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Abstra
tIn this thesis we initiate a systemati
 study of branes in Wess-Zumino-Novikov-Wittenmodels with Lie supergroup target spa
e. We start by showing that a branes' worldvolumeis a twisted super
onjuga
y 
lass and 
onstru
t the a
tion of the boundary WZNWmodel.Then we 
onsider symple
ti
 fermions and give a 
omplete des
ription of boundary statesin
luding twisted se
tors. Further we show that the GL(1|1) WZNW model is equivalentto symple
ti
 fermions plus two s
alars. We then 
onsider the GL(1|1) boundary theory.Twisted and untwisted Cardy boundary states are 
onstru
ted expli
itly and their ampli-tudes are 
omputed. In the twisted 
ase we �nd a perturbative formulation of the model.For this purpose the introdu
tion of an additional fermioni
 boundary degree of freedomis ne
essary. We 
ompute all bulk one-point fun
tions, bulk-boundary two-point fun
tionsand boundary three-point fun
tions. Logarithmi
 singularities appear in bulk-boundaryas well as pure boundary 
orrelation fun
tions.Finally we turn to world-sheet and target spa
e supersymmetri
 models. There is
N = 2 super
onformal symmetry in many super
osets and also in 
ertain supergroups. Inthe supergroup 
ase we �nd some branes that preserve the topologi
al A-twist and somethat preserve the B-twist.

ZusammenfassungIn dieser Arbeit beginnen wir mit einer systematis
hen Untersu
hung von Branen in Wess-Zumino-Novikov-Witten Modellen mit Lie Supergruppen Zielraum. Zuerst zeigen wir,dass das Weltvolumen einer Bran eine getwistete Superkonjugationsklasse ist. Dann kon-struieren wir die Wirkung des Rand WZNW Models. Dana
h betra
hten wir symplektis-
he Fermionen und geben eine komplette Bes
hreibung von Randzuständen eins
hliessli
hgetwisteter Sektoren. Weiterhin zeigen wir, dass das GL(1|1) WZNW Model äquivalentist zu symplektis
hen Fermionen plus zwei skalaren Feldern. Dana
h betra
hten wir dieGL(1|1) Randtheorie. Getwistete und ni
ht getwistete Cardy Randzustände sind ex-plizit konstruiert und Amplituden bere
hnet. In der getwisteten Randtheorie �nden wireine perturbative Bes
hreibung des Models. Dafür ist die Einführung eines zusätzli
henfermionis
hen Randfreiheitsgrades notwendig. Wir bere
hnen alle Bulk Ein-Punkt Funk-tionen, Bulk-Rand Zwei-Punkt Funtionen und Rand Drei-Punkt Funktionen. Logarith-mis
he Singularitäten treten sowohl in den Bulk-Rand Korrelationsfuntionen auf wie au
hin den reinen Randkorrelatoren.Letzendli
h betra
hten wir Modelle, deren Zielraum wie au
h deren Welt�ä
he super-symmetris
h ist. Es gibt N = 2 superkonforme Symmetrie in vielen Super
osets aber au
hin einigen Supergruppen. Im Supergruppenfall �nden wir Branen die den topologis
henA-twist erhalten und wel
he die den B-twist erhalten.
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Chapter 1Introdu
tionConformal �eld theory (CFT) with supersymmetri
 target spa
e re
eived in
reasedinterest with the dis
overy of dualities between gauge theories and models of gravity.These 
orresponden
es are highly valuable sin
e in the strongly 
oupled regime of onemodel, where it is almost ina

essible, the dual des
ription is weakly 
oupled and thuswell treatable. The �rst example of su
h a duality is due to Juan Malda
ena [1℄. His
onje
ture is that type IIB string theory 
ompa
ti�ed on AdS5× S5 is exa
tly equivalentto four-dimensional N = 4 super Yang-Mills theory. The group of global symmetries ofthese two models is the Lie supergroup PSU(2,2|4). In the limit of large rank of the gaugegroup the dual string theory is des
ribed by a 
onformal �eld theory with target spa
ebeing a 
oset of the supergroup PSU(2,2|4). The bosoni
 subspa
e of this 
oset is theten-dimensional spa
e AdS5 × S5.Sin
e Malda
ena's dis
overy many more dualities where 
onje
tured, studied andtested. One of them involves string theory on AdS3 × S3 whose global symmetry isthe Lie supergroup PSU(1,1|2) [1℄. The 
orresponding sigma model is the prin
ipal 
hiralmodel of this supergroup. It is an exa
tly marginal perturbation of the Wess-Zumino-Novikov-Witten (WZNW) model on PSU(1,1|2).Lie supergroup WZNW models are an interesting 
lass of theories in its own right.They des
ribe 
onformal �eld theories with target spa
e supersymmetry. Their symme-try algebra 
onsists of two 
opies of an a�ne Lie superalgebra. This additional in�nitedimensional symmetry is a powerfull aide in solving the theory. Studying these WZNWmodels gives valuable insights in the representation theory of the a�ne Lie superalgebra.Moreover supergroup WZNW models provide a 
lass of non-unitary logarithmi
 CFTs.Here logarithmi
 means that some 
orrelation fun
tions possess logarithmi
 singularities.These are due to �elds whi
h transform in representations of the Virasoro algebra thatare redu
ible but inde
omposable.Logarithmi
 CFTs have important appli
ations in many statisti
al models. Some ex-amples are 
riti
al polymers and per
olation [2�4℄, two-dimensional turbulen
es [5,6℄, thequantum Hall e�e
t [7℄ and disordered systems [8�10℄. Furthermore, supersymmetri
 tar-get spa
es play an important role in the des
ription of polymers and per
olation. Theinteger quantum Hall e�e
t is argued to be des
ribed by a sigma model on the superman-ifold U(1, 1|2)/
(
U(1|1)×U(1|1)

) [7,11℄. Further the supergroup GL(N |N) appears in the
ontext of disordered Dira
 fermions [8℄.Problems in 
ondensed matter and statisti
al physi
s naturally involve boundaries. Insu
h 
ases boundary CFT be
omes relevant (see e.g. [12, 13℄). Moreover, in the stringtheory 
ontext a boundary CFT 
orresponds to an open string starting and ending on1



2 CHAPTER 1. INTRODUCTIONtwo branes. In addition, boundary CFT displays a ri
h mathemati
al stru
ture. Theunderstanding of the boundary theory is 
losely 
onne
ted to modular properties andfusion. Further twisted K-theory appears in the geometri
 des
ription of branes [14℄.These problems are not understood for boundary logarithmi
 �eld theory, see however [15�21℄ for progress in spe
i�
 models. WZNW models on Lie supergroups present themselvesas an ideal playground to extend many of the beautiful results of unitary rational CFTto logarithmi
 models.Inspired by these appli
ations it is an apparent task to systemati
ally study Lie su-pergroup 
onformal �eld theory.For every Lie supergroup, as for every Lie group, there exists one 
onformal �eld theory,the Wess-Zumino-Novikov-Witten model. But some Lie supergroups possess an evenri
her stru
ture. If a Lie supergroup is simple and its dual Coxeter number vanishes thenthere exists a whole family of exa
tly marginal deformations of the WZNW model [22℄.In view of the AdS/CFT 
orresponden
e the supergroup PSU(1,1|2) is an interestingexample.First steps in understanding supergroup WZNW models were done by Rozansky andSaleur, who studied the simplest example the GL(1|1) WZNW model [23�25℄. Later, theGL(1|1) model was re
onsidered from a more geometri
 perspe
tive [26℄. This geometri
approa
h was then further generalised to the supergroup PSU(1,1|2) [27℄ and to a general
lass of supergroups [28℄.These 
onsiderations were restri
ted to bulk WZNW models that is, in the stringlanguage, to 
losed strings. There are two natural tasks. One also should understand theexa
tly marginal deformations of WZNW models on simple supergroups with vanishingdual Coxeter number. In [29℄ we 
onsidered the deformation of boundary spe
tra in thePSL(2|2) sigma model.The other task is to understand boundary WZNW models on supergroups. The aim ofthis thesis is to initiate a systemati
 study of su
h boundary CFTs. We want to understandhow to 
ompute boundary 
orrelation fun
tions and boundary spe
tra. Moreover we wantto investigate 
hara
teristi
 features of logarithmi
 theories as e.g. inde
omposability ofrepresentations and logarithmi
 singularities of 
orrelation fun
tions.Most of this thesis we will restri
t to the boundary GL(1|1) WZNW model, sin
e thisis the simplest example that 
aptures prototypi
al features. The thesis is organised asfollows.In 
hapter two, we introdu
e Lie superalgebras. We start with the example of theLie superalgebra gl(1|1) and its representations before we turn to the general 
lass of Liesuperalgebras. Representations of Lie superalgebras are sometimes redu
ible but inde-
omposable. These representations, whi
h we 
all atypi
al, are responsible for logarithmi
singularities in 
orrelation fun
tions. We give a geometri
 interpretation of representa-tions and atypi
ality in terms of super
onjuga
y 
lasses. The relevan
e of this geometri
des
ription is then given in 
hapter three.In 
hapter three, we start with some introdu
tory remarks to two-dimensional CFTand to the 
on
ept of boundary states. Then we explain 
onformal and a�ne Lie super-algebra symmetry of the WZNW models. Further we explain a method to treat the bulk2



3theory. Thereafter we begin with the boundary theory. Boundary �elds are supported ona subsupermanifold of the supergroup, the branes' worldvolume. We show that this is atwisted super
onjuga
y 
lass. This insight is then used to �nd the a
tion of the boundaryWZNW model.In 
hapter four, we investigate symple
ti
 fermions. We start by reviewing the bulkmodel in
luding twisted se
tors. In a twisted se
tor the modes of the �elds are non-integer.We then turn to the boundary theory. The symple
ti
 fermions possess an SL(2)-family ofboundary 
onditions that preserve 
onformal symmetry. Boundary states in twisted anduntwisted se
tors are 
onstru
ted. Further we 
ompute the spe
trum of an open stringstret
hing between two branes and we 
onstru
t the 
orresponding boundary theory.Chapter �ve is the main part of this thesis, a detailed study of GL(1|1). We start byre
onsidering the bulk model and give a new approa
h via symple
ti
 fermions. Pre
isely,we show that the GL(1|1) WZNW model is exa
tly equivalent to a pair of symple
ti
fermions and a pair of s
alars. Twisted �elds are important in this 
orresponden
e.Then we turn to the boundary theory. GL(1|1) possesses two families of branes. Theuntwisted family 
onsists of point-like branes in the bosoni
 dire
tions and generi
allyextending into the fermioni
 dire
tions. The twisted 
ase 
ontains only one volume-�llingbrane. We use the symple
ti
 fermion 
orresponden
e to 
onstru
t all Cardy boundarystates expli
itly. Then we 
ompute spe
tra of strings stret
hing between two branes.We identify boundary states with representations and �nd as in the Lie group 
ase thatamplitudes are given by fusion. Further we �nd that in the semi
lassi
al limit a boundarystate is a distribution on a super
onjuga
y 
lass. This super
onjuga
y 
lass is identi�edwith the same representation as the boundary state.Then we restri
t to the volume-�lling brane. We �nd a �rst order formulation, whi
hallows for a perturbative 
omputation of 
orrelation fun
tions. In �nding the set-up,it turned out that it is ne
essary to introdu
e additional fermioni
 boundary degreesof freedom. We then 
ompute those 
orrelation fun
tions that determine the theory
ompletely, i.e. we solve this boundary model. We �nd logarithmi
 singularities in bulk-boundary as well as boundary-boundary 
orrelators.In 
hapter six, we turn to a di�erent question. We want to investigate CFTs thatpossess world-sheet supersymmetry in addition to target spa
e supersymmetry. We startwith a presentation of topologi
al CFT and gauged N = 1 supersymmetri
 WZNWmodels. In the spirit of Kazama and Suzuki we then �nd N = 2 super
onformal �eldtheories with super
oset target. But remarkably we also �nd some with supergroup target.We show that these models possess two families of branes preserving either the topologi
alA-twist or the B-twist.In the outlook, we state some open questions for future resear
h.The appendix 
ontains modular properties of representations of the a�ne Lie super-algebra ĝl(1|1), as well as some integral formulae. In addition, we dis
uss the bc-ghostsystem of 
entral 
harge c = −2. This model is non-logarithmi
 in the bulk, but for our
hoi
e of boundary 
onditions the boundary theory is logarithmi
.The original part of this thesis begins with se
tion 3.3. Additional results before thisse
tion are indi
ated. 3
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Chapter 2Super algebraThe aim of this thesis is to study sigma models with Lie supergroup as target spa
e.As a �rst step we need to understand some 
on
epts of supergroups and their asso
iatedLie superalgebras. The theory is in many aspe
ts 
losely related to its bosoni
 analogueof Lie theory, but with some important new features.This 
hapter is an introdu
tion of the mathemati
al 
on
epts ne
essary to study su-pergroup sigma models. Sin
e this thesis will be mainly 
on
erned with the sigma modelon the Lie supergroup GL(1|1) we start with its Lie superalgebra as an example. It ex-hibits most features that are spe
ial to Lie superalgebras. In the remaining se
tions of this
hapter, we will then introdu
e some 
on
epts of the general theory of Lie superalgebras,Lie supergroups and their representations.2.1 An example: The Lie superalgebra gl(1|1)The Lie superalgebra gl(1|1) has been dis
ussed in detail in [26℄.gl(1|1) is generated by two bosoni
 elements E,N and two fermioni
 elements ψ±. Eis 
entral and the other three generators obey
[N,ψ±] = ±ψ± and {ψ+, ψ−} = E . (2.1.1)This superalgebra is solvable and not semi-simple, it thus has two linear independent
hoi
es of invariant bilinear form. The relevant one for our purposes will be

〈N , E 〉 = 〈E , N 〉 = 〈ψ+ , ψ− 〉 = −〈ψ− , ψ+ 〉 = 1 . (2.1.2)The bilinear form is supersymmetri
, i.e. symmetri
 in the bosoni
 part and antisymmetri
in the fermioni
 part. There exists another important operator, the quadrati
 Casimir.For the above 
hoi
e of metri
 it is
C = NE + EN + ψ−ψ+ − ψ+ψ− . (2.1.3)It 
ommutes with every element of the Lie superalgebra.2.1.1 AutomorphismsOne important ingredient to boundary sigma models are automorphisms of the Liesuperalgebra. Automorphisms are one-to-one maps of the Lie superalgebra to itself that5



6 CHAPTER 2. SUPER ALGEBRAare 
ompatible with the stru
ture of the Lie superalgebra. As in the Lie algebra 
ase,one distinguishes inner and outer automorphisms. An inner automorphism is obtained by
onjugation with an element of the bosoni
 subgroup. Sin
e E is 
entral only 
onjugationby exp iαN is non-trivial. It a
ts as follows
ωα(E) = E , ωα(N) = N and ωα(ψ

±) = e±iαψ± . (2.1.4)The group of outer automorphism is generated by
Ω(E) = −E , Ω(N) = −N and Ω(ψ±) = ±ψ∓ , (2.1.5)by

Π(E) = E , Π(N) = −N and Π(ψ±) = ψ∓ (2.1.6)and by the family
τα(E) = E , τα(N) = N + αE and τα(ψ

±) = ψ± . (2.1.7)An automorphism is suitable for boundary 
onformal �eld theory if it preserves the metri
,or equivalently if it leaves the Casimir invariant. We 
ompute that the inner automor-phisms ωα as well as Ω leave the Casimir invariant,
ωα(C) = Ω(C) = C . (2.1.8)On the other hand Π and τα a
t non-trivially on C,

Π(C) = −C and τα(C) 6= C for α 6= 0 . (2.1.9)2.1.2 RepresentationsRepresentations of Lie superalgebras fall into two types, typi
al irredu
ible represen-tations and atypi
al inde
omposable representations1.In gl(1|1) all typi
al representations are two dimensional, we denote them by 〈e, n〉.They are 
onstru
ted from a state |e, n〉 (with e 6= 0) satisfying
E|e, n〉 = e|e, n〉 ,
N |e, n〉 = n|e, n〉 ,
ψ+|e, n〉 = 0

(2.1.10)and ψ− a
ts freely on this state, hen
e
ψ+ψ−|e, n〉 = e|e, n〉 . (2.1.11)We summarise the representation in �gure 2.1.1Atypi
al representations 
an also be irredu
ible6



2.1. AN EXAMPLE: THE LIE SUPERALGEBRA GL(1|1) 7
`

PSfrag repla
ements
|e, n〉 ψ−|e, n〉

ψ−

e−1ψ+Figure 2.1: Typi
al irredu
ible representation 〈e, n〉The a
tion 
an be stated 
onveniently in supermatrix form, i.e.
E =

(
e 0
0 e

)
, N =

(
n 0
0 n− 1

)
, (2.1.12)

ψ+ =

(
0 1
0 0

) and ψ− =

(
0 0
e 0

)
. (2.1.13)The supertra
e in su
h a matrix representation is a non-degenerate invariant supersym-metri
 bilinear formstr((a b

c d

))
= a− d i.e. str(EN) = str(ψ+ ψ−) = e . (2.1.14)For the typi
al representations we assumed the parameter e to be non-zero. If weset e = 0, we still obtain a representation of gl(1|1) but this representation is redu
ible,i.e. it 
ontains a proper invariant subrepresentation generated by the state ψ−|0, n〉. Onthe other hand this representation is inde
omposable, sin
e it does not de
ompose intoa dire
t some of irredu
ible representations. Moreover, this representation is part of alarger representation, the proje
tive 
over Pn. The proje
tive 
over is 
onstru
ted from astate |n〉 satisfying
E|n〉 = 0 , N |n〉 = n|n〉 (2.1.15)and ψ+, ψ− are a
ting freely on it. We summarise this in �gure 2.2.PSfrag repla
ements
|n〉

ψ+|n〉

ψ−|n〉

±ψ+ψ−|n〉

ψ−

ψ−
ψ+

ψ+

Figure 2.2: Proje
tive 
over Pn: ψ± a
t as indi
ated. There is a 3-dimensional subrepre-sentation, two 2-dimensional ones and the trivial 1-dimensional subrepresentation.We observe that this representation 
ontains proper invariant subrepresentations butit is impossible to de
ompose the representation in a dire
t sum of irredu
ible represen-tations. 7



8 CHAPTER 2. SUPER ALGEBRAA generi
 feature of these inde
omposable but redu
ible representations is that theCasimir is not diagonalisable on this representations, i.e.
C|n〉 = 2ψ−ψ+|n〉 and Cψ−|n〉 = Cψ+|n〉 = Cψ−ψ+|n〉 = 0 . (2.1.16)2.1.3 Harmoni
 analysisIn the Lie algebra 
ase one 
an obtain the elements of a Lie group by taking exponentsof elements of the Lie algebra. The Lie superalgebra 
ase is slightly di�erent. Let η± betwo Grassmann odd numbers. This means that they satisfy

η±η± = 0 and η+η− = −η−η+ . (2.1.17)Then an element g of the Lie supergroup GL(1|1) 
an be written as
g = eiη−ψ−eixE+iyNeiη+ψ

+ (2.1.18)for some real numbers x and y. On the other hand given a Lie supergroup one 
an �nd adi�erential operator realisation of the Lie superalgebra in terms of invariant ve
tor �elds.They are de�ned by
RXg = −Xg and LXg = gX for X = E,N, ψ± . (2.1.19)Right and left invariant ve
tor �elds take the following form

RE = i∂x , RN = i∂y + η−∂− , R+ = ie−iy∂+ − η−∂x , R− = i∂− , (2.1.20)and
LE = −i∂x , LN = −i∂y−η+∂+ , L− = −ie−iy∂−−η+∂x , L+ = −i∂+ . (2.1.21)These di�erential operators satisfy the relations of the Lie superalgebra gl(1|1), i.e.

R[X,Y ] = (−1)|X||Y |RXRY − RYRX and
L[X,Y ] = (−1)|X||Y |LXLY − LY LX .

(2.1.22)Note the unusual sign2. In the above formula |X| denotes the parity of X, i.e.
|X| =

{ 0 X bosoni

1 X fermioni
 . (2.1.23)2Naively one might have expe
ted

R[X,Y ] = RXRY − (−1)|X||Y |RY RX and L[X,Y ] = LXLY − (−1)|X||Y |LY LX .8



2.1. AN EXAMPLE: THE LIE SUPERALGEBRA GL(1|1) 9The invariant ve
tor �elds a
t on the spa
e of fun
tions of the supergroup Fun
(GL(1|1))spanned by the elements

e0(e, n) = eiex+iny , e±(e, n) = η±e0(e, n) e2(e, n) = η−η+e0(e, n) . (2.1.24)The invariant Haar measure 
orresponding to the invariant ve
tor �elds is
dµ = e−iydxdydη+dη− . (2.1.25)The de
omposition of Fun

(GL(1|1)) with respe
t to both left and right regular a
tion wasanalysed in [26℄. In order to illustrate this harmoni
 analysis, let us review the de
ompo-sition of Fun
(GL(1|1)) under the left-regular a
tion. Consider the fun
tion e0(e, n). For

e 6= 0, it satis�es
LEe0(e, n) = ee0(e, n) ,

LNe0(e, n) = ne0(e, n) ,

L+e0(e, n) = 0 ,

L−e0(e, n) = −iee+(e, n) and
L+L−e0(e, n) = −ee0(e, n).

(2.1.26)
If we 
ompare these relations with (2.1.10) and (2.1.11), we see that the fun
tions e0(e, n)and e+(e, n) span the typi
al representation 〈e, n〉. The minus sign in the last equationof (2.1.26) is due to the unusual minus sign in (2.1.22). Analogously one 
an see that thefun
tions e−(e, n) and e0(e, n − 1) − ee2(e, n) also form the typi
al representation 〈e, n〉(for e 6= 0).Let us now 
onsider the 
ase e = 0. Then the state e2(0, n+ 1) satis�es

LEe2(0, n+ 1) = 0 and
LNe2(0, n+ 1) = ne2(0, n+ 1)

(2.1.27)and L± a
t as indi
ated in �gure 2.3.We 
on
lude that the fun
tions e2(0, n + 1), ie−(0, n + 1), e+(0, n) and e0(0, n) formthe proje
tive 
over Pn. In summary we have obtained the following result [26℄.Proposition 2.1.1. The spa
e of fun
tions Fun
(GL(1|1)) of the supergroup GL(1|1)de
omposes under the a
tion of the left invariant ve
tor �elds as follows

Fun(GL(1|1)) =

∫

e 6=0

de dn
(
〈e, n〉 ⊕ 〈e, n〉

)
⊕
∫
dnPn . (2.1.28)The analysis of the de
omposition of Fun

(GL(1|1)) under the a
tion of the rightinvariant ve
tor �elds 
an be performed analogously.9



10 CHAPTER 2. SUPER ALGEBRA
PSfrag repla
ements

e2(0, n+ 1)

ie−(0, n+ 1)

−ie+(0, n)

∓e0(0, n)

L−

L−
L+

L+

Figure 2.3: Proje
tive 
over Pn2.1.4 The a�ne Lie superalgebra ĝl(1|1)The a�ne Lie superalgebra ĝl(1|1) is an in�nite dimensional Lie superalgebra withgenerators En, Nn, ψ
±
n (n in Z ) and K, d, where K is 
entral and d is a derivation, i.e.
[d,Xn] = nXn for X ∈ {E,N, ψ±} . (2.1.29)The non-vanishing relations of the remaining generators are

[En, Nm] = Knδn+m,0 ,

[Nn, ψ
±
m] = ψ±

n+m and
{ψ−

n , ψ
+
m} = En+m +Knδn+m,0 .

(2.1.30)All representations in the WZNW model have �xed K-eigenvalue k. From now on werestri
t to these representations and write the number k instead of the operator K. As inthe 
ase of Lie algebras one 
an 
onstru
t the generators of another in�nite dimensionalLie algebra, the Virasoro algebra, out of the generators of the a�ne Lie superalgebra.The Virasoro algebra is the symmetry algebra of two dimensional 
onformal �eld theory.The generators are
Ln =

1

2k
(2NnE0 − En + Ψ−

nΨ+
0 + Ψ−

0 Ψ+
n +

1

k
EnE0)

+
1

k

∑

m>0

(En−mNm +Nn−mEm + Ψ−
n−mΨ+

m −Ψ+
n−mΨ−

m +
1

k
En−mEm)and they satisfy the relations of the Virasoro algebra

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 (2.1.31)with 
entral 
harge c = 0. This 
onstru
tion is referred to as the Sugawara 
onstru
tion(see e.g. [30℄). The Virasoro zero mode is the a�ne analogue of the quadrati
 Casimir.10



2.1. AN EXAMPLE: THE LIE SUPERALGEBRA GL(1|1) 11The a
tion of the Virasoro zero mode on the generators of the a�ne Lie superalgebra
oin
ides with that of the derivation d (2.1.29)
[L0, Xn] = nXn for X ∈ {E,N, ψ±} . (2.1.32)In WZNW models one identi�es these two operators d = L0.The zero mode subalgebra is the �nite dimensional Lie superalgebra gl(1|1). It isusually 
alled the horizontal subalgebra. Automorphisms that do not leave the horizontalsubalgebra invariant are 
alled spe
tral �ow automorphisms. For ĝl(1|1) there is a one-parameter family of non-trivial spe
tral �ow automorphisms. They are (for m ∈ Z)
γm(En) = En +mkδn,0 , γm(ψ±

n ) = ψ±
n±m (2.1.33)and leave Nn invariant. They be
ome relevant in the dis
ussion of representations.Representations of ĝl(1|1)Representations of the a�ne Lie superalgebra are 
onstru
ted as follows. We startwith a representation of the horizontal subalgebra, and promote it to a representationof the a�ne Lie superalgebra by de�ning all positive mode operators to be annihilationoperators and letting the negative mode operators a
t freely. As in the �nite dimensionalLie superalgebra 
ase they fall into two 
lasses, typi
al irredu
ible and atypi
al inde
om-posable but redu
ible ones. The typi
als are de�ned on a state |e, n, k〉, where n 6= mkfor any integer m. This state satis�es

E0|e, n, k〉 = e|e, n, k〉 , N0|e, n, k〉 = n|e, n, k〉 ,
K|e, n, k〉 = k|e, n, k〉 , ψ+

0 |e, n, k〉 = 0 and
Xn|0, n〉 = 0 for n > 0 and X ∈ {E,N, ψ±} .

(2.1.34)The remaining operators a
t freely on this state.Whenever e = mk for some integer m the above 
onstru
tion leads to redu
ible butinde
omposable representations (for a proof see [26℄) and as in the �nite dimensional Liesuperalgebra 
ase these representations are part of a larger inde
omposable representa-tion. All these spe
ial atypi
al representations 
an be obtained via spe
tral �ow from theproje
tive 
over P̂(0)
n . This representation is already atypi
al on the level of the horizontalsubalgebra. It is de�ned by a state |0, n, k〉 satisfying

E0|0, n, k〉 = 0

N0|0, n, k〉 = n|0, n, k〉
K|0, n, k〉 = k|0, n, k〉
Xn|0, n, k〉 = 0 for n > 0 and X ∈ {E,N, ψ±} .

(2.1.35)The remaining operators a
t freely on this state.11



12 CHAPTER 2. SUPER ALGEBRAThe 
onstru
tion is based on a 
hoi
e of horizontal subalgebra. Any other 
hoi
e isobtained by appli
ation of a spe
tral �ow automorphism. The 
orresponding representa-tions are 
alled twisted representations. For the proje
tive 
overs, they 
an be 
onstru
tedfrom a state |mk, n, k〉, where m ∈ Z, satisfying
E0|mk, n, k〉 = mk|mk, n, k〉
N0|mk, n, k〉 = n|mk, n, k〉
K|mk, n, k〉 = k|mk, n, k〉
En|mk, n, k〉 = 0 for n > 0

Nn|mk, n, k〉 = 0 for n > 0

ψ±
n |mk, n, k〉 = 0 for n > ∓m (2.1.36)

and the remaining modes a
ting freely on it, it is 
alled P̂(mk)
n . Sin
e this representationis obtained by applying a spe
tral �ow automorphism to the atypi
al representation P̂(0)

n
onstru
ted in (2.1.35) it must also be atypi
al.It turns out that these are all atypi
al representations of ĝl(1|1), i.e. any atypi
alrepresentation of ĝl(1|1) 
an be obtained from a representation that is already atypi
al atthe level of ground states [26℄.2.2 Lie superalgebrasWe turn to the general theory of Lie superalgebras and Lie supergroups. The theoryof Lie superalgebras was developed by Vi
tor Ka
 [31, 32℄, a 
olle
tion of results is givenin [33℄. As a guideline to Lie supergroups we use the book by Berezin [34℄. Most of thisse
tion is 
ontained in [35℄.In the following, the Lie superalgebras will be over the �eld of real numbers R or
omplex numbers C. First we need to de�ne them.De�nition 2.2.1. Let g be a Z2 graded algebra g = g0̄⊕g1̄ with produ
t [ , ] : g×g→ gthat respe
ts the grading. The parity of a homogeneous element is denoted by
|X| =

{ 0 X in g0̄

1 X in g1̄
. (2.2.1)Then g is a Lie superalgebra if it satis�es antisupersymmetry and graded Ja
obi iden-tity, i.e.

0 = [X, Y ] + (−1)|X||Y |[Y,X] and
0 = (−1)|X||Z|[X, [Y, Z]] + (−1)|Y ||X|[Y, [Z,X]] + (−1)|Z||Y |[Z, [X, Y ]] ,

(2.2.2)for all X, Y and Z in g. 12



2.2. LIE SUPERALGEBRAS 13Further a bilinear form B : g×g→ R(resp.C) is 
alled a 
onsistent supersymmet-ri
 invariant bilinear form if
B(X, Y ) = 0 ∀X ∈ g0̄ ∧ ∀Y ∈ g1̄

B(X, Y )− (−1)|X||Y |B(Y,X) = 0 ∀X, Y ∈ g and
B([X, Y ], Z)− B(X, [Y, Z]) = 0 ∀X, Y, Z ∈ g .

(2.2.3)A simple Lie superalgebra whose even part is a redu
tive Lie algebra and whi
h pos-sesses a nonzero supersymmetri
 invariant bilinear form, is 
alled a basi
 Lie superalgebra.They are 
ompletely 
lassi�ed [31, 32℄. There are the in�nite series of unitary superal-gebras sl(n|m) for m 6= n, psl(n|n) and the orthosymple
ti
 series osp(m|2n) as wellas some ex
eptional ones. In addition we will also 
onsider Lie superalgebras of type
gl(n|m). As in the 
ase of Lie algebras it is instru
tive to keep their fundamental matrixrepresentations in mind. We provide them for the superalgebras gl(m|n), sl(m|n) and
osp(m|2n).Example 2.2.2. gl(n|m) is given bygl(n|m) =

{(
A B
C D

)}
, (2.2.4)where A and D are square matri
es of size n and m, B is a n × m matrix and C is a

m×n matrix. The supertra
e is a supersymmetri
 non-degenerate invariant bilinear formand it is de�ned via str( A B
C D

)
= trA− trD . (2.2.5)Then, we have the unitary superalgebraExample 2.2.3. sl(n|m)sl(n|m) =

{
X ∈ gl(n|m) | strX = 0

}
, (2.2.6)for n 6= m. If n = m sl(n|n) is not simple, in this 
ase one obtains the proje
tive unitarysuperalgebra psl(n|n) as the quotient of sl(n|n) by its one dimensional ideal I generatedby the identity matrix 12n, i.e. psl(n|n) = sl(n|n)/I.Further there is the orthosymple
ti
 seriesExample 2.2.4. osp(m|2n)osp(m|2n) =

{
X ∈ gl(m|2n) | XstBm,n +Bm,nX = 0

}
, (2.2.7)where the supertranspose is

(
A B
C D

)st
=

(
At −Ct

Bt Dt

) (2.2.8)13



14 CHAPTER 2. SUPER ALGEBRAand
Bm,n =

(
1m 0
0 Jn

)
,where Jn =

(
0 1n
−1n 0

)
. (2.2.9)An important ingredient in Lie super theory is the dual Coxeter number.De�nition 2.2.5. Let g be a Lie superalgebra, {ta} a basis of g and fabc the stru
ture
onstants, i.e. they satisfy

[ta, tb] = fabct
c , (2.2.10)where the summation over the repeated index c is understood.Then the dual Coxeter number h∨ is de�ned via

2h∨ = (−1)nfnamf
mb

nκab (2.2.11)and κab denotes the supertra
e in the adjoint representation, i.e. the Killing form.In the 
ase of Lie algebras one usually uses the Killing form as non-degenerate invariantsymmetri
 bilinear form. The Lie superalgebras psl(n|n), gl(n|n) and osp(2n+ 2|2n) arespe
ial, be
ause their Killing form and also their dual Coxeter number vanish. Hen
e in thefollowing we will always use the supertra
e str in the fundamental matrix representation(Example 2.2.2, 2.2.3 and 2.2.4) as supersymmetri
 non-degenerate invariant bilinear form.Classi
al Lie superalgebras fall into two 
ases. The fermioni
 subspa
e is a represen-tation of the bosoni
 subalgebra. If this representation is irredu
ible the Lie superalgebrais of type II and it possesses the following distinguished Z-gradation
g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 . (2.2.12)Otherwise this representation de
omposes into a dire
t sum of two irredu
ible representa-tions. In that 
ase the Lie superalgebra is said to be of type I. They possess the followingdistinguished Z-gradation whi
h will turn out to be very helpful

g = g− ⊕ g0 ⊕ g+ . (2.2.13)Here g± are the two irredu
ible representations forming the fermioni
 subspa
e and g0 isthe bosoni
 Lie subalgebra.A Cartan subalgebra of a Lie superalgebra is de�ned to be a maximal abelian subsu-peralgebra. It turns out that the Cartan subalgebra of the underlying bosoni
 Lie algebrais also a Cartan subalgebra of the Lie superalgebra. Fix a Cartan subalgebra h of g anddenote the dual spa
e by h∗. A non degenerate supersymmetri
 invariant bilinear formof the 
lassi
al Lie superalgebras restri
ts non degenerately to a Cartan subalgebra h andindu
es a non degenerate bilinear form on its dual spa
e. We denote it by ( | ). Furthera root is de�ned as follows. 14



2.2. LIE SUPERALGEBRAS 15De�nition 2.2.6. For α 6= 0 in h∗ one sets
gα = {a ∈ g | [h, a] = α(h)a ∀ h ∈ h } . (2.2.14)

α is 
alled a root if gα 6= 0 and gα is 
alled rootspa
e. Further a root is 
alled even if
gα ∩ g0̄ 6= 0 and odd if gα ∩ g1̄ 6= 0. Denote by ∆ the set of roots, by ∆0 the set of evenroots and by ∆1 the set of odd roots.The Lie superalgebra g possesses the usual nonunique triangular de
omposition

g = n− ⊕ h⊕ n+ . (2.2.15)Here n± are isotropi
 Lie subsuperalgebras. One 
alls a root positive if gα ∩ n+ 6= 0 andnegative if gα ∩ n− 6= 0. Let ρ0 be half the sum of even positive roots and ρ1 half the sumof odd positive roots, then the Weyl ve
tor is
ρ = ρ0 − ρ1 . (2.2.16)2.2.1 Lie supergroupsA Lie supergroup 
an be obtained from a Lie superalgebra as follows. Let {ta} bea basis of g0̄ and {sb} a basis of g1̄, further let Λ be a Grassmann algebra, then theGrassmann envelope Λ(g) of g 
onsists of formal linear 
ombinations

X = xat
a + θbs

b (2.2.17)where the xa ∈ Λ are Grassmann even elements, the θb ∈ Λ are Grassmann odd elementsand summation over the indi
es is implied. Note, that Λ(g) is a Lie algebra. Thenfollowing Berezin [34℄, a supergroup G is the group generated by elements g of the form
g = expX with X in the Grassmann envelope of g, i.e. the Lie supergroup G of theLie superalgebra g is the Lie group of the Lie algebra Λ(g). Further we denote the Liesubgroup of the subalgebra g0̄ by G0.The Lie group G a
ts on its Lie algebra Λ(g) by 
onjugationAd(a) : Λ(g) → Λ(g) , X 7→ aXa−1 (2.2.18)for a in G and X in Λ(g). Sin
e the invariant bilinear form is the supertra
e of a repre-sentation it is invariant under the adjoint a
tion, i.e.str(Ad(a)X,Ad(a)Y ) = str(X, Y ) (2.2.19)for any X, Y in Λ(g) and a in G.Consider a Lie supergroup G with a supersymmetri
 invariant nonzero bilinear form.We identify the Grassmann envelope of the underlying Lie superalgebra with the tangent15



16 CHAPTER 2. SUPER ALGEBRAspa
e at the identity, Λ(g) = TeG. On the tangent spa
e TgG at g in G we have left andright identi�
ation,
Lg : Λ(g) −→ TgG, Lg(X) = gX and
Rg : Λ(g) −→ TgG, Rg(X) = −Xg . (2.2.20)The left identi�
ation de�nes a left invariant metri
, i.e. (gX, gY ) := str(X, Y ). Thismetri
 is also right invariant, sin
e it is invariant under the adjoint a
tion Ad(g−1).Invariant ve
tor �elds will turn out to be a useful tool in the analysis of the 
onformal�eld theory on the supergroup, be
ause in the semi
lassi
al limit the invariant ve
tor�elds mimi
 the role of the 
urrents in the full quantum theory.There is a way of obtaining an expli
it di�erential operator realisation of the Liesuperalgebra in terms of invariant ve
tor �elds. Let G be a Lie supergroup of type I, thenwe parameterise an element a

ording to the distinguished Z-graduation (2.2.13)

g = eθ
a
−
s−a g0e

θb
+s

b
+ , (2.2.21)where the θa± are Grassman odd 
oordinates, the s±a generate g± and g0 is an element ofthe Lie subgroup. Then we 
ompute re
ursively

Rg(s
a
−) = −∂θ−a

Rg(X) = Rg0(X)− θ−a Rg([s
a
−, X])

Rg(Ad(g0)(s
a
+)) = −∂θ+a − θ

−
b Rg({sb−,Ad(g0)(s

a
+)})+

− θ−b θ−c Rg([s
b
−, {sc−,Ad(g0)(s

a
+)}]) .

(2.2.22)
Rg0(X) is the invariant ve
tor �eld of the Lie subgroup. Similar the left-invariant ve
tor�elds are

Lg(s
a
+) = ∂θ+a

Lg(X) = Lg0(X)− θ+
a Lg([X, s

a
+])

Lg(Ad(g−1
0 )(sa−)) = ∂θ−a − θ

−
b Lg({sb+,Ad(g−1

0 )(sa−)})+
− θ+

b θ
+
c Lg([s

b
+, {sc+,Ad(g−1

0 )(sa−)}])

(2.2.23)Due to the Grassmannian nature of the 
oordinates one gets some unusual signs. Forexample, the invariant ve
tor �elds obey the relations of the Lie superalgebra if we takethe Lie bra
ket as
Rg([X, Y ]) = (−1)|X||Y |Rg(X)Rg(Y )− Rg(Y )Rg(X)

Lg([X, Y ]) = (−1)|X||Y |Lg(X)Lg(Y )− Lg(Y )Lg(X) .
(2.2.24)Later on, we will make analogous observations in the full quantum theory.The invariant ve
tor �elds a
t on the spa
e of fun
tions of the supergroup. Thede�nition of this spa
e is not obvious and we refer to [28℄. In that arti
le also the invariantmeasure 
orresponding to above invariant ve
tor �elds is 
omputed. It is

dµ(g) = dµb(g0) det(Ad(g0))−
∏

a,b

dθa−dθ
b
+ . (2.2.25)16



2.2. LIE SUPERALGEBRAS 17Here dµb(g0) denotes the invariant measure of the Lie subgroup and det(Ad(g0))− is thedeterminant of the adjoint a
tion of g0 on g−.2.2.2 AutomorphismsAs in the Lie algebra 
ase, the group of automorphisms 
onsists of inner and outerautomorphisms. An inner automorphism of the Grassmann envelope Λ(g) of the Liesuperalgebra g is obtained by 
onjugating with an element of the 
orresponding Lie su-pergroup. Only if this element is in the Lie subgroup the automorphism des
ends to theLie superalgebra g. For the study of branes automorphisms that preserve the invariantbilinear form are relevant. We saw that this is true for inner automorphisms (2.2.19).It remains to �nd the group of outer automorphisms. For 
omplex Lie superalgebrasit is 
lassi�ed by Vera Serganova [36℄. We start by listing the relevant automorphisms.It is most 
onvenient to state its a
tion in the fundamental matrix representation. Let
X =

(
A B
C D

) be a supermatrix in gl(n|m), then we have the following list
(−st)(X) =

(
−At Ct

−Bt −Dt

)
,

Π(X) =

(
D C
B A

) for m = n ,

δλ(X) =

(
A λB

λ−1C D

) for m = n and λ ∈ C

(2.2.26)
(−st) and δλ leave the metri
 invariant, but Π does not. In addition we introdu
e theelement Jm,n in gl(2m|2n), with det Jm,n = −1, J2

m,n = 12m+2n and Jm,nB2m,nJm,n =
B2m,n.

g Generators of Out g Metri
 preserving generatorssl(n|m) , n 6= m (−st) (−st)psl(n|n) , n 6= 2 (−st), Π, {δλ | for λn 6= 1} (−st), {δλ | for λn 6= 1}psl(2|2) Π, SL(2) SL(2)osp(2m+1|2n) � �osp(2m|2n) AdJm,n AdJm,nTable 2.1: Outer automorphisms of Lie superalgebrasThe supergroup psl(2|2) is spe
ial, it 
arries an a
tion of SL(2) indu
ed by a sl(2)bra
ket of the type
[(

a b
c −a

)
,

(
A B
C D

) ]
=

(
0 aB + bJ1C

tJ−1
1

−cJ1B
tJ−1

1 − aC 0

)17



18 CHAPTER 2. SUPER ALGEBRAthis de�nes an automorphism and sin
e it leaves the bosoni
 subalgebra invariant it pre-serves the metri
.We list the group of outer automorphisms and those whi
h preserve the metri
 in table2.1. The group of automorphisms of gl(n|n) 
oin
ides with the group of automorphismsof psl(n|n). The only di�eren
e is that in gl(n|n) the fermioni
 dilatation δλ is an innerautomorphism.Note, that the ex
eptional Lie superalgebras do not admit a metri
 preserving outerautomorphism.2.2.3 Real formsReal forms of 
lassi
al Lie superalgebras are 
lassi�ed in [37℄ and [38℄. As in the
ase of simple Lie algebras this is done by 
lassifying the involutive semimorphisms ofthe 
omplex Lie superalgebras. A semimorphism φ of a 
omplex Lie superalgebra g is asemilinear transformation su
h that
[φ(X), φ(Y )] = φ([X, Y ]) for all X, Y in g . (2.2.27)Then for every involutive semimorphism φ

gφ = {X + φ(X) | X in g } (2.2.28)is a real 
lassi
al Lie superalgebra and these are all (Theorem 2.5 in [38℄).Real forms of Lie supergroups 
orrespond to real forms of the underlying Lie algebra,that is the Grassmann envelope Λ(g) of the Lie superalgebra g. There is the followingreal form that is not indu
ed from a real form of a Lie superalgebra. De�ne the superstaroperation as [33℄
(cθ)# = c̄θ# , θ## = −θ , (θ1θ2)

# = θ#
1 θ

#
2 (2.2.29)for any Grassmann elements θ, θi and any 
omplex number c. Then 
on
atenation of thesuperstar # with the automorphism (−st) is a semimorphism of Λ(g) giving rise to a realform of Λ(g).Furthermore, an automorphism Ω of the Lie algebra Λ(g) restri
ts to an automorphismof Λ(g)φ if and only if it leaves Λ(g)φ invariant that is Ω and φ 
ommute.Let us provide an example of a real form.Example 2.2.7. psu(1,1|2)psu(1,1|2) is the Lie superalgebra of the Lie supergroup PSU(1,1|2), whose bosoni
subgroup is AdS3 × S3. Sigma models on this supermanifold are highly relevant for thestring theory in the AdS3/CFT2 
orresponden
e.A good way to des
ribe the real form is in terms of a matrix realisation. Consider the

4× 4 supertra
eless supermatrix
X =

(
A B
C D

)
, (2.2.30)18



2.2. LIE SUPERALGEBRAS 19where A,B,C and D are 2× 2 matri
es. Consider the involutive semimorphism given by
φ : X 7→ −ηX̄stη−1 , where η = diag(−1, 1, 1, 1) (2.2.31)and the bar denotes 
omplex 
onjugation. If we in addition divide out the ideal generatedby the identity matrix we obtain psu(1,1|2). Espe
ially the upper diagonal blo
k is a matrixrealisation of su(1,1) over R, while the lower diagonal blo
k 
orresponds to su(2).2.2.4 RepresentationsIn this se
tion all Lie superalgebras are basi
 simple Lie superalgebras of type I.The �nite dimensional representations of �nite dimensional 
lassi
al Lie superalgebrasare des
ribed by Ka
 in [31℄ and [39℄. Gould gives a generalisation to in�nite dimensionalrepresentations [40℄.We re
all the 
lassi�
ation results for irredu
ible representations of type I Lie superal-gebras by Gould [40℄. Let λ in h∗ be the highest weight of a highest weight representation

V (λ) and let Z be the 
entre of the universal enveloping algebra U(g) of the Lie super-algebra g, then Z takes 
onstant values on V (λ). The eigenvalue of z in Z on V (λ) isdenoted by χλ(z), this de�nes an algebra homomorphism
χλ : Z → C , z 7→ χλ(z) (2.2.32)
alled in�nitesimal 
hara
ter. A (not ne
essarily highest-weight) representation admitsan in�nitesimal 
hara
ter χλ if the elements z in Z take 
onstant values χλ(z) in therepresentation. In the 
ase of simple Lie algebras it is well known that every irredu
iblerepresentation admits an in�nitesimal 
hara
ter [41℄. The generalisation to type I Liesuperalgebras is proved by Gould [40℄:Theorem 2.2.8. Every irredu
ible representation of a Lie superalgebra of type I admitsan in�nitesimal 
hara
ter χλ for some λ in h∗.We 
onstru
t representations expli
itly as done by Ka
 [39℄. Re
all the triangularde
omposition of type I Lie superalgebras g = g−⊕g0⊕g+ (2.2.13). Let V0 be a represen-tation of the bosoni
 subalgebra g0 of 
ountable dimension then one gets a representationof g0 ⊕ g+ by promoting the elements in g+ to annihilation operators g+(V0) = 0 and theelements in g− to 
reation operators, i.e. we de�ne the Ka
 module of V0 to be
K(V0) = Indg

g0⊕g+
(V0) . (2.2.33)The main results in [40℄ are summarised inTheorem 2.2.9. Let V0 be an irredu
ible representation of g0 and K(V0) the Ka
 module.Then

• there exists a maximal proper submodule M(V0),19



20 CHAPTER 2. SUPER ALGEBRA
• the quotient K(V0)/M(V0) is irredu
ible and all irredu
ible representations are ofthis form.
• V0 admits an in�nitesimal 
hara
ter χ0

λ and K(V0) is irredu
ible if and only if (λ+
ρ|α) 6= 0 for all odd positive roots α.Denote the 
olle
tion of representations with in�nitesimal 
hara
ter χλ by Mλ. Inview of this theorem we 
all a representation Vλ in Mλ atypi
al if there exists an oddpositive root α su
h that (λ+ ρ|α) = 0.Geometri
 interpretation of representationsThis subse
tion is part of [35℄.The 
o-adjoint orbit method of Kirilov and Kostant [42℄ relates 
o-adjoint orbits of aLie group to representations of the group. In the 
ase of 
ompa
t simple Lie groups this
orresponden
e is ( [43℄ and referen
es therein)

πλ ←→ Ωλ+ρ (2.2.34)where πλ is a irredu
ible highest weight representation of the 
ompa
t Lie group G withdominant highest weight λ, ρ the Weyl ve
tor and Ω the 
o-adjoint orbit in the dual ofthe Lie algebra g∗ 
ontaining λ+ ρ.We seek an analogous des
ription for Lie supergroups en
oding information aboutatypi
ality. Let us 
onsider 
o-adjoint orbits. We �x a Cartan subalgebra h. Sin
e themetri
 restri
ts non-degenerately to h there exists a hλ+ρ in h su
h that (λ + ρ)(h) =
(hλ+ρ, h) for all h in h. We write λ + ρ = (hλ+ρ, · ), then the 
o-adjoint orbit 
ontaining
λ+ ρ is

Ωλ+ρ = { (ghλ+ρg
−1, · ) | g in G } . (2.2.35)It follows that the orbit extends into the dual spa
e g∗

α of the root spa
e of the root α ifand only if (λ+ ρ|α) 6= 0, i.e.
Ωλ+ρ ∩ g∗

α 6= ∅ ⇐⇒ (λ+ ρ|α) 6= 0 . (2.2.36)In other words, if (λ+ ρ|α) = 0 then Ωλ+ρ ∩ g∗
α = ∅ and we say that the 
o-adjoint orbit

Ωλ+ρ is lo
alised in the dire
tion 
orresponding to the root α. This gives us the followingrelation between representations and 
o-adjoint orbits.Proposition 2.2.10. There is a one-to-one 
orresponden
e between 
olle
tions of repre-sentations with in�nitesimal 
hara
ter χλ and 
o-adjoint orbits
Ωλ+ρ ←→ Mλ , (2.2.37)su
h that if and only if a representation is atypi
al the asso
iated 
o-adjoint orbit is lo-
alised in a fermioni
 dire
tion. 20



2.3. AFFINE LIE SUPERALGEBRAS 212.3 A�ne Lie superalgebrasThis se
tion is part of [35℄. The 
onformal �eld theories we are going to 
onsider areWess-Zumino-Novikov-Witten models on Lie supergroups. These possess an a�ne Liesuperalgebra symmetry.Referen
es to a�ne Lie superalgebras are [44℄ and [45℄. Denote by {ta} a basis of the�nite dimensional Lie superalgebra g with stru
ture 
onstants fabc and non-degenerateinvariant supersymmetri
 bilinear form ( , ). Then the a�ne Lie superalgebra ĝ 
orre-sponding to g is the in�nite dimensional Lie superalgebra generated by {tan, K, d} for n in
Z. K is 
entral and the non-vanishing relations are

[ tam, t
b
n ] = fabct

c
m+n +mδm+n(t

a, tb)K

[ d, tan ] = ntan .
(2.3.1)The ve
tor spa
e

ĥ = h⊕ CK ⊕ Cd (2.3.2)is a Cartan subalgebra of ĝ. We extend a linear fun
tion λ on h to ĥ by setting λ(K) =

λ(d) = 0 and de�ne linear fun
tions Λ0 and δ on ĥ by
Λ0(h⊕Cd) = 0 , Λ0(K) = 1 , δ(h⊕CK) = 0 and δ(d) = 1 . (2.3.3)Then ĥ∗ = h∗⊕CΛ0⊕Cδ. We also extend the bilinear form ( , ) from g to ĝ by setting

(tam, t
b
n) = δm+n(t

a, tb) , (tam, K) = (tam, d) = 0 ,

(K,K) = (d, d) = 0 and (K, d) = 1 .
(2.3.4)Further the spa
e of positive roots is

∆̂+ = ∆+ ∪ {α + nδ|n > 0} . (2.3.5)The a�ne Weyl ve
tor is
ρ̂ = ρ+ h∨Λ0 , (2.3.6)where h∨ is the dual Coxeter number of g (de�nition 2.2.5).2.3.1 RepresentationsIn this se
tion, we 
onsider representations of a�ne Lie superalgebras. Re
all the
onstru
tion of the Virasoro algebra out of the a�ne Lie superalgebra ĝl(1|1) (se
tion2.1.4). This Sugawara 
onstru
tion holds in general as we will demonstrate in the next
hapter. The relations of the Virasoro zero mode L0 with elements of the a�ne Liesuperalgebra ĝ are
[L0, t

a
n] = n tan , (2.3.7)21



22 CHAPTER 2. SUPER ALGEBRAi.e. they 
oin
ide with the a
tion of the derivation d of the a�ne Lie superalgebra ĝ(2.3.1). In a WZNW model one identi�es these two operators d = L0. The highest-weightrepresentations relevant for the WZNW model are 
onstru
ted as follows.De�nition 2.3.1. Consider a weight Λ = λ + kΛ0 of ĥ∗, then the Verma module V+(Λ)of highest-weight Λ is 
onstru
ted from a state |Λ+〉 satisfying
h|Λ+〉 = Λ(h)|Λ+〉 for h ∈ h ,

K|Λ+〉 = k|Λ+〉 ,
tan|Λ+〉 = 0 for n > 0 and
ta0|Λ+〉 = 0 for ta ∈ n+ .

