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Abstract

In this thesis we apply perturbative QCD to make precise predictions for some observ-

ables in high-energy processes involving bottom-quark.

Our first application is a prediction for the energy spectrum of b-flavored hadrons in top

quark decay. For that purpose we calculate at NLO the QCD corrections for bottom

fragmentation in top decay. The b-quark in the top quark decay is considered once as a

massless and once as a massive particle in our calculations. The difference between the dif-

ferential width calculated in both cases can give us the perturbative fragmentation function

of the b-quark. After that using the obtained differential widths and applying ZM-VFNS

and GM-VFNS, we make some predictions for the spectrum of B-hadrons produced in top

quark decay. The comparison of both approaches shows that the mass effect of the b-quark

in the top quark decay is negligible. We also investigate the mass effect of B-hadron in the

energy distribution obtained in the previous calculations and we show that this increases

the value of the differential width when the energy taken away by the produced parton in

top decay is small.

Our second application is to obtain the helicity contributions of the W+-boson in the en-

ergy distribution of b-flavored hadrons in top quark decay. For this reason we study the

angular decay distribution for the cascade decay of the top-quark (t→ b+W +(→ e++νe)).

Using ZM-VFNS we make predictions for the NLO contributions of the longitudinal, the

transverse-minus and the transverse-plus helicity of the W+-boson in the energy distribu-

tion of B-hadron.

Zusammenfassung

In dieser Arbeit wenden wir störungstheoretische QCD an, um Präzisionsvorhersagen

für einige Observablen in Hochenergieprozessen mit Bottom Quarks zu machen.

Als erste Anwendung berechnen wir das Energiespektrum von B Hadronen in Top

Quark Zerfällen. Dafür berechnen wir in nächstführender Ordnung die QCD Korrekturen

zur Bottom Fragmentierung in Top Zerfällen. Das b Quark im Top Zerfall wird dabei

einmal als masselos und einmal als massiv angenommen. Die Differenz zwischen den beiden

Ergebnissen ergibt uns die störungstheoretische Fragmentierungsfunktion des b Quarks.

Danach machen wir Voraussagen für das Energiespektrum von B Hadronen in Top Quark

Zerfällen, einmal im ZM-VFNS und einmal im GM-VFNS Schema. Der Vergleich beider
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Ansätze zeigt, dass der Masseneffekt des b Quarks im Top Zerfall vernachlässigbar ist.

Schließlich betrachten wir auch noch den B Hadron Massen-Effekt in der Energieverteilung

der B Hadronen, die im Top Quark Zerfall erzeugt werden.

Unsere zweite Anwendung ist, die Händigkeitsverteilung von W+ Bosonen in der En-

ergieverteilung von B Hadronen im Top Zerfall zu berechnen. Dafür untersuchen wir die

Winkelverteilung des Kaskadenzerfalls des Top Quarks (t→ b+W+(→ e+ + νe)). Im dem

ZM-VFNS Schema machen wir Vorhersagen für die NLO Verteilungen der longitudinalen,

der negativ transversalen und der positiv transversalen Händigkeit des W + Bosons in den

B Hadron Energieverteilungen.
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Chapter 1

Introduction

The Standard Model(SM) of elementary particles has proved to be extremely successful

during the past three decades. It has shown to be a well established theory. All predictions

based on the SM have been experimentally verified and most of its parameters have been

fixed. The only part of the SM that has not been directly experimentally verified yet is the

Higgs sector and, in particular, the existence of a neutral massive spin-zero particle often

simply referred to as Higgs. There is still no direct evidence for its existence and despite

the many constraints from precision electro-weak physics, the Higgs mass is not known.

Not all of the parameters of the Higgs potential are determined, and its Yukawa couplings

to the fermions are determined through the measurements of the masses of the fermions

(quarks and leptons). Experiments in the near future at the Large Hadron Collider (LHC)

and at the Tevatron accelerator, either will confirm that particle’s existence and fix the

Higgs potential parameters, or will increase the limit on its mass.

The SM describes three of the four known interactions: Electromagnetic, Weak and Strong.

The fourth one, Gravity, is not considered in the SM and we ignore its effect in our

calculation. The gravity becomes important only at scales of the order of the Plank mass

(G
−1/2
N ∼ 1018 GeV) thus it is completely irrelevant for present collider experiments.

The SM is a gauge-field theoretical model produced of two non-abelian gauge group

and one abelian gauge group:

GSM = SU(3)C × SU(2)I × U(1)Y . (1.1)

The gauge group is non-simple and involves three different dimensionless coupling con-

stants corresponding to each of the three group factors above. The SU(2)I × U(1)Y part
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corresponds to the Weinberg-Salaam model [1] and provides a unified description of the

electromagnetic and weak interactions. There are four gauge bosons associated with that

group: two neutral ones, γ and Z, and two charged ones, W±. The photon γ is exactly

massless due to the the unbroken U(1) subgroup that is identified with electro-magnetism.

The other three are heavy, with masses approximately mZ = 91 GeV and mW± = 80

GeV; their masses arise as a result of electroweak symmetry breaking via the Higgs mech-

anism. The electroweak vector bosons couple to all fermions. The magnitude of those

couplings is relatively small; the electromagnetic interactions are suppressed by powers of

α = e2/4π ≈ 1/137, while the effects of the weak interactions are typically proportional

to powers of the Fermi constant GF = 1.166 × 10−5GeV −2. For that reason the quantum

corrections introduced by electro-weak interactions are much smaller than the ones due to

strong interactions1.

The dependence of the dimensionless electroweak gauge couplings g and g ′ on energy is

intuitive, i.e. the strength of the electroweak interactions increase with the energy scale.

For that reason the SU(2) × U(1) theory of the electroweak interactions is a true per-

turbation theory formulated directly in terms of observable fields. The situation changes

dramatically when one considers the strong interactions described by the SU(3)C factor

in (1.1). First, the coupling constant is not small. Moreover, as it is well known, a non-

abelian gauge theory with such a gauge group and with small number of active fermions

(flavors) exhibits the behavior known as asymptotic freedom: the dimensionless coupling

constant associated with th group decreases with the increasing of the energy scale and

effectively such a theory behaves as a free theory at high energies, see Fig.(1.1). However

, at small energies the coupling grows and eventually diverges at some finite value of the

energy scale. That scale, usually denoted as ΛQCD and called the typical QCD scale, has a

value of the order of 200-300 MeV and quantifies the borderline between the perturbative

and non-perturbative regimes in such a theory. From the above discussion it becomes clear

that such a theory exhibits another considerable property: confinement.

The growing of the coupling at low energies (which corresponds to large distance)

indicates that the particles which are described by such a gauge theory may not be able

to exist as free (asymptotic) states at all. Instead, they will form bound states except top

quark, since due to the large mass and the weak coupling constant, i.e. the top quark will

1This is also the case in the applications considered in this thesis as will be detailed in the subsequent

sections.
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Figure 1.1: Illustration of the behavior of the QED and QCD effective coupling constant

as a function of the energy scale, Q2. In QED the effective coupling, αQED(Q2), is small

at small Q2, but becomes large at large Q2 (i.e., short distance). In QCD the effective

coupling is large at small Q2 (i.e., large distance) where confinement occurs, but decreases

to zero at large Q2 (asymptotic freedom).

decay before forming a bound state. That expectation is confirmed by experiment: no free

quarks have ever been observed experimentally.

Unlike the quarks that carry an additional quantum number called color, the observable

strongly interacting particles - the hadrons- are colorless objects and have the quantum

numbers of bound states of two-quarks (mesons) and three-quarks (baryons). The property

of confinement is an assumption based on the above mentioned behavior of the strong

coupling constant and the non-observation of free colored particles. Confinement is proved

in lattice gauge theory. The derivation of the properties of the hadrons from QCD is one

of the fundamental problems in theoretical physics nowadays.

It is a remarkable achievement that we are able to make precise predictions for the

observed hadronic states in high energy experiments based on a theory formulated in

terms of non-observable constituents, i.e. quarks. One of the main ingredients of the

theory that makes this possible is the factorization theorem. In essence, it states that in

hard scattering experiments with typical hard scale Q� ΛQCD an observable (e.g. a cross

14



section) can be written as a product(more precisely-convolution) of perturbative and non-

perturbative parts. The former part can be calculated in perturbative theory based on an

expansion in the strong coupling constant αs(Q
2) while the latter part has to be extracted

from experiment. It is possible to extend the factorization theorem even to processes where

other scales besides Q are present, e.g. the mass of heavy quarks. As will be clear from

discussions throughout this thesis, there is no absolute notion of heavy quarks, i.e. whether

a quark is considered heavy or light depends on the particular problem is being studied.

However, in general, light quarks are considered to be those with masses below ΛQCD

(i.e. u, d, s) while the ones with masses above that scale are usually considered to be heavy

(c, b, t). The reason behind such a separation is easy to understand: for a heavy quark with

mass M,αs(M
2) � 1 thus heavy quark production is a calculable process in perturbative

QCD (pQCD). Studies of QCD involving processes with heavy quarks, are at present an

important internal test for QCD as well as for obtaining precision predictions that will be

needed to distinguish signals from new physics (Supersymmetry, Extra Dimension, etc.).

QCD has another particular feature: there are situations where the convergence of

the perturbation series is spoiled because of the appearance of additional factors that

multiply the coupling constant to any order in perturbation series. The presence of such

terms effectively alters the expansion parameter to a larger value which in turn spoils the

convergence of the series. To be able to obtain useful information in that case, one needs

to resum classes of such terms to all orders in the coupling constant. These terms will be

studied in next chapter.

There are many examples of physical processes involving heavy quarks where the fac-

torization theorem plays a decisive role in studies of them and the application of the above

mentioned resummation often leads to series improvement of the perturbative results. In

this thesis we study one of these such processes in perturbative QCD with detailed phe-

nomenological applications: the spectrum of b-flavored hadrons in top quark decay.

The top quark was discovered at the Tevatron in 1995. It is the heaviest elementary

particle with a mass of 170.9 ± 1.8 GeV [2]. Since this is much larger than the mass of

any other fermion and also twice as large as the mass of the electroweak gauge bosons,

one may wonder that whether or not the top quark really is an elementary particle and

if it is elementary, can its mass be generated by the same mechanism from the mass of

the other particles?. After all, its mass is almost six orders of magnitude larger than the

electron mass. On the other hand, the top quark is also essential for our understanding
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of the standard model. The reason is that the precision of observables like the W-boson

mass or the effective weak mixing angle depend on the top-quark mass through radiative

corrections. If we want to reduce the errors on these quantities, it is therefore necessary

to reduce the error on the top-quark mass as well. Therefore it is necessary to perform

precision measurements of the top quark properties. Next to its mass, its total decay

width and Yukawa coupling are of special interest. Concerning the mass, it is expected

that the uncertainty will be reduced to about 1Gev at the LHC. However, the width and

Yukawa coupling can not be measured to a very good accuracy either at the Tevatron or

at the LHC. This would change at a future International Linear Collider (ILC). Such a

collider offers the unique ability to measure the cross section with a very high experimental

accuracy [3] and also provides the possibility to extract the strong coupling constant, αs,

with high precision. For example, it is expected that the t-quark mass can be measured

with better than 100 MeV accuracy.

In the SM, it is the mass of the top that uniquely distinguishes it from the other five

flavors. Top’s large mass is responsible for its small lifetime, the latter prevents the top from

forming bound states (a process known as hadronization). For that reason, the top quark

behaves like a real particle and one can safely describe its decay in perturbative theory.

Since the only experimental information about the top is through its decay products, it is

very important to have a precise theoretical prediction for the decay products of the top.

In this thesis we make a prediction for the spectrum of the hadrons resulting from the

hadronization of the b-quark in the t-quark decay. We will show that there are two kinds

of large logarithms into our partonic level calculation which should be resummed to all

orders in αs. These large logs are: quasi-collinear ones that are due to the large ratio

of top-to-bottom mass and soft ones that are due to soft gluon radiation and affect the

distribution in particular kinematical regions. Such results will be very important when

the near future high energy experiments supply enough data on top decay.

This thesis is organized as follows: in the next chapter we discuss some general features

of QCD from the perspective of our applications. In chapter 3, we present our results on

differential decay rate of top decay when the b-quark is considered a massless particle. In

chapter 4, we present our original results on the differential decay rate of top decay when

the producing b-quark is considered to be a massive one and then by comparing them with

the previous result we extract the perturbative fragmentation function of the b-massless

into the b-massive. We show our results for the hadronization of the b-quark in top quark

16



decay and make predictions for the spectrum of b-flavored hadrons. We also show the

effect of b-flavored hadron mass into the differential decay rate and energy spectrum of

the B-hadron in the top decay process. In chapter 5 we concentrate on the contributions

of the W+-boson helicity in the cascade decay of the top quark followed by the leptonic

decay of the W+-boson. In chapter 6 are our conclusions. In the appendix we have listed

some useful results.
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Chapter 2

Perturbative QCD

In the previous chapter we made some general remarks about the importance of QCD as

a theory of the strong interactions and also a few of its peculiar features. In this chapter

we are going to review that theory and derive many of its properties. The organization

of material in the present chapter does not follow any particular review on QCD but it is

presented in a way that is suitable for our applications. There are many excellent reviews

of QCD; some of those can be found in [5, 6, 7, 8, 9].

2.1 QCD as a Fundamental Model for the Strong In-

teractions

The strong interactions govern the interactions of hadrons at a wide range of energies:

from the highest energies accessible to the present day colliders down to energies typical

for the nuclear physics. At the same time the behavior of the strong interaction is very

different in the low and high energy regimes. At low energies, i.e. energies characterized by

a scale µ � ΛQCD, the hadrons behave as fundamental particles. However, no successful

field-theoretical description in terms of the observed hadrons was found that was able to

describe the high energy regime and explain the increasing data of observed hadrons at

high energy colliders. Contrary to the early expectations, the understanding of the strong

interactions was made in the study of the high energy behavior of the hadrons.
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2.1.1 Quark Hypothesis

In 1964 Gell-Mann and Zweig [10] introduced the idea of quarks: a few elementary particles

that are the building blocks of all hadrons. There are six known types of quarks (quark

flavors); they are spin 1/2 fermions with rational electric charges (in units of the charge of

the electron with the charge −e): u, c, t have charge +2/3 while d, s, b have charge −1/3.

The quark hypothesis assumes that the wave function of a hadron is constructed from the

one-particle wave functions of quarks and/or antiquarks. The mesons have the quantum

numbers of a quark-antiquark pair while the baryons and anti baryons are combinations

of three (anti)quarks. Also, in order to avoid a problem with the spin-statistics theorem,

it was necessary to introduce the additional hidden quantum number-color [11]. From

a comparison with experiment it was concluded that each quark flavor must have three

different ”copies” labeled by an additional color index. Since no colored particles have

been observed it was postulated that the hadrons can only form ”colorless” combinations

of quarks, i.e. color was introduced as an exact global symmetry. It can be shown that the

above observations plus the requirement that quarks and antiquarks transform under differ-

ent (complex-conjugated) irreducible representations of the color symmetry group uniquely

fixes the group to be SU(3)C . The quarks transform under the fundamental representation

3 of that group, while the antiquarks transform under its conjugated representation 3.

2.1.2 Parton Model

The idea that the hadrons are built from elementary constituents - the partons [12]- was

extremely successful not only in explaining the hadron spectroscopy but also in the descrip-

tion of the Bjorken scaling [13] observed in Deep Inelastic scattering (DIS) experiments

[14]. The experimental data showed that at large scales the structure functions of the

nucleons are (approximately) independent of the value of the hard energy scale Q and

depend only on the Bjorken variable x. The parton model assumes that in high energy

lepton-nucleon scattering, where the transferred momentum is large enough so the masses

of the partons and their transverse motion inside the nucleon can be neglected, the virtual

electroweak vector boson emitted from the initial lepton is scattered by a single free point-

like parton a. The whole information about the structure of the hadron that is relevant to

the high energy process is encoded in a scalar function fa(ξ) called the parton distribution

function (pdf) representing the probability distribution for finding the parton a inside the
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hadron and carrying a fraction ξ (0 ≤ ξ ≤ 1) of the momentum of the parent hadron. The

philosophy of the parton model then suggests the following form of the cross section at

high energy for the production of arbitrary number of final hadron in the state X, i.e. for

the process e+ h→ e′ +X:

dσ(h,X) =
∑

a

∫ 1

0

dξfa(ξ)dσ̂(a,X), (2.1)

where dσ(h,X) is the cross-section for scattering of a hadron h and X stands for the other

particles in the scattering process; dσ̂(a,X) is a parton level cross-section with the hadron

h replaced by a free parton a, and fa(ξ) is a distribution function. Since the parton model

is a free theory, to lowest order in the electroweak coupling the partonic cross-section is

very simple: dσ̂ ∼ δ(ξ−x), so that the momentum fraction ξ is identified with the Bjorken

variable x. Therefore under the parton model assumption (2.1), the structure functions

are simply proportional to the pdf fa(x) and naturally independent of the hard transferred

momentum Q.

The success of the parton model goes beyond the description of Bjorken scaling. It also

makes a prediction about various relations involving the measurable structure functions,

one of them is the Callan-Gross relation [15] which leads to the fact that quarks have spin

1/2. The parton model can be generalized to other processes as well; one just needs to

measure the pdfs for the various quarks in a specific process in order to predict a measurable

quantity for another process. In that procedure, the following relations between the various

parton distributions, following from iso-spin invariance, are often assumed:

f protonu (x) = fneutrond (x); f protond (x) = fneutronu (x). (2.2)

2.1.3 QCD: the Dynamical Theory of Color

Although the parton model was quite successful in the description of many high energy

processes, it was clear that it is a good hint toward a complete dynamical theory of the

strong interactions. The complete theory would be able to explain one of the basic assump-

tions of the parton model-asymptotic freedom. Such a theory was constructed around 1973

after it was understood that the Yang-Mills theories play an important role in high energy

physics; at that time the renormalizeability of those theories was proved and methods for

their quantization were developed [16]. It was also shown that the non-abelian theories
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were the only theories which may exhibit asymptotic freedom, or technically, have nega-

tive first coefficient in the β−function (see next section). All these developments led to the

construction of QCD as the dynamical theory of the strong interactions [17] as follows:

QCD is a non-abelian gauge theory with six quark flavors. The gauge group can be

naturally obtained by gauging the exact global color symmetry group SU(3)C . The quarks

transform under the fundamental representation of SU(3)C . Since dim(SU(3))=8, there

are eight gauge bosons called gluons that are electrically neutral, carry color charge and,

as usual, are hermitian fields that transform under the adjoint representation of the gauge

group SU(3)C .

The lagrangian of QCD has the following form:

LQCD = −1

4
F a
µνF

a,µν + i
∑

q

ψiqγ
µ(Dµ)ijψ

j
q −

∑

q

mqψiqψ
i
q, (2.3)

where the index i = 1, 2, 3 runs over the different quark colors and q over the quark flavors:

q = u, b, s, c, b, t. The field-strengths are given by:

F a
µν = ∂µA

a
ν − ∂νA

a
µ − gSf

abcAbµA
c
µ, (2.4)

and the gauge-covariant derivative is:

(Dµ)ij = δij∂µ + igS
∑

a

taijA
a
µ. (2.5)

In the above equations, gS is the strong coupling constant, f abc are the structure constants

of the gauge group and ta are the generators of the fundamental representation of the gauge

group. In general, the lagrangian (2.3) must be supplemented with gauge-fixing and ghost

terms. The quarks have non-zero masses but their origin is outside QCD; in the SM their

masses result from the electroweak symmetry breaking. The only free parameters in QCD

are the six quark masses and the single gauge coupling constant. The gauge group has the

following matrix structure which, for generality, we present for arbitrary group SU(N); the

fundamental representation has generators ta, a = 1, ..., N2 − 1 that satisfy:

tr(tatb) =
1

2
δab

∑

a

taijt
b
jk = CF δjk, i, j, k = 1, ..., N. (2.6)

For the group SU(3), the generator ta are usually given by the Gell-Mann matrices λa :

ta = λa/2. Similarly, the adjoint representation has generator T a that can be related to

21



the structure constants f abc through:

(T a)bc = f abc, (2.7)

and

tr(T cT d) =
∑

a,b

fabcfabd = CAδ
cd. (2.8)

Above, CF and CA are the values of the quadratic Casimir of the gauge algebra in the

fundamental and adjoint representation respectively:

CF =
N2 − 1

2N
; CA = N, (2.9)

and for the case of SU(3):

CF =
4

3
; CA = 3. (2.10)

Once formulated, it must be shown that QCD indeed is capable of reproducing the

success of the parton model as a first step. That in fact follows since from the formulation

of QCD it is clear that the parton model corresponds to the Born approximation of QCD.

The real challenge however is to derive the asymptotic freedom from first principles and

also to derive the corrections to the Bjorken scaling.

2.1.4 Strong Coupling Constant

The running of the renormalized strong coupling αS =
g2S
4π

is determined from the following

equation:

µ
∂αS
∂µ

= 2β(αS). (2.11)

The β-function β(αS)
1 has a series expansion in the coupling constant αS. It can be

determined up to a fixed order in perturbation theory from explicit evaluation of the gauge

coupling renormalization constant Zg:

β(g) = lim
ε→0

(

− εg − µ

Zg

dZg
dµ

g

)

. (2.12)

1In contrast to most of the standard presentation (e.g [5]), we introduced β(αS) through the relation:

β(αS) = gS

4π
β(g)
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At present, the β-function of QCD is known to four loops in the MS scheme [18]. However,

since for all applications in this thesis we need the evolution of the strong coupling to two

loops, we will present only the two loop result:

β(αS) = −b0α2
S − b1α

3
S − · · · , (2.13)

with b0 and b1 given by:

b0 =
33 − 2nf

12π
, b1 =

153 − 19nf
24π2

. (2.14)

The first two coefficients of the β-function are independent of the renormalization scheme.

However, that is no longer true for the higher order terms. In Eq.(2.14), nf is the number

of active massless flavors. In the presence of quark masses, the value of the active flavors

becomes scale dependent. If one considers the masses for the quarks, then for the scale

µ : mn � µ � mn+1 all flavors with masses below mn+1 are effectively massless while the

rest of the flavors are heavy and can be integrated out. An example is the case of top

decay considered in Chapter 3 where the scale is running between the b and the t masses.

However, in practical applications (especially with scales of the order of the b and the c

quark) the assumption above is not always valid and therefore the choice of nf is somehow

ambiguous. The common practice is to change the value of nf by one unit when the hard

scale crosses the mass of the corresponding heavy quark, we will explain in more detail

later. Changing of the number of the active flavors in crossing of the hard scale should be

supplemented with an additional constraint that relates the values of the strong coupling

evaluated in the two schemes at the switching point. In the MS renormalization scheme,

the strong coupling is continuous at the switching points [19] (see also [4]), up to negligible

corrections of order O(α3
S). We ignored this effect in our calculation.

Now it is easy to show that indeed QCD enjoys the property of asymptotic freedom

[20]. In a regime where the strong coupling is small, from Eq.(2.14) and Eq.(2.11), it is

easy to see that the strong coupling constant is a decreasing function of the scale µ if the

number of flavors nf < 33/2 and this requirement is satisfied in QCD. The exact solution

of Eq.(2.11) to NLO is given by:

αS(µ
2) =

1

b0 ln(µ2/Λ2)

{

1 − b1 ln[ln(µ2/Λ2)]

b20 ln(µ2/Λ2)

}

. (2.15)

One can use this expression in order to relate the values of the strong coupling at two
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different scales with NLO accuracy [21]:

αS(k
2) =

αS(µ
2)

1 + b0αS(µ2) ln(k2/µ2)

(

1 − b1
b0

αS(µ
2)

1 + b0αS(µ2) ln(k2/µ2)

× ln(1 + b0αS(µ
2) ln(k2/µ2)) + O(α2

S(µ
2)[αS(µ

2) ln(k2/µ2)]n)

)

. (2.16)

The constant Λ is the typical QCD scale [22] and contains all the information about the

boundary condition. It is a low energy scale where the strong coupling diverges. As

we mentioned in Chapter 1, Λ represents the border between the perturbative and non-

perturbative regimes of QCD. In practice the value of Λ is ambiguous. In high energy

experiments one typically obtains information about the strong coupling constant at some

large scale and only from there the value of Λ is inferred. It is obvious that in this way the

determination of Λ absorbs all ambiguities such as the dependence on the order of αS (LO,

NLO, etc.) and dependence on the scheme, the choice of the value of nf and the choice of

the renormalization scheme. In this thesis we use the following value of the strong coupling

at NLO [4]:

αS(m
2
Z) = 0.1181. (2.17)

It leads to Λ(5) ' 227 MeV appropriate for nf = 5. The precise values used in our

applications will be discussed in the next chapter.

2.2 QCD Factorization Theorem

QCD is formulated in terms of quarks and gluons while the experimentally observed states

are hadrons. Since at present we are not able to describe the non-perturbative regime of

QCD, therefore to apply QCD to study the hadronic interactions, we require a universal

way to split the contributions of short- and long-distance physics. Such a separation is

possible. It is known at the (QCD) factorization theorem [23, 24] and states that for

processes that have initial and/or observed final state hadrons the differential cross-section

has the following form:

dσ(x,Q2, m2) =
∏

h,h′

∑

i,f

fi/h(x, µ
2) ⊗ dσ̂i→f(x,Q

2, m2, µ2
r, µ

2
f)

⊗ Dh
′
/f(x, µ

2) + O(Λ/Q). (2.18)
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The factor fi/h stands for the parton distribution function of the parton i inside the hadron

h present in the initial state, and Q and x represent the hard scale and some kinematical

variable respectively. Unlike the simple parton model (2.1), the parton distributions also

depend on the factorization/renormalization scale µ2. The second factor dσ̂i→f , also known

as the (Wilson) coefficient function, represents the partonic hard scattering cross section

for the reaction i −→ f that depends on the unphysical renormalization and factorization

scales µ2
r and µ2

F and on the masses of the heavy quarks m2. The last factor in Eq(2.18) is

the so called fragmentation function D. It contains the information for the hadronization

of the hard parton f (that is produced in the hard process described by the partonic cross-

section dσ̂) into an observed hadron h
′

. The integral convolution appearing in (2.18) is

defined as:

(f ⊗ g)(x) =

∫ 1

x

dzg(z)f(
x

z
), (2.19)

where f and g are two functions with argument x: 0 ≤ x ≤ 1. The real power of

the factorization theorem is in the fact that the distribution/fragmentation functions are

universal: they depend only on the non-perturbative transition which they describe and not

on the hard scattering process. That is why once they are measured in one process, they

can be applied to any other process. At the same time, the coefficient function contains

all the information about the hard scattering process and is independent of the details

of the non-perturbative transitions. Although the ⊗-product of coefficient function and

distribution/fragmentation function is an observable and therefore free from any ambiguity,

the distribution, fragmentation and the coefficient functions are separately ambiguous. In

particular, they are scheme dependent; the origin of that scheme dependence is in the

treatment of the IR divergences associated with their computation. Infrared (IR) means

collinear divergence in this case. As we will show later the IR singularities cancel between

real and virtual contributions. Let us describe the scheme dependence of the coefficient

function and the distribution/fragmentation function in more detail:

The evaluation of the coefficient function proceeds in the following way: one calculates

the hadronic process dσ that is under study by formally replacing each initial hadron h

with an on-shell parton a. To that end, and in accordance with the factorization theorem

(2.18) we just described, one introduces (also formally) new parton distributions fi/a which

have the meaning of a distribution of a parton i inside parton a; we treat the fragmenting

partons in a similar fashion. Therefore the differential cross-section can be factorized as
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the following:

dσ = dσ̂ ⊗ fi/a . (2.20)

The main purpose of the fictitious distribution fi/a is to absorb all the IR singularities

from the calculated cross-section. As a next step, one simply discards the functions fi/a

and what is left is the needed coefficient function dσ̂. The extraction of the partonic pdfs

is physically equivalent to the absorption of the IR sensitive contributions into the pdfs

fi/h (see also section (2.4.1)).

Clearly, such a procedure is very similar to th UV renormalization where one introduces

appropriate counter-terms to absorb (and thus cancel) the UV divergences appearing in

the Feynman diagrams. In the MS subtraction scheme, which is most often used, the

partonic pdfs read:

fi/a(x) = δiaδ(1 − x) +
αS
2π

(

− 1

ε
+ γE − ln 4π

)

P
(0)
ia (x) + O(α2

S), (2.21)

where P
(0)
ij (x) are the leading order Altarelli-Parisi splitting functions that will be defined

and thoroughly discussed in the next section, and ε = (4 − D)/2 (see the next Chapter

for more details). The subtraction scheme for the IR divergences emerging in dσ in the

limit ε → 0 is related to the renormalization scheme used to remove the UV divergences

appearing in the formal (operator) definition of the parton densities. For a more detailed

discussion see [23], [25] and [26].

The Factorization theorem in the presence of massive quarks is accurate up to terms

O (Λ/Q); see Eq.(2.18). The proof of the factorization theorem presented in [24] uses a

variable flavor number scheme (VFNS). The VFNS treats the light quark u, d and s as

massless and always includes them as active flavors in the running of the strong coupling

αS. The treatment of the heavy flavors c, b and t is process dependent. In some references

people apply this convention if the typical energy scale is below the corresponding quark

mass then that quark is treated as heavy and is integrated out. In particular it does

not contribute to the evaluation of the strong coupling constant and does not have an

associated parton density. The quarks with masses below the hard scale are treated in a

different way: they contribute to the strong coupling as if they are exactly massless, and

they have their own distribution functions2 which are evolved with the energy scale via

2These are introduced in order to systematically resum large logs of collinear origin that appear to all
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evolution equation with massless kernels (see next section). We will explain this scheme in

Chapter 4 but there we use other assumptions to specify the number of the active flavors.

The physical picture behind the factorization theorem is quite simple. One formally

introduces a scale µF which separates the short- from long-distance physics involved in the

process. It is intuitively clear that such separation must indeed occur in the limit of large

values of the hard scale Q. The time scale for the hard interaction is of the order of Q−1

and therefore quite small, while the typical time for the hadronization effects is not smaller

than Λ−1
QCD � Q−1. As a result, in the limit Q → ∞, short - and long-distance effects

cannot interfere with each other and therefore factorize. More formally, the separation

between small and large scales means that all contributing Feynman diagrams that have

lines with small virtuality can be separated from the lines with large (of the order of the

hard scale Q) virtuality. The former diagrams constitute the distribution functions while

the latter give the hard coefficient function. Such non-trivial factorization for the terms

with leading power in 1/Q2 (the so-called leading twist terms) was proved by Libby and

Sterman [28].

2.3 Perturbative Evolution: DGLAP Equations

In this section we will turn our attention to the dependence of the various factors in

Eq.(2.18) on the renormalization and factorization scales which incorporate the scaling-

violation effects. To better illuminate our point, we are going to make the following two

simplifications throughout this section: first, we will set the renormalization and the fac-

torization scales to the scale µ, i.e. µr = µF = µ. This is a standard choice in the studies

of pQCD which, however, will not restrict the generality of our discussion. If needed, the

separate dependence on both scales can be easily restored with the use of the running of the

strong coupling (see Eq.(2.16)). The second simplification is that we will consider Eq.(2.18)

with a single fragmentation or distribution function multiplying the coefficient function dσ̂.

We will consider those two ”representative” cases (only initial or final observed hadrons)

of Eq.(2.18) separately.

orders in αS . Schemes without heavy quark densities exist and are called Fixed Flavor Number Scheme

(FFNS). An example is the GRV 98 set of parton distribution [27].
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We start with:

dσ(x,Q2, m2) =
∑

i

fi/N (x, µ2) ⊗ dσ̂i→X(x,Q2, m2, µ2), (2.22)

which corresponds to the case of a single hadron (nucleon N) in the initial state and no

observed hadrons in the final state. A prominent example is the case of inclusive Neutral

Current (NC) or Charged Current (CC) DIS:

l +N → l
′

+X, (2.23)

with l and l
′

being leptons, N a hadron (usually a nucleon) andX stands for any unobserved

hadrons produced in the reaction (2.23). This case describes reactions with so-called space-

like evolution.

As a representative for a reaction with a single fragmentation function we take:

dσ(x,Q2, m2) =
∑

f

dσ̂e+e−→f(x,Q
2, m2, µ2) ⊗Dh/f(x, µ

2), (2.24)

which corresponds to the case of inclusive production of a single hadron h in a non-hadronic

collision. These reactions are known as having time-like evolution. An example is the

inclusive e−e+ annihilation:

e+ + e− → h+X, (2.25)

with h being an observed hadron and, as usual, X stands for any unobserved hadrons

produced in the reaction (2.25). Also, for brevity, we have omitted the remainders in

Eqs.(2.22) and (2.24).

2.3.1 The Case of Space-like Evolution

Let us concentrate on Eq.(2.22). Since the left hand side is independent of µ in the full

perturbative theory with all orders then we can set that scale to any value we like. Among

all the possible values, the choice µ2 = Q2 is particularly convenient as will become clear

below.

From dimensional considerations the coefficient function can be written as:

dσ̂i→X(z, Q2, µ2) = σBC(z,
Q2

µ2
, αS(µ

2)), (2.26)
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where for the present we consider the case when no heavy quark are present; we will

generalize our considerations in the next section. In Eq.(2.26) σB is the Born cross-section

for the partonic subprocess and the function C is a dimensionless function that has a power

series decomposition in the strong coupling αS.

It is now obvious that by setting µ2 = Q2 the coefficient function takes the form

C(1, αS(Q
2)) and depends only on the strong coupling and on no other large (or small)

parameters. Since αS is evaluated at the large scale Q2 therefore it is small, the coefficient

function can be easily and efficiently calculated to some fixed order in perturbation theory.

However, as a result of the choice of scale we have made, the distribution function has

now become Q-dependent. That dependence is very important. It indicates that the

universality of a distribution function may be reduced since the PDF is specific to the

experimental energy where it is extracted and therefore can not be applied to processes

with different hard scale.

Fortunately, there exists a way to relate distribution functions at different scales. The

scale dependence of the partonic fragmentation functions fi(i = q, q, g) is perturbatively

controlled and is given as a solution to a system of integro-differential equations known

as Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations [29, 30]. That way the

universality of the distribution functions is retained; we only need to extract from exper-

iment the distribution functions at one given scale Q0. Then that input can be used as

the initial condition for the DGLAP equations and the PDF at any other scale can be pre-

dicted. In practice that procedure works in the following way: at some low scale Q0 ∼ 1

GeV one writes down a function of z, that contains small number of free parameters. Then

one evolves that initial condition via the DGLAP equations to different scales where ex-

perimental data exist, and one tries to fit those data by adjusting the parameters of the

initial condition.

