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Abstract

We present the analysis of data taken in the years 2002-2004 with the 27.56 GeV positron
beam of the HERA storage ring at DESY and the internal transversely polarised hydrogen
fixed target of the HERMES experiment. Events with a scattered positron and a produced
pion are selected. Exclusive production of single pions, e+p→ e+′nπ+, is ensured by requiring
the missing mass in the event to be equal to the mass of the neutron, which is not detected.
The cross section for this process depends on the Bjorken scaling variable, the four-momentum
transfer, and the transverse four-momentum transfer, whose average values for our sample are
〈x〉 = 0.12, 〈Q2〉 = 2.3 GeV2, 〈t′〉 = −0.18 GeV2, respectively, and two azimuthal angles: the
angle φ between the scattering and production planes (their common line contains the virtual
photon), and the angle φS between the scattering plane and the target polarisation vector.
The hard scattering is selected by requiring Q2 > 1 GeV2.

The asymmetry, also called transverse-target single-spin azimuthal asymmetry, is defined as
the ratio of the difference to the sum of the cross sections for positive and negative target polar-
isation. It is characterised by six azimuthal sine modulations, whose amplitudes can vary from
−1 to 1. We measure the asymmetry from a sample of 2093 events with a signal-to-background
ratio of 1 : 1. At average kinematics, the values of the amplitudes are found to be small or con-
sistent with zero, except for the amplitude Asin φS

UT,meas = 0.38± 0.06(stat)+0.12
−0.06(syst). The ampli-

tude of main interest for comparison with theory, A
sin(φ−φS)
UT,meas = 0.09±0.05(stat)+0.10

−0.03(syst), after

correction for the background contribution becomes A
sin(φ−φS)
UT,bg.cor = 0.22 ± 0.13(stat)+0.10

−0.04(syst).

As a function of t′, the measured values of this amplitude increase as
√
−t′ and at larger |t′| the

corrected ones approach the prediction, however, within their large statistical uncertainties.
The phenomenology of hard exclusive electroproduction of pions is explained at present

in terms of the so called QCD factorisation theorem: the amplitude for the cross section is
given as a convolution of a hard scattering part calculable in perturbative quantum chromo-
dynamics, a distribution amplitude describing the pion, and generalised parton distributions
that parameterise the complex structure of the proton. Using QCD factorisation and models
for the particles’ structure, the value of the leading amplitude A

sin(φ−φS)
UT is predicted to be of

order unity. Although our results appear to support this prediction, a direct and more precise
data-to-theory comparison requires larger statistics and improved detector capabilities than
available for the present measurement.
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Zusammenfassung

Wir präsentieren die Analyse der Daten, die in den Jahren 2002-2004 mit dem 27.56 GeV
Positronenstrahl des HERA Speicherrings am DESY und dem internen transversal polarisierten
Wasserstofftarget (’fixed target’) des HERMES Experiments aufgenommen wurden. Ereignisse
mit einem gestreuten Positron und einem erzeugter Pion wurden selektiert. Die ausschließliche
Erzeugung eines einzelnen Pions, e+p → e+′nπ+, wird durch die Anforderung gewährleistet,
daß die fehlende Masse des Ereignisses der Masse des Neutrons, das nicht gemessen wird,
entspricht. Der Streuquerschnitt für diesen Prozess hängt von der Bjorken-Skalenvariable, den
Vierer-Impulsübertrag und den Transversalimpulsübertrag, deren durchschnittliche Werte für
unsere Datensätze bei 〈x〉 = 0.12, 〈Q2〉 = 2.3 GeV2, 〈t′〉 = −0.18 GeV2 liegen, sowie zwei
azimuthale Winkel: der Winkel φ zwischen den Streu- und Produktionsebene (die Schnittlinie
der Ebenen enthält das virtuelle Photon), und der Winkel φS zwischen der Streuebene und dem
Polarisationsvector des Targets. Die harte Streuung wird durch die Bedingung vonQ2 > 1 GeV2

bestimmt.
Die Asymmetrie, auch Transversal-Target-Einzelspin-Azimuthalasymmetrie genannt, wird

als das Verhältnis der Differenz zur Summe der Streuquerschnitte für die positive und negative
Targetpolarisation definiert. Es wird durch sechs azimuthale Sinus-Modulationen charakteri-
siert, deren Amplituden von −1 bis 1 varieren können. Wir messen die Asymmetrie eines Da-
tensatzes von 2093 Ereignissen mit einem Signal-Rausch-Verhältnis von 1 : 1. Im Durchschnitt
wurden geringe oder mit Null übereinstimmende Amplitudenwerte gefunden, abgesehen von
der Amplitude Asin φS

UT,meas = 0.38± 0.06(stat)+0.12
−0.06(syst). Die Amplitude mit größten Bedeutung

für den Vergleich mit der Theorie, A
sin(φ−φS)
UT,meas = 0.09 ± 0.05(stat)+0.10

−0.03(syst), wird nach einer

Korrektur für den Untergrundbeitrag A
sin(φ−φS)
UT,bg.cor = 0.22 ± 0.13(stat)+0.10

−0.04(syst). Als Funktion

von t′ steigen die gemessenen Werte dieser Amplitude mit
√
−t′ an und für höhere |t′|-Werte

entsprechen die korrigierten Amplituden den Vorhersagen, allerdings innerhalb der großen ex-
primentellen Unsicherheiten.

Die Phänomenologie von harter exklusiver Electroproduktion von Pionen wird zurzeit in
Form des sogenannten QCD-Faktorisierungstheorems erklärt: die Amplitude des Streuquer-
schnitts ist die Faltung eines harten Teils der Streuung, aus der perturbativen Quantenchro-
modynamik berechenbar, mit einer Verteilungsfunktion, die das Pion beschreibt, und verall-
gemeinerte Parton-Verteilungen, die die komplexe Struktur des Protons parametrisiert. Mit
Hilfe der QCD-Faktorisierung und den Modellen der Teilchenstruktur wird der maximale Wert
der Hauptamplitude A

sin(φ−φS)
UT zu 1 vorausgesagt. Obwohl unsere Ergebnisse die Voraussage zu

bestätigen scheinen, ein direkter und genauerer Vergleich der Daten mit der Theorie verlangt
größere Statistik und verbesserte Fähigkeiten des Detektors als für die vorliegende Messung
vorhanden waren.

Schlagwörter:
Quantenchromodynamik, exklusiv, Protonstruktur, Asymmetrie
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Chapter 1

Introduction

The proton p (with radius rp ≈ 10−15 m) represents the nucleus of the hydrogen atom H
(rH ≈ 10−10 m). The ground states of the hydrogen spectrum (which is similar to atomic and
nuclear spectra) are correctly described by postulating the existence of spin-1

2
pointlike (having

no internal structure of their own) particles, called quarks q (rq < 10−18 m), which compose
the proton, i.e., p = (uud), with eu = 2

3
and ed = −1

3
the charges of the up u and down d

quarks, respectively. In this quark model, e.g., the pion π+ = (ud̄) is a bound state of u and
an antiquark d̄ with ed̄ = 1

3
.

Further information about the structure of the proton is obtained, e.g., from the scattering
of high-energy pointlike electrons e− (re− ≈ 10−18 m) off protons. In the proton’s rest frame
the constituent particles of the proton interact with each other on a time scale of order rp/c,
where c is the speed of light. However, in the centre-of-mass frame of the scattering the
proton appears to be boosted (moves very fast) and Lorentz-contracted, i.e., rp,|| → 0 (but
keeping its transverse extension, i.e., rp,⊥ 6= 0) in the planes parallel (transverse) to the boost
direction. The rapidly moving proton can be treated as a jet of quasi-free particles moving
almost collinear. Before a next interaction between the particles inside the proton takes place,
time-dilation implies that the one before occurred a long distance (≈ 100 rp) upstream, which
is much larger than the short scale of the scattering. The scattering distance scale is rp

Q
, where

Q is the four-momentum transferred from the electron to the proton, so that with Q� 1 GeV
the corresponding distance is � rp. Thus the electron–proton scattering takes place on a
much shorter-distance, shorter-time scale compared with the long-distance slow interaction
between the constituents. This suggests that only a single almost-free constituent, called a
parton, participates in any instant of the scattering. By this simple parton model, invented
in 1969 [11, 32], a large variety of hard (Q � 1 GeV) scattering processes are successfully
described. The partons can be identified with the quarks. The quark-parton picture is still at
present a valuable model.

The fundamental theory of the interactions between quarks, established in 1972 [37, 36]
and called Quantum Chromodynamics (QCD), incorporates all properties of the quark-parton
model and also solves other puzzles. By analogy with the electric charge in Quantum Elec-
trodynamics (QED), ’colour’ is the charge of strong interactions in QCD. It follows from the
theory that in the regime of short-distance, short-time scales the partons (quarks and gluons in
QCD) become quasi-free, a phenomenon called asymptotic freedom. This key feature, which
allows one to use the powerful technical tool of perturbation theory, is responsible for the
enormous success of perturbative QCD (pQCD) in high-energy physics, in particular, in the
phenomenology of (semi-)inclusive processes.

QCD is supposed to describe also long-distance, long-time effects like the binding of the
proton. A hypothesis suggested by the structure of QCD is that of confinement, meaning
that the observed in the scattering particles—called hadrons—are bound states of quarks,

1



2 Chapter 1. Introduction

yet quarks never appear alone. In this low-energy domain non-perturbative techniques and
effective theories are developed, which incorporate the main features of QCD. Lattice theory [4]
is one of the essential tools for calculating hadronic properties from first principles. However,
many problems remain still unsolved and currently there is no exact explanation (analytical
expression) for the way quarks are bound by strong interactions to form hadrons. Thus, on one
hand, the quark and gluon fields are the elementary objects that are described by the theory,
and on the other hand, the hadrons are the only real physical objects that are observed in any
experiment, and the link is still missing to describe within QCD the transition between these
two scales of the strong interaction.

In attempts towards unified understanding of all phenomena of strong interactions, the
basic ideas of the parton model are presently applied also in the description of, e.g., hard
(at very high squared four-momentum transfer Q2) exclusive reactions. Under the name of
factorisation (into a ’hard’ and a ’soft’ part of the scattering process), these ideas are the basis
of the following physical picture [48]: The description of hard processes involving hadrons in
the initial or final states is divided into the partonic subprocess taking place at short dis-
tances/times and the long-distance binding effects contained in the hadronic matrix elements
of parton field operators between hadron states. In this picture partonic subprocesses and
binding effects decouple and do not influence each other. The former are calculable within
pQCD and the latter are parameterised in the form of a priori unknown functions like the form
factors (FFs) in case of elastic processes, the parton distribution functions (PDFs) appearing
in deep inelastic scattering (DIS), or the generalised parton distributions (GPDs) accessible in
exclusive measurements.

The possibility to study GPDs in suitable exclusive scattering processes rests on factori-
sation theorems, as does the method to extract usual parton distributions from inclusive and
semi-inclusive measurements. The proofs of these theorems are based on properties of Feyn-
man diagrams and are very similar to the factorisation proofs for inclusive DIS or Drell-Yan
pair production [20]. GPDs can be represented in terms of the wave functions [14] of the target
, thus offering a further way to explicitly reveal which kind of information on hadron structure
is contained in these quantities. In this scheme a hadron state is expanded in terms of the
partonic Fock states created from the vacuum by the operators which appear in the decompo-
sition of the components of quark and gluon fields. However, a discussion on the attempts to
compute the form factors and parton distributions from a fundamental dynamical scheme is
beyond our scope.

The discussion of hard processes is greatly simplified in terms of the light-cone quantisa-
tion [15], whose concepts and notions follow closely the basic ideas of the parton model, to
which in fact they provide the formal theoretical justification. In distinction to canonical quan-
tisation, where the theory is quantised at equal time, e.g., z0 = 0, the light-cone quantisation is
performed at equal ’light-cone time’, e.g., z+ = z0+z3

2
= 0, where z is a four-vector. Introduced

by Dirac in 1949 [28] as another parameterisation of space-time, the light-cone coordinates
were rediscovered in the form of the infinite-momentum frame, which appeared in 1965 [38] in
connection with current algebra as the limit of a reference frame moving very fast with almost
the speed of light.

* * *

A QCD factorisation theorem for hard exclusive electroproduction of mesons was proved
in 1997 [19] thus providing a new probe to study the dynamics of exclusive scattering in QCD
and to test our understanding of the proton structure. The theorem was applied for the first
time in 1999 [33] to the theoretical study of hard exclusive production of single pions from
transversely polarised protons by longitudinal virtual photons, and a prediction was made for
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an observable, called the transverse-target single-spin azimuthal asymmetry. The asymmetry
is characterised by six azimuthal sine modulations, whose amplitudes can vary from −1 to 1.
The measurement of the amplitudes of the azimuthal asymmetry is the subject of this thesis.

In this work the analysis is presented of exclusive production of single pions in hard scat-
tering of 27.56 GeV positrons off an internal transversely polarised hydrogen fixed target of
the HERMES experiment in the HERA storage ring at DESY. The process is denoted as
e+p → e+′nπ+. A brief introduction to the formalism for describing scattering processes in
terms of parton distributions is given in Chapter 2. The generalised parton distributions ap-
pear in the description of exclusive processes at the amplitude level. In order to access certain
(combinations of) GPDs a polarised target is required. Chapter 3 outlines the theoretical
description of hard exclusive pion electroproduction and the GPD model used to obtain a
numerical prediction for the transverse-target single-spin azimuthal asymmetry. Chapter 4
describes the experimental setup with emphasis on those parts which are essential to this anal-
ysis, including trigger, data acquisition, and processing systems. In Chapter 5 the Monte Carlo
generators used for description of the data are introduced. Chapter 6 presents the data sam-
ple, the methods of data treatment, and an estimate of the measured yield of exclusive pions
using data only. Using Monte Carlo simulation further separation of signal from background
is achieved and the contributions from different processes to the data sample are estimated. In
Chapter 7 the extraction of the amplitudes of the azimuthal asymmetry from data is described
and smearing effects are studied. A method for correction of the measured amplitudes for the
background contribution is applied. Chapter 8 presents the final results for the measured and
the corrected amplitudes, and a comparison of the latter with theoretical predictions. The
thesis concludes with Summary and Conclusion.



Chapter 2

Introduction to Parton Distributions

We give a crude presentation of some of the main formulas that are used in the description of
scattering processes in terms of parton distributions. The aim is to outline the steps leading
to the definition of the generalised parton distributions in Section 2.6 in analogy with the form
factors and parton distribution functions. See [8, 40, 48] for detailed discussions.

We introduce in Section 2.1 the electromagnetic current, which is used in Section 2.2 to
define the elastic Dirac and Pauli form factors. In a similar way, the axial and pseudoscalar
form factors, gA and gP , respectively, are defined using the axial current. The hadronic tensor
is defined in Section 2.3 for elastic scattering and in Section 2.4 its expression is given for
the case of inclusive scattering in terms of the matrix elements of quark-field operators. We
turn to the light-cone representation of the hadronic tensor in Section 2.5.1. In Section 2.5.2
the form factors are expressed via non-diagonal matrix elements of local operators, while in
Section 2.5.3 the parton distributions, in particular, the helicity distribution ∆q, are defined
through diagonal matrix elements of bilocal quark-field operators. Finally, in Section 2.6 the
generalised parton distributions H̃ and Ẽ are introduced as the form factors of non-diagonal
matrix elements of bilocal quark-field operators at light-like separation. The quantities H̃ and
Ẽ, as well as gA, gP , and ∆q are the relevant ones for describing the process studied in this
thesis (see Chapter 3).

In order to learn about the internal structure of nucleons, we must consider the scattering
of particles as pointlike as possible, such as the scattering of high-energy electrons off protons.
Since electrons do not posses a resolvable internal structure and at high energies they have a
very small wavelength (λe ≈ 1

Ee
< 0.2 · 10−15 m), the cross sections of these reactions depend

only on the internal structure of the proton. By comparing the results of different scattering
processes, we thus obtain an almost complete description of the proton structure.

2.1 Interaction of Particles

From the relativistic Dirac equations for a free four-spinor field Ψ (e.g., an electron e−) and
for an interaction of the field with an electromagnetic potential Aµ [40],

(iγµ∂µ −m)Ψ = 0 and [iγµ(∂µ − ieAµ)−m] Ψ = 0, (2.1)

the interaction can be extracted in the form γ0V̂ = (−e)γµAµ, where (−e) is the electron

charge. This representation of V̂ , which preserves gauge invariance, corresponds to an exchange
of a single photon in the interaction (one-photon approximation).

The transition amplitude (S-matrix element) of the particle (field) from an initial state Ψi

4



2.2. Elastic Form Factors 5

into a final state Ψf is in first-order perturbation theory given by [40]

Sfi ∼ i

∫
d4xΨ†

f V̂Ψi = i

∫
d4x (Ψ†

fγ
0)(γ0V̂ )Ψi = i

∫
d4x Ψ̄f (−eγµAµ)Ψi = i

∫
d4x JµAµ,

(2.2)
where Ψ̄ = Ψ†γ0 and Jµ = (−e)Ψ̄fγ

µΨi is the particle electromagnetic current. Using the
particle plane wave representation [40], Ψi(x) = ψi(l) e

−il·x and Ψf (x) = ψf (l
′) e−il′·x, i.e.,

Ψi(x) and Ψf (x) are solutions to the free Dirac equation, the current becomes explicitly

Jµ(x) = (−e)ψ̄f (l
′)γµψi(l) e

−i(l−l′)·x, (2.3)

where ψi and ψf are four-component spinors, x is a space-time four-vector, l and l′ are four-
momenta, and γµ (µ = 0, 1, 2, 3) are Dirac matrices.

We now consider the current (2.3) as a matrix element of an electromagnetic current oper-
ator (Heisenberg operator) Ĵµ(x), e.g., between electron states

Jµ(x) = 〈e−(l′)|Ĵµ(x)|e−(l)〉, (2.4)

where |e−(l)〉 and 〈e−(l′)| denote the initial and the final electron state, respectively. Thus,
using (2.3) and (2.4), we can write

〈e−(l′)|Ĵµ(x)|e−(l)〉 = (−e)ψ̄f (l
′)γµψi(l) e

−i(l−l′)·x, (2.5)

〈e−(l′)|Ĵµ(0)|e−(l)〉 = (−e)ψ̄f (l
′)γµψi(l). (2.6)

The matrix element (2.6) is taken with plane electron waves so that its space-time x dependence
is given by the exponential factor in (2.5). The matrix element (2.6) describes the transition
of interacting pointlike electrons from the initial state with momentum l to the final state with
momentum l′. We note that the left-hand side of (2.6), by definition, is related to the physics
observables of the interaction process, while its right-hand side is a calculable quantity. In this
way theoretical calculations/predictions can be confronted with experimental measurements.

From (2.5) and (2.6) we can derive the relation

〈e−(l′)|Ĵµ(x)|e−(l)〉 = 〈e−(l′)|Ĵµ(0)|e−(l)〉 e−i(l−l′)·x. (2.7)

2.2 Elastic Form Factors

We turn now to a particle with internal structure (e.g., the proton p). The left-hand side
of (2.6) holds essentially unmodified, but we expect that the strong interaction modifies the
right-hand side of (2.6), so that the proton matrix element is written by analogy with (2.6)
as [40]

〈p(P ′)|Ĵµ(0)|p(P )〉 = (+e)ψ̄f (P
′)Γµψi(P ), (2.8)

where (+e) is the proton charge, P and P ′ are four-momenta. We cannot calculate (2.8) from
theory, but we can proceed by parameterising the four-current, or Γµ, on the right-hand side
of (2.8). The subscripts i and f , as well as (+e) and ˆ are omitted in the following.

Lorentz covariance of the theory imposes that the four-current ψ̄(P ′)Γµψ(P ) must be a
Lorentz vector. The most general structure of Γµ is thus [40]

Γµ = Aγµ +BP ′
µ + CPµ + iDσµνP

′ν + iEσµνP
ν , σµν =

1

2
i [γµ, γν ] =

1

2
i(γµγν − γνγµ), (2.9)

where the quantities A,B, . ., E depend only on Lorentz-invariant quantities. All these invari-
ants can be expressed in terms of the proton mass Mp and the squared four-momentum transfer
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t = ∆2 = (P ′ − P )2, therefore A = A(t), B = B(t), etc. holds. Gauge invariance (or current
conservation) ∂µJµ = 0 imposes that

0 = 〈p(P ′)|∂µJµ(0)|p(P )〉 = i(P ′ − P )µ〈p(P ′)|Jµ(0)|p(P )〉 :∆µψ̄(P ′)Γµψ(P ) = 0. (2.10)

Inserting Γµ from (2.9) into (2.10) gives E = −D and C = B. Hence the four-current becomes

ψ̄(P ′)Γµ(P ′, P )ψ(P ) = ψ̄(P ′) [A(t)γµ +B(t)(P ′ + P )µ + iD(t)σµν(P
′ − P )ν ]ψ(P ). (2.11)

In order to connect the transition current (operator) to physics observables we must demand
that it is Hermitian. For (2.11) to be invariant under the transformation (...)†|Pµ→P ′

µ
, i.e.,

(2.11) to be equal to its own conjugate transpose, then A, B, and D must be real. Finally,

using the Gordon decomposition identity ψ̄(P ′)γµψ(P ) = ψ̄(P ′)
[

(P ′+P )µ

2Mp
+ iσµν(P ′−P )ν

2Mp

]
ψ(P ),

the transition current is usually written as [40]

ψ̄(P ′)Γµ(P ′, P )ψ(P ) = ψ̄(P ′)

[
F1(t)γµ + F2(t)

iσµν∆
ν

2Mp

]
ψ(P ). (2.12)

The quantities F1(t) and F2(t) are combinations of A(t), B(t), and D(t) and are called the
Dirac and Pauli form factors of the proton, respectively.

The pseudovector (axial) and pseudoscalar form factors, gA(t) and gP (t), respectively,
are defined analogously, starting from (2.1), by inserting γ5 in the interaction potential, i.e.,
γµAµ → γµγ5Aµ, or replacing the four-vector with the axial four-vector (pseudovector) current
in (2.6), i.e., Jµ → Jµ5 = (+e)Ψ̄fγ

µγ5Ψi (with (+e) for the proton). The resulting four-current
(or matrix element) is parameterised in the following way

ψ̄(P ′)Γµ5(P
′, P )ψ(P ) = ψ̄(P ′)

[
gA(t)γµγ5 + gP (t)

γ5∆µ

2Mp

]
ψ(P ). (2.13)

2.3 Scattering Amplitude and Cross Section

Elastic electron–proton scattering can be described by assuming that the electric charge of
the electron creates a potential by which the proton is scattered. The particles interact via
exchange of a virtual photon (in the one-photon-exchange approximation). The electron four-
vector potential has the form Aµ(x) = −1

t
〈e−(l′)|Jµ(x)|e−(l)〉. Inserting the latter into (2.2),

replacing Jµ in (2.2) with the proton current 〈p(P ′)|Jµ(x)|p(P )〉, and using the relation (2.7),
we get for the S-matrix element of the scattering process [40]

S ∼ i

∫
d4x 〈p(P ′)|Jµ(x)|p(P )〉

(
−1

t

)
〈e−(l′)|Jµ(x)|e−(l)〉

∼ i

∫
d4x 〈p(P ′)|Jµ(0)|p(P )〉 e−i(P−P ′)·x

(
−1

t

)
〈e−(l′)|Jµ(0)|e−(l)〉 e−i(l−l′)·x

∼ i(2π)4δ(4)(l + P − l′ − P ′)A,

(2.14)

where
(
−1

t

)
with t = (l′ − l)2 = (P ′ − P )2 corresponds to the virtual-photon propagator, the

scattering amplitude A is given by the current-current coupling connected with the virtual-
photon propagator

A = 〈e−(l′)|Jµ(x)|e−(l)〉
(
−1

t

)
〈p(P ′)|Jµ(x)|p(P )〉, (2.15)
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and the Dirac delta function (in its Fourier-transform representation),

δ(4)(l + P − l′ − P ′) =

∫
d4x

(2π)4
e−i(l+P−l′−P ′)·x, (2.16)

accounts for four-momentum conservation in the process.
The cross section for the electron-proton scattering process is defined as [40]

dσ ∼ (2π)4δ(4)(l + P − l′ − P ′)
d3l′

(2π)32l′0

d3P ′

(2π)32P ′
0

|A|2, |A|2 = A∗A = LµνWµν , (2.17)

where the leptonic and hadronic tensors, Lµν and Wµν , respectively, are given by (see (2.14))

Lµν = 〈e−(l′)|Jµ(0)|e−(l)〉∗〈e−(l′)|Jµ(0)|e−(l)〉, (2.18)

Wµν = 〈p(P ′)|Jµ(0)|p(P )〉∗〈p(P ′)|Jµ(0)|p(P )〉. (2.19)

The leptonic tensor contains all the information about the electron probe, which can be de-
scribed in perturbative QED. It is given by [40]

Lµν = 2[lµl′ν + lνl′µ + (m2
e − l · l′)gµν ], (2.20)

where me is the electron mass and gµν is the metric tensor.

2.4 Hadronic Tensor

We focus on the hadronic tensor Wµν (2.19), which contains the information on the proton
target. For the case of an electron–proton reaction in which the proton undergoes transition
into a final state χ with four-momentum Pχ, the hadronic tensor can be written as [8]

2MpWµν =
1

2π

∑
χ

∫
d3Pχ

(2π)32P 0
χ

(2π)4δ(4)(q + P − Pχ)

× 〈p(P )|Jµ(0)|χ(Pχ)〉 〈χ(Pχ)|Jν(0)|p(P )〉,
(2.21)

where q = l − l′ is here the four-momentum of the virtual photon. Notice that in (2.21) the
state χ is integrated over since, e.g., in inclusive processes χ can be any final state which
remains undetected. By Fourier transforming the delta function (see, e.g., (2.16)), translating
one of the current operators (see, e.g., (2.7)), and using the completeness relation∑

χ

|χ(Pχ)〉〈χ(Pχ)| = 1, (2.22)

we can write the hadronic tensor (2.21) as

2MpWµν =
1

2π

∫
d4x eiq·x〈p(P )|Jµ(x)Jν(0)|p(P )〉

=
1

2π

∫
d4x eiq·x〈p(P )|[Jµ(x), Jν(0)]|p(P )〉,

(2.23)

where the commutator gives [Jµ(x), Jν(0)] = Jµ(x)Jν(0)− Jν(0)Jµ(x). The contribution from
the second term of the commutator vanishes because four-momentum conservation requires
Eχ < Mp, however, such a state χ does not exist since the proton is the state of lowest energy.
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Now we apply the concepts of the quark-parton model, which assumes that at sufficiently
high energies (Q2 = −q2 → ∞) the scattering of the electron takes place off a quark of mass
m inside the proton. Hence the final state χ can be split in a quark ψ plus a state X with
momentum PX . Then Jµ in (2.21) is the quark current, which by analogy with (2.3), is given
by

Jµ(x) = (eq)ψ̄(k′)γµψ(k) e−i(k−k′)·x, ψ(k)ψ̄(k) = (6k +m), 6k = γ · k = γµkµ, (2.24)

where (eq) is the quark fractional charge. Considering the electron-quark interaction at tree
level and omitting the antiquark contribution, the hadronic tensor can be written as [8]

2MpWµν =
1

2π

∑
q

e2q
∑
X

∫
d3PX

(2π)32P 0
X

∫
d3k

(2π)32k0
(2π)4δ(4)(P + q − k − PX)

× 〈p(P )|ψ̄j(0)|X(PX)〉〈X(PX)|ψi(0)|p(P )〉γjn
µ (6k +m)nlγli

ν ,

(2.25)

where k is the momentum of the struck quark. The integration over the phase-space of the
final-state quark can be replaced by a four-dimensional integral with an on-shell condition

d3k

2k0
→ d4k δ(k2 −m2) θ(k0 −m), (2.26)

where θ is the Heaviside step function. We introduce the momentum p = k − q and Fourier
transform the delta function in (2.25) (see, e.g., (2.16) with the space-variable x replaced with
z). The e−i(P−PX)·z part of the exponential is then used to perform a translation of one of the
field operators (see, e.g., (2.7)), and finally the completeness relation (see, e.g., (2.22)) is used
to eliminate the unobserved X states, so that the hadronic tensor (2.25) can be rewritten as

2MpWµν =
∑

q

e2q

∫
d4p δ((p+ q)2 −m2)θ(p0 + q0 −m)

×
∫

d4z

(2π)4
e−ip·z〈p(P )|ψ̄j(z)ψi(0)|p(P )〉γjn

µ (6p+ 6q +m)nlγli
ν .

(2.27)

The part of the hadronic tensor in (2.27), denoted as [8, 48]

Φij(p, P ) =

∫
d4z

(2π)4
e−ip·z〈p(P )|ψ̄j(z)ψi(0)|p(P )〉, (2.28)

is the so called quark-quark correlation function, which describes the non-perturbative correla-
tion between quarks inside the proton. We replace the implicit sum over the repeated indices
i, l, n, j in (2.27) with the trace Tr to obtain

2MpWµν =
∑

q

e2q

∫
d4p δ((p+ q)2 −m2)θ(p0 + q0 −m) Tr[Φ(p, P )γµ(6p+ 6q +m)γν ]. (2.29)

2.5 Light-Cone Representation

Now we use the light-cone coordinates of the four-vectors P , p, and q in (2.29) as defined, e.g.,
in the right-hand side of (2.30) for any four-vector a,

aµ(a0, a1, a2, a3) → aµ = [a−, a+, a⊥] = [
a0 − a3

√
2

,
a0 + a3

√
2

, a1, a2], (2.30)
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where a+, a−, and a⊥ = (a1, a2) are referred to as the plus, minus, and transverse components
of aµ. The product of a with a four-vector b, and with a Dirac matrix γ is given by

a · b = a+b− + a−b+ − a⊥ · b⊥, 6a = γ · a = γ+a− + γ−a+ − γ⊥ · a⊥. (2.31)

The light-cone components of the proton four-momentum P , the virtual photon four-momentum
q, and the quark four-momentum p are parameterised [8, 48] here as

P µ = [
M2

p

2P+
, P+, 0⊥], qµ = [

Q2

2xBP+
,−xBP

+, 0⊥], pµ = [
p2 + |p⊥|2

2xP+
, xP+, p⊥], (2.32)

where x =
p+

P+
, xB =

p

P
=

Q2

2P · q
. (2.33)

It is also assumed that the quark virtuality, p2, and its squared transverse momentum, |p⊥|2,
are small compared with the hard scale Q2. In this case the relevant component of the quark
momentum is p+, which is given as a fraction xP+ of the momentum P+ of the fast-moving
proton.

2.5.1 Hadronic Tensor

Inserting the approximate expression for the delta function (where 1
Q

-suppressed terms are

neglected)

δ((p+ q)2 −m2) ≈ 1

2P · q
δ(x− xB), (2.34)

and replacing d4p with

d4p = d2p⊥dp
−dp+ = d2p⊥dp

−dxP+ (2.35)

in (2.29) for the the hadronic tensor, we get

2MpWµν ≈
∑

q

e2q

∫
d2p⊥dp

−dx
P+

2P · q
δ(x− xB) Tr[Φ(p, P )γµ(6p+ 6q +m)γν ]

=
∑

q

e2q
1

2
Tr[Φ(xB)γµ

P+

P · q
(6p+ 6q +m)γν ],

(2.36)

where xB is the Bjorken scaling variable defined in (2.33). The second line in (2.36) is obtained
by integrating the delta function and introducing the integrated correlation function [8]

Φij(x) =

∫
d2p⊥dp

− Φij(p, P )|p+=xP+ =

∫
dz−

2π
e−ip·z〈p(P )|ψ̄j(z)ψi(0)|p(P )〉|z+=0,z⊥=0.

(2.37)
Finally, from the outgoing quark momentum, p + q, only the minus component can be

selected to obtain from (2.36) the final form for the hadronic tensor [8]

2MpWµν ≈
∑

q

e2q
1

2
Tr[Φ(xB)γµγ

+γν ]. (2.38)

The following relations are used that lead from (2.36) to (2.38)

P+

P · q
(6p+ 6q +m) ≈ P+

P · q
γ+(p+ q)− ≈ P+

P · q
γ+ Q2

2xP+
= γ+. (2.39)
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The minus component is the dominant one in the so-called infinite momentum frame, where
p− + q− is of the order of Q =

√
−q2, while p+ + q+, and p⊥ and m are of the order of 1.

Moreover, it can be checked that in any collinear frame the dominant terms in the hadronic
tensor arise only from the combination of plus component in the correlation function and minus
components in the outgoing quark momentum.

A graphical representation of the hadronic tensor (2.29), (2.38) (i.e., a bilocal forward
matrix element) is given by the so-called handbag diagram in Fig. 2.1.

q q

hard
soft

P P

p p

kk

Φ

Figure 2.1: PDFs: P+
∫

dz−

2π eip
+z−〈p(P )|ψ̄(−z̄

2 γ
+ψ( z̄

2))|p(P ) = ψ̄(P )γ+ψ(P )f1(x)

2.5.2 Elastic Form Factors

We can replace the proton four-momenta P and P ′ with their light-cone plus components also
for the case of exclusive processes, in which the final state is detected. By analogy with (2.9)
for the vertex function Γµ, we get for the light-cone representation

Γ+ = Aγ+ +BP ′+ +CP+ + iDσ+iPi + iEσ+iPi, σ+i =
1

2
i[γ+, γi] =

1

2
i(γ+γi−γiγ+), (2.40)

where i = 1, 2 is the transverse index of the light-cone four-vectors. With the parameterisation
(2.40), the matrix elements of the light-cone four-vector and axial four-vector currents, J+(0) =
ψ̄(0)γ+ψ(0) and J+5(0) = ψ̄(0)γ+γ5ψ(0), respectively, are written as

〈p(P ′)|ψ̄(0)γ+ψ(0)|p(P )〉 = ψ̄(P ′)

[
γ+ F1(t) +

iσ+i∆i

2Mp

F2(t)

]
ψ(P ), (2.41)

〈p(P ′)|ψ̄(0)γ+γ5ψ(0)|p(P )〉 = ψ̄(P ′)

[
γ+γ5 gA(t) +

γ5∆
+

2Mp

gP (t)

]
ψ(P ). (2.42)

These are the analogs of (2.12) and (2.13), respectively. A graphical representation of the
(local non-forward) matrix element (2.41) is given in Fig. 2.2.

P

p
∆

hard
soft

P’

p’

Figure 2.2: FFs: 〈p(P ′)|ψ̄(0)γ+ψ(0)|p(P )〉 = ψ̄(P ′)[γ+F1(t) + iσ+i∆i
2Mp

F2(t)]ψ(P )
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2.5.3 Parton Distribution Functions

We take a closer look at the bilocal (z1 6= z2) quark-field operator

ψ̄(z2)Gψ(z1) = ψ†(z2)(γ
0G)ψ(z1), (2.43)

which occurs in the definitions of the hadronic tensor (2.38) and, in its localised form with
z1 = z2, of the electromagnetic form factors (2.41), (2.42). The matrix G can be G = γ+ (see
(2.38), (2.41)), γ+γ5 (see (2.42)), iσ+iγ5 (see (2.49) below), or another combination of Dirac
matrices. In the chiral (Weyl) representation defined by the 4× 4 matrices [48]

γ0 =

(
0 1
1 0

)
, γj =

(
0 −σj

σj 0

)
, γ5 =

(
1 0
0 −1

)
, (2.44)

where σj (j = 1, 2, 3) are the Pauli matrices, the quark four-spinor fields ψ and their product
ψ†ψ take the explicit form [48]

ψ =


φR

χR

χL

φL

 , ψ†ψ =


φ†RφR χ†RφR χ†LφR φ†LφR

φ†RχR χ†RχR χ†LχR φ†LχR

φ†RχL χ†RχL χ†LχL φ†LχL

φ†RφL χ†RφL χ†LφL φ†LφL

 , (2.45)

where the (chirality) subscripts R and L denote the right- and left-handed ’good’ φ and ’bad’
χ light-cone components of the fields. At given light-cone time, e.g., z+ = 0, φ are the
independent dynamical fields of QCD, while χ are given in terms of φ and the potential A⊥.
The ’effective twist’ of a matrix element in (2.45) depends on whether it consists of ’good’, or
’bad’, or both components of the quark fields. The elements φ†φ, φ†χ or χ†φ, and χ†χ give
rise to twist-2 (leading twist), twist-3, and twist-4 operators, respectively.

Using (2.45) and the matrices [48]

γ0γ+ ∼


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 , γ0γ+γ5 ∼


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

 , γ0iσ+1(2)γ5 ∼ (i)


0 0 0 (−)1
0 0 0 0
0 0 0 0
1 0 0 0

 ,

(2.46)
we obtain the following expressions for the leading-twist bilocal quark-field operators (2.43)
(see also [8, 48])

Tr(Φγ+) ∼ ψ̄(z1)γ
+ψ(z2) ∼ φ†R(z1)φR(z2) + φ†L(z1)φL(z2) ∼ f1(x) ≡ q(x), (2.47)

Tr(Φγ+γ5) ∼ ψ̄(z1)γ
+γ5ψ(z2) ∼ φ†R(z1)φR(z2)− φ†L(z1)φL(z2) ∼ g1(x) ≡ ∆q(x), (2.48)

Tr(Φiσ+iγ5) ∼ ψ̄(z1)iσ
+iγ5ψ(z2)

i=1,2∼ φ†R(z1)φL(z2)− φ†L(z1)φR(z2) ∼ h1(x) ≡ δq(x), (2.49)

where, according to the the chiral structure of the expressions with quark fields φ, the function
f1(x) is the unpolarised parton distribution, g1(x) is the (chiral-even) parton helicity distri-
bution, and h1(x) is the (chiral-odd) transversity distribution; the latter is interpreted in the
transverse-spin representation of the γ matrices (i.e., if one changes basis from states of definite
helicity to states of definite transversity).

2.6 Generalised Parton Distributions

The diagonal (P ′ = P ) bilocal (z1 = 0, z2 = z) quark-quark correlation function (2.28) of
quark fields, and the non-diagonal (P ′ 6= P ) local (z1 = z2 = 0) matrix elements (2.41)
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and (2.42) of electromagnetic currents can be generalised to define the following non-diagonal
bilocal quark-quark correlation function [48]

Φ′
ij(p, P,∆) =

∫
d4z

(2π)4
e−ip̄·z〈p(P ′)|ψ̄j(

−z
2

)ψi(
z

2
)|p(P )〉, (2.50)

where p̄ = p+p′

2
. This function describes probes which are absent in nature, e.g., a quark with

momentum p being taken out from the initial proton state |p(P )〉 and reinserted with a different
momentum p′ to form the final proton 〈p(P ′)|. In (2.50) the initial and final proton states are
not identical (P ′ 6= P ). Notice that Φ′

ij(p, P,∆) is defined on the level of the amplitude of the
process, unlike Φij(p, P ) (see (2.28)) which is defined on the cross section level.

From the quark-quark correlation (2.50) the generalised parton distributions (GPDs) are de-
fined as the Dirac projections, Tr(Φ′G), integrated over the light-like momentum components,
dp̄− and d2p̄⊥, thus constraining the bilocality of the quark-field operators to a light-like dis-
tance in minus direction. The leading-twist projection with γ+ defines two functions, H(x, ξ, t)
and E(x, ξ, t), corresponding to proton helicity non-flip and helicity-flip, respectively, [48],

P̄+

∫
dp̄−d2p̄⊥Tr(Φ′γ+)|p̄+=xP̄+ = P̄+

∫
dz−

2π
e−ip̄+z−〈p(P ′)|ψ̄(

−z̄
2

)γ+ψ(
z̄

2
)|p(P )〉|z+=0,z⊥=0

= ψ̄(P ′)

[
γ+H(x, ξ, t) +

iσ+i∆i

2Mp

E(x, ξ, t)

]
ψ(P ),

(2.51)

where P̄ = P ′+P
2

and z̄ = [0, z−, 0⊥]. The projection with γ+γ5 defines two more functions,

H̃(x, ξ, t) and Ẽ(x, ξ, t), corresponding to quark helicity non-flip and helicity flip, respec-
tively, [48],

P̄+

∫
dp̄−d2p̄⊥Tr(Φ′γ+γ5)|p̄+=xP̄+ = P̄+

∫
dz−

2π
e−ip̄+z−〈p(P ′)|ψ̄(

−z̄
2

)γ+γ5ψ(
z̄

2
)|p(P )〉|z+=0,z⊥=0

= ψ̄(P ′)

[
γ+γ5H̃(x, ξ, t) +

γ5∆
+

2Mp

Ẽ(x, ξ, t)

]
ψ(P ).

