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Abstract

The acceleration of electron bunches with very small longitudinal and transverse phase space
volume is one of the most actual challenges for the future International Linear Collider and high
brightness X-Ray Free Electron Lasers. The exact knowledge on the wake fields generated by
the ultra-short electron bunches during its interaction with surrounding structures is a very
important issue to prevent the beam quality degradation and to optimize the facility performance.
The high accuracy time domain numerical calculations play the decisive role in correct
evaluation of the wake fields in advanced accelerators.

The thesis is devoted to the development of a new longitudinally dispersion-free 3D hybrid
numerical scheme in time domain for wake field calculation of ultra short bunches in structures
with walls of finite conductivity. The basic approaches used in the thesis to solve the problem
are the following. For materials with high but finite conductivity the model of the plane wave
reflection from a conducting half-space is used. It is shown that in the conductive half-space the
field components perpendicular to the interface can be neglected. The electric tangential
component on the surface contributes to the tangential magnetic field in the lossless area just
before the boundary layer. For high conducting media, the task is reduced to 1D electromagnetic
problem in metal and the so-called 1D conducting line model can be applied instead of a full 3D
space description. Further, a TE/TM (“transverse electric - transverse magnetic”) splitting
implicit numerical scheme along with 1D conducting line model is applied to develop a new
longitudinally dispersion-free hybrid numerical scheme in the time domain.

The stability of the new hybrid numerical scheme in vacuum, conductor and bound cell is
studied. The convergence of the new scheme is analyzed by comparison with the well-known
analytical solutions. The wakefield calculations for a number of structures are performed and a
good agreement with known analytical and numerical results is obtained. The new hybrid
scheme was applied to calculate the wake potentials for the various components of FLASH
linear accelerator at DESY and the European XFEL project.
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Zusammenfassung

Die Beschleunigung von Elektronen-Paketen mit sehr kleinen Abmessungen im
longitudinalen und transversalen Phasenraum ist eine der wichtigsten Herausforderungen fiir den
zukiinftigen internationalen Linearbeschleuniger (ILC) und fiir Freie-Elektronen-Rontgen-Laser
mit sehr hoher Brillanz. Die genaue Kenntnis der begleitenden Felder, die von sehr kurzen
Elektronen Paketen in Wechselwirkung mit den umgebenden Strukturen erzeugt werden, ist sehr
wichtig um eine Verschlechterung der Strahlqualitit zu verhindern und die Leistung der Anlage
zu optimieren. Sehr genaue Berechnungen im Zeitbereich sind entscheidend um die begleitenden
Felder in hochentwickelten Beschleuniger Strukturen richtig zu bestimmen.

Diese Arbeit ist der Entwicklung eines neuen dreidimensionalen dispersionsfreien
numerischen  Hybridschemas im  Zeitbereich  gewidmet, um die begleitenden
elektromagnetischen Felder zu berechnen, die entstehen wenn sehr kurze Ladungspaketen durch
Strukturen mit endlich leitfdhigen Wénden fliegen. Die wesentlichen Naherungen die hier
benutzt werden sind die folgenden. Fiir Materialien mit hoher aber endlicher Leitfahigkeit wird
das Modell der Reflexion an einem leitfahigen Halbraum verwendet. Es wird gezeigt daf} im
leitfahigen Halbraum Feldkomponenten senkrecht zur Grenzfliche vernachlédssigt werden
konnen. Die elektrische Tangentialkomponente in der Oberfldche ergibt sich dabei als Reaktion
auf das tangentiale magnetische Feld im verlustfreien Bereich knapp vor der Grenzschicht. Fiir
sehr gut leitfahige Medien vereinfacht sich die Aufgabe in das eindimensionale
elektromagnetische Problem in Metall, auf das sich das sogenannte verlustbehaftete
Linienleitungsmodell anwenden 14ft, statt einer vollstindig dreidimensionalen Beschreibung.
Zudem wird eine TE/TM (“transversal elektrisch - transversal magnetisch”) Aufspaltung eines
impliziten, dispersionsfreien numerischen Verfahrens zusammen mit einem verlustbehafteten
Linienleitungsmodell angewandt um ein neues dispersionsfreies numerisches Hybridschema im
Zeitbereich zu entwickeln.

Die Stabilitit des neuen numerischen Hybridschemas wird untersucht in Vakuum, im
leitfadhigen Bereich und in der verbindenden Zelle. Die Konvergenz des neuen Schemas wird
ermittelt und mit bekannten analytischen Losungen verglichen. Die begleitenden
elektromagnetischen Felder werden fiir eine Reihe von Strukturen berechnet und dabei gute
Ubereinstimmung mit bekannten analytischen und numerischen Ergebnissen erzielt. Das neue
Hybridschema wurde verwendet um begleitende Felder in zahlreichen Komponenten von
FLASH und vom européischen Freie-Elektronen Laser Projekt zu charakterisieren.
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Chapter 1. Introduction

The acceleration of electron bunches with very small longitudinal and transverse phase space
volume is one of the most actual challenges in advanced linear accelerators for fundamental and
applied research. The preservation of small phase space volume of accelerated electron bunches
is one of the basic requirement to reach the projected luminosity in future International Linear
Collider (ILC) [1] and to drive high brightness X-Ray Free Electron Lasers (XFEL) [2-6].

The European X-Ray FEL project [3] is aiming to generate ultra-short pulses of spatially
coherent photon beams with wavelengths down to 0.1 nm and the brilliance of about 10
ph/mm?/mrad®/0.1%BW. The process adopted to generate the X-ray pulses is Self-Amplified-
Spontaneous-Emission (SASE) [7-10].

In SASE process, the high energy electron beam in undulator section interacts with the
transverse electric field of radiation due to transverse velocity of electrons in undulator magnet
and produces an electron energy modulation on the scale of radiation wavelength A,. The
electron energy modulation in turn modifies the electron trajectory in the undulator producing
the microbunching of the electrons at the scale A, . Electrons bunched within a wavelength emit
radiation in phase, thus producing a larger intensity that leads to more energy modulation and
more bunching, leading to exponential growth of the radiation until saturation is reached.

In order the SASE process to occur the electron beam must match the transverse phase space
occupied by a transversally coherent radiation, i.e. in terms of the electron beam natural
emittance & (transverse phase space area) and radiation wavelength A, , this condition reads
ase <A, [4r.

Another important condition to electron beam parameters for SASE FEL is the limit to beam
energy spread o to prevent the widening of the spontaneous radiation line and the reduction of
the growth rate due to Landau damping. In SASE FEL theory this limit is given by the
dimensionless FEL parameter p and read as o_/ E << p, where E is the accelerated particle
nominal energy. The typical limit to relative energy spread for X-ray SASE FEL is of the order
of o_/E<<10™. In addition, in order for the FEL to operate in the saturation mode with

reasonable undulator length a high electron peak current ( short bunches) is required.

In the European XFEL project [3], the electron bunches with normalized projected emittance
of 1.4 um and bunch charge of 1nC are accelerated up to 17.5 GeV energy in superconducting
linear accelerator. The X-rays are then generated in about 200 m long undulator section. The
required peak current of SkA is reached in two magnetic chicanes where the initially 2mm (rms)
long bunch is compressed down to 25 um at the entrance to main linac.

In a real machine, as the beam propagates along the accelerator, it interacts with the
surrounding structure and excites the electromagnetic fields that act back to the trailing particles
of the bunch [11]. These fields, known as the wakefields, affect the beam performance as the
excited fields in general have longitudinal and transverse components. The effects of these wake
fields, are evaluated in time domain by introducing the longitudinal and transverse wake
potentials that represent the integrated Lorenz force in longitudinal and transverse directions
acting on the trailing test particles. The longitudinal wake potential produces an extra energy
spread within the bunch, while the transverse wake potential lead to beam rms emittance growth.

The beam propagating along the accelerator interacts with various types of the elements such
as accelerating structures, bellows, transitions, collimators, couplers, small gap undulators etc,
which in general have different geometries and electrodynamical properties. Therefore, the exact
knowledge on the wake fields generated during these interactions is very important both from the
beam physics point of view (preservation of beam small emittance and energy spread) and with
regard to the new technical solutions for various components.



Summarizing the above considerations, the first physical motivation of the presented thesis is
driven by achievement and preservation of the small phase space volume of the charge particles
beams in advanced accelerators.

The thesis is devoted to one important topic of this problem - the exact calculation of the
longitudinal and transverse wake fields excited by short electron bunches in various accelerator
structure components with finite conductivity walls.

1.1. Numerical Methods for Wake Field Calculation

The computation of the wake potentials always played an important role in particle
accelerator physics [11-20]. With the progress of the new generation of the accelerator facilities
with extremely low beam emittance and energy spread the exact solutions for the wake potentials
become the barest necessity, as the relative effects of their impact to beam parameters are
tangible.

The development of advanced accelerators is accompanied with the improvement and
modification of the facility characteristics that require careful modeling and examination of the
effects that impact the beam quality. In advanced electron light sources the technical solutions
for small gap undulators and wigglers, high vacuum performance, cures of resistive instabilities
[21-23], prevention of the static charge [24], shielding of external radiation [25-26] imply the
usage of various types of complicated vacuum chamber configurations having both geometrical
and constructive peculiarities. These complications along with the stringent requirements to the
beam quality recently drove rigorous numerical and analytical study of the longitudinal and
transverse wake fields for various types of structures. On the other hand the exact analytical
solutions for the wake fields are available for the structure with relatively simple geometry [27-
31].

Thus the practical way of calculating and studying the electromagnetic fields in real 3-
dimensional (3D) structures is the application of numerical methods.

The numerical codes are an important tool for the wake field simulations [32-40], however
they not always give appropriate results especially for the very short bunch length and the
structures with walls of finite conductivity. The basic approach for the numerical calculations of
the electromagnetic fields in three-dimensional structures is the discretization of the Maxwell
equations in space and time domains. The correct numerical simulations of the wake fields
require the longitudinal mesh step smaller than the bunch rms length. In addition, the phase and
group velocity of the numerical waves differ from the physical one that lead to dispersive
accumulative numerical errors. More complications arise for the structures with finite conductive
walls, since to model the waves in conductor more dense geometrical meshes in comparison with
free space are required. This leads to the considerable reduction of time step that increases the
numerical dispersion error and corrupts the simulation.

Various Maxwell grid equation (MGE) based numerical codes have been developed to solve
the 2D and 3D wake field problems in frequency and time domains [40, 52, 53] but usually
without resistive wall losses.

To make the numerical simulations of beam dynamics in accelerators the particle-in-cell
(PIC) method [35] is an effective approach. The electromagnetic fields in many PIC codes are
computed using the finite-difference time domain (FDTD) method [36, 37]. As any numerical
mesh approach the conventional FDTD scheme [38], used in MAFIA [39], TBCI [40] and other
wake and PIC codes, suffers from numerical grid dispersion, i.e. the group velocity of the
numerical waves is slower than the physical one. Hence, the high energy particles can travel in
vacuum faster than their own radiation. This effect is commonly referred to as numerical
Cherenkov radiation [41], which due to its accumulative character corrupts the simulation.

Several numerical approaches [42-45] are proposed to reduce the accumulated dispersion
error of numerical simulations for all angles and for given frequency range. These methods
require the usage of larger spatial stencils and a special treatment of the material interfaces.
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In the accelerator applications the domain of interest is very long in the longitudinal direction
(well-defined direction of the beam motion) and relatively narrow in the transverse plane. In
addition, the electromagnetic fields change very fast in the direction of bunch motion but they
are relatively smooth in the transverse plane. Therefore the development of numerical algorithms
with cancellation or reduction of the numerical dispersion in longitudinal direction is very
important.

It is known that the conventional FDTD method is dispersion free along grid diagonals and
that this property can be used effectively in numerical simulations [46]. However, in this case the
only solution is to take equal mesh steps in all three directions.

Non-dispersive Second order Volume Surface
direction (IBC-TD)
1980_ BCI/TBCI No No No No
NOVO Yes No No No
g ABCI No No No No
[
> MAFIA No No Yes Yes
N
XWAKE No Yes No No
g Gdfidl No No Yes No
2002 =
Tau3P No Yes No No
g ECHO Yes Yes No No
[
l,>>' CST No Yes Yes Yes
PBCI Yes Yes No No
ZON NEKCEM No Yes No No
This work Yes No No Yes

Table 1. Not exhaustive list of available numerical codes.

Alternatively, a semi-implicit numerical scheme without dispersion in longitudinal direction
with simpler conformal treatment of material interfaces and the usage of non-equidistant grids
has been developed in [47-50].

Shown in Table 1 are the numerical codes developed during last 30 years. Also presented are
the properties of the numerical schemes implemented in those codes, like numerical dispersion
and convergence. The third column shows whether the code can model volume conductivity.
From the numerical codes listed in Table 1 only MAFIA [39], CST Microwave Studio [51] and
Gdfidl can model structures with walls of finite conductivity. In the last column the surface
conductivity option is given in the mean of Impedance Boundary Condition modeling in Time
Domain (IBC-TD). This option is important especially for high conductive materials like
Aluminum (Al), Copper (Cu) and etc. However in those codes the Yee conventional FDTD
scheme is implemented. Thus the algorithms suffer from numerical dispersion and are inefficient
for ultra short bunches.

To model ultra short bunches and to prevent the numerical dispersion in longitudinal
direction, the dispersion-free numerical scheme is proposed in [52] that is implemented in code
ECHO. The dispersion-free numerical scheme enables use of a moving mesh frame concept
without loosing the accuracy of calculation. Another relatively new numerical code applicable
for ultra short bunches and with a dispersion-free algorithm is the PBCI code [53]. Note that
both codes are unable to model the finite conductive materials (Table 1).

To calculate the wake field of ultra-short bunches in resistive structures, it is necessary to
develop a new time-domain numerical scheme that would effectively match the resistive
boundary conditions and would be dispersion-free in the longitudinal direction.
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1.2 Overview and Main Results

The thesis is devoted to the development of a new 3D dispersion-free hybrid numerical
scheme in time domain for wake field calculation of ultra short bunches in structures with walls
of finite conductivity. The main issue in numerical simulation of 3D electrodynamic problems
with conductive boundaries is stipulated by the wavelength contraction in conductor with respect
to free space [60,76]. For short bunches, this leads to very dense 3D mesh in conductor region
with respect to free space.

The basic approaches used in the thesis to solve the problem are the following. For finite but
high conductivity material it is shown that the incident waves are transmitted perpendicular to
the boundary surface and only the tangential components of electric and magnetic fields survive
in the conducting media. Thus for high conducting media, the task is reduced to 1D
electromagnetic problem in metal and the so-called 1D conducting line model can be applied
instead of a full 3D space description. Further, TE/TM (“transverse electric - transverse
magnetic”) splitting implicit dispersion-free numerical scheme along with 1D conducting line
model is applied to develop a new dispersion-free hybrid numerical scheme in time domain.

The stability of the new hybrid numerical scheme in vacuum, conductor and bound cell is
studied. The stability conditions have been tested and confirmed by a number of numerical
experiments. The convergence of the new scheme is analyzed by comparison with the well-
known analytical solutions. The wakefield calculations for a number of structures are performed
and a good agreement with known analytical and numerical results is obtained.

The thesis consists of introduction, three chapters, summary and bibliography.

Chapter 2 of the thesis is devoted to the time domain numerical modeling of one-
dimensional electromagnetic problems with Impedance Boundary Condition (IBC). In this
chapter an explicit and implicit numerical schemes are introduced for electromagnetic field
calculations in the metal and in the vacuum regions. The stability analyses of those two schemes
for both regions are performed. For IBC modeling in time domain the matching of the numerical
schemes (explicit and implicit) in vacuum and in metal is achieved. The stability analyses of the
so-called hybrid (matched) numerical schemes are performed. Stability analysis has shown the
implicit hybrid scheme to be unconditionally stable. For the conductor part the stable space step
strongly depends on both the time step and vacuum space step. It is shown that the hybrid
numerical scheme has a second-order convergence.

In Chapter 3 the overview of the TE/TM implicit 3D numerical scheme [33, 52, 67] is given.
This time-domain numerical scheme is dispersion-free in longitudinal direction and valid for
structures with perfect conducting walls. It is especially efficient for the wakefield calculations
excited by ultra-short relativistic bunches. The analysis shows that the TE/TM numerical
scheme is much more accurate in long-time simulations than the conventional FDTD approach.
This scheme has been applied for development of a new hybrid numerical scheme that includes
conductive boundaries.

The Chapter 4 is devoted to a new hybrid numerical scheme for calculating the wakefields
excited by ultra-short bunches in structures with walls of finite high conductivity. Based on the
TE/TM splitting numerical scheme described in Chapter 3 a new longitudinally dispersion-free
algorithm for resistive structures is developed. The time domain impedance boundary condition
in each boundary cell is approximated by one-dimensional EM model described in Chapter 2.
The realization of this new hybrid 3D implicit numerical scheme is done for rotationally
symmetric geometries and staircase approximation of the boundary surface. A good agreement of
the numerical simulations with the well-known analytical results and CST Particle Studio
simulations are obtained. The new hybrid scheme was applied to calculate the wake potentials
for the various components of FLASH linear accelerator at DESY and the European XFEL
project.



Chapter 2.

Time Domain Numerical Modeling of 1D
Electromagnetic Problems with Impedance Boundary
Conditions

In this Chapter the time domain numerical model of one-dimensional electromagnetic
problems with Impedance Boundary Conditions (IBC) is derived. The explicit and implicit
numerical schemes are introduced for electromagnetic field calculations in the metal and vacuum
regions. The stability analyses of those two schemes for both regions are performed. For IBC
modeling in time domain the matching of the numerical schemes (explicit and implicit) in
vacuum and in metal is achieved. The stability analyses of the so-called hybrid (matched)
numerical schemes (explicit and implicit) are performed.

Consider the plane electromagnetic wave with electric E and magnetic H components
incident normal to the vacuum-conductor boundary surface (Fig.1).

!
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Figure 1. Plane wave scattering on metallic surface.