(2.3.8)The Verma module V−(Λ) of lowest-weight Λ is 
onstru
ted analogously from a state |Λ−〉satisfying
h|Λ−〉 = Λ(h)|Λ−〉 for h ∈ h ,

K|Λ−〉 = k|Λ−〉 ,
tan|Λ−〉 = 0 for n < 0 and
ta0|Λ−〉 = 0 for ta ∈ n− .

(2.3.9)The highest(lowest)-weight state then has 
onformal dimension (L0 eigenvalue)
hΛ =

(Λ + 2ρ̂ | Λ)

2(k + h∨)
. (2.3.10)A singular ve
tor is a state of the representations that generates a proper subrepresenta-tion. We 
all su
h a Verma module typi
al if all its singular ve
tors are inherited fromthe bosoni
 subalgebra, otherwise if there are also fermioni
 singular ve
tors it is 
alledatypi
al. A

ording to [28℄ a ne
essary 
ondition for atypi
ality is

hΛ−α′ = hΛ + n (2.3.11)where α = α′ + nδ for some integer n and an odd root α′ of g. If α is a positive oddroot the highest-weight representation V+(Λ) 
an be atypi
al, and if α is a negative oddroot the lowest-weight representation V−(Λ) 
an be atypi
al. Equation (2.3.11) 
an berewritten as
(Λ + ρ̂ | α) = 0 . (2.3.12)In [46℄ it is shown that this is exa
tly the atypi
ality 
ondition for basi
 a�ne Lie super-algebras of type I.Atypi
al representations are 
losely related to atypi
al representations of the horizontalsubalgebra. We know that V±(Λ) is atypi
al if there is a singular ve
tor on the level of thehorizontal subalgebra g. Con
atenating the representation with an inner automorphismof ĝ gives an isomorphi
 representation that is also atypi
al. The a�ne Weyl group22



2.3. AFFINE LIE SUPERALGEBRAS 23indu
es su
h automorphisms of the a�ne Lie superalgebra ĝ. The a�ne Weyl group is theautomorphism group on the root and 
oroot systems and hen
e indu
es an automorphismon the a�ne Lie superalgebra sin
e this in return is uniquely de�ned via its roots, 
orootsand Cartan subalgebra. Denote by M the Z span of the 
oroots of g and de�ne thetranslation Tα as (α in M)
Tα(Λ) = Λ + Λ(K)α− ((Λ|α) +

1

2
(α|α)Λ(K))δ . (2.3.13)for Λ in ĥ∗. We denote the group of translations {Tα | α in M} by TM . Then the a�neWeyl group is [44℄ (W denotes the Weyl group of g)

Ŵ = W ⋉ TM . (2.3.14)The translation Tα indu
es an isomorphism T̃α on ĝ whi
h a
ts expli
itly as
T̃α : h 7→ h + α(h)K for h in h

K 7→ K

L0 7→ L0 − hα −
1

2
(α|α)K

tβn 7→ tβn−(α|β) for tβ in gβ .

(2.3.15)
These automorphisms are usually 
alled spe
tral �ow automorphisms in the physi
s lit-erature. If one knows the 
hara
ters of the representations of ĝ then one 
an identifythe representations obtained by an automorphism via (the h1, . . . hr form an orthonormalbasis of h)

χρ◦T̃α
(q, zi) = trρ(qT̃α(L0) z

T̃α(h1)
1 . . . zT̃α(hr)

r (−1)F )

= q−
k
2
(α|α) z

α(h1)k
1 . . . zα(hr)k

r χρ(q, ziq
−α(hi)) .

(2.3.16)If every 
hara
ter 
orresponds uniquely to a representation then this identi�
ation is exa
t.In the 
ases of ĝl(1|1)3 [26℄, ŝu(2|1) [47℄ and p̂su(1, 1|2) [27℄ all atypi
al representations
ould be obtained in this way from representations that have a singular ve
tor on thelevel of the horizontal subalgebra g.Geometri
 interpretation of representationsWe saw that the geometry of 
o-adjoint orbits provided information whether the asso-
iated representations are atypi
al or not. In a similar manner one 
an relate super
onju-ga
y 
lasses to representations of the a�ne Lie superalgebra ĝ. Choose an element hλ+ρ3Even though gl(1|1) is not 
lassi
al the above statements hold23



24 CHAPTER 2. SUPER ALGEBRAof the bosoni
 subalgebra g0 and 
hoose a Cartan subalgebra h 
ontaining hλ+ρ. Then we
onsider the super
onjuga
y 
lass 
ontaining the point exp
2πihλ+ρ

k+h∨
,

Ca = { gag−1 | g in G } , a = exp
2πihλ+ρ

k + h∨
. (2.3.17)The super
onjuga
y 
lass is lo
alised into a fermioni
 dire
tion 
orresponding to an oddroot α of g if and only if α(hλ+ρ) = n(k + h∨) for some n in Z. But this is equivalent to

(λ+ kΛ0 + ρ̂ |α− nδ) = (λ+ ρ |α)− n(k + h∨)(Λ0 | δ) = 0 . (2.3.18)Thus we arrive at the a�ne analogue of proposition 2.2.10.Proposition 2.3.2. There is a one-to-one 
orresponden
e between Verma modules V±(Λ),
(Λ = λ+ kΛ0) and super
onjuga
y 
lasses

C
exp

2πihλ+ρ

k+h∨

←→ V±(Λ) , (2.3.19)su
h that a representation is atypi
al if and only if the asso
iated super
onjuga
y 
lass isnot 
ompletely delo
alised in the fermioni
 dire
tions.In the next 
hapter, we will show that super
onjuga
y 
lasses have the physi
al inter-pretation of a brane.In the 
ase of 
ompa
t simple Lie groups the above 
orresponden
e has an interpreta-tion in terms of Cardy boundary states [48℄ (or equivalently branes). To ea
h irredu
ible�nite dimensional highest-weight representation of highest-weight Λ = λ + kΛ0 there ex-ists a boundary state B(Λ) and in the semi
lassi
al limit k → ∞ this state be
omes adistribution 
on
entrated on the 
onjuga
y 
lass Ca (a = exp
2πihλ+ρ

k+h∨
) [49℄.Later we will see that this statement also holds in the example of the Lie supergroupGL(1|1).

24



Chapter 3Conformal �eld theory with Lie super-group as target spa
eThe aim of this 
hapter is to introdu
e bulk and boundary Wess-Zumino-Novikov-Witten models. We begin with some general 
onsiderations of two-dimensional 
onformal�eld theory and its boundary theory. Then we introdu
e the relevant models the Wess-Zumino-Novikov-Witten models with Lie supergroup target. We show that they areindeed 
onformal �eld theories and that they in addition possess an a�ne Lie superalgebra
urrent symmetry. We present the bulk model and explain a perturbative formalism to
ompute 
orrelation fun
tions.Then we start to investigate the boundary theory. First we explain that a boundaryWess-Zumino-Novikov-Witten model is des
ribed by boundary 
onditions for the 
hiral�elds. These 
onditions des
ribe a subsupermanifold of the supergroup, the branes' world-volume. We show that these branes are twisted super
onjuga
y 
lasses. These insightsare then used to �nd the a
tion of the boundary WZNW model.3.1 Conformal �eld theory in two dimensionsThe 
onformal �eld theories we are 
onsidering are two dimensional. As a referen
ewe use [50℄.We start with some general 
onsiderations about quantum �eld theory. In general theworld-sheet of a two-dimensional �eld theory is a two-dimensional orientable Riemannsurfa
e Σ. We will mostly restri
t to the sphere and to the dis
 in the boundary 
ase (orequivalently the 
omplex plane and upper half plane) and parameterise it by holomorphi
and anti-holomorphi
 
oordinates z, z̄. A �eld Φ(z, z̄) maps the world-sheet to some targetspa
e. There exist some distinguished �elds, 
hiral �elds, that depend only on one of thetwo 
oordinates z or z̄. We take a Lagrangian approa
h, that is a model is des
ribedby an a
tion S and �elds Φi(zi, z̄i). Observable quantities are 
orrelation fun
tions. Let
X = Φ1(z1, z̄1) . . .Φn(zn, z̄n) be a produ
t of �elds and DΦ denote the path integralmeasure, then a 
orrelation fun
tion is de�ned by the path integral

〈X 〉 =

∫
DΦ X e−S . (3.1.1)For the 
omputation of 
orrelation fun
tions the symmetry of the model is an essentialaide. Let δ be an in�nitesimal symmetry transformation of the theory. Symmetry means25



26 CHAPTER 3. CFT WITH LIE SUPERGROUP AS TARGET SPACEthat any 
orrelation fun
tion is invariant under su
h a transformation, i.e.
0 = δ〈X 〉 = 〈 δX 〉 − 〈 (δS)X 〉 . (3.1.2)These 
onstraints to the form of 
orrelation fun
tions are 
alled Ward identities.The se
ond 
on
ept we need is that of an operator produ
t expansion. Let A(z)and B(w) be two lo
al 
hiral �elds then their operator produ
t expansion is the Laurentexpansion of the produ
t of the two �elds at the point w. In other words the operatorprodu
t expansion des
ribes the behaviour of the produ
t of the two �elds A(z) and B(w)in a small neighbourhood of z − w. The �rst regular term in this expansion is 
alled thenormal ordered produ
t indi
ated by 
olons, that is

: AB : (w) =
1

2πi

∮

w

dx

(x− w)
A(x)B(w) . (3.1.3)Now, let us des
ribe the main ingredients of 
onformal �eld theory. The �rst obje
tis the energy-momentum tensor, it 
onsists of a holomorphi
 part T (z) and an antiholo-morphi
 one T̄ (z̄). They satisfy the operator produ
t expansion

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)

T̄ (z̄)T̄ (w̄) ∼ c/2

(z̄ − w̄)4
+

2T̄ (w̄)

(z̄ − w̄)2
+

∂̄T̄ (w̄)

(z̄ − w̄)

T (z)T̄ (w̄) ∼ 0 .

(3.1.4)The number c is 
alled the 
entral 
harge of the model. If we turn to the operatorformalism and express the energy-momentum tensor in a Laurent expansion
T (z) =

∑

n∈Z

Lnz
−n−2 , T̄ (z̄) =

∑

n∈Z

L̄nz̄
−n−2 , (3.1.5)then the modes of this expansion satisfy the relations of an in�nite-dimensional Lie alge-bra, that is two 
opies of the Virasoro algebra

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0

[L̄n, L̄m] = (n−m)L̄n+m +
c

12
n(n2 − 1)δn+m,0

[Ln, L̄m] = 0 .

(3.1.6)This is the in�nite dimensional symmetry of a two-dimensional CFT.The se
ond ingredient are the primary �elds. A �eld φ(z, z̄) is 
alled a primary �eldof 
onformal dimension (h, h̄) if it satis�es
T (z)φ(w, w̄) ∼ h

(z − w)2
+
∂φ(w, w̄)

(z − w)

T̄ (z̄)φ(w, w̄) ∼ h̄

(z̄ − w̄)2
+
∂̄φ(w, w̄)

(z̄ − w̄)

(3.1.7)26



3.1. CONFORMAL FIELD THEORY IN TWO DIMENSIONS 27Conformal invarian
e in two dimensions is remarkable. The group of lo
al 
onformaltransformations on the 
omplex plane is the group of holomorphi
 fun
tions. The groupof global 
onformal transformations restri
ts the form of 
orrelation fun
tions of primary�elds, e.g. the two-point fun
tions and three-point fun
tions to have the form
〈φ1(z1, z̄1)φ2(z2, z̄2) 〉 =

δh1,h2δh̄1,h̄2
C12

(z1 − z2)2h1(z̄1 − z̄2)2h̄1

〈φ1(z1, z̄1)φ2(z2, z̄2)φ3(z3, z̄3) 〉 =
C123

(z1 − z2)∆123(z2 − z3)∆231(z1 − z3)∆132
×

1

(z̄1 − z̄2)∆̄123(z̄2 − z̄3)∆̄231(z̄1 − z̄3)∆̄132
,where ∆abc = ha + hb − hc and ∆̄abc = h̄a + h̄b − h̄c .

(3.1.8)
A two-dimensional bulk 
onformal �eld theory is 
ompletely spe
i�ed by the knowledgeof all two- and three-point fun
tions of primary �elds.Now, we 
onsider a world-sheet with boundary. The simplest example is the upper-half plane, Imz > 0 with boundary the real line z = z̄. The boundary 
onformal �eldtheory is in the interior of the upper half plane lo
ally equivalent to the bulk theory. Thismeans, that the leading singularities in the OPE of �elds inserted in the interior of theupper-half plane 
oin
ide with the OPEs of the bulk theory. On the boundary we wantthe theory to stay 
onformal, whi
h is guaranteed if the energy-momentum tensor satis�esthe gluing 
onditions

T (z) = T̄ (z̄) for z = z̄. (3.1.9)In a two-dimensional CFT this 
ondition ensures that there is no momentum �ow a
rossthe boundary.The additional data of a boundary 
onformal �eld theory that 
ompletely spe
i�esthe model are bulk one-point fun
tions, bulk-boundary two-point fun
tions and boundarythree-point fun
tions.3.1.1 Boundary statesThere is an e�
ient 
on
ept in boundary 
onformal �eld theory, that of boundarystates. In this se
tion we follow [51℄ and [52℄. To ea
h boundary CFT there exists aformal state (formal, be
ause it is not normalisable in the usual sense) in the bulk theory
ontaining the information of the boundary 
onditions and of bulk one-point fun
tions inthe boundary theory.The goal is to express 
orrelation fun
tions at �nite temperature in the boundarytheory through quantities whi
h are 
ompletely spe
i�ed in the bulk theory. In stringtheory terms, a boundary theory des
ribes open strings starting and ending on somebranes, while a bulk theory des
ribes 
losed strings. From this point of view, boundarystates are an example of a 
losed string to open string duality.27



28 CHAPTER 3. CFT WITH LIE SUPERGROUP AS TARGET SPACEConsider a CFT with energy-momentum tensor T (z) and T̄ (z̄) and additional 
hiral�elds W (z) and W̄ (z̄) of half-integer 
onformal dimension hW . In addition to preserv-ing 
onformal symmetry along the boundary (3.1.9), in the boundary CFT we want topreserve half of the 
hiral symmetry. This means we require gluing 
onditions of the form
W (z) = Ω(W̄ (z̄)) for z = z̄ . (3.1.10)Here Ω denotes an automorphism on the spa
e of 
hiral �elds. In general there exists morethan one boundary CFT for the gluing 
onditions (3.1.10). Hen
e we label a boundarytheory by the automorphism Ω and an additional parameter α. In our examples thisadditional parameter is the transverse position of the brane whi
h the boundary theorydes
ribes.In the following the world-sheet of the boundary theory is the upper-half plane, whilethe bulk world-sheet is the 
omplex plane, and we denote �elds of the boundary theoryby φbdy and those of the bulk model by φbulk.A 
orrelation fun
tion at �nite temperature labelled by β0 in the boundary theory is

〈φbdy1 (z1, z̄1) . . . φ
bdy
n (zn, z̄n)〉β0 = tr(eβ0Hbdy

φbdy1 (z1, z̄1) . . . φ
bdy
n (zn, z̄n)) (3.1.11)where the arguments zi are radially ordered, the tra
e is over the state spa
e of theboundary theory and the Hamiltonian is Hbdy = Lbdy

0 − c/24. If the above �elds areprimaries, i.e. they s
ale like φbdy(λz, λ̄z̄) = λ−hλ̄−h̄φbdy(z, z̄), then the above 
orrelatorsare periodi
 in the time variable t = ln z up to a s
ale fa
tor. We pi
ture the abovepro
ess essentially as a one-loop diagram of an open string starting and ending on ourbrane (Ω, α).If we ex
hange the role of time and spa
e, then this pro
ess should be viewed as a
losed string emitted from the brane, propagating and then being absorbed by the braneagain (illustrated in �gure 3.1). The inter
hange of spa
e and time is realised by
z 7→ ξ = exp(

2πi

β0
ln z) and z̄ 7→ ξ̄ = exp(−2πi

β0
ln z̄) . (3.1.12)Fields depending on ξ and ξ̄ should now be interpreted as bulk states, i.e. states des
ribing
losed strings. For the primaries and the energy-stress tensor, this transformation is

φbulk(ξ, ξ̄) =
(dz
dξ

)h (dz̄
dξ̄

)h̄
φbdy(z, z̄)

T bulk(ξ) =
(dz
dξ

)2

T bdy(z) +
c

12
{z, ξ} ,

(3.1.13)
{z, ξ} denotes the S
hwartz derivative. The boundary state |α,Ω〉 is now de�ned, su
hthat the following equation holds for any �eld insertions
〈φbdy1 (z1, z̄1) . . . φ

bdy
n (zn, z̄n)〉β0 =

〈α,Ω|e−
2π2

β0
Hbulk

φbulk1 (ξ1, ξ̄1) . . . φ
bulk
n (ξn, ξ̄n)|α,Ω〉 .

(3.1.14)28
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Figure 3.1: The diagram 
an be viewed as a 
losed string emitted from a brane and thenbeing absorbed by another brane. It 
an also be seen as an one-loop diagram of an openstring starting and ending on the two branes.This equation also makes sense if we repla
e one of the two boundary states by anotherboundary state |β, Ω̃〉. Then the left-hand side des
ribes a boundary theory with boundary
onditions (α,Ω) on the negative real axis and boundary 
onditions (β, Ω̃) on the positivereal axis. We will see examples thereof in the following 
hapters.There is another equivalent des
ription of boundary states. The upper-half plane ismapped to the 
omplement of the unit disk in the 
omplex plane via
z 7→ ζ =

1− iz
1 + iz

z̄ 7→ ζ̄ =
1 + iz̄

1− iz̄ . (3.1.15)Under su
h a 
oordinate transformation a primary φbdy(z, z̄) of 
onformal dimension (h, h̄)
hanges as follows
φbdy(z, z̄) =

(dζ
dz

)h (dζ̄
dz̄

)h̄
φbulk(ζ, ζ̄) . (3.1.16)A boundary state is a formal state |α,Ω〉 in the bulk de�ned su
h that the followingequation holds for any primary φ

〈φbdy(z, z̄)〉 =
(dζ
dz

)h (dζ̄
dz̄

)h̄
〈0|φbulk(ζ, ζ̄)|α,Ω〉 (3.1.17)where the left-hand side is a one-point fun
tion evaluated in the boundary theory, whilethe right-hand side is evaluated in the bulk theory. If we apply the equation above tothe spe
ial 
ase of our 
hiral 
urrents inserted along the boundary ζζ̄ = 1 and we use thegluing 
onditions (3.1.10), then we see that the boundary state has to satisfy the Ishibashi
onditions [53℄

(Wn − (−1)hW Ω(W̄−n))|α,Ω〉 = 0 . (3.1.18)29



30 CHAPTER 3. CFT WITH LIE SUPERGROUP AS TARGET SPACEHere Wn denotes the mode of the Laurent expansion of W (z), i.e.
W (z) =

∑

n∈Z

Wnz
−n−hW . (3.1.19)The analogous expression holds for W̄ (z̄). An irredu
ible representation ρi of the bulktheory allows at most one solution to the above 
onstraint, the Ishibashi state |i〉〉Ω. It
an be normalised su
h that

Ω〈〈i|q̃L
bulk
0 − c

24 (−1)F
bulk|j〉〉Ω = δi,jχi(q̃) , (3.1.20)where F bulk is a fermion number operator and χi(q̃) is the 
hara
ter of the representation

ρi. One feature of the superalgebras is that representations might be redu
ible but inde-
omposable, as we have seen. In that 
ase they might possess more than one Ishibashistate and the amplitude of two Ishibashi states, in the sense of above equation, is notne
essarily a true 
hara
ter but 
an also have a log q̃ dependen
e. We will see this in theexamples in the following 
hapters.The boundary state is a linear 
ombination of the Ishibashi states
|α〉 =

∑

i

Bi
α|i〉〉Ω . (3.1.21)It is very remarkable that the 
oe�
ients Bi

α en
ode all the information about the bulkone-point fun
tions of the boundary theory α [54℄, [51℄, that is
〈φi(z, z̄)〉α =

Bi+

α,Ω

|z − z̄|hi+h̄i
(3.1.22)where i+ denotes the representation 
onjugate to i with respe
t to the metri
 given bythe two-point fun
tions of the bulk theory.We 
ompute the 
oe�
ients Bi

α,Ω using (3.1.14) without any �eld insertions. Thenthe left-hand side of (3.1.14) is the partition fun
tion of the boundary theory. For theevaluation of the right-hand side we use (3.1.20), then we have
Z(α,Ω);(β,Ω̃)(q) = 〈α,Ω|q̃ 1

2
(Lbulk0 +L̄bulk0 − c

12
)(−1)F

bulk|β, Ω̃〉
=
∑

i

Bi
α,ΩB

i
β,Ω̃
χi(q̃) .

(3.1.23)Here we introdu
ed q = exp(−β0) and q̃ = exp(−2π2

β0
). The 
hara
ters in terms of q̃ arelinearly related to those in terms of q by the modular S-matrix

χi(q̃) =
∑

j

Sijχj(q) . (3.1.24)Sin
e Z(α,Ω);(β,Ω̃)(q) is a true partition fun
tion, i.e. an integer 
ombination of 
hara
ters
Z(α,Ω);(β,Ω̃)(q) =

∑

i

ni
(α,Ω);(β,Ω̃)

χi(q) (3.1.25)30



3.2. THE BULK WESS-ZUMINO-NOVIKOV-WITTEN MODEL 31we get the following Cardy [48℄ 
onstraint for our 
oe�
ients
∑

j

Bj
α,ΩB

j

β,Ω̃
Sji = ni

(α,Ω);(β,Ω̃)
. (3.1.26)Often these 
onstraints su�
e to 
onstru
t the boundary states. This is 
alled modularbootstrap.Our goal for the following 
hapters is to understand in examples how to �nd and treatboundary states.We now turn to the spe
i�
 
lass of models we are interested in.3.2 The bulk Wess-Zumino-Novikov-Witten modelIn this se
tion, we introdu
e the bulk Wess-Zumino-Novikov-Witten (WZNW) modelof a Lie supergroup. We start by introdu
ing the a
tion, then we show that the modelpossesses the a�ne 
urrent symmetry whi
h allows for the Sugawara 
onstru
tion of theenergy-momentum tensor. Finally, we state a formalism to 
ompute 
orrelation fun
tions.We follow the reasoning for Lie groups, see e.g [50℄. But in generalising to Lie supergroupsone has to be 
arefull to in
lude the fermions 
orre
tly.3.2.1 The bulk a
tionFor a �eld theoreti
 des
ription, we need the notion of a supergroup valued �eld. Let

Σ be an orientable Riemann surfa
e. Further let xa : Σ→ Λ0(R) and θb : Σ→ Λ1(R) bein�nitely di�erentiable fun
tions into the even, respe
tively odd, part of the Grassmannalgebra over R. By in�nitely di�erentiable we mean a fun
tion of the form [34℄
f = f(τ, σ) =

∑

k≥0

∑

i1,...,ik

fi1,...,ik(τ, σ)θi1 . . . θik , (3.2.1)where τ, σ ∈ Σ, the fi1,...,ik(x) are R-valued in�nitely di�erentiable fun
tions on Σ and the
θi generate the Grassmann algebra Λ(R). Then we introdu
e the lo
al Λ(g)-valued �eldon Σ

X(τ, σ) = xa(τ, σ)ta + θb(τ, σ)sb (3.2.2)and the G-valued �eld g(τ, σ) = expX(τ, σ).The setup for the WZNW model is exa
tly as in the Lie group 
ase. So let Σ be theworld-sheet, that is a 
ompa
t Riemann surfa
e without boundary, and g : Σ → G amap from the Riemann surfa
e to the Lie supergroup G. Assume that there exists anextension of this map to a map g̃ : B → G from a 3-manifold B with boundary ∂B = Σto G. Further let z = τ + iσ and z̄ = τ − iσ then the kineti
 term of the a
tion is
Skin[g] =

k

2π

∫

Σ

dτdσ str(g−1∂g g−1∂̄g) (3.2.3)31



32 CHAPTER 3. CFT WITH LIE SUPERGROUP AS TARGET SPACEand the Wess-Zumino term is [55℄
SWZ[g̃] =

k

2π

∫

B

H =
k

6π

∫

B

str(g̃−1dg̃ ∧ g̃−1dg̃ ∧ g̃−1dg̃) . (3.2.4)The number k is 
alled the level of the model. The full a
tion is then
S[g̃] = Skin[g] + SWZ[g̃] . (3.2.5)Further the variation of the a
tion is

δS = S[g̃ + δg̃]− S[g̃] =
k

π

∫

Σ

dτdσ str(g−1δg ∂(g−1∂̄g)) . (3.2.6)Thus the bulk equations of motion tell us that we have the 
onserved 
urrents J, J̄ with
∂̄J = ∂J̄ = 0, where

J(z) = −k∂gg−1 and
J̄(z̄) = kg−1∂̄g .

(3.2.7)It is straightforward to 
ompute the Polyakov-Wiegmann identity
S[g̃h̃] = S[g̃] + S[h̃] +

k

π

∫

Σ

dτdσ str(∂hh−1 g−1∂̄g) . (3.2.8)The a
tion (3.2.5) is well-de�ned if it does not depend on the extension g̃ to a 3-manifoldB.For type I Lie supergroup models this is done as follows [26�28℄. Type I Lie superalgebrashave the distinguished Z-graduation g = g−⊕g0⊕g+ (2.2.13), where g± are two irredu
iblerepresentations of the bosoni
 subgroup g0 and the supertra
e satis�esstr(X+ Y+) = str(X− Y−) = 0 for all X± and Y± in g± . (3.2.9)Let {ta±} be a basis of g±, then we de�ne the fermioni
 �elds θ± = θ±a t
a
±. Further,we parameterise a Lie supergroup element a

ording to the distinguished Z-graduation

g = eθ−g0e
θ+ , where g0 is an element of the bosoni
 subgroup. Applying the Polyakov-Wiegmann identity (3.2.8) twi
e the a
tion be
omes

S[g̃] = S[g̃0] +
k

π

∫

Σ

dτdσ str(Ad(g0)(∂θ+)∂̄θ−) . (3.2.10)Thus the ambiguity in the extension of this model is the ambiguity of the Lie groupWZNW model of the bosoni
 subgroup G0 and gives well-known quantisation 
onditionson the level k [56℄.Type II Lie supergroups 
an be treated similarly [57℄. The distinguished Z-graduationis g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 and the supertra
e satis�esstr(Xi Yj) = 0 (3.2.11)32



3.2. THE BULK WESS-ZUMINO-NOVIKOV-WITTEN MODEL 33if Xi in gi, Yj in gj and i + j 6= 0. Then parameterising a Lie supergroup elementa

ording to the distinguished Z-graduation g = g−e
θ−g0e

θ+g+ and applying the Polyakov-Wiegmann identity (3.2.8) four times the a
tion be
omes
S[g̃] = S[g̃0] +

k

π

∫

Σ

dτdσ str(Ad(g0)(∂θ+)∂̄θ−) +

k

2π

∫

Σ

dτdσ str(Ad(g0)([θ+, ∂θ+] + 2∂g+g
−1
+ )([∂̄θ−, θ−] + 2g−1

− ∂̄g−)) .

(3.2.12)Thus the ambiguity in the extension in this model is the ambiguity of the Lie groupWZNW model of the bosoni
 subgroup whi
h 
orresponds to the Lie subalgebra g0.3.2.2 The 
urrent symmetryOur next goal is to show, that this model possesses an a�ne 
urrent symmetry. Thismeans that the modes of the 
urrents J(z) and J̄(z̄) form two 
ommuting 
opies of thea�ne Lie superalgebra ĝ at level k, where g is the underlying Lie superalgebra of the Liesupergroup G. Level k means that the 
entral element K of the Lie superalgebra ĝ a
ts asthe 
onstant k, i.e. the WZNW model is a representation of ĝ of K-eigenvalue k. We onlyshow this symmetry for the holomorphi
 part, the anti-holomorphi
 
urrents are treatedanalogously.Consider a variation by a holomorphi
 fun
tion ω(z) of the form g → (1+ω(z))g thenthe Ward identity (3.1.2) for this variation with X = J is
〈 δωJ(w) 〉 = 〈 [ω, J ]− k∂ω 〉 = − 1

2πi

∮
dz 〈 (ω, J)J(w) 〉 = 〈 (δωS)J 〉 . (3.2.13)The 
ontour is taken 
ounter
lo
kwise. The �rst equality sign is a dire
t 
omputation asin [50℄

δωJ = −k∂(ωg)g−1 + k∂gg−1ω

= [ω, J ]− k∂ω (3.2.14)and the last equality follows from (3.2.6), by using Ad(g)∂(g−1∂̄g) = ∂̄(∂gg−1) and 
hang-ing the measure as d2z = 2idτdσ and integrating by parts. We want to perform someexpli
it 
al
ulations. We start by introdu
ing some notation. First de�ne the 
omponentsof J via (here and in the following, summation over repeated indi
es is understood)
J = J̃aκabtb and also ω = ωaκabtb (3.2.15)where κab denotes the invariant bilinear form ( ta , tb ) and {ta} a basis of our Lie super-algebra g. We 
hoose the basis su
h that

κabκbc = (−1)aδac , (3.2.16)33



34 CHAPTER 3. CFT WITH LIE SUPERGROUP AS TARGET SPACEwhi
h is always possible as 
an be seen from the fundamental matrix realisations providedin example 2.2.2�2.2.4. Here and in the following we use the notation
(−1)a := (−1)|t

a| . (3.2.17)Sin
e our bilinear form is non-degenerate, we 
an de�ne a dual basis {ta}
(ta, tb) = δab (3.2.18)with dual metri
 κab. We raise and lower indi
es by using the metri
, espe
ially we needthe formulae

fabc = fabdκcd ,

fabc = fabdκ
dc and also

κab = κab .

(3.2.19)Then the Ward identity (3.2.13) implies the following operator produ
t expansion
J̃a(z)J̃ b(w) ∼ kκba

(z − w)2
− f bacJ̃

c(w)

(z − w)
. (3.2.20)This is almost an a�ne Lie superalgebra 
urrent symmetry, but we get some unusualsigns. We observed a similar behaviour for the invariant ve
tor �elds (2.2.24). We get ana�ne 
urrent symmetry if we de�ne

Ja(z) =

{
J̃a(z) if ta in g0 ⊕ g−1

−J̃a(z) if ta in g1
(3.2.21)for type I Lie supergroups. In the type II 
ase we set

Ja(z) =

{
J̃a(z) if ta in g0 ⊕ g−1

−J̃a(z) if ta in g−2 ⊕ g1 ⊕ g2
. (3.2.22)Now, the operator produ
t expansion of these 
urrents is as desired

Ja(z)J b(w) ∼ kκab

(z − w)2
+
fabcJ

c(w)

(z − w)
. (3.2.23)This means that the modes of the Laurent expansion of the 
urrents obey the relationsof the a�ne Lie superalgebra ĝ (2.3.1), i.e.

Ja(z) =
∑

n∈Z

tanz
−n−1

[tan, t
b
m] = fabct

c
n+m + knδn+m,0κ

ab .

(3.2.24)34



3.2. THE BULK WESS-ZUMINO-NOVIKOV-WITTEN MODEL 353.2.3 The Sugawara 
onstru
tionThe next step is to �nd the Virasoro symmetry. We present the Sugawara 
onstru
tionfor the holomorphi
 part of the energy-momentum tensor. We de�ne the 
hiral �eld
T (z) =

(: J(z), J(z) :)

2(k + h∨)
=

: J̃a(z)κabJ̃ b(z) :

2(k + h∨)
=

: Ja(z)κbaJ b(z) :

2(k + h∨)
(3.2.25)and want to show that this �eld is the holomorphi
 energy-momentum tensor. For thispurpose we 
ompute exa
tly as in [50℄ ex
ept for taking 
are of additional minus signsdue to the fermions

Ja(z) : J bκcbJc : (w) =
2(k + h∨)Ja(w)

(z − w)2
. (3.2.26)This equation implies that the 
urrents are primaries of 
onformal dimension one

T (z)Ja(w) ∼ Ja(w)

(z − w)2
+
∂Ja(w)

(z − w)
. (3.2.27)We use this equation to show that T (z) indeed satis�es the operator produ
t expansionof an energy-momentum tensor (3.1.4)

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
(3.2.28)with 
entral 
harge

c =
k sdim(g)

k + h∨
. (3.2.29)The superdimension is the dimension of the bosoni
 subalgebra minus the dimension ofthe fermioni
 part of the Lie superalgebra. Thus, many WZNW models on supergroupshave zero or negative 
entral 
harge.The next step is to �nd vertex operators of our theory. In a WZNW model of a Liegroup these are the primaries of the 
urrent algebra.3.2.4 The �rst order formulationThe formulation provided in this se
tion was established in [28℄. It works only for Liesupergroups of type I, be
ause we need the triangular de
omposition (2.2.13). We willsket
h the pro
edure here. Let {ta±} be a basis of g±, then we de�ne the fermioni
 �elds

c = cat
a
− and c̄ = c̄at

a
+. Further, we parameterise a Lie supergroup element a

ording tothe distinguished Z-graduation (2.2.13)

g = ec g0 e
c̄ . (3.2.30)Here, g0 is an element of the Lie subgroup. Then the a
tion is (3.2.10)

S[g̃] = S[g̃0] +
k

π

∫

Σ

dτdσ str(Ad(g0)(∂c̄)∂̄c) . (3.2.31)35



36 CHAPTER 3. CFT WITH LIE SUPERGROUP AS TARGET SPACEThe idea is to �nd a perturbative pres
ription in terms of the WZNWmodel of the bosoni
subgroup and of free fermions. For this purpose we introdu
e auxiliary fermioni
 �elds
b̄ = b̄at

a
− taking values in g− and b = bat

a
+ taking values in g+. The model we want to
onsider is

S = S0 + Spert
S0 = S[g̃0]ren +

1

2π

∫

Σ

dτdσ str(b∂̄c)− str(b̄∂c̄)
Spert =

1

4πk

∫

Σ

dτdσ str(Ad(g0)(b̄)b) .

(3.2.32)This model is equivalent to the above WZNW model if we integrate the auxiliary �elds b, b̄and if we take 
are about the measures. The measure of the Lie supergroup is the invariantsupergroup measure (2.2.25), while in the model S, we want the invariant measure of thebosoni
 subgroup times the free fermioni
 measure. Thus we have to 
ompute the Ja
obianof 
hange of 
oordinates. We will see in 
hapter 5 in an example how this works pre
isely.In general, it is shown in [28℄ that this involves the following renormalised metri
 for thebosoni
 WZNW model
κij → κijren = κij − 1

k

∑

a,b∈g+

f iabf
jb
a . (3.2.33)The se
ond 
onsequen
e of the renormalisation is the possible appearan
e of a lineardilaton term 
oupling to the world-sheet 
urvature R

−1

4π

∫
dτdσR ln detAd(g0)− . (3.2.34)Here, detAd(g0)− means the determinant of the adjoint a
tion of g0 on g− (
ompare with(2.2.25). Su
h a term appears whenever the bosoni
 subgroup is not simple, i.e. in the
ases sl(n|m), gl(n|m) and osp(2|2n).Consider the model des
ribed by the a
tion S0[g0, c, c̄, b, b̄]. It possesses the a�ne
urrent symmetry of the bosoni
 subalgebra ĝ0, e.g. the holomorphi
 part satis�es

J iB(z)J jB(w) ∼ κijren
(z − w)2

+
f ij lJ

l
B(w)

(z − w)
. (3.2.35)The ghosts ba have 
onformal dimension 1 and the ca dimension 0. They satisfy

ba(z)cb(w) ∼ κab
(z − w)

. (3.2.36)It turns out that one 
an also �nd an a�ne Lie superalgebra ĝ 
urrent symmetry in themodel S0. The 
omponents of
J = J− + J0 + J+ where
J− = −k∂c + [c, JB]− 1

2
: [c, : [c, b] :] :

J0 = JB− : [c, b] :

J+ = −b

(3.2.37)36



3.3. THE BOUNDARY WZNW MODEL 37satisfy the relations of the ĝ 
urrent algebra of level k
Ja(z)J b(w) ∼ kκab

(z − w)2
+
fabcJ

c(w)

(z − w)
. (3.2.38)Similarly, there exists an anti-holomorphi
 
opy of the a�ne 
urrent symmetry, given bythe 
omponents of the following 
urrent.

J̄ = J̄− + J̄0 + J̄+ where
J̄− = −b̄
J̄0 = J̄B+ : [c̄, b̄] :

J̄+ = k∂̄c̄− [c̄, J̄B]− 1

2
: [c̄, : [c̄, b̄] :] : .

