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Abstract

The operation of a high-gain free-electron laser (FEL) puts stringent demands on the
peak current, transverse emittance and energy spread of the electron beam. At the Free
Electron Laser in Hamburg (FLASH), a transverse deflecting structure (TDS) has been
installed to investigate these electron beam parameters. The radio-frequency electromag-
netic field in the TDS is utilized to deflect the beam electrons vertically as a function of
time so that the charge distribution in the longitudinal-horizontal plane can be imaged
with optical transition radiation screens. Using this technique, the single-bunch current
profile was measured with an unprecedented resolution of about 10 μm (30 fs) under FEL
operating conditions. A precise single-shot measurement of the energy distribution along
a bunch was accomplished by using the TDS in combination with an energy spectrom-
eter. Appropriate variations of the focal strengths of quadrupole magnets allowed for
the measurement of the horizontal emittance as a function of the longitudinal position
within a bunch (slice emittance) with a longitudinal resolution in the order of 10 μm.
While the slice emittance in the peak current region was measured to be significantly
larger than deduced from properties of the FEL radiation, tomographic methods revealed
a bunch region of small horizontal emittance and high current. The observed increase in
slice emittance in the peak current region was found to be caused by coherent emission
of synchrotron radiation within bending magnets.

Zusammenfassung

Der Betrieb eines hochverstärkenden Freie-Elektronen Lasers (FEL) stellt hohe Anforderun-
gen an Peakstrom, transversale Emittanz und Energieschärfe des Elektronenstrahls. Zur
Untersuchung dieser Strahlparameter ist am Freie-Elektronen Laser in Hamburg (FLASH)
eine transversal ablenkende Wanderwellenstruktur (TDS) installiert worden. Das hochfre-
quente elektromagnetische Feld in der TDS wird genutzt, um die Elektronen vertikal in
linearer Abhängigkeit von ihrer Ankunftszeit abzulenken, so dass die Ladungsverteilung
in der longitudinal-horizontalen Ebene durch Leuchtschirme abgebildet werden kann.
Auf diese Weise konnte das Stromprofil einzelner Elektronenpakete unter FEL-Betriebs-
bedingungen mit einer bisher unerreichten Auflösung von etwa 10 μm (30 fs) gemessen
werden. Eine präzise Messung der Energieverteilung entlang einzelner Elektronenpakete
wurde durch die kombinierte Nutzung der TDS und eines Energiespektrometers erreicht.
Eine geeignete Variation der Fokussierungsstärke von Quadrupolmagneten erlaubte die
Messung der horizontalen Emittanz in Abhängigkeit von der longitudinalen Position
(Scheibenemittanz) mit einer longitudinalen Auflösung von etwa 10 μm. Während im
Bereich des maximalen Stroms eine deutlich größere Scheibenemittanz gemessen wurde,
als aus den Eigenschaften der FEL-Strahlung hervorgeht, konnte durch die Anwendung
tomographischer Methoden ein Bereich im Elektronenpaket mit kleiner horizontaler Emit-
tanz und hohem Strom gefunden werden. Der beobachtete Anstieg der Scheibenemit-
tanz im Bereich des maximalen Stroms konnte auf kohärente Emission von Synchrotron-
strahlung in Dipolmagneten zurückgeführt werden.
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Chapter 1

Introduction

The electromagnetic radiation emitted by ultra-relativistic electrons in

magnetic fields (synchrotron radiation) has become a standard diagnos-
tic tool in a variety of fields of research, both basic and applied research

in the chemical, materials, biotechnology and pharmaceutical industries.
High intensities at short wavelengths down to the X-ray regime allow re-

searchers to probe the structure of a wide range of samples with a resolu-
tion down to the level of atoms and molecules. The radiation generated
by bunched electron beams has a temporal structure on the scale of nano-

seconds and below, allowing for observation of processes taking place on
such time-scales.

While experiments with synchrotron radiation were initially carried out

parasitically at circular accelerators used for high-energy or nuclear physics,
numerous projects worldwide are now dedicated solely to the delivery of

high-quality synchrotron radiation. So-called third generation light sources
are electron storage rings augmented with insertion devices (wiggler and

undulator magnets) in which magnetic fields of alternating polarity induce
intense radiation pulses. Recent advances in accelerator and undulator
magnet technology nowadays allow for the construction of free electron

lasers (FELs) based on self-amplified spontaneous emission (SASE). These
are often called fourth generation light sources. For many experiments,

the relevant figure of merit is the brilliance or spectral brightness of the
radiation beam. SASE FELs achieve a peak brilliance which exceeds third

generation synchrotron radiation sources by several orders of magnitude
(see Fig. 1.1).

The requirements placed on the driving electron beam in fourth gen-

eration light sources are extremely demanding and can currently only

1



2 1. Introduction

Figure 1.1: Peak brilliance of SASE FELs versus 3rd generation Synchrotron Radiation
light sources [1]. Blue spots indicate the experimental performance of the Free-Electron
Laser in Hamburg (FLASH). The brilliance is defined as the number of photons in 10−3 ω
frequency bandwidth (BW) centered around the angular frequency ω = energy/� emitted
per second into a solid angle of 1 mrad2·mm2.

be achieved in linear accelerators (linacs) with high-brightness electron

sources. During the passage through a linac of some hundreds of meters,
or even several kilometers length, the electron beam is subject to distur-

bances which need to be controlled. Accurate diagnostic tools for prob-
ing the electron beam are therefore essential for operating and optimizing

FELs. In contrast to storage rings, where the particle beam reaches a
kind of equilibrium state after many turns, significant fluctuations of beam

parameters from shot-to-shot in linacs necessitate diagnostic devices with
single-bunch resolution. Furthermore, at current machines like the Free-
Electron Laser in Hamburg (FLASH), the requirements for the electron

beam can only be achieved within a small longitudinal section of each elec-
tron bunch comprising about 15 % of the total bunch charge1. Probing this

1So-called higher-harmonic RF structures allow to circumvent this problem. A corre-
sponding upgrade of FLASH with a third-harmonic structure is planned.
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lasing bunch section requires a time-resolution on the femtosecond scale,
making accurate beam diagnostics a challenge to develop.

Transverse deflecting structures, which were developed at SLAC in the
1960s for separating charged secondary particles of different masses, are

very powerful electron beam diagnostic tools. The high-frequency electro-
magnetic field within a transverse deflecting structure (TDS) deflects the
electrons of a passing bunch transversely as a function of time so that the

longitudinal profile of a bunch can be viewed by a screen placed in the
beamline. In combination with tomographic reconstruction techniques, a

TDS allows for the determination of the charge density distribution of a
bunch in phase space with unprecedented accuracy. For this reason, in

many current FEL projects, a TDS is installed in the driving accelerator.
The first operational experience with a TDS in a free electron laser has been

gained at the FLASH facility at DESY. In this thesis, the first TDS exper-
imental results obtained under FEL operating conditions in the FLASH
facility are presented. These results include the single-bunch longitudinal

charge density profile, charge density distribution in longitudinal phase
space, and density distribution in horizontal phase space as a function of

longitudinal position within the bunch.
In the remainder of the introduction, the working principle of FELs is

briefly reviewed. Emphasis is put on the impact of electron beam parame-
ters on the lasing process. In chapter 2, the dynamics of electron bunches
in linear accelerators is described and concepts required in the remainder

of the thesis are introduced. Chapter 3 deals with methods for analyzing
the electron distribution in transverse phase space, in particular the to-

mographic methods that were applied. Details of the FLASH facility, the
TDS and the experimental setup used for the measurements can be found

in chapters 4 and 5. Experimental results collected during most basic linac
operational conditions are presented in chapter 6, while chapter 7 presents

experimental results under FEL operating conditions. A comparison of
the experimental results with those of numerical simulations is given in
chapter 8.
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1.1 The principle of Free-Electron Lasers

This section is meant to provide an intuitive understanding of the physics
of FELs, with a focus on the impact of electron beam parameters on the
FEL process. Details and derivations of the presented formulas can be

found in references [2, 3, 4].

Undulator magnets

FEL radiation is generated in undulator magnets. Undulator magnets

consist of a periodic arrangement of permanent magnets with alternating
polarity (Fig. 1.2). In planar undulator magnets, the magnetic field B in

the symmetry plane y = 0 is approximately a harmonic field given by

B = B0 sin(kuz) · ey, (1.1)

where B0 is the peak magnetic field, ey the unit vector in vertical direction
and ku = 2π/λu with the period λu of the magnet arrangement. Electrons
passing an undulator magnet along the undulator axis (x = 0, y = 0)

are forced to move on an oscillating path in the symmetry-plane y = 0.
Neglecting the longitudinal force due to the horizontal velocity components,

the trajectory of an electron with energy2 γrmec
2 and velocity βrc can be

expressed by

x(z) =
K

βrγrku
· sin(kuz) (1.2)

with the dimensionless undulator parameter

K =
eB0

mec ku
. (1.3)

Here, it is assumed that the particle trajectory fulfills the initial con-

ditions x(0) = 0 and x′(0) = dx/dz(0) = K/(βrγr). For ultra-relativistic
particles with βr ≈ 1, the maximum horizontal offset xmax and the maxi-

mum angle x′
max with respect to the undulator axis are then given by

xmax ≈ K

γrku
=

λuK

2πγr
(1.4)

x′
max ≈ K

γr
. (1.5)

2The index r for “relativistic” is used to distinguish the relativistic parameters βr and
γr from parameters related to the design of accelerators introduced in chapter 2.
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Figure 1.2: Schematic of a planar undulator magnet and the oscillating trajectory of
a passing electron beam. A sine-like vertical magnetic field is generated by a periodic
arrangement of permanent magnets of alternating polarity installed between iron pole
shoes [2].

Owing to the sine-like particle trajectory, the longitudinal particle velocity
component vz is a periodic function of z with a period λu/2. The mean or
effective longitudinal velocity v̄z is given by

v̄z =

(
1 − 1

2γ2
r

(
1 +

K2

2

))
c ≡ β̄rc. (1.6)

The synchrotron radiation emitted by a relativistic electron moving
along an undulator magnet is concentrated in a narrow cone of opening

angle 1/γr, which is centered around the instantaneous tangent to the par-
ticle trajectory [3]. In case the effective longitudinal velocity v̄z is only
slightly smaller than the speed of light, which is the case for large γr and

small K (cf. Eq. (1.6)), the radiation detected by an observer at an an-
gle Θ � 1 with respect to the undulator axis is a superposition of the

contributions from several oscillations along the trajectory. A coherent su-
perposition is obtained at a wavelength λl equal to the distance an electron

falls behind per period λu. This distance is determined by v̄z (Eq. (1.6))
and the angle Θ, and can approximately be expressed by

λl ≈ λu

2γ2
r

(
1 +

K2

2
+ γ2

rΘ
2
)

. (1.7)
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The overlap of the electromagnetic fields generated along the trajectory
increases with decreasing angle x′

max of the electron trajectory. After a

sufficiently large number of periods λu, the continuous spectrum of syn-
chrotron radiation becomes sharply peaked at the wavelength λl and higher

harmonics3 due to interference in case

x′
max � 1

γr
. (1.8)

According to Eq. (1.5) this is equivalent to K � 1, which is a defining
property of undulator magnets. The undulator parameter of the magnets

used at FLASH is K = 1.23 and the period λu = 27 mm.

Power amplification

Undulator radiation is linearly polarized with the electric field vector in
the plane of the sine-like particle trajectory. As a consequence, there is an

energy exchange between an electron and a co-moving radiation field. The
rate of change of the particle energy E is given by

dE

dt
= −evx(t)Ex(t), (1.9)

where Ex(t) is the electric field and vx(t) the horizontal velocity compo-

nent of the particle. A sustained energy transfer along the undulator is
obtained if the electric field Ex and the horizontal velocity component vx

oscillate synchronously, which is the case if condition (1.10) is fulfilled on
the undulator axis:

λl ≈ λu

2γ2
r

(
1 +

K2

2

)
. (1.10)

Given a plane electromagnetic wave with wavelength λl (radiation beam),
this relation imposes a condition on the particle energy. The energy ful-

filling condition (1.10) for a given wavelength λl will be called reference
energy. Due to the energy transfer between an electron and a co-moving
radiation beam, an electron having initially the reference energy will obtain

a slightly detuned energy, which in turn changes the effective longitudinal
velocity according to Eq. (1.6) and thus the rate of energy change. This

3Higher harmonics occur due to deviations of the trajectory from the sine-like shape.
Due to symmetry-properties of these deviations only odd higher harmonics are possible.
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interdependence of energy and rate of energy change leads to an oscilla-
tion in particle energy as well as effective longitudinal velocity along the

undulator magnet, which is the basis for FELs.

The electrons of a bunch with a length σz � λl will partly gain and
partly loose energy due to the interaction with a radiation beam, depending

on the difference between the phase of the horizontal oscillation and the
phase of the electric field of the radiation beam. It can be shown, however,
that in case the mean energy of the electron bunch is slightly above the

reference energy, energy is effectively transferred to the electromagnetic
field. This amplification effect is utilized in so-called low-gain FELs, in

which the radiation is produced in a short undulator magnet and stored in
an optical cavity comprising the undulator magnet. Electron bunches are

repeatedly injected into the undulator in synchronism with the radiation
pulse so the radiation beam and the electron beam spatially overlap. The
gain in intensity of the radiation that can be reached is in the order of a few

percent per undulator passage, and becomes very large after a sufficient
number of turns. Low-gain FELs are suited for wavelengths in the infrared

and visible regime, for which mirrors with high reflectivity that are required
for an optical cavity are available. They are typically used in conjunction

with electron storage rings or energy recovery linacs.

In so-called high-gain FELs, each radiation pulse is generated by a sin-
gle passage of an electron bunch through a long undulator magnet. Along

the magnet, the oscillation in effective longitudinal velocity induced by
a co-moving radiation beam leads to a periodic modulation of the par-
ticle density within the bunch with a period λl (microbunching). The

modulation gives rise to stimulated emission, which in turn amplifies the
density modulation. This process leads to an exponential growth in radi-

ation power P ∝ exp(z/Lg) at the fundamental wavelength λl and higher
harmonics4. Here, Lg is called the power gain length, which is determined

by properties of the undulator and the electron beam. The growth in ra-
diation power approaches a saturated regime after typically about twenty
gain lengths (saturation length). Saturation occurs since the emission of

radiation leads to a decrease in particle energy and an increase in energy
spread, both impeding the FEL process. Furthermore, repulsive Coulomb

forces counteract the microbunching process.

4Only odd higher harmonics are amplified, see e.g. [2].
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High-gain FELs principally allow an operation at wavelengths down to
the hard X-ray regime, since optical cavities are not needed. They can be

driven by a so-called seed laser, which provides an initial electromagnetic
wave with a well-defined wavelength which is then amplified.

In SASE FELs, the amplification process develops from spontaneous

undulator radiation of the electron beam. The radiation wavelength (fun-
damental harmonic) of SASE FELs is determined by the particle energy

and can thus be tuned by changing the electron beam energy. Temporally,
the radiation is a superposition of wave trains of a certain coherence length,

randomly distributed over the length of an electron bunch. Typically, the
bunch length is such that there are a few coherence regions or “longitudinal

modes” in the radiation.

1.2 Requirements on the electron beam in high-gain

free-electron lasers

High-gain FELs put stringent requirements on the driving electron beam.
Adverse beam properties lead to an increase in gain length so a saturated

regime may eventually not be reached within the finite length of the undu-
lator magnet. For a mono-energetic beam with design energy, an approxi-

mative one-dimensional (the transverse extension of the beam is neglected)
analytical treatment yields the gain length

Lg0 ∝ γrn
−1/3
e (1.11)

where ne is the electron density. By including the effects of energy spread,
transverse size and transverse divergence of the electron beam, the gain

length Lg = χLg0 is increased by a factor χ > 1 compared to this ideal
case, as will be discussed in more detail below. The dependence on γr

in Eq. (1.11) shows that in order to reach saturation within an undulator
magnet of reasonable length, the requirements on the beam become the
more demanding the higher the particle energy.

In case of a beam with non-vanishing energy spread, only the particles
within a narrow energy window contribute constructively to the FEL gain

process. The influence of a non-vanishing energy spread can be determined
analytically within the framework of a one-dimensional approximation. It

is convenient to express the energy spread in terms of the dimensionless
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parameter

ρFEL =
1

4π
√

3

λu

Lg0
, (1.12)

which is called FEL parameter because of its fundamental importance. An

RMS energy spread of σE/E = 0.5ρFEL leads to an increase in gain length
of Lg/Lg0 ≈ 1.25 with Lg0 the gain length of a monoenergetic beam, which

is conventionally considered as upper limit for a tolerable increase in gain
length.

A transverse beam divergence5 σx′ =
√〈x′2〉 with x′ = dx/dz reduces

the mean effective longitudinal particle velocity 〈v̄z〉. Concerning the syn-
chronism of particle oscillation and electromagnetic wave, a beam diver-

gence is thus equivalent to an energy spread. By demanding the equivalent
energy spread to be smaller than 0.5ρFEL as above, one obtains the condi-

tion

σ2
x′ <

ρFEL

2γ2
r

. (1.13)

A corresponding condition is demanded for the divergence σy′ in vertical

direction.
The transverse size σx =

√〈x2〉 affects the FEL process in two ways.

From the relation Lg0 ∝ n
−1/3
e (cf. Eq. (1.11)) follows Lg0 ∝ σ

2/3
x . Thus

a small transverse beam size appears to be preferable. However, a small
transverse beam size is accompanied by strong diffraction effects of the

radiation beam, which reduce the overlap of radiation and electron beam.
The transverse RMS size of the radiation beam increases by a factor of two
after a distance LR called Rayleigh length, which depends on the transverse

size of the beam according to

LR =
4πσ2

x

λl
. (1.14)

A Rayleigh length smaller than the ideal gain length Lg0 leads to a signif-
icant increase of the true gain length Lg. On the other hand, if the ideal

gain length is much smaller than the Rayleigh length, the power gain is
hardly hampered by diffraction, since the power gain in the center of the

radiation beam over-compensates the losses due to diffraction (gain guid-
ing). Given Lg0, this means that the transverse size of the electron beam

5It is assumed that 〈x′〉 = 0 and 〈x〉 = 0.
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has to be chosen sufficiently large, which is in contrast to the requirement
mentioned above. A choice of a Rayleigh length of LR ≈ 2Lg0 is generally

considered to be a reasonable compromise. Using Eqs. (1.12) and (1.14),
this yields the condition

σ2
x ≈ λuλl

8π2
√

3ρFEL

. (1.15)

Transverse size and divergence of the electron beam are typically con-

trolled by quadrupole magnets installed at regular intervals on top or in-
between undulator magnets. In order to be able to fulfill conditions (1.13)
and (1.15) simultaneously by beam focusing, the product must satisfy

σxσx′ <
λl

4π
, (1.16)

where λu/(
√

3γ2
r ) < λl (for small undulator parameters K) was used. The

product on the left hand side of Eq. (1.16) is an upper limit for the trans-

verse beam emittance εx =
√〈x2〉〈x′2〉 − 〈xx′〉2 , which is a fundamental

beam parameter that will be discussed in detail in chapter 2. The term on

the right hand side in Eq. (1.16) is equal to the product σl
x · σl

Θ of trans-
verse size and divergence of the radiation beam which is determined by

diffraction. Equation (1.16) thus states that the electron beam emittance
has to be smaller than the “emittance” of the radiation beam.

The quantitative dependence of the gain length Lg on the transverse

emittance can only be determined numerically. Figure 1.3 shows the com-
puted gain length as a function of the normalized transverse emittance

(emittance εx times γr) using undulator parameters of FLASH and a par-
ticle energy of 1 GeV according to reference [2]. The criterion (1.16) yields

an upper limit of 1 μm for the normalized emittance in this case. In this
example an increase in emittance leads to an increase in gain length by

roughly the same factor, which illustrates the importance of this parame-
ter for the FEL process.

Above it is assumed that the centroid of the electron beam 〈x〉 has zero

offset with respect to the undulator axis. In reality, centroid offsets are
inevitable. In order to not impede the FEL process by reducing the overlap

between electron and radiation beam, the maximum deviations should be
significantly smaller than the diameter of the beam. With typical beam

diameters in the order of 100 μm at energies in the order of 1000 MeV, this
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Figure 1.3: Computed 3D power gain length Lg (solid red curve) and 1D power gain length
Lg0 (dashed blue curve) as a function of the normalized emittance. The calculations are
done for an energy of 1 GeV using parameters of FLASH and a peak current of 2500 A
[2]. The gain length Lg0 was determined within the framework of the one-dimensional
approximation taking into account the change in charge density accompanying a variation
in emittance.

means that the orbit should be aligned with an accuracy in the order of

10 μm over several gain lengths. This puts stringent requirements on the
field quality and mechanical accuracy of the undulator. Furthermore, the

orbit of the electron beam has to be precisely aligned to the undulator axis
by steering magnets. Deviations occuring slowly over many gain lengths

are less critical due to the principle of gain guiding.



Chapter 2

Transverse particle dynamics in
linear accelerators

2.1 Transverse particle dynamics in linear approxi-

mation

In particle accelerators, electromagnetic guide fields force the beam parti-

cles to move on trajectories close to a design orbit. The guide fields are
typically stationary magnetic fields transverse to the direction of motion.
The simplest beam transport systems consist of dipole magnets, which de-

fine the design orbit for a reference particle with the nominal momentum,
and quadrupole magnets to keep all particles close to the design orbit.

Typically, the design orbit lies within a plane, which is assumed to be the
horizontal plane, and all quadrupole magnets are oriented in such a way

that the motion transverse to the direction of motion of the reference par-
ticle is decoupled in horizontal and vertical direction1. The magnetic field
within the plane of the design orbit is then purely vertical.

It is convenient to describe the motion of individual particles in terms
of coordinates related to the design orbit. The instantaneous position

of an particle can be specified by the curvilinear-orthogonal coordinates
(x, y, s), where s is the distance along the design orbit from some arbitrary

reference point s0 = 0 to the point on the design orbit nearest the particle.
The horizontal and vertical displacements are then perpendicular to the

tangent at the design orbit at s and are specified by the corresponding
coordinates x and y in a local right-handed rectangular coordinate system,

1The assumption that the motion is decoupled is not mandatory. Linear transverse
beam dynamics including coupling is described e.g. in [5].

12
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Figure 2.1: Design orbit and coordinate system.

see Fig. 2.1. Excluding particle acceleration, the guide field of a linear beam
transport system as described above with a design orbit in the horizontal

plane can approximately be expressed by

By(x, s) = By(0, s) +
∂By

∂x

∣∣∣∣
(0,s)

· x (2.1)

Bx(y, s) =
∂Bx

∂y

∣∣∣∣
(0,s)

· y. (2.2)

With �∇× �B = 0 follows

∂By

∂x
=

∂Bx

∂y
. (2.3)

The guide field can thus be described by the two quantities By(0, s) and
∂By

∂x

∣∣∣
(0,s)

. Choosing s as an independent coordinate instead of time and

retaining only terms up to first order in x, y and their derivatives, the

equations of motion for an electron with charge (−e) and design momentum
p0 are

d2x

ds2 = −Kx(s) · x (2.4)

d2y

ds2 = −Ky(s) · y (2.5)
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with

Kx(s) =
1

ρ2(s)
+

e

p0

∂By

∂x

∣∣∣∣
(0,s)

(2.6)

Ky(s) = − e

p0

∂By

∂x

∣∣∣∣
(0,s)

, (2.7)

where ρ(s) is the local bending radius in the horizontal plane [5]. For an
electron with slightly deviating momentum

p = p0 · (1 + δ), (2.8)

the equations of motion are [5]

d2x

ds2 = −Kx(s) · x +
δ

ρ(s)
(2.9)

d2y

ds2 = −Ky(s) · y. (2.10)

Again, terms of second and higher order in (x, y, δ) (including combina-

tions) and their derivatives are neglected.
These equations describe the so-called betatron motion due to linear

focusing. They are examples of Hill’s differential equation [6]. Within
sections where Kx/y(s) is positive and constant, as within focusing fields of

quadrupole magnets, the equations of motion correspond to that of a one-
dimensional harmonic oscillator. Note that due to relation (2.3) focusing in

the horizontal plane includes defocusing in the vertical plane and vice versa
(neglecting “geometric focusing” due to the bending radius). Reference [5]
shows that a proper arrangement of alternating high gradient quadrupole

fields is nevertheless suited to keep particles close to the design trajectory
simultaneously in both transverse planes.

To solve Hill’s equation, two standard methods are commonly used.
The first one reflects the fact that the function K(s) = Kx(s) is speci-

fied piecewise by the sequence of magnets and drift sections rather than
as a global function2. The solutions are therefore assembled from local
solutions by means of transfer matrices. The second one originates from

circular accelerators, where the requirement of long-term stability of parti-
cle trajectories allows to describe the focusing characteristics of the entire

magnet configuration via so-called beta functions.
2From now on only the horizontal plane is considered. Everything applies correspond-

ingly to the vertical direction.
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2.1.1 Transfer matrices

The general solution x(s) of the homogenous Hill equation

d2x

ds2 + K(s) · x = 0 (2.11)

within an interval s0 ≤ s ≤ L and its derivative x′(s) can be expressed in
terms of linearly independent solutions u1(s) and u2(s) as

x(s) = a1u1(s) + a2u2(s) (2.12)

x′(s) = a1u
′
1(s) + a2u

′
2(s), (2.13)

where a1, a2 are real constants. Eq. (2.12) can be written in matrix notation

as [
x(s)

x′(s)

]
=

[
u1(s) u2(s)

u′
1(s) u′

2(s)

]
·
[

a1

a2

]
, (2.14)

or

X(s) = U(s) · A. (2.15)

The determinant of U(s) does not depend on s:

d

ds
[det U(s)] = 0. (2.16)

It is, moreover, non-zero as u1(s) and u2(s) are linearly independent and
the determinant is just the Wronski determinant of these solutions. The

matrix U(s) is therefore invertible, and multiplication of Eq. (2.15) with
U(s)−1 yields at s = s0

A = U(s0)
−1 · X(s0). (2.17)

Inserting this expression into Eq. (2.15) yields a representation of the gen-
eral solution in terms of the initial conditions X(s0) at s0:

X(s) = M(s, s0) · X(s0), (2.18)

where

M(s, s0) = U(s) · U(s0)
−1 (2.19)

=

[
C(s) S(s)

C ′(s) S ′(s)

]
. (2.20)



16 2. Transverse particle dynamics in linear accelerators

The matrix M(s, s0) is called the transfer matrix from s0 to s. From
Eq. (2.16) follows

det M(s, s0) = 1. (2.21)

The matrix elements C(s) and S(s) are called the cosine-like and sine-like
principal solutions of the Hill equation satisfying the relations

C(s0) = 1 (2.22)

C ′(s0) = 0 (2.23)

S(s0) = 0 (2.24)

S ′(s0) = 1. (2.25)

The representation (2.18) of the general solution is very useful in ac-
celerator physics, since the function K(s) is typically piecewise constant

in very good approximation. The equation of motion can thus be solved
locally yielding transfer matrices for the single intervals in which K(s) con-

stant, and the general solution can be calculated by matrix multiplication,
i.e.

M(sn, s0) = M(sn, sn−1) · ... · M(s1, s0). (2.26)

A solution of the inhomogeneous equation (2.9) can be found by using

Green’s functions, yielding a particular solution δ · D(s) with [7, 8]

D(s) = S(s)

∫ s

s0

1

ρ(t)
C(t)dt− C(s)

∫ s

s0

1

ρ(t)
S(t)dt. (2.27)

Physically, δ · D(s) is the horizontal offset of an electron with relative

momentum deviation δ from the design orbit at s, provided the electron
was moving on the design orbit in a small interval around s0. The func-

tion D(s) is called the dispersion trajectory. The general solution of the
inhomogeneous equation can be expressed using again matrix notation as

⎡
⎣ x(s)

x′(s)
δ

⎤
⎦ =

⎡
⎣ C(s) S(s) D(s)

C ′(s) C ′(s) D′(s)
0 0 1

⎤
⎦ ·
⎡
⎣ x(s0)

x′(s0)

δ

⎤
⎦ . (2.28)
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2.1.2 The beta function

The general solution of the homogenous Hill equation (2.11) can be ex-

pressed in phase-amplitude form by

x1,2(s) = w(s) · e±iφ(s). (2.29)

This ansatz satisfies the Hill equation, if the real-valued functions w(s) and
φ(s) fulfill

w′′(s) + K(s)w(s)− 1

w3(s)
= 0 (2.30)

and

φ′(s) =
1

w2(s)
, (2.31)

as can be verified by substitution. The two solutions x1,2(s) are then lin-

early independent, and Eq. (2.19) can be used to express the transfer matrix
M(s, s0) in terms of the functions w(s) and φ(s). In case of circular accel-

erators, the representation of the transfer matrix for one turn in this way
allows to uniquely define an amplitude function w(s), since the requirement
of long-term stability imposes stringent conditions on the one-turn-matrix

[5]. For historical reasons, this amplitude function is denoted as
√

β(s),
and β(s) is referred to as the beta function. The beta function is commonly

used also in case of linear accelerators, although it is not uniquely defined
by the magnet configuration. Its definition in linear accelerators will be ad-

dressed at the end of this section. The general real-valued phase-amplitude
solution can be expressed via the beta function as

x(s) =
√

a · β(s) · cos(φ(s) + φ0), (2.32)

where a and φ0 are real constants specifying the particular solution, and

φ(s) =

∫ s

s0

ds′

β(s′)
(2.33)

is the betatron phase. The value of the beta function is a positive real
number for all s so the betatron phase has no singularities. Two additional
functions

α(s) = −1

2
β ′(s) (2.34)

γ(s) =
1 + α2(s)

β(s)
(2.35)



18 2. Transverse particle dynamics in linear accelerators

derived from the beta function are commonly used to describe the betatron
motion. Together, β(s), α(s) and γ(s) are referred to as the Courant-

Snyder or Twiss parameters.

The beta function of a given accelerator completely describes the lateral

focusing properties of the (linear) guide field and reveals significant char-
acteristics of the particle trajectories. In particular, the maximum possible
displacement of a particle from the design orbit at position s is given by√

aβ(s). The instantaneous wavelength of the pseudo-harmonic oscillation
described by Eq. (2.32) is given by

λ =
2π

φ′(s)
(2.36)

= 2πβ(s). (2.37)

The local focusing properties can be deduced from Eq. (2.30).

The representation of the transfer matrix M(s2, s1) via β(s) and φ(s) is

given by [7]

M(s2, s1) = (2.38)⎡
⎣
√

β2

β1
(cos(Δφ) + α1sin(Δφ))

√
β1β2sin(Δφ)

α1−α2√
β2β1

cos(Δφ) − 1+α1α2√
β2β1

sin(Δφ)
√

β1

β2
(cos(Δφ) − α2sin(Δφ))

⎤
⎦ ,

where

Δφ =

∫ s2

s1

ds

β(s)
(2.39)

is the betatron phase advance from s1 to s2, and β1 = β(s1) and corre-

spondingly for all Courant-Snyder parameters.

The phase-amplitude solution allows an instructive interpretation, which

can be seen by combining x(s) and x′(s) according to Eq. (2.32) to the ex-
pression

γx2 + 2αxx′ + βx′2 = a. (2.40)

Eq. (2.40) defines an ellipse in so-called trace space coordinates (x, x′) with

area πa and center at (0, 0). The particle motion can thus be interpreted
as a movement around an ellipse in trace space, whose shape varies along

the accelerator according to the corresponding transfer matrices while its
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Figure 2.2: Ellipse characteristics related to Courant-Snyder parameters [9].

area remains constant. Because of its importance a is called the Courant-

Snyder invariant. The relation of Courant-Snyder parameters to the ellipse
geometry is sketched in Fig. 2.2.

To determine the transformation of Courant-Snyder parameters and
thus the shape of the ellipse, it is helpful to write Eq. (2.40) in matrix

notation as

XTJX = a (2.41)

with

X =

[
x

x′

]
(2.42)

and

J−1 =

[
β −α

−α γ

]
. (2.43)

Note that

det(J) = det(J−1) = 1 (2.44)

due to Eq. (2.35). When the trace space coordinates are transformed by
multiplication with a transfer matrix M = M(s2, s1), the new ellipse pa-

rameters are given by

J(s2)
−1 = MJ(s1)

−1MT , (2.45)
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as can be verified through

X(s1)
T
[
MT (MT )−1]J(s1)

[
M−1M

]
X(s1) = a. (2.46)

Inserting the representation (2.20) of M in terms of principal solutions into
Eq. (2.45) yields the following transformations of Courant-Snyder param-
eters: ⎡

⎣ β(s2)

α(s2)
γ(s2)

⎤
⎦ =

⎡
⎣ C2 −2CS S2

−CC ′ (S ′C + SC ′) −SS ′

C ′2 −2S ′C ′ S ′2

⎤
⎦ ·
⎡
⎣ β(s1)

α(s1)
γ(s1)

⎤
⎦ . (2.47)

The corresponding representation of the phase advance Δφ from s1 to s2

is given by [10]

Δφ = tan−1
(

S

C · β(s1) − S · α(s1)

)
. (2.48)

The transformation of Courant-Snyder parameters described by Eq. (2.47)
is particularly important for linear accelerators, since the arbitrariness of

the beta function reduces to the specification of initial values for α and
β. Designing the optics of a linear accelerator thus includes a reasonable

choice of these values. This choice is based on statistical properties of the
electron distribution of single electron bunches as discussed in the following

section.

2.2 Transverse emittance

The interpretation of the particle motion in terms of a transforming ellipse
in trace space is particularly helpful for describing the development of an

electron distribution ρ(x, x′) under the linear dynamics described above.
Since the dynamics of a single electron is determined by its trace space

coordinates (x, x′), every electron within a certain trace space area will stay
within this area if the boundary is transformed according to the equation
of motion. Since an elliptical area with center (0, 0) remains elliptical as

shown above, the transformation of a few ellipse parameters is suited to
describe the envelope of an electron ensemble in trace space.

A trace space ellipse that is particularly useful and easy to determine is

given by the covariance matrix σ = COV (x, x′) = COV (X) of the beam
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distribution via

XTσ−1X = 1. (2.49)

The covariance matrix or beam matrix is defined as

σ =

[ 〈x2〉 〈xx′〉
〈xx′〉 〈x′2〉

]
, (2.50)

where 〈 〉 denotes averaging over the electron density distribution ρ(x, x′)
and

〈x〉 = 〈x′〉 = 0

has been assumed. The ellipse is referred to as RMS ellipse.
A transformation of the electron coordinates

X(s2) = M · X(s1) (2.51)

with a transfer matrix M = M(s2, s1) yields a transformation of the beam
matrix according to

σ(s2) = Mσ(s1)M
T , (2.52)

as can be verified by calculating COV (MX). The transformation of σ(s)

is identical to that of J(s)−1 (Eq. (2.45)). Thus one can define ellipse pa-
rameters (βe, αe, γe) in terms of covariances in correspondence to Eq. (2.43)
by [

βe −αe

−αe γe

]
=

σ√
det(σ)

(2.53)

with the result that (βe, αe, γe) transform in the same way as Courant-

Snyder parameters (β, α, γ). (βe, αe, γe) are referred to as beam ellipse
parameters3. The quantity

ε =
√

det(σ) (2.54)

=
√

〈x2〉〈x′2〉 − 〈xx′〉2 (2.55)

is called the geometric RMS emittance [11]4. The product πε is the area

of the RMS ellipse in trace space. The geometric emittance has units of
length.