The DGLAP equations are:

d

d lnµ2
fi(z, µ) =

∑

j

∫ 1

z

dξ

ξ
Pij
(z

ξ
, αS(µ)

)

fj(ξ, µ), (2.27)

and describe in general a system of 2nf + 1 equations for the distribution functions of all

flavors of quarks, antiquarks and the gluon. The kernels Pij have perturbative expansions

in powers of the strong coupling:

Pij(z, αS(µ)) =
αS(µ)

2π
P

(0)
ij (z) +

(

αS(µ)

2π

)2

P
(1)
ij (z) + O(α3

S). (2.28)
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P
(0)
ij (z) are the Altarelli-Parisi splitting functions [29] that also appeared in Eq.(2.21) and

the higher order terms P
(1)
ij (xb) can be found in [31, 32, 33, 34]. The one-loop splitting

functions P
(0)
ij (z) are renormalization scheme independent. However, that is not true for

the higher order functions which are renormalization scheme dependent. The most com-

mon choice is to work in the MS scheme.

Because color and flavor commute, P
(0)
ij (z) are independent of the quark flavor i.e. P

(0)
qiqj(z) =

δijP
(0)
qq (z). They also satisfy other relations as a result of probability conservation:

∫ 1

0

dzP (0)
qq (z) = 0, (2.29)

and momentum conservation:
∫ 1

0

dz z

(

P (0)
qq (z) + P (0)

gq (z)

)

= 0,

∫ 1

0

dz z

(

2nfP
(0)
qg (z) + P (0)

gg (z)

)

= 0. (2.30)

Note that because of the property (2.29), the functions P
(0)
qq (z) are not positive definite.

They are distributions instead. The kernels Pij satisfy also the following important relations

as a result of charge invariance and the SU(nf ) flavor symmetry:

Pqiqj = Pqiqj
; Pqiqj

= Pqiqj

Pqig = Pqig = Pqg ; Pgqi = Pgqi
= Pgq (2.31)

The explicit expressions for the four splitting functions at leading order are:

P (0)
qq (z) = CF

(

1 + z2

(1 − z)+
+

3

2
δ(1 − z)

)

,

P (0)
qg (z) =

1

2

(

z2 + (1 − z)2
)

,

P (0)
gq (z) = CF

(

1 + (1 − z)2

z

)

,

P (0)
gg (z) = 2CA

(

z

(1 − z)+
+

1 − z

z
+ z(1 − z)

)

+
11CA − 2nf

6
δ(1 − z). (2.32)

In equations above the ” + ”–prescription of a function f(z), which is singular at z = 1, is

defined as:
∫ 1

0

dzg(z)[f(z)]+ =

∫ 1

0

dzf(z)[g(z) − g(1)]. (2.33)
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A complete explanation of the distribution (F (z))+) and its properties can be found in

Appendix C.

One can simplify the study of the DGLAP equations if one takes advantage of the

flavor symmetry. As we mentioned earlier, the DGLAP equations describe the evolution

of 2nf + 1 partons that are all massless (see also the discussion following). From the form

of the QCD lagrangian with nf massless quarks (2.3), it is evident that the theory has

an additional global SU(nf ) flavor symmetry. Since the gluons are flavor-neutral, they

transform as singlet under the flavor group. The quarks in general transform non trivially

under that group. One can split the 2nf (anti)quark fields into one singlet:

Σ(x, µ) =

nf
∑

i

(

fqi(x, µ) + fqi
(x, µ)

)

, (2.34)

and 2nf−1 non-singlet(NS) combinations. nf of the NS fields can be taken as the different

M−
i = fqi(x, µ)−fqi

(x, µ). The other nf−1 combinations, which we denote by M+
j , depend

on the value of nf and can be found in [6]. Clearly, the NS combinations do not mix with

the singlet; in particular they do not mix with the gluon. To LO, all NS fields also split

from each other so we have a separate equation for each NS field:

d

d lnµ2
fNS(z, µ) =

αS(µ)

2π

∫ 1

0

dξ

ξ
P (0)
qq

(

z

ξ

)

fNS(ξ, µ), (2.35)

with P
(0)
qq given in Eq.(2.32). Beyond the leading order, however, the evolution kernels are

no longer flavor diagonal. One can still write the evolution equations in diagonal form that

is similar to the LO case Eq.(2.35), but the kernels P
(1)+
NS and P

(1)−
NS corresponding to the

fields M+ and M− are now different. Their explicit expressions can be found in [6] as well.

In the singlet sector, there is non-trivial mixing between the gluon density g and

the quark singlet state Σ. The kernels of the evolution equations for the ”two-vector”

(Σ(z, µ), g(z, µ)) form a 2 × 2 matrix:

(

Pqq(z, αS(µ
2)) 2nfPqg(z, αS(µ

2))

Pgq(z, αS(µ
2)) Pgg(z, αS(µ

2))

)

. (2.36)

The NLO kernels in the singlet sector can be found in [6]. Similarly to the NS case, we do

not present them here because of their length. The original derivations are presented in

[26, 35]. For future references we will only present the large z behavior of the MS splitting
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functions at NLO:

lim
z→1

Pqq = CF
αS
π

(

1 +K
αS
2π

+O(α2
S)

)

1

(1 − z)+

lim
z→1

Pgg = CA
αS
π

(

1 +K
αS
2π

+O(α2
S)

)

1

(1 − z)+

, (2.37)

where:

K = CA

(

67

18
− π2

6

)

− 5

9
nf . (2.38)

The origin of the DGLAP equations is in renormalization group invariance. That invari-

ance is manifested as independence of physical quantities (for example a cross-section) of

the renormalization scale µr that is introduced as a result of the renormalization procedure.

Eq.(2.22) is a typical example.

2.3.2 The Case of Time-like Evolution

All the considerations that were made for the case of Eq.(2.22) can also be made for the

fragmentation case (2.24). There are, however, a few difference between those two cases

and we will discuss them now.

The fragmentation functionsD have a expression different from that of the parton distri-

bution functions. The function Di/h(z, µ
2) represents the probability density that a parton

i produced at scale µ will fragment to an observed (and therefore on-mass-shell) hadron

h. Similarly to the distribution functions, the evolution of the fragmentation functions is

also described by the DGLAP equations. The one-loop splitting functions P
(0)
time−like,ij(x)

coincide with those in the space-like case (2.32). However the time-like and the space-like

evolution kernels differ beyond the leading order. The NLO time-like functions can be

found in [26, 35]. The large z behavior of the NLO time-like evolution kernels is the same

as for the space-like kernels, Eq.(2.37).

2.4 Infrared Effects

In our previous discussion we neglected the presence of masses of the quarks. However for

a theory which is sensitive to the IR such as QCD, a detailed account for those effects is

needed.
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It is well known that in a gauge theory with massless fields, in addition to the usual

UV divergences, there is another type of divergences that occurs in the evaluation of the

Feynman diagrams. These are known as infrared (IR) divergences and as shown by Sterman

for QCD in [36] can be divided into two types: collinear and soft.

The collinear divergences are due to the vanishing mass of the radiating particle (usually

the quarks). When a quark radiates a gluon that is almost collinear to it, the corresponding

real or virtual emission diagrams diverge. One can regulate such a divergence by intro-

ducing a small quark mass or by working in D space-time dimensions. Then a collinear

divergence shows up as a logarithmitic singularity ∼ ln(m2) or as an 1/ε pole, respectively.

In principle, since quarks have non-vanishing masses, the quantities calculated should be

finite and free of collinear singularities. That is not the case, however. In the perturbative

regime it is not the absolute value of the quark that is important but its value with respect

to some typical scale. If that typical scale - usually the hard scale Q - is much larger

than the quark mass, then in a perturbative calculation there appear large logs ln(m2/Q2).

Although these logs are finite, they appear to any order in perturbation theory and system-

atically multiply the strong coupling constant. Thus, the effective perturbation parameter

is not αS any more but αS× (a power of ln(m2/Q2)). The latter can be quite large and can

even invalidate the perturbation series. In effect, small but non-zero quark mass leaves the

result finite but unphysical; one should sum up to all orders terms of this type in order to

be able to make different perturbative predictions. Such large logs are called quasi-collinear

logs and are classified in the following way: a term at order αnS has the form:

αnS

n
∑

k=0

ck lnk
(

m2

Q2

)

. (2.39)

Terms with k = n are known as leading logarithmic (LL) terms, the ones with k = n− 1

are the next-to-leading logarithms (NLL) etc.

It is a peculiar feature of QCD that due to its non-abelian gauge group not only quarks but

also gluons can radiate collinear gluons. Unlike the quarks however the gluons are exactly

massless due to the gauge symmetry.

The origin of the soft divergences is in the vanishing mass of the gauge fields (the

gluon). These divergences manifest themselves as singularities in the loop integrals over

gauge boson lines in the kinematical region where the energy Eg of the gluon vanishes or

in the real emission diagrams where gluons with vanishing energy are emitted. The most
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convenient way to regularize those divergences is to work with dimensional regularization

since it preserves gauge invariance (unlike gluon-mass regularization).

It was understood long ago [37] that the problem of IR divergences is rooted in the way

the physical observables are defined. It is intuitively clear that a state containing a hard

parton can not be distinguished from a state containing in addition arbitrary number of

soft (or collinear) gluons. In those singular limits the particle nature of the real soft (or

collinear) gluon is not well defined and as a result we need to deal with degenerate states.

The conditions for cancellation of the IR divergences are stated in the following theorem:

Kinoshita-Lee-Nauenberg Theorem[38]: In a theory with massless fields, transi-

tion rates are free of IR divergences if a summation over the initial and final degenerate

states is carried out.

The proof of the theorem can be found in [5]. Its content is however clear: a physical

state is one that contains arbitrary number of soft (collinear) gluons. When applied to

perturbative calculations, the KLN theorem means that to some fixed order in the coupling

constant one should take into account the contributions from virtual and real emission

diagrams with arbitrary numbers of radiated gluons. Only their sum will be IR finite.

That way we arrive at the idea of an inclusive observable: a calculated cross-section will

be IR finite if it does not distinguish a state with one particle from a state with a number

of soft (collinear) gluons. We will see examples in the next Chapter when we discuss the

decay of the top quark.

In terms of Feynman diagrams (to all orders), the IR divergences are generated only

from real or virtual emission lines connected exclusively to external (hard) lines in the

diagram. The reason is that the internal lines are typically off-shell and thus regulate any

possible divergences. That observation is important for constructing an explicit proof of

cancellation of the soft divergences and was used first by Weinberg [39] in the context

of QED. Let us also mention that in fact that property leads in the context of QCD to

the factorization of the IR singularities in the hard diagrams. This is a very important

property that we will use in the next section. For an excellent discussion see [40].

2.4.1 Heavy Quark Masses

Let us return to Eq.(2.22) or (2.24) and now take into account the masses of the quarks

that we neglected in the discussion in the previous section. For example, Eq.(2.26) is now
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generalized to:

dσ̂i→X(x,Q2, m2, µ2) = σBC

(

x,
Q2

µ2
,
m2

µ2
, αS(µ

2)

)

. (2.40)

It is clear that whatever choice we make for the scale µ, we can not set equal to one both

mass ratios that appear in the right hand side of Eq.(2.40), an example is given in chapter

4 when the b-quark is considered a massive one in top decay. Let us set as before µ2 = Q2.

Then (2.40) takes the form:

dσ̂i→X(x,Q2, m2, µ2 = Q2) = σBC

(

x, 1,
m2

Q2
, αS(Q

2)

)

. (2.41)

Since the ratio m2/Q2 can take any non-negative real value, we anticipate a strong depen-

dence on the value of the quark mass. The case when m2 � Q2 was already discussed in

section (2.2): one can simply integrate out the heavy quark and work in an effective theory

where that flavor is omitted . As a result , the definition of the coupling constant becomes

dependent on the number of flavors lighter than Q. To understand the dependence on m2

in the case when m2 is not (much) larger than Q2, we first need to know if the cross-section

dσ̂ is IR safe, i.e. if it is finite in the limit m2 → 0. If it is collinearly safe, we can represent

it as:

C(x, 1,
m2

Q2
, αS(Q

2)) = C

(

x, 1, 0, αS(Q
2)

)

+ O
(

m2

Q2

)

. (2.42)

Such cross-sections are well behaved and can be obtained by explicit calculation to any

order in perturbation theory. A typical example is the case when dσ̂ is a total partonic

cross-section, e.g. for the process e−e+ → hadrons.

The case when dσ̂ is not IR safe is more complicated and at the same time perhaps

more common. In this case the limit m → 0 is singular, i.e. dσ̂ diverges. Examples are

the cases where dσ̂ is an inclusive differential cross-section for production of a parton,

or a process which is initiated by a single parton (the generalization to multiple partons

is straightforward). According to (2.18), the hadron level result is a convolution of the

partonic cross-section with distribution/fragmentation function. However in the presence

of IR divergences we should first understand how to make sense of such divergent results.

Let us first consider the case when the parton in consideration is light i.e. we take

m2 ≈ 0 (the case of having a heavy one: m2 6= 0, will be considered in chapter 4). The

first thing to note is that since it is experimentally measurable, the physical process of
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creation of a hadron or the process that is initiated by a single hadron is not IR diver-

gent. Such a process includes complicated stages but to simplify the calculation we assume

that the produced hadron has been created from a single parton, which non-perturbatively

hadronizes later. This hadronization process is described by the fragmentation function

D. Such a description is typical for production of light hadrons (i.e. hadrons that are

constructed out of light quarks). Thus in simplifying the process we necessarily introduce

mass singularities. The understanding of their origin suggests the method to cure them:

one calculates the partonic cross-section in perturbation theory that is (usually) regulated

in dimensional regularization. As we discussed in section (2.2) those divergences factorize

and can be subtracted in a particular scheme(usually MS). Then the subtracted partonic

cross-section is convoluted with a non-perturbative fragmentation function which is pro-

cess independent but subtraction scheme dependent. The same considerations apply for a

process with space-like evolution. The justification for such a procedure is that the sub-

traction is physically equivalent to the absorption of the effects sensitive to long-distance

physics into the distribution/fragmentation functions (see Eq.(2.20)).

After the subtraction of the mass singularities and defining the corresponding distri-

bution/fragmentation functions now we use the factorization formula. We shall explain in

more detail later.

2.4.2 Perturbative Fragmentation Function Formalism

Let us turn our attention to the processes that involve heavy quarks and typical hard scale

Q somewhat larger than the quark mass. As usual, by heavy we mean c, b or t quarks.

Although the partonic cross-section for such processes is divergent in the zero-mass limit,

we can not really set the masses of the heavy quarks to zero since they are not so small. We

are then in a situation that we previously described: the results are formally finite but in

practice, perturbation theory can not be applied in a straightforward way since, as shown

in Eq.(2.39), large logs ln(m2/Q2) appear to all orders in αS. There are two physically

different cases where such a situation can occur:

The first case is the partonic processes that are initiated by quarks with non-zero mass. We

will indicate that in such situations we would subtract the divergent part of the coefficient

function and then convolute it with the usual massless parton density. An example is

given in [41] where the strange quark was treated as having non-zero mass and after the
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subtraction of the quasi-collinear logs the effect of the (finite) power corrections of the

mass of the strange quark was studied.

The second case is the process where a heavy quark (usually c or b) is created in a hard

collision with a typical scale Q. Such processes lead to the creation of c− or b−flavored

hadrons and can be described within the formalism of the perturbative fragmentation

function (PFF)[42]. This approach has been used for e−e+ annihilation [43, 44, 45, 46, 47],

hadron collisions [48, 49] and photo production [50, 45]. In the next Chapter we describe

its application for bottom quark production in top quark decay, t→ bW [51].

According to the factorization theorem (2.18), we can write the cross-section for creating

a heavy-flavored hadron H in the following way:

1

σ0

dσH

dz
(z, Q,m) =

1

σ0

∫ 1

z

dξ

ξ

dσq

dξ
(ξ, Q,m)DH

np

(

z

ξ

)

, (2.43)

where σH(σq) is the cross-section for production of hadron H (heavy quark q) and Dnp

is a non-perturbative fragmentation function that describes the transition q → H at the

scale set by the mass m of the heavy quark q. That function is to be obtained from a

comparison with experiment. The kinematical variable z describes the parameter(s) of the

observed final state and typically is an normalized energy fraction. We also normalize the

cross-section in such a way that the Born term equals δ(1 − z).

The partonic cross-section σq can be calculated in perturbation theory. It is finite

because of the finite mass m but is not IR safe since the process is not completely inclusive,

i.e. it does not include all number of soft (collinear) gluons. It contains large quasi-collinear

logs to all orders in αS that must be resummed as we previously discussed. To make a

resummation of those, One writes:

1

σ0

dσq

dz
(z, Q,m) =

1

σ0

∑

i

∫ 1

z

dξ

ξ

dσ̂i

dξ
(ξ, Q, µ)Di

(

z

ξ
, µ,m

)

, (2.44)

where σ̂ is the cross-section for production of massless parton i with the collinear singularity

subtracted in the MS scheme. The function Di(z, µ,m) is a perturbative fragmentation

function (PFF) and it describes the transition of a massless parton i to a massive quark q.

The ansatz (2.44) has the following physical interpretation: in a hard collision set

by the large scale Q a massive parton is produced at large transverse momentum. For

that reason it behaves like a massless parton. The replacement of a massive parton with

a massless one (after the collinear divergence is subtracted) is justified up to powers of
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m2/Q2. The formalism of the PFF is applicable when such power correction are small and

can be neglected. For that reason, the cross-section σ̂ is insensitive to low energy physics

and depends on Q. The scale µ is the factorization scale that, as usual, separates the

low from the high energy regimes. Similarly, the function Di(z, µ,m) depends only on the

mass and the factorization scale, but is sensitive to the high energy part of the process.

In particular, the perturbative fragmentation function is universal, i.e. independent of the

process.

The PFF satisfy the DGLAP equation (2.27). The latter can be solved with NLL

accuracy. To completely specify the solution one needs to specify at some scale µ0 an initial

condition Dini
i (z, µ0, m) that is also valid to NLL accuracy. Clearly, such a condition is

also universal and can be obtained from a perturbative calculation [42]. To complete this

procedure one needs to observe that if the scale µ0 is chosen of the order of the mass m

then no large logs will be present in the initial condition. Therefore, the initial condition

can be simply calculated in perturbative theory:

Dini
i (z, µ0, m) = d

(0)
i (z) +

αS(µ0)

2π
d

(1)
i (z, µ0, m) + O(α2

S). (2.45)

To obtain the above functions one need to independently compute to order αS both σq and

σ̂ for some process and then plug the results into Eq.(2.44), for a more detailed discussion

see section (4.7).

Comparing the terms by the first order in αS one gets in the MS scheme [42]:

d
(0)
i (z) = δiqδ(1 − z)

d
(1)
i=q(z, µ0, m) = CF

[

1 + z2

1 − z

(

ln
µ2

0

m2
− 2 ln(1 − z) − 1

)]

+

d
(1)
i=g(z, µ0, m) =

1

2

(

z2 + (1 − z)2
)

ln

(

µ2
0

m2

)

d
(1)
i6=q,g(z, µ0, m) = 0. (2.46)

In section (4.7), the second relation (d
(1)
i=q(z, µ0, m)) shall be obtained in the top quark

decay process but process independent derivations of these initial conditions also exist in

[43, 52].

The most convenient way to solve the DGLAP equations is to work with the Mellin

moments of the fragmentation functions. We do not apply this method in this thesis

therefore we refer a reader to see [51] for more detailed discussion.
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Chapter 3

QCD Corrections for Top Quark

Decay using the Dimensional

Regularization Scheme

We present the QCD corrections at order αs to the t-quark decay with t→ b transition: t→
b + W+. The QCD corrections receive contributions from both virtual and real gluon

corrections. In our calculation to extract singularities we use dimensional regularization.

Then both Infrared and Ultraviolet singularities appear in forms of 1
ε

and 1
ε2

, where as

mentioned in the previous Chapter ε denotes the deviation of the number of space-time

dimensions from 4 and defined as ε = 4−D
2

. To specify the type of singularities, we label

εIR for the infrared singularities and εUV for the ultraviolet singularities.

3.1 Kinematic Variables

In the processes t→ b+W+ and t→ b+W+ +g, which we are going to consider, a t-quark

decays into a b-quark, a W+-boson and possibly a gluon. Thus it is convenient to define

scaled momenta as kinematic variables. First of all, we denote the four-momenta of the

t-quark, b-quark, W+-boson, real gluon and virtual gluon as pt, pb, pW , pg, q respectively.

The t-quark mass and the W+ boson mass are denoted as mt and mW , respectively. The

gluon is massless and for our present calculations we neglect the b-quark mass, therefore

we have pg
2 = pb

2 = 0. In next chapter we consider the case mb 6= 0.

We define z-variable as the scaled energy fraction of the b-quark in the rest frame of t-quark,
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i.e. −→pt = 0:

z =
2pb · pt
mt

2
=

2Eb
mt

·

Neglecting the b-mass, this variable takes values in the region of 0 ≤ z ≤ 1 − ω in which

ω is defined as the ratio ω =
m2

W

m2
t
. From now on we use the normalized b-energy fraction

xb that is defined as:

xb =
z

1 − ω
0 ≤ xb ≤ 1.

3.2 Born Approximation

The t-quark decay Feynman diagram in the tree level (or in the leading order) is depicted

in Fig.3.1. The amplitude of the Born approximation is given by:

Figure 3.1: Feynman diagram in the Born approximation in top decay

MBorn =
−e|Vtb|

2
√

2 sin θW
ε?µ(pW )u(pb)γµ(1 − γ5)u(pt), (3.1)

in which e is the charge of the electron, εµ(pW ) is the polarization vector of the W+-boson,

u(pt) and u(pb) are the spinors of the t-quark and the b-quark, respectively. The angle θW is

known as the weak mixing angle or the Weinberg angle and Vtb is the CKM matrix element

for the t → b flavor transition. For this transition we have Vtb ' 1 since our assumption

for the branching ratio of the top quark decay is B(t→ bW ) = 1. This result is consistent

with recent measurements of the CDF [53] collaboration of the ratio R−1 = B(t→kW )
B(t→bW )

, where

k is a d, s or b quark.

The Born approximation of the decay rate (or Born width) is obtained as:

Γ0 =
mtα(1 − ω)2(1 + 2ω)

16ωsin2θW
+ O(ε),
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but in order to get the correct finite terms in the normalized differential decay rate, the

Born width Γ0 will have to be evaluated in the dimensional regularization at O(ε2). We

obtain:

Γ0 =
mtα(1 − ω)2(1 + 2ω)

16ω sin2 θW

{

1 − ε[γE − log
4πµ2

m2
t

+ 2 log(1 − ω) − 2
1 + ω

1 + 2ω
] +

ε2
[1

2

(

γE − log
4πµ2

m2
t

+ 2 log(1 − ω) − 2
1 + ω

1 + 2ω

)2 − π2

4
+

2(1 + ω)(1 + 3ω)

(1 + 2ω)2

]

}

+ O(ε3),

(3.2)

where α is the electromagnetic coupling constant, γE = 0.577216 · · · is the Euler constant

and µ is the arbitrary reference mass that appears in the dimensional regularization.

Using the definition of the differential decay rate from appendix A, the normalized decay

width reads:

1

Γ0

dΓ0

dxb
= δ(1 − xb).

(3.3)

Now we are ready to calculate the QCD corrections from αs order (Next-to-leading order)

in the t-quark decay.

3.3 QCD Radiative Corrections

The Born approximation of the decay rate receives radiative corrections from perturbative

QCD that can be indicated as a power series of the strong coupling constant αs:

dΓ = dΓBorn + dΓαs + dΓα
2
s + · · · .

We now present the calculation of the first order of αs corrections. The virtual gluon

contributions are denoted by dΓV and the real gluon contributions by dΓR, so the total

radiative corrections of αs order can be written as:

dΓαs = dΓV + dΓR.

The virtual corrections dΓV contain the vertex correction and the self-energy corrections

of quarks. All these types of corrections contain both ultraviolet divergences (UV) and

infrared divergences (IR). The UV singularities are regulated and canceled out after renor-

malization of the fields, vertices and coupling constants. Likewise, the dΓR has the infrared
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divergences due to emission of the soft gluon and the collinear emitted gluon with the b-

quark. These divergences must be regulated in the same way like the virtual corrections.

The UV divergences in the virtual gluon corrections appear when the integration region of

the internal momentum of the virtual gluon goes to infinity.

There are many regularization and renormalization schemes [5]. In this work we adopt

the on-shell mass-renormalization scheme, choose the physical mass of the t-quark as the

renormalization point(the position of the pole of a heavy t-quark propagator in pertur-

bation theory). Dimensional regularization is better suited to regularize gauge theories,

because it is compatible with gauge invariance. The main idea in the dimensional regu-

larization is to change the number of space-time dimensions in the phase space integrals

from 4 to D = 4 − 2ε and also in the calculation of the matrix elements. In this case, the

singularities are extracted in terms of 1
ε

and 1
ε2

.

Now we provide the explicit procedure to calculate the virtual and real corrections using

dimensional regularization.

3.4 Virtual Gluon Corrections

First we consider the one-loop corrections to the decay width which are called virtual

corrections.

Expressing the virtual corrections amplitude MV in terms of the phase space variables, the

contribution of the virtual corrections to the differential decay width reads:

dΓV ir =
µ4−D

2mt

dD−1pW

(2π)D−12EW

dD−1pb

(2π)D−12Eb
(2π)DδD(pt − pb − pW )|2Re(M?BornMV )|, (3.4)

where the (?) sign shows the complex conjugate of the Born amplitude. With respect to

the definition of the kinematic variables, the equation above is simplified to:

dΓV ir

dxb
=

(1 − ω)

16πmt
δ(1 − xb)

{

1 − ε
[

γE − log
4πµ2

m2
t

+ 2 log(1 − ω) − 2(1 + ω)

1 + 2ω

]

+

ε2
[1

2

(

γE − log
4πµ2

m2
t

+ 2 log(1 − ω) − 2(1 + ω)

1 + 2ω

)2 − π2

4
+

2(1 + ω)(1 + 3ω)

(1 + 2ω)2

]

}

×

|2Re(M?BornMV )| + O(α2
s), (3.5)

where the Dirac delta function shows the momentum-energy conservation of the particles

system and the amplitude MV contains 2 graphs, which are depicted in Fig.3.2.

42



Figure 3.2: Feynman diagram for the virtual corrections. (a): vertex correction (b): renor-

malization of the fields and coupling constants.

In fact, in the αs order there are several other Feynman diagrams depicted in Fig.3.3.

But we do not have to consider them since in the on-shell renormalization scheme,the

self-energy diagrams, Figs.3.3a and 3.3c, are canceled by the additional counter terms con-

tributions, which arise from the quark wave function and mass renormalization, Figs.3.3b

and 3.3d,[54]. The amplitude MV
1 which includes the one-loop vertex correction, shown in

Figure 3.3: Virtual corrections: graphs a, c show the self-energy of quarks and graphs b,

d are counter term contributions.

Fig.3.4, reads:

MV
1 =

−e
2
√

2 sin θW
ε?µ(pW )u(pb)Λµ(pW , pb)u(pt), (3.6)

in which,

Λµ(pW , pb) = µ4−D g2

i(2π)4

∫

dDq [gβν − (1 − η)
qβqν
q2

] ×

×[
T ajiγ

β(6 q+ 6 pb)γµ(1 − γ5)(6 pb+ 6 pW+ 6 q +mt)γ
νT ail

q2(q + pb)2[(pb + pW + q)2 −m2
t ]

].

(3.7)
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Figure 3.4: Feynman diagram for the one-loop vertex correction

In the one-loop integral calculation we used the dimensional regularization in which we

replaced
∫

d4q
(2π)4

by µ4−D ∫ dDq
(2π)D .

Since Λµ is directly connected to the measurable quantity dΓ, it is gauge independent thus

we can choose the t’Hooft-Feynman gauge (η = 1). The γ5 matrix is not well defined in

D dimensions. The anti-commutation relation {γµ, γ5} = 0 produces the ambiguity, and

one can not simply apply the anti-commutation relation in general D dimensions. There

are several prescriptions to prevent the ambiguity of γ5 [55, 56, 57, 58]. We employ the

Breitenlohner-Maison (BM) scheme that is summarized by two principle rules. The first

rule is that one should not commute γ5 with other γ matrices, i.e.{γµ, γ5} 6= 0, and the

other one is that the trace of γ5γαγβγγγδ is expressed with the conventional anti-symmetric

metric ε−tensor, i.e. Tr[γ5γαγβγγγδ] = 4iεαβγδ. To avoid the anti-commutation relation of

γ5, one does not contract two γ matrices with a γ5 matrix between them. A more detailed

explanation is found in [55, 57, 58].

After applying the on-shell evaluations, p2
t=m

2
t and p2

b=0 in Eq.(3.7), we sum and average

over the color of the quarks with respect to this property that T a
ji ·T ail = Tr(T aT a) = 4 (the

‘a‘ sign stands for the gluon color index which takes the values 1, 2, · · · , 8 and the indices

i and j label the quarks colors). The result is:

Λµ(pW , pb) =
4g2µ4−D

3i(2π)4

∫

dDq[
γβ(6 q+ 6 pb)γµ(1 − γ5)(6 pb+ 6 pW+ 6 q +mt)γβ

q2(q + pb)2[(pb + pW + q)2 −m2
t ]

].

Now we calculate contribution of the one-loop vertex correction to the differential decay
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width (Eq.(3.4)), namely:

|2Re(M?Born.MV
1 )| =

απ

2 sin2 θW

(

− gµν +
pµW .p

ν
W

m2
W

)

Tr
[

6 pbΛµ(6 pb+ 6 pW +mt)γν(1 − γ5)
]

.

(3.8)

Here we used the definitions (3.1) and (3.6) for M ?Born and MV
1 , respectively.

In our calculation we used the program Feyncalc and in conclusion we obtain:

|2Re(M?Born.MV
1 )| =

m2
tααs

sin2 θW

[

4(1 − ω)(1 + 2ω)

3ω

(

− 1 +B0(0, 0, 0) +m2
t (1 − ω)C0(m

2
t , m

2
W , 0, 0, m

2
t , 0)

)

+ 4ωB0(m
2
W , 0, m

2
t ) −

2

3ω
(4ω2 + ω + 1)B0(m

2
t , 0, m

2
t )

]

. (3.9)

Here B0 and C0 functions are the Passarino-Veltman 2-point and 3-point integrals which

are defined as:

B0(p
2
1, m

2
0, m

2
1) =

(2πµ)4−D

iπ2

∫

dDq
1

(q2 −m2
0 + iε)((q + p1)2 −m2

1 + iε)
,

and

C0(p
2
1, (p1 − p2)

2, p2
2, m

2
0, m

2
1, m

2
2) =

(2πµ)4−D

iπ2
×

∫

dDq
1

(q2 −m2
0 + iε)((q + p1)2 −m2

1 + iε)((q + p2)2 −m2
2 + iε)

.

The B0 and C0 functions which we need, are:

B0(m
2
t , 0, m

2
t ) = ∆UV + log

µ2

m2
t

+ 2

B0(m
2
W , 0, m

2
t ) = ∆UV + log

µ2

m2
t

+
(1 − ω)

ω
log(1 − ω) + 2

B0(0, 0, 0) =
1

εUV
− 1

εIR
C0(m

2
t , m

2
W , 0, 0, m

2
t , 0) =

− 1

4m2
t (1 − ω)

(

1

ε2IR
+ (log

µ2

m2
t

− 2 log(1 − ω) + ∆IR)2 + 4Li2(ω) +
π2

6

)

,

(3.10)
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in which ∆UV = 1
εUV

+ log 4π − γE, ∆IR = 1
εIR

+ log 4π − γE, [59, 60].

Using these relations the final result for Eq.(3.9) is:

|2Re(M?BornMV
1 )| =

m2
tααs(1 − ω)(1 + 2ω)

3ω sin2 θW

(

−2

ε2IR
+ 2
(2 log(1 − ω) − log 4πµ2

m2
t

+ γE − 2

εIR

)

+
2

εUV

−(log2 4πµ2

m2
t

+ 2(1 − γE) log
4πµ2

m2
t

+ γE(γE − 2) +
π2 + 48

6
)

+4(log
4πµ2

m2
t

− log(1 − ω) +
3ω

(1 + 2ω)
− γE) log(1 − ω) − 4Li2(ω)

)

, (3.11)

where Li2(ω) = −
∫ ω

0
dt
t

log(1−t) is the Spence function and ω is the ratio ω =
m2

W

m2
t
, already

introduced in section 3.1.

The contribution MV
2 , due to renormalization of the wave-functions, electric charge and

masses, which are shown by the countervertex graph, Fig.3.2.b, reads:

MV
2 =

−e
2
√

2 sin θW
ε?µ(pW )u(pb){δze −

δsW
sW

+
δzW
2

+
δzt
2

+
δzb
2
}γµ(1 − γ5)u(pt), (3.12)

in which δzb, δzt and δzW are the renormalization constants of the b-quark, t-quark and

W+-boson wave functions respectively and δsW (sW = sin θW ) is the renormalization con-

stant based on the Weinberg angle and δze is the electric charge renormalization constant.

In the αs order, there is no self-energy correction for the W boson, thus δzW = 0. On the

other hand δze = −1
2
δzA where δzA is the electromagnetic field renormalization constant

[5], which can be written as δzA =
∑′

T (0) which
∑

T (k) (the transverse part of photon

self-energy) is zero in the αs order, therefore δze = 0. Likewise the contribution of δsW

sW
is

expressed by:
δsW
sW

=
−c2W
2s2

W

(
δm2

W

m2
W

− δm2
z

m2
z

),

where sW = sin θW and cW = cos θW . On the one hand δm2
W = Re{

∑W
T (m2

W )} and on the

other hand in the αs order there is no the W+ boson self-energy thus
∑W

T = 0 so δm2
W = 0

and analogously we obtain δm2
z = 0, therefore we obtain: δsW/sW = 0.

Now we have to calculate the b-quark and t-quark wave functions renormalization con-

stant.

At first I explain the general method to calculate the wave functions renormalization con-

stant of one particle with mass m and momentum p. This constant is obtained from
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calculating the self-energy of that particle in the αs order(
∑

m(p)) which is depicted in

Fig.3.5. In the t’Hooft-Feynman gauge, the self-energy
∑

m(p) in D-dimension reads:

Figure 3.5: Feynman diagram for the self-energy of a particle with mass m in αs order.

