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Abstract

We study the scenario of gravitino dark matter with a general neutralino being the next-

to-lightest supersymmetric particle (NLSP). Therefore, we compute analytically all 2-

and 3-body decays of the neutralino NLSP to determine the lifetime and the electro-

magnetic and hadronic branching ratio of the neutralino decaying into the gravitino and

Standard Model particles.

We constrain the gravitino and neutralino NLSP mass via big bang nucleosynthesis and

see how those bounds are relaxed for a Higgsino or a wino NLSP in comparison to the

bino neutralino case. At neutralino masses & 1 TeV, a wino NLSP is favoured, since it

decays rapidly via a newly found 4-vertex. The Higgsino component becomes important,

when resonant annihilation via heavy Higgses can occur.

We provide the full analytic results for the decay widths and the complete set of Feyn-

man rules necessary for these computations. This thesis closes any gap in the study of

gravitino dark matter scenarios with neutralino NLSP coming from approximations in

the calculation of the neutralino decay rates and its hadronic branching ratio.

Zusammenfassung

Diese Diplomarbeit befasst sich mit dem Gravitino als Dunkler Materie, wobei ein allge-

meines Neutralino das nächstleichteste supersymmetrische Teilchen (NLSP) ist. Daher

berechnen wir analytisch alle Zwei- und Dreikörperzerfälle des Neutralino-NLSP, um die

Lebensdauer sowie das elektromagnetische und hadronische Verzweigungsverhältnis des

Neutralinos, das in das Gravitino und Teilchen des Standardmodells zerfällt, zu bestim-

men.

Die primordiale Nukleosynthese lässt uns Schranken für die Gravitino- sowie für die

Neutralinomasse finden. Dabei erkennen wir inwieweit diese Schranken für ein Higgsino-

oder Wino-NLSP schwächer im Vergleich zum Bino-NLSP sind. Für Neutralinomassen &

1 TeV ist ein Wino-NLSP begünstigt, da es schnell über einen neugefundenen 4-vertex

zerfällt. Eine Higgsinokomponente wird wichtig, falls resonante Paarvernichtung über

schwere Higgsteilchen auftreten kann.

Wir stellen die vollen analytischen Ergebnisse für die Zerfallsbreiten und den

vollständigen Satz von Feynmanregeln, die für diese Berechnungen nötig sind, zur

Verfügung. Diese Diplomarbeit schließt jede Lücke in der Untersuchung des Gravitinos

als Dunkler Materie mit einem Neutralino als NLSP, die rückführbar ist auf Näherungen

in der Berechnung der Zerfallsbreiten des Neutralinos oder seines hadronischen Verzwei-

gungsverhältnisses.



ii



Contents

1 Introduction 2

2 Nucleosynthesis and Dark Matter in Big Bang Cosmology 5

2.1 Big Bang Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Nucleosynthesis in Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Evidence for Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 From Supersymmetry to Gravitino Dark Matter 17

3.1 Local Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 The Minimal Supersymmetric Standard Model . . . . . . . . . . . . . . . 19

3.3 Symmetry Breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Supersymmetry Breaking . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.2 Electroweak Symmetry Breaking . . . . . . . . . . . . . . . . . . . 26

3.3.3 Physical Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 The Gravitino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 Gravitino Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 General Neutralino NLSP with Gravitino Dark Matter 37

4.1 Bino NLSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Wino NLSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Higgsino NLSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Varying Gravitino Mass and Intermediate Sparticles . . . . . . . . . . . . 52

4.5 Interference Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

iii



Contents

5 Constraints by Big Bang Nucleosynthesis 57

5.1 Bino-Wino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Bino-Higgsino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Wino-Higgsino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Conclusions 67

A Notation and Conventions 69

B Example Calculation 73

C Kinematics and Parametrisation 75

C.1 2-body decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

C.2 3-body decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

D Feynman rules 79

E Full Analytic Results 86

E.1 2 body decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

E.2 3 body decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

F Correction 107

References 110

Acknowledgements 115

iv



List of Figures

2.1 BBN predictions and the Ωm − ΩΛ plane . . . . . . . . . . . . . . . . . . . 12

2.2 BBN constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 CMB sky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 CMB power spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Schematic structure of SUSY breaking . . . . . . . . . . . . . . . . . . . . 24

4.1 G̃→ Ψµγ/Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 B
eB
had . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 B
fW
had . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 W̃ → ΨµW
+W− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 H̃ → ΨµZ/h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6 H̃ → ΨµZ h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.7 B
eH
had . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.8 B
eH
had with 5% bino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.9 Bχ
had for different m3/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.10 Beγ
had . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.11 Bhad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Bino-Wino parameter space . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 BBN bounds on bino-wino . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Bino-Higgsino parameter space . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4 BBN bounds on bino-Higgsino . . . . . . . . . . . . . . . . . . . . . . . . 63

v



List of Figures

5.5 Wino-Higgsino parameter space . . . . . . . . . . . . . . . . . . . . . . . . 64

5.6 BBN bounds on wino-Higgsino . . . . . . . . . . . . . . . . . . . . . . . . 65

5.7 BBN bounds on wino-Higgsino with m3/2 = 100 GeV . . . . . . . . . . . . 66

E.1 G̃→ Ψµγ/Z → Ψµqq̄ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

E.2 H̃ → Ψµh/Z → Ψµqq̄ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

E.3 χ→ Ψµq̃ → Ψµqq̄ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

F.1 Correction to W̃ → ΨµW
+W− . . . . . . . . . . . . . . . . . . . . . . . . 107

F.2 Correction to H̃ → ΨµhZ . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

vi



List of Tables

3.1 SUGRA fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 MSSM matter fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 MSSM gauge fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Spinor representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Physical particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1



Chapter 1

Introduction

The nature and identity of the dark matter, that actually makes up more than 80% of

the matter in the universe, is one of the major questions in the natural sciences. Even

though the Standard Model of particle physics provides an astonishingly good description

of the fundamental particles and their interactions, the observational fact that most of

the matter of the universe resides in the form of cold non-baryonic dark matter provides

impressive evidence for physics beyond the Standard Model [1].

Remarkably, supersymmetry provides a promising candidate for the particle dark matter,

since in supersymmetric theories with conserved R-parity the lightest supersymmetric

particle (LSP) is stable and thus a compelling candidate for dark matter, if it does not

have electromagnetic or strong interactions. The lightest neutralino is one favoured LSP

candidate, since it interacts weakly and is naturally one of the lightest supersymmetric

particles [2].

Another particularly attractive candidate is the gravitino [3, 4]. The gravitino is an

unique and inevitable prediction of any supersymmetric theory containing gravity. As

the superpartner of the graviton, it is extremely weakly interacting. Thus, if the gravitino

is the LSP, it can be dark matter. But in any case the relic gravitino abundance may

not overclose the universe.

Typically, the extremely weak interactions of the gravitino make the gravitino -if it is

not the LSP- decay during or after big bang nucleosynthesis (BBN). In this way, the

successful prediction of the light element abundances in the universe is spoiled [5, 6, 7, 8].

For gravitino dark matter with conserved R-parity the gravitino is stable and thus does

not decay. But then the next-to-lightest supersymmetric particle (NLSP) becomes long-

lived and may in turn alter the observed abundances of light elements when it decays [9,

10, 11, 12]. These constraints lead to lower bounds on the NLSP mass mχ, since the
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NLSP decays with a lifetime ∝ m−5
χ . However, the stabilization of the hierarchy between

electroweak and high-energy scales, by cancelling the quadratic divergences in the mass-

squared of the Higgs boson, is just one motivation that suggests the NLSP to have a

mass in the TeV range [13].

Furthermore, there is a lower bound on the gravitino mass due to the overclosure limit

also in scenarios with inflation, at least, if the observed baryon-to-photon ratio stems

from baryogenesis via thermal leptogenesis [14, 15, 16]. On the other hand, there is an

upper bound on the gravitino mass m3/2 by BBN, since the lifetime of the NLSP is also

∝ m2
3/2. Altogether, both masses mχ and m3/2 are constrained and one of the most

severe constraints is to maintain the successful predictions of big bang nucleosynthesis.

We consider gravitino dark matter with neutralino NLSP. Thereby, we compute analyt-

ically all 2- and, for the first time, also all 3-body decays of the general neutralino. We

find a new vertex from the non-abelian part of the gravitino interaction Lagrangian that

becomes leading at masses ≈ 1 TeV but has been neglected so far in the literature. This

emphasizes especially a wino-like NLSP, which has up to now not been considered at all.

In the process we regard thresholds by the Breit-Wigner form of propagators and, fur-

thermore, neutralino mixing effects and all possible interferences. That allows us to

determine the lifetime and branching ratios of the general neutralino NLSP with gravi-

tino dark matter to a high accuracy. We consider all six quark flavour with their cor-

responding masses. Thereby, we find that the minimal hadronic branching ratio of the

neutralino NLSP has been underestimated more than an order of magnitude in earlier

studies [17, 18, 19, 20].

In fact, these results are a crucial input to derive BBN constraints on gravitino dark mat-

ter scenarios with neutralino NLSP. Independent from any model at high energy scales,

we study the allowed low energy parameter space and search for possibilities to reconcile

gravitino dark matter with neutralino NLSP and thermal leptogenesis considering the

thermal production of gravitinos after reheating. Thereby, we study the possibilities

that a scenario overcomes the BBN bounds either due to favourable decay properties or

a low relic density. We also take into account the possibility to produce the gravitino

dark matter density in NLSP decays.

This thesis is organized as follows: Chapter 2 reviews briefly the role of nucleosynthe-

sis and dark matter in cosmology. In Chapter 3 we introduce the elementary particle

content under consideration, whereas we emphasize the gravitino and the neutralino.

In Chapter 4 we investigate all 2- and 3-body decays of a general neutralino NLSP

with gravitino dark matter. This allows us to determine the neutralino lifetime and its

electromagnetic and hadronic branching ratio considering all effects of interference and
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Chapter 1. Introduction

mixing, which we use in Chapter 5 to constrain the scenario via big bang nucleosyn-

thesis. After the conclusions in the last chapter, we list our notation in Appendix A.

There is an example calculation in Appendix B, afterwards we discuss the kinematics

briefly in Appendix C. We provide the complete set of Feynman rules as derived for

the computations of neutralino-to-gravitino decays in Appendix D and we list the full

analytic results of all neutralino decay widths in Appendix E.

The results of this work will appear in [21].
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Chapter 2

Nucleosynthesis and Dark Matter

in Big Bang Cosmology

In this chapter we review briefly the role of nucleosynthesis and dark matter in big bang

cosmology. Thereby we are based mainly on [22, 23, 24, 25, 26].

2.1 Big Bang Cosmology

Einstein’s equations of general relativity,

Rµν −
1

2
Rgµν = 8πGNTµν , (2.1)

determine the geometry of space-time by the matter and energy content of the universe.

Rµν and R are the Ricci tensor and Ricci scalar respectively, while gµν is the space-time

metric. The right-hand side of Eq. (2.1) consists of the energy-momentum tensor Tµν ,

while GN denotes Newton’s gravitational constant. Eq. (2.1) is a set of ten coupled

equations. To solve them analytically, we have to assume symmetries. Fortunately,

measurements of the cosmic microwave background (CMB) show that the universe is

highly isotropic (see Section 2.2) and galaxy surveys indicate that the universe is also

homogeneous on large scales of O(100 Mpc). The most general expression for a space-

time metric, which has a (3D) maximally symmetric subspace of a 4D space-time, is the

Friedmann-Robertson-Walker metric,

gµνdx
µdxν = ds2 = dt2 − a2(t)

[
dr2

1 − kr2
+ r2(dθ2 + sin2 θ dΦ2)

]
, (2.2)

where r, θ and Φ are comoving spatial coordinates. The constant k = −1, 0,+1 charac-

terizes the spatial curvature, whereas k = −1 corresponds to an open, k = 0 to a flat
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Chapter 2. Nucleosynthesis and Dark Matter in Big Bang Cosmology

and k = +1 to a closed universe. So the scale factor a(t) describes the evolution with

time t completely.

A convenient assumption is to describe the matter and energy of the universe as a perfect

fluid, thereby respecting isotropy and homogeneity. The energy-momentum tensor of a

perfect fluid in its rest frame is

T µν =




ρ 0 0 0

0 −p 0 0

0 0 −p 0

0 0 0 −p



, (2.3)

where ρ and p denote as usual energy density and pressure, respectively. These assump-

tions bring us from Einstein’s equations (2.1) to the Friedmann equations,

ä = −4πGN
3

a
∑

i

(ρi + 3pi) , (2.4)

which is also known as acceleration equation, and

H2 ≡
(
ȧ

a

)2

=
8πGN

3

∑

i

ρi −
k

a2
. (2.5)

These equations describe the dynamics of the universe. We introduced the Hubble

parameter H that gives the expansion rate ȧ/a of the universe. The sum accounts for

several forms of energy, which are characterized by their equation of state,

pi = wiρi . (2.6)

There are radiation and relativistic particles with wr = 1/3 and dust or non-relativistic

matter with wm = 0. The cosmological constant Λ can be described by an energy com-

ponent with wΛ = −1. The energy conservation equation in an isotropic, homogeneous

universe reads,

ρ̇ = −3H(ρ+ p) . (2.7)

This can also be derived from the Friedmann Eq. (2.4) and (2.5). Therefore, the combi-

nation of Eq. (2.5) and either energy conservation (2.7) or Eq. (2.4), supplemented by

the equation of state (2.6), forms a complete system of equations that determines the

two unknown functions a(t) and ρ(t).

The energy of photons and other relativistic particles decreases during their propagation

in an expanding universe, i.e. their wavelength λ grows with time. So the redshift

parameter

z =
λobs − λem

λem
=
a(tobs)

a(tem)
− 1 (2.8)
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2.1. Big Bang Cosmology

grows with time. λobs denotes the observed wavelength of a formerly -with wavelength

λem- emitted photon, while a(tobs) and a(tem) denote the corresponding values of the

scale factor. As we can see, there is a one-to-one correspondence between z and the time

of emission tem. In this way z is used as a measure of time.

It is convenient to rewrite the Friedmann equations using the density parameter

Ωi(z) =
ρi(z)

ρc(z)
, (2.9)

where ρc(z) = 3H2(z)/(8πGN ) is the critical density corresponding to a spatially flat

universe. The present day critical density is given by [22]

ρc(0) = ρc =
3H2

0

8πGN
' 1.05 × 10−5 h2 GeV cm−3 , (2.10)

where H0 is the present day Hubble parameter. In the usual parametrization

H0 = 100h km s2 Mpc−1 (2.11)

with h ' 0.7. Already the simple extrapolation of this expansion back in time leads to

a singularity in the past of the universe. So the history of the universe started in a very

dense and hot phase: the “big bang”. Since that time the universe expands and due to

its expansion cools down. By extrapolating back in time more carefully we get the age

of the universe as ∼ 13.7×109 yr [22]. Using the density parameter (2.9) the Friedmann

equation (2.5) becomes

1 =
∑

i

Ωi −
k

a2H2
≡ Ωtot −

k

a2H2
, (2.12)

where we have defined the total energy density parameter Ωtot as the sum of the com-

ponents Ωi. Evaluated today (z = 0) Eq. (2.12) gives a cosmic sum rule

1 = Ωtot −
k

a2
0H

2
0

= Ωr + Ωm + ΩΛ − k

a2
0H

2
0

. (2.13)

Neglecting the present day radiation density Ωr = O(10−5) [22] with k = 0, we get

1 ' Ωtot = Ωm + ΩΛ . (2.14)

The acceleration equation (2.4) using Eq. (2.6) rewritten in Ωi reads

ä

aH2
= −1

2

∑

i

Ωi(1 + 3wi) ≡ −1

2
Ωtot(1 + 3weff ) , (2.15)

where we have defined an effective w = weff =
∑

i wiΩi/Ωtot.
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Chapter 2. Nucleosynthesis and Dark Matter in Big Bang Cosmology

Inflation Standard big bang theory has two major problems. First, cosmic microwave

background observations indicate that the universe was highly isotropic at z ' 1100.

Indeed, the observed CMB sky is many orders of magnitude larger than the causal

horizon at that time. If different parts of the CMB sky were causally disconnected, this

isotropy could not be achieved by physical interactions. Instead, it must be arranged

by fine-tuning of initial conditions. Following the standard theory the observed CMB

must have consisted of around 105 causally disconnected patches, which would require

a tremendous amount of fine-tuning. This issue is known as the horizon problem.

Secondly, there is the flatness problem. By differentiation of Eq. (2.12) with respect to

the time and using Eq. (2.15), we obtain

d(Ωtot − 1)

dt
= (1 + 3weff )HΩtot(Ωtot − 1) . (2.16)

Since Ωtot is positive and the Hubble parameter is always positive in an expanding

universe, we see that Ωtot departs from 1 in an universe consisting of matter and radiation

unless it is exactly 1 in the beginning. Thus, in order to obtain the present day value

of Ωtot ' 1 the initial value must be extremely fine-tuned again. Together these are two

different problems of fine-tuning that are both resolved by an inflationary phase in the

very early universe.

Inflation means exponential expansion driven by weff ' −1. If during the inflationary

phase the scale factor grows by a factor of > e60, this implies that the entire observed

universe has been a small causally connected region before the tremendous expansion

during inflation. In this way, inflation resolves the horizon problem. From Eq. (2.12)

we see that Ωtot → 1, if the scale factor grows exponentially with time, i.e. a ∝ eHt

with constant H. Therefore, the universe may arrive at Ωtot ' 1 regardless of the initial

conditions and then stays close to that value until today. In this way, inflation resolves

also the flatness problem.

Of course at the end of inflation the density of all particles that have been in the universe

is diluted away. The inflationary phase can be realized by a scalar field, the so-called

inflaton. Then, the decay of the inflaton at the end of inflation transfers its energy into

a hot thermal plasma of elementary particles. This process is known as reheating. After

reheating the evolution of the universe is described by standard thermal cosmology.

Baryogenesis via Thermal Leptogenesis The observed baryon-to-photon ratio

η :=
nb−nb̄
nγ

6= 0 shows that there has been more matter than antimatter when mat-

ter and antimatter particles annihilated in the early universe.

A proposed mechanism to generate the baryon asymmetry is baryogenesis via thermal

8



2.1. Big Bang Cosmology

leptogenesis [15]. While generating a baryon asymmetry it is necessary to satisfy the

Sakharov conditions:

• Baryon number B violation,

• C-symmetry and CP -symmetry violation,

• Departure from thermal equilibrium.

In baryogenesis via thermal leptogenesis, first, a lepton asymmetry is generated by CP -

violating out-of-equilibrium decays of heavy right-handed Majorana neutrinos. Since

heavy right-handed Majorana neutrinos can explain very light neutrinos via the seesaw

mechanism, this is closely related to the observation of non-vanishing neutrino masses in

the last years. Thus the observation of non-vanishing neutrino masses delivers support

for the mechanism of thermal leptogenesis. The lepton asymmetry is then converted

into a non-vanishing baryon number through non-perturbative sphaleron processes, that

violate the baryon number B.

In order to achieve the observed baryon asymmetry, the model of baryogenesis via ther-

mal leptogenesis requires a high reheating temperature TR & 109 GeV [16, 27].

Relic Abundances Energies in the early universe are often given according to the

characteristic temperature of the thermal plasma. Since the universe expands, the

plasma temperature decreases as

T = T0(1 + z) , (2.17)

where T0 denotes the present day CMB radiation temperature. At high temperatures

(T � mχ) a particle χ in the plasma exists in thermal equilibrium and thus with its

equilibrium abundance. The equilibrium abundance is maintained by annihilation of the

particle with its antiparticle χ̄ into lighter particles l (χχ̄→ l l̄) and vice versa (ll̄ → χχ̄).

As the universe cools to a temperature less than the mass of the particle (T < mχ), the

equilibrium abundance drops exponentially until the rate Γ for the annihilation reaction

χχ̄ → ll̄ falls below the expansion rate H, i.e. Γ < H. At this point, the χs cease

to annihilate, since collisions become unlikely. The interactions which have maintained

thermal equilibrium “freeze out” and a relic cosmological abundance remains.

This picture is described quantitatively by the Boltzmann equation, that describes the

time evolution of the number density nχ(t),

dnχ
dt

+ 3Hnχ = −〈σAv〉[(nχ)2 − (neqχ )2] , (2.18)
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Chapter 2. Nucleosynthesis and Dark Matter in Big Bang Cosmology

where 〈σAv〉 is the thermally averaged total cross section for annihilation of χχ̄ into

lighter particles times the relative velocity v. Here, neqχ denotes the number density of χ

in thermal equilibrium. The second term on the left-hand side accounts for the expansion

of the universe, while the right-hand side represents number-changing interactions. The

first term in brackets of Eq. (2.18) accounts for depletion due to annihilation, while the

second term stems from creation due to the inverse reaction.

There is no closed-form analytic solution to the Boltzmann equation (2.18). However,

computer codes like MicrOMEGAs [28] solve it numerically taking into account many

different effects. In general, if there are additional particles with a mass within 10%

of mχ that share a quantum number with χ, coannihilation will occur. For instance,

χ could annihilate readily with such a particle, in which case this reaction could de-

termine the relic abundance. If an annihilation process via a particle A is allowed, it

can happen resonantly when the mass of the annihilating particle is mχ ≈ mA/2. At

resonant annihilation the particle χ annihilates readily via this channel and thus its relic

abundance might be lowered. For instance, MicrOMEGAs includes coannihilation and

resonant annihilation, takes proper care of poles, thresholds and many other difficulites

that we do not mention here. MicrOMEGAs computes the relic density of the light-

est supersymmetric particle in the minimal supersymmetric extension of the Standard

Model, see Section 3.2. It is conventional to give the mass density mχnχ in units of the

present day critical density (2.10) as

Ωχh
2 = mχnχ/ρc . (2.19)

2.2 Nucleosynthesis in Cosmology

The main processes responsible for the chemical equilibrium in the thermal plasma be-

tween protons p and neutrons n are the weak reactions:

n+ νe � p+ e− , n+ e+ � p+ ν̄e . (2.20)

While the universe cools down, at a temperature below a few MeV, which corresponds

to an age of the universe around 0.5 s, the neutron-to-proton ratio nn/np “freezes out”.

At these comparable low temperatures, the universe obeys well understood Standard

Model physics. The weak interactions become inefficient to maintain the equilibrium,

which leads to a neutron-to-proton ratio of

nn
np

= e
−mn−mp

Tfo ≈ 1

6
, (2.21)

10



2.2. Nucleosynthesis in Cosmology

where Tfo is the freeze-out temperature. Due to neutron decay,

n→ pe−ν̄e , (2.22)

this ratio further decreases to about 1/7 before neutrons are stabilized in bound states,

e.g. deuterium. Regardless of the exact process, nearly all neutrons fuse to helium 4He.

Therefore, we can estimate the relative abundance by weight Yp = ρ4He/(ρn+ρp) of 4He.

