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3.5.1 The ring imaging Čerenkov detector . . . . . . . . . . . . . 48
3.5.2 The transition radiation detector . . . . . . . . . . . . . . . 48
3.5.3 The preshower hodoscope . . . . . . . . . . . . . . . . . . . 48
3.5.4 The electromagnetic calorimeter . . . . . . . . . . . . . . . 49
3.5.5 Lepton-hadron separation . . . . . . . . . . . . . . . . . . . 49

3.6 Trigger and data acquisition . . . . . . . . . . . . . . . . . . . . . . 49

v



vi CONTENTS

3.7 The data production chain . . . . . . . . . . . . . . . . . . . . . . . 50

4 Data selection 51
4.1 Data quality selection . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Geometry of tracks . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.2 Selection of exclusive ρ0 events . . . . . . . . . . . . . . . . 53
4.2.3 Selection of inclusive DIS events . . . . . . . . . . . . . . . 59

4.3 Background contributions . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.1 Non-exclusive background contribution . . . . . . . . . . . . 61
4.3.2 Exclusive non-resonant background contribution . . . . . . 61

5 Extraction methods 69
5.1 The unbinned maximum likelihood fit . . . . . . . . . . . . . . . . 69
5.2 Parameterizations of the used PDFs . . . . . . . . . . . . . . . . . 70

5.2.1 The admixture from longitudinal target polarization . . . . 71

5.2.2 Extraction of A
sin(φ−φS)
UT,ρL

using the Diehl-Sapeta and the
Wolf-Schilling formalisms . . . . . . . . . . . . . . . . . . . 75

5.2.3 Extraction of A
sin(φ−φS)
UT,ρL

using the Diehl formalism . . . . . 76
5.2.4 Extraction of SDMEs . . . . . . . . . . . . . . . . . . . . . 78

5.3 The role of the acceptance efficiency . . . . . . . . . . . . . . . . . 80
5.4 Background contribution . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Monte Carlo simulations 85
6.1 The PYTHIA 6.2 Monte Carlo generator . . . . . . . . . . . . . . . 86
6.2 Simulation of the spectrometer acceptance . . . . . . . . . . . . . . 87
6.3 Implementation of SDMEs and asymmetries . . . . . . . . . . . . . 91
6.4 Cross contamination of azimuthal moments . . . . . . . . . . . . . 93
6.5 Performance at low statistics . . . . . . . . . . . . . . . . . . . . . 95
6.6 ρL − ρT Separation of azimuthal moments . . . . . . . . . . . . . 96
6.7 Kinematic dependencies of the asymmetry . . . . . . . . . . . . . . 99
6.8 SDME extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7 Results 105
7.1 SDMEs for an unpolarized target . . . . . . . . . . . . . . . . . . . 105
7.2 The sin(φ− φs) moments of A`

UT,ρL
and A`

UT,ρT
. . . . . . . . . . 112

7.2.1 Extraction within the Diehl-Sapeta and Wolf-Schilling for-
malisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2.2 Extraction within the Diehl-SDME formalism . . . . . . . . 113
7.3 SDMEs for a transversely polarized target . . . . . . . . . . . . . . 113
7.4 Systematic uncertainties . . . . . . . . . . . . . . . . . . . . . . . . 119
7.5 Comparison with GPD-model calculations . . . . . . . . . . . . . . 130

7.5.1 Model uncertainties . . . . . . . . . . . . . . . . . . . . . . 130
7.5.2 Comparison to GPD-models . . . . . . . . . . . . . . . . . . 134
7.5.3 Orbital angular momentum . . . . . . . . . . . . . . . . . . 135



CONTENTS vii

8 Summary and outlook 137

A The density matrix 141

B SDME formalism for an unpolarized target 143

C Extraction methods 145

D Conversion between SDME formalisms 147

E SDMEs for an unpolarized target 149

F SDMEs for a transversely polarized target 157

Bibliography 167

Samenvatting 173

Acknowledgements 179



viii CONTENTS



Chapter 1

Introduction

The origin of the nucleon spin is an important subject in the study of the nucleon
structure. Spin, also referred to as intrinsic angular momentum, is a fundamental
quantum-mechanical property of particles. Particles are classified as bosons, which
carry a spin of 0, ~, 2 ~, . . ., or fermions, which carry a spin of ~/2, ~ 3/2, . . . (Note
that in the following the reduced Plank constant ~ is omitted1.) The nucleon,
i.e., a proton or a neutron, carries a spin of 1/2. It is known that nucleons,
the building blocks of the nuclei of all atoms observed in nature, are themselves
composite systems consisting of more elementary constituents [1]. How the spin
and the orbital angular momentum of each of these constituents contribute to the
overall spin of the nucleon, is one of the central unresolved research questions in
strong-interaction physics.

Investigations of the nucleon structure The first evidence for the nucleon
to be a composite particle was the measurement of the magnetic moment of the
proton already in 1932-33 by Estermann, Frisch and Stern in Hamburg [2]. It was
found that the magnetic moment significantly deviates from the value calculated
under the assumption that the proton is an elementary particle, which indicated
that the proton has an internal structure.

In order to gain information about the internal structure of the nucleon many
experiments have been performed in which leptons (electrons, positrons, muons or
neutrinos) were scattered from proton or deuteron targets. For the elastic process
e p → e p, where e denotes the lepton and p the proton, it has been found that
the scattering pattern differs from theoretical predictions for the scattering from
a point-like particle, i.e., a particle without any substructure or spatial extension.
This was discovered in 1955 by Hofstadter and collaborators [3], who investigated
elastic electron scattering from the proton at Stanford. A good description of the
elastic scattering data was obtained by models that assume the nucleon to have
a spatial distribution of charge and magnetization densities, which are taken into

1Throughout this thesis natural units are used, for which the physics constants c and ~ are
taken equal to unity.

1



2 CHAPTER 1. INTRODUCTION

account by quantities called the Dirac and Pauli electromagnetic form factors.
From the obtained electromagnetic form factors the proton mean square charge
radius was determined to be about 0.8 fm [1].

Investigation of the so-called deep-inelastic scattering (DIS) process offers the
possibility to resolve the structure of the nucleon in terms of its constituents.
In the DIS process an interaction takes place between the incoming lepton and
an individual constituent of the nucleon. This interaction causes the nucleon to
fragment into various hadronic states, which are collectively denoted by X. In case
none of the final hadronic states in the process e p→ eX is specifically identified,
this process is referred to as inclusive DIS. The pioneering DIS measurements
were performed at Stanford in the late 1960s [4]. These inclusive measurements
led Feynman and Bjorken to the interpretation of the first DIS data in terms of
scattering from point-like constituents of the nucleon, which were called partons.

Numerous DIS experiments have succeeded these measurements. From the
interpretation of the inclusive DIS data the parton model emerged. Within the
parton model the nucleon is pictured as a collection of partons, which are identified
as electrically charged spin-1/2 particles called (anti)quarks and electrically neutral
spin-1 partons called gluons. One can distinguish valence quarks and sea quarks.
The valence quarks account for the main static properties of the nucleon, such as
its charge, spin and isospin, which is the quantum number determining whether
the nucleon is a proton or a neutron. Sea quarks appear in the nucleon as quark-
antiquark pairs originating from gluon splitting. The quarks come in different
types specified by a property called flavor. The flavor of the valence quarks of the
nucleon is either up or down, whereas the sea quarks may also carry other flavors,
such as strangeness.

The cross section of the DIS process for a given polarization state of the incident
lepton and target nucleon is usually expressed in terms of quantities referred to as
structure functions. At present, the structure functions cannot be calculated from
first principles. In the parton model a phenomenological description of the DIS
structure functions is given in terms of so-called parton distribution functions that
relate the structure functions to distributions of partons inside the nucleon. The
spin-dependent structure function g1 can be measured in DIS with a longitudinally
polarized lepton beam and a longitudinally polarized target with respect to the
beam direction. This structure function can be interpreted in terms of quark-
helicity distribution functions, from which one can determine the fractional quark-
spin contribution ∆Σ to the nucleon spin. In 1988 the EMC experiment at CERN
reported the first measurement of the structure function gp

1 for the proton [5]. This
measurement led to the discovery that the spins of quarks are responsible for only
a small fraction of the proton spin. The quark-spin contribution ∆Σ determined
from the results on g1 from various experiments at CERN, SLAC and DESY was
found to be about 20-30%.

The investigation of the origin of the nucleon spin in terms of quark, sea quark,
and gluon spin and orbital angular momentum contributions is the main focus of
the HERMES experiment at DESY, which started taking data in 1995. The HER-
MES experiment has performed high precision measurements of g1 for the proton,
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deuteron and the neutron by using various types of polarized targets [6]. These
measurements provide some of the world’s most precise data on g1. Moreover,
from measurements of semi-inclusive DIS, in which one of the produced hadrons
is also detected, the quark-helicity distribution functions have been determined
separately for different quark flavors [7]. From these measurements it has been
concluded that within the uncertainty margins of the experiment the spins of sea
quarks do not contribute to the nucleon spin.

Quark orbital-angular momentum, generalized parton distributions and
exclusive processes As the world’s measurements of g1 and the semi-inclusive
DIS measurements have demonstrated, the spin of the nucleon cannot be fully
attributed to the spin of quarks. Therefore, the nucleon spin of 1/2 must arise
also from other contributions, which are specified by the angular momentum sum
rule [8]

1

2
=

1

2
∆Σ + Lq + ∆G+ Lg, (1.1)

where Lq represents the orbital angular momentum of quarks, and ∆G and Lg

represent the contributions from the intrinsic spin and the orbital angular mo-
mentum of gluons, respectively. The total angular momentum Jq carried by all
quarks in the nucleon can be written as

Jq =
1

2
∆Σ + Lq. (1.2)

Therefore, by measuring the total angular momentum Jq one can obtain infor-
mation on the unknown orbital angular momentum Lq of quarks in the nucleon
making use of the available data on ∆Σ.

Experimental information on the total angular momentum Jq can be obtained
within the framework of generalized parton distributions (GPDs). At high enough
momentum transfer GPDs provide a description of exclusive production processes,
such as deeply virtual Compton scattering (e p → e p γ) and exclusive meson
leptoproduction (e p → e pM), where γ and M represent a real photon and
a meson, respectively. It should be noted that for exclusive meson production
the GPD description applies only if both the produced meson and the virtual
photon that is exchanged in the process are longitudinally polarized. GPDs are
generalizations of the usual parton distribution functions and the form factors,
describing the DIS process and the elastic scattering process, respectively. Hence,
GPDs provide a unified description of exclusive production processes, as well as
elastic scattering and (semi-)inclusive DIS processes.

As was shown for the first time in [9], specific GPDs are related to the to-
tal angular momentum of quarks in the nucleon. Since GPDs cannot be directly
measured, models of GPDs have been developed, which are extrapolations of the
data on parton distribution functions and form factors. From the investigation of
exclusive processes additional constraints on GPD models can be obtained result-
ing in more detailed knowledge on the structure of the nucleon. In particular, as
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is described in [10], measurements of specific observables in exclusive meson pro-
duction can be used to provide a model-dependent constraint on the total angular
momentum Jq and, therefore, also on the orbital angular momentum Lq of the
quarks in the nucleon. At present, no precise experimental information exists on
the orbital angular momentum carried by the quarks and gluons in the nucleon.

Transverse target-spin asymmetry in exclusive ρ0 leptoproduction GPD-
model calculations are available for the transverse target-spin asymmetry AUT in
exclusive ρ0 leptoproduction that can be measured with an unpolarized beam on a
transversely polarized target. From these calculations it follows that the sin(φ−φs)
moment of the asymmetry AUT depends on Jq. Here φ and φs are the azimuthal
angles of the produced ρ0 meson and the transverse component of the nucleon spin
vector, respectively, around the virtual-photon direction. Hence, one can obtain
an estimate of Jq by comparing the measurements of this azimuthal moment of
AUT to the GPD-based calculations. However, since the calculations only apply
to the case where both the exchanged virtual photon and the produced meson are
longitudinally polarized, for such a comparison it is required that the asymmetry
is measured for this case specifically.

The experimental separation of longitudinally and transversely polarized vir-
tual photons is usually done by the Rosenbluth method. This method requires that
measurements are performed at different beam energies, which is in general not
done at the HERMES experiment. However, under the assumption of s-channel
helicity conservation (SCHC) the helicity of the exchanged virtual photon is taken
over by the produced ρ0 meson. Therefore, in that case it is sufficient to measure
the asymmetry AUT for the different polarization states of the ρ0 meson. One can
perform such a separation experimentally by using the fact that the polarization
of the ρ0 meson is reflected by its decay angular distribution.

The contributions to the cross section and the asymmetry AUT for exclusive
ρ0 production from the various polarization states of the virtual photon and the
ρ0 meson can be expressed in terms of so-called spin density-matrix elements
(SDMEs). The (combinations of) SDMEs each corresponding to a specific polar-
ization state of the produced ρ0 meson can be extracted from the angular distribu-
tions of the ρ0 meson and its decay products. Data are available on the SDMEs for
the case of an unpolarized target. These results imply that SCHC holds reasonably
well at HERMES kinematics. Recently, a new SDME formalism for vector-meson
production on a polarized nucleon was developed [11]. Within this formalism a
detailed investigation of exclusive ρ0 production can be performed for the case
of a polarized target. The SDME formalism can thus also be used to extract
the asymmetry AUT separately for longitudinally and transversely polarized ρ0

mesons.

This thesis This thesis reports the first determination of the transverse target-
spin asymmetry AUT in exclusive ρ0 production on a transversely polarized hy-
drogen target. The analysis is based on the data obtained at HERMES during the
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2002-2005 data taking periods. In the analysis also the SDMEs for an unpolarized
and a polarized target are extracted from this data set. This is done for the first
time within the recently developed SDME formalism [11] for vector-meson produc-
tion on a polarized nucleon. The asymmetry AUT is extracted for longitudinally
and transversely polarized ρ0 mesons separately. Under the assumption of SCHC,
the results for the sin(φ− φs) moment of the asymmetry for longitudinally polar-
ized ρ0 mesons are compared with GPD-model calculations. From this comparison
a model-dependent constraint on the total and the orbital angular momentum of
the quarks in the nucleon is obtained.

In chapter 2 a description of the theoretical framework used in the analysis,
in particular for the asymmetry AUT , the SDMEs, and the GPDs, is given. In
chapter 3 the HERMES experiment is described. The selection of exclusive ρ0 pro-
duction events from the data collected at HERMES with a transversely polarized
hydrogen target is the subject of chapter 4. The selected data set contains contri-
butions from various sources of background. These contributions are evaluated in
section 4.3. In chapter 5 the methods used for the determination of AUT and the
extraction of SDMEs are discussed. A Monte Carlo simulation is used to take the
effect of the acceptance of the HERMES spectrometer into account in the various
extraction methods. Monte Carlo simulations are used as well to verify the per-
formance of these methods. A description of these Monte Carlo studies is given in
chapter 6. In chapter 7 the results for the asymmetries and SDMEs extracted from
the exclusive ρ0 production data are presented. This chapter includes discussions
of the systematic uncertainties and the interpretation of the measured asymmetry
AUT for longitudinally polarized ρ0 mesons in terms of the total angular momen-
tum Jq carried by the quarks in the nucleon. The conclusions of the analyses are
presented in chapter 8.
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Chapter 2

Theoretical framework

In this chapter a brief description is given of the theoretical framework used to
determine the transverse target-spin asymmetry in exclusive ρ0 electroproduction.
In order to introduce the basic theoretical concepts first, the deep-inelastic scat-
tering (DIS) process and its description in terms of parton distribution functions
are presented in section 2.1 and 2.2, respectively. In section 2.3 generalized parton
distributions (GPDs) are introduced, which provide a unified description of DIS,
elastic lepton-nucleon scattering, and hard exclusive processes. However, it must
be realized that hard exclusive meson production can only be described in terms
of GPDs if both the produced meson and the virtual photon that is exchanged in
the process are longitudinally polarized [12].

Before discussing specific GPD calculations for exclusive ρ0 production, the
general formalism relating the expression of the cross section to the polarization of
the lepton, nucleon, virtual photon, and the produced ρ0 meson is introduced. The
relevant kinematic variables, angles, and polarizations are introduced in section
2.4. In section 2.5, a description of the electroproduction cross section is given
in terms of the virtual-photon absorption cross section and interference terms
within the Diehl-Sapeta formalism [13]. These terms describe the interference of
amplitudes for a specific target-nucleon helicity and virtual-photon polarization.
Each term is associated with a specific dependence of the cross section on the
angles φ and φS , which are the azimuthal angles of the produced ρ0 meson and
the transverse component of the nucleon spin, respectively, with respect to the
virtual-photon direction (see section 2.4).

The (φ, φS) dependence of the cross section is contained in the angular distribu-
tion function, which is decomposed into separate parts for different polarizations
of the target nucleon, the beam lepton, and the produced ρ0 meson in section
2.6. The polarization of the ρ0 meson is associated with the additional depen-
dence of the angular distribution function on the polar ρ0 angle θππ. In section
2.7 the transverse target-spin asymmetry is introduced in relation to the angular
distribution function. The decomposition of the angular distribution into parts for
longitudinal (ρL) and transverse ρ0 polarization (ρT ) is used to express the ρL−ρT

7
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separated transverse target-spin asymmetries. Whereas in theory the transverse
and longitudinal components of the target polarization are defined with respect to
the virtual-photon direction, the experimental target polarization is defined with
respect to the lepton-beam direction. For the latter case the transverse target-spin
is defined differently, which is discussed in more detail in section 2.8.

A full description of the angular distribution function, including also the az-
imuthal ρ0 angle φππ, is given in terms of spin density-matrix elements (SDMEs)
for vector-meson production in section 2.9. Each SDME is associated with specific
polarization states of the produced ρ0 meson and the exchanged virtual photon.
For this reason the SDMEs can be used to verify how well the assumption of s-
channel helicity conservation (SCHC) holds, which implies that the helicity of the
virtual photon is taken over by the produced ρ0 meson. Two SDME formalisms
are presented, the Wolf-Schilling formalism [14] for an unpolarized target, and
the Diehl formalism [11] for a polarized target. Within the latter formalism the
ρL − ρT separated transverse target-spin asymmetries are expressed in terms of
SDMEs.

Available GPD-model calculations of the transverse target-spin asymmetry are
discussed in section 2.10. These calculations apply to the sin(φ− φS) component
of the asymmetry, provided that both the virtual photon and the ρ0 meson are
longitudinally polarized. Under the assumption of SCHC these calculations can
be compared with the obtained sin(φ− φS) component of the asymmetry for lon-
gitudinally polarized ρ0 mesons. Some of these calculations have been performed
for the kinematic range accessible by the HERMES experiment. These calcula-
tions are presented for varying values of the total angular momentum of up-quarks
inside the nucleon. In comparison with the experimentally extracted values these
calculations can be used to constrain the total angular momentum of quarks in
the proton. Since the quark-spin contribution to the nucleon spin is already mea-
sured by various experiments, such a comparison can also be used to constrain the
orbital angular momentum of quarks inside the nucleon.
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e(l) e(l’)

(q)*γ

p(P)

X

Figure 2.1: Leading-order Feynman diagram of the deep-inelastic scattering pro-
cess. The energy-momentum four-vectors of the involved particles are specified
between the brackets.

2.1 Deep-inelastic scattering

The inclusive DIS process e p→ eX under the assumption of one-photon exchange
is depicted in figure 2.1. Here, the energy-momentum four-vectors of the incoming
lepton and nucleon, the scattered lepton, and the exchanged virtual photon are
given by

• incoming lepton: l = (E, l)

• incoming nucleon: P = (Ep,P )

• scattered lepton: l′ = (E′, l′).

• exchanged virtual photon: q = (Eγ , q) = l − l′

The corresponding cross section can be expressed as the contraction

dσ ∝ LνµWDIS
µν

d3l′

2E′ , (2.1)

of a leptonic tensor Lµν with a hadronic tensor WDIS
µν . The leptonic tensor can

be calculated within QED

Lνµ = l′ν lµ + lν l′µ − (l′ · l −m2
e) g

νµ + ime ε
νµαβqαsβ , (2.2)

where me is the electron mass and s is the lepton-spin four-vector. Furthermore
gνµ is the metric tensor and the convention ε0123 = 1 has been used. The leptonic
tensor describes the transition of the lepton from the initial to the final state under
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the emission of a virtual photon. The hadronic tensor describes the absorption
of the exchanged virtual photon by the nucleon and the transition of the nucleon
to the final hadronic state X. The calculation of WDIS

µν for an incoming nucleon
with mass M and spin S yields:

WDIS
µν (q, P, S) =

1

4πM

∑

N

∫ N∏

n=1

d3 P ′
n

(2π)32P ′0
n

× (2π)4 δ4

(
P + q −

∑

n

p′n

)
Hµν(P, S, PX), (2.3)

with

Hµν(P, S, PX) = 〈P, S |Jµ(0)|X〉 〈X|Jν(0)|P, S〉, (2.4)

where Jµ represents the electromagnetic proton transition-current four-vector.
Evaluation of equation 2.3 requires the integration over the phase space of all
final hadronic states in X with total momentum PX . The number N of final
states in X varies, which is accounted for in the expression as it represents a sum
over all possible values of N .

It is not possible to calculate the transition amplitudes in equation 2.4 from
first principles, because this requires detailed knowledge about the nucleon struc-
ture and about the interactions taking place. However, it is possible to obtain
a general parameterization of the hadronic tensor. As a result of the symmetry
properties parity, time reversal and translation invariance, current conservation,
and hermiticity, the number of terms in the parameterization is restricted. The
resulting parameterization is given by

WDIS
µν = WDIS (U)

µν +WDIS (A)
µν , (2.5)

where W
DIS (U)
µν parameterizes the symmetric part of the hadronic tensor, which

is independent from the nucleon spin S:

WDIS (U)
µν (q, P ) =

(
−gµν − qµqν

Q2

)
F1

+

(
Pµ +

P · q
Q2

qµ

)(
Pν +

P · q
Q2

qν

)
F2

P · q

andW
DIS (A)
µν parameterizes the asymmetric part associated with the nucleon spin:

WDIS (A)
µν (q, P, S) = −iεµνλσ

qλ

P · q

[
Sσg1 +

(
Sσ− S · q

P · qP
σ

)
g2

]
. (2.6)

The quantities F1, F2, g1, g2 are referred to as structure functions. The structure
functions F1 and F2 should not be confused with the form factors for elastic scat-
tering, which are often represented by the same notation.
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For the description of the structure functions the relevant kinematic variables
are the virtuality Q2 = −q2 of the exchanged photon and the Bjorken variable x,
which is given by x = Q2/2P · q. The (x,Q2)-dependencies of F1 and F2 have
been determined by several fixed-target and collider experiments [15]. A striking
property of the determined values of F2 is that they depend mainly on the variable
x and only relatively weakly on Q2. This behavior of F2 resembles the expectation
for scattering from a point-like charged particle, which predicts that F2 depends
only on Bjorken x and not on Q2. This property is called scaling. The observation
of scaling has led to the development of the parton model, which was introduced
by R. Feynman. Although scaling holds relatively well for intermediate values of
x (0.02 . x . 0.4), violations of scaling are observed mostly for relatively low
values of x. The explanation for the observed scaling violations is that there are
interactions between gluons and quarks leading to a logarithmic dependence of the
structure functions on Q2.

2.2 Parton distribution functions

Within the parton model the DIS structure functions introduced in the previous
section can be expressed in terms of quark-distribution functions qf and quark
helicity distribution functions ∆qf by

F1(x) =
1

2

∑

f

e2fqf (x), (2.7)

F2(x) =
∑

f

e2fxqf (x), (2.8)

g1(x) =
1

2

∑

f

e2f∆qf (x), (2.9)

g2(x) = 0, (2.10)

where ef represents the fractional electric charge for quarks of flavor f . The
distribution functions are given by

qf (x) = q+f (x) + q−f (x) and ∆qf (x) = q+f (x) − q−f (x), (2.11)

where q
+(−)
f represent the distribution functions describing the probability of find-

ing a quark in the nucleon with its spin parallel (q+
f ) or anti-parallel (q−f ) to the

longitudinal spin of the nucleon. In the frame where the nucleon momentum
approaches infinity (infinite-momentum frame), the variable x describes the mo-
mentum fraction of the interacting quark relative to the nucleon momentum. The
experimental verification at high Q2 of the relation between equations 2.7 and 2.8

2xF1(x) = F2(x), (2.12)

which is known as the Callan-Gross relation, confirmed the assumption that quarks
are spin-1/2 particles.
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In the parton-model description of DIS quarks are moving independently from
each other. In reality this is only true in the limit Q2 → ∞, a property known
as asymptotic freedom. In contrast, at low Q2 quarks occur only in bound states,
a property referred to as confinement. From this observation it is concluded that
quarks interact very strongly with each other, in particular at low Q2, i.e. at
large distance scales. The force responsible for both asymptotic freedom and
confinement is called the strong force. The theory describing the corresponding
interactions is called quantum chromodynamics (QCD). Within QCD the strong
interaction is described as the coupling between color charges carried by quarks.
The color coupling is mediated by the gluons. In total three different kinds of
color charges are needed to describe the strong force. Gluons carry a color charge
themselves as well. In contrast, the mediating particles of the electromagnetic
force, photons, do not carry any electric charge. The fact that gluons carry color
charges affects the dynamics of QCD such that it results in an increase of the color-
coupling constant αs, describing the strength of the interaction between partons,
when the distance between these partons increases. Similarly, the value of αs

decreases for increasing values ofQ2, which accounts for the property of asymptotic
freedom.

If Q2 is relatively large, so that αs is small, perturbative techniques can be
used to perform QCD calculations. In this regime the interaction amplitude for
several processes can be divided into two parts. The first part can be described by
perturbative QCD and is referred to as the hard part, and the second part for which
perturbative techniques cannot be used, is called the soft part. In perturbative
QCD strong interactions are treated as perturbations of freely moving partons,
and the corresponding interaction amplitudes are expanded in terms of αs.

One can determine the importance of the various contributions to the DIS
process in the limit of Q2 → ∞ by expanding the hadronic tensor in terms of
1/Q. The order of the terms in this expansion is specified by the quantity twist.
According to [16], terms with a (1/Q)τ−2 dependence are referred to as twist-τ
terms. Leading twist is thus equal to twist-two.

γ (   )* qγ (   )* q

p(P) p(P)

Figure 2.2: Diagram representing the hadronic tensor. The dashed line indicates
that the square is taken of the corresponding amplitudes.
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In order to go beyond the parton-model description represented by equations
2.7-2.10 it is convenient to ignore the leptonic part of the cross section and to
focus on the virtual photon absorption cross section of the nucleon, which can be
expressed in terms of the hadronic tensor WDIS

µν as

σγ∗p→X =
4π2α

K
εµ∗WDIS

µν εν , (2.13)

where K is the virtual-photon flux factor [1] and εν is the virtual-photon polariza-
tion vector. As can be seen from figure 2.2, the corresponding diagram is similar
to the diagram representing the forward Compton scattering amplitude Tµν , de-
scribing the absorption and emission of a virtual photon by the nucleon, where
“forward” refers to the property that the initial and the final states are equal. In
fact, the optical theorem gives a relation between Wµν and Tµν ,

Wµν =
1

2π
ImTµν , (2.14)

from which it follows that one can obtain a description of the hadronic tensor by
applying perturbative QCD techniques to the forward Compton scattering ampli-
tude. The resulting amplitude, at leading order in αs is shown in figure 2.3.

The soft part of the interaction, represented by the blob in figure 2.3, is de-
scribed by the quark-quark correlation function, also called the quark density
matrix

Φij(k, P, S) =

∫
d4z

(2π)4
eik·z 〈P, S| ψ̄j(−

z

2
)ψi(

z

2
) |P, S〉, (2.15)

where i, j are the Dirac indices, ψi(j) is the quark field, and k is the quark momen-
tum. In high-energy processes, only the quark-momentum component collinear to
the nucleon momentum, i.e., the light-cone component1 k+ = xP+, is important,
where x represents the momentum fraction of the quark relative to the nucleon
momentum2. In this case, the quark-quark correlation function involves quark
fields at different space-time points in the direction conjugate to P+. Although
perturbative techniques cannot be used to calculate the quark-quark correlation
function, it can be parameterized by making use of its symmetry properties. This
parameterization is usually done in terms of parton distribution functions [17].

At leading twist there are three parton distribution functions for each quark
flavor, two of which are equal to the quark distribution function qf (x) and the
quark helicity distribution function ∆qf (x). The other leading twist parton distri-
bution function is the transversity distribution function δqf (x), which describes the
probability of finding a transversely polarized quarks in a transversely polarized
nucleon. The transversity distribution function cannot be measured in inclusive
DIS, but it is possible to measure δqf (x) in semi-inclusive DIS [18, 19].

1The light-cone components of a four-vector a are defined as a± = (a0 ± a3)/
√

2. The scalar
product of two four-vectors, a and b, is then given by a · b = a+b− + a−b+ − a1b1 − a2b2.

2As was mentioned earlier in this section, in DIS the quark-momentum fraction is identified
with the Bjorken variable x = Q2/2P · q.
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p(P)

k k

p(P)

γ (   )* qγ (   )* q

+ p(P)

k k

p(P)

γ (   )* qγ (   )* q

Figure 2.3: Leading order diagrams of the hadronic tensor in perturbative QCD.
The blob represents the quark-quark correlation function, also called the quark
density matrix, which represents the soft part of the interaction. The quark-quark
correlation function is parameterized by parton distribution functions.

2.3 Generalized parton distributions

The formalism of generalized parton distributions (GPDs) is used in the descrip-
tion of exclusive processes in the Bjorken limit, where the exchanged photon has a
high energy and a large virtuality Q2 at a fixed value of Bjorken x. A GPD descrip-
tion can be given for a wide range of exclusive processes, such as deeply virtual
Compton scattering (DVCS: e p → e p γ) and hard exclusive meson production
(e p → e pM , with M = π, ρ, ω, . . .). The amplitude for such exclusive processes
is depicted in figure 2.4. Within the GPD descriptions the amplitudes of these pro-
cesses are factorized, i.e., separated into perturbative and non-perturbative parts.
At leading order the factorized amplitude for DVCS is represented by the so-called
‘handbag’ diagram as represented in the left-hand side of figure 2.5.

*

ee

p p

γ
γ,π,ρ,ω...

Figure 2.4: Diagram representing the amplitude for exclusive electroproduction of
a meson or a real photon. The produced meson or photon is represented by the
dashed line.

In [12] it was proven that a QCD factorization theorem applies to hard ex-
clusive electroproduction of mesons in case the virtual photon that induces the
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process is longitudinally polarized. The factorization theorem expresses the corre-
sponding amplitude in terms of a hard-scattering function, which can be calculated
in perturbative QCD, and two soft parts, representing the wave function of the
meson and a density matrix for partons in the nucleon. The factorized ampli-
tude is represented by the diagram displayed in the right-hand side of figure 2.5.
The hard-scattering function describes the interaction of the virtual photon with

p(P) p(P’)

k

qγ (   )* γ

k’

p(P) p(P’)

k’

*γ (   )q

k

M(v)

Figure 2.5: Feynman diagrams representing the leading order DVCS amplitude
(left) and the factorized amplitude of exclusive meson production (right).

a quark, which leads to the formation of a quark pair changing into a meson. The
last step of this process is described by the wave function of the meson.

The lower soft part in the diagram of the factorized amplitude represents the
density matrix (see figure 2.6)

Φ′
ij(k, P,∆) =

∫
d4z

(2π)4
eik̄·z 〈P ′, S′| ψ̄j(−

z

2
)ψi(

z

2
) |P, S〉, (2.16)

where k̄ = (k′ + k)/2 and ∆ = P ′ − P = k′ − k (see figure 2.5 for a specification
of the energy-momentum four-vectors k, k′, P and P ′). The density matrix also
represents the non-perturbative part of the leading-order amplitude of the DVCS
process. It describes how a parton, represented by the field ψ, is taken from the
nucleon in the initial state with a momentum k and put back with a momentum
k′ to form the nucleon in the final state. This density matrix is a generalization of
the density matrix of equation 2.15. Because it appears in the description on the
amplitude level, it corresponds to the non-forward case, where the nucleon in the
final state has in general a different momentum and spin compared to the initial
state. In contrast, the forward density matrix of equation 2.15 appears on the
cross section level in the description of DIS.

The non-forward density matrix given by equation 2.16 can be parameterized
in terms of generalized parton distributions (GPDs). At leading twist level there
are for each quark flavor f four quark chirality conserving GPDs: Hf , Ef , H̃f

and Ẽf [10]. Whereas the GPDs Hf and H̃f are associated with conservation of
the nucleon helicity, the GPDs Ef and Ẽf are associated with a helicity flip of the



16 CHAPTER 2. THEORETICAL FRAMEWORK

p(P)

k

p(P’)

k’

Figure 2.6: Diagram of the non-forward quark density matrix, which is parame-
terized at leading twist by the generalized parton distributions Hf , Ef , H̃f and
Ẽf .

nucleon. The GPDs depend on the variables x̄, ξ and t. Here the variable t = ∆2

is the squared four-momentum transfer to the nucleon. The average longitudinal
momentum fraction x̄ is given by k̄+ = x̄P̄+, where k̄+ and P̄+ are the longitudinal
light-cone components of, respectively, k̄ and P̄ = (P ′ + P )/2. The skewedness
parameter ξ, given by ∆+ = −2ξP̄+, represents the fractional momentum transfer
to the active quark3. It follows from these definitions that the momenta of the
active quarks are given by k+ = (x̄+ ξ)P̄+ and k+′ = (x̄− ξ)P̄+, with x̄ running
from -1 to +1. In case the momentum fraction x̄± ξ is positive, it corresponds to
quarks and in case the momentum fraction is negative it corresponds to antiquarks.

GPDs are generalizations of the usual parton distribution functions introduced
in the description of the DIS cross section and the form factors of elastic scattering.
In the forward limit ∆ → 0 with x̄ > 0 the GPDs H and H̃ are equal to the quark
density distribution q and the quark helicity distribution ∆q:

Hf (x̄, 0, 0) = qf (x̄), H̃f (x̄, 0, 0) = ∆qf (x̄). (2.17)

In case x̄ < 0 one obtains the anti-quark distributions:

Hf (x̄, 0, 0) = −q̄f (−x̄), H̃f (x̄, 0, 0) = ∆q̄f (−x̄). (2.18)

The GPDs E and Ẽ do not contribute to the amplitudes of exclusive processes
in the forward limit, which implies that these GPDs cannot be measured in DIS.
The elastic form factors for quarks with flavor f in the nucleon are obtained by

3In the Bjorken limit the variable ξ is related to Bjorken x by ξ → x/(2 − x).
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integrating the GPDs over the variable x̄:

∫ +1

−1

dx̄Hf (x̄, ξ, t) = F f
1 (t),

∫ +1

−1

dx̄Ef (x̄, ξ, t) = F f
2 (t),

∫ +1

−1

dx̄ H̃f (x̄, ξ, t) = gf
A(t),

∫ +1

−1

dx̄ Ẽf (x̄, ξ, t) = hf
A(t). (2.19)

Here F1 and F2 are the Dirac and Pauli form factors, and gA and hA are the axial
form factor and the pseudoscalar form factor, respectively.