∑

m
(p) =

−4g2µ4−D

3i(2π)4

∫

dDq
γβ(6 p− 6 q +m)γβ
q2((p− q)2 −m2)

. (3.13)

If we decompose the self-energy
∑

m(p) into the vector and scalar parts to the face:
∑

m
(p) =6 p

∑

V
(p2) +m

∑

s
(p2),

using the following relation:

δzψ = −
∑

V
(m2) − 2m2(

∑′

V
(m2) +

∑′

s
(m2)), (3.14)

in which
∑′

V (m2) =
∂

P

V (p2)

∂ 6p2

∣

∣

∣

6p=m
and

∑′
s(m

2) =
∂

P

S(p2)

∂ 6p2

∣

∣

∣

6p=m
, we obtain the field renor-

malization constant δzψ . For t-quark with mass mt we obtain:

∑

mt

(pt) =
−g2

12π2

(

6 pt(
m2
t

p2
t

B0(0, 0, m
2
t ) −

m2
t

p2
t

B0(p
2
t , 0, m

2
t ) − B0(p

2
t , 0, m

2
t ) + 1)

+mt(−2 + 4B0(p
2
t , 0, m

2
t ))

)

, (3.15)

in which B0(0, 0, m
2
t ) = CεUV

( 1
εUV

+ 1).

The field renormalization constant δzt reads:

δzt = −αs
3π

(
1

εUV
+

2

εIR
− 3γE + 3 ln

µ2

m2
t

+ 4), (3.16)

where the strong coupling constant αs is defined as αs = g2

4π
.

To calculate the field renormalization constant of the b-quark with mass mb = 0, the

self-energy
∑

mb
(pb) is:

∑

mb

(pb) =
αs
3π
B0(p

2
b , 0, 0) 6 pb,

=6 pb
∑

V
(p2
b). (3.17)
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If we consider δzb = −
∑

V (m2
b = 0) from Eq.(3.14), therefore:

δzb = −αs
3π
B0(0, 0, 0)

= −αs
3π

(
1

εUV
− 1

εIR
), (3.18)

where the B0(0, 0, 0) function has been expanded in the powers εUV and εIR. The contri-

bution of renormalization of the wave functions to the decay width reads:

|2Re(M?BornMV
2 )| =

m2
tααs(1 − ω)(1 + 2ω)

3ω sin2 θW

(

− 1

εIR
− 2

εUV
− 3 log

4πµ2

m2
t

+ 3γE − 4
)

+ O(εIR, εUV ).

(3.19)

After summing up the vertex and the fields renormalization corrections we expand the

obtained result in the powers of εIR and εUV . Obviously, all the UV singularities will be

eliminated and the rest just contains the IR singularities in the forms 1
ε2
IR

and 1
εIR

. From

now on we label the infrared singularities as ε. In conclusion, we have:

|2Re(M?BornMV )| =

|2Re(M?BornMV
1 +M?BornMV

2 )| =
m2
tααs(1 − ω)(1 + 2ω)

3ω sin2 θW

(4πµ2

m2
t

)ε
Γ[1 + ε] ×

[−2

ε2
+

4 log(1 − ω) − 5

ε
− 4 log2(1 − ω) − 4Li2(ω) +

12ω log(1 − ω)

1 + 2ω
− 12

]

,

(3.20)

where the polylogarithm function Li2(ω) can be written as: −Li2(1−ω)−lnω ln(1−ω)+ π2

6
.

The contribution of the virtual corrections to the differential decay rate, Eq.(3.5) reads:

1

Γ0

dΓ̂vir

dxb
=
αs
2π
CF δ(1 − xb)

[ 6ω

1 + 2ω
log(1 − ω) − F

]

, (3.21)

where F is defined as:

F =
1

2

(

− log
4πµ2

m2
t

+ 2 log(1 − ω) + γE
)2

+
5

2
log

4πµ2

m2
t

− 2Li2(1 − ω)

−2 log(1 − ω) logω +
5π2

12
− 5γE

2
+ 6 +

1

ε2

−1

ε

(

− log
4πµ2

m2
t

+ 2 log(1 − ω) + γE − 5

2

)

, (3.22)

in which the color factor,CF , is 4/3.
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3.5 Real Gluon Corrections

The Feynman diagrams of the real gluon corrections are shown in Fig.3.6.

The amplitude MR
a of the real gluon correction for graph (3.6a) is:

Figure 3.6: Feynman diagrams for emission of real gluons from t-quark and b-quark in αs

order

MR
a =

eg|Vtb|T bji
2
√

2 sin θW
ε′α?(pg)ε

?µ(pW )u(pb)γ
α

( 6 pb+ 6 pg
(pb + pg)2

)

γµ(1 − γ5)u(pt), (3.23)

and the amplitude MR
b for graph (3.6b) is:

MR
b =

eg|Vtb|T aji
2
√

2 sin θW
ε′β?(pg)ε

?µ(pW )u(pb)γµ(1 − γ5)

( 6 pt− 6 pg +mt

(pt − pg)2 −m2
t

)

γβu(pt). (3.24)

As it was already explained Vtb ' 1.

The amplitude MR
b leads to singularities of the form 1

ε
when Eg → 0. These singularities

are the soft gluon singularities. The amplitude MR
a leads to both the soft singularities and

the collinear singularities (see section 2.4).

To evaluate the contribution of the real corrections to the differential decay rate we use

the dimensional regularization scheme and define p2
g = 0 and D = 4− 2ε. For this work we

square the amplitude in general D-dimension, replace D → 4− 2ε and expand the squared

amplitude in the powers of ε. In the squaring of amplitude we make a summation over the

color and spin freedom degrees of the particles and obtain the average over the t-quark

color and its spin degrees. We obtain:

|MReal|2 = |MR
a |2 + |MR

b |2 + 2Re|MR
a .M

?R

b |,

where for example: |MR
a |2 is 1

3×2

∑

spin,color(Ma ·M?
a ) and so on.
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The differential decay rate for the real corrections, from appendix A, reads:

dΓ̂

dxb
= 24−3Dπ

3
2
−Dµ2(4−D)

∫

dEg d cos θ δ(cos θ − a)
(1 − ω)D−3

Γ[D
2
− 1]Γ[D−1

2
]

×(Egmtxb)
D−4(1 − cos2 θ)

D−4
2 × |MR|2. (3.25)

With respect to the momentum-energy conservation: pµt = pµW + pµb + pµg we choose the

4-momentum of W+ boson and b-quark as independent momenta and the 4-momentum of

gluon dependent on them. Therefore as it can be found in appendix B, the range of the

real gluon energy variations reads:

mt(1 − ω)(1 − xb)

2
≤ Eg ≤

mt(1 − ω)(1 − xb)

2(1 − xb(1 − ω))
, (3.26)

then the differential width is formulated in terms of the xb kinematic variable which takes

the values between 0 and 1 (0 ≤ xb ≤ 1). The limit xb → 1 is equal to emission of a soft

gluon. Now we investigate the terms in the squared amplitude |MR|2 in detail and classify

these terms to four types, i.e. we write down |MR|2 = T1 +T2 + T3 + T4. The contribution

of the differential decay rate of each to the following four groups of terms are listed in

appendix D.

• First type terms have no factors of singularities such as cos θ or E2
g in their de-

nominator. These are:

T1 =
π2ααs
sin2 θW

{

[

32
(D − 2)EgE

2
b

3mtm
2
W

+ 64
E2
b

3m2
W

]

cos2 θ +

[

− 32
2(D − 2)Eb +mt(10 − 3D)

3mtm
2
W

EbEg − 32
2m2

t − 4Ebmt + (D − 3)m2
W

3Egm
2
W

Eb

−16
2(D − 6)m2

t − 2(D − 2)Ebmt + (D2 − 5D + 6)m2
W

3mtm2
W

Eb

]

cos θ +

16

3mtm
2
W

[

D2(Eb − 2mt)M
2
W + 2(8m3

t − 6Ebm
2
t − 12mtm

2
W + 3Ebm

2
W ) +

D(−4m3
t + 6Ebm

2
t − 2E2

bmt + 14mtm
2
W − 5Ebm

2
W )
]

+

32Eg
3mtm2

W

[

(D − 2)E2
b + (10 − 3D)mtEb + (3D − 10)m2

t

]

+

32(Eb +mt)

3Egm2
W

[

− 2m2
t + 4Ebmt − (D − 3)m2

W

]

}

. (3.27)

In Eq.(D.1) the result is shown after integrating over Eg and cosθ and before expand-

ing in ε. It is obvious that there is no singularity. We could even evaluate them in
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4-dimension instead of D-dimension. The contribution of the real correction to the

differential decay rate due to these terms reads:

1

Γ0

dΓ̂Real,1

dxb
=

αs
2π(1 + 2ω)

CF

{

[

2(ω − 1)x2
b + (1 + 2ω)(1 + xb)

]

log(1 − xb(1 − ω)) −
xb

2(1 − (1 − ω)xb)2

[

7x3
b(ω − 1)3 + 2x2

b(ω + 9)(1 − ω)2 +

2(ω2 + 3ω + 2) + xb(3ω
3 + 5ω2 + 7ω − 15)

]

}

. (3.28)

• Second type terms which have the factor of cos θ in their denominator in the

form:(1 − cos θ). These are:

T2 =
16π2ααs

3Ebm2
W sin2 θW

mt

{

− 16mtE
2
b − 2Eb(−4m2

t + (D + 2)mtEg − 2(D − 3)m2
W )

+(D − 2)Eg(2m
2
t − 2mtEg + (D − 3)m2

W )

}

1

Eg(1 − cos θ)
. (3.29)

According to the following differential decay rate:

dΓ̂

dxb
= 22(3ε−4)π−5/2+2εµ4ε

∫

dEg d cos θ δ(cos θ − a)
(1 − ω)1−2ε

Γ[1 − ε]Γ[3
2
− ε]

×(Egmtxb)
−2ε(1 + cos θ)−ε(1 − cos θ)−ε × |MR|2, (3.30)

if the scattering angle θ approaches zero they will create collinear singularities. The

integrations of these terms have to be down in D 6= 4 dimensions and their infrared

singularity appears in the form of 1
ε
. The contribution of these terms to the differential

decay rate reads:

1

Γ0

dΓ̂Real,2

dxb
=

αs
2π
CF

{

(

1 + xb − 2x2
b

1 − ω

1 + 2ω

)

(

− 1

ε
+ γE − log

4πµ2

m2
t

+ 2 log(1 − xb)

− log(1 − xb(1 − ω)) + 2 log(1 − ω) + 2 log xb + 2
1 + ω

1 + 2ω

)

−
1

2(1 − xb(1 − ω))2(1 + 2ω)

(

5(ω − 1)3x4
b + 2(ω − 1)2(3ω + 8)x3

b

+5(ω3 + ω2 + ω − 3)x2
b + 2(3ω2 + 3ω + 1)xb + 2

)

. (3.31)

• Third type terms have the factor E2
g in their denominator which produce the soft

gluon singularities. These terms are:

T3 = − 32π2ααs
3m2

W sin2 θW

{

Ebmt

(

2m2
t − 2mtEb + (D − 3)m2

W

)

}

× 1

E2
g

. (3.32)
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As already explained, radiation of a soft-gluon in top decay(the limit of Eg → 0)

corresponds to the limit xb → 1. When we integrate over Eg in the differential width
dΓ̂
dxb

, Eq.(3.30), terms of the form (1 − xb)
−1−2ε will appear(Eq.(D.3)). If we want

to integrate over xb and take the limit ε → 0 they will produce the IR singularities

therefore we replace the terms (1 − xb)
−1−2ε by the following relation:

(1 − xb)
−1−2ε = − 1

2 ε
δ(1 − xb) +

( 1

1 − xb

)

+
− 2ε

( log(1 − xb)

1 − xb

)

+
. (3.33)

A detailed discussion of the ” + ”–prescription is given in appendix C.

The contribution of the real corrections to the differential decay rate from these terms

after integration over Eg reads:

1

Γ0

dΓ̂Real,3

dxb
=

αs
2π
CF

{

δ(1 − xb)

(

1

ε
− 2 log(1 − ω) + 2

ω

ω − 1
logω + log

4πµ2

m2
t

− γE

)

−2x2
b

xb(ω − 1) + ω + 2

(1 + 2ω)(1 − xb)+

}

.

(3.34)

• Fourth type terms have both Eg and (1 − cos θ) factors in their denominators:

T4 =
64π2ααs

3m2
W sin2 θW

{

mtEb
(

2m2
t − 2Ebmt + (D − 3)m2

W

)

}

1

E2
g(1 − cos θ)

. (3.35)

They contain both soft gluon and collinear singularities at the same time.

The terms (1− xb)
−1−2ε appear after integrating over Eg and cosθ as well, Eq.(D.4),

that they must again be replaced by Eq.(3.33) which leads to the singularities of the

kind of 1
ε

1
(1−xb)+

. The contribution of the real corrections to the differential decay

rate from these terms reads:

1

Γ0

dΓ̂Real,4

dxb
=

αs
2π
CF

{

δ(1 − xb)

(

1

ε2
+ 2Li2(1 − ω) +

1

2

(

γE + 2 log(1 − ω) − log
4πµ2

m2
t

)2 − π2

4

1

ε

[

− γE − 2 log(1 − ω) + log
4πµ2

m2
t

])

+ 4x2
b

xb(ω − 1) + ω + 2

1 + 2ω

(

log(1 − xb)

1 − xb

)

+

+
2

(1 − xb)+

[

− 1

ε

(xb(ω − 1) + ω + 2

1 + 2ω
x2
b

)

− 2
x2
b(1 − xb)(1 − ω)

(1 + 2ω)2
ω +

x2
b(xb(ω − 1) + ω + 2)

1 + 2ω

(

2 log xb + 2 log(1 − ω) + γE − log
4πµ2

m2
t

)

]

}

.

(3.36)
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Summing all the contributions up, Eqs.(3.28,3.31,3.34,3.36), the real gluon contributions

read:

1

Γo

dΓ̂Real

dxb
=

αs
2π
CF

{

δ(1 − xb)

[

1

ε2
+

1

ε

(

log
4πµ2

m2
t

− 2 log(1 − ω) − γE + 1
)

+

+
1

2

(

− log
4πµ2

m2
t

+ 2 log(1 − ω) + γE

)2

−
(

− log
4πµ2

m2
t

+ 2 log(1 − ω) + γE
)

+
2ω

ω − 1
logω + 2Li2(1 − ω) − π2

4

]

+ 2(1 + x2
b)
( log(1 − xb)

1 − xb

)

+
+

1
(

1 − xb
)

+

[

− 1 + x2
b

ε
+ 2(1 + x2

b) log xb + (1 + x2
b)

(

− log
4πµ2

m2
t

+

2 log(1 − ω) + γE

)

+ x2
b − 4xb + 1 + 4

xbω(1 − ω)(1 − xb)
2

(1 + 2ω)(1 − xb(1 − ω))

]

}

.

(3.37)

3.6 Differential Decay Rate with αs Corrections Using

Fixed xb

In the previous two sections we calculated the virtual and the real gluon corrections and

showed both of them have singularities of the types 1
ε

and 1
ε2

. The singularities of the types
1
ε2

cancel each other when the two corrections are summed up. The resulting differential

decay rate in the variable xb with αs corrections is:

1

Γo

dΓ̂b
dxb

= δ(1 − xb) +
αs
2π
CF

{

(−1

ε
+ γE − log 4π)

(

1 + x2
b

(1 − xb)+
+

3

2
δ(1 − xb)

)

+ Â(xb)

}

,

(3.38)

where,

Â(xb) =

{

δ(1 − xb)

[

− 3

2
log

µ2

m2
t

+
−2 + 2ω

1 + 2ω
log(1 − ω) + 2 log(1 − ω) logω − 2π2

3
+

4Li2(1 − ω) − 2ω logω

1 − ω
− 6

]

+
1

(1 − xb)+

[

− (1 + x2
b) log

µ2

m2
t

+ (x2
b − 4xb + 1) +

2(1 + x2
b) log[x2

b(1 − ω)] +
4xbω(1 − ω)(1 − xb)

2

(1 + 2ω)(1− xb(1 − ω))

]

+ 2(1 + x2
b)

(

log(1 − xb)

1 − xb

)

+

−2
(1 + x2

b) log xb
1 − xb

}

+ O(α2
s). (3.39)

53



As we explained in section 2.2, to remove the IR collinear singularities remaining in equa-

tion above we define a fictitious distribution function fi/a which depends on the renormal-

ization scheme. One of the most economical of renormalization schemes is the modified

minimal subtraction scheme(MS)[62]. This scheme is due to ’t Hooft and is specific to

dimensional regularization. In this scheme we absorb the pole term 1
ε

accompanied by the

natural constant γE and log 4π (in the combination 1
ε
− γE + log 4π) in the dimensionally

regularized expression of the Green functions.

According to this approach to get the MS-subtracted coefficient function we shall have

to subtract from Eq.(3.38) the O(αs) term multiplying the characteristic MS constant

(1
ε
− γE + log 4π) therefore we obtain:

1

Γo

dΓ̂MS
b

dxb
= δ(1 − xb) +

αs
2π
CF Â(xb).

(3.40)

Having this result and obtaining the MS coefficient function for decay of the top quark to

a massive b-quark, which will be discussed in the next chapter, we will be able to produce

initial conditions for the partonic perturbative fragmentation functions(pFF). We also need

Eq.(3.40) to evaluate B-hadronization of the b-quark in top decay. Later we explain about

it in detail.

To obtain Eq.(3.40) we used the definition of the plus-function to simplify our calculations.

For example, when summing up the coefficients of 1
ε

in Eqs.((3.31),(3.36)) using the plus

function definition we obtain:

−x2
b

(1 − xb)+

(

xb(ω − 1) + ω + 2

1 + 2ω

)

− 1

2
(1 + xb − 2

1 − ω

1 + 2ω
x2
b) = −1

2

1 + x2
b

(1 − xb)+
,

and also when we sum up Eq.(3.31) and Eq.(3.36), we can write:

(1 + xb + 2
ω − 1

1 + 2ω
x2
b) log(1 − xb) +

2x2
b

1 + 2ω
(xb(ω − 1) + ω + 2)

(

log(1 − xb)

1 − xb

)

+

= (1 + x2
b)

(

log(1 − xb)

1 − xb

)

+

.

The same applies use to the terms 1
(1−xb)+

.

We close the discussion of the radiative O(αs) corrections by stating that our final result

(3.40) agrees with [51] and also this result is in agreement with the result of [63] after

integration over xb, see appendix G. It is remarkable that in the total width the IR

divergences disappear together with the dependence on the unphysical scale µ.
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3.7 Differential Decay Rate with αs Corrections using

Fixed xg

In order to study the B-hadron production in top quark decay precisely, we need to know

the differential width for the production of a gluon in top quark decay with the gluon

scaled energy fraction xg defined as:

xg =
2Eg

mt(1 − ω)
0 ≤ xg ≤ 1. (3.41)

As usual we start from Eq.(A.1)and fixing the momentum of the gluon, the differential

width for the real correction reads:

dΓ̂

dxg
= 22(3ε−4)π− 5

2
+2εµ4ε

∫

dEb d cos θ δ(cos θ − a)
(1 − ω)1−2ε

Γ[3
2
− ε]Γ[1 − ε]

×(Ebmtxg)
−2ε(1 − cos2 θ)−ε × |M |2, (3.42)

where a =
2EgEb+m

2
t−m2

W −2mtEg−2mtEb

2EgEb
. The range of the variation of the b-quark energy is,

(see appendix B):

mt(1 − ω)(1 − xg)

2
≤ Eb ≤

mt(1 − ω)(1 − xg)

2(1 − xg(1 − ω))
. (3.43)

It is obvious that because of fixing the momentum of the gluon, there will be no soft

singularity. Therefore we will not have the plus prescription, because such terms arise

after integration over the phase space of the real gluon. The only singularity which will

appear, is due to the collinearity of the real emitted gluon and the massless parent quark.

Now we study the terms in the squared amplitude |M |2 in details and classify them as

before.
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• First type terms have no factor of singularity. they are:

T1 =
π2ααs
sin2 θW

{−64Dm2
t

3m2
W

+
256m2

t

3m2
W

+
32DEbmt

m2
W

− 64Ebmt

m2
W

+
32DEgmt

m2
W

− 320Egmt

3m2
W

−32D2

3
+

224D

3
− 32DE2

b

3m2
W

− 32DEbEg
m2
W

+
16D2Eb

3mt

− 80DEb
3mt

+
32Eb
mt

+
32DE2

bEg
3mtm

2
W

−64E2
bEg

3mtm
2
W

+
320EbEg

3m2
W

− 128 +
[32DEgEb

m2
W

− 320EgEb
3m2

W

+
128EgE

2
b

3m2
Wmt

− 64DE2
bEg

3mtm
2
W

+
(

− 64EgE
2
b

3mtm
2
W

+
32DEgE

2
b

3mtm
2
W

+
64E2

b

3m2
W

)

cos θ +
64Ebmt

m2
W

− 64E2
b

3m2
W

− 32DEbmt

3m2
W

− 32Eb
mt

+
32DE2

b

3m2
W

− 16D2Eb
3mt

+
80DEb
3mt

]

cos θ +
[

− 64m3
tEg

3m2
W

− 64Ebm
3
t

3m2
W

+
64EbEgm

2
t

3m2
W

+
64m2

tE
2
b

3m2
W

+
128E2

bEgmt

3m2
W

+ 32EbEg −
64m2

tEbEg cos θ

3m2
W

+
128mtE

2
bEg cos θ

3m2
W

+

32EbEg cos θ − 32EbEgD cos θ

3
− 32DEbEg

3
− 32DmtEg

3
+ 32mtEg −

32DEbmt

3

+32Ebmt

]

× 1

E2
g

}

.

These terms can be calculated in 4-dimensions. The contribution of the real correc-

tion to the differential decay rate due to these terms reads:

1

Γ0

dΓ̂Real,1

dxg
=

αs(1 − xg)CF
12πxg(1 + 2ω)(1 − xg(1 − ω))3

{

4(1 − ω)4x5
g + (1 − ω)3(20ω − 11)x4

g +

(1 − ω)2(22ω2 − 65ω + 10)x3
g + 3(1 − ω)(−10ω2 + 23ω − 5)x2

g

+12(1 − ω)(ω + 2)xg − 12(1 + 2ω)

}

.

(3.44)

• second type terms have a factor of (1 − cos θ) in their denominator. These are:

T2 =
π2ααs
sin2 θW

{

[ 32Dm3
t

3Ebm2
W

− 64m3
t

3Ebm2
W

+
64Egm

2
t

3Ebm2
W

+
32mt

Eb
− 32Dm2

t

3m2
W

− 32DEgm2
t

3Ebm2
W

+

16D2mt

3Eb
− 80Dmt

3Eb
− 64m2

t

3m2
W

] 1

1 − cos θ
+
[128m3

tEg
3m2

W

+
128Ebm

3
t

3m2
W

− 256EbEgm
2
t

3m2
W

−128E2
bm

2
t

3m2
W

+
64EgDmt

3
+

64DmtEb
3

− 64Ebmt − 64Egmt

] 1

E2
g (1 − cos θ)

}

.
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If the scattering angle θ approaches zero they will create collinear singularities. The

integrations of these terms have to be down in D 6= 4 dimensions and their infrared

singularity appears in the form of 1
ε
. The contribution of the real correction to the

differential decay rate from these terms reads:

1

Γ0

dΓ̂Real,2

dxg
=

αsCF
π

{

1

6(1 + 2ω)(1 − xg(1 − ω))3

[

2(1 − ω)4x5
g + 3(1 − ω)3(ω − 2)x4

g +

3ω(1 − ω)2(9ω − 8)x3
g + (1 − ω)(20ω3 − 102ω2 + 57ω + 16)x2

g −

3(16ω3 − 43ω2 + 18ω + 6)xg + (1 − ω)(30ω + 6)
]

+
1 + (1 − xg)

2

2xg

[

2 log(1 − xg)

+2 log xg − log(1 − xg(1 − ω)) + 2 log(1 − ω) − 1

ε
+ γE − log

4πµ2

m2
t

]

}

.

(3.45)

The resulting differential decay rate in the variable xg with αs corrections is:

1

Γo

dΓ̂

dxg
=

1

Γ0

dΓ̂Real,1

dxg
+

1

Γ0

dΓ̂Real,2

dxg
=

αs
2π
CF

{

1 + (1 − xg)
2

xg

(

− 1

ε
+ γE − log 4π

)

+ B̂(xg)

}

,

(3.46)

where,

B̂(xg) =
1 + (1 − xg)

2

xg

(

− log
µ2

m2
t

+ 2 log xg + 2 log(1 − xg) + 2 log(1 − ω)

− log(1 − xg(1 − ω))

)

+
1

2(1 + 2ω)(1 − xg(1 − ω))2

(

(1 − ω)2(6ω − 1)x3
g

+2(1 − ω)(1 − 2ω)(ω + 3)x2
g + (−6ω3 + 25ω2 − 13)xg − 4(2ω − 3)(1 + 2ω)

−4(1 + 2ω)

xg

)

, (3.47)

and CF (1 + (1 − xg)
2)/xg = P

(0)
gq (xg), see Eq.(2.32).

As we explained in sections 2.2 and 3.6, if we eliminate O(αs) the term multiplying

the characteristic MS constant ( 1
ε
− γE + log 4π) in the above result the coefficient

function in the MS scheme is obtained.
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In the integration over Eb in Eq.(3.42) we deal with some specific kind of Hyper-

geometric functions. To obtain a finite result we use a useful relationship between

Hypergeometric functions (see [67]):

2F1[a, b, c, x] =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(1 − x)−a × 2F1[a, c− b, a− b+ 1, (1 − x)−1]

+
Γ(c)Γ(a− b)

Γ(a)Γ(c− b)
(1 − x)−b × 2F1[b, c− a, b− a + 1, (1 − x)−1].

(3.48)

In our calculations a, b, c and x are functions of ε and to expand the Hypergeometric

functions in ε we used the program HYPEXP (see [68]).
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Chapter 4

b-Quark Fragmentation Function to

NLO QCD and B-Hadron Production

in Top Quark Decay

In the previous chapter to simplify our calculation we assumed the b-quark is to be a

massless particle. In the present chapter at first we attend to consider a non-zero mass

mb for b-quark and try to find out the differential width for the production of a massive

b quark in top quark decay precisely. After that we will study the perturbative fragmen-

tation function (pFF) of the b quark at NLO QCD by comparing the results obtained for

the top quark decay width considering a massless and a massive b-quark separately, within

the framework of perturbative fragmentation.

In the next section we try to find out the energy distribution of b-flavored hadron in

top decay using two famous approaches: zero-mass and general-mass variable-flavor-

number scheme applying realistic non-perturbative fragmentation functions. These non-

perturbative FFs are obtained through a global fit to e+e− data from CERN LEP1 and

SLAC SLC exploiting their universality. We show the b-energy distribution and make

predictions for the energy spectrum of b-flavored hadrons in top decay comparing the two

approaches mentioned above. We also study the B-hadron mass effect in the B-hadron

energy distribution.
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4.1 Kinematic Variables

In this section we introduce all kinematic quantities which we need to derive the NLO

differential decay rate in presence of the b-quark mass. The kinematic variables needed

are:

b =
m2
b

m2
t

, ω =
m2
W

m2
t

, S =
1

2
(1 + b− ω),

xb =
Eb
mtS

,

β =

√
b

S
,

Q = S
√

1 − β2,

G0 =
1

2
(1 + b− 2ω +

(1 − b)2

ω
),

Φ(xb) = S

(

√

x2
b − β2 − log(

β

xb −
√

x2
b − β2

)

)

, (4.1)

where as before, xb is the normalized b-quark energy fraction and it is simple to show that

β ≤ xb ≤ 1:

Eb,min = mb = mt

√
b⇒ Smtxb,min = mt

√
b⇒ xb,min = β,

pg = 0 ⇒ pt = pb + pW ⇒ m2
t +m2

b − 2mtEb = m2
W ⇒ xb,max = 1.

4.2 The NLO Differential Width with the Full Inclu-

sion of the b Mass

In this part we repeat all calculations which we had in the previous chapter but considering

a massive b-quark. For the virtual and real corrections we have the same graphs like in

the previous chapter.

4.2.1 Born Approximation

The amplitude of the Born approximation using Fig.3.1 is given by Eq.(3.1). Therefore

the squared Feynman amplitude |MBorn|2 will be:

|MBorn|2 =
παm2

t

sin2θW

(

1 + b− 2ω +
(1 − b)2

ω

)

=
2παm2

t

sin2θW
G0. (4.2)
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In order to get the correct finite terms in the normalized differential decay rate, the Born

width Γ0 will have to be evaluated in dimensional regularization up to O(ε). Therefore we

have:

|MBorn|2 =
2παm2

t

sin2θW

(

G0 − 2Sε
)

. (4.3)

Using the following two-body phase space:

Γ0 =
µ2ε Q1−2ε

8(4π)
1
2
−εm1+2ε

t Γ[3
2
− ε]

|MBorn|2, (4.4)

the Born width reads:

Γ0 =
αmt

4sin2θW
(QG0)

{

1 − ε
[

− log
4πµ2

m2
t

+ γE + log 4Q2 + 2
S −G0

G0

]

}

+ O(ε2).

(4.5)

To obtain Eq.(4.4), we used the differential decay rate of the two particles top decay in

D-dimensions, (see Eq.(A.1)).

As we know the Born approximation of the decay rate receives the radiative corrections

from virtual gluons and real gluon radiation. Now we are in situation to calculate the

virtual gluon corrections to the differential decay rate.

4.2.2 Virtual Gluon Corrections

In section 3.4 we showed that in the one-loop correction the amplitude M V contains 2

graphs, which are shown in Fig.3.2.

The amplitude MV
1 which includes the one-loop vertex correction, shown in Fig.3.4, in the

t’Hooft-Feynman gauge reads:

MV
1 =

−e
2
√

2 sin θW
ε?µ(pW )u(pb)Λµ(pW , pb)u(pt), (4.6)

where:

Λµ(pW , pb) =

µ4−D g2

i(2π)4

∫

dDq [gβν] × [
T ajiγ

β(6 q+ 6 pb +mb)γµ(1 − γ5)(6 pb+ 6 pW+ 6 q +mt)γ
νT ail

q2[(q + pb)2 −m2
b ][(pb + pW + q)2 −m2

t ]
].

After applying the on-shell relations: p2
t = m2

t and p2
b = m2

b , taking sum and average over

the quark colors, the result will be:

Λµ(pW , pb) =
4g2µ4−D

3i(2π)4

∫

dDq[
γβ(6 q+ 6 pb +mb)γµ(1 − γ5)(6 pb+ 6 pW+ 6 q +mt)γβ

q2[(q + pb)2 −m2
b ][(pb + pW + q)2 −m2

t ]
].
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Therefore the contribution of the one-loop vertex correction to the differential decay rate

(Eq.(3.4)) reads:

|2Re(M?Born.MV
1 )| =

απ

2 sin2 θW

(

− gµν +
pµW .p

ν
W

m2
W

)

Tr
(

(6 pb +mb)Λµ(6 pb+ 6 pW +mt)γν(1 − γ5)
)

.

(4.7)

The final result gets the following form:

|2Re(M?Born.MV
1 )| =

m2
tααs

sin2 θW

{16

3
G0Sm

2
tC0(m

2
b , m

2
t , m

2
W , m

2
b , 0, m

2
t )

+
4

3ω

[

b(b− 1)B0(0, m
2
t , m

2
b) − (−2G0ω + 4b2 − 3bS)B0(m

2
b , 0, m

2
b) +

(2G0ω + 3S + b− 3)B0(m
2
t , 0, m

2
t ) + 3ω2B0(m

2
W , m

2
t , m

2
b) − 2G0ω + b2 − b

]

}

.

(4.8)

It is simple to show that in the limit mb → 0 this result is converted to Eq.(3.9).

In the equation above, the new B0 and C0 functions which we need, are:

B0(m
2
b , 0, m

2
b) = ∆UV + 2 − log

m2
b

µ2
,

B0(0, m
2
t , m

2
b) = ∆UV + 1 −

m2
t log

m2
t

µ2 −m2
b log

m2
b

µ2

m2
t −m2

b

,

B0(m
2
W , m

2
t , m

2
b) = ∆UV + 2 − log

mbmt

µ2
+
m2
t −m2

b

m2
W

log
mb

mt

+
2Q

ω
(log(Q+ S) − logS − log β)

C0(m
2
b , m

2
t , m

2
W , m

2
b , 0, m

2
t ) =

xS
mbmt(1 − x2

S)

{1

2
log2(

mt

mb
) − 1

2
log2 xS

+ log xS(2 log(1 − x2
S) − log(

µ2

mbmt
) − ∆IR) +

Li2(1 − xS
mb

mt

) + Li2(1 − xS
mt

mb

) + Li2(x
2
S) −

π2

6

}

,

(4.9)
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in which ∆UV = 1
εUV

+ log 4π − γE, ∆IR = 1
εIR

+ log 4π − γE and xS = S−Q
Sβ

,[59, 60].

Therefore the final result for Eq.(4.8) is:

|2Re(M?BornMV
1 )| =

ααsm
2
t

Sin2θW
CF

{b− 3S + 2S2

ω
log b+ 6Q log

S +Q√
b

+

G0(
1

εUV
− γE + log

4πµ2

m2
t

) +
SG0

Q

(

3

2
log2 b− 2 log b log

(S −Q)2

2Q
+

3 log2(S −Q) + 4 log 2Q log(S −Q) − 2 log
S −Q√

b
(

1

εIR
− γE + log

4πµ2

m2
t

)

+2Li2(1 +Q− S) + 2Li2(
b +Q− S

b
) + 2Li2(

S −Q

S +Q
) − π2

3

)

}

.

(4.10)

Now we consider the contribution MV
2 , due to renormalization of the wave functions which

are shown by the countervertex graph, Fig.3.2b:

MV
2 =

−e
2
√

2 sin θW
ε?µ(pW )u(pb){

δzt
2

+
δzb
2
}γµ(1 − γ5)u(pt). (4.11)

As we showed in section 3.4 , the general field renormalization constant δZψ for a quark

with mass mq is:

δzψ =
αs
3π

(−B0(0, 0, m
2
q) + 4m2

q

∂B0(p
2, 0, mq)

∂p2

∣

∣

∣

∣

p2=m2
q

+ 1), (4.12)

in which ∂B0(p2,0,mq)
∂p2

∣

∣

∣

∣

p2=m2
q

= − 1
2m2

q
( 1
εIR

− γE + log 4πµ2

m2
q

+ 2). With respect to the equation

above, δzb and δzt read:

δzb = −αs
3π

(
1

εUV
+

2

εIR
− 3γE + 3 log

µ2

m2
b

+ 4)

δzt = −αs
3π

(
1

εUV
+

2

εIR
− 3γE + 3 log

µ2

m2
t

+ 4).

