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Preface

Today’s established description of particles and their interactions are incorporated into the
standard model of particle physics. It can be seen as a combination of very successful rel-
ativistic quantum field theories, as there are: the electro-weak theory, unifying weak inter-
actions and the electromagnetic force, and Quantum Chromodynamics (QCD) describing
the strong force. Still missing for a true ‘theory of everything’ is the fourth fundamental
force, gravity. Leaving aside gravity, we know that extensions to the standard model are
inevitable, e.g. from cosmological observations that find unexplained non-baryonic dark
matter or from neutrino oscillations which require massive neutrinos. These extensions,
however, enter only at energies present for example shortly after the big bang. Hence the
standard model remains the valid effective description for physics at lower energies. In
particular, QCD is the accepted theory of the strong force, which is a conviction, coming
from a long history of fascinating physics that can and will be explained with QCD.

Originating in the need for an additional colour charge to keep the Pauli principle
intact for certain particles like the ∆++-resonance, QCD turned out to be responsible
for many more aspects of modern physics. Most prominent here is asymptotic freedom,
which states that the strength of the interaction of the particles of the theory, quarks and
gluons, becomes weaker at higher energies until the particles can be treated as quasi-free.
Conversely, at very small energy scales, colour confinement occurs that makes it impossible
to find free quarks or gluons. The two extremes are covered by the running of the coupling
and explained within QCD.

These two energy regions are also rather distinct in terms of the applicable calcula-
tional tools. At high energies, a perturbative expansion in the coupling constant can be
made, well suited for calculations of scattering experiments at particle accelerators. On
the other hand, a description of the particle spectrum or the internal dynamics of particles
is governed by long distance physics. Since the effective degrees of freedom at these low
energies are pions, an effective theory based on pions, the so-called chiral perturbation
theory, is one possibility for a description of low energy QCD. Another, in some sense
more powerful approach, was developed by K. Wilson in 1974. He proposed the lattice

regularisation for gauge theories, working in a discretised, Euclidean space-time. This has
several advantages. First of all, the finite lattice spacing removes ultra-violet divergen-
cies appearing in loop integrals. Combined with a finite volume that suppresses infrared
divergencies, one arrives at a rigorous mathematical formulation of QCD. Second, the
similarity of this Euclidean formulation and statistical mechanics made the numerical so-
lution of QCD possible. So by numerically evaluating path integral expressions, the lattice
approach provides insight into QCD from first principles. However, what turns out to be
necessary for mathematical rigour is at the same time connected to inherent limitations
of lattice QCD. Even though computational power has continuously increased over the
years and substantial algorithmic improvements have been made, lattice simulations still
suffer from rather large lattice spacings and small physical volumes, and it is not possible
to perform simulations at realistic quark masses. Thus, in order to arrive at physical
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Preface

meaningful quantities that can be compared to experiments, one has to extrapolate to the
physical pion mass and find the continuum and infinite volume limit.

In this work, we will apply lattice QCD to investigate the inner structure of hadrons.
More precisely, we compute matrix elements that are related to probability densities of
quarks inside the pion, the lightest mesonic bound state of a quark and anti-quark. We
already mentioned the importance of the pion for low energy dynamics. It also plays
a central rôle in the breaking of chiral symmetry. While its global features like charge,
spin and isospin are well known, little is known about its internal structure. Because
of the aforementioned confining nature of QCD, perturbative calculations cannot describe
physics at the related hadronic energy scales and the lattice provides important theoretical
input for understanding the formation of hadrons.

The detailed description of the microscopic structure of hadrons in terms of quarks and
gluons is obtained from the concept of generalised parton distributions (GPDs). These
generalised distributions have matured to a powerful tool leading to many new observa-
tions, like for example the distribution of transverse quark spin inside hadrons. GPDs
combine well known phenomenological functions like distribution amplitudes, parton dis-
tributions and form factors. The latter have their analogues in atomic physics forming
our foundation of the understanding of matter.

Outline of this work

We begin in Chapter 1 with a short introduction to QCD phenomenology, stressing where
non-perturbative effects are important. In Chapter 2 we then discuss some aspects of
GPDs starting with an intuitive picture. After a definition of GPDs for the pion we
also focus on the generalised form factors that can be calculated on the lattice. This is
followed by a chapter on the basic ingredients of lattice QCD, where we recall the QCD
Lagrangian and the path integral formalism before we elaborate on our choice of lattice
actions. We will pay special attention to the lattice techniques necessary for the calculation
of matrix elements in Chapter 4. The introduction is then completed by explaining how
the observables are extracted from the lattice data.

To start the discussion of our results, we take a brief look at pion two-point functions
from which pion energies are obtained. The pion electromagnetic form factor is the subject
of Chapter 6. We use it to introduce our analysis techniques and discuss in detail the limits
to arrive at meaningful physical numbers. Furthermore, we make an attempt to connect
to chiral perturbation theory. The discussion of our results then continues with higher
moments of the pion structure in Chapter 7. This includes information about well known
parton distribution functions that are also obtained from experiments. Finally, we will
stress the importance of our work in the context of the transverse spin structure of hadrons,
by presenting an outlook on results that can be expected for the pion in the near future.
We then close with a summary.
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1 Introduction to Phenomenology

Quantum Chromodynamics (QCD) is the theory of the strong force. The particles de-
scribed by this field theory are quarks and gauge bosons which mediate the strong force.
Quarks are of spin 1

2 , carry (fractional) electric and colour charge and come in three
generations or families, with flavours up, down, charm, strange, top, and bottom:

(

u

d

) (

c

s

) (

t

b

)

+2/3e
−1/3e

increasing mass
//

In this work, we will only be concerned with the light u and d quarks.

The gauge bosons on the other hand, which provide the interaction between the quarks
are gluons that themselves have colour charge. This causes self-interaction between
the gluons and makes QCD considerably more involved than Quantum Electrodynam-
ics (QED). Another consequence is that there are no free quarks or gluons – known as
confinement .

This chapter aims at providing a first idea of QCD and introduces two experimental
observables substantiating it. At the same time, these two processes marked the beginning
of the successful description of hadronic structure. They do not depend on any special
hadron, we will however already focus on the pion here. Furthermore, the two processes
can be seen as special cases of a more general framework that will be introduced in the
following chapter and that is the motivation of this work.

Since this is a brief introduction only, we refer to standard textbooks like [1, 2, 3] for
more details and an in-depth discussion. We also motivate where lattice QCD can provide
non-perturbative input to these processes.

1.1 Asymptotic freedom vs Confinement

One of the remarkable features of QCD was already mentioned in the preface: the running
of the coupling constant that finally causes asymptotic freedom. This can be shown using
the β-function that provides the rate of change of the coupling constant with the energy
scale µ

dg(µ)

d(logµ2)
= β(g) . (1.1)

For a non-Abelian SU(3) gauge theory, one finds [2]

β(g) = − g3

(4π)2

(

11− 2

3
Nf

)

< 0 for Nf ≤ 16 . (1.2)
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1 Introduction to Phenomenology

Here Nf is the number of fermion species. The differential equation Eq. (1.1) can be solved
perturbatively and to lowest order gives

g2(µ) =
g2

1− β(g) log(µ2/µ2
0)
, (1.3)

with some initial integration scale µ0. At high energy scales µ and not too many flavours
of fermions, the coupling constant is hence found to decrease (as is the case for QCD). This
is known as asymptotic freedom since then quarks no longer interact and can be treated as
‘free’ particles. High energy scales can be reached in experiments where particles collide
with high momenta, providing information on short distances.

The other extreme is no less important and valid for our investigation: if the energy scale
becomes smaller and smaller, the coupling constant of the theory grows logarithmically,
binding quarks into hadrons giving rise to confinement . Perturbative methods break down
and no longer provide a valid description. Non-perturbative methods that do not rely on
a small coupling constant have to take over.

While QCD is successful in describing certain experimental processes at high energies,
most of them inevitably contain also soft or long distance parts if only for the initial and
final states which are confined to hadrons. We will try and picture two examples in the
following, leading to the application of lattice QCD.

1.2 Form Factors

A form factor relates to the substructure of a particle and appears for example in elastic
electron scattering. The fact that, e.g. nucleons do have an internal structure was discov-
ered back in the 1950’s. At that time experiments at SLAC found that the corresponding
Dirac and Pauli form factors were not constant with respect to the probing momentum
transfer, as they should be for point-like particles [4]. For the differential cross section
this can be seen from

dσ

dΩ
=

(

dσ

dΩ

)

point

∣

∣F (q2)
∣

∣

2
, (1.4)

where the form factor is denoted by F and q is the momentum transfer. The electro-
magnetic (point-like) part of the underlying scattering amplitude can be calculated using
perturbation theory. The remaining form factor is the so-called soft part of the process
and is not accessible in the same way. Its calculation requires the use of non-perturbative
methods like for example lattice QCD.

The Feynman diagram for elastic scattering of an electron off a pion is shown in Fig. 1.1
where we also define the momenta of the particles. The scattering amplitude from initial
to final state is given by

Tfi = (−ie)2 ū(k′)γµu(k)
−i

q2
〈

π+(p′)
∣

∣Vµ(0)
∣

∣π+(p)
〉

, (1.5)

with u, ū electron spinors and the vector current between the two pion states defined as

Vµ(x) =
2

3
ū(x)γµu(x)−

1

3
d̄(x)γµd(x) . (1.6)
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1.3 Structure Functions

π(p) π(p′)

γ q = p′ − p

e(k)
e(k′)

Figure 1.1 | A diagram for pion-electron scattering, with momentum transfer q = p′ − p.

Here u and d refer to the two light quarks involved. The matrix element in Eq. (1.5)
contains the pion form factor Fπ in the following way

〈

π+(p′)
∣

∣Vµ(0)
∣

∣π+(p)
〉

= (p′µ + pµ)Fπ(Q
2) , (1.7)

where we have used Q2 = −q2. Because of charge conservation we have Fπ = 1 in the
forward limit, i.e. for vanishing momentum transfer. Thus the electron only sees the
electric charge of the pion. The matrix element on the l.h.s. of Eq. (1.7) can in principle
be evaluated using the path integral. This is the soft contribution mentioned above that
will be computed from first principles with lattice QCD.

In the non-relativistic limit, the form factor can be related to the charge radius by
writing it as the Fourier transform of the charge distribution ρ(x). Assuming spherical
symmetry one then finds

Fπ(Q
2) = 1− 1

6

〈

r2
〉

Q2 +O(Q4) , (1.8)

so that the root mean square radius of the pion is given by

〈

r2
〉

= −6
dFπ(Q

2)

dQ2

∣

∣

∣

∣

Q2=0

. (1.9)

Experimental data for the pion form factor will be shown along with the results from our
lattice calculation in Chapter 6.

1.3 Structure Functions

Of course it is not only interesting that hadrons do have an internal structure, we also
want to know what the internal degrees of freedom are and what their dynamics is. Today
we know that the internal particles are quarks which was first shown at SLAC from deep

inelastic scattering experiments (DIS) [5]. In these experiments, one has a high energy
lepton (usually an electron) scattering off a parton in the probed hadron and thereby
producing a different final state: lh → lX, shown in Fig. 1.2. To evaluate the cross
section, we start by considering the scattering amplitude Tfi. It is similar to that of the
form factor, Eq. (1.5), except that the pion now breaks up into the set of final states X

Tfi = (−ie)2 ū(k′)γµu(k)
−i

q2
〈

X
∣

∣Vµ(0)
∣

∣π+(p)
〉

. (1.10)
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1 Introduction to Phenomenology

π(p)







γ

X

e(k)
e(k′)

Figure 1.2 | Diagram for deep inelastic scattering of an electron off a pion breaking it up
into a number of final states denoted X.

π(p)

e(k)
e(k′)

π(p)

e(k)
lµν

Wµν

e(k′)
e(k)

π(p)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

= 2 Im





























Figure 1.3 | A visualisation of the optical theorem as applied to inclusive scattering. The
leptonic and hadronic tensors correspond to the upper and lower parts of the r.h.s. diagram.

As before, the momentum transfer is q = k − k′, c.f. Fig. 1.2. For an inclusive process
where we sum over all particles X, the optical theorem can be used to relate the forward
scattering amplitude and the total cross section. This is sketched in Fig. 1.3 and we obtain

σ[e−(k)π(p)→ e−(k′)X] ∝ TfiT
∗
fi = 2 Im lµνW

µν . (1.11)

Here lµν and Wµν are the leptonic and hadronic tensor. The leptonic tensor can be
evaluated perturbatively within QED; we are interested in the hadronic part. In case of
the pion it can be parametrised by two structure functions F1 and F2

Wµν = F1(x,Q
2)

(

−gµν +
qµqν

q2

)

+ F2(x,Q
2)

1

M2

(

pµ − p · q
q2

qµ
)(

pν − p · q
q2

qν
)

.

(1.12)
This parametrisation is solely obtained by using Lorentz symmetry and current conserva-
tion. At this point, it does not contain any further knowledge.

The information about the structure functions can be improved within the parton
model.1 Due to the very high energies, the electron no longer probes the hadron as
one particle, but it rather scatters off the quarks and gluons as quasi-free particles inside
the hadron. This is connected to the running of the coupling mentioned in Sec. 1.1 where
higher energies imply a smaller coupling constant of the strong force. We are thus leaving
the confinement region, entering the region of asymptotic freedom where the partons can
be assumed to be free. This is pictorially shown in Fig. 1.4.a. We can think of it as

σ[e−(k)π+(p)→ e−(k′)X] =

∫ 1

0
dx
∑

q

q(x)× σ[e−(k)ψq(xp)→ e−(k′)ψq(p′)] , (1.13)

where q(x) is the probability density of finding a parton ψq with the momentum fraction
x = pq/p inside the hadron. To lowest order in the parton model, one finds for the

1The term ‘parton’ refers to (anti-)quarks and gluons as constituents inside hadrons.
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1.3 Structure Functions

π(p)

e(k)

ψq(xp)

e(k′)
e(k)

π(p)

a |

π(p)

e(k)

ψq(xp)

e(k′)
e(k)

π(p)

b |

Figure 1.4 | A visualisation of the parton model: a | To lowest order. b | Including a simple
correction where an additional gluon is emitted.

structure functions

F1(x,Q
2) =

∑

q

e2q
2

[q(x) + q̄(x)] (1.14)

F2(x,Q
2) = 2xF1(x,Q

2) . (1.15)

where the sum runs over the different quarks, weighted with their charge eq. The second
line is known as Callan-Gross relation, reflecting the spin 1

2 nature of the quarks.
To this order, the cross section is independent of the square of the probing momentum

transfer Q2 and neglecting any interaction between the struck quark and the spectators
that ‘remain in the pion’. This approximate relation is known as Bjorken scaling. Cor-
rections to that introduce a logarithmic dependence on Q2. One such possibility is shown
in Fig. 1.4.b. Bjorken scaling, or rather its violation, is very well established for electron-
proton scattering, c.f. [6] for recent data.

The parton distribution functions q(x) are universal to the hadron and do not depend
on the process considered, thus being of great interest. They cannot be calculated using
perturbative QCD. Similar to the form factor, it is a soft process that determines the
structure of the hadron as a bound state of quarks and gluons. Again lattice QCD is
a tool that can provide input for this by calculating the matrix element appearing in
Eq. (1.10). Two recent discussions of the parton distribution functions for the pion as
they can be obtained from experiment can be found in [7, 8]. Our lattice results will be
subject of Chapter 7.
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2 Generalised Parton Distributions

While pure group theory, based on elementary quarks, their spin and colour, successfully
explains some features of the particle spectrum [9], QCD as a field theory provides insight
to the structure of these bound states. Initial ideas on that and the related processes
were the subject of the previous chapter. In recent years a more involved experimental
programme and the theoretical framework connected to it prove even more powerful in
the description of the internal structure of hadrons. The necessary functions are the
generalised parton distribution functions – in short GPDs – also known as off-forward or
skewed parton distributions.

GPDs are of interest for the solution to a problem referred to as the spin crisis of the
nucleon (originating from [10]). This refers to the fact that the total spin of the nucleon
is not just the sum of the intrinsic spins of the three valence quarks. In addition, one has
to take into account the contribution of the sea quarks and the angular momentum of the
quarks and gluons. This can be accomplished using Ji’s sum rule [11].

Other prominent results that can be related to GPDs are the so-called single spin asym-
metries that arise in different fashion in experiments: the Boer-Mulders [12] and the Sivers
effect [13]. In both cases the outcome of the experiment depends crucially on the polari-
sation of the scattering particles, leading to different densities of the active quark in the
transverse plane. According to Burkardt, these densities can be calculated with the help
of GPDs [14].

While the above examples were for the nucleon in particular, similar considerations
apply to the pion. We will try and mention some aspects of GPDs that are connected to
this work. For extensive reviews see [15, 16]. In order to stress the interesting features,
we begin in a somewhat unconventional ordering with an outlook on the interpretation
of GPDs. This is followed by their definition for the pion case and general properties
that will be important for the subsequent chapters. We then give a short summary of
the interpretation of GPDs in the transverse plane. Our lattice calculations furthermore
require a digression to Mellin moments. We also provide a decomposition of the GPDs
into generalised form factors.

2.1 In a Nutshell

We begin the discussion of GPDs with an illustration in order to provide some intuition
right from the start. While this seems to be a straightforward interpretation and link
between the different observables, there are some subtleties that have to be considered.
For simplicity these will mostly be neglected for the moment being.

We have introduced two QCD processes at the end of the previous chapter that can
be used to describe some aspects of the internal structure of hadrons. The first one
was the pion form factor that, after performing a Fourier transform, is interpreted as
charge distribution ρ. Since the particles in accelerators usually have very high momenta

9



2 Generalised Parton Distributions

x bx

by

b⊥

x bx

by

xp

∼ 1
Q2

b⊥

x bx

by

xp

∼ 1
Q2

a | Form factor

0

ρ(b⊥)

b⊥

b | GPD, ξ = 0
x

b⊥

q(x, b⊥)
R

dx
oo ∆→0 //

c | Parton density

0

q(x)

x

Figure 2.1 | A simplified sketch of the different phenomenological observables and their
interpretation in the infinite momentum frame: a | The form factor as a charge density in
the perpendicular plane (after a Fourier transform, Sec. 1.2). b | A probabilistic interpre-
tation for GPDs in the case of vanishing longitudinal momentum transfer, ξ = 0, with a
resolution ∼ 1/Q2. c | A parton distribution for the forward momentum case (Sec. 1.3).
For a detailed explanation see text. [Pictures inspired by [17]]

(conventionally the z-direction) they can be seen as Lorentz contracted ‘discs’ rather than
spherical objects.1 We will later argue that this infinite momentum frame is necessary for
the GPDs. For the moment, we thus think of a two-dimensional distribution with respect
to b⊥ in the transverse plane, sketched in Fig. 2.1.a. The z-direction is also suppressed in
favour of the fractional (longitudinal) momentum x of the partons.

The second process led to parton distribution functions (PDFs) q(x) with the momentum
fraction x carried by the parton. They give the probability of finding the parton q with
this momentum inside the hadron and they are sketched in Fig. 2.1.c. One can also give a
resolution ∼ 1/Q2 that can be resolved inside the hadron. So for different Q2 partons of
a ‘different size’ can be probed, consequently the parton content of the hadron changes.

To achieve a deeper understanding of the distribution of the quarks inside the hadron, it
would be nice to combine the two cases, i.e. know the distribution in the transverse plane
for quarks with a given momentum fraction. This is exactly one interpretation of GPDs.
During the discussion of the form factor and the PDFs, we already mentioned the similarity
of the matrix elements appearing in Eqs. (1.5) and (1.10). The initial and final states of
the two processes differed only in their momenta (after applying the optical theorem).
There are indeed processes with different asymptotic states that can be related to the two
aforementioned, thus coining the term generalised distributions. We will later consider
the problems arising from the complete freedom of the two momenta. For the moment,
note that a density interpretation is possible if the longitudinal momentum transfer ξ
vanishes. A Fourier transform of the remaining transverse momentum transfer then yields

1Neglecting relativistic corrections, this would not be necessary for the form factor where we have elastic
scattering with momenta down to zero.
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2.2 A Definition for the Pion

π(p)

γ

e(k)
e(k′)

γ∗

π(p′)
DVCS

π(p)

γ

e(k)
e(k′)

γ∗

π(p′)

pQCD

GPDs

Figure 2.2 | A diagram showing the DVCS amplitude and the factorisation into hard
(pQCD) and soft parts (GPDs).

the probability q(x, b⊥) for finding a quark with momentum fraction x at the position
b⊥, the impact parameter, in the transverse plane, Fig. 2.1.b. Since this probability is
obtained for all (anti-) quarks including their flavour and a possible polarisation of the
quarks, a much richer structure can be accessed.

If one considers suitable limits, the two types of observables discussed before are ob-
tained. Obvious is the forward limit ∆→ 0 for vanishing momentum transfer. The GPDs
are then equivalent to the ‘usual’ parton densities (Fig. 2.1.b → Fig. 2.1.c). Keeping the
momentum transfer and integrating over the fraction x carried by the quark is equivalent
to the form factor (Fig. 2.1.b → Fig. 2.1.a). The two known cases are thus included in
the generalisation to GPDs.

2.2 A Definition for the Pion

After trying to provide some intuition where GPDs can lead to new insights, let us now
turn to a rigorous definition. In Section 1.3 we described how high energetic leptons can
be used to asses the structure of hadrons in DIS. We considered an inclusive process,
where one sums over all final state particles instead of focusing on a specific combination.
Via the optical theorem, we could infer to the scattering cross section of the so-called
forward Compton amplitude: γ∗h → γ∗h. On the other hand, there also exists another
process in colliding experiments whose amplitude looks similar to the total cross section
in DIS: deeply virtual Compton scattering (DVCS). This is an exclusive process where the
final states are detected. We again have a lepton scattering off a hadron, but this time
the hadron stays intact; in addition the scattered lepton and a real photon is detected:
lh→ lhγ.

A factorisation theorem now takes the role of the parton model, separating the DVCS
process into a hard (or short distance) and soft (or long distance) part [18]. The first
one can be calculated perturbatively while the latter is an intrinsically non-perturbative
quantity, parametrised by GPDs. The situation is shown in Fig. 2.2. The amplitude of the
process is then found via a convolution of the hard (pQCD) and the soft (GPD) part. The
important bit to note is that the DVCS amplitude exhibits the generalisation in terms of
initial and final momenta mentioned in the previous section. This happens because the
virtual photon γ∗ is turned into a real photon γ in the final state, requiring a momentum

11



2 Generalised Parton Distributions

p

x+ ξ x− ξ

p′
GPDs

Figure 2.3 | The handbag diagram for GPDs, defining the kinematics.

transfer onto the struck hadron:

〈

π(p′)
∣

∣O
∣

∣π(p)
〉

. (2.1)

The initial (final) state here has momentum pµ (p′µ) and the GPD is given as an abstract
operatorO. From Eq. (2.1) we see the GPD no longer represents the square of an amplitude
and thus a probability. One rather has an interference of two hadrons. This has to be
kept in mind for the interpretation of GPDs as announced above.

We define the kinematical variables with the handbag diagram of GPDs in Fig. 2.3.
As just said, the momenta of the incoming and outgoing hadron are labelled pµ and p′µ,
respectively. The parton that leaves and enters the blob has the momentum fraction (of
the hadron) x± ξ. We then define as further variables

Pµ =
1

2
(pµ + p′µ) , ∆µ = p′µ − pµ , t = ∆2 (2.2)

and have Q2 = −q2 as before. The skewness parameter ξ is the fractional longitudinal
momentum transfer and given by

ξ =
p+ − p′+
p+ + p′+

, (2.3)

where we have used light cone coordinates p+, p′+ for the pion momenta. Light cone
coordinates are defined by

v± =
1√
2

(v0 ± v3) , v⊥ = (v1, v2)

or v+ = vn− , v− = vn+ (2.4)

with n+ = (1, 0, 0, 1)/
√

2 , n− = (1, 0, 0,−1)/
√

2 .

These coordinates are a natural way to describe the infinite momentum frame in which
parton distributions can be explained in the physical picture of the parton model. The
close connection is evident for the light cone momentum p+ since it becomes proportional
to the momentum of the particle in the infinite momentum frame p3 →∞. We will thus
use light cone variables for GPDs.

In analogy to the usual parton distribution functions, GPDs can be written as a Fourier
transform of matrix elements of quark operators at a light-like separation (we omit gluon
operators and the corresponding GPDs since these will not be considered on the lattice).

12



2.3 Some General Properties

The pion GPDs are defined by

2P+ Hq
π(x, ξ, t) =

∫

dz−

2π
eixP

+z−
〈

π(p′)
∣

∣ ψ̄q(−1
2z
−) γ+ U ψq(1

2z
−)
∣

∣π(p)
〉

∣

∣

∣

z+=0
z⊥=0

,

(2.5a)

P [+∆j]

mπ
EqT,π(x, ξ, t) =

∫

dz−

2π
eixP

+z−
〈

π(p′)
∣

∣ ψ̄q(−1
2z
−) iσ+j U ψq(1

2z
−)
∣

∣π(p)
〉

∣

∣

∣

z+=0
z⊥=0

.

(2.5b)

The GPDs are labelled with Hq
π (EqT,π) for the vector (tensor) operator matrix elements

and are given for each quark flavour q separately; the index j labels the two transverse
components and [... ] denotes anti-symmetrisation. We will see in Section 2.6.1 that a GPD
from an axial-vector operator vanishes because of time-reversal.2 The separation on the
light cone is denoted with z−. To ensure gauge invariance of the matrix elements, a Wilson
line U has to be included connecting the two quarks. It is given by

U = P exp

(

ig

∫ 1
2
z−

− 1
2
z−

dx−A+(x−n−)

)

, (2.6)

where P indicates a path ordered integral. Note that the Wilson line is identical to one in
the light cone gauge defined by A+ = 0 for the gauge fields. For simplicity, we will hence
drop the gauge link in the following and assume light cone gauge unless explicitly noted.

The matrix elements in the definition of the pion GPDs, Eqs. (2.5a) and (2.5b), and
the diagram connected to it, Fig. 2.2, show that GPDs are more general than the form
factor or the structure functions. In contrast to the latter they are not based on model
assumptions and in principle contain all the physics. From that point of view they are
also far more rigorous. What remains are means to extract the physics from the GPDs,
especially in view of their non-probabilistic and non-perturbative nature.

2.3 Some General Properties

After the definition of the pion GPDs Hq
π and EqT,π we take a look at some of their

properties and do this by connecting to the discussion at the beginning of this chapter. The
GPDs depend on three kinematical variables: the momentum fraction of the struck parton
x, the skewness parameter ξ for the momentum transfer and its invariant t. Reducing the
number parameters ‘de-generalises’ the GPDs. We restrict ourselves to the vector case in
this section, since the limits we discuss will then recover the well known observables. Let
us start with a . . .

Parton Interpretation

Looking at the kinematics of the GPDs, we can distinguish three different regions for the
momentum fraction x running from -1 to 1, c.f. Fig. 2.4:

2In contrast to e.g. the nucleon case where it is then related to polarised GPDs.
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a |

p

ξ − x −ξ − x

p′

b |

p

x+ ξ ξ − x

p′

c |

p

x+ ξ x− ξ

p′

----
−1 −ξ 0 ξ 1

Figure 2.4 | Different kinematical regions in x with their interpretation in the parton
model: a | emission and reabsorption of anti-quarks, x ∈ [−1,−ξ]. b | emission of a
quark/anti-quark pair, x ∈ [−ξ, ξ]. c | emission and reabsorption of quarks, x ∈ [ξ, 1].

a | for x ∈ [1,−ξ] both parton momenta in the handbag diagram (Fig. 2.3) are negative.
This corresponds to the emission and reabsorption of anti-quarks. Their momenta
are then ξ − x and −ξ − x.

b | if the momentum fraction x lies between −ξ and ξ we find that one of the parton
lines has positive (or zero) momentum while the other momentum is negative (or
zero). We thus have the emission of a quark and anti-quark. The GPDs behave like
a meson distribution amplitude and contain new information not accessible in DIS
(obtained for ξ → 0).

c | finally, for x ∈ [ξ, 1] both parton momenta are positive. So in this region a quark is
first emitted and then reabsorbed with momenta x+ ξ and x− ξ.

