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Zusammenfassung

Untergrund durch QCD-Multijet-Ereignisse ist eines der ernstzunehmenden Prob-
leme bei der Suche nach Neuer Physik am LHC. Die vorliegende Arbeit wendet zum
ersten Mal den Formalismus der auf der SPHEL Näherung der QCD Matrixelemente
basierenden QCD Antennen Variablen auf experimentell rekonstruierte Jets zwecks
Unterscheidung zwischen QCD und supersymmetrischen Prozessen an. Die neuen
Observablen liefern, im Vergleich mit den herkömmlichen Event Shape Variablen,
ergänzende Informationen über die Struktur der Ereignisse. Trotz Korrelation mit
der experimentell bestimmten fehlenden transversalen Energie, können die Variablen
zur Verbesserung des Signal zum Untergrund Verhältnisses verwendet werden.





Abstract

A serious problem in searches for new physics at the LHC is the rejection of QCD
induced multijet events. In this thesis the formalism of QCD antenna variables
based on the SPHEL approximation of QCD matrix elements is applied for the
first time on experimentally reconstructed jets in order to discriminate QCD from
supersymmetric processes. The new observables provide additional information with
respect to traditional event shape variables. Albeit correlated with experimentally
measured missing transverse energy, the variables can be used to improve the signal
to background ratio.
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Introduction

The Standard Model of particle physics (SM) remains unmodified as the underlying
theory of the microcosm for more than 30 years. No high energy physics experiment
carried out so far, has found a contradiction to the predictions of the SM. However,
the SM is by construction incomplete and cannot be the truly fundamental theory
of everything, since the gravitational interaction is not taken into account. Further-
more, the astrophysical observations of the last decades revealed the existence of
new matter (the so called dark matter, proposed already in the 30’th) and energy
content (the so called dark energy) of the universe, which cannot be explained by
the standard model.

The tension between the lack of the direct evidence from the high energy experiments
and the theoretical certainty that the SM should be extended to include gravity
and other phenomena, led to new theories, which are not only unsupported by
experimental evidence, but are probably not even falsifiable. This situation provoked
some physicists to speak about the “crisis in fundamental physics” [1, 2].

The situation can change this fall, with the start of the operation of the Large Hadron
Collider (LHC) a proton-proton accelerator at CERN - the European laboratory for
elementary particle physics. The LHC centre of mass energy of 14 TeV 1 enables the
exploration of the physics at the TeV scale. Theoretical arguments [3] suggest that
new evidence for the physics beyond the SM should be found at this scale.

Supersymmetry (SUSY) is the most promising extension to the SM providing a
natural dark matter candidate. It introduces furthermore additional heavy particles,
which should be found at the TeV scale, since otherwise the SUSY would lose the
desired properties.

The CMS experiment is one of the two general purpose particle detectors at the
LHC. Besides the search for the last missing element of the SM, the Higgs boson,
CMS searches for physics beyond the SM, in particularly for SUSY. There are many
different possibilities how SUSY can be realised. A popular model is based on the
minimal supergravity (mSUGRA) with R-parity conservation. The new processes

1This thesis uses natural units: ~ = c = 1.
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and particles predicted by this model could be first discovered in CMS SUSY searches
based on the signature of large missing transverse energy and high pT jets [4, 5].

Multijet processes due to strong interaction are one of the largest backgrounds for
SUSY searches in the all-hadronic channel mentioned above. Although considerable
research has been devoted to the suppression of the various backgrounds, rather less
attention has been paid to the possible discrimination between supersymmetric and
strong processes, based on their different theoretical characteristics.

This thesis investigates the characteristics and the possible fields of use of discrim-
inating variables, whose definitions are motivated by the theoretical knowledge of
the structure of tree-level scattering amplitudes with many final state partons due
to the strong interaction. These variables are called antenna variables, and they are
sensitive to the topology of the momenta and to the invariant masses present in the
event.

As an example of use the antenna variables are applied to the SUSY searches in
the all-hadronic channel. It will be presented how the characteristics of these vari-
ables change after the correlations with other discriminating variables like missing
transverse energy are taken into account, and how these variables can improve the
understanding of the difference in the topological aspects of the supersymmetric and
the strong processes.

This thesis starts with the summary of the SM in the chapter 2, with emphasis on
the theory of the strong processes. A short introduction to supersymmetry is given
in the following chapter 3. After an overview of the CMS experiment in the chapter
4, the computational tools used in the present approach are reviewed in chapter 5.
Chapter 6 deals with the description of the strong processes at hadron colliders, in
particular with the approximative description of the tree-level scattering amplitudes,
which is the basis of the variable definition presented in chapter 7. This chapter
compares the distribution of the variable computed from the simulated events to
the theoretical prediction for the case of the gg → gg process. Furthermore the
effects of jet reconstruction and resolution on the antenna variables are examined.
Chapter 8 deals with the possible use of the variable for the discrimination between
SUSY and strong interactions in the all-hadronic channel. The thesis will finish with
a conclusion and an outlook.



1

The Standard Model

The Standard Model of particle physics (SM) is a physical theory of the microcosm
formulated in the framework of quantum field theory (QFT). The realm of the SM
are elementary particles which are considered to be fundamental building blocks of
matter and interactions between them. The SM describes three of four empirically
known forces: the strong, the weak, and the electromagnetic force. Gravitation is
excluded, since the General Theory of Relativity (GRT) - the highly successful theory
of gravitational interactions - could not be hitherto incorporated in the framework
of QFT. The SM consists of two parts: Quantum Chromodynamics (QCD) as the
theory of the strong interaction and Weinberg-Salam theory as the theory of the
electroweak interaction.

No effect contradicting the predictions of SM have been found so far, the agreement
between theoretical and experimental values is often even amazingly good. The
paradigmatic example is the magnetic moment of the electron: the discrepancy
between calculated and measured value occurs at the tenth decimal place [6]:(

µ

µ0

)
theo

= 1.0011596524460(127)(75), (1.1)(
µ

µ0

)
exp

= 1.001159652200(40). (1.2)

The errors of the theoretical value are due to the uncertainty of the fine-structure
constant (127) and due to the numeric inaccuracy in the computations of the coef-
ficients of the perturbation series.

In spite of this success, the SM reveals many shortcomings rooted either in the
conceptual background of QFT or in the aesthetic considerations and requirements
imposed on it. This chapter provides a very short introduction to QFT and to the
Standard Model with particular emphasis placed on QCD, since it is the part of the
SM relevant for this work.
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1.1 Quantum field theory

There is no single agreement upon a standard formulation of QFT [7], and there is
even no standard definition what quantum field theory precisely is [8]. A certain
perspective could be the statement that QFT aims at a synthesis of quantum physics
with the principles of classical field theory, in particular the principle of locality [9].

The basic starting point are the axioms of Special Relativity (SRT) and the axioms
of Non-relativistic Quantum Mechanics (NRQM) which should be combined in one
theory. If one proceeds further along this line of thought one arrives at axiomatic
approaches to QFT in which fundamental physical principles any QFT should obey
are stated, and attempts to explicitly build models according to these principles are
made. A possible set of axioms for a quantum theory of fields could be [10]:

• Space-time is a classical manifold with the geometry of Minkowski space M.
Its symmetry group is the “Poincaré group”, generated by translations and
Lorentz transformations.

• Pure states are described as “rays” in a Hilbert space H, equipped with a
positive definite inner product. Observables are self adjoint operators acting
in H. (This axiom ensures the superposition principle for quantum states and
the probabilistic interpretation of expectation values.)

• A symmetry is implemented by a “ray representation” of the symmetry group.
In the case of the Poincaré group P this is equivalent to a representation of
the covering group P̃ by unitary operators. (From this axiom follows, that
for instance infinitesimal generators of translations P µ may be interpreted as
observables corresponding to the total energy-momentum. Furthermore, an
irreducible representation with positive energy describes the state space of a
single stable particle.)

• The spectrum of the energy-momentum operators P µ in H is restricted to the
closed forward cone V̄+ = {p : p0 ≥ |p|}. There is a unique ground state Ω,
the vacuum.

• The basic dynamical variables, in terms of which all operators in H should be
expressed, are fields. (A field is an “operator valued distribution” on a suitable
defined domain in H.)

• The theory is completely described by a finite number of covariant fields each
having a finite number of components. The notion of fields allows encoding
of the relativistic causal structure of space-time in the theory as stated in the
next postulate.

• Field quantities in regions which lie space-like to each other either commute
or anticommute.

Relying on these axioms powerful global theorems like CPT and the Spin-Statistics
theorem could be stated. However, no quantum theory of interacting fields in four
dimensional space time have been explicitly constructed so far. It is further un-
clear whether any nontrivial QFT’s satisfy the stated axioms, even though all the-
ories constructed in two or three space-time dimensions satisfy them. Hence, the
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critical discussion of the fundamental principles is itself an issue of the axiomatic
approach [9].

The main approach to QFT treated in all textbooks [11] is perturbation theory
based on the idea of “quantisation of a classical field theory”. Perturbation theory
produces formal power series expansion in a coupling constant. The series should
be asymptotic to a QFT yet to be constructed, and therefore the couplings should
be weak. The starting point of the scheme is the Lagrangian of classical field the-
ory, which should be separable in a “free” and “interaction” part. In the “canonical
approach” field variables and their conjugates are then identified with the canonical
variables on which canonical commutation relations are imposed. The Hamiltonian
as a functional of the canonical variables in the Heisenberg picture is derived in the
next step. Afterwards transition to the interaction picture takes place. Assuming
that long time before the interaction (t → −∞), and long time after the interac-
tion (t → ∞) all particles are well separated in space and can be treated as free, a
scattering matrix (operator) or S-matrix connecting the asymptotic states is intro-
duced. The S-matrix is an array of complex probability amplitudes for all possible
transitions between all “in” (t → −∞) and “out” (t → ∞) states. These states do
not inhabit two different Hilbert spaces. They differ only in labelling, hence any “in”
state can be expanded as a sum of “out” states, with expansion coefficients given by
the S-matrix [12]. The S-matrix is constructed from an Hamiltonian in the interac-
tion picture (essentially being the time-evolution operator in the limit of very large
t [11]) and can be computed as a power series1:

S = 1 + (−i)
∫ ∞
−∞

dt1HI(t1) + (−i)2

∫ ∞
−∞

dt1

∫ t1

−∞
dt2HI(t1)HI(t2) + · · · . (1.3)

The introduction of diagrammatic methods like “Feynman diagrams” [13] simplifies
the calculation of the terms. It is convenient to single out the part of the S-matrix
corresponding to the actual interactions : S−1, and write it as a delta function-free
amplitude (or in other words matrix element) T times other factors (delta function).
To link this theoretical quantity with experimental results, differential transition rate
(probability for a transition between the states per unit time) per flux - the cross
section is introduced. The cross section is proportional to the absolute square of the
matrix element : |T |2.

While the leading order results for the matrix elements are in good agreement with
experiments, there is a need to“renormalise”the single higher terms of the expansion
which would lead to infinities otherwise. This procedure fixes the parameters of the
theory to their physical values, since “bare” values appearing in the Lagrangian are
not measurable but only the sum of these values and all radiative corrections. The
renormalisation should be achieved without the introduction of infinitely many new
parameters, since all predictive power will be lost otherwise. This necessity restricts
the form of the Lagrangian. Experiments have revealed the relevance of vector
(spin 1) couplings : Parity violation in the weak interactions can be explained by
a V-A (Vector-Axialvector) but not by scalar and tensor couplings [14, 15]. The
idea that vector couplings are mediated by vector fields lies at the basis of the SM.
It can be shown, for example in [16], that the only successful way to incorporate

1The treatment in this section is brief and simplified. It provides a basis for a further discussion
of the SM.
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vector fields into a perturbative QFT is to treat them as gauge fields, with couplings
which are necessarily gauge couplings. Thus the gauge principle enters QFT through
the inherent limitations of the perturbative scheme. However, gauge invariance
forbids explicit mass terms of the gauge bosons and introduces unphysical degrees
of freedom. The first problem was solved by introducing a spin-0 Higgs field with
“spontaneous symmetry breaking”, while for the latter an explicit gauge has to be
chosen or general advanced methods (BRST theory) have to be used.
Predictions of perturbative QFT are in a good agreement with the data, as it was
outlined in the introduction to this chapter.

In spite of the success of perturbative QFT, which is the foundation of the SM, the
theory is not fully consistently completed, and comparison with experiments relies
often on heuristic considerations with unsettled correctness [6]. It is possible that
the power series is not an asymptotic expansion of the full theory as it could be
shown for a low-dimensional model [7, 17–19]. This could be the case for Quan-
tum Electrodynamics (QED) - a QFT model of pure electrodynamic interactions,
which can be separated from the SM. On the other hand the field concept itself is
problematic in the quantum case, since contrary to the classical physics the fields
are not observable, it is impossible to associate each field with a particle species
in general case (many auxiliary fields are introduced merely as a tool to quantise
classical theory), and quantum fluctuations of localised observables (vacuum expec-
tation values of field products) diverge in the limit of pointlike localisation [9]. Thus
the statement that QFT is necessarily a quantisation of a classical field theory is
questionable.

The problems mentioned here will be discarded in the following sections which will
introduce the SM. But it is important to know that they exist, since the failure
of the axiomatic approach up to now may indicate either that the problems with
the SM and gravity lie deeper in the foundations of NRQM or even SRT or that
the space-time has a lattice-structure. This section shows how the formalism (like
Lagrange densities) which will be introduced in the following sections fits into the
framework of QFT.

1.2 Gauge theories

To avoid “action at a distance” local interactions with fields were introduced already
in classical electrodynamics. For instance the interaction between a relativistic par-
ticle and an electromagnetic field is described by an additional term in the action
containing the charge of the particle and the vector-potential of the field [20] at a
given point. But the vector-potential is an auxiliary quantity and is not observable,
since it can be altered by a four gradient of a scalar function which depends on space
and time coordinates. This additional term leads to a total derivative in the action
leaving the equations of motion invariant. This symmetry called “gauge symmetry”
is a redundancy in the description and the states related by (local) gauge transfor-
mations are to be identified. As it was stated in the previous chapter experiments
suggested that vector fields are responsible for weak interactions, and the only way
to incorporate them into perturbative QFT is to treat them as gauge fields analogous
to the vector potential in electrodynamics. To quantify the last statement spin-one
fields Aaµ(x), where µ is the Lorentz index and a counts the number of field types
a = 1, . . . , NV , have to be examined. First of all, the energy (Hamiltonian) in the
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classical theory should be bounded from below and as a result of this demand every
vector field theory must have at high energies and momenta Lagrangians as given
by the following eq. 1.4 (full derivation can be found in [16]):

L → −1

4
F a
µνF

aµν , F a
µν = ∂µA

a
ν − ∂νAaµ. (1.4)

But from this form of Lagrangian follows that any field Aaµ that can be written as a
space-time gradient contributes neither to the Lagrangian nor to the Hamiltonian,
since F a

µν = 0 in this case. After quantisation such fields would represent particles
and forces without energy. To avoid such entities, field replacements of the type:

Aaµ → Aaµ + ∂µΛa(x) + . . . 2 (1.5)

should not affect the physical state at all . It follows that a theory with spin-1
fields should be invariant under local gauge transformations, the dimension of the
local gauge group being equal to NV , the number of vector fields present. To ensure
renormalisability of quantised theory the gauge theory has to be exact [16].

In order to construct a theory with gauge fields, scalar and spinor fields of the
theory, whose excitations will be identified as particles, have to transform as (sets
of irreducible) representations of some symmetry group under consideration, which
means that the fields possess internal degrees of freedom on which the group acts.
In case of SU(n) gauge groups one is lead to following transformation property:

ψ′(x) = Ω(x)ψ(x); Ω(x) ∈ SU(n) (1.6)

The gauge fields Aaµ(x) are introduced by requiring the possibility of constructing
gauge invariant gradients of the spinor and scalar fields above. These gauge fields
are n × n-matrices, one for each µ and x. Each Aaµ(x) has two suppressed matrix
indices. The gradients are constructed with the following ansatz:

(Dµψ(x))′ = Ω(x)Dµψ(x), Dµψ(x) = (∂µ − gAµ)ψ(x), (1.7)

g being an arbitrary coupling constant. From the ansatz and the covariance condition
for the gradient follows the transformation law of the gauge field:

A′µ = Ω(x)AµΩ(x)−1 + g−1(∂µΩ(x))Ω(x)−1 (1.8)

The transformation property of the gauge field has the following meaning: The
gauge field of a SU(n) gauge theory is a vector field Aµ(x) with values in the lie
algebra su(n). The lie algebra is the tangential space at the identity element of
the group: a n-dimensional real vector space with a product structure which is a
commutator in the case of matrix groups. The gauge fields transform according to
the adjoint representation of the gauge group and receive an additional su(n) term
if the transformation is local.

To construct the Lagrangian of the gauge theory one has to replace all derivatives
by the covariant gradients and add the kinetic term for the gauge fields, which
was introduced in the beginning of this chapter, but now with all derivatives being

2Extra terms not contributing to the bilinear part of the Lagrangian are allowed here.
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covariant. The field strength Fµν can be constructed explicitly by computing the
commutator of covariant derivatives:

Fµν =
1

g
[Dµ, Dν ] = DµAν −DνAµ (1.9)

The underlying mathematical structure of gauge theories is the differential geometry
of fibre bundles. The gauge fields are connections of some principal bundle and
matter fields are sections in associated vector bundles. The strength tensor Fµν is
the curvature.

The considerations above lead to following picture: Whenever a field (the discussion
dealt only with classical fields so far) possesses an internal symmetry that means
a symmetry which is not connected with its space-time coordinates, one has to de-
mand that physical meaningful quantities do not depend on the orientation of the
field in the internal space. The orientation in this internal space can furthermore
change by an amount that depends on the position in ordinary space (local trans-
formations). For example distinction between the left-handed components of the
electron and the electron neutrino (cf. section 1.4.1) can be abandoned by assuming
that this components are just different orientations of the underlying entity in the
internal space (weak-isospin space). The internal space in this case would be two
dimensional and complex, being the fundamental representation space of the group
SU(2) responsible for rotations in two complex dimensions. There is one such space
(fibre) “above” every space time point, which makes the whole internal manifold a
fibre bundle. The classical field is a cross-section since it assigns to every space-time
point one orientation in (vector from) each internal space. The derivative should
be able to compare fields at different space-time points and to do so it should first
parallel transport it from the fibre over the one point to the fibre over the other.
The connection enables the parallel transport and transforms the cross-section dur-
ing it to the orientation in which it would be if it were at the point to which it
is transported. The connection hence has its values in the lie-algebra of the sym-
metry group. It can be expanded in the basis of the algebra, which leads to three
fields in the case of SU(2). All linear combinations of these fields are allowed as
transformations in the weak-isospin space and associated particles are on an equal
footing. One particular combination of the fields has interesting properties: one
of this gauge fields rotates upper components of the weak iso-spin into the lower
ones (neutrino→electron) the second performs the inverse rotation, while the third
component changes nothing but multiplies upper isospin component with 1/2 and
the lower with -1/2. These fields resemble the properties of the weak-force. After
performing a local SU(2) transformation one will find out that physical quantities
build in an appropriate way (all mass terms are forbidden) out of fields and covariant
derivatives are left unchanged. Furthermore the SU(2) group acts during this trans-
formation on its own lie-algebra, the lie-algebra being in the adjoint representation.
If the group is abelian (e.g. U(1) of electrodynamics) the representation is trivial,
but in the non-abelian case interactions among the gauge fields are introduced in
their kinetic term. In the SU(2) case one gets second, third, and fourth powers of
the gauge fields.

1.3 Spontaneous symmetry breaking
Spontaneous symmetry breaking occurs if the ground state of the QFT is not invari-
ant under a symmetry transformation which leaves the equations of motion invariant.
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In this case the ground state must be degenerate, since there is a continuous infinity
of the solutions with the same energy, if the considered symmetry was continuous.
To build excitations of the ground state which are identified as particles one partic-
ular ground state has to be chosen. Once this choice is made and the Lagrangian is
expressed in terms of the fields whose quanta correspond to excitations above this
vacuum, the original symmetry of the action is no longer manifest - it is sponta-
neously broken. This phenomenon is important to the SM, since gauge symmetry
prohibits explicit mass terms of gauge bosons which can be generated only via the
Higgs mechanism, that is interconnected with spontaneous symmetry breaking (c.f.
next section). If Q is a generator of a symmetry (internal or one of the generators
of the Poincaré group) the condition of the symmetry breaking stated above can be
rendered more precisely: the symmetry is spontaneously broken, unless

eiαQ |0〉 = |0〉 , (1.10)

or equivalently,
Q |0〉 = |0〉 . (1.11)

The symmetry transforms the operators O acting on the states as,

O′ = eiαQOe−iαQ ≈ O + iα[Q,O], (1.12)

where the last equality holds for an infinitesimal transformation. If one computes
the vacuum expectation value for the change of the operator O under the symmetry
transformation the condition from equation 1.11 becomes:

〈0| iα[Q,O] |0〉 = 0. (1.13)

In QFT dynamical variables O are field operators. The condition above states that
the symmetry is spontaneously broken if one of the field operators transforming non-
trivially under this symmetry acquires vacuum expectation value (VEV). Only spin
zero fields may acquire a VEV such that the Poincaré invariance is left unbroken.

1.4 The Standard Model

The SM is a non-abelian gauge theory based on the group SU(3)C×SU(2)L×U(1)Y ,
with SU(2)L × U(1)Y spontaneously broken to U(1)em. Colour SU(3)C is assumed
to be unbroken. The spontaneously breaking of SU(2)L × U(1)Y is due to a VEV
of a weak iso-doublet of spin zero fields. The lower indices on the groups refer
to the quantum numbers associated with each group. The quantum number is
assigned to every particle3 and corresponds to the representation of the group in
which the particle transforms. L stands for weak-isospin, C for colour and Y for the
hypercharge ( i

3
was chosen as basis vector of the lie algebra in this case - this choice

can be justified since it allows that the quantum numbers of the particles associated
with the unbroken U(1)em are their measured (or postulated) electric charges).

The matter content of the SM (spin-1/2 particles) consists of leptons (from Greek
“leptos” for light) which do not take part in the strong interactions and quarks which
are strongly interacting, and is organised in 3 generations. Additionally, there is a

3From here on the notion of fields and particles is used interchangeable if not stated otherwise.
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spin-0 Higgs field and one associated massive Higgs boson. Every generation has the
same pattern of quantum numbers, but by construction the masses of the particles
rise from generation to generation. The first generation is responsible for the non-
exotic matter in the universe and contains: electron, electron neutrino, and up and
down quarks. The second generation consists of the muon, the muon neutrino, the
charm, and the strange quark. The tau lepton and tau neutrino as well as the top
and the bottom quark constitute the third generation. The gauge quantum numbers
of the first generation and of the Higgs boson are shown in table 1.1.

Field SU(3)C SU(2)L U(1)Y

L =

(
νL
eL

)
1 2 −1

eR 1 1 −2

Q =

(
uL
dL

)
3 2 1

3

uR 3 1 4
3

dR 3 1 −2
3

φ =

(
φ+

φ0

)
1 2 1

Table 1.1: The first generation of matter fields and the Higgs field with associated
Standard Model quantum numbers [3].

1.4.1 Weinberg-Salam theory

Chiral structure is the distinctive feature of weak interactions, which means that
they maximally violate parity conservation. To incorporate this structure into the
SM, left and right handed components of lepton and quark fields transform in dif-
ferent representations of SU(2)L × U(1)Y , the right handed components being not
affected by SU(2)L transformations. Massive spin-1/2 fields obey the Dirac equa-
tion which interconnects two Weyl-spinors transforming in different representations
of the Lorentz group (c.f. chapter 4.2). If the mass term is set to zero the equa-
tion decouples to two Weyl equations each for one of the spinors. Examining the
behaviour of the plane wave solutions one finds, that the spin direction of one of the
spinors is always antiparallel with respect to the direction of motion - this spinor is
called left-handed - and vice-versa for the other solution. Dirac equations couples
both spinors and one has to use projection operators to get the desired component.

The classical Lagrangian of the Weinberg-Salam Theory is given by

LWS = Lgauge + Lmatter + LHiggs + LY ukawa, (1.14)

where the first term is the kinetic term of gauge fields presented already in the section
on gauge theories, the matter term consists of appropriate covariant derivatives of
the fields (interactions of matter and gauge fields via minimal coupling), the Yukawa
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term describes couplings of leptons and quarks to the Higgs field, and finally the
Higgs term consisting of the kinetic part and the Higgs potential:

LHiggs = |Dµφ|2 + µ2φ†φ− λ(φ†φ)2. (1.15)

The last term is needed, since the range of weak interactions (10−18 m) is inconsistent
with gauge bosons being massless. The masses of weak bosons are generated via
the Higgs mechanism [21, 22]: the Higgs potential has a classical minimum not at
φ = 0, the Higgs field acquires VEV and breaks the SU(2)L × U(1)Y symmetry,
since it defines a particular direction in the internal group space. However, one
residual U(1)em symmetry remains and the single unbroken generator is identified
with the electric charge. Since three generators of SU(2)L×U(1)Y are spontaneously
broken, three massless Goldstone bosons are expected due to Goldstone’s theorem
[23]. This theorem can be however circumvented as the massless Goldstone modes
provide longitudinal degrees of freedom for the massless long-ranged vector fields of
the theory since they share the same quantum numbers.