(4.13)

The contribution of the wave functions renormalization to the decay rate reads:

|2Re(M?BornMV
2 )| =

ααsG0m
2
tCF

Sin2θW
(
3

2
log b− 3 log

4πµ2

m2
t

− 2

εIR
− 1

εUV
+ 3γE − 4).

(4.14)
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Obviously, when we sum up the vertex and renormalization corrections (Eqs.(4.10,4.14)),

the UV singularities cancel each other and the remaining singularities will be the IR sin-

gularities. From now on we label the infrared singularities as ε.

In order to obtain the differential decay rate due to the contribution of the virtual

corrections we start from Eq.(3.4). With respect to the definition of the kinematic variables

and considering the following relations in the t-quark rest frame:

|−→pb | = mt(S
2 − b)

1
2 ,

dD−1pW
2EW

=

∫

dDpW δ(p
2
W −m2

W ),

δ(p2
W −m2

W ) = δ((pt − pb)
2 −m2

W ) =
1

2mt
δ(Eb −mtS) =

1

2m2
tS
δ(1 − xb),

if we integrate over the four-momentum pW in Eq.(3.4), therefore we obtain:

dΓ̃V ir

dxb
=

Q

8πmt
δ(1 − xb)

{

1 − ε
[

γE − log
4πµ2

m2
t

+ 2 log(2Q) +
2(S −G0)

G0

]

}

×

|2Re(M?Born(MV
1 +MV

2 ))| + O(α2
s). (4.15)

This result is converted to Eq.(3.5) when we take the limit mb → 0.

Finally, the virtual correction contributes to the differential decay rate as:

1

Γ0

dΓ̃vir

dxb
=

αsδ(1 − xb)

π
CF

{

−
Q+ S log S−Q√

b

Qε
+

S

4Q
log2 b +

3bS − 3S + 2ωG0

4ωG0
log b

−(log
4πµ2

m2
t

− γE)(1 +
S

Q
log

S −Q√
b

) − S log(1 +Q− S) log(Q+ S)

Q

+
3Q

G0
log

S +Q√
b

− S log(Q+ S) log(−b +Q+ S)

Q
+
S log(Q + S) log(ω)

Q

+
SLi2(

2Q
Q−S+1

)

Q
−
SLi2(

2Q
−b+S+Q

)

Q
− 2

}

.

(4.16)

To obtain the above result, we used the following relations between the Spence Functions
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(or di-logarithms)[69]:

Li2(x) =
π2

6
− log x log(1 − x) − Li2(1 − x),

Li2(−x) = −Li2(
x

1 + x
) − 1

2
log2(1 + x),

Li2(
1

x
) =

π2

3
− Li2(x) −

1

2
log2 x,

Li2(xy) = Li2(x) + Li2(y) − Li2(
x(1 − y)

1 − xy
) − Li2(

y(1 − x)

1 − xy
) − log

1 − x

1 − xy
log

1 − y

1 − xy
.

(4.17)

4.2.3 Real Gluon Corrections

The Feynman diagrams corresponding to real gluon corrections are shown in Fig.3.6. The

amplitude MR
a for graph (3.6a) is given by:

MR
a = −

egT bji

2
√

2 sin θW
ε?′α(pg)ε

?µ(pW )u(pb)γ
α

(

mb+ 6 pb+ 6 pg
m2
b − (pb + pg)2

)

γµ(1 − γ5)u(pt),

while the amplitude MR
b for the graph (3.6b) is the same as before, Eq.(3.24). As we include

now the mass of the b-quark, unlike in the previous case there is no collinear singularity

in our calculations and only a soft singularity arises from the emission of a real soft gluon.

We apply now the previous method to the new expressions.

The real correction contributions to the decay width are presented via Eq.(A.1), where

|MR|2 has been given by:

|MR|2 = |MR
a |2 + |MR

b |2 + 2Re|MR
a .M

?R
b |2. (4.18)

To simplify our calculation we choose the pt−rest frame as before. With this selection we

have:

pµg .p
µ
b = Eg(Eb −

√

p2
bcosθ) where p2

b = E2
b −m2

b and p2
g = E2

g . (4.19)

The differential decay rate for the real corrections in D-dimension will get the following

form:

dΓ

dxb
= 2−2Dπ

3
2
−Dµ2(4−D)

∫

dEg d cos θ δ(cos θ − a)
(1 + b− ω)

Γ[D
2
− 1]Γ[D−1

2
]

×ED−4
g pD−4

b (1 − cos2 θ)
D−4

2 × |MR|2, (4.20)
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where a =
2EgEb+m

2
t−m2

W +m2
b
−2mtEg−2mtEb

2Egpb
.

Obviously, the above result will be converted to Eq.(A.4) if mb → 0. In the next step we

have to obtain the range of variation of Eg. In appendix B we showed that the range of

Eg when the b-quark is considered to be a massive one, reads:

mtS(1 − xb)(1 − Sxb − S
√

x2
b − β2)

1 + b− 2Sxb
≤ Eg ≤

mtS(1 − xb)(1 − Sxb + S
√

x2
b − β2)

1 + b− 2Sxb
.

Now we study the terms in the squared amplitude |MR|2 in detail and classify them

according to the singularities. We classify them into two groups:

First type terms have no factor of singularity. They are:

π2ααs
ωSin2θW

{

Eg
(32(D − 2)

3m3
t

(E2
b + P 2

b cos
2θ − 2EbPbcosθ) + 32

3D − 10

3m2
t

(Pbcosθ − Eb) +

96D − 320

3mt

)

+
1

Eb − Pbcosθ

(16ω

3
mt(D

2 − 5D + 6) − 32

3
(D + 2)Eb −

32

3
(D − 2)Eg +

32mt

3
(D(1 + b) − 6b− 2)

)

+
32Pbcosθ

3m2
t

((D − 2)Eb −mt(D(1 + b) − 2b− 6))

+
64bm2

t

3(Eb − Pbcosθ)2
− 32

DE2
b

3m2
t

+ 32
(b+ 3)(D − 2)Eb

3mt
+ 64

p2
bcos

2θ

3m2
t

− 64

3
(1 + b)(D − 4) +

16ω(D2 − 5D + 6)

3mt
(Eb − Pbcosθ) −

32ω

3
(D2 − 7D + 12)

}

.

(4.21)

Due to absence of factor of singularity we can calculate them in 4-dimensions instead of

D-dimensions. The contribution of the real correction to the differential decay rate due to

these terms is giving by:

1

Γ0

dΓ̃Real,1

dxb
=

(xb − 1)αs
πQωG0

CF

(

S2
√

x2
b − β2(−3b + 4Sxb − 3 − 4Sω

1 + b− 2Sxb
) − SΦ(xb)(−3b + 4S(1 + xb) − 3)

)

.

(4.22)
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Second type terms have the factor of Eg in their denominator. They are:

π2ααs
3ω(Eb − Pbcosθ)2Sin2θW

{ 1

E2
g

(

− 64E4
b + 64E2

b p
2
bcos

2θ − 32bm3
tEb(2b+ (D − 3)ω + 2) +

32Ebmt(2b+ (D − 3)ω + 2)(E2
b − P 2

b cos
2θ) + 64b2m4

t + 64bm2
tP

2
b cos

2θ

)

+

32

Eg

(

(2b+ (D − 3)ω + 6)(−E3
b + PbE

2
b cosθ + EbP

2
b cos

2θ + bEbm
2
t ) +

4E4
b

mt
− 4PbE

3
b cosθ

mt

+
4EbP

3
b cos

3θ

mt

− (2b + (D − 3)ω + 2)(bm3
t + P 3

b cos
3θ +mtP

2
b cos

2θ + bm2
tPbcosθ)

+mtE
2
b (−2b + (D − 3)ω + 2) + 4bPbEbcosθ −

4P 2
b E

2
b cos

2θ

mt

)

}

.

(4.23)

When we integrate over Eg and cosθ in Eq.(4.20) terms of the form (1 − xb)
(−1−2ε) will

appear, see Eq.(D.5). These terms are due to integrating over the soft part of phase space.

This part of phase space includes the radiation of a soft gluon in top decay (i.e. the limit of

Eg → 0). This corresponds to the limit xb → 1. For a massive b quark, where xb,min 6= 0,

we replace the term (1 − xb)
(−1−2ε) by the plus-function in the following way:

(1 − xb)
−1−2ε =

(

− 1

2 ε
δ(1 − xb) +

1

(1 − xb)+

)

(xb − β)−2ε.

To obtain the contribution of the real corrections to the differential decay rate from these

terms we need to know the expansion of some Hypergeometric functions which appear in

our calculations while integrating over the gluon phase space. To obtain the expansion of

these type of Hypergeometric functions the XSummer-program [70] has been used.

The general results for the related functions, are:

2F1(2ε, ε; 1 + ε; x) = 1 + 2ε2Li2(x) + O(ε3),

2F1(1 + 2ε, ε; 2 + ε; x) = 1 + ε

(

1 +
1 − x

x
log(1 − x)

)

+

ε2
(

− 1 − x

x
log2(1 − x) +

1 − x

x
log(1 − x) +

1 + x

x
Li2(x)

)

+ O(ε3).

67



Taking these into account, we obtain:

1

Γ0

dΓ̃Real,2

dxb
=

αs
π
Cf

{

δ(1 − xb)

(

Q+ S log S−Q√
b

Qε
− S log2 b

4Q
+
S log(−b+S+Q

2S(1−β)
) log b

Q
− 2 log(

2S(1 − β)√
ω

) +

(log
4πµ2

m2
t

− γE)
(

1 +
S

Q
log(

S −Q√
b

)
)

− S log(S +Q) log(1 +Q− S)

Q
+

(S − b) log(Q+S√
b

)

Q

−S log(S +Q) log(−b + S +Q)

Q
+

2S log(S +Q) log(2S(1 − β))

Q
+

(1 − b) log( 1+Q−S√
ω

)

Q

+
SLi2(

2Q
1+Q−S )

Q
−
SLi2(

2Q
S+Q−b)

Q

)

+ 2
Φ(xb) +

(

S(xb−1)
√
x2

b
−β2−xbΦ(xb)

)

(2S2(1−xb)
2+ωG0)

G0ω

Q(1 − xb)

−2
Φ(xb)

Q(1 − xb)+

}

.

(4.24)

If we sum up Eqs.(4.22),(4.24) the final contribution due to real corrections is:

1

Γ0

dΓ̃Real

dxb
=

αs
π
Cf

{

δ(1 − xb)

(

Q+ S log S−Q√
b

Qε
− S log2 b

4Q
+
S log(−b+S+Q

2S(1−β)
) log b

Q
− 2 log(

2S(1 − β)√
ω

) +

(log
4πµ2

m2
t

− γE)
(

1 +
S

Q
log(

S −Q√
b

)
)

− S log(S +Q) log(1 +Q− S)

Q
+

(S − b) log(Q+S√
b

)

Q

−S log(S +Q) log(−b + S +Q)

Q
+

2S log(S +Q) log(2S(1 − β))

Q
+

(1 − b) log( 1+Q−S√
ω

)

Q

+
SLi2(

2Q
1+Q−S )

Q
−
SLi2(

2Q
S+Q−b)

Q

)

− 2
Φ(xb)

Q(1 − xb)+
+ 2

Φ(xb)

Q
− S(1 − xb)(1 + b + 2ω)Φ(xb)

QG0ω

+
S
√

x2
b − β2

G0Q

(

4
(1 − xb)S

2

1 + b− 2Sxb
+

(1 − xb)(1 + b + 2ω)S

ω
− 2G0

)

}

.

(4.25)
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4.3 Differential Decay Rate with αs Corrections using

Massive b-Quark

In the last two sections we calculated the real and the virtual gluonic corrections to the top

decay. Summing them up, the singularities cancel each other and the resulting differential

decay rate in the variable xb is:

1

Γ0

dΓ̃

dxb
= δ(1 − xb) +

αs
2π
CF Ã(xb) (4.26)

where:

Ã(xb) =
2

Q

{

[

2SLi2(
2Q

1 − S +Q
) − 2SLi2(

2Q

S − b +Q
) +

Q

4
log b

(

6
(ω − b)(S − b)

ωG0
− 1
)

−2S log(S +Q)
(

log(
1 − S +Q√

ω
) + log(

S − b+Q

2S(1 − β)
)
)

+ S log b log(
S − b +Q

2S(1 − β)
) +

(

3
Q2

G0
+ S − b

)

log(
S +Q√

b
) + (1 − b) log(

1 − S +Q√
ω

)

−2Q log(
2S(1 − β)√

ω
) − 2Q

]

δ(1 − xb) − 2
Φ(xb)

(1 − xb)+

− 2
SΦ(xb)

G0

(1 +
1 + b

2ω
)(1 − xb)

+2Φ(xb) + 2S
√

x2
b − β2

(

2
S2

G0

(
1 − xb

1 + b− 2Sxb
) +

S

G0

(1 − xb)(1 +
1 + b

2ω
) − 1

)

}

.

(4.27)

In the calculations above the relations 4.17 have been used. Note that the above result is

in agreement with [51]. In Fig 4.1 the b-quark energy distribution in top decay is shown

when the b-quark is a massive particle (Eq.(4.27)). In this graph xb can not be less than

β = 0.0729. As it is seen, this graph diverges when xb → 1, due to a behavior proportional

to 1
(1−xb)+

. In this plot we set mt = 174 GeV and mb = 5 GeV.

4.4 Subtraction Terms at NLO

Up to now to calculate the top decay width we assumed mb 6= 0 from the beginning. We call

it the massive decay rate. One might expect that the partonic decay rate calculated in the

MS renormalization scheme with the massless b-quark should correspond to the massive

decay rate in the limit mb → 0 if the collinear singular terms proportional to log(
m2

b

m2
t
) are

subtracted. It means the subtracted massive decay rate differs from the massless decay
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Figure 4.1: b-quark energy distribution in top decay according to the exact NLO calcula-

tion, with inclusion of powers of mb

mt
. We set mt = 174 GeV and mb = 5 GeV.

rate only by terms ∼ log(
m2

b

m2
t
). This expectation is not true, as it was first demonstrated

by Mele and Nason [42] for inclusive heavy quark production in e−e+ annihilation at NLO

(e−e+ → QQg, where Q is the heavy quark). They found that the limit m→ 0 of the cross

section for e−e+ → QQg and the cross section calculated with m = 0 from the beginning

(in the MS scheme) differ by finite terms of O(αs). Of course the reason for the occurrence

of these finite terms is the different definition of the collinear singular terms in the two

approaches. In the zero mass b-quark approach, the mass of b-quark is set to zero from

the beginning and the collinearly divergent terms are defined with the help of dimensional

regularization. This fixes the finite terms in a specific way and their form depends on the

chosen regularization method. If one starts with mb 6= 0 and performs the limit mb → 0

afterward, the finite terms can be different. In the following we compare the obtained result

for the decay rate with a massless b-quark from the beginning (Eq.(3.40)) and the limit

mb → 0 of the massive decay rate, Eq.(4.27). Afterward we will show that the difference

between their finite terms will be the perturbative fragmentation function db→b(xb, µ). We

also show the simplest way to connect the truly massless decay rate in the MS scheme

with the massive decay rate is to subtract the finite pieces db→b from the massive theory.

Now we start from Eq.(4.27) and we neglect powers of mb

mt
. To do that we have to use the
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following substitutions for the kinematic variables (Eq.(4.1)):

S → 1

2
(1 − ω),

β → 0,

Q→ S,

G0 →
1

2ω
(1 + 2ω)(1− ω),

Φ(xb) → S(xb − log(2Sxb) +
1

2
log

m2
b

m2
t

).

Rewriting Eq.(4.27) we find:

lim
mb→0

1

Γo

dΓ̃b
dxb

=

δ(1 − xb) +
αs
2π
CF

{

δ(1 − xb)

[

4Li2(1 − ω) − 2π2

3
+ 2 logω log(1 − ω) − 2ω

1 − ω
logω

−2(1 − ω)

1 + 2ω
log(1 − ω) +

3

2
log

m2
t

m2
b

− 4

]

+ 4xb
( ω(1 − ω)(1 − xb)

(1 + 2ω)(1 − (1 − ω)xb)
− 1 + xb

2

)

−4(xb − log(xb(1 − ω)) − 1

2
log

m2
t

m2
b

)
( 1

(1 − xb)+

− 1 + xb
2

)

}

.

(4.28)

In Fig 4.2 the b-quark energy distribution in top decay is shown when the mass of the

b-quark is ignored (Eq.(4.28)). As it is seen, Eq.(4.28) contains contribution ∼ αS(µ)
(1−xb)+

,

therefore our result diverges in the soft limit xb → 1. In Fig 4.3, we compare Figs(4.1,4.2)

and it is shown that the full inclusion of powers of mb

mt
has a negligible effect on the xb

spectrum, as we discuss in detail later.

Obviously, the result above (Eq.(4.28)) is not equal to Eq.(3.40) from chapter 3, where

we started with mb = 0. As it was mentioned there are some extra finite terms in the new

obtained result which the reason for the occurrence of these terms is the different definition

of the collinear singular terms in the two approaches. In the previous calculation, the b-

quark mass was set to zero from the beginning and the collinearly divergent terms were

defined with the help of dimensional regularization. The form of the finite terms is inherent

to the chosen regularization procedure. Therefore the extra finite terms (or the subtraction
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Figure 4.2: b-quark energy distribution in top decay according to the exact NLO calcula-

tion, without inclusion of powers of mb

mt
. We set mt = 174 GeV and mb = 5 GeV.

 inclusion mb/mt
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Figure 4.3: b-quark energy distribution in top decay according to the exact NLO calcula-

tion, both with and without inclusion of powers of mb

mt
. We set mt = 174 GeV and mb = 5

GeV.
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terms) due to the difference between these results, are:

1

Γo

dΓSubb

dxb
= lim

mb→0

1

Γo

dΓ̃b
dxb

− 1

Γo

dΓ̂MS
b

dxb
=

αs
2π
CF

{

δ(1 − xb)

(

2 − 3

2
log(

m2
b

µ2
)

)

− 2(1 + x2
b)

(

log(1 − xb)

1 − xb

)

+

+
1

(1 − xb)+

(

− 4x2
b log xb + 2(1 − x2

b) log(1 − ω) + (1 + x2
b) log(

µ2

m2
t

) − 2 log(
m2
b

m2
t

)

+
(1 − 2ω)(1 − ω)(x3

b + xb) + (1 − 2ω)(4ω − 1)x2
b − 1 − 2ω

(1 + 2ω)(1 − xb(1 − ω)

)

− (1 + xb) log
m2
t

m2
b

+
4xb(1 − xb)ω(1 − ω)

(1 + 2ω)(1 − xb(1 − ω)
+ 4

x2
b

1 − xb
log xb − 2(1 + xb) log(1 − ω)

}

.

With respect to the definition of ”+”-prescription, we can write:
∫ 1

0

dx(1 − x2
b)

(

log(1 − xb)

1 − xb

)

+

=

∫ 1

0

dx(1 + xb) log(1 − xb),

(4.29)

and

1

(1 − xb)+

(

(1 + x2
b) log

µ2

m2
t

− 2 log b
)

− (1 + xb) log
m2
t

m2
b

=

(

− (1 + xb) +
2

(1 − xb)+

)

log
µ2

m2
b

.

Using Eq.(C.11) the subtraction terms can be simplified to the following terms:

1

Γo

dΓSubb

dxb
=

αs
2π
CF

{

δ(1 − xb)

(

2 +
3

2
log(

µ2

m2
b

)

)

+
2

(1 − xb)+

(

log(
µ2

m2
b

) − 1
)

−4

(

log(1 − xb)

1 − xb

)

+

− (1 + xb) log
µ2

m2
b

+ (1 + xb)(1 + 2 log(1 − xb))

}

=
αs
2π
CF

[

1 + x2
b

1 − xb

(

log
µ2

m2
b

− 2 log(1 − xb) − 1

)

]

+

.

(4.30)

In section 4.7 we will prove that the obtained result above is the partonic perturbative

fragmentation function db→b(xb, µ). This function is process independent and can be used in

any other heavy-quark production process. The universality of the partonic fragmentation

function has been confirmed by performing the same calculations.
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4.5 Differential Decay Rate using Fixed xg in the Mas-

sive b-Quark Case

In this section we are interested in calculating the differential width using fixed xg. As usual

we start from Eq.(A.1) and fix the momentum of the real emitted gluon. The differential

decay rate is given by:

dΓ̃

dxg
= 21−2Dπ

3
2
−Dµ2(4−D)

∫

dEb d cos θ δ(cos θ − a)
SD−3

Γ[D
2
− 1]Γ[D−1

2
]

×(pbmtxg)
D−4(1 − cos2 θ)

D−4
2 × |M |2, (4.31)

where a =
2EgEb+m

2
t +m2

b
−m2

W −2mtEg−2mtEb

2Egpb
.

The real gluon energy range is, see appendix B:

mtS(1 − xg)

1 − 2Sxg
(1 − Sxg − Sxg

√

1 − Fβ2) ≤ Eb ≤
mtS(1 − xg)

1 − 2Sxg
(1 − Sxg + Sxg

√

1 − Fβ2),

where F = (1−2Sxg)
(1−xg)2

.

Obviously, since the momentum of the gluon has been fixed there is no soft singularity and

calculations can be done in 4-dimensions.

The terms in the squared amplitude |M |2 are the sum of Eqs.(4.21,4.23) with D = 4.

Finally, decay width reads:

1

Γo

dΓ̃g
dxg

=

αs
πG0xgωQ

CF

{

S2

(

(1 + b+ 2ω)(1 + (1 − xg)
2) − 4Sβ2(1 − xg)

)(

− 1

2
log b + log S

+ log(1 − xg) −
1

2
log(1 − 2Sxg) + log(1 +

√

1 − (1 − 2Sxg)β2

(1 − xg)2
)

)

+

S2(1 − xg)

(1 − 2Sxg)2

√

1 − (1 − 2Sxg)β2

(1 − xg)2

[

x3
gS

2(4S + b+ 1) + x2
gS(28S2 − 21bS − 21S + 14b− 2)

+Sxg(−16Sβ2 + 24b− 32S + 24) + 4Sβ2 − 6b+ 8S − 6

]}

.

(4.32)
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4.6 Subtraction Terms for xg Fixed

The result for 1
Γ0

dΓ̃
dxg

is converted to the following form in the limit mb → 0:

lim
mb→0

1

Γo

dΓ̃g
dxg

=

αs
2π
CF

{

1 + (1 − xg)
2

xg

(

2 log(1 − xg) − log
m2
b

µ2
− log

µ2

m2
t

+ 2 log(1 − ω)

− log(1 − xg(1 − ω))

)

− 1 − xg
2xg(1 − xg(1 − ω))2(1 + 2ω)

(

(1 − ω)2(2ω − 3)x3
g

+(1 − ω)(−14ω2 + 7ω + 11)x2
g − 16(1 − ω)(1 + 2ω)xg + 8(1 + 2ω)

)

}

,

(4.33)

Comparing this result with Eq.(3.47), we realize that they do not coincide and we obtain

the following subtraction term :

1

Γo

dΓSubg

dxg
= lim

mb→0

1

Γo

dΓ̃g
dxg

− 1

Γo

dΓ̂MS
g

dxg
=

αs
2π
CF

{

− 1 + (1 − xg)
2

xg
(1 + 2 log xg − log

µ2

m2
b

)

}

.

(4.34)

We shall need this result when we want to calculate the energy distribution of b-flavored

hadrons in top decay, using the general-mass variable-flavor-number scheme.

4.7 b-Quark Fragmentation Function in Top Decay to

NLO QCD

For heavy quark production, the quark mass m acts as a regulator for the collinear sin-

gularity and allows one to perform perturbative calculations. Therefore the fragmentation

of heavy quarks is a collinear-safe process. However, fixed-order differential distributions,

like Eq.(4.28), contain terms proportional to αs log
m2

t

m2
b

which spoil the convergence of the

perturbative expansion and needs to be resummed to all orders to improve the predictions.

To achieve this goal, we can follow the approach of perturbative fragmentation functions,

originally proposed in [42], which allows to resum these large logarithms.

According to this method, heavy quarks are first produced at large transverse momentum
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m� PT (in our process: mb � mt), as if they were massless, and afterward they slow down

and fragment into a massive object. The perturbative fragmentation function D(µF , m)

expresses the transition of a massless parton into a massive quark at the factorization scale

µF . We leave a detailed discussion of this procedure to the last part of this section.

Now we turn our attention to Eq.(4.30) and we show that this is the initial condition of

the massless b-quark perturbative fragmentation function into the massive one, namely it

will be Db(xb, µ0F , mb).

As we showed, the massless and the massive differential width in the MS factorization

scheme can be written as:

1

Γ0

dΓ̂

dxb
= δ(1 − xb) +

αs
2π
CF Â(xb) from Eq.(3.40),

1

Γ0

dΓ̂

dxg
=

αs
2π
CF Âg(xg) from Eq.(3.46),

1

Γ0

dΓ̃

dxb
= δ(1 − xb) +

αs
2π
CF Ã(xb) from Eq.(4.26),

(4.35)

and also when µ0F is taken to be of the order of the mass mb, Db(xb, µ0F , mb) can not

contain large logarithms , it means that log( µ0

mb
) is not large with respect to 1

αs
, while we

always assume that mb

µ0
is small. Therefore it must be possible to express Db(xb, µ0F , mb)

as a perturbative expansion in power of αs, see Eqs.(2.45,2.46):

Db(xb, µ0F , mb) = d
(0)
b (xb) +

αs
2π
d

(1)
b (xb, µ0F , mb) + O(α2

s)

= δ(1 − xb) +
αs
2π
d

(1)
b (xb, µ0F , mb) + O(α2

s).

(4.36)

We expect Dg(xg), expressing the transition of a gluon into a massive b-quark, to be of

order αs, since in order to produce a heavy quark from a gluon the strong coupling constant

must enter at least once. i.e.

Dg(xg, µ0F ) =
αs
2π
d(1)
g (xg, µ0F ) + O(α2

s).

(4.37)

Following[42], we neglect terms behaving like (mb

mt
)p in 1

Γo

dΓ̃b

dxb
, where p ≥ 1. Therefore

according to Eq.(2.18) the differential width for the production of a massive b quark in top
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decay can be expressed via the following convolution:

1

Γ0

dΓ̃b
dxb

(xb, mt, mW , mb) =
1

Γ0

dΓ̂i
dz

⊗Di→b(
xb
z

)

=
∑

i

∫ 1

xb

dz

z

( 1

Γ0

dΓ̂i(z,mt, mW , µ, µF )

dz

)

Di(
xb
z
, µF , mb),

(4.38)

where dΓ̂i

dz
is the differential width for the production of a massless parton i in top decay with

energy z, which is insensitive to the low-energy feature of the process, and therefore does

not depend on the mass of the b-quark. Di(
xb

z
, µF , mb) is the perturbative fragmentation

function for a parton i to fragment into a massive b quark, which is insensitive to the

high-energy part of the process, and therefore does not depend on mt. The scales µ and

µF are the renormalization and factorization scales respectively. As before we choose the

same values for them, µ = µF . The definitions of dΓ and Di are not unique. They depend

on the scheme one uses to separate the collinear singularities. For definiteness, we will

always refer to the MS factorization scheme.

Since we have been assuming B(t → bW ) = 1 and the probability to produce a b-quark

via the splitting of a secondary gluon is negligible, we shall limit ourselves to considering

the perturbative fragmentation of a massless b into a massive b and, on the right side

of Eq.(4.38), we shall have only the i = b contribution. Substituting Eqs.(4.35,4.36) in

Eq.(4.38) and keeping only the terms up to the order αs we get:

1

Γo

dΓ̃b
dxb

(xb, mt, mW , mb) =

∫ 1

xb

dz

z

(

δ(1 − z) +
αs
2π
CF Â(z)

)

(

δ(1 − xb
z

) +
αs
2π
d

(1)
b→b(

xb
z
, µ0, mb)

)

=

∫ 1

xb

dz

z
δ(1 − z)δ(1 − xb

z
) +

αs
2π
CF

∫ 1

xb

dz

z
δ(1 − xb

z
)Â(z) +

αs
2π

∫ 1

xb

dz

z
δ(1 − z)d

(1)
b→b(

xb
z
, µ0, mb) + O(α2

s).

(4.39)

Evaluating the Dirac Delta definition we obtain:

δ(1 − xb) +
αs
2π
CF Ã(xb) = δ(1 − xb) +

αs
2π
CF Â(xb) +

αs
2π
d

(1)
b→b(xb, µ0, mb),

(4.40)
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therefore:

d
(1)
b→b(xb, µ0, mb) = CF (Ã(xb) − Â(xb))

=
2π

αs
(

1

Γo

dΓSubb

dxb
),

(4.41)

which shows the initial condition for the b-quark perturbative FF is proportional to the

subtraction term.

It is simple to show that inserting Eq.(3.40) and the definition of fragmentation function

b → b (Eq.(4.30)) into Eq.(4.38) the massive b-quark differential decay rate, Eq.(4.28), is

obtained. In this demonstration the following property of the ’+’-distribution is used:

− (1 + x2
b)

(1 − xb)+
log

µ2

m2
t

+
2xb

(1 − xb)+
log

µ2

m2
b

+ (1 − xb) log
µ2

m2
b

= (1 + xb) log
m2
b

m2
t

.

Now let us explain about the perturbative fragmentation function approach in more de-

tail. We generally apply this method to resum collinear logarithms ∼ αs(µF ) log(µ2
F/µ

2
0F )

appearing in the fixed order calculations considering the massive quarks, see section 2.4. In

our process using the factorization theorem, the differential decay rate to produce a mas-

sive b-quark is related to a convolution of the differential decay rate including the massless

b-quark with the perturbative fragmentation function, Eq.(4.38). Former is proportional

to O(log(µ2
F/m

2
t )) and latter is proportional to O(log(µ2

0F/m
2
b)). Assuming µ0F ' mb

and µF ' mt there will be no longer large logarithms in the differential decay rate and

considering the splitting function (Eq.(2.32)) at O(αs) in the DGLAP equation, one re-

sums the leading logarithms ∼ αns (mt) logn(m2
t /m

2
b) appearing in the perturbative-FF.

Accounting for O(α2
s) terms in Eq.(2.28) leads to the inclusion of next-to-leading loga-

rithms ∼ αn+1
s (mt) logn(m2

t /m
2
b) as well. Then we can get rid of them.

Furthermore, in the initial condition of perturbative-FF (Eqs.(4.34,4.41)) the coefficient

multiplying the strong coupling constant contains terms behave as: 1
(1−xb)+

or
( log(1−xb)

1−xb

)

+

which are singular once xb → 1. The soft leading logarithms (LL) ∼
( log(1−xb)

1−xb

)

+
and the

soft NLL ∼ 1
(1−xb)+

arise from emitting of soft gluons and in order to obtain a reliable result

in the large-xb region we must resum these logarithms to all order of αs, see [43]. This

feature of the perturbative expansion is due to the fact that in the limit xb → 1 the phase

space for gluon radiation is reduced, so that the usual cancellation of soft divergences is

incomplete. In [42] the authors have shown that a modified evolution kernel allows us to
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resum all leading logarithms of 1 − xb in the anomalous dimension of the fragmentation

function. This modification of the evolution kernel is equal to changing the argument in

αs that is taken to be the maximum virtuality allowed kinematically in the gluon line.

Figure 4.4: b-quark energy distribution in top decay according to the perturbative frag-

mentation approach, with (solid line) and without (dashes) NLL soft-gluon resummation in

the initial condition of Db, and according to the exact NLO calculation, with (dot-dashes)

and without (dots) inclusion of powers of mb

mt
. The initial condition of the fragmentation

function is set to µ0 = µ0F = mb and the final scale is set to µ = µF = mt

In Fig.4.4, taken from [51], the b-quark energy distribution in top decay is shown via the

perturbative fragmentation approach with and without NLL soft gluon resummation in the

initial condition of the perturbative fragmentation function. For the sake of comparison, we

also show the exact result for a massive b-quark as before, Figs.(4.1,4.2). We note that the

use of perturbative fragmentation function has a stronger impact on the xb distribution.

Moreover, the full inclusion of powers of mb

mt
has a negligible effect on the xb spectrum;

the dot-dashed and dotted lines in Fig.4.4 are indistinguishable. As for the perturbative

fragmentation results, the distribution without soft gluon resummation shows a very sharp

peak at xb → 1. This behavior is smoothed out when we resum the soft NLL logarithms in

the initial condition of the perturbative fragmentation function, as the b-energy spectrum

gets softer and shows the so-called ’Sudakov peak’.
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For xb → 0, the coefficient function(3.40) contains large logarithms ∼ αs log xb which

have not been resummed yet. Although, in the soft limit xb → 1 , Eq.(3.40) contains

contributions of soft LL and NLL as well. Since αs(mb) ≈ 2αs(mt), for µ = mt and µ0 = mb

such terms are smaller than the similar ones which appear in the initial condition of the

perturbative fragmentation function, but nonetheless they would need to be resummed.

As explained in [43], once xb approaches unity, non-perturbative contributions also become

important and have to be taken into account.

4.8 B-Hadron Production in Top Quark Decay

In this section we present results for the energy distribution of b-flavored hadrons B as a

function of the normalized energy fraction taken away by the B-hadron in top decay. This

kinematic variable is defined as: xB = 2EB

mt(1−ω)
. In this work we consider the transition

b→ B, where B is either a meson like B−(bu) and B0(bd) or a baryon containing a b-quark.

Our results are not valid for production of meson B+(ub), because the meson B+ will be

created in NNLO. Of course, the B+ meson can be created by the anti-top in the same

way as the B− from top decay.

4.8.1 Non-perturbative Fragmentation

According to the factorization formula (2.18), the cross section of inclusive B-hadron pro-

duction in top decay

t→ b +W+(g) → B +X,

can be expressed as the convolution of the parton level spectrum with the non-perturbative

fragmentation function DB(xB, µF ), i.e.

1

Γ0

dΓ

dxB
(xB , mt, mW , mb) =

1

Γ0

∑

a

∫ xa,max

xa,min

dxa
xa

dΓa
dxa

(xa, mt, mW , mb, µ, µF )DB
a (
xB
xa
, µF ).

(4.42)

In the equation above, a stands for the partons b, g and 1
Γ0

dΓa

dxa
is the parton-level differential

width and DB
a is the non-perturbative fragmentation function describing the hadronization

a→ B, which is process independent. As it was generally explained in section 2.3.1, we can

extract it from one specific process such as e−e+ → bb̄ processes and use it in the b-quark
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hadronization in top decay. In order to be applicable fits results to the b-hadronization

in top decay, we have to describe the perturbative process e−e+ → bb(g) in the same

framework as done for t → bW (g). The factorization scale µF is an arbitrary scale that

separates the low from the high energy dynamics and like before we set µ = µF .