The Forward Limit

The straight-forward limit is when the momentum transfer vanishes: ∆→ 0. In this case
the known PDFs are recovered. There are two cases for the values of x:

x > 0 : corresponding to Fig. 2.4.c, so we have Hq
π(x, 0, 0) = q(x),

x < 0 : equivalent to Fig. 2.4.a and thus Hq
π(x, 0, 0) = −q̄(−x).

These are the usual probability densities of finding a (anti-)quark with momentum fraction
x. Notice that by extending the interval to −1 ≤ x ≤ 1 the PDFs for (anti-)quarks can
practically be combined while still being defined for positive fractions.

The Form Factor

The other interesting limit of GPDs reduces them to form factors as noted in the intro-
duction. The reduction is obtained by

1
∫

−1

dxHq
π(x, ξ, t) = F q(∆2) , (2.7)

where the superscript denotes the quark flavour. For the ‘full’ form factor as in Eq. (1.4)
we have to sum over the flavours weighting with their charge, e.g. for the π+

Fπ+ = euF
u − edF d . (2.8)
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2.4 A Probabilistic Interpretation

Equation (2.7) can be understood looking at the definition of the GPD, Eq. (2.5a): inte-
grating over x causes a δ-function forcing the quark fields on the same space-time point
after the z− integration. We then have the same matrix element as in Eq. (1.7). This
is known as the lowest moment in the momentum fraction x. These Mellin moments are
again subject of Sections 2.5-2.7 which will again reveal this relation.

2.4 A Probabilistic Interpretation

From what we have said so far, we see that an easy interpretation of GPDs is only pos-
sible for limiting cases, where we either get no information about the momentum of the
constituents or we have no insight in their spatial distribution. So new information on
the structure of pions beyond the known PDFs and the form factor is encoded in the
interplay of x and ∆2. However, we also noticed that GPDs do not have a probabilistic
interpretation straight away because we have different momentum states for the incoming
and the outgoing pion. Furthermore, since GPDs depend on the longitudinal momentum
fraction of the struck quark, we cannot access the spatial z-coordinate due to Heisenberg’s
uncertainty principle. On the other hand, it has been shown that with a Fourier trans-
form in the transverse momentum distributions in the transverse plane are conceivable
[14, 17, 19, 20, 21]. In the following, we mention some of the necessary arguments and
important relations.

Let us start by noting that without taking special care of the reference frame and the
shape of the wave packets used to describe the particles, the interpretation of the form
factor becomes unclear already. For wave packets that are very localised in position space
(smaller than their Compton wave length), the form factor in the rest frame acquires con-
tributions due to the intrinsic size of the wave packet, Lorentz contraction (the localisation
implies high momentum) and other relativistic effects. These problems continue to GPDs
as well. As it turns out these corrections can be neglected in the infinite momentum frame,
thus allowing for a clean physical picture [17].

The key for an interpretation of our observables is the infinite momentum frame and
wave packets that are only localised in transverse position. We will define our momentum
states as

∣

∣p+, b⊥
〉

=

∫

dp⊥

16π3
e−ip⊥b⊥

∣

∣p+,p⊥
〉

(2.9)

leaving the transverse momentum undefined. We can now define a centre of transverse
momentum for the pion

R⊥ =

∑

i xib⊥,i
∑

i xi
=
∑

i

xib⊥,i , (2.10)

where we sum over all partons in the pion. Note that this centre of momentum is in
analogy to the centre of mass in non-relativistic situations, [21]. Assuming for the centre
of momentum R⊥ = 0 we find the active quark at position b⊥,a whereas the spectators
have their centre at b⊥,s = b⊥,a/(1 − x) − b⊥,s, see Fig. 2.5. Without any additional
constraints on the kinematics, the pion changes its position during DVCS [20]. While
the system of the incoming and outgoing pion is centred at b⊥ = 0, the pion is ‘shifted
sideways’ because the longitudinal momentum transfer ξ on the struck quark changes its
momentum fraction and thus its weight inside the pion, Eq. (2.10). However, the matrix
elements become diagonal (w.r.t. p+ and b⊥) for purely transverse momentum transfer
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b⊥,a
b⊥,a

1−xR⊥

active quark

spectator quarks

6666
????

6666

????

Figure 2.5 | Distances of the active quark and (w.r.t. this parton) of the spectators inside
the pion, centred at R⊥ = 0.

∆+ = 0 or ξ = 0 which we will assume for now. Notice that ξ = 0 is not possible in DVCS
experiments since some longitudinal momentum transfer is required to convert the virtual
to a real photon. However, the case ξ → 0 is relevant for DVCS nevertheless. We use a
state that is localised at R⊥ = 0⊥ and define a transverse (impact parameter dependent)
PDF as

q(x, b⊥) =

∫

z−

2π
eixp

+z−
〈

π(p′+,0⊥)
∣

∣ ψ̄q(−
z−

2
, b⊥)γ+ψq(

z−

2
, b⊥)

∣

∣π(p+,0⊥)
〉

, (2.11)

where the active parton depends on the impact parameter and where we have again as-
sumed light cone gauge for simplicity. Writing the matrix element in Eq. (2.11) in mo-
mentum space and applying a transverse translation to the operator we recover the same
form used for the GPDs in Eqs. (2.5a) and (2.5b). We thus have

q(x, b⊥) =

∫

d2
∆⊥

4π2
e−ib⊥∆⊥Hq

π(x, 0,−∆
2
⊥) and (2.12a)

qT(x, b⊥) =

∫

d2
∆⊥

4π2
e−ib⊥∆⊥EqT,π(x, 0,−∆

2
⊥) , (2.12b)

for which we also used ∆⊥ = p′⊥ − p⊥ and the fact that the GPDs do not depend on
(p⊥ + p′⊥).

In order to derive positivity bounds for the transverse distributions and to make the in-
formation obtained by them even more explicit, one has to use the wave function represen-
tation [14, 21]. The transverse parton distributions can then be interpreted as probability
densities.

For a given momentum faction x, the width of the distribution of partons forming the
pion is then obtained from

〈

r2
⊥

〉

x
=

∫

d2b⊥ b2
⊥q(x, b⊥)

∫

d2b⊥ q(x, b⊥)
= 4

∂

∂∆2
⊥

logHq
π(x, 0,−∆

2
⊥) . (2.13)

This average impact parameter should vanish as x → 1 because the struck quark gets
closer and closer to the centre of momentum defined in (2.10) since its weight increases.
Alternatively we expect that Hq(x, 0,−∆

2
⊥) becomes independent of ∆

2
⊥ as x→ 1.

2.5 Mellin Moments of Generalised Parton Distributions

For a successful application of lattice QCD to GPDs we are facing the problem that we
can only calculate local matrix elements on the lattice. However, the matrix elements we
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2.6 Generalised Form Factors

considered so far, Eqs. (2.5a) and (2.5b), are non-local matrix elements with a certain
separation z on the light-cone. As it turns out, considering Mellin transformations is a
partial solution to that. In general, the (n+ 1)-th Mellin moment of a function f can be
written as

Mn+1(f) =

∫

dxxnf(x) , with n = 0, 1, 2, 3, . . . (2.14)

Knowledge of all moments in x makes it possible to find an analytic continuation and
perform an inverse Mellin transformation. Knowing all Mellin moments hence is equivalent
to knowing the function itself.

We can now look at moments of the light cone operator as it appears in the definition
of our pion GPDs, e.g. (2.5a) (in light cone gauge)

∫

dxxn
∫

dz−

2π
eixP

+z−
[

ψ̄q(−1
2z)γ

+ψq(1
2z)
]

z+=0,z⊥=0
. (2.15)

After an n-fold partial integration with respect to z− we arrive at

n−1
∑

m=0

∫

dx
−i

2π
(P+)−(m+1)xn−meixP

+z−
(

i
d

dz−

)m
[

ψ̄q(−1
2z)γ

+ψq(1
2z)
]

z+=0,z⊥=0

+
1

(P+)n

∫

dz−
∫

dx eixP
+z−

(

i
d

dz−

)n
[

ψ̄q(−1
2z)γ

+ψq(1
2z)
]

z+=0,z⊥=0

=
1

(P+)n

(

i
d

dz−

)n
[

ψ̄q(−1
2z)γ

+ψq(1
2z)
]

z=0
=

1

(P+)n

[

ψ̄q(0)γ+
(

i
↔
∂+
)n

ψq(0)

]

. (2.16)

The sum in the first line vanishes because the quark fields have to be zero at infinity; the
last line is then obtained after evaluating the resulting δ-function in z− and with using
↔
∂ = 1

2(
→
∂ −

←
∂ ).

Had we not been using light cone gauge, the additional gauge link would have caused
a covariant derivative to appear. Since the lattice does not know about light cone gauge
either, we will use the covariant form in the following and replace ∂µ → Dµ.

The GPDs are defined and valid for light cone components only. This corresponds to
contracting a general operator with arbitrary indices with n light cone projectors n−.
Hence only symmetrised and traceless operators (representing twist-2 operators from the
operator product expansion) contribute. Similar arguments are valid for the tensor GPD.
So from the non-local operators, taking Mellin moments we finally arrive at towers of local
bilinear operators

O{µµ1...µn}
q (0) = ψ̄q(0) γ{µi

↔
Dµ1 . . . i

↔
Dµn} ψq(0)− traces , (2.17a)

O[µ{ν]µ2...µn}
q,T (0) = ψ̄q(0) iσ[µ{ν]i

↔
Dµ2 . . . i

↔
Dµn} ψq(0)− traces . (2.17b)

The {... } and [... ] refer to symmetrisation and anti-symmetrisation of the indices (performed
in this order). The subtracted trace terms are of the form gµiµjOµ1...µi...µj ...µn = 0.

2.6 Generalised Form Factors

The previous section outlined the relation between the non-local bi-linear matrix elements
and their local counterparts appearing in the definition of GPDs. Matrix elements of
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2 Generalised Parton Distributions

the individual operators from the towers of operators of Eqs. (2.17a) and (2.17b) can
be parametrised into generalised form factors (GFFs) with some kinematical pre-factors.
This is similar to decomposing the hadronic tensor into the structure functions in Sec. 1.3.
In this section, we will also include the axial vector current for which we claimed that the
GPDs vanish.

2.6.1 Counting Generalised Form Factors

We start by counting the number of GFFs for the individual operators. This will present
a check of the actual decomposition we derive in the following section. Of course a check
only makes sense if the number of occurring terms is found with a different method.

Here, the counting of GFFs is done analogous to [22, 23]. The idea is that instead of
studying off-forward matrix elements like

〈

π
∣

∣O
∣

∣π
〉

one can consider the crossed channel

with matrix elements between a two particle continuum state and the vacuum,
〈

0
∣

∣O
∣

∣ππ̄
〉

.
The task then is to match the quantum numbers JPC of the continuum state and the
operator. This yields the number of form factors by simple comparison.

We start with identifying the quantum numbers of a state of two pions
∣

∣ππ̄
〉

. This is
done in a standard textbook manner, e.g. as for the positronium in [24]. Using a non-
relativistic ansatz for the wavefunction of the bound state, we find the following quantum
numbers JPC :

∣

∣ππ̄
〉

: 0++, 1−−, 2++, 3−−, . . . . (2.18)

This is exactly as stated in [22]. The corresponding quantum numbers for the operators
O are taken from [22] and [23]:

ψ̄ γ{µiDµ1 · · · iDµn} ψ : j(−)j (−)n+1
,

ψ̄ γ5γ
{µiDµ1 · · · iDµn} ψ : j(−)j+1 (−)n

, (2.19)

ψ̄ iσ[µ{ν]iDµ1 · · · iDµn} ψ : j(−)j+1 (−)n+1
and j(−)j (−)n+1

,

where we have j = 0, 1, . . . , n+ 1 for the vector and axial-vector operators and in case of
the tensor operators j = 1, . . . , n+ 1.

With Equations (2.18) and (2.19) we can identify the number of generalised form factors
to be:

vector operator: ⌈n2 ⌉+ 1,
axial vector operator: 0,

tensor operator: ⌊n2 ⌋+ 1.
(2.20)

Here n corresponds again to the number of derivative terms in the operator and ⌈ ⌉, ⌊ ⌋
represent the next largest or smallest integer value, respectively. Note that the matching
of the quantum numbers show that there are no axial vector GFFs, thus the corresponding
GPDs vanish.

2.6.2 Decomposition into Generalised Form Factors

The general form of this decomposition is given by Lorentz structure of the matrix element.
We abbreviate the matrix elements withM,M5, andMσ for the vector, axial vector and
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2.6 Generalised Form Factors

tensor operator, respectively:

M{µµ1µ2...µn}(P,∆) =
〈

π(p′)
∣

∣ ψ̄(0) γ{µ i
↔
Dµ1 i

↔
Dµ2 . . . i

↔
Dµn} ψ(0)

∣

∣π(p)
〉

, (2.21a)

M{µµ1µ2...µn}
5 (P,∆) =

〈

π(p′)
∣

∣ ψ̄(0) γ5γ
{µ i
↔
Dµ1 i

↔
Dµ2 . . . i

↔
Dµn} ψ(0)

∣

∣π(p)
〉

, (2.21b)

M[µ{ν]µ1µ2...µn}
T (P,∆) =

〈

π(p′)
∣

∣ ψ̄(0) iσ[µ{ν] i
↔
Dµ1 i

↔
Dµ2 . . . i

↔
Dµn} ψ(0)

∣

∣π(p)
〉

. (2.21c)

Without any additional knowledge the decomposition of the matrix elements (2.21a)-
(2.21c) only has to obey the Lorentz structure given byM,M5, andMσ. This means we
can have any combination of the momenta P and ∆ having the same Lorentz symmetry.
To obtain additional constraints on the possible number of generalised form factors, we
use the transformations under parity P and time-reversal T .

Applying both transformations to all the matrix elements we end up with the following
general relations providing constraints due to the stated symmetry:

M{µµ1µ2...µn}(P,∆)
T−→ M{µµn...µ2µ1}(P,−∆) , (2.22a)

M{µµ1µ2...µn}
5 (P,∆)

P−→ −M{µµ1µ2...µ2}
5 (P,∆) , (2.22b)

M[µ{ν]µ1µ2...µn}
T (P,∆)

T−→ −M[µ{ν]µn...µ2µ1}
T (P,−∆) . (2.22c)

From (2.22b) we immediately see that for any given number n of derivatives
↔
D the matrix

elements M5 vanish. This matches the counting in Section 2.6.1, Eq. (2.20). Relations
(2.22a) and (2.22c) on the other hand show that we expect an odd, respectively even
number of momenta ∆ within the decomposition into generalised form factors. Further
conditions that have to be kept in mind are that in general we want the form factors to
be real and dimensionless. It is also of interest to have a straightforward matching to the
already known electromagnetic form factor of the pion,

〈

π(p′)
∣

∣V µ
∣

∣π(p)
〉

= 2PµF (Q2) , [1.7]

and suggestive correspondence to the generalised form factors of the nucleon [16, 23, 25, 26].
The decomposition of the pion matrix elements into generalised form factors can then be
written as

M{µµ1µ2...µn}(P,∆) = 2P {µPµ1 . . . Pµn}An+1,0(∆
2)

+ 2
n
∑

i=1
odd

∆{µ∆µ1 . . .∆µiPµi+1 . . . Pµn}An+1,i+1(∆
2), (2.23a)

M[µ{ν]µ1µ2...µn}
T (P,∆) =

1

mπ

n
∑

i=0
even

P [µ∆{ν] ∆µ1. . .∆µiPµi+1. . . Pµn}BTn+1,i(∆
2). (2.23b)

We again see that the matrix elements M5 vanish due to parity conservation. We can
also read off that in the forward limit ∆ → 0 only the GFFs An+1,0 will be accessible
experimentally since the other kinematic pre-factors of decompositions tend to zero. Thus
the remaining form factors can only be extracted from the actual limiting procedures.
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2 Generalised Parton Distributions

2.7 Mellin Moments and Generalised Form Factors

In Section 2.3 we integrated Hq
π(x, ξ, t) over the momentum fraction x and obtained the

pion form factor (2.7). This is the lowest possible Mellin transformation, as introduced in
Section 2.5. Similar relations hold for higher moments in x and the GFFs.

In order to calculate the moments Mn+1(H
q
π) (analogous for Mn+1(E

q
Tπ)) we start by

inserting Eqs. (2.16) and (2.17a) into the definition of the GPD

2P+

∫

dxxnHq
π(x, ξ, t) =

1

(P+)n
M{µµ1µ2...µn}(P,∆) (2.24)

where we have also usedM{µµ1µ2...µn}(P,∆) from (2.21a). Remembering that the twist-2
operators and hence their matrix elements involve + tensor components, and bearing in
mind the definition for the skewness ∆+ = −2ξP+ we find

∫

dxxnHq
π(x, ξ, t) = An+1,0(∆

2) +
n
∑

i=1
odd

(−2ξ)i+1An+1,i+1(∆
2) , (2.25a)

and for the tensor GPD

∫

dxxnEqTπ(x, ξ, t) =
n
∑

i=0
even

(−2ξ)iBTn+1,i(∆
2) . (2.25b)

We can again read off the correspondence of F qπ and Aq1,0 from Eq. (2.25a) as claimed (and
demanded) earlier.

The forward limit of these two relations is again easier: since ξ = 0 only the vector
GPD Hq

π has non-vanishing Mellin moments and we readily obtain

∫

dxxnHq
π(x, 0,−∆

2
⊥) = An+1,0(∆

2) (2.26)

which, as demanded, is the pion form factor for n = 0 with A1,0 = Fπ.
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3 QCD on the Lattice

This chapter is devoted to an introduction to the discretised, Euclidean version of QCD
first discussed by Wilson [27]: Lattice QCD . This is our method of choice to test the theory
of the strong force and evaluate certain properties of hadrons.

As mentioned in the preface, lattice QCD is a non-perturbative approach and requires
no model assumptions. Thus all calculations are from first principles. Apart from simula-
tion specific parameters (like the lattice volume or specialities of the simulation algorithm)
there are no additional parameters to the field theory in comparison to its continuum for-
mulation. Like the Lagrangian of QCD, the lattice simulation has parameters to determine
the quark masses and the coupling constant. These parameters can be – and have to be
– tuned to eventually extrapolate to the physical theory. While this freedom can be an
advantage if one wants to study what our world would look like at different quark masses,
the unphysical regime of current simulations poses problems when comparing to physical
observables. Lattice QCD also suffers from limitations concerning the volume and dis-
cretisation effects. However, if the simulation spans a large enough parameter space, one
can attempt to perform all necessary limits. We will come back to this when we discuss
our results.

Here we focus on the basics of the lattice approach and mention the techniques that are
important for this work. We start with the continuum QCD Lagrangian and continue with
the lattice formulation of the path integral including correlation functions. This naturally
leads to a connection to Monte Carlo methods. We then explain the action used in our
simulation. For an exhaustive introduction to lattice field theory, see [28].

3.1 The QCD Lagrangian

The starting point of every quantum field theory is its Lagrangian1 from which the equa-
tions of motion and thus the dynamics of the theory can be derived. We provide the
continuum formulation in this section. Since the matter fields of QCD are fermions, the
free theory is described by the Dirac equation. The corresponding fermionic Lagrangian
is2

LF(x) = ψ̄(f)(x)
(

iγµ∂µ −m(f)
)

ψ(f)(x) , (3.1)

with x a space-time four-vector and where we have used a matrix notation to suppress

Dirac and colour indices (α, c) for the fermion fields ψ
(f)
α,c . Each of the nf quarks with

flavour f is of mass m(f). The γµ are 4× 4 Dirac matrices with the Greek index running
over space-time, defined by the anti-commutation relation

{

γµ, γν
}

= 2gµν . (3.2)

1We adopt the usual, somewhat sloppy language that does not distinguish between Lagrangian density
and the Lagrangian.

2With Einstein’s summing convention for repeated indices.
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3 QCD on the Lattice

Because QCD is a locally gauge-invariant theory, the kinetic term is changed to include
the covariant derivative

∂µ −→ Dµ(x) = ∂µ − igAcµ(x) tc (3.3)

with g the coupling constant, Acµ the gauge fields and tc the generators of the algebra su(3).
The covariant derivative introduces interactions between the quark and gauge fields and
is the first part of the transition to an interacting theory. The still missing part of the
QCD Lagrangian describes the dynamics and interaction of the gauge fields themselves,
its given by

LG(x) = −1

4
F cµν(x)F

µν
c (x) . (3.4)

The self-interaction of the gluons emerges from the non-Abelian nature of QCD, which is
hidden in the field strength tensor

F cµν(x) = ∂µA
c
ν(x)− ∂νAcµ(x) + g f cdeAdµ(x), A

e
ν(x) , (3.5)

where f cde are the structure constants of the group SU(3), encoding the commutation
relations of the generators tc. In standard form, these are written as

[td, te] = if cdetc. (3.6)

Notice that the last term in Eq. (3.5) is absent in QED and causes cubic and quartic terms
in the gauge fields. The final QCD Lagrangian is the sum of the fermionic and the gauge
part, LQCD = LF + LG.

3.2 Path Integral and Correlation Functions

Feynman’s path integral formulation (or functional integral) can be used to quantise a the-
ory. It is an indispensable tool for quantum field theories because it uses the Lagrangian
as its fundamental quantity. Hence the path integral approach preserves all symmetries
of a theory and can be applied to any interacting theory from scalar field theories to non-
Abelian gauge theories. Since it can also be used to evaluate expectation values, it is very
useful to investigate the dynamics of QCD. However, the path integral is only formally
defined for continuum variables, by using a limiting process from a functional integral
defined on a discretised space-time as shown in textbooks, e.g. [1, 2, 28]. This already
suggests to use this more rigorous version of the path integral for computer simulations re-
quiring non-continuous formulations and, more important, with a finite number of degrees
of freedom.

The very first step on the way to numerical simulations is to simply stick to the definition
of the path integral on a set of space-time points:

x = a(n1, n2, n3, n4) with nj ∈ {1, 2, 3, . . . Nj} , (3.7)

where we include a lattice spacing a and restrict ourselves to a hypercube with Nj points
in the space-time direction j. We use j = 1, 2, 3 for spatial and j = 4 for the time direction.
The fermion fields will now live on the lattice sites x and the gauge fields Acµ(x) will be
replaced by parallel transporters Uµ(x). The latter are located on the links between the
lattice sites and hence still are directed quantities like the vector gauge fields. They are
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3.2 Path Integral and Correlation Functions

equivalent to path ordered exponentials of the gauge field (this is the discretised version
of the Wilson line in (2.6)), given by

Uµ(x) = eiagA
c
µ(x)tc , (3.8)

With Λ(x) as element of the SU(3) gauge group, they transform like

Uµ(x) → Λ(x)Uµ(x)Λ
−1(x+ aµ̂) . (3.9)

Here µ̂ is the unit vector in direction µ. The path integral is then given by

∫

[dψ̄][dψ][dU ] eiS[ψ̄,ψ,U ] , (3.10)

where the integral is over all values of these fields at all space-time points. Formally, the
integration measure can be written as

[dψ̄][dψ][dU ] =
∏

x,c,f,α

dψ̄fc,α(x) dψ(x)fc,α
∏

x,µ

dUµ(x) , (3.11)

here explicitly including all indices. The action S in (3.10) is the ‘integrated’ Lagrangian
density on our space-time points x

S[ψ̄, ψ, U ] = a4
∑

x

LQCD[ψ̄fc,α(x), ψfc,α(x), Uµ(x)] . (3.12)

We leave the discussion of the explicit form of the action until later in this chapter.

It is worth noting that the lattice approach quite naturally provides a regularisation
scheme. This is in contrast to perturbative (continuum) quantum field theories, where
one has to use, e.g. Pauli-Villars or dimensional regularisation to render the expressions
finite. In discretised space-time, the lattice constant a corresponds to a maximum energy
providing an ultraviolet cut-off. Furthermore, since space-time is limited to a finite ‘box’ of
four-volume Vs×T we also obtain the necessary infrared cut-off. As with any regularisation
scheme, this in turn breaks some symmetries of the theory: the discretisation breaks
Lorentz symmetry down to the hypercubic group H(4) and translational invariance only
holds for multiples of the lattice spacing a. These symmetries are however restored in the
continuum limit, a→ 0.

The second step towards a numerical solution is noting that the phase factor including
the action in (3.10) has a complex argument. The weights for the different paths in the
functional integral are thus oscillating, which would leave the path integral inappropriate
for simulations. The solution is a Wick rotation of the time variable to imaginary times
t → −iτ (τ > 0). This leads to a Euclidean formulation of QCD with a changed weight
factor

{γµ, γν} → {γE
µ , γ

E
ν } = 2δµν , eiS → e−S

E
. (3.13)

We will drop the superscript ‘E’ for Euclidean in the remainder and stick to Euclidean
space. Instead we will note the use of objects in Minkowski (or Euclidean) space explicitly
where necessary. Note that the Euclidean indices run from 1, . . . , 4 where the last index
is used for the time component.
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3 QCD on the Lattice

The vacuum expectation value of an operator O can now be calculated by

〈

O(ψ̄, ψ, U)
〉

=
1

Z

∫

[dψ̄][dψ][dU ]O(ψ̄, ψ, U) e−S[ψ̄,ψ,U ] . (3.14)

It is important to note that the operator on the l.h.s. appears as a function of the fermion
and gauge fields (ψ̄, ψ, U) on the r.h.s. of this equation. The partition function

Z =

∫

[dψ̄][dψ][dU ] e−S[ψ̄,ψ,U ] (3.15)

makes sure that unwanted phase-factors drop out.
We will only be interested in operators of (anti-)quark fields in this work. These will

create or annihilate quarks and describe the currents that couple to them. While the time-
ordering of these operators is easily observed, the non-commuting nature of the fermion
fields has to be taken care of. The use of Grassmann valued fields is a necessity. We also
still need a prescription to tell what the function O(ψ̄, ψ, U) will look like for a specific
correlation function on the l.h.s. of Eq. (3.14). This is achieved by using the generating
functional and Wick contractions.

The generating functional is defined as

W [η, η̄] =

∫

[dψ̄][dψ][dU ] e−S[ψ̄,ψ,U ] eη̄ψ eψ̄η, (3.16)

and thus Z = W0 = W [η, η̄]
∣

∣

∣

η,η̄=0
.

