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Abstract

In quantum field theory in curved spacetimes the construction of the algebra of observ-
ables of linear fields is today well understood. However, it remains a non-trivial task to
construct physically meaningful states on the algebra. For instance, we are in the unsat-
isfactory situation that there exist no examples of states suited to describe local thermal
equilibrium in a non-stationary spacetime. In this thesis, we construct a class of states
for the Klein-Gordon field in Robertson-Walker spacetimes, which seem to provide the
first example of thermal states in a spacetime without time translation symmetry. More
precisely, in the setting of real, linear, scalar fields in Robertson-Walker spacetimes we
define on the set of homogeneous, isotropic, quasi-free states a free energy functional
that is based on the averaged energy density measured by an isotropic observer along
his worldline. This functional is well defined and lower bounded by a suitable quantum
energy inequality. Subsequently, we minimize this functional and obtain states that
we interpret as ’almost equilibrium states’. It turns out that the states of low energy,
which were recently introduced in [Olb07b], are the ground states of the almost equilib-
rium states. Finally, we prove that the almost equilibrium states satisfy the Hadamard
condition, which qualifies them as physically meaningful states.

Zusammenfassung

In der Quantenfeldtheorie in gekrümmter Raumzeit ist die Konstruktion der Algebra der
Observablen linearer Felder heutzutage gut verstanden. Es ist jedoch eine nicht-triviale
Aufgabe physikalische Zustände auf der Algebra zu konstruieren. Zum Beispiel sind wir
in der unzufriedenstellenden Situation, dass keine Zustände bekannt sind, die es erlauben
ein lokales thermales Gleichgewicht in einer nicht-stationären Raumzeit zu beschreiben.
In dieser Arbeit konstruieren wir ein Klasse von Zuständen für das Klein-Gordon Feld in
Robertson-Walker Raumzeiten, die das erste Beispiel thermaler Zustände in einer Raum-
zeit ohne Translationssymmetrie bezüglich der Zeit darstellen dürften. Genauer gesagt
definieren wir für das reelle, lineare, skalare Feld in Robertson-Walker Raumzeiten ein
Funktional für die freie Energie auf der Menge der homogenen, isotropen, quasifreien
Zustände, welches auf der gemittelten Energiedichte basiert, die ein isotroper Beobachter
auf seiner Weltlinie misst. Dieses Funktional ist wohldefiniert und von unten beschränkt,
dank einer geeigneten Quanten-Energie-Ungleichung. In der Folge minimieren wir die-
ses Funktional und erhalten so Zustände, welche wir als Fast-Gleichgewichts-Zustände
(“almost equilibrium states”) interpretieren. Es stellt sich heraus, dass die Zustände
niedriger Energie (“states of low energy”), welche kürzlich in [Olb07b] definiert wur-
den, die natürlichen Grundzustände der Fast-Gleichgewichts-Zustände sind. Schließlich
beweisen wir, dass die Fast-Gleichgewichts-Zustände die Hadamard-Bedingung erfüllen,
was sie als physikalisch sinnvolle Zustände auszeichnet.
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1 Introduction

There are plenty of reasons to investigate quantum fields in curved spacetimes. Accepting
for the time being that we don’t know how to formulate a quantum theory of gravity, we
may still have the desire to investigate the physics in the intermediate regime, where the
quantum nature of fields is already apparent and spacetime is curved, but the quantum
nature of gravitation plays no crucial role. That such a theory can produce interest-
ing results is undoubted since the discovery of the Hawking effect, which establishes
a remarkable connection between two seemingly distinct branches of physics, namely,
gravitational (black hole) physics and thermodynamics. The latter field is also of major
importance in modern cosmology, where the cosmic microwave background (CMB), its
isotropy on large scales, and its anisotropy at small scales remains a startling puzzle.
It is also remarkable that cosmological observations, e.g., the ones leading to the pos-
tulation of dark matter and dark energy, nowadays become a major trigger for particle
physics research. For example, the Large Hadron Collider (LHC) at CERN, scheduled
to start operating this year, is hoped to provide clues on the constituents of dark matter.
Surely, the interplay between cosmology and particle physics will increase in the years
to come.

The formulation of quantum field theory in curved spacetime is hampered by the fact
that the traditional formulation relies heavily on Poincaré symmetry, which is lacking in
a general curved spacetime. Consequently, notions like ’particles’ and ’vacuum’, which
depend on Poincaré symmetry, are not well defined in this setting. Furthermore, quan-
tum field theory becomes ambiguous because of the appearance of unitarily inequivalent
Hilbert space representations of the algebra of observables. An expanding, homogeneous,
isotropic universe is described by a Robertson-Walker metric, which is non-stationary
and comes in three types, of which two have curved spacelike sections. Owing to the
present symmetry, the curvature of the spacelike sections does not pose a serious problem
for the formulation of quantum field theory. On has analogues of the Fourier transform,
and the quantum field can be written, as usual, as an integral over modes, albeit the
coefficients in the mode decomposition, which in stationary spacetimes are interpreted
as creation and annihilation operators, loose their meaning. However, non-stationarity,
i.e., the absence of time translation symmetry, brings about, among others, the problems
mentioned above. In particular, the lack of a timelike Killing field results in a failure
of energy conservation and, consequently, the lack of a Hamiltonian, which generates
time-evolution in the non-stationary case.

A thorough analysis of these problems is viable within the algebraic approach to
quantum field theory, which can be rigorously formulated for quantum fields on curved

9



10 Chapter 1. Introduction

backgrounds. In this approach, one first constructs the algebra of observables for the
quantum system, satisfying, for instance, the canonical commutation relations. In a
second step, one constructs states with desired properties as linear functionals on the
algebra. This course of action disentangles, effectively, problems tied to the algebra
of observables from problems arising at the level of representations and states. While
the first step is, at least for free fields, to a large degree understood, the second one
is, put mildly, less explored. One has to admit, that the number of known examples
for physically meaningful states in curved spacetimes is small. For example, to date,
there are no explicitly known thermal states with respect to global time evolution in a
non-stationary spacetime.

A different problem – which is already present in flat spacetime –, namely, the lower
unboundedness of point-like energy densities in quantum field theory has led to the
so-called quantum inequalities. These uncertainty-type inequalities give lower bounds
on the averaged energy densities measurable in (a class of) quantum states, where the
averaging procedure involves a sampling function with suitable properties. Quantum
inequalities were established in flat spacetimes as well as in arbitrary globally hyper-
bolic spacetimes. They are important in general relativity since they reestablish the
macroscopic energy conditions, e.g., the weak energy condition, utilized for proving sin-
gularity theorems. Furthermore, it has been argued that they may serve as stability
conditions for quantum systems on a mesoscopic scale between the Hadamard condition
(microscopic scale) and passivity (macroscopic scale) [FV03].

The initial motivation for the project presented in this thesis can be stated as follows.
Since there are, by quantum inequalities, locally meaningful energy-quantities even in
curved spacetimes, how do the ground states and (thermal) equilibrium states of these
’energies’ look like? Regarding ground states, the analysis carried out by Olbermann
in [Olb07b] in the setting of real, linear, scalar fields in Robertson-Walker spacetimes
resulted in the definition of states of low energy. These are pure, homogeneous, isotropic,
quasi-free states that minimize the averaged energy density measured by an observer
along a timelike curve. Moreover, it could be proven, by comparison with adiabatic
vacuum states, that the two-point distributions of the states of low energy satisfy the
Hadamard condition, which is a condition on the short distance behaviour of the two-
point distribution to be satisfied by physically reasonable states. Encouraged by this
result, we construct, in the same setting, a class of (thermal) almost equilibrium states
with respect to the timelike averaged energy density.

The basic idea of our construction is the following. For a finite quantum statistical
system in contact with a much larger reservoir at a constant positive temperature 1

β
, the

free energy F = E − 1
β
S, where E is the inner energy and S denotes the entropy, is the

maximum amount of work that the system can perform. It turns out that the equilibrium
state of such system is characterized uniquely by the property that it minimizes the free
energy. Following this general principle, we define on the set of homogeneous, isotropic,
quasi-free states of the Klein-Gordon field in Robertson-Walker spacetimes a free energy
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functional, where a timelike averaged energy density takes the role of E . We show
that, owing to the symmetry of the spacetimes, this energy quantity has the form of an
integral over the modes of the quantum field. In view of this, we associate to each mode
an entropy functional and require the mode to evolve according to the KMS condition,
i.e., as a system in thermal equilibrium at inverse temperature β. By a certain quantum
inequality proved in [Few00], our free energy functional is bounded below within the class
of Hadamard states. Indeed, we succeed in calculating the two-point distribution of the
unique state that minimizes our free energy functional for a given sampling function. We
call the resulting state an almost equilibrium state a inverse temperature β associated
to the sampling function used for averaging the energy density. We finally prove that
the almost equilibrium states satisfy the Hadamard condition. The last step is crucial
since, as noted above, the quantum inequality on which we base our definition is valid
only within the class of Hadamard states. At the same time, the Hadamard property
proves the almost equilibrium states to be physically meaningful states.

Outline The outline of this thesis is as follows. In section 2 we give an account of the
basics of quantum field theory in curved spacetimes. We consider both the quantization
scheme via construction of a Hilbert space as well as the algebraic method. We introduce
the notion of quasi-free states and Hadamard states. The main sources for this chapter
are [Wal94] and [KW91] but the reader, who is not well acquainted with algebraic quan-
tum field theory will also benefit from [Haa96] and [Emc72]. In section 3, we specialize
to Robertson-Walker spacetimes and recall relevant facts about homogeneous, isotropic,
quasi-free states of the Klein-Gordon field in this setting. In particular, we introduce
the two-point distribution of such states. Most of the the material presented here can
be found in the seminal paper [LR90]. We add to the known facts a characterization of
the two-point distribution in terms of the mode solutions of the Klein-Gordon equation.
Chapter 4 is devoted to quantum inequalities. A brief survey of the topic is followed by a
quotation of the quantum inequality on which our construction is based [Few00]. Then,
we calculate the specific expression for the averaged stress-energy tensor, since this will
be part of the free energy that we will minimize. Section 5 is the main part of this
thesis, in which we explain and accomplish the construction of the almost equilibrium
states. As a necessary step for our construction, but maybe also interesting in its own
right, we calculate the generator of KMS states on the Weyl algebra of a system with
one degree of freedom. Then, we define the almost equilibrium states and prove that
they are indeed Hadamard states. In section 6, a summary of the construction is given
and supplemented by a few ideas on possible future projects.



12 Chapter 1. Introduction



2 Quantum field theory in curved
spacetime

The overall setting of this thesis is quantum field theory in curved spacetime. This is
a generalization of ordinary quantum field theory in the sense that the fields propagate
on a curved Lorentzian manifold rather than flat Minkowski space. It may be seen
as a semiclassical approach to ’quantum gravity’ since the fields are quantized but the
background spacetime is taken to be classical and fixed. Any backreaction of the field
on the spacetime is, in principle, encoded in the semiclassical Einstein equations

Gµν + Λgµν = 8π 〈Tµν〉 , (2.1)

though, to date, few is known about backreaction effects, due to some serious difficulties
in calculating 〈Tµν〉. See the discussion in [Wal94] on this point.

The absence of symmetries is a big obstacle for the traditional formulation of quantum
field theory on a general spacetime. However, the algebraic quantum field theory, as
defined in [HK64], has a well defined generalization to curved spacetimes [Dim80]. The
fundamental object in the algebraic formulation is a net of local algebras on a spacetime.
Such a net associates to each open region O in spacetime an algebra A(O) of observables
that are measurable in the region. The latest enhancement of the algebraic approach is
the so-called locally covariant quantum field theory [BFV03]. In this approach a locally
covariant quantum field theory is defined as a covariant functor between the category
of globally hyperbolic Lorentzian spacetimes with admissible (isometric, orientation and
time-orientation preserving, causally convex) embeddings as morphisms and the category
of unital C*-algebras with certain homomorphisms as morphisms.

In the first section of this chapter, we introduce the necessary facts about globally hy-
perbolic spacetimes and the Cauchy problem thereon. Then, we present the quantization
scheme in curved spacetime, where we follow the presentation found in the monograph
[Wal94] and the review [KW91]. At last, we introduce the notions of quasi-free states
and Hadamard states. Our presentation of the general theory is strongly biased by our
needs in the later chapters.

13



14 Chapter 2. Quantum field theory in curved spacetime

2.1 Classical preliminaries

2.1.1 Spacetime structure

We adopt the common viewpoint that spacetime is modelled by a smooth (in the sense
that it is C∞, Hausdorff, paracompact, and connected) four-dimensional manifold M
with Lorentzian metric gµν . We also assume that the spacetime under consideration
is orientable and time-orientable. Actually, we will restrict ourselves to the class of
Robertson-Walker spacetimes, which fulfill these hypotheses. Following the loosely es-
tablished tradition of field theorists, we choose the signature of the metric gµν to be
(+,−,−,−). According to this convention, a vector vµ is called timelike if its norm
gµνv

µvν is positive, spacelike if the norm is negative, and null if it is zero. A curve
γ(t) : R → M with tangent vectors γ̇µ(t) that are timelike everywhere is called a
timelike curve. It is called a causal curve if the tangent vectors are timelike or null ev-
erywhere. For K ⊂M the causal future J+(K) and the causal past J−(K) are the sets
of all points that can be reached from K by a future/past directed causal curve. A point
x ∈ M is said to be the future endpoint of a causal curve if for every neighborhood O
of x there is a t0 such that γ(t) ∈ O for every t ≥ t0. A causal curve is said to be future
inextendible if it has no future endpoint. Analogously, we can define past inextendible
curves. A causal curve is called inextendible if it is future and past inextendible [HE73].
Less precisely, one can say that an inextendible curve can end only at infinity or at some
initial or final singularity. The future(+)/past(-) domain of dependence D±(Σ) of Σ is
the set of all x ∈ M such that every past/future inextendible causal curve through x
intersects Σ [Wal84].

A Cauchy surface for a Lorentzian manifold M is a spacelike hypersurface which is
intersected exactly once by every inextendible causal curve in M [Ful89]. Equivalently,
the domain of dependence D(Σ) = D+(Σ) ∪ D−(Σ) of a Cauchy surface is the entire
spacetime. A spacetime (M, gµν) is said to be stationary if there exists a one-parameter
group of isometries Ξt : M→M, Ξ∗t gµν = gµν , t ∈ R whose orbits are timelike curves.
Equivalently, there exists a global timelike Killing vector field ξµ satisfying Killing’s
equation ∇µξν + ∇νξµ = 0, namely, the generator of Ξt. The spacetime is said to be
static if it is stationary and if, in addition, there exists a spacelike hypersurface Σ that
is orthogonal to the orbits of the isometry. In a local coordinate system xi, i = 1, 2, 3,
the metric of a static spacetime may be written as ds2 = N(x)2dt2−hij(x)dxidxj, where
hij is the induced metric on the Cauchy surfaces, and N ∈ C∞(Σ) is the lapse function.
In this case, the timelike Killing vector field satisfies ξ[µ∇νξρ] = 0. For completeness, we
note that a spacetime is called ultrastatic if it possesses a timelike Killing vector field ξµ

that is orthogonal to the spacelike hypersurfaces and obeys gµνξ
µξν = 1. In this case,

the lapse function is N = 1.

In order to guarantee the well posedness of the classical time evolution of a field, one
usually assumes globally hyperbolicity of the underlying spacetime. There are different
equivalent definitions of global hyperbolicity. For example, a spacetime (M, gµν) is called
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globally hyperbolic if there are no closed causal curves in M and the collection of all
causal curves joining two arbitrary points x1, x2 ∈M is compact (in a suitable topology).
Due to a theorem by Geroch [Ger70] an n-dimensional globally hyperbolic spacetime
(M, gµν) can be foliated with a family of Cauchy surfaces that are diffeomorphic to an
(n−1)-dimensional manifold Σ. This means that a globally hyperbolic spacetime has the
topology M = R×Σ. Global hyperbolicity is a condition on the geometry of spacetime
that ensures the existence and uniqueness of global solutions to hyperbolic differential
equations. In a broader sense, global hyperbolicity of Lorentzian spacetimes serves
as an analog for the notion of completeness of Riemannian manifolds [BGP07]. Since
quantum dynamics is usually modelled around classical dynamics, global hyperbolicity
of the underlying spacetime is a reasonable assumption in a semiclassical approach like
quantum field theory in curved spacetime. We refer the interested reader to [HE73,
Wal84, BGP07] for further elaborations on this topic.

2.1.2 The Cauchy problem

A thorough and general treatment of the Cauchy problem on globally hyperbolic space-
times can be found in the monograph [BGP07]. The results there are valid for arbitrary
(complex) vector bundles on general globally hyperbolic manifolds. However, in order
to keep in touch with the physical literature and to avoid unnecessary complexity, we
will use the traditional formulation found in [Dim80, Wal94], keeping in mind the more
general results.

In this thesis, we are concerned with the special case of a real, linear, scalar field φ on
a globally hyperbolic spacetime (M, gµν) satisfying the Klein-Gordon equation,

(�g + m2)φ = 0 , (2.2)

where �g = gµν∇µ∇ν is the wave operator associated to gµν and m ≥ 0 is the mass
parameter. By the global hyperbolicity of M, the Klein-Gordon equation (2.2) has
a well-posed initial value formulation. This means that there exist unique continuous
linear operators

E± : D(M) → E (M) , (2.3)

called the advanced fundamental solution, E+, and retarded fundamental solution, E−,
with the following properties:

(�g + m2)E±f = f = E±(�g + m2)f , (2.4)

supp(E+f) ⊂ J+(supp f) , (2.5)

supp(E−f) ⊂ J−(supp f) (2.6)

for f ∈ D(M). We use the notation D(M) := C∞
0 (M) and E (M) := C∞(M), denoting

the set of (complex-valued) smooth functions (with compact support in the case of D)
on the manifold M. The first of these properties says that E+ and E− are solutions to
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the inhomogeneous Klein-Gordon equation. The other properties are sensible support
properties. Combining the advanced and retarded fundamental solutions, one constructs
the fundamental solution

E := E+ − E− : D(M) → E (M) (2.7)

of the Cauchy problem, which has the properties

(�g + m2)Ef = 0 = E(�g + m2)f , (2.8)

supp(Ef) ⊂
(
J+(supp f) ∪ J−(supp f)

)
(2.9)

for f ∈ D(M).
There are different schemes available for the quantization of a classical fields, some of

which start from complex solutions and some of which use real-valued functions. In this
chapter we will be concerned with the latter spaces. Denote by S ⊂ E (M,R) the space
of classical, real-valued, smooth solutions to the Klein-Gordon equation that have com-
pact support on Cauchy surfaces, and denote by T := D(M,R) the test function space
of real-valued, smooth functions of the fundamental solution. with compact support.
Then the following lemma states some important properties

Lemma 2.1 ([Wal94]) The map E : T → S satisfies the following three properties

(i) E is onto, i.e., every φ ∈ S can be expressed as φ = Ef for some f ∈ T .

(ii) Ef = 0 if and only if f = (�g + m2)g for some g ∈ T .