GPDs provide new information about nucleon structure, for instance about the
contribution Jf of the total angular momentum of quarks to the nucleon spin. It
has been shown in [9] that Jf is related to the second moment of the sum of the
GPDs Hf and Ef :

Jf =
1

2
lim
t→0

∫ 1

−1

x̄
(
Hf (x̄, ξ, t) + Ef (x̄, ξ, t)

)
dx̄. (2.20)

Because the contribution of the longitudinal quark spin to the longitudinal nucleon
spin has been measured through polarized semi-inclusive DIS by several experi-
ments (see e.g. [7]), measurements of Jf would provide a way to determine the
unknown contribution of the orbital angular momentum of quarks to the nucleon
spin.

The description of exclusive meson production in terms of GPDs only applies
if both the exchanged virtual photon and the produced meson are longitudinally
polarized. It has been shown that only in that case transitions are allowed at
leading twist, whereas all other transitions are suppressed by at least one power
of 1/Q [13].

The sensitivity of exclusive meson production to GPDs is determined by the
quantum numbers of the produced meson. In case of vector-meson production the
process is only sensitive to the GPDs H and E. Note that the observables that
can be measured for this process, such as cross sections or asymmetries, can be
expressed in terms of convolutions of GPDs over the variable x̄. A description
of the transverse target-spin asymmetry in exclusive ρ0 production in terms of
convolutions of the GPDs H and E is given in section 2.10.
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2.4 Exclusive electroproduction of ρ0 mesons

In the process of exclusive ρ0 electroproduction the scattering of a lepton e on a
nucleon p is followed by the production of a ρ0 meson

e(l) + p(p) → e(l′) + p(p′) + ρ0(v). (2.21)

A characteristic property of this process is that the nucleon remains intact. The
produced ρ0 meson decays into a pair of pions with opposite charges

ρ0(v) → π+(kπ) + π−(k′π). (2.22)

The energy-momentum four-vectors of the various particles involved in the pro-

e(l) e(l’)

p(P) p(P’)

ρ0(  )v
(q)*γ

Figure 2.7: Diagram representing exclusive electroproduction of ρ0 mesons.

duction and the decay processes are denoted by (see figure 2.7)

• incoming lepton: l = (E, l)

• incoming nucleon: P = (Ep,P )

• scattered lepton: l′ = (E′, l′)

• recoiling nucleon: P ′ = (E′
p,P

′)

• produced ρ0 meson: v = (EV ,v)

• exchanged virtual photon: q = (Eγ , q) = l − l′

• decay pion π+: k = (Eπ+ ,kπ)

• decay pion π−: k′ = (E′
π,k

′
π).

Similarly to equation 2.1, the differential cross section for exclusive ρ0 production
can be expressed in terms of a hadronic and a leptonic tensor

dσep→ epρ0 ∝ LνµWµν
d3l′

2E′
d3v

2EV
. (2.23)
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The leptonic tensor Lνµ is given by equation 2.2. The hadronic tensor Wµν de-
scribes the subprocess γ∗p → pρ0 of the absorption of a virtual photon by the
nucleon and the production of the ρ0 meson. The definitions and descriptions of
the relevant kinematic variables are listed in table 2.1.

2.4.1 Azimuthal angles φ and φS

The direction of the produced ρ0 meson (see figure 2.8) is specified by the azimuthal
angle φ, which is defined according to the Trento convention [20] as the angle of
the hadron production plane with respect to the lepton scattering plane in the

Variable Description

Q2 ≡ −q2 lab
≈ 4EE′ sin2 θ

2
γ∗ virtuality

ν ≡ P · q/M
lab
= E − E′ γ∗ energy in the

laboratory frame

x ≡ Q2/(2P · q) = Q2/2Mν Bjorken variable x

y ≡ (P · q)/(P · l)
lab
= ν/E Bjorken variable y

W 2 ≡ (q + P )2 = M2 + 2Mν − Q2 center-of-mass energy
squared of the γ∗p system

t ≡ (q − v)2 = (P − P ′)2 four-momentum transfer
from γ∗ to ρ0 squared

maximal value of t

t0
CM
= (Eγ − EV )2 − (|q| − |v|)2 kinematically allowed

at given Q2 and x

t′ = t − t0 measure of the transverse
momentum transfer

ε ≡
1−y− 1

4
y2Q2/ν2

1−y+ 1
2

y2+ 1
4

y2Q2/ν2

lab
=
“

1 + 2(1 + ν2

Q2 ) tan2 θ
2

”−1

γ∗ polarization parameter

Mππ ≡
p

(kπ + k′
π)2 invariant mass of the

π+π− system

∆E ≡ (M2
X − M2)/2M

lab
= ν − EV + t

2M
missing energy,
exclusivity of the process
(see section 4.2)

Table 2.1: The definitions and descriptions of the relevant kinematic variables
characterizing exclusive ρ0 production. Included are the expressions that can be
used in the HERMES laboratory (lab) frame, where θ is the angle between the
incoming and the scattered lepton and M is the nucleon rest mass. The expression
for t0 applies in the γ∗p center of mass frame (CM).
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center-of-mass frame of the γ∗p system

cosφ =
(q̂ × l)

|q̂ × l| ·
(q̂ × v)

|q̂ × v| ,

sinφ =
(l × v) · q̂

|q̂ × l||q̂ × v| , (2.24)

with q̂ = q/|q|. This is illustrated in figure 2.8.
For a polarized nucleon the corresponding polarization vector S can be decom-

posed into a transverse component ST and a longitudinal component SL relative
to the virtual-photon direction. The azimuthal angle of ST with respect to the
lepton scattering plane is represented by φS (see figure 2.8). One can obtain the
definition of φS from equation 2.24 by replacing v with S [20].

y

z

x

hadron prod. plane

lepton scat. plane

l’
l ST

v

vT

φ

φS

Figure 2.8: The azimuthal angles φ and φS of, respectively, the hadron production
plane and the transverse component ST of the target spin, with respect to the
lepton scattering plane [20].

Alternatively, the polarization vector S can be decomposed into components
PT and PL, transverse and parallel to the lepton-beam direction. These com-
ponents are related to the transverse and longitudinal components ST and SL
relative to the virtual-photon direction by

ST cosφS = cos θγ PT cosψ − sin θγ PL,

ST sinφS = PT sinψ,

SL = sin θγ PT cosψ + cos θγ PL, (2.25)

where θγ is the angle between the vectors q and l and ψ is the azimuthal angle of
PT around the lepton-beam direction [13]. In case PL = 0 and thus S = PT , the
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relation becomes

ST (θγ , φS) =
cos θγ√

1 − sin2θγ sin2φS

PT ,

SL(θγ , φS) =
sin θγ cosφS√

1 − sin2θγ sin2φS

PT . (2.26)

2.4.2 The ρ0 decay angles

The decay of the ρ0 meson, which is illustrated in figure 2.9, is specified by the an-
gles θππ and φππ, which represent the polar and the azimuthal angle, respectively,
of the π+ momentum in the π+π− center-of-mass frame (i.e. the ρ0 rest frame).
In this frame the decay angles can be expressed with respect to the rectangular
coordinate system (xππ,yππ, zππ) with [14, 21]

zππ = − p′

|p′| , yππ =
q̂ × zππ

|q̂ × zππ|
, xππ = yππ × zππ, (2.27)

where zππ is the unit vector opposite to the momentum of the recoiling target
nucleon in the ρ0 rest frame, yππ is the unit vector normal to the hadron production
plane and the unit vector xππ lies in the hadron production plane. The expressions
for θππ and φππ are then given by

cos θππ =
kπ · zππ

|kπ|
,

cosφππ =
yππ · (zππ × kπ)

|zππ × kπ|
,

sinφππ = −xππ · (zππ × kπ)

|zππ × kπ|
. (2.28)

2.4.3 The virtual-photon polarization

In order to describe exclusive ρ0 production for a specific virtual-photon polariza-
tion, first the corresponding polarization vectors are introduced. Following [13] and
[11] the polarization vectors for virtual photons are described in a right-handed
coordinate system with the z-axis opposite to the virtual-photon direction, the
x-axis in the ρ0 production plane, such that the ρ0 momentum has a positive
x-component and the y-axis perpendicular to the hadron production plane. The
polarization vector for virtual photons with zero (i.e. longitudinal) helicity is given
by

εµ0 =
1

Q
√

1 + γ2

(
qµ +

Q2

P · q P
µ
)
, (2.29)
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Figure 2.9: The ρ0 decay angles illustrated for the γ∗ center-of-mass frame (top)
and the ρ0 rest frame (bottom).

with γ2 = Q2/ν2. The polarization vectors ε+1 and ε−1 for virtual photons with
positive and negative helicity are obtained as combinations of the polarization
vectors ε⊥1 = (0, 1, 0, 0) and ε⊥2 = (0, 0, 1, 0) describing transversely polarized
virtual photons

ε+1 = − 1√
2

(ε⊥1 + iε⊥2) =
1√
2

(0,−1, i, 0), (2.30)

ε−1 = 1√
2

(ε⊥1 − iε⊥2) =
1√
2

(0, 1, i, 0). (2.31)

The polarization of the exchanged virtual photon is fully described by the leptonic
tensor. In fact, the spin density matrix of the virtual photon can be obtained by
expressing the leptonic tensor Lνµ in terms of combinations of ενnε

µ∗
m [13].
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2.5 The leptoproduction cross section

In [13] a general formalism is presented for the cross section of lepton scattering on
a polarized proton. This formalism is referred to as the Diehl-Sapeta formalism.
Within this formalism the polarizations of the virtual photon and the proton in
the initial state are explicitly taken into account in the expression of the leptopro-
duction cross section in terms of so-called polarized photoabsorption cross sections
and interference terms denoted by σij

mn. The indices i, j = ± 1
2 specify the proton

spin with respect to the axis pointing opposite to the virtual-photon direction in
the target rest frame. Equivalently these indices specify the proton helicity in the
γ∗p center-of-mass frame. The indices m,n = −1, 0, 1 specify the helicities of the
virtual photon. For the process of exclusive ρ0 production these terms are directly
related to the amplitudes Tmi for the process γ∗p → pρ0 by

dσij
mn

dt
∝
∑

spins

(Tmi)
∗Tnj , (2.32)

where
∑

spins denotes the sum over all helicities that contribute to the final state

pρ0, which are not specified any further in [13].
The relation of these terms with the hadronic tensor can be obtained from a

contraction of σij
mn with the spin density matrix τji of the proton. Density matrices

[22] are convenient quantities to describe processes involving many (spin) degrees
of freedom. In appendix A (spin) density matrices are introduced and defined.
From equation A.8 it follows that the relation between the density matrix τji, and
the proton polarization vector S and the polarization operator σji is given by

τji =
1

2

[
δji + S · σji

]
=

1

2

(
1 + SL ST e

−i(φ−φS)

ST e
i(φ−φS) 1 − SL

)
. (2.33)

By using the spin density matrix τji one can obtain the following relation between
the hadronic tensor Wµν and σij

mn

εµ∗m Wµν ε
ν
n ∝

∑

ij

τji
dσij

mn

dt
=
dσmn

dt
. (2.34)

The contraction LνµWµν in equation 2.23 is obtained from a contraction of
σmn with the spin density matrix of the virtual photon. By using equation 2.34
and by expressing the leptonic tensor in terms of combinations of ενnε

µ∗
m one can

write the contraction LνµWµν in terms of σij
mn. The resulting expression for the

leptoproduction cross section is then given by [13]
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[
αem

8π3

y2

1 − ε

1 − x

x

1

Q2

]−1
dσ

dx dQ2 dφ dψ

=
1

2

(
σ++

++ + σ−−
++

)
+ εσ++

00

− ε cos(2φ)Reσ++
+− −

√
ε(1 + ε) cosφRe (σ++

+0 + σ−−
+0 )

− P`

√
ε(1 − ε) sinφ Im (σ++

+0 + σ−−
+0 )

− SL

[
ε sin(2φ) Imσ++

+− +
√
ε(1 + ε) sinφ Im (σ++

+0 − σ−−
+0 )

]

+ SLP`

[√
1 − ε2

1

2

(
σ++

++ − σ−−
++

)
−
√
ε(1 − ε) cosφRe (σ++

+0 − σ−−
+0 )

]

− ST

[
sin(φ− φS) Im (σ+−

++ + εσ+−
00 ) +

ε

2
sin(φ+ φS) Imσ+−

+−

+
ε

2
sin(3φ− φS) Imσ−+

+− +
√
ε(1 + ε) sinφS Imσ+−

+0

+
√
ε(1 + ε) sin(2φ− φS) Imσ−+

+0

]

+ STP`

[√
1 − ε2 cos(φ− φS)Reσ+−

++ −
√
ε(1 − ε) cosφS Reσ+−

+0

−
√
ε(1 − ε) cos(2φ− φS)Reσ−+

+0

]
. (2.35)

Here αem is the electromagnetic coupling constant, P` is the longitudinal beam
polarization, and SL and ST are the target polarizations parallel and transverse
to the virtual-photon direction, respectively. The Hand convention is used for the
virtual-photon flux factor and the virtual-photon polarization parameter ε is given
in table 2.1. It is noted that equation 2.35 can be rewritten differential in t without
changing its structure.
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2.6 The angular distribution function

It is convenient to express the differential leptoproduction cross section, which is
given in the Diehl-Sapeta formalism by equation 2.35, as the product

dσ

dψ dφ dx dQ2 dt
=

1

(2π)2
dσ

dx dQ2 dt
W (x,Q2, t, φ, φS) (2.36)

with [11, 13]

dσ

dx dQ2 dt
=
αem

2π

y2

1 − ε

1 − x

x

1

Q2

(
dσT

dt
+ ε

dσL

dt

)
, (2.37)

where

σT =
1

2

(
σ++

++ + σ−−
++

)
and σL = σ++

00 (2.38)

represent the γ∗p cross sections for an unpolarized proton, and a transversely and
longitudinally polarized photon, respectively.

In equation 2.36 the (φ, φS) dependence is completely described by the angular
distribution function4 W (x,Q2, t, φ, φS). In the following the x,Q2, t dependence
of W will be suppressed. The normalization of the angular distribution function
is given by

∫
dφ

2π

∫
dφS

2π
W (φ, φS) = 1. (2.39)

The angular distribution function consists of several contributions corresponding
to different polarization states of the incoming lepton and the target nucleon

W (φ, φS) = WUU (φ) + P`WLU (φ) + SLWUL(φ) + P`SLWLL(φ) +

STWUT (φ, φS) + P`STWLT (φ, φS), (2.40)

where the left subscript specifies the beam polarization states: unpolarized (U)
or longitudinally polarized (L), and the right subscript specifies the target po-
larization states: unpolarized (U), longitudinally polarized (L), or transversely
polarized (T ).

2.6.1 ρL − ρT Separation

The angular distribution function given by equation 2.40 has been integrated over
the ρ0 decay angles. One can decompose the angular distribution function into
parts for longitudinally and transversely polarized ρ0 mesons (denoted by ρL and
ρT , respectively) by using the fact that each ρ0 polarization state results into a
characteristic dependence on the decay angle θππ (see [13]). For the photoabsorp-
tion terms σij

mn the θππ dependence is given by

4The angular distribution function is written in terms of the angle φS whereas it is more
simple to express the phase space element, on the left-hand side of equation 2.36, in terms of the
angle ψ [13].
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dσij
mn(γ∗p→ π+π−p)

d(cos θππ)

=
3 cos2θππ

2
σij

mn(γ∗p→ ρL p)

+
3 sin2θππ

4
σij

mn(γ∗p→ ρT p). (2.41)

One obtains the ρL − ρT separated leptoproduction cross section by combining
this equation with equation 2.35. One can include the θππ dependence of the cross
section in the angular distribution function by decomposing each term of equation
2.40 as

WXY (φS , φ, θππ) =
3

2

[
WLL

XY (φS , φ) cos2 θππ +

WTT
XY (φS , φ) sin2 θππ

]
. (2.42)

The ρL − ρT separated angular distributions are given by WLL
XY and WTT

XY , re-
spectively. Here the subscripts X and Y specify the beam and target polarization
states, respectively, as in equation 2.40. The superscripts LL specify purely lon-
gitudinal and the superscripts TT specify purely transverse ρ0 polarization. It
is noted that the angular distribution function in equation 2.42 effectively has
been integrated over the decay angle φππ. As a result, terms coming from the
interference between different ρ0 polarizations cancel.

2.7 Transverse target-spin asymmetry

In this section the transverse target-spin asymmetry is introduced in relation with
the angular distribution function of the cross section, which is given for the general
case by equation 2.40. For an unpolarized beam and a transversely polarized target
the angular distribution is given by

W (φ, φS) = WUU (φ) + STWUT (φ, φS). (2.43)

The transverse target-spin asymmetry AUT (φ, φS) is defined here in relation with
the angular distributions WUT and WUU as

AUT (φ, φS) =
WUT (φ, φS)

ŴUU

, (2.44)

where ŴUU is WUU (φ) averaged over the angle φ. The φ dependence of WUU can
be expressed in terms of the unpolarized azimuthal asymmetry AUU (φ) as

WUU (φ) = ŴUU (1 +AUU (φ)) . (2.45)
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The angular distribution function is then given in terms of the asymmetries AUU

and AUT by

W (φ, φS) = ŴUU (1 +AUU (φ) + STAUT (φ, φS)) . (2.46)

It is noted that the transverse target-spin asymmetry given by equation 2.44
is slightly redefined in comparison to the usual definition of the asymmetry given
within the Trento convention [20] by

ATrento
UT (φ, φS) =

1

ST

dσ(φ, φS) − dσ(φ, φS + π)

dσ(φ, φS) + dσ(φ, φS + π)
, (2.47)

which can be expressed as

ATrento
UT (φ, φS) =

WUT (φ, φS)

WUU (φ)
, (2.48)

as follows from the propertyWUT (φ, φS) = −WUT (φ, φS+π). One can see in equa-
tion 2.48 that this asymmetry contains the φ dependence of the unpolarized cross
section in its denominator. This dependence is caused by the interference between
different photon polarizations. As GPD-model calculations of the asymmetry in
general do not consider this dependence, it is preferred to use the definition of the
asymmetry given by equation 2.44.

Azimuthal-moment expansion of asymmetries The azimuthal angular de-
pendencies of the asymmetries AUU and AUT can be expanded into independent
trigonometric functions of the angles φ and φS . It follows from equation 2.46 in
combination with equations 2.35 and 2.36 that these expansions can be written as

AUU (φ) = A
cos(φ)
UU cos(φ) + A

cos(2φ)
UU cos(2φ), (2.49)

AUT (φ, φS) = A
sin(φ−φS)
UT sin(φ− φS) + A

sin(φ+φS)
UT sin(φ+ φS) +

A
sin(3φ−φS)
UT sin(3φ− φS) + A

sin(φS)
UT sin(φS) +

A
sin(2φ−φS)
UT sin(2φ− φS). (2.50)

The coefficients appearing in these expansions are referred to as the azimuthal
moments of the asymmetries [13, 20], as they are equal to

A
ω(φ)
UU =

2
∫
dφω(φ) [W (φ) − W (φ+ π) ]∫
dφ [W (φ) + W (φ+ π) ]

∣∣∣
ST =0, SL=0

, (2.51)

A
ω(φ,φS)
UT =

2
∫
dφ dφS ω(φ, φS) [W (φ, φS) − W (φ, φS + π) ]∫

dφ dφS [W (φ, φS) + W (φ, φS + π) ]

∣∣∣
ST =1, SL=0

.(2.52)

ρL − ρT Separation of asymmetries The transverse target-spin asymmetries
AUT,ρL

and AUT,ρT
for longitudinally and transversely polarized ρ0 mesons, re-

spectively, can be defined in relation to the ρL −ρT separated parts of the angular
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distribution by (see equation 2.42)

AUT,ρL
(φ, φS) =

WLL
UT (φ, φS)

ŴLL
UU

, AUT,ρT
(φ, φS) =

WTT
UT (φ, φS)

ŴTT
UU

. (2.53)

By using equation 2.42 one can express the angular distribution in terms of the
ρL − ρT separated asymmetries as

W (φ, φS , θππ) =

3
2

[
ŴLL

UU cos2 θππ

(
1 +AUU,ρL

(φ) + PTAUT,ρL
(φ, φS)

)
+

ŴTT
UU sin2 θππ

(
1 +AUU,ρT

(φ) + PTAUT,ρT
(φ, φS)

) ]
. (2.54)

As follows from this decomposition one can determine the ρL−ρT separated asym-
metries AUT,ρL

(φ, φS) and AUT,ρT
(φ, φS) by extracting the angular distribution

for transverse target polarization as a function of θππ. The averaged contributions
ŴLL

UU and ŴTT
UU , as well as the unpolarized asymmetries AUU,ρL

(φ) and AUU,ρT
(φ),

can be determined from the spin density-matrix elements for ρ0 production from
an unpolarized target, which are discussed in section 2.9.

2.8 Transverse target polarization with respect to

the beam direction

For an experimental setup the target polarization is defined with respect to the
lepton-beam direction rather than to the virtual-photon direction. Due to the
non-zero angle θγ between the directions of the incoming lepton and the virtual
photon, a transverse target polarization PT with respect to the lepton-beam di-
rection comes along with a transverse, as well as a longitudinal component with
respect to the virtual-photon direction (see section 2.4.1). Hence, the angular dis-
tribution function W ` for the case of a transversely polarized target with respect
to the lepton-beam direction can be written as

W `(θγ , φ, φS) = WUU (φ) + PT W
`
UT (θγ , φ, φS), (2.55)

where the term W `
UT is the mixture of the terms WUT and WUL given by [13]

PT W
`
UT (θγ , φ, φS) = ST (θγ , φS)WUT (φ, φS) + SL(θγ , φS)WUL(φ). (2.56)

One obtains the explicit expression for W `
UT by inserting equation 2.26 into equa-

tion 2.56:

W `
UT (θγ , φ, φS) =

cos θγ WUT (φ, φS) + sin θγ cosφS WUL(φ)√
1 − sin2θγ sin2φS

. (2.57)
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The transverse target-spin asymmetry A`
UT with respect to the beam direction

is now defined relative to W `
UT as

A`
UT (θγ , φ, φS) =

W `
UT (θγ , φ, φS)

ŴUU

=
cos θγ AUT (φ, φS) + sin θγ cosφS AUL(φ)√

1 − sin2θγ sin2φS

, (2.58)

where AUL is the longitudinal target-spin asymmetry with respect to the virtual-
photon direction. The angular distribution function W ` in equation 2.55 can be
expressed, analogous to equation 2.46, in terms of asymmetries as

W `(θγ , φ, φS) = ŴUU

(
1 +AUU (φ) + PTA

`
UT (θγ , φ, φS)

)
. (2.59)

It is noted that one can decompose equation 2.59 into ρL-ρT separated asymmetries
analogous to equation 2.54 by using equation 2.42.

2.9 SDMEs for vector-meson production

The angular distribution function for exclusive ρ0 production can be expressed
in terms of spin density-matrix elements (SDMEs). Compared to the description
given by equations 2.40 and 2.42, the description in terms of SDMEs is more
complete, since it includes the φππ dependence (instead of integrating over it),
which is caused by the interference of different ρ0 polarization states. Moreover,
the SDMEs give a description of the spin transfer from the virtual photon to the
ρ0 meson.

A general introduction of the spin density matrix formalism can be found in
appendix A. The SDMEs for vector-meson production on an unpolarized target
are given within the Wolf-Schilling formalism [14]. Several experiments, including
HERMES, have already measured the SDMEs for an unpolarized target in this
formalism (see e.g. [23, 24, 25, 26]). Recently, an SDME formalism was devel-
oped for vector-meson production on a polarized target [11], in which the angular
distribution function is decomposed in separate terms for specific vector-meson
polarization states by using

WXY (φS , φ, φππ, θππ) =
3

4π

[
WLL

XY (φS , φ) cos2 θππ +

WLT
XY (φS , φ, φππ)

√
2 cos θππ sin θππ +

WTT
XY (φS , φ, φππ) sin2 θππ

]
. (2.60)

Here, the superscript LT specifies the interference between transverse and longitu-
dinal vector-meson polarization states, whereas the subscript XY labels the beam
and target polarization as usual. The formalism of [11], which is referred to as the
Diehl formalism, is a generalization of the Diehl-Sapeta [13] and the Wolf-Schilling
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[14] formalisms, a key difference being the inclusion of the explicit dependence on
φππ for a polarized target.

The Wolf-Schilling formalism is described briefly in section 2.9.1. In section
2.9.2 the Diehl formalism is introduced. Since the present analysis mainly uses this
formalism, its structure is presented in more detail. Some of the existing HERMES
results for the SDMEs for an unpolarized target are presented in section 2.9.3.
The implications of these results for the validity of s-channel helicity conservation
(SCHC), which implies that the helicity of the virtual photon is taken over by the
ρ0 meson, are discussed. Existing results for the ratio R = σL/σT of the cross-
sections for longitudinally polarized over transversely polarized virtual photons
determined under the assumption of SCHC are presented as well in this section.

2.9.1 Vector-meson production from an unpolarized target

In the Wolf-Schilling formalism [14], the angular distribution function for an un-
polarized target and a polarized lepton beam is expressed in terms of 23 SDMEs
as

W (Φ, φππ, θππ) = WUU (Φ, φππ, θππ) + P`WUL(Φ, φππ, θππ)

=
3

4π

{ 1

2
(1 − r0400) +

1

2
(3r0400 − 1) cos2 θππ

−
√

2 Re (r0410) sin 2θππ cosφππ − r041−1 sin2 θππ cos 2φππ

−ε cos 2Φ
(
r111 sin2 θππ + r100 cos2 θππ

−
√

2 Re (r110) sin 2θππ cosφππ − r11−1 sin2 θππ cos 2φππ

)

−ε sin 2Φ
(√

2 Im (r210) sin 2θππ sinφππ + Im (r21−1) sin2 θππ sin 2φππ

)

+
√

2ε(1 + ε) cos Φ
(
r511 sin2 θππ + r500 cos2 θππ

−
√

2 Re (r510) sin 2θππ cosφππ − r51−1 sin2 θππ cos 2φππ

)

+
√

2ε(1 + ε) sin Φ
(√

2 Im (r610) sin 2θππ sinφππ + Im (r61−1) sin2 θππ sin 2φππ

)

+ P`

[ √
1 − ε2

(√
2 Im (r310) sin 2θππ sinφππ + Im (r31−1) sin2 θππ sin 2φππ

)

+
√

2ε(1 − ε) cos Φ
(√

2 Im (r710) sin 2θππ sinφππ + Im (r71−1) sin2 θππ sin 2φππ

)

+
√

2ε(1 − ε) sin Φ
(
r811 sin2 θππ + r800 cos2 θππ −

√
2 Re (r810) sin 2θππ cosφππ

−r81−1 sin2 θππ cos 2φππ

) ] }
, (2.61)

where P` represents the lepton-beam polarization and the SDMEs are denoted by
r04αβ or ra

αβ . The subscripts α, β = −1, 0, 1 indicate the polarization states of the
vector meson and the superscript a indicates the polarization states of the virtual



2.9. SDMES FOR VECTOR-MESON PRODUCTION 31

photon5. The matrix elements in the Wolf-Schilling formalism are discussed in
more detail in appendix B. The angle Φ represents the azimuthal production
angle of the vector meson defined according to [14, 21], which is given by Φ = −φ,
with φ being defined according to the Trento convention [20] (see section 2.4.1).

2.9.2 Vector-meson production from a polarized target

The Diehl formalism provides a general description of vector-meson production
from a polarized target in terms of spin density-matrix elements. The SDMEs
for ρ0 production are related to the transition amplitudes T ασ

mi of the process
γ∗(m) p(i) → p(σ) ρ0(α), where i, σ = ± 1

2 represent the spins and m,α = −1, 0, 1
the helicities of the involved particles specified between the brackets. Within the
Diehl formalism this relation is given by6

ραβ
mn,ij = (NT + εNL)−1

∑

σ

T ασ
mi

(
T βσ

nj

)∗
, (2.62)

where the SDMEs are represented by ραβ
mn,ij , and NT and NL are normalization

factors given by

NT = 1
2

∑

i,α,σ

∣∣T ασ
+i

∣∣2 , NL = 1
2

∑

i,α,σ

∣∣T ασ
0i

∣∣2. (2.63)

The structure of equation 2.62 resembles the structure of the terms σji
nm of the

Diehl-Sapeta formalism [13] given by equation 2.32. In fact, the SDMEs ραβ
mn,ij

and the terms σji
nm are related by

∑

α

ραα
mn,ij ∝ dσji

nm

dt
. (2.64)

In order to obtain the angular distribution function, the spin density-matrix
ραβ

mn,ij is contracted with the spin density-matrix τij of the proton, analogous

to equation 2.34. The spherical harmonics Y1α(θππ, φππ), corresponding to a ρ0

polarization α, are included in this contraction in order to take into account the
decay of the ρ0 meson. The contraction results in the matrix

ρmn =
∑

α,β

∑

ij

τij ρ
αβ
mn,ij Y1α(θππ, φππ)Y ∗

1β(θππ, φππ) , (2.65)

5It is noted that within the Wolf-Schilling formalism [14] the convention used for the notation
of the virtual-photon polarization differs from the convention introduced in section 2.4.3 that is
used within the Diehl-Sapeta [13] and the Diehl [11] formalisms.

6For the SDMEs of the Wolf-Schilling formalism the relation with the transition amplitudes
is given in appendix B.
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where the spherical harmonics are given by

Y1+1 = −
√

3

8π
sin θππ e

iφππ ,

Y10 =

√
3

4π
cos θππ ,

Y1−1 =

√
3

8π
sin θππ e

−iφππ . (2.66)

Following the steps discussed in section 2.5 and [11, 13], the expression for the
leptoproduction cross section can then be obtained by a contraction of the matrix
ρmn with the spin density-matrix of the virtual photon.

The result is conveniently expressed in terms of the combinations

uαβ
mn = 1

2

(
ραβ

mn,++ + ραβ
mn,−−

)
, lαβ

mn = 1
2

(
ραβ

mn,++ − ραβ
mn,−−

)
, (2.67)

respectively, for an unpolarized and a longitudinally polarized target and the com-
binations

sαβ
mn = 1

2

(
ραβ

mn,+− + ραβ
mn,−+

)
, nαβ

mn = 1
2

(
ραβ

mn,+− − ραβ
mn,−+

)
, (2.68)

for a transversely polarized target. The use of these combinations simplifies the
expression for the contraction of the matrices ρ and τ :

∑

ij

τij ρ
αβ
mn,ij = uαβ

mn + SL l
αβ
mn + ST cos(φ− φS) sαβ

mn − ST sin(φ− φS) inαβ
mn,

(2.69)

where SL and ST are, respectively, the longitudinal and the transverse components
of the target polarization with respect to the virtual-photon direction.
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The full expressions of the various contributions to the angular distribution
function in terms of SDMEs can be found in [11]. The angular distribution function
for an unpolarized target and an unpolarized lepton beam is given by

WLL
UU (φ) =

(
u 0 0

++ + εu 0 0
0 0

)
− 2 cosφ

√
ε(1 + ε)Reu 0 0

0+

− cos(2φ) εu 0 0
−+ ,

WLT
UU (φ, φππ) = cos(φ+ φππ)

√
ε(1 + ε)Re

(
u 0+

0+ − u−0
0+

)

− cosφππ Re
(
u 0+

++ − u−0
++ + 2εu 0+

0 0

)

+ cos(2φ+ φππ) εReu 0+
−+

− cos(φ− φππ)
√
ε(1 + ε)Re

(
u 0−

0+ − u+0
0+

)

+ cos(2φ− φππ) εReu+0
−+ ,

WTT
UU (φ, φππ) = 1

2

(
u++

++ + u−−
++ + 2εu++

0 0

)
+ 1

2 cos(2φ+ 2φππ) εu−+
−+

− cosφ
√
ε(1 + ε)Re

(
u++

0+ + u−−
0+

)

+ cos(φ+ 2φππ)
√
ε(1 + ε)Reu−+

0+

− cos(2φππ)Re
(
u−+

++ + εu−+
0 0

)
− cos(2φ) εReu++

−+

+ cos(φ− 2φππ)
√
ε(1 + ε)Reu+−

0+

+ 1
2 cos(2φ− 2φππ) εu+−

−+ , (2.70)

where the superscripts represent the three vector-meson polarization states. The
normalization of the angular distribution WUU is ensured by the relation

(u++
++ + u−−

++ + 2εu++
0 0 ) = 1 − (u 0 0

++ + εu 0 0
0 0 ). (2.71)

The terms appearing in WLL
UU , WLT

UU and WTT
UU are ordered according to the cor-

responding SDMEs. First, the terms including at least one SDME corresponding
to only s-channel helicity-conserving amplitudes are listed. Then, the terms cor-
responding to the interference of helicity-conserving and helicity-changing ampli-
tudes, and after that the terms corresponding to only helicity-changing amplitudes
are listed.
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The angular distribution corresponding to transverse target polarization with
respect to the virtual-photon direction and an unpolarized beam is given by

WLL
UT (φS , φ) =

sin(φ− φS)
[
Im
(
n 0 0

++ + εn 0 0
0 0

)

− 2 cosφ
√
ε(1 + ε)Imn 0 0

0+ − cos(2φ) εImn 0 0
−+

]

+ cos(φ− φS)
[
−2 sinφ

√
ε(1 + ε)Im s 0 0

0+ − sin(2φ) εIm s 0 0
−+

]
,

WLT
UT (φS , φ, φππ) =

sin(φ− φS)
[
cos(φ+ φππ)

√
ε(1 + ε)Im

(
n 0+

0+ − n−0
0+

)

− cosφππ Im
(
n 0+

++ − n−0
++ + 2εn 0+

0 0

)
+ cos(2φ+ φππ) εImn 0+

−+

− cos(φ− φππ)
√
ε(1 + ε)Im

(
n 0−

0+ − n+0
0+

)
+ cos(2φ− φππ) εImn+0

−+

]

+ cos(φ− φS)
[
sin(φ+ φππ)

√
ε(1 + ε)Im

(
s 0+

0+ − s−0
0+

)

− sinφππ Im
(
s 0+
++ − s−0

++ + 2εs 0+
0 0

)
+ sin(2φ+ φππ) εIm s 0+

−+

− sin(φ− φππ)
√
ε(1 + ε)Im

(
s 0−

0+ − s+0
0+

)
+ sin(2φ− φππ) εIm s+0

−+

]
,

WTT
UT (φS , φ, φππ) =

sin(φ− φS)
[

1
2 Im

(
n++

++ + n−−
++ + 2εn++

0 0

)
+ 1

2 cos(2φ+ 2φππ) εImn−+
−+

− cosφ
√
ε(1 + ε)Im

(
n++

0+ + n−−
0+

)
+ cos(φ+ 2φππ)

√
ε(1 + ε)Imn−+

0+

− cos(2φππ) Im
(
n−+

++ + εn−+
0 0

)
− cos(2φ) εImn++

−+

+ cos(φ− 2φππ)
√
ε(1 + ε)Imn+−

0+ + 1
2 cos(2φ− 2φππ) εImn+−

−+

]

+ cos(φ− φS)
[

1
2 sin(2φ+ 2φππ) εIm s−+

−+

− sinφ
√
ε(1 + ε)Im

(
s++

0+ + s−−
0+

)
+ sin(φ+ 2φππ)

√
ε(1 + ε)Im s−+

0+

− sin(2φππ) Im
(
s−+
++ + εs−+

0 0

)
− sin(2φ) εIm s++

−+

+ sin(φ− 2φππ)
√
ε(1 + ε)Im s+−

0+ + 1
2 sin(2φ− 2φππ) εIm s+−

−+

]
.