In Cartesian coordinate system and normalized time, variable 7 =cCt, the 1D integral
Maxwell equations are given as

§Edi=—zoﬂa—Hd§ 2.1)

where Z, = cp, = (cg,) ' =376.73 Q is the impedance of free space, & is the conductivity, J is

the bias current, C is the velocity of light, x is the longitudinal coordinate.

For discretisation of this 1D problem we distinguish two regions: vacuum and conductor. We
assume that the time step A1 is constant and is the same for both regions, while the discrete
mesh spacing AX is also constant but different for each region. As shown in later analysis the
different space steps in vacuum and conductor are required to satisfy the stability conditions of
numerical schemes. To develop the numerical schemes, the continuous space-time dependence
of the electromagnetic field u(x, 1) = {E, H}(x, 1) will hereinafter be substituted by the relevant
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quantity U(X;,T,) in discrete space-time coordinates X; =i-Ax, T, =n-At with i,n integer
numbers. The relevant discretized solution at the mesh point 1 and time level n will be

represented as u{ . Note that in this definition n is a mere superscript, rather than an exponent.

In all regions the electric and magnetic fields on discrete space are shifted by half a space step
from each other. To be shown in this Chapter is that if the discrete electric and magnetic fields
are defined at the same time level the resulting numerical scheme is implicit, while for an
explicit scheme the time level of the magnetic field is shifted by a half-time step from the electric
one.

2.1 1D Numerical Scheme in Vacuum

The integral Maxwell’s equations (2.1) for the 1D continuous electromagnetic fields problem
in vacuum region (« = 0) are simplified to

. - 1 ¢t0E .
§Hd1=z—0jsjgds

. (2.2)
fEdl =z, [[ L as

ot

To describe the electromagnetic fields in finite time and space, the equations (2.2) should be
added to the initial (time) and boundary (space) conditions. We suppose that boundaries of the
vacuum region of interest satisfy the perfect electric (PEC) boundary conditions, i.e. the
tangential component of the electric field is zero on boundaries KK’ (x =—-L) and OO’ (x =0),
as shown in Fig.2. To be assumed as the initial conditions for the problem are the results of
analytical or numerical solutions.

2.1.1 Space Discretization

For discretization of electromagnetic field in one-dimensional space we define normal and
dual uniform grids in the space for electric and magnetic fields respectively. The distance
between the two closest nodes in both grids is the same and is termed space step Ax,. The dual
grid is shifted by half a space step with regard to the normal grid. The normal grid is chosen in
the way that it cover the boundary points as well. By introducing integer variable 1 the
coordinates of the nodes of the grids can be expressed via space step as i-Ax, and
(1+0.5)-Ax, for normal and dual grids respectively. Now we define the electric field €, on the
nodes of normal grid and magnetic one h,,;,, on nodes of dual grid. The scheme of the

discretization is shown in Figure 2. Here the index i for the electric field and index (i+1/2) for
the magnetic fields represent the space points where the fields are defined.
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Figure 2. A schematic view of the electromagnetic field in the discrete space of a vacuum
region.

According to Figure 2 the space discretization of the left and right parts of the second
equation in (2.2) will read as

with —M <i<0 (2.3)

where AX, is the discrete space step in vacuum and i,M are integers. The integer M is

defined as the number of discrete points of an electric field in space, i.e. the number of normal
grid nodes. Thus, the number of discrete points for a magnetic field (the number of dual grid
nodes) will be M —1(Fig.2). Equaling both equations in (2.3) we get

0
-Z,—h | Ax,=¢e,, —¢, (2.4)
ot i+

This equation could also be easily obtained from the 1D differential Maxwell equations (2.1)
using the central difference method for the approximation of the space derivative of
electromagnetic fields.

o) 1

Xg-AX X; X +HAX X
Figure 3. Estimates for the derivative of f(x) at point P using central differences.

In the central differences method the derivative of any continuous function f(x) at point P is
approximated as (Fig.3)



df (x) _f(x+ Ax) — f(x — Ax)
dx 2Ax

X=X

+o(Ax?) (2.5)

The order of approximation can easily be proven by using Taylor expansion [54]. Since this
approximation has the second-order accuracy with respect to AX, we expect that the final
numerical scheme will have the same order of accuracy [55, 56] when the geometric mesh
coincides with boundary interface. Otherwise an additional numerical error added from

approximation of the boundary interface that can compromise the accuracy of calculation.
Now we discretize the first equation in formula (2.2).

§Hdi=zljj§d§ (2.6)
0 s

| |
»
P

: AX :
Figure 4. The geometric view of the i th cell in vacuum.

According to the Figure 4, the left- and right-hand sides of this Equation will read as

fHdl~(h , ~h )d
1+E 1—5
with —-M <i<0 (2.7)
ljjﬁﬁdgziﬁeimo d
Z,% ot 0 OT
Substituting (2.7) to (2.6) we get
Liei _ ! h ,-h , (2.8)
Z, ot Axg | i+ i

Finally the time continuous and space discretized, 1D Maxwell’s equations (2.2) will read as

0 1 e —¢
SRS B
o i Z, Ax,
h | -h 2:9)
1o, " 5
Z, ot ' AXx,



with PEC boundary conditions€y =€_y; =0. Introducing the vectors for electric ¢ and

magnetic h fields

) €0 h s
e=—o/| ¢ |, h= : (2.10)
Z,
C_m h 0541
the equations (2.9) can be rewritten in a simple matrix form

i B = Pvacuum é
ot @2.11)
i é = P:acuum ﬁ
ot

In Equation (2.11) P, .um> P:acuum are the matrixes of [(M—-1)xM], [Mx(M-1)]

dimensions respectively matching the discrete operators of derivative by space for electric and
magnetic fields

-1 0 0 - 0
11 0 - 0 1 -1 0 - 0
> 1|0 -1 1 -0 p* :L o 1 -1 -0
veewm SO s M A L0 0 (2.12)
0 0 -1 1 oA
0 O 0 1
As follows from (2.12), the 1D derivative operators on primary P ... and dual P:acuum
grids have the property of the generalized symmetry, i.e. P:acuum =Pl ..

2.1.2 Time Discretization

In this section we introduce the discretization of continuous time variable. For the time
derivative we will use the central difference approximation (2.5) with the discrete time step AT .
We define the integer variable n for the time level description that will indicate the real time
T, =n-At.

We will discuss two types of EM field time discretization that lead to implicit and explicit
numerical schemes respectively.

n

a. Implicit 1D numerical scheme

One possibility for time discretization is to define the electric ¢ and magnetic h fields at the
same time level n. In this case we need to apply the linear interpolation describing EM fields at
the time level n+0.5 as
ht L pt Hn+l ~n+l | =n
X *h e te (2.13)
2 2

1
~Nn+—
h 2



Using central difference approximation for time derivatives the discretized form of EM field
equations (2.9) will read as

n+l n n+l n |

Bt — gy At 1 ey +eiy & +¢

o1 =0y P

i i AXy Z 2 2]
hn+1 +hn hn+1 +hn ]

1 1 1 1

AT 1+— 1+— 1—— 1——

el + Z|—2 2.2 : (2.14)
Ax, 2 2

or in matrix form

~n+l , 2n
hn+1 :hn+ATPvacuum - 2+e
En+1 ﬁn (2 15)
R L P T —
The equations (2.15) may be written as follows:
~ ~ A _
h# =h" +_Tpvacuum e"
2
W, e —e"]= ATPl b 2.16)
Bn+l :ﬁ#-l-EP 6n+1
2 vacuum
with three-diagonal matrix W, given as
AT .
WO = I_T’l:Pvacuumpvacuum (2 17)

where I is the unit matrix.
As seen in this case the numerical scheme is implicit.

b. Explicit 1D Numerical Scheme

Another option for time discretization is to define the electric € and magnetic h fields at
different time levels n and n+0.5 respectively. Using central difference approximation for time
derivatives the discretized form of EM field equations (2.9) will read as

(2.18)

or in matrix form

10



vacuum 1 (2 1 9)

el =g" +ATP] h 2

vacuum

As seen from the field update equations (2.18) and (2.19) the numerical scheme is explicit.
The important issue in numerical modeling of the Maxwell equations is the stability analyses
of the numerical schemes, to be discussed in the next section.

2.1.3 Stability of the Scheme

In this chapter we will discuss the stability and convergence of the above-introduced
schemes. First we introduce the general theory of stability analyses [54, 57-59].

: ... dU ~ . . . .
Consider a system satlsfylngE:LU, where Lis a linear differential operator and

U(T,t)is a state vector known at t =0, i.e. fJ( r,0)= fJO. The discretization of such a system
in time will bring us to the following equation in difference form

U™ =G(Ax,At) U™ (2.20)

where G is called the amplification matrix of the difference scheme, U'is a discretized vector in
the space. The time level is given as a superscript.

In general when the eigenvectors of amplification matrix G make the basis, the solution can
be expressed in terms of eigenvector expansion. In particular, such a basis always exists when
the matrix G is self-conjugated or similar to the symmetric matrix [55, 56]. In this chapter we

assume that the eigenvectors \TI(V) of the amplification matrix G make up a complete basis for

the linear problem (2.20). The initial state vector expansion over the eigenvectors \TI(V) then
will read as

U’ =>10)y" (2.21)

i . . .
where U, are the expansion amplitudes at time step zero.

From equations (2.20) and (2.21) the state vector U™ at time level n can be presented as
U"=(G)" U’ =(6)" D09y (2.22)
The eigenvectors \TI(V) of amplification matrix G satisfy the following equation
Gy™ =g,y (2.23)

where g, are the eigenvalues of amplification matrix G .
Using the state vector expansion (2.22) we get

U => 00(g,)" o (2.24)
v

11



As seen from the presentation (2.24), the discrete model U" is stable when the following
condition to eigenvalues are fulfilled

lg,|<1 (2.25)

We will apply the above stability theory to the analysis of the numerical algorithms for plane
wave in vacuum described in the previous section. The results will be then valid for modeling the
source-free 1D electromagnetic problems, since any EM fields in vacuum can be expressed via
the superposition of plane waves.

a. Stability of 1D Implicit Scheme in Free Space

The implicit numerical scheme in original form (2.14) read as

n+l n n+l n]

Bt o At 1 ey +ei & +¢

1 =0 P

i i AXxy Z, 2 2

h™ +h", h"™ +h", (2.26)
n+l n At H—E H—E 1_5 1_5
ei =ei + ZO -
Ax, 2 2

For the plane wave we have the following relations between the two closest discrete points in
space

h™, =h" ejk Ax

i+l i—l
2 2 (2.27)

el =ep ek
where k is the wave number.
Using these relations the numerical scheme (2.26) is modified to

h™ +h",
ein+1 _e? — Zoa[eJkAxU 1] 2 2
2 | (2.28)
'n+ + n
STV TR S

where a=At/Ax, .
The updated equations (2.28) can be presented as

with A 2.29
3=azsin2(kﬂ] (2.29)
2
To get (2.29) the following trigonometric relation is used

12



(l—e_jkA"O )(ejkAXO —1): —4sin2(k%j (2.30)

e . .
Following (2.20) the amplification matrix G for vector U" = [h“ J will be given by
i-0.5

5 p A ST
G=| G(E__ . 2.31)
R | JkAxo) -2

The eigenvalues g, of amplification matrix G are given by det(G -g I) =0 (I - unit matrix)
that read as

_ G (eikan )
det(G—gI)= =|2-g| +4==0 (2.32)
0} ( —jkAx ) F, F F2
—(l-e 0 - ! 1
Fl Fl

The eigenvalues 8, of amplification matrix G are then given by

1-9+2j/9
= 7 2.33
g1 1+ 9 ( )
As is seen the eigenvalues are complex with the modules equal to unity.
>« (1-9) +49
g =gg=£——ljr—= (2.34)
(1+9)

According to the stability criteria (2.25) it follows that the 1D implicit scheme is
unconditionally stable, i.e. in the numerical scheme the time and space steps can be chosen
independently.

b. Stability of Explicit Scheme in Free Space

For the explicit scheme (2.18) using the relations (2.27) for plane wave we get

1 (2.35)
. n+—

eir“rl =e] +Zoa[eJkAx° _1]h~_12
2

n
_ e
Introducing the vector u” =( ln,O.S

] the amplification matrix G will read as
i-05
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A 4
1—4azsin2[k ;OJ Zoa(eJkAXO—l)

%Oa(l—e_jkAXO) 1

G= (2.36)

The eigenvalues g,, of the amplification matrix G for explicit scheme will then be derived

as

9=a? sinz[k%j

AT
Ax,

g1, =1-28%2,/%(8-1) with

(2.37)

o=

For §<1 the eigenvalues g,,are complex and the stability condition (2.25) is fulfilled

since|g| =1. In the case of real eigenvalues (3> 1), the stability condition is satisfied for $=1.

Summarizing the cases of real and complex eigenvalues, the stability condition for explicit
scheme is read as
9<1 (2.38)

In terms of space and time steps we get the following stability condition

2
At sinz[kﬂ) <1 (2.39)
Ax, 2

Since the sinus function for real arguments is always smaller or equal to one the final stability
condition for explicit scheme is read as

At <AX, (2.40)

As seen from (2.37), the stability condition for explicit scheme also implies the complex
eigenvalues for amplification matrix G .

2.1.4 Numerical Dispersion Analyses

The important issues in numerical modeling are the numerical scheme accuracy studies [16,
19, 34]. In this section the dispersion properties for the implicit and explicit numerical schemes
in vacuum will be discussed. For the plan waves in vacuum the discrete relations (2.27) in space
should be added with the following relations for closest discrete time points

hi =hl e
) 2 (2.41)

n+l QAT

el =eje
where in our notations Q is normalized frequency (Q=w/c, o is frequency, ¢ is velocity of
light). Note, that the dispersion relation of the continuous plane wave in vacuum is given by
Q =k, i.e. the phase velocity in vacuum is equal to velocity of light [15, 60].

14



a. Numerical Dispersion of the Implicit Scheme

Using the relations (2.41) the updated equations (2.28) will read as

1227 _qlen :%[ejk“‘) ~1][ein +1]hi“i
*  with o= At/Ax, (2.42)
Z, [eJQA’ —1]11'“_l = [1—e*jk“0 ][eimf +1]a%i
2
Using the trigonometric relations

el —1=2je’* sin(x)
el +1=2e" cos(x) (2.43)
(12 —1) (1-e 72 )= —4sin? (x)

we get the following dispersion equation:

2
A
tg2[9£j= AT | gin2[ 220 (2.44)
2 ) |ax, 2

From this dispersion equation we find the numerical phase v, and group v, velocities

(normalized to speed of light) of the electromagnetic wave
Q 2 At . Ax,
Vop =— = arctg sin| k
k kAt Ax, 2
A
cos| k %o (2.45)
dQ 2
Vv = =
g dk 2 A
1+ At sin? | k Xo
Ax, 2

As seen from the dispersion relation, the wave number k and normalized frequency Q are
real for any time and space steps, i.e. the scheme is unconditionally stable in free space. On the

other hand, as follows from (2.44) and (2.45), the implicit 1D scheme for any space Ax, and

time At steps has the numerical dispersion, i.e. the phase and the group velocities differs from
the velocity of light Q # k .

b. Numerical Dispersion of the Explicit Scheme

For the explicit numerical scheme (2.18) the dispersion equation can be derived with analogy
to implicit one [54]
A A Y A
X
sinz(Q —Tj = T | sin?| k=20 (2.46)
2 Ax, 2
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As seen in this case, the wave number kand Q are real only whenAt<Ax, and the
stability condition is satisfied. From dispersion equation (2.46) it follows that for the equal time
and space steps the numerical scheme is non-dispersive, i.e. the numerical phase velocity is equal
to velocity of light Q =k . Thus the dispersion free condition for explicit scheme is At=Ax,,,

which is in agreement with the stability condition (2.40). From dispersion equation (2.46) the
expressions for the EM wave numerical phase and group velocities normalized to speed of light

read as

Q . T . AXO
Von =— = arcsin sin| k
k kAt Xy
A
cos| k =20
dQ 2

T

At
Ax,

;

sin? [k

2

Ax,

|

(2.47)

Thus, in dispersion free scheme the numerical normalized phase and group velocities are

equal to one and coincides with the continuous wave phase and group velocities, i.e. in vacuum
are equal to the speed of light. Figure 5 illustrates the normalized numerical phase and group

velocities versus variable 0.5k AX, according to formulas (2.45) and (2.47). In this example the

discrete time step is taken to be half of the space stepAt=0.5 Ax,.

\Ys ) V,
ph Physical wave _gl Physical wave
C | g C ey
T T8I
e . o ™. Explicit
w»_ ™, Explicit - ~
- - 0951 - ./ A
L - - - ~ LY
0.93 - L4 “a .
‘\ “e A . s
AT s (N . 09 ' -05 *a 1
= . \ :
096l Ax, / s - AxXo / .
Implicit % Implicit ~
3 0851 '
\‘ b
0od 1 | | | | 1 | |
: 02
0 0.1 02 Ax 03 0.4 0.5 0 01 02 A 03 0.4 0.5
0 X
k= k—2
2

Figure 5. Numerical phase and group velocities of the implicit (blue dashed) and the explicit
(green dashed) schemes versus 0.5k Ax, . The physical velocities are given by solid line
(orange).

As we see from the figure for given wave number k, the numerical dispersion of the
schemes (explicit and implicit) are suppressed when the following condition is fulfilled

A

X0

2

k s% (2.48)

Thus, in the numerical modeling of 1D multi-wave problem, the numerical dispersion error
will be less than 5% for the discrete space step Ax, <(2k,,. )"
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2.2 1D Numerical Scheme in Conductor

In this section we introduce the continuous electromagnetic problem in homogeneous
metallic media with finite conductivity k. The 1D integral Maxwell’s equations (2.1) will read
as

(2.48)

With proper boundary conditions and initial values of the electromagnetic fields the problem
becomes closed. To describe the numerical scheme for this problem, we shall start with a perfect
electric (PEC) boundary condition, i.e. the electric field being zero on boundaries that

corresponds to the space points X =0and X =L, respectively (fig.6).