With nN denoting the total number of nucleons, it is

Yp ≈ X4He :=
4n4He

nN
=

2nn
np + nn

=
2nn/np

1 + nn/np
≈ 25% . (2.23)

This and other processes have a strong sensitivity to the baryon-to-photon ratio [22]

η :=
nb
nγ

' 6 × 10−10 . (2.24)

For instance, deuterium is destroyed by photons with an energy larger than the binding

energy of deuterium, i.e. γ + D → n + p. Anyway, a few minutes after standard big

bang, nuclear interactions become effective in building light elements. This procedure is

known as big bang nucleosynthesis (BBN). The computation of light element abundances

like deuterium D, helium 3He or 4He and lithium 7Li involves all the details of nuclear

interactions. There are computer codes [11] predicting the abundances in good agreement

with data from astrophysical observations, see Figure 2.1. In doing so, BBN predicts a

present day baryon abundance,

0.018 < Ωbh
2 < 0.023 . (2.25)

We point out that BBN gives us the deepest insight into the early universe. We gain

testable informations about physics just happening a second after the big bang. If we

want to maintain the success of BBN, we get constraints on physics beyond the Standard

Model.

Big bang nucleosynthesis constraints especially the relic abundance Ωχh
2 (2.19) of late-

decaying massive particles χ. If the lifetime of χ is longer than ∼ 0.1 s, its decay may

cause non-thermal nuclear reactions during or after BBN, altering the predictions of the

standard BBN scenario.

The constraints by BBN differ for radiative and hadronic decays, since these decay

processes cause different types of reactions. One simple example is the destruction of a

previous build light element by an energetic photon. Examples for this photo dissociation

are

γ +D → n+ p , γ + 3He→ p+D or γ + 4He→ n+ 3He . (2.26)

11
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3He/H p

4He

2 3 4 5 6 7 8 9 101

0.01 0.02 0.030.005

CM
B

BB
N

Baryon-to-photon ratio η × 1010

Baryon density ΩBh2

D___
H

0.24

0.23

0.25

0.26

0.27

10−4

10−3

10−5

10−9

10−10

2

5
7Li/H p

Yp

D/H p

(a) BBN predictions

   

 
No Big Bang

1 20 1 2 3

 

 

 

 

 

 

 

 

expands forever

−1

0

1

2

3

2

3

closed

Supernovae

CMB

Clusters

SNe:   Knop et al. (2003)
CMB:  Spergel et al.  (2003)
Clusters: Allen et al.  (2002)

ΩΛ

ΩM

open

flat

recollapses eventually

(b) Determination of ΩΛ and Ωm

Figure 2.1: (a): The abundances of 4He, D, 3He, and 7Li as predicted by the standard

model of big-bang nucleosynthesis - the bands show the 95% CL range. Boxes indicate

the observed light element abundances (smaller boxes: ±2σ statistical errors; larger

boxes: ±2σ statistical and systematic errors). The narrow vertical band indicates the

CMB measure of the cosmic baryon density, while the wider band indicates the BBN

ΛCDM range (both at 95% CL). (b): Shown is the preferred region in the Ωm − ΩΛ

plane from the compilation of different data. Figures are taken from [22].

For sure, also hadronic decays lead to distortions. For instance, emitted hadrons could

lose energy during scattering processes by the emission of photons and thus induce

photo dissociation as well. But there are also many other processes. To name another

example, antinucleons released in hadronic decays tend to increase the neutron-to-proton

ratio nn/np as they are more likely to annihilate with protons. A BBN calculation with

decaying particles requires the detailed study of the thermalization of the decay products

in the plasma. Actual calculations include this and consider many processes of photo

dissociation and the impact of hadronic decay products [9, 10, 11, 12]. Maintaining

the predictions of standard big bang nucleosynthesis, they offer constraints on the relic

abundance of decaying relic particles Ωχh
2 as a function of their lifetime τ (4.1). Such

constraints are shown in Figure 2.2. As we can see, the physics of BBN varies with time

12



2.2. Nucleosynthesis in Cosmology

(a) B
χ
had = 10−3 (b) B

χ
had = 1

Figure 2.2: (b): BBN constraints on the abundance of relic decaying neutral particles

Ωχh
2 (if they would have not decayed) as a function of their lifetime for a Mχ = 1 TeV

particle with hadronic branching ratio Bhad = 1. The colored regions are excluded and

correspond to the constraints imposed by the observationally inferred upper limit on
4He - orange -, upper limit on 2H - blue -, upper limit on 3He/2H - red -, and lower limit

on 7Li - light blue -. Constraints derived from 6Li/7Li are shown by the green region.

The region indicated by yellow violates the less conservative 6Li/7Li constraint but

should not be considered ruled out. (a): The same as (b) but for hadronic branching

ratio Bhad = 10−3. The region excluded by the lower limit on 2H/H is indicated by the

color magenta. Figures are taken from [11].

and different abundances and relative abundances lead to constraints at different times.

Therefore, the upper bounds on Ωχh
2 in Figure 2.2 are given as a function of the lifetime

of χ.

Cosmic Microwave Background As the universe cools down at z ' 1100, which cor-

responds to a time of ∼ 1012 s after big bang, the temperature of the photons drops below

the energy to ionize hydrogen, i.e. T . 0.25 eV. Around this time nearly all free electrons

and protons recombine and form neutral hydrogen H. At the time of recombination,

the universe becomes transparent to the photon background radiation. The present-day

cosmic microwave background is the redshifted relic of this radiation. The Cosmic Back-

ground Explorer (COBE) satellite mission found that the CMB spectrum corresponds

to an almost perfect black body with a temperature of T0 ' 2.7 K ' 2.3×10−4 eV [22].

This is what we expect, since a black body by definition emits the spectrum that would

be present in an environment in thermal equilibrium. Furthermore, COBE found the

CMB highly isotropic, i.e. temperature anisotropies are of O(10−5).

13



Chapter 2. Nucleosynthesis and Dark Matter in Big Bang Cosmology

Temperature fluctuations are induced by the slightly inhomogeneous matter distribu-

tion at recombination. Figure 2.3 shows the microwave sky as observed by the Wilkin-

son Microwave Anisotropy Probe (WMAP) [1]. WMAP investigates the temperature

anisotropies found by COBE in detail. Expansion of the temperature anisotropies δT/T

Figure 2.3: CMB temperature fluctuations from the 5-year WMAP data seen over the

full sky. The colors (red/blue) represent temperature fluctuations of about ±0.0002◦.

Image from http://map.gfsc.nasa.gov/.

of Figure 2.3 in spherical harmonics Ylm,

δT

T
(Θ,Φ) =

∞∑

l=2

Ylm(Θ,Φ) , (2.27)

gives the CMB power spectrum (see Figure 2.4) in terms of the multipole moment l,

where the variance Cl of alm is given by

Cl ≡ 〈|alm|2〉 =
1

2l + 1

l∑

m=−l
|alm|2 . (2.28)

The analysis of the power spectrum gives us particular information on the universe at

the time of recombination. For instance, the position of the first peak implies that the

universe is spatially flat, i.e. Ωtot ' 1. As one can see in Figure 2.1 the analysis of the

CMB power spectrum implies also ΩΛ ' 0.75 and Ωm ' 0.25. The amount of baryonic

matter can be inferred from the difference in magnitude between the first and second

peak, whereas the difference in magnitude between the second and third peak gives the

amount of dark matter. These informations are extracted by fits of cosmological models.

As can be seen in Figure 2.1, the ΛCDM model, which assumes a cosmological constant

14



2.3. Evidence for Dark Matter

Figure 2.4: CMB power spectrum. Image from http://map.gfsc.nasa.gov/

Λ and cold dark matter (CDM := particles that are non-relativistic before structure

formation), fits successfully.

Gravitino dark matter scenarios are also constrained by the CMB. Late NLSP decays

can lead to unacceptable spectral distortions. However, for gravitino dark matter with

neutralino NLSP these constraints have been found to be less constraining than the

bounds by big bang nucleosynthesis [29, 30, 31].

2.3 Evidence for Dark Matter

Observations on different scales give striking evidence for the existence of non-baryonic

particle dark matter in the universe, where ’dark’ means unseen at least up to now.

Here, it is a component ΩDM in the cosmic sum rule (2.14), so that

1 ' Ωtot = Ωm + ΩΛ = Ωb + ΩDM + ΩΛ , (2.29)

where Ωm is split into a baryonic component Ωb and a dark component ΩDM . On

cosmological scales from the analysis of WMAP data [1] as sketched above

Ωbh
2 = 0.02273 ± 0.00062 and Ωmh

2 = 0.1326 ± 0.0063 (2.30)

are found for the abundance of baryons and matter in the universe. The 1-σ error is

indicated. This is consistent with the predictions of BBN (2.25). Since Ωb < Ωm , this
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Chapter 2. Nucleosynthesis and Dark Matter in Big Bang Cosmology

necessitates a non-baryonic component of matter to be consistent. This is one example

of observations that rule out baryonic candidates like unseen astrophysical objects at

least to make up all the dark matter. In contrast to others, cosmological observations

allow us to determine directly the total amount of dark matter in the universe. There

is also evidence from other disconnected observations, but we just name some of them.

On the scale of galaxy cluster, evidence for dark matter is found via several methods

based on its gravitational interaction. Astrophysicists determine the mass-to-light ratio

M/L, i.e. the ratio of the mass inferred from gravitation M and the observable “shining”

mass L, thereby considering all known forms of matter. A convenient calibration is

Ωm = (M/L)/1000. For instance, the mass of a galaxy cluster M can be determined

by the application of the virial theorem to the observed distribution of radial velocities

within the cluster. Galaxy cluster are bound states of gravity. In short, the radial

velocities are too large to be bound by L which indicates a substantial amount of dark

matter. Most dynamical estimates are consistent with a value

Ωm = (M/L)/1000 ∼ 0.2 − 0.3 . (2.31)

These conclusions can be checked against estimates from gravitational lensing data.

Following general relativity, light propagates along geodesics which deviate from straight

lines when passing near intense gravitational fields. From the distortion of the images

of background objects due to the galaxy cluster, one can infer its mass M and even its

mass distribution.

There is also evidence on galactic and subgalactic scale. Again, it is gathered by different

measurements of velocities of stars and dust not only in other galaxies but also in the

Milky Way. These are compared to the gravitational potential due to the known matter.

Indeed, also the Milky Way seems to have a particle dark matter halo. The study of

microlensing events in the direction of the galactic center shows the lack of compact dark

matter in the galactic disk, thus favouring particle dark matter. Gravitational lensing

around individual massive elliptical galaxies provides evidence for substructure on scales

of ∼ 106 solar masses.

The present day value of the dark matter density as given by the particle data group [22]

is

ΩDM = Ωm − Ωb = 0.105(8)h−2 ≈ 0.20 , (2.32)

where the figure in parentheses gives the 1-σ uncertainty in the last place.
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Chapter 3

From Supersymmetry to

Gravitino Dark Matter

In this chapter we introduce briefly the elementary particle content under consideration

in this thesis. We will mainly follow the reviews on supersymmetry and supergravity

provided in [32, 33, 34]. For more detailed discussions of the gravitino field we refer

to [35, 36, 37].

3.1 Local Supersymmetry

Supersymmetry (SUSY) is a space-time symmetry, i.e. an extension of the symmetries of

translations, rotations and boosts. SUSY turns bosonic states into fermionic states, and

vice versa. The operator Qα that generates such transformations is an anticommuting

spinor with

Qα|Boson〉 ' |Fermion〉 , Qα|Fermion〉 ' |Boson〉 . (3.1)

Translations, rotations and boosts together form Poincaré symmetry. Under general

assumptions Poincaré symmetry is the maximal space-time symmetry of identical parti-

cles [38], i.e. leaving the particle spin unchanged. SUSY, in turn, is the maximal possible

extension of Poincaré symmetry [39]. Particles are transformed into particles with spin

differing by 1/2. If SUSY is discovered, all mathematically consistent space-time sym-

metries will have been realized in nature.

There are many theoretical motivations for supersymmetry [13]. Here, we want to name

two of them. The first is SUSY’s contribution to the solution of the hierarchy problem.

The squared mass m2
h of the Standard Model Higgs boson h receives quadratically di-
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Chapter 3. From Supersymmetry to Gravitino Dark Matter

vergent contributions by loop corrections. The one-loop corrections at leading order due

to fermions

∆m2
h = −|λf |2

8π2
Λ2
UV + . . . (3.2)

and scalars

∆m2
h =

λs
16π2

Λ2
UV + . . . (3.3)

are proportional to the corresponding couplings |λf |2 and λs respectively. They are

quadratically divergent with ΛUV , which should be interpreted as at least the energy

scale at which new physics enters to alter the high-energy behaviour of the theory. At

the Planck scale,

Mp =
1√

8πGN
= 2.435 × 1018 GeV, (3.4)

where GN is Newton’s gravitational constant [22], quantum gravitational effects become

important. Therefore, a new framework will certainly be required at Mp. If ΛUV = Mp

the “natural” scale of m2
h, including quantum corrections, seems to be like M 2

p rather

than something near to the electroweak scale m2
Z ∼ (100 GeV)2. So the hierarchy

problem stems from the fact that the ratio Mp/mZ ∼ 1016 is so huge. In connection with

the Higgs mechanism (see Section 3.3.2) this is a problem for the entire mass spectrum of

the Standard Model (SM). Regarding Eq. (3.2) and Eq. (3.3), the cancellation of all such

contributions to scalar masses is achieved, if each fermion is accompanied by two complex

scalars with λs = |λf |. This is actually unavoidable, once we assume the existence of

supersymmetry. So SUSY does not resolve the hierarchy itself, but it stabilizes particles

against quantum corrections. We will see in Section 3.2 how SUSY alters the particle

content of the Standard Model.

Secondly, SUSY provides a promising candidate for the particle dark matter of Chapter 2.

In supersymmetric theories with R-parity (3.9) being preserved the lightest supersym-

metric particle (LSP) is stable. If the LSP is also neutral, it is a viable candidate with

distinct properties. In this thesis, we consider gravitino dark matter.

The parameter ξα of global SUSY transformations1 is space-time independent. By defin-

ing ξα to be space-time dependent, ξα → ξα(x), SUSY becomes a local symmetry. This

corresponds to gauging supersymmetry. Since the gravitino is the gauge field of lo-

cal supersymmetry transformations, it is an unique and inevitable prediction of local

supersymmetry. Local supersymmetry combines the principles of supersymmetry and

general relativity, which is the current theory of gravity. Therefore, it is referred to as

supergravity (SUGRA).

1We consider unextended N = 1 supersymmetry in four spacetime dimensions D = 4.
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In the next section we define the field content under consideration in this thesis. Indepen-

dently, supergravity, i.e. local supersymmetry, extends this field content unambiguously

by the gravity supermultiplet (Table 3.1). In some sense it is the minimal field content

Table 3.1: Gravity supermultiplet

Name Bosons Fermions
(
SU(3)C,SU(2)L

)
Y

Graviton, gravitino gµν Ψµ (1 ,1 )0

of any SUGRA model. It consists of the spin-2 graviton, that mediates gravity, and the

spin-3/2 gravitino. Both are neutral with respect to the SM gauge group (3.5).

SUGRA is non-renormalizable. Shortened, quantum corrections diverge and for SUGRA

it is not known how to deal with them. To this day there is no consistent quantum theory

of gravity. We assume that SUGRA is an appropriate low-energy approximation of a

more general theory. As effective theory the request of renormalizability disappears (cf.

Fermi theory of weak interaction).

3.2 The Minimal Supersymmetric Standard Model

The Minimal Supersymmetric Standard Model (MSSM) is the minimal phenomenologi-

cally viable supersymmetric extension of the Standard Model of particle physics (SM).

Due to supersymmetry there is a supersymmetric partner particle to each SM fermion

and SM gauge boson. Global SUSY is assumed. So to begin with, the MSSM does

not contain gravity. The spin-1/2 fermions, i.e. three families of quarks and leptons, re-

side in chiral supermultiplets with their spin-0 scalar boson partners. The spin-1 gauge

bosons, i.e. gluons, W and B bosons, reside in gauge supermultiplets with their spin-

1/2 fermionic partners. There are two chiral Higgs supermultiplets. Each consists of

one spin-0 Higgs SU(2)-doublet and its spin-1/2 fermionic superpartner. The chiral su-

permultiplets in Table 3.2 and the gauge supermultiplets in Table 3.3 make up the field

content of the MSSM. They are summarized according to their transformation properties

under the Standard Model gauge group,

GSM = GMSSM =
3∏

α=1

Gα = U(1)Y × SU(2)L × SU(3)C . (3.5)

Here, α labels the SM gauge groups.
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Particles in the same supermultiplet transform in identical gauge group representations.

Superpartners are denoted by a tilde. See, for instance, the gauginos λ(α)a in Table 3.3.

They are the fermionic partners of the SM gauge bosons A
(α)a
µ , where a labels the gauge

group generators.

All matter fields of Table 3.2 are written in terms of left-handed Weyl spinors χL since

they stem from left-chiral supermultiplets. Therefore, we enter the left-handed hermitian

conjugate (·)† of a right-handed field instead of the field itself. In four component spinor

representation the matter fermions can be given as

χL =

(
(χα)W/B

0

)
, (3.6)

where W/B indicates quantities used in the book by Wess and Bagger [40]. Strongly

interacting particles reside in color triplets 3, i.e. quarks and squarks. Since we do not

encounter any strong interaction process in this thesis, colour indices are not written

out. In contrast, SU(2)L doublets 2 (2 = 2̄) are explicitly given in Table 3.2. Gauge

singlets are denoted by 1 or in the case of U(1)Y carry hypercharge Y = 0. Note that

the normalization of the hypercharges is such that the electric charge Q is given by

Q = T3 + Y/2, where T3 denotes the weak isospin eigenvalue ±1/2 for upper/lower

entries in the SU(2)L doublets and accordingly T3 = 0 for SU(2)L singlets. The SM

contains three families of quarks and leptons, so the family index I in Table 3.2 counts

I = 1, 2, 3. It is clear, that there is an antiparticle for each particle of Table 3.2.

The Lagrangian of the MSSM is determined by the superpotential,

WMSSM = Ũ∗ yuQ̃ ·Hu − D̃∗ ydQ̃ ·Hd − Ẽ∗ yeL̃ ·Hd + µHu ·Hd . (3.7)

which is a holomorphic function of the scalars of the supermultiplets. The doublet struc-

ture is tied together as Q̃ ·Hu = εijQ̃iHu j, with εij given in Appendix A. Furthermore,

Ũ∗ yuQ̃ is meant to be a matrix multiplication in family space, Ũ∗ yuQ̃ = Ũ∗ I y IJu Q̃J .

R-parity Accidentally, the Standard Model conserves baryon number B and lepton

number L. So the proton as lightest baryon with B = 1 is absolutely stable, since there

is no baryon to decay into and decays into something else would violate baryon number

conservation. WMSSM is the most general superpotential that does respect gauge invari-

ance and all SM conservation laws. The MSSM contains by definition only renormaliz-

able interactions and only terms that respect baryon and lepton number conservation.

But the most general renormalizable superpotential which does respect gauge invariance

contains also B and L violating terms,

W /PR
= µiHu · L̃+

1

2
λijkL̃i · L̃jẼ∗

k + λ′ijkL̃i · Q̃jD̃∗
k +

1

2
λ′′ijkε

abcŨ∗
i aD̃

∗
j bD̃

∗
k c , (3.8)
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Table 3.2: Matter fields of the MSSM

Name Scalar Bosons φi Fermions χiL
(
SU(3)C,SU(2)L

)
Y

Sleptons, leptons

I = 1, 2, 3

L̃I =

(
ν̃IL
ẽ− I
L

)
LI =

(
νIL
e− I
L

)
(1 ,2 )−1

Ẽ∗I = ẽ−∗ I
R E† I = e−† I

R (1 ,1 )+2

Squarks, quarks

I = 1, 2, 3

(× 3 colors)

Q̃I =

(
ũIL
d̃IL

)
QI =

(
uIL
dIL

)
(3 ,2 )+ 1

3

Ũ∗I = ũ∗IR U † I = u† IR (3 ,1 )− 4
3

D̃∗I = d̃∗IR D† I = d† IR (3 ,1 )+ 2
3

Higgs, Higgsinos Hd =

(
H0
d

H−
d

)
H̃d =

(
H̃0
d

H̃−
d

)
(1 ,2 )−1

Hu =

(
H+
u

H0
u

)
H̃u =

(
H̃+
u

H̃0
u

)
(1 ,2 )+1

where in the last summand a, b, c = 1, 2, 3 are SU(3)C indices. Some of these terms lead

to proton decay, whereas no proton decay has been observed.

Usually, the presence of all baryon and lepton number violating terms is forbidden by

requiring the conservation of an additional global symmetry, so called R-parity, defined

for each particle as

PR = (−1)3(B−L)+2s , (3.9)

where s denotes the spin of the particle. In the MSSM with only renormalizable inter-

actions and conserved R-parity the proton is absolutely stable.

Table 3.3: Gauge fields of the MSSM

Name Gauge bosons A
(α) a
µ Gauginos λ(α) a

(
SU(3)C,SU(2)L

)
Y

B-boson, bino A
(1) a
µ = Bµ δ

a1 λ(1) a = B̃ δa1 (1 ,1 )0

W-bosons, winos A
(2) a
µ = W a

µ λ(2) a = W̃ a (1 ,3 )0

gluon, gluino A
(3) a
µ = Gaµ λ(3) a = g̃a (8 ,1 )0
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From Eq. (3.9) it is easy to check that Standard Model particles and the Higgs bosons

have even R-parity (PR = +1), while all supersymmetric partners have odd R-parity

(PR = −1). This implies, that sparticles must be produced in pairs, that heavier spar-

ticles must decay into lighter ones and that the LSP must be absolutely stable, since it

has no allowed decay mode. Thus the LSP becomes a “natural” candidate for particle

dark matter.

Again, the gauge group (3.5), the field content summarized in Tables 3.2, 3.3 and the

superpotential (3.7) define the Minimal Supersymmetric Standard Model. In this thesis

exact R-parity (3.9) conservation is assumed. The whole MSSM Lagrangian can, for

instance, be found in [41].

3.3 Symmetry Breaking

In the previous sections we defined the field content under consideration. Tables 3.3, 3.2

and 3.1 list gauge eigenstates. In general, gauge eigenstates differ from physical mass

eigenstates. Gauge eigenstates can mix, so that the mass eigenstates become linear

combinations of gauge eigenstates. Equally, one can give the gauge eigenstates as linear

combinations of mass eigenstates. In the MSSM there are different possible sources of

mixing that are due to the spontaneous breakdown of symmetries.

Furthermore, the field content is given in two-component Weyl spinors. These are com-

bined to form four spinors. In this section we give the physical particle spectrum as used

for computations in this thesis.

3.3.1 Supersymmetry Breaking

The mass operator P 2 commutes with the SUSY operators,

[P 2, Qα] = [P 2, Q̄α̇] = 0 . (3.10)

Therefore, particles within the same supermultiplet are degenerate in mass. Since no

sparticles have been observed yet, supersymmetry has to be a broken symmetry, if

realized in nature.

In the MSSM, supersymmetry breaking is parameterized by additional terms in the
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3.3. Symmetry Breaking

Lagrangian,

LMSSM
soft = −1

2
(M3g̃

ag̃a +M2W̃
aW̃ a +M1B̃B̃ + h.c.)