(3.2.39)Vertex operators are those of the model S0, i.e. vertex operators of the WZNW modelof the bosoni
 subgroup times free ghost operators. Further 
omputations of 
orrelationfun
tions are performed perturbatively.3.3 The boundary WZNW modelWe turn to the boundary. While bulk WZNW models on type I Lie supergroups areunder good 
ontrol, the boundary 
ase has not been studied before the beginning of thisthesis. This se
tion is the main part of [35℄.Boundary theory means, that the world-sheet Σ is an orientable Riemann surfa
e withone boundary ∂Σ. Lo
ally one usually parameterises any element in Σ as (τ, σ), wherethe �rst 
oordinate belongs to the dire
tion parallel to the boundary and the se
ond oneto the perpendi
ular dire
tion. We also introdu
e 
omplex variables z = τ + iσ and
z̄ = τ − iσ.Re
all, that 
onformal invarian
e is preserved along the boundary if the energy-momentum tensor satis�es the boundary 
ondition

T = T̄ for z = z̄ . (3.3.1)This is 
ertainly satis�ed if the boundary 
onditions of the 
urrents are
J = Ω(J̄) for z = z̄ , (3.3.2)where Ω is an automorphism of g preserving any invariant non-degenerate supersymmetri
bilinear form of g. The 
urrents are Λ(g)-valued �elds and Ω lifts to an automorphismof Λ(g) in the obvious way. Sin
e these gluing 
onditions do not only preserve 
onformalsymmetry but also half the 
urrent symmetry they are 
alled maximally symmetri
. Welisted those automorphisms that preserve the metri
 in se
tion 2.2.2.37



38 CHAPTER 3. CFT WITH LIE SUPERGROUP AS TARGET SPACE3.3.1 Geometry of branes on supergroupsThe �rst question we ask is what kind of geometri
 obje
ts the gluing 
onditions (3.3.2)des
ribe.For WZNW models on Lie groups the geometry of branes has been studied in detaile.g. [58�60℄. If a �eld g takes values in a Lie group with de�nite metri
, then the boundary
onditions (3.3.2) imply that the restri
tion of g to the boundary of the Riemann surfa
e
Σ takes values in a twisted 
onjuga
y 
lass.The generalisation to Lie supergroups is the following.Proposition 3.3.1. Let the restri
tion of g to the boundary of the Riemann surfa
e Σtake values in a subspa
e N ⊂ G su
h that the boundary 
onditions (3.3.2) hold. We 
all
N the branes' worldvolume. If the metri
 restri
ts non-degenerately to the tangent spa
e
TgN of the branes' worldvolume N and if the tangent spa
e of G at the point g de
omposesin the dire
t sum of TgN and its orthogonal 
omplement TgN⊥,

TgG = TgN ⊕ TgN⊥ , (3.3.3)then the worldvolume N is the twisted super
onjuga
y 
lass1
CΩ
g = { Ω(h)gh−1 | h ∈ G } . (3.3.4)Sin
e the metri
 is not de�nite, the de
omposition (3.3.3) is not guaranteed to holdin general. But for Lie supergroups with the property that the restri
tion of the metri
to any simple or abelian subgroup of the underlying Lie group G0 is de�nite it holds fora twisted super
onjuga
y 
lass that is 
ompletely delo
alised in the fermioni
 dire
tions,i.e. exp Λ(g1̄) ⊂ CΩ

g . This is the regular 
ase and we 
all these branes typi
al in analogyto typi
al representations. Re
all proposition 2.3.2 that this is more than a mere analogy.We will 
all all other branes atypi
al. If the gluing automorphism Ω is inner, then theabove assumptions also hold for non-regular twisted super
onjuga
y 
lasses 
ontaining apoint g in the bosoni
 Lie subgroup G0 while they never hold for twisted super
onjuga
y
lasses 
ontaining a point g = expX with X nilpotent. We give an example in [35℄ ofbranes 
overing these regions.Now, let us explain the above proposition. The gluing 
onditions (3.3.2) 
an be trans-lated to boundary 
onditions in the tangent spa
e TgG tangent to the point g ∈ G, i.e.with the help of the left and right translation the boundary 
onditions read
∂g = −Ω̃g∂̄g (3.3.5)where Ω̃g is the map on the tangent spa
e at g de�ned as

Ω̃g = Rg ◦ Ω ◦ Lg−1 : TgG→ TgG . (3.3.6)1The automorphism Ω of the Lie superalgebra lifts to an automorphism of the Lie supergroup via
Ω(exp X) = exp Ω(X). We still denote it by Ω. 38



3.3. THE BOUNDARY WZNW MODEL 39Note that for any given tangent ve
tor V in TgG we have Ω̃g(V ) = Ω(g−1V )g. In termsof Diri
hlet and Neumann derivatives (2∂p = ∂ + ∂̄ and 2i∂n = ∂ − ∂̄) the boundary
onditions are
(1 + Ω̃g)∂pg = −i(1− Ω̃g)∂ng . (3.3.7)We need the assumption that the metri
 restri
ts non-degenerately to TgN and thatthe tangent spa
e TgG splits into a dire
t sum
TgG = TgN ⊕ TgN⊥ , (3.3.8)then equation (3.3.7) identi�es those ve
tors in TgG whi
h have nonzero (1−Ω̃g) eigenvalueas dire
tions of Neumann boundary 
onditions, i.e. they are ve
tors tangent to the branesworldvolume N . Then TgN⊥ is spanned by the ve
tors having zero (1− Ω̃g) eigenvalue.Let V be in TgN⊥ then Ω̃g(V ) = V whi
h is expressed in terms of Ω

Ω(g−1V ) = V g−1 . (3.3.9)Thus
(Ω(g−1V )− V g−1,Ω(X)) = 0 for all X in Λ(g) . (3.3.10)Sin
e the metri
 is left- and right-invariant and invariant under Ω (re
all that Ω is requiredto be metri
 preserving) (3.3.10) is equivalent to

(V, gX − Ω(X)g) = 0 . (3.3.11)Hen
e gX −Ω(X)g is orthogonal to TgN⊥, i.e. it is tangent to the worldvolume N of thebrane, but it is also tangent to the twisted super
onjuga
y 
lass
CΩ
g = { Ω(h)gh−1 | h ∈ G } . (3.3.12)This 
an be seen as follows. Consider the 
urve Ω(h(t))gh(t)−1 in CΩ

g through g, i.e.
h(0) = 1 and ḣ(0) = −X, then its tangent ve
tor at g is

d

dt
Ω(h(t))gh(t)−1

∣∣∣
t=0

= gX − Ω(X)g . (3.3.13)Hen
e the tangent ve
tors of the form gX−Ω(X)g are the tangent ve
tors of the twistedsuper
onjuga
y 
lass CΩ
g . It remains to show that any tangent ve
tor tangent to theworldvolume of the brane has the form gX − Ω(X)g. Re
all that those tangent ve
tors

V des
ribe Diri
hlet boundary 
onditions whi
h are in the kernel of 1 − Ω̃g. Hen
e theimage of the adjoint operator (1 − Ω̃g)
† must be TgN . Sin
e Ω̃g = Rg ◦ Ω ◦ Lg−1 is anisometry the adjoint is the inverse

(1− Ω̃g)
† = (1− Rg ◦ Ω ◦ Lg−1)† = 1− Lg ◦ Ω−1 ◦Rg−1 , (3.3.14)39



40 CHAPTER 3. CFT WITH LIE SUPERGROUP AS TARGET SPACEi.e. any element W in TgN 
an be written as
W = U − gΩ−1(Ug−1) (3.3.15)for some U in TgG. Further any ve
tor U in TgG 
an be written as U = Ω(X)g for some

X in Λ(g), hen
e W = Ω(X)g − gX for some X. We 
on
lude that the worldvolume of abrane is a twisted super
onjuga
y 
lass.There are some remarks.Remark 1The Lie supergroup a
ts on a twisted super
onjuga
y 
lass by the twisted adjointa
tion AdΩAdΩ(a) : CΩ
g −→ CΩ

gAdΩ(a)(Ω(h)gh−1) = Ω(a)Ω(h)gh−1a−1 = Ω(ah)g(ah)−1
(3.3.16)for any a in G and Ω(h)gh−1 in CΩ

g . When analysing branes on a Lie supergroup oneusually starts with its semi
lassi
al limit, the minisuperspa
e [29,61℄. The minisuperspa
eof a brane of a Lie supergroup is the quotient of the spa
e of fun
tions on the supergroupby those that vanish on the brane. The in�nitesimal twisted adjoint a
tion a
ts on thisspa
e. This a
tion is the semi
lassi
al limit of the a
tion of the boundary 
urrents on theboundary �elds. The in�nitesimal twisted adjoint a
tion 
an be expressed through thein�nitesimal right-translation (2.2.22). Let h be in G and Rh
X be the left-translation inthe dire
tion X, i.e.

Rh
X : G −→ ThG , Rh

Xh = −Xh . (3.3.17)Further its a
tion on h−1 is Rh
Xh

−1 = h−1X sin
e RX(hh−1) = 0, hen
e its a
tion on thetwisted super
onjuga
y 
lass element a = Ω(h)gh−1 is the in�nitesimal twisted adjointa
tion
Rh
X(Ω(h)gh−1) = −Ω(Xh)gh−1 + Ω(h)gh−1X = −Ω(X)a + aX . (3.3.18)Remark 2The stabiliser of g under the twisted adjoint a
tion is the twisted super
entraliser

Z(g,Ω) = {h ∈ G | Ω(h)g = gh } . (3.3.19)Its tangent spa
e at g is the kernel of 1 − Ω̃g. The twisted super
onjuga
y 
lass 
an bedes
ribed by the homogeneous spa
e G/Z(g,Ω). In the regular 
ase the twisted super-
entraliser is isomorphi
 to the maximal set TΩ of 
ommuting points whi
h are pointwise�xed under the a
tion of Ω, i.e. it is 
ontained in a maximal torus. Whenever Ω is inner
TΩ is a maximal torus. A maximal torus of a basi
 Lie superalgebra is isomorphi
 to40



3.3. THE BOUNDARY WZNW MODEL 41the maximal torus of its bosoni
 Lie subalgebra. Hen
e in the regular 
ase the brane is
ompletely delo
alised in the fermioni
 dire
tions and sin
e the metri
 is 
onsistent (seeDe�nition 2.2.1) the assumed orthogonal de
omposition (3.3.3) is true if it is true forthe restri
tion to the Lie subgroup G0. At non regular points the brane is not ne
essarily
ompletely delo
alised in the fermioni
 dire
tions. In these 
ases one has to 
he
k whether(3.3.3) holds.It 
ertainly does not hold for super
onjuga
y 
lasses 
ontaining a point g = expXwith X nilpotent, sin
e then the operator 1− Ω̃g is not diagonalisable. In this 
ase thereis a new type of branes whose geometry is rather di�erent, we give an example in [35℄.Remark 3Gluing automorphisms must be metri
 preserving automorphisms of the relevant Liealgebra that is the Grassmann envelope Λ(g) of the Lie superalgebra g. So far we obtainedsu
h an automorphism by lifting it from an automorphism of the Lie superalgebra g.These are not all possible gluing automorphisms be
ause 
onjugating by a fermioni
 Liesupergroup element θ is an automorphism of Λ(g) but not of g. The above statements alsohold for Ω = Ad(θ) and a Ad(θ) twisted super
onjuga
y 
lass is simply a left translate by
θ of an ordinary super
onjuga
y 
lass.3.3.2 The boundary a
tionIn this se
tion we will state the boundary a
tion. Following [56℄, we represent aRiemann surfa
e Σ with boundary as Σ′\D, where Σ′ is a Riemann surfa
e withoutboundary and D an open dis
. We want to have a WZNW model based on a map
g : Σ → G from the world-sheet with boundary to the Lie supergroup G. For thispurpose one needs to extend the map to a 3-manifold B. This is not possible for a world-sheet with boundary. Thus the idea is to �rst extend g to a map g′ : Σ′ → G then to
onsider the WZ term based on g′ and to subtra
t a boundary term whi
h only dependson the restri
tion of g′ to the 
losure of the dis
 D̄. This boundary term has to be su
hthat it 
oin
ides with the restri
tion of the Wess-Zumino term to the dis
 and su
h thatthe variation of the total a
tion vanishes provided the usual equation of motion hold inthe bulk and the desired gluing 
ondition at the boundary.Let us introdu
e the a
tion and show that it has the two properties mentioned above.Let g, g′,Σ,Σ′ as above, let g̃ : B → G an extension of g′ to a 3-manifold B withboundary ∂B = Σ′. Further let the restri
tion of g′ to the 
losure of the dis
 D̄ map to atwisted super
onjuga
y 
lass CΩ

a at a regular point a,
g′(D̄) ⊂ CΩ

a . (3.3.20)Then the WZNW a
tion for the twisted boundary 
onditions J = Ω(J̄) is given by
SΩ,a[g] = SΣkin[g] + SBWZ[g̃]− k

2π

∫

D̄

ω , (3.3.21)where ω is (using the shorthand Ω̃ = Ad(g′−1) ◦ Ω)41



42 CHAPTER 3. CFT WITH LIE SUPERGROUP AS TARGET SPACE
ω =

1

2
str(g′−1dg′ ∧ Ω̃ + 1

Ω̃− 1
g′−1dg′) (3.3.22)and Ω̃− 1 restri
ted to a twisted super
onjuga
y 
lass is invertible as already seen in theprevious se
tion. If we write g′|D̄ = Ω(h)ah−1 then

(Ω̃− 1)−1g′−1dg′
∣∣
D̄

= dhh−1 . (3.3.23)This allows us to rewrite the boundary term as
k

2π

∫

D̄

ω =
k

2π

∫

D̄

dτdσ str(Ω̃(∂hh−1)∂̄hh−1 − Ω̃(∂̄hh−1)∂hh−1) . (3.3.24)Now we 
an 
he
k expli
itly that the proposed a
tion has the desired properties. Firstthe restri
tion of the 3-form H to the twisted super
onjuga
y 
lass indeed 
oin
ides with
dω

dω = H
∣∣
CΩ

a
. (3.3.25)Furthermore the variation of the a
tion vanishes provided the usual bulk equations ofmotion and the boundary equation of motions J = Ω(J̄) hold,

δSΩ,a[g] = δSbulk
Ω,a [g] +

ik

2π

∫

∂D̄

dτ str(δhh−1
(
(1− Ω̃)∂̄hh−1 + (Ω̃−1 − 1)∂hh−1

))

= δSbulk
Ω,a [g] +

i

2π

∫

∂D̄

dτ str(Ω(δhh−1)(J − Ω(J̄))) .A well-de�ned a
tion should not depend on the extensions of the map g. In se
tion 5.3the boundary GL(1|1) model with gluing automorphism Ω = (−st) (see se
tion 2.2.2 forthe des
ription of (−st)) is studied using a triangular de
omposition of the group valued�eld. The question is, whether this 
an be generalised to all type I boundary WZNWmodels with gluing automorphism Ω = (−st).For general Ω and any basi
 Lie superalgebra, there is a parameterisation of the G-valued �eld g that is parti
ularly adapted to the problem: g = Ω(θ)g0θ
−1 where g0 inthe bosoni
 subgroup G0 and θ takes values in exp Λ(g1̄). Using the Polyakov-Wiegmannidentity (3.2.8) and the expli
it form of the boundary term (3.3.24) one 
an rewrite thea
tion as

SΩ,a[g] = SΩ|G0
,a[g0] +

k

2π

∫

Σ

dτdσ str(θ−1∂θ θ−1∂̄θ) + str(∂g0g
−1
0 Ω(θ−1∂̄θ))+

−str(θ−1∂θ g−1
0 ∂̄g0)− str(θ−1∂θ g−1

0 Ω(θ−1∂̄θ)g0) .

(3.3.26)This model then has the same quantisation 
onditions as the Lie group boundary WZNWmodel SΩ|G0
,a[g0].Our goal is to be able to 
ompute 
orrelation fun
tions in a boundary model, whi
hwe will do for GL(1|1) in 
hapter 5. 42



Chapter 4Symple
ti
 fermionsThis 
hapter is part of [62℄. Symple
ti
 fermions 
an be viewed as a simple exampleof a supergroup, that is a supergroup with trivial bosoni
 subgroup. They will turn outto be highly relevant in the GL(1|1) WZNW model as we will see in the next 
hapter.Symple
ti
 fermions have been studied in detail in the bulk [63℄. After a short review ofthe bulk theory, we will give a detailed des
ription of the boundary theory fo
using onboundary states and in
luding twisted se
tors.4.1 The bulkSymple
ti
 fermions are two dimension zero fermioni
 �elds χ1 and χ2 with a
tion
S(χa) =

1

4π

∫

Σ

d2z ǫab∂χ
a∂̄χb , (4.1.1)where the anti-symmetri
 symbol is de�ned by ǫ12 = −ǫ21 = 1. This gives the operatorprodu
t expansions

χa(z, z̄)χb(w, w̄) ∼ −ǫab ln |z − w|2 , (4.1.2)where ǫ12 = −1. For 
orrelation fun
tions, we have the requirement that a 
orrelator isonly non-vanishing if the zero-modes of χ1 and χ2 are inserted.In view of the symple
ti
 fermion 
orresponden
e to GL(1|1) twisted se
tors be
omeinteresting. A twisted se
tor is given, if we insert a �eld µλ at some point on the world-sheet, e.g. at zero. If we move the symple
ti
 fermions around this �eld, they 
hange bya phase, i.e.
χ1(e2πiz)µλ(0) = e−2πiλχ1(z)µλ(0) , χ2(e2πiz)µλ(0) = e2πiλχ2(z)µλ(0) ,

χ̄1(e−2πiz̄)µλ(0) = e−2πiλχ̄1(z̄)µλ(0) , χ̄2(e−2πiz̄)µλ(0) = e2πiλχ̄2(z̄)µλ(0) .
(4.1.3)

χ1 and χ2 have to transform oppositely to give a symmetry of the Lagrangian. Then themode expansions of the �elds in these se
tors are
∂χ1(z) = −

∑

n∈Z

χ1
n+λz

−(n+λ)−1 and ∂̄χ̄1(z̄) = −
∑

n∈Z

χ̄1
n−λz̄

−(n−λ)−1

∂χ2(z) = −
∑

n∈Z

χ2
n−λz

−(n−λ)−1 and ∂̄χ̄2(z̄) = −
∑

n∈Z

χ̄2
n+λz̄

−(n+λ)−1 .
(4.1.4)43



44 CHAPTER 4. SYMPLECTIC FERMIONSSin
e the symple
ti
 fermions do not have any zero modes in the twisted se
tor, therepresentation in this se
tor is irredu
ible. The 
onformal dimension of the ground-stateis
hλ = −λλ

∗

2
λ∗ = 1− λ . (4.1.5)Correlation fun
tions have been determined [63℄, they are

〈µλ(z1, z̄1)µλ∗(z2, z̄2)〉 = −|z12|2λλ
∗

〈µλ(z1, z̄1)µλ∗(z2, z̄2) : χ1χ2 : (z3, z̄3)〉 = |z12|2λλ
∗

(
Zλ + ln

∣∣∣z13z23
z12

∣∣∣
2) (4.1.6)

〈µλ1(z1, z̄1)µλ2(z2, z̄2)µλ3(z3, z̄3)〉 = Cλ1λ2λ3

{ ∣∣zλ1λ2
12 zλ1λ3

13 zλ2λ3
23

∣∣2 , λ1 + λ2 + λ3 = 1
∣∣zλ

∗

1λ
∗

2
12 z

λ∗1λ
∗

3
13 z

λ∗2λ
∗

3
23

∣∣2 , λ1 + λ2 + λ3 = 2where we take the short-hand zij = zi − zj as usual and
Cλ1λ2λ3 =

√
Γ(λ1)Γ(λ2)Γ(λ3)

Γ(λ∗1)Γ(λ∗2)Γ(λ∗3)
. (4.1.7)These 
oe�
ients also appear in the GL(1|1) WZNW model and indi
ate the 
orrespon-den
e we will prove later on.Let us now turn to the boundary theory. For earlier works on boundary models ofsymple
ti
 fermions see [17�19, 21℄. These works however do not 
onsider all boundary
onditions.4.2 Boundary 
onditionsWe start our 
onsiderations by investigating possible boundary 
onditions. Re
all theenergy momentum tensor

T (z) = −1
2
ǫab : ∂χa∂χb : , T̄ (z̄) = −1

2
ǫab : ∂̄χa∂̄χb : . (4.2.1)They preserve the symple
ti
 fermion symmetry and 
oin
ide along the boundary if

∂χ = A ∂̄χ for z = z̄ , (4.2.2)where A =
(
a b
c d

) is a matrix in SL(2) and for 
onvenien
e we 
ombined the two fermionsin the ve
tor χ =
(
χ1

χ2

). In terms of Diri
hlet and Neumann derivatives (∂ = 1
2
∂u − i12∂nand ∂̄ = 1

2
∂u + i1

2
∂n) the boundary 
onditions are

−i∂nχ =
A− 1

A+ 1
∂uχ (4.2.3)44



4.3. THE RAMOND SECTOR 45provided 1 + A is invertible. Then the a
tion on the upper half-plane is
S = − 1

4π

∫
d2z ∂χt J ∂̄χ +

i

8π

∫

z=z̄

du χt J
A− 1

A+ 1
∂uχ , (4.2.4)where the matrix J is J =

(
0 −1
1 0

). The variation of this a
tion vanishes provided the aboveboundary 
onditions hold as well as the bulk equations of motion ∂∂̄χ± = 0. If 1 + Ais not invertible it has 
hara
teristi
 polynomial λ2, i.e. if 1 + A = 0 there are Diri
hlet
onditions in both dire
tions while otherwise there is one Diri
hlet and one Neumann
ondition. Note that these 
ases resemble the atypi
al branes in GL(1|1) [35℄.4.3 The Ramond se
torWe �rst 
onsider the Ramond se
tor, ie. there are no twist �elds present. The expli
itmode expansion is
χa(z, z̄) = ξa + χa0 ln |z|2 −

∑

n 6=0

1

n
χanz

−n +
1

n
χ̄anz̄

−n, (4.3.1)where the modes satisfy
{χam, χbn} = −mǫab δm,−n , {χ̄am, χ̄bn} = −mǫab δm,−n and {ξa, χb0} = ǫab . (4.3.2)All other anti-
ommutators vanish. Note that for lo
ality we have required χa0 = χ̄a0.In this se
tion we 
onstru
t the boundary states in the Ramond se
tor, 
ompute theamplitudes and 
onstru
t the 
orresponding open string model. We start the dis
ussionof boundary states by investigating Diri
hlet 
onditions in the two fermioni
 dire
tions.4.3.1 Diri
hlet 
onditionsLet us �rst remind ourselves that if we have an extended 
hiral algebra given by W (z)and W̄ (z̄) we need a gluing automorphism, Ω, for the boundary (3.1.10)

W (z) = Ω(W̄ )(z̄) for z = z̄ . (4.3.3)We now pass to 
losed strings via world-sheet duality. The gluing 
onditions then be
omethe following Ishibashi 
onditions for the boundary states |α〉〉Ω in the CFT on the fullplane (3.1.18) (
Wn − (−1)hW Ω(W̄−n)

)
|α〉〉Ω , (4.3.4)where hW is the 
onformal dimension of W .Using (4.3.4) we see that for the Diri
hlet boundary 
onditions (A = −1 in (4.2.2))the 
orresponding Ishibashi states have to satisfy

(
χan − χ̄a−n

)
|D〉〉 = 0 for a = 1, 2 , (4.3.5)45



46 CHAPTER 4. SYMPLECTIC FERMIONSnote that there is no 
ondition on χa0 be
ause of the lo
ality 
onstraint χa0 − χ̄a0 = 0. TheIshibashi states are expli
itly 
onstru
ted as
|D0〉〉 =

√
2π exp

(∑
m>0

1
m

(
χ2
−mχ̄

1
−m − χ1

−mχ̄
2
−m
))
|0〉 , (4.3.6)

|D±〉〉 = ξ± exp
(∑

m>0
1
m

(
χ2
−mχ̄

1
−m − χ1

−mχ̄
2
−m
))
|0〉 , (4.3.7)

|D2〉〉 = ξ−ξ+√
2π

exp
(∑

m>0
1
m

(
χ2
−mχ̄

1
−m − χ1

−mχ̄
2
−m
))
|0〉 , (4.3.8)where the ground state |0〉 is de�ned by χan|0〉 = 0 for n ≥ 0. The dual Ishibashi state isobtained by dualizing the modes using (here m > 0)

χ1
−m

†
= χ1

m and χ2
−m

†
= −χ2

m . (4.3.9)For the 
omputation of amplitudes we need the Virasoro generators, they are
Ln = −1

2
ǫab
∑

m

: χan−mχ
b
m : (4.3.10)and the 
entral 
harge is c = −2. De�ne q = exp 2πiτ and q̃ = exp(−2πi/τ) as usual,where τ takes values in the upper half plane. Then the non-vanishing overlaps are

〈〈D0|qL
c
0+

1
12 (−1)F

c|D2〉〉 = 〈〈D2|qL
c
0+

1
12 (−1)F

c|D0〉〉 = η(τ)2,

〈〈D−|qL
c
0+ 1

12 (−1)F
c|D+〉〉 = −〈〈D+|qL

c
0+

1
12 (−1)F

c|D−〉〉 = η(τ)2,

〈〈D2|qL
c
0+

1
12 (−1)F

c|D2〉〉 = −iτη(τ)2 = η(τ̃)2 ,

(4.3.11)where Lc0 = L0 + L̄0. Further η(τ) is the Dedekind η-fun
tion
η(τ) = q

1
12

∏

m>0

(1− qm)2 . (4.3.12)Its modular S-transformation is (τ̃ = −1/τ)
η(τ̃ )2 = −iτη(τ)2 . (4.3.13)In se
tion 3.1.1 we saw that the modular transformation of an amplitude des
ribes thespe
trum of an open string, i.e. it state must be a true 
hara
ter. Thus only |D2〉 makessense as a boundary state.4.3.2 Neumann 
onditionsNext we would like to display the boundary state |A〉 for our general boundary 
ondi-tions (4.2.2). It has to satisfy the Ishibashi 
ondition (4.3.4)

χ1
n + a χ̄1

−n + b χ̄2
−n|A〉〉 = 0 ,

χ2
n + c χ̄1

−n + d χ̄2
−n|A〉〉 = 0 ,

(4.3.14)46



4.3. THE RAMOND SECTOR 47whi
h are satis�ed by
|A〉〉 = N exp

(
−
∑

m>0

1

m

(
aχ2

−mχ̄
1
−m + bχ2

−mχ̄
2
−m− cχ1

−mχ̄
1
−m− dχ1

−mχ̄
2
−m
))
|0〉 . (4.3.15)The dual state is

〈〈A| = N 〈〈0| exp
(
−
∑

m>0

1

m

(
−aχ2

mχ̄
1
m + bχ2

mχ̄
2
m − cχ1

mχ̄
1
m + dχ1

mχ̄
2
m

))
. (4.3.16)It will turn out that the normalisation should be �xed to be

N =
√

2π 2 sin πµ , (4.3.17)where we introdu
e µ via α = exp 2πiµ by −tr(A) = α + α−1.Now it is straightforward to 
ompute amplitudes between two boundary states. Anynon-zero amplitude requires the zero modes of χ1 and χ2 hen
e only the Diri
hlet boundarystate has non-vanishing overlap with any Neumann state:
〈〈A| q 1

2
Lc

0+ 1
12 (−1)F

c |D2〉〉 =
N√
2π
q

1
12

∏

m>0

(1− α12q
m)(1− α−1

12 q
m) . (4.3.18)Upon modular transformation this amplitude is the spe
trum of an open string stret
h-ing between two branes with respe
tively Neumann boundary 
onditions given by A andDiri
hlet 
onditions. Using the formulae provided in the appendix equation (4.3.18) be-
omes

N√
2π

q
1
12

∏

m>0

(1− αqm)(1− α−1qm) = q̃
1
2
(µ− 1

2
)2− 1

24

∞∏

n=0

(
1− q̃n+1−µ)(1− q̃n+µ

)
. (4.3.19)Now, we 
onstru
t the boundary theory of a string stret
hing between these two branesand 
he
k that its spe
trum is indeed given by the amplitude we just 
omputed, we fol-low [64℄. For this purpose 
onsider the upper half plane, and demand boundary 
ondition

A for the negative real line, i.e.
∂χ = A ∂̄χ for z = z̄ and z + z̄ < 0 ; (4.3.20)and Diri
hlet 
onditions for the positive real axis
∂uχ = 0 for z = z̄ and z + z̄ > 0 . (4.3.21)Then the �elds have the following SL(2) monodromy (
ounter
lo
kwise)

∂χ(ze2πi) = −A∂χ(z) , (4.3.22)47



48 CHAPTER 4. SYMPLECTIC FERMIONSand similar for the bared quantities. Denote by S the matrix that diagonalises the mon-odromy, i.e. S(−A)S−1 is diagonal. We denote the eigenvalues by α±1. Further, 
all theeigenve
tors ∂χ±, they then have the usual mode expansion [63℄
χ±(z) =

∑

n∈Z

1

n± µχ
±
n±µz

−(n±µ) . (4.3.23)The original �elds are then expli
itly
(
χ1

χ2

)
= S−1

(
χ+

χ−

)
. (4.3.24)Their partition fun
tion istr( qL0− c

24 (−1)F ) = q
1
2
(µ− 1

2
)2− 1

24

∞∏

n=0

(
1− qn+1−µ)(1− qn+µ

)
. (4.3.25)The 
omputation has been done similarly by Kaus
h [63℄. We see that the result �tswith (4.3.18) and the Cardy 
ondition is ful�lled. Thus, we ni
ely established our bound-ary state and the open string theory it des
ribes.If we want to investigate amplitudes involving Neumann boundary states on bothends, we learnt [64℄ that it is ne
essary to insert additional zero modes in order to obtaina non-vanishing amplitude. Also introdu
e α12 via tr(A1A

−1
2 ) = α12 + α−1

12 then we get
〈〈A1|χ2χ1 q

1
2
Lc

0+ 1
12 (−1)F

c |A2〉〉 = N1N2 q
1
12

∏

m>0

(1− α12q
m)(1− α−1

12 q
m)

= N12 q̃
1
2
(µ12− 1

2
)2− 1

24

∞∏

n=0

(
1− q̃n+1−µ12

)(
1− q̃n+µ12

)
,(4.3.26)where

N12 = 4π
sin πµ1 sin πµ2

sin πµ12

. (4.3.27)The open string theory is 
onstru
ted almost exa
tly as above and again resembles [64℄.We demand boundary 
ondition A1 for the negative real line and A2 for the positive one,
∂χ =

{
A1 ∂̄χ if z = z̄ and z + z̄ < 0
A2 ∂̄χ if z = z̄ and z + z̄ > 0 .

(4.3.28)The �elds have the following SL(2) monodromy
∂χ(ze2πi) = A1A

−1
2 ∂χ(z) . (4.3.29)Let S diagonalise the monodromy, then its eigenvalues are α±1

12 and we 
all the eigenve
torsagain ∂χ±. They have the mode expansion
χ±(z) =

√
N12 ξ

± +
∑

n∈Z

1

n± µ12
χ±
n±µ12

z−(n±µ12) , (4.3.30)48



4.4. THE NEVEU-SCHWARZ SECTOR 49note the extra zero mode, sin
e the monodromy does only 
on
ern derivatives. Its parti-tion fun
tion with appropriate insertion istr(χ2χ1qL0− c
24 (−1)F ) = N12 q

1
2
(µ12− 1

2
)2− 1

24

∞∏

n=0

(
1− qn+1−µ12

)(
1− qn+µ12

)
, (4.3.31)and 
oin
ides with (4.3.26) as desired.4.4 The Neveu-S
hwarz se
torIn this se
tion we study the boundary states in the Neveu-S
hwarz se
tor. The stateshave to satisfy the usual Ishibashi 
ondition

χ1
n + aχ̄1

−n + bχ̄2
−n|A〉〉NS = 0 ,

χ2
n + cχ̄1

−n + dχ̄2
−n|A〉〉NS = 0 ,

(4.4.1)where the modes are half-integer, i.e. n in Z + 1/2. The 
onditions are satis�ed by
|A〉〉 = exp

(
−

∑

m>0
m∈Z+1/2

1

m

(
aχ2

−mχ̄
1
−m + bχ2

−mχ̄
2
−m− cχ1

−mχ̄
1
−m− dχ1

−mχ̄
2
−m
))
|0〉 . (4.4.2)We introdu
e α12 as before, that is tr(A1A

−1
2 ) = α12 + α−1

12 , and get
NS〈〈A1|qL

c
0+

1
12 (−1)Fc|A2〉〉NS = q−

1
24

∏

m>0
m∈Z+1/2

(1− α12q
m)(1− α−1

12 q
m)

= q̃
1
2
(µ− 1

2
)2− 1

24

∏

n>0

(1 + q̃n−µ)(1 + q̃n−µ
∗

) ,

(4.4.3)where α12 = e2πiµ. This is the spe
trum of an open string 
onstru
ted similarly as in theRamond se
tor, but with antisymmetri
 boundary 
onditions in the time-dire
tion.4.5 The twisted se
torsGiven any twisted se
tor we 
an diagonalise it and thus we 
an restri
t to twists thatare diagonal. Call the ground state of the se
tor µλ on whi
h χa has twists
χ1 −→ e−2πiλχ1 and χ2 −→ e2πiλχ2 . (4.5.1)Then re
all that the mode expansions of the �elds in these se
tors are

∂χ1(z) = −
∑

n∈Z

χ1
n+λz

−(n+λ)−1 and ∂̄χ̄1(z̄) = −
∑

n∈Z

χ̄1
n−λz̄

−(n−λ)−1

∂χ2(z) = −
∑

n∈Z

χ2
n−λz

−(n−λ)−1 and ∂̄χ̄2(z̄) = −
∑

n∈Z

χ̄2
n+λz̄

−(n+λ)−1 .
(4.5.2)49



50 CHAPTER 4. SYMPLECTIC FERMIONSWhenever λ 6= 1/2 the boundary 
onditions are parameterised by just one parameter αa

ording to the boundary 
onditions
∂χ1 = α∂̄χ1 and ∂χ2 = α−1∂̄χ2 . (4.5.3)Only to these 
onditions there exist twisted Ishibashi states. The boundary state has tosatisfy the usual Ishibashi 
ondition

χ1
n+λ + αχ̄1

−n−λ|α〉〉λ = 0 ,

χ2
n−λ + α−1χ̄2

−n+λ|α〉〉λ = 0 ,
(4.5.4)and these are solved by (λ∗ = 1− λ)

|α〉〉λ = N exp
(
−
∑

m>0

α

m− λ∗χ
2
−m+λ∗χ̄

1
−m+λ∗ −

α−1

m− λχ
1
−m+λχ̄

2
−m+λ

)
µλ . (4.5.5)where we �x the normalisation to be N = e−2πi(λ−1/2)(µ−1/4) and α = e2πiµ. The dualboundary state is

λ〈〈α| = N̄µ†
λ exp

(∑

m>0

α

m− λχ
2
m−λχ̄

1
m−λ −

α−1

m− λ∗χ
1
m−λ∗χ̄

2
m−λ∗

)
. (4.5.6)Now we are prepared to 
ompute the amplitudes (note that the 
onformal dimension ofthe twist state is hλ = −λλ∗/2 and we use the shorthand α1α

−1
2 = e2πiµ)

λ〈α1|qL
c
0+

1
12 (−1)Fc|α2〉λ =

q
1
2
(λ− 1

2
)2− 1

24

e2πi(λ−
1
2
)(µ− 1

2
)

∏

n>0

(1− α1α
−1
2 qn−λ

∗

)(1− α2α
−1
1 qn−λ)

= q̃
1
2
(µ− 1

2
)2θ
(
τ̃ (

1

2
− µ)− (λ− 1

2
), τ̃
)
/η(τ̃)

= q̃
1
2
(µ− 1

2
)2− 1

24

∏

n>0

(1− u−1q̃n−µ)(1− uq̃n−µ∗) ,

(4.5.7)
where u = e2πiλ. This is the 
hara
ter of a boundary theory twisted by µ12 in an orbifoldmodel of the symple
ti
 fermions. The orbifold is by an abelian subgroup G of SL(2),where G is generated by u. We refer to [63℄ for a detailed dis
ussion.

50



Chapter 5The GL(1|1) WZNW modelWe turn to the main part of the thesis, the detailed dis
ussion of an example, theGL(1|1) Wess-Zumino-Novikov-Witten model. The bulk model has been dis
ussed in [25℄and [26℄. We start this 
hapter by giving an equivalent, but rather di�erent approa
h(se
tion 5.1). We show that GL(1|1) is equivalent to a pair of symple
ti
 fermions andtwo s
alar �elds. This model is far from being trivial, sin
e we have to in
lude twist �eldsfor the symple
ti
 fermions. We use the 
orresponden
e to re
ompute bulk 
orrelationfun
tions.Our main goal is to understand the boundary theory. There exist two families ofboundary models. One 
onsists of branes that are point-like in the bosoni
 dire
tionsand generi
ally delo
alised in the fermioni
 dire
tions, while the other one 
onsists of onevolume-�lling brane. The former belongs to the identity gluing automorphism and we 
allthe 
orresponding branes untwisted, while the volume-�lling brane will be 
alled twistedbrane.In se
tion 5.2 we dis
uss boundary states in GL(1|1). We 
ompute the spe
trum ofstrings ending on any two branes, verify Cardy's 
ondition and observe that the stru
turegiven by amplitudes involving only untwisted branes 
oin
ides with the fusion ring.In the last se
tion of this 
hapter we solve the boundary theory of the volume-�llingbrane 
ompletely. For this purpose we extend the �rst order formulation to the boundary,this involves the introdu
tion of an extra fermioni
 boundary degree of freedom.5.1 The GL(1|1)-symple
ti
 fermion 
orresponden
eThis se
tion is the main result of [62℄. In this se
tion we will show the relation betweenthe GL(1|1) WZNW model and the free s
alars and symple
ti
 fermions. Finally, we will
omment on the bulk 
orrelation fun
tions.5.1.1 The GL(1|1) WZNW modelOur starting point for the relation between the GL(1|1) WZNW model and the freetheory will be the �rst order a
tion for GL(1|1) found in [26℄. Re
all that the Lie super-algebra is generated by two bosoni
 elements E,N and two fermioni
 ψ± whi
h have thefollowing non-zero (anti)
ommutator relations
[N,ψ±] = ±ψ±, {ψ−, ψ+} = E. (5.1.1)51



52 CHAPTER 5. THE GL(1|1) WZNW MODELFurther, we have a family of supersymmetri
 bilinear forms, but below we will alwayswork with str(NE) = str(ψ+ψ−) = −1. (5.1.2)For the GL(1|1) supergroup we 
hoose a Gauss-like de
omposition of the form
g = ec−ψ

−

eXE+Y N e−c+ψ
+

.The WZNW model thus has two bosoni
 �elds X(z, z̄), Y (z, z̄) and two fermioni
 �elds
c±(z, z̄), and the a
tion takes the form

SWZNW[g] =
k

4π

∫

Σ

d2z
(
−∂X∂̄Y − ∂Y ∂̄X + 2eY ∂c+∂̄c−

)
, (5.1.3)where k is the level. Variation of the a
tion leads to the usual bulk equations of motion[65℄.The holomorphi
 
urrent of the GL(1|1) WZNW model is in our notation given by

k∂gg−1. The 
omponents 
orresponding to the generators are
JE = −k∂Y, JN = −k∂X + kc−∂c+ e

Y ,

J− = keY ∂c+, J+ = −k∂c− − kc−∂Y , (5.1.4)Similarly, for the anti-holomorphi
 
urrent −kg−1∂̄g the 
omponents are
J̄E = k∂̄Y, J̄N = k∂̄X − k∂̄c− c+ eY ,

J̄+ = keY ∂̄c−, J̄− = −k∂̄c+ − kc+∂̄Y . (5.1.5)Let us also mention that the modes of this a�ne algebra satisfy
[JEn , J

N
m ] = −kmδn+m, [JNn , J

±
m] = ±J±

n+m, {J−
n , J

+
m} = JEn+m + kmδn+m, (5.1.6)where we note that the modes 
an be res
aled su
h that the algebra is independent of thelevel k. Equation (5.1.6) 
orresponds to the OPE

JA(z)JB(w) ∼ −k str(AB)

(z − w)2
+

[A,B}
z − w . (5.1.7)5.1.2 First order formulationFollowing se
tion 3.2.4 we will now pass to a �rst order formalism by introdu
ing twoadditional fermioni
 auxiliary �elds b± of weight ∆(b±) = 1. Naively, the a
tion would be

1

4π

∫

Σ

d2z

(
−k∂X∂̄Y − k∂Y ∂̄X + 2b+∂c+ + 2b−∂̄c− +

2

k
e−Y b−b+

)
. (5.1.8)52



5.1. THE GL(1|1)-SYMPLECTIC FERMION CORRESPONDENCE 53This redu
es to (5.1.3) if we integrate out b± using their equations of motion
b− = k∂c+ expY, b+ = −k∂̄c− exp Y. (5.1.9)However, we get a quantum 
orre
tion in going from the GL(1|1) invariant measure usedfor the a
tion in (5.1.3) to the free-�eld measure DXDYDc−Dc+Db−Db+ that we wantto use for our �rst order formalism. In analogy with [66℄ the 
orre
tion is

ln det
(
|ρ|−2e−Y ∂eY ∂̄

)
=

1

4π

∫
d2z

(
∂Y ∂̄Y +

1

4

√
GRY

)
. (5.1.10)Here G is the determinant of the world-sheet metri
 and R its Gaussian 
urvature. |ρ|2is the metri
 and we have the relation √GR = 4∂∂̄ log |ρ|2. We thus get a 
orre
tionto the kineti
 term and a ba
kground 
harge for Y . The �rst order a
tion in
luding the
orre
tion is

S(X, Y, b±, c±) =
1

4π

∫

Σ

d2z

(
− k∂X∂̄Y − k∂Y ∂̄X + ∂Y ∂̄Y +

1

4

√
GRY

+ 2c+∂b+ + 2c−∂̄b− +
2

k
e−Y b−b+

)
. (5.1.11)We also get a quantum 
orre
tion to the 
urrent. This will happen where we have to
hoose a normal ordering of the terms in the 
urrent (5.1.4). We �x this by demandingthat the 
urrents obey the OPEs (5.1.7). Indeed, we have to add ∂Y to JN to ensurethat it has a regular OPE with itself. Thus the holomorphi
 
urrents in the free �eldformalism are

JE = −k∂Y, JN = −k∂X + c−b− + ∂Y ,

J− = b−, J+ = −k∂c− − kc−∂Y ,where we suppress the normal ordering. We get similar expressions for the anti-holomorphi

urrents.5.1.3 The 
orresponden
eIf we integrate out b± in (5.1.11) we simply obtain the original GL(1|1) WZNWmodel.We will now show that if we instead bosonize the bc system to obtain a system of threes
alars, it is possible to perform a �eld rede�nition su
h that one of the s
alars de
ouples.We 
an then return to a new b′c′ formalism and integrate out b′± to arrive at a de
oupledtheory of two s
alars and a set of symple
ti
 fermions.In this pro
ess the 
urrent be
omes more symmetri
 and simple. It 
an be seen as aguideline for whi
h transformations to perform and we will therefore expli
itly follow thetransformation of the 
urrent in ea
h step.We will start by only dis
ussing the transformation of the a
tion and the 
urrent. Themap of the vertex operators will be determined in the next subse
tion.53



54 CHAPTER 5. THE GL(1|1) WZNW MODELTo begin we bosonize the bc system in (5.1.11) in the standard way [67℄
c± = eρ

R,L

, b± = e−ρ
R,L

,

c+∂b+ + c−∂̄b− = −1

2
∂ρ∂̄ρ+

1

8

√
GRρ,

b−c− = −∂ρL, (5.1.12)where we denote left and right 
omponents of s
alars by supers
ripts L,R. In the 
urrentswe likewise have to introdu
e left and right indi
es and the holomorphi
 
urrents thenbe
ome
JE = −k∂Y L, JN = −k∂XL + ∂ρL + ∂Y L ,

J− = e−ρ
L

, J+ = −k∂(ρL + Y L)eρ
L

, (5.1.13)and the a
tion is
S(X, Y, b±, c±) =

1

4π

∫

Σ

d2z
(
−k∂X∂̄Y − k∂Y ∂̄X + ∂Y ∂̄Y+

− ∂ρ∂̄ρ+
1

4

√
GR(Y + ρ) +

2

k
e−Y−ρ

)
.