In fact, the factorization on the right hand side of Eq.(4.42) and the splitting between

perturbative and non-perturbative part is somewhat arbitrary and the parameterization

of the non-perturbative model indeed depends on the approach which is used to describe

the perturbative parton level process and on the values which are chosen for quantities

like Λ, mb and the renormalization and factorization scales. Therefore the partonic decay

width dΓ is not finite and it is usually defined with a prescription for the subtraction of

collinear singularities, like the MS prescription that we already used. Also DB(xB, µF ) is

prescription dependent, but the convolution of two terms in Eq.(4.42) is not, so that the

physical cross section is scheme independent.

To achieve D(xB/z, µF ) (FF at an arbitrary scale µF ), we have to solve the DGLAP

evolution equations (see Eqs.(2.27,2.28)):

d

d logµ2
F

Di(xB, µF , mb) =
∑

j

∫ 1

xB

dz

z
Pij
(xB
z
, αs(µF )

)

Dj(z, µF , mb). (4.43)

To solve the above equation, we need the function D(x, µ0F ) as the initial condition of

non-pFF at µ = µ0F . The solution of Eq.(4.43) has then a power expansion in terms of

αs(µF ) which organize correctly all the powers of log( µF

µ0F
) arising in perturbative theory.

The DGLAP equation is however not valid when xb is small, since due to soft gluon emission

the Pij(xb, αs(µF )) contain terms which behave in the limit xb → 0 like (αnS/xb) log2n−1−m xb,

where m = 1, 2, ..., 2n−1 labels the class of terms, and are therefore unreliable in this limit.

This implies that the cross section can not be reliably calculated at small xB, and the FFs

Dj(z, µ0) can not be fitted at small xB.

Several models have been proposed to describe the non-perturbative transition from a

quark into a hadron state. These models are suited to determine initial condition (at the

starting scale µ0F = µ0) of non-pFFs at the DGLAP evolution and in this work we apply

them to specify the initial condition of FFs in transition of b → B and g → B. In the

following we explain the most commonly used.

• The Standard model (S)[44, 45, 49, 50] consists of a simple power functional form:

D(x;µ0, α, β) = Nxα(1 − x)β, (4.44)
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with

1

N
=

1

B(µF )

∫ 1

xcut

(1 − x)βxαdx. (4.45)

The cut xcut excludes the x range where our formalism is not valid and B(µF ) is the

b → B branching ratio, we shall explain this cut in more detail later. This form is

usually adopted for the FF’s of light hadrons. This model has been used in [44, 83]

to describe the non-perturbative effects of b-quark fragmentation.

• The Peterson model (P)[84] describes the non-perturbative transition of a heavy

quark into a heavy hadron according to the following function:

D(x, µ0, ε) = N
x(1 − x)2

[(1 − x)2 + εx]2
. (4.46)

The Peterson form is particularly suitable to describe FFs that peak at large x. It

has been used in connection with the fragmentation of heavy quarks, such as c or b

quarks into their mesons. It depends only on two parameters N and ε.

The coefficients (N,α, β) or (N, ε) in the mentioned models should be specified experimen-

tally. They will be investigated later and we shall use these models in our calculation and

we also present comparisons with NLO results obtained in two models.

4.8.2 Approaches for NLO Calculations: ZM- and GM-VFNS

In order to calculate the B-hadron production cross section, we need a theoretical frame-

work. The QCD-improved parton model implemented in the MS renormalization and

factorization scheme is a nice framework. In this framework, three distinct approaches for

NLO calculations in perturbative QCD are being used. In the following we explain them

in detail.

• The Massive Scheme or fixed-flavor-number-scheme (FFNS) [71].

As already mentioned, in the heavy-quark production in high-energetic collisions,

because of being small the strong coupling constant (αS � 1) the heavy quark

production process is considered as a calculable process in perturbative QCD. The

mass of the heavy quark acts as a cutoff for the initial- and final state collinear

singularities and sets the scale for the perturbative calculations. On this basis, most
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of the next-to-leading order QCD calculations have been performed in the past. This

approach where the mass of heavy quark m is kept and the number of active flavors

(nf)in the initial state is fixed to nf = 3(4) for charm(bottom) production is called

the FFNS. In this approach the predictions are only reliable in the small region of

the transverse momentum pt of the produced heavy quark in γγ, γp and pp reactions

(from pt = 0 to pt ≥ m) or when the lepton momentum transfer Q in deep inelastic

ep scattering is not much larger than the mass of the heavy quark. However, when

pt(or Q) is much larger than the heavy quark mass, logarithms of the form log(
p2t
m2 )

or log(Q
2

m2 ) become large and spoil the convergence of the perturbation series, thus

the fixed-order perturbation theory is no longer valid, specially in our case where

Q = mt ≈ 180GeV and m = mb ≈ 4.5GeV. These logarithms can be resummed and

the perturbation series can be improved. The resummation of hinted large logarithms

is similar to the conventional massless parton model approach which is explained in

the following.

• The Massless Scheme or zero-mass variable-flavor-number-scheme (ZM-VFNS)

[48, 72, 75], which is the conventional parton model approach. In the conventional

ZM-VFNS calculation, one starts with heavy quark mass m = 0 from the beginning,

except in the initial conditions for the FFs. Therefore there are no large logarithms

log Q2

m2 in the partonic differential decay width, for example log
m2

b

m2
t

in Eqs(3.40,3.47).

Since m only enters via the definition of the starting scale µ0 for the FFs of partons,

its precise value is unimportant.

In this method the collinear singularities are treated with dimensional regularization

and they are factorized into the FFs according to the MS scheme, as it is usually

done in connection with the fragmentation of light quarks into light mesons. In this

approach the predictions are reliable only in the region of large transverse momenta,

with pt � m, or in the large energy Q, with Q� m. In fact the necessary condition

to use the ZM-VFNS is that the energy scale, separating perturbative hard scattering

and non-perturbative fragmentation, should be sufficiently large in comparison with

the heavy-quark mass. In our work this condition is satisfied.

In order to be consistent at NLO in Eqs.(3.40,3.47), αs has to be taken at NLO

as Eq.(2.15). In our calculation we adopt the NLO value Λ
(5)

MS
= 227 MeV appro-

priate for nf = 5, which corresponds to α
(5)
s (mt) = 0.1071, i.e this corresponds to

83



α
(5)
s (mZ) = 0.1181.

The partonic cross section calculated in the FFNS (in presence of the mass of heavy

quark) in the limit m→ 0 is not equal to the corresponding ZM-VFNS cross section,

even if the collinear singular terms proportional to log(m
2

Q2 ) are subtracted from the

obtained FFNS cross section, this point was mentioned in section 4.4. In [42], it was

shown that these additional finite terms can be generated in the theory for m = 0

with MS factorization by convoluting massless cross section with a partonic frag-

mentation function dQ→Q(x, µ). This point was shown in section 4.7 for the special

transition b→ b.

In [77] for the process gg → QQg and gq → QQg, in [41, 78] for the process

γ?Q → Qg( where γ? is a space-like virtual photon) and also in [79] for the process

γγ → QQg it has been shown that the finite terms are obtained from a convolution

of the corresponding LO cross section with dQ→Q(x, µ) and it is has also been con-

firmed the universality of the partonic FF. The point referred above leads us to apply

another approach which is so-called GM-VFNS.

• The GM-VFNS or general-mass variable-flavor-number-scheme [76, 77, 79, 80, 81]

is much closer to the ZM-VFNS, but keeps all m2/Q2 or m2/p2
t power terms in the

hard-scattering cross sections. These terms are important in the region of inter-

mediate pT values, pT ≥ m, and we expect these terms to improve our theoretical

predictions which were computed in the ZM-VFNS. In this approach we calculate

partonic differential decay rate (dσ̃) considering the mass of heavy quark. To have

a result consistent with massless decay width we subtract the extra finite terms, as

explained before, from the obtained massive width. Therefore the desired massive

differential width is dσ̃ − dσSub which has to be convoluted with non-pFF in the

factorization formula. In our work dσ̃b and dσ̃g are given in Eqs.(4.26,4.32) and the

convenient subtraction terms can be found in Eqs.(4.30,4.33).

To evaluate the B-hadron production differential width in GM-VFNS, the b-quark

is considered as a heavy quark with mass mb and the group of light quarks consists

of u, d, s, c whose mass is put to zero. Furthermore, the number of active flavors are

taken nf = 5 in the strong coupling constant and the DGLAP evolution equations

and we need FFs implemented with nf = 5 in the MS factorization scheme.
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In both approaches mentioned above the notion VFNS was used since the number of active

flavors (nf) depends on the scale which we are using. In our approach, nf at the scale µF

is specified by a condition on the value of µF . It means that if µF ≤ mf+1, where f counts

the quarks u, d, s, c and b respectively, then the number of active flavors will be nf = f .

The transition scales (thresholds) in the evolution equation (4.43) depend on nf and are

taken to be at mnf+1. In the VFNS the number of active quark flavor is increased by one

unit, nf → nf + 1, when the factorization scale crosses the transition scale.

In the next section we intend to make some theoretical predictions at the hadron level

for top quark decay. Before discussing this subject let us explain the integration bounds

in the factorization formula (Eq.(4.42)). Here we consider two cases: the first case is

to consider the massive b-quark hadronizing into a bottom-hadron and the other one is

hadronization of the massless b-quark into a bottom-hadron. These processes are subjected

in ZM- and GM-VFNS.

In the GM scheme, the bounds of integration in xa [xa = 2Ea/(mt(1 + b − ω)), a = b, g]

and xB [xB = 2EB/(mt(1 + b − ω))] now depend on the partonic subprocess and on the

fragmenting parton a. In the case of b-quark fragmentation, by defining ρb = 4m2
b/m

2
t (1 +

b − ω)2, we have xb,min = max(xB ,
√
ρb), xb,max = 1 and

√
ρB ≤ xB ≤ 1, where ρB =

4m2
B/m

2
t (1 + b− ω)2. In the case of gluon fragmentation we have xg,min = xB, xg,max = β2

and
√
ρB ≤ xB ≤ β2 with β =

√
1 − ρb .

In the ZM scheme where there are massless partons in the final state (mg = mb = 0), we

have both for the gluon and the b-quark fragmentation xb,min = xg,min = xB, xb,max =

xg,max = 1, where xa(a = b, g) is now 2Ea/mt(1−ω) and for the variable xB, which is now

xB = 2EB/mt(1 − ω), we have
√

ρB(b = 0) ≤ xB ≤ 1.

4.8.3 Theoretical Predictions at Hadron-level for t→ B +X

In this section, at first we numerically analyze the ZM-VFNS predictions. In this approach,

we describe the fragmentation of massless b quarks into B mesons by a one-step process

characterized in terms of a non-perturbative FF, as is usually done for the fragmentation

of u, d and s quarks into light mesons. Afterward we apply GM-VFNS to make predictions

of B-hadron production and then we compare the results obtained in both schemes.

To predict the b-quark hadronization properties, we have to specify the coefficients

(N,α, β) and (N, ε) in Eqs.(4.44,4.46), describing the transition of the b-quark and the
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Set

LO Standard NLO Standard LO Peterson NLO Peterson

N=56.4 N=79.4 N=0.0952 N=0.116

α = 8.39 α = 8.06 ε = 0.0126 ε = 0.0198

β = 1.16 β = 1.45

Table 4.1: Fit parameters for the b→ B fragmentation functions according to sets S, P at

LO and NLO. All other FFs are taken to be zero at the starting scale µ0 = 2mb = 10 GeV.

gluon into a B-hadron. These coefficients are usually determined by fitting the fractional

energy distribution of B mesons inclusively produced in e−e+ annihilation.

In the literature one can find different methods to extract these coefficients from ex-

perimental data. In this work we only use the extracted data for non-pFFs. At first we

apply the results of the non-pFFs given in [72]. The authors provide non-perturbative

FFs, both at leading and next-to-leading order in MS factorization scheme with five mass-

less quark flavors. They are determined by fitting the fractional energy distribution of

B-mesons in e−e+ collision reported by the OPAL collaboration at CERN LEP1 [82].

They considered the OPAL data on the inclusive production of B+/B0 mesons in e−e+

annihilation(e−e+ → γ, Z → B+/B0 + X) at the Z-boson resonance as an experimental

input with assumption µ = µF = mZ = 91.2GeV . At LEP1, B mesons were dominantly

produced by Z → bb decays, with subsequent fragmentation of the b quarks and anti

quarks into B mesons, which decay weakly. The produced B+ and B0 mesons were identi-

fied via their semileptonic decays containing a fully reconstructed charmed meson. In [72]

the starting scales for the FFs of the gluon and the u, d, s, c and b quarks and anti-quarks

into B mesons are taken to be µ0 = 2mb, with mb = 5GeV . They adopt the LO (NLO)

value Λ
(5)

MS
= 108 MeV (227 MeV) in presence of five active quark flavors in their calcula-

tions. The FFs of the gluon and the first four quark flavors are assumed to be zero at the

starting scale. These FFs are generated through the DGLAP evolution to larger values of

µF .

In Fig.4.5, from [72], the authors showed that there was a good consistency between the

experimental data from the OPAL collaboration and the FFs which they proposed for two

different models. The values for the input parameters in Eqs(4.44,4.46) resulting from their

LO and NLO fits to the OPAL data are summarized in table.4.1.
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Figure 4.5: The cross section of inclusive B+/B−-meson production in e+e− annihilation

at µ = MZ = 91.2 GeV evaluated with sets LO and NLO Standard ansatz (left hand side),

and LO and NLO Peterson ansatz (right hand side), compared with the OPAL data.

Now we apply these parameters in the Peterson and Standard models for our calculation

and we depict the B-meson energy distribution, resulting from hadronization of the b-

quark and the gluon in the top decay, in xB and compare the two models. To determine

the active flavor number and thresholds we take mc = 1.5 GeV and mb = 5.0 GeV and

light quarks to be massless. We choose the renormalization and factorization scales to be

µ = µF = mt = 174.0 GeV in Eqs(3.40,3.46,4.43).

In Fig.4.6 we depict the differential decay rate of inclusive B-meson production in top decay

at
√
s = mt using the Peterson model. It shows the contributions of the b-quark (dots) and

the gluon (dashes) fragmentation into the B-meson in the top decay. We also presented the

contribution of both fragmentations (solid line) to the differential decay rate of B-meson

production. In this figure our results loose their physical validity at low xB. In this region,

the perturbative treatment is no longer valid. Here, the massless approximation also is

not valid. Since B mesons have mass, m(B) = 5.28 GeV, they can only be produced for

xB > xmin = 2mtmB

m2
t−m2

W

= 0.07. Thus, our results should only be considered to be meaningful

for xB > 0.07.

In Fig.4.7 we compare the total contributions obtained for the B-meson energy distribution

in the variable xB from the Peterson and the Standard models. As shown, at large xB the

results are approximately the same and there is good agreement between the prediction
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Figure 4.6: xB spectrum in top decay, with the hadronization modeled according to the

Peterson model, with the relevant parameters fitted to the OPAL data. The plotted curves

are the contribution of the fragmentation of gluon to B(dot-dashes), the contribution of b

fragmentation to the B-meson(dots) and the total contribution to B production(solid line).

We set µF = µ = mt and µ0F = µ0 = 2mb.

of both models. In our calculation we considered both the contribution of the b-quark

fragmentation and the gluon fragmentation to the xB spectrum, although the contribution

of gluon fragmentation , which only enters at NLO, is really negligible. This is shown in

Fig.4.6. To study this point in more detail we also investigate the fragmentation functions

distribution in xB. In Fig.4.8, we compare the non-perturbative fragmentation functions

of b → B and g → B at NLO using the Peterson model fitted to the OPAL data. It is

clear that the main contribution of hadronization in the top quark decay is due to the

hadronization of the b-quark at NLO.

It is interesting to study the b→ B branching fraction ( Γ(b→B)
Γ(b→Hadron)

), which was already

referred in Eq.(4.45). It is defined as:

Bb(µ) =

∫ 1

xcut

dxDb(x, µ), (4.47)

where xcut in our work is xcut = 0.07.

In table 4.2, we present the value of Bb(µ) at the threshold µ = 2mb = 10 GeV and at

µ = mt = 174.0 GeV for the various FF sets. As shown, Bb(µ) is rather constant under

the evolution from 2mb to mt.
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Figure 4.7: Comparison of the Standard and Peterson models in xB distribution in top

quark decay, with the relevant parameters fitted to the OPAL data. The initial factorization

scale is like in Fig.4.6.
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Figure 4.8: Comparison of the non-perturbative fragmentation functions of b → B and

g → B in the Peterson model fitted to the OPAL data using µ0F = 2mb = 10 GeV.

89



Set Bb(2mb) Bb(mZ) Bb(mt) 〈x〉b(2mb) 〈x〉b(mZ) 〈x〉b(mt)

NLO S 0.3836 0.3759 0.3740 0.787 0.663 0.638

NLO P 0.4059 0.3960 0.3937 0.756 0.639 0.615

Table 4.2: b → B branching fractions and mean B to b momentum fractions evaluated

from Eqs.(4.47,4.48) ,respectively, at the starting and the µF = mt scale using the various

FF sets.

Another interesting quantity is the mean B to b momentum fraction,

〈x〉b(µ) =
1

Bb(µ)

∫ 1

xcut

dxxDb(x, µ). (4.48)

Table 4.2 also includes the values of 〈x〉b(µ) at µ = 2mb = 10 GeV and µ = mt = 174.0 GeV

evaluated with the various FF sets. As seen, the differences between S and P models in

every given scale are negligible. As µ runs from 2mb to mt, 〈x〉b(µ) decreases from approx-

imately 0.7 to about 0.6. This shows the µ evolution softens the FFs. These results can be

compared with the OPAL experimental result which reads Bb(mZ) = 0.405±0.035(stat)±
0.045(syst) [73] and 〈x〉b(mZ) = 0.695 ± 0.006(stat) ± 0.003(syst)± 0.007(model) [74].

Up to now we were working in the Zero-Mass Variable-Flavor-Number-Scheme, where

we started with mb = 0. It is interesting to know the difference between the effects of

massless and massive b-quarks in the top quark decay. From now on we use the GM-

VFNS in our calculation where the b-quark is considered to be a massive particle. In

Fig.4.9, we compare the Peterson and the Standard models for non-perturbative part of

top hadronization. This graph can be compared with Fig.4.7 in which the b-quark was a

massless quark. This is done in Fig.4.10 where we compare the effects of the b-quark mass

in every model. In Fig.4.10, it is seen that in the massless b-quark case, the maximum

value of the top quark decay width is about 0.04(bin−1) higher than the one where the

b-quark is considered to be a massive particle. We have to keep in mind that for xB < 0.07

our result is not meaningful. In the left side of Fig.4.10, we compared the xB distribution

in top quark decay both when the b-quark is considered to be a massless particle from the

beginning and when it is considered to be a massive one within the Standard hadronization

model. In the right hand side of Fig.4.10 the same has been done but using the Peterson

model. It is seen that for large values of xB (xB ≥ 0.8), the value of the b-quark mass is

immaterial and the results coincide. For the obtained results we used the Peterson and
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Figure 4.9: Comparison of the Standard and Peterson model in xB distribution in top

quark decay, with the NLO fits using OPAL data with this assumption that b is a massive

quark from the beginning and µ0F = 2mb = 10 GeV.
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Figure 4.10: Left side: xB spectrum in top quark decay for the massive (solid line) and

massless (dot-dashes) b quarks using the S model for the non-perturbative part.

Right side: xB spectrum in top quark decay for the massive (solid line) and massless (dot-

dashes) b quarks using the P model for the non-perturbative part. In both calculations the

initial factorization scale is: µ0 = 10 GeV.
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Standard models extracted in [72]. They showed that the Peterson model yields the best

fits using µ0 = 2mb with mb = 5 GeV. This was done by comparison to the Opal experi-

mental data in e−e+ annihilation at µF =
√
s = mZ with the theoretical predictions.

When new and more precise measurements of the cross section of inclusive B-meson pro-

duction in e−e+ annihilation on the Z-boson resonance have been performed by the ALEPH

[64], OPAL [65] and SLD [66] collaborations, the authors in [85] performed a combined fit

to these data sets [64, 65, 66] using µ0 = mb with mb = 4.5 GeV. They also adopted the

NLO value Λ
(5)

MS
= 227 MeV appropriate for nf = 5. In Fig.4.11, from [85], the authors

showed that there was a good consistency between the experimental data from the OPAL,

SLD and ALEPH collaborations and the FFs which they proposed for the Standard(Power)

ansatz. Table 4.3 contains the new values of the parameters in Eqs.(4.44) and (4.46) ob-

tained through the fits based on the Peterson and Standard ansaetze from [85]. From now

on we use these parameters in the P and S models.
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Figure 4.11: Comparisons of the ALEPH (circles), OPAL (squares), and SLD (triangles)

data with the NLO fits using the Peterson ansatz (left side) and the Power (Standard)

ansatz (right side). The initial factorization scale for all partons is µ0 = mb = 4.5 GeV.

While we shift the starting scale from µ0 = 2mb (with mb = 5 GeV) to µ0 = mb

(with mb = 4.5 GeV), the gluon and b-quark FFs are smoothed out at µF = mt = 174.0

GeV. This can be seen in Fig.4.12 where the FFs of gluon and b-quark to the B-meson

are compared in the different initial scales. In [85], it was shown that the Standard ansatz

yields an excellent overall fit to the experimental data points obtained from ALEPH, OPAL

and SLD. On the other hand, the Peterson model leads to an incongruous description of
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Set

NLO Standard NLO Peterson

N=4684.1 N=0.06634

α = 16.87 ε = 0.008548

β = 2.628 —

Table 4.3: Fit parameters for the b → B fragmentation functions according to the sets

S, P at the starting scale µ0 = mb = 4.5 GeV. All other FFs are taken to be zero at the

starting scale, µ0 = 4.5 GeV, and are generated through the DGLAP evolution.
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Figure 4.12: Non-perturbative FFs of b → B (dot-dashes) and g → B (dots) with initial

scale µ0 = 10 GeV and FFs of b → B (dashes) and g → B (solid lines) with initial scale

µ0 = 4.5 GeV. Both are calculated in the Peterson model at µF = mt = 174.00 GeV.
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Total
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Figure 4.13: xB spectrum in top decay, with the hadronization modeled according to

the Power (Standard) model, with the relevant parameters fitted to the ALEPH, OPAL

and SLD data. The plotted curves are the contribution of the fragmentation of gluon to

B(dot-dashes), the contribution of b fragmentation to the B-meson(dots) and the total

contribution to B production(solid line). We set µF = µ = mt and µ0F = µ0 = mb =

4.5GeV.
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the data. This ansatz has only two free parameters, N and ε, and is just not flexible enough

to account for the very precise experimental data.

In Fig.4.13, using the power (Standard) model with the new fit parameters presented in

table 4.3, the contributions of the b-quark fragmentation and the gluon fragmentation to

the xB spectrum are shown. In next step by using new S and P models we depict the

B-meson energy distribution in xB. We compare the two models when the b-quark is

considered to be a massless particle and in the next step we consider a massive b-quark in

our calculation and compare the results obtained from both ansaetze. In our calculation

we assume mc = 1.5 GeV and mb = 4.5 GeV and the factorization and renormalization

scale is µ = µF = mt = 174.0 GeV in Eq(4.43).
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Figure 4.14: Left side: Comparison of the Standard and Peterson models in xB distribution

in top quark decay with the NLO fits . The initial factorization scale is µ0 = 4.5 GeV and

the b-quark is considered to be massless.

Right side: As Figure in the left side but the b-quark is considered to be massive.

In Fig.4.14 we compare the P and S models using the ZM-VFNS and GM-VFNS. As

before our result are not valid for xB < 0.07. Comparing Figs(4.7,4.9,4.14), it is seen that

when the initial scale µ0 is changed from 4.5 GeV to 10 GeV a considerable difference

exists between the Standard and Peterson models, especially at large xB. Although these

models depend on the experimental data which we use to fit and the different data can
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Figure 4.15: Comparison ZM-VFNS and GM-VFNS approaches in xB distribution in top

quark decay using the Standard model. The initial factorization scale is µ0 = mb = 4.5

GeV.
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Figure 4.16: As Fig.4.15, using the Peterson model. The initial factorization scale is

µ0 = mb = 4.5 GeV.
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Set Bb(mb) Bb(mt) 〈x〉b(mb) 〈x〉b(mt)

NLO S 0.40027 0.3870 0.8312 0.617

NLO P 0.40017 0.3848 0.8085 0.603

Table 4.4: branching fractions B(µF ) and mean B to b momentum fractions evaluated

from Eqs.(4.47,4.48), at the scales µ0F = mb = 4.5 GeV and µF = mt = 174.0 GeV scales

using the various FF sets.

change our fit parameters in models.

In Figs(4.15,4.16) we compare the ZM-VFNS and the GM-VFNS approaches using the

Standard and Peterson models for non-perturbative part of B-hadron production in top

quark decay, respectively.

As before, it is interesting to study the b→ B branching fraction (Bb(µF )) and also the av-

erage energy fraction that the B meson receives from the b quark(〈x〉(µF )), Eqs.(4.47,4.48)

respectively. The results are listed in table 4.4. We observe that the Peterson and Stan-

dard ansaetze have rather similar results for (Bb(µF )) and (〈x〉(µF )). The results for

the standard model are larger in all scales. When Bb(µF ) is practically independent of

µF , 〈x〉(µF ) is being smaller through the evolution in µF . These results can be com-

pared with the values quoted by ALEPH, OPAL, and SLD, which read 〈x〉b(mZ) =

0.7361±0.0061(stat)±0.0056(syst) [64], 0.7193±0.0016(stat)+0.0036
−0.0031(syst) [65], and 0.709±

0.003(stat) ± 0.003(syst) ± 0.002(model) [66], respectively. Of course we have to pay at-

tention to this point that experimental results includes all orders and also contributions

from light quarks fragmentation, while ours are evaluated from the b→ B and g → B FFs

at NLO.

Our predictions for the differential decay rate of the B-hadron production in the top

quark decay can be compared with the results obtained in [51]. There, to determine the

coefficients in the Standard and Peterson models, authors used ALEPH and SLD data

from e−e+ collisions at the Z pole, i.e.
√
s = 91.2 GeV. Both data sets, ALEPH and SLD,

refer to weakly-decaying b-hadrons. The ALEPH data just accounts for B mesons, the

SLD set data also consider b-flavored baryons, mainly the Λb. In their calculation they

used MS coefficient functions [86] for e−e+ annihilation into massless quarks. They also

set Λ(5) = 200 MeV, µ0F = µ0 = mb = 5 GeV and µ = mt = 175 GeV and presented that

the Standard model leads to excellent fits to both ALEPH and SLD data and the Peterson
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model is only consistent with the ALEPH results and is unable to describe the SLD data.

There is a good consistency between our result and their result.

4.8.4 Theoretical Predictions to Produce π±, p/p and K± in Top

Quark Decay

Production of pions, kaons, protons and anti-protons is being studied in e−e+ annihila-

tions using time of flight techniques. In [88], the authors showed at 30 GeV center of mass

energy at least 40 % of e−e+ annihilations into hadrons are estimated to contain baryons.

Particle identification was made by means of a time of flight (TOF) measurement between

the beam crossing signal and two groups of scintillation counters and to provide π−K and

(π/K)−p sepration they use the Inner Time of Flight counters up to a special momentum.

To read more detail see [88]. In [89], it is explained that by comparing the data below and

above Charm threshold it is possible to determine directly the c-quark contribution to π±

and K± production. These measurements serve as a guide to extract the contribution of

all quarks to hadron production when a new flavour threshold is crossed.

In this section we intend to make the theoretical predictions to produce the hadrons π±, p/p

and K± in fragmenting the b-quark obtained in the top quark decay. In the top quark

decay both the b-quark can directly fragment into the b-flavored hadrons and the gluon

emitted from the b-quark can produce a pair qq and this pair can create a light hadron

and the light hadrons can also obtain from B-meson and D-meson decay. Since much

precise data from e−e+ annihilation exists for the production of the three lightest charged

hadrons mentioned above we are interested in the fragmentation processes of the b-quark

into π±, p/p and K± hadrons. In much of the data from e−e+ colliders the observed hadron

is identified as one of these hadrons and the extraction of the corresponding individual FFs

in these processes are the most precise ones. From a combined use of fragmentation and

parton distribution functions in one hadron inclusive deep inelastic scattering information

on the initial state parton flavor can be obtained from leading particle effects where a light

energetic hadron inside a jet remembers the valance parton.

To study the π±, p/p andK±-hadron productions of the top quark decay we apply the AKK

[87] extraction of fragmentation functions for π±, p/p,K± particles at next-to-leading order.

They presented a parametrization of non-perturbative fragmentation function describing

the production of charged pions, kaons and protons from the gluon and from each of the
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quarks. They obtained these functions by fitting to all relevant data sets from e−e+ anni-

hilation obtained by the OPAL, DELPHI, SLD and ALEPH Collaboration and also using

inclusive hadron production data sets from pp(p) reactions at BRAHMS, CDF, PHENIX

and STAR. In [87] the FFs are parameterized at a starting scale µ0 =
√

2 GeV in the form:

Dh
i
±(x, µ0) = Nh±

i xa
h±

i (1 − x)b
h±

i (1 + ch
±

i (1 − x)d
h±

i ), (4.49)

where h± stands for π±, p/p,K± and i labels the 11 parton species which produce the

observed hadron through fragmentation, being the gluon, the quarks i = u, d, s, c and b

and their antiquarks. They also imposed the following constraint in the fits:

Dh
q
±(x, µ0) = Dh

q
±(x, µ0). (4.50)

To ensure a continuous gluon FF at each threshold, for simplicity they set the threshold

to the heavy quark masses mc = 1.65 GeV and mb = 4.85 GeV.

The values of all fragmentation function parameters are listed in table.4.5. Since these

FFs are parametrized at low factorization scale, extraction of the FFs at each arbitrary

energy fraction and factorization scale should be performed using the grids and FORTRAN

routines based on solving DGLAP equations with the fitted initial condition. In this part

to extract the considered FFs at the desired scale we used Fortran routines which can be

found at http : //www.desy.de/ s̃imon/AKK.html. These routines can be used to obtain

the fragmentation function sets over the range 0.05 < z < 1 and µ2
0 < µ2

F < 100000GeV 2

with µ0 =
√

2. In Figs.(4.17,4.18) we plot the differential decay rate of inclusive π±-,

K±- and p/p-mesons production in top decay at µ0 = mt. They show the contributions

of the b-quark fragmentation (dot-dashes) and the gluon fragmentation (dashes) to the

b-flavored hadrons. We also present the contributions of both fragmentations (solid line)

to the differential decay rate of hadrons. In Figs.(4.17,4.19) we also plot the contributions

of both fragmentations to the differential decay rate of hadrons on a logarithmic scale.

As it is shown in Fig.4.17, if the normalized energy fraction xπ± is bigger than 0.62 the

probability to produce an inclusive π±-meson in the top quark decay is negligible and this

probability takes the big values in small xπ± . In Fig.(4.18) it is seen that the probability

to produce an inclusive K±-meson and p/p is negligible when xK± > 0.53 and xp/p > 0.45,

respectively and these probabilities are considerable in the small energy fractions.

In table 4.6, we present the values of the b → π±, K±, p/p branching fractions (Bb(µ))

and the mean π±, K±, p/p to b momentum fractions (〈x〉b(µ)) at µF = 10 GeV and µF =

mt = 174 GeV.



Parameter π± K± p/p

Ng 247.80 16.11 16155.68

ag 1.93 2.13 7.26

bg 6.14 3.28 9.07

cg 0.96 0.78 2.04

dg -0.53 2.26 -0.43

Nu 0.32 1.66 0.49

au -2.07 0.22 -0.05

bu 0.96 3.55 1.84

cu -0.81 0.50 -0.24

du 2.91 -1.74 -0.01

Nd = Nu 3.10 0.03

ad = au -0.29 -2.61

bd = bu 6.71 0.69

cd = cu -0.07 -0.91

dd = du 5.52 0.46

Ns 152607.12 0.82 3574.00

as 7.34 -0.04 10.57

bs 12.29 1.62 16.77

cs 0 (fixed) 1.16 39.06

ds 0 (fixed) 0.06 -6.55

Nc 0.33 12.06 43.30

ac -2.05 0.99 2.35

bc 2.61 4.77 9.36

cc -0.88 5.45 15.04

dc 2.13 6.52 13.74

Nb 1.25 15.72 6.81

ab -0.45 0.96 0.48

bb 4.37 7.94 11.89

cb 17.48 21.05 0.43

db 10.79 11.38 0.00

Table 4.5: Values of the charge-sign unidentified FFs parameters at µ0F =
√

2 GeV by

fixing Dπ±

d (x, µ2
F ) = Dπ±

u (x, µ2
F ) and cπ

±

s = dπ
±

s = 0.
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Figure 4.17: Up: xπ±-spectrum of top decay, with the relevant parameters fitted to the

OPAL, CDF, PHENIX, BRAHMS and STAR data. The plotted curves are the contribu-

tions of the fragmentation of the gluon to π± (dashes), b-quark to π± (dot-dashes) and the

total contribution of them to π± (solid line). We set µF = µ = mt and µ0F = µF =
√

2.

Down: The total contributions of the fragmenting partons in the xπ± spectrum of top

decay on a logarithmic scale.



Set Bb(10GeV ) Bb(mt) 〈x〉b(10GeV ) 〈x〉b(mt)

π± 0.859 0.784 0.168 0.162

K± 0.39 0.32 0.174 0.167

p/p 0.096 0.109 0.175 0.167

Table 4.6: Branching fractions of b → b−flavored hadrons and mean π±, K±, p/p to b

momentum fractions evaluated from Eqs.(4.47,4.48) ,respectively, at the µF = 10 GeV and

µF = mt = 174 GeV scales.
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Figure 4.18: Left side: xK±-spectrum in top decay, with the relevant parameters fitted

to the OPAL, CDF, PHENIX, BRAHMS and STAR data. The plotted curves are the

contributions of the fragmentation of the gluon(dashes) and the b-quark toK± (dot-dashes)

and the total contribution of them to K±. We set the initial and final scales to µ0F =
√

2

and µF = µ = mt.

Right side: xp/p-spectrum in top decay.
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Figure 4.19: Left side: The total contributions of the fragmenting partons in the xK±

spectrum in top decay on a logarithmic scale, as Fig.4.18.

Right side: The total contributions of the fragmenting partons in the xp/p spectrum in top

decay on a logarithmic scale, as Fig.4.18.