−(Ũ∗ auQ̃ ·Hu − D̃∗ adQ̃ ·Hd − Ẽ∗ aeL̃ ·Hd + h.c.)

−Q̃† m2
QQ̃− L̃† m2

LL̃− Ũ † m2
UŨ − D̃† m2

DD̃ − Ẽ† m2
EẼ

−m2
Hu
H∗
uHu −m2

Hd
H∗
dHd − (bHuHd + h.c.) . (3.11)

In Eq. (3.11), M3, M2 and M1 are gluino, wino and bino mass terms. Here, we suppress

all gauge indices. In the second line each of au, ad, ae is a complex 3×3 matrix in family

space. They are in direct correspondence with the Yukawa couplings of WMSSM (3.7).

The third line of Eq. (3.11) consists of squark an slepton mass terms. Each of m2
Q, m2

L,

m2
U, m2

D, m2
E is a hermitian 3×3 matrix in family space. In the last line we have SUSY

breaking contributions to the Higgs potential.

The supersymmetry-breaking couplings in LMSSM
soft are soft (of positive mass dimen-

sion) in order to naturally maintain a hierarchy between the electroweak scale and the

Planck scale, i.e. in order not to reintroduce quadratically divergent contributions to

scalar masses (3.3). Eq. (3.11) is the most general renormalizable soft SUSY breaking

Lagrangian that respects gauge invariance and R-parity in the MSSM.

In a viable model soft mass terms make sparticles heavy enough to be in accord with

experiment. In principle, due to off-diagonal entries ∗ in the family matrices of LMSSM
soft ,

au, . . . , m
2
E ∼



· ∗ ∗
∗ · ∗
∗ ∗ ·


 , (3.12)

any scalars with the same charges and R-parity can mix with each other. For the squarks

and sleptons of the MSSM the general hypothesis of flavour-blind soft parameters predicts

that most of these mixings are very small. Since these would have even smaller impact

on our results, as an appropriate simplification, we take these mixings to be zero. So all

family matrices of LMSSM
soft are assumed to be diagonal, i.e.

au = . . . = m2
E =




1 0 0

0 1 0

0 0 1


 . (3.13)

However, the soft parameters can not be arbitrary.

In order to understand how patterns like Eq. (3.13) can emerge, it is necessary to con-

sider models in which SUSY is spontaneously broken. The condition for the sponta-

neous breakdown of a symmetry is a ground state that (in contrast to the underlying
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Chapter 3. From Supersymmetry to Gravitino Dark Matter

Lagrangian) does not respect this symmetry. Since the ground state ought to be Lorentz

invariant, it may not carry spin. Typically, scalars, i.e. the auxiliary fields of some chiral

supermultiplets (F-term breaking), acquire non-zero vacuum expectation values 〈F 〉 and

thus break SUSY. In order not to break conserved gauge symmetries, these scalars are

neutral under those. Although SUSY breaking is strongly constrained, it is not known

how it should be done and there are many different SUSY breaking scenarios. We men-

tion two of them below. However, models of SUSY breaking lead to particular soft

parameters in Eq. (3.11). Then we can compute physical quantities like mass spectra

and lifetimes, so that experiments and cosmology can lead to constraints or even rule

out scenarios. We will see in Chapter 5 how big bang nucleosynthesis constrains SUGRA

models.

In supergravity, an analogon to the Higgs mechanism of electroweak-symmetry breaking

exists, i.e. the super Higgs mechanism. Spontaneous breaking always implies a Goldstone

particle with the same quantum numbers as the broken symmetry generator. Since

Qα is fermionic, in the case of SUSY breaking the Goldstone particle ought to be a

fermion. This goldstino is absorbed by the gravitino, which acquires thereby its ±1/2

spin components and a mass

m3/2 ∼ 〈F 〉/Mp , (3.14)

where 〈F 〉 is the vacuum expectation value (VEV) that breaks SUSY.

(Hidden sector)
(Visible sector)

Supersymmetry
breaking origin

     MSSMFlavor-blind

interactions

Figure 3.1: The presumed schematic structure for supersymmetry breaking. Figure

taken from [32].

SUSY Breaking Mechanisms Spontaneous supersymmetry breaking requires an

extension of the MSSM, because in the MSSM there is no candidate gauge singlet to

acquire a VEV2. Electroweak symmetry breaking is discussed in Section 3.3.2. On the

search for a natural explanation of Eq. (3.13), SUSY breaking is expected to occur in a

“hidden sector” of particles without direct couplings to the “visible sector”, consisting

of the supermultiplets of the MSSM. However, the two sectors have some common in-

2A Fayet-Iliopoulos term for U(1)Y must be subdominant compared to other sources of supersymmetry

breaking in the MSSM, if not absent altogether, because some squarks or sleptons would get non-zero

VEVs breaking color and/or electromagnetism.
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3.3. Symmetry Breaking

teractions that mediate SUSY breaking from the hidden sector to the visible sector, see

Figure 3.1, which results in the MSSM soft terms (3.11).

In Planck-scale-mediated supersymmetry breaking (PMSB) scenarios the mediating in-

teraction is gravitational. If in PMSB supersymmetry is broken in the hidden sector by

a VEV 〈F 〉, then the order of the soft terms msoft should be by dimensional analysis

msoft ∼ 〈F 〉/Mp . (3.15)

The minimal supergravity (mSUGRA) model implies convenient assumptions leading to

M3 = M2 = M1 = m1/2 = f
〈F 〉
Mp

,

m2
Q = m2

L = m2
U = m2

D = m2
E = m2

0

�
, m2

Hu
= m2

Hd
= m2

0 = k
|〈F 〉|2
M2
p

,

au = A0yu , ad = A0yd , ae = A0ye = α
〈F 〉
Mp

ye ,

b = B0µ = β
〈F 〉
Mp

m, (3.16)

at a renormalization scale Q ≈Mp. Here, f, k, α, β, are undetermined parameters. But

then the soft terms in LMSSM
soft (3.11) are all determined by just four parameters, i.e.

m1/2, m
2
0, A0 and B0. As we can see from Eq. (3.14) and (3.15), in PMSB the gravitino

mass m3/2 is comparable to the masses of the MSSM sparticles

m3/2 ∼ msoft ∼ 〈F 〉/Mp ∼ O(100 GeV) , (3.17)

so that the gravitino can be the LSP with m3/2 expected to be at least of order 100

GeV. The low energy SUSY spectrum can be obtained by solving renormalization group

equations which can be done in the MSSM by computer codes like, for instance, SOFT-

SUSY [42]. In a given theory renormalization group equations describe the evolution of

physical quantities like masses and couplings with the scale Q. Therefore, with a given

input like (3.3.1) SOFTSUSY can compute the SUSY spectrum at scales below the scale

of electroweak symmetry breaking.

In gauge-mediated supersymmetry breaking (GMSB) models, the ordinary gauge interac-

tions, rather than gravity, mediate SUSY breaking from the hidden sector to the visible

sector. The basic idea is to introduce new chiral supermultiplets that couple to the

scalar, which acquires a VEV 〈F 〉, and also couple indirectly to the sparticles of the

MSSM through the ordinary U(1)Y × SU(2)L × SU(3)C (3.5) gauge boson and gaugino

interactions. The new fields appear in loop diagrams only, but thereby they generate
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Chapter 3. From Supersymmetry to Gravitino Dark Matter

particular soft terms. Using dimensional analysis, one estimates for the order of the

MSSM soft terms

msoft ∼
α

4π

〈F 〉
Mmess

, (3.18)

where α/4π is a loop factor for Feynman diagrams involving the gauge interactions (3.5)

and Mmess is the characteristic mass scale of the new-introduced supermultiplets. The

gauge interactions (3.5) are flavour blind, which in turn leads to flavour-blind soft

terms (3.13). By comparison of Eq. (3.18) with (3.14) we see that, in contrast to PMSB,

gauge-mediated supersymmetry breaking models predict a gravitino that is much lighter

than the MSSM sparticles m3/2 � msoft as long as Mmess � Mp. The gravitino is al-

most certainly the LSP.

The fact, that the gravitino is a possible LSP candidate in Planck-scale mediated super-

symmetry breaking models and even almost certainly the LSP in gauge-mediated super-

symmetry breaking models [43, 44], is one motivation for the investigation of gravitino

dark matter scenarios. In both mechanisms the lightest neutralino (cf. Section 3.3.2) is

one of the lightest sparticles [2, 45] and thus it is a candidate to be the next-to-lightest

supersymmetric particle (NLSP) with gravitino dark matter. Typically, the lightest neu-

tralino has a dominant bino component. Therefore, studies are made with a bino NLSP,

e.g. [17, 18, 19, 46]. However, for instance, in [47] an extended gauge mediation model

is proposed that can naturally have a Higgsino NLSP. In order to be independent of

a particular SUSY breaking model, we investigate gravitino dark matter with general

neutralino NLSP.

As mentioned above there are many SUSY breaking mechanisms. For instance, we do

not mention anomaly-mediated SUSY breaking, since it does not have the gravitino as

LSP.

3.3.2 Electroweak Symmetry Breaking

It is clear that the electroweak symmetry is broken down to electromagnetism,

SU(2)L × U(1)Y → U(1)em . (3.19)

In the MSSM this can be achieved dynamically after supersymmetry breaking by radia-

tive corrections to the soft Higgs masses mHu , mHd
. One of the Higgs masses evolves to

a negative value at the electroweak scale and thus breaks electroweak symmetry, since

thereby the neutral Higgs fields H0
u and H0

d acquire non-zero vacuum expectation values

〈H0
u〉 = vu/

√
2 and 〈H0

d 〉 = vd/
√

2 , (3.20)
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3.3. Symmetry Breaking

that break the electroweak symmetry. The ratio of the vacuum expectation values

(VEVs) is traditionally written as

tanβ ≡ vu/vd . (3.21)

Since this is compatible with the SM Higgs mechanism the VEVs are related to the SM

Higgs VEV v,

v2
u + v2

d = v2 = 4m2
Z/(g

2 + g′2) ≈ (246 GeV)2 . (3.22)

From (3.21) and (3.22) we see,

vu = v sinβ ,

vd = v cos β .
(3.23)

Hd andHu together consist of eight real scalar degrees of freedom. They are two complex

SU(2)L doublets, giving 2 · 2 · 2 = 8. When the electroweak symmetry is broken, three of

them G0, G±, become the longitudinal modes of the Z0 and W± massive vector bosons.

The gauge boson mass eigenstates are given by [48]

(
Aµ

Z0
µ

)
=

(
cos ΘW sinΘW

− sinΘW cos ΘW

)(
Bµ

W 0
µ

)
, (3.24)

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ) , (3.25)

where ΘW is the known weak mixing angle.

The remaining five (8 − 3 = 5) Higgs scalar mass eigenstates consist of two CP-even

neutral scalars h0 and H0, one CP-odd neutral scalar A0 and a charged (+1) scalar H+

and its conjugate charged (−1) scalar H−. By convention, h0 is lighter than H0. Here,

the superscripts indicate as usual the electric charge. We will omit them sometimes at

neutral particles, e.g. h ≡ h0. The neutral gauge-eigenstate fields can be expressed in

terms of the mass eigenstate fields as:

(
H0
u

H0
d

)
=

1√
2
{
(
vu

vd

)
+

(
cosα sinα

− sinα cosα

)(
h0

H0

)
+ i

(
sinβ0 cos β0

− cos β0 sinβ0

)(
G0

A0

)
} (3.26)

α and β0 are mixing angles. We take vu,vd to minimize the tree-level potential in this

analysis, so that β0 = β. If one might to minimize the loop-corrected effective potential

instead, it is more useful to expand around VEVs that do not minimize the tree-level

potential. However, we have the tree-level Higgs masses,

m2
h,H =

1

2
(m2

A +m2
Z ∓

√
(m2

A −m2
Z)2 + 4m2

Zm
2
A sin2 2β) , (3.27)

m2
A = 2b/ sin 2β = 2|µ|2 +m2

Hu
+m2

Hd
. (3.28)
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Chapter 3. From Supersymmetry to Gravitino Dark Matter

The mixing angle α is traditionally chosen to be negative. At tree-level, α is determined

by
sin 2α

sin 2β
= −

(
m2
H +m2

h

m2
H −m2

h

)
,

tan 2α

tan 2β
=

(
m2
A +m2

Z

m2
A −m2

Z

)
. (3.29)

It follows that −π/2 < α < 0 (provided mA > mZ). The limit mA � mZ is referred to

as the decoupling limit. Then, the particles A0, H0 and H± are much heavier than h0

and h0 has the same couplings as the Standard Model Higgs. The angle α becomes very

nearly β − π
2 . As we see from Eq. (3.28), mA � mZ is typically achieved by a large µ

parameter. In any case, one light Higgs boson h, whereas the other Higgses H, A, H±,

decouple as heavy particles, represents a minimal Higgs configuration. We will use the

decoupling limit later in this analysis.

Already in the SM the quark gauge eigenstates are mixed. The quark mixing matrix

(CKM matrix) is known by experiment, see [22]. Mixing with the third generation is

small (O(10−3)). First and second generation mixing is larger (O(10−1)). However, since

the consideration of quark mixing would give a negligible correction (O(10−3)) only, we

take the quark mixing matrix diagonal (3.13). This means we identify their gauge and

mass eigenstates.

Neutralinos and Charginos Due to electroweak symmetry breaking, Higgsinos and

electroweak gauginos mix with each other. The neutral Higgsinos (H̃0
u,H̃

0
d) and the

neutral gauginos (B̃,W̃ 0) combine to form four mass eigenstates called neutralinos. The

charged Higgsinos and winos combine to form two mass eigenstates with electric charge

±1 called charginos. We present the neutralinos, since we analyze neutralino-to-gravitino

decays. We denote the neutralino mass eigenstates by χ0
i (i = 1, 2, 3, 4). By convention,

these are labeled in ascending order, so that mχ0
1
< mχ0

2
< mχ0

3
< mχ0

4
.

In the gauge-eigenstate basis Ψ0 = (B̃, W̃ 0, H̃0
d , H̃

0
u)
T , the neutralino mass part of the

Lagrangian is

Lneutralino mass = −1

2
(Ψ0)TMeχΨ

0 + h.c. , (3.30)

where

Meχ =




M1 0 −cβsWmZ sβsWmZ

0 M2 cβcWmZ −sβcWmZ

−cβsWmZ cβcWmZ 0 −µ
sβsWmZ −sβcWmZ −µ 0



. (3.31)

Here we have introduced abbreviations sβ = sinβ, cβ = cos β, sW = sinΘW , cW =

cos ΘW . The entries M1 and M2 are the soft masses from Eq. (3.11) of bino B̃ and wino

W̃ a, while the entries −µ are the supersymmetric Higgsino mass terms of Eq. (3.7). So
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3.3. Symmetry Breaking

these terms have different sources, which might lead to phenomenological consequences.

The terms proportional to mZ stem from electroweak symmetry breaking. Since ΘW

is also known, they are fixed by tanβ. The mass matrix Meχ can be diagonalized by a

unitary matrix N to obtain mass eigenstates:

χ̃0
i = NijΨ

0
j , (3.32)

so that

N∗MeχN
−1 =




mχ0
1

0 0 0

0 mχ0
2

0 0

0 0 mχ0
3

0

0 0 0 mχ0
4




(3.33)

has real positive entries on the diagonal. The indices (i, j) on Nij are (mass, gauge)

eigenstate labels. The mass eigenvalues and the mixing matrix Nij can be given in closed

form in terms of the parameters M1, M2, µ and tanβ [49].

We take M1 andM2 real and positive by convention. The off-diagonal terms proportional

to mZ in Eq. (3.31) are also defined to be real. The phase of µ within that convention

is then really a physical parameter and can not be rotated away. Thus there can be

CP-violating effects in low-energy physics that are not observed. Therefore, we assume

µ is real in the same set of conventions, so that Nij becomes an orthogonal matrix. This

is usual although not strictly mandatory.

An analog discussion holds for the charged Higgsinos and winos forming charginos. In

the gauge eigenstate basis Ψ± = (W̃+, H̃+
u , W̃

−, H̃−
d )T we have the chargino mass term

Lchargino mass = −1

2

(
Ψ±)T Meχ±Ψ± + h.c. , (3.34)

where the chargino mass matrix Meχ± can be written in 2 × 2 block form

Meχ± =

(
0 XT

X 0

)
, (3.35)

with

X =

(
M2 gvu/

√
2

gvd/
√

2 µ

)
=

(
M2

√
2sβmW√

2cβmW µ

)
. (3.36)

The mass eigenstates are related to the gauge eigenstates by two unitary 2× 2 matrices

U and V according to
(
χ̃+

1

χ̃+
2

)
= V

(
W̃+

H̃+
u

)
,

(
χ̃−

1

χ̃−
2

)
= U

(
W̃−

H̃−
d

)
. (3.37)
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The matrices U and V are chosen so that

U∗XV−1 =

(
m

eχ±

1
0

0 m
eχ±

2

)
(3.38)

with positive real entries m
eχ±

i
that are explicitly given by

m
eχ±

1
,m

eχ±

2
=

1

2
(|M2|2 + |µ|2 + 2m2

W

∓
√

(|M2|2 + |µ|2 + 2m2
W )2 − 4|µM2 −m2

W sinβ|2) . (3.39)

Here, we see that the chargino mass eigenvalues are determined by the soft wino mass

M2, the Higgsino mass term µ and tanβ. Except M1, these are the same parameters

as in the neutralino case. If the lightest neutralino should be the NLSP with gravitino

dark matter, we have to make sure that no chargino becomes lighter than the lightest

neutralino. We will see in Chapter 5 that this excludes large regions in the parameter

space. Note that charginos are mixed states of wino and Higgsino. There is no bino

component, i.e. the mass matrix is independent of the soft bino mass M1.

3.3.3 Physical Particles

Table 3.5 comprises the physical particles as used in this thesis. We also list charginos,

gluinos and gluons. Spin and R-parity values are provided. Thus it is easy to identify

scalars (spin= 0), fermions (spin= 1/2, 3/2) and gauge bosons (spin= 1). And it is

easy to see whether a particle is a Standard Model field or Higgs boson, since they have

PR = +1, in contrast to the sparticles with PR = −1. We list explicitly gauge and

mass eigenstates. In the case of squarks, sleptons, quarks and leptons, the identification

of gauge and mass eigenstates is an assumption and approximation respectively (cp.

Section 3.3). This assumption gives minor errors and is appropriate for our purpose.

Table 3.4 lists the corresponding four spinor representation for each fermion of Table 3.5.

There are no Majorana spinors (A.23) in the Standard Model whereas SUSY introduces

some Majorana fermions. Especially, neutralinos, the goldstino and the gravitino are

Majorana. Since we investigate neutralino-to-gravitino decays, this is of special impor-

tance. Because Majorana fields are self-conjugate, they yield different Wick contractions

from those of Dirac fields (A.15). This leads to ambiguities in the determination of the

relative sign of interfering Feynman diagrams. Therefore we use the method proposed

in [50] and introduce a continuous fermion flow, i.e. an arbitrary orientation of each

fermion line. Proceeding in opposite direction to the fermion flow then allows one to

form chains of Dirac matrices so that the relative sign of interfering diagrams is obtained
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Name Spinor representation

quarks Dirac

charged leptons Dirac

neutrinos left-handed3

neutralinos Majorana

charginos Dirac

gluinos Majorana

gravitino Vector-Majorana

Table 3.4: Spinor Representations

in the same manner as in the case of Dirac fermions. The fermionic vertices are read off

from the Lagrangian as usual.

In Appendix D we provide the complete set of Feynman rules derived for computations

in this thesis. If they are standard vertices of Glashow-Weinberg-Salam (GWS) theory of

weak interaction, they are derived/taken from [48] and checked against [41]. Otherwise

they are derived from the Lagrangian as given in Eq. (25.24) and Eq. (G.2) in the book

of Wess and Bagger [40]. Especially gravitino vertices are checked in the high-energy

limit against the Feynman rules as they are provided in [35].

For Majorana spinors λa we use the notation

λa =

(
−i(λaα)W/B

i(λ̄a α̇)W/B

)
, (3.40)

where (λaα)W/B is a two-component Weyl spinor. W/B indicates again quantities used

in the book by Wess and Bagger [40]. Even if we use the gauginos λa to present our

notation, since they are Majorana fields after electroweak symmetry breaking and at high

energies, we point out that also neutral Higgsinos become Majorana after electroweak

symmetry breaking. Together with the gauginos they form Majorana neutralinos with

the same notation.

The gravitino is a Majorana vector-spinor,

Ψµ =

(
−i(Ψµα)W/B

i(Ψ̄α̇
µ)W/B

)
. (3.41)

3In the Standard Model neutrinos have no right-handed component and thus are chiral left-handed

fermions and exactly massless. However, non-vanishing neutrino masses have been observed in the last

years. Actually, one possible explanation of small neutrino masses is the introduction of heavy right-

handed neutrinos.
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Note that we include factors of i and a relative sign between PLΨµ and PRΨµ in the

definition of the gravitino as well as for the gauginos (3.40). The projection operators

PL and PR are defined in Appendix A.

The gravitino is the only vector-Majorana particle. It is a fermion and carries a vector

index µ, cf. Section 3.4. Therefore we denote it in text often as Ψµ. Alternatives are Ψ

or Ψ3/2. We refer to these notations in equations to prevent confusion concerning the

vector index. For instance, a mass m with subscript → mµ could be mixed up with an

vector mµ that carries an vector index µ.

The Dirac traces occurring in the evaluation of squared matrix elements are performed

using the Mathematica package FEYN CALC [51]. Whenever this is performed by hand

or checked in a limit, we are in agreement with the results of FEYN CALC.

3.4 The Gravitino

The Lagrangian of the free massive gravitino can be written as

Lfree
ψ = −1

2
εµνρσψµγ5γν∂ρψσ −

1

4
m3/2ψµ[γ

µ, γν ]ψν . (3.42)

The variation of the Lagrangian gives the equation of motion. For the free massive

gravitino this is the Rarita-Schwinger equation

−1

2
εµνρσγ5γν∂ρψσ −

1

4
m3/2[γ

µ, γν ]ψν = 0 . (3.43)

Since the gravitino satisfies the constraints

γµψµ = 0 , (3.44a)

∂µψµ = 0 , (3.44b)

it can be shown that the Rarita-Schwinger equation (3.43) reduces for each vector com-

ponent µ of the gravitino to the Dirac equation

(
i/∂ −m3/2

)
ψµ = 0 . (3.45)

The gravitino is, furthermore, self conjugate and thus represented by a vector-Majorana

spinor as listed in Table 3.4. The polarization tensor for a gravitino with four-

momentum P is given by [37]

Π+
µν(P ) =

∑

s

ψ+(s)
µ (P )ψ

+(s)
ν (P )

= −(/P +m3/2){gµν −
PµPν
m2

3/2

− 1

3

(
gµρgνσ − gµρ

PνPσ
m2

3/2

− PµPρ
m2

3/2

gνσ +
PµPρPνPσ
m4

3/2

)
γργs} ,

(3.46)
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where the sum accounts the four gravitino helicities s = ±3/2, ±1/2. Following [36],

Π+
µν is the polarization tensor for the positive frequency mode functions, whereby

Π−
µν(P ) =

∑

s

ψ−(s)
µ (P )ψ

−(s)
ν (P )

= −(/P −m3/2){gµν −
PµPν
m2

3/2

− 1

3

(
gµρgνσ − gµρ

PνPσ
m2

3/2

− PµPρ
m2

3/2

gνσ +
PµPρPνPσ
m4

3/2

)
γργs} ,

(3.47)

is the one for the negative frequency mode functions.

