have been
included in the interaction term (6.10).

From the literature [39] it is known that a quantum theory of gravitation that is
based on the action

SR2 =
∫

d4x
√

g

(
2
λ2

R + c1RµνR
µν − c2R

2

)
(6.11)

is renormalizable, but plagued by unitarity problems. We will refer to (6.11) as
R2-gravity. Since our bare gravity action (6.9) contains the operators of (6.11), we
have to discuss the implications of R2-gravity for our work.

To do so, we consider the contribution bilinear in h to the interaction term∫
x L

grav
int

(
h, C, C

)
that is generated by the operator∫

x

√
g
(
c1RµνR

µν − c2R
2
)
. (6.12)

From the definitions (5.5) and (5.6) of the curvature tensor and the Christoffel
symbols follows that each operator Rµνρσ and its contractions R, Rµν contain two
derivatives. Hence for an expansion (5.12) of the metric density, the term bilinear
in the gravitational field h emerging out of (6.12) will be of the form

Lquad
R2 (h) = −ciλ

2

2

∫
x
h∂4h. (6.13)

The exact form of (6.13) is rather lenghty due to the proliferations of Lorentz indices
and we will not give it here. A momentum space version can be found in [39]. In
order to extract the relevant physics, let us instead consider a toy model of the bare
action (6.9) that contains only two operators:∫

x

1
2
h∂2h− ciλ

2

2
h∂4h (6.14)

where the second term in (6.14) is treated as an interaction. The momentum space
propagator of the model is thus again

1
k2

, (6.15)

whereas the vertex factor of the ”interaction” (6.13) follows from∫
x1x2

eix1k1eix2k2
δ

δh(x1)
δ

δh(x2)
Lquad

R2 (h) = −ciλ
2

2
δ(k1 + k2)(k4

1 + k4
2) (6.16)
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as

τ(k) = −ciλ
2k4. (6.17)

Using the geometric series, we may calculate the full or ”dressed” propagator7:

G(2)(k2) =
1
k2
− 1

k2
ciλ

2k4 1
k2

+
1
k2

ciλ
2k4 1

k2
ciλ

2k4 1
k2

+ ...

=
1

k2 + ciλ2k4
. (6.18)

From (6.18) two important conclusions can be drawn. First, we may apply an
expansion into partial fractions

1
k2 + ciλ2k4

=
1
k2
− 1

k2 + 1/(ciλ2)
. (6.19)

The second term on the RHS of (6.19) corresponds to the propagator of a massive
scalar, but with the wrong overall sign. Hence, the full propagator (6.18) leads to a
potential that includes an additional Yukawa term:

V (r) ∼ −1
r

(
1− e−r/

√
ciλ2
)

. (6.20)

From (6.20) it is now clear why the experimental bounds on the couplings ci are so
crude. Since λ ∼ 10−35m it requires very large values of ci to produce observable
effects.

Second, if we look at the denominator of the propagator (6.18) we see that the
k4 term becomes dominant over k2 for

k2 > ciλ
2. (6.21)

A 1/k4 propagator makes the theory perturbatively renormalizable, as can be argued
already on the level of dimensional analysis. From (A.3) follows that the canonical
dimension of a field φ is Dφ = 0 for an UV behaviour σ = 4 of the associated prop-
agator, and thus all operators of the (expanded) R2-action (6.11) have dimensions
≤ 4 and are therefore renormalizable.

On the other hand, the R2-propagator introduces bad behaviour such as ghostlike
particles and hence violation of the unitarity [39]. However, it can be shown [38]
that these kind of problems only arise in the high energy domain (6.21), i.e. when
the UV behaviour of the theory is governed by the 1/k4 term and R2-gravity is
treated as a fundamental theory. If we introduce a cutoff and restrict ourselves to
momenta k2 < ciλ

2, the R2 terms produce only small corrections to the Einstein-
Hilbert theory and no problematic behaviour is introduced. This argument holds

7This is of course what we would have obtained had we used the full action (6.14) to derive the
propagator.
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still true when even higher order field invariants are included in the action, as we
have done in (6.7).

We conclude this section by noting that we also refine the definition of the bare
extended action S̃tot(Λ0) given in eq. (5.76) by replacing (5.77) with

L̃
(
h, C, C, β, τ, Λ0

)
:=
∫

x
L̃grav

int (h, C, C, β, τ) + L̃C.T.

(
h, C, C, β, τ, Λ0

)
(6.22)

where

L̃grav
int (h, C, C, β, τ) := Lgrav

int (h, C, C) + λ−1βµνLC g̃µν + τµCν∂νC
µ. (6.23)

Concerning the counterterms appearing in L̃C.T.

(
h, C, C, β, τ, Λ0

)
, we refer the reader

to the remarks following eq. (6.10). Note however that additional counterterms for
the nonlinear BRS variations have been included in (6.22).

6.2 Predictivity of effective Euclidean quantum gravity
from the viewpoint of the renormalization group

6.2.1 Analysis without Slavnov-Taylor identities

As has been discussed in the last section, a quantum theory of gravitation whose
UV behaviour is governed by the 1/k2 propagator of the Einstein-Hilbert term of
the bare action (6.9) involves infinitely many nonrenormalizable operators. Thus it
is clear by the arguments given in section (2.3) that we will not be able to fix the
(nonrenormalizable) couplings8 λ, c1, c2... to arbitrary values at some renormaliza-
tion scale ΛR while at the same time sending the UV cutoff of the theory to infinity,
Λ0 →∞.

However, as has been outlined in section (2.3) and proven in chapter (4), it is
possible to extract information out of a nonrenormalizable theory as long as one
keeps a finite UV cutoff Λ0 and contents oneself with predictions of finite accuracy.
We will therefore show in the following how the program of chapter (4) can be
applied to the theory of gravitation described by the general action (6.7).

To do so, let us once more examine the structure of (6.7),

Sgrav =
∫

d4x
√

g

(
−4

ΛK

λ2
+

2
λ2

R + c1RµνR
µν − c2R

2 + ...

)
.

As we have discussed in the last section, each curvature tensor R comes with two
derivatives. Hence, if we express the action in terms of the metric density g̃µν =√

g gµν and apply the splitup (5.14)

g̃µν = δµν + λhµν ,

8The cosmological constant ΛK is a renormalizable coupling. See section (6.3).
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the expansion of (6.7) in powers of h takes the following schematic structure:

Sgrav ∼
∫

d4x
(ΛK

λ
h + h(∂2 + ΛK)h + λΛKh3 + λ2ΛKh4 + λh2∂2h + λ3ΛKh5

+ c1λ
2h∂4h + c2λ

2h∂4h + λ2h3∂2h + λ4ΛKh6...
)
. (6.24)

In (6.24) we have dropped all Lorentz indices and ordered the field operators with
respect to their increasing canonical dimensions (with the exception of the kinetic
term, which appears together with the ”mass” term). Note that all combinations9∫

x
hn∂2mh, n,m ∈ N (6.25)

of powers of fields h and derivatives ∂2 possible appear in (6.24).
In order to perform the analysis of chapter (4), a cutoff regularization had to be

imposed. We have already done this for the action (6.7) in the last section, leading to
the definition of a bare gravity action in eq. (6.9). As has been discussed in section
(5.2.1), the cutoff regularization violates the BRS invariance of the gauge fixed ac-
tion, and hence in eq. (6.10) counterterms for all operators allowed by the unbroken
global O(4) invariance have been included in the bare potential L

(
h, C, C, Λ0

)
.

In section (5.2.1), we have reviewed a fine-tuning procedure developed for the
perturbative renormalization of Yang-Mills theory with flow equations which aims
at the restoration of the Slavnov-Taylor identities (and therefore the gauge/BRS
symmetry) of the theory in the no-cutoff limit. The first step of this procedure
consists of introducing counterterms for all operators allowed by the unbroken global
symmetries, and of establishing the boundedness and convergence of the vertex
functions in the limit Λ0 → ∞ for an arbitrary set of renormalization conditions.
The second step then amounts to the determination of one particular choice of these
renormalization conditions such that the STI are restored in the limit Λ0 →∞.

We will now propose an analogon to the first step of this procedure for the
theory of gravitation described by the general action (6.7). The main difference
to Yang-Mills theory lies once more in the fact that gravity is nonrenormalizable:
the expansion of (6.7) leads to infinitely many nonrenormalizable operators, and
hence renormalization conditions for some nonrenormalizable operators will have
to be imposed, too. In section (2.3) and chapter (4), these have been referred to
as improvement conditions, and it has been pointed out that their introduction in
general prevents us from taking the no-cutoff limit Λ0 →∞.

The starting point of our analysis will be once more the definition of a momentum-

9The operators
∫

x
hn1∂2mhn2 , n1 + n2 = n + 1, and

∫
x

hn∂2mh are not linearly independent, as
can by shown by integration by parts.
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space effective total action for quantum gravity:

Stot(Λ) =
∫

d4k

(2π)4

(
A

(2π)4

2
δ(k)h(k)− 1

2
hµν(k)

(
∆Λ

µνρσ(k2)
)−1

hρσ(−k)

− Cµ(k)
(
∆Λ

GHµν(k
2)
)−1

C
ν(−k)

)
+ L

(
h, C, C; Λ

)
(6.26)

where L(h, C, C; Λ) is a not necessarily local interaction term. While (6.26) looks
exactly the same as the effective gravity action (5.81), note that it is understood
that Stot(Λ0) is now given by the bare gravity action (6.9) introduced in the last
section.

In the following, the behaviour of the effective potential L(h, C, C; Λ) will be
investigated as renormalization and improvement conditions are imposed. Therefore,
we have to define vertex functions by expanding L in powers of the fields hµν , Cµ and
Cµ. To keep things as simply as possible, let us introduce the following notations
for the fields and indices:

Φ :=
(
hµν , C

µ, Cµ

)
(6.27)

n :=
(
nh, nC , nC

)
, n := nh + nC + nC . (6.28)

We will also sometimes refer to the ”components” h, C and C of the vector Φ by
the placeholder φ. The vertex functions can now be defined as n-fold functional
derivatives of the potential L(Φ,Λ):

δ4(k1 + ... + kn)Ln(k1, ..., kn,Λ) = (2π)4nδ
(n)

Φ̂
L(Φ,Λ)

∣∣
Φ=0

(6.29)

where
δ
(n)

Φ̂
:=

δ

δφ(k1)
...

δ

δφ(kn)
. (6.30)

In our simplifying notation, we have suppressed the O(4) tensor structure of the
vertex functions, as well as the assignment of the momenta to the multiindex n.
Note that the Ln(k1, ..., kn,Λ) are symmetric (antisymmetric) upon permuting the
variables belonging to the graviton fields hµν (the ghost fields Cµ, Cµ) .

Formally, the vertex functions (6.29) look exactly the same as those introduced in
eq. (3.4) for the scalar field theory. This is of course a benefit of our notation, and in
fact it was the reason for employing it. Hence, if we define running coupling constants
ρi(Λ) as coefficients of Taylor expansions of the vertex functions Ln(k1, ..., kn,Λ)
around ki = 0, we may just adopt the definitions of eqns. (3.11)-(3.15) and (4.2)-
(4.8). Note that the so introduced couplings have to be understood as ki-tuples

ρi(Λ) =
(
ρ1

i (Λ), ..., ρki
i (Λ)

)
(6.31)

in order to account for the different combinations of fields h, C, C and the O(4) ten-
sor structure entering the vertex functions. However, all couplings ρj

i (Λ) belonging
to a ki-tuple ρi(Λ) share the following two properties:
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1. They emerge from vertex functions that have the same number of external legs

2. All ρj
i (Λ), j = 1...k, have the same canonical dimension Dρi .

The latter property follows from the first and the fact that all fields h, C, C have
canonical dimension Dφ = 1, as has been pointed out in eq. (6.1). Since from the
point of view of our analysis the attributes above are what matters, we will not have
to distinguish between couplings belonging to the same ki-tuple ρi(Λ).

In order to avoid possible confusion, we would like to stress that ultimatively,
the running couplings ρi(Λ) are not expected to be all independent from each other.
In fact, they are supposed to be given in terms of the ”physical” running couplings
ΛK(Λ), λ(Λ), c1(Λ), c2(Λ).... But this is only after some kind of restoration of the
Slavnov-Taylor identities, which will be the subject of the next section. For the
moment, the STI are violated by the cutoff regularization and we have to treat all
couplings as independent. Note that an intuitive way of understanding the effect
of the restoration of the STI is to relate the couplings ρi to the coefficients of the
expansion (6.24).

In the following table, we have collected all running couplings ρi(Λ) having canon-
ical dimension Dρi ≥ −2. They are given by the definitions of eqns. (3.11)-(3.15)
and (4.2)-(4.8). In addition, we give the corresponding position space composite
field operators, together with their canonical dimensions DOi = 4 −Dρi . They are
related by a derivative expansion of the position-space effective potential L(Φ,Λ),
as is discussed in Appendix (A.2). Remember that in our notation each φ is a
placeholder for h, C or C, where of course the fields have to be distributed such
that symmetries as O(4) invariance are respected10. Finally, we state the associated
coefficients of the expansion (6.24) in order to give a relation of the ρi(Λ) to the
”physical” couplings.

The quantity Iµνρσ appearing in Table (6.1) has been defined in section (4.1.1)
as Iµνρσ = δµνδρσ + δµρδνσ + δµσδνρ. Furthermore, it has been pointed out in
Appendix (A.2) that by integration by parts, the operators

∫
x φ2∂2φ and

∫
x φ∂φ∂φ

are not linearly independent. Thus, one can merge the couplings ρ6 and ρ7 into just
one coupling constant associated with the operator

∫
x φ2∂2φ, which turns out to be

ρ6/7 = −ρ6(Λ) +
1
2
ρ7(Λ). (6.32)

Eq. (6.32) means componentwise addition of the ki-tuples ρ6, ρ7. A similar relation
holds true for the couplings ρ10 and ρ11.

10Note also that because of a symmetry under global phase transformations, only pairs
CµOµν(h)Cν will appear in the composite field operators Oi. If we assign ”ghost numbers” +1
and −1 to Cµ and Cν respectively, this means that there will be only vertex functions associated
with ghost number 0.
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Coupling ρi Definition via momentum-space Dρi Position-space DOi ”Physical
vertex functions Ln operator Oi coupling”

ρ1(Λ) L1(0,Λ) 3 φ 1 ΛK/λ

ρ2(Λ) L2(0, 0,Λ) 2 φ2 2 ΛK

δµνρ3(Λ) ∂µ
1,2∂

ν
1,2L2(k1, k2,Λ)|ki=0 0 φ∂2φ 4 1

ρ4(Λ) L3(0, 0, 0,Λ) 1 φ3 3 λΛK

ρ5(Λ) L4(0, 0, 0, 0,Λ) 0 φ4 4 λ2ΛK

δµνρ6(Λ) ∂µ
1,3∂

ν
1,3L3(k1, k2, k3,Λ)|ki=0 −1 φ2∂2φ 5 λ

δµνρ7(Λ) ∂µ
1,3∂

ν
2,3L3(k1, k2, k3,Λ)|ki=0 −1 φ∂φ∂φ 5 λ

ρ8(Λ) L5(0, ..., 0,Λ) −1 φ5 5 λ3ΛK

Iµνρσρ9(Λ) ∂µ
1,2∂

ν
1,2∂

ρ
1,2∂

σ
1,2L2(k1, k2,Λ)|ki=0 −2 φ∂4φ 6 ciλ

2

δµνρ10(Λ) ∂µ
1,4∂

ν
1,4L4(k1, k2, k3, k4,Λ)|ki=0 −2 φ3∂2φ 6 λ2

δµνρ11(Λ) ∂µ
1,4∂

ν
2,4L4(k1, k2, k3, k4,Λ)|ki=0 −2 φ2∂φ∂φ 6 λ2

ρ12(Λ) L6(0, ..., 0,Λ) −2 φ6 6 λ4ΛK

Table 6.1: Some couplings and field operators of effective quantum gravity

Let us now come to the renormalization and improvement conditions that have
to be imposed for the couplings ρi in order to establish bounds for the vertex func-
tions Ln(Λ) of the effective potential L(Φ,Λ). As we have already stressed, at this
point of our analysis we will have to impose a set of arbitrary renormalization and
improvement conditions. However, the question arises for which couplings improve-
ment conditions should be introduced. Recall from section (2.3) that the canonical
dimensions of the couplings for which improvement conditions are specified deter-
mines an improvement index s, that in turn is related to the amount of predictivity
the effective field theory will have in the end.

To answer this question, let us consider the experimental values of the ”physical”
coupling constants ΛK , λ, c1, c2... appearing in the action (6.7). They correspond to
the renormalized values of the couplings. Recent astrophysical data [19] strongly
suggests that the cosmological constant ΛK should be nonzero and positive, while
extremely small. The observational bounds are [9]

|ΛK | ≤ 10−83GeV2. (6.33)

The coupling λ has been defined at the beginning of section (5.1.1) as λ2 = 32πG
where G is Newton’s constant. Thus we have

λ ∼ (10 ·MP )−1 (6.34)

where MP ∼ 1.2 · 1019 GeV is the Planck scale. In the following, we will simply
speak of λ as given by the inverse Planck scale, ignoring the factor of ten appearing
in eq. (6.34).
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Concerning the couplings c1, c2, we have discussed in the last section that their
experimental bounds are very poor,

c1, c2 ≤ 1074, (6.35)

whereas the coefficients of yet higher invariants have essentially no experimental
constraints.

Now if we look at the expansion (6.24) and Table (6.1) respectively, we find that
all field operators Oi that have canonical dimensions DOi ≤ 5 (corresponding to
running couplings ρi(Λ) with Dρi ≥ −1) are associated with the ”known” couplings
ΛK and λ. The ”unknown” couplings ci appear for the first time associated with
the operator

φ∂4φ (6.36)

which has canonical dimension DOi = 6, corresponding to the running coupling
constant ρ9(Λ) with Dρ9 = −2.

We therefore conclude that renormalization conditions for the couplings ρi, i =
1...5, and improvement conditions for the couplings ρi, i = 6...8, will have to be
imposed, the latter having canonical dimensions Dρi = −1. Doing so, we adopt the
notations employed in chapters (3) and (4):

ρã(ΛR) = 0, ã = 1, ..., 3 (6.37)
ρã(ΛR) = ρR

ã , ã = 4, 5 (6.38)
ρã(ΛR) = ρNR

ã , ã = 6, ..., 8. (6.39)

Because of the lack of experimental input for the couplings c1, c2, ... it will not make
sense to specify improvement conditions for couplings ρi with Dρi ≤ −2. Comparing
to section (2.3) and chapter (4), we recognize that the situation corresponds to an
improvement index s = 1.

Before we can apply the analysis of chapter (4) to the vertex functions (6.29)
of our effective gravity potential, we have to add two more ingredients. First, the
Theorems (4), (5) and (6) established in chapter (4) refer to a fixed bare scale Λ0.
Moreover, remember that a crucial point for proving boundedness and convergence
of vertex functions (Theorems (1), (2) and (4)) and for estimating the predictivity
of an effective field theory at scales Λ << Λ0 (Theorems (6) and (3)) has been the
smallness of the nonrenormalizable couplings at the bare scale Λ0. Employing again
dimensionless couplings λi(Λ) = Λ−Dρi ρi(Λ), this amounts to the constraint

λn(Λ0) ≤ 1 (6.40)

for the bare values of the nonrenormalizable couplings11. Therefore, the following
two questions arise:

11We have adopted again the notation introduced in section (2.2) where renormalizable couplings
have been denoted by λa and nonrenormalizable ones by λn.
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1. What is the bare scale Λ0 for effective quantum gravity?

2. Are the bare nonrenormalizable couplings ρn(Λ0) = ρ0
n sufficiently small?

We will now show how these questions can be adressed by virtue of an analogon to
Theorem (5) and the experimental bounds for the physical couplings ΛK , λ, c1, c2....
To do so, let us recall some definitions and notations and adapt them to the case of
effective quantum gravity.

The bare values for the couplings ρã, ã = 6...8, are again denoted by

ρã(Λ0) = ρ0
ã. (6.41)

We will use dimensionless couplings

λR
ã (Λ) = Λ−Dρã ρR

ã (6.42)
λ0

ã(Λ) = Λ−Dρã ρ0
ã, (6.43)

as well as dimensionless vertex functions An which are related to the Ln(k1, ..., kn,Λ)
defined in eq. (6.29) by

An(k1, ..., kn,Λ) = Λn−4Ln(k1, ..., kn,Λ). (6.44)

The dimensionless vertex functions are expanded12 in perturbation theory in the
renormalized renormalizable couplings λR

4 and λR
5 and the bare nonrenormalizable

couplings λ0
ã, ã = 6...8:

An(k1, ..., kn,Λ) =
∞∑

r1,...,r5=0

(λR
4 )r1(λR

5 )r2(λ0
6)

r3(λ0
7)

r4(λ0
8)

r5A(r1,...,r5)
n (k1, ..., kn,Λ).

