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Zusammenfassung

Untergrund durch QCD-Multijet-Ereignisse ist eines der ernstzunehmenden Prob-
leme bei der Suche nach Neuer Physik am LHC. Die vorliegende Arbeit wendet zum
ersten Mal den Formalismus der auf der SPHEL N&herung der QCD Matrixelemente
basierenden QCD Antennen Variablen auf experimentell rekonstruierte Jets zwecks
Unterscheidung zwischen QCD und supersymmetrischen Prozessen an. Die neuen
Observablen liefern, im Vergleich mit den herkémmlichen Event Shape Variablen,
erginzende Informationen {iber die Struktur der Ereignisse. Trotz Korrelation mit
der experimentell bestimmten fehlenden transversalen Energie, konnen die Variablen
zur Verbesserung des Signal zum Untergrund Verhéltnisses verwendet werden.






Abstract

A serious problem in searches for new physics at the LHC is the rejection of QCD
induced multijet events. In this thesis the formalism of QCD antenna variables
based on the SPHEL approximation of QCD matrix elements is applied for the
first time on experimentally reconstructed jets in order to discriminate QCD from
supersymmetric processes. The new observables provide additional information with
respect to traditional event shape variables. Albeit correlated with experimentally
measured missing transverse energy, the variables can be used to improve the signal
to background ratio.
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Introduction

The Standard Model of particle physics (SM) remains unmodified as the underlying
theory of the microcosm for more than 30 years. No high energy physics experiment
carried out so far, has found a contradiction to the predictions of the SM. However,
the SM is by construction incomplete and cannot be the truly fundamental theory
of everything, since the gravitational interaction is not taken into account. Further-
more, the astrophysical observations of the last decades revealed the existence of
new matter (the so called dark matter, proposed already in the 30’th) and energy
content (the so called dark energy) of the universe, which cannot be explained by
the standard model.

The tension between the lack of the direct evidence from the high energy experiments
and the theoretical certainty that the SM should be extended to include gravity
and other phenomena, led to new theories, which are not only unsupported by
experimental evidence, but are probably not even falsifiable. This situation provoked
some physicists to speak about the “crisis in fundamental physics” [1} 2].

The situation can change this fall, with the start of the operation of the Large Hadron
Collider (LHC) a proton-proton accelerator at CERN - the European laboratory for
elementary particle physics. The LHC centre of mass energy of 14 TeV[I|enables the
exploration of the physics at the T'eV scale. Theoretical arguments [3] suggest that
new evidence for the physics beyond the SM should be found at this scale.

Supersymmetry (SUSY) is the most promising extension to the SM providing a
natural dark matter candidate. It introduces furthermore additional heavy particles,
which should be found at the TeV scale, since otherwise the SUSY would lose the
desired properties.

The CMS experiment is one of the two general purpose particle detectors at the
LHC. Besides the search for the last missing element of the SM, the Higgs boson,
CMS searches for physics beyond the SM, in particularly for SUSY. There are many
different possibilities how SUSY can be realised. A popular model is based on the
minimal supergravity (mSUGRA) with R-parity conservation. The new processes

IThis thesis uses natural units: # = ¢ = 1.



2 Introduction

and particles predicted by this model could be first discovered in CMS SUSY searches
based on the signature of large missing transverse energy and high pr jets [4] 5].

Multijet processes due to strong interaction are one of the largest backgrounds for
SUSY searches in the all-hadronic channel mentioned above. Although considerable
research has been devoted to the suppression of the various backgrounds, rather less
attention has been paid to the possible discrimination between supersymmetric and
strong processes, based on their different theoretical characteristics.

This thesis investigates the characteristics and the possible fields of use of discrim-
inating variables, whose definitions are motivated by the theoretical knowledge of
the structure of tree-level scattering amplitudes with many final state partons due
to the strong interaction. These variables are called antenna variables, and they are
sensitive to the topology of the momenta and to the invariant masses present in the
event.

As an example of use the antenna variables are applied to the SUSY searches in
the all-hadronic channel. It will be presented how the characteristics of these vari-
ables change after the correlations with other discriminating variables like missing
transverse energy are taken into account, and how these variables can improve the
understanding of the difference in the topological aspects of the supersymmetric and
the strong processes.

This thesis starts with the summary of the SM in the chapter 2, with emphasis on
the theory of the strong processes. A short introduction to supersymmetry is given
in the following chapter 3. After an overview of the CMS experiment in the chapter
4, the computational tools used in the present approach are reviewed in chapter 5.
Chapter 6 deals with the description of the strong processes at hadron colliders, in
particular with the approximative description of the tree-level scattering amplitudes,
which is the basis of the variable definition presented in chapter 7. This chapter
compares the distribution of the variable computed from the simulated events to
the theoretical prediction for the case of the gg — gg process. Furthermore the
effects of jet reconstruction and resolution on the antenna variables are examined.
Chapter 8 deals with the possible use of the variable for the discrimination between
SUSY and strong interactions in the all-hadronic channel. The thesis will finish with
a conclusion and an outlook.



The Standard Model

The Standard Model of particle physics (SM) is a physical theory of the microcosm
formulated in the framework of quantum field theory (QFT). The realm of the SM
are elementary particles which are considered to be fundamental building blocks of
matter and interactions between them. The SM describes three of four empirically
known forces: the strong, the weak, and the electromagnetic force. Gravitation is
excluded, since the General Theory of Relativity (GRT) - the highly successful theory
of gravitational interactions - could not be hitherto incorporated in the framework
of QFT. The SM consists of two parts: Quantum Chromodynamics (QCD) as the
theory of the strong interaction and Weinberg-Salam theory as the theory of the
electroweak interaction.

No effect contradicting the predictions of SM have been found so far, the agreement
between theoretical and experimental values is often even amazingly good. The
paradigmatic example is the magnetic moment of the electron: the discrepancy
between calculated and measured value occurs at the tenth decimal place [6]:

(ﬁ> = 1.0011596524460(127)(75), (1.1)

Ho theo

(ﬂ) = 1.001159652200(40). (1.2)
Ho exrp

The errors of the theoretical value are due to the uncertainty of the fine-structure
constant (127) and due to the numeric inaccuracy in the computations of the coef-
ficients of the perturbation series.

In spite of this success, the SM reveals many shortcomings rooted either in the
conceptual background of QFT or in the aesthetic considerations and requirements
imposed on it. This chapter provides a very short introduction to QFT and to the
Standard Model with particular emphasis placed on QCD, since it is the part of the
SM relevant for this work.



4 1. The Standard Model

1.1 Quantum field theory

There is no single agreement upon a standard formulation of QFT [7], and there is
even no standard definition what quantum field theory precisely is [8]. A certain
perspective could be the statement that QF T aims at a synthesis of quantum physics
with the principles of classical field theory, in particular the principle of locality [9].

The basic starting point are the axioms of Special Relativity (SRT) and the axioms
of Non-relativistic Quantum Mechanics (NRQM) which should be combined in one
theory. If one proceeds further along this line of thought one arrives at axiomatic
approaches to QFT in which fundamental physical principles any QFT should obey
are stated, and attempts to explicitly build models according to these principles are
made. A possible set of axioms for a quantum theory of fields could be [10]:

e Space-time is a classical manifold with the geometry of Minkowski space M.
Its symmetry group is the “Poincaré group”, generated by translations and
Lorentz transformations.

e Pure states are described as “rays” in a Hilbert space H, equipped with a
positive definite inner product. Observables are self adjoint operators acting
in H. (This axiom ensures the superposition principle for quantum states and
the probabilistic interpretation of expectation values.)

e A symmetry is implemented by a “ray representation” of the symmetry group.
In the case of the Poincaré group P this is equivalent to a representation of
the covering group P by unitary operators. (From this axiom follows, that
for instance infinitesimal generators of translations P* may be interpreted as
observables corresponding to the total energy-momentum. Furthermore, an
irreducible representation with positive energy describes the state space of a
single stable particle.)

e The spectrum of the energy-momentum operators P* in H is restricted to the
closed forward cone Vi = {p : po > |p|}. There is a unique ground state 2,
the vacuum.

e The basic dynamical variables, in terms of which all operators in ‘H should be
expressed, are fields. (A field is an “operator valued distribution” on a suitable
defined domain in H.)

e The theory is completely described by a finite number of covariant fields each
having a finite number of components. The notion of fields allows encoding
of the relativistic causal structure of space-time in the theory as stated in the
next postulate.

e Field quantities in regions which lie space-like to each other either commute
or anticommute.

Relying on these axioms powerful global theorems like CPT and the Spin-Statistics
theorem could be stated. However, no quantum theory of interacting fields in four
dimensional space time have been explicitly constructed so far. It is further un-
clear whether any nontrivial QFT’s satisfy the stated axioms, even though all the-
ories constructed in two or three space-time dimensions satisfy them. Hence, the
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critical discussion of the fundamental principles is itself an issue of the axiomatic
approach [9].

The main approach to QFT treated in all textbooks [11] is perturbation theory
based on the idea of “quantisation of a classical field theory”. Perturbation theory
produces formal power series expansion in a coupling constant. The series should
be asymptotic to a QFT yet to be constructed, and therefore the couplings should
be weak. The starting point of the scheme is the Lagrangian of classical field the-
ory, which should be separable in a “free” and “interaction” part. In the “canonical
approach” field variables and their conjugates are then identified with the canonical
variables on which canonical commutation relations are imposed. The Hamiltonian
as a functional of the canonical variables in the Heisenberg picture is derived in the
next step. Afterwards transition to the interaction picture takes place. Assuming
that long time before the interaction (t — —o0), and long time after the interac-
tion (t — o00) all particles are well separated in space and can be treated as free, a
scattering matrix (operator) or S-matrix connecting the asymptotic states is intro-
duced. The S-matrix is an array of complex probability amplitudes for all possible
transitions between all “in” (t — —o0) and “out” (t — oo) states. These states do
not inhabit two different Hilbert spaces. They differ only in labelling, hence any “in”
state can be expanded as a sum of “out” states, with expansion coefficients given by
the S-matrix [12]. The S-matrix is constructed from an Hamiltonian in the interac-
tion picture (essentially being the time-evolution operator in the limit of very large
t [11]) and can be computed as a power serieq't

S =1+ (—i) /oo it Hy(t)) + (-@)2/00 dt, /tl dty Hy(t) Hy(b) + - . (1.3)

o0

The introduction of diagrammatic methods like “Feynman diagrams” [13] simplifies
the calculation of the terms. It is convenient to single out the part of the S-matrix
corresponding to the actual interactions : S — 1, and write it as a delta function-free
amplitude (or in other words matrix element) 7 times other factors (delta function).
To link this theoretical quantity with experimental results, differential transition rate
(probability for a transition between the states per unit time) per flux - the cross
section is introduced. The cross section is proportional to the absolute square of the
matrix element : |7]°.

While the leading order results for the matrix elements are in good agreement with
experiments, there is a need to “renormalise” the single higher terms of the expansion
which would lead to infinities otherwise. This procedure fixes the parameters of the
theory to their physical values, since “bare” values appearing in the Lagrangian are
not measurable but only the sum of these values and all radiative corrections. The
renormalisation should be achieved without the introduction of infinitely many new
parameters, since all predictive power will be lost otherwise. This necessity restricts
the form of the Lagrangian. Experiments have revealed the relevance of vector
(spin 1) couplings : Parity violation in the weak interactions can be explained by
a V-A (Vector-Axialvector) but not by scalar and tensor couplings [14, [15]. The
idea that vector couplings are mediated by vector fields lies at the basis of the SM.
It can be shown, for example in [16], that the only successful way to incorporate

IThe treatment in this section is brief and simplified. It provides a basis for a further discussion
of the SM.
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vector fields into a perturbative QFT is to treat them as gauge fields, with couplings
which are necessarily gauge couplings. Thus the gauge principle enters QFT through
the inherent limitations of the perturbative scheme. However, gauge invariance
forbids explicit mass terms of the gauge bosons and introduces unphysical degrees
of freedom. The first problem was solved by introducing a spin-0 Higgs field with
“spontaneous symmetry breaking”, while for the latter an explicit gauge has to be
chosen or general advanced methods (BRST theory) have to be used.