The Higgs mechanism selects randomly particular linear combinations of gauge fields
out of the manifold, one of the combination, which corresponds to the unbroken
generator, remains massless and is identified as the photon:

Aµ = sin θWW3µ + cos θWBµ. (1.16)

The terms are sin θW = g′/
√
g2 + g′2, cos θW = g/

√
g2 + g′2, g and g′ are the coup-

ing constants of the SU(2)L or U(1)Y group respectively. W ’s are gauge bosons of
the former and B is the gauge boson of the latter group. Other selected combinations
are charged massive spin 1 bosons W±:

W±
µ = (W1µ ∓ iW2µ) /

√
2, (1.17)

and a massive spin 1 neutral boson Z0:

Z0
µ = − cos θWW3µ + sin θWBµ. (1.18)

There remains also one scalar massive dynamical field - the Higgs boson H.

1.4.2 QCD

QCD is a gauge theory based on the group SU(3)C with colour triplet quark matter
fields. The selection of the gauge group was based on the following constraint: after
the idea of three quarks arose from the observations of the spectra of low mass
mesons and baryons (quarks as physical manifestation of SU(3) flavour symmetry),
and spin 3/2 baryons were interpreted as three quarks bound states with symmetric
spin- as well as space- and flavour-wave functions, a new degree of freedom had
to be introduced in order that the complete state description obeyes Fermi-Dirac
statistics. Each quark can carry a colour index with three possible values (red,
green, and blue) and the baryon wave functions are totally antisymmetric in this
new index.

A further restriction imposed on the gauge group is the requirement that it must
admit complex representations to be able to distinguish quarks from antiquarks as
constituents of the meson (quark antiquark) states, since no quark quark bound
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states were found. Following simple groups have this last desired property: SU(N)
with N ≥ 3, SO(4N + 2) with N ≥ 2 and E(6) [24]. The choice of SU(N = 3)C
is confirmed by many processes measuring N , particularly by the Ratio R of the
e+e− total hadronic cross section to the cross section for the production of muons
e+e− → µ+µ−. At low energies only up, down and strange quarks each in three
possible colours can be excited leading to the ratio of 2, assuming fractional charges
of quarks (up +2/3 and down -1/3 and equivalent in other generations). If the centre
of mass energies exceed 10 GeV charm and bottom quarks can also be produced
and so the ratio becomes 11/3. The idea of quarks as pointlike constituents inside
hadrons was confirmed by the deep inelastic scattering experiments performed at
SLAC [25].

The theory has however a drawback since the spectrum of physical states does not
resemble the set of the fundamental fields and does not include coloured states.
This phenomenon is called confinement. It is postulated that only colour neutral
states can occur in nature - the colour is confined inside the hadrons. Confinement
could not be proved in QCD up to now. It is believed that the energy between
colour charges grows linear with distance E(R) = kR, k being the string tension
coefficient, because the gluon field between the quarks contracts to a tube (string)
with energy proportional to its length. If the separation between the sources becomes
large enough, the string between the quarks breaks up and a light quark-antiquark
pair is created screening the sources [25, 26]. Quarks produced in scattering events
turn via this (hadronisation) process into many hadrons which are detected as jets
emerging in the direction of the original quark in the detectors. The running of the
coupling constant (described in a later section) makes confinement probable, since
interaction becomes strong and not perturbative computable at large distances.

The Lagrangian of QCD is given by:

LQCD = Lclassical + Lgauge−fixing + Lghost. (1.19)

The first part is the classical Lagrangian of the theory, while the other two parts
are needed for perturbation calculations after quantisation. The gauge fixing term
is a constraint that picks up only one representation from the whole gauge orbit
(all field configurations related by gauge transformations) and thus eliminates zero
modes. A definition of a gluon propagator without this term is impossible. To
provide unitarity of the amplitudes an additional ghost term has to be added to
the Lagrangian in case of non abelian theories. Ghosts proliferate in loops (higher
order diagrams) and since only tree-level diagrams (diagrams without closed loops
of gluon or quark lines) will appear in this work, the term is abandoned in further
discussion [26] [25]. The expression for the classical term is:

Lclassical = −1

4
FA
αβF

αβ
A +

∑
flavours

q̄a (iD/−m)ab qb, (1.20)

and this work follows [27] in choosing ’t Hooft Feynman gauge:

Lgauge−fixing =
1

2

(
∂αAαA

)
. (1.21)

The first term describes interactions of spin 1/2 quarks of mass m and massless
spin 1 gluons (gauge bosons of strong force). The indices a, b and A are colour
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labels, lower case letters run from 1 to 3 being quark colour indices while the upper
case letters run from 1 to 8 being gluon colour indices. Covariant derivatives and
curvature (field strength) of the SU(3) manifold are defined in the following way:

(Dµ)ab/AB = ∂µδab/AB + ig
(
TA
)
ab/AB

AAµ , (1.22)

FA
µν = ∂µAAν − ∂νAAµ − gfABCABµACν . (1.23)

The fABC (A,B,C = 1, . . . 8) are real structure constants of the SU(3) group and
g is the coupling constant which determines the strength of the interaction. The
quarks are in the fundamental three dimensional representation and the gluons in
the adjoint eight dimensional representation, the representation matrices (TA)ab/AB
are in one of the both representations respectively (indicated here as different indices
for each case). The matrices satisfy following relations:[

TA, TB
]

= ifABC
(
TC
)
, (1.24)

fA1A2A3 = −2i
{
Tr
(
TA1A2A3

)
− Tr

(
TA3A2A1

)}
, (1.25)

while the structure constants satisfy the Jacobi-identity:

fABXfXCD + fCBXfXDA + fDBXfXAC = 0. (1.26)

Further, the following relations hold:

(
TA
)
ab

(
TA
)
cd

=
1

2

[
δadδcb −

1

N
δabδcd

]
, (1.27)

Tr
(
TA1TA2

)
=

1

2
δA1A2 , (1.28)

δAA = N2 − 1 and δaa = N, (1.29)

where N stands for the total number of colours and is equal to 3 in the QCD case.
Summation over repeating indices has to be performed.

The Feynman rules for QCD (figure 1.4.2) can be derived from the Lagrangian
density given above. Following these rules, scattering amplitudes4 for processes
involving quarks and gluons can be constructed.

1.4.2.1 Asymptotic freedom

The Feynman rules derived so far include bare constants (coupling g and masses m)
which were used to define the theory via the Lagrangian density. These constants
are theoretical constructs and are not measurable as already stated in 1.1. All
physical quantities have to be expressed in terms of renormalised parameters which
depend on the ultraviolet cutoff Λ0, the bare coupling constants, and an arbitrary
scale µ - the point at which the measurement of the physical quantities, which
are then associated with the couplings, takes place. Generally, loop corrections
(and ghost fields) have to be taken into account and exact propagators and vertices
can be defined. If the scale µ is larger than external momenta and quark masses
it can be shown that exact propagators and vertices have the same colour and
Lorentz structure as the bare ones. Bare and renormalised quantities are connected

4The term amplitude is used interchangeable with the term matrix-element or S-matrix element.
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Figure 1.1: Feynman rules for QCD in ’t Hooft Feynman gauge without ghost fields.
The iε prescription was also removed from the propagators, since only tree level
amplitudes are considered.

via various renormalisation factors Z which are numbers and which depend on the
bare coupling g0, bare gauge parameter (chosen 1 in the scheme presented here),
and the dimensionless ratio Λ0/µ

2. The renormalisation factors are not arbitrary
but satisfy Slavnov-Taylor identities which state, that the strength of the coupling
Zinvg

2
0 extracted from the all different vertices of the theory coincides even after

renormalisation [26].

If one considers physical effective charges g2(µ) and g2(µ′) at two different scales
and if one assumes µ′ � µ it follows:

g2(µ) = Zinv

(
ln

Λ2
0

µ2
, g2

0

)
g2

0, (1.30)

g2(µ′) = Zinv

(
ln

Λ2
0

µ′2
, g2

0

)
g2

0, (1.31)

(1.32)

with one and the same invariant function Zinv. Logarithms occur due to the fact,
that integrations over higher order (loop) contributions have to be peformed, which
are logarithmically divergent. A crucial observation is the possibility to treat µ′ and
g2(µ′) on the same footing as Λ0 and g2

0. Having the value of the coupling at some
high scale µ′ it is possible to derive the value of the coupling and other observables
at the lower scale, since the larger scale plays the role of the ultraviolet cut-off scale
as far as momenta less than the large scale value are concerned. It follows that Zinv
satisfies a functional equation:

Zinv

(
ln

Λ2
0

µ2
, g2

0

)
= Zinv

(
ln
µ′2

µ2
, g2(µ′)

)
Zinv

(
ln

Λ2
0

µ′2
, g2

0

)
. (1.33)
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This equation defines the renormalisation group, which tunes the effective charge
when the scale is changed. The tuning factor depends only on the ratio of two
scales and on the charge defined at the upper scale but not explicit on the scale.
The functional equation above restricts the form of the function. If the relation of
charges defined at two different scales is written as:

g2(µ) = Zinv

(
ln
µ′

µ2
, g2(µ′)

)
g2(µ′), (1.34)

and then differentiated with respect to lnµ, the differential equation for the evolution
of effective charge reads (after setting µ = µ′):

µ
dg2(µ)

dµ
= β

[
g2(µ)

]
, (1.35)

where

β(g2) = −2g2 ∂

∂L
Zinv(L, g

2)

∣∣∣∣
L=0

(1.36)

is called Gell-Mann-Low function or β function and L = ln(Λ2
0/µ

2). The β function
can be expanded into a series in g2. The first term in the series can be inferred from
the one-loop result for g2(µ) = Zinvg

2
0. This term is equal to:

β(g2) = −b0g
4

8π2
+O(g6), with b0 =

11N

3
− 2

3
Nf , (1.37)

where Nf is the number of active quark flavours and N is the dimension of gauge
group, which is three in QCD case. If only the leading term is taken into account
equation 1.35 can be integrated. First the strong constant αs is defined as:

αs =
g2

4π
, (1.38)

than the integration is performed, and in this process an integration constant enters
the terms. This constant is called ΛQCD, and the solution reads:

αs(µ
2) =

2π

b0 ln µ
ΛQCD

. (1.39)

The value of ΛQCD can be determined since at the cut-off energy scale Λ0, the
coupling constant should attain its bare value. This demand fixes ΛQCD to:

ΛQCD ≡ Λ0 exp

(
− 8π2

b0g2
0

)
. (1.40)

The result 1.39 does not depend on unphysical bare parameters, but rather on their
combination ΛQCD which is a true physical parameter for QCD. It represents the
scale at which the perturbation theory breaks down since the coupling diverges.
The numeric value of the parameter can be obtained by fixing the value of the
coupling via measurements at some scale in perturbative domain, usually µ = MZ

and evaluating it with the renormalisation group equations (1.34) to the value at
which perturbation theory breaks down (coupling with the order of magnitude of
1). Depending on the precision of the corrections one arrives at a value of about 200
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MeV . Thus αS becomes large and the perturbation theory starts to fail for scales
compatible with the masses of light hadrons, i.e. 1 GeV . This result is no surprise
since ΛQCD carries a dimension and hence determines all dimensionful quantities in
QCD, in particular hadron masses [26]. On the other hand, as mentioned in the
introduction to this section, the growth of the coupling at low scales and breaking
of perturbative regime makes confinement probable [25]. The phenomenon that the
scale ΛQCD carries a dimension contrary to the bare coupling g is called dimensional
transmutation and it results from the breaking of the conformal symmetry of the
tree level action (involving only dimensionless g) by quantum effects [26].

In contrast to behaviour at low scales the effective charge decreases when the charac-
teristic energy grows. It means that with growing energy and decreasing distances
perturbation theory becomes more and more justified. This behaviour is called
asymptotic freedom and it is opposite to the behaviour of the coupling constant in
QED which tends to infinity for ever smaller distances. The last property is called
Landau-pole of QED and it indicates that the theory is probably not self-consistent.
Asymptotic freedom can be linked with non-abelian structure of QCD which is re-
sponsible for gluon self interactions.

1.5 Beyond Standard Model

As it was mentioned several times no experimental evidence from particle physics
contradict predictions of the SM, the precision measurements of the CERN LEP
(Large Electron Positron Collider) collider rather established that radiative correc-
tions as predicted in the SM are necessary to achieve agreement with data. Never-
theless, the SM possesess some internal problems as it was mentioned in the section
on QFT. Even discarding formal QFT issues, it must be concluded, relying on astro-
physical experiments, that the SM is incomplete. It turns out that neutrinos have
masses (which can be incorporated ad hoc in the SM), there is cold dark matter
(non relativistic matter with no electromagnetic interactions) in the Universe as it
was suggested already in 1933 by Fritz Zwicky [28] from application of virial theo-
rem, and finally the Universe is filled with constant energy density called dark energy
which causes accelerated expansion as inferred from observations of supernovae type
Ia. The strongest argument from experimental side is the existence of gravity, since
it is completely neglected by the SM [3].

There are also some aesthetic considerations which suggest that the SM should
be derived from some broader framework: the SM possesses a large number of
free parameters (19) including masses of particles and mixing angles, the SM gauge
group was chosen to fit the data and was not derived from first principles, and finally
electroweak symmetry breaking is incorporated per “hand” and does not follow from
some underlying principle.

The statements above suggest that the SM should be viewed as some kind of effective
field theory valid up to energy scales accessible to current colliders (several TeV ). It
approximates the truly fundamental theory which remains probably valid until the
scale of quantum gravity or it approximates some other approximation which has
also bounded domain. The effects of this superior theory which could be found with
the next generation colliders like the LHC (c.f. section 3) are called physics beyond
the Standard Model.
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Figure 1.2: Quantum corrections to m2
H

Scalar Higgs field introduced to break electroweak symmetry can provide a hint on
the scale at which physics beyond the SM should enter the considerations. The mass
of the Higgs boson should be also renormalised, but since it is a scalar particle the
leading divergence of the corrections is not logarithmic but quadratic:

m2
H(renorm) ' m2

H +
c

16π2
Λ2. (1.41)

The constant term c depends on various parameters of the SM and Λ can be in-
terpreted as the scale at which the SM ceases to be valid. To compute this loop
corrections, diagrams like 1.2 have to be evaluated. Generally bosonic and fermionic
loops as well as momentum independent energy shifts like the first diagram in 1.2
lead to quadratic divergences, however bosonic and fermionic contributions have
different signs. If the typical energies exceed the scale Λ something “new” should
happen, it is possible that new heavy particles can be created or, that the SM breaks
down because some unknown interaction has its strong regime at this scale. Λ is
bounded from above with the reduced Planck scale of order 1018 GeV at which
quantum gravity corrections become important [3].

The left hand side of the equation 1.41 - the physical Higgs boson mass - should be
below 1 TeV in order to maintain unitarity (preservation of probability) in processes
involving massive gauge bosons [29]. Now a constraint on possible values of Λ can
be imposed, since otherwise the SM would be affected by the fine tuning problem,
which means that the value of the bare Higgs mass should be limited to some extreme
accurate large number in order to cancel higher order corrections. Such tuning would
lead to a situation where small changes of the underlying parameters would lead to
extreme differences in the predictions of the theory for the TeV scale.

To avoid such problems one can conclude that Λ ≤ O(1TeV ) and that one would
expect to find new degrees of freedom in high energy collisions at the TeV scale.
The next chapter of this work should provide an answer to the question what would
be a promising theory that can appear at this scale.
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2

Supersymmetry

Supersymmetry (SUSY) is a hypothetical symmetry of nature relating fermions and
bosons. It was introduced independently by two Russian groups in 1971-1972 [30,
31], and then also independently in the west by Julius Wess and Bruno Zumino
[32] in 1974. Simultaneously SUSY was used in two dimensions (as a symmetry
of string world-sheet) within string theory [33, 34]. The Wess-Zumino model had
the biggest impact on particle physics, leading to the formulation of the Minimal
Supersymmetric Standard Model (MSSM) in 1981 [35].

The genuine desirable feature of SUSY is the unavoidable cancellation of the fermionic
and bosonic loop contributions to scalar masses, leading to the solution of the fine-
tuning problem of the SM, q.v. section 1.5. However, this feature was not the
motivation for the development of SUSY in the 70’s, and hence it is an impres-
sive result that a theory developed for a couple of different reasons can additionally
solve one of the crucial problems of the SM. In the 90’s it was furthermore shown
[36], that the contributions of the supersymmetric particles change the coefficients
of the renormalisation group equations in such a way, that the values of the coupling
constants of the SM interactions meet at high energy (E ≈ 2 · 1016 GeV ). SUSY
can also solve one of the astrophysical problems by providing a natural dark matter
candidate [37].

Regarding the points above, SUSY is believed to be the most promising extension
of the SM. The introduction of SUSY to the SM implicates however addition of new
particles, since it is impossible to relate existing SM particles to each other. The
masses of these new particles would equal the masses of their SM partners in case of
unbroken SUSY. Since none of the superpartners has been discovered so far, SUSY
must be broken. In order to retain the desired SUSY features, the masses of these
additionally introduced particles must lie within the upper limit of ∼ 1 TeV . If the
so called weak scale supersymmetry is realised in nature, it should be discovered at
the Large Hadron Collider, which starts the operation in 2009, q.v. next chapter.

This chapter provides a short introduction to SUSY with particular emphasis of the
aspects relevant for SUSY searches with the CMS detector.
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2.1 Supersymmetry algebra
A supersymmetry transformation turns a bosonic state into a fermionic state and
vice versa. The generator of such transformations is called conventionally Q and
satisfies following relation:

Q |Boson〉 = |Fermion〉 , Q |Fermion〉 = |Boson〉 . (2.1)

From this relation follows, that the generator is an anticommuting and hence fermionic
object changing the spin by half-odd amount and changing the statistics. The gener-
ator Q is thus a spinor (q.v. chapter 4), and since spinors are intrinsically complex,
the hermitian conjugate Q† of Q is also a symmetry generator. Both generators carry
spin angular momentum 1/2 and thus SUSY is obviously an additional space-time
symmetry. SUSY circumvents the Coleman-Mandula theorem [38], stating that ev-
ery symmetry of the S-matrix must be a direct product of the Poincaré group and an
internal symmetry group (if there is a mass gap), by introducing anticommuting gen-
erators. The Coleman-Mandula theorem was extended by Haag, Lopuszanski and
Sohnius [39] to the case of Lie superalgebras and this extension restricts the possible
forms of supersymmetries for interacting quantum field theories. It follows that the
generators Q and Q† have to satisfy following commutation and anticommutation
relations [3]: {

Qα, Q
†
α̇

}
= −2σµαα̇Pµ, (2.2)

{Qα, Qα} = 0,
{
Q†α̇, Q

†
α̇

}
= 0, (2.3)

[Qα, Pµ] = 0,
[
Q†α̇, Pµ

]
= 0, (2.4)

Pµ being the generator of the space-time translations, and σµαα̇ being the spin tensor
introduced in the section on Weyl spinors in chapter 4.

The single-particle states of a supersymmetric theory fall into an irreducible repre-
sentations of the supersymmetry algebra, called supermultiplets. Each supermul-
tiplet contains fermionic and bosonic states, whereas the number of the fermionic
degrees of freedom equals the number of bosonic degrees of freedom. The parti-
cles from one particular supermultiplet are called superpartners and have the same
mass. Since the generators of the supersymmetry commute with the generators of
the gauge groups, all superpartners have also the same internal quantum numbers
(el. charge, isospin, colour).

2.2 The minimal supersymmetric standard model
As it was mentioned in the beginning of this chapter, the introduction of the SUSY
into the SM can solve the fine-tuning problem. If every SM fermion is supplemented
with a scalar superpartner and they both have the same coupling strength to the
Higgs boson (c = λs = |λf |2), the loop corrections to the Higgs mass vanish be-
cause of the relative minus sign between fermionic and bosonic contributions. The
remaining corrections to ∆m2

H , due to the SUSY breaking, are small as long as the
masses of the superpartners are about 1 TeV [3]. The solution of the fine-tuning
problem was an important motivation for the development of various supersymmet-
ric models. This section introduces the minimal extension of the SM involving only
one additional degree of freedom in the superspace (N = 1 SUSY), the so called
minimal supersymmetric standard model (MSSM).
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2.2.1 Particle content

The fermions of the SM are members of chiral supermultiplets1 having a bosonic
(spin-0) superpartner. These superpartners are called sfermions. The names of
the single superparnters are results of the prepending of an “s” for scalar to the
names of the corresponding SM fermions (e.g. selectron, stop, sbottom). The spin-
1 SM bosons are members of the gauge supermultiplets2 having spin-1/2 fermions
as superpartners which are generally referred to as gauginos. The supersymmetric
partners are represented by the same symbols as corresponding SM particles, but
with a tilde, for example ẽ for the selectron.

The MSSM needs two complex Higgs doublets to generate masses of the particles.
One of this doublets couples only to the up-type particles (Hu) while the other
doublet gives masses to the down-type particles (Hd). Thus there are four complex
Higgs states corresponding to eight degrees of freedom. Three of these degrees of
freedom are needed to provide masses of the W±- and Z-bosons, leaving five degrees
of freedom for mixing into the Higgs-bosons. There are three neutral superpositions
of H0

u and H0
d : two scalars h0 , H0 and a pseudoscalar A0, as well as two charged

superpositions of H±u/d: the H±.

Not all previously introduced superparticles of the MSSM are mass-eigenstates.
Symmetry breaking can lead to the mixing between particles with same quantum
numbers. The gluino, being in the eight-dimensional adjoint representation, is the
only SUSY member of the gauge multiplet which cannot mix. The electro-weak
symmetry breaking leads to the mixing of the Higgsinos with the supersymmetric
partners of the electro-weak gauge bosons. The four neutral mass eigenstates are
called neutralinos and are denoted by χ0

1...4. They are superpositions of the neutral
Higgsinos with the zino (Z̃) and photino (γ̃). The mixing depends on the Weinberg
angle θW , the ratio of the vacuum expectation values of the two Higgs doublets
tan β, the mass of the Z-boson, and the mass parameters of the SUSY breaking
terms M1 and M2. The charged Higgsinos and the winos mix respectively into two
charged mass eigenstates χ±1,2, depending on the mass of the W-boson and the Hig-
gsino mass-parameter µ. The numbering scheme of charginos and neutralinos begins
with the lightest particle and the number grows with the mass.

2.2.2 Superpotential

The superpotential describes the interactions between the particles in the MSSM [3]:

WMSSM = ūyuQHu − d̄ydQHd − ēyeLHd + µHuHd, (2.5)

where ū, d̄, Q, Hu, Hd, ē, and L are the chiral superfields of the associated chiral
supermultiplets (ū, d̄, Q stand for the supermultiplets of squarks and quarks, L
and ē stand for the supermultiplets of sleptons and leptons and Hu,d stand finally
for the Higgs/Higgsino multiplet). The yi terms are Yuakawa-matrices describing

1Multiplets consisting of two-component Weyl fermions and complex scalar fields. Only chiral
supermultiplets can contain fermions whose left-handed parts transform differently under the gauge
group than their right-handed parts.

2Multiplets containing spin-1 bosons and spin-1/2 fermionic superpartners whose right- and
left-handed components have the same gauge-transformation properties. The last property has to
be satisfied, since gauge bosons transform in the adjoint representation, which is its own conjugate.
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the mixing angles between the particles and their couplings, while µ is the Higgs
mass parameter. There is no theoretical reason prohibiting the addition of other
gauge invariant terms to the superpotential. The most general gauge-invariant and
renormalisable superpotential would however include terms violating lepton (L) and
baryon number (B) [40] leading inter alia to the proton decay. Postulating the con-
servation of these numbers is a drawback in comparison with the SM, where the
conservation is the consequence of the impossibility of construction renormalisable
Lagrangian terms that would violate L and B. Instead a new symmetry called R-
parity is added to the model. This symmetry eliminates the possibility of B and L
violating terms in the renormalisable superpotential and has additional nice prop-
erties.

2.2.3 R-parity

The R-parity is defined as:

PR = (−1)3(B−L)+2S, (2.6)

with S being the spin quantum number of the particle. From the definition follows,
that all SM particles have a R-parity PR = 1, while all SUSY particles have PR = −
1. The conservation of R-parity, which is a postulate of the MSSM, leads not only
to the conservation of B and L, but also to the pair-wise creation or annihilation
of SUSY particles. Additionally every SUSY decay chain must end with a lightest
stable supersymmetric particle, the LSP. Depending on the SUSY breaking scenario,
the LSP can provide a good dark matter candidate [37].

2.3 Supersymmetry breaking

Since SUSY particles were not discovered parallel to the discovery of SM parti-
cles, their masses must be larger than the masses of known particles, and hence
SUSY must be spontaneously broken [40]. This can be achieved by the introduc-
tion of additional breaking terms in the SUSY Lagrangian. If these terms preserve
renormalisability and do not introduce new quadratic divergences, one speaks of
soft supersymmetry breaking. The general SUSY potential including soft breaking
terms introduces 105 new free parameters to the theory making the general model
intractable. Therefore, several more constrained models of SUSY breaking were con-
structed. In general the breaking occurs in a “hidden sector” of particles, that have
no direct couplings to the “visible sector” : the chiral supermultiplets of the MSSM.
The breaking is then mediated via some interaction which is shared between the two
sectors leading to the soft breaking terms.