(6.45)

Note that since the couplings λã are kã-tuples as defined in eq. (6.31), it is under-
stood that the indices ri denoting the orders in perturbation theory are multiindices

ri =
(
r1
i , ..., r

kã
i

)
, |ri| := r1

i + ... + rkã
i , (6.46)

and that

(λã)ri = (λ1
ã)

r1
i · ... · (λkã

ã )r
kã
i . (6.47)

The perturbative expansion (6.45) is sensible only for small dimensionless couplings.
Therefore we impose as additional constraints to the renormalization and initial
conditions

λR
ã (Λ) ≤ 1, ã = 4, 5 (6.48)

λ0
ã(Λ) ≤ 1, ã = 6...8. (6.49)

12Please refer to eq. (4.13) of section (4.1.1) for a definition of the coefficients

A
(r1,...,r5)
n (k1, ..., kn, Λ).
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Because of the definitions (6.42) and (6.43), this implies ρR
4 ≤ ΛR for Λ ≥ ΛR and

ρ0
ã ≤ Λ−1

0 , ã = 6...8, for Λ ≤ Λ0. Thus

λR
4 (Λ) ≤ ΛR/Λ, (6.50)

λ0
ã(Λ) ≤ Λ/Λ0, ã = 6...8. (6.51)

At this point we already give an analogon to Theorem (1) concerning the bound-
edness of vertex functions for the case of effective quantum gravity. To do so, we
define an overall order rNR = |r3| + |r4| + |r5| in perturbation theory in the bare
nonrenormalizable couplings λ0

ã, ã = 6...8, and assume for the time being that there
exists some bare scale Λ0 where the nonrenormalizable couplings are small à la eq.
(6.40). This will then be justified later.

Theorem 8 (Boundedness of Gravity Vertex Functions) Given the renormal-
ization conditions (6.37)-(6.38) and the initial conditions (6.41), and assuming that

||∂pA(r1,...,r5)
n (p1, ..., pn,Λ0)|| ≤ Λ−p

0

(
Λ0

ΛR

)|r1|
Pln

(
Λ0

ΛR

)
(6.52)

for n + p ≥ 6, to order r1, ..., r5 in perturbation theory in λR
4 , λR

5 , λ0
6, λ0

7 and λ0
8

||∂pA(r1,...,r5)
n (p1, ..., pn,Λ)||

≤ Λ−p

(
Λ
ΛR

)|r1|(Λ0

Λ

)rNR
(

δrNR,0 Pln

(
Λ
ΛR

)
+

Λ
Λ0

Pln

(
Λ0

ΛR

))
(6.53)

where rNR = |r3|+ |r4|+ |r5| and ΛR ≤ Λ ≤ Λ0.

The condition (6.52) amounts to the assumption of small inital values for couplings
ρñ(Λ0), ñ ≥ 9, as follows from their definitions in Table (6.1). The proof of Theorem
(8) goes in analogy to the proof of Theorem (1), and we will therefore skip it.

In order to proceed, we will again need the auxiliary variables λã(Λ) introduced
in section (4.1.3). They are defined as the values the running dimensionless couplings
take for initial conditions λ0

ã = 0, ã = 6...8, of the nonrenormalizable couplings:

λã(Λ) =
∞∑

r1,...,r5=0
rNR=0

λ
(r1,...,r5)
ã (Λ)(λR

4 )r1(λR
5 )r2(λ0

6)
r3(λ0

7)
r4(λ0

8)
r5 (6.54)

where rNR = |r3| + |r4| + |r5|. The λã(Λ) give rise to the definition of deviations
∆λã(Λ) = λã(Λ)− λã(Λ), which we will need in the following form:

∆λR
ã (Λ) = (ΛR/Λ)Dρã ∆λã(ΛR), ã = 6, ..., 8. (6.55)
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We will consider expansions in the renormalized renormalizable couplings λR
4 , λR

5 and
the deviations ∆λR

ã , ã = 6, ..., 8, where the order of the expansion will be denoted13

by (l1, ..., l5). As we have dicussed above, all couplings have to be understood as kã-
tuples, and this holds also true for the deviations ∆λR

ã . The expansion has therefore
to be understood in the sense of eq. (6.47), and we introduce

|li| := l1i + ... + lkã
i (6.56)

in analogy to eq. (6.46). We are now ready to formulate an analogon to Theorem
(5) for effective quantum gravity.

Theorem 9 (Inversion of the RG Trajectory of Effective Quantum Gravity)
For ã = 6...8 and l∆ := |l3|+ |l4|+ |l5| let

||∆λ
(l1,...,l5)
ã (Λ)|| ≤

(
Λ
ΛR

)|l1|(Λ0

Λ

)l∆ Λ
Λ0

Pln

(
Λ0

ΛR

)
. (6.57)

Then to order l1, ..., l5 in perturbation theory in λR
4 , λR

5 and the deviations ∆λR
6 ,

∆λR
7 and ∆λR

8

||λ0 (l1,...,l5)
ã (Λ)|| ≤

(
Λ
ΛR

)|l1|(Λ0

Λ

)l∆ Λ
Λ0

Pln

(
Λ0

ΛR

)
(6.58)

where ΛR ≤ Λ ≤ Λ0.

In proving Theorem (9), we have to apply14 Theorem (8). The proof goes in analogy
to the derivation of Theorem (5) discussed in section (4.1.3), and we will not give it
here.

For small couplings λR
4 (Λ), λR

5 (Λ) in the sense of eqns. (6.48), (6.50) and small
deviations15 ∆λR

ã (Λ) ≤ 1, ã = 6, ..., 8, Theorem (9) implies that if the ∆λã(Λ) are
small,

||∆λã(Λ)|| ≤ Λ
Λ0

Pln

(
Λ0

ΛR

)
, ã = 6...8, (6.59)

then also the bare values of the nonrenormalizable couplings λ0
ã are small:

||λ0
ã(Λ)|| ≤ Λ

Λ0
Pln

(
Λ0

ΛR

)
ã = 6...8. (6.60)

Let us now discuss the implications of eqns. (6.59) and (6.60) for gravity. To
do so, we analyze the auxiliary variables λã(Λ) entering the deviations ∆λã(Λ) =

13The order of an expansion in the couplings λR
4 , λR

5 , λ0
6, λ0

7 and λ0
8 has been denoted by (r1, ..., r5).

14It is therefore understood that the bare values for the couplings ρñ(Λ0), ñ ≥ 9, are small.
15See also the discussion at the end of this section concerning the smallness of couplings.
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λã(Λ) − λã(Λ). They have been defined in eq. (6.54) as the values the running
couplings λã take to 0th order in perturbation theory in the bare nonrenormalizable
couplings λ0

6, λ0
7 and λ0

8. Hence, they are given solely in terms of the perturbative
contributions in the renormalizable couplings λR

4 and λR
5 . If we look at Table (6.1),

we see that the latter are both associated with the cosmological constant ΛK :

ρ4 ∼ λΛK , ρ5 ∼ λ2ΛK (6.61)

where λ is the gravitational coupling. On the other hand, the relations of the
couplings λã(ΛR), ã = 6, ..., 8, to their ”physical” counterparts are given by

ρ6, ρ7 ∼ λ, ρ8 ∼ λ3ΛK . (6.62)

Note that the cosmological constant does not enter the couplings λ6, λ7, and recall
that the relations (6.61) and (6.62) should hold after some fine-tunig procedure has
been imposed in order to restore the Slavnov-Taylor identities.

As we have pointed out in eq. (6.33), experimental input bounds the cosmological
constant to be extremely small. In particular, if we compare it to the size of the
gravitational constant G ∼ λ2 ∼ M−2

P , we arrive at the famous ratio

λ2ΛK ∼ 10−120. (6.63)

It is therefore reasonable to assume that the size of the auxiliary variables λã(Λ)
calculated in perturbation theory in λR

4 and λR
5 will be neglectible to those of the

couplings λã(Λ), ã = 6, 7. The latter should be of the order Λ/MP as is suggested
by eq. (6.62). Thus, the deviations ∆λã(Λ) = λã(Λ)− λã(Λ) can be estimated as

||∆λã(Λ)|| ≤ Λ
MP

Pln

(
MP

ΛR

)
, ã = 6...8. (6.64)

Now if we demand that the bare values λ0
ã, ã = 6...8, can be taken small in order

to arrive at renormalized values λã(Λ) ∼ Λ/MP , eqns. (6.59) and (6.60) tell us that
the UV cutoff scale of effective quantum gravity must not exceed the Planck scale.
This motivates us to define the bare scale Λ0 of quantum gravity to be

Λ0 ∼ MP . (6.65)

If the Planck scale is considered to be the characteristic energy scale of the theory,
it is natural to assume that all ”bare” physical coupling constants ΛK(MP ), λ(MP ),
c1(MP ), c2(MP )... entering the action (6.9) should be of the order of this scale.
This, in turn, suggests that the (dimensionless) vertex functions An(Λ) of the gravity
effective potential L(Φ,Λ) should satisfy

||An(p1, ..., pn,MP )|| ∼ 1 (6.66)
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where the norm || || is defined as in eq. (3.35). In the following, we will always
assume that (6.66) holds true, and therefore in particular take it for granted that
the bare values of all nonrenormalizable couplings ρ0

n will be small in the sense of
eq. (6.40).

From the viewpoint of a ”characteristic energy scale MP ” and eq. (6.66), it
is of course disturbing that the renormalized value of the cosmological constant is
so small. It requires a very delicate adjustment of the bare potential L(Φ,Λ0) and
therefore a lot of ”fine-tuning” in order to reproduce the experimental bounds (6.33)
and the factor of 10−120 appearing in eq. (6.63). We have nothing new to say about
this puzzle. Note however that from a technical point of view, there is of course no
problem in imposing a tiny renormalized value for the cosmological constant, other
than it seems unnatural.

Let us now investigate the predictivity of effective quantum gravity at scales
far below the Planck scale, Λ << MP , as the renormalization and improvement
conditions (6.37), (6.38), (6.39) are imposed as well as the assumption (6.66). To
do so, we proceed as in section (4.2) and introduce bare vertex functions depending
on a parameter t

∂pÃ(r1,...,r5)
n (MP ) := t ∂pA(r1,...,r5)

n (MP ), t ∈ [0, 1], n + p ≥ 6.

(6.67)

By varying t, the impact of a change of the initial conditions (6.67) on the ”running”
vertex functions An(Λ) can be studied. This is of course related to the effect of not
knowing the exact values of the couplings c1(MP ), c2(MP ).... The An(Λ) become
dependent on the parameter t,

∂pA(r1,...,r5)
n = ∂pA(r1,...,r5)

n (p1, ..., pn,Λ,MP , t), (6.68)

and we may formulate an analogon to Theorem (6) for effective quantum gravity.
This will be done again in perturbation theory in the renormalized renormalizable
couplings λR

4 and λR
5 and the bare nonrenormalizable couplings λ0

ã, ã = 6...8. Since
all couplings have to be understood as kã-tuples, recall the notation conventions of
eqns. (6.46) and (6.47).

Theorem 10 (Predictivity of Effective Quantum Gravity) Let there be renor-
malization conditions (6.37)-(6.38) and improvement conditions (6.39). Assume that
to order r1, ..., r5 in perturbation theory in λR

4 , λR
5 , λ0

6, λ0
7 and λ0

8

||∂pA(r1,...,r5)
n (p1, ..., pn,Λ)|| ≤ Λ−p

(
Λ
ΛR

)|r1|(MP

Λ

)rNR

Pln

(
MP

ΛR

)
, (6.69)

and that for n + p ≥ 6

|| d
dt

∂pA(r1,...,r5)
n (p1, ..., pn,MP )|| ≤ M−p

P

(
MP

ΛR

)|r1|
Pln

(
MP

ΛR

)
. (6.70)
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Then

|| d
dt

∂pA(r1,...,r5)
n (p1, ..., pn,Λ)|| ≤ Λ−p

(
Λ
ΛR

)|r1|(MP

Λ

)rNR
(

Λ
MP

)2

Pln

(
MP

ΛR

)
(6.71)

where rNR = |r3|+ |r4|+ |r5| and ΛR ≤ Λ ≤ MP .

For deducing Theorem (10), we refer the reader to the proof Theorem (6). Note
that the conditions (6.69) and (6.70) are satisfied by virtue of Theorem (8) and the
assumption (6.66).

Integrating eq. (6.71) and employing the triangle inequality we conclude that for
two different sets of bare vertex functions ∂pA

A(r1,...,r5)
n (MP ) and ∂pA

B(r1,...,r5)
n (MP )

which are small à la eq. (6.66) the associated ”running” vertex functions satisfy

||∂pAA(r1,...,r5)
n (p1, ..., pn,Λ)− ∂pAB(r1,...,r5)

n (p1, ..., pn,Λ)||

≤ Λ−p

(
Λ
ΛR

)r1
(

MP

Λ

)rNR
(

Λ
MP

)2

Pln

(
MP

ΛR

)
. (6.72)

It has therefore been established that the ignorance about the precise initial values
∂pA

(r1,...,r5)
n (MP ), n + p ≥ 6, amounts to an indetermination of the ”running”

vertex functions ∂pA
(r1,...,r5)
n (Λ) of the order given by eq. (6.72). Note that for small

couplings λR
ã (Λ), λ0

ã(Λ) in the sense of eqns. (6.48)-(6.51) the latter implies

||AA
n (Λ)−AB

n (Λ)|| ≤
(

Λ
MP

)2

Pln

(
MP

ΛR

)
. (6.73)

As follows from the definitions in Table (6.1), the initial values ∂pA
(r1,...,r5)
n (MP ), n+

p ≥ 6, correspond to bare couplings ρñ(Λ0), ñ ≥ 9, which (after some fine-tuning
procedure in order to restore the STI) are related to the ”physical”couplings c1, c2, ...
of the general gravity action (6.7). Thus we conclude that our ignorance about these
couplings results in an effective theory of quantum gravity that is predictive at scales
Λ < Λ0 to an accuray given by eq. (6.73).

Let us finally point out one more time that the perturbation theory in the cou-
plings λR

4 , λR
5 , λ0

6, λ0
7 and λ0

8 employed in Theorems (8) and (10) makes only sense
if the (dimensionless) couplings are small à la eqns. (6.48) and (6.49). The same
holds true for the perturbation theory in the couplings λR

4 , λR
5 and the deviations

∆λR
ã , ã = 6, ..., 8 employed in Theorem (9). If we look at Table (6.1), we see that

the couplings λã, ã = 2, ..., 8, are associated with products of the cosmological con-
stant ΛK and the gravitational constant λ ∼ M−1

P . Moreover, remember that in eq.
(6.64) we estimated the deviations as ∆λR

ã ∼ Λ/MP , and that our scale has to stay
above the ”mass”

√
ΛK as has been pointed out at the beginning of section (3.1.1).
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Remembering the definitions (6.42), (6.43) and (6.55) it seems therefore reasonable
to assume that (at least after some restoration of the STI) the couplings remain
small on scales Λ that are in the range√

ΛK < Λ < MP (6.74)

which means 10−42GeV < Λ < 1019GeV . However, as has been dicussed in eq.
(3.30) of section (3.1.1), also the coupling ρ1 ∼ ΛK/λ has to remain small in order
to prove Theorems (8)- (10). This would suggest a lower bound of Λ > ΛKMP ∼
10−21GeV . Note that the latter is probably an artefact16 of using a flat Euclidean
background which does not fullfill the field equations for ΛK 6= 0.

The renormalization of the extended effective potential L̃
(
h, C, C, β, τ, Λ

)
involv-

ing couplings of the sources β, τ to the nonlinear BRS variations (5.29) and (5.30)
will be discussed in the next section.

6.2.2 Restoration of the Slavnov-Taylor identities for effective quan-
tum gravity

As has been mentioned on various occasions, the introduction of the momentum
space cutoff regularization violates the gauge (BRS) invariance of the (total) gravity
action (6.7) and leads to violated Slavnov-Taylor-identities (vSTI). We will now
derive the vSTI and then discuss how they can be restored for effective quantum
gravity with finite accuracy.

To do so, we will have to consider the renormalization of vertex functions with
one insertion of a composite field. Some key elements of this subject (employing the
method of flow equations) have been summarized in Appendix (A.5), which we will
repeatedly refer to.

Let us begin by introducing bare versions of the composite BRS fields (5.29) and
(5.30) according to the rules discussed in Appendix (A.5):

Ψµν(x,Λ0) := R0
1δ

µν∂ρC
ρ −R0

2

(
δρν∂ρC

µ + δµρ∂ρC
ν
)

+ R0
3∂ρ

(
Cρhµν

)
−R0

4

(
hρν∂ρC

µ + hµρ∂ρC
ν
)

(6.75)
Ωµ(x,Λ0) := R0

5C
ν∂νC

µ (6.76)

where the R0
i are some bare coupling constants17 having canonical dimensions

DR0
i

= 0, i = 1, 2 (6.77)

DR0
i

= −1, i = 3...5. (6.78)

For the definition of (6.75) we have made use of eq. (5.22). The BRS fields Ψµν(x)
and Ωµ(x) have ghost numbers 1 and 2 respectively, and their canonical dimensions

16See the discussion in section (5.1.2).
17We will introduce the couplings Ri more systematically later.
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are
DΨ = DΩ = 2. (6.79)

Note that there is again no (bare) insertion for the linear BRS variation (5.31) of
the antighost field, because the STI (5.42) can be established by generating this
variation through functional derivation with respect to the source field tµν .

By virtue of the bare BRS variations (6.75) and (6.76), the extended effective
potential (6.22) can now be written as

L̃
(
Φ, β, τ, Λ0

)
= L

(
Φ,Λ0

)
+
∫

d4x (βµνΨµν + τµΩµ) (6.80)

where the notation Φ =
(
hµν , C

µ, Cµ

)
for the graviton and ghost fields has been

employed, and the potential L
(
Φ,Λ0

)
has been defined in eq. (6.10). Moreover,

introducing the quantity

Q(Φ,Λ0) :=
∫

x
A

(2π)4

2
h− 1

2
〈hµν ,∆Λ0 −1

µνρσ hρσ〉 − 〈Cµ
,∆Λ0 −1

GHµνCν〉 (6.81)

the (extended) total bare gravity action (6.9) can be compactly expressed in terms
of L and Q:

Stot(Φ,Λ0) = Q(Φ,Λ0) + L
(
Φ,Λ0

)
(6.82)

S̃tot(Φ, β, τ, Λ0) = Q(Φ,Λ0) + L̃
(
Φ, β, τ, Λ0

)
. (6.83)

Finally, let us define regularized bare BRS variations of the fields:

δΛ0
ε hµν := (KΛ0Ψµν)(x)ε (6.84)
δΛ0
ε Cµ := (KΛ0Ωµ)(x)ε (6.85)

δΛ0
ε Cµ := (KΛ0ξ−1Fµ)(x)ε (6.86)

where KΛ0 := K(∂2/Λ2
0) is the (position-space) cutoff function introduced in eq.

(2.8), and ξ−1Fµ = ξ−1∂σhµσ refers to the gauge fixing, see eq. (5.24). The motiva-
tion for employing regularized BRS variations will become clear later.

Denoting the sources of the graviton and ghost fields by J = {tµν , σµ, σµ}, the
violated Slavnov-Taylor identities now follow from the requirement that the regu-
larized generating functional of quantum gravity,

W (J ; Λ0) =
∫
DΦ eStot(Φ,Λ0)+〈Φ,J〉 , (6.87)

be invariant18 under the BRS variations (6.84)-(6.86) of the fields:

0 !=
∫
DΦ eStot(Φ,Λ0)+〈Φ,J〉 (δΛ0

ε 〈Φ, J〉+ δΛ0
ε Stot(Φ,Λ0)

)
. (6.88)

18This amounts to the statement that the Jacobian of the BRS transformation is equal to 1.
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Note that the BRS variation of the source term δΛ0
ε 〈Φ, J〉 gives rise to ”conventional”

STI (5.42), whereas δΛ0
ε Stot(Φ,Λ0) contains contributions stemming from the cutoff

regularized inverse propagators appearing in (6.81) as well as from the BRS vio-
lating counterterms that had to be included in the bare potential (6.80). Let us
analyze δΛ0

ε Stot(Φ,Λ0) in some more detail, employing the ”split-up” (6.82). The
BRS variation of the ”free” part (6.81) is

δΛ0
ε Q(Φ,Λ0) =

∫
x

(
A

(2π)4

2
KΛ0Ψµ

µ −
1
2
〈hµν ,∆−1

µνρσΨρσ〉

−〈Cµ
,∆−1

GHµνΩ
ν〉 − 〈ξ−1Fµ,∆−1

GHµνC
ν〉
)
ε. (6.89)

Observe that in the terms bilinear in the fields, the cutoff function in the regular-
ized BRS variations (6.84)-(6.86) has cancelled its inverse appearing in the inverted
propagators. On the other hand, the part linear in the field as well as the BRS vari-
ation of the bare effective potential δΛ0

ε L
(
Φ,Λ0

)
contain the cutoff function and will

therefore be nonpolynomial in the field derivatives19. However, all nonpolynomial
parts will be multiplied with powers of Λ−2

0 .
The vSTI (6.88) can be rewritten as follows. We employ an extended regularized

generating functional of quantum gravity,

W̃ (J, β, τ ; Λ0) =
∫
DΦ e S̃tot(Φ,β,τ,Λ0)+〈Φ,J〉 , (6.90)

and define a regularized version of the BRS operator (5.41):

DΛ0 := 〈tµν ,K
Λ0

δ

δβµν
〉+ 〈σµ,KΛ0

δ

δτµ
〉+ 〈σµ, ξ−1KΛ0Fµρσ

( δ

δtρσ

)
〉. (6.91)

Here, KΛ0 is again the cutoff function. Moreover, we treat the BRS variation of the
bare action as a space-time integrated operator insertion:

L(1)(Φ,Λ0)ε := δΛ0
ε Stot(Φ,Λ0). (6.92)

From the properties of the BRS fields (6.75) and (6.76) and from looking at eq.
(6.89) it follows that the operator insertion L(1)(Φ,Λ0) has ghost number 1 and
canonical dimension

DL(1)
= 5 (6.93)

in the sense of space-time integrated operator insertions as it is discussed at the end
of Appendix (A.5).