3The beam ellipse parameters are often also called Courant-Snyder or Twiss parameters.
This will not be done here to avoid confusion.

4There is another definition of RMS emittance introduced by Lapostolle [12], who
defines it as phase space area occupied by a “perfect equivalent beam” with uniform
density distribution and the same covariances. This definition will not be used here.
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If the actual beam ellipse parameters are the same as the Courant-
Snyder parameters of the design optics, the beam is said to be “matched”.

In this case, the RMS emittance ε corresponds to a Courant-Snyder invari-
ant and the beta function directly reveals the RMS beam size of a beam

with known RMS emittance via

εβ(s) = 〈x(s)2〉. (2.56)

In case of a matched Gaussian bunch, the iso-density contours in trace

space coincide with ellipses described by the Courant Snyder parameters.

Other definitions of transverse emittance

There are various definitions of beam emittance specific to particular pur-

poses and beam properties. Generally, the emittance is a measure of the
phase space or trace space volume (the difference is discussed below) oc-

cupied by a beam, mostly restricted to two-dimensional subspaces. For an
ideal hard-edged beam, the emittance can simply be defined to be propor-

tional to the total trace space volume occupied by the beam. For a particle
distribution without well-defined cutoff, often the trace space volume popu-

lated by a certain fraction, e.g. 90% of the beam particles is taken to define
the emittance. For Gaussian-like distributions, the RMS emittance intro-
duced above is convenient. In case of a two-dimensional Gaussian trace

space distribution, 39.3% of all particles are contained within an RMS
ellipse. The ellipse is sometimes scaled to include a larger fraction of the

particles, e.g. in case of proton beams the “2σ-emittance” is conventionally
used.

For non-Gaussian beams, the RMS emittance may be misleading since

the fraction of particles contained within the RMS ellipse may strongly
deviate from the quoted value. Moreover, the ellipse area may comprise
sections with very low or even vanishing particle density if the distribution

is deformed accordingly. In these cases, a more detailed analysis of the trace
space distribution is necessary to define a meaningful emittance related to

the particles of interest. This is particularly important in case of single-
pass FELs with strongly distorted trace space distributions and will be

addressed in detail in chapter 7.
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Conservation of transverse emittance

The phase space volume occupied by a beam bunch is conserved under very

general conditions. For a beam subject to external electromagnetic forces
described by a Hamiltonian, the Liouville theorem [13] can be applied if in-

ternal forces are neglected. In this particular case, the theorem states that
the phase space density within an arbitrary six-dimensional phase space

volume transformed according to the Hamiltonian is constant in time. If
the dynamics in the two-dimensional horizontal and vertical subspaces and
the longitudinal subspace is decoupled, which is a convenient but particu-

larly in linear accelerators sometimes violated assumption (see below), the
same applies to these two-dimensional subspaces. A change of the phase

space density may occur due to internal processes, such as Coulomb forces
and radiation processes.

Ideally the bunch emittance is proportional to the phase space volume
occupied by the bunch particles. In this case the emittance is a key param-

eter of a beam and a measure of the “beam quality”, meaning the deviation
of beam particle parameters from reference parameters. In reality this is,

however, often not the case. Depending on the exact definition of emit-
tance, there are mechanisms leading to emittance growth without changing
the phase space volume occupied by a bunch.

An important issue in this respect are the underlying variables. Liou-

ville’s theorem is based on a description in canonically conjugate variables.
The canonical transverse momentum Px conjugate to the spatial position
coordinate x in presence of an electromagnetic field is given by [3]

Px = px + q · Ax (2.57)

with the horizontal vector potential component Ax, particle charge q and
horizontal kinetic momentum px = γrm

dx
dt , where m is the mass of the

particle. In case the magnetic field is purely transverse to the direction of
movement as in case of linear transport lines discussed here, the transverse
components of the vector-potential �A vanish and the transverse kinetic

momentum px is conjugate to the transverse position x. Thus the local
particle density in kinetic transverse phase space (x, px) is conserved. The

same applies to trace space (x, x′) only if there is no acceleration. In this
case the canonical transverse momentum px is proportional to the angle

x′, yielding a canonical transformation to conjugate variables x and x′.
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Otherwise the angle coordinate x′ scales like 1/γr. In order to define an
emittance invariant under acceleration, the angle-coordinate x′ in trace

space can be replaced by the invariant ratio px/mec. With

px

mec
= γrβrx

′ (2.58)

and βr ≈ 1 one obtains the invariant normalized transverse emittance γrε,

where ε is the corresponding geometric emittance in trace space. If the
beam is not mono-energetic the gamma-factor refers to the average energy.

This implies that the normalized emittance may change slightly along a
beamline, but typically the energy variance is small enough so this effect
is negligible.

Conservation of the normalized transverse RMS emittance is addition-
ally only guaranteed within the framework of the linear approximation.

Any transverse force depending in a non-linear way on transverse coordi-
nates may change the RMS emittance.

Important sources for two-dimensional transverse RMS emittance growth
in the linear electron accelerators considered in this thesis are coherent syn-
chrotron radiation effects within dipoles, wake fields and, particularly at

low energies, repulsive Coulomb forces. These issues are discussed in detail
in section 4.1.4. There are other sources for RMS emittance growth which

are typically not significant in case of linear accelerators but important
in circular accelerators, as for instance higher order magnetic fields lead-

ing to “beam filamentation” and thus to a dilution of the average phase
space density within the RMS ellipse, and “chromatic” effects due to a
non-vanishing energy spread.

2.3 Normalized coordinates and beam mismatch

Typically, the beam ellipse parameters (βe(s0), αe(s0), γe(s0)) at a point
s = s0 of a transport line are not perfectly matched to the design param-

eters (β(s0), α(s0), γ(s0)). In order to describe the development of such
“mismatched” beam ellipse parameters, it is convenient to introduce so-

called normalized coordinates (u, v) as described in the following.
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Normalized coordinates

Given the design Courant-Snyder parameters (β(s), α(s), γ(s)), the trans-

formation to normalized coordinates can be expressed via [14][
u(s)
v(s)

]
= S ·

[
x(s)
x′(s)

]
(2.59)

with

S(s) =

⎡
⎣ 1√

β(s)
0

α(s)√
β(s)

√
β(s)

⎤
⎦ . (2.60)

Inserting the general solution (2.32) for x(s) and x′(s) in terms of betatron
functions yields

u(s) =
√

a · cos(φ(s)) (2.61)

v(s) = −√
a · sin(φ(s)) (2.62)

=
du

dφ
. (2.63)

Thus, electron trajectories describe a circle in the (u, v)-plane with radius√
a. With φ as independent variable, this is in analogy to a description of

a one-dimensional harmonic oscillator.

A transfer matrix M(s2, s1) in trace space corresponds to a transfer
matrix

M̃(s2, s1) = S(s2) · M(s2, s1) · S−1(s1) (2.64)

in the (u, v)-plane. The transformation yields a rotational matrix

M̃(s2, s1) =

[
cos(φ) sin(φ)
−sin(φ) cos(φ)

]
. (2.65)

Mismatch parameter and mismatch phase

The transformation from trace space coordinates (x, x′) to normalized co-

ordinates (u, v) by multiplication with a matrix S according to Eq. (2.59)
defines a transformation of RMS ellipse parameters (βe, αe, γe) of a parti-

cle distribution in trace space. Since det(S) = 1, the transformation is in
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analogy to the transformation induced by linear beam transfer (Eq. (2.45))
given by

J̃−1 = SJ−1ST (2.66)

with

J−1 =

[
βe −αe

−αe γe

]
(2.67)

and

J̃−1 =

[
β̃e −α̃e

−α̃e γ̃e

]
. (2.68)

In particular, one obtains

β̃e =
βe

β
. (2.69)

In case (βe, αe, γe) are equal to the design Courant-Snyder parameters

(β, α, γ), the resulting parameters (β̃e, α̃e, γ̃e) describe a circle in the (u, v)-
plane with a radius of

√
ε, ε denoting the RMS emittance. In case (βe, αe, γe)

deviate from the design parameters, an ellipse with the same area πε as
the circle will be obtained, since det(S) = 1. The ellipse will be called

mismatch ellipse. The “deformation” of the mismatch ellipse is a measure
for the deviation of the RMS ellipse parameters (βe, αe, γe) from the design

Courant-Snyder parameters. The deformation can be described by the ra-
tio of the length of the semi-major axis to the radius of the circle. The
square of this ratio is called mismatch parameter M [14] (Fig. 2.3).

The mismatch parameter can be determined from the RMS ellipse pa-
rameters and the design Courant-Snyder parameters via [14, 15]5

M = B +
√

B2 − 1 (2.70)

with

B =
1

2
(βeγ − 2αeα + βγe) (2.71)

=
1

2

(
β̃e + γ̃e

)
. (2.72)

5In the literature, sometimes B is called mismatch parameter [16].
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Figure 2.3: Mismatch ellipse defined by parameters (β̃e, α̃e, γ̃e). The circle is obtained by
applying the transformation to normalized coordinates (u, v) to the design Courant-Snyder
parameters (β, α, γ). The mismatch ellipse is the result of a corresponding transformation
of mismatched RMS ellipse parameters. ε denotes the RMS emittance. The mimatch
ellipse can be described by the mismatch parameter M and the mismatch phase Ψ.

The orientation of the mismatch ellipse at s = s0 can be described by
the angle Ψ0 between the semi-major axis and the u-axis in the right half

plane (Fig. 2.3). It is related to the parameters (β̃e, α̃e, γ̃e) of the mismatch
ellipse via

tan(2Ψ0) =
−2α̃e

β̃e − γ̃e

. (2.73)

Here, the solution within the interval [−π/2, π/2] with opposite sign of α̃e

has to be taken in order to obtain the angle indicated in Fig. 2.3 [14].
As shown above, the transfer matrices in normalized coordinates are

rotational matrices. The axis of the mismatch ellipse rotates clockwise by
an angle −Δφ = −(φ(s) − φ(s0)) (with the usual convention for positive

angles) as the bunch proceeds along the beamline from s0 to s. The shape
of the ellipse and therefore the mismatch parameter are unaffected, whereas
the angle Ψ0 changes. An invariant under linear beam transfer describing

the orientation of the mismatch ellipse can be defined by

Ψ = Ψ0 + φ(s). (2.74)

Ψ will be called mismatch phase [14]. It corresponds to the angle Ψ0 in

Fig. 2.3 at s = 0.
Given the Courant-Snyder parameters of an accelerator, mismatch pa-

rameter and mismatch phase uniquely determine the RMS ellipse param-
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eters at all points of the beamline. They can in particular be used to
describe the ratio βe(s)/β(s) = β̃e(s), which is given by [15]

βe(s)

β(s)
= B +

√
B2 − 1 · cos(2(φ(s)− Ψ)). (2.75)

βe(s) thus oscillates with a frequency twice the betatron frequency around

the design value β(s) times the constant B. This oscillation is called “beta-
beating”. The maximum of the ratio βe(s)/β(s) is given by M .

Deformation parameter and deformation phase

Mismatch parameter M and mismatch phase Ψ describe the deviation of

ellipse parameters from design parameters. The same formalism can be
applied in order to compare two arbitrary sets of ellipse parameters. It

will turn out to be useful to compare the ellipse parameters of subsets
of the particles within a bunch with the overall bunch ellipse parameters.

In analogy to M and Ψ, the quantities m and ψ are introduced for this
purpose. m and ψ will be called deformation parameter and deformation
phase, respectively.



Chapter 3

Transverse phase space diagnostics

The transverse phase space distribution of an electron beam can be ex-
plored by measuring its spatial projections either at different positions of a
beamline, or at one position for different focal strength of quadrupoles up-

stream of the observation point. Least square methods allow to determine
important quantities as transverse emittance and beam ellipse parameters.

The detailed distribution in phase space can be obtained by tomographic
reconstruction techniques.

Throughout this chapter it will be assumed that the transverse dynamics
can be described by the linear approximation introduced in chapter 2. In

particular, it is assumed that the particle motion in horizontal and vertical
direction is decoupled, and that the beam particles are of constant energy.
Only the horizontal direction will be considered. Everything applies in the

same way to the vertical direction.

3.1 Determination of transverse beam parameters

The geometrical RMS emittance is defined by

ε =
√

det(σ),

σ denoting the covariance matrix of the beam (beam matrix)

σ =

[ 〈x2〉 〈xx′〉
〈xx′〉 〈x′2〉

]

(cf. section 2.2). The beam matrix transforms along a linear beamline

without acceleration according to

σ(s) = Mσ(s0)M
T ,

29
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where M is the transfer matrix from s0 to s. The emittance is conserved
during this transformation due to det(M) = 1. The emittance is thus

determined if the beam matrix is known at one position (here: s0) of the
beamline. At the same time, the ellipse parameters (βe, αe, γe) at s0 are

determined via [
βe −αe

−αe γe

]
=

σ(s0)√
det(σ(s0))

=
σ(s0)

ε
.

Knowledge of the ellipse parameters at one position allows to match the

beam to a design optics by adapting the focal strengths of appropriate
quadrupoles.

The element σ1,1 = 〈x2〉 of the beam matrix can be measured directly
with standard diagnostic devices1 (cf. chapter 4). Since σ1,1(s) at position s
is a function of the elements of σ(s0) according to Eq. (3.1), the entire beam

matrix σ(s0) can be deduced from measurements of σ1,1(s) at different
positions of the beamline. σ1,1(s) is explicitly given by

σ1,1(s) =
(

M2
1,1, 2M1,1M1,2, M2

1,2
)⎛⎝ σ1,1(s0)

σ1,2(s0)
σ2,2(s0)

⎞
⎠ , (3.1)

where matrix notation is used and σi,j and Mi,j indicate the elements of
the matrices M and σ. This notation can be used to express the squared

beam sizes σ
(i)
1,1 = σ1,1(si) at positions s1, s2, ...sn by⎛

⎜⎜⎜⎜⎝
(σ

(1)
1,1)

(σ
(2)
1,1)
...

(σ
(n)
1,1 )

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

(M
(1)
1,1 )2 2M

(1)
1,1M

(1)
1,2 (M

(1)
1,2 )2

(M
(2)
1,1 )2 2M

(2)
1,1M

(2)
1,2 (M

(2)
1,2 )2

...

(M
(n)
1,1 )2 2M

(n)
1,1 M

(n)
1,2 (M

(n)
1,2 )2

⎞
⎟⎟⎟⎟⎠
⎛
⎝ σ1,1(s0)

σ1,2(s0)
σ2,2(s0)

⎞
⎠ , (3.2)

where M (i) denotes the transfer matrix from s0 to si. The matrix equation
can be written in short hand notation as

Σ = R · o. (3.3)

1It is also possible to measure the beam divergence directly by sending the beam
through apertures of known size before measuring the transverse size of the “beamlets”.
This technique will not be considered here. For details see e.g. [17].
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In case n = 3, the solution vector o containing the elements of the beam
matrix at s0 (the reconstruction point) is determined by the vector Σ of

squared beam sizes via
o = R−1 · Σ, (3.4)

provided the matrix R is invertible.
In practice, the squared beam sizes σ1,1(si) are not determined exactly,

but contain measurement errors. Equation 3.3 does not hold exactly in
this case, which is expressed by a non-vanishing residual vector

r = R · o − Σ. (3.5)

In case of an overdetermined system with n > 3, a solution vector o can be
determined such that the residual vector r is minimized in a least squares
sense. This method is described in more detail in the next section.

It is not required that the measurements of beam sizes are done at
different positions of the beamline. If diagnostic devices to measure the

beam size are not installed at the appropriate positions, it may be advanta-
geous to measure at one position s for different transfer matrices M (i)(s, s0)

from s0 to s. This can be accomplished by varying the focal strength of
quadrupoles located between s0 and s. Such measurements are loosely
called “quadrupole scans”.

3.1.1 Least squares method

The vector Σ is in general subject to statistical measurement errors. For
simplicity, it is at first assumed that the errors can be expressed in a

covariance matrix V [Σ] of the form

V [Σ] = Δ2 · In, (3.6)

where In is the unit matrix of rank n and Δ2 the variance of the squared
beam sizes Σi = (σ

(i)
1,1). The general case of an arbitrary covariance matrix

V [Σ] is considered below. Moreover, it is assumed that there are no sys-
tematic errors, i.e. the expectation values of the elements of Σ are identical

with the true beam sizes squared. The least squares solution of Eq. (3.3)
with n > 3 is then obtained by minimizing the expression

S = rTr =

n∑
j=1

r2
j (3.7)
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with r = R · o − Σ. The minimum of S is determined by the condition

∂S

∂oi
= 0 (3.8)

for i = 1...3, leading to the equation

RTR · ô − RTΣ = RT · r = 0 (3.9)

with ô the “best estimate” for the vector o (normal equation). In case RTR

is invertible, this yields the solution

ô = (RTR)−1RTΣ. (3.10)

The covariance matrix V [ô] of ô due to measurement errors of Σ is given
by error propagation,

V [ô] = JV [Σ]JT (3.11)

with J = (RTR)−1RT , yielding

V [ô] = Δ2(RTR)−1. (3.12)

The resulting errors of the emittance and the ellipse parameters can be
estimated by error propagation as well. In particular, the variance σ2

ε of

the emittance is given by
σε = BV [ô]BT (3.13)

with

B =
1

2ε
(ô3,−2 · ô2, ô1) . (3.14)

Until now, only the special case of uncorrelated errors of the same ab-

solute value Δ has been considered. The formalism can be generalized to
include the case of an arbitrary covariance matrix V [Σ] by minimizing the

expression

S = rTWr (3.15)

with W = V [Σ]−1 and r = R · o−Σ [18]. For uncorrelated errors Δi of Σi,

this corresponds to a minimization of

S =
n∑

i=1

r2
i

Δ2
i

. (3.16)
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The best estimate ô for the parameter vector o in a least squares sense is
given by

ô = (RTWR)−1RTWΣ, (3.17)

and the covariance matrix V [ô] of ô by [18]

V [ô] = (RTWR)−1. (3.18)

In practice, statistical errors can be estimated by the variance of mea-

sured beam sizes. Aside from statistical errors, the result may be subject
to systematic errors both of the beam size vector Σ, e.g. due to calibra-
tion errors of the measurement devices, and the matrix R due to errors

of the transfer matrices. Systematic errors typically lead to an increase
of elements of the residual vector r and can be identified and occasionally

be corrected in this way. In contrast to statistical errors, an accurate es-
timation of systematic errors is hardly possible. They are therefore not

included in the least-square formalism. Systematic errors are specific for
the particular experimental setup and are discussed in detail in chapter 5

for the setup used here.
The least-square formalism is covered in detail, for instance, in refer-

ences [18, 19].

Optimum arrangement of measurement stations

Equation (3.12) shows that measurement errors Δ may be magnified if
the elements of the matrix (RTR)−1 are large, which is the case when the

inversion of the matrix RTR is imprecise. It is therefore important to
choose an appropriate matrix R.

The design of a measurement arrangement is typically done on the basis
of a design optics. Some intuitive arguments will be given here on how an

appropriate arrangement can be chosen.
An arrangement of measurement stations is characterized by the set

of transfer matrices from one point of the machine (for convenience the

position of the first station) to the other measurement stations. It is in-
structive to use normalized coordinates with respect to the design optics,

so the transfer matrices are rotational matrices. The arrangement is then
described by a set of angles Δφi, indicating the phase advance from the

first station to the other stations. A beam is investigated by measuring
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the spatial profiles (projection onto the horizontal axis), in particular the
RMS widths, at the different stations. In between the measurement the

beam distribution is rotated by angles Δφi+1 − Δφi in normalized phase
space.

A first conclusion from these considerations is that measurement sta-
tions separated by 180◦ phase advance are redundant since the spatial
profiles are point symmetric with respect to their center and the width is

the same. The measurement stations can thus be arranged such that the
betatron phase advance between the first and the last station is less than

180◦. The optimum arrangement of a fixed number n of stations within
this interval depends on the exact criterion chosen. Typically, the most

important parameter of such a measurement is the error σε of the resulting
emittance. Thus a reasonable criterion is to minimize the error magnifica-

tion emag = σε/Δ. This magnification does not only depend on the matrix
R, but also on properties of the beam matrix elements (cf. Eq. (3.13)).
The beam matrix elements can be characterized by the mismatch param-

eter M and the mismatch phase Ψ with respect to the design optics (cf.
section 2.3). The dependence on these parameters is apparent, since they

determine the shape and the orientation of the RMS ellipse in normalized
phase space at the measurement stations. For a fixed mismatch parameter

M , the error magnification emag is a periodic function of the mismatch
phase Ψ with a period of 180◦. If subsequent measurement stations are
separated by 180◦/n, this period is reduced to 180◦/n. In order to guar-

antee a reliable emittance measurement, it thus appears to be reasonable
to choose an equidistant arrangement of measurement stations covering

180◦. Simulations of emittance measurements with different arrangements
of measurement stations indeed show that the error magnification for a

given mismatch parameter M can be minimized in this way [20] (see also
section 5.3.1).

These considerations are only valid within the framework of a given de-
sign optics. The design optics is meaningful in this context, if the beam
ellipse parameters are typically close to the design parameters. An arrange-

ment of measurement stations can then be characterized by specifying the
error magnification emag of the emittance error for a certain mismatch pa-

rameter M , indicating the “acceptance” of the arrangement for mismatched
beams.

A change of transfer matrices by a scan of the focusing strengths of
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quadrupoles can be considered in the same way by constructing an equiv-
alent transfer line. Correspondingly, the statements given above apply

to the phase advance from the reconstruction point to the measurement
station during the scan.

3.1.2 Reconstruction of phase space trajectories

A phase space trajectory (x(s), x′(s)) with initial coordinates (x0, x
′
0) evolves

according to [
x(s)

x′(s)

]
= M(s, s0) ·

[
x(s0)

x′(s0)

]
, (3.19)

provided only quadrupole fields are present (dipole fields define the refer-

ence trajectory). In analogy to Eq. (5.8), spatial offsets x(si) at positions
si > s0 can be expressed in the form

⎛
⎜⎜⎜⎝

x(s1)

x(s2)
...

x(sn)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

M
(1)
1,1 ) M

(1)
1,2

M
(2)
1,1 ) M

(2)
1,2

...

M
(n)
1,1 ) M

(n)
1,2

⎞
⎟⎟⎟⎟⎠
(

x0

x′
0

)
, (3.20)

where M (i) denotes the transfer matrix from s0 to si. Thus, the initial

coordinates (x0, x
′
0) at s0 can be reconstructed from at least two measure-

ments of spatial offsets x(si) from the design orbit at positions si. The

least square method is applicable in case of n > 2 in the same way as in
case of emittance measurements. Such a reconstruction can be applied to

determine the trajectory of the center of mass of a bunch. Moreover, dif-
ference trajectories, e.g. of two bunches, can be reconstructed in the same
way through measurements of differences Δx(i) in spatial offset.

3.2 Phase space tomography

Transverse profiles of a particle beam at different positions of a linear

transfer line allow to determine the transverse emittance as shown above.
They can in principle serve also for a reconstruction of the two-dimensional

phase space distribution of the beam. Such a reconstruction is possible by
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computerized tomography, which generally allows to reconstruct a two-
dimensional object, e.g. a density distribution, from one-dimensional pro-

jections performed at different angles.

3.2.1 The Radon transform

Tomographic reconstructions are based on the Radon theorem:
The value of a two-dimensional function at an arbitrary point is uniquely

determined by the integrals along the lines of all directions passing the point
[21].

The relation between the function and the set of line integrals is pro-

vided by the Radon transform of the function, which is defined as follows.
Consider a two dimensional function f(x, y) of the Cartesian coordinates

(x, y). Rotation of the coordinate system by an angle Θ about its origin
yields new coordinates (xΘ, yΘ) as illustrated in Fig. 3.1. A line α parallel

to the yΘ-axis with yΘ = 0 at x̂Θ is defined by the condition

x · cos(Θ) + y · sin(Θ) = x̂Θ. (3.21)

The line integral of the function f(x, y) along this line is given by∫
α

f(x, y)ds =

∫ ∞

−∞

∫ ∞

−∞
f(x, y) · δ(x · cos(Θ) + y · sin(Θ) − x̂Θ) dx dy

≡ P (Θ, x̂Θ),

where δ denotes the Dirac δ-function. P (Θ, x̂Θ) is called the Radon trans-
form of f(x, y). The function PΘ0

(x̂Θ) = P (Θ0, x̂Θ) is the projection of the

function f(x, y) onto the xΘ-axis at the angle Θ0.
The Fourier transforms P̃Θ(ω) = P̃ (Θ, ω) of the projections PΘ(x̂Θ) are

related to the Fourier transform f̃(u, v) of f(x, y) according to the Fourier
slice theorem. The theorem states that

P̃Θ(ω) = f̃(ω · cos(Θ), ω · sin(Θ)) (3.22)

[22]. The function f(x, y) can be reconstructed from the Fourier transforms

P̃Θ(ω), explicitly

f(x, y) =

∫ π

0

∫ ∞

−∞
P̃ (Θ, ω)e2πi(xωcos(Θ)+yωsin(Θ))ω dω dΘ. (3.23)

f(x, y) is thus uniquely determined by its Radon transform.
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Figure 3.1: Transformation of coordinates due to rotation of the coordinate system about
the origin by an angle Θ [25]. Lines parallel to the yΘ-axis are defined by Eq. (3.21).

In tomographic applications, there is a discrete set of angles Θj, j =
1...J at which projections are measured. Furthermore, each projection is

usually a non-continuous, binned distribution Pj(mj) with mj = 1...Nj

and Nj the number of bins at the angle Θj. The aim of a tomographic

reconstruction is to approximately determine a function f(x, y), usually
representing a density distribution, from a discrete set of binned projections
Pj(mj). Geometrically, discrete sets of angles and bins as described above

provide a subdivision of a certain area of the (x, y)-plane into polygons, as
is illustrated in Fig. 3.2.

Several algorithms have been invented for computerized tomographic
reconstructions, such as Filtered Backprojection [23] and Algebraic Recon-

struction Technique [24]. For the purpose of beam diagnostics, the Maxi-
mum Entropy algorithm described in the following sections is particularly

well-suited.

3.2.2 Maximum entropy principle

The reconstruction of a two-dimensional distribution from a finite set of

projections as described above is not unique. As a consequence, there is
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Figure 3.2: Subdivision of a region of the (x, y)-plane into polygons [25]. The region
surrounded by the bold line is sampled by J = 3 projections. Each projection is binned
into intervals mj = 1...Nj . The polygons Δ{m1,m2,m3} are determined by the corresponding
binning-indices m1, m2, m3 .

a need for a mechanism for constructing an estimate of the distribution

which is in agreement with the set of projections. In case the projections
are the only information available, the maximum entropy principle provides
a natural way for doing this.

The maximum entropy principle can be introduced here as follows. A
distribution f(x, y) defined in a region D of the (x, y)-plane is assumed to

be normalized to yield
∫

D f(x, y) dx dy = 1, so it allows an interpretation
as probability density distribution. The entropy H of f(x, y) can then be
defined by

H =

∫
D

−f(x, y) · ln(f(x, y)) dx dy. (3.24)

In case there are several distributions which fulfill the boundary conditions



3.2. Phase space tomography 39

imposed by measured projections, the solution in the sense of the maximum
entropy principle is given by the distribution with the largest entropy.

When there are no boundary conditions, the entropy assumes its maxi-
mum for a uniform distribution f(x, y) = const. The basic property of the

maximum entropy solution is that it incorporates only variations in f(x, y)
which are forced by constraints. Maximization of entropy thus corresponds
to a minimization of structure. This means in particular that the algorithm

by construction minimizes artefacts and allows reliable statements on the
object of investigation.

In the framework of the geometric interpretation given above, one conse-
quence of the maximum entropy principle is that f(x, y) is constant within

each polygon. The problem thus reduces to finding the value fν, ν =
1, 2, . . . for each polygon such that the constraints are fulfilled and the

overall entropy is maximized.
The rationale of the maximum entropy principle is covered in detail in

references [26, 27, 28].

3.2.3 Reconstruction algorithm

Mathematically, finding the solution with maximum entropy that approx-
imately (in a least-squares sense) fulfills the boundary conditions is a con-
strained optimization problem, which can be solved by the method of La-

grange multipliers. Applying this method yields a representation of the
function values fν as a product

fν =

J∏
j=1

hjmj(ν). (3.25)

Here, mj(ν) is the binning index that corresponds to the polygon with index
ν at the rotation angle Θj. Each factor hjmj(ν) is proportional to Pj(mj(ν)).

The proportionality constant depends on all other factors hgmg with g �= j.
The factors hjmj(ν) can be adapted iteratively until the projection data
are reproduced reasonably well. Details on the algorithm can be found in

references [29, 30, 25, 31].
An important property of the algorithm is that it is not restricted to ro-

tations, but works for arbitrary linear transformations of a two-dimensional
function f(x, y) [30]. It is thus directly applicable to phase space tomog-

raphy in a linear transfer line of an accelerator. However, a reconstruction
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based on arbitrary linear transformations is not related to the Radon the-
orem, so the accuracy of such a reconstruction may be principally limited.

An implementation of the MENT algorithm written by J. Scheins [25]
in C++ is used at FLASH for tomographic reconstructions [32]. The pro-

gram extracts data from an input file providing one-dimensional density
profiles P

(1)
x (x)...P

(J)
x (x) and a corresponding set of transformation matri-

ces M1...MJ . The reconstructed two-dimensional distribution is provided

in the form of a digital image, where the intensity of each pixel is calcu-
lated from the corresponding polygon fragments covering the pixel area.

The user can choose the number of iterations of the algorithm in order to
control the calculation time. The results are typically in good agreement

after about 10 iterations [25]. The capability of the algorithm is illustrated
in Fig. 3.3.

3.2.4 Phase space tomography using normalized coordinates

The transformations induced by a linear beam transfer line can be re-

duced to rotations by introducing normalized coordinates with respect to
a design optics (cf. section 2.3). Accordingly, the one-dimensional profiles

P
(i)
x (x) have to be transformed to profiles P

(i)
u (u) in normalized coordinates

according to

P (i)
u (u) =

P
(i)
x (x)√
βx(si)

, (3.26)

where βx(si) is the value of the design beta function at position si of a

measurement station. The multiplication with 1/
√

βx(si) cancels the effect
of shearing in phase space that may be induced by beam transfer.

The representation in normalized coordinates allows an interpretation

in terms of the Radon theorem, and an intuitive approach to the question
which transformations are appropriate to obtain an accurate reconstruc-

tion. As in case of emittance measurements, it turns out that a rotation
in normalized phase space over an interval of 180◦ is sufficient. Without

additional information about the density distribution, an equidistant ar-
rangement of measurement stations is favorable.
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Figure 3.3: Illustration of the capability of the Maximum Entropy algorithm [25]. The
initial distribution (top) is a superposition of three Gaussian distributions. The recon-
structed distributions are shown for different numbers of projections of J = 2, 3, 5, 30
performed at different rotation angles.
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3.2.5 Higher-dimensional tomographic reconstructions

The Radon theorem can be generalized to higher dimensions by considering

the integral of a function over hyperplanes [24]. Thus, an n-dimensional
function can be reconstructed from (n − 1)-dimensional projections.

In practice, a tomographic reconstruction of a three-dimensional object
is performed by dividing the object into slices corresponding to intervals

in the third dimension, and applying a two-dimensional reconstruction to
each slice. Effectively, this corresponds to a reconstruction of a three-

dimensional distribution from two-dimensional projections.
A three-dimensional tomographic phase space reconstruction can be ap-

plied to the distribution of a particle beam in (x, x′, ζ)-space, where ζ is the

internal longitudinal bunch coordinate. The internal longitudinal position
can be resolved for instance by inducing a longitudinal energy gradient

onto the bunch and dispersing it transversally as a function of energy by a
bending magnet [33]. A second possibility is to use a transverse deflecting

structure, as will be described in chapters 4 and 5.
A reconstruction of a density distribution in four-dimensional transverse

phase space (x, x′, y, y′) from two-dimensional spatial projections is not

possible, since the reconstruction problem is severely under-determined.
Nevertheless, the maximum entropy principle can be utilized to determine

a four-dimensional distribution which reproduces measured spatial pro-
jections. A corresponding algorithm is presented in references [34, 35].

This should not be confused with a tomographic reconstruction, since the
accuracy is principally limited. The four-dimensional transverse beam dis-

tribution is not of prime interest at linac-driven FELs since the coupling
between both transverse planes is negligible for a well-aligned accelerator.
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Experimental setup

4.1 The Free Electron Laser in Hamburg

4.1.1 Overview

The Free-Electron Laser in Hamburg (FLASH) is an FEL user facility

providing radiation at a fundamental wavelength which can be tuned from
47 nm down to 6 nm. The radiation is generated by Self-Amplification of
Spontaneous Emission (SASE) in ultra-relativistic electron bunches. Aside

from being a user facility, FLASH serves as a pilot project for the planned
European X-ray FEL [36, 37].

FLASH is an upgrade of the TESLA Test Facility (TTF) linac, which

was built to perform tests related to the TESLA Linear Collider Project.
Already at an early stage, TTF was additionally used to drive an FEL. In

2001, it became the first SASE FEL reaching saturation at a fundamental
wavelength of 98 nm [38, 39]. The facility was redesigned and augmented
by additional accelerator modules, and lasing in a saturated regime at

fundamental wavelengths down to 13 nm was reported in 2006 [1]. Another
upgrade allowed to generate FEL radiation at 6.5 nm in 2007.

A schematic of FLASH is shown in Fig. 4.1. The first part of the facility

is a linear accelerator (linac) providing ultra-relativistic electron bunches.
The linac is composed of a laser-driven photocathode mounted in a 1.3 GHz
copper cavity (RF gun), six superconducting accelerator modules (ACC1

to ACC6), and two magnetic chicanes called bunch compressors BC2 and
BC3 for historical reasons. The RF gun generates electron bunches with a

charge in the range of 0.5 to 1 nC and an energy of ≈ 4.5 MeV. A dipole
magnet allows to deflect the electron beam into a dump for commissioning

purposes. The beam energy is boosted to about 130 MeV in module ACC1.

43
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Figure 4.1: Schematic layout of FLASH (not to scale). The linac (top) is composed of an
RF gun, six accelerating modules ACC1 to ACC6, and two bunch compressors BC2 and
BC3. Two diagnostic sections for emittance measurements (DS1 and DS2) are installed.
A transverse deflecting structure (TDS) is located at the end of the linac. Six undulator
magnets are used to generate FEL radiation. The total length of the facility (excluding
the experimental hall) is about 250 m.

The module can be used to induce a longitudinal energy gradient onto
the bunches which leads to bunch shortening in BC2. Modules ACC2/3

further accelerate the beam to about 380 MeV, before the bunches are
longitudinally compressed a second time in BC3. The accelerator modules
ACC4 to ACC6 allow to reach a final particle energy of up to 1 GeV.

Details on the linac can be found in [40].