2.2.1 Space discretization

In analogy with the plane wave in vacuum, for discretization of electromagnetic field in one-
dimensional space, we define the normal and dual uniform grids in space for electric and
magnetic fields respectively with the space step Ax . The dual grid is shifted by a half-space step

relative to the normal grid. The normal grid is chosen in the way that it cover the boundary
points. Similar to the vacuum case (section 2.1), in conductor region the same notations for field
description in the discrete space are used. The discretization is graphically shown in Figure 6. As
seen from the figure, all notations for field description in the discrete space are kept except for
the number of discrete points M that is different in this case being replaced by integer number N .

; o i

! g “ Conductor

i o S /em ieN

X=0 - T ----—X x=L, 'x
hl Y h 1 h 1

Perfect | 5 i+ N— . Perfect
Conductor! v e > : Conductor

' o 4x E

Figure 6. Electromagnetic field schematic view in discrete space of conductor region.

Now, according to figure 6, the discretization of the second equation in formula (2.48) will
read as

fEAT ~(e,, —e))d

_ with 0 <i< N (2.49)
-zoﬁ“Hdg ~7,%h | Ax-d
ot ot i+
Equaling both equations we get
0
Zy—h | Ax=(ey, —¢;) (2.50)
ot i

it—
2
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Figure 7. The geometric view of the i th cell in conductor.

According to figure 6, the space discretization of right and left sides of the first equation in
formula (2.48) will read as

fHAI~(h |, ~h |)d
1+E 1—5

L 5 L 8 with 0 <i< N (2.51)
H KE+——E|d§~| ke, +——e; |[Ax-d
Z, ot Z, ot

The space discretized first equation in (2.48) is then given by

1
Z, ot Ax | i i

Finally the space discretized and time continuous 1D Maxwells equation for conductive
media will reads as

Zoih 1 Ax=(e;; —¢€;)
ot i+5
(2.53)
LieiJrKei:L h ,-h ,
ZO 5t AX i+5 i*E

with PEC boundary conditions e, =ey =0 at any time value the problem is closed.

Introducing the vectors of electric € and magnetic h fields in discrete space
o hys
e=—1/ i |, h=| 2.54
2 (2.54)
SN hyos

we may rewrite the update equations (2.53) in matrix form as

=)

=Pe

with¥ =k Z, (2.55)
e+xe=P'h

Plo Pl
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Here the discrete space derivative operators P, P" have sizes [N=1)xN] and [Nx(N-1)]
respectively and are given as

-1 0 O 0

-1 1 0 0 1 -1 0 0

110 -1 1 - 0 - 110 1 -1 - 0
P=— . .. . | P=— . . ) (2.56)

Ax| : : oL Ax| 0 O L.

0O O -1 1 : -1

0 O 0 1

As for the vacuum case, here also the property of generalized symmetry for the discrete
derivative operators P and P is preserved ( P =p' ).

2.2.2 Time Discretization

In this section we will introduce the time discretization of the above numerical scheme given
in matrix form (2.55). Similar to the vacuum scheme in conductor, we will use the upper
index N for discrete time level description. Let us discretize the second equation of formula

(2.55)

x

O eiRe=Ph (2.57)
ot

Assuming that the difference of magnetic fields between two space closest points is constant
(P’ h= const ) the differential equation (2.57) over time variable can be solved analytically. The
general solution is just the sum of homogeneous and partial solutions and reads as

e(t)=Ae " +B (2.58)
where A and B are unknown constants.
The first part of this equation is relevant to homogeneous solution and second — to partial

solution. Substituting (2.58) into (2.57), the constant B is equal to

1 %~
B=—P'h (2.59)

The constant A can be found from the field initial value at time 7 =0 .
A=¢e(t=0)-B (2.60)

Finally, the solution of differential equation (2.57) will read as
= N &, 1 Kt |p*n
e(t)=e(t=0)e +?(1—e )P h (2.61)

K

Assuming that the electric field is known at time step n, the equation (2.61) gives the electric
field at next time step n +1
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e =gt e ATy L(j_eat)p "2 (2.62)

We assume that the discrete derivative of magnetic field remains constant within the time
At . Using central difference approximations for time derivative in the first equation of (2.55)
we get

=Pe" (2.63)

Thus, the equations (2.62) and (2.63) describe the numerical scheme for EM fields time
evolution in conductor

1
2-h 24+AtPe"
1 (2.64)

~n+—

—~ — *
el —g"a+bPh 2

n+

h

with constant coefficients

a= efﬁA‘r
2.65
b=L(1-a) (269
K

It is seen that by defining the electric and magnetic fields on discrete time axis at time levels
n and n+0.5 respectively the field update equations (2.64) are explicit. Thus, the relevant 1D
numerical scheme (2.64) is termed explicit and in the original form reads as

n n AT n+— n+—
hl:ll _hi+l B Z, A SR
S (2.66)
n+l _ _n 0 n+5 n+5
e, =e;a+—>b|h f-h |
X i i

If the electric and magnetic fields are defined on discrete time axis at the same time level,
the update equations (2.64) will read as
~n+l | 5n

R =h? 4 AP

En+1 ﬁn (267)
el —gha+b P T

where the linear interpolation is used to define the fields at time level n+0.5. After some
evaluations we may rewrite the equations (2.67) in the following matrix form:
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W, (""" -e")=e" (a-1)+b P" h”* (2.68)

ht = +Epén+l
2

with three diagonal matrix

AT, .
W, :I—Ttb PP (2.69)

where [ is the unit diagonal matrix. As we see, the updates of EM fields are done implicitly and
the relevant numerical scheme (2.69) is termed implicit. In the original form the implicit scheme
will read as

n ) n
N T R At (ei+l +€,y € Tt )
1 1=
i+ i+ Z,Ax 2 2
n+l n n+l n 270
h™ +h”, h™+h", ( )
1 _ Z, ) R
el =ela+ b —
X 2 2

In the next section the stability of explicit (2.66) and implicit (2.70) 1D numerical schemes
for conductive media is studied.

2.2.3 Stability Study

Similar to the numerical schemes in vacuum, we consider the stability of the numerical
schemes in conductor by Fourier analyses. The relations (2.27) for the plane wave between two
closest discrete points in space are valid for conductor but with the space step Ax

h. X :h X ejkAx
T (2.71)
e, ejkAx

€ =

Note that we have omitted the time level indexes, since the relations are not dependent on
time.

We will perform the stability studies for the implicit and explicit numerical schemes using
stability theory as described in section 2.1.3.
a. Stability of the Implicit Scheme

Using the relations (2.71), the implicit numerical scheme (2.70) in conductor will read as
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1 B 1*5 0 2
h™ +h" | (2.72)
el =ela+2Z,b' (ejkAX 1) 2 5 2
where
At , b
o= Ax’ b'= Ax (2.73)

Using the trigonometric relation (2.30), the update equations (2.72) will read as

e?“ =?_:99 e?+Z0 ll:)—g(ejkAx—l) h? A
- " with 9 = ab’sinz(k —Xj (2.74)
hp+1 :ﬂ Il +L o (l_e*jkAX)a_Hep 2
b1+ 8 T Zy 1+ 2

n
i
n

According to equation (2.20) for vector U" ={ J, the amplification matrix G is then

i-0.5
given by
_ + +
G=1 0} i a+l 1-8 (2.75)
_—(l—e ]kAX)_ - =
Zy, 1+ 89 2 1+9

The eigenvalues g, of amplification matrix G can be determined by setting to zero the

determinant of the matrix (G —gI)

?_g‘g Z°1b9(ejm_l
det(G-gl)=| | (1+ _jkAx)aH g =0 (2.76)
S — _e R — —
Z, 149 2 1+9 °
that will read as
a—9 1-9 9
—-gll———-g|+2(a+1 =0 2.77
[1+9 gj(1+19 gj ( )(1+3)2 77
Simplification gives
(1-9-(1+ g P +@a-1){1-9-(1+ g }+2(a+1)9=0 (2.78)

And for eigenvalues £, we get
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2(1-P+@a-Dty@-1)’ -8(a+1)d

= 2.79
81,2 201+ 9) ( )
. (1-a)° .
For complex eigenvalues 4> (ta)’ and taking into account that 0 <a <land$>0 the
+a
modules satisfy the relation
2 a+9
=|lg, .0,|= <1 2.80
|g| |g1 g2| 1+9 ( )

and the stability condition is satisfied.

(1-a)’

(1+a)

For real eigenvalues we have 9 < . Taking into account that the max of squared root

is achieved for & =0 it is easy to show that the stability condition ‘gl,z‘ <1 is satisfied. Thus we

get that the implicit numerical scheme in conductor is unconditionally stable.
b. Stability of the Explicit Scheme

Further we shall analyze the stability of the explicit numerical scheme (2.66). Again using the
property (2.71) for plane waves, the field updated equations will read as

1 1
n+— n— .
B2 =n" 2 L gfeiar q]en
i+— i+— ZO
2 2 (2.81)
. n+—
el =ela+Z,b’ (l—e_JkAX )h 2
i+—
2
with a = At/AX.
Again using trigonometric relations (2.30), the equations (2.81) will be modified to
n+l n—
h 2=h 2+ a[eJkAX l]e:{1
i+— i+— 0
2 2 | with 9=4a b'sinz[k %} (2.82)

ein+1 =[a—19]e{l +Z,b' (l—e_jk“)h‘ 12
i+—
2

el

1

According to (2.20) for vector U" = hn—% , the amplification matrix G will be given as

i+—
2

a—J9 Z, b'(l—e’jkAX)
G= La(ejkAx _1) 1 (2.83)

0

The eigenvalues 81, of the amplification matrix G are given by
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a-9-¢g Zob(l—e_jk“>

det(G —gl) = La(ejm_” g =0 (2.84)
0
that reads as

gz—(l+a—.9)g+a=0 (2.85)

And the solution for eigenvalues g, is

(1+a-9)ty(1+a-9) —4a
2

gip = (2.86)

For the complex eigenvalues we get
g’ =l <1 (2.87)

That is always fulfilled since 0 <a <1,
Denoting x =1+a—94, for the real eigenvalues (X2 >4a) the stability conditions ‘gl’z‘ <1

are converted to the following set of inequalities:

\/x2—4a <2-Xx
2
RS “da 22X (2.88)

Vx?—4a>-2+x
Vx?—4a<2+x

The initial three inequalities are satisfied for any real eigenvalues (x > 2Wa,x<-2+/a )
as 3> 0. The last inequality is satisfied for x = NE
For x<-2va the last inequality implies the condition x <—(1+a). In terms of a,9, for

42 (1 —a )2 the stability condition is then read as
—x<2 (2.89)

Substituting the variable $ from (2.82) into (2.89) we get

- A K=«xZ
At 173 402 (k 2% ) <2 with =0 (2.90)
ﬁAXz 1+a 2 a:e_KAI
Using the following trigonometric relation
- KA
178 anh| K27 (2.91)
1+a 2

we may rewrite (2.90) as follows:
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) AT . sinz(k Azxj tanh(Kstj <1 (2.92)

KAX

A
Since sin’ (k TXJ <1, this inequality is modified to

2 ATZ tanh(K A Tj <1 (2.94)
2

~

KAX

Finally the stability condition for the conductor region will read

2A RA
Ax2 220 tanh(Kz T] (2.95)

Taking into account that the hyperbolic tangents for real and positive arguments are always
smaller or equal to one, the stability condition (2.95) could be simplified to

2A
Ax> |28 (2.96)

K

The stability conditions (2.95) and (2.96) in the conductor region coincides with the
conditions derived in Ref. [61].

2.3 Hybrid 1D Numerical Scheme for IBC Modeling in Time Domain

In this section we will introduce the hybrid scheme, which will model the impedance
boundary condition in time domain. For that purpose we consider a 1D electromagnetic problem
in vacuum, which is supplied with perfect conductor on one side x =—-L and metal with finite
conductivity on the other side x =0 (Fig.8).

K’ o

i€ M vacuum |°-2 € |e° =%

| X m - — | X | X- -
Per:H Bl ‘ hs ‘ b1 "C_d >
Condustor. : N

E K Oi

Figure 8. Electromagnetic field schematic view in discrete space of vacuum region
with metallic boundary on one side and PEC on the other side.

The boundary electric field €, in frequency domain can be found from the impedance

boundary condition (IBC), which is equivalent to modeling the problem in time domain. To
model the finite conductivity in time domain, first we will discuss a numerical scheme in

conductor assuming that one of boundary is changed to vacuum and the magnetic field h_g5 in
vacuum is given. Graphically the space discretization of such a problem is shown in Figure 9.
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O/

Conductor i
Vacuum |
ec,O ec,l Iec,2 Iec,N
X X X —- - X
h h , v h , ‘ h .
&5 2 & 6N— » Perfect

| Conductor

Figure 9. Electromagnetic field schematic view in discrete space of conductor region
with free space boundary.

The electric field update on vacuum-conductor boundary cell x =0 is schematically shown
in Figure 10.

Figure 10. Geometric view of the vacuum-conductor boundary cell.

As we can see from Figures 9 and 10, the boundary cell needs special consideration, because
one part of the region is filled with metal « # 0 and the other part with vacuum «=0. In
addition, in this case two different space steps appear in one cell that are chosen from algorithm
stability considerations discussed in the previous two sections. For the boundary cell the surface
integral of electric field in first equation of (2.1) will be modified to

- . de.o A de.o \A
JI kBt O lgga L CCe0 A%yt 1 Koo AX (2.97)
Z, ot Z, ot 2 T Zy, ot ) 2

After some simplifications we get the following differential equation

Ax+A oe,
XHAXe 1 Feo e =2 |h  -h | (2.98)
Ax Z, ot TOAX | e e

Solving this differential equation in the same manner as in the previous case and assuming
the right-hand side constant we get
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At 2 -xZ

KZy,AXx

7 Ax Ax At
_ =0 OAX+AXO 1 0Ax+Ax0 h h
€o(T)=eo(t=0)e t—— |~ Lo

And the electric field update in discrete form will read as

1 1

2 n+— +—

ettt =elga’+———(1-a’)|h 2>-h 2
’ ’ KA c72 E

X

with
= Ax

K At
' Ax+AX

=¢C

AL ®

Note that the magnetic field is shifted by a half-time step in respect with electric field.

a. The Explicit Hybrid Numerical Scheme

(2.100)

(2.101)

Using the explicit numerical schemes for vacuum (2.19) and conductor (2.64) regions the

hybrid scheme can be written in the following matrix form:

1
~n _ =n-1 * AH-E
e =¢  +ATP, . umb
1 I
. . . . n-= n-=
———field updates in conductiveregion withentryh 2 =h 2 ———
“2 2
1
“n _anla, fp*i"
e, =¢, a+b P h,
1 1
An+5 HH-E ~n
h, 2=h_?+A1Pe,
n n
€o =Cco
1 1
/—\n+5 AH-E ~n
h =h 2 +AtP,,,um€
Here a and b are the diagonal matrixes with entries
KA1 Ax A _ KAt
a —e AX+AXO ai’i =€
0,0 .
- 1 ) for 121
b _3(1_5 ) b =T(1_ai,i)
00 == 0,0 K

(2.102)

(2.103)

Note that we kept the main notations of the numerical schemes in vacuum and conductive
regions for the discrete space and time descriptions. The update equation (2.102) also includes
the boundary electric field update in the numerical scheme of conductive region that can be
seen from matrix (2.103) elements. Assuming that discrete electric and magnetic field values
are known at time levels n—1 and n—0.5 respectively, the update equations (2.102) give the

field values at next time level, i.e. the values at time level n for electric and n+ 0.5 for

magnetic fields.
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First we update the electric field in vacuum region using the field values at the previous time
level. Then using the boundary magnetic field value as an input for the numerical scheme in
conductive region we get the tangential electric field on boundary surface in output, which is
used to update the magnetic field in vacuum region. So the hybrid numerical scheme (2.102)
models the IBC boundary condition in time domain explicitly. We should keep in mind also that
the modeled length of the conductive region in time domain should be taken so that it remains
much bigger than the skin-depth of the considered electromagnetic problem, i.e. the field value at
the second boundary interface of the conductive region could be taken zero.

b. The Implicit Hybrid Numerical Scheme

When the discrete electric and magnetic fields are defined at the same time level, the hybrid
numerical scheme reads as

At —n

—P
vacuum
2

h* =h"+

W, [6“*‘ —6“]: AP um b
———field updates in conductiveregion with entryh" | =h", ———
“2 2
~y o~y AT _
h=h"+="pen
2
W, —el) = (a-1,)e +b P"h}
Mo BE 4 At part! (2.104)
2
! = ety

Tn+l _ L # At ~n+1
h =h"+ 7 PVacuume

where the implicit numerical schemes for vacuum (2.16) and conductive (2.68) regions are used.

The diagonal matrixes a and b are defined in (2.103) and three-diagonal matrixes W, W, are
determined as

A T2 *
WO =1- T PvacuumPvacuum

(2.105)
ATr .«
Wc: Ic —Tb P P

with I and I, unit diagonal matrixes for vacuum and conductive schemes respectively.

As we see, the hybrid numerical scheme (2.104) is fully implicit for both regions. Described
implicit numerical scheme models the IBC boundary condition in time domain.
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2.3.1 Stability of the Hybrid Numerical Scheme

A critical aspect of any numerical scheme is the stability of the scheme. Both explicit and
implicit numerical schemes in vacuum and in conductor are stable as long as they fulfill their
stability conditions. However, this does not guarantee stability for hybrid scheme since coupling
of two stable schemes might result in an unstable scheme. For that reason in this section we will
investigate the local stability of boundary field update using the general stability theory given in
section 2.1.3. The study again will be performed for plane waves.

a. Stability of Explicit Hybrid Scheme

For the boundary field updates in original form we have to distinguish two pairs of equations,
one with magnetic field update in conductive region

1
2 E 1 1 (2.106a)

(2.106b)

Each of the magnetic field updates in equations (2.106) are stable within the stability
condition for vacuum and conductive regions respectively, but the boundary electric field update
equation in the general hybrid scheme may become unstable through the boundary. Therefore,
we should investigate the stability of field updates in boundary cells.