4.9 The B-hadron Mass Effects and Theoretical Pre-

dictions

In the previous results the base of our calculations was to use the factorization theorem.

Here we have to point out that the factorization theorem in the form given in Eq.(4.42)

can be improved in the presence of a massive quark and a massive hadron, although these

effects are negligible, as we shall see. In this section we show how to incorporate the mass

effects of the hadron in the energy distribution of the B-hadron produced in the top quark

decay process.

According to the factorization formula Eq.(4.42), the decay rate can be expressed via the

convolution of the differential width and the fragmentation function:

1

Γ0

dΓB

dxB
(xB, mt, mW , mb) =

1

Γ0

∑

i=b,g

∫ 1

xB

dz

z

dΓi
dz

(z,mt, mW , mb, µ, µF )DB
i (
xB
z
, µF ),

(4.51)

in which the scaling variable xB is defined: 2EB/(mt(1 + b − ω)). As we pointed out the

formula above is valid only for the massless B-hadron and massless partons. Now there

are two methods to impose the mass effects of the B-hadron and partons into the equation



above. In the first approach we try to find out the relation between the B-hadron phase

space and the parton phase space and in the second way we apply a specific choice of

scaling variable using light cone coordinates. The details of the calculation can be found

in appendix E.

Therefore, in the presence of the B-hadron and parton masses the experimentally measured

observable (1/Γ0 × dΓ(xB)/dxB) is related via Eq.(E.25):

1

Γ0

dΓB(xB, mt, mb, mW )

dxB
=

1
√

1 − 4m2
B

m2
tx

2
B

×

∑

i=b,g

∫ yB,max(xB)

yB,min(xB )

dyB
yB

[

(
1

Γ0

dΓi(yB, mt, mi, mW , µ
2)

dyB
)DB

i (
η(xB)

y(yB)
, µ2) × 1

2
(1 +

√

1 − 4m2
i y

2
B

m2
tx

2
B

)

]

,

(4.52)

in which,

yB =
xB
z

DB
i (
η(xB)

y(yB)
) = DB

i

(xB
yB

× 1

2
(1 +

√

1 − 4m2
i y

2
B

m2
tx

2
B

)
)

yB,max =

(

1 +
m2
i −m2

B

2m2
B

(1 −
√

1 − 4m2
B

m2
tx

2
B

)

)−1

yB,min =
xB

1 +
m2

i

m2
t

, (4.53)

where mi stands for the mass of the fragmenting parton, in our calculations i = b, g. To

prove the equation above we defined xB = 2EB/mt, therefore to have the previous scaling

variable (defined in section 4.8) this new variable would be divided by the term 1 + b− ω.

According to Eq.(4.52) the effects of hadron mass is to increase the size of the decay rate

at small xB . This point shall be shown in our example later.

Now we show the effects of the B-hadron mass and the b-quark mass on the energy dis-

tribution of the B-hadron in the top quark decay using the data in table 4.3 for the S

(standard) and the P (peterson) models. In Fig.4.20 we consider the massive b-quark from

the beginning and show the effects of the B-hadron mass in the B-hadron energy distri-

bution using GM-VFNS. As it is shown the only considerable effect of the B-hadron mass

appears at the small xB as the mass of the B-hadron increases the decay width at the

small xB (dashed lines in Fig.4.20). In the left side of Fig.4.20 we make these predictions



using the Standards model and in the right side of Fig.4.20 we used the Peterson model.

In Fig.4.21 we study the combined effects of the B-hadron mass and the b-quark mass on

the energy distribution of the B-hadron and we compare them. As it is seen, the combined

effect of the B-hadron mass and the b-quark mass is to increase the size of the decay rate

at small xB and to decrease the size of the decay rate at large xB. With mt = 174 GeV,

mb = 4.5 GeV, mW = 80 GeV and mB = 5.28 GeV, our results are not valid for xB < 0.08.
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Figure 4.20: Left side: Mass effects of the B-hadron in the energy distribution of the B-

hadron in top decay, using the Standard model in presence of the b-quark mass. The initial

factorization scale is µ0 = 4.5 GeV.

Right side: As figure in the left side but using the Peterson model.
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Figure 4.21: Up: Mass effects of the B-hadron and the b-quark in the energy distribution

of the B-hadron in top decay, using the Standard model. The initial factorization scale is

µ0 = 4.5 GeV.

Down: As figure above but using the Peterson model.



Chapter 5

W+-Helicity Fractions in Top Quark

Decay

Clearly, to investigate the full structure of partonic interactions one needs to do polarization

measurements. Polarization measurements are particularly simple when the particle whose

polarization one wants to measure, decays. The angular decay distribution of the decay

products reveals information on the state of polarization of the decaying particle. The

information contained in the angular decay distribution is maximal when the particle

decay is weak. The fact that the angular decay distribution reveals information on the

polarization of the decaying particle is sometimes referred to as that the particle decay is

self-analyzing.

There are at least two ways to obtain angular decay distributions which we will refer to as

the traditional covariant and the helicity amplitudes methods. In the helicity amplitudes

method, one makes use of helicity states for the spinors and the polarization vector of the

gauge bosons whereas in the covariant method one evaluates scalar products of four-vectors

involving momenta and spin four-vectors in the given references frames. We explain and

use these approaches in this chapter in detail. In this work we consider the processes

t → b +W+ and t → b + W+(→ e+ + νe) at LO and NLO, using the helicity amplitudes

method for the first process and the covariant way for the second one.
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5.1 Helicity Amplitudes for t→ b +W+

Since the top quark is heavier than the combined masses of the W+ boson and the b−quark,

it will decay into a real W whereas lighter quarks will decay via a virtual W . Because

the top quark is so heavy, and the other quarks are so light, the top quark is the only

significant source of longitudinal real W bosons. In this section we study correlation of the

W+-boson helicity and decay width in the decay process t→ b+W+. Considering Fig.5.1

Figure 5.1: Feynman diagram for the decay t→ b+W+ at the Born level.

the amplitude of the Born approximation is given by:

MBorn =
−e

2
√

2 sin θW
ε?µ(λ, pW )u(sb, pb)γµ(1 − γ5)u(st, pt), (5.1)

in which λ(= 0,±1), sb and st stand for the polarization of the W+-boson, b-quark and

top quark, respectively.

Now we use the helicity states for the spinors and the polarization vector of the gauge

boson W+ with helicity λ in the top quark rest frame. With regards to the momentum

four vectors of the W+-boson propagating along the ẑ-axis in the top quark rest frame

pµW = (EW ; 0, 0,
−−→|pW |), for the polarization four vectors of W+ we have:

εµ(λ = 0) =
1

mW













−−→|pW |
0

0

EW













εµ(λ = ±1) =
1√
2













0

1

±i
0













. (5.2)
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These polarization four vectors satisfy pW · ε = 0 and ε2 = −1. For the helicity spinors we

have:

u(st = 1/2, pt) =
√

2mt

(

χ+

0

)

, u(sb = 1/2, pb) =
√

Eb +mb

(

χ−
−→
|pb|

Eb+mb
χ−

)

u(st = −1/2, pt) =
√

2mt

(

χ−

0

)

, u(sb = −1/2, pb) =
√

Eb +mb

(

−χ+
−→
|pb|

Eb+mb
χ+

)

,

(5.3)

which are solutions of the Dirac equation and χ+ and χ− are the Pauli spinors χ+ =

(1, 0), χ− = (0, 1). The spinors above satisfy the orthonormality relations u†(r, p).u(r, p) =

2m. When the top quark and the b-quark are assumed to be unpolarized and the W +

boson is considered a polarized boson, to obtain the helicity amplitudes squared we start

from the following equation:

|M(λ)|2 =
1

1 + 2st

∑

sb,st

|MBorn|2 =
1

2

∑

sb,st

(MBornMBorn?), (5.4)

where MBorn is given in Eq.(5.1), therefore for the helicity amplitudes we obtain:

|M(λ = 0)|2 =
2πm2

tα

ω sin2 θW
S(1 + b− 2Sβ2)

|M(λ = +1)|2 =
2πm2

tα

sin2 θW
(S −Q)

|M(λ = −1)|2 =
2πm2

tα

sin2 θW
(S +Q), (5.5)

where S, b, β and Q were defined in Eq.(4.1).

In Eq.(5.5), the first term shows the contribution of the W+ boson polarized longitudinally

in the squared matrix element and the second one and the third one show the transverse-

plus and the transverse-minus contributions in the matrix element squared |MBorn(λ)|2.
The advantage of the helicity amplitudes method is that one can separately identify the

three helicity contributions of the W+ boson.

To obtain the angular decay distribution we start from:

ΓLO = Γ0 =
(2π)4

2Et

∑

λ

∫

d3pW
(2π)32EW

d3pb
(2π)32Eb

δ4(pt − pb − pW ) × |MBorn(λ)|2.

(5.6)
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Using the top quark rest frame this is simplified to:

Γ0 =
|MBorn|2

8πm2
t

(mtQ). (5.7)

Considering Eq.(5.5), we obtain Γ0 = ΓL + Γ− + Γ+, where:

ΓL = Γ(λ = 0) =
mtQα

4ω sin2 θW
(S(1 + b) − 2b)

Γ+ = Γ(λ = +1) =
mtQα

4 sin2 θW
(S −Q)

Γ− = Γ(λ = −1) =
mtQα

4 sin2 θW
(S +Q). (5.8)

With respect to the Born term rate given in Eq.(4.5), the helicity rates are given in terms

of the Born rate as the following:

ΓL
Γ0

=
S(1 + b) − 2b

ωG0

Γ+

Γ0

=
S −Q

G0

Γ−
Γ0

=
S +Q

G0

, (5.9)

where S, b, Q and G0 were defined in Eq.(4.1). These results agree with [91]. If we consider

the massless b-quark from the beginning then we obtain:

ΓL
Γ0

=
1

1 + 2ω
Γ+

Γ0
= 0

Γ−
Γ0

=
2ω

1 + 2ω
, (5.10)

which means the contribution of the transverse-plus Born term vanishes in the mb = 0 limit.

The mb 6= 0 effects are quite small. This point can be seen using mt = 174 GeV, mb = 4.5

GeV and mW = 80 GeV, where ΓL/Γ0 = 0.70228, Γ+/Γ0 = 0.00033 and Γ−/Γ0 = 0.29739.

5.2 Angular Decay Distribution for t→ b+W+(→ e+ +

νe) at LO

In this section we study the correlation of the W+-boson helicity and decay width in the

cascade decay process t → b +W+ followed by W+ → e+ + νe using both the traditional
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covariant method and the helicity amplitudes method. At LO the Feynman graph is shown

in Fig.5.2 where the W+-boson is considered as a real particle, i.e. it is considered on shell

with p2
W = m2

W . The masses of e+ and νe are ignored, i.e: p2
e = p2

ν = 0.

Figure 5.2: Feynman diagram for the decay t→ b +W+(→ e+ + νe) at the Born level.

5.2.1 Covariant Approach

In the covariant approach the W+-boson is considered unpolarized from the beginning and

the mean squared amplitude for the whole process (t → b + W +(→ e+ + νe)) would be

evaluated in one frame. We consider the two particles top decay (t → b + W +) and the

two particles W+-boson decay (W+ → e+ +νe) in four space-time dimensions and we start

from:

dΓLO = dΓHad × dΓLep. (5.11)
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In the equation above the decay rates dΓHad(for the hadronic part) and dΓLep(for the

leptonic part) are defined as the following:

dΓHad =
(2π)4

2Et

d3pW
(2π)32EW

d3pb
(2π)32Eb

δ4(pt − pb − pW ) × |MHad,Born|2

⇒ dΓHad

dxb
=
Qδ(1 − xb)

8πmt

|MHad,Born|2,

dΓLep =
(2π)4

2EW

d3pe
(2π)32Ee

d3pν
(2π)32Eν

δ4(pW − pe − pν) × |MLep,Born|2

⇒ dΓLep

d cos θ
=

1

32πmW

|MLep,Born|2,

(5.12)

where we used the top quark and the W+ rest frames which are defined in Fig.5.3. The

polar angle θ is defined as the angle between the charged-lepton (e+) momentum in the

W+-rest frame and the W+ momentum in the top quark rest-frame. In the equation above

the amplitudes of the hadronic and leptonic parts of the decay process read:

MHad,Born = − e

2
√

2 sin θW
ε?µ(λ, pW )u(sb, pb)γµ(1 − γ5)u(st, pt)

MLep,Born = − e

2
√

2 sin θW
εν

′

(λ, pW )u(sν, pν)γν′(1 − γ5)v(se, pe). (5.13)

Therefore the angular decay distribution is obtained as:

d2ΓLO

dxb d cos θ
=

Q δ(1 − xb)

256π2mtmW

|MBorn|2. (5.14)

Now we try to find out the mean squared amplitude for the cascade decay process of the

top quark. We start from:

|MBorn|2 = |MHad,Born ·MLep,Born|2 =
1

2

∑

λ,λ′,t,b,e,ν

(MHadMHad?

) · (MLepMLep?

)

=
e4

2 sin4 θW

∑

λ,λ′

([

εν(λ)ε?µ
′

(λ)
]

·
[

εν
′

(λ)ε?µ(λ)
])

Lµ′ν′Hµν ,

(5.15)

where the hadronic tensor Hµν and the leptonic tensor Lµ′ν′ are defined by:

Hµν =
1

8
· Tr[(6 pb +mb) · γµ(1 − γ5) · (6 pt +mt) · γν(1 − γ5)]

Lµ′ν′ =
1

8
· Tr[6 pν · γν′(1 − γ5)· 6 pe · γµ′(1 − γ5)]. (5.16)

112



Figure 5.3: Definition of the top quark rest frame and the polar angle θ in the W + rest

frame.

Using the completeness relation:

∑

λ=0,±
εµ(λ)εν?(λ) = −gµν +

pµWp
ν
W

m2
W

, (5.17)

the result above turns into the following result in the case of zero lepton mass:

|MBorn|2 =
8π2α2

sin4 θW
LµνHµν

=
32π2α2

sin4 θW
(pb.pν)(pt.pe), (5.18)

since pµWLµν = pνWLµν = 0.

As already mentioned in the covariant method, the invariant LµνHµν must be evaluated in

one particular frame. Here we choose the top quark rest frame shown in Fig.5.3. In this

rest frame for the momentum four-vectors we have:

pµt = mt(1; 0, 0, 0)

pµb = mt(S; 0, 0,−Q)

pµe =
mt

2
(
1 + ω − b

2
+Q cos θ;

√
ω sin θ, 0, Q+

1 + ω − b

2
cos θ)

pµν =
mt

2
(
1 + ω − b

2
−Q cos θ;−

√
ω sin θ, 0, Q− 1 + ω − b

2
cos θ).

(5.19)
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The details of this calculation can be found in appendix F.

Considering these momenta for the mean squared matrix element (Eq.(5.18)) we have:

|MBorn|2 =
16π2α2

3 sin4 θW
m4
t

{

1

2
[(1 − b)2 − ω(1 + b)] .

3

4
sin2 θ +

ω

2
[1 + b− ω − 2Q] .

3

8
(1 + cos θ)2 +

ω

2
[1 + b− ω + 2Q] .

3

8
(1 − cos θ)2

}

.

(5.20)

This result can be written as:

|MBorn|2 =
16π2α2

3 sin4 θW
m4
t

{

L · 3

4
sin2 θ + T+ · 3

8
(1 + cos θ)2 + T− · 3

8
(1 − cos θ)2

}

.

(5.21)

Here we separated the three polarization (or helicity)contributions of the W + boson, i.e.

L, T+ and T− which are the longitudinal, transverse-plus and transverse-minus helicity,

respectively. Our result is in complete agreement with [91].

From the obtained amplitude one can conclude that the longitudinal W+ decay process

into a charged lepton(e+) has an angular distribution which peaks at θ = π/2. Form the

amplitude (5.21) it is obvious that the charged leptons which are scattered in angles θ = 0

or θ = π are due to the decay of a transverse W+-boson. The resulting cos θ distributions

are very distinct for each W+ helicity state. If one can reconstruct the cos θ distribution

from top quark decays observed in collider data, these unique shapes can be used for

a measurement of W+ boson polarization and a comparison with theory could be made.

There are at least two methods one may use to extract the degree of W + boson polarization

in top quark decays. In the first method, which was mentioned, one uses the lepton angular

distribution, cos θ, the other one examines the charged lepton pT distribution, see [92].

Let us go back to Eq.(5.20). In the limit mb → 0 the Born term is simplified to:

|MBorn|2 =
16π2α2

3 sin4 θW
m4
t

{

1

2
[1 − ω] · 3

4
sin2 θ +

0 · 3

8
(1 + cos θ)2 +

ω[1 − ω] · 3

8
(1 − cos θ)2

}

.

(5.22)
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As it is seen in the massless b-quark case, there is no transverse-plus helicity contribution

for the W+ decay. However in the next section we shall show that in the higher order QCD

corrections this contribution vanishes no longer.

Now we are in the situation to write the angular distribution of the differential decay

rate for the decay process t → Xb +W+ followed by W+ → e+ + νe. From Eq.(5.14), the

normalized differential decay rate can be written as:

1

Γ′
0

d2ΓLO

dxb d cos θ
=
δ(1 − xb)

G0 ω

{

[S(1 + b) − 2b)] · 3

4
sin2 θ +

ω[S −Q] · 3

8
(1 + cos θ)2 +

ω[S +Q] · 3

8
(1 − cos θ)2

}

.

(5.23)

In the case mb → 0 we have:

1

Γ′
0

d2ΓLO

dxb d cos θ
=
δ(1 − xb)

1 + 2ω

{

3

4
sin2 θ + 0 + (2ω) · 3

8
(1 − cos θ)2

}

. (5.24)

In the equations above Γ′
0 is the width of the Born process t → bW+(→ e+νe) and it is

given by:

Γ′
0 =

mtmWα
2

48 sin4 θW
(QG0). (5.25)

To obtain Γ′
0 we would calculate the matrix elements squared |MBorn,Had|2 and |MBorn,Lep|2

within their rest frames separately. To explain more precise we start from:

Γ′
0 = ΓBorn,Had × ΓBorn,Lep. (5.26)

According to Eq.(5.12) we obtain:

ΓBorn,Had =
Q

8πmt
|MBorn,Had|2 where |MBorn,Had|2 =

1

2

∑

λ,b,t

(MHad ·MHad?)

ΓBorn,Lep =
1

16πmW
|MBorn,Lep|2 where |MBorn,Lep|2 =

1

3

∑

e,ν,λ′

(MLep ·MLep?).

(5.27)
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Using MBorn,Had and MBorn,Lep defined in Eq.(5.13) and the completeness relation, we

have:

ΓBorn,Had =
mtα

4 sin2 θW
(QG0)

ΓBorn,Lep =
mWα

12 sin2 θW
. (5.28)

Therefore the Born level decay rate reads:

Γ′
0 =

mtmWα
2

48 sin4 θW
(QG0). (5.29)

Let us go back to Eq.(5.23). For unpolarized top decay the angular decay distribution is

determined by the polarization components of W+ boson as:

1

Γ′
0

dΓLO

d cos θ
=

3

4
sin2 θ ΓL +

3

8
(1 + cos θ)2 Γ+ +

3

8
(1 − cos θ)2 Γ−, (5.30)

where ΓL = 0.702281, Γ+ = 0.000321 and Γ− = 0.29740 denote the partial decay rates

into the longitudinal, transverse-plus and transverse-minus W+-boson. The various con-

tributions in Eq.(5.30) are reflected in the shape of the lepton energy spectrum in the rest

frame of the top quark. The fact that Γ+ is predicted to be quite small implies that the

lepton spectrum will be soft.

In Fig.5.4 we showed the LO contributions of the longitudinal and transverse-minus W +-

boson in the B-meson energy distribution in the variable xB using the data given in the

table.4.1. In this calculation we adopt the LO value Λ(5) = 108 Mev appropriate for nf = 5.

5.2.2 Helicity Amplitudes Approach

The cos θ dependence of the squared amplitude can be worked out by using the helicity

approach. To use this method we start from Eq.(5.18) where we had:

|MBorn|2 =
8π2α2

sin4 θW
LµνHµν. (5.31)

To find out the cos θ dependence of LµνHµν we use the completeness relation for the

polarization four-vectors including the scaler component, i.e:

∑

λ,λ′=t,±,0
εµ(λ)ε?ν(λ′)gλλ′ = gµν, (5.32)
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Figure 5.4: Comparison of the LO contributions of the longitudinal and the transverse-

minus helicity of the W+-boson in the B-meson energy distribution using the Peterson

model. The solid line shows the summation of all helicity contributions. The initial fac-

torization scale is µ0 = 10.0 GeV and the b-quark is considered to be massless.

where λ, λ′ = +,−, 0 stand for the transverse-plus, transverse-minus and the longitudinal

helicity of the W+-boson and λ, λ′ = t stand for the scalar component of the helicity and

the tensor gλλ′ = diag(+,−,−,−) is the spherical representation of the metric tensor where

the components are ordered in the sequence λ, λ′ = t,±, 0. Therefore we can rewrite the

contraction of the lepton and hadron tensor LµνHµν as:

LµνH
µν = Lµ

′ν′gµ′µgν′νH
µν

=
∑

m,m′,n,n′

Lµ
′ν′εµ′(m)ε?µ(m

′)gmm′ε?ν′(n)εν(n
′)gnn′Hµν

=
∑

m,m′,n,n′

(

Lµ
′ν′εµ′(m)ε?ν′(n)

)(

Hµνε?µ(m
′)εν(n

′)

)

gmm′gnn′. (5.33)

Now each parenthesis is an invariant quantity and the nice feature of this representation

is that the left bracket can be evaluated in the W+ rest frame which leads to a cos θ

dependence. We do not evaluate the scalar contribution of the equation above since this

contribution drops out after integration over the azimuthal angle. The result above is
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simplified to:

LµνH
µν = Lµ

′ν′εµ′(0)ε?ν′(0)H00 + Lµ
′ν′εµ′(+)ε?ν′(+)H++ + Lµ

′ν′εµ′(−)ε?ν′(−)H−−,

(5.34)

where we have defined the diagonal hadronic helicity functions H00 = HL, H++, H−− ac-

cording to:

Hmm = Hµνε?µ(m)εν(m) m = 0,+,−. (5.35)

In the W+ rest frame (Fig.5.3), one has:

pµe+ =
mW

2
(1; sin θ, 0, cos θ),

pµνe
=

mW

2
(1;− sin θ, 0,− cos θ),

εµ(L) = (0; 0, 0, 1),

εµ(±) =
1√
2
(0;∓1,−i, 0), (5.36)

and from Eq.(5.16) we also have:

Lµν = pµe+p
ν
νe

+ pνe+p
µ
νe
− m2

W

2
gµν − iεµναβ(pe+)α(pνe

)β, (5.37)

therefore with respect to the equations above we obtain:

∑

µ′,ν′

Lµ
′ν′εµ′(0)ε?ν′(0) = L33ε3(0)ε?3(0) =

2

3
m2
W

(

3

4
sin2 θ

)

,

∑

µ′,ν′=1,2

Lµ
′ν′εµ′(+)ε?ν′(+) =

2

3
m2
W

(

3

8
(1 + cos θ)2

)

,

∑

µ′,ν′=1,2

Lµ
′ν′εµ′(−)ε?ν′(−) =

2

3
m2
W

(

3

8
(1 − cos θ)2

)

.

(5.38)

Now the second parenthesis in Eq.(5.33) should be evaluated in the t-quark rest frame. In

this frame we have:

pµb =
mt(1 − ω)

2
(1; 0, 0,−1),

pµW =
mt

2
(1 + ω; 0, 0, 1− ω),

εµ(L) =
1

mW
(|−→pW |; 0, 0, EW ),

εµ(±) =
1√
2
(0;∓1,−i, 0), (5.39)
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and from Eq.(5.16), we have:

Hµν = pµt p
ν
b + pνt p

µ
b − (pt.pb)g

µν − iεµναβ(pt)α(pb)β. (5.40)

After using the equation above, considering the massless b-quark for the diagonal hadronic

helicity structure functions (Eq.(5.35)) we have:

H00 =
m4
t

2m2
W

(1 − ω) , H++ = 0, H−− =
ω m4

t

m2
W

(1 − ω). (5.41)

Then finally we obtain:

|MBorn|2 =
8π2α2

sin4 θW
LµνHµν

=
16π2α2

3 sin2 θW
m4
t

{1 − ω

2
· 3

4
sin2 θ + 0 + ω(1 − ω) · 3

8
(1 − cos θ)2

}

.

(5.42)

This result is in agreement with Eq.(5.22) which was calculated via the covariant approach.

5.3 Angular Decay Distribution for t→ b+W+(→ e+ +

νe) at NLO Using Fixed xb

In this section we calculate the virtual and real corrections for the cascade top decay and

we show that for the NLO QCD corrections the contribution of the transverse-plus helicity

of the W+ vanishes no longer. To extract the singularities we use dimensional regulariza-

tion as before.

5.3.1 Virtual Gluon Corrections

First we consider the one-loop corrections to the decay width considering the Feynman

diagrams depicted in Fig.5.5.

Therefore for the squared amplitude we obtain:

|MV |2 =
16π2α2

sin4 θW
Lµν(Ha

µν +Hb
µν), (5.43)
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Figure 5.5: Feynman diagrams for the vertex corrections(a) and the renormalization of the

fields(b).

where Lµν is given in Eq.(5.16) and,

Ha
µν =

1

8
Tr
[

6 pbΛµ(mt+ 6 pt)γν(1 − γ5)
]

Hb
µν =

1

8
(
δzt + δzb

2
)Tr
[

6 pbγµ(1 − γ5)(mt+ 6 pt)γν(1 − γ5)
]

, (5.44)

in which Λµ, δzt and δzb are given in Eqs.(3.7,3.16,3.18), respectively. After using the

covariant approach, the contribution of the vertex corrections in the matrix elements reads:

LµνHa
µν = αS

ω(1 − ω)

6π
m4
t

[

(1 − ω)m2
tC0(m

2
t , 0, m

2
W , m

2
t , 0, 0) − ω

1 − ω
B0(m

2
t , 0, m

2
t )

+B0(0, 0, 0) − 1 − 3ω

2(1 − ω)
B0(m

2
W , 0, m

2
t ) − 1

]

(1 − cos θ)2 +

αS
1 − ω

6π
m4
t

[

(1 − ω)m2
tC0(m

2
t , 0, m

2
W , m

2
t , 0, 0) − 1 + ω

2(1 − ω)
B0(m

2
t , 0, m

2
t )

+B0(0, 0, 0) +
ω

1 − ω
B0(m

2
W , 0, m

2
t ) − 1

]

sin2 θ,

(5.45)

and the contribution of the renormalization of the fields reads:

LµνHb
µν =

m4
t (1 − ω)

8
(δzb + δzt)

[

ω(1 − cos θ)2 + sin2 θ

]

. (5.46)

To calculate the contribution of the virtual corrections in the differential decay rate we

start from:

dΓvir = dΓHad,vir × dΓLep. (5.47)
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After using Eq.(3.5) and Eq.(5.12) we obtain:

d2Γvir

dxb d cos θ
=

|Mvir|
16πmt

δ(1 − xb)
1 − ω

32πmW

{

1 − ε
[

γE − log
4πµ2

m2
t

+ 2 log(1 − ω) − 2(1 + ω)

1 + 2ω

]

+

ε2
[1

2

(

γE − log
4πµ2

m2
t

+ 2 log(1 − ω) − 2(1 + ω)

1 + 2ω

)2 − π2

4
+

2(1 + ω)(1 + 3ω)

(1 + 2ω)2

]

}

,

(5.48)

with |Mvir| given in Eq.(5.43). Considering the results above we obtain the following result:

1

Γ′
0

d2Γvir

dxb d cos θ
= HV ir

++ · 3

8
(1 + cos θ)2 +HV ir

−− · 3

8
(1 − cos θ)2 +HV ir

00 · 3

4
sin2 θ.

(5.49)

For the helicity contributions of the W+-boson in decay width we have:

HV ir
++ = 0

HV ir
−− =

αS
2π(1 + 2ω)

Cfδ(1 − xb)
[

2(3ω − 1) log(1 − ω) − 2ωF
]

HV ir
00 =

αS
2π(1 + 2ω)

Cfδ(1 − xb)
[

2 log(1 − ω) − F
]

, (5.50)

where F was defined in Eq.(3.22). In the calculation above for the Born level decay rate

we used the following formula:

Γ′
0 = ΓHad0 × ΓLep0 , (5.51)

where ΓLep0 was given in Eq.(5.28) and to extract all correct terms we used Eq.(3.2) for

ΓHad0 . It is simple to check that Eq.(5.49) is equal to Eq.(3.21) after integration over cos θ.

5.3.2 Real Gluon Corrections

The Feynman diagrams of the real gluon corrections are shown in Fig.5.6.

There are two methods to calculate the contribution of the real gluon corrections that

we will explain in detail. First we explain the helicity amplitudes approach. The whole

amplitude for the real gluon correction is given by:

MR = (MR,Had
a +MR,Had

b ).MLep, (5.52)

121



Figure 5.6: Feynman diagrams for the emission of the real gluon.

where the matrix elements MR,Had
a , MR,Had

b and MLep are given in Eqs.(3.23,3.24,5.13).

Therefore the mean squared amplitude reads:

|MR|2 =
1

3 × 2

∑

spins,color

|MR|2 ⇒ |MR| =
32π3α2αS
sin4 θW

CF LµνHµν . (5.53)

The lepton tensor Lµν was given in Eq.(5.16) and the hadron tensor Hµν equals to Hµν
a +

Hµν
b + 2Hµν

ab where:

Hµν
a =

1

32(pt.pg)2
Tr[−gαβ 6 pbγµ(1 − γ5)(mt+ 6 pt− 6 pg)γβ(mt+ 6 pt)γα(mt+ 6 pt− 6 pg)(1 + γ5)γν],

Hµν
b =

1

32(pb.pg)2
Tr[−gαγ 6 pbγα(6 pb+ 6 pg)γµ(1 − γ5)(mt+ 6 pt)(1 + γ5)γν(6 pb+ 6 pg)γγ],

Hµν
ab =

1

32(pt.pg)(pb.pg)
Tr[gγβ 6 pbγµ(1 − γ5)(mt+ 6 pt− 6 pg)γβ(mt+ 6 pt)(1 + γ5)γν(6 pb+ 6 pg)γγ].

(5.54)

Applying the procedure which we used in Eq.(5.34) and considering the definition of the

polarization vectors of the W+-boson (Eq.(5.36)), we obtain for the invariant quantity

LµνHµν in Eq.(5.53):

LµνHµν =
2

3
m2
W

[3

4
H00 sin2 θ +

3

8
H++(1 + cos θ)2 +

3

8
H−−(1 − cos θ)2

]

, (5.55)
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where,

H00 = Hµνε?µ(0)εν(0) =
1

m2
W

(

|−→pW |2H00 − EW |−→pW |(H03 +H30) + E2
WH

33

)

,

H++ = Hµνε?µ(+)εν(+) =
1

2

(

H11 + i(H12 −H21) +H22
)

,

H−− = Hµνε?µ(−)εν(−) =
1

2

(

H11 + i(H21 −H12) +H22
)

.

(5.56)

Now to calculate H00, H03, H30, · · · we have to specify the general form of the hadron

tensor Hµν. At first we turn our attention to the matrix γ5. As we explained in section

3.4, the matrix γ5 is not well defined in D dimensions and the ordinary anti-commutation

relation in 4-dimensions ({γµ, γ5} = 0) produces the ambiguity in D-dimensions. Therefore

we employ the Breitenlohner-Maison (BM) scheme for the definition of γ5 in D-dimensions,

as it was explained in section 3.4.

Now we explain the detail of the calculation of the hadron tensor Hµν. With respect to
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Eq.(5.54) the hadron tensor for the real gluon corrections reads:

Hµν = Hµν
a +Hµν

b + 2Hµν
ab

=
1

E2
g(1 − cos θ)

{

(D − 2)[pµt p
ν
t − pµWp

ν
t − pµb p

ν
t + pµb p

ν
b + pµb p

ν
W ] +

(D − 4)[pµWp
ν
W − pµt p

ν
W + pµWp

ν
b ] + (6 −D)pµt p

ν
b +

+
iεµναβ

mtEb
pαg p

β
t p

γ
b [(D − 4)pνW − (D − 2)pνt + (D − 6)pνb ]

mt

Eb
[−pµt pνb + pµWp

ν
b + pµb p

ν
t − pµb p

ν
W + iεµναβpαb p

β
g ] + 2iεµναβpαb (p

β
g − pβt ) − 2Ebmtg

µν

}

+
1

EbEg(1 − cos θ)

{

(D − 4)[iεµναβpαb p
β
g + pµWp

ν
b ]

+(1 − D

2
)[iεµναβpαg p

β
t + pµWp

ν
t + pµt p

ν
W + pµb p

ν
t +mtEgg

µν − 2pµb p
ν
b − 2pµt p

ν
t ]

+(7 − 3

2
D)pµt p

ν
b − 2iεµναβpαb p

β
t − 2mtEbg

µν

}

+
1

E2
g

{

2 −D

2

Eg
mt

[2pµb p
ν
b + 2pµt p

ν
t + pµWp

ν
b + pµb p

ν
W − pµb p

ν
t + iεµναβpαb p

β
g ] +

iεµναβ [pαb p
β
t − pαb p

β
g ] +

Eg
mt

[(
3

2
D − 7)pµt p

ν
b + (D − 4)pµt p

ν
W ] + Egg

µν[2Eb +mt] +

Ebmtg
µν − 2pµb p

ν
b − pµWp

ν
b − pµb p

ν
W

}

+ (1 − cos θ)
Eb
mt
gµν[1 − D

2
− mt

Eg
] + (D − 4)gµν,

(5.57)

where εµναβ is the antisymmetric Levi-Civita tensor and it determines the sign in the result

of a Dirac trace of four gamma functions and γ5. By convention ε0123 = 1 and for every

even permutation of (0, 1, 2, 3) the result of this tensor is 1 and for every odd permutation

of (0, 1, 2, 3) the result is −1 and it is 0 if any index is repeated.

Now to calculate the transverse-plus, transverse-minus and longitudinal contributions

of the helicity amplitude we need to know the four vectors pµt , p
µ
b and pµg in the top quark

rest frame, shown in Fig.5.7.

With respect to the definition of θR as the angle between the emitting gluon and the

b-quark, one has:

pµt = (mt; 0, 0, 0),

pµb = (Eb;
EbEg sin θR

|−→pW | , 0,−Eb(Eb + Eg cos θR)

|−→pW | ),

pµg = (Eg;−
EbEg sin θR

|−→pW | , 0,−Eg(Eg + Eb cos θR)

|−→pW | ), (5.58)
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Figure 5.7: Definition of the top quark and the W+-boson rest frames in NLO calculation.

where cos θR = (m2
t −m2

W − 2mt(Eb + Eg) + 2EbEg)/(2EbEg).