19Concerning the linear term, the nonpolynomial parts will go away because they are total deriva-
tives.
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By introducing a modified functional

Wχ(J ; Λ0) :=
∫
DΦ eStot(Φ,Λ0)+χL(1)(Φ,Λ0)+〈Φ,J〉 (6.94)

with χ ∈ R, the violated Slavnov-Taylor identities (6.88) now take the form

DΛ0W̃ (J, β, τ)|β=τ=0 =
d

dχ
Wχ(J ; Λ0)|χ=0. (6.95)

From the viewpoint of the analysis with flow equations, the central object of interest
is the effective potential L, rather than the generating functional of Greens functions
W . We will therefore show how the vSTI (6.95) can be expressed in terms of L.

Let Λ < Λ0 denote some scale. Consider the ”running” extended effective po-
tential

L̃
(
Φ, β, τ, Λ,Λ0

)
(6.96)

that can be seen as a solution of Polchinski’s equation for quantum gravity (5.92)
with initial conditions (6.80). In complete analogy, we may introduce a running
potential

Lχ

(
Φ,Λ,Λ0

)
(6.97)

by employing initial conditions L
(
Φ,Λ0

)
+ χL(1)(Φ,Λ0), see eq. (6.94). In order to

reduce the notational complexity of the upcoming equations, let us also define the
following abbreviations:

L(Λ) ≡ L̃
(
Φ, β, τ, Λ,Λ0

)
|β=τ=0 (6.98)

Lµν
β (x,Λ) ≡ δ

δβµν(x)
L̃
(
Φ, β, τ, Λ,Λ0

)
|β=τ=0 (6.99)

Lµ
τ (x,Λ) ≡ δ

δτµ(x)
L̃
(
Φ, β, τ, Λ,Λ0

)
|β=τ=0 (6.100)

L(1)(Λ) ≡ d

dχ
Lχ

(
Φ,Λ,Λ0

)
|χ=0. (6.101)

We are now ready to give the vSTI in terms of the effective potential.

Theorem 11 (Violated Slavnov-Taylor Identities) Employing the notations (6.98)-
(6.101), the violated Slavnov-Taylor identities for quantum gravity are〈

hµν ,∆−1
µνρσLρσ

β (0)
〉

+
〈
C

µ
,∆−1

GHµνL
ν
τ (0)

〉
+ ξ−1

〈
Cµ,∆−1

GHµνF
νρσ
(
hρσ

)〉
+ ξ−1

〈
Cµ,∆−1

GHµνF
νρσ
(
∆Λ0

ρσαβ

δL(0)
δhαβ

)〉
= L(1)(0)

(6.102)

where (
∆Λ0

ρσαβ

δL(0)
δhαβ

)(
x
)
≡
∫

y
∆Λ0

ρσαβ(x− y)
δL(0)

δhαβ(y)
. (6.103)
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Proof 11 As follows from the discussion in Appendix (A.4), see in particular eqns.
(A.59) and (A.61), the effective potentials (6.96) and (6.97) can be related to the
functionals W̃ (J, β, τ ; Λ0) and Wχ(J ; Λ0) by

W̃ (J, β, τ ; Λ0) = e
1
2
〈J,∆Λ0

J〉eL̃
(
Φ,β,τ,0,Λ0

)
(6.104)

Wχ(J ; Λ0) = e
1
2
〈J,∆Λ0

J〉eL̃χ

(
Φ,0,Λ0

)
(6.105)

where

〈J,∆Λ0J〉 := 〈tµν ,∆Λ0
µνρσtρσ〉+ 〈σµ,∆Λ0

GHµνσ
ν〉 (6.106)

and the fields Φ are understood to be given in terms of their respective sources J ,

hµν(x) =
∫

y
∆Λ0

µνρσ(x− y)tρσ(y) (6.107)

Cµ(x) =
∫

y
∆Λ0

GHµν(x− y)σν(y) (6.108)

Cµ(x) =
∫

y
∆Λ0

GHµν(x− y)σν(y). (6.109)

The vSTI for the effective potential can now be derived by plugging eqns. (6.104)
and (6.105) into (6.95) and reexpressing the resulting equation for the sources J in
terms of the fields Φ. The latter is done by inverting the relations (6.107)-(6.109).

2

In the following, the violated Slavnov-Taylor identities will be analyzed. At first
we note that the potentials (6.98)-(6.101) appear in eq. (6.102) with ”floating”
cutoff Λ = 0. This implies a relation between the the effective potentials L and the
generating functionals W à la eqns. (6.104) and (6.105), which in particular allows
for external momenta k2

i > 0 in the vertex functions Ln(ki, 0,Λ0). However, so far
in this work we have employed the perception that we probe the physics only below
Λ, corresponding to a relation (2.14) between L and W and external momenta
k2

i ≤ Λ2. In addition, problems may arise when Λ2 < ΛK , see the discussion at
the end of section (5.1.2). We will therefore analyze the functionals appearing in
the vSTI (6.102) for nonvanishing floating cutoff Λ and keep the latter above the
external momenta ki as well as the (at this point arbitrary20) ”mass” squares B1, B2

appearing in the graviton and ghost propagators (5.79) and (5.80):

Λ2 > k2
i , B1, B2. (6.110)

20After the restoration of the STI has been accomplished, B1 will be related to ΛK .
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The Λ-dependent results of this analysis will then (at least qualitatively) be related
to the functionals appearing in eq. (6.102) by replacing Λ2 with the mass squares21

B1, B2 and the external momenta k2
i respectively. This is suggested by analogous

results22 for Yang-Mills Theory [27].
We begin with the LHS of eq. (6.102) and notice that the three functionals L(Λ),

Lµν
β (Λ) and Lµ

τ (Λ) defined in eqns. (6.98)-(6.100) appear.
In Theorem (8) of the last section, we have already established bounds for the

(dimensionless) vertex functions An(k1, ..., kn,Λ,Λ0) of the functional L(Λ). In the
discussion following Theorem (9) we then have argued that the UV cutoff of effective
quantum gravity should be the Planck scale, Λ0 = MP . Finally, improvement
conditions have been introduced in eq. (6.39) and the dependence of the vertex
functions on the unknown initial conditions (6.67) has been analyzed in Theorem
(10). The result, summarized in eq. (6.73), was that at some scale Λ < MP the
vertex functions An(Λ) (and therefore the functional L(Λ)) are known to an accuracy
of (Λ/MP )2.

In order to establish these bounds for the entire LHS of eq. (6.102), a similar
analysis has to be performed for the generating functionals Lµν

β (x,Λ) and Lµ
τ (x, Λ) of

the vertex functions carrying one BRS field Ψµν(x) or Ωµ(x) as operator insertion.
The necessary steps to do so have been developed in Appendix (A.5), leading to
Theorems (16) and (17) concerning bounds for vertex functions with one operator
insertion and their dependence on the unknown initial conditions.

Let us therefore apply these theorems to the functionals Lµν
β (x,Λ) and Lµ

τ (x,Λ).
We introduce the Fourier transforms

Lµν
β (q, Λ) :=

∫
x
eiqxLµν

β (x,Λ) (6.111)

Lµ
τ (q, Λ) :=

∫
x
eiqxLµ

τ (x,Λ) (6.112)

and define momentum-space vertex functions

δ4(q + k1 + ... + kn)Lβn(q, k1, ..., kn,Λ) = (2π)4nδ
(n)

Φ̂
Lβ(q, Φ,Λ)

∣∣
Φ=0

(6.113)

δ4(q + k1 + ... + kn)Lτn(q, k1, ..., kn,Λ) = (2π)4nδ
(n)

Φ̂
Lτ (q, Φ,Λ)

∣∣
Φ=0

. (6.114)

Here, the schematic notation introduced in eq. (6.29) has been employed. As has
been pointed out in eq. (6.79), the canonical dimension of the BRS composite fields
Ψµν(x) and Ωµ(x) equals 2. Hence, the canonical dimension of the momentum-space
vertex functions Lβn and Lτn is

DLβn
= DLτn = 2− n (6.115)

21Modulo problems that may arise with ”wrong sign” mass squares such as B1 ∼ ΛK for ΛK > 0.
22See in particular eqns. 4.52 and 4.117 of [27] in the limit Λ → 0.



94CHAPTER 6. EUCLIDEAN QUANTUM GRAVITY VIA FLOW EQUATIONS

in accordance with eq. (A.73) of Appendix (A.5).
Note that the (suppressed) tensor structure of eqns. (6.113) and (6.114), as

well as the ghost numbers +1 and +2 associated with the functionals Lµν
β (q, Λ)

and Lµ
τ (q, Λ), restrain the number of nonvanishing vertex functions Lβn and Lτn.

Introducing running coupling constants Ri(Λ) as we have done in eqns. (A.74)-
(A.77), it therefore turns out that all couplings having canonical dimension DRi ≥
−1 are given by the following (schematic) definitions:

Ri(Λ) := ∂1

( δ

δC(k1)
Lβ(q, Λ)

)∣∣
C=k1=q=0

, i = 1, 2

Ri(Λ) := ∂j

( δ

δC(k1)
δ

δh(k2)
Lβ(q, Λ)

)∣∣
h=C=kj=q=0

, i = 3, 4

Ri(Λ) := ∂j

( δ

δC(k1)
δ

δC(k2)
Lτ (q, Λ)

)∣∣
C=kj=q=0

, i = 5.

(6.116)

The index i stems from the different possibilities to contract the (suppressed) tensor
structure on the RHS of eqns. (6.116).

The running couplings Ri(Λ), i = 1...5, are of course the pendants to the bare
couplings R0

i , i = 1...5, appearing in eqns. (6.75) and (6.76). This is underlined
by the fact that if we look at eqns. (6.116) and (6.115), we see that the canonical
dimensions of the running couplings Ri(Λ) are

DRi = 0, i = 1, 2 (6.117)
DRi = −1, i = 3...5 (6.118)

in agreement with the previous eqns. (6.77) and (6.78). Note also that eq. (6.118)
means that the BRS transformations (6.84)-(6.86) for gravity contain nonrenormal-
izable parts. This is an important difference to the Yang-Mills case [18].

Proceeding as in Appendix (A.5), we define renormalization conditions for the
couplings having canonical dimensions DRi = 0,

RR
i := Ri(ΛR), i = 1, 2 (6.119)

where ΛR < MP is some renormalization scale, and initial conditions for the cou-
plings having DRi = −1:

R0
i := Ri(MP ), i = 3...5. (6.120)

Moreover, we introduce dimensionless couplings

RR
i (Λ) = RR

i , i = 1, 2 (6.121)
R0

i (Λ) = ΛR0
i , i = 3...5 (6.122)
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and impose as an additional constraint to the renormalization and initial conditions
that (6.121), (6.122) be small for ΛR < Λ < MP :

RR
i (Λ) ≤ 1, i = 1, 2 (6.123)
R0

i (Λ) ≤ 1, i = 3...5. (6.124)

Note that because of the definition (6.122), this in particular implies R0
i ≤ M−1

P , i =
3...5, for Λ ≤ MP and thus

R0
i (Λ) ≤ Λ/MP , i = 3...5. (6.125)

As always, we will consider dimensionless vertex functions

Aβn(Λ) := Λn−2Lβn, Aτn(Λ) := Λn−2Lτn (6.126)

and expand them in the dimensionless renormalized renormalizable couplings RR
1 ,

RR
2 , λR

4 and λR
5 defined in eqns. (6.121), (6.42) and the bare nonrenormalizable

couplings R0
i , i = 3...5, and λ0

ã, ã = 6...8 of eqns. (6.122), (6.43). For Aβn(Λ) we
thus obtain23

Aβn(q, k1, ..., kn,Λ) =
∞∑

r1,...,r5=0

4∑
i=1

RR/0
i (λR

4 )r1(λR
5 )r2

(λ0
6)

r3(λ0
7)

r4(λ0
8)

r5A
(i,r1,...,r5)
βn (q, k1, ..., kn,Λ)

(6.127)

where we have employed the notation

RR/0
i :=

{
RR

i , i = 1, 2
R0

i , i = 3, 4 .
(6.128)

Hence each graph contributing to (6.127) contains one extra vertex associated with
a renormalized coupling constant RR

1 , RR
2 or a bare one R0

3, R0
4 because of the BRS

operator insertion. Remember also that the couplings λã have to be understood as
kã-tuples, and recall the notation conventions of eqns. (6.46) and (6.47).

The procedure for Aτn(Λ) goes in complete analogy, with the exception that the
extra vertex is always associated with the bare nonrenormalizable coupling R0

5.
Finally, we introduce symbols ΘR

i and Θ0
i as we have done it in Appendix (A.5):

i = 1, 2 : ΘR
i := 1 ∧ Θ0

i := 0 (6.129)
i = 3...5 : ΘR

i := 0 ∧ Θ0
i := 1. (6.130)

We are now ready to establish bounds for the vertex functions Aβn by applying
Theorem (16) of Appendix (A.5).

23Please refer to eq. (A.89) of Appendix (A.5) for a definition of the coefficients

A
(i,r1,...,r5)
βn (q, k1, ..., kn, Λ).
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Theorem 12 (Boundedness of Vertex Functions with BRS Insertion) Let
ΛR ≤ Λ ≤ MP . Given Theorem (8), the renormalization conditions (6.119), the
initial conditions (6.120) and assuming that

||∂pA
(i,r1,...,r5)
βn (q, p1, ..., pn,Λ0)|| ≤ M−p

P

(
MP

ΛR

)|r1|
Pln

(
MP

ΛR

)
(6.131)

for n + p ≥ 4, to order r1, ..., r5 in perturbation theory in λR
4 , λR

5 , λ0
6, λ0

7 and λ0
8

||∂pA
(i,r1,...,r5)
βn (p1, ..., pn,Λ)||

≤ Λ−p

(
Λ
ΛR

)r1
(

MP

Λ

)rNR+Θ0
i
(

ΘR
i Pln

(
Λ
ΛR

)
+

Λ
MP

Pln

(
MP

ΛR

))
(6.132)

where the index i refers to an extra vertex associated with a renormalized coupling
RR

i , i = 1, 2 having canonical dimension DRi = 0 (ΘR
i = 1, Θ0

i = 0) or a bare
one R0

i , i = 3, 4 having canonical dimension DRi = −1 (Θ0
i = 1, ΘR

i = 0), and
rNR = |r3|+ |r4|+ |r5|.

The Theorem concerning boundedness of the vertex functions Aτn is the same with
the exception that the extra vertex is always associated with the bare nonrenormal-
izable coupling R0

5. Thus, we do not need the renormalization conditions (6.119)
and we only have the case Θ0

i = 1, ΘR
i = 0.

Let us introduce improvement conditions for the nonrenormalizable couplings
Ri, i = 3...5:

RNR
i := Ri(ΛR), i = 3...5. (6.133)

It is assumed that the improvement conditions (6.133) are taken such that they are
compatible with small initial conditions (6.120), where small is meant in the sense
of eq. (6.124). By the arguments given in the last section, this will amount to
the requirement that the improvement conditions should be (not larger than) of the
order of the inverse Planck scale,

RNR
i ∼ M−1

P . (6.134)

Considering the renormalized BRS variations (5.29) and (5.30) (after some restora-
tion of the STI), it seems reasonable that this will be so because we observe that
effectively, the RNR

i become replaced with the gravitational constant λ.
In order to investigate the dependence of the vertex functions Aβn(Λ) and Aτn(Λ)

on the unknown initial conditions, we introduce the parametrization

t ∂pA
(i,r1,...,r5)
βn (MP ), t ∈ [0, 1], n + p ≥ 4 (6.135)

and similarly for A
(i,r1,...,r5)
τn (MP ). This leads to t-dependend ”running” vertex func-

tions Aβn(Λ, t) and Aτn(Λ, t), and we may apply Theorem (17) of Appendix (A.5):
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Theorem 13 (Predictivity of Quantum Gravity with BRS Insertion) Let
there be renormalization conditions (6.119) and improvement conditions (6.133).
Assume that to order r1, ..., r5 in perturbation theory in λR

4 , λR
5 , λ0

6, λ0
7 and λ0

8

||∂pA
(i,r1,...,r5)
βn (q, p1, ..., pn,Λ)|| ≤ Λ−p

(
Λ
ΛR

)|r1|(MP

Λ

)rNR+Θ0
i

Pln

(
MP

ΛR

)
,(6.136)

and that for n + p ≥ 4

|| d
dt

∂pA
(i,r1,...,r5)
βn (q, p1, ..., pn,MP )|| ≤ M−p

P

(
MP

ΛR

)|r1|
Pln

(
MP

ΛR

)
. (6.137)

Given Theorems (8), (12) and (10) we then have for ΛR ≤ Λ ≤ MP

|| d
dt

∂pA
(i,r1,...,r5)
βn (q, p1, ..., pn,Λ)|| ≤ Λ−p

(
Λ
ΛR

)|r1|(MP

Λ

)rNR+Θ0
i
(

Λ
MP

)2

Pln

(
MP

ΛR

)
(6.138)

where the index i refers to an extra vertex associated with a renormalized coupling
RR

i , i = 1, 2 having canonical dimension DRi = 0 (Θ0
i = 0) or a bare one R0

i , i = 3, 4
having canonical dimension DRi = −1 (Θ0

i = 1), and rNR = |r3|+ |r4|+ |r5|.

For the vertex functions Aτn(Λ, t) we may proceed similarly, with the exception that
once again the extra vertex is always associated with the bare nonrenormalizable
coupling R0

5. Thus, we do not need the renormalization conditions (6.119) and we
only have the case Θ0

i = 1.
By the arguments following Theorem (10), eq. (6.138) means that for small cou-

plings in the sense of eqns. (6.48)-(6.51) and (6.123)-(6.125), the ignorance about the
initial values (6.135) amounts to an indetermination of the running vertex functions
Aβn(Λ) and Aτn(Λ) of the order of (Λ/MP )2.

Thus, we have achieved our aim: Theorems (10) and (13) allow us to control the
entire LHS of the violated Slavnov-Taylor Identities (6.102), since all three function-
als L(Λ), Lµν

β (Λ) and Lµ
τ (Λ) appearing are now known to an accuracy of (Λ/MP )2.