At the end of the linac, six 4.5 m long undulator magnets are installed

in which the FEL radiation is generated. The undulator magnets are pre-
ceded by a collimator system to protect them from radiation damage. The
collimator system comprises several apertures in the straight and in the dis-

persive section allowing to absorb off-orbit as well as off-energy particles
[41]. The energy acceptance is ±3 % [42]. Downstream of the undulator

segments, a dipole magnet deflects the electron beam into a dump, while
the radiation propagates in a photon beamline to the experimental hall.

The undulator section can be bypassed to facilitate machine commissioning
and tests of accelerator components.

Diagnostic sections (DS1 and DS2) for emittance measurements and

beam matching are installed downstream of BC2 and upstream of the un-
dulator magnets. A transverse deflecting structure (TDS) is located at the

end of the linac directly downstream of module ACC6. The detailed setup
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Figure 4.2: Scheme of the RF electron gun of FLASH. The photocathode is mounted
at the back of a 11

2
-cell copper cavity. A laser beam is reflected onto the cathode by

a small mirror outside the beam axis. The RF power for the cavity is fed into the
structure through a coaxial coupler at the exit. The cavity is surrounded by a solenoid
(main solenoid) providing transverse focusing. A second solenoid at the back of the
cathode (bucking coil) compensates the field of the main solenoid at the cathode. Great
care has been taken to built an axially symmetric structure to minimize transverse field
asymmetries.

around the TDS will be shown in section 4.2.

4.1.2 The RF gun

A schematic of the RF-gun is shown in Fig. 4.2. The electron source is
a cesium-telluride (Cs2Te) photocathode mounted in the backplane of a

11
2-cell copper RF cavity. The cathode is illuminated by laser-pulses with

a wavelength of 262 nm which liberate electrons by photo emission. The

quantum efficiency of the cathode is in the order of 1 to 5 % [43]. The lon-
gitudinal intensity profile of the laser pulses is Gaussian with a duration of
about 4.4 ps (RMS). A “flat top”- distribution with a diameter of typically

3 mm is realized transversely using an iris [43]. The laser generates trains
(macropulses) of up to 800 pulses (micropulses), each micropulse providing

a bunch of electrons. The micropulse repetition rate is typically 1 MHz.
The macropulse repetition rate can be set to 2, 5 or 10 Hz. During the

measurements presented in this thesis, a macropulse repetition rate of 5 Hz
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Figure 4.3: Typical electron distribution in longitudinal phase space downstream of the
RF gun (simulation). The bunch head is on the right hand side.

with either one bunch or two bunches per macropulse was used.

The RF cavity has a resonance frequency at 1.3 GHz. The resonance fre-
quency depends critically on the temperature which is stabilized to about
0.02◦C by a water cooling system. The peak longitudinal electric field at

the position of the cathode amounts to 42 MV/m. The RF gun can be
operated with an RF pulse length of up to 900 μs at a repetition rate of

10 Hz [44]. Laser and RF of the cavity are synchronized within less than
170 fs (RMS), which corresponds to a phase jitter of 0.08◦ at 1.3 GHz

[45]. The nominal operation point of the RF gun with respect to the first
electrons emitted by the cathode is 38◦ from the zero-crossing phase of the

longitudinal electric field. Although this phase is within the rising edge of
the accelerating field, electrons at the front of a bunch gain more energy
than those at the back mainly due to the traveling time from the half to

the full cell [46] (cf. Fig. 4.3).

The electrons of a bunch interact with each other owing to their elec-
tric charge. The effective force on an electron resulting from the interac-

tion with all the other particles is called space charge force. Space charge
forces are strong at positions with a large gradient in particle density. In

the rest frame of a bunch, space charge forces result from pure Coulomb
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fields. In the laboratory frame, they are a combination of electric and
magnetic forces. At high energies, the transverse electric forces are partly

compensated by magnetic forces so the transverse space charge force is
proportional to the inverse of the beam energy squared [7]. Space charge

forces are therefore of particular importance in the low-energy section of
the linac. In order to counteract transverse space charge forces and to min-
imize space charge induced emittance growth, the RF cavity is surrounded

with a solenoid coil which provides transverse focusing. The field of the
solenoid at the position of the cathode is compensated by a second solenoid

(bucking coil).

Bunches leaving the gun have a Gaussian longitudinal charge density
profile with a length of roughly 2 mm (RMS) with a peak current of less
than 100 A. The normalized transverse emittance is about 2 μm. The

bunch charge can be varied and is typically in the range of 0.5 to 1 nC
with shot-to-shot fluctuations of about 1 % (RMS) [47]. A more detailed

characterization of the RF gun can be found in [44, 48].

4.1.3 Beam acceleration

An accelerator module is composed of 8 superconducting cavities man-

ufactured from pure niobium and a pair of superconducting quadrupole
magnets at the exit. Cavities and quadrupole magnets are cooled to 2 K

and 4.5 K, respectively, by a cryogenic system using superfluid and liquid
helium. The cavities are 9-cell standing wave structures of 1.03 m length
and an iris radius of 35 mm. They are operated with an accelerating electric

field of up to 25 MV/m.

Each cell of a cavity is excited in a TM010-mode. The mode is char-
acterized by a longitudinal electric field which is almost homogenous over

the aperture of the structure. The resonance frequency ν0 of this mode is
1.3 GHz. The fields within the 9-cell structure couple in such a way that
neighboring cells are 180◦ out of phase (π-mode). The length of the cells is

chosen such that a relativistic particle needs half an RF period to traverse
one cell. As a result, the particle experiences the same accelerating force

in each cell.

The mean accelerating field Eacc acting on a relativistic charged particle



48 4. Experimental setup

traversing a cavity is given by

Eacc =
1

Lc

∫ Lc/2

−Lc/2
E0 · cos (ω0t(z)) dz, (4.1)

where Lc is the cavity length, E0 the amplitude of the longitudinal electric
field, t(z) ≈ z/c + t0 with an arbitrary constant t0, and ω0 = 2πν0. The

maximum accelerating field E0
acc is obtained for ω0t(z) = 0 in the center of

each cell. A particle is said to be accelerated “on-crest” in this case. If the

particle injection is delayed by Δt with respect to on-crest acceleration,
the particle is said to be accelerated “off-crest” at an RF phase φ = ω0Δt.

The accelerating field seen by such a particle is given by

Eacc = E0
acc · cos(φ), (4.2)

as can be verified by transforming Eq. (4.1). The same terms are used in

case of electron bunches and refer to the bunch center (mean longitudinal
electron position).

The RF phases of the cavities are regulated via the klystrons power-

ing them. Four klystrons with a power of 5 to 10 MW are used, one for
the RF gun, one for module ACC1, one for modules ACC2 and ACC3,

and one for modules ACC4 to ACC6. As a consequence, only four phases
can be chosen independently. The on-crest phase of the modules can be

determined by measuring the horizontal charge density distribution at po-
sitions with a significant dependence of the horizontal beam position on
the beam energy (horizontal dispersion). The standard deviation of the

particle energy within a bunch is minimized at the on-crest phase, and
consequently the horizontal bunch width is minimized in presence of dis-

persion. Corresponding measurements can be carried out using optical
transition radiation (OTR) screens (cf. section 4.1.7) located within the

bunch compressor chicanes and in the collimator section.

Aside from a longitudinal electric field, particles not moving on-axis
through an RF cavity are subject to radial forces due to a radial electric

field component Er and an azimuthal magnetic field Bϕ, where cylindrical
coordinates (r, ϕ, z) are used. The forces provide focusing at the entrance

of a cell and defocusing at its exit in case of on-crest operation. Due to ac-
celeration within the cell, there is an overall focusing force (RF focusing).

The strength of RF focusing depends on the ratio of the energy gain per
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cell to the particle energy. It is thus of particular importance at low ener-
gies. The transverse dynamics in cavities including RF focusing as well as

the attenuation of angles x′, y′ through acceleration can be described ac-
curately by linear transfer matrices [49]. More details on superconducting

accelerator structures can be found in references [50, 51, 52].

4.1.4 Bunch compression

High peak currents in the order of a few kiloamperes are generated by lon-

gitudinal bunch compression at particle energies of more than 100 MeV.
Compression of ultra-relativistic particle bunches can only be accomplished
by introducing a dependence of the path length on the internal longitudinal

position of bunch particles, since the differences in velocity resulting from
slightly different particle energies are insignificant. This is realized in two

steps. At first, a nearly linear correlation between energy and internal lon-
gitudinal position is imprinted onto a bunch through off-crest acceleration.

Afterwards the particles are sent through a magnetic chicane introducing
different path lengths depending on the particle energy. The principle of
the compression process is illustrated in Fig. 4.4.

At FLASH, a two-stage compression system is used (cf. Fig. 4.1). The

first stage is the magnetic chicane BC2 consisting of four horizontally de-
flecting dipoles. All dipoles are connected to the same power supply. The
nominal deflection angle Θ0 in each dipole is 18◦ at a beam energy E0 of

130 MeV. The deflection results in a maximum offset (bump amplitude) of
320 mm from the beam axis. The difference Δs in path length between the

beam trajectory through the chicane and the straight trajectory is about
85 mm [53].

The second stage (BC3) consists of six horizontally deflecting dipoles,
also connected to one power supply. Here, the nominal deflection angle is

Θ0 = 3.8◦ at E0 = 380 MeV. The bump amplitude amounts to 191 mm.
The deflection leads to an additional path length of Δs ≈ 24 mm [53].

Bunch compression in linear approximation

The bunch length of σζ ≈ 2 mm (RMS) downstream of the gun corresponds
to a standard deviation of the RF phase in module ACC1 of ≈ 3.2◦. The

energy gained by the bunch electrons thus significantly depends on their
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internal position ζ within the bunch in case of off-crest acceleration. In
a small interval around ζ = 0 (mean longitudinal electron position), this

dependence can be described by a linear “energy chirp factor”

h =
d(ΔE/E0)

dζ

∣∣∣∣
ζ=0

, (4.3)

where ΔE denotes the energy gain in the module and E0 the nominal
energy downstream of the module. The relative energy deviation

δ = (E − E0)/E0. (4.4)

of an electron with energy E can thus be written in the form

δ(ζ) = h · ζ + δi, (4.5)

where δi is the initial energy deviation of the electron divided by E0.

The path length difference Δs introduced by a magnetic chicane like
BC2 and BC3 with respect to the straight trajectory depends on the bend-
ing angle Θ in the dipoles of the chicane. It can be shown that

Δs(Θ) ∝ Θ2 (4.6)

Figure 4.4: Principle of longitudinal compression of a relativistic electron bunch [2]. The
bottom row shows an accelerating cavity and the four dipole magnets of a magnetic chi-
cane. The top figures show the longitudinal bunch charge distribution and the correlation
between the internal position of an electron inside the bunch and its relative energy devia-
tion before the cavity (left), behind the cavity (middle), and behind the magnetic chicane
(right). In the RF cavity the particles are accelerated off-crest so the trailing electrons
receive a larger energy gain than the leading ones. In the magnetic chicane the electrons
at the tail move on a shorter orbit than those at the head and catch up with them.
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for Θ � 1 [54]. Since Θ ∝ 1/E with E denoting the particle energy, the
deflection angle Θ(δ) as a function of the relative energy deviation δ is

given by

Θ(δ) =
Θ0

(1 + δ)
, (4.7)

where Θ0 is the nominal deflection angle at energy E0. Inserting expression
(4.7) into (4.6) and expanding the term 1/(1 + δ)2 into a Taylor series

around δ = 0 yields

Δs(δ) ∝ Θ2
0

(
1 − 2δ + 3δ2 + ...

)
. (4.8)

The internal bunch coordinate ζ of an electron with relative energy devia-
tion δ thus is changed behind a magnetic chicane according to

Δζ(δ) = Δs(δ) − Δs(δ = 0)

∝ 2Θ2
0

(
δ − 3

2
δ2 + ...

)
. (4.9)

Introducing a proportionality constant1 R56, this relation can be written
as

Δζ(δ) ≈ R56 · δ − 3

2
R56 · δ2. (4.10)

Within small longitudinal bunch sections, the relative energy deviation is

typically less than 1 % so the quadratic and higher order terms can be
neglected. The leading term describes a shearing of a particle distribution

in the (ζ, δ)-plane according to(
ζ
δ

)
�−→
(

ζ + R56 · δ
δ

)
. (4.11)

Inserting expression (4.5) yields

ζ �−→ (1 + hR56) · ζ + R56 · δi. (4.12)

The RMS length σζ of the considered bunch section thus becomes

σζ =
√

(1 + hR56)
2 · (σ0

ζ)
2 + R2

56 · 〈δ2
i 〉, (4.13)

1The notation R56 is standard and stems from a matrix formalism. α = −R56 is called
momentum compaction factor.
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where σ0
ζ denotes the length prior to compression and 〈ζ · δi〉 = 0 has been

assumed. The term R2
56 · 〈δ2

i 〉 is typically small and plays a minor role.

The ratio C = σ0
ζ/σζ is called compression factor (here: local compres-

sion factor). The bunch length is reduced (compression factor > 1) for

1 + hR56 < 1. The minimum length is achieved for 1 + hR56 = 0 (full
compression). For 1+hR56 < 0 (over-compression), the length is increased
compared to full compression.

In case of BC2 and BC3, one obtains R56 ≈ 180 mm and R56 ≈ 49 mm,
respectively [53]. Assuming on-crest operation of module ACC2/3, full

compression occurs at an RF phase φACC1 of about −11◦, while at φACC1 =
0 the compression factor is equal to one.

The RF curvature causes strong variations of the local compression fac-
tor along a bunch. As a consequence, the longitudinal charge density distri-

bution after compression may significantly deviate from a Gaussian distri-
bution. Under FEL operating conditions, bunches are typically accelerated

about −8◦ off-crest in module ACC1. Regarding the standard deviation
of the RF phase of the bunch particles of about 3◦, this means that the

tail of a bunch is only slightly compressed, while the initial front is over-
compressed. The bunch section subject to full compression is located at the
bunch head and forms a spike in the current profile with a peak current of

a few kiloamperes. Figure 4.5 shows results of particle tracking simulations
illustrating the development of current profile and particle distribution in

longitudinal phase space2 in such a case.

Collective effects

The bunch compression process leads to a high peak current and high lon-
gitudinal gradients in charge density. As a result, strong longitudinal space
charge forces occur around the high-current region and lead to a significant

acceleration of particles at the leading edge and a deceleration of particles
at the trailing edge of the current spike. Furthermore, the particles emit

synchrotron radiation on the curved paths within the bending magnets of
the magnetic chicanes and thus lose energy. Particles at the front of a bunch

may interact with the radiation field generated by the bunch tail, since the

2The plane spanned by the internal bunch coordinate ζ and the particle energy E
(or the relative energy deviation ΔE/E0) are loosely called longitudinal phase space in
short-hand.
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Figure 4.5: Electron beam current as a function of the internal bunch coordinate ζ (top
row) and electron distribution in longitudinal phase space (bottom row) at different po-
sitions along the linac (simulation) [2]. Left: behind the first acceleration module. The
bunch has a length of 1.3 mm (RMS) and a strong correlation between energy and longi-
tudinal position due to off-crest acceleration. It can be seen that the energy chirp factor
varies along the bunch. The different colors indicate the initial positions within the bunch
(blue: head of bunch, green: middle section, red: tail). Middle: behind BC2. Full com-
pression occurs at the bunch head resulting in a spike in the current profile. The peak
current has grown from 35 A to 350 A. Right: behind BC3. The initial front of the bunch
is over-compressed. The peak current amounts to 1250 A. The reference point ζ = 0 is
chosen to be the mean particle position.

photons move on a straight path through the magnet and may overtake

the bunch electrons. These effects are particularly strong for wavelengths
in the order of the bunch length since the particles radiate coherently in
this case. Also substructures in the longitudinal charge density profile, in

particular the sharp current spike discussed above, may lead to coherent
emission and a significant energy loss of the coherently radiating particles

[57, 58].

In particle tracking simulations including these collective phenomena,

typically three strong effects can be distinguished: space charge forces be-
tween BC2 and BC3, space charge forces downstream of BC3, and coherent

synchrotron radiation (CSR) within the bending magnets of BC3. These
effects lead to characteristic deformations in longitudinal phase space which

are illustrated in Fig. 4.6.
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Figure 4.6: Influence of coherent synchrotron radiation and space charge forces on the
bunch compression process [2]. The figure shows the current profile (top row) and the
distribution in longitudinal phase space (bottom row) at the same positions as in Fig. 4.5.
In contrast to the results shown in Fig. 4.5, collective effects are included. Upstream and
downstream of BC2 (left and middle), the distribution in longitudinal phase space hardly
deviates from the ideal one shown in Fig. 4.5. Strong distortions occur downstream of
BC3 (right). The bunch section which is close to full compression (green region and part
of the blue region) shows a significantly broadened energy distribution due to both CSR
and space charge. In particular, a spike towards lower energies can be observed, which
is mainly due to CSR. The small spike towards higher energies (green) indicates space
charge forces downstream of BC3 and gets more pronounced as the bunch moves on.
The bunch section close to full compression downstream of BC2 (blue region) exhibits a
spike towards positive ζ due to space charge between BC2 and BC3: The forces lead to
an energy broadening which involves a shearing in longitudinal phase space within BC3.
The results were obtained by particle tracking simulations using the codes ASTRA [55]
and CSRTrack [56].

4.1.5 The undulator section

Single-pass FELs require long undulator systems in order to reach satura-

tion of the radiation power. At FLASH, six planar undulator magnets with
a length of 4.5 m each are installed downstream of the linac. The magnets
are composed of a periodic sequence of NdFeB (neodymium-iron-boron)

permanent magnets with alternating polarity and iron pole shoes with a
gap height of 12 mm in between, thus generating an alternating vertical

magnetic field. The period of the magnetic field is λu = 27.3 mm. The
peak magnetic field on the axis amounts to 0.47 T. Passing electrons per-

form an oscillation in the (x, z)-plane. Between the six undulator magnets,
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quadrupole magnets are installed for beam focusing. Beam position mon-
itors and wire scanners are used for measuring the beam position and the

transverse beam size (see the following sections). The quadrupole magnets
are equipped with movers allowing a fine adjustment of their transverse

position. More details on the undulator magnets can be found in reference
[59].

4.1.6 Accelerator Magnets

Dipole and quadrupole magnets are installed at various positions along
the linac. Dipole magnets are used to create a curved design orbit as in
magnetic chicanes. Moreover, small dipole magnets are used to empirically

adjust the beam orbit in horizontal and vertical direction. The latter ones
will be called steering magnets, and the former ones bending magnets.

Quadrupole magnets are used for beam focusing. They are combined with
steering magnets which provide a correction dipole field.

Conventional dipole magnets consist of an iron yoke with two flat pole
shoes surrounded by copper coils which excite a homogeneous magnetic

field in the gap between the pole shoes (Fig. 4.7(a) and (b)). Conventional
quadrupole magnets comprise four iron pole shoes with surrounding cop-

per coils (Fig. 4.7(c)). The pole shoes have a hyperbolic surface contour
in order to minimize higher harmonic fields. At FLASH, also superfer-

ric quadrupole magnets containing superconducting NbTi-coils are used.
A doublet of superferric quadrupole magnets is installed at the exit of
each cryomodule containing the accelerator structures. The entire mag-

nets (including the iron yoke) are cooled to 4.5 K by liquid helium. A pair
of superconducting horizontal and vertical steering magnets composed of

(a) (b) (c)

Figure 4.7: Photographs of conventional accelerator magnets used at FLASH [60]. (a):
Bending magnet. (b): Steering magnet. (c): Quadrupole magnet.
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NbTi coils is installed within the aperture of the quadrupole magnets [61].
More details on the magnets within the experimental beamline are given

in section 4.2

4.1.7 Basic electron beam diagnostics

Toroids

Inductive toroidal current transformers (toroids) around the beam allow

to measure the beam current of a macropulse and thus the bunch charge
[62]. The core of the toroids is made from supermalloy (alloy of Ni,Mo,Fe)
which provides a high magnetic permeability. The charge resolution is

2-3 pC [63]. Toroids are placed at regular intervals along the linac.

Beam position monitors

Beam position monitors (BPMs) are used to measure the transverse offset

of the beam from the beam axis. Several types of BPMs are installed at
FLASH. The ones most frequently used are button BPMs and stripline
BPMs. In button BPMs, four electrodes (pick-up electrodes) are mounted

in an orthogonal arrangement around the beam pipe, two of them being
separated vertically and the other two horizontally. The beam centroid

is evaluated by comparing the signals measured through the electrodes.
Button BPMs are space saving and therefore installed in regions with lim-

ited space as the injector and the undulator section. A resolution down to
10 μm (RMS) for single bunches can be achieved with button BPMs [64].

Stripline BPMs have the same working principle, but use tube electrodes

(striplines) with a length of 20 cm arranged parallel to the beam axis. They
also allow a resolution in the order of 10 μm [65]. Stripline BPMs are in-

stalled at various positions along the linac, in particular within quadrupole
magnets.

Within the superconducting accelerator modules, circular cavities (cav-

ity BPMs) are used to measure the transverse beam position. A beam
traversing the cavity off-axis excites a TM110 dipole mode, whose ampli-

tude is measured. The amplitude is proportional to the beam displacement
and the bunch charge. Cavity BPMs allow also a resolution in the order

of 10 μm [66].
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Optical transition radiation screens

Transition radiation is emitted whenever a relativistic charged particle
passes the boundary of two media of different dielectric properties. The
radiation is emitted both into the forward and the backward hemisphere of

the boundary. In case of relativistic particles, the radiation in the forward
hemisphere is emitted in a cone around the direction of movement of the

particle. The radiation in the backward hemisphere is emitted in a cone
around the direction of the specular reflection of the incoming particle.

The radiation is radially polarized, with the electric field vector pointing
towards the axis of the emission cone. The intensity correspondingly van-

ishes on-axis. The opening angle of the emission cone is in the order of
1/γr, where γr denotes the relativistic Lorentz-factor. The spectrum of
transition radiation is flat.

For the purpose of beam diagnostics, an aluminum-coated silicon wafer
(screen) is placed in the beamline. The screen is rotated so the angle of

incidence of the particle beam is 45◦. The backward transition radiation
propagates orthogonally to the beam direction. The transition radiation

in the optical wavelength range (OTR) is recorded by a camera. The effi-
ciency of OTR (measured by the number of emitted photons in the optical

wavelength range per electron) for relativistic electrons is a few percent
[67]. For a bunch charge of 1 nC, the number of emitted photons per
bunch is thus in the order of 108, which results in a radiation intensity that

is easily detectable with standard CCD devices. The intensity emitted from
a small area of the screen is proportional to the total charge intercepting

the screen in this area, as long as coherent emission does not occur. A
camera image then yields the transverse intensity distribution of a bunch.

The spatial resolution that can be reached with OTR in case of ultra-
relativistic particle beams is limited due to diffraction effects and the radial

polarization of OTR, which leads to a specific angular intensity distribu-
tion. Owing to diffraction the small opening angle of the radiation lobes in
the order of 1/γr implies that radiation of a wavelength λ originates from

a region of transverse size at least in the order of γr · λ. Due to long tails
in the angular intensity distribution of the radiation lobes the resolution

critically depends on the angular acceptance of the optical system used to
detect the radiation [68, 69, 70, 71]. Typically, the resolution obtained with

OTR is worse than the nominal resolution of the optical system [70, 72].
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More details on OTR can be found in references [67, 73, 74].

Determination of the beam energy

The beam energy can be determined by measuring the transverse displace-

ment of the beam downstream of a dipole magnet (energy spectrometer).
Corresponding measurements can be performed within the bunch com-
pressor chicanes and in the collimator section. At beam energies of several

hundreds of MeV, this method allows for an accuracy of a few percent.
Under FEL operating conditions, the final beam energy can be determined

precisely from the radiation spectrum measured by means of grazing inci-
dence spectrometer systems [75].

4.2 The experimental beamline

4.2.1 Overview

The experimental beamline is schematically shown in Fig. 4.8. A transverse
deflecting RF structure (TDS) is installed downstream of the accelerating

modules. The TDS transfers the longitudinal charge density profile of sin-
gle bunches to a vertical charge density profile downstream of the structure

by means of a rapidly varying electromagnetic field, similar as in conven-
tional oscilloscope tubes. The transverse charge density distribution of

single bunches can be measured with an OTR station (OTR-2) installed
about 9 m downstream of the TDS. This arrangement allows for the mea-

surement of the current profile of single bunches. Moreover, measuring the
horizontal width along a bunch with different focusing strengths of the up-
stream quadrupole magnets (Q-ACC4 to Q-ACC6) permits to determine

the horizontal slice emittance. The quadrupole between the TDS and the
screen (Q-TDS) is vertically defocusing thus amplifying the divergence in-

duced by the TDS. The screen of station OTR-2 is mounted horizontally
off-axis. Single bunches are deflected onto the screen by a fast kicker in-

stalled 2 m in front of the TDS. This configuration renders the possibility
of parasitic measurements by kicking single bunches out of a bunch train.

A second screen is installed in the collimator section downstream of a
horizontally deflecting dipole. The dipole disperses bunch particles hori-

zontally as a function of energy. When the TDS is switched on, the vertical
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Figure 4.8: Schematic of the experimental beamline. The figure shows the section of the
FLASH linac ranging from the second bunch compressor (BC3) to the collimator section
(cf. Fig. 4.1). The TDS is installed downstream of the accelerating modules. The structure
allows to deflect electrons vertically as a function of their longitudinal position within a
bunch. A horizontal kicker steers single bunches horizontally onto an off-axis screen, on
which the particle distribution in the horizontal-longitudinal plane (x, ζ) is measured.
The horizontal slice emittance can be measured by changing the focusing strengths of the
quadrupole magnets Q-ACC4 to Q-ACC6. The monitor OTR-3 located in a horizontally
dispersive section permits to measure the charge density distribution of single bunches in
longitudinal phase space. The beam can be matched to a special optics using the OTR
station OTR-1 and the upstream quadrupole magnets Q-UBC3 and Q-DBC3. BPMs and
steering magnets allow to adjust the beam orbit. Only a selection of BPMs, steering
magnets and OTR stations installed in this segment of the linac is shown. Module ACC6
was installed in 2007 and not present during most of the measurements presented in this
thesis.

particle position on the screen depends on the longitudinal position within

a bunch, while the horizontal position depends on the energy. This config-
uration allows for single-shot measurements of the particle distribution in

longitudinal phase space.

In order to optimize the resolution of the measurements, appropriate ac-
celerator optics were prepared for the different measurements. The OTR

station OTR-1 was used to measure horizontal and vertical ellipse param-
eters of the bunches by changing the focusing strengths of the upstream

quadrupole magnets (Q-DBC3). The quadrupole triplet Q-DBC3 and the
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doublet upstream of BC3 (Q-UBC3) were used to match the beam ellipse
parameters to the design values. BPMs and steering magnets installed

along the beamline allowed to correct the orbit, in particular after chang-
ing the focusing strength of quadrupole magnets.

In the remainder of this section, the elements of the beamline are dis-

cussed. Details on the measurements as the optics, calibration measure-
ments, beam matching and data analysis can be found in chapter 5.

4.2.2 Optical transition radiation monitors

Standard monitors

The optical transition radiation (OTR) monitors OTR-1, OTR-2 and OTR-
4 (cf. Fig. 4.8) are of the standard type used at FLASH. A schematic of

such a station is shown in Fig. 4.9. An aluminum-coated silicon screen
is installed within the vacuum chamber with an angle of 45◦ with respect

to the beam axis. The screen is mounted on a vertical mover and can be
moved into and out of the beamline by remote control. The backward OTR
generated when a bunch intercepts the screen leaves the vacuum chamber

orthogonally to the beam axis through a silica window (DUV-200), which
is resistant to X-rays and provides a good transmission in the visible wave-

length range. The OTR is reflected downwards by a mirror, passes lenses
and filters that may optionally be inserted, and is recorded by a CCD cam-

era. This arrangement minimizes the exposure of the camera to X-rays.
The camera is connected via a IEEE1394 (firewire) link to a personal com-

puter located in the tunnel, which in turn is connected to a server located
in the control room via local ethernet.

The camera (Basler A301f) is triggered externally in synchronism with
the RF system of the accelerator. It has a CCD sensor consisting of 658×
494 pixels with a size of 9.9 × 9.9 μm, from which 640 × 480 pixels are
used for the resulting images. The dynamic range of the output signal is

28, providing an 8 Bit intensity resolution. The camera is equipped with a
remote gain and shutter control. Each image contains the integrated OTR

intensity over one macropulse. Single-bunch imaging can be achieved by
operating the machine with one bunch per macropulse.

Three different lenses (achromats) with a focal length of 250 mm, 200 mm

and 160 mm can be inserted remotely. They provide nominal magnifica-
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Figure 4.9: Schematic of a standard OTR monitor at FLASH [76].

tions of 1.0, 0.39 and 0.25, respectively. The corresponding calibration
constants are 9.9, 25 and 39 μm/pixel. The resolution of the optical sys-

tem (highest magnification) was measured to be 11 μm (RMS) [77]. A
more detailed description of standard OTR monitors at FLASH can be

found in references [32, 77, 76].
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The monitor OTR-2

The OTR monitor OTR-2 (cf. Fig. 4.8) allows for a measurement of the

transverse charge density distribution downstream of the TDS. In contrast
to a standard OTR monitor, the screen is not centered on the beam axis,

but has a horizontal offset. Bunches therefore have to be deflected onto
the screen by a horizontal kicker. A schematic of the screen holder is

shown in Fig. 4.10. Two screens, one on each side of the beam axis, allow
measurements on both sides of the beam axis. In case of the measurements
presented in this thesis, only the screen on the right hand side was used.

The distance between both screens is 20 mm, leaving enough space for
on-axis bunches to pass without being affected. The screens consist of

aluminum-coated silicon wafers. Each screen has a width of 8 mm, a hight
of 26.5 mm and a thickness of 0.280 mm.

Bunches steered towards the off-axis screen are absorbed by the down-

stream collimator system. A pre-collimator with a diameter of 30 mm is
additionally installed directly behind the off-axis screen to stop secondary

particles emitted from the screen and to avoid uncontrolled beam loss.

The OTR emitted by the screen leaves the vacuum chamber orthog-
onally to the beam direction and is reflected by a mirror so it enters a
camera. In contrast to the standard OTR stations, the OTR is not de-

flected downwards, but horizontally so it propagates parallel to the beam
to a camera located next to the beam axis.

The camera (Basler A311f) is triggered externally in synchronism with

the TDS and the kicker. It contains a CCD sensor with 658× 494 pixels of
9.9×9.9 μm size as in case of standard OTR monitors. The dynamic range

of the output signal can be selected between 28 and 212. The minimum
exposure time is 1 μs, which allows to image single bunches at a bunch

repetition rate of 1 MHz. The camera is equipped with a lense having
a focal length of 200 mm and a diameter of 50 mm. An aperture was
installed to improve the depth of field, so the effective aperture of the lense

is reduced to 25 mm. The distance between the lense and the screen along
the optical axis amounts to about 600 mm.

Transverse distances on the screen were calibrated using bore holes on

the screen holder (cf. Fig.4.10), which are separated by a distance of 5 mm
horizontally and vertically. A calibration constant of 24.2 ± 0.5 μm/pixel

was determined in vertical direction. In horizontal direction, the angle α of
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Figure 4.10: Technical drawing of the screen holder with two OTR screens (aluminum-
coated silicon wafers). The screen holder provides boreholes with a distance of 5 mm for
calibration purposes.

Figure 4.11: Point spread function of the optical system for OTR with λ = 500 nm and
γr = 1000 for different distance errors δ = 0 (top curve at the maxima) to δ = 1 mm
(bottom curve at the maxima) (courtesy: B. Schmidt [71]). The vertical axis shows the
intensity in arbitrary units, the horizontal axis the radial distance r to the center of the
intensity distribution in units of [μm].

the screen with respect to the beam axis has to be taken into account. By
comparing the apparent distance of bore holes in horizontal and vertical

direction in units of pixels, an angle of α = 48.1◦ was determined. A
distance of 27.0± 0.6 μm orthogonal to the beam direction is imaged onto
one pixel of the CCD camera. The total size of the camera window amounts

to 12.9 × 15.5 mm.

The spatial resolution of the optical system was measured to be roughly

13 μm by using a sinusoidal test target precisely in focus [78]. Due to
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the angle α of the screen with respect to the beam axis, the distance
from the screen surface to the lense depends on the horizontal position

on the screen and changes by 5.6 mm when going from the left to the
right edge. Due to these distance errors, the resolution is a function of the

horizontal position. Furthermore, the particular properties of OTR have
to be included. Figure 4.11 shows the calculated point spread function
(response of the imaging system to a point source) for OTR at different

distance errors δ up to 1 mm. The vanishing intensity at the center r =
0 results from the radial polarization of OTR (cf. section 4.1.7). The

distance between the positions of the two intensity spikes at both sides
of the minimum is roughly 20 μm independent of the distance error. The

width of the intensity spikes continuously increases with increasing distance
error, thus deteriorating the resolution. The resolution was estimated by

convolving Gaussian test distributions with the presented point spread
functions. The reconstructed standard deviation σrec can be approximated
by an expression of the form

σrec =
√

σ2
resol + σ2

0, (4.14)

where σ0 is the standard deviation of the test distribution and σresol an
estimate for the RMS resolution. An RMS resolution of σresol ≈ 14 μm

was obtained for a perfect arrangement (distance error δ = 0). For a
distance error of δ = 5 mm, which can be considered as an upper limit, a

resolution of σresol � 26 μm was found [71].

4.2.3 Magnets

The Dipole magnet D1

The dipole magnet D1 (cf. Fig. 4.8) is a conventional magnet composed of
an iron yoke and a copper coil. The pole shoes have a length L = 0.4 m

and are separated by gap h = 40 mm. The maximum excitation current
is Imax = 200 A. Neglecting hysteresis effects, the peak magnetic field is
proportional to the exciting current. In order to elaborate the relation

between exciting current I and magnetic field B0 more accurately, the field
strength was measured at different currents, yielding the relation [79]

B0 = 0.0013 T + 0.0029
T

A
· I, (4.15)
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where the first summand indicates the remanent field of the magnet at
zero current. The corresponding bending angle α of a passing electron

with momentum p is given by

|α| ≈ eB0L

p
≈ 0.2998 · B0 [T] · L [m]

p [GeV/c]
. (4.16)

The nominal bending angle is 3.5◦. The current can be controlled remotely
in steps of 1 mA. In order to exclude hysteresis effects, the current can be

changed to its maximum values ±Imax (magnet cycling) so the magneti-
zation is close to saturation before setting the desired current. Based on

detailed magnetic measurements for the dipoles (different type) used in
the bunch compressor chicanes [53], the relative deviation of the magnetic

field from the quoted linear relation due to higher order fields and hysteresis
effects is estimated to be � 1.5 %.

