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Chapter 1

Introduction

Throughout many decades the scattering experiments serve as a useful source of infor-
mation about the structure of matter. To our present knowledge the matter is composed
of atoms. In 1913 E. Rutherford investigating the scattering of the alpha particles from a
gold, showed that the atoms have substructure. They are composed of massive nucleus,
surrounded by negatively charged electrons. In a number of subsequent experiments from
1919-1932, when a positively charged proton and a neutral neutron, were discovered, it
became clear that the nucleus itself is a composite object, i.e. a bound state of protons
and neutrons. Up to now, the structure of nucleons (protons and neutrons) and their
different bound states are a subject of intense investigations. Until recently, the nucleon
structure was described by two categories of objects - elastic form factors and parton
distribution functions. Nucleon form factors measured in the elastic lepton-nucleon scat-
tering experiments describe the difference of the electromagnetic structure of nucleons
from that of point-like particle. Thus they represent transverse spatial distribution of
charge and magnetization in the nucleon. Parton distribution functions are distributions
in longitudinal momentum fraction of partons in the nucleon, and are extracted from
measurements of inclusive and semi-inclusive deep-inelastic scattering. Form factors and
parton distribution functions are one-dimensional spatial and momentum distributions,
respectively.

In the framework of recently developed formalism of generalized parton distributions
(GPD), a more comprehensive multidimensional description of the nucleon is possible.
GPDs embody parton distribution functions as limiting cases, and the elastic form fac-
tors appear as certain GPD moments. A strong interest to GPDs is motivated also by
their relation to the total angular momentum carried by partons in the nucleon. The
latter is of special importance due to the fact, that according to the recent experimental
measurements, in decomposition of the z-component of the nucleons spin through spins
of quarks ∆Σ and gluons ∆g and respectively to their orbital angular momenta Lqz and
Lgz

sz =
1

2
∆Σ + Lqz + ∆g + Lgz =

1

2
, (1.1)

the contribution from the quarks spin is about 20-25%. Hence one of the most exciting
quests in the hadronic physics is the determination of different contributions to the spin
of the nucleon.

From the experimental point of view, the GPDs can be accessed through hard exclusive
processes, where the target stays intact after the scattering. One of the most promising
hard exclusive processes is the Deeply Virtual Compton Scattering (DVCS), i.e. hard
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leptoproduction of a real photon, where the quark absorbs a hard virtual photon, emits
a real one and rejoins the target. Beside DVCS, there is another process with the same
initial and final states, Bethe-Heitler, where the final photon is radiated by the incoming
or outgoing lepton. These processes are experimentally indistinguishable, and due to
the same final state they interfere at the level of production amplitudes, resulting in
an interference term in the cross section for exclusive leptoproduction of real photons.
Although in a kinematic conditions of fixed target experiments the DVCS cross section
is much smaller than that of Bethe-Heitler, the presence of interference allows to access
DVCS amplitude.

In this report the DVCS measurements on an unpolarized and longitudinally polarized
deuterium targets are presented. For DVCS off deuteron, one can consider two types of
processes. The Coherent process, when the deuteron stays intact after the scattering,
allows to consider the structure of deuteron at partonic degrees of freedom, while the
incoherent process, when deuteron breaks up to proton and neutron, may provide an
information about the GPDs of neutron.
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Chapter 2

Generalized Parton Distributions

In this chapter the framework of generalized parton distributions is discussed. The
chapter starts from general introduction to the formalism of deep inelastic scattering. In
section 2.1 an interpretation of deep inelastic scattering in terms of quark-parton model
is considered. Its cross section is represented through forward Compton amplitude, which
in tern is described by parton distribution functions. Further, more general case of non-
forward Compton amplitude is considered, where the generalized parton distributions
appear. A detailed description of the properties and interpretation of generalized parton
distributions is given in sections 2.2 - 2.4, while their parameterization and various models
are considered in sections 2.5 - 2.8.

2.1 From DIS to DVCS

A theoretical framework of Generalized Parton Distributions (GPDs) was introduced
in last decade and was found to be a universal tool for the description of hadron struc-
ture in quark and gluon degrees of freedom. At present GPDs appear in the description
of large amount of hard exclusive processes which leave the target intact, such as hard
leptoproduction of real photons or mesons. Exclusivity in this case means that the final
state of the process is determined and consists of three particles, scattered lepton, recoiled
nucleon or nuclei and produced photon or meson. An introduction to framework of GPDs
is reasonable to begin with consideration of inclusive deep inelastic lepton1-nucleon scat-
tering (DIS) ep→ eX. The deep-inelastic scattering of leptons off a nucleon is a process
where due to the interaction the nucleon breaks up into a hadronic state X. At moderate
values of squared four momentum transfers to the nucleon, the dominant mechanism of
lepton-nucleon interaction is the single virtual photon exchange. Since the typical center
of mass energy at HERMES kinematic conditions is about 7GeV , any contribution from
other mechanisms of interaction is negligible. Within single-photon exchange approxima-
tion the leading order diagram of inclusive DIS is depicted in Figure 2.1. Experimental
measurements of DIS, where only the scattered lepton is detected at the final state, refer
to as inclusive. The relevant kinematic variables of inclusive DIS are expressed through
energies and momenta of initial and final state lepton. They are listed below and are
expressed in laboratory (lab.) frame, which in the case of fixed target experiments corre-
sponds to the target rest frame.

1Further in this report the lepton will refer to either electron or positron.
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Figure 2.1: Deep inelastic lepton-nucleon scattering process in one-photon exchange ap-
proximation.

- The four momentum of the virtual photon q

− q2 = Q2 = −(k − k′)2 lab.
= 4EE ′ sin2(θ/2) (2.1)

where k(E) and k′(E ′) are the four-momenta (energies) of incoming and outgoing
lepton, and θ - is the lepton scattering angle in the laboratory frame.

- The energy of virtual photon ν (i.e. the energy transfer from the lepton to the
virtual photon)

ν ≡ p · q
MN

lab.
= E − E ′ (2.2)

where MN is the target nucleon mass.

- The squared invariant mass of virtual photon-target system (or final hadronic sys-
tem) W 2

W 2 ≡ (p+ q)2 lab.
= M2

N + 2MNν −Q2 (2.3)

- The Bjorken variable xB

xB ≡
Q2

2p · q
lab.
=

Q2

2MNν
(2.4)

- The fractional energy transfer from a lepton to the target nucleon y

y ≡ p · q
p · k

lab.
=

ν

E
(2.5)

The differential cross section of inclusive DIS can be presented as a convolution of leptonic
and hadronic tensors [Ans95], where the first one describes a radiation of virtual photon by
a lepton and can be calculated in Quantum Electrodynamics (QED), while the hadronic
tensor which describes a virtual photon-proton interaction and contains an information
about unknown inner structure of proton can be parameterized in terms of structure
functions. At present there is no rule for the calculation of hadronic tensor from basic
principles, hence the inclusive DIS or γ∗p interaction is described by means of optical
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theorem. It relates the cross section of the process γ∗p → X to the imaginary part of
forward Compton amplitude γ∗p→ γ∗p, shown on the left side of Figure 2.2. In the case
of polarized leptons scattering off polarized spin-1/2 nucleons, there are four structure
functions entering the parameterization of hadronic tensor. Two of them F1(xB, Q

2)
and F2(xB, Q

2) are spin independent and often are referred to as unpolarized structure
functions. The unpolarized cross section of inclusive DIS reads

d2σunpol
dxBdy

=
4πα2

sx2
By

2

{
xBy

2F1(xB, Q
2) +

(
1− y − γ2y2

4

)
F2(xB, Q

2)

}
, (2.6)

where γ = (2MxB)/(Q) and s is the center of mass energy. The structure functions
F1(xB, Q

2) and F2(xB, Q
2) and the ratio R of longitudinal σL and transverse σT virtual

photo-absorption cross sections are related according to

R(xB, Q
2) =

σL(xB, Q
2)

σT (xB, Q2)
=

(1 + γ2)F2(xB, Q
2)− 2xBF1(xB, Q

2)

2xBF1(xB, Q2)
. (2.7)

Experimental measurements of unpolarized DIS had been carried out in variety of ex-
periments. The first measurements of structure function F2 were performed by SLAC
experiment [Whi90b], and continued by number of experiments up to the resent measure-
ments by H1 [Adl03] and ZEUS [Che01]. An overview of the proton structure function
F2 can be found in [Yao06].

When the lepton beam is polarized longitudinally, i.e. the spin of the lepton is aligned
parallel or antiparallel with its momentum, the cross section of inclusive DIS depends on
azimuthal φs and polar θs angles of the target spin vector ~S with respect to the lepton
scattering plane. In order to obtain polarization dependent part of the cross section,
it is common to consider the difference between two target polarization states ±Sz, so
that the unpolarized cross section cancels and the polarization dependent cross section is
parameterized in terms of structure functions g1(xB, Q

2) and g2(xB, Q
2)

d3σpol
dxBdydφs

=
d3σ(−S)

dxBdydφs
− d3σ(S)

dxBdydφs

=
4α2

sxBy

{[(
2− y − γ2y2

2

)
g1(xB, Q

2)− γ2yg2(xB, Q
2)
]

cos θs+ (2.8)

γ

√
1− y − γ2y2

4
[γg1(xB, Q

2 + 2g2(xB, Q
2))] sin θs cosφs

}
.

The above equation shows how an information about both structure functions can be
revealed experimentally. For this purpose, measurements with both longitudinally and
transversely polarized targets are important. If the target is longitudinally polarized,
i.e. θs = 0, the cross section receives dominant contribution from structure function
g1(xB, Q

2), as the contribution from g2(xB, Q
2) is suppressed by the factor γ2 ∼ 1/Q2. In

the case when the target is polarized transversely with respect to the lepton beam, both
structure functions contribute in the cross section with the similar weights. Hence, the
combination of measurements on longitudinally and transversely polarized targets allows
the extraction of both polarized structure functions g1 and g2. The separate measurement
of these functions is important due to the fact, that their is no trivial relation between po-
larized structure functions, as in the case of unpolarized ones from Eq. 2.7 [WW77]. The
most recent experimental measurements of structure function g1 are presented in [Air07a].
Currently also the first measurements of structure function g2 exist [Ant03].
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The decomposition of hadronic tensor in terms of linearly independent structure func-
tions can be applied also in the case of deep inelastic scattering of leptons from a spin-one
hadrons. Detailed description of this parameterization is given in [Hoo89]. The hadronic
tensor for a spin-one target depends on eight structure functions. Four additional struc-
ture functions denoted as b1−4(xB, Q

2) contribute to the cross section. Two of them
b1(xB, Q

2) and b2(xB, Q
2) satisfy a relation

R(xB, Q
2) =

(1 + γ2)b2(xB, Q
2)− 2xBb1(xB, Q

2)

2xBb1(xB, Q2)
, (2.9)

which has the same physical basis as the analogues relation for proton structure functions
from Eq. 2.7. Compared to b1(x,Q2) and b2(x,Q2), the contribution of two other structure
functions b3(x,Q2) and b4(x,Q2) to the total cross section vanishes faster by one power
of Q2.

The early experimental data on inclusive DIS performed by SLAC [Whi90b] indicated
that despite of the fact that dynamics of DIS is handled by two variables Q2 and ν, the
structure functions F1(xB, Q

2) and F2(xB, Q
2) under certain kinematic conditions depend

on one variable xB. This phenomenon, known as Bjorken scaling, brought a significant
contribution in further consideration and development of quark-parton model. In order to
explain the scale invariance, Bjorken and Feynman [Bjo69a, Bjo69b, Fey69] suggested a
model according to which in the so-called infinite momentum frame, where nucleon moves
fast in the z-direction, it can be regarded as being composed of free constituents, partons.
These partons were further recognized to be quarks with the spins 1/2, whose existence
had been proposed earlier by Gell-Mann and Zweig, based on the symmetry properties
of the mesons and baryons multiplets [Gel64, Zwe64]. In the simple quark-parton model
interpretation of DIS, an electron scatters off a point-like parton in the proton in an elastic
manner. Within the chosen frame for the proton momentum P µ = (P, 0, 0, P ) one has
P = |P| � MN . Meanwhile for partons in the nucleon pµ ' (p, 0, 0, p), p ≡ |p| ≡ xP �
|p⊥|. Here p⊥ is the parton momentum in the transverse direction and x = p/P is the
momentum fraction of the nucleon carried by the parton. Requiring the parton to stay in
its mass-shell implies for the Bjorken scaling variable to be identical to parton momentum
fraction x = xB in the infinite momentum frame of the nucleon. Then the cross section is
presented as an elastic lepton-quark (antiquark) scattering cross section summed over all
quark (antiquark) flavors q (q̄) and multiplied by Parton Distribution Functions (PDFs)
q(x) for each quark flavor. PDFs q(x) multiplied by the differential momentum fraction dx
give the probability to find a quark of flavor q carrying a fraction of the nucleon momentum
in the range [x, x + dx]. The PDFs can be split up in two parts q(x) = q→(x) + q←(x),
where q→(x) (q←(x)) is the PDF of a quark with spin aligned parallel (antiparallel) with
respect to the nucleon spin. Hence the PDF q(x) represents the distributions of partons
summed over the spin states. Similarly one can define helicity distributions as a difference
between PDFs of partons with different helicity states ∆q(x) = q→(x)− q←(x).