Predictions of perturbative QFT are in a good agreement with the data, as it was
outlined in the introduction to this chapter.

In spite of the success of perturbative QFT, which is the foundation of the SM, the
theory is not fully consistently completed, and comparison with experiments relies
often on heuristic considerations with unsettled correctness [6]. It is possible that
the power series is not an asymptotic expansion of the full theory as it could be
shown for a low-dimensional model [7, 17-419]. This could be the case for Quan-
tum Electrodynamics (QED) - a QFT model of pure electrodynamic interactions,
which can be separated from the SM. On the other hand the field concept itself is
problematic in the quantum case, since contrary to the classical physics the fields
are not observable, it is impossible to associate each field with a particle species
in general case (many auxiliary fields are introduced merely as a tool to quantise
classical theory), and quantum fluctuations of localised observables (vacuum expec-
tation values of field products) diverge in the limit of pointlike localisation [9]. Thus
the statement that QFT is necessarily a quantisation of a classical field theory is
questionable.

The problems mentioned here will be discarded in the following sections which will
introduce the SM. But it is important to know that they exist, since the failure
of the axiomatic approach up to now may indicate either that the problems with
the SM and gravity lie deeper in the foundations of NRQM or even SRT or that
the space-time has a lattice-structure. This section shows how the formalism (like

Lagrange densities) which will be introduced in the following sections fits into the
framework of QFT.

1.2 Gauge theories

To avoid “action at a distance” local interactions with fields were introduced already
in classical electrodynamics. For instance the interaction between a relativistic par-
ticle and an electromagnetic field is described by an additional term in the action
containing the charge of the particle and the vector-potential of the field [20] at a
given point. But the vector-potential is an auxiliary quantity and is not observable,
since it can be altered by a four gradient of a scalar function which depends on space
and time coordinates. This additional term leads to a total derivative in the action
leaving the equations of motion invariant. This symmetry called “gauge symmetry”
is a redundancy in the description and the states related by (local) gauge transfor-
mations are to be identified. As it was stated in the previous chapter experiments
suggested that vector fields are responsible for weak interactions, and the only way
to incorporate them into perturbative QFT is to treat them as gauge fields analogous
to the vector potential in electrodynamics. To quantify the last statement spin-one
fields Af(z), where p is the Lorentz index and a counts the number of field types
a =1,..., Ny, have to be examined. First of all, the energy (Hamiltonian) in the
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classical theory should be bounded from below and as a result of this demand every
vector field theory must have at high energies and momenta Lagrangians as given

by the following eq. (full derivation can be found in [16]):
1 a apur a a a
L — —ZFWF w. Fy, = 0,A; — 0,A;. (1.4)

But from this form of Lagrangian follows that any field A}, that can be written as a
space-time gradient contributes neither to the Lagrangian nor to the Hamiltonian,
since Fyj, = 0 in this case. After quantisation such fields would represent particles
and forces without energy. To avoid such entities, field replacements of the type:

A — A% 4 9,0 () + .. [ (1.5)

should not affect the physical state at all . It follows that a theory with spin-1
fields should be invariant under local gauge transformations, the dimension of the
local gauge group being equal to Ny, the number of vector fields present. To ensure
renormalisability of quantised theory the gauge theory has to be exact [16].

In order to construct a theory with gauge fields, scalar and spinor fields of the
theory, whose excitations will be identified as particles, have to transform as (sets
of irreducible) representations of some symmetry group under consideration, which
means that the fields possess internal degrees of freedom on which the group acts.
In case of SU(n) gauge groups one is lead to following transformation property:

() = Qa)p(x);  Qz) € SU(n) (1.6)

The gauge fields AZ(x) are introduced by requiring the possibility of constructing
gauge invariant gradients of the spinor and scalar fields above. These gauge fields
are n X n-matrices, one for each p and x. Each Af(x) has two suppressed matrix
indices. The gradients are constructed with the following ansatz:

(D,p(x)) = Qz)Dyy(x), D, (x) = (0, — gAY (), (1.7)

g being an arbitrary coupling constant. From the ansatz and the covariance condition
for the gradient follows the transformation law of the gauge field:

A, = Q@) A,0%) + g7 (9,0())x) (18)

The transformation property of the gauge field has the following meaning: The
gauge field of a SU(n) gauge theory is a vector field A,(z) with values in the lie
algebra su(n). The lie algebra is the tangential space at the identity element of
the group: a n-dimensional real vector space with a product structure which is a
commutator in the case of matrix groups. The gauge fields transform according to
the adjoint representation of the gauge group and receive an additional su(n) term
if the transformation is local.

To construct the Lagrangian of the gauge theory one has to replace all derivatives
by the covariant gradients and add the kinetic term for the gauge fields, which
was introduced in the beginning of this chapter, but now with all derivatives being

2Extra terms not contributing to the bilinear part of the Lagrangian are allowed here.
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covariant. The field strength F), can be constructed explicitly by computing the
commutator of covariant derivatives:

Fn = 1[D,. D)) = D,A, — D, A, (1.9)

W—g

The underlying mathematical structure of gauge theories is the differential geometry
of fibre bundles. The gauge fields are connections of some principal bundle and
matter fields are sections in associated vector bundles. The strength tensor F),, is
the curvature.

The considerations above lead to following picture: Whenever a field (the discussion
dealt only with classical fields so far) possesses an internal symmetry that means
a symmetry which is not connected with its space-time coordinates, one has to de-
mand that physical meaningful quantities do not depend on the orientation of the
field in the internal space. The orientation in this internal space can furthermore
change by an amount that depends on the position in ordinary space (local trans-
formations). For example distinction between the left-handed components of the
electron and the electron neutrino (cf. section can be abandoned by assuming
that this components are just different orientations of the underlying entity in the
internal space (weak-isospin space). The internal space in this case would be two
dimensional and complex, being the fundamental representation space of the group
SU (2) responsible for rotations in two complex dimensions. There is one such space
(fibre) “above” every space time point, which makes the whole internal manifold a
fibre bundle. The classical field is a cross-section since it assigns to every space-time
point one orientation in (vector from) each internal space. The derivative should
be able to compare fields at different space-time points and to do so it should first
parallel transport it from the fibre over the one point to the fibre over the other.
The connection enables the parallel transport and transforms the cross-section dur-
ing it to the orientation in which it would be if it were at the point to which it
is transported. The connection hence has its values in the lie-algebra of the sym-
metry group. It can be expanded in the basis of the algebra, which leads to three
fields in the case of SU(2). All linear combinations of these fields are allowed as
transformations in the weak-isospin space and associated particles are on an equal
footing. One particular combination of the fields has interesting properties: one
of this gauge fields rotates upper components of the weak iso-spin into the lower
ones (neutrino—electron) the second performs the inverse rotation, while the third
component changes nothing but multiplies upper isospin component with 1/2 and
the lower with -1/2. These fields resemble the properties of the weak-force. After
performing a local SU(2) transformation one will find out that physical quantities
build in an appropriate way (all mass terms are forbidden) out of fields and covariant
derivatives are left unchanged. Furthermore the SU(2) group acts during this trans-
formation on its own lie-algebra, the lie-algebra being in the adjoint representation.
If the group is abelian (e.g. U(1) of electrodynamics) the representation is trivial,
but in the non-abelian case interactions among the gauge fields are introduced in
their kinetic term. In the SU(2) case one gets second, third, and fourth powers of
the gauge fields.

1.3 Spontaneous symmetry breaking

Spontaneous symmetry breaking occurs if the ground state of the QFT is not invari-
ant under a symmetry transformation which leaves the equations of motion invariant.
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In this case the ground state must be degenerate, since there is a continuous infinity
of the solutions with the same energy, if the considered symmetry was continuous.
To build excitations of the ground state which are identified as particles one partic-
ular ground state has to be chosen. Once this choice is made and the Lagrangian is
expressed in terms of the fields whose quanta correspond to excitations above this
vacuum, the original symmetry of the action is no longer manifest - it is sponta-
neously broken. This phenomenon is important to the SM, since gauge symmetry
prohibits explicit mass terms of gauge bosons which can be generated only via the
Higgs mechanism, that is interconnected with spontaneous symmetry breaking (c.f.
next section). If @ is a generator of a symmetry (internal or one of the generators
of the Poincaré group) the condition of the symmetry breaking stated above can be
rendered more precisely: the symmetry is spontaneously broken, unless

e “Q |0) = |0), (1.10)

or equivalently,
Q0) =10). (1.11)

The symmetry transforms the operators O acting on the states as,
O = Q09 =~ O +ialQ, O], (1.12)

where the last equality holds for an infinitesimal transformation. If one computes
the vacuum expectation value for the change of the operator O under the symmetry
transformation the condition from equation becomes:

(0]ialQ, O] |0) = 0. (1.13)

In QFT dynamical variables O are field operators. The condition above states that
the symmetry is spontaneously broken if one of the field operators transforming non-
trivially under this symmetry acquires vacuum expectation value (VEV). Only spin
zero fields may acquire a VEV such that the Poincaré invariance is left unbroken.

1.4 The Standard Model

The SM is a non-abelian gauge theory based on the group SU(3)cx SU(2), xU(1)y,
with SU(2), x U(1)y spontaneously broken to U(1)ep,. Colour SU(3)¢ is assumed
to be unbroken. The spontaneously breaking of SU(2);, x U(1)y is due to a VEV
of a weak iso-doublet of spin zero fields. The lower indices on the groups refer
to the quantum numbers associated with each group. The quantum number is
assigned to every particld®] and corresponds to the representation of the group in
which the particle transforms. L stands for weak-isospin, C for colour and Y for the
hypercharge (% was chosen as basis vector of the lie algebra in this case - this choice
can be justified since it allows that the quantum numbers of the particles associated
with the unbroken U(1)e,, are their measured (or postulated) electric charges).

The matter content of the SM (spin-1/2 particles) consists of leptons (from Greek
“leptos” for light) which do not take part in the strong interactions and quarks which
are strongly interacting, and is organised in 3 generations. Additionally, there is a

3From here on the notion of fields and particles is used interchangeable if not stated otherwise.
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spin-0 Higgs field and one associated massive Higgs boson. Every generation has the
same pattern of quantum numbers, but by construction the masses of the particles
rise from generation to generation. The first generation is responsible for the non-
exotic matter in the universe and contains: electron, electron neutrino, and up and
down quarks. The second generation consists of the muon, the muon neutrino, the
charm, and the strange quark. The tau lepton and tau neutrino as well as the top
and the bottom quark constitute the third generation. The gauge quantum numbers
of the first generation and of the Higgs boson are shown in table [I.1]

I = (”L> 1 2 —1
€r

eR 1 1 —2
(W 1
o~ (1) o x

s 3 1 :

dr 3 1 —2

+
¢ = (9;0) 1 2 1

Table 1.1: The first generation of matter fields and the Higgs field with associated
Standard Model quantum numbers [3].

1.4.1 Weinberg-Salam theory

Chiral structure is the distinctive feature of weak interactions, which means that
they maximally violate parity conservation. To incorporate this structure into the
SM, left and right handed components of lepton and quark fields transform in dif-
ferent representations of SU(2), x U(1)y, the right handed components being not
affected by SU(2) transformations. Massive spin-1/2 fields obey the Dirac equa-
tion which interconnects two Weyl-spinors transforming in different representations
of the Lorentz group (c.f. chapter [4.2). If the mass term is set to zero the equa-
tion decouples to two Weyl equations each for one of the spinors. Examining the
behaviour of the plane wave solutions one finds, that the spin direction of one of the
spinors is always antiparallel with respect to the direction of motion - this spinor is
called left-handed - and vice-versa for the other solution. Dirac equations couples
both spinors and one has to use projection operators to get the desired component.