Quadrupole magnets

The magnetic field within the aperture of a quadrupole magnet is purely
transverse and vanishes on the axis. The horizontal and vertical field com-

ponents Bx and By depend linearly on the transverse coordinates (x, y),

By(x, y) = −g · x (4.17)

Bx(x, y) = −g · y (4.18)

with

g = −∂By

∂x
= −∂Bx

∂y
. (4.19)

[8]. The focal length f (defined in the same way as in case of optical lenses)
at a particle momentum p is determined by

1

f
= k · Lmag, (4.20)

where k is given by

k =
eg

p
(4.21)

k [m−2] ≈ 0.2998 · g [T/m]

p [GeV/c]
, (4.22)
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and Lmag is the effective magnetic length of the magnet. Lmag is defined
by the integrated transverse field gradient divided by the maximum field

gradient gmax in the center:

Lmag =
1

gmax

∫
g(z)dz. (4.23)

The relation between exciting current I and field gradient g was deter-
mined by magnetic measurements at different exciting currents for each

type of quadrupole. The quadrupole magnets installed in the experimen-
tal beamline are partly superferric (Q-ACC4, Q-ACC5 and since 2007 Q-

ACC6, cf. Fig. 4.8) and partly conventional magnets. In case of superferric
quadrupole magnets, the relation between gradient and current is given by

g = 0.0216
T

m
+ 0.3866

T

m · A · I. (4.24)

[79]. The maximum exciting current that may be set is 25 A. The magnetic

length Lmag is 0.185 m. The relative contribution of higher harmonic fields
to the integrated field gradient was measured to be � 10−4 [61]. The

corresponding contribution of higher order fields of the steering magnet
mounted inside the yoke bore is � 10−2 [61]. The relative deviation of the

gradient from the quoted linear relation due to iron saturation is � 0.01
at the maximum current of 25 A [61]. The accuracy of the integrated field
gradient is therefore estimated to be better than 1%.

The quadrupole magnets Q-TDS and Q-ACC6 (before installation of
module ACC6 in 2007) are conventional magnets with a magnetic length

of 0.335 m and a maximum exciting current of 100 A. The relation between
field gradient g and exciting current was measured to be

g = 0.02
T

m
+ 0.0694

T

m · A · I (4.25)

[79]. Based on detailed measurements for other types of conventional quad-
rupole magnets installed at FLASH, the deviation from the linear relation
is assumed to be < 1 % at typical currents between 5 A and 30 A. The

horizontal offset of the beam within the quadrupole of up to 10 mm due to
the kicker is small compared to the diameter of the yoke bore of 70 mm, so

a significant change of the field gradient over this distance is not expected.
The exciting current of each quadrupole can be set remotely in steps of

1 mA. The currents of the quadrupole magnets located in the experimental
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beamline can be chosen independently, since each magnet is powered by
a different power supply. Cycling procedures allow to prevent errors from

hysteresis effects.

In order to decouple horizontal and vertical particle motion, it is impor-
tant that quadrupole magnets are not rotated about the beam axis. The
rotation angle of quadrupole magnets at FLASH is less than 0.1 mrad [80].

4.2.4 The kicker

A horizontal kicker deflects single bunches onto the off-axis screen OTR-2

(cf. Fig. 4.8). The kicker contains stripline electrodes arranged parallel to
the beam, which generate a strong vertical dipole field. The electrodes

are placed around a ceramic vacuum chamber transparent to the magnetic
field. They are charged by a fast pulser. The pulse duration of 1.5 μs [81]
allows to horizontally deflect single bunches of a bunch train at 1 MHz

bunch repetition rate. The strength of the kick can be controlled remotely
by changing the voltage of the power supply charging the capacitors of the

pulser. A high voltage of about 3.8 kV is necessary to obtain a sufficiently
strong magnetic field.

4.2.5 The transverse deflecting structure

The key component of the experimental setup (cf. Fig. 4.8) is a transverse
deflecting structure (TDS). The structure deflects particles vertically in

linear dependence on their longitudinal position within a bunch, and in this
way allows to measure properties of the particle distribution as a function of

the longitudinal position. Because of its importance the TDS is described
in detail in the following.

Introductory remarks on transverse deflecting structures

The idea to separate charged particles with an RF deflector has its origin
in particle physics. In the 1960’s, much effort was devoted to the devel-

opment of schemes for separating charged secondary particles of different
masses but the same momentum. In uniform electric fields transverse to

the direction of motion, the difference in deflection angle of two such par-
ticles is proportional to the inverse of their momentum squared. Hence,

“DC deflectors” are only well-suited for low energies. For high energies,
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transverse RF fields are much more efficient, since the particles (if not ultra-
relativistic) can be easily injected at different phases of the RF field due

to different particle velocities and correspondingly different times-of-flight
to the RF deflector [82].

A fundamental contribution to the development of such RF deflectors
is the Panofsky-Wenzel theorem [83], which states that

1. A cavity (without beam holes) excited in a TE mode (no component
of electric field parallel to the axis) imparts no transverse momentum
to a high-energetic particle passing it parallel to its axis.

2. A cavity excited in a TM mode (no component of magnetic field par-
allel to the axis) imparts a transverse momentum

�Δp⊥ =

(
k0

kg
− kg

k0

)
e

c

∫ L

0

�E⊥
(
z, t0 +

z

v

)
dz, (4.26)

where k0 = ω/c is the free-space wave number, L is the length of the

cavity, kg = p · π/L, p ∈ N0 is the guide propagation wave number of

the particular mode, v is the particle velocity, �E⊥(z, t) the transverse
electric field vector as a function of longitudinal position z and time
t, and t0 is the time the particle enters the cavity.

Physically, the magnetic field cancels the effect of the electric field in case
of TE modes, whereas in case of TM modes it multiplies the effect from

the electric field with a factor which is independent of the particle velocity.
A field distribution suited for transverse RF deflection is a TM1,1,0 dipole

mode. Fig. 4.12 sketches the field distribution in a pillbox cavity [84] ex-
cited in this mode. A deflector may thus be constructed from a chain of

cavities excited in a TM1,1,0 mode. However, there are drawbacks associ-
ated with the use of cavities as a reduced efficiency (transit time factors)

and the rather long time the fields need to reach their steady state [82].
It appeared to be more promising to use a waveguide structure with a
phase velocity equal to the particle velocity, so particles “ride the crest”

of the deflecting field. However, the phase velocity in uniform waveguide
structures is always larger than the velocity of light [11].

A remedy to this problem are iris-loaded structures. Reflections at
periodic obstacles in a structure slow down the phase velocity of the field,

a mechanism that had already been used for traveling-wave accelerating
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Figure 4.12: Field distribution of the TM1,1,0 mode in a pillbox cavity [84]. The figure
on the left hand side shows a side view with electric field vectors, the one on the right
hand side a front view with magnetic field vectors. The electric field has no transverse
component and vanishes on-axis. The magnetic field vectors have a nearly homogenous
component in one transverse direction in the region near the axis, which leads to a trans-
verse deflection of a passing charged particle.

structures excited in a TM0,1 mode [11]. A field configuration in a periodic
structure obeys the following statement [11], which is related to the Floquet

theorem:
In a given mode of an infinite periodic structure, the fields at two differ-

ent cross sections that are separated by one period differ only by a complex
constant.

This is the case for a solution of the form

�E(r, ϕ, z, t) = �Ed(r, ϕ, z) · ei(ωt−koz), (4.27)

where �Ed(r, ϕ, z) is a periodic function in z (with the same periodicity d

as the structure) that fulfills the transverse boundary conditions, ω is the
angular frequency of the field and k0 is a longitudinal wave number yet to
be determined. The field at z + d is then given by

�E(r, ϕ, z + d, t) = �E(r, ϕ, z, t) · eik0d, (4.28)

which physically represents a cell-to-cell phase shift of k0d. Expansion of
the periodic function �Ed(r, ϕ, z) in a Fourier series

�Ed(r, ϕ, z) =
n=+∞∑
n=−∞

�Ed,n(r, ϕ)e−i2πnz/d (4.29)
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yields

�E(r, ϕ, z, t) =
n=+∞∑
n=−∞

�Ed,n(r, ϕ)ei(ωt−knz) (4.30)

with

kn = k0 + 2πn/d. (4.31)

The field can thus be expressed as a superposition of traveling waves, called
space harmonics, with the same frequency ω but different wave numbers

kn. Accordingly, the space harmonics have different phase velocities vp,n =
ω/kn. It can be shown that if a particle moves in synchronism with one
space harmonic the effect of the nonsynchronous waves on the particle

averages to zero and can be ignored [11, 85].

The wavenumber k0 of the fundamental space harmonic is determined
by the structure geometry and the operating frequency ω. Generally, k0

is modified compared to the wavenumber in the corresponding uniform
waveguide such that the phase velocity v0 is reduced. This allows to de-
sign iris-loaded structures in such a way that the phase velocity of the

fundamental space harmonic, which has usually the largest Fourier ampli-
tude, is equal to the particle velocity [11].

In case of iris-loaded accelerating structures, e.g. those used at SLAC,

the fundamental space harmonic with a phase velocity equal to the speed
of light shares key-properties with a TM0,1 mode (which is the desired

mode for particle acceleration). In particular it has no radial dependence
of the accelerating field [86]. The field distribution in iris-loaded deflect-
ing structures is more complex. It turns out that the fundamental space

harmonic in an iris-loaded deflecting waveguide can approximately be de-
scribed by a so-called hybrid mode (HEM1,1), which can be considered as

a linear combination of a TM1,1 and a TE1,1 mode [87]. This is related to
the fact that the cut-off frequency of the TM1,1 mode is larger than that

of the TE1,1 mode, so the TE1,1 mode can also exist (in contrast to the
case of TM0,1 and TE0,1). The HEM1,1 mode imparts a transverse force on
a synchronously moving particle, which originates from both the magnetic

and electric field.

Iris-loaded RF deflecting structures were built first at SLAC in the
1960’s for particle separation and called “LOLA” after their inventors G.A.

Loew, R.R. Larsen and O.A. Altenmueller [88]. A LOLA-type TDS of the
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Figure 4.13: Cut-away view of an iris-loaded RF structure [88].

fourth generation built in 1968 has been installed in the FLASH linac in
2003 in a collaboration between SLAC and DESY.

Technical design

A cut-away view of the TDS at FLASH is shown in Fig. 4.13. The 3.64 m
long structure is fabricated from brazed stacks of copper cylinders with

a period of 3.5 cm. The iris radius is 2.24 cm. The RF input coupler is
located at the end of the structure (where the beam exits). The azimuthal

orientation of the coupler determines the direction of deflection, which is
the vertical direction in case of this structure. Since minor imperfections

in the structure could cause the field to rotate, two additional lateral holes
(“mode-locking holes”) are provided on either side of each iris, which allow
additional coupling between the cells and thus prevent field rotations. The

structure is designed such that the phase velocity of the fundamental space
harmonic is equal to the speed of light. It operates in the S-band frequency

range at ν = 2.856 GHz, resulting in a wave length λ = c/ν ≈ 10.5 cm, a
wave number k = 2π/λ ≈ 59.8 m−1 and a phase shift per cell

ΔΨ = 2π · Lcell/λ ≈ 2π/3, (4.32)

where Lcell ≈ 3.5 cm is the cell length.
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Field pattern and forces acting on a relativistic electron

The field pattern within the structure is illustrated in Fig. 4.14 showing a

snapshot of the electric field configuration in a side view of the structure as
measured by means of a sapphire probe [82]. The field of the fundamental

space harmonic in cylindrical coordinates (r, ϕ, z) is given by [82]3

Ex(r, ϕ, z) = 2E0 · cos(ϕ) sin(ϕ)

(
1

2
kr

)2

Ey(r, ϕ, z) = E0

[(
1

2
ka

)2

−
(

1

2
kr

)2 (
cos2(ϕ) − sin2(ϕ)

)]

Ez(r, ϕ, z) = iE0kr · sin(ϕ) (4.33)

Z0Hx(r, ϕ, z) = E0

[
−
(

1

2
ka

)2

+ 1 +

(
1

2
kr

)2 (
cos2(ϕ) − sin2(ϕ)

)]

Z0Hy(r, ϕ, z) = 2E0 · cos(ϕ) sin(ϕ)

(
1

2
kr

)2

Z0Hz(r, ϕ, z) = iE0kr · cos(ϕ),

where a = 2.24 cm is the radius of the iris, Z0 =
√

μ0

ε0
is the free-space

impedance and E0 = |E0|ei(kz−ωt) represents a traveling wave. The only

components which do not vanish on-axis are Ey and Hx, causing a rel-
ativistic electron passing the structure on-axis to be deflected vertically.
More importantly, calculating the Lorentz force yields that the electric and

magnetic contribution add in such a way that the resulting deflecting force
is constant over the entire aperture and thus provides an aberration-free

deflection of particles moving parallel to the axis:

Fy = e (Ey + Z0Hx)

= e|E0| · sin(Ψ), (4.34)

where the RF phase Ψ = kz − ωt − Ψ0 has been chosen relative to a
zero-crossing phase Ψ0 of the deflecting force Fy, which will be referred

to as “zero-crossing phase” in the following. Away from the axis, there

3The fields have been transformed to cartesian coordinates. In order to obtain a de-
flecting force in vertical instead of horizontal direction, the angle ϕ has been replaced by
ϕ − π/2.
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Figure 4.14: Side-view of a LOLA-type TDS showing the electric field configuration of the
deflecting mode [82]. Within the center cell there is a transverse electric field, which is
almost homogenous over the aperture and contributes to the deflecting force. An electron
co-moving to the field in the center of this cell, where the transverse electric field vanishes,
experiences no deflection. There is a longitudinal electric fields vanishing on-axis in each
cell. After three cells the field pattern repeats.

are additionally transverse field components Ex and Hy, which cancel each
other so there is no force in horizontal direction:

Fx = e (Ex − Z0Hy) = 0. (4.35)

The off-axis longitudinal electric field Ez is phase-shifted by 90◦ relative to
the deflecting force and causes an accelerating or decelerating force

Fz(r, ϕ) = −e|E0|kr · sin(ϕ) cos(Ψ). (4.36)

In the following paragraphs, the forces and fields are analyzed in more
detail.

Transversely deflecting force It is convenient to define an equivalent
deflecting voltage V by

V =
1

e

∫ L

0
Fydz =

Fy · L
e

. (4.37)

From Eq. (4.34) follows

V = |E0|L · sin(Ψ) (4.38)
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for an electron moving in synchronism with the field at the RF phase Ψ.
The deflection angle Δy′ = Δpy/|p| experienced by the particle is given by

Δy′ =
1

|p|
∫ L/c

0
Fy(t)dt =

1

c|p|
∫ L

0
Fy(z)dz (4.39)

=
Fy · L

E
=

eV

E

where E is the electron energy.
The deflecting voltage is determined by the power fed into the structure.

Some power is lost by dissipation in the normal-conducting walls, which
leads to a field attenuation of −4.14 dB over the entire structure4 [78].
Moreover, power is absorbed by other space harmonics not contributing

to the deflection. The effective maximum deflecting voltage V0 = |E0|L at
Ψ = π/2 including these effects is related to the input power P via the

relation

V0 ≈ 1.6

[
MV

m · √MW

]
· L[m] ·

√
P [MW ]. (4.40)

The relation has been determined experimentally and confirmed analyti-

cally [89]. The maximum input power of the TDS at FLASH is 25 MW,
producing a maximum deflecting voltage of V0 ≈ 29 MV. For an electron

energy of E = 500 MeV, which is a typical energy at the position of the
TDS in the FLASH-linac, this results in a huge maximum deflection angle
of

Δx′ = eV0/E ≈ 58 mrad. (4.41)

However, the structure is usually operated near zero-crossing so the applied

deflection is much smaller.

Longitudinal force A particle passing the structure with an offset r =
r0 experiences a longitudinal force (Eq. (4.36))

Fz(r, ϕ) = −e|E0|kr · sin(ϕ) cos(Ψ), (4.42)

which is maximal at zero-crossing of the deflecting force. The force can be

estimated by
Fz � e|E0|kr0 (4.43)

4A LOLA-type TDS is a so-called constant-impedance structure (in contrast to
constant-gradient structures) with a translational symmetric geometry.
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resulting in an energy change

ΔE � e|E0|kr0L. (4.44)

With k ≈ 59.8 m−1, r0 = 1 mm and |E0|L � V0 ≈ 29 MV the force causes
an energy change of ΔE � 1.8 MeV. For a beam energy of 500 MeV, this
is typically within the energy uncertainty and has no significant effect on

the spatial distribution directly downstream of the structure. However, if
there are correlated offsets along the bunch, e.g. linear correlation 〈yz〉 or

〈xz〉 induced by wake fields, the energy profile may be influenced.

Forces on an electron passing the structure with an angle If a
particle passes the structure with an angle, the balance between magnetic

and electric forces is slightly distorted. Since the magnetic field is almost
horizontal near the axis, the forces in vertical and longitudinal direction

change. However, for maximum angles in the order of 10−3, these changes
are negligible.

Energy change caused by transverse deflection The transverse elec-

tric field component contributing to the deflection causes an energy change
of a passing electron given by

ΔE

E
=

eEyΔy

E
=

1

E

Δy′ · L
2

· eEy =
(Δy′)2

2
(4.45)

according to Eq. (4.39). For deflection angles in the order of 10−3 this is
not a significant effect.

Energy flow The time averaged power P transmitted through the struc-

ture by the fundamental space harmonic is given by integrating the complex
Poynting vector for harmonic fields [3]

�S =
1

2

(
�E × �H∗

)
(4.46)

over the aperture A:

P =
1

2
Re

[∫
A

(
�E × �H∗

)
�ezds

]
(4.47)

=
πa2

2

|E0|2
Z0

(
ka

2

)2
[

4

3

(
ka

2

)2

− 1

]
,
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where �ez is the unit vector in longitudinal direction. Inserting the iris
radius a = 2.24 cm and the wave number k = 59.8 m−1 yields P < 0,

indicating that the fundamental space harmonic is a backward wave mode.
Accordingly, the structure has a negative group velocity vg = −0.0189 c

[87] and thus the direction of energy flow is opposed to the beam direction.
The power is therefore fed into the structure through the RF input coupler
at the end of the structure as already mentioned.

Bunch deformation

In a bunch with mean energy E which is injected into the structure at an

RF phase Ψ (with respect to the centroid of the bunch), the total “kick
angle” imparted to an electron with energy E + ΔE at the longitudinal

position ζ relative to the centroid (ζ = 0) is given by

Δy′(ζ) =
eV0

E + ΔE
sin(kζ + Ψ). (4.48)

In the FLASH linac, the relative RMS energy width σE/E at the position of

the TDS is usually smaller than 0.5%, so the bunches can be considered as
mono-energetic in a reasonable approximation. The RMS bunch length σζ

is (for standard machine settings) shorter than 2 mm, so for the wave length
λ ≈ 10.5 cm of the fundamental space harmonic of the TDS, Eq. (4.48) can

be approximated by the first two terms of a Taylor series around ζ = 0:

Δy′(ζ) ≈ eV0

E
(kζ cos(Ψ) + sin(Ψ)) . (4.49)

Calculating the mean kick angle 〈Δy′〉 and the variance

σ2
y′ = 〈(Δy′ − 〈Δy′〉)2〉 (4.50)

over the ensemble of bunch electrons yields the centroid deflection

〈Δy′〉 ≈ eV0

E
sin(Ψ) (4.51)

and the induced angular divergence

σy′ =
eV0k

E
σζ cos(Ψ), (4.52)

where σζ is the longitudinal RMS bunch length. For the purpose of beam

diagnostics, a large induced angular divergence is desirable. At the FLASH
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linac, the structure is operated at zero-crossing resulting in a maximum
angular divergence.

In order to calculate the beam properties downstream of the structure,
it is convenient to consider the structure to be a drift section with an

instantaneous deflection according to Eq. (4.49) occurring at the center of
the structure located at s = s0. The approximation as a drift section is

justified since effects other than the intended deflection are negligible as
shown above. An instantaneous deflection at the center results, neglecting

power attenuation along the structure, in the same change in offset Δy(s0+
L/2) and by definition the same angle Δy′(s0 + L/2) at the end of the

structure:

Δyi(s0 + L/2) =

∫ s0+L/2

s0−L/2
Δy′(s) ds =

∫ s0+L/2

s0−L/2

Fy · s
E

ds (4.53)

=
Fy · L2

2E
=

L

2
· Δy′(s0 + L/2),

where relation (4.39) was used. The vertical particle coordinate y at posi-
tion s > s0 + L/2 is therefore given by

y(s) = My
1,1(s, s0) · y(s0) + My

1,2(s, s0) · (y′(s0) + Δy′) (4.54)

= y0(s) + My
1,2(s, s0) · Δy′,

where My(s, s0) is the transfer matrix from s0 to s for the vertical plane

including the second half of the TDS as a drift section, y0(s) the vertical
particle coordinate at s without deflection from the TDS and Δy′ is the

total kick angle induced by the TDS . Inserting expression (4.49) for Δy′

yields

y(s) = y0(s) + S · ζ + My
1,2 ·

eV0

E
sin(Ψ), (4.55)

with

S = My
1,2 ·

eV0

E
· k · cos(Ψ). (4.56)

In the following, an operation of the structure near zero-crossing is assumed
(Ψ ≈ 0), resulting in

y(s) = y0(s) + S · ζ, (4.57)

and

S = My
1,2 ·

eV0

E
· k. (4.58)
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The constant S is a proportionality constant relating longitudinal distances
to vertical distances at position s downstream of the deflector. S will be

called shear parameter.
In the following, the transverse density distribution of a bunch sheared

by the TDS will be derived using Eq. (4.57). The charge density distribu-
tion of a bunch at a position s downstream of the TDS including effects
from the TDS (TDS on) will be denoted by ρ(x, y, ζ), and the distribu-

tion at the same position with the TDS switched off by ρ0(x, y, ζ). In
order to simplify the considerations, ρ0(x, y, ζ) will be assumed to exhibit

no longitudinal-vertical correlations. The distribution can thus be decom-
posed into the distribution ρxζ(x, ζ) in the longitudinal-horizontal plane

and the distribution ρ0
y(y) in the vertical direction:

ρ0(x, y, ζ) = ρxζ(x, ζ) · ρ0
y(y). (4.59)

Since the horizontal coordinate x is not changed by the TDS, the consid-
eration can be restricted to the longitudinal-vertical plane by integrating
over x, yielding

ρ0
yζ(y, ζ) = ρζ(ζ) · ρ0

y(y) (4.60)

with the charge density distribution in the vertical-longitudinal plane ρ0
yζ(y, ζ)

and the longitudinal distribution ρζ(ζ).

The change in vertical coordinate yi of a bunch electron induced by the
TDS (Eq. 4.57) can be written more generally as

yi = y0
i + χi, (4.61)

with vertical offsets χi = S · ζi. The corresponding distribution of induced

vertical offsets χi in the bunch will be denoted by Pχ(χ). The vertical
charge density distribution ρy(y) at s including effects from the TDS is

thus given by the convolution

ρy(y) =

∫ +∞

−∞
dỹ
[
ρ0

y(ỹ) · Pχ(y − ỹ)
]
. (4.62)

Using

Pχ

(
S ·
[
y − ỹ

S

])
=

1

S
· ρζ

(
y − ỹ

S

)
(4.63)

yields

ρy(y) =

∫ +∞

−∞
dỹ

[
ρ0

y(ỹ) · 1

S
· ρζ

(
y − ỹ

S

)]
. (4.64)
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This expression shows that the vertical density distribution of a streaked
bunch is a convolution of the longitudinal distribution ρζ and the verti-

cal distribution with the TDS switched off divided by the shear parame-
ter, ρ0(y)/S. The reason is that by virtue of the TDS each point in the

longitudinal profile is mapped to the vertical profile of the “slice” at the
same longitudinal position, so ρ0(y)/S has the meaning of a point spread
function. The convolution limits the longitudinal resolution with which

the longitudinal density distribution ρζ can be measured. The resolution
(RMS) is given by σ0

y/S, where σ0
y is the overall vertical RMS bunch size

(TDS off). The resolution is typically in the order of one tenth of the RMS
bunch length, which corresponds to 10 − 20 μm. In general, the spatial

bunch distribution ρ0(x, y, ζ) exhibits longitudinal-vertical correlations in
contrast to the assumption made here (Eq. 4.60). The resolution then be-

comes a function of the longitudinal position ζ and can only be roughly
estimated by the overall vertical bunch size σ0

y.

Influence of the optics on the resolution

The longitudinal resolution σ0
y/S depends critically on the accelerator op-

tics. For a given optics and a perfectly matched beam, the vertical transfer
matrix element My

1,2(s, s0) (as defined in Eq. 4.54) can be written according

to Eq. (2.38) as

My
1,2(s, s0) =

√
βy(s)βy(s0) · sin(Δφy) (4.65)

and the RMS beam size at position s as

σ0
y(s) =

√
εy · βy(s), (4.66)

where βy(s0) and βy(s) are the values of the vertical beta function at the

center of the deflector s0 and position s (the screen position), respectively,
Δφy is the vertical phase advance from the deflector to the screen and εy

the vertical RMS emittance. Using these expressions, the definition of the

shear parameter S (Eq. (4.56)) becomes

S =
√

βy(s)βy(s0) · sin(Δφy) · eV0k

E
(4.67)

∝
√

βy(s)βy(s0) · sin(Δφy) (4.68)
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and the resolution can be expressed as

σ0
y

S
=

√
εyβy(s) · E√

βy(s)βy(s0) · sin(Δφy) · eV0k
(4.69)

=

√
εy · E√

βy(s0) · sin(Δφy) · eV0k
(4.70)

∝ 1√
βy(s0) · sin(Δφy)

. (4.71)

Eq. (4.70) shows that the resolution can be improved by increasing
the beta function βy(s0) and thus decreasing the beam divergence at the

deflector and by choosing a betatron phase advance Δφy close to (n·π+π/2)
with n ∈ N0. At the same time, the vertical beam size at the position of

the screen s can be scaled by the value βy(s) of the beta function at the
screen, as can be seen from Eq. (4.67). This is important to adapt the
beam size to the screen dimensions and to the resolution of the optical

system imaging the electron beam. Note that the shear parameter S does
not depend on the value of the beta function at the deflector βy(s0) as

an independent parameter, as Eq. (4.67) might suggest, but only on the
transfer matrix from the deflector to the screen. Changing the strengths of

quadrupole magnets upstream of the deflector changes the beta function
in such a way that

My
1,2(s, s0) =

√
βy(s)βy(s0) · sin(Δφy) (4.72)

is unaffected. From this it follows that√
βy(s) ∝ 1√

βy(s0) · sin(Δφy)
∝ σ0

y

S
. (4.73)

Hence, in case only the strengths of quadrupole magnets upstream of the
TDS are changed, the resolution scales with

√
βy(s) or equivalently with

the vertical beam size σ0
y without RF deflection at the screen.

Installation at FLASH

Fig. 4.15 shows a photograph of the TDS in the FLASH tunnel. The
RF power is fed into the structure at the downstream end through an

input coupler. The energy flow is opposed to the beam direction. At the
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Figure 4.15: Photograph of the TDS in the FLASH tunnel. The orientation of RF input
coupler, load and beam direction is drawn in.

other end, a load is installed to absorb the field and prevent reflections.
The group velocity vg = −0.0189 · c yields a filling time τf = L/vg of

0.645 μs, after which the field reaches a steady-state. Since 2 · τf < 2μs,
the structure is suited for selectively manipulating single bunches at 1 MHz

bunch repetition rate of the machine without affecting subsequent bunches.

The short RF pulses with a duration of ∼ 1 μs are generated in an RF

modulator and amplified by a klystron to a power of up to 45 MW. The
RF signal is transported to the structure through a 75 m long waveguide

with a measured attenuation of 2.6 dB [78]. The waveguide is temperature-
stabilized at 45◦ C to prevent phase shifts. The power fed into the structure

can be measured by coupling out a small fraction of the RF through drilled
holes [78]. The maximum input power measured was 18 MW [87]. RF
phase and input power can be remotely controlled from the control room.

An important issue for a proper operation of the structure is the syn-

chronization to the RF system of the accelerator. At high input power of
the TDS, even small drifts or fluctuations of the RF phase are translated
to strong changes in the vertical offset downstream of the structure, which

makes measurements difficult or even impossible. The reference timing
signals for all components of FLASH are derived from a master oscillator

running at 9.027775 MHz. Since the structure was originally fabricated for
use in a different machine, the operating frequency of 2.856 GHz is not a

multiple of the master oscillator frequency and thus disallows a simple syn-
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chronization scheme. To allow synchronization, the resonance frequency of
the structure had to be shifted slightly by rising the operating tempera-

ture to 45◦C. In this way, the operating frequency could be changed to a
multiple of 1/11 of the master clock frequency, so a stable synchronization

can be achieved by an additional synchronization circuit. More details can
be found in reference [78].



Chapter 5

Experimental details

5.1 Image analysis

The raw experimental data used for determining bunch properties are digi-
tal images recorded with a CCD-camera. In order to apply the methods for

phase space analysis described in chapter 3, one-dimensional transverse in-
tensity profiles and corresponding statistical properties as mean value and

standard deviation have to be extracted from the images. However, there
are several disturbances such as γ-rays, stray light and noise in the camera
system complicating this task. This section describes how the individual

error sources are handled and the final data used for phase space analysis
are determined.

Sources of spurious intensities in CCD-images

Spurious intensities caused by the electron beam: γ-rays and

synchrotron radiation γ-rays may be emitted whenever beam electrons
hit an obstacle like an OTR screen or the vacuum chamber. If they hit the
CCD-chip of the camera, this typically results in a much higher intensity

of the affected pixels than found in the direct neighborhood. Such isolated
intensity spikes are corrected by using a “mean filter”, which identifies

individual pixels having an intensity which exceeds the mean intensity in
their local neighborhood by a certain value, which was adjusted empirically,

and replaces their intensity value by this mean value.

Synchrotron radiation is emitted when the beam moves on a curved
trajectory, e.g. within a steering magnet or a quadrupole traversed off-

axis. If this happens close to the OTR screen, the radiation may hit the

83
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screen and be reflected into the optical system of the camera. In case
of the measurements presented in this thesis, synchrotron radiation plays

a minor role, since steering magnets in the vicinity of the screen were
operated at low currents. The quadrupole closest to the screen OTR-2 is

located about 9 m upstream, so the radiation intensity, which reduces with
one over distance squared, can be neglected at the location of the screen.

Background signals Spurious intensities not caused directly by the
beam can be easily distinguished from the beam signal by recording “back-

ground images” with the laser of the RF gun switched off. Background im-
ages can then be subtracted from images containing beam signal (“beam

images”).

The main source for background intensities are electrons released from
the inner surface of the accelerating modules and the gun by field emission,

which generate a nearly continuous current (“dark current”). In case of
the measurements using the off-axis screen OTR-2, dark current is negli-

gible since only those electrons passing the horizontal kicker during a time
window in the order of a microsecond are deflected onto the screen.

Another potential source for background signals is stray light, e.g. due

to laser-based diagnostics near the screen. Stray light was not observed
during the measurements.

Noise caused by the CCD-camera Noise in the camera system is
usually the dominating source for spurious intensities in CCD-images. The

noise is mainly caused by dark current in the pixels of the CCD sensor
and signal amplifiers. The intensity distribution of this noise is in good

approximation Gaussian and homogenous over the extension of the image.
The mean value μnoise is ideally equal to zero. If not, it has to be determined

and subtracted from the measured intensities. This is automatically the
case when background images are subtracted.

Restriction to a region of interest

Spurious intensities may significantly affect the statistical moments ex-

tracted from the spatial intensity distribution of a CCD-image. In par-
ticular, standard deviations, which are used to determine the transverse

emittance, critically depend on intensities with a large offset to the mean
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beam position on the image. In case of Gaussian distributions, a Gaussian
fit can be applied to determine the second moments in an accurate way.

However, in many cases the bunch distribution is not Gaussian but of irreg-
ular shape, so an explicit calculation of statistical moments is preferable.

An important step is to confine the calculation to a smaller region con-
taining the beam. Reference [32] describes a two-dimensional algorithm,
in which an elliptic region around the beam center, the “region of interest”

(ROI), is increased in size until the variances calculated from the image
fraction contained in that region become roughly constant. This algorithm

works well as long as the bunch shape is nearly elliptic, which is typically
the case for transverse distributions.

Here, a different approach to define a two-dimensional ROI had to be ap-
plied, since the distributions encountered strongly deviate from an elliptical

shape due to the deformation induced by the TDS (transverse deflecting
structure). The algorithm will be illustrated in the following at the example
of a simulated CCD-image. Figure 5.1(a) shows the transverse distribu-

tion of an electron distribution obtained from a particle tracking simulation
(cf. chapter 8). Vertical shearing by means of the TDS was included, so

the vertical position on the image is related to the longitudinal position
within the bunch. The distribution is shown in the form of a CCD image

with the same pixel size and the same intensity resolution as in case of im-
ages recorded by the cameras used for the measurements. In Fig. 5.1(b),
Gaussian noise was added to the distribution. The standard deviation of

the noise signal was chosen to be slightly larger than typically observed in
measurements.

At first, mean value μnoise and standard deviation σnoise of the noise
signal are determined. For this purpose, a histogram showing the distribu-

tion of pixel intensities is appropriate (Fig. 5.1(c)). As long as the largest
part of the image is covered by pure noise, there is a sharp maximum at

low intensities from which mean value and standard deviation of the noise
signal can be determined. In the example, the mean value of the noise
signal was chosen to be zero for illustrative reasons. Afterwards, the image

is coarsened by introducing quadratic “macropixels” with a side length of
N pixels. The intensity of each macropixel is defined to be the average

intensity of the pixels enclosed. The standard deviation of the noise sig-
nal of all macropixels Σnoise = σnoise/N is reduced by a factor of N . In

case the beam intensity does not vary significantly over the extension of
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Figure 5.1: Illustration of the algorithm used for image analysis. (a) Simulated CCD-
image of an electron distribution. (b) Distribution in (a) superimposed by a Gaussian
distribution simulating noise. (c) Histogram showing the intensity distribution of image
pixels in (b). (d) Locally averaged image with macropixels of size 10 × 10. (e) Region of
interest found by an iterative algorithm. (f) Final image.

a macropixel, the signal-to-noise ratio is thus increased by the same fac-
tor. As a result, the contour of the region covered by the beam is visible

(Fig. 5.1(d) with N = 10).

Starting from the coarsened image, a ROI is determined iteratively.
First, the macropixel with maximum intensity is added to the ROI. Then

all direct neighbors (at maximum eight macropixels) of this macropixel are
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determined. Those neighbors with an intensity above a certain threshold
are added to the ROI. The threshold is chosen to be m·Σnoise with typically

m = 3, so a macropixel with an intensity above the threshold is likely to
contain beam intensity. This procedure is repeated by considering all direct

neighbors of macropixels within the ROI which are not element of it, until
the ROI stays unchanged (Fig. 5.1(e)). Finally, the original intensities
are assigned to all pixels within the ROI, whereas the intensities of all

pixels outside the ROI are set to zero intensity (Fig. 5.1(f)). The resulting
image allows to determine arbitrary statistical properties of the electron

distribution.
The accuracy of the algorithm was tested by determining the horizontal

RMS width of the test bunch shown in Fig. 5.1(a) as a function of the ver-
tical position (“ slice width”) from twenty images with random background

noise (Fig. 5.2). The calculated widths are in very good agreement with
the original ones and have small statistical errors. At the very end of the
bunch, where the beam intensity is in the same order as the standard de-

viation of the noise signal, the algorithm (and principally beam detection)
fails. The deviations observed in the presented simulation are amplified by

numerical noise resulting in strong fluctuations of the intensity from pixel
to pixel in the low-intensity region.