Here additional source terms η̄ψ (ψ̄η) for the (anti-)quark fields have been introduced.
Functional derivatives with respect to the currents η, η̄ connect to the correlation functions.
For n quarks and anti-quarks in the correlation function we have

〈

ψi1ψ̄i2 . . . ψin−1ψ̄in
〉

=
1

W0

δ

δη̄i1

−δ
δηi2
· · · δ

δη̄in−1

−δ
δηin

W [η, η̄]
∣

∣

∣

η,η′=0
. (3.17)

Note that this is for a fixed combination of Dirac and colour indices, collectively denoted
by an index i. In addition, Eq. (3.17) is also for the given ordering of the quark fields.
What we need for calculations in QCD are quark propagators between an initial and a
final point in space-time. Even more, we need all possible combinations of these quark
lines. This includes closed loops and interchanges of quarks obeying the anti-commuting
nature of fermions. The quark propagator (or Green’s function) is

D−1
i,j (x, x′) =

〈

ψi(x)ψ̄j(x
′)
〉

=
1

W0

δ

δη̄i

−δ
δηj

W [η, η̄]
∣

∣

∣

η,η′=0
. (3.18)

The propagator is the inverse of the Dirac operator D, formally given by

SF[ψ̄, ψ, U ] = a4
∑

i,j,x,x′

ψ̄i(x)Di,j(x, x′)ψj(x′) , (3.19)

with SF the fermionic part of the QCD action. After completing the square in the fermion
fields and a change of variables, the fermionic part of the generating functional can be
written as a Gaussian integral. Integrating out the fermion fields one arrives at

W [η, η̄] =

∫

[dU ] detD e−SG[U ]eη̄i(x)D
−1
i,j (x,x′)ηj(x

′) . (3.20)
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3.3 Monte Carlo

The fermion determinant detD here contains all so-called sea quark contributions. The
action appearing in this integral is now reduced to the contribution of the gauge fields only.
Functional derivatives with respect to currents η, η̄ will bring down factors containing the
quark propagator. The possible combinations of quark lines are then found by Wick’s
theorem. It is given by

〈

ψi1ψ̄j1ψi2ψ̄j2 · · ·ψinψ̄jn
〉

=
(−1)n

W0

∑

permutations p
of 1,2,...,n

sign(p)

∫

[dU ] detDD−1
i1jp1
D−1
i2jp2
· · · D−1

injpn
eiSG[U ] . (3.21)

The permutations make sure we pick up all combinations of quark fields while the sign
pre-factor preserves the Pauli principle for the interchange of fermions. We will make use
of this procedure when calculating n-point functions later in this chapter.

3.3 Monte Carlo

The similarity of our field theoretic partition function Z, Eq. (3.15), with statistical me-
chanics led to similar numerical approaches. Our goal of computing the high dimensional
path integral in Eq. (3.14) can be done via the Monte Carlo technique. Hereby the path
integral is replaced by an average over an ensemble of N gauge configurations Un

〈O(U)〉G =
1

N

N
∑

n=1

O(Un) , (3.22)

where a single gauge configuration consists of link variables between all lattice sites. Taking
the limit N →∞ the exact average and hence the path integral is recovered

〈O(U)〉G
N→∞−→ 〈O(U)〉 = 1

Z

∫

[dU ] detDO(U)e−S[U ] . (3.23)

Estimates of the uncertainty of the Monte Carlo process play an important role. We
will use two standard procedures to determine the errors: namely Jackknife or bootstrap
errors. The gauge configurations are generated according to their statistical (Boltzmann)
weight

p(Un) =
1

Z
e−S[Un] , Z =

∑

n

e−S[Un] , (3.24)

by simulating a Markov chain, in this specific case known as importance sampling . This
process requires strong ergodicity, i.e. every configuration of gauge links can be reached
from any other configuration: P (U ′ ← U) > 0 where P is the transition probability. In
order to reach and maintain equilibrium and generate the desired distribution of configu-
rations, the detailed balance condition

P (U ′ ← U)p(U) = P (U ← U ′)p(U ′) (3.25)

has to be fulfilled.
There are a variety of updating processes leading from one configuration to a new

one, corresponding to different possibilities of the transition probability. For quenched
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a |

x

U−ν(x+ aν̂)

Uµ(x)

U−µ(x+ aµ̂+ aν̂)

Uν(x+ aµ̂)

b |

Uµ,νU−µ,ν

U−(µ,ν) Uµ,−ν

Figure 3.1 | a | The plaquette term Uµ,ν(x) of the Wilson gauge action, Eq. (3.26). b | The
clover-leaf of the discretised field strength tensor, Eq. (3.40)

simulations where the fermion determinant is set to a constant, common choices are the
Metropolis or Heatbath algorithms. Our dynamical simulation on the other hand includes
the fermion determinant which requires additional computational effort. The determinant
is included in a purely bosonic effective action and simulated via pseudofermions. This
can for example be done by using the Hybrid Monte Carlo algorithm [29]. The Metropolis
acceptance is here combined with an updating process based on the evolution of the fields
under the Hamiltonian of the system.

3.4 Wilson Glue

The gauge action we used in our simulation was introduced by Wilson [27]. It is known
as the plaquette action for reason that will become clear within the next lines.

A necessary requirement is that the proper continuum behaviour is recovered. We al-
ready noted the transformation properties of the link variables Uµ in Eq. (3.9). Construct-
ing closed loops with these link variables is then easily seen to be invariant under gauge
transformations. The simplest of such closed curves is the plaquette shown in Fig. 3.1.a
and given by

Uµ,ν(x) = Uµ(x)Uν(x+ aµ̂)U−µ(x+ aν̂ + aµ̂)U−ν(x+ aν̂). (3.26)

where µ̂ is a unit vector in µ-direction. The Wilson plaquette action for SU(3) then is

SG[U ] =
∑

p

β

3
Re [Tr(1− Uµ,ν(x))] , (3.27)

which is real and positive. The summation in (3.27) is over all possible 1×1 plaquettes, the
trace is over the colour indices. The constant term in the action is physically insignificant
and only included to exactly match the continuum expression in the limit a→ 0. To show
that this is in fact the case, one has to expand (3.8) for small a and insert it into the
trace. Using the Campbell-Baker-Hausdorff relation3 and the lattice approximation for
the derivative of the gauge fields,

a · ∂µAcν(x) = Acν(x+ aµ̂)−Acν(x) +O(a2) , (3.28)

3The Campbell-Baker-Hausdorff relation reads e
x
e

y = e
x+y+(1/2)[x,y]+...
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3.5 Lattice Fermion Action

the Wilson action (3.27) in the continuum limit a→ 0 becomes

SG =
β

4 · 3
∑

x

a4 Tr
[

Fµν(x)Fµν(x) +O(a2)
]

=
β

8 · 3
∑

x

a4
[

F cµν(x)F
c
µν(x) +O(a2)

]

.

(3.29)

Comparing this to the gauge action in (3.4) yields a relation between β and the coupling
constant for the continuum:

β =
6

g2
. (3.30)

From Eq. (3.29) we can read off that our lattice gauge action has O(a2) discretisation
effects.

3.5 Lattice Fermion Action

Having introduced the lattice gauge action, we are still missing a lattice version for the
fermionic part of the action. We now turn to the discussion of the fermion action used in
our work.

Näıve Fermions

With the derivative discretised as the finite difference between neighbouring lattice sites

∂µψ(x) =
1

2a
[ψ(x+ aµ̂)− ψ(x− aµ̂)] (3.31)

we arrive at a näıve discretisation of the fermion action and Dirac matrix

SF[ψ̄, ψ, U ] =
∑

i,j,x,x′

ψ̄i(x)Di,j(x, x′)ψj(x′) [3.19]

Di,j(x, x′) = mi,jδx,x′ +
1

2

∑

µ

(γµ)i,j δx′+aµ̂,x Uµ(x) . (3.32)

for which we have re-scaled to dimensionless variables ψ → a−3/2ψ and m → a−1m and
used the convention

∑

µ

=

±4
∑

µ=±1

, γ−µ = −γµ , and U−µ(x) = Uµ(x− aµ̂)† . (3.33)

The link variables Uµ in (3.32) are included to keep gauge invariance. Although this ansatz
has good scaling properties with O(a2) discretisation errors, it suffers from the so-called
fermion doubling . To see this, consider the propagator of free quarks in momentum space

D−1(pµ) =
−iγµ sin(pµ) +m
∑

µ sin2(pµ) +m2
(3.34)

for lattice momenta given by

pi = 2π
ni
N
, with ni = 0, 1, 2, . . .Ni − 1 , i = 1, 2, 3 and p4 = iE (3.35)

27
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when E is the particle’s energy. The lattice momenta have a discretised spectrum because
of the periodic boundary conditions we apply to our lattice. The poles of the propagator
(3.34) then define the particles of the free theory. Since the sine function has zeros not
only for pµ = 0 but also at the corners of the Brillouin zone, we find 16 particles for
µ = 1, . . . , 4. The extra 15 fermions are unphysical lattice artifacts that do not vanish in
the continuum limit (a→ 0).

Wilson Fermions

Since the main constraint on the discretisation is that the right continuum limit is recov-
ered, there is quite some ambiguity in the actual form of the lattice action. Additional
operators of higher dimension can be introduced, as long as they vanish for a → 0. It
was again Wilson who used this freedom, adding an extra term to the fermion action [30]
leading to

Di,j(x, x′) =
1

2κ
δx,x′ +

1

2

∑

µ

[r − (γµ)i,j ] δx′+aµ̂,x Uµ(x) , (3.36)

with the hopping parameter4

κ =
1

8r + 2m
. (3.37)

The parameter r is in the interval [0, 1]. For r = 0 the näıve discretisation is recovered.
Other values for r decouple the unphysical fermions from the theory by giving them a
mass proportional to 1/a. This can again be checked for the free theory and its quark
propagator.

However, as usual ‘there’s no free lunch’. Following Nielsen-Ninomiya’s no-go theorem
we have to trade exact chiral symmetry against the removal of doublers for a local operator
with the correct continuum limit. In fact, the Wilson term we just added in (3.36) explicitly
breaks chiral symmetry. The no-go theorem can only be circumvented using the Ginsparg-
Wilson relation [31], or, more precisely, a fermion action based on it. In this relation, the
exact chiral symmetry used in the no-go theorem is replaced with a lattice version, so that
chiral symmetry is recovered for a→ 0. Since the re-discovery of this equation, a number of
fermion formulations appeared: there are approximate solutions to the Ginsparg-Wilson
relation in form of the fixed-point [32] or the chirally improved operator [33]. Other
possibilities are the domain wall approach [34] or Neuberger’s overlap operator [35]. The
former introduces an additional, fifth dimension, removing the doublers and separating
left- and right-handed fermions. Here the Ginsparg-Wilson relation holds for the extent of
this extra dimension going to infinity. The latter fermion operator is explicitly constructed
to satisfy the Ginsparg-Wilson relation. While providing the cleanest description of lattice
fermions, it is computationally the most demanding one.

Apart from breaking chiral symmetry, the hopping parameter also affects the bare quark
mass of the theory. In the chiral limit mq → 0 of a free theory we can set a critical

hopping parameter κfree
c = 1/8r. In the full theory with interacting fermions, it has to be

determined within the simulation, i.e. κc corresponds to vanishing quark mass as obtained

4We will adopt the usual convention of rescaling the fermions fields by
√

2κ to remove the hopping
parameter from the action.
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3.5 Lattice Fermion Action

from e.g. vanishing pion mass. For the quark masses one then has

amq ∝
(

1

κ
− 1

κc

)

. (3.38)

Improved Wilson Fermions

There is another draw-back of the Wilson fermion action: discretisation errors now start at
O(a) in contrast to our gauge action (and we prefer a consistent behaviour). A technique
generally referred to as improvement can be used to remedy these scaling violations. It
is once again based on the fact that a lattice action has to reproduce the continuum
formulation for a → 0 but can otherwise contain higher-dimensional and thus irrelevant
operators, their number only limited by the symmetries of the original action. Those
additional terms can then be tuned to improve the continuum limit.

Including the Wilson term, five such terms have been identified by Sheikholeslami and
Wohlert [36]. If we restrict ourselves to on-shell quantities, the equations of motion can be
used to further reduce the possible operators. The only new contribution to the Wilson
action then is the so-called clover term:

cSW

i

4
ag2ψ̄(x) σµνFµν(x) ψ(x) , (3.39)

with an improvement constant cSW and a discretised field strength tensor Fµν . The latter
can be written as

Fµν(x) =
1

8ig

∑

µ,ν

[Uµν(x)− Uµν(x)†] . (3.40)

The field strength tensor is calculated using sums of neighbouring plaquettes (3.26), as
pictured in Fig. 3.1.b thus motivating the name clover action. The improved Dirac operator
then looks like

Di,j(x, x′) =
1

2κ
δx,x′

[

1 + cSW

i

2
aκg2 σµνFµν(x)

]

+
1

2

∑

µ

[r− (γµ)i,j ] δx′+aµ̂,x Uµ(x). (3.41)

If we now arrange for one lattice (physical) observable to have no O(a) terms by tuning
cSW we can fix our improvement coefficient. This will depend on the specific lattice (i.e. its
coupling constant β) but, together with our O(a2) lattice gauge action, ensures that other
observables can be improved as well (the lattice version of the operators (2.17a)/(2.17b)
require additional attention here).

The value for cSW has been obtained non-perturbatively by the Alpha collaboration

cSW =
1− 0.454g2 − 0.175g4 + 0.012g6 + 0.045g8

1− 0.720g2
, (3.42)

in terms of the bare gauge coupling g, [37]. We use this as input for our simulation.
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4 Matrix Elements from the Lattice

We now turn to the discussion of lattice techniques for calculating matrix elements on the
lattice. In general, these are n-point functions of fermionic operators that can be evaluated
using the Wick contractions discussed in the previous chapter.

Our starting point will be the well known pion two-point function which is connected
to the pion energy. We derive its lattice and the continuum representation and mention
a possibility to increase the quality of the signal. This is followed by a discussion of
the Euclidean operators that we use to evaluate the moments of GPDs. The necessary
three-point functions can exhibit so-called fermion disconnected lines as we will show. A
separate section explains the sequential source technique, simplifying the lattice calculation
of three-point functions. Finally, a closer look is taken at the extraction of the operator
matrix elements from the lattice data. A ratio of three- and two-point functions is specially
suited for that and we note differences to the better known nucleon case.

4.1 Two-Point Functions

We start with pion two-point functions and their representation on the lattice and in
continuum. Two-point functions can be seen to create a particle with certain momentum p

at a given time t′ and annihilate it again at a later time t (so we have t > t′). Conventionally
they are written as

〈

O(p, t)O†(p, t′)
〉

=
〈

Ω
∣

∣O(p, t)O†(p, t′)
∣

∣Ω
〉

, (4.1)

and we can extract properties like the particle’s energy from their time behaviour. The
creation and annihilation operators are also referred to as interpolating fields or interpo-

lating currents. Ideally, these create the wave function of the particle and are required to
have non-vanishing overlap with the particle state

〈

Ω
∣

∣O(p, t)
∣

∣particle(p, t)
〉

6= 0 and
〈

particle(p, t)
∣

∣O†(p, t)
∣

∣Ω
〉

6= 0 . (4.2)

Hence they must have the same quantum numbers (spin, flavour, parity) as the particle.
The most general (in terms of flavour and Dirac structure) meson interpolating field are
quark bilinears given by

η(p, t) =
1√
Vs

∑

x

e−ipxFf,f ′ ψ̄
(f)
α,c(x) Γα,α′ ψ

(f ′)
α′,c(x) and (4.3a)

η†(p, t) =
1√
Vs

∑

x

eipxF ′f,f ′ ψ̄
(f)
α,c(x) Γ′α,α′ ψ

(f ′)
α′,c(x) , (4.3b)

where we have included flavour matrices F , F ′ and sum over Dirac, flavour, and colour
indices. The latter ensures that we have a colour singlet state. The Fourier transform over
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4 Matrix Elements from the Lattice

all spatial lattice points projects on the momentum p and is the source of the (spatial)
volume factor. Finally, the matrices Γ, Γ′ are responsible for the correct JPC quantum
numbers of the meson.

Restricting ourselves to the pion, we only need flavours u and d. In addition, since we
do not change the structure of the particle between source and sink, we have Γ′ = γ4Γ

†γ4.
Inserting (4.3a) and (4.3b) in (4.1) and using Wick contractions of Sec. 3.2 we then find
as correlation function for the π+ (however neglecting the ‘+’)

C2pt(t, t
′,p) =

〈

ηπ(p, t) η
†
π(p, t

′)
〉

=
1

Vs

∑

x,x′

e−ip(x−x′)
〈

ψ̄(d)
α,c(x) Γα,α′ ψ

(u)
α′,c(x)ψ̄

(u)
β,c′(x

′) Γ′β,β′ ψ
(d)
β′,c′(x

′)
〉

G

= − 1

Vs

∑

x,x′

e−ip(x−x′)
〈

Tr
[

D−1
u (x, x′)γ4Γ

†γ4D−1
d (x′, x)Γ

]〉

G
. (4.4)

Here the trace is over Dirac and colour space and x4 = t, x′4 = t′ and we average over
all gauge configurations. Note that in the general case, where we can also have flavour
diagonal correlators, a second, disconnected contribution appears. We can further sim-
plify this equation by using translational invariance and γ5-hermiticity of the propagator,
D(x′, x) = γ5D†(x, x′)γ5.

C2pt(t, t
′,p) = −

∑

x

e−ipx
〈

Tr
[

D−1
u (x, t,0, t′) γ4Γ

†γ4γ5

(

D−1
d (x, t,0, t′)

)†
γ5Γ
]〉

G
, (4.5)

with the transpose in Dirac and colour indices. For the lattice simulation, we now only
need to invert propagators from (x, t′) to all other lattice points and not also the other
way round, thus saving computer time.

To be able to extract the energy from the correlation function (4.1) we need the transfer
matrix formalism and we have to look at its Hilbert space representation. The time
evolution of an operator is obtained from e−tH with the Hamiltonian H of the theory.
Since we have periodic boundary conditions, time evolution of (4.1) results in

〈

ηπ(p, t)η
†
π(p, t

′)
〉

=
〈

ηπ(p, 0) e−(t−t′)Hη†π(p, 0) e−(T−(t−t′))H
〉

, (4.6)

when T is the time extent of our lattice. This correlation function corresponds to taking
the trace over a complete set of eigenstates. Choosing energy eigenstates

∣

∣0
〉

,
∣

∣1
〉

,
∣

∣2
〉

, . . .
to the Hamiltonian with energies E0 ≤ E1 ≤ E2 ≤ . . . , we obtain

∑

i

〈

i
∣

∣ η e−(t−t′)H η† e−(T−(t−t′))H
∣

∣i
〉

=
∑

i,j

〈

i
∣

∣ η e−(t−t′)H
∣

∣j
〉 〈

j
∣

∣ η† e−(T−(t−t′))H
∣

∣i
〉

=
∑

i,j

e−(t−t′)Ej e−(T−(t−t′))Ei
〈

i
∣

∣ η
∣

∣j
〉 〈

j
∣

∣ η†
∣

∣i
〉

,

(4.7)

where we have neglected the arguments of the interpolating fields. For large time sepa-
rations t′ ≪ t ≪ T we find that states with higher energies are exponentially suppressed
and the state with lowest energy that has overlap with our interpolators dominates the
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4.1 Two-Point Functions

sum. Denoting the vacuum with
∣

∣0
〉

and the lowest state in energy with Eπ(p) we thus
arrive at

〈

ηπ(p, t)η
†
π(p, t

′)
〉

= e−(t−t′)Eπ(p)
〈

0
∣

∣ ηπ(p)
∣

∣π(p)
〉 〈

π(p)
∣

∣ η†π(p)
∣

∣0
〉

+ e−(T−(t−t′))Eπ(p)
〈

π(p)
∣

∣ η†π(p)
∣

∣0
〉 〈

0
∣

∣ ηπ(p)
∣

∣π(p)
〉

+ . . .
(4.8)

The two contributions in this equation correspond to a pion travelling forward in time
from the source at t′ to the sink at t, and an anti-pion travelling on the other side of the
torus (our lattice) and backward in time (the exponential hence relative to T ). The ellipsis
refers to the suppressed excited states. Reducing the expression even more we can write
〈

ηπ(p, t)η
†
π(p, t

′)
〉

= e−Eπ(p)T/2
∣

∣

〈

0
∣

∣ ηπ(p)
∣

∣π(p)
〉∣

∣

2
2 cosh

[(

T/2−
(

t− t′
))

Eπ(p)
]

+ . . .

(4.9)

4.1.1 Increasing the Overlap – Smearing of Quark Fields

We stated at the beginning of the section, that the interpolating fields ideally create
the wave function of the mesons. However, hadrons are not point-like objects like the
quark fields we construct them with. To really include the wave function, we would need
interpolators like

η(p, t) =
1√
Vs

∑

x1,x2

e−ip(x1+x2)/2 Ff,f ′ ϕ(x1, x2) ψ̄
(f)
α,c(x1) Γα,α′ ψ

(f ′)
α′,c(x2) , (4.10)

where ϕ(x1, x2) now describes the spatial part of the meson wave function.1 While there
is the possibility to displace the quark fields relative to each other (e.g. for baryons see
[38]) the more common approach is to use smearing. Using this method, the overlap with
physical states is increased by spatially extending the quark fields on the lattice. This
is similar to Gaussian blurring in image processing, where one uses a convolution with a
Gaussian shape to blur the picture.

We use gauge covariant Jacobi smearing of the quark fields in a plane at x4 = t [39, 40,
41]

Sψ(x, t) =
∑

y

SH(x,y, U, t) Pψ(y, t), (4.11)

where H is the smearing kernel and S is the smearing label (S for smeared or P for
point-like). H is diagonal in colour and chosen to be gauge covariant and Hermitian

SH† = SH. (4.12)

The smeared anti-quark fields are defined as

Sψ̄(x, t) =
∑

y

Pψ̄(y, t) SH(y,x, U, t). (4.13)

Our smeared propagator then reads

S′SD−1(y, t,x, 0) =
∑

x′,y′

S′

H(y,y′, U, t)D−1(y′, t,x′, 0) SH(x′,x, U, 0). (4.14)

1Using a δ-function we recover the interpolator in (4.3a).
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4 Matrix Elements from the Lattice

Note that we can have different smearing for source and sink fields, thus S′ = P is
possible. One can also use different smearing for quarks inside the pion, giving them a
different spatial extent thus having the possibility to mimic nodes in the wave function.
However, this would especially be used to determine excited meson states (see e.g. [42]),
while we are only interested in the pion ground state where one type of smearing is enough
to increase the overlap.

The practical implementation of the smearing is done by applying a truncated Jacobi
iterative solution to the Klein-Gordon equation [39]. The kernel SH then reads

SH(x,y, U, t) =

Nsmear
∑

j=0

κj
(

K(x,y, t)
)j
,

K(x,y, t) =

3
∑

µ=1

[Uµ(x, t)δx+µ,y + U−µ(x, t)δx−µ,y] .

(4.15)

Nsmear is the number of iterations and, being increased, increases the size of the smeared
object. The second parameter in (4.15), κ, controls the coarseness of the iteration. Both
parameters are used to tune the average radius r of the smeared quark fields and depend
on the lattice constant a. We define the radius r as

r2 =

∑

x(x− y)2 |SH(x,y, U, t)|2
|SH(x,y, U, t)|2 . (4.16)

We try to have radii of the order of 0.35 fm which has been found to be a good compromise
when aiming for a nucleon charge radius of ∼ 0.8 fm. The smearing parameters used in
our simulation are given in the appendix.

4.2 Lattice Operators

Since we want to calculate moments of GPDs on the lattice, we need to implement the
towers of local operators on the lattice. We introduced the continuum operators in Sec. 2.5
and their relation to moments of the distribution functions in Sec. 2.7. Without worrying
about (anti-) symmetrisation and subtraction of traces for the moment, we define the
Euclidean counterparts of the operators on the lattice as

OE
µµ1µ2...µn

= Fff ′ ψ̄
(f)γµ

↔
Dµ1

↔
Dµ2 . . .

↔
Dµnψ

(f), (4.17a)

OE,T
µνµ1µ2...µn

= Fff ′ ψ̄
(f)σµν

↔
Dµ1

↔
Dµ2 . . .

↔
Dµnψ

(f). (4.17b)

This makes use of a flavour matrix F to determine the quark flavours of the operator. The
lattice covariant derivative is given by

→
Dµψ(x) =

1

2a
[Uµ(x)ψ(x+ aµ)− U−µ(x)ψ(x− aµ)] ,

ψ̄(x)
←
Dµ =

1

2a

[

ψ̄(x+ aµ)Uµ(x)− ψ̄(x− aµ)U−µ(x)
]

.

(4.18)

Comparing the Euclidean (1, 1, 1, 1) and the Minkowski metric (1,−1,−1,−1), and bearing
in mind that we Wick rotated the time component, we can write down matching coefficients
between the lattice and the continuum operators. For the covariant derivative we find

iD0 = −DE
4 , iDj = −iDE

j , with j = 1, 2, 3 (4.19)
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4.2 Lattice Operators

and similarly for the γ-matrices

γ0 = γE
4 , γj = iγE

j and for completeness γ5 = −γE
5 . (4.20)

This leads to the correspondence of the operators

Oµµ1µ2...µn = (−1)n4+n5+1(−i)n123OE
µµ1µ2...µn

(4.21a)

Oµνµ1µ2...µn

T = (−1)n4+n5+1(−i)n123+1OE,T
µνµ1µ2...µn

(4.21b)

Up to now we have ignored the fact that we need properly (anti-) symmetrised and traceless
operators. This is necessary for leading twist operators as found in Sec. 2.5. The operators
were classified due to their transformation properties under Lorentz transformation and
charge conjugation. On the lattice, Lorentz symmetry is replaced by symmetry under
the hypercubic group H(4) and our lattice operators have to transform irreducibly under
H(4). The operators are then constructed to be symmetrised and traceless. We list all
operators in App. B and give here an example for combinations of the vector operator
with one derivative only that we used (no derivatives is the trivial case)

1

2
(O11 +O22 −O33 −O44) ,

1√
2
(O33 −O44) ,

1√
2
(O11 −O22) (4.22)

and
1√
2
(Oµν +Oνµ) , 1 ≤ µ ≤ ν ≤ 4 . (4.23)

Note that the operators in Eq. (4.22) and (4.23) belong to different irreducible represen-
tations of H(4). So we can expect different lattice artifacts. Nevertheless they have the
same continuum limit.

Because the hypercubic group is only a finite group compared to the (continuum) or-
thogonal group O(4), the restrictions due to this group are less and mixing between the
various operators can occur [43, 44]. However, mixing is only an issue for two or more
derivatives. Furthermore, it has been found that for the operators we use, mixing should
be small and can be neglected. This was found numerically and can be explained by the
fact that the renormalised mixing operators vanish in the continuum [44].

The improvement scheme that we applied to the fermion action to obtain a O(a) im-
proved QCD action, can also be applied to our lattice operators, Eq. (4.17a). In fact, this
would be a requirement to calculate matrix elements with O(a2) errors of these operators,
since improving the action alone would only suffice for the calculation of hadron masses.
A general O(a) improved operator can be written as

Oimp = (1 + amqbO)O +

N
∑

i=1

aciOi . (4.24)

Here, the first factor includes an improvement term connected to the quark mass and
we encounter new improvement coefficients bO, ci that depend on the coupling constant.
Improved operators are furthermore only known for up to one derivative; the explicit form
of these operators can be found from e.g. [45] and references therein. However, lacking non-
perturbative values for the improvement coefficients we will in general neglect improving
the operators because the available coefficients from perturbation theory are known to be
unreliable [46, 47]. We will come back to this when we discuss our results and will try and
explore the effect of improvement.
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4 Matrix Elements from the Lattice

4.2.1 Renormalisation of Operators

As for continuum matrix elements, we need to worry about divergent contributions on
the lattice as well. The fact that divergencies occur is most easily seen from perturbation
theory, where momentum integrals have to be evaluated. As mentioned in the previous
chapter, lattice regularisation effectively provides a momentum cut-off thus avoiding infini-
ties. Upon removing the cut-off, i.e. taking the lattice spacing a→ 0 (cut-off to infinity),
we need to renormalise our operators to obtain finite results for the physical quantities.
For a renormalised operator in some scheme S, we can write

Oren
S,µ = ZSO(µ, β)O . (4.25)

The renormalisation or scaling factor is called ZS and dependent on the regularisation
scheme S (of the physical matrix elements) and the renormalisation scale µ. It also
depends on the coupling constant used in the gauge action.