This study deals with the SUSY breaking scenario based on the assumption, that
gravity is the interaction providing the connection between the two sectors. This
scenario is called mSUGRA (minimal supergravity). The mSUGRA model of SUSY
reduces the 105 parameters of the MSSM to 5 free parameters, defined at the scale
of the great unification (GUT-scale). The free parameters are: m1/2 - the unified
mass term of the gaugino breaking parameters, m0 - the unified mass term of the
sfermion breaking parameters, A0 - unified trilinear couplings of the SUSY breaking,
tan β - the ration of the VEV’s of the two Higgs-doublets, and sign(µ) the sign of the
Higgs mass parameter. Given a particular set of these parameters, one can compute
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the values of the particle masses at the lower scale by using renormalisation group
equations.

The CMS collaboration defined a set of test points in the mSUGRA parameter
space, to cover significantly different experimental signatures [4]. The points are
divided in two groups: the so called high-mass points (HM) whose parameter lead
to higher masses, and low-mass points (LM) whose parameters lead respectively to
the lower SUSY particle masses. The CMS test points are shown in the Fig. 2.3
in the m0 − m1/2- plane of the mSUGRA parameter space, and additionally the
values of the parameters for some points relevant for the present work are given in
Table 2.3.
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Figure 2.1: The CMS test points in the m0−m1/2-plane of the mSUGRA parameter
space (the other parameters are tan β = 10, A0 = 0, and µ > 0) . The testpoints
are labeled with ∗. The turquoise domain corresponds to a charged LSP, which
is exclueded experimentally, while the yellow domain does not yield electro-weak
symmetry breaking. Further experimentally excluded domains are also shown [4].

Point m0 m1/2 tan β sign(µ) A0

LM1 60 250 10 + 0
LM4 210 285 10 + 0
LM8 500 300 10 + −300
HM3 700 800 10 + 0

Table 2.1: mSUGRA parameter values for selected test points. Masses are given in
units of GeV .
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2.4 Experimental signals

If weak scale SUSY is realised in nature, it should be accessible with the Large
Hadron Collider [41]. A hadron collider like LHC offers many SUSY production
channels, however the particles will be produced in pairs, if R-parity is conserved.
The production processes of the strong interaction (e.g. gg → g̃g̃, qq → g̃q̃i) will
dominate over the possible electro-weak channels like ud̄→ χ+

i χ
0
i , due to the larger

cross sections [40] unless the squarks and gluionos are much heavier than the other
gauginos. The lightest SUSY particle is stable, if the R-parity is conserved, and only
weakly interacting. It follows, that the LSP traverses the detector without leaving
energy deposition in the calorimeter, and produces missing transverse energy (MET),
like the SM neutrino. Therefore, missing transverse energy is a characteristic SUSY
signature. The present work tries to find a method to distinguish between mismea-
sured QCD events with fake MET, and true signals of decaying heavy particles, like
SUSY, via new variables for the description of QCD processes.

The large masses of the SUSY particles yield a short life-time , which causes them
to decay in the detector often via long chains of intermediate particles. The decay
ends with the LSP, which is the neutralino χ0

1 in the model considered in this work.
If the decay chain entails only such SM particles, which either hadronise themselves
leading to jets in the detector, or decay further in quarks like the heavy gauge bosons
W± and Z0, the process is called all-hadronic. Such processes are characterised by
larger MET and many jets. Figure 2.4 shows a possible all-hadronic decay chain.

Figure 2.2: Example for an all-hadronic decay chain. The pairwise produced super-
symmetric particles decay via a chain into quarks, gauginos, hadronically decaying
SM gauge bosons, and neutralinos.
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The CMS Experiment

Being highly successful, the Standard Model still cannot be the truly fundamental
theory of matter and forces as it was shown in chapter 1.5. To probe physics beyond
the Standard Model (SM) and to decide if one of the various proposed extensions to
the SM is really realised in nature, experiments at the TeV scale have to be made
[29], q.v. previous chapter. Such experiments will become possible after the start
of the operation of the Large Hadron Collider (LHC) at the European Organisation
for Nuclear Research, CERN1, near Geneva. The Compact Muon Solenoid (CMS)
Experiment is one of two multipurpose elementary particles detectors built at the
LHC in order to examine physics at the TeV scale. The main focus is put on
the unveiling of the origin of electroweak symmetry breaking, for which the Higgs
mechanism is presumed to be responsible, and on the search for supersymmetric
particles, since Supersymmetry is the most promising candidate for an extension of
the SMPP cf. section 2. In the following some of the LHC properties are reviewed
and CMS design is introduced.

3.1 LHC

The Large Hadron Collider [44] is a two ring superconducting hadron accelerator
built into the existing tunnel of the Large Electron Positron Collider (LEP) the pre-
decessing major particle accelerator at CERN. The 26.7 km circumference tunnel
was constructed for LEP between 1984 and 1989 and is situated 49 - 150 m below the
ground level. At four interaction points proton or fully stripped lead ion (208Pb82+)
beams are crossed and particles collide at the design centre of mass energy of 14
TeV for protons or 1.15 PeV for lead ions. Four detectors were build around the
interaction points - ALICE (A Large Ion Collider Experiment) [45] at interaction
point 2, designed for investigations of quark-gluon plasma in ion collisions, ATLAS
(A Toroidal Lhc ApparatuS) [46] at interaction point 1, a general-purpose experi-
ment like CMS, CMS [47] at interaction point 3 and LHC-B (LHC-Beauty) [48] at

1CERN is a french acronym for Conseil Européen pour la Recherche Nucléare (European Coun-
cil for Nuclear Research), which was a provisional council founded in 1952 in order to establish
European subatomic physics research organisation. The organisation become European Organisa-
tion for Nuclear Research in 1954, but the acronym CERN was retained [42], [43].
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interaction point 4 build to examine CP-violation in processes with b quarks. The
LHC has eight arcs and eight straight sections and each interaction point is located
in one of the latter. The insertions in the remaining four straight sections do not
have beam crossing and are used either for beam collimation or for acceleration and
damping. Each exertion is numbered clock-wise beginning with ATLAS interaction
point, CMS being at the point 5 consequentially. Figure 3.1 shows the schematic
LHC layout. Protons were selected as interacting particles in spite of being non el-

Figure 3.1: Schematic layout of the LHC. Collimation systems for both beams are
situated at points 3 and 7, RF acceleration systems one for each beam are in the
exertion at point 4. The two beams can be vertically extracted from the machine at
point 6 (beam dump) [44].

ementary, since the synchrotron radiation, the major source of energy losses in ring
accelerators, falls of with the fourth power of the mass m of the particle being accel-
erated (∝ m−4). Furthermore, protons can be produced in large numbers, contrary
to antiprotons, which enable a high number of particles per bunch. Together with
the small time interval of 25 ns between the bunches this leads to a high number of
protons inside the collider. This large number of protons and the small β-function
values of the focussing magnets at the ATLAS and CMS interaction points lead to
high LHC design luminosity of 1034 cm−2s−1 for both experiments. The luminosity
L of a hadron collider [25], assuming no crossing angle at the interaction point, is
defined as

L =
f

π

Nh1Nh2

nb

γ√
β∗xβ

∗
yE
∗
xE
∗
y

, (3.1)
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Quantity pp operation Heavy-ion operation

Design energy per nucleon (
√
S/2) 7 TeV 2.76 TeV

Dipole field at 7 TeV (B) 8.33 T 8.33 T
Design Luminosity (L) 1034 cm−2s−1 1027 cm−2s−1

Bunch separation 25 ns 100 ns
Number of bunches (nb) 2808 592

Number of particles per bunch (N) 1.15 · 1011 7 · 107

RMS beam radius at IP (σ∗) 16.7 µm 15.9 µm
Transverse normalised emmitance (E∗) 3.75 µm 1.5 µm

Twiss function β∗ at IP 0.55 m 0.5 m
Luminosity lifetime (τL) 15 hr 6 hr

Table 3.1: Some of the relevant LHC parameters. Given are nominal values for
proton-proton and heavy-ion operation [44]

where Nhi
are total numbers of the hadrons in each beam. Other parameters are f

the revolution frequency, nb the number of bunches, γ = E/m the relativistic factor,
E∗i transverse emmitance of the beams, and β∗i wavelength of the betatron oscilla-
tions of the beams. For a Gaussian beam distribution E∗i and β∗i can be replaced by
normalised values E∗ and β∗ equal for each direction. The LHC luminosity will be
reduced by a geometrical factor due to the small crossing angle between the beams
at the interaction point. Values of some important parameters of the LHC machine
are given in table 3.1

3.2 CMS

The Compact Muon Solenoid Experiment [47] [49] is a general purpose detector,
whose mostly cylindrical component shells cover the whole solid angle around the
interaction point. Being 21.6 meters long, having a diameter of 14.6 meters and a
weight of 14.5 tonnes CMS outweighs ATLAS, whose dimensions amount to 44 m
length, 25 m diameter, and 7000 tonnes weight. The CMS collaboration adopted
following coordinates conventions: The x-axis points radially inward toward the
centre of the LHC and the y-axis points vertically upward. Thus, the z-axis points
along the beam direction towards the Jura mountains from LHC point 5. The
azimuthal angle φ is measured from the x-axis in the x− y plane. The polar angle
θ is measured from the z-axis. Pseudorapidity is defined as:

η = − ln

(
tan

θ

2

)
(3.2)

and equals rapidity if the particle has no mass or the mass can be neglected (rela-
tivistic limit). Rapidity is preferred to the angle θ because it is an additive quantity
under Lorentz boosts along the z-direction, which implies that rapidity differences
are Lorentz invariant [50].

3.2.1 Purpose

CMS was designed to achieve all physical goals mentioned in the introduction to this
chapter while operating in the hadron collider environment. Following requirements
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on the detector originating in the premises for Higgs discovery have to be taken into
account. The current lower limit for Higgs mass was set by LEP to 114 GeV/c2.
Hadronic Higgs decay dominates in the vicinity of this value, but large QCD back-
ground and poor mass resolution of jets make a discovery in this channel difficult.
More promising signals invole final states with isolated leptons and photons. If
the Higgs is in the 114-130 GeV/c2 mass range CMS will particularly look for the
H → γγ signal. The Higgs can decay into two Z bosons if its mass is above 130
GeV/c2, one boson being virtual if mh < 2mZ , in this case it can be found via the
4-lepton final state from Z decays. In both cases it is essential to definitely identify
all particles and to measure their charges. For Higgs masses above 600 GeV/c2 the
cross section drops and it is inevitable to use jets and missing transverse Energy
(MET) of W and Z decay remnants in the H → W+W− and H → ZZ channels.

The search for supersymmetric events requires also a good lepton identification and
a fair jet energy resolution. Heavy supersymmetric particles decay in cascades to
their standard model partners until, assuming R-parity conservation, the decay chain
reaches the lightest supersymmetric particle (LSP) which is stable. The LSP inter-
acts only weakly or via gravitation and thus can be detected only as MET in the
detector. Consequently SUSY final states are characterised by an abundance of
MET and many jets and leptons in mSUGRA SUSY breaking scenario or by MET
and enhanced number of isolated photons in GMSB case. Good resolution of MET
and jets as well as an understanding of the jet energy scale is crucial for SUSY
searches in the all-hadronic channel, which are relevant for the present work.

In summary, the CMS design meets the following demands:

• Good muon identification and precise measurement of their momenta across
the whole detector, good dimuon mass resolution and measurement of the
muon charge in tracker and in the muon system.

• Good particle momenta resolution and reconstruction efficiency in the inner
tracker as well as efficient selection of τ ’s and b-jets, requiring pixel detectors
close to the interaction region.

• Good resolution of the electromagnetic calorimeter for measurement of photon
and electron momenta as well as efficient photon and lepton isolation and π0

rejection.

• A hermetically closed hadron calorimeter, which enables accurate measure-
ment of MET and dijet masses in a large angular domain.

Figure 3.2.1 shows the overall layout of the CMS detector. The innermost layer
of the detector in the vicinity of the interaction point consists of silicon pixel and
microstrip detectors, which reconstruct tracks of charged particles. The tracker
is surrounded by an electromagnetic and a hadron calorimeter, which are used for
particle identification and energy measurements. The outer layers compose the muon
detection system, since muons are minimal ionising particles. A high magnetic field
configuration was chosen in order to resolve boosted particle pairs with different
charges. This configuration is realised via a 13 m long 4 T superconducting solenoid
with a diameter of 5.9 m inserted between the main part of the hadron calorimeter
and the muon system. In the following components of the detector are described in
more detail beginning with the inner parts.
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Figure 3.2: Schematic view of the CMS detector [47]

3.2.2 Tracker system

The task of the tracker is a precise and efficient measurement of the charged particle
trajectories. The total tracking volume is given by a cylinder of 5.8 m length and 2.6
m diameter. In order to resolve and identify secondary vertices of b-quarks and τ -
leptons decays, which are characteristic for many interesting channels, in the region
of high particle flux, three cylindrical layers of pixel detector modules surround the
interaction point. The pixel size of 100× 150 µm2 was chosen to achieve the desired
impact parameter resolution. Each of the layers have a length of 53 cm and they are
situated at the radii of 4.4, 7.3 and 10.2 cm. Two endcaps close the pixel detector
at each side.

At the radius of about 20 cm the particle flux drops and it is possible to use silicon
strips for track reconstruction. The intermediate region of the tracker up to 55 cm
contains Tracker Inner Barrel and Discs (TIB/TID) with the minimal strip size of
10 cm × 80µm. The TIB/TID is surrounded by the Tracker Outer Barrel (TOB),
which extends to 116 cm, and whose strips have maximal size of 25 cm × 180µm.
Beyond the z range of ± 118 cm, Tracker EndCaps (TEC) cover the remaining
tracker volume, extending the acceptance of the tracker up to a pseudorapidity of
|η| < 2.5. Each TEC is composed of 9 disks, carrying up to 7 rings of microstrip
detectors.

A total of 66 million pixel and 9.6 million strip detectors cover an area of 200 m2,
making the CMS tracker the largest silicon detector ever built.[47].

3.2.3 Electromagnetic calorimeter (ECAL)

The electromagnetic calorimeter surrounds the tracker and is used for energy mea-
surement and identification of particles, especially electrons and photons. It covers
a pseudorapidity range up to |η| < 3.0 and was designed to resolve the decay of
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two photons from the proposed Higgs boson, cf. section 3.2.1. For this purpose it
was made of 61200 lead tungstate (PbWO4) crystals in the central barrel part and
7324 PbWO4 crystals in each of the endcaps. The scintillation light is detected by
avalanche photodiodes in the barrel region and vacuum phototriodes in the endcap
region. Lead tungstate crystals were chosen because of the short radiation length
of 0.89 cm and radiation-hardness. Furthermore, 80% of the light is emmited in 25
ns, which is of the same order of magnitude as the LHC bunch crossing time.
The barrel region of the ECAL covers a pseudorapidity up to |η| < 1.479 and con-
sists of crystals which have a length of 230 mm equivalent to 25.8 radiation lengths
(X0). The remaining pseudorapidity range is covered by the endcaps, each divided
into 2 D-shaped halves (Dees), where each Dee holds 3662 crystals with the length
of 22 cm (24.7 X0).

The energy resolution of the ECAL is given by( σ
E

)2

=

(
S√
E

)2

+

(
N

E

)2

+ C2, (3.3)

where S is a stochastic, C a constant, and N an electronic noise term. The val-
ues of the terms could be determined from measurements; they amount to S =
2.8%

√
GeV , N = 0.12GeV , and C = 0.3% [47].

3.2.4 Hadron calorimeter (HCAL)

The hadron calorimeter is responsible for the measurement of hadron jets and, in-
directly, neutrinos or other exotic weakly interacting particles resulting in apparent
missing transverse energy. The hadron calorimeter barrel (HB) and endcaps (HE)
sit behind the electromagnetic calorimeter as seen from the interaction point. HB is
the last component inside the magnetic coil. However the total amount of the ab-
sorbing material which can be put inside is restricted. Brass was chosen as absorber
material, since it has short interaction length and is not magnetic. The innermost
and outermost absorber layer is made of stainless steel for structural strength. Plas-
tic scintillators are inserted between the absorber layers. The light they produce is
converted by wavelength-shifting fibres embedded in the scintillator tiles and chan-
neled to photodetectors via clear fibres. The HB consists of 32 rings and covers a
pseudorapidity range of |η| < 1.4. Except for the first and the last scintillator layer,
which are 9 mm thick, all other layers have a thickness of 3.7 mm.

The outer hadron calorimeter (HO) is placed outside the solenoid to ensure the
measurement of the jets, which penetrate the magnet in the |η| < 1.3 region. The
absorber in HO correspond to 1 interaction length and the scintillator plates are
10 mm thick.

The calorimeter endcaps (HE) 1.3 < |η| < 3.0 as well as the forward region (HF)
complete the hadron calorimeter and provide coverage up to a pseudorapidity of 5.0.
The forward calorimeter makes use of iron plates as absorber material. Photomulti-
pliers detect the Cherenkov light emitted by the particles in the quartz fibres, which
are inserted between the absorbers. The forward calorimeters provide full geometric
coverage for the measurement of the transverse energy in the event.

The ET resolution of the HCAL is almost equal in all detector parts which is shown
in figure 3.3. The MET resolution for QCD dijet events amounts to
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Figure 3.3: The jet transverse-energy resolution as a function of the jet transverse
energy in different detector parts. The jets are reconstructed with an iterative cone
algorithm (cone radius = 0.5) [47].

σ(MET) = 1.0
√∑

ET . (3.4)

Taking into account the electromagnetic calorimeter the total jet resolution amounts
to

σ

E
=

120%√
E
⊕ 6.9%. (3.5)

3.2.5 Superconducting solenoid

The 12.5 m long, 6 m inner diameter, 4 T superconducting solenoid is the distinctive
feature of the CMS detector. At full current of 19.5 kA 2.6 GJ of energy is stored
inside the magnet. The ratio between stored energy and the cold mass of 11.6 KJ/kg
causes large mechanical deformation during energising, beyond the values of previous
solenoidal detector magnets. The CMS magnet uses innovative self-supporting high-
purity aluminium-stabilised NbTi conductor to provide the necessary hoop strength.
The magnetic flux is returned through a 10 000 t iron yoke comprising 5 wheels and
2 endcaps composed of three disks each. The structure of the magnet determines
dimensions and weight of the whole detector and provides structural support for all
other components [47].

3.2.6 Muon system

The muon system is the outermost component of the detector. As the experiment’s
middle name suggest, muon identification and momentum measurement is of central
importance to CMS, since process signatures involving muons can be recognised over
the very high background rate expected at the LHC. Muons are minimal ionising
particles and besides neutrinos the only known particles, which can traverse the
inner part of the detector without major energy losses and hence can be used for
precise invariant mass measurements.
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To ensure sufficient energy resolution in the barrel region (|η| < 1.2), where the muon
rate is low and the neutron introduced background is small, the muon system there
consists of four modules of drift tube (DT) chambers, integrated in the iron return
yoke. The chambers are filled with a gas mixture of argon and carbon dioxide. Due
to the uniform magnetic field in the chambers single wire resolution better than 250
µm can be achieved.

High radiation exposure as well as a high and non uniform magnetic field suggest
the use of radiation resistant cathode strip chambers (CSC) in the endcap region
of CMS (|η| < 2.4). Resistive plate chambers (RPC) are used as a complementary
dedicated trigger system in the whole detector to assign the muons to a particular
collision, because the RPC response time is superior to the ones of DT’s and CSC’s
[47].

3.2.7 Data aquisition and trigger

High luminosity of the LHC, which is needed for studies of rare processes, together
with the total proton cross section of 100 mb cause a very high event rate of 109

events/s. This rate corresponds to a data stream of several TB/s, assuming 250
kB as single event size. It is impossible to store and process such large amounts
of data. Therefore a reduction of the rate to a viable size of 100 events/s has to
be achieved. This task is performed by the trigger and data acquisition system of
CMS (TriDAS), which enriches the recorded sample with physical interesting events.
TriDAS consists of four parts: detector electronics, custom made hardware Level 1
(L1) Trigger, readout network, and finally High-Level Trigger (HLT) a software
system implemented on a processor farm of commercial PC’s.

L1 trigger uses basic very fast reconstructed trigger objects made of calorimeter
and muon system data with reduced resolution, to select interesting events with an
output rate of 30 kHz. Such events could be characterised by a large amount of
MET, large jet multiplicity or leptons. The whole detector data for each event is
stored for 3.2 µs during the decision process. This data is forwarded to the HLT if
the event is selected. HLT uses full event data for filtering with advanced objects and
higher thresholds and writes 100 events/s on average to the mass storage devices.
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Computational Techniques

The Feynman rules derived in chapter 1.4.2 allow perturbative calculations of pro-
cesses involving quarks and gluons. However, the calculations can become very
complicated, since the rules are build upon Dirac (4 component) spinors and a lot
of trace algebra of γ matrices, and additionally QCD colour algebra has to be per-
formed. Furthermore, the final expressions for S-matrix elements can become very
large and some fundamental aspects of interactions can be hidden in the notation.

To calculate processes with many particles, as needed for tree level calculations of
multijet QCD events (c.f. next chapter), new techniques have to be introduced. A
first step is the deployment of orthogonal helicity states for all particles. Instead of
carrying out the spin sums, the amplitude is evaluated for every possible combination
of helicity states. Such amplitudes are called helicity amplitudes. The square of the
matrix element1 transforms to the sum of the squares of helicity amplitudes, since
helicity states are orthogonal. The gauge freedom for the spin 1 bosons translates
into freedom of choosing their helicity vectors, which can be used to eliminate many
Feynman diagrams. In the next step 2 component spinors (first introduced by Weyl
[51]) are used for calculations. They remove the γ-algebra and translate Dirac spinors
and Minkowski vectors to the same kind of objects.

This chapter introduces spinor representations of the Lorentz group and the spinor
calculus for massless fermionic spin-1/2 and bosonic spin-1 particles. The restriction
to the massless particles is just a convenience, since this work deals primary with
gluons and high energy limit is satisfied for quarks (it does not apply to heavy
particles, like i.e. SUSY). A short introduction to the treatment of colour algebra
is also provided in the end of this chapter. In the spinor sections the presentation
follows [8], [6], and [27] while the notation from [27] is used.

1In the following the terms matrix element and S-matrix element are used interchangeable, if
no confusion is possible.
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4.1 Structure of the Lorentz group
The space-time background of QFT is the flat Minkowski space M. The Lorentz-
invariant inner product of two vectors x and y in M, with components xµ and yµ,
is given by

xy = xµyµgµν , (4.1)

(gµν) = diag(1,-1,-1,-1) being the metric tensor.

A Lorentz transformation Λ : M → M is a linear transformation satisfying
(Λx)(Λy) = xy. The set of all Lorentz transformations forms the Lorentz group L.
From Eq. (4.1) follows that every Λ ∈ L satisfies following equation (treating g and
Λ as matrices):

ΛTgΛ = g. (4.2)

From this equation follows that detΛ2 = 1 and thus detΛ = ±1. The 00-component
of the equation 4.2 reads: (

Λ0
0

)2 −
3∑
i=1

(
Λi

0

)2
= 1. (4.3)

what leads to |Λ0
0| ≥ 1. Thus the group L consists of four topological components:

L↑+ : detΛ = +1 Λ0
0 ≥ 1 contains identity

L↑− : detΛ = −1 Λ0
0 ≥ 1 contains space inversion

L↓+ : detΛ = +1 Λ0
0 ≤ −1 contains space-time inversion

L↓− : detΛ = −1 Λ0
0 ≤ −1 contains time inversion

Only L↑+ component is a group itself - it contains the identity element. This subgroup
is called restricted Lorentz group. This group is not simply connected, since it entails
not simply connected rotation group, whose fundamental group is a cyclic group of
order 2. The simply connected covering group of the Lorentz group is the group
of 2 × 2 complex matrices with determinant 1 - the group SL(2, C). The covering
homomorphism

Λ :

{
SL(2, C) → L↑+
A 7→ Λ(A)

is declared in the following way. First a bijective map from the Minkowski space
into the space of 2× 2 matrices is defined via:

x 7→ x
∼

= x01 + x · ~σ =

(
x0 − x3 −x1 + ix2

−x1 − ix2 x0 + x3

)
. (4.4)

Furthermore following equation holds:

detx
∼

= x2, (4.5)

and finally a Lorentz transformation Λ(A) can be defined as:

Λ(A)x
∼

= Ax
∼
A∗. (4.6)

In the next step irreducible representations of the Lorentz group, which are the
objects of interest, are explored.
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4.2 Spinor representations of SL(2,C)

A field ψ(x) is a function with some components which transform in a definite way
under the Lorentz transformations:

ψ′(x′) = D(A)ψ(x), x′ = Λ(A)x, A ∈ SL(2, C). (4.7)

The group SL(2, C) supersedes the Lorentz group and D(A) is a matrix representa-
tion of SL(2, C). The fields can be classified according to irreducible representations
of SL(2, C). The group SL(2, C) has exactly two fundamental representations, all
other matrix representations are direct sums of these two.