The polarization tensor obeys

γµΠ±
µν(P ) = 0 , Π±

µν(P )γν = 0 , (3.48a)

P µΠ±
µν(P ) = 0 , Π±

µν(P )P ν = 0 , (3.48b)

(/P ∓m3/2)Π
±
µν(P ) = 0 , Π±

µν(P )(/P ∓m3/2) = 0 . (3.48c)

To consider gravitino interactions we add the interaction Lagrangian

L(α)
Ψ, int = − i√

2Mp

[
Dα
µφ

∗iΨνγ
µγνχiL −Dα

µφ
iχiLγ

νγµΨν

]

− i

8Mp
ψµ[γ

ρ, γσ]γµλ(α) aF (α) a
ρσ +O(M−2

p ) (3.49)

to Eq. (3.42). We see immediately that each operator in (3.49) is suppressed by the

Planck scale, since the natural scale of supergravity is the Planck scale. Therefore,

gravitino interactions are ’super weak’, which makes the gravitino a viable dark matter

candidate. Terms that are suppressed by higher orders of Mp are surely negligible.

Eq. (3.49) refers to the notation in Eq. (3.6) and (3.41). The covariant derivative of the

scalar fields in the MSSM is

D(α)
µ φi = ∂µφ

i + igαA
(α) a
µ T

(α)
a, ijφ

j . (3.50)

Here, T
(α)
a, ij are the generators of the Standard Model gauge group (3.5),

T
(1)
a, ij =

1

2
Yiδijδa1 ,

T
(2)
a, ij = σa, ij ,

T
(3)
a, ij = λa, ij , (3.51)

where Yi denotes the U(1)Y hypercharge of the corresponding particle, σa are the Pauli

sigma matrices as defined in (A.8) and λa denote the Gell-Mann matrices of strong
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interactions that we do not give explicitly, since we do not consider processes of strong

interactions. The field strength tensor F
(α) a
ρσ in Eq. (3.49) is given by

F (α) a
µν = ∂µA

(α) a
ν − ∂νA

(α) a
µ − gαf

(α) abcA(α) b
µ A(α) c

ν . (3.52)

As usual f (α) abc denote the totally antisymmetric structure constants of the correspond-

ing gauge group α given via

[Ta, Tb] = ifabcTc . (3.53)

Since U(1)Y is abelian, the left hand side of Eq. (3.53) vanishes and thus

f (1) abc = 0 for U(1)Y . (3.54)

We consider gravitino tree-level interactions suppressed by M−1
p . Feynman rules can

be extracted from the Lagrangian in the usual way, while we use -as mentioned above-

the method proposed in [50]. In Appendix D we list all gravitino tree-level vertices as

derived from Eq. (25.24) and (G.2) in the book of Wess and Bagger [40] using also the

form (3.49) of the interaction Lagrangian.

3.4.1 Gravitino Cosmology

In the early universe also gravitinos are in thermal equilibrium. But the relic density of

those gravitinos overcloses the universe, i.e. Ω3/2 = ρ3/2/ρc > 1. Then the universe would

have re-collapsed. This problem is resolved by inflation, see Section 2.1, since the initial

abundance of gravitinos is diluted away. As described in Section 2.1, the gravitino density

can be reproduced in the thermal plasma after reheating. The thermally produced

gravitino relic density [52],

ΩTP
3/2h

2 ' 0.3

(
100 GeV

m3/2

)(
TR

1010 GeV

)( meg

1 TeV

)
, (3.55)

is mainly determined by the gravitino mass m3/2, the gluino mass meg and the reheat-

ing temperature TR after inflation. The electroweak contributions are provided in [14].

Especially for non-universal scenarios, the electroweak contributions become more im-

portant, i.e. up to 40%. The restored gravitino density may not overclose the universe

again, which constrains the possible values of the gravitino mass m3/2, the reheating

temperature TR and the gluino mass meg.

If the gravitino is not the LSP it decays with a lifetime roughly given by [53]

τ3/2 ≈ 1

α3/2

M2
p

m3
3/2

, (3.56)
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3.4. The Gravitino

where α3/2 is a dimensionless number of at most O(1). Thus we have an estimate of the

gravitino lifetime

τ3/2 & 3.2 years

(
100 GeV

m3/2

)3

, (3.57)

that is surely in conflict with nucleosynthesis happening seconds after the big bang, see

Section 2.2. This can be circumvented in two ways. First, as can be seen from Eq. (3.57),

an extremely heavy gravitino at least of O(100 TeV) could decay early enough. Via

Eq. (3.14) this would, in turn, imply a high scale 〈F 〉 of spontaneous supersymmetry

breaking [5, 7, 53].

The second possibility is that the gravitino is the LSP. As presented in Chapter 4 and 5,

the decays of the next-to-lightest supersymmetric particle happen much faster, but are

also strongly constrained by big bang nucleosynthesis. In Chapter 4 we determine the

lifetime of the general neutralino NLSP. If the gravitino is the LSP, the gravitino den-

sity (3.55) may not exceed the dark matter density (2.32), i.e. Ω3/2 < ΩDM .

There is a possible conflict with baryogenesis via thermal leptogenesis, because for rea-

sonable values of the gluino mass meg ∼ 0.7 − 1 TeV [2] the gravitino mass may not be

much smaller than 100 GeV when the reheating temperature TR is of O(1010 GeV) or

must at least be > 10 GeV if the reheating temperature is of O(109 GeV).

We will see how the upper bound on the gravitino mass by BBN constraints is reconcil-

able with the lower bound from thermal gravitino production and baryogenesis.

After decoupling from the thermal plasma, each NLSP χ decays into one gravitino LSP

and Standard Model particles. The resulting density of these non-thermally produced

gravitinos is [54]

ΩNTP
3/2 h2 =

m3/2

mχ
Ωχh

2 (3.58)

where mχ is the mass of the NLSP and Ωχh
2 is the relic density of the NLSP, if they

would have not decayed. Thus the total gravitino density Ω3/2h
2 is given by the sum of

thermally produced and via decays produced gravitinos, i.e.

Ω3/2h
2 = ΩTP

3/2h
2 + ΩNTP

3/2 h2 . (3.59)
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Chapter 3. From Supersymmetry to Gravitino Dark Matter

Table 3.5: Physical Particles

Name Spin PR Gauge Eigenstates Mass Eigenstates

Higgs bosons 0 +1 H0
u H

0
d H

+
u H−

d h0 H0 A0 H±

squarks q̃ 0 -1

ũL ũR d̃L d̃R

(same)s̃L s̃R c̃L c̃R

t̃L t̃R b̃L b̃R

sleptons l̃ 0 -1

ẽL ẽR ν̃e

(same)µ̃L µ̃R ν̃µ

τ̃L τ̃R ν̃τ

quarks q 1/2 +1

uL uR dL dR

(same)sL sR cL cR

tL tR bL bR

leptons l 1/2 +1

eL eR νe

(same)µL µR νµ

τL τR ντ

neutralinos 1/2 -1 B̃0 W̃ 0 H̃0
u H̃

0
d χ0

1 χ
0
2 χ

0
3 χ

0
4

charginos 1/2 -1 W̃± H̃+
u H̃−

d χ±
1 χ±

2

gluinos 1/2 -1 g̃a (same)

gauge bosons
(γ, Z, W±)

1 +1 BµW
a
µ Aµ Z

0
µW

±
µ

gluons 1 +1 gaµ (same)

gravitino
(with goldstino)

3/2

(1/2)
-1 Ψµ (same)
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Chapter 4

General Neutralino NLSP with

Gravitino Dark Matter

As mentioned in Section 2.2, big bang nucleosynthesis (BBN) constraints the decay of

long-lived massive particles. Since we investigate gravitino dark matter with neutralino

NLSP that freezes out with its relic abundance, we investigate the decay of the neutralino

NLSP χ. Since BBN happens at a certain time and its constraints depend on time, we

are interested in the neutralino lifetime

τ =
1

Γ
, (4.1)

where Γ is the total decay width (C.1) of the neutralino.

Since BBN constraints differ for electromagnetic (em) and hadronic (had) energy release

(cp. Section 2.2), we are interested in the electromagnetic branching ratio and hadronic

branching ratio respectively. The branching ratio B of a particle χ into something X is

defined as the ratio of the partial decay width Γ(χ→ X) and the total decay width Γtot

of the decaying particle,

B(X) :=
Γ(χ→ X)

Γtot
, (4.2)

where the total decay width is the sum of all partial decay widths,

Γtot :=
∑

X

Γ(χ→ X) . (4.3)

Due to R-parity conservation the neutralino NLSP with gravitino dark matter must de-

cay into a gravitino and Standard Model particles. To comply the SM conservation laws,

these are produced in pairs of particle and antiparticle. Thus the hadronic branching
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Chapter 4. General Neutralino NLSP with Gravitino Dark Matter

ratio is given by

Bhad =

∑
q Γ(χ→ . . . qq̄Ψµ)

Γtot
, (4.4)

where . . . denotes anything allowed. A decay releases hadronic energy, when at least

one pair of quarks is produced. The sum runs over all quark flavor q = {u, d, c, s, b, t}.
One expects that 3-body decays χ→ qq̄Ψµ are the leading contribution to Bhad. Other

hadronic channels require at least two intermediate gauge bosons. Thus those are natu-

rally suppressed. They lead at least to 5-body decays, i.e. χ→ l+l−qq̄Ψµ or χ→ qq̄qq̄Ψµ.

Furthermore, we found the radiative corrections χ→ γqq̄Ψµ to be negligible. Thus one

expects the hardonic ratio to be given by

Bhad =

∑
q Γ(χ→ qq̄Ψµ)

Γtot
. (4.5)

However, if a 3-body decay into heavy unstable particles can proceed directly via a 4-

vertex, its contribution can become large at large masses of the decaying particle when

the decay is no longer suppressed due to the phase space. Since the heavy unstable

particles decay, these neutralino decays lead in the end at least to 5-body decays. Thus

they are not considered by Eq. (4.5). We consider the hadronic branching ratio to be

given by

Bhad = Bχ
had = {

∑

q

Γ(χ→ qq̄Ψµ) +
∑

all4v.

Bχ4v.
had × Γ(χ-4-vertex)}/Γtot , (4.6)

where the sum runs over all neutralino 4-vertices multiplied by the corresponding

hadronic branching ratio. We consider all six quark flavour including top, cp. Sec-

tion 3.3.3.

The electromagnetic branching ratio Bem is defined as the branching ratio into parti-

cles that can interact electromagnetically, i.e. carry electromagnetic charge. From all

SM particles only neutrinos are not electromagnetically charged. So all other decays,

including quark pair production, account for the electromagnetic branching ratio. It is

Bem = Bχ
em =

1

Γtot
{
∑

q

[Γ(χ→ Ψµh→ Ψµqq̄) + Γ(χ→ ΨµZ → Ψµqq̄)]

+
∑

l

[
Γ(χ→ Ψµh→ Ψµl

+l−) + Γ(χ→ ΨµZ → Ψµl
+l−)

]
} , (4.7)

where we have made the same approximations as in Eq. (4.5). From Eq. (4.7) we see

Bem = 1 −Binv , (4.8)

where Binv denotes the branching ratio into Ψµ and solely neutrinos. The leading con-

tribution to Binv stems from χ→ νν̄Ψµ.
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4.1. Bino NLSP

p1

p

k

γ

Ψµ

G̃0

p1

p

k

Z

Ψµ

G̃0

Figure 4.1: Tree-level Feynman diagrams of the gaugino 2-body decays.

The lightest neutralino

χ0
1 ≡ χ = N11B̃ + N12W̃

0 + N13H̃
0
d + N14H̃

0
u (4.9)

is a linear combination of Bino, neutral Wino and both neutral Higgsinos, see Sec-

tion 3.3.2. Note that it is N2
11 + N2

12 + N2
13 + N2

14 = 1. Firstly, we consider the pure

gauge eigenstates and then investigate interference effects. Sometimes we refere to gaug-

ino neutralino G̃ = N11B̃ + N12W̃
0, whereas N13 = N14 = 0, or to Higgsino neutralino

H̃, which is a mixed state of the neutral Higgsinos only. Analytic results of 2- and

3-body decay widths used in this chapter are explicitly listed in Appendix E. There you

can also find Feynman diagrams of all processes referred to in this chapter.

4.1 Bino NLSP

The bino can decay into photon and gravitino and the decay rate is given by

Γ
(
B̃ → Ψµγ

)
=

cos2 ΘW

48πM2
p

m5
eB

m2
3/2

(
1 − x2

3/2

)3 (
1 + 3x2

3/2

)
, (4.10)

where x3/2 =
m3/2

meB
is the gravitino to neutralino mass ratio. This decay channel con-

tributes only to electromagnetic energy and is always open, since the photon is massless.

If it is kinematically allowed, the bino can also decay into Z boson and gravitino. The

Feynman diagrams for both 2-body decays are shown in Figure 4.1. As in any other

Feynman diagram, the gravitino Ψµ is represented as a double solid line, gauge bosons

are shown as wiggled lines while the neutralino is always depicted as its corresponding

gauge eigenstate. Bino B̃ and wino W̃ 0 are gauginos that are depicted as wiggled lines

with additional straight solid lines. For the kinematics of 2-body decays see Appendix C.
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Chapter 4. General Neutralino NLSP with Gravitino Dark Matter

The decay rate of the Z channel is given by

Γ
(
B̃ → ΨµZ

)
=

sin2 ΘW

48πM2
p

m5
χ

m2
3/2

β eB→ΨµZ

×[
(
1 − x2

3/2

)2 (
1 + 3x2

3/2

)
− x2

Z{3 + x3
3/2

(
x3/2 − 12

)

−x2
Z

(
3 − x2

3/2 − x2
Z

)
}] , (4.11)

where xZ = mZ
meB

is the Z boson to neutralino mass ratio. βA→BC is a kinematic func-

tion, i.e. for mA > mB +mC

βA→BC ≡ [1 − 2
(
x2
B + x2

C

)
+
(
x2
B − x2

C

)2
]
1
2 (4.12)

and βA→BC = 0 otherwise. Here and in the following parts we use xi = mi
mA

is the mass

ratio between particle i and A. B̃ → ΨµZ produces em energy for all possible Z decay

modes with the exception Z → νν̄. But it may also produce hadronic energy if followed

by Z → qq̄.

The total decay rate Γtot of bino neutralino is in good approximation given by

Γ
eB
tot = Γ(B̃ → Ψµγ) + Γ(B̃ → ΨµZ) . (4.13)

There is an off-shell contribution by the Z boson, but off-shell contributions are of

order Γ/m compared to the on-shell case. Since ΓZ/mZ ≈ 1/45 and the Z channel

is not leading, this contribution is even smaller than 1/45 and thus negligible at the

determination of Γtot.

The electromagnetic branching ratio Bem ' 1, because the only contribution to Binv

stems from the processes Z → νν̄. Thereby, the Z channel with BZ
inv = 0.2 is always

subleading. However, B = 1 is the upper bound anyway.

The hadronic branching ratio is given in Figure 4.2 as a function of the bino mass at a

fixed gravitino mass m3/2 = 1 GeV. At low masses we see that the branching ratio is in

the percentage level. It increases after the kinematic threshold of the Z boson. As we can

also see from Eq. (4.18) and Eq. (4.19), B̃ → Ψµγ is always the dominant decay channel.

Clearly, the relative contribution of B̃ → ΨµZ increases, when real Z production is

allowed. Since Z decays stronger in quarks than the photon produces a quark pair, this

leads to an increase of the hadronic branching ratio. Since the lightest neutralino is by

construction the NLSP, there are no further kinematic thresholds. Thus the asymptotic

value Bhad ' 0.18 stays valid for any higher neutralino mass. It is computed from

B
eB
had =

1

Γ
eB
tot

∑

q

[Γ(χ→ Ψµγ → Ψµqq̄) + Γ(χ→ ΨµZ → Ψµqq̄)

+Γ(χ→ Ψµ(γ
∗/Z∗) → Ψµqq̄)] , (4.14)
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Figure 4.2: Hadronic branching ratio B
eB
had of a pure bino NLSP. Depicted are also

the particular contributions of the six quark flavour q = u, d, c, s, b, t that add up to the

full branching ratio.

where Γ
eB
tot is given by Eq. (4.13).

In principle, there is an off-shell contribution by virtual squarks. It is the process χ →
qq̃∗ → Ψµqq̄ with an virtual squark q̃. Off-shell contributions of much heavier particles

are in good approximation negligible for our purpose. Since squarks are mostly much

heavier than the lightest neutralino, we neglect these processes here. We investigate the

effect of a light squark and a light slepton in Section 4.4

In Figure 4.2 we depict separately the contribution of each quark flavour. Following

Eq. (4.5) we see that the sum of all contributions gives the full hadronic branching ratio.

Especially at low masses, the leading contribution is the decay into a pair of up quarks.

This is understood by consideration of the 3-body decay via intermediate photon, i.e.

χ → Ψµγ
∗ → Ψµqq̄. In the limit of near massless quarks with m3/2 � mχ the leading

contribution of Eq. (E.26) reads

Γ(G̃→ Ψµγ
∗ → Ψµqq̄) = αQED

|N11 cos ΘW + N12 sinΘW |2Q2

6(2π)2M2
p

m5
χ

m2
3
2

ln

(
m eG

2mq

)
, (4.15)

41



Chapter 4. General Neutralino NLSP with Gravitino Dark Matter

where Q denotes the electric quark charge and αQED is the QED coupling constant.

Here, the general gaugino G̃ is used to make clear that this stays valid for a wino NLSP.

We see that the contribution is enhanced by a logarithmic IR divergence. Obviously,

Eq. (4.15) becomes maximal for the lightest quark, i.e. the up quark. Because of the IR

divergence, Bhad does not vanish at low masses. Evaluation of

B
eG
had(via γ∗) =

∑
q Γ(G̃→ Ψµγ

∗ → Ψµqq̄)

Γ(G̃→ Ψµγ)
& 0.03 (4.16)

tells us in contrast that it always stays greater than ' 0.03 in the mass range under

consideration. In the case of intermediate Z boson the IR divergence is not present.

Γ(G̃ → ΨµZ → Ψµqq̄) (E.27) becomes large when the Z boson can be produced on

shell. Since we work with the Breit-Wigner form of propagators (E.14), we include

the behaviour around thresholds exactly. After the Z threshold charm, down, strange

and even bottom catch up and their contributions are more or less indistinguishable

at high masses. There the hadronic decay rate via intermediate Z boson is properly

approximated by the decay into Z boson weighted by the respective hadronic branching

ration (cp. [18]), i.e.

∑

q

Γ(G̃→ ΨµZ → Ψµqq̄) ≈ Γ(G̃→ ΨµZ) ×BZ
had . (4.17)

Due to the high top quark mass mt = 171.2 GeV, the contribution of the decay into a

pair of top quarks is kinematically suppressed. In the mass range under consideration it

is negligible and it does not become O(10−1) up to neutralino masses mχ = O(10 TeV).

As in any other plot of hadronic branching ratios in this thesis, a shift of the gravitino

mass leads in good approximation to a shift of kinematic thresholds only. Thus the

change due to a smaller gravitino mass would not be resolvable, while heavier gravitinos

lead to even longer lived neutralinos, see Eq. (4.18), (4.19). However, we comment on

this issue in Section 4.4.

The actual experimental lower bound as given by the particle data group of the neutralino

mass is mχ = 46 GeV (95%CL) [22]. This determines the lowest mass of the neutralino

mass range used in branching ratio plots in this thesis. We set the upper bound mχ =

1600 GeV by consideration of the BBN bounds (see Chapter 5).

To see the order of magnitude of the decay rates, we provide the approximate formulas

Γ
(
B̃ → Ψµγ

)
'
(
7.7 ∗ 104s

)−1
( m eB

100 GeV

)5 ( m3/2

1 GeV

)−2

(4.18)

and

Γ
(
B̃ → ΨµZ

)
≈
(
2.0 ∗ 104s

)−1
( m eB

200 GeV

)5 ( m3/2

1 GeV

)−2

. (4.19)
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The decay into photon and an appropriate light gravitino has no kinematic suppression,

so that the given prefactor in Eq. (4.18) is nearly phase space independent. Already at

the chosen values of m eB and m3/2 the phase space factor is practically one. In the case

of decay into Z boson, there is kinematic suppression. At m eB
= 200 GeV and m3/2 = 1

GeV the decay is no more strongly suppressed. The phase space factor evaluates to an

order one factor, i.e. ' 0.394.

Since gravitino couplings are suppressed by the Planck mass, the NLSP is naturally

long-lived. This we see immediately from Eq. (4.18) and Eq. (4.19). The neutralino

NLSP with gravitino dark matter is long-lived at moderate mass ratios m3/2/mχ. To

shorten the lifetime τ = 1/Γ we need to decrease the mass ratio by making the neutralino

heavier and/or the gravitino lighter.

4.2 Wino NLSP

At low masses the decay channels of bino and wino are the same, i.e. two body decay

into gravitino and photon or Z boson. And the discussion of bino applies also to wino.

The decay rates expressed by the bino decay rates are

Γ(W̃ → Ψµγ) =
sin2 ΘW

cos2 ΘW
Γ(B̃ → Ψµγ) (4.20)

and

Γ(W̃ → ΨµZ) =
cos2 ΘW

sin2 ΘW
Γ(B̃ → ΨµZ) . (4.21)

The factor cos2 ΘW

sin2 ΘW
' 3.3 explains the larger hadronic branching ratio of about 50%

in Figure 4.3 at neutralino masses around 300 GeV compared to the bino case. The

stronger coupling to Z leads to more hadronic decays. Below the Z threshold the photon

channel dominates anyway. Therefore, the branching ratios do not differ in this region.

If it is kinematically allowed, the wino can decay directly into a pair of W bosons via the

4-vertex shown in Figure 4.4. Whether this decay gives a contribution to electromagnetic

or hadronic energy depends on the further decays of the W bosons.