Such an interpretation of DIS described the early experimental features, like scale
invariance or famous Callan-Gross relation F2(xB) = 2xBF1(xB), which is a sequence of
helicity conservation. Further DIS experiments on fixed targets [Fox74] found a scaling
violation at relatively smaller values of xB. Also the violation from Callan-Gross relation
were observed at the beginning of 90’s [Whi90a]. These observations can not be explained
in a model which does not take into account interactions among the partons inside the
nucleon. The latter is carried out in the framework of quantum chromodynamics (QCD).
QCD is a non-Abelian gauge theory that models a strong interaction among color charged
quarks. Quarks couple to gluons and the latter ones mediate the strong interaction.
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Compared with QED, where the photons dose not bear electric charge, the gluons in
QCD carry color charge, which causes a scale dependence of strong coupling constant αs:

αs(Q
2) =

12π

(33− 2nf )ln(Q2/Λ2
QCD)

. (2.10)

Here, nf is the number of active quark flavors and the parameter ΛQCD ≈ 300MeV
represents the strength of the coupling. At relatively large values of Q2 (Q2 > Λ2

QCD)
the coupling decreases with increasing Q2 and the quarks are asymptotically free, while
at lower values of Q2 quarks are confined to hadrons. Taking into account an interaction
between quarks, they can be assumed to be dressed with a cloud of gluons and virtual
quark-antiquark pairs (so-called sea quarks). Corrections of DIS cross section with terms
rising due to the radiation of gluons by quarks and splitting of gluons into quark-antiquark
pairs are applied in a so-called QCD-improved quark-parton model. This contributions
lead to violation of Bjorken scaling.

γ∗(q)γ∗(q)

PDF
xP xP

N(P ) N(P ) N(P1) N(P2)

GPD

γ∗(q1) γ(q2)

(x− ξ)P(x + ξ)P

Figure 2.2: Left: Leading order handbag diagram of forward Compton amplitude, whose
imaginary part determines the DIS cross section. Right: The non-forward Compton
amplitude appearing in DVCS.

Deep-inelastic scattering can be interpreted using the factorization theorem [Col88],
that is based on the separation of the cross-section into a short-distance and a long-
distance parts. The short-distance part is calculated in perturbative QCD. The long-
distance part cannot be calculated, but it is described by the parton distributions which
evolve logarithmically in Q2. The structure functions are related to parton densities
accordingly:

Nucleon Deuteron
F1

1
2

∑
q e

2
q

[
q1/2
→ + q1/2

←
]

1
3

∑
q e

2
q

[
q1
→ + q−1

→ + q0
→
]

g1
1
2

∑
q e

2
q

[
q1/2
→ − q1/2

←
]

1
2

∑
q e

2
q

[
q1
→ − q1

←
]

b1 · · · 1
2

∑
q e

2
q

[
2q0
→ − q−1

→ − q−1
→
]

(2.11)

where qΛ
→[←] is the number density of quarks with spin aligned parallel[antiparallel] to the

z axis in the hadron(nucleus) with helicity Λ moving with infinite momentum along the
z axis. The sums run over quark and antiquark flavors q with a charge eq in units of the
elementary charge e. The reflection symmetry implies for the number density of quarks
qΛ
→ = q−Λ

← .
It was proven [Rad96, CF99, JiO98] that the factorization into hard and soft parts

similar to that for forward Compton amplitude, can be applied also in more general case
of non-forward Compton amplitude (see right diagram in Figure 2.2 for special case of
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DVCS). However for general Compton amplitude, when one does not require a reality
or virtuality of initial or final photon, the factorization is valid in a so-called generalized
Bjorken limit of

|q2
1|+ |q2

2| → ∞, at fixed q2
1/W

2, q2
2/W

2, t

where t = ∆2 = (p1 − p2)2 = (q2 − q1)2 is the squared four-momentum transfer to the
proton with p1(q1) and p2(q2) being four-momenta of initial and final proton(photon)
respectively. A non-vanishing four-momentum transfer to the proton requires two scaling
variables for the process, generalized Bjorken variable and skewness

η = − (q1 + q2)2

2(p1 + p2) · (q1 + q2)
, ξ =

(p1 − p2) · (q1 + q2)

(p1 + p2) · (q1 + q2)
. (2.12)

The most important limiting cases are summarized below up to the terms of an order
∆2/q2

1,2 with the relevant processes where they appear.

• Deep Inelastic scattering γ∗p→ γ∗p

∆ = 0, ξ = 0 η = xB (2.13)

−q2
1 = −q2

2 →∞

• Deeply Virtual Compton scattering γ∗p1 → γp2

q2
2 = 0, ξ = η =

xB
2− xB

(2.14)

−q2
1 →∞, −∆2 � W 2

• Timelike Compton scattering γp1 → γ∗p2

q2
1 = 0, ξ = −η (2.15)

q2
2 →∞, −∆2 � W 2

• Double deeply virtual Compton scattering γ∗p1 → γ∗p2

q2
1 < 0, q2

2 > 0, ξ > η (2.16)

−q2
1 ∼ q2

2 →∞, −∆2 � W 2

Another possible limiting case, extensively discussed in literature is the wide-angle Comp-
ton scattering [Rad98, DFJK99], where both photons are real and −∆2 is large. Never-
theless, the factorization of this process is still a subject for further investigations.

2.2 Properties of GPDs

The non-perturbative part of non-forward Compton amplitude of the reaction γ∗p1 →
γp2, describing the nucleon structure, is parameterized in terms of generalized parton
distributions (GPDs). GPDs depend on four kinematic variables. Compared with PDFs
they depend in addition on squared four momentum transfer t to the nucleon and ξ which
represents half the difference of the longitudinal momentum fraction carried by probed
parton in the nucleon. In quantum field theory approach the GPDs are defined in analogy
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to PDFs, through matrix elements of bilocal operators of quark and gluon fields. As can be
seen from right side diagram of Figure 2.2 the parton and nucleon momenta are different in
the initial and final state, hence GPDs do not correspond to squared amplitudes and can
not be treated as probability densities. They rather describe interferences of amplitudes.
GPDs evolve logarithmically with Q2 in analogy with PDFs. The evolution of GPDs is
considered in the following three regions (see Figure 2.3).

!"x"!" x

x

"! !0 1"1

+!xx!" x+! x"!

Figure 5: The parton interpretation of GPDs in the three x-intervals [−1,−ξ], [−ξ, ξ], and [ξ, 1].

3. for x ∈ [−1,−ξ] both x + ξ and x − ξ are negative; one has emission and reabsorption of
antiquarks with respective momentum fractions ξ − x and −ξ − x.

The first and third case are commonly referred to as DGLAP regions and the second as ERBL region,
following the pattern of evolution in the factorization scale (Section 3.8). Why the support of GPDs
is restricted to |x| ≤ 1 will be discussed in Section 3.4.

The above interpretation can be made explicit in the framework of light-cone quantization. As
we will see in Section 3.4 one can then decompose the field operators q̄ and q in the definitions (14)
in terms of annihilation and creation operators b, b† for quarks and d, d† for antiquarks [35, 40, 41].
With the constraint that parton states must have positive plus-momentum the above three cases then
respectively select the combinations b†b, db, and dd†.

For gluons we define

F g =
1

P+

∫
dz−

2π
eixP+z−〈p′| G+µ(−1

2z)Gµ
+(1

2z) |p〉
∣∣∣
z+=0, z=0

=
1

2P+

[
Hg(x, ξ, t) ū(p′)γ+u(p) + Eg(x, ξ, t) ū(p′)

iσ+α∆α

2m
u(p)

]
,

F̃ g = − i

P+

∫
dz−

2π
eixP+z−〈p′| G+µ(−1

2z) G̃µ
+(1

2z) |p〉
∣∣∣
z+=0, z=0

=
1

2P+

[
H̃g(x, ξ, t) ū(p′)γ+γ5u(p) + Ẽg(x, ξ, t) ū(p′)

γ5∆+

2m
u(p)

]
. (18)

These distributions differ by a factor of 2x from those of Ji [35] and by a factor of 2 from those of
Goeke et al. [37, 42]:

2xHg(x)
∣∣∣
[35]

= 2Hg(x)
∣∣∣
[37]

= Hg(x)
∣∣∣
here

, (19)

with analogous relations for Eg, H̃g, and Ẽg. Taking out a factor of x from our gluon GPDs leads
to a more direct relation with the usual gluons densities in the forward limit (see Section 3.3.1). As
remarked in [39] this introduces however an additional singularity of the GPDs at x = 0 (the point
where two gluons with equal plus-momenta are emitted), since at this point the matrix elements in
(18) are in general finite but nonzero. In physical processes it is in fact the distributions defined in
(18) that appear in the amplitude, without any factor of 1/x.

The number of GPDs for spin-zero hadrons, say pions or spin-zero nuclei, is smaller. The pion
has often been considered in theoretical investigations to avoid the complications of spin (but may
also be accessible experimentally, see Section 9.1.6). One defines

Hq
π(x, ξ, t) =

1
2

∫
dz−

2π
eixP+z−〈π+(p′)| q̄(−1

2z) γ+q(1
2z) |π+(p)〉

∣∣∣
z+=0, z=0

,

Hg
π(x, ξ, t) =

1
P+

∫
dz−

2π
eixP+z−〈π+(p′)| G+µ(−1

2z)Gµ
+(1

2z) |π+(p)〉
∣∣∣
z+=0, z=0

. (20)
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Figure 2.3: The parton interpretation of the coordinates x and ξ in the x-intervals

• For −1 < x < −ξ, corresponding to emission of an anti-quark with longitudinal mo-
mentum fraction ξ−x and absorption of an anti-quark with longitudinal momentum
fraction −x− ξ.

• For −ξ < x < ξ, corresponding to emission of quark and anti-quark with longitudi-
nal momentum fractions x+ ξ and ξ − x respectively.

• For ξ < x < 1, corresponding to emission of a quark with longitudinal momentum
fraction x+ξ and absorption of a quark with longitudinal momentum fraction x−ξ.

The evolution of GPDs in the first and third regions is described by DGLAP evolution
equation named after the authors Dokshitzer, Gribov, Lipatov, Altarelli, Parisi [AlPa77,
Dok77, GrLi72, Lip75]. While the second case refers to as ERBL(Efremov-Radyuskin-
Brodsky-Lepage) region [LeBr79, EfRa80]. More details on the evolution of GPDs in
leading order in αs can be found in [Mul94, Ji97a, Rad99] and in next-to leading order
in [Bel00a, Bel00b] .

The non-forward Compton amplitude for spin-1/2 nucleons is described by four leading-
twist (twist-two) quark-chirality conserving GPDs for each quark flavor q (and also for

gluons g), namely the GPDs Hq, Eq, H̃q and Ẽq. The twist is defined as the dimension
minus spin of the operator defining the GPD [Jaf96]. The twist of a term is usually

identified to its suppression in orders of MN/Q. The GPDs Hq and H̃q conserve the

nucleon-helicity, while Eq and Ẽq are associated with a helicity flip of the nucleon. Their
are also parton helicity flip GPDs, which will not be considered in the following. For the
case of spin-1 deuteron, the non-forward Compton amplitude is described by nine GPDs,
denoted as Hq

1 , Hq
2 , Hq

3 , Hq
4 , Hq

5 , H̃q
1 , H̃q

2 , H̃q
3 , H̃q

4 .
In the following discussion the Q2 dependence of the GPDs and PDFs will be omitted.
In the forward limit of vanishing momentum difference between the initial and final

hadronic states (t→ 0, ξ → 0), the GPDs reduce to ordinary quark helicity distributions.
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In the case of spin-1/2 nucleons [Rad96, Ji97a]:

Hq(x, t = 0, ξ = 0) = q(x), (2.17)

H̃q(x, t = 0, ξ = 0) = ∆q(x), (2.18)

and for spin-1 deuteron [Ber01]:

Hq
1(x, t = 0, ξ = 0) =

q1(x) + q−1(x) + q0(x)

3
, (2.19)

H̃q
1(x, t = 0, ξ = 0) = q1

→(x)− q−1
← , (2.20)

Hq
5(x, t = 0, ξ = 0) = q0(x)− q1(x) + q−1(x)

2
. (2.21)

Here, qΛ
→[←](x) represents the probability to find a quark with longitudinal momentum

fraction x and positive [negative] helicity in a rapidly moving target with longitudinal
spin projection Λ. The above relations for x < 0 involve the anti-quark distributions,
with an overall minus sign in the expressions for H̃q, H1 and H5. In the forward limit the
remaining GPDs both for nucleons and deuteron decouple from the Compton amplitude,
as in the parameterization of Compton amplitude these GPDs are multiplied by a factor
proportional to ∆.

Certain properties of GPDs directly follow from hermiticity and time reversal invari-
ance. First of all those apply for GPDs to be a real valued functions. In addition the
following symmetry properties take place:

Spin = 1/2

Hq(x, t, ξ) = Hq(x, t,−ξ)
H̃q(x, t, ξ) = H̃q(x, t,−ξ)
Eq(x, t, ξ) = Eq(x, t,−ξ)
Ẽq(x, t, ξ) = Ẽq(x, t,−ξ)

Spin = 1

Hq
i (x, t, ξ) = Hq

i (x, t,−ξ) i = (1, 2, 3, 5)

Hq
4(x, t, ξ) = −Hq

4(x, t,−ξ)
H̃q
i (x, t, ξ) = H̃q

i (x, t,−ξ) i = (1, 2, 4)

H̃q
3(x, t, ξ) = −H̃q

3(x, t,−ξ).

