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Abstract

In this thesis, the compactification of heterotic supergravity on six-dimensional mani-
folds with SU(2) and SU(3) structure is studied. For the SU(2)-structure backgrounds, the
spectrum and the bosonic action of the effective theory in four dimensions are obtained. The
results are gauged versions of the ungauged .4/~ = 2 supergravity obtained after compactifi-
cation on K3 x T2. The gauge algebra and the Killing prepotentials are also computed. For
the SU(3)-structure backgrounds, the couplings of the resulting .4~ = 1 supergravity are
computed by reducing terms in the heterotic supergravity action involving fermionic fields,
and are further checked by computing the supersymmetry variations of the fermions.

Zussamenfassung

In dieser Dissertation wird die Kompaktifizierung der heterotischen Supergravitation
auf sechsdimensionalen Mannigfaltigkeiten mit SU(2)- und SU(3)-Struktur untersucht. Fiir
die SU(2)-Struktur-Hintergriinde erhalten wir das Spektrum und die bosonische Wirkung
der effektiven Theorie. Die Ergebnisse sind geeichte Versionen von der ungeeichten .4 = 2-
Supergravitation, die man aus der Kompaktifizierung auf K3 x T2 erhélt. Die Eichalgebra
und die Killing-Prépotentiale werden auch berechnet. Fiir die SU(3)-Struktur-Hintergriinde
werden die Kopplungen der resultierenden .#° = 1-Supergravitation aus der Reduktion
fermionischer Terme in der Wirkung der heterotischen Supergravitation berechnet. Diese
werden durch die Berechnung der Supersymmetrie-Variationen der Fermionen verifiziert.
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Chapter 1

Introduction

AFENMETPHTOL MHAEIL EIZITQ

Reducing all diverse, perceptible phenomena to one unique, fundamental principle has
been a paradigm of Western reasoning —an obsession even— since at least the time of the
Greeks. From the atomistic ideas of Leucippus and Democritus in around 400 BC to the
Standard Model of Particle Physics in the 20th century, the principle known as Occam’s
razor or lex parsimoniae is perfectly recognizable as a most successful ‘prejudice’ underlying
the quest for an explanation of the physical world.

The Standard Model of Particle Physics is undoubtedly a major achievement in attaining
that paradigm. It describes the strong interaction of quarks and the electroweak interaction
of leptons and quarks according to the single scheme of Yang-Mills or non-Abelian gauge
theory. Its predictions have been tested to astonishing accuracy in numerous experiments
up to the TeV scale. However, in spite of its tremendous success there are also reasons
why the Standard Model can not be the ultimate story. First of all, it comes with an
uncomfortably large number of free parameters in the form of Yukawa couplings, mixing
angles, parameters of the Higgs potential and vacuum expectation value of the Higgs field.
Not to mention the existence of hierarchy and naturalness problems concerning the values
of these parameters! In an attempt to solve some of these problems, supersymmetry has
been invoked. It is a symmetry relating bosons and fermions and it roughly doubles the
matter content of the Standard Model in its minimal version [1]. Nevertheless, simply
adding superpartners to the particle content of the Standard Model still leaves us with the
plethora of free parameters.

But more importantly, gravity is absent in the Standard Model. The gravitational
force is successfully described on large scales by the General Theory of Relativity, but
when quantum effects are expected to play a role, as happens for example when trying to
understand black holes or the Big Bang itself, amending this classical theory is inevitable
[2]. Reconciling though the assumption made by this theory of a dynamical but otherwise
smooth spacetime with the uncertainty principle of Quantum Mechanics at sub-Planckian
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8 1: INTRODUCTION

scales has proven a very difficult puzzle. More technically stated: in quantizing gravity it
is very difficult to avoid divergences, and a renormalizable quantum field theory based on
Einsten’s gravity theory seems to be very difficult to write down.*

String Theory [3-5] claims that the physical world is composed not of point-like par-
ticles but of tiny vibrating strings. Being unidimensional in space, these strings possess a
richer structure than zero-dimensional objects, and one can assume that all the elementary
particles known as such so far (leptons, quarks and bosons mediating interactions) are but
this unique type of string vibrating in different fashions. In other words, particle flavor is
traded for vibration mode of a single object: the string. Certainly an idea of which the
aforementioned Democritus would have been delighted to get to know.

Although historically its first motivation was a different one, String Theory has proven
to be able to deal in a very clean, often miraculous way with the puzzle of quantum gravity.
With a minimum of assumptions, it manages to give us gauge interactions and gravity in a
very natural, unified way and almost for free. There are indeed spin-2 massless excitations
of the closed string that one can not fail to identify with the graviton. The nonlocal nature
of string interactions (they interact by joining and splitting) intuitively explains how the
short-distance singularities of point-particle interactions can be avoided. Moreover, String
Theory natively incorporates supersymmetry, since the only known consistent string theories
happen to be supersymmetric. The bosonic massless excitations for each of these theories
consist universally of the graviton, a scalar named dilaton and the Neveu-Schwarz two-form,
and additionally there are some number of antisymmetric tensors or p-form fields depending
on the theory. The dynamics of these fields is described by a supergravity theory, i.e. a
field theory with local supersymmetry. Another expression of its ‘economy’ is that String
Theory contains only one free parameter, namely the string length or its inverse, the string
tension, since the string coupling constant is fixed by the vacuum expectation value of the
dilaton field.

However, our understanding of String Theory is far from being complete. The five
consistent superstring theories (Type I, Type ITA, Type IIB and Heterotic with gauge
group SO(32) or EgxEg) are known to be interrelated by dualities, some of which are
nonperturbative in nature (see Figure 1.1). Since a nonperturbative control over String
Theory is missing, those dualities remain conjectural, though they have proven to apply on
the few situations where calculations are under control. Nowadays it is believed that all five
superstring theories are like tips of a big iceberg called M-theory [6]. The latter is largely
unknown, though at low energies it becomes eleven-dimensional supergravity coupled to a
three-form field.

It turns out that the superstring moves consistently on a flat spacetime background
only in ten dimensions and not in the four of the observable world. One possible way
out of this dilemma is to take the six dimensions in excess to be curled up into a com-

*This would change if the hope for finiteness of .#" = 8 supergravity in four dimensions proves right.
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Figure 1.1: Web of superstring theories. Here ) is an orientifold projection, T is perturbative
T-duality, S is nonperturbative strong/weak duality and S* (S!/Zsy) denotes compacti-
fication on St (S1/Z>).

pact six-dimensional space Y a la Kaluza-Klein [7, 8]. In other words, the theory must be
compactified to four dimensions. Demanding that at least some of the supersymmetry of
the superstring survives the dimensional reduction imposes constraints on ). Considering
backgrounds where all the p-form fields are set to zero, and requiring that the vacuum be
supersymmetric, leads to the existence on ) of a global spinor that is covariantly constant
with respect to the Levi-Civita connection. This preserves the minimal amount of super-
symmetry in four-dimensions and is equivalent to choosing ) as a manifold with SU(3)
holonomy or Calabi-Yau space [9-11]. The compactification ansatz then consists of an
expansion of the ten-dimensional fields in harmonic forms on ).

The compactification of the low energy supergravity corresponding to, say, the heterotic
string on a Calabi-Yau leads to an .4~ = 1 supergravity in four dimensions [9, 12]. If even
more supersymmetry is to be preserved, one must increase the number of global covariantly
constant spinors on ). The existence of two of these spinors imposes stronger restrictions
on ). In this case, the manifold must have SU(2) holonomy and can only be the product
manifold K3 x T2 [13]. As a result, an .4 = 2 supergravity in four dimensions is obtained
(see [14, 15] and references therein).

Calabi-Yau compactifications come though with a serious drawback: the moduli prob-
lem. The parameters or moduli defining, for example, the size and shape of the Calabi-Yau
may vary from point to point in four-dimensional spacetime. They therefore appear as
scalar fields in the effective four-dimensional theory. But there is no potential in the effec-
tive action for these fields and their values remain undetermined. More importantly, a flat
potential corresponds to massless scalars or moduli, and these typically have a measurable
effect on the gravitational force. No such effect has been detected. A flat potential also

spoils the predictive power of the theory. Something must therefore be done to generate a
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potential that stabilizes these fields at some specific values. There are several mechanisms
that can be implemented to give masses to the moduli. Some of them are nonperturba-
tive, either at string level like instanton corrections or at four-dimensional level like gaugino

condensation, but here a different sort of mechanism is analyzed.

1.1 Fluxes and torsion

One possibility that has been devised to overcome the moduli problem is to turn on p-form
fluxes on the internal manifold [16-19]. In all string theories, there is at least one of these
p-forms, namely the Neveu-Schwarz two-form. In Type II theories there are additionally
the Ramond-Ramond p-forms, with odd p for ITA and even p for IIB. In the heterotic string
one has a one-form or gauge field in the adjoint of either SO(32) or Eg x Eg. The idea is
intuitively simple, and it is to consider a background where the field strengths for these
p-form fields take a nonzero value giving a net contribution when integrated over (p + 1)-
cycles of the internal manifold. Of course, there are restrictions on the possible values of
these fluxes. In particular, fluxes contribute a positive energy that must be compensated
by introducing negative-tension sources like orientifold planes in Type II theories. Enough
freedom is nevertheless left as to render the approach very fruitful. The energy contained
in the flux certainly depends on the size and shape of the internal manifold and therefore
the fluxes can in principle stabilize the moduli by generating a potential.

The conditions for a supersymmetric vacuum are modified in the presence of backgrounds
fluxes. In this case, the global spinors on the internal manifold must be covariantly constant
with respect to a connection that has a nonvanishing torsion [20]. Physically, the torsion
is the backreaction of the geometry to the presence of fluxes. This leads to the idea of
relaxing the special holonomy condition on ) and demanding no more than the existence
of global nowhere-vanishing spinors. The existence of these spinors imposes restrictions
on the possible manifolds ). It can be shown that it implies a reduction of the structure
group of the manifold. For a generic six-dimensional manifold, the bundle of all possible
orthonormal frames has structure group SO(6), since these are the transformations that
preserve orthonormality. If a subbundle thereof can be constructed having the same fiber,
but with transition functions taking values on a subgroup G C SO(6), one is in presence of
reduced-structure or G-structure manifolds [21-23]. Special-holonomy manifolds or Calabi-
Yau spaces are then a particular case of reduced-structure manifolds where the torsion
happens to vanish. Compactifications of the heterotic string on these so-called generalized
Calabi-Yau spaces have been studied, for example, in [24-31].

As already mentioned, the compactification ansatz for the case of special holonomy or
Calabi-Yau spaces consists of an expansion in the harmonic forms of the manifold. The G-
structure manifolds are also characterized by a finite set of forms that lead to light modes

after a dimensional reduction [32]. These forms are in general not harmonic, and in fact their
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exterior differentials are a measure of the torsion and therefore of how much the manifold
deviates from special holonomy.

At the level of the effective action, both fluxes and torsion can be considered indepen-
dently. Only the conditions for a supersymmetric vacuum tie them together [33]. But fluxes
and torsion are analogous in other senses, which explains the name of ‘geometric flux’ given
to torsion. The compactification of Type IIA on a Calabi-Yau threefold has long been
conjectured to be nonperturbatively dual to Heterotic on K3 x T2 [34]. It has also been
conjectured that this duality can be extended to the case where fluxes are turned on along
K3 x T? on Heterotic’s side. The dual is identified as Type IIA compactified on a manifold
with SU(3)-structure (see [35] and references therein). So flux and torsion can be related
by duality.

The effect on the low-dimensional theory of turning on fluxes and /or torsion is generically
the gauging of isometries of the manifold spanned by the scalars of the ungauged theory
[36]. Local supersymmetry dictates that such gauging be accompanied by the generation of
a potential for the corresponding scalar fields [37]. As already mentioned, it is in this way
that flux compactifications circumvent the moduli problem [38]. The flux parameters show
up in the effective action as charges and masses for the scalars fields and in the structure
constants of the gauge algebra.

1.2 Outline of the thesis

In this thesis, the compactification of heterotic low-energy supergravity on backgrounds
with reduced structure group is studied. In particular, backgrounds with SU(2) and SU(3)
structure are considered. In order to set the stage, the compactification of heterotic super-
gravity on K3 x T2 is reproduced in Chapter 2. Some background material is given, like
heterotic supergravity in Section 2.1 and a description of the manifolds K3 and 72 together
with their moduli spaces in Section 2.2. The philosophy behind dimensional reduction and
the derivation of the effective action after compactification on K3 x T? is discussed in Sec-
tion 2.3. As already mentioned, this is an .4 = 2 supergravity in four dimensions coupled
to a number of vector- and hypermultiplets.

Chapter 3 is devoted to the compactification of heterotic supergravity on SU(2)-structure
backgrounds. A characterization of manifolds with SU(2) structure in six dimensions is
given in Section 3.1. The moduli space of these structures is discussed in Section 3.1.1
and an ansatz is constructed in Section 3.1.2 by expanding the exterior differential of the
forms characterizing the SU(2) structure in terms of the forms themselves and imposing
some consistency conditions [39, 40]. Two complementary cases are distinguished. The
first can be realized by considering a K3 fibration over a torus base. The derivation of
the corresponding effective action is performed in Section 3.2. The second case is more
complicated in that some twisting is performed on the torus part. It was chosen to term
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this case ‘K3 fibration over a twisted torus’, although a twisted two-torus does not exist
as a global manifold. Actually, this case can be made sense of as a Scherk-Schwarz type
reduction on a K3 x S! fibration over a circle and is discussed in Section 3.3. The effective
action is obtained and again the spectrum and the moduli space is as in Chapter 2. In the
end, it is argued that the effective theory for the general case is just a sum of the results for
the two complementary cases discussed. The computation of the Killing prepotentials and
the gauge algebra of the effective theory is performed in Section 3.4, where the consistency
of the obtained effective Lagrangian with the general structure of .4 = 2 supergravity is
also checked. Ref. [41] is the result of this effort.

Chapter 4 deals with the compactification of heterotic supergravity on SU(3)-structure
backgrounds. The bosonic part of this analysis has been already performed in the literature
and the result of the reduction is an effective gauged .4 = 1 supergravity [11, 42-44]. Here
a different approach is followed, focusing on the fermionic terms of the action. The analysis
completes the one already presented in [45]. Six-dimensional manifolds with SU(3) structure
are discussed in Section 4.1. The results for the reduction of the bosonic sector are briefly
recalled in Section 4.2.1, while the fermionic spectrum and the reduction of the kinetic
terms for the fermions are discussed in Section 4.2.2. The computation of the gravitino
mass term and the F-terms is performed in Section 4.2.3 and the D-term is computed in
Section 4.2.4. Finally, the supersymmetry variations of fermionic fields and the conditions
for a supersymmetric vacuum are analyzed in Section 4.3. These results have appeared
in [46].

Some useful material is provided in several appendices. In Appendix A, the structure of
A =1 and A4 = 2 supergravity in four dimensions is presented. Appendix B provides the
derivation of the line element in the space of four-dimensional metrics related to the SU(2)
structure in terms of the variations of moduli fields. Finally, the concept of almost product
structure is discussed in Appendix C.

1.3 Brief comment on notation

Indices M, N, ... label ten-dimensional coordinates ™ and indices p,v,... denote four-
dimensional spacetime coordinates z#. The internal six-dimensional coordinates are denoted
by y® and are eventually split as two coordinates z* and four coordinates 3™.

The rank of a form is sometimes shown as a subindex, e.g. A, denotes a p-form. When p
takes a specific value, it is written in italics as in A; or By. This is in order not to confuse,
for example, the one-form A; = Ayrda™ with its component A, i.e. Ay for M = 1.

The following shorthands are used throughout the thesis to denote integration of a scalar
function f over an n-dimensional manifold M, compact or not,

[1@=] s@= [ fawo, = [@ealiw . (1.1)
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Here, vol,, = \/wdxl A --- Adx™ is the volume form on M and g, is the determinant of
the metric. This makes implicit the invariant measure of integration and allows to write
the volume of a compact M simply as [ L

In order to avoid confusion, sometimes indices are replaced by the quantity they label.
For example, the Killing vectors k7 in the covariant derivative D,vP = 9 0P + k?.AfL, where
the index p refer to the vector multiplet scalars vP and the index I counts the vectors .Af“

. 4
are written as kfﬁz-
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Chapter 2

Heterotic compactification on K3 x 72

AEI O OEOL TENMETPEI

In this Chapter, the dimensional reduction of heterotic supergravity on the product
manifold K3 x T2 is discussed in some detail based on [15, 47]. Heterotic supergravity, or
in other words the low-energy limit of the heterotic string, is introduced in Section 2.1,
while the relevant properties of the product manifold K3 x T2 are discussed in Section 2.2.
The compactification procedure is briefly described in Section 2.3, and the four-dimensional
spectrum and effective action are computed. Although this is known material, it sets the
stage for the developments of Chapter 3.

2.1 Heterotic supergravity

Heterotic ten-dimensional supergravity describes the dynamics of the massless degrees of
freedom of the heterotic string [4]. These massless modes are organized in multiplets of
A = 1 local supersymmetry in ten dimensions. Concretely, there is the gravitational
multiplet and 496 vector multiplets transforming in the adjoint representation of either the
gauge group Eg x Eg or SO(32). The case Eg x Eg will be assumed for concreteness in what
follows.

The bosonic fields in the gravitational multiplet are the ten-dimensional metric gpsn,
the Neveu-Schwarz two-form By, = %BMN daM A dzV and the dilaton ®. Additionally,
there are Yang-Mills fields A%, sitting in vector multiplets, where the index a labels the
adjoint representation of Eg x Eg. As for the fermions, there is a left-handed gravitino s
and a right-handed dilatino A sitting in the gravitational multiplet, and there are also left-
handed gauginos x?, the fermionic superpartners of the gauge vectors. The matrix-valued
one-form A%tadxM can be denoted by A;, where the matrices t, are the generators of the
algebra of Eg x Eg in the adjoint representation. Analogously, it can be written x = x¢,.
The trace on this adjoint is represented by Tr.

15



16 2: HETEROTIC COMPACTIFICATION ON K3 x T2

The action Spet governing the dynamics of these fields can be split in three parts as [48]
Shet = Sp + St + Sint (2.1)

where Sy, involves only bosonic fields, S¢ represents the kinetic terms for the fermions and
Sint contains all the interaction terms. The first part is given by the expression

Sy = %/ e ?® (Rio + o @M — %TYFMNFMN - TEHMNPHMNP) : (2:2)
10

The first term in this action contains the Ricci scalar R1g for the ten-dimensional metric

(]

gun and the prefactor e™® makes clear that the action is written in string frame. The

two-form Fp = %FMN da™ A dz! is the field strength for the gauge potential A; and is
defined as
FQZdA]+[A1,A1] . (23)

There is also the three-form Hg = %HMNP dz™ A da™V A dzP, denoting the field strength
of the NS two-form Bjy. It is defined according to
Hy =dBs + wym — wr, , (2.4)

where wyy and wy, are Chern-Simons three-forms related to the Yang-Mills potential A;
and the Lorentzian spin connection wj, respectively, and are given by the expressions

wYM:TI‘(A1 N Fy —%AI ANA; /\A]) ,
(2.5)
wr, = tr (wy A Ry —%wl Awis Awy) .

In the last expression, Ry = dw; + [w;,w;] denotes the curvature two-form or field strength
of the spin connection. The inclusion of these forms in the definition of Hg is dictated by

the necessity of cancellation of gravitational and mixed anomalies [3].

On the other hand, the kinetic terms of the fermionic degrees of freedom have the form
S=_ / e (P TMNP Dypp + AT Dy A+ Tr i Dygy) (2.6)
10

In this expression, the derivatives Dy; = das+- - - include terms that depend on the bosonic
fields. The matrices I'M satisfy the Clifford algebra {Tr,T'n} =2gmn1 in ten dimensions
and IT'MN" denote antisymmetrized products thereof.

Finally, all the interaction terms are collected in the action
Sint = — /10 e ? [%3N@(1/;MTNTM)\) — Tr (Fyn )P0 (g + BToN)
+ SHunp (Pl MV PRy + 6pM TNy P (2.7)

— V2PTMNPTON 4 Tr MNP 4. ] .
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where the dots stand for terms quartic in fermionic fields that will not be needed here.

The action Spet is locally supersymmetric. In other words, it is invariant with respect
to local supersymmetry variations of the fields involved. The supersymmetry variation for
a generic field ¥ is parametrized by an infinitesimal left-handed spinor € and takes the
form [1]

0¥ = [EQ, V], (2.8)

where the supercharges ) form a 16 or Majorana-Weyl spinor representation of the Lorentz
group and satisfy the anticommutation relations {Qa,Qs} = 2Py (I'™)aps, with Py the
ten-dimensional momentum operator. The variations of the fermions ¢, A and x are given
by [48]

6y = Dyre + %HNPQ(FMNPQ - 9(5]\N4FPQ)€ ,

55)\ = \4/—8§HMNPPMNP€ (2.9)

dex = _%FMNFMN6 )

up to terms involving fermionic fields.

2.2 The product manifold K3 x 72

In this Section, the product manifold K3 x T2 is briefly discussed. Clearly, this amounts to
considering each one of the factors K3 and T? separately. Emphasis is made only on those
properties that will be of later use. For a more detailed study of K3 see Ref. [13].

A two-dimensional torus is topologically a product of two circles, T? ~ St x S1. It
can be parametrized by introducing two real coordinates z%, i = 1,2 together with the
identifications z° ~ 2z + 1. In consequence, there are two one-cycles C; and Cy in T? defined
as the homology classes of the sets with constant 22 and z!, respectively. The pair of closed
one-forms v* = dz* are dual to the cycles C; and satisfy

/ vl =69 / N (2.10)
C; T2

where €/ = —¢/" with €2 = 1. These forms generate the first integral cohomology of the
torus, i.e. the lattice H'(T?,7Z). The torus is a flat manifold and has trivial holonomy, the
latter meaning that any geometrical object parallelly transported along any closed path
comes back to itself.