The classical Lagrangian of the Weinberg-Salam Theory is given by
‘CWS = Egauge + ‘Cmatter + 'CHiggs + ‘CYuk’awa; (114)

where the first term is the kinetic term of gauge fields presented already in the section
on gauge theories, the matter term consists of appropriate covariant derivatives of
the fields (interactions of matter and gauge fields via minimal coupling), the Yukawa
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term describes couplings of leptons and quarks to the Higgs field, and finally the
Higgs term consisting of the kinetic part and the Higgs potential:

Litiggs = |Duo” + 1?¢'¢ — A(91)*. (1.15)

The last term is needed, since the range of weak interactions (107'% m) is inconsistent
with gauge bosons being massless. The masses of weak bosons are generated via
the Higgs mechanism [21] [22]: the Higgs potential has a classical minimum not at
¢ = 0, the Higgs field acquires VEV and breaks the SU(2);, x U(1)y symmetry,
since it defines a particular direction in the internal group space. However, one
residual U(1).,, symmetry remains and the single unbroken generator is identified
with the electric charge. Since three generators of SU(2),, x U(1)y are spontaneously
broken, three massless Goldstone bosons are expected due to Goldstone’s theorem
[23]. This theorem can be however circumvented as the massless Goldstone modes
provide longitudinal degrees of freedom for the massless long-ranged vector fields of
the theory since they share the same quantum numbers.

The Higgs mechanism selects randomly particular linear combinations of gauge fields
out of the manifold, one of the combination, which corresponds to the unbroken
generator, remains massless and is identified as the photon:

A, = sin Oy W3, + cos 0w B,,. (1.16)

The terms are sin Oy = ¢'/\/g2 + ¢'*, cos Oy = g// g2 + g%, g and ¢ are the coup-
ing constants of the SU(2);, or U(1)y group respectively. W’s are gauge bosons of

the former and B is the gauge boson of the latter group. Other selected combinations
are charged massive spin 1 bosons W=*:

Wi = (Wi, FiWa,) /V2, (1.17)
and a massive spin 1 neutral boson Z°:

79 = — cos Oy W, + sin Oy B,. (1.18)

m

There remains also one scalar massive dynamical field - the Higgs boson H.

1.4.2 QCD

QCD is a gauge theory based on the group SU(3)¢ with colour triplet quark matter
fields. The selection of the gauge group was based on the following constraint: after
the idea of three quarks arose from the observations of the spectra of low mass
mesons and baryons (quarks as physical manifestation of SU(3) flavour symmetry),
and spin 3/2 baryons were interpreted as three quarks bound states with symmetric
spin- as well as space- and flavour-wave functions, a new degree of freedom had
to be introduced in order that the complete state description obeyes Fermi-Dirac
statistics. Each quark can carry a colour index with three possible values (red,
green, and blue) and the baryon wave functions are totally antisymmetric in this
new index.

A further restriction imposed on the gauge group is the requirement that it must
admit complex representations to be able to distinguish quarks from antiquarks as
constituents of the meson (quark antiquark) states, since no quark quark bound
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states were found. Following simple groups have this last desired property: SU(N)
with N > 3, SO(4N + 2) with N > 2 and E(6) [24]. The choice of SU(N = 3)¢
is confirmed by many processes measuring N, particularly by the Ratio R of the
ete™ total hadronic cross section to the cross section for the production of muons
ete” — ptp~. At low energies only up, down and strange quarks each in three
possible colours can be excited leading to the ratio of 2, assuming fractional charges
of quarks (up +2/3 and down -1/3 and equivalent in other generations). If the centre
of mass energies exceed 10 GeV charm and bottom quarks can also be produced
and so the ratio becomes 11/3. The idea of quarks as pointlike constituents inside

hadrons was confirmed by the deep inelastic scattering experiments performed at
SLAC [25].

The theory has however a drawback since the spectrum of physical states does not
resemble the set of the fundamental fields and does not include coloured states.
This phenomenon is called confinement. It is postulated that only colour neutral
states can occur in nature - the colour is confined inside the hadrons. Confinement
could not be proved in QCD up to now. It is believed that the energy between
colour charges grows linear with distance F(R) = kR, k being the string tension
coefficient, because the gluon field between the quarks contracts to a tube (string)
with energy proportional to its length. If the separation between the sources becomes
large enough, the string between the quarks breaks up and a light quark-antiquark
pair is created screening the sources [25] 26]. Quarks produced in scattering events
turn via this (hadronisation) process into many hadrons which are detected as jets
emerging in the direction of the original quark in the detectors. The running of the
coupling constant (described in a later section) makes confinement probable, since
interaction becomes strong and not perturbative computable at large distances.

The Lagrangian of QCD is given by:
EQC’D = 'Cclassical + Lgauge—fixing + ['ghost' (119>

The first part is the classical Lagrangian of the theory, while the other two parts
are needed for perturbation calculations after quantisation. The gauge fixing term
is a constraint that picks up only one representation from the whole gauge orbit
(all field configurations related by gauge transformations) and thus eliminates zero
modes. A definition of a gluon propagator without this term is impossible. To
provide unitarity of the amplitudes an additional ghost term has to be added to
the Lagrangian in case of non abelian theories. Ghosts proliferate in loops (higher
order diagrams) and since only tree-level diagrams (diagrams without closed loops
of gluon or quark lines) will appear in this work, the term is abandoned in further
discussion [26] [25]. The expression for the classical term is:

1 o .
Eclassical = _ZLF&A,QFA[; + Z Ga (ZD - m)ab av, (120>

flavours
and this work follows [27] in choosing 't Hooft Feynman gauge:

1 (0%
Egauge—fixing = 5 (804-/4 A) . (121)
The first term describes interactions of spin 1/2 quarks of mass m and massless

spin 1 gluons (gauge bosons of strong force). The indices a, b and A are colour
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labels, lower case letters run from 1 to 3 being quark colour indices while the upper
case letters run from 1 to 8 being gluon colour indices. Covariant derivatives and
curvature (field strength) of the SU(3) manifold are defined in the following way:

(Du)ab/AB = a/L(Sab/AB + Zg (TA)ab/AB Aﬁ, (122)

Fi = 0,40 — 0,A) — gf"PC AR AC. (1.23)

The fABC (A, B,C = 1,...8) are real structure constants of the SU(3) group and

g is the coupling constant which determines the strength of the interaction. The

quarks are in the fundamental three dimensional representation and the gluons in

the adjoint eight dimensional representation, the representation matrices (T4) /AB

are in one of the both representations respectively (indicated here as different indices
for each case). The matrices satisfy following relations:

(T4, TP = if4P¢ (T9), (1.24)

fAadeds — i [Ty (THA24) — T (TAs4241) ) (1.25)

while the structure constants satisfy the Jacobi-identity:
fABXfXC’D + fC’BXfXDA + fDBXfXAC’ = 0. (126)

Further, the following relations hold:

1 1
(T (T = 5 [5ad5cb — Néabécd} , (1.27)
|
Tr(THT%) = S0, (1.28)
M =N"—1  and  Gu=N, (1.29)

where N stands for the total number of colours and is equal to 3 in the QCD case.
Summation over repeating indices has to be performed.

The Feynman rules for QCD (figure [1.4.2) can be derived from the Lagrangian
density given above. Following these rules, scattering amplitudes? for processes
involving quarks and gluons can be constructed.

1.4.2.1 Asymptotic freedom

The Feynman rules derived so far include bare constants (coupling g and masses m)
which were used to define the theory via the Lagrangian density. These constants
are theoretical constructs and are not measurable as already stated in All
physical quantities have to be expressed in terms of renormalised parameters which
depend on the ultraviolet cutoff Ay, the bare coupling constants, and an arbitrary
scale p - the point at which the measurement of the physical quantities, which
are then associated with the couplings, takes place. Generally, loop corrections
(and ghost fields) have to be taken into account and exact propagators and vertices
can be defined. If the scale p is larger than external momenta and quark masses
it can be shown that exact propagators and vertices have the same colour and
Lorentz structure as the bare ones. Bare and renormalised quantities are connected

4The term amplitude is used interchangeable with the term matrix-element or S-matrix element.
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Figure 1.1: Feynman rules for QCD in ’t Hooft Feynman gauge without ghost fields.
The ie prescription was also removed from the propagators, since only tree level
amplitudes are considered.

via various renormalisation factors Z which are numbers and which depend on the
bare coupling go, bare gauge parameter (chosen 1 in the scheme presented here),
and the dimensionless ratio Ag/u?. The renormalisation factors are not arbitrary
but satisfy Slavnov-Taylor identities which state, that the strength of the coupling
Zimvge extracted from the all different vertices of the theory coincides even after
renormalisation [26].

If one considers physical effective charges g*(u) and ¢*(u’) at two different scales
and if one assumes ' > p it follows:

A2
(1) = Zin, (mu—g,g%;) 7, (1.30)
2 / Ag 2 2
g (H’) = Zinv lnﬁag[) 90> (131)
(1.32)

with one and the same invariant function Z;,,. Logarithms occur due to the fact,
that integrations over higher order (loop) contributions have to be peformed, which
are logarithmically divergent. A crucial observation is the possibility to treat p' and
g*(1) on the same footing as Ay and g2. Having the value of the coupling at some
high scale p it is possible to derive the value of the coupling and other observables
at the lower scale, since the larger scale plays the role of the ultraviolet cut-off scale
as far as momenta less than the large scale value are concerned. It follows that Z;,,
satisfies a functional equation:

AQ 'u/2 AQ
Zims (lnu—g,gé) = Zino (lnE,QQ(u’O Zim (lnu—,‘;,g(?) : (1.33)
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This equation defines the renormalisation group, which tunes the effective charge
when the scale is changed. The tuning factor depends only on the ratio of two
scales and on the charge defined at the upper scale but not explicit on the scale.
The functional equation above restricts the form of the function. If the relation of
charges defined at two different scales is written as:

/

() = Zin, (m %,g%u’)) 20, (1.31)

and then differentiated with respect to In pu, the differential equation for the evolution
of effective charge reads (after setting u = u'):

dg(ﬁiﬂ) — [92(,“)] 7 (1.35)
where 5
B(9*) = —20" 57 Zim(L, 6°) - (1.36)

is called Gell-Mann-Low function or 3 function and L = In(A3/u?). The (3 function
can be expanded into a series in g2. The first term in the series can be inferred from
the one-loop result for g?(u) = Zinpga. This term is equal to:

bog* 11N 2
where Ny is the number of active quark flavours and N is the dimension of gauge
group, which is three in QCD case. If only the leading term is taken into account

equation can be integrated. First the strong constant oy is defined as:

92

— 1.
g, (1.39)

Qg =

than the integration is performed, and in this process an integration constant enters
the terms. This constant is called Agcp, and the solution reads:

2T

b() In Aoco

as(p?) (1.39)

The value of Agep can be determined since at the cut-off energy scale Ay, the
coupling constant should attain its bare value. This demand fixes Agep to:

872
AQCD = AO exp <—b—2) . (140)
090
The result does not depend on unphysical bare parameters, but rather on their
combination Agcp which is a true physical parameter for QCD. It represents the
scale at which the perturbation theory breaks down since the coupling diverges.
The numeric value of the parameter can be obtained by fixing the value of the
coupling via measurements at some scale in perturbative domain, usually u = My
and evaluating it with the renormalisation group equations to the value at
which perturbation theory breaks down (coupling with the order of magnitude of
1). Depending on the precision of the corrections one arrives at a value of about 200
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MeV'. Thus ag becomes large and the perturbation theory starts to fail for scales
compatible with the masses of light hadrons, i.e. 1 GeV. This result is no surprise
since Agcp carries a dimension and hence determines all dimensionful quantities in
QCD, in particular hadron masses [26]. On the other hand, as mentioned in the
introduction to this section, the growth of the coupling at low scales and breaking
of perturbative regime makes confinement probable [25]. The phenomenon that the
scale Agcp carries a dimension contrary to the bare coupling g is called dimensional
transmutation and it results from the breaking of the conformal symmetry of the
tree level action (involving only dimensionless ¢g) by quantum effects [26].