Since W± does not decay into νν̄ at tree level, the electromagnetic branching ratio of

this decay Bem ' 1. W̃ → ΨµW
+W− already produce hadronic energy if only one W

decays into a pair of quarks, W± → qq̄. So the hadronic branching ratio of this channel

is roughly given by

B
fW4v.
had = 1 − (1 −BW+

had )2 ' 0.89 . (4.22)

This is the counter-probability of both Ws not decaying into hadrons, in which the

branching ratio of W into hadrons BW+

had = 0.676 [22]. So this process produces with
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Figure 4.3: Hadronic branching ratio B
fW
had of a wino NLSP. Depicted is also the

particular contribution of the wino 4-vertex to the full branching ratio.

a high probability of 89% hadronic energy. Since these are 5-body decays, it is an

additional contribution, that is not considered in Eq. (4.5). In the limit m3/2,mW � mχ

the decay rate of this channel (Eq. (E.21)) becomes

lim
m3/2,mW�mχ

Γ
(
W̃ → ΨµW

+W−
)

=
1

128(2π)3M2
p

g2

270

m9
χ

m4
Wm

2
3/2

, (4.23)

where g ≡ g2 denotes the gauge coupling of weak interaction. This limit shows the

leading order of neutralino mass. In contrast to Eq. (4.10) and Eq. (4.11), it is m9
χ

rather than m5
χ. Therefore, it becomes the leading decay channel at neutralino masses

mχ ≈ 1 TeV � mW , whereas it is absent for pure bino. In Figure 4.3 we depict the

contribution of the wino 4-vertex to the full hadronic branching ratio and see that it

leads to a further increase of Bhad at higher neutralino masses. The asymptotic value of

Bhad = 0.89 is given by Eq. (4.22).

This channel exists only for non-abelian interactions. Since U(1)Y is abelian, it does not

exist for the bino.

Together, the total decay rate of gaugino neutralino is in good approximation given by

Γ
eG
tot = Γ(G̃→ Ψµγ) + Γ(G̃→ ΨµZ) + Γ(W̃ -4-vertex) . (4.24)
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Figure 4.4: Feynman diagram of the direct decay W̃ → ΨµW
+W− via the wino

4-vertex.
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Figure 4.5: Tree-level Feynman diagrams of the Higgsino 2-body decays into Z, h.

4.3 Higgsino NLSP

If kinematically allowed, the Higgsino H̃ = N13H̃
0
d + N14H̃

0
u can decay into a gravitino

and a Z or any neutral Higgs boson. In the Feynman diagrams of Figure 4.5 the neu-

tralino is drawn as solid line, since it corresponds to a Higgsino that is a chiral fermion

which are drawn as solid lines. At tree level there is no photon channel for a pure

Higgsino. The Higgsino decay rate into gravitino and Z boson is

Γ
(
H̃ → ΨµZ

)
=

|−N13 cos β + N14 sinβ|2
96πM2

p

m5
χ

m2
3/2

βχ→ΨµZ

×[
(
1 + x3/2

)2 (
1 − x3/2

)4

−x2
Z{
(
1 − x3/2

)2 (
3 + 2x3/2 − 9x2

3/2

)

−x2
Z

(
3 − 2x3/2 − 9x2

3/2 − x2
Z

)
}] (4.25)
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and into gravitino and the light Higgs boson it is

Γ
(
H̃ → Ψµh

)
=

|−N13 sinα+ N14 cosα|2
96πM2

p

m5
χ

m2
3/2

βχ→Ψµh

×[
(
1 − x3/2

)2 (
1 + x3/2

)4

−x2
h{
(
1 + x3/2

)2 (
3 − 2x3/2 + 3x2

3/2

)

−x2
h

(
3 + 2x3/2 + 3x2

3/2 − x2
h

)
}] (4.26)

The phase space factors are just slightly more complicated compared to the gaugino

Z channel (Eq. (E.27)). There is no interference between the gaugino and Higgsino Z

channels. So the decay rate into gravitino and Z boson of a mixed neutralino is simply

given by the sum of both channels, i.e.

Γ(χ→ ΨµZ) = Γ(G̃→ ΨµZ) + Γ(H̃ → ΨµZ) . (4.27)

In Appendix E we list explicitly the rates into heavy scalar Higgs H and pseudoscalar

Higgs A. We give the full expression with N1j , because a priori α and β are also

unknown. So at this point it makes no sense to investigate H̃0
d ,H̃

0
u separately.

Nevertheless, Higgsino neutralino tends to have N13 = N14 = 1/
√

2 (cf. [33]). This can

be expected by the structure of the mass matrix (3.31). H̃0
d ,H̃

0
u have the same mass

parameter µ. Mixing happens only due to the off-diagonal terms determined by mZ ,

tanβ and α. We use N13 = N14 = 1/
√

2 to find the estimate formulas

Γ
(
H̃ → ΨµZ

)
≈

(
2.4 ∗ 104s

)−1
( mχ

200GeV

)5 ( m3/2

1GeV

)−2
(4.28)

and

Γ
(
H̃ → Ψµh

)
≈

(
3.0 ∗ 104s

)−1
( mχ

200GeV

)5 ( m3/2

1GeV

)−2

, (4.29)

where we assume a Higgs mass mh = 115 GeV and the decoupling limit with moderate

tanβ = 10. At m eH
= 200 GeV with m3/2 = 1 GeV the decay into h is no more

strongly suppressed. The phase space factor evaluates to an order one factor ' 0.204.

Comparison to Eq. (4.18) and Eq. (4.19) shows that the partial decay widths of the

Higgsino channels are of the same order of magnitude as the partial decay width of the

gaugino Z channel. Of course the gaugino photon channel stays dominant. It is clear,

that χ→ Ψµh depends strongly on the unknown Higgs mass. So Eq. (4.29) is understood

as a benchmark.

If it is kinematically allowed, the Higgsino can decay directly into gravitino, Z and Higgs

boson via the 4-vertex shown in Figure 4.6. Whether this decay gives a contribution to
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p
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Figure 4.6: Feynman diagram of the direct decay H̃ → ΨµZh via the Higgsino 4-

vertex.

electromagnetic or hadronic energy depends on the further decays of the primary decay

products. As we will see, Higgs bosons decay in large part hadronically. In addition,

there is the Z boson decay. Thus the hadronic branching ratio of H̃ → ΨµZh is well

approximated by B
eH4v.
had = 1, since it is at each point in parameter space > 0.97.

In the decoupling limit with tan β = 10 and N13 = N14 = 1/
√

2, the decay rate of

H̃ → ΨµZh (E.23) becomes at large neutralino masses m3/2,mZ ,mh � mχ

lim
m3/2,mZ ,mh�mχ

Γ
(
H̃ → ΨµZh

)
=

1

320(2π)2M2
p

αQED
s2W c

2
W

1

45

m7
χ

m2
Zm

2
3/2

, (4.30)

where αQED is the coupling constant of quantum electrodynamics. This limit shows the

leading order of neutralino mass. In contrast to Eq. (4.25) and Eq. (4.26), it is m7
χ rather

than m5
χ. Therefore, the decay via the 4-vertex becomes the leading decay channel at

large Higgsino masses, but we found that this happens not until Higgsino masses & 5

TeV. Thus up to mχ = 2 TeV, Higgsino decays happen more than a magnitude faster

via the 2-body decays than via this 5-body decay.

There are also Higgsino 4-vertices for the heavy Higgs bosons H,A, but since those are

mostly heavy, their contribution is even smaller.

We point out that even a neutralino with a mass of mχ = 1 TeV decays stronger via the

wino 4-vertex (4.23) than via the Higgsino 4-vertex (4.30) even if the wino component

is just ∼ 1%.

The total decay rate of a pure Higgsino neutralino with mχ > mh, mZ can be approxi-
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Chapter 4. General Neutralino NLSP with Gravitino Dark Matter

mated by the sum of the 2-body decays and the Higgsino 4-vertices

Γtot ≈ Γ
(
H̃ → ΨµZ

)
+ Γ

(
H̃ → Ψµh

)

+Γ
(
H̃ → ΨµH

)
+ Γ

(
H̃ → ΨµA

)

+Γ(H̃-4-vertices) (4.31)

where

Γ(H̃-4-vertices) = Γ(H̃ → ΨµZ h) + Γ(H̃ → ΨµZ H) + Γ(H̃ → ΨµZ A) (4.32)

accounts for the sum of the widths of the three possible direct decays H̃ → ΨµZh,

H̃ → ΨµZH and H̃ → ΨµZA via the corresponding 4-vertices.

In principle, there are also off-shell contributions. But those are negligible when the

real production of Z or h is allowed. ΓZ/mZ ≈ 1/45 and naturally Γh/mh � 1/45, so

that the error in the total decay rate due to this approximation at large Higgsino masses

mχ � mh,mZ is at maximum of order 1/45. As in the bino case, all further off-shell

contributions are surely negligible. At low masses the situation is different. If the 2-

body decays are kinematically forbidden, Higgsino decays into pairs of quarks or leptons

via off-shell processes only. Since off-shell processes are suppressed by the square of

the squared mass of the virtual particle (cp. (E.15)), it depends mainly on the particle

masses which process is leading. Typically, all squarks, sleptons and the other Higgs

bosons (H,A) are much heavier than Z and the light Higgs boson h. Then their off-shell

contributions to the total decay rate are negligible at any Higgsino mass. We choose a

Higgs mass mh = 115 GeV > 91 GeV ' mZ . Therefore, at low masses mχ < mZ the

Higgsino decays mainly via off-shell Z, i.e. χ → ΨµZ
∗ → Ψµqq̄, χ → ΨµZ

∗ → Ψµl
+l−

and χ→ ΨµZ
∗ → Ψµνν̄. To determine the hadronic branching ratio of a pure Higgsino,

that is shown in Figure 4.7, we need the full results of Appendix E to compute

Γ
eH
tot =

∑

q

[
Γ(H̃ → Ψµh→ Ψµqq̄) + Γ(H̃ → ΨµZ → Ψµqq̄)

]

+
∑

l

[
Γ(H̃ → Ψµh→ Ψµl

+l−) + Γ(H̃ → ΨµZ → Ψµl
+l−)

]

+
∑

ν

Γ(H̃ → ΨµZ → Ψµνν̄) + Γ(H̃ → ΨµZh) . (4.33)

Here, we are in the decoupling limit, so that we do not consider the other Higgs bosons.

The sums consider all quark flavour, charged leptons and all neutrinos. It is clear, that

the Higgs coupling to neutrinos is negligible due to the very small neutrino masses.

In some scenarios there is a stau τ̃ with a mass meτ ' mχ nearly degenerate to the

neutralino mass. It is clear, that this would change the situation at masses below the Z
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4.3. Higgsino NLSP

mass. The Higgsino would decay via off-shell stau rather than off-shell Z. However, there

are good reasons not to consider these special situations in detail. Firstly, a neutralino

NLSP decaying only via off-shell processes becomes even longer-lived and thus runs for

sure into problems with big bang nucleosynthesis, see Chapter 2. And secondly, a bino

fraction of one percent N11 = 1/
√

100 is already enough to make the photon channel

the leading decay channel at low masses again. Then we can approximate the total

decay rate as the sum of all 2-bodies like at any other neutralino mass. The error due

to this becomes maximal around the threshold of real Z production, since the off-shell

contribution becomes relatively large while the 2-body decay is kinematically suppressed.

We found that a mixed gaugino fraction of a few percent brings the error down to the

percentage level, see below. But, for sure, it depends also on the chosen parameter

values. However, this affects only a small mass region. So for all other mixed cases the

total decay rate is in good approximation (error smaller than O(10−3)) given by the sum

of all 2-body decays and the 4-vertices,

Γtot ' Γ(χ→ Ψµγ) + Γ(χ→ ΨµZ) + Γ(χ→ Ψµh)

+Γ(χ→ ΨµH) + Γ(χ→ ΨµA) + +Γ(H̃-4-vertices)

+Γ(W̃ -4-vertex) . (4.34)

Since by construction the neutralino is the NLSP with gravitino dark matter, there are

no other tree-level decay processes. All sparticles are heavier than the lightest neutralino.

So they can not be produced in decays of it.

Higgs couplings to fermions are proportional to the mass of the corresponding fermion

and Higgs couplings to electroweak gauge bosons are proportional to the squared mass of

the corresponding gauge boson [48]. Therefore, Higgses decay mainly into heavy quarks,

h → bb̄, or into pairs of gauge bosons, h → W+W− and h → ZZ, if kinematically

allowed. As we have seen in Section 4.2 decays into pairs of gauge bosons give negligible

contributions to Binv. So the electromagnetic branching ratio of a Higgsino neutralino

is Bem ' 1 again, since the leading contribution to Binv, ZZ → νν̄νν̄, is small.

Furthermore, we have seen that decays into pairs of gauge bosons give in large part

hadronic energy. So the hadronic branching ratio of Higgses is near to one. The hadronic

branching ratio of a pure Higgsino neutralino is given in the decoupling limit by

B
eH
had =

∑
q[Γ(H̃ → Ψµh→ Ψµqq̄) + Γ(H̃ → ΨµZ → Ψµqq̄)] + Γ(H̃-4-vertices)

Γtot
, (4.35)

where Γtot is the total decay rate of a pure Higgsino as given in Eq. (4.33). Again, the

Higgs mass mh = 115 GeV. The other Higgses are too heavy to be produced and the light

one is too light to decay into gauge bosons. The effect of light Higgses H,A is a further
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Chapter 4. General Neutralino NLSP with Gravitino Dark Matter

increase of Bhad, since as mentioned above Higgs decays produce in large part, i.e. > 90%,

hadronic energy. Moreover, there is a strong dependence on the Higgsino composition,

tanβ and α. Therefore, we are in the decoupling limit with moderate tanβ = 10 just to

have a benchmark. With these parameters we show the hadronic branching ratio of a
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Figure 4.7: Hadronic branching ratio B
eH
had of a Higgsino NLSP. Depicted are also the

particular contributions to the full branching ratio due to the processes via h and Z.

pure Higgsino neutralino (N13 = N14 = 1/
√

2) in Figure 4.7. Additionally, we show the

separate contributions of the processes via h and Z. They add up to the full branching

ratio following Eq. (4.35). At masses below the Higgs mass, decays happen via Z. The

off-shell Higgs contribution is small, because mh > mZ . So the hadronic branching ratio

is roughly that of a Z boson. After the Higgs mass threshold its relative contribution

catches up and at high masses it is a little bit larger than the Z contribution. For sure,

the details of this are parameter dependent. Nevertheless, we see that in general Higgsino

neutralino has a large hadronic branching ratio, especially compared to the gaugino case

with moderate neutralino masses. It is B
eH
had > BZ

had.

As mentioned above a small bino fraction is sufficient to make the photon channel leading

below the Z mass threshold. This is shown in Figure 4.8, where a fraction of 5% bino

(N11 =
√

0.05, N12 = 0, N13 = N14 =
√

0.475) makes the photon channel leading

below the Z mass threshold. Bhad ' 0.03 is due to the photon channel. Compared to

the pure Higgsino case, we see that the asymptotic value at large neutralino masses is

lowered, i.e. roughly from 0.8 to 0.58. Due to the small bino fraction the photon channel
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Figure 4.8: Hadronic branching ratio of a mainly Higgsino NLSP with a fraction of

5% bino. As reference the pure case is replotted from Figure 4.7. Depicted are also the

particular contributions to the full hadronic branching ratio of Figure 4.7 due to the

decays into a pair of bottom (b) or top (t) quarks.

is suppressed. Nevertheless it leads to a significant decrease of Bhad even though the

other channels are open at large neutralino masses. This shows that a mixed neutralino

tends to decay via its strong photon channel.

Furthermore, we show the bottom and top quark contributions to the full hadronic

branching ratio of a pure Higgsino neutralino in Figure 4.8. Firstly, the top quark

contribution is again negligible and it does not become O(10−1) up to neutralino masses

mχ = O(10TeV). The bottom quark contribution shows a difference to the gaugino

case. In the gaugino case at large mχ all quarks (except top) give roughly the same

relative contribution. This is in contrast to the Higgsino case, because then the decay

into a pair of bottom quarks makes up more than half of the hadronic decays. This is

due to the fact, that the light Higgs decays into bb̄ with a branching ratio near to one.

Even though the branching ratio of Z → bb̄ is smaller, together they make bb̄ the leading

hadronic decay channel.
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Chapter 4. General Neutralino NLSP with Gravitino Dark Matter

4.4 Varying Gravitino Mass and Intermediate Sparticles

The effect of a heavy gravitino on the hadronic branching ratio Bhad as given in this

thesis is mainly a shift of kinematic thresholds. This can be seen in Figure 4.9, where we

leave any parameter unchanged but the gravitino mass m3/2. We see that the threshold

of real Z production is shifted to larger neutralino masses for larger gravitino masses.

It is clear that neutralino masses mχ < m3/2 are excluded to keep the gravitino as the
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Figure 4.9: Hadronic branching ratio of a maximally mixed neutralino NLSP for

different values of the gravitino mass, i.e. m3/2 =100 MeV, 1 GeV, 50 GeV and 100

GeV. The graphs with m3/2 = 100 MeV and 1 GeV overlap completely.

LSP. Therefore, we start the data lines at some low neutralino masses.

In most scenarios with a neutralino NLSP the squarks are much heavier than the NLSP

and even the sleptons are manifestly heavier. Then all processes with intermediate

sparticles, χ → qq̃ → Ψµqq̄, χ → q̄q̃ → Ψµqq̄, χ → ll̃ → Ψµll̄,... , are negligible

for the lifetime and the hadronic branching ratio, because they are suppressed by the

fourth power of their mass, for an example see (E.52). The full analytic results for

these processes are provided in Appendix E. By construction the lightest neutralino

is the lightest supersymmetric partner particle, so that sparticles can not be produced

on shell in decays of it. Nevertheless, there are scenarios with a light stop t̃ or a light

stau τ̃ degenerate in mass with the lightest neutralino, i.e. met or meτ ' mχ. Since

an intermediate stop leads to decays into a pair of top quarks, χ → tt̃ → Ψµtt̄, the
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4.5. Interference Effects

contribution of this process is negligible for lifetime and hadronic branching ratio.

For a pure Higgsino the decay via a mass degenerate stau is leading at low masses until

a particle can be produced on shell. Then this decay becomes rapidly leading. In nearly

all other cases the intermediate stau channel, χ → τ τ̃ → Ψµτ τ̄ , is negligible in the

determination of lifetime and hadronic branching ratio. In the determination of the

lifetime a mass degenerate stau, meτ = 1.01 ×mχ, leads under in some sense optimized

conditions at maximum to a correction on the percentage level. We conclude that in the

determination of lifetime and branching ratio all intermediate sparticle contributions are

negligible, except the mentioned artificial cases of pure and nearly pure (bino fraction

< 1%) Higgsino.

The same is valid for gaugino-Higgsino interferences in between the intermediate sparticle

channels G̃/H̃ → q(q̃/q̃) → Ψµqq̄, since interferences can maximally be of the same order

as the channels themselves. Interferences between the intermediate squark channel and

the other channels are discussed in the next section.

4.5 Interference Effects

The results for the branching ratios discussed above are not directly transferable to the

case of a general neutralino NLSP χ. In the case of general neutralino, interference

effects appear and can alter the decay rate and/or the hadronic branching ratio.

This happens for mixed gaugino neutralino. The supersymmetric partner of the pho-

ton, the photino γ̃, is a special gaugino with the same mixture of bino and wino as the

photon is a mixed state of B boson and W 0 boson. Following, Eq. (3.24) the photino

corresponds to γ̃ = cosΘW B̃ + sinΘW W̃
0. In the photino case the gaugino Z chan-

nel (E.27) drops out. The photino couples maximally to the photon leading to an Beγ
had

at low masses approximately given by Eq. (4.15) summed over the light quarks. In

this way the hadronic branching ratio of the mixed case is lower than both pure cases,

which is shown in Figure 4.10. This effect is noticeable at low masses until the decay

χ→ ΨµW
+W− via the wino component (E.21) of the photino takes over. For sure, this

depends strongly on the composition. To illustrate this, as an additional example, we

add the maximally mixed case (N11 = N12 = 1/
√

2, N13 = N14 = 0) to Figure 4.10.

For the Higgsino neutralino we considered already the maximally mixed case in Sec-

tion 4.3, since it is at the same time the most likely mixture. In general, the interfer-

ences as in Eq. (4.26) are not negligible, since they are of the same size as the pure

contributions. On the other hand, an effect like in the gaugino case that really lowers

the hadronic branching ratio does not exist. One can tune out either the Z channel or
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Figure 4.10: Hadronic branching ratio of a photino NLSP. As reference the pure bino

and wino cases are replotted. Depicted is also the maximally mixed gaugino case.

the h channel, because the mixing angles α in Eq. (4.26) and β in Eq. (4.25) are not

independent of each other, but related at tree level via Eq. (3.29). However, this can

not lead to a decrease of B
eH
had below BZ

had, because Bh
had is even bigger than BZ

had.

We compute the interferences between different 3-body decay channels into gravitino

and a pair of quarks. We comment on their relative contributions, for instance,
∑

q Γ(G̃→ Ψµ(γ
∗/Z∗) → Ψµqq̄)

∑
q

[
Γ(G̃→ Ψµγ → Ψµqq̄) + Γ(G̃→ ΨµZ → Ψµqq̄)

] . (4.36)

Here, the denominator would be given by Eq. (E.28), while the nominator is the sum of

Eq. (E.26) and Eq. (E.27). For a gaugino there are 3-bodies producing quark pairs via

photon and Z boson. We find the relative contribution of the interference between γ and

Z, G̃→ Ψµ(γ
∗/Z∗) → Ψµqq̄ (E.28), in the mass range under consideration to be mainly

a correction on the percentage level. For the Higgsino there are interferences between

light h and heavy CP-even neutral Higgs H and between Z boson and CP-odd Higgs

A. For a pure Higgsino the relative contribution of the interference H̃ → Ψµ(h
∗/H∗) →

Ψµqq̄ (E.32) is of order one at masses mχ < mh. When the light h can be produced on

shell, the relative contribution becomes negligible (O(10−4)). The relative contribution

of H̃ → Ψµ(Z
∗/A∗) → Ψµqq̄ (E.36) is at maximum O(10−4).

For a general neutralino χ there are also gaugino-Higgsino interferences. Firstly, there

54



4.5. Interference Effects

are no gaugino-Higgsino interferences at the 2-body decays, see Eq. (4.27). At the 3-

body decays many interferences between gaugino and Higgsino components occur only

with at least one off shell sparticle. There are decay channels via intermediate squarks

for gaugino G̃ → qq̃ → Ψµqq̄ and Higgsino H̃ → qq̃ → Ψµqq̄. Interferences in between

these two channels can maximally be of the same order as the channels themselves. We

comment on the contribution due to the processes with intermediate squarks only in

Section 4.4.

There are scenarios with a light squark (stop) in the spectrum. If its mass is close to

the neutralino NLSP mass, meq ' mχ, it could have significant influence on the hadronic

branching ratio via interferences with the photon or Z channels, χ → Ψµ(γ
∗, Z∗/q̃∗) →

Ψµqq̄ (E.58)(E.61). Since stop mediates decays into a pair of top quarks, its contribution

stays negligible anyway. But even for other squarks the relative contributions of these

interference terms are negligible. If interferences between squarks and the photon are

possible, the photon channel dominates the interferences anyway. The same applies for

Z, while there the photon channel is in the most cases open at the same time.

Interferences between channels with intermediate Higgs and squark χ →
Ψµ(h

∗,H∗, A∗/q̃∗) → Ψµqq̄ are also found to be negligible, since there even the leading

terms are suppressed by (mq/mχ)
3. Altogether, for a general neutralino the gaugino-

Higgsino interferences are subleading and in the very most cases they are in good ap-

proximation negligible for our purpose.