On the other hand, K3 is a four-dimensional compact Kéhler manifold. This implies
that K3 is complex, meaning that complex coordinates (% with o = 1,2 can be defined
on every patch in such a way that the transition functions for every pair of intersecting
patches are holomorphic. Kahlerity means that if 9o 1s a Hermitian metric on K3 then
the associated Kéhler form ig,zd¢® A d¢” is closed. As for every complex manifold, the
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forms on K3 can be classified by the complex type. The Hodge numbers hP? counting the
harmonic (p, ¢)-forms can be arranged in a so-called Hodge diamond. The latter in the case
of K3 looks as follows,

o0 1
hl,O hO,l 0 0
%0 pblo p02 = 20 1. (2.11)
h2,1 h1,2 0 0
h%?2 1

Since h'9 = h%! = 0, there are no global one-forms on K3. This can in fact be considered
one of K3’s defining properties. It also follows from this diamond that the second coho-
mology of K3 is generated by the cohomology classes of h?° + hbl 4+ h92 = 22 harmonic

two-forms wA.*

But more than being Kahler, K3 is actually a hyperkéhler manifold. This means that

a triplet of complex structures (I*),," with z = 1,2,3 and m,n = 1,...,4 can be defined
satisfying

I*1Y = =691 + "9 17 . (2.12)

In fact, it can be easily checked that any linear combination
I=al' +bI% +cl?, A+ =1, (2.13)

squares to —1, providing K3 with a whole sphere of complex structures. By lowering the
upper index on the complex structures I* using the metric g,,, on K3, a triplet of self-dual
two-forms

T = (L") m" gpn (2.14)

is obtained. Since by definition the complex structures are integrable, it follows that the
two-forms J? are closed. The self-duality condition J* = xJ?* then implies that they are
also co-closed, i.e. d«J* = 0, and therefore harmonic. Additionally, using Eq. (2.12) the
following relations can be derived,

JENA JY = 26%voly (2.15)

where voly is the volume form of K3.

It can also be shown that with respect to any of the complex structures in Eq. (2.13),
say for definiteness I = I3, the corresponding two-form .J2 is of type (1,1) and is in fact
the Kéhler form

J? =1ig,zd¢* AdCP . (2.16)

*In contrast to this mathematically precise statement, it will be common practice in the rest of the thesis
to speak of forms in the cohomology when in fact either cohomology classes or representative forms thereof
is meant. This should be a harmless abuse of language.
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The remaining combinations J!' +iJ? are of type (2,0) and (0,2) with respect to I®, re-
spectively. The three two-forms J* are the only linear combinations of the 22 harmonic
forms w? that are self-dual. The remaining nineteen combinations are anti-self-dual and of
type (1,1) with respect to any of the complex structures (2.13).

K3 is the only nontrivial Calabi-Yau twofold,! since it is the only four-dimensional
manifold with SU(2) holonomy. For a generic four-dimensional manifold, the spin group is
the product Spin(4) ~ SU(2) x SU(2) and the spinor representation is 4 = 2 ® 2'. If the
holonomy group is SU(2), one of the factors 2 or 2’ must be broken according to 2 — 161,
giving rise to two singlets of the holonomy group. These singlets are actually a spinor
n and its conjugate n°, since conjugation respects the spinor’s chirality in four Euclidean
dimensions. Being a singlet of the holonomy group, the spinor 7 must be covariantly
constant with respect to the Levi-Civita connection. Adding the two flat directions of the
torus factor, the existence of two linearly independent and covariantly constant spinors on
K3 x T? follows.

2.2.1 Geometric moduli of K3 x T?

The metric of K3 x T2 has a block-diagonal structure
ds® = ds¥s + ds2s = Gmn(y) dy™dy™ + g 007 | (2.17)

where y™ are four real coordinates on K3 and v’ = dz* are the torus one-forms introduced
before. The space of all possible K3 x T2 metrics splits as well,

T = M M (218)

with .Z3;™ being the space of all gmy,(y) or K3 metrics and ///7%20“1 being the space of

possible metrics g;; for the torus factor. These spaces are constructed in the following.
The metric g;; contains three moduli, as follows from the number of independent com-

ponents g1, g12 and goo. In order to find the space //lféom

to define the ‘zweibeins’ or one-forms ¢ = Aijvj such that

that they describe, it is useful

dsZ, = 00" = (AT A);j0'07 = gijvtnd . (2.19)

It is clear from this expression that both A and A’ = OA with O € O(2) correspond to the
same metric g;;, since

ATA = ATOTOA = ATA | (2.20)

This eliminates one ‘unphysical’ degree of freedom from the four components of the matrix

A, leaving the right number of moduli. The moduli space .Z55"™ of possible T2 metrics is

therefore given by
GL(2) SL(2) SU(1,1)
goom — ——22 — R* ~ R x T2
Ao 02) *50(2) “TU0)

(2.21)

tTwofold’ refers to the number of complex dimensions.
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The factor RT in this expression describes the overall volume.

Nevertheless, there are still some discrete identifications that must be imposed on this
space. It turns out that equivalent metrics are obtained for both A and A’ = AS with
S € SL(2,7Z), since in the second case the torus can be reparametrized as 2! — Sijzj .
These reparametrizations respect the identifications z° ~ z' 4+ 1, and the redefined one-
forms v — Sijvj span the same two-dimensional lattice H'(T?,7Z). Although it will not be
made explicit in expression (2.21), it will be assumed that this SL(2,Z) subgroup has been
modded out.

For the Ricci-flat metric g, (y) of the K3 factor, the story is more complicated. In
fact, such metrics are generally unknown, although their existence is guaranteed by Yau'’s
theorem. Fortunately, to know the actual form of the metric is not necessary to perform
the Kaluza-Klein reduction on this manifold. As for all Calabi-Yau compactifications, it is
actually enough to find the geometric moduli space ///I%gom, together with an expression for
the metric or line element on it in terms of the moduli. In what follows, the moduli space
is derived, while the second task is deferred to Appendix B where actually a more general
case is considered.

A K3 metric is determined by a choice of hyperkéhler structure I* up to an overall
rescaling. Due to Eq. (2.14), this is equivalent to a choice of three self-dual forms J* on
H?(K3) satisfying (2.15). That this is indeed all one needs for determining the metric can be
intuitively understood, since fixing the dual forms determines the Hodge star operator * and
therefore the metric g,,, up to normalization. Rescalings of the metric are then controlled
by the normalization of the forms J*, as is clear from Eq. (2.14).

All this can be made explicit as follows. Every harmonic two-form ¢ on K3 can be
expanded as ¢ = @ w? with some constants ¢ 4. A scalar product on H?(K3) can then be
introduced according to

(p,x) = /K eAx =oanBxp, Ve, x € HY(K3) , (2.22)
3

where the intersection matrix n? for the two-forms w? is defined as
B = / wA AP (2.23)
K3

It can be easily checked that (¢, @) > 0 for every form ¢ # 0 on a Riemannian manifold.*
A self-dual form ¢ has thus (¢, ) = (¢, *¢) > 0, while an anti-self-dual one has (¢, p) =
—(p, *p) < 0. Since there are three self-dual two-forms J* and nineteen anti-self-dual ones
on K3, it is concluded that the metric n? has signature (3,19) and therefore H?(K3) ~
R319. Integrating Eq. (2.15) over K3 one obtains

(J*,JY) = 26"e " >0 , (2.24)

tHere, Riemannian is used in contrast to pseudo-Riemannian.
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where e? denotes the volume of K3. From this equation it is already clear that the moduli
space of four-dimensional hyperkahler structures is given by the choices of positive three-
dimensional hyperplanes in H?(K3) ~ R3%1? and that the complete metric moduli space
///I%gom is obtained if additionally an RT factor corresponding to the overall volume is
included.

But some way to parametrize this space is needed. Since any closed and self-dual form

is harmonic, the triplet of two-forms J? can be expanded in the w* basis as
JT = e 2PEn A (2.25)

for some real parameters {%. From this expansion and Egs. (2.22) and (2.24), it follows
that the possible values of % are constrained to satisfy®

nAPesel, = 26 . (2.26)

The parameters £% can be seen as three vectors labeled by the index x living in a 22-
dimensional linear space isomorphic to R*!? with metric n48. Condition (2.26) then simply
states that these vectors are orthogonal to each other and of norm v/2 each. They therefore
define a positive three-dimensional hyperplane

H3 = span(€!, €2,¢%) c R319 | (2.27)

Equation (2.26) provides six constraints on the 66 parameters %. Additionally, it is
seen from the expansion (2.25) that an orthogonal transformation

£ — R%EY,  ReSO(3) (2.28)

leaving the hyperplane (2.27) invariant merely rotates the forms J* among themselves. This
means that values of the parameters £% related by (2.28) lead essentially to the same hy-
perkéhler structure and thus to the same K3 metric. The SO(3) transformation R in (2.28)
leaves Eq. (2.26) invariant, and since it is parametrized by, say, the three Euler angles it
removes three ‘unphysical’ degrees of freedom from the parameters £%. It is concluded that
the number of independent moduli comprised in % is precisely 66 — 6 — 3 = 57. If the
volume modulus p is added, the well-known number of 58 metric moduli for K3 is obtained.

It has been seen that the ‘physical’ values of {% parametrize the space of hyperplanes H3
according to (2.27). This space is obtained by taking the group of isometries of nAB or
in other words the group of transformations SO(3,19) leaving invariant Eq. (2.26), and
dividing it by both the SO(3) in Eq. (2.28) acting within 3 and an SO(19) acting on the
orthogonal hyperplane Hﬁ_g defined by

R0 =13 o HI? . (2.29)

81t was precisely in order to make this normalization condition and therefore the parameters ¢% indepen-
1
dent of p that a factor e™2” was included in the expansion (2.25).
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Additionally, an R factor corresponding to the volume modulus p must be included. The
moduli space of K3 metrics is therefore given by

SO(3,19)

geom _ o+ .
s " 50(3) x SO(19)

(2.30)

But once again, this is still not the whole story, as there are some discrete identifications
that must be imposed on this space. Although it does not affect the counting of the number
of moduli, there is a discrete O(3,19,7Z) freedom in the definition of the harmonic basis.
The reason for this is that the forms

WA =240 Z2e€0(3,19,7) (2.31)

constitute an equivalent basis of harmonic forms for H2(K3,Z). In other words, two such
sets of forms related by an O(3,19,Z) matrix Z define the same lattice H2(K3,7Z). In view
of Eq. (2.25), this freedom translates into the discrete equivalences

& ~erzBy . 2€0(3,19,2) (2.32)

for the moduli ¢4 that must be modded out from the expression (2.30). It is precisely
this equivalence relation that will allow to consider nontrivial fibrations of K3 in Chapter 3.
Although the moduli space ;™" will be written as in Eq. (2.30), the identifications (2.32)
should be implicitly understood.

Another possibility is to parametrize the metrics g, directly in terms of the action of

the Hodge star operator on two-forms. The Hodge dual of a harmonic form is harmonic as

A

well, and therefore *w? can be expressed as linear combinations of the w? themselves. Let

us introduce some numbers M4 5 as the matrix elements of the Hodge star operator on the

A

basis w**, namely

swd = MAgw? . (2.33)

As already explained, the matrix M“ g together with the volume modulus p must completely

A _

determine the metric g,. Since sxw? = w4, it is seen that

MAcMCp =65 , (2.34)

and therefore the eigenvalues of M4 g can only be 1. The +1 (—1) eigenvalues correspond
to the (anti-)self-dual linear combinations of the w?. By raising the lower index on M“4p

with 48, one obtains the symmetric and positive-definite matrix¥

MAB = MBonAC — MBC/

wA AW = / wd A s (2.35)
K3 K3

YActually, it will prove useful to generalize this practice and use nZ to raise and lower capital Latin
indices.
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Since M4 p contains the same information as the parameters &%, an expression linking
them can be written. Recalling the self-duality condition *J* = J* and considering the
action of the Hodge star operator on Eq. (2.25), it can be written,

g’ = G
Mg = g5t (2.36)
(EAMAp — g =0
4 are linearly independent and thus E4M Ap = £%. This means that the matrix
MAp acts as the identity on the hyperplane H? defined in Eq. (2.27). This result simply
mirrors the fact that the forms J* span the (+1)-eigenspace of the Hodge star operator

The forms w

acting on two-forms, as already explained. Clearly, M4 p must act as minus the identity
on the orthogonal subspace Hllg, since the latter corresponds to the 19 anti-self-dual forms.
From Eq. (2.26) it follows that the projection operator onto H? is given by

Plp = yn'9ets . (2.37)
A linear operator M“p that acts as the identity on H® and as minus the identity on the
orthogonal subspace Hllg must necessarily be given byl
M4 = (+1)P4p + (—-1)(65 — P*p)

e (2.38)
= —0p +n"E0ER

if MAP is to be symmetric. Notice that this expression is indeed invariant under the
orthogonal transformations (2.28), as it should be.

In conclusion, the geometric moduli space of the product manifold K3 x 72 is given by
the product of the spaces (2.30) and (2.21) corresponding respectively to the factors K3
and T2. In other words,

oo, =R SO(3,19) x RT x SUL,1) : (2.39)

K3xT? = % §0(3) % SO(19) SU(1)

Also, the factor .///I%'gom can be parametrized by the volume modulus p and either the
parameters &% satisfying (2.26) or the matrix M“p defined by Eq. (2.33). The relation
between these two sets of parameters is given by Eq. (2.38).

2.3 Compactification on K3 x T2

The starting point of the compactification program is to assume that the ten-dimensional
spacetime is actually a product™*

Mig=MizxY (2.40)

ITn this equation, as well as in other similar expressions, summation over the index z is understood.
**The possibility of a warped geometry is therefore left out.
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of an extended four-dimensional spacetime and an ‘internal’ six-dimensional compact man-
ifold V. Let us denote by z* the coordinates on Minkowskian spacetime M 3 and by y*
the six real coordinates on ). A generic field ® = ®(x,y) in ten dimensions depends on all

ten coordinates. Suppose it satisfies an equation
Alo(b(x?y) =0 ’ (241)

with a D’Alembertian-like differential operator Ajg. Due to the product structure (2.40),
this operator must split as Ajg = A, + Ay, where each term acts on the displayed coor-
dinates. Since the manifold ) is compact, the spectrum of the Laplacian-like operator A,
will be discrete and positive definite. A set of functions f,(y) on ) thus exists satisfying

Ayfuly) =mifaly), n=0,1,2,... . (2.42)

Since this is a complete set, ®(z,y) can be expanded according to

O(x,y) = > onx)fuly) , (2.43)
n=1

with coefficients ¢,, that are functions on M, 3. Inserting this expansion in Eq. (2.41) and
using Eq. (2.42), one obtains

(Ap +m2)pp(z) =0, n=0,1,2,.... (2.44)

This means that each component field ¢, (x) in four dimensions has a mass m,. It is in
this way that the geometry of the internal manifold shows up as physical parameters in the
four-dimensional world.

If, for example, A, is the Laplacian, f,(y) are harmonic functions on ). In this case,

/6
function f, = 1 which has m, = 0. This illustrates how by making the volume V), of

all eigenvalues m,, are of the order of V; V6 or bigger, except for the zero-mode or constant
the internal space small enough one can make all but the fields ¢, corresponding to the
zero-modes very heavy and therefore negligible in four dimensions. So, if one is interested
in energies much smaller than V; 1/ 6, only the light modes ¢,(z) need to be kept in the
expansion (2.43). This is the Kaluza-Klein program.

Let us denote by .Zo[®(z,y)] the Lagrangian in ten dimensions, which is a local func-
tional of all ten-dimensional fields ®(z,y). An effective four-dimensional theory is obtained
by making the substitution

D(z,y) =~ ¢o() fo(y) (2.45)

or in other words if one truncates the expansion in Eq.(2.43) by disregarding the heavy
modes and then integrates over the six-dimensional internal space ). The following effective
Lagrangian in four-dimensions is obtained,

L g()] = /y Lioldo(x) fol)] - (2.46)
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where gg is the determinant of the metric gy in Y.

The metric gq(y) is in fact part of the ten-dimensional graviton field. One should
therefore include variations dgq(x,y) among the fields ®(z,y) as well. This means that
the six-dimensional metric contributes with four-dimensional fields ¢, given by the metric
moduli parametrizing the class of manifolds ) under consideration.

If the ten-dimensional theory is supersymmetric, the question arises whether or not
part of this supersymmetry is preserved by the compactification. This is the case if a
spinor in ten dimensions have an expansion as in Eq. (2.45), giving thus rise to spinors
in the four-dimensional theory. In other words, one needs spinor ‘zero modes’ 7, in the
internal manifold ) so that, for example, each infinitesimal supersymmetry parameter ¢ in
ten dimensions can be written as

E=¢€oRNo+ o RTo , (2.47)

leading to supersymmetry parameters ¢, in four dimensions. If one starts with a theory
that has .4/ = 1 in ten dimensions, one should obtain an effective theory with A" = #n,,
i.e. as many copies of the .4 = 1 supersymmetry algebra in four dimensions as there are
internal spinors 7,.

2.3.1 Effective theory

Now this program can be applied to the heterotic string (or rather to heterotic supergravity
as described in Section 2.1) for the case where K3 x T? is chosen as the internal manifold )
in the product (2.40). Since there are two linearly independent global spinors in K3 x T2
as explained in Section 2.2, this background is expected to preserve 8 supercharges. This
means that as a result of the compactification, a low-energy effective .4/~ = 2 supergravity
in four dimensions must be obtained [14].

In this and in the next Chapter, the analysis is restricted to the bosonic sector of heterotic
supergravity. This is the sector involving the metric gy, the NS two-form By and the
Yang-Mills one-form A;. A compactification ansatz for these fields is written by expanding
in terms of the harmonic one- and two-forms of K3 x T2. As reviewed in Section 2.2, these

are the pair of one-forms v* = dz* on the torus factor and the 22 harmonic two-forms w*

of K3.

But before actually doing that, let us pause to comment on a consistency condition
that all compactifications of the heterotic string must satisfy. From the definition of the
three-form Hg given in Eq. (2.4), the following Bianchi identity must be satisfied [49],

ngZtr(Rg /\RQ)—TI‘(FQ NFy) . (2.48)

Integrating this expression over the internal manifold K3 x T2, recalling that the torus is
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flat and assuming that no Yang-Mills field is turned on on the torus factor, it is obtained

/ tI‘(Rg/\RQ)—TT(Fg/\Fg):24—/
K3

K3

K3

This means that a gauge bundle G C Eg x Eg on K3 must be ‘switched on’ with instanton
number canceling the curvature contribution ng tr (R2 A Rp) = 24. The instantons have
the effect of breaking the gauge symmetry Eg X Eg down to a non-Abelian subgroup G.
As already mentioned, the compactification on an SU(2)-holonomy manifold leads to an
effective theory with .4 = 2 local supersymmetry in four dimensions. The vector fields
descending from the one-form A; reside in vector multiplets that also contain scalars. At
a generic point of the moduli space of these scalars, the non-Abelian gauge symmetry G
is further broken down to its maximal Abelian subgroup. In other words, the non-Abelian
gauge symmetry G is spontaneously broken by nonzero vacuum expectation values of the
scalar superpartners of the gauge vectors. The details of this breaking are model-dependent.
Here it will simply be assumed that the consistency condition (2.49) is satisfied and that the
gauge symmetry Eg X Eg has been broken down to an Abelian subgroup U(1)"s [15]. This
means that only the Coulomb branch of the theory is analyzed. The number ngy = dim G
can be as high as the rank of Eg x Eg, namely ny, = 16, and as low as zero. The Yang-
Mills field A; therefore descends to ng Abelian vectors or one-forms A3 = A%, dz™, with
a=1,...,ng.

Compactification ansatz and four-dimensional spectrum

The six internal coordinates y® in ) split into two coordinates z* for the torus and four
coordinates y™ for K3. For the ten-dimensional metric, the following ansatz can be written,

ds? = guvdatdz” + gy (dzi + dex“) (dzj + Vyjdx”) + gmn(y)dy™dy™ (2.50)

where a dependence of all metric components on x* is implicit. Notice that for convenience
it has been chosen to order these coordinates as

Y = (24, y™), i=1,2, m=1,...,4, (2.51)

corresponding to T2 x K3 rather than K3 x T2. The ten-dimensional metric gasy has thus
the block form '
G + 95ViVI Vigi 0
gMN = gV 9ij 0 . (2.52)
0 0 Gmn(Y)
The so-called Kaluza-Klein vectors V!f must be included to account for the possibility of

spacetime-dependent isometries
2t — 2 4 adl(x) (2.53)
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of the torus factor. The latter imply that dz* — dz'+ (Buo/')dx“, which can be compensated
in Eq. (2.50) by a transformation

Vi— Vi—0ua . (2.54)

From this, it should be no surprise that the vectors Vui appear as gauge fields in the effective
theory. No such vector V,;" is introduced for the K3 factor because there are no one-cycles
on K3, as follows from the Hodge diamond (2.11). Finally, the dilaton ®(x) is a function of
the spacetime coordinates z* only, since a harmonic scalar on the internal manifold is just
the constant function.

On the other hand, an ansatz for the NS two-form By and the Yang-Mills one-forms A%
in terms of the harmonic one- and two-forms available in K3 x T2 can be written as
By = 1B, da" Ada” + B;, & Adat + LBy E A ET + bt
, (2.55)
?’ = AZdiE'u + A?gl 5
where the one-forms
g =dz' + VidaH (2.56)
have been introduced. The latter are invariant under the transformations (2.53) and (2.54).
The expansion in terms of the forms £ is also convenient because in the basis (dz#, £%, dy™)
the metric (2.50) is block-diagonal.

Taking a look at Egs. (2.50) and (2.55), the spectrum of the effective four-dimensional

theory can be already stated. In terms of their four-dimensional spin, these fields are the
a
dilaton ®, 2(2 4 ng) scalars from g;; + B;; and A?, 58 scalars parametrizing the K3 metric

metric g,,, a two-form B, 4 + ng vectors Vui, B;, and Af, one scalar arising from the
9mn, and finally twenty-two scalars by. Moreover, the two-form By, in four-dimensions
can be dualized to a scalar a, the axion. These fields organize in multiplets of A4 = 2
supersymmetry in four dimensions as follows: the gravitational multiplet consisting of the
metric and the graviphoton, n, = 3+ ng vector multiplets containing each one a vector and
a complex scalar, and finally ny, = 20 hypermultiplets with four real scalars each (see the
diagram in Figure 2.1).

The next step is to compute the effective action. This is done by substitution of the
ansatz (2.55) for By and A% and the metric of Eq. (2.50) into the bosonic action Sy, given
in Eq. (2.2). The first two terms in this action involve the Ricci scalar and the dilaton. It
will prove useful to compute them in a general fashion, as the final formula can be applied
later to more general cases. Then one can just specialize to the present situation. Let us
do that in the following.

