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Abstract

We investigate several aspects of dynamical dark energy in the framework of scalar-tensor
theories of gravity. We provide a classification of scalar-tensor coupling functions admitting
cosmological scaling solutions. In particular, we recover that Brans-Dicke theory with in-
verse power-law potential allows for a sequence of background dominated scaling regime and
scalar field dominated, accelerated expansion. Furthermore, we compare minimally and non-
minimally coupled models, with respect to the small redshift evolution of the dark energy
equation of state. We discuss the possibility to discriminate between different models by
a reconstruction of the equation-of-state parameter from available observational data. The
non-minimal coupling characterizing scalar-tensor models can - in specific cases - alleviate fine
tuning problems, which appear if (minimally coupled) quintessence is required to mimic a cos-
mological constant. Finally, we perform a phase-space analysis of a family of biscalar-tensor
models characterized by a specific type of σ−model metric, including two examples from re-
cent literature. In particular, we generalize an axion-dilaton model of Sonner and Townsend,
incorporating a perfect fluid background consisting of (dark) matter and radiation.



Zusammenfassung

Thema dieser Diplomarbeit sind dynamische Modelle dunkler Energie im Rahmen von Skalar-
Tensor Theorien. Die in diesen Gravitationstheorien auftretenden Kopplungsfunktionen wer-
den klassifiziert im Hinblick auf die Möglichkeit sogenannter ”scaling” Lösungen. Der Ansatz
führt insbesondere auf den bekannten Fall von Brans-Dicke Theorie, kombiniert mit einem
Potential von der Form eines inversen Potenzgesetzes. In Modellen dieser Klasse folgt einer
Phase, während der sich die dunkle Energie verhält wie die jeweils vorherrschende Fluidkom-
ponente, eine Phase beschleunigter Expansion, die von dem skalaren Feld dominiert wird.

Verschiedene, sowohl minimal wie auch nicht-minimal gekoppelte Modelle werden ver-
glichen hinsichtlich des Verhaltens ihrer Zustandsgleichung im Bereich kleiner Rotverschiebun-
gen. Von besonderem Interesse ist hierbei die Frage, inwieweit es möglich ist, einzelne Modelle
zu falsifizieren, indem man die Zustandsgleichung der dunklen Energie aus Beobachtungsdaten
rekonstruiert. Es stellt sich heraus, dass gekoppelte Modelle unter Umständen ”fine tuning”-
Probleme mildern können, mit denen minimal gekoppelte Quintessenz-Modelle konfrontiert
sind, die das Verhalten einer kosmologischen Konstanten nachahmen.

Schliesslich werden Modelle mit zwei skalaren Feldern behandelt. Zwei Beispiele aus der
jüngeren Literatur, darunter ein Axion-Dilaton-Modell von Sonner und Townsend, werden im
Phasenraum analysiert und auf phenomenologische Konsequenzen untersucht. Das Axion-
Dilaton-Modell kann durch Berücksichtigung von Strahlung und Materie verallgemeinert wer-
den.
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Chapter 1

Introduction

Our knowledge of the universe is based on two very different, but in their respective domains
equally convincing theoretical frameworks: on small scales, the standard model of particle
physics, and on large scales, Einstein’s theory of gravity. Focusing on the hot early universe,
modern cosmology has, on the one hand, established an overlap between both domains. On
the other hand, it has revealed the limits of the current theoretical understanding. As an
entirely classical theory, general relativity breaks down at Planck scale and has to be replaced
by a - yet unknown - quantum theory of gravity. The hierarchy between the Planck and the
electroweak scale is furthermore one of the outstanding conceptual problems of the standard
model.

Recent cosmological observations [41, 87, 90] have procured overwhelming evidence that,
even in the low-energy regime, our theoretical picture of the universe is strikingly incomplete:
the particle content of the standard model merely accounts for four percent of the present
energy density, to a small amount in visible form (stars), but mostly as interstellar and
intergalactic gas. Rotation curves of spiral galaxies imply the existence of extended halos,
composed of a smoothly distributed, clustering component called dark matter - which is
eventually not dark but transparent, since it interacts only gravitationally [65].

Observations of type Ia supernovae [6, 71, 79, 80, 81, 97] have led to the conclusion, that
our universe is not only expanding, but accelerating. Successively, another yet unknown -
but actually dominating - contribution to the universe’s energy budget has been proposed:
dark energy, which can be characterized as a perfect fluid with negative pressure. While high-
energy physics beyond the standard model have already come up with a class of reasonable
dark matter candidates (in the framework of supersymmetry), the task of including dark
energy provides more of a challenge.

The easiest way to explain both the accelerated expansion and the missing 70 percent of
the present energy density is provided by a cosmological constant. But to match the order
of magnitude of the effect, its value requires an extreme amount of fine tuning with respect
to the Planck scale. Alternatively, the dark energy density can be regarded as a dynamical
quantity. In this case, its present value would naturally be small, if it is ultimately relaxing
to zero, and need not be subject to fine tuning at all.

Within a huge set of different proposals, models featuring a homogeneous, canonical scalar
field stand out as exceptionally simple: The evolution of the so-called quintessence field is
determined only by the Hubble expansion and a self-interaction potential; interactions with
the fermion and gauge sectors of the standard model (and its possible extensions) are excluded.
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On the other hand, the scalar field may be regarded as part of the gravitational sector of a
fundamental theory. Brans and Dicke [18] originally suggested to modify Einstein gravity by
substituting the gravitational constant with a scalar field. In general, scalar-tensor theories
of gravity are characterized by the appearance of a specific, ”non-minimal” coupling between
scalar field and spacetime curvature in the Jordan frame; while in the conformally equivalent
Einstein frame description the scalar field couples universally to the trace of the matter energy-
momentum tensor. In this thesis, we will focus on dynamical models based on minimally or
non-minimally coupled scalar fields, and investigate their phenomenological differences.

Renewed interest in scalar-tensor theories of gravity has also been triggered by the per-
ception, that they naturally appear in the low-energy limit of higher-dimensional physics [46].
The length scale of the compactifying internal space reappears as an additional scalar degree
of freedom in the four-dimensional world, offering a connection between the dynamics of the
compactification process and observationally verifiable effects. If the number of extra dimen-
sions is larger than one, additional degrees of freedom related to the shape of the internal
manifold can be included [38, 70]: these ”breathing modes” may be dynamically relevant,
even if the overall volume of the compactification space is considered to be stabilized already.
This set-up naturally leads us to study dark energy models featuring more than one scalar
field.

To provide a satisfactory solution of the dark energy puzzle, a dynamical model is not
only required to reproduce the observed acceleration. Complete agreement with observational
data has to be achievable without refering to any kind of fine tuning. In comparison to
the cosmological constant, which is a one-parameter model, any dynamical model increases
complexity. To provide promising dark energy candidates, particle physics or modified gravity
theories are faced with the challenge to infer model parameters from fundamental principles.
At the level of model building, the list of additional parameters should be kept short, though
it might be tempting to hide a possible need of fine tuning by introducing more degrees of
freedom.

Scalar field models of dark energy are exceptionally promising, if they admit attractor
solutions, which naturally ensure independence of initial conditions. A special class of at-
tractor solutions is considered to be particularly interesting: so-called ”scaling solutions”
exhibit a fixed relation of background fluid and dark energy densities, and a constant dark
energy equation of state. By offering this kind of solution, a dynamical model might be able
to explain, why matter and dark energy densities are roughly of the same order at present.
More generally, a sequence of scaling solutions should be able to reproduce the sequence of
radiation, matter and dark energy dominated stages of expansion, which has been established
by standard cosmology.

Within the framework of scalar-tensor theories, dark energy model building does not re-
quire to specify a priori an underlying fundamental theory. Families of dynamical models
are typically described in terms of a few unspecified functions: a potential and one or two
non-canonical couplings. In the simple cases we are interested in, this freedom reduces to
a set of constant parameters, determining e.g. potential slope and coupling strength. Phe-
nomenological studies are useful to constrain the allowed range of those parameters. In this
thesis, we will analyze and compare models in terms of the fixed point set of the respective
dynamical system, using dimensionless density parameters as dynamical variables. We intend
to classify viable models with respect to specific attractive properties, like the existence of
(sequences of) scaling solutions.

During the course of the forthcoming decade, observational cosmologists hope to realize
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a model independent reconstruction of the dark energy equation of state in the low redshift
regime. Supposed this task will be successfully completed one day, the important question
remains to be addressed, how to discriminate between different dark energy models. While
the cosmological constant will undoubtedly be ruled out, if the slightest evolution is posi-
tively detected, certain dynamical models might not even be falsified by the equation-of-state
diagnostic alone.

The thesis is organized as follows:
In chapter 2 we confront the cosmological constant with basic ideas of dynamical dark en-
ergy. In particular, we introduce quintessence, review its phenomenological properties, and
give some examples of quintessence candidates within particle or gravitational physics. We
comment on the current observational status of the dark energy equation of state, and cite
an example of its reconstruction from recent observational data. Presently, the cosmological
constant seems to be mildly favoured by the data, while a slight redshift evolution cannot yet
be excluded.

Scalar-tensor theories of gravity are introduced in chapter 3. We present a specific form of
biscalar-tensor action, which features three yet unspecified functions: the characteristic non-
minimal coupling, a non-canonical kinetic term, and an interaction potential. The set-up is
general enough to include all the different models we investigate in later chapters. We derive
the general form of the coupled equations of motion, which govern the evolution of the two
scalar fields. Furthermore, we review observational and experimental results on scalar-tensor
gravity, and in some detail the issue of covergence towards general relativity [35].

In chapter 4 we provide a classification of coupling functions, which admit scaling solu-
tions in scalar-tensor cosmology. We are particularly interested in the possibility of scaling
solutions with large basins of attraction. We correct - as well as generalize - the findings
of [73], and obtain consistency with earlier results on quintessence potentials [59]. We iden-
tify a special class of models - including original Brans-Dicke theory combined with inverse
power-law potential -, which eventually allow for scaling attractor solutions during matter
dominated epoch. Unfortunately, the scaling attractor does not coincide with Einstein grav-
ity. In consequence, the coupling function is already subject to strong constraints, which pose
limits on the viability of the models.

Chapter 5 addresses the issue of attractor solutions in a more general way. Within the
autonomous system approach of [31], solutions with specific, phenomenologically relevant
properties are represented by fixed points in phase-space. We use this method to analyze and
compare several classes of quintessence and scalar-tensor models, focusing on modifications
induced by the presence of the non-minimal coupling, with respect to quintessence case.
To realize a sequence of background dominated scaling solutions, followed by a dark energy
dominated attractor, coexistence of the corresponding fixed points is required. This is possible
only in the non-minimally coupled case. Furthermore, we numerically investigate the evolution
of the dark energy equation of state in the low redshift regime. We thereby hope to be able
to discriminate between the different models.

In chapter 6 we generalize the phase-space method used in the preceding chapter to the
case of biscalar-tensor theories. Our main interest is to discover, how the introduction of the
second field modifies the phenomenological behaviour of single field models. We investigate
an axion-dilaton model, which was recently proposed in [86]. While the authors neglected the
background fluid contributions to the total energy density, and found recurrent acceleration
to be possible, we extend the model by including (dark) matter and radiation. In our version
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of the model, recurrent acceleration no longer constitutes the generic case. Furthermore, in a
wide range of parameter space the model effectively reduces to a single field model, which is
conformally equivalent to Brans-Dicke theory.

Additionally, we specify a subclass of models featuring a periodic potential with saddle
points and minima. We show that, under certain assumptions regarding initial conditions,
the phenomenologically relevant properties can be reproduced by a single field model with
Gaussian potential. To give an example, we discuss a proposal of Peloso and Poppitz [70],
realizing quintessence in terms of a complex shape modulus, within the framework of six-
dimensional supergravity. The shape moduli potential, determined by the Casimir energy of
bulk fields, is of the prescribed form.

Finally, in chapter 7 we summarize our main results and conclude.
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Chapter 2

Dark Energy

Over the last few years, observational cosmologists have gathered mounting evidence, that
our universe - apart from being flat - expands accelerated, confirmed by several independent
observations including those of type Ia supernovae [6, 71, 79, 80, 81, 97], the cosmic microwave
background (CMB) [87] and the large scale structure of the universe (LSS) [41, 90]. On the
other hand, it became clear that the total amount of all known types of matter-energy,
including dark matter, does not account for the critical energy density, being necessary to
render the universe flat. It is widely accepted by now, that a new form of energy, the so-called
dark energy (DE), presently amounts to about 70 to 75 percent of the total energy density of
the universe, and is responsible for the observed acceleration. To give a precise meaning to
the terminus, we consider the Einstein equations of gravity,

Rµν − 1

2
gµνR =

∑

a

T a
µν + T DE

µν , (2.1)

where we have adjusted the reduced Planck mass multiplying the LHS,

M2
p :=

1

8πG0
≡ 1,

by choice of units, and the sum on the RHS runs over all known types of relativistic and
nonrelativistic (including dark) matter species.

In most cosmological applications, it is appropriate to neglect particle interactions, as
well as non-equilibrium effects, and treat the different components in the approximation of a
perfect fluid, characterized by its energy density ρ, pressure p and 4-velocity uµ. In this case,
the energy-momentum tensor takes the form,

gµρTρν = −(ρ + p)uµuν + pδµ
ν ≈ diag(−ρ, p, p, p), (2.2)

where the second expression applies, if we neglect peculiar velocities. In the perfect fluid
approximation, dark matter is just pressureless dust, while radiation (consisting of photons
and relativistic particles, e.g. light neutrinos) is characterized by p = 1

3ρ.
Specializing to a homogeneous and isotropic Robertson-Walker metric,

ds2 = gµνdxµdxν = −dt2 + a2(t)(dχ2 + S2(χ)dΩ2), (2.3)

where

dχ2 =
dr2

1 − kr2
,
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and

S2(χ) =







sinh2 χ, k = −1,
χ2, k = 0,

sin2 χ, k = 1,

corresponds to hyperbolic, flat and spheric geometry respectively, the Einstein equations
reduce to two ordinary differential equations (ODE), governing the time evolution of the
scale factor a(t), the Friedmann equations:

H2 :=
ȧ2

a2
=

1

3
(
∑

a

ρa + ρDE) − k

a2
, (2.4)

ä

a
= −1

6
(
∑

a

ρa + 3pa + ρDE + 3pDE). (2.5)

Deviding the first equation by H2,

1 =
∑

a

Ωa + ΩDE + Ωk, (2.6)

we introduce the density parameters

Ωa :=
ρa

ρcrit
:=

ρa

3H2
,

which measure the energy densities in terms of the critical density. We have formally defined:

Ωk := − k

ȧ2
. (2.7)

If the corresponding energy-momentum tensor is covariantly conserved, each perfect fluid
component separately obeys a continuity equation,

ρ̇a = −3H(ρa + pa) =: −3H(1 + wa)ρa, (2.8)

where we have introduced the equation of state parameter wa, which is specified to wa = 0
or wa = 1

3 , if the subscript a refers to (dark) matter or radiation respectively. From (2.8) we
deduce the following scaling behaviour,

ρDM ∼ a−3, ρrad ∼ a−4,

which indicates that radiation must have been the dynamically dominant component in the
early universe. This stage is followed by a (dark) matter dominated epoch, which is crucial
to the ”standard model” of cosmology, since perturbation growth and structure formation is
only possible in a background with |wfluid| < 1

3 [63].
In the following, we will always assume the universe to be flat, corresponding to Ωk, as

defined in (2.7), being exactly zero. This assumption is justified by recent observational data
[90]:

1 − Ωk = 1.003+0.010
−0.009.

The second Friedmann equation tells us, that accelerated expansion is only possible, if DE has
negative pressure; neglecting the present contribution of radiation, we specify this condition
as follows:

wDE :=
pDE

ρDE
< −1

3

(

1 +
ΩDM

ΩDE

)

.
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The simplest possibility to realize a perfect fluid with negative equation of state parameter
(wDE = −1) is a cosmological constant:

gµλTDE
λν = −δµ

ν Λ.

At present, all existing observational data are in agreement with Dark Energy being a constant
with [33]:

ρDE = Λ ' 10−47(GeV )4.

2.1 A brief history of the cosmological constant

Einstein’s field equations of gravity can be derived from an action principle, namely by varying
the Einstein-Hilbert action,

S = Sgeom + Smat =
1

2

∫

d4x
√−gR + Smat, (2.9)

with respect to the metric. The Lagrangian R, called Ricci or curvature scalar, is just the
simplest possible scalar to be constructed from the metric, and leading to field equations
linear in its second derivatives. The most general choice with the same property includes a
constant,

Sgeom =
1

2

∫

d4x
√−g(R − 2Λ), (2.10)

and leads to field equations, which do not reduce to Newton’s law in the weak field limit. But
given the smallness of Λ, the deviation is not in conflict with experimental tests of general
relativity (GR).

The vacuum solution with positive and negative cosmological constant is called de Sitter
and anti-de Sitter space respectively. A representation of the de Sitter metric can be given
in the form of an eponentially expanding Friedmann-Robertson-Walker (FRW) universe with

constant Hubble parameter H =
√

Λ
3 :

ds2 = −dt2 + eHt(dr2 + r2dΩ2).

In 1917, yet before the FRW cosmological solutions to his field equations were discov-
ered, Einstein [40] had introduced the cosmological constant, to guarantee the existence of a
closed, static universe (k = 1) with a constant energy density. The corresponding Friedmann
equations take the following form:

ȧ2

a2
=

1

3
(ρtot + Λ) − 1

a2
= 0,

ä

a
= −1

6
(ρtot + 3ptot − 2Λ) = 0,

with wtot = −1+ 2
a2ρtot

. When 1929 Edwin Hubble’s observations verified the expansion of the

universe [54], Einstein discarded the cosmological constant as ”the biggest blunder he ever
made in his life” [47].

Nevertheless it reappeared, when Zel’dovich [99] realized, that zero-point quantum vacuum
fluctuations at one loop level can give rise to an energy momentum tensor of the form:

〈Tµν〉vac = Λgµν .
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The contribution of vacuum fluctuations to a cosmological constant is formally divergent [82]:

〈T00〉vac =: ρvac ∼
∫ ∞

0
k2dk

√

k2 + m2 ∼ lim
k→∞

k4.

Assuming that the Planck scale provides the natural ultraviolet cutoff to all quantum field
theoretical processes the integral can be be performed with the result,

ρDE

ρvac
= 10−123,

stating the celebrated and infamous ”cosmological constant problem”.
An alternative approach, invented to avoid the extreme fine tuning of Λ, is to regard it

as a dynamical quantity, which eventually relaxes to zero during cosmic evolution. The pos-
sibility of realizing dynamical dark energy in terms of a light, minimally coupled scalar field,
called quintessence, will be addressed in the next section. The proposal of dynamical DE,
however, does not solve the puzzle, why the zero-point vacuum energy should be vanishing,
and only the classical energy density of a scalar field contributes to the dark energy sector.
Indeed it is often quoted, that e.g. quintessence is only meant to address the so called ”cosmic
coincidence problem”, which appears if one reformulates the cosmological constant problem
in the following way:

1. Why is the vacuum energy density so small in comparison to the Planck scale?

2. Why has the DE density reached an order of magnitude comparable to that of the
dark matter density right now, meaning that the onset of acceleration is a recent phenomenon?

Even if dynamical DE provides a satisfying answer to the second question (which is still
in doubt), the first part of the problem remains to be addressed. On the other hand, if Λ is
really a constant, the coincidence problem is automatically solved, whence the scale of Λ is
deduced from some fundamental theoretical principle.

The discovery of supersymmetry in the 1970’s opened up the possibility, that the vacuum
energy density might be vanishing because of a precise cancellation between the bosonic and
fermionic contributions [100]:

〈0|Hb,f |0〉 ≡
∫

〈T00〉vac = ±1

2

∑

~k

ω~k
.

(The upper sign refers to bosons, the lower to fermions.) But even if supersymmetry (SUSY)
is realized by nature, it is necessarily broken at low temperatures, corresponding to the
present state of our universe. In this case, the vacuum energy density is expected to receive
a contribution at an intermediate scale [82]. On the other hand, in the context of higher-
dimensional extensions of standard model physics, supersymmetry can be realized in the bulk
spacetime, being broken only on the 3+1-brane where we - the standard model particles -
live. Dark energy on the brane then emerges from the Casimir energy of bulk fields, providing
the correct energy scale, if the number of extra dimensions is n = 2 [29, 70].
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2.2 Essentials of quintessence

We consider a classical scalar field theory, minimally coupled to gravity, defined by the action

Sφ =

∫

d4x
√−g

(

−1

2
gµν∂µφ∂νφ − V (φ)

)

, (2.11)

with energy-momentum tensor

T φ
µν = − 2√−g

δSφ

δgµν
= ∂µφ∂νφ − gµν

(

1

2
∂σφ∂σφ + V (φ)

)

.

Taking the field to be homogeneous, we identify its pressure and energy density - in analogy
to the perfect fluid case - as:

pφ =
1

2
φ̇2 − V (φ), ρφ =

1

2
φ̇2 + V (φ).

Such a scalar density fluid satisfies the dominant energy condition,

ρ ≥ |p|,

and has a time dependent equation-of-state-parameter,

1 ≥ wφ ≥ −1.

Since
pφ = −ρφ + φ̇2,

the kinetic contribution determines the actual value of wφ. If the field energy density is
dominated by the kinetic part, the equation of state is called ”stiff” (wφ ≈ 1). If the potential
energy dominates, indicating the so-called ”slow-roll” regime, the equation-of-state parameter
can be close to wφ = −1. When we refer to a minimally coupled scalar field as quintessence,
it is understood that the self-interaction potential allows for a (sufficiently) negative equation
of state.