(iii) For all φ ∈ S and all f ∈ T , we have

φ(f) :=

∫
d4x φ(x)f(x) = σ(Ef, φ) . (2.10)

The fundamental solution plays an important role in the quantization procedures to
be described later. For example, it determines the values of the commutators of the
quantum fields. Even more important for us, it can be used to calculate the four-
smeared two-point distribution from the three-smeared two-point distribution of the
quantum fields, as we will see in section 3.3.1.

The fundamental solution E maps test functions on a globally hyperbolic spacetime
to solutions that arise from initial data on some Cauchy surface. More precisely, this
correspondence can be formulated as follows [Dim80]. Define for a given Cauchy surface
Σ the restriction operator ρ0 and the forward normal derivative ρ1 by

ρ0 : E (M,R) → E (Σ,R) ρ1 : E (M,R) → E (Σ,R) (2.11)

φ 7→ φ|Σ , φ 7→ (nµ∇µφ)|Σ , (2.12)
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where nµ denotes the unit forward normal to Σ and nµ∇µ is the Lie derivative in this
direction. Now, the following holds. Let Σ be any Cauchy surface and let u, p ∈ D(Σ,R)
be any pair of smooth functions with compact support on the Cauchy surface Σ. Then,
there exists a unique solution φ ∈ S defined on all of M to the Klein Gordon equation
(2.2) that is related to its initial values on Σ by ρ0(φ) = u and ρ1(φ) = p. Furthermore,

suppφ ⊂
(⋃

± J
±(suppu)

)
∪
(⋃

± J
±(supp p)

)
, (2.13)

i.e., for any closed subset of Σ the solution φ restricted to the corresponding domain of
dependence depends only on the initial data in that subset.

2.1.3 Phase spaces

The quantum theory of linear systems is usually modelled after the classical theory as
it becomes apparent in the ’Poisson bracket goes to commutator’ rule. A sophisticated
version of this rule is used for linear fields in curved spacetimes. Now, we introduce the
classical part of this correspondence, namely, the classical phase space.

A classical phase space is a symplectic vector space, i.e., a pair (V , σ), where V is
a vector space and σ is a bilinear form σ : V × V → R that is symplectic, σ(f, g) =
−σ(g, f), and non-degenerate, which means if σ(f, g) = 0 for all f ∈ V then g = 0. The
space of solutions S to the Klein-Gordon admits a natural symplectic form defined by

σS (φ1, φ2) :=

∫
Σ

d3x
√
|h| nµ(φ1∇µφ2 − φ2∇µφ1) . (2.14)

The integral is evaluated on a Cauchy surface Σ, but σ is independent of the particular
choice of Σ. This is due to the conservation, ∇µj

µ = 0, of the current jµ := φ∇µφ′ −
φ′∇µφ as can be shown by the application of Stokes’ theorem to a timelike cylindrical
spacetime volume bounded by portions of Cauchy surfaces. The space (S , σS ) may be
called the covariant phase space of the theory.

Alternatively, one can regard the canonical phase space. This is the space

M := {(u, p), u, p ∈ D(Σt,R)} (2.15)

of initial values on Σt of the Klein-Gordon equation equipped with the symplectic form

σM (F1, F2) := −
∫
Σt

d3x (u1p2 − u2p1) (2.16)

for Fi := (ui, pi) ∈ M , i = 1, 2, where pi :=
√
|h|(nµ∇µui) is the canonical conjugate to

the configuration variable ui.
The relation between the distinct phase spaces can be summarized as follows: By the

unique correspondence between the solutions to the field equation and the initial values



18 Chapter 2. Quantum field theory in curved spacetime

on a given Cauchy surface Σt, the spaces S and M are isomorphic, i.e., there exists an
isomorphism It : M → S . This isomorphism induces a symplectic map σM = I∗t σS ,
where I∗t denotes the pulled back isomorphism. Consequently, both phases spaces are
equally well suited for quantization [TV99].

2.2 Quantization

Let us introduce some basic notions regarding algebras [BW92]. Let A be an algebra
over C with a map ∗ : A → A such that for all A,B ∈ A and α, β ∈ C we have
(αA+βB)∗ = αA∗+βB∗, (AB)∗ = B∗A∗, and (A∗)∗ = A. Then, ∗ is called an involution
and A is called an involutive algebra or a *-algebra (star-algebra). If A contains a unit
element 1 such that 1A = A1 for all A ∈ A then it is called a unital *-algebra. If the
*-algebra A is also a Banach space where the norm satisfies ‖AB‖ ≤ ‖A‖‖B‖ for all
A,B ∈ A then A is a Banach *-algebra. If, in addition, ‖A‖2 = ‖A∗A‖ then A is a
C*-algebra. A *-subalgebra I of A is a *-ideal if AB,BA ∈ I for all A ∈ A and B ∈ I.
A C*-algebra A is called simple if it contains no non-trivial, i.e., different from 0 and A,
closed *-ideals.

The observables of the quantized theory are represented by the self-adjoint elements
of a suitable algebra, e.g., a (unital) *-algebra or, if a stronger structure is desired, a
C*-algebra. So, owing to the different necessities, there exist several formulations of the
algebra of observables, which are substantially equivalent, albeit technically inequivalent.
In this section, we introduce the formulation in terms of a Weyl algebra, which is a C*-
algebra. For a thorough treatment of the quantization scheme in curved spacetimes see
[Wal94, KW91]. All relevant facts regarding Weyl algebras and their representations
can be found in [BR97].

Based on each of the symplectic spaces defined in section 2.1.3, we can define an
abstract C*-algebra that obeys the canonical commutation relations (CCR) via the
Weyl construction. Consider a real symplectic vector space (V , σ).

Definition 2.2 A Weyl algebra W(V , σ) is a simple C*-algebra with unit generated by
objects W (f) that are labeled by functions f ∈ V and that satisfy the relations

(i) W (0) = 1,

(ii) W (f)∗ = W (−f),

(iii) W (f1)W (f2) = e−
i
2
σ(f1,f2)W (f1 + f2)

for all f, f1, f2 ∈ V .

Condition (iii) is the Weyl form of the canonical commutation relations (CCR); Thus,
a Weyl algebra is often called a CCR algebra. The elements of W represent the basic
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observables of the quantum theory. They are bounded operators, which avoids possi-
ble domain problems, and they correspond, formally, to exponentiated field operators
W (f) = e−iΦ(f). This interpretation is mathematically well defined in regular repre-
sentations (see section 2.2.2). Note that, since V is not given a topology, the elements
W (f) need not be continuous. Provided that σ(f, g) is non-degenerate, the Weyl algebra
is unique in the sense that given two Weyl algebras W1 and W2 there exists a unique
*-isomorphism α : W1 → W2 such that for any W1 ∈ W1 and W2 ∈ W2, we have
α ·W1 = W2.

States

A state ω on the algebra of observables A is a positive, ω(A∗A) ≥ 0 , normalized,
ω(1) = 1, linear functional ω : A → C for all A ∈ A. The set of all states is a convex set,
i.e., a mixture ω := λ1ω1 + · · ·+λnωn of states ω1, . . . , ωn with λi ≥ 0,

∑
λi = 1 is again

a state. A pure state is extremal in this set in the sense that it cannot be expressed as
the sum of two other states with positive coefficients λi.

The general definition of states on an algebra is, on the one hand, clear and concise, but
on the other hand, far to general for concrete applications. The space of states satisfying
these conditions is enormous and requires further criteria that single out subspaces of
states that are appropriate for a given physical situation. On a Weyl algebra one typically
restricts attention to the class of regular states, which allows to introduce the quantum
fields Φ(f) as self-adjoint generators of the Weyl elements W (f). A further condition
is to require the states to be quasi-free, i.e., to be completely specified by their two-
point distribution, which makes the set of states tractable without removing most of the
physically interesting states. Further conditions that we will use are homogeneity and
isotropy, and the Hadamard condition. All these requirements will be introduced in due
place.

The algebraic approach makes contact with the traditional Hilbert space formulation
of quantum theory via the GNS theorem, which says that every state ω on a C*-algebra
A gives rise to a representation of A on some Hilbert space.

Theorem 2.3 (GNS construction) Let ω be a state on a C*-algebra A with unit-
element. Then, there exists a complex Hilbert space Hω, a unit-preserving representation
πω in terms of linear operators on H , and a vector Ωω ∈ Hω such that

ω(A) = 〈Ωω, πω(A)Ωω〉Hω
(2.17)

for all A ∈ A. The vector Ωω is cyclic, i.e., πω(A)Ωω is dense in Hω. The representation
πω is unique up to unitary equivalence.

The triple (Hω, πω,Ωω) is called the GNS triple and the representation is called the GNS
representation.
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The folium of a state ω is the set of all states that can be represented as density
matrices ρ in the GNS representation of ω. So the folium consist of all states of the form

ω(A) = Tr ρπ(A) . (2.18)

with a positive, trace class, i.e., Tr ρ < ∞, operator ρ. An important theorem due to
Fell [Fel60] states that the folium of a faithful representation of a C*-algebra is weakly
dense in the set of all states. Since every physical experiment consists of a finite number
of measurements and, furthermore, these measurements have limited accuracy, it is
impossible to determine more than a weak neighborhood of a state. Thus, by Fell’s
theorem, it is impossible to find out in which folium the state lies. Note that, since all
Weyl algebras are simple [Sim72], all their representations are faithful. For a discussion
of further implications of Fell’s theorem see [Haa96, Wal94].

The GNS representations of different states need not be unitarily equivalent. In fact,
the Stone-von Neumann uniqueness theorem fails for systems with infinitely many de-
grees of freedom and it is known that infinitely many inequivalent, irreducible Hilbert
space representations of the Weyl algebra exist (see, e.g., [Wal94]). Consequently, the
folium of a single state does not encompass all possible algebraic states. This is in con-
trast to the finite case, where all irreducible regular representations, in particular, the
Schrödinger and the Heisenberg representation, are unitarily equivalent.

A representation π on Hπ of the Weyl algebra W is called regular if the unitary
groups λ 7→ π(W (λf)), λ ∈ R are strongly continuous for all f . If π is regular, one can,
by Stone’s theorem, introduce self-adjoint infinitesimal generators Φπ(f) of the Weyl
elements, which act on Hπ. These operators may then be used to define annihilation
and creation operators (see theorem 2.5). A state ω on the Weyl algebra W is said to
be regular if its GNS representation is regular.

An automorphism α on a *-algebra A is a one-to-one linear mapping of the algebra
onto itself that is compatible with the algebraic structure, i.e., it satisfies α(A · B) =
α(A) · α(B) and α(A∗) = α(A)∗ for all A,B ∈ A. A classical symplectic transformation
on (V , σ) is a map that leaves the symplectic form invariant, i.e., a symplectic trans-
formation is given by an operator T : V → V such that σ(T f1, T f2) = σ(f1, f2) for all
f1, f2 ∈ V . A symplectic transformation on a classical symplectic vector space corre-
sponds directly to an automorphism on the associated Weyl algebra. For example, the
time translation on stationary spacetime is implemented on the classical phase (S , σS )
by a one-parameter group of symplectic transformations Tt : S → S , which gives rise
to a one-parameter group of automorphisms

αt : W → W , αt(W (φ)) := W (Ttφ)) (2.19)

for all φ ∈ S . We note that a pair (A, αt) of a C*-algebra A and a strongly continuous
automorphism group {αt}t∈R acting on A is called a C*-dynamical system. This kind of
system provides the basis for the definition of KMS states (see section 5.1) and passive
states (section 4.1.1).
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Given a Hilbert space representation π of A on some Hilbert space H , we say that
the symplectic transformation T is unitarily implementable if there exists a unitary
transformation U : H → H such that

Uπ(A)U−1 = π(α · A) (2.20)

for all A ∈ A. While there is no problem with the unitary implementation of
time-translations in stationary spacetimes, the situation changes significantly for non-
stationary spacetimes. The two-parameter family of symplectic transformations Tt2,t1 ,
describing time-evolution in that case, gives rise to a family of automorphisms αt2,t1

on the algebra. However, these automorphisms are no longer implementable as unitary
operators on a Fock space, as it has been shown in [TV99] for the Klein-Gordon field
on the torus T2 with non-flat Cauchy surfaces. One may actually conjecture that only
transformations defined by the isometry group of a spacetime can be represented as
unitary transformations on a Hilbert space.

2.2.1 Hilbert space quantization

In this section, we review the quantization of a linear, scalar field in a formalism that
is close to the traditional Hilbert space quantization and directly applicable to curved
spacetimes. The formalism starts with a real, symplectic vector space - in our case, the
vector space (S , σS ) of solutions to the Klein-Gordon equation. Then, on (S , σS ) an
inner product µ with suitable properties is chosen, which gives rise to a map K from S
to a (complex) Hilbert space H . The quantum field theory is then constructed on the
symmetric Fock-space Fs(H ) associated to the one-particle space H . We do not give
all details of the construction, just the general procedure. The authoritative references
caring for all contingencies are [KW91, Wal94].

First, we need to construct an inner product structure on the real, symplectic vector
space(S , σS ). So, choose any positive, symmetric, bilinear map µ : S ×S → R such
that

1

4
σS (φ1, φ2)

2 ≤ µ(φ1, φ1)µ(φ2, φ2) (2.21)

for all φ1, φ2 ∈ S . Since σS is non-degenerate, the map µ defines a real inner product
on the vector space S .

One can show that there always exists a µ satisfying (2.21), but in a general curved
spacetime there is no way to select a preferred one. While in the case of theories with
finitely many degrees of freedom different choices of µ lead to unitarily equivalent theo-
ries, in the non-finite case the theories turn out to be, in general, unitarily inequivalent.
In a stationary spacetime an operator K associated to µ can be defined that projects
solutions in S onto the subspace of ‘positive frequency solutions’. These solutions have
positive frequency in a generalized sense, namely, with respect to the timelike Killing
vector field ξµ present in a stationary spacetime [AM75, Kay78, Wal94].
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For non-stationary spacetimes there is no unique subspace of positive frequency so-
lutions on which K could project. Nevertheless, one can proceed with a non-unique
decomposition of S by the following results due to Kay and Wald.

Theorem 2.4 ([KW91]) Let S be a real vector space on which are defined both a
bilinear symplectic form σS and a bilinear positive symmetric form µ satisfying (2.21).
Then, one can always find a complex Hilbert space H together with a real-linear map
K : S → H such that

(i) the complexified range of K, i.e., KS + iKS , is dense in H ,

(ii) µ(φ1, φ2) = < 〈Kφ1,Kφ2〉H for all φ1, φ2 ∈ S ,

(iii) σS (φ1, φ2) = 2= 〈Kφ1,Kφ2〉H for all φ1, φ2 ∈ S .

Moreover, the pair (K,H ) is uniquely determined up to equivalence, where we say
(K ′,H ′) is equivalent to (K,H ) if there exists an isomorphism V : H → H ′ such
that VK = K ′.

So, to every triple (S , σS , µ) there corresponds a pair (H ,K). The pair (H ,K) is
called a one-particle Hilbert space structure. The equations given in theorem 2.4 are
often stated in the form

〈Kφ1,Kφ2〉H = µ(φ1, φ2) +
i

2
σS (φ1, φ2) . (2.22)

A corresponding operator K : S → H can be defined which projects into the subspace
of ‘negative frequency solutions’, where H is the complex conjugate Hilbert space to
H . To remind the reader, the complex conjugate space H differs from H by the scalar
multiplication: c�f = c ·f , f ∈ H , c ∈ C, where the bar denotes complex conjugation.
One may as well say that an antilinear isometry Γ satisfying Γ2 = 1 makes the transition
between the spaces H and H . It follows immediately that K + K = 1.

Once having defined a one-particle structure K, the remaining quantization procedure
is straightforward. Define by

Fs(H ) := C⊕H ⊕ (H ⊗s H )⊕ . . . (2.23)

the symmetric Fock space over the one particle Hilbert space H . To each solution in
S a corresponding operator σS (Φ, ·) on the Fock space Fs(H ) is defined by

σS (Φ, φ) := ia(Kφ)− ia∗(Kφ) , (2.24)

where the standard creation and annihilation operators a∗, a on Fs(H ) satisfy

[a(ψ), a∗(ψ′)] = 〈ψ, ψ′〉H , (2.25)

a(ψ)Ω = 0 (2.26)
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for all ψ, ψ′ ∈ H and the vacuum state Ω := 1 ⊕ 0 ⊕ 0 ⊕ . . . . This concludes the
construction of the quantum field theory.

The quantization scheme presented here, leads directly to a Fock space represen-
tation of the algebra. However, as already noted, these representations need not be
unitarily equivalent. If µ1 6= µ2 the resulting representations {Fs(H1), σS,1(Φ, φ)} and
{Fs(H2), σS,2(Φ, φ)} may be unitarily inequivalent. It follows immediately that differ-
ent notions of ’particles’ arise by different choices of µ. In a spacetime without time
translation symmetry no preferred choice for µ exists. On stationary spacetimes, owing
to the existence of a timelike Killing field, a satisfactory definition of a preferred µ, and
thus a meaningful notion of ’particles’ can be given [AM75, Kay78].

The viewpoint taken in algebraic quantum field theory is that unitary equivalence on
the level of representations is not fundamental to the quantum theory. Rather, the alge-
braic relations between the collection of operators {σS (Φ, φ)} on Fs(H ) are important.
Hence, one postulates that a net of local algebras satisfying these relations completely
determines the quantum theory and the fields play a role similar to coordinates in differ-
ential geometry: useful tools for daily work, but dispensable for the essential assertions.

Before we come to the algebraic formulation, let us note that there is an alternative
procedure for the selection of a representation. Rather than specifying the bilinear form
µ, one may define a complex structure J , i.e., a bounded linear map satisfying J2 = −1,
on S for which −σ(φ, Jφ) is a positive definite inner product. This procedure is, e.g.,
used in the geometric quantization programme [Woo92]. Its application and importance
for quantum field theory in curved spacetimes is illustrated best in a series of papers by
Ashtekar and Magnon-Ashtekar [AM75, AMA80a, AMA80b]. Both schemes, the choice
of an inner product µ and the choice of a complex structure J are roughly equivalent.
See, once more, [Wal94] for details.

2.2.2 The algebra of observables

The Weyl algebra

We have seen how a Fock space representation {Fs(H ), σS (Φ, φ)} of the algebra of
observables can be obtained via the choice of a bilinear form µ(φ, φ). Now, a Weyl
algebra (see definition 2.2) can be defined through the unitary operators

W (φ) := e−iσS (Φ,φ) . (2.27)

These operators satisfy the Weyl relations

W (φ)∗ = W (−φ) , (2.28)

W (φ1)W (φ2) = e−
i
2
σS (φ1,φ2)W (φ1 + φ2) . (2.29)

The C*-completion, which is known to exist, of the space generated by all W (φ) via
formal finite sums

∑
i λiW (φi) comprises a Weyl algebra, which can be seen as the min-

imal algebra of observables of a quantum field theory in curved spacetime. This makes
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sense, since the Weyl algebras arising from different choices of µ are always isomorphic
even if the corresponding Fock space representations are unitarily inequivalent [Sla72].