(2.52)

The GPDs H, E, H̃, and Ẽ depend on the (average) momentum fraction x = (p+p′)+

(P+P ′)+
= p̄+

P̄+ ,

the skewness ξ = (P−P ′)+

(P+P ′)+
characterising the change of momentum fraction between initial and

final quark, and the squared momentum transfer t = ∆2 = (P ′−P )2. These GPDs are hybrid
objects, which combine properties of the parton distributions (PDFs), f1(x) and g1(x), and
the elastic form factors (FFs), F1(t), F2(t), gA(t), and gP (t). A graphical representation of the
bilocal non-forward matrix element (2.51) is given in Fig. 2.3.

P P’

soft

q

p

Φ’

p’

q’

hard

Figure 2.3: GPDs: P̄+
∫

dz−

2π eip̄+z−〈p(P ′)|ψ̄(−z̄
2 )γ+ψ( z̄

2 )|p(P )〉 = ψ̄(P ′)[γ+H(x, ξ, t) + iσ+i∆i

2Mp
E(x, ξ, t)]ψ(P )



Chapter 3

Exclusive Pion Production

The theoretical description of hard exclusive electroproduction of a single pion in the process
e+p→ e+′nπ+ is outlined in this chapter. The basic steps and formulas are given, concerning
the kinematics of the process, the factorisation theorem, the generalised parton distributions,
and the transverse-target single-spin azimuthal asymmetry. The equations throughout the
sections are consistent up to certain numerical factors or up to a particular definition of the
kinematic variables which may vary in the literature [10, 23, 26, 27, 33, 39], on which this
presentation is based.

3.1 Quantities of Physical Interest

3.1.1 Kinematics

φS

e+ e+’
TS

φπ+φ=πp +
+π

+γ∗πθ
x"

z" y"
x
z

y’
x’

z’

Pπ+

scattering plane

production plane

l l’
γ∗

q
y

o

o
90 . .90

Figure 3.1: Kinematics of the exclusive pion electroproduction process (3.1) in the proton-target rest
frame (see also Table 3.1). Pπ+⊥ and ST , respectively, are the components of pπ+ and of the target
polarisation vector S (not shown) perpendicular, i.e. at 90◦ angle, to q. Denoted by φπ+ and φS ,
respectively, are the azimuthal angles of pπ+ and S in the coordinate system with axes x, y, z, in
accordance with the Trento conventions [9]. A detailed discussion of this process is given in [27].

We consider exclusive production of a single pion in positron-proton scattering [27] (Fig. 3.1)

e+(l) + p(P ) → e+′(l′) + n(P ′) + π+(pπ+) (3.1)

13
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kinematic numeric value explanation
variable ’≈’ if me+ = me ≈ 0

’lab’ = proton rest frame
Mp 938.272029± 0.000080 MeV [70] proton mass
Mn 939.565360± 0.000081 MeV [70] neutron mass
mπ+ 139.57018± 0.00035 MeV [70] π+ mass
me 510.998918± 0.000044 keV [70] electron mass
E Ee+ = 27.5699997 GeV beam energy

l
lab
= qe+ = (E, 0, 0, lz) ≈ (E, 0, 0, E) beam positron four-momentum

l′
lab
= qe+′ = (E ′, l′x, l

′
y, l

′
z) scattered positron four-momentum

P
lab
= qp = (Mp, 0, 0, 0) target proton four-momentum

P ′ lab
= qn = (E ′

n, P
′
x, P

′
y, P

′
z) recoiling neutron four-momentum

pπ+
lab
= qπ+ = (Eπ+ , px, py, pz) produced π+ four-momentum

Θe+′ angle between l and l′ positron polar scattering angle

S-axis
lab
= (0, 0,−1, 0) target polarisation axis

q = l − l′
lab
= qe+ − qe+′ = virtual photon four-momentum,
qγ∗ = (Eγ∗ , qx, qy, qz) four-momentum transfer

Q2 ≡ −q2 =
lab
≈ 4EE ′ sin2 (

Θe+′
2

) squared virtual photon
−(l − l′)2 four-momentum

s = (l + P )2 lab
= (qe+ + qp)

2 ≈M2
p + 2MpE invariant centre-of-mass energy

t = (q−pπ+)2 =
lab
= (qγ∗ − qπ+)2 invariant transverse

(P − P ′)2 lab
= (qp− qn)2 = M2

p +M2
n − 2MpE

′
n four-momentum transfer, squared

four-momentum exchanged be-
tween the virtual photon and the
proton

ν = P ·q
Mp

lab
= E − E ′ = Eγ∗ positron energy loss, energy trans-

fer

y = P ·q
P ·l

lab
= ν

E
inelasticity, normalised/relative
energy transfer of the virtual
photon, fraction of the positron
energy taken by the virtual photon

x = xB = Q2

2P ·q
lab
= Q2

2Mpν
Bjorken scaling variable, fraction
of the proton momentum carried
by the struck quark

W 2 = (q + P )2 lab
= (qγ∗ +qp)

2 = M2
p +2Mpν−Q2 =

M2
p + 1−x

x
Q2

invariant photon-nucleon centre-
of-mass energy, squared mass of
the hadronic final state

z =
P ·pπ+

P ·q
lab
=

Eπ+

ν
fraction of energy carried by π+

M2
n = P ′2 =

lab
= (qγ∗ + qp − qπ+)2 invariant squared missing mass

(q + P − pπ+)2

Table 3.1: Standard kinematic variables for deep inelastic scattering. The corresponding four-vectors
and/or the expression in the laboratory frame for exclusive pion production are given, as well as the
name of each variable. The description of the exclusive process requires three independent variables,
e.g., x, Q2, and t.

14
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with four-momenta given in parentheses. The symbols e+ and e+′ denote the incoming and
the scattered beam positron, respectively, p the target proton, n the recoiling neutron, and
π+ the produced positively charged pion. The process can be described by the standard
kinematic variables for deep inelastic scattering, e.g., Q2, x, and y, where only two of them
are independent, plus an additional variable t appearing in the description of elastic scattering
(Section 2.2). The kinematic variables are defined in Table 3.1. The symbol x often appears
in the following either as the Bjorken variable xB or as the parameter of the GPDs x ∈ (−1, 1)
(see (2.33)). We note that the discussion in this section applies also to the case of semi-inclusive
deep inelastic scattering, i.e., if n(P ′) in (3.1) is replaced by an inclusive system of hadrons
X(P ′). No kinematic approximations are made before Section 3.1.3 except for neglecting the
positron mass, me+ ≈ 0.

The hard positron-proton interaction proceeds predominantly via the exchange of one vir-
tual photon γ∗, so the physics process considered is γ∗p → nπ+. When π+ is measured, an
additional relevant parameter is the angle between the plane defined by e+ and e+′ (scattering
plane) and the one defined by γ∗ and π+ (production plane), namely, the azimuthal angle
φ ≡ φπ+ . In addition, the azimuthal angle φS between the scattering plane and the target
polarisation vector can be defined for a transversely polarised target. The angles φ and φS are
computed in this work from the expressions

φ = arccos

(
(~q ×~l) · (~q × ~pπ+)

|(~q ×~l) · (~q × ~pπ+)|

)
(~q ×~l) · ~pπ+

|(~q ×~l) · ~pπ+|
, (3.2)

φS = arccos

(
(~q ×~l) · (~q × ~S)

|(~q ×~l) · (~q × ~S)|

)
(~q ×~l) · ~S
|(~q ×~l) · ~S|

, (3.3)

where the target polarisation axis ~S = (0,−1, 0) is fixed in the proton rest frame, while the
target polarisation vector is flipped parallel and antiparallel to this axis. The polar angle
between the virtual photon and the produced pion, θγ∗π+ , is given as

θγ∗π+ = arccos

(
~q · ~pπ+

|~q||~pπ+|

)
. (3.4)

In the rest frame, in which the proton is at rest, one can define three right-handed coordinate
systems C(x, y, z) and C ′(x′, y′, z′), whose vertical axes are normal to the scattering plane, and
C ′′(x′′, y′′, z′′), whose vertical axis is normal to the production plane, as shown in Fig. 3.1.
The z′ axis points along the e+ direction, whereas z (z′′) is parallel (anti-parallel) to the γ∗

direction with x (x′′) in the scattering (production) plane. C is defined in accordance with the
Trento conventions [9]. C ′ coincides with the HERMES coordinate system (Section 4.3) where
measurements are performed relative to the beam direction, whereas theoretical calculations
are more conveniently carried out in C or C ′′ relative to the virtual-photon direction. The two
coordinate systems C and C ′ are related via a rotation about the y axis by the polar angle
θ ≡ θγ∗ between q and l given by

sin θ = γ

√
1− y − 1

4
y2γ2

1 + γ2
, γ =

2xMp

Q
. (3.5)

Further we consider that the proton target in (3.1) is transversely polarised with respect
to the positron beam, with PT and PL � PT the components of the target polarisation vector
P perpendicular and parallel to the beam direction (z′ in Fig. 3.1), respectively. The target
polarisation vector with respect to the virtual photon in the C ′′ frame is given by

S
C′′
=

ST cos (φ− φS)
ST sin (φ− φS)

SL

 ,
ST = cos θ√

1−sin2 θ sin2 φS

PT ,

SL = sin θ cos φS√
1−sin2 θ sin2 φS

PT ,
(3.6)
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where φ ≡ φπ+ and φS are the azimuthal angles in the C frame (Fig. 3.1). The coordinate sys-
tem C ′′ is favoured in theoretical calculations for describing the γ∗p process. In this coordinate
system the spin density matrix of the proton target can be written as

ρji =
1

2
(δji + ~S · ~σji)

C′′
=

1

2

(
1 + SL ST e

−i(φ−φS)

ST e
i(φ−φS) 1− SL

)
, χ+ 1

2
=

(
1
0

)
, χ− 1

2
=

(
0
1

)
, (3.7)

where the two-component spinors χ+ 1
2

and χ− 1
2

(the eigenstates to ~σ2 and σz) specify the basis
of the proton polarisation states in the γ∗p centre-of-mass frame, the indices i, j denote the
corresponding eigenvalues, i.e., the definite spin projections +1

2
and −1

2
along the z′′ axis, and

the right- and left-handed proton helicity in the γ∗p centre-of-mass frame. The components of
~σ are the Pauli matrices.

3.1.2 Cross Section

The cross section for the process (3.1) can be written as

dσe+p→e+′nπ+ ∼ LνµWµν
d3l′

2E ′
d3pπ+

2Eπ+

d3P ′

2E ′
n

, (3.8)

with a proportionality factor depending on the kinematic variables x, y, and Q2. The leptonic
tensor Lνµ is precisely calculable, while the hadronic tensor Wµν reads

Wµν =
∑
ij

ρji δ
(4)(P ′ + pπ+ − P − q)

∑
spins

〈p(i)|Jµ(0)|nπ+〉〈nπ+|Jν(0)|p(j)〉, (3.9)

where Jµ is the hadronic part of the electromagnetic current. The sum
∑

ij is over the target

spin states i, j = +1
2
,−1

2
and

∑
spins is the sum over all polarisations in the final hadronic

state, i.e., nπ+.
The polarisation vector εm for definite helicity m = 0,+1,−1 of the virtual photon is

introduced as

εµ0 =
1

Q
√

1 + γ2
(qµ +

Q2

P · q
P µ), ε+1 =

1√
2
(0,−1, i, 0), ε−1 =

1√
2
(0, 1, i, 0), (3.10)

where γ is defined in (3.5) and the components of ε±1 are given in coordinate system C ′′

(Fig. 3.1). Then the leptonic tensor Lνµ can be expanded as a linear combination of terms
ενnε

µ∗
m with coefficients forming the spin density matrix of the virtual photon. The coefficients

depend on Q2, on the beam polarisation Pe+ , on the azimuthal angle φ, and on the ratio of
longitudinal to transverse virtual-photon fluxes ε. The flux of transverse virtual photons ΓT

and the ratio ε = ΓL

ΓT
[51] with Hand’s convention [44] for the virtual-photon flux are given by

ΓT (x(y), Q2) = ΓT (y,Q2) =
α em

2π

y2

1− ε

1− x

x

1

Q2
=
α emy

2(2MpEy −Q2)

2πQ4

1

1− ε
, (3.11)

ε(x(y), Q2) = ε(y,Q2) =
1

1 + 2 ν2+Q2

4EE′−Q2

=
4E2 − 4E2y −Q2

4E2 − 4E2y + 2E2y2 +Q2
, (3.12)

where α em is the electromagnetic fine structure constant and ΓL is the flux of longitudinal
virtual photons.

The contraction LνµWµν can then be written as

σmn =
∑
ij

ρjiσ
ij
mn ∼

∫
dM2

n (εµ∗mWµνε
ν
n), (3.13)
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where σmn is the γ∗p cross section for photon helicity n (m) in the initial (final) state, and the
integration in (3.13) is over M2

n (Table 3.1). The σij
mn are the polarised photoabsorption cross

sections and interference terms, given by

σij
mn(x,Q2, t) ∼

∫
dM2

n δ
(4)(P ′ + pπ+ − P − q)

∑
spins

(Ai
m)∗Aj

n, (3.14)

in terms of the amplitudesAi
m (see (2.17)) for the process γ∗p→ nπ+ with proton polarisation i

and photon polarisation m. The indices m,n = 0,+1,−1 refer to the proton and i, j = +1
2
,−1

2

to the photon polarisation states.
With the polarisation states for protons and photons defined in the coordinate system C ′′,

the electroproduction cross section for the process (3.1) for transverse target polarisation with
respect to the lepton beam is given by [27][

cos θ

1− sin2 θ sin2 φS

]−1 [
1

4π2
ΓT (x,Q2)

]−1
dσ(x,Q2, t, φ, φS)

dx dQ2 dt dφ dφS

≡ dσ = dσUU + dσUT (3.15)

dσUU =
1

2
(σ++

++ + σ−−++) + εσ++
00

− ε cos(2φ) Reσ++
+− −

√
ε(1 + ε) cosφ Re (σ++

+0 + σ−−+0 )
(3.16)

dσUT = − PT√
1− sin2 θ sin2 φS

6∑
k=1

sin(µφ+ λφS)k Σk, (3.17)

where k = 1, . . . , 6; µ = µ(k) = 0, 1, 2, 3; λ = λ(k) = −1, 1, and

k sin(µφ+ λφS)k Σk

azimuthal modulation polarised photoabsorption cross section/interference term

1 sin(φ− φS) cos θ Im (σ+−
++ + εσ+−

00 ) + 1
2
sin θ

√
ε(1 + ε) Im (σ++

+0 − σ−−+0 )

2 sin(φ+ φS) 1
2
cos θ ε Imσ+−

+− + 1
2
sin θ

√
ε(1 + ε) Im (σ++

+0 − σ−−+0 )

3 sinφS cos θ
√
ε(1 + ε) Imσ+−

+0

4 sin(2φ− φS) cos θ
√
ε(1 + ε) Imσ−+

+0 + 1
2
sin θ ε Imσ++

+−
5 sin(3φ− φS) 1

2
cos θ ε Imσ−+

+−
6 sin(2φ+ φS) 1

2
sin θ ε Imσ++

+−

In the notation for the electroproduction cross sections the first (second) index denotes the
beam (target) polarisation, e.g., dσUT refers to unpolarised beam (U) and transversely polarised
target (T ). In a more common but less explicit notation σT = 1

2
(σ++

++ +σ−−++) and σL = σ++
00 are

the unpolarised transverse (T ) and longitudinal (L) γ∗p photoabsorption cross sections, and
σTT = Reσ++

+− and σTL = Re (σ++
+0 + σ−−+0 ) are the interference terms in the unpolarised pion

electroproduction cross section. In (3.15), (3.16), (3.17) the cross sections dσ, dσUU , dσUT ,

and σij
mn are differential with respect to x, Q2, t, φ, and φS, e.g., σ+−

00 ≡ dσ+−
00 (x,Q2,t,φ,φS)

dx dQ2 dt dφ dφS
.

The following factors appearing in (3.15) and (3.17) are set to unity in the following, i.e.,

Γ ≡ cos θ

1− sin2 θ sin2 φS

≈ 1, f(sin2 φS) ≡ 1√
1− sin2 θ sin2 φS

≈ 1. (3.18)

This approximation is valid for HERMES kinematics (Section 7.1).
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3.1.3 Azimuthal Asymmetry

The cross section (3.15), integrated over the kinematic variables x, Q2, and t while keeping
the dependence on the azimuthal angles φ and φS (Fig. 3.1), can be written as[

ΓT

4π2

]−1
dσ(φ, φS)

dφ dφS

≡ dσ(φ, φS) = [dσUU(φ) + dσUT (φ, φS)], (3.19)

where the differential variables are denoted in parentheses. The target transverse polarisation
PT (3.6) is a degree of freedom that allows one to construct an asymmetry, which is given
by the difference between the cross sections for the two target polarisation states, PT > 0
(positive) and PT < 0 (negative), corresponding to azimuthal angles φS (‘spin up’) and φS + π
(‘spin down’), respectively. According to the Trento conventions [9], the asymmetry is defined
as

A(φ, φS) =
1

|PT |
dσ(φ, φS)− dσ(φ, φS + π)

dσ(φ, φS) + dσ(φ, φS + π)
=
dσUT (φ, φS)

dσUU(φ)
. (3.20)

Note that with the choice of normalisation, given by the denominators in (3.20), the asymmetry
can vary in the range − 1

|PT |
≤ A(φ, φS) ≤ 1

|PT |
, which for |PT | = 1 gives values from −1 to

1. A(φ, φS) is called the transverse-target single-spin (polarised target, unpolarised beam)
azimuthal (φ, φS dependent) asymmetry, abbreviated as TTSSAA or briefly TSA.

3.1.4 Asymmetry Amplitudes

Inserting (3.17) in (3.19) and the latter in (3.20), with the approximation (3.18) being applied,
we get for the asymmetry (3.20)

A(φ, φS) = −
∑6

k=1 sin(µφ+ λφS)kΣk

dσUU(φ)
= −

6∑
k=1

A
sin(µφ+λφS)k

UT sin(µφ+ λφS)k, (3.21)

where we define

A
sin(µφ+λφS)k

UT ≡ Σk

dσUU(φ)

>
=
<

0. (3.22)

The quantities A
sin(µφ+λφS)k

UT multiplying the sine modulations sin(µφ+λφS)k of the asymmetry

in (3.21) are called the asymmetry amplitudes. The notation
>
=
<

0 in (3.22) expresses the

fact that the sign of the asymmetry amplitudes is not predicted by theory. The sign of a
given amplitude k in (3.22) is determined by the sign of the polarised photoabsorption cross
sections/interference terms σij

mn in Σk (see table following (3.17)) which can be positive, zero,
or negative depending on the dynamics of the process. Predictions for the sign (and the size)
of the amplitudes can be obtained presently from models of σij

mn (Section 3.4).
Substitution in (3.21) of the µ, λ values for a given k (see table following 3.17) gives the

six azimuthal modulations and the respective amplitudes of the asymmetry in the form

A(φ, φS) =− A
sin(φ−φS)
UT sin(φ− φS)− A

sin(φ+φS)
UT sin(φ+ φS)− Asin φS

UT sinφS

− A
sin(2φ−φS)
UT sin(2φ− φS)− A

sin(3φ−φS)
UT sin(3φ− φS)

− A
sin(2φ+φS)
UT sin(2φ+ φS).

(3.23)

The extraction of all six amplitudes in (3.23) from data is performed in Chapter 7. In
the following discussion only longitudinal virtual photons are considered and a prediction of
A

sin(φ−φS)
UT is made using a model for σ+−

00 and σ++
00 .
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Figure 3.2: Factorisation theorem for exclusive pion production (3.1). The amplitude for the process
(the matrix element for the electromagnetic current J) factorises into the generalised parton distri-
bution for the proton (the non-diagonal matrix element F ), the hard scattering amplitude T , and the
pion distribution amplitude Φ.

3.2 Factorisation Theorem

The possibility to study the exclusive process (3.1) and to calculate the cross section (3.15)
in QCD relies on factorisation of the scattering process in ’hard’ and ’soft’ parts. Theoretical
studies of exclusive pion production are presented in [10, 26, 27, 33, 39]. A detailed proof of the
QCD factorisation theorem for hard exclusive electroproduction of mesons is given in [19]. At
present factorisation applies only for longitudinal virtual photons γ∗L (helicity m = 0). Applied
to pion production, the theorem states that the amplitude for the process γ∗Lp→ nπ+ factorises
into a transition operator for the hard process Tud convoluted with the distribution function
(i.e., the non-diagonal matrix element denoted by Fud) for the p→ n transition and with the
distribution amplitude of the pion Φπ+ [10, 27, 33]

Aγ∗Lp→nπ+

(ξ, t) ≡ 〈π+(pπ+)n(P ′)|J em · ε0|p(P )〉

=
1

Q

∫ 1

−1

dx

∫ 1

0

dz Tud(x, ξ, z)Fud(x, ξ, t) Φπ+(z),
(3.24)

up to power corrections in 1
Q

. The factorisation (3.24) is valid in the limit Q2 → ∞ at fixed
Q2

W 2 and t. The parton types u and d connect the hard scattering part of the process to the
proton and to the pion bound states. J em is the electromagnetic current, ε0 is the polarisation
vector for longitudinal virtual photons, and ξ is introduced in Section 2.6. The factorisation
theorem (3.24) is illustrated in Fig. 3.2.

The factorisation theorem also states that all other helicity transitions, e.g., γ∗Tp → nπ+

for transversely polarised photons (helicity m = +1,−1), are of order 1
Q2 or higher, hence

suppressed compared with γ∗Lp→ nπ+. The following hierarchy for the photoabsorption cross
sections and interference terms in (3.16) and (3.17) is found to hold:

• the only leading-twist observables are σ++
00 and σ+−

00 ,

• σij
+0 are at least one power of 1

Q
down compared with σ++

00 ,

• σij
++ and σij

+− are suppressed by at least 1
Q2 compared with σ++

00 .

We denote by H̃ and Ẽ the functions that parameterise Fud in (3.24) and introduce the

scattering amplitudes H̃ and Ẽ as [10]{
H̃
Ẽ

}
(x, ξ, t) =

∫ 1

−1

dx

∫ 1

0

dz Tud(x, ξ, z)

{
H̃

Ẽ

}
(x, ξ, t) Φπ+(z). (3.25)
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ξx−

ξx+

T + += +1−z

z
q

Figure 3.3: Hard scattering coefficient functions to leading order [10].

From the squared amplitude A∗A, the leading-twist results for the t-differential longitudinal
photoabsorption cross section and the interference term can be derived in the form [27][α em

Q6

x2

1− x

]−1dσ++
00

dt
= (1− ξ)|H̃|2 − ξ2 t

4M2
p

|Ẽ |2 − 2ξ2 Re (Ẽ∗H̃) (3.26)[α em

Q6

x2

1− x

]−1dσ+−
00

dt
=

√
1− ξ2

√
t0 − t

Mp

ξ Im (Ẽ∗H̃), (3.27)

where the scaling variable (skewness) ξ and the smallest kinematically allowed momentum
transfer t0 are given by [27]

ξ =
x

2− x
, −t0 =

4ξ2M2
p

1− ξ2
=
x2M2

p

1− x
, (3.28)

up to correction factors of order
xM2

p

Q2 , xt
Q2 , and

m2
π+

Q2 .

3.3 Pion Electroproduction Amplitude

The calculation of the hard scattering amplitude A (3.24) in QCD in the leading-twist approx-
imation and at leading order in the strong coupling αS is outlined below.

The hard subprocess, denoted by T in Figs. 3.2, 3.3 and Tud in (3.24), encodes the short
distance dynamics of parton scattering and is the only factorisation term that can be consis-
tently calculated in QCD perturbation theory as a series in the strong coupling αS. Evaluation
of the tree diagrams in Fig. 3.3 gives for the hard amplitude Tud to leading order in αS the
following result [33]

Tud(x, ξ, z) ∼
eu

z
(
x+ ξ

2

)
− i0

+
ed

(1− z)
(
x− ξ

2

)
+ i0

+O(α2
S), (3.29)

where eu = 2
3

and ed = −1
3

are the quark charges.
The other blocks of the factorisation theorem, Fud and Φπ+ , which carry the long-distance

(soft) physics information for the process, cannot be calculated from first principles in QCD.
However, they are universal, i.e., process independent. The ’truly’ non-diagonal matrix element
Fud has the form [23]

Fud(x, ξ, t) = P̄+

∫
dz−

2π
eixP̄+z−〈n(P ′)|d̄(−z̄

2
)γ+γ5u(

z̄

2
)|p(P )〉|z+=0,z⊥=0

= ūn(P ′)

[
γ+γ5H̃(x, ξ, t) +

γ5∆
+

2Mp

Ẽ(x, ξ, t)

]
up(P ),

(3.30)

where ∆ = P ′−P , P̄ = P ′+P
2

, and z̄ = [0, z−, 0⊥] is a shorthand notation for the light-cone four-
vector. ’Truly’ refers to the fact that the production of π+ is described by a ’new’ transition
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matrix element between proton and neutron (p→ n). Using the isospin relations [33]

〈n|d̄u|p〉 = 〈p|ūu|p〉 − 〈n|ūu|n〉 = 〈p|ūu|p〉 − 〈p|d̄d|p〉, (3.31)

one can relate (at fixed x) the ’new’ matrix elements to the usual ones that describe a proton–
proton transition (p→ p)

F p→n
ud (x) = F p→p

uu (x)− F p→p
dd (x). (3.32)

Therefore, H̃ and Ẽ in (3.30) are in fact isovector functions given by the difference of the
GPDs for u and d quarks [33]

H̃(x, ξ, t) = H̃u(x, ξ, t)− H̃d(x, ξ, t), Ẽ(x, ξ, t) = Ẽu(x, ξ, t)− Ẽd(x, ξ, t) (3.33)

The leading-twist distribution amplitude for the pion is given by [23]

Φπ+(z) =
1

fπ+

∫
dx−

2π
ei(2z−1)p+

π+x−/2〈π+(pπ+)|d̄(−x̄
2

)γ+γ5u(
x̄

2
)|0〉|x+=0,x⊥=0, (3.34)

where x̄ = [0, x−, 0⊥] denotes the light-cone four-vector. The pion decay (structure) constant
is fπ+ ≈ 93 MeV.

Thus in the leading-twist approximation and at leading order in the strong coupling αS the
amplitude for exclusive π+ production is given by the expression [33]

A(ξ, t) = −4ieπαSfπ+

27Q

∫ 1

0

dz
Φπ+(z)

z
(3.35)

× ū(P ′)

{∫ 1

−1

dxα(x)

[
γ+γ5H̃(x, ξ, t) +

γ5∆
+

2Mp

Ẽ(x, ξ, t)

]}
u(P ), (3.36)

where

α(x) = 3α−(x)− α+(x), α±(x) =
1

x+ ξ
2
− i0

± 1

x− ξ
2

+ i0
. (3.37)

3.4 Proton Generalised Parton Distributions

In analogy to the usual parton distributions (PDFs) the generalised parton distributions
(GPDs) are defined as the form factors parameterising matrix elements of (twist-two bilocal)

quark-field operators at a light-like separation, as shown in (3.30) for the ’polarised’ GPDs H̃

and Ẽ. ‘Polarised’ here refers to the spin of the partons (not the target) so that H̃ and Ẽ
correspond to the difference over parton helicities in the target nucleon.

We notice that the non-diagonal matrix elements in (3.30) are taken between states of
unequal momenta P ′ 6= P , which is in distinction to the definition of PDFs for P ′ = P
(Chapter 2). Because of Lorentz invariance the GPDs can only depend on the kinematic
variable x, the transverse four-momentum transfer t, and the skewness parameter ξ, which is
the projection of t on the (light-cone) direction in which the nucleon is rapidly moving within
the picture of the parton model.

In the forward limit (t → 0, P ′ = P ) and for equal helicities of the initial and final state
nucleons p(P ) and n(P ′), respectively, the matrix element in (3.30) reduces to the usual spin
dependent parton density ∆q(x) for the quark q [23, 39]

H̃q(x, 0, 0) = ∆q(x), (3.38)
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where ∆q(x) is defined through the diagonal matrix element (see also 2.48) [23]

P+

∫
dz−

2π
eixP+z−〈n(P )|d̄(−z̄

2
)γ+γ5u(

z̄

2
)|p(P )〉|x+=0,x⊥=0 = ūn(P )γ+γ5up(P )∆q(x). (3.39)

Since in (3.30) Ẽ is multiplied with factors proportional to ∆ = P ′−P , no relation analogous

to (3.38) exists for Ẽ and therefore this GPD decouples in the forward limit.
Integration of (3.30) over x gives a matrix element of a local quark-antiquark operator, so

that the x-integral of the GPDs H̃ and Ẽ is related to the form factors (FFs) of these local
currents [23, 39] ∫ 1

−1

dx H̃q(x, ξ, t) = gq
A(t),

∫ 1

−1

dx Ẽq(x, ξ, t) = gq
P (t), (3.40)

where the axial (pseudovector) and pseudoscalar form factors, gq
A(t) and gq

P (t), are defined for
a quark flavour q through (see also (2.42)) [23]

〈p(P ′)|q̄(0)γ+γ5q(0)|p(P )〉 = ū(P ′)

[
γ+γ5 g

q
A(t) +

γ5∆
+

2Mp

gq
P (t)

]
u(P ). (3.41)

Note that the integrals in (3.40) are independent of ξ due to Lorentz invariance: integrating
the matrix element (3.30) over x removes any reference to the particular light-cone direction
with respect to which ξ is defined, thus the result must be ξ-independent.

Although the GPDs H̃ and Ẽ can be reduced in certain limiting cases to quantities already
known from measurements, i.e., the parton distribution in (3.38) and the form factors in (3.40),
unlike the latter three, even the quantitative behaviour of the former is largely unknown. Like
PDFs and FFs, GPDs cannot be calculated from first principles in QCD. That is why model
calculations (see [10, 26, 39, 73] and references therein) of these quantities are of big importance.

3.4.1 Model for H̃(x, ξ, t)

To provide numerical estimates for the physics observables, the model for H̃ assumes a fac-
torised ansatz for the (x, ξ) and t dependence, which is valid at small t [26]

H̃q(x, ξ, t) = H̃q(x, ξ)
gq

A(t)

gq
A(0)

, (3.42)

where the following dipole parameterisation is taken for the form factor [26]

gq
A(t)

gq
A(0)

=
1

[1− t/(1.05 GeV2)]2
. (3.43)

For the t-independent function H̃(x, ξ) in (3.42) a double-distribution based ansatz [53] is
used, whose ingredients are the usual parton distributions at a given factorisation scale µ and
a so-called profile parameter b, where µ and b are considered as free parameters of the model.
The model gives [26]

H̃q(x, ξ) =

∫ 1

−1

dβ

∫ 1−|β|

−1+|β|
dα δ(x− β − ξα)h(β, α)[θ(β)∆q(β) + θ(−β)∆q̄(−β)], (3.44)

where θ denotes the step function, and ∆q and ∆q̄ are the polarised quark and antiquark
distributions, respectively. The profile function [10, 26]

h(β, α) =
Γ(2b+ 2)

22b+1Γ2(b+ 1)

[(1− |β|)2 − α2]b

(1− |β|)2b+1

b=1
: h(β, α) =

3

4

(1− |β|)2 − α2

(1− |β|)3
, (3.45)
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with the parameter b = 1 is used. Assuming an SU(2) symmetric sea, i.e., ∆q̄(β) = ∆ū(β)−
∆d̄(β) = 0, one has only the contribution from the valence quarks ∆q(β) = ∆u(β) −∆d(β).
The known forward parton densities ∆u and ∆d at Q2 = 4 GeV2 are used for the numerical
evaluation of the asymmetry (Section 3.5). Note that the simple ansatz (3.42) for H̃ is chosen
such that constraints arising from the reduction to the forward limit (3.38) and the sum rule
for the lowest moment (3.40) are satisfied.

3.4.2 Model for Ẽ(x, ξ, t)

An important role in determining the size of Ẽ plays the spontaneously broken chiral sym-
metry of QCD. We remind that the GPD Ẽ satisfies the sum rule of (3.40) in terms of the
pseudoscalar form factor gq

P . It is known that due to the spontaneously broken chiral symmetry
this form factor at small four-momentum transfer t is dominated by the contribution of the
chiral singularity (pion pole) of the form [39]

lim
t→m2

π+

gq
P (t) =

1

2
τ 3
qq

4gq
A(0)M2

p

m2
π+ − t

, (3.46)

where gq
A(0) ≈ 1.267 is the nucleon isovector axial charge and τ 3

qq is the Pauli matrix in flavour

space. The presence of the pion pole on the right-hand side of the sum rule (3.40) for Ẽ implies

that one should also expect the presence of the pion pole in the the GPD Ẽ itself at small t.
The form of this singularity is specified to be [39]

lim
t→m2

π+

Ẽq(x, ξ, t) =
1

2
τ 3
qq

4gq
A(0)M2

p

m2
π+ − t

θ(|x| ≤ ξ)

2ξ
Φπ+(

x+ ξ

2ξ
), (3.47)

where Φπ+ is the (universal) pion distribution amplitude entering, e.g., the description of the
pion electromagnetic form factor at large momentum transfer and the hard reaction γ∗γ → π0.
The pion-pole term (3.47) and the deviations from it are computed in the framework of the

chiral quark-soliton model [21, 22]. It is found in this model that the pion-pole part to Ẽ
dominates over a wide range of t and ξ values.

Next a phenomenological and physically motivated parameterisation of Ẽ is needed in order
to connect this GPD to observables. The contribution to Ẽ is obtained by evaluating Ẽ under
the assumption that it is entirely due to the pion pole. Since the pion exchange is isovector,
one has [39]

Ẽu = −Ẽd =
1

2
Ẽπ pole, (3.48)

where the t-dependence of Ẽπ pole(x, ξ, t) is fixed by the sum rule (3.40) in terms of gq
P (t).

In the region −ξ ≤ x ≤ ξ, the quark and antiquark couple to the pion field of the nucleon.
Therefore this coupling should be proportional to the pion distribution amplitude, for which
the asymptotic form is adopted. With the quark’s longitudinal momentum fraction z in the
pion taken in the symmetric range −1 ≤ z ≤ 1, the asymptotic distribution amplitude is given
by Φπ+,as(z) = 3

4
(1−z2), and is normalised as

∫ +1

−1
dzΦπ+,as(z) = 1. The light-cone momentum

fractions of the quark and antiquark in the pion are given by x+ξ
2ξ

and x−ξ
2ξ

, respectively, so that

Ẽπ pole is finally modelled in the estimates as [39]

Ẽπ pole =
θ(|x| ≤ ξ)

ξ
gq

P (t)Φπ+,as(
x

ξ
), where gq

P (t→ m2
π+) =

4gq
A(0)M2

p

m2
π+ − t

. (3.49)

Note that the parameterisation (3.49) satisfies the sum rule (3.40) for Ẽ.
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Figure 3.4: The transverse-target single-spin azimuthal asymmetry as a function of Bjorken x at
t = −0.1, −0.3, and −0.5 GeV2. Solid lines: with asymptotic pion distribution amplitude η = 1.
Dashed lines: with Chernyak-Zhitnitsky pion distribution amplitude η = 5

3 . Figure taken from [33].
The right-hand-side vertical axis indicates the size of the amplitude after it has been scaled by a
factor π

2 (see (3.53)) in accordance with the Trento conventions [9] used in this work.

3.5 Transverse-Target Single-Spin Azimuthal Asymme-

try

According to the definition in [10, 33] the transverse-target single-spin azimuthal asymmetry
is given by

A =
1

|PT |

∫ 0

−π
d(φ− φS)dσ(φ, φS)−

∫ π

0
d(φ− φS)dσ(φ, φS)∫ π

−π
d(φ− φS) dσ(φ, φS)

=
2

π

dσUT (φ, φS)

dσUU(φ)
, (3.50)

where the integration is over φ−φS which varies between−π and π. The pion electroproduction
cross sections dσ, dσUU , dσUT are related as given in (3.19).

Considering only the leading-twist contribution dσ+−
00 (3.27) to the cross section for the

process γ∗Lp → nπ+ and using the parameterisations of the GPDs H̃, Ẽ and of the pion
distribution amplitude Φπ+ as outlined above, the asymmetry is obtained in the form [33]

A ≈
√
t0 − t

πMp

2
√

1− x

2− x

18 η gq
P (t) ImH

|H|2(1− ξ2

4
)− 81 η2 t

4M2
p
gq

P (t)2 − 9 ξ gq
P (t) ReH

, (3.51)

where H =
∫ 1

−1
dx H̃(x, ξ, t)α(x) with α(x) from (3.37), η = 2

3

∫ 1

−1
dz

Φπ+ (z)

(1−z2)
(η = 1 for the

asymptotic pion distribution amplitude Φπ+,as(z)), and gq
P (t) from (3.49).

The calculated asymmetry (3.51) is shown in Fig. 3.4 at several values of t as a function
of Bjorken x. It is plotted for η = 1 (corresponding to the asymptotic Φπ+ , solid lines), and
for η = 5

3
(corresponding to the Chernyak-Zhitnitsky model for Φπ+ , dashed lines) in order to

illustrate the sensitivity of the asymmetry to the shape of the pion distribution amplitude.
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We note that because of different conventions, the predicted asymmetry defined in [10, 33]
(see (3.50)) and the one to be measured here (see (3.20)) are related to each other by a factor
2
π
≈ 0.64, namely,

A
sin(φ−φS)
UT (theory [10, 33]) =

2

π
A

sin(φ−φS)
UT (this analysis). (3.52)

The relation (3.52) holds for the other amplitudes in (3.23) as well. For data-to-theory com-

parison the prediction for the leading amplitude, whose maximal value is A
sin(φ−φS)
UT = 0.64 in

Fig. 3.4, should be scaled by the inverse factor π
2
≈ 1.57, i.e.,

max.A
sin(φ−φS)
UT (theory, scaled) =

π

2
max.A

sin(φ−φS)
UT (theory) ≈ 1.57 · 0.64 = 1.00. (3.53)

Thus the maximal possible value of 1.0 for this amplitude is predicted by theory. The right-
hand-side vertical axis in Fig 3.4 indicates the size of the amplitude after it has been scaled
(as in (3.53)) in accordance with the Trento conventions [9] used in this work.

One can see from Fig 3.4 that the amplitude A
sin(φ−φS)
UT in the production of charged pions

from a transversely polarised proton target is expected to be very large, which makes it inter-
esting to measure this asymmetry at current experiments like HERMES. Also it is seen that
the sensitivity to the form of the pion distribution amplitude is maximal at small transverse
momentum transfer t.

The asymmetry amplitude A
sin(φ−φS)
UT is proportional to the interference term of two GPDs

via Im(Ẽ∗H̃) (3.27), whose phase may appear to be zero for our measurement. We also note [24]
that both calculations [10, 33] are leading-twist predictions, which are likely to be insufficient
to reproduce the absolute cross section in our kinematics. In addition, this may also be the
case where higher-twist ’corrections’ [26] do not cancel in the azimuthal asymmetry. One-pion

exchange in the t-channel (i.e., the ’pion-pole contribution’) only contributes to Ẽ (because
of spin structure), and it has a large positive higher-twist correction as far as known from

phenomenology [24]. That is not the case for H̃, where higher-twist corrections are expected

to rather decrease than increase the leading-twist result. In a region where Ẽ � H̃, A
sin(φ−φS)
UT

is given at leading twist by the ratio of the (polarised) interference term
dσ+−

00

dt
∼ Im(Ẽ∗H̃)

(3.27) and the (unpolarised) longitudinal photoabsorption cross section
dσ++

00

dt
∼ |Ẽ|2 (3.26).

Thus one obtains

A
sin(φ−φS)
UT ∼ dσ+−

00

dσ++
00

∼ Im (Ẽ∗H̃)

|Ẽ |2
, (3.54)

so that the above type of power corrections does not cancel. Such effects reduce the value
of the asymmetry computed in the leading-twist approximation. In Chapter 8 an attempt is
made to compare our results with the leading-twist prediction in Fig. 3.4.
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Experimental Setup

The experiment HERMES (HERA MEasurement of Spin) is located on the HERA elec-
tron/positron storage ring at DESY in Hamburg. We describe in some detail the construc-
tion and principle of operation of those parts of the setup, which are most relevant for
the present work. Therefore, beam polarisation and related issues (spin rotators, polarime-
ters) [17, 64, 65, 66, 68] are omitted in the following discussion.

4.1 The HERA Electron Storage Ring

HERA [74] is the first and still (in 2007) the only operating lepton-hadron collider with high-
energy superconducting (proton) storage ring and longitudinally polarised (in the interaction
regions) high-energy electron/positron storage ring, used for precise studies of the nucleon
structure.