The defining representation is described by:

D
1
2

0(A) = A (4.8)

The group acts naturally upon the two dimensional complex vector space C2 whose
elements are called spinors. Such spinor Ψ has two complex components:

Ψ =

(
Ψ1

Ψ2

)
. (4.9)

The spinor transformation law reads:

Ψ′A = A B
A ΨB, A ∈ SL(2, C). (4.10)

Only undotted indices are used for spinors in the defining representation.

The conjugate representation is described by:

D0 1
2 (A) = Ā, (4.11)

where Ā is the complex conjugate of A. This representation acts on complex conju-
gated spinors Ψ̄ = (ΨȦ) which transform analogue to the Ψ’s:

Ψ′
Ȧ

= A Ḃ
Ȧ

ΨḂ, A ∈ SL(2, C). (4.12)

Both representations are inequivalent and dotted indices are reserved for the spinors
of the conjugate representation.

A general spinor s of type (j, k) is a tensor with complex components sA1···A2j ,Ȧ1···Ȧ2k

whose transformation properties are implied by this notation. The tensor should be
symmetric under permutations of the first 2j undotted and the last 2k dotted indices.
It can be shown that the representation Djk of the SL(2, C) which acts on the space
of all spinors of type (j, k) is irreducible. The dimension of this representation
space is (2j + 1)(2k + 1) and this dimension is also assigned per definition to the
representation Djk.

If the representation Djk is limited on the subgroup SU(2), the defining and con-
jugate representations become equivalent and the representation Djk becomes the
reducible representation Dj ⊗ Dk of the SU(2). It can be decomposed into irre-
ducible parts, as it is done in the theory of angular momentum. The decomposition
reads in terms of dimensions:

(2j + 1)(2k + 1) =

j+k∑
s=|j−k|

s. (4.13)
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Now a connection between fields and corresponding spin can be established: If a field
ψ(x) transforms under Lorentz-transformations according to the irreducible repre-
sentation Djk of SL(2, C) it is called an irreducible field. It can possess following
spin quantum numbers:

s = |j − k|, |j − k|+ 1, . . . , j + k. (4.14)

However, this connection only shows which particle species can be potentially de-
scribed by the field under consideration, it is imaginable that some possible spin
values do not occur. The vector field Aµ(x), for example, is a (1

2
, 1

2
) spinor and can

describe spin-1 and spin-0 particles. However, it is possible to isolate the spin-1 part
and to suppress the spin-0 contribution2, as done in electrodynamics.

To perform spinorial calculations, some elements of spinor algebra are introduced.

4.3 Spinor algebra

The spinor index is raised and lowered with the spinor metric εAB:

εAB =

(
0 1
−1 0

)
= εAB = εȦḂ = εȦḂ (4.15)

Eq. 4.15 implies that εAB = −εBA, and it is therefore necessary to raise the indices
in a well defined order. The order used in this work is :

ΨB = ΨAε
AB ΨȦ = εȦḂΨḂ. (4.16)

The spinorial inner product between two Weyl spinors is defined by:

〈Ψ1Ψ2〉 ≡ Ψ1AΨ2
A, 〈Ψ1Ψ2〉∗ = Ψ1ȦΨ2

Ȧ. (4.17)

From the definition of the inner product follows that:

〈Ψ1Ψ2〉 = −〈Ψ2Ψ1〉 , (4.18)

and in particular that
〈ΨΨ〉 = 0. (4.19)

The map from Minkowski vectors into Weyl spinors was already introduced, hence
the momentum KȦB in spinor language is defined by:

KȦB ≡ σµȦBKµ = σȦBµ Kµ =

(
K0 −K3 −K1 + iK2

−K1 − iK2 K0 +K3

)
, (4.20)

where σµȦB = (σ0, ~σ) is a spin tensor, an object with both Lorentz and spinor indices,
and Kµ is an arbitrary Minkowski four vector with energy component K0 = K0,
and the momentum part ~K. The spin tensor σµȦB satisfies a number of relations,
in particular: (

σµȦB
)∗

= σµḂA, (4.21)

σµȦBσ
ȦB
ν = 2gµν , (4.22)

σµȦBσ
µ

ĊD
= 2εȦĊεBD. (4.23)

2Lorenz gauge condition of electrodynamics excludes spin-0 photons
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The four vector can be reconstructed from the spinorial object KȦB :

Kµ =
1

2
σµ
ȦB
KȦB =

1

2
σµȦBAḂ. (4.24)

The Minkowski inner product can also be translated into spinorial notation:

(K · P ) = KµPµ =
1

2
σµ
ȦB
KȦB 1

2
σµĊDP

ĊD =
1

2
KȦBPȦB ≡ {K,P} . (4.25)

The last equality serves as a definition of the inner product of two momenta in spinor
notation.

In this work we are dealing with massless particles and hence with light-cone vectors,
K2 = 0 = {K,K}. From

KȦBK
ȦB = 2(K1̇1K2̇2 −K1̇2K2̇1) = 0, (4.26)

follows that KȦB has detKȦB = 0. By virtue of Eq. (4.21) KȦB is a hermitian
matrix, and the last equation implies that one of the eigenvectors is equal zero.
Hence, the matrix can be written as a projection onto the eigenvector corresponding
to the non-zero eigenvalue:

KȦB = 2K0lȦlB. (4.27)

Redefinition of the non-zero eigenvector to kA =
√

2K0lA leads to:

KȦB = kȦkB. (4.28)

A spinor kA corresponding to a light-cone momentum Kµ is called momentum spinor.
It is convenient that capitals denote space-time momenta in spinor language, and
lower case characters denote the corresponding momentum spinors. The normalised
eigenvectors kA can be written explicitly in terms of momentum components, but
this is not important for the present work and can be found in [27].

The Minkowski inner product of two light-cone vectors can also be expressed in
terms of momentum spinors:

(K · P ) =
1

2
{K,P} =

1

2
KȦBP

ȦB =
1

2
kBp

BkȦp
Ȧ =

1

2
〈kp〉 〈kp〉∗ =

1

2
|〈kp〉|2 (4.29)

It turns out, that the matrix elements become more compact when expressed in
terms of spinorial inner products, which are more fundamental quantities than the
Minkowski products. This is also true for spinors in comparison to four vectors,
as it is emphasised in [52]. As the essential spinor algebra is presented, the spinor
representations for fermionic spin-1/2 and bosonic spin-1 particles are introduced.

4.4 Spin-1/2 particles

The fields corresponding to spin-1/2 particles transform in the representations D
1
2

0

and D0 1
2 in accordance with the definition given above. After translation of the four

gradient ∂µ = (∂0,∇), which transforms like a four vector under Lorentz transfor-
mations, to the Weyl spinor notation:(

∂ȦB
)

=

(
∂0 − ∂3 −∂1 + i∂2

−∂1 − i∂2 ∂0 + ∂3

)
= ∂0 + ~σ∇, (4.30)
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the Dirac theory is defined by the following system of coupled differential equations:

i∂ȦBΨB = mΦȦ,

i∂ȦBΦȦ = mΨB. (4.31)

The term m, which is interpreted as a particle mass, couples the spinors ΨA and ΦȦ

which transform in the different representations of the SL(2, C) (see above). The
Dirac theory uses two fields for a description of the spin 1/2 particles. These two
spinors correspond with the two helicity states of massless fermions, as it will be
shown in the description of the Weyl equations.

The Dirac equations can be reformulated as one equation by combining two spinors
into one four-dimensional bispinor and by introducing γ matrices:

(γµ)ab =

(
0 σµ

ḂA

σµȦB 0

)
. (4.32)

With this definition the Dirac equation reads:

(iγµ∂µ −m) Ψ(x) = 0, Ψ(x) =

(
ΨA

ΦḂ

)
(4.33)

The equivalence with the usual definition of left-, and right-handed spinors is given
via the definition of γ5 = iγ0γ1γ2γ3. It follows:

ΨR = Ψ+ =
1

2
(1 + γ5)Ψ =

(
ΨA

0

)
(4.34)

ΨL = Ψ− =
1

2
(1− γ5)Ψ =

(
0

ΦḂ

)
(4.35)

If one sets m = 0 in Eq. (4.31) one is led to two uncoupled equations of motion -
these are the Weyl equations:

∂ȦBΨB = 0 ≡ ∂0Ψ(x) = −~σ∇Ψ(x)

∂ȦBΦȦ = 0 ≡ ∂0Φ(x) = ~σ∇Φ(x) (4.36)

The left-right asymmetry of this equations can be understood after examination of
the plane wave solutions:

Ψ(x) = Ψ0e
−ipx, p = (pµ) = (|~p|, ~p), (4.37)

where the spinor Ψ0 describes spin orientation. From the Weyl equation and ~n =
~p/|~p| follows:

~σ~nΦ0 = −Φ0. (4.38)

Thus the spin direction of Φ0 is constrained to be antiparallel to the momentum.
This spinor describes a left handed particle, as stated earlier.

The Weyl equations can be transformed to the momentum space. The first equation
becomes:

KȦBΨ̃B = kȦkBΨ̃B = 0, (4.39)
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with KȦB the four momentum of the fermion, {K,K} = 0 and kA its momentum
spinor. The treatment of the second equation is analogue. Both equations can be
solved leading to description of the two helicity states in momentum space. All
parameters of the solutions can be derived from the orthogonality condition and the
completeness relation. Final results are:

u+

(
~K
)

=

(
kA
0

)
end u−

(
~K
)

=

(
0

kȦ

)
(4.40)

The solution u+ corresponds with the + helicity state and u− with the − helicity
state respectively.

4.5 Spin-1 particles

The fields of spin-1 particles transform in theD
1
2

1
2 representation. It is not important

whether the particles carry colour (q.v. next section), thus photons and gluons can
be treated on equal footing. The equation of motion for a free massless spin-1
particle in the Lorenz gauge

∂ · A = 0 (4.41)

reads

�Aµ = 0. (4.42)

The general solution can be decomposed in plane waves:

Aµ =

∫
d4k

(
εµ(k)eikx + ε∗µ(k)e−ikx

)
. (4.43)

The Lorenz condition reduces four degrees of freedom of Aµ to three, which implies
that εµ still has the gauge freedom

ε′µ = εµ + ξKµ, (4.44)

since massless spin-1 fields should have two degrees of freedom, represented by right-
and left handed complex helicity vectors εµλ with λ = ±1. The last statement
follows from the analysis of the representations of the Poincaré group [12]. Following
orientation and normalisation conditions imposed upon εµλ determine its form:

{K,K} = 0 (4.45)

{ελ, K} = 0 (4.46)

{ελ, ελ} = 0 (4.47)

εḂAλ =
(
εȦB−λ

)∗
(4.48)

{ελ, ε−λ} = −2 (4.49)

with KȦB the momentum of the particle. For transverse vectors an extra condition
can be stated:

~ελ · ~K = 0. (4.50)
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This last relation reduces the number of degree of freedoms to two and can be
satisfied if ε is redefined via a gauge transformation. The helicity vectors satisfying
all constraints can be written in the following form:

εȦB+ =
√

2
kȦbB

〈kb〉
(4.51)

εȦB− =
√

2
bȦkB

〈kb〉∗
(4.52)

with bA an arbitrary spinor not proportional to kA. The overall phase factor is set
here to zero.

The gauge freedom of the helicity vectors is still manifest in the spinor language,
even if the spinors satisfy all defining conditions, and is equivalent to a different
choice for bA. This freedom is crucial for computations, since bA can be set to the
momenta of other spinors present in a scattering process, which leads to cancellation
of many diagrams.

Feynman diagrams of QCD processes contain not only their space-time dynamics but
also a complex colour structure, which enters the computations in form of products
and traces of representation matrices. To reduce the complexity of calculations,
colour and dynamics of the QCD processes are treated separately.

4.6 Colour decomposition in QCD

The tree level amplitude for a scattering process can be written as a sum of gauge
invariant functions containing the space-time dynamics, each with a certain colour
structure:

T = ign−2
∑
perms

F (TA, i, N)KF (P ). (4.53)

The matrix element depends on a phase space point P , a set of n particle momenta
and helicities. The strong coupling constant g is separated from the dynamics. The
function F (TA, i, N) is built up from representation matrices and colour indices.
The open indices of the representation matrices can only be the quark and antiquark
colour indices. The set of F ’s is independent and the decomposition of T in terms of
F ’s with Eq. (4.53) leads to a set of gauge invariant expressions KF (P ) in a unique
way. These KF (P ) are called subamplitudes. They are functions of momenta and
helicities only, and can be obtained with the help of colour-ordered Feynman rules.
The sum runs over all permutations of identical particles which change F .

The colour functions F can be read out from the Feynman diagrams with the help
of the colour flow concept, which is just a way of applying QCD Feynman rules. In
this concept the colour flows from external line to external line in a defined direction
(anticlockwise in this work). Depending on the kind of external lines, representation
matrices with some indices are added to a chain, which is just a product of such
matrices (Kronecker delta can also be a chain). A trace occurs when the chain is
closed and the only non contacted indices are identical. To be able to use colour
flow, Feynman diagram should be drawn in planar fashion (no crossed lines) with
all particles outgoing.
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Figure 4.1: The double line notation for the propagator of a hermitian matrix
field [53] .

In the following the concept for gluon scattering is shown, which is essential for the
present work. First the spin 1 field Lagrangian is written in a particular gauge: the
Gervais-Neveu gauge . The QCD gauge group is SU(N = 3) but the discussion
is carried out for an arbitrary N . For convenience the generators are normalised
slightly different in comparison with chapter 1.4.2:

Tr
(
TATB

)
= δAB, (4.54)

which leads to following commutation relations:[
TA, TB

]
= i
√

2fABC
(
TC
)
. (4.55)

To obtain the gauge Lagrangian in the Gervais-Neveu gauge, the matrix-valued field
strength is rewritten as antisymmetric part of the matrix-valued complex tensor
Hµν :

Hµν ≡ ∂µAν −
ig√

2
AµAν (4.56)

The Gervais-Neveu gauge fixing term −1/2Tr(Hµ
µH

ν
ν ) leads to the following gauge

Lagrangian in terms of Hµν :

Lgauge = Lclass + Lgauge−fixing = −1

2
Tr(HµνHµν − HµνHνµ)− 1

2
Tr(Hµ

µHν
ν), (4.57)

which can be rewritten back in terms of the Aµ fields (several integration by part
steps were performed) :

L = Tr(−1

2
∂µAν∂µAν − i

√
2g(∂µAν)AνAµ +

1

4
g2AµAνAµAν). (4.58)

This Lagrangian has a rather simple structure in terms of the matrix-valued fields,
which should be used for calculations instead of the coefficient fields. The gluon
propagator follows from the first term of the Lagrangian and reads (completeness
relations for the representation matrices were used):

∆̃ j l
i k (k2) =

δ li δ
j
k gµν

k2 − iε
. (4.59)

The propagator can be represented diagrammatically as a double line, with arrows
pointing from up to down indices, as shown in Fig. 4.1. Since all interactions involve
matrix products, with an up index from one field contracted with a down index from
an adjacent field, the vertices follow the pattern shown in Fig 4.2. The n-point vertex
of this type has only an n-fold cyclic symmetry.
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Figure 4.2: 3- and 4-point vertices in the double-line notation [53].

As example, three of eighteen possible Feynman diagrams for the scattering of two
gluons are shown in Fig. 4.3. The remaining 15 diagrams are obtained by making
non-cyclic permutations of the labels 1, 2, 3, 4, which is equivalent to making un-
restricted permutations of the labels 2, 3, 4. Each external line carries a factor of
TAi , with its matrix indices contracted by following the arrows backward through
the diagrams. From this example one can infer that the value of any diagram with
n external gluon lines is proportional to Tr(TA1 . . .TAn).

Figure 4.3: Three example tree diagrams with four external lines. All other diagrams
can be obtained by permutations of the labels 2, 3 and 4 [53].

The double-line notation in the Gervais-Neveu gauge should have motivated the
general concept of colour flow, where a representation matrix(TA)iLiR is added to
the chain for each external gluon with a colour A. The matrix indices iL and iR
will be contracted with indices iR and iL coming from the previous and the next
colour objects, thus leading always to traces in case of pure gluon scattering as
stated above. The ordering of the Ai indices in the trace is determined by the
counterclockwise ordering of the labels on external lines. In case of incoming quarks
Kronecker deltas with indices iiR for a quark with colour i and iLj for an antiquark
with colour j are added to the chain. The rules for quarks can also be motivated
by the double-line notation [53]. It is evident that only quark indices can occur in
chains as open indices. The Feynman rules for a theory stripped from the colour
structure are called colour-ordered rules.

Computing the square of an amplitude involves evaluation of expressions of the type:

Tr(TA1TA2TA3TA4)
[
Tr(TA1TA2TA4TA3)

]∗
, (4.60)
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Figure 4.4: Evaluation of products of traces of representation matrices. Each of two
closed single-line loops yields a factor of N [53].

with all repeated indices summed. Diagrammatically such computation is shown in
Fig. 4.4. Each single-line loop yields a factor of δ ii = N . It follows that the absolute
square of any particular trace provides a factor on N4, and the product of any trace
times the complex conjugate of any other trace yields a factor of N2.

The techniques discussed in this section will be used for calculations of tree-level
multi gluon scattering. Furthermore a helicity amplitude based approximation for
QCD matrix elements will be introduced in the next chapter.
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5

Hadroproduction of Jets

The diagram technique for QCD calculations, developed so far, is of little use for
the present work, since it describes quark and gluon scattering amplitudes which
are not “physical”. Quarks and gluons are confined inside colourless bound states,
the hadrons, and cannot appear as incoming and outgoing particles in a scattering
event. The physical particles which are scattered at the LHC are protons, and
therefore cross sections for processes involving protons (or in general hadrons) as
initial states are needed. Since the present work deals only with hadronic final
states, it is sufficient to find a description for hadroproduction of jets. The solution
to this problem is the QCD improved parton model, in which hadrons scattered at
high energies are treated as collections of free quarks and gluons (generally called
partons), which participate independently in the scattering process. In order to
extract quantitative results, knowledge of the distribution of the hadron energy and
momentum among its constituent partons is needed. This is described by the parton
distribution functions, which cannot be calculated from first principles and have to
be determined by experiments. This chapter introduces the QCD improved parton
model, as well as the definition of jets used in this work, and demonstrates the
application of the methods developed in the previous chapter for the two-jet cross
section. It introduces furthermore the Special Helicity Approximation (SPHEL)
usable for predictions of QCD multijet production. This approximation will be used
in the following chapters as a basis for a jet based variable for description of QCD
multijet processes.

5.1 The QCD improved parton model

The cross section for a hard scattering process initiated by two hadrons with the
four-momenta P1 and P2 can be written as:

σ(P1, P2) =
∑
i,j

∫
dx1 dx2 fi(x1, µ

2)fj(x2, µ
2) σ̂ij(p1, p2, αS(µ2), Q2/µ2), (5.1)

where p1 = x1P1 and p2 = x2P2 are the momenta of the partons participating in
the hard scattering process, and Q is the characteristic scale of this process. The
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Figure 5.1: Schematic description of a hard scattering process [25].

functions fi(x, µ
2) are quark or gluon distributions, which give the probability to find

a quark or a gluon with a fraction x of the hadron momentum at a factorisation scale
µ. This scale is an arbitrary parameter, which separates the long- and short-distance
physics. A parton emitted with a transverse momentum less than µ is absorbed into
the parton distribution and does not take part in the hard process, contrary to a
parton with large transverse momentum, which is a part of the short-distance cross
section σ̂ij. Because of asymptotic freedom, the coupling at high energies is small,
and the short-distance cross section can be calculated as a perturbation series with
methods developed in chapters 1.4.2 and 4. The scale µ should be chosen to be of
the order of the hard scale Q and is set in this work equal to the renormalisation
scale, following Ref. [25]. Figure 5.2 shows the parton distribution functions from
the CTEQ group (CTEQ 6.1) for gluons, up, down, and anti-up quarks evaluated
at µ2 = Q2 = 100 GeV 2. The ability to separate the total cross section into the
short-range part, which is insensitive to the physics at the low momentum scales
and involves only high momentum transfer, and the long-distance part, which is
absorbed into the description of the incoming hadrons, is rooted in the factorisation
theorem, which can be proved to all orders in perturbation theory [25].

Figure 5.1 shows a schematic description of the hard scattering process.

5.2 Kinematics and jet algorithms

The incoming partons of a hard scattering process have generally different fractions
of incoming hadrons momenta which are assumed to be purely longitudinal. As a
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Figure 5.2: The CTEQ 6.1 parton distribution functions evaluated at a µ = Q of
10 GeV .

result the centre of mass frame of the hard process will be in general longitudinally
boosted with respect to the one of incoming hadrons. Therefore, it is convenient
to use quantities with simple transformational behaviour under longitudinal boosts.
Such quantities are the rapidity y, the transverse momentum pT and the azimuthal
angle φ. The rapidity y is defined by:

y =
1

2

(
E + pz
E − pz

)
, (5.2)

and is additive under boosts along the z -axis. The last property implies that rapidity
differences are invariant under such boosts. The four momentum of a particle with
mass m can be written as:

pµ = (E, px, py, pz)

= (mT cosh y, pT sinφ, pT cosφ,mT sinh y), (5.3)

where the transverse mass is defined as mT =
√
p2
T +m2. In the limit m → 0 the

rapidity coincides with the pseudorapidity η defined in chapter 3.

After the hard interaction, partons undergo the hadronisation process and emerge
as bunches of high energy hadrons collimated in the direction of the original parton
in the detector. These bunches are called jets. Due to the current limitation of
the understanding of non-perturbative QCD it is impossible to predict the exact
patterns of produced hadrons. Instead, calculations in terms of quarks and gluons
are related to the observations in terms of jets. In order to establish a link between
both entities, well defined jet-finding algorithms are applied to the predicted partonic
configurations as well as to the observed hadrons. Though partonic and hadronic
jets are not equivalent there is a strong evidence [54] that both distributions can be
compared with controlled accuracy.
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The cluster-type kt [55–57] jet finder, implemented as FastJet algorithm [58], was
selected for the present work1. The cluster-type jet finders are based on successive
pair-wise recombinations of particles and have the important property of infrared
and collinear safety. At the parton level infrared safety means that calculated cross
sections are finite despite the infrared divergences in the single diagrams. Unitarity
ensures that the sum of the probabilities for one of the divergent configuration to
happen or not to happen is 1. The infrared safety on physical hadron level means,
that measured jet variables and/or definitions of a jet do not change when a soft
gluon is radiated or when a parton divides into collinear partons.

The kt jet finder [57, 58] computes first the kt distance dij of all pairs of protojets
i, j and additionally the beam distance diB = kti for each single protojet i. In the
next step the minimum distance dmin is selected out of all possible dij and diB. If
dmin is a dij, protojets i and j are merged via summation of their four momenta
(alternative recombination schemes are possible); and if it is a diB the protojet i is
selected as final jet and removed from the list of protojets. These steps are repeated
until no protojets are left on the list. The distances are defined in the following way:

dij = min(k2
ti, k

2
tj)R

2
ij/R

2, (5.4)

with

R2
ij = (ηi − ηj)2 + (φi − φj)2, (5.5)

where kti, ηi, and φi are the transverse momentum, rapidity and azimuth of protojet
i, and R is a user chosen scaling factor.

The kt algorithm is suitable for hadron colliders, since only quantities which are
invariant under longitudinal boosts are used. The algorithm is furthermore collinear
safe, since collinear partons originating from one particle are immediately recom-
bined, leading to the same result as if the parton had not divided. The high kt
jets are similarly not affected by the ksoftjett → 0 limit whether they contained a
low kt sub-jet or not. The algorithm possesses furthermore following properties:
it maps every hadron from the final state to exclusively one jet without overlap,
and it can resolve nearby high energetic objects like jets originating from decays
of highly boosted particles [59] or high energetic jets from multiparton production.
The general good properties of the algorithm together with the last property were
the decisive factors to choose this jet finder for the present work.

The FastJet version of the kt algorithm reduces the algorithm complexity from N3,
to N lnN , N being the number of particles.

5.3 Two-jet cross sections

Two jet events are the result of the scattering of two partons, one from each hadron
respectively, into two high energetic partons, which form hadronic jets. Momentum
conservation forces the two final state partons to have equal and opposite momenta
in the centre of mass frame of the hard process. If one neglects the small intrinsic
transverse momentum of the incoming partons and assumes that exactly two partons

1This work uses the FastJet implementation of the kt algorithm integrated in the software
framework of the CMS experiment (CMSSW 1 6 12)
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in the final state were created, the jets in the laboratory frame will be back-to-back
in azimuth and balanced in transverse momentum.

The parton cross section for a

parton1(p1) + parton2(p2) = parton3(p3) + parton4(p4) (5.6)

scattering process, described by a matrix element T , reads [25]:

E3E4d
6σ̂

d3p3d3p4

=
1

2ŝ

1

16π2

∑̄
|T |2 δ4(p1 + p2 − p3 − p4), (5.7)

where
∑̄

denotes the average over the initial and sum over the final-state spins
and colours, and ŝ = (p1 + p2)2. The cross section contains contributions from
processes with different initial and final state partons (quarks and/or gluons), and
hence can be written as a sum of terms each representing the contribution from one
such process. The result for the two jet inclusive cross section is [25]:

d3σ

dy3dy4dp2
T

=
1

16πs2

∑
i,j,k,l=q,q̄,g

fi(x1, µ
2)

x1

fj(x2, µ
2)

x2

×
∑̄
|T (ij → kl)|2 1

1 + δkl
.