(2.72)

The terms appearing in WLL
UT , WLT

UT and WTT
UT are ordered similar to the terms

appearing in equation 2.70. However, the terms corresponding to the SDMEs
nαβ

mn containing a sin(φ − φS) dependence are ordered separately from the terms
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corresponding to the SDMEs sαβ
mn containing a cos(φ− φS) dependence.

It has been shown in [12] that at leading twist only transitions from a longitudi-
nally polarized virtual photon to a longitudinally polarized ρ0 meson are allowed.
As a result the only leading-twist SDMEs are n00

00 and u00
00 [11]. As follows from

equation 2.44, in combination with equations 2.70 and 2.72, the corresponding
sin(φ− φS) moment of the transverse target-spin asymmetry can be conveniently
expressed as

A
sin(φ−φS)
UT (γ∗L p → ρL p) =

Imn00
00

u00
00

. (2.73)

GPD-based calculations of this asymmetry are available, which are briefly dis-
cussed in section 2.10.

2.9.3 Existing results for an unpolarized target

Experimental results are available for the SDMEs for an unpolarized target ob-
tained from measurements performed at HERMES during the 1996-2000 periods
with unpolarized hydrogen and deuterium targets [26]. The extracted SDME val-
ues, which are represented in the Wolf-Schilling formalism, are displayed in figure
2.10. Various SDME values are multiplied with a factor 2, 2

√
2, 1/

√
2, or

√
2, in

order to obtain a fair comparison of the combination of amplitudes contributing to
the SDMEs. The SDMEs are ordered into different categories A, B, C, D, and E,
according to the corresponding virtual-photon and vector-meson helicities. Under
the assumption of SCHC, the SDMEs in the categories A and B are allowed to be
non-zero, whereas the SDMEs in the categories C, D and E are predicted to be
equal to zero. The measured values in categories A and B are significantly larger
than the values in the other categories. In the categories D and E, the values are
not significantly different from zero, whereas most of the values in the category
C differ significantly from zero and therefore violate SCHC. However, since the
values in category C are relatively small in comparison to the values in categories
A and B, helicity-conserving amplitudes are clearly favored over helicity-changing
amplitudes. Thus the results support the use of the assumption of SCHC as an
approximation.

The SDME r0400 represents the fractional contribution from longitudinally po-
larized ρ0 mesons to the cross section. Under the assumption of s-channel helicity
conservation (SCHC) r0400 can be used to separate the cross sections for longitu-
dinally and transversely polarized virtual photons. Such an L − T separation is
necessary when GPD-based calculations are compared with measured observables,
since these calculations are valid only if the exchanged virtual photon is longitu-
dinally polarized. One can obtain σL from the total cross section σtotal by using

σL =
R

1 + εR
σtotal, (2.74)
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Figure 2.10: SDMEs obtained from the HERMES data for exclusive ρ0 production
on a hydrogen (filled squares) and a deuterium target (filled circles) [26]. The
dotted, horizontal lines separate the different categories explained in the text.
The shaded areas indicate beam-polarization dependent SDMEs.
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where, under the assumption of SCHC, the cross section ratio R = σL/σT is given
by

R
SCHC

=
r0400

ε(1 − r0400)
. (2.75)

As SCHC was shown to be a reasonable approximation at HERMES kinematics,
equation 2.75 has been used to determine the ratio R from the HERMES results
for r0400 [26]. The results for R as a function of Q2 are shown in figure 2.11 to-
gether with the data from other experiments [27]. The majority of the data are
in mutual agreement despite considerable differences in the center-of-mass energy
W . The results for R obtained at HERMES kinematics are typically of order
unity or less and increase with increasing Q2. This implies that at HERMES the
cross sections σL and σT are comparable in size, with σT being typically larger
than σL, but with the relative contribution from σT decreasing with Q2. Since
the contribution to the cross section from transversely polarized virtual photons
cannot be ignored, observables should be extracted separately for longitudinally
and transversely polarized photons in order to justify a comparison of data with
GPD-based calculations.
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Figure 2.11: The ratio R = σL/σT of the longitudinal over the transverse cross
section obtained under the assumption of SCHC from the HERMES data for
exclusive ρ0 production from a hydrogen (filled squares) and a deuterium target
(open circles) [26]. The results are compared to data from other experiments [27].
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2.10 GPD-model calculations for AUT

As noted in section 2.3, observables for hard exclusive processes can be calculated
in terms of convolutions of GPDs over the variable x̄. These convolutions are given
for the GPDs Hf and Ef by, respectively,

A =
1√
2

∫ 1

−1

dx̄

[
1

ξ − x̄− iε
− 1

ξ + x̄− iε

]

×
[

2

3
Hu(x̄, ξ, t) +

1

3
Hd(x̄, ξ, t) +

3

8

Hg(x̄, ξ, t)

x̄

]
, (2.76)

B =
1√
2

∫ 1

−1

dx̄

[
1

ξ − x̄− iε
− 1

ξ + x̄− iε

]

×
[

2

3
Eu(x̄, ξ, t) +

1

3
Ed(x̄, ξ, t) +

3

8

Eg(x̄, ξ, t)

x̄

]
, (2.77)

where the superscript f = u, d, g labels up-quarks, down-quarks or gluons [13]. It
has been shown [10, 11, 13, 28] that at leading twist, i.e., with both the virtual
photon and the produced meson longitudinally polarized, the sin(φ−φS) moment
of the transverse target-spin asymmetry AUT in exclusive ρ0 production is given
in terms of the convolutions A and B by

A
sin(φ−φS)
UT (γ∗L p → ρL p) =

√
t0 − t

M

√
1 − ξ2 Im

(
B∗A

)

(1 − ξ2) |A|2 −
(
ξ2 + t/(4M2)

)
|B|2 − 2ξ2Re

(
B∗A

) , (2.78)

where −4M2ξ2/(1 − ξ2) = t0 [29]. Since the denominator of equation 2.78 is in
practice dominated by the |A|2 term, the asymmetry is by approximation linearly
dependent on the term B that contains the GPDs Ef . As can be seen from equa-
tion 2.20 the GPD Ef directly contributes to Jf , the total angular momentum of
quarks or gluons inside the proton. Hence, from equation 2.78 it can be concluded
that the corresponding azimuthal moment of the asymmetry is sensitive to J f as
well.

Experimental information on the sin(φ−φS) moment of the asymmetry can be
obtained by extracting the angular distribution function of the cross section (see
section 2.7). One can distinguish the asymmetries for longitudinally and trans-
versely polarized ρ0 mesons by evaluating the angular distribution as a function
of the ρ0 angle θππ (see equation 2.54). Such a ρL − ρT separation is also possi-
ble by determining spin density-matrix elements, which are presented in section
2.9. Under the assumption of SCHC the sin(φ − φS) component of AUT for lon-
gitudinally ρ0 mesons can be compared with GPD model calculations, since this
assumption implies that longitudinally polarized ρ0 mesons are produced by lon-
gitudinally polarized virtual photons. Note that available data of SDMEs for an
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unpolarized target (see section 2.9.1) suggest that SCHC is a reasonable but not
exact approximation.

Various GPD-model calculations are available for the asymmetry AUT [10, 28,
29, 30]. Within the used models the GPDsHu, Hd, andHg have been extrapolated
from the available information on the parton distribution functions and elastic
form factors. These extrapolations make use of equations 2.17-2.19. The nucleon
spin-flip GPDs Eu, Ed, and Eg cannot be extrapolated from the inclusive deep-
inelastic scattering data. Different approaches have been used for modelling these
GPDs.

In [10, 28] the total angular momenta Ju and Jd of up-quarks and down-
quarks enter directly as free parameters in the parameterization of the GPDs Eu

and Ed. Figure 2.12 shows the result of model-dependent calculations [10] for the
x dependence of the transverse target-spin asymmetry at different values of Ju.
Possible contributions to Ju coming from gluons have not been taken into account
in these calculations. It is noted that the convention used for the asymmetry A in
[10] differs from the convention used here. The asymmetry A displayed in figure
2.12 is given by

A = − 2

π
A

sin(φ−φS)
UT . (2.79)

The calculations in [28] do take into account the GPD Hg for gluons. Ev-
idence for a non-zero gluon contribution originates from data on the ratio of φ
and ρ0 electroproduction cross sections, which indicate that there is a substantial
contribution from gluons to the cross section for the ρ0 production at HERMES
kinematics [31, 32]. The contribution from Hg results into an increase of the de-
nominator of 2.78 and therefore causes the magnitude of the sin(φ−φS) component
of AUT to be smaller. The corresponding results for the x dependence and the t
dependence of the asymmetry at different values of Ju are shown in figure 2.13.
Note that, as expected from equation 2.79, the sign in figure 2.13 is mostly oppo-
site to that in figure 2.12. It is concluded that according to the model calculations
shown in figures 2.12 and 2.13 transverse target-spin asymmetries up to 10− 15%
can be expected in the kinematic range of the HERMES experiment.
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Figure 2.12: GPD-model calculations [10] of the transverse target-spin asymmetry
versus x for Jd = 0 and different values of Ju (Ju = 0.1, 0.2, 0.3, 0.4). The quantity
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Chapter 3

The HERMES experiment

The HERMES (HERA MEasurement of Spin) experiment is located at the HERA
(Hadron Electron Ring Anlage) accelerator at the DESY (Deutsches Electronen
SYnchrotron) institute in Hamburg, Germany. The HERMES experiment inves-
tigates the spin structure of the nucleon by measuring the scattering of longitudi-
nally polarized leptons from a polarized fixed internal gas target. In section 3.1
the HERA storage ring, which is used to accelerate the leptons, is described. The
HERMES internal gas target is described in section 3.2. Scattered leptons and
particles produced in the scattering process are detected by the HERMES forward
spectrometer [33, 34], which is the subject of section 3.3. The main components
of the spectrometer are detectors used for tracking, which are described in section
3.4, a magnet, and detectors used for particle identification, which are descibed
in section 3.5. A brief description of the readout system of the detectors and
the so-called data production chain can be found in section 3.6 and section 3.7,
respectively.

3.1 The HERA electron or positron storage ring

The HERA facility accommodates storage rings for a lepton (electron or positron)
beam and a proton beam, both with a circumference of 6.3 km. The lepton
and proton beams are accelerated up to an energy of about 27.6 and 920 GeV,
respectively. Both beams are used by the lepton-proton collider experiments H1
and ZEUS, whereas the HERMES experiment only uses the lepton beam. The
initial current of the lepton beam injected into the storage ring is typically about
30 to 40 mA. After injection the current gradually decreases with a lifetime of
typically 12 hours. The beam is dumped at a beam current of about 10 mA.

For the lepton beam a transverse polarization is built up spontaneously through
the Sokolov-Ternov mechanism [35]. The maximum transverse polarization that
can be obtained through this mechanism is about 60%. Spin rotators upstream
and downstream of the HERMES experiment change the orientation of the beam

43
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polarization from transverse to longitudinal and from longitudinal to transverse,
respectively, so that the HERMES experimental set-up is located in the section
with a longitudinally polarized beam. The longitudinal polarization is either par-
allel or anti-parallel to the lepton beam. Measurements of the lepton-beam polar-
ization are performed with a longitudinal polarimeter (LPOL) [36], in the section
with a longitudinally polarized beam, and with a transverse polarimeter (TPOL)
[37] in the section with a transversely polarized beam. These devices determine
the polarization by measuring the Compton scattering of polarized laser light from
the lepton beam. The polarization measured by the LPOL has an absolute statis-
tical precision of 0.01 for a time interval of typically one minute and a systematic
uncertainty of 1.6%.

sextupole

RFT

sextupoles

storage cell

nozzle

chopper

BRPTGAABS

RFT

detector

magnet coils
storage cell iron yoke

chopper

detector

lepton beam

Figure 3.1: Schematic overview of the setup of the polarized internal gas target,
including a side view of the storage cell in the inlay figure.

3.2 The HERMES internal gas target

The target gas used at HERMES can either be polarized atomic hydrogen, deu-
terium or 3He, or unpolarized hydrogen, deuterium, H2, D2,

3He, 4He, N2, Ne,
Kr, or Xe. The setup for the polarized target is illustrated in figure 3.1. An
atomic beam source (ABS) [38] provides nuclear polarized atoms by using a sys-
tem of sextupole magnets and radio frequency transmitters (RFT). Based on the
Stern-Gerlach principle the sextupole magnets focus specific hyperfine states of
atoms and deflect other hyperfine states. Nuclear polarization is obtained by an
interchange of atomic and nuclear polarization, where the former is achieved by
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populating certain hyperfine states selected by a combination of radio-frequency
transitions.

The target gas is injected into a storage cell, which is located within the vacuum
of the HERA electron beam pipe. The cell is made of 75 µm thick pure aluminum
and has the shape of an open ended tube with a length of 400 mm and an elliptical
cross section of 21 × 8.9 mm2. It is mounted so that the tube surrounds the passing
electron beam. In case of a polarized target, densities of about 1014 nucl/cm2 are
reached inside the storage cell. The target gas diffuses from the storage cell into
the beam pipe, from where it is removed by a high-capacity pumping system, so
that the beam vacuum is maintained.

The direction of the spin of the target nucleons is defined relative to a homo-
geneous magnetic holding field provided by a superconducting solenoid magnet.
For the longitudinally polarized target the magnetic field has a strength of about
350 mT and is directed parallel to the HERA beam direction. For the transversely
polarized target the magnetic field has a strength of about 300 mT and is directed
parallel to the negative y direction of the HERMES coordinate system (see section
3.3). The direction of the target polarization changes about once every 90 seconds
between parallel and anti-parallel with respect to the magnetic field, such that
about equal luminosities are obtained for both polarization states.

Attached to the storage cell is a tube through which a sample of the target
gas is probed by the Target Gas Analyzer (TGA) and the Breit-Rabi Polarimeter
(BRP). The TGA determines the relative molecular and atomic content of the
gas. The BRP [39] determines the polarization of the target by measuring the
relative population of the hyperfine states of the target atoms. In order to select
different combinations of hyperfine states radio frequency transmitters are used
in combination with a sextupole magnet. In the period 2002-2005 an average
luminosity-weighted magnitude of the transverse polarization was measured of
0.72 ± 0.06 (syst.).

3.3 The HERMES spectrometer

A schematic overview of the HERMES spectrometer is presented in figure 3.2. All
components of the spectrometer appear in two halves, an upper and a lower half,
which are installed mirror symmetrically with respect to a horizontal mid-plane.
The gap in between the two spectrometer halves contains the storage rings of both
the lepton beam and the unused proton beam. Because the upper and lower half
are identical, in the following sections the description of the components of the
spectrometer will be given for one half only.

The spectrometer magnet provides a magnetic field causing a predominantly
horizontal deflection of charged particles. It has a deflecting power of 1.3 Tm. An
iron plate, referred to as the septum plate, installed between the two spectrometer
halves shields the lepton and the proton beam from this magnetic field. Field
clamps reduce the fringe fields in the detectors in front of and behind the magnet.
The magnet divides the spectrometer into three regions: the front region, the
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magnet region, and the back region. The front region is upstream and the back
region is downstream with respect to the position of the magnet, and the magnet
region is the region in between. As is described in section 3.4, the HERMES
tracking system determines the momenta of charged particles by determining the
difference between the direction of its trajectory in the front and the back region.

The HERMES coordinate system is a right handed orthogonal coordinate sys-
tem with axes x, y, z and its origin in the center of the target. The z-axis lies
along the direction of the lepton beam, the x-axis points horizontally towards the
outside of the HERA storage rings and the y-axis points upwards. The directions
of particle trajectories are described in the HERMES laboratory frame by the
polar angle θ and the azimuthal angle φ defined with respect to the z-direction.
Alternatively, the angles θx and θy can be used. These angles are also defined with
respect to the z-direction, but specify the directions of the trajectories projected
on the zx-plane and the yz-plane, respectively. The angular acceptance of the
HERMES spectrometer is given in the horizontal direction by |θx| ≤ 170 mrad
and in the vertical direction by 40 ≤ |θy| ≤ 140 mrad.
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Figure 3.2: Schematic overview of the HERMES spectrometer (side view).

3.4 The tracking system

The trajectories (tracks) of particles passing through the spectrometer are recon-
structed by the tracking system [34, 40]. The main purpose of the tracking system
is the determination of the angles under which charged particles are scattered or
produced and the determination of the corresponding charges, momenta, and the
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vertex positions. In addition, the track information is used by the particle iden-
tification (PID) system to identify hits in the PID detectors associated with each
track.

Tracking detectors are installed in the front region, the magnet region and the
back region of the spectrometer. In the front region horizontal-drift chambers are
installed, which are known as the Drift Vertex Chambers (DVC) and the Front
Chambers FC1 and FC2. In the back region two sets of drift chambers are installed,
which are referred to as the Back Chambers BC1, BC2, BC3, and BC4. In the
gap of the spectrometer magnet three proportional wire chambers are installed,
which are called the Magnet Chambers MC1, MC2, and MC3.

The raw information of the hit wire positions and drift times measured by the
drift chambers is converted offline by the HERMES reconstruction code (HRC)
into information about tracks. First, straight partial tracks are reconstructed inde-
pendently for the front and the back regions. Front tracks are reconstructed from
the information obtained with FC1 and FC2. Optionally the information from the
DVC can be used in addition. HRC reconstructs the complete track by matching
associated front and back partial tracks inside the spectrometer magnet with an
algorithm called ‘forced bridging’ [40]. The charge and momentum corresponding
to the track are determined from the degree of bending of the track inside the
magnetic field of the spectrometer magnet with momentum look-up tables. In
case of data taking with a transversely polarized target the track information is
corrected for bending caused by the transversely directed magnetic field in the
target area by the TMC program.

The magnet chambers are used for the reconstruction and momentum deter-
mination of short tracks, which are tracks that are detected by the front chambers
and the magnet chambers, but not by all back chambers. These tracks correspond
to particles having a relatively low momentum, for which the deflection inside
the spectrometer magnetic field is so large that the trajectory escapes the full
acceptance of the back chambers.

In addition to the standard tracking detectors a detector, called the Lambda
Wheels (LW) [41, 42], was installed in 2002 in the front region of the spectrometer.
It consists of two wheels of silicon strip detectors situated at z= 45 cm and z=50
cm inside the vacuum of the lepton storage ring of HERA. The LW can be used to
determine the directions and vertices of tracks. It increases the acceptance in the
front region, for instance, for the decay products of Λ0,Λ+

c and J/Ψ particles. This
is particularly important for the determination of the polarization of Λ0 hyperons
[43]. The track reconstruction for the LW is performed by a program called the
extended tracking code (XTC), which is used in addition to the HRC software.

3.5 The particle identification system

Various components of the HERMES spectrometer are used for particle identifica-
tion (PID): the ring imaging Čerenkov detector (RICH) [44, 45], a transition radi-
ation detector (TRD), a preshower hodoscope, and an electromagnetic calorimeter
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(CALO) [46].

3.5.1 The ring imaging Čerenkov detector

The RICH was installed in 1998. It replaced a threshold Čerenkov detector that
was used during the 1996-1997 data taking periods. Both detectors make use of
the Čerenkov radiation that charged particles emit if they pass through a radiator
material with a velocity higher than the velocity of light in this material. The
RICH contains an array of spherical mirrors, which reflect the produced Čerenkov
radiation onto an array of photomultiplier tubes, which are used to detect the
radiation. By analyzing the observed pattern of photons corresponding to a specific
track, one can reconstruct the Čerenkov angle, which is the angle of the emitted
photon with respect to the direction of the particle’s momentum. For a specific
radiator material and a given momentum, the Čerenkov angle is characteristic
for the particle that emitted the Čerenkov photon. This property is used by
the RICH to identify different types of hadrons. The RICH uses two radiator
materials with a different index of refraction: silica aerogel and C4F10 gas. By
using this combination of these two radiator materials, the RICH provides a clean
separation of pions, kaons, and protons over a large part of the kinematic range of
the HERMES experiment.

3.5.2 The transition radiation detector

The TRD consists of six modules each containing a 6.35 mm thick radiator consist-
ing of polypropylene / polyethylene fibers, followed by a 2.54 cm thick multi-wire
proportional chamber [34]. A relativistic charged particle passing through the ra-
diator emits transition radiation. The transition radiation results from the fact
that the charged particle crosses many subsequent boundaries between media of
different dielectric constants. Since the energy of the emitted photons depends on
the Lorentz factor γ = E/m of the particle, only leptons produce transition radi-
ation with high enough energy to be detected by the proportional chamber. Due
to the transition radiation, leptons deposit on average approximately two times
more energy in the detector than hadrons. The detection of transition radiation
in coincidence with the lepton can be used to discriminate between leptons and
hadrons.

3.5.3 The preshower hodoscope

The preshower hodoscope consists of a 1.1 cm thick wall of lead positioned di-
rectly in front of a row of vertical plastic scintillator paddles. The thickness of
the lead wall corresponds to roughly 2 radiation lengths. Leptons passing through
the lead initiate electromagnetic showers, which deposit their energy in the scin-
tillator, whereas hadrons typically produce only a minimum ionizing signal in the
scintillator.
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3.5.4 The electromagnetic calorimeter

Each half of the electromagnetic calorimeter consists of a 42 × 10 array of lead-
glass blocks, which are viewed from the rear by photomultipliers. Each block covers
an area of 9 × 9 cm2 and is 50 cm long, which corresponds to about 18 radiation
lengths for leptons. The associated electromagnetic showers typically deposit more
than 99% of their energy within a cluster of 3 × 3 blocks. The detector provides
a measurement of the energy of the scattered leptons, and of photons produced
in, e.g., the decay of π0 and η particles. By comparing the deposited energies of
the charged particles with the corresponding momenta determined by the tracking
system one can use the calorimeter to select leptons.

3.5.5 Lepton-hadron separation

The combined outputs of the RICH, the TRD, the preshower hodoscope, and the
CALO can be used to obtain the best possible separation between leptons and
hadrons. For each of these detectors the likelihoods Le and Lh for a particle being
a lepton (e) or a hadron (h), respectively, are determined. From these likelihoods
the PID value is obtained, which is defined as [47]

PID = log10

Le

Lh
− log10 Φ, (3.1)

where Φ is the ratio of the hadron flux over the lepton flux. This ratio can be
estimated in an iterative procedure as is explained in [47]. The summation of PID
values for different detectors results into the combined PID values:

PID2 = PIDCALO + PIDpre, (3.2)

PID3 = PIDCALO + PIDpre + PIDRICH , (3.3)

PID5 = PIDTRD. (3.4)

Requirements on the sum PID3 + PID5 or PID2 + PID5 are typically used to
identify leptons or hadrons.

3.6 Trigger and data acquisition

The readout of detector signals is initiated by the trigger system. The aim of this
system is to distinguish events that are interesting for physics research from back-
ground events. The trigger corresponding to deep-inelastic electron or positron
scattering requires hits in the three scintillator hodoscopes H0, H1 and H2 (see
figure 3.2) and a calorimeter response above threshold in two adjacent columns in
coincidence with the bunch crossing signal of the HERA beam. For the calorimeter
signal it is required that the corresponding energy exceeds an adjustable threshold
set above the minimum ionizing energy deposition of 0.8 GeV. In this way charged
background events can be suppressed. For normal data taking this threshold is
1.4 GeV and for data taking with a high-density target the threshold is increased
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to 3.5 GeV. In addition to the DIS trigger various other triggers are used, such
as triggers sensitive to produced hadrons and triggers for detector monitoring and
calibration.

The actual readout procedure is performed by the data acquisition system
(DAQ). The DAQ digitizes the information recorded by all detector components
via a system of TDCs and ADCs. This raw information is sorted by the DAQ into
a standard data structure for each event and stored in the EPIO (Experimental
Physics Input Output) format. The information is organized into runs, with each
run corresponding to one EPIO file containing about 450 MB of data. Due to the
time needed for readout and event collection not all triggers can be accepted. This
results into a certain dead-time fraction, which is defined as the ratio of rejected
triggers to generated triggers. A double buffering structure is implemented so
that event collection is done in parallel with the readout of the next event, which
reduces the dead time. Under normal data-taking conditions a trigger rate up to
500 triggers per second can be achieved with a dead time below 10%.

3.7 The data production chain

A chain of software packages converts the raw data stored in EPIO files into data
suitable for physics analysis. The HERMES decoder (HDC) program converts the
raw detector signals into basic information, such as hit positions and deposited
energies by using information about the geometry, alignment, and calibration of
detector components. The HDC output for the tracking detectors is converted
into information about tracks by the HERMES reconstruction code (see section
3.4).

The obtained track information is synchronized and merged with the so-called
slow-control data. The slow-control data represent information about the status
and the readings of the polarimeters, the luminosity monitors, and about the status
of the various tracking and PID components. The merged data are organized in
terms of bursts each containing the data that are read out during the time interval
between subsequent read outs of the slow control, which covers about 10 s. These
data are stored in so-called µDST (micro Data Summary Tape) files, which are
made available for physics analysis.



Chapter 4

Data selection

In this chapter it is described how the data set used in the analysis was obtained.
The data-quality criteria applied at the level of runs and bursts are described in
section 4.1. In section 4.2 further selection requirements are described that have
been imposed on the data at the level of tracks and events in order to obtain
exclusive ρ0 production data. The imposed requirements do not exclude all back-
ground events. Estimates of the remaining contributions of background events to
the selected data set are given in section 4.3.

4.1 Data quality selection

Data taken with a transversely-polarized hydrogen target were selected from all
data collected by the HERMES experiment in the years 2002-2005. Information
from the logbook of the data taking was used to exclude runs with a suspicious
data quality or runs taken for the purpose of detector or target studies from the
selection. On the burst level, data-quality criteria were applied by using burst lists.
These lists are based on the information stored in the µDST productions and are
made available for each data production by the HERMES data-quality group [48].
Burst lists contain information about the status of the HERA beam, the target,
the DAQ, the data reconstruction, and the spectrometer components for each
individual burst. This information is represented by patterns of 32 bits. Each
entry in a burst list contains a bit pattern for the top halve and an independent
bit pattern for the bottom half of the spectrometer. Each bit specifies whether
a specific data quality criterion is fulfilled or not for the corresponding burst.
Which of these criteria should be used in the data selection can be specified by
the analyzer. The criteria used for the present analysis are discussed below.

Data taking and data reconstruction The dead time of the data acquisition
was required to be smaller than 50 %. The first burst of each run was discarded and
only bursts were selected that cover a reasonable time period tburst (0 < tburst < 11

51
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s). Bursts were discarded for which problems appeared during data taking or data
reconstruction, e.g., problems with synchronization of slow control and event data,
jumps of the burst or event numbers, or table overflows.

Performance of the target Bursts during which the target polarization changed
its direction are divided into different records corresponding to either a period with
stable target polarization or a period with changing target polarization. The data
quality information is provided by the burst lists for each record separately. Only
records were selected for which the registered polarization direction is either par-
allel or anti-parallel to the transverse magnet holding field of the target. It was
verified that the measured direction of the target polarization was consistent with
the expected direction. In order to ensure that the proper transverse target po-
larization was used in the analysis various requirements were imposed. It was
required that the target was in the same transverse polarization mode as listed in
the logbook. In addition the registered target valve settings were verified to be
correct. Information about the performance and the status of the various target
components was used to select only those records for which the components of the
target were in the correct operational mode.

Performance of the PID detectors, luminosity monitor, and the tracking
detectors The responses of the calorimeter blocks, the scintillator paddles of the
preshower hodoscope and the calorimeter blocks of the luminosity monitor were
continuously observed by the HERMES gain monitoring system [49]. Records for
which at least one dead block, i.e., a block with an incorrect response, was found in
at least one of these detector systems, were discarded. If PID information was not
available for a record, because of initialization problems, or because the calorimeter
threshold was not known, this record was discarded as well. Records for which
high voltage trips appeared in the FCs, BCs or the TRD were also discarded.

In addition to the data quality criteria listed above, a reasonable luminosity
rate (1 ≤ L ≤ 100 Hz) and a reasonable beam current (2 ≤ Ibeam ≤ 50 mA) was
required. For all selected data the same data quality requirements were used. In
table 4.1 the number of selected bursts for the four years of data taking with a
transversely polarized target are listed.

period bursts DIS exclusive ρ0

2002 177952 708817 536
2003 136174 427200 301
2004 437788 2791326 1942
2005 848276 5382373 4347

Table 4.1: Number of selected bursts, DIS events and exclusive ρ0 candidates,
obtained for each data taking period
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4.2 Event Selection

Requirements were imposed at the event level in order to obtain a data set con-
taining an optimized number of exclusive ρ0 production events and a minimized
number of background events. The tracks contained in each event were required
to fulfill geometric requirements, which are described in section 4.2.1. In addition
to these geometric requirements further requirements were imposed on the kine-
matic variables of each event, which are discussed in section 4.2.2. A separate
data set for inclusive deep-inelastic scattering events was selected in order to have
a measure of the luminosity. The selection criteria for that data set are described
in section 4.2.3. The number of events in the selected exclusive ρ0 data set and
the inclusive DIS data set are listed in table 4.1.

4.2.1 Geometry of tracks

All tracks were required to consist of both a front and a back partial track. Re-
quirements were imposed on the x and y coordinates of both partial tracks at the
z positions of several specific detectors of the spectrometer. These requirements
select tracks that pass through the active areas of the tracking and PID detectors
and exclude tracks that pass through the septum plate or through one of the field
clamps of the spectrometer (see section 3.3). Furthermore it was required that
the z-component of the vertex position was within the dimensions of the target
cell for each track. An overview of the applied geometric requirements is given in
table 4.2.

front partial track
equipment position requirement
target cell vertex |z| < 18 cm

front field clamp z = 172 cm |x| < 31 cm
septum plate z = 181 cm |y| > 7 cm

rear field clamp z = 383 cm |y| < 54 cm

back partial track
equipment position requirement

rear field clamp z = 383 cm |x| < 100 cm, |y| < 54 cm
calorimeter z = 738 cm |x| < 175 cm, 30 cm < |y| < 108 cm

Table 4.2: Geometric requirements for front and back partial tracks at different z
positions and for the vertex position for the front track. The first column specifies
the relevant equipment at each of these positions.

4.2.2 Selection of exclusive ρ0 events

Because of their short lifetime the produced ρ0 mesons can only be identified by
measuring their decay products. In the event selection the decay channel ρ0 →



54 CHAPTER 4. DATA SELECTION

π+π− was used, which has a branching ratio very close to 100% [15]. Because the
momentum of the recoiling nucleon is too low to be detected by the HERMES
spectrometer, events were selected with only three tracks: one from the scattered
lepton and two from hadrons with opposite charges. The scattered leptons were
identified by requiring PID3 + PID5 > 1 and by requiring that the charge is equal
to the beam charge. Hadrons were identified by requiring PID3 + PID5 < 1 (see
section 3.5.5). Kinematic requirements were imposed on these events in order to
select exclusive ρ0 production events and to exclude events coming from other
processes. These requirements are listed in table 4.3.

incl. DIS and exclusive ρ0 production

W 2 > 4 GeV2

Q2 > 1 GeV2

y < 0.85

exclusive ρ0 production
0.6 < M2π < 1.0 GeV

M2K > 1.04 GeV
∆E < 0.6 GeV
−t′ < 0.4 GeV2

Table 4.3: Kinematic requirements for the selection of inclusive DIS events and
exclusive ρ0 production events.

For the selection of scattered DIS leptons requirements were imposed on the
kinematic variables Q2, W and y. The photon virtuality Q2 was required to be in
the deep-inelastic region, i.e., larger than 1 GeV2. Resonances were excluded by
selecting only events for which the invariant mass W of the γ∗p system is larger
than 2 GeV. The variable y, which is the fractional energy loss of the lepton, was
required to be smaller than 0.85 in order to minimize radiative effects.

The invariant mass M2π of the two-hadron system was determined under the
assumption that both hadrons are pions. The value of M2π for resonant π+π−

pairs, i.e., pairs produced in the decay ρ0 → π+π−, is expected to be distributed
around the ρ0 mass. For the ρ0(770) meson the documented value of the mass
is equal to 775.5 ± 0.4 MeV and the value of the width of its decay is equal to
149.4±1.0 MeV [15]. The M2π distribution shown in figure 4.1 shows a clear peak
around the ρ0 mass. For the selection of resonant π+π− pairs the requirement
0.6 < M2π < 1.0 GeV has been used. However, without additional requirements
the selected sample would be dominated by hadron pairs that cannot be associated
with ρ0 decay, but instead belong to the large slope of background events below
the ρ0 peak. In order to select exclusively produced ρ0 mesons, the missing mass
MX , which is the rest mass of the recoiling hadronic system, was reconstructed
from the kinematics of the detected particles as

MX =
√

(P + q − v)2, (4.1)
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Figure 4.1: The distribution of the reconstructed invariant 2-hadron mass M2π,
assuming that both both hadrons are pions, after imposing requirements to the
kinematic variables W 2, Q2 and y of the scattered lepton. The vertical lines
indicate the M2π range from which potential ρ0 decay events are selected.

where P , q, and v are the energy-momentum four-vectors of the incoming proton,
the exchanged virtual photon, and the produced ρ0 meson, respectively. In case of
exclusive production MX is equal to the mass M of the recoil proton. Exclusive
events were selected by using the variable (see section 2.4)

∆E =
M2

X −M2

2M

lab
= ν − EV +

t

2M
, (4.2)

which is the missing energy of the reaction. The measured value of ∆E is peaked
around zero for exclusive reactions. This peak is clearly visible in the measured
∆E distribution shown in figure 4.2. In the same figure also the ∆E distribution of
a Monte-Carlo simulation of the non-exclusive background obtained with PYTHIA
[62] is shown. More details on the Monte Carlo simulation are given in section
6.1. The lower tail of this distribution reaches down to the ∆E region around 0
GeV. Up to ∆E ≈ 4.0 GeV the simulated background yield is seen to increase
with increasing ∆E. The requirement ∆E < 0.6 GeV was used to select events
from the exclusive peak and to suppress non-exclusive background events.