A second Weyl algebra, which is isomorphic to the former via lemma 2.1, can be
constructed as follows. Define using the third property of lemma 2.1 for each f ∈ T a
smeared operator on Fs(H ) by

Φ(f) := ia(K(Ef))− ia∗(K(Ef)) , (2.30)

and to consider the Fock space {Fs(H ),Φ(f)}. The operators

W (f) := e−iΦ(f) , (2.31)

where we set W (f ′) := W (f) if Ef = Ef ′ again define a Weyl algebra,

W (f)∗ = W (−f) , (2.32)

W (f1)W (f2) = e−
i
2
E(f,g)W (f1 + f2) , (2.33)

where

E(f1, f2) :=

∫
d4xf1Ef2 = σS (Ef1, Ef2) . (2.34)

The field algebra An abstract definition of a *-algebra A of field operators for a real,
linear, scalar field can be obtained as follows. Take the unit 1 and the formal smeared
field operators Φ(f), where f ∈ D(M) and demand that

(i) Φ(f) is linear,

(ii) Φ(f) is hermitian: Φ(f) = Φ(f)∗,

(iii) Φ(f) satisfies the field equation: Φ([�g + m2]f) = 0,

(iv) Φ(f) satisfies the commutation relations. [Φ(f1),Φ(f2)] = iE(f1, f2)1.

To be precise, one takes the free algebra over the field of complex numbers generated by
the symbols Φ(f),Φ(f)∗, and 1 and divides by the *-ideals generated by the properties
stated above.

The formal correspondence between the field algebra and the Weyl algebra becomes
mathematically well defined in regular GNS representations. For those representations,
as already noted, the map λ 7→ π(W (λf) = π(e−iΦ(λf)), λ ∈ R defines a strongly
continuous unitary group for every f . Thus, by Stone’s theorem, the operators Φ(f) are
self-adjoint generators of these groups. These generators satisfy the requirements for a
*-algebra of fields by lemma 2.1. The collection of all such operators may, equally well as
their Weyl counterparts, be interpreted as the collection of fundamental observables of
the theory. The same is valid for the collection of σS (Φ, φ) in a regular representation.
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2.2.3 Quasi-free states

There is a distinct class of regular algebraic states, namely, the quasi-free states, also
known as Gaussian states, which have GNS Hilbert spaces that look like the familiar
Fock spaces built on a one-particle Hilbert space (see theorem 2.5 below). The class
of quasi-free states contains the usual vacuum states in stationary spacetimes as well
as other vacua obtained by mode decomposition of the field operators. In quantum
statistical mechanics, quasi-free states represent the general form of equilibrium states
for free bosonic systems [BR97, HR97]. Besides this, quasi-free states are well suited for
calculations as they are exclusively determined by their two-point distribution.

A quasi-free state can be defined as an abstract linear functional of a special kind on
the algebra of observables, or in a regular GNS representation by the requirement that it
is completely fixed by the two-point distribution. Let us investigate the first possibility.
To define a state on a Weyl algebra W, it suffices to specify its expectation values on the
Weyl operators W ∈ W. As before, let µ be a real scalar product on S and consider
the Weyl algebra W(S , σS ). Define a functional ωµ : W → C by

ωµ(W (φ)) = e−
1
2
µ(φ,φ) (2.35)

for all φ ∈ S . Its action is extended to the whole algebra by linearity and continuity.
Now, if µ satisfies (2.21) then ωµ is positive on the whole algebra and thus a state. Any
quasi-free state ωµ can be realized in a representation as the vacuum state in a Fock
space by the following theorem.

Theorem 2.5 ([KW91]) Let (K,H ) be the one-particle Hilbert space structure ob-
tained from ωµ by Theorem 2.4. The GNS-triple (Hωµ , πωµ ,Ωωµ) of the state ωµ is
equivalent to a triple (F (H ), πF ,ΩF ) with the following properties.

(i) The GNS space F (H ) := Fs(H ) is the symmetric Fock space built on H .

(ii) The representation πF is specified by πF (W (φ)) = e−[a(Kφ)−a∗(Kφ)] , where the bar
denotes the closure.

(iii) The state ΩF := 1⊕ 0⊕ 0⊕ . . . is the (cyclic) Fock vacuum in Fs(H ).

The purity of ωµ is equivalent to the irreducibility of the representation πF . Moreover
this is equivalent to the property that KS alone, rather than KS + iKS , is dense in
H [KW91].

The two-point distribution of a quantum field in the state ω on the Weyl algebra
W(S , σS ) is defined by

〈σS (Φ, φ1)σS (Φ, φ2)〉ω := − ∂2

∂s∂t

(
ω(W (sφ1 + tφ2))e

−istσ(φ1,φ2)/2
)∣∣∣∣

s=t=0

(2.36)
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provided that the right hand side exists. For quasi-free states, as defined by (2.35) the
two-point distribution always exists and is given by

ω(2)(φ1, φ2) = µ(φ1, φ2) +
i

2
σS (φ1, φ2) . (2.37)

If one works with the field algebra of operators Φ(f), a quasi-free state ω can be
defined, by the requirement that all odd n-point distributions vanish and the even ones
are determined by the two-point distribution via the the recursion formula

ω(2j)(Φ(f1), . . . ,Φ(f2j)) :=
∑

σ

j∏
i=1

ω(2)(fσ(i), fσ(i+j)) (2.38)

for j ∈ N, where the sum is taken over all permutations σ of {1, 2, . . . , 2j} with σ(1) <
σ(2) < · · · < σ(j) and σ(i) < σ(i+ j), i = 1, . . . , j.

According to theorem 2.5, the two-point distribution S(f1, f2) of a quasi-free state can
be calculated in the GNS representation by

S(f1, f2) :=
〈
ΩF ,Φ(f1)Φ(f2)Ω

F
〉

(2.39)

= 〈KEf1,KEf2〉H (2.40)

= µ(Ef1, Ef2) +
i

2
σ(Ef1, Ef2) (2.41)

Thus S(f, f) = µ(Ef,Ef) = 〈KEf,KEf〉H for f ∈ D(M) and we see that we can
define the generator (2.35) of a quasi-free state either by the use of µ, S, or 〈 , 〉H .

Saturating the inequality (2.21) turns out to be equivalent to the irreducibility of the
GNS representation arising from ωµ. Thus, (remember the comments after theorem 2.5)
such a µ results in pure quasi-free states. However, already in stationary spacetimes,
thermal equilibrium states at finite temperature are represented by quasi-free states
which fail to satisfy the saturated version of (2.21), and in a spacetime with a non-
compact Cauchy surface, states in the folium of a thermal equilibrium state do not,
in general, lie in the folium of any pure quasi-free state [Wal94]. Thus, in order to
incorporate thermal states, we cannot restrict ourselves to the case of pure states. Note
that the common notion of a ‘vacuum state’ or, more generally, ground state corresponds
to a pure, quasi-free state in the algebraic approach. We note that all pure, quasi-free
state are Fock states and thus related through a Bogoliubov transformation [MV68].

2.2.4 Hadamard states

Even in the restricted class of quasi-free states there exist many states that cannot be
considered physical; this should not be misunderstood as the statement that all physical
states are quasi-free. A further condition that is believed to reasonably narrow down
the class of states is the Hadamard condition. It has several formulations and was used
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already for a long time (see, e.g., [DB60]) before Kay and Wald [KW91] put it on a sound
mathematical foundation. The Hadamard condition essentially restricts the singularity
structure of the two-point distribution at coinciding points such that it comes close the
Minkowski vacuum state. On a heuristic level, one could say that in a Hadamard state
the high frequency modes of the field are ‘close’ to their ground state.

The principle motivation for the Hadamard condition comes from the point-splitting
renormalization scheme. The absence of a preferred vacuum state makes the normal or-
dering procedure of standard quantum field theory nonviable in a general curved space-
time. The point-splitting prescription is a replacement for normal ordering in the sense
that it defines sensibly differences of stress-energy expectation values even in curved
spacetime.

The basic idea is as follows. The calculation of the stress-energy tensor involves the
calculation of objects like 〈φ(x)2〉. These objects are, in general, ill defined as they
involve the calculation of products of two distributions at a point. Such products are
only well defined in special cases, where the wavefront sets (see below) of the involved
distributions ’fit’ to each other [Hör03]. The point-split object 〈φ(x)φ(x′)〉, however,
makes sense as a bi-distribution onM. Now, one demands that for physically reasonable
states the singularity structure of 〈φ(x)φ(x′)〉 as x′ approaches x should be the same as
for 〈Ω, φ(x)φ(x′)Ω〉. This provided, the difference 〈φ(x)φ(x′)〉 − 〈Ω, φ(x)φ(x′)Ω〉 is a
smooth function, which allows taking the coincidence limit x′ → x.

States satisfying the Hadamard condition yield a renormalized stress-energy tensor
Tµν that satisfies Wald’s axioms [Wal94], which are believed to be reasonable physical
assumptions on Tµν . In brief, the assumptions are as follows. For states ω, ω1, ω2:

(i) 〈Tµν〉ω1
− 〈Tµν〉ω2

should be well defined by the point splitting procedure.

(ii) Tµν should be locally covariant.

(iii) 〈Tµν〉ω should be conserved, ∇µ 〈Tµν〉ω = 0, for all states ω.

(iv) In Minkowski spacetime, 〈Ω,TµνΩ〉ω = 0.

These assumptions fix the expectation value 〈Tµν〉ω uniquely up to a conserved local
curvature term that is independent of ω. Actually, it is possible to locally construct a
bi-distribution H(x, x′) such that if

Fω(x, x′) := 〈φ(x)φ(x′)〉ω −H(x, x′) (2.42)

is a smooth function for a state ω then 〈Tµν〉ω is well defined. We refer the reader to
[Wal94] for subtleties of the construction.

It has not only been proved that there exist many Hadamard states for the linear,
scalar field in a globally hyperbolic spacetime; One also knows that the canonical ground
state and the thermal equilibrium states in stationary, globally hyperbolic spacetimes
are quasi-free Hadamard states [SV00]. Regarding interacting fields, the construction
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of renormalized perturbative quantum field theory in a generic spacetime is possible
for Hadamard states [BF00, HW01]. On the other hand, only few Hadamard states on
curved spacetimes have been explicitly constructed. Among these are the ground states
on ultrastatic spacetimes [FNW81, Jun96] and KMS states on ultrastatic spacetimes
with compact Cauchy surfaces; Furthermore, we mention the adiabatic vacuum states
of infinite order [Jun96, Jun02]. None of these examples deals with thermal states on a
non-stationary spacetime.

The formulation by Kay

and Wald Let t(x) be a any global time function that increases towards the future and
let t(x, x′) := t(x) − t(x′). Furthermore, let σ(x, x′) be the squared geodesic distance,
i.e.,

σ(x, x′) = ±

∫
γ

∣∣∣∣gµν(y(τ))
dyµ(τ)

dτ

dyν(τ)

dτ

∣∣∣∣ 12 dτ

2

, (2.43)

where γ is the unique geodesic connecting x and x′ with parametrization y(·) and the
sign is plus for spacelike y(·) and minus for timelike y(·). The geodesic distance is well
defined and smooth in the set O in M×M, which is taken to be a neighborhood of
the set of causally related points (x, y) such that J+(x) ∩ J−(y) and J+(y) ∩ J−(x) are
contained within a convex normal neighborhood. A convex normal neighborhood of a
point x is a neighborhood U of x such that there exists a unique geodesic connecting
each pair of points in U and staying entirely within U . A manifold can always be covered
by such neighborhoods [HE73].

For each n ∈ N and ε ∈ R, ε > 0 define a complex-valued function in O by

Gt,n
ε (x, x′) =

1

(2π)2

(
u(x, x′)

σt
ε(x, x

′)
+ v(n)(x, x′) lnσT

ε (x, x′)

)
, (2.44)

where
σt

ε(x, x
′) = σ(x, x′) + 2iεt(x, x′) + ε2 . (2.45)

The smooth function u(x, x′) is the square root of the van Vleck-Morette determinant,
and v(n)(x, x′) ∈ E (O) is a real function defined by the power series

v(n)(x, x′) :=
n∑

m=0

vm(x, x′)σ(x, x′)m , (2.46)

where the vm(x, x′) are determined by the Hadamard recursion relations. The branch
cut for the logarithm is taken to lie along the negative real axis. The field equations
and commutation relations require that u and v are uniquely determined by the local
geometry, i.e., by the metric gµν and its derivatives. Of course, Gt,n

ε (x, x′) is singular for
coinciding points x and x′, but it is also singular for points connected by a null geodesic.
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Let Σ be a Cauchy surface and let N be a causal normal neighborhood of Σ [KW91].
Denote by O′ an open neighborhood in N ×N of the set of causally related points such
that the closure of O′ in N × N is contained in O. Now, define a function χ(x, x′) ∈
E (N ×N ) with the property

χ(x, x′) =

{
0 , for (x, x′) 6∈ O
1 , for (x, x′) ∈ O′ .

(2.47)

A state ω is said to be a Hadamard state if its two-point distribution satisfies the
following requirement: for each n ∈ N there exists a Cn-function wn(x, x′) on N × N
such that for all f1, f2 ∈ D(N ) we have

S(f1, f2) = lim
ε→0

∫
N×N

dµ(x) dµ(x′)f1(x)f2(x
′) Λt,n

ε (x, x′) , (2.48)

where
Λt,n

ε (x, x′) = χ(x, x′)Gt,n
ε (x, x′) + wn(x, x′) (2.49)

and the measures are the induced measures dµ(x) := d4x
√
|g|. The functions wn(x, x′)

depend on the individual state in the folium. Note that the function χ(x, x′) introduces
a localization of the singular object Gt,n

ε (x, x′) in spacetime, which has the consequence
that the Hadamard condition only cares for the ultraviolet modes of a field.

The microlocal formulation

For linear quantum fields the microlocal spectrum condition, which we will state below,
is equivalent to the Hadamard condition. This has been shown by Radzikowski [Rad92,
Rad96]. The microlocal spectrum condition has been investigated and extended to
curved spacetimes and Wick powers of scalar fields in [BFK96]. In this sense, it is more
general than the original Hadamard condition as it also can be generalized to non-linear
fields. Microlocal analysis shifts the study of singularities of distributions from the base
space to the cotangent bundle. The ’micro-localization’ property makes this formulation
well suited for curved spacetimes.

We define the notion of wavefront sets by first introducing the set of regular directed
points. Let u ∈ D ′(Rn) be a distribution. A point (x, ξ) in the cotangent bundle of Rn is
called a regular directed point of u if there exists a smooth function φ ∈ D(X), X ⊂ R

n

which does not vanish at x and such that for any m ∈ N there exists a constant Bm

satisfying
|φ̃u(ξ′)| ≤ Bm(1 + |ξ′|)−m (2.50)

for all ξ′ in a conical neighborhood U ⊂ R
n\{0} of ξ. A neighborhood U is called conical

if ξ ∈ U ⇒ tξ ∈ U, t ∈ R+. Now the wavefront set WF(u) of a distribution u ∈ D ′(X)
is the complement in X × R

n\{0} of the space of all regular directed points of u.
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Theorem 2.6 (Microlocal spectrum condition) A quasi-free state ω of the Klein-
Gordon field on globally hyperbolic spacetime M is a (global) Hadamard state if and only
if its two-point distribution has the wave-front set

WF(ω(2)(x1, x2)) = C+ , (2.51)

where

C+ =
{
[(x1, ξ1), (x2, ξ2)] ∈ (T ∗(M)\0)× (T ∗(M)\0); (x1, ξ1) ∼ (x2,−ξ2); ξ0

1 ≥ 0
}
.

(2.52)
The notation (x1, ξ1) ∼ (x2, ξ2) means that x1 and x2 can be connected by a null geodesic
such that ξµ

1 is tangential to γ at x1 and ξµ
2 is the parallel transport of ξµ

1 along γ at x2.

So, singularities in the two-point distribution ω(2)(x, x′) only occur if x and x′ are lightlike
connected and the singularities have positive frequencies.

Wavefront sets have the property that for two distributions u, v it holds that

WF(u+ v) ⊆ WF(u) ∪WF(v) . (2.53)

Thus, WF(u) ⊆ WF(u − v) ∪ WF(v) and WF(u) = WF(v) if WF(u − v) = ∅, i.e.,
the distributions u and v have the same wavefront set, and hence the same singularity
structure if the difference of u and v is a smooth function.



3 Scalar fields in Robertson-Walker
spacetimes

Robertson-Walker spacetimes are a particularly important class of spacetimes to inves-
tigate. They are homogeneous and isotropic solutions of the Einstein equations. These
assumptions on the geometry of spacetime determine the solutions up to three discrete
types of spatial geometry – flat, closed, and open geometry – and an arbitrary positive
function a(t), which determines the expansion of the spacelike sections. Although these
spacetimes do not possess a time evolution symmetry, they possess a preferred class of
observers, namely, the ones who are orthogonal to the homogeneous surfaces. These
are also called isotropic (or comoving) observers. Owing to the present symmetries, the
field can be written, in the usual way, as an integral (or sum, for the closed geometry)
over modes. The spatial dependence of the modes is known explicitly, but the time
dependent part does not acquire the usual form e±iωt. Rather, it satisfies a certain dif-
ferential equation with time-dependent coefficients. A determination of solutions to this
equation is possible by a method motivated by a WKB type approximation. This led
Parker to define the adiabatic vacuum states [Par69]. The adiabatic vacuum states are
defined such that the particle creation is minimized in an expanding universe. Later,
the adiabatic vacuum states were redefined by Lüders and Roberts [LR90] in a more
rigorous setting of quantum field theory in curved spacetime.

In this chapter we introduce, first, the quantum theory of the scalar field in the for-
mulation used in [LR90]. We also give a brief account of adiabatic vacuum states. Then,
we quote the important theorem on the general form of the two-point distribution of a
homogeneous, isotropic, quasi-free state for the scalar field in Robertson-Walker space-
time. Finally, we calculate, as a preparation for the construction the almost equilibrium
states, a ’four-smeared’ version of the two-point distribution.

3.1 The algebra and the states

We have seen in chapter 2 how the Weyl algebra or the field algebra for a quantum field
is constructed in a general, curved spacetime. There is an alternative way to obtain
the algebra of observables, which goes back to Araki, namely, by constructing a self-
dual algebra [Ara68, AS72, AY82]. The self-dual algebra is a different route to the
construction of the CCR algebra, distinguished by the fact that one chooses a different
set of generators that act on a complex vector space K . This approach is used in [LR90],

31
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where the Weyl algebra associated to a self-dual algebra is is taken as the algebra of
observables.

The self-dual algebra

A self-dual algebra is based on a phase space triple (K ,Γ,γ), where K is a complex
linear space, Γ is an antilinear involution of K , and γ is a Hermitian form on K
satisfying

γ(Γf,Γg) = −γ(f, g)∗ . (3.1)

The space K serves as the test function space for creation and annihilation operators.
The indefinite inner product γ(f, g) gives rise to the canonical commutation relations
and the involution Γ combines complex conjugation with the interchange of test functions
for creation and annihilation operators [AY82].