(2.22)

Note that the implication of time reversal changes the sign of ξ because the initial and
final states are interchanged.

Various features of GPDs are related to the moments in momentum fraction x. First
of all it is important to mention that as a consequence of Lorentz invariance the integrals
of GPDs over x do not depend on ξ anymore. For instance, the first moments of GPDs
are connected to electromagnetic form factors of hadrons. For the case of nucleons [Ji97a]

∫ +1

−1

dxHq(x, t, ξ) = F q
1 (t), (2.23)

∫ +1

−1

dxH̃q(x, t, ξ) = gqA(t), (2.24)

∫ +1

−1

dxEq(x, t, ξ) = F q
2 (t), (2.25)

∫ +1

−1

dxẼq(x, t, ξ) = hqA(t) . (2.26)

Here, the quantities F q
1 and F q

2 can be expressed through well known Dirac and Pauli form
factors of proton and neutron using isospin-symmetry. The axial gqA and pseudo-scalar hqA
form factors (defined for given quark flavor) can be investigated in week reactions [Cho93].
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Similar relations exist also for deuteron GPDs [Ber01]

∫ +1

−1

dxHq
i (x, t, ξ) = Gq

i (t) i = (1, 2, 3) (2.27)

∫ +1

−1

dxHq
i (x, t, ξ) = 0 i = (4, 5) (2.28)

∫ +1

−1

dxH̃q
i (x, t, ξ) = G̃q

i (t) i = (1, 2) (2.29)

∫ +1

−1

dxH̃q
3(x, t, ξ) = 0 . (2.30)

The form factors G1, G2 and G3 can be derived from charge monopole GE, magnetic dipole
GM and charge quadrupole GC form factors.

GC(∆2) =
(

1 +
2τ

3

)
G1(∆2)− 2τ

3

[
G2(∆2)− (1− τ)G3(∆2)

]
, (2.31)

GM(∆2) = G2(∆2), (2.32)

GQ(∆2) = G1(∆2)−G2(∆2) + (1 + τ)G3(∆2), (2.33)

with τ = −∆2/(4M2
d ), where Md = 1.84GeV is the mass of deuteron. The normalization

of these form factors is given by

GC(0) = 1, GM(0) = µd = 1.714 GQ(0) = Qd = 25.83 ,

where µd denotes the magnetic moment and Qd denotes the quadrupole moment of the
deuteron. The three form factors G1, G2 and G3 are shown in Figure 2.4. They are
obtained using the parameterization suggested in [Kob95], and the fitting parameters are

taken from [Abb00]. No experimental measurements exist for the axial form factors G̃1

]2-t [GeV
0 0.1 0.2 0.3 0.4

-210

1

210

1G

2G

3G

3Gτ

Figure 2.4: The electromagnetic form factors of deuteron .

11



and G̃2, although certain linear combinations with respect to the flavor number can be
measured in the weak interactions.

The relations between GPDs and form factors are a special case of more general
property of GPDs, i.e. polynomiality . In [Ji98] it was shown, that Mellin moments of
GPDs H and E can be expressed as a polynomials in ξ with maximal power of N for even
N and N + 1 for odd N .

∫ +1

−1

dxxNHq(x, ξ, t) = h
q(N)
0 + h

q(N)
2 ξ2 + · · ·+ h

q(N)
N+1ξ

N+1, (2.34)

∫ +1

−1

dxxNEq(x, ξ, t) = e
q(N)
0 + e

q(N)
2 ξ2 + · · ·+ e

q(N)
N+1ξ

N+1 . (2.35)

For the case of odd N , the coefficients in front of the highest power of ξ are related to
each other as [GPV01]

e
q(N)
N+1 = −hq(N)

N+1. (2.36)

The GPDs H̃ and Ẽ satisfy to similar polynomiality conditions as GPDsH and E, whereas
in this case, the highest power of the polynomial is N − 1 for odd N and N for even N .
The coefficients in the polynomials are interpreted as form factors.

2.3 Relation to quark angular momentum

An interest to GPDs significantly raised after the discovery of their rich spin structure.
Particularly in 1996 it was shown by Ji [Ji97b], that GPDs fulfill a sum rule which provides
an access to total angular momentum of quarks in a nucleon. In the naive quark-parton
model the nucleon is considered to consist of three spin-1/2 quarks, and its spin is a vector
sum of the quark spins. In late 80’s measurements on polarized DIS provided by European
Muon Collaboration (EMC) [Ash88], showed that the contribution of quarks spins into
nucleon spin is abut 20%. Later this result was conformed by number of experiments
(see for instance [Air07a]). In order to understand this discrepancy, one needs to consider
the spin structure of nucleon in QCD-improved parton model. Here the nucleon spin is
decomposed into sum of quark and gluon total angular momenta:

1/2 = Jq + Jg, (2.37)

where Jq and Jg are the contributions from quarks and gluons respectively. Jq and Jg can
be expressed as a matrix elements of the QCD energy-momentum tensor, which in turn
is decomposed on form factors [Ji97b]. As was mentioned in previous section the form
factors can be represented in terms of the moments of GPDs. This is expressed in a Ji’s
famous sum rule [Ji97b]

Jq =
1

2
lim
t→0

∫ +1

−1

(Hq(x, ξ, t) + Eq(x, ξ, t))xdx . (2.38)

2.4 Impact parameter space representation

In an alternative presentation the GPDs are introduced as a generalized Wigner dis-
tributions. The generalization of the concept of phase-space distributions to the case of
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relativistic quarks and gluons is described in details in [BelR05]. In this context it is
obvious that GPDs do not have probabilistic interpretation. Nevertheless, in particular
case of zero skewness the GPDs acquire a probabilistic interpretation. This is obtained in
an impact parameter space, when keeping the longitudinal momentum (momentum in a
light-cone + direction) and Fourier transforming the transverse momentum to transverse
position [Bur00]. For a particular case of GPD Hq the impact parameter distribution
reads:

q(x, |b|) =

∫
d2∆

(2π)2
e−i∆⊥bHq(x, ξ = 0, t = −∆⊥). (2.39)

Here, ∆⊥ is the transverse component of the nucleon momentum difference (the zero
value of skewness ξ = 0 implies for a longitudinal component of the nucleon momentum
difference to be equal to zero) and b indicates a position in the transverse plane and is
defined as: b =

∑
i xibi, where the sum goes over all partons with longitudinal momentum

fraction xi and transverse location bi. This kind of mixed representation allows for a
three-dimensional probabilistic interpretation of fast moving nucleon in one-dimensional
momentum and two-dimensional coordinate space.

Fourier transform to impact parameter space could be applied also for other GPDs.
For GPD Eq one obtains a function e(x, |b|), which has no direct interpretation, since it

refers to the nucleon helicity flip, and thus is non-diagonal. Same holds also for GPD Ẽq,
while for GPD H̃q the impact parameter space distribution ∆q(x, |b|) is interpreted as
the polarized analogue of q(x, |b|).

2.5 Parameterization of GPDs

Various parameterization models of GPDs are available in the literature. The starting
point for modeling of GPDs, are the properties discussed in previous sections. Especially
the forward limit, where the PDFs are used as an input. From the other side, it is
important to generate the non-trivial ξ dependence of GPDs in a way, that will comply the
polynomiality condition. Very often, for the consistent parameterization of GPDs the so-
called double-distributions (DD) are considered. DDs were introduced in [Mul94, Rad96]
and are discussed in details in [Rad99, Rad01]. The relation between DDs f(β, α, t) and
GPDs F (x, ξ, t) is given by:

F q(x, ξ, t) =

∫ +1

−1

dβ

∫ 1−|β|

−1+|β|
αδ(x− β − αξ)f(β, α, t) (2.40)

The DD function satisfies to polynomiality conditions, but always have e
q(N)
N+1 = h

q(N)
N+1 = 0.

In order to complete the parameterization, the so-called D-term was introduced.

Hq(x, ξ, t) =

∫ +1

−1

dβ

∫ 1−|β|

−1+|β|
αδ(x− β − αξ)f(β, α, t) + θ

[
1− x2

ξ2

]
Dq
(x
ξ
t
)
, (2.41)

Eq(x, ξ, t) =

∫ +1

−1

dβ

∫ 1−|β|

−1+|β|
αδ(x− β − αξ)k(β, α, t) + θ

[
1− x2

ξ2

]
Dq
(x
ξ
t
)
. (2.42)

The dependence on both x and ξ is projected out by the delta function and the support
region for the α and β integration is determined from the condition |α|+ |β| ≤ 1. One of
the advantages of DDs is that independent of the kind of model used for their parame-
terization, the polynomiality condition is fulfilled automatically. The contribution of the
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D-term to GPDs H and E are of the same magnitude, but opposite sign. It contributes
only in ERBL region and does not contribute in a forward limit. It drops out also in the
integration of GPDs over x, which does not allows for any constraint of its t dependence
by nucleon form factors. The GPDs H̃ and Ẽ do not have a D-term.

2.6 The VGG model

One of the most direct GPD models commonly used for the comparison with the exper-
imental results was suggested by Vanderhaeghen, Guichon and Guidal (VGG model) [VGG99].
It is based on double distribution formalism and satisfies to the requirements discussed
in section 2.2 .

For the parameterization of GPD Hq, first the t independent part of GPD Hq(x, ξ) =
Hq(x, ξ, t = 0) is modeled using the factorized representation of DDs discussed in [Rad99].

f q(β, α) = h(β, α)q(β). (2.43)

Here q(β) is an ordinary parton density for positive values of β corresponding to quark
PDF and with negative values to antiquark PDF. The profile function h(β, α) is param-
eterized through a one-parameter ansatz, following [Rad99]

h(β, α) =
Γ(2b+ 2)

22b+1Γ2(b+ 1)

[
(1− |b|)2 − α2

]b

(1− |β|)2b+1
. (2.44)

The parameter b in Eq. 2.44 characterizes the dependence of GPD on skewness ξ. It is a
free parameter for both valence and sea quark contributions and needs to be determined
from the fits to experimental data. The limiting case b→∞ corresponds to the vanishing
skewness dependence for the GPD, and reduces it to parton density Hq(x, ξ, t = 0)b→∞ =
q(x). In the considered VGG model, the parameterization of quark distributions was
taken from [MRST98], however the results in the valence region practically do not change
when using another parameterization.

The parameterization of the t dependence of GPD Hq is modeled in a two alternative
approaches, which fulfill the sum rules in Eqs. 2.23 - 2.26. The simplest parameterization
is the so-called factorized ansatz:

Hu(x, ξ, t) = Hu(x, ξ)F u
1 (t)/2, (2.45)

Hd(x, ξ, t) = Hd(x, ξ)F d
1 (t), (2.46)

Hs(x, ξ, t) = 0 . (2.47)

In this form the GPDs satisfy to correct forward limit for u− and d−quark distributions.
Another approach of modeling the t dependence at small −t region is the Regge-theory

motivated ansatz. In this case the t dependence is encoded in parameterization of double
distribution as:

f q(β, α, t) = h(β, α)q(β)
q

|β|α′t , (2.48)

where α′ is the slope of the Regge trajectory. It can be determined from the cross section
measurements of hadron-hadron reactions [Col77]. For the complete parameterization
of GPD Hq also the D-term needs to be specified. Various features of it are taken into
account. Based on the chiral quark-soliton model calculations, it is assumed that contribu-
tions of u− and d−quarks in the D-term are the same, thus allowing for the consideration
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of reduced quantity Dq(x
ξ
) = 1

2
D(x

ξ
). Further, taking into account the odd nature of t

independent part of the D-term , it is expanded in a Gegenbauer polynomial up to the
fifth order in x/ξ. The coefficients of the expansion are estimated using the calculation of
GPDs in chiral quark-soliton model [Pet98]. The t dependence of the D-term is assumed
to be the same as for double distribution part of GPDs.

The parameterization of GPD Eq, similar to that of Hq, is more complicated as in
the forward limit it has no DIS constraint. In this case the only constraint is provided
by Eq. 2.25. In addition, the total quark angular momentum Jq from Eq. 2.38 is used as
a free parameter in the construction of the forward limit of GPD Eq, allowing a model
dependent constraint of Jq to be made using experimental data. The contribution of the
D-term is the same as for Hq, but with opposite sign.

As it was mentioned above the GPDs H̃q and Ẽq do not contain a D-term. Hence
the GPD H̃q is parametrized in a full analogy with Hq, without a D-term and with an
appropriate forward limit. While for GPD Ẽq the only constraint is the sum rule from
Eq. 2.26. Its parameterization is based on the findings of quark-soliton model, which
suggest that in wide range of t and ξ the GPD Ẽq gets a dominant contribution from pion
pole [GPV01].

2.7 The Dual-GT model

Another model used in this report is based on dual parameterization of GPDs. It was
introduced by Guzey and Teckentrup in [GT06] based on the initial work of Polyakov and
Shuvaev [PS02]. In this model only the unpolarized GPDs Hq and Eq are considered.
They are parameterized using a decomposition into infinite sum of t-channel resonances.