More important is the gaugino-Higgsino mixture. Properties of the pure gauge eigen-

states are discussed in the previous sections. From there we take that the total decay

rate of a general neutralino is -for the most part- well approximated by

Γtot ' Γ(χ→ Ψµγ) + Γ(χ→ ΨµZ) + Γ(χ→ Ψµh)

+Γ(χ→ ΨµH) + Γ(χ→ ΨµA) + Γ(H̃-4-vertices)

+Γ(W̃ -4-vertex) . (4.37)

From the discussion in this chapter we conclude that the electromagnetic branching ratio

of a general neutralino NLSP with gravitino dark matter is near to one at any parameter

point, i.e.

Bem ' 1 . (4.38)

Furthermore, we can conclude that the hadronic branching ratio of a general neutralino

is actually given by the sum of Eq. (4.35) with additional summands for A and H bosons

and Eq. (4.14) and by consideration of some off-shell interferences, thereby achieving a
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high accuracy,

Bhad = {
∑

q

[Γ(χ→ Ψµγ → Ψµqq̄) + Γ(χ→ ΨµZ → Ψµqq̄)

+Γ(χ→ Ψµh→ Ψµqq̄) + Γ(χ→ ΨµH → Ψµqq̄) + Γ(χ→ ΨµA→ Ψµqq̄)

+Γ(χ→ Ψµ(γ
∗/Z∗) → Ψµqq̄) + Γ(χ→ Ψµ(h

∗/H∗) → Ψµqq̄)]

+Γ(H̃-4-vertices) + 0.89 Γ(W̃ -4-vertex)}/Γtot , (4.39)

where Γtot is given by Eq. (4.37). With this we are able to compute the lifetime and the

hadronic branching ratio of a general neutralino NLSP with gravitino dark matter by

numerical evaluation of the non-negligible contributions of Appendix E in a convenient

amount of computing time and by far more accurate than in any reference. In Figure 4.11

we show together the formerly found hadronic branching ratios of pure gauge eigenstates

(bino, wino, Higgsino). These are overplotted by the hadronic branching ratio of a

maximally mixed neutralino (N11 = N12 = N13 = N14 = 1/
√

4). Here we are again

in the decoupling limit. The ability to compute the lifetime τ = 1/Γtot from Eq. (4.37)
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Figure 4.11: Hadronic branching ratios of the pure gauge eigenstates and the maxi-

mally mixed neutralino NLSP.

and hadronic branching ratio (4.39) for any given set of parameters will be used for the

computations of Chapter 5.
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Chapter 5

Constraints by Big Bang

Nucleosynthesis

As discussed in Section 3.4.1 late decays of the gravitino, that spoil the success of big bang

nucleosynthesis, do not occur if the gravitino is the LSP. In this case the NLSP decays

much faster, but is also long lived and decays at relatively late times into gravitino and

Standard Model particles. As mentioned in Section 2.2 these late decays are constrained

via big bang nucleosynthesis. In Chapter 4 we investigate all decay channels of the

general neutralino NLSP with gravitino dark matter. In doing so we determine the

neutralino lifetime, the electromagnetic and the hadronic branching ratio.

Now, we determine constraints on the neutralino and gravitino mass by big bang nu-

cleosynthesis. As noted in Chapter 2 the neutralino NLSP “freezes out” with its relic

density Ωχh
2, that is computed here with MicrOMEGAs [28]. To determine the hadron-

ically decaying part of Ωχ we multiply the relic density by the hadronic branching ratio

Ωχh
2 ×Bhad , (5.1)

where Bhad is given by Eq. (4.39). Since the electromagnetic branching ratio of the

neutralino Bem ' 1, this is trivial for the electromagnetic constraints. The neutralino

lifetime τχ = 1/Γtot is at any point computed using Eq. (4.37).

As discussed in Section 3.3.2 the mass and composition of the lightest neutralino is

determined by four parameters, i.e. the soft masses of bino M1 and wino M2, the

ratio of the Higgs VEVs tan β and the supersymmetric Higgsino mass term µ. Since

moderate values of tanβ are favoured [45], we fix tanβ = 10 as a benchmark. Then

three parameters are left. We investigate these parameters by varying two of them while

we keep the third fixed. So we get a bino-wino plane, a bino-higgsino plane and a wino-
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Chapter 5. Constraints by Big Bang Nucleosynthesis

Figure 5.1: Parameter space of a bino-wino neutralino in the M1-M2 plane. The blue

(dark grey) region is excluded by the LEP searches and in the green (light grey) region

the light chargino is the NLSP. There are depicted also neutralino lifetime contours for

a gravitino mass m3/2 = 1 GeV.

higgsino plane scan. These are presented in Section 5.1, Section 5.2 and Section 5.3,

respectively. During scans in these parameters we have to make sure that the lightest

neutralino is always the NLSP. Because the chargino masses are also determined by

M2, tan β and µ, we are especially in danger to get a chargino χ± NLSP. We choose

other SUSY parameters such that the sleptons and squarks are essentially decoupled

with a mass around 2.2 TeV. SOFTSUSY [42] computes the physical mass spectrum,

especially the mixing and mass of the lightest neutralino, dependent on our input, while

MicrOMEGAs [28] computes also the needed Higgs widths. We point out that our

treatment does not depend on any specific model at high energies.

5.1 Bino-Wino

We discuss the case of a mixed bino-wino NLSP in the decoupling limit, so that the

parameter µ = 2200 GeV is surely larger than M1 and M2. We show the parameter

space in these last two variables in Figure 5.1 including the mass bounds from the

Large Electron-Positron Collider (LEP) [22]. The composition changes continuously

from approximately pure bino in the upper left corner along the diagonal with M1 = M2
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5.1. Bino-Wino

to approximately pure wino in the lower right corner. Since we consider a finite value

of µ, a small Higgsino component is always present. We see that at light masses many

mixed states, that would have a large wino component, lead to a chargino NLSP instead.

Furthermore, the LEP searches put a lower limit on the soft wino mass M2 & 100 GeV.

So at low masses the neutralino is either nearly pure wino or has a dominant bino

component. This can also be seen in Figure 5.2, where the neutralino is in the most

points mainly bino. Especially, since we do not assume gaugino mass unification, there

is no lower bound on the soft bino mass, which allows a very light bino neutralino.

Figure 5.2 shows how BBN constraints the gravitino dark matter scenario with neutralino

NLSP in the Ωχh
2-vs.-τχ plane. The thin lines from upper left to lower right are BBN

bounds extracted from [11]. They can also be inferred from Figure 2.2. Either they

are for a decaying particle with Bhad = 0 giving the electromagnetic bounds (EM BBN

bounds) or they are for a particle with Bhad = 1 giving the hadronic bounds (Hadronic

BBN bounds). Even though it is stated, that the shape of hadronic constraints differ

with the hadronic branching ratio [11], the effect is appropriately approximated by an

overall shift of the bounds. However, the hadronic bounds are most severe at any point

for Bhad = 1. We denote all points on the right of the thin red line ruled out, since

they would spoil the predictions of BBN. Thereby, the dashed line of the hadronic

BBN bounds stems from a less conservative relative abundance of 6Li/7Li. Thus points

between the dashed and the solid red line should not be considered as ruled out, but

there the NLSP decays increase the relative abundance of 6Li.

While the gravitino mass is fixed in a plot, the neutralino mass runs from left to right

from 2 TeV to the minimal value not excluded yet. What is excluded depends on the

composition. We come back to this in Section 5.3. In any plot we see as expected that

the lifetime increases with decreasing neutralino mass (cf. Eq. (4.18)).

In Figure 5.2 we see electromagnetic and hadronic BBN bounds on a given scenario

with gravitino masses of m3/2 = 1 GeV and m3/2 = 10 GeV and fixed parameters

µ, tan β, sign(µ) and soft gluino mass M3. The deformation between the left and the

right curves is due to the mass dependence of the hadronic branching ratio, whereas the

electromagnetic branching ratio is always near to one.

On the first sight, the electromagnetic bounds are less constraining than the hadronic

ones. Nevertheless, a light wino with a m3/2 = 10 GeV gravitino seems to overcome

the hadronic bounds due to the low relic density and low hadronic branching ratio, but,

however, it does not overcome the electromagnetic bounds. This stays valid for higher

gravitino masses.

Due to the lower relic density, the wino is less constrained than the bino. With m3/2 = 1
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Chapter 5. Constraints by Big Bang Nucleosynthesis

Figure 5.2: Bino-wino neutralino in the Bi × Ωχh
2-vs.-τ plane compared with elec-

tromagnetic (left) and hadronic (right) BBN constraints for the case of 1 (upper) and

10 (lower) GeV gravitino mass. The neutralino mass decreases from left to right from

2 TeV to a few GeV for bino neutralino. The composition is chroma coded, whereby

red (dark grey)indicates bino and green (light grey) indicates wino. The deformation

between the left and right plots is due to the different branching ratios. Bounds are

taken from [11], thereby the dashed line corresponds to less conservative bounds from
6Li/7Li.
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5.1. Bino-Wino

Figure 5.3: Parameter space of a bino-Higgsino neutralino in theM1-µ plane. The blue

(dark grey) region is excluded by the LEP searches and in the green (light grey) region

the light chargino is the NLSP. In the red (darker grey) region radiative electroweak

symmetry breaking fails. There are depicted also neutralino lifetime contours for a

gravitino mass m3/2 = 1 GeV.

GeV all neutralinos with mass mχ > 1.6 TeV are allowed. Then there is a mass window

around 500 GeV for binos with a wino component that lowers the relic density. In

contrast, at m3/2 = 10 GeV the bino is practically excluded, whereas the wino 4-vertex

reduces the lifetime of the heavy wino so efficient that it decays early enough. Thus at

large masses a dominant wino component is preferred to escape the BBN bounds. In

addition there are some wino points left at mχ ≈ 500 GeV.

Another feature in the plot is the dip that corresponds to a neutralino mass mχ = 1100

GeV, where the non-zero higgsino component annihilates resonantly via the heavy CP-

odd Higgs boson A. Although it is suppressed by the mixing, this effect is efficient

enough to bring down the bino relic density at that point in the parameter space.

From the upper to the lower plots of Figure 5.2 we can see, that the main effect of a

variation of the gravitino mass is a horizontal shift of all points. Thus it is easy to infer,

that the scenario of bino-wino NLSP with a mass mχ . 2 TeV and gravitino dark matter

with a high mass of O(100 GeV) is excluded by BBN.

Besides one can infer from Figure 5.2 that even with lighter gravitino, e.g. m3/2 = 100

MeV, a bino NLSP scenario stays constrained due to the hadronic BBN bounds.
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5.2 Bino-Higgsino

In order to study the bino-Higgsino case we fix the soft wino mass at a large value

M2 = 2200 GeV and scan theM1-µ plane as shown in Figure 5.3. Again, the composition

changes continuously from approximately pure bino in the upper left corner along the

diagonal withM1 = µ to Higgsino, but a low µ parameter and comparable large M1 leads

to a chargino NLSP. Thus a large Higgsino component is achieved in a comparatively

small band near to the chargino NLSP region giving the blue points in Figure 5.4 that

is generated quite similar to the previous plots on bino-wino NLSP.

Resonant annihilation via the heavy Higgses A and H, which are nearly mass degenerate

for our choice of parameters, proceeds naturally more strongly for a Higgsino NLSP.

In Figure 5.4 this effect provides the only possibility to have a gravitino with a mass

m3/2 = 10 GeV. All other points are surely excluded.

Even at m3/2 = 1 GeV the scenario is again strongly constrained by the hadronic bounds.

We can identify three allowed regions. For sure, a heavy neutralino with a massmχ & 1.6

TeV decays early enough. Then there is the resonance and some Higgsino points around

mχ ≈ 1100 GeV.

From the hadronic bounds on the scenario with a gravitino mass m3/2 = 10 GeV, we can

infer that the Higgs resonance is not strong enough to allow any bino-Higgsino neutralino

at low masses with a gravitino in the O(100) GeV mass range, since then as stated before

all points are shifted to the right. Furthermore, we can use Eq. (4.18) and (4.28) with

Eq. (4.23) to conclude that in the case of bino-Higgsino at large masses even a tiny wino

component lets the neutralino decay dominantly via the wino 4-vertex.

Besides, we can compute from the results of Chapter 4 that the neutralino lifetime be-

comes shorter than 0.1 s in any composition at a gravitino mass of m3/2 = 1 GeV when

the neutralino mass becomes larger than mχ = 1600 GeV. In this way any neutralino cir-

cumvents the BBN bounds. This can also be seen in the BBN bound plots of this chapter

and sets the upper bound of the neutralino mass range considered in the branching ratio

plots of Chapter 4.

5.3 Wino-Higgsino

In the case of wino-Higgsino we fix the soft bino mass at a large value M1 = 2200

GeV and scan the M2-µ plane as shown in Figure 5.5. Here, the composition changes

continuously from approximately pure wino in the upper left corner along the diagonal

with M2 = µ to Higgsino until at large values of the soft wino mass M2 the light chargino
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5.3. Wino-Higgsino

Figure 5.4: Bino-Higgsino neutralino in the Bi × Ωχh
2 vs. τ plane compared with

electromagnetic and hadronic BBN constraints for the case of 1 (upper) and 10 (lower)

GeV gravitino mass. The neutralino mass decreases from left to right from 2 TeV to a

few GeV for bino neutralino. The composition is chroma coded, whereby red indicates

bino and blue indicates Higgsino. The deformation between the left and right plots is

due to the different branching ratios. Bounds are taken from [11], thereby the dashed

line corresponds to less conservative bounds from 6Li/7Li.
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Figure 5.5: Parameter space of a wino-higgsino neutralino in the M2-µ plane. The

blue region is excluded by the LEP searches and in the green region the light chargino

is the NLSP. In the red region radiative electroweak symmetry breaking fails. Depicted

are also neutralino lifetime contours for a gravitino mass m3/2 = 1 GeV.

becomes the NLSP. Furthermore, the LEP bounds on µ and M2 exclude wino-higgsino

neutralinos with a mass mχ . 100 GeV.

Figure 5.6 combines the former mentioned properties of wino and Higgsino. Compared

to the bino case both have a lower relic density. At large masses the wino 4-vertex is

efficient for wino NLSP and the Higgsino component brings the relic density down in

the resonance region. We do not see resonant annihilation with the light Higgs mh =

115 GeV, since a light wino-higgsino with mass mχ ∼ 55 GeV that could annihilate

resonantly via h is excluded by the LEP searches.

However, with a gravitino mass m3/2 = 1 GeV at least wino NLSP is allowed down to

masses mχ ≈ 450 GeV. But, for sure, there is also the window around mχ = 1100 GeV

for the Higgsino again.

The only way to overcome the BBN bounds with m3/2 = 10 GeV is again the resonance

case. A light wino NLSP seems to escape from the hadronic bounds due to the low

hadronic branching ratio, but, again, it is excluded by the electromagnetic bounds any-

way. The interplay of the two types of bounds is of particular importance in the case

of wino-higgsino NLSP with heavy gravitino of O(100) GeV as shown in Figure 5.7. As

discussed in Section 4.4 the Z threshold is shifted to higher neutralino masses. There-
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Figure 5.6: Wino-Higgsino neutralino in the Bi × Ωχh
2 vs. τ plane compared with

electromagnetic and hadronic BBN constraints for the case of 1 (upper) and 10 (lower)

GeV gravitino mass. The neutralino mass decreases from left to right from 2 TeV

to ∼ 100 GeV. The composition is chroma coded, whereby green indicates wino and

blue indicates Higgsino. The deformation between the left and right plots is due to

the different branching ratios. Bounds are taken from [11], thereby the dashed line

corresponds to less conservative bounds from 6Li/7Li.
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Figure 5.7: Wino-Higgsino neutralino in the Bi × Ωχh
2 vs. τ plane compared with

electromagnetic and hadronic BBN constraints for the case of 100 GeV gravitino mass.

The neutralino mass decreases from left to right from 2 TeV to ∼ 100 GeV. The compo-

sition is chroma coded, whereby green indicates wino and blue indicates Higgsino. The

deformation between the left and right plots is due to the different branching ratios.

Bounds are taken from [11], thereby the dashed line corresponds to less conservative

bounds from 6Li/7Li.

fore, winos and higgsinos appear with a hadronic branching ratio Bhad ≈ 0.03. In this

way the light wino escapes the hadronic BBN bounds, but not the electromagnetic ones,

since the electromagnetic branching ratio Bem is always near to one. So we conclude that

gravitino dark matter with m3/2 = O(100) GeV and neutralino NLSP up to mχ = 3 TeV

is excluded by big bang nucleosynthesis. Thanks to the wino 4-vertex, the wino decays

relatively fast at large masses making it the best case for large gravitino and neutralino

masses. Note that a 100 GeV gravitino is already allowed with a 3.6 TeV wino NLSP.
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Conclusions

We have considered constraints by big bang nucleosynthesis on gravitino dark matter

with a general neutralino NLSP. At first, we computed analytically all 2- and 3-body

decays of the neutralino NLSP into gravitino and Standard Model particles, whereby

we have maintained the impact of the gravitino mass, giving us the possibility to con-

sider also heavy gravitinos in a safe way. We have determined the electromagnetic and

hadronic branching ratio to a high accuracy, whereby we regarded all six quark flavour

and their corresponding masses. Thus we found that the minimal hadronic branching

ratio is ∼ 0.03, which is more than an order of magnitude larger than estimated in earlier

studies.

In the process we have regarded thresholds exactly and investigated all possible interfer-

ences. As a mixing effect we found that a photino-like neutralino has a favourable low

hadronic branching ratio.

In the course of the decay width calculations, we have derived all Feynman rules nec-

essary for the calculation of the neutralino partial decay widths. Thereby we found

Higgsino-Higgs 4-vertices and a wino 4-vertex from the non-abelian part of the gravitino

interaction Lagrangian. These 4-vertices have been neglected in the literature so far. In

fact, we have found that a wino-like neutralino decays even dominantly via its 4-vertex

at masses larger than 1 TeV.

Then independently from any model at high-energies, we have investigated the bounds

by big bang nucleosynthesis. We found that the bounds are, in general, slightly weaker

for the case of a wino or Higgsino neutralino due to the lower relic density, but they are

not weak enough to allow a gravitino with a mass of 100 GeV at low neutralino masses.

Especially in the case of heavy gravitino, the interplay between hadronic bounds at

larger masses ∼ 1 TeV and electromagnetic bounds at masses relatively near to the
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gravitino mass exclude wide ranges of the parameter space. We confirmed that a bino

NLSP in the few TeV range with gravitino masses larger than 10 GeV is excluded.

Furthermore, we exclude the possibility that neutralino NLSP decays produce the whole

dark matter density. Either the gravitino-to-neutralino mass ratio is too small or the

desired neutralino relic density clashes with the BBN bounds.

Nevertheless, we found that gravitino masses in the 10 − 20 GeV window are possible

in the case of resonant annihilation via the heavy Higgs bosons for neutralino masses

mχ ≈ mA/2 or mH/2 ∼ 1100 GeV. Since the resonance happens via the Higgsino

component, this emphasizes a Higgsino NLSP. A gravitino mass of 10 − 20 GeV may

still be marginally in agreement with thermal leptogenesis, so that the gravitino can

be the dark matter of the universe, while the lightest neutralino is the next-to-lightest

supersymmetric particle. This region is a difficult part of parameter space to investigate

at the Large Hadron Collider (LHC), because it necessitates a very precise measurement

of the lightest neutralino mass and Higgs masses to disentangle the neutralino LSP and

thus neutralino dark matter case from the one we discussed here.

Moreover, we found that the non-abelian wino 4-vertex opens up another possibility.

Heavy winos decay dominantly via this new vertex, so that a heavy gravitino with a

mass of 100 GeV is already allowed for a wino-like neutralino NLSP with a mass of 3.5

TeV. This seems to favour at least at large masses a wino NLSP.