This can be achieved by lattice perturbation theory [48] as well as non-perturbative
calculations. For the latter different approaches exist. The Alpha-Collaboration uses the
Schrödinger functional method to calculate renormalisation constants (for a review see e.g.
[49]). We on the other hand make use of a non-perturbative procedure [50] that is along
the lines of the perturbation method defined by the MOM scheme and that was proposed
by Martinelli et al. [51]. It works in a MOM-like scheme, the so-called RI′-MOM scheme.
To give a short outline of this method, we start with the non-amputated quark Greens
function with an operator O inserted with zero momentum

Gα,α′(p) =
1

V

∑

x,y,z

e−ip(x−y)
〈

ψ(f)
α (x)O(z) ψ̄

(f)
α′ (y)

〉

(4.26)

and the quark propagator in momentum space, D−1
α,α′(p), given by the Fourier transform

of (3.18). The vertex or amputated Greens function is then obtained from

Γ(p) = D(p)G(p)D(p) . (4.27)

With the renormalised vertex function Γren = Z−1
q ZRI′-MOM

O Γ and a renormalisation con-
dition imposed as

1

12
Tr
(

Γren(p)Γ−1
Born(p)

)

= 1 (4.28)

we can fix the renormalisation constant ZRI′-MOM
O at p2 = µ2 where µ is the renormalisation

scale. Since the trace is in Dirac and colour space, the factor 1/12 ensures the correct
overall normalisation. The Born term ΓBorn in the vertex function is also computed on
the lattice. The last ingredient is Zq, the quark field renormalisation constant. This can
be obtained from the quark propagator directly,

Zq =
Tr(−i

∑

α γα sin(apα)aD(p′))

12
∑

α sin2(apα)

∣

∣

∣

∣

p2=µ2

. (4.29)

The scale µ of the renormalisation constants has to satisfy 1/L2 ≪ Λ2
QCD ≪ mu2 ≪ 1/a2

where L is the extent of the lattice. This condition has to be checked in the calculation,
e.g. by identifying a plateau value of Z with respect to the momentum.
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4.3 Three-Point Functions

A comparison with phenomenological values finally requires the scheme S to be one of
the continuum renormalisation schemes, e.g. MS. This, together with a possible change
in scale, is achieved by an additional multiplicative factor

OS′,µ′ = ZS
′,S
O (µ′, µ)OS,µ , (4.30)

which can be calculated perturbatively [50].

4.3 Three-Point Functions

Our goal is to calculate moments of pion GPDs. So the actual matrix elements we are
interested in are three-point functions with an additional current between two pion states.
Their general form is

〈

π(p′)
∣

∣O
∣

∣π(p)
〉

continuum
∼
〈

ηπ(p
′, t)O(τ) η†π(p, t

′)
〉

lattice
, (4.31)

where we have the pion interpolators as before but now with possibly distinct momenta,
and the local operators O(τ) arising in the Mellin moments, Sec. 2.5. The operators are
inserted at a time τ between pion source and sink at t′ and t, respectively. They were
discussed in the previous section and we now write them down in a general form as [41]

O(τ) =
∑

x,z,z′

eiqxFf,f ′ ψ̄
(f)
α,c(z)J

c,c′

α,α′(x, z, z
′)ψ

(f ′)
α′,c′(z

′) . (4.32)

The current J represents the Dirac, flavour and derivative structure of the operators
(it is diagonal in colour and we sum over colour indices c, c′). The coordinate where
the interaction takes place is labelled x with x4 = τ , while z, z′ indicate the discretised
derivative. The Fourier transform imposes the momentum transfer caused by the current
in form of the 3-momentum q. We again make use of translational invariance and put the
pion source at 0; we also fix t′ = 0 for simplicity. Inserting the pion interpolators (for a
π+) and this general operator into (4.31) we then get

〈

ηπ(p
′, t)O(τ) η†π(p, t′)

〉

=
∑

y

∑

x,z,z′

e−ip′y eiqxFf,f ′

×
〈

ψ̄(d)
α,a(y) Γα,α′ ψ

(u)
α′,a(y) ψ̄

(f)
β,b (z)J

b,b′

β,β′(x, z, z
′)ψ

(f ′)
β′,b′(z

′) ψ̄(u)
γ,c (0) Γ′γ,γ′ ψ

(d)
γ′,c(0)

〉

G
(4.33)

with y4 = t and x4 = τ . Determining the Wick contractions we find that only diagonal
elements of F can contribute and we arrive at

−
∑

y

∑

x,z,z′

e−ip′y eiqx
〈

F11 Tr
[

D−1(0, y) ΓD−1(y, z)J(x, z, z′)D−1(z′, 0) Γ′
]

+F22 Tr
[

D−1(z′, y) ΓD−1(y, 0) Γ′D−1(0, z)J(x, z, z′)
]

−(F11 + F22) Tr
[

D−1(0, y)ΓD−1(y, 0)Γ′
]

Tr
[

D−1(z′, z)J(x, z, z′)
]

〉

G
.

(4.34)

The last contribution to the three-point function is a fermion-line disconnected graph, as
depicted in Fig. 4.1. Since we sum over z, z′ this would require all-to-all propagators
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Figure 4.1 | Different contributions to the three-point function Eq. (4.34): a | and b | The
two connected graphs where u and d flavours are probed. c | The disconnected contribu-
tion.

which is computationally prohibitive (inversions between z (z′) and y will be discussed
later, Sec. 4.3.1). Note that we could choose F11 + F22 = 0 to remove this part of the
Wick contractions, however, before we comment on these disconnected contributions, let
us first focus on the . . .

Connected Contributions

The two fermion-line connected terms in (4.34) can be related using γ5-hermiticity for the
propagators and [41]

γ5Γγ5 = sΓ† , γ5Γ
′γ5 = s′Γ′† , γ5J(x, z, z′)γ5 = sjJ(x, z′, z)† , (4.35)

where J has to be symmetrised in its space-time indices and s, s′, sj = ±1. The connected
part of the three-point function then is

−
∑

y

∑

x

e−ip′y eiqx (F11M(x, y) + ss′sj F22M
∗(x, y)) , (4.36)

with the abbreviation

M(x, y) =
∑

z,z′

〈

Tr
[

D−1(0, y) ΓD−1(y, z)J(x, z, z′)D−1(z′, 0) Γ′
]

〉

G
. (4.37)

Note that with Γ′ = γ4Γ
†γ4 we have s = s′ so we will drop their product. Still following

[41] we now use the charge conjugation matrix, defined by

CγµC
−1 = −γT

µ , Cγ5C
−1 = γT

5 (4.38)

and similar to the above introduce [41]

CD−1(x, y;U)C−1 = (D−1)T(y, z;U∗) , (4.39)

CΓC−1 = cΓT , CΓ′C−1 = c′Γ′T (4.40)

CJ(x, z, z′;U)C−1 = cjJ
T(x, z′, z;U∗) (4.41)

where we explicitly denoted the dependence on the gauge links and the transpose acts on
Dirac and colour space. Like before we have c, c′, cj = ±1 and c = c′. With γ5-hermiticity
we then find

M∗(x, y) = cjsjM(x, y) . (4.42)

38



4.3 Three-Point Functions

Putting everything together, the connected contribution to the three-point function then
is

−
∑

x,y

e−ip′y+iqx (F11 + cjF22)M(x, y) . (4.43)

Note that cj = ±1 imposes constraints on F11 and F22 in order to have a non-vanishing
contribution (see below, Eq. (4.47)).

We now look at the Hilbert space decomposition of the three-point function Eq. (4.31).
Here, the transfer matrix distinguishes two cases since we have to obey time ordering:

C3pt(t, τ,p
′, q) =

〈

ηπ(p
′, t)O(τ) η†π(p, 0)

〉

=

{

∑

i

〈

i
∣

∣ ηπ(p
′, 0) e−(t−τ)HO(0) e−τH η†π(p, 0) e−(T−t)H

∣

∣i
〉

for 0 ≤ τ ≤ t
∑

i

〈

i
∣

∣O(0) e−(τ−t)H ηπ(p
′, 0) e−tH η†π(p, 0) e−(T−τ)H

∣

∣i
〉

for 0 ≤ t ≤ τ . (4.44)

Following the steps applied to the two-point functions, Eq. (4.44) can be written as

C3pt(t, τ,p
′, q) =

〈

π(p′)
∣

∣O(0)
∣

∣π(p)
〉 〈

0
∣

∣ ηπ(p
′)
∣

∣π(p′)
〉 〈

π(p)
∣

∣ η†π(p)
∣

∣0
〉

×
(

e−(t−τ)Eπ(p′)−τEπ(p) + (−1)n4 e−(τ−t)Eπ(p′)−(T−τ)Eπ(p)
)

+ . . . , (4.45)

where n4 counts the number of temporal components of the operator in the matrix element.
This sign factor stems from the different time-ordering which makes charge conjugation
and time-reversal of the matrix element necessary. In our simulation we can however pick
one contribution by restricting our signal to either of the two possible time-orderings. For
a large enough separation of τ from the sink, the signal from the opposite side can be
neglected as it is exponentially suppressed. So for 0 ≤ τ ≤ t we neglect the signal of the
backward propagating pion that would correspond to the time ordering 0 ≤ t ≤ τ (and
vice versa). The ellipsis in Eq. (4.45) refers to contributions from excited states. These
are suppressed for t−τ ≫ 1/(E′π−Eπ) and τ ≫ 1/(E′π−Eπ) where Eπ (E′π) is the ground
(excited) state energy.

Disconnected Contributions

We now return to the disconnected contributions to the three-point function, i.e. the last
line in Eq. (4.34)

Gdisc(U) = −(F11 + F22) Tr
[

D−1(0, y) ΓD−1(y, 0) Γ′
]

Tr
[

D−1(z′, z)J(x, z, z′)
]

. (4.46)

Here we closely follow an argument given in [52]. It is based on the behaviour of the
propagator, our Dirac structure of the pion interpolators, and the operator used in the trace
when applying the charge conjugation matrix C. We already used this at the beginning
of this section, Eqs. (4.39)–(4.41). Concerning the Dirac structure Γ, Γ′ we found c = c′.
The sign of cj is found to be

cj = (−1)n+1 , (4.47)

where n is the number of derivatives of the operator. One factor here originates from
the charge conjugation matrix acting on the γµ (or σµν) and one minus per derivative.
Although the charge conjugation matrix does not act on the lattice covariant derivative
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directly, using complex conjugated gauge links causes an interchange of the spatial coor-
dinates (also the transpose in Dirac space) and introduces a minus sign.2

From Eq. (4.43) we now see that the flavour matrix F must not be traceless for an
odd number of derivatives. For an even number of derivatives we can consider traceless
isovector combinations of the current. In this case, Eq. (4.46) would vanish identically,
hence preventing disconnected contributions already on the level of Wick contractions.
This does, however, not suffice for the electromagnetic vector current, where we need
F11 = 2/3 and F22 = −1/3. Picking up the argument of [52] again, we find for the
disconnected part of the three-point function

Gdisc(U) = −Gdisc(U∗) , (4.48)

after the application of Eqs. (4.39)–(4.41) to Eq. (4.46). Since the gauge action (3.27) is
invariant under U → U∗ these configurations have equal weight. We can thus write

〈

Gdisc(U)
〉

G
=

1

2

〈

Gdisc(U) +Gdisc(U∗)
〉

G
(4.49)

and thus find that the disconnected graphs vanish when averaged over all ensembles

〈

Gdisc(U)
〉

G
= 0 , for even n . (4.50)

Matrix elements with an even number of derivatives thus have no disconnected contribu-
tions. Matrix elements with an odd number of derivatives suffer from contributions by
fermion-line disconnected graphs. We will neglect these due to the computational expense.

4.3.1 Sequential Source Technique

We just showed that some of the disconnected contributions to the three-point function
drop out in the ensemble average. Furthermore, we neglect the remaining disconnected
parts because it is computationally too demanding to calculate the necessary all-to-all
propagators. However, a similar (connected) quark propagator still appears in the fermion
contractions that we put on the lattice. Equation (4.37) contains D−1(y, z) which would
also require inversions from all lattice points to all other lattice points since we sum over
y and z. This can be simplified using the sequential source technique (see [52, 53] and
references therein). It is based on the fact that the necessary inversions to find the quark
propagator by solving Dv = b can be performed not only on a point-like (delta-function)
source b, but on any linear combination of quark propagators D−1 as source. With this
technique, any n-point function can be calculated by a sequence of at most n−1 inversions.
The intermediate sources have to be fixed linear combinations of space-time, Dirac and
colour indices.

The three-point function we want to calculate is

∑

x,z,z′

e+iqx Tr
[

σT(z)J(x, z, z′) D−1(z′, 0)Γ′γ5

]

, (4.51)

with σT(z) =
∑

y

e−ip′y (D−1)†(y, 0) γ5ΓD−1(y, z) . (4.52)

2The operators need to be symmetrised appropriately.
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(y, t) (0, 0)

J(x, τ)

Figure 4.2 | This diagram shows an example of the propagator obtained by the sequential
source technique as a solid line. Combined with the operator insertion (⊗) and a standard
quark propagator (dotted line) we then obtain the three-point function.

Multiplying the second line from the right with the Dirac matrix D(z, x′) and summing
over z leads to

∑

z

σT(z)D(z, x′) =
∑

z,y

e−ip′y (D−1)†(y, 0) γ5ΓD−1(y, z)D(z, x′)

= e−ip′x′

(D−1)†(x′, 0) γ5Γ . (4.53)

Then, taking the Hermitian conjugate and using γ5-hermiticity of the Dirac matrix, we
find suitable source for a second inversion

∑

z

M(x′, z) γ5 σ
∗(z) = eip

′x′

γ5Γ
†γ5 D−1(x′, 0) (4.54)

We can thus solve for γ5 σ
∗(z) by performing a sequential inversion with a source b given

by the r.h.s. of Eq. (4.54). The quark propagator contained in the source is hereby Fourier
transformed and acts as a momentum source, hence requiring only one subsequent inver-
sion to obtain the three-point function. The sequential propagator is depicted in Fig. 4.2.

Note that this second inversion has to be repeated every time the quantum numbers on
our sink position (y, t) (or the very sink itself) change, i.e. for different momenta p′. Even
though this is a slight disadvantage because we need to vary the momenta, we do benefit
because we have not fixed the operator. So we have more freedom in choosing a rather
large set of operators and transferred momenta q, both suiting our study. This can be
contrasted with another possible sequential source,‘going through the operator’ instead of
the sink. This choice would then fix the operator, its Dirac and colour structure, and its
momentum but on the other hand leave the quantum numbers of the sink free to choose.

4.4 Extracting Moments of GPDs – Building Ratios

We have just explained the three-point functions and how we are going to include them
in our simulation. What we have neglected up to now is the different normalisation of the
pion states on the lattice and in the continuum,

〈

π(p)|π(p′)
〉

lat
= δp,p′ ,

〈

π(p)|π(p′)
〉

cont
= 2Eπ(p)(2π)3δ(p− p′) . (4.55)
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The effect is that we have to multiply the two- and three-point functions with an additional,
relativistic factor for physical matrix elements:

C2pt(t, t
′,p)→ C2pt(t, t

′,p)

2Eπ(p)
, (4.56)

C3pt(t, τ,p
′,p)→ C3pt(t, τ,p

′,p)

4Eπ(p)Eπ(p′)
. (4.57)

From the formulation in Hilbert space, Eq. (4.45), we read off the time behaviour and
the overlap factors of the pion interpolators and the pion states. Of course we can now
try and fit the exponential decay to the three-point function, in addition extracting the
overlap from the pion two-point correlators, Eq. (4.9) and finally isolate the matrix element
〈

π(p′)
∣

∣O
∣

∣π(p)
〉

. Yet it has proved to be more reliable to build ratios of the lattice three-
and two-point functions to eliminate as many of these factors as possible. Using the raw
lattice data one can hope that fluctuations between the different configurations cancel each
other, enhancing the signal. Since on the one hand we aim for a large set of momentum
transfers q for our off-forward matrix elements while on the other hand we want to limit
the number of sink momenta p′ (these would require an additional second inversion each),
we will in general have |p| 6= |p′|. We thus adopt a ratio that was already used in a similar
investigation for nucleons as initial and final hadronic states [54]. This ratio has the form

R(τ) =
C3pt(τ,p

′,p)

C2pt(t,p′)

[

C2pt(t− τ,p)C2pt(τ,p
′)C2pt(t,p

′)

C2pt(t− τ,p′)C2pt(τ,p)C2pt(t,p)

]1
2

. (4.58)

In the case where |p| = |p′| the square root can be dropped and the ratio (4.58) simplifies
to the commonly used ratio with just one two-point function. For the ratio we have put the
source at 0 and dropped the corresponding argument t′ from the two-point functions. The
operator insertion remains at τ and the time slice of the sink is labelled t. Furthermore,
we will in the remainder fix the sink position of the two- and three-point functions at
t = T/2, in the middle of the lattice. Doing this we obtain a symmetric signal with respect
to forward and backward propagating pions (modulo the possible sign factor (−1)n4 , c.f.
Eq. (4.45)).

Inserting into the ratio the two- and three-point functions, Eqs. (4.9) and (4.45), one
can show that most of the exponentials containing the time dependence and all of the
overlap factors such as

〈

0
∣

∣ ηπ(p
′)
∣

∣π(p′)
〉

vanish. We arrive at

R(τ) =

〈

π(p′)
∣

∣O
∣

∣π(p)
〉

4
√

Eπ(p′)Eπ(p)

[

(1 + e−2τEπ(p))(1 + e−2(T−2τ)Eπ(p′))

(1 + e−2τEπ(p′))(1 + e−2(T−2τ)Eπ(p))

]1
2

. (4.59)

The time dependence is still not very obvious. This is because we cannot neglect the
full time dependence of the two-point function (we have to include both exponentials, the
forward and the backward propagating pion), unlike for the three-point function where
we could limit ourselves to the signal on either side of the sink. This is also in contrast
to the nucleon case where it is possible to project onto a state with definite parity, also
simplifying the time-behaviour of the two-point function to a single exponential, see e.g.
[55]. So we define δ ≡ τ − T/4 and expand the ratio and its exponentials in Eq. (4.58)
around δ = 0. This leads to

R(τ) = C(p,p′)
[

1 + 2δ cδ(p,p
′) + 2δ2 c2δ(p,p

′) +O(δ3)
]

, (4.60)
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where

cδ(p,p
′) =

Eπ(p
′)

1 + eEπ(p)T/2
− Eπ(p)

1 + eEπ(p′)T/2
,

C(p,p′) =

〈

π(p′)
∣

∣O
∣

∣π(p)
〉

4
√

Eπ(p′)Eπ(p)
. (4.61)

Eq. (4.60) shows that we expect a plateau within the ratio only for |p| = |p′|. All other
cases exhibit a pseudo-plateau. That is, we obtain an approximately antisymmetric signal
around the time slice T/4, the central points of the l.h.s. of the ratio with respect to the
sink. Note again that the nucleon case is somewhat simpler and exhibits a plateau for
all momenta straight away. The leading symmetric term in (4.60) is small for our pion
masses and lattice momenta; for lattice spacing a we have c2δ ∼ 10−4a−2 and δ2/a2<∼O(10)
for our setup. When we then average R(τ) in a symmetric interval around T/4, also
the antisymmetric piece proportional to cδ in (4.60) drops out and we can extract the
expectation value of the operator. The same is true for the r.h.s. of our signal. The
central point of the pseudo-plateau here is 3T/4. Since the signal is independent of the
time ordering (up to the sign factor) we use both pseudo-plateaus to indirectly increase
the statistics. Hence we average over two intervals around the central points of both sides.
Example plots of this ratio with its (pseudo-)plateau will be shown with the results in
Chapter 6.

The factors of the pion energy Eπ(p) that appear in the relativistic normalisation in
Eq. (4.61) are obtained from the continuum dispersion relation and the lattice pion masses.
There are several reasons for this: first of all the fitting procedure is not complicated by
having to fit pion energies directly, which becomes more and more difficult due to the
increase in noise with higher momenta. In addition, we find that the continuum dispersion
relation holds well for our lattices, so we do not need a discretised version thereof. In the
end, we also match our lattice ratios to continuum form factors and their kinematic pre-
factors, Eqs. (2.23a) and (2.23b), where we can associate the normalisation with. This
could give rise to more profound discretisation errors without remedy so far. However,
there are also no indications for an additional source of error.

A potential problem with the ratio (4.58) remains: it contains pion two-point functions
evaluated at the sink. Due to the exponential decay of the pion two-point function,
Eq. (4.8), the signal at the sink can be poor for non-vanishing momenta. For finite
statistics the two-point function can then take negative values, which prevents one from
evaluating the square root. We try to overcome this difficulty by shifting the two-point
functions C2pt(t,p) that enter with t = T/2. Using the identity

C2pt(T/2,p) =
C2pt(T/2− tshift,p)

cosh(Eπ(p)T/2)
(4.62)

we will shift by tshift = 6, which significantly reduces the number of negative two-point
functions. Nevertheless there will still occur momentum transfers q for which the argument
of the square root in the ratio (4.58) is negative. Those values are discarded when we
evaluate the expectation value of the operator.

Finally, the values for the matrix elements are then extracted from the data making use
of all possible operator and momentum combinations. This means we are neither limited
to the case where |p| = |p′| and a simpler ratio would suffice as mentioned above. Nor do
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we have to use a specific component of, say the vector operator, which would then simplify
the parametrisation. We perform a matching of the operator expectation value and the
corresponding parametrisation in generalised form factors (c.f. Sec. 2.6.2), i.e. the ratio
R(τ) is computed for all possible momenta and space-time indices and then compared to
the GFFs, [55]. In general, this leads to an over-determined set of equations that is solved
for the GFFs, making the extraction of the expectation values more reliable.

4.5 A Note on Scales

So far we have avoided another technical detail of lattice calculations: setting the scale
of physical quantities. As mentioned in the last chapter, the lattice spacing a is not
a parameter of lattice QCD, it has to be determined from the simulation. The only
parameters are the quark masses (determined by κ) and the gauge coupling (determined
by β). In a dynamical simulation, the lattice spacing depends on both these parameters.

We need the lattice spacing because most quantities measured on the lattice are in
lattice units and we need to convert them to physical values. For example, the physical
spatial volume (which is important when discussing finite size effects) is a3Vs and hadron
energies are extracted as amH.

To set the scale, one resorts to observables that can be measured very accurately on the
lattice. This can for example be the ρ-meson mass (for quenched calculations) or, as in our
case, the static potential between quark and anti-quark. The ratio of the lattice observable
to the physical value then yields the lattice spacing a in fm. The static potential in the
continuum can phenomenologically be written as

V (r) = C −A/r + σr , (4.63)

where the r is the separation between the two quarks, and C, A and σ (the string tension)
are parameters. The reference scale then is the Sommer parameter r0 defined in terms of
the force F (r) between the quarks [56]

r20F (r0) = 1.65 . (4.64)

The QCDSF/UKQCD collaborations calculated the values r0/a for each of the lattices,
which we use to convert to physical values. The problematic part of setting the scale
with the Sommer parameter r0 is that there is no precise phenomenological value, since
it is connected to measurable quantities only via potential models. A common, however
debated choice is to use r0 = 0.5 fm. In this work, we chose the value 0.467 fm obtained
from comparing the nucleon mass at different pion masses and lattice volumes to analytic
predictions from chiral perturbation theory [57].3 Comparable values for the Sommer
parameter were also found in [58]. Recent investigations with additional input from the
pion decay constant indicate that even smaller values are possible [59].

3Chiral perturbation theory is an effective field theory with pions as degrees of freedom. The perturbative
expansion is then done in terms of the pion’s energy. So it is - to some extent - possible to vary the
pion mass and match the calculated quantities to lattice data.
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This chapter begins the discussion of our results by a brief look at the pion two-point
function. The lattice observable and its continuum form was introduced in Section 4.1.
This is necessary to obtain the lattice pion mass and also to eliminate pion energies and
overlap factors within the ratio for the three-point function, as explained in Section 4.4.
We give the two pion interpolating fields used in this work and explain how the energy of
the pion can be extracted. We then look at the dispersion relation which already provides
hints about the quality of the pion currents.

Since the pion mass is a mandatory observable for almost any lattice simulation – after
all one is interested in an extrapolation in mπ – it is routinely determined within the
QCDSF/UKQCD collaboration. We quote these values in the appendix and give here
mainly details important for this work. We will however neither discuss the effect of
smearing nor in great length the results for the different lattices. This chapter is rather
meant as a first example of the application of lattice techniques.

5.1 Interpolating Fields

In the previous chapter we explained the lattice techniques in general. The pion interpo-
lating fields ηπ and η†π , Eq. (4.3a/b), used for the two-point functions in Eq. (4.1) were
introduced but the explicit Dirac structure was not given. We decided to use more than
one pion field because the different overlap with the desired pion (ground) state should
result in a slightly different quality of the final signal. So all our calculations were done
with two commonly used pion fields: the pseudo-scalar current and the fourth component
of the axial vector current. For a given momentum p they read1

ηπ(t,p) =
1√
Vs

∑

x

e−ipx d̄(x) Γu(x) , Γ = γ5 or γ4γ5 [4.3a]

with u(x), d(x) the up- and down-quark fields and x4 = t. The creation operator is chosen
accordingly. Both interpolating fields have the desired quantum numbers of the physical
pion (IG(JPC) = 1−(0−+)). In general we apply smearing as discussed in Section 4.1.1 to
increase the overlap with the pion ground state.

5.2 Lattice Pion Mass

Extracting the mass of the pion states that have overlap with the vacuum is straightfor-
ward. The decomposition of the correlation function into states with definite energy,
〈

ηπ(p, t)η
†
π(p, t

′)
〉

= e−Eπ(p)T/2
∣

∣

〈

0
∣

∣ ηπ(p)
∣

∣π(p)
〉∣

∣

2
2 cosh

[(

T/2−
(

t− t′
))

Eπ(p)
]

+ . . .

[4.9]

1We again use a π
+ here.
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Figure 5.1 | The l.h.s. shows the raw lattice signal for the axial-vector pion current for
lattice #6 (c.f. Table A.1); on the r.h.s. is the corresponding effective mass. Both are for
vanishing momentum p = 0. The solid lines indicate the fit to the two-point function
within the indicated fit range.

displays what time behaviour to expect from the lattice signal and provides a fit ansatz.
Note that we put our source at t′ = 0. The fit parameters are the energy Eπ(p) of the

pion state and the overlap of this state with the vacuum
∣

∣

〈

0
∣

∣ ηπ(p)
∣

∣π(p)
〉∣

∣

2
. The fitting is

done using a correlated χ2 minimisation; errors are obtained with the bootstrap method.