Let us therefore move on and consider the functional L(1)(Λ) that forms the
RHS of the vSTI (6.102). It has been defined in eq. (6.101) as the generating
functional of vertex functions carrying the BRS variation of the bare total action
(6.92) as a (space-time integrated) operator insertion. Remember that L(1)(Λ) has
ghost number 1 and canonical dimension 5 in the sense of space-time integrated
operator insertions discussed at the end of Appendix (A.5). Thus, according to eq.
(A.73) the momentum-space vertex functions

δ4(k1 + ... + kn)L(1)n(k1, ..., kn,Λ) = (2π)4nδ
(n)

Φ̂
L(1)(Φ,Λ)

∣∣
Φ=0

(6.139)
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have canonical dimensions

DL(1)n
= 5− n. (6.140)

We may use the vertex functions (6.139) to introduce running coupling constants
Fi(Λ), as we have done it in eqns. (A.74)- (A.77) of Appendix (A.5). If we attempt to
control the dimensionless counterparts A(1)n(k1, ..., kn,Λ) of (6.139) to an accuracy
of (Λ/MP )2, we will have to define renormalization and improvement conditions:

FR
i := Fi(ΛR), DFi ≥ 0 (6.141)

FNR
i := Fi(ΛR), DFi = −1. (6.142)

This follows again from the analogous procedure leading to Theorem (17).
The renormalization and improvement conditions (6.141) and (6.142) are asso-

ciated with position-space local operators Oi(h, C, C) having canonical dimensions
DOi ≤ 6, as follows from a derivative expansion of the functional L(1)(ΛR) à la
Appendix (A.2). On the other hand, the bare insertion L(1)(MP ) has been defined
in eq. (6.92) as the (regularized) BRS variation of the bare total action:

L(1)(Φ,MP )ε = δMP
ε Stot(Φ,MP ) ≡

∑
i

F 0
i

∫
x
Oi(h, C, C)ε. (6.143)

If we look at Table (6.1) and remember the definitions of the BRS fields (6.75) and
(6.76), we see that the operators Oi(h, C, C) having canonical dimensions D ≤ 6
are those that are asscociated with the bare coupling constants ρ0

ã, ã = 1...8, and
R0

i , i = 1...5, defined in Table (6.1) and eqns. (6.116). Hence

F 0
i = F 0

i (ρ0
ã, R

0
j ), ã = 1...8, j = 1...5, DF 0

i
≥ −1. (6.144)

However, the bare couplings ρ0
ã, ã = 1...8, and R0

i , i = 1...5, are already implic-
itly defined by their renormalized counterparts because of the renormalization and
improvement conditions (6.37)-(6.38), (6.119), (6.39) and (6.133):

ρ0
ã = ρ0

ã

(
ρR

b̃
, ρNR

b̃
,ΛR,MP

)
(6.145)

R0
i = R0

i

(
RR

j , RNR
j ,ΛR,MP

)
. (6.146)

We therefore conclude that while establishing Theorem (17) for the (dimensionless)
vertex functions A(1)n(k1, ..., kn,Λ) of the functional L(1)(Λ), the renormalization
and improvement conditions (6.141) and (6.142) cannot be chosen freely. In fact,
they are (in principle) determined by solving the Polchinski RGE for initial con-
ditions (6.144). Hence, they must be functions24 Gi of the renormalization and

24In the analogous treatment for Yang-Mills Theory, it is shown that these functions can be
explicitly worked out by analyzing the relevant part of an 1PI fuctional Γ(1) describing the violation
of the STI [27]. The functional Γ(1) is the 1PI Yang-Mills counterpart to our functional L(1). Note
that for effective quatum gravity, one would have to analyze the relevant and the least irrelevant
parts of a functional Γ(1) being the 1PI counterpart to L(1).
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improvement conditions (6.37)-(6.38), (6.119), (6.39) and (6.133):

FR
i = Gi(ρR

ã , ρNR
ã , RR

j , RNR
j ) + O

(
(ΛR/MP )2

)
(6.147)

FNR
i = Gi(ρR

ã , ρNR
ã , RR

j , RNR
j ) + O

(
(ΛR/MP )2

)
(6.148)

where the indetermination that is left in eqns. (6.147), (6.148) stems once more
from the fact that we do not know about the initial conditions

∂pA(1)n(p1, ..., pn,MP ), n + p ≥ 7 (6.149)

associated with couplings F 0
i , DF 0

i
≤ −2. Note however that for establishing

Theorems (16) and (17) for the vertex functions (6.139), it is necessary that (6.149)
are sufficiently small, see eq. (A.92). This will be the case because in eq. (6.143),
the bare couplings ρ0

ñ, ñ ≥ 9, are small by the reasoning of eq. (6.66), and the
bare couplings R0

i , i = 1...5, are small according to eq. (6.124). Furthermore, the
nonpolynomial parts in δMP

ε L
(
Φ,MP

)
introduced by the regularized BRS variations

(see the discussion regarding eq. (6.89)) will be also small since they are multiplied
by powers of Λ−2

0 .
Let us therefore assume that Theorems (16) and (17) have been established for

the vertex functions of the functional L(1)(Λ) while employing renormalization and
improvement conditions à la (6.147) and (6.148).

We are now ready to discuss the restoration of the violated Slavnov-Taylor iden-
tities (6.102). The violation is expressed in terms of the functional L(1)(Λ) appearing
on the RHS of (6.102), since the LHS of (6.102) effectively describes the regular-
ized BRS operator (6.91) acting on the extended effective potential L̃

(
Φ, β, τ, 0,Λ0

)
.

Note that (6.91) equals its unregularized counterpart (5.41) at scales Λ < Λ0. This
means that ultimatively, the LHS of (6.102) is identical to the the LHS of the STI
(5.42). Thus, we have restored the vSTI if we can make L(1)(Λ) vanish25.

However, since the three functionals L(Λ), Lµν
β (Λ) and Lµ

τ (Λ) appearing at the
LHS of (6.102) are only known to an accuracy of (Λ/MP )2, it will suffice to show
that

||L(1)(Λ)|| ≤
(

Λ
MP

)2

. (6.150)

This is the restoration of the vSTI (6.102) to finite accuracy. In order to achieve
(6.150), two steps are necessary.

• Renormalization and improvement conditions for the physical couplings ΛK ,
λ and the gravitational field hµν are specified at some renormalization scale

25Remember the discussion following Theorem (11) concerning the value Λ = 0 of the floating
cutoff.
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ΛR < MP . To do so, we employ again a schematic notation suppressing all
indices. Moreover, we would like to remind the reader of the notations and
conventions employed in table (6.1) and eqns. (6.32) and (5.79):

δ

δh(k1)
δ

δh(k2)
L(Φ,ΛR)

∣∣
h=ki=0

!= 0, B1
!= ΛK

∂2
i

(
δ

δh(k1)
δ

δh(k2)
L(Φ,ΛR)

) ∣∣∣
h=ki=0

!= 0(1
2
∂i∂j − ∂2

i

)( δ

δh(k1)
δ

δh(k2)
δ

δh(k3)
L(Φ,ΛR)

) ∣∣∣
h=ki=0

!= λ .

(6.151)

• One particular set of ”arbitrary” renormalization and improvement condi-
tions (6.37)-(6.38), (6.119), (6.39) and (6.133) for the remaining couplings
ρã(ΛR), ã = 1...8, and Ri(ΛR), i = 1...5, has to be determined such that

||Gi(ρR
ã , ρNR

ã , RR
j , RNR

j )|| ≤
(

ΛR

MP

)2

∀ i (6.152)

where the functions Gi have been defined in eqns. (6.147) and (6.148).

Once the second step has been achieved, also the renormalization and improvement
conditions FR

i and FNR
i of the functional L(1)(Λ) will obey the bound (6.152) be-

cause of eqns. (6.147) and (6.148). Since the initial conditions (6.149) are also small,
we then may conclude that (6.150) will be satisfied and the vSTI (6.102) are restored
with an accuracy of (Λ/MP )2.

Note that this means in particular that at the scale Λ < MP , our effective theory
of quantum gravity is now determined by the cosmologogical constant ΛK and the
gravitational constant λ to an accuracy of (Λ/MP )2.

Some concluding remarks are in order. In section (5.2.1) we have discussed that
for the restoration of the STI for Yang-Mills Theory [18], it turns out that there are
more relevant parts of the L(1)-insertion than ”arbitrary” renormalization conditions
à la (6.37)-(6.38), (6.119). To be concrete, one finds that 53 conditions analogous
to (6.152) have to be achieved by adjusting 37 + 7 renormalization conditions for
the effective potential and the BRS variations. Thus, it has to be shown that there
are some linear interdependences between the relevant parts of the L(1)-insertion for
Yang-Mills theory. This is a rather awkward task involving also the renormalization
of 1PI vertex functions that we did not consider in this work. Please refer to [18],
[27] for details.

However, it seems probable that the same difficulties will arise in the case of
effective quantum gravity: it may turn out that there are more inequalities (6.152)
to fulfill than there are renormalization and improvement conditions (6.37)-(6.38),
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(6.119), (6.39) and (6.133). In this case, we would have to prove linear interdepen-
dences between the relevant and least irrelevant parts of L(1), i.e. eqns. (6.147),
(6.148), by employing the methods described in [18].

6.3 The no-cutoff limit of quantum gravity from the
viewpoint of the Polchinski analysis

It has been discussed in chapter (2) that the running nonrenormalizable couplings
ρn(Λ) of some quantum field theory become determined by the renormalizable ones
ρa(Λ) in the no-cutoff limit Λ0 →∞:

lim
Λ0→∞

ρn(Λ,Λ0, ρ
0
a(Λ,Λ0, ρa(Λ))) = ρcont

n (Λ, ρa(Λ)). (6.153)

This is, however, only true if the bare initial values ρ0
n = ρ0

n(ρ0
a) of the nonrenormal-

izable couplings are sufficiently small in the sense of eq. (2.33). See section (2.2)
for more details. In addition, we would like the reader to recall that in general, the
no-cutoff limits ρcont

n (Λ, ρa(Λ)) will be nonzero.
On the other hand, from the viewpoint of the flow equations a theory has been

called ”nonrenormalizable” if its field and symmetry content is such that no renor-
malizable interactions, that is no couplings except for kinetic and mass terms, are
permitted. However, there is nothing wrong with introducing renormalization con-
ditions for the fields and masses of such a theory (i.e. for the only operators that are
renormalizable), and considering the no-cutoff limit employing analogons to Theo-
rems (1)-(3). In fact, we can produce a related situation for the scalar field theory
considered in chapter (3) by choosing vanishing renormalization conditions (3.20)
and (3.21) for the renormalizable φ3 and φ4 couplings:

ρR
4 = ρR

5 = 0. (6.154)

If the bare nonrenormalizable couplings are assumed to be small, see eq. (3.44),
the outcome of such an analysis, already discussed at the end of section (2.3), is
a forgone conclusion: all interactions will go away as Λ0 → ∞ because there are
no renormalizable interactions generating new contributions to the nonrenormaliz-
able ones while integrating out field modes. Thus, the running effective potential
vanishes:

L(Λ,Λ0) → 0 for Λ0 →∞, (6.155)

and we are left with the ”free” part of the effective action26. Equivalently, one can
say that all running nonrenormalizable couplings will die out in the no-cutoff limit,

ρcont
n (Λ, ρa(Λ)) = 0. (6.156)

26See eq. (3.1) for definitions of the potential L and the effective action.



102CHAPTER 6. EUCLIDEAN QUANTUM GRAVITY VIA FLOW EQUATIONS

Note that this is not in contradiction to eq. (6.153). One can rather say that in the
special case of a nonrenormalizable theory, the running nonrenormalizable couplings
ρn(Λ) are determined by the renormalizable ones ρa(Λ) (i.e. only field strength
renormalization and masses) to be zero.

This can be reformulated in more technical terms for the scalar field theory
of chapter (3) as follows. Since the vertex functions of the effective potential are
evaluated in perturbation theory in the couplings ρR

4 and ρR
5 , see eq. (3.23), and

vanish to 0th order in perturbation theory, see eq. (3.31), they will all be zero
for the choice (6.154). This in particular holds true for the bare initial conditions
(3.44). However, in the no-cutoff limit the vertex functions converge to limits that
are independent of the initial conditions as long as these are sufficiently small. This
is assured by Theorems (2) and (3). In particular, we may choose vanishing initial
conditions. Thus eq. (6.155) is confirmed.

Let us now discuss the situation for quantum gravity. As has been argued in
section (6.1.1), the expansion of the gravity action leaves us with infinitely many
nonrenormalizable operators27. However, as we have just pointed out, from the
viewpoint of the flow equations the maybe more interesting question is ”are there
any renormalizable interactions at all?”. Looking at table (6.1), we see that this is
indeed the case: the couplings ρ4 and ρ5 accociated with φ3 and φ4-like operators
are renormalizable. Note that after the restoration of the Slavnov-Taylor identi-
ties, these couplings will be given in terms of the gravitational coupling λ and the
cosmological constant ΛK as λΛK and λ2ΛK . Hence, they will only be there for
nonvanishing (renormalized) cosmological constant.

At the end of this section, the above observation will lead to us the speculation
whether quantum gravity with cosmological constant has a no-cutoff limit with non-
vanishing gravitational constant λ. Note that since the latter is a nonrenormalizable
coupling, it would then be determined by the cosmological constant ΛK in the sense
of eq. (6.153). Moreover, we will discuss that the coupling of mass terms of some
massive field ϕ to gravity produces again φ3 and φ4-like operators. This will give rise
to the speculation of a gravitational constant that is determined by the cosmological
constant and the masses of the elementary particles in the no-cutoff limit. If true,
this might indicate that there is a deeper relation between the Higgs mechanism
(that produces the mass terms) and the gravitational force.

In the following, we will give the formal steps that have to be employed in order
to consider the no-cutoff limit of quantum gravity along the lines of renormalization
with flow equations. If we refer to equations or Theorems of sections (6.2.1) and
(6.2.2), it is understood that the Planck scale MP is replaced by an arbitrary UV
cutoff Λ0. After the formal treatment, we will discuss the implications of our results.

27We always assume that the UV behaviour of the theory is governed by the 1/k2 propagators
(5.56) and (5.65). This once more amounts to the assumption of small bare couplings associated
with the higher field invariants such as R2. See the discussion in section (6.1.2).



6.3. THE NO-CUTOFF LIMIT OF QUANTUM QRAVITY 103

We begin with the vertex functions (6.29) of the gravity potential L(h, C, C, Λ)
introduced in eq. (6.26) and expand their dimensionless counterparts An(k1, ..., kn,Λ)
in the dimensionless renormalized renormalizable couplings λR

4 and λR
5 introduced

in eqns. (6.42):

An(k1, ..., kn,Λ) =
∞∑

r1,r2=0

(λR
4 )r1(λR

5 )r2A(r1,r2)
n (k1, ..., kn,Λ). (6.157)

Remember that the couplings λã have to be understood as kã-tuples, and recall
the notation conventions of eqns. (6.46) and (6.47). Comparing to the expansion
(6.45) where also the bare nonrenormalizable couplings (6.43) are used as expansion
parameters, we notice that we may identify our ”new” expansion (6.157) with the 0th
order of perturbation theory in the bare nonrenormalizable couplings of the former
expansion (6.45). Thus, Theorem (8) concerning the boundedness of gravity vertex
functions can be applied to the vertex functions A

(r1,r2)
n (k1, ..., kn,Λ) of (6.157), and

we may proceed by establishing their convergence to a no-cutoff limit in analogy to
Theorem (2) for the scalar field theory considered in chapter (3).

Theorem 14 (Convergence of Gravity Vertex Functions) Let there be renor-
malization conditions (6.37)-(6.38). Assume that to order r1, r2 in perturbation the-
ory in λR

4 and λR
5

||∂pA(r1,r2)
n (p1, ..., pn,Λ)|| ≤ Λ−p

(
Λ
ΛR

)|r1|
Pln

(
Λ0

ΛR

)
, (6.158)

and that for n + p ≥ 5

||Λ0
d

dΛ0
∂pA(r1,r2)

n (p1, ..., pn,Λ0)|| ≤ Λ−p
0

(
Λ0

ΛR

)|r1|
Pln

(
Λ0

ΛR

)
. (6.159)

Then

||Λ0
d

dΛ0
∂pA(r1,r2)

n (p1, ..., pn,Λ)|| ≤ Λ−p

(
Λ
ΛR

)|r1| Λ
Λ0

Pln

(
Λ0

ΛR

)
(6.160)

where ΛR ≤ Λ ≤ Λ0.

The conditions (6.158) and (6.159) are guaranteed by Theorem (8). The remaining
proof runs in complete analogy to the one of Theorem (2), and we will therefore skip
it.

Integrating (6.160) with respect to Λ0 we may conclude with Cauchy’s criterion
that the gravity vertex functions converge to a no-cutoff limit

Acont (r1,r2)
n (Λ) := lim

Λ0→∞
A(r1,r2)

n (Λ,Λ0) (6.161)
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where the rate of convergence is given by

||A(r1,r2)
n (p1, ..., pn,Λ,Λ0)−Acont (r1,r2)

n (p1, ..., pn,Λ)|| ≤
(

Λ
ΛR

)|r1| Λ
Λ0

Pln

(
Λ0

ΛR

)
.

(6.162)

We would like to stress that at this point of the analysis, with gauge invariance
still violated by the momentum cutoff regularization, we have only established that
there exists a family of finite theories (with field content Φ =

(
hµν , C

µ, Cµ

)
) that is

parametrized by the arbitrary renormalization conditions (6.37)-(6.38).
Let us therefore proceed with the discussion of the formal steps that are necessary

in order to restore the violated Slavnov-Taylor identities (6.102) in the no-cutoff
limit. To do so, we have to consider the effective potentials L(Λ), Lµν

β (Λ), Lµ
τ (Λ)

and L(1)(Λ) that have been defined in eqns. (6.98)-(6.101). We have just established
the boundedness and convergence of the vertex functions of L(Λ) in the no-cutoff
limit, so let us move on and carry out the same program for the vertex functions
carrying the nonlinear BRS variations (6.75) and (6.76) as an operator insertion.

However, here we are confronted with the following problem. In the last section,
the dimensionless vertex functions Aβn(Λ) and Aτn(Λ) of the functionals Lµν

β (Λ)
and Lµ

τ (Λ) have been evaluated in perturbation theory in the couplings defined in
eqns. (6.121), (6.42), (6.122) and (6.43). We summarize the respective expansion
parameters again in the following table:

Vertex function Renormalized renormalizable Bare nonrenormalizable
expansion parameters expansion parameters

Aβn(Λ) RR
1 , RR

2 , λR
4 , λR

5 R0
3, R0

4, λ0
6, λ0

7 , λ0
8

Aτn(Λ) λR
4 , λR

5 R0
5, λ0

6, λ0
7 , λ0

8

Table 6.2: Expansion parameters of the vertex functions with BRS insertion

Recall that the couplings RR
i , R0

i are associated with one extra vertex of each
graph contributing to the vertex functions Aβn(Λ) and Aτn(Λ) because of the BRS
operator insertion.

Proceeding as we have done in eq. (6.157) for the vertex functions without
operator insertion would suggest to expand Aβn(Λ) solely in the renormalizable
couplings RR

1 , RR
2 , λR

4 and λR
5 , and accordingly Aτn(Λ) solely in the renormalizable

couplings λR
4 and λR

5 . This would again correspond to the 0th order of perturbation
theory in the nonrenormalizable couplings, or equivalently mean that we employ the
special case of vanishing values for them:

R0
i (Λ) = 0, i = 3...5 (6.163)

λ0
ã(Λ) = 0, ã = 6...8. (6.164)
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However, since each graph of the vertex functions Aβn(Λ) and Aτn(Λ) must have
one extra vertex associated with one of the couplings RR

i or R0
i , we are forced to

conclude that for the choice (6.163) we have

Aτn(Λ) = 0 (6.165)

because all extra vertices of the graphs of Aτn(Λ) are due to the nonrenormalizable
bare coupling R0

5.
In order to avoid this, let us therefore establish the boundedness and convergence

of the vertex functions Aβn(Λ) and Aτn(Λ) by expanding them in the renormalized
renormalizable couplingsRR

1 , RR
2 , λR

4 and λR
5 and also in the bare nonrenormalizable

couplings R0
i , i = 3...5. We obtain

Aβn(q, k1, ..., kn,Λ) =
∞∑

r1,r2=0

4∑
i=1

RR/0
i (λR

4 )r1(λR
5 )r2A

(i,r1,r2)
βn (q, k1, ..., kn,Λ)

(6.166)

where RR/0
i is defined as in eq. (6.128). The expansion of Aτn(Λ) is similar, with the

exception that the extra vertex is always associated with the bare nonrenormalizable
coupling R0

5.
If we want to take a no-cutoff limit Λ0 → ∞ while retaining nonvanishing cou-

plings R0
i (Λ), i = 3...5, we are forced to give up the requirement (6.124) that these

couplings remain small on scales Λ ≤ Λ0. To see this, consider some scale ΛD ≤ Λ0.
From the definition (6.122) follows that for bare couplings

R0
i ∼ Λ−1

D , i = 3...5, (6.167)

their dimensionless counterparts R0
i (Λ) = ΛR0

i will grow large28 as

R0
i (Λ) ∼ Λ/ΛD, i = 3...5, (6.168)

for Λ ≥ ΛD. We will repeatedly come back to the consequences of this behaviour.
Comparing (6.166) to the expansion (6.127) where also the bare nonrenormaliz-

able couplings λ0
ã, ã = 6...8, are used as expansion parameters, we notice that we

may again identify our ”new” expansion (6.166) with the 0th order of perturbation
theory in the bare nonrenormalizable couplings λ0

ã, ã = 6...8, of the former expansion
(6.127). Thus, Theorem (12) concerning the boundedness of gravity vertex functions
with BRS insertion can be applied29 to the vertex functions A

(i,r1,r2)
βn (q, k1, ..., kn,Λ)

28In particular, at the bare scale the R0
i (Λ0) will diverge as Λ0/ΛD for Λ0 →∞.

29It is understood that we substitute MP → Λ0 in Theorem (12).
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of (6.166) The resulting bounds are

||∂pA
(i,r1,r2)
βn (q, p1, ..., pn,Λ)||

≤ Λ−p

(
Λ
ΛR

)|r1|(Λ0

Λ

)Θ0
i
(

ΘR
i Pln

(
Λ
ΛR

)
+

Λ
Λ0

Pln

(
Λ0

ΛR

))
(6.169)

where the symbols ΘR
i and Θ0

i have been defined in eqns. (6.129) and (6.130).
Similar bounds for the expansion coefficients A

(5,r1,r2)
τn (q, k1, ..., kn,Λ) of the vertex

functions Aτn(Λ) can be established, where in this case we have ΘR
i = 0, Θ0

i = 1.
Before we discuss the implications of the bounds (6.169), let us move on and

establish the convergence of the vertex functions Aβn(Λ) and Aτn(Λ) to a no-cutoff
limit. To do so, some preliminary remarks are needed. In the last two sections, we
have imposed improvement conditions for some of the nonrenormalizable couplings
in an effective field theory context. However, as it has been discussed in section (2.3)
and again at the end of section (4.2), it has been shown by C. Wieczerkowski [47]
that improvement conditions may also be used to enhance the rate of convergence
of the effective action to its no-cutoff limit. To do so, some of the nonrenormalizable
couplings have to be fixed at the renormalization scale ΛR at their no-cutoff values.
The latter are determined by the renormalized renormalizable couplings and can in
principle be calculated in perturbation theory in them.