In a FRW cosmological background, the scalar field obeys the following Klein-Gordon
equation:

φ̈ + 3Hφ̇ +
dV

dφ
= 0. (2.12)

To realize slow-roll we need φ̈ ≈ 0, and the force term to be balanced by Hubble friction:

−dV

dφ
≈ 3Hφ̇.

Since the latter has become small up to the present, the potential has to be flat. Furthermore,
the energy density of the quintessence field (that is, the potential) must be of order H 2

0 at
present, corresponding to the critical density:

3H2 = ρcrit ≈ ρφ ≈ V (φ).

The present field value will then be of order one (Planck mass), since the field mass is of order
H0 or smaller:

m2
φ =

d2V

dφ2
∼ V (φ)

φ2
.
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If the potential has a non-zero minimum,

V (φmin) 6= 0,

we get wφ = −1, whence the field has already reached the minimum, and a cosmological
constant Λ = V (φmin) is generated dynamically. If the stabilization takes place within a
finite period of time, it will typically be preluded by oscillations of the equation-of-state
parameter between wφ = −1 (at the turning points where φ̇ = 0), and a value the closer
to wφ = 1, the closer the potential minimum is to zero (when the field passes its minimum
value). Since observational evidence points to wφ ' const around the present, oscillations
are potentially dangerous from the phenomenological point of view. Therefore, a promising
ansatz of quintessence model building is to assume, that either the scalar field has not yet
entered the oscillatory stage, or its potential is of the runaway type.

The invention of quintessence goes back to Wetterich [68, 95, 96], who proposed an expo-
nential potential,

V = Λe−λφ,

and Ratra and Peebles [69, 77], who discussed in addition an inverse power-law potential,

V = Λφ−α,

where the field value is measured in Planck units. Both the types of potentials have in
common, that they admit so-called ”scaling solutions” of the field equations. Liddle and
Scherrer [59] provided a ”classification of scalar field potentials with cosmological scaling
solutions”, defining a scaling solution as follows: The corresponding scalar field energy density
scales as some power of the scale factor,

ρφ ∼ a−n,

which is equivalent to the kinetic and potential energy maintaining a fixed ratio [59]:

φ̇2

ρφ
= 1 + wφ =

n

3
.

Assuming the expansion of the universe to be driven by a dominating background fluid,

ρfluid ∼ a−m,

where m = 3(1 + wfluid), Liddle and Scherrer found scaling behaviour of the scalar density
to be possible, if and only if the scalar potential belongs to one of the three following classes:

1. Inverse power-law: scaling with n < m (ρφ decreases more slowly than ρfluid);

2. Exponential: scaling with n = m;

3. Positive power-law: scaling with n > m (ρφ decreases more rapidly than ρfluid).

Furthermore, they showed that in case 1 the scaling solution is always an attractor in field
space, whereas in case 3 this is only true for sufficiently large powers α:

α > 2
6 + m

6 − m
.
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(Case 2 will be discussed in detail in chapter 5.)
The interest in scaling solutions was originally motivated by the hope to solve the afore-

mentioned cosmic coincidence problem. The existence of an attractor solution, along which
the energy density of the scalar field follows the one of the background fluid, can explain why
the respective density parameters are of the same order now. But to become the dominant
component, the scalar field must have exited the scaling regime recently. In the inverse power-
law case, the scalar field density parameter increases with time along the scaling solution, and
will therefore naturally become the dominant component at some instance during cosmic his-
tory. But matching the observationally verified onset of acceleration will still require some
tuning. (We will reexamine this issue in chapter 5.)

A slightly more general notion was introduced in terms of ”cosmological tracking solutions”
[88], characterized by the property, that phase-space trajectories of the corresponding system
of ordinary differential equations (ODE) converge to a common evolutionary track, from a
wide range of initial conditions. The tracker solution need not be a scaling solution, nor an
attractor solution characterized by the constancy of specific dynamical quantities. Inverse
power-law potentials provide typical examples for this class of models.

In summary, the most appealing feature of dynamical DE in the shape of quintessence
is the existence of attractor, or at least ”tracker” solutions, which seem to guarantee inde-
pendence of initial conditions, thereby avoiding the fine tuning problem of the cosmological
constant.

2.3 Quintessence candidates

From the phenomenological point of view, the ideal quintessence candidate is a light scalar
field, minimally coupled to gravity, lacking any kind of interaction apart from gravitational. A
Yukawa type coupling to ordinary matter fermions e.g. would induce a long range force, given
the small mass of the scalar particle, and is severely constrained by fifth force experiments
and gravity tests [12, 36]. The issue of varying fine structure constant and proton-electron
mass ratio within quintessence models is discussed e.g. in [57].

Another consequence of interactions between the matter and the DE sector concerns their
respective energy-momentum tensors. The Bianchi identities imply, that the Einstein tensor
is covariantly constant,

∇µGµν := ∇µ(Rµν − 1

2
gµνR) = 0,

thus the total energy momentum tensor on the RHS is a conserved quantity. But in presence
of mutual couplings, the several contributions to the energy momentum tensor in equation
(2.1) are not seperately conserved.

2.3.1 Axions

The axion is an example of a light pseudo-Nambu-Goldstone boson, which emerges from a
dynamical solution of the strong CP problem. Peccei and Quinn [66, 67] suggested to enlarge
the standard model gauge group by an additional global U(1)PQ chiral symmetry, whose
spontaneous breakdown is associated with the appearence of a none-zero vacuum expectation
value of a complex scalar field:

〈Φ〉 = fae
ia/fa .
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The axion a acquires a mass due to non-perturbative QCD instanton effects, which break
the symmetry explicitely down to a discrete subgroup Z(N). The effective potential thereby
generated is periodic, with period ∆a = 2π fa

N , and can be written qualitatively as [45, 85]:

V (a) ∼ m2
a(1 + cos(a

N

fa
)).

The axion couples to standard model gauge fields via:

Lc ∼
a

fa
Tr(FF ∗),

where F ∗ is the dual to the field strength tensor F . In the framework of string theory [89],
the terminus axion more generally refers to a pseudoscalar boson with the characteristic shift
symmetry

a → a + 2π
fa

N
.

2.3.2 Dilatons

Dimensional reduction of five dimensional Kaluza-Klein theory,

S5 =
1

2κ5

∫

d5y
√−g5R5,

using the metric ansatz [14],

g5,ab =

(

gµν + φBµBν φBµ

φBν φ

)

,

results in the following low-energy effective action:

S4 =
1

2

∫

d4x
√

(−g)(−φ)(R − 1

4
φFµνF µν). (2.13)

By conformal transformation (local Weyl rescaling) and field redefinition, this action can be
rewritten as follows:

S4 =
1

2

∫

d4x
√−g(R − 1

4
ΦFµνF µν − 1

6Φ2
gµν∂µΦ∂νΦ). (2.14)

Here
Fµν = ∂µBν − ∂νBµ

is the electromagnetic field strength, and the field Φ is called dilaton. Being conformally
related to the 55-component of the five-dimensional metric tensor g5, the dilaton is associated
with a characteristic length scale of the compactified internal space.

The coupling of the dilaton to the Yang-Mills gauge field gives rise to a time dependence
of the effective coupling constant,

1

α2
eff (Φ)

=
1

α2
em,0

+ Φ(t),
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and thereby to a violation of the Einstein equivalence principle [36]. Since different atoms
possess different electromagnetic field contributions to their mass energy, the field dependence
of the electromagnetic coupling induces a composition dependence of the gravitational inter-
action, and thereby a violation also of the weak equivalence principle (cf. universality of free
fall).

In string theory, the scalar partner of the graviton, within the 10-dimensional gravity
supermultiplet, is called dilaton, whereas the terminus radion has been invoked to denote
a scalar field, which represents the size of a compactified internal space, or an inter-brane-
distance, in higher-dimensional models [25, 92].

2.3.3 Moduli fields

Within string cosmology [30], scalar degrees of freedom, e.g. corresponding to standard model
parameters, receive a geometrical interpretation as ”breathing modes” of the compactifying
internal manifold (Calabi-Yau threefold), called moduli fields. Apart from the dilaton and
an overall volume modulus, different Kähler moduli, e.g. associated with 4-cycle volumes,
and ”complex structure” or ”shape” moduli can be phenomenologically relevant. Complex
moduli fields are typically decomposed,

T = e−Φ + iσ,

into a ”dilatonic” part Φ, associated with a (real-valued) volume or length scale, and its
axionic partner σ, obeying the characteristic shift symmetry [16].

It is commonly assumed that all those scalar fields become stabilized - together with the
geometry of the internal manifold - by flux compactification, before or during the inflationary
epoch. (See [16] for an example of ”Roulette inflation”, featuring a Kähler modulus and its
axionic partner.) Since the scalar fields are typically associated with certain fundamental
parameters, it is phenomenologically dangerous to permit, that some of the moduli have not
yet been stabilized, because resulting e.g. in varying coupling constants. The possibility of
exploring moduli fields as quintessence candidates is therefore limited.

The six-dimensional model of Peloso and Poppitz [70] - similar ideas were formulated
earlier in [74] - can be regarded as a toy version of the prescribed approach. The authors
consider two extra dimensions, compactified on an orbifolded torus T 2/Z2, whose area (resp.
the corresponding volume modulus, called radion) is assumed to be already stabilized. The
complex shape modulus instead remains dynamically relevant up to the present, and is re-
garded as quintessence candidate. (See chapter 6 for a detailed discussion, and [23] concerning
the impact on time variation of the electromagnetic fine-structure constant.)

2.3.4 Universal metric coupling

We now consider the possibility, that the quintessence type scalar couples to all standard
model fields (which we formally summarize by Ψ) in a universal way, via a factor A−2(Φ)
multiplying the trace of the matter energy-momentum tensor, so that

Smat = SSM [Ψ, A−2(Φ)gµν ].

The connection between this ansatz and the form of the coupling, as appearing in the scalar
equation of motion, will be made explicit in the next chapter, see equations (3.14) and (3.22).
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In this case, the model is no longer faced with the complication of varying αem, since
the energy momentum tensor of the electromagnetic field is traceless. Furthermore, we can
absorb the scalar coupling into the metric by a conformal transformation,

A2(Φ)gµν =: gnew
µν ,

thereby avoiding any violation of the Einstein and weak equivalence principles [36]. The
resulting theory belongs to the class of scalar-tensor theories of gravity, which will be discussed
in general in the next chapter.

To give an example, we refer to Brax and Martin [20], who examined the possibility of
obtaining quintessence from a Kähler modulus, within a ten-dimensional supergravity frame-
work. In their ”no-scale quintessence” approach, a universal field dependence of the standard
model particle masses is predicted. Unfortunately, the coupling strength is in conflict with
the bound from the Cassini spacecraft experiment [12]. The authors are led to the con-
clusion, that quintessence models from supergravity are either experimentally ruled out, or
indistinguishable from a cosmological constant. The scalar potential they derived from the
superpotential and soft breaking terms,

VDE = Ae−αΦ + Be−βΦ,

is modified due to the predicted universal coupling,

Veff = VDE +
d ln A(Φ)

dΦ
ρmat,

now possessing a minimum, at which the field can be stabilized.

2.3.5 The SUGRA potential

An earlier approach of Brax and Martin [21] to understand quintessence within supergravity,
has become quite popular in the literature. They proposed the following, commonly called
SUGRA potential,

V (Φ) ∼ Φ−α exp (βΦ2),

which can be approximately identified with an inverse power-law potential, as long as the
exponential correction factor is close to unity, but has a minimum at

Φmin =

√

α

2β
,

which restricts the field to finite values. This potential belongs to the ”tracking” class and has
the phenomenologically compelling property, that it leads to an equation of state parameter
of w ' −0.82, almost independently of α [19].

2.3.6 K-Essence and phantom fields

A certain relative of quintessence is obtained by introducing a generalized scalar field La-
grangian [5],

L = p(φ,X), X :=
1

2
(∇φ)2,
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containing - in principle - arbitrary functions of the kinetc term. The issue of scaling solutions
in k-essence models was discussed in [3], and Bonvin et al. [17] presented ”a no-go theorem
for k-essence dark energy”, based on the argument that k-essence implies a DE sound speed
exceeding the speed of light, but there is ongoing debate on this issue [22, 42].

The so-called phantom DE, which has become popular in recent literature [48], can be
regarded as a special case of k-essence, characterized by the choice:

p(φ,X) = X − V (φ).

Here X exhibits the ”wrong” sign, corresponding to negative kinetic energy, leading to a
”super-negative” equation of state wDE < −1. It has been claimed, that a Lagrangian of this
type can be derived within quantum cosmology [91]. In the following section we will comment
on the observational status of this approach.

2.4 Observational evidence: cosmological constant

vs. dynamical dark energy

A revived interest in dynamical models of scalar field DE was triggered by the release of
the so called ”Gold data set” of luminosity distances to 194 type Ia supernovae in 2004
[81], which seemed to indicate, that the cosmological constant is disfavoured with respect
to a dynamical model with time varying equation-of-state parameter, and more, with wDE

crossing the ”phantom divide line” towards values wDE < −1 quite recently. Following a
recent publication [1], we will discuss this development below. Our first purpose is to give an
overwiew of observational tools and results, which are relevant to the study of dark energy.

2.4.1 Luminosity distance measurements and type Ia supernovae

In a flat FRW spacetime, the Hubble rate can be expressed in terms of the luminosity distance
dL,

H(z) =

[

d

dz

dL(z)

1 + z

]−1

,

where z denotes the redshift parameter,

1 + z =
a0

a
,

and the luminosity distance can be observationally infered from estimates of both the absolute
(M) and apparant magnitude (m) of a source:

m − M = 5 log10

(

dL

Mpc

)

+ 25.

If the different components of the energy density are characterized by constant equation-of-
state parameters wa, the following identity holds:

dL(z) =
1 + z

H0

∫ z

0

dz′
√

∑

a Ωa,0(1 + z′)3(1+wa)
.
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To include the possibility of varying wDE(z), one has to choose a parametrization of the
equation of state, valid in the small redshift regime [1, 33].

Another quantity of diagnostic relevance is the deceleration parameter:

q := − ä

aH2
=

(1 + z)

H(z)

dH

dz
− 1.

The zero of q(z) indicates the onset of accelerated expansion, which occurs - according to
observations - between z ≈ 0.3 and z ≈ 1, depending on the model under consideration.

Type Ia supernovae are regarded as standard candles, characterized by a common absolute
magnitude independent of z, presuming not only homogeneity of the progenitor population,
but also the existence of a unique explosion mechanism. According to the widely accepted
”standard model” of type Ia supernovae [58], they occur in close binaries with at least one
white dwarf. Suppose the companion is a red giant star, whose envelope has expanded up to
filling his Roche volume, causing a mass flow towards its neighbour. The white dwarf accretes
material until his total mass reaches the Chandrasekhar limit. At this point, carbon burning
ignites in the stellar core, initializing a thermonuclear explosion. The net reaction,

2 12C+2 16O→ 56Ni,

converts around one half of the stellar mass to 56Ni, the total energy release being proportional
to the so-called ”nickel mass”. The radioactive decay,

56Ni→ 56Co→ 56Fe,

results in emission of γ−photons, and in succession Compton and resonant scattering pro-
cesses transfer the emission to the visual part of the electromagnetic spectrum. So the in-
tegrated luminosity of the supernova is proportional to the nickel mass produced by ther-
monuclear burning, which defines a one parameter family of events. (The variation in this
parameter is assumed to be small, because the total mass of the exploding star is bound by the
Chandrasekhar mass.) Crucial for observers is the empirical fact, that the peak brightness of
the event is linearly correlated to the width of the lightcurve [98]: brighter supernovae evolve
more slowly. While the observed peak brightness may be subject to extinction processes, the
lightcurve shape is not.

The standard scenario discussed so far does not account for the observed spectral diversity
of type Ia supernovae [10], which indicates the existence of different classes of progenitors,
supported by the observed dependence of the type Ia supernova rate on redshift and host
galaxies [60]. On the other hand, there is ongoing debate on the issue of a second parameter
(e.g. metallicity), influencing the lightcurve shape and thereby possibly biasing the luminosity
calibration. According to [75], effects of metallicity evolution can be misjudged as indicating
an evolution of the DE equation of state.

We want to emphasize one more aspect of the physics of type Ia supernovae. We already
mentioned, that scalar-tensor theories of gravity may provide viable DE models. Those the-
ories - as will be discussed in the following chapter - are characterized by the prediction of
a varying gravitational constant (or varying particle masses, respectively). This results in a
time variation of the Chandrasekhar mass limit, and implies a time dependent modification
to supernova luminosities:

M − M0 =
15

4
log

(

G

G0

)

.
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Here M is the absolute magnitude of an event at a given redshift, G the corresponding value of
the gravitational constant, and the subscript 0 refers to the local values. As was shown in [51],
the effect modifies lightcurve shapes as well, thereby further influencing distance estimates.

2.4.2 Observations of the CMB

The presence of DE affects the CMB temperature anisotropies, expanded in spherical har-
monics,

δT

T
=
∑

almYlm,

in at least two ways [33, 63]. First, the position of the acoustic peaks depends on the angular
diameter distance to the last scattering shell:

D =

∫ zdec

0

dz′
√

Ωmat,0(1 + z′)3 + ΩDE,0f(z′)
,

where zdec is the redshift at decoupling and

f(z) :=
ρDE(z)

ρDE,0
= exp

(

3

∫ z

0
dz′

1 + wDE(z′)

1 + z′

)

accounts for dynamical variation of the equation of state. Secondly, the CMB spectrum,

Cl := 〈|alm|2〉 = 4π

∫

dk

k
Pinit(k)|∆l(k, η0)|2,

where Pinit(k) is an initial power spectrum, depends on the transfer function ∆l(k, η0) for
the l multipole of the k-th wavenumber, at the present (conformal) time η0. This function
receives an additive contribution from the so-called ”integrated Sachs-Wolfe (ISW) effect”,
emerging from variations of the gravitational potential along the line of sight. While the grav-
itational potential is constant during matter dominated epoch, according to standard ΛCDM
cosmology, it becomes time-dependent, if the dark energy component is either dominant or
dynamically changing.

2.4.3 Baryon acoustic oscillations

A remarkable confirmation of standard cosmology has been the recent detection of a peak
in the power spectrum of galaxy correlation functions, as obtained by the Sloan Digital Sky
Survey (SDSS) of luminous red galaxies [41]. Though acoustic oscillations (sound waves)
in the tightly coupled, hot baryon-electron-photon plasma cease at decoupling, they leave an
imprint in the baryon density disribution. In combination with CMB data, the BAO peak can
be used to reduce the number of priors, necessary for parameter estimation, by one, though
per se it says nothing about the dynamics of DE at present.

In combination with type Ia supernova observations, the BAO data lead to a significant
constraint in the (Ωmat,0, wDE,0)-parameter plane. The most recent data release, first results
from the ESSENCE supernova survey [97], combined with the results of [41], has provided new
estimates of Ωmat,0 and wDE,0. Assuming flat FRW geometry, and imposing a prior of constant
wDE , the ESSENCE collaboration (applying two different lightcurve fitting procedures to the
supernova sample) obtained the following, best fit values:
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wDE,0 = −1.047+0.125
−0.124, Ωmat,0 = 0.274+0.032

−0.020,

wDE,0 = −0.988+0.110
−0.109, Ωmat,0 = 0.284+0.031

−0.020.

For comparison, we cite the results of the SDSS large-scale real-space power spectrum mea-
surement [90], combined with CMB data obtained by the Wilkinson Microwave Anisotropy
Probe [87]. Assuming flatness and constant wDE , the following parameter estimates were
obtained:

wDE,0 = −0.94 ± 0.09, Ωmat,0 = 0.24 ± 0.02.

2.4.4 Cosmological constant vs. phantom DE

In [1] the authors reconstruct the DE equation of state from two complementary supernovae
datasets, the newly released ”Gold+HST sample” [79], comprised of 135 supernovae up to
z = 1.755, and data of the SuperNova Legacy Survey (SNLS) [6], including 115 supernovae
below z = 1. They use the following parametrization of the squared Hubble rate,

H2

H2
0

= Ωmat,0(1 + z)3 +

2
∑

i=0

Ai(1 + z)i,

and marginalize over Ωmat,0 = 0.28 ± 0.03. The best fit results are shown in figures 2.1 and
2.2, which are taken from [1]. As is obvious from figure 2.1, the newly released dataset favours
phantom divide line crossing (just like the preceding one [81]), while the SNLS data lead to
a contradictory conclusion: the best fit wDE(z), as shown in figure 2.2, exhibits only very
mild evolution, with wDE(z) = −1 well within 2σ confidence levels. This discrepancy may
be a result of the different lightcurve standardization techniques used by the two teams (see
[6]), the fact that the Gold+HST sample contains data from two different surveys, or due to
systematic bias.

In addition the authors of [1] combine the supernova data with observational results
concerning BAO [41] and the CMB (WMAP 3-year [87]), using the marginalization Ωmat,0 =
0.28 ± 0.03 for the entire dataset. As can be observed in figures 2.3 and 2.4, the respective
results from the two different supernova samples become ”strikingly similar” [1], because the
additional CMB and BAO data impose strong constraints. (The authors point out, that the
WMAP and BAO data strongly depend on the marginalization value of the matter density,
and therefore their use in conjunction with the supernovae data might be questionable.) While
now ΛCDM cosmology - as well as weakly time dependent DE - is consistent with the results,
the evidence of phantom divide line crossing is significantly reduced. (Compare figures 2.1
and 2.3.)

In summary, following the conclusions of [1], the fundamental question, whether DE is a
dynamical quantity or just the cosmological constant, still remains open, though ”possible
deviation of DE properties from those of Λ is gradually becoming more and more restricted”
[1]. Furthermore we want to emphasize, that phantom DE is supported only by one dataset
based on supernova observations. Given our yet limited understanding of the physics of type
Ia supernovae (as was discussed in a preceding subsection), this evidence has to be treated
with the necessary caution. (See also [56] concerning the perspective of future SNe surveys
to be capable of discriminating between dynamical DE and Λ.) In this thesis, we will stick to
the more conservative interpretation of the data, and consider only scalar fields with positive
kinetic energy.
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Figure 2.1: Reconstruction of wDE(z) from the Gold+HST dataset, best fit with 2σ confidence
levels. Figure taken from [1].