Hq(x, ξ, t) =
∞∑

n=1
odd

n+1∑

l=0
even

Bq
nl(t)θ(ξ − |x|)

(
1− x2

ξ2

)
C3/2
n

(x
ξ

)
Pl

(1

ξ

)
, (2.49)

Eq(x, ξ, t) =
∞∑

n=1
odd

n+1∑

l=0
even

Cq
nl(t)θ(ξ − |x|)

(
1− x2

ξ2

)
C3/2
n

(x
ξ

)
Pl

(1

ξ

)
, (2.50)

In the Eqs. 2.49 - 2.50 the Bq
nl and Cq

nl denote the unknown form factors, C
3/2
n and Pl

are Gegenbauer and Legendre polynomials respectively. As it is discussed in [GT06] a
set of generating functions is introduced, whose Mellin moments are related to unknown
form factors Bq

nl and Cq
nl. The constraints on generating functions follow from the prop-

erties of GPDs like, relation to electromagnetic form factors, reduction in forward limit,
polynomility, etc.. For the case of GPD Eq, the same approach as in VGG-model is
applied.

The t dependence of GPDs is included in factorized or Regge ansatz like in the case
of VGG-model. The Regge slope parameter is determined from the comparison of the
model predictions with the DVCS cross section measurements [Akt05, Che03].

Note, that in the original version of the model a factor of two in the DVCS amplitude
was missing, which was corrected later in [GT09], while the agreement of the prediction
of the original version with the experimental measurements was much better.
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2.8 Models for deuteron GPDs

In the scattering process where an electron scatters off a deuteron, one can consider
two types of processes. First, when deuteron acts as a single particle and stays intact after
scattering, the process is called coherent, while in the case when the deuteron breaks up
into proton and neutron it is called incoherent. In addition one can consider a break up
of deuteron to more complicated final states. In the context of GPDs an investigation
of coherent process serves as useful source of information about partonic behavior in a
nuclei and nuclear binding forces, while the incoherent process can provide an access to
neutron GPDs. For instance, the GPDs H3 and H5 are associated with the 5% D-wave
component of the deuteron wave function in terms of nucleons [Lac81]. H3 is related to
isoscalar currents and probes the binding forces in the deuteron, and H5 involves a tensor
term [Ber01, KM04], the analog of which has no relationship to any local current due to
Lorentz invariance.

Most of the GPD models for deuteron are based on simple approach of impulse ap-
proximation. In this approximation the scattering takes place on one of the quarks of one
of the quasi-free nucleons, while the other nucleon is considered as a spectator. Thus, the
deuteron GPDs are convolutions of nucleon GPDs and two body wave functions describing
the physical state of deuteron with an appropriate momentum and spin dependences.

One of the simplified models for deuteron GPDs in context of impulse approximation
is described in [KM04]. It is based on double distribution ansatz for nucleonic GPDs,
combined with factorized t dependence, and with the D-term set to zero. In a discussed
model only the GPDs H1, H3, H5 and H̃1 are considered, as in the DVCS amplitude
the rest of the GPDs are kinematically suppressed. The GPDs H1 and H̃1 are related
to corresponding proton GPDs (H, H̃) and the reduction to parton densities is satisfied
by implementation of double distribution representation. The GPD H3 is assumed to be
sensitive to binding forces between partons that carry either large or small momentum
fractions. Hence in a moderate values of xB, relevant for present fixed target experiments,
they can be set to zero. Alternatively the GPD H3 can be equated to H1, as in a convo-
lution model both of them are determined by isoscalar GPD H iso [CP03]. Finally, the
simplest choice for modeling the GPD H5 is to set it to zero. This is according to the fact
that in forward limit H5 reduces to parton density δq (see Eq. 2.21), which in turn is re-
lated to structure function b1. Measurement on tensor polarized deuterium target [Air05]
suggest, that in a valence quark region (moderate values of xB) the structure function b1

is zero. In addition, the GPD H5 can be equated to an antisymmetric function in x that
in the forward limit will reduce to an experimental constraints for δq. Another model
for deuteron GPDs was suggested in [CP04]. This model is based on double distribu-
tions, where only the polarizations of the valence quarks are considered for the nucleonic
GPDs. A factorized ansatz for the t dependence of the nucleonic GPDs is employed and
the strange quark contribution is neglected. Again the impulse approximation is used
to combine the nucleonic GPDs, without including the particular contribution from the
D-term.
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Chapter 3

Deeply Virtual Compton Scattering

In this chapter the hard exclusive leptoproduction of real photon off a nucleon or nu-
clear targets is discussed. The relevant kinematics of the process and the interpretation of
the cross section in terms of factorization theorem is discussed in section 3.1. In section 3.2
the azimuthal dependence of the cross section is considered, which further is extended for
the case of polarized spin-1/2 and spin-1 targets. In section 3.4 various experimental ob-
servables are defined for both unpolarized and longitudinally polarized deuterium targets.
And finally in section 3.5 the relations between experimental observables and Compton
form factors are discussed.

3.1 Exclusive leptoproduction of real photons

Exclusive leptoproduction of a real photon on nucleon or nuclear target A is denoted
as

l(k) + A(p)→ l(k′) + A(p′) + γ(q′), (3.1)

where k(k′) and p(p′) are the four-momenta of initial(final) lepton and target respec-
tively, and q′ is the four-momentum of real photon. The reaction given in Eq. 3.1 includes
contributions from certain processes: the Bethe - Heitler(BH) process, where the real
photon is radiated by an initial or final state lepton, the Deeply Virtual Compton Scat-
tering(DVCS), where the photon is emitted by a struck parton in the target, and the
radiation of real photon by an initial or final state target.

The first process is exactly calculable in leading order of QED. It can be treated as
first order radiative correction to the elastic lepton nucleon or nuclei scattering. It was
studied theoretically in certain works. One of the first calculations were done by Mo and
Tsai [MT69]. Further theoretical investigations of the process can be found also in [Ent01]
and the case of polarized beam and target was considered in [Aku97, BMK02]. For higher
order radiative correction one can see [Van00, Afa06]. Although this investigations where
done for a kinematic conditions not directly relevant to HERMES, one can expect that
all the possible two-photon exchange contributions are suppressed. In current report we
will be interested mainly in BH from a spin-1 target, which was considered in [KM04].

The second process which contributes to the reaction 3.1 is the DVCS. DVCS refers to
the generalized Bjorken region. In this region the quark absorbs a hardly virtual photon,
emits a real energetic one, and joins the target remnant. The amplitude of DVCS is
parameterized in terms of GPDs. At present the effects of next-to-leading order in strong
coupling constant αs [Bel98, JiO98] and next-to-leading twist [KPV01, BMK02] were
investigated.

17



Finally the last process mentioned above refers to as Virtual Compton Scattering
(VCS), i.e. the process of radiation of a photon by target, in which an intermediate
target propagates between two photon vertexes. Below the pion emission threshold the
amplitude of this process is parametrized in terms of generalized polarizabilities. VCS
was investigated both theoretically [Gui98] and experimentally in MAMI [Roc00]. It is
expected that VCS process is suppressed at the Bjorken region, relevant for DVCS.

l

l′

A A′

γ
γ∗

l

l′

A A′

γγ∗
l

γ

A A′

l′

γ∗

l

γ

A A′

l′

γ∗

Figure 3.1: Leading order Feynman diagrams for deeply virtual Compton scattering from
the left and for the Bethe - Heitler process from the right.

Further we will consider the BH and DVCS processes in a single photon exchange
approximation. The handbag diagrams of these processes are depicted in Figure 3.1,
which are expected to have a dominant contribution to the reaction from Eq. 3.1 at
Bjorken limit [Mul94]. Due to the different physical insight of BH and DVCS processes,
the kinematic variables used for their description require different interpretation. In the
following only the case of DVCS will be considered.

For the description of inclusive part of the DVCS the same kinematic variables can be
considered, as for DIS:

− q2 ≡ Q2 = −(k − k′)2 lab.
= 4EE ′ sin2(θ/2)

ν ≡ p · q
MA

lab.
= E − E ′

W 2 ≡ (p+ q)2 lab.
= M2

A + 2MAν −Q2 (3.2)

xA ≡ Q2

2p · q
lab.
=

Q2

2MAν

y ≡ p · q
p · k

lab.
=

ν

E
.

Here we do not specify the target and denote its mass through MA. Due to the exclusivity
of the DVCS process, an additional variable is needed to fix the reaction kinematics. It
is convenient for such an additional variable to take the squared four-momentum transfer
to the target t. If the mass of the target is unchanged, then it reads:

t = ∆2 = (p− p′)2 lab.
= 2MA(MA − E ′), (3.3)

where E ′ is the energy of final state target. The four-fold differential cross-section of the
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Figure 3.2: Definition of the azimuthal angle φ between the lepton scattering plane and
photon production plane.

reaction 3.1 is given according to [DGPR97, KM04] as:

dσ

dxAdQ2d|t|dφ =
α2xAy

16π2Q2
√

1 + ε2
· 2πy

Q2
·
∣∣∣∣
T
e3

∣∣∣∣
2

, (3.4)

where ε2 = (2xAMA)2/Q2, T is the total amplitude of the reaction, and φ is the az-
imuthal angle between lepton scattering plane and photon production plane as depicted
in Figure 3.2. As the final states of BH and DVCS are the same and are experimentally
indistinguishable, the squared amplitude T 2 will contain coherent sum of the amplitudes
of two processes TBH and TDVCS:

|T |2 = |TBH + TDVCS|2
= |TBH|2 + |TDVCS|2 + TDVCST ∗BH + T ∗DVCSTBH (3.5)

= |TBH|2 + |TDVCS|2 + I.

Here, I denotes the interference term between the amplitudes of these processes. The
three terms in Eq. 3.5 can be presented by the contraction of hadronic tensor

Tµν =
i

e2

∫
dxeix(q+q′)/2〈p′, S ′|T (jµ(x/2)jν(−x/2))|p, S〉 (3.6)

with the electromagnetic current

Jα =
1

e
〈p′, S ′|jα(0)|p, S〉 , (3.7)

and a corresponding leptonic tensor Lµν .

|TDVCS|2 =
e6

q4
(−gαβ)LµνDVCS

∑

S′

Tαµ(Tβν)
†, (3.8)

|TBH| =
e6

t2
LµνBH

∑

S′

JµJ
†
ν , (3.9)

I =
±e6

q2t
Lαµν

∑

S′

[
Jµ(Tαν)

† + h.c.
]

(3.10)
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Here (±) sign refers to a charge of the beam. The hadronic tensor is presented as a
time-ordered product of quark electromagnetic currents with the flavor i and charge ei

jα =
∑

i=u,d,s

eiψ̄γαψ , (3.11)

sandwiched between hadron states of different momenta and spin S(S ′). As can be seen
from Eqs. 3.8 - 3.10, at the limit t << Q2, the BH cross section dominates over DVCS
cross section and the contribution from interference term has a size between BH and
DVCS. In addition, one can see from Eq. 3.10 that the sign of interference term is defined
by the charge of lepton beam. This allows to measure a wide number of cross section
asymmetries with respect to the beam charge. For further evaluation of the cross section,
the hadronic tensor can be parameterized in terms of Compton Form Factors (CFFs)
F(η, t, Q2), which appear as a coefficients in front of independent Lorentz structures. The
CFFs depend on three variables t, Q2 and generalized Bjorken variable η which in the
case of DVCS can be considered to be equal to skewness variable ξ1. To the virtue of the
factorization theorem, the CFFs in turn can be presented as convolutions of perturbative
hard scattering amplitudes and corresponding GPDs F

F(η, t, Q2) =
∑

i=u,d,s..

∫ 1

−1

dxC
(∓)
i (x, η,Q2)Fi(x, ξ, t, Q

2)
∣∣
ξ=η

. (3.12)

In an above equation the hard scattering amplitude have been calculated in next to leading
order in QCD coupling constant αs. At leading order it reads:

ηC(∓) =
Q2

1− x/η − i0 ∓
Q2

1 + x/η − i0 . (3.13)

In the case of DVCS observables one can not directly measure the GPDs. They can be
accessed in convolution integrals over x. As can be seen from Eq. 3.13 the measurement
of the imaginary parts of CFFs probes GPDs along the trajectory |x| = ξ, while from the
real part of CFFs one can project out GPDs in an integral over x. This leads to a fact,
that in DVCS it is impossible to investigate two dimensional (in x and ξ) dependencies
of GPDs.