The HERA tunnel has a circumference of 6.3 km and is located 15-30 m below surface. It
consists of four 90◦ arcs with 797 m radius of curvature joined by 360 m-long straight sections.
In the tunnel, the counter-rotating 920 GeV proton and 27.56 GeV electron (positron) beams
are accelerated and stored in independent vacuum pipes, which cross each other only in the
middle of two of the straight sections (North and South Halls). There, the particles produced
in the head-on collisions at

√
s = 318 GeV centre-of-mass energy are detected by the H1 and

ZEUS experiments in the years 1992-2007. Only the proton beam is scattered off an internal
fixed target at

√
s = 42 GeV to study heavy quark production in proton–nucleus reactions by

the HERA-B experiment (West Hall), in the period 2002-2003. Only the electron beam is used
by the HERMES experiment (East Hall) in 1995-2007 for scattering off fixed gas targets at√
s = 7.3 GeV.
All magnets of the storage ring (dipoles, quadrupoles, sextupoles and steering coils) are

normal conducting. Typical magnetic fields of the bending dipoles are 0.3 T. The accelerating
field of ∼ 500 kV/m is produced by a total of 50 5-cell and 32 7-cell normal copper cavities, and
16 superconducting cavities. The radio-frequency system operates at 499.668 MHz. Positrons
are accelerated to 27.56 GeV energy in maximum of 220 number of bunches spaced by 96 ns
(i.e., 10.4 MHz rate).

4.2 The Internal Gas Target

The use of a polarised gas target internal to the storage ring is a valuable tool to study nucleon
properties via the measurement of polarisation observables. At HERMES the polarisation of
the gas is based on the atomic beam source (ABS) technique [43]. During 1996-1997 (1998-
2000) hydrogen (deuterium) was used in a longitudinal magnetic holding field, which in 2001

26
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was turned to transverse for operation with hydrogen only. In this section the principles
of gas polarisation [58] relevant for hydrogen and ABS are discussed in detail, followed by
a description of the target setup and the measurement of the polarisation. Unlike for the
spectrometer, here z is the vertical axis.

The HERMES target holds the record for the longest operating time for production of
polarised hydrogen and deuterium atoms, and also for quality in terms of reliability and sup-
pression of systematic errors. Various optimisation studies at the design stage and during the
operation of the target have led to improvements of its parameters, in particular, the values for
the gas flow and the target thickness, which are the best published results for ABS that use a
storage cell [61]. The best figure-of-merit achieved for an internal nuclear polarised hydrogen
gas target is reported in [62], where the laser-driven target (LDT) technique is employed.

4.2.1 Treatment of Hydrogen Atoms in the ABS

A hydrogen atom in an external static magnetic field, B, is found in any of four possible states
with energies E1 > E2 > E3 > E4. With increasing field strength E1,2 increase, whereas E3,4

decrease. B is called a guide or holding field because it ’holds’ the atom on a given energy level
(state). This so called hyperfine splitting of the states (Table 4.1) is due to the interaction of B
with the magnetic moments of the electron and the proton inside the hydrogen atom (see [59]
and Appendix A). The direction of B is, likewise, conveniently taken as the quantisation axis
for the electron spin, S, and the proton spin, I. The components of S and I along the field
axis can take two values each, mS = ±1

2
and mI = ±1

2
, respectively. The sign + (−) denotes

the spin component parallel (antiparallel) to the magnetic field direction.
In a weak field (B � BC , where BC is some critical field) S and I are coupled to each

other, i.e., F = S + I and mF is a good quantum number. The four states with different
electron and proton spin orientations form a basis of eigenstates |mS,mI〉. In the strong field
limit (B � BC) the new eigenstates |i〉 are pure states, |i〉 ≡ |mS,mI〉 for i = 1, 3, while each
of the states |2〉 and |3〉 is a mixture of |+ 1

2
,−1

2
〉 and |− 1

2
,−1

2
〉 with |B|-dependent coefficients.

S and I decouple in a strong field.

state weak field state strong field
energy |mS,mI〉 mF Pe Pz mS mI Pe Pz

E1 > 0 |+ 1
2
,+1

2
〉 +1 1 1 |1〉 +1

2
+1

2
1 1

E2 > 0 |+ 1
2
,−1

2
〉 0 0 0 |2〉 +1

2
−1

2
1 −1

E3 < 0 | − 1
2
,−1

2
〉 −1 −1 −1 |3〉 −1

2
−1

2
−1 −1

E4 < 0 | − 1
2
,+1

2
〉 0 0 0 |4〉 −1

2
+1

2
−1 1

Table 4.1: Hyperfine states of the hydrogen atom.

The polarisation P is a characteristic of a sample of particles (Pe for electrons and Pz for
protons) giving the average ’fictitious spin’ of the whole sample. But instead of summing spins
of individual particles in atoms, one counts atoms in different states—spins and states being
strictly related (Table 4.1). The normalisation of states is done such that the polarisation is
positive (negative) and maximal, P = 1 (P = −1), when the spins of all particles are directed
parallel (antiparallel) to some axis, e.g., z. Of course P = n+−n− can take any value between
−1 < P < 1 depending on the fractions of particles, n+ and n−, with spins parallel and
antiparallel to z, respectively. The sample (target) is said to be polarised if P 6= 0. Note that
polarisation has a different meaning here than in ’photon polarisation’, therefore the use of
’proton/electron polarisation’ or ’target spin’ is avoided in the following.

Unless further measures are taken, a hydrogen sample located in an external static magnetic
field is unpolarised (P = 0) because atoms occupy with equal probability any of the four states
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(Table 4.1). The principle of creating a polarisation rests on the possibility of preparing
atoms in such a way that the four states are not equally populated. Because the energy
difference between states with electron spin mS = +1

2
and mS = −1

2
is large, it is relatively

easy to separate them from one another (using the Stern-Gerlach principle). The separation is
accomplished by deflection in a strong (B � BC) inhomogeneous (B 6= const) magnetic field of
a sextupole magnet. The radial dependence of the field strength is given by B(r) = Bm( r

rm
)2,

where Bm is the magnitude of the field at the pole tips and rm is the distance of the pole
tips from the axis (at r = 0). The energy of an atom becomes a function of position via the
interaction of the magnetic moment with the field (E(r) = −µ·B(r)), and the atom experiences

a radial force f(r) = −∂E(r)
∂r

. For the electron spin, E(r) = −µS ·B(r) = −qegSµBmS|B(r)| =
gSµBmS|B(r)|, where µS is the magnetic moment and qe = −e the charge of the electron.
Since the electron carries a negative charge (qe = −e) its magnetic moment is (in a right-
handed coordinate system) anti-parallel to S. Because |B(r)| increases with r, the force is
pointing oppositely (minus sign) towards the axis for states whose energy E(r) increases with
|B(r)| (states with mS = +1

2
, E(r) > 0, f(r) < 0) and away from the axis for states whose

energy decreases with |B(r)| (states with mS = −1
2
, E(r) < 0, f(r) > 0). Thus, if a beam

of hydrogen atoms is directed along the axis of the magnet, atoms in states |1〉 and |2〉 are
deflected towards the axis of the magnet, while atoms in states |3〉 and |4〉 are rejected for a
strong field (Table 4.1). For a weak field most of the accepted atoms are in state |1〉. Note
that the spin rejection acts on the electron spin of the hydrogen atoms, not the nuclear spin.

Unless even further measures are taken, a non-degenerate hydrogen sample emerging from
the exit of a sextupole magnet (in the Stern-Gerlach selected electron states |1〉 and |2〉) is
polarised in electron spin only (Pe = 1) but no nuclear polarisation is present (Pz = 0) in a
strong magnetic field as the nuclear states |1〉 and |2〉 are equally occupied (Table 4.1; in a
weak field nuclear polarisation, Pz = 1, is however present). Nuclear polarisation is obtained
once it is possible to cause a transition |1〉 → |3〉 (|2〉 → |4〉) of one of the selected states, so
that in combination with the other state |2〉 (|1〉), i.e., |3〉 + |2〉 (|4〉 + |1〉) the desired value
P = −1 (P = 1) is obtained.

Radiofrequency (rf) transitions [5, 12] (in nuclear or electron spin) are used to change the
population of the hydrogen atomic states. The required frequency for a transition between
states |i〉 and |j〉 is determined from the energy difference between the states, ωij =

Ei−Ej

h̄
.

The static holding field is applied in the vertical z direction with strength B = const and
the rf-field with circular frequency ω and amplitude 2Brf in the x-direction, so that the total
external field vector Bext has components [13]

Bext
x = 2Brf cosωt, Bext

y = 0, Bext
z = B. (4.1)

The variation of the magnetic moment µI with time (due to the precession) is given by (Ta-
ble 4.2)

dµI

dt
= qpgIµN(µI ×B). (4.2)

Consider the case Brf � B with both fields positive and constant. Further assume that ω
is close to the nuclear Larmor frequency ω0 = qpgIµNB, i.e, |ω − ω0| � ω0. Then the actual
oscillating field in the x-direction can be effectively replaced by a field with components

Bext
x = Brf cosωt, Bext

y = ∓Brf sinωt, (4.3)

rotating around the z-direction with the sign of Bext
y , the rotation being negative or positive,

depending on whether qpgIµN is positive or negative. Defining the polar angle θ = 6 (µ,B),
the expression (4.2) is satisfied by the following components of the magnetic moment

µI,x = µI sin θ cosωt, µI,y = ∓µI sin θ sinωt, µI,z = µI cos θ, (4.4)
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variable numeric value explanation
f = ma linear force
i - moment of inertia

ω = dφ
dt

angular velocity,
circular frequency

α = dω
dt

angular acceleration
L = iω = mrv angular momentum

µ = (closedloop
current )(enclosed

area ) = (q v
2πr

)(πr2) = qL
2m

magnetic moment (classic)

τ = iα = idω
dt

= dL
dt

= L sin θdφ
dt

= L sin θω = L× ω torque
E = −µI ·B = −gIµNmIB magnetic interaction

energy

f = −dE
dr

= d(µI ·B)
dr

linear force

τ = dr × f = dr×µI ·B
dr

= dr
dr
×µI ·B = 1·(µI×B) = µI×B torque

τ = I × ω0 torque
ω0 = qpgIµNB I × ω0 = µI ×B → I × ω0 = qpgIµNI ×B nuclear Larmor frequency
dI
dt

= µI ×B → dµI

dt
= qpgIµN(µI ×B) time variation of µI

e = +1 elementary charge
qp = +e nuclear charge
I - nuclear spin
mI = ±1

2
nuclear spin
quantum number

gI = 5.5857 nuclear gyromagnetic
factor

µN = eh̄
2Mp

nuclear magneton

µI = qpgIµNI = qpgIµNmI nuclear magnetic moment

Table 4.2: Derivation of the time dependence of the magnetic moment (known as precession) and
related quantities.

provided θ = const and chosen such that

tan θ =
qpgIµNB

rf

qpgIµNB ∓ ω0

, (4.5)

with the minus or plus sign depending on whether qpgIµN is positive or negative. Denoting
B∗ = ω

|qpgIµN | the ’resonance field at frequency ω’, i.e., the field Bext for which the Larmor

frequency ω∗ = qpgIµNB
ext is equal to the frequency of the oscillating field, ω∗ = ω, then

tan θ =
Brf

B −B∗ . (4.6)

The expression (4.4) is interpreted as a rotation of the magnetic moment around the z-direction,
i.e., around the strong field B and in such a way that it lies at any instant in the common plane
of this field and the effective rotating field (4.3). The angle θ between the magnetic moment
µI and the static magnetic field B follows from (4.6) to depend on the relative strengths of the
static and rf-field (note that Brf � B is assumed)

• θ ≈ 0 ⇔ B −B∗ � Brf : µI is almost parallel to the direction of B‖z.

• θ = π
4
⇔ B − B∗ = Brf : µI starts to deviate significantly from the z-direction but its

projection is still parallel to B.
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• θ = π
2
⇔ B = B∗: µI is perpendicular to the z-direction, and thus to B.

• θ = −π
4
⇔ B∗ − B = Brf : µI turns opposite to B but with half its magnitude (z-

projection).

• θ ≈ −π ⇔ B∗ −B � Brf . Finally µI points completely in a direction opposite to B.

The magnetic moment of the proton is related to its spin via µI = qpgIµBI (Table 4.2). Since
the proton carries a positive charge (qp = +e) its magnetic moment is (in a right-handed
coordinate system) parallel to I. Therefore the change of µI ’s direction, from parallel to anti-
parallel with respect to B, implies that the nuclear spin is flipped from mI = ±1

2
to mI = ∓1

2
,

with the sign + to − or − to + depending on whether qpgIµB is positive or negative. The spin
flip can also be visualised quantum mechanically in terms of the quantum energy of transition
between the two possible spin states of the proton (Appendix A). But the expectation value
of the vector operator representing the magnetic moment (or the spin) necessarily follows the
same time dependence as obtained from the classical equation of motion for µI used above.

Since states are determined by the spin, by flipping the spin of the protons the atoms
undergo transitions between pairs of states, thus changing the relative populations of the four
hydrogen hyperfine states.

4.2.2 Target Setup

The HERMES polarised target setup is shown schematically in Fig. 4.1. Any parameter values
occurring below refer to the target operation with hydrogen.

ABS The Atomic Beam Source injects a polarised beam of hydrogen atoms, H, into the
storage cell. Hydrogen molecules, H2, are dissociated by radiofrequency discharge with
a frequency of 13.56 MHz in a pyrex tube, producing a degree of dissociation up to 80%
at a flow of about 1 mb l s−1 and radiofrequency power of 300 W. The atomic gas flows
through a conical nozzle with an opening diameter of 2 mm. The water produced in the
discharge freezes on the 100 K cold walls of the tube, however, the ice layer is found
to reduce surface recombination. The gas then expands into a chamber evacuated by a
powerful pumping system with a total nominal pumping speed of more than 15000 l s−1,
thus ensuring that the scattering of the atomic beam is suppressed. The magnet system
consists of a total of five Halbach type segmented permanent sextupole magnets with a
maximum poletip field of about 1.5 T. Four high-frequency transition units are available:
two between the sextupole magnets (Strong and Medium Field Transition) and two after
the last magnet (Medium and Weak Field Transition). The system provides enough
flexibility that many different combinations of hyperfine states can be injected into the
cell. Fluxes of ∼ 6.5× 1016 atoms s−1 (states |1〉 and |2〉) are achieved.

Storage Cell The storage cell increases the areal target density up to 1.4×1014 nucleons cm−2,
i.e., by about two orders of magnitude compared to a free jet atomic beam. The cell is
made of two 75µm thin pure aluminium sheets, which are tightly spot-welded together.
It is 400 mm long and has an elliptical shape with a cross section of 21 mm×8.9 mm. All
the inner aluminium parts are coated with Drifilm (radiation hard hydrophobic silicon
based polymer) to minimise gas depolarisation and recombination caused by the wall
collisions. The operating temperature is about 100 K, where recombination and depolar-
isation effects are low, and, due to the lower conductance the target thickness is higher
by a factor

√
3 compared to room temperature.
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Figure 4.1: A schematic view of the polarised target setup.

TGA The Target Gas Analyser measures the relative atomic and molecular content of a
sample of gas, extracted from the target cell through a sample tube. The particles
entering an ionising volume are ionised by 70 eV electrons emitted from a filament and
extracted. The ionised atoms (H+) and molecules (H+

2 ) are separated from each other on
the basis of their mass in the magnetic field of a quadrupole mass spectrometer (Balzers
QMA 430). The ions are detected by a channel electron multiplier (DeTech 401A),
which converts the single-ion signals into electrically measurable pulses, counted by a
multichannel time resolving counter.

BRP The Breit-Rabi Polarimeter determines the atomic polarisations of a sample of gas from
the target centre by measuring the relative populations of the hydrogen hyperfine states.
The absolute atomic polarisation can be calculated by applying the knowledge of the
magnetic field strength. The sample beam passes through two transition units (Strong
Field Transition for π, σ transitions and Medium Field Transition for π transitions) and
a sextupole magnet system with mS = +1

2
selection. The detector stage is identical to

the one used for the target gas analyser but only hydrogen atoms (no molecules) are
analysed by the BRP.

Transverse Magnet The magnet surrounding the storage cell provides a holding field, defines
the polarisation axis, and prevents spin relaxation by decoupling the magnetic moments of
electrons and protons. The field is homogeneous (within 0.05%) and vertical, (i.e., along
y in the HERMES coordinate system (Section 4.3)) with a field strength of B = 297 mT,
limited by the amount of synchrotron radiation power generated by the deflection of the
beam by the magnet (5 kW maximum).

4.2.3 Target Polarisation Measurement

The total flux, φtot, of hydrogen gas that flows into the target can be presented as the sum of
the fluxes of (i) polarised H-atoms, φa, (ii) molecules from recombined polarised H-atoms, φr,
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and, (iii) unpolarised molecules from a) ballistic flow from the ABS, φball, and, b) residual gas
in the target chamber, φrg [63]. Thus φa + φr is the total number of atoms if recombination
were absent. The fraction of atoms in the absence of recombination is

α0 =
φa + φr

φtot

. (4.7)

Out of all atoms in the storage cell, the fraction of atoms surviving recombination is given by

αr =
φa

φa + φr

, (4.8)

and, the fraction of atoms undergoing recombination in the cell is equal to

φr

φa + φr

=
φa + φr − φa

φa + φr

= 1− αr. (4.9)

In this way one is able to represent the total fraction of polarised protons as a sum of (i) the
fraction of polarised protons inside H-atoms, α0αr = φa

φtot
, and, (ii) the fraction of polarised

protons inside H2-molecules due to recombination, α0(1 − αr) = φr

φtot
. This differentiation

between atoms and molecules is necessary because the protons inside atoms and molecules
contribute differently to the average nuclear polarisation of the target gas. Denoting the
polarisation coming from atoms and molecules by Pa and Pm, respectively, the target proton
polarisation, PT , as seen by the electron beam is given by

PT = α0αrPa + α0(1− αr)Pm. (4.10)

The values for α0, αr, and Pa are calculated using the TGA and BRP combined with various
calibrations, accounting for the differences between the sample measurement and the actual
conditions of the whole target (e.g., differences in the number of wall collisions, depolarisation
mechanisms, non-uniform surface in the cell and sample tube). The sample and target values
are related via the sampling corrections

cα ≡
αr

αTGA
r

, cP ≡
Pa

PBRP
a

, (4.11)

which depend on the geometry of the storage cell, its surface properties and the detectors’
acceptances. They are calculated by means of a Monte Carlo simulation of the stochastic
motion of particles in the storage cell.

A direct precise measurement of the proton polarisation contained in the molecules, Pm,
is not possible at HERMES as it requires the use of cells of various materials and/or with
various coatings and/or at various temperatures [61]. Without any such information one has
to allow a conservative limit 0 ≤ β ≤ 1 for the ratio β = Pm

Pa
. However, an upper limit for

β100K
high ≤ 0.83 is found from a measurement at a higher cell temperature (260 K instead of

the nominal 100 K), β260K = 0.68 (supposing the recombination mechanism is the same but
the recombination probability (residence time on the surface) at 100 K is smaller (greater)
than at 260 K). The lower limit on β100 K ≥ 0.45 follows from a simple argument that surface
recombination involves target atoms (Pa ≈ 1.0) and totally depolarised surface atoms, plus
accounting for depolarisation of molecules while colliding with the walls. Thus, taking the
range 0.45 ≤ β100 K ≤ 0.83, reduces the contribution of β to the total systematic uncertainty
of the target polarisation.

Example values measured during the 2002 target operation are α0 = 0.92 ± 0.03, αr =
0.98 ± 0.02 [61]. Although the injected proton polarisation can be large, e.g., Pz+ = +0.9726
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and Pz− = 0.9738, there are various processes occurring inside the cell—recombination, spin
relaxation, wall relaxation, spin exchange depolarisation, bunch field induced depolarisation—
all of which lead to a decrease of Pa < 1. The transverse target proton polarisation values
(4.10) are PT = 0.783±0.041 during 2002, PT = 0.795±0.033 for 2003, PT = 0.777±0.039 for
2004 and in the second part of the 2004 data taking period due to unstable performance values
between 0.648± 0.090 and 0.775± 0.044 are measured, giving an average proton polarisation
of 〈PT 〉 = 0.754± 0.050 for the whole sample analysed in this work.

4.3 The Spectrometer

The particles originating from the target are scattered in the forward direction along the beam.
The ordering of the detectors along the particle track is as follows: drift vertex chambers
(DVCs), trigger hodoscope (H0), a pair of ’front’ drift chambers (FC 1/2), three proportional
chambers (MC 1-3) embedded in the gap of the spectrometer magnet, a pair of ’back’ drift
chambers (BC 1/2), a Cherenkov detector, another pair of drift chambers (BC 3/4), trig-
ger hodoscope (H1), transition radiation detector (TRD), a preshower detector (H2) and a
calorimeter.

The HERMES coordinate system has its origin at the centre of the target. The positive
z-axis coincides with the lepton beam direction, the y-axis points vertically upwards and (in
this orthogonal right-handed coordinate system) the x-axis is oriented horizontally towards the
outside of the ring.
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Figure 4.2: A schematic view of the HERMES spectrometer.

The HERMES forward spectrometer [67] consists of two halves of virtually identical mod-
ules placed above and below the beam pipe. The magnet creates a vertical magnetic dipole
field with an integrated field strength of maximum 1.5 T m. A septum plate in the (x, z)-plane
at y = 0 (in the septum of the magnet) is used to shield the beam from the strong magnetic
field. The field clamps in front of and behind the magnet coils reduce the outer fringe fields.



34 Chapter 4. Experimental Setup

Inside the magnet the particle tracks are bent horizontally such that only small deviations are
expected in y, larger ones in x. The bending radius is proportional to the particle’s momentum.
Outside the magnet the particle tracks are straight lines.

4.3.1 Tracking Detectors

The purpose of the tracking system is the precise determination of the particle trajectories and
momenta using a magnet and a set of drift chambers. The reconstruction program makes use
of two methods: the tree-search algorithm for fast track finding and a look-up table for fast
momentum determination of the tracks.

Charged particles passing through a gas lose energy by ionisation of the atoms and molecules.
E.g., for a pion moving in argon gas, in the ionisation process π Ar → π Ar+ e−, positively
charged argon ions Ar+ and free electrons e− are produced along the pion path. In the presence
of static electric field the electrons e− (the Ar+ ions) drift to the anode (cathode) creating a
detectable electric signal. By measuring the drift time of the electrons and knowing their drift
velocity, the distance from the anode to the place of origin of the electrons (ions), and thus
spatial information, is obtained.

The drift chambers DVC, FC 1/2, BC 1/2 and BC 3/4 (Fig. 4.2) are of conventional
horizontal-drift type. The basic unit, a layer of drift cells, consists of a plane of alternating
anode and cathode wires between a pair of cathode foils. The cathode wires and foils are at
negative high voltage of a few thousand volts with the anode sense wires at ground potential.
The cells are filled with a gas mixture of Ar(90%)/CO2(5%)/CF4(5%), which is both fast and
non-flammable. The drift velocity is, e.g., > 7 cm

µsec
at E = 800 V

cm
. The DC-readout system

consists of Amplifier/Shaper/Discriminator (ASD) cards mounted onboard the drift chambers,
driving ECL signals on 30 m long flat cables to LeCroy 1877 Multihit FastBus TDCs in an
external electronics trailer.

Each drift chamber module is capable of measuring a space point (hit) with (x, y, z)-
coordinates. The z-coordinate is directly given by the position of the module along the
longitudinal z-axis. Since wires with at least three different orientations are needed to re-
construct unambiguously an unique point in the vertical (x, y)-plane, each modules consists of
three vertical layers with wires arranged in three coordinate doublets, UU ′, XX ′, and V V ′.
The wires are vertical for the X layer and at an angle of ±30◦ to the vertical for the U and
V layers. The X ′, U ′, and V ′ layers are staggered with respect to their partners by half the
cell size in order to resolve the remaining left-right ambiguities. The average efficiency of a
layer is typically above 99% for lepton tracks, whereas it drops to 97% when all tracks (mainly
hadrons) are considered, due to the smaller energy deposited in the chambers by hadrons. The
spatial resolution per layer is about 220µm for the DVC, 225µm for the FC 1/2, and 275µm
(300µm) for the BC 1-2 (3-4).

The track finding is based on pattern recognition using the tree-search algorithm. This
is possible because the particle track can be well approximated with an unique pattern of
drift chamber hits. All allowed patterns (about 108 in total but in fact 50000 after symmetry
considerations) are generated and stored in a database. The pattern recognition algorithm
consists in looking at the whole pattern of actual hits in the drift chambers with increasing
resolution and comparing at each step the measured pattern with the data base of allowed
tracks. Only the patterns consistent with an allowed track are retained (tree-search). The
search continues until the full detector resolution is reached (typically in 14 steps). Since no
calculation of track parameters is done during processing, the tree-search algorithm is very
fast. By using hits from the DVC and FCs, and separately from the BCs, ’partial’ front and
back tracks are reconstructed uniquely in space. In those regions the tracks are approximately
straight lines. All combinations of front and back tracks are tested to see if they match spatially
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within a specified tolerance at the (x, y)-plane in the centre of the magnet (Fig. 4.2). For each
associated pair, the front-track is forced to agree with the magnet mid-point of the back track,
and then the front track is recomputed accordingly. This procedure improves the resolution of
the front-tracking system (DVC and FCs).

The momentum measurement, similarly to the track finding procedure, avoids the time
consuming computations on a track by track basis. Instead, 520000 tracks with different
momenta are generated and their trajectories in the inhomogeneous field of the magnet are
computed once and stored in a look-up table. The table contains the momentum of a given
track as a function of the track parameters in front of and behind the magnet. For the actual
momentum measurement the track parameters of a measured track are compared to the table
values. The number of stored tracks in the table is chosen such that the actual track momentum
is determined with a resolution of better than ∆p

p
= 0.5%, using interpolation methods.

4.3.2 Particle Identification

A charged particle passing through matter causes the emission of so called Cherenkov radiation
whenever the velocity of the particle, v, is greater than the velocity of light in the traversed
medium, vt,

v(= βc) > vt(= c/n), (4.12)

where n is the refractive index of the medium, c is the velocity of light in vacuum, vt denotes
the sought threshold velocity, and β = v/c. The photons from the Cherenkov radiation are
emitted under a constant angle, θc, with respect to the direction of the moving particle

θc = arccos (vt/v) = arccos (1/βn), (4.13)

so that the faster the particle, the larger the angle. The Cherenkov photons thus lie on a cone
which projects to a circle in a plane perpendicular to the direction of the moving particle.
The fastest particles (of a given type) with β = 1 produce the maximum emission angle
θc = arccos (1/n) provided their exact value of β (γ) exceeds the threshold given by

βt = 1/n = vt/c (γt = n/
√
n2 − 1), (4.14)

where γ = 1/
√

1− β2 is the Lorentz factor.

The above set of relations and the particle kinematics (E2 − |p|2 = m2, β = p/E) give

pt/
√
p2

t +m2 = 1/n → pt = m/
√
n2 − 1, (4.15)

θc = arccos (pn/
√
p2 +m2). (4.16)

This allows one to find the threshold momentum, pt, which a particle with mass m must possess
to produce Cherenkov radiation in the detector material with a known index of refraction n. For
the same material, different particles (pions, kaons, protons) have different threshold momenta
because mπ < mK < mp. Reversely, by measuring the momentum of an unknown particle
in the experiment and just by counting the presence or absence of Cherenkov radiation, some
information about the particle mass, and thus its type, can be inferred. The unambiguous
separation of particles requires the Cherenkov angle θc to be measured in addition to the
momentum, and that is the basic principle of particle identification with the ring imaging
Cherenkov detector.
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Cherenkov Counter

The HERMES single-gas radiator threshold Cherenkov counter [67] provides only pion identi-
fication. The radiator is a gas mixture of 70% nitrogen, N2, and 30% perfluorobutane, C4F10,
with a refractive index of n = 1.000629. The Cherenkov threshold momenta for leptons, pions,
kaons, and protons are 0.014, 3.8, 13.6, and 25.8 GeV, respectively. Thus the passage of all
leptons results in an emission of Cherenkov radiation. The momentum range over which pions
can be distinguished from other hadrons spans from 3.8 to 13.6 GeV. Even below 13.6 GeV
kaons cannot be cleanly identified because of contamination from pions whose Cherenkov ra-
diation is not detected due to the few percent inefficiency of the counter. The counter was
operational in 1995-1997 and was upgraded to a RICH in 1998.

Ring Imaging Cherenkov Detector

The HERMES dual-radiator ring imaging Cherenkov (RICH) [69] detector provides particle
identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, covering
most of the kinematic acceptance of the experiment. This difficult range was inaccessible to
conventional techniques until 1998 when new technology became available. It relies on the
development of new clear silica aerogel with a low index of refraction and excellent optical
properties. The first successful use of clear silica aerogel in a combination with a heavy gas,
C4F10, in a RICH detector was realised at HERMES. This dual-radiator configuration was first
proposed for the LHCb experiment.

A particle passes through the 5.5 cm aerogel wall at the entrance of the detector and then
through the rest of the volume filled with gas. A spherical mirror array located at the rear
of the radiator box images the Cherenkov radiation cones onto a focal surface located above
(below) the active volume of the upper (lower) half. This surface is instrumented with an
array of photomultiplier tubes (PMTs) which detect the photons from the Cherenkov rings.
The Cherenkov angle θc is reconstructed from the PMT hit pattern. The angle versus the
hadron momentum for the two radiators and the three hadron types is plotted in Fig. 4.3.
The indices of refraction for the two radiators, the threshold momenta for positrons, pions,
kaons, and protons and the maximum separation momenta can be found in Table 4.3. The
latter is defined as the maximum momentum for which the angle θc for two particle types is
separated by 4.65 standard deviations of the reconstructed photon angle distribution σθ. A
value of σθ ≈ 7 mrad—also called the single photon resolution—was measured for aerogel and
gas.

Pion identification with the RICH is essential for the following analysis. The lower limit of
the momentum range in which a detected hadron track can be identified as a pion is given by the
pion threshold momentum pt = 0.6 GeV for the aerogel radiator. The upper limit is restricted
to the pion/kaon maximum separation momentum pmax = 15 GeV for the C4F10 radiator.
Above this value the Cherenkov rings produced by pions and kaons become indistinguishable
in the detector.

Particle Identification with the RICH Detector

The particle identification scheme is described and the ’quality’ of the identification within
this scheme is explained below.

The analysis of the PMT-matrix hit pattern is complex due to background hits, sparse
number of signal hits on the ring, and distortions from a simple ring structure. To find the
Cherenkov angle θc corresponding to a ring, the inverse ray tracing method (IRT) is used,
see references 8-9 in [69]. This algorithm reconstructs two θc angles for each hit, assuming
that the hit is coming from a photon emitted in the aerogel and in the gas, respectively. The
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Figure 4.3: The Cherenkov angle θ ≡ θc versus
hadron momentum for the aerogel and C4F10 radi-
ators. Figure taken from [69].

Aerogel C4F10

n 1.0304 1.00137
βtγt 4.03 19.10
pt(e) 2.06 MeV 9.76 MeV
pt(π) 0.6 GeV 2.7 GeV
pt(K) 2.0 GeV 9.4 GeV
pt(p) 3.8 GeV 17.9 GeV
pmax(π/K) 6.7 GeV 15.0 GeV
pmax(K/p) 11.2 GeV 25.3 GeV

Table 4.3: Cherenkov radiation threshold
momenta (pt) and maximum separation mo-
menta (pmax) for pions, kaons, and protons.
The index of refraction n is given at 633 nm.

theoretically expected angles θth
c (4.16) for aerogel and gas are calculated for each particle

type hypothesis (mπ, mK , mp) from the measured track momenta. For each radiator and for
each particle hypothesis, an average Cherenkov angle 〈θc〉 is then calculated including only the
reconstructed angles θc within ±4σθ of the theoretically expected angle. Here σθ is the single
photon resolution of the RICH detector.

The distributions of reconstructed average angles are normalised such as to form a prob-
ability (density function, p.d.f.) and this probability is used to form a likelihood. Assuming
that the average angle distribution has Gaussian shape and its resolution is independent of the
particle type, the normalisation of the probability distribution is chosen so that the maximum
value of the likelihood is unity, namely,

L(〈θc〉) = exp[−(θth
c − 〈θc〉)2

2σ2
〈θc〉

], (4.17)

where 〈θc〉 = σθ/
√
N is the average angle resolution for N hits.

The likelihoods for the two radiators are multiplied to give an overall likelihood for each
particle hypothesis h = π,K, p, that is Lh = Laerogel

h · Lgas
h . The particle is assigned the type

with the highest likelihood. To avoid the cases when two hypotheses are equally likely, a quality
parameter is introduced as the logarithmic ratio of the two most probable particle hypotheses,

rQp = log10
Lh1

Lh2
. In the analysis, the rQp parameter is required to be larger than zero. Recall

the maximum value Lh1 and Lh2 can take is unity.

4.3.3 Lepton-Hadron Separation

While the RICH detector provides particle identification for hadrons (pions, kaons, and pro-
tons), the discrimination between hadrons and leptons (e.g., scattered beam positrons) requires
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information from other detectors. The lepton-hadron separation detectors can be characterised
by a pion rejection factor (PRF), defined as the ratio of the total number of incident hadrons
(most hadrons being pions) to the number of hadrons that are misidentified as leptons.

In certain kinematic regions the hadron production can exceed the rate of positrons by
a factor 400 : 1. In an offline analysis, by combining the data from up to four detectors, a
pion rejection factor (PRF) of at least 104 is reached, thus keeping the contamination of the
positron sample by hadrons below 1% for the whole kinematic range.

Transition Radiation Detector

The transition radiation detector (TRD) provides a pion rejection factor (PRF) of at least 130
for 90% positron efficiency at 5 GeV and above.

When a charged particle with velocity β = v/c ≈ 1 traverses the boundary between two
materials, it produces so called transition radiation. The (X-ray) photons from the radiation
are emitted at an angle θ = 1/γ (γ = 1/

√
1− β2), so that they almost coincide with the

direction of the moving particle. The intensity of the photon flux is proportional to mγ, where
m is the particle’s mass. These properties of the radiation determine the TRD design.

The HERMES TRD consists of six contiguous fibre radiator modules. A module is 6.35 cm
thick and consists of (VILEDON C 1900/034) fibres of 17...20µm diameter put in a material
with a density of 0.059 g/cm3. The fibres are interspersed pseudo-randomly but predomi-
nantly in a two dimensional matrix, thus forming an average of 267 transition layers. Such
a configuration is found to give an optimal photon flux. Adjacent to the rear side of each
radiator is a 2.54 cm thick multi-wire proportional chamber (MWPC) filled with a gas mixture
of 90% xenon, Xe, and 10% methan, CH4. This gas is an efficient X-ray absorber. Positrons,
hadrons, and transition radiation photons deposit energy by creating electrons and ions in the
gas. These charges drift in the +3100 V electric field and are collected on the electrodes of the
chamber. The signal is proportional to the deposited energy, while the deposited energy, E,
depends on the particle momentum.

Due to the transition radiation and the relativistic rise in in the energy loss, dE
dx

∼ 1
β2 ,

positrons deposit on average approximately twice the amount of energy deposited by hadrons.

Preshower

The lead-scintillator preshower counter (H2) provides trigger signals and lepton-hadron sepa-
ration information. A pion rejection factor (PRF) of ∼ 10 is possible with 95% efficiency for
positron detection.

The particles/photons in the experiment carry enough energy to ionise an atom by removing
an electron from its orbit. This happens when they pass through the 1 cm thick plastic material
(BC-412 from Bircon Co.) of the H2 counter. The de-excitation of the displaced electrons
results in scintillation—emission of short light pulses. The light from each 9.3 cm-wide 91 cm-
long scintillator strip of H2 is detected by a photomultiplier tube (Thorn EMI 9954).

A passive radiator consisting of 11 mm (two radiation lengths) of lead, Pb, sandwiched
between two 1.3 mm stainless steel sheets, is placed in front of the scintillator. The traversing
particles initiate electromagnetic showers in the radiator. Part of the shower energy is deposited
in the scintillator. Typically positrons produce a broad distribution of deposited energies (with
a mean of 20...40 MeV), while hadrons give a narrow peak at lower energies (only about 2 MeV
for pions).
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Calorimeter

The calorimeter provides a first level trigger for scattered positrons based on energy deposition
(≥ 3.5 GeV or ≥ 1.4 GeV) in a localised spatial region. It also provides a hadron rejection
exceeding 10 at the trigger level and a further off-line pion rejection factor (PRF) of about
100.

The calorimeter consists of radiation resistant F101 lead-glass blocks with a face area of
9 cm × 9 cm and a length of 50 cm (about 18 radiation lengths) along the beam. This block
size meets the requirement that about 90% of the shower is contained in the block for an
axially-incident positron. Each block is coupled to a photomultiplier tube (Philips XP3461).
The sum of the signals in the hit block and in the eight surrounding blocks accounts for more
than 99% of the signal created by the electromagnetic shower. This 3 × 3 array is called
a cluster in the following. The performance of a 3 × 3 array of counters in a test beam
gives the following parameters, (i) an energy response to electrons linear within 1% over the

energy range 1...30 GeV, (ii) an energy resolution that can be parameterised as σ(E)
E

[%] =
5.1±1.1√
E[ GeV]

+ (1.5± 0.5), similar to that obtained for other large lead-glass calorimeters, and (iii)

a spatial resolution of the impact point of about 0.7 cm.

Separation Algorithm

The algorithm to discriminate between lepton and hadron tracks is based on Bayesian statis-
tics. The Bayes’ theorem gives for each track the conditional probabilities P (Hl|E, p, θ) and
P (Hh|E, p, θ) for the hypotheses H that a track is a lepton l and a hadron h, respectively,
given the track momentum p, its polar angle θ, and an energy deposition E in the detector

P (Hl(h)|E, p, θ) =
P (Hl(h)|p, θ) P (E|Hl(h), p)∑

i=l,h P (Hi|p, θ) P (E|Hi, p)
. (4.18)

Hence the sought lepton (hadron) probability can be computed from the probability (the
parent distribution) P (E|Hl(h), p) that a lepton (hadron) with momentum p will deposit an
energy E in the detector and the prior probability (the particle flux) P (Hl(h)|p, θ) that a
track with momentum p and polar angle θ is a lepton (hadron). The denominator acts as a
normalising constant resulting from the requirement that the sum of the probabilities for the
two hypotheses should be 1. The detector responses are assumed to be uniform within the
detector’s acceptance and therefore independent of θ.

For convenience, the conditional probabilities P (Hl|E, p, θ) and P (Hh|E, p, θ) are converted
into a logarithmic likelihood ratio

L = log10

P (Hl|E, p, θ)
P (Hh|E, p, θ)

= log10

P (E|Hl, p) P (Hl|p, θ)
P (E|Hh, p) P (Hh|p, θ)

= PID − log10 Φ, (4.19)

where

PID ≡ log10

P (E|Hl, p)

P (E|Hh, p)
and Φ ≡ φh

φl

≡ P (Hh|p, θ)
P (Hl|p, θ)

. (4.20)

This scheme allows one to combine the responses of several detectors in order to achieve
a better lepton-hadron separation compared to the capabilities provided by each detector
separately. The information of all detectors is taken into account in the sum of the PID-values
for each detector

PID = PIDcal + PIDpre + PIDrich + PIDtrd, (4.21)
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where PIDrich = PIDaerogel + PIDgas is the sum of the probability ratios for the aerogel and
gas response, and PIDtrd =

∑6
i=1 PIDtrd,i is the sum over the six TRD modules. PID values

commonly defined are

PID2 ≡ PIDcal + PIDpre, (4.22)

PID3 ≡ PIDcal + PIDpre + PIDrich, (4.23)

PID5 ≡ PIDtrd. (4.24)

The lepton-hadron separation is based on the following requirements

L = PID3 + PID5− log10 Φ > 0 ⇔ lepton, (4.25)

L = PID3 + PID5− log10 Φ < 0 ⇔ hadron. (4.26)

The parent distributions P (E|Hl(h), p) for a given detector are extracted from data recorded
during normal running of the experiment. For this purpose clean lepton (hadron) samples are
selected by imposing stringent cuts on the responses of the other lepton-hadron identification
detectors. For the determination of the flux value Φ the PID value is a necessary input which
in turn depends on Φ, therefore Φ is calculated in an iterative procedure from the same data.
More details on the lepton-hadron separation algorithm are given in references Wen99 and
Wen01 in [45].

4.4 The Luminosity Monitor

The luminosity monitor [71] is a stand-alone detector system with high live-time for precise
measurement of the luminosity. The luminosity L = ρ I

e
is the product of the target density

ρ and beam current I, normalised to the elementary beam charge e. Although each of these
components can be measured separately, the product can be determined much more accurately
using the luminosity monitor (LUMI).