Figure 2.2: Reconstruction of wDE(z) from the SNLS dataset, best fit with 2σ confidence
levels. Figure taken from [1].
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Figure 2.3: Reconstruction of wDE(z) from the Gold+HST dataset, combined with
CMB+BAO data, best fit with 2σ confidence levels. Figure taken from [1].

Figure 2.4: Reconstruction of wDE(z) from the SNLS dataset, combined with CMB+BAO
data, best fit with 2σ confidence levels. Figure taken from [1].
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Chapter 3

Scalar-Tensor Theories of Gravity

As mentioned in the previous chapter, considering a quintessence candidate, which exhibits
universal metric coupling, leads us to study scalar-tensor gravity. The Φ-dependent, conformal
transformation of the metric results in a new form of coupling between scalar field and Ricci
curvature, called non-minimal coupling,

Lnmc = F (φ)R,

in the so-called Jordan frame formulation of the theory. The prototype theory, establishing
non-minimal coupling, was developed by Jordan [55], Brans and Dicke [18], and will be
discussed below.

Many authors distinguish between (particle) ”physical” and ”geometrical” approaches
to understand dark energy, and refer to scalar-tensor theories as example for the latter.
There is a certain ambiguity in this classification since, classically, the Jordan frame theory
is conformally equivalent to the Einstein frame description, including a scalar field, which
universally couples to matter, thereby inducing Φ-dependent masses [28, 44]. So within
scalar-tensor theory we recover a property of the cosmological constant, which also can be
understood either as ”geometrical” (cf. a modification of the LHS of Einstein’s equations),

Gµν − Λgµν = T mat
µν ,

or as ”physical” vacuum energy, adding to the energy-momentum tensor:

Gµν = T mat
µν + T vac

µν .

In the following sections, we write down both the Jordan frame field equations of grav-
ity, corresponding to the geometrical interpretation of dark energy, as well as the Einstein
frame formulation featuring a scalar field, which is frequently named ”extended” or ”coupled”
quintessence in the literature.
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3.1 Brans-Dicke theory

The original motivation to consider a gravity theory, modified by introduction of a scalar
field, was Dirac’s argument [39], that the gravitational constant should be time dependent.
Jordan [55] proposed the following general Lagrangian,

LJ =
√−g[φγ

J(R − ωJ

φ2
J

gµν∂µφJ∂νφJ) + Lmat(φJ , gµν ,Ψ)],

with constants γ, ωJ , and Ψ again denoting standard model matter fields in summary, moti-
vated by the embedding of a four-dimensional curved spacetime manifold in five-dimensional
Minkowski space. (Compare e.g. the effective four-dimensional action of Kaluza-Klein theory,
given in section 2.3.)

In Jordan’s Lagrangian, both the non-minimal coupling between scalar field and R, as
well as (non-universal) matter couplings are present. To ensure validity of the weak equiv-
alence principle, Brans and Dicke [18] reformulated Jordan’s ansatz, demanding Smat to be
independent of φ:

Sgeom =
1

2

∫

d4x
√−gφBD[R − ω

φ2
BD

gµν∂µφBD∂νφBD]. (3.1)

In this action, the gravitational constant is replaced by the spacetime dependent Brans-Dicke
(BD) scalar:

1

8πG
→ φBD.

In the original theory (3.1), the scalar field’s kinetic term is not written in canonical form.
By a redefinition of the field,

φBD =: ξφ2, ξ :=
1

2ω
,

the action can be rendered into the form:

Sgeom =

∫

d4x
√−g

1

2
[ξφ2R − gµν∂µφ∂νφ].

In general, a scalar-tensor theory of gravity is characterized by two independent functions,
the coupling F (φ) and a potential V (φ) :

Sgeom = Snmc + Sφ =
1

2

∫

d4x
√−gF (φ)R +

∫

d4x
√−g

[

−1

2
gµν∂µφ∂νφ − V (φ)

]

. (3.2)

The introduction of a potential term is necessary, if one wishes to allow for a negative equation
of state wφ < −1

3 , and therefore a crucial prerequisite to realize models of dynamical dark
energy within the framework of scalar-tensor gravity.
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3.2 Field equations

By varying the action (3.2) with respect to the metric, we derive the modified LHS of Einstein’s
equations:

δSnmc =
1

2

∫

d4x[F (φ)R δ
√−g +

√−gF (φ)Rµνδgµν +
√−gF (φ)gµνδRµν ]

=
1

2

∫

d4x(
√−g[F (φ)(Rµν − 1

2
gµνR)δgµν ] +

√−gF (φ)gµνδRµν). (3.3)

Apart from the factor F (φ) multiplying the Einstein tensor Gµν , further deviation from GR
is determined by the last term: Due to the appearance of F (φ), it is impossible to recast this
part of the integrand into a total divergence. We have to compute δRµν explicitely [25]:

δRµν = ∇α(δΓα
µν) −∇ν(δΓ

α
µα) = −∇µ∇ν(δg

µν) + ∇α∇α(δgµνgµν).

Integrating twice by parts, we pick up derivatives of F (φ) and finally get:

δSnmc =
1

2

∫

d4x
√−g[F (φ)Gµν −∇µ∇νF (φ) + gµν∇α∇αF (φ)]δgµν .

The Jordan frame field equations of gravity thereby obtained read as follows,

F (φ)Gµν −∇µ∇νF (φ) + gµν∇α∇αF (φ) − T φ
µν = T mat

µν , (3.4)

where we have written

T φ
µν = ∂µφ∂νφ − gµν

(

1

2
∂σφ∂σφ + V (φ)

)

on the LHS to emphasize the geometrical interpretation of the scalar field. Since T mat
µν does

not depend on φ, it is covariantly conserved like in the GR case.
This is not true for T φ

µν , but we can split the LHS of the field equations as follows,

F (φ)Gµν −∇µ∇νF (φ) + gµν∇α∇αF (φ) − T φ
µν =: Gµν − T φ,cons

µν ,

where we have defined the quantity [72]:

T φ,cons
µν = T φ

µν + ∇µ∇νF (φ) − gµν∇α∇αF (φ) + (1 − F (φ))Gµν , (3.5)

which is indeed covariantly conserved due to the Bianchi identities.

Since we are interested in applications in cosmology, we specialize to a flat FRW universe,
and assume the scalar field to be time dependent only. We find the following Friedmann
equations:

H2 =
1

3F
(ρfluid +

1

2
φ̇2 + V (φ) − 3HḞ ) =:

1

3
(ρfluid + ρcons

φ ), (3.6)

Ḣ = − 1

2F
(ρfluid + pfluid + φ̇2 + F̈ − HḞ ) =: −1

2
(ρfluid + pfluid + ρcons

φ + pcons
φ ). (3.7)

The quantities ρcons
φ and pcons

φ we introduced correspond to T φ,cons
µν as defined in (3.5).
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The simplest way to obtain the scalar field equation of motion is to substitute the FRW
metric directly within the action, and integrate over the spatial coordinates:

Sgeom = V
∫

dt a3(t)

[

1

2
(F (φ)R + φ̇2) − V (φ)

]

.

Varying this reduced action with respect to the field renders the Jordan frame Klein-Gordon
equation:

φ̈ + 3Hφ̇ = −dV

dφ
+

1

2

dF

dφ
R, (3.8)

with R = (6Ḣ+12H). By replacing this expression explicitely, using the Friedmann equations,
we see that the scalar field couples to matter only via gravitational interaction. In other words,
in scalar-tensor theories, gravity is mediated not only by the metric tensor field, but also by
the BD scalar.

3.3 Biscalar-tensor action, conformal transformation

and Einstein frame field equations

As was discussed in chapter 2, several existing approaches to understand DE include two
different scalars (e.g. real and imaginary part of some complex field). The purpose of this
section is to introduce a class of biscalar-tensor theories, which is sufficiently general to
include those specific models from the literature we intend to discuss in detail in chapter 6.
We propose the following action:

S =

∫

d4x
√−g

[

F (φ)

2
R − 1

2
gµν(∂µφ∂νφ + G(φ)∂µσ∂νσ) − V (φ, σ)

]

+ Smat[g
µν ,Ψ], (3.9)

where we again denoted by Ψ the particle content of the standard model.
By a conformal transformation of the metric,

gµν → g∗µν = F (φ)gµν ,
√−g →

√

−g∗ = F 2(φ)
√−g,

the Ricci tensor and curvature scalar change according to:

Rµν → R∗
µν = Rµν +

3

2

∂µF∂νF

F 2
− 1

F
(∇µ∂νF +

1

2
gµν∂ρ∂

ρF ),

R → R∗ = g∗µνR∗
µν = F−1gµνR∗

µν .

We obtain

R = FR∗ − 3

2

g∗µν∂µF∂νF

F
+ 3∂ρ∂

ρF,

to be replaced within the Lagrangian. The last term can be neglected, since it is a total
divergence and does not change the equations of motion.

By a redefinition of the scalar field,

(

dΦ

dφ

)2

=
3

2F 2

(

dF

dφ

)2

+
1

F
,
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we can compensate for the additional terms, and render the field’s kinetic term into canonical
form:

√−g∗

F 2

(

−3

4
g∗µν∂µF∂νF − 1

2
Fg∗µν∂µφ∂νφ

)

= −
√

−g∗
1

2
g∗µν∂µφ∂νφ

(

3

2F 2

(

dF

dφ

)2

+
1

F

)

= −
√

−g∗
1

2
g∗µν∂µΦ∂νΦ.

(3.10)

If we redefine

G(Φ) : = [F−1G](φ(Φ)), (3.11)

V (Φ, σ) : = F−2(φ(Φ))V (φ(Φ), σ), (3.12)

A(Φ) : = F− 1
2 (φ(Φ)), (3.13)

the action takes the following (Einstein frame) form:

S =

∫

d4x
√−g

[

1

2
R − 1

2
gµν(∂µΦ∂νΦ + G(Φ)∂µσ∂νσ) − V (Φ, σ)

]

+ Smat[A
−2(Φ)gµν ,Ψ],

(3.14)

where we have suppressed the ∗ identifying the Einstein frame metric. This action is a specific
example of the more general case of multiscalar-tensor theories [36], defined by the Einstein
frame action

S =

∫

d4x
√−g

[

1

2
R − 1

2
gµνγAB∂µΦA∂νΦ

B − V (Φ1, ...ΦN )

]

+ Smat, (3.15)

where γAB(Φ1, ...ΦN ) is the σ-model metric of the N-dimensional scalar manifold:

dσ2 = γABdΦAdΦB .

Varying the action (3.15) with respect to the metric renders the standard Einstein equa-
tions:

Gµν = TΦ
µν + T mat

µν , (3.16)

where

Tmat
µν = − 2√−g

∂

∂gµν
(
√
−gLmat), (3.17)

and

TΦ
µν = ∂µΦ∂νΦ + G(Φ)∂µσ∂νσ − 1

2
gµν(∂ρΦ∂ρΦ + G(Φ)∂ρσ∂ρσ + 2V (Φ, σ)), (3.18)

equivalent to the minimally coupled, quintessence case.
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The scalar field equations of motion are obtained as follows:

δSΦ =

∫

d4x
√−g(−gµν∂νΦδ(∂µΦ)

+

[

−1

2

dG(Φ)

dΦ
gµν∂µσ∂νσ − ∂V (Φ, σ)

∂Φ
+

∂

∂Φ
(
√−gLmat)

]

δΦ)

=

∫

d4x

[

∂µ(
√
−ggµν∂νΦ) −

√
−g

(

1

2

dG(Φ)

dΦ
gµν∂µσ∂νσ +

∂V (Φ, σ)

∂Φ

)

− ∂

∂gµν
(
√−gLmat)2Q(Φ)gµν

]

δΦ

=

∫

d4x
√−g

[

∇µ∂µΦ − 1

2

dG(Φ)

dΦ
gµν∂µσ∂νσ − ∂V (Φ, σ)

∂Φ
+ gµνTmat

µν Q(Φ)

]

δΦ.

(3.19)

In the second step we introduced

Q(Φ) :=
1

A(Φ)

dA

dΦ
, (3.20)

in the last we used the definition of T mat
µν .

By varying with respect to σ we get:

δSσ =

∫

d4x
√−g(−G(Φ)gµν∂νσδ(∂µσ) − ∂V (Φ, σ)

∂σ
δσ)

=

∫

d4x

[

∂µ(
√−gG(Φ)gµν∂νσ) − ∂V (Φ, σ)

∂σ

]

δσ (3.21)

=

∫

d4x
√−g

[

G(Φ)∇µ∂µσ +
dG(Φ)

dΦ
gµν∂µΦ∂νσ − ∂V (Φ, σ)

∂σ

]

δΦ.

As above, we take the metric to be of the flat FRW type,

ds2 = −dt2 + a2(t)d~x2,

where now the time variable and scale factor are related to the Jordan frame quantities by

dt = A(Φ)dtJF , a = A(Φ)aJF ,

and assume, that both the scalar fields depend only on time. In this case, the equations of
motion take the following form:

Φ̈ + 3HΦ̇ =
1

2

dG(Φ)

dΦ
σ̇2 − ∂V (Φ, σ)

∂Φ
+ Q(Φ)T, (3.22)

σ̈ + 3Hσ̇ =
1

G(Φ)

(

−dG(Φ)

dΦ
Φ̇σ̇ − ∂V (Φ, σ)

∂σ

)

. (3.23)

Assuming a perfect fluid background, we specify the trace of the energy-momentum tensor to

T = −ρfluid + 3pfluid.

This is related to the corresponding Jordan frame quantity by: T = A4(Φ)TJF .
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As a consequence of the coupling between Φ and matter, the matter continuity equation
is modified. From the zero component of the Bianchi identity,

0 = ∇µGµν = ∇µ(TΦ
µν + T mat

µν ),

we get, after using the equations of motion of the Φ-field,

ρ̇mat = (−3H + Q(Φ)Φ̇)ρmat. (3.24)

The corresponding equation for the radiation component,

ρ̇rad = −4Hρrad, (3.25)

is unchanged with repect to standard GR, due to the fact that the energy momentum tensor
of a perfect fluid with w = 1

3 is traceless.
The Friedmann equations take their usual form in the Einstein frame:

H2 =
1

3
(ρmat + ρrad +

1

2
(Φ̇2 + G(Φ)σ̇2) + V (Φ, σ)), (3.26)

Ḣ = −1

2
(ρmat +

4

3
ρrad + Φ̇2 + G(Φ)σ̇2). (3.27)

3.4 Beyond - and back to - general relativity

The predicted deviation from GR - due to the time variability of the gravitational coupling
constant, and the existence of a scalar partner to the graviton - has observational conse-
quences, and since we know that GR has so far passed all experimental tests, the possible
deviation is severely constrained.

We start with the modification of Newton’s law. The Newtonian limit of multiscalar-
tensor theory yields the following interaction between two point-like bodies with masses M1,2

at distance r [36],

LN
int =

GM1M2

r

[

1 +
∑

a

Qa,0Q
a
0 exp(−mar)

]

A2
0, (3.28)

where the subscript 0 refers to the present value of the respective quantity,

Qa :=
d lnA

dΦa
,

and ma is the mass of scalar field Φa. Specializing to only one scalar field, in the zero mass
limit the effective Newtonian constant is given by:

Geff := GA2
0(1 + Q2

0).

(Newtonian gravity corresponds to A0 = 1, Q0 = 0.) The time variation of this quantity is
constrained [78]:

∣

∣

∣

∣

∣

Ġeff

Geff

∣

∣

∣

∣

∣

≤ 6 × 10−12 yr−1.
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We consider now the parametrized post-Newtonian (PPN) approximation. The post-
Newtonian corrections can be quantified in terms of Eddington’s parameters β, γ [46],

−g00 ≈ 1 − 2M

r
+

β − γ

2

4M2

r2
,

grr ≈ 1 + γ
2M

r
,

where 2M equals the Schwarzschild radius, and the Schwarzschild solution of Einstein’s equa-
tions corresponds to

β = γ = 1.

In scalar-tensor theory, the parameters can be expressed as follows [36]:

γ − 1 = −2
Q2

0

1 + Q2
0

, (3.29)

β − 1 =
1

2

Q2
0

(1 + Q2
0)

2

(

dQ

dΦ

)

0

. (3.30)

Current constraints on the PPN parameters from solar system tests, e.g. the Cassini space-
craft experiment [12], imply a bound on the coupling:

Q2
0 < 10−3. (3.31)

In addition, we have to take into account constraints from big bang nucleosynthesis (BBN).
The introduction of a light scalar field - and a differing value of the gravitational coupling
constant - changes the effective number of degrees of freedom of the relativistic particles (g∗),
and thereby modifies the Friedmann equation,

H2 =
π2

90
g∗

(

1 +
δg∗
g∗

)

T 4,

where we have neglected non-relativistic contributions to the energy density, and re-expressed
ρrad in terms of the temperature T . Taking a conservative estimate (| δg∗

g∗
| ≤ 0.2), one obtains

the bound [78]:

0.8 ≤
∣

∣

∣

∣

A2
BBN

A2
0

∣

∣

∣

∣

≤ 1.2.

The BBN constraint also applies to the minimally coupled, quintessence case [33]:

ΩDE(T ≈ 1MeV ) < 0.2.

Since the BBN bound on the non-minimal coupling is less stringent than the constraints
from solar system tests applying to its present value, a larger deviation from GR is admitted in
the past. This observation leads us to study the dynamical evolution of the coupling function.
For simplicity, we stick to the one field case [9, 35]. Introducing the new variable

N := ln
a

ainit
, (3.32)

we rewrite the scalar field equation of motion ( d
dt = H d

dN ):

H2 d2Φ

dN2
+ (Ḣ + 3H2)

dΦ

dN
= −Q(Φ)(ρfluid − 3pfluid) −

dV

dΦ
.
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In the next step we substitute H2 and Ḣ, using the Friedmann equations:

(

ρfluid + V (Φ)

3 − ( dΦ
dN )2

)

d2Φ

dN2
+

(

1

2
(ρfluid − pfluid) + V (Φ)

)

dΦ

dN
= −Q(Φ)(ρfluid − 3pfluid) −

dV

dΦ
.

Dividing by ρfluid, and defining ν := V (Φ)
ρfluid

, we finally get:

(

1 + ν

3 − ( dΦ
dN )2

)

d2Φ

dN2
+

1

2
(1 − wfluid + 2ν)

dΦ

dN
= −Q(Φ)(1 − 3wfluid) − ν

d ln V

dΦ
. (3.33)

Assuming ν and wfluid to be only slowly varying with N , we have obtained the evolution
equation of a scalar, ”particle-like” dynamical variable with velocity dependent mass [35],
in presence of a (quasi-)constant friction parameter and a force term, due to the effective
potential:

Veff = (1 − 3wfluid) ln A(Φ) + ν lnV (Φ).

Following [35], we first consider the case of vanishing potential. We have to distinguish
three different possibilities:

1. The effective potential has a minimum, given by a zero of Q(Φ). We can then study
the behaviour of the scalar field near this minimum in the quadratic approximation,

lnA(Φ) ≈ (Φ − Φmin)2,

if Φ is close to Φmin. We introduce φ := Φ − Φmin, and neglect the velocity dependence of
the mass term (since it is quadratic in dφ

dN ) to obtain,

d2φ

dN2
+

3

2
(1 − wfluid)

dφ

dN
= −6(1 − 3wfluid)φ,

which is just the equation of motion of a damped harmonic oscillator with frequency

ω2 := 6(1 − 3wfluid) > 0,

since wfluid < 1
3 , after the first particle species has become non-relativistic. So the field settles

to a finite value, corresponding to a zero of Q(Φ). But as Q measures the deviation from
GR, this indicates an attractor mechanism towards Einstein gravity. Indeed Damour and
Nordtvedt [35] showed that, whenever the coupling function Q(Φ) has a zero, an attractor
solution exists, which drives the field to its corresponding value, thereby ensuring the scalar-
tensor theory to become indistinguishable from GR.

2. The effective potential has no minimum, but Q(Φ) approaches zero, while the field
value runs to infinity. In this case, the theory will approach Einstein gravity asymptotically.
As in case 1 this leaves the possibility, that there has been a significant deviation from GR
during early stages of cosmic history.

3. If neither case 1 nor case 2 is valid (e.g. if Q = const), it is not possible to realize an
attractor mechanism towards GR, and observational and experimental constraints cannot be
alleviated while extrapolating the value of Q backwards.

31



We reconsider equation (3.33), now including a non-vanishing potential. Again, dΦ
dN =

0 is a trivial solution if the RHS vanishes, cf. if the effective potential has a minimum,
characterized by the equation:

Q(Φ) = − ν

1 − 3weff

d lnV (Φ)

dΦ
.

Obviously this minimum does not necessarily correspond with Q(Φ) = 0, and since ν - and
in principle even weff - depends weakly on N , its position changes. So we can only hope for

an attractor mechanism towards GR, if the zeroes of Q(Φ) and d lnV (Φ)
dΦ coincide. Otherwise

Q(Φ) may have a zero, but the field can be driven away from the corresponding value due to
the influence of its potential, and the deviation from GR increases with time.