3.2 Azimuthal Dependence

At HERMES kinematic conditions the DVCS cross sections is much smaller than
that of BH. Fortunately, the DVCS amplitudes can be accessed through the Interference
term. The three terms of the cross section, given in Eqs. 3.5, can be expanded into Fourier
series in azimuthal angle φ. In general case, when the beam and target might be polarized,
excluding transverse target polarization, they read [BMK02]:

1 In reference [BMK02] the relation between generalized Bjorken variable and skewness is given with
the minus sign, which depends on a definition of variable ∆ = ±(p − p′). Meanwhile the given relation
up to the terms of higher order than ∆2/Q2 read as η = ξ(1 + ∆2

2Q2 )2
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|TBH|2 =
KBH

P1(φ)P2(φ)
×

2∑

n=0

cBHn cos(nφ), KBH =
1

x2
Ay

2t(1 + ε2)2
(3.14)

|TDVCS|2 = KDV CS

{ 2∑

n=0

cDV CSn cos(nφ) +
2∑

n=1

sDV CSn sin(nφ)
}
, KDV CS =

1

y2Q2
, (3.15)

I =
KIe`

P1(φ)P2(φ)

{ 3∑

n=0

cIn cos(nφ) +
3∑

n=1

sIn sin(nφ)
}
, KI =

1

xAy3t
. (3.16)

Here, e` is the beam charge in the units of elementary charge and P1(φ),P2(φ) are the
lepton propagators, which contribute only in BH and interference terms and introduce an
additional φ dependence. In the case of transversely polarized target an additional odd
harmonics appear in the Fourier decomposition of BH term. The explicit dependence of
lepton propagators on φ read

P1(φ) = − 1

y(1 + ε2)
{J + 2K cos(φ)}, P2(φ) = 1− t

Q2
+

1

y(1 + ε2)
{J + 2K cos(φ)}

where

K2 =
t

Q2
(1− xA)

(
1− y − yε2

2

)(
1− t0

t

){√
1 + ε2 +

4xA(1− xA) + ε2

4(1− xA)

t0 − t
Q2

}
(3.17)

J =

(
1− y − yε2

2

)(
1− t

Q2

)
+ (1− xA)(2− y)

t

Q2
(3.18)

t0 = Q2 2(1− xA)
(
1−
√

1 + ε2 + ε2
)

4xA(1− xA) + ε2
. (3.19)

Here, t0 is the minimum allowed value of four-momentum transfer to the target |t| > |t0|.
The kinematic factor K behaves like

√−t/Q2 and further appears also in the decomposi-
tion of Fourier coefficient from Eqs. 3.15 - 3.16 through CFFs. For the coherent scattering
on a spin-1 deuteron, polarized longitudinally with respect to the virtual photon, the fol-
lowing decomposition of Fourier coefficients from Eqs. 3.14 - 3.16 can be introduced

cn(Λ, λ) =
3

2
Λ2cn,unp + λΛcn,LP + (1− 3

2
Λ2)cn,LLP

sn(Λ, λ) =
3

2
λΛ2sn,unp + Λsn,LP + (1− 3

2
Λ2)λsn,LLP . (3.20)

Here, the Λ = +1,−1, 0 is the spin projection of deuteron and λ is the beam helicity. The
coefficients c/sn,unp are ascribed for an unpolarized and coefficients c/sn,LP , c/sn,LLP for
a longitudinally polarized parts of the cross section. The coefficients c/sLLP appear due
to tensor polarization of deuteron. Hence, the analogous decomposition for a spin-1/2
nucleon reduces to

cn(Λ, λ) = cn,unp + λΛcn,LP

sn(Λ, λ) = λsn,unp + Λsn,LP . (3.21)

Note that the above equations are written for a pure longitudinal polarization of the
target with respect to the virtual photon and all the transverse components of target
polarization are zero.
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3.3 Treatment of Target Polarization

The Fourier coefficients from the decomposition of BH, DVCS and interference terms
in Eqs. 3.14 - 3.16 encompass the dependence of total leptopruduction cross section on
beam helicity λ and target spin projection Λ. These dependences for spin-1 deuteron and
spin-1/2 nucleon are given in Eqs. 3.20 - 3.21. These equations are applicable for purely
polarized states with Λ = ±1, 0 for deuteron (Λ = ±1 for nucleon). In a real experiment,
the polarized target contains a mixture of these pure polarized states, and also the beam
has certain time averaged polarization value. Hence, from experimental point of view
it is more convenient to represent the cross section through experimentally measured
quantities. Let us first consider the case of spin-1/2 nucleon. Here the z-component of
the spin of individual particle can have two projections along the quantization direction
z, namely +1

2
or −1

2
. If one considers an ensemble of spin-1/2 particles, then the vector

polarization of an ensemble is defined as

Pz =
n+ − n−
n+ + n−

, (3.22)

where n+(n−) is the population of the state with spin projection Λ = 1(−1). In other
words n+ and n− are the probabilities to find a particle with certain spin projection from
an ensemble. The total number of particles is normalized to one, n+ + n− = 1. Hence,
one can represent the populations of the states through polarization values as

n+ =
1

2
(1 + Pz) (3.23)

n− =
1

2
(1− Pz) . (3.24)

The absolute value of vector polarization varies between -1 and +1. When each of the
states Λ = 1 and Λ = −1 is populated by 1

2
of the particles then the longitudinal polar-

ization vanishes Pz = 0, like in an unpolarized case.
For the case of deuteron, the situation is more complicated. For the spin-1 particle,

the z-component of the spin can have three projections along the quantization direction,
namely +1, 0, −1. So, in the total ensemble the particles are distributed in Λ = ±1, 0
states with the probabilities n+, n− and n0, respectively. The vector (Pz) and tensor (Pzz)
polarizations are defined as

Pz =
n+ − n−

n+ + n− + n0
, (3.25)

Pzz =
n+ + n− − 2n0

n+ + n− + n0
. (3.26)

Again with the common normalization n+ + n− + n0 = 1, the probabilities read

n+ =
1

6
(2 + Pzz + 3Pz), (3.27)

n− =
1

6
(2 + Pzz − 3Pz), (3.28)

n0 =
1

3
(1− Pzz). (3.29)

The largest (absolute) value of vector polarization is achieved, when only Λ = 1 or Λ = −1
states are populated. In that case |Pz| = 1 (n− = 0 or n+ = 0) and Pzz = +1. When only
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Figure 3.3: Schematic representation of the allowed range of vector and tensor polariza-
tion of the spin-one particle.

the Λ = 0 state is populated, then Pzz = −2 and Pz = 0. The allowed range of vector
and tensor polarizations is shown in Figure 3.3.

In sense of above defined probabilities of population, the unpolarized ensemble requires
equal population of each state. For spin-1/2 nucleons this yields in n+ = n− = 1

2
and for

spin-1 deuterons n+ = n− = n0 = 1
3
.

3.4 Definition of Observables

From an experimental point of view the DVCS observables can be categorized in certain
groups. An information about a process of interest with an underling physical objects
like CFFs or GPDs can be gained through measurement of absolute cross sections. It
requires precise knowledge of the luminosity of the experiment together with perfectly
aligned detector with sufficiently large acceptance. In addition, it is important to provide
a measurement in a kinematic range, where the DVCS cross section is larger or comparable
with that of BH. The ratio of DVCS and BH cross sections behaves like (1− y)t/(yQ2)2

and at present fixed target experiments BH dominates over DVCS. Another possibility
is to measure cross section differences or cross section asymmetries. In the latter case
one can assume that the possible systematic effects will be relatively small. At HERMES
experiment the DVCS was accessed through measurement of the cross section asymmetries
with respect to beam charge, beam polarization and target polarization.

Presently a number of experimental measurements of DVCS are available. The first
measurements of beam-helicity asymmetries on a proton target were reported in 2001 by
HERMES [Air01] and CLASS [Step01] collaborations. Later, asymmetries with respect to
longitudinal [Chen06, Air10a] and transverse [Air08] target polarization, as well as beam
charge [Air07b] and, with greater precision, beam helicity [Cam06, Gir08, Gav09, Air09],
were also measured on the proton.

The DVCS cross section measurements were performed by collider experiments H1
and ZEUS [Akt05, Che03].
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3.4.1 Observables from Scattering off Unpolarized Deuterium

Here we will define the observables for the scattering of longitudinally polarized elec-
tron or positron beam from an unpolarized deuterium target. The azimuthal angular
dependence of three terms from Eqs. 3.14 - 3.16 for a total leptopruduction cross section
in the case of longitudinally polarized lepton beam with polarization P` and unpolarized
target of atomic mass number A read:

|TBH|2 =
KBH

P1(φ)P2(φ)
×

2∑

n=0

cBHn,unp cos(nφ), (3.30)

|TDVCS|2 = KDV CS

{ 2∑

n=0

cDV CSn,unp cos(nφ) + P`s
DV CS
1,unp sin(φ)

}
, (3.31)

I =
KIe`

P1(φ)P2(φ)

{ 3∑

n=0

cIn,unp cos(nφ) + P`

2∑

n=1

sIn,unp sin(nφ)
}
. (3.32)

In an above equations we have two sets of coefficient cBHn,unp and cDV CSn,unp , which do not
represent dependences on either beam polarization or beam charge. The coefficient sDV CS1,unp

represents depends on polarization of the beam, while sIn,unp from an interference term
represent the dependence on both beam polarization and beam charge. Finally, cIn,unp
represent the dependence of the cross section only on beam charge.

One of the observables further discussed in this report is the beam-helicity asymmetry
defined either for positron or for electron beams (so called single-charge beam-helicity
asymmetry).

ALU(e`, φ) ≡ dσ→ − dσ←
dσ→ + dσ←

(3.33)

=

KIe`
P1(φ)P2(φ)

[ 2∑

n=1

sIn,unp sin(nφ)
]

+KDV CS s
DV CS
1,unp sin(φ)

1
P1(φ)P2(φ)

[
KBH

2∑

n=0

cBHn,unp cos(nφ) + e`KI

3∑

n=0

cIn,unp cos(nφ)
]

+KDV CS

2∑

n=0

cDV CSn,unp cos(nφ)

Here, the arrows → (→) denote the positive (negative) beam helicity. The dσ→ and
dσ← in Eq. 3.33 are the cross sections (or normalized yields) of scattering a longitudinally
polarized lepton beam with given charge and helicity on au unpolarized target. Due to
the fact that this asymmetry is defined for given beam charge, it contains in denominator
the coefficients cIn,unp. In the numerator both coefficients sIn,unp and sDV CS1,unp contribute.

In order to provide a cleaner access to coefficients sIn,unp and sDV CS1,unp , it is possible
to define the beam helicity asymmetries with combination of charge, so called charge-
difference beam-helicity asymmetry and charge-averaged beam helicity asymmetry, which
read

AI
LU(φ) ≡

[
dσ+→ + dσ−←

]
−
[
dσ−→ + dσ+←]

[
dσ+→ + dσ−←

]
+
[
dσ−→ + dσ+←

] (3.34)

=

− KI

P1(φ)P2(φ)

[ 2∑

n=1

sIn,unp sin(nφ)
]

KBH

P1(φ)P2(φ)

[ 2∑

n=0

cBHn,unp cos(nφ)
]

+KDV CS

2∑

n=0

cDV CSn,unp cos(nφ)

,
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ADVCS
LU (φ) ≡

[
dσ+→ + dσ+→]−

[
dσ−← + dσ−←

]
[
dσ+→ + dσ+→

]
+
[
dσ−← + dσ−←

] (3.35)

=
KDV CS s

DV CS
1,unp sin(φ)

KBH

P1(φ)P2(φ)

[ 2∑

n=0

cBHn,unp cos(nφ)
]

+KDV CS

2∑

n=0

cDV CSn,unp cos(nφ)

.

Comparing the asymmetries ALU and AI
LU, one can see that in the latter case we have

direct sensitivity to an odd coefficients from interference term in the numerator. The
odd coefficient from squared DVCS term sDV CS1,unp now appears in the numerator of ADVCS

LU .
Such a separation of contributions from interference and squared DCVS terms is possible,
when data collected with both beam charges are available. In addition, it is important
to mention that the denominators of AI

LU and ADVCS
LU differ from that of ALU. In a latter

case there exists an additional contribution from pure charge dependent part of the cross
section in terms of cIn,unp coefficients.

Presence of data with both beam charges allows to measure one more asymmetry with
respect to beam charge

AC(φ) ≡
[
dσ+→ + dσ+←]−

[
dσ−→ + dσ−←

]
[
dσ+→ + dσ+←

]
+
[
dσ−→ + dσ−←

] (3.36)

=

− KI

P1(φ)P2(φ)

[ 3∑

n=0

cIn,unp cos(nφ)
]

KBH

P1(φ)P2(φ)

[ 2∑

n=0

cBHn,unp cos(nφ)
]

+KDV CS

2∑

n=0

cDV CSn,unp cos(nφ)

,

which is defined as a cross section difference between opposite beam charges, averaged over
beam polarizations. This asymmetry is sensitive to cIn,unp coefficients from interference,
and in contrast to beam-helicity asymmetries, contains a cosinusoidal modulation in the
numerator. Note that Fourier decomposition of squared BH, DVCS and interference terms
for unpolarized targets is independent of target particle. The specific features of various
targets appear later in the treatment of Fourier coefficients in terms of nucleon or nucleus
electromagnetic form factors and Compton form factors.

In general expression of the azimuthal dependence of the cross section from Eqs. 3.14
- 3.16, the Fourier coefficients cI0, c

I
1, s

I
1 and cDV CS0 arise at twist-two level, while the

rest harmonics from squared DVCS and interference term appear at twist-three level or
from twist-two gluon GPDs. In addition they can be affected by twist-four quark GPDs.
Meanwhile the coefficients from squared BH term can be exactly calculated, and as an
example the t dependences of various coefficients from squared BH term are shown in the
left side plot of Figure 3.4. They were evaluated for the proton at the typical kinematics
of HERMES experiment Q2 = 2.5GeV 2, xB = 0.1. Figure 3.4 shows, that the dominant
contribution to the squared BH term originates from coefficient cBH0 . Same holds true
also for deuteron (not shown here). Therefore, the above defined asymmetries at leading
twist approximation can be simplified to
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Figure 3.4: On the left side the −t dependences of Fourier coefficients from squared
BH term for proton at kinematics xB = 0.1, Q2 = 2.5GeV 2. On the right side the −t
dependences of Fourier coefficients from squared BH term for deuteron at kinematics
xD = 0.04, Q2 = 1.9GeV 2.