Reduction of Ricci scalar and dilaton kinetic term

Consider the Lagrangian in D dimensions

Zp=1e"®(Rp + 0y 20M®) | (2.57)
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Guv metric
gravitational multiplet ‘
‘ 1 graviphoton

Vi, Biy, AS,

Ny vectors

ny = 3 + ng vector multiplets ‘

9ijs Bij, A}, ¢, a }—»‘ ny complex scalars

‘4nh = 80 real scalars H ny = 20 hypermultiplets ‘

Figure 2.1: Four-dimensional fields and .4 = 2 mutiplets.

where Rp is the Ricci scalar constructed out of a D-dimensional metric gyyny and @ is a
dilaton-like field. Although in principle one has in mind a space with signature (1, D — 1),
the latter plays no role in the derivation and the final formula is valid for metrics of arbitrary

signature. Let us split the set of D coordinates 2 into two subsets
e = ("9, p=0,....,d—1, a=1,...,.D—d. (2.58)

In a compactification context, the coordinates x* correspond to the non-compact d-dimen-
sional spacetime, while y* are coordinates in the compact internal manifold. Nevertheless,
we stress again that this is irrelevant for the present computation. The metric gysn can be

written in total generality in the following form

Juv + gabV;VVb V;gab

IMN = ; (2.59)

gabvyb Yab
or equivalently
45 = g, e + gup(dy” + Vida) (dy” + VPda") (2.60)

This is entirely general as long as g, gap and V" depend on all coordinates z* and y“. Let
us nevertheless focus on cases where g, = gup(z,y) and Vi = Vj(x,y) might in principle
depend on all D coordinates but the block g, = g, (r) and the dilaton ® = ®(x) depend
only on the coordinates z#. The Ricci scalar for the metric gy given in Eq. (2.59) with
the coordinate dependences just discussed can be computed and the result is [50, 51]

Rp =Ra — 19V V" + 1DugasDVg™

| ~ i (2.61)
- Vu(gabpugab) - %(gabp,ugab)(g“lp“gcd) + 7?'D—d .
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In this expression, R4 and Rp_4 are the Ricci scalars corresponding to the metrics g,,, and
Jab, respectively. The following definitions were also introduced,

Ve, =D,V - DV,

D, =9, — Vo0, ,
S (2.62)

B — DK _ POTH
V=D —¢"T,, ,

Dugab = Dugab - gacabvuc - gbcaavuc )

where 'y, are the Christoffel symbols for the metric g,,,. Notice that V#A,, for an arbitrary
vector A, is just the divergence A*,,, = (0" — g*T'lhy) A, together with an additional term
—Vi0aAyu. 1t is useful to keep this in mind because the term containing V# must be
integrated by parts, and the fact that it involves a covariant derivative makes the step

easier.

The Lagrangian for the theory in d dimensions is obtained by integrating the Lagrangian
Zp over the (D — d)-dimensional ‘internal’ space. The dimensionally-reduced Lagrangian
corresponding to Eq. (2.57) is therefore

2= #p=1 / e ®(Rp + 04 d0M D) | (2.63)
—d

D—d

Now one just needs to substitute the expression (2.61) for the Ricci scalar. The only term
that needs to be worked out is the first term in the second line of (2.61), since as already
advanced an integration by parts of this term must be performed. This term and the one
right next to it combine with the kinetic term for the dilaton in Eq. (2.57) to produce a
single kinetic term for a redefined dilaton. The resulting Lagrangian is

Ly=13 / e ® (Rd + Dp¢D'p — gap Vi, VO + %ﬁﬂgabﬁ“gab) —Yoa (2.64)
D—d
where ¢ is a shifted dilaton

¢p=0—3Ingp_4 (2.65)

and the ‘potential’ ¥p_4 arises from the curvature of the ‘internal’ space as
Yo_q= —%/ efchD,d . (2.66)
D—d

If z# are spacetime coordinates then this is indeed a potential, because it does not contain
derivatives with respect to z*.

Now the formula (2.64) can be used to perform the dimensional reduction of the first
two terms in the action Sy in Eq. (2.2) by setting D = 10 and d = 4. The general metric

in Eq. (2.59) has in this case the particular form (2.52). In specializing to this case, some



30 2: HETEROTIC COMPACTIFICATION ON K3 x T2

simplifications are therefore expected, since g;; and Vlf are functions only of z* and V,;" = 0.
In other words, one must set in Eq. (2.64)

gabu,y):(“’”(“’”) ! y)>, V;(M)Z{VM, ora=i - (96n)

0 Gmn (T 0, fora=m

It follows that V70, = V,jai + V)"0 = Vj@i vanishes, because nothing depends on the
torus coordinates z'. As seen from the definitions (2.62), in this case the derivatives D,
and 75“ can be substituted by ordinary spacetime derivatives d,. Moreover, the potential
Ve in (2.64) vanishes, because the torus is flat and the K3 metric ¢, (y) is Ricci-flat. The
result for the effective Lagrangian arising from the reduction of the Ricci scalar and dilaton
kinetic term is therefore

Zigre =3 /Kg T2 e " (Ra+ 0,006 — 19V, VI + 10,9:50" 97 + 10u9mn0"g™)

: (2.68)
where VJV =9,V — BVVJ is the field strength of the vectors Vui and the shifted dilaton is
defined as

¢:(I>—%lng6:@—%lngg—%lng4, (2.69)

with go = det g;; and g4 = det gy

In performing the integration over K3 x T2, attention must be paid only to which
coordinates each field depends on. Nothing depends on the torus coordinates and only the
metric gm,, depends on the K3 coordinates y™. The determinant g4 is y-dependent, so it
follows from Eq. (2.69) that also ¢ depends on 3. Since in the Lagrangian (2.68) so far
only the derivatives 0,,¢ appear, the shifted dilaton can be redefined as

p=®—Sng +p, (2.70)

where e™? = st 1 is the volume of K3. In other words, Eq. (2.69) has been truncated,
leaving only the zero mode which is the constant function on K3. Now the integrals in
Eq. (2.68) can be (almost) completely performed to obtain

Lagro = %e*‘i’ <R4+3Mq§8“q§—igijV;yvj’“”—i-i@ugija“gij+%ep /K3 8Mgmn8“gm"> . (2.71)

A formula for computing the last term in this Lagrangian in terms of the geometric
moduli of K3 is derived in Appendix B. It can be used either Eq. (B.19) in terms of
the volume modulus p and the parameters £% or equivalently Eq. (B.21) if rather working
with p and the matrix M4 is preferred. Taking the second alternative and substituting
the variations dp and M4 in Eq. (B.21) by the spacetime derivatives Ou¢ and OHMAB,
respectively, the result for the contribution to the effective Lagrangian is

Lygro =3¢ (Ra+ 000" ¢ — Lgi; Vi, VI + 20,9:;0" 9" 0.12)

— %aup(?“p + %(%MAB(?“MBA) .
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Reduction of Yang-Mills and NS two-form kinetic terms

The computation of the remaining terms in S, involving the Yang-Mills field and the NS
two-form is a bit messy but otherwise straightforward. The first step is to compute the
field strengths of B, and A%. In doing this, d€ is needed, and taking the differential of
Eq. (2.56) one obtains

A&’ = 8,V dat Ada” = LV, dat Ada” . (2.73)
Applying the d-operator to both expressions in (2.55) yields
dBy = §(0u By, + BipV,),) dat Adz” A da”

— Y(Biu + B V7)) dat Ada A E
R (2.74)

+10,Bijdat AECANET 4 Db dat AWt

F§ =dA} = §(F5, + AJV,,) dat A da” + 0, AT dat N E

where B, = 0,,Biy — 0, By, and F}j,, = 0,,A} — 0, A}, are the field strengths for the vectors
B;,, and AZ, respectively. These expressions can now be used to compute Hg as defined in
Eq. (2.4). The restriction to terms with at most two-derivatives in the effective Lagrangian
makes it enough to consider the Yang-Mills Chern-Simons form wyy; only. Moreover, since
the gauge fields are now Abelian, the cubic term in the expression for wyys in (2.5) vanishes.
Therefore, it can be written

Hs =dBy — A} NF3

= 1(0,By, + Bmvjp - %AZFfp — %AjA?Vlfp) dzt A dz” A da?

A A - (2.75)
— %(Biuv + BijVil, + %A?FSV + %A?A?V;jy + A0, A7) dat A da” A E
+ 1(0,Bij + A20,AY) dat ANETNET + (Ouba) dat Aw?
The following field redefinitions need also be performed,
Bip — By + $AFAL By — By — 5(By V) — By, V}i) | (2.76)

since these are the fields with the correct gauge transformation properties. Making these
substitutions in Eq. (2.75), the following expression is obtained

Hjs =dBy — $ A% NdAG

= 3(0uByp — 3By Vi, — AViBy,, — LARFL ) da' A da¥ Ada? (2.77)
— 5(Biw + AYES, + Cy3Vi,) dat Ada” A EF |

+ 2(0,Bij + A0, AY) dat A ETNET + (Ouba) dat Aw?

where Cj; = B;; + %A?A? has been defined.
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Finally, the expressions for F and Hg in Eqgs. (2.74) and (2.77) can be substituted in
the last two terms of the action S,. The integration over K3 x T2 is again almost trivial,
since none of the fields depends on the internal coordinates. Only the forms w” depend
on the K3 coordinates, but it is known how to integrate them. The result is the following
effective Lagrangian

Lrarn =50 [, M + L (F), + ANV )(E 1 A7)

+ 197 (Biw + AT, + CatVis, ) (B + AJFPHY 4 Cvhi)

o (2.78)
k _jl b b
+ 19" (0, Bij + Aj0,A5) (9" By + AR Ap)
+ 1970, A%01 A% + %epMABOMbAB"bB] ,
where the three-form Hy = %pr daz* A dz¥ A dzf in four dimensions is given by
Hywp = OuBup — %BipV,fp — %V:Bi,,p — %AZFEP + cyclic permutations (2.79)

and MA4PB is defined in Eq. (2.35).

Effective action

The total effective Lagrangian .7 is the sum of the contributions .24 4+ and £ 44 given
in Egs. (2.72) and (2.78). But the resulting expression can be written in a compact form
after some definitions are introduced. All n, 4+ 1 = 4 + n, four-dimensional vectors can be

collectively denoted as
Al = (Vi By, A%y, 1=0,...,n,, (2.80)

and the corresponding field strengths are flfy = 8MA£ — &,Aﬁ, or compactly F} = dAL.

From the 2(2 + ng) scalars g;;, Bi2 and A2, an SO(2,n, — 1) matrix can be defined as

g _gikckj _gijA;)
MY = | —Crg™ gij + APAS + gMCriCyy A} + Ckigijé‘) ) (2.81)
— Aagii AR 4 A2gRCy 5% + Azg' AP

since it can be checked that M LM = L is satisfied, with L being the SO(2, n, — 1) invariant
metric

0 & 0
Liy=|6 0 o |=L". (2.82)
0 0 &

The matrix Mr; = (LML) is therefore the inverse of M'/. Analogously, a matrix MP?
can be defined from the 58 geometric moduli of K3 encoded in p and M4 g and the 22 fields
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by as
ef %epb2 —ePbB
MPL = | Lerv? e+ baMAPbp + 1erbt —baMAP — Lerp%pP | | (2.83)
—ePpA —MABpg — %epbsz MAB 1 erpApB

where b? = n*Bbsbp. If one index on MP? is lowered by means of the SO(4,20) invariant
metric

0 -1 0
Lpg=|-1 0 0 ) (2.84)
0 0 nap

the resulting matrix M satisfies MTLM = £ and is therefore an element of SO(4, 20).
It is not difficult to check that in terms of the matrices M’ and MF? and the fields .A{L,
the total effective Lagrangian % takes the compact form

Ly =Ly gro + L4 A+B
= 17 (Ry + 000" ¢ — 5 HuwpH"? — s My Fph, FIH (2.85)
+ 20, M! ;0" M+ L9, MP 8P MPp) |
where now the four-dimensional three-form Hys in Eq. (2.79) can be written as

Hg =dBy — AL AL NFY . (2.86)

At this point, a Weyl rescaling g, — e¢gw, of the four-dimensional metric must be
performed to obtain a Lagrangian with a canonical Einstein-Hilbert term,

Ly = 3Ry — 10,00"p — F1e O H HMP — Lo O My FL, FHH

+ Lo,M"jor M7+ Lo, MPoo" MOp
(2.87)
Furthermore, the two-form B, can be dualized to a scalar a. To see how this works, isolate
the term in the effective Lagrangian (2.85) involving the three-form Hgs, that is

L= —1e My AxHy (2.88)

Taking the exterior derivative of (2.86), it is seen that the three-form must satisfy dHgs +
%Ll J]:é A fg = 0. To enforce this constraint, a Lagrange multiplier a is introduced and
the Lagrangian . 3 is consequently modified according to

Lyw=—1¢""Hs AxHs + sa(dHs + 3Ly Fy A F3) . (2.89)

The second term can be integrated by parts and the equation of motion for Hs that follows
is
(9.,?4'77_[
OH s

— L(e®xH3 —da) =0, (2.90)
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with solution Hg = e??xda. Substituting this back into E;H, it is obtained
Lha = —%ewda A xda + %aLU]:é A .7:@] . (2.91)

After dualizing the two-form B, by means of the replacement %) — Z,,, the La-
grangian (2.87) can be written as

1 1 .- 74 J, 1 A1 J
34 = 57?,4 - ge d)M]JfW,]: g + EaL]JG“Vp fwjpr

9, sOM5 (2.92)
ﬁ + I—%BMMIJ(?“MJ] + 1—166MMPQ8“MQP ,

where a complex heterotic dilaton or axion-dilaton s has been defined as

_l’_

s=32a— %efd’ . (2.93)

It is useful to express the 2(2 + ng) scalars g;;, B2 and A? parametrizing the matrix
M7y in terms of ny — 1 = 2 + n, complex fields u, ¢t and n® as follows,

(na—ﬁa)(na—ﬁa)} 1 <2ua u+ﬂ>’

gijZ%[(t—f)— —

uU—7u u—u \u+u 2
a_| =-a a__ -a
Blzz—%[(t+f)— ("4 n )(717 o )} , (2.94)
u—1u
Ap = U e T
u—1u u—u

The complex axion-dilaton s can be appended to this set to obtain the n, complex fields
P = (s,u,t,n?) p=1,...,ny. (2.95)

The Lagrangian in Eq. (2.92) can now be cast into a final form in terms of the complex

scalars vP and the 80 real scalars ¢* parametrizing the matrix MF @- The expression is
Ly = SRy + 11 (0)FL,FH + LRy (v)e P FL Foy (2.96)
- qu(v)ﬁuvp(?“f)q - huv(‘])auquauqv .

The metric Gpg(v) in the kinetic term for the complex scalars v? is Kéhler, since it can be
shown that Gpg = 0,0;K for a Kahler potential

K =—Ini(s —8) — s In[(u —a)(t — ) — (n* —a%)?] . (2.97)

The gauge kinetic functions are given by

S— 8§ s+s
M R =
5 My, 17(v) 5

Iry(v) = Ly - (2.98)

The effective Lagrangian in Eq. (2.96) has indeed the form (A.1) for the bosonic sector

of four-dimensional .4~ = 2 minimal supergravity coupled to n, = 3 + ng Abelian vector
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multiplets and n, = 20 hypermultiplets in the ungauged case. One of the vectors in the
set of ny +1 = 4 + ng vectors .AfL is the graviphoton. The latter forms, together with
the metric g,,,, the bosonic content of the gravitational multiplet (see Figure 2.1). The
remaining n., vectors are paired with the n, complex scalars vP to form the corresponding
number of vector multiplets. The complex scalars vP span the moduli space of the vector
multiplet sector

SU(1, 1) SO(2,ny — 1)
U) SO@) x SO(ny —1)

where the first factor is spanned by the heterotic dilaton s and the second factor contains

My =

(2.99)

the geometric moduli space //Zﬁgom. As explained in Appendix A, this is a special Kéhler

manifold, and holomorphic projective coordinates X! can be introduced as
X0 =

1 1 _ 1
5 X =—zu

ju, X’=—gs, X°=g5t, X'=pn". (2.100)

V2
It is not difficult to check that the Kéhler potential in Eq. (2.97) can be written as

K =-In(iX!0;.7 —iX'01.7) (2.101)
for a prepotential

X2 X1X3 4 lXaXa
F(X) = ( 0 2 ) = Ls(ut — n®n®) . (2.102)

Finally, there are 80 scalars ¢" sitting in ny = 20 hypermultiplets. They span the
quaternionic manifold

B SO(4,20)
~ SO(4) x SO(20)
Although they have been ignored here, it should nevertheless be mentioned that there

M

S ME™ (2.103)

are also the scalars parametrizing the gauge bundle G needed to satisfy the consistency
condition (2.49). They sit in additional hypermultiplets, therefore enlarging the moduli
space ./, in Eq. (2.103).
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Chapter 3

Heterotic on SU(2)-structure backgrounds

YN AOHNA KA XEIPA KINEI

This Chapter is devoted to the compactification of heterotic supergravity on SU(2)-
structure backgrounds. It will be seen that six-dimensional manifolds with SU(2) structure
are generalizations of K3 x T2, and their properties are analyzed in Section 3.1. The reason
for focusing on this class of manifolds is that they also lead to effective .#° = 2 locally
supersymmetric theories in four dimensions. The geometric moduli spaces and an ansatz
for these backgrounds are discussed in Sections 3.1.1 and 3.1.2, respectively. Two cases are
distinguished. The first one can be realized by considering fibrations of K3 over T2 and
is discussed in Section 3.2. The second one has been termed ‘K3 fibrations over a twisted
torus’ and is analyzed in Section 3.3. The effective action is obtained in both cases and turns
out to be a gauged version of the supergravity obtained for compactifications on K3 x T2
The gauge algebra and the prepotentials for the general case are computed in Section 3.4,
where the consistency of the results with the general action of 4~ = 2 supergravity is also
verified.

3.1 Manifolds with SU(2) structure

As already explained in Section 2.3, obtaining a supersymmetric effective theory after com-
pactification demands the existence of global nowhere-vanishing spinors on the internal
manifold. If the heterotic string, having .4 = 1 supersymmetry in ten dimensions or 16
supercharges, is compactified on a six-dimensional background that possesses N internal
spinors, the reduction procedure is expected to preserve 4N supercharges. This leads to a
theory with .4/~ = N supersymmetry in four dimensions. Therefore, two internal spinors

are needed in order to obtain an .4 = 2 supersymmetric theory.

The existence of such spinors restricts the class of possible manifolds. It implies con-

cretely a reduction of the structure group. Consider the bundle of all orthonormal frames

37
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in a six-dimensional manifold ). For a generic manifold, the transition functions of this
bundle are the orthogonal transformations SO(6), since the transition functions must in
any case preserve the orthonormality of the frames. The fibers are isomorphic to the group
SO(6) acting on them and in consequence this is a principal bundle. For a generic manifold,
the structure group is therefore SO(6). However, it can happen that a subbundle can be
defined such that the transition functions take values on a subgroup G C SO(6). If this is
the case, it is said that the structure group has been reduced to G, or in other words that
the manifold ) belongs to the class of G-structure manifolds [22].

The spinor representation of SO(6) is a 4, i.e. the fundamental representation of the
spin group Spin(4) ~ SU(4). The global nowhere-vanishing spinors must appear as singlets
in the decomposition of SU(4) in representations of the reduced structure group G. If one
is interested in an effective theory that has .4 = 2 supersymmetry, two of these singlets
are needed, and the right decomposition is

4520101 (3.1)

In other words, Y must be an SU(2)-structure manifold. What the decomposition (3.1)
therefore tells us is that a siz-dimensional manifold Y has structure group SU(2) if it pos-
sesses a pair of globally defined and nowhere-vanishing SO(6) spinors n; that are linearly
independent everywhere on Y.

If additionally the spinors n; happen to be covariantly constant with respect to the Levi-
Civita connection, any spinor parallelly transported around a closed path must come back
to itself up to at most a transformation in the ‘unbroken’ SU(2). In this case ) has SU(2)
holonomy and must be the product manifold K3 x 72. Manifolds with SU(2) structure
are thus generalizations of K3 x T2 for which the two spinors 7; are not required to satisfy
parallel transport with respect to the Levi-Civita connection but maybe only with respect
to a different, torsionful connection. This explains the name of torsional geometries given
to these backgrounds.

It will be assumed in the following that the two spinors are normalized as 77;r n; = 0ij-
Using the spinors 7; and the SO(6) Clifford algebra v, with a = 1,...,6, one can construct
a triplet of self-dual two-forms J? and a complex one-form v' + iv? on Y as follows,

Jhy + 12 = inhyam | J3 = —%(nhabm + a2 52)

vl +ivZ = nSTyam

where ~,;, denotes the antisymmetrized product of two y-matrices. Under an SU(2) trans-
formation that rotates the pair of spinors 7; into each other, the two-forms J* transform as

a vector of the corresponding SO(3) while the v* remain invariant.

The two-forms J% and the one-forms v* characterize completely the SU(2) structure,
since they contain all the information on the global spinors [33]. As can be verified from

Eq. (3.2), these forms are closed if and only if the spinors 7; are covariantly constant with
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respect to the Levi-Civita connection. For a generic SU(2)-structure manifold, the departure
from SU(2) holonomy is therefore measured by the failure of dJ* and dv® to vanish. In case
the forms J* and v* are closed, the manifold ) is K3 x T2. Then the two-forms J* related
to the hyperkihler structure on the K3 factor together with the torus one-forms v’ = dz*
as discussed in Section 2.2 are recovered.

Making use of Fierz identities and Eq. (3.2), the following relations among the compo-
nents of the two- and one-forms can be derived,

gabvévg =6, gl JE =0, JENJTY =281 0,2v0lg (3.3)

Here, volg is the volume form on Y, ¢? is the inverse metric and ¢,: represents the interior

product with respect to the vectors v'® = g“bvg.*

Although a generic SU(2)-structure manifold ) cannot be written as a product manifold,
the existence of the one-forms v* does allow to introduce an almost product structure, i.e. a
globally defined tensor P%, satisfying P?.P¢, = d;. This is achieved by setting

Py, = 2% — 5%, (3.4)

as can be easily checked making use of the first relation in (3.3). This tensor can naturally
be viewed as an endomorphism P : TY — TY of the tangent bundle of ), and as discussed
in Appendix C it actually splits the tangent space over every point of ) into a direct sum of a
two- and a four-dimensional subspaces. This can be seen as follows. From the definition (3.4)
and the normalization condition in Eq. (3.3), it can be verified that P(v?) = v*. It is also not
difficult to check that P(w) = —w for every w orthogonal to both vectors v¢. The subspace
formed by all vectors w is clearly four-dimensional. The two-dimensional subspace is thus
spanned by the two vectors v*. This can be made explicit by writing Eq. (3.4) in the form
P =Py — Py, where

(Pa)ty = v, (Pa), = 6 — v, . (3.5)

It is clear that P, projects on the two-dimensional subspace generated by the vectors v’
and P4 = 1 — Py projects on the orthogonal subspace.