On the other hand, case 2 is still relevant in general, if the potential is of the runaway
type. Since we already know that runaway potentials characterize viable quintessence models,
this class of theories allows for dynamical DE without conflicting GR precision tests. The
late time attractor can be corresponding to either standard Einstein theory or a de Sitter
solution, depending on the choice of the potential.
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Chapter 4

Scaling Solutions in Scalar-Tensor

Cosmology

Lacking robust observational evidence of a time variation of the dark energy equation of state,
or even a significant deviation from wDE = −1, the cosmological constant seems to be the
(mildly) favoured DE candidate. A recent Bayesian model selection approach [84] even claims
”substantially” preference of the cosmological constant over dynamical models. Dynamical
DE is therefore faced with the challenge to mimic the behaviour of a constant energy density
during their late time evolution: The corresponding trajectories in the (ΩDE, wDE)− plane
need to approach the line wDE = −1 as close as possible, well before reaching ΩDE ≈
0.7...0.75, and within a wide range of initial conditions.

In the quintessence case this challenge is twofold: The scalar field potential has to be
extremely flat, in order to provide a quasi-constant energy density and equation of state, and
to match the ”tracking condition” of [88] to guarantee independence of initial conditions. As
already mentioned in chapter 2, inverse power-law potentials,

V ∼ φ−α,

are prototypes of the latter class. In the scaling regime of the tracker solution the equation-
of-state parameter is approximately constant and given by:

wDE ≈ − 2

α + 2
.

Unfortunately, as was demonstrated in numerical studies done by Bludman, the smaller one
chooses α, the less trajectories join the tracker solution in time: ”Crawling” quintessence
potentials are poor trackers [15]. This implies, that the recent behaviour of the DE equation
of state becomes sensitive to the choice of initial conditions. (The argument will be illustrated
in the next chapter.)

Within the framework of scalar-tensor gravity, the quintessence potential is replaced by
an effective potential, including a time dependent term, which results from the non-minimal
coupling:

Veff = V (φ) − 1

2
F (φ)R.

As was argued in [7, 62, 73], the existence of the additional term can lead to an enlargement
of the basin of attraction of the tracker solution, even in the case of small potential slope, due
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to a mechanism called ”R-boost”. During the early stages of the radiation dominated epoch,
the Ricci scalar,

R =
1

F (φ)
(ρfluid − 3pfluid − φ̇2 + 4V (φ) − 3F̈ (φ) − 9HḞ (φ)), (4.1)

is enhanced stepwise, whenever a new matter species becomes non-relativistic. Photons (and
likewise relativistic particles) do not contribute, since their energy-momentum tensor is trace-
less. Since matter energy density scales as a−3, and the scale factor is small in the early
universe, R can be large enough to dominate the scalar field dynamics via the F -dependent
term. The field value grows accelerated, and the kinetic energy density of the scalar field
increases, until the Hubble friction becomes relevant. The R−boost may in principle be effec-
tive enough to wash out any dependence on initial conditions, thereby focusing phase-space
trajectories towards a common evolutionary track and alleviating the problems of ”crawling”
quintessence.

The late time evolution of the field is still governed by the runaway potential, because R
becomes smaller as the universe expands, and the present value of the coupling F (φ) = F0 is
strongly constrained by precision tests of GR. Assuming - conservatively - that the coupling
was already weak in the past (consistent with the bounds on F0), the authors of [73] proposed
the existence of an early time attractor solution characterized by scaling behaviour of the
dark energy density, if the coupling F (φ) belongs to one of three specific classes.

Their work raises two interesting questions we address in the following sections:

1. Does their claim hold, if one relaxes at least some of the several assumptions the au-
thors made prior to and during their calculations?

2. Can the convergence to the early time scaling attractor solution be identified with
convergence towards Einstein theory?

4.1 Dynamical evolution equations in the Jordan frame

We recollect the relevant evolution equations from the previous chapter, as derived from
action (3.2). We begin with the Friedmann equations,

H2 =
1

3F
(ρfluid +

1

2
φ̇2 + V (φ) − 3HḞ ) =

1

3
(ρfluid + ρcons

φ ), (4.2)

Ḣ = − 1

2F
(ρfluid + pfluid + φ̇2 + F̈ − HḞ ) = −1

2
(ρfluid + pfluid + ρcons

φ + pcons
φ ), (4.3)

where the conserved quantities can be expressed as follows:

ρcons
φ =

1

2
φ̇2 + V (φ) − 3H(Ḟ + H(F − 1)), (4.4)

and

pcons
φ =

1

2
φ̇2 − V (φ) + F̈ + 2HḞ + (F − 1)(2Ḣ + 3H2). (4.5)

The Klein-Gordon equation of the scalar field takes the following form,

φ̈ + 3Hφ̇ = −dV

dφ
+

1

2

dF

dφ
(6Ḣ + 12H2), (4.6)
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where we replaced R = (6Ḣ + 12H2), which can be seen to be equivalent to (4.1) by substi-
tuting the Friedmann equations. The continuity equation obeyed by the background fluid,

ρ̇fluid = −3H(ρfluid + pfluid) = −3H(1 + wfuid)ρfluid,

where wfluid smoothly changes from 1
3 to zero during the transition from radiation to matter

dominated expansion, can be rewritten as:

d ln ρfluid

dt
= −3(1 + wfluid)

d ln a

dt
. (4.7)

Following [73], we are interested in solutions of the scalar field equation of motion, valid
during those stages of cosmic evolution, where the Hubble expansion is dominated by the
background fluid:

H2 =
ȧ2

a2
≈ 1

3
ρfluid. (4.8)

Since the background energy density scales as

ρfluid ∼ a−3(1+wfluid) =: a−m, 3 ≤ m ≤ 4,

according to (4.7), we get
ȧ2

a2−m
= const ⇒ a ∼ t

2
m ,

and finally:

H =
2

m
t−1.

This expression can be substituted into (4.6), together with an approximation of R. We
rewrite (4.1), using (4.4) and (4.5),

R = ρfluid − 3pfluid + ρcons
φ − 3pcons

φ ≈ ρmnr0

a3
, (4.9)

in contrast to [73], who replaced

R ≈ ρfluid

F
=

1

F

ρmnr0

a3
, (4.10)

where ρmnr0 is the present value of the energy density of the components, which are non-
relativistic at the time in which the R-boost occurs. The choice (4.10) reintroduces the
explicit dependence on the coupling function F, which on the other hand has already been
neglected in the calculation of H(t), see (4.8). In agreement with [48] (see their footnote 4),
we regard the two different replacements to be inconsistent. This is potentially dangerous,
especially if one intends to solve for the coupling, as we will see in the next section.

By substituting R according to our approximation (given the explicit time dependence of
the scale factor), the equation of motion takes the following form,

φ̈ +
6

m
t−1φ̇ = −dV

dφ
+

C

2

dF

dφ
t−

6
m , (4.11)

where we introduced the constant C to account for both ρmnr0 and a proportionality factor
in a(t).
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4.2 Classification of coupling functions

Motivated by the work of Liddle and Scherrer [59], the authors of [73] classified possible
choices of the coupling function F (φ), which allow for scaling solutions in the background
dominated stages of cosmic evolution. They assumed that the DE density is dominated - due
to the R-boost - by the kinetic term, and that this term scales as some power of a:

ρcons
φ ≈ 1

2
φ̇2 ∼ a−n ∼ t

2n
m . (4.12)

Furthermore they regarded the potential gradient to be negligible in the equation of motion.
Though in the Friedmann equations, the potential energy can be neglected with respect

to the background fluid, see (4.8), we will keep the potential force term in the equation of
motion. Minimally coupled, quintessence models do as well admit solutions with dominating
kinetic energy during early time evolution. Inverse power-law potentials exhibit diverging
slopes if φ → 0, so we do not take it for a priori granted that only the R−dependent term is
dynamically relevant. On the other hand, there necessarily is a stage of evolution where dV

dφ

and dF
dφ R contribute to the same order in the RHS of the Klein-Gordon equation.

Since H ∼ t−1, while R ∼ t−
6
m , which approaches t−2 as m → 3, it depends on the

effectiveness of the R−boost, how long the scalar field remains in the scaling regime. Since
we are ultimately interested in attractor solutions, we allow for the scaling behaviour to be
maintained during matter dominance, and the potential force term to catch up with dF

dφ R,
before the friction term becomes relevant.

Assuming that a scaling solution exists, we can rearrange the equation of motion in order
to solve for the coupling function, since we know the time dependence of the scalar field in
the scaling regime (specified by choice of n):

dF

dφ
=

2

C

(

φ̈ +
6

m
t−1φ̇ +

dV

dφ

)

t
6
m . (4.13)

4.2.1 Case n = m

If the kinetic energy density of the scalar field scales exactly like the background fluid, we
obtain from (4.12):

φ̇ = At−1 ⇒ φ = A ln t,

where we have set ti = 1, φi = 0. (4.13) then takes the following form:

dF

dφ
=

2

C

[

A

(

−1 +
6

n

)

t
2(3−n)

n +
dV

dφ
t

6
n

]

.

We plug in t = exp φ
A to get

dF

dφ
=

2(6 − n)

n

A

C
exp

(

2(3 − n)

n

φ

A

)

+
2

C

dV

dφ
exp

(

6

n

φ

A

)

, (4.14)

which differs from the corresponding equation in [73], where the LHS reads

1

F

dF

dφ
=

d lnF

dφ
,
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because of (4.10), which obviously leads to the wrong result. Equation (4.14) can be integrated
to give

F (φ) − Fi =
2

C

[

Aφ +

∫ φ

0
dφ′ dV

dφ′ exp
2φ′

A

]

, (4.15)

if n = 3, and else:

F (φ) − Fi =
A2

C

(6 − n)

(3 − n)
exp

(

2(3 − n)

n

φ

A

)

+
2

C

∫ φ

0
dφ′ dV

dφ′ exp

(

6

n

φ′

A

)

. (4.16)

If we were interested in a classification of potentials, we could have solved for V (φ) instead.
To make contact with [59], we choose

V = V0 exp

(

−2
φ

A

)

.

The integrations in (4.15) and (4.16) can be performed to simplify the result:

F (φ) − Fi =
2

C

(

A − 2V0

A

)

φ,

if n = 3, and else,

F (φ) − Fi =

(

A2

C

(6 − n)

(3 − n)
− 4V0

C

n

2(3 − n)

)

exp

(

2(3 − n)

n

φ

A

)

=
1

(3 − n)C
(A2(6 − n) − 2nV0) exp

(

2(3 − n)

n

φ

A

)

. (4.17)

Remarkably, we obtain the same functional form of F (φ), whether we neglect the potential at
all, like [73], or specify it according to the findings of [59]; only the coefficient discriminates
both cases.

We define λ := 2
A , set V0 ≡ 1 and choose m = 4 for simplicity. The requirement to keep

the coefficient of

F (φ) − Fi =
8

C

(

1 − 1

λ2

)

e−
λ
4
φ

positive [78], irrespective of Fi, translates to λ ≥ 1. (4.11) now becomes

φ̈ +
3

2
t−1φ̇ = λ

[

e−λφ −
(

1 − 1

λ2

)

e−
λ
4
φt−

3
2

]

.

In this case the effective potential has a time dependent minimum, which disappears in the
limit t → ∞. The force due to the R−term opposes the potential gradient, so the field is driven
upward the potential hill, until both terms become equal and the RHS vanishes. Afterwards
the potential takes over, and the field starts to slowly roll away to positive infinity. Since
the net force is decreasing during the early stage of evolution, the Hubble friction term will
become relevant in short time, and the onset of the freezing regime will certainly depend on
the initial field velocity. The kinetic energy dominated scaling solution is therefore a transient
phenomenon and cannot generally alleviate the need for fine tuning. (These arguments do
not only apply to m = 4. Whenever m > 3, which is assumed, the exponent of the coupling
function is negative.)
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4.2.2 Case n 6= m

From (4.12) we now obtain:

φ̇ = At−
n
m ⇒ φ = A

m

m − n
t

m−n
m .

We have set ti = 0 and φi = 0. (4.13) then becomes:

dF

dφ
=

2

C

(

A
6 − n

m
t−

n+m
m +

dV

dφ

)

t
6
m .

By substitution of

t =

(

m − n

m

φ

A

)
m

m−n

,

this takes the form

dF

dφ
=

2

C

(

m − n

m

φ

A

) 6
m−n

[

A
6 − n

m

(

m − n

m

φ

A

)−n+m
m−n

+
dV

dφ

]

, (4.18)

which can be integrated to give:

F (φ) − Fi =
A

C

(6 − n)(m − n)

m(3 − n)

(

m − n

Am

)
6−m−n

m−n

φ
2(3−n)
m−n +

2

C

(

m − n

Am

)
6

m−n
∫ φ

0
dφ′ dV

dφ′φ
′ 6
m−n .

(4.19)

Again we wish to combine our result with the corresponding one of [59]. Therefore we
specialize to an inverse power law potential,

V = V0φ
−α,

which admits scaling solutions with n 6= m in the quintessence case, if

α =
2n

m − n
.

We find

F (φ) − Fi =
A

C

(6 − n)(m − n)

m(3 − n)

(

m − n

Am

)
6−m−n

m−n

φ
2(3−n)
m−n − 2

C

(

m − n

Am

)
6

m−n nV0

3 − n
φ

2(3−n)
m−n

=
1

(3 − n)C

[

(6 − n)(m − n)A

m
− 2nV0

](

m − n

Am

)
6−m−n

m−n

φ
2(3−n)
m−n , (4.20)

which gets simplified significantly if m = 3 :

F (φ) − Fi =
1

3C

[

(6 − n)(3 − n)

3
− 2n

V0

A

]

φ2. (4.21)

Again we observe, that we would have obtained the same functional form by ignoring the
potential. If we demand that

ξ :=
1

3C

[

(6 − n)(3 − n)

3
− 2n

V0

A

]

> 0,
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since otherwise the corresponding force term would oppose the potential gradient (compare
subsection 3.2.1), and choose Fi = 0, we end up with the coupling function of original Brans-
Dicke theory with canonically normalized kinetic term. The case of non-zero Fi we cover,
without loss of generality, by setting

Fi =
1

8πG
≡ 1,

which corresponds to the ”extended quintessence” model of [7]. By inserting the explicit time
dependence of the different quanitities into equation (4.4), we realize furthermore, that this
choice of coupling is singled out by guaranteeing the same scaling behaviour of all additive
components of the conserved energy density. This indicates that our result is consistent, even
in case our assumption of kinetic dominance fails during the evolution of the scalar field.

To conclude, we have learned that a BD or extended quintessence coupling, combined with
an inverse power-law potential, admits a scaling solution during matter dominated epoch. The
scaling regime is maintained, while the the equation of motion changes from being dominated
by the R−boost, to be governed by the potential. From the phenomenological point of view,
this is a promising feature: the later the scalar field exits the scaling regime, the less time
remains until the DE density begins to dominate the universe, reducing the possible scatter
in (ΩDE , wDE) between different trajectories. It remains to be checked if the scaling solution
is also an attractor solution.

4.3 Attractor property

We rewrite equation (4.11) by specifying

F (φ) = ξφ2 + Fi, V (φ) = V0φ
−α,

and m = 3:
φ̈ + 2t−1φ̇ = −αV0φ

−(α+1) + Cξφt−2. (4.22)

Following [94], we define new time and field variables,

τ := ln t, u(τ) :=
φ(t(τ))

φs(t(τ))
,

where φs denotes the exact scaling solution discussed in the previous subsection:

φs ∼ t
3−n

3 .

We introduce the notation

u′ :=
du

dτ
,

and use

φ̇ = e−τφ′ = e−τ (u′φs + uφ′
s),

φ̈ = e−2τ (φ′′ − φ′) = e−2τ (u′′φs + 2u′φ′
s + uφ′′

s − u′φs − uφ′
s),

to obtain from (4.20):

e−2τ (u′′φs + 2u′φ′
s + uφ′′

s − u′φs − uφ′
s + 2(u′φs + uφ′

s) − Cξuφs) = −αV0(uφs)
−(α+1).
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Since φs is a solution of the original equation of motion, the following identity holds,

e−2τ (φ′′
s + φ′

s − Cξφs) = −αV0φ
−(α+1)
s ,

which we use to eliminate φs from the potential gradient term,

u′′φs + 2u′φ′
s + uφ′′

s − u′φs − uφ′
s + 2(u′φs + uφ′

s) − Cξuφs = u−(α+1)[φ′′
s + φ′

s − Cξφs],

where we have already devided by e−2τ . This expression, devided by φs, can be further
simplified to get:

u′′ + u′(2
φ′

s

φs
+ 1) = (u−(α+1) − u)

1

φs
[φ′′

s + φ′
s − Cξφs].

Since
φs ∼ e

3−n
3

τ ,

we have
φ′

s

φs
=

3 − n

3
=

2

α + 2
,

where the second equality follows, because

α =
2n

3 − n

is necessary to obtain a scaling solution.
Finally the equation of motion reads:

u′′ + u′
(

4

α + 2
+ 1

)

= (u−(α+1) − u)

[

4

(α + 2)2
+

2

α + 2
− Cξ

]

. (4.23)

In order to perform a stability analysis, we linearize around the scaling solution by substituting
u = 1 + δ:

δ′′ + δ′
(

4

α + 2
+ 1

)

= −δ(α + 2)

[

4

(α + 2)2
+

2

α + 2
− Cξ

]

. (4.24)

This is a second order, linear ODE with constant coefficients, which is easily solved. The
characteristic equation,

s2 +
α + 6

α + 2
s +

2(α + 4)

α + 2
− (α + 2)Cξ = 0,

has two roots,

s1,2 = − α + 6

2(α + 2)
±
√

(α + 6)2

4(α + 2)2
−
[

2(α + 4)

α + 2
− (α + 2)Cξ

]

,

which both have negative real parts if

2(α + 4)

α + 2
− (α + 2)Cξ > 0.
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This is equivalent to

Cξ =
(6 − n)(3 − n)

3
− 2n

V0

A
<

4(6−n)
3−n

( 6
3−n)2

,

where we have replaced α(n), and can be recast to

2

9

(6 − n)(3 − n)

n
<

V0

A
.

If this condition is fulfilled, the scaling solution is an attractor.

4.4 Einstein frame description

We now turn to the second question we posed at the beginning of this chapter, which is most
conveniently addressed in the Einstein frame version of the theory. According to section 3.3,
the Einstein frame coupling Q(Φ) - as defined in (3.20) - can be expressed in terms of the
Jordan frame quantity F (φ) as follows:

Q(Φ) = − 1

2F (φ)

dF

dφ

dφ

dΦ
= − 1

2F (φ)

dF

dφ

[

3

2

(

d lnF

dφ

)2

+
1

F

]− 1
2

, (4.25)

where φ = φ(Φ). We have found that a Jordan frame coupling function,

F (φ) = Fi + ξφ2, Fi ε {0, 1},

combined with an inverse power-law potential, admits a scaling attractor solution. Substitut-
ing this into (4.24), we obtain,

Q(Φ) =
−ξφ(Φ)

[(6ξ + 1)ξφ2(Φ) + Fi]
1
2

,

which approaches a constant in the limit φ → ∞, and reduces to

Q = −
√

ξ

6ξ + 1
,

in the case Fi = 0.
To obtain the explicit form of the Einstein frame quantities we have to solve for Φ(φ) :

dΦ

dφ
=

√

6

φ2
+

1

ξφ2
,

where we have chosen the positive sign of the square root, because we wish Φ to increase with
φ. This can be integrated to give:

Φ =

√

6ξ + 1

ξ
lnφ = − 1

Q
lnφ.
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We obtain

A(Φ) = F− 1
2 (φ(Φ)) =

1√
ξ
eQΦ,

and

V (Φ) =
V

F 2
(φ(Φ)) =

V0

ξ2
exp((α + 4)QΦ).

From section 3.4 we already know, that a scalar-tensor theory with constant Q does not
admit an attractor mechanism towards Einstein theory. Therefore the coupling function is
tightly constrained by present gravity tests, even in the early universe. In this case the effec-
tiveness of the R−boost is limited. The constant coupling is furthermore responsible for the
different appearence of the potential in the two different frames (which become indistinguish-
able in the limit Q → 0).

In order to construct a dynamical model of scalar-tensor type DE, which includes conver-
gence to GR, we have to give up the existence of an exact scaling solution, but on the other
hand gain the possibility to enhance the effectiveness of the R-boost mechanism by a stronger
coupling in the past.

The issue of attractor solutions in DE models can be addressed more systematically in
the Einstein frame version of the dynamical evolution equations. In the following chapter
we introduce an autonomous system approach with compact phase-space, where attractor
solutions with certain phenomenological properties correspond to stationary points of the
dynamical system of first order ODE.
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Chapter 5

Evolution of the Dark Energy

Equation of State

Out of various observational efforts to reveal the nature of dark energy, a model independent
reconstruction of the DE equation of state from low redshift data seems to be particularly
promising. We presume that this task can be completed within the next few years, and ask,
to which extent different dynamical models of dark energy might be discriminated in terms
of their small z evolution.

To address this question - and carry on the discussion of scaling and attractor solutions
from the previous chapter - we make use of the autonomous system approach introduced by
Copeland, Liddle and Wands [31], which we intend to generalize to the case of two scalar
fields in the next chapter.

5.1 Dynamical systems terminology

We consider a system of n first order ODE,

ẋi = fi(x1, ..., xn), (5.1)

which is called autonomous, if none of the n functions fi explicitly depends on time. A
solution of the system is given in terms of a trajectory in the phase-space spanned by the
variables xi, i ≤ n :

t 7−→ X(t) := (x1(t), ..., xn(t)),

determined by choice of initial conditions X(tinit).
A point Xs := (x1,s, ..., xn,s) is said to be a critical or fixed point, if

fi(Xs) = 0 ∀ i ≤ n,

and an attractor, if every trajectory entering the vicinity of the fixed point satisfies the
following condition:

lim
t→∞

X(t) = Xs.