For the gravity vertex functions without operator insertion (6.157), such a strat-
egy would mean to impose improvement conditions

ρã(ΛR) = ρcont
ã (ΛR, ρR

b̃
), ã = 6, ..., 8, b̃ = 1, ..., 5, (6.170)

instead of (6.39). By the same arguments that led to eq. (4.75) we would then
obtain an improved convergence as compared to Theorem (14), eq. (6.160):

||Λ0
d

dΛ0
∂pA(r1,r2)

n (p1, ..., pn,Λ)|| ≤ Λ−p

(
Λ
ΛR

)|r1|( Λ
Λ0

)2

Pln

(
Λ0

ΛR

)
. (6.171)

In the following, we assume that (6.171) has been established.
We now come back to our discussion concerning the convergence of the vertex

functions Aβn(Λ) and Aτn(Λ) to no-cutoff limits. Corresponding to the expansion
(6.166) where also the nonrenormalizable expansion parameters R0

i , i = 3...5, have
been employed, let us impose improvement conditions for the nonrenormalizable
couplings Ri(ΛR), i = 3...5:

RNR
i := Ri(ΛR), i = 3...5. (6.172)

In order to avoid possible confusion, we would like to stress that the improvement
conditions (6.172) are not understood to be (necessarily) given in terms of renor-
malizable couplings in the no-cutoff limit (for small bare couplings R0

i , this would
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in particular imply RNR
5 = 0 by the reasoning leading to eq. (6.165)), but are free

input parameters. This is in contrast to (6.170). The conjecture (that we will not
prove) is that they nevertheless can be met in the no-cutoff limit if we give up the
requirement that the bare couplings R0

i be small, see eqns. (6.167), (6.168).
The necessary ingredients for establishing the convergence of the vertex functions

Aβn(Λ) and Aτn(Λ) to a no-cutoff limit have now been collected. The following
Theorem can be deduced inductively by integrating the RG inequality (A.91) along
the lines of eqns. (3.41) and (3.43) and applying the bounds of Theorems (8), (10)
and eq. (6.171).

Theorem 15 (Convergence of Vertex Functions with BRS Insertion) Let
there be renormalization conditions (6.119) and improvement conditions (6.172).
Assume that to order r1, r2 in perturbation theory in λR

4 and λR
5

||∂pA
(i,r1,r2)
βn (q, p1, ..., pn,Λ)|| ≤ Λ−p

(
Λ
ΛR

)|r1|(Λ0

Λ

)Θ0
i

Pln

(
Λ0

ΛR

)
, (6.173)

and that for n + p ≥ 4

||Λ0
d

dΛ0
∂pA

(i,r1,r2)
βn (q, p1, ..., pn,Λ0)|| ≤ Λ−p

0

(
Λ0

ΛR

)|r1|
Pln

(
Λ0

ΛR

)
. (6.174)

Given Theorems (8), (10) and eq. (6.171) we then have for ΛR ≤ Λ ≤ Λ0

||Λ0
d

dΛ0
∂pA

(i,r1,r2)
βn (q, p1, ..., pn,Λ)|| ≤ Λ−p

(
Λ
ΛR

)|r1|(Λ0

Λ

)Θ0
i
(

Λ
Λ0

)2

Pln

(
Λ0

ΛR

)
(6.175)

where the index i refers to an extra vertex associated with a renormalized coupling
RR

i , i = 1, 2 having canonical dimension DRi = 0 (Θ0
i = 0) or a bare one R0

i , i = 3, 4
having canonical dimension DRi = −1 (Θ0

i = 1), and rNR = |r3|+ |r4|+ |r5|.

For the vertex functions Aτn(Λ) we may proceed similarly, with the exception that
the extra vertex is always associated with the bare nonrenormalizable coupling R0

5.
Thus, we do not need the renormalization conditions (6.119) and we only have the
case Θ0

i = 1.
The inequalities (6.169) and (6.175) can be converted into the following upper

bounds which are valid for i = 1...4:

||∂pA
(i,r1,r2)
βn (q, p1, ..., pn,Λ)|| ≤ Λ−p

(
Λ
ΛR

)|r1|
Pln

(
Λ0

ΛR

)
(6.176)

||Λ0
d

dΛ0
∂pA

(i,r1,r2)
βn (q, p1, ..., pn,Λ)|| ≤ Λ−p

(
Λ
ΛR

)|r1| Λ
Λ0

Pln

(
Λ0

ΛR

)
. (6.177)
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These also apply to the vertex functions A
(5,r1,r2)
τn (Λ).

The point is that eq. (6.177) is already sufficient for proving the convergence of
the vertex functions A

(i,r1,r2)
βn (Λ) and A

(5,r1,r2)
τn (Λ) to no-cutoff limits

A
cont (i,r1,r2)
βn (Λ) := lim

Λ0→∞
A

(i,r1,r2)
βn (Λ,Λ0) (6.178)

Acont (i,r1,r2)
τn (Λ) := lim

Λ0→∞
A(i,r1,r2)

τn (Λ,Λ0) (6.179)

where the arguments are the same as those following Theorem (14). We therefore
do not need the requirement of small couplings R0

i (Λ) ∼ Λ/Λ0, see eqns. (6.124),
(6.125), in order to cancel out the factor (Λ0/Λ)Θ

0
i appearing in eqns. (6.169) and

(6.175). This is because there is at most one vertex associated with a nonrenor-
malizable coupling R0

i , i = 3...5, in each graph contributing to the vertex functions
Aβn(Λ) and Aτn(Λ).

One should, however, keep in mind that couplings R0
i (Λ) ∼ Λ/ΛD, i = 3...5, à

la eqns. (6.167), (6.168) will grow large at scales Λ > ΛD.
By virtue of Theorems (14) and (15) we have now established that the dimen-

sionless vertex functions of the functionals L(Λ), Lµν
β (Λ) and Lµ

τ (Λ) converge to
no-cutoff limits as Λ0 → ∞. Hence, the LHS of the violated Slavnov-Taylor iden-
tities (6.102) of quantum gravity is under control and we may proceed with the
restoration of the STI in the no-cutoff limit.

To do so, we will again have to consider the functional L(1)(Λ) appearing on the
RHS of the vSTI (6.102). It has been defined in eq. (6.101) as the generating func-
tional of vertex functions carrying the BRS variation of the bare total gravity action
(6.92) as a (space-time integrated) operator insertion. Recall that L(1)(Λ) has ghost
number 1 and canonical dimension 5 in the sense of space-time integrated operator
insertions discussed at the end of Appendix (A.5). Furthermore, momentum-space
vertex functions L(1)n(k1, ..., kn,Λ) of L(1)(Λ) have been introduced in eq. (6.139)
of the last section, and it has been argued that these may be used to define running
coupling constants Fi(Λ) as it has been done it in eqns. (A.74)- (A.77) of Appendix
(A.5).

If we attempt to control the dimensionless counterparts A(1)n(k1, ..., kn,Λ) of the
vertex functions (6.139) in the no-cutoff limit, we will have to impose the renormal-
ization conditions (6.141), that is

FR
i := Fi(ΛR), DFi ≥ 0.

Establishing analogons to Theorems (16) and (18) concerning the boundedness and
convergence of vertex functions with operator insertion for the A(1)n(k1, ..., kn,Λ)
requires smallness of the bare initial conditions in the sense of eq. (A.92):

||∂pA(1)n(p1, ..., pn,Λ0)|| ≤ Λ−p
0 Pln

(
Λ0

ΛR

)
, n + p ≥ 6. (6.180)
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However, it seems probable that the condition (6.180) will be spoiled when we drop
the requirement that the dimensionless nonrenormalizable BRS couplings R0

i (Λ),
i = 3...5, be small on scales Λ ≤ Λ0. This follows from the fact that (6.180) is
an inequality for vertex functions of the bare insertion L(1)(Λ0). Since the latter
has been defined in eq. (6.92) as the (regularized) BRS variation of the bare total
gravity action, it will contain the couplings R0

i (Λ0), i = 3...5. If these are chosen
as in eqns. (6.167), (6.168), they will diverge as Λ0/ΛD for Λ0 → ∞. Thus, it is
suggested that we are forced to employ small values

R0
i (Λ) ∼ Λ/Λ0, i = 3...5, (6.181)

in order to satisfy (6.180). Note that in the no-cutoff limit Λ0 → ∞ this amounts
to vanishing couplings R0

i (Λ) = 0, i = 3...5, with the unpleasant consequences that
have been discussed following eq. (6.163). For the time being, let us nevertheless
ensure that the condition (6.180) is satisfied by setting the nonrenormalizable BRS
couplings to zero, eq. (6.163) .

As it has been explained in the last section in eqns. (6.143) and (6.144), the
renormalization conditions (6.141) cannot be chosen freely. Since the bare insertion
L(1)(Λ0) has been defined in eq. (6.92) as the (regularized) BRS variation of the
bare total gravity action, the bare renormalizable couplings F 0

i = Fi(Λ0), DFi ≥ 0,
will be given in terms of the bare renormalizable coupling constants ρ0

ã, ã = 1...5,
and the bare nonzero BRS couplings R0

i , i = 1, 2, defined in Table (6.1) and eqns.
(6.116):

F 0
i = F 0

i (ρ0
ã, R

0
j ), ã = 1...5, j = 1, 2, DF 0

i
≥ 0. (6.182)

This follows from the dimension 5 of the L(1) insertion and the canonical dimensions
of the couplings ρ0

ã, ã = 1...5, and R0
i , i = 1, 2. See Table (6.1) and eqns. (6.116)-

(6.118) for definitions of the operators, couplings and their respective canonical
dimensions.

By the reasoning of the last section, we therefore conclude that the renormal-
ization conditions (6.141) must be functions Gi of the renormalization conditions
(6.37), (6.38) and (6.119):

FR
i = Gi(ρR

ã , RR
j ) + O

(
ΛR/Λ0

)
(6.183)

where the indetermination that is left in eq. (6.186) stems from the ignorance about
the initial conditions

∂pA(1)n(p1, ..., pn,Λ0), n + p ≥ 6 (6.184)

associated with couplings F 0
i , DF 0

i
≤ −1. Since we have assured that these are

small à la eq. (6.180) by employing vanishing nonrenormalizable BRS couplings
(6.163), there should be no further problems with establishing the convergence of
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the vertex functions A(1)n(Λ,Λ0) to no-cutoff limits along the lines of Theorems (16)
and (18) while employing the renormalization conditions (6.183):

Acont
(1)n(Λ) := lim

Λ0→∞
A(1)n(Λ,Λ0). (6.185)

Let us now return to the case of nonvanishing nonrenormalizable BRS couplings
R0

i (Λ) 6= 0, i = 3...5. It may actually be possible to prove the boundedness and
convergence of the vertex functions A(1)n(p1, ..., pn,Λ) of the functional L(1)(Λ) for
this choice. The idea is to employ a strategy similar to the one leading to eq.
(6.172) and Theorem (15) for the vertex functions carrying the gravity BRS fields.
This would mean to impose the improvement conditions (6.142), that is

FNR
i := Fi(ΛR), DFi = −1,

in addition to the renormalization conditions (6.141). Moreover, we would expand
the graphs contributing to the vertex functions A(1)n(p1, ..., pn,Λ) in perturbation
theory in the dimensionless renormalizable couplings λR

4 , λR
5 and the dimensionless

counterparts of the couplings FR
i , DFi ≥ 0, but also in the dimensionless versions

of the bare nonrenormalizable F 0
i , DFi = −1. See the analogous expansion (6.166).

The conjecture is that the effect of the diverging bare BRS couplings R0
i (Λ0), i =

3...5, appearing in the initial conditions (6.184) can be expressed in terms of the
dimensionless counterparts of the F 0

i , DFi = −1. By the arguments following eqns.
(6.178), (6.179) the improved rate of convergence will then be sufficient to come
up for factors Λ0/Λ that arise due to the couplings F 0

i , DFi = −1. Note that the
described procedure is probably equivalent30 to treating the BRS fields (6.75) and
(6.76) as operator insertions with canonical dimension 3.

In analogy to the arguments leading to eqns. (6.147), (6.148) and (6.186) we fur-
thermore conjecture that in the above scenario, the renormalization and improve-
ment conditions (6.141) and (6.142) must be functions Gi of the renormalization
conditions (6.37), (6.38) and (6.119) and the improvement conditions (6.172):

FR
i = Gi(ρR

b̃
, ρcont

ã (ρR
b̃
,ΛR,Λ0), RR

j , RNR
k ) + O

(
ΛR/Λ0

)
(6.186)

FNR
i = Gi(ρR

b̃
, ρcont

ã (ρR
b̃
,ΛR,Λ0), RR

j , RNR
k ) + O

(
ΛR/Λ0

)
(6.187)

30We could multiply the BRS variations (5.29)-(5.31) with one inverse gravitational constant λ−1

and treat them as dimension 3 operator insertions having no nonrenormalizable parts. However,
(5.29) will then contain a part associated with a relevant coupling λ−1 ∼ MP which grows large
at scales Λ < MP . In order to avoid this, we have treated the BRS fields as dimension 2 operator
insertions in the last section. In the present context, the λ−1 coupling would be problematic because
it deters us from considering the limit λ → 0. However, for dimension 3 of the BRS fields the
functional L(1) would have dimension 6, and we would need more renormalization conditions. This
might be equivalent to intruducing renormalization and improvement conditions for a dimension 5
functional L(1) as it is suggested here.
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with b̃ = 1...5, ã = 6...8, j = 1, 2, k = 3...5. Here it has been assumed that the bare
nonrenormalizable couplings ρ0

ã, ã = 6...8, are implicitly defined by their renormal-
ized no-cutoff values (6.170), meaning that they are determined by the renormalized
renormalizable couplings ρR

ã , ã = 1...5. Compare this to the analogous eqns. (6.147)
and (6.148) in the effective field theory context31 where the improvement conditions
for the couplings ρã, ã = 6...8, have been specified freely. On the other hand,
we would like to stress that the improvement conditions RNR

k , k = 3...5, for the
nonrenormalizable BRS couplings appearing in (6.186) and (6.186) still have to be
understood as free input parameters. They can be met because we have allowed for
nonvanishing R0

i (Λ) 6= 0, i = 3...5.
It is only fair to admit that this second scenario is more speculative than the first

one leading to eq. (6.185). It is at this point not entirely clear32 whether bound-
edness and convergence of the vertex functions A(1)n(p1, ..., pn,Λ) of the functional
L(1)(Λ) can be established along the lines of eqns. (6.169) and (6.175) employing
the renormalization and improvement conditions (6.186) and (6.187). Let us all
the same assume that it can be done and therefore nonvanishing BRS couplings
R0

i (Λ), i = 3...5, may be kept in the no-cutoff limit with consequences that we will
evaluate shortly.

The restoration of the violated Slavnov-Taylor identities (6.102) in the no-cutoff
limit can now be disussed. Since the violation is expressed in terms of the functional
L(1)(Λ) appearing on the RHS of (6.102), the STI are restored if we can make L(1)(Λ)
vanish33 in the limit Λ0 →∞:

||L(1)(Λ)|| ≤ Λ
Λ0

. (6.188)

We now follow the proceedings that have been proposed at the end of the last
section while adapting them to the present case. We begin with the ”conservative”
assumption of vanishing nonrenormalizable BRS couplings R0

i (Λ) = 0, i = 3...5:

• Renormalization conditions for the physical renormalizable coupling ΛK and
the gravitational field hµν are specified at some renormalization scale ΛR:

δ

δh(k1)
δ

δh(k2)
L(Φ,ΛR)

∣∣
h=ki=0

!= 0, B1
!= ΛK

∂2
i

(
δ

δh(k1)
δ

δh(k2)
L(Φ,ΛR)

) ∣∣∣
h=ki=0

!= 0. (6.189)

31Note also that in eqns. (6.186) and (6.187) the remaining indetermination is larger as compared
to (6.147) and (6.148) because the couplings F 0

i , DFi = −1, will grow large.
32We are, however, pretty confident because of the conjectured analogy to an analysis employing

dimension 3 BRS fields, leading to a dimension 6 functional L(1)(Λ). Then only renormalization
conditions have to be imposed for the functionals with operator insertion.

33Remember the discussion following Theorem (11) concerning the value Λ = 0 of the floating
cutoff.
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• One particular set of ”arbitrary” renormalization conditions (6.37), (6.38) and
(6.119) for the remaining couplings ρã(ΛR), ã = 1...5, and Ri(ΛR), i = 1, 2,
has to be determined such that

||Gi(ρR
ã , RR

j )|| ≤ ΛR

Λ0
∀ i (6.190)

where the functions Gi have been defined in eqns. (6.183).

Once the bound (6.190) has been achieved, also the renormalization conditions FR
i

of the functional L(1)(Λ) will obey (6.190) because of eq. (6.183). Since the initial
conditions (6.180) are also small, we then may conclude that (6.188) will be satisfied
and the vSTI (6.102) are restored in the no-cutoff limit.

If we employ the more speculative scenario that allows for nonvanishing BRS
couplings R0

i (Λ) 6= 0, i = 3...5, the second point has to be modified as follows:

• One particular set of ”arbitrary” renormalization conditions (6.37), (6.38),
(6.119) and improvement conditions (6.172) for the remaining couplings ρb̃(ΛR),
b̃ = 1...5, and Rj(ΛR), j = 1...5, has to be determined such that

||Gi(ρR
b̃
, ρcont

ã (ρR
b̃
,ΛR,Λ0), RR

j , RNR
k )|| ≤ ΛR

Λ0
∀ i (6.191)

where ã = 6...8, and the functions Gi have been defined in eqns. (6.186) and
(6.187).

If we manage to establish the bounds (6.191), also the renormalization and improve-
ment conditions FR

i and FNR
i of the functional L(1)(Λ) will obey (6.191) because of

eqns. (6.186) and (6.187). If the remaining initial conditions (corresponding to the
bare couplings F 0

i , DF 0
i
≤ −2) are small, one may again conclude that (6.188) will

be satisfied and the vSTI (6.102) are restored in the no-cutoff limit. Note that in the
present case it will not suffice to prove that the renormalization conditions FR

i obey
(6.191) because the dimensionless counterparts of the bare couplings F 0

i , DFi = −1,
are supposed to diverge as Λ0/ΛD for Λ0 →∞. Hence, it does have to be established
that also the improvement conditions FNR

i satisfy (6.191).

Let us finally discuss the physical implications of what we have done so far.
Therefore, it will turn out helpful to explicitly give the renormalized versions of the
bare BRS fields (6.75) and (6.76) after the restoration of the STI. These should just
be the standard gravity BRS variations (5.29) and (5.30):

Ψµν(x,ΛR) = δµν∂ρC
ρ −

(
δρν∂ρC

µ + δµρ∂ρC
ν
)

+ λ∂ρ

(
Cρhµν

)
− λ
(
hρν∂ρC

µ + hµρ∂ρC
ν
)

(6.192)
Ωµ(x,ΛR) = λCν∂νC

µ (6.193)
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where λ is the gravitational constant. Comparing to (6.75) and (6.76), we see that
for the restoration of the STI the ”arbitrary” renormalization and improvement
conditions (6.119) and (6.172) will have to be chosen such that

RR
i = 1, i = 1, 2 (6.194)

RNR
i = λ, i = 3...5. (6.195)

After this preliminary remark, let us begin by considering the most unambigious
case. It consists of choosing vanishing renormalization conditions for the one and
only physical renormalizable coupling:

ΛK = 0, (6.196)

meaning that we consider the case of zero renormalized cosmological constant. We
will now try to figure out how our quantum theory of gravity will look like for the
choice (6.196) in the no-cutoff limit after the restoration of the STI.

Once the latter have been accomplished, the renormalized renormalizable cou-
plings ρR

4 and ρR
5 will be associated with the cosmological constant ΛK and the

gravitational constant λ:

ρR
4 ∼ λΛK (6.197)

ρR
5 ∼ λ2ΛK (6.198)

as follows from Table (6.1). However, the dimensionless counterparts λR
4 and λR

5

of the couplings (6.197) and (6.198) are our expansion parameters of the vertex
functions An(k1, ..., kn,Λ) of the gravity potential L(h, C, C, Λ) in eq. (6.157). Since
eqns. (6.197) and (6.198) imply that λR

4 = λR
5 = 0 for ΛK = 0, we conclude by the

reasoning leading to eq. (6.155) that the no-cutoff limit (6.161) of the gravity vertex
functions must vanish34:

Acont (r1,r2)
n (Λ) = 0 (6.199)

for ΛK = 0. As we have explained in eq. (6.156), this amounts to the statement that
all nonrenormalizable running couplings ρn(Λ,Λ0), n ≥ 6, will die out as Λ0 → ∞
because there are no renormalizable interactions associated with (6.197) and (6.198)
generating new contributions for them. In particular, the renormalized gravitational
constant will vanish in the no-cutoff limit:

λ(Λ,Λ0) → 0 for Λ0 →∞. (6.200)

Thus, our theory will become free as Λ0 →∞. Let us check how this complies with
gauge invariance, which on the quantum level means that the vertex functions must
satisfy the Slavnov-Taylor identities.