In the second approach, proposed in [91], to calculate the helicity contributions of the

decay rate we use covariant projectors to work out the various helicity components of the

W boson. It means, instead of the completeness relation:

∑

λ=0,±
εµ(λ)εν?(λ) = −gµν +

pµWp
ν
W

m2
W

, (5.59)

which we already used to calculate the unpolarized differential decay rate, now we use

the following relations to extract the longitudinal, transverse-plus and transverse-minus

helicities:

εµ(0)εν?(0) =
ω

|−→PW |2

(

pµt −
pt.pW
m2
W

pµW

)(

pνt −
pt.pW
m2
W

pνW

)

,

εµ(±)εν?(±) =

1

2

(

− gµν +
pµWp

ν
W

m2
W

− ω

|−→PW |2

(

pµt −
pt.pW
m2
W

pµW

)(

pνt −
pt.pW
m2
W

pνW

)

∓ iεµναβ

mt|
−→
PW |

(pt)α(pW )β

)

,

(5.60)

where ε0123 = 1 and |−→PW |2 = (mt − Eb − Eg)
2 −m2

W .

Now we explain the details of the helicity contributions of the differential decay rate.

Using Eqs.(5.53,5.55) we obtain:

1

Γ′
0

d2ΓReal

dxb d cos θ
= HReal

++ · 3

8
(1 + cos θ)2 +HReal

−− · 3

8
(1 − cos θ)2 +HReal

00 · 3

4
sin2 θ.

(5.61)
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To work out the longitudinal helicity contribution, I used both approaches mentioned above

and the results are exactly the same. After using Eq.(3.25,5.51) this result reads:

HReal
00 =

αS
2π(1 + 2ω)

CF

{δ(1 − xb)

ε2
+

1

ε

(

δ(1 − xb)
[

1 − γE − 2 log(1 − ω) + log
4πµ2

m2
t

]

− 1 + x2
b

(1 − xb)+

)

+δ(1 − xb)

(

1

2

[

− log
4πµ2

m2
t

+ 2 log(1 − ω) + γE
]2 − γE − 2ω

1 − ω
logω − 3ω

1 + 2ω

+2Li2(1 − ω) + log
4πµ2

m2
t

− 2 log(1 − ω) − π2

4

)

+ 2(1 + x2
b)

(

log(1 − xb)

1 − xb

)

+

+

1

(1 − xb)+

(

(1 + x2
b)

[

2 log xb − log
4πµ2

m2
t

+ 2 log(1 − ω) + γE

]

+

2(1 − ω)x3
b +

8ω2 − 4ω − 3

1 + 2ω
x2
b − 2(1 + ω)xb +

1

1 + 2ω

)

−2xb(1 − xb)(2 − xb(1 − ω))2

(1 − ω)x2
b − 4xb + 4

+
2
√
ω

(ω − 1)((1 − ω)x2
b − 4xb + 4)2

(

(1 +
√
ω)2(xb(1 −

√
ω)2 + 2

√
ω)(x2

b(1 − ω) + xb(
√
ω − 3) + 2)2 log(1 − xb(1 −

√
ω)) −

(1 −
√
ω)2(xb(1 +

√
ω)2 − 2

√
ω)(x2

b(1 − ω) − xb(
√
ω + 3) + 2)2 log |1 − xb(1 +

√
ω)|
)

}

.

(5.62)

Our main aim is to calculate the angular distribution of the differential decay rate for the

decay process t→ Xb +W+ followed by W+ → e+ + νe with αS corrections using fixed xb.

Therefore we define:

1

Γ′
0

d2Γ̂

dxb d cos θ
= Ĥ++ · 3

8
(1 + cos θ)2 + Ĥ−− · 3

8
(1 − cos θ)2 + Ĥ00 ·

3

4
sin2 θ. (5.63)

For the contribution of the decay width into a longitudinal W+-boson, we have to sum

up Eq.(5.50) and Eq.(5.62). Therefore we obtain:

Ĥ00 =
1

1 + 2ω
δ(1 − xb) +

αS
2π(1 + 2ω)

CF

{

(−1

ε
+ γE − log 4π)

(

3

2
δ(1 − xb) +

1 + x2
b

(1 − xb)+

)

+ B̂(xb)
}

,

(5.64)
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where,

B̂(xb) =

δ(1 − xb)

(

− 3

2
log

µ2

m2
t

+ 2 logω log(1 − ω) +
2ω

ω − 1
logω + 4Li2(1 − ω) − 2π2

3
− 3

2 + 5ω

1 + 2ω

)

+
1

(1 − xb)+

(

(1 + x2
b)
[

2 log xb − log
µ2

m2
t

+ 2 log(1 − ω)
]

+ 2(1 − ω)x3
b +

8ω2 − 4ω − 3

1 + 2ω
x2
b − 2(1 + ω)xb +

1

1 + 2ω

)

+ 2(1 + x2
b)

(

log(1 − xb)

1 − xb

)

+

−2xb(1 − xb)(2 − xb(1 − ω))2

(1 − ω)x2
b − 4xb + 4

+
2
√
ω

(ω − 1)((1 − ω)x2
b − 4xb + 4)2

(

(1 +
√
ω)2(xb(1 −

√
ω)2 + 2

√
ω)(x2

b(1 − ω) + xb(
√
ω − 3) + 2)2 log(1 − xb(1 −

√
ω)) −

(1 −
√
ω)2(xb(1 +

√
ω)2 − 2

√
ω)(x2

b(1 − ω) − xb(
√
ω + 3) + 2)2 log |1 − xb(1 +

√
ω)|
)

.

(5.65)

According to the explanation expressed in section 3.6, in order to get the MS-subtracted

coefficient function we shall have to subtract from Eq.(5.64) the O(αs) term multiplying the

characteristic MS constant ( 1
ε
− γE + log 4π). The obtained result above after integrating

over xb(0 ≤ xb ≤ 1) can be compared with the result given in [91], see appendix G. To

obtain the result above and to compare with the result given in [91] we used the following

relations between the Spence Functions:

Li2(x
2) = 2

(

Li2(x) + Li2(−x)
)

Li2(1 − x2) =
π2

6
− Li2(x

2) − 2 log x log(1 − x2). (5.66)

Now we use the second approach to calculate the transverse-minus component of the

hadron tensor in the real gluon correction. DefiningR = log(1+(S−1)xb+
√

S(Sx2
b − 2xb + 2)),

T = log(−2S2x3
b + 4Sx2

b − (1 + 3S)xb + 1 + |2Sx2
b − 2xb + 1|

√

S(Sx2
b − 2xb + 2)) and

D = log((1−S)x2
b −xb +1/2+ |2Sx2

b − 2xb +1|/2) and also M = log(2S2x2
b −S(1+2xb)+
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1 − S|2Sx2
b − 2xb + 1|) where S = (1 − ω)/2, we obtain the following results:

HReal
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αS ω

π(1 + 2ω)
CF
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+
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b

√
1 − ω

√
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)
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+
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+
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√
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√
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√
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√
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(5.67)
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After summing up Eq.(5.50) and Eq.(5.67) for the transverse-minus helicity rates we obtain:

Ĥ−− =
2ω

1 + 2ω
δ(1 − xb) +

αSω

π(1 + 2ω)
CF

{

(−1

ε
+ γE − log 4π)

(

3
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1 + x2
b

(1 − xb)+

)

+
Ĉ(xb)

2

}

,

(5.68)

where,

Ĉ(xb) = δ(1 − xb)
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(5.69)

The obtained result above after integrating over xb can be found in appendix G.

As it is seen in Eq.(5.50), the contribution of the transverse-plus helicity in the virtual
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correction vanishes, but in the real gluon correction this contribution is no longer zero. We

used the second approach to calculate this contribution as well. The result reads:

Ĥ++ =

αSω

2π(1 + 2ω)
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+
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(5.70)

These results are in agreement with [91] after integration over xb, see appendix G.

In the calculations above, the factor
−−→
|pW |−n(n = 1, 2, 3) in the mean squared helicity ampli-

tudes makes the phase space integration more difficult than in the unpolarized integration

width and new classes of phase space integrals appear in our calculation. For example

we have the three following terms in the squared helicity amplitude of the transverse-plus
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component of the differential decay rate:

f(xb)

x2
g

√

(1 − Sxb − Sxg)2 − ω
,

g(xb, xg)

(1 − xb − xg)
√

(1 − Sxb − Sxg)2 − ω
,

h(xb)

xg(1 − xb − xg)
√

(1 − Sxb − Sxg)2 − ω
, (5.71)

where f(xb) = x2
b , g(xb, xg) = S(8x2

b + (D+ 2)xbxg + (D− 2)x2
g)/2 and h(xb) = 2Sx3

b . The

first of the above terms includes the soft singularity (when xg → 0) and the second term

includes the collinear singularity as we will explain in detail in the following. According to

Eq.(A.3) and the definition of the b-quark and the gluon energy fraction:

xb =
2Eb

mt(1 − ω)

xg =
2Eg

mt(1 − ω)
,

we obtain: cos θ = (1− xb− xg + 2Sxbxg)/(2Sxbxg) thus 1− cos θ ∝ 1− xb− xg, so that if

θ → 0 then xg → 1−xb. Therefore in the second of the above terms when xg → 1−xb the

collinear singularities will appear. The third of the above terms includes both singularities.

To obtain the contribution of the real gluon correction in the total differential decay width

and to extract all the singularities we have to use the D-dimensional phase space integration

(Eq.(3.30)) replacing the terms above in |MR|2 in Eq.(3.30). But the problem is the solution

of these integrals is very difficult and we could not find a suitable software to calculate

these phase spaces integrals. For this reason we used a trick to work out these integrals.

At first we turn our attention to the first of the terms (5.71). The 4-dimensional integral

over xg(∝ Eg) of this term is divergent because of the factor 1/x2
g. Now our trick is to

subtract an add the term:

f(xb)

x2
g

√

(1 − Sxb)2 − ω
,

to Eq.(5.71), i.e.:

f(xb)

x2
g

√
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=

[

f(xb)

x2
g

√
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− f(xb)

x2
g

√

(1 − Sxb)2 − ω

]

D=4

+
f(xb)

x2
g

√

(1 − Sxb)2 − ω

∣

∣

∣

∣

∣

D 6=4

.

(5.72)
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Then the squared bracket is free of soft singularities and it can be calculated in 4 di-

mensions. This point can be understood by expanding this difference in xg and it will

be obvious that the result is free of 1/x2
g, so that this difference can be calculated in 4

dimensions. The second term in (5.72) can now be solved in D dimensional phase space

by using Mathematica and it gives us all correct singularities.

Now we turn our attention to the second term in Eq.(5.71). If we use the four dimen-

sional phase space for these terms of the squared amplitude, these terms diverge logarith-

mically when integrating over xg in the limit xg → 1 − xb. For these terms we subtract

and add the following term:

g(xb, xg)

(1 − xb − xg)
√

(1 − S)2 − ω
,

to the main term. Therefore their difference (the first bracket in Eq.(5.73)) is free of

collinear singularities and it can be considered in 4-dimensions but the remaining term in

Eq.(5.73) must be solved in D dimensional phase space:

g(xb, xg)

(1 − xb − xg)
√
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=

[
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√

(1 − Sxb − Sxg)2 − ω
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]

D=4

+
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(1 − xb − xg)
√
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∣

∣

∣

∣

∣

D 6=4

.

(5.73)

For the third term in Eq.(5.71), at first we decompose it in the following form:

h(xb)

xg(1 − xb − xg)
√

(1 − Sxb − Sxg)2 − ω
=

1

1 − xb

(

1

xg
+

1

1 − xb − xg

)

h(xb)
√

(1 − Sxb − Sxg)2 − ω
,

and we then use the previous tricks to extract all singularities and to work out the finite

terms. This term creates the singularity proportional to ∝ 1/ε2.
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5.4 Angular Decay Distribution for t→ b+W+(→ e+ +

νe) at NLO Using Fixed xg

To study the angular decay distribution of the cascade decay of the top quark (t →
b + W+(→ e+ + νe)) precisely, we have to specify the angular differential width for the

production of a gluon in the top quark decay with the scaled energy fraction of the gluon

(xg). To calculate these contributions we start with the phase space integral given in

Eq.(3.42) using the b-quark energy range given in Eq.(3.43). As we explained in section

3.7, when the momentum of the real gluon is fixed there will be no soft singularity and

in conclusion there will be no the plus description in our result, because these terms arise

after integration over the real gluon phase space.

Now we intend to calculate the angular distribution of the differential decay rate for the

cascade decay of the top quark with αs corrections using fixed xg. As before, we define:

1

Γ′
0

d2Γ̂

dxg d cos θ
= Î++ · 3

8
(1 + cos θ)2 + Î−− · 3

8
(1 − cos θ)2 + Î00 ·

3

4
sin2 θ, (5.74)

and to work out the helicity contributions we apply the approach explained in the previous

section. Therefore for the longitudinal helicity contribution in the total decay width we

have:

Î00 =
αs

2π(1 + 2ω)
CF
{1 + (1 − xg)

2

xg

(

− 1

ε
+ γE − log 4π

)

+ B̂1(xg)
}

, (5.75)

where,

B̂1(xg) =
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2
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(
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√
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√
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√
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√
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√
ω)|
)

+
1

2(1 + 2ω)(1− (1 − ω)xg)2

(

− (1 − ω)2(1 + 6ω)x3
g + 2(1 − ω)(6ω2 + 19ω + 3)x2

g
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−
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(5.76)
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In order to obtain the the MS-subtracted coefficient function we have to subtract from

Eq.(5.75) the O(αs) term multiplying the characteristic MS constant ( 1
ε
− γE + log 4π).

Considering S = (1−ω)/2 and by defining N = log((1−S)x2
g−xg+|2Sx2

g−2xg+1|/2+1/2)

and F = log(2S2x2
g−S(1+2xg)−S|2Sx2

g− 2xg +1|+1), for the transverse-minus helicity

contribution we have:
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CF
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, (5.77)

where,
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(5.78)

The new logarithms N and F which we used in the obtained result above are the same as

the logarithms D and M which we defined in the previous section, respectively, but the

variable xb is now replaced by xg.

134



For the transverse-plus helicity contribution we also obtain:

Î++ =
αsω

π(1 + 2ω)
CF

{F

2

(

xg −
2

1 − ω
− 2

ω2 − 3ω − 1

xg(1 − ω)2
+ 8

ω

x2
g(ω − 1)3

)

+
1

2x2
g(1 − ω)3

√
ω

(

(xg(
√
ω + 1) − 1)2(xg(

√
ω + 1)2 − 2)(1 −

√
ω)4 log |1 − xg(1 +

√
ω)|

−(xg(
√
ω − 1) + 1)2(xg(

√
ω − 1)2 − 2)(1 +

√
ω)4 log(1 − xg(1 −

√
ω))

)

−

(xg
2

+
1

ω − 1
− ω2 − 3ω − 1

xg(1 − ω)2
+ 4

ω

x2
g(ω − 1)3

)

logω +
1 + (1 − xg)

2

2xg
N +

(

− xg −
1

1 − ω
+

5

xg(1 − ω)2
+

4

x2
g(ω − 1)3

)

log(1 − (1 − ω)xg)

−
|(1 − ω)x2

g − 2xg + 1|
4(1 − (1 − ω)xg)2

(

− (1 − ω)xg + 2(ω + 2) − 7
1 + ω

xg(1 − ω)
+ 4

1 + ω

x2
g(1 − ω)2

)

+
1

4(1 − (1 − ω)xg)2

(

3(1 − ω)2x3
g − 2(1 − ω)(7 − ω)x2

g + 2(2ω2 − 5ω + 12)xg +

2
−5ω2 + 8ω − 7

1 − ω
− 11ω + 3

xg(1 − ω)
+ 4

1 + ω

x2
g(1 − ω)2

)

}

.

(5.79)

It is simple to show that after integrating over cos θ in Eq.(5.74) we will obtain Eq.(3.46). As

we pointed out, in the calculations above we only deal with the collinear singularities and to

extract these singularities we have to work at D-dimensions like before. In calculation of the

transverse-plus and the transverse-minus helicity contributions the phase space integrals

include terms like the second term given in Eq.(5.71) which are not calculable simply.

Therefore we used the trick which was explained in the last part of the previous section.

In the next section we will study the numerical results for the helicity contributions of the

top quark decay width and we shall make some predictions about the energy distribution

of the B-hadron produced in each helicity of the W+-boson in the top quark decay.

5.5 Numerical Results

In the last two sections we calculated the angular distribution of the differential decay width

to produce a b-quark or a gluon in the cascade decay process t→ b+W +(→ e+ + νe). In

Eqs.(5.63,5.74) we showed that the differential decay widths can be written in the following
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forms:

1

Γ′
0

d2Γ̂

dxb d cos θ
= Ĥ++ · 3

8
(1 + cos θ)2 + Ĥ−− · 3

8
(1 − cos θ)2 + Ĥ00 ·

3

4
sin2 θ, (5.80)

and,

1

Γ′
0

d2Γ̂

dxg d cos θ
= Î++ · 3

8
(1 + cos θ)2 + Î−− · 3

8
(1 − cos θ)2 + Î00 ·

3

4
sin2 θ, (5.81)

where Ĥ++(Î+), Ĥ−−(Î−−) and Ĥ00(Î00) stand for the transverse-plus and the transverse-

minus and the longitudinal helicity components of the differential decay rate, respectively.

These components are given in Eqs(5.64,5.68,5.70,5.75,5.77,5.79). As we already defined,

the angle θ denotes the polar angle between the W+ momentum direction and the outgoing

positron (see Fig.5.7). In our calculations the b-quark is considered a massless parton from

the beginning.

It is simple to show that after integrating over cos θ (−1 ≤ cos θ ≤ 1) in Eq.(5.80) and

Eq.(5.81) we obtain Eq.(3.38) and Eq.(3.46) where the W+-boson was considered an un-

polarized particle from the beginning.

Now we are in the situation to make predictions about the energy distribution of the

B-hadron produced in each case of helicity of the W+-boson in the top quark decay. To

make the predictions we use the ZM-VFNS scheme which was explained in section 4.8.2.

In Fig.5.8, considering the helicity components of the W+-boson we depict the differential

decay rate of inclusive B-hadron production in top decay at
√
s = mt using the Peterson

model. As it is seen the contribution of the transverse-plus helicity is tiny and to make

this more obvious we plot it in Fig.5.9. As we pointed out in section 5.2, assuming mb = 0

from the beginning the contribution of the transverse-plus helicity of the W+-boson in the

differential decay rate is zero at the leading order (LO) calculation of the differential decay

width. In Fig.5.8 we can also see that for each xB the sum of the contributions of the

individual helicity components of the W+-boson is equal to the total value which we got

from the calculation of unpolarized W+-boson. In the following we will discuss numerical

results for additional interesting quantities. As before, we set mt = 174 GeV and mW = 80

GeV and for the strong coupling constant we use αs(mt) = 0.1071 which was evolved from
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αs(mZ) = 0.1181 (see section 2.1.4), therefore one has:

∫ 1

0

dxb Ĥ00 = 0.635937,

∫ 1

0

dxb Ĥ−− = 0.277517,

∫ 1

0

dxb Ĥ++ = 0.000928,

(5.82)

see appendix G. Considering the above results, Eq.(5.80) after integrating over xb can be

written as:

F (cos θ) =
1

Γ′
0

dΓ̂

d cos θ
= 0.000348(1 + cos θ)2 + 0.104069(1 − cos θ)2 + 0.476953 sin2 θ.

(5.83)

So that we can calculate the following quantities:

∫ 1

−1

d cos θ F (cos θ) = 0.9143,

∫ 1

−1

d cos θ F (cos θ) cos θ = −0.1383,

∫ 1

−1

d cos θ F (cos θ) cos2 θ = 0.2386.

(5.84)

We close this discussion by stating that we have presented results on the O(αs) radiative

corrections to the three helicity rates in unpolarized top quark decay which can be deter-

mined from doing an angular analysis on the decay products or from an analysis of the

shape of the lepton spectrum. The radiative corrections to the unpolarized transverse-

minus and longitudinal rates are sizable and the radiative correction to the transverse-plus

rate is very small.
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Figure 5.8: Comparison of the NLO contributions of the longitudinal and the transverse-

minus and the transverse-plus helicity of the W+-boson in the B-hadron energy distribution

using the Peterson model. The solid line shows the summation of all helicity contributions.

The initial factorization scale is µ0 = 10.0 GeV and the b-quark is considered to be massless.
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Figure 5.9: The NLO contributions of the transverse-plus helicity of the W+-boson in the

B-hadron energy distribution using the Peterson model.
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Chapter 6

Summary and Conclusions

To perform accurate studies of the top-quark properties and a precise measurement of its

mass at the Tevatron accelerator and, in future, at the LHC and at the Linear Collider,

a reliable description of the b-quark fragmentation in top quark decay, t → bW , will be

necessary. As shown in [94], the b-fragmentation is one of the sources of uncertainty in the

top mass measurement at the Tevatron.

In this work we calculated the normalized differential decay rate of production of a b-quark

in top decay ( 1
Γ0

dΓ
dxb

). It can be observed that one has:

1

σ

dσ

dxb
=

1

Γ

dΓ

dxb
,

where 1
σ
dσ
dxb

is the normalized differential cross-section for the production of a b quark with

energy fraction xb from decay of t-quarks, independently of the production mechanism.

Our result will then be applicable to pp (Tevatron), pp (LHC) or e−e+ (Linear Colider)

collisions.

In this thesis, at first, we discussed the b-quark fragmentation in top decay in NLO QCD

using the perturbative fragmentation method, which resums large logarithms ∼ log(
m2

t

m2
b

)

appearing in the fixed-order massive calculation. We compared the NLO differential decay

rate of top decay with respect to the energy fraction of b-quark (xb) for a massless b- and a

massive b-quark, but neglecting contributions proportional to powers of the ratio mb

mt
. The

obtained subtraction term from the difference of them is consistent with the expression of

the initial condition for the b-quark perturbative FF, Eq.(4.30). We then compared the

results for the distribution of the b-quark energy fraction both in the fixed-order approach

and in the perturbative FF approach, see Fig.4.4. We found that the perturbative FF
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approach has a remarkable effect on the parton level distribution, especially when xb ap-

proaches unity.

In the next step we studied and made theoretical predictions for the energy distributions

of b-flavored hadron in top decay using the two of most important hadronization models.

We used the B-meson FFs [72, 85] fitted by the e−e+ data from ALEPH, OPAL and SLD

in two different initial scales of factorization: µ0 = mb = 4.5 GeV and µ0 = 2mb = 10

GeV. According to the factorization theorem, the universality of the obtained B-meson

FFs from e−e+ collision are guaranteed and we used them in the non-perturbative part of

the hinted hadronization process.

In this work, we applied the QCD improved parton model within two distinct approaches,

the ZM-VFNS and GM-VFNS. We used them and compared the results obtained from

these schemes. In [72, 75], it is shown that the ZM-VFNS predictions are found to agree

with the CDF data from Tevatron runs IA and I [96]. The necessary condition to use

the ZM-VFNS is that the energy scale, separating perturbative hard scattering and non-

perturbative fragmentation (final state factorization scale µF ), should be sufficiently large

in comparison with the b-quark mass. It was really in our calculation (mt � mb). We also

obtained the b → B branching fraction and the average energy fraction that the B meson

receives from the b quark using the S and P models within the different initial scales. The

results are approximately same and they are in good agreement with experimental data

as we expect. The results should be independent of the chosen initial scales. It will be

interesting to use the present approach to perform predictions of other observable relying

on the b-fragmentation in top decay, such as invariant mass distribution used in [95] to

fit the top mass value. We also made the theoretical predictions to produce some other

hadrons such as: π±, p/p and K± in fragmenting the b-quark obtained in top quark decay

where we applied the AKK [87] extraction of fragmentation functions for π±, p/p and K±

particles at NLO. We also investigated the B-hadron mass effect on the energy distribution

of the B-hadron using the improved factorization formula.

In the last chapter we studied the helicity contributions of W+-boson in the top quark

decay. We showed that the contribution of the transverse-plus helicity of the W +-boson

is negligible in the top quark decay and most produced charged leptons in the W+-boson

decay are due to a W+-boson with a longitudinal or transverse-minus helicity. We also

made the theoretical prediction for the energy distributions of b-flavored hadron in unpo-

larized top decay considering the polarized W+-boson. It will be interesting to study these
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contributions in NNLO QCD.
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Appendix A

Phase Space for Top Decay at NLO

In this appendix we intend to explain about the differential decay rate formula of the

three particles top decay (t→ bWg) in D space-time dimensions. The mass of interacting

particles are labeled by mW , mt and mb for the W+-boson, t- and b-quark.

For the real correction contributions to the differential decay rate (dΓR), one has:

dΓR =
µ2(4−D)

2mt

dD−1pW
(2π)D−12EW

dD−1pg
(2π)D−12Eg

dD−1pb
(2π)D−12Eb

(2π)DδD(pt − pW − pg − pb) × |MR|2

=
µ2(4−D)

2mt
|MR|2dPS(pt, pb, pg, pW ), (A.1)

where the matrix element |MR|2 is given in Eqs.(3.27,3.29,3.32,3.35) and the phase space

element dPS is defined as:

dPS =
dD−1pW

(2π)D−12EW

dD−1pg
(2π)D−12Eg

dD−1pb
(2π)D−12Eb

(2π)DδD(pt − pW − pg − pb).

To simplify our calculations, we choose the pt-rest frame where −→p = 0. We also select the Z-

axis in the direction of the momentum vector of the b-quark (−→pb ). Considering the massless

b-quark the momentum vectors of incoming and outgoing particles in D-dimensions wil be:

pµt = (mt,~0) = (mt, 0, 0, · · · , 0) pµb = (Eb, 0, 0, · · · , Eb) pµW = (EW ,
−→pW )

pµg = (Eg, 0, 0, · · · , Eg sin θgb sinφgb, Eg sin θgb cosφgb, Eg cos θgb),

where |−→pb | = Eb and |−→pg | = Eg and θgb is the scattering angle between the gluon and the

b-quark, from now on we denote as θ.
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In D-dimension we can also write:

dD−1pg = |−→pg |D−2d|−→pg |dΩg where dΩg =
2πD/2−1

Γ[D/2 − 1]
sinD−3 θdθ,

dD−1pb = |−→pb |D−2d|−→pb |dΩb where

∫

dΩb =
2π

D−1
2

Γ[D−1
2

]
,

and
∫

dD−1pW δ
D(pt − pW − pb − pg) = δ(mt − EW − Eb − Eg).

Therefore the Phase Space element reads:

dPS =
π

3
2
−D

22D−2

(EgEb)
D−4

Γ[D
2
− 1]Γ[D−1

2
]
δ(cos θ − a) sinD−3 θdθdEgdEb, (A.2)

where,

a =
2EgEb +m2

t −m2
W − 2mtEg − 2mtEb

2EgEb
. (A.3)

Therefore the differential decay rate for the three particle decay can be written as:

dΓ̂

dxb
= 24−3Dπ

3
2
−Dµ2(4−D)

∫

dEg d cos θ δ(cos θ − a)
(1 − ω)D−3

Γ[D
2
− 1]Γ[D−1

2
]

×(Egmtxb)
D−4(1 − cos2 θ)

D−4
2 × |MR|2, (A.4)

where xb is the normalized b-quark energy fraction as already defined in section 3.1.
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Appendix B

Determination of energy variations

range of b-quark and gluon in top

decay

Kinematically a decay process p → p1 + p2 + p3 (Fig.B.1) depends on two independent

variables. It can be also related by crossing to 2 → 2(e.g. p + p1 → p2 + p3) although in

both considerations the number of invariant variables must be the same. Our main aim in

this appendix is to determine values of these variables. To be obvious, at first we explain

the notion of the invariant and non-invariant variables in the process 1 → 3.

Figure B.1: Three-particle decay p→ p1 + p2 + p3 with invariant variables S1 and S2
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B.1 Invariant Variables

As in 2 → 2 scattering, it is suitable to choose s, t and u as invariant variables. This

quantities are positive in the decay channel and we take the following form for them:

s1 = (p1 + p2)
2 = (p− p3)

2,

s2 = (p2 + p3)
2 = (p− p1)

2,

s3 = (p1 + p3)
2 = (p− p2)

2.

The value of these variables would be the same in each selected frame.

B.2 Non-invariant Variables

In the process 1 → 3 (Fig.B.1) non-invariant variables are three-momenta of outgoing

particles and angels and the value of these variables depend on the chosen frame. To

define these variables one has to specify a specific Lorentz frame. The convenient frame

is the rest frame of the decaying system or overall CMS which is defined as the frame

in which −→p = −→p1 + −→p2 + −→p3 = 0(Fig.B.2). To determine the non-invariant variables

Figure B.2: Rest frame of the decaying system (p=0)

(three momenta) at first we have to specify the physical values of s1 and s2 (or s3). To

determine the values of s1 and s2 (and in conclusion p1 and p2) we apply the method
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introduced in [61]. In this approach we consider the basic four-particle kinematic function

G(s1, s2, s,m
2
2, m

2
1, m

2
3)(Nyborg, 1965a), with the following definition:

G(x, y, z, u, v, w) = x2y+xy2+z2u+zu2+v2w+vw2+xzw+xuv+vyz−wyz+yzw+yuw−

xy(z + u+ w + v) − zu(x + y + v + w) − vw(x+ y + z + u).

This function satisfies the following condition:

G(s1, s2, s,m
2
2, m

2
1, m

2
3) ≤ 0.

To see more details refer to [61].

To determine the energy variations range of the gluon and the b-quark in the top decay

we have to solve the equation above. Here we consider the special values of masses as we

have in our calculation:

B.3 Two Masses Vanish

If we consider the massless b-quark in the top decay therefore in the pt−rest frame we have

to solve the following equation:

G(m2
t − 2mtEg, m

2
t − 2mtEb, m

2
t , m

2
W , 0, 0) ≤ 0,

where s1 = (pt − pg)
2, s2 = (pt − pb)

2 and s = m2
t . After solving this equation in terms of

Eb or Eg, we obtain:

mt(1 − ω)(1 − xb)

2
≤ Eg ≤

mt(1 − ω)(1 − xb)

2(1 − xb(1 − ω))

and

mt(1 − ω)(1 − xg)

2
≤ Eb ≤

mt(1 − ω)(1 − xg)

2(1 − xg(1 − ω))
.

B.4 One Mass Vanishes

If we consider the massive b-quark in the top decay, therefore the basic four-particle kine-

matic function which has to be solved is:

G(m2
t − 2mtEg, m

2
t +m2

b − 2mtEb, m
2
t , m

2
W , m

2
b , 0) ≤ 0.
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After solving this equation we obtain:

mtS(1 − xb)(1 − Sxb − S
√

x2
b − β2)

1 + b− 2Sxb
≤ Eg ≤

mtS(1 − xb)(1 − Sxb + S
√

x2
b − β2)

1 + b− 2Sxb
,

or in terms of Eb we have:

mtS(1 − xg)

1 − 2Sxg
(1 − Sxg − Sxg

√

1 − Fβ2) ≤ Eb ≤
mtS(1 − xg)

1 − 2Sxg
(1 − Sxg + Sxg

√

1 − Fβ2),

where: F = (1−2Sxg)
(1−xg)2

.
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Appendix C

+-Description
[

f (x)
]

+

The +-description of a function f(x), which is singular at x = 1, is expressed by
[

f(x)
]

+

and the definition of
[

f(x)
]

+
is expressed by:

∫ 1

0

dxg(x)
[

f(x)
]

+
=

∫ 1

0

d xf(x)
[

g(x) − g(1)
]

, (C.1)

where g is a sufficiently regular function, consequently:

∫ 1

0

dx
[

f(x)
]

+
= 0. (C.2)

We can also take the +-description of a function which is singular at x = 0. For example

for the following functions:

1
[

x
]

+

and

[

log(x)

x

]

+

, (C.3)

which are singular at x=0, according to Eq.(C.1) we can write:

∫ 1

0

dx
1

[x]+
g(x) =

∫ 1

0

dx

[

g(x) − g(0)
]

x
, (C.4)

∫ 1

0

dx

[

log(x)

x

]

+

g(x) =

∫ 1

0

dx
log(x)

x

[

g(x) − g(0)
]

. (C.5)

The analytic form of the +−function is written as:

[f(x)]+ = lim
β→0

[∫ 1

0

dxf(x)θ(1 − β) + δ(1 − x− β)

∫ β

0

dyf(y)

]

, (C.6)
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in which θ(x) is step function.

The +-descriptions which appear during the calculation of the real gluon corrections are:

1
[

1 − x
]

+

and

[

log(1 − x)

1 − x

]

+

, (C.7)

which have singularities at x = 1. Using Eq.(C.1) these forms can be written in the

following normal form:

∫ 1

0

dx
1

[1 − x]+
g(x) =

∫ 1

0

dx

[

g(x) − g(1)
]

1 − x
, (C.8)

and,
∫ 1

0

dx

[

log(1 − x)

1 − x

]

+

g(x) =

∫ 1

0

dx
log(1 − x)

1 − x

[

g(x) − g(1)
]

. (C.9)

The plus prescriptions are strictly distributions; for x < 1 they can be thought as the

function itself, i.e.

[f(x)]+ = f(x) for x < 1. (C.10)

Using Eq.(C.1), one can easily prove the following important distributional identities:

[f(x)]+g(x) = f(x)g(x) − (g(1)

∫ 1

0

f(y)dy)δ(1− x),

[f(x)g(x)]+ = [f(x)]+g(x) − (

∫ 1

0

[f(y)]+g(y)dy)δ(1− x),

[f(x)]+g(x) = [f(x)]+g(1) + f(x)(g(x) − g(1)).

(C.11)

As an example, using the above relations, one can write the spiting function P
(0)
qq (x) as:

P (0)
qq (x) = CF

[1 + x2

1 − x

]

+
= CF

( 2

(1 − x)+
− (1 + x) +

3

2
δ(1 − x)

)

. (C.12)

Sometimes, we encounter the integration range which is not from 0 to 1 but from an

arbitrary A < 1 to 1. We introduce a more general +-description [f(x)]A and it satisfies:

∫ 1

A

dx[f(x)]Ag(x) =

∫ 1

A

dxf(x)[g(x) − g(1)], (C.13)

and,
∫ 1

A

dx[f(x)]A = 0. (C.14)
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Now we need to find out the relation between [f(x)]+ and [f(x)]A. Setting

[f(x)]+ = [f(x)]A + Cδ(1 − x), (C.15)

and keeping the principle integration formula Eq.(C.1),we can find out the relevant C.