If several attractors coexist in phase-space, their corresponding basins of attraction are sepa-
rated by common boundaries called separatrices.
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To be able to decide, whether a given fixed point is an attractor or not, one has to evaluate
the Jacobi matrix of the vector function F (X) := (f1(X), ..., fn(X)) at X = Xs. Consider
small perturbations around the critical point,

xi = xi,s + δxi ;

substituting this into (5.1) and linearizing, we obtain a system of first order ODE linear in
the perturbations:

d

dt
δxi =

∑

j

Mijδxj , (5.2)

where

Mij :=
∂fi(X)

∂xj

∣

∣

∣

∣

X=Xs

.

The general solution of this system is given by

δxi =
n
∑

k=1

Cike
µkt,

where Cik are integration constants and µk the eigenvalues of the stability matrix M , which
we assume to be distinct for simplicity. Obviously the perturbation will decay if each µk has
negative real part.

The critical points of a dynamical system can be classified in terms of the eigenvalues of
the corresponding stability matrix. An attractor is characterized by the requirement

Re[µk] < 0 ∀ k ≤ n,

and called stable spiral, if detM is negative, and stable node else. Furthermore, we will use the
terminus saddle point, if and only if M has one eigenvalue with positive real part. Otherwise
we call the fixed point unstable.

5.2 Autonomous system of scalar field DE models

The Einstein frame evolution equations,

Ḣ = −1

2
(ρmat +

4

3
ρrad + Π2), (5.3)

ρ̇mat = (−3H + Q(Φ)Π)ρmat, (5.4)

ρ̇rad = −4Hρrad, (5.5)

Φ̇ = Π, (5.6)

Π̇ = −3HΠ − dV

dΦ
(Φ) − Q(Φ)ρmat, (5.7)

where we have introduced Π := Φ̇, and Q(Φ) was defined in (3.20), already represent an
autonomous system. Nonetheless we use a new set of dynamical variables admitting a compact
phase-space.
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Following [31], we rewrite the Friedmann constraint equation as follows,

Ωmat = 1 − Ωrad −
Π2

6H2
− V (Φ)

3H2
, (5.8)

and define the dynamical variables

x2 :=
Π2

6H2
, y2 :=

V (Φ)

3H2
, z2 := Ωrad.

The corresponding phase space is isomorphic to the three-dimensional unit ball, though phys-
ically relevant is only the quadrant with y ≥ 0 and z ≥ 0.

Furthermore we replace the time variable by (3.32),

N = ln
a

ainit
= − ln(1 + z) + ln

a0

ainit
,

where ainit is a reference value, defining the initial conditions of the system, and will be
specified below. We can now rewrite the second Friedmann equation (5.3),

1

H

dH

dN
=

Ḣ

H2
= −3

2
(2x2 +

4

3
z2 + (1 − x2 − y2 − z2)), (5.9)

where we have used (5.8) to eliminate ρmat. From (5.5) and (5.9) we get:

dz

dN
=

1√
3H

d
√

ρrad

dN
− z

H

dH

dN

=
1

2H2
√

3ρrad
(−4Hρrad) +

3

2
z (2x2 +

4

3
z2 + (1 − x2 − y2 − z2))

= −2z +
3

2
z (2x2 +

4

3
z2 + (1 − x2 − y2 − z2)). (5.10)

In the next step we address the scalar field equation of motion (5.7),

1

H

dΠ

dN
=

1

H2
(−3HΠ + λV − Qρmat) = 3(−

√
6x + λy2 − Q(1 − x2 − y2 − z2)),

where we have introduced the potential slope parameter:

λ := − 1

V

dV

dΦ
.

Combining with (5.9) we obtain:

dx

dN
=

1√
6H

dΠ

dN
− x

H

dH

dN
= 3x(x2 +

2

3
z2 − 1) +

(

3

2
x −

√
6

2
Q

)

(1 − x2 − y2 − z2) +

√
6

2
λy2.

Finally, using d
√

V
dN = − Π

2H λ
√

V , we find the evolution equation for y,

dy

dN
= −λ

Π

2H2

√
V√
3
− y

H

dH

dN
,

where we have to plug in (5.9) once more. We end up with the following dynamical system:
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dx

dN
= 3x(x2 +

2

3
z2 − 1) +

(

3

2
x −

√
6

2
Q

)

(1 − x2 − y2 − z2) +

√
6

2
λy2, (5.11)

dy

dN
=

3

2
y(1 + x2 − y2 +

1

3
z2) −

√
6

2
λxy, (5.12)

dz

dN
=

z

2
(3(x2 − y2) + z2 − 1). (5.13)

As long as we regard λ and Q as constants, the system defines a two parameter family of DE
models. Choosing e.g. λ = (α + 4)Q, we find the scaling model from the previous chapter.
(Compare section 4.4.) Fixed points of the system correspond to solutions characterized by
constant values of the different density parameters, including

ΩDE = x2 + y2,

and a constant DE equation-of-state parameter:

wDE =
pDE

ρDE
=

x2 − y2

x2 + y2
.

We recognize that scaling solutions with m = n are eventually represented by fixed points, as
well as any solution corresponding to one fluid component being dominant with Ωfluid = 1.

5.3 Quintessence models

We intend to illustrate the use of the prescribed autonomous system approach by reviewing
some of the quintessence models mentioned in chapter 2 or 4. We classify quintessence
potentials in terms of the slope parameter λ. To start with, we take λ = const, and set Q = 0
in equation (5.11).

5.3.1 Constant λ: exponential potential

We consider a quintessence field with potential

V (φ) = V0e
λ(φ0−φ), (5.14)

where φ0 is the present field value and V0 the scale of the potential - if not exactly equal
(because of the finite kinetic contribution to ρφ), though of the same order as ρΛ|z=0 (corre-
sponding to a cosmological constant).

The dynamical properties of each model, specified by choice of λ, can be represented in
terms of the corresponding set of fixed points,

Xs = (xs, ys, zs),

which we obtain by setting the RHS of the system (5.11) - (5.13) equal to zero, and solving
the resulting system of non-linear algebraic equations:
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fixed point existence stability ΩDE weff

A ∀λ saddle point 0 0

B1, B2 ∀λ unstable 1 1

C ∀λ unstable 0 1
3

E λ ≥ 2 saddle point 4
λ2

1
3

F λ ≥
√

3 stable 3
λ2 0

G λ ≤
√

6 stable: λ <
√

3 1 −1 + λ2

3

Table 5.1: Fixed point properties of the dynamical system (5.11)-(5.13) with Q = 0.

A : (0, 0, 0),

B1, B2 : (±1, 0, 0),

C : (0, 0, 1),

E :

(

2
√

2√
3λ

,
2√
3λ

,

√

1 − 4

λ2

)

,

F :

(

√

3

2

1

λ
,

√

3

2

1

λ
, 0

)

,

G :

(

λ√
6
,

√

1 − λ2

6
, 0

)

.

(A point D does only exist if Q 6= 0, see the subceding section.) In table 5.1 we display
properties of the critical points we have found. The existence condition can be expressed as
follows,

x2 + y2 + z2 ≤ 1,

with x, y, z real. The stability analysis has been performed according to the preceding section.
The classification of the critical points given in the table applies of course only provided the
existence condition is fulfilled. If the stability condition is violated in a part of parameter
space, where the fixed point is allowed to exist (e.g. point G in case

√
6 ≥ λ ≥

√
3), it is

understood to be a saddle point.
We discover two different possible scaling regimes: point E, where the scalar field energy

density mimics radiation, and point F , where it acts like dust matter. If existing, F corre-
sponds to the scaling attractor solution of [59]. Fixed points A and C correspond to radiation
and matter dominance repectively, while point G approaches the de Sitter solution in the
limit λ → 0.

Accelerated expansion requires

weff =
ptot

ρtot
=

pDE + prad

3H2
= x2 − y2 +

z2

3
< −1

3
,
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which is only possible at G, if λ <
√

2. The main result of our fixed point classification
happens to be, that there is no way of realizing an epoch of acceleration preceded by a scaling
regime, since stability of G excludes existence of E and F.

In a realistic cosmological set-up, we can distinguish two main types of trajectories, de-
pending on choice of λ. Each trajectory will emerge from the vicinity of the critical point C,
corresponding to a radiation dominated universe. If λ � 2, we expect a sequence C → E → F
of scaling regimes, whereas if λ <

√
2, the typical path C → A → G will lead to an accelerated

universe.
The present situation, (ΩDE, wDE) ≈ (0.7,−1), is not represented by a critical point, but

can be realized as a transient stage, by choosing λ sufficiently small. Trajectories approaching
the final attractor G closely along the {x = 0}-plane will then generically pass the phase-space
region, which provides agreement with current observational data. But to arrange for this
coincidence to happen right around the present, the initial value of the variable y has to be
precisely adjusted. Fixing yinit corresponds to fixing V0, the scale of the potential. There
is no independent freedom of choosing an initial field value, which can be seen by rewriting
equation (5.14):

V (φ) = V0e
λ(φ0−φ) = V0e

λ(φ0−φinit)e−λ(φ−φinit) =: V ∗
0 e−λ(φ−φinit).

A different choice of φinit translates to a redefinition of V ∗
0 , which thereby can even be adjusted

to unity.
Before we present a numerical example, we have to discuss the issue of initial conditions

(x(Ninit), y(Ninit), z(Ninit)). So far we have avoided to fix the normalization of our ”time”
variable N . We have to make sure that the basic assumptions,

1. validity of the classical description of the system (that is, validity of classical physics),

2. validity of decoupled continuity equations of the different fluid components (that is,
negligibility of interactions),

are justified at Ninit. A transition of a fermionic matter species from the relativistic to the
non-relativistic regime - simply due to cooling of the universe - would have to be simulated
by an interaction between the radiation and dust matter fluids, violating the second assump-
tion. To specify initial conditions corresponding to the Planck era within a purely classical
approach would be obviously not reasonable. On the other hand, the epoch of big bang nucle-
osynthesis (BBN) provides constraints on the allowed range of initial conditions (see section
3.4); as we know from the mass estimates of lightest SUSY particles (LSP) representing dark
matter candidates, SUSY dark matter would have been already sufficiently cold at BBN to be
described as dust matter. (We ignore the baryonic and leptonic contributions to the matter
sector.) Therefore we specify ainit = aBBN , and set

ln(1 + zBBN ) ≡ 23,

corresponding to an energy scale of O(1MeV ) (see e.g. [49]).
In figure 5.1 we plotted the low redshift evolution of the DE and effective equation-of-state

parameters in a model specified by choice of λ = 1
2 . We fixed xinit = yinit = 1.5 × 10−17 to

obtain x2 + y2 = 0.72 at N = 23. The numerical results are in agreement with observations
(the transition redshift being slightly too large, compare e.g. [1]), but since the scalar field
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Figure 5.1: Quintessence model with exponential potential, λ = 1
2 : small z evolution of weff

(red curve) and wDE (blue curve). The auxiliary line represents the acceleration threshold.
At present we find wDE ≈ −0.95, and a transition redshift z|q=0 ≈ 0.93 (defined by the zero
of the deceleration parameter q.)

is frozen to a fixed value during the larger part of cosmic history - thereby mimicking the
behaviour of a cosmological constant -, the required amount of relative fine tuning in yinit is
of the same order as in the cosmological constant case:

ΩDE,BBN

ΩΛ,BBN
≈ O(1).

As can be seen in the figure, wDE increases slightly with z approaching zero, indicating the
transition from freezing to the slow-roll regime of the attractor G. We can alleviate at least the
relative fine tuning by choosing xinit � yinit. The bounds from BBN physics (ΩDE,BBN . 0.1)
allow in principle for xBBN up to x ≈ 0.3, leading to

ΩDE,BBN

ΩΛ,BBN
≈ O(1033),

though we have to emphasize that we cannot provide a sound physical motivation of such an
extreme inequilibrium between kinetic and potential energy of the scalar field.
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In summary, we have to conclude (like many authors before), that a quintessence model
with exponential potential fails to solve the coincidence problem. (For a wide range of initial
conditions, yinit ≈ 10−10 and larger, a matter dominated epoch does not even exist: The
scalar field evolves so fast, that it starts to be the dominant component right after exiting
the radiation era.)

Hebecker and Wetterich [53] suggested the following generalization of the potential:

V (φ) = e−λ(φ)φ.

Consider the simple and effective (but certainly not well-motivated) choice of a step function,

λ(φ) = λ1 >
√

3, φ ≤ φ∗,

λ(φ) = λ2 <
√

2, φ > φ∗,

where φ∗ has to be fixed to match the transition from the matter era to the DE regime. (So
one only shifts the necessary tuning to a new ”parameter”.) During fluid dominance, point F
is the relevant attractor, focusing phase-space trajectories and thereby ensuring independence
of initial conditions. Then the step in λ initiates the transition to the acceleration epoch,
since now fixed point F is no longer stable and G determines the evolution instead. Again
we realize - what was already mentioned in chapter 4 -, that a sequence of a scaling attractor
and an accelerated attractor solution is a desirable feature of any DE model which addresses
the coincidence problem. (In [8] a sequence of the desired kind is obtained by considering a
potential given by a sum of two different exponential terms.)

5.3.2 Decreasing λ: tracker potentials

In the spirit of the preceding discussion, we introduce the following choice of the potential
slope parameter,

λ(φ) = − 1

V

dV

dφ
= α φ−1,

which can be seen to correspond to inverse power-law potentials V ∼ φ−α. We cover this
situation within our autonomous system approach by including λ as a fourth dynamical
variable. Its evolution is governed by the following equation:

dλ

dN
= −

√
6λ2x(Γ − 1), (5.15)

where we have defined the constant

Γ :=
V

(dV
dφ )2

d2V

dφ2
.

(See Steinhardt et al. [88], who introduced Γ, not necessarily constant, in a more general
set-up. The requirement, Γ > 1 and nearly constant, is just the aforementioned ”tracker
condition”, compare section 2.3 and chapter 4.) Though the enlarged system, (5.11) - (5.13)
and (5.15), is still autonomous in our special case, we do not intend to solve for its fixed
points. Instead we adopt the idea of ”instantaneous fixed points” [64] and reconsider the
fixed point set of the previous subsection as slowly varying with N by replacing λ → λ(N).
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Thus we gain qualitative understanding of the dynamics in terms of the fixed points moving
in phase-space.

We assume an initial field value close to zero, corresponding to large λ. In the limit λ → ∞
the saddle point E approaches fixed point C, while the attractor F becomes indistinguishable
from point A. A generic trajectory starting near C with xinit = yinit will at the very beginning
be influenced by saddle point E. If x, y are initially small, equations (5.11) and (5.12) can be
approximated as follows:

dx

dN
≈ x

2
(z2 − 3) +

√
6

2
λy2, (5.16)

dy

dN
≈ 3

2
y(1 +

1

3
z2) −

√
6

2
λxy. (5.17)

As long as λ is large enough for the second term, on the RHS of each equation, to determine
the sign of dx

dN and dy
dN , x(N) increases at the expense of y(N). The resulting, transient increase

in wDE can be recognized in figure 5.3. With z(N) and λ(N) decreasing, x(N) will soon start
to decrease as well, followed by y(N) beginning to grow.
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Figure 5.2: Quintessence model with V ∼ φ−1: phase-space section (x, y). Evolution of the
trajectory specified by xinit = yinit = 10−11, λinit = 3 × 1012, up to the present (N = 23).
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The system will not remain close to point E, but approach the (spiral) attractor regime
of F. Since F moves along the line {x = y, z = 0} towards the phase-space boundary as
λ(N) decreases, the trajectory will be bent towards this line, while z(N) rapidly decreases.
As can be seen in figure 5.2, the trajectory does not follow the path of fixed point F with
x(N) = y(N), but approximates a straight line y(N) = c x(N) with c =

√
5. This corresponds

to the n = 1 scaling regime with

wDE =
x2 − y2

x2 + y2
=

1 − c2

1 + c2
= −2

3
=

−2 + wfluid α

2 + α
,

where the last equality is implied by α = 1 and wfluid = 0 (dust matter). In phase-space, a
scaling solution with n 6= m is represented by a straight line instead of a fixed point.

Figure 5.3 shows the evolution of the effective and DE equation-of-state parameters with
N. The sequence of radiation, matter and acceleration epoch is evident. The scaling regime
is already reached during the radiation dominated stage. Figure 5.4 may be compared with
figure 5.1 and the figures in section 2.4. Obviously, to be in good agreement with the obser-
vational trend, α should be smaller than one.
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Figure 5.3: Quintessence model with V ∼ φ−1: evolution of weff (red curve) and wDE (blue
curve), computed along the trajectory specified in the caption of figure 5.2.
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We now turn to the issue of dependence on initial conditions. Since α = 1, the scale of
the potential is fixed through

V0

3H2
init

=
y2

init

λinit
,

so we can independently vary the initial field value by choosing λinit, while keeping the ratio
to y2

init fixed. In the example of figures 5.2 to 5.4 we have

ΩDE,BBN

ΩΛ,BBN
≈ O(1012),

but we can also choose ΩDE,BBN ≈ 0.1 corresponding to a ratio of 1033, in contrast to the
exponential case even with xinit = yinit.
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Figure 5.4: Quintessence model with V ∼ φ−1: small z evolution of weff (red curve) and
wDE (blue curve), computed along the trajectory specified in the caption of figure 5.2. At
present (ΩDE |N=23 = 0.72) we find wDE ≈ −0.77, and a transition redshift z|q=0 ≈ 0.75.

The evolution of the equations of state along a trajectory representative for this case is
plotted in figures 5.5 and 5.6, which differ significantly from the corresponding plots in figure
5.3 and 5.4. Now the scalar field equation of state is stiff during radiation epoch and exhibits a
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fast transition towards wDE = −1 after onset of matter dominance. The scalar field remains
frozen afterwards, and the trajectory joins the tracker only recently, without reaching the
scaling regime before. As can be read from figure 5.6, the present value of wDE differs from
the tracker case (figure 5.4) as well as the predicted transition redshift. Most importantly, if
0 ≤ z ≤ 1.7 we find

dwDE

dz
> 0,

along the trajectory from figure 5.6, in contrast to

dwDE

dz
< 0,

along the tracker.
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Figure 5.5: Quintessence model with V ∼ φ−1: evolution of weff (red curve) and wDE (blue
curve), computed along the trajectory specified by xinit = yinit = 0.2, λinit = 1.2 × 1033.

We have to conclude, that the inverse power-law quintessence model under discussion is
not falsifiable by reconstruction of wDE(z) from the data, unless every single trajectory can
be ruled out. (According to [15] the situation becomes worse, if one considers α < 1 to get a
better match with the data. In that case even trajectories are possible, which remain in the
freezing regime until now, so being indistinguishable from a cosmological constant.)
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Figure 5.6: Quintessence model with V ∼ φ−1: small z evolution of weff (red curve) and wDE

(blue curve), computed along the trajectory specified in the caption of figure 5.5. At present
(ΩDE|N=24.2 = 0.72, different normalization due to change in zinit) we find wDE ≈ −0.83,
and a transition redshift z|q=0 ≈ 0.95.

There is one possible loop-hole in our argument: the model could be modified by some
kind of selection mechanism, which reduces the range of allowed initial conditions to the basin
of attraction of the scaling tracker solution. This would require a better understanding of the
scalar field evolution in the early universe, prior to big bang nucleosynthesis, and therefore
lies beyond the viability of our classical dynamical systems approach. (See [83] concerning a
possibility of constraining pre-BBN expansion history.)

5.3.3 Increasing λ

We now turn to the case of an increasing potential slope parameter, and consider the simplest
possible, namely linear, realization:

λ(φ) = c φ.
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By integration we find the corresponding class of potentials:

V (φ) = V0 exp(− c

2
φ2).

Though we do not know how to motivate this from a more fundamental perspective, we
will proceed and analyze the phenomenological implications of a Gaussian potential. In
section 2.3 we briefly discussed axion fields as quintessence candidates, and we regard the
Gaussian as a pre-oscillatory approximation to the typical axion potential (see figure 5.8).
This approximation has one, mere technical, advantage: We can represent the Gaussian
potential within our autonomous system approach, if we substitute equation (5.15) by

dλ

dN
=

√
6 c x. (5.18)
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Figure 5.7: Phase-space section (x, y) of a quintessence model with Gaussian potential, c = 1
2 .

As in the previous subsection, we wish to gain qualitative understanding of the dynamics
by considering the set of critical points varying with λ. Letting φinit be close to zero, we realize
that the only stable fixed point is G, drawing the trajectories towards the plane {x = 0} and
increasing y. (See figure 5.7.)
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If x, y are also small in the beginning, equations (5.11) and (5.12) can be approximated
as follows,

dx

dN
≈ x

2
(z2 − 3), (5.19)

dy

dN
≈ 3

2
y(1 +

1

3
z2), (5.20)

showing that x(N) will rapidly decrease while y(N) grows.
With increasing λ, the attractor G moves, following the phase-space boundary, towards

the point (x, y) = ( 1√
2
, 1√

2
), where it becomes a saddle point (at λ =

√
3), and further towards

the unstable node B1. The trajectories, focused near the x−axis before, remain close to point
G and follow its motion, get repelled from the boundary near B1 and are driven towards point
A. (Compare figure 5.7.) Meanwhile the attractor F moves along the straight line {x = y}
from the boundary towards point A. Since F is a stable spiral, the trajectories are forced to
wind around its evolving position, as can be seen in the figure.
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Figure 5.10: Evolution of wDE(N) (blue curve) and weff (N) (red curve) in quintessence
model with Gaussian potential, c = 1

2 .

The Gaussian model therefore provides one very appealing property: its late time evolution
is matter dominated, irrespective of initial conditions, and the accelerated stage a transient
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phenomenon. So we avoid the future event horizon characterizing the de Sitter like final state
of other models we discussed before, thereby reproducing another property of the axionic
potential, but without the need of tuning the potential minimum to zero.