Using the following relations of space description for the plane wave

e, =¢., e_.]kAXO jkAx+AxO

o ~h e 2 (2.107)
— jkAx c -

ec,l _ec,O S

and omitting the index ¢, the field update equations (2.106) will read as

n+l n—l 1 AT _jkAXO jkAix _jkAix a
h 2=h ?+——e 2 |e 2 —e 2 |eg

(2.1082)

n+l no_ 2 ' jkAXO JkAix _JkAXO n+l
ef =efa’+Z,——(1-a’)e 2 |e 2 -e 2 |h 2
KAX
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1 1 Ax Ax Ax
n+— n-— A —jk—% | jk=—=% —jk =20
h 12 —h 12 ZLA T = [el 2 _e_] 5 eg
2 2 0 2 %o
(2.108b)
kA% [ Ax kA% ) gL
ept =efa'+2Z, = (l—a’)eJ 2 [eJ 2 ¢ Jh X
KA X -—
2
Finally the updated equations read as
1 1 AX Ax Ax
n+— n—— A —jk==2 jk— k—
h 12 =h 12 L_Tej 2 |e” 2 _e 2 |en
— —  Z, Ax
2 2 (2.109a)
. AXg . AX Axg
k k== k -=
et =ef (a' =&, )+ Z, - (1-a')e 2 (el 2 —e 2 Jh -
x I
1 A Ax
ne+— n—— A k=2 jk==2 —jk==0
h 12 =h 12 _,_L T ! 2 eJ 2 e 2 68
2 2 (2.109b)
. AX . AX Axg 1
k k— n-
et =ed (=9, )+ Z, 2 (l—a’)eJ 2 [e 2 —e 2 Jh 2
: o
where
jkAx—Axo
Gop =(1+a)PB,pe !
A KA A A A A
B = SAT [ KAT AX [k A% ki K A2 A0 (2.110)
KAX? 2 Ax+AXx, 2 4
A KA A A Ax+A
By == BAT g KAT = sin| k ~<0 |sin| k 22T 2 X0
KAXAX, 2 Ax+Ax, 4
and the following trigonometric relation have been used
—a' KA A
172 _ anp| KAT__AX @2.111)
1+a’ 2 Ax+Ax,

e
According to (2.20) for vector U" :( 0 j, the amplification matrixes G, are given by

-0.5
hEo.s
Ax AX Ax
2 jk——0 k== Sjk==0
a'—9, Z, =2 (l—a')e] 2 {ej 2 2 J
KAX
G, = . e ax (2.112a)
__T ! 2 eJ 2 _eJ 2 1
Z, Ax
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k iKAX A%
a'—94, Z, Ni (l—a')eJ 2 {e] 2 2
Kox (2.112b)

1 At kR i pd%
— e 2 le 2 —e 2 1
Z, Ax,

The eigenvalues g, of amplification matrixes G,;, can be obtained by setting to zero the

determinant of the matrix (G ab —Zab I)

det(Ga,b _ga,b): (a,_lga,b _ga,b)(l_ga,b )+‘9a,b =0 (2113)

The solutions of this equation read as

(1+a'—8)%/(1+a' - 9) —4a’
2

g, = (2.114)

As we see, the eigenvalues are complex since 9 is complex (2.110). Denoting z=1+a"-9
the equation (2.114) can be rewritten as

i 2_4 !
2Nz 77 (2.115)

gip = >

and the stability condition will read as
z++Jz? —4a’

For 0<a’<1 the inequality solution is given by

<2 (2.116)

Re(z)? N Im(z)*
(1+a")? (1-a")?

IN
—_

(2.117)

1.0 () T T T L.
Im(z)} @ =0.5
st ——

/ 2 2
ool [Re(z) N Im(z) <1

‘(1+a")? (1-a")?*

05

-2 -1 1 2

Rg(z)
Figure 11. The stability area for eigenvalues according to inequality (2.116).

Figure 11 presents an exemplary solution (stable region) of the inequality (2.116) for a
particular case of a'=0.5 .
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Denoting p =k w from (2.110) we get

Red=(1+a")Bcosp

2.118
Im3=(1+a")Bsinpu ( )
and the stability condition (2.117) reads as
KA A
(1-Bcosp)? +coth? il X BZsin’p <1 (2.119)
2 Ax+AX,
Thus we get the following stability condition
KA A 2
0<p<tanh?| 2L __ 2% kil (2.120)
2 Ax+Axy) ., o[ KAT  AX 2
sin“p + tanh cos
2 Ax+AXx,
Taking into account
tanh KAT Ax <1
2 Ax+Ax,
sin >y + tanh > KAT Ax cos’p <1
2 Ax+AXx,
the conditions (2.120) can be rewritten as
KA A
0<pB<2tanh?| 227 X lcosp 2.121)
2 Ax+AXx,
Substituting B from equation (2.110) we get
4A2 sin(kgjsin[kwj <cos [kwj tanh KAt Ax
KAX 2 4 4 2 AX+AX0 (2122)

A AxX+A Ax—A K
— 44T sin| k Xo sin| k XT A% <cos| k X Xo tanh KAT Ax
KAXAX, 2 4 4 2 Ax+AXx,

These inequalities always fulfill when the following inequalities are satisfied

~4A1:2 sin(kijsin(kAXJrAXOJScos(kAX_AXOjtanh KAt Ax
KAX 2 4 4 2 Ax+Ax, ) (2.123)

Ax<AX,

For k A x andk A x, smaller than unity the stability conditions (2.123) can be rewritten as
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Ax? zﬁ coth(KAT Ax j

K 2 Ax+Ax, (2.124)

Ax<AX,

Usually for high conductive materials (« >10*S/m) the argument ¢ of hyperbolic
cotangents function is bigger or equal to one, i.e. coth(p)< 2, and the condition (2.124) can be
modified to

2A1
K (2.125)
Ax<AXx,

Ax? >

Finally, with stability conditions of explicit schemes (2.40) for vacuum region and (2.96) for
conductive region, the stability conditions of the hybrid explicit numerical scheme will be given
by

At<Ax, , forvacuum region
2A ) . 2.126
Ax? > TT , for conductive region ( )
K
Ax<AXx,

Note that the choice of a stable time step for the hybrid 1D explicit numerical scheme
depends only on the discrete space step in the vacuum region and remains the same in the
conductive region.

b. Stability of Implicit Hybrid Scheme

Consider the case when discrete electric and magnetic fields are defined at the same time
level. According to (2.100) the update equation for boundary electric field contains the magnetic
fields in conductor and vacuum regions. Thus, the stability analyses have to be conducted for
two sets of update equations with magnetic field in conductor and in vacuum. In particular, in
conductor region the update equations will read as

n+l n n+l n
hn+1 —h". + 1 At ec,l +ec,1 ec,O +ec,0
1 - 1 -
C,E C’E ZO A X 2 2
n+l n n+l n 2.127a
S AT N A ( )
ettt =elya'+Z, ——(1-a’) 2 2 _ 2 2
’ ’ KAX 2 2

In vacuum region:

hn+1 _hn L At eggl—i_eco _en1+1+el
ey ey Zg Axg 2 2
hn+1]+hn1 hn+l1 +hr1 X (2127b)
el _et a7 1—a’ “2 “2 7 7
c,0 c,0 0 % X( ) 7 9
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Each of the magnetic field updates in equations (2.127) are unconditionally stable, but with
boundary electric field update equation in the general hybrid scheme instability may occur
coming from the boundary. Thus we should investigate the stability of field updates in boundary
cells. Following the procedure, same as for the explicit hybrid numerical scheme for field update
equations, we get

. AX . AX . AX n n
h™ =h", +L£e”k70 S Ly eg” +eg
hl’1+1 +h1’1 (2'128a)
. AX Ax A 1 1
el —ela'+7Z 2 (1_3')ejk 7 eJkT _e'Jk > 2 2
0 0 " RAX 7
.. AX . AX . AX 1
oot o o L AT e et e e e
3 ) 0 BXg 2
n+l n
CAxg [ o Ax Ax \P1FRT) (2.128b)
4 e N e = M 5
ebt'=efa'+Zy——(1-a')e 2 |e 2 —e 2 |—2——2
KAX 2
where we have omitted the index c .
Finally the update equations will take the following view:
AX AX A X
1-8 At a' —ik— | jk— -jk—
hr1+11=hr11 a+L 1 Ta+le J 5 eJ 2 _eJ 2 eg
- S 1+8, Zy1+9, Ax 2 (.12
.129a
AX AXx AX
-9 1 2 jk =0 ko> . 0
ept =ep a L+Z, - (1_3')eJ 2 2 L2 h",
1+ 9, 1+9, KAx -
' L AX . AX . Axg
h™l —ht 1-39, +L 1 At a +le—Jk > eJk > _e—_lk 2" en
1+, Z, 1+, Ax, 2 )
2.129
a'—9 1 2 kA% [ghx A% ( :
egt =ep b +Z, —~ (1-a)e 2 |e 2 -e 2 |h",
1+9, 1+9, KAX -2
with
jkAx—Axo
l921,1] :(1+a’)Ba,be 4
2A KA A A AxX+A
B.=—"" tanh| S2° 2% G| k 22X fsin| k 22 T2 %0 (2.130)
KAx? 2 Ax+AXx, 2 4

2A KA A A AX+A
By == T tanh| 228 X sin| k X0 sin| k X 2o
KAXAX, 2 Ax+AXx, 2 4
where the trigonometric relations (2.111) have been used.

e1‘1
According to (2.20) for vector U" =[ 0 J the amplification matrixes G,, will be
h" ’

-0.5
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'— kA% (5 Ax Sk A%
a'-39, 7 1 2 (l—a')eJ > (CJ 5 _eJ > J

G - 1+9, “1+9 KAx
Dol L Avatel s e e 1-9,
Zy1+9, Ax 2 1+,
(2.131a)
' . AXg o Ax A%
s e
+9, +9, KAX
sz ' . AXg . AX, . AXg
11 a'+1 At e—JkT eJk > _e-JkT 1-9
Z,1+8, 2 Ax, 1+ 9,
(2.131b)

The eigenvalues g, of amplification matrixes G, can be determined by setting to zero the

determinant of matrix (G ab —Zab I)

det(Ga,b - ga,bl) =

{1 - ‘9a,b _(1+ ga,b)ga,b }2 + (a' _1){1 - ‘9a,b _(1+ I9a,b)ga,b }+ 2(1+ a',)‘ga,b -0 (2_132)
(1'|"921,b)2

The solution of this equation is

(1-a)£,/(1-a)> -8(1+a")9,,
2

1-8 5 —(1+8,,) 8ap = (2.133)

And for eigenvalues we get

(1+2)-29%y(1-a)* —8(1+a')9
- 2(1+9)

g1 (2.134)

where we again omit the indexes aand b.
It is easy to show that |g2| <1 (“- “in front of squared root ). For the first eigenvalue &; we
have

‘(1+a')-219+\/(1—a')2—8(l+a’)9‘

<1 (2.135)
‘ 2(1+9) ‘
The solution is given by inequality
a0 2
m9)? <173 Re () (2.136)
2(1+a’)

Note, that for real value ¢ the scheme is stable.
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2 (1—a’)2 ]
L Im(9) S2(1+a§Re(9);
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-10F L L L L .:.
0 4 [} 10
Re(9)
Figure 12. The stability area for eigenvalues according to inequality (2.135).

Figure 12 presents the solution of the inequality (2.135) (stable region) for a particular case
of a'=0.5.

Denoting p =k w from (2.130) we get

Red=(1+a")Bcosp

2.137
Im3=(1+a")Bsinpu ( )
and the stability condition (2.136) reads as
1 KAt Ax
.2 2
sin“p < —tanh cos 2.138
P ! 2 [ 2 Ax+Ax, J ! ( )
Substituting the B from equation (2.130) and taking into account that sin’p <1 we get
~4AA TQ Sin(k %)Sin(k Ax+Ax, ZA XO] <cos [k Ax—AX, _4A %o J tanh[K ? ! A = Z ]
+
Kax FEE%) 2.139)

_ 4A1 Sin(kAxojsin[kAX+AXOJSCOS(kAX—Ax0jtanh KAT  Ax
KAXAX, 2 4 4 2 Ax+AXx,

These inequalities always fulfill when the following inequalities are satisfied

~4A1:2 sin[kijsin(kAX+AXOj£c0s(kAX_AX0jtanh KAt Ax
KAX 2 4 4 2 Ax+Ax, ) (2.140)

Ax<AX,

When k A x andk A x, are smaller than one, the stability conditions (2.140) can be rewritten as

Ax? choth KAT Ax
K 2 Ax+AXx,

(2.141)

Ax<AX,
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Usually for high conductive materials (k >10%S/m) the argument ¢ of hyperbolic
cotangents function is bigger or equal to one, i.e. coth(p)<2, and the condition (2.141) is
modified to

2A7T
K (2.142)

Ax<Ax,

Ax? >

Finally the stability condition of the hybrid implicit scheme is completely described by
(2.142), since the implicit schemes in free space and conductor are unconditionally stable. Note
that the time step and space step in vacuum are condition free for hybrid implicit scheme.

The stability conditions (2.126) and (2.142) for the hybrid explicit and implicit numerical
schemes have been verified by numerical tests on the 1D electromagnetic problem for plane
wave scattering on metallic surface. The analytical solution of this problem is well known and is
given by the following expressions [60]

E (Xat)=Re[A(eij +rse‘jkx)ejk7 J

H:Zii(x,t) :Re[A(ejkx —rse_jkx)ejk’ ]
B contucor (5 1) = Re| A (1-+15)e €% el | (2.143)

conductor

H

conductor

(x,t)= Re{ AE(]+rS)eJ§Xejkr }

where the boundary between vacuum and conductor is at X =0 and the following notations have
been used

T=ct
£? =k{1—jﬂ (2.144)
s = k=¢o

k+¢&

Coefficient A is defined from the following initial condition

1

E -
+rse ik

Lt=0)=1 = A=—

vacuum (X = i
€

k

One of the important issues in numerical modeling is the convergence property of the
numerical schemes that is discussed in the next section.

2.3.2 Convergence Study of the Hybrid Scheme

The numerical schemes derived in previous sections for vacuum and conductive regions have
at least second-order convergence [55-59, 62]. The hybrid scheme described in section 2.3 is
designed to preserve this property. The hybrid scheme is applied for calculation of 1D
electromagnetic problem (2.143) introduced in previous section for different time and space
steps. The results are summarized in figure 10 presenting the convergence of the hybrid explicit
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and implicit numerical schemes for conductivity k =10 S/m. For the calculations the discrete
time step is taken to equal half of the space step in vacuum region.
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Number of discrete space points in vacuum

Figure 13. Convergence of hybrid explicit (green) and implicit (blue dashed) numerical
schemes for conductivity k =10 S/m . The convergence orders are given by red dashed.

As the numerical experiments show, for materials with high conductivity «>10"S/m the
convergence of explicit and implicit numerical schemes are preserved (fig.13) even for
approximation of boundary cell update coefficient a by

Ax 1
- T -—KAt

A=e A¥AY xe 2 (2.145)

a=¢

Figure 14 shows the convergence of the hybrid explicit scheme with and without
approximation (2.145) for conductivity k =0.1 S/m.
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Figure 14. Convergence of hybrid explicit numerical scheme with (black dashed) and
without (green) approximation (2.145) for conductivity x =0.1S/m. The convergence orders

are given by red dashed.
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As we can see from figure 14 the convergence order of the hybrid explicit numerical scheme
became worse in case of approximation (2.145). Same behavior on convergence of the scheme
was observed for the cases when conductivity of the material is x« <10’ S/m. Thus, to preserve
the second-order convergence the approximation (2.145) can be applied for materials with high
conductivity k >10° S/m .

In accelerators usually high conductive materials are used. Therefore, in further 3D hybrid
numerical scheme study (Chapter 4) the approximation (2.145) will be used.

2.4 Conclusion

In this chapter the 1D explicit and implicit numerical schemes are introduced for
electromagnetic field calculations in metal and in vacuum medias. The stability analyses of these
two schemes for both regions are performed. For IBC modeling in time domain the matching of
the numerical schemes (explicit and implicit) in the vacuum and in the metal is achieved. The
stability analyses of the so-called hybrid (matched) numerical schemes (explicit and implicit) are
performed.

From stability study it follows that the implicit hybrid scheme is unconditionally stable on
discrete time and space steps in the vacuum region. The stability of explicit hybrid scheme in
vacuum region is conditioned by At < Ax,. In conductor region the stability of both implicit and
explicit hybrid schemes is strongly conditioned by space step dependence on time step and space
step in vacuum.

The convergences of the hybrid explicit and implicit numerical schemes are studied. It is
shown that both numerical schemes have second-order convergence. The numerical experiments
on convergence of 1D implicit hybrid scheme show that for high conductive materials
k>10° S/mthe boundary electric field update equation can be approximated with usage of

equation (2.145).
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Chapter 3.

Dispersion-free Numerical Scheme for 3D
Electromagnetic Problems with PEC Boundary
Conditions

To calculate the wakefields of ultra short bunches in perfectly conducting structures and to
prevent the numerical dispersion in longitudinal direction, a longitudinally dispersion-free 3D
numerical scheme is proposed in reference [52] that is implemented in the program ECHO. The
dispersion-free numerical scheme enables to use a concept of moving mesh frame without
loosing the accuracy of calculation.

In this Chapter the overview of the TE/TM (“transverse electric - transverse magnetic’)
splitting implicit numerical scheme [33, 52, 67] is given. This time-domain numerical scheme is
three-dimensional (3D), dispersion-free and valid for structures with perfect conducting walls. It
is especially efficient for the wakefield calculations excited by ultra-short relativistic bunches
and is more accurate in long-time simulations than the conventional FDTD approach [36,37].

3.1 The Maxwell Equations

The Maxwell equations are the set of four fundamental equations governing
electromagnetism

Txii=j+ 22 (3.1a)
ot
VxE=_9B (3.1b)
ot
V-D=p; (3.1¢c)
V-B=0 (3.1d)

where E is the electric field, Bis the magnetic flux density, D is the electric flux density, H is

the magnetic field, Pr is the free charge and J is the total current density including both free

and bound current. For linear, isotropic and non-dispersive media the electric and magnetic flux
densities and the total current density are given by

D=¢E,B=pH, J=J_+], (3.2)
where ¢ is the dielectric permittivity, pis the magnetic permeability, jf is the free current of free

moving charge and the bound current jc is given by Ohm’s law.