(5.8)

The indices (i, j) stand for incoming and (k, l) for outgoing partons, s is the square of
the centre of mass energy of the hadronic process, fi(x, µ) represent the distributions
for the parton type i (i = u, ū, d, d̄, g, . . . , etc.), evaluated at the momentum scale µ,
and y3 and y4 are the rapidities of the outgoing partons. The Kronecker delta
introduces the statistical factor necessary for identical final state partons. The
momentum fractions x1 and x2 can be determined from the rapidities y3 and y4

via momentum conservation:

x1 =
1

2
xT (ey3 + ey4), x2 =

1

2
xT (e−y3 + e−y4), (5.9)

where xT = 2pT/
√
s.

The scattering angle of massless partons in their centre of mass frame can be deter-
mined from the observed rapidities of jets. This angle θ∗ is given by:

cos θ∗ =
p∗z
E∗

=
sinh y∗

cosh y∗
= tanh

(
y3 − y4

2

)
, (5.10)

where * denotes quantities in the centre of mass frame. The second equation follows
from the definition of the four momentum in terms of rapidity, and the last equation
holds, because the rapidities of both jets in the centre of mass frame are equal in
magnitude but have opposite signs. It is useful to define the invariant mass of the
jet-jet system as additional variable:

M2
JJ = ŝ = 4p2

T cosh2 y∗. (5.11)

To compare the theoretical predictions with experimental results one can investi-
gate the angular distribution of jets. The matrix element of the 2 → 2 scattering
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Figure 5.3: Three of eighteen possible Feynman diagrams for scattering of two glu-
ons. Five more diagrams of each of these three types, with external labels 2,3, and
4 permuted also contribute [53].

process is sensitive to the scattering angle in the centre of mass system. Using the
transformation

dp2
Tdy3dy4 ≡

1

2
sdx1dx2d cos θ∗, (5.12)

the differential cross section for a 2-jet system with the invariant mass MJJ to scatter
at the angle θ∗ in the centre of mass frame can be written as:

d2σ

dM2
JJd cos θ∗

=

∑
i,j=q,q̄,g

∫ 1

0

dx1 dx2 fi(x1, µ
2)fj(x2, µ

2)δ(x1x2s−M2
JJ)

dσ̂ij

d cos θ∗
,

(5.13)

with
dσ̂ij

d cos θ∗
=
∑
k,l

1

32πM2
JJ

∑̄
|T (ij → kl)|2 1

1 + δkl
. (5.14)

Expressions for the leading order matrix elements for all possible processes can be
found in [25]. The process gg → gg has however the largest relative contribution [25]
and can be used to demonstrate computational techniques developed in the previous
chapter.

5.4 Application of the helicity amplitudes tech-

nique

To compute the scattering amplitude for gg → gg on has to evaluate eighteen Feyn-
man diagrams, three of which are shown in Fig. 5.3. QCD amplitudes can be de-
composed into the colour and the dynamical part with Eq. (4.53), and the functions
KF (P ) are denoted as partial amplitudes A in case of gluonic scattering [27, 53].
All gluons are treated as outgoing and the tree-level 4-gluon scattering amplitude is
then written as:

T = g2
∑
perms

Tr(TA1 . . . TA4)A(1, 2, 3, 4). (5.15)

The diagrams of the Fig.5.3 correspond to the partial amplitude A(1, 2, 3, 4). The
partial amplitudes are cyclically symmetric [27, 53],

A(2, 3, 4, 1) = A(1, 2, 3, 4), (5.16)
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which is also true for the general case of n-gluon scattering.

The three- and four-gluon vertices in the Gervais-Neveu gauge are simpler as the
one derived in section 1.4.2. The three-gluon vertex factor in the colour-ordered
notation is [53]:

iVµ1µ2µ3(K1, K2, K3) = −i
√

2g(K1µ3gµ1µ2 +K2µ1gµ2µ3 +K3µ2gµ3µ1), (5.17)

while the four-gluon vertex reads:

iWµ1µ2µ3µ4 = ig2gµ1µ3gµ2µ4 , (5.18)

with Ki being a four momentum vector of one external line. Calculations can be
simplified further by contracting the vector indices (1,2,3,4) with the incoming po-
larisations vectors εi (helicity labels are suppressed):

iV123 = −i
√

2g [(ε1ε2)(K1ε3) + (ε2ε3)(K2ε1) + (ε3ε1)(K3ε2)] (5.19)

iW1234 = +ig2(ε1ε3)(ε2ε4) (5.20)

where the external lines are numbered sequentially, counterclockwise around the
vertex. If an attached line is internal, the corresponding polarisation vector is a
placeholder for an internal propagator. From the definition of the three and four
point vertices and the Feynman diagrams in Fig. 5.3 follows, that every term in the
tree-level scattering amplitude includes at least one product of polarisation vectors.

The colour-ordered three-point vertex is antisymmetric on the reflection of the in-
dices (123↔ 321), while the four-point vertex is symmetric on the reflection of the
four indices, that implies the general reflection identity for n-gluon scattering:

A(n, . . . , 2, 1) = (−1)nA(1, 2, . . . , n) (5.21)

In the next step definitions of the helicity vectors in the Weyl notation are employed:

εȦB+ =
√

2
kȦbB

〈kb〉
, (5.22)

εȦB− =
√

2
bȦkB

〈kb〉∗
, (5.23)

where bA is an arbitrary spinor due to gauge freedom. Having this freedom in
choosing bA one can derive the following general statements. Setting this spinor of all
positive helicity polarisation vectors equal to the momentum spinor kA of one of the
negative helicity polarisation vectors leads to the vanishing of many products. Since
spinor products are antisymmetric, the product of two identical spinors is equal zero.
A product of two arbitrary positive helicity gluons involves such vanishing spinor
product, as well as a product of any positive helicity gluon with the particular
negative helicity gluon, whose momentum spinor equals bA. Since every amplitude
includes at least one product of polarisation vectors, a non zero amplitude can only
occur if there is more than one gluon with helicity different from the helicity of the
others. In case of four-gluon scattering2 there is only one possibility left: two gluons
have negative and two gluons positive helicities.

2From here on all momenta are treated as outgoing leading to the transformation of the ampli-
tudes from gg → gg to ∅ → gggg.
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One of the non vanishing amplitudes is A(1−, 2−, 3+, 4+): The gauge spinors are
chosen in the following way :

bA1 = bA2 = kA3 , (5.24)

bA3 = bA4 = kA2 . (5.25)

This choice leads to the vanishing of all polarisation products, except (ε1ε4). The
third Feynman diagram in Fig. 5.3 does not contribute to the process, since it
involves a factor of (ε1ε3). The second diagram vanishes, because of the 235 vertex
(products: (ε2ε3), (K3ε2), and ((K5 = −K2 −K3)ε3)). Only the first diagram is left
and must be evaluated. Straightforward calculation and deployment of momentum
conservation lead to the result:

A(1−, 2−, 3+, 4+) =
〈12〉4

〈12〉 〈23〉 〈34〉 〈41〉
(5.26)

Using cyclic symmetry any other partial amplitude with adjacent negative helicities
can be inferred.

A(1+, 2−, 3−, 4+) =
〈23〉4

〈12〉 〈23〉 〈34〉 〈41〉
(5.27)

There is only one amplitude left to be calculated : A(1−, 2+, 3−, 4+) - all others can
be determined using cyclic permutations. This amplitude can be either calculated
in exactly the same way as the first one, using other gauge spinors assignments or
via the technique of the decoupling of a fictitious photon. This technique roots in
the observation that the change of the gauge group from SU(N) to U(N) corre-
sponds to the addition of a generator proportional to the identity. This generator
commutes with all other generators and hence, there is no interaction term in the La-
grangian density involving this term. Therefore, any scattering amplitude involving
the associated particle (fictitious photon) must be zero.

Assuming that one of the particles in the 4-gluon scattering is not a gluon but a
fictitious photon one can write for the total scattering amplitude (TA4 ∝ I)

0 =Tr(TA1TA2TA3) [A(1, 2, 3, 4) + A(1, 2, 4, 3) + (1, 4, 2, 3)]

+ Tr(TA1TA3TA2) [A(1, 3, 2, 4) + A(1, 3, 4, 2) + (1, 4, 3, 2)]
(5.28)

The contents of each square bracket must vanish. After the assignment of desired
helicities, the first square bracket leads to the following result:

A(1−, 2+, 3−, 4+) = −A(1−, 2+, 4+, 3−)− A(1−, 4+, 2+, 3−) (5.29)

From this equation the last amplitude with nonadjacent negative helicities can be
calculated, since other amplitudes have the helicity pattern, which was already eval-
uated. The desired amplitude reads:

A(1−, 2+, 3−, 4+) =
〈13〉4

〈12〉 〈23〉 〈34〉 〈41〉
(5.30)

Now the amplitude for the whole process can be calculated. There are only three
independent partial amplitudes, and in the present work they are chosen to be

A3 ≡ A(1, 2, 3, 4) (5.31)

A4 ≡ A(1, 3, 4, 2) (5.32)

A2 ≡ A(1, 4, 2, 3) (5.33)
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Each of this amplitudes contributes to two different colour objects, since these am-
plitudes are invariant under reflections but the traces are not. In the next step the
sum of the amplitudes can be squared and the colour sum can be carried out. Using
the result from the double line notation of the previous chapter - absolute square
of each trace leads to a factor of N4 and the product of any trace times complex
conjugate of any other trace yields N2 - one finds out:∑

A1,A2,A3,A4

|T |2 =
(
2N4 + 2N2

)∑
j

|Aj|2 + 4N2
∑
j 6=k

A∗jAk

=
(
2N4 − 2N2

)∑
j

|Aj|2 + 4N2

(∑
j

A∗j

)(∑
k

Ak

)
,

(5.34)

where j and k are summed over 2,3,4. The equation derived from the decoupling of
fictitious photon leads to

∑
j Aj = 0, and the second term in the Eq. (5.34) vanishes

(the term A3 cancels the other terms). The final result after performing the colour
sum and the sum over helicity amplitudes is:∑

col,hel

|T |2 = g4N2(N2 − 1)×

(
3∑
i=1

4∑
j=i+1

(i · j)4

)
×

 ∑
perm(234)

1

(1 · 2)(2 · 3)(3 · 4)(4 · 1)

 ,

(5.35)

where (i · j) is a four vector product of the vectors Ki and Kj. Introduction of the
Mandelstam variables s = (1 + 2)2, t = (1 + 3)2, and u = (1 + 4)2 (all momenta are
outgoing), leads to (inserting N = 3):∑

col,hel

|T |2 = 288g4

(
1

s2t2
+

1

s2u2
+

1

t2u2

)(
s4 + t4 + u4

)
. (5.36)

In this result the summation over initial and final state helicities and colours was
performed. Since physical amplitudes involve averaging and not summing over the
initial states, the general result Eq. (5.35) has to be divided by 4(N2−1)2. There are
four possible helicity configurations for the incoming gluons and (N1 − 1)2 possible
colour configurations, since (N2 − 1) is the number of gluon colours in a SU(N)
theory. If one performs the averaging in the QCD case, and rearranges the terms,
one obtains the following result in agreement with [60]:∑̄

|T |2 = g4 9

2

(
3− tu

s2
− su

t2
− st

u2

)
(5.37)

5.4.1 General results

After the development of the result for a process with four gluons it is important
to know which statements hold also for a general case of n-gluon scattering. First
of all, the symmetry properties of the partial amplitudes are true for all n-gluon
processes:

A(2, . . . , n, 1) = A(1, 2, . . . , n) (5.38)

A(n, . . . , 2, 1) = (−1)nA(1, 2, . . . , n) (5.39)
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The structure of three and four gluon vertices ensures that every term in any tree-
level amplitude is proportional either only to products of polarisation vectors or
to both: products of polarisation vectors and products of polarisation vectors with
external momenta. The factors involving momentum vectors originate in three gluon
vertices. Every tree diagram with n external lines, called legs, has maximally n-2
vertices3. Therefore, there are maximally n-2 momenta entering the diagram, and
it follows that every diagram must have at least one product of two polarisation
vectors. If products of all possible pairs of polarisation vectors were equal zero, the
amplitude for this process would vanish. This is the case for partial amplitudes
where all gluons have the same helicity, since the gauge momentum can be chosen
to be equal for all gluons, which would lead to a spinor product of two equal light-
like momenta. This is also true for amplitudes where all but one gluons have the
same helicity. The gauge momentum in this case has to be chosen equal to the
momentum of the single negative (positive) helicity gluon. In case of a general n
gluon amplitude where gluons i and j have negative helicity, while the helicity of all
other gluons is positive, the amplitude takes a short analytical form [27]. Summing
up, one can state the following general results:

A(1±, 2+, . . . , n+) = 0, (5.40)

A(1±, 2−, . . . , n−) = 0, (5.41)

A(1+, . . . , i−, (i+ 1)+, . . . , j−, . . . , n+) =

(√
2
)n

2

〈ij〉4

〈12〉 〈23〉 · · · 〈n− 1n〉 〈n1〉
. (5.42)

The indices products in the last equation are again products of the four vectors with
the particular indices.

5.5 Multijet production and special helicity am-

plitudes

The QCD improved parton model allows also calculations of processes with many
quarks and gluons in the final state. These processes manifest at the detector level
as multijet events. In leading order QCD the cross sections for finding n jets in
a defined region of phase space is calculated at the parton level from tree-level
diagrams. These calculations can be done with techniques developed so far, but the
number of diagrams which contribute to the processes rise, and the exact treatment
of colour structure becomes more complicated. The general expression for the cross
section of an n jet final state reads:

σn =
∑

i,j,k1,...,kn=q,q̄,g

∫ 1

0

dx1dx2 fi(x1, µ
2)fj(x2, µ

2)σ̂ij→k1,...,kn (5.43)

The leading order matrix elements for all the 2→ 3, 4, 5, . . . , 18 processes are known
[61]. The cross sections fall roughly geometrically with increasing n, because of the
dependence on αns .

3To maximise the number of vertices while holding the number of legs minimal one chooses
three gluon vertices as building blocks of the diagram. Each vertex has three legs, and if there are
m vertices one can arrange them in a way, that m−2 vertices have only one external leg, the other
two legs are connecting them with other vertices. Two vertices are the last ones in the chain and
have 2 external legs each. Adding the number of legs one gets m-2+4 = m+2.
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Parallel to performing exact calculations, efforts have been made to approximate
the matrix elements for any given n. Several approximation schemes were developed
and this work uses the first part of the SPecial HELicity (SPHEL) approximation
proposed in [27]. The term special helicity refers to the processes where all but
two partons have the same helicity when all the momenta are outgoing, since short
analytical expressions for KF (P ) exist for this helicity configurations. The precise
expression of the approximation depends on the number of quarks present in the n-
particle scattering process. The full SPHEL approximation includes terms for zero,
one and two massless quark pairs. Since only the first term of the approximation
(pure gluonic case) will be of importance for this work, it is only this part, that will
be presented here. It was proposed originally by Kunszt and Stirling [62] and was
incorporated later in the more general SPHEL approximation.

SPHEL contains two assumptions. The first one is that the special helicity config-
urations are typical for all possible configurations. The second assumption is that
the non leading order colour contribution can be neglected. Reduction of the colour
contribution to the leading order ensures factorisation of the matrix elements into
the colour and the dynamical part, which become independent. Furthermore, there
is no interference between the KF (P ). The dynamical part for the gluonic special
helicity configurations has been presented in the previous section cf. Eq. (5.40).

The SPHEL approximated square of the matrix element reads:∑
col,hel

∣∣T lk (q1q̄1; · · · ; qlq̄l; g1 · · · gk)
∣∣2 =

alkS
l
kC

l
k(N)K l

k(q1q̄1; · · · ; qlq̄l; g1 · · · gk),
(5.44)

where l is the number of quark pairs, k the number of gluons, K l
k is the function,

which entails the dynamic of the process, alk is a free tuning factor, C l
k(N) is the

leading order colour factor, and Slk is a combinatorial factor to account for the
uncalculated helicity amplitudes.

The l = 0 part of SPHEL uses the property that the subamplitudes are zero when
less than two gluons have a helicity opposite to the helicity of the other gluons. For
k ≤ 5 SPHEL coincides with the exact result. The different contributions to the
square of the matrix element (factors of gn are left out and have to be taken later
into account):

K0
k = 2

∑
1≤i≤j≤k

(i · j)4
∑

perm(2...k)

1

(1 · 2)(2 · 3) · · · (k · 1)
(5.45)

S0
k =

Number of non-zero amplitudes

Number of SPHEL amplitudes
=

2k − 2(k + 1)

k(k − 1)
(5.46)

C0
k = 4(N/2)k−2(N2 − 1) (5.47)

The errors introduced by the approximation depend on the process under consider-
ation. The negligence of non leading order colour contribution does not affect much
the gluonic sub-processes, for example for k = 6 it is about 1%. However it can
amount up to 10% for processes involving one quark pair. Although these errors
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change the absolute numbers, they do not modify the shapes of the distributions
[27]. The last statement is also true for the first assumption4, whose impact on
the total cross section is even worse . The gluonic SPHEL part overestimates the
exact gluonic cross section at the Tevatron Run I collider energy (

√
s = 1.8 TeV ),

for instance by a factor of 1.4 for k = 7. A tuning factor a0
k was introduced to

correct this overestimation. This factor depends however on the collider energy and
on the phase space cuts, which leads to the conclusion that SPHEL is not able to
give precise results for the total cross section without tuning. The main feature of
SPHEL is the correct estimation of the shapes of various distributions [27]. This
feature inspired the construction of event shape variables based on the gluonic part
of the SPHEL. These variables will be introduced in the following chapter.

4The special helicity configurations are typical for all possible configurations.



6

Antenna Variables

The search for physics beyond the standard model is one of the main goals of the
CMS detector, as already stated in chapter 3. Although the LHC will be able
to access the desired domain, where, according to the theoretical predictions, new
phenomena should appear, the path to discoveries will not be straightforward, due
to the dominance of standard model processes, in particular QCD. For example,
the cross section to produce a jet with a transverse energy larger than 100 GeV is
greater than 1 µb, as it can be seen in Fig. 6.1, in contrast to the total production
cross section for the SUSY LM1 point, which amounts to ca. 55 pb, see chapter
2. Depending on the characteristics of the signal, different techniques have been
developed to suppress various standard model backgrounds.

The approach presented in this work intends to describe QCD multijet events, which
are one of the main backgrounds in searches for new signals in the all-hadronic
channel, by utilising the theoretical knowledge about the structure of QCD matrix
elements. In the present work SUSY based on the mSUGRA model with R-parity
conservation was chosen as an example for a possible signal (cf. chapter 2). As it
was shown in the previous chapter, scattering amplitudes for multiparton production
can be approximated by a sum over terms with a particular pole structure in the
phase space, see chapter 5.5. Such terms are called QCD-antenna [25, 63], and since
they lie at the core of the present approach, the variables constructed in this work
are called antenna variables. The main goal of the present work is the investigation
of these variables. The variables should be sensitive to the differences between event
structures of QCD multijet production originating mostly in the gluon radiation,
and the decays of heavy particles (e.g. SUSY), which can also lead to many jets in
the final state.

This chapter describes first the software and datasets which were used for the stud-
ies. Then different antenna variables are introduced, and it is shown how they are
implemented numerically. In the next step “proof of principle” results at the parton
level for the process gg → gg are presented. They are followed by results for the
variables at the hadron jets level (without detector simulation). Next the transition
to the jets constructed from simulated energy deposition in the calorimeter cells of
the CMS detector is undertaken. All results are summarised in plots, before in the
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Figure 6.1: Standard model cross sections at the Tevatron and LHC colliders [64].

last step correlations between the antenna and event shape variables (sphericity and
thrust) are investigated.

6.1 Datasets

The studies of this work were performed using the 1.6.12. version of the software
framework of the CMS experiment (CMSSW 1.6.12). The various variables are
implemented as the so called “selector modules” in the framework of the physics
analysis toolkit (PAT) for SUSY searches [65].

The QCD datasets are part of the official CMS CSA071 production [66]. The whole
produced data contains more than 150 million simulated standard model events, and
represents the first 100 pb−1 of LHC data. For technical reasons the data is separated
in three “soups”. The “gumbo” soup contains mainly QCD and Photon+Jet events,
and is of interest for the present work. All events of this soup are generated with
the Pythia event generator [67]. The SUSY group distilled a sub-sample from the

1Computing Software and Analysis challenge
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SUSY Point Number of events MC σ [pb] weight

LM1 120624 54.86 0.45
LM4 93751 25.11 0.261
LM8 83708 12.19 0.146
HM3 12133 0.047 0.0038

Table 6.1: Number of simulated events for each SUSY Point, as well as corresponding
cross section in pb and weighting factor for the integrated luminosity of 1 fb−1.

“gumbo” soup, which consists of potential background events for the SUSY searches
in the all-hadronic channel and is characterised by the following cuts: each event
contains at least one jet with Et > 80 GeV and one jet with Et > 20 GeV . The
events should furthermore pass one of the High-Level-Triggers based on the missing
transverse energy and number of jets [66]. This sub sample2 containing 5603793
events was selected for the present study. Since the selection of the events is based
on the triggers, the events represent a realistic scenario for the LHC data taking.
The simulation was affected by a bug [68]: The momenta of some jets originating
from decays of either long lived b-, and c-hadrons or of τ -leptons are given in the
reference frame of the mother particle, and not in the laboratory frame. As a result
such events have wrong values for Et = E sin θ of the jets and for missing transverse
energy, since almost the entire energy of the b-hadron is lost. These events are not
used for the present analysis. This affects 1-2% of all QCD events.

The SUSY datasets for the points LM4, LM8, and HM3 were simulated with Pythia
6.409 in a private Monte Carlo production [69]. The events were simulated and
reconstructed with the full CMS detector simulation using CMSSW software versions
1.6.5 - 1.6.7 [69].

The dataset for the SUSY LM1 point is a part of the official CSA07 production. It
was produced and reconstructed with the CMSSW version 1.4.X, where X > 3 [70].
In the present study all events are weighted to represent an integrated luminosity of
1 fb−1. Table 6.1 summarises the information on SUSY datasets used in the present
work.

6.2 Definition of the variables

The theoretical machinery developed in the last chapters leads to an approximation
for cross sections of multijet processes. Although the approximation overestimates
the total cross section, the shapes of different distributions are in agreement with
exact results [27]. Instead of using this approximation for predictions of cross sec-
tions, this work employs it as a basis for the construction of observables from the
momenta of jets measured in the detector. All jets are reconstructed with the kt
algorithm introduced in section 5.2, the user chosen scaling factor R is set to 0.4.

Before the definition of the variables, further approximations have to be made:

• All differences between pure gluonic and gluon-quarks events are ignored, so
that jets measured in the detector are treated as gluon jets. This crude ap-
proximation can be justified, since gluons are the dominating initial states at

2HLT JetMET Skim:
/CSA07JetMET/CMSSW 1 6 7CSA07GumboB1PDJetMET Skims1susyJetMET/USER
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the LHC for low partonic centre of mass energies (the majority of the dijet
production for the transverse momentum range less than 1 TeV will be with
gg initial state [71]) and gluon quark initial states are dominating a wide kine-
matic range, c.f Fig. 6.2 showing the fractional contribution of the various
partonic processes to the total jet cross section. This quantitative result is
anticipated from the form of the partonic pdfs, c.f Fig. 5.2. Furthermore,
processes with gluons are more important, because of the larger colour charge
of the gluons3[25]. As example, Kuijf ([27]) compared expected LHC leading
order cross sections (

√
s = 16 TeV in his thesis) with various initial and final

states for four and five jet events (He considered partons with pt > 60 GeV ,
η < 2.0, and with the angle between two partons larger than 40◦). He found
out, that pure gluon scattering is responsible for 53 % of the total four jet
cross section and 49 % of the total five jet cross section respectively. The next
most important processes were those including one quark pair, they amounted
to 38% of the total crossection for the four jet, and 37% for the five jet case.
Similiar reason for the importance of the processes involving gluons in the final
state is the difference between Sudakov form factors for the splitting g → gg
in comparison with q → qg. The Sudakov form factors give the probability
for a parton to evolve from a hard to a soft scale without emitting a parton
and are used in parton showering approaches of Monte Carlo event generators.
The probability to radiate a gluon is larger for the gluon initial state, because
of its larger colour factor [71].

• Antenna structures involve not only momenta of the outgoing but also the
momenta of incoming partons. In the present approach momenta of incoming
partons are approximated using energy conservation by summing over the jets
in the final state assuming, that the momenta of these partons have vanishing
transverse components. The terms are generalisations of the results from the
section 5.3:

k1 =

√
s

2
(x1, 0, 0, x1), with x1 =

1√
s

∑
i

mT
i (eyi) (6.1)

k2 =

√
s

2
(x2, 0, 0,−x2) with x2 =

1√
s

∑
i

mT
i (e−yi) (6.2)

mT
i =

√
m2
i + pT2

i being the transverse mass of a jet i and yi is the rapidity of
jet i. The sum runs over all jets.