We shall give a numerical example. We choose xinit = yinit = 10−17, implying the same
amount of relative fine tuning as in the exponential case. Furthermore we set λinit = 0.3,
avoiding to adjust the field value too close to the potential maximum. The evolution of the
field value is shown in figure 5.9. At present (N = 23) we have φ ≈ 0.72, indicating that the
Gaussian can still be regarded as an excellent approximation of an axion potential.

In figure 5.10 we plotted the evolution of the DE and effective equation-of-state param-
eters. The field enters the freezing regime dominated by the Hubble friction very soon, and
wDE remains practically constant up to the present (wDE(z = 0) ≈ −0.98) while the field
value ”sits and waits”. Thus the model is barely distinguishable from a cosmological constant.
This property turns out to be quite robust against a change in the initial field value. (We nu-
merically checked values up to φinit = 0.6. In this case wDE has already increased significantly
up to the present, leading to wDE(0) ≈ −0.8. If we choose higher values of φinit, the system
fails to reach ΩDE = 0.7 at all. We further checked numerically, that the phenomenologically
relevant ”sit and wait” behaviour is not sensitive to the parameter c, as long as c . 4.)

The most remarkable feature of the model is provided by its future evolution: the accel-
erated expansion ceases due to the transition to a stiff equation of state. (In our numerical
example, acceleration occurs between N ≈ 22.4 and N ≈ 26.7, but this period becomes
shorter with increasing φinit.) Soon after, ΩDE starts to decrease and both the DE and ef-
fective equation of state enter an oscillatory period. The final state of the universe is matter
dominated with weff = wDE = ΩDE = 0. (The same qualitative behaviour we expect from
an axionic potential with V (φmin) = 0.)

Before summarizing the implications of this section, we have to emphasize that we consider
the properties of the examples we presented so far (apart from the Gaussian potential) to
be quite well known. Nevertheless it was necessary to go into so much detail, since we
are ultimately interested in a comparison with scalar-tensor DE models, in particular with
respect to the small redshift evolution of the equation of state. Though it might be a bit
premature, given the observational situation, we will comment on the limitations of the simple
quintessence models we discussed so far.

Dynamical models of dark energy were proposed to get around the huge amount of fine
tuning (relative to the Planck scale) required in setting the cosmological constant to the tiny
value that accounts for the observed acceleration. We have learned that exponential and
Gaussian quintessence require just the same amount of fine tuning of the potential scale (or
a precise fixing of the initial field value in the first case), and our ”naturalness” criterion (see
[53] for comparison), the ratio

ΩDE,BBN

ΩΛ,BBN
,

in both cases turns out to be of order one. In order to ”solve” the coincidence problem, a
dynamical DE model derived from a more fundamental theory has to make a precise prediction
of the potential scale. Our present situation remains special, in the sense that, instead of being
represented by an attractor solution itself, it corresponds to a transition from or towards an
attractor regime. (But see [4], where ”the present universe as a global attractor” is realized
by introducing a dark matter - DE coupling which increases with time.)
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Furthermore we have learned, that an inverse power-law potential allows for a value of
ΩDE,BBN as large as given by the BBN bound, corresponding to

ΩDE,BBN

ΩΛ,BBN
≈ O(1033),

but only at the expense of predictiveness - due to its sensitivity to φ̇init (especially if we
demand to come close to wDE = −1 at present).

Apart from its energy scale, a quintessence model is characterized by a second parameter
(λ, α or c) corresponding to the potential slope. We have seen that the allowed range of the
parameter is already tightly constrained by observations - and these bounds will tighten the
more, the closer the DE equation of state comes to wDE = −1 around the present. Further-
more, it will become extremely difficult to discriminate different models by reconstruction of
wDE(z) alone.

The next section is devoted to the question, whether DE models based on scalar-tensor
theories exhibit more attractive features from the perspective of model building.

5.4 Coupled quintessence models

We turn to the case of non-zero coupling Q. Motivated by our findings from chapter 4, we
first consider the exponential potential - now combined with a negative constant Q.

5.4.1 Constant coupling

We redefine the coupling to be positive, Q := |Q|, and analyze the two-parameter family of
models in terms of the critical points of the corresponding autonomous system (equations
(5.11) - (5.13)):

A :

(

√

2

3
Q, 0, 0

)

,

B1, B2 : (±1, 0, 0),

C : (0, 0, 1),

D :

(

1√
6Q

, 0,

√

1 − 1

2Q2

)

,

E :

(

2
√

2√
3λ

,
2√
3λ

,

√

1 − 4

λ2

)

,

F :

(
√

3 − 2Q(λ − Q)

2(λ − Q)2
,

√

3

2

1

λ − Q
, 0

)

,

G :

(

λ√
6
,

√

1 − λ2

6
, 0

)

.
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fixed point existence stability ΩDE weff

A Q ≤
√

3
2 stable: Q < 1√

2
2
3Q2 2

3Q2

∧λ > 3
2Q + Q

B1 ∀(λ,Q) saddle point: 1 1

λ >
√

6 ∧ Q >
√

3
2

B2 unstable

C ∀(λ,Q) unstable 0 1
3

D Q ≥ 1√
2

stable: λ > 4Q 1
6Q2

1
3

E λ ≥ 2 stable: 4
λ2

1
3

λ 6= 4Q λ < 4Q

F 3
2Q + Q ≥ λ ≥ Q+

√
Q2+12
2 stable: 3−Q(λ−Q)

(λ−Q)2
Q

λ−Q

∧Q ≤
√

3
2 λ > 4Q

G λ ≤
√

6 stable: λ ≤
√

3 1 −1 + λ2

3

Table 5.2: Fixed point properties of the dynamical system (5.11)-(5.13)

Properties of the critical points are displayed in table 5.2.
The new features, with respect to the quintessence case, are the modification of fixed point

A, and the appearance of a new critical point D. These points have exactly the properties
we sought for in chapter 4: They correspond to radiation (D) and matter dominated (A)
stages of evolution respectively (depending on the value of Q), and they both exhibit a stiff
equation of state: wDE = 1. Since they coincide if Q = 1√

2
, and Q < 1√

2
is necessary to gain

weff < 1
3 at A, it is not possible to realize a ΛCDM type sequence D → A → G of radiation,

dust matter and DE dominated expansion respectively. But due to the R−boost mechanism
mentioned in the previous chapter, either a radiation dominated saddle point D (if Q & 1), or
a matter dominated saddle point A (if Q < 1√

2
), can be followed by the acceleration regime

of G.
Let us resume our discussion from section 4.4 and consider the special case λ = (4 + α)Q

with α ≥ 0 (α = 0 corresponds to BD theory with cosmological constant). Applying the
observational bound (3.31), we realize that the existence condition of fixed point D cannot be
satisfied at all, while the existence conditions of points E and F require very large (O(103)
and O(102) respectively) values of α. The resulting subset of models is determined by the
coexistence of saddle point A (corresponding to the matter dominated scaling regime we
identified in chapter 4) and a late time attractor G. Accelerated expansion in this case
requires

Q2 <
2

(4 + α)2
,

and if we set Q = 10
3
2 , we get an attractor value of

weff = wDE = −1 +
(4 + α)2

3000
.
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Before we can discuss a numerical example and compare to the quintessence case, we
have to observe that - in the Einstein frame description of a scalar-tensor theory - the units
of time and space have become field dependent, due to the conformal transformation of the
metric. Our dynamical variables are dimensionless, and therefore not affected. But our ”time”
variable N is related to the corresponding Jordan frame quantity by (see (3.32)):

ln
a

aBBN
= ln

A(Φ)aJF

A(Φinit)aBBN,JF
= NJF + ln

A(Φ)

A(Φinit)
.

If we wish to compare evolution plots of the equation-of-state parameters with those
from the preceding subsection, we have to rescale the N−axis to NJF . In the case under
consideration we have

NJF = NEF + Q(Φ − Φinit).
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Figure 5.11: Evolution of wDE(N) (blue curve) and weff (N) (red curve) in a constantly
coupled quintessence model with exponential potential, Q = 1

10 , λ = 1
2 (Initial conditions: see

text).

The evolution of weff , as exhibited by the numerical example of figure 5.11, shows the
regime of saddle point A taking over around NJF ≈ 14, though - due to the smallness of
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Q - the effect is barely visible in the plot. We have chosen Q = 1
10 , corresponding to the

scaling model of section 4.4, with α = 1 and therefore λ = 1
2 (as in the model of figure 5.1).

This is about three times the value of the Cassini bound, but still inside the allowed range
at BBN (see section 3.4), and small enough not to spoil LSS formation. We may justify
our choice by reminding, that the Cassini measurements constrain the coupling between DE
and baryonic matter, but not DE and dark matter. (But see [11].) The field dependence
of N turns out to be negligible: Given the smallness of Q, Jordan and Einstein frame are
practically indistinguishable.
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Figure 5.12: Small z evolution of wDE(N) (blue curve) and weff (N) (red curve) in the
constantly coupled quintessence model with exponential potential, Q = 1

10 , λ = 1
2 . At present

(ΩDE = 0.72) we have wDE ≈ −0.93; the transition redshift is at z ≈ 0.84.

The trajectory has been specified by fixing yinit = 1.5×10−17 to obtain the proper present
value of ΩDE (exactly as in the quintessence case), but xinit = 1.5 × 10−6, leading to

ΩDE,BBN

ΩΛ,BBN
≈ O(1022).

Since the R−boost mechanism will have been active already prior to BBN, it is natural to
assume initial conditions exhibiting dominant kinetic energy. The specific value we chose is
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singled out by the observation, that larger values lead to a decrease in x(N) in the beginning,
which indicates that the effect of the R−boost would have been overestimated in that case.

The major difference between the coupled and the corresponding uncoupled quintessence
model is the fast transition from a stiff equation of state, exhibited by the former, in re-
cent cosmic history. While the uncoupled quintessence field reaches the freezing regime very
soon, the (Einstein frame equivalent of) BD field shows only a very short period of friction
dominance, after the equation-of-state parameter has dropped from wDE = 1 to a value near
−1, and soon afterwards approaches the attractor. As can be seen in figure 5.12, this be-
haviour (which we have checked to be quite robust against changes in xinit) contrasts to the
quintessence case shown in figure 5.1. A significantly larger coupling Q between DE and dark
matter would shift the transition further towards the present, so that wDE drops from one
directly to its attractor value within the observable range of small z. Assuming that the
capability of reconstructing wDE(z) will steadily improve during the next few years, it may
well become possible to constrain the coupling strength within this type of models.

On the other hand, choosing Q to be in agreement with the Cassini bound shifts the
transition in wDE towards larger redshift, rendering the small z evolution practically indis-
tinguishable from the quintessence case shown in figure 5.1. Not surprisingly, the performance
of the model depends crucially on the coupling strength, which determines the effectiveness
of the R−boost. While larger couplings lead to larger values of

ΩDE,BBN

ΩΛ,BBN

for a reasonable choice of initial conditions, but may get into conflict with observations, the
smaller the coupling, the smaller the deviation from the pure quintessence model and therefore
the improvement in the relative fine tuning of ΩDE,BBN .

5.4.2 Inverse power-law potential and exponentially decaying coupling

We will now discuss a model proposed by Bartolo and Pietroni [9], which has - to our knowl-
edge - not yet been explored within the autonomous system approach, nor tested concerning
the possibility of the late time equation of state mimicking a cosmological constant. Though
not providing exact scaling solutions, the model shares the attractive feature of convergence
towards Einstein theory of gravity. (Compare sections 3.4 and 4.4.)

We stick to our redefinition of the coupling Q to be positive. Since we wish to compare
the model,

V (Φ) = V0Φ
−α, Q(Φ) := −d lnA

dΦ
= Be−βΦ,

with the corresponding quintessence case (subsection 5.3.2), we set α = 1, B = 1 and β = 13.
The constraint [9]

QBBN − Q0 ≤ 0.08β = 1.04,

combined with the Cassini bound on Q0, translates to the initial field value:

Φinit ≥ −0.07.

This constraint is automatically observed, since the inverse-power law potential restricts us
to

Φinit > 0.
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We have to enlarge the autonomous system (5.11) - (5.13) and (5.15), specified to Γ = 2,
by a fifth equation, governing the evolution of the coupling function:

dQ

dN
= −

√
6 β Qx, (5.21)

with β = 13. Before presenting numerical results, we follow the example of subsection 5.3.2
and try to obtain some qualitative understanding of the dynamics, in terms of the evolution of
the critical points with λ(N) and Q(N). Since we naturally have λinit � Qinit ≈ 1, point D is
initially a stable attractor, leading to an increase in x(N), while z(N) rapidly decays. (Again
we take initial conditions close to the position of fixed point C to be the only reasonable
choice.) This is how the R−boost manifests itself within the autonomous system description.
Since the increase in x(N) triggers the decay of Q (see (5.21)), D will soon - depending on
choice of xinit - change to be a saddle point, allowing for growth of y(N). The late time
attractor G will be approached either via the vicinity of fixed point A or F , and we expect
the differences to the quintessence model to vanish in the limit Q → 0.
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Figure 5.13: Evolution of wDE(N) (blue curve) and weff (N) (red curve) in a scalar-tensor
model with potential ∼ Φ−1 and exponentially decaying coupling (initial conditions: xinit =
1.5 × 10−5, yinit = 1.5 × 10−15,Φinit = (6 × 104)−1).

In our numerical example (figures 5.13 and 5.14), we arranged the initial conditions to
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realize a trajectory exhibiting increase in the kinetic and potential energy from the beginning,
leading to

xinit

yinit
= 1010,

and
ΩDE,BBN

ΩΛ,BBN
≈ O(1023).

The energy scale of the potential - as required to match the present DE density - is roughly
the same as in the quintessence case. The evolution of the DE and effective equations of
state during radiation epoch, as shown in figure 5.13, is very similar to our results concerning
a constantly coupled model with exponential potential (see figure 5.11), while the late time
evolution resembles the behaviour of the inverse-power law quintessence trajectory displayed
in figure 5.5, which fits our expectations.
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Figure 5.14: Small z evolution of wDE (blue curve) and weff (red curve) in the scalar-
tensor model with potential ∼ Φ−1 and exponentially decaying coupling (initial conditions:
see above). At present (ΩDE = 0.72) we have wDE ≈ −0.78; the transition redshift is at
z ≈ 0.88.

Somewhat surprisingly, though the coupled model does not admit a scaling tracker solution
like the uncoupled one, the qualitative behaviour of the small z evolution turns out to be less
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sensitive to change of initial conditions. (We checked initial conditions up to 105 times the
values specifying the trajectory we explored in the figures, and found only slight variations in
wDE(0) and the transition redshift. Only the transition between wDE = 1 and the transient
freezing regime occurs at significantly different ”times”, but well outside the observationally
accessible range of z.) While the significant variation of wDE in the small z regime was rather
special in the case of figure 5.5, it is a characteristic feature of the coupled model. If the
observational trend towards dwDE

dz = 0 for z . 1 becomes confirmed in the future, this model
could be easily ruled out. On the other hand, changing the potential parameter α towards
smaller values is not as dangerous as in the quintessence case, since (in-)dependence on intitial
conditions is now determined by the coupling strength around BBN, and not by the tracker
property of the potential.

In summary, we finally have found an example that exhibits some of the attractive fea-
tures, which motivated our analyses in this and the previous chapter: The model converges
towards GR, thereby admits a stronger coupling at BBN, as well as a - transiently existing
- attractor solution in the radiation epoch, represented by the critical point D. Existence of
this fixed point is a genuine property of scalar-tensor theories, and incorporates the R−boost
mechanism which was proposed to wash out the dependence on initial conditions, as exhibited
by quintessence models with shallow slope.

Concluding this chapter, we have to admit that our results are preliminary, in the sense
that the efforts to reconstruct the DE equation of state from small redshift data have not yet
reached a state of precision and definiteness, which would enable us to discriminate between
different models. While the cosmological constant will be clearly ruled out, if the slightest
evolution is detected, it remains unclear if any of our model examples could be falsified
by this observational tool alone, especially since most of the models principally allow to
approximate a cosmological constant gradually by parameter tuning. While we have seen
that quintessence models thereby become less attractive, since the parameter tuning also
reintroduces dependence on initial conditions, we have rediscovered a scalar-tensor model
which is capable to maintain a robust insensitivity to change of initial conditions, due to the
R−boost mechanism. The specific example we analyzed exhibits a significant small z evolution
of the equation-of-state parameter, and is clearly distinguishable from a cosmological constant.

If future equation-of-state reconstructions, based on larger, quality improved data sets
still tend to favour the cosmological constant, attempts of model falsification will rely on
alternatives, either concerning perturbation growth (to be detected in weak lensing surveys,
see e.g. [52]), or variation of αem [61] and gravitational constant in case of quintessence and
scalar-tensor models respectively.

The issue of dependence on initial conditions certainly needs to be addressed more sys-
tematically, by analyzing large sets of initial values, in order to achieve statistically significant
results and discriminate parameter dependencies from variations with change of initial con-
ditions.
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Chapter 6

Dark Energy from Biscalar-Tensor

Theories

We begin by recollecting the dynamical evolution equations we derived in chapter 3 from the
Einstein frame action:

S =

∫

d4x
√−g

(

1

2
R − 1

2
gµν(∂µΦ∂νΦ + G(Φ)∂µσ∂νσ) − V (Φ, σ)

)

+Smat[Ψ, A−2gµν ]. (6.1)

The scalar fields obey the following equations of motion,

Φ̈ + 3HΦ̇ =
1

2

dG(Φ)

dΦ
σ̇2 − ∂V (Φ, σ)

∂Φ
+ Q(Φ)ρmat, (6.2)

σ̈ + 3Hσ̇ =
1

G(Φ)

(

−dG(Φ)

dΦ
Φ̇σ̇ − ∂V (Φ, σ)

∂σ

)

, (6.3)

with Q(Φ) defined in (3.20). The Friedmann equations take the following form:

H2 =
1

3
(ρmat + ρrad +

1

2
(Φ̇2 + G(Φ)σ̇2) + V (Φ, σ)), (6.4)

and

Ḣ = −1

2
(ρmat +

4

3
ρrad + Φ̇2 + G(Φ)σ̇2). (6.5)

The background fluid obeys the modified continuity equation:

ρ̇fluid = (−3(1 + wfluid)H + (1 − 3wfluid)Q(Φ)Φ̇)ρfluid, (6.6)

with wfluid ε [0, 1
3 ], the limit values corresponding to pure (dark) matter and pure radiation

respectively.

6.1 Two-field models of dark energy

In chapter 2 we gave some examples of theoretical approches to understand dark energy, which
naturally involve two real scalar degrees of freedom, e.g. complex structure moduli or Kähler
moduli accompanied by axions. Two-field quintessence models, if based on one originally
complex scalar field, feature a non-canonical kinetic term just of the kind we introduced in
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the biscalar-tensor action above [16, 70]. On the other hand, this non-canonical term can also
be viewed as generated by the conformal transformation. Choosing G(φ) = 1 in the Jordan
frame theory (3.9) would still lead to a factor

G(Φ) = A2(Φ),

multiplying the kinetic term of the σ-field. (See section 3.3.)
Within the chosen general framework of biscalar-tensor theories, we can realize three dif-

ferent types of models, which can be interpreted as toy versions of more specific fundamental
theories:

1. Both fields run away to infinity and are dynamically relevant as dark energy candidates.

2. One field becomes massive / stabilized at a finite value during cosmic history, the
second one enters a period of slow-roll evolution, governed by a flat runaway potential. In
this case we get an effective one-field model, with initial conditions dynamically generated by
an early period of interaction between the two scalars.

3. Both fields acquire a (small) mass. If the potential is sufficiently flat around its min-
imum, we can as well get viable dark energy models from this class, assuming that at least
one field is still (slowly) rolling, or even frozen to a constant value.

In the following sections, we will discuss examples specified by distinct choices of the
functions A(Φ), G(Φ), and V (Φ, σ), and their phenomenological implications. To be able
to compare with the results of the previous chapter, we generalize the autonomous system
approach we already used in the single field case. We start by deriving the general set of
dynamical evolution equations, corresponding to the family of models specified by choosing
A(Φ), G(Φ), and V (Φ, σ) to have exponential form. As in the one-field case, a specific model
is defined by a set of constant parameters.

The dynamical variables are:

x2
1 :=

Φ̇2

6H2
, x2

2 :=
σ̇2

6H2
,

y2
1 :=

V1(Φ, σ)

3H2
, y2

2 :=
V2(Φ, σ)

3H2
,

z2 :=
ργ

3H2
.

We have split the potential into a sum of two terms, to include the possibility of

V (Φ, σ) = V01 exp(λ1ΦΦ) + V02 exp(λ2σσ).

In addition we have to introduce the auxiliary variable

G = G(Φ) = e−γΦ,

where the second equality applies only to the special case we are momentarily interested in.
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In complete analogy to the one-field case, we use the Friedmann constraint equation to
eliminate ρmat, rewrite the second one,

1

H

dH

dN
= −3

2
((1 − x2

1 − Gx2
2 − y2

1 − y2
2 − z2) +

4

3
z2 + 2(x2

1 + Gx2
2)),

where we again used N defined in (3.32), and get the following system:

dx1

dN
= 3x1(x

2
1 + Gx2

2 +
2

3
z2 − 1) +

(

3

2
x1 −

√

3

2
Q

)

(1 − x2
1 − Gx2

2 − y2
1 − y2

2 − z2)

+

√

3

2
(−γGx2

2 + λ1Φy2
1 + λ2Φy2

2), (6.7)

dx2

dN
= 3x2(x

2
1 + Gx2

2 +
2

3
z2 − 1 +

1

2
(1 − x2

1 − Gx2
2 − y2

1 − y2
2 − z2)) +

√
6γx1x2

+

√

3

2

1

G
(λ1σy2

1 + λ2σy2
2), (6.8)

dy1

dN
= −

√

3

2
(λ1Φy1x1 + λ1σy1x2) +

3

2
y1(1 + x2

1 + Gx2
2 − y2

1 − y2
2 +

1

3
z2), (6.9)

dy2

dN
= −

√

3

2
(λ2Φy2x1 + λ2σy2x2) +

3

2
y2(1 + x2

1 + Gx2
2 − y2

1 − y2
2 +

1

3
z2), (6.10)

dz

dN
=

z

2
(z2 − 1 + 3(x2

1 + Gx2
2 − y2

1 − y2
2)), (6.11)

dG

dN
= −

√
6γGx1. (6.12)

We have defined the following quantities, which are constant by assumption:

γ := −dG

dΦ
,

λiΦ := − 1

Vi

∂Vi

∂Φ
, λiσ := − 1

Vi

∂Vi

∂σ
, i ε{1, 2}.