The Maxwell equations in terms of E and H are the system of eight scalar equations with six
variables. Together with initial and boundary conditions the Maxwell equations constitute a well-
posed system of hyperbolic partial differential equations.

In free space the Maxwell equations (3.1a) and (3.1b) simplify to
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Vufi=j,+9E

Z, 0t (33)
VxE=-z, 1

ok

where Z, =cpu, = (cso)_1 =376.73 Qis impedance of free space, ¢=2.9987-10°m/s is the speed

of light in vacuum and the normalized time variable 7 = C-t have been used.
3.1.1 Boundary Conditions

At the interface between two lossless media land 2 the boundary conditions for the
electromagnetic fields read as [12, 60]

i-(D,-D,)=0
(B, B, -0 "
i-(B,-B,)=0

where the subscripts indicate the regions and 1 is the unit vector normal to interface. Using the
equation (3.2) we get

ix(E,-E,)=0
(B, ~E;) = 55)
n-(p, Hy—p,H,)=0
For the border between the vacuum and Perfect Electric Conductor (PEC) we have [60]
fi-eE= i-uH=0
Ps H (3.6)

where p,andJ, are the surface charge and current densities respectively. The normal 1 is

pointing out of the PEC region.

The tangential electric field is zero at the surface of PEC. A nonzero tangential electric field
would drive an infinite surface current, which is clearly unphysical. However, this does not
imply that the surface current must be zero. In fact, an external field always implies nonzero
surface current since the magnetic field has only a tangential component at the PEC surface and
the surface current is related to the tangential magnetic field through the fourth condition in
(3.6).

3.1.2 The Maxwell Equations in Structures with Cylindrical Symmetry

In cylindrical coordinates {T,®,Z} the Maxwell equations (3.1) in time domain are given by
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H OH E 10E, OE OH,
10 z___ %] +86 - -—7

r 09 0z " ot rop 0z ot
OE O0E. OE oH
aHr_aHZ:J¢+8 0 LTI (3.7)
oz o ot oz  or ot
volH,) ron, o op, 10(E,) 108, oW,

J,+e—= =—u
r or r Op ot r or r op ot

The cylindrical symmetry of the electromagnetic problem allows to distinguish the explicit
dependence of the EM fields on the azimuthal coordinate ¢ that can be performed by multipole

expansion of the fields [12]

{Er,EZ,H(p }m(r, 0,7,t) = {Er,EZ,H(o }m(r, z,t) cos(me)

{Hr,HZ,Eq, }m(r, 0,7,t) = {Hr,HZ, E, }m(r, z,t) sin(me) 38

Where M is an integer and is called the azimuthal mode number.
In accelerators the principal source of external current is the charged particle beam. For a
bunch moving at speed of light ¢ with transverse offseta parallel to the axis of a rotationally

symmetric structure, the source current J can be represented via multipole expansion as

L Epde—1)d(r—a) & 1,m=0
j - cp@emnolr a)zfm“m¢)wnh5m0: m (3.9)
ma oo 14+8.., ’ O,m=0

Where p(z/c— 1) is the longitudinal charge distribution and 6(r —a) is the Dirac delta function.

For the structures with PEC boundary conditions and external source given by (3.9), the
Maxwell equations (3.7) for the m th multipole are read as

oH, 0E
=€
0z ot

m
T
oH, oH, OE,

0z or ot

T

olrH
1 ( wXJEHr:Jmn+86EZ

r or r ’ ot

(3.10)

~m _5E¢__ OH,

r ° 0z H ot

0E, oE, OH,

oz o " ot

Oo\tE O0H
l(—qp)+EE - — z

r or rruﬁt

Where we have omitted the azimuthal dependents of the fields, which is given by equations
(3.8).

In this chapter we consider the EM problems in structures with perfect electric conducting
boundary materials.
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3.2 Spatial Discretization and Maxwell Grid Equations

The Maxwell grid equation in finite integration technique (FIT) formalism are based on the
integral form of Maxwell equations (3.1) that are given as

o 0 .
fE-dl:--jjuH-dA G.11)

where S is an arbitrary area and S is the path that encloses S .

Then the integral formulation (3.11) is discretized on a rectangular grid by introducing a dual
grid G to the primary one G . The EM field electric components are situated on the edges of the
primary grid and the magnetic components on the edges of the dual grid. The dual grid is created
at the preprocessing stage by defining the nodes of dual cells at the barycenters of primary cells
as shown in (Fig. 15).

Dual Grid —
X .
1
e A )
y . j: hX r
eZ
‘hz A -
IR s Ll
(S 1 hyi( 1
VA
=

Primary Grid

Y

y
Figure 15. Graphical view of electromagnetic field spatial discretization.

Following the FIT notation [63] for the discrete field components {éx,éy,éz }, the space

steps{ Ax,Ay,Az } and {i,j,k }indexes for field description in the discrete 3D space, the
Maxwell grid equations (MGE) will read as
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e 1 ~¢€ 1 € 1, € 1
z,1, j+1, k+— z,1, j, k+— V1, j+—, k+1 v,1, j+—k o ~
2 2 2 2 _ h
- X 1 1
X, 1, j+—, k+—
Ay Az ot ok
e . . e e | —¢ I
X,i+—, j, k+1 X,i+—, j, k z,i+1, j, k+— z,1, j, k+— o ~
2 2’7 2 2 -y h
- A 1
Az Ax Y ot yoito ket
e TS IR B
i+, j+—k L1, j+—, k X, i+—, j+1,k X,i+—,j,k _
yoitl i+ ik 5 5 - 5h
- z 1 1
z,i+—, j+—,k
Ax Ay ot St
(3.12)
h -h h h
. o1 . 1 1
z,i+—, _|+E,k Z,i+— J_E’k Y,it—, ] k+5 y H—E j k_E
=] +e, —e
Ay Az X, i+, )k ot xito,jk
h ~h h o, h
X, 1, j+—, k+— X, 1, j+— k— z,i+—, j+—k z,i——, j+—,k
j k= 5 ] B o _
=] +tey,—e
Az AX Yo, j+— k Ot v.ij+ .k
h h h h
1 .. 1
Y, it+—, j k+— Yo i——, j, k+— X, 1, jr—, k+— X, 1, j——, k+— 0
2 2 =
=] +&,—e
Ax A z,i, jok+ ot zijk+
y

As is seen from this MGE that has been derived by using FIT technique they are equivalent
to the discretization of Maxwell equations in differential form using central difference
approximation for derivatives.

Now by following matrix notation {PX,Py,PZ }and {ﬁx,f’y,?z }for the discrete space

derivative operators on primary and dual grids respectively the discrete curl Cand divergence
S operators on the primary grid can be written as

0 -P, P,
c=|p, 0 -P|S=(, P, P) (3.13)
-P, P, 0

The dual grid discrete curl operator C has the same aspect as the primary grid, only the
space derivatives for the primary grid P should be replaced by the dual grid operatorsP =P".

And the discrete divergence operator S on the dual grid has the following view

S=(-p, -B, -B,) (3.14)

N h,
e=|¢, | h=|h, (3.15)
e, h,
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where each element of the vectors is a vector containing component information of the given
field in the 3D space. In these notations the Maxwell Grid Equations will read as

d
t

a
)
=2

=M
(3.16)
h=M

(@

|
d
“dt

where we introduced the material matrixes M, =diag(e,,e ,e,) and M =diag(p,,u ,1,),

which are diagonal and with positively defined elements. The material matrixes contain the
electric and magnetic properties of the lossless media.
In the presence of a conducting media a conductivity matrix M = diag(k,k,k) will appear in

the Ohm’s law which will contain the conductivity information. Thus the current density with

external sources j; will read

=M e+, 3.17)

K

Now via replacing in material matrixes the dielectric permittivity and magnetic permeability

by their relative valuesp — £ , € £ and introducing new variables
Ko €9
T=ct ~
C w12
o= mrg =M (3.18)
Z, qg=c'M?g
12 3
h=M,"h

where Z, is free space impedance and C - speed of light, the equations system (3.16) will be
reduced to the skew-symmetric one

d ~ .
—e=C,h+j
dr
d (3.19)
—h=-C,e
dr
with a new discrete curl operator
-1/2 -1/2 172 12
0 -M, P, ng M, P, M
_Mi/z P, M;1/2 Mz/z P M;/z 0
0 -P) Py
=| p! 0 -P (3.20)
-P, P, 0

The equation system (3.19) is a time-continuous and space-discrete approximation of the
Integral Maxwell equation (3.11).
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3.2.1 Algebraic Properties of Maxwell Grid Equations

The outstanding feature of Maxwell grid equations when compared with other numerical
methods for solving EM field problems is that this set of matrix equations is a consistent discrete
representation of the original field equations, i.e. the basic properties of analytical fields are
maintained during the transformation of continuous problem to the discrete space [63, 64]. One
of the most important properties relating to the primary mesh curl operator C and the dual mesh

curl operatora , 1s the generalized symmetry
c=c" (3.21)

It follows directly from the duality of the pair of staggered meshes and can be easily proven
by simple topological considerations.

From the topology of each: the primary and the dual grids, from equations (3.16) the second
set of properties is followed

SC=0
o (3.22)
SC=0

It can be interpreted as discrete analogues to the vector-identity divcurl=0in a continuous

case. Applying the equation (3.22) in MGE (3.16) the discrete analogy of charge conservation
law is followed:

d _ 2 d =
—q+Si=0 YA —p+div] =0 3.23
FPRRRN i’ (3.23)

Finally we define a discrete grad operatoré with the properties

Py

G=-S" and G=-§" (3.24)

From equations (3.21) and (3.22) follows CG=0 and CG=0 which are the discrete

analogues to curlgrad =0 continuous operator property.

3.2.2 Space Stability of Time-Continuous MGE

The time-continuous and space-discrete version of the homogeneous Maxwell grid equation
(3.16) for the lossless media case is given be

Cé=—Muiﬁ

dt BN CE d>
. d = M M Ce=-"r7e (3.25)
Ch=M,—¢

dt

Using the property of discrete curl operator (3.23), the square roots M;l = M;”Z M;” 2and
M;l = M;l/ 2 M;]/ % of the symmetric positive definite material matrixes, the system matrix of

this eigenvalue equation can be transformed into
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M;l cT M;l C= M;l/z (M;1/2 C M;l/z )T (M;1/2 C M;NZ)MSZ (3.26)

From this equation follows that this system matrix has only real and non-negative
eigenvalues A; [55-58, 65]. That means that all eigensolutions of the spatial discretized scheme
expressed by this system matrix are related to non-dissipative and non-growing oscillations with

a real valued circular frequency ®; = ,/A; and the time dependency e(t) ~ Re(ej”i ‘ )

3.3 Time Discretization

In this section the explicit and implicit numerical schemes on the Cartesian and cylindrical
grids for solving numerically 3D electromagnetic problems in the free space with PEC boundary
conditions are described. In time discretization in both (explicit, implicit) cases the central
difference method for derivatives is used which is a second-order accurate approximation. For
the time a normalized time variableZ =ct is used. The discrete time step is notated
byAt=cAt.

We consider a problem which reads as follows: in the region Q which is bounded by a perfect
conductor 0L, to find the electromagnetic fields excited by a bunch which is moving with the
speed of light ¢ and is characterized by a charge distribution P (fig. 16).

Figure 16. Charged particle bunch moving through an accelerating structure
supplied with infinite pipes.

The bunch introduces an electric current density J = ¢,cp and thus the following system of

differential equations is to be solved

Vxii=+ 28
Z, 0t

- oH
VxBE=-7,%2
8 07, xeQ (3.27)
V.E=Lt

€9
V-H=0

with PEC boundary conditionsiixE =0, x € 8Q and given initial conditions

E(r =0)=E,
, XeQuoQ (3.28)

H(r =0)=H,
In accelerator applications, the structure is usually supplied by the ingoing and outgoing

beam pipe and the analytical solution in a perfectly conducting cylindrical pipe [11] can be used
as initial condition.
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3.3.1 E/M Splitting Explicit Numerical Scheme

For time discretization an explicit scheme has been suggested by Yee [38] where splitting of
electric and magnetic field components have been used (E/M splitting), i.e. on discrete time axis
the electric field components are defined at the same time while the magnetic components are
shifted by a half-time step relative to the electric one. This numerical scheme yields to the
explicit finite difference time domain scheme and in matrix form reads as

nel ol
e 2=e 2+ATM, [COT h—Arj]
X (3.29)
h™' =h"-ATM, C, e 2
with electric and magnetic field vectors
eX hX
e=|e, h=|h, (3.30)
eZ hZ
and material matrixes
M, 0 0
M., = 0 May’”y 0 (3.31)
0 0 M

8Z7”’Z

On an equidistant mesh the explicit numerical scheme (3.29) has a second-order local
approximation error in the homogeneous region O (|| AT || 2FA rz), AT = (A X, Ay, A Z)T [38, 54,
55]. Applying Fourier analyses it is easy to get the following stability condition [58, 59] for this

numerical scheme that reads as
1
2
Aré[ ! + ! I ] (3.32)

+
Ax? Ay? AZ?

This condition is known in literature as Courant stability condition.
From Fourier analyses follows also the dispersion relation of this explicit numerical scheme
in free space [54, 59, 66] that reads as

A A A A
sin?| 225 | sin? |k S| sin? |k, 22| sin? |k, S
¢ 2 2 2 2

At? B Ax? " Ay? ' Az? -33)

As can be seen from this relation for an equidistant meshAX =Ay =Az_ a homogeneous

material and the time step AT=AX/ \/E , the scheme has no dispersion error along the grid

diagonals. This property of the above-described scheme enables us to achieve zero dispersion in
a desired direction by the rotation of the mesh. However, this approach has limitations on
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discretization, which requires an equidistant mesh to have a non-dispersive numerical scheme in
a desired direction.

Consider a problem of electromagnetic field calculation that is excited by a Gaussian charged
bunch of rms length o that moves with the speed of light ¢ in z -direction through a structure
of length L. The self-field of the ultra-relativistic bunch has only transverse non-zero field
components [11-13] and it is like a plane wave. For the equidistant mesh the dispersion relation

(3.33) simplifies to
. (oAt . Az
sm[ 2} sin [k 2)
© (3.34)

A1/2 Az/2

Assuming that the numerical wave number k differs from the analytical one by some value
0k , the Taylor expansion to the lowest order of 0k will read as [38, 67]

3
5kzL(9j Az —Az] (3.35)
24\ ¢

The dispersion error could disappear only when the time step is equal to the mesh
step AT=Az . However it contradicts stability condition (3.32). Which means that for any stable
time step the Yee’s numerical scheme has a dispersion error in the z -direction of the order of

3
Skzo([ﬂ) Azz] (3.36)
C

The Gaussian charged bunch excites high frequency fields up to the frequency @ ~c/o
which means that for the structure of length L the phase error will be of the order of

L-k~0(Lo7 A7) (3.37)

This equation means that the Yee’s scheme requires very fine mesh for short bunches and
long structures. For accurate calculation the mesh step should be chosen in a way that the

following relation satisfies
o’
Az << | — (3.38)
L

In the next section an implicit scheme will be described that is dispersion free in z -direction
for equal time and longitudinal space steps and is in good agreement with the stability condition.

3.3.2 TE/TM splitting implicit numerical scheme

In this section an implicit TE/TM numerical scheme is discussed [33, 49, 50]. The main
property of this scheme is the fact that it allows to take a time step AT equal to the longitudinal
mesh step AZin which direction the ultra-relativistic charged bunch is propagating. The time
discretization of this scheme is as follows: on the discrete time axis the “TE” components of
electromagnetic fielde,,e ,h, are defined at time level n that corresponds to T= nA7t and the
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“TM” components of the field h,,h , e, at time t=(n+0.5)A 1. Following this consideration

x> tyovz

and using new vector notations for the EM field and current density components

h, e, 0 Jx
u=|h, v=|e, J,=]0 J, = jy (3.39)
e, . J.
the time-continuous scheme (3.19) in equivalent form is read as
iu:TOu+LV+ju
dr
(3.40)
d T .
—v=T, v+L u+j,
dr
where
0 0 -P 0 0 -P 0 P 0
T,=l0 0 P |.T={0 o P |.L=|-P, 0 0 (3.41)
PP -P° 0 PP -P 0 000
y X y X

Applying the suggested time discretization the TE/TM field components are split in time as

n+§ n—E n+5 n—E
u 2-u u 2+u :
=T, +Lv" +jy
At 2 (3.42)
Vn-%—l vy Vn+1 +v" n_,_l n+l
T 4 LTu 24,2
AT 2

where central difference approximation of derivative on time have been used and linear
interpolation has been applied.

Similar to Yee’s scheme this numerical scheme is also two layer one and can be written in
the following form

BY Y yAyh=fn (3.43)
At
where
1 lAIT 0 ! o
. 0 — — n-= Ju
B=| 2 A= L R T R (3.44)
s T >y ’ n——

AtLT  I-=A1T,
2

As is seen, the matrixes in equation (3.43) have the following properties:

*

" with Q=B-LazaA (3.45)
Q=0Q 2
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In the original variables and in detailed notation the TE/TM scheme for no transverse current
density case ( J, =0) read as

TE components

o)
I
Il
)
> =
N | —
|
1
g=l!
=)
|
gl
=)
N | —
[

y y y X z Z X
(3.46)

TM components
~ ~ A _n+— ~
b =h"+2 M | P e 2-P &

X X 2 My z Ty y "z
_ N AT n+—

# _1.n an
hy :hy +7 “;1 PX CZ _PZ ex

-1

vl _gn a1+ 2T M PM P+ AT M B M P | M [P h* —B, 0" -]

N ! 4w XX e Y Y Sy T T
A I J”l - 1_
hi* =h, +—M ,| P,e, 2 -P e?+
2 K y Y
~ ~ A _ _nt-
h;” =h§ +7TMH,1 P e —P, e: 2
y

with I unit diagonal matrix and Ma,l o EM;L.