In contrast to behaviour at low scales the effective charge decreases when the charac-
teristic energy grows. It means that with growing energy and decreasing distances
perturbation theory becomes more and more justified. This behaviour is called
asymptotic freedom and it is opposite to the behaviour of the coupling constant in
QED which tends to infinity for ever smaller distances. The last property is called
Landau-pole of QED and it indicates that the theory is probably not self-consistent.
Asymptotic freedom can be linked with non-abelian structure of QCD which is re-
sponsible for gluon self interactions.

1.5 Beyond Standard Model

As it was mentioned several times no experimental evidence from particle physics
contradict predictions of the SM, the precision measurements of the CERN LEP
(Large Electron Positron Collider) collider rather established that radiative correc-
tions as predicted in the SM are necessary to achieve agreement with data. Never-
theless, the SM possesess some internal problems as it was mentioned in the section
on QFT. Even discarding formal QFT issues, it must be concluded, relying on astro-
physical experiments, that the SM is incomplete. It turns out that neutrinos have
masses (which can be incorporated ad hoc in the SM), there is cold dark matter
(non relativistic matter with no electromagnetic interactions) in the Universe as it
was suggested already in 1933 by Fritz Zwicky [28] from application of virial theo-
rem, and finally the Universe is filled with constant energy density called dark energy
which causes accelerated expansion as inferred from observations of supernovae type
[a. The strongest argument from experimental side is the existence of gravity, since
it is completely neglected by the SM [3].

There are also some aesthetic considerations which suggest that the SM should
be derived from some broader framework: the SM possesses a large number of
free parameters (19) including masses of particles and mixing angles, the SM gauge
group was chosen to fit the data and was not derived from first principles, and finally
electroweak symmetry breaking is incorporated per “hand” and does not follow from
some underlying principle.

The statements above suggest that the SM should be viewed as some kind of effective
field theory valid up to energy scales accessible to current colliders (several TeV). It
approximates the truly fundamental theory which remains probably valid until the
scale of quantum gravity or it approximates some other approximation which has
also bounded domain. The effects of this superior theory which could be found with
the next generation colliders like the LHC (c.f. section [3) are called physics beyond
the Standard Model.
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Figure 1.2: Quantum corrections to m?%

Scalar Higgs field introduced to break electroweak symmetry can provide a hint on
the scale at which physics beyond the SM should enter the considerations. The mass
of the Higgs boson should be also renormalised, but since it is a scalar particle the
leading divergence of the corrections is not logarithmic but quadratic:

C 49

m3;(renorm) ~ m3, +
The constant term ¢ depends on various parameters of the SM and A can be in-
terpreted as the scale at which the SM ceases to be valid. To compute this loop
corrections, diagrams like 1.2 have to be evaluated. Generally bosonic and fermionic
loops as well as momentum independent energy shifts like the first diagram in
lead to quadratic divergences, however bosonic and fermionic contributions have
different signs. If the typical energies exceed the scale A something “new” should
happen, it is possible that new heavy particles can be created or, that the SM breaks
down because some unknown interaction has its strong regime at this scale. A is
bounded from above with the reduced Planck scale of order 10'® GeV at which
quantum gravity corrections become important [3].

The left hand side of the equation - the physical Higgs boson mass - should be
below 1 T'eV in order to maintain unitarity (preservation of probability) in processes
involving massive gauge bosons [29]. Now a constraint on possible values of A can
be imposed, since otherwise the SM would be affected by the fine tuning problem,
which means that the value of the bare Higgs mass should be limited to some extreme
accurate large number in order to cancel higher order corrections. Such tuning would
lead to a situation where small changes of the underlying parameters would lead to
extreme differences in the predictions of the theory for the TeV scale.

To avoid such problems one can conclude that A < O(1TeV) and that one would
expect to find new degrees of freedom in high energy collisions at the T'eV scale.
The next chapter of this work should provide an answer to the question what would
be a promising theory that can appear at this scale.
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Supersymmetry

Supersymmetry (SUSY) is a hypothetical symmetry of nature relating fermions and
bosons. It was introduced independently by two Russian groups in 1971-1972 [30,
31], and then also independently in the west by Julius Wess and Bruno Zumino
[32] in 1974. Simultaneously SUSY was used in two dimensions (as a symmetry
of string world-sheet) within string theory [33, 34]. The Wess-Zumino model had
the biggest impact on particle physics, leading to the formulation of the Minimal
Supersymmetric Standard Model (MSSM) in 1981 [35].

The genuine desirable feature of SUSY is the unavoidable cancellation of the fermionic
and bosonic loop contributions to scalar masses, leading to the solution of the fine-
tuning problem of the SM, q.v. section However, this feature was not the
motivation for the development of SUSY in the 70’s, and hence it is an impres-
sive result that a theory developed for a couple of different reasons can additionally
solve one of the crucial problems of the SM. In the 90’s it was furthermore shown
[36], that the contributions of the supersymmetric particles change the coefficients
of the renormalisation group equations in such a way, that the values of the coupling
constants of the SM interactions meet at high energy (E =~ 2 - 10 GeV). SUSY
can also solve one of the astrophysical problems by providing a natural dark matter
candidate [37].

Regarding the points above, SUSY is believed to be the most promising extension
of the SM. The introduction of SUSY to the SM implicates however addition of new
particles, since it is impossible to relate existing SM particles to each other. The
masses of these new particles would equal the masses of their SM partners in case of
unbroken SUSY. Since none of the superpartners has been discovered so far, SUSY
must be broken. In order to retain the desired SUSY features, the masses of these
additionally introduced particles must lie within the upper limit of ~ 1 TeV. If the
so called weak scale supersymmetry is realised in nature, it should be discovered at
the Large Hadron Collider, which starts the operation in 2009, q.v. next chapter.

This chapter provides a short introduction to SUSY with particular emphasis of the
aspects relevant for SUSY searches with the CMS detector.
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2.1 Supersymmetry algebra

A supersymmetry transformation turns a bosonic state into a fermionic state and
vice versa. The generator of such transformations is called conventionally () and
satisfies following relation:

Q) |Boson) = |Fermion) , Q |Fermion) = |Boson) . (2.1)

From this relation follows, that the generator is an anticommuting and hence fermionic
object changing the spin by half-odd amount and changing the statistics. The gener-
ator @ is thus a spinor (q.v. chapter [4)), and since spinors are intrinsically complex,
the hermitian conjugate QT of @Q is also a symmetry generator. Both generators carry
spin angular momentum 1/2 and thus SUSY is obviously an additional space-time
symmetry. SUSY circumvents the Coleman-Mandula theorem [38], stating that ev-
ery symmetry of the S-matrix must be a direct product of the Poincaré group and an
internal symmetry group (if there is a mass gap), by introducing anticommuting gen-
erators. The Coleman-Mandula theorem was extended by Haag, Lopuszanski and
Sohnius [39] to the case of Lie superalgebras and this extension restricts the possible
forms of supersymmetries for interacting quantum field theories. It follows that the
generators @ and Q' have to satisfy following commutation and anticommutation
relations [3]:

{QQ,QL} = —20%.P,, (2.2)
{QuQur = 0, {@lQi} =0, (23
QuP) = 0 |QLR]=0. (24)

P, being the generator of the space-time translations, and ¢, being the spin tensor
introduced in the section on Weyl spinors in chapter [4

The single-particle states of a supersymmetric theory fall into an irreducible repre-
sentations of the supersymmetry algebra, called supermultiplets. Each supermul-
tiplet contains fermionic and bosonic states, whereas the number of the fermionic
degrees of freedom equals the number of bosonic degrees of freedom. The parti-
cles from one particular supermultiplet are called superpartners and have the same
mass. Since the generators of the supersymmetry commute with the generators of
the gauge groups, all superpartners have also the same internal quantum numbers
(el. charge, isospin, colour).

2.2 The minimal supersymmetric standard model

As it was mentioned in the beginning of this chapter, the introduction of the SUSY
into the SM can solve the fine-tuning problem. If every SM fermion is supplemented
with a scalar superpartner and they both have the same coupling strength to the
Higgs boson (¢ = A\s = |Af[?), the loop corrections to the Higgs mass vanish be-
cause of the relative minus sign between fermionic and bosonic contributions. The
remaining corrections to Am?, due to the SUSY breaking, are small as long as the
masses of the superpartners are about 1 TeV [3]. The solution of the fine-tuning
problem was an important motivation for the development of various supersymmet-
ric models. This section introduces the minimal extension of the SM involving only
one additional degree of freedom in the superspace (N = 1 SUSY), the so called
minimal supersymmetric standard model (MSSM).
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2.2.1 Particle content

The fermions of the SM are members of chiral supermultiplet having a bosonic
(spin-0) superpartner. These superpartners are called sfermions. The names of
the single superparnters are results of the prepending of an “s” for scalar to the
names of the corresponding SM fermions (e.g. selectron, stop, sbottom). The spin-
1 SM bosons are members of the gauge supermultiplet having spin-1/2 fermions
as superpartners which are generally referred to as gauginos. The supersymmetric
partners are represented by the same symbols as corresponding SM particles, but
with a tilde, for example € for the selectron.

The MSSM needs two complex Higgs doublets to generate masses of the particles.
One of this doublets couples only to the up-type particles (H,) while the other
doublet gives masses to the down-type particles (H;). Thus there are four complex
Higgs states corresponding to eight degrees of freedom. Three of these degrees of
freedom are needed to provide masses of the W*- and Z-bosons, leaving five degrees
of freedom for mixing into the Higgs-bosons. There are three neutral superpositions
of H? and HY : two scalars h° , H® and a pseudoscalar A°) as well as two charged
superpositions of Hf/d: the H*.

Not all previously introduced superparticles of the MSSM are mass-eigenstates.
Symmetry breaking can lead to the mixing between particles with same quantum
numbers. The gluino, being in the eight-dimensional adjoint representation, is the
only SUSY member of the gauge multiplet which cannot mix. The electro-weak
symmetry breaking leads to the mixing of the Higgsinos with the supersymmetric
partners of the electro-weak gauge bosons. The four neutral mass eigenstates are
called neutralinos and are denoted by x{ ,. They are superpositions of the neutral
Higgsinos with the zino (Z) and photino (7). The mixing depends on the Weinberg
angle Oy, the ratio of the vacuum expectation values of the two Higgs doublets
tan 3, the mass of the Z-boson, and the mass parameters of the SUSY breaking
terms M; and M,. The charged Higgsinos and the winos mix respectively into two
charged mass eigenstates sz, depending on the mass of the W-boson and the Hig-
gsino mass-parameter p. The numbering scheme of charginos and neutralinos begins
with the lightest particle and the number grows with the mass.

2.2.2 Superpotential

The superpotential describes the interactions between the particles in the MSSM [3]:

Wissa = uyuQH, — dysQHy — ey.LH, + pH, Hg, (2.5)

where @, d, ), H,, Hy, & and L are the chiral superfields of the associated chiral
supermultiplets (@, d, @ stand for the supermultiplets of squarks and quarks, L
and e stand for the supermultiplets of sleptons and leptons and H, 4 stand finally
for the Higgs/Higgsino multiplet). The y; terms are Yuakawa-matrices describing

I"Multiplets consisting of two-component Weyl fermions and complex scalar fields. Only chiral
supermultiplets can contain fermions whose left-handed parts transform differently under the gauge
group than their right-handed parts.