For zero momentum, the energy is identical with the lattice pion mass. The ellipsis
in Eq. (4.9) indicates the neglected excited states. Due to their higher mass, the corre-
sponding exponentials die out more quickly. Hence a properly chosen fit range that does
not start too close to the source of the two-point function only picks up the ground state.
This can be checked and a rough idea of the fit range can be determined by considering
effective mass plots. The effective mass Meff is given by

Meff(t+ 1/2) = log

∣

∣

∣

∣

C2pt(t+ 1)

C2pt(t)

∣

∣

∣

∣

. (5.1)

If only a single state is present the effective mass should have a plateau if either of the
exponentials dominate, i.e. the signal of the forward propagating pion for t < T/2 or the
backward propagating pion for t > T/2. Around the T/2 the decay of both signals from
either side is strongest and hard to distinguish from noise. This is also the region where
the dominating signal changes and a cross-over from one plateau to the other appears.
Deviations from a plateau close to the source on the other hand indicate excited states.
As an example the data obtained from the lattice and the corresponding effective mass
plot is shown for one lattice in Fig. 5.1. For this lattice the excited states are clearly absent
for 4<∼ t<∼ 44. It is obvious from this figure and the functional form of Eq. (4.8) that the
energy can approximately be read off fromMeff(t) for suitable time slices. Although having
less parameters, a constant fit to the plateau is disfavoured over the ansatz in Eq. (4.8).
The latter can be done for a symmetric fit range also including the time slices between
the two plateaus and hence use much more data points. Such fits are indicated in Fig. 5.1
within the used fit range. The fit range is chosen to be as large as possible while having
a stable fit upon changing the fit range. The pion masses for our lattices are given in
Table A.1.
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Figure 5.2 | Effective mass plots for different momenta along with fits to the lattice data
for one lattice #6. We used the axial-vector pion source for these plots. The momenta
are (top to bottom on the l.h.s.): (0, 0, 0), (0, 0, 1), (0, 1, 1), and (1, 1, 1)

5.3 Dispersion Relation for the Pion

While the previous section focused on the pion mass mπ by looking at two-point functions
with zero momentum, we will now take a look at the pion energies Eπ(p 6= 0). This is
done to justify the use of the continuum dispersion relation,

E2
π = m2

π + p2 , (5.2)

to calculate the energies for the relativistic pre-factor in Eq. (4.61). Instead of the contin-
uum dispersion relation, the pion energies could also follow a lattice dispersion relation.
The latter should reflect discretisation errors and is obtained from a bosonic action. For
this, a discretised derivative with nearest neighbour interaction is used and the energy of
the particles is calculated. One possible form then is (see e.g. [60])

sinh2

(

aEπ
2

)

= sinh2
(amπ

2

)

+
3
∑

i=1

sin2
(api

2

)

, (5.3)

where we have included the lattice spacing a explicitly. Note that the lattice dispersion
relation has the correct continuum limit for a −→ 0 and that both versions, Eqs. (5.2)
and (5.3), are equal in the limit of vanishing momenta. Correspondingly the difference
between the two is big for large momenta only.

The pion energy, Eπ(p 6= 0), is extracted from the lattice data performing fits to the
cosh-ansatz as explained above. We have a number of momenta accessible and average
over momenta that have the same magnitude but different directions. In units of 2π/L we
have

p = (0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1),

(2, 0, 0), (2, 1, 1), (2, 2, 1), · · ·

while the ellipsis stands for all possible permutations w.r.t. the components. Results
of such fits are shown within effective mass plots in Fig. 5.2. This plot illustrates the
increasing noise in the middle of the lattice and also illustrates that fitting to the effective
mass would not lead to good results anymore. However, as a consequence of the worsened
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Figure 5.3 | Pion energies squared E2
π(p) for two lattices [#6 (l.h.s.) #17 (r.h.s., smaller

a)] with the two dispersion relations, Eqs. (5.2) and (5.3). Shown are results for both
of our pion interpolating fields (top: axial current, bottom: pseudo-scalar current). The
momenta are indicated by one of their possible permutations.

signal we were not able to extract a stable signal for the highest momenta. Here the signal
literally drowns in noise. We want to stress that these fits were only performed to test the
dispersion relation. Neither our simulation nor the analysis was particularly focused in
obtaining these energies. While we do need the two-point functions for our ratios of three-
point functions, we do not need to fit them. To some extent, the noise of the two-point
functions for p 6= 0 should average out in our ratios.

To check for a continuum like behaviour, the square of the energy for a sample of lattices
is plotted against the momentum squared |p|2 in Fig. 5.3. Included are both dispersion
relations and both pion interpolating fields. The lattices are chosen to have varying lattice
spacing a since a bigger discrepancy between the dispersion relations could be expected for
larger lattice spacing. Still, we see no indication that a lattice dispersion relation is better
fulfilled than the continuum one. This can be explained by our lattice action. We do not
use a näıve discretisation, but instead the Clover improved version discussed in Section 3.5.
Since the action is especially selected, to get rid of O(a) terms, the continuum is restored
much quicker, which also affects the dispersion relation. We conclude from Fig. 5.3 that the
continuum dispersion relation can be used for estimating the energies for the relativistic
pre-factor of Eq. (4.61). This is certainly true within the statistical significance of the
data. The conclusion might change when much higher momenta are desired, c.f. [61].

Another observation during tests of the dispersion relation is a difference in the quality
of the signal of the pseudo-scalar and the axial pion source. Looking at the raw lattice
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Figure 5.4 | The l.h.s. shows lattice #6 for p = (0, 0, 0) where the pseudo-scalar interpola-
tor has larger overlap. The r.h.s. is for p = (1, 1, 1) with comparable overlap and changed
signal quality.

two-point function, the pseudo-scalar has a better signal and significantly larger overlap
for vanishing momentum. As the momentum p is increased, the axial current seems to
provide the better signal, see Fig. 5.4. This tendency is reflected in the ability to better
extract the pion energies for larger momenta. This is in line with [61] where the authors
draw similar conclusions for the overlap of the pion currents with the vacuum and their
errors. The better signal for the axial-vector pion current will find its continuation in the
results from the three-point functions.
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6 Pion Form Factor

We now turn to the results from our three-point functions. One observable here is the
pion form factor, given by

〈

π(p′)
∣

∣Vµ
∣

∣π(p)
〉

= (p′µ + pµ)Fπ(Q
2) . [1.7]

In the context of this work, the form factor Fπ is equivalent to the lowest moment of
the vector GPD Hπ, Eq. (2.5a). It was introduced in Sections 1.2 and 2.6, and describes
the distribution of the electric charge of the pion which has already been the subject of
several lattice studies. We improve upon those in several points. First of all, like the
pioneering work by Martinelli et al. and Draper et al. [52, 62] most of the previous results
[63, 64, 65, 66, 67] have been obtained in the quenched approximation. State-of-the art
simulations employ dynamical fermions [61, 68, 69]. Compared to those, our simulation is
done with more lattices and hence has a much larger range of parameters. This enables
us to investigate the necessary limits to compare to the physical value.

We use the local vector current Vµ = 2
3 ūγµu − 1

3 d̄γµd for the lattice calculation, corre-
sponding to Oµ in Eq. (4.17a) with an appropriate flavour matrix. From Eq. (4.43) we
know that one flavour is enough to obtain the matrix element. So in practice ūγµu was
used as inserted current.

The form factor is very well established by the experiments at DESY, CERN and JLab
[70, 71, 72]. We will compare our results to the experimental data at the end of this chapter.
Before we are able to do that, we have to discuss its dependence on the momentum transfer
and investigate lattice artifacts. The final step then is the pertinent extrapolation in the
lattice pion mass. While most of the following discussion will be for a parameter describing
the momentum dependence of the form factor, we will also relate that to the pion charge
radius,

〈

r2
〉

, and provide results for that as well.
Parts of the material presented in this chapter are published in [73].

6.1 Plateaus from Lattice Data

In a similar fashion as for the two-point functions in the previous chapter, we again need
some kind of plateau within the lattice data we can fit to. The fitting procedure is sim-
plified by calculating a ratio of three- and two-point functions as discussed in Section 4.4.
We recall the ratio here

R(τ) =
C3pt(τ,p

′,p)

C2pt(t,p′)

[

C2pt(t− τ,p)C2pt(τ,p
′)C2pt(t,p

′)

C2pt(t− τ,p′)C2pt(τ,p)C2pt(t,p)

]1
2

. [4.58]

with its approximate relation

R(τ) =

〈

π(p′)
∣

∣Vµ
∣

∣π(p)
〉

4
√

Eπ(p′)Eπ(p)

[

1 + 2(τ − T/4)

(

Eπ(p
′)

1 + eEπ(p)T/2
− Eπ(p)

1 + eEπ(p′)T/2

)

+ . . .

]

,

[4.60]+[4.61]
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Figure 6.1 | Plateaus from lattice data in the special case of |p| = |p′|. The l.h.s. (r.h.s.)
is representative for light (heavy) pions [lattices #6 and #16]. From top to bottom for
momentum transfer |q| = 0,

√
2, 2. The region where we extract our signal is indicated by

the dashed lines. In between our signal is approximately constant in time. Thus we can
ignore excited states.

that shows the pseudo-plateau used for our fits. Our simulation is done fixing the mo-
mentum transfer q and the final momentum p′, as shown in Sec. 4.3. We chose our lattice
momenta specifically for our set-up: since the second inversion of the sequential source
technique (see Sec. 4.3.1) has to be done for every new set of quantum numbers at the sink,
the number of values for the final state momentum is limited to three. The momentum
transfer however does not require a big computational effort and we thus have a total of
17 different momenta q. In units of 2π/L we have

p′= (0, 0, 0), (0, 1, 0), (0, 0, 1),

q = (0, 0, 0), (−1, 0, 0), (−1,−1, 0), (−1,−1,−1),

(−2, 0, 0), (−2,−1,−1), (−2,−2,−1), · · · (6.1)

where the ellipsis again stands for all possible permutations w.r.t. the components. Out
of the 51 possible combinations, 17 survive which have a distinct momentum transfer
Q2 = (p′ − p)2. In general, (4.58) will not be constant in time. This is not related to
contributions from excited states as explained in Section 4.4. Excited states are omitted
in our equations because we assume that t− τ ≫ 1/(E′π −Eπ) and τ ≫ 1/(E′π −Eπ). To
avoid confusion and demonstrate that we are indeed not plagued by excited states, let us
start with the special case where the norm of the incoming and outgoing momentum is
identical, so where we have |p| = |p′|. In this case, the energies appearing in Eq. (4.58)
are identical as well and the time dependence of the ratio disappears. If we have ground
state pions only, we can then expect to find a plateau in our lattice data. This is shown for
some lattices in Fig. 6.1. The plots are for the fourth component of the vector current, two
pion masses and three momentum combinations (starting with the case where p = p′ at
the top). There are no deviations from a plateau in the indicated region we use to extract
the three-point function (c.f. Sec. 4.4). The signal is constant in time (certainly for lower
momenta and within the statistical errors) and we can safely ignore excited states. Note
that we have a fixed fit range as indicated and do not increase the range individually (for
p = p′ for example).

Let us now turn to the more general case where the norm of the momenta p and p′ can
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Figure 6.2 | This figure shows examples of the expected pseudo-plateaus, c.f. Sec. 4.4.
The l.h.s. is for lattice #6 with Q2 = 0.31GeV2, the r.h.s. is for lattice #16 and Q2 =
0.43GeV2.Indicated is again the range of time slices we use to extract our data.

be different. We already mentioned that we do not obtain a plateau from Eq. (4.60) in the
more general case. Instead, what we find are the pseudo-plateaus introduced and explained
in Sec. 4.4. Some examples are shown in Fig. 6.2, where the r.h.s. part of the signal is
multiplied with a minus sign if required, Eq. (4.45). The two adjacent time slices on either
side of t = T/4 for the l.h.s. and t = 3T/4 for the r.h.s. are then averaged to obtain the
values used for the three-point function in Eq. (1.7). This region is again indicated by
the vertical lines in the figure. We increase the quality of the signal by combining both
sides to one value. This is equivalent to increasing the statistics of our data. We use the
Jackknife procedure to obtain errors during our fits to the form factor.

6.2 Momentum Dependence

In order to properly extract the pion form factor, Fπ, we want to measure it for a large
range of momenta Q2. Since we will have at most 17 data points as mentioned in the
previous section, we need a function to interpolate between these points and describe
Fπ(Q

2). The finite size of our lattice with its periodic boundary condition limits the
possible momenta to a discretised set with a fixed minimum value, Eq. (3.35). Good
knowledge of the momentum dependence is hence especially important for the pion charge
radius since it is obtained from Fπ(Q

2) for Q2 −→ 0.

6.2.1 Monopole Ansatz

The form factor data of e.g. the nucleon is generally described by fitting to an n-pole
ansatz where n is a small integer. For the pion and its experimental data it is found that
a monopole form

Fπ(Q
2) =

Fπ(0)

1 +Q2/M2
(6.2)

with a monopole mass M describes the data best. Historically this was explained with a
model called vector meson dominance (VMD), see e.g. [74]. In this model an additional
cascade of exchange particles occurs between photon and pion where the dominating par-
ticle would be the ρ vector meson. This however corresponds to an effective theory and
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Figure 6.3 | Here we show the data for both pion interpolating fields with fits according to
(6.2) for lattice #16. Note the better signal for the axial-vector source. The fit parameters
are given in Tab. 6.1.

not full QCD. Using the ansatz (6.2) to fit the experimental data [70, 71, 72] with a Q2

up to 2.54GeV2 we find M = 0.714(4) GeV with a χ2/d.o.f. = 1.27. Comparing this to
a fit of the data with Q2 ≤ 0.253GeV2 from only [70] giving M = 0.719(5) GeV with
χ2/d.o.f. = 1.13, we conclude that the monopole form can be used to describe the data
for a very large (at least up to 2.5GeV2) range of momentum transfer and not only for
small momenta as suggested by the effective theory.

Before we can apply the fitting ansatz to our lattice data, we need to renormalise our
bare results to obtain a physical value, F ren

π = ZV F
bare
π . This was already mentioned in

Sec. 4.2.1. Since we know the exact value of Fπ(0) = 1 from gauge invariance, we can use
that as input and write

F lat,ren
π (Q2) =

F lat,bare
π (Q2)

F lat,bare
π (0)

, (6.3)

so that F lat,ren
π (0) = F phys

π (0) = 1. We have introduced a number of superscripts here to
distinguish the various quantities. In the following, we will mainly use ‘lat’ and ‘phys’ to
refer to lattice observables or their corresponding values at the physical point. To fit our
now renormalised lattice data, we will use

F lat
π (Q2) =

1

1 +Q2/M2
lat

, [6.2]

with lattice monopole mass Mlat as fit parameter. The results for all our lattices and
both pion interpolating fields (see Sec. 5.1) are given in Table 6.1. In general, the matrix
elements for pions using the axial-vector source with Γ = γ4γ5 display a slightly cleaner
signal with more data points in Q2, i.e. less contamination due to negative two-point
functions. An example for this and the monopole fit is given in Fig. 6.3. As shown in
Table 6.1, fitting the monopole form (6.2) to the form factor for both pion interpolators we
find that the χ2/d.o.f. differs on average by about a factor of two, ranging from 0.18 – 1.72
(0.18 – 4.37) for the interpolator with γ4γ5 (γ5). The fitted monopole masses for the Γ = γ5
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6.2 Momentum Dependence

Table 6.1 | Monopole masses Mlat obtained from fits to (6.2) for each of our lattices.
Values for the pseudo-scalar source and the fourth component of the axial-vector are
given separately. Errors are statistical only.

# mπ [GeV] Mps
lat [GeV] χ2/d.o.f. Mav

lat [GeV] χ2/d.o.f.

1 1.007(2) 1.118(21) 0.183 1.105(22) 0.183
2 0.833(3) 1.031(22) 0.943 0.997(21) 0.419
3 0.619(3) 0.974(29) 2.172 0.880(24) 0.507

4 0.987(2) 1.133(22) 0.565 1.080(20) 0.281
5 0.829(3) 1.032(20) 1.723 0.975(18) 0.651
6 0.597(1) 0.899(24) 0.563 0.870(22) 0.831
7 0.447(1) 0.974(36) 0.633 0.747(18) 1.600

8 1.011(3) 1.108(27) 0.834 1.066(25) 0.414

9 1.173(2) 1.189(22) 0.620 1.157(20) 0.503
10 0.929(2) 1.069(17) 1.361 1.051(15) 0.892
11 0.769(2) 0.985(13) 1.426 0.971(14) 0.676
12 0.592(2) 0.895(16) 1.279 0.854(15) 0.861
13 0.402(2) 0.872(44) 4.369 0.783(29) 1.596
14 0.336(2) 0.866(65) 0.278 0.708(43) 1.230

15 1.037(1) 1.113(11) 1.293 1.099(11) 1.718
16 0.842(2) 0.996(14) 1.198 0.981(14) 0.526
17 0.626(2) 0.869(20) 2.091 0.847(17) 0.654
18 0.444(3) 0.888(43) 1.171 0.690(18) 0.817

pions lie above the ones for Γ = γ4γ5 but are consistent. We made a similar observation
for the quality of the signal for the two-point functions in Sec. 5.3 which may explain the
difference in quality of the form factors extracted from the two pion currents. Because of
the better signal, we will mainly discuss results for the pions created with Γ = γ4γ5 in the
remainder of this work.

6.2.2 Effective Monopole Mass

Because the rest of the analysis relies on the fit ansatz in Eq. (6.2), we have to make sure
that it provides a good description of our data for all values of the momentum transfer Q2.
One possibility here is to assume that the monopole form is a valid functional form. Then
the leading behaviour of 1/Fπ is linear which can be checked [66]. We instead evaluate an
effective monopole mass for every value of Q2 by solving Eq. (6.2) for Mlat

Meff(Q2) = Q

[

1

F lat
π (Q2)

− 1

]−1/2

. (6.4)

Please note that while called the same, Meff is now very much different from the effective
masses for the two-point functions used in Ch. 5. We show such effective masses for
some of our lattices in Fig. 6.4. Here one can see that the effective monopole masses stay
constant within errors over a large range of Q2 and agree with the monopole masses given
in Table 6.1. This already indicates that the monopole is a good description for our data.
The validity of the fit over the whole Q2 range will further be tested in Sec. 6.5.
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Figure 6.4 | Effective monopole masses Meff(Q2) defined in (6.4), together with the cor-
responding monopole masses from Table 6.1 (dotted lines) for a sample of our lattices
from small to large pion masses (lattices number 9, 8, 4, 10, 2, 11, 17, and 12 from top
to bottom). For better visibility we omitted two points with very large errors in the plot,
but included them in the fit.

6.3 Operator Improvement

The improvement scheme that was used to reduce the discretisation errors of the fermion
action (Sec. 3.5) can also be applied to the vector operator Vµ used for our matrix element
(1.7). The O(a) improved local vector current has the form (ignoring O(a2) effects) [75]

V imp
µ (x) = ū(x)γµu(x) + cV a∂νTµν(x) ,

Tµν(x) = i ū(x)σµνu(x) .
(6.5)

The improvement would also add an additional multiplicative term to the renormalisation
constant ZV (proportional to the quark mass), c.f. Eq. (4.24). However, since we normalise
our raw lattice data, Eq. (6.3), we can neglect that and only need one improvement
coefficient cV . Instead of directly putting the improved current (6.5) on the lattice we
make use of our data acquired for the moments of the tensor GPD HTπ, Eq. (2.5b). For
that, we write (6.5) in form of two matrix elements

〈

π
∣

∣V imp
µ

∣

∣π
〉

=
〈

π
∣

∣Vµ
∣

∣π
〉

+ cV
〈

π
∣

∣ a∂νTµν
∣

∣π
〉

. (6.6)

The only complication now is that we do not have the tensor matrix elements for all
lattice sites. Due to the momentum projection in (4.33), we have summed over the spatial
components. The lattice derivative, however, is formulated in form of the difference of

56



6.3 Operator Improvement

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 0.5 1 1.5 2 2.5 3

|r i
m

p
(Q

2
)|

Q2[GeV2]
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(β = 5.20, κ = 0.1342). To obtain the effect of O(a) improving the current, this ratio
needs to be multiplied with cV .

neighbouring sites

a∂νTµν(x) =
1

2

4
∑

ν=1

[Tµν(x+ ν̂)− Tµν(x− ν̂)] . (6.7)

The time component is still trivially calculated. Taking the Fourier transform of the spatial
components, this can be rewritten to

∑

x

eiqxa∂iTµi(x) = −i sin(qi)Tµi(0) eiqx. (6.8)

We then arrive at a combination of matrix elements in momentum space that are readily
at our hand

〈

π(p′)
∣

∣ a∂νTµν(t)
∣

∣π(p)
〉

=
1

2

[

〈

π(p′)
∣

∣Tµ4(t+ 1)
∣

∣π(p)
〉

−
〈

π(p′)
∣

∣Tµ4(t− 1)
∣

∣π(p)
〉

]

− i
3
∑

i=1

sin(qi)
〈

π(p′)
∣

∣Tµi(t)
∣

∣π(p)
〉

.
(6.9)

To estimate the size of the tensor term, we look at the ratio of the two separate parts

rimp(Q
2) =

〈

π(p′)
∣

∣ a∂νTµν
∣

∣π(p)
〉

〈

π(p′)
∣

∣ ūγµu
∣

∣π(p)
〉 . (6.10)

Note that the improvement coefficient cV did not enter yet. In Fig. 6.5 we plot the ratio
rimp(Q

2) for our coarsest lattice which should experience the biggest change from improv-
ing the vector current. For the relative change w.r.t. the unimproved local vector current,
we have to multiply rimp(Q

2) with cV . However, the only non-perturbative calculations of
this improvement coefficient to date are for quenched fermions [46]. This means we have
to resort to perturbative results which are known to produce values which are not reliable,
see e.g. [47]. A tadpole improved relation for cV is [75, 76]

cV = −0.01225(1)× 4

3

g2

u4
0

, (6.11)
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Table 6.2 | The tentative shift of the monopole mass for some of our lattice. This is using
an arbitrary, rather large and constant value for cV , as discussed in the text.

# β a [fm] Mlat[GeV] M imp
lat [GeV] change

1 5.20 0.11 1.105(21) 1.206(26) 9%
2 5.20 0.10 0.997(20) 1.100(25) 10%
3 5.20 0.09 0.880(23) 0.961(27) 9%

4 5.25 0.10 1.080(19) 1.183(24) 9%
5 5.25 0.09 0.975(17) 1.058(21) 9%
6 5.25 0.08 0.870(22) 0.932(25) 7%

9 5.29 0.10 1.157(20) 1.265(24) 9%
10 5.29 0.09 1.051(15) 1.144(17) 9%
11 5.29 0.08 0.971(13) 1.024(16) 5%
12 5.29 0.08 0.854(15) 0.914(17) 7%
13 5.29 0.08 0.783(29) 0.831(32) 6%

15 5.40 0.08 1.099(11) 1.169(14) 6%
16 5.40 0.07 0.981(14) 1.052(15) 7%
17 5.40 0.07 0.847(17) 0.902(18) 7%

where u0 is proportional to the averaged Wilson plaquette term: u0 =
〈

1
3TrUplaq

〉1/4
.

From Eq. (6.11) we compute cV ≈ −0.027 for β = 5.20. Together with Fig. 6.5 we
estimate a shift of ∼ 3% for the largest Q2 value. Compared to our statistical errors
this is certainly negligible, especially for our finer lattices. Since the value for cV is likely
to be underestimated we also check the form factor Fπ using the improved current and
fixed cV = −0.3. This neglects the dependence of cV on β and is more than ten times
larger than the tadpole improved value for our coarsest lattice. Still, this overestimated
shift of the extracted monopole mass was moderate with 5 to 10%. The results of this
test are given in Table 6.2. With our statistical errors on Fπ in mind and the fact that a
reliable value for the improvement coefficient cV is not known for our lattices, we decide
to neglect the improvement term in Eq. (6.5). We instead stick to the unimproved local
vector current for our analysis.

6.4 Extrapolation to the Physical Point

Having established an ansatz for the momentum dependence of our data in Sec. 6.2 we can
investigate the dependence on the lattice pion mass, generally called chiral extrapolation.
Chiral extrapolations are commonly done in the square of the pion mass. We tried different,
rather simple extrapolations which we will discuss here. A separate section at the end of
this chapter is devoted to more sophisticated attempts using chiral perturbation theory.

We give the functional forms we tried in Tab. 6.3. Fit 1 might be motivated by VMD
and the fact that the rho meson mass is linearly extrapolated versus the square of the
pion mass. Fit 2 is another empirically motivated form, while Fit 3 is an attempt of a
linear extrapolation of the pion charge radius (see Eq. (1.9) or Sec. 6.7). The best χ2

value is found for Fit 2, where M2
lat depends linearly on m2

π. An extrapolation with this
ansatz together with its error band is shown in Fig. 6.6. We will base the extrapolations
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6.5 Combined Fits and Tests of the Monopole Form

Table 6.3 | Different forms used to extrapolate the monopole mass to the physical value
of mπ. Both with and without the lightest pion masses.

# extrapolation ansatz χ2/d.o.f. c1 Mphys [GeV]

without the lightest pions

1 Mlat = c0 + c1m
2
π,lat 1.40 0.320(16)GeV−1 0.762(13)

2 M2
lat = c0 + c1m

2
π,lat 1.01 0.648(31) 0.726(16)

3 1/M2
lat = c0 + c1m

2
π,lat 3.30 −0.567(32)GeV−4 0.835(9)

including the lightest pions

4 Mlat = c0 + c1m
2
π,lat 4.01 0.371(13)GeV−1 0.717(10)

5 M2
lat = c0 + c1m

2
π,lat 2.87 0.734(24) 0.674(12)

6 1/M2
lat = c0 + c1m

2
π,lat 7.29 −0.652(30)GeV−4 0.811(7)

in the remainder of this chapter on this ansatz. For the final result, however, we include
an estimated systematic error of ∆Mextra = 36MeV from the difference of Fits 1 and 2
(Fit 3 gives a significantly worse description of the data).

A note on our lightest pion masses

During the analysis of the complete set of lattices we encountered finite size effects, mainly
for our four lightest pion masses, see Sec. 6.6.1. Similar observations were made for dif-
ferent observables measured on these lattices, for example the decay constant fπ. Already
the lattice pion mass is affected, with an occurring lower bound depending on the lattice
volume [78]. Because of these problems, we exclude these lattices for the moment and give
their results in this section for completeness only. We will later try to convince the reader
that these points are consistent with our conclusions and even support them.

6.5 Combined Fits and Tests of the Monopole Form

A global fit to all (but our four lightest) lattices, combining the ansatz for the momentum
dependence and the extrapolation in the lattice pion mass can reduce the total number
of parameters we have to fit. At the same time, the number of data points for the fit
increases since it becomes two-dimensional. The combined fit has the same monopole
form as Eq. (6.2) with one additional parameter for the mπ behaviour

Fπ(Q
2,m2

π) =
1

1 +Q2/M2(m2
π)
,

M2(m2
π) = c0 + c1m

2
π .

(6.12)

The two fit parameters c0 and c1 describe the relation between the monopole mass and the
pion mass, thus we immediately obtain the form factor F phys

π (Q2) = Fπ (Q2,m2
π,phys) in the

physical limit. The fitted parameters are c0 = 0.516(23) GeV2 and c1 = 0.647(32) with
χ2/d.o.f. = 0.63. This gives Mphys = M(m2

π,phys) = 0.727(17) GeV, in good agreement
with the result obtained from Fit 2 in Sec. 6.4. Figure 6.7 shows the combined fit with its
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Figure 6.6 | Extrapolations of the squared monopole mass against the squared pion mass.
The solid line with error band is a linear extrapolation as obtained from Fit 2 in Tab. 6.3
(excluding the 4 lightest pion masses) the dashed line corresponds to Fit 5. The cross
marks the monopole mass corresponding to the PDG value [77] of the pion charge radius.
The different symbols refer to our β-values: squares (5.20), circles (5.25), semi-filled circle
(5.26), diamonds (5.29), and hexagons (5.40).

extrapolated curve. For this plot, our data at the lattice pion masses are shifted to the
physical pion mass and plotted on-top of the extrapolation. We do this by subtracting
from the individual lattice points, F lat

π (Q2), a value
(

Fπ(Q
2,m2

π,lat) − Fπ(Q
2,m2

π,phys)
)

calculated with the fit parameters of Eq. (6.12) at the respective pion masses. The errors
are left unchanged. The same fit for the pions with Γ = γ5 gives Mphys = 0.777(17) GeV,
with a bigger χ2/d.o.f. of 1.01.

Although Fig. 6.7 already displays that our fitting function, Eq. (6.12), is a good way
to describe our data, we will now further test the monopole ansatz. One obvious way to
do that is to try a general power-law and not constrain the fit to a monopole, i.e. use a
function

Fπ(Q
2,m2

π) =

(

1 +
Q2

pM2(m2
π)

)−p

,

M2(m2
π) = c0 + c1m

2
π ,

(6.13)

with again an additional parameter p. A combined fit to our data sets results in p =
1.182(59), now with a mass Mphys = 0.759(19) GeV and a χ2/d.o.f. = 0.541. The exponent
being close to one indicates that the monopole form is a good description. Taking the
difference between this and the result of the fit to (6.12), we can assign a systematic error
of ∆Mfit = 32MeV on Mphys due to the ansatz for fitting the momentum dependence
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Figure 6.7 | Combined fit to all our lattices with its result at the physical pion mass. The
lattice data is shifted as explained in the text. We have omitted data points for this plot
with an error larger than 80% for better visibility. The points are however included in the
fit.