Realization of the TE/TM Scheme for Rotationally Symmetric Geometries

Below the realization of the implicit TE/TM numerical scheme for the case of rotationally
symmetric geometries in cylindrical coordinates {T,¢,Z} is described.
For a bunch moving at the speed of light C with an offset @ parallel to the axis of a rotationally
symmetric structure, the source current density J; =10,0,J, } can be represented via multipole

expansion eq. (3.9). The numerical scheme (3.46) for an azimuthal mode number m has the
form
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TE components

1 —_ ~ ~pL
E;EEZ'MEM [chf—Prhzz}
2
1 ~nl o A~
e =e2+ 8% {mh 2P h“}
r r 2 £ z z 4
r _,1
h,2=h,2+AtW,'M I[P e#—me#]
n

(3.47)

Where due to the azimuthal symmetry of the problem multipole expansion of the
electromagnetic fields eq.(3.8) [15] and the following property of a discrete operator of
derivative P, =mlI have been used in derivation of the numerical scheme (3.47).

In the staircase approximation of the boundary the material matrixes Mu" andM _, are
diagonal and following operators of the scheme (3.47)

2 2

A ~ A
M _PM P+
& Ky

Wez{n szlMlJ
€, My

i i (3.48)

A < A
M _PM_ P+
z »

th(n szlMI]
Hz &

are three-diagonal matrixes. So the equations involving them can be solved easily.
In the next section the stability of the above-introduced scheme will be discussed.
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3.3.2.1 Stability Analyses of TE/TM Scheme

The stability of the numerical scheme (3.43) can be studied by the energy inequalities method
[55, 56, 58]. Defining the following inner product on complex M -dimensional vectors a and b

M-
= 3.49
(a0} 3 09
The inner product of both sides in equation (3.43) with y"*' +y" read as

<B(y"+1—y"),y“+1+y“>+Ar<Ay“,y“”+y“>=<Arf“,y“+]+y"> (350)

Using the following formula

yn _ (yn+1 + yn); (yn+1 _yn) (351)

the equation (3.50) can be rewritten as
<|:B_A27A:|(yn+1 _yn),yn+1 +yn>+A27<A(yn+l +yn)’yn+1 +yn> =<A‘rfn ’yn+1 +yn> (352)

Since the operator A is skew-symmetric, the second term in the left-hand side is equal to
zero and

<Qyn”,yn“>—<Qyn,yn>=<ATfn,yn”+y“> (3.53)

The last relation enables to prove the following theorem [55, 56]:

Theorem: The condition
QEB—%ATAZO (3.54)

is necessary and sufficient for the stability in the Hilbert space of the scheme (3.43) with respect
to the initial data y° and right-hand side " .

The condition (3.54) can be rewritten as

A1’

CoCy <T or At<

2
Jmax (A;)

where A; are the eigenvalues of the matrix C,C .
The last inequalities are direct corollaries of the following Lemma

53



Lemma: Let us define a matrix A by relation
i 0 A
AT o
For the square matrix A the conditions

(@ I1+A>0and
() I-ATA>0

are equivalent.

Indeed, the set of eigenvalues {X? }of the matrix A can be rewritten in the form

b o

ATA L. . . . . T
where {Xi } is the set of eigenvalues of the non-negative self-conjugate matrix A A . Hence,
both relations (a) and (b) hold simultaneously.

Now following [57, 65] a discrete energy of electromagnetic field can be defined as

n 1 At N
Wi/t :5<{B—7A}y Y > (3.55)

And the discrete energy conservation law holds

1 1 1 1
Wn+1 . V.V 1 _ o N4 An—f B Y
TE/TM TE/TM :_E e,‘:+1+e,‘:,e§+1+eryl,ez 2 te, B 2., 25 (3.56)

Note that the discrete energy in numerical schemes defined by relation (3.56) is a second order

accurate approximation to the total physical energy of the electromagnetic field. If the right hand

side in scheme (3.43) vanishes, the scheme becomes energy conserving W{IE JTM = W¥E JTM -
Due to the Lemma the stability condition (3.54) can be rewritten in the form

2
I—A—P1 Pl >0
4

with i=0,1 (3.57)

I—ATT (PP +P B )20

The first inequality resembles well-known stability condition of the explicit FDTD scheme for
the one-dimensional electromagnetic problem. For the second inequality from the consideration

of the maximal eigenvalue of the Laplace operator (P,‘( 13; +P}i, ﬁ; ) it follows that for the

vacuum region with a staircase approximation of the boundary the stability condition read as
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At <min(Az,Ax,Ay)

N (3.58)
At< +
(sz Ayzj

For the rotationally symmetric case the stability condition reduces to the form
At <min(Az,Ar) (3.59)

Note that the last stability condition does not contain the azimuthal mode number m while
Yee’s scheme requires reducing the stable time step [54, 68] for higher azimuthal modes

-
at<| (12404m? )L 412t (3.60)
"ar? T AR

that increases the computational effort considerably.
As will follow from the next section with time step AT equal to the longitudinal mesh step

Az the TE/TM numerical scheme (3.43) does not have dispersion in longitudinal direction. The
relation (3.58) does not contain information about transverse mesh. Hence, the transverse mesh

can be chosen with no stability considerations.

3.3.2.2 Numerical Dispersion

Following the conventional procedure of stability analyses on plane waves [54, 58] the
dispersion relations can be obtained for TE/TM numerical scheme in the form

sin’ (m A;j sin® (kz Azzj sin® (kx Azxj sin’ (ky A2yj A
¢ - 2 (9 ! j (3.61)

= + + cos —
AT? Az A x? Ay? c

As can be seen from this dispersion equation at the “magic” time stepA 1= Az, the scheme
is dispersion-free in longitudinal direction. For equal transverse mesh steps Ax =Ay=hthe
dispersion relation for the transverse plane waves k, =0 read as

2
Tan’ ©AT :A—T sin?| k h +sin?| k h (3.62)
c 2 h? ) )

From the dispersion relation (3.61) follows that equation (3.58) is a necessary stability condition
for the implicit TE/TM numerical scheme.

The dispersion error cancellation for particular direction is important in electromagnetic field
computation due to the fact that the charged particle beams in accelerators have a design orbit
and the direction of motion (the longitudinal direction) can be identified. Therefore, the
computational domain is very long in the longitudinal direction and relatively short in the
transverse plane. Additionally, the electromagnetic field changes very fast in the direction of
motion but is relatively smooth in the transverse plane.
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Another advantage of dispersion-free scheme is that for an ultra relativistic bunch a mesh
moving along with the bunch can be used since the scaled time step is equal to the longitudinal
mesh step. The results with the moving mesh for staircase approximation of the geometry are
fully equivalent to the stationary global mesh approach. From all this arguments follows that for
this scheme the mesh step is independent from the structure length L and related only to the first
power of the rms bunch lengthc [33, 67] as

Az<<o (3.63)

3.4 Initial Field for Accelerator Application

In accelerator applications the studied structures usually are supplied by ingoing pipe. For the
rotationally symmetric structures the analytical solution in a perfect conducting cylindrical beam
pipe [11] can be used as initial condition. For ultra relativistic bunch with longitudinal charge

distribution P(z) moving at an offset a parallel to the symmetry axis of infinitely long perfect

conducting beam pipe of radius b the electromagnetic field components of the m th mutipole read
as

1 1) .
q 2am (b2m - aZer 1 > rga
E (r,1=0)=—————p(z)cos (mg)
2TE80 1+ SmO 1 ™!
’ — + el a<r<b
T
1 1 m-1
Zam o b2m o aZm r 2 r<a
E (,1=0)=—3_ p(z)sin (me) (3.64)
? 2 €, 1+ 8m0 1 ™!
’ I_m+1 _b2m 2 a<r£b

H (r,t=0)= _ZIE‘”(LT =0), H,(r,t=0) :ZlEr(r,r =0)

0 0

I, m=0
6m0:
’ O,m=0

with

As is seen from (3.64) for monopole casem = 0, there is no field inside the ring (r <a) . The

field pattern is uniform inside the beam for m =1 thus resembling the dipole magnet. Similarly
for m =2, the field pattern resembles that of a quadrupole magnet and form =3 a sextupole
magnet [13].

If the ingoing pipe is not cylindrical the initial field can be found numerically.
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3.5 Longitudinal and Transverse Wake Potentials

In this section, the basic definitions of the longitudinal and transverse wake potential are
introduced.

Consider the point charge Q moving along the z axis of the structure with offset 1, and
velocity v, close to the speed of light ¢ (Fig.1) and a test charge q moving with the same velocity
at a distance s behind the driving charge and the offset r .

Structure

r *
_____________________ ! L S
P
q - test charge Q - driving charge

Figure 17. A driving and test charges traverse the cavity.

As the driving charge interacts with the structure, it will excite electromagnetic fields (wake
fields) with longitudinal and transverse components that act on the test charge. The longitudinal
component of the Lorenz force will produce energy gain (or loss) of the test particle, while the
transverse component of the Lorenz force will produce a transverse kick of the trailing test particle.

We define the longitudinal point wake potential as the integrated longitudinal Lorenz force
experienced by the test particle over the length of the structure in interest

Z+S

w//(?,fl,s)=lj+°°EZ(f,fl,z,t= )dz (3.65)
Q —©
Note, that in our definition, s <0 corresponds to distance in front of the driving charge, s =0
-to the position of the driving charge and s >0 - to the longitudinal position behind the driving
charge.
The net energy gain or loss by the test particle following at the distance s behind the driving
charge is then given by

AU(s) =qQ-w (s) (3.66)

The transverse components of the electromagnetic fields produce a transverse component of
the Lorenz force acting on the test charge. We define the transverse wake potential as an integrated
transverse Lorenz force acting on the test charge

W, (E5.9) = éf:(ﬁnt?/xﬁ)l(f,fl,z,t _ Z:s)dz (3.67)

As it follows from the definition and Lorenz equation of motion the transverse wake potential
defines the net transverse kick of the test charge in the wakefields induced by the driving charge
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AP, (s)=qQw (s)/c (3.68)

Thus the longitudinal and transverse wake potentials describe the energy gain (loss) and the
transverse dynamics of the test particle in the wakefields excited by the driving charge during its
passage through the structure (cavity, transitions, discontinuities etc). Note, that from causality
principle, for ultrarelativistic driving charge (v, = ¢) the fields are vanished in front of the driving

charge, i.e. w,(s)=0, w, (s) =0 for all positions s < 0.

An important property of the wake potentials is described by the Panowsky-Wenzel theorem
[73] that gives the explicit relation between the longitudinal and transverse wake potentials.

L, (9 =0 W, () (3.69)
S

where V | 1s the transverse gradient operator.
For an extended longitudinal distribution p(s) of the driving bunch, the wake potentials are

determined by the superposition of the wake functions of individual charges in the bunch that lead
to the convolution of the point wake potential and normalized charge distribution

Wy ()= [p(s)w) (s =s)ds -
N with  [p(s)ds =1 (3.70)
W, ()= [p(s)W (s—s')ds’ -

—0o0

In the next section the convergence of the TE/TM scheme and some numerical tests will be
discussed. The following integral parameters will be used: the loss factor K, and the kick factor

K, given as

Ky = [W, ()p(s)ds (3.71)

—00

3.6 Convergence of the Implicit TE/TM Scheme and Numerical Examples
for Rotationally Symmetric Geometries.

For illustration, in this section the convergence properties of implicit TE/TM scheme
implemented in code ECHO are presented. Some numerical results of the wake field calculations
in perfectly conducting rotationally symmetric structures are discussed.

Convergence of the Scheme

On equidistant mesh the implicit TE/TM numerical scheme (3.46) has a second-order local
approximation error in homogeneous regionO (|| At || 1A rz), AT = (A X, Ay, A Z)T [33, 67].

The staircase approximation of the geometry in general makes the scheme first-order accurate. In
order to overcome this problem and avoid reduction of the time step, the uniformly stable
conformal (USC) approach was developed in [68] which makes the TE/TM scheme second-order
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accurate. In the figure 18 the relative error of the loss factor ¢ = ‘K y —K//‘/K ,1s shown for a

Gaussian bunch with rms length o = 0.5 cm passing through a pillbox cavity (fig. 18 left) and a
spherical resonator (fig. 18 right).

! 1
& o
i . . staircase

0.1k staircase 4 a
0.01} O

- W .

0.01 ~y-]

1e-3f )
le-d} 1e-4 1

Figure 18. The relative error of the monopole loss factor for a pillbox (left) and a sphere (right)
versus the number of mesh steps per rms bunch length. The solid lines show results for a
stationary mesh, the triangles and circles present results for the moving mesh.

The error is given over the number of mesh steps per bunch length /h | where h denotes the
equidistant mesh step h =Az=Ar in both directions. The pillbox has the length 1.8cm and
radius 0.9cm . The sphere diameter is1.8cm . The analytical loss factor K, for the pillbox is

equal to 0.589459V/pC and 0.152446V/pC for the sphere. Lines demonstrate the error of a
computation with a stationary mesh. Triangles and circles show the results for the moving mesh.
The mesh covers the Gaussian bunch longitudinally in the range of =50 to 50 . As is seen, the

staircase scheme shows a first-order rate of convergence and the conformal scheme achieves the
second order.

Numerical Examples

The examples of TE/TM numerical scheme applications are given in Ref. [33,50]. First test
example is a circular collimator structure shown in Figure 19 (with inner radius b not presented
in the figure). Figure 20 shows the wake potential for the collimator with parameters
a=40mm, b=c=10mm L =2445mm and the bunch with rms length o =0.lcm . The

numerical simulations are compared to the analytical solution [74].

L ¢

¥

Figure 19. The geometry of the collimator.
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Figure 20. The monopole wake potential of a collimator. The wakes calculated with different
mesh resolutions o/h are compared to the analytical solution. The results for the staircase

scheme show a considerable error. Three curves for the conformal scheme follow the analytical
estimation.

The conformal scheme shows a second-order convergence and gives results of high accuracy
with only 5 mesh steps per o in all tests while for staircase scheme more than 40 mesh points
per 0 is required to reach the same result. Note that the staircase scheme with 5 steps per o
leads to relative error in excess of 300%.

The next example deals with a structure consisting of the 20 TESLA cavity cells [75]
bounded by infinite ingoing and outgoing pipes 35mm in diameter. The side view of the
geometry is illustrated in Figure 21.

0 20 40 60 80 100
z/cm

Figure 21. Side view of the 9-cell TESLA cavity.

Each cell of this cavity is built using different kinds of geometrical objects: ellipse, line and
circle. The contour of the half-cell, called “cups”, is shown in figure 22.

equator

cavity axis
Figure 22. Contour of a half cell.
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It is composed of a circular arc in the equator region and an elliptical section near the iris.
The dimensions are listed in Table.2.

Cavity shape parameter Cups
Equator radius Reqy, 103.3 mm
Iris radius Rj 35 mm
Radius R, of circular arc 42.0 mm
Horizontal half axis a 12 mm
Vertical half axis b 19 mm
Length L 57.7 mm

Table 2. TESLA 9-cell cavity middle cup geometry parameters.

The analytical solution (3.64) was used as an initial condition in the ingoing pipe. Figure 23
shows the longitudinal wake potential for a Gaussian bunch with rms lengtho =1mm

0 E/M-2.5D

-0.5 0 0.5 1 1.5
s/cm
Figure 23. Comparison of the wake potentials obtained by different methods for the structure
consisting of 20 TESLA cells excited by a Gaussian bunch with o =1mm . The solid line shows

the reference solution obtained with the help of a scheme described in [50]. The dashed and
dotted lines describe the solution obtained by the classical Yee’s scheme with different number of
points per o . The picture shows coincidence of the reference result (solid line) with the result on
the coarse mesh obtained from the 3D TE/TM code (gray points).

The solid line (POT 2.5D) corresponds to the reference solution obtained with the vector
potential method [50]. The two other lines show results obtained with different mesh resolutions
from the TBCI code [40], which is based on the classical Yee’s scheme (E/M — 2.5D). The
shown oscillations, are due to the dispersion error of the Yee’s scheme. The gray points present
the result obtained by the implicit conformal implicit 3D TE/TM numerical scheme. It can be
seen that the implicit conformal 3D TE/TM scheme produces very accurate results even for the
coarse mesh. Indeed, the conformal method uses 2.5 mesh points per o in the longitudinal
direction while for staircase approximation of the geometry more that 40 mesh points per o is
needed to obtain a similar results.
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3.7 Conclusion

In this chapter description of the TE/TM (“transverse electric-transverse magnetic”) splitting
implicit numerical scheme is given [33, 52]. This scheme models numerically in time domain the
continuous EM problem that read as: to calculate three-dimensional (3D) electromagnetic fields
excited by ultra-short relativistic bunches in accelerator structures with perfect conducting walls.

The stability and numerical dispersion of the scheme are discussed based on well-known
results. The main advantage and outlook of this numerical scheme is the fact that its stability
condition allows to cancel numerical dispersion in longitudinal direction. Thus it is important for
accelerator structure modeling, the transverse dimensions of the geometry being commonly
considerably smaller than the longitudinal.

The realization of this scheme is implemented in the ECHO code, which is for rotationally
symmetric geometries. The numerical examples show that the TE/TM splitting numerical
scheme is much more accurate in long-time simulations than with the conventional FDTD
approach.
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Chapter 4.

A New Hybrid Numerical Scheme for Finite
Conductivity Modeling in Time Domain

This Chapter is devoted to a new hybrid numerical scheme for calculating the wakefields
excited by ultra-short bunches in structures with walls of finite conductivity. Based on the
TE/TM splitting numerical scheme described in Chapter 3 a new longitudinally dispersion-free
algorithm for resistive structures is developed. The time domain impedance boundary condition
in each boundary cell is approximated by one-dimensional EM model described in Chapter 2.
The realization of this new hybrid 3D implicit numerical scheme is done for rotationally
symmetric geometries and staircase approximation of the boundary surface. A good agreement of
the numerical simulations with the well-known analytical results and CST Particle Studio
simulations are obtained. The new hybrid scheme was applied to calculate the wake potentials
for the various components of FLASH linear accelerator at DESY and the European XFEL
project.