For the Klein-Gordon field on a globally hyperbolic spacetime (M, gµν) one defines

K := D(M)/[(�g + m2)D(M)] , (3.2)

γ(f, g) := iG(f̄ , g) , (3.3)

where G(f, g) :=
∫
d4x fEg, f, g ∈ K , and Γ is defined by the requirement

Γf = f̄ . (3.4)

Note that D(M) := C∞
0 (M) is a space of complex functions, as opposed to the space

of real functions used in the construction in chapter 2, and the fundamental solution E
is defined in equation (2.7). Equation (3.2) ensures that the corresponding field satisfies
the Klein-Gordon equation. The involution Γ satisfies (3.1) by the properties of the
Green’s function G(f, g).

On the phase space (K ,Γ,γ) one constructs the self-dual CCR algebra A(K ,Γ,γ)
as follows. First, consider the complex, free, *-algebra over K generated by the symbols
φ(f), their conjugates φ(f)∗, and the identity 1, where f ∈ K . Then, take the quotient
of it by the two-sided *-ideal that is generated by the relations

φ(f) is complex linear in f , (3.5)

φ(f)∗φ(g)− φ(g)φ(f)∗ = γ(f, g)1 , (3.6)

φ(Γf)∗ = φ(f) . (3.7)

for f, g ∈ K . In order to circumvent problems with unbounded operators, one passes,
as usual, from A(K ,Γ,γ) to an associated Weyl algebra. The Weyl algebra W(K<, iγ)
is based on the real linear space K< := {f ∈ K : Γf = f} equipped with the real
symplectic form iγ(f, g):

W (f)W (g) = e−
1
2
γ(f,g)W (f + g) . (3.8)

Note that this is formally equal to (2.32) if K< coincides with T . A net of C*-algebras
is obtained by taking A(O) to be the C*-subalgebra generated by the Weyl elements
W (f), f ∈ D(M) with supp f ⊂ O.
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Quasi-free states

A quasi-free state for a real, linear, scalar field is specified by its two-point distribution

S(f, g) = ωS(φ(f)∗φ(g)) (3.9)

for f, g ∈ K . This two-point distribution may be seen as a complex scalar product on
the space K . It specifies the corresponding quasi-free state in terms of Weyl operators
by

ωS(W (f)) := e−
1
2
S(f,f) . (3.10)

The two-point distribution of a quasi-free state is a polarization on the phase space
(K ,Γ,γ). This means that S(·, ·) is a positive Hermitian form on K such that

S(f, g)− S(Γg,Γf) = γ(f, g) . (3.11)

Given S(·, ·) one defines a scalar product (·, ·)S on K by

(f, g)S = S(f, g) + S(Γg,Γf) (3.12)

so that by the Schwarz inequality and the triangle inequality one obtains [AS72]

|γ(f, g)|2 ≤ (f, f)S (g, g)S , (3.13)

which is the complex version of (2.21).
It is remarkably easy to characterize pure, quasi-free states in this scheme. Namely,

denote by KS the Hilbert space completion of K by (·, ·)S. On KS we have an operator
Ŝ satisfying (f, Ŝg)S = S(f, g). The state ωS is a pure quasi-free state if and only if Ŝ
is a basis projection on KS [AS72].

3.2 The spacetime and the field

As already noted, Robertson-Walker spacetimes are homogeneous and isotropic solu-
tions to the Einstein equations. They are globally hyperbolic Lorentzian manifolds with
topology Mε = R×Σε, where ε = 0,+1,−1 discriminates three types of spacelike hyper-
surfaces. The Cauchy surfaces Σε are homogeneous Riemannian manifolds with constant
curvature of sign ε. The homogeneous and isotropic spacetimes can be endowed with
the Robertson-Walker metrics

ds2 = dt2 − a(t)2

[
dr2

1− εr2
+ r2

(
dθ2 + sin2 θ dϕ2

)]
, (3.14)

where the coordinates cover the ranges r ∈ [0,∞) , θ ∈ [0, π] , ϕ ∈ [0, 2π] for ε = 0,−1
and r ∈ [0, 1] for ε = +1. The function a(t) is a strictly positive, smooth function

describing the expansion of the universe, and H(t) = ȧ(t)
a(t)

is the Hubble parameter.
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The induced metric on the Cauchy surfaces can be written as

ds2 = dt2 − a(t)2sε
ijdx

idxj , (3.15)

where we wrote the induced metric on the Cauchy surface as hε
ij(t) = a(t)2sε

ij. Note that
the metric hij is time-dependent while sij is not. We use Σ to denote the manifold with
metric sij, while Σt is endowed with the metric hij. The future directed normal fields
of all the hypersurfaces Σε are given by nµ = (1, 0, 0, 0). These fields are geodesic, i.e.,
nµ∇µn

ν = 0.

It is convenient to regard the Cauchy surfaces Σε as being embedded in R
4 by

Σ0 =

{
x ∈ R4 : x0 = 0

}
, (3.16)

Σ+ =

{
x ∈ R4 : (x0)2 +

3∑
i=1

(xi)2 = 1

}
, (3.17)

Σ− =

{
x ∈ R4 : (x0)2 −

3∑
i=1

(xi)2 = 1 , x0 > 0

}
. (3.18)

Generally speaking, one calls the spacetime M+ a closed universe since Σ+ is compact.
It is also customary to call M− and M0 open and flat universes, respectively. Each of
the Cauchy surfaces Σε is a homogeneous surface for a different symmetry group Gε.
In detail, these are the groups: G0 = E(3), the Euclidean group; G+ = SO(4), the
rotation Group; and G− = L↑+(4), the Lorentz group.

The field equation

In Robertson-Walker spacetimes the Klein-Gordon equation (2.2) becomes

∂2

∂t2
φ(t,x) + 3H(t)

∂

∂t
φ(t,x) + (−∆h +m2)φ(t,x) = 0 , (3.19)

where ∆h denotes the Laplacian on Σε
t . If one assumes that the field modes uk(x) =

T k(t)Yk(x) and their complex conjugates form a complete orthonormal basis, the general
solution of the Klein-Gordon equation can be written as

φ(t,x) =

∫
dk
[
T k(t)Yk(x)a(k) + Tk(t)Y k(x)a(k)∗

]
. (3.20)
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We think of a(k), a(k)∗ as arbitrary complex coefficients with no reference to particles.
This decomposition of the field is valid on all types of Robertson-Walker spacetimes if
one defines the measure dk accordingly. Our notation is as follows:

ε = 0 :

∫
dk :=

∫
R3

d3k , k := (k1, k2, k3) ∈ R3, k := |k| , (3.21a)

ε = +1 :

∫
dk :=

∞∑
k=0

k∑
l=0

l∑
m=−l

, k := (k, l,m) ∈ N× N× Z , (3.21b)

ε = −1 :

∫
dk :=

∫
R3

d3k , k := (k1, k2, k3) ∈ R3, k := |k| . (3.21c)

Note the subtle difference in notation between the absolute value of the three-momentum,
k := |k|, and the four-momentum k := (k0, k1, k2, k3) = (k0,k). The functions Tk(t)
depend on k and the functions Yk(x) depend on k.

Homogeneous, isotropic, quasi-free states

The groups Gε, act as isometry groups on the manifolds Mε := R × Σε by g(t,x) =
(t, gx), g ∈ Gε. It follows that they must commute with the fundamental solution E
and thus act as a group of transformations on the phase space. In turn, this defines a
group of (Bogoliubov) automorphisms {αg} on the Weyl algebra via

αg(W (f)) := W (gf) (3.22)

for g ∈ Gε. Now, we say that a state ω is homogeneous and isotropic if ω ◦ αg = ω,
g ∈ Gε. Since a quasi-free state ωS is, by definition, uniquely determined by its two-point
distribution S(f1, f2), this translates to the necessary and sufficient condition

S(gf1, gf2) = S(f1, f2) (3.23)

for all g ∈ Gε. The G-invariance of the two-point distribution is analyzed in [LR90] by

passing to the phase space (M̂ , σ̂) of initial data for φ(x) at time t, where

M̂ := {(u, a(t)3p), u, p ∈ D(Σ,R)} (3.24)

and the symplectic form is a variant of (2.16):

σ̂(F1, F2) := a(t)3

∫
Σ

dx (p1u2 − u1p2) (3.25)

for Fi := (ui, a(t)3pi) ∈ M̂ , i = 1, 2, where dx = d3x
√
|s|. Please note that σ̂ is defined

using the measure derived from sij and not from hij.
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By introducing suitable topologies on M̂ , one finds that it is sufficient to compute
the commutants of the unitary representations U ε of Gε on L2(Σ) given by U ε

gf :=
f ◦ g−1, f ∈ D(Σ) [LR90]. The representations U ε are decomposed into irreducible
representations by (generalized analogues to) Fourier transforms

f̃(k) :=

∫
dx Y k(x)f(x) (3.26)

for f ∈ L2(Σ). In each case, the Fourier transform is a unitary operator from L2(Σε) to

L2(Σ̃ε), where Σ̃ε denotes the momentum space associated to Σε. And, again in each
case, a bounded operator on L2(Σε) commuting with U ε corresponds on L2(Σε) to a
multiplication by a bounded function of k.

The functions Yk(x) constitute an orthonormal basis of eigenfunctions of the Laplacian
∆s in L2(Σ) (see below for the precise forms). The inverse Fourier transform is given by

f(x) =

∫
dk Yk(x)f̃(k) (3.27)

and one has the usual completeness relations∫
dk Yk(x)Y k(x

′) = δ(x,x′) , (3.28)∫
dx Yk(x)Y k′(x) = δ(k,k′) . (3.29)

The δ(k,k′)-distribution is to be taken with respect to the measures dk defined in (3.21):∫
dk′f(k′)δ(k,k′) = f(k) . (3.30)

Spatial mode functions

We give a brief account of the functions Yk(x) in each of the three types of Robertson-
Walker spaces. What is needed is a direct sum or direct integral decomposition of the
space L2(Σε) in terms of eigenfunctions of the Laplacian ∆s, i.e.,

∆sYk(x) = −E(k)Yk(x) . (3.31)

In each case, the decomposition is obtained by different means, but it exists and allows
to treat, to a great extent, the solutions in the different types of Robertson-Walker
spacetimes on an equal footing [LR90].
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[ε = 0]: In the flat case we have ∆h = 1
a2 ∆s. Thus, it follows that ∆sYk(x) = −k2Yk(x)

and that the generalized eigenvectors Yk(x) are independent of t. The eigenvectors and
their negative eigenvalues are given by

Yk(x) =
1

(2π)
3
2

eikx , E(k) := k2 . (3.32)

The direct integral decomposition amounts to the ordinary Fourier transform. Note the
useful relations Yk(x) = Y−k(x) and |Yk(x)|2 = 1

(2π)3
.

[ε = +1]: For the closed universe, the solutions Yk(x) are the spherical harmonics

Yk(ψ, ϑ, ϕ) = Akl Π+
kl(ψ) Yl,m(ϑ, ϕ) , E(k) := k(k + 2) , (3.33)

(k = 0, 1, . . . ; l = 0, 1, . . . , k; m = −l,−l + 1, . . . , l), where the Yl,m are the harmonics
on the 2-sphere, the Π+

kl are real polynomials in sinψ and cosψ, and the Akl are real
normalization constants. One has a direct sum decomposition L2(Σ+) =

⊕∞
k=0Hk,

where Hk denotes the span of Yk,l,m as l and m vary.

[ε = −1]: In the open universe the Cauchy surface Σ− is regarded as being embedded
in M, ξ = (1, ξ) ∈ M and x · ξ is the Minkowski scalar product. A set of generalized
eigenvectors are

Yk(x) =
1

(2π)
3
2

(x · ξ)−1+ik , E(k) := k2 + 1 , (3.34)

where k = kξ ∈ R
3. Here, the Fourier transform is a map with values in L2(S2, dΩ),

where S2 is the two-sphere embedded in R3, i.e., a function on the set of horospheres, in
the language of [GGV66].

Time-dependence

The time-dependent function Tk(t), which appears in (3.20), is required to be a solution
to the differential equation

T̈k(t) + 3H(t)Ṫk(t) + ω2
k(t)Tk(t) = 0 , (3.35)

where the frequencies ωk(t) are given by

ω2
k(t) :=

E(k)

a(t)2
+ m2 (3.36)

and, additionally, to satisfy the condition

T k(t)Ṫk(t)− Tk(t)Ṫ k(t) =
i

a(t)3
. (3.37)
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The explicit form of E(k) in each type of Robertson-Walker spacetime has been given
in the last section. The condition (3.37), which amounts to the Wronskian, determines
the commutation relations of the a(k), a(k)∗ [HNS84, PF74].

Equation (3.35) is an ordinary, homogeneous, linear differential equation with variable
coefficients. In case of a static spacetime it has the explicit solutions

Tk(t) =
1√

2a3ωk

e−iωkt . (3.38)

In the general case it has a fundamental system Tk(t), T k(t) of solutions, which cannot
be calculated explicitly.

Adiabatic vacuum states

The only freedom one has in the construction of pure, homogeneous, isotropic, quasi-
free states is the choice of initial data for the function Tk(t). This choice can be made
on physical grounds. For example, one can chose initial values such that the resulting
states, in a certain sense, minimize particle creation in an expanding universe and reduce
to the known particle notion in the static case. Then, one obtains the so-called adiabatic
vacuum states [Par69].

In [LR90] the former definition of adiabatic vacuum states was put on a firm basis. The
adiabatic vacuum states were redefined by fixing the large k behaviour of Tk(t) and Ṫk(t)
such that the resulting states adhered the principle of local definiteness [HNS84], which,
roughly, requires that the the set of expectation values measurable in a bounded regionO
of the spacetime in a GNS representation of a state ω should not depend on the state ω.
This rules out inequivalent representations of the local algebra of bounded observables
A(O) arising from different global states, which would be considered a pathology. For a
precise definition and discussion of the principle of local definiteness and other related
notions see [Ver94].

One can obtain iterative solutions T n
k (t) of (3.35) and hereby the adiabatic vacuum

states [Par69, LR90], by using a WKB-type ansatz

Tk(t) =
1

(2a(t)3Ωk(t))
1/2

exp

i

t∫
t0

dt Ωk(t)

 (3.39)

with yet undetermined positive functions Ωk(t). This ansatz satisfies the normalization,
and it satisfies (3.35) if

Ω2
k = ω2

k −
3

4

(
ȧ

a

)2

− 3

2

ä

a
+

3

4

(
Ω̇k

Ωk

)2

− 1

2

Ω̈k

Ωk

. (3.40)
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Now start with an iteration(
Ω

(0)
k

)2

= ω2
k , (3.41)(

Ω
(n+1)
k

)2

= ω2
k −

3

4

(
ȧ

a

)2

− 3

2

ä

a
+

3

4

(
Ω̇

(n)
k

Ω
(n)
k

)2

− 1

2

Ω̈
(n)
k

Ω
(n)
k

. (3.42)

The iteration procedure breaks down when we obtain a negative value for
(
Ω

(n+1)
k

)2

.

This does not happen if one restricts to a time interval, t ∈ I, where I ∈ R is finite,
and, in addition, k is chosen sufficiently large, k ≥ kmin [LR90]. Then, one defines the
for t0, t ∈ I the function

W
(n)
k (t) =

1(
2a(t)3Ω

(n)
k (t)

)1/2
exp

i t∫
t0

dt Ω
(n)
k (t)

 . (3.43)

An adiabatic vacuum state of order n is the pure, quasi-free state obtained as the exact
solution of (3.35) with the initial conditions

Tk(t) = W
(n)
k (t) , Ṫk(t) = Ẇ

(n)
k (t) . (3.44)

The adiabatic vacuum states depend on several quantities involved in their definition.
First, they depend on the initial time t used for the initial values in (3.44). This has no
effect on the adiabatic vacuum state, as it amounts to common phase change of the initial
conditions. Second, they depend on the extrapolation of Ω(n) to small k, which is always
possible in a continuous manner, and amounts to some Bogoliubov transformation on
the state, not affecting the large k behaviour. Of course, they depend also on the order
of iteration, n.

It has been shown in [Jun96, Jun02] that adiabatic vacuum states of infinite order are
Hadamard states. This fact is of indirect importance for our construction as is is used
in [Olb07a] to prove the Hadamard property of the states of low energy, and we base
our proof of Hadamard property on the latter fact. The notion of adiabatic vacuum
states was extended to more general spacetimes by the usage of Sobolev wavefront sets
in [JS02].

3.3 The two-point distribution

The two-point distribution of a homogeneous, isotropic, quasi-free state can be charac-
terized by different means. For example, in [LR90] it is given in a form that takes data

on the surface Σ. So, let Fi := (ui, a(t)3pi) ∈ M̂ be a pair of initial values on the phase
space associated to Σ.
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Theorem 3.1 ([LR90]) The homogeneous and isotropic states on Robertson-Walker
spacetimes have two-point distributions of the form

ω(2)(F, F ′) :=

∫
dk
〈
F̃ (k), S(k)F̃ ′(k)

〉
, (3.45)

where 〈
F̃ (k), S(k)F̃ ′(k)

〉
:=

1∑
i,j=0

¯̃Fi(k)Sij(k)F̃ ′
j(k) . (3.46)

Here k 7→ Sij(k) is measurable and polynomially bounded. For the matrix S(k) it holds
almost everywhere in k that

S01(k)− S10(k) = i (3.47a)

S01(k) = S10(k) (3.47b)

S00(k) ≥ 0 (3.47c)

S00(k)S11(k) ≥ |S01(k)|2 . (3.47d)

Obviously equations (3.47c) implement (3.47c) the positivity of the state (compare to
(2.21)). We remark that the two-point distributions depend only on the magnitude
k of the three-momentum k because of the symmetry of the states. Exploiting these
relations, it is possible to write S01(k) = S<01(k) + i

2
. So, with J = ( 0 1

−1 0 ) the matrix
S(k) can be written as

S(k) = S +
i

2
J , (3.48)

where we introduced

S :=

(
S00 S<01
S<01 S11

)
. (3.49)

We distinguish the original matrix S(k) and its real part S by omitting the k-dependence
in the latter. This will cause no trouble since, from now on, we will almost exclusively
deal with S. We remark that equation (3.47d) becomes

[S] ≥ 1

4
, (3.50)

where [S] = detS. Equation (3.50) resembles a generalized uncertainty relation for
the covariance matrix of a state in quantum statistical mechanics. States of minimum
uncertainty are pure states, which satisfy [S] = 1

4
.

The two-point distribution of pure, quasi-free states is given by (3.45) with

S(k) :=

(
|p(k)|2 −q(k)p(k)

−q(k)p(k) |q(k)|2

)
, (3.51)
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where p(k) and q(k) are (essentially polynomially bounded and measurable) complex-
valued functions satisfying

q(k)p(k)− q(k)p(k) = −i . (3.52)

The functions p(k) and q(k) are proportional to the initial data of Tk(t) [Jun96]:

S(k) =

(
a6Ṫ kṪk −a3Ṫ kTk

−a3T kṪk T kTk

)
.