2Multiplets containing spin-1 bosons and spin-1/2 fermionic superpartners whose right- and
left-handed components have the same gauge-transformation properties. The last property has to
be satisfied, since gauge bosons transform in the adjoint representation, which is its own conjugate.
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the mixing angles between the particles and their couplings, while p is the Higgs
mass parameter. There is no theoretical reason prohibiting the addition of other
gauge invariant terms to the superpotential. The most general gauge-invariant and
renormalisable superpotential would however include terms violating lepton (L) and
baryon number (B) [40] leading inter alia to the proton decay. Postulating the con-
servation of these numbers is a drawback in comparison with the SM, where the
conservation is the consequence of the impossibility of construction renormalisable
Lagrangian terms that would violate L. and B. Instead a new symmetry called R-
parity is added to the model. This symmetry eliminates the possibility of B and L
violating terms in the renormalisable superpotential and has additional nice prop-
erties.

2.2.3 R-parity

The R-parity is defined as:
Pg = (—1)3B-D+25 (2.6)

with S being the spin quantum number of the particle. From the definition follows,
that all SM particles have a R-parity Pg = 1, while all SUSY particles have Pr = —
1. The conservation of R-parity, which is a postulate of the MSSM, leads not only
to the conservation of B and L, but also to the pair-wise creation or annihilation
of SUSY particles. Additionally every SUSY decay chain must end with a lightest
stable supersymmetric particle, the LSP. Depending on the SUSY breaking scenario,
the LSP can provide a good dark matter candidate [37].

2.3 Supersymmetry breaking

Since SUSY particles were not discovered parallel to the discovery of SM parti-
cles, their masses must be larger than the masses of known particles, and hence
SUSY must be spontaneously broken [40]. This can be achieved by the introduc-
tion of additional breaking terms in the SUSY Lagrangian. If these terms preserve
renormalisability and do not introduce new quadratic divergences, one speaks of
soft supersymmetry breaking. The general SUSY potential including soft breaking
terms introduces 105 new free parameters to the theory making the general model
intractable. Therefore, several more constrained models of SUSY breaking were con-
structed. In general the breaking occurs in a “hidden sector” of particles, that have
no direct couplings to the “visible sector” : the chiral supermultiplets of the MSSM.
The breaking is then mediated via some interaction which is shared between the two
sectors leading to the soft breaking terms.

This study deals with the SUSY breaking scenario based on the assumption, that
gravity is the interaction providing the connection between the two sectors. This
scenario is called mSUGRA (minimal supergravity). The mSUGRA model of SUSY
reduces the 105 parameters of the MSSM to 5 free parameters, defined at the scale
of the great unification (GUT-scale). The free parameters are: my/; - the unified
mass term of the gaugino breaking parameters, mg - the unified mass term of the
sfermion breaking parameters, Ag - unified trilinear couplings of the SUSY breaking,
tan (3 - the ration of the VEV’s of the two Higgs-doublets, and sign(u) the sign of the
Higgs mass parameter. Given a particular set of these parameters, one can compute
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the values of the particle masses at the lower scale by using renormalisation group

equations.

The CMS collaboration defined a set of test points in the mSUGRA parameter
space, to cover significantly different experimental signatures [4]. The points are
divided in two groups: the so called high-mass points (HM) whose parameter lead
to higher masses, and low-mass points (LM) whose parameters lead respectively to
the lower SUSY particle masses. The CMS test points are shown in the Fig.
in the my — m;/o- plane of the mSUGRA parameter space, and additionally the
values of the parameters for some points relevant for the present work are given in

Table 2.3]
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Figure 2.1: The CMS test points in the mg —m; jo-plane of the mSUGRA parameter
space (the other parameters are tan 3 = 10, Ay = 0, and g > 0) . The testpoints
are labeled with *. The turquoise domain corresponds to a charged LSP, which
is exclueded experimentally, while the yellow domain does not yield electro-weak
symmetry breaking. Further experimentally excluded domains are also shown [4].

Table 2.1: mSUGRA parameter values for selected test points. Masses are given in

units of GeV.

Point mg my tanfB sign(u) A
LM1 60 250 10 + 0
LM4 210 285 10 + 0
LM8 500 300 10 + —300
HM3 700 800 10 + 0
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2.4 Experimental signals

If weak scale SUSY is realised in nature, it should be accessible with the Large
Hadron Collider [41]. A hadron collider like LHC offers many SUSY production
channels, however the particles will be produced in pairs, if R-parity is conserved.
The production processes of the strong interaction (e.g. g9 — G4, q¢ — §¢;) will
dominate over the possible electro-weak channels like ud — x; x?, due to the larger
cross sections [40] unless the squarks and gluionos are much heavier than the other
gauginos. The lightest SUSY particle is stable, if the R-parity is conserved, and only
weakly interacting. It follows, that the LSP traverses the detector without leaving
energy deposition in the calorimeter, and produces missing transverse energy (MET),
like the SM neutrino. Therefore, missing transverse energy is a characteristic SUSY
signature. The present work tries to find a method to distinguish between mismea-
sured QCD events with fake MET, and true signals of decaying heavy particles, like
SUSY, via new variables for the description of QCD processes.

The large masses of the SUSY particles yield a short life-time , which causes them
to decay in the detector often via long chains of intermediate particles. The decay
ends with the LSP, which is the neutralino x? in the model considered in this work.
If the decay chain entails only such SM particles, which either hadronise themselves
leading to jets in the detector, or decay further in quarks like the heavy gauge bosons
W= and Z°, the process is called all-hadronic. Such processes are characterised by
larger MET and many jets. Figure shows a possible all-hadronic decay chain.

y=

Figure 2.2: Example for an all-hadronic decay chain. The pairwise produced super-
symmetric particles decay via a chain into quarks, gauginos, hadronically decaying
SM gauge bosons, and neutralinos.



The CMS Experiment

Being highly successful, the Standard Model still cannot be the truly fundamental
theory of matter and forces as it was shown in chapter[1.5] To probe physics beyond
the Standard Model (SM) and to decide if one of the various proposed extensions to
the SM is really realised in nature, experiments at the TeV scale have to be made
[29], q.v. previous chapter. Such experiments will become possible after the start
of the operation of the Large Hadron Collider (LHC) at the European Organisation
for Nuclear Research, CERN'| near Geneva. The Compact Muon Solenoid (CMS)
Experiment is one of two multipurpose elementary particles detectors built at the
LHC in order to examine physics at the TeV scale. The main focus is put on
the unveiling of the origin of electroweak symmetry breaking, for which the Higgs
mechanism is presumed to be responsible, and on the search for supersymmetric
particles, since Supersymmetry is the most promising candidate for an extension of
the SMPP cf. section 2| In the following some of the LHC properties are reviewed
and CMS design is introduced.

3.1 LHC

The Large Hadron Collider [44] is a two ring superconducting hadron accelerator
built into the existing tunnel of the Large Electron Positron Collider (LEP) the pre-
decessing major particle accelerator at CERN. The 26.7 km circumference tunnel
was constructed for LEP between 1984 and 1989 and is situated 49 - 150 m below the
ground level. At four interaction points proton or fully stripped lead ion (?*Pb%**)
beams are crossed and particles collide at the design centre of mass energy of 14
TeV for protons or 1.15 PeV for lead ions. Four detectors were build around the
interaction points - ALICE (A Large Ion Collider Experiment) [45] at interaction
point 2, designed for investigations of quark-gluon plasma in ion collisions, ATLAS
(A Toroidal Lhe ApparatuS) [46] at interaction point 1, a general-purpose experi-
ment like CMS, CMS [47] at interaction point 3 and LHC-B (LHC-Beauty) [48] at

LCERN is a french acronym for Conseil Européen pour la Recherche Nucléare (European Coun-
cil for Nuclear Research), which was a provisional council founded in 1952 in order to establish
European subatomic physics research organisation. The organisation become European Organisa-
tion for Nuclear Research in 1954, but the acronym CERN was retained [42], [43].
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interaction point 4 build to examine CP-violation in processes with b quarks. The
LHC has eight arcs and eight straight sections and each interaction point is located
in one of the latter. The insertions in the remaining four straight sections do not
have beam crossing and are used either for beam collimation or for acceleration and
damping. Each exertion is numbered clock-wise beginning with ATLAS interaction
point, CMS being at the point 5 consequentially. Figure shows the schematic
LHC layout. Protons were selected as interacting particles in spite of being non el-

Low G (pp
High Luminosity

:

Cictant 3
e

Low B (pp)
High Luminosity

Figure 3.1: Schematic layout of the LHC. Collimation systems for both beams are
situated at points 3 and 7, RF acceleration systems one for each beam are in the
exertion at point 4. The two beams can be vertically extracted from the machine at
point 6 (beam dump) [44].

ementary, since the synchrotron radiation, the major source of energy losses in ring
accelerators, falls of with the fourth power of the mass m of the particle being accel-
erated (o< m™*). Furthermore, protons can be produced in large numbers, contrary
to antiprotons, which enable a high number of particles per bunch. Together with
the small time interval of 25 ns between the bunches this leads to a high number of
protons inside the collider. This large number of protons and the small S-function
values of the focussing magnets at the ATLAS and CMS interaction points lead to
high LHC design luminosity of 103 em=2s~! for both experiments. The luminosity
L of a hadron collider [25], assuming no crossing angle at the interaction point, is
defined as

I — i N hi N, ha i

T o /BB EE;

(3.1)
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Quantity pp operation | Heavy-ion operation
Design energy per nucleon (v/S/2) 7TeV 2.76 TeV
Dipole field at 7 TeV (B) 833 T 8.33T
Design Luminosity (L) 103 em 257! 10%" em 257!
Bunch separation 25 ns 100 ns
Number of bunches (n;) 2808 592
Number of particles per bunch (N) 1.15- 10" 7107
RMS beam radius at IP (o) 16.7 pm 15.9 um
Transverse normalised emmitance (E*) 3.75 um 1.5 pm
Twiss function g* at IP 0.55 m 0.5m
Luminosity lifetime (77,) 15 hr 6 hr

Table 3.1: Some of the relevant LHC parameters. Given are nominal values for

proton-proton and heavy-ion operation [44]

where NN, are total numbers of the hadrons in each beam. Other parameters are f
the revolution frequency, n, the number of bunches, v = E/m the relativistic factor,
E? transverse emmitance of the beams, and 3] wavelength of the betatron oscilla-
tions of the beams. For a Gaussian beam distribution £ and 3] can be replaced by
normalised values E* and (3* equal for each direction. The LHC luminosity will be
reduced by a geometrical factor due to the small crossing angle between the beams
at the interaction point. Values of some important parameters of the LHC machine
are given in table

3.2 CMS

The Compact Muon Solenoid Experiment [47] [49] is a general purpose detector,
whose mostly cylindrical component shells cover the whole solid angle around the
interaction point. Being 21.6 meters long, having a diameter of 14.6 meters and a
weight of 14.5 tonnes CMS outweighs ATLAS, whose dimensions amount to 44 m
length, 25 m diameter, and 7000 tonnes weight. The CMS collaboration adopted
following coordinates conventions: The z-axis points radially inward toward the
centre of the LHC and the y-axis points vertically upward. Thus, the z-axis points
along the beam direction towards the Jura mountains from LHC point 5. The
azimuthal angle ¢ is measured from the z-axis in the x — y plane. The polar angle
0 is measured from the z-axis. Pseudorapidity is defined as:

= —In tang
= 2

and equals rapidity if the particle has no mass or the mass can be neglected (rela-
tivistic limit). Rapidity is preferred to the angle 6 because it is an additive quantity
under Lorentz boosts along the z-direction, which implies that rapidity differences
are Lorentz invariant [50].

(3.2)

3.2.1 Purpose

CMS was designed to achieve all physical goals mentioned in the introduction to this
chapter while operating in the hadron collider environment. Following requirements
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on the detector originating in the premises for Higgs discovery have to be taken into
account. The current lower limit for Higgs mass was set by LEP to 114 GeV/c?.
Hadronic Higgs decay dominates in the vicinity of this value, but large QCD back-
ground and poor mass resolution of jets make a discovery in this channel difficult.
More promising signals invole final states with isolated leptons and photons. If
the Higgs is in the 114-130 GeV/c? mass range CMS will particularly look for the
H — ~v signal. The Higgs can decay into two Z bosons if its mass is above 130
GeV/c?, one boson being virtual if m; < 2my, in this case it can be found via the
4-lepton final state from Z decays. In both cases it is essential to definitely identify
all particles and to measure their charges. For Higgs masses above 600 GeV/c? the
cross section drops and it is inevitable to use jets and missing transverse Energy
(MET) of W and Z decay remnants in the H — W*W~ and H — ZZ channels.