The −t′ dependencies of the yield of the selected data and the non-exclusive
background data given by the PYTHIA Monte Carlo are shown in figure 4.3. The
yield for exclusive ρ0 production decreases exponentially for an increasing value
of the variable −t′. According to the Monte Carlo simulation, the fraction of
events due to the non-exclusive background fraction increases with −t′. In order
to restrict the non-exclusive background fraction the requirement −t′ < 0.4 GeV2

was applied.
In order to exclude kaon pairs coming from the decay of a φ meson the invariant
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Figure 4.2: The ∆E distributions of the measured data (histogram) and a Monte-
Carlo simulation of the non-exclusive background obtained with PYTHIA (hatched
area). The kinematic requirements listed in table 4.3 are applied, except for the
upper limit on ∆E, which is indicated in the plot by the dotted vertical line.
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Figure 4.3: The −t′ distributions of the measured data (histogram) and a Monte-
Carlo simulation of the non-exclusive background obtained with PYTHIA (hatched
area). The kinematic requirements listed in table 4.3 are applied, except for the
upper limit on −t′, which is indicated by the dotted vertical line.
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Figure 4.4: The distribution of the reconstructed invariant 2-hadron mass M2K ,
assuming that both hadrons are kaons, after imposing the kinematic requirements
listed in table 4.3, except for the lower and upper limit on M2π, and the lower
limit on M2K , which is indicated by the dotted vertical line.
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Figure 4.5: The distribution of the reconstructed invariant 2-hadron mass M2π,
assuming that both both hadrons are pions, after imposing the kinematic require-
ments listed in table 4.3, except for the lower and upper limit on M2π, which are
indicated by the dotted vertical lines. The dashed histogram represents the same
distribution without the requirement on M2K .
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2-hadron mass M2K was determined under the assumption that both hadrons are
kaons. The M2K distribution is shown in figure 4.4. A clear peak is visible around
the φ(1020) mass, which has a documented value of 1019.460 ± 0.019 MeV [15].
This peak was excluded by the requirement M2K > 1.04 GeV. The effect of this
requirement is illustrated in figure 4.5, which shows the M2π distributions after
applying the afore-mentioned requirements on ∆E and −t′ with (solid histogram)
and without the requirement for M2K (dashed histogram). In both cases the M2π

distribution is dominated by the peak around the ρ0 mass. However, in the latter
case an additional peak appears at lower values of M2π, which is associated with
the decay of the φ meson into two kaons. This additional peak had disappeared
after the requirement for M2K was imposed.

bin 〈Q2〉 (GeV2) 〈−t′〉 (GeV2) 〈x〉
1.0 < Q2 < 7.0 GeV2 1.96 0.133 0.085

0.5 < Q2 < 1.0 GeV2 0.83 0.121 0.033

1.0 < Q2 < 1.4 GeV2 1.19 0.130 0.056
1.4 < Q2 < 2.0 GeV2 1.67 0.132 0.076
2.0 < Q2 < 7.0 GeV2 3.08 0.137 0.124

0.00 < −t′ < 0.05 GeV2 1.91 0.023 0.082
0.05 < −t′ < 0.10 GeV2 1.97 0.074 0.084
0.10 < −t′ < 0.20 GeV2 1.96 0.145 0.086
0.20 < −t′ < 0.40 GeV2 1.99 0.283 0.087

0.02 < x < 0.07 1.34 0.128 0.053
0.07 < x < 0.10 1.83 0.132 0.083
0.10 < x < 0.35 3.14 0.141 0.140

Table 4.4: Average values of Q2, t′ and x for all selected data and for the data
binned in Q2, t′ and x.

The number of selected exclusive ρ0 events for each year of data taking is shown
in table 4.1. The selected data from the combined 2002-2005 periods have been
binned in the kinematical variables Q2, t′ and x. The binnings that were used
and the average values of the kinematic variables for the data binned in these
kinematic variables and for all selected data are listed in table 4.4. In addition,
events were selected for the lower Q2 range 0.5 < Q2 < 1.0 GeV2 with the same
requirements on all other kinematic variables as those listed in table 4.3. However,
as the requirement Q2 > 1.0 GeV2 was used for the total data set and for the t′

and x bins, the information for the lowest Q2 bin is separated from the information
for the other bins by the horizonthal line in table 4.4.
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4.2.3 Selection of inclusive DIS events

At the level of runs, bursts, and tracks the same selection criteria were used for
inclusive DIS events as for the exclusive ρ0 production events. Inclusive DIS events
were selected by requiring exactly one lepton track with a charge equal to the beam
charge. The used kinematic requirements are listed in table 4.3. The number of
selected DIS events for each year of data taking are listed in table 4.1.
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4.3 Background contributions

In this section it is described how the background contribution to the selected
exclusive ρ0 electroproduction data is determined. Background events can be
categorized as non-exclusive and/or non-resonant events. The non-exclusive events
can be further subdivided into non-resonant events of the type

e + p → e + h+ + h− + X, (4.3)

where h+ and h− are positively and negatively charged hadrons and X is the
undetected hadronic system, and resonant events

e + p → e + ρ0 + X, followed by ρ0 → π+ + π−. (4.4)

The contribution from non-exclusive events of both types has been estimated by
means of a PYTHIA Monte Carlo simulation. This is described in more detail in
section 4.3.1.

Exclusive non-resonant events contain a detected hadron pair not originating
from ρ0 decay. These events can be represented by

e + p → e + h+ + h− + p. (4.5)

The background due to these non-resonant hadron pairs can be distinguished from
the resonant pion pairs produced in ρ0 decay, which have a characteristic M2π

distribution around the ρ0 mass. The background contribution from the exclusive
non-resonant events was estimated by fitting the invariant-mass distribution for
exclusive events (see section 4.3.2).

The results of the background studies presented in this chapter are used for the
correction for background in the extraction of asymmetries and spin density-matrix
elements as described in chapter 5.
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4.3.1 Non-exclusive background contribution

The contribution from non-exclusive events was estimated by using a PYTHIA
Monte Carlo simulation, in which exclusive processes (PYTHIA process number
91) were excluded. The simulated events were fully tracked through the HERMES
spectrometer (see section 6.2) and subject to the same requirements on the level
of reconstructed tracks and events as were applied for the exclusive ρ0 selection
(see section 4.2). The main contribution to the thus obtained background events
is coming from semi-inclusive DIS events.

The simulated background was normalized to the data by comparing the yields
of the Monte Carlo and the data in the region 6 < ∆E < 10 GeV, where ∆E
represents the missing energy given by equation 4.2. The measured yields are
compared to the normalized Monte Carlo yields binned in ∆E in figure 4.6 for all
selected data and in figure 4.7 for the data binned in Q2, x and −t′. The Monte
Carlo yields were normalized for each kinematic bin separately. The fraction Fnex

of non-exclusive background events in the exclusive ρ0 data sample was obtained
by comparing the normalized yields in the range ∆E < 0.6 GeV:

Fnex = NMC
NMC

Ndat

∣∣∣
∆E<0.6 GeV

, with NMC =
Ndat

NMC

∣∣∣
6<∆E<10 GeV

, (4.6)

where Ndat and NMC represent the number of selected events from, respectively,
the data and the Monte Carlo for the indicated ∆E ranges.

In table 4.5 the obtained background fractions are listed for the various kine-
matic bins. The background fractions vary from 7 to 18%. The listed systematic
uncertainties represent the uncertainties due to a possible shift in the measured
value of ∆E by 0.1 GeV (see section 7.4).

4.3.2 Exclusive non-resonant background contribution

The contribution from exclusive non-resonant background events has been deter-
mined by fitting the measured M2π distribution of exclusive events with a the-
oretical shape, while allowing for a free background contribution. In order to
determine the experimental yields of exclusive events, the normalized yield of the
non-exclusive Monte Carlo sample was subtracted from the data (see figure 4.8).
Next, the experimental yield of exclusive events was corrected for acceptance effects
by using a Monte Carlo simulation generated by PYTHIA. In order to perform the
acceptance correction, an estimate of the acceptance efficiency εest was obtained
by comparing for each bin in M2π the yield Ngen at the generated level with the
yield N tracked at the tracked level of the simulation,

εest =
N tracked

Ngen
. (4.7)

ForM2π & 0.7 GeV the acceptance efficiency versusM2π was found to be relatively
flat, whereas for M2π . 0.7 GeV it was found to increase with decreasing M2π.
The acceptance corrected yield binned in M2π is shown in figure 4.9 in comparison
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Figure 4.6: The ∆E distribution of the measured data and a Monte Carlo simu-
lation of the non-exclusive background obtained with PYTHIA normalized to the
data in the region 6 < ∆E < 10 GeV. The hatched region corresponds to the
selected data sample.

bin Fnex (%)

1.0 < Q2 < 7.0 GeV2 11.2 ± 0.3 ± 2.2

0.5 < Q2 < 1.0 GeV2 8.0 ± 0.5 ± 1.4
1.0 < Q2 < 1.4 GeV2 9.7 ± 0.5 ± 1.7
1.4 < Q2 < 2.0 GeV2 9.7 ± 0.5 ± 1.9
2.0 < Q2 < 7.0 GeV2 14.3 ± 0.6 ± 3.0

0.02 < x < 0.07 7.7 ± 0.4 ± 1.4
0.07 < x < 0.10 9.3 ± 0.5 ± 1.9
0.10 < x < 0.35 17.9 ± 0.9 ± 3.6

0.00 < −t′ < 0.05 GeV2 7.1 ± 0.4 ± 1.6
0.05 < −t′ < 0.10 GeV2 9.3 ± 0.6 ± 1.8
0.10 < −t′ < 0.20 GeV2 11.3 ± 0.6 ± 2.0
0.20 < −t′ < 0.40 GeV2 16.8 ± 0.8 ± 3.2

Table 4.5: The fractions Fnex of non-exclusive background contributions to the
selected data sample in various kinematic bins. The listed uncertainties are sta-
tistical and systematic, respectively.
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Figure 4.7: The ∆E distributions of the measured data in various kinematic do-
mains compared to the Monte Carlo simulations of the non-exclusive background
obtained with PYTHIA normalized to the data in the region 6 < ∆E < 10 GeV.
The distributions are shown for various kinematic bins in Q2 (top), x (middle)
and −t′ (bottom). The hatched regions correspond to the selected data samples.
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with the yield before acceptance correction. The effects of the acceptance efficiency
on the shape of the distribution are clearly visible in the region M2π . 0.7 GeV.

The acceptance-corrected distribution can now be fit with a function describ-
ing the shape of the M2π-distribution for the exclusive resonant events and the
non-resonant background events. Various parameterizations describing the M2π-
distribution are available. In the present analysis the commonly used Söding
parameterization [25, 50, 51, 52] and Ross-Stodolsky parameterization are used
[53]. Both parameterizations make use of the relativistic Breit-Wigner function
[54, 55], which is discussed first, as a starting point.

The relativistic Breit-Wigner function Originally the shape of the ρ0 res-
onance was described by a relativistic p-wave Breit-Wigner function for a spin-1
particle decaying into two spin-0 particles:

dσ

dM2π
∝ fBW(M2π) =

2

π

M2π Mρ Γ(M2π)
(
M2

ρ −M2
2π

)2
+ (MρΓ(M2π) )

2
, (4.8)

where Γ is given by

Γ(M2π) = Γρ

(
M2

2π − 4M2
π

M2
ρ − 4M2

π

)3/2
Mρ

M2π
(4.9)

with Mρ being the ρ0 mass, Mπ the π mass, and Γρ the intrinsic width of the
resonance. As the description of the data was not always satisfactory, alternative
parameterizations were introduced.

The Söding parameterization In this parameterization a skewing of the M2π

distribution is introduced, which possibly arises from the interference of exclusive
ρ0 production,

e + p → e + ρ0 + p followed by ρ0 → π+ + π− (4.10)

with the exclusive production of two oppositely charged pions,

e + p → e + π+ + π− + p. (4.11)

The skewed distribution is described by the parameterization

dσ

dM2π
∝ cBW fBW(M2π) + fI(M2π) + fnr(M2π), (4.12)

where fnr(M2π) represents the contribution from exclusive non-resonant two-pion
production, which is parameterized as a first order polynomial. The interference
term is described by the function

fI(M2π) = cI
M2

ρ −M2
2π(

M2
ρ −M2

2π

)2
+ (MρΓ(M2π) )

2
, (4.13)
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Figure 4.8: Distribution of the invariant mass M2π for the data in the region
∆E < 0.6 GeV (crosses). Also shown is a distribution representing a Monte Carlo
simulation of non-exclusive background events (histogram), and the distribution
for exclusive events (open symbols) obtained after subtracting the simulated back-
ground from the data.
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Figure 4.9: Distributions of the invariant mass M2π for the data in the region
∆E < 0.6 GeV after subtracting the non-exclusive background simulation. The
distributions are shown before (open circles) and after (filled circles) applying
the acceptance correction. The curve represents a fit using equation 4.14 to the
acceptance corrected data.
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which is based on a phenomenological description by Söding [25, 50, 51, 52]. In
the fit performed with the Söding parameterization given by equation 4.12, the
parameters Mρ, Γρ, cBW, cI, and the two coefficients of the polynomial fnr(M2π)
were free parameters.

The Ross-Stodolsky parameterization An alternative description of skew-
ing, without using an interference term, was introduced within a phenomenological
model by Ross and Stodolsky [53]. Within this model the skewing of the M2π dis-
tribution is described by the parameterization

dσ

dM2π
∝ cBW fBW(M2π)

(
Mρ

M2π

)nskew

+ fnr(M2π), (4.14)

where nskew is referred to as the skewing parameter. In the fit performed with this
parameterization Mρ, Γρ, nskew, cBW, and the two coefficients of the first-order
polynomial fnr(M2π) were free parameters.

Fit results The acceptance-corrected yields for exclusive events, binned in M2π,
were described by using either the Söding parameterization given by equation 4.12
or the Ross-Stodolsky parameterization given by equation 4.14 (see figures 4.10
and 4.11, respectively). The results for Mρ and Γρ from both fits, which are listed
in table 4.6, are sufficiently close to the documented values of, respectively, 775.5 ±
0.4 MeV and 149.4 ± 1.0 MeV [15]. On basis of these fits the fractions of exclusive
non-resonant background events in the exclusive ρ0 selection (i.e., in the range
0.6 < M2π < 1.0 GeV) were determined to be, respectively -0.01 ± 0.044% and
0.02 ± 0.027%. The negative fraction of -0.01 ± 0.044% is statistically consistent
with zero and therefore not considered to be non-physical.

parameterization Mρ (GeV) Γρ (GeV) χ2/n.d.f.
Söding (4.12) 0.771 ± 0.0036 0.139 ± 0.0065 0.972

Ross-Stodolsky (4.14) 0.771 ± 0.0038 0.140 ± 0.0065 0.972

Table 4.6: The results for Mρ and Γρ obtained from fits to the data with the
Söding and Ross-Stodolsky parameterizations.

Background from exclusive production of other mesons The exclusive
production of mesons other than ρ0 mesons could result into contributions to
the M2π distribution, for which corrections need to be applied. At HERMES
kinematics the main contributions of this type are the exclusive production of φ
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Figure 4.10: Distribution of the invariant mass M2π for the data (∆E < 0.6 GeV)
after subtracting the simulated non-exclusive background contribution and correct-
ing for acceptance effects (filled circles). The solid line represents the description
of these data using the Söding parameterization (equation 4.12). The dashed line
represents the non-resonant contribution and the dotted line the interference term
(eq. 4.13).
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Figure 4.11: Distribution of the invariant mass M2π for the data (∆E < 0.6
GeV) after subtracting the simulated non-exclusive background contribution and
correcting for acceptance effects (filled circles). The solid line represents the de-
scription of these data using the Ross-Stodolsky parameterization (equation 4.14)
and the dashed line represents the non-resonant contribution.
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and ω mesons, followed by the decays

φ → K+ +K− (B.R. = 49%), (4.15)

ω → π+ + π− + π0 (B.R. = 89%)

π+ + π− (B.R. = 2%), (4.16)

where B.R. denotes the branching ratio of the decay channel. The contribution of
the channel φ→ K+ +K− is almost entirely excluded by the requirement M2K >
1.04 GeV, which has been applied in the data analysis (see section 4.2). The
decay channel ω → π+ + π− + π0 results in an M2π distribution centered around
M2π = 0.45 GeV, for which only a small fraction satisfies the selection requirement
M2π > 0.6 GeV. Since the π0 remains undetected, only a negligibly small fraction
of these events passes the requirement ∆E < 0.6 GeV. The contribution from the
decay channel ω → π+π− was found to be very small at HERMES kinematics
[25]. For this reason it is neglected here in the determination of the background
contributions.



Chapter 5

Extraction methods

In this chapter a description is given of the procedures used to extract the sin(φ−
φS) moments of the transverse target-spin asymmetry for longitudinal and trans-
verse ρ0 polarization. The procedures used to extract the corresponding spin
density-matrix elements (SDMEs) for an unpolarized and a transversely polar-
ized target are presented as well. The extraction procedures make use of an un-
binned maximum likelihood fit method. Other methods considered are the mo-
ments method and the binned least-χ2 fit, which are briefly described in appendix
C. The unbinned maximum likelihood fit is preferred, because it features a good
performance at low statistics, the possibility to take into account the acceptance
of the HERMES spectrometer in the extraction procedure, and the possibility to
account for the contribution from background processes.

The unbinned maximum likelihood fit method is described in section 5.1. The
used parameterizations of the fit function are described in section 5.2. As the fit
function depends on whether the sin(φ−φS) moments of AUT are extracted or the
SDMEs for an unpolarized or a transversely polarized target, this section contains
a discussion of several parameterizations. The method used to account for the
spectrometer acceptance in the fits is described in section 5.3. The method used
to take the contribution from background processes into account in the extraction
procedure is the subject of section 5.4.

5.1 The unbinned maximum likelihood fit

In the unbinned maximum likelihood method the fit function is a parameteri-
zation of the probability density function (PDF) describing the distribution of
the events of interest. One performs the fit by tuning the fit parameters such
that one maximizes the likelihood that the distribution of events originates from
the corresponding PDF. For a PDF f(x;θ), described in terms of n parameters
θ = (θ1, . . . , θn) as a function of a set of variables x, the likelihood is calculated

69
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as the product

L(θ) =
N∏

i=1

f(xi;θ), (5.1)

where i = 1, 2, . . . N labels the included events. In practice, when performing the
fit, one maximizes lnL(θ), which is given by the sum

lnL(θ) =

N∑

i=1

lnf(xi;θ). (5.2)

The fit result is the set of parameter values θ̂ = (θ̂1, . . . , θ̂n), for which lnL is at
its maximum. One determines the corresponding covariance matrix V from the
matrix of second derivatives of lnL by using

(V̂ −1)km =
∂2lnL

∂θk∂θm

∣∣∣∣
bθ

. (5.3)

The statistical uncertainties of the fit parameters are then obtained from the di-
agonal elements of the covariance matrix as ∆θ̂m = (Vmm)1/2.

5.2 Parameterizations of the used PDFs

In each of the used extraction procedures the measured yields are described by
a PDF that is expressed as the normalized product of a function representing
the cross section and a function ε representing the acceptance efficiency of the
spectrometer. More explicitly, the PDFs are expressed as

N(φ, φS) = N−1 ε(φ, φS)σ0
dψ

dφS
W `(φ, φS). (5.4)

The actually used expressions also include the dependencies on the ρ0 decay angles,
which are suppressed here for simplicity reasons. The factor N represents the
normalization integral of the considered PDF, which is defined in section 5.3. The
factor σ0 represents the cross section integrated over the angles φ, φS , and the
ρ0 decay angles. In the used parameterizations the dependence of the angular
distribution W ` on the kinematic variables x,Q2, t is ignored. For this reason, the
kinematic dependence of σ0 is not taken into account either. As a result, the factor
σ0 cancels due to the normalization. Therefore, no free parameter is assigned for
this factor. The factor dψ/dφS is given by [13]

dψ

dφS
=

cos θγ

1 − sin2θγ sin2φS

. (5.5)

This factor takes into account the fact that the yields are evaluated differentially
in the azimuthal angle φS , rather than the angle ψ. The difference between the
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angles φS and ψ is that the former is defined with respect to the virtual-photon
direction and the latter with respect to the lepton-beam direction (see section
2.4.1).

The last term in equation 5.4 is the angular distribution function W ` given by

W `(φ, φS) = WUU (φ) + PT W
`
UT (φ, φS). (5.6)

Here beam-polarization dependent terms are ignored. The functions WUU and
W `

UT represent, respectively, the angular distribution for an unpolarized target
and the angular distribution corresponding to the transverse target polarization
PT defined with respect to the beam direction. One can parameterize the dis-
tribution WUU either using the Wolf-Schilling [14] or the Diehl [11] formalism.
One can parameterize the distribution W `

UT by using either a combination of the
Wolf-Schilling [14] and the Diehl-Sapeta formalisms or the more recent Diehl [11]
formalism.

In the present analysis the transverse target polarization PT is defined to have
a positive or negative sign if the orientation of the target polarization was directed
parallel or anti-parallel to the negative y-axis of the HERMES coordinate system,
respectively. However, in the theoretical framework of [11, 13] the transverse
target polarization is defined to be positive. In the convention used in the present
analysis a sign change of PT at a fixed value of φS is equivalent to a transformation
φS → φS + π in the theoretical framework. Since the spectrometer acceptance is
independent from the orientation of the target polarization, the use of the data
for both orientations of the polarization allows us to distinguish the transverse
target-spin asymmetry AUT from possible asymmetries of the acceptance under
this transformation (to the extent that this has not been accounted for in the
description of the acceptance efficiency ε).

As mentioned in section 2.8 the angular distribution W `
UT receives an admix-

ture from the longitudinal component SL of the target polarization with respect
to the virtual-photon direction. In section 5.2.1 it is described in more detail
how this admixture affects W `

UT . Different parameterizations of the angular dis-
tribution function are used in the extraction of the sin(φ − φS) moments of the
transverse target-spin asymmetry AUT . The parameterization described in section
5.2.2 uses a combination of the Diehl-Sapeta [13] and the Wolf-Schilling [14] for-
malisms. The alternative parameterization described in section 5.2.3 uses only the
Diehl formalism [11]. The parameterizations used in the extraction of the SDMEs
for an unpolarized and a transversely polarized target are presented in section
5.2.4.

5.2.1 The admixture from longitudinal target polarization

The angular distribution W `
UT for the case of an experimental setup with a trans-

versely polarized target is a mixture of the angular distributions WUT and WUL

(see section 2.8). This mixture is given by

PT W
`
UT (θγ , φ, φS) = ST (θγ , φS)WUT (φ, φS) + SL(θγ , φS)WUL(φ). (5.7)
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The mixing of these distributions is a result of the fact that the angle θγ between
the lepton-beam direction and the virtual-photon direction is non-zero. Hence,
for a definite transverse target polarization PT with respect to the lepton-beam
direction there is a transverse component ST , but also a longitudinal component SL

of the polarization with respect to the virtual-photon direction. These components
are given by (see equation 2.26 in section 2.4.1)

ST (θγ , φS) =
cos θγ√

1 − sin2θγ sin2φS

PT , (5.8)

SL(θγ , φS) =
sin θγ cosφS√

1 − sin2θγ sin2φS

PT . (5.9)

For the selected exclusive ρ0 data the distribution of the angle θγ and the corre-
sponding distributions of SL/PT and ST /PT are shown in figure 5.1 and figure 5.2,
respectively. The deviation of ST from PT is on average only 0.3 % with a variance
of 0.2 %, whereas |SL/PT | is on average 7.2 % with a variance of 2.7 %. Since the
magnitude of SL is relatively small, the contribution from WUT dominates over
the contribution from WUL.

One obtains the explicit expression for the angular distribution W `
UT by in-

serting equations 5.8 and 5.9 into equation 5.7. The resulting expression can be
simplified by dividing it by the overall factor (1 − sin2θγ sin2φS)−1/2, which is
close to unity. The remaining angular distribution W ′

UT can be expressed as (see
equation 2.57)

W ′
UT (θγ , φ, φS) = (1 − sin2θγ sin2φS)1/2W `

UT (θγ , φ, φS)

= cos θγ WUT (φ, φS) + sin θγ cosφS WUL(φ). (5.10)

Equivalently, one can express the asymmetry A′
UT as (see equation 2.58)

A′
UT (θγ , φ, φS) = (1 − sin2θγ sin2φS)1/2A`

UT (θγ , φ, φS)

= cos θγ AUT (φ, φS) + sin θγ cosφS AUL(φ). (5.11)

In the present analysis the angular distribution W ′
UT is effectively evaluated in-

tegrated over the angle θγ . Thus, the contributions to the angular distribution
from WUT and WUL are not disentangled. The admixture from WUL possibly
affects the results for the transverse target-spin asymmetries or the SDMEs for a
transversely polarized target. However, because of the relatively small magnitude
of SL and the relatively small differences between ST and PT , such effects are
expected to be limited. As described in section 7.4, systematic uncertainties have
been assigned to the results for the SDMEs for a transversely polarized target and
the transverse target-spin asymmetries in order to account for the admixture from
longitudinal target polarization.
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Figure 5.1: The distribution of the angle θγ between the directions of the incoming lepton
and the virtual photon in the target rest frame for the selected exclusive ρ0 production data.
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Figure 5.2: The distributions of the ratios SL/PT and ST /PT for the selected exclusive ρ0

production data.
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WUT (φ, φS) WUL(φ, φS) W ′
UT (φ, φS)

All 5 2 6

Table 5.1: Number of independent terms for the angular distributions WUT , WUL

and W ′
UT when evaluated differentially in the angles φ, φS and integrated over the

ρ0 angles φππ, θππ.

WUT (φ, φS , θππ) WUL(φ, φS , θππ) W ′
UT (φ, φS , θππ)

LL 5 2 6
TT 5 2 6
All 10 4 12

Table 5.2: Number of independent terms for the angular distributions WUT , WUL

and W ′
UT when evaluated differentially in the angles φ, φS , θππ and integrated

over the angle φππ. These numbers are given for all terms (All) and for the terms
corresponding to longitudinal (LL) and transverse (TT ) ρ0 polarization.

WUT (φ, φS , φππ, θππ) WUL(φ, φS , φππ, θππ) W ′
UT (φ, φS , φππ, θππ)

LL 5 2 6
LT 10 5 12
TT 15 7 18
All 30 14 36

Table 5.3: Number of independent terms for the angular distributions WUT , WUL

and W ′
UT when evaluated differentially in the angles φ, φS , φππ, θππ. These num-

bers are given for all terms (All) and for the terms corresponding to the ρ0 polar-
izations: longitudinal (LL), interference (LT ), and transverse (TT ).
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5.2.2 Extraction of A
sin(φ−φS)
UT,ρL

using the Diehl-Sapeta and the

Wolf-Schilling formalisms

The extraction procedure initially applied to determine the sin(φ − φS) moment
of AUT uses a combination of the Diehl-Sapeta and the Wolf-Schilling formalisms.
The description of the PDF in this procedure is given by

N(φ, φS) = N−1 ε(φ, φS)
dψ

dφS
σ0 ×

ŴUU

(
1 +AUU (φ) + PTA

`
UT (φ, φS)

)
, (5.12)

where for the sake of simplicity the dependencies on the ρ0 angles are omitted. The
angular distribution function W ` is expressed in terms of the asymmetries AUU

and A`
UT according to equation 2.59, where ŴUU is the angular distribution WUU

integrated over φ. The dependence of A`
UT on the angles φ and φS is expanded in

terms of the six azimuthal moments of A′
UT (see table 5.1). This expansion, which

is done within the Diehl-Sapeta formalism, is given by1

A′
UT (φ, φS) = (1 − sin2θγ sin2φS)1/2 A`

UT (φ, φS)

= A
′ sin(φ−φS)
UT sin(φ− φS) + A

′ sin(φ+φS)
UT sin(φ+ φS) +

A
′ sin(3φ−φS)
UT sin(3φ− φS) + A

′ sin(φS)
UT sin(φS) +

A
′ sin(2φ−φS)
UT sin(2φ− φS) + A

′ sin(2φ+φS)
UT sin(2φ+ φS) . (5.14)

In order to extract the moments of A′
UT for longitudinally and transversely

polarized ρ0 mesons separately, the dependencies of the yields on the ρ0 angle θππ

are included in the description of the PDF. As follows from equation 2.54 this
description is given by

N(φ, φS , θππ) = N−1 ε(φ, φS , θππ)
dψ

dφS
σ0 ×

3

2

[
ŴLL

UU cos2 θππ

(
1 +AUU,ρL

(φ) + PTA
`
UT,ρL

(φ, φS)
)

+

ŴTT
UU sin2 θππ

(
1 +AUU,ρT

(φ) + PTA
`
UT,ρT

(φ, φS)
) ]
, (5.15)

1As is explained in section 5.2.1 the asymmetry A′
UT contains a small admixture from the

asymmetry AUL, which is not distinguished in the parameterization given by equation 5.14.
Therefore, the azimuthal moments of A′

UT appearing in equation 5.14 are defined slightly differ-
ently as compared to those in equation 2.52 as

A
′ ω(φ,φS)
UT = (5.13)

2
R

dφ dφS ω(φ, φS)
q

1 − sin2θγ sin2φS

ˆ

W `(φ, φS) − W `(φ, φS + π)
˜

R

dφ dφS

ˆ

W `(φ, φS) + W `(φ, φS + π)
˜

˛

˛

˛

PT =1, PL=0
.

In the following the azimuthal moments of A′
UT are also referred to as the azimuthal mo-

ments of A`
UT . In that case one should bear in mind the presence of the additional factor

(1 − sin2θγ sin2φS)−1/2 in A`
UT , which is close to unity.
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where the asymmetries for longitudinal and transverse ρ0 polarization are labelled
by ρL and ρT , respectively. The terms ŴLL

UU and ŴTT
UU are given in the Wolf-

Schilling formalism by

ŴLL
UU = r0400, ŴTT

UU = 1 − r0400. (5.16)

The unpolarized asymmetries AUU,ρL
and AUU,ρT

are each parameterized in terms
of their azimuthal moments, analogous to equation 2.49. These moments are given
in terms of SDMEs in the Wolf-Schilling formalism by

A
cos(φ)
UU,ρL

=

√
2 ε (1+ε) r5

00

r04
00

, A
cos(2φ)
UU,ρL

=
−εr100
r0400

, (5.17)

A
cos(φ)
UU,ρT

=
2
√

2 ε (1+ε) r5
11

(1−r04
00

)
, A

cos(2φ)
UU,ρT

=
−2εr111

(1 − r0400)
. (5.18)

The SDMEs are determined from a separate fit described in section 5.2.4. The thus
obtained values for r0400 and the SDMEs appearing in equations 5.17 and 5.18 are
inserted in the description of the PDF as fixed parameters. The ρL−ρT separated
asymmetries A`

UT,ρL
and A`

UT,ρT
are each parameterized in terms of 6 azimuthal

moments analogous to equation 5.14. These, in total, 12 moments (see table 5.2)
are the free parameters of the fit.

5.2.3 Extraction of A
sin(φ−φS)
UT,ρL

using the Diehl formalism

When the more recent Diehl formalism [11] for vector-meson production from a
polarized target became available, it was decided to use this formalism in the ex-
traction of the sin(φ−φS) moment of AUT for longitudinally polarized ρ0 mesons.
In comparison to the Diehl-Sapeta and the Wolf-Schilling formalisms the Diehl for-
malism provides a more complete description of the angular distribution function,
since it includes the dependencies on the angle φππ for a polarized target as well.
By including the dependencies on this angle in the fit function one accounts for the
coupling between the φππ dependencies of the cross section and the acceptance.
In this way possible cross contaminations are avoided (see section 5.3).

In this approach the used PDF is thus a function of all the angles φ, φs, φππ, θππ,
which reads

N(φ, φS , φππ, θππ) = N−1 ε(φ, φs, φππ, θππ)
dψ

dφS
σ0 ×

(
WUU (φ, φππ, θππ) + PT W

`
UT (φ, φS , φππ, θππ)

)
. (5.19)

The unpolarized angular distribution WUU is parameterized in terms of 15 (com-
binations of) SDMEs, which are kept fixed in the fit. The parameterization of
WUU and the determination of the corresponding SDMEs is described in section
5.2.4. The angular distribution W `

UT is decomposed in terms of distributions for
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different polarizations of the ρ0 meson. This decomposition is given by

W ′
UT (φS , φ, φππ, θππ) = (1 − sin2θγ sin2φS)1/2 W `

UT (φS , φ, φππ, θππ)

=
3

4π

[
W ′LL

UT (φS , φ) cos2 θππ +

W ′LT
UT (φS , φ, φππ)

√
2 cos θππ sin θππ +

W ′TT
UT (φS , φ, φππ) sin2 θππ

]
, (5.20)

where the superscripts LL, LT , and TT specify the ρ0 polarization states (see
equations 2.42 and 2.60). In the parameterization of the angular distribution the
contributing distributions W ′LL

UT , W ′LT
UT , W ′TT

UT are expanded as

W ′AB
UT (φ, φS , φππ) =∑

m,n

W
′AB,sin(φ−φS) cos(mφ+nφππ)
UT sin(φ− φS) cos(mφ+ nφππ) +

∑

m,n

W
′AB,cos(φ−φS) sin(mφ+nφππ)
UT cos(φ− φS) sin(mφ+ nφππ), (5.21)

whit A = L, T and B = L, T . One can identify the coefficients

W
′AB,sin(φ−φS) cos(mφ+nφππ)
UT , W

′AB,cos(φ−φS) sin(mφ+nφππ)
UT (5.22)

by comparing equation 5.21 with the explicit expressions for the distributions
W ′AB

UT given in [11]. Note that these distributions receive small admixtures from
the distributions WAB

UL , which are not made explicit in the used parameterization
of the fit function (see section 5.2.1). As follows from table 5.3 the number of in-
dependent terms needed to describe W `

UT is 36. The corresponding 36 parameters
are the free parameters of the fit.

From the extracted fit parameters one obtains the sin(φ−φS) moments of A′
UT

for longitudinally and transversely polarized ρ0 mesons using (see equation 2.53)

A
′ sin(φ−φS)
UT,ρL

=
W

′LL,sin(φ−φS)
UT

Ŵ LL
UU

, A
′ sin(φ−φS)
UT,ρT

=
W

′TT,sin(φ−φS)
UT

Ŵ TT
UU

. (5.23)

The denominators of these expressions can be expressed in terms of the SDMEs
in the Diehl formalism as

ŴLL
UU = u 0 0

++ + εu 0 0
0 0 , ŴTT

UU = 1 − (u 0 0
++ + εu 0 0

0 0 ). (5.24)

The combination (u 0 0
++ +εu 0 0

0 0 ) is determined from the fit to the unpolarized data
described in the next section 5.2.4.
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5.2.4 Extraction of SDMEs

The SDMEs for an unpolarized target The SDMEs corresponding to an
unpolarized target and an unpolarized beam are extracted from the data taken
with a transversely polarized target. Since the luminosities for the opposite orien-
tations of the target polarization are to good approximation equal, the net target
polarization for these data can be taken equal to zero. The PDF used in the
extraction of the unpolarized SDMEs reads

N(φ, φππ, θππ) = N−1 ε(φ, φππ, θππ)σ0WUU (φ, φππ, θππ). (5.25)

As is explained in section 5.3, the inclusion of the normalization factor N is relevant
particularly for a fit with this PDF, since N depends on the parameters describing
the angular distribution WUU .