The fundamental solution

For the calculation of the explicit four-smeared two-point distribution of a quasi-free
state we will need the following characterization of the fundamental solution E (see
[LR90]). First, define the generalized function G(x, y) by

G(x, y) :=

∫
dk Gk(x

0, y0)Yk(x)Y k(y) , (3.53)

Gk(x
0, y0) := i(Tk(x

0)T k(y
0)− T k(x

0)Tk(y
0)) . (3.54)

Then the fundamental solution E : D(M) → E (M) can be written as

(Ef)(x0,x) := −G(x, f) :=

∫
dy0

∫
dk Yk(x)Gk(x

0, y0)f̌(y0,k) , (3.55)

where

f̌(y0,k) := a(y0)3

∫
d3y
√
|s| Y k(y)f(y0,y) . (3.56)

The kernel Gk(·, y0) satisfies for each fixed y0 equation (3.35) (by linearity) with initial
conditions

Gk(y
0, y0) = i(Tk(y

0)T k(y
0)− T k(y

0)Tk(y
0)) = 0 , (3.57)

Ġk(y
0, y0) = i(Ṫk(y

0)T k(y
0)− Ṫ k(y

0)Tk(y
0)) = − 1

a(y0)3
. (3.58)

This shows that Gk(x
0, y0) is independent of the particular solution Tk(t) used in equa-

tion (3.54).

3.3.1 Four-smeared two-point distribution

As a first step to our construction, we need the explicit form of the two-point distribution
S(f, g) of a homogeneous, isotropic, quasi-free state in terms of the real matrix S from
(3.49) and the solutions to equation (3.35). We prove the following lemma.
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Lemma 3.2 Let ω be a quasi-free, homogeneous, isotropic state of the Klein-Gordon
field in a Robertson-Walker spacetime M. Then the two-point distribution of ω is given
by

S(f, g) =

∫
dµ(x)

∫
dµ(x′) f̄(x)g(x′) ω(2)(x, x′) (3.59)

with dµ(x) :=
√

[g]d4x , where

ω(2)(x, x′) :=

∫
dk Yk(x)Y k(x

′) (3.60)

×
[
Tk(t)T k(t

′)

(
b1 −

1

2

)
+ Tk(t)Tk(t

′) · b2 + T k(t)T k(t
′) · b̄2 + T k(t)Tk(t

′)

(
b1 +

1

2

)]
and

b1 := S00|Tk(t0)|2 + a(t0)
6S11|Ṫk(t0)|2 +

(
T k(t0)Ṫk(t0) + Tk(t0)Ṫ k(t0)

)
a(t0)

3S<01 ,

(3.61a)

b2 := −S00T
2

k(t0)− a(t0)
6S11Ṫ

2

k(t0)− 2T k(t0)Ṫ k(t0)a(t0)
3S<01 . (3.61b)

Proof. In order obtain this formula for the two-point distribution, we need to calculate
the two-point distribution of a homogeneous, isotropic, quasi-free state (3.45), using the
initial values F,H ∈ M defined by

F :=

(
ρ0Ef

a(t0)
3ρ1Ef

)
, H :=

(
ρ0Eh

a(t0)
3ρ1Eh

)
(3.62)

on a Cauchy surface at time t0. First, we need some Fourier transforms. Using equations
(3.26), (3.29) and the abbreviated notation

ρ0Gk(x
0, y0) := Gk(t0, y

0) , (3.63)

ρ1Gk(x
0, y0) := Ġk(t0, y

0) (3.64)

one obtains

ρ̃0Ef(k) =

∫
dy0 Gk(t0, y

0)f̌(y0,k) , (3.65)

ρ̃0Ef(k) =

∫
dy0 Gk(t0, y

0) ¯̌f(y0,y) , (3.66)

ρ̃1Ef(k) =

∫
dy0 Ġk(t0, y

0)f̌(y0,k) , (3.67)

ρ̃1Ef(k) =

∫
dy0 Ġk(t0, y

0) ¯̌f(y0,y) . (3.68)
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The Fourier transform of a(t0)
3ρ1Ef is simply a(t0)

3ρ̃1Ef . Using this and (3.62) we can
write the integrand of the two-point distribution (3.45) as

〈
F̃ (k), S(k)H̃(k)

〉
=

1∑
i,j=0

¯̃Fi(k)Sij(k)H̃j(k) (3.69)

= ρ̃0Ef(k)S00(k)ρ̃0Eh(k) + a(t0)
3ρ̃0Ef(k)S01(k)ρ̃1Eh(k) (3.70)

+ a(t0)
3ρ̃1Ef(k)S10(k)ρ̃0Eh(k) + a(t0)

6ρ̃1Ef(k)S11(k)ρ̃1Eh(k)

=

∫
dµ(y)

∫
dµ(y′)f̄(y0,y)h(y′0,y′)Yk(y)Y k(y

′)× (3.71)[
Gk(t0, y

0)S00(k)Gk(t0, y
′0) + a(t0)

3Gk(t0, y
0)S01(k)Ġk(t0, y

′0)

+ a(t0)
3Ġk(t0, y

0)S10(k)Gk(t0, y
′0) + a(t0)

6Ġk(t0, y
0)S11(k)Ġk(t0, y

′0)
]
,

where dµ(y) :=
√
|g|d4y = a(y0)3

√
|s|dy0d3y. We can now write the two-point distribu-

tion as

S(f, h) =

∫
dk
〈
F̃ (k), S(k)H̃(k)

〉
(3.72)

=

∫
dµ(y)

∫
dµ(y′) f̄(y)h(y′) ω(2)(y, y′) (3.73)

with

ω(2)(y, y′) :=

∫
dk Yk(y)Y k(y

′) (3.74)

×
[
Gk(t0, y

0)Gk(t0, y
′0)S00(k) +Gk(t0, y

0)Ġk(t0, y
′0)a(t0)

3S01(k)

+ Ġk(t0, y
0)Gk(t0, y

′0)a(t0)
3S10(k) + Ġk(t0, y

0)Ġk(t0, y
′0)a(t0)

6S11(k)
]
.

We need to calculate the quantity in the square brackets. From the definition (3.54) of
Gk(x

0, y0) we have

Gk(t0, y
0) := i

(
Tk(t0)T k(y

0)− T k(t0)Tk(y
0)
)
. (3.75)

In the following we use the abbreviated notation

G := Gk(t0, y
0) , G′ := Gk(t0, y

′0) , (3.76)

Ġ := ∂t0Gk(t0, y
0) , Ġ′ := ∂t0Gk(t0, y

′0) , (3.77)

and

T0 := Tk(t0) , T := Tk(y
0) , T ′ := Tk(y

′0) . (3.78)
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Note that

G = i(T0T − T 0T ) , G′ = i(T0T ′ − T 0T
′) , (3.79)

Ġ = i(Ṫ0T − Ṫ 0T ) , Ġ′ = i(Ṫ0T ′ − Ṫ 0T
′) . (3.80)

This gives the intermediate results

GG′ = |T0|2TT ′ − T
2

0TT
′ − T 2

0 TT
′ + |T0|2TT ′ , (3.81)

ĠĠ′ = |Ṫ0|2TT ′ − Ṫ
2

0TT
′obtain− Ṫ 2

0 TT
′ + |Ṫ0|2TT ′ , (3.82)

ĠG′ = T0Ṫ 0TT ′ − T 0Ṫ 0TT
′ − T0Ṫ0TT ′ + T 0Ṫ0TT

′ , (3.83)

GĠ′ = Ṫ0T 0TT ′ − T 0Ṫ 0TT
′ − T0Ṫ0TT ′ + Ṫ 0T0TT

′ . (3.84)

Making use of S01 = S<01 + i
2

and S10 = S<01 − i
2

we finally arrive at

[. . . ] = TT ′
[
S00|T0|2 + a6S11|Ṫ0|2 + (T 0Ṫ0 + T0Ṫ 0)a

3S<01 −
1

2

]
(3.85)

+ TT ′
[
−S00T

2

0 − a6S11Ṫ
2

0 − 2T 0Ṫ 0a
3S<01

]
+ TT ′

[
−S00T

2
0 − a6S11Ṫ

2
0 − 2T0Ṫ0a

3S<01

]
+ TT ′

[
S00|T0|2 + a6S11|Ṫ0|2 + (T 0Ṫ0 + T0Ṫ 0)a

3S<01 +
1

2

]
,

which gives the lemma. �



4 Quantum energy inequalities

This chapter starts with a brief overview of quantum energy inequalities and their in-
terpretation as stability conditions. Then, we quote the worldline quantum inequality
of Fewster [Few00], which we will use as the basis of our construction of almost equi-
librium states. Afterwards, we give an explicit expression for the worldline averaged
stress-energy in Robertson-Walker spacetimes in a form that is suitable for the mini-
mization procedure to be accomplished in chapter 5.

4.1 A brief review

The geometry of spacetime is related to its matter content via Einstein’s equation

Rµν −
1

2
R gµν = −8πTµν . (4.1)

Without restrictions on the stress-energy tensor there would be no restrictions on the
metric, thus no clue on physically realizable solutions. Apart from covariant conserva-
tion of energy, ∇µT

µν , the stress-energy tensor is believed to obey several more energy
conditions, of which the most fundamental one is the weak energy condition (WEC). It
says that

Tµνu
µuν ≥ 0 (4.2)

for timelike uµ is satisfied by all forms of physically reasonable matter. Interpreting
uµ as the four velocity of an observer, it guarantees that all observers at all points in
spacetime always measure nonnegative energy density.

The energy conditions are crucial ingredients in many important results concerning
the behaviour of solutions to Einstein’s equations. For instance, a result that requires
energy conditions is the positivity of the asymptotic gravitational mass of isolated objects
[SY79, LV81, Wit81]. This has implications on the stability of Minkowski spacetime.
Furthermore, energy conditions ensure that entertaining phenomena like traversable
wormholes and stargates in ’designer spacetimes’, time machines, i.e., spacetimes with
closed timelike curves, and warp drives are forbidden [FSW93, Haw92]. The WEC is
also used in theorems, which prove that at a certain stage the formation of singularities
becomes inevitable. These singularities are related to gravitational collapse [Pen65] as
well as to an initial big bang [HE73]. Only recently, it was suggested that in inflationary
cosmology an initial singularity may exists even if the energy conditions are violated

45
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[BGV03]. Most important for us, energy conditions are necessary for the second law of
thermodynamics to hold (see the discussion below).

As opposed to classical field theory, it is known that the weak energy condition is
violated in quantum field theory. In fact, in any Wightman field the renormalized
energy density may become arbitrarily negative at a spacetime point [EGJ65, Kuo97].
This may happen under very general assumptions and for free as well as interacting
local quantum fields. Simple examples of states with negative energy density are given
by certain superpositions of the vacuum state with a two-particle state [Pfe98, FHR02].
Besides this, there are also examples for negative energy densities that do not rely on the
availability of particles, e.g., the Casimir effect or squeezed states of light (see references
in [Fla97]).

Quantum inequalities were introduced originally in [For78], where it is argued that
unconstrained negative energy fluxes F = E/t can violate the second law of thermody-
namics. However, all evidence tells us that the second law of thermodynamics holds on
a macroscopic level. Quantum inequalities provide a mechanism that prevents the mi-
croscopical violations to survive on a macroscopic level. The argument goes as follows.
An absorber is a quantum system that has an energy uncertainty ∆E & t−1, where t is
some timescale. The magnitude of change in its energy due to absorption of negative
flux is of the order of t|F |. Hence, no macroscopic effects remain if the magnitude and
duration of the negative energy flux is constrained by |F | . t−2.

To constrain the negative energy that observers can measure it was suggested using the
integral of the energy density over the worldline of a geodesic observer [Tip78] – a con-
cept which led to the averaged weak energy condition (AWEC)

∫∞
−∞ dτ 〈Tµνu

µuν〉 ≥ 0,
where uµ is the observers four-velocity and τ is his proper time. This condition allows for
the energy density to be pointwise negative as long as there is enough positive energy
elsewhere on the worldline to compensate for this. A related condition is the aver-
aged null energy condition (ANEC), which follows from integration along null geodesics
[WY91]. Unfortunately, these conditions are violated easily for the vacuum state in
certain spacetimes. It was then discovered [FR95] that introducing a sampling function
into the AWEC integral successfully constrains the magnitude and duration of negative
energy densities. The idea of averaging the renormalized stress-energy tensor over re-
gions or curves in spacetime has been very fruitful since then and led to a variety of
quantum weak energy inequalities of different types in different settings – see the reviews
[Pfe98, Few05a].

An absolute quantum energy inequality (QEI) for the renormalized stress-energy ten-
sor has the general form [FP06]∫

K

dK 〈: Tµν :〉ω f
µν ≥ −Q(fµν) , (4.3)

where the integral is taken over a region K of spacetime and the sampling tensor fµν

belongs to the class of second rank contravariant tensor fields, possibly singularly sup-
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ported on curves or surfaces in K. Furthermore, Q is a positive, real-valued map on
these tensors, and ω belongs to a class of states of the theory – usually the class of
Hadamard states if curved spacetime is considered.

Most quantum energy inequalities are obtained by averaging with a sampling function
f(t) along the worldline of an observer,∫

γ

dt f(t) 〈: Tµν : (t, t)〉ω u
µ(t)uν(t) ≥ −Q(f) , (4.4)

where uµ denotes the four-velocity of the observer. Early quantum inequalities were
derived for Lorentzian sampling functions ft0(t) = t0/ (π(t2 + t20)). To give an explicit
example, for a free quantized scalar field in Minkowski spacetime it holds

∞∫
−∞

dt ft0(t) 〈: Tµν :〉uµuν ≥ − 3

32π2t40
, (4.5)

in the frame of an arbitrary inertial observer with proper time coordinate t for any state
[FR95]. In the meantime, the class of admissible sampling functions has been extended
to arbitrary smooth positive functions with sufficiently nice decay properties.

A simple configuration leading to violation of the AWEC and absolute QEIs is an
observer at rest between uncharged, perfectly conducting plates. Then, the Casimir
effect [Cas48] predicts negative vacuum energy for the quantized electromagnetic field
measured by such an observer. In curved spacetimes a further difficulty is normal or-
dering of the stress-energy tensor. This problem is solved by difference QEIs, which are
inequalities of the type∫

γ

dt f(t)
[
〈Tµν(γ(t))〉ω − 〈Tµν(γ(t))〉ω0

]
γµ(t)γν(t) ≥ −Q(f, ω0) , (4.6)

where ω0 is a reference state. Clearly, in the Fock representation of a Hadamard state
ω0 we would, by Wald’s fourth axiom (see section 2.2.4), regain an absolute QEI. Dif-
ference QEIs have been proved on arbitrary globally hyperbolic spacetimes with general
sampling functions on the class of Hadamard states. See below for a precise statement.

Sampling along timelike curves is not the only possibility to obtain energy inequalities.
One can try sampling in a spacetime region or one may sample over a spatial region alone:

H(ξ,Σ) :=

∫
Σ

dµ(x)f(x) 〈: Tµν :〉 ξµξν , (4.7)

where ξµ is a vector field that is orthogonal to Σ and f(x) has compact support on Σ.
Only for a restricted class of theories, namely, conformal fields in two spacetime dimen-
sions, spacelike sampled quantum inequalities have been derived [Fla97, Vol00]. Rather
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it seems that compactly supported weighted averages over spacelike surfaces alone are
generally unbounded below for dimensions n ≥ 3 [FHR02]. Naively, this kind of objects
could have been hoped to be prototypes of ‘local Hamiltonians’. Interestingly, the in-
tegrals involved here resemble the integrals that were investigated some forty years ago
in order to derive symmetry generating global charge operators from local currents (see
[Völ77, Orz70, Req76]). In particular, these investigations suggest, that spacelike smear-
ing alone of local currents, does not yield operators with sensible properties. In view of
these problems with spacelike averaging, we adopt the viewpoint that the investigation
of timelike averaged stress-energy tensor energy densities is more promising.

Let us make two more remarks. First, we note that there are quantum field theories
which do not satisfy quantum inequalities. For example, the non-minimally coupled
scalar fields violate the energy conditions already on the classical level and, as expected,
their averaged energy density is unbounded below on the class of Hadamard states.
Recently, Fewster and Osterbrink derived state dependent quantum inequalities for the
fields with coupling 0 < ξ ≤ 1

4
[FO08]. Second, the issue of quantum energy inequalities

for interacting fields is not yet resolved, though, recently, some progress in this direction
has been reported by Fewster and Bostelmann [FB].

4.1.1 Stability conditions

Quantum inequalities seem to be closely related to other stability conditions in quan-
tum field theory, as has been pointed out by Fewster and Verch [FV03, Few05b]. On
the microscopic level the microlocal spectrum condition (theorem 2.6) serves as a suit-
able stability condition. Now, theorem 4.1 states that quantum inequality exists for all
states that satisfy the microlocal spectrum condition on arbitrary globally hyperbolic
spacetimes. In [FV03] a macroscopic stability condition was related to the quantum
inequalities. It was shown that on static spacetimes the existence of passive states (see
below) follows from the existence of quantum weak energy inequalities. The circle is
closed by noting that in [SV00] it was shown that the two-point distributions of passive
states of (vector-valued) quantum fields in a stationary-spacetime satisfy the microlocal
spectrum condition. Now, viewing quantum inequalities as mesoscopic stability condi-
tions this relates stability conditions on three different scales.

Passivity

Let us briefly comment on the notion of passivity. A state on a C*-algebra (A, αt) is
called passive if and only if

ω

(
U∗ δ

i
(U)

)
≥ 0 (4.8)
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for any U ∈ U(A) ∩ D(δ), where U0 denotes the unit-component of the group U(A) of
all unitary elements of A and D(δ) is the set of all A ∈ A for which the the generator

δ(A) := lim
t→0

1

t
(αt(A)− A) (4.9)

exists [PW78, BR97]. For example, for bounded operators on the Hilbert space of a
quantum mechanical system with Hamiltonian H, the generator amounts to a bounded
symmetric derivation δ(A) = i[H,A] (see the monograph [Sak91]). The notion of passiv-
ity was introduced in [PW78] as a precise mathematical formulation of the second law of
thermodynamics, which says that systems at equilibrium are unable to perform mechan-
ical work in cyclic processes. This justifies to call it a macroscopic stability condition. It
is valid for infinite systems and is closely related to the KMS condition (see chapter 5)
by the fact that KMS states and mixtures of KMS are passive. Under certain technical
conditions ensuring that we deal with pure phases, the inverse statement, namely, that
passive states are KMS states or ground states, is also true.

To date, there exists no formulation of passivity for non-stationary spacetimes. A
direct implementation would require to replace the (strongly-continuous) group of auto-
morphism αt by a propagator family of automorphisms αt,s (see the related discussion
in section 2.2) and thus to deal with a time-dependent family of derivations δt. Such
dynamical families are not well investigated with respect to (non)-equilibrium states –
only two references are know to the present author. First, in [BMS02] certain states on
Robertson-Walker spacetimes, which were obtained by ’transplantation’ from de Sitter
space, are proved to be locally passive in a certain sense. Second, in [Oji86] a general
framework for the treatment of time-dependent non-equilibrium processes was proposed,
which makes use of the propagator families and their generators. This (perturbative)
scheme is equivalent the standard thermo field dynamics if and only if the states under
consideration are equilibrium states and the dynamics is time-independent. This remark
ends our digression on passivity.