With this thesis we have closed any gap in the study of gravitino dark matter scenarios

with neutralino NLSP coming from approximations in the calculation of the neutralino

decay rates and hadronic branching ratio.
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Appendix A

Notation and Conventions

In this thesis we use natural units [22]. In these units the reduced Planck constant, the

speed of light and the Boltzmann constant obey

~ = c = k = 1 . (A.1)

We choose the metric of Minkowski space to be given by

gµν = ηµν = ηµν = diag(+1,−1,−1,−1) . (A.2)

Greek indices µ, ν, · · · = 0, . . . , 3 denote space-time indices. We fix the sign of the

completely antisymmetric tensor εµνρσ by choosing

ε0123 ≡ −1. (A.3)

We use the Einstein summation convention

aµbµ =
3∑

µ=0

aµbµ (A.4)

and the Feynman slash notation

/p ≡ γµpµ . (A.5)

Even though we adopt many of the conventions in [35], we give our notation here explic-

itly since there are many different notations in the literature. Especially, our notation

differs from that used by Wess and Bagger [40].
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Weyl Spinors A two-component complex undotted spinor (left-handed Weyl spinor)

ξα transforms in the
(
1
2
,0
)

matrix representation of the Lorentz group SO(3, 1), i.e.

under SL(2, � ), while the dotted spinor (right-handed Weyl spinor) ξ α̇ is in the conjugate

representation
(
0, 1

2

)
. Both spinors are related by hermitian conjugation, i.e. (ξα)

† = ξα̇

and
(
ξα̇
)†

= ξα . Spinor indices are pulled by the Lorentz invariant ε-tensors

εαβ ≡
(

0 −1

1 0

)
, εαβ ≡

(
0 1

−1 0

)
, (A.6a)

εα̇β̇ ≡
(

0 −1

1 0

)
, εα̇β̇ ≡

(
0 1

−1 0

)
, (A.6b)

namely,

ξα = εαβξ
β, ξα = εαβξβ , (A.7a)

ξ α̇ = εα̇β̇ξ
β̇
, ξ

α̇
= εα̇β̇ξ β̇ . (A.7b)

We define the Pauli sigma matrices (index 1,2,3) with lower Lorentz indices σµ as

σ0 ≡
(

1 0

0 1

)
, σ1 ≡

(
0 1

1 0

)
,

σ2 ≡
(

0 −i
i 0

)
, σ3 ≡

(
1 0

0 −1

)
. (A.8)

The standard convention for the contraction of anticommuting Weyl spinors is

ξη ≡ ξαηα = εαβξβηα = −εαβηαξβ = ηξ , (A.9a)

ξη ≡ ξ α̇η
α̇ = εα̇β̇ξ β̇η α̇ = −εα̇β̇ξ β̇η α̇ = ηξ . (A.9b)

The spinor index structure of the sigma matrices σ µαα̇ is fixed via the definitions

σ µ α̇α ≡ εα̇β̇εαβσ µ
ββ̇
, (A.10)

and

σ µν β
α ≡ 1

4

(
σ µαα̇σ

ν α̇β − σ ναα̇σ
µ α̇β

)
, (A.11a)

σ µν α̇
β̇
≡ 1

4

(
σ µ α̇ασ

ν
αβ̇

− σ ν α̇ασ
µ

αβ̇

)
. (A.11b)

Four-component Spinors In the Weyl or chiral representation, the Dirac matrices γ

read

γµ =

(
0 σµ

σµ 0

)
. (A.12)
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They satisfy the Clifford algebra

{γµ, γν} = 2ηµν (A.13)

and anticommute with γ5 ≡ iγ0γ1γ2γ3, i.e. {γµ, γ5} = 0. In this representation

γ5 =

(
− �

0

0
�

)
. (A.14)

A Dirac spinor is written in terms of a left-handed and a right-handed Weyl spinor

ψ(D) =

(
ξα

η α̇

)
(A.15)

and its adjoint spinor is

ψ(D) ≡ ψ(D)
†γ0 =

(
ηα ξα̇

)
(A.16)

With the chiral projectors

PL =
1

2
(

� − γ5) and PR =
1

2
(

�
+ γ5) (A.17)

pure left-handed and right-handed (chiral) four-spinors are given by

ψL ≡ PLψ(D) =

(
�

0

0 0

)(
ξα

η α̇

)
=

(
ξα

0

)
(A.18a)

and

ψR ≡ PRψ(D) =

(
0 0

0
�

)(
ξα

η α̇

)
=

(
0

ηα̇

)
, (A.18b)

respectively. For the adjoints of the chiral spinors one finds

ψL = ψ(D)PR =
(
0 ξα̇

)
(A.19a)

and

ψR = ψ(D)PL =
(
ηα 0

)
. (A.19b)

The charge conjugation matrix C can be written as

C = iγ2γ0 =

(
εαβ 0

0 εα̇β̇

)
, (A.20)
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with

C† = CT = C−1 = −C and C2 = − �
. (A.21)

The charge-conjugated Dirac spinor of (A.15) then reads

ψ c
(D) ≡ Cψ

T
(D) =

(
ηα

ξ
α̇

)
. (A.22)

A Majorana spinor has the property η = ξ, so that it is equal to its own charge-conjugate,

i.e. ψ(M) = ψ c
(M). A Majorana spinor can be written as

ψ(M) =

(
ξα

ξ
α̇

)
, (A.23)

so that its adjoint

ψ(M) =
(
ξα ξα̇

)
. (A.24)

Note that the matrix C fulfills

CΓTi C
−1 = ηiΓi (no sum) (A.25)

with

ηi =





1 for Γi = 1, iγ5, γµγ5

−1 for Γi = γµ, σµν
, (A.26)

where Γ stems from an interaction Lagrangian, i.e. Lint = . . . (χ̄Γχ) . . . .
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Example Calculation

To give an example, we sketch in this appendix how to compute the decay width of the

process χ → Ψµγ. Starting from the interaction Lagrangian L(α)
Ψ, int (3.49) we see that

its third term,

− i

8Mp
ψµ[γ

ρ, γσ ]γµλ(α) aF (α) a
ρσ , (B.1)

will be relevant for this process, since it will give Feynman rules containing gaugi-

nos λ(α) a. Furthermore, we will need only the abelian part of the field strength ten-

sor (3.52), which brings us to

→ − i

8Mp
ψµ[γ

ρ, γσ ]γµλ(α) a(∂ρA
(α) a
σ − ∂σA

(α) a
ρ ) . (B.2)

This can be simplified using [A,B] = −[B,A] with a relabeling of dummy indices,

= − i

4Mp
ψµ[γ

ρ, γσ ]γµλ(α) a∂ρA
(α) a
σ . (B.3)

Here, α = 1, 2 6= 3 and we are looking for the electromagnetically neutral part, which

gives us, following Table 3.3,

→ − i

4Mp
ψµ[γ

ρ, γσ]γµ(W̃ 0 ∂ρW
0
σ + B̃ ∂ρBσ) , (B.4)

where we replace W 0
σ and Bσ via the inversion of Eq. (3.24) with Z0

σ and Aσ of Sec-

tion 3.3.2. This gives

= − i

4Mp
ψµ[γ

ρ, γσ]γµ

× (W̃ 0 ∂ρ(cos ΘWZ
0
σ + sinΘWAσ) + B̃ ∂ρ(− sinΘWZ

0
σ + cos ΘWAσ)) .

(B.5)
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If we rewrite this expression,

= − i

4Mp
ψµ[γ

ρ, γσ ]γµ(B̃ cosΘW + W̃ 0 sinΘW )∂ρAσ (B.6)

− i

4Mp
ψµ[γ

ρ, γσ ]γµ(−B̃ sinΘW + W̃ 0 cosΘW )∂ρZ
0
σ , (B.7)

we can read-off the gaugino-gravitino-photon vertex rule from Eq. (B.6) following the

method proposed in [50]. Since N is real, N∗
11 = N11.

However, with given Feynman rules the first step is to draw the desired Feynman dia-

gram, see Figure 4.1. Then we use the Feynman rules of Appendix D to write down the

amplitude, i.e.

iM = ε∗ρ(p1)Mρ(p1) (B.8)

with

Mρ(p1) =
1

4Mp
(N11cW +N12sW )Ψ

r
ν(p)[γ

ρ, /p1
]γνus(k) . (B.9)

After squaring the amplitude, with

M∗σ(p1) =
1

4Mp
(N11cW +N12sW )∗us(k)γµ[ /p1, γ

σ]Ψr
µ(p) , (B.10)

getting

|M|2 =
∑

ε

ε∗ρεσMρ(p1)M∗σ(p1) , (B.11)

we sum over photon polarizations and gravitino helicities and average over the neutralino

spin using the known relations,
∑

r

ur(k)ur(k) = /k +m,
∑

ε

ε∗µεν → −gµν (B.12)

and the gravitino polarization tensor Πµν (3.46). This gives

1

2

∑

s,r,ε

|M|2 = −1

2

|N11cW +N12sW |2
(4Mp)2

Tr[Πµν(p)[γσ , /p1]γ
ν(/k +mχ)γ

µ[ /p1, γ
σ ]] . (B.13)

After the evaluation of the Dirac traces, Eq. (B.13) reads

=
1

2

|N11cW +N12sW |2
(4Mp)2

{(128 − 128

3
)(p · p1)(k · p1) +

256

3

(p1 · p)2
m2

3/2

(k · p)} . (B.14)

This result for |M|2 we plug in Eq. (C.5), whereby the scalar products are given by

Eq. (C.6). Thus we arrive at the final result

Γ
(
G̃→ Ψµγ

)
=

|N11 cos ΘW + N12 sinΘW |2
48πM2

p

(
m5
χ

m2
3/2

− 6m3/2mχ + 8
m4

3/2

mχ
− 3

m6
3/2

m3
χ

)
,

(B.15)

which is, with the parameterization of Eq. (E.5), also given in Eq. (E.6).
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Kinematics and Parametrisation

The energy E and 3-momentum ~p of a particle of mass m form a 4-vector p = (E, ~p)

whose square p2 ≡ E2 − |~p|2 = m2. The Lorentz transformation converts 4-vectors

between two different reference frames, where one is in constant motion with respect to

the other. Since the scalar product of two 4-momenta p1 ·p2 = E1E2−~p1 ·~p2 is invariant

under Lorentz transformations, it is frame independent.

In the course of the calculation of decay widths we need to calculate 4-momentum scalar

products, i.e. scalar products of the 4-momenta of the considered particles. These 4-

momenta are given explicitly by the kinematics of the process under consideration. Since

scalar products are frame independent, we can choose a particular frame to describe the

kinematics. We choose the frame to make the calculation as simple as possible.

Particle Decays The partial decay width of a particle of mass M into n bodies in its

rest frame p = (M, 0, 0, 0) is given in terms of the Lorentz-invariant matrix element M
by [22]

dΓ =
(2π)4

2M
|M|2 dΦn (p; p1, . . . , pn) , (C.1)

where dΦn is an element of the n-body phase space given by

dΦn (p; p1, . . . , pn) = δ4

(
p−

n∑

i=1

pi

)
n∏

i=1

d3pi
(2π)3 2Ei

. (C.2)

The δ-distribution implements 4-momentum conservation. To get the total decay width

Γ we integrate over phase space.
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Appendix C. Kinematics and Parametrisation

C.1 2-body decays

In the rest frame of a particle with 4-momentum p = (M, 0, 0, 0), decaying into two

particles labled 1 and 2, the absolute value of the 3-momenta of the decay products is

determined by 4-momentum conservation,

|~p1| = |~p2| =
1

2M
[(M2 − (m1 +m2)

2)(M2 − (m1 −m2)
2)]1/2 . (C.3)

The partial decay width becomes

dΓ =
1

32π2
|M|2 |~p1|

M2
dΩ , (C.4)

where dΩ = dΦ1d(cos Θ1) is the solid angle of particle 1. In fact this solid angle is the

only degree of freedom left (~p1 = −~p2) and its integration is trivial. We get

Γ =
1

8π
|M|2 |~p1|

M2
. (C.5)

The scalar products are given by the particle masses, i.e.

(p · p1) =
M2 +m2

1 −m2
2

2
,

(p · p2) =
M2 −m2

1 +m2
2

2
,

(p1 · p2) =
M2 −m2

1 −m2
2

2
.

(C.6)

C.2 3-body decays

In the rest frame of a decaying particle with 4-momentum p, decaying into three particles

labled 1,2 and 3, we write the 4-momenta as

p =




M

0

0

0




, p3 =




p0
3

0

0

p3
3




, p1 =




p0
1

p3
1 sin ξ

0

p3
1 cos ξ




, p2 =




p0
2

−p3
1 sin ξ

0

−p3
3 − p3

1 cos ξ



.

Due to momentum conservation p = p1 + p2 + p3, the momenta of the three decay

particles lie in a plane and the angle ξ is fixed if the energies p0
i are known.

It is convenient to introduce the following parametrisation. For the masses m2
i = p2

i we

use dimensionless variables

a =
(p1)

2

M2
, b =

(p2)
2

M2
, c =

(p3)
2

M2
.
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C.2. 3-body decays

Energy and momentum are normalised to the half of the mass of the decaying particle:

x1 =
2p0

1

M
, y1 =

2 |~p1|
M

=
√
x2

1 − 4a

x2 =
2p0

2

M
, y2 =

2 |~p2|
M

=
√
x2

2 − 4b

x3 =
2p0

3

M
, y3 =

2 |~p3|
M

=
√
x2

3 − 4c . (C.7)

Then energy conservation reads x1 + x2 + x3 = 2 and the angle ξ is given by

cos ξ =
x1x3 − 2(x1 + x3 − 1 − a+ b− c)

y1y3
.

After integrations using the δ-distribution and angle integrations the phase space ele-

ment (C.2) becomes

dΦ3 =
M2π2

4
dx1dx3 (C.8)

with the following integration limits:

x−3 = 2
√
c ≤ x3 ≤ 1 + c− a− b− 2

√
a
√
b = x+

3

x−1 ≤ x1 ≤ x+
1

x±1 = 1 + a− b+ c− x3 −
1

2
(2c− x3)(1 +

a− b

1 + c− x3
) (C.9)

±1

2
y3

√
1 − 2

a+ b

1 + c− x3
+

(a− b)2

(1 + c− x3)2

If two masses are equal (a = b), the inequalities become simpler,

2
√
c ≤x3 ≤ 1 + c− 4a

x−1 ≤x1 ≤ x+
1

x±1 =
1

2
(2 − x3 ± y3

√
1 − 4a

1 + c− x3
) .

(C.10)

Note, that there are only two degrees of freedom left. But the remaining integrations

are non-trivial. x±1 depends in a complex way on x3 making it generally more than

uncomfortable to calculate the last integral analytically.

Starting from eq. (C.1) using eq. (C.8) with the definitions (C.7), the partial decay width

becomes

dΓ =
M

32(2π)3
|M(x1, x3)|2 dx1dx3 . (C.11)

To get the total decay width we integrate x1 and x3 with the appropriate integration

limits (C.9) or (C.10). Here, as indicated in (C.11) M is a function M(x1, x3).
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Appendix C. Kinematics and Parametrisation

The scalar products written in integration variables are:

(p1 · p2) =
M2

2
(1 − a− b+ c− x3)

(p1 · p3) =
M2

2
(−1 − a+ b− c+ x1 + x3)

(p2 · p3) =
M2

2
(1 + a− b− c− x1)

(p · p1) =
M2

2
x1

(p · p2) =
M2

2
(2 − x1 − x3)

(p · p3) =
M2

2
x3

(C.12)
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Appendix D

Feynman rules

We provide the complete set of Feynman rules necessary for the computations performed

in Chapter 4. If they are standard vertices of Glashow-Weinberg-Salam (GWS) theory of

weak interaction, they are derived/taken from [48] and checked against [41]. Otherwise

they are derived from the Lagrangian as given in Eq. (25.24) and Eq. (G.2) in the book

of Wess and Bagger [40]. Especially gravitino vertices are checked in the high-energy

limit against the Feynman rules as they are given in [35].

The gravitino Ψµ is represented as a double solid line and gauge bosons are drawn as

wiggled lines. The neutralino is always depicted as its corresponding gauge eigenstate.

Bino B̃ and wino W̃ 0 are gauginos (G̃0 refers to an electromagnetically neutral mixed

state of gauginos). Gauginos are depicted as wiggled lines with additional straight solid

lines, whereas the Higgsino H̃0 is a chiral fermion that are drawn as single solid lines.

The method of continuous fermion flow [50] is addressed in Section 3.3.3. The fermion

flow is independent of the fermion number flow and the direction of momenta. The

fermion flow is represented by additional arrow lines close to the fermion lines, whereas

the fermion number flow is as usual represented by an arrow on the chiral fermion lines.

For the negative frequency solution of the gravitino see [36].

For the external lines and propagators shown below the momentum P flows from the

left to the right. Furthermore, momenta are assumed to flow towards the vertices.

External Lines

• Scalar particles

= 1
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Appendix D. Feynman rules

• Gauginos and matter fermions

= us(p)

= ūs(p)

= vs(p)

= v̄s(p)

• Gauge bosons

µ, a = εaµ(p) , µ, a = ε∗aµ (p) .

• Gravitino

µ = ψ+ s
µ (p) , µ = ψ̄+ s

µ (p)

µ = ψ− s
µ (p) , µ = ψ̄− s

µ (p)

Propagators

• Scalar particles

i j =
i

p2 −m2
φ

δij

• Matter fermions

i j =
i
(
/p+mχ

)

p2 −m2
χ

δij

i j =
i
(
−/p+mχ

)

p2 −m2
χ

δij

• Gauginos

a b =
i
(
/p+mλ

)

p2 −m2
λ

δab
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• Massless gauge bosons in Feynman gauge (ξ = 1)

a, µ b, ν = − igµν
p2

δab

• Massive gauge bosons in unitary gauge (ξ → ∞)

with this the Goldstone propagator vanishes

a, µ b, ν =
−i
(
gµν − pµpν/m

2
A

)

p2 −m2
A

δab

Relevant Gauge and Yukawa Vertices

We use abbreviations sα ≡ sinα, cα ≡ cosα, sW ≡ sinΘW and others listed in Ap-

pendix E.

Vertex rules iΓ for reversed fermion flow iΓ′ can be computed with

Γ′ = CΓTC−1 (D.1)

using eq. (A.25).

f

γµ

f

= −i eQγµ

f

Z0
µ

f

= −igZ((T3 −Qs2W )PL −Qs2W PR) γµ
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Appendix D. Feynman rules

u

h0

u

= −imu

mZ

gZ√
2

cα
sβ

d, l

h0

d, l

= −i md

mZ

gZ√
2

−sα
cβ

u

H0

u

= −imu

mZ

gZ√
2

sα
sβ

d, l

H0

d, l

= −i md

mZ

gZ√
2

cα
cβ

u

A0

u

= −imu

mZ

gZ√
2

cβ
sβ

(PR − PL)︸ ︷︷ ︸
=γ5

d, l

A0

d, l

= −i md

mZ

gZ√
2

sβ
cβ

(PR − PL)︸ ︷︷ ︸
=γ5

G̃0

f̃L

f

= −i gZ√
2
(Y efL

N11sW ±f=u
f=d,l N12cW )PL

G̃0

f̃L

f

= −i gZ√
2
(Y efL

N11sW ±f=u
f=d,l N12cW )PR
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G̃0

f̃R

f

= ±f=u
f=d,l i

gZ√
2
Y efR

N11sW PR

G̃0

f̃R

f

= ±f=u
f=d,l i

gZ√
2
Y efR

N11sW PL

H̃0

ũL

u

= −imu

mZ

gZ√
2

N14

sβ
PL H̃0

d̃L, l̃L

d, l

= −i md

mZ

gZ√
2

N13

cβ
PL

H̃0

ũR

u

= −imu

mZ

gZ√
2

N14

sβ
PR H̃0

d̃R, l̃R

d, l

= −i md

mZ

gZ√
2

N13

cβ
PR

H̃0

ũL

u

= −imu

mZ

gZ√
2

N14

sβ
PR H̃0

d̃L, l̃L

d, l

= −i md

mZ

gZ√
2

N13

cβ
PR

H̃0

ũR

u

= −imu

mZ

gZ√
2

N14

sβ
PL H̃0

d̃R, l̃R

d, l

= −i md

mZ

gZ√
2

N13

cβ
PL

83



Appendix D. Feynman rules

Gravitino Vertices

Ψµ

γρ(p)

G̃0

= − i

4Mp
(N11cW +N12sW )

[
/p, γ

ρ
]
γµ

Ψµ

Zρ(p)

G̃0

= − i

4Mp
(−N11sW +N12cW )

[
/p, γ

ρ
]
γµ

Ψµ

h0(p)

H̃0

=
i

2Mp
(−N13sα +N14cα) /p γ

µ

Ψµ

H0(p)

H̃0

=
i

2Mp
(N13cα +N14sα) /p γ

µ

Ψµ

A0(p)

H̃0

= − 1

2Mp
(N13sβ +N14cβ) /p γ

µ (PR − PL)︸ ︷︷ ︸
=γ5

Zρ 〈v〉

H̃0Ψµ

= −i mZ

2Mp
(−N13cβ +N14sβ)γ

ργµ (PL − PR)︸ ︷︷ ︸
=−γ5
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The vertex does not exist for the photon.

Zρ h

H̃0Ψµ

= i
gZ

4Mp
(N13sα +N14cα)γργµ (PR − PL)︸ ︷︷ ︸

=γ5

Zρ H

H̃0Ψµ

= i
gZ

4Mp
(−N13cα +N14sα)γργµ (PR − PL)︸ ︷︷ ︸

=γ5

Zρ A

H̃0Ψµ

= − gZ
4Mp

(−N13sβ +N14cβ)γ
ργµ

W−
σ W+

ρ

W̃ 0Ψµ

=
i

4Mp

e

sW
[γρ, γσ] γµ

Ψµ

f̃L/R(p)

f

=
i√

2Mp
/p γ

µ PL/R Ψµ

f̃L/R(p)

f

= − i√
2Mp

/p γ
µ PR/L
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Appendix E

Full Analytic Results

We list the analytic results for each partial decay width computed in the course of the

preparation of this thesis. We consider all 3-body decays of the neutralino NLSP into

gravitino and Standard Model particles. There are Feynman diagrams for each process

under consideration.

We remind that we use the reduced Planck mass [22]

Mp =
1√

8πGN
= 2.435 × 1018 GeV . (E.1)

The Higgs expectation values are given by

〈Hu〉 = vu/
√

2 and 〈Hd〉 = vd/
√

2 (E.2)

so that

v2
u + v2

d = v2 =
4m2

Z

g2 + g′2
≈ (246 GeV)2 , (E.3)

where v denotes the Standard Model Higgs VEV. g and g ′ denote the known weak

coupling and U(1)Y hypercharge coupling, respectively. So the mass of the Z boson is

given by

mZ =
v

2
gZ ≡ v

2

√
g2 + g′2 , (E.4)

where we have defined the Z boson coupling gZ =
√
g2 + g′2.

e denotes as usual the electron charge. It is e2 = 4παQED, where αQED is the known

QED coupling constant.
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E.1. 2 body decays

E.1 2 body decays

Definitions For mA > mB +mC (in parametrisation 1 − xB − xC > 0)

βA→BC ≡ [1 − 2
(
x2
B + x2

C

)
+
(
x2
B − x2

C

)2
]
1
2 (E.5)

and βA→BC = 0 otherwise. xi = mi
mA

is the mass ratio between particle i and A.

Analytic Results Our results agree with those in [18] which differ slightly from the

results in [19]. In addition, we checked the results in the goldstino limit by comparison

with the results gained in the effective theory of a single goldstino provided in [55] and

correctly transcribed to [35].

The Feynman diagrams of G̃→ Ψµγ and G̃→ ΨµZ are drawn in Figure 4.1.

Γ
(
G̃→ Ψµγ

)
=

|N11 cos ΘW + N12 sinΘW |2
48πM2

p

m5
χ

m2
3
2

(E.6)

×
(
1 − x2

3
2

)3 (
1 + 3x2

3
2

)
(E.7)

Γ
(
G̃→ ΨµZ

)
=

|−N11 sinΘW + N12 cosΘW |2
48πM2

p

m5
χ

m2
3
2

βχ→ΨµZ

×[
(
1 − x2

3
2

)2 (
1 + 3x2

3
2

)
− x2

Z{3 + x3
3
2

(
x 3

2
− 12

)

−x2
Z

(
3 − x2

3
2
− x2

Z

)
}] (E.8)

The Feynman diagram of H̃ → Ψµh is drawn in Figure 4.5. For the case of H and A it
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Appendix E. Full Analytic Results

is trivially obtained by replacing h by H and A, respectively.

Γ
(
H̃ → Ψµh

)
=

|−N13 sinα+ N14 cosα|2
96πM2

p

m5
χ

m2
3
2

βχ→Ψµh

×[
(
1 − x 3

2

)2 (
1 + x 3

2

)4

−x2
h{
(
1 + x 3

2

)2 (
3 − 2x 3

2
+ 3x2

3
2

)

−x2
h

(
3 + 2x 3

2
+ 3x2

3
2

− x2
h

)
}] (E.9)

Γ
(
H̃ → ΨµH

)
=

|N13 cosα+ N14 sinα|2
96πM2

p

m5
χ

m2
3
2

βχ→ΨµH

×[
(
1 − x 3

2

)2 (
1 + x 3

2

)4

−x2
H{
(
1 + x 3

2

)2 (
3 − 2x 3

2
+ 3x2

3
2

)

−x2
H

(
3 + 2x 3

2
+ 3x2

3
2
− x2

H

)
}] (E.10)

Γ
(
H̃ → ΨµA

)
=

|N13 sinβ0 + N14 cos β0|2
96πM2

p

m5
χ

m2
3
2

βχ→ΨµA

×[
(
1 + x 3

2

)2 (
1 − x 3

2

)4

−x2
A{
(
1 − x 3

2

)2 (
3 + 2x 3

2
+ 3x2

3
2

)

−x2
A

(
3 − 2x 3

2
+ 3x2

3
2

− x2
A

)
}] (E.11)

Γ
(
H̃ → ΨµZ

)
=

|−N13 cos β0 + N14 sinβ0|2
96πM2

p

m5
χ

m2
3
2

βχ→ΨµZ

×[
(
1 + x 3

2

)2 (
1 − x 3

2

)4

−x2
Z{
(
1 − x 3

2

)2 (
3 + 2x 3

2
− 9x2

3
2

)

−x2
Z

(
3 − 2x 3

2
− 9x2

3
2
− x2

Z

)
}] (E.12)

Γ (χ→ ΨµZ) = Γ
(
G̃→ ΨµZ

)
+ Γ

(
H̃ → ΨµZ

)
(E.13)

Eq. (E.13) shows that there is no interference between the two Z channels. Thus there

are no gaugino-Higgsino interferences at the 2-body decays of general neutralino NLSP

at all.
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E.2. 3 body decays

E.2 3 body decays

We provide explicit results for the decay rates into any quark pair. Since all considered

decays are processes of quantum electrodynamics, it is trivial to derive the decay rates

into any lepton pair from the given ones. Starting with a given decay rate this is done

by: 1) Divide it by 3, because leptons are color singlets. 2) Use the right masses ml and

widths Γl. 3) Use appropriate quantum numbers.