If the almost product structure in Eq. (3.4) is integrable, every neighborhood of ) can
be written as Uy x Uy such that P, acts as the identity on the tangent space to Uy and as
minus the identity on the tangent space to Uy. In other words, such that

Po(TU) =TUs ,  Pa(TU) =TUy . (3.6)

This means that ‘separating coordinates’ can be introduced on every neighborhood of Y
and the metric can be given the block-diagonal structure

ds® = gmn(y, 2) dy™dy" + gi5(y, 2) d2'd2? (3.7)

*In the following, v* will denote both the one-forms v’ = v.dy® and the corresponding dual vectors
vt =0"8,.
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where 2% and y™ are local coordinates respectively on Uy and U, and the following is satisfied,
P(0;) = 0 P(Om) = =0 - (3.8)

For such a metric, Py, defined as g,.P is symmetric and P%, is called ‘metric-compatible’.
The set of neighborhoods Uy and Uy represent foliations of the manifold ), and it can
happen that the maximal leaves obtained by patching together the neighborhoods Uy and
Uy constitute embedded submanifolds Y, and Yy of Y, respectively [52]. In the following, it
will simply be assumed that the almost product structure (3.4) is integrable. In this case,
it is customary to call it local product structure.

Since the vectors v’ span the (+1)-eigenspace of P, they can be written in ‘separating
coordinates’ as v' = v¥9;. It follows from the block-diagonal structure (3.7) that the one-
forms are given by v* = v',dz* with v’} = v¥ grj- The second condition in (3.3) now implies
that the two-forms J* have legs only along Uy, or in other words that

T* = 5Ty, 2) dy™ Ady™ (3.9)

though as explicitly shown the components J¥, may still depend on both set of coordinates
y™ and z°. Tt can be checked that the last condition in (3.3) becomes

JE A JY = 26%voly (3.10)

with voly being the volume form on Uy. Raising an index on the two-forms J* with the
metric, one obtains a triplet of almost complex structures I satisfying

TEIY = —§"1 4 V3] (3.11)

Since the spinors need not be covariantly constant, these almost complex structures are in
general not integrable and thus they do not form a hyperkéhler structure on ) as they do
on K3 x T?. Nevertheless, it turns out that they locally define a hyperkihler structure on
U, as they do on K3.

3.1.1 Geometric moduli space of SU(2)-structures

The space of possible geometrical deformations of manifolds with SU(2) structure has been
discussed thoroughly in Ref. [53]. Here the results are summarized. The recipe is to project
out all doublets of the SU(2) structure group. The quantities surviving the projection
should lead to light modes in four dimensions. This yields in particular the right number
of light gravitini in four dimensions. That the doublets should be projected out was more
or less evident already from the decomposition (3.1).

fMore about this issue is discussed in Appendix C. Integrability of the almost product structure for the
concrete examples of SU(2)-structure manifolds that will be considered in this thesis is trivially guaranteed
by the very definition of such examples as fibrations.
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The local product structure P given by Eq. (3.4) is rigid. This means that no geometrical
deformation changing this structure is allowed and therefore P contributes no light degrees
of freedom to the moduli space. The reason for this rigidity can be seen as follows. From the
definition (3.4) it is apparent that the local product structure is completely determined by a
two-form v! Av? decomposable as the product of two one-forms. The nontrivial deformations
of such a two-form must have one leg in U and the other leg along Uy, otherwise it defines
the same splitting Us x Uy and therefore the same local product structure. But as shown
in Ref. [53], the one-forms in T*U, are doublets of the SU(2) structure group, while T%Us
contains only singlets. It follows that the deformations of the local product structure are
doublets of SU(2) and therefore must be projected out, leaving us with a rigid P.

Only deformations of both the two- and the four-dimensional component of ) separately
are thus possible, and the total space of geometrical deformations of SU(2)-structures has
a product form

M) = M X MET (3.12)

where Z5°™ and 4™ are the spaces of allowed geometrical deformations of Us and Uy,
respectively. The deformations of Uy are given by redefinitions of the one-forms v* — % =
Al jvi, where A is an arbitrary 2 x 2 real matrix, i.e. an element of

GL(2) = R x SL(2) ~ R x SU(1, 1) . (3.13)

Looking at the definition of the v' in Eq. (3.2), it is seen that such a redefinition of the
one-forms corresponds to a redefinition of the Clifford algebra and thus to a change of the
metric g;; — gi;. This is even more explicit if the first relation in (3.3) is used to write

gklf),i@f = gklv,ivlj =09, (3.14)

From this, it follows that if A is an SO(2) ~ U(1) matrix then g;; = g;; and this subgroup

therefore needs to be modded out. Moreover, both A and —A define the same metric as

well, and only those redefinitions with, say, det A > 0 must be considered. This has the

effect of modifying the factor R in Eq. (3.13) to include only the positive reals R*. The
space of geometric deformations of Us is in consequence
SU(1,1)

geom __ mp+
AME™ =R oAy (3.15)

On the other hand, the analysis for the four-dimensional component goes in similar lines
to the one already discussed for K3 in Section 2.2.1 and it can be summarized as follows.
Recall that Uy is characterized by a triplet of self-dual two-forms J* satisfying Eq. (3.10).
Concentrate first on the space of two-forms AIQ,L{4 over a point p in ). This space is six-
dimensional, since it is given by all 4 x 4 antisymmetric matrices. A scalar product (¢, x)
can be introduced in this space according to

eAx=(o,x)vols,  Vo,x € AU , (3.16)
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and it has signature (3,3), since (p,*p) > 0,Vp € AIQ,Z/I4 and there must be three self-dual
and three anti-self-dual forms over a point. Using this scalar product, the condition (3.10)
translates into

(J*, JY) = 25" . (3.17)

The forms J* therefore define a positive three-dimensional hyperplane in AZQ,L{4. From all
the endomorphisms of AZQ,Z/{4, the ones preserving the orthonormalization condition (3.17)
form an SO(3,3) subgroup. But in obtaining the nontrivial deformations of the forms J*
it is also needed to mod out both the SO(3) subgroup acting on the hyperplane orthogonal
to the forms J* and the SO(3) subgroup that merely rotates the forms J* into themselves.
Considering also the single parameter entering the choice of volume form voly, it is concluded
that the possible choices of self-dual two-forms over a point p of ) parametrize the space

g _ ot ~
iy =R X G557 803) ~ S0()

(3.18)

This space indeed captures all degrees of freedom for the 4 x 4 symmetric and positive-
definite matrix g, (p).

Now this result needs to be extended to the whole manifold ). At first sight it would
seem that since the space A*Uy = UpeyAgL{4 of two-forms on Y is infinite-dimensional there
will be an infinite number of moduli. Remember though that a Kaluza-Klein reduction is to
be performed on these backgrounds, and therefore only light modes need to be kept. This
space can therefore be truncated to a finite-dimensional subset A%mteLQ. There must be
three self-dual forms on this space that are singlets of SU(2). These are the forms J* defined
in Eq. (3.2). Any other self-dual two-form that is a singlet of SU(2) must be expressible
in terms of these. The coefficients of this expansion may depend on the point of the
manifold, but the truncation precisely means that only zero-modes or constant coefficients
are possible. Thus there are only three self-dual forms in AﬁniteLLl. However, in principle
nothing constrains the number n—3 of anti-self-dual forms, so that the dimension of A%nit RN
is n. Performing a similar analysis as the one leading to Eq. (3.18), it is concluded that the

space of deformations of the component Uy is

SO(3,n — 3)

geom __ R+
A " 50(3) x SO(n —3)

(3.19)

Parametrizing this space is completely analogous to the parametrization discussed in
Section 2.2.1 for K3. Denote by w? the n two-forms spanning A%nitel/{4. An intersection

matrix 748 can be defined for these forms by writing
wh AwPB = nABelvoly | (3.20)

since the only possible four-form surviving the projection must be proportional to the
volume form on Uy. For convenience, a volume modulus p is introduced. Due to the same
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argument as before, the matrix nZ defined in this way has signature (3,n —3). The three
self-dual two-forms can be expanded as

JT = e 2PET A (3.21)

by introducing 3n parameters {%. Using this expansion in Eq. (3.10), a constraint on the

possible values of £% is obtained in the form
A PEREY = 257 (3.22)

The three orthogonal and normalized vectors % therefore span a three-dimensional positive
hyperplane
H? = span(¢', 6%, €%) C Afyyeelds ~ R (3.23)

The set of these hyperplanes is precisely the second factor of the moduli space (3.19).
An orthogonal transformation rotating the three vectors £% among themselves is clearly a
redundancy that must be modded out. The number of physical degrees of freedom in £% is

in consequence 3n — 6 — 3 = 3(n — 3).

Since the space A%mtelxﬁ is preserved by the Hodge star operator, the following expansion

can be written,
sw? = MAgw?P . (3.24)

Again, M4 p has eigenvalues +1 (—1) corresponding to the (anti-)self-dual linear combina-
tions of the forms w?. The +1-eigenspace is spanned by the forms J* and thus corresponds
to the hyperplane 3. The orthogonal hyperplane H’j_?’ is then the —1-eigenspace. Due
to Eq. (3.22), a projector on H? can be constructed as PAg = %5“‘5% with ¢4 = 77‘435}’3.
Since

w A xwB = MPonAC = MABevoly (3.25)
must be symmetric, this is enough to fix the form of the matrix M4y as

Mg = (+1)P4p + (-1)(55 — P"p)

o (3.26)
= =0 +n""E0EE -

3.1.2 Ansatz for the SU(2)-structure backgrounds

It has been seen that in an SU(2)-structure manifold ) there is a pair of one-forms v?,
together with some number n of two-forms. The latter have been denoted by w?, in analogy
to the harmonic forms of K3. Also, every neighborhood of ) can be written as a product
Uy x Uy of two- and four-dimensional components in such a way that v* is in T*Us while wA
belongs to A%Uy. In other words, there are local coordinates (z%,y™) such that

vt =v'ded (3.27a)

wh = %wéndym Ndy™ . (3.27Db)
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However, up to this point this says nothing about the dependence of the components vij
and w4 = of these forms on the coordinates z* and y™.

In contrast to the K3 x T? case, for a generic SU(2)-structure manifold ) the forms v
and w4 need not be closed. Nevertheless, their exterior derivatives must be expressible in
terms of all possible exterior products of these forms with themselves. The most general
closure algebra that can be written in this way is thus

dv’ = gl Av? | (3.28a)

dw? = THV AWP | (3.28b)

for some constant coefficients #* and Ti%. In principle, one might think of adding a term
0%,w™ to the r.h.s. of Eq. (3.28a), but a simple inspection of (3.27) rules out such a term,
since it is impossible that dv® has a part in A%y if v* is in T*Us. Therefore 6% = 0.

Eq. (3.28a) implies that the components v j can only depend on the coordinates 2 If
this were not the case, dv’ would contain a term in T*Us A T*U, and as it has been seen
there is no such possibility in the r.h.s. of Eq. (3.28a). In fact, the reasoning goes really the
other way round: it is precisely because the forms in T*Uy A T*U, (among others) must be
projected out that dv® and also dw? must be expressible only in terms of (products of) v*
and w?.

A

On the other hand, the components wy;,,

might very well depend on both sets of coor-
dinates 4™ and z'. But considering the splitting

d=dy+dy=dz* AD; + dy™ A Oy, (3.29)

of the exterior differential and Egs. (3.27b) and (3.28b), it is not difficult to check that

A are actually closed on each slice Uy with constant z*.

dqw? = 0. In other words, the forms w
This is also true for the forms J¥, since they are just the self-dual combinations of the
forms w?. This means that there is locally a hyperkéhler structure on ;. Now if all the
leaves Uy combine to form a maximal leaf )y, the latter must be a K3 and the number
of two-forms is restricted to n = 22. This is the reason why the manifolds ) that will be

considered here are constructed as K3 fibrations over some two-dimensional space )s.

The possible values of 6% and Ti% in the closure algebra of Eq. (3.28) are restricted
by the nilpotency of exterior differentiation and by Stokes’ theorem. Taking the exterior
differential of Eq. (3.28a) leads to an identity, but the same operation on (3.28b) yields

0T = M TETR - (3.30)

Considering Ti‘% as a pair of matrices T; = (Ti%)’ the last condition can be rewritten
compactly as the commutation relation

[Ty, T5) = 6'T; . (3.31)
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On the other hand, Stokes’ theorem implies that fy d(v? AwA AwB) = 0, which after making
use of (3.28) imposes the additional constraint

eI (Tien®" + Tien™) = 70" . (3.32)
The intersection matrix n? is defined in Eq. (3.20), and as already mentioned it has
signature (3,n — 3). Eq (3.32) can be written in matrix form as*

T +nT;" = —ei;n (3.33)
and this can be conveniently rewritten as
(T; + €0 1)n +n(T; + 3e;,6’1)T = 0. (3.34)

This equation implies that the metric 78 is invariant under transformations generated
by the matrices ©; = T; + %eiﬂj 1, and the latter must therefore be in the algebra of
SO(3,n — 3). Another way to see this is by taking the trace of Eq. (3.34) and concluding
that ©° is traceless. In conclusion, the matrices T; parametrizing how much dw? deviates
from zero are constrained to have the form

Ty =—36;6"1+0; with t10'=0. (3.35)

It is easy to check that the matrices ©; satisfy the same commutation relation (3.31) as the
matrices T; do, namely

[01,0,] = 'O, . (3.36)

If the expression (3.35) for T; is substituted back into (3.28), it is obtained
dv' = vt Av? | (3.37a)
dw? = 10707 A wt + 0%  AWE . (3.37b)

In the following, two possible cases are studied separately. The first case corresponds to
0% = 0 but nonzero ©,. The one-forms v’ are therefore closed. It is shown in Section 3.2 that
this case can be realized by considering manifolds ) constructed as nontrivial fibrations of
K3 over a two-torus. The twisting of this fibered space is controlled by the parameters . If
they go to zero, the fibration becomes trivial and the product manifold K3 x T2 is recovered.

On the other hand, there is the case complementary to the first one. It sets ©; = 0 but
allows for a nonvanishing #. The latter implies that the one-forms v are not closed and
the local structure of this two-dimensional space corresponds to a twisted two-torus. As
it turns out though, a twisted torus does not exist as a compact manifold, and this is the
reason for the quotation marks in the label ‘K3 fibration over a twisted torus’ given here to
this case. Nevertheless, sense can be made of the compactification of heterotic supergravity
on this background in a Scherk-Schwarz fashion. The discussion is deferred to Section 3.3.

It should come as no surprise that the effective theory obtained for the general case with
both ¢ and ©; nonvanishing is nothing but a ‘sum’ of the results for the two cases above.

tHopefully, the matrix n = (nAB) will not be confused with the spinors n;. The latter do not show up in

the rest of the Chapter.
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3.2 Compactification on K3 fibration over a torus

Roughly speaking, a K3 fibration over a torus is constructed by giving a dependence to
the K3 metric g, on the torus coordinates z'. As discussed in Section 2.2.1, the K3
metric is not known explicitly, but it is intimately connected to the harmonic two-forms w*
generating the second integral cohomology H?(K3,Z). The same effect is therefore obtained

if these forms are made z-dependent. Let us set

wh(2) = 7 p(2)w” (3.38)

where w4 = wA(0) is a fixed choice for the harmonic forms on K3 and v = (y45) is a
z-dependent matrix defined as

v(z) = exp(2'©;) . (3.39)

In going once around each of the cycles C; of the torus by making z* — 2% + 1, the basis of
harmonic forms wA(z) on the K3 fibers picks up the corresponding monodromies

Vi =expO; . (3.40)

If sense is to be made of the fibration, it must be required that the basis 'yﬁ_;wB be equivalent
to the basis w?. For these two bases to define the same lattice H%(K3,Z), they must be
related as in Eq. (2.31), or in other words 7; must be in SO(3,19,Z). In particular, this
implies that ©; must be in the algebra of SO(3,19). It also follows that the matrix v(z) in
Eq. (3.39) is in SO(3,19) and therefore leaves the matrix n? invariant,

A A

YoM PP pz) =P . (3.41)
Moreover, the monodromies +; must commute with each other, and as a consequence the
same must be true for the generators ©;. Condition (3.36) with #° = 0 is therefore fulfilled.
This construction is schematically shown in Figure 3.1.

The forms w?(z) are certainly closed on every K3 fiber, that is dyw? = 0. But due to
the z-dependence, they fail to be closed in the whole fibered space. Taking the derivative
of Eq. (3.38), it is obtained

dw?(2) = daw?(2) = O5d2" AwWB(2) . (3.42)

Since the one-forms v* = dz* on the torus are closed, the closure algebra (3.37) with ° = 0
is indeed satisfied. Setting ©; = 0 eliminates the z-dependence and trivializes the fibration.
The parameters ©; therefore measure how much the manifold ) deviates from K3 x T2.

The three self-dual two-forms J* also depend on the torus coordinates, as can be seen
from the expansion (3.21),
1
J(z) = e 2Pe%0wA(2) . (3.43)

This expansion makes manifest another way of seeing this fibration. In one ‘frame’; the
basis forms w”(z) vary with 2* while the moduli p and ¢% are constant. But there is also
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2 2%)
wA(Zl ) wA(ZLH’

Figure 3.1: Structure of a K3 fibration over a torus.

A

the possibility of leaving the forms w** constant and transferring the z-dependence to the

moduli p(z) and % (z) in such a way that one has the same forms J*(z). These are but two
equivalent ways or ‘frames’ to express the same thing.

In the following, it will be useful to consider the second point of view. As already
expressed, this means setting

J¥(z) = e 2P (H)wA . (3.44)
Comparing with Eq. (3.43) and using (3.38) it must be set
e 2P (2) = e 2Ry 4 (2) - (3.45)

Deciding what z-dependence corresponds to p(z) and what to £%(z) is based on the require-
ment that £%(z) must satisfy the orthonormalization condition

P EL(2)ER(2) = 267 . (3.46)

Since v € SO(3,19,Z) C SO(3,19) and these transformations respect the scalar product
nB . the right answer in this case is

p)=p,  Ei(x) =1"4(2)E5 - (3.47)

In particular, the volume of the K3 fiber is not affected.
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3.2.1 Effective theory

Now the dimensional reduction of heterotic supergravity on a K3 fibration over a torus
characterized by the matrices ©; can be performed. The procedure is quite analogous to
the one in Section 2.3 for K3 x T2. In particular, the ansatz for the ten-dimensional bosonic
fields garn, B2 and A7 has the same form as in Egs. (2.52) and (2.55). The metric has the
block-diagonal form

Guv + Gij VJVuj Viigij 0
JMN = gijvuj 9ij 0 , (3.48)
0 0 Imn (Y, 2)

where the difference shows up exclusively in the z-dependence of the K3 metric. For the
NS two-form and gauge potential one has

By = 1B, dz" Ada” + By Adat + 1BE A ET + ba(2)w? 5.19)
4 = A%dat + AZET '

with & = dz' + Vﬁdx“ as before. The difference in this ansatz is solely in the z-dependence
given to the by moduli,

ba(z) =P A(2)bp . (3.50)

From these expressions, it is clear that the spectrum of this theory coincides with that of
K3 x T? compactification. Moreover, since the only changes involve scalars that in K3 x 72
compactification sit in hypermultiplets, namely the scalars {% (or equivalently M A B) and
ba, the vector-multiplet sector should not be affected.

The first step is to use the metric (3.48) and compute the Ricci scalar. This can be done
by applying the general formula (2.64) from Chapter 2 to the metric given in Eq. (3.48).
Considering that only ¢, depends on the internal coordinates, the first two terms in the
ten-dimensional action Sy, of Eq. (2.2) lead to the Lagrangian

Ligre = 3¢ (Ra+ 0,00"0 — 195V, VI + 30,9:0"g"

. (3.51)
+ Zvjj ADugmnDMgmn) - 7/6 )

Vy:/lz//lz/ e_p:e_p/l (3.52)
Y T2 JK3 T2 T2

is the volume of the internal manifold ) and the derivative is defined as D, = 0,, — V,jal-.

where

Furthermore, 74 is related to the curvature of the fibration, and according to Eq. (2.66) is
given by

Y = _%e—wyl/ R (3.53)
y
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with Rg being the Ricci scalar for the internal metric

_ [ 9 0
Gab = ( 0 gmn(% Z)) . (3.54)

Notice that this six-dimensional metric is again of the form (2.59) for D = 6 and d = 2 if
one translates

M a “w i a m
T =Y, =z, yr—y,
Vi—=V"=0, (3.55)
IMN — Yab » uv — Gij 9ab — 9mn
or in other words if one considers a total six-dimensional space with external ‘spacetime’
coordinates z' and internal four-dimensional manifold parametrized by ™. Recall that
both the base torus and each K3 fiber has vanishing Ricci scalar. Equation (2.61) can thus

be used to compute

/R6 = i/gij(?igmnajgm” . (3.56)
Yy Yy

The difference in the Lagrangian .Z 414 with respect to the one obtained in the com-
pactification on K3 x T2 is only in the second line of Eq. (3.51). Those two terms involve
only the moduli comprised in the K3 metric. As already explained, those scalars sit in
hypermultiplets of the effective theory. The contribution to the four-dimensional effective
Lagrangian .7}, involving scalars in hypermultiplets and arising from . 444 in Eq. (3.51)
is therefore given by

ghyg - %ei(bv;)jl /y (DugmnD“gmn + gijaigmnajgmn) . (357)

The first term in this expression is a kinetic term with a modified spacetime derivative
D, = OH—VJ&. This already makes clear how the z-dependence introduced via the fibration
indeed induces a gauging, turning ordinary spacetime derivatives into covariant ones. On the
other hand, the second term in %, ; gives rise to a potential, since it involves no spacetime
derivative.