The algorithm works provided the noise signal is gaussian in reasonable
approximation and the beam covers a connected region of the image, which
both is typically the case. One can consider the region with a locally

averaged intensity above the noise level intuitively as the region where
beam is detectable.

The size of the macropixels has to be adapted to the size and structure
of the area covered by the beam. Here, 10 × 10 pixels were found to be

appropriate. The sensitivity was further improved by determining regions
of interest for different mean positions of the macropixels and unifying these

regions afterwards. Furthermore, entire “boundary layers” containing all
macropixels in the direct neighborhood of the ROI were considered and
added to the ROI in case the mean intensity of these layers was above a

threshold determined by the noise signal.
The noise parameters can also be determined by evaluating background

images instead of using intensity histograms. This was done whenever
there were no significant intensities from dark current, as was typically the

case on the off-axis screen.
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Figure 5.2: Simulation of a measurement of RMS bunch widths. The solid line shows the
horizontal RMS width σx of the electron distribution shown in Fig. 5.1(a) as a function
of vertical position. Red circles show the corresponding widths as determined from 20
images with random noise signals after processing them as described in the text. Error
bars indicate the corresponding standard deviations.

The algorithm was implemented in a MATLAB environment. Including

the improvements mentioned above, the runtime on the personal computer
currently used for emittance analysis at FLASH ranges approximately be-

tween 0.1 s and 0.5 s per image. The runtime depends on the area covered
by the beam and the chosen size of macropixels.

The analysis of images described above can be complemented by noise

filters in “frequency” domain, since the noise signal is characterized by
strong fluctuations from pixel to pixel, while the beam signal mainly shows

variations over longer distances. One possibility to filter the noise signal
is to perform a two-dimensional Fourier transformation of the image and
to suppress the high frequencies before back transformation. This would,

however, also smear out sharp edges of the beam density distribution. A
remedy to this problem are appropriate wavelet transformations instead

of Fourier transformations [32]. Since the improvements from these tech-
niques are rather small compared to the additional expenditure of time for

analyzing images, they were not applied.
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Deconvolution of CCD-images

The vertical charge density profile ρy(y) downstream of the transverse de-
flecting structure (TDS) can be considered as a “superposition” of the lon-

gitudinal charge density distribution ρζ(ζ) and the vertical charge density
distribution ρ0

y(y) of a bunch unaffected by the TDS at the same position

of the beamline. In case the charge density distribution ρ0
yζ(y, ζ) of an

unaffected bunch in the vertical-longitudinal plane can be written in the

form

ρ0
yζ(y, ζ) = ρζ(ζ) · ρ0

y(y),

the vertical charge density profile ρy(y) is a simple convolution of ρζ(ζ)
and ρ0

y(y) (see Eq. (4.62) in section 4.2.5). Since the vertical density pro-

file ρ0
y(y) can be measured by switching the TDS off, the distribution in

longitudinal direction can be determined by deconvolving the measured

intensity distribution. Similar considerations apply to the two dimensional
transverse distribution including the dependence on the horizontal coordi-

nate x. A corresponding deconvolution of the measured CCD-images can
be performed by means of the Lucy-Richardson algorithm [90, 91].

However, a bunch distribution typically exhibits correlations between

the longitudinal and the vertical particle coordinate, so assumption (5.1)
is a rough approximation. In particular, the vertical width is in general a

function of the longitudinal position ζ within the bunch due to variations
of the slice emittance and the ellipse parameters along a bunch. Also the

mean vertical particle position can be function of ζ, e.g. due to wake
field effects. As a result, a deconvolution using the transverse distribution
measured with the TDS switched off did not deliver reliable results and was

therefore not applied. The presented results are thus resolution-limited.

Subdivision into slices and averaging

An operation of the TDS close to zero-crossing of the deflecting force results
in a shearing of the particle density distribution downstream of the TDS

without a change of the mean particle position. However, fluctuations of
the bunch arrival time with respect to the RF field of the TDS (RF phase

jitter) results in jitter of the vertical beam position on the screen. To
average intensity distributions and derived parameters over many images,

an exact determination of the vertical beam position on the screen and
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a correction of position jitter is essential. Since the vertical extension of
the beam on the screen is large, and occasionally only a fraction of a

bunch is observed within the camera window, a determination of the mean
particle position on the screen is error-prone. Instead, a reference point was

defined in each vertical profile (projection of the intensity distribution onto
the vertical axis). Typically, a steep slope at the head of the longitudinal
charge density distribution allows a precise determination of the position

of half maximum intensity in the vertical profile. The reference point was
used to define an internal longitudinal bunch coordinate ζ with ζ = 0 at

the reference point.

In order to determine bunch properties as a function of the internal
bunch coordinate, the images were subdivided into vertical intervals (slices)

of the same height (typically 4 to 10 pixels) starting from the reference
point. For each slice, the horizontal intensity profile (slice profile) was

determined. For the purpose of slice emittance measurements, the RMS
widths of the slice profiles were calculated and averaged over typically 20

to 30 images at each setting of the quadrupole magnets. For a tomographic
reconstruction, average slice profiles were determined instead. Before av-

eraging, the individual slice profiles were shifted to obtain coincidence of
the slice centroid positions, thereby removing jitter of the horizontal bunch
position on the screen.

5.2 Screen calibration

Calibration of longitudinal distances

When a bunch passes the TDS at zero-crossing of the RF deflecting force,

the vertical distance Δy of two electrons at the screen downstream of the
structure depends linearly on their longitudinal distance Δζ according to

Δy = S ·Δζ with S the shear parameter (cf. Eq. 4.57). Owing to Δζ ≈ cΔt
and Δt = ΔΨ/ω with ω the angular frequency of the TDS, Δy is also a

linear function of the corresponding time difference Δt and the difference in
RF phase of the TDS ΔΨ. The proportionality constants can be measured
by varying the phase of the TDS around the zero-crossing phase while

measuring the vertical position of the beam on the screen (see Fig. 5.3(a)).

When the shear parameter is large, small fluctuations of the RF phase

from bunch to bunch result in fluctuations of the vertical beam position



5.2. Screen calibration 91

on the screen which are significant compared to the height of the screen.
Such fluctuations may be both due to variations of the bunch arrival time

and timing jitter of the RF signal. The total position jitter is typically
in the order of 0.2 mm·S (RMS), where S is the shear parameter. The

shear parameter at maximum input power of the TDS (about 18 MW) and
500 MeV beam energy amounts to S ≈ 35, which results in position jitter
of about 7 mm. In case of the screen OTR-2 (cf. Fig. 4.8), the height of

the camera window amounts to 15.5 mm, so an accurate calibration is not
possible at shear parameters this large. For this reason, a beam position

monitor (BPM) placed directly (about 3 m) downstream of the TDS was
used for calibration measurements at large shear parameters instead. Since

the vertical beam offset at the position of the BPM is much smaller than
at the position of the screen, it allows a measurement over a wider range

of the RF phase, thus improving the signal-to-noise ratio. The calibration
constant at the screen is then given by the measured calibration constant at
the BPM times a constant which depends on the vertical transfer matrices

from the TDS to the screen and to the BPM. Although the precision of
a calibration measurement can be improved in this way, a calibration at

large input power is in general clearly less precise than at low input power.

Calibration of charge density

The input power of the TDS was typically chosen such that the vertical
extension of the beam at the position of the screen was slightly smaller
than the height of the camera window. Since almost all electrons of a

bunch are deflected onto the screen in this case, the charge density scale
on a CCD-image can be calibrated by equating the integrated intensity of

the image with the measured bunch charge.

Energy calibration

The current I0 of the dipole upstream of the undulator section (dipole D1,
cf. Fig. 4.8) is adjusted to bend the beam with nominal momentum p0 by

an angle α0. The current is determined by the relation

α0 =
−eB0Lmag

p0
≈ −eLmagI0

p0
· 0.0029

T

A
(5.1)

with e the elementary charge, B0 the peak magnetic field and Lmag the
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Figure 5.3: (a) Result of a calibration measurement yielding a relation between time
delays Δt and vertical distances Δy on a screen . The vertical beam offset Δy (with
respect to the center of the camera window) was measured at different RF phases of
the TDS around zero crossing of the deflecting force. The values of the RF phase were
chosen such that the bunch position significantly varies on the screen. 20 images were
recorded at each step. Measured mean position and corresponding standard deviation at
each step (red circles with error bars) were used to determine a regression line (black)
by means of a linear least squares method. The slope of the line yields the calibration
constant Δy/Δt. The measurement was performed using the screen OTR-2 (cf. Fig. 4.8).
(b) Result of a calibration measurement yielding the relative momentum deviation δ as a
function of the horizontal offset Δx on the screen OTR-3. The horizontal beam position
(red circles with error bars) was measured for different currents of the upstream dipole
magnet as explained in the text. The same procedure as in (a) was applied to determine
the calibration constant Dx. Δx = 0 refers to the center of the screen.

magnetic length of the magnet (cf. section 4.2.3). The deflection angle of a

particle with momentum p = p0 ·(1+δ) slightly deviating from the nominal
momentum differs from the design angle α0 by

x′ = α0 · p0

p0(1 + δ)
≈ −α0 · δ. (5.2)

On the screen OTR-3 (cf. Fig. 4.8) downstream of the dipole magnet this
angle leads to an offset

x = Mx
1,2 · x′ ≈ −Mx

1,2 · α0 · δ ≡ Dxδ, (5.3)

where Mx
1,2 is the element (1, 2) of the transfer matrix Mx from the position

of the dipole to the position of the screen, and Dx the horizontal dispersion

generated by the dipole at the position of the screen.
In order to calibrate the momentum deviation δ on the horizontal axis

of the screen, the dispersion Dx needs to be measured. From Eq. (5.2) and
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Eq. (5.1) follows that a change in momentum by a factor (1 + δ) yields for
δ � 1 the same angle x′ as a change of the current by a factor (1 − δ).

The calibration constant Dx can thus be determined by measuring the
horizontal beam position on the screen as a function of the dipole current

(see Fig. 5.3 (b)). Equivalently, the beam position can be measured as a
function of the beam energy. Since a change in current can be quantified
more precisely than a change in beam energy, the first approach was taken.

In order to optimize the energy resolution, the focal strengths of the two
quadrupole magnets in-between the dipole and the screen were adjusted

to maximize the dispersion Dx. Values in the range of Dx = 250 mm to
Dx = 290 mm were measured. The momentum resolution δresol (RMS) is

mainly determined by the horizontal beam size σx on the screen due to
betatron oscillations,

δresol ≈ σx

Dx
. (5.4)

For a typical beam size of 100 μm and a dispersion Dx = 290 mm, the

resolution amounts to δresol ≈ 3 · 10−4.

5.3 Details on slice emittance measurements

5.3.1 Optics

In order to be able to measure the slice emittance with good longitudinal

resolution, the accelerator optics has to fulfill several boundary conditions.
A good longitudinal resolution demands for a large vertical beta function at

the TDS, and an appropriate betatron phase advance from the TDS to the
screen, as discussed in section 4.2.5. In order to detect a large longitudinal

section of the beam within the height of the camera window, the vertical
beta function at the screen has to be small. The horizontal beam size

at the screen should be roughly in the range of 60 to 200 μm to allow
an accurate measurement of the beam size. Finally, the listed boundary
conditions have to be fulfilled for different focal strengths of the quadrupole

magnets, which have to be chosen such that the horizontal betatron phase
at the location of the screen is varied by up to 180◦ (cf. section 3.1.1). It

is advantageous to keep the focal strength of quadrupole magnets located
in-between the TDS and the screen fixed so the shear parameter at the

screen is the same for all the applied quadrupole settings.
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The program MAD [92] was used to determine an appropriate optics
fulfilling these boundary conditions. The optics is illustrated in Fig. 5.4.

It includes the variation of six quadrupole magnets upstream of the TDS
(Q-ACC4 to Q-ACC6) to obtain a sufficient change in horizontal betatron

phase at the screen. A total number of eleven different settings of the
magnets with stepwise increasing betatron phase φx at the screen OTR-
2 were designed. The betatron phase can be changed in finer steps by

interpolating the magnet currents of subsequent steps. The vertical beta
function between the TDS and the screen is nearly the same in all cases,

with values of about 47 m in the center of the TDS and roughly 10 m at
the screen. The vertical betatron phase advance between the TDS and the

screen is about 33◦. At a TDS input power of 18 MW (the largest input
power measured, cf. section 4.2.5) and a beam energy of 500 MeV, this

yields a shear parameter of S ≈ 35 at the screen. The horizontal beta
function at the screen is in the range of 7 to 12 m, which yields a beam
size of 120 μm to 160 μm at a beam energy of 500 MeV and a normalized

emittance of 2 μm.

In a typical slice emittance measurements, the betatron phase φx at the
screen was changed in 10 to 15 equidistant steps over an interval of 180◦.
At each step, 20 to 30 images were recorded and analyzed as described in
section 5.1.

Beam matching

In order to match the beam to the design optics, a standard emittance
measurement (based on a scan of a the focal strength of a single quadrupole
magnet) was performed using an OTR screen downstream of the second

bunch compressor (OTR-1, cf. Fig. 4.8). A simple matching algorithm has
been implemented which adjusts the currents of five quadrupole magnets

(Q-UBC3 and Q-DBC3, cf. Fig. 4.8) such that the mismatch parameter
between the design optics and ellipse parameters of the bunch is minimized

downstream of module ACC4.

In practice, matching the beam turned out to be problematic. The main
reason is that changing the currents of quadrupole magnets upstream of

the second bunch compressor may imply unwanted changes of the beam
dynamics, which is especially the case for measurements under FEL oper-

ating conditions. Furthermore, the matching process was time-consuming
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Figure 5.4: Optics for slice emittance measurements. From top to bottom: schematic
of the beamline in the region around the TDS, vertical beta function βy and horizontal
beta function βx along the beamline for three different settings of the quadrupole magnets
Q-ACC4 to Q-ACC6, and difference Δφx in horizontal betatron phase at the screen OTR-
2 between the different magnet settings. The numbers in the bottom plot refer to the
presented betatron functions.

since the optics and the orbit had to be adjusted empirically for the emit-
tance measurement at OTR-1. However, the optics presented above does
not rely on a perfectly matched beam and thus allows accurate measure-

ments also without a matched beam, as will be discussed in more detail in
section 5.3.2.

Orbit feedback

When switching between the settings of the quadrupole magnets Q-ACC4
to Q-ACC6, beam orbit offsets at the positions of these magnets lead to

variations of the beam orbit and correspondingly of the beam position on
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the screen. To minimize these steering effects of the quadrupole magnets,
the steering magnets located directly downstream of the quadrupole mag-

nets were adjusted automatically to compensate changes of the transverse
offsets measured at BPMs.

Adjustment of camera settings

The transverse width and structure of the beam at the screen changes
during a slice emittance measurement due to the variation of the accelerator

optics. In order to benefit from the maximum dynamic range of the camera,
the camera gain was adjusted automatically to the peak radiation intensity

at each step of the measurement.

5.3.2 Error analysis

In this section, the influence of several error sources on an emittance
measurement is elaborated. The discussion refers to the accelerator op-

tics discussed in the previous section with eleven different settings of the
quadrupole magnets changing the horizontal betatron phase at the screen

by 180◦ in equidistant steps.

Statistical errors

The CCD images recorded during a measurement are subject to distortions

such as noise in the camera and spurious intensities in the image, which
give rise to statistical errors of the measured beam size (cf. section 5.1).

Typically, the standard deviation of the beam size extracted from several
images is 10 to 20 %. For a total number of 20 images for each setting of

the quadrupole magnets, the standard deviation of the mean value is thus
less than 5 %. The resulting statistical error of the emittance depends on

the applied optics as well as the mismatch of the beam (cf. section 2.3)
with respect to the optics. Figure 5.5 shows the emittance error σεx

as
obtained from a simulation assuming beam sizes with a random error of

5 % (RMS) and different values for the mismatch parameter M and the
mismatch phase Ψ of the beam. For fixed mismatch parameter M , σεx

shows a periodic dependence on the mismatch phase Ψ with a periodicity of
180◦ (Fig. 5.5(a)). The maximum error increases with increasing mismatch

parameter M (Fig. 5.5(b)). The maximum mismatch parameter M (with
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Figure 5.5: Dependence of the statistical error σεx of the emittance on the mismatch of
the beam with respect to the design optics (simulation). Figure (a) shows the relative
emittance error σεx/εx as a function of the mismatch phase Ψ for fixed mismatch parameter
M = 5 over one period of 180◦. The error was calculated by error propagation (cf.
section 3.1.1) assuming a Gaussian error of the beam size with a standard deviation of
5 %. In Fig. (b), the maximum error over one period of the mismatch phase is shown as
a function of the mismatch parameter M .

respect to the overall beam ellipse parameters) encountered in case of the
measurements presented in this thesis amounts to M = 3.2. The statistical

error of the emittance is less than 5 % in this case. For individual slices
the error may be larger due to a larger mismatch parameter.

Resolution errors

The spatial resolution of the OTR station used for slice emittance measure-
ments was determined to be in the range of 14 μm to 26 μm, depending on

horizontal beam position on the screen (cf. section 4.2.2). The influence of
resolution limitations on an emittance measurement depends on the beam

size at the position of the screen, which is determined by the optics, the
mismatch of the beam with respect to this optics, the beam emittance and

the beam energy. The resolution-limited beam size is given by

σx =
√

σ2
x,0 + σ2

resol (5.5)

with σresol the RMS resolution and σx,0 the true beam size. Figure 5.6(a)

shows the relative deviation εrec/εx of the reconstructed emittance εrec from
the beam emittance εx resulting from a resolution of 14 μm (RMS) as a

function of the mismatch parameter M for different values of the nor-
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Figure 5.6: Influence of resolution limitations of the OTR station OTR-2 on emittance
measurements. In (a), the relative deviation εrec/εx of the reconstructed emittance εrec

from the beam emittance εx resulting from a resolution of σresol = 14 μm is shown as
a function of the mismatch parameter M . Results for different values of the normalized
beam emittance of 1 μm, 2 μm and 4 μm are presented. A beam energy of 500 MeV was
used for the calculations. Similar as in Fig. 5.5, the deviation εrec/εx(M) is defined as
the maximum value obtained over an interval of the mismatch phase Ψ of 180◦ at fixed
mismatch parameter M . The corresponding result in case of a resolution of σresol = 26 μm
is shown in (b).

malized beam emittance of 1 μm, 2 μm and 4 μm. A beam energy of
500 MeV was used for the calculations. A significant influence on the
resulting emittance is seen in case of a large mismatch parameter and a

small beam emittance. The reconstructed emittance is larger by up to
20 % in case of a mismatch parameter M = 10 and an emittance of 1 μm.

In Fig. 5.6(b), the corresponding result is shown for a resolution of 26 μm.
Here, a significantly stronger effect on the emittance is observed. While

for moderate mismatch parameters of M � 3 the emittance error is less
than 25 %, errors of up to 60 % are encountered at a mismatch of M = 10
and an emittance of 1 μm. In case of the results presented in this thesis,

the mismatch parameter between the overall ellipse parameters and the
design Twiss parameters was found to be M � 3.2, while the normalized

emittance was measured to be � 2 μm. The error resulting from resolution
limitations is thus � 10 %.

Influence of the kicker

In case the beam has a non-vanishing standard deviation σE of the beam

energy, the deflection by the kicker induces an angular spread σx′. Ac-
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cording to the results obtained in section 5.2 (Eq. (5.6)), this results in a
horizontal position spread σx on the screen given by

σx ≈ Mx
1,2 · α0 · σδ, (5.6)

where Mx is the horizontal transfer matrix from the kicker to the screen,

α0 the nominal deflection angle, and σδ = σE/E0 with E0 the nominal
energy. The term Mx

1,2 · α0 ≡ Dx yields the nominal offset from the beam
axis at the position of the screen (10 mm when the beam is centered on

the screen), and corresponds to the dispersion Dx generated by the kicker.
Since the kicker is located downstream of the quadrupole magnets Q-ACC4

to Q-ACC6 which are varied during an emittance measurement, Dx is
unaffected during such a measurement. The maximum relative energy

spread that was measured under FEL operating conditions amounts to
σδ ≈ 0.25 % (see chapter 7). This yields a position spread of σx ≈ 25 μm,

which is comparable to the upper limit of the resolution of the optical
system. In correspondence to Fig. 5.6, Fig. 5.7 shows the ratio εrec/εx of
the reconstructed emittance to beam emittance assuming a relative energy

spread σδ = 0.25 % and a resolution σresol = 26 μm. While without
mismatch the deviation of the reconstructed emittance is � 20 % also in

case of a small beam emittance of 1 μm, large deviations up to εrec/εx = 2
occur if the beam emittance is small and the mismatch large. However,

in case of the measurements presented in this thesis, the beam sections
with large energy spread were found to have an emittance of more than
4 μm and a moderate mismatch M � 4 with respect to the design optics.

The deviation of the reconstructed emittance from the beam emittance
is therefore < 15 % also in this case. The coincidence of a large energy

spread and a large emittance is related to the fact that the energy spread
is mainly generated by collective effects in high-density regions of a bunch,

which typically also lead to significant emittance growth.

Calibration errors

When the calibration constant of the screen specifying the horizontal dis-
tance per pixel of a CCD image is wrong by a factor Δ = (1 + d), the

measured beam size deviates from the true one by the same factor Δ. The
beam emittance εx is reconstructed from squared beam sizes σ2

x = εxβx,

which are wrong by a factor Δ2. Consequently, the emittance is also wrong
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Figure 5.7: Influence of the horizontal kicker on the reconstructed emittance. The ratio
of reconstructed emittance εrec to the beam emittance εx is shown as a function of the
mismatch parameter M for different values of the normalized beam emittance as indicated
in the figure. The relative energy spread used for the calculations is 0.25 % and the beam
energy 500 MeV. A resolution of the OTR station of 26 μm was assumed.

by a factor Δ2. For small relative errors d � 1 of the calibration constant,
the relative error of the emittance thus amounts to Δ2 − 1 ≈ 2 · d.

The calibration constant of the screen OTR-2 used for emittance mea-
surements was found to be 27 ± 0.6 μm per pixel, with a relative error
of about 2 % (RMS). Hence, the resulting error of the beam emittance

amounts to about 4 %.

Erroneous beam transfer

The reconstruction of the beam emittance is based on the equation

Σ ≈ R · o, (5.7)

which is an abbreviation for⎛
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Figure 5.8: Typical result of a comparison of the reconstructed beam sizes σx (black) to
the measured ones (red circles with error bars). The “step number” indicates the different
settings of the quadrupole magnets. The RMS deviation S∗ as defined in the text amounts
to 3 % in this case.

where σ
(i)
1,1 is the squared beam size measured at setting (i) of the quadrupole

magnets, M (i) is the corresponding transfer matrix from the reconstruction
point s0 to the screen, and σ1,1(s0), σ1,2(s0), σ2,2(s0) denote the elements of

the beam matrix σ(s0) at s0 (cf. Eq.(3.1) in section 3.1.1). Up to now,
only errors of the squared beam sizes in the vector Σ have been consid-

ered. However, also the description of the beam transfer by the matrix R
may be inaccurate due to an energy error or an erroneous calibration of

quadrupole magnets. An important quantity in this context is (for overde-
termined systems with n > 3) the residual vector

r = R · o − Σ

describing the difference between the “reconstructed” squared beam sizes
R · o and the measured ones Σ (see Fig. 5.8). The solution of equation
(5.7) is found by minimizing the sum S = rT r of the elements of r squared,

optionally weighted by measurement errors (cf. section 3.1.1). The quantity
S describes the accuracy of the reconstruction. In case of an accurate

measurement of the vector Σ, S is a measure for the accuracy of the matrix
R.

Calibration errors of the quadrupole magnets appear to be critical at
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first glance in case of the optics applied for emittance measurements, since
the matrix R relies on the correct calibration of seven quadrupole magnets.

The effect of calibration errors was investigated by randomly varying the
calibration constants of the quadrupole magnets before reconstructing the

emittance from experimental data. The calibration accuracy was estimated
to be about 1 %, see section 4.2.3. Here, a flat top error distribution with
maximum deviations of each calibration constant from its nominal value of

2 % was assumed. A typical distribution of the emittance resulting from
such a simulation is presented in Fig. 5.9(a). For most combinations of

calibration errors, the deviation of the emittance from its measured value
is < 2 %. However, there is a long tail in the distribution with deviations

up to nearly −10 %.
It is instructive to determine the deviation S between measured and

reconstructed bunch widths for each combination of calibration constants.
The corresponding result is presented in Fig. 5.9(b). For illustration pur-

poses, the deviation Δσ
(i)
x between measured widths σ

(i)
x and reconstructed

bunch widths is specified more intuitively as the RMS value of their relative
deviation:

S∗ =

√√√√ 1

N

N∑
i=1

(
Δσ

(i)
x

σ
(i)
x

)2

. (5.8)

The figure reveals a correlation between the reconstruction accuracy S∗

and Δεx/εx. In particular, combinations of calibration constants which
lead to a significant deviation of the emittance from the measured value

lead to large values of S∗ as well, and can therefore be excluded.
The result of such a Monte Carlo simulation depends on the detailed

measurement condition, in particular on the mismatch of the beam with
respect to the design optics. The strong correlation between the reconstruc-

tion accuracy and the emittance error was observed in all measurements.
In case of the presented measurements, the effect from calibration errors
of quadrupole magnets on the reconstructed emittance can therefore safely

be assumed to be < 5 % (RMS).
Aside from calibration errors of quadrupole magnets, the description of

the beam transfer can be wrong because of a deviation of the beam energy
from the energy assumed for the reconstruction. Such energy errors affect

also the “normalization” of the emittance by multiplication of the geomet-
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Figure 5.9: Result of an emittance reconstruction from experimental data with random
calibration errors of all the seven quadrupole magnets involved. (a) Distribution of the
resulting emittance error Δεx/εx. (b) Correlation between the emittance error and the
reconstruction error S∗. A flat top error distribution with maximum deviations of the
magnetic field gradient of 2 % was assumed. A total number of 2000 runs were carried
out.

rical emittance with γr. The influence of energy errors was checked for

each measurement by determining the normalized emittance as a function
of the energy in an interval of a few percent around the measured value.

A typical result is presented in Fig. 5.10(a). The reconstructed normalized
emittance varies by about ±5 % for an energy deviation of ±2 %. Larger

deviations of up to −20 % occur for an energy deviation of −5 %.

Similar as in case of calibration errors of quadrupole magnets, it is in-
structive to look at the reconstruction error S∗. Figure 5.10(b) shows that
large deviations of the energy from the measured value are accompanied by

large reconstruction errors S∗ and can therefore be excluded. Furthermore,
the figure reveals that the reconstruction error exhibits a minimum close

to the measured energy. This characteristic of the reconstruction error as
a function of the energy was utilized to check the accuracy of the mea-

sured energy in each experiment. The measured energy was occasionally
corrected by up to 2 %. The remaining energy error is assumed to be less
than 1 %, and the resulting error of the normalized emittance correspond-

ingly in the order of a few percent.

In case of off-crest operation, there is an energy gradient along a bunch,
with variations of the mean energy as a function of the longitudinal po-

sition of up to 0.5 % (see chapter 7). In principle, this gradient could be
determined by minimizing the reconstruction error S∗ for individual lon-

gitudinal sections of the bunches. The resulting energy variations along
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Figure 5.10: (a) Sensitivity of the reconstructed normalized emittance γrεx on relative en-
ergy deviations ΔE/E. Experimental data were used for the reconstruction. E denotes
the measured energy. For simplicity, the energies upstream and downstream of the accel-
erating module ACC5 were varied by the same factor. (b) Corresponding Reconstruction
error S∗ as a function of the relative energy deviation ΔE/E.

a bunch could be included in the reconstruction. This was, however, not

done in case of the presented measurements since the energy deviations
along a bunch are still within the energy uncertainty.

Discussion

In order to estimate the emittance accuracy, the variances (σ
(i)
ε )2 due to

the individual error sources have to be added to obtain the overall RMS
error Δε according to

Δε =

√√√√ n∑
i=1

(σ
(i)
ε )2. (5.9)

As shown in the previous section, the effect of statistical beam size errors
and resolution limitations on the reconstructed emittance depends on beam

parameters such as the beam energy, the beam emittance, the mismatch
with respect to the design optics, and the standard deviation of the particle
energy within a bunch. For typical bunch properties at FLASH (γrεx �
2 μm, σδ � 0.25 %, M � 6) and a beam energy of 500 MeV the overall
emittance error is estimated to be � 20 %. Larger errors may occur for

individual slices with a large mismatch parameter M .



Chapter 6

Results for uncompressed bunches

The beam dynamics in the linear accelerator of FLASH is well described
by linear transport theory when all accelerating modules are operated on-

crest. In this case the standard deviation of the particle energy is minimal,
and the bunches are hardly compressed in the magnetic chicanes. Collec-

tive effects such as coherent synchrotron radiation and space charge forces
are therefore greatly reduced. These conditions are suited to test the exper-
imental methods. Moreover, initial properties of the particle distribution

downstream of the RF gun can be investigated, in particular the bunch
length and the slice emittance. Finally, since the bunches are much longer

than in case of off-crest acceleration, time-dependent effects such as wake
fields are more pronounced and can be investigated.

6.1 Current profile

A typical current profile of an uncompressed bunch is shown in Fig. 6.1
(black curve). The measurement was performed at a particle energy of

490 MeV and a bunch charge of 0.6 nC. The measured peak current
amounts to about 40 A. The RMS length is 1.5 mm. The total length over

which a current was detected is approximately 7 mm. The profile shows
a significant asymmetry with respect to the bunch center. The asymme-

try originates from a longitudinal energy gradient in both shoulders of a
bunch, where particles are accelerated off-crest (see next section). The en-

ergy gradient results in an elongation (decompression) of the trailing edge
and a shortening (compression) of the leading edge.

In order to suppress bunch compression effects, the current profile was

measured with the dipole magnets of the bunch compressor chicanes switched

105
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Figure 6.1: Measured current as a function of the internal coordinate ζ . The black curve
shows the average current profile of a bunch obtained at nominal operation of the bunch
compressor chicanes (“BCs on”). The accelerator was operated at a particle energy of
490 MeV and a bunch charge of 0.6 nC. The profile is an average over 25 bunches. The
green curve shows a corresponding current profile obtained with the dipole magnets of the
bunch compressor chicanes switched off (“BCs off”). Here, the accelerator was operated
at a particle energy of 650 MeV and a bunch charge of 1.0 nC. The longitudinal RMS
resolution of the measurements is roughly 130 μm in both cases. The bunch head is on
the right hand side. The internal bunch coordinates of the two profiles were shifted to
obtain coincidence at the front.

off. The orbit was adapted by steering magnets to let the particles on a
straight line through the bunch compressor sections. The current profile

measured under these conditions is also shown in Fig. 6.1. The measure-
ment was performed at a particle energy of 650 MeV and a bunch charge

of 1 nC. The current profile is approximately Gaussian-shaped. In partic-
ular, the profile is roughly symmetric with respect to the bunch center, in
contrast to the result obtained with the bunch compressors switched on.

The measured peak current amounts to about 75 A. It is significantly larger
than in case of the measurement at 490 MeV due to a higher bunch charge.

The RMS length is 1.6 mm. The total length over which a non-vanishing
current was measured is 7.5 mm.
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6.2 Longitudinal phase space

The CCD-image presented in Fig. 6.2(a) shows a single-shot measure-
ment of the energy-dispersed charge density distribution on an OTR screen
(OTR-3 in Fig. 4.8). The image is rotated so the vertical coordinate de-

pends on the energy and the horizontal coordinate on the longitudinal
position by means of the TDS. The relative energy deviation

δ =
E − E0

E0
(6.1)

with E the particle energy and E0 = 〈E〉 the mean particle energy of
the bunch is introduced on the vertical axis. The measurement was per-

formed with both bunch compressors switched off. The distribution shows
the curvature of the RF accelerating fields imprinted on the bunch. The

bunch center was accelerated on-crest and gained the most energy, while
the particles in both edges were accelerated off-crest. The energy-gradient

induced in the edges leads to a change in their length in case the bunch
compressors are switched on, as discussed in the previous section.

The measured standard deviation of the particle energy within a bunch

is 0.09 % or 585 keV (average value over 30 bunches). The standard devi-
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Figure 6.2: (a) Single-shot measurement of the charge density distribution in longitudinal
phase space (ζ, δ) (for color code see appendix A). The measurement was performed at
an energy of 650 MeV and a bunch charge of 1 nC. The bunch compressors were switched
off. The dispersion at the screen was measured to be 290 mm. The longitudinal resolution
is estimated to be about 130 μm. The bunch head is on the right hand side. (b) Average
measured RMS energy spread σδ as a function of longitudinal position ζ . The values are
averaged over 30 bunches.
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ation of the particle energy σδ(ζ) as a function of the internal bunch co-
ordinate ζ (energy spread) is shown in Fig. 6.2(b). The minimum energy

spread measured in the center of the bunch is about 0.023 % or 150 keV.
The values are resolution-limited. The energy spread in the injector sec-

tion was measured to be less than 25 keV [42], and simulations suggest that
the true energy spread is even smaller. The measured values thus provide
an estimate for the energy resolution. The measured energy spread of

150 keV in the bunch center corresponds to a transverse bunch width of
67 μm (RMS).

6.3 Horizontal slice emittance and slice ellipse pa-

rameters

A measurement of the slice emittance of uncompressed bunches was per-

formed at an energy of 490 MeV and a bunch charge of 0.6 nC. The result
is presented in Fig. 6.3. The measured slice emittance is in the range of

1.5 to 4 μm. The largest values are found in the front section and the
back section of a bunch. The slice emittance in the bunch center is below

2.5 μm, with a local maximum occurring at ζ ≈ −2 mm. The variation
in slice emittance basically coincides with the variation in horizontal slice
width observed in the measured CCD images (see figure). The accelerator

settings (in particular the current of the solenoid) were not adjusted to
minimize the emittance.

Aside from the slice emittance, the ellipse parameters of the RMS el-
lipse in horizontal phase space were determined for each longitudinal slice.

RMS ellipse parameters are not intrinsic properties of a bunch, but de-
pend on the optics and thus vary along the beamline. These variations can

be suppressed by “normalizing” the slice ellipse parameters with respect
to reference ellipse parameters. Here, the overall bunch ellipse parame-

ters were chosen. The deviation from the reference ellipse parameters can
be described by a deformation parameter m and a deformation phase ψ,

which are defined in analogy to mismatch parameter and mismatch phase
of particle beam optics. A precise definition can be found in section 2.3.
Neglecting energy variations along a bunch, deformation parameter and

deformation phase are invariants of linear beam optics.

A deformation parameter m close to one was measured in the bunch
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Figure 6.3: Experimental results for bunches accelerated on-crest in all acceleration mod-
ules. From top to bottom: Average current profile (cf. Fig. 6.1), typical CCD-image
showing the charge density distribution in the longitudinal-horizontal plane, normalized
slice emittance γrεx, slice deformation parameter m, and deformation phase ψ. The head
of the bunch is on the right hand side. The measurements were performed at a particle
energy of 490 MeV and a bunch charge of 0.6 nC. The bunch compressors were switched
on. The longitudinal resolution was estimated to be 125 μm (RMS). The slice width Δζ
was chosen to be 150 μm. Statistical errors of slice emittance and deformation parameters
are not shown for reasons of clarity. They are in the order of a few percent.

center between ζ = −1 mm and ζ = −3.5 mm (see Fig. 6.3), indicating
that the slice ellipse parameters nearly coincide with the overall bunch

ellipse parameters. The deformation phase ψ rapidly changes in this bunch
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section. This is of no significance, since for m � 1 the variations in ψ
correspond to small variations of the underlying slice ellipse parameters.