For each result it is assumed that the process is kinematically allowed. Otherwise it is

0. Thresholds can be implemented by the Θ-function.

Definitions

a =
m2

A
m2

χ
, c =

m2
3
2

m2
χ

and dD =
m2

D
m2

χ
for a decay χ → XD → ΨµAĀ : phase space

parametrization. Note gi =
Γ2

i
m2

χ
.

(1 − √
c − 2

√
a) > 0 : condition for ’kinematically allowed’ (mχ > m 3

2
+ 2mA) in

parametrisation. The Θ-function implements thresholds.

Q(q) =




−1

3 , for q = d

+2
3 , for q = u

: electric charge quantum number

T3(q) =




−1

2 , for q = d

+1
2 , for q = u

: weak isospin eigenvalue

kL = T3(q) −Q(q) sin2 ΘW : corresponding to the left-handed quark

kR = −Q(q) sin2 ΘW : corresponding to the right-handed quark

Yi =





1
3 , for i = ũL, d̃L

−2
3 , for i = d̃R

4
3 , for i = ũR

:hypercharge quantum number

v(q) =




vd, for q = d

vu, for q = u
: Higgs vacuum expectation values

kh(q) =





− sinα√
2
, for q = d

cosα√
2
, for q = u
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Appendix E. Full Analytic Results

kH(q) =





cosα√
2
, for q = d

sinα√
2
, for q = u

kA(q) =





sin β0√
2
, for q = d

cos β0√
2
, for q = u

The Breit-Wigner approximation for propagators is

′Di =
1

p2
i −m2

i + imiΓi
(E.14)

with fixed Γ 6= Γ(p2
i ). So it is

′Dij =
1

2

(′Di
′D∗

j + ′D∗
i
′Dj

)
=

(p2
i −m2

i )(p
2
j −m2

j) +mimjΓiΓj

[(p2
i −m2

i )
2 +m2

iΓ
2
i ][(p

2
j −m2

j)
2 +m2

jΓ
2
j ]
. (E.15)

Define (dimensionless) in parametrization for pi = pj = k − p

Dij = Dji =
(c− di − x3 + 1)(c − dj − x3 + 1) +

√
didjgigj

[(c− di − x3 + 1)2 + digi][(c− dj − x3 + 1)2 + djgj]
(E.16)

,for instance (i=j),

Dii =
1

(c− di − x3 + 1)2 + digi
. (E.17)

Define for pi = k − p1 and pj = k − p2

Dp1p2
ij =

(a− di − x1 + 1)(a − dj + x1 + x3 − 1) +
√
didjgigj

[(a− di − x1 + 1)2 + digi][(a− dj + x1 + x3 − 1)2 + djgj ]
. (E.18)

Define for pi = k − p and pj = k − p1

Dpp1
ij =

(c− di − x3 + 1)(a− dj − x1 + 1) +
√
didjgigj

[(c− di − x3 + 1)2 + digi][(a − dj − x1 + 1)2 + djgj ]
. (E.19)

Define for pi = k − p and pj = k − p2

Dpp2
ij =

(c− di − x3 + 1)(a− dj + x1 + x3 − 1) +
√
didjgigj

[(c− di − x3 + 1)2 + digi][(a− dj + x1 + x3 − 1)2 + djgj ]
. (E.20)
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E.2. 3 body decays

Wino 4-vertex

The Feynman diagram of W̃ → ΨµW
+W− is drawn in Figure 4.4.

Γ
(
W̃ → ΨµW

+W−
)

=
|N12|2

32(2π)3M2
p

g2

4

1

9

m9
χ

m4
Wm

2
3
2

×
1+c−4a∫

2
√
c

dx3

√
x2

3 − 4c

c− x3 + 1

√
1 − 4a

c− x3 + 1

{12c9/2 + (6x3 − 8)c4 − 12(4a + 3x3 − 3)c7/2

+2
(
−8x2

3 + 15x3 + 4a(3x3 − 4) − 8
)
c3

−12
(
24a2 − 8(x3 − 1)a− 3(x3 − 1)2

)
c5/2

+
(
15x3

3 − 32x2
3 + 26x3 + a2(64 − 48x3) − 8a

(
5x2

3 − 8x3 + 4
)
− 8
)
c2

−12
(
−24a2 + 4(x3 − 1)a+ (x3 − 1)2

)
(x3 − 1)c3/2

+2x3

(
−3x3

3 + 6x2
3 − 4x3 + 8a2(2x3 − 1) + 2a

(
5x2

3 − 6x3 + 2
)

+ 1
)
c

+
(
−8a2 − 4(x3 − 1)a+ (x3 − 1)2

)
x3

3} (E.21)

lim
c,a→0

Γ
(
W̃ → ΨµW

+W−
)

=
|N12|2

32(2π)3M2
p

g2

4

1

9

m9
χ

m4
Wm

2
3
2

1

30
(E.22)

Higgsino 4-vertices

The Feynman diagram of H̃ → ΨµZh is drawn in Figure 4.6. The Feynman diagrams for

the other Higgs bosons are trivially obtained by replacing h by H and A, respectively.

Since at the decays via the Higgsino 4-vertices three different masses (m3/2,mZ ,mh)

appear in the phase space, the analytical expressions become very complicated after the

first integration, even though, they are analytically doable. The integration limits are

given by Eq. (C.9).

Here, the masses are parameterized as

a =
m2
Z

m2
χ

and b =
m2
h,H,A

m2
χ

and c =
m2

3/2

m2
χ

.
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Γ
(
H̃ → ΨµZh

)
=

|N13sα + N14cα|2
32(2π)3M2

p

g2
z

24

m7
χ

m2
Zm

2
3
2

×
x+
3∫

x−3

dx3

x+
1∫

x−1

dx1

(
2
√
c− x3

)

(
a2 − 2(b− 5c+ x1 + x3 − 1)a+ (b− c+ x1 + x3 − 1)2

)
(E.23)

Γ
(
H̃ → ΨµZH

)
=

|N13cα −N14sα|2
32(2π)3M2

p

g2
z

24

m7
χ

m2
Zm

2
3
2

×
x+
3∫

x−3

dx3

x+
1∫

x−1

dx1

(
2
√
c− x3

)

(
a2 − 2(b− 5c+ x1 + x3 − 1)a+ (b− c+ x1 + x3 − 1)2

)
(E.24)

Γ
(
H̃ → ΨµZA

)
=

|N13sβ −N14cβ |2
32(2π)3M2

p

g2
z

24

m7
χ

m2
Zm

2
3
2

×
x+
3∫

x−3

dx3

x+
1∫

x−1

dx1

(
x3 + 2

√
c
)

(
a2 − 2(b− 5c+ x1 + x3 − 1)a+ (b− c+ x1 + x3 − 1)2

)
(E.25)
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G̃0

qk

p1
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p
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Figure E.1: Tree-level Feynman diagram of the gaugino G̃0 3-body decay via γ or Z

into gravitino and a pair of quark q and antiquark q̄, i.e. G̃→ Ψµγ/Z → Ψµqq̄.

Gaugino via γ and Z

Γ
(
G̃→ Ψµγ/Z → Ψµqq̄

)
=

|N11 cos ΘW + N12 sinΘW |2
32(2π)3M2

p

12

9
(Q(q)e)2

m5
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m2
3
2

×
1+c−4a∫

2
√
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√
1 − 4a
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√
c
)√

x2
3 − 4c

(
6c2 − 4c

3
2 + (6 − 4x3) c− 2x3c

1
2 + x2

3

)
(E.26)

+
|−N11 sinΘW + N12 cos ΘW |2

32(2π)3M2
p

6

9

(
g

cos ΘW

)2 m5
χ

m2
3
2

×
1+c−4a∫

2
√
c

dx3DZZ

(
(c− a− x3 + 1) k2

L + 6akLkR + k2
R (c− a− x3 + 1)

)

√
1 − 4a

c− x3 + 1

(
x3 + 2

√
c
)√

x2
3 − 4c

(
6c2 − 4c

3
2 + (6 − 4x3) c− 2x3c

1
2 + x2

3

)
(E.27)
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+
Re[(N11 cosΘW + N12 sinΘW ) (−N11 sinΘW + N12 cosΘW )∗]

32(2π)3M2
p

12

9
Q(q)g′g (kL + kR)

m5
χ

m2
3
2

×
1+c−4a∫

2
√
c

dx3DγZ(2a+ c− x3 + 1)

√
1 − 4a

c− x3 + 1

(
x3 + 2

√
c
)√

x2
3 − 4c

(
6c2 − 4c

3
2 + (6 − 4x3) c− 2x3c

1
2 + x2

3

)
(E.28)

In [3] they work in the limit a→ 0, but then Eq. (E.26) becomes divergent. The proposed

solution is to take the limit on the integrand, while considering full integration limits.

We checked that the numerical error due to that limit is in O(10−2) compared to the

full result.
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Higgsino via h, H and A

Γ
(
H̃ → Ψµh/H/A → Ψµqq̄

)
=

|−N13 sinα+ N14 cosα|2
32(2π)3M2

p

6

6

(
mq

v(q)

)2

k2
h(q)

m5
χ
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3
2

×
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2
√
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√
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(E.29)

+
|N13 cosα+ N14 sinα|2

32(2π)3M2
p

6

6

(
mq

v(q)

)2

k2
H(q)

m5
χ

m2
3
2

×
1+c−4a∫

2
√
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dx3DHH(−4a+ c− x3 + 1)

√
1 − 4a
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(
x3 + 2

√
c
)√
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3 − 4c

(
x3 + 2

√
c
) (
x3 − 2

√
c
)

(E.30)

+
|N13 sinβ0 + N14 cos β0|2

32(2π)3M2
p

6

6

(
mq

v(q)

)2

k2
A(q)

m5
χ

m2
3
2

×
1+c−4a∫

2
√
c
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√
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(
x3 + 2

√
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)√
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(E.31)

+
Re[(−N13 sinα+ N14 cosα) (N13 cosα+ N14 sinα)∗]

32(2π)3M2
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6

(
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v(q)

)2
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√
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√
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(E.32)
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h
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Figure E.2: Tree-level Feynman diagrams of the Higgsino H̃0 3-body decay via h or

Z into gravitino and a pair of quark q and antiquark q̄, i.e. H̃ → Ψµh/Z → Ψµqq̄. The

Feynman diagram with intermediate H and A are trivially obtained by replacing h by

H and A respectively.

Higgsino via Z

Γ
(
H̃ → vΨµZ → Ψµqq̄

)
=

|−N13 cos β0 + N14 sinβ0|2
32(2π)3M2

p

3

9

(
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)2 m7
χ

m2
3
2

×
1+c−4a∫

2
√
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dx3DZZ

√
1 − 4a

c− x3 + 1
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x3 − 2

√
c
)√

x2
3 − 4c

{ k2
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R

c− x3 + 1
[12(d2

Z − a)c3 + (4d2
Z(5 − 6x3) − 3a(4d2

Z − 8dZ − x2
3 − 8x3 + 8))c2

+((13x2
3 − 20x3 + 8)d2

Z + 2a(2(3x3 − 5)d2
Z

−3(x2
3 + 4x3 − 4)dZ − 3(x3

3 + x2
3 − 4x3 + 2)))c

+(a(2d2
Z + 6(x3 − 1)dZ + 3(x3 − 1)2) − d2

Z(x3 − 1))x2
3]

+6akLkR[4c2 + (12d2
Z − 8dZ − x2

3 − 4x3 + 4)c+ (2dZ + x3 − 1)x2
3]} (E.33)

The different power of mχ is due to ∝ d−2
Z =

m4
χ

m4
Z
. Since it is hard to count powers in
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Eq. (E.33), we provide the limit of vanishing quark masses

lim
a→0

Γ
(
H̃ → vΨµZ → Ψµqq̄

)
=

|−N13 cos β0 + N14 sinβ0|2
32(2π)3M2

p

3

9
(gZmZ)2

(
k2
L + k2

R

) m3
χ

m2
3
2

×
1+c∫

2
√
c

dx3DZZ(x3 − 2
√
c)

√
x2

3 − 4c
(
12c2 + (8 − 12x3)c+ x2

3

)
. (E.34)

With the limit we see, that all the terms really ∝ d−2
Z are also ∝ a. So the diagram is

not enhanced against other diagrams.

Between the Higgsino via h, H, A and Higgsino via Z there is interference between A

and Z only, i.e.

Γ
(
H̃ → Ψµv(h

∗/Z∗) → Ψµqq̄
)

= 0

Γ
(
H̃ → Ψµv(H

∗/Z∗) → Ψµqq̄
)

= 0 (E.35)

and

Γ (χ→ vΨµ(A
∗/Z∗) → Ψµqq̄) =

Re[(N13 sinβ0 + N14 cos β0) (−N13 cos β0 + N14 sinβ0)
∗]

32(2π)3M2
p

×
1+c−4a∫

2
√
c

dx3DAZ

(
x3 −

√
c
)

√
1 − 4a

c− x3 + 1

(
x3 + 2

√
c
)√

x2
3 − 4c

(
2c2 − x3c

3
2 + (2 − 2dZ − 2x3)c+ (x2

3 + dZx3 − x3)c
1
2

)
. (E.36)

Gaugino and Higgsino via q̃

For many calculations with intermediate squarks, the usage of generalized Fierz identities

became necessary. In the course of these calculations helpful references are [56, 57].

Definitions
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q
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Figure E.3: Tree-level Feynman diagrams of the gaugino and Higgsino 3-body decays

via intermediate squark q̃ into gravitino and a pair of quark q and antiquark q̄, i.e.

χ→ qq̃ → Ψµqq̄. The Feynman diagram of χ→ q̄q̃ → Ψµqq̄ is obtained by inversion of

the fermion number flow arrows at the quark and squark lines.
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√
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(E.39)
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Nq =





N13
cos β0

, for q = d

N14
sin β0

, for q = u
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Gaugino via q̃

Γ
(
G̃→ qq̃ → Ψµqq̄

)
=
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The terms given by Eq. (E.51a), (E.51b) and Eq. (E.51f), whereas the summand If3
q̃Lq̃R

in Eq. (E.51f) disappears, are leading in the limit mq → 0 (i.e. a → 0). In the limit of

very heavy squarks and negligible quark and gravitino masses Eq. (E.51a) becomes

−
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Higgsino via q̃
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Apart from the obvious fact that all Higgsino contributions vanish in the limit mq → 0

(i.e. a→ 0), the terms given by Eq. (E.53a) and (E.53c) are leading in this limit.

Gaugino interferences between intermediate squark q̃ and γ, Z

It is in the limit a =
m2

q

m2
χ
→ 0. Then, all Higgsino-neutralino contributions disappear

on trace level already, i.e. they are suppressed due to Yukawa coupling and in addition

because their traces are all proportional to
√
a or higher powers of a. So they are small

even compared to other processes with Yukawa coupling. Note that a = 0 6= c is sensible

only as long as c > a. t is suppressed anyway. We consider also large gravitino masses

m3/2, so that proper care has to be taken in the limit c =
m2

3/2

m2
χ

→ 0.

Definitions:
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Appendix E. Full Analytic Results

Γ (χ→ Ψµ(γ
∗, Z∗/q̃∗) → Ψµqq̄) =

Re[(N11Yq̃L sinΘW ±q=u
q=d N12 cos ΘW )(N11 cos ΘW + N12 sinΘW )∗]

32(2π)3M2
p

Q(q)e3gZ
m5
χ

m2
3
2

{I1γq̃L(I, II) + I2γq̃L(I, II)}

+
Re[(±q=u

q=dYq̃RN11 sinΘW )(N11 cosΘW + N12 sinΘW )∗]

32(2π)3M2
p

Q(q)e3gZ
m5
χ

m2
3
2

{I3γq̃R(I, II) + I4γq̃R(I, II)}

+
Re[(N11Yq̃L sinΘW ±q=u

q=d N12 cos ΘW )(−N11 sinΘW + N12 cos ΘW )∗]

32(2π)3M2
p

3gZkL
m5
χ

m2
3
2

{I1Zq̃L(I, II) + I2Zq̃L(I, II)}

+
Re[(±q=u

q=dYq̃RN11 sinΘW )(−N11 sinΘW + N12 cos ΘW )∗]

32(2π)3M2
p

3gZ
m5
χ

m2
3
2

{kLI3Zq̃R(I, II) + kRI4Zq̃R(I, II)} (E.58)

Higgsino interferences between intermediate squark q̃ and Z

Definitions:

I1ij(II, IV ) =
1

12

1+c∫

2
√
c

dx3

x+
1 (a=0)∫

x−1 (a=0)

dx1D
pp1
ij (a = 0)

{(2x1 + x3 − 5)c5/2 + 2c2

−
(
x2

1 + (4x3 − 2)x1 + (x3 − 6)x3 + 2
)
c3/2

+2(x1 − 1)(x1 + x3)c+ (x1 − 1)2(−2x1 − 3x3 + 3)
√
c

+2(x1 − 1)2(x1 + x3 − 1)} (E.59)
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E.2. 3 body decays

I2ij(II, IV ) =
−1

12

1+c∫

2
√
c

dx3

x+
1 (a=0)∫

x−1 (a=0)

dx1D
pp2
ij (a = 0)

{(2x1 + x3 + 1)c5/2 − 2c2

+
(
x2

1 − 2(x3 + 1)x1 − 2x2
3 + 2

)
c3/2

−2(x1 − 2)(x1 + x3 − 1)c− (2x1 − x3 − 1)(x1 + x3 − 1)2
√
c

+2(x1 − 1)(x1 + x3 − 1)2} (E.60)

Analytic results:

Γ (χ→ vΨµ(Z
∗/q̃∗) → Ψµqq̄) =

Re[(N11Yq̃L sinΘW ±q=u
q=d N12 cos ΘW )(−N13 cos β0 + N14 sinβ0)

∗]

32(2π)3M2
p

6mZgZkL
m4
χ

m2
3
2

{I1Zq̃L(II, IV ) + I2Zq̃L(II, IV )}

+
Re[(±q=u

q=dYq̃RN11 sinΘW )(−N13 cos β0 + N14 sinβ0)
∗]

32(2π)3M2
p

6mZgZ
m4
χ

m2
3
2

{kLI1Zq̃R(II, IV ) + kRI2Zq̃R(II, IV )} (E.61)

Gaugino-Higgsino interferences

We found the interference between gaugino via γ, Z and Higgsino via h, H, A, Z to be

analytically vanishing, i.e.

Γ
(
G̃/H̃ → Ψµ(γ

∗/h∗,H∗, A∗) → Ψµqq̄
)

= 0

Γ
(
G̃/H̃ → Ψµ(Z

∗/h∗,H∗, A∗) → Ψµqq̄
)

= 0

Γ
(
G̃/H̃ → Ψµv(Z

∗/Z∗) → Ψµqq̄
)

= 0 . (E.62)
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Appendix E. Full Analytic Results

Gaugino-Higgsino interferences in the squark q̃ channel

Γ (χ→ qq̃ → Ψµqq̄) =

Γ
(
G̃→ qq̃ → Ψµqq̄

)
+ Γ

(
H̃ → qq̃ → Ψµqq̄

)

+
Re[(N11Yq̃L sinΘW ±q=u

q=d N12 cos ΘW )(Nq)
∗]

32(2π)3M2
p
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mZ

6g2
Z

2

m5
χ

m2
3
2

Ibq̃Lq̃L (E.63a)
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Re[(±q=u
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p
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6g2
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2
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m2
3
2

Ibq̃Rq̃R (E.63b)
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6g2
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2
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2

Icq̃Lq̃R (E.63c)
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p

mq

mZ

6g2
Z

2

m4
χ

m 3
2

Icq̃Lq̃R (E.63d)

+
Re[(±q=u

q=dN11Yq̃R sinΘW )(Nq)
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3g2
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2
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3
2

If4
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(E.63e)

+
Re[(±q=u
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2
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2
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(E.63f)

−
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q̃Lq̃L
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+
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If9
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(E.63j)

In the limit applied to Eq. (E.51) none of the interference terms survives. Even compared

to Eq. (E.53a) all these terms are small, since they go with m4
χ < m5

χ.
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Appendix F

Correction

Ψµ

W−

G̃0

qk

p1

W+

p

γ/Z

p2

W±

Ψµ

G̃0

qk

p

W∓
p1

χ∓
i

p2

Figure F.1: Tree-level Feynman diagrams of the gaugino G̃0 3-body decay via off-shell

γ or Z into gravitino and a pair of W+W−, i.e. G̃ → Ψµγ
∗/Z∗ → ΨµW

+W−, and via

off-shell charginos, i.e. G̃ → W±χ∓∗ → ΨµW
+W−, where the fermion flux follows the

fermion number flux.

After the submission of the thesis we found, that in the decay into gravitino and a pair

of W bosons are indeed no contributions of higher order. Concerning the wino 4-vertex

of Figure 4.4 all contributions of higher order ∝ m9
χ or ∝ m7

χ cancel exactly with the

decays via off-shell photon and Z boson and via off-shell charginos, that are drawn in

Figure F.1. This cancellation is required by gauge invariance. For the leading order

∝ m9
χ this is also found in [58]. Thus the fast decay of the heavy wino NLSP via the

wino 4-vertex does not exist!

Furthermore, we mentioned the decay channel H̃ → ΨµZh shown in Figure 4.6. In this

case cancellation of the enhanced contribution ∝ m7
χ occurs with decays via off-shell
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Appendix F. Correction

Z boson, off-shell A boson and off-shell neutralinos, that are drawn in Figure F.2. As

already shown, this channel is negligible in the mass range under consideration, see the

discussion below Eq. (4.30). So this observation does not change the results of Chapter 5

at all. In the formulas for Γtot and Bhad of Chapter 4 the contributions of 4-vertices

vanish.

In the course of these computations, that represent highly non-trivial checks, other minor

mistakes have been found. These are corrected as well as a small number of typos. We

added the note on the SPIRES reference and citation services.
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〈H0
u/d〉

Ψµ

Z

H̃0

qk

p1

h

p

Z

p2

Ψµ

Z

H̃0

qk

p1

h

p

A

p2

Ψµ

Z

H̃0

qk

p1

h

p

χ0
i

p2

Figure F.2: Tree-level Feynman diagrams of the Higgsino H̃0 3-body decay via off-

shell Z and A into gravitino, h and Z boson and via off-shell neutralinos, where the

fermion flux follows the fermion number flux.
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