(5.1.14)We observe, both from the 
urrent and the a
tion, that it is very natural to go tovariables Y, Z, ρ′ where
ρ′ = Y + ρ, Z = kX − ρ− Y = kX − ρ′. (5.1.15)The 
urrents and the a
tion in these variables are

JE = −k∂Y L, JN = −∂ZL,

J− = eY
L−ρ′L , J+ = −k∂ρ′Leρ′L−Y L (5.1.16)and

S(Z, Y, ρ′) =
1

4π

∫

Σ

d2z

(
−∂Z∂̄Y − ∂Y ∂̄Z − ∂ρ′∂̄ρ′ + 1

4

√
GRρ′ + 2

k
e−ρ

′

)
. (5.1.17)Hen
e we got a theory of two s
alars de
oupled from another s
alar with s
reening 
hargeand linear dilaton term. For 
al
ulation of 
orrelation fun
tions this is a very e�
ientformulation of the theory. We will, however, go one step further and rewrite the s
reenedCoulomb gas in terms of symple
ti
 fermions.We thus return to a b′c′ system using again (5.1.12), but now for the �eld ρ′. Thisgives us the following simple expressions

JE = −k∂Y L, JN = −∂ZL,

J− = eY
L

b′−, J+ = −ke−Y L

∂c′− , (5.1.18)54



5.1. THE GL(1|1)-SYMPLECTIC FERMION CORRESPONDENCE 55for the 
urrents and for the a
tion it be
omes
S(Z, Y, b′±, c

′
±) =

1

4π

∫

Σ

d2z

(
−∂Z∂̄Y − ∂Y ∂̄Z + 2c′+∂b

′
+ + 2c′−∂̄b

′
− +

2

k
b′−b

′
+

)
. (5.1.19)We 
an now integrate out the �elds b′± getting the equations of motion

b′+ = −k∂̄c′−, b′− = k∂c′+ , (5.1.20)and arrive at
S(X, Y, c±) =

1

4π

∫

Σ

d2z
(
−∂Z∂̄Y − ∂Y ∂̄Z + 2k∂c′+∂̄c

′
−
)
. (5.1.21)Of 
ourse, we have to be 
areful when the vertex operators depend on b′. As we will seebelow, the vertex operators for typi
al representations will be twist operators whi
h weinterpret as not 
ontaining b.To remove the dependen
e on the level k in the a
tion we introdu
e χa by

√
kc′+ = χ1,

√
kc′− = χ2, (5.1.22)and the 
urrents and a
tion are then

JE = −k∂Y L, JN = −∂ZL,

J− =
√
keY

L

∂χ1, J+ = −
√
ke−Y

L

∂χ2, (5.1.23)
S(X, Y, χa) =

1

4π

∫

Σ

d2z
(
−∂Z∂̄Y − ∂Y ∂̄Z + ǫab∂χ

a∂̄χb
)
. (5.1.24)where the anti-symmetri
 symbol is de�ned by ǫ12 = −ǫ21 = 1. This gives the OPEs

χa(z, z̄)χb(w, w̄) ∼ −ǫab ln |z − w|2 ,
Z(z, z̄)Y (w, w̄) ∼ ln |z − w|2 . (5.1.25)where ǫ12 = −1. This is the a
tion and 
urrent that was 
onstru
ted in [68℄. In thatreferen
e it was also found that the a
tion has an enlarged OSp(2|2) symmetry.For future referen
e, let us sum up the 
orresponden
e between the symple
ti
 fermionsand the underlying b′, c′ system. We have

∂̄χ1 =
√
k∂̄c′+, ∂̄χ2 =

√
k∂̄c′− = − 1√

k
b′+, n (5.1.26)

∂χ1 =
√
k∂c′+ =

1√
k
b′−, ∂χ2 =

√
k∂c′−, (5.1.27)whi
h will be useful in the next se
tion where we study what happens to the vertexoperators. 55



56 CHAPTER 5. THE GL(1|1) WZNW MODEL5.1.4 Mapping of the vertex operatorsWe now 
onsider the mapping of the GL(1|1) vertex operators under the transforma-tion that we found in the last subse
tion. The basis of vertex operators to be used withthe �rst order a
tion (5.1.11) were found in [26℄ by a minisuperspa
e analysis. We willhere use the notation of [61℄ and write the operators as
V〈−e,−n+1〉 = : eeX+nY :

(
1 c−
c+ c−c+

)
, (5.1.28)and the 
onformal dimension is

∆(e,n) =
e

2k
(2n− 1 +

e

k
). (5.1.29)For e 6= mk, where m is an integer, the 
olumns of this matrix will 
orrespond to thetwo-dimensional representation 〈−e,−n + 1〉 for the left-moving 
urrents while the rows
orrespond to the representation 〈e, n〉 under the right-moving 
urrents.Let us �rst 
onsider the transformation giving us (5.1.17):

X =
1

k
(ρ′ + Z),

c− = eρ
′L
1 −Y L

, b− = e−ρ
′L
1 +Y L

. (5.1.30)This maps the vertex operators to
V〈−e,−n+1〉 = : e

e
k
ρ′+ e

k
Z+nY

(
1 eρ

′L−Y L

eρ
′R−Y R

eρ
′−Y

)
: . (5.1.31)Here we generally split s
alar �elds into the left and right handed part as ρ′ = ρ′L + ρ′R.Some 
omments are in order here: Firstly, rather than thinking of e.g. c− in (5.1.28) asa fun
tion to be evaluated under the path integral, we have here used bosonization andwill think about the vertex operators in the operator formalism. This means that c− is aholomorphi
 operator. Se
ondly, for the Y Z system the vertex operators are

V B
〈−e,−n+1〉 =

(
: e

e
k
Z+nY : : e

e
k
Z+(n−1)Y L+nY R

:

: e
e
k
Z+nY L+(n−1)Y R

: : e
e
k
Z+(n−1)Y :

)
, (5.1.32)whereas for the ρ′ system they are

V F
〈−e,−n+1〉 =

(
: e

e
k
ρ′ : : e(

e
k
+1)ρ′L+ e

k
ρ′R :

: e
e
k
ρ′L+( e

k
+1)ρ′R : : e(

e
k
+1)ρ′ :

)
. (5.1.33)Thus in the o�-diagonal terms, the splitting into holomorphi
 and anti-holomorphi
 partsmeans that the 
orrelation fun
tions 
al
ulated in respe
tively the Y Z system and the

ρ′ system are not separately real, but only the 
ombined 
orrelation fun
tion 
an be56



5.1. THE GL(1|1)-SYMPLECTIC FERMION CORRESPONDENCE 57expressed in the absolute values of the insertions zi. Also, we see that around the o�-diagonal terms in the operator (5.1.32) the �eld Z gets an additive twist. The overalltwist vanishes due to 
harge 
onservation for Y .Sin
e ρ′ now appears with non-integer momenta, we see that in going to the b′, c′system with a
tion (5.1.19) we get twist operators. Pre
isely, the vertex operator (5.1.33)maps into
V F
〈−e,−n+1〉 =

(
µ̃Le/kµ̃

R
e/k µ̃Le/k+1µ̃

R
e/k

µ̃Le/kµ̃
R
e/k+1 µ̃Le/k+1µ̃

R
e/k+1

)
, (5.1.34)where the twist states are de�ned by

c′−(e2πiz)µ̃Lλ (0) = e2πiλµ̃Lλ(0). (5.1.35)This is solved by
µ̃Lλ ≡ : eλρ

′L

: , (5.1.36)but only uniquely in λ modulo integers and, naturally, up to a normalisation. The 
on-formal dimension is −1
2
λ(1− λ) so the ground states have 0 < λ < 1. We 
an step λ upand down with respe
tively c′− and b′− e.g.

c′−(z)µ̃Lλ(0) ∼ 1

z−λ
µ̃Lλ+1(0). (5.1.37)Also note that

µ̃Rλ ≡ : eλρ
′R

: , (5.1.38)ful�ls
c′+(e−2πiz̄)µ̃Rλ (0) = e−2πiλµ̃Rλ (0). (5.1.39)To obtain the symple
ti
 fermions requires integrating out b′. This means that theanti-holomorphi
 part of c′− is non-trivial in the OPEs. As an example, c′+ and c′−with a
tion (5.1.21) have a singular OPE that is ∼ 1

k
ln |z − w|2. However, using equa-tions (5.1.27) we get the mapping of ∂c′− and b′− to the holomorphi
 operators ∂χ2 and

∂χ1. Likewise, ∂̄c′+ and b′+ will 
orrespond to the anti-holomorphi
 operators ∂̄χ1 and
∂̄χ2.One has to be 
areful sin
e we in prin
iple 
an not integrate out b′ when the vertexoperators depend on b′−b′+. However, for the twist operators it seems plausible sin
e, atleast for λ > 0, we 
an naively think of µλ as c′λ. To 
he
k this we will in the next se
tion
ompare the 
orrelation fun
tions to the already known 
al
ulation for the symple
ti
fermions. The twist �elds in the b′, c′ system then dire
tly translates into twist �elds ofthe symple
ti
 fermions. The symple
ti
 fermion twist �elds are de�ned by [63℄

χ1(e2πiz)µλ(0) = e−2πiλχ1(z)µλ(0), χ2(e2πiz)µλ(0) = e2πiλχ2(z)µλ(0),

χ̄1(e−2πiz̄)µλ(0) = e−2πiλχ̄1(z̄)µλ(0), χ̄2(e−2πiz̄)µλ(0) = e2πiλχ̄2(z̄)µλ(0), (5.1.40)57



58 CHAPTER 5. THE GL(1|1) WZNW MODELwhere χ1 and χ2 has to transform oppositely to give a symmetry of the Lagrangian. Herewe have split the symple
ti
 fermions into their 
hiral and anti-
hiral parts χa(z, z̄) =
χa(z) + χ̄a(z̄). The anti-holomorphi
 part must transform in the same way under z̄ 7→
e−2πiz̄, but importantly λ 
an di�er by an integer between the holomorphi
 and anti-holomorphi
 se
tor. The 
ondition (5.1.40) is ful�lled by µ̃Lλ µ̃Rλ and the other operatorsin (5.1.34). However, we have done the res
aling (5.1.22) so if we think of the twistoperator as (c′−)λ we should 
hoose the following normalisation:

µLλ =
√
k
λ
µ̃Lλ =

√
k
λ

: eλρ
′L

: , (5.1.41)and similarly for the anti-holomorphi
 part. Thus the vertex operator (5.1.34) maps into
V F
〈−e,−n+1〉 7→ k−

e
k

(
µLe/kµ

R
e/k

1√
k
µLe/k+1µ

R
e/k

1√
k
µLe/kµ

R
e/k+1

1
k
µLe/k+1µ

R
e/k+1

)
. (5.1.42)A notation with splitting into left and right part, like in the b′c′ system, turns out to beuseful. The twist values 
an be stepped up and down using the following OPEs:

∂χ1(z)µLλ (0) ∼ 1

zλ
µLλ−1(0), ∂χ2(z)µLλ(0) ∼ λ

z1−λµ
L
λ+1(0), (5.1.43)and 
orrespondingly

∂̄χ̄1(z̄)µRλ (0) ∼ λ

z̄1−λµ
R
λ+1(0), ∂̄χ̄2(z̄)µ̄Rλ (0) ∼ − 1

z̄λ
µRλ−1(0). (5.1.44)We note here again that up to a sign the anti-holomorphi
 side is understood by seeing

µRλ as µL1−λ.To 
on
lude, the total vertex operator V〈−e,−n+1〉 in the Y Z and symple
ti
 fermionsystem with a
tion (5.1.24) takes the form
V〈−e,−n+1〉 7→

k−
e
k

(
: e

e
k
Z+nY : µLe/kµ

R
e/k

1√
k

: e
e
k
Z+(n−1)Y L+nY R

: µLe/k+1µ
R
e/k

1√
k

: e
e
k
Z+nY L+(n−1)Y R

: µLe/kµ
R
e/k+1

1
k

: e
e
k
Z+(n−1)Y : µLe/k+1µ

R
e/k+1

) (5.1.45)We note that equations (5.1.43) 
an be used to 
he
k that the 
olumns of this opera-tor transform in the 〈−e,−n + 1〉 representation of GL(1|1) under the left-moving 
ur-rents (5.1.23). These operators are indeed 
lose to the operators found in [68℄. Let usnow 
he
k the 
orrelation fun
tions of these vertex operators.5.1.5 Bulk 
orrelation fun
tionsWe will now 
ompare the 
orrelation fun
tions of the primary �elds (5.1.28) obtainedin the GL(1|1) model to the 
al
ulations done for the symple
ti
 fermions in [63℄. Thesimilarity was already noted in [26℄. 58



5.1. THE GL(1|1)-SYMPLECTIC FERMION CORRESPONDENCE 59Let us �rst note that from equations (5.1.32) and (5.1.33) the vertex operators (5.1.28)in the Y, Z, ρ′ pi
ture (5.1.17) takes the form
V〈−e,−n+1〉

σ̄
σ

= : e
e
k
Z+(n−σ)Y L+(n−σ̄)Y R

e(
e
k
+σ)ρ′L+( e

k
+σ̄)ρ′R : , (5.1.46)where σ, σ̄ ∈ {0, 1} labels respe
tively the 
olumns and the rows.We 
onsider the three-point fun
tion

A = 〈V〈−e1,−n1+1〉
σ̄1

σ1
(z1)V〈−e2,−n2+1〉

σ̄2

σ2
(z2)V〈−e3,−n3+1〉

σ̄3

σ3
(z3)〉. (5.1.47)The 
orrelation fun
tion splits into a Y Z and a ρ′ part, A = ABAF. The Y Z part is easilyevaluated to be

AB = δ
(∑

i

ei
k

)
δ
(∑

i

(ni − σi)
)
δ
(∑

i

(ni − σ̄i)
)
×

×
∏

i<j

(zi − zj)
ei
k

(nj−σj)+
ej
k

(ni−σi)(z̄i − z̄j)
ei
k

(nj−σ̄j)+
ej
k

(ni−σ̄i) ,
(5.1.48)where the indi
es run from 1 to 3. The δ-fun
tions follow dire
tly from the JE and JN
urrents. The ρ′ part is also easily evaluated. Here one has to remember that the overall

ρ′ 
harge has to sum to one due to the ba
kground 
harge of ρ′. This means that we 
anmaximally have two insertions of the intera
tion term of the a
tion (5.1.17). However, aswas 
ommented in [26℄, the part with two intera
tion terms vanish. The part with oneintera
tion term is 
al
ulated using the Dotsenko-Fateev like integral used in [26℄. We get
AF = AF

1 + AF
2

AF
1 = δ

(∑

i

σi − 1
)
δ
(∑

i

σ̄i − 1
)∏

i<j

(zi − zj)(
ei
k

+σi)(
ej
k

+σj)(z̄i − z̄j)(
ei
k

+σ̄i)(
ej
k

+σ̄j)

AF
2 = −1

k
δ
(∑

i

σi − 2
)
δ
(∑

i

σ̄i − 2
)
(−1)σ3+σ̄3 ×

× Γ(1− e1
k
− σ1)Γ(1− e2

k
− σ2)Γ(1− e3

k
− σ̄3)

Γ( e3
k

+ σ3)Γ( e1
k

+ σ̄1)Γ( e2
k

+ σ̄2)
×

×
∏

i<j

(zi − zj)(
ei
k

+σi−1)(
ej
k

+σj−1)(z̄i − z̄j)(
ei
k

+σ̄i−1)(
ej
k

+σ̄j−1),

(5.1.49)
where the �rst part AF

1 
orresponds to no intera
tion term and the se
ond part AF
2 to oneintera
tion term. We have here used that ∑i ei = 0 due to the delta-fun
tion from the

Y Z part of the 
orrelation fun
tion in (5.1.48).If we 
ombine the two parts in (5.1.48) and (5.1.49) the symmetry between the holo-59



60 CHAPTER 5. THE GL(1|1) WZNW MODELmorphi
 and anti-holomorphi
 se
tor is restored and we arrive at
A = δ

(∑

i

ei
k

)
δ
(∑

i

(ni − σi)
)
δ
(∑

i

(ni − σ̄i)
)

(
δ
(∑

i

σi − 1
)
δ
(∑

i

σ̄i − 1
)∏

i<j

|zi − zj|2
ei
k
nj+2

ej
k
ni+2

eiej

k2

− 1

k
δ
(∑

i

σi − 2
)
δ
(∑

i

σ̄i − 2
)
(−1)σ3+σ̄3

Γ(1− e1
k
− σ1)Γ(1− e2

k
− σ2)Γ(1− e3

k
− σ̄3)

Γ( e3
k

+ σ3)Γ( e1
k

+ σ̄1)Γ( e2
k

+ σ̄2)

×
∏

i<j

|zi − zj |2
ei
k

(nj−1)+2
ej
k

(ni−1)+2
eiej

k2

)
, (5.1.50)as was derived in [26℄. This indeed supports the validity of our de
oupling of the GL(1|1)WZNW model into a set of free s
alars and the ρ′ system with a
tion (5.1.17). The resultmay not look lo
al, e.g. does not seem to be symmetri
 in inter
hanging operator 2 and3, due to the asymmetri
-looking Γ fun
tions. However, these 
an be rewritten in thefollowing symmetri
 form

(−1)σ3+σ̄3
Γ(1− e1

k
− σ1)Γ(1− e2

k
− σ2)Γ(1− e3

k
− σ̄3)

Γ( e3
k

+ σ3)Γ( e1
k

+ σ̄1)Γ( e2
k

+ σ̄2)
=
∏

i

Γ(1− ei

k
)

Γ( ei

k
)

(−ei
k

)−σi−σ̄i

.(5.1.51)As we see from the result (5.1.50) one has to be 
areful in the limit when ei is aninteger multiple of k. As was shown in [26℄ this gives logarithmi
 
orrelation fun
tions.For now let us not 
onsider these limits. Thus we get genuine twist operators whengoing to the symple
ti
 fermions and the twists are λi = ei/k + σi in the holomorphi
se
tor and λ̄i = ei + σ̄i in the anti-holomorphi
 se
tor when we 
ompare equation (5.1.46)with (5.1.42). As we see from the vertex operators in (5.1.42), the results that we expe
tfrom the symple
ti
 fermions to 
omply with 
orrelation fun
tion (5.1.49) are
〈µLλ1

(z1)µ
R
λ̄1

(z̄1)µ
L
λ2

(z2)µ
R
λ̄2

(z̄2)µ
L
λ3

(z3)µ
R
λ̄3

(z̄3)〉SF =
∏

i<j

(zi − zj)
λiλj (z̄i − z̄j)

λ̄iλ̄j (5.1.52)for ∑i λi =
∑

i λ̄i = 1, and
〈µLλ1

(z1)µ
R
λ̄1

(z̄1)µ
L
λ2

(z2)µ
R
λ̄2

(z̄2)µ
L
λ3

(z3)µ
R
λ̄3

(z̄3)〉SF

= −(−1)λ3−λ̄3
Γ(λ∗1)Γ(λ∗2)Γ(λ̄∗3)

Γ(λ̄1)Γ(λ̄2)Γ(λ3)

∏

i<j

(zi − zj)λ
∗

i λ
∗

j (z̄i − z̄j)λ̄
∗

i λ̄
∗

j (5.1.53)for∑i λi =
∑

i λ̄i = 2, where λ∗ = 1−λ and the subs
ript SF means that the expe
tationvalue is 
al
ulated using the symple
ti
 fermion part of the a
tion (5.1.24). Here µλ are thetwist operators de�ned in eq. (5.1.40). We have also used that in going to this expe
tation60



5.1. THE GL(1|1)-SYMPLECTIC FERMION CORRESPONDENCE 61value under the res
aling (5.1.22) we have to multiply the 
orrelation fun
tions with anoverall fa
tor of k. This is be
ause the 
orrelation fun
tion normalisation is relative tothe 
orrelator of χ̄1χ2 or c′+c′− in the b′c′ system in eq. (5.1.19). This simply means thatthe dependen
e on k disappears due to the normalisation in eq. (5.1.41) as is expe
ted.We want to 
ompare this to the 
al
ulation of bulk twist 
orrelators done by Kaus
hin [63℄. In that paper, of 
ourse, only twist �elds with identi
al twist in the holomorphi
and anti-holomorphi
 se
tor are treated so we take λi = λ̄i. Further, we have to rememberthat the twist �elds are only de�ned up to normalisation. To 
ompare with Kaus
h weuse one of the equations (5.1.52), (5.1.53) to �x the normalisation and 
an then 
ompareto the se
ond one. The normalisation is �xed by de�ning
µLλµ

R
λ = −

√
Γ(λ∗)

Γ(λ)
µλ. (5.1.54)Then we get

〈µλ1(z1, z̄1)µλ2(z2, z̄2)µλ3(z3, z̄3)〉SF =
∏

i

√
Γ(λi)

Γ(λ∗i )

∏

i<j

|zi − zj |2λiλj for ∑
i

λi = 1,

=
∏

i

√
Γ(λ∗i )

Γ(λi)

∏

i<j

|zi − zj |2λ
∗

i λ
∗

j for ∑
i

λi = 2,(5.1.55)whi
h is exa
tly as in [63℄. We 
an also 
ompare with the two-point fun
tion whi
h iseasily 
al
ulated and also get a mat
h here. Note, however, that in [63℄ only ground statetwist �elds with 0 < λ < 1 are 
onsidered. Our results thus 
ompare pre
isely in thisrange, and are the analyti
 
ontinuation of the twists λ for the results in [63℄.In the 
ase where we allow the ei to be zero or an integer multiple of k, we have totake into a

ount the zero modes of the symple
ti
 fermions. This gives four di�erentground states in the symple
ti
 model - two fermioni
 and two bosoni
, where the lasttwo span a Jordan blo
k for L0. The result is that we get logarithmi
 bran
h 
uts inthe 
orrelation fun
tions. This 
an be seen from the GL(1|1) side where the Γ fun
tionsdiverge when λ be
omes integer [26℄. Thus we also get agreement from the two sides ofthe 
orresponden
e here.Now, having established the 
orresponden
e, we want to apply it. There are twoapparent appli
ations. For point-like branes in the GL(1|1) WZNW model, so far it
ould be argued that 
orrelators 
ontaining only boundary �elds behave like untwistedsymple
ti
 fermions see se
tion 5.3.4, but it was not possible to handle insertions of bulk�elds. Now, we are in a position to approa
h the problem of 
omputing 
orrelationfun
tions involving bulk and boundary �elds. We will refrain from this problem for now,but keep it in mind for future resear
h. Instead, we 
onsider the study of boundary statesin se
tion 5.2. 61



62 CHAPTER 5. THE GL(1|1) WZNW MODEL5.2 BranesThe aim of this se
tion is to initiate a systemati
 study of boundary 
onditions inWZNW models on supergroups based on the example of GL(1|1).1 Let us list the mainresults of this se
tion in more detail. Re
all that maximally symmetri
 boundary 
ondi-tions in 
onformal �eld theories 
arry two labels. The �rst one refers to the 
hoi
e of agluing 
ondition between left and right moving 
hiral �elds. The se
ond label parametrisesdi�erent boundary 
onditions asso
iated with the same gluing 
ondition. In un
ompa
ti-�ed free �eld theory, for example, the two labels 
orrespond to the dimension of the braneand its transverse position. The relation between these labels and the branes' geometrybe
omes more intri
ate when the world-sheet theory is intera
ting.Re
all that gl(1|1) possesses two di�erent gluing automorphisms (se
tion 2.1.1). Thosebranes 
orresponding to the trivial gluing automorphism will be 
alled untwisted, whilethe other we 
all twisted. After a detailed study of the branes' geometry we shall provideexa
t boundary states for generi
 and non-generi
 untwisted branes on GL(1|1) in se
tion5.2.2. There, we shall also dis
uss what happens when a generi
 brane is moved ontoone of the lines y0 = 2πs: It turns out to split into a pair of non-generi
 branes with atransverse separation that is proportional to the level of the WZNW model. Se
tion 5.2.3
ontains a detailed dis
ussion of the relation between our �ndings for boundary 
onditionsin a lo
al logarithmi
 
onformal �eld theory and the usual Cardy 
ase of unitary rationalmodels [48℄. We shall see that in both 
ases branes are parameterised by irredu
iblerepresentations of the 
urrent algebra. Furthermore, the spe
tra between any two branes
an be determined by fusion. Similar results for the p = 2 triplet model have beenobtained in [21℄. In the 
ase of GL(1|1) WZNW model we will establish that most of theboundary spe
tra are not fully redu
ible. This applies in parti
ular to the spe
trum ofboundary operators on a single generi
 brane.5.2.1 Untwisted branes: Geometry and parti
le limitThis se
tion is devoted to the geometry of branes asso
iated with the trivial gluingautomorphism. We shall show that su
h branes are lo
alised at a point (x0, y0) on thebosoni
 base of GL(1|1). For generi
 
hoi
es y0, they stret
h out along the fermioni
dire
tions, i.e. the fermioni
 �elds obey Neumann type boundary 
onditions. When y0 =
2πs, s ∈ Z, on the other hand, the 
orresponding branes are point-like. These geometri
insights from the �rst part of the se
tion are then used in the se
ond part to study branesin the parti
le limit in whi
h the level k is sent to in�nity. Most importantly, we shallprovide minisuperspa
e analogues of the boundary states for both generi
 and non-generi
untwisted branes, see eqs. (5.2.31) and (5.2.33), respe
tively.Re
all that a boundary 
ondition is said to be maximally symmetri
 if left and rightmoving 
urrents 
an be identi�ed along the boundary, up to the a
tion of an automorphism1Spe
tra of supersymmetri
 
oset models with open boundary 
onditions were also studied previously,in parti
ular in [69, 70℄. 62



5.2. BRANES 63
Ω,

Ja(z) = Ω
(
J̄a(z̄)

) for z = z̄ . (5.2.1)where Ja = E,N, ψ± when we deal with the GL(1|1) model. For Ω we 
an insert any ofthe automorphisms of gl(1|1)(se
tion 2.1.1).It will be 
onvenient to rewrite the gluing 
onditions (5.2.1) in terms of those �elds thatappear in the a
tion of the GL(1|1) WZNWmodel. In prin
iple, there exist various 
hoi
esthat 
ome with di�erent parameterisations of the supergroup GL(1|1). One possible setof 
oordinate �elds is introdu
ed through
g = eic−ψ

−

eiXE+iY N eic+ψ
+

. (5.2.2)The �elds X and Y are bosoni
 while c± are fermioni
. Inserting our spe
i�
 
hoi
e ofthe parameterisation (5.2.2), the 
urrents take the following form
J̄ = kg−1∂̄g

= kieiY ∂̄c−ψ
− + k

(
i∂̄X − (∂̄c−)c+e

iY
)
E + ki∂̄Y N + k(i∂̄c+ − c+∂̄Y )ψ+

(5.2.3)and
J = −k∂gg−1

= −k(i∂c− − c−∂Y )ψ− − k
(
i∂X − c−(∂c+)eiY

)
E − ki∂Y N − kieiY ∂c+ψ+.

(5.2.4)Geometri
 interpretation of untwisted branesIn the previous se
tion we have made a number of general statements 
on
erning thegeometry of maximally symmetri
 branes on (super-)group target spa
es. Here, we wantto step ba
k a bit and work out the pre
ise form of the boundary 
onditions for 
oordinate�elds. We shall 
ontinue to use the spe
i�
 parameterisation (5.2.2) of GL(1|1). Insertionof our expli
it formulae (5.2.3) and (5.2.4) for left and right moving 
urrents into thegluing 
ondition (5.2.1) with Ω = I gives
∂pY = 0 , ∂pZ = 0 , for z = z̄ ,where Z = X + ic−c+(e−iY − 1)−1

(5.2.5)and ∂p denotes the derivative along the boundary. In other words, both bosoni
 �elds Yand Z satisfy Diri
hlet boundary 
onditions. Untwisted branes in the GL(1|1) WZNWmodel are therefore parameterised by the 
onstant values (y0, z0) the two bosoni
 �elds
Y, Z assume along the boundary. For the two basi
 fermioni
 �elds we obtain similarly

± 2 sin2(Y/2)∂nd± = sin(Y ) ∂pd± , for z = z̄ ,where d± = c±e
iY/2 sin−1(Y/2)/2i .

(5.2.6)Thereby, the fermioni
 dire
tions are seen to satisfy Neumann boundary 
onditions witha 
onstant B-�eld whose strength depends on the position of the brane along the bosoni
63



64 CHAPTER 5. THE GL(1|1) WZNW MODELbase. We shall provide expli
it formulae below. For the moment let us point out thatthe 
ondition (5.2.6) degenerates whenever the value y0 of the bosoni
 �eld Y on theboundary approa
hes an integer multiple of 2π. In fa
t, when y0 = 2πs, s ∈ Z we obtainDiri
hlet boundary 
onditions in all dire
tions, bosoni
 and fermioni
 ones,
∂pY = ∂pZ = ∂pd± = 0 for z = z̄. (5.2.7)In the following, we shall refer to the branes with parameters (z0, y0 6= 2πs) as generi
(untwisted) branes. These branes are lo
alised at the point (z0, y0) of the bosoni
 baseand they stret
h out along the fermioni
 dire
tions. A lo
alisation at points (z0, 2πs), s ∈

Z, implies Diri
hlet boundary 
onditions for the fermioni
 �elds. We shall refer to the
orresponding branes as non-generi
 (untwisted) branes.We have seen in the des
ription of our gluing 
onditions that it was advantageousto introdu
e �elds Z and d± instead of X and c±. They 
orrespond to a new 
hoi
e of
oordinates on the supergroup GL(1|1)
g = eic−ψ

−

eixE+iyNeic+ψ
+

= eid−ψ
−

e−id+ψ
+

eizE+iyNeid+ψ
+

e−id−ψ
− (5.2.8)that is parti
ularly adapted to the des
ription of untwisted branes. In fa
t, we re
allfrom our general dis
ussion that untwisted branes are lo
alised along 
onjuga
y 
lasses.It is therefore natural to introdu
e a parameterisation in whi
h supergroup elements gare obtained by 
onjugating bosoni
 elements g0 = exp(iz0E + iy0N) with exponentialsof fermioni
 generators. From equation (5.2.8) it is also easy to read o� that 
onjuga
y
lasses 
ontaining a bosoni
 group element g0 
ontain two fermioni
 dire
tions as longas y0 6= 2πs. In 
ase y0 = 2πs, 
onjugation of g0 with the fermioni
 fa
tors is a trivialoperation and hen
e the 
onjuga
y 
lasses 
onsist of points only.It is instru
tive to work out the form of the ba
kground metri
 and B-�eld in our new
oordinates. To this end, let us re
all that

ds2 = str((g−1dg)2
)

= 2dxdy − 2eiydη−dη+ . (5.2.9)Here, the super-
oordinates x, y, η± 
orrespond to our 
oordinate �eldsX, Y, c±. Similarly,the Wess-Zumino 3-form on the supergroup GL(1|1) is given by
H =

2

3
str(g−1dg)∧3 = 2ieiydη− ∧ dη+ ∧ dy . (5.2.10)After the appropriate 
hange of 
oordinates from (x, y, η±) to (z, y, ζ±), the metri
 reads

ds2 = 2dzdy + 8 sin2(y/2)dζ−dζ+ (5.2.11)and the H �eld be
omes
H = 4i

(
cos(y)− 1

)
dζ− ∧ dζ+ ∧ dy . (5.2.12)It is easy to 
he
k that H = dB possesses a 2-form potential B given by

B = 4i sin(y) dζ− ∧ dζ+ + 2iζ+dζ− ∧ dy − 2iζ−dζ+ ∧ dy . (5.2.13)64



5.2. BRANES 65Upon pull ba
k to the untwisted branes we 
an set dy = 0 and the B-�eld be
omes
π∗brane B = 4i sin(y) dζ− ∧ dζ+ . (5.2.14)This expression together with our formula (5.2.11) for the metri
 allow to re
ast theboundary 
onditions (5.2.6) for the fermioni
 �elds in theories with generi
 untwistedboundary 
onditions in the familiar form (se
tion 3.3.2.Boundary states in the minisuperspa
e theoryAs in the analysis of the bulk GL(1|1) model [26℄ it is very instru
tive to study theproperties of untwisted branes in the so-
alled parti
le or minisuperspa
e limit. Therebywe obtain predi
tions for several �eld theory quantities in the limit where the level ktends to in�nity. Our �rst aim is to present formulae for the minisuperspa
e analogue ofIshibashi states. Using our insights from the previous subse
tion we shall then propose
andidate boundary states for the parti
le limit and expand them in terms of Ishibashistates.Let us begin by re
alling a few basi
 fa
ts about the supergroup GL(1|1) or ratherthe spa
e of fun
tions Fun
(GL(1|1)) it determines, see [26℄. The latter is spanned by theelements

e0(e, n) = eiex+iny , e±(e, n) = η±e0(e, n) e2(e, n) = η−η+e0(e, n) . (5.2.15)where the 
oordinates are the same as in the previous subse
tion. Right and left invariantve
tor �elds take the following form
RE = i∂x , RN = i∂y + η−∂− , R+ = −e−iy∂+ − iη−∂x , R− = −∂− , (5.2.16)and
LE = −i∂x , LN = −i∂y − η+∂+ , L− = e−iy∂− − iη+∂x , L+ = ∂+ , (5.2.17)These ve
tor �elds generate two (anti-)
ommuting 
opies of the underlying Lie superal-gebra gl(1|1). For the reader's 
onvenien
e we also wish to reprodu
e the invariant Haarmeasure on GL(1|1),

dµ = e−iydxdydη+dη− . (5.2.18)The de
omposition of Fun
(GL(1|1)) with respe
t to both left and right regular a
tionwas analysed in [26℄. Here, we are most interested in properties of the adjoint a
tionadX = RX +LX sin
e it is this 
ombination of the symmetry generators that is preservedby the untwisted D-branes.In the last subse
tion we saw that the 
oordinates (z, y, ζ±) whi
h des
ribe 
onjuga
y
lasses are parti
ularly adapted to the des
ription of untwisted branes. When we usethese 
oordinates the adjoint a
tion takes the following simple formadE = 0 , adN = ζ−∂− − ζ+∂+ , ad+ = ∂+ , ad− = −∂− . (5.2.19)65



66 CHAPTER 5. THE GL(1|1) WZNW MODELHere ∂− and ∂+ denote the derivatives with respe
t to ζ− and ζ+. The spa
e of fun
tions
Nz0,y0 vanishing along the brane at (z0, y0) is spanned by

eiez+iny − eiez0+iny0 , ζ±(eiez+iny − eiez0+iny0) , ζ−ζ+(eiez+iny − eiez0+iny0) . (5.2.20)Clearly, the adjoint a
tion may be restri
ted to the spa
e Nz0,y0. From now on we shall
onsider Nz0,y0 as a gl(1|1) submodule of Fun
(GL(1|1)). The spa
e of fun
tions on thebrane may be 
onstru
ted as a quotient of the spa
e of fun
tions on the supergroup bythe submodule Nz0,y0 of fun
tions vanishing along the brane. This quotient is representedby the fun
tions 1, ζ−, ζ+ and ζ−ζ+. Under the adjoint a
tion, these fun
tions transformin a 4-dimensional inde
omposable representation P0 of gl(1|1). The latter is known asthe proje
tive 
over of the trivial representation. Thus, we have shown that the spa
eof fun
tions on a generi
 brane transforms in a proje
tive module P0. A

ording to theusual rules, fun
tions on the brane are the minisuperspa
e model for boundary operatorsin the full �eld theory.The next aim is to 
onstru
t a 
anoni
al basis in the spa
e of (
o-)invariants. Byde�nition, a (
o-)invariant |ψ〉〉 (〈〈ψ|) is a state (linear fun
tional) satisfyingadX |ψ〉〉 = (RX + LX)|ψ〉〉 = 0 , 〈〈ψ| adX = 〈〈ψ|(RX + LX) = 0 . (5.2.21)These two linear 
onditions resemble the so-
alled Ishibashi 
onditions in boundary 
on-formal �eld theory. In the minisuperspa
e theory, it is easy to des
ribe the spa
e ofsolutions. One may 
he
k by a short 
omputation that a generi
 invariant takes the form

|e, n〉〉0 =
1

2π
√
e

(
e0(e, n)− e0(e, n− 1) + ee2(e, n)

)
. (5.2.22)The pre-fa
tor 1/2π

√
e is determined by a normalisation 
ondition to be spelled out below.We note that the fun
tion |e, n〉〉0 is obtained by taking the super-tra
e of supergroupelements in the typi
al representation 〈e, n〉.2 To ea
h of the invariants |e, n〉〉0 we 
anassign a 
o-invariant 0〈〈e, n| : Fun

(GL(1|1))→ C through
0〈〈e, n| =

∫
dµ

1

2π
√
e

(
e0(−e,−n + 1)− e0(−e,−n)− ee2(−e,−n + 1)

)
. (5.2.23)Our normalisation of both |e, n〉〉0 and the dual invariant 0〈〈e, n| ensures that

0〈〈e, n|(−1)Fu
1
2
(LE−RE)

1 u
1
2
(LN−RN )

2 |e′, n′〉〉0 = δ(n′ − n) δ(e′ − e)χ〈e,n〉(u1, u2)where χ〈e,n〉(u1, u2) = ue1
(
un−1

2 − un2
) is the super-
hara
ter of the typi
al representation

〈e, n〉 of gl(1|1). If we re-s
ale the invariants |e, n〉〉0 and then send e to zero we obtainanother family of invariants,
|0, n〉〉0 := lim

e→0

√
e |e, n〉〉0 = e0(0, n)− e0(0, n− 1) . (5.2.24)2Our 
onventions for the representation theory of gl(1|1) are the same as in [71℄. In parti
ular, 〈e, n〉denotes a 2-dimensional graded representation of gl(1|1). Let us agree to 
onsider the state with smaller

N -eigenvalue as even (bosoni
). The same representation with opposite grading shall re
eive an additionalprime, i.e. it is denoted by 〈e, n〉′. 66



5.2. BRANES 67Similarly, we de�ne the dual 0〈〈0, n| as a limit of 0〈〈−e,−n+1|√e. By 
onstru
tion, thestates |0, n〉〉0 and the asso
iated linear forms possess vanishing overlap with ea
h otherand with the states |e, n〉〉0,
0〈〈0, n|u

1
2
(LE−RE)

1 u
1
2
(LN−RN )

2 |e′, n′〉〉0 = 0 (5.2.25)for all e′, in
luding e′ = 0. This does 
ertainly not imply that 0〈〈0, n| a
ts trivially onthe spa
e of fun
tions.It is easy to see that the fun
tions |0, n〉〉0 do not yet span the spa
e of invariants.What we are missing is a family of additional states |n〉〉0 whi
h is given by
|n〉〉0 =

1

2π
e0(0, n) for n ∈ [0, 1[ .The 
orresponding dual 
o-invariants are given by the pres
ription

0〈〈n| =
1

2π

∫
dµ
∑

m∈Z

e2(0,−n+m+ 1) . (5.2.26)Our normalisation ensures that
0〈〈n|(−1)Fu

1
2
(LE−RE)

1 u
1
2
(LN−RN )

2 |n′〉〉0 = δ(0) δ(n′ − n)χ〈n〉(u1, u2) (5.2.27)where χ〈n〉(u1, u2) = un2 . The divergent fa
tor δ(0) stems from the in�nite volume of ourtarget spa
e and it 
ould absorbed into the normalisation of the Ishibashi state. Let usobserve that the 
o-invariants 0〈〈n| may be obtained by a limiting pro
edure from 0〈〈e, n|,
0〈〈n| = − lim

e→0

1√
e

∑

m

0〈〈e, n+m| . (5.2.28)A similar 
onstru
tion 
an be performed with the Ishibashi states |e, n〉〉0 to give theformal invariants ∑m e2(0, n + m). They are formally dual to 
o-invariants given by∫
dµe0(0,−n+1). In our dis
ussion, and in parti
ular when we wrote eq. (5.2.26), we haveimpli
itly equipped Fun

(GL(1|1)) with a topology that ex
ludes to 
onsider∑m e2(0, n+
m) as a true fun
tion. While the dual fun
tional ∫ dµe0(0,−n + 1) does not su�er fromany su
h problem, it so happens not to appear in the 
onstru
tion of boundary states.This is why we do not bother giving it a proper name.It is our aim now to determine the 
oupling of bulk modes to branes in the minisu-perspa
e limit. In the parti
le limit, the bulk 1-point fun
tions are linear fun
tionals
f 7→ 〈f〉 on the spa
e Fun

(GL(1|1)) of fun
tions su
h that 〈adXf〉 = 0, i.e. they are
o-invariants. The �rst family of 
o-invariants we shall des
ribe 
orresponds to branes ingeneri
 positions (z0, y0). Sin
e these are lo
alised at a point (z0, y0) on the bosoni
 baseand delo
alised along the fermioni
 dire
tions, their density is given by
ρ(z0,y0) = −2i sin(y0/2) δ(y − y0) δ(z − z0)

= −2i sin(y0/2) δ(y − y0) δ
(
x− iη−η+(1− e−iy)−1 − z0

)
.

(5.2.29)67



68 CHAPTER 5. THE GL(1|1) WZNW MODELThe 
onstant prefa
tor −2i sin(y0/2) was 
hosen simply to mat
h the normalisation ofour boundary states below. Obviously, the density ρ(z0,y0) is invariant under the adjointa
tion. It gives rise to a family of 
o-invariants through the pres
ription
f 7→ 〈f〉ρ :=

∫
dµ ρ(x, y, η±) f(x, y, η±) . (5.2.30)Geometri
ally, the integral 
omputes the strength of the 
oupling of a bulk mode f to abrane with mass density ρ. It is not di�
ult to 
he
k that our fun
tional 〈·〉(z0,y0) admitsan expansion in terms of dual Ishibashi states as follows,

〈 · 〉(z0,y0) ≡ 0〈z0, y0| =

∫
dedn

√
e ei(n−1/2)y0+iz0e

0〈〈e, n|

=

∫

e 6=0

dedn
√
e ei(n−1/2)y0+iz0e

0〈〈e, n|+
∫
dn ei(n−1/2)y0

0〈〈0, n| .
(5.2.31)In the se
ond line of this formula we have separated typi
al and atypi
al 
ontributions tothe boundary state. Considering that the state 0〈〈0, n| is obtained through the limitingpro
edure 0〈〈0, n| = lime→0

√
e 0〈〈e, n|, the se
ond term is the natural 
ontinuation of the�rst. In this sense, we may drop the 
ondition e 6= 0 in the �rst integration and 
ombinetypi
al and atypi
al terms into the single integral appearing in the �rst line. We observethat all 〈·〉(z0,y0) vanish on fun
tions e0(e, n) with e = 0.Let us now turn to the non-generi
 branes. These are lo
alised also in the fermioni
dire
tions. Hen
e, their density takes the form

ρsz0 = (−1)s δ(y − 2πs) δ(x− z0) δ(η+) δ(η−) (5.2.32)where s is an integer. When this density is inserted into the general pres
ription (5.2.30),we obtain another family of 
o-invariants. Its expansion in terms of Ishibashi states reads
〈 · 〉sz0 = 0〈z0; s| =

∫
dedn

1√
e
e2πi(n−1/2)s+iez0

0〈〈e, n|

=

∫

e 6=0

dedn
1√
e
e2πi(n−1/2)s+iez0

0〈〈e, n| −
∫ 1

0

dn e2πi(n−1/2)s
0〈〈n| .

(5.2.33)On
e more, the se
ond line displays typi
al and atypi
al 
ontributions to the boundarystate separately. In passing from the �rst to the se
ond line, we exploited s ∈ Z alongwith our observation (5.2.28).The two families 〈·〉(z0,y0) with y0 6= 2πs and 〈·〉sz0 are not entirely independent. In fa
t,we note that boundary states from the generi
 family may be `re-expanded' in terms ofmembers from the non-generi
 family when the paremeter y0 tends to 2πs. The pre
iserelation is
lim

y0→2πs
〈f〉(z0,y0) =

1

i

∂

∂z0
〈f〉sz0 (5.2.34)68



5.2. BRANES 69for all elements f ∈ Fun
(GL(1|1)). We shall �nd that both families of 
o-invariants 
anbe lifted to the full �eld theory. An analogue of relation (5.2.34) also holds in the �eldtheory. It tells us that, for spe
ial values of the parameters, branes from the generi
 familyde
ompose into a superposition of two branes from the non-generi
 family. Their distan
eis �nite for �nite level but tends to zero as k is sent to in�nity.5.2.2 Untwisted boundary states and their spe
traWe are now prepared to spell out the boundary states and boundary spe
tra formaximally symmetri
 branes with trivial gluing 
onditions. As we have argued in theprevious subse
tion, they 
ome in two di�erent families. After a few 
omments on therelevant Ishibashi states, we 
onstru
t the boundary states for branes in generi
 positionsin the se
ond subse
tion. Branes in non-generi
 position are 
onstru
ted in the third partof this se
tion.Chara
ters and Ishibashi statesIn this subse
tion we shall provide a list of untwisted Ishibashi states from whi
h theboundary states of the GL(1|1) WZNWmodel will be built in 
onse
utive subse
tions. Byde�nition, an untwisted Ishibashi state is a solution of the following set of linear relations

(
Xn + X̄−n

)
|Ψ〉〉 = 0 for X = E,N,Ψ± . (5.2.35)These relation lift our invarian
e 
onditions (5.2.21) from the parti
le model to the full�eld theory. It is obvious that solutions must be in one-to-one 
orresponden
e to invariantsin the minisuperspa
e theory.We now 
onstru
t the Ishibashi states using our symple
ti
 fermion 
orresponden
e.Re
all that the 
urrents take the form (5.1.23)

JE = −k∂Y, JN = −∂Z, J− =
√
keY

L

∂χ1, J+ = −
√
ke−Y

L

∂χ2, (5.2.36)
J̄E = k∂̄Y, J̄N = ∂̄Z, J̄− = −

√
ke−Y

R

∂̄χ1, J̄+ =
√
keY

R

∂̄χ2. (5.2.37)Further, the fermions have mode expansion as in equation (4.3.1) and relations (4.3.2) (orthe twisted versions thereof) while the two s
alars have expansion
Y L(z) = Y L

0 + pLY ln z −
∑

n 6=0

1

n
Y L
n z

−n,

Y R(z) = Y R
0 + pRY ln z̄ −

∑

n 6=0

1

n
Y R
n z̄−n,

ZL(z) = ZL
0 + pLZ ln z −

∑

n 6=0

1

n
ZL
n z

−n,

ZR(z) = ZR
0 + pRZ ln z̄ −

∑

n 6=0

1

n
ZR
n z̄

−n,

(5.2.38)
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70 CHAPTER 5. THE GL(1|1) WZNW MODELand relations
[Y L,R
n , ZL,R

m ] = −mδn,−m and [ZL,R
0 , pL,RY ] = [Y L,R

0 , pL,RZ ] = −1 . (5.2.39)To ensure lo
ality we have pLY = pRY and also ZL
0 = ZR

0 for the 
onjugate modes. However,we will not demand pLZ = pRZ and 
orrespondingly not Y L
0 = Y R

0 sin
e Z has an additivetwist around our winding states (5.1.45).The energy momentum tensor is
T (z) = ∂Y ∂Z − 1

2
ǫab∂χ

a∂χb and T̄ (z̄) = ∂̄Y ∂̄Z − 1
2
ǫab∂̄χ

a∂̄χb , (5.2.40)and thus the Virasoro modes are
Ln = −

∑

m∈Z

: χ1
n−mχ

2
m : +

∑

m 6=0,n

: Y L
n−mZ

L
m : +

+
∑

m 6=0

( : pLY Z
L
m : + : pLZY

L
m : ) + δn,0 p

L
Y p

L
Z ,

L̄n = −
∑

m∈Z

: χ̄1
n−mχ̄

2
m : +

∑

m 6=0,n

: Y R
n−mZ

R
m : +

+
∑

m 6=0

( : pRY Z
R
m : + : pRZY

R
m : ) + δn,0 p

R
Y p

R
Z .

(5.2.41)
We also need the zero modes of the 
urrents 
orresponding to the Cartan generators JEand JN :

E0 = −kpLY , Ē0 = kpRY , N0 = −pLZ , N̄0 = pRZ . (5.2.42)Let us now 
onsider the Ishibashi states. We start by spelling out the Ishibashi 
onditionsfor the untwisted 
ase. As noted above, the gluing 
ondition J = J̄ means that the bosoni
�elds simply satisfy Diri
hlet 
onditions
∂uY = ∂uZ = 0 . (5.2.43)Using these Diri
hlet 
onditions for the �eld Y = Y L + Y R the fermioni
 ones 
an bewritten as follows

eY
L
0 ∂χ1 = −e−Y R

0 ∂̄χ1 and e−Y
L
0 ∂χ2 = −eY R

0 ∂̄χ2 . (5.2.44)Then 
orrespondingly the Ishibashi 
onditions for the bosoni
 �elds are
(
Y L
n − Y R

−n
)
| I 〉〉 =

(
ZL
n − ZR

−n
)
| I 〉〉 = 0 n 6= 0(

pLZ − pRZ
)
| I 〉〉 =

(
pLY − pRY

)
| I 〉〉 = 0 ,

(5.2.45)note that there is no 
onditions on the zero modes Y L
0 and Y R

0 . Further, the 
onditionsfor the fermioni
 ones are
(
eY

L
0 χ1

n − e−Y
R
0 χ̄1

−n
)
| I 〉〉 =

(
e−Y

L
0 χ2

n − eY
R
0 χ̄2

−n
)
| I 〉〉 = 0 . (5.2.46)70



5.2. BRANES 71The Ishibashi states 
learly fa
torises into a bosoni
 and a fermioni
 part and are easily
onstru
ted as follows. The typi
al primary of GL(1|1), 〈e, n〉R, is the representation withground state |n, µλ〉 where λ = e/k satisfying
pLZ |n, µλ〉 = pRZ |n, µλ〉 = n|n, µλ〉 ,
pLY |n, µλ〉 = pRY |n, µλ〉 = λ|n, µλ〉 .