AI
LU(φ) ≈ −KIs

I
1,unp sin(φ)

KBHcBH0,unp

(3.37)

AC(φ) ≈ −KI(c
I
0,unp + cI1,unp cos(φ))

KBHcBH0,unp

(3.38)

ADVCS
LU (φ) ≈ KDV CSs

DV CS
1,unp sin(φ)

KBH
P1(φ)P2(φ)

cBH0,unp

. (3.39)

The asymmetry ADVCS
LU is sensitive to the twist-three contributions and therefore is ex-

pected to be small in magnitude, and in addition it will provide a measure of possible
contributions from higher twist effects. A simplified expression can be written also for
the single-charge beam-helicity asymmetry ALU. In this particular case, an additional
contributions from leading twist coefficients cI0,unp and cI1,unp to the denominator of the
asymmetry are not expected to be negligible. Nevertheless, within the assumption that
the dominant contribution to denominator of the asymmetry ALU (see Eq. 3.33) arises
from cBH0,unp coefficient, a trivial relation between beam-helicity asymmetries can be de-
duced

ALU ≈ e`AI
LU +ADVCS

LU . (3.40)

3.4.2 Observables from Scattering off Longitudinally Polarized
Deuterium

Longitudinal polarization of the target provides an additional degree of freedom in the
azimuthal decomposition of the cross section. It allows to access the target polarization
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dependent parts of the cross section through measurements of various asymmetries with
respect to target polarization. There are certain observables that can be measured on spin-
1 targets and have no analogues for spin-1/2 targets. The latter is due to the completely
different spin structure of spin-1 particles compared with that of spin-1/2 particles.

In order to emphasize the dependence of the cross section on polarization of deuteron,
one needs to apply the decomposition of Fourier coefficients from Eq. 3.20 separately to
BH, DVCS and interference terms from Eqs. 3.14 - 3.16. It is important to take into
account, that in the real experiment the polarized deuterium target contains a mixture
of all Λ = ±1, 0 states, hence the cross sections should be weighted with an appropriate
populations of the spin states n+, n− and n0

σpol = σ(Λ = 1)n+ + σ(Λ = −1)n− + σ(Λ = 0)n0. (3.41)

This yield in the following decompositions of the reaction amplitude for spin-1 deuteron

|TBH|2 =
KBH

P1(φ)P2(φ)

{
2∑

n=0

cBH
n,unp cos(nφ) (3.42)

+ Pz

[
P`

1∑

n=0

cBH
n,LP cos(nφ)

]
+

1

2
Pzz

[ 2∑

n=0

(cBH
n,unp − cBH

n,LLP) cos(nφ)

]}
,

|TDVCS|2 = KDVCS

{
2∑

n=0

cDVCS
n,unp cos(nφ) + P` s

DVCS
1,unp sinφ (3.43)

+ Pz

[
P`

1∑

n=0

cDVCS
n,LP cos(nφ) +

2∑

n=1

sDVCS
n,LP sin(nφ)

]

+
1

2
Pzz

[ 2∑

n=0

(cDVCS
n,unp − cDVCS

n,LLP) cos(nφ) + P` (sDVCS
1,unp − sDVCS

1,LLP) sinφ

]}
,

I = − KIe`
P1(φ)P2(φ)

{
3∑

n=0

cI
n,unp cos(nφ) + P`

2∑

n=1

sI
n,unp sin(nφ) (3.44)

+ Pz

[
P`

3∑

n=0

cI
n,LP cos(nφ) +

3∑

n=1

sI
n,LP sin(nφ)

]

+
1

2
Pzz

[ 3∑

n=0

(cI
n,unp − cI

n,LLP) cos(nφ) + P`

2∑

n=1

(sI
n,unp − sI

n,LLP) sin(nφ)

]}
.

A similar decomposition can be obtained for longitudinally polarized spin-1/2 nucleons
requiring the Pzz = 0. For further definitions of the observables it is convenient to
introduce the following notations: → (←) to denote positive (negative) beam helicity
and ⇒ (⇐) to denote the vector polarization direction of deuteron target parallel (anti-
parallel) to the beam momentum direction in the target rest frame.

As in the case of unpolarized target, here also one can define combined asymmetries.
First we define asymmetries with respect to beam and target polarizations for the given
beam charge. According to Eqs. 3.42 - 3.44 , the cross section for the production of real
photon by an unpolarized positrons on a tensor polarized deuterium target with vanishing
vector polarization is given by
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dσU⇐⇒(e` = + 1, Pzz, φ) ≡ 1

4

[
dσ
→⇒+ + dσ

←⇐+ + dσ
←⇒+ + dσ

→⇐+
]

(3.45)

= K0

{
KBH

P1(φ)P2(φ)

[ 2∑

n=0

cBHn,unp cos(nφ) +
1

2
Pzz

2∑

n=0

(cBHn,unp − cBHn,LLP ) cos(nφ)

]

+KDV CS

[ 2∑

n=0

cDV CSn,unp cos(nφ) +
1

2
Pzz

2∑

n=0

(cDV CSn,unp − cDV CSn,LLP ) cos(nφ)

]

− KI

P1(φ)P2(φ)

[ 3∑

n=0

cIn,unp cos(nφ) +
1

2
Pzz

3∑

n=0

(cIn,unp − cIn,LLP ) cos(nφ)

]}
,

where K0 = xDe
6

32(2π)4Q4
√

1+ε
2 is a common kinematic factor. One of the most interesting

observables is the bem-helicity-averaged target-spin asymmetry

AUL(e` = +1, Pzz, φ) ≡
[
dσ
→⇒+ + dσ

←⇒+
]
−
[
dσ
→⇐+ + dσ

←⇐+
]

[
dσ
→⇒+ + dσ

←⇒+
]

+
[
dσ
→⇐+ + dσ

←⇐+
] (3.46)

=
K0

σU⇐⇒(e` = +1, Pzz, φ)

{
KDV CS

2∑

n=1

sDV CSn,LP sin(nφ)− KI

P1(φ)P2(φ)

3∑

n=1

sIn,LP sin(nφ)

}
.

The numerator of this asymmetry is sensitive to both interference and squared DVCS
terms, while the denominator contains an additional Fourier coefficients, ascribed by
’LLP’. These additional coefficients are relevant only for spin-1 targets and they vanish
when one defines a similar asymmetry for spin-1/2. Together with target-spin asymmetry
one can define also double-spin asymmetry as a difference between cross sections with
parallel and antiparallel spin orientations of target and beam

ALL(e` = +1, Pzz, φ) ≡
[
dσ
→⇒+ + dσ

←⇐+
]
−
[
dσ
→⇐+ + dσ

←⇒+
]

[
dσ
→⇒+ + dσ

←⇐+
]

+
[
dσ
→⇐+ + dσ

←⇒+
] (3.47)

=
K0

σU⇐⇒(e` = +1, Pzz, φ)

{
KBH

P1(φ)P2(φ)

1∑

n=0

cBHn,LP cos(nφ) +KDV CS

1∑

n=0

cDV CSn,LP cos(nφ)

− KI

P1(φ)P2(φ)

2∑

n=0

cIn,LP cos(nφ)

}
.

In contrast to all other asymmetries, the double-spin asymmetry is the only one which
contains in the numerator a contribution from squared BH term together with contri-
butions from interference and squared DVCS terms. That is due to the fact that time
reversal and parity conservation lows does not allow for BH process to contribute in beam-
charge or single beam(target)-spin asymmetries, but only in double-spin asymmetry. The
above mentioned asymmetries can be obtained for both spin-1/2 and spin-1 targets, while
there are certain asymmetries which can be defined only for spin-1 target. They may
be classified according to whether the cross section for Λ = 0 appears explicitly in the
definition of this asymmetries or not. An example of such an asymmetry is the so-called
incomplete beam-helicity asymmetry, defined as
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A⇐⇒(e` = +1, Pzz, φ) ≡
[
dσ
→⇒+ + dσ

→⇐+
]
−
[
dσ
←⇒+ + dσ

←⇐+
]

[
dσ
→⇒+ + dσ

→⇐+
]

+
[
dσ
←⇒+ + dσ

←⇐+
] (3.48)

=
K0

σU⇐⇒(e` = +1, Pzz, φ)

{
KDV CS

[
sDV CS1,unp sinφ+

1

2
Pzz (sDV CS1,unp − sDV CS1,LLP ) sinφ

]

− KI

P1(φ)P2(φ)

[ 2∑

n=1

sIn,unp sin(nφ) +
1

2
Pzz

2∑

n=1

(sIn,unp − sIn,LLP ) sin(nφ)
]}

,

where compared with the similar beam-helicity asymmetry defined for unpolarized target
AI

LU, an additional terms appear in both numerator and denominator of the asymmetry
A⇐⇒. These terms, ascribed by ’LLP’ are relevant to tensor effects in a spin-1 deuteron. As
in the case of asymmetries from unpolarized target, one can write a simplified expressions
also for the above defined asymmetries AUL ,ALL and AL

⇐⇒:

AUL(e` = +1, Pzz, φ) ≈ − KIs
I
1,LP sin(φ)

KBH

[
cBH0,unp + 1

2
Pzz(cBH0,unp − cBH0,LLP )

] , (3.49)

ALL(e` = +1, Pzz, φ) ≈

[
KBHc

BH
0,LP −KIc

I
0,LP

]
+
[
KBHc

BH
1,LP −KIc

I
1,LP

]
cos(φ)

KBH

[
cBH0,unp + 1

2
Pzz(cBH0,unp − cBH0,LLP )

] , (3.50)

AL
⇐⇒(e` = +1, Pzz, φ) ≈ −

KI

[
sI1,unp + 1

2
Pzz(s

I
1,unp − sI1,LLP )

]
sin(φ)

KBH

[
cBH0,unp + 1

2
Pzz(cBH0,unp − cBH0,LLP )

] . (3.51)

Here we neglect the contributions appearing from non-leading twist coefficients and in
addition also from the leading twist coefficients in the denominator of asymmetries, i.e.
in Eq. 3.45. As can be seen from the right side plot of Figure 3.4, the contribution
from Fourier coefficient cBH0,LLP is compatible with that of cBH0,unp, therefore they can not be
neglected. It is expected that also the contributions from coefficients cI0,LLP , c

1
1,LLP and

sI1,LLP are not necessarily small. The Fourier coefficients from squared BH term shown in
the right side plot of Figure 3.4 were evaluated according to their representation through
electromagnetic form factors of deuteron given in [KM04].

The three asymmetries A⇐⇒, AUL, and ALL with respect to beam helicity and target
vector polarization were defined for a single beam charge. This dependence for a particular
case of positron beam is encoded in the negative sign of the contribution from interference
term to the asymmetries in Eqs. 3.46 - 3.48. In order to extract more information on var-
ious combinations of Fourier coefficients, it is possible to use data collected with negative
polarization of the electron beam in conjunction with the subset of positron data with the
same sign of the beam polarization. In this case, another set of Fourier coefficients can be
accessed through single-beam-helicity asymmetries AC←⇐⇒

(P`, Pzz, φ), AC←L
(P`, Pzz, φ) and

A 0←L
(P`, Pzz, φ), which are defined with respect to the beam charge and longitudinal vec-

tor polarization of the deuterium target. Here, the subscript
C←⇐⇒ indicates the charge

asymmetry for a lepton beam with only negative polarization on a longitudinally polarized

deuterium target with vanishing net vector polarization. The subscript
0←L indicates the

asymmetry with respect to longitudinal vector target polarization for a charge-averaged

lepton beam with negative beam polarization. The subscript
C←L indicates the double
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asymmetry with respect to the lepton charge and longitudinal vector polarization of the
target. Denoting the cross section for the production of real photons by a charge averaged
lepton beam with a single helicity on a tensor polarized deuterium target with vanishing
vector polarization as

σC←⇐⇒
(P`,Pzz, φ) ≡ 1

4

[
dσ
←⇒+ + dσ

←⇐+ + dσ
←⇒− + dσ

←⇐−] (3.52)

= K0

{
KBH

P1(φ)P2(φ)

{ 2∑

n=0

cBHn,unp cos(nφ) +
1

2
Pzz

2∑

n=0

(cBHn,unp − cBHn,LLP ) cos(nφ)

}

+KDV CS

{ 2∑

n=0

cDV CSn,unp cos(nφ) + P`

2∑

n=1

sDV CSn,unp sin(nφ)

+
1

2
Pzz

[ 2∑

n=0

(cDV CSn,unp − cDV CSn,LLP ) cos(nφ) + P`

2∑

n=1

(sDV CSn,unp − sDV CSn,LLP ) sin(nφ)

]}}
,

the single-helicity beam-charge asymmetry AC←⇐⇒
(P`, Pzz, φ) can be defined as a difference

between cross sections for positrons and electrons averaged over the longitudinal vector
polarization of the target for scattering of a negatively polarized beam

AC←⇐⇒
(P`, Pzz, φ) ≡

[
dσ
←⇒+ + dσ

←⇐+
]
−
[
dσ
←⇒− + dσ

←⇐−]
[
dσ
←⇒+ + dσ

←⇐+
]

+
[
dσ
←⇒− + dσ

←⇐−
] (3.53)

=
K0

dσC←⇐⇒
(P`, Pzz, φ)

×
{
− KI

P1(φ)P2(φ)

{ 3∑

n=0

cIn,unp cos(nφ) + P`

2∑

n=1

sIn,unp sin(nφ)

+
1

2
Pzz

[ 3∑

n=0

(cIn,unp − cIn,LLP ) cos(nφ) + P`

2∑

n=1

(sIn,unp − sIn,LLP ) sin(nφ)

]}}
.