Equation (3.57) can be easily expressed in terms of the modulus p and either £% or M 4.
This can be done by using the line element in the space of K3 metrics computed in Ap-
pendix B and given in Egs. (B.19) and (B.21). One just needs to substitute, for example, ép
by D,p(z) and 0;p(z), etc. But before doing that, let us compute the following derivatives
for £€%(z) as defined in Eq. (3.47),

0;%(2) = 0yP 4(2)€5 = vP 4(2)O5EL
DuE5(2) = Y2 4(2)0,65 — VIO P a(2)6h = 7P 4(2) (0,85 — VIOBEE) -

It turns out that all the z-dependence drops out because all factors of v(z) cancel each

(3.58)

other. The reason for this is Eq. (3.41). The integral on the torus is in consequence trivial.



50 3: HETEROTIC ON SU(2)-STRUCTURE BACKGROUNDS

Additionally, a Weyl rescaling of the spacetime metric g, — ed’g,w must be performed.
The final result is

Bivg = —50up0"p+ 301" — 564€P) DS DR — i

) 5 (3.59)
= —L0up0"p+ LD, M D" MP 4 — ¥4,
where the covariant derivatives are given by
D&k = 9,85 — ViOLieh (3.60)
DyM*p = 9,M*p — Vi(M*c0 — 04Mp) |
and the potential is
Yhg = 579" (ffl@?nyBfé@jCnyD + 2§f19f39fc§mc) (361)

= —15e%g" (M c0f; — 06 M) (MP pO7), — 07, MP 4) .

Now the terms in the ten-dimensional action involving the NS two-form By and the
one-form A% need to be worked out. As already noted, the only difference in the ansatz
for these fields with respect to the K3 x T2 case is in the term b4(z)w? in the expansion
of By. This term contributes only to the hypermultiplet sector of the effective theory. If it
is substituted into the kinetic term for the NS two-form B» in the action Sy, a contribution
to 4, is generated in the form

Loy = —ie_‘é]};l ) (DHbA(z)D“bB(z) + gijaibA(z)aij(z)) / WA A xP (3.62)
T K3

The derivatives of ba(z) as defined in Eq. (3.50) can be computed and substituted here.
Once again, the factors of 7(z) cancel and all the z-dependence drops out. The integral over
the torus is trivial. Recalling that by definition M45 is given by Eq. (2.35) and performing
the Weyl rescaling g,, — e‘i’g,“,7 it is finally obtained

Lo = —2e?MABD,bsD o — Yy (3.63)
where the covariant derivative takes the form
Dyba = uba — VO bp (3.64)

and the potential is
Yo = 3€°gTMAPOT,0bcbp (3.65)

At the end of the computation, the total effective Lagrangian is
Ly = SRa+ 115 (0)FL,FH + LRy (0)e P FL Foy

_ (3.66)
- qu(v)auvpﬁ“f)q - huv(‘])DuquD“qv - N(q) ,
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where the last two terms correspond precisely to the Lagrangian 4, = 4, , + 4, for
the hypermultiplet sector and are given by the sum of Eqs. (3.57) and (3.63). As already
mentioned, the vector multiplet sector is exactly as in the K3 x T2 compactification. Also
the metric hy,(q) of the o-model for hypermultiplet scalars ¢* is the same. The moduli
spaces .#, and .# are therefore as in Eqgs. (2.99) and (2.103). The difference is that now
some scalars g% in hypermultiplets ¢* are charged with respect to the Abelian Kaluza-Klein
vectors Vlj. The covariant derivatives of hypermultiplet scalars are generically of the form
given in Eqgs. (3.60) and (3.64), that is

Dyug" = 9uq" + k' Al = 0,q" + KT, V) (3.67)
In our case, the Killing vectors have the expressions
Ko.o=0, kA=-0P¢h, k4=-0Rbs. (3.68)

It is seen that the torsion parameters ©; are indeed the charge matrices. A potential 74 (q)
is also generated and it is given by the sum of the contributions in Egs. (3.61) and (3.65),

hh= — £eg7 [(MAcO — 0/ MC g)(MP pOr, — 08, MP 4) — 4aM*P O, 01 5bcbp]

= 3¢°9" (€467p€"P€2OpE"" + 2650750]0€™
+ 20405050 + 20405V PbcO5E0P)
(3.69)
Here the matrices ©; appear as masses for the moduli fields. That the Lagrangian in

Eq. (3.66) is indeed consistent with the general form given in Eq. (A.1) for gauged 4 = 2

supergravity will be verified in Section 3.4.

If a matrix M is introduced as defined in Eq. (2.83), the last two terms in the

Lagrangian (3.66) can be written as

By = — Lt (DLMDIM) — 4, |

. (3.70)
7/}1 = _TlﬁeqngJtr([M??;][Ma/]}]) ’
where the covariant derivative is
DyM = 0,M = ViIM,Tj] (3.71)
and the matrices 7; = (’];5) are given by
0 0 O
;=10 0 0| . (3.72)
0 0 ©

(2

These matrices are in the algebra of SO(4,20), which is the isometry group of the moduli
space . in Eq. (2.103). Moreover, exp 7; is an element of the U-duality group SO(4, 20,7Z)
of the full heterotic string theory compactified on K3, since exp ©; is in SO(3,19,7Z).
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3.3 Compactification on ‘K3 fibration over twisted torus’

Now let us consider a nonzero §*. For simplicity, it can be set ©; = 0 and leave the discussion
of the general case to Section 3.3.2. This is a complementary situation to the one analyzed
in Section 3.2, and it will be seen that the general case is just a ‘sum’ of the results for the
two cases. The closure relations (3.37) for ©; = 0 and a generic §° take the form

dv’ = 0"t Av? (3.73a)
dw? = 20707 A w (3.73b)

Intuitively, the first of these equations says already that the parameters 6 introduce some
torsion in the torus base. The equation is indeed the extrapolation to two dimensions of
the algebra dv’ = H;kvj AvF satisfied by the m one-forms v*, i = 1,..., m defining a twisted
m-torus. The latter is constructed as a two-torus successively fibered over circles in much
the same way a K3 fibration over a torus was considered in Section 3.2. A two-torus does
not really exist though, which explains the quotation marks in the title. Nevertheless, sense
can be made of this case as will be explained below.

Eq. (3.73a) can be solved locally in the following way. First notice that
d(eijﬁivj) = eijé?idvj = einival Av2=0. (3.74)
A coordinate z!' can therefore be introduced such that
€00 = —9d2" | (3.75)

where ¥ = (6;;007 )1/2 was defined and a minus sign was included for convenience. It is also
not difficult to see that

d(e "% 0;;0"7) = e "2 5;;0°dv’ — 7 6;50"9d2t A

) ) ' ' (3.76)
= 92e %yt A2 47?7 5ij916k10kvl ANv! =0.
A second coordinate can thus be introduced as
e*ﬂzl(;ijgivj =9d2? . (3.77)
Now Egs. (3.75) and (3.77) can be inverted to obtain
P = €072t + fie”? dz? | (3.78)
or more explicitly
Pot = 62dzt + 0'e?? 422 ,
(3.79)

D% = —0rdz! + 6277 d22 .
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From the two parameters ' and #? actually only one has physical significance, since a
new set of one-forms o = A%;v’ can always be defined with A an O(2) matrix. The wedge
product o' A % = v! A v? is invariant and therefore

Ao’ = 00! A 52 (3.80)

with redefined parameters 8 = A’ jﬂj . By such a rotation, one can always set one of the two
components of ' to zero, with the nonzero one being positive. Let us therefore set ! = 0
and 62 =9 on Eq. (3.79). The result is

ol =dzt v = e’ d2? (3.81)

or in terms of the components v* = v*;d2/,

o) = <(1) e;)) . (3.82)

Furthermore, Eq. (3.73b) reads

dw? = —19dz! A w (3.83)

Egs. (3.81) and (3.83) can be satisfied if one considers the product space K3 x S, where
the circle Si is parametrized by the coordinate 22, and fibers it over another circle S}
parametrized by the coordinate z!. According to the second equality in (3.81), the length
Ly of the SJ factor in the fiber varies as

Ly~ / v = (3.84)
S

3
On the other hand, Eq. (3.83) can be satisfied if one sets
wi () = o2 A (3.85)

This is just a rescaling of the forms w?. Since the wedge product of two such forms is
proportional to the volume form on K3, the K3 volume Vi, = ™ must vary on the base
circle according to

Vis(z1) = e 7 Vs (3.86)

or equivalently
p(zh) = p+ 092t (3.87)
Notice that the total volume of the fiber, Vi3 Lo, is constant.

Another way to arrive at Eq. (3.87) is to consider the expansion of J*(z!) in the two
frames,

1
T = e 2w () = ¢ 220 et = o2 gg (2ot (3.88)
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Since the z'-dependence in Eq. (3.85) is juts a rescaling, it must go all to the modulus p.
This is a consequence of the moduli £% having fixed norm. In conclusion,

plzh)=p+9z', G =¢&. (3.89)

Since the dependence of the volumes of each factor on the fiber is monotonic, there is
no way the fibers can be patched after going once around the base circle. Therefore, this
fibration does not exist as a compact manifold. Nevertheless, one can still make sense of this
background. As it turns out, one can exploit the fact that heterotic supergravity compact-
ified on K3 x S! has a global symmetry that serves to make the necessary identifications.
This is just the Scherk-Schwarz program.

3.3.1 Effective theory

One can now proceed to the computation of the effective action for this background. A
metric ansatz can be written in analogy to Eq. (2.50), only this time the forms dz’ on the
torus are replaced by the twisted forms v’ satisfying Eq. (3.73a),

ds® = guudx“dxy + 9i5 (vi + V:dxﬂ)(vj + szjdxy) + gmn(ya Zl)dymdyn
L L (3.90)
= gudatda” + Gij(dz" + Vidat)(d2! + VJdz") + gmn(y, 2" )dy™dy" .
In this expression, g;; is a z-independent metric for the twisted torus, and by substituting
vl = vijdzj with vij defined in Eq. (3.82) the following z-dependent quantities were defined,

1
o e g1 €% gio
Gij(27) = grv"iv'; =

gy @@ gy |
(3.91)
Vl
i 1\ —1\2 7 K
Vu(z ) - (U )jvu - eiﬁzlvi

Here the matrix v = diag(1,e 7%") is the inverse of Eq. (3.82). The metric for the basis
(da#,dz?, dy™) can therefore be written in the block form

Guv + §z‘j‘~/;f‘~/3 Vi) (") 0
gun = | Gij(zHVI (21 Gij (1) 0 . (3.92)
0 0 gmn(y7 Zl)

Since the metric of the two-dimensional factor is affected, some differences are expected to
appear in the vector multiplet sector with respect to the K3 x T2 compactification.

Once again, the first two-terms involving the Ricci scalar and the dilaton in the action
Sp in Eq. (2.2) can be computed by making use of formula (2.64) with the metric gy n
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given in Eq. (3.92). The result is
.,%4794_@ = V / R4 + 3 qﬁ@“qﬁ 4gUVZ VJ By + 5 ’Dugij’b‘ugij
(3.93)
+ ipugmnpugmn) - 7/6 )
where the four-dimensional dilaton was defined as ¢ = & — %ln Vy, and V), is the volume
of Y. The derivative D,, is given by

Dy =0, —Vid; =0, — V01 =0, — V0,1, (3.94)

since nothing depends on z2. The remaining quantities in the Lagrangian of Eq. (3.93) are
computed according to the definitions (2.62). The field strengths VJV = DﬂVVZ — szf/,f for
the vectors f/lj turn out to be

Vi, =V, =0, -0V, ,
1 (3.95)
V2 =" V2 =" (9,V2 - 9,V2 +9VIVE - 9VIV2)

This means that the vector V1 is neutral, while the vector V2 has charge ¥ with respect
to the U(1) gauge field V1 On the other hand, the derivative Dﬂgm can also be computed
from the expression Dugm = D,gij — 9ir0; V — Jk;0i V and the result is

D11 = Dyugi1 = Ougn + 219V g12
Djia =’ D g1 = e’ ((%912 - 79V g12 + 9V, 922) ; (3.96)

ngQ = e D 1922 = 62 (8M922 — 209V, ggg) .

There is also the potential ¥4, that according to Eq. (2.66) is related to the curvature of )
as

Vo =—3e V5 / Re , (3.97)
where Rg is the Ricci scalar of the metric
g g 0
gab = | € g1z ¥ goy 0 . (3.98)
0 0 gmnl(y,2")

Once again, this Ricci scalar can be computed by applying the formula (2.61) with D = 6
and d = 1 if one translates

M
T — ya ) oy — 621921922 0
at — 2t @ 0 gmn(y,2") )
y* — (z2, ym) , (3.99)
V2 eﬁzlgﬁ
9MN — Gab > Ve — L) = 922
v 0

Guv — 911
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The other necessary ingredient is that the dependence of the K3 fiber metric g, on the
coordinate z! is through an overall factor of exp(—%vﬂzl). This means that 0,1gm, =
—%ﬂgmn. Putting all this together, it is found

Re = —29%g" | (3.100)
which upon substitution into Eq. (3.97) gives
Vs = 2e %9%g't . (3.101)

Now this potential and the derivatives (3.95) and (3.96) can be substituted in the Lagrangian
of Eq. (3.93). The term involving the metric g, of the K3 fiber can be computed by using
the line element Eq. (B.21). The variation of the parameters {% or equivalently M A5 must
be substituted by the spacetime derivatives 9,£} or 9, M A5, In the case of the modulus p,
its variation dp must be substituted by the derivative

Dup(z') = 0up(zt) — V“l@zm(zl) = 0up — 19Vﬂ1 =D,p, (3.102)

where Eq. (3.87) was used. All the z!-dependence in the integrand of Eq. (3.93) cancels
and the integral over the internal manifold Y is trivial. The final result for the Lagrangian
is
Ligro = 27 ?(Ra + 9,00"¢ — igz‘jv,fyvj’w + 1D, gijD"g" — 39%g" (
3.103)
— 1D, pDVp+ L0, MApor ME ) .

The next step is to compute the terms in the ten-dimensional action &y, that depend on
the NS two-form By and the gauge one-forms Aj. An ansatz for these fields can be written
in analogy to the K3 x T2 case as

By = 1B, da" Ada? + By & Adat + LByE A ET + ba(2)w?

. (3.104)
A7 = Ajdat + ATE"
where now the one-forms are defined as
g ="+ Vidat (3.105)
and the ba(z!) moduli have a z!-dependence given by
ba(d) = e 277y, . (3.106)

The latter is a consequence of transferring the z'-dependence (3.85) from the forms w? to
the by fields as in the former Section. The main difference in computing the field strengths
comes from the derivative of the forms &;. Taking the exterior differential of Eq. (3.105)
and recalling the expressions (3.81), it is obtained

A&t = JV,, dzt A da”

2 _ 1y . L (3.107)
d&° = EVuvdx“ Adz? — ﬂeijvﬁdxﬂ AEI +9EANE ’
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where the field strengths VJV were defined in Eq. (3.95). These expressions can now be used
in the computation of the exterior differentials of the ansatz (3.104). Performing here also
the field redefinitions (2.76), the result for F§ = dA% and Hy = dBs — %Aé} NF}is

F§ = 3(F3, + A2Vl dat A da” + Dy AZ dat ANE' + 9AFE NE?
Hs = $(0uByp — $BiyVy), — 5V Bivp — $ALF}, 4 20B5,V, V) dat A da” A da”

— 3(Biw + AXFR, + Ci;V],) dat Ada” AE' + §(DyBij + A!D, A% dat NE' A E

+D,ba(z") dzt Aw? +0,0bx(2H) EL A

(3.108)
The field strengths and the covariant derivatives in these expressions are given by
Fi, = 0,47 — 0,4},
Bi;w = auBiV — &,Bw + 0eijV3B2V - ﬂeijVVjBQM ,
DAY = 0, A7 + Ve AV (3.109)

DyBia = 8,B1y — 9By, — 9V, By |

1

Duba(z') = (8 — V0 )ba(z") = e 2% (9uba + 20V, ba) = ¢ 2% Db .

The field strengths '3 and Hg in Eq. (3.108) can be substituted in the last two terms of
the action Sy, to obtain the following contribution to the effective Lagrangian,

L1448 = _%e_(b {%HMVPHMW + %(F,‘jy + A?VJV)(F&W 4 A?Vj’“")

+ 597 (Biww + AZES, + Cip Vi) (B + AJFPH 4 Cyvhi)

+ 19" ¢’ (DuBij + A D, A%) (D* By + ARD" A}) + 39" D, A3 D" A%
+ 3¢ MAP D, baDbp + $97g; 1 AJAS + %02gﬂeﬂMABbAbB} :
(3.110)

where this time the three-form is given by

Huwp = 0uBup — 5BiyV,,, — $ViBivy — 3 ALF2 + 20By, V) V! + cyclic perm. . (3.111)

The total effective action £} is obtained by adding the two contributions .24 ;14 and
Zi.a+B. The result can again be written compactly in terms of appropriately defined
quantities. Let us denote all vectors by .AfL as in Eq. (2.80). The corresponding field
strengths are

I _ (i
Fuw =,

i Biw, F2) . I=0,...,ny, (3.112)



58 3: HETEROTIC ON SU(2)-STRUCTURE BACKGROUNDS

with Vuw Biy and Fj, defined in Egs. (3.95) and (3.109) but reproduced here for clarity,

Vi, =0V, —oV,,
Vi, = 0uVi; =0,V + 0V, VE =9V, V2
By = 0,B1, — 0y B1y + 9V} By, — 9V} By, (3.113)
Bowy = 0uBay, — 0By — V! By, + 9V, By,
F2, = 0,AL — 9, A% .
A general expression for these field strengths is F! = dA! + f1.A7 A AK, where the

constants f }  are given by

fOl f 1V2 == 5 03 == f 132 3 13 = f 232 (3.114)

and the rest vanishing. These constants satisfy the Jacobi identity and are in fact the
structure constants of the gauge algebra, as will be verified in Section 3.4. Also, the three-
form Hs in Eq. (3.111) can be written as Hgy = dBs — %wc& where the Chern-Simons
three-form is

wes = L[J.AI/\fJ - %f[JKAI/\AJ/\AK . (3.115)

Here frjx = L1 f}K is completely antisymmetric. In terms of these quantities, the total
effective action takes the form

Ly =Lygro +ZLyarB

= 37 R + 04006 — My M — LMy F L, F 4 LD M DM
(3.116)
— 1D, pDVp + 10, M* 0" MB 4 — LMABD,bsDVbp
— 025" (922 + $A4343) + Lo (1 + 3" M Pusbp) | }

where the matrix M!7 has been defined in Eq. (2.81). The last line in this expression is a
potential for the scalar fields.

The next steps are to dualize the three-form Hjs into the axion a and to perform the
Weyl rescaling g,,, — e¢gw,. The axion-dilaton s and the complex moduli vP can again be
defined according to Egs. (2.93), (2.94) and (2.95). A matrix M can also be introduced
as in Eq. (2.83). Two equivalent final forms for the Lagrangian % can be written as

1 1 — I —J, 1 Al —J
Ly =Ry — L M FLFM + kaLp e FLLF,

a s0"'5 + 16D MI DMMJ[—{— 16D MP DMMQP_/V(&M’M)
(5—3) (3.117)

= $Ra+ 1117 (0)Fly FH + LRy (0)e P FlL Fi

— qu(v)Dﬂva“T)q — huw(q)Dpq"D*q" — ¥ (v,q) .
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The differences in this final expression with respect to the effective Lagrangian (2.96) of the
compactification on K3 x T? are the covariant derivatives D,v? and D,,q", the non-Abelian
field strengths (3.113) and the potential ¥'(v,q). In other words, for this SU(2)-structure
background one also obtains a gauged version of the supergravity corresponding to K3 x T°2.

The covariant derivatives for the complex scalars vP are
D,s=0ys,
Dyu = 0yu+ ﬁ(Vl}u + VMQ) , (3118)
Dyt = 9yt — 9(V,jt — Bay)
D,n® = 0,n" .
From these expressions, the following nonvanishing holomorphic Killing vectors k} = k:j’:,

as appearing in the general expression DI = 9,vP — kj’:, A{L can be read off,
v =u, Ve=9,  kin=-9t, kb, =1. (3.119)

On the other hand, the covariant derivatives D, q" = 0, — k:’:l Aﬁ of scalars in hypermulti-

plets have the form
Dyup = Oup — 9V, |

Dyu&h = 0us (3.120)
DﬂbA = 8ﬂbA + %Vule R
and the corresponding nonzero Killing vectors are

K, =1, koA = —10ba . (3.121)

Equivalently, the covariant derivatives of the matrices M’ ; and MF @ can be given instead.

One can check that they conform to the expressions

DMMIJ = 8MMIJ — f[I(L.AffMLJ + f[IéJAlIfMIL ;

(3.122)
DM = 9,M — V;[M,’T] ,
where the matrix 7 = (77 () is defined as
- 0 0
T=l0 9 0o]. (3.123)
0 0 02
Since this matrix satisfies 7L + L7 = 0, it is in the algebra of SO(4, 20).
Finally, the generated potential is given by the expressions
¥ = 5025 (922 + $4343) + Lgua (1 + 3" M Pb 0| (
3.124)

= gp” M (MM MEN — 3LTMLEN) frype fran — g tr (M, T)?) .
That this potential is indeed consistent with the gaugings characterized by the Killing
vectors (3.119) and (3.121) will be established in Section 3.4.
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3.3.2 General case

For the general case, both sets of parameters #° and ©; are present in the closure alge-
bra (3.37). It is not difficult to guess that this case can be realized by considering a fibration
over a base circle whose fiber is a five-dimensional space constructed as a K3 fibration over
another circle. Let us make this more explicit in the following.

Consider first a K3 fibration over a circle S3. As explained in Section 3.2, it can be done
by giving a dependence to the harmonic two-forms of K3 as

w(2?) = (PP | (3.125)

for a z2-dependent matrix y2(2?) = exp(2203). The monodromy after going once around
the circle is given by the matrix 72(1) = exp©,. If this matrix is in SO(3,19,7), the
two bases w?(1) and w?(0) are equivalent and lead to the same K3. It is through this
identification that the fibration is realized.