(5.2.47)Further, re
all that the fermions have the mode expansion in the presen
e of the groundstate µλ (4.5.2)
χ1(z, z̄) =

∑

n∈Z+λ

1

n
χ1
n z

−n +
∑

n∈Z+λ∗

1

n
χ̄1
n z̄

−n ,

χ2(z, z̄) =
∑

n∈Z+λ∗

1

n
χ2
n z

−n +
∑

n∈Z+λ

1

n
χ̄2
n z̄

−n ,
(5.2.48)where λ∗ = 1− λ. Then the bosoni
 Ishibashi state is

|n, e〉〉B = exp
(∑

m>0

1

m

(
Y L
−mZ

R
−m + ZL

−mY
R
−m
))
|n, µλ〉B , (5.2.49)and the fermioni
 one is 
omputed as (4.5.5)

|n, e〉〉F = exp
(
−
∑

m> 0

eY
L
0 +Y R

0

m− λ χ
1
−m+λχ̄

2
−m+λ −

e−Y
L
0 −Y R

0

m− λ∗ χ
2
−m+λ∗ χ̄

1
−m+λ∗

)
|n, µλ〉F .(5.2.50)and the Ishibashi state is then the produ
t of the two. The following simple 
omputationsare 
ru
ial

qL0e±Y
L
0 = e±Y

L
0 qL0∓E0

k , ZN0e±Y
L
0 = e±Y

L
0 ZN0∓1 ,

qL̄0e±Y
R
0 = e±Y

R
0 qL̄0± Ē0

k , ZN̄0e±Y
R
0 = e±Y

R
0 ZN̄0±1 ,

(5.2.51)Introdu
e Lc0 = 1
2
(L0 + L̄0) and N c

0 = 1
2
(N0 − N̄0) as usual. Then we get the fermioni

ontribution of the overlap, that is

F 〈〈n, e|qL
c
0+

1
12 zN

c
0 (−1)F

c|n, e〉〉F = zn(1− z−1)q
1
2
(λ− 1

2
)2− 1

24

∏

n>0

(1− z−1qn)(1− zqn) ,(5.2.52)and the bosoni

B〈〈n, e|qL

c
0− 1

12 zN
c
0 (−1)F

c|n, e〉〉B = − qnλ

η(τ)2
, (5.2.53)where we normalised the dual state su
h that we get the minus sign. Then in total, wearrive at

〈〈n, e|qLc
0zN

c
0 (−1)F

c|n, e〉〉 = zn−1(1− z)q
nλ+ 1

2
(λ− 1

2
)2− 1

24

η(τ)2

∏

n>0

(1− z−1qn)(1− zqn)

= χ̂<e,n>(z, τ) . (5.2.54)71



72 CHAPTER 5. THE GL(1|1) WZNW MODELSo far we assumed 0 < λ < 1, whenever λ be
omes zero our Diri
hlet symple
ti
 fermionboundary states 
ome into the game. There are four of them. Denote by |n, 0〉 the groundstate with N0 eigenvalue n, i.e.
N0|n, 0〉 = n|n, 0〉, E0|n, 0〉 = 0 ,

Ym|n, 0〉 = Zm|n, 0〉 = χam|n, 0〉 = χa0|n, 0〉 = 0, for m > 0. (5.2.55)Then the Ishibashi states are
|n0〉〉 = exp

(∑

m>0

1

m

(
Y L
−mZ

R
−m + ZL

−mY
R
−m − eY

L
0 +Y R

0 χ1
−mχ̄

2
−m + e−Y

L
0 −Y R

0 χ2
−mχ̄

1
−m
))
|n, 0〉

|n±〉〉 = ξ±|n0〉〉 (5.2.56)
|n〉〉 = ξ−ξ+|n0〉〉and we arrive at the following amplitudes

〈〈n0|qL
c
0zN

c
0 (−1)F

c|n〉〉 = χ0(µ, τ),

〈〈n|qLc
0zN

c
0 (−1)F

c|n0〉〉 = −χ0(µ, τ),

〈〈n±|qL
c
0zN

c
0 (−1)F

c|n∓〉〉 = −χ0(µ, τ),

〈〈n|qLc
0zN

c
0 (−1)F

c|n〉〉 = −2πiτχ0(µ, τ),

(5.2.57)where
χ0(µ, τ) = zn−1q

1
12

∏

n>0

(1− z−1qn)(1− zqn)/η(τ)2. (5.2.58)All other amplitudes vanish unless zero modes are inserted.Let us now 
onsider twist states µλ̃ where λ̃ 6∈ ]0, 1[ . We saw in se
tion 5.1.4 that su
hstates are simply des
endants of µλ where λ̃ = λ + m for some integer m and λ ∈ ]0, 1[.The state |n, µλ̃〉 satis�es the following 
onditions
N0|n, µλ̃〉 = n|n, µλ̃〉 and E0|n, µλ̃〉 = k(λ+m)|n, µλ̃〉 . (5.2.59)The Ishibashi state |e, n〉〉 (with e/k = λ̃ = λ+m) in this representation is obtained fromthe previously 
onstru
ted ones as

|n, e〉〉 = em(ZL
0 −ZR

0 )em(Y L
0 +Y R

0 )|n, e−mk〉〉 . (5.2.60)The amplitude is 
omputed using
qL

c
0em(ZL

0 −ZR
0 ) = em(ZL

0 −ZR
0 )qL

c
0−mNc

0 , (5.2.61)and the spe
tral �ow formulae provided in appendix B.3
〈〈n, e|qLc

0zN
c
0 (−1)F

c|n, e〉〉 = χ̂<e−mk,n+m>(z −mτ, τ) = (−1)mχ̂<e,n>(z, τ) . (5.2.62)A similar 
onstru
tion holds also for the atypi
al part.72



5.2. BRANES 73The generi
 boundary stateIn this se
tion, we propose the boundary state 
orresponding to a generi
 brane lo-
alised at (z0, y0) with y0 6= 2πs and perform a non-trivial Cardy 
onsisten
y 
he
k [48℄.For this purpose, we need to know the modular properties of the 
hara
ters. They areeasily 
omputed with the help of [72℄ and we list them in appendix B.4.Proposition 5.2.1. (Generi
 boundary state) The boundary state of branes asso
iatedwith generi
 position parameters z0, y0 is
|z0, y0〉 =

√
2i

k

∫

e 6=mk
m∈Z

dedn exp
(
i(n− 1/2)y0 + iez0

)
sin1/2(πe/k) |n, e〉〉 −

√
2πi

k

∑

m∈Z

∫
dn exp

(
i(n− 1/2)y0 + imkz0

)
|n0〉〉(m) .

(5.2.63)We shall argue below that these boundary states give rise to elementary branes if and onlyif the parameter y0 6∈ 2πZ.Before we show that our Ansatz for the generi
 boundary states produ
es the expe
tedboundary spe
trum, let us make a few 
omments. To begin with, it is instru
tive to
ompare the 
oe�
ients of the Ishibashi states in |z0, y0〉 with the minisuperspa
e resulteq. (5.2.31). If we send k to in�nity, the fa
tor sin1/2(πe/k) is proportional to the fa
tor√
e that appears in the 1-point 
oupling of bulk modes in the minisuperspa
e theory. Therepla
ement √e→ sin1/2(πe/k) is ne
essary to ensure that the �eld theory 
ouplings areinvariant under spe
tral �ow (B.3.2).In order to 
he
k the 
onsisten
y of our proposal for the boundary states with world-sheet duality, we 
ompute the spe
trum between a pair of generi
 branes,
〈z0, y0|(−1)F

c

q̃L
c
0 z̃N

c
0 |z′0, y′0〉 = 2i

k

∫
de′dn′ei(n

′− 1
2
)(y′0−y0)+ie′(z′0−z0) sin(πe′/k)χ̂〈e′,n′〉(µ̃, τ̃)

= χ̂〈e,n〉(µ, τ) − χ̂〈e,n+1〉(µ, τ) (5.2.64)where the momenta e, n are related to the 
oordinates of the branes a

ording to
e =

k(y′0 − y0)

2π
, n =

k(z′0 − z0)
2π

− y′0 − y0

2π
.To begin with, the result is a 
ombination of 
hara
ters with integer 
oe�
ients. Hen
e,it 
an be 
onsistently interpreted as the partition fun
tion for open strings that stret
h inbetween the two branes. If we put both branes into the same position (z0, y0), then theresult spe
ialises to

〈z0, y0|(−1)F
c

q̃L
c
0 ũN

c
0 |z0, y0〉 = χ̂〈0,0〉(µ, τ) − χ̂〈0,1〉(µ, τ) = χ̂P0(µ, τ). (5.2.65)In the last step we have observed that the super-
hara
ters of the representation spa
esover the two atypi
al Ka
 modules 〈0, 0〉 and 〈0, 1〉′ 
ombine into the 
hara
ter of the73



74 CHAPTER 5. THE GL(1|1) WZNW MODELrepresentation that is generated from the proje
tive 
over P0. This out
ome was expe
ted:it signals that the state spa
e of open strings on a generi
 branes 
ontains no bosoni
 zeromodes and two fermioni
 ones. The latter give rise to the four ground states of theproje
tive 
over. This is in agreement with the fa
t that generi
 branes stret
h out alongthe fermioni
 dire
tions.There is one important subtlety in our interpretation of the result (5.2.65) that wedo not want to gloss over. While the 
hara
ter of the proje
tive 
over P̂0 is the sameas that of the two a�ne Ka
 modules, the 
orresponding representations are not. The
hara
ters are blind against the nilpotent parts in L0 and hen
e they 
annot distinguishbetween an inde
omposable and its 
omposition series. But for the 
onformal �eld theory,the di�eren
e is important. In parti
ular, the generator L0 is diagonalisable on all Ka
modules, atypi
al or not, but it has a nilpotent 
ontribution in the ĝl(1|1)-module over P0.Hen
e, if the boundary spe
trum does transform in P̂0, then some boundary 
orrelatorsare guaranteed to display logarithmi
 singularities when two boundary 
oordinates 
ome
lose to ea
h other. The information we obtained from the boundary states using world-sheet duality alone is not su�
ient to make any rigorous statements on the existen
e ofsu
h logarithms. But in the minisuperspa
e limit k → ∞ we have 
learly identi�ed theproje
tive 
over P0 as the relevant stru
ture. Sin
e L0 is not diagonalisable in that limit,it 
annot be so for �nite level k.Non generi
 point-like branesLet us now turn to the boundary states of non-generi
 untwisted branes in the GL(1|1)WZNW model. From our dis
ussion of the geometry we expe
t them to be parameterisedby a single real modulus z0 and to possess a spe
trum without any degenera
y of groundstates. These expe
tations will be met. Let us begin by spelling out the formula for thenon-generi
 boundary states.Proposition 5.2.2. (Non-generi
 boundary states) The boundary states of elementarybranes asso
iated with non-generi
 position parameters z0 and y0 = 2πs, s ∈ Z, are givenby
|z0; s〉 =

1√
2ki

∫

e 6=mk
dedn exp

(
2πi(n− 1/2)s+ iez0

)
sin−1/2(πe/k) |n, e〉〉

− 1√
2πi

∑

m∈Z

∫
dn exp

(
2πi(n− 1/2)s+ imkz0

)
|n〉〉(m) .

(5.2.66)If we send the level k to in�nity in the boundary states |z0; s〉, then the 
oe�
ient ofthe Ishibashi state |e, s〉〉 gets repla
ed by 1/
√
e and thereby it reprodu
es the 
oupling(5.2.33) of bulk modes in the minisuperspa
e theory. On
e more, the repla
ement 1/

√
e 7→

sin−1/2(πe/k) is ne
essary to ensure spe
tral �ow symmetry of the �eld theoreti
 
ouplings.Note that the non-generi
 boundary states only involve to the spe
ial family |n〉〉(m) ofatypi
al Ishibashi states. In 
ase of generi
 boundary states, we had found non-vanishing
ouplings to the regular atypi
al Ishibashi states |n0〉〉(m).74



5.2. BRANES 75Let us verify that the proposed boundary states produ
e a 
onsistent open stringspe
trum. In order to do so, we investigate the overlap between two non-generi
 boundarystates |z0; s〉 and |z′0; s′〉,
〈z0; s|(−1)F

c

q̃L
c
0 z̃N

c
0 |z′0; s′〉 =

∫
de′dn′

2ki

e2πi(n
′−1/2)(s′−s)+ie′(z′0−z0)

sin(πe′/k)
χ̂〈e′,n′〉(µ̃, τ̃ )

= χ̂
(m)
〈n〉 (µ, τ) (5.2.67)where the labels n and m in the 
hara
ter are related to the branes' parameters through

n =
k(z′0 − z0)

2π
+ s− s′ , m = s′ − s . (5.2.68)

χ̂
(m)
〈n〉 are 
hara
ters of atypi
al irredu
ible representation of ĝl(1|1). For m = 0 the 
orre-sponding representations are generated from the 1-dimensional irredu
ible atypi
al repre-sentations 〈n〉 of the �nite-dimensional Lie superalgebra gl(1|1) by appli
ation of 
urrentalgebra modes. The representations with m 6= 0 are obtained from those with m = 0 byspe
tral �ow (see Appendix A).The following limit for t any integer shows that in equation (5.2.67) is indeed a hidden
τ -dependen
e

lim
e→mk

1

2ki

∫
dn

e2πitn

sin(πe/k)
χ̂〈e,n〉(µ̃, τ̃) =

∫
dn τ e2πitnχ̂

(m)
〈n〉 (µ̃, τ̃) . (5.2.69)Thus we observe that the Ishibashi state |n〉〉 (5.2.57) with its τ -dependen
e is the naturalatypi
al Ishibashi state 
ontributing to the atypi
al boundary state.We also want to look at the spe
trum of boundary operators that 
an be insertedon a boundary if we impose non-generi
 boundary 
onditions with parameters z0 and s.Spe
ialising eq. (5.2.67) to the 
ase with z′0 = z0 and s′ = s we �nd

〈z0; s|(−1)F
c

q̃L
c
0 ũN

c
0 |z0; s〉 = χ̂

(0)
〈0〉(µ, τ) .Hen
e, the spe
trum 
onsists of states that are generated from a single invariant groundstate |0〉 by appli
ation of 
urrent algebra modes with negative mode indi
es. In parti
ular,the zero modes of the fermions a
t trivially on ground states. This is in agreement withour geometri
 insights a

ording to whi
h non-generi
 branes are lo
alised in all dire
tions,in
luding the two fermioni
 ones.Further, the overlap between a generi
 and a non-generi
 state is

〈z0, y0|(−1)F
c

q̃L
c
0 z̃N

c
0 |z′0; s〉 =

∫
de′dn′

k
ei(n

′−1/2)(2πs−y0)+ie′(z′0−z0) χ̂〈e′,n′〉(µ̃, τ̃)

= χ̂〈e,n〉(µ, τ) ,

(5.2.70)where
n =

k(z′0 − z0)
2π

+
y0

2π
− s+

1

2
,

e

k
= s− y0

2π
. (5.2.71)75



76 CHAPTER 5. THE GL(1|1) WZNW MODELWe may now ask what happens if we send the parameter y0 of the generi
 brane to
y0 = 2πs. From our formulae for boundary states we dedu
e that
|z0, 2πs〉 =

∫
dedn√

2ki

eie(z0+
π
k
) − eie(z0−π

k
)

sin1/2(πe/k)
e2πi(n−1/2)s |e, n〉〉 = |z0 +π/k; s〉−|z0−π/k; s〉 .In other words, when a generi
 brane is moved onto one of the spe
ial lines y0 = 2πs,it de
omposes into a brane-anti-brane pair. Its 
onstituents sit in positions z0 ± π/kand possess the same dis
rete parameter s. This relation between non-generi
 branesand generi
 branes in non-generi
 positions is a �eld theoreti
 analogue of the equation(5.2.34) we dis
overed in the minisuperspa
e theory.5.2.3 Comparison with Cardy's theoryLet us re
all a few rather basis fa
ts 
on
erning branes in rational unitary 
onformal�eld theory. For simpli
ity we shall restri
t to 
ases with a 
harge 
onjugate modularinvariant and a trivial gluing automorphism Ω (the so-
alled `Cardy 
ase'). This will allowa 
omparison with the results of the previous subse
tions. In the Cardy 
ase, elementaryboundary 
onditions turn out to be in one-to-one 
orresponden
e with the irredu
iblerepresentations of the 
hiral algebra [48℄. Let us label these by J , with J = 0 beingreserved for the va
uum representation. The boundary 
ondition with label J = 0 has arather simple spe
trum 
ontaining only the va
uum representation H0. More generally, ifwe impose the boundary 
ondition J = 0 on one side of the strip and any other elementaryboundary 
ondition on the other, the spe
trum 
onsists of a single irredu
ibleHJ . Finally,the spe
trum between two boundary 
onditions with label J1 and J2 is determined by thefusion of J1 and J2. We shall now dis
uss that all these statements 
arry over to untwistedbranes in the GL(1|1) WZNW model. The fusion pro
edure, however, 
an provide spe
tra
ontaining inde
omposables that are not irredu
ible.Brane parameters and representationsWe proposed that the GL(1|1) WZNW model possesses two families of elementarybranes. The �rst one is referred to as the generi
 family and its members are parameterisedby (z0, y0) with y0 6= 2πs, s ∈ Z. Boundary states for the generi
 branes were providedin subse
tion 5.2.2. These are also de�ned for integer y0/2π but we have argued thatthe 
orresponding branes are not elementary. They rather 
orrespond to superpositionsof branes from the se
ond family. This se
ond family 
onsists of branes with only one
ontinuous modulus z0 and a dis
rete parameter s. Their boundary states 
an be foundin subse
tion 4.3.There is one distinguished brane in this se
ond family with z0 = 0 and s = 0. Wepropose that it plays the role of the J = 0 brane in rational 
onformal �eld theory. Inorder to 
on�rm this idea, we 
ompute the spe
trum of open strings stret
hing between

z0 = 0, s = 0 and any of the other elementary branes. If the se
ond brane is non-generi
76



5.2. BRANES 77with parameters z0, s, the relative spe
trum reads
〈0; 0|(−1)F

c

q̃L
c
0 ũN

c
0 |z0; s〉 = χ̂

(m)
〈n〉 (µ, τ) (5.2.72)where the parameter n on the 
hara
ter is

n = n(z0; s) =
kz0
2π
− s , m = m(z0; s) = s . (5.2.73)Indeed, we see that the open string spe
trum 
orresponds to a single irredu
ible atypi
almodule of ĝl(1|1), in agreement with the expe
tations from rational 
onformal �eld theory.Let us now 
onsider the 
ase in whi
h the se
ond brane is lo
ated in a generi
 position

(z0, y0). From the boundary state we �nd
〈0; 0|(−1)F

c

q̃L
c
0ũN

c
0 |z0, y0〉 = χ̂〈e,n〉(µ, τ) , (5.2.74)where the parameters of the 
hara
ter on the right hand side are

e = e(z0, y0) =
ky0

2π
, n = n(z0, y0) =

kz0
2π
− y0

2π
+

1

2
. (5.2.75)As long as y0/2π is not an integer, e is not a multiple of the level and hen
e, χ̂〈e,n〉 is the
hara
ter of a single irredu
ible representation of ĝl(1|1).At this point we have found that all our elementary branes are labelled by irredu
iblerepresentations of ĝl(1|1). In 
ase of the elementary generi
 branes, the relation be-tween the position moduli (z0, y0), y0 6= 2πm, and representation labels 〈e, n〉, e 6= mk,is provided by eq. (5.2.75). All typi
al irredu
ible representations of ĝl(1|1) appear inthis 
orresponden
e. For the non-generi
 branes the relation between their parameters

(z0; s) and the representation labels of an atypi
al irredu
ible 
an be found in eq. (5.2.73).On
e more, all atypi
al irredu
ibles appear in this 
orresponden
e. Hen
e, branes in theGL(1|1) WZNW model are in one-to-one 
orresponden
e with irredu
ible representationsof the 
urrent superalgebra ĝl(1|1), just as in rational 
onformal �eld theory.5.2.4 Brane spe
tra and fusionLet us now analyse whether we 
an �nd the spe
trum between a pair of elementarybranes through fusion of the 
orresponding 
urrent algebra representations. For the 
onve-nien
e of the reader we have listed the relevant fusion rules for irredu
ible representationsof the 
urrent superalgebra ĝl(1|1) in Appendix B.5.The spe
trum between two typi
al branes with parameters (z0, y0) and (z′0, y
′
0) hasbeen 
omputed in eq. (5.2.64). We 
an 
onvert the brane parameters into representationlabels with the help of eq. (5.2.75) and then exploit the known fusion produ
t of the
orresponding representations. In 
ase y′0 − y0 6= 2πZ we �nd

〈ky0

2π
,
kz0
2π
− y0

2π
+

1

2

〉∗
⊗F

〈ky′0
2π

,
kz′0
2π
− y′0

2π
+

1

2

〉 (5.2.76)
∼=
〈k(y′0 − y0)

2π
,
k(z′0 − z0)

2π
− y′0 − y0

2π
+ 1
〉
⊕
〈k(y′0 − y0)

2π
,
k(z′0 − z0)

2π
− y′0 − y0

2π

〉′77



78 CHAPTER 5. THE GL(1|1) WZNW MODELHere, ⊗F denotes the fusion produ
t and we used the rule 〈e, n〉∗ = 〈−e,−n+ 1〉′ for the
onjugation of representations. Then we inserted the known fusion rules while keepingtra
k of whether the representation is fermioni
 or bosoni
. The result agrees ni
ely withthe true spe
trum we 
omputed earlier.When the di�eren
e (y′0 − y0)/2π = m is an integer, the fusion of the two representa-tions on the left hand side of (5.2.76) results in a single inde
omposable. It is the imageof the a�ne representation over the proje
tive 
over P̂(k(z′0−z0)−(y′0−y0))/2π under m unitsof spe
tral �ow, i.e.
〈ky0

2π
,
kz0
2π
− y0

2π
+

1

2

〉∗
⊗F

〈ky′0
2π

,
kz′0
2π
− y′0

2π
+

1

2

〉
=
(
P(m)

(k(z′0−z0)−(y′0−y0))/2π

)′ (5.2.77)where m = (y′0 − y0)/2π. Our minisuperspa
e theory along with the boundary states
on�rm this result in the 
ase y0 = y′0 and z0 = z′0 (see our dis
ussion at the end ofse
tion 4.2). For other 
hoi
es of the parameters, we only see that the fusion rules providea representation with the 
orre
t 
hara
ter. Whether the true state spa
e is given bya single inde
omposable or by a sum of Ka
 modules or even irredu
ibles 
annot beresolved rigorously with the methods we have at our disposal. Nevertheless, it seems verylikely that the proje
tive 
over is what appears sin
e this is the only result whi
h is also
onsistent with spe
tral �ow symmetry.The fusion between atypi
al irredu
ibles is rather simple. It leads to a predi
tion forthe spe
trum between two non-generi
 branes that should be 
he
ked against our earlierresult (5.2.67),
(〈kz0

2π
− s
〉(s))∗

⊗F
〈kz′0

2π
− s′

〉(s′) ∼=
〈k(z′0 − z0)

2π
+ s− s′

〉(s′−s)
.On
e more, the �ndings from world-sheet duality are 
onsistent with the fusion pres
rip-tion. There is one �nal 
he
k to be performed. It 
on
erns the spe
trum between anon-generi
 brane with parameters (z0; s) and a generi
 one with moduli (z0, y0). Fromthe fusion we �nd

(〈kz0
2π
− s
〉(s))∗

⊗F
〈ky′0

2π
,
kz′0
2π
− y′0

2π
+

1

2

〉
=
〈
−sk +

ky′0
2π

,
k(z′0 − z0)

2π
− y′0

2π
+ s+

1

2

〉
.(5.2.78)It may not 
ome as a big surprise that this fusion rule 
orre
tly predi
ts the spe
trumbetween a generi
 and a non-generi
 brane. In fa
t, from our formulae for boundary statesand modular transformation we �nd

〈
z0; s

∣∣(−1)F
c

q̃L
c
0ũN

c
0

∣∣z′0, y′0
〉

= χ̂〈e,n〉(µ, τ)where e = −ks +
ky′0
2π

, n =
k(z′0 − z0)

2π
− y′0

2π
+ s+

1

2
.

(5.2.79)In 
on
lusion we found that the spe
tra between any pair of elementary branes may bedetermined by the fusion of the 
orresponding irredu
ible representations. It is importantto stress that the fusion produ
t of irredu
ible representations 
an produ
e representationsthat are not fully redu
ible. 78



5.2. BRANES 795.2.5 Twisted boundary stateThe group of outer automorphisms of the Lie superalgebra gl(1|1) is of order 2. Wealready dis
ussed the boundary states belonging to the trivial one. The non-trivial onede�nes the following gluing 
onditions on the 
urrents
JE = −J̄E , JN = −J̄N , J+ = −J̄− , J− = J̄+ for z = z̄ . (5.2.80)This translates into Neumann 
onditions for the bosoni
 and the fermioni
 �elds, that is

∂nY = ∂nZ = 0 for z = z̄ (5.2.81)implying espe
ially that the left movers of Y 
oin
ide with its right movers up to the zeromodes
Y L − Y R = Y L

0 − Y R
0 for z = z̄ . (5.2.82)Thus the gluing 
onditions for the fermions are

eY
L
0 ∂χ1 = eY

R
0 ∂̄χ2 , e−Y

L
0 ∂χ2 = −e−Y R

0 ∂̄χ1 for z = z̄ . (5.2.83)The boundary state |Ω〉〉 is easily 
onstru
ted as before. It has to satisfy
(Y L

n + Y R
−n) |Ω〉〉 = (pLY + pRY ) |Ω〉〉 = 0 ,

(ZL
n + ZR

−n) |Ω〉〉 = (pLZ + pRZ) |Ω〉〉 = 0 ,

(eY
L
0 χ1

n + eY
R
0 χ̄2

−n) |Ω〉〉 = 0 ,

(e−Y
L
0 χ2

n − e−Y
R
0 χ̄1

−n) |Ω〉〉 = 0 ,

(5.2.84)whi
h 
an be 
omputed to be
|Ω 〉〉 =

√
π/i exp

( ∞∑

n=1

1

n

(
Y L
−nZ

R
−n +ZL

−nY
R
−n− eY

R
0 −Y L

0 χ2
−nχ̄

2
−n + eY

L
0 −Y R

0 χ1
−nχ̄

1
−n
))
|0, 0 〉 .(5.2.85)Here, |0, 0 〉 denotes the va
uum de�ned by χan|0, 0 〉 = 0 for n ≥ 0 and ZL,R

n |0, 0 〉 =
Y L,R
n |0, 0 〉 = pL,RY |0, 0 〉 = pL,RZ |0, 0 〉 = 0 for n > 0. The dual boundary state is 
onstru
tedanalogously.Our main aim now is to 
ompute some non-vanishing overlap of the twisted boundarystate |Ω〉〉. This requires the insertion of the invariant bulk �eld χ1χ2, i.e.

〈〈Ω | q̃Lc
0(−1)F

c

z̃N
c
0 χ1χ2 |Ω〉〉 =

π

2k

∫
dedn

χ̂〈e,n〉(τ, µ)

sin(πe/k)
. (5.2.86)where Lc0 = (L0 + L̄0)/2 and N c

0 = (N0 + N̄0)/2 are obtained from the zero modes ofthe Virasoro �eld and the 
urrent N . Here the normalisation in (5.2.85) by √π/i wasimportant. This amplitude will be tested in se
tion 5.3.4.79



80 CHAPTER 5. THE GL(1|1) WZNW MODEL5.2.6 Mixed amplitudes and their open stringsThe GL(1|1)-symple
ti
 fermion 
orresponden
e allowed us to 
onstru
t boundarystates expli
itly. The new expli
it formulation also allows us to 
ompute new quantitiessu
h as overlaps for atypi
als
〈〈Ω | q̃Lc

0(−1)F
c

z̃N
c
0 | z0; s〉〉 =

√
1

2
(−1)s

∞∏

n=0

(1− q̃n)
(1 + q̃n)

= (−1)s q
1
32

∞∏

n=0

(1− qn+ 1
4 )(1− qn+ 3

4 )

(1− qn+ 1
2 )2

.

(5.2.87)Note the independen
e on z, no matter whether we take N c
0 as in the previous se
tion oras in the untwisted 
ase (N c

0 = (N0 ± N̄0)/2), whi
h is natural sin
e there does not exista distinguished 
hoi
e for N c
0 for mixed amplitudes.The 
orresponding open string theory is easily 
onstru
ted using our previous experi-en
e. That is, we demand untwisted gluing 
onditions on the negative real line

∂uY = ∂uZ = 0 ,

eY
L
0 ∂χ1 = −e−Y R

0 ∂̄χ1 ,

e−Y
L
0 ∂χ2 = −eY R

0 ∂̄χ2 for z = z̄ and z + z̄ < 0 ;

(5.2.88)and twisted on the positive one
∂nY = ∂nZ = 0 ,

eY
L
0 ∂χ1 = eY

R
0 ∂̄χ2 ,

e−Y
L
0 ∂χ2 = −e−Y R

0 ∂̄χ1 for z = z̄ and z + z̄ > 0 ,

(5.2.89)Then the fermions have a monodromy of order four around the origin
∂χ1(ze2πi) = i ∂χ1(z) , ∂χ2(ze2πi) = −i ∂χ2(z) , (5.2.90)and the bosons a monodromy of order two

∂Y (ze2πi) = −∂Y , ∂Z(ze2πi) = −∂Z(z) . (5.2.91)Thus the fermions have mode expansion
χ1(z) =

∑

n∈Z+ 3
4

1

n
χ1
nz

−n ,

χ2(z) =
∑

n∈Z+ 1
4

1

n
χ2
nz

−n ,
(5.2.92)80



5.2. BRANES 81and the bosons
Y (z) =

∑

n∈Z+ 1
2

1

n
Yn z

−n ,

Z(z) =
∑

n∈Z+ 1
2

1

n
Zn z

−n ,
(5.2.93)We de�ne the ground state to be bosoni
 if s (the position parameter of the non-generi
brane) is even and fermioni
 if it is odd. The partition fun
tion is thentr(qL0(−1)F ) = (−1)s q

1
32

∞∏

n=0

(1− qn+ 1
4 )(1− qn+ 3

4 )

(1− qn+ 1
2 )2

. (5.2.94)The amplitude involving typi
al �elds requires as usual zero mode insertions, i.e.
〈〈Ω | q̃Lc

0(−1)F
c

z̃N
c
0 χ1χ2 | z0, y0〉〉 =

√
2π

k
e−iy0/2

∞∏
n=0

(1− q̃n)
∞∏
n=0

(1 + q̃n)

=
2π

k
e−iy0/2 q

1
32

∞∏

n=0

(1− qn+ 1
4 )(1− qn+ 3

4 )

(1− qn+ 1
2 )2

,

(5.2.95)
and its open string spe
trum 
an be 
onstru
ted as in the symple
ti
 fermion 
ase.In summary, we have been able to give a 
omplete dis
ussion of Cardy boundary statesin the GL(1|1) WZNWmodel. This was only possible due to the new formulation in termsof symple
ti
 fermions. As a result, we saw that indeed also for the Lie supergroup GL(1|1)Cardy's 
ondition holds, i.e. any amplitude of two boundary states indeed des
ribes anopen string spe
trum. Further, we saw that the overlap between two boundary stateswith trivial gluing 
onditions is given by fusion. The twisted boundary state then gives aone-dimensional extension of the fusion ring.5.2.7 Con
lusionsIn this se
tion we have studied maximally symmetri
 branes in the WZNW model onthe simplest supergroup GL(1|1). Following previous reasoning for bosoni
 models [58℄we have shown that su
h branes are lo
alised along (twisted) super-
onjuga
y 
lasses, aninsight that generalises to other supergroup target spa
es (se
tion 3.3.1). As in the 
ase ofthe p = 2 triplet theory [21℄, untwisted branes turn out to be in one-to-one 
orresponden
ewith irredu
ible representations of the 
urrent algebra. This 
orresponden
e relies onthe existen
e of an `identity' brane whose spe
trum 
onsists of the irredu
ible va
uumrepresentation only. The spe
trum between the identity and any other elementary braneis built from a single irredu
ible of ĝl(1|1) and any su
h irredu
ible appears in this way.Moreover, one 
an 
ompute the spe
trum between any two elementary branes by fusion81



82 CHAPTER 5. THE GL(1|1) WZNW MODELof a�ne representations. What we have just listed are 
hara
teristi
 features of Cardy'stheory for rational non-logarithmi
 
onformal �eld theories. Our work proves that theyextend at least to one of the simplest logarithmi
 �eld theory and it seems very likelythat they hold more generally in all WZNW models on (type I) supergroups, see also [21℄for related �ndings in the p = 2 triplet theory.In spite of these parallels to bosoni
 WZNW models, branes on supergroups possessa mu
h ri
her spe
trum of possible geometries. Whereas Diri
hlet branes on a purelybosoni
 torus, for example, are all related by translation, we dis
overed the existen
e ofatypi
al lines on the bosoni
 base of the GL(1|1)WZNWmodel. The distan
e between anytwo su
h neighboring parallel lines is 
ontrolled by the level k. When a typi
al untwistedbrane is moved onto one of these lines, it splits into two atypi
al ones. Individual atypi
albranes possess a single modulus that des
ribes their dislo
ation along the atypi
al lines.In order for them to leave an atypi
al line they must 
ombine with a se
ond atypi
albrane. Pro
esses of this kind model the formation of long multiplets from shorts. Hen
e,on more general group manifolds, more than just two atypi
al branes may be requiredto form a generi
 brane. Let us stress, however, that the notions of long (typi
al) andshort (atypi
al) multiplets whi
h are relevant for su
h pro
esses derive dire
tly from therepresentation theory of the a�ne Lie superalgebra. Thereby, all spe
tral �ow symmetriesare built into our des
ription. We also wish to point out the obvious similarities with so-
alled fra
tional branes at orbifold singularities, see e.g. the dis
ussions in se
tion 4.3of [73℄.Another interesting and new feature of branes on GL(1|1) is the o

urren
e of bound-ary spe
tra that 
annot be de
omposed into a dire
t sum of irredu
ibles. In parti
ularwe have shown that the spe
trum of boundary operators on a single generi
 brane is de-s
ribed by the proje
tive 
over of the va
uum module. For more general group manifolds,we expe
t the 
orresponding proje
tive 
over to be present as well, though along with ad-ditional stu�. The generator L0 of dilatations is not diagonalisable on proje
tive 
overs,see e.g. [26℄. A

ording to the usual reasoning, this implies the existen
e of logarithmi
singularities in boundary 
orrelation fun
tions on branes in generi
 positions. As we haveremarked before, the modular bootstrap alone did not allow for su
h a strong 
on
lusionas it is blind to all nilpotent 
ontributions within L0. But in addition to the standard
onformal �eld theory analysis, our investigation of the GL(1|1) WZNW model also drawsfrom the existen
e of the geometri
 regime at large level k. The presen
e of proje
tive
overs is easily understood in the minisuperspa
e theory and it must persist when �eldtheoreti
 
orre
tions are taken into a

ount.We would also like to note, that there is a related paper [74℄ whi
h dis
usses branes intriplet models with p ≥ 2. The results of Gaberdiel and Runkel show that branes in tripletmodels share many features with the out
ome of our analysis. In parti
ular, for trivialgluing automorphism, branes in both models are labelled by irredu
ible representationsof the 
hiral algebra. Also the labels for relevant Ishibashi states follow the same pattern:We have found one `generi
' Ishibashi state for ea
h Ka
 module and an ex
eptional familywith members being asso
iated to atypi
al blo
ks. When the same rules are applied to82



5.3. THE BOUNDARY GL(1|1) WZNW MODEL 83the triplet models, we obtain a set of Ishibashi states that seems 
losely related to thoseused in [74℄. Furthermore, Gaberdiel and Runkel also �nd that the partition fun
tion forany pair of boundary 
onditions may be determined by fusion of representations. Theexisten
e of a geometri
 regime for the GL(1|1) WZNW model allows us to go one stepfurther. It gives us full 
ontrol over the stru
ture of the state spa
e and thereby alsoover the nilpotent 
ontributions to L0 whi
h are not visible in partition fun
tions. Fusionof ĝl(1|1) representations was shown to 
orre
tly reprodu
e the state spa
es of boundarytheories in the GL(1|1) WZNW model. Let us stress, however, that the triplet and theGL(1|1)WZNWmodel are 
lose 
ousins (see e.g. the dis
ussion in [28℄). It would thereforebe somewhat premature to 
laim that all these stru
tures will be present in more generallogarithmi
 
onformal �eld theories.5.3 The boundary GL(1|1) WZNW modelThis se
tion gives a 
omplete dis
ussion of volume �lling branes in the GL(1|1) WZNWmodel. We 
ompute those 
orrelation fun
tions whi
h spe
ify the boundary theory 
om-pletely, these are the bulk one-point fun
tions, the bulk-boundary two-point fun
tionsand boundary three-point fun
tions. The results are those of [61℄.5.3.1 Volume �lling brane: The 
lassi
al a
tionOur aim in this se
tion is to dis
uss the 
lassi
al des
ription of volume �lling branesin the GL(1|1) WZNW model. To begin with, we spell out the standard a
tion of theWZNWmodel with so-
alled twisted boundary 
onditions. Their geometri
 interpretationas volume �lling branes with a non-zero B-�eld is re
alled brie�y. In order to set up asu

essful 
omputation s
heme for the quantum theory later on, we shall need a di�erentformulation of the theory. As in the bulk theory, 
omputations of 
orrelations fun
tionsrequire a Ka
-Wakimoto like representation of the model [26℄. Finding su
h a �rst orderformalism for the boundary theory is not entirely straightforward. We shall see that itrequires introdu
ing an additional fermioni
 boundary �eld.The boundary WZNW modelFollowing our earlier work on WZNW models for type I supergroups, we parametrisethe supergroup GL(1|1) through a Gauss-like de
omposition of the form
g = eiη−ψ

−

eixE+iyN eiη+ψ
+where E,N and ψ± denote bosoni
 and fermioni
 generators of gl(1|1), respe
tively. Inthe WZNWmodel, the two even 
oordinates x, y be
ome bosoni
 �eldsX, Y and similarly,two fermioni
 �elds c± 
ome with the odd 
oordinates η±. Let us now 
onsider a boundary83



84 CHAPTER 5. THE GL(1|1) WZNW MODELWZNW model with the a
tion
SWZNW(X, Y, c±) = − k

4πi

∫

Σ

d2z
(
∂X∂̄Y + ∂Y ∂̄X + 2eiY ∂c+∂̄c−

)
+

+
k

8πi

∫
du eiY (c+ + c−)∂u(c+ + c−) ,

(5.3.1)where u parametrises the boundary of the upper half plane. Variation of the a
tion leadsto the usual bulk equations of motion along with the following set of boundary 
onditions
∂vY = 0 , 2∂vX = eiY (c+ + c−) ∂u(c+ + c−) ,

±2∂vc± = 2i∂uc∓ − (c− + c+) ∂uY .
(5.3.2)Here, we have used the derivatives ∂u = ∂ + ∂̄ and ∂v = i(∂ − ∂̄) along and perpendi
ularto the boundary. The equations (5.3.2) imply Neumann boundary 
onditions for all four�elds of our theory, i.e. we are dealing with a volume �lling brane. Sin
e the normalderivatives of the �elds X and c± do not vanish, our brane 
omes equipped with a B-�eld.A more detailed dis
ussion of the brane's geometry 
an be found in our re
ent paper [65℄.In order to see that our boundary 
onditions preserve the full 
hiral symmetry, were
all that the holomorphi
 
urrents of the GL(1|1) WZNW model take the form

JE = ik∂Y , JN = ik∂X − kc−∂c+ eiY ,

J− = ikeiY ∂c+ , J+ = ik∂c− − kc−∂Y ,and similarly for the anti-holomorphi
 
urrents,
J̄E = −ik∂̄Y , J̄N = −ik∂̄X + k∂̄c− c+ e

iY ,

J̄+ = ikeiY ∂̄c− , J̄− = ik∂̄c+ − kc+∂̄Y .If we plug the boundary 
onditions (5.3.2) into these expressions for 
hiral 
urrents,we obtain the gluing 
ondition JX(z) = ΩJ̄X(z̄) for X = E,N,± and all along theboundary at z = z̄. Here, the relevant gluing automorphism Ω is obtained by lifting theautomorphism
Ω(E) = −E, Ω(N) = −N, Ω(ψ+) = −ψ−, Ω(ψ−) = ψ+ (5.3.3)from the �nite dimensional superalgebra gl(1|1) to the full a�ne symmetry. In [65℄ we
alled these gluing 
onditions twisted and showed that there is a unique brane 
orrespond-ing to this parti
ular 
hoi
e of Ω.First order formulationComputations of bulk and boundary 
orrelators in the presen
e of twisted D-branesshall be performed in a �rst order formalism. In the bulk, it is well-known how this84



5.3. THE BOUNDARY GL(1|1) WZNW MODEL 85works [26℄. There, the bulk a
tion is built of a free �eld theory involving two additionalfermioni
 auxiliary �elds b± of weight ∆(b±) = 1 along with the original �elds X, Y and
c±,

Sbulk
0;
l [X, Y, c±, b±] = − k

4πi

∫

Σ

d2z
(
∂X∂̄Y + ∂Y ∂̄X

)

− 1

2πi

∫

Σ

d2z
(
b+∂c+ + b−∂̄c−

)
.

(5.3.4)
We pla
ed a subs
ript `
l' on the a
tion to distinguish it from the a
tion we shall use inour path integral 
omputations later on. If the following bulk marginal intera
tion termis added to the free �eld theory,

Sbulkint [X, Y, c±, b±] = − 1

2kπi

∫

Σ

d2z e−iY b−b+ (5.3.5)the equations of motion for b± read b− = k∂c+ exp iY and b+ = −k∂̄c− exp iY so that were
over the bulk WZNW-model upon insertion into the �rst order a
tion. In extendingthis treatment to the boundary se
tor, we are tempted to add the �square root� of thebulk intera
tion as a boundary term. This is indeed what happens for the 
losely related
AdS2 branes in AdS3 [75℄. Here, however, it 
annot possibly be the right answer, at leastnot without a proper notion of what we mean by taking the square root. In fa
t, the naivesquare root of b−b+ exp(−iY ) is something like b± exp(−iY/2), i.e. a fermioni
 operator.It makes no sense to add su
h an obje
t to the bulk theory. In order to take a bosoni
square root of the bulk intera
tion, we introdu
e a new fermioni
 boundary �eld C ofweight ∆(C) = 0 and add the following terms to the bulk theory,

Sbdy
0 [X, Y, c±, b±, C] =

1

8πi

∫
du (kC∂uC + 4(c+ + c−)b+) (5.3.6)

Sbdyint [X, Y, c±, b±, C] = − 1

2πi

∫
du e−iY/2b+C . (5.3.7)The idea to involve an additional fermioni
 boundary �eld in the a
tion of supersymmetri
brane 
on�gurations is not new. It was initially proposed in [76℄ and has been put touse more re
ently [77, 78℄ in the 
ontext of matrix fa
torisations. Our boundary a
tionresembles the one Hosomi
hi employed to treat branes inN = 2 super Liouville theory [79℄.The full gl(1|1) boundary theory now takes the form

S[X, Y, c±, b±, C] = Sbulk
0,
l + Sbdy

0 + Sbulkint + Sbdyint = S0,
l + Sint (5.3.8)85



86 CHAPTER 5. THE GL(1|1) WZNW MODELwhere
S0,
l = − k

4πi

∫

Σ

d2z
(
∂X∂̄Y + ∂Y ∂̄X

)

− 1

2πi

∫

Σ

d2z
(
c+∂b+ + c−∂̄b−

)
+

1

8πi

∫
du kC∂uC ,

Sint = − 1

2kπi

∫

Σ

d2z e−iY b−b+ −
1

2πi

∫
du e−iY/2b+C .

(5.3.9)
Here, we have performed a partial integration on the kineti
 term for the b
-system,thereby absorbing the 
ontribution b+(c− + c+) from the boundary a
tion. This is similarto the 
ase of AdS2 branes in AdS3 [75℄. In order to 
omplete the des
ription of the
lassi
al a
tion, we add the following Diri
hlet boundary 
ondition for the �elds b±,

b+(z) + b−(z̄) = 0 for z = z̄ . (5.3.10)If the a
tion is varied with this boundary 
ondition, we re
over the boundary equationsof motion (5.3.2). More pre
isely, we obtain four equations among boundary �elds. Twoof these 
an be used to determine the boundary �elds C and b+ = −b− through X, Y and
c±,

C = eiY/2 (c+ + c−) , ±2b± = k eiY/2∂uC . (5.3.11)The four equations among boundary �elds along with the bulk equations motion for b±imply the eqs. (5.3.2). We leave the details of this simple 
omputation to the reader.We have now set up a �rst order formalism for the twisted brane on GL(1|1). Letus stress again that is was ne
essary to introdu
e an additional fermioni
 �eld C on theboundary of the world-sheet. Above we have motivated this new degree of freedom by ourdesire to take a bosoni
 square root of the bulk intera
tions. But there is another, moregeometri
, way to argue for the additional �eld C. We mentioned before that the �rstorder formalism for the GL(1|1) WZNW model is very similar to that for the Eu
lidean
AdS3, only that the bosoni
 
oordinates γ, γ̄ of the latter are repla
ed by fermioni
 ones.The �rst order formalism for AdS2 branes in AdS3 was set up in [75℄ and it des
ribes abrane that is lo
alised along a 1-dimensional subspa
e of the γγ̄ plane. Correspondingly,only a single γ zero mode remains after imposing the boundary 
onditions. The brane onGL(1|1) we are attempting to des
ribe, however, is volume �lling and therefore it extendsin both fermioni
 dire
tions. Therefore, we need two independent fermioni
 zero modes.These are provided by the zero modes of the three �elds c± and C. Note that these �eldsare related by equation (5.3.11).5.3.2 Volume �lling branes: The quantum theoryOur next step is to develop a 
omputational s
heme for 
orrelation fun
tions in theboundary WZNW model with twisted boundary 
onditions. We shall use the �rst orderformulation of se
tion 2.2 as our starting point and 
onsider the full WZNW model as a86



5.3. THE BOUNDARY GL(1|1) WZNW MODEL 87deformation of a free �eld theory involving the �elds X, Y, c±, b± and the fermioni
 bound-ary �eld C. This free �eld theory will be des
ribed in more detail in the �rst subse
tion.The de�nition of vertex operators and their 
orrelation fun
tions in the WZNW model isthe subje
t of subse
tion 3.2.The free theory and its 
orrelation fun
tionsOur strategy is to employ the �rst order formulation we set up in the previous se
tion.In order to do so, we have to add a few 
omments on the measures we are using in thepath integral treatment. To begin with, the supergroup invariant measure of the WZNWmodel is given by
dµWZNW ∼ DXDYD(eiY/2c−)D(eiY/2c+) . (5.3.12)This gets multiplied with Db+Db−DC when we pass to the �rst order formalism. But inthe following we would like to employ the standard free �eld measure

dµfree ∼ DXDYDc−Dc+ .The two measures are related by a Ja
obian of the form (see e.g. [66℄ for similar 
ompu-tations)
dµWZNW =

(sdet(GabeiY ∂ae
−iY ∂b)

)−1
dµfree

= e
1
8π

R

dudv
√
G(−Gab∂a Y ∂bY+iRY )+ 1

8π

R

du i
√
GKY dµfree. (5.3.13)Here, Gab is the metri
 on the world-sheet, R = ∂a∂

a logG and K = 1
2i
∂v logG are itsGaussian and geodesi
 
urvature, respe
tively. These two quantities feature in the Gauss-Bonnet theorem for surfa
es with boundary,

1

4π

∫

Σ

dudv
√
GR+

1

4π

∫
du
√
GK = χ(Σ) = 1 , (5.3.14)where χ(Σ) = 1 is the Euler 
hara
teristi
 of the dis
. We 
an now pass to the upper halfplane again where all 
urvature is 
on
entrated at in�nity. The e�e
t of the 
urvatureterms in the WZNW measure is to insert a ba
kground 
harge QY = χ(Σ)/2 = 1/2 for the�eld Y at in�nity. In addition, the measure (5.3.13) also 
ontains a term that is quadrati
in Y . We simply add this to the free part of our a
tion, i.e. we de�ne

S0 = − 1

4πi

∫

Σ

d2z
(
k ∂X∂̄Y + k ∂Y ∂̄X − ∂Y ∂̄Y

)

− 1

2πi

∫

Σ

d2z
(
c+∂b+ + c−∂̄b−

)
+

1

8πi

∫
du kC∂uC ,

(5.3.15)Note, that the new term in the a
tions modi�es the formula for the 
urrent JN by addingan additional ∂Y and similarly for the anti-holomorphi
 partner.87



88 CHAPTER 5. THE GL(1|1) WZNW MODELIn our path integral we now integrate with the free �eld theory measure dµfree over all�elds subje
t to the boundary 
ondition b+ + b− = 0. Con�gurations for the other �eldsare not 
onstrained in the path integral. In the free quantum �eld theory, they satisfythe linear (�Neumann�) boundary 
onditions
∂vY = 0 , ∂vX = 0 ,

∂uC = 0 , c+ + c− = 0 .
(5.3.16)These equations are satis�ed in all 
orrelation fun
tions or, equivalently, as operatorequations on the state spa
e of the free �eld theory. Note that, a

ording to the lastequation, the zero modes of c+ and c− 
oin
ide in our free boundary theory. The ne
essaryse
ond fermioni
 zero mode is exa
tly what is provided by the �eld C.Arbitrary 
orrelation fun
tions in the free �eld theory 
an now easily be 
omputedwith the help of Wi
k's theorem. All we need to use is the following list of operatorprodu
t expansions

X(z, z̄)Y (z, z̄) ∼ 1

k
ln |z − w|2 +

1

k
ln |z − w̄|2

c−(z)b−(w) ∼ 1

w − z c+(z̄)b+(w̄) ∼ 1

w̄ − z̄

c−(z)b+(w̄) ∼ 1

z − w̄ c+(z̄)b−(w) ∼ 1

z̄ − w

C(v)C(u) ∼ 2πi

k
sign(v − u) .