The distribution WUU is decomposed according to equation 2.60 as

WUU (φ, φππ, θππ) =
3

4π

[
WLL

UU (φ) cos2 θππ +

WLT
UU (φ, φππ)

√
2 cos θππ sin θππ +

WTT
UU (φ, φππ) sin2 θππ

]
. (5.26)

Here the angular distributions WLL
UU , WLT

UU , WTT
UU for the different ρ0 polarization

states are parameterized in terms of (combinations of) the SDMEs uαβ
mn. The

expression used for this parameterization follows directly from equations 2.70 and
2.71. It is noted that SDMEs corresponding to the same ρ0 polarization, but to
different virtual-photon polarizations cannot be separated in the fit procedure.
Therefore, the number of independent parameters describing WUU is 15.

Alternatively, by using equation 2.61, one can parameterize the distribution
WUU in terms of the SDMEs in the Wolf-Schilling formalism [14]. However, in
the present analysis we obtained the SDMEs in the Wolf-Schilling formalism by
converting the fit results for the SDMEs obtained in the Diehl formalism using
equations D.1-D.15. In this conversion the statistical uncertainties were propa-
gated by using the covariance matrix of the fit.

The SDMEs for a transversely polarized target The PDF used in the
extraction of the SDMEs corresponding to a transversely polarized target and an
unpolarized beam is given by

N(φ, φS , φππ, θππ) = N−1 ε(φ, φs, φππ, θππ)
dψ

dφS
σ0 ×

(
WUU (φ, φππ, θππ) + ST WUT (φ, φS , φππ, θππ)

)
. (5.27)

Here the angular distribution WUU is described in terms of the SDMEs extracted
for an unpolarized target, which are fixed input parameters of the fit. As described
in section 5.2.1, the actual yields also receive a relatively small contribution from
the term SLWUL. Because the magnitude of SL is too small to extract the SDMEs
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representing WUL, this contribution is neglected in the used fit function2. A
systematic uncertainty is assigned to account for this contribution (see section
7.4).

The angular distribution WUT is decomposed similarly to equation 5.26 into
terms of distributions for the different ρ0 polarization states:

WUT (φS , φ, φππ, θππ) =
3

4π

[
WLL

UT (φS , φ) cos2 θππ +

WLT
UT (φ, φS , φππ)

√
2 cos θππ sin θππ +

WTT
UT (φ, φS , φππ) sin2 θππ

]
. (5.28)

The angular distributions WLL
UT , WLT

UT , WTT
UT are parameterized in terms of the

SDMEs nαβ
mn and sαβ

mn for a transversely polarized target. The full expressions used
for this parameterization are given by equation 2.72. The number of independent
terms ofWUT is 30 (see table 5.3). The corresponding 30 (combinations of) SDMEs
are the free parameters of the fit.

The sin(φ − φS) moments of AUT From the extracted SDMEs for an un-
polarized target and a transversely polarized target, one can also obtain the
sin(φ−φS) moment of AUT for longitudinally and transversely polarized ρ0 mesons
by using

A
sin(φ−φS)

UT,ρ0
L

=
Im
(
n 0 0

++ + εn 0 0
0 0

)

u 0 0
++ + εu 0 0

0 0

, (5.29)

A
sin(φ−φS)

UT,ρ0
T

=
Im
(
n++

++ + n−−
++ + 2εn++

0 0

)

1 − (u 0 0
++ + εu 0 0

0 0 )
. (5.30)

The resulting azimuthal moments can be compared to the azimuthal moments
obtained from the fit described in section 5.2.3 by using equation 5.23. The main
difference between the two methods is the parameterization of the PDFs. The used
parameterization of the PDF given by equation 5.19 implicitly accounts for the
small admixture from the longitudinal component SL of the target polarization and
includes the corresponding additional 6 terms. Apart from this small difference,
both parameterizations describe the same angular distribution function.

2The SDMEs corresponding to WUL can be extracted from data taken with a longitudinally
polarized target. At present, results on these SDMEs are not available.
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5.3 The role of the acceptance efficiency

Not only the cross section σ, but also the acceptance efficiency ε depends on
the variables x, Q2, t′, φ, φS , φππ, θππ. If the distribution of measured events
is evaluated differentially in all of these variables, the corresponding probability
distribution function can be expressed as the product

f(v, PT ;θ) = N−1(θ) ε(v) σfit(v, PT ;θ), (5.31)

where v denotes the set of variables, PT is the transverse target polarization, and
θ denotes a set of parameters that are used to parameterize the cross section
σfit(v, PT ;θ). The normalization integral N is given by

N (θ) =

∫ (
ε(v) σfit(v, PT ;θ)

)
dv dPT . (5.32)

Ignoring the dependence on the variables x, Q2, t′, equation 5.31 describes the
general structure of the fit functions used in the maximum likelihood method to
describe the yields. From combining equation 5.31 with equation 5.2 it follows
that the logarithm of the likelihood L as a function of the fit parameters is given
by

lnL(θ) =
N∑

i=1

ln ε(vi) +
N∑

i=1

lnσfit(vi, PT,i;θ) − N lnN (θ) (5.33)

with the index i = 1, . . . , N labelling the events. Since the first term,
∑

i ln ε(vi),
in equation 5.33 does not depend on the free parameters of the fit, it does not
affect the position of the maximum of L in the parameter space. Therefore, in
the performance of the fit this term can be discarded, which greatly simplifies the
computation of lnL(θ).

In case the normalization integral of the PDF does not depend on the free
parameters of the fit either, the term N lnN can also be discarded in the compu-
tation of the likelihood. This is the case if the fit includes only free parameters
for the PT -dependent part of the PDF and in addition the used data set has no
net target polarization [56], which is usually true as the data are taken with equal
luminosity for positive and negative target polarization. Furthermore, it should
be noted that the PT -dependent part of the cross section and the acceptance effi-
ciency behave differently under the transformation (φ, φS) → (−φ,−φS). Whereas
the HERMES geometric acceptance is by approximation even, the PT -dependent
part of the cross section is odd under this transformation. From these symmetry
properties it follows that the normalization integral, by approximation, does not
depend on the parameters describing A`

UT or equivalently W `
UT .

For a fit of the polarization-independent part of the cross section, i.e. WUU ,
the normalization integral depends on the free parameters describing WUU and
should therefore not be discarded. The normalization integral in equation 5.32
can be numerically computed by using Monte Carlo integration. Neglecting the
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dependence on the variables x,Q2, t′ this computation is performed by calculating
the sum

N (θ) ∝
NMC∑

j=1

WUU (φj , φππ,j , θππ,j ;θ). (5.34)

Here, one sums over Monte Carlo events, labelled by j = 1, . . . , NMC , that are
within the simulated acceptance of the spectrometer. The simulated Monte Carlo
events are generated isotropically in the angles φ, φS , φππ, θππ.

In practice, equation 5.31 is used in such a way that only the dependence of
the yields on the most sensitive variables is taken into account in the parameter-
ization of the fit function. The most relevant dependencies have to be chosen,
since more fit parameters are needed to give a complete parameterization of the
full dependence than is practically possible. It was decided to include only the
dependence of the yields on the angles φ, φS , φππ, θππ and the target polarization
PT . As the dependence on the remaining set of variables x,Q2, t′ is not accounted
for in such a parameterization, one has effectively integrated the fit function over
these variables. Therefore, the used fit function can be expressed as

f(φ, φS , φππ, θππ, PT ;θ) =

N−1(θ) εint(φ, φS , φππ, θππ) σfit(φ, φS , φππ, θππ, PT ;θ), (5.35)

where εint is the acceptance efficiency integrated over the variables x,Q2, t′. In
this case the used fit function does not give an exact description of the actual
distribution of events, which is given instead by the integral

N(φ, φS , φππ, θππ) =∫
ε(φ, φS , φππ, θππ, x,Q

2, t′)σ(φ, φS , φππ, θππ, x,Q
2, t′, PT ) dx dQ2 dt′. (5.36)

In principle, it is possible to include some of the dependencies of the cross
section on the kinematic variables x,Q2, t′ explicitly in the fit fuction by using for
the shape of these dependencies a theoretically motivated parameterization or a
general parameterization, such as a Taylor expansion in terms of the kinematic
variables [56]. It was decided not to include such theoretical dependencies, but
instead to perform fits with equation 5.35 for separate bins in x,Q2, t′. If the
dependencies of the angular distributions on x,Q2, t′ are flat enough in each bin, it
is justified to ignore these dependencies in the parameterization of the fit function.
Monte Carlo studies have been performed to estimate the effect of integrating the
yields over these kinematic variables (see section 6.7).

Since the measured yields are fit rather than the cross section, one has to take
into account that the angular dependencies of the acceptance efficiency may cause
correlations between terms that are orthogonal in the cross section. In case the
correlated terms are left out of the fit, i.e., implicitly assumed to be zero, the
fit result is possibly affected by the coupling between the ignored terms and the
acceptance efficiency. This effect is referred to as “cross contamination”. In order
to avoid cross contamination the correlated terms are also included in the fit.
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In order to illustrate the effect of cross contamination a simplified case is con-
sidered here, with the yields given by

Ndata(PT , φ, φS) = ε(φ, φS)σ(PT , φ, φS), (5.37)

and the acceptance efficiency and cross section given by, respectively,

ε(φ, φS) ∝ 1 + a cos(2φS) + b cos(φ), (5.38)

σ(PT , φ, φS) ∝ 1 + PT

[
A sin(φ− φS)

+B sin(φ+ φS) + C sin(φS)
]
. (5.39)

If the used fit function only includes a description of the sin(φ − φS) component
of the cross section:

σfit(PT , α) ∝ 1 + PT

(
Afit sinα

)
(5.40)

with α = φ − φS , one finds that the normalization integral (see equation 5.32)
does not play a role in the fit, since it does not depend on the fit parameter Afit.
This implies that also the acceptance efficiency can be discarded in the expression
used for the fit function, which is therefore effectively given by ffit = σfit. Since
the dependencies of the yields on the angle β = φ + φS are not included in this
function, the yields can be described as an integral over β

Ndata(PT , α) =

∫
ε(α, β)σ(PT , α, β) dβ

∝ 1 + PT

(
A +

aB

2
− bC

2

)
sinα, (5.41)

which is obtained from the trigonometric relations

cos(2φS) sin(φ+ φS) =
1

2
( sin(φ+ 3φS) + sin(φ− φS) ) , (5.42)

cos(φ) sin(φS) =
1

2
( sin(φ+ φS) − sin(φ− φS) ) . (5.43)

The sin(φ − φS) moment of the integrated yields in equation 5.41 contains the
contributions aB/2 and −bC/2 coming from the coupling of, respectively, the
sin(φ+ φS) moment and the sin(φS) moment of the cross section with the accep-
tance efficiency (as follows from equations 5.42 and 5.43).

The actual acceptance efficiency may contain more terms that can cause cor-
relations between terms of the angular distribution of the cross section. Cross
contaminations are prevented by including all the terms of the angular distribu-
tion of the cross section in the fit function. In this way, the correlations between
these terms are explicitly taken into account in the extraction procedure. Monte
Carlo studies confirm that if all correlated terms are included in the fit function as
free parameters the extracted values are not affected by such cross contamination
effects (see section 6.4).
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5.4 Background contribution

The selected data set for exclusive ρ0 production contains contributions from back-
ground events such as non-exclusive and non-resonant events. Estimates of the
relative contributions from background events are given in chapter 4.3. Since the
studies discussed in that chapter have shown that the background is dominated
by the contribution from non-exclusive events only this contribution is accounted
for in the extraction of the asymmetries and SDMEs from the data.

The probability density function describing the data is thus given by

Ntot ftot(v) = Nρ fρ(v) + Nbg fbg(v), (5.44)

where v represents the set of variables x, Q2, t′, φ, φS , φππ, θππ, PT , the numbers
N represent the expected number of events, and the functions f represent proba-
bility density functions normalized to unity. The subscripts “tot”, “ρ” and “bg”
denote the total data set, the contribution from exclusive ρ0 production data, and
the non-exclusive background contribution, respectively.

Equation 5.44 is used to take into account the background contribution in
the evaluation of the asymmetries and SDMEs. First the PDF describing the
background contribution is constructed. As both the cross section and the accep-
tance efficiency differ for the various non-exclusive background processes, several
assumptions are made in order to obtain the parameterization of the PDF. For
the PDF describing the background the same parameterization is chosen as the
parameterization of the PDF describing exclusive ρ0 production3. Moreover, the
acceptance efficiency is taken to be identical to the acceptance efficiency for ex-
clusive ρ0 production. Then, the parameters describing the target-polarization
independent part of the background are determined from a fit of the background
PDF to a Monte Carlo sample representing the background. A flat distribution is
assumed for the target-polarization dependent part of the cross section for back-
ground processes. For this reason the parameters describing the target-polarization
dependent part are taken to be equal to zero.

In order to extract the parameters for exclusive ρ0 production from the mea-
sured distribution of events, one can then construct a fit function in the form of
equation 5.44,

ffit
tot(v) = (1 − Fbg) f

fit
ρ (v) + Fbg f

inp
bg (v), (5.45)

where Fbg is the non-exclusive background fraction, which is listed for the various

kinematic bins in table 4.5 in section 4.3. The function f inp
bg represents the PDF

of the background contribution, which is determined by the fixed background
parameters. As the term Fbg f

inp
bg accounts for the background contribution to

ffit
tot, the free parameters of the fit parameterizing the function ffit

ρ are effectively
fitted to the remaining contribution from exclusive ρ0 production.

3It is noted that, although the parameters for exclusive ρ0 production can be interpreted in
terms of physics observables, this is in general not the case for the parameters describing the
background.
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Chapter 6

Monte Carlo simulations

The performance of the various methods used to extract azimuthal moments and
spin density-matrix elements (SDMEs) from the experimental data was studied
by means of Monte Carlo simulations. In this chapter the performed Monte Carlo
studies are presented.

The Monte Carlo simulations were performed with the PYTHIA 6.2 event gen-
erator. The basic sets of simulated events were produced and made available by
the HERMES Monte Carlo group. A brief description of the PYTHIA 6.2 gener-
ator is presented in section 6.1. In the simulations the limited acceptance of the
HERMES spectrometer is taken into account. The simulation of the spectrometer
acceptance and other instrumental effects is the subject of section 6.2. In section
6.3 it is described how the available sets of simulated events were post-processed
so as to implement SDMEs or target-spin asymmetries into the simulation.

It has been verified whether the implemented asymmetries and SDMEs were
correctly reconstructed. In section 6.4 the cross contaminations between different
azimuthal moments of the asymmetry, which are induced by the limited acceptance
of the spectrometer, are discussed. It is shown that these cross contaminations
disappear when the various correlated azimuthal moments of the asymmetry are
accounted for in the extraction procedure. The performances of the unbinned
maximum likelihood fit and the binned χ2 fit methods were studied for the case
where the azimuthal moments of the asymmetry are extracted from data sets with
relatively low statistics. The results of these studies are described in section 6.5.
For low statistics event sets the unbinned maximum likelihood method was found
to be more reliable, which is one of the reasons to use this method in the analyses of
the actual data. The performance of this fit method, when it is applied to extract
the separate azimuthal moments for longitudinally and transversely polarized ρ0

mesons, is presented in section 6.6. In section 6.7 studies are discussed of the
extraction of an asymmetry that varies as a function of kinematic variables. The
studies of the methods used to extract the SDMEs for an unpolarized and for a
transversely polarized target are discussed in section 6.8.

85
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6.1 The PYTHIA 6.2 Monte Carlo generator

The PYTHIA 6.2 Monte Carlo generator [61, 62] was used for the simulation of
high-energy lepton-nucleon scattering events. PYTHIA 6.2 simulates each of the
various subprocesses that may contribute to the interaction of the exchanged vir-
tual photon with the nucleon. By multiplying the corresponding cross section with
the virtual-photon flux factor one obtains the lepton-nucleon cross section. The
simulation includes leading-order descriptions of the DIS process in combination
with phenomenological descriptions of several other possible subprocesses, which
have been obtained by extrapolating descriptions of photoproduction processes to
non-zero values of Q2 [63]. The various descriptions used are each dominant in
a specific region of phase space. In PYTHIA it is ensured that the transitions
between these regions are smooth.

Simulation of virtual-photon nucleon interactions Apart from the lead-
ing order DIS interactions, the remaining photon-nucleon interactions included in
PYTHIA can be classified as direct or resolved photon interactions. In direct inter-
actions the bare, i.e. point-like, photon interacts with a parton inside the proton.
The simulated direct processes are the QCD Compton process γ∗q → qg, and the
boson-gluon fusion process γ∗g → qq. These direct processes can be considered as
next-to-leading-order corrections to the leading-order DIS processes.

In resolved interactions the photon fluctuates into hadronic states that inter-
act with the nucleon [64]. The fluctuations γ∗ → qq of a virtual photon into a
quark-antiquark pair can be characterized by the transverse momentum k⊥ of the
quarks with respect to the virtual-photon direction. If k⊥ is relatively small, the
fluctuations cannot be calculated within perturbative QCD and a vector-meson
dominance (VMD) approach is used. In that case, the virtual photon turns into a
vector meson (ρ0, ω, φ or J/ψ) that scatters either diffractively or non-diffractively
from the nucleon. For larger values of k⊥ the virtual-photon nucleon interaction is
calculated as a so-called anomalous (resolved) interaction, which is the interaction
of a parton from the proton with a parton originating from a fluctuation of the
photon into a qq pair.

The leading-order DIS processes in combination with the direct virtual-photon
interactions are dominant over the resolved virtual-photon interactions for rela-
tively large values of k⊥, i.e. for k⊥ larger than typically 2-4 GeV (depending on
the center-of-mass energy of the interaction between the virtual photon and the
nucleon) and k⊥ > p⊥, where p⊥ is the transverse momentum of the interacting
parton inside the nucleon.

Fragmentation According to the principle of color confinement the creation of
quarks or gluons is followed by the formation of hadrons. This process is called
hadronization or fragmentation. In PYTHIA 6.2 various descriptions of the frag-
mentation process are available. Usually, and also in the simulations used in this
work, the Lund model is used to describe fragmentation processes. Within the
Lund model the QCD interactions between partons are represented by field lines
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called strings. If the invariant mass of the string is large enough, quark-antiquark
pairs can be created and the string breaks up into various parts, of which the
newly created (anti)quarks are the new end points. The break-up of Lund strings
reproduces many of the observed properties of the fragmentation process.

Description of hadronic decays Many of the particles produced in the in-
teractions are unstable and decay. For hadronic decays the branching ratios in
general cannot be calculated from first principles. Instead, PYTHIA describes
hadronic decays by making use of the experimentally observed hadronic decay
modes, branching ratios, and resonance widths. The invariant mass distributions
of the hadrons produced in the decay processes are described by relativistic or
non-relativistic Breit-Wigner shapes (see section 4.3.2).

The use of PYTHIA at HERMES kinematics The default PYTHIA set-
tings are such that an optimal description is given of scattering processes at ener-
gies that are substantially larger than the energy used at HERMES. For the simu-
lation of scattering processes at HERMES kinematics various PYTHIA parameters
were tuned, including for instance the parameters that specify the description of
fragmentation and the relative contributions of the various scattering processes
considered [65, 66]. This tuning process was performed in order to obtain an
optimal description of measured observables such as inclusive and semi-inclusive
differential cross sections, hadron (i.e. pion, kaon and proton) multiplicities [66],
and the relative contributions of exclusive ρ and φ production to the production of
pions and kaons. Moreover, the parameterization of the virtual-photon flux factor
was adjusted so as to include its dependence on the target mass. In the original
parameterization this dependence was not included as it is negligible at high val-
ues of W 2 [65]. In addition, the parameters used in the VMD model simulation
were adjusted in order to give an improved description of the HERMES data for
exclusive vector-meson production [25].

6.2 Simulation of the spectrometer acceptance

In order to enable a proper interpretation of the measured data it is crucial to take
into account effects coming from the limited geometric acceptance of the HERMES
spectrometer. The GEANT program [67], which is part of the CERN Program
Library, was used for the simulation of acceptance effects. With the GEANT pro-
gram geometrical volumes of the spectrometer components were assigned and their
specific material properties were modelled. Moreover, the responses of the detec-
tors to tracks passing through them were simulated. These simulated responses
were used as input of the HRC track reconstruction program, which was intro-
duced in section 3.4. In this way the full procedure applied to the measured data
to reconstruct tracks was simulated. Here, the set of reconstructed Monte Carlo
events is referred to as a ‘tracked’ Monte Carlo simulation. The tracked Monte
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Carlo simulation includes smearing effects due to the limited resolution of the sub-
detectors. The GEANT program also simulates the interactions of particles inside
the spectrometer material, which are responsible for additional smearing effects.

The simulation of partial tracks in the back part of the spectrometer makes
use of the front-track information in combination with momentum look-up ta-
bles, which take into account the bending of tracks in the magnetic field of the
spectrometer magnet. For each reconstructed track the geometric requirements
discussed in section 4.2.1 are imposed in order to determine whether tracks are
generated within the geometric acceptance of the spectrometer.
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Figure 6.1: Normalized event distributions for exclusive ρ0 production as a function of four
kinematic variables. The solid circles represent the measured data, whereas the histograms
represent a fully tracked Monte Carlo simulation obtained by using PYTHIA.
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Figure 6.1 shows the normalized event distributions as a function of the kine-
matic variables Q2, W 2, x, and −t′ for both the measured exclusive ρ0 production
data and the corresponding tracked Monte Carlo events. In both cases the same
geometric requirements and kinematic selection requirements (see section 4.2) were
imposed. Note that for each panel in figure 6.1 no requirements were imposed on
the running variable. The distributions of Monte Carlo distributions are in general
in good agreement with the measured distributions. The relatively good agreement
between the kinematic dependencies of the data and the Monte Carlo validates
the use of the Monte Carlo simulation for studies of effects such as those due to
the limited geometric acceptance of the HERMES spectrometer.
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Figure 6.2: Normalized angular distributions of tracked Monte Carlo events gener-
ated with PYTHIA. At the generation level the events are distributed isotropically
in the angles φS , φ, θππ and φππ.
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In order to study the effect of the limited acceptance of the HERMES spec-
trometer on the measured angular distributions, a set of Monte Carlo events was
generated isotropically in the angles φS , φ, θππ, and φππ (see section 2.4). It should
be noted that the angle φS is defined here with respect to the negative y-axis of
the HERMES coordinate system. The yields of the corresponding tracked events
provide an estimate of the acceptance efficiency. The angular distributions of the
tracked events are shown in figure 6.2. the distributions of tracked events were
found to have strongly varying angular dependencies as a result of the geometric
dependence of the spectrometer acceptance.

One can conveniently describe the acceptance of the spectrometer for single
tracks by using the azimuthal and polar angles of the HERMES coordinate sys-
tem (see section 3.3). The angle φS is, for instance, directly related to the az-
imuthal angle φe of the scattered lepton in the HERMES coordinate system1 by
φe ≈ −(φS − π). From this relation it follows directly that the gaps in the φS

distribution around φS = ±π/2, illustrated in the upper left panel of figure 6.2, are
a consequence of the gaps in the geometric acceptance for the scattered lepton due
to the inactive volume in between the upper and lower halves of the spectrometer.

The ρ0 production angle φ and the decay angles θππ and φππ depend on the
directions and the momenta of the tracks of the scattered lepton and the two
pions resulting from the ρ0 decay. Hence, the dependence of the acceptance on
these angles is related to the configuration of these three tracks. The acceptance
efficiency as a function of φ, shown in figure 6.2, has its maxima around φ = ±π and
its minimum around φ = 0. This behavior of the acceptance is due to a 3-track
configuration, in which both decay pions appear together in the spectrometer
half opposite to the one, in which the scattered lepton is observed. For such a
configuration the overall efficiency is higher than for a configuration, in which one
of the decay pions appears in the same halve as the scattered lepton and one decay
pion in the opposite halve. For the latter configuration the acceptance efficiency
is relatively flat as a function of φ. Note that configurations with all three tracks
in the same spectrometer half are kinematically strongly suppressed.

The lower-left plot in figure 6.2 shows the dependence of the acceptance on
cos θππ. The acceptance strongly decreases between | cos θππ| ≈ 0.8 and | cos θππ| =
1.0, where in the ρ0-rest frame the directions of the decay pions are parallel
and anti-parallel to the direction of the recoiling nucleon. In the region 0.8 .

| cos θππ| ≤ 1 the ‘anti-parallel’ pion has a relatively high momentum (typically
between 5 and 22 GeV), whereas the ‘parallel’ pion has a relatively low momen-
tum (typically below 3 GeV) in the laboratory frame. As the track of the higher-
momentum pion in the HERMES coordinate system has on average a smaller polar
angle with respect to the z-axis, the chance is larger that this track passes through
the gap in between the two spectrometer halves, and thus outside the geometrical
acceptance.

The lower-right plot in figure 6.2 shows the dependence of the acceptance on

1The angle φe slightly deviates from the angle −(φS−π) due to the non-zero angle θγ between
the virtual-photon momentum and the z-direction.
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the angle φ + φππ. The acceptance efficiency is observed to have its maxima
around φ+ φππ = ±π/2, where the ρ0 decay plane is on average perpendicular to
the lepton scattering plane, and its minima around φ + φππ = 0,±π, where the
angle between the decay plane and the lepton scattering plane is on average equal
to zero.

For the evaluation of the acceptance dependence on the angle φ− φS also the
values of other angles, such as φ+φS and φππ have to be taken into account. The
reason for this is the fact that the acceptance induces strong correlations between
these angles. The two-dimensional distributions of the Monte Carlo events inside
the acceptance of the spectrometer, shown in figure 6.3, illustrate the simultaneous
dependence of the acceptance on the angles φ−φS , φ+φS and φππ. In the upper
plot of figure 6.3 the gaps in the acceptance are once more visible around the
diagonals described by (φ−φS) = (φ+φS)±π, which correspond to the previously
discussed gaps around φS = ±π/2, shown in the upper left panel of figure 6.2.

The lower plot of figure 6.3 shows a strong increase of the acceptance in the re-
gions around the diagonals described by (φ−φS) = nπ/2−φππ, with n = −1, 1, 3, 5.
In these regions the detected events predominantly have the configuration with
both decay pions in the other half of the spectrometer as the scattered lepton.
In the γ∗p center-of-mass frame the angles φ − φS and φππ can be interpreted
as, respectively, the azimuthal angle between the hadron production plane and
the negative y-axis of the HERMES coordinate system around the virtual-photon
direction, and the azimuthal angle between the decay plane and the hadron pro-
duction plane around the ρ0-meson direction (see section 2.4). Although these
angles are defined around different axes, the dominant correlations between these
angles indicate that on average an optimal geometric acceptance is obtained if the
decay plane is perpendicular to the y-axis of the HERMES coordinate system. This
situation corresponds to a preferred orientation of the decay plane perpendicular
to the yz plane in the HERMES laboratory frame.

6.3 Implementation of SDMEs and asymmetries

The method used to implement SDMEs for an unpolarized target in Monte Carlo
simulations is the so-called accept-reject method. As a starting point of the
method, a set of events generated isotropically in the angles φS , φ, θππ, and
φππ, but reconstructed within the simulated HERMES acceptance is used. In the
method, for each individual event a random number ri between 0 and 3/2π is gen-
erated, where i labels the events. The random number is used to decide whether
the event is included in the final selection of events or not. An event is included if
the condition

W imp
UU (φi, φππ,i, θππ,i) > ri (6.1)

is satisfied or excluded otherwise. In equation 6.1, W imp
UU represents the angular

distribution function corresponding to the values of the SDMEs for an unpolarized
target to be implemented. Here W imp

UU satisfies the same lower and upper bound
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Figure 6.3: Two-dimensional angular distributions of tracked Monte Carlo events
for exclusive ρ0 production simulated with PYTHIA. At the generation level the
events are distributed isotropically in the angles φS , φ, θππ and φππ.
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as the random number ri. The set of events satisfying the condition in equation
6.1 are distributed according to the distribution function W imp

UU . As only events in
the HERMES acceptance are used, the additional acceptance effects are included
in this selected set as well.

The method used to implement the SDMEs for a transversely polarized target
in Monte Carlo simulations is similar to the accept-reject method. However, in
this implementation method events are not accepted or rejected, i.e., included or
excluded, but positive or negative target polarizations are assigned to all events
instead. The simulated events used correspond to a known unpolarized angular
distribution WUU , and are reconstructed within the simulated HERMES accep-
tance. For each event, a random number rj between 0 and 1 is generated, where j
labels the events. The random number is used to attribute a sign to the transverse
target polarization ST . To each event a positive target polarization is assigned if
the condition

1

2

(
1 + |ST |

W imp
UT (φj , φS,j , cos θππ,j , φππ,j)

WUU (φj , φππ,j , θππ,j)

)
> rj (6.2)

is satisfied and a negative target polarization is assigned otherwise. The angular
distribution function W imp

UT in equation 6.2 corresponds to the implemented values
of SDMEs for a polarized target.

The method used to implement a transverse target-spin asymmetry A`,imp
UT in

Monte Carlo simulations is similar. In this method, a set of events generated
isotropically in the angles φ and φS , but reconstructed within the acceptance is
used. Again, for each event a random number rk between 0 and 1 is generated,
where k labels the events. A positive target polarization PT is assigned in case

1

2

(
1 + |PT |A`,imp

UT (φk, φS,k)
)
> rk, (6.3)

and a negative target polarization is assigned otherwise.

6.4 Cross contamination of azimuthal moments

A Fourier analysis of the simulated acceptance shows that it contains a large
cos(2φS) component, which is directly visible in the upper-left plot of figure 6.2.
From the relation

sin(φ+ φS) cos(2φS) =
1

2
(sin(φ+ 3φS) + sin(φ− φS)) (6.4)

it follows that due to the cos(2φS) component of the acceptance a sin(φ + φS)
component of the cross section contributes to the sin(φ + 3φS) and sin(φ − φS)
components of the yields. As a result, the extracted sin(φ − φS) moment of the
asymmetry A`

UT is correlated to the value of the sin(φ+φS) moment of the asym-
metry. It is concluded that due to the geometric acceptance of the spectrometer
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Figure 6.4: The values of the sin(φ − φS) moment of A`
UT extracted from Monte

Carlo simulations for various input values of the sin(φ− φS) and sin(φ+ φS) mo-
ments of the asymmetry. The input values of the sin(φ+ φS) moment can be read
from the horizontal axis, whereas the input values for the sin(φ− φS) moment are
given by the horizontal dashed lines. The used extraction methods are explained in
the text. The upper panel shows the values obtained with one-dimensional extrac-
tion methods. The lower panel shows the values obtained with two-dimensional
fits that contain both the sin(φ− φS) moment and the sin(φ+ φS) moment as free
parameters.
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each Fourier component of the cross section may contribute to various Fourier com-
ponents of the observed yields. If the used extraction method does not account
for such correlations between the different azimuthal moments of the asymmetry,
the extracted azimuthal moments may be affected by cross contaminations, as was
discussed in section 5.3.

A Monte Carlo simulation was used to study to what extent the extracted
sin(φ−φS) moment of AUT is affected by possible cross contaminations from other
azimuthal moments. In figure 6.4 the extracted values of the sin(φ− φS) moment
are plotted for varying input values of the sin(φ−φS) and the sin(φ+φS) moments
of the asymmetry. The input values of the sin(φ − φS) moment are indicated by
the horizontal dashed lines, whereas the input values of the sin(φ + φS) moment
can be read from the horizontal axis. Three different methods are used to extract
the azimuthal moment: the least-χ2 fit (open triangles), the unbinned maximum
likelihood fit (filled circles) and the moments method (open squares).

The upper panel of figure 6.4 shows the values obtained if only the sin(φ−φS)
dependence of the asymmetry is evaluated in the extraction procedures. For each
of the one-dimensional extraction procedures the obtained value of the sin(φ−φS)
moment was found to deviate substantially from its input value unless the input
value of the sin(φ+ φS) moment was close to zero. For all methods a linear
dependence was observed between the extracted sin(φ− φS) moment and the input
value of the sin(φ+ φS) moment. The observed dependencies correspond to a cross
contamination from the sin(φ+ φS) moment of about 60% of the latter. This cross
contamination was not observed in similar studies performed with the least-χ2 and
unbinned maximum likelihood fit methods applied in two dimensions. In this case
the fit procedures included both the sin(φ− φS) and sin(φ+ φS) moments of the
asymmetry as free parameters. The sin(φ−φS) moments obtained in these studies
are shown in the lower panel of figure 6.4.

In all studies performed the sin(φ− φS) moment was found to be more strongly
correlated with the sin(φ+ φS) moment than with any other azimuthal moments of
AUT . The cross contaminations originating from the other moments of A`

UT were
found to be at most around 10% of the latter. Cross contaminations associated
with the cos(φ−φS), cosφS , and cos(2φ−φS) moments of ALT , which could arise
from of a non-zero net beam polarization, were not observed within the precision
of the present studies.

6.5 Performance at low statistics

In section 6.4 it has been shown that in order to extract the sin(φ− φS) moment
of the asymmetry AUT from experimental data, the correlated moments of the
asymmetry need to be accounted for the extraction procedure. One can account
for the correlated azimuthal moments by using a multi-dimensional fit method
that includes these additional moments as free fit parameters.

The performances of the multi-dimensional binned least-χ2 fit and unbinned
maximum likelihood fit methods were compared on Monte Carlo simulations con-
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taining a varying number of events [68]. In these studies it was found that the
unbinned maximum likelihood fit reproduces the value of the asymmetry imple-
mented into the Monte Carlo with the correct statistical uncertainty, whereas it
was found that the results obtained with a conventional least-χ2 fit method can
be significantly biased for data sets with relatively low statistics.

A possible reason for the observed bias is that in the binned least-χ2 fit method
the expected value of the asymmetry in each bin is assumed to be given by a Gaus-
sian probability-distribution function. This is an approximation that is reliable
only if the number of events per bin is large enough. Another reason is that for
low-statistics data sets the uncertainties on the yields in each bin, estimated by
∆N =

√
N , are biased. In [69] it is shown that this bias affects the extracted

azimuthal moments of the asymmetry. Hence, it was decided to proceed with the
unbinned maximum likelihood fit method

6.6 ρL − ρT Separation of azimuthal moments

The main goal of the present data analysis is the extraction of the transverse target-
spin asymmetry for longitudinally polarized ρ0 mesons. Hence, for each azimuthal
moment of the asymmetry a distinction needs to be made between longitudinally
and transversely polarized ρ0 mesons. In order to study the extraction of the
separated azimuthal moments for both ρ0 polarization states, two Monte Carlo
simulations were used. One simulation was performed for longitudinally polarized
ρ0 mesons, whereas the other was performed for transversely polarized ρ0 mesons.
The 6 azimuthal moments of the asymmetry A`

UT in equation 5.14 were randomly
assigned to the simulated sets for both ρ0 polarization states in such a way that
the value of the asymmetries remained within the range [−1, 1]. Next, the events
from both simulated sets were merged.

Since the number of generated ρ0 mesons is equal for both ρ0 polarization
states the value of the SDME r0400 for the merged set of events is equal to 0.5.
Here r0400 represents the relative contribution to the cross section from longitu-
dinally polarized ρ0 mesons. As discussed in section 2.6.1, the cross section for
longitudinally polarized ρ0 mesons is proportional to cos2 θππ, whereas the cross
section for transversely polarized ρ0 mesons is proportional to sin2 θππ. Since the
acceptance of the spectrometer is lower at larger values of | cos θππ|, the number of
selected events is lower for longitudinally polarized ρ0 mesons than for transversely
polarized ρ0 mesons.