(6.2). The validity of the fit over the whole Q2 range is further tested by combined fits
to Eq. (6.12) in a limited fitting range Q2 ≤ Q2

max or Q2
min ≤ Q2. This is shown in

Fig. 6.8, where we successively limit the fit to smaller (larger) momenta. Note that the
increasing errors to the left or the right are due to the decrease in the number of fitted data
points. Within these errors, the change in the monopole mass is consistent with statistical
fluctuations. From this figure, the plot of the effective monopole masses, Fig. 6.4, and
the combined fit of the general power-law, we can conclude that the monopole ansatz is
a faithful description and works well in the entire region for which we have lattice data,
from Q2 = 0 to about 4GeV2.

6.6 Lattice Artifacts

Apart from taking the limit to the physical pion mass, there are two more limits remaining.
One is the infinite volume limit concerning the box size of our lattice. The other is the
continuum limit taking the lattice spacing a to zero. Those limits, although not less
important, cannot always be taken since they require a large set of simulation parameters.
Looking at the computational cost to remedy the two limits, one finds that they are
naturally connected. Reducing the lattice spacing and therefore the discretisation errors
increases the computational effort because at the same time it requires a larger number
of lattice points to keep the physical volume. Increasing the volume can be done with a
coarser lattice or again more computational effort for a larger number of lattice sites. The
current study is one of the first attempting the investigation of lattice artifacts for the
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min is increased for the right plot. We use bins of 50MeV2 and
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pion form factor for a dynamical simulation. However, due to the difficulties related to
these limits we are only able to give estimates of the expected effects.

6.6.1 Finite Volume Effects

Since lattice simulations are confined to a space-time hypercube of Vs × T points with
lattice spacing a, it is natural to investigate finite size effects. The typical spatial lattice
volume is of the order of (2 fm)3. To study the volume dependence of our results, we
make use of two sets of configurations that have the same parameters β, κ for the lattice
action but different volumes (see Table 6.4). We plot the monopole masses obtained
for these lattices from Eq. (6.2) as a function of the lattice size L = 3

√
Vs in Fig. 6.9.a.

The corresponding results are given in Tab. 6.4. We use the pion mass mπ and lattice
spacing a determined for the lattice with the largest volume also for the smaller ones.
From this figure, one could try to roughly read off a lattice size which should not suffer
from finite size effects. This will clearly depend on the pion mass. Heavier pions should
be affected less severely. Fig. 6.9.b gives an overview of our lattices in the mπ–L plane.
Comparing Figs. 6.9.a and b, we can already estimate that most of our lattices should
not suffer from strong finite size effects. Their lattice pion mass is either rather high or
the physical size large enough. To obtain a somewhat better understanding of the volume
dependence one may have recourse to chiral perturbation theory. The volume dependence
of the pion charge radius has been investigated to one-loop order in various approaches
of chiral perturbation theory [79, 80, 81]. In the continuum limit, the result of the lattice
regularised calculation in [81] amounts to a finite size correction (in terms of the charge
radius) of

〈

r2
〉

L
−
〈

r2
〉

∞
=

3

8π2f2
π

∑

n6=0

K0(Lmπ|n|) , (6.14)

where the sum runs over all three-vectors n 6= 0 with integer components and fπ ≈ 92MeV
is the pion decay constant. Note that the finite size correction of the charge radius is not
proportional to m2

π, unlike for other quantities such as the pion decay constant or the
nucleon axial coupling. The leading contribution in Eq. (6.14) for large values of mπL
is proportional to K0(mπL) ∼

√

π/(2mπL) e−mπL. Unfortunately we cannot expect the
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Figure 6.9 | a | Monopole mass vs. lattice size in our finite volume data sets with β = 5.29
and κ = 0.1355 (upper points) or κ = 0.1359 (lower points). The curves correspond to a
fit to Eq. (6.15) as discussed in the text. b | Overview of pion masses and lattice sizes for
our complete data set. The dashed horizontal lines mark our finite size runs. The dashed
and shaded contours correspond to an estimated finite size shift (relative to the value in
infinite volume) of 5%, 10%, 20%, 30%, and 40%, respectively.

results from chiral perturbation theory to be applicable at the pion masses and lattice
volumes used for our finite size runs. For that, a dedicated run with pions ofmπ <∼ 500MeV
would be very desirable. The result (6.14) is also affected by this constraint. We take it,
however, as a guide for the functional form of the volume dependence. We thus change
the monopole mass in Eq. (6.12) to

M2(mπ, L) = c0 + c1m
2
π + c2e

−mπL . (6.15)

Taking the Bessel function K0(mπL) instead of e−mπL does not change our results signif-
icantly.

We then perform a combined fit to the data of all lattices in Table A.1 except for the
lightest pion masses (lattice numbers 7, 13, 14, and 18) including in addition the 163× 32
lattices of the finite volume runs (numbers 11a and 12a). We exclude the light pion masses,

Table 6.4 | Overview of our finite size runs. Note that we use the pion mass and lattice
spacing of the largest lattice also for the smaller ones. They are given in Table A.1 and
not repeated here. Mlat is as obtained from the monopole fit, ∆Mlat is the estimated
correction from the fit to Eq. (6.15)

β κ # N3 × T L [fm] mπL Mlat[GeV] ∆Mlat[MeV]

5.29 0.13550 11 243 × 48 2.0 7.8 0.967(15) 1.4
11a 163 × 32 1.3 5.2 0.932(17) 19.7
11b 123 × 32 1.0 3.9 0.839(51) 73.9

5.29 0.13590 12 243 × 48 1.9 5.7 0.852(16) 12.6
12a 163 × 32 1.3 3.8 0.792(20) 90.2
12b 123 × 32 1.0 2.9 0.496(29) 262.7
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since we cannot expect our ansatz for the volume dependence to be valid in this region. Our
approximation required large values for mπL which is not fulfilled for the lightest masses.
In addition, the biggest lever arm for the fit originates from our two finite size runs. These
are performed at much higher pion masses of mπ = 592MeV and mπ = 769MeV (the
horizontal dashed lines in Fig. 6.9.b). We thus do not expect our estimate to be reliable
at much lighter pion masses. The result of the combined fit is represented by the solid
lines in Fig. 6.9.a. The fitted parameters are c0 = 0.553(29) GeV2, c1 = 0.612(35) and
c2 = −6.97(1.71) GeV2 at χ2/d.o.f. = 0.62 which gives Mphys = 0.751(19) GeV for the
infinite volume limit of the monopole mass at the physical point. Compared with the
value 0.727(17) GeV obtained in the fit of Eq. (6.12) without volume dependence, this
represents a moderate overall finite-size effect almost within the statistical errors. The
fitted parameters do not change significantly if we only fit the 163 × 32 and 243 × 48 data
sets of the finite volume runs, i.e. the data corresponding to the four rightmost points
in Fig. 6.9.a (lattices number 11, 11a, 12, and 12a). We have not included the 123 × 32
lattices in the fit of Eq. (6.15) since we cannot expect our simple ansatz to hold down to
lattice sizes of 1 fm (a similar argument as for the light pion masses). Qualitatively, our fit
is not too bad even in this region, as shown by the dotted lines in Fig. 6.9.a. The estimated
finite volume shift for each of our lattices, as calculated with the fitted parameters, is given
in Tab. C.1. Figure 6.9.b also contains a contour corresponding to values of mπ and L
which are expected to have a finite size shift (M∞−ML)/M∞ of at least 5%. The lattices
suffering from volume effects can thus be read off the figure. We note that this more or
less only affects our lightest pion masses; the reason for excluding these data points from
our discussion up to now. In order to use the information from these light pion masses, the
estimated finite volume effect will be corrected for from now on. We will not stress these
results too much, since our ansatz in Eq. (6.15) together with the fitted parameters is a
crude estimate only. In addition, we also neglect the errors on the fit parameters, using
only the central value of the shift. However, there is a first indication that this estimated
shift is correct: a closer look at the shifted monopole masses of lattices #7 and #18 shows
that these are now on top of each other, as visible in Fig. 6.12 or from Table C.1. This is
encouraging since they have a different physical volume at almost identical pion mass.

As a final remark, we want to note that the finite volume, together with the discrete
space-time symmetries of the lattice also introduce an additional contribution to the form
factor. The matrix element is then no longer parametrised by Fπ alone [80]. Whether this
requires extra attention has to be checked.

6.6.2 Discretisation Errors

The scale dependence is the last limit we have to consider. Since we found in Sec. 6.3 that
the O(a) effects for the vector current should be small, and since our lattice action is O(a)
improved, the discretisation errors can be of O(a2).

We investigate the scaling behaviour by extrapolating our values for the monopole mass
to the physical pion mass separately for each β, as shown in Fig. 6.10. For that we again
assume a linear relation between the squared monopole and pion masses. The extrapolated
values are then studied as a function of the squared lattice spacing a, Fig. 6.11. Hereby,
the lattice spacing is taken from r0/a extrapolated to the chiral but not to the continuum
limit. The respective values are given in Tab. A.2. They have been obtained as explained
in [82]. The three rightmost data points in the plot of Fig. 6.11 strongly suggest that no
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Figure 6.10 | Extrapolation of the monopole mass Mlat to the physical point, separately
for each value of β. The black symbols together with the black dashed line includes also
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discretisation errors are present within statistical errors. It requires additional simulation
points to see if the leftmost data point represents a downwards trend or is just an out-lier.

Because we expect finite size effects for some of our lattices, we repeated the above
mentioned procedure including our estimated volume correction. This correction is an
upwards shift of the monopole masses by c2e

−mπL, where c2 was taken from the global fit
described in the previous section. The results are indicated in light grey in Fig. 6.11 and
show an increase of Mphys mainly for β = 5.20 and 5.40 but is again consistent with no a
dependence.

Given the lever arm in a2 and the size of our statistical and finite size errors, we refrain
from including an explicit a dependence of the monopole mass in our global fit to Eq. (6.12).

6.7 Comparison with Chiral Perturbation Theory

We come back to the extrapolation in the lattice pion mass now, picking up the discussion
of Sec. 6.4. First, let us fit the monopole masses once again as we did for Fit 2 in Table 6.3,
this time including the light pion masses with our estimated finite size correction (we ne-
glect the uncertainty in this shift). The resulting monopole mass is Mphys = 0.744(12) GeV
with fit parameters c0 = 0.541(18) GeV2 and c1 = 0.632(27) displayed in Fig. 6.12. Based
on the assumption that we can quantify the finite volume corrections, the light masses are
thus consistent with our previous Fit 2 and still consistent with such a linear extrapolation.

Building up on this, a more sophisticated and at the same time more complicated
approach to determine the mπ-behaviour of lattice data is the application of chiral pertur-
bation theory (χPT). This is an effective field theory with pion fields as degrees of freedom,
describing the low energy behaviour of QCD. It can provide us with the dependence on
the pion mass starting from the chiral limit mπ = 0. This is opposite to lattice simula-
tions, which usually start at rather large, unphysical pion masses and then get lower and
lower during the simulation programme. This already provides a first hint that these two
non-perturbative methods sometimes have to struggle to have sufficient overlap in their
masses (see e.g. [83]). It is also unclear, what the range of applicability of χPT is. This
can depend on the order of the chiral Lagrangian used and the observable in question.
We thus use χPT only to extend our fits from Tab. 6.3 and mainly compare our data to
χPT rather then perform stringent fits. The ultimate goal, fitting lattice data to χPT and
extracting the emerging low energy constants (LECs) from that, still remains.

Different LECs appear in each order of the Lagrangians, with their number increasing
order by order. Starting with the pion decay constant fπ at leading order, the next-to-
leading order Lagrangian already has a total of ten LECs. They define the effective theory
and have to be determined from theory or experiment since there is no a priori knowledge
about them. Once known, the LECs are universal, i.e. they appear in the Lagrangian and
do not depend on any specific physical process. However, different processes demand dif-
ferent combinations of LECs. The limited number of physical processes and their accuracy
thus limits the number and reliability of known LECs.

So far, our discussion of the pion form factor was in terms of the monopole mass M .
The calculations of χPT however, are directly for Fπ(Q

2) or the charge radius, which is
connected to that via

〈

r2
〉

= − dFπ(Q
2)

dQ2

∣

∣

∣

∣

Q2=0

≈ 6

M2
. [1.9]
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The authors of [84] have calculated the vector form factor of the pion to two loops in χPT.
This represents a full O(p6) next-to-next-to-leading order calculation. The contributions
to this order are: Two-loop diagrams with vertices from the lowest order O(p2) Lagrangian
L2, one-loop diagrams with vertices from L2 and an additional vertex from L4, tree level
diagrams with vertices from L2 and either two vertices from L4 or one from L6, the O(p6)
Lagrangian. Their result for the charge radius

〈

r2
〉

reads

〈

r2
〉

=
1

f2
π

(

−6lr6 − L−
1

N

)

+
m2
π

f4
π

[

−3k1 +
3

2
k2 −

1

2
k4 + 3k6 − 12lr4l

r
6

+
1

N

(

−2lr4 +
31

6
L+

13

192
− 181

48N

)

+ 6rrV 1

]

, (6.16)

where we have used the notation of [84]

N = 16π2 , L =
1

N
log

m2
π

µ2
, ki = (4lri − γiL)L . (6.17)

Here, mπ is the pion mass used in χPT (so our lattice pion mass), fπ the pion decay
constant. After MS subtraction, the coupling constants li from L4 are denoted by lri
[84]. They depend on the renormalisation scale µ and are related to their scale invariant
counterparts l̄i by

lri =
γi
2N

(l̄i +NL) , (6.18)

with the γi given by

γ1 =
1

3
, γ2 =

2

3
, γ4 = 2 , γ6 = −1

3
. (6.19)

We see in Eq. (6.16) that from the possible LECs appearing in L4 and L6, ‘only’ five
survive. This can be reduced a little further, by inserting the one-loop result for fπ

fπ/f = 1 +
m2
π

f2
π

(lr4 − L) (6.20)

at the first order of Eq. (6.16). Here f is the pion decay constant in the chiral limit.
Combining Eqs. (6.16) – (6.20) and using the renormalisation scale µ = mρ = 0.77GeV,
we obtain

〈

r2
〉

=
c1
f2

(

l̄6 − 1− L′
)

+
m2
π

f4

[

c2r̃V 1 + c3 + c4L
′ + (l̄2 − l̄1)(c5L′ + c6)

]

. (6.21)

or, after using for the ratio fπ/f = 1.069 (again from [84]) and adding the value for
fπ = 93.2MeV,

〈

r2
〉

= c′1
(

l̄6 − 1− L′
)

GeV−2 +m2
π

[

c′2r̃V 1 + c′3 + c′4L
′ + (l̄2 − l̄1)(c′5L′ + c′6)

]

GeV−4 .
(6.22)

The ci and c′i are pure numbers and are given in the appendix (see Table C.2), and
L′ = log(m2

π/m
2
π,phys). Now only the LECs l̄6, l̄2 − l̄1 and r̃V 1 are left as parameters. We
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want to note that the c′i are all of the same order of magnitude, so none of the LECs is
particularly suppressed. The constraints from phenomenological studies are [84, 85]:

l̄6 = 16.0± 2 , l̄2 − l̄1 = 4.52± 3.28 . (6.23)

The remaining LEC r̃V 1 is the least known and the authors estimate

r̃V 1 ≈ −6.234 (6.24)

and assign a hundred percent error.

Another lattice study uses comparable ansatz to fit their data of the pion form factor
[68]

〈

r2
〉

= c0GeV−2 + c1m
2
πGeV−4 − 1

(4πfπ)2

(

L′ + log
m2
π,phys

µ2

)

, (6.25)

with only two parameters c0 and c1. If we try to relate this equation to the above, we find
that the number in front of L′ is about a factor of five larger than in Eq. (6.22). With the
given value of l̄6, the parameter c0 should be approximately one. Furthermore, the fact
that there are no factors of m2

πL
′ amounts to l̄2 − l̄1 of roughly −1.6, which is not quite

compatible with the phenomenological result. Using this and the above value for r̃V 1, the
remaining parameter c1 ≈ −3.5 where the main contribution is due to r̃V 1.

After this introduction, we begin with fitting Eq. (6.25) to our lattice data. Here one
ambiguity remains: the range of pion masses up to which the chiral equation is applicable
is not known. We thus vary the range to check the effect of the pion mass on the fit, using
three ranges given by the conglomerations of our lattice pion masses. The results are given
in Table 6.5. The different fits are also plotted in Fig. 6.12. We observe that the fit range
does not have a dramatic effect on the outcome of the fit when looking at the physical
monopole mass. More remarkably even, within the fit range there is hardly a difference
between the ‘chiral’ fit and the linear extrapolation and the fit range is nicely reflected
by the behaviour of the curve. We prefer the fit up to m2

π ∼ 0.8GeV2 between the two
extremes of including too heavy pions and not having enough data points. As mentioned
above, apart from the experience with other quantities there is no hint on the range where
χPT is applicable. In addition to that, the four lightest data points are not reliable since
the finite size effect is only estimated (and no uncertainty for that included). So including
the intermediate pion masses certainly increases the attempted fit in that respect. On the
other hand, a check that the fit does not rely on these data points is shown for Fit 4 in
Table 6.5.

Table 6.5 | Fits to Eq. (6.25) with different ranges in the pion mass. We also provide the
resulting monopole mass and pion charge radius.

# range c0 c1 χ2/d.o.f. Mphys [GeV]
〈

r2
〉

1 0 – 1.2GeV2 8.30(17) -2.82(20) 1.85 0.747(6) 0.418(6)
2 0 – 0.8GeV2 8.67(26) -3.53(45) 2.02 0.735(8) 0.432(10)
3 0 – 0.5GeV2 8.53(52) -2.9(1.6) 2.79 0.740(16) 0.427(19)

4 0.3GeV2 – 0.8GeV2 8.66(37) -3.51(62) 1.20 0.736(12) 0.432(14)
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Figure 6.12 | Different attempts of a chiral extrapolation, this time including our lightest
pion masses with their estimated finite size shift. The dashed black line is again a linear
fit, as in Fig. 6.6. The solid blue line is a fit to Eq. (6.25) with the mπ fit range as indicated
by the vertical dashed line. Note that the experimental point (black cross) is not included
in the fit.
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Figure 6.13 | This plot reveals the potential of finite volume corrected data and χPT. The
solid blue line is the expected charge radius from Eq. (6.22) with LECs chosen within the
phenomenological values, Eq. (6.26)

Next we consider the full two-loop result, Eq. (6.16), and start by a comparison to our
data, based on the possible values of the LECs. The choice

l̄6 = 15.5 , l̄2 − l̄1 = 1.2 , r̃V 1 = −2.2 , (6.26)

reveals the potential of χPT when lattice data is compared to it as shown in Fig. 6.13.
The two-loop result comes close to our lattice data points for lower to intermediate pion
masses. We use this as an indication for a possible fit range and as an encouragement to
attempt a fit. The coupling constants obtained from the fits are given in Table 6.6. They
compare remarkably good to their phenomenological values. For our favourite range of
m2
π < 0.8GeV2, two of the LECs agree within errors. In general, l̄6 appears to be less

problematic, since it defines the offset. Slope and curvature are harder to resemble. We
found that the fit is also very dependent on the more or less unknown r̃V 1. This can also
be attributed to the fact that the c′i are all of the same order. We finally plot the results
in Fig. 6.14. To make the non-linearity slightly more obvious, we now plot the charge
radius instead of the square of the monopole mass. It should diverge for mπ → ∞. For
comparison, the ‘best’ fit (# 2) to Eq. (6.25) is also included in one of the figures. As we
see, the fit for the shortest range in m2

π has the wrong curvature. This is most likely to
the single out-lier. Although the other two fits look promising, we do not claim to extract

Table 6.6 | Fits to the full two-loop result, Eq. (6.22).

# range l̄6 l̄2 − l̄1 r̃V 1 χ2/d.o.f.
〈

r2
〉

1 0 – 1.2GeV2 15.5(7) -0.3(7) -2.3(3) 1.67 0.463(19)
2 0 – 0.8GeV2 14.7(1.3) -1.6(1.9) -1.9(5) 2.25 0.441(34)
3 0 – 0.5GeV2 7.4(5.2) -18.1(12.3) -0.6(1.0) 3.00 0.27(12)

phenom. 16.0(2.0) 4.52(3.28) -6.234 0.452(11)
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Figure 6.14 | Fits to the full two-loop χPT result for the charge radius, Eq. (6.22), shown
as solid blue line. The vertical line again indicates the fit range, and we have included the
data points for light pion masses with the estimated finite size shift. The dashed black
line is the previous Fit 2 from Table 6.5. As before, the experimental point is not included
in the fits.

the coupling constants of the chiral Lagrangian. The uncertainty in our data and the fit
range is too high.

6.8 Conclusion

Using the monopole ansatz, Eq. (6.2), to describe the momentum dependence of the form
factor, we linearly extrapolated the squared monopole mass against the square of the
pion mass. This was focused on pion masses greater than 450MeV because we can only
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6 Pion Form Factor

estimate the otherwise appearing finite size effects. We found that discretisation errors
are small or absent, with a negligible effect from an improved vector current. Including
estimates of systematic uncertainties, our final number for the monopole mass is M =
0.727 ± 0.017 (stat) ± 0.048 (syst) + 0.024 (vol) GeV, which translates to a charge radius
of
〈

r2
〉

= 0.442 ± 0.021 (stat) ± 0.058 (syst) − 0.029 (vol) fm2. The first error is purely
statistical, followed by a systematic uncertainty due to the ansatz for the fitting function
and the extrapolation to physical pion masses (for which we added in quadrature the errors
∆Mext and ∆Mfit). The last error reflects a possible shift because of finite volume effects.

In a next step, we included our lightest pion masses and shifted the central values
for the corresponding monopole masses by the estimated finite size shift. Assuming the
volume effect was correctly quantified, this leads to a consistent overall behaviour of our
data points, supporting our results. However, for a thorough finite size analysis more
simulation points and better analytic control is certainly required. The extrapolation
based on χPT lead toM = 0.728±0.028 (stat)±0.007 (syst) or

〈

r2
〉

= 0.441±0.034 (stat)±
0.009 (syst) fm2. The systematic error being due to the two different extrapolations for
our favourite range of pion masses only .

Contrasting our results with the experimental value of M = 0.719(9) GeV and
〈

r2
〉

=
0.452(11) fm2, we find very good agreement. Other lattice results are given in Table 6.7.

Table 6.7 | An overview of lattice results for the pion charge radius along with the ex-
perimental value. We only quote results that are extrapolated to the physical point. The
quoted lattice errors are purely statistical.

〈r2〉 [fm2] type of result Reference

0.452(11) experimental value PDG 2004 [77]

0.442(21) Clover improved Wilson fermions, Nf = 2 this work
0.396(10) Clover improved Wilson fermions, Nf = 2 JLQCD [68]
0.37(2) Wilson fermions, quenched [64]
0.37(5)
0.351(8)

}

Domain Wall fermions, Nf = 2 + 1 [69]

0.310(46) hybrid ASQTAD/DWF, Nf = 2 + 1, 3 LHPC [61]
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7 Higher Moments of the Pion Structure

The pion form factor, discussed in the previous chapter, is the lowest Mellin moment
as introduced in Section 2.7. Since we have computed operators with up to three lattice
derivatives in our simulation, we can access the lowest four moments of the GPDs, following
up the work started with [41]. These moments provide additional information about the
structure of the particle, as explained in the introduction. We again consider the vector
GPD of the pion here.

Computing matrix elements of operators with derivatives becomes notoriously difficult
with the number of operators increasing. The signal extracted from the lattice then is more
noisy, a disadvantage that is intensified when momenta are added. Hence our discussion
begins with moments of forward matrix elements. Our discussion will follow the techniques
applied in the previous chapter. The final result will be compared to the quenched study in
[41], as well as phenomenological distribution functions obtained from experiments [86, 8].

The unprecedented study of higher moments of non-forward matrix elements is more
involved and still limited to the second moment only. We discuss the available data and
link to the phenomenological information contained in it.

7.1 Forward Moments

We have explained in Section 2.5 that the lattice is suited to calculate moments of GPDs.
They are obtained by integrating the distribution functions (weighted with xn) over the
momentum fraction x carried by the (anti-)quarks. We recall the forward limit, in which
the GPDs simplify to quark distribution functions

Hq
π

∆→0
= Θ(x)q(x)−Θ(−x)q̄(−x) , (7.1)

where q(x) is the PDF for quarks with flavour q. Taking moments thereof, we arrive at

∫ 1

0
dxxn [q(x)− (−1)n q̄(x)] , for n = 0, 1, 2, . . . . (7.2)

We see that we have flavour (non-) singlet moments for odd (even) n. They are related
to the valence (n-even) and total (n-odd) quark distributions inside the pion. The first
moment (n = 0) is counting the number of (valence) quarks minus anti-quarks of one
flavour inside the pion. The second moment also has a straightforward interpretation: it
corresponds to the momentum carried by the quarks of the probed flavour. Linking to the
generalised form factors, the moments of the quark distributions are given by

〈xn〉 = An+1,0(0) (7.3)

where we have used Eq. (2.25a). Our calculation on the lattice makes use of the operators
in Eq. (4.17a) with up to three derivatives. Evaluating these operators between pion states
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of equal incoming and outgoing momenta we find

〈

π(p)
∣

∣O{µµ1...µn}

∣

∣π(p)
〉

= 2(pµpµ1 . . .pµn − traces)An+1,0(0) , (7.4)

corresponding to the parametrisation in Eq. (2.22a). The explicit form of the operators is
given in Appendix B. In order to stay consistent with [41], we keep the previous notation
and denote them by Ov2a, Ov2b, Ov3 and Ov4 and limit ourself to one flavour.

Although the lowest four moments are not enough to reconstruct the quark distribu-
tion function by an inverse Mellin transformation, they still contain viable information.
Based on existing parametrisations of the pion PDFs, one can try to arrive at a (model
dependant) prediction from lattice QCD. However, [87] shows that this is difficult and has
to rely on various assumptions. Difficulties here arise from unknown contributions of sea
quarks and ambiguous extrapolations to the physical point. Furthermore, the parametri-
sations have at least three parameters already for the valence distributions (SMRS, [86])
which is hard to constrain with four moments (one being trivial) relating to total and
valence quarks. Lattice data could however be used to add additional information to the
PDF fits of experimental results, especially since there is usually less data in the low-x
region. These phenomenological fits also suffer from the fact that experiments measure a
convolution of pion and nucleon distribution functions. At the current stage we will only
compare the lattice moments of quark distribution functions to moments obtained from
phenomenological PDFs. Yet, this does not impair that we have a first principles, model
free calculation of 〈x〉 for the pion.

7.1.1 Raw Lattice Data

Although we are looking at the forward case q = 0 here, all operators considered require
one unit of momentum for p due to the space-time components of the operators. The only
exception isOv2b, which also has a signal for all spatial components of the momentum equal
to zero. Parametrising the operator between pion states, this is easily read off Eq. (2.23a).
We thus average over p = (1, 0, 0) and p = (0, 1, 0) when non-zero momentum is necessary,
and extract p = (0, 0, 0) separately. We show the ratio R(τ) from Eq. (4.58) for one lattice
and all operators in Fig. 7.1. For 〈x〉, where we have three possible operator/momentum
combinations to choose from, the one with zero momentum naturally has the cleanest
signal with the lowest error bars (top right panel). We determine the fit ranges individually
for each data set and operator. The fits are then performed fully correlated, with errors
obtained using the bootstrap method. Furthermore, we only use the axial-vector source
to create and annihilate the pions. The lattice ratio is then matched to the continuum
form including the kinematic pre-factors, Eqs. (4.59), (2.23a) and (2.26).