34Note that this is based on the assumption of small bare nonrenormalizable couplings as they
are implied by eq. (6.52).
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As follows from eq. (6.195), a vanishing gravitational constant λ = 0 implies that
after the restoration of the STI, the renormalized nonrenormalizable BRS couplings
must also vanish:

lim
Λ0→∞

Ri(ΛR,Λ0) = 0, i = 3...5. (6.201)

This will be automatically the case if we employ small bare nonrenormalizable BRS
couplings in the sense of eq. (6.181), because they will then vanish in the limit
Λ0 → ∞. Furthermore, new contributions to the Ri(Λ), i = 3, 4, will not be
generated since λR

4 = λR
5 = 0. Note that small BRS couplings correspond to the

more conservative scenario leading to eq. (6.165) and a restoration of the STI à la
eq. (6.190). We therefore conclude that

Lcont(Λ) = Lµcont
τ (Λ) = Lcont

(1) (Λ) = 0 (6.202)

for ΛK = 0, where we have employed

Lcont(Λ) := lim
Λ0→∞

L(Λ,Λ0) (6.203)

and similarly for the functionals Lµ
τ (Λ,Λ0) and L(1)(Λ,Λ0). Recall that these func-

tionals have been defined in eqns. (6.98)-(6.101), and that their respective no-cutoff
limits have been established by virtue of eqns. (6.161), (6.178), (6.179) and (6.185).
Eqns. (6.202) should be valid in particular for Λ = 0.

In the no-cutoff limit, the restored STI for quantum gravity without a cosmolog-
ical constant follow therefore from (6.102) as〈

hµν ,∆−1
µνρσLρσ

β (0)
〉

+ ξ−1
〈
Cµ,∆−1

GHµνF
νρσ
(
hρσ

)〉
= 0 (6.204)

where F νρσ
(
hρσ

)
= ∂ρh

ρν and ∆−1
µνρσ, ∆−1

GHµν are the inverse graviton and ghost
propagators, respectively. In position space, the latter are given (for ΛK = 0 and
ξ = 1

2) by eqns. (5.53) and (5.63) as

∆−1
µνρσ = −1

2
(δµρδνσ + δµσδνρ − δµνδρσ) ∂α∂α (6.205)

∆−1
GHµν = δµν∂α∂α. (6.206)

We furthermore note that because of λR
4 = λR

5 = 0 and eqns. (6.201), (6.192) the
no-cutoff limit of the functional Lµν

β (0,Λ0) must be

Lµνcont
β (0) = δµν∂ρC

ρ −
(
δρν∂ρC

µ + δµρ∂ρC
ν
)

(6.207)

for ΛK = 0. One can explicitly check that the no-cutoff STI (6.204) are indeed
satisfied and gauge invariance is in effect in the limit λ → 0. Looking at the (renor-
malized) BRS fields (6.192) and (6.193), this can also be interpreted in the way that
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the gauge/BRS transformations get deformed in this limit because the parts that
are associated with the gravitational constant will go away.

We would like to point out that the vanishing of the gravitational constant λ in
the no-cutoff limit of quantum gravity while employing an analysis à la Polchinski
has already been conjectured35 by S. Weinberg in his book about quantum field
theory [45]. However, he presumably refers to the case ΛK = 0.

In the discussion taking place at the end of section (5.2.2), we have given four con-
ditions that a theory must satisfy in order to be a valid candidate for a (fundamental)
quantum theory of gravitation. The no-cutoff limit of quantum gravity without a
cosmological constant obtained from our analysis with flow equations satisfies three
of the four conditions: we have imposed only a finite number of renormalization
conditions in eqns. (6.189), the Slavnov-Taylor identities (6.204) are fulfilled, and
the remaining theory will be unitary. However, it fails in the last point, because
it predicts a vanishing gravitational constant which is in conflict with the experi-
mental facts. Note that this prediction is based on the assumption of small bare
nonrenormalizable couplings as it has been stressed on various occasions.

Let us now consider the case of gravity with a nonzero renormalized cosmological
constant,

ΛK 6= 0. (6.208)

Here the situation is less clear, because it is not obvious that the renormalized renor-
malizable couplings (6.197) and (6.198) associated with the φ3 and φ4-like operators
must be zero after the restoration of the STI. However, nonzero renormalizable inter-
actions generate new contributions to the nonrenormalizable ones while integrating
out field modes. This fact leads to the speculation whether the cosmological constant
may prevent the gravitational constant from dying off in the no-cutoff limit.

To be more precise, the question is do we have a nonzero no-cutoff limit of the
gravitational constant for ΛK 6= 0,

lim
Λ0→∞

λ(Λ,Λ0,ΛK) := λcont(Λ,ΛK) 6= 0 ? (6.209)

Since the running nonrenormalizable couplings are determined by the renormalizable
ones in the no-cutoff limit, this would in particular mean that the value of the
renormalized gravitational constant is determined by the renormalized cosmological
constant for Λ0 →∞.

To be very clear, the idea is not to impose a renormalization (or, in our termi-
nology, improvement) condition for the gravitational coupling, as we have done it
in the effective field theory context in section (6.2.2), eq. (6.151). The conjecture is
rather that the gravitational constant should come out of the theory as a prediction.
Note, however, that the Polchinski analysis works only for small couplings as we

35S. Weinberg QFT I, Page 526
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have discussed in section (2.2) and emphasized on various occasions. In particular,
our dimensionless expansion parameters λR

4 and λR
5 must be small in the sense of

eqns. (6.48) and (6.50), and the bare nonrenormalizable couplings λ0
ã, ã ≥ 6, must

be sufficiently small as it is implied by eq. (6.52). Moreover, it has been discussed
in eqns. (3.29) and (3.30) of section (3.1.1) that also the dimensionless versions of
the couplings36 A, B1 and B2 appearing in the ”free” part37 of the gravity effective
action (6.26) have to stay small on scales ΛR < Λ < Λ0,

|Λ−2Bi| ≤ 1, i = 1, 2 (6.210)
|Λ−3A| ≤ 1. (6.211)

The point is that the requirement of small couplings amounts to additional con-
straints on the theory.

The no-cutoff value λcont(Λ,ΛK) of the gravitational constant can then in princi-
ple be obtained in the process of restoring the Slavnov-Taylor identities for quantum
gravity. Once the renormalization conditions for the cosmological constant and the
gravitational field have been specified, eq. (6.189), one has to determine one par-
ticular set of ”arbitrary” renormalization conditions (6.37), (6.38) and (6.119) for
the remaining couplings ρã(ΛR), ã = 1...5, and Ri(ΛR), i = 1, 2, such that eqns.
(6.190) are fulfilled and the constraint of small couplings can be met. Note that
in the more speculative scenario concerning the restoration of the STI that allows
for nonvanishing BRS couplings R0

i (Λ) 6= 0, i = 3...5, one has also to adjust the
improvement conditions (6.172) such that that eqns. (6.191) are satisfied.

If such a set of ”arbitrary” renormalization (and improvement) conditions would
exist, it should be uniquely defined in the limit Λ0 →∞ because of the uniqueness
of the no-cutoff limit, Theorem (3). Moreover, the no-cutoff value λcont(Λ,ΛK) of
the gravitational constant could then be calculated in perturbation theory in the
couplings λR

4 and λR
5 by means of the definition

λcont(Λ,ΛK) :=
(1

2
∂i∂j − ∂2

i

)( δ

δh(k1)
δ

δh(k2)
δ

δh(k3)
Lcont(Φ,Λ)

) ∣∣∣
h=ki=0

, (6.212)

that is by solving the Polchinski equation.
It follows from eq. (6.195) that a nonvanishing no-cutoff value for the gravita-

tional constant would imply that after the restoration of the STI, the renormalized
nonrenormalizable BRS couplings must be nonzero, too:

lim
Λ0→∞

Ri(ΛR,Λ0) 6= 0, i = 3...5. (6.213)

As has been pointed out before, this can only be achieved if we give up the require-
ment of small bare nonrenormalizable BRS couplings R0

i , i = 3...5, as we have done
36Note that after the restoration of the STI we will have A = ΛK/λ, B1 = ΛK , B2 = 0 as follows

from eq. (6.24) and the graviton and ghost propagators (5.79) and (5.80).
37B1 and B2 are the mass squares of the graviton and ghost propagators (5.79) and (5.80).
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in eqns. (6.167), (6.168), and impose improvement conditions for them, eq. (6.172).
In light of eq. (6.195) this might of course seem suspicious38 because it can be in-
terpreted in the way that we actually do have to impose renomalization conditions
for the gravitational coupling at some point. Otherwise, we would be forced in the
conclusion that it must be zero in the no-cutoff limit.

However, as we have shown in eqns. (6.178) and (6.179), at least from a tech-
nical point of view it should be acceptable because the convergence of the vertex
functions Aβn(Λ) and Aτn(Λ) carrying the BRS fields as operator insertions can be
established in the no-cutoff limit for nonvanishing couplings R0

i (Λ) 6= 0, i = 3...5.
This is in contrast to imposing arbitrary improvement conditions for the nonrenor-
malizable gravity couplings λã, ã = 6...8, which would spoil convergence. Moreover,
note that the restoration of the STI will not be possible for arbitrary values of the
gravitational constant because of the gravity potential L(Λ) appearing in the vSTI
(6.102). For establishing the convergence of its vertex functions in (6.161) we have
imposed only the renormalization conditions (6.37)-(6.38) and no (arbitrary) im-
provement conditions. In particular, we have pointed out in eq. (6.170) that the
couplings ρã(ΛR), ã = 6, 7 (which will be given by the gravitational coupling after
the restoration of the STI, see Table (6.1)) are understood to be determined by the
renormalizable ones ρã(ΛR), ã = 1...5.

We have furthermore disussed that nonvanishing BRS couplings R0
i (Λ) 6= 0, i =

3...5, force us to employ a more speculative scenario for the restoration of the STI,
leading to eq. (6.191). This scenario ultimatively amounts to proving that the
renormalization and improvement conditions (6.186) and (6.187) of the functional
L(1)(Λ) describing the violation of the STI vanish according to eq. (6.191). Hence,
the same number of conditions is to be fulfilled as in the effective field theory con-
text, see eqns. (6.147) and (6.148). However, in the present case we have less free
parameters at hand that we may adjust, because the improvement conditions for
the gravitational couplings ρã, ã = 6...8, appearing in eq. (6.191) are understood
to be given in terms of no-cutoff limits (6.170) that are already determined by the
renormalized renormalizable couplings ρR

ã , ã = 1...5. One might, however, still hope
for linear interdependencies in the conditions (6.186) and (6.187).

Let us finally remark that the renormalizable φ3 and φ4-like operators that are
introduced because of the cosmological constant can also be obtained in a different
way. Consider some massive fields ϕi having masses mi that couple to the gravita-
tional field h. Employing the expansion (5.14) we obtain schematically∫

x

√
gm2

i ϕ
2
i ∼

∫
x

(
m2

i ϕ
2
i + λm2

i ϕ
2
i h + λ2m2

i ϕ
2
i h

2 + ...
)

(6.214)

38A related issue might be that it is at the present point not clear whether it can be prevented
that the graviton-ghost couplings go away in the no-cutoff limit. This would probably require
renormalizable operators of the type ρ4

∫
ChC and ρ5

∫
Ch2C. However, we do dot see them to be

BRS invariant.
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Thus, we again observe renormalizable interactions ϕ2
i h and ϕ2

i h
2 with ”mixed”

coupling constants λm2
i and λ2m2

i . The latter have canonical dimensions Dλm2
i

=
1 and Dλ2m2

i
= 0 in analogy to the couplings ρ4 and ρ5, see Table (6.1). The

speculations concerning a nonvanishing no-cutoff limit of the gravitational constant
for a nonzero renormalized cosmological constant may therefore be extended to
the case of massive fields coupling to the gravitational field. The gravitational
constant might then be determined by the cosmological constant and the masses of
the elementary particles in the no-cutoff limit. We are not sure whether this might
be related to induced gravity [1] [37].

Note that what has been said above could have yet another implication. Since
all Standard Model operators have canonical dimension DO = 4, coupling them to
the gravitational field would yield operators of canonical dimension DO ≥ 5. Hence,
these would be all nonrenormalizable. The only exception forms the Higgs field,
which couples via its tachyonic mass term to the gravitational field in the manner
of eq. (6.214). One might therefore speculate whether there is a deeper connection
between the mechansim that gives mass to all elementary particles, and the force
that acts on it.



Chapter 7

Summary and Outlook

In this thesis Euclidean quantum gravity was analyzed from the viewpoint of the
renormalization group flow equations. The analysis is based on methods introduced
by J. Polchinski [31] concerning the perturbative renormalization of field theories
via flow equations.

As a first step, we gave the proof of perturbative renormalizability of scalar
φ3 + φ4 field theory in the framework of renormalization with flow equations. Some
generalizations as compared to earlier works [17], [31] have been included.

We then proceeded by extending the concepts of renormalization via flow equa-
tions to effective field theories that have a finite cutoff. This was again done for a
scalar field theory by imposing additional renormalization conditions for some of the
nonrenormalizable couplings. The additional renormalization conditions have been
named ”improvement conditions”, and it has been pointed out that our treatment
in particular applies to nonrenormalizable theories that do not allow for any renor-
malizable interactions. As a result of our analysis we have established that effective
field theories are predictive at scales Λ far below the cutoff Λ0 with finite accuracy
(Λ/Λ0)|Dρl

|+s. Here, Dρl
denotes the canonical dimension of the least irrelevant

coupling of the QFT, and s is the ”improvement index” that refers to the number
of improvement conditions that have been imposed.

Turning to quantum gravity, the standard covariant BRS quantization proce-
dure for Euclidean Einstein gravity with a cosmological constant was reviewed. As
a dynamical variable we used a perturbation of the metric density

√
g gµν around

flat space. We introduced a momentum cutoff regularization for the generating
functional of quantum gravity and discussed the resulting violation of the gauge in-
variance and hence the Slavnov-Taylor-identities (STI). Polchinski’s renormalization
group equation for Euclidean quantum gravity has been derived.

Applying the methods that we developed for analyzing effective field theories
with flow equations to quantum gravity, we disregarded in a first step of our anal-
ysis the violation of the STI. A set of arbitrary renormalization and improvement
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conditions has been imposed, and by inverting the renormalization group trajectory
it has been shown that the improvement conditions force the UV cutoff of effec-
tive quantum gravity to be the Planck scale MP . We then have established that
for generic bare gravity actions the family of theories described by the arbitrary
renormalization and improvement conditions is predictive at scales Λ far below the
Planck scale MP with finite accuracy (Λ/MP )2.

Proceeding with the restoration of the STI, bare regularized BRS variations of
the graviton and ghost fields have been introduced and the violated Slavnov-Taylor
identities (vSTI) of quantum gravity have been worked out. Extending our concepts
to composite operator renormalization, it has been found that the gravity BRS fields
contain nonrenormalizable parts. By introducing renormalization and improvement
conditions for them, it has then been established that vertex functions carrying the
BRS fields as operator insertions are known at scales Λ far below the Planck scale
MP with finite accuracy (Λ/MP )2. We furthermore have found that the violation of
the STI can be described in terms of vertex functions carrying the BRS variation of
the bare gravity action as a space-time integrated operator insertion. It has therefore
been argued that the STI can be restored to finite accuracy if one particular set of
arbitrary renormalization and improvement conditions for the couplings and BRS
fields can be found such that the relevant and leading irrelevant parts of the vertex
functions describing the violation of the STI are driven small as (Λ/MP )2 at scales
Λ far below the Planck scale MP .

Finally, we considered the no-cutoff limit Λ0 → ∞ of quantum gravity in the
framework of renormalization with flow equations. The vertex functions of the
gravity effective potential were expanded solely in the renormalizable couplings,
and their boundedness and convergence has been established in the limit Λ0 →
∞. Attempting to apply the same program to the vertex functions carrying the
BRS fields as operator insertions, we observed that the nonrenormalizable parts of
the gravity BRS fields vanish in the no-cutoff limit if smallness of the bare BRS
couplings is imposed. It could however be shown that if the latter constraint is
dropped, convergence of the BRS vertex functions may still be proven. Proceeding
with the restoration of the STI, we argued that for zero renormalized cosmological
constant ΛK = 0 the theory will become free as Λ0 → ∞, and that the latter
statement is compatible with gauge invariance. It was speculated whether a nonzero
cosmological constant ΛK 6= 0 leads to a nonvanishing value of the gravitational
constant in the no-cutoff limit, and we pointed out that the gravitational coupling
should then be determined by the cosmological constant. Finally, we conjectured
that a similar situation might arise if massive fields are coupled to gravity. This led
to the speculation whether for Λ0 →∞ the gravitational constant is given in terms
of the cosmological constant and the masses of the elementary particles.

Let us now briefly discuss some relations of our results to the work of others. We
begin with a comparison to treatments of quantum gravity as an effective field theory
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in the ”conventional” perturbative framework. Such an analysis has been carried
out by J. Donoghue, N.E.J. Bjerrum-Bohr and others [9] [3] [5]. Generally speaking,
the main advantage of their approach as compared to ours is that they may employ
dimensional regularization, which is a symmetry respecting regulator. Hence, they
do not get involved in the complicated discussion of restoring the violated Slavnov-
Taylor identities. On the other hand, our treatment involving a specific number of
improvement conditions which then lead to a defined predictivity of the effective
theory is maybe more systematic and transparent from a conceptual point of view.
Moreover, we employ the modern language of the renormalization group.

Let us furthermore stress that we resctricted our considerations to pure Euclidean
gravity, whereas the focus of the above authors lies in the derivation of quantum
corrections to Newton’s potential. Thus, they mainly deal with the gravitational
interaction of matter.

As we have discussed, our results for pure effective quantum gravity are such
that the vertex functions of the theory are known at the scale Λ to an accuracy of
(Λ/MP )2 where MP is the Plack scale. On the other hand, this means that already
to second order in perturbation theory in the gravitational coupling λ ∼ M−1

P ,
the perturbative contributions will be of the same order as the indetermination
of the vertex functions1. In particular, we will not be able to calculate quantum
corrections because already the 1-loop correction to the graviton propagator (the
”vacuum polarization”) involves two 3-graviton vertices.

However, when deriving the quantum corrections to Newton’s potential in [9]
[3], the authors actually do extract quantum corrections out of the graviton vacuum
polarization diagram. This is not a contradiction to our results by the following
reasoning. In our considerations we have always assumed that we may perform a
derivative expansion of the gravity effective potential into local composite field oper-
ators. Equivalently, the momentum space vertex functions of the effective potential
have been Taylor expanded around vanishing momenta ki = 0. This procedure was
justified because we kept a nonvanishing effective IR cutoff. However, the low en-
ergy propagation of massless particles (such as the graviton2) leads to nonanalytic
contributions that cannot be expanded in a Taylor series. It can be shown that these
contributions lead to quantum corrections that are dominant over the analytic ones,
and it has been such quantum effects3 that have been extracted out of the 1-loop
correction to the graviton propagator by the authors mentioned.

We will now come to the discussion of the relation of our work to a nonper-
turbative analysis of Euclidean quantum gravity with flow equations that has been
performed by M. Reuter and others [33] [21] [35]. As has been mentioned on various

1Perturbative contributions that stem from the ”mixed” couplings λΛK , λ2ΛK etc. appearing
for nonvanishing cosmological constant ΛK will be neglectible because of the smallness of ΛK .

2Modulo ”mass” squares that appear for nonvanishing consmological constant ΛK in the graviton
propagator. However, we have always kept the IR cutoff Λ above ΛK , Λ2 > |ΛK |.

3The (Minkowski space) contribution is ∼ ln(−k2).
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occasions, the Polchinski analysis works only for sufficiently small couplings. Hence,
it implictly relies on the Gaussian fixed point in the space of couplings as does per-
turbation theory. However, the nonperturbative investigation of the renormalization
group flow of gravity employing truncations of the space of actions seems to indicate
that the UV behaviour of quantum gravity is governed by a nontrivial (i.e. non-
Gaussian) fixed point [20]. As long as we impose our effective field theory scenario
for quantum gravity, meaning that we retain a finite UV cutoff Λ0 = MP , this is
again not in contradiction to our analysis because the regime of the conjectured non-
Gaussian fixed point sets in at scales Λ above the Planck scale MP , Λ > MP [36].
At scales far below the Planck scale, the theory is governed by the Gaussian fixed
point and our results may be applied. These in particular imply that for generic
bare gravity actions defined at the Planck scale MP , the effective Lagrangian of
quantum gravity is attracted towards a finite dimensional submanifold in the space
of possible Lagrangians at scales Λ << MP . To be more precise, the analysis of sec-
tion (6.2.1) has shown that for tiny renormalized values of the cosmological constant
ΛK ∼ 10−120M2

P and a renormalized gravitational constant λ ∼ M−1
P the effective

Lagrangian of quantum gravity (and hence all couplings associated with the higher
field invariants) are effectively determined by the gravitational coupling4 to an ac-
curacy of (Λ/MP )2. This behaviour should be also visible in a study of the RG
trajectories of the running gravity couplings that is carried out by truncating the
space of actions. However, due to the extreme algebraic complexity of the respec-
tive β-functions the authors mentioned have mostly considered an Einstein-Hilbert
truncation that involves only the running cosmological constant and the running
gravitational coupling. This makes it difficult to recover the convergence of the
gravity couplings to a finite dimensional submanifold at scales Λ << MP from their
results.

Let us also mention that our speculations on the no-cutoff limit of quantum
gravity in section (6.3) still rely on the Gaussian fixed point. If such a no-cutoff limit
(with nonvanishing gravitational constant λ) would indeed exist, it might therefore
be in conflict with the results concerning the nontrivial fixed point that have been
found by the above authors.