The azimuthal moments of the asymmetries for longitudinally and transversely
polarized ρ0 mesons were simultaneously extracted from the simulated events with
the 12 parameter fit described in section 5.2.2. In order to verify whether the input
values were correctly reproduced with a correct estimate of the statistical uncer-
tainty, the procedure of creating event sets and extracting the azimuthal moments
was repeated with randomly varying input values. A good agreement was observed
between the input values and the extracted values for all 12 extracted azimuthal
moments. In order to study to what extent the input values were correctly repro-
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Figure 6.5: Reconstructed values of the sin(φ− φS) and the sin(φ+ φS) moments
of the asymmetry A`

UT versus the corresponding input values of these azimuthal
moments for longitudinally and for transversely polarized ρ0 mesons for various
Monte Carlo simulations. In the simulations the values of the 12 expected az-
imuthal moments were randomly assigned. Each used Monte Carlo simulation is
a combination of a simulation for longitudinally polarized ρ0 mesons and one for
transversely polarized ρ0 mesons.
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Figure 6.6: Pull distributions for the sin(φ − φS) and sin(φ+ φS) moments of
the asymmetry A`

UT for longitudinally and for transversely polarized ρ0 mesons
reconstructed from 300 Monte Carlo simulations, in which the values of the in
total 12 expected azimuthal moments were randomly assigned. Each used Monte
Carlo simulation is a combination of a simulation for longitudinally polarized ρ0

mesons and transversely polarized ρ0 mesons.
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duced, the pull distributions were determined for the azimuthal moments extracted
from 300 different sets of simulated events. These are the distributions of the dif-
ference between the determined and the input value of the moments normalized to
the corresponding statistical uncertainty. The obtained distributions were found
to have a mean value consistent with zero and a variance consistent with unity,
which indicates that the input values were correctly determined, with a reliable
estimate of the statistical uncertainty. Figure 6.5 shows the values of the extracted
sin(φ − φS) and sin(φ + φS) moments of the asymmetries for longitudinally and
transversely polarized ρ0 mesons versus the corresponding input values. The pull
distributions for these azimuthal moments are shown in figures 6.6.

6.7 Kinematic dependencies of the asymmetry

The measured asymmetries typically depend on several kinematic variables. As a
result the asymmetry averaged over a certain kinematic domain may not be equal
to the value of the asymmetry at the average values of the kinematic variables. This
effect may be enhanced due to the fact that the acceptance depends on the same
kinematic variables as well [56]. In the procedure used to determine the azimuthal
moments of the asymmetry the acceptance efficiency is assumed to be described by
a multiplicative function. However, since the dependencies on kinematic variables
are not explicitly taken into account in the fit function, the evaluated yields are
the product of the acceptance efficiency and the cross section integrated over the
kinematic variables, as was discussed in section 5.3. As a result acceptance effects
may not fully cancel in the extraction of the azimuthal moments.

The effect of possible kinematic dependencies of the azimuthal moments on
the corresponding extracted values was studied by means of Monte Carlo simu-
lation. For this purpose kinematic dependent azimuthal moments were assigned
to the simulation. The model used to describe the −t′ and the x dependence of
the sin(φ− φS) moment for longitudinally polarized ρ0 mesons is based on predic-
tions presented in [28], which describe the sin(φ − φS) for the process γ∗L → ρL.
By using the same model, kinematic dependencies were inserted as well for the
sin(φ− φS) moment for transversely polarized ρ0 mesons and for the sin(φ+ φS)
moments for both ρ0 polarization states in order to take into account possible cross
contaminations.

Figure 6.7 compares the input values to the extracted values of the azimuthal
moments for various Q2, x, and −t′ and bins. The simulated set of events contains
60000 events in total. The extracted values of the azimuthal moments are in
statistical agreement with the input values averaged over the corresponding bins.
Also shown in figure 6.7 are the input values of the azimuthal moments at the
average values of the kinematic variables in each bin. The observed differences
between these values and the values of the azimuthal moments averaged over the
kinematic variables are only small fractions of the values of the original azimuthal
moments.
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Figure 6.7: Kinematic dependencies of the sin(φ− φS) moments of A`
UT for lon-

gitudinally and transversely polarized ρ0 mesons. The filled circles represent the
results of a Monte Carlo simulation and a subsequent fit. The dashed lines indicate
the input values at the average values of the kinematic variables in each kinematic
bin. The solid lines indicate the input values averaged over each kinematic bin.
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6.8 SDME extraction

In order to study the performance of the methods used to extract the SDMEs
for an unpolarized or a transversely polarized target from the experimental data,
these SDMEs were implemented in Monte Carlo simulations. The procedures used
to implement these SDMEs are described in section 6.3. The values implemented
for the SDMEs for an unpolarized target were similar to those extracted from
the data. For this case, non-zero values were implemented only for the s-channel
helicity conserving SDMEs and the SDMEs associated with the interference of
a helicity-conserving amplitude and an amplitude for the transition γ∗

T → ρL.
The values assigned to the SDMEs for a transversely polarized target were only
non-zero for the s-channel helicity conserving SDMEs.

The SDMEs were implemented at the generation level, i.e., in the implemen-
tation procedure the generated events were used to evaluate equations 6.1 or 6.2.
The SDME were separately implemented in different sets of simulated events, each
corresponding to a specific bin in Q2, x, or −t′. The used binnings are the same as
those used for the experimental data. For each binning the number of simulated
events summed over all bins was about 7000 (for the binning in Q2, the number of
events in the additional lowest Q2 bin was not included in this sum). This number
is comparable to the number of selected experimental events.

The SDMEs for an unpolarized and a transversely polarized target were ex-
tracted from the simulated events with, respectively, the 15-parameter and the
30-parameter fits, both described in section 5.2.4. These fits were performed at
the tracked level, i.e., the simulated tracked events were used. The procedure of
SDME implementation and reconstruction was repeated 25 times each time with
a different set of simulated events, but with the same SDME values on input. For
each bin the averaged values of the extracted SDMEs and the averaged values
of the corresponding statistical uncertainties were determined. In figures 6.8 and
6.9 the implemented values, the averaged extracted values, and the corresponding
averaged uncertainties for the SDMEs for an unpolarized and a transversely polar-
ized target are shown, respectively, for the various −t′ bins. These values are only
shown for those SDMEs, for which the input value was non-zero. As expected, the
uncertainties of the averaged values (dark-grey band) are about a factor 5 smaller
than the averaged values of the uncertainties (light-grey bands).

The deviations of the averaged reconstructed values of the SDMEs from their
input values were found to be smaller than, or comparable to, the corresponding
statistical uncertainties. This is also the case for the bins in Q2 and x, which
are not shown. The averaged uncertainties were found to be consistent with the
variances of the extracted values with respect to the corresponding input values.
It is concluded that the used SDME-extraction methods obtained reliable values
of the SDMEs for an unpolarized and for a transversely polarized target.
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Figure 6.8: The average values of SDMEs for an unpolarized target that were
extracted from 25 different simulated sets of events for each bin in −t′ (dark
grey bands). The dark-grey bands represent the 1σ-uncertainty intervals for the
average values. The light-grey bands represent the average 1σ-uncertainties on the
individual fit results. The input values of the SDMEs are given by the solid black
lines.
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Figure 6.9: The average values of SDMEs for a polarized target that were extracted
from 25 different simulated sets of events for each bin in −t′ (dark grey bands).
The dark-grey bands represent the 1σ-uncertainty intervals for the average values.
The light-grey bands represent the average 1σ-uncertainties on the individual fit
results. The input values of the SDMEs are given by the solid black lines.
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Chapter 7

Results

In this chapter the determined sin(φ − φs) moments of the transverse target-
spin asymmetry A`

UT for longitudinally and transversely polarized ρ0 mesons are
presented. Furthermore, the results obtained for the corresponding spin density-
matrix elements (SDMEs) for an unpolarized and a transversely polarized target
are discussed. The measurements presented in this chapter have been obtained
from fits to data on exclusive ρ0 electroproduction from a transversely polarized
proton target taken from the HERMES 2002-2005 data productions with the se-
lection requirements described in chapter 4. The results have been obtained for
various bins in the kinematic variables Q2, x and −t′. The binnings used and the
average values of the kinematic variables in each bin were specified in table 4.4.
The fit procedures used to extract the asymmetries and SDMEs were introduced in
chapter 5. Parameterizations of the contribution from non-exclusive background
processes were included in the fit procedure according to the method that was
described in section 5.4.

In section 7.1 the experimentally determined SDMEs for an unpolarized target
are presented. These results are used in the analysis of the asymmetry A`

UT . The
data on the sin(φ−φs) moments of A`

UT for longitudinally and transversely polar-
ized ρ0 mesons are presented in section 7.2. The results for SDMEs corresponding
to transverse target polarization are the subject of section 7.3. The determina-
tion of various systematic uncertainties for the asymmetries and the SDMEs is
discussed in section 7.4. Finally, a comparison of GPD-model calculations with
the results obtained for the sin(φ − φs) moment of A`

UT for longitudinally po-
larized ρ0 mesons is presented in section 7.5. The results are used to obtain a
model-dependent estimate of the quark orbital momentum Lq.

7.1 SDMEs for an unpolarized target

As discussed in chapter 5, the SDMEs for an unpolarized target play an impor-
tant role in the analysis of the transverse target-spin asymmetry when results on

105
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this asymmetry need to be obtained separately for longitudinally and transversely
polarized ρ0 mesons. The unpolarized SDMEs were determined from the data for
a transversely polarized target1. Since the net target polarization of the data set
used is approximately equal to zero, it is justified to ignore the target polariza-
tion in such an analysis. The matrix elements were determined within the Diehl
formalism by a fit to the measured yields. The used fit function is given by equa-
tion 5.25 in combination with equations 5.26, 2.70, and 2.71, which parameterize
the yields for an unpolarized target in terms of 15 independent (combinations of)
SDMEs. The normalization integral of the fit function was computed for each
iteration of the fit according to equation 5.34, so as to account for the acceptance
of the HERMES spectrometer (see section 5.3).

The SDMEs extracted from the full data set integrated over all kinematic
variables are shown in figure 7.1. (The results binned in the kinematic variables
Q2, x and t′ are shown in figures E.1-E.9 in appendix E.) The results are presented
in three categories, each corresponding to a set of SDMEs with a different degree
of s-channel helicity conservation. The results for these categories are plotted in
different panels in figure 7.1, which are separated from each other by the solid,
horizontal lines.

In the upper panel three (combinations containing) s-channel helicity conserv-
ing SDMEs are shown2. These SDMEs differ significantly from zero and are larger
than the SDMEs from the other categories. In the middle panel the eight (com-
binations of) SDMEs are shown, which are associated with the interference be-
tween s-channel helicity conserving and s-channel helicity changing amplitudes.
Within this category the combinations are sorted into three groups that can be
associated with different virtual photon and ρ0 polarizations. The results for the
different groups are separated from each other by the dotted horizontal lines.
The (combinations containing) SDMEs associated with the interference between
helicity-conserving amplitudes and amplitudes for the transition γ∗

T → ρL, devi-
ate significantly from zero, but are almost an order of magnitude smaller than the
combinations containing s-channel helicity conserving SDMEs. The (combinations
containing) SDMEs associated with the interference between s-channel helicity
conserving amplitudes and amplitudes for the transition γ∗L → ρT or γ∗T → ρ−T ,
are not significantly different from zero. The lower panel shows the values for the
four SDMEs associated with the interference of helicity-changing amplitudes only.
These results are consistent with zero within the statistical accuracy.

The obtained results are consistent with the picture that s-channel helicity
conserving transitions are favored over s-channel helicity changing transitions at

1In the preliminary version of the analysis of the transverse target-spin asymmetry [58], un-
polarized SDMEs extracted from the HERMES 1996-2000 data for an unpolarized target were
used [26]. These SDMEs were obtained within the Wolf-Schilling formalism [14]. Currently, ef-
forts are underway to extract unpolarized SDMEs within the Diehl formalism from the combined
1996-2005 data.

2Note that also the combination u++
++ + u−−

++ + 2εu++
0 0 belongs to this category. The result

for this combination of matrix elements can be directly obtained from the relation u++
++ +u−−

++ +

2εu++
0 0 = 1 −

`

u 0 0
++ + εu 0 0

0 0

´

(see equation 2.71).
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Figure 7.1: The SDMEs for an unpolarized target and an unpolarized beam ex-
tracted from 2002-2005 HERMES ρ0-electroproduction data on a transversely po-
larized hydrogen target. The horizontal lines separate the different categories
explained in the text. The full error bars represent the statistical and systematic
uncertainties summed in quadrature, whereas the inner error bars represent the
statistical uncertainties.
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HERMES kinematics. The results indicate that the s-channel helicity changing
amplitudes for γ∗T → ρL transitions deviate from zero, but are small in comparison
to the helicity-conserving transitions. Within the statistical accuracy, the results
do not indicate deviations from zero for the amplitudes for γ∗L → ρT and γ∗T → ρ−T

transitions.

matrix elements pmin

u 0 0
++ + εu 0 0

0 0 0
u 0+

0+ − u−0
0+ 0

u++
++ + u−−

++ + 2εu++
0 0 0

u−+
−+ 0
u 0 0

0+ 1
u 0+

++ − u−0
++ + 2Re εu 0+

0 0 1
u 0+
−+ 1
u++

0+ + u−−
0+ 1

u−+
0+ 1

u 0−
0+ − u+0

0+ 2
u−+

++ + εu−+
0 0 2

u++
−+ 2
u 0 0
−+ 2
u+0
−+ 3
u+−

0+ 3
u+−
−+ 4

Table 7.1: Minimum values pmin of the power that controls the (−t′)1/2 dependence
of the various combinations of spin density-matrix elements in the the limit −t′ → 0
[11].

When discussing the −t′ dependence of SDMEs it is of interest to study the
limit of forward scattering, where the scattering angle Θ between the produced
ρ0 meson and the incoming virtual photon goes to zero. By using the property
Θ ∝ (−t′)1/2 for small Θ, one can derive [11] from a partial wave decomposition
of the transition amplitudes that

uαβ
mn ∼ (−t′)p/2, (7.1)

where p ∈ 0, 1, . . . and p ≥ pmin. Here the value of pmin depends on the transferred
helicity in the transitions γ∗m → ρα and γ∗n → ρβ . The values of pmin for the
various combinations of matrix elements u are listed in table 7.1. In order to
compare the forward-limit behavior predicted by equation 7.1 with the data, the
−t′ dependencies of the various non-zero SDME combinations were fitted with the
function

f [(−t′)1/2, pmin] = a (−t′)pmin/2, (7.2)
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Figure 7.2: Combinations of SDMEs for an unpolarized target and an unpolarized
beam binned in (−t′)1/2. Each combination contains an s-channel helicity con-
serving SDME. The error bars of the data represent the statistical uncertainties.
The solid line represents the result of a fit to the data with a constant function,
i.e., pmin = 0. The dashed line and the shaded 1σ uncertainty band represent the
result of a fit with a first-order polynomial in (−t′)1/2.
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Figure 7.3: Combinations of SDMEs for an unpolarized target and an unpolarized
beam binned in (−t′)1/2. Each combination contains an SDME associated with
the interference between a helicity-conserving and a helicity-changing amplitude
for the transition γ∗T → ρL. The error bars represent the statistical uncertainties.
The solid line represents the result of a fit to the data points with the function
f(−t′) = a (−t′)1/2, i.e., pmin = 0. The dashed line and the shaded 1σ uncertainty
band represent the result of a fit with a first-order polynomial in (−t′)1/2.
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with a being a free parameter and pmin taken from table 7.1. It can thus be studied
whether the predicted dependencies in the limit of forward scattering give a good
description of the data in the selected kinematic range.

This study has only been performed for (the combinations of) SDMEs for
which the observed deviation from zero is statistically significant. The data and
the results of the fits are shown in figures 7.2 and 7.3. The results of the fits with
pmin = 0 shown in figure 7.2 are consistent with the data for the combinations that
contain an s-channel conserving SDME. In figure 7.3, the results of the fits with
pmin = 1 are shown, which are consistent with the data for the combinations each
containing an SDME associated with the interference between helicity-conserving
amplitudes and helicity-changing amplitudes for the transition γ∗

T → ρL.

Alternative fits have been performed with a first-order polynomial in (−t′)1/2

given by g[(−t′)1/2, b, c ] = b + c (−t′)1/2, where b and c are free parameters.
The results of these fits are represented by the dashed lines and the shaded 1σ
uncertainty bands in figures 7.2 and 7.3. The results of the fits to the data shown in
figure 7.2 indicate that for the presently available precision an additional (−t′)1/2

term is not required in the description of the data. For the fits to the data shown
in figure 7.3 the results for the constant term b were found to be consistent with
zero as expected. The results for the (−t′)1/2 term, which is predicted to be
the leading-order term for these matrix elements, deviate significantly from zero
(although for the fit to the Reu 0+

−+ data this deviation is only slightly more than
1σ). It is noted that also higher-order terms may contribute to the data. However,
equation 7.2 with pmin taken from table 7.1 is already sufficient to describe these
data. It is concluded that the predictions contained in table 7.1 and expressed by
equation 7.1 are in agreement with the data.

The results of the present analysis have also been compared with results ob-
tained from an earlier analysis of the HERMES 1996-2000 data [26] in order to
investigate whether the results are consistent. The presently obtained SDMEs
were converted from the Diehl formalism to the Wolf-Schilling formalism (see [11]
and equations D.1-D.15 in appendix D). The covariance matrix was used in the
propagation of the statistical uncertainties. Figure 7.4 shows a comparison of
the 15 unpolarized SDMEs extracted from the 2002-2005 data set as obtained by
the present analysis (filled circles), and the SDMEs obtained previously from the
1996-2000 data set (open circles). In general, the differences between the results
for the SDMEs for the two analyses are smaller than or comparable to the cor-
responding total uncertainties, despite the fact that the extraction methods used
and the experimental setup involved in the two data sets are somewhat different.
Hence, it is concluded that the agreement between the previous and the present
results is satisfactory. Comparisons of the results from both analyses binned in the
kinematic variables Q2, x, and t′ can be found in figures E.10-E.12 in appendix E.
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Figure 7.4: The extracted SDMEs for an unpolarized target and an unpolarized
beam represented within the Wolf-Schilling formalism [14]. The results from the
present analysis obtained from the HERMES 2002-2005 data for a transversely po-
larized hydrogen target (solid circles) are compared with the results from another
analysis [26] based on the HERMES 1996-2000 data for an unpolarized hydrogen
target (open circles). The full error bars represent the total uncertainties obtained
by summing the statistical and systematic uncertainties in quadrature, whereas
the inner error bars represent the statistical uncertainties.
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7.2 The sin(φ − φs) moments of A`
UT,ρL

and A`
UT,ρT

As discussed in section 5.2, the fit functions used to extract the sin(φ−φs) moments
of the asymmetry A`

UT contain a parameterization of the angular distribution func-
tion for the cross section for a transversely polarized target. We have developed
several parameterizations of the angular distribution function by using various the-
oretical formalisms. One of these parameterizations has been obtained by using a
combination of the Diehl-Sapeta [13] and the Wolf-Schilling [14] formalisms. The
results obtained from the fits performed with this parameterization are presented
in section 7.2.1. It is noted that this parameterization was also used in the extrac-
tion of the first preliminary results for the ρL−ρT separated sin(φ−φs) moments,
which are presented in [58, 59, 60]. When the Diehl-SDME formalism [11] for
vector-meson production from a polarized target became available in 2007, it was
decided to also use this formalism in the parameterization of the fit function. The
results obtained from the fits performed with this parameterization are presented
in section 7.2.2.

7.2.1 Extraction within the Diehl-Sapeta and Wolf-Schilling

formalisms

The parameterization of the fit function that we obtained by using a combination
of the Diehl-Sapeta and the Wolf-Schilling formalisms is described in detail in
section 5.2.2. In this parameterization the Diehl-Sapeta formalism has been used
to obtain a description of the asymmetries A`

UT,ρL
and A`

UT,ρT
for, respectively,

longitudinally and transversely polarized ρ0 mesons. The asymmetries are each
described by 6 parameters. All these parameters are left free in the fit procedure,
so that the number of free parameters of the fit is 12. The relative contribution
from longitudinally and transversely ρ0 mesons is given by the separately deter-
mined value of the SDME r0400, which was included in the fit function as a fixed
parameter. In addition, the values of several other SDMEs for an unpolarized
target, which determine the part of the fit function that does not depend on the
target polarization, were included as well. The values used for these SDMEs were
determined from a separate fit to the 2002-2005 data. The results obtained for
these SDMEs were presented in section 7.1.

The results for the sin(φ − φs) moments of A`
UT for longitudinally and trans-

versely polarized ρ0 mesons are shown in figure 7.5 (open squares). In each panel
of figure 7.5 the results are shown for a specific kinematic binning. The left-most
panels represent the asymmetries averaged over all kinematic variables, whereas in
the remaining panels the asymmetries are plotted binned in the kinematic variables
Q2, x, and −t′, respectively. In general, the extracted values of the asymmetries
are statistically consistent with zero.
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7.2.2 Extraction within the Diehl-SDME formalism

The parameterization of the fit function that we obtained by using the the Diehl-
SDME formalism is described in detail in section 5.2.3. The parameterization
consists of a description of the angular distributions WUU and W `

UT . The angular
distribution WUU is described in terms of the 15 independent (combinations of)
SDMEs for an unpolarized beam and an unpolarized target. These parameters
were fixed to the separately determined SDME values presented in section 7.1.
The free parameters of the fit procedure were the 36 coefficients introduced in
section 5.2.3 describing the angular distribution W `

UT .
We determined the sin(φ− φs) moments of A`

UT for longitudinally and trans-
versely polarized ρ0 mesons with the 36-parameter fit by using equation 5.23. The
obtained results are shown for the various kinematic binnings in figure 7.5 (solid
circles). Within the statistical accuracy the results are consistent with zero. It is
noted that the observed deviations of about 2σ from zero in two of the panels are
consistent with our expectation for statistical fluctuations in a set of 3 or 4 data
points.

The major difference between the 36-parameter fit used for these results and
the 12-parameter used for the results from section 7.2.1 is that the 36-parameter
fit also takes into account the φππ dependence of the angular distribution. It has
been verified that if all the φππ-dependent terms are ignored the results obtained
from both fits are identical.

The results from the 36-parameter fit and the 12-parameter fit are compared
in figure 7.5. One can see that the inclusion of the φππ-dependent terms leads
to an increase of the statistical uncertainty of up to about 50%. The differences
between the results of the 36-parameter fit and the results of the 12-parameter
fit are in general smaller than, or comparable to the statistical uncertainty of the
former results. On average the results of the 36-parameter fit are slightly more
positive for both longitudinally and transversely polarized ρ0 mesons. Because
the φππ-dependent terms are included in the fit, cross contamination effects are
avoided, which would be present otherwise due to the coupling of these terms
with the acceptance efficiency (see section 5.3). For this reason the results of the
36-parameter fit are considered to be more complete.

7.3 SDMEs for a transversely polarized target

The present analysis focuses on the determination of the sin (φ− φs) moment of
the transverse target-spin asymmetry AUT for longitudinal virtual-photon and
longitudinal ρ0 polarization. This azimuthal moment of the asymmetry is directly
related to the ratio of the leading-twist SDMEs Imn 0 0

0 0 corresponding to trans-
verse target polarization, and u 0 0

0 0 for an unpolarized target (see equation 2.73).
In this section the results of the SDMEs corresponding to transverse target

polarization with respect to the virtual-photon direction are presented. These
SDMEs are associated with the interference between nucleon-helicity changing and
conserving amplitudes. In combination with the SDMEs for an unpolarized target
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Figure 7.5: The extracted sin(φ−φs) component of A`
UT for longitudinally polar-

ized ρ0 mesons (top panel) and transversely polarized ρ0 mesons (bottom panel).
The results are displayed for both the 12-parameter fit using a combination of
the Diehl-Sapeta [13] and the Wolf-Schilling [14] formalisms (open squares) and
the 36-parameter fit using the Diehl formalism [11] (filled circles). The full error
bars represent the statistical and systematic uncertainties summed in quadrature.
The inner error bars represent the statistical uncertainties. The overall systematic
scale uncertainty of 8.1% is not shown.
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(see section 7.1), which provide information on the dominant nucleon-helicity con-
serving amplitudes, the SDMEs corresponding to transverse target polarization
provide additional information on the nucleon-helicity changing amplitudes

The fit function used to extract the (combinations of) SDMEs corresponding
to transverse target polarization is described in section 5.2.4. The fit function
contains decompositions of the angular distributions WUU and WUT , which are
parameterized in terms of (combinations of) SDMEs as given by the Diehl for-
malism. In the fit procedure the 15 (combinations of) unpolarized SDMEs are
kept fixed at the values presented in section 7.1. The free parameters of the fit
procedure are the 30 (combinations of) SDMEs corresponding to transverse target
polarization.

The results for these 30 (combinations of) SDMEs are shown in figure 7.6. In
figures F.1-F.9 of appendix F the results for these SDMES obtained for various
bins in Q2, x, and t′ are shown. The (combinations of) SDMEs are sorted into the
three categories introduced in relation to figure 7.1 in section 7.1. Each category
represents a different degree of s-channel helicity conservation. Statistically, the
overall results are consistent with the hypothesis that all SDMEs are equal to
zero. However, for some of the (combinations of) SDMEs deviations larger than
1σ are observed. For Im (s 0+

0+ − s−0
0+ ) and Im s−+

−+ deviations of 3.0σ and 1.7σ
are observed, respectively3. A significant deviation from zero (3.3σ) is observed
for the SCHC-violating SDME Imn 0 0

0+ , which contains the interference between
s-channel helicity conserving amplitudes and helicity-changing amplitudes for the
transition γ∗T → ρL. It is noted that, whereas the SDMEs for an unpolarized
target in this category are predicted to be kinematically suppressed with a factor
(−t′)1/2 at small values of −t′ (see section 7.1), this is not the case for the SDMEs
corresponding to transverse target polarization [11].

The sin(φ− φs) moments of the asymmetry AUT for longitudinally and trans-
versely polarized ρ0 mesons can be expressed in terms of combinations of SDMEs
as (see equations 5.29 and 5.30)

A
sin(φ−φs)
UT,ρL

=
Im
(
n 0 0

++ + εn 0 0
0 0

)

u 0 0
++ + εu 0 0

0 0

, (7.3)

A
sin(φ−φs)
UT,ρT

=
Im
(
n++

++ + n−−
++ + 2εn++

0 0

)

1 − (u 0 0
++ + εu 0 0

0 0 )
. (7.4)

The contribution from transversely polarized virtual photons to the azimuthal
moment for longitudinally polarized ρ0 mesons is represented by the (non leading-
twist) SDMEs Imn 0 0

++ and u 0 0
++ . Under the assumption of SCHC these SDMEs are

equal to zero. Although the SDMEs Imn 0 0
++ and u 0 0

++ have not been determined

3It is noted that non-zero values are anticipated for these (combinations of) SDMEs as the
unnatural parity-exchange contribution to nucleon-helicity changing amplitudes for the transi-
tion γ∗T → ρT are predicted to be non-zero at HERMES kinematics [70]. These predictions
are supported by the earlier obtained results for SDMEs for an unpolarized target [26]. The

SDMEs Im s 0+
0+ and Im s−+

−+ are sensitive to these amplitudes since the SDMEs sαβ
mn involve the

interference between natural and unnatural parity exchange amplitudes [11]. As a result these
SDMEs are related to the GPDs H̃ and Ẽ.
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Figure 7.6: The combinations of SDMEs for a transversely polarized target and
an unpolarized beam extracted from 2002-2005 HERMES electroproduction data
on a transversely polarized hydrogen target. The horizontal lines divide the data
into different categories explained in the text. The full error bars represent the
statistical and systematic uncertainties summed in quadrature. The inner error
bars represent the statistical uncertainties. In addition an overall systematic scale
uncertainty is present of 8.1%.
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separately, one can estimate to what extent the assumption of SCHC is valid for
equation 7.3 by using the results obtained for the other SDMEs in combination
with theoretically based assumptions. It is shown in [11] that one can use the ap-
proximations Imn 0 0

++ ≈ −Imn 0 0
−+ and u 0 0

++ ≈ −u 0 0
−+ if unnatural parity exchange

is strongly suppressed (it is discussed in [70] that this is a reasonable assumption
for the amplitudes contributing to these matrix elements). Since the results for
the matrix elements Imn 0 0

−+ and u 0 0
−+ are found to be consistent with zero given

their present uncertainties (see figures 7.6 and 7.1), these results are consistent
with the approximation of SCHC for equation 7.3. A more precise estimate of
possible violations of SCHC could be obtained from an analysis of the amplitudes
contributing to all determined SDMEs. Such an amplitude analysis is presented
in [70] for the SDMEs for an unpolarized target, but has not yet been performed
for the SDMEs for a transversely polarized target.

In order to check the consistency between the results obtained for the SDMEs
and the azimuthal moments of the asymmetry A`

UT presented in section 7.2.2, we
determined the azimuthal moments given by equations 7.3 and 7.4. The obtained
results (open squares) are compared to the results from section 7.2.2 (filled cir-
cles) in figure 7.7. The main difference between the two approaches is that the
admixture from longitudinal target polarization (see section 5.2.1) is taken into
account in the parameterization of the 36 terms of W `

UT used for the results from
section 7.2.2, whereas this admixture is neglected in the 30-parameter SDME fit
used for the present results. The differences between the results of the general
36-parameter fit and the 30-parameter SDME fit are in magnitude smaller than
the statistical uncertainties of both results. In order to verify whether the differ-
ences observed can be attributed to the additional 6 terms in the 36-parameter fit
that correspond to only the admixture from longitudinal target polarization, we
repeated this fit leaving out these terms. The differences between the results of
that fit (open circles in figure 7.5) and the results of the SDME fit are negligible,
from which one can conclude that the differences between the results of the SDME
fit and the results from section 7.2.2 are indeed mainly caused by the inclusion of
these 6 additional terms.
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Figure 7.7: The determined sin(φ−φs) moment of A`
UT for longitudinally polarized

ρ0 mesons (top panel) and transversely polarized ρ0 mesons (bottom panel). The
results from fits using a general parameterization of all 36 expected terms of W `

UT

(filled circles) are compared to those from fits using a general parameterization of
only the 30 terms of WUT (open circles) and a parameterization in terms of the 30
associated combinations of SDMEs (open squares). The error bars represent the
statistical uncertainties.
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7.4 Systematic uncertainties

In the determination of the systematic uncertainties of the extracted asymmetries
and spin density-matrix elements the following contributions are considered: the
uncertainty of the target polarization, the uncertainty of the background fractions,
the angular distributions of background processes, contributions associated with
the non-zero beam polarization Pb, smearing, the admixture of the longitudinal
target polarization SL, and radiative effects. These contributions are discussed
in more detail in the following paragraphs. We obtained the total systematic
uncertainty by adding the various contributions in quadrature. Some of the con-
tributions were found to be negligible and were therefore not included in the deter-
mination of the total systematic uncertainty. The most important contributions
to the systematic uncertainty on the determined asymmetry and the SDMEs are
listed, for the results obtained from the full data set, at the end of this section in
tables 7.3-7.5.

The uncertainty of the target polarization The target polarization PT and
its uncertainty were determined by the HERMES target group. The uncertainty
is predominantly systematic. The data taking periods 2002-2005 were sub-divided
into smaller periods during which the absolute value of PT was reasonably con-
stant. The values of |PT | and their uncertainty were made available for these
specific periods separately. In table 7.2 the weighted averages of |PT | for each
data taking period and for the combined 2002-2005 period are shown. The used
weight for each period is the corresponding number of DIS events. The uncertainty
on the average of |PT | has been determined by taking the weighted averages of the
uncertainties for each sub period.

Since the determined values of the transverse target-spin asymmetry and the
SDMEs corresponding to transverse target polarization are inversely proportional
to the value taken for |PT |, the uncertainty in |PT | corresponds to a scale un-
certainty of these quantities. This scale uncertainty is equal to the fractional
uncertainty of |PT |, which is 8.1% for the combined 2002-2005 period.

period average target polarization
2002 0.783 ± 0.041
2003 0.795 ± 0.033
2004 0.737 ± 0.055
2005 0.706 ± 0.065

2002-2005 0.724 ± 0.059

Table 7.2: Average absolute values of the target polarization and their uncertain-
ties for each data taking period and for the combined periods.
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The uncertainty of the non-exclusive background fraction The fractional
contribution from non-exclusive background processes depends strongly on the
upper limit of the missing energy ∆E used to select exclusive events (see section
4.2.2). The positions of the exclusive peaks for the 2004 and the 2005 periods were
found to be shifted with respect to each other in ∆E with a shift of about 0.05-0.1
GeV. The observed shift in ∆E is related to the uncertainty in the determined
beam energy E and the uncertainty in the reconstructed momenta of the detected
particles as ∆E is given by ∆E = E−E ′ +EV + t/2M , with E′ the energy of the
scattered lepton, EV the energy of the produced ρ0 meson, and M the nucleon
mass (see equation 4.2).

In order to estimate the systematic uncertainty of the background fraction due
to the uncertainty in ∆E, we determined the background fraction by using the
requirement ∆E < 0.5 GeV for the Monte Carlo simulation of the background,
instead of the requirement ∆E < 0.6 GeV. The normalization range for the Monte
Carlo was also shifted downwards in ∆E by 0.1 GeV. The difference between the
results obtained with this shifted ∆E requirement and the nominal result was
taken as the systematic uncertainty of the background fraction. This systematic
uncertainty was determined separately for the various kinematic bins (see table
4.5).

In the determination of the SDMEs and the asymmetries the background frac-
tion was varied within its total uncertainty. The maximal value of the resulting
deviation is taken as the systematic uncertainty of the extracted quantities asso-
ciated with the determination of the background fractions. Numerical values of
the corresponding contributions to the systematic uncertainty on A`

UT and the
SDMEs can be found in tables 7.3-7.5.

The angular dependencies of background processes The available knowl-
edge about the angular dependencies of background processes is limited. For this
reason the asymmetries and SDMEs were determined under the assumption that
the background events were produced isotropically in the angles φ, φs, φππ, θππ.
In order to estimate the corresponding systematic uncertainty we also determined
these quantities without correcting for background, i.e., under the assumption that
the angular distributions of the background events are equal to those of events for
exclusive ρ0 production. The difference between the background corrected results
and the background-uncorrected results is taken to be the systematic uncertainty
due to a possible angular dependence of the background processes. Numerical
values of the corresponding contributions to the systematic uncertainty on A`

UT

and the SDMEs are listed in table 7.3-7.5. In general, the systematic uncertainty
related to the angular dependence of background processes was found to be larger
than that associated with the background fraction itself.

Contributions due to a non-zero beam polarization Although the used
data set corresponds to a non-zero net beam polarization Pb, the beam-polarization
dependent angular distributions WLU and WLT were ignored in the determination
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of asymmetries and SDMEs. It has been studied how much the extracted values
are affected by ignoring these angular distributions.