Antenna variables are constructed from all well defined jets (c.f. 6.4) present in the
event and the approximated momenta of incoming partons. The straightforward

3Only gluons introduce representation matrices into the amplitudes, which leads to larger factors
via evaluation of traces. Colour charge is often quantified as the value of the quadratic Casimir
operator of the particular representation of the SU(3) group. The quadratic Casimir operator of
the fundamental representation is 4/3, while it has the value 3 for the adjoint representation.
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Figure 6.2: Decomposition of the total jet cross section into the partonic processes
at the LHC. The fractional contributions are shown versus the scaling variable xt =
2pt/
√
s [4].

definition of the antenna NJet* variable An∗ follows closely the gluonic SPHEL
formula and utilises all jets in the event:

An∗ =
2k − 2(k + 1)

k(k − 1)
· (3/2)k−2 · (64)×∑

1≤i≤j≤k

(im · jm)4
∑

P (2...n)

1

(1m · 2m)(2m · 3m) . . . (km · 1m)
×GeV 2∗(n−2),

(6.3)

with n number of jets in the event, and k = n+ 2 number of momenta in the event
(jets and approximated incoming partons). The momenta are written in the pi ≡ i
notation. The index m indicates that these are measured or approximated momenta.
Regarding a multijet event, and assuming this event was produced by a QCD process,
the value of this variable can be interpreted as a crude guess for the value of the
partonic matrix element (a factor of gn has to be taken into account) of this particular
event in the gluonic SPHEL approximation. However, this interpretation is only
valid for QCD, not for SUSY.

A better interpretation, which can be also extended to the subsequent variables, is
the treatment of this variable as an average inverse invariant mass of jet pairs of the
event [72]. The definition of the variable suggests this interpretation, since events
with many adjacent jets lead to larger values of the variable4 — many of the four
products in the denominator tend to be small— than events with large invariant

4In the subsequent sections the variables will be multiplied with (−1) and to be consistent with
the plots the values of the negative antenna variables will be discussed. Consequently the sentence
will be changed to: events with many adjacent jets lead to smaller values of the variable.
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masses originating from decays of heavy particles. In summary, the variable is
sensitive to the invariant masses present in the event. Hence most QCD events,
which are characterised by gluon emissions, should lead to a larger value of the
variable than SUSY events, in which many large invariant masses are present.

The variable defined so far has a drawback, since it partitions the data in bins
of number of jets. Each such “NJet” bin will have in general varying statistics.
Additionally, there can be a lot of migration of the events between the bins, since the
boundaries depend on the thresholds of the jets and jet definitions, which complicates
the comparability of the studies. The situation is getting even more complicated
using jets reconstructed from calorimeter cells compared to jets on generator level.
In order to use a variable of this kind as an additional discriminator in existent
studies, which require a minimum number of jets and no maximum number, new
variables using a defined number of leading jets can be constructed.

The simplest example is the antenna 3Jet variable A3, which uses only the first three
leading jets of each event:

A3 = 216×
∑

1≤i≤j≤5

(im · jm)4
∑

P (2...5)

1

(1m · 2m)(2m · 3m) . . . (5m · 1m)
×GeV 2. (6.4)

Requiring three jets one rejects QCD dominated dijet events and makes this variable
compatible with the proposed SUSY search in multijet events (Njet ≥ 3) with large
missing transverse energy [4]. A possible drawback of this variable is the utilisation
of only three jets, which might not be enough to describe properly the different event
structures of QCD and SUSY.

In order to incorporate more of the event information in the variable, a antenna
3plus variable A3plus is defined. This variable uses the vector sum of all jets in the
event, besides the two leading jets, as the third jet:

A3plus = 216×
∑

1≤i≤j≤5

(im · jm)4
∑

P (2...5)

1

(1m · 2m)(2m · 3m) . . . (5m · 1m)
×GeV 2, (6.5)

with 5m ≡ pm5 =
∑n

i=3 p
m
i , n being the number of jets in the event.

Finally, a antenna 6jet variable A6 is defined by requiring events with at least six
jets, which are then used to calculate the value of the variable. This variable is a
compromise, because it incorporates more of the event structure than the variables
using three jets but does not partition the data in many bins like the An∗. Provided
that this variable has the desired discrimination power, it could be used in further
studies, which would in that case require at least six jets. The variable is given by:

A6 =
12393

4
×

∑
1≤i≤j≤8

(im · jm)4
∑

P (2...8)

1

(1m · 2m)(2m · 3m) . . . (8m · 1m)
×GeV 8. (6.6)

The choice of the six leading jets will be motivated in subsequent sections, where the
distributions of the variables for QCD and SUSY (LM4) data samples are shown.

6.2.1 Numerical implementation

The permutation sum occuring in the definitions of all variables is evaluated using the
technique proposed by Kuijf in [27]. To exemplify the problem, a general expression
P is defined:

P =
∑

P (1...n)

f(L, 1, . . . , n, R), (6.7)
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with

f(L, 1, . . . , n, R) =
1

(L · 1)(1 · 2) · · · (n ·R)
, (6.8)

where L and R are arbitrary momenta. Naive evaluation would lead to genera-
tion and storage of all permutations of indices 1 . . . n, k and multiplication of n+ 1
momenta for each function f . Many of these functions are however closely inter-
connected, since many of the included momenta products are identical. This can
be seen if one compares two functions f differing only by two indices which were
swapped - two neighbour indices were interchanged. The ratio of such two functions
f is:

f(L, 1, . . . , a, b, c, d, . . . , n, R)

f(L, 1, . . . , a, c, b, d, . . . , n, R)
=

(a · c)(b · d)

(a · b)(c · d)
. (6.9)

It follows, that if all permutations are ordered in a way that two successive permuta-
tions differ only by a swap, it is sufficient to calculate the function f only one time.
All other possible values of the function can be then obtained using the Eq. 6.9. The
permutations are generated based on this requirement (all successive permutations
differ only by a swap) with the following algorithm:

• The first sequence of indices is (1, 2, . . . , n). Every index has its own swap
direction, which is initialised with the left neighbour. The subsequent step is
applied recursively, and the recursion begins with the index i = n and stops
when an attempt is made to swap with i = 1.

• The index i is swapped one time unless

a) there are no indices in the swap direction or

b) the index to change places with is higher

If the swap was not successful, the swap direction of index i is reversed and
recursion is applied to index i − 1. If the swap was successful, the step is
continued with index n.

This algorithm allows efficient evaluation of the products and permutations sums
[27], and is used in the present study.

6.3 Proof of principle

The goal of this section is the cross check of the implementation of the variable
and an analysis of its meaning. For this reason the An∗ variable is computed from
the two leading final state partons of the QCD dataset. Only gg → gg events are
selected. Furthermore, the invariant mass of the two leading partons was chosen to
lie in the region between 300 and 600 GeV . Since the An∗ variable is constructed
out of the two final state gluons, it is called the A2∗ variable. The momenta of
the incoming partons were computed with the approximation presented in the last
section. The value of the A2∗ variable is, in the case of negligible initial- and final-
state radiation, the exact result for T

g4
if it is averaged over the colours and helicities

of the initial states. This averaging is necessary, since the variable incorporates only
summations over the properties of the initial and final states. The formula computes
exact tree-level cross section only for processes without gluon-showers, but the gluon
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showers are present in the simulated events used in the present work. For this reason,
only normalised distributions are shown and only the shapes of the distributions are
compared. The differential cross section for a jet pair of mass MJJ produced at an
angle θ to the beam direction in the parton-parton centre of mass frame reads (c.f.
Eq. 5.13):

d2σ

dM2
JJdz

1

g4
=∫ 1

0

dx1 dx2 fg(x1, µ
2)fg(x2, µ

2)δ(x1x2s−M2
JJ)

1

64πM2
jj

1

256

(288 · (3 + z2)3)

(z2 − 1)2︸ ︷︷ ︸
A2∗(z)

,

(6.10)

where z ≡ cos θ, since d cos θ = dz, and the gluon scattering formula from Eq. 5.36
was inserted. The Mandelstam variables of the original formula are expressed here
in dependence of cos θ. As the first step, the integration over x1 eliminates the delta
function and leads to the Heaviside theta function Θ:

d2σ

dM2
JJdz

1

g4
=∫ 1

0

dx2 fg(
M2

JJ

s2x2

, µ2)fg(x2, µ
2)Θ(s2x2 −M2

JJ)
1

64πM2
jj

1

256

(288 · (3 + z2)3)

(z2 − 1)2
.

(6.11)

The integration over the theta function is equivalent to the shift in the lower integral
limit 0→M2

jj/s
2. Hence, the cross section can be written as:

d2σ

dM2
JJdz

1

g4
=∫ 1

M2
jj/s

2

dx2 fg(
M2

JJ

s2x2

, µ2)fg(x2, µ
2)

1

64πM2
jj

1

256

(288 · (3 + z2)3)

(z2 − 1)2
.

(6.12)

The occurring integral can be evaluated numerically. For the computations in this
chapter the CTEQ 5.1 pdfs [73] were used. The scale µ2 was set to 100 GeV 2.

Integration over M2
jj from 9000 to 360000 GeV 2 leads to the differential cross section

in dependence from cos θ :

dσ

dz

1

g4
= c

(288 · (3 + z2)3)

(z2 − 1)2
= c · A2∗(cos θ ≡ z) ∗ 1

GeV 2
, (6.13)

c being the numerical prefactor originating from the integration (0.0651). The inte-
gration was performed using a numerical integration routine [74]. The last compu-
tation shows that the shape of the differential cross section in dependence of cos θ is
independent from the parton distribution functions. In order to test the theoretical
prediction, the cosine of the scattering angle in the centre of mass frame cos θ can
be computed from the rapidities of the two leading partons, as shown in section 5.3.
Figure 6.3 shows the normalised distribution of cos θ computed from data, as well
as the fit of the theoretical function. The number of events rises with the modulus
of the cos θ, as predicted by the theory. The distribution shows a cut off at large
cosine values where the theoretical function becomes divergent and the Monte Carlo
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Figure 6.3: Normalised (area=1) distribution of cosθ computed from the rapidities
of the two leading partons in each event (blue curve). The red curve is the fit of the
theoretic formula to the data.

events are not produced. Furthermore, effects of final state radiation have to be
taken into account, since the additional gluons in the final state lead to a disbalance
of the transverse momenta and rapidities of the two leading gluons. Therefore, the
formula for cos θ is only an approximation. The effect described above is also re-
sponsible for the minor asymmetry of the distribution. The red curve shows the fit
of the function (288 · (3 + z2)3)/(z2 − 1)2 to the data. The curve matches the data,
as long as the fitting range excludes the cut-off regions.
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Figure 6.4: Left: Theoretical prediction for the dependence of the A2∗ variable on
cos θ. Right: Distribution of the A2∗ variable plotted vs. the distribution of cos θ
computed from data. Colour code indicates the number of events in each bin. Both
plots are shown for cos θ range of 0 - 0.6.

The crucial check of the implementation and understanding of the variable is the
comparison between the theoretical curve for the dependence of the variable on cos θ
and the correlation between the values of cos θ and A2∗ computed in each event. The
theoretical formula is polynomial in z ≡ cos θ:

A2∗ =
(288 · (3 + z2)3)

(z2 − 1)2
. (6.14)
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Figure 6.5: Difference between the exact function A2∗(z) and the power series ap-
proximation.

Figure 6.4 shows both plots for the range of cos θ between 0 and 0.6. These values
were chosen for better comparison, since the curves have a too large slope for larger
cos θ. The correlation plot shows exactly the predicted dependence between both
variables. The theoretical curve intersects the y-axis at the value of 7776, which
corresponds to the value of the partonic matrix element for gluon scattering at the
angle of 90◦ (The value has to be averaged over initial states and hence divided by
256, which leads to 30.8 - the exact value from [25]). Most events - represented by
red bins - follow the theoretical curve and have the predicted value of A2∗ if their
cos θ value equals 0. The events in which the variables do not have the exactly
predicted correlation are stronger affected by the final and initial state radiation
and hence cannot be treated as pure four gluon events.

As the last step, the distribution of theA2∗ variable in the data should be understood.
In order to get a theoretical prediction for this distribution, the differential cross
section, which is a function of cos θ has to be transformed to a differential cross
section in dependence of A2∗:

dz =

∣∣∣∣ dzdA2∗

∣∣∣∣ dA2∗ ⇒
dσ

dA2∗

1

g4
= cA2∗ ·

∣∣∣∣ dzdA2∗

∣∣∣∣ . (6.15)

To get a qualitative feeling for the form of dσ/dA2∗, A2∗ can be expanded as a power
series (in this example up to 13’th order):

A2∗(z) =
(288 · (3 + z2)3)

(z2 − 1)2
= 7776 + 23328z2 + 41472z4

+ 59904z6 + 78336z8 + 96768z10 + 115200z12 + o[z14]

(6.16)

Figure 6.5 shows the difference between the exact formula and the approximative
power series as a function of z. The series is in good agreement with the true
function up to z = 0.4. In the next step the power series can be inverted. The
inverse function is an approximation for the function z(A2∗), precise within few
percent up to such values of A2∗ (A2∗ ≈ 13000) where z reaches the value of 0.4.
Figure 6.6 shows the inverse function. Finally the expression for a function f , which
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Figure 6.6: The function z(A2∗) approximated as a power series, shown in the
trustable domain of definition.

should be proportional to dσ/dA2∗ can be plotted. The shape of this function should
resemble the shape of the A2∗ distribution in data. The function f reads:

f = A2∗ ·
∣∣∣∣ dzdA2∗

∣∣∣∣ , (6.17)

where z(A2∗) is the function defined above as a power series. Figure 6.7 shows on the
left hand side the function f and on the right hand side the normalised distribution
of the variable A2∗ computed from data.
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Figure 6.7: Left: The function f , defined in the text. Right: Distribution of the
A2∗ variable, calculated from data. The shape of the function f should resemble the
shape of the true A2∗ distribution.

Both curves show similar behaviour. The theoretical curve diverges for A2∗ → 7776,
what can be also found in the measured distribution. The divergence of f results
from the extreme steep fall of the inverse function z(A2∗) for A2∗ → 7776, see
Fig. 6.6, causing the derivative to blow up. The number of events in the measured
distribution rises until the cut-off, since 7776 is the theoretical minimum value for the
matrix element. Some events have values of A2∗ smaller than 7776, which resembles
the situation in Fig. 6.4, and can be explained in the same way by initial and final
state radiation. The function f is plotted in the trustable domain of definition and
resembles well the shape of the measured distribution, which continues to fall slowly
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Figure 6.8: Distribution of the logarithm of A2∗ to base 10.

over a wide range of A2∗, until it fades out for extreme large values, which correspond
to cos θ → ±1. This behaviour can be understood from the steep form of A2∗(z) for
large z, which leads to the fact, that large variations of the A2∗ values correspond
to minor changes in z ≡ cos θ.

A convenient representation of the variables for many purposes is a plot of their
logarithm to base 10. All subsequent distributions of the antenna variables will use
this representation. Therefore, it is convenient to redefine the variables:

An := log10(A′n), (6.18)

where A′n are previous definitions of the antenna variables. Figure 6.8 shows such
plot for the A2∗ variable. In order to understand the shape of such plots, it is
important to consider that the number of possible values of A2∗ grows from bin to
bin, since the plot is showing a logarithmic quantity. Hence, a uniform distributed
quantity would lead in such a plot to an ever growing curve. The distribution of the
A2∗ variable has some distinctive features: the peak at log10(A2∗) = 3.9 corresponds
to the true peak of the A2∗ distribution at 7776. The steep fall of the A2∗ distribution
is also carried over to the logarithmic plot. After the steep fall, the A2∗ variable
undergoes a slow decrease, which transforms into a rise of the log10(A2∗). The fall
of the log10(A2∗) distribution for values larger than 5 can be understood from Fig.
6.9 which shows the correlation between cos θ and the logarithm of A2∗ to base 10,
plotted over the whole domain of cos θ contrary to Fig. 6.4. The number of events
being affected by the initial and final state radiation falls rapidly after log10(A2∗) = 5.
Additionally the cut off at large cosine values starts between log10(A2∗) = 5.5 and
log10(A2∗) = 6, as it can be inferred from the colour code. These effects force the
log10(A2∗) distribution in Fig. 6.8 to decrease.

In summary, the antenna A2∗ variable shows the expected behaviour. The values of
the variable computed from the momenta of two leading partons in each event are
in agreement with theoretical predictions, and the shapes of all distributions can be
explained by theoretical calculations. The correlation between the A2∗ variable and
cos θ shows the desired pattern. The algorithm for the computation of the antenna
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Figure 6.9: Correlation between the log10(A2∗) variable and cos θ. Colour code
indicates the number of events in each bin.

variables implemented in the present work delivers correct values for the A2∗ variable
and can be trusted.

6.4 Results on hadron-jets level

In this section antenna variables computed from jets reconstructed with the kt algo-
rithm out of hadrons from Monte Carlo data, q.v. section 6.1, the so called GenJets,
are studied. The distributions of the variables constructed from QCD multijet events
will be compared with the distributions of the antenna variables constructed from
SUSY events out of two SUSY scenarios differing in underlying theoretical param-
eters5. Since the number of QCD events exceeds the number of SUSY events all
subsequent plots will show distributions of the antenna variables normalised to unit
area. Considering different event structures of QCD and SUSY, the distributions are
expected to be displaced with distribution of the antenna variables computed from
QCD events tending to larger values, due to more closely radiated gluons (small
opening angle θ between the partons) and hence larger inverse invariant mass. How-
ever, the discrimination power should vary with the different SUSY scenarios under
consideration. The discrimination power is expected to decrease if the chosen the-
oretical parameters lead to decreasing mass of decaying SUSY particles, since this
would make SUSY events more QCD-like because of smaller averaged invariant
masses and higher boosted primary particles leading to more collimated jets. Addi-
tionally, boosted jets originating from soft gluons radiated by the final state quarks
can overcome the thresholds and enter the calculation. Such jets would enlarge the
value of the variable. The results of this and the following section are summarised
in plots in section 6.7.

The SUSY scenarios used for the comparison are the CMS test points LM1 and
LM4, whose underlying theoretical parameters are given in chapter 2. Important
for the present work are the key values for gluinos and squark masses, which are

5Different test points in the mSUGRA m0-m1/2 plane.
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Point M(q̃) M(g̃) σ

LM1 558.61 611.32 54.86
LM4 660.54 695.05 25.11

Table 6.2: Masses of squarks and gluinos in GeV and cross sections in pb (at NLO)
for LM1 and LM4 test points.

given along with the cross section (NLO) in Tab. 6.2 [4]. Considering the arguments
above, antenna variables are expected to have greater discrimination power between
QCD- and SUSY LM4-events in comparison with their discrimination power between
QCD- and SUSY LM1-events.

The jets entering the computation have to fulfil certain requirements. In the first
step only events passing the direct lepton veto on the detector level were selected.
The direct lepton veto rejects all events, in which isolated electrons or muons were
found. Since characteristics of the variables are demonstrated on the SUSY samples,
certain cuts from the all-hadronic SUSY search were adopted. Only events with at
least 3 jets are considered. This cut is part of the signal selection for events with
many jets in the final state. The following selection criteria were applied to all
GenJets:

• pt > 20 GeV,

• |η| < 3.0.

These cuts ensure that only jets with well measured energies in the hadron calorime-
ter barrel and endcaps would be selected on the detector level [4, 5, 69]. Additional
restrictions were imposed on the two leading GenJets :

• pj(1)
t > 200 GeV,

• pj(2)
t > 150 GeV,

•
∣∣ηj(1)

∣∣ < 1.5.

The restrictions on the transverse momenta of the leading jets will be replaced by
cuts on the transverse energy on the calorimeter level. These cuts were selected to
optimise the ratio of signal- to background-events. The cut on the pseudorapidity
of the leading jet ensures that its track is in the inner tracker and was adopted to
be compatible with previous SUSY searches [4, 5, 69].

Figure 6.10 shows distributions of the GenJet multiplicities in the QCD and SUSY
LM4 sample. Only GenJets that pass all selection criteria are shown. The upper
limit is set to eight jets, since only events with maximal eight selected jets enter ex-
act antenna computation in order to speed up the event processing. The upper plot
of Fig. 6.10 shows that for QCD the number of events falls rapidly with increasing
number of jets. The lower plot of Fig. 6.10 reveals the different multiplicity distribu-
tion in the SUSY LM4 case, as expected. SUSY events tend to have a larger number
of high energetic jets originating from cascade decays of supersymmetric particles,
contrary to the gluon radiation pattern of QCD. Most SUSY LM4 events contain
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Figure 6.10: Upper plot: Distribution of the the jet multiplicity in the QCD and
the SUSY LM4 sample. Lower plot: Distribution of the jet multiplicity in the
SUSY LM4 sample. Both plots show only GenJets which passed all selection
criteria.

five or six jets. These different multiplicity distributions motivated the definition
of the A6 variable, since demanding at least six jets, one rejects the largest QCD
contributions, while still taking the dominant SUSY contribution into account.

Figures 6.11 and 6.12 show normalised (area =1) distributions of the exact antenna
variable An∗ for n = 3, 4, 5, 6, 7, 8. For later convenience all variables are multiplied
by (−1), what causes the distributions of the variables computed from SUSY events
to have larger values of the antenna variables than the distributions of the antenna
variables computed from QCD events. From here on the values of the negative
antenna variables are discussed, in order that the discussion is consistent
with the plots.

The distributions are shifted to ever larger values (smaller values before the mul-
tiplication with (−1)) with increasing number of jets because of the rising number
of four momenta products in the antenna structures of the variables — there are
n+2 products for n jets. From here on distributions of various antenna variables An
computed from the QCD data set are denoted as AQCDn , while the distributions of
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the same variables computed from SUSY events is denoted as ASUSYn . The relative
displacement of the AQCDn and ASUSYn distributions (difference between the mean
values) increases with increasing number of jets. This can be explained by different
origins of the additional jets in QCD and SUSY case. The additional QCD jets are
created mainly by gluon radiation (see section 6.2 for explanation) and tend to have
small opening angle to the generating parton, which leads to small values of the four
products and hence small antenna values. There are of course also contributions of
the true multiparton processes involving quarks. In the SUSY case, selecting more
jets one selects longer decay cascades of supersymmetric particles, which leads to
more jets with larger opening angles and larger antenna variable values in compar-
ison with QCD. Boosted secondary decay products lead in fact also to collimated
jets, but in average the event structure differs from the one of QCD. The width of
all antenna distributions rises as well with increasing number of jets. As a reminder:
the “width” of such logarithmic quantity (lnA) is dependent on the event rate in
a give range of the pre-logarithmic quantity (A). The more events are in a given
range of A the steeper is the slope of the lnA distribution, and vice versa for the
fall. The enlargement of the width in the logarithmic plot means, that the density of
the pre-logarithmic antenna values decreases. With increasing number of jets there
are increasing number of possibilities to arrange the jet-momenta in the space and
hence the range of the possible antenna values becomes larger, but the number of
events decreases (cross section falls), leading to fewer events in a given range and
hence to the slow rise and fall of the logarithmic distribution.

Figure 6.13 shows normalised distributions of the A3, A3plus and A6 variables. The A3

variable performs better (has higher separation power) than the exact A3∗ variable,
although they have comparable “widths”. This fact is not surprising, since the
width depends mainly on the number of jets. The mean of the AQCD3 distribution is
comparable with the mean of the exact AQCD3∗ distribution, since the contribution of
the 3-jet events is dominant (see Fig. 6.10), and the three leading jets taken from
all other (non three jets) QCD events seem to resemble pure QCD 3-jet events. The
gain of the discrimination power originates from the shift of the ASUSY3 distribution
to lower values compared with the ASUSY3∗ distribution. This shift can be explained
by completely different SUSY event structure. Pure SUSY 3-jet events are the minor
contribution to the ASUSY3 distribution, while the three leading jets originating from
events with higher jet multiplicities are well separated leading to large invariant
masses.

The A3plus variable shows a similar behaviour. The dominant 3-jet contribution in

the AQCD3plus case can be seen directly as a second maximum of the distribution. The
contribution from events with higher jet multiplicity pushes the variable to higher
values, since the third jet being a four vector sum of all, but the two leading jets, is
well separated from the others and has additionally large energy component. The
heterogeneous composition of the distribution of the A3plus variable computed from
QCD events manifests itself in its large width. The ASUSY3plus distribution benefits
even more from the definition of the third jet. Its huge energy component drives the
momenta products to higher values and reduces the range of all possible values of
the antenna variable (increases the event rate per given range) and hence the width
of the distribution. The 3-jet SUSY events contribute to the tail of the ASUSY3plus

distribution at low antenna values.
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Figure 6.11: Normalised distributions of the negative exact antenna variable for 3,4,
and 5 GenJets in the final state for the QCD and SUSY LM4 sample.
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Figure 6.12: Normalised distributions of the negative exact antenna variable for 6,7,
and 8 GenJets in the final state for the QCD and SUSY LM4 sample.
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The distribution of the A6 variable shows also the expected pattern. The width
of both AQCD6 and ASUSY6 distributions is large due to the high number of jets.
True 6-jet events are the dominant contribution to the AQCD6 distribution, because
of the steep fall of the QCD multijet cross section. Hence the mean of the AQCD6

distribution resembles the mean value in the AQCD6∗ case. The ASUSY6 distribution
receives valuable contributions also from events with higher number of jets. The six
leading jets of such events lead to larger antenna values, similarly to the case of the
ASUSY3 distribution.