The search for supersymmetric events requires also a good lepton identification and
a fair jet energy resolution. Heavy supersymmetric particles decay in cascades to
their standard model partners until, assuming R-parity conservation, the decay chain
reaches the lightest supersymmetric particle (LSP) which is stable. The LSP inter-
acts only weakly or via gravitation and thus can be detected only as MET in the
detector. Consequently SUSY final states are characterised by an abundance of
MET and many jets and leptons in mSUGRA SUSY breaking scenario or by MET
and enhanced number of isolated photons in GMSB case. Good resolution of MET
and jets as well as an understanding of the jet energy scale is crucial for SUSY
searches in the all-hadronic channel, which are relevant for the present work.

In summary, the CMS design meets the following demands:

e Good muon identification and precise measurement of their momenta across
the whole detector, good dimuon mass resolution and measurement of the
muon charge in tracker and in the muon system.

e Good particle momenta resolution and reconstruction efficiency in the inner
tracker as well as efficient selection of 7’s and b-jets, requiring pixel detectors
close to the interaction region.

e Good resolution of the electromagnetic calorimeter for measurement of photon
and electron momenta as well as efficient photon and lepton isolation and 7°
rejection.

e A hermetically closed hadron calorimeter, which enables accurate measure-
ment of MET and dijet masses in a large angular domain.

Figure shows the overall layout of the CMS detector. The innermost layer
of the detector in the vicinity of the interaction point consists of silicon pixel and
microstrip detectors, which reconstruct tracks of charged particles. The tracker
is surrounded by an electromagnetic and a hadron calorimeter, which are used for
particle identification and energy measurements. The outer layers compose the muon
detection system, since muons are minimal ionising particles. A high magnetic field
configuration was chosen in order to resolve boosted particle pairs with different
charges. This configuration is realised via a 13 m long 4 T' superconducting solenoid
with a diameter of 5.9 m inserted between the main part of the hadron calorimeter
and the muon system. In the following components of the detector are described in
more detail beginning with the inner parts.
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Figure 3.2: Schematic view of the CMS detector

3.2.2 Tracker system

The task of the tracker is a precise and efficient measurement of the charged particle
trajectories. The total tracking volume is given by a cylinder of 5.8 m length and 2.6
m diameter. In order to resolve and identify secondary vertices of b-quarks and 7-
leptons decays, which are characteristic for many interesting channels, in the region
of high particle flux, three cylindrical layers of pixel detector modules surround the
interaction point. The pixel size of 100 x 150 pum? was chosen to achieve the desired
impact parameter resolution. Each of the layers have a length of 53 ¢m and they are
situated at the radii of 4.4, 7.3 and 10.2 em. Two endcaps close the pixel detector
at each side.

At the radius of about 20 em the particle flux drops and it is possible to use silicon
strips for track reconstruction. The intermediate region of the tracker up to 55 cm
contains Tracker Inner Barrel and Discs (TIB/TID) with the minimal strip size of
10em x 80um. The TIB/TID is surrounded by the Tracker Outer Barrel (TOB),
which extends to 116 ¢m, and whose strips have maximal size of 25cm x 180um.
Beyond the z range of £ 118 c¢m, Tracker EndCaps (TEC) cover the remaining
tracker volume, extending the acceptance of the tracker up to a pseudorapidity of
In| < 2.5. Each TEC is composed of 9 disks, carrying up to 7 rings of microstrip
detectors.

A total of 66 million pixel and 9.6 million strip detectors cover an area of 200 m?,

making the CMS tracker the largest silicon detector ever built.[47].

3.2.3 Electromagnetic calorimeter (ECAL)

The electromagnetic calorimeter surrounds the tracker and is used for energy mea-
surement and identification of particles, especially electrons and photons. It covers
a pseudorapidity range up to |n| < 3.0 and was designed to resolve the decay of
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two photons from the proposed Higgs boson, cf. section [3.2.1l For this purpose it
was made of 61200 lead tungstate (PbWWOy) crystals in the central barrel part and
7324 PbW O, crystals in each of the endcaps. The scintillation light is detected by
avalanche photodiodes in the barrel region and vacuum phototriodes in the endcap
region. Lead tungstate crystals were chosen because of the short radiation length
of 0.89 ¢m and radiation-hardness. Furthermore, 80% of the light is emmited in 25
ns, which is of the same order of magnitude as the LHC bunch crossing time.

The barrel region of the ECAL covers a pseudorapidity up to || < 1.479 and con-
sists of crystals which have a length of 230 mm equivalent to 25.8 radiation lengths
(Xo). The remaining pseudorapidity range is covered by the endcaps, each divided
into 2 D-shaped halves (Dees), where each Dee holds 3662 crystals with the length
of 22 em (24.7 X,).

The energy resolution of the ECAL is given by

0\ 2 S\’ N2
—) =(—= — C? 3.3
(&) =(75) « (&) + 33
where S is a stochastic, C a constant, and N an electronic noise term. The val-
ues of the terms could be determined from measurements; they amount to S =

2.8%VGeV, N = 0.12GeV, and C = 0.3% [47].

3.2.4 Hadron calorimeter (HCAL)

The hadron calorimeter is responsible for the measurement of hadron jets and, in-
directly, neutrinos or other exotic weakly interacting particles resulting in apparent
missing transverse energy. The hadron calorimeter barrel (HB) and endcaps (HE)
sit behind the electromagnetic calorimeter as seen from the interaction point. HB is
the last component inside the magnetic coil. However the total amount of the ab-
sorbing material which can be put inside is restricted. Brass was chosen as absorber
material, since it has short interaction length and is not magnetic. The innermost
and outermost absorber layer is made of stainless steel for structural strength. Plas-
tic scintillators are inserted between the absorber layers. The light they produce is
converted by wavelength-shifting fibres embedded in the scintillator tiles and chan-
neled to photodetectors via clear fibres. The HB consists of 32 rings and covers a
pseudorapidity range of |n| < 1.4. Except for the first and the last scintillator layer,
which are 9 mm thick, all other layers have a thickness of 3.7 mm.

The outer hadron calorimeter (HO) is placed outside the solenoid to ensure the
measurement of the jets, which penetrate the magnet in the |n| < 1.3 region. The
absorber in HO correspond to 1 interaction length and the scintillator plates are
10 mm thick.

The calorimeter endcaps (HE) 1.3 < |n| < 3.0 as well as the forward region (HF)
complete the hadron calorimeter and provide coverage up to a pseudorapidity of 5.0.
The forward calorimeter makes use of iron plates as absorber material. Photomulti-
pliers detect the Cherenkov light emitted by the particles in the quartz fibres, which
are inserted between the absorbers. The forward calorimeters provide full geometric
coverage for the measurement of the transverse energy in the event.

The E7 resolution of the HCAL is almost equal in all detector parts which is shown
in figure [3.3] The MET resolution for QCD dijet events amounts to
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Figure 3.3: The jet transverse-energy resolution as a function of the jet transverse
energy in different detector parts. The jets are reconstructed with an iterative cone
algorithm (cone radius = 0.5) [47].

o(MET) = 1.0\/Y _ Er.

Taking into account the electromagnetic calorimeter the total jet resolution amounts
to

(3.4)

o 120%

E  VE

3.2.5 Superconducting solenoid

& 6.9%. (3.5)

The 12.5 m long, 6 m inner diameter, 4 T' superconducting solenoid is the distinctive
feature of the CMS detector. At full current of 19.5 kA 2.6 GJ of energy is stored
inside the magnet. The ratio between stored energy and the cold mass of 11.6 KJ/kg
causes large mechanical deformation during energising, beyond the values of previous
solenoidal detector magnets. The CMS magnet uses innovative self-supporting high-
purity aluminium-stabilised NbTi conductor to provide the necessary hoop strength.
The magnetic flux is returned through a 10 000 ¢ iron yoke comprising 5 wheels and
2 endcaps composed of three disks each. The structure of the magnet determines
dimensions and weight of the whole detector and provides structural support for all
other components [47].

3.2.6 Muon system

The muon system is the outermost component of the detector. As the experiment’s
middle name suggest, muon identification and momentum measurement is of central
importance to CMS, since process signatures involving muons can be recognised over
the very high background rate expected at the LHC. Muons are minimal ionising
particles and besides neutrinos the only known particles, which can traverse the
inner part of the detector without major energy losses and hence can be used for
precise invariant mass measurements.
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To ensure sufficient energy resolution in the barrel region (|n| < 1.2), where the muon
rate is low and the neutron introduced background is small, the muon system there
consists of four modules of drift tube (DT) chambers, integrated in the iron return
yoke. The chambers are filled with a gas mixture of argon and carbon dioxide. Due
to the uniform magnetic field in the chambers single wire resolution better than 250
pm can be achieved.

High radiation exposure as well as a high and non uniform magnetic field suggest
the use of radiation resistant cathode strip chambers (CSC) in the endcap region
of CMS (|n] < 2.4). Resistive plate chambers (RPC) are used as a complementary
dedicated trigger system in the whole detector to assign the muons to a particular
collision, because the RPC response time is superior to the ones of DT’s and CSC’s
[47].

3.2.7 Data aquisition and trigger

High luminosity of the LHC, which is needed for studies of rare processes, together
with the total proton cross section of 100 mb cause a very high event rate of 10°
events/s. This rate corresponds to a data stream of several T'B/s, assuming 250
kB as single event size. It is impossible to store and process such large amounts
of data. Therefore a reduction of the rate to a viable size of 100 events/s has to
be achieved. This task is performed by the trigger and data acquisition system of
CMS (TriDAS), which enriches the recorded sample with physical interesting events.
TriDAS consists of four parts: detector electronics, custom made hardware Level 1
(L1) Trigger, readout network, and finally High-Level Trigger (HLT) a software
system implemented on a processor farm of commercial PC’s.

L1 trigger uses basic very fast reconstructed trigger objects made of calorimeter
and muon system data with reduced resolution, to select interesting events with an
output rate of 30 kHz. Such events could be characterised by a large amount of
MET, large jet multiplicity or leptons. The whole detector data for each event is
stored for 3.2 us during the decision process. This data is forwarded to the HLT if
the event is selected. HLT uses full event data for filtering with advanced objects and
higher thresholds and writes 100 events/s on average to the mass storage devices.



Computational Techniques

The Feynman rules derived in chapter [1.4.2] allow perturbative calculations of pro-
cesses involving quarks and gluons. However, the calculations can become very
complicated, since the rules are build upon Dirac (4 component) spinors and a lot
of trace algebra of v matrices, and additionally QCD colour algebra has to be per-
formed. Furthermore, the final expressions for S-matrix elements can become very
large and some fundamental aspects of interactions can be hidden in the notation.

To calculate processes with many particles, as needed for tree level calculations of
multijet QCD events (c.f. next chapter), new techniques have to be introduced. A
first step is the deployment of orthogonal helicity states for all particles. Instead of
carrying out the spin sums, the amplitude is evaluated for every possible combination
of helicity states. Such amplitudes are called helicity amplitudes. The square of the
matrix elemen transforms to the sum of the squares of helicity amplitudes, since
helicity states are orthogonal. The gauge freedom for the spin 1 bosons translates
into freedom of choosing their helicity vectors, which can be used to eliminate many
Feynman diagrams. In the next step 2 component spinors (first introduced by Weyl
[51]) are used for calculations. They remove the y-algebra and translate Dirac spinors
and Minkowski vectors to the same kind of objects.