As a second step, consider a further fibration of this five-dimensional manifold over a
circle S1. This can be done be giving the following z!-dependences to the two-forms wA(2?)
and to the one-form v? = dz? in the base circle of the first fibration,

1)2(21) — o972 )

WA, 2%) = e 3l (WP (%) = e gl ()b (%) o
Taking the exterior derivative of these expressions one obtains
dv? = 9dzt Av? (3.127a)
dw? = —19d2! A w4+ 015zt AwP + O45(2Hd2E A WP, (3.127b)
where the following matrix has been defined,
Os(2') = 71 (21O (21) 7L . (3.128)

Comparing the expression for dw? with Eq. (3.73a), it should be clear that the third term
in Eq. (3.127b) must be of the form ©55v% A WP = @’;Beﬂzlsz A wB. This is the case if
and only if

O(z") ="' 0, . (3.129)

Equating this and (3.128), taking the derivative with respect to z' and setting 2! = 0 in
the end, the following commutator follows,

[01,0,] = 90, . (3.130)

The closure algebra (3.37) is indeed satisfied with matrices ©; in the algebra of SO(3,19)
and satisfying the right commutation relation with parameter .
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The effective four-dimensional action for this background can be derived with no extra
effort. The vector multiplet is exactly as in the compactification corresponding to ¥ # 0
but ©; = 0 performed in Section 3.3.1. The hypermultiplet sector is also easy to analyze.
The moduli of the K3 metric and the b4 fields must be given the following z-dependences,

p(z) = p+ozt,
E4(2) = Az ap(*)EE (3.131)
—19:1 B

ba(z) =e 2 71A(21)7§B(22)50 .

The covariant derivatives can be computed by acting with D, = 0,, — V:@i on these expres-

sions, and the result is
Dyup =8up+ 9V,

Dyl = 0,85 — V,O5Ek (3.132)
Dyba = Ouba — 5V, 1ba — ViObp .

The Killing vectors arising from these expressions are just the sum of the Killing vectors
obtained in Section 3.2.1 for ¢ = 0 and those of Section 3.3.1 for ©; = 0.

The potential generated in the general case can also be stated easily, and it is
Y = ied)MIL (MJMMKN _ 3LJMLKN)fIJKfLMN _ %e(bg”tr ([M,Z] [M,T]]) ,
(3.133)

where the structure constants are given in Eq. (3.114) and the matrics 7; are defined as

-9 0 0 00 O
Ti=10 9 0], =100 0]. (3.134)
0 0 O 0 0 O

3.4 Gauge algebra and Killing prepotentials

The Killing vectors in Eq. (3.119) can be used to determine the gauge algebra. If everything
is correct, the latter must have structure constants fII ; as given in Eq. (3.114). Let us
denote the generators by 77 = (X;, Y7, Z,), so that the generic element in the algebra
is A* = AﬁTI = Vin + Bquj + AZZa. The generators 17 must therefore satisfy the
commutation relations [T7,Ty] = fff]TK, or explicitly

(X1, X] = —0Xo (X1, Y?] =9Y? (X5, V2] = —9y!, (3.135)

and the rest vanishing.

As discussed in Appendix A and shown in Eq. (A.4), the tangent vectors T} = k:j’:, Oyp

and TIh = k:?:, Oqu must furnish two realizations of this algebra. They generate subgroups of
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the isometry groups of the special Kahler manifold ., and the quaternionic manifold .#,,
respectively. Using the Killing vectors in Eq. (3.119) and omitting the superscript “v” one
obtains the generators
0 0 0 0
Xi = du= — 9t— Xo=10— V2=9— . 3.136
S TR T 2= ou ot (3.136)
The commutators of these vectors can be computed easily and the result is
(X1, Xo] = 09X, , [X1,Y?] =09Y? [X2, Y =0. (3.137)

This algebra is indeed obtained by setting the central charge Y' to zero in the alge-
bra (3.135). The generator Y is a central charge because it commutes with the rest of

the generators.

On the other hand, taking the sum of the Killing vectors in Egs. (3.68) and (3.121) one
can construct another realization of this algebra. Omitting the superscript “h”, one has the

nonzero generators

0 0 0 0
X' =0 = d0ba— — 5015 — baO g —
5 5 (3.138)
X? = €505 —— — baOsy—— .
£4O2p o€z, AP2B G
The only nontrivial commutation relation in this case is [X!, X?] = —9X?2. In its derivation,

it is crucial to have the commutator (3.130). This can be obtained from the algebra (3.135)
by setting to zero the central charge Y'! and the generator Y?2.

The Killing prepotential Py = P 41 for the vector multiplet sector is a real quantity that
satisfies Eq. (A.12), namely
OP 41
IC

This equation can be easily solved and the following expressions are found,

kY = —iGP (3.139)

Po = Pyr = —el (s — 5)(at — ut) ,
Pr=Py2= -0 (s —35)(t 1), (3.140)
P3 = Pp, = —9ef (s — 5)(u —a) .

The computation of the triplet of Killing prepotentials Py = P7, corresponding to the

quaternionic manifold .#}, and satisfying Eq. (A.13) can also be performed. First of all,
a 4 x 24 matrix Z can be introduced as

) ST —e_%p+%e%pb2 —e2PpA
Z=%1 ey o | (3.141)
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This matrix satisfies 2(ZT2)F? = MPQ 4+ £PQ with MP? and £F? given in Eqgs. (2.83)
and (2.84), respectively. As a second step, a 4 X 4 matrix of one-forms

1
0 e2PEY dbA
ZL7 'z =1 , 4 (3.142)
—e2rgtdbd ¢ devA
is computed, from which in turn the SU(2) connection
w' = —ttr(ZL71dZTE") (3.143)

follows. The three 4 x 4 matrices % are the self-dual 't Hooft matrices defined in [37]. The
curvature for this connection is found by using the expression

K* = dw® + 1 w¥ Aw® . (3.144)

Substituting w® and K7 together with the sum of the Killing vectors (3.68) and (3.121) in
Eq. (A.13), the following solution for the prepotentials is found,

PL, = (1" (5 Tihe™P — Lemvze T e | (3.145)

where the matrices 7T; are given in terms of the parameters ¢ and ©; in Eq. (3.35). This

result can also be written as the integral expression
PE, = %(—1)%ijep(/ JEAAB A — %el“yz/ TN A) (3.146)
y y
Finally, it can be checked that these Killing prepotentials (3.145) actually satisfy

Pl =kl wi . (3.147)

That the effective Lagrangian in Eq. (2.96) is in agreement with the general form (A.1)
of A4 = 2 supergravity has already been established. It has been shown that the effective
theories obtained from the compactification on the analyzed SU(2)-structure backgrounds
and described by the Lagrangians (3.66) and (3.66) share the same spectrum and the same
scalar manifolds .#, and .#, with the effective theory corresponding to K3 x T2. Therefore,
the consistency of these Lagrangians with .4 = 2 gauged supergravity is established if the
potentials ¥ and the gaugings characterized by the Killing vectors obtained are in agreement
with Eq. (A.14), that is

Vy—g = K XX (Gpah™i ko + Aok K9 ) + 2 + 45 XX TP, P, . (3.148)

It follows from the Killing vectors (3.68) and (3.121) that scalars in hypermultiplets are
charged with respect to the vectors V!f exclusively. This is the reason why the only nonzero
prepotentials for the quaternionic manifold are Py,; or equivalently Pj and P{. The only
possibly nonzero contribution from the second term in Eq. (3.148) is thus for I,J = 0,1,
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corresponding to the two vectors Vui. But it turns out that for I,J = 0,1 the expression
inside square brackets vanishes. The second term in Eq. (3.148) thus cancels.

The Kéhler metric G5 can be obtained from the Kéhler potential K in Eq. (2.97) and
the quaternionic metric hy, can be read off from the Lagrangians (3.59) and (3.63). The
expressions for h,, are

hpp = % ) hfﬁﬁ% - _%(WAB . %551579)59@ ) ho s = %epMAB : (3.149)

The remaining ingredients are the Killing prepotentials (3.68), (3.121) and (3.119), and the
holomorphic projective coordinates X! given in Eq. (2.100). Substituting all these quantities
in Eq. (3.148), an expression is obtained that is in total agreement with the potential (3.133).
This completes the verification that the bosonic part of the effective theories obtained from
the reduction on the analyzed SU(2)-structure backgrounds are indeed consistent with the
general form of 4/ = 2 gauged supergravity.



Chapter 4

Heterotic on SU(3)-structure backgrounds:
fermionic approach

MOANN NABE

In this Chapter, the heterotic compactification on manifolds with SU(3) structure is re-
visited. The reduction of the bosonic sector has been known for a while, but here a fermionic
approach is taken. This means that the attention is on terms of the four-dimensional action
involving fermionic fields. The couplings of the effective four-dimensional supergravity can
be in fact more reliably computed in this way, because they enter linearly in the fermionic
terms, while in the bosonic sector they enter quadratically. The developments closely follow
Ref. [45], correcting the results presented there.

Six-dimensional SU(3)-structure manifolds are discussed in Section 4.1. The compact-
ification of heterotic supergravity on these backgrounds is then analyzed in Section 4.2.
First the results for the bosonic sector are recalled and then, in more detail, the fermionic
spectrum and the reduction of the relevant fermionic terms in the ten-dimensional action
are presented. The fermionic kinetic terms in the effective action are needed in order to find
the appropriate normalization for the fermions. They also provide a check of the Kéahler
potential known from the reduction of the bosonic sector. The computation of the gravitino
mass term and the F- and D-terms comes next, and from them the holomorphic superpo-
tential W and its derivatives are obtained. Finally, the supersymmetry variations of the
four-dimensional fermionic fields are worked out in Section 4.3, together with a discussion
of the conditions for a supersymmetric vacuum.

4.1 Manifolds with SU(3) structure

Demanding that a lesser amount of supersymmetry be preserved by the compactification

broadens the class of possible internal manifolds ). If instead of two, only one global

65
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nowhere-vanishing internal spinor is required to exist, the effective four-dimensional theory
obtained by compactification of the heterotic string is expected to be 4~ = 1 supersymmet-
ric. In this case, the spinor representation 4 of Spin(6) ~ SU(4) decomposes as

4-3+1. (4.1)

The singlet in this decomposition is the global spinor. The structure group of the manifold
is therefore reduced to SU(3). Manifolds with SU(3) structure can in consequence be defined
by the existence of one global nowhere-vanishing spinor 7. This spinor can be split into two
Weyl spinors of opposite chiralities 4 and 7_.

If the spinor 1 happens to be covariantly constant with respect to the Levi-Civita con-
nection, the manifold ) must have SU(3) holonomy, since due to the decomposition (4.1)
every spinor undergoing parallel transport along a closed path must come to itself up to at
most an SU(3) transformation. In other words, ) is a Calabi-Yau threefold. Manifolds with
SU(3) structure are therefore generalizations of Calabi-Yau manifolds in the same way that
SU(2)-structure manifolds are generalizations of K3 x T2. For the generic SU(3)-structure
manifold, the global spinor is parallel with respect to a connection with nonvanishing tor-

sion.

The compactification of the heterotic string on Calabi-Yau spaces has long been known.
The effective theory in four dimensions is obtained by expansion of the ten dimensional
fields in terms of the harmonic (1,1)- and (1,2)-forms of the Calabi-Yau. This leads to an
A =1 supergravity coupled to vector and chiral multiplets. For a generic SU(3)-structure
manifold, the light modes can be identified by expanding the fields in ten dimensions in
terms of a finite set of forms. This set of forms can be constructed by projecting out all 3
and 3 representations of the structure group SU(3) in analogy to the SU(2)-structure case
discussed in Chapter 3 where the doublets were projected out.

The SU(3) structure can also be characterized by a number of forms. These forms
are defined analogously to the SU(2)-structure case by using the Clifford algebra -, and
constructing spinor bilinears. Concretely, a two-form J and a three-form Q) can be defined
as follows,

Jab = Fin Yasns Qape =~ Yaperts (4.2)

If the spinors are normalized as nlni = 1, one can make use of Fierz identities to obtain

the following relations satisfied by these forms,
JANIANT=31i0n0, JAN=0. (4.3)

It can also be shown that by raising one index on the two-form J,, by means of the metric
Gab, an almost complex structure I,” can be defined satisfying I,I,¢ = —05. With respect
to this almost complex structure, the two-form J and the three-form ) are respectively of
type (1,1) and (3,0).
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For a Calabi-Yau space, the forms J and (1 are the Kéahler form and the holomorphic
three-form defined as

J=ig5dz® AdZP . Q= gdat Ad2AdL? (4.4)

where z% are three complex coordinates and g,5 is a hermitian metric on the Calabi-Yau.
These forms are certainly harmonic, but for a generic SU(3)-structure manifold ) the forms
J and N need not be closed. In fact, from the definitions (4.2) one can show that these forms
are closed if and only if the spinor 7 is covariantly constant with respect to the Levi-Civita
connection, i.e. if ) is Calabi-Yau. The exterior differentials dJ and dQ therefore represent
how much the manifold Y deviates from the Calabi-Yau condition and are a measure of the
torsion. It has been shown that five torsion classes Wi, ..., Ws can be introduced and that
dJ and dQO can be expanded as follows [22],

dJ:—%Im(Wlf).)+W4/\J+W3, ( )
4.5
A =WIJAT+WoANJ +Ws AL,

with the constraints
JNTI AW, =OAW3=0, JAWs3 =0 (4.6)

arising from the relations (4.3). As can be deduced from these expressions, W; is a zero-
form, Wy and W5 are one-forms, Ws is a two-form and Wjs is a three-form. Each one of
them can be characterized by its SU(3) transformation properties. For a Calabi-Yau, all of
them vanish. The vanishing of only a subset define also special classes of manifolds inside
the broader group of SU(3)-structure manifolds. For example, ) is a complex manifold if
and only if W; and W, are zero. Only in this case is the almost complex structure I,°
integrable. Projecting out all triplets of the structure group SU(3) amounts to consider

Wy = W5 =0.

4.2 Compactification on SU(3)-structure backgrounds

As already explained, the dimensional reduction on an SU(3)-structure background can be
performed by projecting out all triplets or representations 3 and 3 of the SU(3) structure
group. In particular, no one-form in ) survives this projection, but there could be a number
Rt of (1,1)-forms and h'? of (1,2)-forms with respect to the almost complex structure 1.
Let us denote the former by w; and the latter by p,,. There is also one (3,0)-form (1 and
its complex conjugate, unique up to rescaling. The compactification ansatz for the ten-
dimensional fields is constructed in terms of these forms. Note that the numbers A! and
h'? have been labeled in that way because for a Calabi-Yau these are the corresponding
Hodge numbers, but it should be clear that they do not count the harmonic forms for a
generic SU(3)-structure manifold ).
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4.2.1 Bosonic sector

Let us first discuss the bosonic spectrum. Since this is fairly known material, the exposition
should be brief. There being no one-forms on ) available for expansion, the dilaton ®,
the metric gysn and the NS two-form field Bysy in ten dimensions contribute only with a
metric g,,,, a two-form B, and scalars ®, g,, and By, in four dimensions. More explicitly,
the ten-dimensional two-form Bs can be expanded as

By = :B,,da* A da” + bw; (4.7)

with the result that the scalar part By, gives rise to A! moduli fields 4. Moreover, the
two-form B,,, can be dualized to a scalar a, the axion, as already seen in Chapter 2.

The expansion of the internal part g, of the metric can be done by considering separately
9o a0d gag, where the indices a, a refer to the 3 and the 3 of SU(3) or to the almost complex
structure I. In analogy to the Calabi-Yau case, the metric deformations dg,5 and dg,s are
given by the expressions

i

In these expansions, the three-form €2 is the (3,0)-form in Y, and it differs from () defined
above in the normalization, Q = ||Q[ QL with ||Q||* = 3128,Q2%%7. The h™! Kéhler moduli
v' are real and the A2 complex structure moduli 2™ are complex. The real scalars v’

are complexified by introducing t' = b* + v, with the fields b stemming from the expan-

sion (4.7).

For the Yang-Mills one-forms A% the story is more complicated. The details are model
dependent, since one must specify a gauge bundle G to satisfy the consistency condition

/ fr [(RQ A Rg) — Tr (Fy A Fg)] ~0 (4.9)
y

that arises from integrating Eq. (2.48) on the internal manifold ). For concreteness, one
can analyze the standard embedding. This means that one identifies the spin connection
of the manifold with an SU(3) subgroup of the gauge group. In this way, the consistency
condition is satisfied. If one takes the case of the Eg x Eg heterotic string, this leads to the
decomposition of one of the Eg factors as

Eg — SU(3) x Eg¢ . (4.10)
The 248 adjoint representation of Eg decomposes as
248 — (1,78) @ (8,1) & (3,27) & (3,27) . (4.11)

The four-dimensional vectors A% and scalars A7 descending from Af§; give rise to the follow-
ing fields. From the decomposition (4.11), it is clear that after projecting out all the triplets
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in A7 only the vectors A7 in the adjoint of the unbroken gauge group Eg survive. For the
scalars A2, or equivalently A2 and A2, one must consider the representations 3 x 248 and
3 x 248, because of the SU(3) transformation properties of the spatial indices o and a.
After projecting out the triplets, one obtains scalar fields A,3 and A, 5 in the 27 and the
27 of the gauge group Eg, respectively. These scalars can now be decomposed in exactly

the same fashion as the components of the internal metric, namely

!
1ey?

A=A w)ap >  Aap A" (Pm)ars 27° (4.12)
The gauge transformation properties of A, A? and A™ will be kept implicit in most of the
following, meaning that gauge indices will be suppressed.

All four-dimensional bosonic fields organize in multiplets of .4#° = 1 supersymmetry.
Explicitly, the metric g, sits in the gravitational multiplet, while the vectors A, and the
scalars sit in vector and chiral multiplets, respectively. The precise structure is given in
Table 4.1, after the fermions have been analyzed.

The expansions for the ten-dimensional fields can be substituted in the bosonic action
Sp of Eq. (2.2). The resulting effective Lagrangian is well-known and has been derived
for Calabi-Yau compactifications in [11, 42, 43] and for manifolds with SU(3) structure in
[31, 32, 54-57]. Here only the results are summarized.

The effective four-dimensional action is a gauged .4 = 1 supergravity, and as explained
in Appendix A it is characterized by the Kéahler potential K, the holomorphic gauge kinetic
function f and the holomorphic superpotential W. An important step in the derivation is
the Weyl rescaling g, — e‘i’guy7 where ¢ = & — InV is the four-dimensional dilaton and V
is the volume of the internal manifold ). An expression for V can be written as

V:%/J/\J/\J, J = vlw; , (4.13)
y

since the two-form J has components J,5 = ig,3. The gauge kinetic function f depends
only on the axion-dilaton s defined in Eq.(2.93) and has the simple expression

f(s)=is. (4.14)
The metric on the field space of the complex scalars s, t* and 2™ in chiral multiplets is
block-diagonal and the different pieces are

1 1 Jypm NP
gsgz—m, gij:@/ywi/\*wj’ gmn:W' (4.15)
y

Each block can be shown to be a Kéhler metric on its own and the Kéhler potential is

therefore a sum of three contributions

K=K,+K;+Kq, (4.16)
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where

(4.17)

The manifold .#; spanned by the complexified Kéhler moduli ¢ and the manifold .Zq
spanned by the complex structure moduli z™ are actually special Kahler. As explained in
Appendix A, this means that each of the Kéhler potentials K; and K determining the
respective metrics g;; and g5 takes a special form in terms of a holomorphic prepotential.

Let us define the quantities

1 : 1
%i:—/wl/\J/\J, %Z‘j:—/wi/\wj/\t]- (4'18)
1% y 1% Yy

Due to Eq. (4.13), it can be checked that s;v’ = »;v'0’ = 6. For the space .#; of Kihler
deformations, one can derive

fw; = —J ANw; + 3 N J (4.19)
and substituting this into the metric g;; in Eq. (4.15) one obtains
gij = —%%Z'j + %6%2‘%]' . (420)

On the other hand, the forms 2 and p,, associated to the space .#Zq are related by

o0 8KQ
=———Q4 pm , 4.21
Som = gm LT (4.21)
and their Hodge duals are given by
x() = —iQ *Pm = 1Pm - (4.22)

One can also derive the following expression from Q = ||| and Egs. (4.17) and (4.3),

|0 = e 2Kataks (4.23)

Finally, the metric for the matter fields A’ and A™ is also block-diagonal, and the
respective blocks are found to be

lip 2
Zig = e3F0 KD g QR Zn = 3N g, (420)

after the rescalings

—dleTial, AT Le)p A (4.25)
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4.2.2 Fermionic spectrum and kinetic terms

A left-handed Majorana-Weyl spinor ¢ in ten dimensions can be decomposed thanks to the

existence of the global spinor 7 as
E=e@nN-+ERN, (4.26)

where ¢ is a Weyl spinor with positive chirality in four dimensions.* For a right-handed
ten-dimensional spinor, one simply needs to switch n_ and 7y in this expression.

In order to find the fermionic spectrum in four dimensions, the transformation properties
of the ten-dimensional fermionic fields with respect to the SU(3) structure group are needed.
Recall that the massless fermionic fields in ten-dimensions are a left-handed gravitino zﬁ M,
a right-handed dilatino A and left-handed gauginos x? in the adjoint of Eg x Eg. The
components ¢ﬂ of the gravitino ¢ M give rise to a four-dimensional spin-3 3 field and transform
as 1 @ 3 with respect to the SU(3) structure group. This makes manifest the claim made
above that in obtaining an .#” = 1 supersymmetric effective theory one must project out
the triplets of SU(3), since only one light gravitino is required to survive. This singlet can
be decomposed as

Yy =Y @n- + P @0y, (4.27)
where 1), is the four-dimensional gravitino.

The components TZJQ and 12)07 have more complex transformation properties. After pro-
jecting out the triplets, representations 8 + 1 and 6 remain. An ansatz for their decompo-
sition is

o =& @ (W) oz s + L me (Pm)aps$2" 77 0. (4.28)

1€2]]
The right-handed dilatino transforms as 1 ¢ 3, and the singlet can be expressed as
A= @, +A@1n_ . (4.29)

Recalling the decomposition (4.11) of the adjoint representation of Eg, it can be seen that
the gauginos x? contribute with a spinor y in the adjoint of the unbroken gauge group
E¢ x Eg arising from

X=X®n-+X®nt . (4.30)
Additionally, there are fields in the 27 and 27 of Eg arising from
) : 1 )
Xa = X' ® Wi)az?’ns + HQIIQXm © (Pm)aps %70 (4.31)

where a labels the 3 in (4.11).

All the fermionic fields in four dimensions organize in multiplets of .#° = 1 together
with the bosonic fields as shown in Table 4.1.

*In the rest of this Chapter, hats are placed over the ten-dimensional fermionic fields in order to distinguish
them from the corresponding four-dimensional fields.
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multiplet multiplicity | bosons | fermions
gravitational 1 v Yy
vector dim(Eg x Eg) Ay X
hl,l tl gl
h1,2 Zm Cm
chiral 27h11 A X!
27h1’2 Am Xm
1 S A

Table 4.1: .4 = 1 multiplets.