In the front section and the back section of a bunch, the deformation
parameter increases to m > 5. At the same time, the deformation phase

changes gradually between −60◦ and −20◦. The shape of the distributions
in phase space is illustrated in the next section.

The increase in deformation parameter and slice emittance in the front
and the rear section of a bunch is a well-known effect resulting from ζ-
dependent transverse space charge forces and the solenoid focusing in the

electron gun [93] (cf. section 4.1.2). The field of the solenoid is adjusted
to compensate transverse space charge forces in the bunch center. Since

the charge density and correspondingly the transverse space charge force
is significantly smaller in the front and the rear section of a bunch, the

particles partly diverge due to “over-focusing” in the solenoid. The diver-
gence of a part of the beam corresponds to a bifurcation in transverse phase

space and thus leads to emittance growth. The gradual variation in slice
emittance in the bunch center is assumed to be caused by transverse space
charge forces changing along the bunch according to the charge density.

The mean value of the slice emittance shown in Fig 6.3 (weighted by
the current) amounts to 2.1 μm. The overall bunch emittance was mea-

sured 1 to be 3.8 μm. The deviation between the two values is due to
slice deformation parameters m > 1 on the one hand, and mean particle

coordinates 〈x〉, 〈x′〉 varying as a function of ζ (slice centroid offsets) on
the other hand. Slice centroid offsets can be observed in the CCD-image

in Fig. 6.3 in the form of a bunch tilt: The mean particle position 〈x〉(ζ)
is about 100 μm in the front section of the bunch, while in the back sec-

tion it amounts to about −100 μm. The overall bunch emittance without
contributions from slice centroid offsets can be determined by calculating
the mean horizontal slice width (weighted by the current) for each CCD-

image. The bunch emittance determined in this way amounts to 2.5 μm.
The remaining difference to the mean slice emittance of 2.1 μm is due to

slice deformation parameters m > 1. Centroid offsets thus strongly con-
tribute to the overall bunch emittance. Such offsets can be caused by wake

1The TDS (transverse deflecting structure) was switched off for a measurement of the
overall bunch emittance. In case the TDS is switched on, the large vertical beam size
on the screen makes the measurement sensitive to a roll angle of the camera (see also
section 6.5).
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fields in the accelerating modules. As a consequence, the overall bunch
emittance may significantly change along the linac. Here, an emittance of

4.3 μm was measured in the diagnostic section downstream of the second
bunch compressor.

Measurements of the slice emittance of uncompressed bunches were per-
formed several times at different energies and bunch charges. In most cases,

the resulting slice emittance was larger than in case of the presented result,
with values of up to 5 μm in the bunch center. An enhanced slice emittance
was found to be associated with a significant asymmetry in the horizon-

tal charge density profiles of single longitudinal slices. Such asymmetries
are an indication for a true increase in emittance due to a distortion, e.g.

strong transverse wake fields. In case of the presented measurement, the
profiles are Gaussian-shaped in good approximation.

6.4 Horizontal phase space

The experimental data used for determining the slice emittance shown

in the previous section allow also for a tomographic reconstruction of the
horizontal phase space distribution within longitudinal slices. The accuracy
of the reconstruction can be checked by comparing the emittance resulting

from the reconstructed distributions to the result of the slice emittance
measurement using a least squares method. Such a comparison is presented

in Fig. 6.4. In the bunch center, both slice emittance profiles agree within
about 15 %, showing that the phase space reconstruction is accurate. In

the front section, larger deviations occur due to an inferior signal-to-noise
ratio. The least squares method is considered to be more reliable here.

The measured horizontal phase space distributions within the leading
edge, the center and the trailing edge of a bunch are shown in Fig. 6.5.

In the bunch center at ζ = −3 mm (Fig. 6.5(a)), the distribution is ap-
proximately Gaussian-shaped. The emittance of the distribution is about
2 μm. A two-dimensional Gaussian fit yields an emittance of 1.6 μm (for

details see section 7.6.1). At ζ = 0 mm and ζ = −6 mm (Fig. 6.5(b, c)),
the distributions have a different shape due to large deformation parame-

ters of m ≈ 4 in these sections (cf. Fig. 6.3) . The measured distributions
are not as smooth as in the bunch center due to an inferior signal-to-noise

ratio. The phase space distribution of an entire bunch (Fig. 6.5(d)) covers
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Figure 6.4: Comparison of the slice emittance obtained by a least squares method (black,
dashed) and a tomographic reconstruction (green, solid). The same subdivision in longi-
tudinal slices was used. The measurement was performed at a particle energy of 490 MeV
and a bunch charge of 0.6 nC (see also Fig. 6.3).

a significantly larger phase space region, both due to slice deformation pa-

rameters m > 1 and slice centroid offsets. The distribution deviates from
a Gaussian shape due to these effects.

In Fig. 6.6, the same distributions presented in Fig. 6.5 are shown in
normalized coordinates

u =
x√
βe

(6.2)

v =
αe√
βe

· x +
√

βe · x′ (6.3)

with respect to the overall bunch ellipse parameters (βe, αe)
2. In the

bunch center (Fig. 6.6(a)), the iso-density contours are nearly circular in

agreement with a measured deformation parameter m ≈ 1. At ζ = 0 mm
and ζ = −6 mm (Fig. 6.6(b, c)) , an elliptical shape is found with m ≈ 4.

The major axis of the RMS ellipse of the distributions has an angle of
ψ ≈ −25◦ with respect to the u−axis at ζ = 0 mm, and of ψ ≈ −40◦ at

ζ = −6 mm. The RMS ellipse of the overall bunch distribution (Fig. 6.6(d))
has circular shape per construction.

2Since the measured distributions are given in the form of digital images and not as
particle distributions, a transformation can not be directly performed. Here, a distribu-
tion was generated by randomly “filling” the area of each pixel with a number of particles
proportional to the pixel-intensity. The distributions can then be transformed to normal-
ized coordinates and digital images be generated from the resulting distributions. The
results were checked by comparing the emittance.
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Figure 6.5: Reconstructed charge density distributions in horizontal phase space in the
center (a), the leading edge (b), and the trailing edge of a bunch (c). The exact longitudi-
nal positions are indicated in the images. Image (d) shows the corresponding distribution
of an entire bunch.

6.5 Horizontal slice centroid offsets

As mentioned in section 6.3, slice centroid offsets were regularly observed in

the form of a beam tilt on the screen. Owing to the shearing induced by the
TDS, the mean horizontal particle position 〈x(ζ)〉 of a tilted beam on the
screen is both a function of the longitudinal coordinate ζ and the vertical

coordinate y on the screen. The observed offsets may therefore originate
from sources inducing a correlation 〈xζ〉, as well as from sources inducing

a correlation 〈xy〉. Correspondingly, an offset Δx(ζ) = 〈x(ζ)〉 − 〈x(ζ0)〉 at
the longitudinal position ζ with respect to the reference point ζ0 = 0 can

be decomposed into a ζ-correlated contribution Δxζ(ζ) and a y−correlated
contribution Δxy(ζ):

Δx(ζ) = Δxζ(ζ) + Δxy(ζ). (6.4)

ζ− and y−correlated offsets can be distinguished by comparing mea-

surements with opposite deflection in the TDS (180◦ difference in RF phase
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Figure 6.6: Representation of the horizontal phase space distributions shown in Fig. 6.5 in
normalized coordinates (u, v). The coordinates are multiplied by

√
γr so a circular RMS

ellipse with radius r corresponds to a normalized emittance of r2[μm].

of the TDS). While the ζ-correlated contribution Δxζ(ζ) does not change
under such a “phase-flip”, the y-correlated contribution Δxy(ζ) does. As-

suming a linear relation

Δxy(ζ) ∝ S · ζ, (6.5)

where S is the shear parameter induced by the TDS (vertical deflection Δy
per length Δζ, compare section 4.2.5), a phase-flip leads to an inversion

of the sign of Δxy(ζ). Thus, by comparing offsets Δx(+)(ζ) and Δx(−)(ζ)
obtained with opposite deflection in the TDS, the y- and the ζ-correlated

contribution can be separated:

Δxy(ζ) =
1

2

(
Δx(+)(ζ) − Δx(−)(ζ)

)
Δxζ(ζ) =

1

2

(
Δx(+)(ζ) + Δx−(ζ)

)
.

A typical result of such a comparison is shown in Fig.6.7(a). The y-
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correlated part is linear in very good approximation, with an angle

Θxy =
Δxy(ζ)

S · (ζ − ζ0)
≈ 20 mrad (6.6)

with respect to the y-axis. In case of the ζ-correlated part, a gradually
increasing slope is observed towards the trailing end of the bunch.

y-correlated offsets are a consequence of an imprecise experimental setup.
They may arise from a roll angle of the TDS, camera or quadrupole magnet

downstream of the TDS about the longitudinal axis. Additional measure-
ments (such as a scan of the vertical beam position on the OTR screen by
means of a vertical steerer magnet downstream of the TDS) suggest that

the largest contribution to the observed tilt comes from a roll angle of the
camera of about 17 mrad ≈ 1◦. Negligible roll angles are expected for the

quadrupole magnet (< 0.1 mrad [80]) and the TDS (� 1◦). A roll angle
of the camera leads to the linear relation (6.5) as assumed above.

The ζ-correlated part in Fig. 6.7(a) has a shape that is familiar from
transverse wake field effects in RF structures (cf. appendix B). Further-
more, misalignments of components of the RF gun, time-dependent trans-

verse fields in the RF modules (e.g. in front of the RF input couplers which
induce field asymmetries) and the passage of an RF cavities with an angle

〈x′〉 may contribute. Coherent emission of synchrotron radiation within
the bunch compressor chicanes, which is the dominating source for slice

centroid offsets in case of compressed bunches, is not expected to play a
role here.

In order to pinpoint sources of ζ-correlated offsets, measurements were
performed at different focal strengths of selected quadrupole magnets. In
case spatial slice centroid offsets are present at the position of a quadrupole

magnet, the spatial offsets downstream of the magnet are a function of its
focal strength. A measurement of the spatial offsets at different currents

Ii of the quadrupole magnet allows then to determine the centroid curve
(Δx(ζ), Δx′(ζ)) upstream of the quadrupole by means of a least squares

method (for details see section 7.5). In contrast, offsets generated down-
stream of the quadrupole magnet do not depend on the focal strength of

the quadrupole 3. The observation of varying centroid offsets during such
a scan which can be explained reasonably well by offsets at the position of

3In case the beam traverses the quadrupole magnet off-axis so the beam orbit depends
on the focal strength of the magnet, centroid offsets may be affected indirectly.
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Figure 6.7: (a) Typical slice centroid curves Δx(ζ) of uncompressed bunches measured
on the screen and reconstructed contributions from y− and ζ-correlated offsets. Δx(+)

and Δx(−) were measured with opposite deflection in the TDS. Δxy and Δxζ denote
the reconstructed y− and ζ-correlated offsets, see text for details. The bunch head is
on the right hand side. (b) ζ-correlated offsets measured at different focal strengths of
the quadrupole directly upstream of the TDS. The betatron phase advance between the
quadrupole and the screen was changed by roughly 180◦ between the red and the blue
curve.

the quadrupole are thus a strong indication for a source located upstream

of the magnet.
Centroid curves 〈x(ζ)〉 measured at different currents of the quadrupole

magnet directly upstream of the TDS are presented in Fig. 6.7(b). They

show a strong dependence on the focal strength of the quadrupole mag-
net, which can basically be explained by initial offsets at the position of

the magnet. The observed centroid offsets are thus mainly generated up-
stream of the TDS, and therefore in particular not caused by the RF field

of the TDS. However, in case the beam passes the TDS with large hori-
zontal offsets of several millimeters, additional deflections may occur due
to transverse wake fields within the TDS. Corresponding calculations are

presented in appendix B. The alignment of the structure was checked by
scanning its aperture with appropriate steering magnets and found to be

accurate within ±1 mm.
Similar investigations using different quadrupole magnets located fur-

ther upstream have not been conclusive. The offsets are assumed to be
the result of various contributions along the linac as listed above. The

observed shape of the centroid curves suggest that transverse wake fields
play a dominant role.



Chapter 7

Results under FEL operating
conditions

In this chapter, experimental results obtained under FEL operating con-
ditions of FLASH are presented. In contrast to the results presented in

the previous chapter, the bunches were accelerated off-crest and longitu-
dinally compressed in the magnetic chicanes. The beam dynamics under

these conditions is much more complicated, since the compression process
is accompanied by collective effects such as the coherent emission of syn-
chrotron radiation and space charge forces. The electrons which contribute

to the SASE process, the lasing fraction of a bunch, is of particular im-
portance. Although the lasing fraction comprises only about 15% of the

total bunch charge, measurements with the transverse deflecting structure
(TDS), in particular in combination with a tomographic reconstruction,

allow to experimentally investigate important properties of this fraction
such as transverse emittance, current profile and energy spread.

7.1 Measurement conditions

Measurements were performed at particle energies of 494 MeV, 677 MeV
and 964 MeV. The energies correspond to fundamental wavelengths of the
FEL radiation of 27.0 nm, 13.7 nm and 6.8 nm, respectively. Energy and

fundamental wavelength were determined from a measurement of the radi-
ation spectrum at 677 MeV and 964 MeV, whereas an energy spectrometer

was used at 494 MeV (cf. section 4.1.7). The mean energy per FEL pulse
was in the region of 0.5 μJ (964 MeV) to 10 μJ (494 MeV). Saturation was

reached in none of the cases presented in this thesis.

117
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Table 7.1: Measurement conditions. The conditions are labeled by the identifier specified
in the first row.

Identifier C1 C2 C3
Date 27.01.07 21.08.06 09.10.07
Energy [MeV] 494 ± 5 677 ± 1 964 ± 1
Bunch charge [nC] 0.72 ± 0.02 0.50 ± 0.02 0.67 ± 0.02
Fundamental wavelength [nm] 27.0 ± 1 13.7 ± 0.1 6.8 ± 0.1
Mean energy per FEL pulse [μJ] 10 ± 2 5 ± 1 0.5 ± 0.2
ACC1 phase [deg.] −8.8 ± 1.0 −7.6 ± 1.0 −8.4 ± 1.0
ACC2,3 phase [deg.] −11.0 ± 1.0 −22.0 ± 1.0 0.0 ± 1.0

The SASE process depends critically on the RF phases of the supercon-
ducting modules ACC1 and ACC2/3. The RF phases were tuned in order

to initiate the SASE process and to obtain a high radiation pulse energy.
The RF phases of module ACC1 were −8.8◦ (494 MeV), −7.6◦ (677 MeV)
and −8.4◦ (964 MeV) with respect to the on-crest phase. For ACC2/3, RF

phases of −11◦, −22◦ and 0◦ were measured.

The accelerator was operated at a macropulse repetition rate of 5 Hz

with one bunch per macropulse in each case. The bunch charges were
0.72 nC (494 MeV), 0.5 nC (677 MeV) and 0.67 nC (964 MeV). The pa-

rameters are summarized in Table 7.1.

7.2 Current profile

The current profiles of individual bunches were measured using the off-axis

screen OTR-2 downstream of the TDS (cf. Fig. 4.8). The shear parameters
induced by the TDS (the ratio of the vertical extension of a bunch section

on the screen to its length, cf. section 4.2.5) were measured to be 25.1±1.6
(494 MeV), 16.7±1.0 (677 MeV) and 16.0±1.0 (964 MeV). A longitudinal

resolution of 9.0 μm, 8.1 μm, and 16.3 μm, respectively, was estimated
using the beam size measured with the TDS switched off 1.

Average current profiles

The average current profiles that were measured are shown in Fig. 7.1(a).

The profiles are characterized by a sharp spike at the head with a peak

1Throughout this chapter, resolutions are quoted in terms of RMS values.



7.2. Current profile 119

ζ [mm]

I
[k

A
]

494 MeV
677 MeV
964 MeV

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

ζ [mm]

I
[k

A
]

-0.2 -0.1 0 0.1 0.2

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

(a) (b)

Figure 7.1: (a): Average current profiles. The bunch head is on the right hand side.
Each profile is an average determined from 30 (494 MeV) to 100 (677 MeV and 964 MeV)
CCD-images. At 677 MeV and 964 MeV, the bunch head was measured with a higher
resolution than the tail. Both parts were merged at the same internal position ζ . The
internal bunch coordinate ζ is defined with respect to the half-maximum position of the
leading edge of the current spike. (b): Zoom into the front region of Fig. (a).

current of up to 1.9 kA, and a long trailing tail. The current spike results
from off-crest acceleration and longitudinal compression within the bunch

compressors (cf. section 4.1.4). The length of the tail differs significantly
between the results for different particle energies. The extension over which
a detectable charge density was recorded is less than 1 mm at 677 MeV,

and more than 3 mm in case of 964 MeV. The bunch length critically
depends on the RF phases of the modules ACC1 and ACC2/3. While the

RF phase of ACC1 is similar in all measurements, significant differences
occur in case of the RF phase of ACC2/3 (cf. Table 7.1). Strong off-crest

acceleration at −22◦ (677 MeV) results in short bunches, while on-crest
acceleration (964 MeV) leads to significantly longer bunches.

A zoom into the front region of the profiles is presented in Fig. 7.1(b).
The widths of the current spike amount to 33 μm (494 MeV), 23 μm

(677 MeV) and 29 μm (964 MeV). The peak currents are 1.5 kA, 1.9 kA and
0.9 kA, respectively. Peak current and spike width are resolution-limited
and thus to be interpreted as lower and upper bound, respectively. A charge

in the range of 0.07 nC (964 MeV) to 0.13 nC (494 MeV and 677 MeV) is
located within the region of the current spike (FWHM). A bunch fraction

with low current extending over nearly 200 μm can be observed in front of
the current spike in each profile. It is a typical indication for longitudinal

space charge forces upstream of BC3 [94](cf. section 8).
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Figure 7.2: (a): Average current profile at 677 MeV. The region of the current spike
(FWHM) is indicated by the colored area. (b): Histogram of the peak current distribution
of 100 subsequent bunches. (c) and (d): Corresponding histograms for the width of the
current spike (FWHM) and the charge contained within the current spike.

Shot-to-shot fluctuations

The current profiles fluctuate from bunch to bunch. Figure 7.2(b),(c) and

(d) show the distributions of peak current, width of the current spike,
and charge of the current spike, respectively, of 100 subsequent bunches at

677 MeV. The peak current has a mean value of 1.94 kA and a standard
deviation of ±0.14 kA (±7.2 %). The charge within the current spike

(FWHM) is 0.13 ± 0.01 nC (±7.7 %), and the width of the current spike
22.1± 2.7μm (±12.3 %). Fluctuations in the range of 5 % to 15 % are also
observed at 964 MeV and 494 MeV (Table 7.2). Variations of the bunch

profile from shot to shot are largely due to fluctuations of the RF phase
of the gun and module ACC1. The phase fluctuations typically amount to

0.06◦ (RMS) [95].



7.3. Longitudinal phase space 121

Table 7.2: Mean value and standard deviation of peak current, width of the current spike
and charge of the current spike of 100 subsequent bunches. The mean values of peak
current and spike width slightly deviate from those of the average profiles due to the
averaging procedure.

Measurement C1 C2 C3
Peak current [kA] 1.57 ± 0.14 1.94 ± 0.14 0.94 ± 0.04
Width (FWHM, [μm]) 30.4 ± 1.5 22.1 ± 2.7 27.9 ± 3.6
Charge [nC] 0.13 ± 0.01 0.13 ± 0.01 0.07 ± 0.01
Charge fraction [%] 18.1 ± 1.4 25.3 ± 1.5 10.4 ± 1.5

7.3 Longitudinal phase space

The charge density distribution of bunches in longitudinal phase space was

measured at 677 MeV using the screen OTR-3 (cf. Fig. 4.8) in the magnetic
chicane prior to the undulator section (cf. Fig. 4.8). The first dipole magnet
of the magnetic chicane disperses the beam horizontally as a function of

energy. Bunches were additionally “streaked” vertically by means of the
TDS. This configuration allows a single-shot measurement of the charge

density distribution in longitudinal phase space.

The energy resolution σE of the measurement is approximately given by

σE ≈
√

εxβx

Dx
, (7.1)

where εx is the horizontal emittance (excluding dispersion), βx the hori-
zontal beta function, and Dx the horizontal dispersion generated by the

dipole magnet at the location of the screen. A horizontal dispersion of
Dx = 233±5 mm was measured by recording the horizontal beam position

on the screen while varying the current of the dipole (cf. section 5.2). The
bunch width σx =

√
εxβx without dispersion cannot be directly measured.

As will be shown below, the TDS allowed to measure a horizontal width

of ≈ 116 μm in the bunch tail, where dispersive effects play a minor role.
This width corresponds to an energy resolution of ≈ 0.05 % (340 keV).

The longitudinal resolution is determined by the vertical shear param-

eter induced by the TDS and the vertical bunch size as obtained when the
TDS is switched off. A shear parameter of S = 10 and a vertical bunch size

of 170 μm were measured. The resulting longitudinal resolution amounts
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Figure 7.3: (a) and (b): Experimental results of single-shot measurements of the charge
density distribution in longitudinal phase space. (c): Mean relative energy deviation
〈δ〉(ζ) as a function of longitudinal position ζ . (d): Standard deviation σδ(ζ) along a
bunch. 〈δ〉(ζ) and σδ(ζ) were determined from 50 CCD-images. Error bars indicate
statistical RMS errors.

to about 17 μm. A special optics downstream of the bunch compressors
was used to optimize the resolution.

Experimental results at 677 MeV

The CCD-images presented in Figs. 7.3(a) and (b) show single-shot mea-

surements of the energy-dispersed charge density distribution on the screen.
The images are rotated so the vertical axis shows the energy deviation and
the horizontal axis the longitudinal position. The internal bunch coordi-

nate ζ is defined with respect to the leading edge of the current spike as
in the previous section. The relative energy deviation

δ =
E − E0

E0
, (7.2)
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with E0 designating the mean bunch energy E0 = 〈E〉, is introduced on
the vertical axis. The plane spanned by (ζ, δ) will be called longitudinal

phase space. Mean value 〈δ〉(ζ) and standard deviation σδ(ζ) as a function
of ζ are shown in Figs. 7.3(c) and (d), respectively.

The bunch tail (left hand side) is characterized by a small energy spread
and a longitudinal energy gradient. The gradient results from off-crest
acceleration. The observed energy spread in the tail of σE ≈ 340 keV

or σδ ≈ 0.05 % (Fig. 7.3(d)) is expected to be resolution-limited. At
the front of the bunch, longitudinal compression in the magnetic chicanes

BC2 and BC3 causes bunch fractions with different energies to overlap at
the same longitudinal position (full compression, cf. section 4.1.4 ). The

energy profile is additionally broadened due to collective effects such as
space charge forces and coherent emission of synchrotron radiation, which

are particularly strong in the high current region. Particles at the initial
front of the bunch, which gain the least energy in the accelerating modules,
are now trailing behind the high current region due to over-compression.

They are separated in energy from the remainder of the tail by ≈ 0.5 %
(Fig. 7.3(a),(b)) and lead to an increase in energy spread in this bunch

region.
The detailed structure of the high current region changes from shot to

shot, as can be seen by comparing Figs. 7.3(a) and (b). The variations
are assumed to be mainly due to RF phase fluctuations in the accelerating
module ACC1. Corresponding fluctuations of the current profile have been

discussed in the previous section. Despite these fluctuations, characteristic
structures can be observed and attributed to physical processes within the

bunches by comparison with typical results of particle tracking simulations
[94].

At ζ ≈ −0.03 mm, a bunch fraction with an energy significantly below
the mean energy is observed. This structure is particularly pronounced

in Fig 7.3(b), where particles with an energy offset of almost 1 % below
the mean energy are found. At the same position, the mean energy drops
by ≈ −0.4 %, while the energy spread reaches its maximum of more than

0.25 %. Such an energy loss is a typical indication for coherent synchrotron
radiation (CSR) in the bunch compressor chicanes and is seen in particle

tracking simulations including CSR (cf. sections 4.1.4 and 8). Close to
ζ = 0, the mean energy increases. The phase space distribution exhibits a

“branch” towards higher energies at this position. The maximum energy
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in this branch is roughly 0.2 % above the mean particle energy in both
distributions presented. Increased particle energies at the front of the high

current region are characteristic for longitudinal space charge forces (cf.
section 4.1.4). Here, forces downstream of BC3 are presumably the main

cause. In case of space charge forces occurring upstream of BC3, the large
energy width of the corresponding bunch fraction involves a shearing in
longitudinal phase space within BC3. Correspondingly, a small branch to-

wards positive ζ is found at the very front of the distribution in Fig. 7.3(a),
which is barely visible in Fig. 7.3(b). The extension of this bunch fraction is

much smaller here than measured directly downstream of the TDS, where
a length of nearly 200 μm was measured (compare previous section). The

reason is supposedly a significantly higher noise level of the CCD-images
obtained using the screen OTR-3 (cf. Fig. 4.8), so bunch sections with low

charge density were not detected.

7.4 Horizontal slice emittance and slice ellipse pa-

rameters

Slice emittance and slice ellipse parameters were measured using quadrupole
scan techniques in combination with the TDS. Measurements were per-

formed at particle energies of 494 MeV, 677 MeV and 964 MeV. The off-
axis screen OTR-2 (cf. Fig. 4.8) was used. Details on the measurement

procedure and the data analysis can be found in chapter 5.

Since the SASE process depends very critically on the optics and the

orbit in the undulator section, lasing is generally suppressed during a scan.
Accordingly, no SASE signal was obtained after changing the optics. Bunch

parameters such as the transverse emittance, which do not depend directly
on the optics or the orbit, can safely be expected to be the same as during

SASE operation. The optics variations were mostly2 applied downstream
of the bunch compressors, so an impact on processes within the bunch
compressors can be excluded.

2At 677 MeV, two quadrupoles upstream of the second bunch compressor have been
varied slightly in order to match the beam to the desired optics. The effect on the bunch
parameters of interest is expected to be insignificant, too.
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Table 7.3: Longitudinal resolution of the slice emittance measurements at 494 MeV (C1),
677 MeV (C2) and 964 MeV (C3). All parameters refer to the location of the screen (OTR-
2, cf. Fig. 4.8). The specified errors are statistical RMS errors. The errors of the quoted
beam sizes are below 5%. The calibration constant specifies the length corresponding to
the vertical size of one pixel of the CCD camera.

C1 C2 C3
Max. vertical RMS beam size [μm] 240 180 540
Min. vertical RMS beam size [μm] 225 130 260
Mean vertical RMS beam size [μm] 230 155 357
Shear parameter 29 ± 4 12.9 ± 0.8 16 ± 1
Long. Resolution estimate [μm] 8.0 12.2 22.1
Slice width [μm] 6.7 15.0 12.1
Calibration constant [μm/pixel] 0.9 ± 0.3 1.9 ± 0.1 1.5 ± 0.1

Resolution

In order to optimize the longitudinal resolution of the measurements, a
small vertical beam size at the screen throughout the measurements is cru-

cial. For this purpose, several optics with a small vertical beta function
βy ≤ 10 m at the location of the screen were worked out on the basis of the

design optics of the FLASH linac (cf. section 5.3.1). Applying these optics
one after another by changing appropriate quadrupoles (“multi-quadrupole

scan”) allows a measurement of the horizontal slice emittance with a good
longitudinal resolution. This technique was applied at 494 MeV and at

677 MeV. At 677 MeV, the beam was matched to the design optics down-
stream of the second bunch compressor prior to the measurement (cf. sec-
tion 5.3.1). At 964 MeV, the focal strength of a single quadrupole was

scanned instead. The optics was adapted empirically in order to optimize
the resolution.

The vertical bunch width was measured with the TDS switched off dur-
ing each quadrupole scan. The minimal, maximal and mean vertical widths

during the scans are quoted in Table 7.3. While in case of the multi-
quadrupole scans (494 MeV (C1) and 677 MeV (C2)) the vertical beam

size varies by less than 20 % around the mean value, strong changes of more
than 50 % are observed in case of the single-quadrupole scan (964 MeV

(C3)). The resulting variation in longitudinal resolution is the main draw-
back of the latter technique.

The shear parameter was measured to be S = 29 (494 MeV), S = 12.9
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(677 MeV) and S = 16 (964 MeV). An estimate of the longitudinal RMS
resolution is obtained by dividing the mean vertical bunch width by the

shear parameter, resulting in 8.0 μm (494 MeV), 12.2 μm (677 MeV),
and 22.1 μm (964 MeV). Note that the resolution varies along a bunch

and may significantly deviate from this estimate (cf. section 7.2). The slice
width used for calculating bunch properties as a function of the longitudinal
position was therefore determined empirically as described at the end of

this section. The parameters are summarized in Table 7.3.

Measurement at 494 MeV

At 494 MeV, a large shear parameter of S = 29 was used in order to ob-

tain a good longitudinal resolution. As a consequence, the total vertical
extension of a bunch exceeded the size of the camera window so only a lim-

ited bunch section was observed on the screen. The experimental results
are presented in Fig. 7.4. The average current profiles measured during

the quadrupole scan (top) exhibit a peak current of about 1.6 kA and the
spike width of 32 μm in agreement with the results presented in section 7.2.
The two profiles presented in the figure were measured at different currents

of the quadrupoles which were varied during the scan. Small differences
between the profiles can be observed at the trailing edge of the current

spike. They are due to a slightly different longitudinal resolution, which
is caused by different vertical bunch widths. The presented profiles ex-

hibit the largest (red, dashed) and the smallest (black, solid) spike width
that was measured during the quadrupole scan. The good agreement be-

tween the two profiles demonstrates that the longitudinal resolution hardly
changes.

A CCD-image recorded during the quadrupole scan reveals the density
distribution of a single bunch in the (x, z)-plane. Although this distribu-

tion changes significantly during a quadrupole scan, some intrinsic bunch
properties already become obvious. The maximum intensity coincides with
the spike in the current profile (note that the ζ-axis is the same in each

layer of Fig. 7.4). Compared to the tail, the horizontal width is strongly
increased throughout the current spike, in particular at the position of the

trailing edge. The distribution is horizontally asymmetric at this position.
The entire high-intensity region is shifted horizontally with respect to the

remainder of the bunch. As in the current profile, a significant intensity
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Figure 7.4: Experimental results at 494 MeV (C1 in Table 7.1): Average current profiles,
typical CCD-image (for color code see appendix A), slice emittance, deformation param-
eter and deformation phase (from top to bottom). The head of the bunch is on the right
hand side. The top layer shows the average current profile of 20 bunches measured with
best (black, solid) and worst (red, dashed) longitudinal resolution during the quadrupole
scan. Statistical errors of slice emittance and deformation parameters are not shown for
reasons of clarity. They are typically below 5 %.

can be observed in front of the current spike.

The slice emittance3 (Fig. 7.4) is strongly increased in the region around

the current spike. The maximum value is nearly 13 μm and occurs close

3Throughout this chapter, the term “emittance” refers to a normalized RMS emittance.
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to the trailing edge of the current spike, where a large slice width and
a horizontal asymmetry can be observed in the CCD-image. Within the

spike, the normalized slice emittance is in the range of 7.5 μm to 12 μm,
with a local minimum of 7.5 μm close to the leading edge. The region

with an increased slice emittance is significantly broader than the current
spike. Within the tail, the emittance drops to values of ≈ 2 μm. The
bunch fraction in front of the spike has a slice emittance of 3 μm to 4 μm.

The mean slice emittance (weighted by the current) of an entire bunch,
which was measured at a smaller shear parameter of the TDS, amounts

to ≈ 6 μm. An overall bunch emittance of 13 μm was determined by a
measurement with the TDS switched off. The difference between mean

slice emittance and overall bunch emittance is largely due to offsets of the
mean particle coordinates 〈x〉 and 〈x′〉 of bunch slices. Such offsets are

discussed in detail in section 7.5.

The deformation parameter (cf. sections 2.3, 6.3) is smaller than m � 2
up to ζ = 0 and then continuously increases to about m = 5 at the very

front of the bunch. The deformation phase changes smoothly except for
the region around the trailing edge of the spike, where it rapidly varies.
The deformation parameter is close to m = 1 within this region, meaning

that this section of the bunch has about the same ellipse parameters as the
entire bunch. Recall that a deformation phase is not defined for m = 1 and

that for m � 1 variations of the deformation phase correspond to small
variations of the underlying slice ellipse parameters (cf. section 2.3).

Measurement at 677 MeV

The results obtained at an energy of 677 MeV are presented in Fig. 7.5.

The shear parameter induced by the TDS was adapted to enable the ob-
servation of entire bunches on the OTR screen. The peak current of

the average current profiles measured is ≈ 1.4 kA and the spike width
≈ 37 μm (FWHM). These values deviate from those quoted in section 7.2

(1.85 kA and 23 μm) due to an inferior longitudinal resolution. As in case
of an energy of 494 MeV, the measured profiles hardly change during the

quadrupole scan.

The density distribution in the (x, z)-plane shows again an increased
horizontal slice width throughout the region of the current spike. At the

position of the trailing edge of the current spike, two “branches” with a
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Figure 7.5: Experimental results at 677 MeV (C2). See Fig. 7.4 and text for details.

horizontal offset of about 1.5 mm are observed at the same longitudinal

position. Such a strong transverse separation can only occur due to co-
herent synchrotron radiation (CSR) within the bending magnets of the
compressor chicanes. An energy loss of particles due to CSR within a hor-

izontal chicane leads to horizontal angle and position offsets at the end
of the chicane. A comparison with the longitudinal phase space distribu-

tion measured under the same conditions (Fig. 7.3) indeed shows that the
energy width is maximal at about the same longitudinal position. This

suggests that the branch at ζ ≈ −0.05 mm, x ≈ −1.5 mm in Fig. 7.5
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corresponds to the low-energy branch in longitudinal phase space, which is
supposedly caused by CSR in the second bunch compressor. The maximum

energy difference of bunch fractions measured at ζ ≈ −0.05 mm is ≈ 0.9%.
The ratio 1.5 mm/0.9% ≈ 167 mm is only slightly smaller than the max-

imum horizontal dispersion of Dx ≈ 192 mm [53] between the fourth and
fifth bending magnet in BC3. Dispersion due to beam steering and the
horizontal kicker is expected to be in the order of ±10 mm and thus plays

a minor role.

The slice emittance assumes its maximum value of 14 μm in the region
where the separated branches occur. Within the region of the current spike,

the slice emittance is in the range of 10 μm to 14 μm. A local minimum of
8.5 μm can be observed right in front of the current spike, before it rises

again to more than 12 μm. In the tail of the bunch, the slice emittance
drops to values between 2 μm and 4 μm. The mean slice emittance amounts

to ≈ 8 μm. As at E = 494 MeV, an overall bunch emittance of 13 μm was
determined in a separate measurement.

The deformation parameter is smaller than m = 3 except for the part

in front of the current spike, where it increases up to m ≈ 7. The defor-
mation phase rapidly changes at the position of the edges of the current

spike. The jump in deformation phase at the end of the bunch at about
ζ = −0.45 mm is accompanied by a deformation parameter close to one.