4.1 Theory of Wave Propagation in a Conductor

Consider a homogeneous isotropic medium of dielectric constant €, permeability # and

conductivity k. Using the material equationsB=p-H, D=¢-E and the Ohm’s law J=x-E , the
Maxwell’s equations in time domain will read as

| »

E divH=0
t . 4.1)
roth—uiﬁ divE=0

ot

rotﬁ:KE+8

o))

Since any electromagnetic wave can be described by superposition of plane waves, in further
the propagation of the plane wave in a conductor will be considered. For a monochromatic wave
with angular frequency @ , i.e. E=Eqe"“", the first two Maxwell’s equations are rewritten as

rotﬁ+im(8+i£)l:::0
®

(4.2)
rot E —io u H=0
Using the relation rotrot = graddiv — A for the electric field we get the wave equation
AE+k*E=0 (4.3)
where
k2 =o0lu(e+i) (4.4)
®
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These equations are identical to the non-conducting media case if in the latter the dielectric
constant ¢ is replaced by

E=¢e+i (4.5)

K
0

In addition to the complex wave number k and the complex dielectric constant & we also

introduce a complex phase velocity V and a complex refractive index n, which by analogy are
defined as
1

o= . fi=

pe

k (4.6)

%o
Il
(@]
B
m>
Il

elo

We set
n=p+ié) 4.7)

wherep and & are real and expressed in terms of material constants €,tand k. The square of
eq.(4.7) is
A% =p? (1+21&-E&2) (4.8)

On the other hand
A2 2 A2 . K
n-=cue=cu(e+i—) 4.9
®

Equating the real and imaginary parts of equations (4.8) and (4.9) we obtain

pr(1-8%)=c’ep

(4.10)
ple=c? it
20
or
2 2
p2=SCRE i By
2 e’n?
4.11)

2 2

2.2 _C EH K
= 1+ —— -1
p°S 5 { e }

The positive sign of the square roots is taken in (4.11). Since p and (p<) are real the p2 and

(p>&?) must be positive.

Equation (4.3) is formally identical with the wave equation for non-conducting medium, but
the wave number is now complex. The simplest solution is that of a plane, time harmonic wave

E =B elkF9-et (4.12)

where s is the unit vector in the direction of wave propagation.
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If, in accordance with (4.6) and (4.7), we substitute k by k= own/c=op(1+i&)/c , we get

o 2e@3) io [XE8)-1
C C

E=E,e e (4.13)

The real part of this expression will read as
L. UpEE) D -
Re(E)=E e °© cos| ® [—(T-s)—t] (4.14)
c

which represents the electric vector that is a plane wave with wavelength A =27 ¢c/wp and with
attenuation given by the exponential term

0) 21 21
n cpé A pé N a ( )

Here A, =27z c/w is the wavelength in vacuum, A is the wavelength in medium. The constant
7 is called the absorption coefficient.

The energy density is reduces by e factor as the wave penetrates the distance o, which is
called the skin depth and is given by

1
= (4.16)
N ops

This quantity is usually a very small fraction of the wavelength. Returning to equations (4.11) we
see that fork =0, the second equation is zero and the first one is p2 = czeu , So the refraction

index coincides with the well-known expression n® =c’ep for dielectrics. For metals k #0 the
next condition is usually fulfilled

| (4.17)
EW

Under this condition the equations (4.11) and (4.16) are reduced to

p~ps=c %
(4.18)

2

LK ®

O ~

For radiation frequency in infra-red, microwave and long radio wave ranges, the “skin depths”
8 for copper with static conductivity k =58-10°Q/m | =g, =8.85-10"2 p=p,=4n-10" are
given in table 3.

Table 3. Skin depths at the radiation wavlenght range of infra-red, microwave and
long radio waves

Radiation Infra-red Microwaves Long radio waves
A 10° m 0.1'm 10° m
S 12:10% m 1.2:10° m 12:10% m
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A perfect conductor is characterized by infinitely large conductivity K — o and in this
limiting case & —1and p — % . For such a conductor, an incident wave is completely reflected

from the surface.
We have seen that the basic equations related to the propagation of a plane harmonic wave in
a conducting medium differ from those related to propagation in dielectric media by replacement

of the real constants € and k by complex ones € and k. Now consider the wave propagation
from dielectric into a conductor. Both media are assumed to be of infinite extent fig.24.
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Figure 24 . Transmission and reflection of EM wave on dielectric-conductor boundary surface
By analogy with refraction law for dielectrics for a conductive media case we can write [76]

sinf, = _ sinf; (4.19)
n(0,,x,)

For dielectrics the refraction index is constant and real while for conductors it is complex and
depends on incident angle, conductivity and frequency of incident wave

n’(0;, k,0) = % [sinzei +80;,k,0)p” (1+&)+1-¢& (4.20)

where
1_g2
S in’

2
g (ei:K:m)zl_z Sim i+—S
p’(1+¢&%)? p*(1+&%)?

in*0, (4.21)

Here we should keep in mind that p and & are functions of frequency and conductivity.
When condition (4.17) is satisfied, the parameters p,& in equation (4.11) are approximated as
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> ——=——
P 2 e0 2e0 (4.22)

&1
where the relation ¢ = 1/ \JEoH, 1s used.

Using these expressions it is easy to see that the refraction index is much larger than unity
n(0;,x,0) >>1 | thus the inverse value is very small. This means, that when the condition (4.17)
is fulfilled, the incident waves are propagating not parallel to the boundary surface and are
transmitted perpendicular to the boundary surface (&, ~0), i.e. only the tangential components
of electric and magnetic fields survive in the conducting media.

In accelerators the spectrum of excited EM field due to bunch interaction with the
surrounding structure extends to frequencies up to several @, ~c/o with o the rms bunch

length. In advanced accelerators the vacuum chambers are usually made of high conducting

materials like stainless steel, aluminum or copper and the condition (4.17) is actually satisfied.

1

As an example, for stainless steel vacuum chamberk =1.4-10°Q'm™" and for a bunch with rms

length of 1m we get k/(g, ®) ~ 527.

Thus for high conducting media only the tangential component of the wave in the resistive
region (transmitted wave) can be taken into account and the task is reduced to one-dimensional
electromagnetic problem in metal. The so-called 1D conducting line model can be applied
instead of full space electromagnetic field description.

4.2 A New Hybrid TE/TM Splitting Implicit Numerical Scheme for Finite
Conductivity Modeling in Accelerating Structures

In this section a hybrid TE/TM splitting implicit numerical scheme for finite conductivity
modeling in accelerating structures is discussed [33, 49, 50]. The problem is read as: To
calculate electromagnetic fields excited by ultra-relativistic charged particle Gaussian bunch
moving with the speed of light in vacuum bounded with walls of finite but high conductivity
assuming that the following condition is fulfilled

K/(g,0) >> 1 (4.23)

It is well known that in such a system the bunch of Gaussian charge distribution with rms bunch
length o excites the electromagnetic fields up to the frequencies of ® ~ ¢/o . This allow to
write the condition (4.23) in terms of bunch rms length as

KZ,0o>>1 (4.24)

with impedance of free space Zo = 1/cg,.

As shown in the previous section, the condition (4.24) allows the modeling of the
conductivity part as one-dimensional (1D) electromagnetic problem. In this section we will
introduce a new hybrid 3D numerical scheme for finite high conductivity modeling as a
modification of the 3D dispersion-free numerical scheme for the perfect electric boundary
condition problem introduced in chapter 3.

In the new hybrid scheme for the vacuum part the 3D TE/TM splitting numerical scheme is
used where the boundary cells of the grid are supplied by 1D electromagnetic problem for EM
field calculation in the conductive region. In this model the tangential components of electric
field on the boundary are applied for EM field update in the boundary cells of vacuum region.
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The excitation source for the 1D problem will be the tangential components of the magnetic field
in the boundary cell. Such a scheme is implemented for the simple 1D case introduced in chapter
2. To describe the tangential components of electromagnetic fields in the boundary cells we
introduce a local coordinate system {p,¢,s} connected to the boundary for cylindrical grid as

shown in fig.25.

g conductor
vacuum

p
Figure 25. Boundary local coordinate system.

As can be seen from the figure 25 the S - axis of the local coordinate system is always
directed along the normal vector to the surface. Thus according to the previous section the
electromagnetic fields components which are tangential to the surface will be propagated into the
conductive region in the direction of S -axis at each local point of the surface.

In this chapter we consider the boundary interface by staircase approximation [77, 78]. It is
zero order approximation of the boundary while the 3D numerical scheme in free space
introduced in chapter 3 has second-order accuracy [33]. Thus due to boundary zero order
approximation the accuracy of the 3D numerical scheme (with boundary) is reduced to the first
order. The first-order approximation of the boundary can be reached by conformal methods
which have been already implemented for perfect electric boundary condition (PEC) problems
[68]. With conformal method the order of the 3D numerical scheme in the vacuum is unchanged
(second order). The first numerical experiments with direct application of conformal method to
hybrid scheme result in serious instabilities and rigorous study is necessary to improve the
stability. Thus we will introduce the hybrid scheme only for staircase approximation of the
boundary.

The TE/TM splitting hybrid numerical scheme is realized for the electromagnetic problems

with rotational symmetric geometries. A cylindrical coordinate {T,®,Z} system is used, where z

is the longitudinal coordinate. We will consider a Gaussian charged bunch moving at the speed
of light ¢ in longitudinal direction with an offset a parallel toz -axis (fig. 26). Using the
multipole expansion of the source (3.9) and electromagnetic fields (3.8) the dependence of the
fields on azimuthal coordinate ¢ in the numerical scheme can be taken analytically. The task is
to flow then into two-dimensional (2D) mesh for the geometry description in the discrete space.
Thus the space discretization is required for two directions {1 ,Z }.

Figure 26. Ultra-relativistic charged particle moving through an accelerating structure with
finite conductive walls supplied with infinite perfect conducting pipes.
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Usually the accelerating structures are supplied with ingoing and outgoing beampipes. Thus
in our problem we will supply the structures with perfect conducting pipes which will enable us
to use analytics in PEC pipe to define the initial electromagnetic fields and to implement indirect
method for wake potential calculation introduced in Chapter 3.

The special parts of our problem are the boundary cells of the grid, which are in touch with
conductive region and need a careful consideration. The goal is to model the impedance
boundary condition (IBC) in time domain. The thickness of the modeling conductor is taken
much smaller than the skin depth of the given problem. Such a 1D problem has been discussed in
chapter 2. As an excitation source of the 1D electromagnetic problem the magnetic field
components in boundary cell of the vacuum region will be used. This field is tangential to the
boundary surface and perpendicular to the tangential electric fields. Thus the IBC modeling in
time domain is converted into a 1D electromagnetic problem in the metal.

According to the section 2.3 of chapter 2 the implicit 1D numerical scheme will be applied
for our 1D problem to model the conductor. This numerical scheme according to equations 2.104
can be rewritten as

he=hr+ 25 Lper
2 7,
w(er —e" )=e" (A-1)+Z, B P" b’ 4.25)
Bn+l :ﬁ#_i_ELPérH—l
C C 2 ZO C
with three-diagonal matrix
WEI-%B PP (4.26)

and I the unit diagonal matrix. The AT in equation (4.25) is the discrete time step. The index ¢
is used to note that we are considering the EM fields in conductive region. The two-banded

matrices P and P in the 1D numerical scheme plays the role of discrete differential operators
and depends on the discrete space step AX . The matrices A and B are diagonal with entries

~ Ax -
agp :e_KMAX*A"O ai; =e " .
) 1 (1 ) for i>1 (4.27)
a,.=—1\l—a;.
bOO_?(l_a0,0) i1 E 1,1
K
! Conductor
\Vacuum _ _ !
! €. e e =
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Figure 27. The geometric view of the 1D numerical scheme in conductive region.
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According to the figure 27 the boundary conditions at the interfaces for 1D electromagnetic

problem read as ey =0 and E;{O =h" This approach is applicable when the thickness of

the modeling conductor is taken much larger than the skin-depth of the considered problem.
From multipole expansion of the fields eq.(3.8) follows that for the monopole case (m=0)

the non zero field components are E_, E,, H . Thus the monopole case will be considered

separately from higher order multipole cases.

Monopole case (m=0)

Graphically the discretization of the problem is illustrated in figure 28 where the 1D
conductive lines for finite conductivity modeling are shown.
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Figure 28. Vacuum grid with 1D conductive lines at the boundaries for monopole case.

As can be seen from the figure in the cells like cell A the magnetic field component fl% is

the excitation source for 1D electromagnetic problems in transverse and longitudinal directions,
i.e. both 1D problems are equivalent. Thus the electric field components tangential to the

boundary will be equal at any time step €; = ¢, = €,. This means that for each mesh cell the

number of 1D problems is reduced to one instead of two. Finally the TE/TM numerical scheme
for monopole case can be written in the following steps

TE component

1
1. e, 2=¢
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TM components

3. By updating EM fields of 1D problems using the scheme (4.25) the tangential

. . ~n+l . o
electric field at next time level ei‘ ™ is defined. As an excitation source for the 1D

problem, the tangential component of magnetic field fl; in vacuum boundary cell
is taken.

2 u(ﬂ T T z

1
~ ~ A _n+— _ _
4 ¥ =ni+=IM [Pze 2ot e;;”]
where 62 , 53 + are the voltages at the conductive surface and 1 is conductive edge length. The
conductive edge length for the cells like A (fig.28) is 1. =2, and for cells like Bis 1. =1.
Higher-Order Multipole Case (m>0)

For a higher-order multipole case all six components of the field should be taken into

account. Thee; , e, , flg components of EM field are graphically shown on 2D mesh in fig.28.
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Figure 29. 2D view of cylindrical mesh of vacuum region.
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The other three components fl? ,B;‘ ,62 of the field are illustrated in fig.29. Note that for 3D

case, to find the tangential components of electric field in each direction, 1D EM problems
should be solved, i.e. for finite conductivity, modeling of each boundary cell in vacuum should
be supplied by three separate 1D problems. For rotational symmetric geometries the 1D

problems for each cell are reduced to two. In multipole case a second electric field €., tangential
to the boundary interface should be obtained. To calculate the 5&, field, the second 1D problem

in conductor should be solved. As an excitation source for this 1D problem, the flg (fig.29)
magnetic field from boundary cell in vacuum is taken. For the cells like A (fig.29) this magnetic

field vector is defined as a sum of magnetic field vectors fl? and fllzl projected on the cell
diagonal Fig.(30).
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Figure 30. Overview of the discrete magnetic field components in the grid cell.

Following the notations illustrated in figure 30, the flg field will read as

hy =h; cosa+h; sina

P z

At (4.28)
tga = —

Az

For the cells like B (fig.26) the h, field is equal to theh , i.e. hj =h} .
Note that in the TE/TM numerical scheme the longitudinal component of magnetic field

h, on the discrete time axis is defined at time level(n+0.5). Thus, this field at time level
n could be found by following the interpolation procedure

ﬁn-% An%
ﬁn — hz +hz
“ 2

Finally for IBC modeling in time domain we should connect two 1D EM problems to each

vacuum boundary cell. The electromagnetic fields in each 1D problems should be taken

{B2¢563p} and {ﬁ2p,€§¢} pairs respectively.
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Finally the TE/TM hybrid numerical scheme for an azimuthal mode number m read as
TE components

n—l AT n1
~# _ =~ S5 1n B 1L o
e¢, = e(p 2 +7Ms;l PZ hr _Pr hz 2
1. 1 - 1 Z
n— At S0~
~# ~ n
€, =€, 2 +7M8;1 mhz 2 _PZ h¢
ntt -t 2 72 -
h, 2=h,2+At| I+ M ,PM ,P + m’M M, | M,
z z My r S(p r 4 My & z

n+l AT i n+1
e 2 gt Ph -Ph 2
e(p _e‘/7+7M8;1 Pz hr _Pr hz
n+l AT n+—

e, 2= +—M . mh, P, h}

TM components

1
~ ~ A o+ _ _
hf =h?+ TMllP eHZPre§+1Ce;‘p}

3. The updates of EM fields of 1D problems using the scheme (4.25) give the
= ~n+l
tangential electric fields e::; and e?; at time level (n+1). For the field updates

of 1D problems the flg and flg magnetic fields from vacuum boundary cells are

used as input parameters.

~ ~ AT n+—
n+l _ 1 # ) ~n+l ~n+l
h,”=h,+—M | P,e, *-P e, +l ¢,
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where the discrete derivative operators P, P, for normal and P, P, for dual mesh have been
applied, I is unit diagonal matrix.
The material matrices M; and M have been used which contain the information about

lengths of mesh edges normalized on discrete space steps and the normalized mesh areas
respectively. Thus, for staircase approximation of the boundaries the elements of material
matrices are equal to one for vacuum region and zero for the conductive part.

The simulation experiments show that the numerical dispersion properties of the hybrid
TE/TM numerical scheme are preserved, i.e. as for the original TE/TM scheme (Chapter 3) the
hybrid scheme also has no dispersion in longitudinal direction at the magic time step which is
equal to the longitudinal space step AT=Az

In the next section the stability and convergence of the hybrid scheme for rotational
symmetric geometries will be discussed.

4.3 The Stability of the Hybrid Scheme.

The 3D Hybrid implicit numerical scheme is designed in a way that the stability properties of
3D scheme in the vacuum region (3.58), (3.59) and 1D scheme in conductor (2.137) are
preserved. Thus the stability conditions for hybrid scheme on cylindrical mesh will read

———vacuum-———
Az <o,

At<min(Az,Ar)

———conductor — —— (4.29)
25 2A1

¢ x-Z,

Ax, <min(Az,Ar)

AX

where O}, is rms bunch length, x is the conductivity, Z-impedance of free space, A7 is the
time step normalized to the speed of light, {Ar, Az} are the space steps in vacuum region and

A X is the space step of 1D scheme for conductive region.