This chapter introduces spinor representations of the Lorentz group and the spinor
calculus for massless fermionic spin-1/2 and bosonic spin-1 particles. The restriction
to the massless particles is just a convenience, since this work deals primary with
gluons and high energy limit is satisfied for quarks (it does not apply to heavy
particles, like i.e. SUSY). A short introduction to the treatment of colour algebra
is also provided in the end of this chapter. In the spinor sections the presentation
follows [8], [6], and [27] while the notation from [27] is used.

In the following the terms matrix element and S-matrix element are used interchangeable, if
no confusion is possible.
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4.1 Structure of the Lorentz group

The space-time background of QFT is the flat Minkowski space M. The Lorentz-
invariant inner product of two vectors x and y in M, with components z* and y*,
is given by

ry = 2"y g, (4.1)
(g,n) = diag(1,-1,-1,-1) being the metric tensor.
A Lorentz transformation A : M — M is a linear transformation satisfying
(Az)(Ay) = xy. The set of all Lorentz transformations forms the Lorentz group L.
From Eq. (4.1) follows that every A € L satisfies following equation (treating ¢ and

A as matrices):
AgA =g. (4.2)

From this equation follows that detA? = 1 and thus detA = +1. The 00-component
of the equation [4.2| reads:

3

(A" =3 (Ap) =1 (4.3)

i=1
what leads to |A§| > 1. Thus the group L consists of four topological components:
L ideth=+1 AS>1 contains identity
L' :detA = —1 A8 >1 contains space inversion
Li :detA = +1 A) < —1 contains space-time inversion
L' :detA=—1 A

IN |

—1 contains time inversion

Only LL component is a group itself - it contains the identity element. This subgroup
is called restricted Lorentz group. This group is not simply connected, since it entails
not simply connected rotation group, whose fundamental group is a cyclic group of
order 2. The simply connected covering group of the Lorentz group is the group
of 2 x 2 complex matrices with determinant 1 - the group SL(2,C). The covering
homomorphism

A SL(2,C) — LL
A — A(A)

is declared in the following way. First a bijective map from the Minkowski space
into the space of 2 x 2 matrices is defined via:

T T = 21 +x-0 = < —J;;_—f; _;)11—;3$2 > (4.4)
Furthermore following equation holds:
detx = x?, (4.5)
and finally a Lorentz transformation A(A) can be defined as:
A(A)x = AgA*. (4.6)

~

In the next step irreducible representations of the Lorentz group, which are the
objects of interest, are explored.
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4.2 Spinor representations of SL(2,C)

A field ¢ (z) is a function with some components which transform in a definite way
under the Lorentz transformations:

V(@) = D(AW(z), o =AAx, AeSLE0). (4.7)

The group SL(2,C') supersedes the Lorentz group and D(A) is a matrix representa-
tion of SL(2,C). The fields can be classified according to irreducible representations
of SL(2,C'). The group SL(2,C) has exactly two fundamental representations, all
other matrix representations are direct sums of these two.

The defining representation is described by:
D2%(4) = A (4.8)

The group acts naturally upon the two dimensional complex vector space C? whose
elements are called spinors. Such spinor ¥ has two complex components:

¥ (i) | (4.9)

The spinor transformation law reads:
W=APUg  AcSL20). (4.10)
Only undotted indices are used for spinors in the defining representation.

The conjugate representation is described by:
D°2(A) = 4, (4.11)

where A is the complex conjugate of A. This representation acts on complex conju-

gated spinors U = (U ;) which transform analogue to the ¥’s:
U =APV, A€ SL20). (4.12)

Both representations are inequivalent and dotted indices are reserved for the spinors
of the conjugate representation.

A general spinor s of type (j, k) is a tensor with complex components s, . Aoy A Aoy
whose transformation properties are implied by this notation. The tensor should be
symmetric under permutations of the first 2j undotted and the last 2k dotted indices.
It can be shown that the representation D* of the SL(2, C') which acts on the space
of all spinors of type (j,k) is irreducible. The dimension of this representation
space is (27 + 1)(2k + 1) and this dimension is also assigned per definition to the
representation D7*.

If the representation D% is limited on the subgroup SU(2), the defining and con-
jugate representations become equivalent and the representation D’* becomes the
reducible representation D/ @ D* of the SU(2). It can be decomposed into irre-
ducible parts, as it is done in the theory of angular momentum. The decomposition
reads in terms of dimensions:
j+k
2+ DRk+1)= > s (4.13)

s=|j—k|
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Now a connection between fields and corresponding spin can be established: If a field
() transforms under Lorentz-transformations according to the irreducible repre-
sentation D% of SL(2,C) it is called an irreducible field. It can possess following
spin quantum numbers:

s=1lj—kl|lj—Fkl+1,...,7+k (4.14)

However, this connection only shows which particle species can be potentially de-
scribed by the field under consideration, it is imaginable that some possible spin

values do not occur. The vector field A,(x), for example, is a (%, %) spinor and can
describe spin-1 and spin-0 particles. However, it is possible to isolate the spin-1 part
and to suppress the spin-0 contribution?, as done in electrodynamics.

To perform spinorial calculations, some elements of spinor algebra are introduced.

4.3 Spinor algebra

The spinor index is raised and lowered with the spinor metric e45:

0 1 Ve
EAB:(_l O)zeAB:eAB:eAB (4.15)

Eq. implies that e? = —eP4, and it is therefore necessary to raise the indices
in a well defined order. The order used in this work is :

N T SRy (4.16)
The spinorial inner product between two Weyl spinors is defined by:
(W 0,) = Uy, U (U 0,) = Uy U, (4.17)
From the definition of the inner product follows that:
(U 1Wg) = — (W 0y) (4.18)

and in particular that
(W) = 0. (4.19)

The map from Minkowski vectors into Weyl spinors was already introduced, hence
the momentum K“Z in spinor language is defined by:

Ky — Ks —Kl—i—iKQ)

—K) —1Ky Ko+ K (4.20)

KAB — O_,uABKu — O_ABK/.L — <
= I
where 0#48 = (6%, &) is a spin tensor, an object with both Lorentz and spinor indices,
and K* is an arbitrary Minkowski four vector with energy component K° = Kj,
and the momentum part K. The spin tensor o#4? satisfies a number of relations,
in particular:

(O'MAB)* = 0,Ba> (4.21)
0,ip90" = 20, (4.22)
O’MABO'ZD = 2€,4€BD- (4.23)

2Lorenz gauge condition of electrodynamics excludes spin-0 photons
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The four vector can be reconstructed from the spinorial object K AB .

1 - 1
KF = §agBKAB = §U“ABAB_ (4.24)
The Minkowski inner product can also be translated into spinorial notation:
1 ipl : 1
(K-P)=K'P, = éaiBK BaaMC-DPCD — §KABPAB = {K,P}. (4.25)
The last equality serves as a definition of the inner product of two momenta in spinor
notation.

In this work we are dealing with massless particles and hence with light-cone vectors,
K? =0={K,K}. From

KABKAB = 2<K11K22 - K12K21) =0, (4-26)

follows that K ;5 has detK;z = 0. By virtue of Eq. K ;g is a hermitian
matrix, and the last equation implies that one of the eigenvectors is equal zero.
Hence, the matrix can be written as a projection onto the eigenvector corresponding
to the non-zero eigenvalue:

K g =2Kol,lp. (4.27)

Redefinition of the non-zero eigenvector to ks = /2Kyl leads to:
Kig=kjks. (4.28)

A spinor k4 corresponding to a light-cone momentum kK, is called momentum spinor.
It is convenient that capitals denote space-time momenta in spinor language, and
lower case characters denote the corresponding momentum spinors. The normalised
eigenvectors k4 can be written explicitly in terms of momentum components, but
this is not important for the present work and can be found in [27].

The Minkowski inner product of two light-cone vectors can also be expressed in
terms of momentum spinors:

(K- P) = 5 {K, P} = g K;pP"" = Skpp~kap® = 5 (kp) (kp)" = 5 [(kp)[” (4.29)
It turns out, that the matrix elements become more compact when expressed in
terms of spinorial inner products, which are more fundamental quantities than the
Minkowski products. This is also true for spinors in comparison to four vectors,
as it is emphasised in [52]. As the essential spinor algebra is presented, the spinor
representations for fermionic spin-1/2 and bosonic spin-1 particles are introduced.

4.4 Spin-1/2 particles

The fields corresponding to spin-1/2 particles transform in the representations D30
and D2 in accordance with the definition given above. After translation of the four
gradient 0, = (0, V), which transforms like a four vector under Lorentz transfor-
mations, to the Weyl spinor notation:

ig\ _ [ Oo— 03 —01+10y\ _ -
(o )‘(—31—2’32 ot o )_ao+av, (4.30)
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the Dirac theory is defined by the following system of coupled differential equations:

0By, = mdA,

0,504 = mUp. (4.31)
The term m, which is interpreted as a particle mass, couples the spinors ¥4 and ® 4
which transform in the different representations of the SL(2,C') (see above). The
Dirac theory uses two fields for a description of the spin 1/2 particles. These two

spinors correspond with the two helicity states of massless fermions, as it will be
shown in the description of the Weyl equations.

The Dirac equations can be reformulated as one equation by combining two spinors
into one four-dimensional bispinor and by introducing ~ matrices:

()% = (U,B;B U%A> : (4.32)

With this definition the Dirac equation reads:

(iv'0, —m) W(z) =0,  U(z)= (i’g) (4.33)

The equivalence with the usual definition of left-, and right-handed spinors is given
via the definition of 7® = iy%y1~243. Tt follows:

Up=0, = %(1 +9°)T = <\I:)A> (4.34)
U, =V_ = %(1 — ) = (q?B) (4.35)

If one sets m = 0 in Eq. (4.31)) one is led to two uncoupled equations of motion -
these are the Weyl equations:

OBYE = 0 = 9y¥(z) = —3VI(2)
0@ = 0 = 9d(x) =3Ve(2) (4.36)

The left-right asymmetry of this equations can be understood after examination of
the plane wave solutions:

U(z) = Toe ™, p=(p") = (|7, D), (4.37)

where the spinor W, describes spin orientation. From the Weyl equation and 77 =

p/|p] follows:
Giidy = — . (4.38)

Thus the spin direction of ®y is constrained to be antiparallel to the momentum.

This spinor describes a left handed particle, as stated earlier.

The Weyl equations can be transformed to the momentum space. The first equation
becomes:

KBy = kA kPO, =0, (4.39)
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with K48 the four momentum of the fermion, {K, K} = 0 and k4 its momentum
spinor. The treatment of the second equation is analogue. Both equations can be
solved leading to description of the two helicity states in momentum space. All
parameters of the solutions can be derived from the orthogonality condition and the
completeness relation. Final results are:

uy (K) = (koA) end u (K) = (kOA.) (4.40)

The solution u, corresponds with the + helicity state and u_ with the — helicity
state respectively.

4.5 Spin-1 particles

The fields of spin-1 particles transform in the D33 representation. It is not important
whether the particles carry colour (q.v. next section), thus photons and gluons can
be treated on equal footing. The equation of motion for a free massless spin-1
particle in the Lorenz gauge

9-A=0 (4.41)

reads
OA* = 0. (4.42)

The general solution can be decomposed in plane waves:
A — / AUk (e (k)™ + e (k)e o) | (4.43)

The Lorenz condition reduces four degrees of freedom of A* to three, which implies
that e still has the gauge freedom

="+ K, (4.44)

since massless spin-1 fields should have two degrees of freedom, represented by right-
and left handed complex helicity vectors e¢§ with A = £1. The last statement
follows from the analysis of the representations of the Poincaré group [12]. Following
orientation and normalisation conditions imposed upon € determine its form:

(K,K} = 0 (4.45)
{ex, K} = 0 (4.46)
{eve} = 0 (4.47)

Ba — (é‘f)* (4.48)
{EA,G,)\} = -2 (449)

with K48 the momentum of the particle. For transverse vectors an extra condition
can be stated:

&K =0. (4.50)
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This last relation reduces the number of degree of freedoms to two and can be
satisfied if € is redefined via a gauge transformation. The helicity vectors satisfying
all constraints can be written in the following form:

A8 = \/EkAbB (4.51)
i (kb)
AB bk

A = \/§<kb>*

(4.52)

with b4 an arbitrary spinor not proportional to k4. The overall phase factor is set
here to zero.