The corresponding change of the underlying ellipse parameters is therefore
small.

Measurement at 964 MeV

The results obtained at a particle energy of 964 MeV are presented in

Fig. 7.6. As in case of E = 494 MeV, the shear parameter was maximized
so only the front region of each bunch was observed on the screen. The

average current profiles measured during the quadrupole scan show a peak
current in the range of 0.5 kA (red, dashed) to 0.85 kA (black, solid), and
a spike width in the range of 70 μm (black, solid) down to 29 μm. The

deviations between the results obtained at different quadrupole currents
are significantly stronger than observed at 494 MeV and 677 MeV. The

reason for this is a stronger variation of the vertical beam size during the
single-quadrupole scan used in this case. The consequence is an inferior

longitudinal resolution of slice emittance and slice ellipse parameters.
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Figure 7.6: Experimental results obtained at a particle energy of 964 MeV (C3 in Ta-
ble 7.1). The slice emittance values in the tail (blue) were determined using standard
deviations of Gaussian fits to the measured horizontal slice profiles. Within the bunch
head (black), the standard deviations of the profiles were used.

A strong beam halo of unknown cause can be observed in the region of

the bunch tail in the presented CCD-image. The beam halo significantly
contributes to the slice width. The high-current region is characterized by

bunch fractions with a significant horizontal offset. Correspondingly, an
increase in slice emittance is found in this region. In contrast to the results

at E = 494 MeV and E = 677 MeV, the maximum in slice emittance of
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about 14 μm occurs at the position of the leading edge of the current spike.
Within the high current region, the slice emittance lies in the range between

8 μm and 12 μm. In the tail, the slice emittance drops to ≈ 2 μm. Here,
standard deviations of Gaussian fits to the horizontal slice profiles were

used in order to suppress the beam halo 4. The overall bunch emittance
was measured to be 10 μm.

A slice deformation parameter of m ≈ 3 was measured in the bunch tail.
This value is significantly larger than observed at 494 MeV and 677 MeV

and most likely caused by the beam halo. Within the region of the current
spike, the deformation parameter is smaller than m = 2 and then increases

up to m = 2.5 in front of the spike. The jump in mismatch phase close to
ζ = 0 occurs at a position with m ≈ 1 and is thus not accompanied by a

strong variation of the underlying ellipse parameters.

Reproducibility

The reproducibility of slice emittance profiles was checked by performing
seven slice emittance measurements at 964 MeV within about one hour.

The result is presented in Fig 7.7. The figure shows the mean slice emit-
tance 〈γrεx〉(ζ) obtained from the measurements. Error bars indicate the

minimum and the maximum values. The results are in very good agree-
ment. The average standard deviation σγrεx

(ζ) (not weighted by the cur-

rent) within the bunch section presented in the figure amounts to 4.5 %.
The statistical errors of the individual slice emittance measurements due
to measurement errors of the horizontal widths are typically less than 5%,

which is in agreement with the observed standard deviation σγrεx
(ζ). The

accuracy of the results is mainly determined by systematical errors and

resolution-limitations, which are discussed in detail in chapter 5.

Choice of the slice width

The influence of the selected slice width Δζslice on the reconstructed slice
emittance is demonstrated in Fig. 7.8. The figure shows the slice emittance

obtained at 494 MeV using slice widths of Δζslice = 10 μm, Δζslice = 3.4 μm

4Gaussian fits are less sensitive to long tails in the horizontal profiles and suited as long
as the profiles are Gaussian shaped in the center in good approximation, which is the case
in the bunch tail.
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Figure 7.7: Reproducibility of slice emittance results. The plot shows the mean slice
emittance values of seven measurements performed in about one hour at 964 MeV. Error
bars indicate the maximum and the minimum slice emittance measured. All values are
calculated from the standard deviations of the slice profiles. The large slice emittance
in the tail of up to 10 μm is caused by the beam halo, which is not suppressed here by
Gaussian fits.
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Figure 7.8: Dependence of slice emittance results on the choice of the slice width. The
vertical slice widths are 300 μm (top), 100 μm (middle) and 50 μm (bottom) which
corresponds to longitudinal slice widths of 10 μm, 3.4 μm and 1.7 μm, respectively. The
particle energy is 494 MeV (conditions C1, see Table 7.1).
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and Δζslice = 1.7 μm. A significant difference can be observed between the
slice emittance profiles obtained with Δζslice = 10 μm and Δζslice = 3.4 μm,

indicating that the longitudinal resolution is better than 10 μm. In con-
trast, the results for Δζslice = 3.4 μm and Δζslice = 1.7 μm agree well.

This behavior is in agreement with the resolution estimate of 8.0 μm de-
duced from the overall vertical bunch width. At Δζslice = 1.7 μm, the slice
emittance starts to oscillate slightly from slice to slice indicating numeri-

cal noise. For data evaluation, the slice width was adjusted to resolve all
details while at the same time keeping numerical noise as small as possible

(here: Δζslice = 3.4 μm).

7.5 Horizontal slice centroid offsets

As mentioned in the previous section, the overall bunch emittance mea-
sured under FEL operating conditions is typically larger than 10 μm. At

the same time, the mean slice emittance (weighted by the current) is in
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Figure 7.9: CCD-images showing the density distribution in the front region of single
bunches in the (x, z)-plane at 494 MeV. The images were recorded with different strengths
of the upstream quadrupoles.
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the range of 6 μm to 8 μm. The apparent deviations are to a large extent
caused by variations of the mean particle coordinates 〈x〉, 〈x′〉 in depen-

dence on the longitudinal position ζ within a bunch. The offsets Δx(ζ),
Δx′(ζ) of bunch slices with respect to the overall mean particle position

will be called slice centroid offsets. Slice centroid offsets may be caused
e.g. by dispersion, transverse wake fields and coherent synchrotron radia-
tion (CSR) within the magnetic bunch compressor chicanes. While wake

fields mainly affect the tail of a bunch, dispersion and CSR are the domi-
nant sources for centroid offsets in the high current region of a compressed

bunch (see also section 6.5).
Spatial offsets 〈x〉 can be investigated by measuring the charge density

distribution in the (x, ζ)-plane with the TDS. They change as a bunch
moves along a transfer line. As an example, Fig 7.9 shows typical dis-

tributions (CCD-images) in the (x, ζ)-plane measured at 494 MeV. Each
CCD-image was recorded with different focal strengths of the upstream
quadrupole magnets. Strong slice centroid offsets are found in each im-

age. The distance between the centroid positions of two individual slices
changes from image to image, revealing the dependence on the optics.

The dependence on the optics can be easily understood in the linear
optics approximation (see section 2.1). Given the centroid coordinates

(x1(s0), x
′
1(s0)) and (x2(s0), x

′
2(s0)) of two slices at the position s0 of a

beamline and a horizontal transfer matrix M(s, s0) from s0 to s, the lin-
earity of the transformation yields[

Δx(s)
Δx′(s)

]
= M(s, s0) ·

[
Δx(s0)
Δx′(s0)

]
, (7.3)

where

Δx(s) = x2(s) − x1(s) (7.4)

Δx′(s) = x′
2(s) − x′

1(s). (7.5)

The difference of the horizontal centroid position of two slices thus trans-
forms along the linac like a particle trajectory. In contrast to the absolute

horizontal offsets with respect to the design orbit (beam orbit offsets), slice
centroid offsets do not depend on the dipole fields of steering magnets, pro-

vided the mean particle energy in each slice is about the same. Beam orbit
offsets may be in the order of several millimeters and are typically clearly

larger than slice centroid offsets.
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Figure 7.10: (a) Reconstructed slice centroid offsets in trace space along the front part
of a bunch at 494 MeV. The solid line shows the three-dimensional centroid curve in
(x, x′, ζ)-space. The thin lines show the projections of the curve onto the (x, ζ)-plane and
(x′, ζ)-plane, respectively. The spatial centroid offsets were determined with respect to
the position of a “reference slice” close to ζ = 0 instead of the mean bunch position, since
only a limited section of a bunch could be observed on the screen. Different colors are
used for the longitudinal sections defined by ζ > 0 (red), −0.035 mm ≤ ζ ≤ 0 (green),
and ζ < −0.035 mm (blue). The middle section (green) corresponds to the longitudinal
section of the current spike (FWHM). (b) Projection of the centroid curve in (a) onto
the horizontal trace space plane (x, x′). Different colors indicate the longitudinal position
according to (a). The plot in the lower right corner shows a zoom into the section of the
current spike. Note that the x-axis in (a) is reversed for reasons of clarity.

The described transformation of slice centroid offsets can be utilized to
reconstruct the underlying position and angle offsets in trace space (x, x′)
by using quadrupole scan techniques. The measurement of spatial cen-
troid offsets during a quadrupole scan allows to determine initial offsets

(Δxi, Δx′
i) for each slice i at the reconstruction point of the scan (the

starting point of the transfer matrices) in such a way that the measured
spatial centroid offsets are reproduced best in a least-square sense (cf. sec-

tion 3.1.2).

Figure 7.10(a) and (b) show the result of such a reconstruction at a

particle energy of 494 MeV. The centroid offsets strongly vary within the
region around the current spike. Two extremal values can be observed, one

occurring at ζ ≈ 0 and one at ζ ≈ −0.1 mm. The spatial offset between
these two regions is more than 2 mm. The centroid offsets within the
current spike are comparably small, with spatial offsets of � 200 μm. A

zoom into the region of the current spike (small plot in Fig. 7.10(b)) reveals
a bifurcation in horizontal trace space.

The centroid offset curves presented in Fig 7.10 strongly depend on the
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optics. In order to minimize this dependence and to reveal the underlying
bunch properties, the centroid coordinates can be transformed to normal-

ized coordinates (u, v)

u =
x√
βe

(7.6)

v =
αe√
βe

· x +
√

βe · x′ (7.7)

using the measured beam ellipse parameters βe and αe of an entire bunch.

Defined in this way, relative centroid offsets describe a circle in (u, v)-
space as the bunch moves along the beamline, provided that the transverse

dynamics is purely linear (cf. section 2.3). The relative centroid coordinates
(u, v) of a slice can thus be expressed in phase-amplitude form by

u =
√

aC · cos(φ) (7.8)

v = −√
aC · sin(φ), (7.9)

where

aC = u2 + v2. (7.10)

√
aC is the radius of the circle in (u, v)-space defining the possible values

of (u, v). It corresponds to the Courant-Snyder invariant in single-particle
dynamics and remains constant under linear beam transfer.

Combining Eq. (7.6) and Eq. (7.8) yields the spatial separation

Δx ≤
√

aC · βe. (7.11)

It is instructive to compare the offset Δx to the bunch width σx =
√

εxβe

by forming the ratio

Δx

σx
≤
√

ac

εx
=

√
γrac

γrεx
. (7.12)

The product γrac will be called offset amplitude.

The offset amplitudes measured at 494 MeV, 677 MeV and 964 MeV
are presented in Fig. 7.11. An oscillation within the high current region

with a steep slope around ζ = −0.05 mm is found in each case. The
zeros at ζ ≈ 0 show the position of the reference slices. At 494 MeV and

677 MeV, a maximum of γraC ≈ 55 μm and γraC ≈ 35 μm, respectively,
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Figure 7.11: Offset amplitude γraC at 494 MeV, 677 MeV and 964 MeV.

occurs at ζ ≈ −0.1 mm. A comparison to the overall bunch emittance of

13 μm according to Eq. (7.12) yields large maximum spatial offsets of ≈ 2σx

(494 MeV) and ≈ 1.6σx (677 MeV). The offset amplitude is smallest in case

of the measurement at 964 MeV. Here, limiting factors such as the beam
halo and the inferior longitudinal resolution (cf. Table 7.3) supposedly play

a role.
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7.6 Horizontal phase space

In the previous sections, the first and second moments of spatial den-
sity profiles were used to determine properties of the density distribution
in phase space. As elaborated in sections 8.9 and 4.2.5, a detailed to-

mographic reconstruction of the horizontal phase space distributions of
individual slices is possible by utilizing the full information contained in

the spatial profiles. Tomographic reconstructions greatly contribute to an
understanding of the slice emittance results presented in section 7.4. More-

over, it will turn out that they are indispensable for an estimation of the
emittance of the lasing fractions of bunches at FLASH.

Results at 494 MeV

The accuracy of a tomographic reconstruction can be checked by com-
paring the emittance resulting from the tomographic reconstruction to the

result of a corresponding slice emittance measurement using a least squares
method. Figure 7.12(a) shows a comparison of the slice emittance deter-
mined via tomography and least squares method at a particle energy of

494 MeV (C1 in Table 7.1). The results agree well within the bunch tail
and the region of the current spike (from ζ ≈ −0.035 mm to ζ = 0). Signif-

icant deviations occur mainly around ζ = −0.05 mm, close to the trailing
edge of the current spike. The reason for these deviations are reconstruc-

tion artefacts in trace space with a large distance to the centroid of the
distribution. They may result from noise in the long tails of the spatial

profiles which contribute significantly to the emittance in case the signal-
to-noise ratio is too small5. The deviations therefore occur in the region
around ζ = −0.05 mm where the horizontal profiles are broad while the

current is small. Despite these deviations, the comparison underpins that
the reconstruction of the “bunch core” is accurate.

Figure 7.13 shows trace space distributions of selected slices measured at
a particle energy of 494 MeV. The longitudinal positions of the individual

slices are indicated in Fig. 7.12(b). Image (1) in Fig. 7.13 shows the dis-
tribution of a slice in front of the current spike. The distribution exhibits

5In the tails of spatial profiles, noise contributions with positive and negative sign occur
after subtraction of a background. When calculating RMS widths, the contributions from
noise therefore approximately cancel each other. Negative intensities are, however, not
included by the tomography algorithm.
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Figure 7.12: (a): Comparison of the slice emittance obtained using tomography and a least
squares method. The same experimental data and the same subdivision into slices was
used in both cases. (b): Longitudinal positions of selected slices considered in Fig. 7.13.
The numbers refer to the images shown in Fig. 7.13.

two local intensity maxima and therefore has an increased slice emittance

of about 8 μm. At the position of the leading edge of the current spike (2),
one density maximum occurs in the center of the distribution. The density

increases within the current spike (3) while the slice emittance decreases.
In the center of the current spike, a bifurcation into two “branches” can
be observed (4). The branch on the right supposedly corresponds to the

low-energy branch observed in longitudinal phase space (cf. Fig. 7.3) which
is caused by CSR (cf. section 8). The branch on the left is assumed to con-

tain particles with higher energy and to pass into the bunch tail, which
would be in agreement with the measured slice centroid curve in trace

space (Fig. 7.10(b)). The bifurcation results in an increasing slice emit-
tance, which further increases as the bifurcation gets stronger (5) and the
maximum density in the center reduces (6). At the trailing edge of the cur-

rent spike, the density maximum vanishes (7). Within the region around
the maximum slice emittance, the distribution is diffuse and shows again

two separated regions with local maxima in charge density (8). The upper
bunch fraction in the image supposedly corresponds to the tail, while the

lower one is likely to contain low-energy particles. In the tail, a nearly
Gaussian distribution covering a significantly smaller trace space area can

be observed (9).
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Figure 7.13: Reconstructed trace space distributions of selected slices (for color code, see
appendix A). The longitudinal position of the individual slices within a bunch is shown in
Fig. 7.12(b). The intensity of each image was normalized to the integrated intensity and
multiplied by the total charge within the corresponding slice, so the charge density scale
is the same in each image. Note that the mean coordinates (〈x〉, 〈x′〉) in each image define
the origin (0, 0), so the coordinates in different images cannot be directly compared.

Distributions in normalized coordinates

The overall “shape” of the reconstructed trace space distributions depends

strongly on the ellipse parameters at the reconstruction point. In order to
reveal basic bunch properties and to be able to compare results of differ-

ent measurements, a transformation to normalized coordinates (u, v) (cf.
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Figure 7.14: Comparison of reconstructed phase space distributions under FEL operating
conditions at different particle energies. The distributions are shown normalized coordi-
nates (u, v) · √γr with u

√
γr [μm1/2] on the horizontal and v

√
γr [μm1/2] on the vertical

axis. A circular RMS ellipse with radius r corresponds to a normalized emittance of
r2[μm]. The scale is indicated in (a). The left column shows the distribution within a
slice in the bunch tail (a), a slice in the current spike (b), the entire current spike (FWHM)
(c), and an entire bunch (d) at 494 MeV. The arrow in (d) indicates the position of the
intensity maximum in (c). (e)-(h) and (i)-(l): Corresponding results at 677 MeV and
964 MeV, respectively.

section 2.3) with respect to the beam ellipse parameters of an entire bunch
is appropriate 6 (cf. section 2.3). In case the beam optics is linear and the

6Since the measured distributions are given in the form of digital images and not as
particle distributions, a transformation cannot be directly performed. Here, a distribution
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particles are not accelerated, a bunch distribution rotates about its mean
coordinates in the (u, v)-plane as the bunch proceeds along a beamline and

retains its basic structure.

Figure 7.14 shows density distributions in normalized coordinates ob-
tained at particle energies of 494 MeV, 677 MeV and 977 MeV. The dis-

tribution within a slice in the tail at 494 MeV (Fig. 7.14(a)) confirms the
regular shape observed in Fig. 7.13. The iso-density contours are nearly
circular, revealing a small deformation parameter of the distribution with

respect to the ellipse parameters of an entire bunch. The distributions
within a slice in the current spike (b) and within the entire current spike

between FWHM-boundaries (c) exhibit a bifurcation into two branches
and a high-intensity core as discussed above. The density distribution of

an entire bunch (d) was determined from a separate measurement (TDS
off). The distribution is dominated by the long trailing tail typically con-
taining more than 75% of the total bunch charge. The head of the bunch

is significantly separated from the tail by slice centroid shifts.

The corresponding distributions at 677 MeV (e-h) and 964 MeV (i-l)
exhibit similar properties. In particular, a bifurcation and a high-density

region within the current spike can be observed also in these cases. The
distribution within the tail covers a significantly larger area at 964 MeV

(i) due to the beam halo.

7.6.1 Emittance analysis

The trace space distribution within the bunch tail can be approximated by

a two-dimensional Gaussian distribution. Figure 7.15(b) shows the results
of a two-dimensional Gaussian fit (least-square) to a typical distribution

within the tail (Fig. 7.15(a)), and a comparison of the corresponding one-
dimensional intensity profiles in x- and x′-direction (Fig. 7.15(c, d)). The

profiles of the Gaussian distribution and the measured distribution agree
reasonably well, corroborating that a Gaussian fit is justified. The emit-

tance of the Gaussian distribution is 1.6 μm, compared to 2.1 μm in case
of the measured distribution.

was generated by randomly “filling” the area of each pixel with a number of particles pro-
portional to the pixel-intensity. The distributions can then be transformed to normalized
coordinates and digital images be generated from the resulting distributions. The results
were checked by comparing the emittance.
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In order to quantify the deviation of the measured distribution from the
Gaussian distribution, the quantity

σ1 =

√√√√∑(x,x′)∈A1
[ρ(x, x′) − ρfit(x, x′)]2∑

(x,x′)∈A1
[ρfit(x, x′)]2

(7.13)

can be used. Here, ρ(x, x′) is the measured distribution and ρfit(x, x′) the

distribution of the Gaussian fit. A1 is the trace space area defined by

ρfit(x, x′)
max(ρfit(x, x′))

≥ 0.01. (7.14)

Thus, σ1 is a measure of the deviation of the two distributions within the
trace space area with a significant intensity of the Gaussian distribution.

The aim of this parameter is to allow a comparison of deviations rather than
quantify the deviations in an absolute sense. In case of the distributions
presented in Fig. 7.15, the deviation amounts to σ1 = 24%.

A similar approach can be applied in order to determine the emittance
of the high-density core observed within the current spike. To do so, the

high-density core of the distribution shown in Fig. 7.16(a) (image (3) of
Fig. 7.13) was isolated by applying an intensity threshold to the distri-

bution. The threshold was chosen to be the half-maximum value of the
intensity of the distribution. A three-dimensional representation of the dis-
tribution (Fig. 7.16(b)) reveals more clearly that such a threshold separates

the core from the remainder of the distribution. The Gaussian distribution
obtained by a two-dimensional Gaussian fit to the core (Fig. 7.16(c, d))

yields an emittance of 1.8 μm, compared to 7.5 μm slice emittance of the
measured distribution. The integrated intensity of the Gaussian distribu-

tion corresponds to about 52% of the integrated intensity of the entire slice
distribution. Consequently, the “equivalent charge” of the Gaussian dis-

tribution and the corresponding “equivalent current” are 52% of the total
charge within the slice and the slice current, respectively.

As shown in Fig. 7.13, a high-density core in horizontal phase space can

be observed throughout the extension of the current spike. A Gaussian fit
can thus as well be applied to the trace space distribution of the entire

current spike (FWHM). At 494 MeV, the resulting emittance of the high-
density core is 2.9 μm and the equivalent charge 49% of the slice charge.

The method is only applicable as long as the main part of the high-density
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Figure 7.15: Two-dimensional Gaussian fit to the trace space distribution of a single slice
in the tail. (a): Measured distribution. (b): Distribution of the Gaussian fit. The color
code is defined in appendix A. (c) and (d): Comparison of the resulting x- and x′-profiles,
respectively.

region in horizontal phase space is located in one branch of the observed
bifurcation. This is the case when considering the overall distribution in

the current spike, but not for each slice within this section, as is apparent
from Fig. 7.13.

In case of a fit to the high-density core of a trace space distribution,
the error σ1 defined above is typically dominated by contributions outside

the core region, where the density of the measured distribution ρ(x, x′)
may be significantly larger than the density of the Gaussian distribution

ρfit(x, x′). Since such deviations are not relevant here, a different quality
measure needs to be introduced. One can define an error σ2 similar to σ1

(7.13) which includes only contributions satisfying ρfit(x, x′) ≥ ρ(x, x′):

σ2 = 2 ·
√√√√∑(x,x′)∈A2

[ρ(x, x′) − ρfit(x, x′)]2∑
(x,x′)∈A1

[ρfit(x, x′)]2
, (7.15)
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(a) (b)

(c) (d)

Figure 7.16: Two-dimensional Gaussian fit to a high-density core. (a) and (b): Measured
distribution of a slice within the current spike at 494 MeV (cf. image (3) of Fig. 7.13).
The color code is defined in appendix A. (c) and (d): Gaussian fit to the high-intensity
core.

Table 7.4: Properties of the reconstructed phase space distributions determined by Gaus-
sian fits. The column “bunch section” specifies the longitudinal section considered:
“spike” refers to the current spike within FWHM-boundaries, “head slice” refers to a
typical slice within the current spike, and “tail slice” to a typical slice within the tail.

conditions bunch γrεx σ1/2 Qe/Qslice Qe/Qbunch Ie

section [μm] [%] [%] [%] [kA]]
494 MeV spike 2.9 26 49 9 0.6

(C1) head slice 1.8 34 52 - 0.6
tail slice 1.6 24 94 - 0.2

677 MeV spike 4.0 36 72 18 0.9
(C2) head slice 4.7 54 92 - 1.2

tail slice 1.3 24 89 - 0.2
964 MeV spike 3.2 32 52 5 0.4

(C3) head slice 4.2 56 67 - 0.5
tail slice 2.6 30 69 - 0.2
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where A2 is defined by the condition

ρfit(x, x′) ≥ ρ(x, x′). (7.16)

The factor of two in Eq.( 7.15) is introduced in order to allow a quantitative

comparison between σ1 and σ2. In case of the distributions presented in
Fig. 7.16, the deviation amounts to σ2 = 34%.

Corresponding procedures were applied to the experimental data ob-

tained at 677 MeV and 964 MeV. The results are summarized in Table 7.4.
The emittance of the high-density region within the entire current spike is

in the range of 2.9 μm (C1) to 4.0 μm (C2). The values are significantly
smaller than the emittance of the entire current spike of about 10 μm (cf.

section 7.4). The ratio of equivalent charge and slice charge (Qe/Qslice)
ranges between 49 % (C1) and 72 % (C2). This yields an equivalent current

Ie between 0.4 kA (C3) and 0.9 kA (C2). Multiplying the ratio Qe/Qslice

with the charge fraction contained within the current spike (Table 7.2)
yields a ratio of equivalent charge to bunch charge (Qe/Qbunch) between

5 % (C3) and 18 % (C2).
The emittance of the high-density region of slices within the current

spike lies between 1.8 μm (C1) and 4.7 μm (C2). The charge fraction
varies between 52 % (C1) and 92 % (C2), resulting in equivalent currents

of 0.4 kA (C3) to 1.2 kA (C2). Smaller errors σ2 and a better agreement
between the measurements suggest that a fit to the entire current spike is
more reliable.

The core emittance within slices of the tail is found to be in the range
of 1.3 μm (C2) to 2.6 μm (C3). The comparably large emittance of 2.6 μm

and the small equivalent charge fraction of 69 % under conditions C3 are
due to the beam halo.

In case of Gaussian fits to a high-density core, the result may signifi-
cantly depend on the choice of the threshold applied prior to the Gaussian

fit. This is the case when the distribution within the core significantly
deviates from a Gaussian distribution. For instance, in case of conditions
C2, emittance and charge fraction of the high-density region within the

spike drop from 4.0 μm to 2.7 μm and from 72 % to 50 %, respectively, if
the threshold is increased. A strong dependence on the threshold and cor-

responding deviations from a Gaussian distribution are reflected in large
errors σ2. The resulting uncertainty concerning the emittance is, however,

rather small compared to the difference to the measured slice emittance.
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7.6.2 Discussion

Aside from a direct measurement, beam parameters of the lasing fraction of

an electron bunch can be deduced from measured properties of the FEL ra-
diation. A characterization of the FEL radiation was performed at a wave-

length of 13.7 nm and a saturated average radiation pulse energy of 40 μJ
[1]. In particular, the radiation pulse energy was measured as a function
of the longitudinal position within the undulator section (gain curve) by

interrupting the FEL gain process at several positions with suited steering
magnets. The measurement yielded a field gain length of 2.5 m [1], which

corresponds to a power gain length Lg of about 1.25 m. The measurement
allowed also to estimate the coherence time7 τcoh of the radiation to be

about 4 fs. An average number of 1.9 coherence regions or “modes” per
pulse was determined from statistical fluctuations of the radiation pulse

energy. The pulse duration is thus about M · τcoh ≈ 8 fs.

The FEL code FAST [96] was used to determine the beam parameters of
the lasing fraction needed to reproduce the measured radiation properties,
in particular the gain length. A peak current of 2 to 2.5 kA, a width of

the current spike of about 10 μm (FWHM), and a normalized transverse
emittance of 1 to 1.5 μm were determined in this way [1].

The presented measurement at the same particle energy using the TDS

yielded a peak current of 1.9 kA, a width of the current spike of 22 μm, and
a normalized transverse slice emittance of about 10 μm in the high current

region. A tomographic reconstruction allowed to determine a phase space
region with an estimated emittance of 4 μm and a current of about 1 kA.
This high-density region in phase space is expected to contain the lasing

fraction, while the slice emittance includes particles not contributing to
the lasing process.

Although the emittance determined by a tomographic reconstruction is

much closer to the result deduced from radiation properties than the slice
emittance, there is still a significant deviation between the results, concern-

ing both the emittance and the current. These deviations may have several
reasons. At first, it must be noted that the measurement conditions were
not exactly the same. While a saturated average pulse energy of 40 μJ

was obtained during the characterization of the FEL radiation, an average
pulse energy of 5 μJ (not saturated) was obtained during the measurement

7The time over which the radiation can be considered coherent.



7.6. Horizontal phase space 149

of electron beam properties. The gain length was thus larger in the latter
case, so a slightly smaller current and a larger emittance are not contra-

dictory to the measured gain length. Furthermore, the measurement took
place upstream of the dispersive collimator section (cf. Fig. 4.8), in which

modifications, in particular of the peak current, are to be expected.
The main reason for the observed deviations is, however, assumed to be

the longitudinal resolution. The length scale on which the amplification

process takes place and on which the conditions for normalized emittance
and current have to be fulfilled, is the coherence length Δζcoh defined by

Δζcoh = cτcoh with τcoh the coherence time of the radiation. The measured
coherence time of 4 fs corresponds to a coherence length of 1.2 μm, which

is significantly below the estimated RMS resolution of the measurement of
12 μm. Resolution limitations affect in particular the measured current,

but also the emittance may be smaller on this length scale in view of the
strong distortions observed in the high current region.

Moreover, it is important to note that the emittance measurements and

the tomographic reconstruction refer to the average phase space distribu-
tion of beam bunches. Strong fluctuations of the structure of the phase

space distribution from shot-to-shot necessarily lead to a dilution of the
average phase space distribution. Such fluctuation are mainly due to jit-

ter of the RF phase of module ACC1, and are particularly strong in the
high current region (cf. Fig. 7.3). The measured emittance, in particular
that of high density regions in phase space, is thus an upper limit for the

corresponding emittance within a single bunch.
Finally, systematic errors of the reconstruction may occur due to strong

transverse space charge forces and the significant energy spread within
the high current region, as is shown in chapter 8. While the effect on the

measured slice emittance is shown to be negligible, the detailed structure of
the reconstructed distribution in horizontal phase may be slightly distorted

because of these effects. Resolution limitations of the optical system are
assumed to play a minor role, since an emittance below 2 μm was measured
in the bunch tail.
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Figure 7.17: Comparison of current profiles (a) and slice emittance profiles (b) measured
during a scan of the RF phase φACC1 of module ACC1 at 964 MeV. ΔφACC1 specifies
the difference to the RF phase at SASE operation (φACC1 = −8.4◦). The profiles are
average current profiles determined from 20 CCD-images. They are normalized to the
maximum peak current measured during the scan. The color code of Fig. (a) can be
found in appendix A. (c) and (d): Corresponding results obtained by scanning the RF
phase of module ACC2/3.

7.7 Measurements at different acceleration phases

In order to study the dependence of current profile and slice emittance

on the RF phases of the accelerating modules ACC1 and ACC2/3, mea-
surements at several RF phases around the setpoints for SASE operation

were carried out. Figure 7.17(a) shows a comparison of the average current
profiles measured at different RF phases of module ACC1. The measure-
ments were performed at a particle energy of 964 MeV. ΔφACC1 specifies

the difference of the chosen RF phase to the RF phase at SASE oper-
ation, which was measured to be −8.4◦. Although the RF phase was

changed within an interval of only ±1◦, the profiles significantly change
during the scan. The maximum peak current (≈ 0.9 kA) and the mini-

mum width of the current spike (≈ 29 μm) are obtained at the phase for
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SASE operation (ΔφACC1 = 0). Stronger compression (ΔφACC1 < 0) re-
sults in an increased width of the current spike of more than 100 μm at

ΔφACC1 = −1◦. At the same time, the peak current drops to ≈ 0.74 kA.
A larger spike width can be explained by over-compression in this region,

while a decreasing peak current supposedly arises from stronger collective
effects such as CSR and space charge forces. Shifting the phase towards
on-crest-operation (ΔφACC1 > 0) leads to less longitudinal compression.

Accordingly, the peak current drops until the current spike nearly disap-
pears at ΔφACC1 = +1◦.

The slice emittance was measured (additionally to SASE conditions) at
ΔφACC1 = ±0.5◦ and ΔφACC1 = ±1.0◦ (Fig. 7.17(b)). Within the high

current region, the slice emittance continuously increases with decreas-
ing RF phase. At ΔφACC1 = −1.0◦, maximum values of up to 25 μm

were measured, whereas at ΔφACC1 = 1.0◦ a slice emittance of � 5 μm
is found. This behavior originates from a critical dependence of the slice
emittance on collective effects, in particular CSR. Dispersive effects from

beam steering and the horizontal kicker are assumed to play a minor role
(cf. section 8).

The RF-phase of module ACC2/3 was varied within an interval of ± 10◦

around the phase for SASE operation (φACC2/3 = 0). It was scanned

over a wider range than φACC1 since the longitudinal compression is less
sensitive to changes of φACC2/3. The average current profiles measured
during the scan are presented in Fig. 7.17(c). Peak current and spike

width change moderately compared to the results of the scan of φACC1.
The peak current continuously increases from ≈ 0.74 kA at ΔφACC2/3 =

10◦ (less compression) to ≈ 0.9 kA at SASE operation, and ≈ 1.0 kA
at ΔφACC2/3 = −10◦ (more compression). The spike width (FWHM) is

≈ 29 μm at ΔφACC2/3 = 0 and ≈ 39 μm at ΔφACC2/3 = −10◦ and does not
significantly change for phases ΔφACC2/3 > 0.

The slice emittance (Fig. 7.17(d)) shows a weak dependence on the RF-
phase of ACC23 within the range of the scan. The most significant change
is found around ζ = 0, where the slice emittance increases by ≈ 23% as

the RF phase is changed from ΔφACC2/3 = 10◦ to ΔφACC2/3 = −10◦.
A tomographic reconstruction of the horizontal phase space distribu-

tion at different RF phases φACC2/3 allows a more detailed analysis. Fig-
ure 7.18 shows the phase space distributions of the current spike (FWHM)

at ΔφACC2/3 = 10◦ (a), ΔφACC2/3 = 0 (b), andΔφACC2/3 = −10◦ (c). The
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Figure 7.18: Charge density distribution of the current spike (FWHM) in horizontal phase
space at ΔφACC2/3 = 10◦ (a), ΔφACC2/3 = 0◦ (b), and ΔφACC2/3 = −10◦ (c). Normalized
coordinates (u, v) · √γr are used. The charge density scale is the same in each image.

intensity of each image was normalized to the integrated intensity and mul-
tiplied with the total charge located within the current spike. The charge

density scale is thus the same in all images. The populated phase space area
and the overall shape of the distribution is similar in all three cases, which is

in agreement with small differences in slice emittance. At ΔφACC2/3 = 10◦

and ΔφACC2/3 = 0, a high-density region occurs in one branch of a bifurca-
tion. The maximum charge density is slightly higher at ΔφACC2/3 = −10◦

than under SASE conditions. At ΔφACC2/3 = −10◦, the total charge within
the current spike is nearly 50% larger than at ΔφACC2/3 = 0. The phase

space distribution reveals that a large fraction of this additional charge is
located in the branch on the right which supposedly does not contribute

to the SASE process. The charge stems from the part of the tail directly
behind (ζ > 0) the current spike at ΔφACC2/3 = 0, which is longitudinally
compressed at off-crest acceleration in module ACC2/3 and thus becomes

part of the current spike.

7.8 Experimental studies of resolution limitations

Measurements at different input powers of the TDS

An experimental approach to study the influence of resolution-limitations
is to compare experimental results obtained at different input powers of

the TDS, which result in different shear parameters at the location of the
screen. Fig. 7.19 shows current profiles (a) and slice emittance profiles (b)

measured at different shear parameters of S1 = 7, S2 = 13, S3 = 25 and
S4 = 29. It is apparent from the figures that an insufficient resolution

has a significant impact on the resulting peak current and the width of
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the current spike as well as the slice emittance at S1 = 7 and S2 = 13.
The impact on the slice emittance can be explained by large slice centroid

offsets observed around the region of the current spike (cf. section 7.5).
Between S3 = 25 and and S4 = 29, no significant differences are observed.