The stability conditions (4.29) of the hybrid TE/TM implicit numerical scheme have been
tested and approved by a number of numerical experiments. The numerical dispersion property

(3.61) of the scheme also holds. Thus at the “magic” time step AT = Az the developed hybrid

scheme is dispersion free in longitudinal direction.
The hybrid numerical scheme can model the IBC in time domain for electromagnetic
problems, where the following relation is satisfied [see section 4.1]

KZ,G, >>1 (4.30)

In advanced accelerators the vacuum chambers usually are made of high conducting

materials (K 2 10° ) like aluminum or copper and the condition (4.30) is usually satisfied. As an
example, for stainless steel vacuum chamberx =1.4- 10°Q'm"and bunch rms length of lum |

KZy 6y, =527 . Thus the above numerical scheme is applicable to high energy accelerators like
FLASH and European XFEL project where the beam rms length varies from25—-50 zm.

74



4.4 Convergence of the Hybrid Scheme.

The convergence study of the 3D hybrid numerical scheme is performed based on the
comparison of the numerical results with the steady state solutions of Gaussian bunch wake
potentials in a round pipe with finite conductive walls. For the points charge moving in infinite

round pipe of radius b with the offset a parallel to the symmetry axis the analytical steady state
solution of the longitudinal wake potential of m -th multipole is well known [79] and read as

W m (8) = G 17 cOS(m@) Fy, (5) (4.31)

with q;, the m-th multipole charge moment and the function F_(s) are given as

2nb
 Jp.0)r™ cos(mg) drdp
00 _(m+1) a"
dm = 55 o T p2meD
_(U)‘r cos” (me)drde (4.32)

A o ) s
41 ™ 2 2 x
0

6 2
€ Ty x0 +8n

where m=(m+1+3,,)/2 with Omo Kronecker delta function and Sy is so called

characteristical distance given as

> VA
Sy = [20]’—80] (4.33)

K

In the case of Gaussian bunch distribution p(s) with rms length ¢ the longitudinal wake
potential read

Win® = [W)m(s=5)p@E)ds
-50
2 (4.34)

1
p(s) = e
27106

Applying the Panowsky-Wenzel theorem (3.70) and the eq.(3.71) the transverse wake
potential Wﬁm and loss (kick) factor for Gaussian charge distribution can be derived. Note that

the wake potentials are given per unit length of the round pipe.
The convergence of the hybrid scheme is analyzed for the Gaussian bunch of rms length

6 =1mm moving in round pipe of radius a =1cm and wall conductivity x =10° S/m. To check

the convergence the linear dependence on time step of the discrete space step in conductive
region is required that will fulfill the stability condition (1.137) within the range of research. In

this special case due to high conductivity the relation Ax_ =100At-+/2/k is applicable.
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Figure 31. Convergence (logarithmic scale) of the monopole loss and dipole kick factors
(red) and the prediction until 3" order (green dashed).

The results of the study is presented in figure 31, the convergence of the numerically
calculated loss (a) and dipole kick (b) factors is compared to the analytical values
k, =131V/pC and k, =75.5V/pC/m respectively. In those plots the horizontal axis

corresponds to the number of discretized point on 16 bunch rms length and A is the space step.
All calculations in this and further sections are done with equidistance mesh and “magic” time
step, i.e. normalized time step is equal to the longitudinal space stepA=At=Az=Ar. As is

seen the numerical scheme is first order accurate as was predicted due to the staircase
approximation of the boundary interface. Note that for convergence study the geometrical mesh
should be shifted from boundary interface, otherwise we will observe a second-order
convergence. The next section shows the results of numerically calculated steady state solutions
of longitudinal monopole and transverse dipole wake potentials when the geometric mesh
coincides with the boundary interface.

Similar tests on convergence of the hybrid scheme have been performed for higher-order
harmonics and it was observed that the convergence behaves similar to dipole case.
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4.5 Numerical Tests on Rotational Symmetric Geometries

In this section several examples of the wake potentials calculations in various resistive
structures are presented. The results are compared with known analytical solutions and the
results obtained by other advanced numerical codes. As an example the following typical
structures are taken: infinitely long resistive tube, resistive insert and resistive tapered collimator.

Steady State Resistive Wake Potentials.

As the first test we calculate the steady state longitudinal and transverse short-range wake
potentials of the Gaussian bunch with rms length 6 =1mm moving in a round pipe of radius

a=Ilcmand walls conductivity k =10>S/m. For this simple geometry the adjustment of the
geometric mesh with boundary interface is possible.
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Figure 32. Comparison of the numerical longitudinal monopole and transverse dipole wake
potentials (blue dashed) with analytical solutions (orange solid).

Figure 32 shows the comparison of the numerically calculated longitudinal monopole (a) and
transverse dipole (b) wake potentials with analytical wakes. The numerical results are given for
the mesh resolution of 10 points inlc . In this case (mesh coincides with boundary interface) the
error in loss and kick factors is about 3% while to obtain same accuracy of the calculation in
staircase approximation (mesh is shifted from boundary interface) we will need more than 40
points onlo .
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The Wake Potentials for Resistive Insert.

As the second test we calculate the longitudinal and transverse wake potentials of the
Gaussian bunch passing through the finite length resistive cylinder supplied with infinitely long

perfectly conducting beam pipes (Fig. 33). The resistive part of cylinder has radius a =1lcm,
length g=10cm and conductivity kK =10* S/m .

Figure 33. Cross section of the finite-length resistive cylinder supplied with infinitely long
perfectly conducting pipes.

The analytical solutions for monopole loss k; and dipole kick k, factors of the Gaussian
bunch in such structure are given in Ref. [80]

Z
k1= €208 KLSE

1
2n2a,/2KZ g3 gj
07e with s, = % (4.35)
cZy./gs, G oKk
k =2—3Kt[_

' S
T a g

where the functions K;and K, are given by

2 3 2 2 2 2x 2
K,(u) = |dx x g [l—e_X +—=-¢e" erﬁ(x)}
1 _(‘)‘ \/;

K, (u) = [dx x 7% e erfi(ux) [1 N erﬁ(x)}
0

N

Figure 34 presents the numerically obtained longitudinal monopole (a) and transverse dipole
(b) wake potentials (blue) and the analytical steady state wakes (orange) [11, 12] for the
Gaussian bunch of rms length6 = 25um

(4.36)

-~

Bunch shape Ehaimb
Vv - -
W//{ } . e

Numerical

-1a0

78



b)

100
vV Bunch shape  ,* ™,
WT 50 \‘l‘ \\
pCm ’ .
L
" -
D ------- hal” PO
=50
i Numerical =
e -4 -2 0 2 4 S/G
Figure 34. Comparison of transient (blue solid) and steady state (orange solid) wake

potentials.

The numerically obtained loss and kick factors are equal to 58 V/pC and 42.6 V/pC/m
respectively. The numerical results are coincidental with the analytical prediction (4.35) for loss
factor (57 V/pC) and kick factor (41.5 V/pC/m ) with accuracy of 1.7% and 2.3% respectively.

The steady state loss factor for such an insert is equal to 16 V/pC, the loss factor being
underestimated. The same situation is with steady state kick factor that is equal to 9.6 V/pC/m. In
the demonstrated example of the 10cm-long resistive insert it is clearly seen that the steady state
loss and kick factors compromise the exact results by 75%.

Wake Potentials in Rotational Symmetric Tapered Collimator.

For the third example we take a rotational symmetric tapered collimator (fig. 35) with
parameters d=10mm, b=6mm, L;=200 mm, L, =100mm and conductivity « =10*S/m .

17mm
17mm

Conductor

PEC PEC

Figure 35. Cross section of the tapered collimator.

The numerical calculation of longitudinal monopole shot range wake potential (Fig. 36) of
the Gaussian bunch with rms length 6 =50um results in the 270 V/pC loss factor for

79



conductive walls that is twice larger than for perfectly conducting walls (133 V/pC). Thus the
real wake can not be obtained as a direct sum of the geometric and the steady-state solutions. A
similar situation is observed for transverse wake potential.
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Figure 36. Comparison of the longitudinal wake potentials for tapered collimator with
finite (blue solid) and perfect (green dashed) conducting walls.

In the last example we compare the wake potentials computed by the hybrid numerical
scheme and by CST Microwave Studio. To be able to obtain an accurate result with CST
Microwave Studio the Gaussian bunch is taken longer 6 =20mm and the tapered collimator
(fig. 35) is taken shorter with new parameters d=10mm, b=6mm, L;=L, =30 mm and
conductivity k=100 S/m. Note that the conductivity was reduced to obtain larger wake potential

than for the PEC case.

Fig. 37 presents the comparison of the longitudinal wake potentials obtained by CST Particle
Studio (CST-PS) and by the new hybrid numerical code. The wake potentials calculated by the
new code is done by 40 discrete points on 1o bunch rms length and is in good agreement with
the accurate result obtained by CST-PS. An equidistant mesh and staircase approximation of
boundary interface was used for calculation with the new code.
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Figure 37. Comparison of longitudinal wake potential calculated by CST Particle Studio
(orange solid) and by hybrid scheme (blue dashed).

Note that for this particular example to obtain an accurate solution with CST-PS a few hours
is needed while for the new code (with implementation of moving mesh approach) the
computational time is less than a minute.

4.6 Practical Applications to European XFEL and FLASH Facilities

In this section we present the application of the new numerical hybrid code for calculation of
the longitudinal and transverse wake potentials for various resistive components of the FLASH
and the European XFEL facilities.

FLASH Tapered Collimators

On the FLASH facility four collimators of the same type are installed. The collimators have a
length of 500mm (L;=200mm, L,=100mm) (fig.35) and are made of copper material

(x =5.8-10" S/m ). Each of the collimators has different geometrical options, presented in table 4
in accordance with fig.35.

Table 4. FLASH collimator geometry parameters

Set 1 Set 2 Set 3
b 2 mm 3 mm 6 mm
4.5 mm 5.5 mm & mm

For those three geometry options of the collimator the longitudinal and transverse wake
potential have been calculated using the new hybrid scheme for a Gaussian bunch of rms length
6 =50 um. To compare the contribution of the walls finite resistivity into the total wake
potentials the geometric wakes were calculated using the numerical code ECHO.

Figure 38 presents the longitudinal monopole and dipole transverse wake potentials
calculated by the new hybrid scheme and ECHO for Set 1 collimator geometry (table 4).
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Figure 38 . Geometric (orange dashed ) and full ( blue solid ) wake potentials for the FLASH
collimator geometry Set 1.

In table 5 the loss (kick) and rms loss (kick) factors for collimator different geometry sets
(table 4) obtained by the new hybrid scheme and ECHO code are presented. As is seen, the finite
resistivity of the walls increases the monopole loss and rms loss factors by about 4% and 9%
respectively. The dipole kick and the rms kick factors are increased by about 20%, 10.5%, and

5.5% for each geometry sets of the collimators.

Table 5. The geometric and full loss (kick) factors of the FLASH collimator.

Geometric Full
Loss Rms Loss Kick Rms Kick Loss Rms Loss Kick Rms Kick
factor factor factor factor factor factor factor factor
V/ipC V/pC V/pC/m V/pC/m V/pC V/pC V/pC/m | V/pC/m
Set 1 2794 129.5 2037 900 2924 141.2 2424 1114
Set 2 2441 103.4 1123 594 2533 113.4 1240 670
Set 3 157.5 63.6 266 157.9 163.4 69.5 280.7 167.3

Rotationally Symmetric Step Collimator for European XFEL project

As the next application of the hybrid numerical scheme the longitudinal and transverse wake
potentials of rotationally symmetric step collimator (fig. 39) designed for European XFEL
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project [3] are presented. This collimator is made from titanium (k = 6-10° S/m ) and has the
length of L=500 mm. The calculations are done for the ¢ =25 um rms length Gaussian bunch.

L =500 mm
K =6e5 S/m

Figure 39. Geometry of the step collimator for European XFEL project.

The longitudinal and transverse wake potentials can be estimated by summation of geometric
and steady-state resistive wakes.(4.31). The geometric longitudinal monopole and transverse
dipole wake potentials can be calculated using the results derived in Ref. [81]

W, (5= 22 n('lj—‘jp(s)

2 (4.37)

Z
Wi (s) = %‘:[é - é}em

where p(s)is the Gaussian bunch distribution function and the function 0(s)is related to the
error function erf(x) as

1+erf[\/50j

5 (4.38)

0(s) = [p(s)ds’ =

Figure 40 presents the longitudinal monopole and transverse wake potentials calculated by
the hybrid scheme (numerically) and analytical estimation (geometric + steady-state resistive).
Note that the numerical calculation takes into account also the transient resistive wake fields
while in analytics it is omitted.
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Figure 40. Longitudinal monopole and transverse dipole wake potentials of step collimator
calculated numerically ( blue solid ) and analytical (orange dashed )
expression (geometric + steady state).

Table 6 presents the numerical results for monopole loss and dipole kick factors with their rms
deviations.

Table 6. The loss and kick factors of the European XFEL step collimator.

Loss factor Rms Loss factor Kick factor Rms Kick factor
kV/pC kV/pC kV/pC/m kV/pC/m
14 0.65 14 8.7

In this example the contribution of transient resistive part into the loss and kick factors is of
the order of 3% .

Wake Potentials in Undulator Intersections of European XFEL
Finally we calculate the wake potentials for the undulator intersection designed for European

XFEL project (fig. 41). The undulator cell consist of the 5161-mm long undulator section with
the 890-mm length intersection.

Figure 41. Undulator intersection of European XFEL project.
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The intersection consists of pump, absorber, bellows, BPM (Beam Position Monitor) and
round pipe of radius Smm. In the table 7 are presented the lengths and the conductivities of the

undulator section elements [82].

Table 7. The list of undulator intersection elements.

N Element Length Material Conductivity
1 Elliptical pipe | 5161 mm | Aluminum 3.66E+07

2 Pump 105 mm Aluminum 3.66E+07

3 Absorber 22 mm Copper 5.80E+7

4 Bellow 30 mm BeCu 174 2.78E+7

5 BPM 51 mm Stainless Steel 304 | 1.4E+6

6 Bellow 30 mm BeCu 174 2.78E+7

7 Round pipe 652 mm Copper 5.80E+7

The geometries of the undulator intersection elements are presented in Figure 42.
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b. Beam Position Monitor (BPM)
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c. Absorber
Figure 42. Geometries of undulator intersection elements: bellow (a), BPM (b), absorber (c).

In figure 43 are presented longitudinal monopole and transverse dipole wake potentials
calculated by the hybrid scheme and analytical estimation (geometric+resistive) for the Gaussian
bunch of o =25 um rms length passing the undulator intersection.
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Figure 43. Longitudinal monopole and transverse dipole wake potentials for undulator

intersection of European XFEL project calculated by new hybrid numerical scheme (blue solid)
and analytically (geom.+resistive) (orange dashed).

Obtained loss and kick factors are presented in table 8.

Table 8. Loss and kick factors of the European XFEL undulator intersection.

Loss factor Rms Loss factor Kick factor Rms Kick factor
V/pC V/pC V/pC/m V/pC/m
Hybrid scheme 167.4 56.04 713.6 460.8
Geom.+Resistive 180.9 61.7 766.0 482.1
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The effects of “in” and “out” undulator intersection transitions are taken into account in
calculations by adding 3cm long round aluminum pipes of radius 4.4 mm at both sides of the
intersection. In the calculation the resistive wake potentials are estimated for the following
elements: pump, absorber (4 mm radius), BPM (straight section) and round pipe. As is seen
(fig. 43 and table 8) the monopole loss and dipole kick factors obtained analytically lead to 8%
overestimation of the losses calculated with hybrid scheme (transient resistive effects included).

4.7 Conclusion

In this chapter a new hybrid numerical scheme for rotational symmetric structures was
introduced. This hybrid scheme was developed for wake field calculations excited by ultra short
bunches moving through the structures with finite conductive walls. The new hybrid scheme is
fully time domain and is dispersion-free in longitudinal direction that allows to calculate the
wakefields for very long (L>1m) structures without loss of calculation accuracy. The realization
of the scheme was done for staircase approximation of the boundary that reduces the calculation
accuracy to the first order. Several tests have been performed to improve the hybrid scheme. The
results are in good agreement both with analytics and numerical results obtained by CST-PS. The
new hybrid scheme was applied to calculate the wake potentials for the various accelerator
elements of FLASH linear accelerator at DESY and the European XFEL project.
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Summary

The acceleration of electron bunches with very small longitudinal and transverse phase space
volume is one of the most actual challenges for the future International Linear Collider and high
brightness X-Ray Free Electron Lasers. The exact knowledge on the wake fields generated by
the ultra-short electron bunches during its interaction with surrounding structures is a very
important issue to prevent the beam quality degradation and to optimize the facility performance.
The high accuracy time domain numerical calculations play the decisive role in correct
evaluation of the wake fields in advanced accelerators. Although various analytical and
numerical methods have been developed to evaluate these fields, the calculation of the wake
fields generated by ultra-short bunches in 3D structures with finite conductivity walls still
remains a challenging problem.

The one problem associated with accumulation of numerical dispersion errors during the
wake field calculation in accelerators is successfully solved by implementation of the dispersion-
free numerical scheme for structures with perfectly conducting walls.

To model the conductive boundaries, the numerical scheme for one-dimensional
electromagnetic problems with Impedance Boundary Condition has been derived. This scheme is
an approximation of electromagnetic properties of the 3D metallic boundaries, since for high
conductivity materials the incident waves are transmitted perpendicular to the boundary surface.

To calculate the wake fields produced by ultra short bunches in structures with resistive
walls, a new 3D time-domain dispersion-free hybrid numerical scheme is developed. The
stability of the new hybrid numerical scheme in vacuum, conductor and bound cell is studied.
The stability conditions have been tested and approved by a number of numerical experiments.
The convergence of the new scheme is analyzed by comparison with well-known analytical
solutions.

The realization of this new hybrid 3D implicit numerical scheme is done for rotationally
symmetric geometries and staircase approximation of the boundary surface. A good agreement of
the numerical simulations with the well-known analytical results and CST Particle Studio
simulations are obtained. The new hybrid scheme was applied to calculate the wake potentials
for the various components of FLASH linear accelerator at DESY and the European XFEL
project.
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