Finally, we would like to point out that the vertex functions of the effective
potential for which the RG analysis has been performed in this work are more or
less equivalent to the connected Greens functions. This has been shown in Appendix
(A.4). On the other hand, the nonperturbative RG analysis of M. Reuter et al. has
been carried out for one particle irreducible (1PI) vertex functions. This is another
important difference between their approach and ours.

To conclude with an outlook, we would like to stress once more that the methods
developed in this work for investigating effective field theories with flow equations

4For larger values of the cosmological constant ΛK , the effective Lagrangian is determined by λ
and ΛK to an accuracy of (Λ/MP )2.
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should be applicable to any effective field theory, not just gravity.
Concering our analysis of effective quantum gravity with flow equations, it re-

mains to show that there actually exists a set of arbitrary renormalization and
improvement conditions for the couplings and the BRS fields such that the restora-
tion of the Slavnov-Taylor identities with finite accuracy can be accomplished. The
analogous procedure for Yang-Mills theory [18] [27] suggests that this will be a rather
tedious task.

Finally, it should be investigated whether for nonzero cosmological constant there
does indeed exist a choice of arbitrary renormalization conditions such that in the
no-cutoff limit the Slavnov-Taylor identities can be restored, the requirement of
small couplings can be met and, finally, a nonvanishing value of the renormalized
gravitational constant is obtained. One should carry out the same program for the
case of a massive field coupled to the gravitational field.
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Appendix A

A.1 Canonical dimensions of fields

The canoncial dimension Dφ of a field φ(x) of some QFT is determined by the kinetic
term (or ”free” part) of its action,

Sf = −1
2

∫
xy

φ(x)∆−1(x− y)φ(y) (A.1)

where ∆−1(x − y) denotes the inverse propagator. The action must be dimension-
less1, and hence Dφ follows from the number of space-time dimensions d and the
properties of ∆−1(x− y). To be more precise, it turns out that if the Fourier trans-
formed propagator ∆̃(k) has a large momentum behaviour

|∆̃(αk)| ∼ Cα−σ, k 6= 0, α →∞, (A.2)

where C is some positive constant and α is a parameter, then [50]

Dφ =
1
2
(d− σ). (A.3)

Consequently, the Fourier transformed field φ̃(k) has canonical dimension

Dφ̃ = −1
2
(d + σ). (A.4)

In this work, we will consider d = 4 space-time dimensions and deal with 1/k2

(momentum-space) propagators (meaning that σ = 2). Thus we have

Dφ = 1, Dφ̃ = −3. (A.5)

1We employ c = ~ = 1.
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A.2 Derivative expansion of the effective potential

The effective potential L(φ,Λ) introduced in eq. (2.7) can be expanded in powers
of the fields φ(x):

L(φ,Λ) =
∞∑

n=1

1
n!

∫
d4x1...d

4xnLn(x1...xn,Λ)φ(x1)...φ(xn). (A.6)

We call the expansion coefficients Ln(x1...xn,Λ) position space vertex functions.
They are obviously nonlocal objects. Formally, (A.6) can always be written as a local
expression plus a nonlocal remainder term by expanding all fields φ(xi) into power
series around a common point x. Such a procedure is called derivative expansion,
and we will now do it explicitly for the example

1
3!

∫
d4x1d

4x2d
4x3L3(x1, x2, x3,Λ)φ(x1)φ(x2)φ(x3). (A.7)

We choose x1 as an expansion point for the fields φ(xi):

φ(xi) = φ(x1) + ∂µφ(x1)(xi − x1)µ +
1
2
∂µ∂νφ(x1)(xi − x1)µ(xi − x1)ν + ... (A.8)

Furthermore, because of the homogeneity of space-time we have

L3(x1, x2, x3,Λ) = L3(x2, x3,Λ) (A.9)

where x2 := x2 − x1, x3 := x3 − x1. Thus we may write

(A.7) =
∫

x1

φ(x1)3
∫

x2x3

L3(x2, x3,Λ) +
∫

x1

φ(x1)2∂µφ(x1)
3∑

i=2

∫
x2x3

xµ
i L3(x2, x3,Λ)

+
∫

x1

φ(x1)2∂µ∂νφ(x1)
3∑

i=2

1
2

∫
x2x3

xµ
i xν

i L3(x2, x3,Λ)

+
∫

x1

φ(x1)∂µφ(x1)∂νφ(x1)
∫

x2x3

xµ
2xν

3L3(x2, x3,Λ) + ... . (A.10)

Let us analyze the different terms of (A.10). To do so, consider Gµν ∈ SO(4). Then

Gµν

∫
x2x3

xν
i L3(x2, x3,Λ) =

∫
x2x3

Gµνxν
i L3(Gx2, Gx3,Λ)

=
∫

x2x3

xν
i L3(x2, x3,Λ). (A.11)

Hence, the invariance of L3 under the orthogonal group and the tensor structure of
the integral in (A.11) force∫

x2x3

xν
i L3(x2, x3,Λ) = 0. (A.12)
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With a similar argument and the symmetry L3(x2, x3,Λ) = L3(x3, x2,Λ) we con-
clude that

−
∫

x2x3

xµ
i xν

i L3(x2, x3,Λ) = δµνρ6(Λ), i = 2, 3 (A.13)

−
∫

x2x3

xµ
i xν

j L3(x2, x3,Λ) = δµνρ7(Λ), i 6= j = 2, 3 (A.14)

where we introduced the running coupling constants ρ6(Λ) and ρ7(Λ). If, in addition,
we define

ρ4(Λ) :=
∫

x2x3

L3(x2, x3,Λ), (A.15)

the expansion (A.10) becomes

(A.7) = ρ4(Λ)
∫

x1

φ(x1)3 − ρ6(Λ)
∫

x1

φ(x1)2∂µ∂µφ(x1)

− ρ7(Λ)
∫

x1

φ(x1)∂µφ(x1)∂µφ(x1) + ... .(A.16)

Note that the last two operators of (A.16) are not linearly independent2, because
integration by parts yields∫

x1

φ(x1)2∂µ∂µφ(x1) = −2
∫

x1

φ(x1)∂µφ(x1)∂µφ(x1). (A.17)

Hence, we arrive at

(A.7) = ρ4(Λ)
∫

x1

φ(x1)3 + ρ6/7

∫
x1

φ(x1)2∂µ∂µφ(x1) (A.18)

where

ρ6/7 := −ρ6(Λ) +
1
2
ρ7(Λ). (A.19)

In analogy to what we have shown for the example (A.7), we may proceed for other
vertex functions. Introducing the running coupling constants

ρ1(Λ) := L1(Λ) (A.20)

ρ2(Λ) :=
∫

x2

L2(x2,Λ) (A.21)

ρ3(Λ) δµν := −
∫

x2

xµ
2xν

2L2(x2,Λ) (A.22)

ρ5(Λ) :=
∫

x2x3x4

L4(x2, x3, x4,Λ) (A.23)

ρ8(Λ) :=
∫

x2x3x4x5

L5(x2, x3, x4, x5,Λ) (A.24)

2Contrary to what is stated in [47].
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then allows us to write

L(φ,Λ) =
∫

d4x
(
ρ1(Λ)φ(x) + ρ2(Λ)φ(x)2 − ρ3(Λ)φ(x)∂µ∂µφ(x)

+ ρ4(Λ)φ(x)3 + ρ5(Λ)φ4 + ρ6/7φ(x)2∂µ∂µφ(x) + ρ8(Λ)φ5
)

+ R(1)(φ)

(A.25)

where R(1)(φ) is a nonlocal remainder term. Eq. (A.25) is a derivative expansion
of the effective potential L(φ,Λ) into local composite field operators Oi(x, φ) of
canonical dimension3 DOi ≤ 5. The latter are associated with running coupling
constants ρi(Λ) of canonical dimension

Dρi = 4−DOi ≥ −1. (A.26)

Thus, (A.25) can be written as

L(φ,Λ) =
∑

Dρi≥−1

ρi(Λ)
∫

x
Oi(x, φ) + R(1)(φ). (A.27)

Eq. (A.27) corresponds to the case s = 1 in the general expression (2.15) for a
derivative expansion of L(φ,Λ) given in section (2.1).

So far in this appendix, we have worked in position space. However, in chapters
(3) and (4) the objects of interest are momentum space vertex functions Ln(k1, ..., kn,Λ).
In eqns. (3.11)-(3.15) and (4.2)-(4.4) these are even used to define the running cou-
pling constants ρi(Λ) via Taylor expansions around ki = 0. In the following, we will
show that the coupling constants of eqns. (3.11)-(3.15) and (4.2)-(4.4) are identical
to those defined in eqns. (A.13)-(A.15) and (A.20)-(A.24).

To do so, we will again consider the example of L3(x1, x2, x3). Its Fourier trans-
form is given by

δ(k1 + k2 + k3) L3(k1, k2, k3,Λ) =
∫

x1x2x3

eik1x1eik2x2eik3x3L3(x2, x3,Λ)

= δ(k1 + k2 + k3)
∫

x2,x3

eik2x2eik3x3L3(x2, x3,Λ).

(A.28)

Integrating over k1 yields

L3(−k2 − k3, k2, k3,Λ) =
∫

x2,x3

eik2x2eik3x3L3(x2, x3,Λ). (A.29)

3The field φ(x) has canonical dimension Dφ = 1 in d = 4 space-time dimensions. See section
(6.1.1) for the determination of the canonical dimension of a field.
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Therefore, we obtain the following identities:4

L3(k1, k2, k3,Λ)|ki=0 =
∫

x2,x3

L3(x2, x3,Λ) (A.30)

∂µ
i,1L3(k̃1, k̃2, k̃3,Λ)|k̃i=0 = i

∫
x2x3

xµ
i L3(x2, x3,Λ) (A.31)

∂µ1
i1,1∂

µ2
i2,1L3(k̃1, k̃2, k̃3,Λ)|k̃i=0 = −

∫
x2x3

xµ1
i1

xµ2
i2

L3(x2, x3,Λ). (A.32)

From (A.31) and (A.12) follows that odd numbers of momentum derivatives of vertex
functions vanish. Furthermore, eqns. (A.30) and (A.32) show that the definitions
of ρ4(Λ), ρ6(Λ) and ρ7(Λ) given in eqns. (3.14), (4.2) and (4.3) are indeed identical
to those of eqns. (A.13)-(A.15). The same can be shown for the remaining coupling
constants ρi(Λ). Hence, if we insert the Taylor expansions (3.9), (3.10) and (4.1)
respectively of the momentum space vertex functions Ln(k1, ..., kn,Λ) into the ex-
pansion (3.4) of the effective potential, we just obtain the momentum space version
of the derivative expansion (2.15).

To conclude this section, we demonstrate how the argument (A.17) for the linear
dependence of the operators associated with the couplings ρ6(Λ) and ρ7(Λ) translates
into momentum space. If we insert the parts of the Taylor expansion (4.1) associated
with the couplings ρ6(Λ) and ρ7(Λ) into (3.4)5, we obtain∫

k2k3

(
ρ6

3∑
i=2

k2
i + ρ7

3∑
i6=j=2

kikj

)
φ(k2)φ(k3)φ(−k2 − k3). (A.33)

Substituting k2 by k̃2 = −k2 − k3 we have∫
k3

φ(k3)
∫

k2

k2
2 φ(k2)φ(−k2 − k3) =

∫
k3

φ(k3)
∫

k̃2

(−k̃2 − k3)2φ(k̃2)φ(−k̃2 − k3)

and therefore

−1
2

∫
k2k3

k2
2 φ(k2)φ(k3)φ(−k2 − k3) =

∫
k2k3

k2k3 φ(k2)φ(k3)φ(−k2 − k3).

(A.34)

Thus eq. (A.33) becomes

(A.33) = −2ρ6/7(Λ)
∫

k2k3

k2
2 φ(k2)φ(k3)φ(−k2 − k3) (A.35)

in full correspondence with the postition space equation (A.18).

4Remember that ∂µ1
i,1L3(k̃1, k̃2, k̃3, Λ)|k̃i=0 = ∂µ1

i L3(−k̃2 − k̃3, k̃2, k̃3, Λ)|k̃i=0.
5It is understood that the integration over k1 has been carried out in (3.4).
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A.3 Linearized renormalization group theory

Let Se(Λ) be an effective action. Its dependence on the scale Λ is given by a renor-
malization group equation (RGE)

−Λ
d

dΛ
Se(Λ) = F(Se(Λ)). (A.36)

At a fixed point S∗e we have

−Λ
d

dΛ
S∗e (Λ) = 0. (A.37)

Now consider small deviations

δSe(Λ) := Se(Λ)− Se(Λ) (A.38)

from a solution Se(Λ) of eq. (A.36). They satisfy a linearized RGE

−Λ
d

dΛ
δSe(Λ) = M(Se(Λ))δSe(Λ). (A.39)

For the rest of this section, we choose Se(Λ) = S∗e . Then M becomes independent
of the scale Λ, and the eigenvalue equation

MOi = ξiOi (A.40)

defines scaling exponents ξi and a set of eigenoperators Oi (which is assumed to be
complete). We may expand δS with respect to the Oi:

δS(Λ) =
∑

i

µi(Λ)Oi. (A.41)

The ”scaling fields” µi(Λ) obey

−Λ
d

dΛ
µi(Λ) = ξiµi(Λ) (A.42)

which has the solution

µi(Λ) = µi(Λ0)
(

Λ
Λ0

)−ξi

. (A.43)

Near the fixed point S∗e , we have

Se(Λ) = S∗e +
∑

i

µi(Λ)Oi (A.44)

= S∗e +
∑

i

µi(Λ0)
(

Λ
Λ0

)−ξi

Oi. (A.45)

There are three different kinds of operators Oi associated with the eigenvalues ξi.
They are called ”scaling operators” and are classified as follows:
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• ξi > 0: The associated scaling field µi is relevant because it brings the action
Se(Λ) away from the fixed point S∗e when Λ

Λ0
→ 0.

• ξi < 0: The associated scaling field µi is irrelevant because it decays to zero
when Λ

Λ0
→ 0. Se(Λ) converges towards S∗e .

• ξi = 0: The associated scaling field µi is marginal. Then S∗e + µiOi is again
a fixed point for any µi. The latter property may be destroyed beyond the
linear order.

For the Gaussian fixed point, that is in the limit of vanishing coupling, the corre-
sponding eigenvalues of the RG transformation are given precisely by the canonical
dimension of the couplings. In order to evaluate this somewhat further, consider
couplings ρi(Λ) which have canonical dimensions of

[ρi] = Dρi . (A.46)

We may define dimensionless couplings by

λi(Λ) := Λ−Dρi ρi(Λ). (A.47)

These couplings λi depend on the scale Λ according to RG equations

−Λ
d

dΛ
λi(Λ) = βi(λ(Λ)). (A.48)

Eq. (A.48) is the analogue to (A.36). Again, we consider small deviations

δλi(Λ) := λi(Λ)− λi(Λ) (A.49)

which obey a linearized RG equation

−Λ
d

dΛ
δλi(Λ) = Mij(λ(Λ))δλj(Λ) (A.50)

Mij(λ(Λ)) =
∂

∂λj
ξi(λ(Λ)). (A.51)

In the limit of vanishing coupling, that is λi(Λ) → 0, the ρi become independent of
the scale6 Λ and we have

δλi(Λ) ≡ µi(Λ) (A.52)
Mij(λ(Λ)) ≡ δijDρi . (A.53)

The associated scaling fields (or couplings) are then often called superrenormalizable,
nonrenormalizable and renormalizable, respectively.

6In perturbation theory, this can be understood by noting that the Λ-dependence of ρi arises
through contributions from diagrams. These vanish if the couplings go to zero.
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A.4 The relation between the effective potential L(φ)
and the generating functional Z(J) of connected
Greens functions

Let L(φ,Λ,Λ0) be a solution of the Polchinski RGE (2.10) where initial conditions
L(φ,Λ0,Λ0) have been specified. As is explained in section (2.1), this solution leads
to a generating functional

W (JΛ; Λ0) =
∫
Dφe−

1
2
(φ,∆−1

Λ φ)+L(φ,Λ,Λ0)+(JΛ,φ) (A.54)

that does not depend on the scale Λ. However, in order to avoid that L(φ,Λ,Λ0)
becomes a complicated functional of the source JΛ, we had to impose the additional
assumption

JΛ(k) = 0 for k2 > Λ2. (A.55)

We will now briefly discuss how this assumption, which is problematic in practical
calculations [50] and might also cause troubles when considering the Slavnov-Taylor-
Identities for the generating functional W (J) of a gauge theory, can be avoided. This
will be done by relating the effective potential L(φ,Λ,Λ0) to a generating functional
for connected Greens functions Z(J ; Λ,Λ0).

Note that while obtaining the solution L(φ,Λ,Λ0), only field modes correspond-
ing to momenta Λ2 < k2 < Λ2

0 have been integrated out and thus contributed to
L(φ,Λ,Λ0). Hence, Λ0 and Λ can be viewn as effective UV and IR momentum
cutoffs for the functional L(φ,Λ,Λ0) respectively.

It is therefore possible to write L(φ,Λ,Λ0) in the following way:

eL(φ,Λ,Λ0) =
∫
Dϕ e

− 1
2
(ϕ,∆−1

Λ,Λ0
ϕ)

eL(φ+ϕ,Λ0,Λ0) (A.56)

where the regularized propagator ∆Λ,Λ0 now has a built-in IR momentum cutoff Λ
(that supresses momenta k2 < Λ2) in addition to the UV cutoff Λ0. Indeed it can
be shown [27] that, if we take eq. (2.10) as a defining relation for L(φ,Λ,Λ0), the
dependence of the latter on the IR cutoff Λ is again given by Polchinski’s equation.

Let us now introduce the generating functional

W (J ; Λ,Λ0) =
∫
Dϕe

− 1
2
(ϕ,∆−1

Λ,Λ0
ϕ)+L(ϕ,Λ0,Λ0)+(J,ϕ) (A.57)

which, contrary to (A.54), depends on both scales Λ and Λ0, but whose source term
J is not supposed to obtain the condition (A.55). Obviously, we have

W (J ; 0,Λ0) = W (JΛ0 ; Λ0). (A.58)



A.5. RENORMALIZATION OF OPERATOR INSERTIONS 133

By substituting ϕ → φ−ϕ in eq. (A.56) it follows that W (J ; Λ,Λ0) and L(φ,Λ,Λ0)
are related by the following equation:

eL(φ,Λ,Λ0) = e
− 1

2
(φ,∆−1

Λ,Λ0
φ)

W (∆−1
Λ,Λ0

φ; Λ,Λ0). (A.59)

In terms of the generating functional for connected Greens functions Z(J ; Λ,Λ0) =
− ln

(
W (J ; Λ,Λ0)

)
this becomes

L(φ,Λ,Λ0) = −1
2
(φ,∆−1

Λ,Λ0
φ)− Z(∆−1

Λ,Λ0
φ; Λ,Λ0). (A.60)

Hence, we have found an easy relation beween the effective potential L(φ,Λ,Λ0) and
the generating functional for connected Greens functions Z(J ; Λ,Λ0). Moreover, it is
now clear how to overcome the potential troublesome condition (A.55) for the source
JΛ: the important quantity we have to calculate is L(φ, 0,Λ0). Once we have done
this, we easliy obtain the physical (regularized) generating functional Z(J ; 0,Λ0) via
eq. (A.60) and the substitution

φ → ∆0,Λ0J. (A.61)

A.5 Renormalization of operator insertions

In this section, we will briefly discuss the renormalization of composite fields, in
particular from the viewpoint of the flow equations. We will follow the treatment of
Refs [27] and [50] and adapt it to our work.

Let φ(x) be a scalar field in d = 4 space-time dimensions. A composite field O(x)
is a polynomial formed of the field φ(x) and of its space-time derivatives. Typical
examples are

O(x) = φ2(x), φ(x)∂2φ(x), φ4(x)... (A.62)

We denote the canonical dimension of the composite field by DO.
In principle, correlation functions involving operator insertions (OI), like

〈O(x), φ(x1), ..., φ(xn)〉, (A.63)

can be obtained from the field correlation functions by letting various points xi

coincide. However, in momentum space this procedure amounts to additional inte-
grations, and hence new divergences appear. For the case of one operator insertion
as in the example (A.63), it turns out that in order to cancel the upcoming diver-
gences, counterterms for all local operators (permitted by the field and symmetry
content of the QFT) that have canonical dimensions D ≤ DO must be added.
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Thus, for an insertion of one φ2(x) we would have to add counterterms7 for the
operators φ2(x), φ(x) and a field independent term, arriving at some bare operator
insertion

O0(x) = R0
2φ

2(x) + R0
1φ(x) + R0

0. (A.64)

We will restrict our considerations to the case of one operator insertion. To discuss
the renormalization of a composite field with flow equations, let us introduce a bare
extended effective potential

L̃(φ, γ,Λ0) := L(φ,Λ0) +
∫

x
γ(x)O(x,Λ0) (A.65)

where L(φ,Λ0) is some bare effective potatial à la eq. (2.11), and γ(x) is a source
that couples to the bare operator insertion O(x,Λ0). Solving the Polchinski RGE
(3.2) employing (A.65) as initial condition then yields the running potential

L̃(φ, γ,Λ,Λ0). (A.66)

Recall that the derivation of the Polchinski equation does not depend on transla-
tional invariance of the effective potential [23].