The luminosity measurement with LUMI is based on the observation of elastic scattering
rates R of beam positrons off target gas electrons e+e− → e+e− (Bhabha scattering) or of
positron–electron annihilation into photon pairs e+e− → γγ, or, with an electron beam, on
elastic electron-electron scattering e−e− → e−e− (Møller scattering). The cross sections σ for
these processes are known precisely from theory. Thus the luminosity is obtained from

L =
R

σ∆Ω

, σ∆Ω =

∫
∆Ω

dΩ ε

(
dσ

dΩ

)
, (4.27)

where σ∆Ω is the integral of the differential cross section for the process over the acceptance
∆Ω of the luminosity detector, taking into account the detector efficiency ε. The integrated
luminosity

L =

∫
∆t

dtL (4.28)

is the measured luminosity L integrated over the time of measurement ∆t corrected for dead-
time effects.

For a beam energy of 27.56 GeV the symmetric scattering angle is 6.1 mrad, both scattered
particles have half of the beam energy, and their tracks lie in a plane. These particles leave
the beam pipe at 7.2 m after the centre of the target cell and are detected in coincidence by
two small calorimeters (with a horizontal acceptance of 4.6-8.9 mrad). Upon impact on the
calorimeter faces the scattered particles initiate an electromagnetic shower and deposit their
energy. Most of the background events have a high energy deposition in only one of the detec-
tors, while Bhabha events have a high energy deposition (reduced by lateral shower leakage)
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in both detectors. The latter type of events are separated from background by triggering on a
coincident signal with energy above 4.5 GeV in both the left and right calorimeter. This coinci-
dence rate is the high statistics LUMI rate R. The cross section σ∆Ω is calculated from a Monte
Carlo simulation, which requires knowledge of the four beam parameters ((x, y)-positions and
slopes) at the HERMES interaction point. Given that the measurements of the beam position
monitors are not always reliable, the parameters are extracted from the LUMI data at the
position of the LUMI detector. The systematic uncertainty for absolute (relative) luminosity
measurements is 6.3-6.4% (0.9-1.5%).

4.5 Data Collection

4.5.1 Trigger

The trigger hodoscope H1 is identical in construction to H2 in the preshower detector described
above. Each half (top and bottom) of H0 consists of one 3.2 mm (0.7% of a radiation length)
thick scintillator paddle coupled to two photomultiplier tubes.

The beam intersects the target once every 96 ns, i.e., at a rate of 10 MHz. As the produced
particles pass through the sensitive components of the detectors, the effects from the passage
are converted into electronic signals kept in buffers of the electronic modules. The signals are
further saved upon a trigger occurring within ∼ 400 ns of the interaction, otherwise they are
lost. This first-level trigger is formed from the hit information in the fastest detectors. Also
higher-level triggers, which require further signal processing and occur on time scales of 50 µs,
few-100µs, and ≤ 1 ms, are implemented in the trigger logic, however they are found to be
unnecessary in practice and are not used in the experiment.

The main physics trigger (numbered 21) used to select the events in this analysis requires
the coincidence of

• hits in the three scintillator hodoscopes H0, H1, and H2,

• deposited energy in two adjacent columns of the calorimeter above 3.5 GeV

in the top or in the bottom half of the detector, and in coincidence with the HERA clock
signal. These conditions are fulfilled by a single particle traversing one full detector half.
The signal in the preshower H2, required to exceed the minimum ionising signal, and the
calorimeter threshold increase the probability that the particle is a positron from the deep
inelastic scattering (DIS) process, rather than a hadron (Section 4.3.3). The trigger-21 rate
varies between 50...100 Hz depending on the beam current, the target density, and the beam
background conditions (e.g., Bremsstrahlung, influence from the proton beam) during data
taking. However, not all particles that pass the trigger-21 requirements belong to a DIS
process. It turns out later that 4...6% of these triggers are identified as DIS interactions in the
analysis.

4.5.2 Data Acquisition

The data acquisition system is able to cope with rates up to 500 Hz with dead times below
10%. A measure of the dead time is the ratio of the number of generated (Ngenerated) and the
number of accepted (Naccepted) triggers. The dead (live) time τdead (τlive) is defined as

τdead = 1− τlive = 1− Naccepted

Ngenerated

=
Ngenerated −Naccepted

Naccepted

=
Nrejected(or missing)

Ngenerated

. (4.29)

While the DAQ is busy processing the event from a previous trigger, no new triggers can be
accepted.
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Physics Event

The trigger initiates the digitisation by the readout electronics of the signals in all detectors.
The drift chamber signals are digitised using LeCroy 1877 TDCs (Time to Digital Converters),
while the TRD chambers and the charges from the various photomultiplier tubes are digitised
by LeCroy 1881M ADCs (Analog to Digital Converters). The magnet chamber and RICH
readout is instrumented with VME based PCOS4 system, consisting of LeCroy 2749 and
LeCroy 2748 modules. The vertex chamber signals are handled by a Struck ECL interface.
The electronic modules are located either in the vicinity of the detectors or in an electronics
trailer separated at an effective distance of ∼ 30 m cable length from the experiment.

The output data (in the form of bit words) from the electronic modules (TDCs, ADCs,
etc.) are handled by 10 Fastbus crates—the backbone of the data acquisition (DAQ) system.
The (set of) Fastbus crate(s), corresponding to each detector, is read out by a single dedicated
CERN Host Interface (CHI) (STR330) Fastbus master. Pairs of detector Fastbus crates are
connected via Cluster Interconnects. To enhance the readout performance of the CHIs (e.g., for
a second-level triggering), the (TRD and calorimeter) CHIs are equipped with Struck Fastbus
Readout Engines (STR330/FRE), featuring one or two Motorola 96002 Digital Signal Proces-
sors (DSPs). The CHIs (or the DSPs in case of second-level triggering) receive the physics
event trigger and read the ADC and TDC information into their memory (or FIFO in case of
the DSPs). Most of the programs running on the CHIs and DSPs are in assembly language,
however high-level code (in Fortran and C) is ported as well to allow an easy modification of
the setup, e.g., the addition of new digitising modules.

The detector CHIs send their data to the CHI of an Event Collector Fastbus crate via
Segment Interconnects. Upon reading data from all detectors, the Event Collector’s CPU
executes a routine which converts the data in EPIO (Experimental Physics Input Output
Package) format [1] in the memory of the Event Collector.

Slow Control

The trigger and flow of data described above are driven by the beam-target interactions.
Asynchronously to the physics trigger, data generated by ’user’ triggers and various scalers are
also collected over the course of the data taking. These scaler and ’user’ events are handled in
parallel and independently from the physics events.

Scaler data are taken over a 10 s period called a burst. Scaler modules (counters), coupled
to a detector, produce just counts. Scaler counts are, e.g., the luminosity monitor trigger
rate (exceeding 5 kHz) and the number of generated and accepted physics triggers during a
burst. Slow-control data come from the readout of detector parameters that change on a
slow (∼ minutes) time scale. Examples are the high voltage settings and the beam current.
Scaler, slow-control, and other calibration tasks are handled by a suite of programs running
continuously on the computers in the control room, using Fastbus, Camac, VME, or RS232
interface to the respective detectors. Depending on the task, the data are either collected
directly by the Event Collector Fastbus crate during idle time between physics events, or by
dedicated additional Fastbus crates and then ’injected’ as so called user events into the DAQ
data stream. For example the data from the longitudinal polarimeter (LPOL) [68] form an
user event.

Raw Data

The event is the smallest unit within the EPIO data structure. The different type of events,

• physics event (trigger-21),
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• scaler event (data obtained from Fastbus scalers every 10 s),

• user event (slow-control and calibration data injected at the start of each run),

are sent from the Event Collector via Fibre Optical Link (STR330/FOL) to the CHI of the
Event Receiver Fastbus crate (in the control room). There the accumulated events are packed
into chunks called runs. Each run corresponds to one file of data. The file volume, 450 MB
(or typically 10 min of data taking), is limited by the EPIO structure. The Event Receiver
is connected via SCSI interface to a computer (Alpha OSF station, a Linux machine since
2002), where the raw data files are buffered on local disk. At the end of each fill the data are
transferred to a taping robot at the DESY main site via an FDDI (Fibre Distributed Data
Interface) link. In addition, they are backed up locally onto DLT magnetic tapes.

4.5.3 Data Organisation and Event Reconstruction

Main Production

The layout of the offline software is shown in Fig. 4.4. Any sensitive detector component (e.g.,
wire, scintillator paddle, PMT) holds a channel number. The channels’ number and reading
for each detector are the actual data stored in the EPIO files. The raw data are passed to
a HERMES DeCoder package (HDC) that converts the numbers into physics quantities (hit
coordinates and deposited energies) via mapping (of a readout channel to a physical detector
component), calibration (of the reading to an energy), and geometry (of the component in the
HERMES coordinate system (Section 4.3)). The program filters the physics events from the
slow-control and user events, and stores the output in separate files in ADAMO format [2].
The physics event data are passed to the HERMES ReConstruction package (HRC) that
uses the wire chamber hits to assemble tracks in the detector and to compute the tracks’
momenta (Section 4.3.1). For each track the package also provides a link between the track
and the amount of deposited energy in the particle identification detectors. During the Main
Production chain the data are passed through intermediate programs (in addition to HDC
and HRC) which perform specific tasks, e.g., correction of the PMT gains with input from
the Gain Monitoring System (GMS), target magnet correction, computation of tracking plane
efficiencies.

Slow-Control Production

The slow-control in combination with the tracking efficiency data serve as input both to the
Slow-Control Production and to the Quality Control package. In addition, this production re-
ceives as an input external (non-physics event) data provided by the subdetector experts (after
some analysis of the raw data) and so called fill-files with data collected by the online monitor-
ing server-client software during the fills (one file per fill). For example, the beam polarisation
(LPOL [68], TPOL [64]) information is provided externally. The purpose of the Slow-Control
Production is to collect data from the three (four, including the mapping-calibration-geometry)
different sources and to merge them in a specific way so that initially one file per run is pro-
duced, and finally the slow-control data for all runs contained in a fill are kept in one single file.
The data quality information, when ready, is incorporated into the Slow-Control Production
as well, resulting in enhanced final slow-control data files.

The main concern of the slow-control production is the time synchronisation (on the mil-
lisecond level) of the collected data. The data coming from different sources are merged into
a time ordered fill-file by using their time stamps.
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Figure 4.4: Layout of the data processing and production chain.

µDST Production

The µDST production produces a single data file for each run which contains the tracking data
from the Main Production (HRC) for selected events only, the relevant slow-control data from
the slow-control production, and the data quality information. The HRC and slow-control
files are two data streams that contain data collected on different time scales. The time
stamps of the data are used to associate events from HRC files with the calibrations and other
measurements recorded in the slow-control files. The µDST production also reads subdetector
expert files containing offline calibrations related to data quality (run or burst is thrown away
if a detector experienced a fault). Example expert files are the parent distributions for the PID,
and calibrated polarisation information from the target group. The PID and other calculations
are performed as well.

These very final files, called µDSTs, can be reliably used for physics analysis by the analysers
to produce physics results without considering the details of the data collection. There is one
file per data taking run. The µDST files are much smaller than the HRC files because only
the information needed for physics analysis is being written, e.g., events that do not originate
from trigger-21 and events with one track only are discarded. The µDST files are organised at
burst, event, and track level. However the fundamental organisation is at the burst level, i.e.,
each burst corresponds to one ADAMO record in the µDST file. Within each burst there may
be many events, each of which may contain many tracks. A utility library is available, which
navigates the analyser through the track-event-burst structure during the analysis.

Data Quality

At the last stage of the offline data production, each µDST production is carefully checked by
the data quality group, which prepares plots of all important detector quantities versus the run
number and goes through them looking carefully for regions where there is a problem. After
the source has been identified, e.g., missing input file from subdetector expert or runs failed
the production for some reason, the µDST production is repeated.

The data quality information is encoded in a burstlist, prepared by the data quality group
and made available to the analysers. It happens that during some bursts or entire runs, part
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of the experiment is malfunctioning (due to a failure of some device). Such periods are marked
as ’bad’ and later the analysers must exclude these data to avoid biasing the physics results.
There are up to 32 data quality conditions (one 8-digit hexadecimal number) predefined for
each µDST production. A Data Quality program tests each burst in the µDST production
against each condition. The condition can be either fulfilled or not, thus the corresponding bit
is set either to 0 or 1. In Section 6.1 the quality of the data used in this analysis is checked
and ’bad’ data are removed.



Chapter 5

Monte Carlo Simulation

5.1 Monte Carlo Generators

The physics aspects of the two Monte Carlo (MC) event generators used in the studies are
described. Since no single generator is available that can reproduce the event distributions of
the data, one generator is used to simulate the signal and the other generator serves to describe
the background.

5.1.1 Generator for Exclusive Pion Production

The Monte Carlo generator gmc−exclpion (called ’exclusive MC’ in the following) for exclu-
sive π+ events is developed and maintained by HERMES authors [42]. In this generator the
production of single pions in hard exclusive positron–proton scattering is modelled according
to

dσe+p→e+′nπ+

UU (x,Q2, t, φ)

dx dQ2 dt dφ
≈ 1

2π
ΓT (x,Q2) ε(x,Q2)

dσ++
00 (x,Q2, t, φ)

dt dφ
, (5.1)

where ΓT (x,Q2) (3.11) is the flux of transverse virtual photons, ε(x,Q2) = ΓL

ΓT
(3.12) is the ratio

of transverse to longitudinal virtual-photon fluxes, and σ++
00 is the unpolarised photoabsorption

cross section for longitudinal virtual photons (3.26). Note that here the azimuthal angle φS is
integrated over, therefore one has the factor 1

2π
in (5.1) instead of 1

4π2 in (3.15).

Several reasonable assumptions are made to obtain (5.1) from the exact theoretical expres-
sion for the unpolarised cross section (3.16), [27]. The approximation (3.18) is applied as well.
We remind (Section 3.2) that σT = 1

2
(σ++

++ +σ−−++) and σTT = Reσ++
+− (σTL = Re (σ++

+0 +σ−−+0 ))
are expected to be suppressed by at least one power of 1

Q2 ( 1
Q

) compared to σL = σ++
00 , therefore

they are neglected in (5.1) for this Monte Carlo simulation.

Method of Event Generation

The steps to generate an exclusive event with the exclusive MC according to the cross section
(5.1) are summarised below. More details can be found in Table B.1 on page 113). See also
Fig. 3.1 and Table 3.1 for definition of the kinematic variables.

• The skeleton of the event is set up by generating random values for the azimuthal angle
ε = −Φe+′ −π of the scattering plane and the azimuthal angle φ between the production
and the scattering planes.

• The independent kinematic variables x, Q2, and t are randomly generated (Table B.1).

46
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• Other kinematic variables are calculated using constraints on the scattering kinematics
and masses of the participating particles, all of which are explicitly known. The parti-
cles are attached onto the scattering and production planes by a sequence of rotations
(Table B.1).

• A generated event can either be a non-radiative one or a radiative event which includes
the radiation of a real hard photon γ. The radiated photon with energy Eγ is here
generated by RADGEN [7] as for the case of deep inelastic scattering. The influence of
initial or final state radiation is taken into account by replacing the energies of either
the incoming or outgoing positron, E → E − Eγ or E ′ → E ′ − Eγ, respectively. Thus
the observed energy transfer ν = E − E ′ in a radiative event is always decreased by
the energy of the radiated photon, ν → ν − Eγ, compared to a non-radiative event.
This gives rise to asymmetric shapes, known as radiative tails, in the distributions of
some kinematic variables. A rough estimate for the size of the radiative effects (due
to bremsstrahlung, vertex and loop diagrams) in exclusive electroproduction is obtained
with EXCLURAD [6] applied to the HERMES kinematics, and is found to be about 20%
with almost no dependence on x and Q2.

• The physics of the simulated process resides in the photoabsorption cross section σ++
00

(5.1) for the process γ∗Lp → nπ+, where γL is the longitudinal virtual photon. Two

different parameterisations of the kinematic dependences of
dσ00

++(x,Q2,t)

dx dQ2 dt
, based on GPD

models, are implemented in the simulation

– Piller parameterisation [50]: the cross section is calculated as a function of t for
Q2 = 2.4 GeV2 and x = 0.1, and as a function of x for Q2 = 2.4 GeV2 and t = t0,
t = −0.4 GeV2. To obtain a description of the full kinematics (see (3.27)) an x
dependence as x2 and a Q2 dependence as Q6 are assumed.

– VGG parameterisation [73]: the cross section σ++
00 is calculated over the full kine-

matic range using a source code based on the VGG model for deeply virtual elec-
troproduction of mesons on the nucleon. The option for power corrections on the
GPD Ẽ is chosen and the t dependence is modified by e−bt, with b = 3, to obtain a
better description of data.

As shown in [41], the VGG model describes the data well in the kinematic variables x,
Q2, and t, while the Piller model shows a steeper Q2 dependence than the data and an x
distribution which is shifted to lower x values (figures not shown here). The VGG model
is chosen for the following Monte Carlo studies. In practice, the VGG-code is used to

produce the cross section 1
4π2

dσ++
00 (x,Q2,t)

dx dQ2 dt dε dφ
uniformly in the azimuthal angles ε = −Φe+′−π

and φ = φπ+ (Tables B.1, 3.1) at the generated x, Q2, and t values of the event.

• Finally the weight of the event is calculated as the product

ΓT ε
1

4π2

dσ++
00 (x,Q2, t)

dx dQ2 dt dε dφ
. (5.2)

The weight (5.2) does not serve to accept or reject the event at the level of generation
but it is stored and used later to weight the event in order to obtain meaningful distribu-
tions. The difference between weighted and unweighted distributions is relatively small
(Figs. B.8–B.9).
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Fluxes of Virtual Photons

Since no attempt is made in the data analysis (Chapters 6, 7) to extract the contribution
to the measurements of longitudinal virtual photons only, here we briefly study the fluxes of
longitudinal (ΓL) and transverse (ΓT ) photons and the flux ratio ε = ΓL

ΓT
for our kinematics.

The only way to separate the two contributions is via ε-variation, which is not possible in the
context of this analysis.

The values of ΓT (x,Q2) (3.11) and ε(x,Q2) (3.12) depend on the kinematics of the individ-

ual event. The two independent kinematic variables y (via x(y) = Q2

2MpEy
) and Q2 are chosen

to evaluate the expressions ΓT (y,Q2) and ε(y,Q2) per event. The distributions obtained from
a large number of events, as well as the values of the product ΓT ε and of the event weight
(5.2), can be seen in Fig. 5.1. The plots in the left column contain the results for data and
simulated events (using the exclusive MC and PYTHIA, see next section). Data and PYTHIA
events are normalised as described in Sections 6.4.1 and 5.1.2, respectively. Since the exclusive
MC cannot provide an absolute cross section, its distributions are scaled arbitrarily to the
highest data point. The form of ε(y,Q2) as a function of y for a fixed Q2 = 2.4 GeV2 and its
dependence on Q2 at a fixed value of y = 0.465 are also shown on the figure.

The ΓT and ΓL = ΓT ε distributions are peaked at 0.002 1
GeV2 . Values of ε = ΓL

ΓT
= 0.92

are found for the largest fraction of events. The average ratio of the fluxes (〈ε〉Data = 0.80,
〈ε〉PY THIA = 0.81, and 〈ε〉excl = 0.86) is still close to the maximum possible value of ε = 1.0.
The distribution of the event weight (5.2) for the exclusive MC ranges between 0 and 2.5 with
a peak at 0.2.

5.1.2 PYTHIA 6.2 Generator

In this study PYTHIA [55, 56] is chosen to generate simultaneously a wide range of processes
assumed to take place in the experiment, excluding however exclusive and resonance production
whose overall contributions are considered to be small. The original PYTHIA code is tuned
to data from high energy collider experiments. In the default version for use at the moderate
energy range of HERMES some of the fragmentation parameters are adjusted to the HERMES
semi-inclusive data [45]. For this work, a special version of PYTHIA 6.2 is used, in which in
addition the parameters for diffractive and exclusive vector meson production are carefully
tuned [49]. The Monte Carlo studies presented here are based on the latest PYTHIA tune
with the best set of parameters (denoted as ’2004c’).

The positron–proton cross section is factorised into the flux of virtual photons and the
subsequent interaction of these photons with the target protons ([51]). In terms of the PYTHIA
process numbering scheme, the main physics processes contributing to the total simulated cross
section are

• 91, elastic scattering [54]

• 92, single diffraction AB → XB [54]

• 93, single diffraction, AB → AX [54]

• 95, low-pT production [57]

• 99, γ∗q → q [35]

Further on, these processes are classified as belonging to one of the two different kinds of events
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Figure 5.1: Left: The distributions of the transverse ΓT (3.11) and longitudinal ΓL = ΓT ε photon
fluxes, and of their ratio ε (3.12). Right: Distribution of event weights (5.2) for the generated exclusive
pion events, and the function ε(y,Q2) for HERMES kinematics. Event selection of Table 6.2 is applied.

• VMD: 91, 92, 93. The vector meson dominance (VMD) model is assumed for the struc-
ture of the photon, i.e., in a simulated VMD event (also called a resolved event) the pho-
ton fluctuates into a vector meson, predominantly a ρ0. Therefore event classes known
from hadron-hadron interactions occur here, such as elastic and diffractive events, e.g.,
production of ρ0, ω, φ, and non-resonant π+π− pairs.

• DIS: 95, 99. Unlike a hadron, the photon can act as an unresolved probe, having no
underlying structure. Events, wherein the bare photon interacts directly with a parton
from the proton, are called deep inelastic scattering (DIS or direct) processes. This is
process 99 which is calculable in pQCD. A typical event structure at HERMES energies
is the production from the target proton remnant of a bunch of hadrons (not more than
7-8, 3 on average) with lower momenta. The hadrons are pions, protons and kaons.
Process 95, attached hereafter to the DIS part of the cross section, are the ’minimum
bias’ events that account for the ’whatever is left’ part of the cross-section that cannot
be parameterised by exclusive VMD and pQCD DIS processes.

Resonances, such as ∆+, are not explicitly generated in PYTHIA but they are assumed to
be described in the following way. Such excitations are defined in [56] as light single-resonance
diffractive states (with a mass less than 1 GeV above the mass of the incoming particle), which
are allowed to decay isotropically into a two-body state. It is via these decay products that
resonances add up to the cross section.

Although the radiation of a real photon off the incoming or outgoing lepton on the genera-
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tion level of events is not foreseen in the original PYTHIA version, radiative corrections to the
generated cross section are applied using the RADGEN [7] generator. The implementation of
RADGEN to PYTHIA is described in [49].

An alternative to the more complete generator PYTHIA described above is, e.g., to use
two generators to model the two main background contributions, namely, LEPTO [47] for
generation of semi-inclusive events and (the HERMES Monte Carlo) rhoMC for simulation
of exclusive vector meson production in deep inelastic scattering (DIS). LEPTO generates
events at the HERMES kinematics but considers a limited number of processes (i.e., only the
leading and next-to-leading order processes in DIS). The rhoMC generator includes a number
of phenomenological descriptions (as PYTHIA does) of the elastic cross section and a set of
tunable parameters to match, e.g., the Q2 slope, angular, and t distributions of the data,
however, it allows only a comparison of shapes but not of absolute cross sections to be made
between data and Monte Carlo (we refer to the rhoMC version current to this analysis).

Method of Event Generation

The task of PYTHIA is twofold: to generate events one at a time and to give an estimate of
the generated total cross section.

Unlike most generators where the events are generated flat in phase-space and subsequently
the event weights are calculated and stored along with the other event quantities, in PYTHIA
the different event classes (DIS, VMD) are generated according to their cross section so that
the relative process fractions are already correctly normalised to each other within the Monte
Carlo sample. The need to normalise the total sample occurs when it has to be compared to
the experimental data. The weight of any PYTHIA event is always 1.

The independent kinematic variables (e.g., τ , y, and z) are used in the generation of a
physics process in PYTHIA [56]. The kinematic phase-space is determined by selecting the
range of allowed values for each variable. The variables are generated separately not flat but
according to simple functions (one per variable) chosen such that the kinematic dependence
of the cross sections is approximately modelled. The variation of the cross section over the
allowed phase-space is made known at initialisation of a PYTHIA run, so that the functions
are optimised to closely follow the general behaviour of the physics cross section. After the
kinematic variables are chosen, the event weight is constructed as being proportional to the
physics cross section and inversely proportional to the before-mentioned functions. As the
nominator and denominator balance each other, the non-unit weights of individual events
cannot exhibit large fluctuations. The deviation of the weights from unity is due to the fact
that the before-mentioned functions match only approximately the correct cross section. To
achieve an exactly unit weight for all events, at initialisation the maximum weight is found
and the generated event is retained with a probability equal to the actual event weight divided
by the maximum weight.

Normalisation of Events

We note that the procedure below for converting event counts to a normalised yield (and vice
versa) does not take into account all correction factors (for acceptance, etc.) required for a
real cross section measurement, however, it is sufficient for our data-to-PYTHIA comparisons.
The notation σ̃ for the normalised yields is used throughout the text.

The generated absolute cross section (in units of µb) is obtained by Monte Carlo integration
over the phase-space as the average of the (internal to PYTHIA non-unit) weights over all
events. The so called average weight 〈W 〉Ngen (which is in fact the total cross section in µb)
and the total number of generated events Ngen are stored per run, while each of the accepted
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PYTHIA Ngen Nacc 〈W 〉Ngen σ̃ NDIS ΣPY THIA

events events µb µb events =
〈W 〉Ngen

Ngen
, nb

v1.HRC,v1.HSG 135992828 50000000 0.615257 0.2262 5338683 4.5242 · 10−6

v2.HSG 163437095 50000000 0.563476 0.1724 4068917 3.4477 · 10−6

Table 5.1: The numbers used for the normalisation of the events from three PYTHIA samples,
PYTHIA.v1.HRC, PYTHIA.v1.HSG, and PYTHIA.v2.HSG.

events Nacc 6= Ngen delivered by PYTHIA for analysis has a unit weight. The number Nacc is
then converted to a normalised yield in units of µb using

σ̃ =
Nacc

Ngen

〈W 〉Ngen = Nacc ΣPY THIA, (5.3)

where ΣPY THIA =
〈W 〉Ngen

Ngen
. The value of the yield (5.3) is converted to nb for consistency

with the event normalisation of the data (Section 6.4.1). Differential yields computed as, e.g.,
deσ

dM2
X

= ∆NaccΣPUTHIA

∆M2
X

where ∆M2
X is the bin width, are also used in the following.

Knowing the total yield generated with PYTHIA, an estimate can be derived of the corre-
sponding number of DIS events NDIS. For production of 1 million DIS events on a hydrogen
target at HERMES a luminosity of 23.6 pb−1 is required, which corresponds to a total cross
section of 42.37 nb. Hence, the total number of DIS events contained in our PYTHIA sample
is NDIS = σ (nb)

42.37 nb
106. The result can be read from Table 5.1. We conclude that the Monte

Carlo statistics is by 33% larger compared to that of the data (Table 6.3 on page 57).

5.1.3 PYTHIA Samples

The generated PYTHIA events (Section 5.1.2) are passed through the HRC package (Sec-
tion 4.5.3) which makes use of the complete description of the detector systems to perform
a full track reconstruction, as done for data. An almost identical output but achieved on a
much shorter time scale is provided by an alternative to the HRC code, namely the HERMES
Smearing Generator (HSG) [45]. The time consuming simulation of the particle interactions
with the detector material is replaced in HSG by look-up tables which contain information on
how the kinematic variables are affected. For our studies an already available HRC production
with the latest PYTHIA tune is used (PYTHIA.v1.HRC). In principle, HRC is preferred over
HSG because the former provides more accurate information about the number of clusters in
the calorimeter, whereas the latter uses a track extrapolation procedure to check for clusters
associated to the track. Thus, in general, the use of HRC allows one to perform a more realistic
data-to-PYTHIA comparison.

We use two PYTHIA productions, denoted here by version number one (v1) and two (v2).
The fraction of VMD (vector meson) events in the generated sample is the main difference
between these productions (Fig. B.11). The data from the second (first) version are processed
with the HSG (and the HRC) package; the respective Monte Carlo samples and their HERMES
labels are denoted as
1 PYTHIA.v1.HRC,
2 PYTHIA.v1.HSG results−p99−q2cut−rad−mstp18−3−2004c−hrc
3 PYTHIA.v2.HSG results−p99−q2cut−rad−mstp18−3−2004c−msel2−std−new

Sample 2 is used only in comparisons of kinematic distributions (Figs. 6.7, 6.8, B.11, B.13, and
Tables B.2, B.3) to demonstrate how it compares to sample 1. Sample 1 is used especially for
the resolutions of kinematic variables (Figs. B.9–B.10), smearing studies (Section 7.2, Figs. C.1–
C.6), and also in Fig. 6.3, 6.5. Sample 3 is used for extracting the DIS and VMD process
fractions (Figs. 6.9 and Table 6.6), as v1 is found to overestimate the VMD fraction.
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Data Analysis

The data collected in the years 2002-2004 originating from the scattering of a 27.56 GeV
unpolarised (helicity-balanced) positron beam off an internal transversely polarised hydrogen
fixed target at the HERMES experiment, are considered throughout this work. In this chapter
the analysis steps are described that ensure good data quality, and enhance the signal and
reduce the background by means of event selection criteria. The amount of signal is estimated
here using data only and with the help of Monte Carlo simulations.

6.1 Data Quality Cuts

A careful check of the data quality is an indispensable part of the analysis. The primary pre-
selection of the data sample is performed on the burst level. A burst, defined as a 10 s-long
period of data taking, may contain several events. The check is greatly facilitated by using the
burstlist provided by the data quality group. This list contains one bit pattern per burst, each
bit corresponding to a predefined condition and being set or not depending on the detector
performance during the given burst. By constructing in the analysis program a bit mask with
all bits set (to 1) and comparing (via the logical function & in C) against the burstlist bit
pattern, only the good bursts that pass all predefined data quality conditions are accepted
during processing of the µDST data. However, some of the conditions may be redundant.
In this analysis a minimum number of bits are set so that potentially useful data are not
discarded, while keeping the quality of the accepted data at a high level. The gain of statistics
is 15% compared to a selection with all bits being set, i.e., with a bit pattern 0xffffffff. A
list of all bits can be found in Table 6.1. An explanation of the data quality conditions follows.

• Target: The target is required to be in a well defined polarisation state parallel or
antiparallel to the target transverse magnetic field, which is not the case for the bursts
during which the direction of the target polarisation is flipped (after every 90 s for < 10 s).
The data with an unsettled polarisation state (1% of all bursts) are rejected as well as
periods with low target performance due to malfunctioning components (ABS, BRP,
TGA, magnet) or bad gas parameters (low density, low flux, high pollution). The target
polarisation value, density, and atomic fractions, being provided separately by the target
experts group, are not inspected here.

? Beam: No beam polarisation is required for this analysis. The quality of the polarimeter
measurements is not important as well. However the beam current is required to be in a
reasonable range.

∨ Burst: Bursts are required to have reasonable values of the burst length. The first and
the last bursts in a run are discarded as well as bursts with bad data records. Data with
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no available PID due to initialisation problems or an unknown calorimeter threshold are
discarded. The run to which the burst belongs should be marked as analysable in the
data-taking logbook. The cut on the luminosity detector rate discards data with very
small count rates and very large fluctuations in the target density, however this cut is
not included in the present data requirements.

� Livetime: The cuts on the livetime corrections (τlive =
Naccepted

Ngenerated
, τartificial =

Nmissing

Ngenerated
,

defined as ratios of numbers of accepted and missing to generated events in the data
stream) ensure that periods with unreasonably high background rates in the detector are
discarded. The rate of accepted events (triggers) is defined by the DAQ system, while
the number of generated triggers, when exceeding a certain limit, is sensitive to the beam
conditions during data taking, which give rise to non-physics, i.e., background events.

. HV trips: Data-taking periods with HV trips, occurring because currents in certain
detectors exceed a safe limit, are a signature of bad background conditions and are
therefore discarded.

/ PID detectors: Further cuts ensure that data taken during stable operation of the
particle lepton-hadron separation and identification detectors are accepted.

+ Calorimeter: Bursts in which at least one block in the calorimeter is dead are discarded,
except if it is a single dead block in an outer row or column of the calorimeter. If dead
blocks are traced back to problems with GMS the burst is not rejected. For the 2002
data one dead block in the calorimeter is allowed as it is traced back to ageing problems.

6.2 Event Selection

The exclusive production of a positively charged pion,

e+p→ e+′nπ+, (6.1)

is characterised by the particles in the final state: the scattered positron e+′, the recoiling
neutron n, and the produced pion π+. The change of the proton into a neutron (change of a
u-quark into a d-quark without breakup of the nucleon) is required because the total charge in
the initial and final states has to be conserved. In order to confirm that no additional particles
are produced one has either to be able to detect all scattering products or one has to exclude
processes with more than three particles in the final state. In contrast to a (semi-) inclusive
analysis, in the exclusive analysis all produced particles have to be identified, directly or
indirectly.

The strategy to select exclusive events of the type (6.1) with the HERMES spectrometer
is outlined below.

• Only events with exactly 2 reconstructed charged tracks are accepted for analysis. The
tracks have to be identified as a positron and a pion, respectively, by the lepton-hadron
separation and particle identification detectors.

• The calorimeter has to show no signal (above threshold) caused by photon activity (0
clusters required).

• Although the neutron escapes direct detection in the experimental setup, an evidence
for its production can be inferred using the measured four-momenta of the detected
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bit quantity condition/action upon setting the bit 2002 2003 2004
0• target polarisation state well defined (↑ or ↓)/accept 1 1 1
1? beam polarisation value 20(30) < Pbeam < 80% (2002)/accept 0 0 0

2� livetime correction τlive

0.5 ≤ τlive < 1.0
0.5 ≤ τlive · τartificial ≤ 1.0 /reject

0.0 < τtrigger−21 ≤ 1.0
1 1 1

3∨ burst length 0 < tburst ≤ 11 s/accept 1 1 1
4? beam current 2 ≤ Ie+ ≤ 50 mA/accept 1 1 1
5∨ LUMI rate 1 ≤ RLUMI ≤ 50 Hz/accept 0 0 0
6∨ burst number first burst in a run/reject 1 1 1

7∨ burst quality
bad µDST record or last burst in run
/reject

1 1 1

8∨ PID information not available/reject 1 1 1
9∨ run analysable accept 1 1 1
10• ABS in normal 2-state mode normal data taking/accept 0 0 0
11• unpolarised high-density

gas
5...10× or 80× ABS density/reject 0 0 0

12• ABS-mode information not available/reject 0 0 0
13• ABS in special 3-state mode polarised Bhabha scattering/reject 0 0 0
14• ABS n special 2-state mode polarised Bhabha scattering/reject 0 0 0
15• target gas type unpolarised gas/reject 0 0 0
16• target data quality bad records/reject 1 1 1
17+ calo dead blocks ≤ 1 dead block at the edges/reject 0 0 (1)
18+ H2 and LUMI dead blocks problems traced to GMS (undefined) (0) (0) (0)
19/ TRD data quality reject bad records 1 1 1
20. HV trips in FCs and BCs reject 1 1 1
21/ RICH operated with N2

(2002) or bad data (2004)
reject run ranges 1 (0) 0

22. HV trips in RICH reject 1 1 1
23• target gas atomic fraction (not defined) (0) (0) (0)
24• atomic fraction quality (not defined) (0) (0) (0)
25/ RICH data quality reject bad records 1 1 1
26 (empty) (not defined) (0) (0) (0)
27• target polarisation (not defined) (0) (0) (0)
28? time between polarimeter

measurements
tpolarimeter ≤ 300 s/accept 0 0 0

29• target polarisation (not defined) (0) (0) (0)

30� livetime correction trigger-
21

τartificial = 1.0
0.5 ≤ τtrigger−21 ≤ 1.0 /reject

0 0 0

31+ calo dead blocks ≤ 1 dead block due to ageing/accept 1 (0) (0)

Table 6.1: The 2002-2004 data quality cuts. The last three columns indicate whether a condition is
applied to this analysis or not; 1/0 means that the bit is set/not set, (0) means that the condition
is not defined and the bit is left unset. The bit number superscripts serve as a reference to the
explanation in the text. The resulting hexadecimal numbers are 0x827903dd (2002), 0x025903dd
(2003), and 0x025b03dd (2004).
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particles. This is a standard analysis method known as the ’missing mass technique’. It
is based on the conservation of four-momentum in the reaction. Applied to the process
e+p→ e+′Xπ+ with X denoting one or more particles, it gives

qe+ + qp = qe+′ + qX + qπ+ , : qX = qe+ + qp − qe+′ − qπ+ . (6.2)

The four-momentum qX of the ’missing’ particle(s) can be calculated from the known
momenta (qe+ and qp) of the initial state particles and the measured momenta (qe+′ and
qπ+) of the final state particles. For exclusive events e+p→ e+′nπ+ (X = n) the invariant
quantity q2

X should be equal to the squared mass of the neutron M2
n = 0.88 GeV2, i.e.,

q2
X = M2

n. To take into account also background events (X 6= n) that are inevitably
present in our data sample, q2

X = M2
X (called the squared missing mass) is used in the

following for both signal and background events. An upper cut on M2
X ≤ (M2

n + 3σM2
X
)

that accounts for the resolution of the squared missing mass σM2
X

is usually required

to limit the sample of events to the searched topology. The final value of the M2
X cut,

however, needs to be optimised with respect to the statistical and systematic uncertainties
of the results and is not fixed until much later in the analysis. Our studies of M2

X are
described in Sections 6.4, 6.6.1, 6.6.2.

• Additional cuts, proven in the course of the analysis to enhance the sample of exclusive
events, will be included.

6.2.1 Kinematic Cuts

The hard scale in the exclusive process, where factorisation (Section 3.2,[19]) is proven to work,
is expected to set in at sufficiently large Q2, e.g., Q2 �M2

π = 0.02 GeV2 [33], with the values of
the transverse momentum transfer t and the Bjorken scaling variable x fixed. In this analysis
Q > 1 GeV2 is chosen as the HERMES data become sparse at larger Q2.

An upper cut on the fractional energy transfer y = E−E′

E
< 0.85 is set in order to reduce

radiative effects on the measured quantities. In addition, this cut ensures that the scattered
positron has sufficient energy E ′ to pass the calorimeter threshold Ecalo and generate a trigger-
21 (Section 4.5.1). With E = 27.56 GeV being the beam energy, in fact y < 0.87 (0.95) is
the upper limit of y for events triggered by trigger-21 with a threshold of Ecalo = 3.5 GeV
(Ecalo = 1.4 GeV).

The invariant squared mass of the hadronic final state W 2 for exclusive events is found
to have a lower kinematic limit of about 10 GeV2 defined by the HERMES spectrometer ac-
ceptance (with upper angular limit of 220 mrad for hadrons) when a pion is required in coin-
cidence with the scattered positron. To avoid this low acceptance region, we set the cut to
W 2 > 10 GeV2. With this cut only < 5% of the signal is rejected.

6.2.2 Geometry Cuts

The scattered positron and charged pion tracks originate from the interaction vertex in the
target cell (9 cm diameter opening, 21 cm length along the beam pipe). The longitudinal
vertex distribution has a triangular shape and is peaked at the centre of the target (z = 0),
while the transverse distribution is sharply peaked at xvertex ≈ yvertex ≈ 0 (in the HERMES
coordinate system, Section 4.3). Therefore only a zvertex-cut is applied. Indeed, the spread of
the perpendicular distance r2

vertex = x2
vertex + y2

vertex from the z axis of the vertex defined by
the track and the z axis, given by RMS(zvertex) = 0.33 cm, is much smaller than the lateral
dimensions of the target (Section 4.2.2).
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quantity cut
charged track cuts

DAQ trigger trigger-21
short track stopped in MCs 0
number of tracks 2
charge of tracks +1
sum of all track momenta pe+′ + pπ+ < 29.0 GeV
photon clusters in the calorimeter 0
reconstructed vertex inside target |zvertex| ≤ 18 cm
horizontal fiducial cut at calorimeter position |xcalo| ≤ 175 cm
vertical fiducial cut at calorimeter position 30 cm ≤ |ycalo| ≤ 108 cm
front field clamp position |yffc| ≤ 31 cm
septum plate position |ysp| ≥ 7 cm
horizontal rear clamp position (hit by bent tracks) |xrc| ≤ 100 cm
vertical rear clamp position (hit by bent tracks) |yrc| ≤ 54 cm

positron track cuts
identification with PID system PID3 + PID5 > 1
four-momentum transfer Q2 > 1 GeV2

fractional energy transfer y < 0.85
photon-nucleon invariant mass W 2 > 10 GeV2

pion track cuts
identification with PID system −100 < PID3 + PID5 < −1
RICH particle type π
RICH quality parameter rQp > 0
RICH momentum range for pions 1 ≤ pπ < 15 GeV

Table 6.2: The standard cuts applied to the data to select event candidates for this analysis.