The difference in resolution between S3 and S4 is, however, too small to
conclude that resolution-limitations play a minor role in these cases.

Figure 7.20 shows the horizontal trace space distribution within the

current spike (FWHM) measured at the same shear parameters S1 to S4.
Although there are significant differences between the results for current

profile and slice emittance, basically the same structures in phase space
are found in each case. Additional charge fractions occur at low shear pa-
rameters around x = 1 mm, x′ = 0.1 mrad. They stem from the bunch

tail which is not sharply separated from the current spike due to an infe-
rior longitudinal resolution. The separation of these charge fractions from

the remainder is in agreement with the slice centroid curve (Fig. 7.10(b))
discussed in section 7.5. It can also be observed that the sharpness of

the maximum in intensity drops with decreasing shear parameter. The re-
sults demonstrate that the tomographic reconstruction is less sensitive to

the longitudinal resolution than the current profile or the slice emittance,
since longitudinal sections are partly separated in trace space by centroid
offsets.
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Figure 7.19: Comparison of current profiles (a) and slice emittance profiles (b) measured
at different shear parameters S1 = 7 (red, dashed), S2 = 13 (blue, dashed), S3 = 25
(green, solid) and S4 = 29 (black, solid). The measurements were carried out at a particle
energy of 494 MeV.
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Figure 7.20: Influence of TDS input power on measured phase space distributions. The
figures show the reconstructed trace space distribution of the head for shear parameters
of 29 (a), 25 (b), 13 (c) and 7 (d). The measurements were done at a particle energy of
494 MeV (C1).

Measurements at different RF phases of the TDS

The TDS is operated at a zero-crossing phase of the RF deflecting force, so
the trajectory of the bunch centroid is not affected by the TDS. If the phase

is shifted by 180◦, the sign of the shear parameter is inverted. Performing
measurements at both signs of the shear parameter allows to determine the

impact of asymmetries in the vertical bunch profiles on the measurements.
Such asymmetries may for instance arise from vertical slice centroid shifts
due to wake fields and dispersion.

Measurements at both signs of the shear parameter were carried out

at 494 MeV. A comparison of the measured current and slice emittance
profiles is presented in Fig 7.21(a) and (b), respectively. The results ob-

tained at both RF phases are basically in agreement. Moderate deviations
in current as well as slice emittance of ≈ 20% are unveiled within the high

current region. In particular, the current and the slice emittance measured
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Figure 7.21: Comparison of average current profile (a) and slice emittance profile (b)
obtained at opposite signs of the shear parameter.

at the position of the trailing edge of the current spike drop if the shear
parameter is inverted (green).

The strong energy variations measured in this bunch region at 677 MeV

(cf. Fig. 7.3) suggest that the differences originate from vertical dispersion.
A vertical separation of bunch fractions at the screen due to dispersion

adds to the offsets induced by the TDS and may introduce non-linearities
of the vertical position y(ζ) as a function of the longitudinal position ζ.

Vertical dispersion may originate from beam steering and off-crest acceler-
ation on the one hand, and the deflection of the TDS on the other hand.

An inversion of the shear parameter is suited to reveal such effects, since
the distorting vertical offsets add and subtract, respectively, to the offsets
induced by the TDS.

The dispersion at the screen is assumed to be in the order of Dy �
20 mm, with a contribution of less than 7.5 mm (half the screen hight)
from the TDS. Assuming variations of the mean slice energy of � 0.4%

as measured at 677 MeV (cf. section 7.3), the vertical separation of corre-
sponding bunch fractions on the screen amounts to � 80 μm. At a shear

parameter of S = 29 as in the presented measurements, this corresponds
to an apparent longitudinal separation of � 3 μm. The difference in appar-

ent longitudinal separation between the measurements with inverted shear
parameters amounts to twice this value, which is close to the estimated

resolution of 8 μm. Vertical dispersion may thus explain the observed
differences.

The results show that vertical asymmetries may influence the experi-

mental results for current profile and slice emittance. The impact is the



156 7. Results under FEL operating conditions

larger the smaller the shear parameter. Generally, a dependence of the
results on the sign of the shear parameter is an indication for resolution-

limitations. Averaging of results obtained with inverted shear parameters
may lead to improvements, as discussed in section 6.



Chapter 8

Numerical simulations

8.1 Particle tracking simulations for FEL operating

conditions

This section is concerned with a comparison of the experimental results pre-

sented in this thesis with particle tracking simulations. Particle tracking
simulations were performed for the entire beamline from the RF electron

gun to the position of the screens, including both external fields from ac-
celerating structures and magnets, and self-fields of the bunches. For this

purpose, the computer codes ASTRA and CSRTrack were used. ASTRA
(“A Space Charge Tracking Algorithm”) tracks particles through user de-
fined external fields taking into account the space charge field of the particle

cloud. The tracking is based on a Runge-Kutta integration with fixed time
step [55]. ASTRA was used for particle tracking along straight sections of

the beamline, including in particular the accelerating modules. CSRTrack
focuses on the treatment of coherent synchrotron radiation (CSR) fields

and provides various models for field calculations [56, 97, 98, 99, 100, 94].
Here, an efficient one-dimensional method has been used, in which electron
bunches are approximated by line charge densities along the beam trajec-

tory [57, 97]. CSRTrack was used within the magnetic bunch compressor
chicanes, where strong effects from CSR may occur.

The electron distribution of a bunch depends critically on the RF phase

φACC1 of the accelerating module ACC1. As will become clear in this
section, changes of the RF phase in the order of 0.1◦ may lead to significant

changes of current profile and slice emittance. However, the RF phases were
determined only with an accuracy of about 1◦. Variations in the order of

1◦ are also critical in case of the RF phase φACC2/3 of module ACC2/3. For

157
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this reason, simulations for several RF phases of ACC1 and ACC2/3 close
to the measured values were performed. A comparison of the resulting

current profile to the measured current profile allows to confine the RF
phases to a smaller range of values, since the width of the current spike

and the peak current sensitively depend on these parameters. A detailed
quantitative comparison between experimental results and simulations is,
however, not possible without knowing the RF parameters more precisely.

The comparisons shown in this section are therefore mainly of qualitative
character. Nevertheless, they allow to interpret important experimental

observations.

The simulations were performed for the case of a final particle energy

of 494 MeV (conditions C1 in Table 7.1). Module ACC4/5 was set to
on-crest operation and the bunch charge to 0.76 nC in correspondence

with the measurements (cf. Table 7.1). Results for different RF phases
−7.0◦ ≤ φACC1 ≤ −9.0◦ (in steps of 0.25◦) and −10◦ ≤ φACC2/3 ≤ −12◦ (in

steps of 1.0◦) around the measured values φ̂ACC1 = −8.8◦ and φ̂ACC2/3 =
−11.0◦ were compared to the experimental results. A reasonable agreement

with the measured current profile was obtained at φACC2/3 = −10.0◦ and
−8.0◦ ≤ φACC1 ≤ −8.25◦. The results of these simulations will be presented

in more detail in the remainder of this section. In all simulations, an input
distribution with 105 particles obtained for standard settings of the RF-gun
and a standard optics was used. An adaption to the conditions during the

measurements was not carried out in view of the dominating dependence
on the RF parameters of ACC1 and ACC23.

8.1.1 Comparison to experimental results

In the following, properties of the simulated particle distributions are com-

pared to experimental results. Unless otherwise specified, the particle dis-
tributions are considered at the reconstruction point of the emittance mea-
surement at 494 MeV, which is located upstream of the accelerating module

ACC5 (cf. section 7).

Current profile Figure 8.1(a) shows a comparison of the current pro-

files obtained in the simulations with the experimental result. The current
profiles in the simulations exhibit a current spike as observed experimen-

tally. In case of φACC1 = −8.0◦, the current spike is much narrower than
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Figure 8.1: Comparison of experimental results obtained at a particle energy of 494 MeV
with results of simulations. (a) Current profile. (b) Slice emittance. (c) Deformation
parameter (cf. section 2.3). (d) Amplitude of slice centroid offsets (cf. section 7.5). Solid
lines show the results of simulations for RF phases φACC1 of −8.0◦ (black) and −8.25◦

(green). Dashed lines show experimental results.

measured, while the peak current is larger by more than 50 %. The total
charge located within the current spike is roughly the same as measured.

At φACC1 = −8.25◦, peak current and width of the current spike are in good
agreement with the experimental results. The current spike is broader at

this phase than at φACC1 = −8.0◦ due to over-compression in the front re-
gion of the bunch. The spike width further increases for φACC1 < −8.25◦.
For φACC1 > −8.0◦, the peak current decreases and the amount of charge
located in the high current region falls below the measured value. The RF

phase of module ACC1 during the measurement is therefore assumed to
be in the range of −8.0◦ to −8.25◦.

Slice emittance The slice emittance significantly increases in the re-
gion around the current spike at both RF phases of ACC1 considered

(Fig. 8.1(b)). This behavior is in agreement with experimental observa-
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tions. The maximum slice emittance is about 6.5 μm at φACC1 = −8.0◦

and 9 μm at φACC1 = −8.25◦. At φACC1 = −8.25◦, the maximum value

occurs at the position of the trailing edge of the current spike. The slice
emittance increases by up to a factor of 6 compared to the value of about

1.5 μm in the tail. A similar increase is observed experimentally. At
φACC1 = −8.0◦, the maximum slice emittance is found in front of the cur-
rent spike. As in case of the measurement, a local minimum occurs at the

position of the leading edge of the current spike.

Throughout the considered bunch region, the slice emittance values
found in simulations are smaller than the measured ones. The deviation in

the tail may be due to an improper initial distribution, since the detailed
settings of the RF gun such as the laser spot size on the cathode were not
adapted to the conditions during the measurements. In the high current

region, imprecise RF parameters play the dominant role, as can be seen
from the difference in slice emittance between the simulation results for

φACC1 = −8.0◦ and φACC1 = −8.25◦. Furthermore, at a particle energy
of 494 MeV the one-dimensional approximation used for the calculation

of CSR tends to underestimate slice emittance growth due to CSR [101].
The approximation gets more accurate for larger particle energies in the

order of 1 GeV. Measurement errors were estimated to be � 20 % (cf.
section 5.3.2).

Deformation parameter The deformation parameter (Fig. 8.1(c)) shows
the same behavior at both RF phases considered. The parameter varies

in the range of m = 1 to m = 3 in the tail and the current spike in both
cases. In front of the current spike, the parameter strongly increases up to

m ≈ 10. Apart from the deviations in the low current region in front of the
current spike, which may originate from a limited sensitivity of the mea-

surement for low charge densities, the measured deformation parameter is
in reasonable agreement with these results.

Slice centroid offsets Slice centroid offsets (cf. section 7.5) are shown
in Fig. 8.1(d). At φACC1 = −8.0◦, hardly any offsets can be observed. At

φACC1 = −8.25◦, variations are found around the position of the trailing
edge of the current spike, with two extremal values and a steep slope at

ζ = −0.05 mm. The shape of the profile is very similar to the one observed
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Figure 8.2: Simulated horizontal phase space distribution of the particles located within
the current spike (FWHM) for φACC1 = −8.0◦ (a) and φACC1 = −8.25◦ (b). Normalized
coordinates (u, v) (defined by means of the Twiss parameters of the entire bunch) are
used in order to minimize the dependence of the phase space distribution on the optics
(cf. sections 2.3 and 7.6).

in the measurement. However, the absolute values are about four times
larger in case of the measurement than found in the simulation. These
deviations are not fully understood. They may arise from physical effects

not included in the simulations, such as wake fields and space charge forces
within the magnetic chicane and an imperfect beam alignment. Further

studies need to be done to clarify this observation.

Horizontal phase space The horizontal phase space distribution of the
particles located within the current spike (FWHM) is shown Fig. 8.2(a) for

φACC1 = −8.0◦ and in Fig. 8.2(b) for φACC1 = −8.25◦. Both distributions
are characterized by a bifurcation into two branches. At φACC1 = −8.0◦,
the maximum charge density occurs in the region where the branches split
up, while at φACC1 = −8.25◦ it is found within the lower branch. The

maximum in charge density is more pronounced in the latter case. The total
phase space area occupied by the particles is significantly larger at −8.25◦,
which is in agreement with a larger slice emittance. The basic structure
of the distributions in phase space is very similar to that of measured
distributions, in which also a bifurcation and a high-density region were

observed (cf. Fig. 7.14).

Longitudinal phase space The density distributions in longitudinal

phase space at φACC1 = −8.0◦ (Fig. 8.3(a)) and φACC1 = −8.25◦ (Fig. 8.3(b))
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Figure 8.3: Distribution in longitudinal phase space at φACC1 = −8.0◦ (a) and φACC1 =
−8.25◦ (b) upstream of the accelerating module ACC5. δ denotes the relative energy
deviation from the mean bunch energy, which is slightly lower at φACC1 = −8.25◦ due to
stronger CSR effects. Only the front part containing the high-current region is shown. In
(a), characteristic deformations due to CSR (1) and space charge forces downstream (2)
and upstream (3) of the second bunch compressor are indicated. Figures (c) and (d) show
the corresponding distributions at the position of the OTR screen used for measuring the
distribution in longitudinal phase space (downstream of the final accelerating modules).

show essentially the same characteristic structures seen in simulations for
standard settings (cf. section 4.1.4) and the results of measurements (cf.

section 7.3). In particular, branches towards lower energies due to CSR,
towards higher energies due to space charge forces downstream of the sec-

ond bunch compressor, and towards positive ζ due to space charge forces
in between the bunch compressors can be observed in the high-current
region of the bunches. The branch towards lower energies due to CSR

has a positive slope in longitudinal phase space in case of φACC1 = −8.25◦,
which indicates over-compression in this bunch region (cf. section 4.1.4). At

φACC1 = −8.0◦, the branch has minimum spatial extension, showing that
the bunch section is close to full compression. This is in agreement with a

larger peak current and narrower current spike observed at φACC1 = −8.0◦.
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The experimental result at a particle energy of 677 MeV (cf. Fig. 7.3) sug-
gests that a slight over-compression of the high-current region is favorable

for SASE operation.

Figures 8.3(c) and (d) show the corresponding distributions at the posi-
tion of the OTR screen used for measuring longitudinal phase space, which
is located downstream of the final acceleration modules. Here, the relative

deviations δ from the mean energy are reduced since the mean particle
energy is larger. Moreover, the spikes towards higher energy are more pro-

nounced due to longitudinal space charge forces acting along the additional
beamline segment.

Structure of the high-current region

A key observation in simulations as well as experiments is a bifurcation of

the bunch section around the current spike in horizontal phase space. As is
shown in Fig. 8.4 for the case of φACC1 = −8.25◦, the bifurcation is related

to the structure observed in longitudinal phase space. The majority of the
particles in the lower branch of the bifurcation have an energy only slightly
below the mean energy, while the upper branch mainly contains low-energy

particles ( Fig. 8.4(a) - (d)). In both branches, there is a correlation be-
tween longitudinal position and energy. While in the lower branch particles

at the front have lower energy than those trailing behind, the situation is
reversed in the upper branch due to over-compression. The correlations

can be utilized to raise the peak current by longitudinally compressing one
of these bunch sections in the magnetic chicane prior to the undulator sec-

tion. Upstream of this magnetic chicane, the maximum current carried by
the two regions is about 1 kA (Fig. 8.4(e) and (f)) and thus in good agree-
ment with the measured current of the high density region in horizontal

phase space (cf. section 7.6).

8.1.2 Effects from coherent synchrotron radiation within the
second bunch compressor

As shown in section 8.1.1, remarkable experimental results such as a strong

increase in slice emittance, a bifurcation in transverse phase space and
varying slice centroid offsets in the high-current region can basically be

reproduced in particle tracking simulations. In this section, it will be
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shown that CSR in the second bunch compressor (BC3) is the dominating
physical origin for these effects. The results obtained for φACC1 = −8.25◦

will be considered since the agreement between experimental results and
simulations is best in this case.

The direct consequence of coherent emission of synchrotron radiation
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Figure 8.4: Structure of the high-current region in horizontal and longitudinal phase
space at φACC1 = −8.25◦. (a) Horizontal phase space distribution of the particles located
within the current spike (cf. Fig. 8.2). Different colors are used for the two branches.
(b) Corresponding distribution in longitudinal phase space using the same color-code. (c,
d) Charge density distribution of the two branches in longitudinal phase space. (e, f)
Current profiles of the two bunch fractions.
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Figure 8.5: Simulated distributions in longitudinal phase space (a) excluding and (b)
including CSR in the second bunch compressor. (c, d) Corresponding current profiles.

is an energy loss of the radiating electrons. CSR effects can thus be seen
directly in longitudinal phase space (Fig. 8.5). When CSR is excluded in

the simulations, the distribution shows hardly deviations from the “ideal
shape”, which results from bunch compression. A spike towards positive ζ

is found due to longitudinal space charge forces upstream of BC3. If CSR is
included, the entire bunch fraction in the high current region between ζ = 0
and ζ = −0.05 mm is shifted towards lower energies. As a result, the mean

particle energy is reduced. The distribution is additionally deformed since
the energy loss varies as a function of longitudinal position and energy.

This results in particular in a branch towards lower energies.

Significant effects can also be observed in the current profiles. CSR
leads to a reduction of the peak current from about 2.7 kA to 1.7 kA (cf.

Fig. 8.5(c) and (d)). At the same time the current spike is broadened. A
reduction of the peak current is an important consequence for the dynam-

ics in the remainder of the accelerator, where space charge forces, which
sensitively depend on the peak current, play a dominant role. CSR influ-

ences the current profile since energy variations within the magnetic chi-



166 8. Numerical simulations

cane affect the path length within the chicane. In this way radiating bunch
fractions fall slightly behind. Typically, the emission of CSR is strongest

within the last three dipoles (fourth to sixth dipole of the chicane), where
the peak current is highest. The induced path length differences are there-

fore small.
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Figure 8.6: Effects from CSR in the second bunch compressor BC3 at φACC1 = −8.25◦ on
the distribution in horizontal phase space. (a) Charge density distribution in horizontal
phase space directly downstream of BC3 if CSR is not included in the simulation. (b)
Corresponding distribution if CSR is included. (c, d) Horizontal phase space distribution
further downstream at the reconstruction point of the emittance measurements (upstream
of module ACC5) excluding and including CSR, respectively. Normalized coordinates are
used (cf. section 7.6).

An energy loss within the magnetic chicane leads to changes of the
bending angles within the dipole magnets. In this way CSR also affects
the charge density distribution in horizontal phase space. CSR in the last

dipole primarily leads to a horizontal angle offset Δx′ of the radiating
bunch fractions at the exit of the chicane. CSR in the fourth and the

fifth dipole magnet additionally induces a spatial offset Δx. Figure 8.6(a)
and (b) show the charge density distribution in horizontal phase space at

the exit of the magnetic chicane excluding and including CSR in BC3,
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respectively. Bunch fractions with huge spatial offsets of up to 2.5 mm
and angle offsets of up to 0.2 mrad are found if CSR is included. The

largest contribution to these offsets stems from CSR in the fifth dipole of
the chicane. The offsets transform into a bifurcation further downstream

of the machine (Fig. 8.6(c) and (d)).

The phase space area covered by the particles is significantly increased
due to CSR. Correspondingly, a slice emittance of up to 9 μm occurs if
CSR is included, compared to maximum values of about 3 μm without

CSR (Fig. 8.7(a)). Also horizontal slice centroid offsets can be attributed
to CSR in the second bunch compressor. The offsets vanish if CSR is

excluded (Fig. 8.7(b)).
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Figure 8.7: Effects from CSR in the second bunch compressor on slice emittance and cen-
troid offsets. (a) Comparison of the slice emittance which is obtained if CSR in the second
bunch compressor is included (black, dashed) and excluded (green, solid), respectively.
(b) Corresponding comparison of slice centroid offsets. γraC denotes the offset amplitude
as defined in section 7.5.

8.1.3 Discussion

The presented comparison between experimental results and numerical
simulations shows that key observations such as a strong increase in slice
emittance in the high current region and a bifurcation in horizontal phase

space can basically be reproduced in simulations. These distortions were
shown to arise largely from CSR in the second bunch compressor. How-

ever, the observed slice centroid shifts at the trailing edge of the current
spike could not be explained satisfactory, indicating that there may be

significant effects which were not included in the simulations.

An exact comparison between simulations and experimental results is
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difficult in view of the multitude of parameters that affect the beam prop-
erties at the position of the measurement. In particular, in turned out that

the RF phase of the accelerating module ACC1 needs to be known with
an accuracy of � 0.1◦ for this purpose.

8.2 Simulation of an emittance measurement under

FEL operating conditions

The accuracy of the emittance measurements presented in chapter 7 de-
pends on properties of the electron bunches under investigation. Energy

deviations of bunch fractions from the mean energy lead to different focus-
ing effects of the quadrupole magnets and consequently to a different beam

transfer. Energy spread is transformed into a spread of the horizontal po-
sition by means of the kicker and may thus influence the measurements.
Finally, strong transverse space charge forces in the high current region

provide a defocusing force, which is not included in the transfer matrices
used to determine the emittance and the distribution in horizontal phase

space.

In order to investigate the measurement accuracy under FEL operating

conditions, the electron distribution obtained from the tracking simulation
discussed above (φACC1 = −8.25◦) was taken as an input distribution for a
simulation of an emittance measurement. The distribution was tracked to

the position of the OTR screen (OTR-2) for all quadrupole settings applied
during the corresponding emittance measurement at 494 MeV. The particle

tracking was performed by the program ASTRA which takes the detailed
energy distribution of the bunch as well as space charge forces into account.

The action of the TDS was simulated by inducing a time-dependent vertical
deflection at the position of the center of the TDS with the same strength

as used in the actual experiment. The kicker was included by adding
an energy-dependent horizontal offset Δx to the final distribution at the
screen according to Δx = Dx · δ with Dx ≈ 10 mm. Finally, the transverse

particle distributions were converted into digital images with 8 bit intensity
resolution and 640 × 480 pixels of the same size as in case of the recorded

images. Gaussian noise with a similar intensity as observed during the
measurements was added. Ten images were stored for each setting of the

quadrupoles and used as input for the data evaluation programs.
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Figure 8.8: (a) Comparison of the reconstructed slice emittance profile (green, solid) with
the original profile of the input distribution (black, dashed) used for the reconstruction.
The particle tracking was performed with ASTRA. Space charge forces and effects from
the horizontal kicker were included. (b) Reconstructed slice emittance profile using linear
transfer matrices for particle tracking (red, solid), and original profile (black, dashed).

Figure 8.8(a) shows a comparison of the reconstructed slice emittance

profile with the original slice emittance profile of the input distribution.
Nearly perfect agreement between both profiles is obtained in the bunch
tail, where energy spread and current are comparably small. Also within

the region of the current spike, reconstructed and original slice emittance
agree very well, despite of the complicated energy distribution within this

region. Around the edges of the current spike, deviations of up to 50 %
occur. Similar deviations are found when the linear transfer matrices used

for reconstructing the emittance are also used for particle tracking (Fig-
ure 8.8(b)). The deviations are thus mainly due to the limited longitudinal

resolution of the measurement. Effects from space charge forces and the
detailed energy distribution are negligible in the case considered here.

The accuracy of a phase space reconstruction is illustrated in Fig. 8.9(a)
- (f). Figure 8.9(a) shows the original horizontal phase space distribution

within the region of the current spike (FWHM) in normalized coordinates.
A reconstruction of this distribution was simulated using different methods

for particle tracking. In order to investigate the accuracy that may prin-
cipally be obtained, linear transfer matrices were used. The reconstructed
distribution (Fig. 8.9(b)) is in very good agreement with the original dis-

tribution. The distribution is smeared out due to the limited longitudinal
resolution as well as the maximum entropy algorithm used for the tomo-

graphic reconstruction.

In order to include the detailed energy distribution of the bunch, par-
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ticle tracking was performed with ASTRA. If space charge forces and ef-
fects from the kicker are excluded, deviations between reconstructed and

original distribution mainly occur in the upper branch of the bifurcation
in horizontal phase space, which primarily contains low-energy particles
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Figure 8.9: Demonstration of the accuracy of a phase space reconstruction. The horizontal
phase space (a) of a test particle distribution was reconstructed using different methods for
particle tracking: (b) Linear transfer matrices. (c) Tracking with ASTRA excluding space
charge forces. (d) Tracking with ASTRA including space charge forces. (e) Tracking with
ASTRA including space charge forces and horizontal dispersion induced by the kicker.
(f) Same particle tracking as in (e), but assuming an energy of 2 % below the mean
energy for the reconstruction. The charge density scale is the same for all reconstructed
distributions. Normalized coordinates are used.
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(Fig. 8.9(c)). If space charge forces are included, deviations are also found
in the high-density regions of the distribution (Fig. 8.9(d)). Including also

the horizontal kicker has no significant influence (Fig. 8.9(e)). In case the
mean energy of the bunch is not known precisely, additional reconstruc-

tion errors may occur. Fig. 8.9(f) shows the distribution obtained using an
energy 2% below the mean bunch energy for the reconstruction.

The presented comparison of reconstructed and original phase space dis-

tributions show that the structure of the high-current region in horizontal
phase space can be reconstructed with a reasonable accuracy. Errors occur

mainly due to energy-dependent focusing in the quadrupoles and space
charge forces. Effects from the kicker are negligible. This is related to

the fact that bunch fractions of different energy are generated by CSR in
the second bunch compressor, which also leads to a separation in horizon-

tal phase space. Under FEL operating conditions, the resulting spatial
separations are significantly larger than those induced by the kicker.



Chapter 9

Conclusions and Outlook

A transverse deflecting structure (TDS) installed at the Free-Electron Laser

in Hamburg (FLASH) was successfully used to investigate the phase space
distribution of electron bunches. Single-shot measurements of the current

profile and the distribution in longitudinal phase space were performed
with an unprecedented longitudinal resolution on the order of 10 μm and

an energy resolution on the order of 10−4. For the first time, the transverse
slice emittance (averaged over several bunches) was also measured with a
longitudinal resolution of about 10 μm. A maximum entropy algorithm

was applied in order to reconstruct the horizontal phase space distribution
as a function of the longitudinal position within a bunch.

Experimental results for uncompressed bunches showed a peak current

of 40 A to 70 A (depending on the bunch charge) and a bunch length of
about 1.6 mm (RMS). A horizonal slice emittance between 1.6 μm and

2.5 μm was measured in the bunch center. The values are significantly
below the overall bunch emittance of 3 μm to 4 μm, which was shown to

be influenced significantly by slice centroid offsets along the bunch. The
difference between overall bunch emittance and slice emittance underpins
the necessity of longitudinally resolved measurements. A measurement of

the particle distribution in longitudinal phase space clearly displays the
nonlinear dependence of the particle energy on the position within the

bunch caused by the harmonic time dependence of the RF accelerating
field.

Measurements under FEL operating conditions at radiation pulse en-

ergies of up to 10 μJ (not saturated) were performed at particle beam
energies of 494 MeV, 677 MeV and 964 MeV. Peak currents of up to 2 kA

and a width of the leading current spike down to 22 μm (FWHM) were
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resolved. A measurement of the charge density distribution in longitudinal
phase space at 677 MeV revealed structures which can be attributed to

longitudinal space charge forces and coherent synchrotron radiation emit-
ted in the dipole magnets of the bunch compressor chicanes. A peak slice

energy spread of 1.8 MeV or 0.26 % was measured in the high-current
region.

The overall bunch emittance under FEL operating conditions was mea-

sured to be > 10 μm. It was found to be significantly influenced by large
slice centroid offsets along a bunch. While a slice emittance of 2 to 3 μm

was measured in the bunch tail, a surprisingly strong increase in slice emit-
tance in the high current region to more than 10 μm was observed. The

apparent contradiction to FEL theory could to a large extent be resolved
by a tomographic reconstruction revealing a bifurcated charge density dis-

tribution in horizontal phase space with a high-density region. The RMS
emittance of this high-density region was estimated to be in the range
of 2 to 4 μm. This result demonstrates that due to the complex phase

space structure of bunches at FLASH under FEL operating conditions a
tomographic reconstruction is essential for an estimate of the emittance of

the lasing portion of a bunch. The origin of the structures in horizontal
phase space has been identified to be coherent synchrotron radiation in the

second bunch compressor with the help numerical simulations.
An appropriate accelerator optics for slice emittance analysis is crucial

to obtain a good resolution and accurate results. A corresponding optics

was designed for FLASH and investigated in detail. The analysis revealed
that great care has to be taken to adapt the optics to the spatial resolution

of the imaging system, in particular at large beam energy, small transverse
emittance and the possibility of mismatched beams. The RMS error of slice

emittance measurements at FLASH including resolution errors, statistical
errors, energy errors, and calibration errors of quadrupole magnets and

OTR screens was estimated to be < 15 %. In order to push the longitudinal
resolution and the accuracy to its limits, a precisely known accelerator
optics for FEL operation which simultaneously fulfills the requirements for

measurements using the TDS is highly desirable for the future.
Principal limitations of the accuracy of slice emittance measurements

and phase space tomography result from machine instabilities, which lead
to shot-to shot fluctuations of the phase space distribution. As a conse-

quence, the measured average transverse phase space distribution is di-
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luted. Furthermore, the achieved longitudinal resolution of about 10 μm is
still significantly above the coherence length of about 1 μm deduced from

a measurement of the gain length at 677 MeV. Finally, a numerical simula-
tion of an emittance measurement under FEL operating conditions showed

that transverse space charge forces and the complicated energy distribution
in the high current region slightly distort the result of the tomographic re-
construction. An incorporation of transverse space charge effects into the

reconstruction by means of a linear approximation might further improve
the results.



Appendix A

Abbreviations and color code

Table A.1: Abbreviations repeatedly used in the text.
Abbreviation Definition
FLASH Free Electron Laser in Hamburg
TDS transverse deflecting structure
CSR coherent synchrotron radiation
SCF space charge forces
OTR optical transition radiation
BPM beam position monitor
RF radio frequency
FEL free electron laser
SASE self-amplified spontaneous emission
BC bunch compressor
FWHM full width at half maximum
RMS root mean square

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Figure A.1: Color code used in figures of this thesis. The image shows a two-dimensional
Gaussian distribution.
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Appendix B

Wake fields of the transverse
deflecting structure

A bunch of electrons traversing the transverse deflecting structure (TDS)
interacts with the conducting wall of the structure. Due to the varying

geometry along the structure, an electromagnetic field (geometrical wake
field) is generated behind the bunch. The field generated by the head of the

bunch acts on the bunch tail (short-range wake field effects), and the field
generated by the entire bunch may act on subsequent bunches (long-range

wake field effects). Before discussing wake field effects of the TDS, a few
concepts need to be introduced.

Consider a charge distribution with total charge q1 traversing a cylin-

drically symmetric structure with a transverse offset r1 parallel to the sym-
metry axis (z-axis) with the speed of light c. Then the wake potential is

defined as [102]

W (r1, ζ) =
1

q1

∫ +∞

−∞
dz [E(r1, z, t) + cez × B(r1, z, t)]t=(ζ+z)/c) , (B.1)

where E and B are the electric and magnetic (wake) field, respectively, ez

is the unit vector along the z-axis, and the internal bunch coordinate ζ

is measured from the head of the bunch towards its tail. The change of
momentum of a test charge q2 trailing behind the bunch at a distant s on

the same path is given by

Δp(ζ) = q1q2W (ζ). (B.2)

For a point-like charge q1, the wake potential is called wake function

w(ζ). The wake potential for an arbitrary charge distribution ρ(ζ) is given
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by the convolution with the wake function

W (ζ) =
1

q1

∫ +∞

−∞
w(ζ − ζ ′)ρ(ζ ′)dζ ′. (B.3)

The short-range and long-range wake function of the TDS have been

estimated both numerically and analytically in reference [103]. Here, only
short-range wake fields are considered. Long-range wake fields are much

weaker and not relevant for the measurements presented in this thesis. The
longitudinal and transverse short-range wake functions w0

‖(ζ) and w1
⊥(ζ),

respectively, can be approximated by the expressions [103]

w0
‖(ζ) ≈ 257.6 · exp

[
−
√

ζ

3.96 · 10−3

]
+ 1.16

cos(1760 · ζ0.72)√
ζ + 1600 · ζ1.23

[
V

pC

]
(B.4)

and

w1
⊥(ζ) ≈ 10200

(
1 −
(

1 +

√
ζ

11.7 · 10−3

)
exp

(
−
√

ζ

11.7 · 10−3

))

+ 9200
√

ζ

[
V

pC · m
]

(B.5)

with ζ > 0. These expressions are the lowest-order terms of a multi-pole
series. The transverse wake function w1

⊥(ζ) is normalized by the particle

Figure B.1: Comparison of numerical (solid lines) and analytical (dashed lines) lon-
gitudinal wake potentials in the TDS for Gaussian bunches with RMS lengths σ of
25,50,100,250,500,1000 μm [103]. The internal bunch coordinate in units of σ is des-
ignated by s in contrast to the convention used in this thesis. The head of the bunch is
on the left hand side.
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Figure B.2: Comparison of numerical (solid lines) and analytical (dashed lines) trans-
verse wake potentials in the TDS for Gaussian bunches with RMS lengths σ of
25,50,100,250,500,1000 μm [103]. The head of the bunch is on the left hand side.
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Figure B.3: Effects from transverse wake fields in the TDS. (a) Horizontal kick Δx′ (red,
solid) as a function of the longitudinal position ζ for a measured current profile (dashed
line, arbitrary units) at a bunch charge of 0.67 nC and a beam energy of 490 MeV. (b)
Resulting offset Δx at the screen (OTR-2, cf. Fig. 4.8) as a function of ζ (nominal optics).
The head of the bunch is on the right hand side.

offset r1 in the structure, so the change in transverse momentum of a charge

q2 trailing a distance ζ behind a point-like charge q1 is given by

Δp⊥(ζ) = q1q2r1w
1
⊥(ζ), (B.6)

while the change in longitudinal momentum is given by

Δp‖(ζ) = q1q2w
0
‖(ζ). (B.7)

The longitudinal and transverse wake potentials for Gaussian bunches
with RMS lengths σ between 25 and 1000 μm are shown in Figs. B.1

and B.2. For a bunch charge of 1 nC and a bunch length σ = 25 μm,
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the maximum energy loss of bunch particles due to the longitudinal wake
potential is about 300 keV, which is negligible at a typical beam energy of

500 MeV. Significant effects may arise from the transverse wake potential
in case of long bunches. For σ = 1 mm, a bunch charge of 1 nC, and a

beam energy of 500 MeV, the transverse (here: horizontal) kick

Δx′ =
Δp⊥
|p| (B.8)

at the trailing end of the bunch is about 4 μrad per millimeter offset in
the TDS. Figure B.3(a) shows the horizontal kick as a function of the lon-

gitudinal position ζ for a measured current profile (uncompressed bunch)
and a mean horizontal offset of 3 mm in the TDS. In Fig. B.3(b), the cor-

responding offsets resulting at the screen are shown (nominal optics). A
transverse offset of up to 60 μm between head and tail of a bunch is ob-
served. The maximum offsets measured and the screen are typically about

four times larger. Since the mean offset within the TDS is typically smaller
than 3 mm (the alignment of the structure was found to be accurate within

±1 mm), the contribution from the TDS to slice centroid offsets can be
considered small in agreement with the experimental results presented in

section 6.5.
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