4.2 A general worldline inequality

The classical energy-momentum tensor of the minimally coupled massive scalar field is
given by

Tµν = ∇µφ∇νφ−
1

2
gµν

(
∇σφ∇σφ+ m2φ2

)
(4.10)

The quantized and point split version of (4.10) is defined as follows [Few00, FS07]. For
a smooth timelike curve γ(t) in M, where t is the proper time of the curve, denote by
U a tubular neighborhood of γ. Choose an orthonormal frame {eµ

α}α=0,1,2,3 in U so that
gµν = nαβeµ

αe
ν
β and such that the restriction of eµ

0 to γ equals the four-velocity of the
curve, eµ

0 |γ = γ̇µ(t).
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Suppose that the two-point distribution of ω0 obeys the microlocal spectrum condition.
Then one can define a distribution by〈

Tµν′ v
µvν′

〉
ω0

(t, t′) :=
1

2

3∑
α=0

ϕ∗
[(
eµ

α∇µ ⊗ eν′

α∇ν′

)
ω

(2)
0 (x, x′)

]
+

1

2
m2ϕ∗

[
(1⊗ 1)ω

(2)
0 (x, x′)

]
. (4.11)

Here ϕ∗ : M×M→ R
2 denotes the pull-back induced by the map ϕ(t, t′) = (γ(t), γ(t′)).

That (4.11) is a well defined distribution on R
2 is shown in [Few00]. Let A be the

algebra of observables of the minimally coupled scalar field of mass m ≥ 0 on a globally
hyperbolic spacetime (M, gµν) with dimension n ≥ 2. Let, furthermore, γ : R→M be
a smooth timelike curve. Then the following theorem holds.

Theorem 4.1 ([Few00]) Let ω and ω0 be states on A(M, gµν) with globally Hadamard
two-point distributions and define the normal ordered energy density relative to ω0 by

〈: T :〉ω := 〈T 〉ω − 〈T 〉ω0
. (4.12)

Then 〈: T :〉ω is smooth, and the quantum inequality

∫
γ

dt f(t)2 〈: T :〉ω (t, t) ≥ −
∞∫

0

dλ

π
˜[

(f ⊗ f) 〈T 〉ω0

]
(−λ, λ) (4.13)

holds for all real-valued f ∈ D(R), and the right hand side is convergent for all such f .

4.2.1 Stress-energy in Robertson-Walker spacetimes

As a necessary prerequisite for the construction the almost equilibrium states we need
the explicit form of the left hand side of (4.13) in Robertson-Walker spacetimes; This
will be part of our free energy functional to be defined in chapter 5. We state the result
as a lemma.

Lemma 4.2 Let Tµν be the stress-energy tensor of real, linear, scalar field in Robertson-
Walker spacetimes and let ω, ω0 two homogeneous, isotropic states. Furthermore, let
f ∈ D(M) and γ be the worldline of an isotropic observer. Then,∫

dt f(t)2
(
〈T 〉ω (t, t)− 〈T 〉ω0

(t, t)
)

=

∫
dµ(k)ε

∫
dt f(t)2

(
ρk(t)− ρk,0(t)

)
, (4.14)

where

ρk(t) := b1(S)
(
|Ṫk(t)|2 + ω2

k|Tk(t)|2
)

+ <
{
b2(S)

(
Ṫk(t)

2 + ω2
kTk(t)

2
)}

, (4.15)
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and the coefficients b1, b2 are defined in (3.61a). The energy density ρk,0(t) is defined
analogously. The measures dµ(k)ε differ by constants from the measures dk defined in
3.21:

dµ(k)0 :=
dk

(2π)3
, dµ(k)+ :=

dk

VΣ+

, dµ(k)− :=
dk

2π2
. (4.16)

Proof. The stress-energy tensor of the Klein-Gordon field (2.2) is given by equation
(4.10). In order to calculate the left hand side of (4.14) we have to consider the point-
split expression∫

dt f(t)2
[
〈T00〉ω (t, t)− 〈T00〉ω0

(t, t)
]

=

∫
dt f(t)2 lim

t′→t

(
1

2
∇0∇′

0 −
1

2

3∑
µ,ν=1

gµν∇µ∇′
ν −

1

2
m2

)
F (x, x′)

∣∣∣∣∣
x=γ(t)

x′=γ(t′)

, (4.17)

where

F (x, x′) := ω(2)(x, x′)− ω
(2)
0 (x, x′) (4.18)

and the two-point distribution ω(2)(x, x′) is given in lemma 3.2. We need the limits
x′ → x of the involved derivatives of the functional F (x, x′). For the restricted case of
pure states, this calculation has been performed in [Olb07b]. See also [PF74] for similar
results. In section 5.5 we will see that the limiting case of pure states amounts to the
values b2 = 0 and b1 = 1

2
.

The difference F (x, x′) is a smooth function if ω and ω0 are Hadamard states. In
that case, the coincidence limit x → x′ is well defined. The derivatives involved in the
energy momentum tensor and which have to be calculated for each of the three cases
ε = 0, 1,−1 are

lim
x′→x

F (x, x′) , lim
x′→x

∇0∇′
0F (x, x′) , lim

x′→x

3∑
µ,ν=1

gµν∇µ∇′
νF (x, x′) . (4.19)

With the convention that latin indices are summed from 1 to 3 we can simplify the
spatial derivative as

3∑
µ,ν=1

gµν∇µ∇′
ν = hij∇i∇′

j =
1

a2
sij∇i∇′

j . (4.20)

Besides that, we simplify the notation by introducing ellipsis for the second summand,
which always looks like the first except that it belongs to the state ω0.
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[ε = 0]: This is, as expected, the simplest case. The modulus |Yk(x)|2 = 1
(2π)3

of the
spatial solutions is independent of x. Thus, we can calculate directly

lim
x′→x

F (x, x′) =

∫
dk |Yk(x)|2

[
|Tk(x

0)|2
(
b1 +

1

2

)
+ Tk(x

0)2 · b2 (4.21)

+ T k(x
0)2 · b̄2 + |Tk(x

0)|2
(
b1 −

1

2

)]
− . . .

=
1

(2π)3

∫
dk
[
2|Tk(x

0)|2 · b1 + 2<
{
Tk(x

0)2 · b2
}]
− . . . (4.22)

= 2

∫
dµ(k)

[
|Tk(x

0)|2 · b1 + <
{
Tk(x

0)2 · b2
}]
− . . . , (4.23)

where we defined the measure dµ(k) = dk
(2π)3

. Similarly we obtain for the term involving
time derivatives

lim
x′→x

∇0∇′
0F (x, x′) = 2

∫
dµ(k)

[
|Ṫk(x

0)|2 · b1 + <
{
Ṫk(x

0)2 · b2
}]
− . . . . (4.24)

The third object involves spatial derivatives. Is is calculated with the aid of (4.20) as

lim
x′→x

3∑
µ,ν=1

gµν∇µ∇′
νF (x, x′) =

1

a(x0)2
lim
x′→x

sij∇i∇′
jF (x, x′) (4.25)

=
1

a(x0)2

∫
dk sij∇iYk(x)∇′

jY k(x
′)
[
2|Tk(x

0)|2 · b1 + 2<
{
Tk(x

0)2 · b2
}]
− . . . (4.26)

=
1

(2π)3

∫
dk

E(k)

a(x0)2

[
2|Tk(x

0)|2 · b1 + 2<
{
Tk(x

0)2 · b2
}]
− . . . (4.27)

= 2

∫
dµ(k)

E(k)

a(x0)2

[
|Tk(x

0)|2 · b1 + <
{
Tk(x

0)2 · b2
}]
− . . . . (4.28)

Here we used that sij∇iYk(x)∇jY k(x) = 1
(2π)3

·E(k), which follows directly from (3.32).

[ε = +1]: In this case we have to work a little more. The states under consid-
eration are assumed to be homogeneous. Thus, the quantities limx′→x F (x, x′) and
limx′→x∇0∇′

0F (x, x′) cannot depend on the spatial coordinates x and x′. By the com-
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pactness of Σ+, we can carry out the limiting procedure, integrate over Σ+ using the
measure dx and divide by the volume VΣ+ . This gives

lim
x′→x

F (x, x′) =
1

VΣ+

∫
Σ+

dx lim
x′→x

F (x, x′) (4.29)

=
1

VΣ+

∫
dk

∫
Σ+

dx |Yk(x)|2
[
|Tk(x

0)|2b1 + Tk(x
0)2b2 (4.30)

+ T k(x
0)2b̄2 + |Tk(x

0)|2b1
]
− . . .

=
1

VΣ+

∫
dk δ(k,k)

[
2|Tk(x

0)|2b1 + 2<
{
Tk(x

0)2b2
}]
− . . . (4.31)

= 2

∫
dµ(k)

[
|Tk(x

0)|2b1 + <
{
Tk(x

0)2b2
}]
− . . . , (4.32)

where we used (3.29) and defined the measure dµ(k) = dk
VΣ+

. Again, after taking the

time derivatives, we can perform the same calculation as before:

lim
x′→x

∇0∇′
0F (x, x′) = 2

∫
dµ(k)

[
|Ṫk(x

0)|2b1 + <
{
Ṫk(x

0)2b2

}]
− . . . . (4.33)

The spatial part gives the preliminary expression

lim
x′→x

3∑
µ,ν=1

gµν∇µ∇′
νF (x, x′) =

1

VΣ+

∫
Σ

dx
1

a2(x0)
lim
x′→x

sij∇i∇′
jF (x, x′) (4.34)

=
1

a(x0)2

1

VΣ+

∫
Σ+

dx

∫
dk lim

x′→x
sij ∇iYk(x) ∇′

jY k(x
′) (4.35)

×
[
Tk(x

0)T k(x
′0)

(
b1 +

1

2

)
+ Tk(x

0)Tk(x
′0)b2

+ T k(x
0)T k(x

′0)b̄2 + T k(x
0)Tk(x

′0)

(
b1 −

1

2

)]
− . . .

=
1

a(x0)2

1

VΣ+

∫
dk

∫
Σ+

dx sij ∇iYk(x)∇j Y k(x) (4.36)

×
[
|Tk(x

0)|2b1 + Tk(x
0)2b2 + T k(x

0)2b̄2 + |Tk(x
0)|2b1

]
− . . . .

Since Σ+ is compact without boundary, we can perform a partial integration [Tay96]
using ∫

Σ+

dx sij ∇jYk(x) ∇iY k(x) = −
∫
Σ+

dx ∆Yk(x) Y k(x) . (4.37)
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Furthermore, since ∆sYk(x) = −E(k)Yk(x), it follows that

=
1

VΣ+

∫
dk

∫
Σ+

dx |Yk(x)|2 E(k)

a(x0)2

[
2|Tk(x

0)|2b1 + 2<
{
Tk(x

0)2b2
} ]

− . . . (4.38)

=
1

VΣ+

∫
dk δ(k,k)

E(k)

a(x0)2

[
2|Tk(x

0)|2b1 + 2<
{
Tk(x

0)2b2
} ]

− . . . (4.39)

= 2

∫
dµ(k)

E(k)

a(x0)2

[
|Tk(x

0)|2b1 + <
{
Tk(x

0)2b2
} ]

− . . . . (4.40)

[ε = −1]: In this case one uses techniques from the harmonic analysis of hyperbolic
spaces with negative constant curvature, also called Lobachevskian spaces [GGV66]. In
order to find a direct integral representation of the isometry group G−, one embeds
Σ− as a three-dimensional hyperboloid with coordinates x = (x1, x2, x3) into the four-
dimensional Minkowski spacetime (M, nµν) by means of the map ι : R3 → M,x 7→
(
√

1 + x2,x). One can calculate the metric on Σ− as the pullback gµν = ι∗nµν , which
gives

hij(x) = δij −
xixj

1 + x2
⇔ hij(x) = δij + xixj . (4.41)

Now, define a normalized momentum by ξ := k/k and write for each k the Fourier
transform of a function h ∈ D(Σ−) as

h̃k(ξ) :=

∫
dx Ykξ(x)h(x) , (4.42)

where Yk(x) are eigenfunctions of the Laplace operator given by (3.34). This Fourier
transform is a map with values in L2(S2, dΩ), where S2 is the two-sphere embedded in
R

3 and dΩ denotes the induced measure on S2. The Lorentz transformations g : f(x) 7→
f(xg) on the functions f(x) correspond to operators

Uk(g)h̃k =
(
Ũ(g)h

)
k
. (4.43)

Let gx be the Lorentz transformation that maps (
√

1 + x,x) to (1, 0, 0, 0). Then by the
unitarity of Uk(g)

|Yk(x)|2 =
1

(2π)3

∫
dΩ(ξ) (x · ξ)−2 (4.44)

=
1

(2π)3

∫
dΩ(ξ)

(
x · g−1

x ξ
)−2

(4.45)

=
1

(2π)3

∫
dΩ(ξ) (gxx · ξ)−2 (4.46)

=
1

(2π)3

∫
dΩ(ξ) =

4π

(2π)3
. (4.47)
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Again, as for ε = 0, the modulus of Yk(x) is a constant. Using this, we obtain

lim
x′→x

F (x, x′) =

∫
dk |Yk(x)|2 (4.48)

×
[
|Tk(x

0)|2
(
b1 +

1

2

)
+ Tk(x

0)2b2

+ T k(x
0)2b̄2 + |Tk(x

0)|2
(
b1 −

1

2

)]
− . . .

=
4π

(2π)3

∫
dk
[
2|Tk(x

0)|2 + 2<
{
Tk(x

0)2b2
}]
− . . . (4.49)

= 2

∫
dµ(k)

[
|Tk(x

0)|2 + <
{
Tk(x

0)2b2
}]
− . . . , (4.50)

where dµ(k) = dk
2π2 . Similarly, one finds

lim
x′→x

∇0∇′
0F (x, x′) = 2

∫
dµ(k)

[
|Ṫk(x

0)|2 + <
{
Ṫk(x

0)2b2

}]
− . . . . (4.51)

Finally, since sij∇iYk(x)∇′
jY k(x

′) = (1 + k2)|Yk(x)| = E(k)|Yk(x)| we obtain by

Yk(x) =
1

(2π)
3
2

(
x0 − x · ξ

k

)−1+ik

(4.52)

(see (3.34)) for the spatial derivatives the expression

lim
x′→x

3∑
µ,ν=1

gµν∇µ∇′
νF (x, x′) =

1

a2(x0)
lim
x′→x

sij∇i∇′
jF (x, x′) (4.53)

=
1

a(x0)2

∫
dk sij∇iYk(x)∇′

jY k(x
′)
[
2|Tk(x

0)|2 + 2<
{
Tk(x

0)2b2
}]
− . . . (4.54)

=
1

(2π)3

∫
dk

E(k)

a(x0)2

[
2|Tk(x

0)|2b1 + 2<
{
Tk(x

0)2b2
}]
− . . . (4.55)

= 2

∫
dµ(k)

E(k)

a2(x0)

[
|Tk(x

0)|2b1 + <
{
Tk(x

0)2b2
}]
− . . . . (4.56)

Putting all this together gives the desired result. �

A better parametrization

For the actual minimization, it will be convenient to parametrize the averaged stress-
energy by the components of the two-point matrix S. For this, note that∫

dt f(t)2ρk(t) = b1(S)c1(Tk, f) + <{b2(S)c2(Tk, f)} , (4.57)
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where we have defined

c1(Tk, f) :=

∫
dt f(t)2

(
|Ṫk(t)|2 + ω2

k|Tk(t)|2
)
, (4.58a)

c2(Tk, f) :=

∫
dt f(t)2

(
Ṫk(t)

2 + ω2
kTk(t)

2
)
. (4.58b)

Our definition of the quantities c1(Tk, f) and c2(Tk, f) differ from the one in [Olb07a] by
a factor of 2. Now, inserting b1 and b2 we can write∫

dt f(t)2ρk(t) = S00 d1(Tk, f) + a6S11 d2(Tk, f) + a3S<01 d3(Tk, f) , (4.59)

where

d1(Tk, f) := |Tk(t0)|2c1(Tk, f)−<
{
T

2

k(t0)c2(Tk, f)
}
, (4.60a)

d2(Tk, f) := |Ṫk(t0)|2c1(Tk, f)−<
{
Ṫ

2

k(t0)c2(Tk, f)

}
, (4.60b)

d3(Tk, f) :=
(
T k(t0)Ṫk(t0) + Tk(t0)Ṫ k(t0)

)
c1(Tk, f)−<

{
2T k(t0)Ṫ k(t0)c2(Tk, f)

}
.

(4.60c)



5 Almost equilibrium states

In this section we tackle the construction the almost equilibrium states. First, we explain
the basic ideas behind the procedure and the definition of the free energy functional
associated to the states of interest. Then, we calculate the entropy, which is the part of
the free energy, that cannot be inferred from the quantum energy inequalities discussed
in the last chapter. This is followed by the actual minimization and the definition of
the almost equilibrium states. In the last section we prove that the almost equilibrium
states are indeed Hadamard states.

5.1 KMS states

Consider a finite quantum system that is described by an algebra of observables A. A
general state ω on A is described by a density matrix ρ and the expectation value of an
observable A ∈ A is given by

ω(A) = Tr(ρA) (5.1)

Now, a state ω on A is a thermal equilibrium state at inverse temperature β ∈ R if it is
a Gibbs state. A Gibbs state is given by a density matrix of the form

ρβH :=
e−βH

Tr(e−βH)
, (5.2)

where H = H∗ is a self-adjoint operator (the free Hamiltonian) and e−βH is a trace
class operator, which means that Tr(e−βH) ≤ ∞. The trace class property of e−βH is
guaranteed for finite volume systems by the properties of H in that case [Haa96]. A
simple calculation using the cyclic invariance of the trace, Tr(ABC) = Tr(CAB), shows
that Gibbs states formally satisfy the relation

ω(AB) = ω(Bαiβ(A)) , (5.3)

for all A,B ∈ A, where the automorphism

αt(A) := eitHAe−itH (5.4)

describes the free time evolution of an observable A ∈ A. Equation (5.3) gives the
combinatorics inherent to thermal equilibrium states of finite as well as infinite quantum
systems.

57
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Now, consider a state ωρ that is described by a density matrix ρ and define the entropy
of ωρ by the von Neumann entropy functional

S(ωρ) := −Tr(ρ ln ρ) , (5.5)

where we understand that x lnx = 0 at x = 0. If one defines the free energy of the state
ωρ by

F(ωρ) := ωρ(H)− 1

β
S(ωρ) , (5.6)

then the Gibbs state is the unique state that minimizes the free energy F(ωρ). Equiva-
lently, the Gibbs state maximizes the entropy at fixed energy [BR97, Weh78].