The geometric acceptance for charged tracks is limited in the horizontal (x) and vertical (y)
direction by the outer dimensions of the detector systems. A sanity check on the track coordi-
nates is performed at the positions of the front and rear field clamp plates of the spectrometer
magnet and at the septum plate enclosing the beam pipe (Fig. 4.2). A box-like fiducial volume
cut is defined at the position of the calorimeter to ensure that the positron track deposits all its
energy in the calorimeter blocks, thus removing tracks from the edges where the measurement
efficiency decreases because of shower leakage.

6.3 Luminosity Measurement

The absolute integrated luminosity L (4.28) is calculated from the same data which are analysed
(2002-2004 data) but using processes that are different from the one studied here. There are
two choices for the luminosity measurement at HERMES:

1. L = LDIS = NDIS

σDIS εDIS
, where NDIS is the rate of deep inelastic scattering (DIS) events

(selected with trigger-21, Q2 > 1 GeV2, W 2 > 4 GeV2, y < 0.85 from the 2002-2004 data),
σDIS = 60.9 nb is the total DIS cross section obtained from world data (on the unpolarised
structure function F2 for a proton target) and integrated over the kinematic range covered
by HERMES and corrected for radiative effects, εDIS = 0.81 is the detection efficiency
for DIS positrons as determined by data-to-Monte Carlo comparison of the inclusive DIS
cross section in the HERMES acceptance for the 1996 data. An advantage of using LDIS
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year NDIS NLUMI CLUMI LDIS LLUMI

events counts 10−6

nb
104

nb
104

nb

2002 796695 15455631 1046± 33 1.615 1.6167
2003 422483 8665904 949± 29 0.856 0.8224
2004 2774043 56296452 969± 29 5.624 5.4551

2002-04 3993221 80417987 - 8.095 7.8942
2002-04 1. ΣL = ΣLDIS

= 1
LDIS

= 1.235 · 10−5 nb

2. ΣL = ΣLLUMI
= 1

LLUMI
= 1.267 · 10−5 nb (used here)

Table 6.3: The values of NDIS , NLUMI , and CLUMI used to calculate the luminosity L in two
alternative ways (see text). The inverse luminosity ΣL = 1

L is given in units of nanobarn denoted as
nb, where 1 nb = 10−37 cm2.

is that through the NDIS rate in the spectrometer corrections for dead time, tracking
and trigger efficiencies, etc. are implicitly taken into account.

2. L = LLUMI = NLUMI CLUMI , where NLUMI =
∑

bursts(RLUMI · τtrigger−21) · tburst is
the integrated luminosity monitor rate calculated from the measured rate RLUMI of
detected coincident e+e− pairs in the luminosity monitor, corrected for dead time by
τtrigger−21, and the length of the burst tburst (10 s). The luminosity constant is given
by CLUMI = C

σBhabha
, where C is a normalisation constant which takes the efficiency and

acceptance of the luminosity detector into account, and σBhabha is the known cross section
of Bhabha scattering (e+e− → e+e−). The constant CLUMI is obtained from a Monte
Carlo simulation of the luminosity detector set-up with the relevant parameters (such as
geometry, beam position, gas target) for each data taking year.

The values of NDIS, NLUMI , CLUMI , and of the luminosities LDIS and LLUMI calculated
according to 1. and 2. above, respectively, are given in Table 6.3. The latter choice, namely
L = LLUMI , is used to determine the absolute inverse luminosity ΣL = 1

L
for the cross section

normalisation of the data (Section 6.4.1). The luminosity monitor rate is measured with a
high statistical precision due to the high rate of Bhabha events. The statistical uncertainty of
LLUMI is about 1% within a time window of 100 s and is neglected, whereas the systematic
uncertainty is ±3% for our data sample. A comparison between the two choices (1. and 2.

above) reveals a difference of
ΣLLUMI

−ΣLDIS

ΣLLUMI

= +2.5% which is well within the total uncertainty

of LLUMI .

6.4 Missing Mass Distribution

From (6.2) for the conservation of four-momentum in the positron-proton scattering process
with production of a single pion or more particles, one can derive

M2
X = q2

X = (qe+ + qp − qe+′ − qπ+)2, (6.3)

where M2
X is the squared missing mass for a given event. Although values of M2

X < 0 are
non-physical they can arise due to finite detector smearing and resolution. In the laboratory
frame where the proton target is at rest the four-momentum q = (E, px, py, pz) of each particle
is calculated from the values of |p| =

√
p2

x + p2
y + p2

z, the polar angle Θ and the azimuthal
angle Φ of the reconstructed track in the spectrometer, and the particle mass m, according
to the relation m2 = E2 − p2, where p = (px, py, pz) is the three-momentum and E is the
particle’s energy. The expression for the four-momentum components of the beam positron
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particle E px py pz

e+ Ee+ = 27.56 GeV 0 0 Ee+

p Mp = 938.3 MeV 0 0 0
e+′ |p|, Me+ ≈ 0 MeV |p| sin Θ cos Φ |p| sin Θ sin Φ |p| cos Θ

π+
√
Mπ+ + |p|2, Mπ+ = 139.6 MeV |p| sin Θ cos Φ |p| sin Θ sin Φ |p| cos Θ

Table 6.4: The components of the four-momentum q = (E, px, py, pz) of reconstructed tracks in the
spectrometer used to calculate the event kinematics, in particular, M2

X .

e+, the target proton p, the scattered positron e+′, and the produced pion π+ are given in
Table 6.4.

One M2
X value (6.3) is calculated per event. The M2

X values of all π+ events that pass
the standard cuts (Table 6.2) being accumulated in one plot form the squared missing mass
distribution shown in Fig. 6.1.a) and denoted as ’Data π+’. The M2

X distribution depicts how
the amount of accepted pions changes as a function of the squared missing mass. It covers the
range −2 < M2

X ≤ 40 GeV2 with a mean value of 〈M2
X〉 = 14 GeV2.

6.4.1 Normalisation of Events

The conversion of event counts to a normalised yield (and vice versa) is explained using the
M2

X distribution in Fig. 6.1 as an example. We note that this conversion procedure does not
take into account all correction factors (for acceptance, efficiencies, etc.) required for a real
cross section measurement, however, it is sufficient for our data-to-PYTHIA comparisons. The
notation σ̃ for the normalised yields is used throughout the text.

The number of events ∆N falling in an M2
X bin on the horizontal axis of Fig. 6.1 is weighted

by the inverse absolute luminosity ΣL = 1
L

(Section 6.3). The weighted number of events is

divided by the bin width ∆M2
X = 0.4 GeV2. The result is a differential yield deσ

dM2
X

= NΣL

∆M2
X

in

units of nanobarn per GeV2 as displayed on the vertical axis of Fig. 6.1. The statistical error
bar given by

√
N is scaled accordingly. The integrated yield in units of nb is given by

σ̃ = N ΣL, (6.4)

where N is the total number of events and the value of ΣL = ΣLLUMI
is given in Table 6.3.

In Fig. 6.1 the amount of π+ data increases steeply in the region M2
X = 0...2.5 GeV2 and

beyond reaching a maximum value of
deσπ+

dM2
X

= 0.141 nb
GeV2 at M2

X = 9.1 GeV2. A piling up of

exclusive events in a clearly separated peak at the anticipated position of the squared neutron
mass M2

X = M2
n = 0.88 GeV2 is not observed. Further measures are required to separate the

exclusive π+ sample.

6.4.2 Background Subtraction

In addition to the M2
X distribution for π+ studied above, the distribution of negatively charged

pions is plotted in Fig. 6.1.a) and denoted as ’Data π−’. The standard cuts (Table 6.2) are used
except for the track charge cut (−1 instead of +1 is required for the pion). Notice that exclusive
production of π− from a proton target is forbidden by charge conservation and therefore no
enhancement of the M2

X distribution for π− at the squared neutron mass is expected. The
mean value of the distribution is at M2

X = 15 GeV2 and the maximum yield at M2
X = 9.1 GeV2

is
deσπ−
dM2

X
= 0.087 nb

GeV2 . The π− yield is smaller than that for π+ over the entire M2
X region. This

can be explained by the favoured production of π+ (ud̄) over π− (dū) from a proton target p
(uud).
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Figure 6.1: Separation of the exclusive π+ peak using π− data. As a function of the squared missing
mass are shown a) the π+, π− and the normalised π− yields, b) the exclusive π+ yield after subtraction
of the background, and c) the ratio of the π+ yield to the π− one. See text for explanations.

The M2
X distributions for π+ and π− (Fig. 6.1.a)) appear to have similar shapes and hence

it is tempting to use the π− data to evaluate the contribution from competing processes (alto-
gether called background) to the π+ distribution. The background consists of events with the
same observed topology as an exclusive event, e.g., a pion produced in fragmentation processes
with the rest of the produced particles escaping the detector acceptance, or production of other
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particles (for example ∆, ρ0) which produce pion(s) in their decay. This type of events con-
tributes to both the π+ and π− distributions. Note that the removal of such background is not
possible on an event-by-event basis with the cuts fixed in Table 6.2 as both signal and back-
ground events pass those cuts. Therefore further treatment of the background in this section
is based not on the properties of individual events but on the shapes of the M2

X distributions
shown in Figure 6.1.a). The aim is to visually isolate and give an estimate of the amount of
exclusive events in the data.

While a direct subtraction of the π− from the π+ distribution results in only partial reduc-
tion of the background, a full subtraction requires a rescaling of the π− distribution, whereby
one assumes that the total π+ and π− distributions for the background processes have match-
ing shapes when scaled to each other by a constant normalisation factor—if not over the entire
M2

X range then at least in a limited region around the expected position of the exclusive peak.
As the needed normalisation factor is not known (valence-quark content arguments being too
naive), it has to be measured from the data itself. This purpose serves the ratio of the inte-

grated π+ and π− yields in the range 3.2 ≤ M2
X ≤ 5.2 GeV2 which amounts to

eσπ+eσπ−
= 1.73.

The rescaled π− distribution is shown in Fig. 6.1.a) and denoted as ’Data (1.73 dσ̃π−)’.
The normalised π− distribution is subtracted from the π+ distribution and the result

is shown in Fig. 6.1.b) denoted as ‘Data (dσ̃π+ − 1.73 dσ̃π−)’. The shape of the result-
ing distribution as a function of M2

X has three distinct regions: a peak followed by a flat
foot at zero level in the normalization region, followed by a wide valley below the zero
level. Bearing in mind the steps that led to this result and therefore with some caution,
one can attribute the peak to the contribution of exclusive events in the data. A Gaussian fit
(χ2/ndf = 28.47/15) to the excess points yields the peak position atM2

X = (1.225±0.058) GeV2

somewhat shifted above the expected value of M2
n = 0.88 GeV2. The peak width, which

is due to the detector resolution, is σM2
X

= (0.655 ± 0.048) GeV2. The exclusive yield is
deσexcl

dM2
X

= 0.011 nb
GeV2 at the peak position of the fit, while it is deσexcl

dM2
X

= 0.013 nb
GeV2 for the high-

est data point at M2
X = 1.1 GeV2. The area below the peak for M2

X ≤ 2.4 GeV2 amounts
to σ̃excl = (0.018 ± 0.001) nb. It corresponds to 28.6% of the π+ data in that region and
only 0.8% of the analysed π+ data. For comparison, the area below the π+ and the π− dis-
tribution is σ̃π+ = (2.153 ± 0.005) nb and σ̃π− = (1.394 ± 0.004) nb, respectively, while it is
σ̃π+ = (0.061± 0.001) nb and σ̃π− = (0.025± 0.001) nb for MX ≤ 2.4 GeV2, where (6.4) is used
to compute the values of σ̃π± . The errors of the reported results are the statistical uncertainties.

The negative values of the yield in the region 7 < M2
X < 40 GeV2 (Fig. 6.1.b)) obtained

after the background subtraction point to the fact that the normalisation factor
eσπ+eσπ−

= 1.73

as measured in 3.2 ≤ M2
X ≤ 5.2 GeV2 is not constant over the entire M2

X range. The π+-to-

π− ratio of yields
deσπ+

deσπ−
is shown in Fig. 6.1.c) as a function of M2

X . Indeed the ratio can be

approximated with a constant in the narrow normalisation region, while at M2
X > 5.2 GeV2

it decreases slowly as
deσπ+

deσπ−
(M2

X) = 1.804 − 0.019M2
X (from a straight-line fit with χ2/ndf =

98.06/85). The ratio follows a peak-like behaviour in the region M2
X < 3.2 GeV2 with a

rapid increase up to
deσπ+

deσπ−
(M2

X = 1.1 GeV2) = 4.0 ± 0.3, then stays constant within the large

statistical errors down to M2
X = −0.5 GeV2, and further down becomes undetermined due to

lack of statistics. Note that the vertical-axis scale in Fig. 6.1.c) should be increased by a factor
of 2 in order to read the true values of the points in M2

X < 3.2 GeV2.

6.4.3 Discussion

The squared missing mass (M2
X) distribution of the selected π+ events extends over a wide

M2
X range without a clear peak at the expected position at the squared mass of the neutron
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M2
n = 0.88 GeV2. This shows that the data sample is dominated by background events and

the detector resolution is not sufficient to resolve the contributions to the M2
X distribution on

a fine scale.
Subtraction of the background, using data only, results indeed in a peak centred slightly

above the squared mass of the neutron with an area less than 1/3 of the area of the total
π+ yield in the squared missing mass range covered by the peak. Although this method of
background subtraction gives evidence for exclusive π+ production, it does not allow us to
separate the exclusive events from the background events in the π+ data sample.

Further analysis using Monte Carlo simulation will permits for search of more restrictive
cuts in order to optimise the signal-to-background ratio, to identify the background processes,
and to perform subtraction and correction for the main background contributions to the mea-
sured quantities (normalised yield and asymmetry).

6.5 Monte Carlo-Based Event Selection

6.5.1 Data-to-Monte Carlo Comparison

A detailed comparison of data and Monte Carlo distributions of kinematic variables is shown in
Figs. B.2–B.4 (left). Two PYTHIA versions (Section 5.1.3) are used for the comparison. The
standard cuts (Table 6.2) are applied to all samples. PYTHIA is not expected to describe the
data perfectly in the entire kinematic phase-space, especially in the region with non-negligible
fraction of exclusively produced pions in the data, as PYTHIA cannot generate exclusive events.
For clearer comparison, the data-to-PYTHIA ratio is displayed in Figs. B.2–B.4 (right). The
discrepancy is of the order of 25%. In order to show the overlap between signal and background,
the exclusive MC events are scaled arbitrarily to the highest data point in each distribution
and superimposed. Since the signal in the data cannot be separated event-by-event from the
background and the exclusive MC cannot provide an absolute cross section estimate of the
signal, a direct comparison between data and the exclusive MC is not possible at this stage.

6.5.2 PYTHIA-to-Exclusive MC Comparison

The purpose of comparing shapes of PYTHIA and exclusive MC distributions is to pick
out those kinematic variables that give the most optimal signal–background separation. For
such variables the signal (modelled by the exclusive MC) and the background (modelled by
PYTHIA) should occupy a small region of the phase-space common to both. Thus a cut can
be defined that reduces the background, while still preserving a large fraction of the signal in
the data sample. In total 24 kinematic variables are considered (left panels of Figs. B.2–B.4)
and 8 of them are selected for a more precise evaluation of the signal-to-background separation
efficiency.

A cut that selects 90% of the signal (exclusive MC events) (i.e.,
R eσselectedR eσ = 0.9) is fixed and

the fraction of background (PYTHIA events) passing the same cut is estimated for each of the
8 chosen variables. We note that each cut is applied separately in addition to the standard
cuts (Table 6.2). The signal and background fractions of selected events as a function of the
cut are shown in Fig 6.2 and the results are summarised below. The smaller the background
(PYTHIA fraction), the more efficient the cut is. In order of decreasing but still acceptable
separation efficiency, the variables are classified in the following three groups.

1. M2
X , z, pe+′ + pπ+ : The selected background fraction is 6.5% for M2

X < 3.65 GeV2,
z > 0.815, and pe+′ + pπ+ > 25.7 GeV. Later on results are often given as a function of
M2

X , therefore it is not desirable to limit the M2
X range by an initial hard cut on this



62 Chapter 6. Data Analysis

0

25

50

75

100

0 2.5 5 7.5

90

6.5

< 3.65

∫ σ∼
se

le
ct

ed
  /

  ∫
 σ∼

  (
 %

 )

MX
 2 (GeV 2)

0

25

50

75

100

0.6 0.8 1 1.2

90

6.5

> 0.815

PYTHIA
excl. MC

z

0

25

50

75

100

6 8 10

90

20

> 7.05

∫ σ∼
se

le
ct

ed
  /

  ∫
 σ∼

  (
 %

 )

pπ
+ (GeV)

0

25

50

75

100

22 24 26 28

90

6.5

> 25.7

pe
+´ + pπ

+ (GeV)

0

25

50

75

100

-2 -1.5 -1 -0.5 0

90

24

> -1

∫ σ∼
se

le
ct

ed
  /

  ∫
 σ∼

  (
 %

 )

t (GeV2)

0

25

50

75

100

20 25 30

90

69

< 25.3

W 2 (GeV2)

0

25

50

75

100

0.05 0.1 0.15

90

57

< 0.082

∫ σ∼
se

le
ct

ed
  /

  ∫
 σ∼

  (
 %

 )

θγ   *  π+  (rad)

0

25

50

75

100

0.05 0.075 0.1 0.125 0.15

90

70

> 0.069

θγ   *  (rad)

Figure 6.2: The fractions of accepted events (
R eσacceptedR eσ ) in percent as a function of the cuts on the

kinematic variables M2
X , z, pπ+ , pe+′ + pπ+ , t, W 2, θγ∗π+ , and θγ∗ for exclusive MC and PYTHIA

samples selected with the standard cuts (Table 6.2). The vertical line indicates either an upper (<)
or a lower (>) bound for each cut, with the fractions corresponding to the cut indicated by horizontal
lines.
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GeV2 , whereas the exclusive MC events are scaled
arbitrarily to the highest data point in each distribution.

variable. Since z and pe+′+pπ+ are correlated (Fig. E.9), a cut on either one gives the same
effect. However, a cut on pe+′ +pπ+ is pursued further because it is more straightforward.

In fact both momenta enter in the calculation of z =
Eπ+

ν

me+′≈0
≈

√
m2

π++p2
π+

E−pe+′
.

2. pπ+ : The selected background fraction is 20% for pπ+ > 7.05 GeV. Although pπ+ and
pe+′ + pπ+ are correlated (Fig. E.9), the cut pe+′ + pπ+ > 25.7 GeV does not restrict the
pion momenta above the before-mentioned value. A cut on pπ+ is therefore necessary for
further background suppression.

3. t, θγ∗π+ , W 2, θγ∗ : The selected background is 24%, 57%, 69%, and 70% for t > −1.0 GeV2,
θγ∗π+ < 0.082 rad, W 2 < 25.3 GeV2, and θγ∗ > 0.069 rad, respectively. Cuts on these
variables (if necessary) are to be chosen after the cuts in 1. and 2. above are fixed.

Note that the fractions above are relevant only within the corresponding MC sample (exclu-
sive MC for the signal and PYTHIA for the background), the two samples being independent.
Therefore a signal-to-background ratio cannot be estimated from these fractions. The distri-
butions of the pion momentum pπ+ and of the sum of the measured momenta of the scattered
positron and the produced pion pe+′ + pπ+ , also called the two-track momentum, are shown in
Fig. 6.3. The motivation for the choice of the cuts on these variables is described below.

Pion Momentum Cut

Since pe+′ + pπ+ depends on pπ+ , the cut on the latter variable is fixed first. Namely,

pπ+ > 7.05 GeV (6.5)

is required in the studies hereafter, unless otherwise noted. As seen from Fig. 6.2, this cut
rejects 80% of the background while keeping 90% of the signal in the sample selected with the
standard cuts (Table 6.2). The pπ+ cut is indicated by a vertical line in Fig. 6.3.

Two-track Momentum Cut

Fig. 6.2 shows a possible cut on the two-track momentum of pe+′ + pπ+ > 25.7 GeV (for
pπ+ > 1.0 GeV). The exact (lower and upper) bounds of this cut are chosen as follows.

The distribution of pe+′ + pπ+ and its resolution (i.e., the distribution of the difference
between reconstructed and generated values) are shown in Fig. 6.4 for the exclusive MC sample.
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Figure 6.4: The two-track momentum distribution (upper left) and the resolution of the two-track
momentum (lower left) obtained from the exclusive MC sample selected with the standard cuts (Ta-
ble 6.2) and pπ+ > 7.05 GeV. The distributions are fitted with a Gaussian function. The dependence
of the Gaussian fit parameters on the pion momentum is approximately described by a 2-parameter
straight-line fit (right).
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Both distributions exhibit a shape which can be fitted with a Gaussian function. The widths
(Sigma) of the two distributions differ by only 5% meaning that the Gaussian-shaped spread,
Sigma=0.495 GeV, of the two-track momentum (with Mean=27.3 GeV) is mainly due to the
resolution, Sigma=0.469 GeV.

As seen from Fig. 6.4 (right), the Mean and Sigma Gaussian parameters of the two-track
momentum and resolution distributions show a weak dependence on the pion momentum pπ+ .
Plotting these parameters as a function of pπ+ and fitting them with a 2-parameter straight-line
fit gives the Constant and Slope parameters of that dependence. The fit parameters for both
the two-track momentum and the resolution are consistent with each other. Here the Constant
and Slope parameters of the former are used to construct a pion-momentum dependent two-
track momentum cut as

Mean(pπ+)− 3 Sigma(pπ+) < pe+′ + pπ+ < Mean(pπ+) + 3 Sigma(pπ+), (6.6)

where

Mean(pπ+) = 27.210 + 0.011 pπ+ ,

Sigma(pπ+) = 0.622− 0.014 pπ+ ,
(6.7)

are the pπ+ dependent Sigma and Mean parameters of the Gaussian fit to the two-track mo-
mentum distribution. Evaluated at the minimum and maximum pion momenta, the cut is

pπ+ = 7 : 25.715 < pe+′ + pπ+ < 28.859,

pπ+ = 15 : 26.139 < pe+′ + pπ+ < 28.611,
(6.8)

respectively. The lowest and most upper bounds of the two-track momentum cut are indicated
by vertical lines on Fig. 6.3.

The data, exclusive MC, and PYTHIA distributions of the kinematic variables are studied
again (left panels of Figs. B.5–B.7), after applying the cuts (6.5) and (6.6) on the pion and two-
track momenta, respectively, in addition to the standard cuts (Table 6.2). Although the shapes
of the distributions do not match exactly, the overlap between the signal and the background
is almost complete in all kinematic variables. Therefore there is no need to search for other
variables to improve the background rejection, in particular, a cut on the variables t, θγ∗π+ ,
W 2, and θγ∗ (listed as candidates in 3. above) is not necessary.

6.5.3 Resolution Studies

The azimuthal angle φπ+ between the scattering and production planes (Fig. 3.1) is an impor-
tant quantity for the asymmetry measurement (Chapter 7). If the polar angle θγ∗π+ (Fig. 3.1)
is of the same order as the θγ∗π+ resolution, then this angle is not well defined. As a conse-
quence, the measurement of φπ+ becomes unreliable and leads to large smearing effects in the
results, e.g., of the asymmetry which depends on φπ+ .

The resolution of θγ∗π+ is obtained from the PYTHIA sample selected with the standard
cuts (Table 6.2). The difference between generated and reconstructed values of the angle,
δ = θgen

γ∗π+ − θrec
γ∗π+ , is fitted with a Gaussian function (not shown). The width σ from the fit as

well as the RMS of the resolution distribution are shown in Fig. 6.5. The θγ∗π+ resolution is
0.003 rad, being constant in the range 0 < θγ∗π+ < 0.100 rad and increasing up to 0.015 rad at
larger angles.

To avoid smearing effects due to the finite θγ∗π+ resolution (Fig. 6.5), only events with
θγ∗π+ > 0.003 rad should be accepted, however a safer bound of more than three times the
resolution is chosen, namely, the lower cut on this polar angle is defined as

θγ∗π+ > 0.010 rad. (6.9)
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Reading Fig. 6.2 in the opposite direction, i.e., in terms of fractions of rejected (instead of
accepted) events, one finds that this cut rejects less than 5% of the signal (selected with the
standard cuts, Table 6.2). A more stringent cut (suggested by the larger resolution in terms of
RMS), e.g., θγ∗π+ > 0.020 rad, rejects already 15% of the useful statistics, and is not applied
here. We note that the cut (6.9) is only used for the asymmetry measurement (Chapter 7).

The resolutions of φπ+ and other kinematic variables are shown in Fig. B.9 (right) and
Fig. B.10. Cuts on their values are not applied in this analysis.

6.6 Background Studies

The event selection cuts defined in the previous section are optimised to reject a large fraction
of the background while having no or small influence on the signal. The final set of cuts
(Table 6.5) used in this section includes the standard ones (Table 6.2), and the cuts (6.5) and
(6.6) on the pπ+ and pe+′ + pπ+ momenta, respectively. The effect of the final cuts on the
squared missing mass (M2

X) distribution is presented for the exclusive MC (Section 6.6.1), and
data and PYTHIA (Section 6.6.2).

Separation of the signal from the background is accomplished (Section 6.6.3) by use of
the π+ and π− data and PYTHIA M2

X distributions. Results are compared to those of the
background subtraction procedure using data only (Section 6.4.2). The fractions of signal
and background processes, which contribute to the total M2

X distribution, are estimated in
Section 6.6.4.

6.6.1 Missing Mass Distribution from Exclusive Monte Carlo

Fig. 6.6 shows the M2
X distribution of reconstructed events selected with the standard and final

cuts. The events are generated with the exclusive MC (Section 5.1.1) at the exact position of
the squared neutron mass, i.e, at M2

X = M2
n = 0.88278 GeV2. The distribution is characterised

by a Gaussian spread around the generated value and a radiative tail stretched towards higher
M2

X values.

The fraction of events that pass the standard cuts but are removed by the final ones amounts
to 21.9%, of which 7.7% consists of events in the Gaussian peak below M2

X < 2.4 GeV2 and the
rest 14.2% are events in the radiative tail. This relatively high percentage of the total signal
loss can be accepted for this analysis, because the cleanest exclusive sample is located at low
M2

X , whereas the events in the radiative tail are associated with smearing effects for which no
corrections (e.g., to the asymmetry (Chapter 7)) are known. The QED radiative effects can
have large influence on the exclusive cross section, the measurement of which is however not
the goal of this work.



6.6. Background Studies 67

0

2500

5000

7500

10000

0 2.5 5 7.5 10 12.5 15 17.5 20

Entries
Mean
RMS

          27711
  1.945
  2.863

  56.22    /    56
Constant   8731.   95.71
Mean  0.9894  0.6281E-02
Sigma  0.6653  0.5757E-02

w
ei

gh
te

d 
ev

en
ts gen. MX

 2=0.88
reconstructed

standard cuts,
and pπ

+ cut,
and pe

+´+pπ
+

excl. MC:a)

MX
 2 > 2.4:

17.9% events

x-axis min     −2
x-axis max    22
bin width   0.05

standard cuts

π+

0

2500

5000

7500

10000

0 2.5 5 7.5 10 12.5 15 17.5 20

Entries
Mean
RMS

          22169
  1.026
 0.7488

  58.49    /    57
Constant   8047.   92.80
Mean  0.9626  0.6329E-02
Sigma  0.6539  0.5760E-02

MX
 2 (GeV 2)

w
ei

gh
te

d 
ev

en
ts

final cuts

MX
 2 > 2.4:

4.6% events

b)

x-axis min     −2
x-axis max    22
bin width   0.05

final cuts

π+

Figure 6.6: The M2
X distribution from the exclusive MC sample selected with a) the standard cuts

(Table 6.2), the effect of the additional cuts is shown in grey scale; b) the final cuts (Table 6.5).

As seen from Fig. 6.6, it is mainly the cut on the pion momentum pπ+ that rejects events
in the exclusive peak, while the cut on the two-track momentum pe+′ + pπ+ almost completely
removes the radiative tail (as indicated by the grey-scale codes, see also Figs. E.5, E.9). The
border line at M2

X = 2.4 GeV2 between the peak and the tail is somewhat arbitrary, but it is
used for consistency with the data studies (Section 6.4) where it appears first.

The best χ2/ndf values are obtained when the Gaussian fit to the M2
X distributions is

performed in the region −0.75 < M2
X < 2.25 GeV2, thus minimising the effect of radiative

events. The fit parameters given in the lower (upper) panel of Fig. 6.6 correspond to the
distribution obtained with the final (standard) cuts; the resolution of the M2

X distribution is
σM2

X
= 0.65 GeV2 (σM2

X
= 0.67 GeV2), while the centre of the peak is at M2

X = (0.9626 ±
0.0063) GeV2 (M2

X = (0.9894± 0.0063) GeV2). The position of the peak has a significant shift
from the generated value that cannot be covered by the fit error. This shift can be explained
as being due to, e.g., a residual effect from the radiative tail (at higher values of M2

X) which
is not parameterised in the fit, or a feature of the Monte Carlo production chain. In order to
remove the effect of the binning on the fitted peak position a bin width of 0.05 GeV2 is chosen,
i.e., much smaller than the resolution. The peak centre is found at M2

X = 0.9975 ± 0.0061
(M2

X = 1.0394 ± 0.0060) for a bin width of 0.4 GeV2 which is comparable to the resolution,
for a sample selected the final (standard) cuts. Note that such binning effect may occur in the
data, where due to the lack of statistics larger bins have to be used.

6.6.2 Missing Mass Distribution from Data and PYTHIA

In analogy to the background subtraction using data only (Section 6.4.2), the purpose is to
obtain an exclusive peak by subtraction of the PYTHIA from the data distribution. Note that
both distributions are given below as a normalised yield deσ

dM2
X

in units of nb
GeV2 . The normalisa-
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Figure 6.7: a) Comparison of the M2
X distributions among three PYTHIA samples and between data

and PYTHIA samples selected with the standard cuts (Table 6.2). The effect of the cuts is shown in
grey-scale. Bin width is 0.4 GeV2. b) Comparison among three PYTHIA samples and between data
and PYTHIA samples selected with the final cuts (Table 6.5). Bin width is 0.05 GeV2.

tion of data and PYTHIA samples is described in Sections 6.4.1 and 5.1.2, respectively.
Fig. 6.7.a) shows (using grey scale) the squared missing mass (M2

X) distributions of π+

data events selected with the standard cuts (white), plus cuts on the pion momentum pπ+

(light-grey), and on the two-track momentum pe+′ + pπ+ (dark-grey). The final cuts reject
all background events for M2

X > 4 GeV2 (Fig. 6.7.b)). For comparison with data, the π+

distributions from three PYTHIA samples, v1.HRC, v1.HSG, and v2.HSG (Section 5.1.3),
selected with the standard (final) cuts are superimposed on the upper (lower) panel. The
overall feature of the PYTHIA version v2 with respect to v1 is that it generates a smaller
(larger) cross section at lower (higher) M2

X values. This feature is known to be due to the more
realistic estimate of the fraction of VMD events in v2 (Fig. B.11). The agreement between
HRC and HSG for v1 is reasonably good.

Data and PYTHIA M2
X distributions of events selected with the final cuts are compared in

Fig. 6.7.b). PYTHIA.v1.HRC and PYTHIA.v1.HSG are in a good agreement with each other.
Compared to the PYTHIA.v2.HSG distribution, the PYTHIA.v1.HRC one overestimates the
yield in the entire M2

X range (by up to 20%). Therefore the PYTHIA.v1.HRC sample cannot
be used directly for background subtraction. The PYTHIA.v2.HSG sample, in principle, can
be used but it is not used here because even with reduced fraction of VMD events at lower M2

X

(compared to PYTHIA.v1.HSG, see Fig. B.11), the data-to-PYTHIA comparison for π+ is still
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not sufficiently good (see right panels of Figs. B.2–B.4). Further studies of the background are
described in the next section.

6.6.3 Background Subtraction

An attempt is made to estimate the amount of exclusive events in the data sample by using
PYTHIA to describe the background. The subtraction of the PYTHIA squared missing mass
(M2

X) distribution from that of the data is expected to give a peak due to the excess of exclusive
events produced in the data but not simulated in PYTHIA.

The steps of the background subtraction procedure used for the results of this analysis are
as follows.

1. The π− distribution is subtracted from the π+ one using the data sample:
Data(dσ̃π+ − dσ̃π−).

2. Step 1. is performed with the PYTHIA.v1.HRC sample: PYTHIA(dσ̃π+ − dσ̃π−).

3. The difference between data (step 1.) and PYTHIA (step 2.) gives the double-difference
which extracts the contribution of exclusive events to the π+ data sample:
Data(dσ̃π+ − dσ̃π−) − PYTHIA(dσ̃π+ − dσ̃π−). We write the latter expression also as

dσ̃excl = (dσ̃π+

Data − dσ̃π−

Data)− (dσ̃π+

PY THIA − dσ̃π−

PY THIA). (6.10)

Both data and PYTHIA events should be normalised to a common unit. We note that dσ̃π± ≡
deσπ±
dM2

X
should be understood in case the M2

X distributions are considered. This procedure is of

course applicable to the distributions of other kinematic variables (see right panels of Figs. B.5–
B.7).

Fig. 6.8.a) shows as a function of M2
X the difference dσ̃π+ − dσ̃π− obtained from data and

three PYTHIA samples selected with the final cuts. Unlike in the single π+ and π− distributions
(Figs. 6.7, B.11) where PYTHIA’s v1.HRC-to-v2.HSG discrepancies are relatively large, they
disappear in the difference of the π+ and π− distributions. This is explained by the fact that
the distinction between PYTHIA’s v1 and v2 samples is only in the generation of the VMD
part of the cross section, thus affecting the π+ and π− samples in the same way (Fig. B.11).
Compared to PYTHIA, the dσ̃π+ − dσ̃π− difference for data shows an excess of events for
M2

X < 2 GeV2 as expected, while at higher M2
X values it is well described by the simulation.

The subtraction of PYTHIA from data according to (6.10) is possible at this point. More-
over, possible flaws in PYTHIA such as missing processes or inaccurate cross sections, that are
common to both π+ and π−, should also cancel in this double difference.

The result of the double-difference background subtraction procedure (6.10) is presented in
Fig. 6.8.b) (full circles). The goodness of this procedure can be estimated from its ability to
give a clear exclusive peak at the expected position with a width consistent with the resolution,
as well by the behaviour of the resulting distribution outside the exclusive region where only
random fluctuations around zero should be observed. In both respects the obtained M2

X

distribution is satisfactory. The peak is fitted with a Gaussian (χ2/ndf = 1.10) giving the centre
of the peak at M2

X = (1.093 ± 0.056) GeV2 with a resolution of σM2
X

= (0.673 ± 0.048) GeV2.
Superimposed (dotted line) and fitted with a Gaussian (not shown) is the exclusive MC peak,
after being scaled by an arbitrary factor to the Gaussian peak (P1 parameter) of the double
difference result. The resolution of the latter is consistent with that obtained from the exclusive
MC, whereas the centre of the peak is shifted towards higher values of M2

X by 2.32σ compared
to that of the exclusive MC and by 3.75σ from the nominal position, where σ denotes here the
error on the peak position from the fit.
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Figure 6.8: a) Comparison of the difference dσ̃π+−dσ̃π− between π+ and π−M2
X distributions for three

PYTHIA samples and between PYTHIA and data samples selected with the final cuts (Table 6.5). b)
Double-difference distribution: the result from the difference dσ̃π+ − dσ̃π− for PYTHIA is subtracted
from that for data. The PYTHIA.v1.HRC π+ sample is used.

The measured yield of exclusive π+ events, given by the area under the peak below M2
X <

2.4 GeV2, is σ̃excl = (0.00143 ± 0.0011) nb, which is by 19% lower than the same quantity
extracted with the normalised-π− subtraction procedure (Section 6.4) using only data selected
with the standard cuts. We note that this discrepancy is much larger than the expected 7.7%
(Section 6.6.1) due to the final event selection cuts, which remove that much of the signal.

In order to show that the background subtraction (6.10) and the one using π+ and π−

data only (Section 6.4) give better results compared to the alternative one (i.e., using only π+

data and PYTHIA distributions), the exclusive peaks as obtained with the three procedures
are displayed on the left and right panels of Figs. B.12–B.14 with the standard and final cuts,
respectively. As seen from the figures, the double-difference procedure gives better results with
the final cuts (Table 6.5) defined in this chapter, than with the standard cuts (Table 6.2).

By analogy with the M2
X distribution (Fig. 6.8), the double-difference background sub-

traction procedure (6.10) is applied to other kinematic variables. The resulting exclusive
distributions are compared the in right panels of Figs. B.5–B.7 with those obtained from the
exclusive MC using the same data-to-exclusive MC normalisation as for the comparison of the
M2

X distributions (Fig. 6.8).



6.7. Summary 71

6.6.4 Process Fractions

We estimate the fractions of signal and background in the measured π+ data sample. Fractions
of the main processes contributing to the π+ background and to the π− sample are also given.

The yield of exclusive π+ events dσ̃excl (i.e., the signal) is obtained from the background
subtraction procedure (Section 6.6.3, Fig. 6.8). The signal and background fractions, fexcl and
fbg, respectively, are then defined as the following ratios of yields

fexcl =
dσ̃excl

dσ̃Data

, (6.11)

fbg =
dσ̃bg

dσ̃Data

=
dσ̃Data − dσ̃excl

dσ̃Data

= 1− fexcl, (6.12)

where dσ̃bg = dσ̃Data − dσ̃excl is defined, and dσ̃Data is the measured π+ yield (Fig. 6.7).
The use of PYTHIA (Section 5.1.2) allows us to further separate the background into

contributions from deep inelastic scattering (DIS) and vector meson production (VMD). The
fractions of these processes in the data sample are obtained from the expressions

fDIS =
dσ̃DIS

dσ̃PY THIA

dσ̃PY THIA

dσ̃Data

, (6.13)

fV MD =
dσ̃V MD

dσ̃PY THIA

dσ̃PY THIA

dσ̃Data

, (6.14)

where dσ̃DIS and dσ̃V MD are the yields obtained from PYTHIA, and dσ̃PY THIA = dσ̃DIS +
dσ̃V MD. Hence the correct knowledge of the process fractions in the background depends, on
one hand, on the correct description of these fractions within PYTHIA, and, on the other
hand, on the overall agreement between data and PYTHIA.

The results for the ratios of yields and process fractions defined above are shown in Fig. 6.9
as a function of the squared missing mass M2

X for π+ and π− data, and listed in Table 6.6
with the cut on θγ∗π+ > 0.010 rad being applied. We remind that this cut is required only for
the asymmetry measurement (Chapter 7). Although the PYTHIA.v1.HRC sample is used in
the background subtraction procedure (Fig. 6.8), it cannot be used in the estimation of the
process fractions as the VMD fraction is known to be overestimated in this sample (Fig. B.11).
Therefore here PYTHIA.v2.HSG is used instead. We conclude that the exclusive signal dom-
inates in the region M2

X < 1.2 GeV2, being on average 55%. There is practically no signal
above M2

X > 1.9 GeV2.

6.7 Summary

The 2002-2004 HERMES data taken with a transversely polarised proton target and an un-
polarised (helicity-balanced) positron beam are analysed in the search of positively charged
pions produced in the exclusive process e+p→ e+′nπ+. Data quality cuts are applied such as
to minimise the loss of data due to problematic detector performance. Further cuts (on the
kinematic phase-space, geometry, and event topology) are used to filter out the exclusive π+

data and reduce the number of background events. An attempt is made, using data only, to
separate the exclusive π+ peak by subtracting the normalised π− from the π+ M2

X distribution.
Using two Monte Carlo generators, exclusive MC and PYTHIA, three more cuts in addition

to the standard ones (Table 6.2) are defined for the selection of exclusive events. The final set
of cuts is given in Table 6.5.

Over the entire squared missing mass region (−2 < M2
X ≤ 40 GeV2) the pion and the

two-track momentum cuts together reject 96.2% of the background and 21.9% of the signal
events in the π+ data sample selected with the standard cuts (see Table B.2 on page 114).
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quantity cut reference
pion momentum pπ > 7.05 GeV (6.5), Fig. 6.3
two-track momentum pπ + pe+′ > 26 GeV (6.6), Fig. 6.3
θγ∗π+ angle θγ∗π+ > 0.010 rad (6.9), Fig. 6.5
standard cuts Table 6.2

Table 6.5: The final cuts applied to the data to select event candidates for this analysis. Note: the
above full set of cuts is only used for the asymmetry measurement (Chapter 7), whereas in the studies
of this chapter and Appendix E the θγ∗π+ cut is omitted unless otherwise noted.