Let us now turn to the computation of the kinetic terms for the fermions. Due to su-
persymmetry, this really adds no new information, merely checking the consistency of the
couplings obtained for the bosonic sector. Nevertheless, in order to compute the superpo-
tential and D-terms via fermionic couplings it is mandatory to know the right normalization
of the fermions, and this is dictated by the kinetic terms.

The kinetic terms are obtained from those terms in the action Sf given in Eq. (2.6) with
a spacetime derivative D,. The Clifford algebra in ten-dimensions {I's7,I'n} = 291 can
be satisfied by decomposing the I'-matrices as

M“=4*0l, TI*=9"®+*, TI*=9"®9%, (4.32)

where the four-dimensional y-matrices are conventionally taken as

0 ot 1 0
B 5 _
T 1(0“ 0) T (O —]1) ' (4.33)

In these expressions, o = (1,0%) and * = (1, —0"), with the usual Pauli matrices

A-(Ve) (0 () aw

On the other hand, the six dimensional y-matrices y* and v* satisfy {7, 75} = 290‘5 1 with
other anticommutators vanishing. The spinor singlets of definite chirality 7. are annihilated
by the corresponding set of y-matrices, namely

Yy =0, A% =0. (4.35)

As a consequence of this, terms of the form njrfya e 7377+ or nify@ -+ -4Pn_vanish unless

they have an equal number of y-matrices with holomorphic and antiholomorphic indices.
In that case, they can be computed by repeated application of {’ya,'yﬁ } = 29°°1 like, for
example,

by 00, = 4g7%g% — 29797 . (4.36)
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One can now insert the expansions (4.27)—(4.31) into the action S¢ and compute the
kinetic terms in the effective Lagrangian for the fermions. The only remaining point that
is still worth mentioning is that one encounters the integrals

/y (Wi)a3(w))ys (90977 —2g%Pg7°) = 4V (gij + 3545) ,

1 _ e - 44 _
o / (Pm)asy (P)sec Qs LS (97097 = 2¢°7977) = ———3 / pm AP = =4V gmn
12" Je 120" Jy (w37
The resulting Lagrangian is
Lin = e ? [GM)V)\(Z;LﬁADpwV + i%zfid[”aj] Du¢u + i%ﬂ;,ua-['uay] Dugi
+16i(gij + 35) €' D& — 16ig7mn (™" D, (™ — 2106# D)\ (4.38)

— 2ix6" D, x — 16ig;; X' DX’ — 16igimn X" 5" DuX"] -

The next step is to perform the Weyl rescaling g, — e¢gw,. Since the matrices o* are
defined with a vierbein, they must be rescaled accordingly. In addition, all fermionic fields

must be rescaled. The appropriate expressions are [1]

ot —eioh ey, foeie, (MoeTiT,
. . L . (4.39)
A—e 1A, X—e 1x, X' —e iy, X" e ax™

But the kinetic terms in the Lagrangian (4.38) are not diagonal. They can be diagonalized
by redefining the gravitino including a mixing with the fermions & as follows,

Yy — Y+ %auz,{i . (4.40)
Inserting (4.39) and (4.40) into (4.38) one arrives at
ZLin = QEWV)‘@M&)\DPTZJV + i(lﬁgij — 325 + S%ij)giﬁ"DM§j — 16igmn§m6"DMC" (441)
— 2IAG* D\ — 2ix6" D, x — 16ig;; X' 0" DX’ — 16igmn X ™" D" .

To bring the kinetic terms of all fermions to the standard form (A.20) dictated by A" =1
supergravity, the fermionic fields need to be further rescaled as follows,

Yu— G5, € o€ - Huiagel) (Mo (M Ao 5t
. . (4.42)
X — %efgx , X' — ieé(KﬂfKJ)Xl , x* — ie%(KJ*KQ)X“

Notice that using the relation s;v* = 6, the combination s can be seen to transform in
the much simpler way
et — gl (4.43)
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It is straightforward to check that after substitution of (4.42) into (4.41) it is obtained

Lain = € p,53D iy, — 193566 Dy&? — igan(a" D,

B A A (4.44)
—igssAd" DA —i(Ref)xo"D,yx —i1ZijxX'0" Dyux’ —iZmn X" 0" Dyx"

in accord with the standard form of .4 = 1 supergravity.f

4.2.3 Gravitino mass term and F-terms

It has been seen that the kinetic terms in the four-dimensional effective theory can be
cast into a form consistent with the Kéahler potential (4.16) and the gauge kinetic func-
tion (4.14). There are two ways to compute the remaining couplings. One could reduce
the bosonic ten-dimensional action (2.2) and derive the scalar potential V 4 _;. Then, from
the supergravity relation (A.18), one could infer the superpotential W and the D-terms.
However, this procedure is problematic since W and its derivatives enter quadratically in
V y—1 and thus cannot be computed reliably within the approximation used. However, in
the fermionic couplings of (A.21), both W and its derivatives appear linearly and therefore
can be obtained more easily [57, 58]. Concretely, W can be computed from the gravitino
mass term, while the derivatives of W can be computed from the couplings of the gravitino
to the chiral fermions or F-terms.

The contributions to the gravitino mass term and to the F-terms arise from two different
sources. On one hand, they come from the reduction of St in Eq. (2.6) when no spacetime
derivative D,, is present and the internal derivative D, acts on the spinor 7 in the expansion
of the fermions (4.27)—(4.31). In this case, the contribution will be proportional to certain
torsion components of the SU(3)-structure manifold. The second possibility is that such
terms arise from the reduction of Sjy given in Eq. (2.7) when a nonzero background value

for Hg is present. Let us start with this second case.

Contribution from Hs-flux

As already mentioned, in this case the contribution to the gravitino mass term arises from
the first term in the second line of Eq. (2.7) when both gravitino factors have external

"Note that in the derivation of (4.44) all terms where spacetime derivatives act on bosonic terms have
been ignored. They should combine into appropriate covariant derivatives as given in [1] which, however,
was not explicitly checked.
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spacetime indices. Inserting the decomposition (4.27) and using Eq. (4.2) one finds

gmg,/g,ﬂux = _ﬁ e_éHabcﬁuruabcyqﬁu
y
81##0[“0 e Y / Hyp nt aﬁ%” + h.c. (4.45)

= — L5V Ip,etyt / N ANHs+he.,
y

where only the contribution to the gravitino mass is displayed. Performing the Weyl rescal-
ing g, — €®g,, and using Egs. (4.39), (4.42) and (4.23), it is obtained

Ly o fluxe = —%1/;“6‘“’@Ve% / QAHs+he., (4.46)
Y

where o/ = iﬁ[“a”}. Comparison with (A.21) leads to the following contribution to the
superpotential arising from the Hg-flux,

Wiy = 1 / QAH; , (4.47)
Y

a result computed previously in [59-61]. This derivation provides an independent check on
the Ké&hler potential (4.16).

Let us now proceed to the computation of the derivatives of W, or in other words the
F-terms. They arise from the same ten-dimensional term in Si,; as before, only that this
time one must choose one of the ten-dimensional gravitino factors to carry an internal
index a. There is also an additional contribution coming from the insertion of the gravitino
redefinition (4.40) in Eq. (4.46). Inserting the decompositions (4.27) and (4.28), one finds

"iﬂII’—'—term,ﬂux: gﬁ%zflo'ﬂwue oyt /H Jr O‘B'Yn
(4.48)

9,
+ mﬁma"wue ¢V / pm QB,YH(SGCQ BVQO‘EC +h.c. .

In computing this expression, the following property derived in [62] was used

9 (Wiag = 37 - (4.49)

This contraction is therefore independent of the internal coordinates. Using Egs. (4.2),
(4.22), (4.23) and performing the rescalings one obtains

. K . — i —
gf/’—term,ﬂux = —ﬁe 2 <§ZO'“1/JM Z%i/yQ NHg + CmO"ul/JM/ypm A Hg) + h.c. . (4.50)

It is straightforward to check from Eqgs. (A.19), (4.17), (4.13) and (4.21) that in the absence
of torsion (or in other words for dw; = 0) the Kéhler derivatives of Wy, as obtained in
Eq. (4.47) are given by

DiWﬂuX = i%iWﬂux 5 DmWﬂux = %/ Pm A H3 . (451)
y
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The F-terms in Eq. (4.50) can then be written as
. K . _ _
gf“'—term,ﬂux = _ﬁe? (£ZUﬂ¢MDiWﬂuX + Cmo-“qumWﬂuX) +h.c. ) (452)
which is consistent with (A.21).

Finally, there is also a gravitino-dilatino coupling which is obtained from the appropriate
term in Eq. (2.7),
%—termﬁux = g eiéHabCQEﬂFachHS\
g (4.53)

= ﬁAa%Me*W*l /y O AHs+he.,

where the decompositions (4.30), (4.29) and (4.27) have been used. Following a similar
procedure as for the other F-terms that include the rescalings, one obtains

-term,flux

R4 = — A Pues Dy Wi (4.54)

where it was used
DsWﬂux - ie¢Wﬂux 5 (455)

as can be derived from Egs. (A.19), (4.14), (4.15) and (4.17). The total contribution to the
F-terms arising from Hg-flux is the sum of Egs. (4.52) and (4.54),

! 1
gF—termﬁux - gF—term,ﬂux + gF—termﬁux

i K m 7T ;K
= - ﬁe 2 (5 UuquiWﬂux +¢ UuqumWﬂux + )\U‘Wme 2 DsWﬂux) +h.c. .
(4.56)
This result is again in agreement with supergravity if it is compared with (A.21).

Contribution from torsion

In addition to Hg-flux, also the torsion of the manifold ) gives a contribution to the su-
perpotential W. As already explained, the intrinsic torsion is measured by the five torsion
classes Wy, ..., Ws, or the exterior derivatives dJ and d(1. This contribution to the su-
perpotential can be computed from Eq. (2.6) when an internal derivative D, acts on the
internal spinor 7. These derivatives have been determined in Ref. [63]. One can expand
Dgn+ in the basis (n+,v*ns) and define the tensors g,, ¢, and g via

Dany = (¢ £ iq))ns % iguy"ns - (4.57)

All ¢’s are real, with g, and ¢/, transforming in the 3 @ 3 of SU(3) and ¢, containing the

representations 36 = 1913539306306 S 83D 8. Going to holomorphic indices and using

Egs. (4.2) and (4.5), one can express gq, via the torsion classes as follows [63],
q Z—L(Wg) —g_ﬂ. ’75_1_(')_ W s

af 16 om/. g 4- taBy’Vy4 (4.58)

QCVB = igagwl - i(WQ)aB :
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Equipped with (4.57) and (4.58), the contribution to W due to torsion can be com-
puted. Let us start again with the contribution to the gravitino mass term. It arises
from the first term in Eq. (2.6) with the derivative in an internal direction. Inserting the

decomposition (4.27) in the kinetic term for the ten-dimensional gravitino one obtains

Lonsonson == | 0,1 Dut,
g (4.59)
— 4 eV [ e Dan e

Using Eqs. (4.57), (4.58) and (4.5) it is found

/ 'A% Dany = %/ Wy = i/ andJ. (4.60)
Yy Yy y
Performing the usual rescalings and using (4.23) yields
_ - K
$m3/27t0r = =" Pe2 Wior + hic. (4.61)

with
Wior = i/ QAdJ . (4.62)
y

Together with the contribution from H s-flux computed in Eq. (4.47), this leads to the total
superpotential

Yy

As it was done for the Hg-flux contribution, let us now focus on the gravitino-fermion
couplings in order to determine the torsion contribution to the F-terms. For the fermions in
the chiral multiplets, this contribution arises from the kinetic term of the ten-dimensional
gravitino in 8¢ when one of the gravitino factors has an internal index, the other has an
external one, and the derivative is internal. After insertion of (4.27) in the kinetic term for
1/A1M one obtains

gflf—'—term,tor = - / e_CD [QZaFabyquﬁl/ + &uruabDaqz)b]
y
= 2i£ia"qﬁue_¢v_1/(wl a577T 757 Viqﬁm‘sn, (4.64)

7o T
+ m Mota,e VT / Pm 675'0' a67 igacy*n— +hec. .
The term containing D, in the first line can be integrated by parts. The result is equal to
the first term. This is convenient because only the action of the internal derivative D, on

1, needs to be considered. All one needs is therefore the derivative of the internal spinors



78 4: HETEROTIC ON SU(3)-STRUCTURE BACKGROUNDS: FERMIONIC APPROACH

D,n+ and not more complex expressions involving the derivatives of the internal forms that
would arise in computing Dgi)y,. Substituting (4.58) in (4.64) yields

gﬁ'—term,tor = iéiaﬂqzueid)vil ( - 51/ (wi)aﬁgagwl + / (wi)aB(W2)5 ga'\/géﬁ)
' Y Y (4.65)
— H;ZH Moti,ie” op-1 / pm AWs 4+ h.c. .

Using (4.49) it can be written

—i/y(wz)aggo‘ﬁl/\h = %m/y% = %%@-/leJ/\ JNAJ
(4.66)

:%m/ nAdJ.
Yy

In the last step, W1 J A J A J =dO A J was used, which is a consequence of (4.5) together
with W5 A J A J = 0. Analogously, one finds

/(wi)ag(Wz)a»nggw = / Wa A J A w;
y

/dnsz /WlJ/\J/\wl (4.67)

/.ﬂ./\dwz— /.ﬂ./\dJ

In going from the first to the second line, Wo A J Aw; = dOLAw; — Wi J Aw; + -+ - was used,
which also follows from Eq. (4.5). In the last step, Wy J A J A w; was substituted by twice
the expression (4.66). Finally, it can also be seen from (4.5) that

/ P A W3 = / pm A dJ. (4.68)
y y

Inserting (4.66), (4.67) and (4.68) into (4.65) and performing the usual rescalings one obtains

"g}l’"'—term,tor - - 4\1/551'0-“1;#6% ( - ﬁ%@ /y QAidJ + /yQ AN dwz>

— 4\1/5/4@”0“1;“612( /J}pmAidJ+h.C. .
There is also a contribution .#7

F-term, tor ATISING from the insertion of the shifted gravitino
(4.40) into Eq. (4.59). Adding this contribution to Eq. (4.69) leads to

(4.69)

. . _ K /.
gF—term,tor = - 4\1/§§ZUM¢M ez (%%Z A QAidJ + /y QA wi)

. - K
— (Mot pe /pm/\idJ+h.c. .
44/2 H v
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Combining this result with the Hs-flux contribution obtained in (4.50) and (4.54) yields

gF—term = gF—term,ﬂux + gF—term,tor

_4\'1/§§i0'“¢uel2<[i%i/yﬁ/\(Hg—i-%idJ)-i-/yQ/\dwi]

(4.71)

. - K
— —=C"o"y eT/pm/\(Hg—i-idJ)
42 s v

~ - K,
— 4;\/5)\0“1/1”62 1e¢/yQ/\H3 +h.c. .
However, this is not yet in the standard supergravity form, since the gravitino-dilatino
coupling received no contribution from the torsion. This can be remedied by the following
redefinitions

¢ — & — Lol +vlef) A— —2A+ ge_¢%j5j . (4.72)
One can show that these transformations leave invariant the kinetic terms (4.44) and the
total contribution Zp_term fiux to the F-terms from Hs-flux in Eq. (4.56). Inserting (4.72)
into Eq.(4.71) one finally obtains

zhmm:—%@%%Mgpmhuﬁwﬁwngw+Aﬂaﬁgqu+ho, (4.73)
where
DiW:i%iW—i-%/Q/\dwia
y
Dmvzi/pmAg@+Mﬂ, (4.74)
y
DWW =ieW |

with W given in Eq. (4.63). This establishes the consistency with .4 = 1 supergravity.

4.2.4 D-terms

Finally, one can compute the D-terms in the effective action. As can be seen from Eq. (A.21),
in the fermionic action they appear in the coupling of the gravitino to the gaugino. This
contribution to the action comes from the reduction of the similar coupling between the
ten-dimensional gravitino ¥ and the ten-dimensional gaugino x in Eq. (2.7). Performing
the reduction of the relevant term is straightforward and leads to

gD—term = % / ei(I)Tr(Fabi)Furab,lZ}M
Yy
= —inUMXae_¢V_1/ FngaB + h.c. (475)
Yy

= wua“xae—w—l / F2AxJ +he. .
y
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In the last step, the relation

/Fgﬁgaﬂ:%/FaAJAJ:i/FaA*J (4.76)
Yy Y Yy

was used. After performing the usual rescalings one obtains
7 e T 4.77
D-term — §’¢JMU X y AxdJ . ( . )

Comparing with (A.21) and recalling from (4.14) that Ref = e, it is concluded that the
D-term is given by

D? = —e¢v—1/ FAnx] . (4.78)
y

4.3 Supersymmetry transformations

For completeness, one can additionally obtain the supersymmetry transformations of the
fermions in the effective four-dimensional theory. This can be done by substitution of
the reduction ansatz into the supersymmetry transformations of the ten-dimensional fields,
Eq. (2.9). The form of these transformations for a generic .4#” = 1 theory in four dimensions
is given in Eq. (A.22). From them it is seen that the gravitino supersymmetry transfor-
mation gives directly the superpotential W, in analogy to the gravitino mass term in the
action. On the other hand, the transformations of the chiral fermions are proportional to
the derivatives of the superpotential with respect to the corresponding scalar superpartners.
In this they are similar to the F'- and D-terms in the action.

Let us start with the gravitino. The supersymmetry transformation of the gravitino in
ten dimensions is given by

Sar = Daré + g Hypo (CarV P9 — 953 TP 9)e (4.79)
which implies
Sty = Dyé + oe Hop T, T (4.80)

However, the correct four-dimensional gravitino is only obtained after the shift given in
Eq. (4.40). The latter can be interpreted at the level of the ten-dimensional gravitino as
[54]

iy, = 6y + 3T, 00, - (4.81)

Also from Eq. (4.79) one has

T, = D*Dyé + g5 Hyeq(T7T 2% — 9TbT)¢
(4.82)
=T"Dyé — & Hap "
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where T°T',% = 31'%d was used. After substitution of (4.80) and (4.82) into Eq. (4.81) it
is obtained
0, = Dyé + 3T, TDgé — 45 Hype D T (4.83)

Inserting (4.27) and acting with the projector V! fy 1®n" yields (omitting the prime)
§thy =Dye + 50,8V / 1y Dany — 0,8V / Hopenl v,
Yy 6
=D, — %Uusv_l/ OA(Hg+1idJ) ,
Y

where in the second step Eq. (4.60) was used. After performing the rescalings (4.39) and
(4.42) one indeed obtains
. K
0y = Dye + 50,82 W, (4.84)

with the superpotential W given by the expression (4.63).

Let us now turn to the supersymmetry transformations of the chiral fermions &°. In
order to do so, it is useful to compute

(+° ®n-nl) T, . (4.85)

Inserting (4.27) and using (4.82) it follows that

08 @ (Wi)ag 1-n-7 70— = E@n_n'y*Dany + 5 ® Haper—n' v (w50
266" @ (wi)apg™ - = UE @ Win_ + 152 @ iHupe N0 .
Using the same projector as above one gets

06 = tap! / OA(3Hs +idJ) , (4.87)

Yy

which after the rescalings of the fields reads

_. . K

708" = ﬁ§e7 / QA (BHs+2idJ) . (4.88)

Yy

This is not yet in the desired form dictated by Eq. (A.22), since the mixing (4.72) with the
dilatino has not been taken into account yet.

For the ten-dimensional dilatino, the supersymmetry transformation is given by
S\ = Y2 HynpT MNP | (4.89)

which after applying the decompositions (4.30) and (4.29) and the projection leads to

o\ = —%a}—l/ OAHg. (4.90)
y
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After applying the rescalings this reads
= —%ae%eﬂ?/ QANHs . (4.91)
y

As in the computation of the F-terms, there is no torsion contribution in this transformation.
But the mixing with & must still be performed. Going to new field variables as dictated by
the field redefinition (4.72) one obtains

2060 =1 ge% / QA (3Hy +idJ) |
Yy

7
(4.92)
oA =— %e‘ege_(ﬁ/ QA (Hg +1idJ) .
y
From (4.74) one can write
973, D;W = 31/ QA (Hg +idJ) +2/ QAdJ
Y Y (4.93)
:i/ QA (3Hg +1idJ) ,
y
and also
g DW =ie W . (4.94)
The following supersymmetry transformations are thus obtained,
68 =L ze2 g D;W
v (4.95)
y 1 =% 3
oA —76 2 D,W
in agreement with Eq. (A.22).
For the supersymmetry transformations of the (" one evaluates
_ = BYd1a o
vt [ 07 ©nnl) (prdans 2055 (4.96)
Using the decomposition (4.28) and Eqgs. (4.15) and (4.23), this expression can be written
as
Fmyy—1 L ~BYS - t A ox fypn/\ﬁm
s¢myt / (0n)ars 27 (Bm) gee Tl vy . = sio¢m 22—
) Jy o= fyane (4.97)

On the other hand, using Eq. (4.79) in (4.96) leads to

- ~8v[ t _a . 5
vt / (pn)ars ™ [WU"‘ng+%(Habcnify“w“bcm —9Hﬁbcni7“7bcn+)]
Y (4.98)
— %F?V_l/pn/\ (Hs +idJ) ,
y
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where use was made of Eqgs. (4.58), (4.5) and
Hapenl! vo95 01 = —6iH* Qgee ,  Hgapn! 77y = iHgoe QO (4.99)
Equating (4.97) and Eq. (4.98) yields
5¢m = LeyTQ|tgmn /ypn A (Hsz +idJ) (4.100)
which after the Weyl rescaling can be written as
5 = gD, W | (4.101)

with W given once again by (4.63).

Finally, the transformation of the gauginos can be computed. The ten-dimensional
variation is
ox* = —1Fg TMNe (4.102)

Inserting the decomposition of the ten-dimensional gaugino given in Eq. (4.30) leads to
Iyt = Fa,ofe + V! /y Fg°7 . (4.103)
Substituting (4.76) and performing the rescalings it is obtained
ox* = Fj,0"e + iee?V! /yFa Nxd . (4.104)

Comparing with Eq. (4.78), the agreement with the supergravity expression (A.22) is es-
tablished.