(5.3.17)
Let us remark that a non-vanishing 
orrelation fun
tion in the free �eld theory requiresthat the �elds c outnumber the insertions of b by one. Furthermore, C must be insertedan odd number of times. We also re
all that there is a non-vanishing ba
kground 
harge
QY = 1/2 for the �eld Y . On the disk, the 
orresponding U(1) 
harges of all ta
hyonvertex operators must add up to QY χ(Σ) = 1/2 in order for the 
orrelator to be non-zero.These rules imply that the 1-point fun
tion of the bulk identity �eld vanishes. In orderto normalise the va
uum expe
tation value, we require that

〈 (c−(z)− c+(z̄)) C(u) eieX(z,z̄)+inY (z,z̄) 〉0 = δ(e)δ(n− 1/2) . (5.3.18)Note that the produ
t of �elds in bra
kets is the simplest expression that meets all ourrequirements: The U(1)Y 
harge of the ta
hyon vertex operators is m = 1/2, we insertedone c± and no �eld b± and multiplied with a single C in order to make the total insertionbosoni
 again.Correlation fun
tions in boundary WZNW modelNow that we have learnt how to perform 
omputations in the free �eld theory des
ribedby the a
tion (5.3.15), we would like to add our intera
tion term
Sint = − 1

2kπi

∫

Σ

d2z e−iY b−b+ −
1

2πi

∫
du e−iY/2b+C . (5.3.19)88



5.3. THE BOUNDARY GL(1|1) WZNW MODEL 89The idea is to 
al
ulate 
orrelators of the full boundary WZNW model perturbatively,i.e. by expanding the exponential of the intera
tion in a power series. Even though thereis a priori an in�nite number of terms to be 
onsidered, only �nitely many 
ontribute toour perturbative expansion. This is very similar to what has been observed in the bulkmodel [26℄.Before we 
an spell out pre
ise formulae for the quantities we want to 
ompute, weneed to explain how to asso
iate free �eld theory vertex operators to the �elds of theintera
ting WZNW model. The latter are in one-to-one 
orresponden
e with fun
tions onthe supergroup GL(1|1) and they may be 
hara
terised by their behaviour with respe
tto global gl(1|1) transformations. We shall �rst re
all from [26℄ how this works for bulk�elds.Let us begin by 
olle
ting a few basi
 fa
ts about the spa
e of fun
tions on the su-pergroup GL(1|1) [26℄. As for any other group or supergroup, Fun
(GL(1|1)) 
arries twograded-
ommuting a
tions of the Lie superalgebra gl(1|1). These are generated by thefollowing right and left invariant ve
tor �elds

RE = i∂x , RN = i∂y + η−∂− , R+ = −e−iy∂+ − iη−∂x , R− = −∂− ,

LE = −i∂x , LN = −i∂y − η+∂+ , L− = e−iy∂− − iη+∂x , L+ = ∂+ .
(5.3.20)A typi
al irredu
ible multiplet for gl(1|1) is 2-dimensional. Hen
e, typi
al irredu
iblemultiplets of the 
ombined left and right a
tion are spanned by four fun
tions in thesupergroup. As in [26℄ we shall 
ombine these fun
tions into a 2× 2 matrix of the form

ϕ〈−e,−n+1〉 = eiex+iny
(

1 η−
η+ e−1e−iy + η+η−

) (5.3.21)The rows span the typi
al irredu
ibles 〈−e,−n+ 1〉 of the right regular a
tion. Columnstransform in the representations 〈e, n〉 of the left regular a
tion. Note that ϕ〈e,n〉 is onlywell de�ned for e 6= 0, i.e. in the typi
al se
tor of the minisuperspa
e theory.Following [26℄, the bulk vertex operators in the free �eld theory are modelled after thematri
es ϕ〈e,n〉. More pre
isely, let us introdu
e typi
al bulk operators through
V〈−e,−n+1〉(z, z̄) = eieX+inY

(
1 c−
c+ c+c−

) (5.3.22)Sin
e the weight of the fermioni
 �elds c± vanishes, all four �elds in this matrix possessthe same 
onformal dimension,
∆(e,n) =

e

2k
(2n− 1 +

e

k
) . (5.3.23)Note that one of the terms in the lower left 
orner of the minisuperspa
e matrix ϕ〈e,n〉has no analogue on the vertex operator V〈−e,−n+1〉. We 
onsider this term as `subleading'.It is re
onstru
ted when we build 
orrelation fun
tions of the intera
ting WZNW model(see [26℄ and [27℄ for more details). 89



90 CHAPTER 5. THE GL(1|1) WZNW MODELLet us now repeat the previous analysis for the boundary �elds. Sin
e our twistedbrane is volume �lling, the relevant spa
e of minisuperspa
e wave fun
tions is againthe spa
e Fun
(GL(1|1)) of all fun
tions on the supergroup GL(1|1). But this time, it
omes equipped with a di�erent a
tion of the Lie superalgebra gl(1|1). In fa
t, minisu-perspa
e wave fun
tions as well as boundary vertex operators are now distinguished bytheir transformation under a single twisted adjoint a
tion adΩ

X = RX +LΩ
X of GL(1|1) on

Fun
(GL(1|1)). Expli
itly, the generators of gl(1|1) transformations are given byadΩ

E = 2i∂x , adΩ
N = 2i∂y + η+∂+ + η−∂− ,adΩ

− = ∂+ − ∂− , adΩ
+ = −e−iy(∂− + ∂+) + i(η+ − η−)∂x .

(5.3.24)Under the twisted adjoint a
tion of gl(1|1) on Fun
(GL(1|1)), ea
h typi
al multiplet ap-pears with two-fold multipli
ity [65℄. On
e more, we propose to assemble the 
orrespond-ing four fun
tions into a 2× 2 matrix of the form

ψ〈−2e,−2n+1〉 = eiex+iny
(

1 η+ − η−
η 2e−1e−iy/2 + (η+ − η−)η

) (5.3.25)where we introdu
ed the shorthand η = eiy/2(η−+η+). The reader is invited to 
he
k thatthe two rows of this matrix ea
h span the 2-dimensional typi
al irredu
ible 〈−2e,−2n+1〉under the twisted adjoint a
tion (5.3.24) of the superalgebra gl(1|1).Boundary vertex operators are modelled after the matri
es ψ〈−2e,−2n+1〉 more or lessin the same way as in the 
ase of bulk �elds,
U〈−2e,−2n+1〉(u) = eieX+inY

(
1 c+ − c−
C (c+ − c−)C

)
. (5.3.26)Again, we dropped the y-dependent term in the lower right 
orner of the matrix (5.3.25).Eventually, we will see how this term is re
overed in boundary 
orrelation fun
tions. Themain new aspe
t of the pres
ription (5.3.26), however, 
on
erns the appearan
e of thefermioni
 boundary �eld C that we inserted in pla
e of the fun
tion η. This substitutionis motivated by the 
lassi
al equation of motion (5.3.11).After this preparation we are able to spell out how 
orrelation fun
tions of bulk andboundary �elds 
an be 
omputed for the intera
ting WZNW model. More pre
isely, wede�ne,

〈
m∏

ν=1

Φ〈eν ,nν〉(zν , z̄ν)

m′∏

µ=1

Ψ〈eµ,nµ〉(uµ)

〉
=

∞∑

s=0

(−1)s

s!

〈
(Sint)s m∏

ν=1

V〈eν ,nν〉(zν , z̄ν)
m′∏

µ=1

U〈eµ,nµ〉(uµ)

〉

0

.

(5.3.27)
Here, Sint is the intera
tion (5.3.19) and all 
orrelation fun
tions on the right side are tobe 
omputed in the free �eld theory (5.3.15). The relevant vertex operators V and U90



5.3. THE BOUNDARY GL(1|1) WZNW MODEL 91were introdu
ed in equations (5.3.22) and (5.3.26) above. For later use we also note thatbosoni
 
orrelators 
an be determined by means of the following standard formula,
〈

m∏

ν=1

V(eν ,nν)(zν , z̄ν)

m′∏

λ=1

V(eλ,nλ)(uλ)

〉
= δ(

∑m
ν=1nν +

∑m′

λ=1nλ + 1
2
)δ(
∑m

ν=1eν +
∑m′

λ=1eλ)

×
∏

ν>µ

|zν − zµ|−2ανµ

∏

ν>µ

|zν − z̄µ|−2ανµ

∏

ν,λ

|zν − uλ|−4ανλ

∏

λ>κ

|uλ − uκ|−4ακλ (5.3.28)where ανµ = −nν
eµ
k
− nµ

eν
k
− eνeµ

k2and V(eν ,nν) = exp(ieX + inY ) are bosoni
 vertex operators. As in the bulk theory itis easy to see that the all expansions (5.3.27) trun
ate after a �nite number of terms.In fa
t, the inserted bulk and boundary vertex operators on the right hand side of eq.(5.3.27) 
ontain at most 2m + m′ fermioni
 �elds c±. Sin
e ea
h intera
tion term from
Sint 
ontributes at least one insertion of b±, we 
on
lude that terms with s ≥ 2m + m′vanish.5.3.3 Solution of the boundary WZNW modelA boundary 
onformal �eld theory is uniquely 
hara
terised by the bulk-boundaryand the boundary operator produ
t expansions. We shall now employ the perturbative
al
ulational s
heme we developed in the previous se
tion in order to determine thesedata. After a short warm-up with the dis
ussion of bulk 1-point fun
tions, we determinethe bulk-boundary 2-point fun
tion in the se
ond subse
tion. The 3-point fun
tion ofboundary �elds is addressed in subse
tion 4.3.Bulk 1-point fun
tionThe bulk 1-point fun
tion is the simplest non-vanishing quantity in a boundary 
on-formal �eld theory. It 
ontains the same information as the boundary state. For volume�lling branes, the boundary state was determined in our previous work [65℄. Our �rst aimnow is to reprodu
e our old result through our new perturbative expansion.The 1-point fun
tion of a typi
al bulk �eld Φ〈e,n〉 is 
omputed by inserting a singlevertex operator (5.3.22) into the expansion (5.3.27). Sin
e bulk vertex operators 
ontainat most two �elds c, the only non-zero terms 
an 
ome from s = 0, 1. The term with
s = 0 
ontains no insertion of the intera
tion and it vanishes identi
ally. So, let us seewhat happens for s = 1. In this 
ase, only the insertion of the boundary intera
tion 
an
ontribute. The results is

〈Φ〈e,n〉(z, z̄)〉 =
i

2π

∫
du 〈e−iY (u)/2b+(u)C(u)V〈e,n〉(z, z̄)〉

= E1
1δ(e)δ(n− 1)

1

4πi

∫
du

(
1

u− z̄ −
1

u− z

)
=

∫
dµ ϕ〈e,n〉 .91



92 CHAPTER 5. THE GL(1|1) WZNW MODELHere, E1
1 is the elementary matrix whi
h has zeroes everywhere ex
ept in the lower right
orner. Note that the only �eld with non-vanishing 1-point fun
tion has 
onformal weight

∆ = 0. Hen
e, there is no dependen
e on the insertion point (z, z̄). In the last line wehave expressed the numeri
al result as an integral of the matrix valued fun
tion (5.3.21)over the supergroup GL(1|1). The integration is performed with the Haar measure
dµ = 2−1e−iydxdydη+dη− . (5.3.29)Sin
e the Haar measure is gl(1|1) invariant, the integral of ϕ〈e,n〉 is an intertwiner from

〈e, n〉 ⊗ 〈e, n〉 to the trivial representation. This proves that the expe
tation value we
omputed has the desired transformation behaviour.Bulk-boundary 2-point fun
tionNow we want to 
ompute the full bulk-boundary 2-point fun
tion. It is quite usefulto determine the general form of this 2-point fun
tion �rst before we enter the detailed
al
ulations. Let us suppose for a moment that our 
al
ulations were guaranteed to givea gl(1|1) 
ovariant answer. Then it is 
lear that the bulk-boundary 2-point fun
tion 
anbe written as
〈Ψ〈2e′,2n′〉(0) Φ〈−e,−n+1〉(iy,−iy)〉 =

∑

ν=0,1

Cν(e)
〈ψ〈2e′,2n′〉 ϕ〈−e,−n+1〉〉ν

|y|2∆ν
(5.3.30)where ∆0 =

2e

k

(
2n− 1 +

e

k

) and ∆1 =
2e

k

(
2n− 1

2
+
e

k

)
. (5.3.31)The stru
ture 
onstants Cν(e) are not determined by the gl(1|1) symmetry. We will 
al-
ulate them perturbatively below (see eqs. (5.3.35) and (5.3.37) below). The expressionsin the numerator on the right hand side are 
ertain gl(1|1) intertwiners whi
h are de�nedby

〈ψ〈2e′,2n′〉 ϕ〈−e,−n+1〉〉 =

∫
dµψ〈2e′,2n′〉 φ〈−e,−n+1〉 =:

∑

ν=0,1

〈ψ〈2e′,2n′〉 ϕ〈−e,−n+1〉〉ν (5.3.32)where 〈ψ〈2e′,2n′〉 ϕ〈−e,−n+1〉〉ν = δ(e− e′)δ(n− n′ − ν/2) Gν (5.3.33)is the part of the full integral that 
ontains the fa
tor δ(n − n′ − ν/2). Understandingthe previous formulae requires some input from the representation theory of gl(1|1) (seee.g. [26℄ for all ne
essary details). Let us start with the matrix ϕ〈−e,−n+1〉. Under thetwisted adjoint a
tion of gl(1|1) this multiplet transforms in the tensor produ
t
〈−e,−n + 1〉 ⊗ 〈−e,−n + 1〉 = 〈−2e,−2n+ 2〉 ⊕ 〈−2e,−2n + 1〉 .Hen
e, there exist only two matri
es ψ〈2e′,2n′〉 for whi
h the integral (5.3.32) does notvanish. These are the matri
es ψ〈2e,2n〉 and ψ〈2e,2n−1〉. The two non-vanishing terms areused to de�ne the the symbols (5.3.33). A similar analysis 
an now be repeated for the92



5.3. THE BOUNDARY GL(1|1) WZNW MODEL 93�elds in the WZNW model. We 
on
lude immediately, that the 2-point fun
tion 
anonly have two 
ontributions. By gl(1|1) symmetry, these must be proportional to theintertwiners (5.3.33). The gl(1|1) symmetry, however, does not �x an overall 
onstant Cνthat 
an depend on the parameters of the �elds. Finally, the exponents ∆ν are simplydetermined by the 
onformal dimensions of bulk and boundary �elds. Let us point outthat the entire dis
ussion leading to the expression (5.3.30) is based on the global gl(1|1)symmetry. Sin
e we have not yet shown that our perturbative 
omputations respe
t thea
tion of gl(1|1) it will be important to verify that the form of the 2-point fun
tion 
omesout right.In our perturbative 
omputation, there are at most three �elds c± inserted and hen
ewe only have to determine the expansion terms for s = 0, 1, 2. Contributions to the ν = 0term in the 2-point fun
tion (5.3.30), i.e. to the 
orrelator with the boundary �eld Ψ〈2e,2n〉,
an only 
ome from s = 0. In fa
t, insertions of an intera
tion term - bulk or boundary- would violate the 
onservation of Y -
harge. Computation without any insertion of anintera
tion are easily performed, e.g.
〈U11

〈2e′,2n′〉(0)V 00
〈−e,−n+1〉(iy,−iy)〉 = −δ(n− n′) δ(e− e′)|y|−4e/k(2n−1/2+e/k) (5.3.34)Here, we have introdu
ed the notation U ǫ′ǫ and V ǫ′ǫ for matrix elements. The �eld

U11
〈2e′,2n′〉, for example, denotes the lower right 
orner et
. The 
omputation of the as-so
iated integral (5.3.33) with ν = 0 is equally simple and allows us to read o� that

C0(e, n) = 1 . (5.3.35)Let us note that there are other 
ombinations of bulk and boundary �elds that 
an havea non-zero 2-point fun
tion without any insertion of intera
tions. In all those 
ases onemay repeat the above 
al
ulation to �nd the same 
oe�
ient C0 = 1, in agreement withgl(1|1) symmetry.Next we would like to address the 
oe�
ient C1 in the expression (5.3.30). Y -
harge
onservation implies that its only 
ontributions are asso
iated with a single insertion ofthe boundary intera
tion. This time, the 
omputations are slightly more involved. As anexample we treat the following 2-point fun
tion
〈U00

〈2e′,2n′〉(0)V 11
〈−e,−n+1〉(iy,−iy)Sbdyint 〉 =

= −δ(n− n
′ − 1

2
)δ(e− e′)

|y|4 e
k
(2n−1+ e

k
)

y

2π

∫
du

|u|2α
|u2 + y2|α+1

= −δ(n− n
′ − 1

2
)δ(e− e′)

|y|4 e
k
(2n−1+ e

k
)

1

2π

∫
du |1 + u2|−α−1

= −δ(n− n
′ − 1

2
)δ(e− e′)

2|y|4 e
k
(2n−1+ e

k
)

2−2αΓ(2 e
k

+ 1)

Γ2( e
k

+ 1)

= −δ(n− n
′ − 1

2
)δ(e− e′)

2|y|4 e
k
(2n−1+ e

k
)

Γ( e
k

+ 1
2
)√

πΓ( e
k

+ 1)

(5.3.36)
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94 CHAPTER 5. THE GL(1|1) WZNW MODELThe se
ond step is the substitution u→ y/u, then we 
an apply (C.0.8) whi
h is a spe
ial
ase of the integral formula in [75℄. The last step is the Euler doubling formula of theGamma fun
tion. Comparison with the asso
iated 
ontribution to the minisuperspa
eintegral (5.3.32) gives
C1(e) =

Γ(e/k + 1/2)√
πΓ(e/k + 1)

. (5.3.37)On
e more, one 
an perform similar 
omputations with a single insertion of a boundaryintera
tion for other pairs of bulk and boundary �elds. All these 
al
ulations lead to thesame result for C1, as predi
ted by gl(1|1) 
ovarian
e.At this point, we have 
omputed all the data we were interested in. But there aremore 
ontributions to the perturbative expansion of the bulk-boundary 2-point fun
tion.As we stated above, non-vanishing 
ontributions arise from s = 0, s = 1 and s = 2. Wehave 
ompletely determined the s = 0 term. At s = 1, however, our attention so farwas restri
ted to the boundary intera
tion. The other term with a single bulk insertion
an also 
ontribute sin
e it 
ontains a produ
t of only two b±. Similarly, at s = 2, twoinsertions of the boundary intera
tion 
an lead to a non-vanishing result. Produ
ts ofbulk and boundary intera
tions or two bulk intera
tions, on the other hand, involve toomany �elds b± and vanish by simple zero mode 
ounting. Hen
e, we are left with two moreterms to 
al
ulate, those arising from a produ
t of two boundary intera
tions Sbdyint andfrom a single bulk intera
tion Sbulkint . Y -
harge 
onservation implies that the additionalterms involve a fa
tor δ(n− n′ − 1). Su
h a term, if present, would be in
onsistent withthe global gl(1|1) symmetry. Our task therefore is to show that the sum of the twoaforementioned 
ontributions vanishes.Let us begin with the 
omputation of the term that arises from a single insertion ofthe bulk intera
tion,
〈U11

〈2e,2n−2〉(0)V 11
〈−e,−n+1〉(iy,−iy) Sbulkint 〉 ∼

∼ y−2 e
k
(4n−3+2 e

k
) y

3

kπ

∫

UHP

d2z |z2 + y2|−2( e
k
+1)|z2|2 e

k
−1(z − z̄)

= − y−2 e
k
(4n−3+2 e

k
) 1

e
√
π

Γ(2e/k + 1/2)

Γ(2 e
k

+ 1)

(5.3.38)
We have been a bit sloppy here by setting the parameters the parameters 2e′ = 2e and
2n′ − 2 to the values at whi
h the expe
tation value has a non-vanishing 
ontribution.Stri
tly speaking, this quantity is divergent, but the divergen
e is an overall (volume)fa
tor δ(0) whi
h we suppressed 
onsistently. In the �rst equality we simply insertedthe relevant free �eld 
orrelator. After the substitution z → y/z, the integral over theinsertion point u of the boundary intera
tion 
an be evaluated using an integral formulafrom [75℄ (see also (C.0.7)). Finally, the answer is simpli�ed by means of Euler's doublingformula for Gamma fun
tions.Next we turn to the 
ontributions 
oming from two boundary intera
tions. Sin
ethe 
orresponding free �eld 
orrelator is slightly more involved in this 
ase, we state an94
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ontribution before going into the a
tual 
omputation,
〈b+(u1)C(u1)b+(u2)C(u2)(c+ − c−)(0)C(0)c+(−iy)c−(iy)〉F =

=
−4πy3(u2 − u1)

u1u2(u2
1 + y2)(u2

2 + y2)

[sign(u2 − u1)− sign(u2) + sign(u1)
]
.

(5.3.39)This result is inserted to 
ompute
〈U11

〈2e,2n−2〉(0)V 11
〈−e,−n+1〉(iy,−iy)

(
Sbdyint )2

〉 ∼

= y−2 e
k
(4n−3+2 e

k
) y

3

πk

∫
du1du2 |u2

1 + y2|−e/k−1|u2
2 + y2|− e

k
−1|u2

1|
e
k
−1

|u2
2|

e
k
−1(u2 − u1)

[sign(u2 − u1)− sign(u2) + sign(u1)
]

= y−2 e
k
(4n−3+2 e

k
) 1

πk

∫
dx1dx2 |x2

1 + 1|− e
k
−1|x2

2 + 1|− e
k
−1|x1 − x2|

= y−2 e
k
(4n−3+2 e

k
) 2

e
√
π

Γ(2 e
k

+ 1
2
)

Γ(2 e
k

+ 1)

(5.3.40)
The integral in the fourth line is again evaluated with a spe
ial 
ase of the integral formulaof Fateev and Ribault (C.0.9). Putting the results of eqs. (5.3.38) and (5.3.40) togetherwe arrive at

〈U11
〈2e′,2n′〉(0)V 11

〈−e,−n+1〉(iy,−iy)
(
Sbulkint +

1

2!

(
Sbdyint )2

)
〉 = 0 , (5.3.41)in agreement with gl(1|1) 
ovarian
e of the 2-point fun
tion. Thereby, we have nowestablished the formula (5.3.30) through our perturbative 
omputations.Before we leave the subje
t of bulk boundary 2-point fun
tions, we would like to makea few 
omments on the 
ases when e/k is an integer multiple of 1/2. Consider insertinga bulk vertex operator with e momentum e = −mk − k/2− kε and sending ε to zero. Inthe limit, the se
ond term of eq. (5.3.30) develops a logarithmi
 singularity,

C1(−mk − k/2− kǫ)|y|−∆1 =
(−1)m

m!Γ(−m + 1/2)|y|2∆ (Z + ∆̃ ln |y|+ o(ǫ))where Z =
1

ǫ
+ Ψ(−m)−Ψ(−m+ 1/2) ,

∆ = −(2m+ 1)(2n−m− 1) .

(5.3.42)
and ∆̃ = 4n − 4m − 3. Here, Ψ is the usual Di-gamma fun
tion. The form of our bulk-boundary 2-point fun
tion (5.3.42) resembles a similar expression in [21℄. A link betweenboundary 
orrelation fun
tions of symple
ti
 fermions and the 
orresponding 
orrelatorsin the GL(1|1) WZNW model may be established following ideas in [68℄.95



96 CHAPTER 5. THE GL(1|1) WZNW MODELBoundary 3-point fun
tionsThe se
ond obje
t of interest for us is the boundary 3-point fun
tion. Before we getthere, we have to turn our attention to an important detail that we glossed over in theprevious subse
tion. We re
all that our 2× 2 matri
es Ψ〈e,n〉, e 6= kZ, of boundary �elds
ontain two irredu
ible multiplets 〈e, n〉 under the unbroken global gl(1|1) symmetry.These two multiplets have opposite fermion number, i.e. the state with lower eigenvalueof N is bosoni
 for one of them and fermioni
 for the other. In general, the two multipletsare allowed to have di�erent 
ouplings to the other �elds in the theory. When we studiedbulk-boundary 2-point fun
tion, only one of the two multiplets from ea
h of the 2 × 2matri
es Ψ〈2e,2n〉 and Ψ〈2e,2n−1〉 
ould have a non-vanishing overlap with the bulk �eld
Φ〈−e,−n+1〉, simply be
ause of fermion number 
onservation. Hen
e, the bulk-boundary 2-point fun
tions were parameterised by two non-vanishing stru
ture 
onstants Cν(e) ratherthan four. For boundary 3-point fun
tions, however, the distin
tion be
omes important.Consequently, we introdu
e the symbols

U0
〈−2e,−2n+1〉(u) = eieX+inY ( 1 , c+ − c− )

U1
〈−2e,−2n+1〉(u) = eieX+inY (C, (c+ − c−)C )

(5.3.43)for the �rst and se
ond row of the matrix (5.3.26). The same notation is used for therows of the matri
es ψ of fun
tions and Ψ of boundary �elds.Let us now begin with the 3-point fun
tion of three �elds from the �rst multiplet Ψ0.These a
quire 
ontributions ex
lusively from a single insertion of the boundary intera
tion.A non-vanishing 
orrelator requires that the parameters ei of the three �elds sum up to
ẽ = e1 + e2 + e3 = 0 and similarly that ñ = n1 + n2 + n3 = 1. Using the integral formulaefrom Appendix A, the 3-point fun
tion of �elds Ψ0 in the regime 0 < x < 1 is found to be
〈Ψ0ǫ1

〈−2e1,−2n1+1〉(0)Ψ0ǫ2
〈−2e2,−2n2+1〉(1)Ψ0ǫ2

〈−2e3,−2n3+1〉(x)〉 = δ(ẽ) δ(ñ− 1) δ(ǫ̃− 2)×

× x2∆13(1− x)2∆23
π

i

s(α1) + s(α2) + s(α3)

s(α1)s(α2)s(α3)Γ(α1 + ǫ1)Γ(α2 + ǫ2)Γ(α3 + ǫ3)

(5.3.44)where we de�ned the parameters αi by αi = 2ei/k and introdu
ed the short-hands s(z)and ǫ̃ for s(z) = sin(πz) and ǫ̃ =
∑
ǫi. The 
onformal weights are given by

∆ij = (ni − 1/2)αj + (nj − 1/2)αi + αiαj .In the limit k → ∞ the fun
tion s(αi) 
an be approximated by s(α) ∼ 2πei/k and theentire 3-point fun
tion is seen to vanish due to the 
onservation of e momentum. This is
onsistent with the minisuperspa
e theory. In fa
t, the 
orresponding integral of fun
tionson our brane is easily seen to vanish,
〈ψ0ǫ1

〈−2e1,−2n1+1〉ψ
0ǫ2
〈−2e2,−2n2+1〉ψ

0ǫ2
〈−2e3,−2n3+1〉〉 = 0 .This is so be
ause integration with the Haar measure needs a produ
t of two di�erentfermioni
 zero modes in order to give a non-zero result. Our fun
tions ψ0, however, only
ontain the zero mode η+ − η−. 96



5.3. THE BOUNDARY GL(1|1) WZNW MODEL 97Let us now move on to dis
uss the 3-point in the 
ase where a single �eld from the se
-ond multiplet Ψ1 is inserted. Contributions to su
h 
orrelators arise only from the leadingterm s = 0 of the perturbation series (see below). The result is therefore straightforwardto write down
〈Ψ0ǫ1

〈−2e1,−2n1+1〉(0)Ψ0ǫ2
〈−2e2,−2n2+1〉(1)Ψ1ǫ3

〈−2e3,−2n3+1〉(x)〉 =

= δ(ẽ) δ(ñ− 1/2) δ(ǫ̃− 1) x2∆13(1− x)2∆23 .
(5.3.45)This 
oupling in independent of the level k and it mat
hes the minisuperspa
e answerwhi
h is non-zero be
ause the multiplet ψ1 
ontains both fermioni
 zero modes.The most interesting 3-point 
oupling appears when we insert two �elds from these
ond multiplet Ψ1. On
e more, non-vanishing terms 
an only arise from the insertion ofa single boundary intera
tion. They 
an be worked out with the help of integral formulaein Appendix A,

〈Ψ0ǫ1
〈−2e1,−2n1+1〉(0)Ψ1ǫ2

〈−2e2,−2n2+1〉(1)Ψ1ǫ3
〈−2e3,−2n3+1〉(x)〉 = δ(ẽ) δ(ñ− 1) δ(ǫ̃− 2) ×

× 2π2i

k
x2∆13(1− x)2∆23

s(α1)− s(α2)− s(α3)

s(α1)s(α2)s(α3)Γ(α1 + ǫ1)Γ(α2 + ǫ2)Γ(α3 + ǫ3)
.(5.3.46)Note that the fa
tor ∼ 1/k in the �rst term of the se
ond row is ne
essary in order for thewhole expression to s
ale to a �nite value as we send the level k to in�nity. The expressionthat arises in this limit 
an be 
he
ked easily in the minisuperspa
e theory.There remains one more 
ase to 
onsider, namely the 3-point fun
tion for three �eldsfrom the se
ond multiplet Ψ1. It is given by

〈Ψ1ǫ1
〈−2e1,−2n1+1〉(0)Ψ1ǫ2

〈−2e2,−2n2+1〉(1)Ψ1ǫ3
〈−2e3,−2n3+1〉(x)〉 =

= δ(ẽ) δ(ñ− 1/2) δ(ǫ̃− 1)
2π

k
x2∆13(1− x)2∆23 .

(5.3.47)As in the previous formula (5.3.46), the result 
ontains a fa
tor 1/k. Consequently, the3-point 
oupling on the right hand side of eq. (5.3.47) vanishes at k ∼ ∞, in agreementwith the asso
iated minisuperspa
e 
omputation.The last result (5.3.47) was obtained without any insertion of bulk or boundary in-tera
tions, though naively one might expe
t to see 
ontributions from one bulk or twoboundary insertions. A similar 
omment applies to the se
ond 
ase (5.3.45) above. It isindeed true that the insertion of Sbulkint or (Sbdyint )2 both lead to non-vanishing expressions.But, as in the 
ase of the bulk boundary 2-point fun
tions, their sum vanishes, i.e.
〈U ǫ′1ǫ1

〈e1,n1〉(0)U
ǫ′2ǫ2
〈e2,n2〉(1)U

ǫ′3ǫ
′

3

〈e3,n3〉(u)

(
Sbulkint +

1

2!

(
Sbdyint )2

)
〉 = 0 .The result is trivially ful�lled for ǫ̃′ = 0, 2. It requires rather elaborate 
omputations when

ǫ̃′ = 1, 3. These 
an be performed with the help of the integral formulae (C.0.3-C.0.5) welist in Appendix A. 97



98 CHAPTER 5. THE GL(1|1) WZNW MODELBefore 
losing this se
tion we would like to add two more 
omments. The �rst one
on
erns the logarithmi
 singularities that appear in the 3-point fun
tions whenever oneof the parameters 2ei is an integer multiple of k. If we 
onsider joining two open stringswith e momentum e1 = e − ε/2 and e2 = −e − ε/2, for example, and send ε to zero, weobtain
〈Ψ00

〈−2e+ε,−2n1+1〉(0)Ψ11
〈2e+ε,−2n2+1〉(1)Ψ11

〈−2ε,−2n3+1〉(u)〉 ∼

∼ u2∆(1− u)−2∆ δ(ñ− 1)
(
Z +R(α) + A23 ln |1− u|+ A13 ln |u|+ o(ε)

)where Z =
1

ε
+

4εγ

k
, R(α) = −2π

1 + c(α)

ks(α)

A13 =
1

k
(2n1 − n3 − 1/2 + 2α) , A23 =

1

k
(2n2 − n3 − 1/2− 2α)(5.3.48)and ∆ = α(n3 − 1/2). The fun
tion c(α) stands for c(α) = cos(πα) and γ is the Euler-Mas
heroni 
onstant. In the limit ε→ 0, the 
onstant Z diverges. This divergen
y 
an beregularised by adding to Ψ11 an appropriate �eld from the so
le of the involved atypi
almultiplet. In the following, we shall assume that Z has been set to zero.Our �nal 
omment deals with an interesting quantum symmetry of the boundary 3-point fun
tions. As in the bulk se
tor [26℄, the boundary 3-point fun
tion is periodi
under shifts of the e-momentum, in the following sense,

〈Ψǫ1ǫ′1
〈−2e1,−2n1+1〉(0)Ψ

ǫ2ǫ′2
〈−2e2,−2n2+1〉(1)Ψ

ǫ3ǫ′3
〈−2e3,−2n3+1〉(x)〉 =

(1− u)2n3−1u1−2n3〈Ψǫ2ǫ′2
〈−2e1+k,−2n1〉(1)Ψ

ǫ1ǫ′1
〈−2e2−k,−2n2+2〉(0)Ψ

ǫ3ǫ′3
〈−2e3,−2n3+1〉(x)〉 .Further shifts by multiples of ±k 
an also be 
onsidered, but ne
essarily involve insertingdes
endants of the ta
hyon vertex operators. Our observation proves that the boundaryGL(1|1) model for volume �lling branes possesses spe
tral �ow symmetry. Shifts by integermultiples of the level k are a symmetry of the a�ne representation theory. In prin
iple, thissymmetry 
ould be broken by the boundary stru
ture 
onstants. The previous formulaasserts that, like in the bulk se
tor, the boundary operator produ
t expansions preservethe spe
tral �ow symmetry. The same is true for the bulk-boundary operator produ
texpansions.5.3.4 Correlation fun
tions involving atypi
al �eldsThroughout the last few se
tions we have learnt how to 
ompute 
orrelation fun
tionsof bulk and boundary ta
hyon vertex operators for a volume �lling brane in the GL(1|1)WZNW model. We now want to add a few 
omments on a parti
ular set of 
orrelationfun
tions that are essentially not e�e
ted by the intera
tion and hen
e 
an be derived98
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umbersome 
al
ulations. These will in
lude a non-vanishing annulus amplitude.We shall use the latter to perform a highly non-trivial test on the proposed boundarystate of volume �lling branes [65℄.Correlators for spe
ial atypi
al �eldsIn the previous se
tions we developed a �rst order formalism for 
omputations of
orrelation fun
tions in the GL(1|1) WZNW model. Very spe
ial 
orrelators, however,
an also be 
omputed in the original formulation. To begin with, let us explain the mainidea at the example of bulk 
orrelators. We re
all that the bulk a
tion of the GL(1|1)model is given by
Sbulk = − k

4πi

∫

Σ

d2z
(
∂X∂̄Y + ∂Y ∂̄X + 2eiY ∂c+∂̄c−

) (5.3.49)The path integral is evaluated with the gl(1|1) invariant measure (5.3.12) on the spa
e of�elds. A glan
e at the intera
tion term of the WZNW model and the measure suggeststo introdu
e the new 
oordinates χ± = eiY/2c±. After this substitution, the path integralmeasure is the 
anoni
al one,
dµWZW ∼ DXDYDχ−Dχ+ . (5.3.50)Our bulk a
tion Sbulk = S0 +Q, on the other hand, splits naturally into a free �eld theory

S0 and an intera
tion term Q where
S0 = − k

4πi

∫

Σ

d2z
(
∂X∂̄Y + ∂Y ∂̄X + 2∂χ+∂̄χ−

)

Q =
k

4πi

∫

Σ

d2z
(
iχ+∂̄χ−∂Y + i∂χ+χ−∂̄Y + χ+χ−∂Y ∂̄Y

)
.

(5.3.51)Due to the 
ompli
ated form of Q, treating the WZNW model as a perturbation bythe intera
tion terms in Q is not too useful for most pra
ti
al 
omputations. Undervery spe
ial 
ir
umstan
es, however, the split into S0 and Q allows for a very interesting
on
lusion. Observe that ea
h term in the intera
tion Q 
ontains at least one derivative
∂Y or ∂̄Y . In our free �eld theory S0, the only non-vanishing 
ontra
tions involvingderivatives of Y are those with the �eld X. Hen
e, we 
an simply ignore the presen
eof Q for all 
orrelation fun
tions of ta
hyon vertex operators that do not involve X. Inother words, 
orrelation fun
tions of �elds without any X-dependen
e are given by theirfree �eld theory expressions! This had already been observed in the results of [26℄. Oursplit of the a
tion in S0 and Q provides a rather simple and general explanation. Let usstress again that this split is not helpful for any other 
omputation involving more generi
typi
al �elds.It is 
lear that all this is not restri
ted to the bulk theory. In fa
t, we 
an use thesame substitution for the boundary terms of the a
tion (5.3.1),

S∂0 =
k

8πi

∫

Σ

du (χ+ + χ−)∂u(χ+ + χ−) . (5.3.52)99



100 CHAPTER 5. THE GL(1|1) WZNW MODELSin
e S∂0 is quadrati
 in the �elds χ±, it gets added to the free bulk a
tion S0, i.e. we nowwork with a free �eld theory on the upper half plane whose a
tion is given by S0 + S∂0.There is no additional boundary 
ontribution to the bulk intera
tion Q. In the free theory,the �elds χ± satisfy Neumann gluing 
onditions of the following simple form,
∂χ±(z, z̄) = ∓∂̄χ∓(z, z̄) for z = z̄ . (5.3.53)The gluing 
ondition implies that fermions of the free boundary theory are 
ontra
ted asfollows,

χ−(z, z̄)χ+(w, w̄) ∼ 1

k
ln |z − w|2 ,

χ±(z, z̄)χ±(w, w̄) ∼ 1

k
ln(z̄ − w)− 1

k
ln(w̄ − z) .

(5.3.54)The bosoni
 �elds X, Y also obey simple Neumann boundary 
onditions so that theevaluation of 
orrelators in the free �eld theory S0 + S∂0 is straightforward. Takingthe intera
tion Q into a

ount is a di�
ult task unless none of the vertex operators in the
orrelation fun
tion 
ontain the �eld X. If all �eld are X independent, then the 
orrelatoris simply given by the free �eld theory formula, just as in the bulk theory above.One may apply the observation in the previous paragraph to the evaluation of bound-ary 3-point fun
tions of three atypi
al �elds for the volume �lling brane. Note that wedid not spell out a formula for this parti
ular 
orrelator before. In prin
iple, it 
an be
omputed in the �rst order formalism, but the 
orresponding 
al
ulation requires some
are. Our new approa
h allows to write down the result right away. We shall dis
ussanother interesting appli
ation of our new approa
h to atypi
al 
orrelation fun
tions inthe next subse
tion. Let us mention in passing that we expe
t similar results to hold forthe 
ompletely atypi
al se
tors in all GL(N |N) and PSL(N |N) WZNW models. Thiswill be dis
ussed in more detail elsewhere.Twisted boundary state and modular bootstrapWe already dis
ussed the twisted boundary state using the symple
ti
 fermion 
orre-sponden
e. In this se
tion, we give an alternative 
onstru
tion and relate the amplitudeto a spe
tral density 
omputed in the three-point 
orrelation fun
tions.In order to 
onstru
t a non-trivial quantity on the annulus, we need to insert somefermioni
 zero modes, see e.g. [64℄ for similar tests in the simpler bc ghost system. Let usanti
ipate that only atypi
al bulk �elds 
ouple to the volume �lling brane. Hen
e, if weinsert fermioni
 zero modes through some atypi
al bulk �eld, the entire amplitude is builtfrom atypi
al terms and should be 
omputable through a simple free �eld formalism, asexplained in the previous subse
tion. Let us see now how the details of this 
al
ulationwork out.To begin with, let us review the 
onstru
tion of the boundary state |Ω〉 for the volume�lling brane. With the help of our free �eld realisation, the formula be
omes quite expli
it.We shall start from the boundary state |Ω〉0 of the free theory. This state 
learly fa
torises100



5.3. THE BOUNDARY GL(1|1) WZNW MODEL 101into a produ
t of a bosoni
 |Ω, B〉0 and a fermioni
 |Ω, F 〉0 
ontribution. The latter twoobey the following gluing 
onditions
(Xn + X̄−n) |Ω, B〉0 = (Yn + Ȳ−n) |Ω, B〉0 = 0 (5.3.55)and

(χ±
n ∓ χ̄∓

−n) |Ω, F 〉0 = 0 . (5.3.56)Here, Xn and X̄n are the modes of the 
urrents i√k∂X and i√k∂̄X et
. Up to normali-sation, there exists a unique solution for these linear 
onstraints. For the bosoni
 and thefermioni
 se
tor, they are given by the following 
oherent states,
|Ω, B〉0 = exp

(
−

∞∑

n=1

1

n
(Y−nX̄−n +X−nȲ−n

)
|0, 0〉B (5.3.57)

|Ω, F 〉0 = exp

(
−

∞∑

n=1

1

n
(χ+

−nχ̄
+
−n − χ−

−nχ̄
−
−n

)
|0, 0〉F . (5.3.58)Here, |0, 0〉 denote the va
ua in the bosoni
 and the fermioni
 theory. The produ
t of thetwo 
omponents is the boundary state of the free �eld theory, before the intera
tion istaken into a

ount. We now in
lude the e�e
ts of the intera
tion by multiplying the freeboundary state with the exponential of the intera
tion Q,

|Ω〉 = N eQ |Ω〉0 = N
( ∞∑

n=0

Qn

n!

)
|Ω, B〉0 × |Ω, F 〉0 , (5.3.59)where N =

√
π/i is a normalisation 
onstant. The operator Q is de�ned as in eq.(5.3.51), but with the integration restri
ted to the interior of the unit dis
. It is possibleto 
he
k that expQ rotates the gluing 
onditions from the free �eld theory relations(5.3.55) and (5.3.56) to their intera
ting 
ounterparts (see (5.3.2)). The dual boundarystate is 
onstru
ted analogously.Our main aim now is to 
ompute some non-vanishing overlap of the twisted boundarystate |Ω〉. This requires the insertion of the invariant bulk �eld Φ11

〈0,0〉 = χ−χ+, i.e. we aregoing to study
ZΩ(q, z) := 〈Ω | q̃Lc

0(−1)F
c

z̃N
c
0 Φ11

〈0,0〉 |Ω〉 , (5.3.60)where Lc0 = (L0 + L̄0)/2 and N c
0 = (N0 − N̄0)/2 are obtained from the zero modes ofthe Virasoro �eld and the 
urrent N . The 
orresponding expressions are standard, seee.g. [26℄. Our parameters q̃ and z̃ are de�ned in terms of µ, τ through q̃ = exp(−2πi/τ)and z̃ = exp(2πiµ/τ). We are now going to argue that the 
omputation of ZΩ 
an beredu
ed to a simple 
al
ulation in free �eld theory, i.e.