6.2 Dark energy in dilaton-axion-cosmology

Sonner and Townsend [86] discussed a model consisting of an axion and a dilaton coupled to
gravity, described by the (Einstein frame) Lagrangian

L =
√−g

[

1

2
(R − Φ̇2 − e−γΦσ̇2) − Λe−λΦ

]

, (6.13)

which, according to [13], can be ”partially motivated from string theory”. We do not intend to
verify this claim, but to give an alternative motivation. Consider the Jordan frame Lagrangian

L =
√
−g

[

1

2
(φ2R − φ̇2 − σ̇2) − Λφ−α

]

,

corresponding to Brans-Dicke theory with an additional massless scalar, exhibiting the char-
acteristic shift symmetry of an axion. (Non-gravitational couplings are neglected.) The case
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α = 0 replaces the inverse-power law potential by a cosmological constant and can be included.
The conformally equivalent Einstein frame theory is then just (6.13) with

γ =
2√
7
, λ =

α + 4√
7

.

(See section 4.4 for comparison.)
Sonner and Townsend performed a dynamical system analysis on their model, ignoring

the matter and radiation content of the universe, and found ”recurrent acceleration” within
a significant part of the (γ, λ)−parameter space. We are interested in the viability of the
model as a DE candidate, and therefore have to take into account the matter and radiation
components of the total energy density. The Lagrangian (6.13) coincides with a subset of
the class of theories described in the previous section, specified by setting y2 = 0 and the
following choice of parameters:

λ1Φ := λ > 0, λ1σ = λ2Φ = λ2σ = 0.

As before we redefine Q = |Q| to be positive. Following [86], we allow for γ to take positive
and negative values.

If we define the dynamical variable corresponding to the axion kinetic energy - different
from the general case - as follows,

x2
2 :=

e−γΦσ̇2

6H2
=

Gσ̇2

6H2
,

we can eventually eliminate G completely from the dynamical system. (This is only possible
since the axion has no potential; otherwise the variable y2 would still appear multiplied by
a factor G− 1

2 in the transformed version of (6.8), which corresponds to the axion equation
of motion.) The most important advantage of this choice of variables is that it keeps the
phase-space compact: |x2

2| ≤ 1.
Due to our choice of parameters, and the redefinition of x2, the equations (6.7) - (6.9) and

(6.11) now take the following form:

dx1

dN
= 3x1(x

2
1+x2

2+
2

3
z2−1)+

(

3

2
x1 +

√

3

2
Q

)

(1−x2
1−x2

2−y2−z2)+

√

3

2
(−γx2

2+λy2), (6.14)

dx2

dN
= 3x2(x

2
1 + x2

2 +
2

3
z2 − 1 +

1

2
(1 − x2

1 − x2
2 − y2 − z2)) +

√
6
γ

2
x1x2, (6.15)

dy

dN
= −

√

3

2
λyx1 +

3

2
y1(1 + x2

1 + x2
2 − y2 +

1

3
z2), (6.16)

dz

dN
=

z

2
(z2 − 1 + 3(x2

1 + x2
2 − y2)). (6.17)

We end up with a three parameter family of models, each characterized by a set of fixed
points in four-dimensional compact phase-space. Taking only the solutions with (y ≥ 0, z ≥
0), we find the following fixed points Xs = (x1,s, x2,s, ys, zs):
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A :

(

√

2

3
Q, 0, 0, 0

)

,

B1, B2 : (±1, 0, 0, 0),

C : (0, 0, 0, 1),

D :

(

1√
6Q

, 0, 0,

√

1 − 1

2Q2

)

,

E :

(

2
√

2√
3λ

, 0,
2√
3λ

,

√

1 − 4

λ2

)

,

F :





√

3
2

λ − Q
, 0,

√

2Q(Q − λ) + 3

2(λ − Q)2
, 0



 ,

G :

(

λ√
6
, 0,

√

1 − λ2

6
, 0

)

,

H1,H2 :





√

3
2

γ + Q
,±
√

2Q(γ + Q) − 3

2(γ + Q)2
, 0, 0



 ,

J1, J2 :

( √
6

γ + λ
,±
√

λ(γ + λ) − 6

(γ + λ)2
,

√

γ

γ + λ
, 0

)

.

We display properties of the critical points in table 6.1.
The subset of fixed points we get by setting y = 0 is identical to the set of fixed points

characterizing single field models with exponential potential and constant coupling Q, which
we have already extensively discussed in section 5.4. As can be read from the original equation
of motion of the axion field, σ̇ = 0 is a trivial solution (and our fixed point analysis shows,
that this is indeed a stable configuration in a wide range of parameter space):

σ̈ + (3H − γΦ̇)σ̇ = 0.

Whence the axion has settled to a constant value, it decouples, while the dilaton alone re-
mains dynamically relevant. The term proportional to γΦ̇ modifies the Hubble friction term
(depending on sgn(Φ̇)), and can in principle even change its sign if γ > 0. In a realistic
DE model, we can assume the dilaton kinetic energy to be subdominant with respect to the
background fluid during early stages of cosmic history; in the original model of Sonner and
Townsend the both terms multiplying σ̇ are naturally of the same order, since then

3H =

√

3

2
(Φ̇2 + G(Φ)σ̇2) + 3V (Φ, σ).
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f.p. existence stability ΩDE weff

A Q ≤
√

3
2 stable: 2

3Q2 2
3Q2

Q2 < min{1
2 , 3

2 − γQ, λQ − 3
2}

B1 ∀(γ, λ,Q) saddle point: 1 1

λ >
√

6 ∧ Q >
√

3
2 ∧ γ < 0

B2 unstable

C ∀(γ, λ,Q) unstable 0 1
3

D Q ≥ 1√
2

stable: λ > 4Q > 2γ 1
6Q2

1
3

E λ ≥ 2 stable: 2γ < λ < 4Q 4
λ2

1
3

λ 6= 4Q

F 3
2Q + Q ≥ λ ≥ Q+

√
Q2+12
2 stable: Q < 1√

2

3+Q2−Qλ
(Q−λ)2

Q
λ−Q

∧Q ≤
√

3
2 λ > max{4Q, 2Q + γ}

G λ ≤
√

6 stable: 1 −1 + λ2

3
λ2 < min{4, 3 + Qλ, 6 − γλ}

H1,2 γ ≥ max{0, 3
2Q − Q} stable: λ > γ + 2Q Q

γ+Q
Q

γ+Q

∧ γ > 2Q

J1,2 λ ≥ −γ+
√

γ2+24
2 ∧ γ ≥ 0 stable: 1 λ−γ

λ+γ

λ 6= γ + 2Q λ < min{2γ, γ + 2Q}

Table 6.1: Properties of the fixed points of dynamical system (6.14)-(6.17)

But if γ is sufficiently large, it is possible, even in our version of the model, that γ Φ̇ becomes
larger than 3H, thereby causing σ̇ to diverge. The axion kinetic term e−γΦσ̇2 can still remain
finite, due to the exponentially decreasing dilatonic factor. We identify this situation with
the regime of the two pairs of fixed points H1,2 and J1,2 (the subspace {y = 0} defines the
separatrix in the stability case), which take the rôle of points A and G in case of large γ. The
existence of these points is a genuine property of the two-field model.

The fixed points H1,2 and A,F respectively cannot be simultaneously stable: The stability
condition γ < 3

2Q − Q of point A forbids the existence of H1,2. On the other hand, stability
of H1,2 requires

λ > γ + 2Q ≥ 3

2Q
+ Q,

in conflict with the existence condition of F . Furthermore, stability of G requires λ(λ+γ) < 6,
and this condition is not compatible with existence of J1,2.

By choosing

−γ +
√

γ2 + 24

2
≤ λ < min{2γ, γ + 2Q}, γ > max{2Q,

3

2Q
− Q},

we can realize a model with late time (possibly de Sitter like) attractors J1, J2, preceded by
the scaling regime of saddle points H1,H2, corresponding to a sequence of matter and DE
dominated epochs as in ΛCDM cosmology.
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The autonomous system can be reduced to obtain the original Sonner-Townsend model,
which enables us to discuss the issue of recurrent acceleration. Setting

z = 0, (1 − x2
1 − x2

2 − y2 − z2) = 0,

and eliminating y2 = 1 − x2
1 − x2

2, we end up with a two-dimensional system with com-
pact phase-space like in [86], but spanned by different dynamical variables. Within the full
four-dimensional phase-space, trajectories corresponding to the Sonner-Townsend model are
confined to the two-dimensional subset of phase-space boundary defined by

x2
1 + x2

2 + y2 = ΩDE = 1.

To realize recurrent acceleration, the late time attractor has to be a stable spiral with
weff not too far from − 1

3 . In this case, the trajectories winding around the fixed point can
cross both regions corresponding to accelerated and decelerated expansion. This condition
cannot be fulfilled if G is the late time attractor, since G is a stable node whenever stable.
(The Jacobi matrix at G has four real eigenvalues ∀(γ, λ,Q).) It remains possible that the
effective equation-of-state parameter drops below − 1

3 , before approaching its attractor value,
along certain specific trajectories, corresponding to a short period of transient acceleration.

Points J1, J2, on the other hand, have two complex eigenvalues if

27

4
γ + 6λ − (γ + λ)(γλ + λ2) < 0,

and (like G) their position is at the boundary of the compact phase-space, corresponding to
ΩDE = 1. Since in a realistic cosmological set-up, ΩDE is monotonically increasing with N
(with time) during recent cosmic evolution, and y > 1√

3
necessary for accelerated expansion,

the generic trajectory will reach the boundary soon after passing the phase-space region once,
where

weff ≈ x2
1 + x2

2 − y2 < −1

3
,

and acceleration is possible. To give an illustrative example, we fix our parameters to
(Q, γ, λ) = (0, 4, 2). In this case J1,2 are stable spirals with weff = −1

3 . Figure 6.1 shows
the phase-portrait of the Sonner-Townsend model, while figure 6.2 displays the corresponding
phase-space section of our realistic version. We plotted only one trajectory in each case, which
exhibits the characteristic features.

We discuss figure 6.1 first. Accelerated expansion occurs in the phase-plane region with
x2

1 + x2
2 < 1

3 .

(1) The trajectory starts near the repeller B1 : (x1, x2) = (1, 0), and follows the boundary
of the phase-plane until it reaches the vicinity of B2 : (−1, 0), which is a saddle point in the
two-dimensional case. During this first stage we have x1 + x2 ≈ 1, and therefore wDE =
weff ≈ 1. The evolution of the fields is entirely determined by interaction via the non-
canonical kinetic term: the ”friction” term in the axion equation of motion is initially sign
reversed,

γΦ̇ > 3H ≈
√

3

2
Φ̇,

which causes the rapid increase in x2 ∼ σ̇. When x1 ∼ Φ̇ drops below zero (due to the effective
force term ∼ σ̇2), the axion is subject to enhanced friction, and its velocity decreases again.
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Figure 6.1: Phase-portrait of Sonner-Townsend model, γ = 4, λ = 2.

(2) When the modified friction term has grown sufficiently to force the axion into slow-roll,
the dilaton evolves nearly undisturbed and its kinetic and potential energy increase. When
the trajectory, which is now driven towards the saddle point G, passes x1 ≈ − 1√

3
, it enters

the region where accelerated expansion occurs. Since there is now a significant contribution
from the potential to H, the dilaton’s velocity increases up to x1 ≈ 1√

3
, where the trajectory

exits the accelerated regime, before the friction term in the axion field equation gets sign
reversed again.

(3) Approaching the saddle point G = (
√

2
3 , 0), the trajectory is again bent towards

increasing x2.
(4) Now it enters the regime of the attractor, and re-enters the subspace with weff < −1

3 ,
soon after x2(N) has passed a local maximum. Since the attractor is located exactly at the
boundary between accelerated and decelerated expansion, weff = wDE oscillates around − 1

3 ,
while the trajectory approaches the fixed point.

Now we turn to the model version with background fluid, where

y2 < 1 − x2
1 − x2

2,
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Figure 6.2: Phase-space section (x1, x2) of the extended model version, parameters as above.

before the final attractor is reached. We let our trajectory start close to (x1, x2, y, z) =
(0.7, 0, 0, 0.7), which is of course not very realistic (ΩDE = Ωrad), but makes it easier to rec-
ognize the qualitative features in the phase-space plot. The discussion follows the steps (1)
to (4), corresponding to the (x1, x2)−section of figure 6.2, in analogy to the former case. In
figure 6.3 we show the evolution of weff and wDE with y.

(1) Due to our extreme choice of x1,init, the axion’s velocity is initially enhanced by
”negative friction”. But the trajectory stays close to the x1−axis, indicating background
fluid dominance. ΩDE decreases.

(2) The turning point is already reached around (x1, x2) = (0, 0). The axion gets nearly
frozen. No acceleration occurs, since the potential energy is, though increasing, still negligible
with respect to the background. As can be seen in figure 6.3, wDE approaches −0.8, but weff

decreases only slowly.
(3) Since the background energy density is decreasing, the axion can enter the ”negative

friction” regime, leading to a rapid increase in x2. Now the potential energy remains approx-
imately constant (as in the Sonner-Townsend case), thereby allowing for weff and wDE to
grow towards zero again. (See figure 6.3.)
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Figure 6.3: The same trajectory as in figure 6.2, plotted in (y, weff )− (red curve) vs.
(y, wDE)−plane (blue curve).

(4) In approaching the attractor, the trajectory’s behaviour as shown in figure 6.2 is
very similar to what we observed in figure 6.1. A short period of transient acceleration be-
gins when y ≈ 0.8 is reached, but afterwards weff increases again and the attractor value
weff = wDE = −1

3 is approached from above.

In summary, the main difference between the two models is the absence of the first enduring
stage of accelerated expansion (2) in our extended version, due to the difference between wDE

and weff resulting from background fluid dominance. We have to emphasize, that a more
realistic choice of initial conditions would only further suppress the scalar field dynamics,
since then ΩDE � Ωrad initially. During the matter dominated epoch we have

weff = wDE(1 − Ωmat).

None of the other fixed points exhibits negative values of weff . If the stationary point
corresponding to acceleration is a saddle point, and another fixed point stable, an early
period of transient acceleration is possible. This can be achieved by choice of parameters,
but duration and even existence of this period depend on initial conditions. So we have
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to conclude, that recurrent acceleration - in contrast to the simpler model of [86] - is not
a generic feature of our modified approach. This class of models does not provide a DE
candidate, realizing an equation of state close to wDE ≈ −1 at present, without the side-
effect of a future event horizon due to eternal acceleration.

6.3 Periodic interaction potential

In the previous section, we discussed a family of DE models with at least one field, the dilaton,
running to infinity. Depending on the choice of parameter γ, the second, axionic field could
either become stabilized at a fixed value or stay dynamically relevant and show runaway
behaviour as well. For completeness, we will now construct a simple toy model, where both
fields are (in principle) allowed to settle down to fixed values, corresponding to minima of the
interaction potential.

We consider the following (Jordan frame) action:

S =

∫

d4x
√−g

[

1

2
(ξφ2R − gµν∂µφ∂νφ − gµν∂µσ∂νσ) − V1(φ) − V2(σ)

]

+ Smat[g
µν ,Ψ],

(6.18)
containing the BD scalar (which we keep calling dilaton for convenience) and a second, min-
imally coupled scalar field. We specify the dilaton potential to be a polynomial P (φ) with at
least one minimum, and

V2(σ) = Λ(C + cos(kσ)),

which is the natural choice of potential for an axion type field. (The replacement 1 → C > 1
is for later convenience.) By assumption the BD field couples universally, so there can be no
interaction term in the total scalar potential. (Furthermore we neglect any coupling of the
axion to the matter sector.)

Performing a conformal transformation, we find the corresponding Einstein frame action,

S ⊃
∫

d4x
√−g

[

1

2
(R − gµν∂µΦ∂νΦ − A2(Φ)gµν∂µσ∂νσ) − V (Φ) − A4(Φ)Λ(C + cos(kσ))

]

,

(6.19)

where κ :=
√

ξ
6ξ+1 and

A(Φ) =
1√
ξ
e−κΦ =

1√
ξ
e−QΦ.

The Einstein frame, dilaton potential is now a sum of exponentials:

V (Φ) := A4(Φ)P (eκΦ) =
∑

i

aie
biQΦ.

(Potentials of this type have frequently been discussed in the literature, see [8], or [32] for an
example in the context of supergravity. A dilaton potential of the type

V (Φ) ∼ f(Φ)[ek1Φ + Be−k2Φ],

with k1,2 > 0, can be found in [50], compare (6.20). A Jordan frame phase-space study of a
single field BD model with potential V (φ) = λφn was done in [24].) For simplicity we restrict
ourselves to the case

V (φ) ∼ φα =⇒ V (Φ) ∼ exp((α − 4)QΦ),
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with α > 4.
As before, we fix the geometry by inserting the flat FRW metric, and assume the scalar

fields to be homogeneous. Setting ξ = 1 for simplicity, we obtain the following Lagrangian:

L =
√−g

[

1

2
(R − Φ̇2 − e−γΦσ̇2) − Λ(C + cos(kσ))e−λΦ − V0e

βΦ

]

, (6.20)

where now
γ = 2Q, λ = 4Q, β = (α − 4)Q.

Obviously, we could have obtained this Lagrangian directly from the Sonner-Townsend model
by replacing

Λ −→ Λ(C + cos(kσ)),

and introducing the additive potential term

V1(Φ) = V0e
βΦ

for the dilaton. In the following, we assume the different parameters to be independent, in
order to cover a more general class of models.

The total potential is periodic in σ−direction, with period ∆σ = 2π
k , and has saddle points

at

(Φs, σs) =

(

1

β + λ
ln

(

Λ

V0
(C + 1)

λ

β

)

, 0 ± n∆σ

)

, n ε N0, (6.21)

and minima at

(Φm, σm) =

(

1

β + λ
ln

(

Λ

V0
(C − 1)

λ

β

)

,
π

k
± n∆σ

)

. (6.22)

The choice C > 1 we made above guarantees the existence of the minima.
We already know that, for the axion to be a viable quintessence candidate, its potential has

to be fine tuned in order to match the present DE density: The axion remains frozen near the
maximum of the potential (realizing an effective cosmological constant), and starts to slowly
roll down towards the minimum just around the present. In analogy to the one-field case we
assume that only the region around a saddle point is phenomenologically relevant. Following
our considerations in section 5.3, we replace the axion potential by a Gauss function:

V2(σ) = Λ(C + 1) exp(− k2

2(C + 1)
σ2).

The dynamical evolution equations then take the following form:

dx1

dN
= 3x1(x

2
1 + Gx2

2 +
2

3
z2 − 1) +

(

3

2
x1 +

√

3

2
Q

)

(1 − x2
1 − Gx2

2 − y2
1 − y2

2 − z2)

+

√

3

2
(−γGx2

2 + λy2
1 − βy2

2), (6.23)

dx2

dN
= 3x2(x

2
1 + Gx2

2 +
2

3
z2 − 1 +

1

2
(1 − x2

1 − Gx2
2 − y2

1 − y2
2 − z2))

+
√

6γx1x2 +

√

3

2

1

G
µy2

1, (6.24)

dy1

dN
= −

√

3

2
y1(λx1 + µx2) +

3

2
y1(1 + x2

1 + Gx2
2 − y2

1 − y2
2 +

1

3
z2), (6.25)
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dy2

dN
=

√

3

2
βy2x1 +

3

2
y2(1 + x2

1 + Gx2
2 − y2

1 − y2
2 +

1

3
z2), (6.26)

dz

dN
=

z

2
(z2 − 1 + 3(x2

1 + Gx2
2 − y2

1 − y2
2)), (6.27)

dG

dN
= −

√
6γGx1, (6.28)

dµ

dN
=

√
6ηx2. (6.29)

We introduced the new parameter

η :=
k2

C + 1
.

The corresponding phase-space is non-compact, since the variables µ (which is propor-
tional to the axion field value), G and x2 are unbound (Gx2

2 ≤ 1 is still valid of course). But
a solution, where any of these variables diverge, would be an artefact of deleting the minima
of the potential by the substitution of V2(σ) with a Gaussian. A stationary point of the full
system requires stationarity of both field values, as can be read from the last two equations,
and therefore corresponds to ”sit and wait” behaviour of both fields. For each value of G
(and therefore of the dilaton field Φ), there are two solutions P ∗ = (x1, x2, y1, y2, z, µ) of the
corresponding system of nonlinear algebraic equations (in fact we have ”stationary lines” in
phase-space):

C∗ = (0, 0, 0, 0, 1, 0),

G∗ =

(

0, 0,

√

β

β + λ
,

√

1 − β

β + λ
, 0, 0

)

.

Points of C∗ correspond to the usual radiation dominated repeller, while points of G∗

have ΩDE = 1 and weff = wDE = −1, so they represent a de Sitter solution. Those points
are saddle points, the Jacobi matrix having one real positive eigenvalue. The corresponding
physical situation is realized, if the axion field is initially precisely fixed at the saddle point
of the potential. This configuration is of course unstable with respect to perturbations in the
axion field value, but insensitive to changes in the background fluid or the second field. A
deviation from (µ, x2) = (0, 0) in the initial conditions will cause the axion to slowly roll, away
from the saddle point. Otherwise it will remain fixed, until all background energy density is
diluted away, while the dilaton is stabilized in the limit ρmat → 0. In this case, we again have
effectively a single field model, which generates a cosmological constant dynamically, due to
a non-zero potential minimum.