A necessary condition for Gibbs states to be well defined is that H has a purely
discrete spectrum bounded from below (We consider only positive temperature states:
β > 0). For infinite systems, Gibbs states are ill defined because Tr(e−βH) = ∞.
Nonetheless, a generalized definition of thermal equilibrium states exists for infinite
systems, namely, the notion of KMS states. The above notion of a Gibbs state implies a
characterization in terms of analytic functions FA,B for any pair A,B ∈ A, that satisfy
certain boundary conditions, provided that the Hamiltonian H is bounded below and
e−βH/2 is of trace class (see, e.g., [Emc72, Weh78]). That this characterization survives
the thermodynamical limit and thus can be used for the definition of equilibrium states
in the general case has been shown in [HHW67]. Since then, many applications have
shown that KMS states indeed describe thermal equilibrium.

We come to the definition of KMS states. Consider a C*-dynamical system (A, αt).

Definition 5.1 (KMS state) Let β > 0 denote the inverse temperature. A state ωβ

is called a β-KMS state if for all A,B ∈ A there is a function FA,B(t) : Cβ → C which
is analytic in the strip Cβ := {z ∈ C : 0 < =z < β}, bounded and continuous on its
closure Cβ, and satisfies the boundary conditions

FA,B(t) = ωβ(Aαt(B)), FA,B(t+ iβ) = ωβ(αt(B)A) . (5.7)

Of course, on a non-stationary spacetime there exists no global C*-dynamical system.
Thus, no global KMS state can exist in that spacetimes. We remark that a relativistic
KMS condition has been defined in [BB94].

5.2 Almost equilibrium states

As noted in chapter 4, it is well known that in non-stationary spacetimes there is no
global generator of time-translations. The standard Hamiltonian – the integral of the
energy density over the Cauchy surface – is not conserved. Even worse, the energy den-
sity is not bounded-below at a spacetime point, and spatially averaged energy densities
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are ill defined for dimensions n > 2. An energy quantity which is unbounded below,
poses serious problems regarding the existence of equilibrium states. However, as we
have also seen, there exists a quantum inequality that gives lower bounds on the differ-
ence of energy densities of Hadamard states averaged along the worldline of an observer
in any globally hyperbolic spacetime. Thus, one can expect to find ground states with
respect to this kind of energy. Indeed, in [Olb07a] states with this property so-called
states of low energy, were constructed (see section 5.5). However, states of low energy
are pure states; consequently, they do not describe systems in thermal equilibrium. They
are merely ground states of a class of almost equilibrium states, as we will show in this
chapter.

Our guiding idea for the construction of the almost equilibrium states is to define
a sensible free energy functional F(ω) on the class of homogeneous, isotropic, quasi-
free states that is based on the quantum inequality stated in theorem 4.13. We write
this functional exclusively in terms of the two-point matrix (3.49). Subsequently, we
minimize this functional with respect to the components of (3.49).

Suppose that we can define a sensible free energy functional F(ω), where we replace the
energy expectation value ωρ(H) present in (5.6) by the worldline averaged expectation
value of the (renormalized) stress-energy tensor,

ω(Hf ) :=

∫
γ

dt f(t)2 〈: T :〉ω (t, t) , (5.8)

for some real-valued f ∈ D(R). Additionally, we assume that γ is the worldline of an
isotropic observer. To remind the reader, an isotropic observer moves along a timelike
geodesic with tangent vector orthogonal to the homogeneous spacelike surfaces. For such
an observer, the spacetime looks spatially isotropic at any instant of time. Note also
that F(ω) is actually a free energy density rather than a free energy and, at this stage,
it is unclear how to define the entropy S(ω).

The minimization of F(ω) means the following. We consider the class of homogeneous,
isotropic, quasi-free states. All such states are completely determined by their two-point
distributions (3.60). Within this class we look for a distinguished state ωβ,f such that
for any other state ω in the same class the free energy is larger, i.e.,

F(ω)−F(ωβ,f ) ≥ 0 . (5.9)

In the rest of this chapter we will show that such a state ωβ,f exists and is uniquely
determined by its two-point distribution. Furthermore, we show that the two-point
distribution of the state ωβ,f satisfies the Hadamard condition. This latter step is crucial
for the whole construction by the following argument.

The difference of the energy densities involved in the left hand side of (5.9) is

ω(Hf )− ωβ,f (Hf )) =

∫
γ

dt f(t)2
(
〈T 〉ω (t, t)− 〈T 〉ωβ,f

(t, t)
)
. (5.10)
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Provided that the states ω and ωβ,f satisfy the Hadamard condition and dimM≥ 2, the
integral on the right hand side of (5.10) is well defined and bounded from below as we
know from theorem (4.13). At this stage, it is, as a matter of fact, not known if the state
that eventually minimizes this functional is a Hadamard state. So, the initial ansatz is
justified afterwards by proving that the resulting state ωβ,f is indeed a Hadamard state.

The integral on the right hand side of (5.10) has the form given in lemma 4.2. It
is a difference of integrals of the energy density ρk for each mode k. Note that this
mode decomposition of the energy is due to the symmetry of the spacelike surfaces in
Robertson-Walker spacetimes and familiar from standard quantum field theory, which,
after all, can be viewed as a theory of infinitely many, independent, harmonic oscillators.
We infer from this observation that, when looking for the minimum of the averaged
energy density, we can confine ourselves to a single mode k. Put differently, we can
minimize the integrand instead of the integral to obtain the overall minimum. In order
to utilize this principle for the free energy, we write

F(ω) :=

∫
dµ(k)Fk , (5.11)

where we have defined the free energy of a single mode by

Fk :=

∫
γ

dt f(t)2ρk(t)−
1

β
Sk(ω) . (5.12)

We have yet to define the entropy Sk. Since each mode k can be considered as
an independent quantum system with one degree of freedom, it is natural to ascribe an
entropy given by the von Neumann entropy functional (5.5) to it. Then, Sk is completely
characterized by the density matrix one ascribes to the single-mode system. Since we
want our states to exhibit thermal behavior, we take our modes to be Gibbs equilibrium
states. This means, we consider density matrices

ρβK :=
e−βK

Tr(e−βK)
, (5.13)

where we assume that K is a positive definite, quadratic form that is not diagonalized
from the outset. The latter point is important, since, such a form is determined by three
real parameters, just as the two-point distribution (3.49) of a quasi-free state.

The further course of action will be as follows. In lemma 5.2 we state the generating
functional of KMS states with respect to the evolution generated by K. Then (by
equation (5.54)) we obtain a one-to-one correspondence between the generator K and
the two-point matrix S. This relation is used to express the free energy Fk in terms of
S11, S22, and [S], which then allows to minimize with respect to these variables. The
result of the minimization will be a uniquely determined state of inverse temperature β
associated to the sampling function f(t).
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5.3 The entropy

For the entropy of a mode k, we use the von Neumann entropy associated to the Gibbs
state with density matrix ρβK :

Sk(ωρβK
) = −Tr(ρβK ln ρβK) , (5.14)

where we have defined a positive definite, real quadratic form for the position and
momentum operators (q, p) by

K(q, p) := K00q
2 +K01(qp+ pq) +K11p

2 =

(
q
p

)ᵀ

·
(
K00 K01

K01 K11

)
·
(
q
p

)
. (5.15)

In order to calculate the entropy we use canonical diagonalization of K. This is possible
for any positive definite quadratic form on the phase space.

Canonical diagonalization of K

The canonical diagonalization of a quadratic Hamiltonian is a well investigated technique
(for general results see, e.g., [MQ71, BG79]). We consider the simple case of linear
transformation matrices M for the coordinates q, p that are canonical, which means

Mᵀ
JM = J , J =

(
0 1
−1 0

)
. (5.16)

The eigenvalues of the matrix

JK =

(
K01 K11

−K00 −K01

)
(5.17)

are ±i
√

[K]. It turns out that in this model Ω := 2
√

[K] plays the role of the oscillator
frequency. The eigenvectors v = m1 + im2 and v = m1 − im2 are

v = y

[(
K11

−K01

)
+ i

(
0√
[K]

)]
, v = y

[(
K11

−K01

)
− i

(
0√
[K]

)]
, (5.18)

which defines the vectors m1,m2 needed for the transformation matrix M = (m1,m2):

M = y

(
K11 0

−K01

√
[K]

)
. (5.19)

The normalization constant y is fixed by the condition mᵀ
i Jmj = Jij, which gives

y = ± 1√
K11

√
[K]

, (5.20)
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so that

M = ± 1√
K11

√
[K]

(
K11 0

−K01

√
[K]

)
. (5.21)

This M diagonalizes the quadratic form K by

MᵀKM =

(√
[K] 0

0
√

[K]

)
. (5.22)

The new coordinates are given by

Q =
1√

K11

√
[K]

(
K11

−K01

)ᵀ(
p
−q

)
=
K11p+K01q√
K11

√
[K]

, (5.23)

P = − 1√
K11

√
[K]

(
0√
[K]

)ᵀ(
p
−q

)
=

√
[K]q√

K11

√
[K]

. (5.24)

If we define the frequency Ω := 2
√

[K] then the diagonalized matrix reads 1
2
( Ω 0

0 Ω ).
However there is still some freedom left in the choice of the coordinates. We can perform
a simultaneous transformation q′ := yQ and p′ := y−1P in order to gain a more suitable
form of the matrix. Choosing y =

√
Ω leads to

K =
1

2

(
Ω2 0
0 1

)
. (5.25)

We conclude that choosing appropriate coordinates (q′, p′) is is possible to diagonalize
the ’Hamiltonian’ matrix K and write it in the standard harmonic oscillator form

K(q′, p′) =
1

2
(Ω2q′2 + p′2) . (5.26)

Therefore, for all basis-independent quantities, we can use standard results from the the
theory of the one dimensional, harmonic oscillator with frequency Ω. For example the
eigenvalues of the system are

Kn =

(
n+

1

2

)
2
√

[K] , (5.27)

and the partition function is (see, e.g., [Rei87])

Z := Tr(e−βK) =
e−β

√
[K]

1− e−2β
√

[K]
=

1

2 sinh
(
β
√

[K]
) . (5.28)

From the partition function Z one obtains the entropy as

Sk(ωρβK
) = − ln

(
1− e−2β

√
[K]
)

+ 2β
√

[K]
e−2β

√
[K]

1− e−2β
√

[K]
. (5.29)
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5.3.1 The generator of KMS states

Now we know the entropy Sk(ωρβK
) of the modes in terms of the Hamiltonian matrix K.

Note, that the expression (5.29) involves only the the determinant of K. Next, as we
want to characterize states by their two-point distribution, we need the correspondence
between the matrices K and S. For this, we characterize the KMS states on a Weyl
algebra with respect to the time-evolution generated by K. The result, which is stated
in the following lemma, generalizes a result of [NT93].

Lemma 5.2 Let A be the Weyl algebra generated by the exponentials of the position and
momentum operators and let the time evolution be generated by a positive Hermitian form
K, with [K] := detK 6= 0 on the phase space elements z ∈ R

2. Then, the generator of
a KMS state associated to the inverse temperature β > 0 on A is given by

ω(W (z)) = e
− 1

4

√
[K] zᵀK−1z coth

“√
[K]β

”
. (5.30)

Proof. To prove this, we consider the exponentiated one-dimensional Heisenberg *-
algebra generated by q and p, which are subject to the commutation relations

[q, p] = i , (5.31)

[q, q] = 0 = [p, p] , (5.32)

and invariant under involution, q∗ = q, p∗ = p. The Weyl operators are given by

W (z) := e−i(z1q+z2p) , (5.33)

where z = (z1, z2) ∈ R2. We define a symplectic form σ by

σ(z, z′) = z1z
′
2 − z2z

′
1 . (5.34)

The Weyl operators W (z), which generate the algebra W, satisfy the Weyl relations

W (z)∗ = W (−z) , (5.35)

W (z)W (z′) = e−
i
2
σ(z,z′)W (z + z′) . (5.36)

A state ω is, as usual, defined as a positive, linear, normalized functional on W. By the
GNS theorem we have a representation πω and a representation space Hω with vectors
|z〉 = W (z)|0〉 and |0〉 being the cyclic vector of Hω. A state ω on W is determined by
its action on the Weyl operators

f(z) := ω(W (z)) = 〈0,W (z)0〉 . (5.37)

The scalar product of two arbitrary vectors is given by

〈z′, z〉 = 〈W (z′)0,W (z)0〉 = e
i
2
σ(z′,z)f(z− z′) . (5.38)
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The time automorphisms αt over W correspond to symplectic transformation matrices
Bt on the phase space. The KMS condition (5.7) together with the Weyl relations yields

e−
i
2
σ(z,z′)f(z + z′) = e−

i
2
σ(z′,Biβz)f(Biβz + z′) . (5.39)

If z′ = −z this simplifies to (Note that f(0) = 1):

1 = e
i
2
σ(z,Biβz)f((Biβ − 1)z) (5.40)

f((Biβ − 1)z) = e−
i
2
σ(z,Biβz) . (5.41)

Since for invertible (Biβ − 1) we have

e−
i
2
σ(z,Biβz) = e

− i
2

„
σ

„
1

Biβ−1
(Biβ−1)z,(Biβ−1)z

««
, (5.42)

a transformation (Biβ − 1)z → z gives

f(z) = e
− i

2
σ

„
1

Biβ−1
z,z

«
. (5.43)

Next, we tackle the relation between the matrices K and S. The time evolution
generated by K is given by

αt(W (z)) = e−iKtei(z1q+z2p)eiKt = ei(z1(t)q+z2(t)p) . (5.44)

The time evolution of z(t) is given by the Heisenberg equation ż = i[K, z]. The com-
mutators [K, q] and [K, p] can be calculated by (5.31) and the identity [A,BC] =
[A,B]C +B[A,C]. The Heisenberg equation gives the system of differential equations(

ż1

ż2

)
=

(
2K01 −2K00

2K11 −2K01

)
·
(
z1

z2

)
. (5.45)

We introduce the frequency
Ω := 2

√
[K] , (5.46)

where [K] := K00K11 −K2
01 is the determinant of the matrix K. Furthermore, we set

κ01 :=
K01√
[K]

, κ00 :=
K00√
[K]

, κ11 :=
K11√
[K]

. (5.47)

Then, the time evolution can be written as

z(t) = Btz(0) , (5.48)

where

Bt :=

(
cos(Ωt) + κ01 sin(Ωt) −κ00 sin(Ωt)

κ11 sin(Ωt) cos(Ωt)− κ01 sin(Ωt)

)
. (5.49)
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The matrix Bt generalizes the usual harmonic oscillator evolution matrix. To implement
the KMS condition we complexify time, t → iβ, and since sin(iβ) = i sinh(β) and
cos(iβ) = cosh(β), we obtain

Biβ =

(
cosh(Ωβ) + i κ01 sinh(Ωβ) −i κ00 sinh(Ωβ)

i κ11 sinh(Ωβ) cosh(Ωβ)− i κ01 sinh(Ωβ)

)
. (5.50)

The matrix (Biβ − 1) is invertible for [K] , β 6= 0 (note that coth
(

x
2

)
= sinh(x)

cosh(x)−1
)

(Biβ − 1)−1 = −1

2

(
1− i κ01 coth

(
Ωβ
2

)
i κ00 coth

(
Ωβ
2

)
−i κ11 coth

(
Ωβ
2

)
1 + i κ01 coth

(
Ωβ
2

)) , (5.51)

and thus we find

σ

(
1

Biβ − 1
z, z

)
= − i

2

1√
[K]

(
z1

z2

)ᵀ(
K11 −K01

−K01 K00

)(
z1

z2

)
coth

(√
[K]β

)
. (5.52)

So we have found the generator

f(z) = e
− 1

4

√
[K] zᵀK−1z coth

“√
[K]β

”
. (5.53)

This proves lemma 5.2. �
Defining the quadratic form S(z, z) := 1

2
(zᵀSz) and remembering that the generator

of a quasi-free state is given by f(z) = e−
1
2
S(z,z) we infer that(

S00 S<01
S<01 S11

)
=

1

2
√

[K]
coth

(
β
√

[K]
)( K11 −K01

−K01 K00

)
. (5.54)

Inverting (5.54) gives(
K00 K01

K01 K11

)
=

1

β
√

[S]
Arcoth(2

√
[S])

(
S11 −S<01
−S<01 S00

)
. (5.55)

The determinants of K and S are related by√
[K] =

1

β
Arcoth(2

√
[S]) ,

√
[S] =

1

2
coth(β

√
[K]) . (5.56)

Thus, we can write the entropy per mode as

Sk(ωρβK
) = − ln

(
1− e−2Arcoth(2

√
[S])
)

+ 2 Arcoth(2
√

[S])
e−2Arcoth(2

√
[S])

1− e−2Arcoth(2
√

[S])
(5.57)

= 2
√

[S] Arcoth(2
√

[S]) +
1

2
ln

(
4 [S]− 1

4

)
, (5.58)

where, for the second line, we used that Arcoth(y) = 1
2
ln
(

y+1
y−1

)
and thus e−2Arcoth(4y) =

4y+1
4y−1

.
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5.4 Minimization of the free energy

Using the energy density (4.59) and the entropy formula (5.58) we can write the free
energy functional Fk exclusively in terms of the two-point matrix (3.49).

Fk := S00d1(Tk, f) + a6S11d2(Tk, f)± a3
√
S00S11 − [S]d3(Tk, f) (5.59)

− 1

β

[
2
√

[S] Arcoth(2
√

[S]) +
1

2
ln

(
4 [S]− 1

4

)]
,

where we used [S] := S00S11 − (S<01)
2 to eliminate S<01 in favour of the determinant [S].

The remaining task is a simple exercise, namely, the minimization of this expression. A
necessary condition for the minimization of Fk is that we have a critical point, i.e., the
gradient of the function vanishes:

∇(S00,S11,[S])Fk
!
= 0 . (5.60)

This amounts to the equations

d1(Tk, f) +
a(t0)

3d3(Tk, f)

2

S11√
S00S11 − [S]

= 0 , (5.61)

d2(Tk, f) +
d3(Tk, f)

2a(t0)3

S00√
S00S11 − [S]

= 0 , (5.62)

− 1

β
√

[S]
Arcoth(2

√
[S])± a(t0)

3d3(Tk, f)

2

1√
S00S11 − [S]

= 0 , (5.63)

where the coefficients di(T, f) are given by (4.60). Multiplying (5.61) by (5.62) we obtain√
S00S11 − [S] =

|d3|√
4d1d2 − d2

3

√
[S] . (5.64)

Using this, and assuming β > 0, the critical point is obtained from (5.63) as√
[S] =

1

2
coth

(
β

2
a(t)3

√
4d1d2 − d2

3

)
, (5.65)

where we omitted the combination of signs from (5.63) and d3/|d3| giving no solution
for β > 0. So, given a sampling function f(t) there is for every β > 0 a unique solution
to equation (5.65) and thus a unique minimum of the free energy functional F(ωρβK

)
given in (5.59). We state this result as a theorem.