We now may define the generating functional for vertex functions with one op-
erator insertion:

L(1)(φ, x,Λ,Λ0) :=
δ

δγ(x)
L̃(φ, γ,Λ,Λ0)|γ=0. (A.67)

In the following, we will work in momentum space. The Fourier transform of (A.67)
is defined as

L(1)(φ, q,Λ,Λ0) :=
∫

x
eiqxL(1)(φ, x,Λ,Λ0). (A.68)

The functionals (A.67), (A.68) obey a RGE linear in L(1), as can be seen by func-
tional differentiation of the RGE (3.2) for L̃(φ, γ,Λ,Λ0) with respect to γ:

−Λ
d

dΛ
L =

1
2

∫
d4k(2π)4Λ

d

dΛ
∆Λ

(
δL

δφ(k)
δL(1)

δφ(−k)
+

δ2L(1)

δφ(k)δφ(−k)
+ Aδ(k)

δL(1)

δφ(k)

)
.

(A.69)

The (momentum-space) vertex functions with one operator insertion are the coeffi-
cients L(1)n of an expansion of (A.68) in powers of the fields φ,

L(1)(φ, q,Λ,Λ0) =
∞∑

n=1

1
n!

∫
d4k1...d

4kn

(2π)4n−4
L(1)n(q, k1, ..., kn,Λ)δ4

(
q +

∑
i

ki

)
φ(k1)...φ(kn).

(A.70)
7If the QFT is symmetric under φ → −φ, we do not need the counterterm for the operator φ(x).
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Let us now do some dimensional analysis. The canonical dimension of the bare
position-space operator insertion O(x, Λ0) has been denoted by DO, and from eq.
(A.67) follows that we also have

[L(1)(φ, x,Λ,Λ0)] = DO. (A.71)

The Fourier transformed functional (A.68) then has canonical dimension

[L(1)(φ, q,Λ,Λ0)] = DO − 4. (A.72)

As is discussed in Appendix (A.68), a propagator that goes like 1/k2 implies canon-
ical dimension Dφ(k) = −3 of the (momentum-space) field φ(k). Thus eq. (A.70)
tells us that the canonical dimension of the momentum-space vertex functions with
one operator insertion equals

DL(1)n
= DO − n. (A.73)

Compare this to the dimension DLn = 4−n of the vertex functions without operator
insertions introduced in section (3.1.1).

By Taylor expanding the vertex functions L(1)n(q, k1, ..., kn,Λ) around q = ki = 0
(see eqns. (3.10), (4.1)) we may define running coupling constants Ri:

R0(Λ) := L(1)0(0,Λ) (A.74)
R1(Λ) := L(1)1(0, 0,Λ) (A.75)
R2(Λ) := L(1)2(0, 0, 0,Λ) (A.76)

R3(Λ) δµν := ∂µ
q,1∂

ν
q,1L(1)1(q, k1,Λ)|q=k1=0 (A.77)

...

In the following, we will distinguish between renormalizable couplings Ra and non-
renormalizable couplings Rn by their canonical dimensions:

Ra : DRa ≥ 0 (A.78)
Rn : DRl

< 0. (A.79)

Note that the canonical dimensions DRi follow from the definitions (A.74)- (A.77).
We introduce renormalization conditions for the renormalizable couplings Ra

RR
a := Ra(ΛR), DRa ≥ 0 (A.80)

where ΛR < Λ0 is some renormalization scale. This is of course related to our
discussion of counterterms for operator insertions at the beginning of this section.

Finally, initial conditions for the least irrelevant couplings R0
l (having canonical

dimensions8 DRl
= −1) are specified at the bare scale:

R0
l := Rl(Λ0), DRl

= −1. (A.81)
8For simplicity, we assume that the field and symmetry content of the theory is such that the

least irrelevant couplings indeed have DRl = −1.
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Introducing the dimensionless coupling constants

RR
a (Λ) = Λ−DRa RR

a (A.82)
R0

l (Λ) = Λ R0
l (A.83)

we impose as an additional constraint to the renormalization and initial conditions
that the dimensionless couplings be small on scales ΛR ≤ Λ ≤ Λ0:

RR
a (Λ) ≤ 1 (A.84)
R0

l (Λ) ≤ 1. (A.85)

In the following, we will employ the notations of chapters (3) and (4). Expanding
the vertex functions L(1)n in the renormalized renormalizable couplings RR

a , ρR
4 and

ρR
5 introduced in eqns. (A.80), (3.20) and (3.21) and in the bare nonrenormalizable

couplings R0
l and ρ0

ã, ã = 6...8, of eqns. (A.81) and (4.10) yields

L(1)n(q, k1, ..., kn,Λ) =
∞∑

r1,...,r5=0

∑
i

R
R/0
i (ρR

4 )r1(ρR
5 )r2

(ρ0
6)

r3(ρ0
7)

r4(ρ0
8)

r5L
(i,r1,...,r5)
(1)n (q, k1, ..., kn,Λ)

(A.86)

where R
R/0
i means RR

a or R0
l . Hence, because of the operator insertion each graph

contributing to (A.86) contains one extra vertex associated with a renormalized
coupling constant (A.80) or a bare one (A.81). To distiguish between the two
possibilities, we introduce the symbols ΘR

i and Θ0
i :

DRi ≥ 0 : ΘR
i := 1 ∧ Θ0

i := 0 (A.87)
DRi = −1 : ΘR

i := 0 ∧ Θ0
i := 1 (A.88)

for a graph L
(i,r1,...,r5)
(1)n associated with a coupling R

R/0
i . Employing dimensionless

vertex functions

A
(i,r1,...,r5)
(1)n (q, k1, ..., kn,Λ) := Λn−DO+r1+ΘR

i DRi
−(r3+r4+r5+Θ0

i )L
(i,r1,...,r5)
(1)n (q, k1, ..., kn,Λ)

.(A.89)

and the dimensionless couplings (A.82), (3.22), (A.83) and (4.11), eq. (A.86) be-
comes

A(1)n(q, k1, ..., kn,Λ) =
∞∑

r1,...,r5=0

∑
i

RR/0
i (λR

4 )r1(λR
5 )r2

(λ0
6)

r3(λ0
7)

r4(λ0
8)

r5A
(i,r1,...,r5)
(1)n (q, k1, ..., kn,Λ).

(A.90)



A.5. RENORMALIZATION OF OPERATOR INSERTIONS 137

We may now reformulate the RGE (A.69) in terms of the dimensionless vertex
functions (A.90). Applying the bounds (3.33) and (3.34) as well as the condition
(3.30) for the renormalization constant A we arrive at the RG inequality (RGI)

‖ d

dΛ
ΛDO−n−r1−ΘR

i DRi
+rNR+Θ0

i ∂pA
(i,r1,...,r5)
(1)n (Λ)‖

≤ cn,p ΛDO−1−n−r1−ΘR
i DRi

+rNR+Θ0
i

(
‖∂pA

(i,r1,...,r5)
(1)n+2 (Λ)‖+ ‖∂pA

(i,r1,...,r5)
(1)n+1 (Λ)‖

+2
∑
...

Λ−p1‖∂p2A
(s1,...,s5)
l (Λ)‖‖∂p3A

(i,r1−s1,...,r5−s5)
(1)n+2−l (Λ)‖

)
(A.91)

where
∑

... is defined as in eq. (4.21). Observe that the RGI (A.91) is again linear
in A(1)n.

Eq. (A.91) is the analogon to the key RG inequality (4.20). We may therefore
proceed as in chapter (4) and establish the boundedness of vertex functions with
one operator insertion. Since the RGI (A.91) involves also vertex functions without
operator insertion, the bounds (4.23) that have been established in Theorem (4) will
have to be employed. We will just state the Theorem without proving it:

Theorem 16 (Boundedness of Vertex Functions with OI) Given Theorem (4),
the renormalization conditions (A.80), the initial conditions (A.81) and assuming
that

||∂pA
(i,r1,...,r5)
(1)n (q, p1, ..., pn,Λ0)|| ≤ Λ−p

0

(
Λ0

ΛR

)r1+ΘR
i DRi

Pln

(
Λ0

ΛR

)
(A.92)

for n + p ≥ DO + 2, to order r1, ..., r5 in perturbation theory in the couplings λR
4 ,

λR
5 , λ0

6, λ0
7 and λ0

8

||∂pA
(i,r1,...,r5)
(1)n (p1, ..., pn,Λ)||

≤ Λ−p

(
Λ
ΛR

)r1+ΘR
i DRi

(
Λ0

Λ

)rNR+Θ0
i
(

ΘR
i Pln

(
Λ
ΛR

)
+

Λ
Λ0

Pln

(
Λ0

ΛR

))
(A.93)

where the index i refers to an extra vertex associated with a renormalized coupling
RR

i having canonical dimension DRi ≥ 0 (ΘR
i = 1, Θ0

i = 0) or a bare one R0
i having

canonical dimension DRi = −1 (Θ0
i = 1, ΘR

i = 0), and ΛR ≤ Λ ≤ Λ0.

Let us introduce improvement conditions for the least irrelevant couplings Rl:

RNR
l := Rl(ΛR), DRl

= −1. (A.94)
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It is assumed that the improvement conditions (A.94) are taken such that they are
compatible9 with small initial conditions (A.81), where small is meant in the sense
of eq. (A.85).

In order to investigate the predictivity of an effective field theory with one oper-
ator insertion, we proceed as in section (4.2). Hence, the bare vertex functions are
parametrized:

t ∂pA
(i,r1,...,r5)
(1)n (Λ0), t ∈ [0, 1], n + p ≥ DO + 2 (A.95)

where ∂pA
(i,r1,...,r5)
(1)n (Λ0) are small à la eq. (A.92). This leads to running vertex

functions depending on the paramenter t,

∂pA
(i,r1,...,r5)
(1)n (q, p1, ..., pn,Λ,Λ0, t). (A.96)

We now state the Theorem concerning the predictivity of effective field theories with
one operator insertion. It is the analogon to Theorem (6).

Theorem 17 (Predictivity of Effective Field Theories with OI) Let there be
renormalization conditions (A.80) and improvement conditions (A.94). Assume that
to order r1, ..., r5 in perturbation theory in λR

4 , λR
5 , λ0

6, λ0
7 and λ0

8

||∂pA
(i,r1,...,r5)
(1)n (q, p1, ..., pn,Λ)|| ≤ Λ−p

(
Λ
ΛR

)r1+ΘR
i DRi

(
Λ0

Λ

)rNR+Θ0
i

Pln

(
Λ0

ΛR

)
,

(A.97)
and that for n + p ≥ DO + 2

|| d
dt

∂pA
(i,r1,...,r5)
(1)n (q, p1, ..., pn,Λ0)|| ≤ Λ−p

0

(
Λ0

ΛR

)r1+ΘR
i DRi

Pln

(
Λ0

ΛR

)
. (A.98)

Given Theorems (4), (16) and (6) we then have

|| d
dt

∂pA
(i,r1,...,r5)
(1)n (q, p1, ..., pn,Λ)|| ≤ Λ−p

(
Λ
ΛR

)r1+ΘR
i DRi

(
Λ0

Λ

)rNR+Θ0
i
(

Λ
Λ0

)2

Pln

(
Λ0

ΛR

)
(A.99)

where the index i refers to an extra vertex associated with a renormalized coupling
RR

i having canonical dimension DRi ≥ 0 (ΘR
i = 1, Θ0

i = 0) or a bare one R0
i having

canonical dimension DRi = −1 (Θ0
i = 1, ΘR

i = 0), and ΛR ≤ Λ ≤ Λ0.

9In analogy to the discussion of section (4.1.3), this will amount to the requirement that the
deviations of the improvement conditions (A.94) from the values the Rl(ΛR), DRl = −1, take for
vanishing initial conditions (A.81) be small. See Theorem (5) for details.
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Eq. (A.99) can be converted into an equation similar to eq. (4.74) and thus states the
indetermination of the running vertex functions A(1)n(Λ) as a result of the ignorance
about the exact initial values (A.95). Please refer to the discussion of section (4.2)
for more details.

Finally, we would also like to discuss the convergence of the vertex functions
with operator insertion to a no-cutoff limit. To do so, we impose the renormaliza-
tion conditions (A.80) and no improvement conditions. Furthermore, we expand
the vertex functions A(1)n(Λ) in perturbation theory solely in the renormalizable
couplings λR

4 and λR
5 , which can also be seen as the 0th order in perturbation theory

in the bare nonrenormalizable couplings λ0
6, λ0

7 and λ0
8. Finally, each contributing

graph contains one extra vertex associated with a renormalized coupling constant
(A.80), but not with a bare nonrenormalizable one (A.81). We then obtain the
following Theorem:

Theorem 18 (Convergence of Vertex Functions with OI) Let there be renor-
malization conditions (A.80). Assume that to order r1, r2 in perturbation theory in
λR

4 and λR
5

||∂pA
(i,r1,r2)
(1)n (q, p1, ..., pn,Λ)|| ≤ Λ−p

(
Λ
ΛR

)r1+DRi

Pln

(
Λ0

ΛR

)
, (A.100)

and that for n + p ≥ DO + 1

||Λ0
d

dΛ0
∂pA

(i,r1,r2)
(1)n (q, p1, ..., pn,Λ0)|| ≤ Λ−p

0

(
Λ0

ΛR

)r1+DRi

Pln

(
Λ0

ΛR

)
. (A.101)

Given Theorems (1), (16) and (2) we then have

||Λ0
d

dΛ0
∂pA

(i,r1,r2)
(1)n (q, p1, ..., pn,Λ)|| ≤ Λ−p

(
Λ
ΛR

)r1+DRi Λ
Λ0

Pln

(
Λ0

ΛR

)
(A.102)

where the index i refers to an extra vertex associated with a renormalized coupling
RR

i having canonical dimension DRi ≥ 0, and ΛR ≤ Λ ≤ Λ0.

It will turn out that we will also have to consider space-time integrated operator
insertions

L(1)(φ,Λ0) :=
∫

x
O(x,Λ0), (A.103)

leading to a bare extended effective potential

Lχ(φ,Λ0) := L(φ,Λ0) + χL(1)(φ,Λ0) (A.104)
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with χ ∈ R. For the corresponding running potential Lχ(φ,Λ,Λ0) we find

L(1)(φ,Λ,Λ0) :=
d

dχ
Lχ(φ,Λ,Λ0)|χ=0 =

∫
x
L(1)(x, φ,Λ,Λ0)

= L(1)(q, φ,Λ,Λ0)|q=0 (A.105)

where L(1)(x, φ,Λ,Λ0) and L(1)(q, φ,Λ,Λ0) have been defined in eqns. (A.67) and
(A.68) respectively. It is therefore clear that the generating functional L(1)(φ,Λ,Λ0)
obeys a space-time integrated analogon of the RGE (A.69), and that the vertex
functions

δ4(k1 + ... + kn)L(1)n(k1, ..., kn,Λ) = (2π)4n δ

δφ(k1)
...

δ

δφ(kn)
L(1)(φ,Λ)

∣∣
φ=0

(A.106)

again have canonical dimension

DL(1)n
= DO − n. (A.107)

We may therefore proceed for space-time integrated operator insertions as we have
done in Theorems (16), (17) and (18). In particular, we will somewhat sloppily talk
about the canonical dimension of the insertion L(1) as given by DO.

A.6 Conventions for the gravity action and the sign of
the cosmological constant

For the metric signature (−1,+1,+1,+1) and the definitions

Rµν = Rα
µαν (A.108)

R = Rµ
µ (A.109)

of the Ricci tensor and the curvature scalar, the action for gravity with a cosmological
constant coupled to matter is [7] [8]

S = SEH + SM (A.110)

=
1
λ2

∫
d4x

√
−g (−4ΛK + 2R) + SM (A.111)

where λ2 := 32πG with G being Newton’s constant. Employing the variational
principle

δgµν S = 0 (A.112)

one obtains the field equations

Rµν − 1
2
gµνR + ΛKgµν =

1
4
λ2Tµν (A.113)
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where Tµν is the energy-momentum tensor defined by

δgµν SM = −1
2

∫
d4x

√
−gTµνδgµν . (A.114)

Tµν is symmetric in µ, ν by definition. Note that with the Bianchi identity

DλRρ
σµν + DνR

ρ
σλµ + DµRρ

σνλ = 0 (A.115)

and the condition for a metric connection Dρgµν = 0 the field equation (A.113)
implies that

DνT
µν = 0. (A.116)

Here, Dµ denotes the covariant derivative. Consider the expansion

gµν = ηµν + λhµν (A.117)

where ηµν is the Minkowski metric. In the weak field approximation, eq. (A.114)
implies that gravity can be coupled to matter via the term

−1
2

∫
d4x T̃µνhµν (A.118)

where T̃µν is the flat spacetime energy-momentum tensor of all matter fields. More-
over, eq. (A.116) reduces to 0th order in hµν to

∂ν T̃
µν = 0. (A.119)

Thus, T̃µν can be viewn as a physical ”source” that is coupled to the gravitational
field hµν .

In the following, we will investigate somewhat further the implications of the
cosmological constant ΛK . For Tµν = 0 eq. (A.113) can be written as

Rµν − 1
2
gµνR = −ΛKgµν . (A.120)

Thus the cosmological constant can be viewn as a kind of energy-momentum tensor
associated with the vacuum. Since the T 00 component of the energy-momentum
tensor is the energy density, we see that for ΛK > 0 the cosmological constant
corresponds to a positive energy density of the vacuum.

Taking the trace of eq. (A.120) leads to

R = 4ΛK . (A.121)

This means that there are solutions of (A.120) that are maximally symmetric, i.e.
that have 10 Killing vectors [12]. The two different spaces associated with these
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solutions for ΛK > 0 and ΛK < 0 are known as de Sitter and anti de Sitter space,
respectively.

An unregularized generating functional of pure quantum Einstein gravity as given
by the action SEH can be formally defined as

W (J ) =
∫
DhµνDCµDCµ ei(Stot+SJ ) (A.122)

where
Stot(h, C, C) = SEH(h) + SGF (h) + SGH(h, C, C). (A.123)

SGF and SGH are gauge fixing and ghost terms, whereas SJ is a general source term
(see chapter (5) for details).

In order to employ a cutoff regularization and to consider the renormalization
group flow of quantum gravity, we have to perform a Wick rotation to Euclidean
space. This amounts to the substitution [32]

x0 → −ix0. (A.124)

For our metric signature we then have

d4x → −id4xE (A.125)
∂µ∂µ → ∂E

µ ∂E
µ . (A.126)

The Euclidean generating functional is therefore, in accordance with Ref [33],

WE(J ) =
∫
DhµνDCµDCµ e(SE

tot+SE
J ). (A.127)

Since we will always work in Euclidean space, we will leave out the index E from
now on and we will also reemploy the summation convention with up and down
indices.

A.7 The contravariant metric density

For convenience of the reader, the properties of the contravariant Euclidean metric
density

g̃µν :=
√

g gµν (A.128)

with g = det gµν are reviewed. We consider a coordinate transformation

xα′(xµ). (A.129)



A.7. THE CONTRAVARIANT METRIC DENSITY 143

The (inverse) metric tensor transfoms under (A.129) as

gαβ ′ =
∂xα′

∂xµ

∂xβ ′

∂xν
gµν (A.130)

g′αβ =
∂xµ

∂xα′
∂xν

∂xβ ′ gµν . (A.131)

With the properties of determinants follows the transformation law for g̃µν :

g̃αβ ′ =
∣∣∣∣det

∂xα′

∂xµ

∣∣∣∣−1 ∂xα′

∂xµ

∂xβ ′

∂xν
gµν . (A.132)

This is the transformation law [12] for a rank 2 contravariant tensor density of weight
+1.

We will now derive the Lie derivative of g̃µν . We have

LX g̃µν =
(
LX

√
g
)
gµν +

√
gLXgµν (A.133)

where [28]

LXgµν = Xρ∂ρg
µν − gνρ∂ρX

µ − gµρ∂ρX
ν . (A.134)

Therefore it remains to derive LX
√

g. With det gµν = etr ln gµν and the chain rule
we find

LX
√

g =
1
2
√

g gµνLXgµν . (A.135)

Using

LXgµν = Xρ∂ρgµν + gνρ∂µXρ + gµρ∂νX
ρ (A.136)

and, analogous to (A.135),

1
2
√

g gµνXρ∂ρgµν = Xρ∂ρ
√

g, (A.137)

this can be written as

LX
√

g = Xρ∂ρ
√

g +
√

g∂ρX
ρ. (A.138)

Putting it all together we finally arrive at

LX g̃µν = Xρ∂ρg̃
µν + g̃µν∂ρX

ρ − g̃ρν∂ρX
µ − g̃µρ∂ρX

ν . (A.139)

To conclude, we will show that the covariant derivative of g̃µν vanishes. For a
metric connection, we have Dρgµν = Dρg

µν = 0. Thus, with the Leibnitz rule and
the definition (A.128)

Dρg̃
µν =

(
Dρ
√

g
)
gµν . (A.140)
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In complete analogy to (A.135) it can be shown that

Dρ
√

g =
1
2
√

g gµνDρgµν . (A.141)

Therefore we indeed obtain

Dρg̃
µν = 0. (A.142)
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