The gauge freedom of the helicity vectors is still manifest in the spinor language,
even if the spinors satisfy all defining conditions, and is equivalent to a different
choice for b4. This freedom is crucial for computations, since b can be set to the
momenta of other spinors present in a scattering process, which leads to cancellation
of many diagrams.

Feynman diagrams of QCD processes contain not only their space-time dynamics but
also a complex colour structure, which enters the computations in form of products
and traces of representation matrices. To reduce the complexity of calculations,
colour and dynamics of the QCD processes are treated separately.

4.6 Colour decomposition in QCD

The tree level amplitude for a scattering process can be written as a sum of gauge
invariant functions containing the space-time dynamics, each with a certain colour
structure:

T =ig" Y F(T*i,N)Kp(P). (4.53)

perms

The matrix element depends on a phase space point P, a set of n particle momenta
and helicities. The strong coupling constant ¢ is separated from the dynamics. The
function F(T#,i, N) is built up from representation matrices and colour indices.
The open indices of the representation matrices can only be the quark and antiquark
colour indices. The set of F’s is independent and the decomposition of 7 in terms of
F’s with Eq. leads to a set of gauge invariant expressions Kp(P) in a unique
way. These Kp(P) are called subamplitudes. They are functions of momenta and
helicities only, and can be obtained with the help of colour-ordered Feynman rules.
The sum runs over all permutations of identical particles which change F'.

The colour functions F' can be read out from the Feynman diagrams with the help
of the colour flow concept, which is just a way of applying QCD Feynman rules. In
this concept the colour flows from external line to external line in a defined direction
(anticlockwise in this work). Depending on the kind of external lines, representation
matrices with some indices are added to a chain, which is just a product of such
matrices (Kronecker delta can also be a chain). A trace occurs when the chain is
closed and the only non contacted indices are identical. To be able to use colour
flow, Feynman diagram should be drawn in planar fashion (no crossed lines) with
all particles outgoing.
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Figure 4.1: The double line notation for the propagator of a hermitian matrix
field [53] .

In the following the concept for gluon scattering is shown, which is essential for the
present work. First the spin 1 field Lagrangian is written in a particular gauge: the
Gervais-Neveu gauge . The QCD gauge group is SU(N = 3) but the discussion
is carried out for an arbitrary N. For convenience the generators are normalised
slightly different in comparison with chapter [1.4.2

Tr (T*TP) = 65, (4.54)
which leads to following commutation relations:

(T4, TP] = iv2f45¢ (T9). (4.55)

To obtain the gauge Lagrangian in the Gervais-Neveu gauge, the matrix-valued field

strength is rewritten as antisymmetric part of the matrix-valued complex tensor
H

pv- ,
_ g
H, =0,A, — EAMAV (4.56)
The Gervais-Neveu gauge fixing term —1/27r(H}{H}) leads to the following gauge
Lagrangian in terms of H,,:

1 1
‘Cgauge = 'Cclass + 'Cgauge—fixing = _§Tr(HMVHuV - HNVHVM) - §TI'(HZHZ), (457)

which can be rewritten back in terms of the A* fields (several integration by part
steps were performed) :

L= Tr(—%@“A”@MAV —iV2g(0" AV AL A, + %gQA“A”AMAV). (4.58)

This Lagrangian has a rather simple structure in terms of the matrix-valued fields,
which should be used for calculations instead of the coefficient fields. The gluon
propagator follows from the first term of the Lagrangian and reads (completeness
relations for the representation matrices were used):

R ilg2y _ 0l g

A (k) = e (4.59)
The propagator can be represented diagrammatically as a double line, with arrows
pointing from up to down indices, as shown in Fig. [4.1l Since all interactions involve
matrix products, with an up index from one field contracted with a down index from
an adjacent field, the vertices follow the pattern shown in Fig[4.2l The n-point vertex
of this type has only an n-fold cyclic symmetry.
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Y X

Figure 4.2: 3- and 4-point vertices in the double-line notation [53].

As example, three of eighteen possible Feynman diagrams for the scattering of two
gluons are shown in Fig. [4.3] The remaining 15 diagrams are obtained by making
non-cyclic permutations of the labels 1, 2, 3, 4, which is equivalent to making un-
restricted permutations of the labels 2, 3, 4. Each external line carries a factor of
T4, with its matrix indices contracted by following the arrows backward through
the diagrams. From this example one can infer that the value of any diagram with
n external gluon lines is proportional to Tr(TAt ... TAn),

4

7Y N\

4

2 3

2 3

Figure 4.3: Three example tree diagrams with four external lines. All other diagrams
can be obtained by permutations of the labels 2, 3 and 4 [53].

The double-line notation in the Gervais-Neveu gauge should have motivated the
general concept of colour flow, where a representation matrix(7T%);,;, is added to
the chain for each external gluon with a colour A. The matrix indices iy, and ig
will be contracted with indices iz and i; coming from the previous and the next
colour objects, thus leading always to traces in case of pure gluon scattering as
stated above. The ordering of the A; indices in the trace is determined by the
counterclockwise ordering of the labels on external lines. In case of incoming quarks
Kronecker deltas with indices iir for a quark with colour ¢ and i;j for an antiquark
with colour j are added to the chain. The rules for quarks can also be motivated
by the double-line notation [53]. It is evident that only quark indices can occur in
chains as open indices. The Feynman rules for a theory stripped from the colour
structure are called colour-ordered rules.

Computing the square of an amplitude involves evaluation of expressions of the type:

Tr(THTAT4TAY [Tr(THTA2T4T4)]" (4.60)
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Figure 4.4: Evaluation of products of traces of representation matrices. Each of two
closed single-line loops yields a factor of N [53].
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with all repeated indices summed. Diagrammatically such computation is shown in
Fig. . Each single-line loop yields a factor of §;" = N. It follows that the absolute
square of any particular trace provides a factor on N4, and the product of any trace
times the complex conjugate of any other trace yields a factor of N?2.

The techniques discussed in this section will be used for calculations of tree-level
multi gluon scattering. Furthermore a helicity amplitude based approximation for
QCD matrix elements will be introduced in the next chapter.
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Hadroproduction of Jets

The diagram technique for QCD calculations, developed so far, is of little use for
the present work, since it describes quark and gluon scattering amplitudes which
are not “physical”. Quarks and gluons are confined inside colourless bound states,
the hadrons, and cannot appear as incoming and outgoing particles in a scattering
event. The physical particles which are scattered at the LHC are protons, and
therefore cross sections for processes involving protons (or in general hadrons) as
initial states are needed. Since the present work deals only with hadronic final
states, it is sufficient to find a description for hadroproduction of jets. The solution
to this problem is the QCD improved parton model, in which hadrons scattered at
high energies are treated as collections of free quarks and gluons (generally called
partons), which participate independently in the scattering process. In order to
extract quantitative results, knowledge of the distribution of the hadron energy and
momentum among its constituent partons is needed. This is described by the parton
distribution functions, which cannot be calculated from first principles and have to
be determined by experiments. This chapter introduces the QCD improved parton
model, as well as the definition of jets used in this work, and demonstrates the
application of the methods developed in the previous chapter for the two-jet cross
section. It introduces furthermore the Special Helicity Approximation (SPHEL)
usable for predictions of QCD multijet production. This approximation will be used
in the following chapters as a basis for a jet based variable for description of QCD
multijet processes.

5.1 The QCD improved parton model

The cross section for a hard scattering process initiated by two hadrons with the
four-momenta P, and P, can be written as:

o(P, P) = Z/ dry dxy fz‘($1,ﬂ2)fj($2aﬂ2) 5z‘j(P17p27045(N2)a QQ/Mg)a (5.1)

where p; = z1P; and py = x9P, are the momenta of the partons participating in
the hard scattering process, and @ is the characteristic scale of this process. The
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xPy

TP

Figure 5.1: Schematic description of a hard scattering process [25].

functions f;(z, u?) are quark or gluon distributions, which give the probability to find
a quark or a gluon with a fraction x of the hadron momentum at a factorisation scale
(. This scale is an arbitrary parameter, which separates the long- and short-distance
physics. A parton emitted with a transverse momentum less than p is absorbed into
the parton distribution and does not take part in the hard process, contrary to a
parton with large transverse momentum, which is a part of the short-distance cross
section 0,;. Because of asymptotic freedom, the coupling at high energies is small,
and the short-distance cross section can be calculated as a perturbation series with
methods developed in chapters and [4] The scale p should be chosen to be of
the order of the hard scale ) and is set in this work equal to the renormalisation
scale, following Ref. [25]. Figure shows the parton distribution functions from
the CTEQ group (CTEQ 6.1) for gluons, up, down, and anti-up quarks evaluated
at pu? = QQ* = 100 GeV?. The ability to separate the total cross section into the
short-range part, which is insensitive to the physics at the low momentum scales
and involves only high momentum transfer, and the long-distance part, which is
absorbed into the description of the incoming hadrons, is rooted in the factorisation
theorem, which can be proved to all orders in perturbation theory [25].

Figure shows a schematic description of the hard scattering process.

5.2 Kinematics and jet algorithms

The incoming partons of a hard scattering process have generally different fractions
of incoming hadrons momenta which are assumed to be purely longitudinal. As a
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Figure 5.2: The CTEQ 6.1 parton distribution functions evaluated at a = Q of
10 GeV'.

result the centre of mass frame of the hard process will be in general longitudinally
boosted with respect to the one of incoming hadrons. Therefore, it is convenient
to use quantities with simple transformational behaviour under longitudinal boosts.
Such quantities are the rapidity y, the transverse momentum pr and the azimuthal
angle ¢. The rapidity y is defined by:

1 (E+p,
= — 52
y Q(E_pz), (5.2)

and is additive under boosts along the z -axis. The last property implies that rapidity
differences are invariant under such boosts. The four momentum of a particle with
mass m can be written as:

P = (E,ps,py,p:)
= (my coshy, prsin ¢, pr cos ¢, mysinh y), (5.3)

where the transverse mass is defined as my = \/p2 + m?. In the limit m — 0 the
rapidity coincides with the pseudorapidity 7 defined in chapter [3]

After the hard interaction, partons undergo the hadronisation process and emerge
as bunches of high energy hadrons collimated in the direction of the original parton
in the detector. These bunches are called jets. Due to the current limitation of
the understanding of non-perturbative QCD it is impossible to predict the exact
patterns of produced hadrons. Instead, calculations in terms of quarks and gluons
are related to the observations in terms of jets. In order to establish a link between
both entities, well defined jet-finding algorithms are applied to the predicted partonic
configurations as well as to the observed hadrons. Though partonic and hadronic
jets are not equivalent there is a strong evidence [54] that both distributions can be
compared with controlled accuracy.
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The cluster-type k; [55H57] jet finder, implemented as FastJet algorithm [58], was
selected for the present workl!l The cluster-type jet finders are based on successive
pair-wise recombinations of particles and have the important property of infrared
and collinear safety. At the parton level infrared safety means that calculated cross
sections are finite despite the infrared divergences in the single diagrams. Unitarity
ensures that the sum of the probabilities for one of the divergent configuration to
happen or not to happen is 1. The infrared safety on physical hadron level means,
that measured jet variables and/or definitions of a jet do not change when a soft
gluon is radiated or when a parton divides into collinear partons.

The k; jet finder [57, 58] computes first the k; distance d;; of all pairs of protojets
i, 7 and additionally the beam distance d;g = ky; for each single protojet 7. In the
next step the minimum distance d,;, is selected out of all possible d;; an