The single-helicity charge-averaged target-spin asymmetry A 0←L
(P`, Pzz, φ) is defined as

a difference between cross sections of scattering a negatively polarized lepton beam off
a positively and negatively vector polarized deuterium target, averaged over both beam
charges

A 0←L
(P`, Pzz, φ) ≡

[
σ
←⇒+ + σ

←⇒−]−
[
σ
←⇐+ + σ

←⇐−]
[
σ
←⇒+ + σ

←⇒−
]

+
[
σ
←⇐+ + σ

←⇐−
] (3.54)

=
K0

dσC←⇐⇒
(P`, Pzz, φ)

×
{

KBH

P1(φ)P2(φ)

{
P`

1∑

n=0

cBHn,LP cos(nφ)
}

+KDV CS

{
P`

1∑

n=0

cDV CSn,LP cos(nφ) +
2∑

n=1

sDV CSn,LP sin(nφ)
}
}
.

And finally the single-helicity charge-difference target-spin asymmetry AC←L
(P`, Pzz, φ) is

defined as:

AC←L
(P`, Pzz, φ) ≡

[
σ
←⇒+ + σ

←⇐+
]
−
[
σ
←⇒− + σ

←⇐−]
[
σ
←⇒+ + σ

←⇐+
]

+
[
σ
←⇒− + σ

←⇐−
] (3.55)

=
K0

dσC←⇐⇒
(P`, Pzz, φ)

×
{
− KI

P1(φ)P2(φ)

{
P`

2∑

n=0

cIn,LP cos(nφ) +
3∑

n=1

sIn,LP sin(nφ)
}
}
.
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All the asymmetries defined for longitudinally polarized deuteron depend on tensor po-
larization of the target Pzz, while the single-helicity asymmetries have an additional depen-
dence on beam polarization both in numerator and in denominator. As can be seen from
Eqs. 3.53 - 3.55 the beam polarization dependent parts in the numerators of the asymme-
tries have different azimuthal dependences (even for AC←L

(P`, Pzz, φ) ,A 0←L
(P`, Pzz, φ) and

odd for AC←⇐⇒
(P`, Pzz, φ)) compared with beam polarization independent parts. Mean-

while, in the denominator, i.e. Eq. 3.52, mainly the higher twist contributions are sen-
sitive to beam polarization. This feature allows to separate the contributions appearing
in the asymmetries from beam polarization dependent and independent parts. Within
the leading-order and leading twist approximation the simplified expressions for a single-
helicity asymmetries read as:

AC←⇐⇒
(P`, Pzz, φ) ≈ −

KI

[
cI0,unp + 1

2
Pzz(c

I
0,unp − cI0,LLP )

]

KBH

[
cBH0,unp + 1

2
Pzz(cBH0,unp − cBH0,LLP )

] (3.56)

−
KI

[
cI1,unp + 1

2
Pzz(c

I
1,unp − cI1,LLP )

]
cos(φ) + P`KI

[
sI1,unp + 1

2
Pzz(s

I
1,unp − sI1,LLP )

]
sin(φ)

KBH

[
cBH0,unp + 1

2
Pzz(cBH0,unp − cBH0,LLP )

] ,

A 0←L
(P`, Pzz, φ) ≈

KBHP`

[
cBH0,LP + cBH1,LP cos(φ)

]
+KDV CSs

DV CS
1,LP sin(φ)

KBH

[
cBH0,unp + 1

2
Pzz(cBH0,unp − cBH0,LLP )

] , (3.57)

AC←L
(P`, Pzz, φ) ≈ −

KIP`

[
cI0,LP + cI1,LP cos(φ)

]
+KIs

I
n,LP sin(φ)

KBH

[
cBH0,unp + 1

2
Pzz(cBH0,unp − cBH0,LLP )

] (3.58)

From the comparison of the simplified expressions, one can see that the cosinusoidal
modulations in the single-helicity asymmetries AC←L

, A 0←L
and single-charge double-spin

asymmetry ALL are not independent.Similarly the sinusoidal harmonics in the asymme-
tries AC←L

and A 0←L
are related to the ones in the single-charge target-spin asymmetry

AUL.

3.5 Relations between asymmetries and Compton form

factors

In previous sections various asymmetries were defined, that appear in the azimuthal
distributions of the real photons. Azimuthal dependencies of the asymmetries were given
through Fourier decomposition of the DVCS/BH cross section. As can be seen from the
definition of the asymmetries, their is no direct accesses to certain Fourier coefficient,
rather than to their complicated combination. On the other hand the Fourier coefficients
themselves have a very complicated relation to Compton Form Factors. Nevertheless
within certain assumptions and approximations one can represent a simplified connec-
tion between asymmetries and Compton form factors. For the coherent process on the
deuteron, the coefficients can be expanded in powers of xD, the Bjorken variable for the
deuteron target, and τ = t/(4M2

D), where MD is the deuteron mass [KM04]. Since at
the HERMES kinematic conditions the average Bjorken variable is xD = 0.04 and the
−t = 0.1GeV 2, one can neglect the contributions proportional to xD and τ . Then the
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leading Fourier coefficients from squared BH and interference term are presented as:

{
cI1,unp
sI1,unp

}
=
{
−8K(2− 2y − y2)
8Ky(2− y)

}{
Re
Im

}
× 1

9

[
G1(9H1 − 6τH3) +G3(−6τH1 + 2τH5)

]

{
cI1,LP
sI1,LP

}
=
{
−8Ky(2− y)
8K(2− 2y − y2)

}{
Re
Im

}
× 1

6

[
6G1H̃1 − 6τG3H̃1

]

{
cI1,LLP
sI1,LLP

}
=
{
−8K(2− 2y − y2)
8Ky(2− y)

}{
Re
Im

}
× 1

3

[
G1(3H̃1 + 2H̃5)

]
(3.59)

cBH0,unp =
{

8(2− 2y + y2)
}
× 1

3

[
3G2

1 − 4τG1G3

]

cBH0,LLP =
{

8(2− 2y + y2)
}
×G2

1

Here the terms proportional to G3 are given up to order O(τ), because G3 is about 20
times larger than other form factors and the product τG3 is not negligible (see Figure 2.4).
The complete expressions for the Fourier coefficients are given in [KM04] for deuterium
and in [BMK02] for nucleons. Substituting the Eqs. 3.59 into the simplified representa-
tion of the asymmetries one can get the approximate relations between asymmetries and
Compton form factors. The latters are summarized in Table 3.1.

Lepton charge Target population (deuterons) Beam helicity

Λ = +1 Λ = −1 Λ = 0 λ = +1 λ = −1 Coherent

+1 −1 ⇒ ⇐ 0 → ← sensitivity

U
n

p
o
l.

tr
a
g
et AC � − � � + � <e(H1)

AI
LU � − � � − � =m(H1)

ADVCS
LU � + � � − � h. twist

S
in

g
le

-c
h

a
rg

e AL⇐⇒ � � + � � − � =m(H1,H5)

AUL � � − � � + � =m( eH1)

ALL � � − � � − � BH+<e( eH1)

S
in

g
le

-h
el

ic
it

y AC←⇐⇒
� − � � + � � =m/<e(H1,H5)

AC←L
� − � � − � � =m/<e( eH1)

A 0←L
� + � � − � � BH+h. twist

Table 3.1: The sensitivity of the asymmetries on both unpolarized and polarized deu-
terium target to the corresponding Compton form factors or BH amplitude for coherent
scattering. The symbol � marks which data taken under certain experimental conditions
(beam polarization, beam charge and target polarization state) are available for the con-
struction of the respective asymmetry. The − or + indicates the sign with which the
corresponding yield enters the numerator of the asymmetry.
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Chapter 4

The HERMES Experiment

The HERMES (HERa MEasurement of Spin) experiment is one of four experiments
operated on HERA (Hadron Elektron Ring Anlage) electron/positron-proton collider, lo-
cated at DESY (Deutsches Elektronen-Synchrotron) in Hamburg, Germany. HERMES
is a fixed target experiment and uses only lepton (electron or positron) beam. The lon-
gitudinally polarized lepton beam scatters off an internally polarized or unpolarized gas
target. The products of scattering are detected in forward spectrometer. The HERMES
experiment was designed to investigate the spin structure of nucleon through polarized
deep inelastic scattering (DIS). It started operation in 1995 and continued collecting data
up to 2007. During its operation HERMES has collected data on an unpolarized Hy-
drogen, Deuterium, Helium, Nitrogen, Neon, Krypton, Xenon targets in addition with
longitudinally polarized Helium-3 and with longitudinally/transversely polarized Hydro-
gen targets, and longitudinally vector/tensor polarized Deuterium target. In this chapter
the HERMES experimental setup will be discussed in details, especially parts relevant for
DVCS analysis.

4.1 The Polarized Lepton Beam at HERA

HERA collider consists of two rings with a circumference of 6.3 km (see Figure 4.1).
One ring is for protons with energy of 920GeV and the second for electrons/positrons
with energy of 27.57GeV . The typical current of the lepton beam is about 40mA at
injection. It decreases exponentially with the lifetime of about 8 hours. When the beam
current decreases to about 10mA, the beam is dumped and the accelerator is refilled. Up
to 220 bunches of leptons were injected in the storage ring, with the length of 27 ps and
separated by a time interval of 96ns. Each bunch contains about 3.8 · 1010 leptons.

During operation of HERA, the lepton ring was mostly filled by positrons. Electrons
were injected only in 1998, 2005 and some period of 2006. The injected lepton beam is
initially unpolarized, i.e the number of leptons with spins aligned parallel to the magnetic
field of ring magnets is equal to those aligned anti-parallel. Fortunately the emission of
synchrotron radiation of charged particles rotating in the storage ring causes an asymmet-
ric spin-flip of particles, i.e. the probability of spin-flip in one direction is not equal to that
in opposite direction. This phenomenon, known as Sokolov-Ternov effect [ST64], leads to
a total disbalance of particles with spin orientation ‘up’ and ‘down’. The dependence of
this self polarization effect on polarization built-up time can be qualitatively described by

PST (t) =
8

5
√

3
(1− e−

t
τST ) , (4.1)
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Figure 4.1: The HERA accelerator facility at DESY and its system of preaccelerators,
with the location of four experiments (HERMES, H1, ZEUS and HERA-B).

where

τST =
8

5
√

3

2πmeρ
3

re~γ5
. (4.2)

Here me and re are electron mass and Bohr radius, ρ is the bending radius of the orbit and
γ =

√
1− v2/c2 is the Lorentz factor. For the HERA ring parameters the polarization

build-up time is about 25 minutes. The possible maximum polarization value is 92%.
For evaluation of the polarization, several depolarizing effects like beam-beam interac-
tion, misalignment of binding magnets and depolarizing resonances, should be taken into
account. All the above mentioned depolarizing effects can be described by introducing
single time constant τD, and the effective polarization can be written as:

Peff =
8

5
√

3

τD
τST + τD

. (4.3)

Thus depolarizing effects yield in total decrease of the average polarization of the lepton
beam. Despite of the fact that due to the Sokoov-Ternov effect the lepton beam is natu-
rally polarized in the transverse direction, the most interesting observables at HERMES
require a longitudinally polarized beam. The longitudinally polarized beam was achieved
through spin-rotators, implemented just before and after HERMES experimental setup.
They consist of six horizontal and vertical bending dipole magnets. Passing through these
magnets the spin vector of the lepton precesses around the magnetic field direction, so
that finally the combination of all bending magnets rotates the spin vector of the lepton
by 90 degrees. The second spin rotator installed after experimental setup changes the
spin direction of the beam particles from longitudinal to transverse, in order to take an
advantage of self polarization due to Sokolov-Ternov effect.
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The polarization of the beam was continuously monitored during data taking period
by two polarimeters. The operation of the polarimeters is based on the asymmetries in the
cross section for Compton back-scattering of left and right circularly polarized laser light
off the polarized lepton beam. The transverse polarimeter (TPOL) [Bar93] was located
in the west side of HERA storage ring, where no spin rotators were implemented.

Comparison of rise time curves
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Figure 4.2: Beam polarization values measured by longitudinal and transverse polarime-
ters

The source of polarized light for the transverse polarimeter is a 10W argon-ion laser,
which provides a continuous photon beam of energy 2.41 eV . The linear polarization of
the photons is converted into circularly polarized light using a Pockels cell. The beam
helicity was switched at a frequency of 90Hz to reduce any systematic effects. The
energies and positions of the backscattered photons are measured by a tungsten scintil-
lator calorimeter situated 65m downstream from the interaction point. The calorimeter
is divided horizontally into two segments, symmetric around lepton plane. Flipping the
polarization of photon beam leads to an energy dependent asymmetry in the vertical posi-
tion of backscattered photons. The polarization can then be determined by the difference
in the mean vertical position of left and right circularly polarized light measured in the
calorimeter.

At the location of the HERMES experiment in the east hall where the beam is lon-
gitudinally polarized, the longitudinal polarimeter was located. For the LPOL [Bec02]
a ND:YAG pulse laser was used, providing a photon beam with an energy of 2.33 eV .
As in the case of TPOL, the linear polarization of the photon beam was converted into
circularly polarized one by means of Pockels cell. In the LPOL the backscattered photons
were detected by a calorimeter consisting of a 2×2 array of four Cherenkov NaBi(WO4)2

crystals. An operation of LPOL is based on the measurement of an asymmetry in the
energy distribution of the backscattered photons in the calorimeter. This asymmetry
is proportional to the longitudinal polarization of the lepton beam and thus provides a
measure for the lepton beam polarization.

An example of typical beam polarization rise time curve for the leptons is shown in
Figure 4.2.