In order to convert the lattice ratios to physical matrix elements, we have to bear in
mind the matching between the Euclidean and Minkowski formulation of the operators,
Eq. (4.21a). We also need to apply an appropriate renormalisation. As explained in
Section 4.2.1, the renormalisation procedure requires two steps: first, multiply with a
renormalisation group invariant (RGI) renormalisation factor ZRGI

O to convert the matrix
elements into renormalised ones. Second, multiply with a factor ZS

′, S

O (µ′, µ) to change to
the desired renormalisation scheme (in our case MS). We give the results for all lattices
and operators, already renormalised in the appendix in Table C.3 with the necessary
renormalisation factors in Table C.4.
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Figure 7.1 | The ratio of operators Ov2a, Ov2b (with p 6= 0 and p = 0), Ov3 and Ov4 for
lattice #16 (left to right, top to bottom). The vertical lines indicate the fit range we use.
The obtained fit is shown by the solid blue line.

7.1.2 Operator improvement

Following the discussion of moments of nucleon structure functions in [44], we attempt to
O(a) improve the operators Oµν which appear for 〈x〉. The additional terms to improve
the current in this case are

Oimp
µν =(1 + amqc0)Oµν +

3
∑

i=1

aciOiµν [4.24]

=(1 + amqc0)ψ̄ γµ
↔
Dν ψ

+ ac1

[

i
∑

λ

ψ̄ σµλ
↔
D[ν

↔
Dλ] ψ

]

+ ac2

[

−ψ̄
↔
D{µ

↔
Dν} ψ

]

(7.5)

+ ac3

[

i
∑

λ

∂λ

(

ψ̄ σµλ
↔
Dν ψ

)

]

.

The operator in the last line, for i = 3, only contributes to non-forward matrix elements
and we can hence drop it. We can further reduce the number of improvement terms for
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7 Higher Moments of the Pion Structure

on-shell matrix elements, where by using the equation of motion we can write c0 and
c1 as a linear functions of c2. As for the vector current in the previous chapter, there
is no non-perturbative calculation of the improvement coefficients. So we have to resort
to first order (tadpole improved) perturbation theory to obtain a relation between the
improvement coefficients

c0 = 1− c2 +
4

3

g2
0/u

4
0

16π2

(

{

17.20377
16.34500

}

−
{

8.69045
12.24534

}

c2
)

+O(g4
0) , (7.6)

c1 = c2 +O(g2
0) , (7.7)

where the upper (lower) numbers refer to Ov2b (Ov2a) [45]. As in the nucleon case, we
choose c2 = 0. Experience tells us that the contributing operator for i = 1 is small.
We checked that this is indeed the case for two lattices (numbers 12 and 16), where we
found a signal from the ratio that is about an order of magnitude smaller than the value
for i = 0. Our (perturbative) improvement is thus achieved by simply multiplying the
original operator with (1 + amqc0). The effect of which ranges from below one to at most
twelve percent for the individual lattices. The result in the chiral limit should not be
affected because of the quark mass dependence of the correction.

Improving the operators for the higher moments is more complicated. The number
of irrelevant operators increases, also with an additional covariant derivative. We will
therefore not attempt to improve the operators for

〈

x2
〉

and
〈

x3
〉

. This will only have an
effect on the continuum extrapolation if the matrix elements of the irrelevant operators
are not small, resulting in an extrapolation in a rather than a2.

7.1.3 Volume Dependence

Before we continue with the extrapolation in the pion mass, let us take a short look at
possible finite size effects. Anticipating the almost linear behaviour of 〈xn〉 against the
pion mass squared, we make an attempt of fitting a finite size behaviour analogous to the
monopole masses in Eq. (6.15), i.e. we use

〈x〉 (mπ, L) = c0 + c1m
2
π + c2e

−mπL (7.8)

to check the volume dependence of our results. A similar ansatz was used in a finite
size study of the ZeRo-Collaboration [88], where the authors find an effect on 〈x〉 for
mπL ≤ 5.5 and pion masses around 300MeV. This would affect lattices we already know
to have finite size effects in case of the pion form factor, as well as other pionic observables
like for example the decay constant fπ [59]. Another study of forward twist-two matrix
elements of the nucleon in partially quenched heavy baryon chiral perturbation theory also
predicts sizable corrections for the lattice data, if the box volume is too small [89]. With
this expectation of finite size effects, we use our dedicated finite volume runs (lattices
11, 11a, 12, 12a) and two sets of lattices with roughly the same pion mass but different
physical volume (lattices 2, 5, 16 at ≈ 830MeV and 3, 17 at ≈ 620MeV) as input for a fit
to Eq. (7.8). The fit ansatz describes our data sets quite well, as shown in Fig. 7.2. We
see from Table 7.1 that the biggest effect is observed for 〈x〉 based on the operator Ov2b
with zero momentum. This matrix element has the best signal with the lowest statistical
errors. This seems to be a plausible explanation why we see a clear finite size effect for this
matrix element only. The higher moments even seem compatible with no volume effects,
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Figure 7.2 | Our attempts of fits to the finite size effects of 〈xn〉RGI are indicated by the
lines. The lattices shown are: 11, 11a, 11b (open triangles pointing up, dashed line) and
12, 12a, 12b (triangles pointing down, solid line).

as suggested by the fitted parameters and Fig. 7.2. Although our data (also for the pion
form factor) and the literature suggest corrections due to the finite box size, we do not
have a reliable estimate to quantify the shift for the lattices that are concerned most,
i.e. the four lightest pion masses. The reason for this is two-fold: first of all, our lattice
results are not accurate enough, and the statistical uncertainties of the fitted parameters
is certainly too big.1 The data points for m2

π ≈ 0.2GeV2 (lattices number 7 and 18)
even agree within their errors although at different volumes (c.f. Fig. 7.3). Second, the
chosen ansatz Eq. (7.8) can only be seen as a test for finite size effects. Even though an
exponential e−mπL with a polynomial in 1/L is a general behaviour for volume effects [80],
our fits are made in a different regime of pion masses, where the effect is small.

Consequently, we do not include volume effects in the remainder. However, bearing in
mind that our lightest pion masses are likely to suffer from these effects, we do not use the
concerned data points for further fits. We will only show these in our plots for comparison.

1This was different for the pion form factor, where the effect is more pronounced and seems under better
control. We stress again, that we still used it as an estimate only, and did not rely on the calculated
shifts.

Table 7.1 | Finite size fits as described in the text. Fitting the dedicated finite volume
lattices alone (11, 11a, 12, 12a) yields compatible results. Note that the matrix elements
have been renormalised to RGI values but have not been taken to MS for the fits.

c0 c1 [GeV−2] c2 χ2/d.o.f.

Ov2a 0.330(40) 0.156(62) 0.0(2.5) 1.14

O(p=0)
v2b 0.337(6) 0.147(10) 4.40(37) 2.46
Ov3 0.170(31) 0.116(47) 1.1(1.7) 0.65
Ov4 0.131(61) 0.047(90) 1.1(2.3) 1.27

77
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7.1.4 Extrapolations in Pion Mass

The extrapolation to the physical pion mass is again a crucial point of the analysis. Using
predictions from one-loop chiral perturbation theory, taken from [90, 91], we know that
the even and odd moments of the quark distributions should extrapolate differently. For
the forward moments of the pion quark distributions, we expect2

〈xn〉 (m2
π) =















c
(n)
0

(

1− m2
π

(4πfπ)2
log

m2
π

µ2

)

+ c
(n)
1 m2

π for even n,

c
(n)
0 + c

(n)
1 m2

π for odd n,

(7.9)

with corrections of O(m4
π) and the c

(n)
i corresponding to LECs. The two cases also have

a different physical interpretation. Odd moments relate to the total (valence + sea)
distribution of quarks and anti-quarks in the pion. It is also for the odd moments, where
our lattice calculation omits possibly occurring disconnected contributions, see Section 4.3.
So despite the simpler extrapolation to the physical pion mass, we nevertheless have an
uncertainty due to the disconnected fermion lines. Even moments on the other hand
describe the distribution of valence quarks since the contribution from sea quarks and
anti-quarks cancel when taking the difference, Eq. (7.2). Looking at the lattice data
(Fig. 7.3), we see no indication for the presence of chiral logarithms. This observation
is somewhat blurred, because we are likely to be confronted with finite size effects for
our lightest pion masses. Judging from Fig. 7.2 and the theoretical predictions, the finite
volume shift should lower 〈xn〉 for our small pion masses. Since we cannot quantify this
shift, the four lightest pion masses are excluded from any fits (lattices 7, 13, 14, 18).
Consequently, our lattice data is well fit by a linear function in m2

π for the remaining
region. We hence use only one ansatz for the even and odd moments to extrapolate to the
physical pion mass,

〈xn〉 (m2
π) = c

(n)
0 + c

(n)
1 m2

π , (7.10)

with the caveat that we do not include chiral logs. Fits of this linear behaviour in m2
π are

shown in Fig. 7.3 for all of our operator combinations. The fitted parameters are given in
Table 7.2. We note that the three values for 〈x〉 agree nicely within errors. As already
mentioned above, Ov2b (p = 0) has the cleanest signal.

2Note our different counting for 〈x〉 and An,i, see Eq. (7.3), so even and odd cases are switched with
respect to the reference.

Table 7.2 | The fit parameters to the extrapolation of the lattice moments, Eq. (7.10),
for RGI matrix elements. The last row is the value of 〈xn〉 at the physical pion mass in
the MS scheme at µ = 2GeV (with statistical errors from the fit, as well as systematic
uncertainties for the renormalisation).

Ov2a O(p=0)
v2b O(p6=0)

v2b Ov3 Ov4
c
(n)
0 0.363(16) 0.377(2) 0.375(4) 0.218(11) 0.146(18)

c
(n)
1 [GeV−2] 0.089(18) 0.094(2) 0.094(4) 0.029(11) 0.015(18)
χ2/d.o.f. 0.72 14.72 4.96 0.68 0.61

〈xn〉MS
phys 0.261(11)(10) 0.271(2)(10) 0.270(3)(10) 0.128(6)(5) 0.074(9)(4)
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Figure 7.3 | This figure shows our results for 〈xn〉RGI for n = 1, 2, 3 with the three possible
operator/momentum combinations for the second moment at the top. The solid lines with
error bands correspond to our extrapolation to the physical pion mass (indicated by a
cross). The lowest pion masses are not included in the fit. Chiral perturbation theory
predicts a logarithmic behaviour for the even moments, which is absent in our data. Note,
however, that unknown finite size effects could have an effect.
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Figure 7.4 | These figures shows our results for 〈xn〉RGI in the chiral limit, but for the
different β values and their corresponding lattice spacing. Overall, we observe no clear
dependence on the lattice spacing. a | is for Ov2b (p = 0) (closed symbols) and Ov2b (p 6= 0)
(open symbols, with offset), both agree very nicely as before. b | Ov2a (p 6= 0). c | Ov3
(open symbols) and Ov4 (closed symbols, with offset), note the different abscissa.

7.1.5 Scaling Violations

Similar as for the pion form factor, we will now test our results for discretisation errors
originating in the finite lattice spacing. In case of the second moment 〈x〉, we also have
an additional check. We use operators that transform under different irreducible repre-
sentations of the hypercubic group. So while their continuum results should be identical,
we can expect dissimilar lattice artefacts. Let us start by first considering Ov2b for both,
vanishing and non-vanishing momenta. Figure 7.4.a shows the extrapolated values for our
four β values, taken at mπ = 0 for simplicity. We have again used the values r0/a in the
chiral limit, Table A.2. Since we have tried to (perturbatively) improve the underlying
operators, we plot 〈x〉 against a2 assuming O(a2) errors. The plot seems to suggest a
downward trend for the continuum limit. Fitting a quadratic behaviour in a instead finds
a increase for 〈x〉 in both cases for the operator Ov2b (c.f. Table C.5). However, the error
in the fitted slope with respect to a2 is at least 200% in the fits, so the data points provide
no clear handle on the extrapolation. The corresponding results for the operator Ov2a are
shown in Fig. 7.4.b. Here, the larger errors make the investigation of scaling effects even
more difficult. A linear fit with respect to a2 now finds a decrease towards the continuum
limit where the extrapolated value has an error of ≈ 30%. While this could be interpreted
as a qualitatively different behaviour for the operators Ov2a and Ov2b, the errors on the
fitted slopes are too large and a conjecture is not justified.

Since the errors for the moments
〈

x2
〉

and
〈

x3
〉

are of similar size as for results from
Ov2a, the investigation of scaling effects shows similar inconclusive behaviour. The data
points are shown in Fig. 7.4.c. Because we did not include any improvement we treat
those as having O(a) errors. The pion mass-extrapolated values for all operators and β
values are given in Table C.5, the fits to a constant or linear dependence on a2 (and a)
can be found in Table C.6.

Since the statistical errors for the individual 〈xn〉 do not allow for a clear conclusion, our
final numbers for the moments of the quark distributions will assume a flat extrapolation to
the continuum limit. We thus stick to the global fit of the chiral extrapolation in Eq. (7.10).
The results from these global fits agree with the constants fitted to the β dependent values
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Figure 7.5 | Comparison of 〈xn〉 in MS of the present results (middle points, µ = 2GeV),
quenched results from [41] (right points, µ ≈ 2.4GeV) and phenomenological values from
PDFs (left points and band). The latter are obtained from [86] (upper value, µ = 2GeV)
and [8] (lower value, µ = 2GeV).

given in Table C.6. The difference to the central values from the alternative linear fits will
be included as systematic error of the continuum limit.

7.1.6 Discussion of the Results

Collecting the above results for the moments of the quark distributions, we have

〈x〉 = 0.271(2)(4)(10) ,
〈

x2
〉

= 0.128(6)(7)(5) ,
〈

x3
〉

= 0.074(9)(14)(4) ,

in the MS scheme for µ = 2GeV. The first error being statistical, followed by systematic
uncertainties from the continuum limit and renormalisation. Not included is an uncer-
tainty due to volume effects which is certainly necessary for a sound prediction from first
principles. Leaving aside finite size corrections, drawing conclusions from the lattice data
is still not straightforward. The odd moments, which have an unambiguous extrapolation
to the physical pion mass, omit contributions from disconnected fermion lines. They relate
to the total quark distribution that is difficult to measure in experiments. Neglecting that,
we find from 〈x〉 that the light quarks inside the pion carry roughly 54% of its momentum.
The remaining 46% have to be attributed to the other quark generations and the gluons.
The even moments, on the other hand, have a simple interpretation in form of the valence
distributions. However, the correct chiral extrapolation cannot be achieved yet.

Let us compare our results to the ones from the quenched calculation in [41]. Those
were obtained at a slightly different scale, and with perturbatively renormalised values.
As we see from Fig. 7.5, there is good agreement between the two sets of results. We were
able to improve on the errors (bearing in mind that we plotted statistical and systematic
errors, added in quadrature), while there is no indication for quenching effects.

A comparison to phenomenological values is more difficult. There exist different param-
etrisation of PDFs, certainly leaving some room for uncertainties. The biggest insecurity
for the PDFs obtained from experiments is the contribution from sea quarks, which can-
not be measured directly. Looking again at Fig. 7.5, we find that the agreement is quite
reasonable (we have included total and valence distributions accordingly). More reliable
and additional lattice data points for our lowest pion masses will improve the situation.
The chiral extrapolation should finally decrease the results slightly, better control over
finite size effects contributing its part. To which extent the disconnected contributions
plague our results is not clear, since the second moment, that is free of this problem, does
not stick out. We refrain from fitting the parameters of the PDFs to our data, because
we can only extract one valence distribution without further assumptions.
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7 Higher Moments of the Pion Structure

7.2 The Second Off-forward Moment

We now turn to the discussion of the second moment of the vector GPD in the non-forward
case. We recall its form

∫

dxxHq
π(x, ξ, t) = A2,0(∆

2) + (−2ξ)2A2,2(∆
2) , [2.25a]

with the matrix element we calculate on the lattice given by

〈

π(p′)
∣

∣ ψ̄(0) γ{µi
↔
Dν} ψ(0)

∣

∣π(p)
〉

= 2P{µPν}A2,0(∆
2) + 2∆{µ∆ν}A2,2(∆

2) . (7.11)

This parametrisation is matched against the lattice ratio R(τ), Eqs. (4.59) and (4.60). This
is done in a completely analogous way as for the pion form factor. The only difference is
the slightly more complicated parametrisation on the continuum side and the additional
derivative for our lattice results. We use our large set of momenta for p and q, c.f. Eq. (6.1).
The additional momenta with components in every direction make it possible to also use
more operator combinations in contrast to the forward case. These operators are included
in App. B. In consequence of the large basis of operators and momenta, we again arrive at
an over-constrained fit to the two generalised form factors A2,0 and A2,2. Our statistical
errors rely on a Jackkife analysis of our configurations.

7.2.1 Momentum dependence

The non-forward matrix elements require a fit to the momentum dependence with respect
to ∆2. The basic form will be the p-pole that was already discussed in Sec. 6.5. It has
been found for the nucleon that the different moments follow p-pole fits with different
exponents p. To check for a preference in data, we thus start by fitting

A2,i(∆
2) = A2,i(0)

(

1− ∆2

piM2
i,lat

)−pi

, for i = 0, 2 (7.12)

to the extracted data points individually for each of our lattices. Here a pole mass Mi

and the exponent pi occur. The value for A2,0(0) should then match our results from
the forward matrix elements 〈x〉 in the previous section. The results to the fits are given
in Table C.7, with one example shown in Fig. 7.6. In contrast to Sec. 6.5, the fit is
not combining all lattices. Hence the individual pi scatter quite a bit and have larger
error bars. We nevertheless observe a tendency for p0<∼ 1 on average and will assume a
monopole as for the form factor in the following. Corresponding fits with p0 = 1 are also
included in Table C.7 and show that the obtained χ2/d.o.f. does not favour a free pole over
the monopole. The error bars of our data are to large to really narrow the choice of an
exponent p0. The situation for p2 is somewhat different because our values for A2,2(∆

2) are
considerably closer to zero, even compatible with zero within the statistical significance of
the data. The absence of a forward value A2,2(0) (which only exists as a limit ∆2 → 0 in
the continuum case) worsens the situation. The fits favour very small pole masses M2 and
small values for p2. Restricting ourselves to integral numbers for the exponent and thus
again using a monopole form is however not excluded by looking at the χ2. The actual
fitted parameters provide a good description of the data, see Fig. 7.6.
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Figure 7.6 | An example for A2,i(∆
2) for lattice #16 including fits to a monopole form.

Note the different sign and the absence of a forward value for i = 2.

While we use a monopole ansatz for our discussion in following, a different behaviour
might be considered in view of generalised transversity distributions [25]. The requirement
of non-divergent, well behaved distributions narrows the choice for the pole form as in
motivating lower bounds on p0 > 1 and p2 > 2. We note that the lattice data is not
sensitive against the exponent p. A dipole yields a similar description. The change in χ2

is very small and the norm A2,i(0) does not change significantly (if the values change, the
shift is clearly within the one-σ error).

We plot the extracted monopole masses and the renormalised (RGI) values for A2,i(0)
in Fig. 7.7. We again observe an almost linear behaviour in m2

π. Due to the improvement
applied to operators for 〈x〉 in the previous section, A2,0(0) has to agree only in the chiral
limit, so we postpone a comparison until later. Instead, we can test if our results are con-
sistent with the so-called soft pion theorem, known for example from chiral perturbation
theory, [90]. It is given by

A2,0(0) = −4A2,2(0) +O(m2
π) . (7.13)

To see whether this relation holds, we plot both results A2,i(0) again in Fig. 7.8 and find
rather good agreement within our statistical errors. Note, however, that this is just a test
and relies on the assumption that lattice artifacts have a similar effect on both forward
values so that they can be neglected.

7.2.2 Effects of the Finite Volume

As for our previous observables, we continue with the investigation of finite size effects.
We do this independently for the forward limit (the norm of the fitting ansatz) and the
monopole mass. Since our values for A2,i(0) show a similar, inconclusive picture that we
found in Sec. 7.1.3, we will not further discuss them here. We resort to our empirical ansatz,
Eq. (6.15), for the monopole masses Mi, and include this in a combined fit to our lattices.
The monopole masses for our dedicated finite size runs are shown in Figs. 7.9 and 7.10.
The fits of the finite volume ansatz to M0,lat are done for the finite volume runs and lattices
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Figure 7.7 | These plots show the pion mass dependence of the forward limit of the two
GFFs A2,i (top) and the monopole mass extracted from Eq. (7.12) (bottom). The solid
lines and error bands correspond to fits (m2

π > 0.3GeV2) as discussed in Sec. 7.2.3.

with m2
π > 0.3GeV2. The parameters we find are c0 = 1.97(13) GeV2 which corresponds

to an extrapolated squared mass, c1 = 0.66(14) (the slope of the extrapolation) and
c2 = −28.4(7.3) GeV2 (describing the volume effect), with an χ2/d.o.f. = 0.74. The fits
are included in the figure. We see from the contour plot in Fig. 7.9.a that the estimated
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Figure 7.8 | A test of the soft pion theorem. Note that we neglect any form of lattice
artifacts in this plot. The dotted lines are linear approximations.

finite size effects are slightly stronger than for the form factor. However, the data points
for M2

0,lat at m2
π ≈ 0.2GeV2 agree within errors, indicating the absence of finite size

effects. Because of the exploratory nature of our finite size estimate, we will proceed as
in Chapter 6, i.e. we exclude the lightest lattices where we anticipate corrections due to
the finite volume from further fits. We include them in our plots for reference only. The
analysis of the data for M2,lat is again more cumbersome. The plot in Fig. 7.10 already
shows that there is no significant effect. The fits are also not stable against including
only the finite size runs or additional lattices as input. We thus have no handle to even
estimate the effect of small physical volumes.

7.2.3 Extrapolations in Pion Mass

The extrapolation of our results to the physical pion mass will once again be performed
linearly in the lattice pion mass. We start by considering the forward limit and the
monopole mass separately, followed by a global fit reducing the total number of parameters
involved.

Forward Limit and Monopole Mass

We use the linear ansatz

A2,i(0,m
2
π) = ci0 + ci1m

2
π and M2

i (m2
π) = di0 + di1m

2
π (7.14)

for the forward limit and monopole mass, respectively. The fit parameters, obtained by
fits to our lattice data with m2

π > 0.3GeV2, are given in Table 7.3. The corresponding
fits are included in Fig. 7.7. Comparing the extrapolated value of A2,0(0) = 0.261(4) to

the (averaged) previous result for 〈x〉MS

(p6=0) = 0.268(8) shows good agreement between the
two approaches. Note that the current technique combines all operator combinations and
momenta that yield q = 0 by our over-constrained fit to Eq. 7.11 and the lattice ratio
R(τ).

Since the linear relation between M2
i and m2

π is only motivated by the plot itself, we
also tested an extrapolation of the monopole mass against the pion mass squared. It
yields a very similar (somewhat larger) χ2 with larger extrapolated monopole masses

(Mphys
0 = 1.349(52) GeV and Mphys

2 = 0.98(22) GeV). We consider the difference between
the two extrapolations as systematic uncertainty.
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0 as discussed in the text. a | shows
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Figure 7.10 | Monopole masses M lat
2 for our finite size lattices, with no visible effect.

Combined Fits

From the above, a combined fit to all lattices (again with m2
π > 0.3GeV2) then follows

A2,i(∆
2,m2

π) = A2,i(0,m
2
π)

(

1− ∆2

M2
i (m2

π)

)−1

, (7.15)

with A2,i(0,m
2
π) and M2

i (m2
π) as given in Eq. (7.14). The results to such fits are shown

in Fig. 7.11, where we have shifted the lattice data to the physical point (as it was done
in Sec. 6.5); the fit parameters can be found in Table C.8. With a monopole mass of
M0 = 1.370(70) GeV and a forward value of AMS

2,0(0) = 0.261(5), the combined fit to A2,0

yields a similar result as the separate extrapolations discussed above. A combined fit also
makes it easy to try different exponents again, not just a monopole form (using Eqs. (7.12)
and (7.14)). Results for up to p = 4 are given in the table. Since the derivative with respect
to ∆2 does not change at ∆2 = 0 for different p, the pole mass should be of comparable
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7.2 The Second Off-forward Moment

size for all p, which is indeed what we find. The χ2 changes very little only, so none of the
fits is particularly preferred.

A combined fit to the data for the second form factor turns out not quite as good,
which is likely to be connected to the much larger errors, some of the shifted lattice points
also having the wrong sign. While the forward value (AMS

2,2(0) = 0.076(5)) is stable, the
monopole mass turns out lower (M2 = 0.38(27) GeV) when using a monopole fit. Using
different exponents has little effect on the χ2, but changes the monopole mass.
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Figure 7.11 | Combined fit of A2,i(∆
2) to our lattices. The results are shifted to the

physical point. We have omitted data points of A2,0 (A2,2) with an error bigger than 70%
(500%) in the plot for better visibility.

Table 7.3 | Fit parameters to our extrapolations w.r.t. the pion mass. Parameters of
the forward results are for renormalised values (RGI). We also provide the results at the
physical pion mass in MS at µ = 2GeV.

i ci0 ci1 [GeV−2] χ2/d.o.f. Aphys, MS
2,i (0)

0 0.364(6) 0.067(6) 2.02 0.261(4)
2 -0.092(11) 0.012(12) 1.17 -0.066(8)

i di0 [GeV2] di1 χ2/d.o.f. Mphys
i [GeV]

0 1.75(16) 0.79(17) 0.50 1.329(58)
2 0.77(49) 0.95(63) 0.88 0.89(25)
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Figure 7.12 | Combined fit of Ai,0(∆
2) to our lattices, both normalised to one. The

comparison of the two results shows that the distribution of quarks becomes narrower for
their momentum fraction x→ 1. The results have been shifted to the physical pion mass
as before and we have omitted data points with an error larger than 70% in the plot.

7.2.4 Discussion of the Off-Forward Results

Our results for the second moment of the pion vector GPD Hq
π showed the expected value

in the forward limit. From our combined fits we find AMS
2,0(0) = 0.261(5) and AMS

2,2(0) =
−0.076(5) with purely statistical errors. The first number reproducing the result from the
previous section, which cannot be seen as completely independent information, but rather
a test of our fitting procedure analysis codes. The second number is in conjunction with
the soft pion theorem.

The monopole masses, which describe the momentum behaviour of the two GFFs, are
Mphys

0 = 1.370(70)(20) GeV and Mphys
2 = 0.38(27)(9) GeV, also from our combined fits.

Here the first error is statistical, and second reflects a systematic uncertainty in the ex-
trapolation. We note that the error on M2 is probably underestimated due to the problems
with the fit.

We can give a physical meaning to M0, when we consider the distribution of partons in
the transverse plane,

〈

r2
⊥

〉

(c.f. Sec. 2.4). This is related to the vector GPDHq
π(x, 0,−∆

2
⊥),

Eq. (2.13), and depends on the momentum carried by the quarks. A larger momentum
fraction should be reflected in a narrower distribution. The average impact parameter
should in fact be independent of ∆2 as x goes to one. Since higher momentsMn+1(H

q
π) in x

put more weight on larger momentum fractions, the fall-off of the momentum dependence
of A2,0 should be smaller than for A1,0, until it finally becomes flat for n → ∞. We
indeed find this behaviour, as clearly shown in Fig. 7.12 where for clarity we normalised
both GFFs to one. It is also obvious from the higher monopole mass for A2,0 when
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Figure 7.13 | Moments of the transverse distribution q(x, b⊥) corresponding to An,0 shown
as probability densities ρ. The contour lines are equally spaced and identical for both
cases. Included on the top are the densities for 〈by〉 = 0. We clearly observer a narrower
distribution for n = 2.

compared to the pion form factor (Chapter 6). A more intuitive approach is to compute
the Fourier transform of An,0(∆

2) to impact parameter space, which leads to moments of
the distribution q(x, b⊥), Eq. (2.11). The Fourier transform of our p-pole in Eq. (7.12) to
transverse space is [25]

A(b2
⊥) = A(0)

pM2
A

2pπ Γ(p)
(
√
pMA b)

p−1Kp−1(
√
pMA b) (7.16)

with modified Bessel functions and b =
√

b2
⊥. Our results for A1,0 and A2,0 are displayed

in Fig. 7.13 which now make the narrowing directly visible.