Having seen the distributions for the SUSY LM4 point as signal scenario, one can
compare them with the distributions assuming that the signal is given by the SUSY
LM1 point. It is sufficient to compare distributions of key variables. The normalised
distributions of exact antenna A3∗, A6∗ and A8∗ variables are shown in Fig. 6.14,
while Fig. 6.15 shows the distributions of the normalised A3, A3plus and the A6

variables. All antenna variables have less discrimination power than in the SUSY
LM4 case. This behaviour is expected, q.v. beginning of this chapter, and approves
the understanding of the variables. It follows that the antenna variables show their
potential (before the cuts on different kinematic variables) mainly in cases of signal
scenarios with higher primary particle masses than in the SUSY LM1 case. For this
reason SUSY LM4 point is chosen as the main reference.

6.5 Effects of jet reconstruction

In the next step the transition from GenJets to the jets reconstructed from the
measured values of the calorimeter cells, the so called CaloJets, is undertaken. In
both cases jets were build with the kt Jet finder (R = 0.4). To account for the
impact of various technical and physical processes, which depend on the energy and
the detector region, the energies of measured jets are corrected using a Monte Carlo-
based correction method6. This method is based on the comparison between the
transverse jet energies of Gen- and CaloJets, which were produced by the same jet
algorithm and matched to each other via ∆R =

√
∆η2 + ∆φ2 matching, in different

η and pt regions. After the comparison, the transverse energies of the CaloJets are
corrected by multiplication with a factor depending on their transverse energies and
locations in η [49].

The following cuts were applied to all CaloJets:

• pt > 20 GeV,

• |η| < 3.0.

Similar to the GenJet level additional cuts were applied to the two leading Jets:

• Ej(1)
t > 200 GeV,

• Ej(2)
t > 150 GeV,

•
∣∣ηj(1)

∣∣ < 1.5.,

6CMSSW MCJetCorrections 152
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Figure 6.13: Normalised distributions of the negative A3, A3plus and A6 variables for
the QCD and SUSY LM4 sample. The variables are constructed from GenJets.
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Figure 6.14: Normalised distributions of the negative exact antenna variable for 3,
6, and 8 GenJets in the final state for the QCD and SUSY LM1 sample.
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Figure 6.15: Normalised distributions of the negative A3, A3plus and A6 variables for
the QCD and SUSY LM1 sample. The variables are constructed from GenJets.
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Figure 6.16: Correlation between the values of the −AQCD6∗ variable computed from
CaloJets and the values of the corresponding GenJet −AQCDn∗ variable in each event.
Colour code indicates the number of events.

where Et is the transverse Energy: E sin θ. E is the scalar sum of energy deposited
in the calorimeter towers. All cuts resemble the cuts on the GenJet level.

In order to understand the possible deviations between the distributions on the
GenJet- and CaloJet-level, a plot of the correlation between the values of the A6∗
variable computed from the corresponding jets for the QCD sample is shown in
Fig. 6.16. The plot shows the value of the negative exact AQCD6∗ variable computed
in each event, which passed the thresholds on the calorimeter level, from CaloJets
vs. the value of the antenna variable computed from the GenJets of the same
event. The major fraction of the events lies not on the main diagonal. However, the
distributions of events follows some pattern. The events are concentrated on and
around lines, whose slopes are either larger or smaller than the slope of the main
diagonal. Most events have higher values of the variable computed from the CaloJets
in comparison with the variable computed from the GenJets. Only a small fraction
of the events shows a diametric opposite behaviour. The reason for such abnormal
correlations lies in the fact, that selection of exact 6, or in general NCaloJets, jets on
the calorimeter level does not imply that the selected events contain also exact 6
GenJets. Figure 6.17 shows the number of GenJets in the selected events. It turns
out, that events with some exact number of CaloJets are a mixture of events with
different GenJets numbers. The events with 5 or 4 GenJets contribute mostly to the
events with exactly 6 CaloJets. The contributions from events with 3 or 7 GenJets
lie in the same order of magnitude. The dominance of the 4- and 5-GenJets events
is rooted in the fast decrease of the QCD multijet cross section with the growing
number of jets. This fact is also reflected in the Fig. 6.10. The huge number of
QCD 4 jet events leads to the fact, that the fraction of the 4 GenJet events which
are reconstructed as 6 jet events is even larger than the actual number of 6 GenJet
events reconstructed as 6 CaloJet events. However, the probability to create an
event with NCaloJets CaloJets out of event with less or more GenJets seems to fall
steeply if ∆N = NCaloJets − NGenJets is too large. Otherwise events with 2 and
3 GenJets would dominate the distribution, due to the large cross sections. As a
comparison the number of GenJets in events with exact 3 CaloJets is shown in Fig.
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Figure 6.17: Number of GenJets in the events from the QCD sample which passed
the selection criteria and entail exactly 6 CaloJets
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Figure 6.18: Number of GenJets in the events from the QCD sample which passed
the selection criteria and entail exactly 3 CaloJets

6.18. Figures 6.17 and 6.18 suggest, that if the events were equally distributed in
each n-GenJet bin, the major contribution would come either from the events with
NGenJets = NCaloJets or from the events with NGenJets = NCaloJets± 1. In the case of
6 CaloJets the distribution that would emerge from this rule of thumb is convoluted
with the steep fall of the n-jet cross section.

The events with different number of GenJets populate different lines in the correla-
tion plot 6.16. If there are less GenJets in the event than CaloJets, the correlation
will lie on the line below the main diagonal, since the variable tends to smaller values
for smaller jet numbers. In the opposite case where NGenJets > NCaloJets the events
will occupy the line above the main diagonal. Restricting the number of GenJets
to the number of CaloJets produces the desired correlation where all events occupy
the domain around the main diagonal, see Fig. 6.19, with reasonable resolution and
small bias.
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Figure 6.19: Correlation between the values of the −AQCD6∗ variable computed from
Calo- and GenJets, after the number of GenJets was restricted to six. Colour code
indicates the number of events.

The impact of the different populations inside the set of events with exact number
of CaloJets can be seen in Fig. 6.20, where the distributions of the −AQCD3∗ and the
−AQCD6∗ are shown on the generator and the calorimeter level. Only events which
pass the thresholds corresponding to each level are plotted. The distributions of the
−AQCD3∗ variable look similar on both levels. The numbers of events are comparable,
the number of GenJet events is slightly higher than the number of CaloJet events.
This can be understood, since some of the events with 3 GenJets are reconstructed
having 4 or 2 CaloJets. The contributions of the events with 2 or 4 GenJets, which
are reconstructed as events with 3 CaloJets are not enough to compensate this loss.
The value of the −AQCD3∗ distribution is shifted to smaller values on the calorimeter
level. The reason for this shift will be explained in the case of the −AQCD6∗ variable.
The width of the CaloJet distribution is slightly larger than the width of the GenJet
distribution and will be also explained in the discussion of the −AQCD6∗ variable.

The impact of the transition to the calorimeter level on the −AQCD6∗ variable is much
larger compared to the shift of the −AQCD3∗ distribution. The number of events with
exactly 6 CaloJets outweighs the number of events with exactly 6 GenJets. Most
of these additional events have 4 and 5 GenJets, which were reconstructed as 6
CaloJets. The mean of the distribution is shifted to smaller values compared with
the mean on generator level by ca. 0.567.

This shift can be explained, assuming that the additional CaloJets (the jets which
have no counterpart on the generator level) in the events having 4 or 5 GenJets orig-
inate from one of these GenJets which was reconstructed as two very close CaloJets
sharing the energy of the original GenJet. In this work such CaloJets are called
partner jets. Partner jets would push the variable to smaller values because of two
reasons. First of all, these jets have small angular separation to their partner, which
leads to small values in the denominator of the antenna structure. The second reason
relies on the fact, that the two CaloJets originating from one GenJet share its energy
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Figure 6.20: Distributions of the −A3∗QCD and−A6∗QCD variables. Black curves
are indicating the distributions of the variables on the calorimeter level, while the
blue curves show the distributions on the generator level.
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and thus have smaller invariant mass than the events with 6 Gen- and CaloJets7,
independent from angular structure of the jets.

In order to verify the statements from the previous paragraph, the characteristics
of the generator-level content of the events with 6 CaloJets is examined. Figure
6.21 shows distributions of the −AQCD6∗ variable computed from events having 6
CaloJets, but different number of GenJets. The mean value is similar to the value
of the−AQCD6∗ computed from GenJets, cf. Fig. 6.20, but the number of events
is approximately 1/3 of the number of all events having 6 GenJets. The missing
fraction contributes to distributions with other numbers of CaloJets, similar to the
case of the −A3∗ variable. The distributions of events having 4 and 5 GenJets are
shifted to ever smaller values with decreasing number of GenJets.

6.5.1 HT dependence

Figure 6.22 shows the distribution of the HT variable for the same classes of events.
The HT variable is the scalar sum of the transverse energies of all CaloJets in
the event HT =

∑
iE

jeti
T , and is by definition connected with invariant masses

present in the event. The HTQCD distributions resemble the pattern of the −AQCD6∗
distributions. The CaloJets in the events having NCaloJets = 6 but NGenJets = 4 carry
less energy than the CaloJets in the events from the NCaloJets = 6 , NGenJets = 5
class, which contain in turn less energy than events with 6 Calo- and GenJets. This
pattern arises, because the n (n = 6CaloJets −NGenJets) additional jets do not carry
additional energy but rather share energy with their partner jets, as stated above.
In fact one is essentially comparing energy contents of 4, 5 and 6 jet events, and
not energy contents of true 6 jet events. This energy dispersion leads, in addition to
angular effects, to the observed shift of the −AQCD6∗ variable after the transition to
the calorimeter level, since the smaller the energies in the denominator the smaller
the values of the (negative) antenna variables.

In order to asses the relevance of the HT dependence in comparison with the angular
effects, Fig. 6.23 shows the distributions of the −AQCD6∗ variable computed from
events with a different number of GenJets, after HT of the events was restricted
to the 900 − 1400 GeV bin. This HT bin was chosen, because it lies beyond the
region where the main differences in the HT variable occur. All distributions are
shifted to larger antenna values in comparison with Fig. 6.21, but the displacement
of the distributions with respect to each other retains. The HT cut suppresses
furthermore mainly events with 4 GenJets, as expected. The relative displacement
of the distributions seems truly to originate from the angular separation of the
jets and not purely from the different energy contents. The heterogeneity of the
−A6∗ distribution on calorimeter level yields a larger width in comparison with the
generator level distribution, due to the larger spread of the possible antenna values.

In order to estimate the effect of the transition to the calorimeter level on the
discrimination power of the variable, the distribution of the −A6∗ variable on both
levels is also shown for the SUSY LM4 dataset in Fig. 6.24. Contrary to the QCD
case, both distributions lie in the same range, the distribution on the calorimeter

7As stated in the introductory section of this chapter, the antenna variables are proportional
to the averaged inverse invariant mass of the event.
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Figure 6.21: Distributions of the −AQCD6∗ variable computed from events having 6
CaloJets, but different number of GenJets. The red curve shows the distribution for
the events having 5 GenJets, the black curve shows the distribution for the events
with 4 GenJets, and the blue curve shows the distribution for the events with 6
GenJets.

Entries  170353

Mean   0.1585±    799 

RMS    0.1121±  179.5 

Integral  1.281e+06

HT [GeV]
400 600 800 1000 1200 1400 1600 1800 2000

E
ve

nt
s

0

50

100

150

200

250
310×

Entries  170353

Mean   0.1585±    799 

RMS    0.1121±  179.5 

Integral  1.281e+06

Entries  88799

Mean    1.815±  758.4 

RMS     1.284±  167.2 

Integral  8.435e+05

Entries  88799

Mean    1.815±  758.4 

RMS     1.284±  167.2 

Integral  8.435e+05

Entries  133816

Mean    2.085±  848.4 

RMS     1.474±  209.3 

Integral  7.975e+05

Entries  133816

Mean    2.085±  848.4 

RMS     1.474±  209.3 

Integral  7.975e+05

5_GenJets
4_GenJets
6_GenJets

Figure 6.22: Distributions of the HTQCD variable computed from events having 6
CaloJets, but different number of GenJets. The red curve shows the distribution for
the events having 5 GenJets, the black curve shows the distribution for the events
with 4 GenJets, and the blue curve shows the distribution for the events with 6
GenJets.
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Figure 6.25: Number of GenJets in the events from the SUSY LM4 sample which
passed the selection criteria and entail exactly 6 CaloJets.

level being slightly shifted to smaller values. Figure 6.25 shows the number of
GenJets in the events, which entail exactly 6 CaloJets. The dominant contribution
comes from the events with 6 GenJets explaining the small displacement of the
−ASUSY6∗ distribution. The different structure of the 6 jet SUSY LM4 events on
calorimeter level in comparison with the 6 CaloJet QCD events is rooted in the
different cross sections for the multijet production. In general all antenna variables
computed from SUSY events ASUSYn are also displaced to smaller values due to the
splitting of the GenJets, similar to AQCDn , but this shift is smaller than the shift of
the corresponding AQCDn distributions. This difference yields a relative displacement
of the QCD and SUSY antenna distributions with respect to each other, after the
transition to the calorimeter level.

6.6 Results on detector-jets level

This section presents distributions of the various antenna variables computed from
CaloJets. Fig 6.26 shows the normalised distributions of the negative exact antenna
variables A3∗, A6∗, and A8∗, while Fig. 6.27 shows the normalised distributions of
the negative A3, A3plus and A6 variables. All antenna variable have preserved their
discrimination power. The A6 variable is affected from the same effect as the A6∗
variable, since the events having exactly 6 CaloJets contribute mostly in the SUSY
and in the QCD case (both cross section fall when the number of jets exceeds 6) to
the inclusive A6 variable. The behaviour of all variables resembles the behaviour on
the generator jet level.

In summary, the transition to the calorimeter level can be undertaken. The distri-
butions of the variables computed from the QCD and SUSY LM4 datasets are even
more displaced in relation to each other, compared with the generator level, due to
the different multijet cross sections as described above. The extent of the displace-
ment depends on the number of jets the variable makes use of. The displacement is
growing with increasing number of jets. However, the use of the exact antenna An∗
variables is problematic, since in general they compare events which have different
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Figure 6.26: Normalised distributions of the negative exact antenna variable for 3,6,
and 8 CaloJets in the final state for the QCD and SUSY LM4 sample.
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Figure 6.27: Normalised distributions of the negative A3, A3plus and A6 variables
computed from CaloJets for the QCD and SUSY LM4 sample.
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Figure 6.28: Mean values of the negative A3∗, A6∗, A8∗, A3, A3plus, and A6 antenna
distributions computed from QCD, SUSY LM4, and SUSY LM1 events on hadron-
jets level.

number of GenJets. For this reason, only inclusive A3, A3plus and A6 variables will
be used in the following studies.

6.7 Summary plots

In order to systematise the results presented so far, the mean and RMS values of
different antenna distributions are compared in this section. Figure 6.28 shows the
mean values of the A3∗, A6∗, A8∗, A3, A3plus, and A6 antenna distributions computed
from QCD, SUSY LM4, and SUSY LM1 events on hadron-jets level. Figure 6.29
shows the RMS values of theA3∗, A6∗, A8∗, A3, A3plus, andA6 distributions computed
from QCD, SUSY LM4, and SUSY LM1 events. The general behaviour of the mean
and RMS values on hadron-jets level was discussed in section 6.4.

Figure 6.30 shows the mean values of the A3∗, A6∗, A8∗, A3, A3plus, and A6 antenna
distributions computed from QCD and SUSY LM4 events on detector level. The
RMS of the corresponding distributions are shown as errors of the mean values. The
impact of jet resolution and reconstruction was discussed in the section 6.5, while
section 6.6 presented the distributions of the antenna variables on detector-jets level.

6.8 Description of correlations

Important characteristics of the antenna variables are their possible correlations
with other variables sensitive to the form of the events: the event shape variables.
Also important are correlations of the antenna variables with the typical kinematic
variables, which are used for the signal selection in the all-hadronic channel (if the
signal is assumed to be SUSY) and are discussed in the next chapter.

Usually a correlation coefficient ρxy is introduced, in order to describe linear corre-
lations between two variables x and y :

ρxy =
cov(x, y)

σxσy
, (6.19)
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Figure 6.29: RMS values of the negative A3∗, A6∗, A8∗, A3, A3plus, and A6 antenna
distributions computed from QCD, SUSY LM4, and SUSY LM1 events on hadron-
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Figure 6.30: Mean values of the negative A3∗, A6∗, A8∗, A3, A3plus, and A6 antenna
distributions computed from QCD and SUSY LM4 events on detector-jets level. The
RMS values of the antenna distributions are shown as errors of the mean values.
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where cov(x, y) is the covariance between x and y:

cov(x, y) =

∫∫
(x− 〈x〉)(y − 〈y〉) dxdy. (6.20)

〈x〉 and 〈y〉 are the means of the distributions, while σx, σy are the standard de-
viations. The correlation coefficient has the value 1 (−1) for strongly correlated
(anticorrelated) variables, and the value 0 if the variables are not correlated.

Being a single number for a two-dimensional distribution the correlation coefficient
is often insufficient to understand the relationship between the two variables. Profile
histograms offer often a more comprehensive description of the correlation of two
quantities X and Y . The histogram displays the mean value of Y and its RMS for
each bin in X. If the quantities are uncorrelated the distribution of the mean values
is typically flat, otherwise the plot can reveal the functional dependency of Y on X.

In the following both techniques will be used to investigate the characteristics of the
antenna variables.

6.9 Antenna as event shape variable

This section investigates the correlations between the antenna and the event shape
variables. The event shape variables sphericity and thrust [75] are applied in the
present approach to jets rather than to the single particles in order to describe the
topologies of the events. These variables are defined by:

• Sphericity:

S =
3λ3

λ1 + λ2 + λ3

, (6.21)

where λi(i = 1, 2, 3, ) are the eigenvalues of the tensor

Iαβ =
N∑
i=1

(p2
i δαβ − piαpiβ) (6.22)

constructed in analogy to a tensor of inertia. The sum runs over all jets in
the event. The eigenvalue λ3 is the smallest among the three. The eigenvector
belonging to λ3 is called the sphericity axis of the event.

• Thrust:
T = max

n̂
T (n̂), (6.23)

T (n̂) = 2U
N∑
i=1

Θ(pi · n̂)(pi · n̂), (6.24)

where

1/U =
N∑
i=1

|pi| , (6.25)

and Θ denotes the Heaviside step-function. The direction n̂ fulfilling Eq. 6.23
is called the thrust axis.
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Sphericity is a measure of the summed p2
⊥ with respect to the event axis. The range

of the sphericity values is 0 ≤ S ≤ 1. A pencil-like event corresponds to S ≈ 0 and an
isotropic event to S ≈ 1. The allowed range of thrust is 1/2 ≤ T ≤ 1, with a pencil-
like event corresponding to T ≈ 1 and an isotropic event to T ≈ 1/2. First both
event shape variables were selected for the present study, since they have different
characteristics [75]. Sphericity is non linear in the momentum, weighting a single
jet with large momentum higher than a group of jets with the same momentum.
Thrust is linear and points always into the direction of the two subsets of the jets
with the largest (and opposite) total momenta.

The antenna variables are also sensitive to the topology and the energy content
of the events and are expected to be correlated with the event shape variables.
Figure 6.31 shows the correlations between the three inclusive antenna variables
and sphericity for the QCD and for the SUSY LM4 sample, while the corresponding
correlation plots with thrust are shown in Fig. 6.32. As it can be inferred from
the plots, thrust and sphericity are anticorrelated variables, which is also shown in
Fig. 6.33. In spite of the different definition and characteristics, the correlation plots
of the antenna variables with thrust do not entail much additional information with
respect to the correlation plots with sphericity and vice versa. The discussion deals
in the following only with sphericity, since correlation plots with thrust do not offer
new information. In general the antenna variables computed from QCD events are
stronger correlated with the event shape variables than the corresponding variables
computed from SUSY events. However, there is also a correlation in the SUSY case.

The antenna variables computed from the first three leading jets of QCD events
show strong correlation with sphericity and thrust in the domain of the low (high)
sphericity (thrust) values. The correlation between the antenna variables computed
from SUSY events and the event shape variables show similar pattern, the correla-
tion being however not so much pronounced. The bulk of the SUSY events extends
over a large domain of the sphericity values, contrary to the QCD events which
are concentrated in the regions of low sphericity. This concentration roots in the
dominance of the three-jet QCD events, which have often pencil-like structure and
hence small sphericity values. SUSY events are not so much dominated by a single
jet multiplicity bin with particular jet structure and thus can have various spheric-
ity values. The correlation between small sphericity values and antenna variables
occur in both distributions (computed from QCD and SUSY events) being more
pronounced for QCD events, due to larger population in this region. The origin of
the correlation lies in the pencil-like events which populate this sphericity region and
lead also to very small values of the antenna variables, due to the close by jets. With
increasing sphericity the correlation decreases. For a given large sphericity value the
antenna variables can embrace very different values, the value being governed by the
topology of the third jet, which has not so large contribution to the sphericity.

The A6 variable, which is independent of the number of low jet multiplicity events,
has lower correlation coefficient with both event shape variables, especially in the
case of the SUSY distribution. Additionally the two dimensional distribution is
broader in comparison with distributions of the both variables utilising 3 jets. This
behaviour is due to the fact, that the event shape variables are most sensitive to the
leading jets, while the antenna variables are also sensitive to the relative angular
separation of the jets irrespective of the magnitude of their momenta. For a given
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Figure 6.31: Distributions of the negative inclusive An variables computed from
CaloJets vs. sphericity, for the QCD (left) and for the SUSY LM4 sample (right).
Colour code indicates the number of events.

value of the sphericity, which is determined by the leading jets, the A6 variable can
have large variation of its values, which are determined by the arrangement of the
additional jets in the event. In contrast, the values of the A3 and the A3plus variables
cannot vary so much in a given sphericity bin, since the variation depends only on
the third jet. In order to investigate the possible impact of the event shape vari-
able cuts on the antenna variables, profile plots of the two dimensional histograms
are shown in Fig. 7.14. Only the correlation with sphericity is examined, since
correlation plots with thrust deliver no new information. At low sphericity values
distributions computed from QCD and SUSY events reveal the same correlation,
anticipated in the previous paragraphs: the mean values of the antenna variables
rise with increasing sphericity, since increasing sphericity corresponds to better sep-
arated leading jets, which lead to larger invariant masses and hence larger values of
the antenna variables. The strong rise in the 0 to 0.1 range of sphericity becomes
slow increase in the region of larger sphericity values for both distributions. This
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Figure 6.32: Distribution of the negative inclusive An variable computed from Calo-
Jets vs. thrust, for the QCD (left) and for the SUSY LM4 sample (right). Colour
code indicates the number of events.
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Figure 6.33: Correlation between thrust and sphericity in the QCD events (left)
and in the SUSY LM4 events (right).
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increase continues for
〈
−ASUSYn

〉
up to large sphericity values with low statistics.

In the QCD case a new rise begins after the sphericity value of ca. 0.7. The QCD
antenna distribution becomes more and more SUSY-like, if only events with large
sphericity values are selected. The plots confirm, that the mean values of −AQCDn

and −ASUSYn distributions are displaced with respect to each other over almost the
whole range of sphericity. This displacement approves the discrimination power of
the antenna variables independent from the sphericity of the events.

The rise of the negative antenna values computed from QCD events having large
sphericity can be understood by examining the distribution of the HT variable across
sphericity. Figure 6.35 shows the mean value of the HT distribution in QCD and
SUSY events in bins of sphericity. While there is almost no correlation between HT
and sphericity for SUSY events, the mean value of HT rises extremely fast for QCD
events with high sphericity values. This rise of the HT distribution explains the rise
of the antenna distribution, due to the correlation between the values of antenna
variables and HT , examined in the following chapter8 7.1.1.

The extreme rise of the HT values in spherical QCD events, and the absence of
such a rise in SUSY events, can be explained by different origins of jets in SUSY
and QCD. The SUSY jets are the end products of the decays of heavy particles
and are only loosely correlated to each other. The QCD jets, aside from the two
leading jets, arise in most events from gluon radiation. Selecting well separated jets
resulting from gluon radiation, one selects automatically high energetic events, since
only such events can lead to the gluon radiation under large angles.

In summary, the antenna variables are correlated with the measures of the event
shapes, but provide independent discrimination power. The antenna variables can
complement the event shape variables providing additional information of the close
by aspects of the event. In case of QCD events, the event shape variables are
correlated with the HT in the domain of almost spherical events.

Having described some of the characteristics of the antenna variables, they are ap-
plied in the next chapter to the cut-based SUSY searches in the all-hadronic channel
as an example of use.

8The larger the HT of the event the lager are the values of the antenna variables, due to larger
four products of momenta in the denominators of the antenna structures.
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Figure 6.34: Mean values of the −A3, −A3plus, and −A6 distributions in each bin of
sphericity. Blue lines indicate the entries for the QCD and red lines for the SUSY
LM4 sample.
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indicates the entries for the QCD and red line for the SUSY LM4 sample.
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7

Application to SUSY Searches

The antenna variables, defined in the previous chapter, can have a manifold field
of application. First of all, one of the variables can be used as an additional dis-
criminative variable in a cut-based search or as an additional input variable in a
multivariate search for the signals of physics beyond the standard model in the all-
hadronic channel. The sensitivity of the antenna variables to the shape of the events
and the invariant masses present therein suggests the use of the antenna variables in
a multivariate approach for the determination of the underlying parameters of the
possible signal, for example for the identification of the mSUGRA parameters in case
of SUSY. Another imaginable example of use could be the data-driven QCD multijet
background estimation, provided that one of the antenna variables is uncorrelated
to some other kinematic variable with separation power.