〈Ω | q̃Lc
0(−1)F

c

z̃N
c
0 Φ11

〈0,0〉 |Ω〉 = N 2
0〈Ω | q̃L

c
0(−1)F

c

z̃N
c
0 Φ11

〈0,0〉 |Ω〉0 . (5.3.61)101



102 CHAPTER 5. THE GL(1|1) WZNW MODELThe reasoning goes as follows. In a �rst step we write the intera
ting boundary state as aprodu
t of the intera
tion term expQ and the free boundary state |Ω〉0. Next we observethat all bosoni
 operators in between the two boundary states involve derivatives su
has ∂X et
. Hen
e, we 
an use the gluing 
onditions (5.3.55) to express all these termsthrough Yn andXn. The modes Ȳn and X̄n of the anti-holomorphi
 derivatives only appearin the 
onstru
tion (5.3.57) of the free bosoni
 boundary state |Ω, B〉0. A non-vanishingterm requires that the number of X̄n equals the number of Ȳ−n. But sin
e the X̄−n and
Ȳ−n 
ome paired with their holomorphi
 partners Y−n and X−n in the boundary state,the operator in between 0〈Ω| and |Ω〉0 must have equal numbers for Xn and Yn modesin order for the 
orresponding term not to vanish. In Q, all terms have an ex
ess of Ymodes. Sin
e no term in Lc0 or N c

0 
an 
ompensate this through an ex
ess of X-modes,we 
an safely repla
e expQ by its zeroth order term, i.e. expQ ∼ 1.The 
omputation of the overlap (5.3.61) in free �eld theory is straightforward. Ina �rst step, the amplitude is split into a produ
t of bosoni
 and fermioni
 terms. Thebosoni
 
ontribution is the same as for extended branes in �at 2-dimensional spa
e. Thefermioni
 fa
tor involves an insertion. Its evaluation is reminis
ent of a similar 
al
ulationin [64℄. We 
an express the result through a single 
hara
ter of the a�ne gl(1|1) algebra,
ZΩ(q, z) = N 2 χ̂P0(−1/τ, µ/τ) =

2π

k

∫
dedn

χ̂〈e,n〉(τ, µ)

sin(πe/k)
. (5.3.62)The a�ne 
hara
ters χ̂ along with their behaviour under modular transformations 
anbe found in the Appendix B. In order to a
hieve proper normalisation (see below) wehave set N 2 = π/i. Sin
e the spe
trum of boundary operators on the volume �lling braneis 
ontinuous, the result involves some open string spe
tral density fun
tion. From theresult, this is read o� as

ρ(e, n) = ρ(e) =
2π

k sin(πe/k)
. (5.3.63)We would expe
t ρ to be en
oded in the boundary 3-point fun
tion of Ψ〈e,n〉, Ψ〈−e,−n〉with the spe
ial boundary �eld Ψ11

〈0,0〉. One possible 3-point fun
tion that 
ontains therequired information is a parti
ular 
ase of our more general formula (5.3.48), i.e.
〈Ψ00

〈e,n〉(0)Ψ11
〈−e,−n〉(1)Ψ11

〈0,0〉〉 ∼

∼ u2∆(1− u)−2∆
(
Z +R(−πe/k) + A23 ln |1− u|+ A13 ln |u|

)
.(5.3.64)All quantities that appear on the right hand side were introdu
ed in equation (5.3.48).The additive 
onstant Z is not universal. It is naively in�nite, but 
an be made �niteby a proper regularisation pres
ription. We use the universal term R to determine thespe
tral density

d

de
lnR(−2e/k) =

2π

k

d

dα
ln

1 + c(α)

s(−α)
=

2π

k sin(πe/k)
= ρ(e) . (5.3.65)102



5.3. THE BOUNDARY GL(1|1) WZNW MODEL 103Here, we have used that α = e/k, as before. The result agrees with the expression (5.3.63)that was obtained through modular transformation of the overlap (5.3.61). Thereby, wehave now been able to subje
t our formula (5.3.59) for the boundary state of the volume�lling brane to a strong 
onsisten
y 
he
k.There is another somewhat weaker but still non-trivial test for the boundary statethat arises from the minisuperspa
e limit of the boundary WZNW model. In fa
t, in theparti
le limit we �nd thattr(zadΩ
N (−1)Fψ11

〈0,0〉) =

∫
dedn

χ〈e,n〉(z)

e
= lim

k→∞
ZΩ(q, z) . (5.3.66)In the �rst step we simply evaluated the tra
e dire
tly in the minisuperspa
e theory. Wethen observed in the se
ond equality that the result 
oin
ides with the modular transformof the overlap (5.3.61) in the appropriate limit k →∞.5.3.5 Con
lusions and open problemsIn this se
tion we have solved the boundary theory for the volume �lling brane onGL(1|1). We a
hieved this with the help of a Ka
-Wakimoto-like representation of theboundary theory. The �rst order formalism we developed in se
tion 2 is similar to theone used in [75℄ for AdS2 branes in the Eu
lidean AdS3. The main di�eren
e is that wewere for
ed to introdu
e an additional fermion on the boundary. Su
h auxiliary boundaryfermions are quite 
ommon in fermioni
 theories (see e.g. [76,79℄ and referen
es therein).With the help of our �rst order formalism we were then able to set up a perturbative
al
ulational s
heme for 
orrelation fun
tions of bulk and boundary �elds. The mainfeatures of this s
heme are similar to the pure bulk 
ase [26℄. In parti
ular, for anygiven 
orrelator, only a �nite number of terms from the expansion 
an 
ontribute. We
omputed the exa
t bulk-boundary 2-point fun
tions and the boundary 3-point fun
tions,thereby solving the boundary 
onformal �eld theory of volume �lling branes on GL(1|1)expli
itly. Finally, we proposed a se
ond approa
h to 
orrelation fun
tions of atypi
al�elds. It singles out a parti
ular subse
tor of the bulk and boundary GL(1|1) WZNWmodel that is not a�e
ted at all by the intera
tion. Hen
e, within this subse
tor, allquantities agree with their free �eld theory 
ounterparts. The insight was then put to usefor a 
al
ulation of a parti
ular non-vanishing annulus amplitude in se
tion 5.2. Togetherwith our previous results on boundary 3-point fun
tions, we obtained a strong test forthe boundary state of the volume �lling brane in the GL(1|1) WZNW model.There are several obvious extensions that should be worked out. To begin with, itwould be interesting to set up an equally e�
ient framework to 
al
ulate 
orrelationfun
tions for the boundary theories of point-like lo
alised branes. Unfortunately, we havenot su

eeded to 
al
ulate 
orrelators from a �nite number of 
ontributions, as in the 
aseof the volume �lling brane. It is possible to develop a Ka
-Wakimoto-like presentationfor point-like branes using the boundary 
onditions of [64℄ for the bc system. But sin
ethe gluing 
onditions of [64℄ identify derivatives of c with b̄ et
., zero mode 
ountingdoes not furnish simple vanishing results. Therefore, an in�nite number of terms 
an103
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ontribute to any given 
orrelation fun
tion. On the other hand, the approa
h of se
tion5.3.4 does generalise to point-like branes. Sin
e the boundary spe
trum on a single point-like brane is purely atypi
al, some interesting quantities 
an be 
omputed. This appliesin parti
ular to the boundary 3-point fun
tions on a single point-like brane. Correlationfun
tions involving boundary 
ondition 
hanging �elds or typi
al bulk �elds, however, arenot a

essible along these lines. The symple
ti
 fermion 
orresponden
e seems to be abetter 
andidate to address these questions.It is 
ertainly interesting to investigate how mu
h of our program extends to highersupergroups. En
ouraged by the re
ent developments on the bulk se
tor [28℄, it seemslikely that most of our 
onstru
tions may be generalised, at least to supergroups of typeI. This in
ludes the super
onformal algebras psl(N|N) and many other interesting Liesuperalgebras (see e.g. [33℄ for a 
omplete list). We believe that in all these 
ases thereexists one 
lass of branes whi
h 
an be solved through some appropriate square root ofthe bulk formalism. Taking the proper square root will 
ertainly involve a larger numberof fermioni
 boundary �elds. Our se
ond approa
h to atypi
al 
orrelation fun
tions mayalso be extended to higher supergroups and it provides interesting insights on the atypi
alsubse
tor of the WZNW models.
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Chapter 6N=2 super
onformal �eld theoriesIn this 
hapter, we introdu
e a new 
lass of 
onformal �eld theories with even moresymmetry. We investigate world-sheet and target spa
e supersymmetri
 
onformal �eldtheories. The main result is that many type I Lie supergroup N = 1 world-sheet super-symmetri
 WZNW models possess an additional hidden N = 2 super
onformal symmetry.In superstring theory, N = 2 super
onformal symmetry is a valueable ingredient for manyreasons. The supersymmetry puts strong 
onstraints on the dynami
s of the string theory.One 
an twist the super
onformal algebra to obtain a topologi
al 
onformal �eld theory.The twisting promotes one of the two super-
urrents to a BRST-
urrent whi
h de�nesa 
ohomology theory. Correlation fun
tions involving only �elds in the 
ohomology areindependent of their world-sheet positions.We start this 
hapter by introdu
ing topologi
al CFT and the gauged N = 1 su-persymmetri
 WZNW model of a Lie supergroup. Then we turn to the mathemati
ally
on
epts, most importantly Manin triples. The main result is: If a Lie superalgebra gpossesses a Manin de
omposition and an additional 
ondition to the fermioni
 generatorsis obeyed, then the gauged N = 1 world-sheet supersymmetri
 WZNW model possessesa hidden N = 2 super
onformal symmetry. Our �ndings are in the spirit of the workof Kazama and Suzuki on 
osets of 
ompa
t Lie groups [80℄. It is remarkable that thegeneralisation to superspa
e not only in
ludes many super
osets but also supergroups.This is due to the inde�nite metri
 of the supergroup. This 
hapter is based on [81℄.6.1 Topologi
al 
onformal �eld theoryIn this se
tion, we follow [82℄. A topologi
al 
onformal �eld theory is usually a subse
-tor of a larger CFT. Consider a 
onformal �eld theory with a BRST-operator Q satisfying
Q2 = 0 and a BRST invariant a
tion S. Physi
al observables are �elds that 
ommutewith Q, i.e.

[Q, φ] = 0 . (6.1.1)Further these states are de�ned up to a Q-exa
t term
φ ≡ φ+ [Q, φ̃] . (6.1.2)This means that the spa
e of physi
al states is the 
ohomology of Q
Hphys =

kernel(Q)image(Q)
. (6.1.3)105



106 CHAPTER 6. N=2 SUPERCONFORMAL FIELD THEORIESBRST invarian
e ensures that 
orrelation fun
tions of only physi
al �elds are independentof the 
hoi
e of representative for ea
h φ. The BRST-operator Q de�nes a topologi
al
onformal �eld theory if there exists a holomorphi
 �eld G(z) of dimension (2, 0) and alsoan anti-holomorphi
 �eld Ḡ(z̄) of dimension (0, 2) satisfying
T (z) = [Q,G(z)] and T̄ (z̄) = [Q, Ḡ(z̄)] . (6.1.4)This 
ondition implies that physi
al 
orrelation fun
tions

〈φ1(z1, z̄1) . . . φn(zn, z̄n)〉Σ (6.1.5)depend only on the inserted �elds φi and the topology of the world-sheet Σ. But they areindependent of the world-sheet positions (zi, z̄i) of the �elds φi. The topologi
al CFT isthen 
hara
terised by the 
ohomology ring Hphys. The ring multipli
ation is given by theoperator produ
t expansion of physi
al �elds
φiφj ∼ cij

kφk . (6.1.6)A 
lass of topologi
al CFTs is obtained by twisting N = 2 super
onformal �eld theo-ries. These are de�ned as follows.De�nition 6.1.1. The N = 2 super
onformal algebra of 
onformal 
entral 
harge c 
on-sists of the energy-stress tensor T (z), a U(1)-
urrent U(z) of 
onformal dimension 1 andtwo fermioni
 dimension 3/2 super-
urrents G± subje
t to the operator produ
t expansions
T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)

G+(z)G−(w) ∼ c/3

(z − w)3
+

U(w)

(z − w)2
+
T (w) + 1

2
∂U(w)

(z − w)

G±(z)G±(w) ∼ 0

U(z)G±(w) ∼ ±G±(w)

(z − w)

U(z)U(w) ∼ c/3

(z − w)2
.

(6.1.7)
The anti-holomorphi
 partners T̄ (z̄), Ḡ±(z̄) and Ū(z̄) satisfy the analogous relations.One distinguishes two kinds of twisted topologi
al CFTs, the A-twists and the B-twists. The twisted CFTs are obtained by de�ning the twisted energy-momentum tensoras follows

T±twisted(z) = T (z)± 1

2
∂U(z) ,

T̄±twisted(z̄) = T̄ (z̄)± 1

2
∂̄Ū(z̄) .

(6.1.8)106



6.2. THE GAUGED N = 1 WZNW MODEL 107Their OPEs
T±twisted(z)T±twisted(w) ∼ 2T±twisted(w)

(z − w)2
+
∂T±twisted(w)

(z − w)
and

T̄±twisted(z̄)T̄±twisted(w̄) ∼ 2T̄±twisted(w̄)

(z̄ − w̄)2
+
∂̄T̄±twisted(w̄)

(z̄ − w̄)

(6.1.9)de�ne a CFT of 
entral 
harge c = 0.Consider the twisted theory given by (T−twisted, T̄−twisted). Then the 
onformal dimensionof G+(z) is (2, 0), the dimension of G−(z) is (1, 0) and similarly those of Ḡ+(z̄) and Ḡ−(z̄)are (0, 2) and (0, 1). The operator G−
0 + Ḡ−

0 satis�es
(G−

0 + Ḡ−
0 )2 = 0 ,

[G−
0 + Ḡ−

0 , G
+(z)] = T−twisted(z) and

[G−
0 + Ḡ−

0 , Ḡ
+(z̄)] = T̄−twisted(z̄) . (6.1.10)Hen
e, we have obtained a topologi
al CFT with BRST-operator G−

0 + Ḡ−
0 . This is anexample of a B-twist. B-twists are those twists where T and T̄ are twisted in the sameway, i.e.

(T±twisted(z), T̄±twisted(z̄)) QBRST = G±
0 + Ḡ±

0 . (6.1.11)If T and T̄ are twisted di�erently then one obtains an A-twisted topologi
al CFT, i.e.
(T±twisted(z), T̄∓twisted(z̄)) QBRST = G±

0 + Ḡ∓
0 . (6.1.12)In the following, we want to look for N = 2 super
onformal �eld theories. We start witha presentation of the relevant models.6.2 The gauged N = 1 WZNW modelThe N = 1 world-sheet supersymmetri
 WZNW model of a 
ompa
t Lie group is ex-plained in [83℄. The generalisation to supergroups is straight forward and will be des
ribedin this se
tion. Let G be a Lie supergroup and g its Lie superalgebra.We start with some world-sheet supersymmetry 
onsiderations. The world-sheet isgiven by the usual bosoni
 world-sheet Σ, lo
ally parameterised by 
oordinates τ, σ. Inaddition there are two fermioni
 dimensions parameterised by θ and θ̄. Our notationfollows [84℄.The 
ovariant derivatives are

D = −i ∂
∂θ
− 2θ∂ and D̄ = −i ∂

∂θ̄
− 2θ̄∂̄ (6.2.1)and the super
harges

Q = −i ∂
∂θ

+ 2θ∂ and Q̄ = −i ∂
∂θ̄

+ 2θ̄∂̄ . (6.2.2)107



108 CHAPTER 6. N=2 SUPERCONFORMAL FIELD THEORIESThe super
harges 
ommute with the derivatives, and hen
e an a
tion 
onstru
ted justout of super�elds and its derivatives is 
lassi
al supersymmetri
 by 
onstru
tion. Thesuper�eld has the following form
G = exp(iθχ) g exp(−iθ̄χ̄) . (6.2.3)Here g is a Lie supergroup valued �eld and the �elds χ = χata and χ̄ = χ̄ata transform inthe adjoint representation of g (the {ta} denote a basis of g). The 
omponents of χ and

χ̄ 
orresponding to the even dire
tions of the Lie superalgebra are fermioni
 while those
orresponding to the odd dire
tions are bosoni
. Denote by str a nonzero metri
 of theLie superalgebra g. We in
luded the level k in the metri
. The kineti
 term of the a
tionis
Skin[G] =

1

2π

∫
dτdσd2θ str(G−1DG G

−1D̄G) (6.2.4)and the Wess-Zumino term is [55℄
SWZ[G̃] =

1

6π

∫

B

dτdσdtd2θ str(G̃−1∂tG̃ G̃
−1DG̃ G̃

−1D̄G̃) . (6.2.5)where G̃ is an extension to B as usual. We 
ompute the Polyakov-Wiegmann identity forthe kineti
 term, the WZ term and the WZNW a
tion,
Skin[GH] =Skin[G] + Skin[H] +

1

2π

∫

Σ

dτdσd2θ str(DHH
−1

G
−1D̄G) + str(G−1DG D̄HH

−1)

SWZ[G̃H̃] =SWZ[G̃] + SWZ[H̃] +
1

2π

∫

Σ

dτdσd2θ str(DHH
−1

G
−1D̄G)− str(G−1DG D̄HH

−1)

S[G̃H̃] =S[G̃] + S[H̃] +
1

π

∫

Σ

dτdσd2θ str(DHH
−1

G
−1D̄G) .Further it is easy to see that

SWZ[exp(iθχ)] = SWZ[exp(−iθ̄χ̄)] = 0 . (6.2.6)The next 
omputation is
g−1Dg = −2θg−1∂g , g−1D̄g = −2θ̄g−1∂̄g

exp−iθχD exp iθχ = χ− iθχχ , exp−iθχD̄ exp iθχ = 2iθθ̄∂̄χ

exp−iθ̄χ̄D exp iθ̄χ̄ = −2iθθ̄∂χ̄ , exp−iθχD̄ exp iθχ = χ̄− iθ̄χ̄χ̄ .
(6.2.7)Then we read o�

S[G] = S[g] + S[exp(iθχ)] + S[exp(−iθ̄χ̄)]

= S[g] +
1

2π

∫
dτdσd2θ

(str(χ∂̄χ) + str(χ̄∂χ̄)
)
,

(6.2.8)108



6.2. THE GAUGED N = 1 WZNW MODEL 109where we have integrated out the world-sheet fermions with measure
∫
d2θ θθ̄ =

1

4
. (6.2.9)Thus the �eld 
ontent of the N = 1 WZNW model is that of the ordinary WZNWmodel times free 
hiral and anti-
hiral fermions and bosons transforming in the adjointrepresentation of the Lie superalgebra. Finally let us mention that in 
hanging the pathintegral measure to the invariant path integral measure of the Lie supergroup times thefree measure of the fermions and bosons the WZNW part of the a
tion gets shifted byhalf the dual Coxeter number [85℄, i.e. the �nal form of the a
tion is

S[G] =
(
1 +

h∨

k

)
S[g] +

1

2π

∫
dτdσ str(χ∂̄χ) + str(χ̄∂χ̄) (6.2.10)with measure

Dµ(g)
∏

a,b

DχaDχ̄b . (6.2.11)The model is 
lassi
ally supersymmetri
 by 
onstru
tion, i.e. the a
tion is invariantunder the supersymmetry variation
δ = ǫQ+ ǭQ̄

δg = 2ǫχg − 2ǭgχ̄

δχ = ǫ(−i∂gg−1 − {χ, χ})
δχ̄ = ǭ(ig−1∂̄g + {χ̄, χ̄}) .

(6.2.12)The gauged WZNW model of Lie groups has been des
ribed in e.g. [85℄. The formu-lation extends immediately to Lie supergroups. Let h be a Lie subsuperalgebra of the Liesuperalgebra g, {sb} a basis of h and H the 
orresponding Lie subsupergroup. Furtherlet A(τ, σ, θ, θ̄) = Absb and Ā(τ, σ, θ, θ̄) = Ābsb be two Lie subsuperalgebra valued gauge�elds. Then the gauged N = 1 WZNW a
tion is
S[G, A, Ā] = S[G] +

1

π

∫
dτdσd2θ str(AG

−1D̄G−DGG
−1 + AĀ−Ad(G)(A)Ā

)
.This a
tion is invariant under the following gauge transformation

G → HGH
−1 ,

A → Ad(H)A− H
−1DH ,

Ā → Ad(H)Ā− H
−1D̄H

(6.2.13)for Hin H . Thus the above a
tion des
ribes an N = 1 world-sheet supersymmetri
 G/Hsuper
oset. If we 
hange �elds a

ording to
A = DH̃H̃

−1 , Ā = D̄ ˜̄
H

˜̄
H

−1 ,

G̃ = ˜̄
H

−1
GH̃ and H = ˜̄

H
−1

H̃

(6.2.14)109



110 CHAPTER 6. N=2 SUPERCONFORMAL FIELD THEORIESthe gauged a
tion be
omes
S[G̃]− S[H] . (6.2.15)Further the Ja
obian of the 
hange of �elds (6.2.14) is �eld independent, i.e.

∫
DGDADĀ e−S[G,A,Ā] = J

∫
DG̃DH e−S[G̃]+S[H] (6.2.16)for some 
onstant J as explained in [85℄. Thus the G/H 
oset is embedded in the

N = 1 world-sheet supersymmetri
 WZNW model of G × H and hen
e possesses the
orresponding 
urrent algebra symmetry. Note that the sign of the metri
 of H is oppositeto that of G.In the 
ase of Lie groups Kazama and Suzuki used the 
urrent symmetry to show thatthese N = 1 supersymmetri
 
osets admit an N = 2 super
onformal algebra for 
ertainspe
ial Lie subgroups H [80℄. Our goal is to extend their analysis to Lie supergroups andto show that not only spe
ial super
osets but also some Lie supergroups admit an N = 2super
onformal algebra.6.3 Manin triples of Lie superalgebrasWe follow very 
losely the reasoning of [86℄. Let us re
all that arti
le. The mainstatement is: Given a Lie algebra g whi
h allows for a Manin triple, then the N = 1super
onformal 
urrent algebra extends to an N = 2 super
onformal symmetry. Theseare exa
tly those models 
onsidered by Kazama and Suzuki [80℄.Inspired by these results, we will de�ne a Manin triple for a Lie superalgebra, andderive the Kazama-Suzuki 
onstru
tion à la Getzler.De�nition 6.3.1. A Manin triple (g, a+, a−) 
onsists of a Lie superalgebra g possessinga 
onsistent non-degenerate supersymmetri
 invariant bilinear form ( · , · ) and isotropi
Lie subalgebras a± su
h that
g = a+ ⊕ a− . (6.3.1)Further denote the subspa
e of g orthogonal to the dire
t sum of the derived subalgebrasof a± by a0, i.e.

a0 := { x ∈ g | (x, y) = 0 ∀ y ∈ [a+, a+] ∪ [a−, a−] } . (6.3.2)The ni
e property of Lie superalgebras of type I is, that many of them already allowfor a Manin triple.Example 6.3.2. Let g be a Lie superalgebra of type I with bosoni
 subalgebra g0 = ga0⊕gb0and rank of ga0 and of gb0 are equal. This applies to the Lie superalgebras gl(n|n), psl(n|n)and sl(n|n ± 1). Then the bilinear form of the Cartan subalgebra of one of the two say
ga0 is positive de�nite while the other one is negative de�nite. But that means that we 
anperform an isotropi
 de
omposition of the Cartan subalgebra

h = h+ ⊕ h− . (6.3.3)110



6.3. MANIN TRIPLES OF LIE SUPERALGEBRAS 111Further re
all the triangular de
omposition of a Lie superalgebra into Cartan subalgebra
h, the subalgebra of the positive rootspa
es n+ and the subalgebra of negative rootspa
es
n− (2.2.15):

g = n− ⊕ h⊕ n+ . (6.3.4)Then (g, a+ = h+ ⊕ n+, a− = h− ⊕ n−) is a Manin triple. The derived subalgebras of a±are 
ontained in n±
[a±, a±] ⊆ n± . (6.3.5)Hen
e in this example

a0 ⊇ h . (6.3.6)Before we 
an turn to the N = 2 super
onformal algebra we need a variety of identities.Denote by xi a basis of a+ then this 
hoi
e determines a dual basis xi of a− with respe
tto the metri
 of the N = 1 WZNW model. Re
all that the metri
 already 
ontains thelevel k of the WZNW model. The stru
ture 
onstants are de�ned as
[xi, xj ] = cij

kxk

[xi, xj ] = f ijkx
k

[xi, x
j ] = cki

jxk + f jkixk

(6.3.7)where the last equation follows from the �rst two. The Ja
obi identity for a± in terms ofstru
ture 
onstants is
0 = (−1)|ik|cil

mcjk
l + (−1)|ij|cjl

mcki
l + (−1)|jk|ckl

mcij
l and

0 = (−1)|ik|f ilmf
jk
l + (−1)|ij|f jlmf

ki
l + (−1)|jk|fklmf

ij
l .

(6.3.8)Further the Ja
obi identity of g implies the following 
o
y
le formula
ckl

mf ijm = −(−1)|ij|f jmlckm
i − (−1)|ij|fmikcml

j + f imlckm
j + fmjkcml

i . (6.3.9)We de�ne
ρ̃ : = −[xi, xi] = (−1)icki

ixk + (−1)if ikixk ,

ρ̃+ : = (−1)if ikixk and
ρ̃− : = (−1)icki

ixk .

(6.3.10)Let us assume that our Lie superalgebra satis�es
cij

k = f ijk = 0 if |i| = |j| = 1 . (6.3.11)This 
ondition is again satis�ed for type I Lie superalgebras. Together with the Ja
obiidentities of a± it implies that
fmlmf

jk
l = 0 . (6.3.12)Then it follows that

ρ̃ ∈ a0 and [ρ̃+, ρ̃−] = 0 . (6.3.13)111



112 CHAPTER 6. N=2 SUPERCONFORMAL FIELD THEORIESNote that we needed the 
ondition (6.3.11). Taking the supertra
e over i = l in the
o
y
le formula yields
Dxi := −[ρ̃, xi]+ = (−1)k(cjk

kf jli + cji
lf jkk)xl

= cmn
lfmnixl andstr(D) = −(ρ̃, ρ̃) .

(6.3.14)Further we need the Killing form in terms of the stru
ture 
onstants, in general that is
〈Xa, Xb〉 = −(−1)nCna

mC
mb

n . (6.3.15)More pre
isely, we need the spe
ial values of the Killing form
〈xi, xj〉 = 2(−1)ncni

mfnjm + cmn
jfmni = 2Aji +Dj

i where
Aji = (−1)ncni

mfnjm and
Dj
i = cmn

jfmni .

(6.3.16)This terminates our preparations.6.4 N = 2 super
onformal �eld theoriesWe are prepared to show that a Manin triple (g, a+, a−) of a Lie superalgebra g thatsatis�es (6.3.11) gives rise to an N = 2 super
onformal symmetry in the spirit of Kazamaand Suzuki.Denote by Ji(z) and J i(z) the 
hiral a�ne 
urrents 
orresponding to the generators
xi and xi, then their OPEs are [83℄

Ji(z)Jj(w) ∼
1
2
〈xi, xj〉

(z − w)2
+
cij

kJk(w)

(z − w)

J i(z)J j(w) ∼
1
2
〈xi, xj〉

(z − w)2
+
f ijkJk(w)

(z − w)

Ji(z)J
j(w) ∼ δi

j + 1
2
〈xi, xj〉

(z − w)2
+
f jkiJk(w) + cki

jJk(w)

(z − w)

(6.4.1)
where 〈 , 〉 is the Killing form and this shift by the Killing form in the metri
 is dueto our parameterisation and its measure (6.2.10). The fermions we denote by ai(z) and
ai(z) and their OPE is

ai(z)a
j(w) ∼ δi

j

(z − w)

ai(z)aj(w) ∼ 0

ai(z)aj(w) ∼ 0 .

(6.4.2)112



6.4. N = 2 SUPERCONFORMAL FIELD THEORIES 113Their 
onformal dimension is 1/2. We want to show that the following dimension 3/2
urrents generate an N = 2 super
onformal algebra
G+(z) = Ji(z)a

i(z)− 1

2
(−1)icij

k : ai(z)aj(z)ak(z) :

G−(z) = J i(z)ai(z)−
1

2
(−1)jf ijk : ai(z)aj(z)a

k(z) : .
(6.4.3)We 
ompute

G±(z)G±(w) ∼ 0 . (6.4.4)The next task is to 
ompute the OPE of G+ and G−. We split that into several steps.First we introdu
e the notation
J = Jkx

k + (−1)kJkxk , (6.4.5)then
Ji(z)a

i(z)J j(w)aj(w) ∼ A3

(z − w)3
+

A2

(z − w)2
+
A1 +B1

(z − w)

A3 =
1

2
sdimg +

1

2
〈xi, xi〉

A2 = : ai(w)ai(w) : +
1

2
〈xi, xj〉 : ai(w)aj(w) : +(ρ̃, J(w))

A1 = (−1)iJi(w)J i(w)+ : ∂ai(w)ai(w) : +
1

2
〈xi, xj〉 : ∂ai(w)aj(w) :

B1 = f jki(−1)|jk|Jk(w) : ai(w)aj(w) : +cki
j(−1)|jk|Jk(w) : ai(w)aj(w) : .

(6.4.6)
The last term gets 
an
elled by

(−1

2
(−1)icil

k : ai(z)al(z)ak(z) :)J j(w)aj(w) ∼ −cki
j(−1)|jk|Jk(w) : ai(w)aj(w) :

(z − w)

Ji(z)a
i(z)(−1

2
(−1)jf ljk : al(w)aj(w)ak(w) :) ∼ −f

jk
i(−1)|jk|Jk(w) : ai(w)aj(w) :

(z − w)
.(6.4.7)The next one is

1

4
(−1)i+mcij

kf lmn : ai(z)aj(z)ak(z) :: al(w)am(w)an(w) : ∼

∼ C3

(z − w)3
+

C2

(z − w)2
+

C1

(z − w)

C3 = −1

2
str(D)

C2 = −Amj : aj(w)am(w) : +
1

2
Dm
j : aj(w)am(w) :

C1 = −Amj : ∂aj(w)am(w) : +
1

2
Dm
j : aj(w)∂am(w) : .

(6.4.8)
113



114 CHAPTER 6. N=2 SUPERCONFORMAL FIELD THEORIES
A and D where introdu
ed in (6.3.16). Using (6.4.5) we have

(−1)iJiJ
i =

1

2
((: J, J :) + (ρ̃, J)) . (6.4.9)The element ρ̃ was de�ned in (6.3.10). Then putting all together and using (6.3.16) wearrive at

G+(z)G−(w) ∼
1
2
sdim g + strD

(z − w)3
+

U(w)

(z − w)2
+
T (w) + 1

2
∂U(w)

(z − w)
, (6.4.10)where T (z) is the Sugawara energy-stress tensor

T (z) =
1

2
((: J, J :)+ : ∂aiai : − : ai∂ai :) . (6.4.11)And U(z) has the form

U(z) = : aiai : +(ρ̃, J) +Di
j : ajai : . (6.4.12)It remains to 
he
k that G± are 
orre
tly 
harged under U . This is rather tedious, wearrive at

: ai(z)ai(z) : G+(w) ∼ G+(w)

(z − w)
− (ρ̃−, a(w))

(z − w)2

((ρ̃, J(z)) +Di
j : aj(z)ai(z) :)G+(w) ∼ (ρ̃−, a(w))

(z − w)2
.

(6.4.13)For the 
omputation of the se
ond line we use the Ja
obi identity as well as the 
o
y
leformula to show that the �rst order term vanishes, while for the 
omputation of the se
ondorder term we use (6.3.14). Analogously, we 
ompute
: ai(z)ai(z) : G−(w) ∼ − G−(w)

(z − w)
+

(ρ̃+, a(w))

(z − w)2

((ρ̃, J(z)) +Di
j : aj(z)ai(z) :)G−(w) ∼ −(ρ̃+, a(w))

(z − w)2
.

(6.4.14)In summary we have obtained the following resultProposition 6.4.1. Let (g, a+, a−) be a Manin triple of a Lie superalgebra g. In additionlet 
ondition (6.3.11) hold. Then the U(1)-
urrent
U(z) = : aiai : +(ρ̃, J) +Di

j : ajai : , (6.4.15)the energy-momentum tensor
T (z) =

1

2
((: J, J :)+ : ∂aiai : − : ai∂ai :) (6.4.16)114



6.4. N = 2 SUPERCONFORMAL FIELD THEORIES 115and the two super-
urrents
G+(z) = Ji(z)a

i(z)− 1

2
(−1)icij

k : ai(z)aj(z)ak(z) :

G−(z) = J i(z)ai(z)−
1

2
(−1)jf ijk : ai(z)aj(z)a

k(z) :
(6.4.17)form an N = 2 super
onformal algebra of 
entral 
harge

c =
3

2
sdim g + 3strD . (6.4.18)Note that if we take a type I Lie superalgebra (i.e. g ∈ {gl(n|n), psl(n|n), sl(n±1|n)}),then the 
entral 
harge is 3

2
sdimg, be
ause strD = 0 in these 
ases (D is introdu
ed in(6.3.14)). Let us also list some super
osets in table 6.1 to whi
h above 
onditions apply.

G H c
(
G/H

)GL(n|n) GL(n−m|n−m) n > m ≥ 0 0GL(n|n) SL(n−m|n−m± 1) n > m > 0 0PSL(n|n) PSL(n−m|n−m) n > m ≥ 0 0PSL(n|n) SL(n−m|n−m± 1) n > m > 0 -3SL(n|ñ) n 6= ñ SL(n−m|ñ−m) min{n, ñ} ≥ m ≥ 0 0Table 6.1: In
omplete list of N = 2 super
onformal super
osets G/H with 
entral 
harge
c
(
G/H

)

6.4.1 DeformationsThere exist moreN = 2 super
onformal algebras, whi
h are obtained from the previousones by a deformation by an element α in a0. Re
all that a0 is the subspa
e orthogonalto the dire
t sum of the derived subalgebras of a+ and a−.Consider an element α = pixi + qix
i in a0, this means that

cij
kqk = f ijkp

k = 0 . (6.4.19)We deform the super
urrents as follows
G+
α = G+ + qi∂a

i

G−
α = G− + pi∂ai

(6.4.20)and sin
e we want the super
urrents to be fermioni
, we require α to be bosoni
. Due to(6.4.19) we get
G±
α (z)G±

α (w) ∼ 0 . (6.4.21)115



116 CHAPTER 6. N=2 SUPERCONFORMAL FIELD THEORIESWe want to show that this deformation is still an N = 2 super
onformal algebra. Firstintrodu
e
Ii = Ji − (−1)icij

k : aiak :

I i = J i − (−1)jf ijk : aja
k :

(6.4.22)Then we 
ompute
G+(z)pi∂ai(w) ∼ piIi(w)

(z − w)2
+
pi∂Ii(w)

(z − w)

qi∂a
i(z)G−(w) ∼ − qiI

i(w)

(z − w)2

qi∂a
i(z)pi∂ai(w) ∼ − qip

i

(z − w)3

(6.4.23)
This de�nes us our deformed U(1)-
urrent and energy-stress tensor

Uα(z) = U(z) + piIi(z)− qiI i(z)

Tα(z) = T (z) +
1

2
(pi∂Ii(z) + qi∂I

i(z))
(6.4.24)It remains to 
he
k that Jα is indeed a U(1)-
urrent, for this purpose we again use the
o
y
le formula as well as α being in a0 and we get

Uα(z)G
±
α (w) ∼ ± G±

α (w)

(z − w)
. (6.4.25)In summary, we have shown the following.Proposition 6.4.2. Let α = pixi + qix

i in a0, then the 
urrents
Uα(z) = U(z) + piIi(z)− qiI i(z)

Tα(z) = T (z) +
1

2
(pi∂Ii(z) + qi∂I

i(z))

G+
α = G+ + qi∂a

i

G−
α = G− + pi∂ai

(6.4.26)form an N = 2 super
onformal algebra of 
entral 
harge
c =

3

2
sdimg + 3strD − 3qip

i. (6.4.27)6.4.2 Spe
tral �owThe physi
al state spa
e of topologi
al CFTs resulting from twisting the deformed N =
2 super
onformal �eld theories 
onsidered in the previous se
tion in some 
ases 
oin
ides116



6.4. N = 2 SUPERCONFORMAL FIELD THEORIES 117with the physi
al state spa
e of topologi
al CFTs obtained by twisting the undeformed
N = 2 super
onformal �eld theories and a
ting by a spe
tral �ow automorphism. Thetopologi
al CFT is des
ribed by the 
ohomology of the BRST-operator Q. This operatoris 
omposed of the zero modes of the 
urrents G± and Ḡ±. In this se
tion, we show thatthe zero modes of some deformed super-
urrents G±

α , Ḡ
±
α agree with the a
tion of thespe
tral �ow γα, γ̄α on the zero modes of the undeformed super-
urrents, i.e.

G±
α,0 = γα(G

±
0 ) and Ḡ±

α,0 = γ̄α(Ḡ
±
0 ) . (6.4.28)This implies that for every twist the two BRST-operators 
oin
ide and hen
e their 
oho-mologies as well.We restri
t to type I Lie superalgebras g that allow for a Manin de
omposition asdes
ribed in example (6.3.2). Re
all that a0 
ontains the Cartan subalgebra h in thisexample (6.3.6). Denote by xi a basis of a+ and by xi the dual basis of a− with respe
t tothe bilinear form ( · , · ). Then the generators of the a�ne Lie superalgebra ĝ are denotedby xi,n, xin, in addition the level is �xed to be k and the derivation d is identi�ed withthe Virasoro zero mode L0. We restri
t our attention to the holomorphi
 
urrents. Theanti-holomorphi
 part is treated analogously.Re
all the mode expansion of the a�ne 
urrents

J i(z) =
∑

n∈Z

xinz
−n−1

Ji(z) =
∑

n∈Z

xi,nz
−n−1

ai(z) =
∑

n∈Z

ainz
−n−1/2

ai(z) =
∑

n∈Z

ai,nz
−n−1/2

(6.4.29)
Then G± have the following mode expansions

G+(z) =
∑

n∈Z

G+
n z

−n−3/2

=
∑

n,m∈Z

xi,n−ma
i
mz

−n−3/2 − 1

2
(−1)icij

k
∑

n,m,r∈Z

: ain−m−ra
j
mak,r : z−n−3/2 ,

G−(z) =
∑

n∈Z

G−
n z

−n−3/2

=
∑

n,m∈Z

xin−mai,mz
−n−3/2 − 1

2
(−1)jf ijk

∑

n,m,r∈Z

: ai,n−m−raj,ma
k
r : z−n−3/2 .Here the normal ordering sign means that positive mode operators are to the right ofnegative mode operators. Further re
all the a
tion of spe
tral �ow. Let ( · | · ) be thebilinear form on h⋆ indu
ed by ( · , · ). Re
all that the bilinear form 
ontains the level k.117



118 CHAPTER 6. N=2 SUPERCONFORMAL FIELD THEORIESLet β be a 
oroot, further denote by αi the root 
orresponding to xi, then −αi 
orrespondsto xi. Note that when xi is in the Cartan subalgebra this means that αi = 0. Then thea
tion of a spe
tral �ow automorphism is (2.3.15) and [35℄,
T̃β : xi,n 7→ xi,n−(β|αi) + β(xi)δαi,0δn,0

xin 7→ xin+(β|αi)
+ β(xi)δαi,0δn,0

ai,n 7→ ai,n+(β|αi)

ain 7→ ain−(β|αi)
.

(6.4.30)This indu
es an a
tion on G±

T̃β : G+(z) 7→ G+(z) +
∑

xi ∈h+
n∈Z

(
β(xi) +

∑

αj ∈∆+

αj(xi)(β|αj)
)
ainz

−n−3/2 ,

T̃β : G−(z) 7→ G−(z) +
∑

xi ∈h−
n∈Z

(
β(xi) +

∑

αj ∈∆−

(−1)jαj(xi)(β|αj)
)
ai,nz

−n−3/2 .
(6.4.31)Hen
e the zero modes get shifted by

T̃β : G+
0 7→ G+

0 +
∑

xi ∈h+

(
β(xi) +

∑

αj ∈∆+

αj(xi)(β|αj)
)
ai0

T̃β : G−
0 7→ G−

0 +
∑

xi ∈h−

(
β(xi) +

∑

αj ∈∆−

(−1)jαj(xi)(β|αj)
)
ai,0 .

(6.4.32)But this is the same shift as the one indu
ed by a deformation with an appropriate Cartansubalgebra element γ
T̃β(G

±
0 ) = G±

αβ ,0
, (6.4.33)where

αβ = − 2
∑

xi ∈h+

(
β(xi) +

∑

αj ∈∆+

αj(xi)(β|αj)
)
xi +

− 2
∑

xi ∈h−

(
β(xi) +

∑

αj ∈∆−

(−1)jαj(xi)(β|αj)
)
xi .

(6.4.34)In summary, we have shown that the zero modes of the super
urrents of the deformed
N = 2 super
onformal �eld theory (deformed by αβ) 
oin
ide with the image of thespe
tral �ow automorphism T̃β on the zero modes of the undeformed super
urrents. Itfollows that the BRST operators of the twisted topologi
al CFTs also 
oin
ide and hen
etheir 
ohomology groups.Note that one 
ould also 
onsider spe
tral �ow indu
ed by elements in h⋆ that are not
oroots. Then the a�ne Lie superalgebra is mapped to a twisted a�ne Lie superalgebra.The 
orresponden
e to deformation still holds.118



6.4. N = 2 SUPERCONFORMAL FIELD THEORIES 1196.4.3 Example GL(1|1)In this se
tion we want to 
ompute the spa
e of physi
al observables in a B-twist of the
N = 1 GL(1|1) WZNW model. Let ψ±, E,N be the generators of GL(1|1), and introdu
e
Ñ = N + E

2k
. Then the N = 2 super
onformal 
urrents are given by

G+ =
1√
k
(JEξ + J+γ)

G− =
1√
k
(JÑη + J−β + η : γβ :)

U = : ξη : + : βγ : −JE
k

(6.4.35)and their anti-holomorphi
 
ounterparts read
Ḡ+ =

1√
k
(J̄E ξ̄ + J̄+γ̄)

Ḡ− =
1√
k
(J̄Ñ η̄ + J̄−β̄ + η̄ : γ̄β̄ :)

Ū = : ξ̄η̄ : + : β̄γ̄ : − J̄E
k
.

(6.4.36)
Here η(z), ξ(z), η̄(z̄), ξ̄(z̄) are fermioni
 
hiral �elds and γ(z), β(z), γ̄(z̄), β̄(z̄) are bosoni

hiral �elds with OPEs

η(z)ξ(w) ∼ 1

(z − w)
, β(z)γ(w) ∼ 1

(z − w)
,

η̄(z̄)ξ̄(w̄) ∼ 1

(z̄ − w̄)
, β̄(z̄)γ̄(w̄) ∼ 1

(z̄ − w̄)
.

(6.4.37)Consider the B-twisted topologi
al CFT de�ned by
T+twisted(z) = T (z) +

1

2
∂U(z) and T̄+twisted(z̄) = T̄ (z̄) +

1

2
∂̄Ū(z̄) . (6.4.38)Then the 
onformal dimensions in the twisted theory are as follows

∆(ξ) = ∆(γ) = (0, 0) ,

∆(η) = ∆(β) = (1, 0) ,

∆(ξ̄) = ∆(γ̄) = (0, 0) ,

∆(η̄) = ∆(β̄) = (0, 1) .

(6.4.39)Further the BRST-operator is
QBRST = G+

0 + Ḡ+
0

=
1√
k
(JEc + J+γ)0 +

1√
k
(J̄E c̄+ J̄+γ̄)0 .

(6.4.40)119



120 CHAPTER 6. N=2 SUPERCONFORMAL FIELD THEORIESA representative of a physi
al observable 
an always be 
hosen to have 
onformal dimen-sion (0, 0) due to (6.1.4). Thus we 
an restri
t our attention to �elds of zero 
onformaldimension. Consider a family of automorphisms τα,ᾱ of ĝl(1|1)× ĝl(1|1) indu
ed by (2.1.7).They are de�ned as follows
τα,ᾱ(N0) = N0 + αE0 , τα,ᾱ(N̄0) = N̄0 + ᾱĒ0 (6.4.41)and leaving all other operators invariant. These automorphisms leave the BRST-operatorinvariant. Re
all the bulk �elds of GL(1|1) (5.1.28)

V〈−e,−n+1〉 = : eeX+nY :

(
1 c−
c+ c−c+

)
, (6.4.42)and their 
onformal dimension in the twisted theory is (
ompare with (5.1.29))

∆(V〈−e,−n+1〉) =
( e

2k
(2n− 2 +

e

k
),
e

2k
(2n+

e

k
)
)
. (6.4.43)Thus, when e 6= 0 the above automorphisms (6.4.41) ensure that every primary and everydes
endant of V〈−e,−n+1〉 is isomorphi
 to a �eld of non-integer 
onformal dimension andhen
e 
annot 
ontribute to the physi
al observables.Hen
e we restri
t our attention to �elds with e = 0. The 
onformal dimension zero�elds are

Φ(n,m, m̄, λ, λ̄) := V〈0,−n+1〉γ
mγ̄m̄ξλξ̄λ̄ (6.4.44)for non-negative integers m, m̄ and λ, λ̄ ∈ {0, 1}. In [26℄ it is shown that the vertexoperator V〈0,−n+1〉 transforms as follows

J+(z)V 1a
〈0,−n+1〉(w, w̄) ∼ ka

V 0a
〈0,−n+1〉(w, w̄)

(z − w)

J+(z)V 0a
〈0,−n+1〉(w, w̄) ∼ 0

J̄+(z̄)V 1a
〈0,−n+1〉(w, w̄) ∼ k̄a

V 0a
〈0,−n〉(w, w̄)

(z̄ − w̄)

J̄+(z)V 0a
〈0,−n+1〉(w, w̄) ∼ 0

(6.4.45)
for some non-zero 
onstants ka, k̄a. Thus the image of QBRST for these �elds is

[
QBRST,Φ1,a(n,m, m̄, λ, λ̄)

]
= kaΦ

0,a(n,m+ 1, m̄, λ, λ̄)+

k̄1aΦ
0,a(n− 1, m, m̄+ 1, λ, λ̄) .

(6.4.46)On the other hand the kernel is
[
QBRST,Φ0,a(n,m, m̄, λ, λ̄)

]
= 0 . (6.4.47)Thus a basis of representatives of the spa
e of physi
al observables is

{Φ0,a(n,m, 0, λ, λ̄) |m ≥ 0 and a, λ, λ̄ ∈ {0, 1}} . (6.4.48)120



6.5. BRANES 121Their OPEs are
Φ0,a(n1, m1, 0, λ1, λ̄1)Φ

0,b(n2,m2, 0, λ2, λ̄2) ∼ (1− ab)(1− α1α2)(1− ᾱ1ᾱ2) ×

× Φ0,a+b(n1 + n2, m1 +m2, 0, λ1 + λ2, λ̄1 + λ̄2) .
(6.4.49)We 
on
lude that the spa
e of physi
al observables of the N = 1 GL(1|1) WZNW modelfor the twist (6.4.38) is

Hphys = R× Z≥0 × Z2 × Z2 × Z2 . (6.4.50)In the GL(1|1) WZNW model the V 0a
〈0,−n+1〉(z, z̄) span a maximal set of �elds whose OPEsare independent of their world-sheet positions.6.5 BranesFrom now on, we restri
t our attention to type I Lie supergroups and the Maninde
omposition of example 6.3.2. For branes in N = 2 super
onformal 
osets of Lie groupssee e.g. [87℄.We want to investigate branes that preserve the N = 2 super
onformal symmetrybut also the a�ne Lie superalgebra symmetry. The N = 2 super
onformal algebra ispreserved if we require the following gluing 
onditions

G±(z) = ηḠ∓(z̄) ,

U(z) = −Ū(z̄) ,

T (z) = T̄ (z̄) for z = z̄ .

(6.5.1)Here, η = ±1. These gluing 
onditions preserve the A-twist
T (z)± 1

2
∂U(z) = T̄ (z̄)∓ 1

2
∂̄Ū(z̄) for z = z̄ . (6.5.2)Another 
hoi
e for gluing 
onditions is

G±(z) = ηḠ±(z̄) ,

U(z) = Ū(z̄) ,

T (z) = T̄ (z̄) for z = z̄ .

(6.5.3)In this 
ase the B-twist is preserved
T (z)± 1

2
∂U(z) = T̄ (z̄)± 1

2
∂̄Ū(z̄) for z = z̄ . (6.5.4)Preserving a�ne Lie superalgebra symmetry means that the gluing 
onditions of the
urrents are given by a metri
 preserving automorphism Ω

J(z) = Ω(J̄(z̄)) for z = z̄ . (6.5.5)Let g be the Lie superalgebra of type I allowing a Manin triple, i.e. g ∈ {gl(n|n), psl(n|n),
sl(n± 1|n)}, and g = a+ ⊕ a− the Manin de
omposition of example 6.3.2. Then in orderto preserve the B-twist Ω has to be a Lie superalgebra automorphism of a+ and also of
a−. A natural 
andidate is the identity automorphism.121



122 CHAPTER 6. N=2 SUPERCONFORMAL FIELD THEORIES6.5.1 B-branesWe start with the gluing 
onditions for the 
urrents J and a, we take
J(z) = J̄(z̄) , a(z) = ηā(z̄) for z = z̄ (6.5.6)where η = ±1. Inserting these 
onditions in the N = 2 
urrents gives

G±(z) = ηḠ±(z̄) ,

G±
b (z) = ηḠ±

b (z̄) ,

U(z) = Ū(z̄) ,

T (z) = T̄ (z̄) for z = z̄ .