For some of the selected bursts there is no reliable information available about
the beam polarization. These bursts contribute to 8% of the luminosity corre-
sponding to all selected bursts. For the study of Pb-related effects these bursts
were excluded from the selection. The number of the remaining bursts weighted
by the corresponding number of DIS events (which is a measure of the luminosity)
is shown versus Pb in figure 7.8. The weighted average of Pb over these bursts is
around 9.5%.

Pb (%)
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Figure 7.8: The number of selected DIS events versus the beam polarization for
those selected bursts for which reliable information is available about the beam
polarization.

Possible beam-polarization dependent effects on the extraction of the SDMEs
for an unpolarized target and an unpolarized beam (i.e., corresponding to WUU )
were studied by comparing the results from two fits of the angular distributions

W fit1 = WUU , (7.5)

W fit2 = WUU + PbWLU , (7.6)

where WLU is parameterized in terms of 8 additional combinations of SDMEs
[11]. When applying equation 7.6, the individual value of Pb was evaluated for
each event. In figure 7.9 the results from both fits to the full data set are shown.
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The differences between the results from both fits for the SDMEs contributing to
WUU are negligibly small fractions of the statistical uncertainties.

We also studied effects from the beam polarization on the extraction of SDMEs
corresponding to WUT by comparing the results from two fits of the angular dis-
tributions

W fit3 = WUU + STWUT , (7.7)

W fit4 = WUU + PbWLU + STWUT + PlSTWLT , (7.8)

where the approximation ST = PT was used and WUU and WLU were included
as fixed terms by using the results of the fits obtained with equations 7.5 and 7.6.
The term WLT in equation 7.8 is parameterized by 18 independent combinations
of SDMEs [11], which were the free parameters of the fit in addition to the 30
combinations of SDMEs corresponding to WUT . The results from both fits are
shown in figure 7.10. The differences between the results from both fits for the
SDMEs associated with WUT are small compared to the statistical uncertainties.

The fact that the differences between the results of the fits including and not
including the Pb dependence were found to be negligibly small can be explained
by the fact that the net value of Pb was only about 10%, and by the fact that the
correlations between the Pb-dependent terms and the Pb-independent terms were
apparently relatively small.

From the studies described above we conclude that the beam polarization that
was present can be safely ignored in the extraction of the SDMEs contributing to
the angular distributions WUU and WUT from the 2002-2005 data. For this reason
no systematic uncertainty for having a non-zero beam polarization was assigned
to the extracted SDMEs or the transverse target-spin asymmetry.

Contributions from smearing The measured kinematic variables and angles
are affected by smearing due to the limited detector resolution and interactions
inside the spectrometer material. In order to study the effects from smearing on the
extraction of SDMEs, 25 different sets of Monte Carlo events were generated with
each the same set of input SDMEs (see section 6.8). A simulation was performed
of the reconstruction of these events by the HERMES spectrometer including the
effects from smearing. The SDME extraction procedure was applied to each set of
reconstructed events.

Each of the simulated sets contains about 7000 reconstructed events, which is
comparable to the number of real events selected from the combined 2002-2005
data taking periods. The average values of the SDMEs extracted from the various
Monte Carlo sets are, given the statistical uncertainty, consistent with the inserted
values. Note that the statistical uncertainties of the average values are considered,
which are a factor 5 smaller compared to the uncertainties for each individual fit.
The differences between the extracted values and the inserted value are for each
SDME distributed according to their statistical uncertainty. Significant systematic
differences between extracted and inserted values were not observed. For this
reason no systematic uncertainty was assigned for smearing effects.
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Figure 7.9: The results for the SDMEs for an unpolarized target obtained from
a fit including the Pb dependence (open circles), and from a fit not including
the Pb dependence (filled circles). The determined (combinations of) SDMEs
corresponding to WUU are shown in the upper panel and those corresponding to
WLU are shown in the lower panel.
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Figure 7.10: The results for the SDMEs corresponding to transverse target polar-
ization obtained from a fit including the Pb dependence (open circles), and from a
fit not including the Pb dependence (filled circles). The determined (combinations
of) SDMEs corresponding to WUT are shown in the left-hand panel and those
corresponding to WLT are shown in the right-hand panel.
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Contributions due to admixture from longitudinal target polarization
As the data were taken with a transverse target polarization PT with respect to the
direction of the lepton beam, a longitudinal component SL of the target polariza-
tion was present with respect to the virtual-photon direction (see section 5.2.1).
As a result, an admixture from the corresponding angular distribution WUL is
present, which is associated with 14 additional (combinations of) SDMEs denoted
by Im l (see [11] and section 2.9.2). Due to the relatively small size of SL, these
SDMEs cannot be determined from the data taken with a transversely polarized
target4. Therefore, a different approach was chosen to estimate to what extent
the admixture from SL has affected the SDMEs determined for a transversely
polarized target.

In the extraction procedure that was used to extract SDMEs, the admixture
from WUL was ignored, and the angular distribution function of the cross section
was approximated by

W ` = WUU + STWUT . (7.9)

In order to estimate the systematic uncertainty mentioned above, the fit was re-
peated 20 times, with the admixture from WUL included in the parameterization
of the angular distribution function,

W ` = WUU + STWUT + SLWUL, (7.10)

where the values of SL and ST were determined per event. Here ST /PT is very
close to unity, whereas |SL/PT | can reach values up to about 0.15 at most (see
figure 5.2).

The 14 combinations of SDMEs Im l parameterizing the angular distribution
WUL were randomly inserted as fixed parameters of the fit by using equation 7.10.
The ranges of the input values of Im l were based on the conditions5

(
Im l−+

−+

)2 ≤
(
u++

++

)2 −
(
u−+
−+

)2
, (7.11)

(
Im l 0+

0+

)2 ≤ u 0 0
0 0 u

++
++ −

(
Reu 0+

0+

)2
, (7.12)

which follow directly from the positivity bounds given in [11]. From the results
for the SDMEs u, in combination with equations 7.11 and 7.12, the upper bounds
for |Im l−+

−+ | and |Im l 0+
0+ | were found to be typically 0.3 and 0.2, respectively. The

combinations of SDMEs associated with s-channel helicity changing amplitudes
were assumed to satisfy comparable bounds. Hence, the input value for each of
the 14 independent combinations of SDMEs Im l was randomly taken from the
range [−0.3, 0, 3]. The quadratic mean of the differences between the new results
and the original results is taken as an estimate of the systematic uncertainty. The
obtained systematic uncertainties, which are listed in the last column of tables 7.3
and 7.5, are small compared to the statistical uncertainties.

4The SDMEs associated with WUL can be extracted from the HERMES data taken with a
longitudinally polarized target. However, such an analysis, which can be done using the HERMES
data collected during the 1996-2000 periods, is a project that goes beyond the scope of this work.

5These conditions are not as strong as the conditions originally described in [11], since SDMEs
associated with a longitudinally polarized beam are not considered here.
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Figure 7.11: Feynman diagrams representing the Born amplitude (a) and the next
order amplitudes contributing to ρ0 meson electroproduction (b-e).

Radiative effects In addition to the Born process, higher-order processes in
quantum electrodynamics (QED) contribute to the cross section of ρ0 meson elec-
troproduction [71]. These higher-order processes are referred to as radiative pro-
cesses and the corresponding corrections to the cross section as radiative correc-
tions. The amplitudes of the Born process and the lowest-order radiative processes
are represented by the diagrams shown in figure 7.11. The radiative corrections
arise from the emission of a real photon, vertex corrections (i.e., the exchange of
an additional virtual photon), and loop corrections due to vacuum polarization
(see figure 7.11b-e, respectively).

For the determination of spin-density matrix elements and azimuthal asym-
metries it needs to be investigated to what extent radiative corrections affect the
shape of the angular distributions. In [72] it was found that the reconstructed
angular dependencies are mainly affected by hard photon emission. Due to the
emission of an undetected photon the reconstructed kinematical variables and an-
gles are different from the true variables. At the same time this causes a shift
of the reconstructed value of ∆E to higher values. The selection requirement
∆E < 0.6 GeV discards the majority of these events. For the events satisfying
this requirement the energy of a possibly radiated photon is relatively low, which
implies that the effect on the reconstruction of kinematic variables and angles is
limited.

Various software programs are available for the calculation and simulation of
radiative effects. The RADGEN generator [73] was used in combination with the
PYTHIA generator to include radiative effects in the Monte Carlo simulation. The
DIFFRAD code [71] calculates the radiative corrections by using a semi-analytical
approach. The DIFFRAD code was used to study the effect of radiative corrections
on the extraction of SDMEs for an unpolarized target. At HERMES kinematics
the modulations of the shape of the φ dependence were found to be smaller than
2.5%. This effect was found to be negligible in the determination of the matrix
elements [25, 26].

In general the dependence of radiative corrections on the orientation of the
target polarization with respect to the virtual-photon direction is considered to be
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small. Radiative effects for the case of a transversely polarized target have been
studied for semi-inclusive production of pions at HERMES in [57]. The radiative
effects on the sin(φ− φs) and sin(φ+ φs) amplitudes of the transverse target-spin
asymmetry AUT were found to be typically in the range of 0-5% in magnitude. For
the determined azimuthal moments of the asymmetries in exclusive ρ0 production,
corrections of such a magnitude are small compared to the statistical uncertain-
ties. For the present data the effects are expected to be even smaller due to the
requirement on ∆E.

Since the studies of radiative effects in comparable analyses have only found
effects that are small or negligible compared to the statistical uncertainties it
was decided to neglect radiative corrections as well in the present analyses of the
transverse target-spin asymmetry and the spin-density matrix elements.
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cent. val. stat syst syst1 syst2 syst3

A
sin(φ−φs)
UT,ρL

-5.07e-03 6.44e-02 1.58e-02 1.53e-04 6.66e-04 1.58e-02

Table 7.3: Extracted asymmetry A
sin(φ−φs)
UT,ρL

(labelled as “cent. val.”) and the
statistical (stat) and systematic uncertainties. Shown are the total systematic un-
certainty (syst), the systematic uncertainty due to the background fraction (syst1),
the angular dependencies of the background (syst2) and the admixture from AUL

(syst3).

SDME cent. val. stat syst syst1 syst2

u 0 0
++ + εu 0 0

0 0 3.95e-01 1.30e-02 9.33e-03 2.44e-03 9.00e-03
Re
(
u 0+

0+ − u−0
0+

)
-4.73e-01 1.15e-02 2.91e-02 6.31e-03 2.84e-02

u−+
−+ 5.25e-01 1.83e-02 6.02e-02 1.39e-02 5.86e-02

Reu 0 0
0+ -7.28e-02 8.90e-03 1.10e-03 5.55e-04 9.46e-04

Re
(
u 0+

++ − u−0
++ 6.08e-02 1.17e-02 2.32e-03 4.82e-04 2.27e-03

+2εu 0+
0 0

)

Reu 0+
−+ -7.84e-02 1.39e-02 5.13e-03 1.59e-03 4.87e-03

Re
(
u++

0+ + u−−
0+

)
1.30e-02 6.99e-03 1.53e-02 3.45e-03 1.49e-02

Reu−+
0+ -3.92e-03 6.16e-03 8.92e-04 5.17e-04 7.27e-04

Re
(
u 0−

0+ − u+0
0+

)
5.15e-04 8.63e-03 8.86e-04 4.48e-04 7.64e-04

Re
(
u−+

++ + εu−+
0 0

)
-1.31e-02 7.58e-03 2.63e-04 1.53e-04 2.15e-04

Reu++
−+ -1.75e-02 1.00e-02 4.51e-03 1.21e-03 4.34e-03

u 0 0
−+ -1.41e-02 2.52e-02 1.89e-03 1.70e-03 8.30e-04

Reu+0
−+ -1.43e-02 1.23e-02 3.17e-03 8.18e-04 3.06e-03

Reu+−
0+ -5.52e-03 4.69e-03 6.38e-04 2.41e-04 5.91e-04

u+−
−+ 7.94e-03 1.39e-02 4.02e-03 8.86e-04 3.92e-03

Table 7.4: Extracted SDMEs associated with WUU (labelled as “cent. val.”) and
the statistical (stat) and systematic uncertainties. Shown are the total system-
atic uncertainty (syst), the systematic uncertainty due to the background fraction
(syst1) and the angular dependencies of the background (syst2).



7.4. SYSTEMATIC UNCERTAINTIES 129

SDME cent. val. stat syst syst1 syst2 syst3

Im
`

n 0 0
++ + εn 0 0

0 0

´

-2.00e-03 2.54e-02 6.15e-03 5.20e-05 2.23e-04 6.14e-03

Im
`

n 0+
0+ − n−0

0+

´

1.40e-02 1.52e-02 5.28e-03 3.56e-04 1.57e-03 5.03e-03

Imn−+
−+ -1.28e-02 3.37e-02 1.40e-02 3.27e-04 1.44e-03 1.40e-02

Im
`

n++
++ + n−−

++ 1.26e-02 2.66e-02 7.83e-03 3.22e-04 1.41e-03 7.70e-03

+2εn++
0 0

´

Im
`

s 0+
0+ − s−0

0+

´

4.58e-02 1.47e-02 1.01e-02 1.17e-03 5.13e-03 8.57e-03

Im s−+
−+ -5.48e-02 3.25e-02 1.10e-02 1.40e-03 6.15e-03 9.01e-03

Imn 0 0
0+ -5.36e-02 1.59e-02 7.95e-03 1.37e-03 6.00e-03 5.03e-03

Im
`

n 0+
++ − n−0

++ -1.75e-02 1.99e-02 5.79e-03 4.47e-04 1.96e-03 5.43e-03

+2εn 0+
0 0

´

Imn 0+
−+ 1.59e-02 2.33e-02 9.46e-03 4.05e-04 1.78e-03 9.28e-03

Im s 0 0
0+ 1.39e-02 1.63e-02 6.94e-03 3.54e-04 1.56e-03 6.75e-03

Im
`

s 0+
++ − s−0

++ 9.21e-03 1.91e-02 6.26e-03 2.35e-04 1.03e-03 6.17e-03

+2εs 0+
0 0

´

Im s 0+
−+ -8.92e-03 2.50e-02 8.73e-03 2.28e-04 9.99e-04 8.67e-03

Im
`

n++
0+ + n−−

0+

´

2.40e-02 1.36e-02 5.32e-03 6.11e-04 2.68e-03 4.55e-03

Imn−+
0+ -9.81e-03 9.67e-03 3.26e-03 2.50e-04 1.10e-03 3.06e-03

Im
`

s++
0+ + s−−

0+

´

1.03e-02 1.31e-02 4.23e-03 2.62e-04 1.15e-03 4.06e-03

Im s−+
0+ 8.23e-03 9.74e-03 2.88e-03 2.10e-04 9.23e-04 2.72e-03

Im
`

n 0−

0+ − n+0
0+

´

1.61e-02 1.49e-02 8.67e-03 4.12e-04 1.81e-03 8.47e-03

Im
`

n−+
++ + εn−+

0 0

´

2.35e-02 1.45e-02 6.50e-03 5.98e-04 2.63e-03 5.91e-03

Imn++
−+ 2.10e-02 1.92e-02 8.13e-03 5.35e-04 2.35e-03 7.76e-03

Im
`

s 0−

0+ − s+0
0+

´

-2.45e-02 1.52e-02 6.84e-03 6.23e-04 2.74e-03 6.23e-03

Im
`

s−+
++ + εs−+

0 0

´

1.87e-02 1.35e-02 3.99e-03 4.75e-04 2.09e-03 3.36e-03

Im s++
−+ 1.14e-02 1.88e-02 4.87e-03 2.91e-04 1.27e-03 4.69e-03

Imn 0 0
−+ -4.25e-02 4.16e-02 1.29e-02 1.08e-03 4.76e-03 1.20e-02

Imn+0
−+ -1.49e-02 2.18e-02 5.90e-03 3.79e-04 1.67e-03 5.65e-03

Imn+−

0+ 7.07e-04 9.35e-03 3.90e-03 1.77e-05 7.87e-05 3.90e-03

Imn+−

−+ -7.75e-03 2.69e-02 8.63e-03 1.98e-04 8.70e-04 8.58e-03

Im s 0 0
−+ 3.35e-04 4.11e-02 1.36e-02 8.90e-06 3.64e-05 1.36e-02

Im s+0
−+ -3.30e-03 2.16e-02 7.80e-03 8.44e-05 3.70e-04 7.79e-03

Im s+−

0+ 1.45e-02 9.68e-03 4.90e-03 3.69e-04 1.62e-03 4.61e-03

Im s+−

−+ -1.07e-02 2.66e-02 1.14e-02 2.74e-04 1.20e-03 1.13e-02

Table 7.5: Extracted SDMEs associated with WUT (labelled as “cent. val.”) and
the statistical (stat) and systematic uncertainties. Shown are the total system-
atic uncertainty (syst), the systematic uncertainty due to the background fraction
(syst1), the angular dependencies of the background (syst2) and the admixture
from WUL (syst3).
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7.5 Comparison with GPD-model calculations

As discussed in section 2.10, various GPD-model calculations of the transverse
target-spin asymmetry AUT for longitudinally polarized ρ0 mesons produced by
longitudinally polarized virtual photons are available. Within the available GPD
models, the generalized parton distributions Hu, Hd, and Hg have been extrapo-
lated from the available information on parton distribution functions and elastic
form factors. Different approaches have been used for the modelling of the nu-
cleon spin-flip GPDs Eu, Ed, and Eg, which cannot be obtained from inclusive
deep-inelastic scattering data.

In the GPD models presented in [10, 28] Ju and Jd enter directly as free param-
eters in the parameterization of the GPDs Eq. Comparison of these calculations to
the experimental data for the asymmetry can be used to provide a model depen-
dent constraint for Ju. In [29, 30] another approach is proposed. In this case the
descriptions of the GPDs Eu and Ed have been obtained from fits of the electro-
magnetic Pauli form factors of the proton and the neutron. Within these models
the transverse target-spin asymmetry and the total angular momentum carried by
quarks are fixed by these fits. The calculated asymmetry can be compared with the
experimentally obtained asymmetry in order to investigate whether it is consistent
with the data. Both approaches are discussed in section 7.5.2. First, however, in
section 7.5.1 the uncertainties of the model calculations are summarized.

7.5.1 Model uncertainties

When comparing the calculations for AUT to the measured asymmetries, one
should bear in mind that model assumptions and approximations have been made,
which result in uncertainties on the calculations that affect the reliability of the
interpretation of the measured asymmetry. Apart from uncertainties related to
the assumptions used in the parameterization of GPDs and uncertainties on the
used models for parton density functions and form factors, other uncertainties are
present, which are discussed in [10, 28, 29, 30]. Below, a short overview of the
various model uncertainties is presented.

Violation of s-channel helicity conservation A direct comparison of GPD-
model calculations with the extracted asymmetry

A
sin(φ−φs)
UT,ρL

=
Im
(
n 0 0

++ + εn 0 0
0 0

)

u 0 0
++ + εu 0 0

0 0

, (7.13)

requires the assumption of SCHC under which the contributions from the higher-
twist SDMEs u 0 0

++ and Imn 0 0
++ are equal to zero. From the extracted values

for the SDMEs u it follows that non-zero amplitudes for the helicity changing
transition γ∗T → ρ0

L are present, although such amplitudes are small in comparison
to the amplitudes of helicity-conserving transitions. The possible impact of such
violations of SCHC on both the numerator and the denominator of equation 7.13
are ignored in the present comparisons.
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Power corrections Most of the available GPD-model calculations have been
performed at leading twist. The leading-twist calculations were performed for the
case where the virtual-photon momentum and the average nucleon momentum are
collinear and in opposite direction. The transverse momenta of the partons enter-
ing the hard-scattering subprocesses were assumed to be negligible in comparison
to the longitudinal momenta, which is a good approximation only in case Q2 is
large enough. Power corrections (i.e., higher-twist corrections) due to the parton’s
transverse momenta were found to be sizeable for the cross section up to Q2 values
of a few GeV2 [10, 75]. In [30] effects from the transverse momenta of partons are
included in the calculation of AUT . The difference between the full result and the
leading twist results was found to be in the range 10-25% for 3 . Q2 . 4 GeV
(at W = 5 GeV) and was found to decrease with increasing Q2 values. Hence, in
the Q2 range covered by the present data, the neglect of power corrections may
have an effect larger than 25%. However, these uncertainties are most likely still
smaller than those on the data.

The contribution from gluons In the description of exclusive vector-meson
production the contribution from gluons enters at the same order in αs as the
contribution from quarks. Previous data on the ratio of φ to ρ0 electroproduc-
tion cross sections indicate that there is a substantial contribution from gluons
to the cross section for ρ0 production at HERMES kinematics [32]. A complete
model description therefore requires the inclusion of gluonic GPDs. In the original
calculations of [10] the gluonic GPDs were not included. In [28, 29, 30] param-
eterizations for the gluonic GPD Hg are included by means of extrapolations of
existing information on regular parton distribution functions. The contribution
from Hg, which increases for decreasing x, results in an increase of the denomi-
nator of the asymmetry AUT and therefore causes the asymmetry to be smaller
[28].

No direct phenomenological information is available for the modelling of the
gluonic spin-flip GPD Eg. However, since a prominent role of the GPD Eg is
considered to be unlikely [28, 29, 30], it is usually assumed that at HERMES
kinematics the GPD E is dominated by (valence) quarks. An unexpectedly large
measured asymmetry AUT could imply that the gluonic GPD Eg is larger than
expected [28]. This possibility is not considered any further in the present work.

The contribution from sea quarks to proton spin-flip GPDs No direct
experimental information is available on the contribution of sea quarks to the
proton spin-flip GPDs Eu and Ed, which play an important role in the calculations
of the asymmetry AUT . This contribution is assumed to increase with decreasing
x. However, the relative contribution is considered to be small for the spin-flip
GPDs in comparison with proton spin-conserving GPDs [29]. In [28, 29] various
scenarios for the contribution of sea quarks were studied. The differences found
for AUT and the associated total angular momentum Ju are small in each of the
scenarios considered.
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Next-to-leading order corrections in αs Most of the available GPD-model
calculations have been performed to leading order (LO) in αs. In the studies in
[29] also the next-to-leading order (NLO) corrections are analyzed. For AUT the
NLO corrections were found to be substantial over a wide range of kinematics. The
corrections were found to increase with decreasing x. At Q2 = 4 GeV2, −t = 0.4
GeV2, and x ≥ 0.05, which is on the edge of the kinematic range of the present
data, the NLO corrections on the asymmetry were found to be at most between
0.025 and 0.08 (at x = 0.05). Such corrections are comparable to, or larger than,
the LO value of AUT in various models. In comparison to the statistical uncer-
tainty of the measured asymmetries these NLO corrections are at most of the same
order of magnitude, but in general smaller.

In summary, various uncertainties on the GPD-model calculations of the asym-
metry AUT were estimated to be in magnitude smaller than or comparable to the
present experimental uncertainties. The comparison of GPD-model calculations to
possible more precise future data requires that many of the corrections mentioned
above are included in the calculations.
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Figure 7.12: The extracted azimuthal moment A
sin(φ−φs)
UT for longitudinally polar-

ized ρ0 mesons binned in x (upper plot) and −t′ (lower plot). The curves represent
GPD based calculations [28] assuming different values for the angular momentum
carried by quarks inside the proton (Ju = 0, 0.2, 0.4 and Jd = 0). The grey bands
represent the 1σ uncertainty intervals for the azimuthal moment estimated by fits
of interpolations of the GPD based calculations with Ju as free fit parameter.
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7.5.2 Comparison to GPD-models

In this section GPD-model calculations are compared to the experimental results
for the sin(φ−φs) moment of the asymmetry A`

UT in electroproduction of longitu-
dinally polarized ρ0 mesons. These comparisons are done with the results extracted
with the 36-parameter fit presented in section 7.2.2. Although the GPD-model cal-
culations are subject to the various uncertainties discussed in section 7.5.1, these
comparisons are justified, since the model uncertainties were estimated to be less
than or comparable to the uncertainties on the data. A precise determination
of the model uncertainties and a discussion of their impact on the comparison
between the calculations and the data is beyond the scope of this work.

The calculations of the azimuthal moment from [28] are shown together with
the experimentally determined values binned in x and −t′ in figure 7.12. The
calculation of the moment has been performed as a function of x or −t′ with the
other kinematic variables fixed at values representative for the experimental data:
〈Q2〉 = 2 GeV2 and 〈−t′〉 = 0.14 GeV2 or 〈x〉 = 0.085, respectively. Several
assumptions for the quark angular momentum were used: Ju = 0, 0.2, 0.4 and
Jd = 0. For each of the values taken for Ju the calculated azimuthal moment is
consistent with the experimentally obtained results.

We have used the calculations of the azimuthal moment for the various values
of Ju to obtain parameterizations of the moment in terms of Ju. The parameter-
izations were obtained from interpolations of the calculations with a second order
polynomial in Ju. From the various interpolations, each performed for a specific
value of x and of −t′, we obtained parameterizations of the x and −t′ dependen-
cies of the azimuthal moment. These parameterizations were fit to the values of
the azimuthal moment determined in the various x and −t′ bins to obtain two
results for Ju. These results are given by Ju = 0.33 ± 0.43 and Ju = 0.53 ± 0.44,
respectively. In figure 7.12 the results of the fits are represented by the grey bands,
which denote the 1σ uncertainty intervals.

As the two fit functions describe the dependence of the azimuthal moment on
different kinematic variables while assuming constant values for the other variables,
the fit functions represent two different approximations. Hence, the results from
the two fits may be different. However, since both approximations are justified
at the present precision of the data (see section 6.8) the average value of the two
results for Ju has been taken as our best estimate of Ju, whereas for the uncertainty
on this estimate the average value of the uncertainties on both results is taken. The
resulting estimate is then equal to Ju = 0.43 ± 0.43. Despite the relatively large
uncertainty the data seem to prefer a positive value of Ju. The favored range for Ju

agrees with the model-dependent constraint of 0.2 < Ju < 0.6 at Jd = 0 that was
obtained from the results from deeply virtual Compton scattering measurements
[76, 77].

The data are compared as well to the GPD-model calculations of [30], for which
the GPDs Eu and Ed and the corresponding values of Ju and Jd were constrained
by form-factor data. These calculations are available for the average kinematics
of the data in the highest Q2 bin: 〈Q2〉 = 3.07 GeV2 and 〈W 〉 = 5 GeV. The
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calculated asymmetry of 0.02 ± 0.01 is consistent with the experimental value of
the asymmetry of 0.11 ± 0.14 determined in this bin. This calculation is also in
good agreement with the value of the asymmetry of 0.03±0.10 determined from the
entire kinematic range of the data. From the GPD model used in these calculations
the value of Ju was estimated to be between 0.211 and 0.241 and the value of Jd

between -0.02 and 0.02, considering only valence quarks [79]. Comparable values
were obtained from the GPD models discussed in [29].

7.5.3 Orbital angular momentum

From the estimate Ju = 0.43±0.43 obtained under the assumption Jd = 0 one can
obtain an estimate of the total angular momentum carried by the quarks inside
the proton, by using the approximation Jq = Ju + Jd, where the contributions
from sea quarks are assumed to be negligible. The estimate obtained in this way
is given by Jq = 0.43± 0.43. From this estimate one can obtain an estimate of the
orbital angular momentum Lq of quarks inside the proton by using

Jq =
1

2
∆Σ + Lq, (7.14)

where ∆Σ represents the quark-spin contribution to the nucleon spin. In order to
obtain such an estimate the result ∆Σ = 0.330 ± 0.039 from [6] was used (where
the uncertainty represents the total uncertainty). The resulting estimate for Lq is
thus given by Lq = 0.27 ± 0.43.

From the information on Ju one can also obtain an estimate of the orbital
angular momentum Lu of up-quarks by using

Jf =
1

2
∆f + Lf , (7.15)

where f represents the quark flavor and ∆f represents the corresponding quark
helicity distribution ∆f(x) integrated over x. Semi-inclusive DIS measurements at
HERMES have yielded the results ∆u = 0.601±0.063 and ∆d = −0.226±0.063 [7],
where the total uncertainties are given6. By using the result for ∆u in combination
with equation 7.15 the estimate Lu = 0.13 ± 0.43 is obtained.

As a result of the large uncertainty on the estimate of the quark orbital angular
momentum, no distinction can be made between relatively small or relatively large
positive values of Lq. However, it can be concluded that large negative values of Lq

are less likely. Future results for the transverse target-spin asymmetry in exclusive
ρ0 production and for deeply virtual Compton scattering are needed to provide a
more precise estimate of the contribution of quark orbital angular momentum to
the spin of the nucleon.

6It is noted that the results used from [7] imply that ∆Σ = 0.347± 0.070, which is consistent
with the value for ∆Σ from [6] that was used to estimate Lq .
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Chapter 8

Summary and outlook

Summary At present the total angular momentum Jq carried by the quarks
in the nucleon is unknown. One can investigate the angular momentum carried
by the quarks by using the recently developed framework of generalized parton
distributions (GPDs). Within the GPD framework, it has been shown that specific
observables in exclusive production processes, such as deeply virtual Compton
scattering and hard exclusive meson production, are sensitive to Jq. By measuring
these observables, one can obtain a model-dependent estimate of Jq. From the
estimated value of Jq, in combination with the available data on the quark-spin
contribution ∆Σ to the nucleon spin, information on the unknown orbital angular
momentum Lq of quarks inside the nucleon can be obtained.

More in particular, the sin(φ − φs) component of the transverse target-spin
asymmetry AUT for exclusive ρ0 production from a transversely polarized nucleon
has been predicted to be sensitive to Jq. Here, φ and φs are the azimuthal an-
gles of the produced ρ0 meson and the transverse component of the nucleon spin,
respectively, around the direction of the exchanged virtual photon. The GPD de-
scription of exclusive meson production only applies if both the exchanged virtual
photon and the produced meson are longitudinally polarized. Hence, in order to
compare GPD-based calculations of AUT with measurements, the asymmetry has
to be determined for this specific case.

This thesis reports the first measurements of the asymmetry AUT in exclusive
ρ0 electroproduction from a transversely polarized proton. The asymmetry was
extracted from data taken by the HERMES experiment at DESY with a polarized
internal hydrogen gas target and the 27.6 GeV electron (positron) beam of HERA.
These data were collected during the 2002-2005 running periods of HERMES. The
exclusive ρ0 production events were reconstructed from the measured information
on the scattered lepton and the ρ0 decay products. The recoil protons could not be
detected by the HERMES spectrometer. Requirements on the invariant mass of
the detected hadron pairs were used to select pions resulting from ρ0 decay events.
Additional requirements on the missing energy enabled the selection of exclusive
events. A Monte Carlo simulation provided an estimate of the non-exclusive back-
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ground contributions coming from semi-inclusive deep-inelastic scattering events.
The background contribution from exclusive non-resonant events was estimated
from a fit of the reconstructed invariant mass distribution for exclusive hadron
pairs, but was found to be negligible.

The transverse target-spin asymmetry AUT was determined as a function of φ
and φs by fits of the angular distribution of events measured with two opposite
transverse orientations of the target polarization. Since AUT needed to be deter-
mined separately for longitudinally and transversely polarized ρ0 mesons, also the
dependence of the yields on the decay angle θππ was accounted for in the extraction
procedure. Two different approaches were used to take this additional dependence
into account. In one approach a combination of the Diehl-Sapeta [13] and Wolf-
Schilling [14] formalisms was used. In this case the relevant angular distributions
were effectively integrated over the ρ0 decay angle φππ. In the other approach
the more recently developed Diehl formalism [11] for vector-meson production on
a polarized target was used. In this case the dependence on the decay angle φππ

was taken into account in the description of the angular distribution.

In both approaches so-called spin density-matrix elements (SDMEs) for exclu-
sive ρ0 production were used to represent the information contained in the angular
distribution. The SDMEs parameterize the sensitivities of the angular distribu-
tion to the polarization states of the exchanged virtual photon and the produced
ρ0 meson. The SDMEs representing ρ0 production on an unpolarized target and
on a transversely polarized target were extracted in the Diehl formalism. This
extraction is the first experimental determination of the SDMEs for a transversely
polarized target. The results that were obtained for an unpolarized target were
converted to the Wolf-Schilling formalism and compared with the results of an
earlier analysis based on that formalism, which made use of the HERMES data
taken with an unpolarized target during the 1996-2000 data taking period. The
results from both analyses were found to be consistent.

From the extracted SDMEs it can be concluded that, for an unpolarized tar-
get, the amplitudes for s-channel helicity conserving transitions (where the helicity
of the virtual photon is transferred to the produced ρ0 meson) are significantly
larger than those for the helicity changing transitions. However, the results indi-
cate that also the amplitudes for the helicity changing transitions γ∗

T → ρL from
transverse virtual-photon helicity to longitudinal ρ0 helicity deviate significantly
from zero. Considering the SDMEs for transverse target polarization, the most
significant deviation was found for the SDME Im n 0 0

0+ , suggesting additional vio-
lation of s-channel helicity conservation (SCHC) through the transition γ∗

T → ρL.
This SDME was found to be comparable in magnitude with the observed SCHC-
violating SDMEs for an unpolarized target. Overall, the extracted values of the
SDMEs for transverse target polarization are within their statistical uncertainties
consistent with zero.

The extracted sin(φ−φs) component of the asymmetry AUT for longitudinally
polarized ρ0 mesons was compared with available GPD-model calculations [28, 79]
assuming SCHC. The calculations were found to be consistent with the data. The
calculations of [28] were used to obtain a model-dependent estimate of Ju under
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the assumption Jd = 0. The resulting estimate Ju = 0.43 ± 0.43 is consistent
with the constraints on Ju and Jd provided by DVCS measurements [76, 77, 78]
and GPD-model fits on form factor data [29, 74]. By using the available estimate
∆Σ = 0.330 ± 0.039 from [6] in combination with the obtained estimate of Jq ≈
Ju + Jd = 0.43 ± 0.43 an estimate Lq = 0.27 ± 0.43 of the orbital momentum
carried by the quarks inside the proton was obtained.

Outlook New data for the exclusive leptoproduction of ρ0 mesons from a po-
larized proton are needed to increase the amount of statistics available for the
asymmetry AUT , so that the relatively large uncertainties on the available esti-
mates on Jq and Lq can be reduced. Such data are foreseen to be collected by
the COMPASS experiment at CERN [80] and the CLAS experiment at JLab [81].
After the 12 GeV upgrade at JLab the CLAS experiment will be able to measure
AUT in the x-range 0.3 . x . 0.5. In this kinematic range GPD-model calcula-
tions [10] predict relatively large magnitudes of the sin(φ−φs) component of AUT

assuming Jd = 0 and 0.1 ≤ Ju ≤ 0.4 (It should be noted, however, that the calcu-
lations of [10] did not yet take into account the contribution from gluons, which
may cause a dilution of the asymmetry). At COMPASS first results already exist
for the asymmetry for exclusive ρ0 production on a transversely polarized deuteron
target [80]. New data on the asymmetry are expected for a transversely polarized
proton target. At COMPASS the x-range covered reaches down to x ≈ 0.01 and
higher values of Q2 are reached, up to 10 GeV2, although most of the data will be
taken at Q2 < 5 GeV2. Together, the expected COMPASS and CLAS data will
have the potential to increase the kinematic coverage and the statistical precision
of the data on AUT substantially. As a result these data will enable a more precise
model-dependent determination of the total and the orbital angular momentum
carried by quarks in the nucleon.