Supersymmetry conditions for the vacuum

With the supersymmetry transformations for the fermions at hand, the conditions which
lead to a supersymmetric background in a flux compactification can be discussed. In the
case of the heterotic string, Strominger has shown that for a supersymmetric vacuum the
background must allow for a non-vanishing torsion [20]. Moreover, the internal manifold
has to be complex and the fundamental two-form J, the Yang-Mills field strength F§ and
the three-form flux Hs have to satisfy the following conditions?*

JOR =0,  Hy=i(0-0)J . (4.105)

Strominger’s analysis was made on backgrounds which allow for a warp factor A. Demand-
ing the vanishing of the gravitino supersymmetry transformation, he shows that A is equal

*In [20], the condition for the Hs flux includes a factor of 1. This is because his normalization for Hs is
half the one used here.
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to the dilaton. Since here no warping is considered, the assumption of a constant dilaton is
consistent with Strominger’s result in the limit of no warp factor.

On a supersymmetric vacuum, the supersymmetry transformations of the fermionic
fields vanish, and in particular this must be true for the chiral fermions,

55§i = 55Cm = 55)‘ = 56Xa =0. (4'106)

Take for example the transformation of the gaugino in Eq. (4.104). Setting it to zero and
considering Eq. (4.76) lead to the vanishing of the contraction F ;‘BJ a8 Hence Strominger’s
condition on the Yang-Mills field strength is obtained.

The vanishing of the supersymmetry transformation of the dilatino and the & chiral
fermions as given in Eq. (4.95) requires DsW = D;W = 0. Considering the expressions for
these derivatives given in Eq. (4.74) these conditions are indeed equivalent to

/Q/\(Hg—HdJ):O,
y

/Q/\dwi:/leQ/\wi—F/Wz/\J/\wiZO.
Yy Yy Yy

From the second expression it follows that on a supersymmetric background the torsion

(4.107)

classes Wy and W, vanish. As already mentioned when the torsion classes were introduced,

this is equivalent to having a complex manifold ).

On the other hand, the first condition in Eq. (4.107) says that Hg +id.J on a supersym-
metric background can only be a sum of (3,0), (2,1) and (1,2) pieces. The (3,0) + (0,3)
part of d.J is proportional to Wi, as can be checked from Eq. (4.5), and therefore vanishes.
This result together with reality of Hj requires that the combination Hg + idJ must be
actually of type (2,1) + (1,2).

Now set to zero the transformation of the (* chiral fermions in Eq. (4.101). In view of
Eq. (4.74) it means that

/ pm A (Hg +idJ) =0 . (4.108)
y

This in turn implies the vanishing of the (1,2) part of Hs + idJ. Since the two-form J is
a (1,1)-form and the NS-flux is Hy = Hy 1) + H(y 2, one can write the last result for a
complex manifold as H(; o) = —i0J. Considering also the conjugate, this leads to

Hy =i(0—9)J (4.109)

on a supersymmetric vacuum. The condition on the three-form flux and with it all the su-
persymmetry conditions for the heterotic string obtained by Strominger in [20] are verified.



Chapter 5

Conclusions

OIMEP EAEI AEIEAI

In this thesis, the low-energy four-dimensional theories arising from the compactification
of the heterotic string on some classes of reduced structure backgrounds have been obtained.
In particular, the bosonic terms of heterotic supergravity have been dimensionally reduced
a la Kaluza-Klein assuming that the internal manifold has SU(2) structure group. Mani-
folds with SU(2) structure in six dimensions are characterized by the existence of two global
nowhere-vanishing spinors that are covariantly constant with respect to a connection with
torsion. If the torsion vanishes, the spinors are constant with respect to the Levi-Civita con-
nection and the manifold has SU(2) holonomy. Such manifolds are therefore generalizations
of K3 x T?. The existence of the two spinors guarantees that the dimensional reduction
preserves part of the supersymmetry in ten dimensions. Concretely, effective actions with

A = 2 local supersymmetry are obtained.

The SU(2) structure can be characterized equivalently by a pair of real one-forms v’
and a triplet of self-dual two-forms J*. If and only if the torsion vanishes, these forms are
closed, corresponding to the harmonic one-forms of the torus and the hyperkéhler structure
on K3. In other words, dv’ and d.J* are a measure of the torsion or how much the manifold
deviates from K3 x T2. The one-forms v’ also allow to define an almost product structure,
smoothly splitting the tangent space of the manifold over each point into a two-dimensional
and a four-dimensional space. For a generic SU(2)-structure manifold, the expansion is
done in terms of a finite set of forms corresponding to light modes. This set is obtained
by projecting out all doublets of the structure group SU(2). As a result, one is left with
the pair of one-forms v* and a set of two-forms w?, three linear combinations of which are
the self-dual J* and the rest are anti-self-dual. The almost product structure is rigid, and
the only allowed deformations correspond to the local two-dimensional and four-dimensional
subspaces. If the four-dimensional local subspaces extend to form embedded four-manifolds,

A

the latter must be copies of K3 and the forms w** must reduce to the harmonic two-forms

on each K3 slice.
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An ansatz for the SU(2)-structure backgrounds can be written by expanding dv® and dw?
in terms of all possible exterior products of v* and w*. Nilpotency of exterior differentiation
and Stokes’ theorem impose constraints on the possible values of the parameters in this
expansion characterizing the torsion. Two complementary cases can be distinguished. The
first can be realized by considering a K3 fibration over a torus. The second introduces some
torsion in the torus part as well and can be realized as K3 x S' fibered over a circle. The
latter construction is ill-defined as six-manifold, but one can make sense of this fibration if
one exploits the global symmetry of heterotic supergravity compactified on K3. The lifting
to the full string theory is not clear, but the obtained low-energy supergravity is consistent.

In both cases, the low-energy supergravity has the same field content and scalar man-
ifolds as the theory arising from the compactification on K3 x T2. The difference is that
some isometries of the scalar manifolds are gauged. For the case of the K3 fibration over
a torus, only isometries of the quaternionic manifold spanned by scalars in hypermultiplets
are gauged. In the second case, the gauging affects also isometries of the special Kéahler
manifold spanned by scalars in vector multiplets. A potential is generated in each case for
the corresponding scalars. As usual, the torsion parameters appear as charges and masses
in the effective action. The general case is just a sum of the results for the two complemen-
tary cases. The gauge algebra and all Killing prepotentials have been determined and the
conformity of the obtained actions to the general form of .4 = 2 gauged supergravity has
been established.

Additionally, the reduction of fermionic terms in the ten-dimensional heterotic action on
SU(3)-structure manifolds has been revisited. SU(3)-structure manifolds in six dimensions
are characterized by the existence of one global nowhere-vanishing spinor and generalize
Calabi-Yau threefolds. The low-energy effective theory is an .4 = 1 gauged supergravity.
The relevant couplings, namely the Kéahler potential, the gauge kinetic function and the
superpotential, were obtained by computing the kinetic terms for the fermions, the gravitino
mass term and the F- and D-terms. The results have been further checked by computing
the supersymmetry transformations of the fermions.



Appendix A

A =2 and A4 =1 supergravity theories in
four dimensions

In this Appendix, the general structure of theories with .4/ = 2 and .#* = 1 local super-
symmetry in four dimensions is recalled. This is done in order to facilitate the verification
that the results in the main text indeed have these structures.

A =2 SUGRA

A theory with .4/ = 2 local supersymmetry describes the dynamics of a gravitational
multiplet coupled to some numbers n, and ny, of vector- and hypermultiplets, respectively.
In the following, only the bosonic sector is considered. The gravitational multiplet consists
of the metric g, and a graviphoton ./42. Each vector multiplet contains a vector A}, and
a complex scalar vP, with p = 1,...,n,. Finally, each hypermultiplet contains four real
scalars, summing up to 4ny scalar fields ¢“. All vectors can be labeled collectively as Aﬁ
with 1 =0,1,...,n,.

The most general bosonic Lagrangian describing the dynamics of these fields can be
written as [37]

Ly = SRy + () FLF M + LRy (0)e P FL Fi (A1)
— GpaDy P DP9 — hyy Dyq" DM g — ¥ sy . '

In this expression, Ry is the Ricci scalar and the two-forms ]:PIW are the field strengths for
the vector .A{L. Generically, these correspond to a non-Abelian gauge algebra with structure
constants f } x and one has

FL, = 0,AL — 0, AL + fh Al AK (A.2)
The generators of the gauge algebra Tt satisfy [17,T7] = f I{(,T %. The covariant derivatives
for the scalars have the form

D =09, + KAl Dug"=0,+kiAL (A.3)
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where the Killing vectors k7 and k¥ must lead to the following representations of the gauge

algebra
0

0
TV = K 2
I aqu

h
150 17 = kY

(A4)

Local 4" = 2 supersymmetry imposes constraints on the scalar metrics Gpg and hy,. In
particular, the space ., spanned by the complex scalars v is a special Kéhler manifold.
This means that the metric Gz on this space can be written as

K
OvPOv4

Gy = (A.5)

for a real Kéhler potential K (v,v). Moreover, this Kdahler potential can be written in terms
of a holomorphic prepotential .7 (X) as

K=-In(iX'7; —-iX'%) , (A.6)

where the X/ (v) are ny + 1 holomorphic functions of the complex scalars vP and % = 0r.%
is the derivative of .#(X) with respect to X!. The prepotential .#(X) is a homogeneous
function of degree two. It can happen that the quantities .#; in Eq. (A.6) are not the
derivative of a prepotential .%(X). But by a symplectic rotation of the vector (X!,.%)
that leaves invariant the Kihler potential (A.6) one can go to a new basis (X'!,.7}) where
a prepotential .Z’(X’) does exist such that .#; = 0r.%".

The gauge kinetic couplings I7;(v) and Ryj(v) can also be expressed in terms of the
function .# (X) and its derivatives. It turns out that

Ity =ImNiy, Rij=ReNys, (A7)

where the matrix N7, is given by

ImZ gk Im.Z; XK XL
ImﬁKLXKXL

N]J = jjj + 2i (A.S)

and the quantities .F;; = 0;0;.% are the second derivatives of the prepotential.

On the other hand, the scalars in hypermultiplets ¢" span a quaternionic manifold ..
v

This implies the existence of three almost complex structures (Z%),", = = 1,2, 3, satisfying

the quaternionic algebra
TPTY = =691 4 ie™* 77 . (A.9)

The metric hy, can then be used to lower one index on these structures and obtain a triplet

of two-forms

Kzfv = (Ix)uwhwv . (AlO)

The holonomy group of a quaternionic manifold is Sp(2) x Sp(ny), and KZ, can be identified
as the field strength of the Sp(2) ~ SU(2) connection w?. This means that

K* = dw® + 1 w¥ Aw® . (A.11)
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The transformations 6v? = Ark} and d¢* = A7k} must be isometries of the respective
manifolds .#, and .#,, therefore the name of Killing vectors. The Killing equations can be
solved in terms of four Killing prepotentials, Pr and Pf. For the special Kahler manifold
M, the holomorphic Killing vectors k) must satisfy

. i OPI
K = 1qu—8®q : (A12)
for a real function Pr(v,v). On the other hand, the Killing vectors k} for the quaternionic

manifold .#}, must conform to

OPf

— "VWIPT . (A.13)
Finally, the potential ¥ ,_o is constrained to have the following form in terms of the
Killing vectors and prepotentials,
Vg = BN XTXT(Gpakhk? + AhyokikY) + [ (I + 4" XIXT|PEPS . (A14)
The ungauged theory is obtained by setting f} o k7 and kY to zero. In this case the vectors

AT are Abelian, all the scalars are neutral and the potential ¥ 4y —, vanishes.

A =1 SUGRA

An 4 =1 supergravity in four dimensions describes the dynamics of a gravitational multi-
plet coupled to some number of vector and chiral multiplets. The gravitational multiplet is
constituted by the metric g,,, and a spin—% field or gravitino 1,,. The latter is a left-handed
Weyl spinor. Let us denote the components of the vector multiplets by (AZ,X""), with
vectors A}, and gauginos x*. The components of the chiral multiplets can be collectively
denoted by (®!,Z!) with ®! being complex scalars and Z! being the corresponding spin—%

superpartners.

The Lagrangian for such a theory can be decomposed as follows [1]
L =L+ Lo+ Lo+ (A.15)

where terms which are irrelevant for our analysis are being neglected. The piece .4, includes
only bosonic fields and is given by

Gy = Ry — L(Ref)FL,F™ — L(Imf)e" P F2 FY — g,70,810"®7 — ¥ y_y,  (A.16)

where Ry is the Ricci scalar, f = f(®) is the holomorphic gauge kinetic function, F),, is
the field strength for the vectors A, and g;; is the Kéhler metric

_ 9 9 _
grj(®, @) = Wﬁl{@’@) (A.17)
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with the Kéhler potential K(®,®). The scalar potential ¥ 4 _;(®, ®) is given as a function
of the superpotential W = W (®),

V1 (®,8) = " (D;Wg' D ;W — 3W|?) + L(Ref) ' TrD*D? (A.18)
where Je—

is the Kéahler derivative of the superpotential and D is the D-term. The second term in
(A.15) comprises the kinetic terms for the fermions,

L = éPNp,5,D by — igr, 26" DT — i(Ref)x%6" DX, (A.20)

Finally, one also needs the gravitino mass term, the gravitino-fermion couplings and the

Yukawa couplings. They are given by

- K . — K
Lt = =0 Py e W — 5 Elauiﬁﬂe?D[W

|
Sl

(A.21)

(Ref)D*y ot x* — 3E'2/DD;W + hee. |

[N

where " = iﬁ[“a”}. The first two terms in this expression are precisely the gravitino

mass term %, and the F-terms Zp_term, respectively. The third one gives the D-term

ms/2

gD—term .

The supersymmetry transformations of the gravitino and the fermions in the chiral
multiplets, excluding terms depending on the fermionic fields in the r.h.s., are given by

0y = Dye+ %Uuéegw ,
52T = %Ee%ngDJW , (A.22)

ox* = Fj,0"e—ieD* .



Appendix B

Line element in the space of ), metrics

In this appendix, a derivation of an expression for the line element

6% =1 /y 6gmndg™" = —1 /y 9" 95 G1p0Gng (B.1)
4 4

in the space of metrics g, of a four-dimensional )); in terms of the variations of moduli
fields is given. These moduli are p and &% as defined by

1 A
JT =e 2P w” . (B.2)
Equivalently, one can replace % by the matrix MAg defined by syw? = MAgw? and
satisfying
MAT = MAGPE = [ A nri® = o+ e (B.3)
V4
Here w? are a set of two-forms on ), and J* are the triplet of self-dual two-forms associated

with the triplet of almost complex structures I*. Recall that the latter satisfy
I°1Y = =§"91 + €Y% 17 | (B.4)
which due to the relation JZ%, = (I%),,” g,y implies
JENTY = 26%voly (B.5)

with vols the volume form in Y.

Although in the main text the final formula is applied to the case where )y is in fact
a K3, the following derivation holds more generally. In particular, ), can be just a local
embedding of a four-dimensional neighborhood Uy in a six-dimensional Vg, with the unique
assumption that there is a hyperkéhler structure (B.4) or equivalently (B.5) on Uy satisfying
d4J* = 0, where dy4 is the exterior derivative restricted to Uj.

Due to Eq. (B.5) we can set
' Pehel = 26M (B.6)
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with 78 being the intersection matrix of the w?. If we have a global Y, then
nAB :/ wh A WP (B.7)
Ya

and e ” is the volume of V.

In the following, it will prove convenient to work in matrix notation and set
I = () mn I =I",", and g = gmn - (B.8)

One can therefore write, for example, I*g = J*. Acting on the left of this equality with I*
and using Eq. (B.4) yields g = —I'J! = —12J% = —I3J3. Tt follows that the variation dg
is given by

6g = —I'6JY —61'JY = —1%6J% — 612 J% = —136J3 — 6133 . (B.9)
The variation of Eq. (B.4) yields
613 = 61' 1 + I'61% | (B.10)

and similar expressions with the indices cyclically permuted. From this expression, and
making repeated use of (B.4), it follows that

SI°J% = IM (61" Tt — 617 J%)g T
= (6J" + I*6J%)g7 " T" (B4

In the last step, the second equality in (B.9) was used. Substituting Eq. (B.11) into the
last equality of (B.9) one obtains

6g = —I36J% — (6J* + I36J%)g ' J* . (B.12)

This expresses dg in terms of §J*. A similar expression can be given with I* and J* cyclically
permuted. The physical variations of the J* are all independent, with the exception of the
volume modulus dp that rescales all them at the same time

§J" = —1J%5p . (B.13)

Using the cyclic symmetry of (B.12) one has, for example 6.J'g~!J! = I'6J'. Inserted back
into (B.12) yields
6g = —1'6J! — I%6J% — 3603 = —I%6J° (B.14)

for all physical variations other than (B.13). Restoring the indices this result reads

Sgmn = — (I )P (6% )y . (B.15)
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Eq. (B.14) can now be applied in the computation of §s? in Eq. (B.1),

5s? = —%/ 9" G*10GrmpOgng = —%/ tr(g_légg_lég)
V4 V4

=

/ tr(g tI%6J%g 1 1Y6.Y) :—%/ tr(g~t6J%g16J%) (B.16)
Y4 Y4

= —%/ 8J% N xa0J"
Y4

In deriving the last equalities, use was again made of I*6JYg~! = §JYg1I*.

The next step is to express the (independent) physical variations 6J% in terms of varia-
tions of the moduli 7. In particular, one needs to take into account the fact that variations
which simply rotate the J* into themselves do not take us to a different point of the moduli
space. For such ‘unphysical’ variations, one must certainly have d¢,,, = 0. It is therefore
required that the ‘physical’ variations dpnys&% be orthogonal to the £5. In other words, they
have to satisfy

UABffl‘Sphysg% =0. (B.17)

Notice that such variations automatically respect the constraint (B.6) and thus Eq. (B.17)
represents the only nine constraints that must be imposed on the variations of the 3n
parameters £%. This leaves 3(n —3) degrees of freedom. If )y is indeed K3 then the number
of forms is n = 22 and there are 57 physical degrees of freedom in £7.

The operator which projects onto the subspace orthogonal to the % is given by PP =
5§ — %5%593 and one has dppys&% = P,B 0&%. Thus the physically inequivalent variations of
J* (apart from the variation of the volume) can be written as

0T = ™ BbynysEhw® = e 8 (Ppogh)w® = e h (07 — Lev el )ochw? (B.18)
with £24 = pAB £5 and 0£% unrestricted since the unphysical part is being projected out.

Now Eq. (B.18) can be substituted into the last line in (B.16) and use can be made of
Eq. (B.3). If the contribution (B.13) due to a volume rescaling is also added, one obtains

05> = —3e P (6p)% + ge P (n"P — AP )R ok, - (B.19)

Making use of Eq. (B.3), the last result can be written in terms of 6M“4p. One can take
the variation of Eq. (B.3), but recall that one is interested in physical variations of the
parameters ¢% and therefore SM4p = 5phys£“”A§f§ + £$A5phy55f3. Recalling Eq. (B.17), it

follows that
5MAB5MBA = 45phys§xA5phys§ﬁ

= 40P — e P)oeqocs;
Comparing this with Eq. (B.19), it is finally concluded that

(B.20)

(532 — _%e*p(ép)Q + %eipéMABéMBA . (le)
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Appendix C

Almost product structures

Let M be a manifold of dimension n = p + ¢. An almost product structure is a globally-
defined tensor P%, a,b = 1,...,n satisfying P%,P’. = 6¢. This tensor allows to split the
tangent space T, M to each point x of the manifold as T,M =V, ® W, where V, and W,
are p- and ¢-dimensional subspaces, respectively. The subspaces V, and W, vary smoothly
with x, and actually define p- and ¢-dimensional distributions®

V= UJJEMVQ: ) W = UxEMWa: (Cl)

on M. This means that on each patch U C M one can define p vector fields v;, i =1,...,p
and ¢ vector fields w,,, m = 1,...,q in such a way that V is generated by the v; and W
is generated by the w,,. The fact that P, and therefore the distributions V' and W, are
defined globally means that the vectors v; and w,, defined in a patch U and the vectors v;
and w,, defined in a patch U are related in the intersection U N U by

272‘ = Aijvj s ’U~)m == an’wn . (02)

For generic coordinates x%, a = 1,...,n on M, the tangent space is generated by the set
of vectors 0, = 0/0z*. In going from a patch U with coordinates x® to a patch U with
coordinates %, this basis transforms according to

Ox?

da = Al ,  with ALl = e (C.3)
If instead of the coordinate basis d, one takes the basis {v;, wy, }, the transition matrix is
A7 0
b 1
= C4
Aa ( 0 an> ’ ( )

as seen from Eq. (C.2).

*A p-dimensional distribution is just a subbundle of the tangent bundle [52]. It assigns to each point of
the manifold a p-dimensional subspace of the tangent space over that point. This is done smoothly over the
manifold. In the intersection of two patches the p-dimensional fibers must of course coincide.
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In the same way as with the tangent space, the cotangent space Ty M can be split over
each point as V,* @ W, and one can define the dual forms v* € V* and w™ € W* satisfying
vi(vj) =0, w(wy) =o6m

J n

and v (wy,) = w™(v;) =0 . (C.5)

The tensor P,’ is called ‘metric-compatible’ if Py, = P,°ge is symmetric. This means
that the metric (understood as a symmetric element of 7*M ® T M) must have the block-
diagonal form

ds? = gijvivj + gmnww™ . (C.6)

Of course, this does not mean that g, as defined by ds? = ggdaz®da? in a coordinate basis
is block-diagonal.

The almost product structure P is integrable if on every neighborhood or patch U one
can find coordinates z® = {y%, 2™} such that one can choose the vector fields v; and wy,
generating the distributions V and W as

0 0

Vg

This means of course that the transition functions dx®/9z® have indeed the form (C.4), with
A/ depending only on 3 and B,," depending only on z™. It is equivalent to integrability
of the system of n partial differential equations

of

i vl(f) ’
gjj (C.8)
9.m = wn(f) ,

with f = f(y, z). If the almost product structure is integrable then one has a block-diagonal
metric in a coordinate basis, that is

ds? = gij(y, 2)dy' Ay’ + Gmn(y, 2)dz™d2" , (C.9)

where, as explicitly shown, the blocks depend generically on all the coordinates.

Lets assume that one has an almost product structure on M that is integrable. If
(and only if) one can define a projection m : M — N for some manifold N such that
(Vi) = Tr()N for all z € M then M is a fibered space with base N. If (and only if) there
is additionally another projection 7’ : M — N’ such that 7, (W) = Ty ()N’ for all z € M
then M is topologically the product manifold M = N x N’. Fibered spaces are therefore
examples of manifolds where one has an integrable almost product structure but one does

not have a global product structure.
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