(6.5.7)Thus, these 
onditions preserve the B-twist
T (z)± 1

2
∂U(z) = T̄ (z̄)± 1

2
∂̄Ū(z̄)) for z = z̄ . (6.5.8)6.5.2 A-branesThe 
ase of A-branes is more subtle and the gluing 
onditions on the super
urrentswill di�er from (6.5.1). We employ the automorphism Ω = (−st) (2.2.26). Its a
tion onthe generators of the a�ne 
urrents is as follows

Ω(Ji(z)) =
{ −J i(z) if xi in n+

−Ji(z) if xi in h+

Ω(J i) =
{ −(−1)iJi(z) if xi in n−

−J i(z) if xi in h−
.

(6.5.9)Further for the �elds a(z) we 
hoose the following automorphism
ω(ai(z)) = ai(z) and ω(ai(z)) = (−1)iai(z) . (6.5.10)These two automorphisms indu
e an isomorphism Ω̃ on N = 2 super
onformal algebras

Ω̃(G+) = G̃+ = −J iai −
1

2
(−1)jcij

k : aiaja
k :

Ω̃(G−) = G̃− = −Jiai −
1

2
(−1)if ijk : aiajak :

Ω̃(U) = −U
Ω̃(T ) = T .

(6.5.11)Thus we obtained a se
ond 
opy of an N = 2 super
onformal algebra. Note that the
U(1)-
urrents only di�er by a sign. Analgously we de�ne anti-holomorphi
 super
urrents

Ω̃(G+) = ˜̄G+ = −J̄ iāi −
1

2
(−1)jcij

k : āiāj ā
k :

Ω̃(G−) = ˜̄G− = −J̄iāi −
1

2
(−1)if ijk : āiājāk :

Ω̃(U) = −Ū
Ω̃(T ) = T̄ .

(6.5.12)
122



6.6. CONCLUSION 123After this preparation, we use the automorphisms 
onsidered above as gluing auto-morphisms, i.e. we demand the following boundary 
onditions
J(z) = Ω(J̄(z̄)) and a(z) = ω(ā(z̄)) for z = z̄ . (6.5.13)These imply the boundary 
onditions for the N = 2 super
onformal algebra

G+(z) = ˜̄G+(z̄)

G−(z) = ˜̄G−(z̄)

U(z) = −Ū(z̄)

T (z) = T̄ (z̄) for z = z̄ .

(6.5.14)Thus the A-twist is preserved
T (z)± 1

2
∂U(z) = T̄ (z̄)∓ 1

2
∂̄Ū(z̄)) for z = z̄ . (6.5.15)6.6 Con
lusionIn this 
hapter, we have introdu
ed a new family of N = 2 super
onformal �eldtheories. The 
onstru
tion is an extension of the �ndings of Kazama and Suzuki, who
onsidered the Lie group 
ase. While only 
osets of 
ompa
t Lie groups allow for an N = 2super
onformal algebra, Lie supergroups provide a ri
her variety of realizations of super-
onformal algebras. E.g. even the Lie supergroups gl(n|n), psl(n|n) and sl(n± 1|n) allowfor the 
onstru
tion of an N = 2 super
onformal algebra. Also solvable Lie (super)groupslike Heisenberg supergroups and even Heisenberg groups allow for the 
onstru
tion. These
ases are very interesting as they are the Penrose limit of models with AdS target spa
e.Moreover, we 
onsidered deformations of N = 2 super
onformal algebras. Then weexplained that the physi
al state spa
e of topologi
al CFTs resulting from twisting the de-formed N = 2 super
onformal �eld theories in some 
ases 
oin
ides with the physi
al statespa
e of topologi
al CFTs obtained by twisting the undeformed N = 2 super
onformal�eld theories and a
ting by a spe
tral �ow automorphism.In the example of a B-twist of the GL(1|1) model we 
omputed the 
ohomology ring.Finally, we 
onsidered branes in the N = 2 super
onformal Lie supergroup models. Wefound gluing 
onditions that preserve the A-twist and we also found gluing 
onditionsthat preserve the B-twist.
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Chapter 7Outlook7.1 ResultsThe aim of this thesis was to initiate a systemati
 study of Lie supergroup boundaryWZNW models. We started with symple
ti
 fermions. We showed that they possessan SL(2) family of boundary 
onditions. We 
onstru
ted their boundary states in thetwisted and also in the untwisted se
tors. Furthermore, amplitudes were 
omputed. Inorder to obtain a non-trivial amplitude it was sometimes ne
essary to insert additionalfermioni
 �elds.As a simple prototypi
al example of a boundary supergroup WZNW model we 
hosethe GL(1|1) model. This model possesses two families of 
urrent algebra preserving gluing
onditions. For both of them, we 
onstru
ted the boundary states and 
omputed overlaps.The results agree with fusion, similar to the 
ase of WZNWmodels on 
ompa
t Lie groups.We also found typi
al features of logarithmi
 CFT as the appearan
e of inde
omposablebut redu
ible spe
tra, overlaps of Ishibashi states with log q dependen
e and Ishibashistates with zero norm. In order to get a non-vanishing amplitude we again sometimeshad to insert additional �elds.For the twisted boundary 
onditions, we set up a �rst order formulation to solve themodel. The novel feature in this set-up was the introdu
tion of an additional fermioni
boundary degree of freedom. We then solved the model, that is we 
omputed bulkone-point fun
tions, bulk-boundary two-point fun
tions and boundary three-point fun
-tions. Logarithmi
 singularities appeared in 
ertain bulk-boundary two-point fun
tionsand boundary three-point fun
tions.Previously, the bulk GL(1|1) WZNW model was solved using the �rst order formula-tion. We showed that this model is equivalent to a pair of s
alars plus symple
ti
 fermions.The non-triviality of this model lies in the twisted symple
ti
 fermion se
tors. Thus, wegave a di�erent approa
h to the bulk model.For general Lie supergroups, we showed that geometri
ally a branes' worldvolume isa twisted super
onjuga
y 
lasses and we 
onstru
ted their a
tions. Further, we identi�edsuper
onjuga
y 
lasses with representations of the a�ne Lie superalgebra. Whenever thesuper
onjuga
y 
lass is lo
alised in some fermioni
 dire
tion the asso
iated representationis atypi
al. Moreover there are regions in the supergroup, whi
h are not 
overed by anysuper
onjuga
y 
lass. We suspe
t that there exist also branes 
overing these regions. Inthe 
ase of GL(1|1) appropriate gluing 
onditions and a
tions for these new atypi
al branesexist [35℄. This again involved the additional introdu
tion of extra boundary degrees offreedom. 125



126 CHAPTER 7. OUTLOOKFinally, we turned to world-sheet and target spa
e supersymmetri
 theories. The 
el-ebrated Kazama-Suzuki 
osets are N = 1 world-sheet supersymmetri
 
osets of 
ompa
tLie groups and they possess a hidden N = 2 super
onformal symmetry. We show thatthis result does not only extend to many 
osets of Lie supergroups, but also to some Liesupergroups as GL(n|n), PSL(n|n), SL(n ± 1|n) and Heisenberg (super)groups. More-over, there exist deformations of these models and we show that in some 
ases thesedeformations 
oin
ide with spe
tral �ow on the level of the twisted topologi
al �eld the-ory. Finally, we explain that ea
h supergroup possesses two families of branes, one thatpreserves the A-twist and one that preserves the B-twist.7.2 Open problemsOur �ndings leave a variety of interesting dire
tions for future resear
h.In the GL(1|1) WZNW model it would be interesting to solve the boundary theoryof point-like branes. For this purpose the 
omputation of bulk-boundary two-point fun
-tions is missing. This is di�
ult, be
ause a �rst order formulation gives a perturbativedes
ription whi
h does not terminate after a �nite number of steps. On the other handwe 
an employ the symple
ti
 fermion 
orresponden
e to this problem. We believe thatthis is doable.The methods we developed in this thesis should be applied to more sophisti
atedsupergroups. The apparent open problem is the extension of the �rst order formalism toany type I Lie supergroup and appropriate gluing automorphism, i.e. Ω = (−st). Thiswill require the additional introdu
tion of fermioni
 boundary degrees of freedom and aboundary s
reening 
harge whi
h looks like a square root of the bulk s
reening 
harge.This problem resembles matrix fa
torisation in open string Landau Ginzburg models.Landau Ginzburg models possess an N = 2 super
onformal symmetry. Warner showedthat it is ne
essary to introdu
e additional fermioni
 boundary degrees of freedom in orderto preserve the super
onformal symmetry at the boundary [76℄. Further the bulk superpotential fa
torises into the boundary super potentials.One question is to understand the 
onne
tion between world-sheet and target spa
esupersymmetri
 theories.An important goal is to understand the newly introdu
ed N = 2 super
onformal �eldtheories. Let us list some questions.
• What is the 
hiral ring of su
h a model?
• Can we use mirror symmetry to understand 
orresponden
es and dualities?
• Are there models with even more supersymmetry like N = 4?
• Are there deformations of the N = 1 PSL(n|n) WZNW model that preserve the
N = 2 (or N = 4) super
onformal symmetry?Some of these questions are already under investigation.126



7.3. APPLICATIONS BEYOND WZNW MODELS 1277.3 Appli
ations beyond WZNW modelsLet us 
on
lude with two problems that go beyond WZNW models and a�ne Liesuperalgebras.Due to its underlying a�ne Lie superalgebra symmetry the WZNW model on a su-pergroup is well treatable. But for some Lie supergroups there exist many more CFTswith less symmetry. If the Killing form of a supergroup vanishes then there exists anadditional one-parameter family of 
onformally invariant sigma models on this super-group [22℄. These additional CFTs 
an be des
ribed as an exa
tly marginal perturbationof the WZNW model. In view of the AdS/CFT 
orresponden
e the PSU(1,1|2) sigmamodels play an important role. Computations in these sigma models are not easy. Thestrategy is to restri
t attention to some quantities that are prote
ted by symmetry. In se
-tion 5.1 and also in se
tion 5.3.4 we found that in the GL(1|1) WZNW model 
orrelators
onsisting only of atypi
al �elds are prote
ted, i.e. they 
ould be 
omputed in free �eldtheory. Also in the PSU(1,1|2) sigma models we su

eeded to 
ompute boundary spe
traof branes that are lo
alised in the bosoni
 dire
tions while extending 
ompletely into thefermioni
 ones [29℄. The perturbative 
omputation of these spe
tra 
ould be performedbe
ause of many 
an
ellations due to the symmetry of the model.The goal is to extend this analysis and to �nd other quantities that are also prote
tedby symmetry. The idea is to use a fermioni
 symmetry Q of the supergroup sigma modelthat squares to zero, Q2 = 0, and thus de�nes a 
ohomology. We then want to employsu
h a symmetry to argue that the 
ohomology is prote
ted, i.e. it is not or only partiallyin�uen
ed by a perturbation [88℄.The se
ond interesting area we would like to mention is logarithmi
 CFT in the 
on-text of three-dimensional gravity. One believes that three-dimensional pure gravity hasa dual 
onformal �eld theory des
ription [89℄. The relevant CFTs are extremal of 
entral
harge an integer multiple of 24. Moreover it was re
ently observed that the CFT shouldbe logarithmi
 [90℄. An important question in 
onjun
tion with gravity is to �nd loga-rithmi
 extensions of extremal CFTs. More general one would like to understand how toextend a 
hiral 
onformal �eld theory to a logarithmi
 CFT. The sear
h might pro�t fromLie supergroup sigma models where the origin of the logarithmi
 singularities is under-stood. Espe
ially a Lie supergroup WZNW model 
an be treated as an exa
tly marginalperturbation of a Lie group WZNW model plus some fermioni
 ghost systems [28℄. Theunperturbed model is not logarithmi
 and the perturbation generates the logarithmi
 be-haviour. Moreover, in appendix A we 
onsider a CFT that is non-logarithmi
 in the bulk,but the boundary theory possesses logarithmi
 singularities.Furthermore, the extremal CFT of 
entral 
harge 24 is the monster CFT [91℄. It isfamous for its relevan
e in the proof of moonshine by Ri
hard Bor
herds [92℄. Another keyingredient in the proof is that the monster CFT has an underlying in�nite dimensionalLie algebra whose denominator identity is an automorphi
 produ
t. It turns out that onlyten Lie algebras of a similar kind exist [93℄. Espe
ially the denominator identities of thesein�nite dimensional Lie algebras are also automorphi
 produ
ts. Four out of these tenLie algebras 
an be 
onstru
ted from a 
onformal �eld theory [94,95℄. For the remaining127



128 CHAPTER 7. OUTLOOKones it is 
onje
tured. Further some Lie superalgebras are also known [96℄. Thus thereexists another 
lass of 
onformal �eld theories, besides WZNW models, with an under-lying in�nite dimensional Lie (super)algebra. Moreover, not only the monster CFT hasappeared in relation to gravity, but also in�nite dimensional Lie algebras whose denomi-nator identity is an automorphi
 produ
t des
ribe Dyon spe
tra in CHL 
ompa
ti�
ationsand degenera
ies of 
orresponding bla
k holes [97℄.
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Appendix AThe bc-ghost systemWe shortly present the bulk model. The bc-ghost system involves two sets of 
hiralbulk �elds c, c̄ and b, b̄ of 
onformal dimension hc = 0 and hb = 1, respe
tively. The a
tionof the bulk model is
S =

1

2π

∫
d2z
[
b ∂̄c+ b̄ ∂c̄

]
. (A.0.1)The energy-momentum tensor is

T (z) = −b∂c , T̄ (z̄) = −b̄∂̄c̄ (A.0.2)and the operator produ
t expansion is
b(z)c(w) ∼ 1

(z − w)
and b̄(z̄)c̄(w̄) ∼ 1

(z̄ − w̄)
. (A.0.3)The world-sheet is again the 
omplex plane. On the 
omplex plane, 
orrelation fun
tionsto be non-zero require the insertion of a zero-mode of the �elds c and c̄. We normalisethem as follows

〈c(z)c̄(w̄)〉 = 1 . (A.0.4)Arbitrary 
orrelation fun
tions are 
omputed using the above 
ontra
tion (A.0.3). Wenow turn to the des
ription of the boundary theory.A.1 Twisted boundary 
onditions in the bc c = −2 ghostsystemThis se
tion is the 
ontent of [64℄. In this se
tion we study a new boundary 
onditionfor the bc system with 
entral 
harge c = −2. In the 
onventional setup, we would glue cto c̄ and b to b̄ along the boundary [98℄. But there exists another possibility: namely, toglue b to a derivative of c̄ and vi
e versa. More pre
isely, we 
an demand that
b(z) = µ∂̄c̄(z̄) , b̄(z̄) = −µ∂c(z) for z = z̄ . (A.1.1)These relations guarantee trivial gluing 
onditions for the energy momentum tensor T =

−b∂c. It is not di�
ult to 
he
k that the a
tion of the bc system is invariant undervariations respe
ting (A.1.1) provided we add an appropriate boundary boundary term,
S =

1

2π

∫
d2z
[
b ∂̄c + b̄ ∂c̄

]
− iµ

4π

∫
du c ∂uc̄ . (A.1.2)129



130 APPENDIX A. THE BC-GHOST SYSTEMOur aim here is to solve the theory that is de�ned by the a
tion (A.1.2) and the boundary
ondition (A.1.1). We shall set µ = 1 throughout our dis
ussion. Formulae for the general
ase are easily obtained from the ones we display below.In order to 
onstru
t the state spa
e and the �elds expli
itly, we introdu
e an algebrathat is generated by the modes cn, bn and two additional zero modes ξb0, ξc0 subje
t to the
onditions
{cn, bm} = n δn,−m , (A.1.3)

{ξc0, b0} = 1 , {ξb0, c0} = 1 . (A.1.4)All other anti-
ommutators in the theory are assumed to vanish. The state spa
e of ourboundary theory is generated from a ground state with the properties
cn|0〉 = bn|0〉 = 0 for n ≥ 0 (A.1.5)by appli
ation of `raising operators', in
luding the zero modes ξb0 and ξc0. On this spa
ewe 
an introdu
e the lo
al �elds c, c̄, b, b̄ through the pres
ription
b(z) =

∑

n∈Z
bnz

−n−1 (A.1.6)
c(z) =

∑

n 6=0

cn
n
z−n + c0 ln z + ξc0 (A.1.7)

b̄(z̄) =
∑

n 6=0

cnz̄
−n−1 − c0z̄−1 (A.1.8)

c̄(z̄) = −
∑

n 6=0

bn
n
z̄−n + b0 ln z̄ − ξb0 (A.1.9)It is not di�
ult to 
he
k with the help of eqs. (A.1.3) that these �elds satisfy the 
orre
tlo
al anti-
ommutation relations

{
b(z), c(w)

}
= δ(z − w) ,

{
b̄(z̄), c̄(w̄)

}
= δ(z̄ − w̄)in the interior of the upper half plane. Needless to stress that they also ful�l our boundary
onditions (A.1.1) with µ = 1.For later use let us also spell out the 
onstru
tion of the Virasoro generators in termsof fermioni
 modes,

Ln =
∑

m6=0

− : bn−mcm : −bnc0 .It is important to stress that - due to the term c0b0 � the element L0 satis�es L0ξ
c
0ξ
b
0|0〉 =

|0〉. Sin
e L0 vanishes on all other ground states, it is non-diagonalisable. In other words,our boundary theory is an example of a logarithmi
 
onformal �eld theory. The logarithms130



A.1. TWISTED BOUNDARY CONDITIONS IN THE BC C = −2 GHOST SYSTEM131in this model, however, are restri
ted to the boundary se
tor sin
e the Hamiltonian of thebulk theory is diagonalisable (see below).Before we 
an 
al
ulate 
orrelation fun
tions in our boundary theory, we need tointrodu
e a dual va
uum with the properties
〈0|cn = 〈0|bn = 0 for n ≤ 0 (A.1.10)
〈0|ξc0ξb0|0〉 = (2π)−1 and 〈0|0〉 = 0 . (A.1.11)Our parti
ular normalisation of the dual va
uum 〈0| will turn out to be 
onvenient below.With the help of our formulae (A.1.6)-(A.1.9), we 
an 
ompute arbitrary 
orrelators. Aslong as there are no insertions of c̄, 
orrelators take the following simple form

〈0|
nc∏

µ

c(wµ)

nb̄∏

ν̄

b̄(z̄ν̄)

nb∏

ν

b(zν)|0〉 =
∏

ν̄

(−∂ν̄)
∏

ν<ν′ xνν′
∏

µ<µ′ xµµ′
∏

ν̄<ν̄′ xν̄ν̄′∏
ν̄,µ x

−1
ν̄µ

∏
ν,µ xνµ

∏
ν,ν̄ xνν̄

, (A.1.12)where xνµ = zν − zµ, xνµ̄ = zν − z̄µ̄ et
 and ∂ν̄ denote derivatives with respe
t to z̄ν̄ .Insertions of the �eld c̄ may be removed one after the other using the following rules for
ontra
tions
c̄(z̄)c(w) ∼ ln(z̄ − w) , c̄(z̄)b̄(w̄) ∼ (z̄ − w̄)−1that 
an be derived from our expli
it operator realisation of the basi
 �elds. The othertwo types of 
ontra
tions with �elds c̄ or b vanish identi
ally.Next we would like to display the boundary state |N〉 for our new boundary 
ondition.Before we provide expli
it formulae let us brie�y re
all that the bulk �elds are obtainedas
c(z) = ξc0 +

∑

n 6=0

cn
n
z−n , b(z) =

∑

n∈Z
bn z

−n−1and similarly for their anti-holomorphi
 
ounterparts. Note that there are no modes c0, c̄0and ξb0, ξ̄
b
0 in the bulk of our bc ghost system. This feature distinguishes the c = −2ghosts from the 
losely related symple
ti
 fermions. A

ording to the standard rules, theboundary state for our boundary theory must satisfy the following Ishibashi 
onditions [53℄

(bn − c̄−n)|N〉 = 0 , (cn + b̄−n)|N〉 = 0 (A.1.13)for n 6= 0 and b0|N〉 = b̄0|N〉 = 0. As one may easily 
he
k, the unique solution to these
onditions is given by
|N〉 = exp

(
−

∞∑

m=1

(
c−mc̄−m
m

+
b−mb̄−m
m

)

)
|0〉 (A.1.14)where |0〉 is a state in the bulk theory that satis�es 
onditions of the form (A.1.5) forboth 
hiral and anti-
hiral modes. There also exists a dual boundary state 〈N |, satisfyingthe 
onditions

〈N |(bn + c̄−n) = 0 , 〈N |(cn − b̄−n) = 0 (A.1.15)131



132 APPENDIX A. THE BC-GHOST SYSTEMfor n 6= 0 and 〈N |b0 = 〈N |b̄0 = 0. These linear relations are related to eqs. (A.1.13) by
onjugation using that c∗n = −c−n and b∗n = b−n et
. The dual boundary state is given bythe following expli
it formula
〈N | = 〈0| exp

( ∞∑

m=1

1

m
(cmc̄m + bmb̄m)

) (A.1.16)involving a dual 
losed string ground state 〈0| that obeys 
onditions of the form (A.1.10)for modes of 
hiral and anti-
hiral �elds and that is normalised by 〈0|ξc0ξ̄c0|0〉 = 1 1As a �rst non-trivial test for our theory, we would like to verify that it satis�es worldsheet duality. Let us stress that in this note we 
onsider a theory in whi
h bulk andboundary theory 
onsist of Ramond se
tors only, a 
hoi
e that we shall 
omment in moredetail below. In su
h a model, world-sheet duality relates quantities that are periodi
in both world-sheet spa
e and time. The simplest su
h quantity in our boundary theorywould be tr[qL0+1/12(−1)F ] whi
h vanishes sin
e bosoni
 and fermioni
 states 
ome in pairson ea
h level of the state spa
e. The same is 
ertainly true for 〈N |qL0+1/12(−1)F |N〉, inagreement with world-sheet duality. In order to probe �ner details of the theory, we needto 
onsider quantities with additional insertions of �elds or zero modes. Here, we shallestablish the relationtr (qHo

(−1)F c(z)c̄(z̄)
)

= 〈N |q̃ 1
2
Hc

(−1)
1
2
F c

c(ξ)c̄(ξ̄)|N〉 , (A.1.17)where Ho = L0 + 1/12, q = exp(2πiτ), ξ = exp(− 1
τ

ln z) and F c = F + F̄ , as usual. The
losed string Hamiltonian is given by
Hc =

∑

m∈Z
−
[
: b−mcm : + : b̄−mc̄m :

]
+ 1/6 .Validity of eq. (A.1.17) is required by the de�nition of boundary states (see e.g. [51℄).Starting with the left hand side, it is rather easy to see thattr (qL0+1/12(−1)F c(z)c̄(z̄)

)
= tr (qL0+1/12(−1)F ξc0ξ

b
0

)

= −iτη(q)2 = η(q̃)2 . (A.1.18)In the 
omputation we split o� the term c0b0 from Ho and use it to saturate the fermioni
zero modes. The rest is then straightforward. We 
an reprodu
e the same result if weinsert our expli
it formulae for the boundary states |N〉 and 〈N | into the right hand sideof eq. (A.1.17).It is possible to perform another similar test of our boundary theory using the usualtrivial boundary 
onditions of the ghost system. In this 
ase, the �eld c(z) is identi�ed1In order to have SL(2, C) invariant va
ua |0〉 and 〈0|, they have to be annihilated by the zero modes
b0, b̄0 (resp. by b0, c0 for our boundary theory). This implies 〈0|0〉 = 〈0|{b0, ξ

c
0}|0〉 = 0. The �rst non-vanishing expressions are 〈0|ξc

0ξ
b
0|0〉 for our boundary theory, and 〈0|ξc

0ξ̄
c
0|0〉 in the bulk. This is des
ribedin detail in [99℄. 132



A.1. TWISTED BOUNDARY CONDITIONS IN THE BC C = −2 GHOST SYSTEM133with its own anti-holomorphi
 partner c̄(z̄) along the boundary and likewise for the pair
b and b̄. Let us re
all that the boundary state |id〉 and its dual 〈id| take the form [98℄

|id〉 = exp( ∞∑

m=1

(c−mb̄−m
m

+
c̄−mb−m
m

))
(ξc0 − ξ̄c0)|0〉

〈id| = i〈0|(ξc0 − ξ̄c0) exp( ∞∑

m=1

1

m

(
b̄mcm + bmc̄m

)) (A.1.19)where we use the same notations as before. For the ex
hange of 
losed string modesbetween |N〉 and 〈id| the above formulae imply
〈id| q̃ 1

2
Hc

(−1)
1
2
F c

c(ξ) |N〉 = 〈id| q̃ 1
2
Hc

(−1)
1
2
F c

ξc0 |N〉

= q̃
1
12

∞∏

n=1

(
1 + q̃2n

)
=

√
θ2(2τ̃)

2η(2τ̃)
. (A.1.20)On
e more we had to insert the �eld c(z) in order to get a non-vanishing result. For
omparison with a world-sheet dual, we need to quantise the ghost system on a strip or,equivalently, on the upper half plane with trivial boundary 
onditions on the positive realaxis and our non-trivial ones on the other half. A moment of re�e
tion reveals that thefollowing 
ombinations χ+(z) = 2−1/2(b(z)+i∂c(z)) and χ−(z) = 2−1/2(ib(z)+∂c(z)) obeythe simple periodi
ity relations χ±(e2πiz) = ±iχ±(z). Hen
e, they may be 
onstru
tedthrough fermioni
 h = 1 twist �elds [63℄

χ±(z) =
∑

r∈Z∓ 1
4

χ±
r z

−r−1 .The modes χ±
r obey the same 
anoni
al 
ommutation relations, {χ+

r , χ
−
s } = rδr,−s, asbefore. Formulae for the Virasoro generators 
an easily be worked out. For us, it su�
esto display the zero mode L̃0,

L̃0 = −
∑

r∈Z− 1
4

: χ+
r χ

−
−r : − 3

32
. (A.1.21)The 
onstant shift by 3/32 is needed in order to obtain standard Virasoro relations withthe other generators (see also [2℄ for a 
losely related analysis of twisted se
tors in thebulk theory). The state spa
e of our boundary theory 
ontains two ground states |Ω±〉whi
h are related to ea
h other by the a
tion of a zero mode ξc. On this spa
e we 
anintrodu
e the �eld c through

c(z) = ξc +
i√
2

∑

r∈Z− 1
4

χ+
r

r
z−r − 1√

2

∑

r∈Z+ 1
4

χ−
r

r
z−r .133



134 APPENDIX A. THE BC-GHOST SYSTEM�>From the 
onstru
tion of the state spa
e and our formula for H̃o = L̃0 + 1/12 we inferthe following expression for the mixed open string amplitude,tr(qH̃o

(−1)F c(z)
)

= q−
1
96

∞∏

n=0

(
1− q 1

2
(n+1/2)

)
=

√
θ4(τ/2)

η(τ/2)
, (A.1.22)whi
h reprodu
es exa
tly the previous result (A.1.20) upon modular transformation and
on
ludes our investigation of the new boundary theory.The 
hoi
e of our new gluing 
ondition for the bc system was motivated by the interestin branes on supergroups. As we shall dis
uss in the next 
hapter, maximally symmetri
branes in a WZNW model on a supergroup turn generi
ally out to satisfy Neumann-typeboundary 
onditions in the fermioni
 
oordinates. This implies that all fermioni
 zeromodes must a
t non-trivially on the spa
e of open string states. In our toy model, therole of the fermioni
 
oordinates is played by c and c̄. Hen
e, we needed to �nd boundary
onditions with a four-fold degenera
y of ground states. For the standard boundary
onditions of the bc system, c = c̄ along the boundary and hen
e only one fermioni
zero mode survives, giving rise to a 2-dimensional spa
e of ground states. In this sense,the usual boundary 
onditions of the bc systems are lo
alised in one of the fermioni
dire
tions. Our boundary 
onditions 
ome with two non-vanishing zero modes ξb0 and

ξc0 (and their dual momenta c0 and b0). This property makes them a good model formaximally symmetri
 branes on supergroups.There exist various extensions of our theory that we want to brie�y 
omment about.In our analysis we fo
used on the RR se
tor of the bc ghost system in the bulk. Itis 
ertainly straightforward to in
lude an NSNS se
tor in 
ase this is required by theappli
ation. Furthermore, we 
an also repla
e the bulk theory by its logarithmi
 
ousin,the symple
ti
 fermion model, we will do that in the next se
tion.In the 
ase of the bc ghost system, the boundary state |N〉 has a rather novel feature:it des
ribes a logarithmi
 boundary theory in a non-logarithmi
 bulk. Put di�erently,the bc ghost system possesses a diagonalisable bulk Hamiltonian Hc. Nevertheless, theHamiltonian Ho of our new boundary theory is non-diagonalisable. Hen
e, logarithmi
singularities 
an appear, but only when two boundary �elds approa
h ea
h other. To thebest of our knowledge, su
h a behaviour has never been en
ountered before.
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Appendix BThe Representation Theory of ĝl(1|1)B.1 Spe
tral �ow automorphismsA useful tool for the investigation of the 
urrent algebra ĝl(1|1) and its representationsare spe
tral �ow automorphisms. The �rst one, γm, leaves the modes Nn invariant anda
ts on the remaining ones as
γm(En) = En + kmδn0 , γm(Ψ±

n ) = Ψ±
n±m . (B.1.1)The previous transformation also indu
es a modi�
ation of the energy momentum tensorwhi
h is determined by

γm(Ln) = Ln +mNn . (B.1.2)Sin
e the rank of GL(1|1) is two, there is a se
ond one parameter family of spe
tral �owautomorphisms γ̃ζ whi
h is parameterised by a 
ontinuous number ζ . It is rather trivialin the sense that its a
tion does not a
t on the mode numbers,
γ̃ζ(Nn) = Nn + k ζ δn0 and γ̃ζ(Ln) = Ln + ζ En . (B.1.3)All other modes of the 
urrents are left invariant.The two spe
tral �ow symmetries above indu
e a map on the set of representations ofĝl(1|1). Given any representation ρ we obtain two new ones by de�ning ρm = ρ ◦ γm and

ρ̃ζ = ρ ◦ γ̃ζ. The latter is not very ex
iting but the former will play a 
ru
ial role below.Let us thus state in passing that the super-
hara
ters of these representations are relatedby
χρm

(µ, τ) = χρ(µ+mτ, τ) . (B.1.4)This formula gives severe restri
tions on the nature of the representations ρm.135



136 APPENDIX B. THE REPRESENTATION THEORY OF ĜL(1|1)B.2 Some formulae 
on
erning Theta fun
tionsLet us re
all some fa
ts about the theta fun
tion in one variable, the referen
e isMumford's �rst book [72℄. θ(µ, τ) is the unique holomorphi
 fun
tion on C×H, su
h that
θ(µ+ 1, τ) = θ(µ, τ),

θ(µ+ τ, τ) = e−πiτe−2πiµθ(µ, τ),

θ(µ+
1

2
, τ + 1) = θ(µ, τ),

θ(µ/τ,−1/τ) =
√
−iτeπiµ2/τθ(µ, τ)

limIm(τ)→∞
θ(µ, τ) = 1 .

(B.2.1)
The theta fun
tions has a simple expansion as an in�nite produ
t,

θ(µ, τ) =
∞∏

m=0

(
1− qm

) ∞∏

n=0

(
1 + u−1qn+1/2

)(
1 + uqn+1/2

)
, (B.2.2)where q = e2πiτ and u = e2πiµ. The ĝl(1|1) 
hara
ters in the RR se
tor we shall presentin the next se
tion have a simple expression in terms of the variant

θ
(
µ− 1

2
(τ + 1), τ

)
= (1− u)

∞∏

n=1

(
1− qn

)(
1− uqn

)(
1− u−1qn

)
. (B.2.3)Its behaviour under modular S transformations whi
h send the arguments of the thetafun
tion to τ̃ = −1/τ and µ̃ = µ/τ 
an be dedu
ed from the properties above. One simply�nds

θ
(
µ̃− 1

2
(τ̃ + 1), τ̃

)
= i
√
−iτ̃ eπiµ̃2/τ̃ u1/2ũ−1/2 q−1/8q̃1/8 θ

(
µ− 1

2
(τ + 1), τ

)
. (B.2.4)B.3 Representations and their 
hara
tersIn this appendix we review the representations of the 
urrent superalgebra ĝl(1|1)that are relevant for our dis
ussion in the main text. We shall slightly deviate fromthe presentation in [26℄ in putting even more emphasis on the role of the spe
tral �owautomorphism (B.1.1). The latter is the only 
onstituent whi
h leads to a substantialdi�eren
e between the representation theory of the �nite dimensional subalgebra gl(1|1)and that of its a�nization ĝl(1|1).All irredu
ible representations of ĝl(1|1) are quotients of Ka
 modules. Just as forgl(1|1), we distinguish between Ka
 modules 〈e, n〉 and anti Ka
 modules 〈e, n〉. These136



B.3. REPRESENTATIONS AND THEIR CHARACTERS 137symbols have been 
hosen sin
e the ground states transform in the 
orresponding repre-sentations of the horizontal subalgebra gl(1|1).1 For e 6∈ kZ both types of representationswill be 
alled typi
al, otherwise atypi
al. Typi
al representations are irredu
ible and onehas the equivalen
e 〈e, n〉 ∼= 〈e, n〉. The super-
hara
ter of (anti) Ka
 modules 
an easilybe found to be
χ̂〈e,n〉(µ, τ) = χ̂〈e,n〉(µ, τ) = un−1q

e
2k

(2n−1+e/k)+1/8θ
(
µ− 1

2
(τ + 1), τ

)/
η(τ)3 . (B.3.1)When writing down this expression we assumed the ground state with quantum numbers

(E0, N0) = (e, n) to be fermioni
. The spe
tral �ow γm transforms the 
hara
ters of Ka
modules a

ording to
γm : χ〈e,n〉(µ, τ) 7→ (−1)mχ〈e+mk,n−m〉(µ, τ) . (B.3.2)This equation should be interpreted as de�ning a map between representations. Were
ognise that 〈e, n〉 is transformed into 〈e+mk, n−m〉 under γm and that the parity ofthe module is 
hanged if m is odd. A 
hange of parity o

urs if the interpretation of whatare bosoni
 and what are fermioni
 states is altered 
ompared to the standard 
hoi
e.The equivalen
e between Ka
 modules and anti Ka
 modules is destroyed for e ∈ kZ.For these values the representations 〈mk, n〉 and 〈mk, n〉 degenerate and exhibit a singlesingular ve
tor whi
h 
an be found on energy level |m|, see [26℄ for details.2 This statementis parti
ularly 
lear for m = 0 when the singular ve
tor is a ground state. In view ofeq. (B.3.2) the attentive reader will have anti
ipated that the residual 
ases e = mksimply arise by applying the spe
tral �ow automorphism γm.The stru
ture of the Ka
 modules may be inferred from their 
omposition series.A

ording to our previous statements the Ka
 module 〈mk, n〉 
ontains pre
isely oneirredu
ible submodule denoted by 〈n− 1〉(m). The quotient of 〈mk, n〉 by the submodule

〈n−1〉(m) turns out to be the irredu
ible representation (〈n〉(m)
)′. Hen
e, one 
an des
ribethe representation using the 
omposition series

〈mk, n〉 :
(
〈n〉(m)

)′ −→ 〈n− 1〉(m) . (B.3.3)Again, all this 
an be understood best for m = 0 where the statement redu
es to well-known fa
ts about Ka
 modules of the �nite dimensional subalgebra gl(1|1). This remarkespe
ially implies that the atypi
al irredu
ible representations 〈n〉(0) are built over the one-dimensional gl(1|1)-module 〈n〉. They are transformed into the remaining representations
〈n〉(m) under the spe
tral �ow automorphism γm. For m 6= 0, the ground states of 〈n〉(m)
an easily be seen to form the gl(1|1)-module 〈mk, n − m〉. The information 
ontained1We would like to stress that the representations 〈mk, n〉 and 〈mk, n〉 are inequivalent for m ∈ Z eventhough their ground states transform identi
ally as long as m 6= 0. The reason be
omes 
lear below.2In order to avoid 
onfusion we would like to emphasise that the 
onstru
tion in [26℄ gives rise to Ka
modules for m < 0 and anti Ka
 modules for m > 0. The remaining modules 
annot be obtained throughVerma modules of the sort 
onsidered there. 137



138 APPENDIX B. THE REPRESENTATION THEORY OF ĜL(1|1)in the 
omposition series (B.3.3) may be used to 
al
ulate the super-
hara
ters of theatypi
al irredu
ible representations 〈n〉(m). Following the ideas of [23℄ one simply �nds
χ̂

(m)
〈n〉 (µ, τ) =

∞∑

l=0

χ̂〈mk,n+l+1〉(µ, τ)

=
un

1− uqm
q

m
2

(2n+m+1)+1/8θ
(
µ− 1

2
(τ + 1), τ

)

η(τ)3
.

(B.3.4)Analogous results hold for anti Ka
 modules.Finally we need to dis
uss the proje
tive 
overs of irredu
ible representations. Thetypi
al representations 〈e, n〉 with e 6∈ kZ are proje
tive themselves. But the atypi
alrepresentations 〈n〉(m) have more 
ompli
ated proje
tive 
overs whose 
omposition seriesreads
P(m)
n :

(
〈n〉(m)

)′ −→ 〈n+ 1〉(m) ⊕ 〈n− 1〉(m) −→
(
〈n〉(m)

)′
. (B.3.5)An alternative des
ription of the proje
tive 
overs is in terms of their Ka
 
ompositionseries P(m)

n : 〈mk, n〉 → 〈mk, n + 1〉′. Consequently, the 
hara
ters of proje
tive 
oversare given by
χ̂P(m)

n
(µ, τ) = χ̂〈mk,n〉(µ, τ)− χ̂〈mk,n+1〉(µ, τ) . (B.3.6)These statements 
an on
e again be 
he
ked expli
itly for m = 0 and then generalised toarbitrary values ofm by means of the spe
tral �ow transformation. For future 
onvenien
ewe shall silently omit the supers
ript (m) in the 
ase that m = 0.B.4 Some modular transformationsIn this se
tion we list the modular transformations of all the a�ne 
hara
ters appearingin the previous se
tion. Sin
e all these representations may be expressed in terms of Ka
modules it is su�
ient to know the transformation

χ̂〈e′,n′〉(µ, τ) = −1

k

∫
dedn exp

2πi

k

[
e′(n−1/2)+e(n′−1/2)+e′e/k

]
χ̂〈e,n〉(µ̃, τ̃) . (B.4.1)to derive the remaining ones. Using the series representation (B.3.4) one, e.g., obtainsthe following behaviour for 
hara
ters of atypi
al representations,

χ̂
(m)
〈n′〉(µ, τ) =

1

2ki

∫
dedn

exp 2πi
[
e/k(n′ +m) +m(n− 1/2)

]

sin(πe/k)
χ̂〈e,n〉(µ̃, τ̃) . (B.4.2)Similarly, using the Ka
 
omposition series for proje
tive 
overs we dedu
e

χ̂P(m)

n′

(µ, τ) = χ̂〈mk,n′〉(µ, τ)− χ̂〈mk,n′+1〉(µ, τ)

=
2i(−1)m

k

∫
dedn exp 2πi

[
e/k(n′ +mk) +mn

]
sin(πe/k) χ̂〈e,n〉(µ̃, τ̃) .

(B.4.3)The alternating signs in these formulae arise sin
e the spe
tral �ow 
hanges the parity ofrepresentations for odd values of m. 138



B.5. FUSION RULES OF THE ĜL(1|1) CURRENT ALGEBRA 139B.5 Fusion rules of the ĝl(1|1) 
urrent algebraUp to the need to in
orporate the spe
tral �ow automorphism and the additionalatypi
al representations indu
ed from it, the fusion rules of ĝl(1|1) agree pre
isely withthe tensor produ
t de
omposition of gl(1|1)-modules, see e.g. [71℄. Given any two integers,
m1, m2 ∈ Z, we thus �nd
〈e1, n1〉 ⊗ 〈e2, n2〉 ∼=




〈e1 + e2, n1 + n2〉′ ⊕ 〈e1 + e2, n1 + n2 − 1〉 , e1+e2 6∈ kZ

P(m)
n1+n2−1 , e1+e2 = mk

〈n1〉(m1) ⊗ 〈n2〉(m2) ∼= 〈n1 + n2〉(m1+m2)

〈n1〉(m1) ⊗ 〈e2, n2〉 ∼= 〈m1k + e2, n1 + n2〉 . (B.5.1)The prime ′ in the �rst line indi
ates that the representation has the opposite parity
ompared to our standard 
hoi
e.
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Appendix CSome integral formulaeIn this se
tion, we provide a 
omplete list of integral formulae needed for the 
ompu-tation of the 
orrelation fun
tions. As referen
e we use [100℄.We start with the formulae needed in the 
omputation of boundary three-point fun
-tions. First re
all the integral representations of the hypergeometri
 fun
tion F (α, β; γ|x)

∫ ∞

1

du |u|−α|u− 1|−β|u− x|−γ =

Γ(α + β + γ − 1)Γ(1− β)

Γ(α+ γ)
F (γ, α+ β + γ − 1;α + γ | x)

∫ x

0

du |u|−α|u− 1|−β|u− x|−γ =

x1−α−γ Γ(1− α)Γ(1− γ)
Γ(2− α− γ) F (β, 1− α; 2− α− γ | x)

∫ 0

−∞
du |u|−α|u− 1|−β|u− x|−γ =

Γ(α + β + γ − 1)Γ(1− α)

Γ(β + γ)
F (γ, α+ β + γ − 1; β + γ | 1− x)

∫ 1

x

du |u|−α|u− 1|−β|u− x|−γ =

(1− x)1−β−γ Γ(1− β)Γ(1− γ)
Γ(2− β − γ) F (α, 1− β; 2− β − γ | 1− x)

(C.0.1)

these integrals 
onverge for |x| < 1.If only the �rst order boundary intera
tion 
ontributes, we need the spe
ial 
ase α +141



142 APPENDIX C. SOME INTEGRAL FORMULAE
β + γ = 2 of the above integrals whi
h 
an be expressed as
∫

[−∞,0] ∪ [1,∞]

du |u|−α|u− 1|−β|u− x|−γ = (1− x)α−1xβ−1Γ(1− α)Γ(1− β)

Γ(γ)

∫

[0,x]

du |u|−α|u− 1|−β|u− x|−γ = (1− x)α−1xβ−1Γ(1− α)Γ(1− γ)
Γ(β)

∫

[x,1]

du |u|−α|u− 1|−β|u− x|−γ = (1− x)α−1xβ−1Γ(1− β)Γ(1− γ)
Γ(α)

.

(C.0.2)
If the bulk intera
tion term 
ontributes, we have to evaluate the following integral for

α + β + γ = 0

∫
d2z

(z − z̄)
|z|2α+2|z − 1|2β+2|z − x|2γ+2

=

=
1

γx+ β

∫
d2z ∂̄

( z̄(z̄ − 1)(z̄ − x)
|z|2α+2|z − 1|2β+2|z − x|2γ+2

)
+

− 1

γx+ β

∫
d2z ∂

( z(z − 1)(z − x)
|z|2α+2|z − 1|2β+2|z − x|2γ+2

)

= − 2

γx+ β

∫
du

u(u− 1)(u− x)
|u|2α+2|u− 1|2β+2|u− x|2γ+2

= − 1

γ(γx+ β)

d

dx

( ∫

[−∞,0] ∪ [1,∞]

du
1

|u|2α+1|u− 1|2β+1|u− x|2γ +

−
∫ 1

0

du
1

|u|2α+1|u− 1|2β+1|u− x|2γ
)

= −4(1− x)2α−1x2β−1
(Γ(−2α)Γ(−2β)

Γ(2γ + 1)
+

Γ(−2α)Γ(−2γ)

Γ(2β + 1)
+

Γ(−2β)Γ(−2γ)

Γ(2α+ 1)

)(C.0.3)and if two boundary intera
tions 
ontribute, we need (again α + β + γ = 0)
∫ b1

a1

du1

∫ b2

a2

du2
|u1 − u2|

|u1u2|α+1|(u1 − 1)(u2 − 1)|β+1|(u1 − x)(u2 − x)|γ+1
=

= x2β−1(1− x)2α−1

∫ d1

c1

du1

∫ d2

c2

du2
|u1 − u2|

|(u1 − 1)(u2 − 1)|β+1|u1u2|γ+1
,(C.0.4)142



143where ci =
b−1
i −x−1

1−x−1 and di =
a−1

i −x−1

1−x−1 . For these integrals one has to evaluate
∫ ∞

1

du1

∫ u1

1

du2
(u1 − u2)

|(u1 − 1)(u2 − 1)|β+1|u1u2|γ+1
= 4

Γ(−2α)Γ(−2β)

Γ(2γ + 1)
∫ 1

0

du1

∫ u1

0

du2
(u1 − u2)

|(u1 − 1)(u2 − 1)|β+1|u1u2|γ+1
= 4

Γ(−2γ)Γ(−2β)

Γ(2α + 1)
∫ 0

−∞
du1

∫ u1

−∞
du2

(u1 − u2)

|(u1 − 1)(u2 − 1)|β+1|u1u2|γ+1
= 4

Γ(−2γ)Γ(−2α)

Γ(2β + 1)

(C.0.5)
where we used the following spe
ial form of the Gamma doubling formula

Γ(1/2− α)Γ(−α)Γ(1/2− β)Γ(−β)

Γ(1/2)Γ(γ + 1/2)Γ(γ + 1)
= 4

Γ(−2α)Γ(−2β)

Γ(2γ + 1)
. (C.0.6)For the 
omputation of bulk-boundary 2-point fun
tions we use some spe
ial 
ases ofan integral formula that 
an be found in the re
ent work of Fateev and Ribault [75℄. In
ase of a single insertion of the bulk intera
tion we need

∫
d2z

|z − z̄|
|1 + z2|2(α+1)

= − 2iπ3/22−4α Γ(2α+ 1/2)Γ(2α)

Γ2(α + 1)Γ2(α+ 1/2)
. (C.0.7)To treat the insertion of one boundary intera
tion we employ

∫
du |1 + u2|−(α+1) = π2−2αΓ(2α + 1)

Γ2(α + 1)
. (C.0.8)The insertion of boundary intera
tions may be evaluated by means of the following formula

∫
du1du2

|u1 − u2|
|1 + u2

1|1+α|1 + u2
2|1+α

= 4π3/22−4α Γ(2α+ 1/2)Γ(2α)

Γ2(α + 1)Γ2(α + 1/2)
. (C.0.9)
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