140 CHAPTER 8. SUMMARY AND OUTLOOK



Appendix A

The density matrix

For a given quantum mechanical state Ψ the information needed to calculate the
outcome of a measurement of an observable is contained in its density matrix [22].
The density matrix ρ for Ψ is defined through the expression of the corresponding
expectation value 〈A〉 of an operator A:

〈A〉 = Tr(Aρ), (A.1)

where the trace Tr is taken of the matrix product Aρ. In general Ψ is mixture,
i.e., an incoherent superposition of pure states Φi (with i = 1, 2, . . .). Explicitly,
〈A〉 can be expressed as the weigthed sum of the expectation values of these pure
states:

〈A〉 ≡ 〈Ψ|A|Ψ〉 =
∑

i

pi〈Φi|A|Φi〉, (A.2)

where the statistical weights are given by pi. One can express the pure states
relative to a set of basis states |ei

m〉 as Φi =
∑

m cim|ei
m〉, where cim (m = 1, 2, . . .)

represent the corresponding coefficients. Relative to this basis 〈A〉 is expressed as

〈A〉 =
∑

i

pi
∑

mn

〈Φi|ei
m〉〈ei

m|A|ei
n〉〈ei

n|Φi〉

=
∑

mn

amnρnm = Tr(Aρ), (A.3)

where amn are the elements of the matrix of the observable A. From this equation
it follows that the density matrix ρnm of Ψ is given by

ρnm =
∑

i

〈ei
n|Φi〉pi〈Φi|ei

m〉 =
∑

i

pi(cinc
i∗
m). (A.4)

Alternatively, one can use the property that each operator can be expanded
in terms of a set of orthogonal operators Tj , with one of the operators being a
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multiple of the unit operator I. The density matrix is represented by

ρ =
∑

j

Tr(ρT †
j )Tj =

∑

j

t∗jTj , (A.5)

where tj are the mean values of the operators Tj and the number of operators
equals the number of independent parameters in the ρ matrix.

The spin density matrix

The mean spin orientation of an ensemble of particles is specified by the polariza-
tion vector P . From equation A.2 it follows that P is given by

P = 〈Pop〉 = Tr(ρPop), (A.6)

with Pop being the polarization operator. Within this context ρ is referred to
as the spin density matrix, since it contains the information regarding the spin
orientation. In general, for an ensemble of particles with spin j, ρ is a (2j + 1) ×
(2j + 1) matrix.

For a spin 1
2 particle the polarization operator is represented by σ = (σx, σy, σz),

with σi the Pauli matrices for the spin directions i = x, y, z. These are 2 × 2 ma-
trices operating on two-component spinors, e.g. χ± 1

2
representing the spin-up and

spin-down states with respect to the z-direction:

χ+ 1
2

=

(
1
0

)
, χ− 1

2
=

(
0
1

)
. (A.7)

The polarization is given by the mean of σ: P = 〈σ〉 and the corresponding spin
density matrix can be expressed in terms of P by using equation A.5

ρ =
1

2
(I + P · σ). (A.8)

By inserting this expression in equation A.6 it can be shown that equation A.8
indeed satisfies the definition of the spin density matrix: P = 〈σ〉 = Tr(ρσ).



Appendix B

SDME formalism for an

unpolarized target

In this appendix the spin density-matrix elements (SDMEs) for ρ0 production
on an unpolarized target are introduced within the Wolf-Schilling formalism [14].
The SDMEs are related to the amplitudes Tασ, m i of the process γ∗(m) p(i) →
p(σ) ρ0(α), where the helicities i, σ = ± 1

2 and m,α = −1, 0, 1 of the involved
particles are specified between the brackets. First the matrix elements ρ′mn

αβ are
introduced, which are given by

ρ′mn
αβ = (2N ′)−1

∑

i σ

T ′
ασ,m i

(
T ′

βσ,n i

)∗
, (B.1)

where N ′ is the normalization factor. Equation B.1 is similar to equation 2.62
for the matrix elements given within the Diehl formalism [11], despite the fact
that different conventions are used for the phase of the virtual photon and for the
notation of the transition amplitudes and SDMEs1. The exact relation between
the matrix elements in equations B.1 and 2.62 is given in [11]. Within the Wolf-
Schilling formalism, the spin density matrix is decomposed in terms of hermitian
matrices ρ′′ for specific polarization states of the virtual photon:

ρ′′aαβ =
∑

mn

Σa
mnρ

′mn
αβ , (B.2)

where the matrices Σa
mn form an orthogonal set of independent hermitian matri-

ces, which are given explicitly in [14]. The superscript a = 0, . . . , 8 indicates the
virtual-photon polarization states, with a = 0, 1, 2, 3 indicating transverse polar-
ization, a = 4 longitudinal polarization and a = 5, 6, 7, 8 the interference between
longitudinal and transverse polarization states. In [14] the SDMEs are initially

1Note that the upper and lower indices of the matrix ρ′ have changed their positions compared
to the convention used in equation 2.62.
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given for the case where different polarization states of the virtual photon can be
separated. For this reason the normalization factor N ′

a is different for different
virtual-photon polarization states:

N ′
a = N ′

T =
∑

i,α,σ

∣∣T ′
ασ, + i

∣∣2 , a = 0, . . . , 3 , (B.3)

N ′
a = N ′

L =
∑

i,α,σ

∣∣T ′
ασ, 0 i

∣∣2 , a = 4 , (B.4)

N ′
a =

√
N ′

TN
′
L, a = 5, . . . , 8 . (B.5)

In case longitudinal and transverse virtual-photon polarization states cannot be
separated experimentally, it is more convenient to use the same normalization
factor for all polarization states of the virtual photon, as is done in equation 2.62.
The SDMEs ra

αβ and r04αβ for that case can be obtained from the SDMEs ρ′′aαβ by
using [14]

r04αβ =
ρ′′0αβ + εR ρ′′4αβ

1 + εR
; (B.6)

ra
αβ =

ρ′′aαβ

1 + εR
, a = 1, . . . , 3 ; (B.7)

ra
αβ =

√
Nρ′′aαβ

1 + εR
, a = 5, . . . , 8 , (B.8)

where R = σL/σT is the ratio of the cross sections σL and σT for longitudinally
and transversely polarized virtual photons, respectively. In equation B.6 matrix
elements ρ′′0αβ and ρ′′4αβ corresponding to the same term of the angular distribution
function are combined.



Appendix C

Extraction methods

Moments method

In the so-called moments method the sin(φ− φs) moment of the asymmetry AUT

is extracted as a normalized sin(φ− φs) moment of the measured yields by using

A
sin(φ−φS)
UT =

2
∫
dφ dφs sin(φ− φs)

[
N↑(φ, φs)/L↑ − N↓(φ, φs)/L↓ ]

∫
dφ dφs [N↑(φ, φs)/L↑ + N↓(φ, φs)/L↓ ]

,

(C.1)

where L↑ and L↓ are the luminosities corresponding to the yields N ↑ and N↓,
respectively. The integrals in equation C.1 are numerically computed as weighted
sums over the events for positive and negative target polarization, which are in-
dicated here by, respectively i = 1, 2, . . . N ↑ and j = 1, 2, . . . N↓. The resulting
moment of the asymmetry and its statistical error estimate are given by

A
sin(φ−φS)
UT = 2

L↓∑N↑

i sin(φi − φS,i) − L↑∑N↓

j sin(φj − φS,j)

L↓N↑ + L↑N↓ (C.2)

and

∆A
sin(φ−φS)
UT =

2

√
(L↓)2

∑N↑

i sin2(φi − φS,i) + (L↑)2
∑N↓

j sin2(φj − φS,j)

L↓N↑ + L↑N↓ . (C.3)

Note that in equation C.1 effects from the non-uniform acceptance efficiency ε on
the extracted value of the azimuthal moment of the asymmetry are neglected.
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Least-χ2 fit method

A conventional approach to determine the azimuthal Fourier moments of the trans-
verse target-spin asymmetry AUT is to use the least-χ2 fit method. In this method
the value of the asymmetry is first determined in bins of the angles φ and φs, or
alternatively in bins of the angles φ− φs and φ+ φs.

In each bin, labelled here with i, the asymmetry can be determined from the

yields N
↑(↓)
i normalized by their corresponding luminosities by using

AUT,i =
1

|PT |
N↑

i /L↑ −N↓
i /L↓

N↑
i /L↑ +N↓

i /L↓
. (C.4)

The uncertainty on the value of the asymmetry in each bin can be estimated by
using equation C.4 and propagation of the estimated uncertainty on the measured

yields, ∆N
↑(↓)
i ≈

√
N

↑(↓)
i , which results into

∆Adata
UT,i =



(
∂Adata

UT,i

∂N↑
i

∆N↑
i

)2

+

(
∂Adata

UT,i

∂N↓
i

∆N↓
i

)2



1
2

(C.5)

=
2
√
N↑

i N
↓
i (N↑

i +N↓
i )

〈|PT |〉(N↑
i +N↓

i )2
, (C.6)

where the approximation L↓ = L↑ is used for reason of brevity.
The moments of the asymmetry can then be obtained by fitting the binned

azimuthal dependence of the asymmetry with a function Afit
UT describing the asym-

metry in terms of the moments, which are the free parameters of the fit. This is
done by minimizing the χ2, which is given by

χ2 =
∑

i

(
Afit

UT,i −Adata
UT,i

∆Adata
UT,i

)2

. (C.7)

As was mentioned before, different choices are possible for the binning. A
two-dimensional binning is required for a fit with the function

Afit
UT (φ, φs) = A

sin(φ−φs)
UT sin(φ− φs) +A

sin(φ+φs)
UT sin(φ+ φs) (C.8)

including both the moments A
sin(φ−φs)
UT and A

sin(φ+φs)
UT as free parameters. Separate

fits of these azimuthal moments can also be performed by using one-dimensional
binnings in the angles φ− φs and φ+ φs, respectively.



Appendix D

Conversion between SDME

formalisms

r0400 = u00
++ + εu00

00 (D.1)

Re r0410 =
1

2

(
u0+

++ − u−0
++ + 2εu0+

00

)
(D.2)

r041−1 = Re
(
u−+

++ + εu−+
00

)
(D.3)

r111 = Reu++
−+ (D.4)

r100 = u00
−+ (D.5)

Re r110 =
1

2
Re
(
u+0
−+ + u0+

−+

)
(D.6)

r11−1 =
1

2

(
u+−
−+ + u−+

−+

)
(D.7)

Im r210 =
1

2
Re
(
u+0
−+ − u0+

−+

)
(D.8)

Im r21−1 =
1

2

(
u+−
−+ − u−+

−+

)
(D.9)

r511 = −
√

2

2
Re
(
u++

0+ + u−−
0+

)
(D.10)

r500 = −
√

2Reu00
0+ (D.11)

Re r510 =

√
2

4
Re
(
(u0−

0+ − u+0
0+) − (u0+

0+ − u−0
0+)
)

(D.12)

r51−1 = −
√

2

2
Re
(
u−+

0+ + u+−
0+

)
(D.13)

Im r610 =

√
2

4
Re
(
(u0−

0+ − u+0
0+) + (u0+

0+ − u−0
0+)
)

(D.14)

Im r61−1 = −
√

2

2
Re
(
u−+

0+ − u+−
0+

)
(D.15)
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Appendix E

SDMEs for an unpolarized

target
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Figure E.1: Combinations of SDMEs for an unpolarized target and an unpolarized
beam binned in Q2. Each combination contains an s-channel helicity-conserving
SDME.
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Figure E.2: Combinations of SDMEs for an unpolarized target and an unpolarized
beam binned in Q2. Each combination contains an SDME associated with the
interference between helicity-conserving and helicity-changing amplitudes.
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Figure E.3: SDMEs for an unpolarized target and an unpolarized beam binned
in Q2. Each SDME is associated with the interference between different helicity-
changing amplitudes.
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Figure E.4: Combinations of SDMEs for an unpolarized target and an unpolarized
beam binned in x. Each combination contains an s-channel helicity-conserving
SDME.
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Figure E.5: Combinations of SDMEs for an unpolarized target and an unpolarized
beam binned in x. Each combination contains an SDME associated with the
interference between helicity-conserving and helicity-changing amplitudes.
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Figure E.7: Combinations of SDMEs for an unpolarized target and an unpolarized
beam binned in −t′. Each combination contains an s-channel helicity-conserving
SDME.
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Figure E.8: Combinations of SDMEs for an unpolarized target and an unpolarized
beam binned in −t′. Each combination contains an SDME associated with the
interference between helicity-conserving and helicity-changing amplitudes.
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Figure E.9: SDMEs for an unpolarized target and an unpolarized beam binned
in −t′. Each SDME is associated with the interference between different helicity-
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Figure E.10: The SDMEs for an unpolarized target and an unpolarized beam ex-
tracted in different Q2 bins. The SDMEs are represented within the Wolf-Schilling
formalism [14]. The results from this analysis obtained from the HERMES 2002-
2005 data for a transversely polarized target are compared with the results from
an other analysis obtained from the HERMES 1996-2000 data for an unpolarized
hydrogen target [26].
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Figure E.11: The SDMEs for an unpolarized target and an unpolarized beam
extracted in different x bins. The SDMEs are represented within the Wolf-Schilling
formalism [14]. The results from this analysis obtained from the HERMES 2002-
2005 data for a transversely polarized target are compared with the results from
an other analysis obtained from the HERMES 1996-2000 data for an unpolarized
hydrogen target [26].
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Figure E.12: The SDMEs for an unpolarized target and an unpolarized beam ex-
tracted in different −t′ bins. The SDMEs are represented within the Wolf-Schilling
formalism [14]. The results from this analysis obtained from the HERMES 2002-
2005 data for a transversely polarized target are compared with the results from
an other analysis obtained from the HERMES 1996-2000 data for an unpolarized
hydrogen target [26].
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Appendix F

SDMEs for a transversely

polarized target
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Figure F.1: Combinations of SDMEs for a transversely polarized target and an
unpolarized beam binned in Q2. Each combination contains an s-channel helicity-
conserving SDME.
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Figure F.2: Combinations of SDMEs for a transversely polarized and an unpolar-
ized beam binned in Q2. Each combination contains an SDME associated with
the interference between helicity-conserving and helicity-changing amplitudes.
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Figure F.3: SDMEs for a transversely polarized target and an unpolarized beam
binned in Q2. Each SDME is associated with the interference between different
helicity-changing amplitudes.
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Figure F.4: Combinations of SDMEs for a transversely polarized target and an
unpolarized beam binned in x. Each combination contains an s-channel helicity-
conserving SDME.
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Figure F.5: Combinations of SDMEs for a transversely polarized and an unpolar-
ized beam binned in x. Each combination contains an SDME associated with the
interference between helicity-conserving and helicity-changing amplitudes.
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Figure F.6: SDMEs for a transversely polarized target and an unpolarized beam
binned in x. Each SDME is associated with the interference between different
helicity-changing amplitudes.
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Figure F.7: Combinations of SDMEs for a transversely polarized target and an
unpolarized beam binned in −t′. Each combination contains an s-channel helicity-
conserving SDME.
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Figure F.8: Combinations of SDMEs for a transversely polarized and an unpolar-
ized beam binned in −t′. Each combination contains an SDME associated with
the interference between helicity-conserving and helicity-changing amplitudes.
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Figure F.9: SDMEs for a transversely polarized target and an unpolarized beam
binned in x. Each SDME is associated with the interference between different
helicity-changing amplitudes.
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Samenvatting

Inleiding

Protonen en neutronen zijn de bouwstenen van alle in de natuur waargenomen
atoomkernen. In het onderzoek naar de structuur van nucleonen, de verzamel-
naam van protonen en neutronen, is de oorsprong van hun spin een belangrijk
onderwerp. Spin, ook wel het intrinsieke impulsmoment genoemd, is een funda-
mentele kwantummechanische eigenschap van deeltjes. Deeltjes kunnen op basis
van hun spin worden ingedeeld in twee categorieën, bosonen, die een heeltallige
spin van 0, 1, 2, . . . (uitgedrukt in eenheden van de gereduceerde Planck constante
~) dragen, of fermionen, die een halftallige spin van 1/2, 3/2, 5/2, . . . dragen. Het
is bekend dat nucleonen een spin dragen van 1/2. Van nucleonen weten we dat
het geen elementaire deeltjes zijn, maar samengestelde systemen van elementaire
deeltjes die bij elkaar worden gehouden door één van de fundamentele krachten in
de natuur, namelijk de sterke wisselwerking [1]. De individuele eigenschappen van
deze elementaire deeltjes, waaronder hun spin, zijn tot in detail bekend. Maar,
op welke manier deze deeltjes gezamenlijk zorg dragen voor de halftallige spin van
het nucleon, is één van de onopgeloste vraagstukken in de fysica van de sterke
wisselwerking.

Onderzoek naar de structuur van nucleonen Het eerste bewijs dat nucleo-
nen samengestelde deeltjes zijn werd geleverd door metingen van het magnetische
moment van het proton in 1932-33 door Estermann, Frisch en Stern in Hamburg
[2]. Het gemeten magnetische moment week duidelijk af van de waarde die het
zou aannemen als het proton een elementair deeltje zou zijn. Hieruit kon men
concluderen dat het proton een interne structuur heeft.

Sindsdien zijn er veel experimenten uitgevoerd om de interne structuur van
nucleonen te onderzoeken. In veel van deze experimenten werden leptonen (elek-
tronen, positronen, muonen of neutrino’s) verstrooid aan protonen of deuteronen.
Men heeft waargenomen dat bij het elastische verstrooiingsproces ep → ep, waar
e het lepton aanduidt en p het proton, het verstrooiingspatroon afwijkt van de
verwachting voor verstrooiing aan een puntdeeltje, een elementair deeltje zonder
ruimtelijke uitgebreidheid. Dit is voor het eerst waargenomen in 1955 door Hof-
stadter en medewerkers [3] in metingen van elastische elektronverstrooiing aan
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protonen in Stanford. Een goede beschrijving van de elastische verstrooiing kon
worden gegeven met behulp van modellen, waarin wordt aangenomen dat nucleo-
nen een ruimtelijke verdeling hebben van lading en magnetisatie, die in rekening
wordt gebracht door de zogenaamde elektromagnetische vormfactoren. Uit de
gemeten elektromagnetische vormfactoren heeft men bepaald dat het proton een
ladingsstraal van ongeveer 0.8 fm heeft.

Onderzoek van zogenaamde diep-inelastische verstrooiing (DIS) biedt de mo-
gelijkheid om de samenstelling van het nucleon in meer detail te bepalen. In dit
verstrooiingsproces vindt een wisselwerking plaats tussen een inkomend lepton en
één van de individuele deeltjes waaruit het nucleon is opgebouwd. Als gevolg
van deze wisselwerking breekt het nucleon op in verscheidene zware samengestelde
deeltjes (hadronen), die collectief worden aangeduid met X. De eerste metingen
van het DIS-proces ep → eX werden uitgevoerd in Stanford aan het einde van
de zestiger jaren van de vorige eeuw [4]. Op basis van deze metingen kwamen
Feynman en Bjorken tot de interpretatie van het DIS-proces als zijnde verstrooi-
ing aan individuele elementaire deeltjes in het binnenste van het nucleon. Deze
elementaire deeltjes werden partonen genoemd.

In het partonmodel wordt een nucleon beschreven als een verzameling van par-
tonen, elektrisch geladen spin-1/2 deeltjes die later (anti)quarks genoemd werden.
De wisselwerking tussen quarks wordt beschreven als de uitwisseling van elektrisch
neutrale spin-1 partonen, gluonen genaamd. Men kan verder onderscheid maken
tussen valentiequarks en een ‘zee’ van quark-antiquark paren die ontstaan vanuit
gluonen door kwantumfluctuaties. Nucleonen bevatten elk drie valentiequarks die
verantwoordelijk zijn voor de belangrijkste statische eigenschappen van nucleonen,
zoals de isospin (het kwantumgetal dat bepaalt of een nucleon een proton of een
neutron is), de elektrische lading en de spin.

De werkzame doorsnede van het DIS-proces voor een bepaalde polarisatietoe-
stand van het inkomende lepton en het nucleon wordt uitgedrukt in termen van
zogenaamde structuurfuncties. Binnen het partonmodel wordt een fenomenologi-
sche beschrijving gegeven van de DIS-structuurfuncties in termen van zogenaamde
partonverdelingsfuncties. Deze verdelingsfuncties relateren de structuurfuncties
aan de impulsverdelingen van partonen in het nucleon.

De spinafhankelijke structuurfunctie g1 kan worden gemeten in DIS met een
longitudinaal gepolariseerde leptonbundel en een longitudinaal gepolariseerd nu-
cleon ten opzichte van de bundelrichting. Deze structuurfunctie is gerelateerd aan
de heliciteitsverdeling van quarks in het nucleon, waarbij de heliciteit aangeeft
of de spinrichting van quarks parallel of antiparallel aan de bundelrichting staat.
Vanuit deze verdelingsfunctie kan men de relatieve bijdrage ∆Σ van de quarkspins
aan de spin van het nucleon bepalen. In 1988 bracht het EMC-experiment te
CERN verslag uit van de eerste metingen van ∆Σ. De resultaten van het EMC-
experiment leidden tot de verrassende ontdekking dat quarkspins slechts voor een
klein deel bleken bij te dragen aan de spin van het proton. Op basis van de re-
sultaten van verschillende vergelijkbare experimenten aan de instituten CERN,
SLAC en DESY, is bepaald dat de bijdrage ∆Σ van de spin van quarks tot de spin
van het nucleon ongeveer 20-30% is. De vraag rijst dus wat de oorsprong is van



175

het resterende en grootste gedeelte van de spin van nucleonen.

Het baanimpulsmoment van quarks, ‘generalized parton distributions’
en exclusieve processen Zoals hierboven is beschreven, levert de spin van
quarks slechts een relatief kleine bijdrage aan de spin van het nucleon. Er moeten
derhalve ook andere bijdragen zijn. De verschillende bijdragen aan de nucleonspin
worden gespecificeerd in de volgende vergelijking [8]

1

2
=

1

2
∆Σ + Lq + ∆G+ Lg,

waar Lq staat voor het baanimpulsmoment van quarks in het nucleon en waar
respectievelijk ∆G en Lg de bijdragen van de intrinsieke spin en het baanim-
pulsmoment van gluonen voorstellen. Het totale impulsmoment Jq van quarks in
het nucleon kan worden geschreven als

Jq =
1

2
∆Σ + Lq.

Aangezien voor ∆Σ reeds metingen beschikbaar zijn, kan men informatie verkrij-
gen over het, tot dusver onbekende, baanimpulsmoment Lq van quarks, als men
de waarde van het totale impulsmoment Jq kan bepalen.

Het is mogelijk om experimenteel informatie te verkrijgen over het totale im-
pulsmoment Jq door gebruik te maken van het theoretische kader van zogenaamde
‘generalized parton distributions’ (GPDs). GPDs zijn generalisaties van de ge-
bruikelijke partonverdelingsfuncties en vormfactoren. GPDs geven een beschrij-
ving van exclusieve productieprocessen. Dit zijn processen waarbij het nucleon
intact blijft en waarbij men alle eindtoestanden expliciet kan identificeren, zoals
bij diep-virtuele Comptonverstooiing (DVCS) e p → e p γ en exclusieve mesonpro-
ductie e p → e pM , waar γ en M , respectievelijk, een reëel foton en een meson
vertegenwoordigen. Hierbij moet worden opgemerkt dat, in het geval van ex-
clusieve mesonproductie, de GPD-beschrijving alleen van toepassing is als zowel
het uitgewisselde virtuele foton als het geproduceerde meson longitudinaal gepo-
lariseerd zijn.

Zoals voor het eerst is aangetoond in [9], zijn specifieke GPDs gerelateerd aan
het totale impulsmoment van quarks in het nucleon. Omdat GPDs niet direct
kunnen worden gemeten, zijn er modellen ontwikkeld voor GPDs op basis van
de beschikbare informatie over partonverdelingsfuncties en vormfactoren. Met de
extra informatie die het onderzoek naar exclusieve processen oplevert, kunnen de
GPD-modellen verder verfijnd worden. Dit zal resulteren in meer gedetailleerde
kennis van de structuur van het nucleon. In het bijzonder, zoals is beschreven
in [10], kan met behulp van metingen van specifieke observabelen in exclusieve
meson productie een modelafhankelijke schatting gemaakt worden van het totale
impulsmoment Jq van quarks in het nucleon. Op deze manier kan dus ook een
schatting gemaakt worden van het baanimpulsmoment Lq van quarks. Dat is
van belang, omdat er tot op heden geen nauwkeurige experimentele informatie
beschikbaar is over het baanimpulsmoment van quarks en gluonen in het nucleon.
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De meting

GPD-modelberekeningen zijn beschikbaar voor de zogenaamde ‘transverse target-
spin asymmetry’ AUT in exclusieve ρ0-leptoproductie. Dit is een asymmetrie van
de werkzame doorsnede van dit proces bij een transversaal gepolariseerd nucleon
en een ongepolariseerde leptonbundel. Het gaat hier om de asymmetrie onder
het draaien van de oriëntatie van de nucleonpolarisatie met een hoek van 180
graden. De asymmetrie is afhankelijk van de azimuthale hoeken φ en φS van het
geproduceerde ρ0-meson en de nucleon-polarisatievector, respectievelijk, rondom
de richting van het uitgewisselde virtuele foton. Uit de berekeningen volgt dat
de asymmetrie AUT een sin(φ − φs) component heeft, die afhankelijk is van de
waarde van Jq. Door deze hoekafhankelijkheid van de asymmetrie te meten en
deze vervolgens te vergelijken met beschikbare berekeningen, kan men dus een
schatting van Jq verkrijgen. Hierbij moet men in acht nemen dat de berekeningen
alleen van toepassing zijn in het geval dat zowel het uitgewisselde virtuele foton als
het geproduceerde ρ0-meson longitudinaal gepolariseerd is. Experimenteel moet
de asymmetrie dus ook voor dit specifieke geval worden bepaald.

De gebruikelijke manier om de werkzame doorsnede voor longitudinaal en
transversaal gepolariseerde virtuele fotonen te scheiden is de Rosenbluth methode.
Deze methode vereist echter dat metingen worden gedaan bij verschillende bun-
delenergieën. Indien metingen gedaan zijn bij één bundelenergie moet een andere
benadering gebruikt worden. Onder de aanname van ‘s-channel helicity conser-
vation’ (SCHC) wordt de heliciteit van het virtuele foton overgenomen door het
geproduceerde ρ0-meson. In het geval dat SCHC geldig is, kan men dus volstaan
met het meten van de asymmetrie voor een longitudinaal gepolariseerd ρ0-meson.
Experimenteel is dit mogelijk, door gebruik te maken van het feit dat het ρ0-
meson vrijwel direct na de productie vervalt in twee pionen met een tegengestelde
lading. Het ρ0-meson is net zoals het virtuele photon een spin-1 deeltje. Omdat
de intrinsieke spin van een pion gelijk aan nul is, wordt de spin van ρ0-meson
volledig overgedragen op het baanimpulsmoment van het pionpaar en daarmee op
de hoekverdeling van het pionpaar.

Door deze vervalshoekverdeling tegelijkertijd te bepalen, kan de werkzame
doorsnede, en dus ook tot de asymmetrie AUT , voor zowel longitudinaal als trans-
versaal gepolariseerde ρ0-mesonen geëxtraheerd worden. De bijdragen van de
verschillende polarisatietoestanden van het virtuele foton en het ρ0-meson kun-
nen worden uitgedrukt in termen van zogenaamde ‘spin density-matrix elements’
(SDMEs). De (combinaties van) SDMEs voor een specifieke polarisatietoestand
van het geproduceerde ρ0-meson kunnen bepaald worden uit de hoekverdelin-
gen van het ρ0-meson en de bijbehorende vervalspionen. Beschikbare resultaten
voor SDMEs impliceren dat SCHC een redelijke aanname is voor een ongepo-
lariseerd nucleon. Recentelijk is een nieuw SDME formalisme ontwikkeld voor
vector-mesonproductie op een gepolariseerd nucleon [11]. Met behulp van dit for-
malisme is het mogelijk om de asymmetrie AUT gescheiden voor longitudinaal en
transversaal gepolariseerde ρ0-mesonen te bepalen.
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Indeling proefschrift

Dit proefschrift behandelt de eerste bepaling van de asymmetrie AUT in ex-
clusieve ρ0-elektroproductie op het proton. In hoofdstuk 2 wordt het theoreti-
sche kader, in het bijzonder voor AUT , SDMEs en GPDs, behandeld. De asym-
metrie is bepaald op basis van metingen verricht in de periode 2002-2005 met
het HERMES-experiment bij het instituut DESY in Hamburg, Duitsland. Het
HERMES-experiment maakte gebruik van de 27.6 GeV elektron (of positron) bun-
del van de HERA-versneller. De leptonbundel werd verstrooid aan een gas van wa-
terstofatomen met een transversaal gepolariseerde kern. De hierbij verstrooide lep-
tonen en geproduceerde deeltjes werden gedetecteerd door de HERMES-spectro-
meter. In hoofdstuk 3 kan men een meer gedetaileerde beschrijving van de expe-
rimentele opstelling vinden.

De selectie van data voor exclusieve ρ0-productie is beschreven in hoofdstuk
4. De informatie over exclusief geproduceerde ρ0-mesonen werd gereconstrueerd
vanuit de verkregen informatie over het verstrooide lepton en de vervalsproducten
van het geproduceerde ρ0-meson. Pionparen afkomstig van het verval van ρ0-
mesonen werden geselecteerd door grenzen te stellen aan de invariante massa van
gedetecteerde hadronparen met tegengestelde ladingen. Het teruggestoten proton
kon niet worden gedetecteerd door de HERMES-spectrometer. Desondanks kon-
den exclusieve processen worden geselecteerd door een bovengrens te stellen aan
de zogenaamde ontbrekende energie. Bij de dataselectie is getracht de relatieve
bijdrage van achtergrondprocessen te minimaliseren. Een Monte Carlo-simulatie
werd gebruikt om een schatting te geven van de bijdrage van de niet-exclusieve
achtergrond afkomstig van semi-inclusieve diep-inelastische verstrooiingsprocessen.
De achtergrondbijdrage van exclusieve, niet-resonante processen, waarbij de gede-
tecteerde hadronparen niet afkomstig zijn van ρ0-verval, is geschat aan de hand
van een fit van de invariante massa verdeling van exclusieve hadronparen. Volgens
deze schatting is deze achtergrondbijdrage verwaarloosbaar klein.

De procedures die zijn gebruikt voor de bepaling van de asymmetrie AUT en
de SDMEs voor ρ0-productie zijn beschreven in hoofdstuk 5. De asymmetrie is
bepaald als functie van de hoeken φ en φS door middel van fits van de hoekverdelin-
gen van ρ0-mesonen gemeten met twee tegengestelde oriëntaties van de transver-
sale protonpolarisatie. Hierbij werd gebruikt gemaakt van de ‘unbinned maximum
likelihood fit’ methode. Zoals eerder is uitgelegd was het onze doelstelling om AUT

afzonderlijk te bepalen voor verschillende polarisatietoestanden van het ρ0-meson.
Om dit te bewerkstelligen is de afhankelijkheid van de vervalshoek θππ van het
ρ0-meson in rekening genomen in de extractieprocedure.

Het modelleren van de extra hoekafhankelijkheid is op twee verschillende ma-
nieren aangepakt. In de ene aanpak is gebruik gemaakt van een combinatie van de
Diehl-Sapeta [13] en Wolf-Schilling [14] formalismen. Hierin is de hoekverdeling
gëıntegreerd over de vervalshoek φππ van het ρ0-meson. In de andere aanpak is
gebruik gemaakt van het meer recentelijk ontwikkelde Diehl formalisme [11] voor
vector-mesonproductie vanaf een gepolariseerd nucleon. In dat geval is de vervals-
hoek φππ wel in rekening gebracht. In beide benaderingen zijn SDMEs gebruikt om
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de informatie besloten in de verschillende hoekverdelingen te vertegenwoordigen.
Hoofdstuk 7 is gewijd aan de verkregen resultaten voor SDMEs en voor de

asymmetrie AUT . Op basis van de resultaten voor de SDMEs verkregen in het
Diehl formalisme, kan worden geconcludeerd dat voor een ongepolariseerd pro-
ton SCHC een redelijke, maar niet exacte benadering is. De resultaten voor
een ongepolariseerd proton zijn omgezet naar het Wolf-Schilling formalisme en
vergeleken met de resultaten van een eerdere analyse, gedaan in dit formalisme,
van HERMES-data voor een ongepolariseerd proton uit de periode 1996-2000. Uit
deze vergelijking volgt dat de resultaten van beide analyses consistent zijn.

Gebruik makend van de nieuwe resultaten voor SDMEs voor een ongepo-
lariseerd proton is de asymmetrie AUT afzonderlijk bepaald voor longitudinaal
en transversaal gepolariseerde ρ0-mesonen. De verschillen tussen de resultaten
verkregen met de twee hierboven genoemde procedures voor de bepaling van de
asymmetrie zijn klein ten opzichte van de experimentele onzekerheden.

Het is de eerste keer dat de SDMEs ook zijn bepaald voor een transversaal
gepolariseerd proton. De meeste van deze 30 (combinaties van) SDMEs zijn, bin-
nen de experimentele onzekerheid, consistent met nul. De resultaten geven aan dat
de amplitudo’s voor het productieproces waarin de oriëntatie van de protonspin
verandert in het algemeen kleiner zijn dan die voor het proces waarin de oriëntatie
van de protonspin gelijk blijft. Een afwijking van nul is echter waargenomen voor
de SDME Im n 0 0

0+ , wat een extra schending van SCHC suggereert voor de over-
gang van een transversaal gepolariseerd foton naar een longitudinaal gepolariseerd
ρ0-meson voor een transversaal gepolariseerd proton.

Het resultaat voor de sin(φ−φs)-component van de asymmetrie AUT voor longi-
tudinaal gepolariseerde ρ0-mesonen is vergeleken met beschikbare GPD-modelbere-
keningen [28, 79] onder de aanname van SCHC. Uit deze vergelijking volgt dat de
berekeningen consistent zijn met de data. De berekening van [28] zijn gebruikt om
een modelafhankelijke schatting te verkrijgen van Ju onder de aanname Jd = 0.
De resulterende schatting Ju = 0.43 ± 0.43 is consistent met andere schattingen
op basis van DVCS-metingen [76, 77, 78] en GPD-model fits van vormfactor data
[29, 74]. De grote onzekerheid in de bepaling van Ju wordt gedomineerd door
de statistische onzekerheid. Door gebruik te maken van de eerdere bepaling van
∆Σ = 0.330±0.039 [6] in combinatie met de schatting Jq ≈ Ju+Jd = 0.43±0.43 is
een schatting verkregen van het baanimpulsmoment Lq van quarks in het proton.
Deze schatting leverde een waarde op van Lq = 0.27 ± 0.43.
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