After some calculation we obtain a general formula for the coefficient C for a [f(x)]A

C = −
∫ A

0

dyf(y). (C.16)

An given example is the following functions:

1

[1 − x]A
and

[

log(1 − x)

1 − x

]

A

. (C.17)

Applying Eqs.(C.15,C.16) or calculating the coefficient C directly keeping the principle

integration, Eq.(C.1), we obtain the following formula:

1

[1 − x]+
=

1

[1 − x]A
+ log(1 − A)δ(1 − x), (C.18)

(C.19)
[

log(1 − x)

1 − x

]

+

=

[

log(1 − x)

1 − x

]

A

+
1

2
log2(1 − A)δ(1 − x). (C.20)
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Appendix D

Calculation of Differential Decay

Rate due to Real Corrections

In this appendix we want to explain about factors of singularities to differential decay

rate and the contribution of the terms in the squared amplitude to the decay width. We

consider two cases. Once the b-quark is considered to be a massless particle in the top

decay process and in the other case the b-quark is considered as a massive particle from

the beginning.

D.1 Massless b-Quark

To simplify our calculation in section 3.5, we classified the terms into |MR|2 to the four

groups. For the first type (Eq.(3.27)) we don’t deal with any singularity and if we plug
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these terms into Eq.(3.25) and integrate over Eg and cos θ we obtain:

dΓ̂Real,1

dxb
=

28επ4ε− 1
2µ2εm1−4ε

t ααs
sin2 θw(1 − xb(1 − ω))−ε

· (1 − xb)
−2ε(1 − ω)−2ε

Γ(1 − 2ε)Γ( 3
2
− ε)

×
{

22επ
1
2 (1 − ω)−2εΓ(1 − 2ε)

Γ(3
2
− ε)(1 − xb(1 − ω))2

·
[−x1−2ε

b

96
(2ε2 − ε− 1)(1 − ω)3 +

x2−2ε
b

192

(

(4ε2 − ε− 3)ω4

+(−20ε2 + 7ε+ 17)ω3 + (36ε2 − 16ε− 36)ω2 + (−28ε2 + 16ε+ 36)ω + (8ε2 − 7ε− 17)

+
1

ω
(ε + 3)

)

+
x3−2ε
b

96

(

(−2ε2 + ε+ 3)ω4 + (8ε2 − 5ε− 15)ω3 + (−12ε2 + 10ε+ 30)ω2 +

(8ε2 − 10ε− 30)ω + (−2ε2 + 5ε+ 15) − 1

ω
(ε+ 3)

)

+
x4−2ε
b

192
(ε + 3)

(1 − ω)5

ω

]

+

(1 − ω)2Γ(1 − ε)

48
2F1[ε, 2ε; 1 + ε; 1 − xb(1 − ω)]

[

2x2
b(1 − ω)

ωε
+ xb

(

− 2ε +
1 + 4ω

ω
− 4

ωε

)

+2ε− 1 + 4ω

ω
+

1 + 2ω

ωε
)

]

+
Γ(1 − ε)(1 − ω)2

12ω(1 + ε)
2F1[ε, 1 + 2ε; 2 + ε; 1 − xb(1 − ω)] ×

[

− (1 − ω)x2
b+ (2 − ω)xb + 1

]

+
Γ(1 − 2ε)Γ(1 + ε)(1 − ω)2

48ω(1− xb(1 − ω))ε

(

− 2(1 − ω)x2
b(

1

ε
− 1)

−(2ω + 7)xb +
3xb
ε

+ 2εωxb − 2εω − 1 + 2ω

ε
+ 4ω + 5

)

}

. (D.1)

Here we can expand the appeared Hypergeometric functions as:

2F1[ε, 2ε; 1 + ε; 1 − xb(1 − ω)] = 1 + O(ε2),

2F1[ε, 2ε + 1; 2 + ε; 1 − xb(1 − ω)] = 1 +
(xb(1 − ω) log(xb(1 − ω))

1 − xb(1 − ω)
+ 1
)

ε + O(ε2).

For the second group (Eq.(3.29)) we obtain:

dΓ̂Real,2

dxb
=

210επ4εµ2εm1−4ε
t ααs

192ω sin2 θw(1 − xb(1 − ω))2−ε ·
(1 − xb)

1−2ε(1 − ω)2−4ε

Γ2(3
2
− ε)

×
{

(1 − ω)3x3−2ε
b

(

ε+
4

ε
− 5
)

+(1 − ω)2x2−2ε
b

(

4ωε2 − (11ω + 5)ε− 2(2ω + 5)

ε
+ 11ω + 19

)

+(1 − ω)x1−2ε
b

(

− 12ωε2 + 2(15ω + 4)ε− 8(ω + 1)

ε
− 2(13ω + 10)

)

+x−2ε
b

(

8ωε2 − 4(1 + 5ω)ε− 2(1 + 2ω)

ε
+ 2(3 + 8ω)

)

}

. (D.2)
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If we expand the result above in ε, we will have the collinear singularity which appears as

the 1
ε
-term in Eq.(3.31).

If we plug the group of third terms (Eg.(3.32)) into Eq.(3.25) we will have:

dΓ̂Real,3

dxb
=

28επ4ε− 1
2µ2εm1−4ε

t ααs
24ω sin2 θw

· (1 − ω)1−2ε

Γ(3
2
− ε)

×
{

(1 − xb)
−1−2ε

[(

x3
b(1 − ω)2 − 2x2

b(1 − ω)(2 − ω)

+xb(ω + 6)(1 − ω) + 2εω(1 − ω)xb + 4εω − 2(ω + 2)

)

Γ(1 + ε) +

(

− 2x3
b(1 − ω)2

−2x2
b(1 − ω)(2ω − 3) − 2xb(1 − ω)(4 + ω) + 4εω(1 − ω)xb − 4εω

+2(2 + ω)

)

Γ(1 − ε)(1 − xb(1 − ω))ε

(1 + ε)Γ(1 − 2ε)
2F1[ε, 1 + 2ε; 2 + ε; 1 − xb(1 − ω)]

]

+(1 − xb)
−2ε

[(

2x2
b(1 − ω)2

ε
+ xb(1 − ω)(2ω − 2 + ω

ε
)

)

Γ(1 + ε) +

(

− 2(1 − ω)x2
b

ε

+
(ω + 2)xb

ε
− 2ωxb

)

(1 − ω)Γ(1 − ε)(1 − xb(1 − ω))ε

(1 + ε)Γ(1 − 2ε)
2F1[ε, 2ε; 1 + ε; 1 − xb(1 − ω)]

]

}

.

(D.3)

The obtained Hypergeometric functions can be expanded in ε as:

2F1[ε, 1 + 2ε; 2 + ε; 1 − xb(1 − ω)] = 1 + ε
(xb(1 − ω) log(xb(1 − ω))

1 − xb(1 − ω)
+ 1
)

+

ε2 xb(1 − ω)

1 − xb(1 − ω)

(

− log2(xb(1 − ω)) + log(xb(1 − ω)) +

2 − xb(1 − ω)

xb(1 − ω)
Li2(1 − xb(1 − ω))

)

+ O(ε3)

2F1[ε, 2ε; 1 + ε; 1 − xb(1 − ω)] = 1 + 2ε2Li2(1 − xb(1 − ω)) + O(ε3).

Obviously, there are terms with the coefficient (1 − xb)
−1−2ε. If we want to integrate over

xb, we will encounter a difficulty in the limit xb → 1. Thus, before integration over xb we

have to apply Eq.(3.33).

To close this discussion we plug the fourth group of terms into the equation for the differ-

ential decay rate and integrate over Eg. Therefore we have both the collinear and the soft
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singularities and we obtain the following result:

dΓ̂Real,4

dxb
=

28επ4ε− 1
2µ2εm1−4ε

t ααs
24ω sin2 θw

· (1 − ω)2−2ε

Γ(3
2
− ε)

(1 − xb)
−1−2ε

{

(

(1 − ω)x3
b

ε
− (2 + ω)x2

b

ε
+ 2ωx2

b

)

Γ(1 + ε)

+

[

(1 − ω)1−2ε

(

− 2(1 − ω)x3−2ε
b

ε
+ (

4 − ω

ε
− 2ω)x2−2ε

b + (−2 + ω

ε
+ 2ω)x1−2ε

b

)

+

(

− 2(1 − ω)2x4
b + 2(1 − ω)(3 + ω)x3

b − 4ω(1 − ω)εx3
b − 2(2 + ω)x2

b + 4ωεx2
b

)

×

2F1[1 + ε, 1 + 2ε; 2 + ε; 1 − xb(1 − ω)]

1 + ε

]

Γ(1 − ε)(1 − xb(1 − ω))ε

Γ(1 − 2ε)Γ( 3
2
− ε)

}

, (D.4)

where the given Hypergeometric function can be expanded in ε as:

2F1[1 + ε, 1 + 2ε; 2 + ε; 1 − xb(1 − ω)] = − log(xb(1 − ω))

1 − xb(1 − ω)
+

ε

1 − xb(1 − ω)

(

log2(xb(1 − ω))

− log(xb(1 − ω)) − Li2(1 − xb(1 − ω))

)

+
ε2

1 − xb(1 − ω)

(

− 2 log3(xb(1 − ω))

3
+

log2(xb(1 − ω)) log(1 − xb(1 − ω)) + log2(xb(1 − ω)) + 2Li2(1 − xb(1 − ω)) log(xb(1 − ω)) −
π2 log(xb(1 − ω))

3
− Li2(1 − xb(1 − ω)) + Li3(1 − xb(1 − ω)) + 2Li3(xb(1 − ω)) − 2ζ(3)

)

+ O(ε3).

This time all terms in Eq.(D.4) have the coefficient (1 − xb)
−1−2ε discussed before, which

we have to treat like the term in the third group according to Eq.(3.33) and then expand

them in ε.

D.2 Massive b-quark

As we already explained in section 4.2.3, when we consider the b-quark as a massive particle

in the top quark decay the only singularities arise from the emission of the soft gluon. In

this case we do not deal with the collinear singularities, this was why we classified the terms

in |M |2 to two groups, section 4.2.3. The first group includes no factor of singularity, for

this reason we would investigate them in 4-dimension phase space. But the terms in the

second group (Eq.(4.23)) have the factor of Eg in their denominators. Therefore when

Eg → 0 (which corresponds to the limit xb → 1), the soft singularity appears. These

singularities are obtained to replace the term (1 − xb)
−1−2ε by the +-function definition.

154



In the following we show them in detail.

dΓ̃Real,2

dxb
=

24ε−2π2ε− 1
2µ4εm1−4ε

t ααs
3ω sin2 θw

· S
1−2ε(1 + b− 2Sxb)

ε

Γ(3
2
− ε)

(1 − xb)
−1−2ε ×

(

2b(1 − S) + S(2S(2 − xb)xb + 2εω − ω − 2)
)

{

(4εxbΓ(ε + 1
2
)√

πε

)

×
(

− (S(xb −
√

x2
b − β2) − 1)−2ε

2F1[2ε, ε; 1 + ε;
1 − S(xb +

√

x2
b − b2)

1 + S(
√

x2
b − β2 − xb)

] +

(S(xb +
√

x2
b − β2) − 1)−2ε

2F1[2ε, ε; 1 + ε;
S(xb −

√

x2
b − β2) − 1

S(
√

x2
b − β2 + xb) − 1

]

−(b + S(
√

x2
b − β2 − xb))

−2ε
2F1[2ε, ε; 1 + ε;

b− S(xb +
√

x2
b − b2)

b+ S(
√

x2
b − β2 − xb)

] +

(b− S(xb +
√

x2
b − β2))−2ε

2F1[2ε, ε; 1 + ε;
b− S(xb −

√

x2
b − b2)

b− S(
√

x2
b − β2 + xb)

]

)

+

((1 + b− 2Sxb)Γ(2 + 2ε)

S(1 + 2ε)Γ(2 + ε)

)

×
(

(S(xb −
√

x2
b − β2) − 1)−2ε−1

2F1[1 + 2ε, ε; 2 + ε;
1 − S(xb +

√

x2
b − b2)

1 + S(
√

x2
b − β2 − xb)

] +

−(S(xb +
√

x2
b − β2) − 1)−2ε−1

2F1[1 + 2ε, ε; 2 + ε;
S(xb −

√

x2
b − β2) − 1

S(
√

x2
b − β2 + xb) − 1

] +

−b(b + S(
√

x2
b − β2 − xb))

−2ε−1
2F1[1 + 2ε, ε; 2 + ε;

b− S(xb +
√

x2
b − b2)

b + S(
√

x2
b − β2 − xb)

] +

b(b− S(xb +
√

x2
b − β2))−2ε−1

2F1[1 + 2ε, ε; 2 + ε;
b− S(xb −

√

x2
b − b2)

b− S(
√

x2
b − β2 + xb)

]

)

}

. (D.5)

After applying the definition of the new +-prescription defined in section 4.2.3, we expand

them in ε and we obtain Eq.(4.24).
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Appendix E

Factorization Theorem in Presence of

Hadron Mass

An interesting aspect of calculating hadron production cross section is the effect of hadron

mass. In this appendix we want to obtain the relevant factorization formula for these cases.

Here we explain two different approaches and show that both yield the same results.

E.0.1 Light Cone Vectors Approach

In section 4.8.3, to calculate the energy distribution of the B-hadron in top decay we used

the following factorization formula, which is true only in the case that the B-hadron and

fragmenting parton are massless:

dΓHad(xB, mt, mW , mb) =
∑

i=b,g

∫ 1

xB

dz dΓ̂i(
xB
z
,mt, mi, mW , µ

2)DB
i (z, µ2), (E.1)

in which the normalized variables were defined as: z = 2pt.q
s(1+b−ω)

and xB = 2pt.pB

s(1+b−ω)
with

s = m2
t and q stands for the momentum of the partons(the b-quark and the real gluon in

our calculation).

In top quark decay, choosing the top quark rest frame and taking the z-axis to be in the

direction of the fragmenting parton, the momenta read:

pµt = (mt,
−→
0 ) qµ = (q0, 0, 0, q0) pµB = (p0

B, 0, 0, p
0
B). (E.2)

Now to incorporate the effects of the B-hadron mass it is useful to work with light cone

coordinates, in which any 4-vectors V is written in the form V µ = (V +, V −,
−→
VT ) with
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V ± = (1/
√

2)(V 0 ± V 3) and
−→
VT = (V 1, V 2) instead of the normal four vectors V µ =

(V 0, V 1, V 2, V 3), [97]. In this new coordinates it can easily be verified that Lorentz invariant

scalar products have the form:

V ·W = V +W− + V −W+ −−→
VT · −→WT

V · V = 2V +V − − V 2
T . (E.3)

Therefore, in these coordinates the light cone four vectors of Eq.(E.2) read:

pµt = (p+
t , p

−
t ,

−→
0 ) = (

mt√
2
,
mt√

2
,
−→
0 )

qµ = (q+, 0,
−→
0 ) = (

√
2 q0, 0,

−→
0 )

pµB = (p+
B, 0,

−→
0 ) = (

√
2 p0

B, 0,
−→
0 ), (E.4)

for example, s = p2
t = 2p+

t p
−
t .

From now on, we use the light cone variables η = 2pt · pB/s = p+
B/p

+
t and k = 2pt · q/s =

q+/p+
t . For incorporating the effects of parton mass and the B-hadron mass the variable

k and the scaling variable η are more convenient than z and xB, respectively. Although

in the absence of hadron mass and parton mass they are identical to xB and z except for

the coefficient (1 + b − ω) in the denominators of xB and z. Now we verify the effects

of hadron mass and parton mass in the differential decay rate of the top quark using the

factorization formula.

In light cone coordinates the fundamental factorization formula reads:

dΓB(η,mt, mW , mb) =
∑

i

∫ 1

η

dk dΓi(
η

k
,mt, mi, mW , µ

2)DB
i (k, µ2), (E.5)

where the variables η and k are defined in light cone coordinates. With η = p+
B/p

+
t and

y = η/k = p+
B/q

+ in the presence of the B-hadron mass and parton mass, the momenta

take the following form:

pµt = (p+
t , p

−
t ,

−→
0 ) = (

mt√
2
,
mt√

2
,
−→
0 )

qµ = (q+, q−,
−→
0 ) = (

mt η√
2 y

,
y m2

q√
2 mtη

,
−→
0 )

pµB = (p+
B, p

−
B,

−→
0 ) = (

mt√
2
η,

m2
B√

2 mtη
,
−→
0 ). (E.6)
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Now to obtain the differential decay rate to produce the B-hadron from top quark decay

we use the factorization formula in light cone coordinates, Eq.(E.5). Using k = η/y we

have:

1

Γ0

dΓB(η,mt, mb, mW )

dη
=
∑

i=b,g

∫ 1

η

dy

y
(

1

Γ0

dΓi(y,mt, mi, mW , µ
2)

dy
)DB

i (
η

y
, µ2). (E.7)

The energy fraction and the observable measured in experiments are given by xB = 2pB0 /mt

and 1/Γ0(dΓ
B/dxB), respectively. Therefore we have to specify the relation between the

two scaling variables xB and η in the presence of the hadron mass. With respect to the mo-

mentum four vectors of the B-hadron in light cone coordinates, pµB = ((p0
B+|−→pB|)/

√
2, (p0

B−
|−→pB|)/

√
2,
−→
0 ), and comparing with Eq.(E.6) we obtain:

pB0 =
mt η

2
(1 +

m2
B

m2
t η

2
)

|−→pB| =
mt η

2
(1 − m2

B

m2
t η

2
). (E.8)

Using pB0 = (mtxB)/2, thus:

η(xB) =
xB
2

(

1 +

√

1 − 4m2
B

m2
t x

2
B

)

, (E.9)

so that Eq.(E.7) is now related to the measured observable 1/Γ0(dΓ/dxB) via:

1

Γ0

dΓB(xB, mt, mb, mW )

dxB
= (

1

Γ0

dΓB(η(xB), mt, mb, mW )

dη
)
dη(xB)

dxB
, (E.10)

where dη(xB)/dxB = (1−m2
B/(mtη(xB))2)−1 = (1+

√

1 − 4m2
B/(m

2
tx

2
B))/(2

√

1 − 4m2
B/(m

2
tx

2
B)).

The final result reads:

1

Γ0

dΓ

dxB
(xB, mt, mb, mW ) =

1

1 − m2
B

m2
t η

2(xB)

∑

i=b,g

∫ 1

η(xB)

dy

y

( 1

Γ0

dΓi
dy

(y,mt, mi, mW , µ
2)
)

DB
i (
η(xB)

y
, µ2).

(E.11)

Therefore in the presence of the B-hadron mass the general form of the factorization formula

is preserved except for a global factor. Note the two variables xB and η in Eq.(E.9) are

approximately equal when mB << mtxB, i.e. hadron mass effects can not be neglected

when xB is too small.
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E.0.2 Phase Space Approach

In the second approach we verify the previous result by finding the relation between the

phase spaces of the B-hadron and the parton. As before we work in the top quark rest

frame. To extract the relation between the B-hadron and parton phase space we now define

y = (p0
B + |−→pB|)/(q0 + |−→q |), k = (q0 + |−→q |)/mt and y = η/k, therefore:

p0
B + |−→pB| = y(q0 + |−→q |) ⇒ dp0

B

dq0
=

|−→pB|
|−→q | . (E.12)

We are working in the rest frame where the fragmenting parton momentum (−→q ) is parallel

to −→pB thus dΩB = dΩq = dΩ. Since d3pB = |−→pB|2 d|−→pB|dΩ we have:

d3pB
p0
B

=
d3q

q0
× |−→pB|2

|−→q |2 . (E.13)

Now with respect to the following relations:















p0
B + |−→pB| = mtyk

=⇒ |−→pB| = mtyk
2

(1 − m2
B

m2
t y

2k2 ),

p0
B

2 − |−→pB|2 = m2
B ⇒ p0

B − |−→pB| =
m2

B

mtyk

(E.14)

and














q0 + |−→q | = mtk |−→q | = mtk
2

(1 − m2
q

m2
tk

2 )

=⇒
q02 − |−→q |2 = m2

q ⇒ q0 − |−→q | =
m2

q

mtk
q0 = mtk

2
(1 +

m2
q

m2
tk

2 ),

(E.15)

Eq.(E.13) is simplified to:

d3pB
p0
B

=
d3q

q0
× y2 ×

(1 − m2
B

m2
t y

2k2 )
2

(1 − m2
q

m2
tk

2 )2
. (E.16)

Now to incorporate hadron mass effects, we use the general form of the factorization

theorem,

dΓB(η,mt, mW , mb) =
∑

i=b,g

∫ 1

η

dk dΓi(
η

k
,mt, mW , mi, µ

2)DB
i (k, µ2). (E.17)
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As the partonic differential decay rate d3Γ is proportional to |M |2d3q/q0, the hadronic

differential decay rate can be written as:

d3ΓB

dp3
B

=
∑

i=b,g

∫ 1

η

dk (
d3Γi(

η
k
, mt, mW , mi, µ

2)

dq3
)(
d3q

d3pB
)DB

i (k, µ2)

⇒ d2Γ

|−→pB|2d|−→pB|dΩB
=
∑

i=b,g

∫ 1

η

dk (
d2Γi(

η
k
, mt, mW , mi, µ

2)

|−→q |2d|−→q |dΩq
)(
d3q

d3pB
)DB

i (k, µ2),

(E.18)

where d3q/d3pB is given in Eq.(E.16) and from Eq.(E.15) it can be easily shown that

d|−→q | = q0(dk/k). Now we define the experimentally measured variable xB = (2p0
B)/

√
s =

(2p0
B)/mt therefore |−→pB| = (mtxB/2)

√

1 − 4m2
B/(m

2
tx

2
B) and d|−→pB| = m2

txBdxB/(4|−→pB|).
Now Eq.(E.18) is simplified to:

dΓB(xB, mt, mb, mW )

dxB
=

1

1 − m2
B

m2
t η

2(xB)

∑

i=b,g

∫ 1

η(xB)

dy

y
(
dΓi(y,mt, mi, mW , µ

2)

dy
)DB

i (
η(xB)

y
, µ2),

(E.19)

where η(xB) = xB(1 +
√

1 − 4m2
B/(mtxB)2)/2. The advantage of our definition of the

variables is that we again get the same factorization formula (Eq.(E.11)).

In Chapters 3 and 4 we calculated the partonic decay rate by defining the variables

z = 2q0/(mt(1 + b− ω)), xB = 2p0
B/(mt(1 + b− ω)). Now to simplify more, we define the

new scaling variables z = 2q0/mt, xB = 2p0
B/mt which would be divided by the coefficient

1 + b − ω, later. Defining these new variables if we want to make use of the previous

results for the differential decay rate calculated in Chapters 3 and 4, we have to specify

the relations between the new (z, xB) and old (k, η) variables and express the new form of

the factorization formula for this case. We now define yB = p0
B/q

0 and we start from the

definition of the variable y and obtain:

y =
p0
B + |−→pB|
q0 + |−→q | ⇒ y = yB

1 +
√

1 − 4m2
B

m2
tx

2
B

1 +

√

1 − 4m2
qy

2
B

m2
tx

2
B

.

(E.20)

Therefore it is simple to show that:

dyB
yB

=
dy

y
× (

√

1 −
4m2

qy
2
B

m2
tx

2
B

). (E.21)
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We can also show that the relation between the phase space of the B-hadron and partons

is now expressed via the following expression instead of Eq.(E.16):

d3pB
p0
B

=
d3q

q0
× y2

B ×

√

1 − 4m2
B

m2
tx

2
B

√

1 − 4m2
qy

2
B

m2
tx

2
B

. (E.22)

From Eq.(E.21) the previous partonic differential decay rate in Eq.(E.19) is now expressed

as:

dΓi(y,mt, mW , mi, µ
2)

dy
=

dΓi(yB(y), mt, mW , mi, µ
2)

dyB
× dyB

dy

=
dΓi(yB(y), mt, mW , mi, µ

2)

dyB
×

(1 +
√

1 − 4m2
i y

2
B

m2
tx

2
B

)
√

1 − 4m2
i y

2
B

m2
tx

2
B

1 +
√

1 − 4m2
B

m2
t x

2
B

.

(E.23)

In Eq.(E.22) mq stands for the mass of the fragmenting parton that from Eq.(E.23) on, we

label it by mi.

Considering the equation above, the result E.19 is now converted to:

dΓB(xB, mt, mb, mW )

dxB
=

1

1 − m2
B

m2
t η

2(xB)

×

∑

i=b,g

∫ yB,max(xB)

yB,min(xB )

dyB
yB

(
dΓi(yB(y), mt, mi, mW , µ

2)

dyB
)DB

i (
η(xB)

y(yB)
, µ2)

1 +
√

1 − 4m2
i y

2
B

m2
tx

2
B

1 +
√

1 − 4m2
B

m2
tx

2
B

.

(E.24)

Therefore to calculate the differential decay rate for producting the massive B-hadron from

top quark decay considering massive partons we have to use the following formula:

dΓB(xB, mt, mb, mW )

dxB
=

1
√

1 − 4m2
B

m2
tx

2
B

×

∑

i=b,g

∫ yB,max(xB)

yB,min(xB )

dyB
yB

[

(
dΓi(yB(y), mt, mi, mW , µ

2)

dyB
)DB

i (
η(xB)

y(yB)
, µ2)

1

2
(1 +

√

1 − 4m2
i y

2
B

m2
tx

2
B

)

]

,

(E.25)

where,

DB
i (
η(xB)

y(yB)
) = DB

i (
xB
yB

× 1

2
(1 +

√

1 − 4m2
i y

2
B

m2
tx

2
B

)). (E.26)
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Solving Eq.(E.20) we obtain the integration bounds:

yB =
2Ay

A2 +
4m2

i

m2
tx

2
B

y2
⇒



























yB,max = (1 +
m2

i −m2
B

2m2
B

(1 −
√

1 − 4m2
B

m2
tx

2
B

))−1

yB,min = xB

1+
m2

i

m2
t

,

(E.27)

where A = 1 +
√

1 − 4m2
B

m2
tx

2
B

.
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Appendix F

Rest Frames for Cascade Decay of

t→ Xb +W+(→ e+ + νe)

In this appendix we want to study and find out the connection between the two different

rest frames needed for our calculation in the cascade decay t→ Xb +W+(→ e+ + νe).

As we saw in Eq.(5.18) on the one hand in the covariant approach the invariant LµνHµν =

4(Pb.Pν)(Pt.Pe+) must be evaluated in one particular frame where we choose the top quark

rest frame. On the other hand we want to calculate the angular decay distribution for the

top quark by the polar angle θ, which is measured in the W+ rest frame where the lepton

pair emerges back-to-back, Fig.5.3. The two desired rest frames are shown in Fig.F.1. In

the top quark rest frame the four vectors of momenta are written as:

P ?,µ
t = mt(1; 0, 0, 0)

P ?,µ
b = mt(S; 0, 0,−Q)

P ?,µ
W =

mt

2
(1 − b+ ω; 0, 0, 2Q)

P ?,µ
e = (E?

e ;A, 0, B), (F.1)

and in the W+-boson rest frame the four vectors of momenta needed, are:

PR,µ
e =

mW

2
(1; sin θR, 0, cos θR)

PR,µ
ν =

mW

2
(1;− sin θR, 0,− cos θR)

PR,µ
b = (Eb; 0, 0, |−→pb |). (F.2)

To calculate the P ?,µ
e and P ?,µ

ν four vectors we consider two invariant variables (Pb+Pν)
2

and (Pb+Pe)
2 and calculate them in the two rest frames mentioned above and by comparing
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Figure F.1: Rest frame of the decaying system (pt = 0) and the system formed by the

particles e+ and νe

them we extract our parameters. In the following we show the details of calculation:

(P ?,µ
b + P ?,µ

ν )2 = m2
t − 2 mt E

?
e ; in t-quark rest frame,

(PR,µ
b + PR,µ

ν )2 = m2
t

(

S +Q cos θR
)

; in W-rest frame. (F.3)

We have to pay attention to the point that the angle θ defined in Fig.5.3 is different to

the angle θR in Fig.F.1. We have to exchange the angle θR with θ as: θR → π − θ. Then

Eq.(F.3) yields:

E?
e =

mt

2
(
1 − b + ω

2
+Q cos θ). (F.4)

In the next step we consider the invariant variable (Pb + Pe)
2 in the two rest frames:

(P ?,µ
b + P ?,µ

e )2 = m2
t

(

b +
2B Q

mt
+ S(

1 − b+ ω

2
+Q cos θ)

)

; in the t-quark rest frame,

(PR,µ
b + PR,µ

e )2 = m2
t

(

S +Q cos θ
)

; in the W-rest frame.

(F.5)

After comparing them we have: B = mt(Q + (1 − b + ω)/2 cos θ)/2. Since the positron

is considered massless (P 2
e+ = 0) we obtain A = mW/2 · sin θ. Therefore in the top quark

rest frame for the positron momentum four-vector we have:

P ?,µ
e =

mt

2
(
1 − b + ω

2
+Q cos θ;

√
ω sin θ, 0, Q+

1 − b + ω

2
cos θ). (F.6)

For the electron-nutrino momentum four-vector we have:

P ?,µ
ν = P ?,µ

W − P ?,µ
e =⇒

P ?,µ
ν =

mt

2
(
1 − b + ω

2
−Q cos θ;−

√
ω sin θ, 0, Q− 1 − b + ω

2
cos θ). (F.7)
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Appendix G

Helicity Components of Cascade

Decay Rate of Top Decay

In section 5.3.2 we calculated the angular decay distribution of the cascade decay process

t→ b+W+(→ e+ + νe) and in Eq.(5.63) we showed that the differential decay width can

be written in the following form:

1

Γ′
0

d2Γ̂

dxb d cos θ
= Ĥ++ · 3

8
(1 + cos θ)2 + Ĥ−− · 3

8
(1 − cos θ)2 + Ĥ00 ·

3

4
sin2 θ, (G.1)

where Ĥ++, Ĥ−− and Ĥ00 are the transverse-plus and the transverse-minus and the longi-

tudinal helicity components of the differential decay, respectively. This components were

calculated in Eqs(5.64,5.68,5.70). Now to obtain the individual helicity components of top

decay rate, in Eqs(5.64,5.68,5.70) we have to integrate over xb(0 ≤ xb ≤ 1). We start from

Eq.(5.64), therefore after integrating over xb we obtain the following result:

Γ̂00 =
1

1 + 2ω
+
αS
2π
CF

ω

(1 − ω)2(1 + 2ω)

{(1 − ω)(−4ω2 + 47ω + 5)

2ω
− 2ω2 + 5ω + 1

ω

2π2

3
+

8(1 + 2ω) logω − 3(1 − ω)2

ω
log(1 − ω) − (1 −

√
ω)2ω

3
2 + 6ω −√

ω + 2

ω
log(1 −

√
ω) logω

−(1 +
√
ω)2−ω

3
2 + 6ω +

√
ω + 2

ω
log(1 +

√
ω) logω

−2(1 −
√
ω)2ω

3
2 + 8ω + 3

√
ω + 4

ω
Li2(

√
ω) − 2(1 +

√
ω)2−ω

3
2 + 8ω − 3

√
ω + 4

ω
Li2(−

√
ω)
}

,

(G.2)

where we defined Γ̂00 =
∫ 1

0
dxb Ĥ00. This result is in good agreement with [91] where the

authors defined Γ̂L = Γ̂00.
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Now we turn our attention to Eq.(5.68). After integrating over xb the result reads:

Γ̂−− =
2ω

1 + 2ω
+
αS
2π
CF

ω

(1 − ω)2(1 + 2ω)

{

− 1

2
(1 −

√
ω)(ω

3
2 − 7ω + 33

√
ω + 13) +

−2ω2 + 4ω + 3

3
π2 − 2(1 − ω)(1 − 4ω)

ω
log(1 +

√
ω) − 2(1 − ω)2(1 + 2ω)

ω
log(1 −

√
ω)

−(−2ω2 + 7ω + 5) logω − (1 −√
ω)2

2
√
ω

(4ω
3
2 + 7ω + 5) logω log(1 −

√
ω) +

(1 +
√
ω)2

2
√
ω

(−4ω
3
2 + 7ω + 5) logω log(1 +

√
ω) −

12ω
5
2 − ω2 − 26ω

3
2 + 12ω − 2

√
ω + 5√

ω
Li2(

√
ω) +

−4ω
5
2 − ω2 + 6ω

3
2 + 12ω + 2

√
ω + 5√

ω
Li2(−

√
ω)
}

.

(G.3)

As before we defined Γ̂−− =
∫ 1

0
dxb Ĥ−−.

Now for the contribution of the transverse-plus helicity to the top quark decay rate,

Eq.(5.70) after integrating over xb reads:

Γ̂++ =
αS
2π
CF

ω

(1 − ω)2(1 + 2ω)

{

− 1

2
(1 −

√
ω)(ω

3
2 + 9ω + 5

√
ω + 25) +

(−2ω2 + 6ω + 7)π2

3

−(−2ω2 + 7ω + 5) logω − 2(2ω2 − 7ω + 5) log(1 +
√
ω) −

(1 −√
ω)2

2
√
ω

(4ω
3
2 + 7ω + 5) logω log(1 −

√
ω) +

(1 +
√
ω)2

2
√
ω

(−4ω
3
2 + 7ω + 5) logω log(1 +

√
ω) −

+
4ω

5
2 − ω2 − 10ω

3
2 + 12ω − 10

√
ω + 5√

ω
Li2(

√
ω)

−12ω
5
2 − ω2 + 30ω

3
2 + 12ω + 10

√
ω + 5√

ω
Li2(−

√
ω)
}

,

(G.4)

where we defined Γ̂++ =
∫ 1

0
dxb Ĥ++. This result is in perfect agreement with [91]. We
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can also show that Eq.(3.38) after integrating over xb reads:

Γ̂ = 1 +
αS
2π
CF

ω

(1 − ω)2(1 + 2ω)

{(1 − ω)(−6ω2 + 9ω + 5)

2ω
− 2(−2ω2 − ω + 1) logω −

(1 − ω)2(5 + 4ω)

ω
log(1 − ω) − 2

(1 − ω)2(1 + 2ω)

ω

(

logω log(1 − ω) +
π2

3

)

−8
(1 − ω)2(1 + 2ω)

ω

(

Li2(
√
ω) + Li2(−

√
ω)
)}

. (G.5)

Summing up Eqs.(G.2,G.3,G.4), one can show that the total rate (Eq.(G.5)) is the sum-

mation of all helicity contributions, i.e.:

Γ̂ = Γ̂00 + Γ̂++ + Γ̂−−. (G.6)
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