To discuss this in more detail, we consider the original dilaton field equation,

Φ̈ + 3HΦ̇ = −γ

2
e−γΦσ̇2 − βV0e

βΦ + λΛ(C + cos(kσ))e−λΦ + Q(Φ)ρmat (6.30)

(Q redefined to be positive), which reduces to

Φ̈ + 3HΦ̇ = −βV0e
βΦ + Ke−λΦ + Qρmat

(with a new (quasi-)constant K), if the axion is assumed to be frozen. Though the dilaton
potential has a minimum for each fixed value of σ, the field will settle to a fixed value only
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in the limit ρmat → 0, since the effective potential is time dependent. Due to the constant
coupling Q the dilaton can evolve, even if the axion does not.

On the other hand, we face modifications with respect to an axionic quintessence model
where the dilaton is absent: Considering how the axion field equation is influenced by the
presence of the second field,

σ̈ + (3H − γΦ̇)σ̇ = k sin(kσ)e(γ−λ)Φ, (6.31)

we observe that the ”sit and wait” mechanism will be relevant as long as γ Φ̇ < 3H. The
freezing regime of the axion can be prolonged, and the need for fine tuning alleviated, if either

1. the dilaton field value (assumed to be positive) decreases, while γ > 0, or

2. the dilaton field value increases, while γ < 0.

In both cases the friction term is enhanced, whenever the dilaton field value changes.
(We assume that e(γ−λ)Φ is of order unity, and therefore the modification of the force term
negligible.)

In the next section, we intend to discuss an example, specified by Q = 0. In that case,
the dilaton potential has a time independent minimum, for each value of σ. If the axion sits
and waits exactly at its saddle point value, the dilaton will be stabilized at the saddle point.
Otherwise both fields will be dynamically relevant, and ultimately reach the minimum of
the total potential. The axion kinetic energy acts as an additional force term in the dilaton
Klein-Gordon equation, equivalent to Qρmat, but quadratic in the small deviation from σ̇ = 0,
and will therefore be negligible. If we assume

Φinit > Φs > Φm > 0,

while σinit ≈ σs, and furthermore γ > 0, condition 1 (see above) is satisified, and a single field
model with Gaussian potential, as discussed in section 5.3, will provide a phenomenologically
viable approximation.

6.4 Dark energy from shape moduli

Following Peloso and Poppitz [70], we consider a 6-dimensional product manifold, consisting
of a non-compact 4-dimensional (e.g. FRW) spacetime and a toroidal compactification space.
Let the torus be parametrized by

(y1, y2) ε (−πr1, πr1] × (−πr2, πr2],

and carry an action of the group Z2, defined by the map

S : (y1, y2) 7→ −(y1, y2).

The torus has four fixed points under this map,

P1 = (0, 0), P2 = (πr1, 0), P3 = (0, πr2), P4 = (πr1, πr2),
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and the resulting space (homeomorphic to S
2) contains four conical singularities placed at

the fixed points, each with deficit angle π, corresponding to the tension of the 3 + 1-branes
located at the positions of the singularities.

The volume of the extra space is determined by the expectation value of a scalar field,
called radion, which couples to the trace of the energy-momentum tensor of matter fields
localized on (one of) the branes. Peloso and Poppitz assume, that the radion can be stabi-
lized by the interplay between a 6-dimensional negative cosmological constant - energetically
favouring the extra space to shrink - and a U(1) gauge field in the bulk, with quantized
magnetic flux,

Φmag =
2πN

e
,

where e is the gauge coupling, and N ε N [70]. The magnetic energy is proportional to the
inverse of the surface volume, and contrasts the effect of the negative cosmological constant
Λ6. After minimizing the total energy, the volume modulus is expected to be stabilized at
[70]:

〈A〉 =
πN√
−2Λ6

.

Let us now generalize the geometry of the torus by introducing a shift parameter θ [38],
and a complex shape modulus:

τ = τ1 + iτ2 :=
r2

r1
eiθ.

In agreement with Peloso and Poppitz, we regard the area of the torus,

A = r1r2 sin θ,

as fixed. The torus is now parametrized by a complex variable z with periodic identifications
[38]:

z → z +

√

A
τ2

= z + 2πr1,

z → z + τ

√

A
τ2

= z + 2πr2(cos θ + i sin θ).

Deformations of the extra space are associated with dynamical evolution of the two shape
moduli τ1 and τ2, which do not - in contrast to the radion - couple to the standard model fields
on the brane, but only to the Kaluza-Klein spectrum of bulk fields [70]. The Casimir energy
of the bulk fields generates a potential, and therefore a possible stabilization mechanism for
the moduli.

6.4.1 Action and field equations

We consider the block-diagonal metric ansatz of [70]:

ds2 = GIJdxIdxJ = gµνdxµdxν + gabdxadxb,

where
I, J ε {0, ...5}, µ, ν ε {0, ..., 3}, a, b ε {4, 5},
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and GIJ depends only on coordinates with Greek indices. The metric on the torus is given
by

gab =
1

τ2

(

1 τ1

τ1 |τ |2
)

, (6.32)

and has determinant one. The 6-dimensional Ricci tensor obtained from the metric ansatz
reads as follows,

RIJ = Rµν + Γρ
abΓ

c
ρc − Γc

aρΓ
ρ
cb − Γρ

acΓ
c
ρb,

where we already skipped a total divergence, with

Γρ
ab =

1

2
gρσ∂σgab,

Γc
aρ =

1

2
gcd∂ρgad,

while any other Christoffel coefficients with mixed or Latin indices vanish.
The resulting 6-dimensional Ricci scalar is given by:

R[G] = R[gµν ] +
1

4
gabgcdgµν(∂µgab∂νgcd − ∂µgac∂νgbd − ∂µgad∂νgbc).

We substitute

∂µg44 = − 1

τ2
2

∂µτ2,

∂µg45 =
1

2
(τ2∂µτ1 − τ1∂µτ2),

∂µg55 =
2τ1

τ2
∂µτ1 +

[

1 −
(

τ1

τ2

)2
]

∂µτ2,

and integrate over the extra dimensions to finally obtain the 4-dimensional effective action,

Sgeom = M4
6

∫

d6x
√
−GR[G] =

1

2

∫

d4x
√−g[R − gµν

2τ2
2

∂µτ∂ντ ], (6.33)

where we have set
2M4

6 〈A〉 ≡ M2
p ≡ 1.

Assuming FRW geometry on the brane, and homogeinity of the scalar fields, we introduce

Φ :=
1√
2

ln τ2, σ :=
1√
2
τ1,

and find the reduced action

SΦ = −V
∫

dt a3(t)

[

1

2
(Φ̇2 + e−2

√
2Φσ̇2) + V (Φ, σ)

]

, (6.34)

with yet unspecified potential. The kinetic part of this action corresponds to the Lagrangian
(6.20), if we choose

γ = 2
√

2.
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6.4.2 The Casimir potential

The Casimir energy of bulk fields, which obey periodic boundary conditions in the extra space
coordinates x4, x5, generates a potential for the shape moduli which is naturally related to
the size of the extra dimensions [70]. If the bulk fields belong to supersymmetric multiplets,
and furthermore the brane-localized breakdown of SUSY is communicated to the bulk with
gravitational strength, the mass splitting within the bulk multiplets is of order 10−3eV and
induces a non-vanishing Casimir potential. The contribution of a 1/4 hypermultiplet with
massless fermion and scalar of mass M , given by

V ∗ =
M2

(2πL2)
[
π3τ2

2

45
−

∞
∑

p=1

1

p2
(
2π(1 − cosh(2πpτ2) cos(2πpτ1))

[cosh(2πpτ2) − cos(2πpτ1)]2
− 1

pτ2

sinh(2πpτ2)

cosh(2πpτ2) − cos(2πpτ1)
)],

(6.35)

where L := 〈A〉1/2 is the characteristic length scale of the internal space, is plotted in figure
6.4. Contributions of other multiplets with SUSY breaking mass splittings are easily obtained
from (6.35), and the total potential can be written as a power series in ML with a leading
contribution given by (6.35), multiplied by some overall constant factor [70, 76]. The scale of
the potential is of the same order as the present energy density in the universe if L . 6µm,
meaning that indeed shape moduli in correspondingly large extra dimensions can provide a
viable quintessence candidate.

The Casimir potential is invariant under SL(2, Z) transformations,

τ → aτ + b

cτ + d
,

with a, b, c, d ε Z and ad − bd = 1. The two values,

τs = i, τm = e
2πi
3 ,

are fixed points of the special transformations,

τ → −1

τ
, τ → − 1

τ + 1
,

respectively, and correspond to saddle point and minimum in the fundamental domain of the
torus in the complex plane [70].

The Casimir potential can be approximated within the general framework of the preceding
section. Consider the following choice of parameters:

γ = 2
√

2, λ = 6, β = 12.

The remaining parameters C and V0
Λ can be adjusted (taking values of order unity) to match

the positions of the Casimir potential extrema (compare (6.21) and (6.22)) at

(Φs, σs) = (0,±n), n ε N0,

(Φm, σm) =

(

ln

(√
3

2

)

,
1

2
± n

)

.

The resulting potential contour is shown in figure 6.5.
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Figure 6.4: Contourplot of the shape moduli potential according to [70].
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Figure 6.5: Contourplot of the potential V (σ, x) = Λ(C + cos(2πσ))x−6 + V0x
12, x := e

√
2Φ.
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In quadratic approximation, our model potential does not precisely coincide with the
Casimir potential: We find

m2,s

m1,s
≈ −5.9,

m2,m

m1,m
≈ 0.6,

instead of the values, −5.0 and 1.0 respectively, given by Peloso and Poppitz. We could
compensate for this discrepancy, if we allow β and λ to take non-integer values. The compar-
ison of figures 6.4 and 6.5 shows, that our toy model matches the qualitative features of the
Peloso-Poppitz potential quite well.

In summary, the shape moduli approach infers the right potential scale and field masses to
obtain a viable DE model - provided a SUSY bulk field content. As Peloso and Poppitz have
already mentioned, only the behaviour of the axionic field, in the vicinity of the saddle point,
is phenomenologically relevant. We have covered this situation already by the numerical
example given in section 5.3.3. In the previous section, we presented qualitative arguments to
justify the assumption, but we have also seen, that the success of the model crucially depends
on the choice of initial conditions. As was disussed in subsection 5.3.3, the initial value of
the axionic field must not deviate from the saddle point value by too much. The question
remains open, whether this choice is natural in the shape moduli case.

An interesting issue of further investigation might be the interplay between the volume
and shape moduli during the stabilization of the radion. The compactification process may
serve as a mechanism, which dynamically generates initial conditions for the shape moduli,
thereby helping to avoid the fine tuning problem of common axion-type quintessence models.
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Chapter 7

Summary and conclusion

Incorporating a dynamical realization of dark energy within particle physics or gravity theory
remains to be a formidable task to be addressed in the future. Many proposals have been
published during the course of the last decade, including dark energy candidates like radions,
dilatons, or axions, motivated from higher-dimensional supergravity or other extensions of the
standard model, phantom field k-essence, which has been claimed to be inferable from quan-
tum loop cosmology, and more elaborate or exotic approaches we have not even mentioned in
our thesis. Instead of testing every single proposal against available observational data, we
have followed a different course. As low-energy effective field theories, scalar-tensor theories
of gravity are characterized by a few free functions of (in our case) one or two scalar fields,
including the simpler case of minimally coupled, quintessence fields. We have investigated
the possibility to constrain the choice of those functions by phenomenological considerations.
In order to provide a viable dark energy model, a quintessence potential has to belong to one
of the following classes:

1. The potential exhibits at least one non-zero, local minimum at a finite field value, and
the scalar field has already been stabilized at this minimum. The set-up constitutes a dynam-
ically generated cosmological constant, and is therefore observationally indistingiushable from
the case of constant vacuum energy. In order to match the present dark energy density, the
actual value of the potential minimum is subject to fine tuning, but the corresponding energy
density could have been significantly larger in the past. Fine tuning of initial conditions is
therefore unnecessary.

2. The scale of the potential is low enough, for the Hubble friction to keep the scalar field
frozen at a position close to its initial value, where it ”sits and waits”, until the Hubble rate
is sufficiently reduced to allow for slow roll. A prototype of this class is the axion potential. If
the potential has a zero minimum, the accelerated expansion will be a transient phenomenon,
in which case a future event horizon is avoided. (In chapter 5 we have introduced a Gaussian
model potential, which shares these properties without exhibiting any minima.) Models of
this class generically require not only fine tuning of the potential scale, but also of the initial
field value, depending on the specific shape of the potential.

3. The potential is of the runaway type, and (at least locally) sufficiently flat to admit
slow-roll during the present stage of cosmic history. This corresponds to an extremely light
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scalar field, establishing a new long range interaction - in addition to standard model physics
-, which is phenomenologically dangerous and represents the major obstacle against a real-
ization within particle physics. The dilaton e.g. is characterized by an exponential potential,
which is commonly considered to be modified by perturbative corrections [50]; the resulting
theory would rather belong to the first class.

While the cosmological constant requires one single fine tuning, dynamical models fea-
turing scalar fields are possibly subject to different kinds of tuning, even in the simplest,
minimally coupled, case of quintessence. The dark energy density is the adequate quantity to
be compared with the cosmological constant, interpreted as vacuum energy. Any dynamical
model, to be preferable over the cosmological constant, is at least required to allow for a
significantly larger contribution to the energy density in the past. In chapter 5 we introduced
the following criterion:

ΩDE

ΩΛ

∣

∣

∣

∣

BBN

� 1.

We have seen that some of the quintessence models we discussed already fail to match this
criterion, if not refering to an unreasonable choice of initial conditions.

Secondly, the energy scale of the potential determines the present dark energy density.
The deviation of the two quantities corresponds to the deviation of the equation of state from
wDE = −1 at present. Together with a second parameter, determining its slope (or the field
mass, respectively), the potential scale has to be infered from more fundamental principles,
within a general theoretical framework. But the margin of both parameters becomes smaller
and smaller, the more the model is required to mimic the late time behaviour of a cosmological
constant.

Finally, the ”initial” (in our case: BBN) value of the dark energy density is determined
not only by the potential scale, but also by initial conditions on field value and velocity.
The main issue in dynamical model building is the search for attractor solutions, which can
reproduce the observed late time evolution of the dark energy sector, being independent of
initial conditions. To realize the present universe as a global attractor, quintessence models
are forced to refer to the introduction of additional parameters [4, 8]. Instead, late time
attractors of runaway models are typically characterized by ΩDE = 1 and

−1

3
> wDE > −1.

In the attempt to solve or at least alleviate the coincidence problem, inverse power-law,
”tracking” potentials have been regarded as exceptionally promising. The tracker solution
corresponds to a sequence of radiation and matter dominated scaling regimes, in agreement
with standard ΛCDM cosmology, followed by a period of accelerated expansion. Though,
during earlier stages of cosmic history, the evolution of the scalar field is quite sensitive to the
choice of initial conditions, the - observable - late time behaviour should be entirely deter-
mined by the tracker solution. Unfortunately, as has been noticed lately [15], this advantage
disappears, if the model is required to mimic the behaviour of a cosmological constant around
the present - which seems necessary to stay in agreement with observations. As we have seen
in chapter 5, this leads to the loss of predictiveness: A quintessence model with V ∼ φ−1 is
not falsifiable by reconstruction of its equation of state.

The main purpose of our thesis has been to investigate, whether modifications with re-
spect to the single field, quintessence case can help to alleviate - or even avoid - the fine
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tuning problems of model building. Within the framework of scalar-tensor theories, we ex-
plored consequences of the non-minimal coupling between scalar field and Ricci curvature,
and of the introduction of a second, minimally or non-minimally coupled scalar field. In
both cases the increase in complexity - in the number of model parameters - is soundly mo-
tivated. Though we have given some examples, how to improve the situation gradually, we
have to conclude, that the problem of dependence on initial conditions remains far from being
solved. Since none of the simple effective models we discussed in this thesis realizes the present
stage of the universe as a global attractor, some dependence on initial conditions is inevitable.

In detail, we have followed the ”R−boost” proposal of [7, 62, 73] and provided a clas-
sification of (Jordan frame) coupling functions admitting cosmological scaling solutions. In
particular, we have found that models with F (φ) = ξφ2 + const, including original Brans-
Dicke theory, allow for scaling attractor solutions during matter dominated epoch, if either
the potential force term is subdominant in the equation of motion, or the potential is of the
inverse power-law type and matching, or dominating, the strength of the coupling term. We
have investigated the corresponding class of models in the Einstein frame as well, using a
dynamical systems method, and verified both the existence of the R−boost, and the fact that
it can reduce dependence on initial conditions. Unfortunately, scalar-tensor theories with
constant (Einstein frame) coupling do not share the attractive property of convergence to
general relativity. The effectiveness of the R−boost is therefore limited due to experimental
and observational constraints on the coupling strength.

Alternatively, we have considered a model proposed by Bartolo and Pietroni [9], which
incorporates an attractor mechanism to general relativity, due to an exponentially decaying
(Einstein frame) coupling. In this case, the late time attractor is indistinguishable from
inverse-power law quintessence, but the coupling is allowed to be significantly stronger in the
early universe. Since now model building relies on two independent functions, the potential
parameters can be adjusted to mimic a cosmological constant around the present, while the
dependence on initial conditions is reduced due to the enhanced R−boost. However, in our
numerical example we have found significant evolution at low redshift, allowing the model
to be distinguished from a cosmological constant, as soon as observational data permit an
improved reconstruction of the equation of state.

Though dark energy models featuring a second scalar field rely on a larger number of
free parameters, the examples we have investigated in chapter 6 do not exhibit additional
qualitative features. On the contrary, regarding their phenomenological implications, they can
be approximated within a single field set-up under some very general and natural conditions.
In our extended version of the Sonner-Townsend axion-dilaton model, the dilaton turns out
to be the relevant dynamical ingredient in a wide (and reasonable) range of parameter space,
while the axion is fastly stabilized to a fixed value, only due to enhanced friction. The resulting
family of models, effectively featuring only one field, is conformally equivalent to Brans-Dicke
theory with inverse-power law potential, and corresponds to the class of models identified in
chapter 4.

On the other hand, we have reproduced the relevant features of the shape moduli proposal
of Peleso and Poppitz within a class of two-field models, which share the phenomenological
properties of an axion type, single field model. Under certain assumptions concerning initial
field values, the presence of the second field has a stabilizing effect on the relevant ”sit and
wait” behaviour, again because of enhanced friction.

None of our model examples unites all the different attractive features we discussed in
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the preceding chapters, like convergence to Einstein theory, existence of subceding scaling
solutions, corresponding to the evolutionary sequence of standard cosmology, or an effective
R−boost mechanism to reduce dependence on initial conditions. Furthermore it remains
unclear, to which extent the model parameters can be infered from more fundamental theories.

In the shape moduli proposal of Peloso and Poppitz, the phenomenologically relevant
model parameters are directly related to geometrical and field theoretical considerations: The
properties of the Casimir potential are deduced from the length scale of two ”large” extra
dimensions, and the assumption of a Planck suppressed communication of brane-localized
SUSY breakdown to the bulk field content. The model still has one significant disadvantage:
initial field values have to be chosen close to a saddle point of the Casimir potential - otherwise
the shape moduli fail to provide a quintessence candidate at all.

On the other hand, the authors only assumed, that the internal orbifold volume can be
stabilized by the interplay between a negative cosmological constant, and the magnetic flux
of a gauge field in the bulk. An interesting issue of further research would be to explore the
dynamical interaction between volume and shape moduli during the compactification regime.
Within this generalized set-up, it might be possible to derive constraints on the allowed range
of ”initial” conditions for the shape moduli, acting as quintessence. Though this consideration
is entirely speculative, the idea of dynamical generation of ”initial” conditions is worthwile
to be kept in mind. (In principle, the R−boost mechanism can be interpreted in the same
spirit, as we have already remarked in chapter 5.)

Given the fact, that none of our simple models is capable to completely avoid dependence
on initial conditions, it seems to be a promising objective to search for a physically motivated,
dynamical selection mechanism to complement the conventional conception of a basin of
attraction. On the other hand, this is yet an additional requirement model building efforts
are challenged with, and not so very different from the introduction of additional parameters.
But as long as the predicted redshift evolution of the equation-of-state parameter, wDE(z),
changes from trajectory to trajectory, a dynamical model is definitely incomplete. On the
other hand, the reconstruction of the equation of state from supernovae and other available
data has to be supplemented by additional information - e.g. concerning the possible evolution
of electromagnetic fine structure and gravitational constant on cosmological time scale -, to
improve our capability of model selection.

We have not yet taken into account possible deviations from the assumed homogeinity of
the scalar field(s), and the resulting effects on perturbation growth and large scale structure
formation. It is commonly assumed, that future weak lensing surveys of cosmic shear will
provide complementary information on the nature of dark energy [52]. A combined effort to
reconstruct not only the expansion history but also the growth history of the universe might
be able to decide, whether dark energy is a dynamical quantity or not, hopefully within the
forthcoming decade.

In summary, we have learned that scalar field dynamical models of dark energy are, in
principle, capable to mimic a cosmological constant around the present. But the closer the
equation of state has to approach wDE = −1, the less attractive they become; not only because
the allowed range in parameter space is reduced, but also since the late time evolution develops
an increasing sensitivity to initial conditions. On the other hand, it is still possible that the
cosmological constant will be definitely ruled out by observations one day. In that case, sound
knowledge of dynamical alternatives will turn out to be crucial, in order to understand the
origin of dark energy.
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