Although the final cuts reject a large amount (96.2%) of the background events, the gain is
mostly of practical benefit—we deal with less data in the following. The background removed
from the region −2 < M2

X < 2.4 GeV2 is only 25%. No possibility is found that allows us to
further separate the signal from the background.

The exclusive signal is isolated only by subtraction of event distributions (Section 6.6.3)
using π+ and π− data and PYTHIA samples. Therefore any results extracted from the π+

data sample still contain contributions from both the signal and the background. However,
the estimates of the signal fraction and of the contributions of the main processes (DIS, VMD)
to the background, obtained with the PYTHIA generator (Section 6.6.4), allow us to perform
background correction to those results.
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Figure 6.9: Unpolarised yields (a) and process fractions (b,c) for the DIS (deep inelastic scattering),
VMD (vector meson dominance) and exclusive reactions for the π+ (upper half) and π− (lower half)
samples selected with the final cuts (Table 6.5, θγ∗ > 0.010 rad is applied). Bin width is 0.7 GeV2.
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M2
X bin GeV2 −1.6-0.5 0.5-1.2 1.2-1.9 1.9-2.6 2.6-3.3 3.3-4.0 average

fexcl % π+ 55.0 56.3 26.3 1.4 −0.2 5.9 24.1

= eσexcleσData
% ± 6.9 4.6 3.7 3.7 3.8 5.5 2.0

fbg % π+ 45.0 43.7 73.7 98.6 100.2 94.1 75.9

=
eσbgeσData

± 8.5 5.6 5.0 5.2 5.4 7.7 2.6

fDIS % π+ 27.5 32.1 51.5 66.6 69.3 57.6 50.8

= eσDISeσData
± 2.0 1.5 1.8 2.1 2.2 2.7 0.9

π− 37.6 46.3 45.9 43.9 51.1 45.5 45.0
± 5.2 4.3 2.6 2.0 2.2 2.9 1.4

fV MD % π+ 11.2 12.9 19.8 26.3 29.0 27.9 21.2

= eσV MDeσData
± 1.1 0.8 0.9 1.0 1.1 1.5 0.4

π− 38.2 59.4 48.2 46.1 45.6 40.3 46.3
± 5.2 5.3 2.7 2.1 2.0 2.6 1.5eσPY THIAeσData

% π+ 38.8 45.0 71.3 92.9 98.3 85.5 72.0

± 2.7 2.0 2.3 2.8 3.0 3.8 1.2
π− 75.8 105.7 94.0 89.9 96.7 85.8 91.3
± 9.2 8.8 4.7 3.6 3.9 4.9 2.6eσDISeσPY THIA

% π+ 70.9 71.2 72.2 71.6 70.5 67.4 70.7

± 4.8 3.0 1.9 1.6 1.6 2.3 1.1
π− 49.6 43.8 48.8 48.8 52.8 53.0 49.5
± 5.4 3.0 2.0 1.7 1.7 2.5 1.2eσV MDeσPY THIA

% π+ 28.9 28.8 27.8 28.3 29.5 32.6 29.3

± 2.7 1.7 1.0 0.9 0.9 1.5 0.6
π− 50.4 56.2 51.2 51.2 47.2 47.0 50.5
± 5.4 3.5 2.1 2.1 1.6 2.4 1.3

σ̃Data pb π+ 4.586 10.387 16.126 17.976 17.431 8.247 12.459
± 0.241 0.363 0.452 0.477 0.470 0.323 0.162

π− 1.165 2.293 6.460 10.058 10.261 5.029 5.878
± 0.122 0.170 0.286 0.357 0.361 0.252 0.111

σ̃PY THIA pb π+ 1.779 4.675 11.498 16.707 17.137 7.050 9.808
± 0.078 0.127 0.199 0.240 0.243 0.156 0.075

π− 0.883 2.424 6.075 9.046 9.926 4.317 5.445
± 0.055 0.091 0.145 0.177 0.185 0.122 0.056

σ̃DIS pb π+ 1.262 3.330 8.305 11.970 12.084 4.751 6.950
± 0.066 0.107 0.169 0.203 0.204 0.128 0.063

π− 0.438 1.062 2.962 4.413 5.244 2.289 2.735
± 0.039 0.061 0.101 0.123 0.134 0.088 0.040

σ̃V MD pb π+ 0.514 1.345 3.193 4.734 5.054 2.300 2.856
± 0.042 0.068 0.105 0.128 0.132 0.089 0.041

π− 0.445 1.362 3.113 4.634 4.682 2.027 2.710
± 0.039 0.069 0.104 0.126 0.127 0.084 0.039

σ̃excl pb π+ 2.524 5.843 4.243 0.258 −0.042 0.484 2.218
± 0.286 0.430 0.589 0.666 0.666 0.455 0.218

σ̃bg pb π+ 2.062 4.544 11.883 17.718 17.473 7.763 10.241
= σ̃Data − σ̃excl ± 0.374 0.563 0.742 0.819 0.815 0.558 0.272

Table 6.6: Process fractions, unpolarised yields, and ratios of the yields obtained from data,
PYTHIA.v2.HSG, and the exclusive MC samples selected with the final cuts (Table 6.5, θγ∗ >
0.010 rad is applied). The process fractions fulfill the equality fexcl +fDIS +fV MD ≈ 1. The numbers
correspond to Fig. 6.9.



Chapter 7

Analysis of the Azimuthal Asymmetry

The extraction of the azimuthal asymmetry amplitudes is described in the following. The
values of the amplitudes are measured from the π+ and π− data samples selected with the
final cuts (Table 6.5). Non-exclusive processes are present in both samples, while exclusive
pion production which is of primary interest in this analysis, contributes only to the π+ sample.
A method is described to estimate the effect of smearing on the measured amplitudes using
Monte Carlo simulation. Correction for the background contribution to the leading amplitude
for π+ is applied.

7.1 Extraction of Asymmetry Amplitudes

The definition of the azimuthal asymmetry A(φ, φS) given in (3.20) is used. To measure this
asymmetry we need to compute the azimuthal angles φ (3.2) and φS (3.3) for each event and
to separate the data sample into two subsamples of events corresponding to the two target
polarisation states. In this analysis φS is always computed with respect to the fixed axis
~S = (0,−1, 0) in the HERMES coordinate system (Section 4.3, C ′ frame in Fig. 3.1), while
the target polarisation state, which is available per event, is actually used to identify events as
belonging to one of the two subsamples. Conventionally [9], φS and φS +π in (3.20) just denote
the positive (PT > 0 or ’spin-up’) and negative (PT < 0 or ’spin-down’) states for the case of
transversely polarised target. We remind that at HERMES the polarisation of the target is
flipped every 90 s during data taking.

The asymmetry A(φ, φS) is predicted to exhibit six sine modulations as shown in (3.23).
The physical information describing the details of the scattering process is contained in the
amplitudes of these modulations. Only the size of the leading amplitude A

sin(φ−φS)
UT , i.e., the one

that gives the largest contribution to the asymmetry for exclusive pion production, is predicted
by theory. None of the amplitudes is measured so far.

Our goal is to estimate the six asymmetry amplitudes (3.23) of the sine modulations of the
asymmetry Ameas(φ, φS) measured from our data. This is achieved by performing a fit to the
values of Ameas(φ, φS) with the free parameters of the fit giving the extracted amplitudes.

A 2-dimensional 6-parameter unbinned maximum likelihood (UML) fit is used to extract the
amplitudes in this analysis. This choice is based on a comparison with other extraction methods
(moments method [27, 30], binned 2D [30, 31] and 1D [60] fits). Monte Carlo simulations show
that the UML fit is best suited for use with a low statistics data sample as ours [46]. The fit
proceeds in a similar manner as a 2-dimensional binned χ2 fit, however, without breaking the
sample into bins. The fit procedure is described in Section 7.1.1 and the measured amplitudes
are presented in Section 7.1.2.

75
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7.1.1 Unbinned Maximum Likelihood Fit

We assume that the azimuthal asymmetry to be measured from our data, Ameas(φ, φS), can
be described by six sine modulations and their amplitudes as predicted by the theory of pion
electroproduction in Section 3.1. That is, we work under the hypothesis that the asymmetry
is given by (3.23)

Ameas(φ, φS) =
6∑

k=1

A
sin(µφ+λφS)k

UT,meas sin(µφ+ λφS)k, (7.1)

where k = 1, . . . , 6 (see (3.21), (3.22), and table following (3.17)). The sign of the asymmetry
is flipped in (7.1) for convenience and accord with a more widely accepted convention.

From (3.20) and the expression dσ(φ, φS) + dσ(φ, φS + π) = 2dσUU(φ) (3.19) it follows for
the cross sections

dσ(φ, φS) = [1 + |PT |A(φ, φS)] dσUU(φ), (7.2)

dσ(φ, φS + π) = [1− |PT |A(φ, φS)] dσUU(φ), (7.3)

where dσUU(φ) is the unpolarised cross section (3.16). In the calculations with data dσ(φ, φS)
(dσ(φ, φS + π)) corresponds to the event counts N+ (N−) with positive PT > 0 (negative
PT < 0) target polarisation, and the asymmetry A(φ, φS) is replaced by (7.1). The azimuthal
angles φ and φS (see Fig. 3.1, (3.2), (3.3)) are computed per event.

Using (7.2) and (7.3), the probability density function (p.d.f) [70] is constructed as

f±(φ, φS; θk) =
1

C±

[
1± |PT |

6∑
k=1

θk sin(µφ+ λφS)k

]
, (7.4)

where the + (−) sign refers to polarisation states with PT > 0 (PT < 0), θk are the parameters
of the fit, and C± is a normalisation constant; C± = 1 is taken in this work.

The extracted asymmetry amplitudes A
sin(µφ+λφS)k

UT,meas are those values of θk that maximise the
likelihood function

L(θk) = L+(θk)L−(θk) =
N+∏
i=1

f+(φ, φS; θk)
N−∏
j=1

f−(φ, φS; θk), (7.5)

or minimise the negative log-likelihood function

− lnL(θk) = − lnL+(θk)− lnL−(θk) = −
N+∑
i=1

ln f+(φ, φS; θk)−
N−∑
j=1

ln f−(φ, φS; θk). (7.6)

The function minimisation is performed with the MIGRAD or HESSE routines from the MI-
NUIT package [3].

7.1.2 Measured Asymmetry Amplitudes

Each of the π+ and π− data samples is divided into six bins of the squared missing mass M2
X .

The M2
X binning and the number of events per bin N+ (N−) for the positive PT > 0 (negative

PT < 0) target polarisation are given in Table 7.1.
In order to balance between resolution effects and sufficient statistics, the M2

X-bin width
(0.7 GeV2) is chosen to be equal to the M2

X resolution (Figs. 6.6, 6.8), except for the first bin
which is three times wider in order to collect enough event counts. For each of the M2

X bins the
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M2
X bin GeV2 −1.6-0.5 0.5-1.2 1.2-1.9 1.9-2.6 2.6-3.3 3.3-4.0 total

N+ (PT > 0) events π+ 185 405 622 718 686 346 2962± 54
π− 51 87 267 417 407 191 1420± 38

N− (PT < 0) events π+ 177 415 651 701 690 305 2939± 54
π− 41 94 243 377 403 206 1364± 37

N+ +N− events π+ 362 820 1273 1419 1376 651 5901± 77
π− 92 181 510 794 810 397 2784± 53

Table 7.1: The π+ and π− data samples used for the extraction of the asymmetry amplitudes (Fig. 7.1,
Table 7.2). The squared missing mass (M2

X) binning and the number of events per bin N+ (N−) for
positive PT > 0 (negative PT < 0) target polarisation are given.
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Figure 7.1: The measured six asymmetry amplitudes (7.1) as a function of the squared missing mass
M2

X for the π+ (full circles) and π− (open circles) data samples (Table 7.1). The small horizontal
bars enclose the statistical uncertainty, while the full vertical error bars show the total uncertainty
obtained from a quadratic sum of the statistical and systematic uncertainties. The long horizontal
lines are straight-line fits to the data points. Values are listed in Tables 7.2, 7.5.

values of the azimuthal angles φ and φS are computed per event. The φ, φS values are inserted
in the log-likelihood function (7.6), which upon minimisation with the UML fit (Section 7.1.1)
yields the six asymmetry amplitudes (7.1). The UML fit package, developed at HERMES by
J. Dreschler [29], is kindly provided to us by the author.
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M2
X bin, GeV2

−1.6-0.5 0.5-1.2 1.2-1.9 1.9-2.6 2.6-3.3 3.3-4.0
A

sin(φ−φS)
UT,meas π+ : 0.034± 0.030 (χ2/ndf = 1.8) π− : −0.013± 0.045 (χ2/ndf = 0.68)

π+ −0.22± 0.17 0.17± 0.07 0.05± 0.06 −0.04± 0.06 0.07± 0.06 −0.08± 0.10
π− 1.58± 0.75 −0.01± 0.19 0.05± 0.10 −0.09± 0.08 −0.04± 0.08 0.13± 0.12

A
sin(φ+φS)
UT,meas π+ : 0.046± 0.031 (χ2/ndf = 1.8) π− : −0.077± 0.046 (χ2/ndf = 0.88)

π+ 0.17± 0.16 −0.15± 0.08 0.02± 0.06 0.08± 0.06 0.11± 0.07 0.16± 0.11
π− −1.56± 0.71 −0.27± 0.18 −0.13± 0.11 0.02± 0.08 −0.06± 0.08 −0.19± 0.13

Asin φS
UT,meas π+ : 0.293± 0.038 (χ2/ndf = 1.3) π− : −0.135± 0.057 (χ2/ndf = 1.05)

π+ 0.28± 0.21 0.45± 0.10 0.36± 0.08 0.16± 0.08 0.27± 0.08 0.29± 0.13
π− 2.11± 0.87 0.03± 0.24 −0.13± 0.13 −0.10± 0.10 −0.29± 0.10 0.05± 0.16

A
sin(2φ−φS)
UT,meas π+ : 0.068± 0.030 (χ2/ndf = 2.8) π− : 0.073± 0.045 (χ2/ndf = 1.2)

π+ 0.47± 0.15 −0.06± 0.08 0.16± 0.06 0.05± 0.06 0.05± 0.06 −0.08± 0.10
π− −0.85± 0.51 −0.05± 0.19 0.10± 0.10 0.07± 0.08 0.08± 0.08 0.07± 0.12

A
sin(3φ−φS)
UT,meas π+ : 0.029± 0.025 (χ2/ndf = 0.56) π− : −0.061± 0.036 (χ2/ndf = 2.6)

π+ −0.06± 0.11 −0.01± 0.07 −0.00± 0.05 0.07± 0.05 0.03± 0.05 0.10± 0.07
π− 0.17± 0.24 −0.31± 0.15 −0.10± 0.08 0.11± 0.07 −0.11± 0.07 −0.12± 0.10

A
sin(2φ+φS)
UT,meas π+ : 0.010± 0.030 (χ2/ndf = 0.74) π− : −0.059± 0.045 (χ2/ndf = 0.66)

π+ −0.11± 0.14 0.01± 0.08 0.01± 0.06 0.00± 0.06 −0.02± 0.06 0.17± 0.10
π− 0.69± 0.41 0.14± 0.19 −0.05± 0.10 −0.04± 0.08 −0.05± 0.08 −0.20± 0.12

Table 7.2: The values of the measured π+ and π− six asymmetry amplitudes (7.1) for the six M2
X

bins shown in Fig. 7.1. The values (and the χ2/ndf) from a straight-line fit to the data points are
given.

Fig. 7.1 shows the six asymmetry amplitudes, A
sin(φ−φS)
UT,meas , A

sin(φ+φS)
UT,meas , Asin φS

UT,meas, A
sin(2φ−φS)
UT,meas ,

A
sin(3φ−φS)
UT,meas , and A

sin(2φ+φS)
UT,meas with their statistical uncertainties extracted with the UML fit from

the π+ and π− data samples (Table 7.1). The measurements for π+ (full circles) and π− (open
circles) are plotted as a function of M2

X . A straight line is fitted through the data points. The
amplitude values and their statistical uncertainties are listed in Table 7.2, while the evaluation
of the systematic uncertainties is discussed in Section 7.3. Most of the measured amplitudes
are either zero or not significantly far from zero within the statistical error bars. Only Asin φS

UT,meas

is found to be relatively large. Its average value is positive (negative) for π+ (π−).

The display of the amplitudes in the entire region −1.6 < M2
X ≤ 4.0 GeV2 (Fig. 7.1)

allows one to check whether a distinct behaviour is observed around M2
X ≈ 1 GeV2 for π+,

which corresponds to the position the exclusive peak (Fig. 6.8). From an unbiased point of
view there is no significant indication for such a behaviour. We remind that although the
event selection (Table 6.5) is optimised for the study of exclusive π+ production, the resulting
π+ data sample and therefore the measurements in Fig. 7.1 correspond to a mixture of both
exclusive and background events. According to Monte Carlo simulation, the background is
described by DIS (deep inelastic scattering) and VMD (vector meson dominance) production,
while the π− sample consists entirely of DIS and VMD events. The process fractions for π+

and π− in the six M2
X bins are estimated in Chapter 6 (Fig. 6.9) and listed in Table 6.6. As

can be read from this table, the fraction of exclusive π+ events is only slightly larger than that
of the background in the first two M2

X bins and becomes negligible for M2
X > 1.9 GeV2.

Thus the results in Fig. 7.1 for π+ do not give information about the exclusive process only.
In order to provide a measurement of the exclusive π+ amplitudes, in addition to the process
fractions one needs a knowledge of the amplitudes for each background process. A method for
a background correction to the measured π+ amplitudes is discussed in Section 7.4. The final
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results and their interpretation are presented in Chapter 8.
Fig. 7.1 and Table 7.2 together with the process fractions in Table 6.9 and the systematic

uncertainties in Table 7.5 present our results for the measured six amplitudes of the sine
modulations of the transverse-target single-spin azimuthal asymmetry. More details about the
extraction of the amplitudes are given in the rest of this section.

Goodness of UML fit

An attempt is made to give a measure of goodness of the UML fit used in Section 7.1.2 to
extract the asymmetry amplitudes from data.

The (φ, φS)-plane is divided into 8 × 8 bins. For a given M2
X bin the asymmetry and its

statistical uncertainty are computed in each (φ, φS) bin i, i = 1, . . . 64 as

Ai,Data =
N+

i −N−
i

N+
i +N−

i

, δAi,Data =

√
(2N−

i δN+
i )2 + (2N+

i δN−
i )2

(N+
i +N−

i )2
, (7.7)

where N+
i (N−

i ) is the number of events for PT > 0 (PT < 0), and δN±
i =

√
N±

i is the
statistical uncertainty; if N±

i = 0 then δN±
i = 1 is taken. The π+ data sample is used.

The values of the six amplitudes for π+ (Table 7.2) obtained from the UML fit and the
average values of the azimuthal angles 〈φ〉i, 〈φS〉i are used to compute the asymmetry and its
statistical uncertainty in each bin i as

Ai,UML =
6∑

k=1

A
sin(φ+λφS)k

UT,meas sin(µ〈φ〉i + λ〈φS〉i)k,

δAi,UML =

√√√√ 6∑
k=1

[
δA

sin(φ+λφS)k

UT,meas sin(µ〈φ〉i + λ〈φS〉i)k

]2
.

(7.8)

The bin asymmetries Ai,Data and Ai,UML are shown in Fig. 7.2 (top) as a 2-dimensional grey-
scale scatter plot in the range from −1 to 1 with 8× 8 (φ, φS) bins for 0.5 < M2

X ≤ 1.9 GeV2.
The asymmetry values as a function of the (φ, φS) bin number i are also shown in Fig. 7.2
(middle). As an estimate of the degree of agreement between the two sets of points (full and
open circles for Data and UML, respectively), the following quantity is computed per bin i

Ai,Data − Ai,UML√
(δAi,Data)2 + (δAi,UML)2

, (7.9)

whose values are displayed with open squares in Fig. 7.2 (bottom). Since most of the square
points appear to be randomly scattered in the range between −1 and 1 we conclude that the
parameters extracted with the UML fit describe the measured asymmetry sufficiently well.

The quantity (7.9) is computed for six M2
X bins using the π+ sample and shown in Fig. 7.3.

Although the number of events varies among the M2
X bins (Table 7.1) the UML fit gives equally

good results for all of them.

Sign of Extracted Amplitudes

A remark follows about the signs of the theoretical and experimental asymmetry amplitudes.
The azimuthal angles φ and φS (Fig. 3.1), and the asymmetry A(φ, φS) (3.20, 3.23) are defined
in agreement with the Trento conventions [9], which require that

• For a positive (negative) target polarisation PT > 0 (PT < 0) the target polarisation
vector ST (Fig. 3.1) points parallel (antiparallel) to the positive direction of the vertical
y axis.



80 Chapter 7. Analysis of the Azimuthal Asymmetry

-2

0

2

-2 0 2
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1

-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1

φ S 
(r

ad
)

φ (rad)

π+ Ai,Data(φ,φS)

-2

0

2

-2 0 2
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1

-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1

φ S 
(r

ad
)

φ (rad)

π+ Ai,UML(φ,φS)

-1

-0.5

0

0.5

1

A
i(φ

,φ
S)

Data
UML

0.5 < MX
 2 ≤ 1.9

-2

-1

0

1

2

0 10 20 30 40 50 60
(φ,φS) bin number i

(A
i,D

at
a 

− 
A

i,U
M

L
) 

/ √
(δ

A
i,D

at
a 2  +

 δ
A

i,U
M

L
 2 )

Figure 7.2: The bin asymmetries Ai,Data (7.7) and Ai,UML (7.8) are presented for the π+ data sample
in 0.5 < M2

X ≤ 1.9 GeV2 as a 2-dimensional grey-scale scatter plot in the range from −1 to 1 with
8 × 8 (φ, φS) bins (top), and as a function of the (φ, φS) bin number i (middle) with δAi,Data and
δAi,UML being the statistical uncertainties. The open squares (bottom) give an estimate of the degree
of agreement between the two sets of points (full and open circles for Data and UML, respectively).

• The asymmetry is defined as the difference of the cross sections for PT > 0 and PT < 0
(with the appropriate |PT | normalisation as in (3.20)).

These definitions and the conventions for σij
mn in [27] give the minus sign in (3.21) for the

theoretical asymmetry, and, in particular, the minus signs for the amplitudes in (3.23).

The asymmetry amplitude results obtained in this thesis can be directly compared with
other measurement and predictions which conform with the Trento conventions [9].

Beam Polarisation

The measurement of the asymmetry amplitudes A
sin(µφ+λφS)k

UT,meas (7.1) for an unpolarised (U) beam
is achieved in this analysis by balancing the helicity states of the otherwise longitudinally
polarised HERA beam. The helicity of the beam was flipped several times during data taking
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and Ai,UML (7.8) for the π+ data sample and for six M2

X bins. δAi,Data and δAi,UML are the statistical
uncertainties. See also Fig. 7.2.
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Figure 7.4: The values of sin θ and cos θ versus the squared missing mass M2
X for the π+ data sample

selected with the final cuts (Table 6.5). The angle θ ≡ θγ∗ defined through (3.5) is the polar angle
between the incoming positron and the virtual photon (Fig. 3.1).

so that an almost zero net polarisation (〈Pe+〉 = 0.072) is obtained for the combined 2002-2004
data sample. This value is considered to be too small to cause an observable background
asymmetry therefore no further attempt is made here, neither by rejecting part of the data
nor by means of corrections, to perfectly bring 〈Pe+〉 to zero.

Kinematic Approximation

Besides neglecting the positron mass, the approximation (3.18) is assumed to hold for this
analysis. The largest deviation from unity for a maximum value of sin θ = 0.15 at sinφS = 1
is Γ = 1.011. The sin θ and cos θ distributions with the final cuts (Table 6.5) versus M2

X are
shown in Fig.7.4. The average values are 〈γ〉 = 0.101, 〈sin θ〉 = 0.081, and 〈cos θ〉 = 0.997 for
0.5 < M2

X ≤ 1.2 GeV2, where θ and γ are defined in (3.5). The values γ = 0.095, sin θ = 0.074,
and cos θ = 0.997 are obtained for the average HERMES kinematics (Table B.3, final cuts),
therefore sin θ ≈ 0 and cos θ ≈ 1 can be used also in the table following (3.17).
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Figure 7.5: The measured asymmetry Ameas integrated over the azimuthal angles φ and φS (left)
and the relative deviation from zero (right) as a function of the squared missing mass M2

X for π+

and π− data. The error δAmeas is statistical only. For most of the points the deviation is ≤ 1σ
(maximum 1.5σ) from the expected zero value. No systematic deviation is visible. The average
values are 〈Ameas〉 = 0.005± 0.017 for π+ and 〈Ameas〉 = 0.028± 0.025 for π−.

Zero Constant Term

According to (3.19), the cross sections dσ(φ, φS) and dσ(φ, φS + π) for the two target polari-
sation states PT > 0 and PT < 0, respectively, integrated over the azimuthal angle φS (and φ)
should be equal to each other. This requirement serves as a quality check of the data and is
equivalent to showing for the asymmetry A(φ, φS) (3.20) that

A ≡
∫ π

−π

dφ

∫ π

−π

dφS A(φ, φS) = 0. (7.10)

The measured values Ameas as a function of the squared missing mass M2
X are shown in

Fig.7.5 for π+ and π− data. Most of the points are zero within the statistical error bars, δAmeas.
For several points the deviation is 1σ, maximum 1.5σ from the expected zero value, where σ
is the standard deviation. A deviation from zero in (7.10), also called a ’constant term’ of the
asymmetry, can be due to an incomplete cancellation of the measured unpolarised event yields
dσ̃UU in (3.20). However, since 〈Ameas〉 = 0.005± 0.017 and 〈Ameas〉 = 0.028± 0.025 averaged
over M2

X for π+ and π−, respectively, are consistent with zero and Ameas

δAmeas
in Fig.7.5 shows no

systematic deviations, we conclude that no significant discrepancy is observed between data
and the requirement (7.10).

Asymmetry of Polarised Samples

Although the transverse polarisation of the target is flipped on a regular basis (every 90 s),
the data taken with positive (PT > 0) and negative (PT < 0) target polarisation may contain
additional differences due to, e.g., a possible detector top-bottom asymmetry.

The six amplitudes are extracted from a fit to the unpolarised yield (i.e., events with both
PT > 0 and PT < 0 enter (7.4, 7.5) with the same sign in front of |PT |) as well as from fits to
the polarised yields, but separately for positive and negative target polarisation; we denote the
values of the corresponding amplitudes as AUU , and AUT+ and AUT−, respectively, for a given
sine modulation sin(µφ+ λφS)k. While the unpolarised amplitudes should be consistent with
zero, the polarised ones should agree with each other. We note that the 6-parameter UML fit
(Section 7.1.1) is used without adding additional terms to take into account possible non-zero
unpolarised amplitudes.
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Figure 7.6: The deviation of the unpolarised amplitudes AUU from zero (full circles) and of the
polarised amplitudes for positive (AUT+) from those for negative (AUT−) target polarisation (open
circles) for the six sine modulations sin(µφ + λφS)k as a function of the squared missing mass M2

X

for the π+ data sample.

For a given sine modulation, the deviation from zero of the unpolarised amplitude and the
discrepancy between the values obtained from the two polarised samples are computed as

AUU

δ(AUU)
AUT+ − AUT−√

(δAUT+)2 + (δAUT−)2

 for A
sin(µφ+λφS)k

UU,meas from

{
unpolarised yield
polarised yields

(7.11)

and plotted in Fig. 7.6 for the unpolarised (full circles) and polarised (open circles) amplitudes
for the six M2

X bins. Most of the values are close or within the range from −1 to 1, except for
a few points at higher M2

X .
We conclude that the amplitudes caused by an asymmetry in the samples for positive and

negative target polarisation are within a reasonable range. Therefore the deviations in Fig. 7.6
are not included in the systematic uncertainties of the measured amplitudes. We note that
the possibility that the extracted amplitudes are fake is partly accounted for by the systematic
uncertainties due to smearing (Section 7.2).

7.2 Smearing Studies

The extraction of the six amplitudes in (7.1) with the UML fit may be influenced by factors
unrelated to the fit procedure itself, e.g., the detector resolutions and smearing. To evaluate
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such external effects on the extracted amplitudes, the values obtained from the UML fit are
compared with the well known ’true’ amplitudes implemented in Monte Carlo-generated data
samples. The discrepancies between reconstructed and generated amplitudes are taken into
account for the systematic uncertainty of the results (Section 7.3.1).

The Monte Carlo events used in the following studies are generated in the HERMES ac-
ceptance.

7.2.1 Polarisation in the Monte Carlo Samples

Since the available Monte Carlo programs (Sections 5.1.1, 5.1.2) do not take account of the
target polarisation states at the generator level, the produced sample is artificially polarised
by randomly assigning to each event a spin state according to

PT = 1
PT = −1

}
if RANDOM

{
<
>

}
0.5 [1 + A

sin(µφ+λφS)k

UT sin(µφ+ λφS)k], (7.12)

where RANDOM is a random number between 0 and 1, and A
sin(µφ+λφS)k

UT (3.22), being the
generated amplitude for a given k (k = 1, . . . , 6), is a number chosen in the range from −1 to
1.

7.2.2 Smearing in M 2
X

Scan of All Six Asymmetry Amplitudes

In separate samples for each of the six sine modulations (7.1), 21 asymmetry amplitudes from
−1 to 1 are generated simultaneously using (7.12) with the exclusive MC (Section 5.1.1) and
PYTHIA (Section 5.1.2); a GEANT simulation [16] of the detector is included. For each
sample, though only one of the amplitudes is generated, all amplitudes are extracted with the
UML fit (Section 7.1.1). The statistics of the PYTHIA samples are comparable to those of the
data, whereas the size of the exclusive MC sample is such that there are enough events in the
last M2

X bin; the numbers of reconstructed events are given in Table 7.3 for six M2
X bins and

for the two polarisation states.

M2
X(GeV2) bin −1.6-0.5 0.5-1.2 1.2-1.9 1.9-2.6 2.6-3.3 3.3-4.0 total

events PYTHIA.v1.HRC DIS
N+(PT = 1) π+ 85 196 490 710 736 278 2495± 50
N−(PT = −1) π+ 82 201 474 723 712 265 2457± 50
N+ +N− π+ 167 397 964 1433 1448 543 4952± 70
events excl. MC
N+(PT = 1) π+ 2457 3979 2823 887 362 223 10731± 104
N−(PT = −1) π+ 2545 3997 2754 878 367 216 10757± 104
N+ +N− π+ 5002 7976 5577 1765 729 439 21488± 147

Table 7.3: The π+ PYTHIA and exclusive MC samples used for the smearing studies (Figs. C.1–C.6).
The squared missing mass (M2

X) binning and the number of reconstructed events per bin N+ (N−)
for positive PT = 1 (negative PT = −1) target polarisation are given.

Both PYTHIA (left) and exclusive MC (right) reconstructed amplitudes are shown in
Figs. C.1–C.6 for six M2

X bins. Each row corresponds to a separate MC sample, with the
generated amplitude (gen.AUT ) marked with a diagonal dotted line and the reconstructed val-
ues (rec.AUT ) denoted by full circles. The reconstructed values of the middle point and the



7.2. Smearing Studies 85

last one are fitted to a straight line and the fit parameters p1 (the offset) and p2 (the slope)
are given in the plot. Only these two points are used for the fit in order to obtain realistic
error bars for p1 and p2; being implemented in and extracted from the same sample, each set
of 21 reconstructed amplitudes has correlated error bars. The fit parameters can be related to
the amplitudes as rec.AUT = p1 + p2 gen.AUT .

The following comments refer to Figs.C.1–C.6:

• For each sample (i.e., row) the generated amplitude is reconstructed reasonably well. The
quality of the reconstruction in terms of the straight-line-fit parameters with expectation
values p1 = 0 and p2 = 1, is worst for the lowest (highest) M2

X bins for PYTHIA
(exclusive MC).

• Non-zero fake amplitudes (i.e., amplitudes that are not generated) are reconstructed for
each sample. In terms of the deviation from the reference parameters, p1 = 0 and p2 = 0,
the largest deviations are observed again in the first and last M2

X bins.

• For those reconstructed amplitudes that are generated (along the diagonal of Figs. C.1–
C.6), the p2 parameters differ from the nominal value p2 = 1 most strongly in the first
two M2

X bins for PYTHIA and in the last three M2
X bins for the exclusive MC. The size of

the deviation depends on the amplitude A
sin(µφ±φS)k

UT being reconstructed, in particular, on
the value of µ, where µ = 0, 1, 2, 3. The agreement between reconstructed and generated
amplitudes is best for Asin φS

UT (µ = 0) and worst for A
sin(3φ−φS)
UT (µ = 3).

• The best agreement between generated and reconstructed amplitude values is found in
1.2 < M2

X ≤ 1.9 GeV2 for PYTHIA and in 0.5 < M2
X ≤ 1.2 GeV2 for the exclusive MC.

Smearing of Events versus M2
X

The dependence of the quality of the reconstructed asymmetry amplitudes on the squared
missing mass M2

X observed in Figs. C.1–C.6 can be studied on the level of the events used
to construct the asymmetry. Beyond the comparison between reconstructed and generated
amplitudes, a comparison between generated and reconstructed event counts as a function of
M2

X is presented.
In Fig. 7.7 for PYTHIA (left) and the exclusive MC (right) the solid-line histograms show

the distributions of generated events (top), converted to a normalised yield for PYTHIA, see
Section 5.1.2, and the corresponding distributions of reconstructed events (bottom). The dif-
ference between generated and reconstructed distributions is due to the smearing which causes
migration of events among M2

X bins. The smearing effect is illustrated by the solid, dashed,
dotted, and dash-dotted broken-line histograms of reconstructed events, each of which cor-
responds to one M2

X bin of generated events depicted in the same line code. As expected,
practically (almost) no events are generated for M2

X < 0.5 GeV2 (< 1.9 GeV2) with the exclu-
sive MC (PYTHIA); the distribution in this low M2

X range consists of smeared-back events
from the next (two) M2

X bin(s), as seen from Fig. 7.7 (bottom). As far as the smearing is due
to the finite detector resolution, events are also smeared forth from a lower to a higher M2

X

bin.
The smearing effect shown in Fig. 7.7 is quantified by generating events in a given M2

X bin,
counting the number of reconstructed events in the same as well as in the neighbouring bins,
and normalising the counts to the total number of reconstructed events in the corresponding
M2

X bin. The resulting percentages and the particular choice of the M2
X bins are given in

Table 7.4. The last column serves as a cross check and reminds that the normalisation is
done with respect to the number of reconstructed events (for PYTHIA) in the corresponding
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Figure 7.7: The smearing effect in terms of the squared missing mass (M2
X) of the π+ distribution

for PYTHIA (left) and the exclusive MC (right). The solid-line histograms show the total generated
(top) and reconstructed (bottom) distributions. The bin contributions are drawn with solid, dashed,
dotted, and dash-dotted (broken) lines for the generated (reconstructed) distributions, where the M2

X

bins are defined in both cases by a non-overlapping upper and lower cuts on the generated M2
X values.

M2
X bin. Excluding the region −1.6 < M2

X ≤ 1.2 GeV2 for PYTHIA, the largest fraction of
reconstructed events in a given M2

X bin is generated in that same bin, however this fraction is
not more than 50.9% for 1.2 < M2

X ≤ 1.9 GeV2 and it is 38.7% on average for the next three
bins. For the exclusive MC all events are generated with a fixed value of M2

X = 0.88 GeV2,
i.e., in the single bin 0.5 < M2

X ≤ 1.2 GeV2, however only 38% of the reconstructed events fall
in that bin. We note that unlike for PYTHIA, for the exclusive MC the normalisation of the
reconstructed event counts in a given M2

X bin is performed with respect to the total number of
generated events (in the single M2

X bin). A consequence of the smearing of events among M2
X

bins is that the M2
X dependence of the extracted asymmetry amplitudes cannot be determined

precisely, instead the measured amplitude in any M2
X bin is in fact a smeared-out average of

the amplitude in that bin and the ones in the neighbouring bins.

The smearing effect in M2
X discussed in the previous paragraph is something to be kept in

mind for the measured asymmetry amplitudes presented as a function of M2
X in Section 7.1.2.

The M2
X-dependent deviation (Figs. C.1–C.6) of some of the reconstructed Monte Carlo am-

plitudes from the generated values cannot be due to the smearing in M2
X alone, because the

generated amplitudes are independent of M2
X . As seen from (7.12), the azimuthal angles φ and

φS are the only kinematic variables involved in the generation of the amplitudes. We recall
that the agreement between reconstructed and generated amplitudes A

sin(µφ±φS)k

UT depends on
the values of µ = 0, 1, 2, 3 (Figs. C.1–C.6). This observation points to an additional smearing
effect in the azimuthal angles.
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generated PYTHIA π+ events in M2
X (GeV2)

0.5-1.2 1.2-1.9 1.9-2.6 2.6-3.3 3.3-4.0 4.0-4.7 4.7-5.4 5.4-6.1 total
rec. in

M2
X(GeV2) %
−1.6-0.5 3.4 62.1 13.2 5.9 5.7 3.1 2.9 0.8 97.1
0.5-1.2 2.7 65.9 23.7 5.1 1.0 0.6 0.5 0.1 99.6
1.2-1.9 1.2 50.9 35.8 8.8 1.9 0.5 0.2 0.2 99.5
1.9-2.6 0.3 26.1 42.5 23.9 5.5 0.9 0.4 0.1 99.7
2.6-3.3 0.1 8.7 27.9 37.9 19.8 4.1 0.7 0.2 99.4
3.3-4.0 0.1 3.1 13.6 29.6 35.7 14.0 3.2 0.6 99.9
> 4.0 0 0 14.3 14.3 28.6 42.9 0 0 100.1

generated exclusive MC π+ events at M2
X = 0.88 GeV2

rec. in M2
X (GeV2) −1.6-0.5 0.5-1.2 1.2-1.9 1.9-2.6 2.7-3.3 3.3-4.0 total

% 23.6 38.0 26.6 8.3 2.9 0.5 99.9

Table 7.4: The fractions (in percent) of reconstructed π+ events in a given M2
X bin are separated

according to the M2
X bins in which the reconstructed events are generated. The normalisation is to

the total number of reconstructed events in the given M2
X bin for PYTHIA, while it is to the number

of generated events in the single M2
X bin for the exclusive MC. The numbers correspond to Fig. 7.7.

7.2.3 Smearing in φ and φS

In a similar way as in Fig. 7.7 for M2
X , the smearing effect in the azimuthal angles φ ≡ φπ+ and

φS is illustrated in Figs. 7.8 and 7.9, respectively, for PYTHIA (left) and for the exclusive MC
(right); each row corresponds to a M2

X bin. The solid-line histograms show the φ and φS total
distributions of reconstructed events in 12 bins, while the break-down into contributions from
each bin is presented by the solid, dashed, dotted, and dash-dotted broken-line histograms
beneath. The generated distributions are not shown.

As a way to estimate the smearing effect in φ from Fig. 7.8 one can draw as a reference for
each bin a two-equal-sides triangle with the remaining side being equal to the bin width and
the height—to the bin height, and with a peak at the centre of the bin. No bin distribution
matches this reference triangular shape for the φ angle, however the distributions in 1.2 <
M2

X ≤ 1.9 GeV2 for PYTHIA and in 0.5 < M2
X ≤ 1.2 GeV2 for the exclusive MC are closest

to the reference ones. The largest deviations are observed for the lowest (highest) M2
X bin

for PYTHIA (exclusive MC), where events are drawn towards φ = 0 (φ = ±π), i.e., smeared
out of the bin centre. Comparing the deviations among the M2

X bins it is also seen that the
smearing effect in φ depends on M2

X .

In contrast to φ, there is no smearing in φS as shown in Fig. 7.9 for the −1.6 < M2
X ≤

0.5 GeV2 bin; for the other M2
X bins the φS bin distributions have the same perfect triangu-

lar shape and therefore are not shown. Note that both the PYTHIA and the exclusive MC
reconstructed φS distributions are entirely comprised of smeared events (no events are gen-
erated in the region −1.6 < M2

X ≤ 0.5 GeV2) and despite this maximal smearing in M2
X the

reconstructed φS values are preserved to be the same as the generated ones.