The previous chapter showed that the antenna variables are able to distinguish
between QCD and SUSY multijet events. In order to assess the feasibility of the an-
tenna variables for SUSY searches, this chapter examines the correlations between
commonly used kinematic and antenna variables. First, a rudimentary cut-based
analysis is introduced and the impact of successive cuts on various kinematic vari-
ables on the discrimination power of the antenna variables is investigated. Then a
comparison between the different antenna variables is carried out. In the last step
the discrimination power of the most promising antenna variable is studied assum-
ing different SUSY signal scenarios. This chapter will also show that the antenna
variables are correlated with other discriminating variables which are used in SUSY
searches and are therefore not suited for the data-driven background estimation in
this case.

7.1 QCD multijet background reduction

Various studies of possible SUSY searches with the CMS experiment have been done
so far [4, 5, 69]. These studies use optimised sequences of cuts on different variables
to suppress SM backgrounds and to find the signal.

The approach in the present section is inspired by those studies. Specifically, the
present analysis examines the possibility to suppress background from QCD multijet
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events. In order to be compatible with the previous studies only inclusive antenna
variables (A3, A3plus, A6) are used.

7.1.1 Kinematic variables

The following definitions of kinematic variables are used in the present work:

• The missing transverse energy (MET) vector:

MET = −
∑
i

(Ei sin θi)n̂i, (7.1)

where Ei is the energy of the i-th calorimeter tower, n̂i is a transverse unit
vector pointing to the centre of each tower, and θi is the polar angle of the
tower.

• Minimum δφ between the MET and the 3 leading jets:

∆φ = min {δφi} , (7.2)

δφi = δφ(MET, jeti). (7.3)

where δφi is evaluated for the three leading jets.

As introduced in chapter 5, it is assumed, that the colliding partons inside the pro-
tons have negligible intrinsic transverse momenta. Therefore, the transverse momen-
tum of the initial state is taken to be zero. Momentum conservation thus implies
that the sum of the transverse momenta of all final states vanishes. In case of a
perfect or uniform detector, MET would thus indicate that particles which do not
interact, or interact only weakly, with the detector material were created. This study
deals only with pure QCD background processes, in which no MET is produced in
the hard scattering process. Therefore, assuming a perfect detector, events with
MET and many jets could be classified as SUSY event candidates, see chapter 2.
However, the detector is not perfect and even pure QCD processes can lead to fake
MET because of the mismeasurements of the jets and a possible neutrino content.
In general SUSY events will contain more MET than QCD events, since primary
SUSY particles are heavy and can lead to very large transverse momenta of the
lightest supersymmetric particles.

The large fake MET in QCD events is generated mainly by the mismeasurement of
energy of the one of the three leading jets. As a result, the fake MET is pulled in
φ in the direction of the mismeasured jet, which leads to small values of the ∆φ
variable, contrary to the case of SUSY events, in which there is no special constraint
on the real MET direction.

The benchmark studies [4, 5] were based on the cuts on MET and ∆φ variables,
which are expected to have the largest discrimination power between SUSY and
QCD. Figure 7.1 shows the distribution of MET in QCD and SUSY LM4 events.
Figure 7.2 shows the distribution of ∆φ in QCD and SUSY LM4 events after a cut
on MET (MET > 200 GeV ) was performed.
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Figure 7.1: Distribution of MET in QCD and SUSY LM4 events.
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7.1.2 Impact of kinematic cuts on the antenna variables

Inspired by the studies of possible SUSY searches and the contemporary study of
the data driven QCD background estimation [76] following cuts on the kinematic
variables were chosen for the present work:

• Emiss
T > 200 GeV

• ∆φ > 0.3 rad

These cuts are applied in addition to the cuts on the pT , ET , and η of the jets,
defined in the previous chapter.

Figure 7.3 shows the distributions of the A3, A3plus, A6 antenna variables after the
cut on the MET. Contrary to the plots in the previous chapter, the histograms
are not normalised to unit area but show event numbers, assuming an integrated
luminosity of 1 fb−1. The distributions of the antenna variables computed from
the QCD and SUSY events lie on top of each other. In order to understand this
outcome, which is different from the one in the previous chapter, two-dimensional
histograms of the antenna variables computed from QCD and SUSY events vs. MET
and the corresponding correlations coefficients are shown in Fig. 7.4, Fig. 7.5, and
Fig. 7.6. The two-dimensional distributions reveal that SUSY events are uniformly
distributed in MET reaching values of almost 1000 GeV , while QCD events mostly
lie in the region MET < 200 GeV . Thus, the cut on MET suppresses most of the
QCD background making the event numbers comparable.

After this cut the antenna variables have obviously lost most of their discrimination
power, due to the suppression of the QCD events with small values of the antenna
variables. This suppression appears in the plots in Fig. 7.3 as a shift of the QCD
distributions in the SUSY-like region. The high MET tail of the AQCDn distributions
is classified as SUSY-like by the antenna variables. The antenna variables computed
from QCD events are correlated with the MET as it can be seen in the two dimen-
sional correlation plots. These plots confirm also the relative displacement of the
QCD and SUSY distributions with respect to the antenna variables. The correla-
tion coefficients indicate, that the antenna variables computed from QCD events are
stronger correlated with MET in comparison with the antenna variables computed
from SUSY events, which can be considered to be independent of MET. In order
to exemplify the correlation, profile histograms of the two dimensional plots from
Fig. 7.4, Fig. 7.5, and Fig. 7.6 are shown in Fig. 7.7. The profile histograms reveal
the extreme difference between QCD and SUSY events in the dependence of the
antenna variables computed from this events on MET. Antenna variables in SUSY
events do not depend on MET. All antenna variables computed from QCD events
appear to be linearly correlated with MET up to MET ≈ 230 GeV , becoming more
and more SUSY-like. It follows, that the MET cut selects only the SUSY-like parts
of the QCD antenna distributions.

The origin of such a selection effect lies in the dependence of the antenna variable
not only on relative angles between the jets, but also on the energies present in the
event. Figure 7.8 shows the profile histogram of the −A6 variable as a function of
HT . The larger the HT of the event the larger is the value of both the −AQCD6 and
the −ASUSY6 variables, due to larger four momenta products in the denominators of
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the antenna structure. However, both curves are displaced, because of the different
angular structure (topology) of the QCD and SUSY events. Figure 7.9 shows the
HT distribution in the QCD and SUSY samples (only events which entered the −A6

computation having at least 6 jets were selected) before and after the MET cut. The
mean value of the HT variable doubles in case of QCD events after the MET cut
(from ca. 900 GeV to ca. 1800 GeV ), while it stays constant in the case of SUSY
events.

The origin of the fake MET in the QCD events are jet energy mismeasurements.
The absolute jet energy resolution worsens with the increasing jet energy. In addi-
tion punch-through effects1 occur more frequently if the energy of the jets is large.
Therefore, selecting only events with high MET, one selects primarily QCD events
with high values of HT as it is illustrated in Fig. 7.9. This selection effect does not
affect much the SUSY events, which have real MET. Because of the dependence of
−A6 and similarly other antenna variables on HT , the demand of a lot of MET in
QCD events pushes especially the QCD antenna variables to higher values, while
leaving the values of the SUSY antenna variables mostly unchanged.

In the next step the ∆φ dependence of the antenna distributions is explored. Figure
7.10 shows the distributions of the antenna variables after MET and ∆φ cuts. The
impact of the combined ∆φ and MET cut is very large, since after both cuts SUSY
events dominate in the regions of the low antenna values, while the remaining QCD
events populate the high antenna domain. This behaviour is especially pronounced
for the −A3 and −A3plus variables. Thus, antenna variables are assumed to be
correlated with ∆φ. Similarly to the MET case, Fig. 7.11 , Fig. 7.12 , and Fig. 7.13
show the two dimensional correlation plots and correlation coefficients. As expected,
there is no restriction on values of ∆φ for SUSY events, while the values of ∆φ in
QCD case barely exceed ∆φ ≈ 1. The sign of the correlation coefficients suggest,
that ASUSYn variables are anticorrelated with ∆φ, while there is a positive correlation
in the AQCDn case. In order to examine this correlation, Fig. 7.14 shows the mean
values of the antenna variables computed from QCD and SUSY events in bins of
∆φ in the domain of interest.

Firs of all, the plots reveal the correlation between the values of the antenna variables
computed from QCD events and ∆φ occurring in the region 0 < ∆φ < 0.5. This
correlation is important, since a cut in this domain is usually performed to find
the signal. The QCD antenna variables become more and more SUSY-like with the
increasing∆φ. Almost no correlation between the values of the antenna variables
and ∆φ can be seen in the case of SUSY events. The anticorrelation seen in the two
dimensional plots kicks in for very large values of ∆φ (∆φ ≈ 1.5), as it can be seen
in the Fig. 7.15 showing the mean value of the −ASUSY3 variable in bins of ∆φ.

While the cut on MET selects mainly the high energetic QCD events, the ∆φ cut
rejects events with particular angular structure. Since the origin of the fake MET
in QCD are jet energy mismeasurements, and the previous MET cut has selected
only events having large fake MET, the ∆φ cut rejects almost all three jet events,
in particular the three jet events with pencil-like structures, because in such cases
MET will almost always point in the direction of the one of the jets. But precisely

1If a high energetic jet penetrates the whole calorimeter and deposits a part of its energy outside,
one is speaking of a punch-through effect.
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these events are responsible for the low values of the antenna variables. Furthermore,
all events, in which all but the high energetic jets are close to each other will be
preferentially rejected, due to the topology of their four momenta. This selection
effect leads to the observed correlation and to the apparent transposition of the
signal-like and the background-like regions.

The impact of the ∆φ cut on the number of jets can be seen in Fig. 7.16, which
supports the explanation given above, showing strong suppression of the 3-jet and
other low jet multiplicity QCD events after the ∆φ cut.

The origin of the anticorrelation between the antenna variables computed from SUSY
events and ∆φ variable occuring at very high values of ∆φ (∆φ > 1.52) after the
MET cut, lies in the selection of the events where the three leading jets are forced
to lie in a small region of the detector (approximately one half plane). This region
becomes ever smaller with the higher cut. Such events tend to have small values
of the antenna variables, due to small angular separation of the leading jets. This
effect is especially strong for the events with exact three jets and is reduced for the
events with higher jet multiplicity, since no restriction is imposed on the additional
jets.

In summary, the antenna variables are highly correlated with the MET and the ∆φ
variable. These correlations lead to the fact, that the signal— and background—
regions of the antenna variables change places. The domains of low antenna values
are populated after both cuts by almost pure SUSY events. Because of this be-
haviour, the cuts on other discriminating variables have to be performed before the
cut on the antenna variable. The usefulness of the cuts on the antenna variables
after previous cuts on MET and ∆φ is inspected in the next section.

2In this region there are no QCD events
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Figure 7.3: Distributions of the negative A3, A3plus and A6 variables computed
from CaloJets for the QCD and SUSY LM4 sample after the cut on MET
(MET>200 GeV ).
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Figure 7.4: Distribution of the negative A3 variable computed from CaloJets vs.
MET, for the QCD (left) and for the SUSY LM4 sample (right). Colour code
indicates the number of events.
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Figure 7.5: Distribution of the negative A3plus variable computed from CaloJets vs.
MET, for the QCD (left) and for the SUSY LM4 sample (right). Colour code
indicates the number of events.
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Figure 7.6: Distribution of the negative A6 variable computed from CaloJets vs.
MET, for the QCD (left) and for the SUSY LM4 sample (right). Colour code
indicates the number of events.
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Figure 7.7: Mean values of the −A3, −A3plus, and −A6 distributions in each bin of
MET. Blue lines indicate the entries for the QCD and red lines for the SUSY LM4
sample. The black vertical line indicates the MET cut.
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Figure 7.8: Mean values of the A6 distribution in each bin of HT . Blue lines indicate
the entries for the QCD and red lines for the SUSY LM4 sample.
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Figure 7.11: Distribution of the negative A3 variable computed from CaloJets vs.
∆φ, for the QCD (left) and for the SUSY LM4 sample (right). Colour code indi-
cates the number of events.
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Figure 7.12: Distribution of the negative A3plus variable computed from CaloJets
vs. ∆φ, for the QCD (left) and for the SUSY LM4 sample (right). Colour code
indicates the number of events.
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Figure 7.13: Distribution of the negative A6 variable computed from CaloJets vs.
∆φ, for the QCD (left) and for the SUSY LM4 sample (right). Colour code indi-
cates the number of events.
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Figure 7.14: Mean values of the −A3, −A3plus, and −A6 distributions in each bin
of ∆φ. Blue lines indicate the entries for the QCD and red lines for the SUSY LM4
sample. The black vertical line indicates the ∆φ cut.
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Figure 7.15: Mean value of the −ASUSY3 variable in bins of ∆φ.
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Figure 7.16: Jet multiplicity distributions in QCD and SUSY events after the MET
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7.2 Comparison of the antenna variables

Assuming that the effect of the vanishing QCD population in the high antenna
regions is truly physical, cuts on the antenna variables can be defined, and the
discrimination power of the different variables can be compared. The signal sample
is SUSY LM4, cf. chapter 2. The following variables were chosen to compare the
quality of the variables:

• The ratio Q of the signal to background ratios after and before the cut on the
antenna variable

Q =
(Signal/Background)after the cut

(Signal/Background)before the cut

(7.4)

• The ratio S of the significances after and before the cut on the antenna variable

S =
(Signal/

√
Background)after the cut

(Signal/
√
Background)before the cut

(7.5)

The ratio Q is important if one is dominated by the systematic errors, in which
case it is important to maximise the signal to background ratio . The variable
S is important if the statistical errors dominate, and it is crucial to improve the
significance. The results of the comparison of the ∆φ, −A3 and −A3plus variables,
as well as their threshold values are summarised in the Tab. 7.1. The −A6 variable
has to be treated separately, since it requires at least 6 jets and the result for this
variable is given in Tab.7.2. The events have to have the values of the antenna
variables below the threshold values, in order to be selected. These threshold values
were determined, after several test-cuts, by choosing the cut value which maximised
the ratio S.

All antenna variables improve the signal to background ratio by up to a factor of 2.1.
The A3 and A3plus variables hold the significance (Signal/

√
Background) constant,

while it drops after the cut on A6 to 0.7. Hence the cut on the A6 variable is not
useful if one is dominated by the statistical errors. In summary the A3plus variable
performs best closely followed by the A3 variable. As a comparison the values of the
Q and S variable are also given for ∆φ, which performs much better as the antenna
variables, improving not only the signal to background ratio but also the significance.

MET > 200 ∆φ > 0.3 −A3 < −1.5 −A3plus < −1

NQCD 6342 743 182 168
NSUSY 6145 5142 2374 2416
Q - 7.1 1.9 2.1
S - 2.4 0.9 1

Table 7.1: Comparison of the discrimination power of the antenna variables A3 and
A3plus. The cut on MET is given in GeV , while the cut on ∆φ is given in rad.
NQCD and NSUSY are the numbers of the background and signal events after the
corresponding cut. The cuts on MET and ∆φ are applied sequentially. The cut on
only one antenna variable is performed at a time, but always on top of the MET
and ∆φ cuts.
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MET > 200 ∆φ > 0.3 A6 < 4

NQCD 2534 484 86
NSUSY 3093 2596 760
Q - 4.4 1.6
S - 1.9 0.7

Table 7.2: Comparison of the discrimination power of the antenna variable A6. The
cut on MET is given in GeV , while the cut on ∆φ is given in rad. NQCD and NSUSY

are the numbers of the background and signal events after the corresponding cut.
The cuts on MET and ∆φ are applied sequentially. The cut on A6 is performed on
top of the MET and ∆φ cuts.

LM1 LM4 LM8 HM3

NSUSY
before 9756 5142 2174 19

NSUSY
after 5536 2416 829 5

Q 4.4 2.1 1.7 1.2
S 2.1 1 0.8 0.6

Table 7.3: Comparison of the discrimination power of the antenna variable A3plus

assuming different signal scenarios but using the same threshold value. The cuts on
MET and ∆φ were applied beforehand.

However, ∆φ is expected to be the second best variable after MET, and it is difficult
to find variables having additional separation power. The discrimination power of
the antenna variables can be further optimised by scanning over possible cut values
to find the optimal working point. Additionally antenna variables can be used as an
additional input for a multivariate approach.

7.2.1 Discrimination power in dependence on the SUSY pa-
rameters

The cuts on antenna variables were optimised assuming the SUSY LM4 signal sce-
nario. In this subsection the performance of the A3plus variable, which performed
best in the previous comparison, is tested on different SUSY mSUGRA test points.
The cuts are performed with the constant cut value of −1 simulating a scenario
independent search. The cuts on the kinematic variables (MET and ∆φ) were per-
formed beforehand. The effect of these cuts on QCD events can be read out from
the Tab. 7.1:

• NQCD
before = 743

• NQCD
after = 168

Table 7.3 summarises the results of the comparison for the different SUSY test
points. The effect of the cut on the A3plus variable depends on the SUSY scenario
under consideration. The performance of the variable worsens with increasing mass
of the SUSY particles contrary to the situation before the MET and ∆φ cuts, since
higher SUSY masses shift the distributions of the −ASUSYn variables in the domain
of large antenna values containing, after the kinematic cuts, the bulk of the QCD
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distribution. However, the variable improves the signal to background ratio for all
scenarios holding the significance constant or even improving it at the mSUGRA
LM1 test point. At this point the signal to background ratio can be quadrupled
while the significance can be doubled. The significance worsens only for the high
mass point reaching 0.6, which should be taken into account if the antenna variables
are used for a scenario independent searches.

Theoretical, it would be possible to optimise the antenna cut values, in the case
where the antenna variables are used for SUSY search at a particular test point.
Fig. 7.17 shows the distributions of the antenna variables computed from QCD-
and SUSY events at different test points after the cuts on the kinematic variables
(MET and ∆φ). The numbers of events and the shapes of the distributions reflect
the falling cross sections of SUSY test points (9756 LM1 events compared to 2174
LM4 events or even 19 HM3 events) and the shift to larger antenna values (−1.18
for LM1 vs. −0.69 for HM3), mentioned above. These plots suggest and test cut
results confirmed, that the cut value of −1 chosen for a inclusive search is also a
reasonable cut for the searches at the particular signal point. This result suggests
that the A3plus variable should not be used for the SUSY searches at high mass
points.

The A6 variable performed worst in the discriminator test in the previous section,
due to the approximate uniform distribution of the variable values for QCD events.
However, the A6 variable incorporates the most information on the close-by structure
of the events, as stated in the section 6.9. Therefore, the shape of the distribution of
this variable could be probably used to discriminate between the different possible
SUSY signals. Figure 7.18 shows the distributions of the −A6 variable computed
from QCD, SUSY LM1, SUSY LM4, and SUSY HM3 events. Figure 7.19 shows
the same distributions normalised to the unit area and on a linear scale, in order
to exemplify the different shapes. The mean of the −ASUSY6 distributions tends to
larger values with increasing masses of the SUSY particles. Additionally the distri-
butions computed from QCD and different SUSY test points have different shapes.
The −AQCD6 distribution falls rapidly for small antenna values, while it decreases
at a slower rate towards high values. The shapes of the −ASUSY6 distributions are
different for each point. This behaviour of the −A6 variable suggests their use in a
multivariate approach in order to estimate the parameters of the SUSY signal.

In summary, the antenna variables offer additional discrimination power for the all-
hadronic SUSY searches, in particular at the low mass points, provided, that the
extinction of the QCD population in the low antenna regions after combined MET
and ∆φ cuts can be confirmed by further studies with different event generators. The
deployment of the A6 variable as an additional input in a multivariate estimation of
the SUSY parameters should be investigated in further studies. The correlations of
the antenna variables with all kinematic variables discussed so far, impede the use
of the antenna variables in a data-driven background estimation method.
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Figure 7.17: Distributions of the negative A3plus variable in QCD and SUSY LM1,
LM8 and HM3 datasets. The cuts on MET (MET>200 GeV ) and ∆φ (∆φ >
0.3 rad) were applied beforehand.
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Figure 7.18: Distributions of the negative A6 variable in QCD and SUSY LM1, LM4
and HM3 datasets. The cuts on MET (MET>200 GeV ) and ∆φ (∆φ > 0.3 rad)
were applied beforehand.
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Figure 7.19: Normalised distributions of the negative A6 variable in QCD and SUSY
LM1, LM4 and HM3 datasets. The cuts on MET (MET>200 GeV ) and ∆φ (∆φ >
0.3 rad) were applied beforehand.
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8

Conclusion and Outlook

The main purpose of this thesis has been the investigation of QCD-antenna in-
spired variables, which could be used as additional discriminators for the all-hadronic
searches of physics beyond the standard model, as it was shown using the example
of R-parity conserving SUSY.

QCD-antennas are special patterns of the four momenta products in QCD scattering
amplitudes. The so called antenna variables introduced in the present work are ob-
servables build on the structure of the gluon scattering QCD-antenna. The antenna
variables can be divided in two groups. Exclusive variables use all jets present in
the event and can be interpreted, if applied to QCD events, as crude approximation
to the tree-level gluonic amplitude, which would lead to the particular, observed jet
structure. However, the definition of the exact jet number is fragile and depends
much on the applied cuts, the jet algorithm, and detector response. Inclusive an-
tenna variables use only the n leading jets of each event for the computation and
lead to the best results.

In general the observables (inclusive and exclusive) are measures of the averaged
inverse invariant mass of jet pairs present in the event. The discrimination power
of the observables originates from their sensitivity to the topology of the jets from
which they are constructed. The QCD events have in general more close-by jets
originating mostly from gluon radiation, while jets from the cascade decay of heavy
particles are in general better separated thus leading to larger invariant masses and
hence to larger values of the observables.

This work shows that the construction of such observables is possible. Furthermore,
the behaviour of the simplest observable in the case of gg → gg scattering on parton
level is shown to follow closely the theoretical predictions.

The present study applies the antenna variables to the case of the mSUGRA SUSY
model with R-parity conservation as signal. The variables computed from simulated
jets show the expected discrimination power between QCD and SUSY events. The
discrimination power depends on the SUSY scenario under consideration. Without
additional cuts, the discrimination power of the variables increases with increasing
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masses of the primary SUSY particles. The antenna variables can also be constructed
on the detector level showing comparable behaviour to the variables on the Monte
Carlo level, with good resolution if the number of hadron jets and detector jets is
the same.

The antenna variables can be related to the event shape variables like thrust and
sphericity. In contrast to the event shape variables, which are mainly sensitive to
the jets with the largest momenta, the antenna variables offer additional sensitivity
to the close-by structure of the jets.

The behaviour of the antenna variables changes if cuts on other kinematic variables
are applied beforehand. The cut on missing transverse energy, which is essential
for the reduction of the number of QCD events, favours the QCD events containing
mostly high energetic jets, while leaving the composition of SUSY events mostly
unchanged. The remaining high-energetic QCD events have SUSY-like values of
the antenna variables. The additional cut on the minimal angle between missing
transverse energy and the three leading jets rejects mostly all QCD events with
pencil-like structure. As a consequence of these two cuts the QCD-dominated and
SUSY-dominated regions of the antenna distribution change places.

After the swap of the QCD- and SUSY-like regions, cuts on the antenna variables
can be carried out. The −A3plus variable constructed out of two leading jets and
an additional object, the vector sum of all other jets in the event, performed best.
Assuming that the signal would be described by the SUSY LM1 test point, the cut
on the −A3plus variable could improve the signal to background ratio by a factor
of 4 and double the significance. The −A3plus variable can be also used for the
improvement of the signal to background ratios at all low-mass SUSY points. In
summary, the present thesis examined new variables, which are able to discriminate
between QCD and SUSY events and are only weakly correlated to the event shape
variables.

A possible extension of this work would be to use one of the antenna variables as
an additional input to a multivariate approach for the QCD background reduction
not only for SUSY but also for various different searches of the physics beyond the
standard model. The possible use of the variable for searches of the signals without
MET should be also further investigated. Additionally, the variable constructed out
of the first six leading jets is very sensitive to the close-by angular structure of the
events. A further study could investigate the feasibility of the distinction between
different SUSY scenarios or other signals using this variable among other things.
Moreover the impact of the jet algorithm on the number of detector jets in each
event should be investigated. It could be probably possible to make the jet number
a more robust variable by using another jet algorithm or by varying the parameters
of the kt jet finder.

A possible limitation of the present study is the deployment of the QCD events
generated with the Pythia Monte Carlo generator, which uses only 2→ 2 hard scat-
tering matrix elements and creates additional jets by parton showers. To overcome
this obstacle the study should be redone with different QCD samples generated with
a Monte Carlo generator using different parton shower techniques, like HERWIG,
and a Monte Carlo generator using matrix elements of more complex scattering
processes, like MadGraph.
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Zuerst möchte ich mich bei Prof. Peter Schleper bedanken, der es mir ermöglicht
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