Theorem 5.3 Consider the Weyl algebra A of the minimally coupled Klein-Gordon field
in a Robertson-Walker spacetime. Define the free energy of a homogeneous, isotropic,
quasi-free state ω on A by

F(ω) :=

∫
dµ(k)Fk , (5.66)
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where

Fk :=

∫
γ

dt f(t)2ρk(t)−
1

β
Sk(ω) . (5.67)

and ρk is the energy density of a mode. Averaging takes place along a timelike curve
γ with a sampling function f ∈ D(R), and each mode is assigned the von Neumann
entropy Sk(ω). Then, for every β > 0 and every function f , there is a unique state ωβ,f

that minimizes F(ω). This state is determined by

√
[S] =

1

2
coth

(
β

2
a(t)3

√
4d1(Tk, f)d2(Tk, f)− d2

3(Tk, f)

)
(5.68)

supplemented by equations (5.61), and (5.62), where Tk is an arbitrary solution to (3.35)
satisfying (3.37). We refer to ωβ,f as an almost equilibrium state of inverse temperature
β associated to f .

The almost equilibrium states are parametrized by arbitrary solutions Tk(t) of the time-
dependent part of the Klein-Gordon equation. As we will see in the next section, they
resemble equilibrium states in Minkowski space if one uses the states of low energy for
the parametrization.

5.5 Hadamard property

In this section, we prove that the two-point distribution of the almost equilibrium states
satisfies the Hadamard condition. This is of twofold importance. First, it is a necessary
condition to make our ansatz meaningful, as otherwise the energy difference involved
in the free energy (5.10) is not bounded below and our formal result remains formal.
Second, it proves that the almost equilibrium states can be considered as physical states
in the sense we described in chapter 2.

We are in the fortunate situation that we can base our proof on previous related work
[Jun96, JS02, Olb07a, Olb07b]. It was shown in [Olb07a] that the states of low energy are
Hadamard states. The proof used the fact that for large momenta k and large iteration
order n the difference of the two-point distributions of the states of low energy and the
adiabatic vacuum states converges to zero. Thus, the two-point distributions differ only
by a smooth function. Since adiabatic vacuum states of infinite order are Hadamard
states [Jun96, Jun02], this proves the Hadamard property of the states of low energy.
Along the same line of reasoning, we show that the two-point distributions of the almost
equilibrium states and of the states of low energy also differ only by a smooth function.
The calculations are simplified a great deal, due to the fact that the states of low energy
are the natural ground states associated to the almost equilibrium states.



68 Chapter 5. Almost equilibrium states

Parametrization by states of low energy

Let us first introduce the states of low energy [Olb07a]. Consider the Weyl algebra A

of the free Klein-Gordon field over a Robertson-Walker spacetime (M, gµν) and f(t) ∈
D(R). In the set of homogeneous, isotropic, pure quasi-free states on A, there is a state
ω∞,f for which the averaged energy density

ω(Hf ) =

∫
γ

dt f(t)2 〈: T :〉ω (t) (5.69)

is minimal. The averaging is understood along the path of an isotropic observer. This
state is given by the two-point distribution

ω
(2)
∞,f (x, x

′) =

∫
dk Yk(x)Y k(x

′)Lk(t)Lk(t
′) (5.70)

with

Lk(t) = λTk(t) + µT k(t), (5.71)

where Tk is an arbitrary solution of the differential equation (3.35) fulfilling the continuity
condition (3.37) and λ, µ are given by the equations

λ = exp (iα)

√
c1

2
√
c21 − |c2|2

+
1

2
, µ =

√
c1

2
√
c21 − |c2|2

− 1

2
. (5.72)

The coefficients c1 = c1(Tk, f) and c2 = c2(Tk, f), up to a factor of 2, are defined in
equation (4.58). Setting Tk = Lk, it follows that a state given by Lk is a state of low
energy if and only if it satisfies c2(Lk, f) = 0.

For the proof of the Hadamard property, and presumably for most other purposes, the
expression (5.68) defining almost equilibrium states is simplified considerably by using
the states of low energy for the parametrization. So, we plug in a state of low energy
Lk(t) into (5.65). Note that the squared modulus of (3.37), is given by the useful relation

4|T |2|Ṫ |2 −
(
T Ṫ + T Ṫ

)2

= |T Ṫ − T Ṫ |2 =
1

a6
, (5.73)

which turns up several times in the calculations. Plugging in the states of low energy
into the expression 4d1d2 − d3 gives, due to c2(Lk(t), f) = 0 in equation (4.60),

4d1d2 − d2
3 = 4|Lk(t0)|2|L̇k(t0)|2c21(Lk, f)−

(
Lk(t0)L̇k(t0) + Lk(t0)L̇k(t0)

)2

c21(Lk, f)

(5.74)

=
1

a(t0)6
c21(Lk, f) . (5.75)
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Using this, equation (5.65) becomes

√
[S] =

1

2
coth

(
β

2
c1(Lk, f)

)
. (5.76)

Solving for S00 and S11 at the minimum of the free energy gives

S11 =
2|d1|

a3
√

4d1d2 − d2
3

√
[S] , (5.77)

S00 =
2a3|d2|√
4d1d2 − d2

3

√
[S] , (5.78)

where d1 and d2 have the same sign. Noting that d1 and d2 are always positive for states
of low energy, this reduces to

S11 = 2|Lk(t0)|2
√

[S] , (5.79)

S00 = 2a(t0)
6|L̇k(t0)|2

√
[S] (5.80)

for the almost equilibrium states.
Now, we calculate the coefficients b1 and b2. We can use the expressions for S00 and

S11 to find an expression of S<01 from [S] = S00S11 − (S<01)
2:

S<01 = ±
√

4a(t0)6|Lk(t0)|2|L̇k(t0)|2 − 1 ·
√

[S] . (5.81)

On the other hand we know that with the normalization (3.37) we have equation (5.73)
giving

a(t0)
3
(
Lk(t0)L̇k(t0) + Lk(t0)L̇k(t0)

)
= ±

√
4a(t0)6|Lk(t0)|2|L̇k(t0)|2 − 1 . (5.82)

Each of the last two equations has two possible signs. If the signs adjust such that their
product is negative we can write

b1 = S00|Lk(t0)|2 + a(t0)
6S11|L̇k(t0)|2 +

(
Lk(t0)L̇k(t0) + Lk(t0)L̇k(t0)

)
a(t0)

3S<01 (5.83)

= 4a(t0)
6|Lk(t0)|2|L̇k(t0)|2

√
[S]−

(
4a(t0)

6|Lk(t0)|2|L̇k(t0)|2 − 1
)√

[S] (5.84)

=
√

[S] . (5.85)

Assuming the same adjustment of signs as before, we have an alternative expression for
S<01, namely

S<01 = −a(t0)
3
(
Lk(t0)L̇k(t0) + Lk(t0)L̇k(t0)

)√
[S] , (5.86)
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which inserted into b2 gives

b2 = −S00L
2

k(t0)− a(t0)
6S11L̇

2

k(t0)− 2Lk(t0)L̇k(t0)a(t0)
3S<01 (5.87)

= 2a(t0)
6
√

[S]

[
|L̇k(t0)|2L

2

k(t0)− |Lk(t0)|2L̇
2

k(t0) (5.88)

+ Lk(t0)L̇k(t0)
(
Lk(t0)L̇k(t0) + Lk(t0)L̇k(t0)

)]
(5.89)

= 0 . (5.90)

5.5.1 Almost equilibrium states are Hadamard states

Now we are prepared to prove that our construction indeed yields Hadamard states.

Proposition 5.4 The two-point distribution of an almost equilibrium state ωβ,f satisfies
the Hadamard condition.

Proof. The strategy for the proof is the following. We show that that the difference
of the two-point distributions, i.e., (ω

(2)
β,f − ω

(2)
∞,f )(x, x

′), is a smooth function and thus
the singular parts of ωβ,f and ω∞,f coincide. As indicated in section 2.2.4 an implicit
infrared cutoff for the relevant integrals can be assumed, i.e., we have only to care for
the large k behaviour. (For the closed case ε = +1 no such assumption is needed.) Since
the states of low energy ω∞,f are known to have a Hadamard singularity structure, this
proves the same for the almost equilibrium states ωβ,f .

We have shown that b1 =
√

[S] and b2 = 0. Hence,(
ω

(2)
β,f − ω

(2)
∞,f

)
(x, x′) =

∫
dk Yk(x)Y k(x

′)
Lk(x

0)Lk(x
′0) + Lk(x

0)Lk(x
′0)

eβc1(Lk,f) − 1
. (5.91)

In [LR90] the following estimates for the growth of Yk(x) and Tk(t) and their derivatives
for large k are given (α is a multi-index, j ∈ N):

|Dα
xYk(x)| = O(k|α|+2) , (5.92)

and

Dj
tLk(t) = O(kj− 1

2 ) . (5.93)

Using this, we can then estimate the growth of the following expression

sup
∣∣Dν

(x,x′)

[
Yk(x)Y k(x

′)
(
Lk(t)Lk(t

′) + Lk(t)Lk(t
′)
)]∣∣ (5.94)

= sup
∣∣∣D|σ|

x Yk(x) D
|σ′|
x′ Y k(x

′)
(
Dj

tLk(t) Dj′

t′Lk(t
′) + Dj

tLk(t) Dj′

t′Lk(t
′)
)∣∣∣ (5.95)

≤
∣∣D|σ|

x Yk(x)
∣∣ ∣∣∣D|σ′|

x′ Y k(x
′)
∣∣∣ (∣∣Dj

tLk(t)
∣∣ ∣∣∣Dj′

t′Lk(t
′)
∣∣∣+ ∣∣Dj

tLk(t)
∣∣ ∣∣∣Dj′

t′Lk(t
′)
∣∣∣) (5.96)

= O(k3+|ν|) , (5.97)
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where |ν| = |α| + |α′| and α = |σ| + j, α′ = |σ′| + j′. We also need an estimate for the
growth of c1(k) := c1(Tk, f). In [Olb07b] it has been shown that the k-dependence of
c1(Tk, f) for large k is such that there exist constants a1, a2 > 0 with

a1(1 + k) ≤ c1(k) ≤ a2(1 + k) . (5.98)

Thus, the factor 1
eβc1(Lk,f)−1

, which vanishes faster than any polynomial, makes the inte-
gral

Dα
(x,x′)(ω

(2) − ω
(2)
∞,f )(x, x

′) (5.99)

=

∫
dk Dα

(x,x′)

{
Yk(x)Y k(x

′)
Lk(t)Lk(t

′) + Lk(t)Lk(t
′)

eβc1(Lk,f) − 1

}
(5.100)

converge absolutely. This proves that the two-point difference (5.91) is a smooth function

which in turn proves the Hadamard property of ω
(2)
β,f (x, x

′). �
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6 Summary and Outlook

The present thesis is the successful accomplishment of a natural task suggested by recent
results in quantum field theory in curved spacetimes. In [Olb07a] ground states, so-
called states of low energy, for the worldline averaged, renormalized stress-energy tensor
of the Klein-Gordon field in Robertson-Walker spacetimes were constructed. They are
obtained by minimizing the averaged energy density that an isotropic observer measures
in a pure, homogeneous, isotropic, quasi-free state. The states of low energy depend on
the sampling function used in the averaging procedure.

In this thesis we constructed, in the same setting, a family of states that we consider
as almost equilibrium states to the inverse temperature β. The almost equilibrium
states are obtained by a suitable application of the principle of minimal free energy – a
cornerstone of statistical mechanics. More precisely, we defined a free energy functional
on the homogeneous, isotropic, quasi-free states of the Klein-Gordon field, where the
’inner energy’ was constructed from the worldline averaged stress-energy tensor since
that quantity is known to be lower bounded on the class of Hadamard states by a
quantum energy inequality [Few00]. We showed how this energy can be written in terms
of the same parameters that determine the two-point distribution of a homogeneous,
isotropic, quasi-free state. Viewing each mode of the quantum field as a quantum system
with one degree of freedom, we assigned to the modes the usual von Neumann entropy.
An essential point of the whole construction was the determination of the entropy of such
a system in terms of the two-point distribution. This was accomplished by calculating
the generator of a KMS state on the Weyl algebra of a system with a single degree
of freedom. By subsequent minimization of the free energy, we obtained an explicit
expression for the two-point distribution of a family of states, determined, again, by the
sampling function of the averaging procedure and the inverse temperature β. Finally,
we showed that the two-point distributions of the almost equilibrium states satisfy the
Hadamard condition. The latter step is a vital part of the construction as otherwise the
utilized quantum inequality would not guarantee the existence of a finite lower bound
for the averaged stress-energy.

The formulation of quantum field theory in curved spacetimes disentangles the con-
struction of the quantum algebra from the construction of the quantum states. It is well
known how to construct the algebra of a linear quantum field in a globally hyperbolic
spacetime. The construction of physically meaningful states, however, is less straight-
forward. With decreasing symmetry properties of the underlying spacetime it becomes
increasingly complicated to single out such states or rather classes of them. Regarding
timelike symmetries, the step from stationary to non-stationary spacetimes is the biggest
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one. It brings along unitarily inequivalent representations of the algebra of observables
and makes the concept of a conserved Hamiltonian that generates global time evolution
useless. In view of this situation, it is important to watch for other notions of energy that
may be more meaningful. We advocate that such a notion is provided by the averaged
energy densities used in the quantum energy inequalities.

The almost equilibrium states defined here are, to date, the sole example of explic-
itly constructed (global) Hadamard states with thermal properties on a non-stationary
spacetime. For quantum fields in a non-stationary spacetime it is not reasonable to
expect the existence of true equilibrium states with definite temperature 1/β since the
influence of tidal forces will always destroy such property. We claim that the almost
equilibrium states are reasonably defined approximations to equilibrium, and that they
provide an interesting starting point for future investigations. Due to the setting, namely,
quantum fields in cosmological spacetimes, they might provide a class of states useful in
the inflationary scenario and the analysis of the cosmic microwave background.

Like the states of low energy, the two-point distribution of an almost equilibrium state
involves a sampling function f(t) ∈ D(R). The function f(t) describes the measurement
of energy by an isotropic observer. This function introduces some freedom in the con-
struction which may be used to design states with desired properties. This might be
useful with respect to models of the early universe.

Admittedly, our construction of almost equilibrium states makes heavy use of the
mode decomposition, which is available in Robertson-Walker spacetimes because of the
underlying symmetries. In general, there is no satisfactory mode decomposition on an
arbitrary non-stationary spacetime, and thus there is no direct route for a generalization
of our method.

Quantum energy inequalities, which play a major role in our construction, are among
a family of interconnected criteria for dynamical stability of quantum systems [FV03].
In [SV08], a link between local thermal equilibrium states of a linear scalar field on
a curved spacetime and quantum energy inequalities was alluded. It was proved that
the existence of a linear scalar quantum field fulfilling some local thermal condition, in
the sense of [BOR02], implies a quantum energy inequality for these states. However,
no states are known that fulfill the hypothesis of the paper. Due to our construction,
which, starts with a quantum inequality rather than to derive one, it might turn out
that the almost equilibrium states provide examples for local thermal equilibrium states
(see below).

Among the mentioned stability criteria for quantum systems there is passivity, which
has not been generalized to non-stationary spacetimes so far. It is known that KMS
states and mixtures of KMS states are passive. It might be worth considering, whether
almost equilibrium states (and mixtures of almost equilibrium states) are ’almost passive’
in a sense to be specified. Such a notion of passivity should be able to measure the
amount of mechanical work that can be performed, owing to the present tidal forces, by
a system in a cyclic process in a non-stationary spacetime.
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Local thermal equilibrium states

The compact support of the sampling function f(t) introduces intrinsically a kind of
localization in time and, by taking the associated closed double cone, a localization in
spacetime into the almost equilibrium states. An open question for future investigations
might be how almost equilibrium states are connected to other notions of local thermal
equilibrium. The most interesting states would be the local thermal equilibrium (LTE)
states in the sense of Buchholz, Ojima, and Roos in [BOR02]. This approach gives
a precise meaning to the saying that by a local measurement one cannot distinguish
between local and global equilibrium states. This abstract idea is implemented in field
theory by the following procedure. First, one chooses a set of global thermal equilibrium
states, e.g., mixtures of KMS states in different inertial systems. Then, for a point x,
one chooses a certain set Sx of reference observables. A state ω is called Sx-thermal if
its expectations values for all observables in Sx coincide with the expectation values for
some global thermal equilibrium state ωx. Thus, as long as one considers observables
from Sx it is impossible to distinguish between the local state ω and the global thermal
equilibrium state ωx. Of course, nothing is said or assumed about the expectation values
of other observables. Thus, in general, ω does not coincide with the global state ωx. The
spaces Sx are chosen as the linear spaces generated by the balanced derivatives of the
Wick-square : φ2 : (x). Balanced derivatives are defined in [BOR02] as

ðµ : φ2 : (x) = lim
ζ→0

[φ(x+ ζ)φ(x− ζ)− ω0(φ(x+ ζ)φ(x− ζ))1] , (6.1)

where ðµ = ∂ζµ1 . . . ∂ζµn with the multi-index µ := (µ1, . . . , µn) ∈ N
n and ω0 is the

vacuum state. Here, one takes the limit along spacelike directions ζ ∈ M in Minkowski
spacetime, so that φ(x + ζ)φ(x − ζ) is well defined as a quadratic form [Bos00]. Now,
with this approach one calculates for the Wick-square, which corresponds to the balanced
derivative of zero-th order, of the massless field in Minkowski space

ωβe(: φ : (x)) =
1

12β2
. (6.2)

independently of x, where e is an orthonormal tetrad defining the Lorentz frame of
the KMS state (see the relativistic KMS condition [BB94]). This is interpreted as an
indication that the the Wick-square serves as a scalar thermometer.

It is natural to ask for the Wick-square of an almost equilibrium state and if there is
a similar interpretation as thermometer. Hereby, one has to resolve an ambiguity in the
definition the Wick-square since one has to choose a ground state. By construction, it
is natural to choose the states of low energy for this purpose. But, by the method of
locally covariant quantum fields [BFV03], one could also choose the Minkowski vacuum.
The latter procedure should be viable by the generalization of LTE states for curved
spacetimes that is proposed [SV08].

To the very end, let us make some speculative remarks regarding the former proce-
dure. We use use the states of low energy for the parametrization and as the ground
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state. For simplicity, we consider flat Robertson-Walker spacetimes. By some formal
manipulations, one easily, obtains the expression

lim
ζ→0

(
ω

(2)
β,f − ω

(2)
∞,f

)
(x+ ζ, x− ζ) =

1

(2π)3

∫
dk

2|Lk(x
0)|2

eβc1(Lk,f) − 1
. (6.3)

Note that this expression bears a strong resemblance to its Minkowski spacetime coun-
terpart. In that case by equation (3.38) we have 2|Lk(x

0)|2 = 1
ωk

and c1(Lk, f) = ωk

provided that
∫
f(t)2dt = 1. We learn from this that c1(Tk, f) possibly plays the role

of a generalized frequency. In order to proceed into the direction of LTE states on
needs estimates on c1(Lk, f). Such estimates may, e.g, lead to the interpretation that
the almost equilibrium states are a mixture of LTE states with a range of temperatures
a(f) < β < b(f).
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