We conclude that the two main features emerging from Figs. C.1–C.6 of the Monte Carlo
smearing studies, namely, the M2

X and µφ (where µ = 0, 1, 2, 3) dependence of the discrepancies
between generated and reconstructed amplitudes, can be qualitatively understood as both
being caused by the smearing effect in the azimuthal angle φ. More precisely, the smearing
effect in φ gives the largest contribution to these discrepancies.
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Figure 7.8: Solid-line histograms: Total reconstructed φ distributions of π+ events generated with
PYTHIA (left) and the exclusive Monte Carlo (right) for six squared missing mass M2

X bins (rows).
Broken-line histograms: Contributions to the total distribution from each φ bin. The total distribution
is a sum of the bin distributions. Note that σ (nb) denotes dσ

dφπ+
( nb
rad).



7.3. Systematic Uncertainties of Measured Amplitudes 89

0

0.1

0.2

x 10
-3

-2 0 2

re
c.

 σ
 (

nb
)

PYTHIA π+

φS (rad)

-1.6 < MX
 2 ≤ 0.5

0

500

-2 0 2

re
c.

 e
ve

nt
s

excl. MC π+

φS (rad)

Figure 7.9: Solid-line histograms: Total reconstructed φS distributions of π+ events generated with
PYTHIA (left) and the exclusive Monte Carlo (right) for the squared missing mass bin −1.6 < M2

X ≤
0.5 GeV2. Broken-line histograms: Contributions to the total distribution from each φS bin. The
total distribution is a sum of the bin distributions. Note that σ (nb) denotes dσ

dφS
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rad).

7.3 Systematic Uncertainties of Measured Amplitudes

7.3.1 Effect of Smearing

The smearing effect is estimated from the discrepancy between generated and reconstructed
amplitudes shown in Figs. C.1–C.6. The effect is expressed in terms of the straight-line-fit
parameters, p1 and p2, where for each amplitude (see (7.1))

A
sin(µφ+λφS)k

UT,rec = p1 + p2A
sin(µφ+λφS)k

UT,gen . (7.13)

The systematic correction and deviation described below are used to assign systematic
uncertainties to the measured asymmetry amplitudes. The uncertainties take into account
smearing and other effects, e.g., related to the extraction method, the detector acceptance, the
statistics of the sample, etc., which are automatically included in the Monte Carlo smearing
studies presented above. We note that when applying (7.16) and (7.18) to data the recon-
structed/generated amplitudes are replaced with the measured/corrected ones, and

∆
sin(µφ+λφS)k

syst.cor./dev. = (1− fexcl) ∆
sin(µφ+λφS)k,PYTHIA
syst.cor./dev. + fexcl ∆

sin(µφ+λφS)k,excl.MC
syst.cor./dev. . (7.14)

Systematic Correction

The generated (corrected) amplitude is obtained from the reconstructed (measured) one using
the relation (see (7.13))

A
sin(µφ+λφS)k

UT,gen = −p1
p2

+
1

p2
A

sin(µφ+λφS)k

UT,rec . (7.15)

We construct a systematic correction to the reconstructed amplitudes as

∆
sin(µφ+λφS)k
syst.cor. = −Asin(µφ+λφS)k

UT,rec +


δk
+, if δk

− > A
sin(µφ+λφS)k

UT,rec ,

δk
−, if δk

+ < A
sin(µφ+λφS)k

UT,rec ,
δk
±, otherwise,

(7.16)

where δk
± = A

sin(µφ+λφS)k

UT,gen ± δA
sin(µφ+λφS)k

UT,gen , and the statistical uncertainty δA
sin(µφ+λφS)k

UT,gen is ob-
tained from (7.15) by propagation of the errors of p1 and p2.
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Systematic Deviation

We also construct a systematic deviation from zero of a given reconstructed amplitude (fake

amplitude), e.g., A
sin(µφ+λφS)k

UT,rec 6= 0, (due to another generated amplitude, e.g., A
sin(µφ+λφS)l

UT,gen > 0,
l 6= k) which gives an estimate of the size the given reconstructed amplitude can assume while

being zero in reality, i.e., A
sin(µφ+λφS)k

UT,gen = 0. The fake amplitude is given by

A
sin(µφ+λφS)k

UT,rec = p1 + p2A
sin(µφ+λφS)l

UT,gen (for A
sin(µφ+λφS)k

UT,gen = 0, l 6= k), (7.17)

where the parameters p1 and p2 in (7.17) are taken from a fit to A
sin(µφ+λφS)k

UT,rec . The deviation
is computed as

∆
sin(µφ+λφS)l

syst.dev. = −Asin(µφ+λφS)k

UT,rec ± δA
sin(µφ+λφS)k

UT,rec , (7.18)

where the statistical uncertainty δA
sin(µφ+λφS)k

UT,rec is obtained from (7.17) by propagation of the
errors of p1 and p2. The maximal (positive and negative) deviations among the values of

∆
sin(µφ+λφS)l

syst.dev. computed from the other five amplitudes are taken for the systematic uncertainty

of a given amplitude A
sin(µφ+λφS)k

UT,rec .

7.3.2 Target Polarisation

The contribution to the systematic uncertainty of an amplitude A
sin(µφ+λφS)k

UT,meas due to the un-
certainty of the transverse target polarisation value |PT | ± δPT = 0.754± 0.050 (Section 4.2.3)
is given as

∆
sin(µφ+λφS)k

pol = ±|Asin(µφ+λφS)k

UT,meas |∆
2
,

∆

2
=
|PT |
2

∣∣∣ 1

|PT |+ δPT

− 1

|PT | − δPT

∣∣∣ =
0.754

2

∣∣∣ 1

0.804
− 1

0.704

∣∣∣ = 0.0666.
(7.19)

7.3.3 Total Systematic Uncertainty

The total systematic uncertainty (syst) of the measured amplitudes A
sin(µφ+λφS)k

UT,meas is obtained
from the quadratic sum of the contributions numbered 1 to 3 in Table 7.5, and explained above.
The total uncertainty is the quadratic sum of the statistical and systematic uncertainties. For
the six M2

X bins the total uncertainty of the measured amplitudes is denoted by the full vertical
error bars in Fig. 7.1, while the small horizontal bars enclose the statistical uncertainty.

7.4 Asymmetry Background Correction

In order to compare the values of the asymmetry amplitudes measured from data (Section 7.1.2)
with theoretical predictions for exclusive pion production, the contributions from background
processes to the measured values have to be taken into account.

The measured amplitudes for π+ (Fig 7.1, Table 7.2) are extracted from our data sample,
which contains both signal (exclusive pion production) and background (DIS, VMD) events
(Fig. 6.9, Table 6.6). For such a composite sample the measured polarised yield is given by

σ̃UT,Data = σ̃UT,excl + σ̃UT,DIS + σ̃UT,V MD, (7.20)

σ̃UU,Data = σ̃UU,excl + σ̃UU,DIS + σ̃UU,V MD. (7.21)
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M2
X bin GeV2 −1.6-0.5 0.5-1.2 1.2-1.9 1.9-2.6 2.6-3.3 3.3-4.0 ave.

1 ∆syst.cor.
+0.11
−0.05

+0.07
−0.02

+0.06
−0.02

+0.07
−0.01

+0.04
−0.04

+0.17
−0.00

+0.09
−0.02

2 ∆syst.dev.
+0.27
−0.07

+0.08
−0.02

+0.07
−0.02

+0.08
−0.02

+0.04
−0.05

+0.26
−0.00

+0.13
−0.03

3 ∆pol ±0.01 ±0.01 ±0.00 ±0.00 ±0.00 ±0.01 ±0.01

A
sin(φ−φS)
UT,meas (syst) +0.30

−0.08
+0.11
−0.04

+0.09
−0.02

+0.10
−0.02

+0.06
−0.07

+0.31
−0.01

+0.16
−0.04

1 ∆syst.cor.
+0.11
−0.09

+0.00
−0.11

+0.04
−0.04

+0.04
−0.05

+0.06
−0.03

+0.00
−0.15

+0.04
−0.08

2 ∆syst.dev.
+0.13
−0.12

+0.00
−0.10

+0.05
−0.04

+0.04
−0.06

+0.06
−0.04

+0.04
−0.18

+0.05
−0.09

3 ∆pol ±0.01 ±0.01 ±0.00 ±0.01 ±0.01 ±0.01 ±0.01

A
sin(φ+φS)
UT,meas (syst) +0.17

−0.15
+0.01
−0.14

+0.07
−0.06

+0.05
−0.08

+0.08
−0.05

+0.04
−0.23

+0.07
−0.12

1 ∆syst.cor.
+0.06
−0.14

+0.08
−0.05

+0.08
−0.03

+0.08
−0.02

+0.01
−0.10

+0.17
−0.02

+0.08
−0.06

2 ∆syst.dev.
+0.08
−0.29

+0.08
−0.04

+0.09
−0.02

+0.10
−0.01

+0.02
−0.10

+0.20
−0.03

+0.09
−0.08

3 ∆pol ±0.02 ±0.03 ±0.02 ±0.01 ±0.02 ±0.02 ±0.02

Asin φS
UT,meas (syst) +0.10

−0.32
+0.12
−0.07

+0.12
−0.04

+0.13
−0.03

+0.02
−0.15

+0.27
−0.04

+0.13
−0.11

1 ∆syst.cor.
+0.30
−0.00

+0.10
−0.00

+0.06
−0.03

+0.08
−0.01

+0.00
−0.16

+0.00
−0.27

+0.09
−0.08

2 ∆syst.dev.
+0.18
−0.03

+0.10
−0.02

+0.05
−0.06

+0.08
−0.01

+0.00
−0.14

+0.01
−0.23

+0.07
−0.08

3 ∆pol ±0.03 ±0.00 ±0.01 ±0.00 ±0.00 ±0.01 ±0.01

A
sin(2φ−φS)
UT,meas (syst) +0.35

−0.04
+0.14
−0.02

+0.08
−0.07

+0.12
−0.01

+0.00
−0.22

+0.01
−0.35

+0.12
−0.12

1 ∆syst.cor.
+0.05
−0.18

+0.08
−0.00

+0.07
−0.01

+0.00
−0.16

+0.07
−0.01

+0.05
−0.09

+0.05
−0.08

2 ∆syst.dev.
+0.05
−0.18

+0.09
−0.02

+0.07
−0.01

+0.00
−0.14

+0.06
−0.02

+0.06
−0.12

+0.06
−0.08

3 ∆pol ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.01 ±0.00

A
sin(3φ−φS)
UT,meas (syst) +0.07

−0.26
+0.12
−0.02

+0.10
−0.01

+0.00
−0.22

+0.09
−0.02

+0.08
−0.15

+0.08
−0.11

1 ∆syst.cor.
+0.09
−0.09

+0.07
−0.01

+0.06
−0.01

+0.03
−0.06

+0.13
−0.00

+0.21
−0.00

+0.10
−0.03

2 ∆syst.dev.
+0.10
−0.12

+0.09
−0.01

+0.08
−0.03

+0.03
−0.06

+0.14
−0.00

+0.18
−0.01

+0.10
−0.04

3 ∆pol ±0.01 ±0.00 ±0.00 ±0.00 ±0.00 ±0.01 ±0.00

A
(sin(2φ+φS)
UT,meas (syst) +0.13

−0.15
+0.11
−0.01

+0.10
−0.03

+0.04
−0.09

+0.19
−0.00

+0.28
−0.02

+0.14
−0.05

Table 7.5: The contributions to and the systematic uncertainty (syst) of the measured asymmetry

amplitudes Asin(µφ+λφS)k

UT,meas (Fig. 7.1, Table 7.2) for the π+ data sample. See text for more explanation.

From (7.20) and using (3.17), (3.21), and (3.22) one obtains for the measured amplitudes

A
sin(µφ+λφS)k

UT,meas =
1

σ̃UU,Data

(A
sin(µφ+λφS)k

UT,excl σ̃UU,excl

+ A
sin(µφ+λφS)k

UT,DIS σ̃UU,DIS + A
sin(µφ+λφS)k

UT,V MD σ̃UU,V MD),

(7.22)

where the unpolarised yields σ̃UU,proc are given in Table 6.6 with the subscript UU being omitted

(also in the following), andA
sin(µφ+λφS)k

UT,proc

>
=
<
0 depending on the process, proc = Data, excl,DIS, V MD.

Thus, e.g., A
sin(µφ+λφS)k

UT,meas = 0 in (7.22) can be the (accidental) result of a cancellation of possibly
large amplitudes appearing with opposite signs for different processes.

From (7.22) follows that in order to obtain the amplitudes for exclusive pion produc-

tion A
sin(µφ+λφS)k

UT,excl one needs a knowledge of the background amplitudes A
sin(µφ+λφS)k

UT,DIS and

A
sin(µφ+λφS)k

UT,V MD . However, values of the latter are presently unavailable for the kinematic range of
our data (Fig. B.1, [46]). The alternative method described below is used for the final results.

7.4.1 Effective Asymmetry of π+ Background

The asymmetry amplitudes for exclusive pion production A
sin(µφ+λφS)k

UT,excl in (7.22), denoted as

A
sin(µφ+λφS)k

UT,bg.cor in the following, are obtained from the measured ones A
sin(µφ+λφS)k

UT,meas using the
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Figure 7.10: The fractions of DIS and VMD π+

yields in the background as a function of the
squared missing mass M2

X . The fractions are
constant within the statistical error bars.

M2
X bin GeV2 −1.6-0.5 0.5-1.2 1.2-1.9eσDISeσbg

% π+ 61.2 73.3 69.9
% ±11.6 ±9.4 ±4.6eσV MDeσbg
% π+ 24.9 29.6 26.9
% ±5.0 ±4.0 ±1.9

M2
X bin GeV2 1.9-2.6 2.6-3.3 3.3-4.0eσDISeσbg

% π+ 67.6 69.2 61.2
% ±3.3 ±3.4 ±4.7eσV MDeσbg
% π+ 26.7 28.9 29.6
% ±1.4 ±1.5 ±2.4

Table 7.6: The values and their statistical errors
of the DIS and VMD fractions for the π+ data
sample plotted on the figure to the left for six
M2

X bins.

relations

A
sin(µφ+λφS)k

UT,meas =
1

σ̃Data

(A
sin(µφ+λφS)k

UT,bg.cor σ̃excl + A
sin(µφ+λφS)k

UT,bg σ̃bg),

:A
sin(µφ+λφS)k

UT,bg.cor =
1

fexcl

A
sin(µφ+λφS)k

UT,meas − 1− fexcl

fexcl

A
sin(µφ+λφS)k

UT,bg ,
(7.23)

where A
sin(µφ+λφS)k

UT,bg =
σ̃DIS

σ̃bg

A
sin(µφ+λφS)k

UT,DIS +
σ̃V MD

σ̃bg

A
sin(µφ+λφS)k

UT,V MD + . . . . (7.24)

The unpolarised yields σ̃proc (proc = Data, excl, bg) and the fraction fexcl are given in Table 6.6,

and A
sin(µφ+λφS)k

UT,bg are the unknown asymmetry amplitudes of the background.
The advantage of (7.23) compared to (7.22) is that for a given amplitude the contribution

from all background sources is contained in a single effective quantity, namely, the amplitude
A

sin(µφ+λφS)k

UT,bg . Another advantage of (7.23) is that the background amplitudes can be mea-
sured from our data sample, instead of using external measurements or predictions. Also no
explicit calculation from the terms in the right-hand side of (7.24) is needed. Note that for the

correction of A
sin(µφ+λφS)k

UT,meas in a given M2
X bin A

sin(µφ+λφS)k

UT,bg in that same bin is needed.

7.4.2 Corrected Asymmetry Amplitudes

The background correction (7.23) is carried out for the asymmetry amplitudes A
sin(µφ+λφS)k

UT,meas

measured in the squared missing mass region 0.5 < M2
X ≤ 1.9 GeV2 (Table 7.7) as well as in

the two bins within this region (Table 7.2) for the π+ data sample. These regions, also called
exclusive bins in the following, are chosen to be optimal with respect to the fraction of exclusive
events (Table 6.6) and the smearing effect (Section 7.2). Because the background asymmetry
amplitudes cannot be measured in the exclusive bins, we make the following assumptions.

• Assume A
sin(µφ+λφS)k

UT,bg is constant in the vicinity of the exclusive bin. When A
sin(µφ+λφS)k

UT,DIS 6=
A

sin(µφ+λφS)k

UT,V MD 6= 0, A
sin(µφ+λφS)k

UT,bg = const is possible in various scenarios for the behaviour

of the terms in (7.24). For example, we show in Fig. 7.10 (Table 7.6) the ratios eσDISeσbg
andeσV MDeσbg

, and observe that both are nearly flat within the statistical errors as a function
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M2
X bin, GeV2 0.5-1.2 1.2-1.9 0.5-1.9 0.5-1.9 1.9-4.0

A
sin(µφ+λφS)k

UT bg.cor meas bg

A
sin(φ−φS)
UT 0.30± 0.14 0.18± 0.25 0.22± 0.13 0.09± 0.05 0.01± 0.04

A
sin(φ+φS)
UT −0.34± 0.15 −0.21± 0.27 −0.23± 0.14 −0.05± 0.05 0.10± 0.04

Asin φS
UT 0.63± 0.18 0.75± 0.33 0.69± 0.16 0.38± 0.06 0.22± 0.05

A
sin(2φ−φS)
UT −0.13± 0.14 0.53± 0.27 0.15± 0.13 0.07± 0.05 0.03± 0.04

A
sin(3φ−φS)
UT −0.06± 0.12 −0.17± 0.22 −0.08± 0.11 −0.01± 0.04 0.06± 0.03

A
sin(2φ+φS)
UT −0.00± 0.14 −0.03± 0.26 −0.00± 0.13 0.01± 0.05 0.02± 0.04

Table 7.7: The values and the statistical uncertainties of the π+ six asymmetry amplitudes corrected
for the background contribution (bg.cor) for three M2

X regions. The measured amplitudes (meas) are
given here and in Table 7.2. The background amplitude (bg) is measured in the neighbouring M2

X

region using the same π+ data sample as for the measured amplitudes (meas).

of M2
X . In order to keep A

sin(µφ+λφS)k

UT,bg constant versus M2
X , we assume that also the

amplitudes A
sin(µφ+λφS)k

UT,DIS , A
sin(µφ+λφS)k

UT,V MD in (7.24) do not vary over the given M2
X range.

• As far as A
sin(µφ+λφS)k

UT,bg (M2
X) = const is a good assumption, the background amplitude

can be measured in the neighbouring region to the right of the exclusive bin (i.e., at
higher M2

X) and the same value can be used for the correction of the amplitude in the
exclusive bin.

The results of the background correction (7.23) are given in Table 7.7 for three M2
X regions.

The values of the measured amplitudes in the exclusive bins are taken from Table 7.2. The
background amplitudes A

sin(µφ+λφS)k

UT,bg are measured from the π+ data sample (Table 7.1) in
the region 1.9 < M2

X ≤ 4.0 GeV2, whose lower limit corresponds to M2
X ≈ (M2

n + 1.3σM2
X
),

M2
n ≈ 1 GeV2 being the centre of the exclusive peak (Fig. 6.8) and σM2

X
≈ 0.7 GeV2 is the

resolution of the squared missing mass. Larger values of this limit reduce the sample of
background events and lead to large error bars of the measured background amplitudes.

Most of the corrected amplitudes remain small or consistent with zero within the statistical
uncertainties, like the measured ones. The values of |Asin(φ±φS)

UT,bg.cor | are larger with respect to the
measured ones, however, they are only about 2 (1.5) standard deviations away from zero in
the region 0.5 < M2

X ≤ 1.2(1.9) GeV2. Asin φS

UT,bg.cor remains the largest one of all six amplitudes.

7.4.3 Systematic Uncertainties of Corrected Amplitudes

We discuss the sources, which in addition to those presented in Section 7.3, contribute to the
systematic uncertainty of the corrected amplitudes.

Background Asymmetry Amplitude

Instead of 1.9 GeV2 used for the results in Table 7.7, a lower limit of M2
X ≈ (M2

n + 2.0σM2
X
) =

2.4 GeV2 is taken for the squared missing mass region in which the background amplitudes
A

sin(µφ+λφS)k

UT,bg are measured. The difference,

∆
sin(µφ+λφS)k

bg = A
sin(µφ+λφS)k

UT,bg.cor (bg for M2
X > 2.4)− A

sin(µφ+λφS)k

UT,bg.cor (bg for M2
X > 1.9), (7.25)

is added to the systematic uncertainty of the corrected amplitudes.
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M2
X bin

GeV2 0.5-1.2 1.2-1.9 0.5-1.9 0.5-1.2 1.2-1.9 0.5-1.9 0.5-1.2 1.2-1.9 0.5-1.9

A
sin(φ−φS)
UT,meas A

sin(φ+φS)
UT,meas Asin φS

UT,meas

∆bg −0.01 −0.02 −0.01 −0.01 −0.04 −0.02 −0.01 −0.03 −0.02
∆fexcl

−0.04 −0.02 −0.03 +0.06 +0.04 +0.05 −0.05 −0.07 −0.05
∆pol ±0.02 ±0.01 ±0.01 ±0.02 ±0.01 ±0.02 ±0.04 ±0.05 ±0.05
(syst) +0.11

−0.06
+0.10
−0.04

+0.10
−0.04

+0.06
−0.15

+0.08
−0.07

+0.07
−0.10

+0.12
−0.09

+0.13
−0.10

+0.13
−0.09

A
sin(2φ−φS)
UT,meas A

sin(3φ−φS)
UT,meas A

sin(2φ+φS)
UT,meas

∆bg +0.01 +0.03 +0.02 +0.01 +0.04 +0.02 −0.01 −0.02 −0.01
∆fexcl

+0.02 −0.07 −0.01 +0.02 +0.03 +0.02 +0.00 +0.01 +0.00
∆pol ±0.01 ±0.04 ±0.01 ±0.00 ±0.01 ±0.01 ±0.00 ±0.00 ±0.00
(syst) +0.14

−0.02
+0.09
−0.10

+0.11
−0.05

+0.12
−0.02

+0.11
−0.02

+0.11
−0.02

+0.11
−0.02

+0.10
−0.04

+0.11
−0.02

Table 7.8: The contributions to and the systematic uncertainty (syst) of the corrected asymmetry

amplitudes Asin(µφ+λφS)k

UT,bg.cor (Table 7.7) for the π+ data sample. See text for more explanation.

Fraction of Exclusive Events

The results from different methods for subtraction of the background yield from the π+ data
sample are used to estimate the systematic uncertainty of the exclusive yield σ̃excl, and thus
of the fraction of exclusive events fexcl = eσexcleσData

(Table 6.6). The largest discrepancy between
the chosen method and the one using data only is found to be about 15% from the ratio of
the exclusive yields in the region 0.5 < M2

X ≤ 1.9 GeV2, and also from the ratio of the yields
at peak position, as shown on the right-hand side of Fig. B.14 (top and bottom). Thus, the
results for fexcl (Table 6.6) appear to be underestimated by 15%.

The difference between the amplitudes corrected with the two values of the fractions,

∆
sin(µφ+λφS)k

fexcl
= A

sin(µφ+λφS)k

UT,bg.cor (fexcl → fexcl + 0.15 · fexcl)− A
sin(µφ+λφS)k

UT,bg.cor (fexcl), (7.26)

gives the systematic uncertainty of the latter due to the uncertainty of the fraction for exclusive
events.

Total Systematic Uncertainty

The systematic uncertainty (syst) of the corrected amplitudes A
sin(µφ+λφS)k

UT,bg.cor (Table 7.7) is given
in Table 7.8. It is obtained by summing quadratically the contributions from the uncertainty
of the background amplitude (7.25), of the fraction of exclusive events (7.26), of the target
polarisation ((7.19) is computed with the corrected values), and the uncertainties due to the
systematic correction (7.16) and deviation (7.18) of the measured amplitudes (Table 7.5). For
the value of (syst) in 0.5 < M2

X ≤ 1.9 GeV2 the averages 〈∆syst.cor〉 and 〈∆syst.dev〉 from the
two exclusive bins within this region are used.

7.5 Summary

All six amplitudes of the azimuthal asymmetry (Section 3.1.3) are extracted from data us-
ing the 2-dimensional 6-parameter unbinned maximum likelihood (UML) fit (Section 7.1.1).
Comparison with other fits and Monte Carlo studies show that the UML fit is best suited for
treatment of our low statistics data sample.

By comparing reconstructed with generated distributions the smearing of events among
bins is studied as a function of the squared missing mass M2

X (Section 7.2.2), and of the az-
imuthal angles φ and φS (Section 7.2.3). The effect of smearing on the extracted amplitudes is
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estimated in terms of the fit parameters to the reconstructed amplitudes. Using these parame-
ters a systematic correction and deviation are defined (Section 7.3.1) and used to compute the
systematic uncertainty of the results. The smearing effect is found to be largest in the region
−1.6 < M2

X ≤ 0.5 GeV2 and therefore the asymmetry results for this bin should be discarded.
The correction of the measured asymmetry amplitudes for contributions from background

processes is complicated by the fact that the amplitudes of these processes are unknown for our
kinematics. Therefore several assumptions are made and an effective background correction
(Section 7.4.1) is applied in this analysis. The corrected amplitudes are reported and the lead-

ing one, A
sin(φ−φS)
UT,bg.cor , can finally be compared with the predictions for exclusive pion production

as discussed in Chapter 8.



Chapter 8

Results and Theoretical Interpretation

The transverse-target single-spin azimuthal asymmetry is analysed in Chapter 7. There the
values of the measured and corrected amplitudes of all six allowed sine modulations of the
asymmetry and their uncertainties are presented. No previous measurements of these ampli-
tudes are available for comparison. As discussed in Chapter 3, a theoretical prediction exists
only for the amplitude A

sin(φ−φS)
UT of the sin(φ−φS) modulation, which appears at leading order

in 1
Q

. Among all six amplitudes Asin φS

UT is found in this analysis to be the largest one. Therefore

only A
sin(φ−φS)
UT and Asin φS

UT are discussed next, except for the kinematic dependences which are
given for all six amplitudes.

We note that only longitudinal virtual photons are considered for the prediction of A
sin(φ−φS)
UT

(Chapter 3), while the results of this analysis involve contributions from both longitudinal and
transverse photons, e.g., via the photon flux ratio, whose value is found to be 〈ε〉 = 0.8
(Fig. 5.1). No attempt is made here to separate the two contributions. Effects from transverse
photons in the measurement of this amplitude are expected to be suppressed by at least 1

Q2

compared to those from longitudinal photons (Section 3.2), i.e., 2.3 times for 〈Q2〉 = 2.3 GeV2

at our kinematics.

8.1 Results for A
sin(φ−φS)
UT and A

sinφS
UT versus M 2

X

The values, the statistical and systematic uncertainties of the measured asymmetry amplitudes
A

sin(φ−φS)
UT,meas and Asin φS

UT,meas for the two exclusive squared missing mass (M2
X) bins are given in (8.1).

(The values are taken from Tables 7.2, 7.8, see also Fig. 7.1).

M2
X bin, GeV2 0.5-1.2 1.2-1.9 0.5-1.9

A
sin(φ−φS)
UT,meas 0.17± 0.07+0.11

−0.04 0.05± 0.06+0.09
−0.02 0.09± 0.05+0.10

−0.03

Asin φS

UT,meas 0.45± 0.10+0.12
−0.07 0.36± 0.08+0.12

−0.04 0.38± 0.06+0.12
−0.06

(8.1)

The corrected amplitudes A
sin(φ−φS)
UT,bg.cor and Asin φS

UT,bg.cor, reported in (8.2), are obtained by ap-
plying a correction for the non-exclusive background contribution to the measured ones (Sec-
tion 7.4.2). (The values are taken from Tables 7.7, 7.8).

M2
X bin, GeV2 0.5-1.2 1.2-1.9 0.5-1.9

A
sin(φ−φS)
UT,bg.cor 0.30± 0.14+0.11

−0.06 0.18± 0.25+0.10
−0.04 0.22± 0.13+0.10

−0.04

Asin φS

UT,bg.cor 0.63± 0.18+0.12
−0.09 0.75± 0.33+0.13

−0.10 0.69± 0.16+0.13
−0.09

(8.2)

In Fig. 8.1 the measured (full circles) and the corrected (open circles) amplitudes are shown
versus the squared missing mass M2

X . The data point in each M2
X bin is the result for the given

amplitude averaged (integrated) over the kinematic variables x, Q2, and t at the kinematics
and in the acceptance of HERMES.
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Figure 8.1: Results for the measured (full circles) and corrected (open circles) π+ asymmetry am-

plitudes Asin(φ−φS)
UT and Asin φS

UT as a function of the squared missing mass M2
X . The small horizontal

bars enclose the statistical uncertainty, while the full vertical error bars show the total uncertainty
obtained from a quadratic sum of the statistical and systematic uncertainties.

8.2 Kinematic Dependences of All Six Amplitudes

The measured six amplitudes of the sine modulations of the transverse-target single-spin az-
imuthal asymmetry Ameas(φ, φS) (7.1) are presented so far as a function of the squared missing
mass M2

X (Figs. 7.1, 8.1).
In order to show the amplitudes’ dependence on other kinematic variables an M2

X cut needs
to be fixed. Despite the significant amount of signal (fexcl = 0.55 ± 0.07, see Table 7.2), in
the region −1.6 < M2

X ≤ 0.5 GeV2, it is discarded due to the large smearing effect (Fig. C.1).
Hence a lower cut of M2

X = 0.5 GeV2 is chosen. Fig. 8.2 shows the fraction of exclusive events
fexcl = eσexcleσData

and its relative statistical uncertainty δfexcl

fexcl
as a function of the M2

X upper cut.

With an upper cut of M2
X = 1.2 GeV2 the fraction of exclusive π+ events is largest (fexcl =

0.56± 0.05(stat) : δfexcl

fexcl
= 8.9%), while for M2

X ≤ 1.9 GeV2 more signal as well as background

events are included, however, without reducing the statistical significance of the signal (fexcl =
0.38±0.03(stat) : δfexcl

fexcl
= 7.9%). In both regions the smearing effect is minimal (Figs. C.2–C.3).

A choice of an upper M2
X-cut for M2

X > 1.9 GeV2 results in fast decrease of the signal fraction
and increase of its statistical uncertainty, as seen from Fig. 8.2. Therefore the exclusive bin
0.5 < M2

X ≤ 1.9 GeV2 is chosen for our results on the kinematic dependences of the amplitudes.
This bin contains the entire exclusive sample.

We note that an intermediate upper cut of, e.g. M2
X = 1.55 GeV2 is not chosen here in

order to be consistent with the binning used in Section 8.1 to present the results versus M2
X .

A new M2
X binning requires that the Monte Carlo asymmetry amplitude scan (Section 7.2.2)
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Figure 8.2: The fraction of exclusive π+ events fexcl = eσexcleσData
and its relative statistical uncertainty

δfexcl
fexcl

as a function of the squared missing mass (M2
X) upper cut. A cut of M2

X = 1.2 GeV2 selects a
sample with the largest fraction of signal with small statistical uncertainty, while for M2

X ≤ 1.9 GeV2

the signal fraction decreases but its statistical uncertainty still remains small. See also Figs. 6.8, 6.9,
and Table 7.2 (the region 0.5 < M2

X ≤ 1.9 GeV2 contains the entire signal; −1.6 < M2
X ≤ 0.5 GeV2 is

excluded here because of smearing).

to extract the systematic correction and deviation to the results be repeated.

In Figs. 8.3, 8.4, 8.5 (full circles) the dependences of all six amplitudes on the kinematic
variables t′ = t − t0, Q

2, and x are presented for the exclusive bin 0.5 < M2
X ≤ 1.9 GeV2.

The variable t′ is chosen in order to remove effects due to t0 (3.28), which is the smallest
kinematically allowed value of t in a given event. More details about the calculation of t′

are discussed in Appendix D. The background amplitudes (full triangles) measured in the
neighbouring region 1.9 < M2

X ≤ 4.0 GeV2 from the same π+ data sample are used for the
background correction (7.23) of the measured ones. The corrected amplitudes for 0.5 < M2

X ≤
1.9 GeV2 are shown with open circles. These figures and the information given below each
figure are our main result on the separation of the measured asymmetry amplitudes with
respect to the kinematic dependences of the involved six sine modulations.

8.3 Theoretical Interpretation

Exclusive pion electroproduction from protons is very well suited for comparison between data
and theory studies of exclusive meson processes. According to the QCD factorisation theorem
(Section 3.2) the process can be understood as a convolution of a hard scattering part (T ), the

pion distribution amplitude (Φπ+), and the proton generalised parton distributions (H̃ and Ẽ).
The hard part T is calculable in perturbative QCD, while the non-perturbative quantities are
parameterised within models, in particular, the chiral quark-soliton model is used to calculate
H̃ and Ẽ, and the asymptotic or Chernyak-Zhitnitsky models are used to evaluate Φπ+ .

With regard to the hard part T of the scattering process, unlike the exclusive pion cross
section for which leading-order (LO) calculations are known to be insufficient at HERMES
kinematics [72], it is expected that the transverse-target single-spin azimuthal asymmetry is
less sensitive to higher order effects (such as next-to-leading order (NLO) [10] and next-to-NLO
(NNLO) corrections in QCD). The NLO-corrections to the LO-prediction for the asymmetry

amplitude A
sin(φ−φS)
UT are found to be negligible [10].
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X GeV2 0.5-1.2 1.9-4.0
〈M2

X〉GeV2 1.30 1.31 1.31 2.63 2.79 2.84
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〈z〉 0.936 0.963 0.970 0.873 0.982 0.887
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0.68±0.39

0.38±0.10
0.59±0.23 0.16±0.11 0.28±0.07 0.18±0.09

A
sin(2φ−φS)
UT

0.18±0.10
0.36±0.27

0.10±0.08
0.27±0.31

−0.06±0.08
−0.10±0.19 0.06±0.09 0.03±0.06 −0.01±0.07

A
sin(3φ−φS)
UT

0.03±0.08
0.06±0.23

−0.00±0.07
−0.36±0.28

−0.01±0.07
−0.01±0.15 0.02±0.07 0.13±0.05 0.00±0.06

A
sin(2φ+φS)
UT

−0.19±0.10
−0.43±0.29

0.04±0.08
0.15±0.31

0.08±0.08
0.08±0.18 −0.04±0.09 0.00±0.06 0.08±0.07

π+ events 531 841 721 756 1582 1108
π− events 156 296 239 303 922 776
fexcl % 40.3± 5.7 27.8± 4.5 48.3± 4.9 25.7± 4.9 −3.0± 3.6 −8.2± 4.4
fDIS % 53.8± 2.9 51.1± 2.2 28.2± 1.5 62.4± 2.7 71.2± 2.1 60.8± 2.2
fV MD % 9.1± 0.8 21.4± 1.1 18.1± 1.1 15.6± 0.9 31.1± 1.1 31.1± 1.3

Figure 8.3: The measured six amplitudes as a function of t′ = t − t0 for two M2
X ranges (full circles

and triangles ), used to obtain the corrected amplitudes (open circles). The average kinematics and
the fractions of signal and background for each bin are given in the table; when two values are given
for the amplitudes, the upper (lower) is without (with) background correction.
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Figure 8.4: The measured six amplitudes as a function of Q2 for two M2
X ranges (full circles and

triangles ), used to obtain the corrected amplitudes (open circles). The average kinematics and the
fractions of signal and background for each bin are given in the table; when two values are given for
the amplitudes, the upper (lower) is without (with) background correction.
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〈z〉 0.963 0.961 0.951 0.885 0.879 0.875
A

sin(φ−φS)
UT

0.15±0.11
0.30±0.26

−0.06±0.09
−0.12±0.24

0.18±0.07
0.53±0.34 0.02±0.07 −0.01±0.07 0.05±0.07

A
sin(φ+φS)
UT

−0.10±0.12
−0.32±0.27

−0.09±0.10
−0.32±0.26

−0.03±0.08
−0.48±0.38 0.08±0.08 0.07±0.08 0.13±0.08

Asin φS
UT

0.17±0.14
0.13±0.33

0.46±0.12
0.80±0.31

0.43±0.09
1.05±0.40 0.20±0.09 0.21±0.09 0.21±0.09

A
sin(2φ−φS)
UT

−0.01±0.10
−0.12±0.24

−0.01±0.10
0.01±0.25

0.18±0.08
0.59±0.37 0.08±0.07 −0.03±0.07 0.03±0.08

A
sin(3φ−φS)
UT

−0.06±0.07
−0.24±0.16

−0.04±0.08
−0.11±0.20

−0.01±0.08
−0.17±0.34 0.10±0.05 0.00±0.06 0.05±0.07

A
sin(2φ+φS)
UT

0.03±0.10
0.08±0.24

0.01±0.10
0.01±0.24

0.03±0.08
−0.03±0.35 −0.01±0.07 0.02±0.07 0.05±0.07

π+ events 742 617 734 1708 973 765
π− events 271 204 216 1081 566 354
fexcl % 45.5± 5.0 42.4± 5.3 26.8± 4.7 12.1± 3.4 4.2± 4.5 −25.2± 5.1
fDIS % 30.5± 1.5 41.1± 2.1 59.8± 2.7 45.3± 1.4 66.4± 2.5 111.2± 4.5
fV MD % 25.2± 1.3 15.4± 1.0 10.4± 0.7 34.9± 1.1 24.3± 1.1 15.9± 0.9

Figure 8.5: The measured six amplitudes as a function of x for two M2
X ranges (full circles and

triangles ), used to obtain the corrected amplitudes (open circles). The average kinematics and the
fractions of signal and background for each bin are given in the table; when two values are given for
the amplitudes, the upper (lower) is without (with) background correction.
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8.3.1 Discussion of AsinφS

UT

The measured amplitude Asin φS

UT,meas ((8.1), Fig. 8.1) is found to be large in the exclusive as
well as in the background region at higher M2

X . In theory, sinφS is an allowed modulation
of the polarised cross section and its amplitude Asin φS

UT is proportional to the photoabsorption
cross section σ+−

+0 (see table following 3.17). The subscript +0 denotes a change of photon
polarisation states, which means that transverse (helicity +) apart from longitudinal (helicity
0) virtual photons should be involved in the dynamics of the process. The QCD factorisation
theorem (Section 3.2) states that in the Bjorken limit (large Q2, large W 2, small t) σ+−

+0 is
suppressed by at least 1

Q
, i.e., 0.7 times, which is not a big factor at HERMES kinematics with

〈Q2〉 = 2.3 GeV2. Moreover, it is known from other experimental studies at HERMES that
amplitudes which are formally suppressed are not so small even in the Bjorken limit. However,
the value of Asin φS

UT for exclusive pion production is not reliably predicted by theory and models
so far. Also no QCD factorisation theorem is proved for transverse virtual photons (helicity
±1).

8.3.2 Discussion of A
sin(φ−φS)
UT

In the Bjorken limit (large Q2, large W 2, small t) the only term of the polarised cross section

dσUT (3.17) which is leading in 1
Q

is ε sin(φ−φS)σ+−
00 (Section 3.2), thus A

sin(φ−φS)
UT is expected

to be the leading amplitude. The latter is also the amplitude which can be estimated using
the GPD formalism, as outlined in Chapter 3. The leading-twist prediction for the size of
A

sin(φ−φS)
UT is of order unity (Fig. 3.4) on a scale from minus one to one.

The measured amplitude A
sin(φ−φS)
UT,meas ((8.1), Fig. 8.1) cannot be compared directly to the

available prediction as the signal-to-background ratio is 1 : 1 for our π+ data sample. The
measured amplitude corrected for background, A

sin(φ−φS)
UT,bg.cor ((8.2), Fig. 8.1), is better suited for

such comparison. It, however, still contains contribution from transverse photons via the
flux ratio ε (see table following (3.17)), even when the cross section for transverse photons
σ+−

++ is assumed to be suppressed. We remind that the theoretical prediction considers only
longitudinal virtual photons.

In addition, the amplitude A
sin(φ−φS)
UT,bg.cor includes a contribution from soft pion production (i.e.,

hard exclusive production of a π+ accompanied by an emission of a soft pion) since the latter
is inseparable within the HERMES resolution from the hard reaction. According to a recent
theoretical study [52], the asymmetry amplitude A

sin(φ−φS)
UT for the exclusive process with soft

pion emission is predicted to be one order of magnitude smaller than that for the process
without it. Hence the amplitude for the combined process is expected to be smaller by about
10% compared to that for the pure hard process, i.e., the one predicted in [10, 33] and shown
in Fig.3.4.

Considering the soft pion production and the flux factor (〈ε〉 = 0.8, see Fig. 5.1), as

discussed above, the maximal predicted value for A
sin(φ−φS)
UT becomes 0.72 instead of unity. This

value can be further reduced depending on the choice of the model for the pion distribution
amplitude (see Fig. 3.4).