7.3 Conclusion

We have calculated the higher moments of the pion structure with pions from the axial-
vector interpolating field. First, we focused on the forward limit that is relevant for pion
PDFs. Comparison with phenomenological expectations derived from experiments showed
good agreement. Our results also include a lattice prediction that quarks carry about 54%
of the pions momentum.

We then examined the second moment of the off-forward distribution. Using a monopole
ansatz for the momentum dependence and extracting the monopole masses, we were able
to extrapolate our results to the physical pion mass. It was possible to infer a narrowing
distribution of quarks, when the momentum fraction is increased. We also found evidence
for a soft pion theorem, relating the forward limit of the two GFFs to each other.
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7 Higher Moments of the Pion Structure

The biggest ambiguity in our present analysis stems from lattice artifacts that are not
under control yet. In particular, finite volume effects could not be obtained unambiguously
but seem to be present for our lightest pion masses. As for the form factor we require
additional data points to clarify the situation.
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Outlook –

The Transverse Spin Structure of the Pion

Although the pion itself has spin zero and cannot be polarised, this is not true for its
constituents. Hence, it is worthwhile investigating the Boer-Mulders effect [12] for the pion.
This effect refers to an asymmetry in scattering experiments, manifest as a correlation of
the transverse momentum of the ejected quark and its polarisation inside the target.
These so-called single spin asymmetries (SSA) have recently been subject of numerous
theoretical studies. Experimental evidence is however scarce. While the Sivers effect3 has
been measured for example at the Hermes experiment at DESY, the efforts to find the
Boer-Mulders effect are only about to start. Again, this will be for a nucleon target. Hence
theory and in particular model-free lattice calculations here have a unique opportunity to
predict a yet unmeasured effect.

The pion vector and tensor GPDs of this study are the observables to investigate mo-
ments of the required spin densities. They relate to distribution functions in the transverse
plane that allow for a probabilistic interpretation, as discussed in Sec. 2.4. These in turn
allow for an interpretation of SSAs [14]. We recall the impact parameter PDFs in slightly
more general form [92]

FΓ(x, b⊥) =

∫

z−

2π
eixp

+z−
〈

π(p′+,0⊥)
∣

∣ ψ̄q(−
z−

2
, b⊥)Γψq(

z−

2
, b⊥)

∣

∣π(p+,0⊥)
〉

, [2.11]

where we have again used states
∣

∣π(p+,0⊥)
〉

of fixed light-cone momentum and transverse
position. To project onto quarks with definite transverse polarisation s, we use the opera-
tor 1

2 q̄[γ
+−sj iσ+jγ5]q, [25]. The first term is just our vector operator, and the second term

becomes proportional to our tensor current upon using the identity σµνγ5 = −1
2ǫ
µναβiσαβ.

With the definition of the pion GPDs, Eqs. (2.5a) and (2.5b), and performing the Fourier
transform to transverse position, we arrive at the (properly normalised) density for trans-
versely polarised quarks q inside the pion

ρq(x, b⊥) =
1

2

(

Hq
π(x, b

2
⊥)− siǫijbj⊥

mπ

∂

∂b2
⊥

EqTπ(x, b
2
⊥)

)

. (8.17)

Here Hq
π(x, b2

⊥) and EqTπ(x, b
2
⊥) are the Fourier transformed GPDs, c.f. Eqs. (2.12a) and

(2.12b) (where we denoted them q and qT). Our lattice data again yields moments of the
density ρ(x, b⊥).

Since the Fourier transform is taken for ∆⊥ while ∆+ = 0, only form factors which
have a factor of ξ0 in Eqs. (2.25a) and (2.25b) survive. Hence we need the vector GFFs
An,0 that we discussed in the previous chapters, and the tensor GFFs BTn,0 that have not

3The Sivers effect also generates SSAs but requires a polarised target and does not apply to the pion.
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Figure 8.14 | Preliminary extrapolations of the normBT1,0(0) (top, at MS with µ = 2GeV)
and dipole mass M (bottom) of the tensor form factor BT 1,0(∆

2).

been covered yet. We will now provide a preliminary outlook on the first Mellin moment
of the density ρ.

The momentum dependence of BT1,0(∆
2) is fitted with the customary p-pole ansatz,

Eq. (7.12). We want to note again that this ansatz provides a good description of our
lattice data but is somewhat arbitrary and not motivated by physics arguments. As
already pointed out in Sec. 7.2.1, the constraint of having regular densities at the origin
limits the possibilities to p > 3/2. The lattice data is not very sensitive to the choice of p,
and we took a fixed p = 2 for simplicity. The χ2/d.o.f. for such a choice varies from 0.3 to
2.3 for our different lattices.

The extrapolation of the resulting dipole masses is shown in Fig. 8.14. It follows a
linear relation between the squared dipole mass Mlat and the pion mass squared. Us-
ing all lattices and neglecting any lattice artifacts we obtain a preliminary result of
Mphys = 0.845(33) GeV. The extrapolation of the forward value BT1,0(0) is also included
in Fig. 8.14. The form of the extrapolation is guided by chiral perturbation theory that
finds a vanishing forward value in the chiral limit [90]. We thus extrapolate mπ,latBT1,0(0)
against the squared pion mass to find BT 1,0(0) = 0.219(6) at the physical point in the
MS-scheme with µ = 2GeV. For both extrapolations, the two lattices at m2

π ≈ 0.2GeV2
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(hexagon and circle) suggest that finite size effects are important since they have a dif-
ferent physical volume. The extrapolations, however, go through the data point with the
bigger volume.

To arrive at the transverse densities given in Eq. 8.17, we finally need to Fourier trans-
form the found p-poles. We follow [25], and obtain the preliminary densities shown in
Fig. 8.15. Very clearly, we observe a shifted distribution for polarised quarks in the pion.
This is similar to observations made for the nucleon and also in line with recent model
calculations [92, 93]. Note that the specific shape of the distribution, especially near the
centre, depends on the chosen p-pole and its extrapolation. The predictability for small
values of b⊥ is further somewhat restricted by the lattice calculation, since it requires a
large momentum transfer which is limited on the lattice. Furthermore, one should bear in
mind that the lattice spacing a also imposes a lower bound on the possible resolution.

The interpretation of this result is intuitive in a semi-classical way [14]. Consider the
pion as a sphere moving in the z-direction, Fig. 8.16. A rotation around bx would then
add (subtract) to the velocity in the z-direction for by > 0 (by < 0), and thus change the
distribution of longitudinal momenta depending on the transverse position. The effect an
observer at rest would be a quark density shifted towards positive by in the transverse
plane. Of course the pion is not a sphere, but rather a Lorentz contracted disc, making
an interpretation in terms of quark angular momentum more difficult.

z
π

by

Figure 8.16 | A classical rotating pion to explain the increased density of quarks for by > 0.
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Outlook

A more detailed analysis of the densities of transversely polarised quarks will follow
in the near future. This will include an investigation of the momentum dependence, the
extrapolation to the physical pion mass and lattice artifacts.
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Summary

In this thesis, we have discussed several aspects of the pion structure that are accessible
with lattice QCD. In our introduction, we briefly mentioned QCD phenomenology for
the pion that is obtained from experiments, namely the electromagnetic form factor con-
nected to the charge radius, and the parton distribution functions (PDFs) which provide
probabilities of finding a parton with a certain momentum fraction (Chapter 1). These
are embedded in the more general framework of generalised parton distributions (GPDs)
for which we gave a short review in Chapter 2 and which form the basis of this work.
Although this concept is not new, it has recently been rediscovered and is now actively
investigated in both, theory and experiment. We gave the definition for the pion case and
showed how the GPDs relate to the known observables. In particular, we tried to convey
an intuitive picture. The intuition can however be misleading if one does not constrain
oneself to transverse space as we tried to stress. Only then is a probabilistic interpretation
possible. Special attention was paid to Mellin moments of GPDs that are parametrised in
generalised form factors relevant for lattice calculations.

The two subsequent Chapters 3 and 4 were devoted to an introduction to lattice QCD
and the lattice techniques we used. Here we started from the QCD Lagrangian and the
path integral, to then explain our lattice gauge and fermion action, both going back to
Wilson. For the latter we used the clover improved version for our dynamical two flavour
simulations. We then gave details of the calculation of two- and three-point functions on
the lattice, as well as the operators involved and how the matrix elements are extracted
from the lattice data by building suitable ratios.

The discussion of our numerical results was organised in separate parts: Chapter 5 gave
a short overview of pion two-point functions from which pion energies and the dispersion
relation can be extracted. The pion form factor was used in Chapter 6 for an exhaus-
tive explanation of our methods to analyse the data. We investigated the momentum
dependence of the form factor and its extrapolation to physical pion masses. We also
payed attention to the lattice artifacts appearing in any lattice simulation. That is we
explored discretisation errors and the effect of improving the vector current. We also tried
to estimate the size of finite volume corrections. This allowed us to compare with results
from chiral perturbation theory. In Chapter 7 we applied the established methods to the
analysis of higher moments of the forward distributions and the second moment of the
non-forward case. While the form factor lead to the charge radius of the pion, this now
made it possible to derive pion PDFs and densities of quarks in the transverse plane. Fi-
nally, we gave an outlook on the densities of polarised quarks in the pion – an observable
which provides novel information about the pion structure and has not been measured in
experiments yet.

While our results are in excellent agreement with experiments in case of the form factor,
and compatible with phenomenological results for the PDFs, their accuracy is still limited
by ambiguities in the chiral extrapolation and lattice artifacts introducing systematic
uncertainties. Our analysis showed that discretisation errors can be neglected or are
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Summary

at least small, certainly at the level of present statistical errors. More problematic are
finite size effects, which need better analytic control. This is in reach, with additional
simulations at light quark masses, also at different volumes, that are just being performed.
Nevertheless, additional input from chiral perturbation theory (for example [80]) will be
necessary to fully clarify the finite volume effects.

Apart from the caveats just mentioned, lattice QCD has provided valuable insights into
the structure of the pion. The quark densities in the transverse plane are unprecedented
and not yet measured in experiments. It is indeed unclear if the necessary experiments
are feasible. Furthermore, the predictions from lattice QCD can now be used to challenge
our understanding of the strong force when compared to model calculations.
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A Our Ensemble of Lattices

Our simulation is performed using a rational hybrid Monte Carlo simulation. Independent
configurations are obtained every 40 trajectories. We use the multiple source technique
to be able to use every fifths configuration. The parameters of our lattices are given in
Table A.1. The scale is set using the Sommer parameter with r0 = 0.467 fm.

Table A.1 | Overview of our lattice parameters. For physical units the Sommer parameter
with r0 = 0.467 fm has been used. The error on mπ is purely statistical.

β # κ N3 × T mπ [GeV] a [fm] L [fm] mπL Ntraj

5.20 1 0.13420 163 × 32 1.007(2) 0.115 1.8 9.4 O(5000)
2 0.13500 163 × 32 0.833(3) 0.098 1.6 6.6 O(8000)
3 0.13550 163 × 32 0.619(3) 0.093 1.5 4.7 O(8000)

5.25 4 0.13460 163 × 32 0.987(2) 0.099 1.6 7.9 O(5800)
5 0.13520 163 × 32 0.829(3) 0.091 1.5 6.1 O(8000)
6 0.13575 243 × 48 0.597(1) 0.084 2.0 6.1 O(5900)
7 0.13600 243 × 48 0.447(1) 0.081 2.0 4.4 O(5200)

5.26 8 0.13450 163 × 32 1.011(3) 0.099 1.6 8.1 O(4000)

5.29 9 0.13400 163 × 32 1.173(2) 0.097 1.6 9.2 O(4000)
10 0.13500 163 × 32 0.929(2) 0.089 1.4 6.7 O(5600)
11 0.13550 243 × 48 0.769(2) 0.084 2.0 7.9 O(2000)
12 0.13590 243 × 48 0.592(2) 0.080 1.9 5.8 O(5900)
13 0.13620 243 × 48 0.402(3) 0.077 1.9 3.8 O(5600)
14 0.13632 323 × 64 0.336(2) 0.077 2.5 4.2 O(2400)

5.40 15 0.13500 243 × 48 1.037(1) 0.077 1.8 9.7 O(3700)
16 0.13560 243 × 48 0.842(2) 0.073 1.8 7.5 O(3500)
17 0.13610 243 × 48 0.626(2) 0.070 1.7 5.3 O(3900)
18 0.13640 243 × 48 0.444(3) 0.068 1.6 3.7 O(5100)

Table A.2 | Values for r0/a for our different β-values; taken in the chiral limit.

β 5.20 5.25 5.29 5.40

r0/a 5.444(72) 5.851(95) 6.158(53) 6.951(54)
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Table A.3 | Parameters used for smearing our quark fields. They are generic for one β
value where no κ values have been specified.

β κsea Nsmear κsmear

5.20 50 0.21

5.25 60 0.21
5.29 0.134 50 0.21

60 0.21
0.13632 65 0.21

5.40 0.135, 0.1356 65 0.21
0.1361, 0.1364 0.75 0.21
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B Lattice operators

The general form of our lattice operators is given by

Oµµ1µ2...µn = Fff ′ ψ̄
(f)Γ

↔
Dµ1

↔
Dµ2 . . .

↔
Dµnψ

(f ′) (B.1)

where Γ is an element of the full Clifford algebra, i.e. we compute Γ ∈ {1, γ5, γµ, γ5γµ, σij}
with i, j = 1, . . . , 4 and i < j (the derivative was defined in Eq. (4.18)). The above
definition thus includes both, the vector as well as the tensor operators, Eqs. (4.17a) and
(4.17b).

We use the abbreviation {. . . } for symmetrisation of indices. The operator combinations
that are used for the forward matrix elements of the vector current have the simplifying
choice p = (1, 0, 0), (0, 1, 0) and (0, 0, 0). We label the ’forward operators’ explicitly with
Ov2a, Ov2b, Ov3 and Ov4 [44]. A complete list of operators can be found in [43]. The
subset we use is:

n = 0, τ
(4)
1 , C = −1

Oµ , 1 ≤ µ ≤ 4. (B.2)

n = 1, τ
(6)
3 , C = +1

Ov2a = O{µν} , 1 ≤ µ < ν ≤ 4, (B.3)

τ
(3)
1 , C = +1

Ov2b = O44 −
1

3
(O11 +O22 +O33) . (B.4)

The non-forward moments have additional operators and a slightly different linear

combination (however, we still have τ
(3)
1 , C = +1):

1

2
(O11 +O22 −O33 −O44) ,

1√
2
(O33 −O44) ,

1√
2
(O11 −O22) (B.5)

n = 2, τ
(8)
1 , C = −1

Ov3 = O{44µ} −
1

2

(

O{22µ} +O{33µ}

)

, µ = 1, 2. (B.6)

n = 3, τ
(2)
1 , C = +1

Ov4 = O{1144} +O{2233} −
1

2

(

O{1133} +O{1122} +O{2244} +O{3344}

)

, 1↔ 2.

(B.7)

We have also stated the irreducible representation of the hypercubic group H(4) the oper-

ators belong to: τ
(l)
k , where l is the dimension of the representation and k labels different

representations of the same dimension. C is the charge conjugation parity of the operator.
Note that the operators are all traceless and symmetrised appropriately.
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C Compiled data

Table C.1 | Monopole masses Mlat obtained from fits to (6.2) for the axial pion current.
Also included is the calculated monopole mass (in finite volume) together with the esti-
mated finite size shift from the fit to (6.15). Errors are statistical only.

# Mlat [GeV] Mvol [GeV] ∆Mvol [MeV]

1 1.105(22) 1.083 0.3
2 0.997(21) 0.984 4.6
3 0.880(24) 0.894 38.3

4 1.080(20) 1.071 1.2
5 0.975(18) 0.979 7.8
6 0.870(22) 0.870 8.6
7 0.747(18) 0.770 52.0

8 1.066(25) 1.084 0.9

9 1.157(20) 1.180 0.3
10 1.051(15) 1.036 4.0
11 0.971(14) 0.955 1.4
12 0.854(15) 0.863 12.6
13 0.783(29) 0.699 108.2
14 0.708(43) 0.720 69.0

15 1.099(11) 1.100 0.2
16 0.981(14) 0.991 2.0
17 0.847(17) 0.871 19.8
18 0.690(18) 0.708 112.6

Table C.2 | Constants ci and c′i for the chiral extrapolation formulae, Eqs. (6.21) and
(6.22)

1 2 3 4 5 6

ci × 104 63.3257 2.40609 1.57234 1.26988 0.80203 2.74602

c′i 0.138852 0.694077 0.453568 0.366318 0.231359 0.792135
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Table C.3 | Moments of the forward vector GPD. The given values are renormalised RGI matrix elements and not in MS. We also
give the used fit ranges. For p 6= 0 two momenta are averaged. Errors are statistical only.

# Ov2a Ov2b Ov3 Ov4
p 6= 0 p 6= 0 p = 0 p 6= 0 p 6= 0

1 0.452(17) 3-13 0.4878(33) 3-13 0.4881(18) 5-11 0.244(11) 5-11 0.160(10) 5-11
2 0.408(29) 3-13 0.448(15) 3-13 0.4512(85) 5-11 0.248(19) 3-13 0.162(20) 5-11
3 0.390(51) 3-13 0.442(20) 3-13 0.4285(71) 5-11 0.219(33) 3-13 0.153(43) 5-11

4 0.435(22) 3-13 0.4671(54) 5-11 0.4706(23) 5-11 0.228(15) 5-11 0.151(14) 5-11
5 0.400(27) 3-13 0.4388(82) 5-11 0.4485(30) 5-11 0.236(17) 3-13 0.131(19) 5-11
6 0.394(27) 5-19 0.3930(76) 7-17 0.3955(39) 7-17 0.235(19) 5-19 0.152(47) 9-15
7 0.392(66) 4-19 0.384(21) 7-17 0.3897(73) 7-17 0.273(53) 8-16 0.29(12) 9-15

9 0.475(18) 3-13 0.4940(35) 5-11 0.4986(19) 5-11 0.2559(96) 3-13 0.170(12) 5-11
10 0.459(22) 3-13 0.4706(66) 5-11 0.4633(22) 5-11 0.247(14) 5-11 0.169(14) 5-11
11a 0.29(26) 5-11 0.48(12) 5-11 0.5045(90) 5-11 0.127(87) 5-11 0.179(82) 5-11
11b 0.464(32) 3-13 0.447(10) 5-11 0.4539(40) 5-11 0.271(20) 3-13 0.193(23) 5-11
11 0.435(20) 5-19 0.4256(49) 7-17 0.4312(34) 7-17 0.224(17) 7-17 0.171(28) 9-15
12a 0.49(179) 5-11 0.385(84) 5-11 0.612(47) 5-11 0.20(23) 5-11 0.13(17) 5-11
12b 0.390(46) 3-13 0.443(15) 3-13 0.4854(69) 3-13 0.224(32) 5-11 0.172(35) 5-11
12 0.388(17) 5-19 0.3969(60) 7-17 0.4046(28) 7-17 0.216(14) 7-17 0.165(34) 9-15
13 0.405(83) 5-19 0.409(41) 9-15 0.397(11) 7-17 0.302(65) 7-17 –
14 0.413(86) 10-22 0.349(32) 10-22 0.386(18) 8-24 0.224(88) 10-22 –

15 0.462(13) 5-19 0.4672(33) 9-15 0.4705(16) 6-18 0.2549(85) 6-18 0.160(13) 9-15
16 0.450(16) 5-19 0.4469(40) 6-18 0.4407(23) 6-18 0.258(11) 6-18 0.183(19) 9-15
17 0.362(27) 5-19 0.3931(74) 5-19 0.4065(43) 9-15 0.223(20) 6-18 0.109(38) 9-15
18 0.389(64) 5-19 0.396(24) 9-15 0.4114(95) 8-16 0.202(52) 9-15 0.109(98) 9-15

1
0
2



Table C.4 | The upper table contains the renormalisation constants for our operators to
obtain RGI matrix elements. The errors are systematic uncertainties from the extrapola-
tion. The conversion factors from the RGI point to the MS scheme at a certain scale µ are
given in the lower table. The errors are estimates due to the uncertainty in ΛQCD. Both
from [94].

β
ZRGI
O (β) 5.20 5.25 5.29 5.40

Ov2a 1.50(2) 1.51(2) 1.52(1) 1.56(1)
Ov2b 1.51(3) 1.51(2) 1.53(2) 1.57(2)
Ov3 2.40(5) 2.40(5) 2.40(5) 2.48(5)
Ov4 3.75(10) 3.70(10) 3.70(10) 3.85(10)

µ2 [GeV2]

ZMS, RGI

O (µ) 2 4 5

Ov2 0.76641(1.5%) 0.71544(2.5%) 0.70183(3%)
Ov3 0.65174(1.5%) 0.58648(2%) 0.56943(2.5%)
Ov4 0.57979(1%) 0.50844(2%) 0.49008(2.5%)

Table C.5 | The moments of the PDFs in the chiral limit (mπ = 0), separately for our
different β values. All values are RGI matrix elements.

β
5.20 5.25 5.29 5.40

Ov2a 0.336(65) 0.365(43) 0.374(21) 0.352(34)
Ov2b (p = 0) 0.389(11) 0.361(6) 0.379(3) 0.376(5)
Ov2b (p 6= 0) 0.399(27) 0.352(12) 0.373(6) 0.376(9)
Ov3 0.227(42) 0.242(29) 0.205(16) 0.231(24)
Ov4 0.158(49) 0.117(53) 0.166(28) 0.152(44)

Table C.6 | This table contains the fitted parameters for the continuum limit. The notation
is c0 + c1a

i for the linear fit (w.r.t. i = 2 for 〈x〉 and w.r.t. i = 1 otherwise). The constant
is given by c. All values are RGI matrix elements again.

c0 c1 χ2/d.o.f. c χ2/d.o.f.

Ov2a 0.356(124) 1.6(21.8) 0.26 0.365(16) 0.26
Ov2b (p = 0) 0.382(19) -1.1(3.3) 4.90 0.376(2) 4.95
Ov2b (p 6= 0) 0.392(37) -3.7(6.6) 1.82 0.371(5) 1.97
Ov3 0.230(168) -0.2(2.2) 0.82 0.218(12) 0.82
Ov4 0.182(260) -0.3(3.4) 0.33 0.155(20) 0.33

103



C Compiled data

Table C.7 | Fits to a p-pole form for A2,i. Some of the fits seem to break down with very
large masses or exponents (with errors of comparable size) and we omitted these in the
table. The forward limit (norm of the fit) is the renormalised value and corresponds to
〈x〉RGI for i = 0.

# M0 p0 χ2/d.o.f. M0 (p0 = 1) ARGI
2,0 (0) χ2/d.o.f.

1 1.61(19) 0.71(44) 0.23 1.692(82) 0.442(9) 0.23
2 1.55(17) 0.86(48) 0.65 1.593(78) 0.420(9) 0.58
3 1.63(20) 7.0(30.3) 0.54 1.414(95) 0.403(13) 0.68

4 1.73(20) 2.2(3.0) 0.17 1.575(78) 0.438(12) 0.24
5 1.64(15) 2.8(3.2) 0.48 1.458(65) 0.412(10) 0.68
6 1.66(33) 5.7(53.7) 0.65 1.515(129) 0.382(11) 0.60
7 1.10(21) 0.68(67) 0.89 1.159(98) 0.379(9) 0.76

9 1.76(10) 1.59(90) 1.09 1.665(45) 0.440(6) 1.08
10 1.64(13) 1.08(47) 1.05 1.615(56) 0.427(8) 0.92
11 1.57(20) 1.7(2.8) 0.19 1.499(82) 0.399(8) 0.19
12 1.45(19) 1.3(1.6) 1.02 1.407(77) 0.372(8) 0.91
13 – – – 1.440(205) 0.365(12) 1.83
14 0.41(48) 0.16(22) 0.56 0.822(150) 0.382(18) 0.68

15 1.68(10) 1.7(1.2) 1.71 1.596(41) 0.445(4) 1.61
16 1.54(15) 1.01(60) 0.48 1.539(63) 0.417(8) 0.43
17 1.32(15) 0.76(41) 1.35 1.379(74) 0.383(9) 1.18
18 1.17(23) 1.0(1.0) 0.85 1.173(94) 0.386(11) 0.71

# M2 p2 χ2/d.o.f. M2 (p2 = 1) ARGI
2,2 (0) χ2/d.o.f.

1 0.020(18) 0.316(54) 5.60 1.509(323) 0.087(11) 5.64
2 0.022(16) 0.484(67) 1.70 1.067(208) 0.126(22) 1.78
3 – – – 1.094(317) 0.112(26) 0.82

4 0.041(159) 0.480(81) 1.57 1.090(198) 0.110(18) 1.72
5 0.025(3.7) 0.414(101) 1.33 1.338(290) 0.092(15) 1.49
6 0.045(53) 0.409(98) 0.68 0.977(249) 0.069(13) 0.60
7 0.035(1.01) .304(217) 1.02 1.286(778) 0.074(22) 0.92

9 0.017(12) 0.390(48) 5.06 1.422(241) 0.083(11) 5.46
10 0.020(16) 0.339(47) 3.31 1.684(272) 0.077(8) 3.44
11 0.024(6.2) 0.237(96) 2.14 1.703(550) 0.075(11) 2.14
12 0.029(30) 0.350(70) 0.65 1.177(247) 0.087(12) 0.68
13 0.027(423) 0.568(318) 0.97 0.657(519) 0.16(11) 0.81
14 – – – – – –

15 0.001(2) 0.183(33) 3.76 2.221(526) 0.070(6) 3.56
16 0.020(18) 0.306(48) 1.88 1.508(256) 0.081(9) 2.00
17 0.027(96) .536(139) 1.58 0.857(279) 0.093(28) 1.49
18 0.079(517) 0.722(310) 0.57 0.546(448) 0.16(16) 0.47
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Table C.8 | Combined fits to A2,i with different p-poles (all results obtained in the MS-
scheme at µ = 2GeV).

p c0 c1 d0 d1 χ2/d.o.f. Mphys
2,i [GeV] Aphys

2,i (0)

A2,0 1 0.260(4) 0.049(5) 1.86(19) 0.70(22) 1.18 1.370(70) 0.261(5)
2 0.257(4) 0.049(5) 2.19(20) 0.78(23) 1.19 1.484(67) 0.258(5)
3 0.256(4) 0.049(4) 2.32(21) 0.81(23) 1.23 1.527(68) 0.257(5)
4 0.256(4) 0.049(4) 2.38(21) 0.83(23) 1.27 1.548(68) 0.257(4)

A2,2 1 -0.077(5) 0.019(4) 0.11(27) 2.47(49) 2.27 0.39(27) -0.076(5)
2 -0.070(4) 0.016(4) 0.32(38) 3.25(65) 2.35 0.62(26) -0.070(4)
3 -0.069(3) 0.015(3) 0.41(42) 3.49(70) 2.38 0.69(26) -0.068(4)
4 -0.068(3) 0.015(3) 0.47(44) 3.61(73) 2.39 0.73(26) -0.068(4)
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