Guided by the theoretical prediction (3.27), one may argue that a
√
−t′ dependence is

indeed recognised in the t′ = t − t0 distribution of the measured amplitude (top-left panel of
Fig. 8.3). In Fig. 8.6 a two parameter fit p1 + p2

√
−t′ is performed to the measured (full

circles), as well as to the background (full triangles) amplitudes. The latter are used for the
background correction of the former resulting in the corrected amplitudes (open triangles).
A less conservative correction (open circles) is performed with the background amplitudes
taken to be zero. This is justified by the fact that for 1.9 < M2

X ≤ 4.0 GeV2 a non-zero
fraction of exclusive events is found in the first t′ bin where the background amplitude is
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0.5 < MX
 2 ≤ 1.9

1.9 < MX
 2 ≤ 4.0

corrected, with AUT,bg =
corrected, with AUT,bg = 0

p1 + p2 √-t´ fit
p1: −0.26±0.10   p2: 0.80±0.21   χ2/ndf: 0.59
p1: −0.23±0.09   p2: 0.56±0.18   χ2/ndf: 0.84
p1: −0.34±0.25   p2: 1.21±0.55   χ2/ndf: 1.67
p1: −0.60±0.24   p2: 1.96±0.53   χ2/ndf: 0.80

t′ binning, GeV2 1 [−10.0...− 0.300] 2 [−0.300...− 0.075] 3 [−0.075...1.200] M2
X bin

A
sin(φ−φS)
UT,meas 0.36± 0.10 0.11± 0.07 −0.13± 0.08 0.5-1.9

A
sin(φ−φS)
UT,bg 0.23± 0.09 −0.05± 0.06 −0.09± 0.07 1.9-4.0

A
sin(φ−φS)
UT,bg.cor;AUT,bg 6=0 0.53± 0.27 0.51± 0.31 −0.18± 0.18 0.5-1.9

A
sin(φ−φS)
UT,bg.cor;AUT,bg=0 0.89± 0.27 0.39± 0.27 −0.27± 0.17

fexcl % 40.3± 5.7 27.8± 4.5 48.3± 4.9
fDIS % 53.8± 2.9 51.1± 2.2 28.2± 1.5 0.5-1.9
fV MD % 9.1± 0.8 21.4± 1.1 18.1± 1.1

Figure 8.6: Result for the measured and corrected asymmetry amplitude Asin(φ−φS)
UT as a function of

the exclusive kinematic variable t′ = t− t0. See text for more explanation.

largest (Fig. 8.3). We remind that both corrected results are based on assumptions since
the background amplitude is unknown in the exclusive region 0.5 < M2

X ≤ 1.9 GeV2. The

t′ dependence of the corrected amplitude A
sin(φ−φS)
UT,bg.cor (Fig. 8.6) indicates that this amplitude is

indeed large for higher |t′| values, so that the data appear to support the theoretical prediction,
however, within the large statistical uncertainties. This is the main result of this thesis.

A more detailed comparison cannot be performed at this moment, as a (presently unavail-
able) theoretical t′ dependence similar to the predicted x dependence in Fig. 3.4, would be
needed to allow us to directly superimpose theoretical curves over data points. We note that
due to our limited statistics a detailed x dependence for each of the three t′ bins in Fig 8.3
cannot be obtained (for comparison with the theoretical curves in Fig. 3.4) and thus the two
pion models (η = 1 and η = 5

3
) cannot be distinguished. Notice also that the average values

of t′ are different for the three x bins in Fig 8.5 so that a fit to the x dependence of these data
points cannot be performed.



Chapter 9

Summary and Conclusion

A QCD factorisation theorem for hard exclusive production of mesons by longitudinal virtual
photons (helicity 0) was proved in 1997 [19]. Since 1999 the theorem has been applied to
the theoretical investigation of hard exclusive production of pions from transversely polarised
protons [10, 33, 34, 52]. In leading order and within the leading-twist approximation, and
in terms of the light-cone distribution amplitude of the produced pion and of the generalised
parton distributions (GPDs) for the proton to neutron transition, the value of the transverse-
target single-spin azimuthal asymmetry was predicted to be of order unity on a scale from
minus one to one. The role of the proton transverse polarisation with respect to the virtual
photon is to select a particular combination of GPDs, in particular, via the interference be-
tween the pseudoscalar (Ẽ) and pseudovector (H̃) scattering amplitudes. This combination
is inaccessible through other observables like the unpolarised cross section. The generalised
parton distributions are of great interest, because they provide a wealth of information about
the parton structure of the nucleon.

No experimental measurement of the above mentioned asymmetry exists to our knowledge.
For the first time in 2002 at HERMES a relatively large asymmetry for longitudinally polarised
protons was measured [60] which, in the absence of theoretical estimates, could be interpreted
as possibly arising from the small transverse component of the proton polarisation.

In 2001 a fixed internal gas target with transversely polarised protons was installed in the
HERMES experiment. Data were recorded in the years 2002-2004 with this target, whose
average transverse polarisation was 0.754 ± 0.050, and a 27.56 GeV positron beam from the
HERA accelerator. The HERMES forward spectrometer provided excellent lepton-hadron
separation and pion identification in the 1-15 GeV momentum range.

The analysis of the HERMES data with transversely polarised target, which is the main
subject of this thesis, is based to a large extent on the techniques developed previously for the
longitudinally polarised target data [60]. As the recoiling neutron was not detected, exclusive
production of π+ pions was selected by requiring that the squared missing mass in the reaction
corresponded to the squared neutron mass of about 1 GeV2. However, with this technique the
signal could not be separated entirely from the non-exclusive background. Therefore, the π+

background was estimated from the normalised number of π− passing the same requirements
as the π+. An estimate about the signal was obtained by subtraction of the background from
the total π+ number.

The main focus of this thesis was to further optimise and improve the asymmetry data
analysis methods. The progress of this work benefited from regular discussions as well as
developments in similar analyses of azimuthal asymmetries at HERMES. The π+ and π− yields
were simulated with the PYTHIA Monte Carlo generator. Exclusive pion production, which is
not included in PYTHIA, was simulated by a dedicated generator. By exploring the kinematic
regions of π+ samples obtained from the two generators, additional requirements were imposed
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on the data sample. This resulted in partial reduction (elimination) of the background at lower
(higher) squared missing mass. Another goal of the Monte Carlo studies was to use PYTHIA
for subtraction of the background. Since the data-to-PYTHIA comparison for the π+ yield
was not sufficiently good, the following procedure was invented. The π− yield was subtracted
from the π+ one for data, and the same was done for PYTHIA; then the result for PYTHIA
was subtracted from that for data. The difference between the signal obtained in this way and
using data only was assigned as a systematic uncertainty to the exclusive yield.

A substantial part of this work was devoted to the extraction of the asymmetry ampli-
tudes. Results obtained with different extraction methods and fit parameters were compared,
and the two-dimensional six-parameter unbinned maximum likelihood fit was chosen to be
the most suitable one for this analysis. The effects of detector smearing and resolution on
the extracted amplitudes was studied by implementing different amplitudes in ’unpolarised’
PYTHIA and exclusive Monte Carlo samples by randomly assigning polarisation states to
events. By comparing reconstructed with generated amplitudes the smearing effect was quan-
tified and used to assign systematic uncertainties to the results. All six asymmetry amplitudes
were extracted from the π+ data as a function of the squared missing mass, but averaged
over other kinematic variables. The asymmetry amplitude of interest was measured to be
A

sin(φ−φS)
UT,meas = 0.09 ± 0.05(stat)+0.10

−0.03(syst) in the exclusive region of the squared missing mass
from 0.5 to 1.9 GeV2. In the same region, the amplitude of another allowed asymmetry modula-
tion of the polarised cross section, which however was expected to be dynamically suppressed,
was found to be relatively large, namely, Asin φS

UT,meas = 0.38 ± 0.06(stat)+0.12
−0.06(syst). The am-

plitudes of the other four modulations were found to be small or consistent with zero. In
addition, the values of the six amplitudes measured in the exclusive region were presented as
a function of the three independent kinematic variables t′, Q2, and x, whose average values for
this analysis are 〈t′〉 = −0.18 GeV2, 〈Q2〉 = 2.3 GeV2, and 〈x〉 = 0.12.

In view of a signal-to-background ratio of about 1 : 1 in the exclusive region at lower squared
missing mass, a direct comparison between our measurement of the asymmetry amplitudes and
theoretical predictions [10, 33] is not possible. In order to evaluate the amplitudes for exclusive
pion production a background correction to the measured ones was applied. Two parameters
are needed to correct for each background process: the yield for the process and its asymmetry
amplitude. According to PYTHIA, the π+ background consists mainly of pions produced
in semi-inclusive deep inelastic scattering and a contribution of decay pions from exclusively
produced vector mesons (dominated by exclusive ρ0 decays). The yields of these background
processes are obtained from PYTHIA, however their amplitudes cannot be determined since
the generator is ’unpolarised’. Therefore, instead of considering each background process
separately, these processes were combined in an effective background yield and an effective
asymmetry amplitude. The former was taken as the result of the background subtraction
procedure and the latter was estimated to be the amplitude from the neighbouring squared
missing mass region where the contribution of exclusive π+ events could be neglected. The
results for the corrected amplitudes are not discussed in detail as no predictions exist so far,
except for A

sin(φ−φS)
UT .

The main results of this thesis are the values of the leading azimuthal asymmetry ampli-
tude, A

sin(φ−φS)
UT,meas = 0.09 ± 0.05(stat)+0.10

−0.03(syst), and of the one corrected for the contribution

of background processes, namely, A
sin(φ−φS)
UT,bg.cor = 0.22± 0.13(stat)+0.10

−0.04(syst) in the region of the
squared missing mass from 0.5 to 1.9 GeV2. The contributions to the systematic uncertainty
from various sources was evaluated. The dominant systematic uncertainty comes from the
smearing effect. Assuming the background amplitude is zero and performing a naive fit of the
form p1 + p2

√
−t′ to the t′ dependence of the corrected amplitude, we observe that the ampli-

tude approaches large values of order unity in the higher |t′| region. Thus, in this kinematic
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region our final result appears to support the prediction for the large size of this amplitude.
A conclusive interpretation of the results, however, requires larger statistics and improved
detector capabilities.

Important note: After the present analysis was completed, it was found out that the sign of
the predicted asymmetry amplitude A

sin(φ−φS)
UT , defined according to the Trento conventions [9],

is negative [25].



Appendix A

Hydrogen Atom in Magnetic Field

A.1 Hyperfine Structure

The hydrogen atom consists of an electron, e, and a proton, p. The atom is described by the
Hamiltonian (i.e., sum of the kinetic energy of the atom and the Coulomb interaction energy)

H0 =
P 2

2µ
− q2

4πε0r
, (A.1)

where µ = meMp

me+Mp
. A more exact description must consider the magnetic interaction energy

due to the spins of the electron, S, and of the proton, I. For the ground state of hydrogen
(principal quantum number n = 1 and orbital angular momentum l = 0) in a magnetic field
B, the Hamiltonian is

H = H0 +A S · I +
gSµB

h̄
B · S − gIµN

h̄
B · I, (A.2)

where A = 4
3
gI

me

Mp
mec

2α4
em(1 + me

Mp
)−3 1

h̄2 describes the strength of the interaction between

the electron and proton spins, µB = eh̄
2me

= 5.7884 × 10−5 eV/T is the Bohr magneton and

µN = eh̄
2Mp

= 3.1525×10−8 eV/T is the nuclear magneton, gS = 2.0023 and gI = 5.5857 are the

respective gyromagnetic factors. µS = qegS
e

2me
S = qegSµBmS and µI = qpgI

e
2Mp

I = qpgIµNmI

are the electron and proton spin magnetic moments (with e = +1, qe = −e, qp = +e), respec-
tively. The scalar products among the vectors S(Sx, Sy, Sz), I(Ix, Iy, Iz), and B(Bx, By, Bz)
can be expanded as

S · I = SzIz +
1

2
(S+I− + S−I+), (A.3)

B · S = BzSz +
1

2
(Bx − iBy)S+ +

1

2
(Bx + iBy)S−, (A.4)

B · I = BzIz +
1

2
(Bx − iBy)I+ +

1

2
(Bx + iBy)I−, (A.5)

where I± = Ix± iIy and S± = Sx± iSy. In the representation |S2, I2;mS,mI〉 (where mS = ±1
2

and mI = ±1
2

refer to the operators Sz and Iz), a basis (|jS, jI ;mS,mI〉 ≡ |1
2
, 1

2
;mS,mI〉 ≡

|mS,mI〉 of states common to S2, I2, Sz, and Iz) for the Hamiltonian operator is given by

|+ 1

2
,+

1

2
〉 , |+ 1

2
,−1

2
〉 , | − 1

2
,−1

2
〉 , | − 1

2
,+

1

2
〉 . (A.6)
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Using the recursion relations [18] (with jS = 1
2

and jI = 1
2
)

Sz|jS, jI ;mS,mI〉 = h̄ mS|jS, jI ;mS,mI〉,
Iz|jS, jI ;mS,mI〉 = h̄ mI |jS, jI ;mS,mI〉,
S±|jS, jI ;mS,mI〉 = h̄

√
jS(jS + 1)−mS(mS ± 1)|jS, jI ;mS ± 1,mI〉,

I±|jS, jI ;mS,mI〉 = h̄
√
jI(jI + 1)−mI(mI ± 1)|jS, jI ;mS,mI ± 1〉,

(A.7)

one can write the operators in the following matrix representation

Sz =
h̄

2


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , S+ =
h̄

2


0 0 0 0
0 0 0 0
0 1 0 0
1 0 0 0

 , S− =
h̄

2


0 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0

 ,

Iz =
h̄

2


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 , I+ =
h̄

2


0 0 0 0
1 0 0 0
0 0 0 1
0 0 0 0

 , I− =
h̄

2


0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0

 .

Consequently (A.3), (A.4), (A.5) take the form

S ·I =
h̄2

4


1 0 0 0
0 −1 0 2
0 0 1 0
0 2 0 −1

 ,
B

BC

·S =
h̄

2


χ 0 0 0
0 χ 0 0
0 0 −χ 0
0 0 0 −χ

 ,
B

BC

·I =
h̄

2


χ 0 0 0
0 −χ 0 0
0 0 −χ 0
0 0 0 χ

 ,

where a static magnetic field along the z direction is taken, B = (0, 0, B), and χ = B
BC

,

BC = Ah̄2

gSµB
(= 50.7 mT for hydrogen) being the critical field of the hyperfine interaction. Then

(A.2) can be written in the form

H = H0 +Hstatic
0 = H0 +Ah̄2

[S · I
h̄2 +

B

BC

·
(S
h̄
− ε

I

h̄

)]
, (A.8)

with ε = gIµN

gSµB
and Hstatic

0 denoting the part of the Hamiltonian for the hyperfine interactions
in a static magnetic field. The matrix representation of the operator is

Hstatic
0 =

Ah̄2

4


1 + 2χ(1− ε) 0 0 0

0 −1 + 2χ(1 + ε) 0 2
0 0 1− 2χ(1− ε) 0
0 2 0 −1− 2χ(1 + ε)

 . (A.9)

Since the matrix (A.9) is not diagonal, the basis (A.6) is not a set of eigenstates of Hstatic
0 .

The diagonalisation is achieved via an orthogonal transformation

Hstatic
1 = U0Hstatic

0 UT
0 , U0 =


1 0 0 0
0 cos θ 0 sin θ
0 0 1 0
0 − sin θ 0 cos θ

 , (A.10)

which imposes the relation, 2χ(1 + ε) cos θ sin θ = cos2 θ − sin2 θ, equivalent to

cos 2θ =
χ(1 + ε)√

χ2(1 + ε)2 + 1
, sin 2θ =

1√
χ2(1 + ε)2 + 1

: tan 2θ =
1

χ(1 + ε)
. (A.11)
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The diagonal elements, and thus the eigenenergies of Hstatic
1 are

E1 =
Ehfs

4
(1 + 2χ(1− ε)),

E2 =
Ehfs

4
(−1 + 2

√
χ2(1 + ε)2 + 1),

E3 =
Ehfs

4
(1− 2χ(1− ε)),

E4 =
Ehfs

4
(−1− 2

√
χ2(1 + ε)2 + 1),

(A.12)

where Ehfs = Ah̄2. The new basis of eigenstates of Hstatic
1 is given by

|1〉 = |+ 1

2
,+

1

2
〉,

|2〉 = cos θ |+ 1

2
,−1

2
〉+ sin θ | − 1

2
,+

1

2
〉,

|3〉 = | − 1

2
,−1

2
〉,

|4〉 = cos θ | − 1

2
,+

1

2
〉 − sin θ |+ 1

2
,−1

2
〉.

(A.13)

The hydrogen hyperfine splitting is also known in terms of the frequency νhfs =
Ehfs

2πh̄
=

1420.4 MHz, which corresponds to the zero-field splitting due to the S–I spin interaction.
In Fig. A.1 the hydrogen hyperfine eigenenergies corresponding to the four eigenstates are

plotted as a function of the external static magnetic field in units χ = B
BC

. ① refers to state
|1〉, etc.

A.2 Polarisation

Polarisation is not used here in the same sense as in ’polarisation of a photon’, therefore
the expression ’polarisation of a single proton/an electron’ does not exist. The polarisation
of a sample of spin= 1

2
particles is described by a polarisation vector. The component of

polarisation along some axis (z) is defined as

Pz = n+ − n− with n± =
N±

N+ +N−
, (A.14)

where n+ and n− are the fractions of particles with spin I along z (mI = +1
2
) and opposite to

z (mI = −1
2
), respectively.

The electron and proton polarisations (Pe and Pz) of the state |i〉 are given by (the expec-
tation values of the spin operators)

Pe =
4∑

i=1

= ni〈i|
2

h̄
Sz|i〉 = n1 − n3 + (n2 − n4) cos 2θ, (A.15)

Pz =
4∑

i=1

= ni〈i|
2

h̄
Iz|i〉 = n1 − n3 − (n2 − n4) cos 2θ, (A.16)

where
∑

i ni = 1 and tan 2θ ∼ BC

B
. The proton polarisation Pz (or Pp) for the four hydrogen

hyperfine states is plotted in Fig. A.1 as a function of the external static magnetic field in
units χ = B

BC
. The electron polarisation Pe (not shown) is similar with the states ② and ④

interchanged. Usually, the atoms of a polarised sample are located in a uniform external static
magnetic field (guide or holding field), in which case the polarisation vector is along the field.

The external field is referred to as ’weak’ or ’strong’ depending on the field strength, B,
compared with the critical field, BC , of the hyperfine interaction. The two limits are

• B � BC (θ → π
4
, Zeeman limit). In a weak magnetic field, the electron spin, S, and the

proton spin, I, couple to a total angular momentum, F . For the mixed states (mF = 0,
states ② and ④) the electron and proton spins precess one about the other so that they
have zero magnetic moment and zero nuclear polarisation.
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Figure A.1: Energy (left) and proton polarisation of the four hyperfine states of the hydrogen atom
as a function of the external static magnetic (guide, holding) field, B, given in units χ = B

BC
.

• B � BC (θ → 0, Paschen-Back limit). In a strong magnetic field, electron and proton
spins are decoupled. The proton polarisation reaches Pz = ±1 asymptotically and the
magnetic moment of the atom approaches the electron magnetic moment, µB. Note that
µN/µB = me/Mp ≈ 1/1836.

For the two pure spin states (states ① and ③) the polarisation |P | = 1 independent of field
strength.

A.3 Hyperfine Transitions

In the presence of a time dependent external magnetic field (apart from the static holding
field) the hyperfine energy levels get distorted, so that transitions may originate between pairs
of hyperfine states, |i〉 ↔ |j〉. Each transition is characterised by the angular frequency

ωij =
|Ei − Ej|

h̄
, (A.17)

which too depends on the holding field (as do the energy levels Ei and Ej (A.12). Hyperfine
transitions are classified [59] depending on the relative orientations of the static holding field,
Bstatic, and the time dependent one, B(t).

A.3.1 σ transitions: B(t)‖Bstatic

The external magnetic field has the form B = (0, 0, Bstatic + B(t)). Applying the Schrödinger
equation to the states in the two bases (A.6) and (A.13) (both being related to each other
via the orthogonal matrix (A.10) as |i〉 = U0|mS,mI〉, |mS,mI〉 = UT

0 |i〉, where mS = ±1
2
,

mI = ±1
2
, i = 1, 2, 3, 4) gives

ih̄
∂|mS,mI〉

∂t
= Hstatic

0 |mS,mI〉

:ih̄
∂|i〉
∂t

= (Hstatic
1 − ih̄

∂UT
0

∂t
U0)|i〉 = (Hstatic

1 −Hσ
1 )|i〉,

(A.18)
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where

Hσ
1 = ih̄


0 0 0 0
0 sṡ+ cċ 0 −sċ+ cṡ
0 0 0 0
0 sċ− cṡ 0 sṡ+ cċ

 = ih̄


0 0 0 0

0 0 0 −θ̇
0 0 0 0

0 θ̇ 0 0

 =
ih̄

2
χ̇


0 0 0 0
0 0 0 sin2 2θ
0 0 0 0
0 − sin2 2θ 0 0


(A.19)

Here c = cos θ, s = sin θ, ˙= ∂
∂t

and ε� 1 is neglected. This leads to the possible transition

σ|2〉 ↔ |4〉 (∆F = ±1,∆mF = 0)

A.3.2 π transitions: B(t) ⊥ Bstatic

The external magnetic field is directed either along x or along y. Choosing the x direction for
the following example, the field has the form B = (B(t), 0, Bstatic). The time dependent part
of the Hamiltonian in the basis |mS,mI〉 is given by

Hπ
0 =

gSµB

h̄
B(t)Sx, where Sx =

1

2
(S+ + S−) =

h̄

2


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 . (A.20)

In the basis |i〉 the Hamiltonian has the form

Hπ
1 = U0Hπ

0U
T
0 : Hπ

1 =
gSµB

2
B(t)


0 sin θ 0 cos θ

sin θ 0 cos θ 0
0 cos θ 0 − sin θ

cos θ 0 − sin θ 0

 , (A.21)

where the constant ε� 1 is neglected. This leads to the possible transitions

π|1〉 ↔ |2〉 (∆F = 0,∆mF = ±1)

π|2〉 ↔ |3〉 (∆F = 0,∆mF = ±1)

π|1〉 ↔ |4〉 (∆F = ±1,∆mF = ±1)

π|3〉 ↔ |4〉 (∆F = ±1,∆mF = ±1).
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Figure A.2: Frequencies of hydrogen
hyperfine transitions plotted as a func-
tion of the static holding field. The
field values are normalised to the crit-
ical field BC .
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Data and Monte Carlo Studies

The following tables and figures serve as a supplement to Chapter 6.
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generation of an exclusive pion event

ε, φ random in (0, 2π) are generated isotropically the angle ε = −Φe+′ − π of the scattering
plane and the angle φ between the production and the scattering planes (in the lab-frame)

x x is generated random and flat in (0, 1)
Q2 to increase the efficiency of the simulation, instead of Q2 in the range (0.5, 20), 1

Q2 is
generated random and flat in (0.05, 2)

t the t dependence is approximated by a simple exponential fall-off (by analogy with the
elastic/diffractive cross section at not too large t); instead of t (t < 0) in the range (−8, 0),
e−b|t| is generated random and flat in (e−8b, 1) with the slope parameter b = 3

kinematic variable comment
ν = Q2

2Mpx calculated
y = ν

E
W 2 = M2

p + 2Mpν −Q2

E′ = E − ν kinematics in the scattering plane
Eγ∗ = ν
|l| = E

|l′| =
√
E′2 −m2

e+′

|q| =
√
ν2 +Q2

Θe+′ = arccos |l′|2+|l|2−|q|2
2|l′||l| law of cosines

Θγ∗ = arccos |q|2+|l|2−|l′|2
2|q||l|

l′x = − sinΘe+′ |l′| x-projection in the scattering plane
l′y = 0
l′z = cos Θe+′ |l′| z-projection in the scattering plane
qx = sinΘγ∗ |q|
qy = 0
qz = cos Θγ∗ |q|
(l′x, l

′
y, l

′
z) = R(ε; z)(l′x, 0, l

′
z) rotation about z-axis by the angle ε

(qx, qy, qz) = R(ε; z)(qx, 0, qz)

Φe+′ = arctan l′y
l′x

Φγ∗ = arctan qy

qx

Eπ+ = Eγ∗ +Mp − E′
n kinematics in the production plane

E′
n = M2

p+M2
n−t

2Mp

|pπ+ | =
√
E2

π+ −m2
π+

|P ′| =
√
E′2

n −M2
n

Θπ+ = arccos |pπ+ |2+|q|2−|P ′|2
2|pπ+ ||q|

Θn = arccos |P ′|2+|q|2−|pπ+ |2
2|P ′||q|

px = − sinΘπ+ |pπ+ |, py = 0, pz = cos Θπ+ |pπ+ |
P ′

x = sinΘn|P ′|, P ′
y = 0, P ′

z = cos Θn|P ′|
(px, py, pz) = R(ε; z)R(−Θγ∗ ; y)R(−φ; z)(px, 0, pz) sequence of rotations
(P ′

x, P
′
y, P

′
z) = R(ε; z)R(−Θγ∗ ; y)R(−φ; z)(P ′

x, 0, P
′
z)

Φπ+ = arctan py

px

Φn = arctan P ′
y

P ′
x

Table B.1: Generation and calculation of the kinematic variables of an exclusive pion event.
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M2
X cut −2 < M2

X ≤ 40.0 GeV2 −2 < M2
X ≤ 2.4 GeV2

other cuts standard final standard final

yield σ̃s σ̃f eσfeσs σ̃s σ̃f eσfeσs

unit pb pb % pb pb %
excl. a π+ - - - 17.6± 1.3 15.1± 1.1 86
excl b,d π+ - - - 14.7± 0.9 14.5± 0.8 99
excl b,e π+ 14.3± 0.9 14.1± 0.9 99
excl b,f π+ 14.6± 0.9 14.3± 0.9 98
excl c,d π+ - - - 8.3± 0.7 10.0± 0.7 120
excl c,e π+ 7.2± 0.7 8.6± 0.7 119
excl c,f π+ 15.0± 0.8 16.2± 0.8 108
Data π+ 2152.8± 5.2 81.2± 1.0 3.8 61.1± 0.9 46.7± 0.8 76
Data π− 1394.3± 4.2 39.3± 0.7 2.8 25.1± 0.6 18.2± 0.6 73
PYTHIA d π+ 2074.8± 3.1 78.3± 0.6 3.8 60.4± 0.5 39.1± 0.4 65
PYTHIA e π+ 2018.3± 3.0 81.6± 0.6 4.0 62.2± 0.5 41.2± 0.4 66
PYTHIA f π+ 2036.7± 2.6 62.4± 0.5 3.1 46.9± 0.4 30.4± 0.3 65
PYTHIA d π− 1457.6± 2.6 51.3± 0.5 3.5 37.6± 0.4 24.8± 0.3 66
PYTHIA e π− 1438.3± 2.6 54.8± 0.5 3.8 40.0± 0.4 26.8± 0.3 67
PYTHIA f π− 1415.9± 2.2 34.9± 0.2 2.5 25.1± 0.3 16.3± 0.2 65
excl. MC g π+ 17739± 131 13849± 116 78 14427± 118 13126± 113 91
DIS d π+ 1853.0± 2.9 46.1± 0.5 2.5 37.7± 0.4 22.7± 0.3 60
DIS e π+ 1773.0± 2.8 47.0± 0.5 2.7 38.0± 0.4 23.6± 0.3 62
DIS f π+ 1808.2± 2.5 43.9± 0.4 2.4 35.0± 0.3 21.7± 0.3 62
DIS d π− 1240.8± 2.4 18.7± 0.3 1.5 15.2± 0.3 8.6± 0.2 57
DIS e π− 1196.3± 2.3 19.4± 0.3 1.6 15.5± 0.3 9.0± 0.2 58
DIS f π− 1193.7± 2.0 17.2± 0.2 1.4 13.3± 0.2 7.7± 0.2 58
VMD d π+ 203.7± 1.0 32.3± 0.4 16 22.7± 0.3 16.4± 0.3 72
VMD e π+ 226.5± 1.0 34.7± 0.4 15 24.2± 0.3 17.6± 0.3 73
VMD f π+ 209.7± 0.9 18.5± 0.3 9 11.8± 0.2 8.7± 0.2 74
VMD d π− 202.4± 1.0 32.6± 0.4 16 22.4± 0.3 16.2± 0.3 72
VMD e π− 227.7± 1.0 35.4± 0.4 16 24.5± 0.3 17.8± 0.3 73
VMD f π− 208.5± 0.8 17.7± 0.2 9 11.8± 0.2 8.6± 0.2 73
a = Data (dσ̃π+ − 1.73 dσ̃π−)
b = Data (dσ̃π+ − dσ̃π−) − PYTHIA (dσ̃π+ − dσ̃π−)
c = Data (dσ̃π+) − PYTHIA (dσ̃π+)
d v1.HRC production
e v1.HSG production
f v2.HSG production
g yield in unit of weighted events

Table B.2: The π+ and π− yields with the standard cuts (Table 6.2) and with the final cuts
(Table 6.5) for two M2

X cuts: the entire missing mass range (−2 < M2
X ≤ 40 GeV2) and the

exclusive region (−2 < M2
X ≤ 2.4 GeV2).
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Figure B.1: The mean values of the kinematic variables x, Q2, t′, and z as a function of the squared
missing mass M2

X for data, PYTHIA and exclusive MC π+ samples selected with the final cuts
(Table 6.5).
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Appendix C

Azimuthal Asymmetry Studies

The following figures serve as a supplement to Chapter 7.
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Appendix D

A Note on t and t′

In the analysis of the hard exclusive process, γ∗p → nπ+, of interest is the dependence of
measured azimuthal asymmetry on the invariant transverse four-momentum transfer t = (qγ∗−
qπ+)2. The particles’ four-momenta in the laboratory frame, qγ∗ , qp, qn, and qπ+ , are defined
in Table 3.1.

The invariant variable t has a kinematical limit denoted as t0 (3.28), therefore t′ = t − t0
is used for the final results (Chapter 8). The definitions of t and t0 are given below in the
centre-of-mass and in the laboratory frame. We explain how t′ is computed in this analysis.

D.1 Kinematics in the γ∗p Centre-of-Mass Frame

The transition from the laboratory (lab) frame, in which the target proton is at rest, to
the virtual photon–proton centre-of-mass (cm) frame proceeds via the formation of the four-
momentum of the cm-frame in the lab-frame, denoted as qCM,lab. For consistency with the
notation used throughout the text, the lab-subscript of the kinematic variables is omitted in
the following. The transition four-vector is computed as qCM = qγ∗+qp and its components are
qCM = (ECM , ~pCM) = (ν +Mp, ~q). The velocity of the centre-of-mass (CM) in the lab-frame
is written as

~βCM =
~pCM

ECM

=
~q

ν +Mp

, |~βCM | =
√
ν2 +Q2

ν +Mp

. (D.1)

It is useful to write the expressions

γCM =
1√

1− ~β2
CM

=
ECM

MCM

=
ν +Mp√
W 2

, (D.2)

~ηCM = γCM
~βCM =

~pCM

MCM

=
~q√
W 2

, |~ηCM | =
√
γ2

CM − 1 =

√
ν2 +Q2

√
W 2

, (D.3)

whereMCM =
√
q2
CM =

√
(ν +Mp)2 − ~q2 =

√
ν2 − ~q2 + 2Mpν +M2

p =
√
M2

p + 2Mpν −Q2 =√
W 2.

The four-momentum of a particle h in the cm-frame is related to its four-momentum in the
lab-frame as follows

Eh,cm = γCMEh − ~ηCM ~ph, (D.4)

|~ph,cm| =
√
E2

h,cm −m2
h, (D.5)

137



138 Appendix D. A Note on t and t′

where mh is the particle’s mass. This gives the cm-energies of the particles (virtual photon,
proton, neutron, and pion) as a function of the kinematic variables in the lab-frame

Eγ∗,cm ≡ νcm =
W 2 −Q2 −M2

p

2
√
W 2

,

Ep,cm =
W 2 +Q2 +M2

p

2
√
W 2

,

En,cm =
W 2 +M2

n −m2
π+

2
√
W 2

,

Eπ+,cm =
W 2 +m2

π+ −M2
n

2
√
W 2

.

(D.6)

Splitting ~ph = ~pL
h + ~pT

h into components parallel and normal to ~βCM , where ~pL
h = ~ph·~η

~η2 ~η and

~pT
h = ~ph − ~pL

h , the transformation of the three-vector can be written as

~pL
h,cm = γCM~p

L
h − ~ηCMEh, ~pT

h,cm = ~pT
h , (D.7)

~ph,cm = ~pL
h,cm + ~pT

h,cm = ~ph +
~q√
W 2

( ~ph · ~q
ν +Mp +

√
W 2

− Eh

)
. (D.8)

D.2 t in the cm-frame

In the cm-frame, the expressions for t and t0 take the form

t = (qγ∗,cm − qπ+,cm)2 = (νcm − Eπ+,cm)2 − (~qcm − ~pπ+,cm)2

= (νcm − Eπ+,cm)2 − |~qcm|2 − |~pπ+,cm|2 + 2|~qcm||~pπ+,cm| cos θγ∗π+,cm

= (νcm − Eπ+,cm)2 − (|~qcm| − |~pπ+,cm|)2 − 4|~qcm||~pπ+,cm| sin2 θγ∗π+,cm

2
,

t0 = (νcm − Eπ+,cm)2 − (|~qcm| − |~pπ+,cm|)2,

(D.9)

where ((D.4), (D.5), (D.6))

Eπ+,cm =
W 2 +m2

π+ −M2
n

2
√
W 2

νcm =
W 2 −Q2 −M2

p

2
√
W 2

|~pπ+,cm| =
√
E2

π+ −m2
π+ ,

|~qcm| =
√
ν2

cm +Q2.
(D.10)

There are two ways to compute the t value
(i) M2

n = M2
X , where M2

X = (qγ∗ + qp − qπ+)2 is the value of the measured squared missing
mass in the exclusive process, in which the neutron is not detected.

(ii) M2
n = (0.939565360)2 GeV2 is the PDG-value of the neutron mass.

The definition of the so called ’constrained t’ relies on the latter choice. Inserting M2
n in

(D.10) for Eπ+,cm and the latter in (D.9) allows us to obtain the constrained t values in the cm-
frame in a straightforward way. Comparison between the two choices (i) and (ii) is discussed
in Section D.4.

D.3 t in the lab-frame

In the lab-frame, the expressions for t and t0 take the form

t = (qγ∗ − qπ+)2 = q2
γ∗ + q2

π+ − 2qγ∗qπ+ = −Q2 +m2
π+ − 2νEπ+ + 2|~q||~pπ+| cos θγ∗π+

= −Q2 +m2
π+ − 2νEπ+ + 2

√
ν2 +Q2

√
E2

π+ −m2
π+ cos θγ∗π+ ,

t0 = −Q2 +m2
π+ − 2νEπ+ + 2

√
ν2 +Q2

√
E2

π+ −m2
π+ .

(D.11)



D.4. Resolutions of t and t′ = t− t0 139

The definition of the ’constrained t’ relies on the dependence of t on M2
n (the squared neutron

mass) and the subsequent substitution of M2
n with the PDG-value. In (D.11) the dependence

on M2
n is made explicit via Eπ+ . Both variables are related to each other via

M2
n = [(qγ∗− qπ+)+ qp]

2 = (qγ∗− qπ+)2 + q2
p +2(qγ∗− qπ+)qp = t+M2

p +2Mp(ν−Eπ+), (D.12)

:Eπ+ =
t

2Mp

+ ν −
M2

n −M2
p

2Mp

. (D.13)

One sees from (D.13) that Eπ+ depends on t as well. Inserting the expression for Eπ+ from
(D.13) into (D.11) leads to a non-straightforward solution (of a quadratic equation) with
respect to t, due to the

√
E2

π+ −m2
π+ term. Without using kinematic approximations, the

computation of ’constrained t’ is more complicated, e.g., compared with that in the analysis
of Deeply-Virtual Compton Scattering (DVCS) [30], because in this analysis:

(i) The pion mass mπ+ 6= 0, in contrast to the massless γ∗ produced in DVCS.
(ii) The nucleons, a proton in the initial and a neutron in the final state, have different

masses, Mp 6= Mn, in contrast to DVCS with a proton both in the inital and final state.
While (ii) is a minor point, the approximation mπ+ = 0 in (i) is not made in this analysis,

and hence ’constrained t’ in the lab-frame is not used to present the t-dependence of our results
(Chapter 8).

D.4 Resolutions of t and t′ = t− t0

The minimal value |t0| of |t|, where t < 0 and t0 < 0, is obtained from t when the polar angle
θγ∗π+ between the virtual photon (γ∗) and the produced pion (π+) is put to zero, see (D.9),
(D.11). Since t is an invariant quantity, t0 and t′ = t− t0 for θγ∗π+ 6= 0 are not invariants.

Fig. D.1 shows a comparison of the t, t0, and t′ = t − t0 distributions as computed in
the lab-frame with the neutron mass M2

n = M2
X (solid line), and in the cm-frame with M2

n =
(0.9396)2 GeV2 (dotted line) and M2

n = M2
X (dashed line), where M2

X is the squared missing
mass in the exclusive process γ∗p → nπ+. The plots on the left (right) side of the figure are
obtained from the PYTHIA (exclusive MC) sample selected with the final cuts (Table 6.5).
The spread in t and t0 becomes smaller when the PDG-value of M2

n = (0.9396)2 GeV2 instead
M2

X is used in the calculation. However, the t′ = t − t0 distribution appears to be insensitive
to these two choices of M2

n values, and also to the choice of the reference frame (the centre-
of-mass or the laboratory frame). The fact that the t0 and t′ distributions differ only slightly
between the lab-frame and the cm-frame is explained by the small θγ∗π+ angle. In this analysis
t′ = t− t0 as computed in the lab-frame with M2

n = M2
X is chosen to present the t′-dependence

of the azimuthal asymmetry amplitude (Fig. 8.6).
The resolution of t and t′ (obtained from the difference between generated and reconstructed

values) is shown in Fig. D.2. The values are computed with M2
n = M2

X (full points) and
M2

n = (0.9396)2 GeV2 (open points) in the cm-frame. Below (above) t ≈ −0.4 GeV2 the
resolution of t is larger (smaller) when computed with M2

n = (0.9396)2 GeV2, while the t′

resolution is not sensitive to the choice of M2
n values. The PYTHIA sample selected with the

final cuts (Table 6.5) is used for this resolution study since the exclusive MC distributions (δ)
of generated minus reconstructed values are not symmetric to be fitted with a Gaussian.
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Figure D.1: Distributions of the t, t0, and t′ = t − t0 values as computed in the lab-frame with the
neutron mass Mn = MX (solid line), and in the cm-frame with Mn = 0.9396 GeV (dotted line) and
Mn = MX (dashed line), where MX is the missing neutron mass in the exclusive process γ∗p→ nπ+.
The PYTHIA (left panel) and the exclusive MC (right panel) samples are selected with the final cuts
(Table 6.5).
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Appendix E

Correlations of Kinematic Variables

The figures Fig. E.1 on the next page to Fig. E.10 on page 151 show the correlations of the 18
(= 16 + 2) kinematic variables k = i, j, where

i = x, y, ν, Q2, W 2, θγ∗ , pπ+ , Pπ+⊥,
M2

X , θγ∗π+ , φπ+ , φS, Θπ+ , Φπ+ , t, z,

and

j = pe+′ + pπ+ , t′ = t− t0,

with the variables i. These figures (one figure per page) are organised as follows:

x vs. k y vs. k
ν vs. k Q2 vs. k
W 2 vs. k θγ∗ vs. k
pπ+ vs. k Pπ+⊥ vs. k

M2
X vs. k θγ∗π+ vs. k

φπ+ vs. k φS vs. k
Θπ+ vs. k Φπ+ vs. k
t vs. k z vs. k

The kinematic variables

• x, y, ν, Q2, W 2, pπ+ , M2
X , t, z, and Θe+′ are defined in Table 3.1 on page 14

• φπ+ , φS, θγ∗π+ , and Pπ+⊥ are displayed in Fig. 3.1 on page 13, as well as l and q

• θγ∗ is the angle between l and q

• Θπ+ and Φπ+ , and Θe+′ and Φe+′ , are respectively the polar and azimuthal angles of the
pion π+ and of the scattered positron e+′ relative to l

• pe+′ is the momentum of the scattered positron e+′

• t′ and t0 are discussed in Appendix D

• rapidity = 1
2
log

Eπ+,cm+~pπ+,cm·(~q+~P )

Eπ+,cm−~pπ+,cm·(~q+~P )
, xF = 2

~pπ+,cm·(~q+~P )
√

W 2

More figures showing the correlations for the full set of kinematic variables can be found
in [46].
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[54] G. A. Schuler and T. Sjöstrand. Hadronic diffractive cross sections and the rise of the
total cross section. Phys. Rev., D49:2257–2267, 1994.
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