35



4.2 The HERMES Target

HERMES experiment was running in parallel with three other experiments on HERA
ring, two of them H1 and ZUES being a collider experiments. Hence, it was very impor-
tant to collect data without significantly reducing the lifetime of the electron/positron
beam. This implies certain limitations and requirements on the construction and usage
of a target system. At first any usage of target from solid material or other with high
areal density was excluded. In addition, for the realization of proposed measurements of
deep inelastic scattering from polarized targets it was essential to perform high and stable
polarization of the target. For these reasons an internal gas target was chosen. Although
the gaseous targets operate with much lower areal density compared to solid material
targets, they have also certain advantages. One of them is the small dilution factor and
possibility to provide high polarization, which is the key point for the polarization observ-
ables. Also the polarization of the gas can be easily flipped within a short time interval
of about 2-3 milliseconds, which significantly reduces the systematic uncertainties of the
measurements. The schematic view of the HERMES target is shown in Figure 4.3. The
main components of it are the atomic beam source (ABS), storage cell, target gas analyzer
(TGA) and Brit-Rabi polarimeter. Not shown in the figure is the target magnet, which
provides a holding field to define the polarization axis and to prevent spin relaxation by
effectively decoupling the magnetic moments of electrons and nucleons.

An additional important feature of gaseous targets is the possibility to detect the re-
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Figure 4.3: The schematic view of HERMES Target.

coiling fragments of the target after interaction. This was done during 2006-2007 data
taking period, when the recoil detector was operating. The details about construction
and operation of HERMES target can be found in [Air05a]

4.2.1 Atomic Beam Source

The nuclear beams of polarized hydrogen and deuterium atoms were generated by
ABS [Nas03]. An operation of ABS is based on Stern-Gerlach separation of hydro-
gen/deuterium atoms with radio-frequency hyperfine transitions. ABS consists of a dis-
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sociator, an atomic beam formation system (a nozzle, a skimmer and a collimator), a sex-
tupole magnet systems to focus atoms with certain electron polarization into the storage
cell and several high frequency transition units to transfer the polarization from electrons
to nucleons. The schematic view of ABS is shown on the left side of Figure 4.3.

At first the molecular hydrogen or deuterium gas is dissociated by a radio frequency
discharge in the glass tube with a dissociation degree up to 80%. The dissociated gas then
expands through nozzle into the vacuum of dissociator chamber, supported by a pumping
system with a nominal pumping speed of more than 15000 ls−1, which ensures that the
scattering of the atomic beam is suppressed. The nozzle is cooled to temperature of 100K
and the water produced during discharge creates an ice layer on the nozzle surface, which
helps to prevent recombination.

The atoms of hydrogen/deuterium in the magnetic field can be found in certain hy-
perfine states. The hyperfine splitting of the states appears due to the interaction of
external magnetic field with the magnetic moments of electron and proton/nucleus in
the atoms. Taking the magnetic field direction as a quantization axis for the electron
spin S and proton spin I, the four possible hyperfine states of hydrogen atom are defined
through spin projections of electron ms = ±1

2
and proton mI = ±1

2
. At weak magnetic

field (B � BC = 11.7 mT ) S and I couple, and total magnetic moment F = S + I and
its projection mF are used. The dependence of splitting of hydrogen and deuterium as a
function of magnetic field is shown in Figure 4.4, with corresponding quantum numbers
for each eigenstate. In the case of deuterium atom the hyperfine splitting differs from
that of hydrogen. This is due to the nuclear spin I = 1. So the total angular momentum
is F = 3

2
or F = 1

2
. Thus in the external magnetic field there are six possible hyperfine

states for the deuterium.
In the atomic beam from the dissociator chamber all possible hyperfine states are

equally populated. Further passing through sextupole magnet systems, the hydrogen
atoms in two spin states |1 >= | + 1

2
,+1

2
and |2 >= | + 1

2
,−1

2
, with the same electron

spin and opposite nuclear spin are focused, while the other two states are defocused and
pumped out. Further transition between |1 >→ |3 > and |2 >→ |4 > is obtained by
high-frequency transition (HFT) units. Hence, by usage of different combination of HFT
units it is possible to populate two states with the same nuclear spin orientation, and
finally inject polarized atomic beam into the storage cell. In addition, it is possible to
invert the nuclear polarization every 120 seconds. Similar procedure can be applied for
deuterium, while in this case the injection mods are different.

4.2.2 The Storage Cell

As was mentioned above, the typical areal density of gaseous targets (≤ 2 × 1011

atoms/cm2) is much lower from that of solid targets. Nevertheless it is possible to signif-
icantly improve the areal density, confining the polarized target atoms in a small volume
around the path of the beam, by injecting them into an open-ended storage cell. Such a
storage cell was used for HERMES internal gas target [Bau03]. The storage cell was con-
structed from pure aluminum, 75µm thick. It had an elliptical cross-section like HERA
lepton beam with diameters 29mm and 9.8mm. The interior of the cell was coated with
drifilm, to minimize the depolarization of the atoms caused by the wall collisions. The
spectrometer acceptance limits the usable target length to 400mm. The polarized atomic
beam was injected into a storage cell through feed tube, mounted under 30 ◦. In addition
to feed tube a smaller sampling tube is mounted under 160 ◦. About 5% of the gas passes
through sampling tube to TGA and BRP for further analysis of the gas conditions in the
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storage cell.
Under typical running conditions the flux of 6.6 (5.0) × 1016 atoms/s of polarized

hydrogen (deuterium) was injected into a storage cell and the areal density of 7.6 ×
1013 (2.1× 1014) nucleons/cm2 was achieved for hydrogen (deuterium). During the opera-
tion the storage cell was cooled to a temperature of 100 (60)K for hydrogen (deuterium),
which suppresses the recombination and spin relaxation during wall collisions. The target
was cooled by pumping cold helium gas through the cooling rails. Storage cell with its
supporting cooling rails was build in a target chamber (see Figure 4.5), surrounded by
superconducting magnet. The pressure in a target chamber was kept in a 10−7mbar range
by turbo pumping system.

A 0.3mm thick stainless steel exit window on the downstream end of the target cham-
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Figure 4.5: A Cross sectional (left) and top (right) view of longitudinal target chamber
and superconducting magnets.
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ber allows the scattered electrons and hadronic fragments to leave the target chamber and
enter the HERMES spectrometer. On the upstream of the target chamber two collimators
were installed, in order to reduce the amount of synchrotron radiation entering the target
cell and further the spectrometer (in Figure 4.5 only one collimator is shown).

4.2.3 The Target Gas Analyzer (TGA)

One of the essential requirements for HERMES measurements is the precise determi-
nation of effective target polarization value seen by the HERA beam. The average tar-
get polarization receives contribution from the molecules from recombination of atomic
hydrogen or deuterium, together from an unpolarized molecules due to ballistic flow of
undissociated hydrogen (deuterium) in the dissociator of ABS, and in addition from resid-
ual molecular gas in the target chamber. All these contributions need to be measured in
order to obtain the polarization of target gas. For this purpose a TGA was developed
and installed at HERMES [Bau03a]. The main components of TGA are a chopper, a 90 ◦

off-axis quadrupole mass spectrometer (QMS) with a cross-beam ionizer, and a channel
electron multiplier (CEM). The atomic and molecular gas entering the TGA is ionized
by 70 eV electron beam. Then the ions are filtered in QMS and detected by CEM. The
chopper in front of QMS rotates at 5.5Hz frequency, periodically interrupting the sample
beam. This allows to subtract the residual gas signal. The TGA is tilted by 7 ◦ with re-
spect to sampling tube and BRP, in order to avoid an interference with the beam entering
BRP (right-hand side of Figure 4.3).

The contribution of molecules in gas sample is expressed it terms of the degree of
dissociation α, which is defined as a ratio of number of nuclei in atoms divided by the
total number of nuclei in the sample, and which is measured roughly once per minute.
Presenting the total flux of the gas φtot, that flows into the target, as a sum of fluxes
of polarized atoms φa and molecules φm = φr + φball + φrg, (here φr, φball and φrg are
respectively the fluxes of molecules from recombination, ballistic flow and residual gas)

φtot = φa + φr + φball + φrg, (4.4)

one can define the fraction of atoms in absence of recombination

α0 =
φa + φr
φtot

, (4.5)

and the fraction of atoms surviving recombination

αr =
φa

φa + φr
. (4.6)

The fraction of atoms undergoing recombination then will be 1− αr. Meanwhile one can
present the fraction of polarized nuclei in the atoms as α0αr = φa

φtot
and the fraction of

polarized nuclei in the molecules as α0(1 − αr) = φr
φtot

. A precise knowledge of above

mentioned two fractions is necessary as the polarization of protons/deuterons is different
inside atoms and molecules. The measurement of atomic and molecular fluxes is not
enough for calculation of α0 and αr. One needs also to determine various components
to the molecular flow. The measurement of residual gas contribution φrg was carried out
using the fact that it is linearly proportional to the pressure in the target chamber. Hence
injecting an increasing quantities of molecules into target chamber with controlled flow
system, the coefficient of proportionality was determined. The contribution of ballistic
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flux φball was measured by varying atomic flux of the injected beam, while keeping the
molecular flux constant. As the probability of recombination inside the cell was found to
be independent of the injected beam intensity, the φball can be extracted and the remaining
contribution φr is found from Eq. 4.4.

By the measurement of different flow rates the quantities α0 and αr are extracted for
the sample beam in TGA, while in order to obtain the α0 and αr for the gas in the storage
cell, sampling correction factor needs to be applied. This was calculated by Monte Carlo
simulation of stochastic motion of particles in the storage cell.

4.2.4 Breit-Rabi Polarimeter

Beside the measurements of atomic and molecular content of the gas provided by
TGA, the polarization degree of the target also needs to be determined. For this reason the
Breit-Rabi Polarimeter [Bau02] (BRP) was installed at HERMES. It consists of sextupole
magnet system, radio-frequency transitions and beam detection system. BRP measures
the relative populations of the hyperfine states of atomic hydrogen or deuterium gas. The
gas from sampling tube passes through strong and medium field radio-frequency units ,
which can be tuned for exchange between different hyperfine states. Further, the sextupole
magnet system provides a filtering of gas, by focusing the atoms with ms = +1

2
along

the BRP axis and defocussing the atoms with ms = −1
2
. Additionally the beam blocker

in front of magnets prevents the atoms with ms = −1
2

to reach the detector system,
which is similar to that used in TGA. It consists of a cross-beam ionizer, a quadrupole
magnet spectrometer (QMS) and a channel electron multiplier (CEM). In contrast to
the TGA, only atoms (no molecules) are analyzed by BRP. From the measured relative
populations of the hyperfine states of atoms, the atomic polarization Pa can be deduced,
which corresponds to the polarization of atoms in the center of target cell. In order to
obtain the polarization averaged along the cell, sampling corrections need to be applied
as in the case of quantities α0 and αr.

Using the measurements of BRP and TGA, the average polarization of the target gas
as seen by HERA lepton beam reads

Ptarget = α0αrPa + α0(1− αr)Pm. (4.7)

Here Pa is the atomic polarization measured by BRP and Pm is the nuclear polarization
of molecules from recombination. The actual value of Pm is not possible to measure at
HERMES, hence one has to allow the range 1 ≤ β ≤ 1, for the ratio of the nuclear
polarization of molecules produced by recombination and the nuclear polarization of the
atoms β = Pm/Pa. However the range of β can be restricted to β = [0.45, 0.83]. The
upper limit is determined according to the measurement of β at higher cell temperature of
260K (the nominal temperature was 100K), resulting in β260K = 0.68±0.09stat±0.06syst.
With an assumption that recombination mechanism at 100 and 260K is the same, the β
at 100K can not exceed the value measured at 260K as the recombination probability is
smaller at lower temperatures. The lower limit on β is derived from a simple argument that
surface recombination involves target atoms (Pa ≈ 1.0) and totally depolarized surface
atoms, plus accounting for depolarization of molecules while colliding with the walls.
The remaining uncertainty of β further contributes into total systematic uncertainty of
measured target polarization value. The average target polarization values obtained with
polarized deuterium (hydrogen) from 1998 to 2000 (1996 to 19997) are given in Table 4.1.
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Year Target Target Polarization

Pz ∆Pz Pzz ∆Pzz
1996 Hydrogen ± 0.759 ±0.042 – –
1997 Hydrogen ± 0.850 ±0.032 – –
1998 Deuterium ± 0.856 ±0.064 0.827 ± 0.027
1999 Deuterium ± 0.832 ±0.058 0.827 ± 0.027
2000 Deuterium −0.840/+0.851 ±0.031/0.028 0.827 ± 0.027
2000 Deuterium − 0.010 ±0.026 − 1.656 ±0.049

Table 4.1: The average values of the target vector and tensor polarizations.

4.2.5 Unpolarized Gas Feeding System

Apart from data collected with polarized targets, HERMES has collected large amount
of data on an unpolarized targets (H, De, He, Ni, Ne, Kr, Xe). The unpolarized gas feed
system (UGFS) was used to fill the storage cell with unpolarized molecular gas. Unlike
polarized gases, where the technological limitations do not allow to increase the target
density in the storage cell to more than 1013−1014 atoms/cm2, the UGFS allows to achieve
a target densities of about 1015−1017 atoms/cm2. The UGFS had no technical limitations
like the Stern-Gerlach setup of ABS, however the allowed target density is limited by the
lifetime of the HERA lepton beam, which under normal running conditions was more
than 10 hours. The total lifetime τ can be expressed as

1

τ
=

1

τHERA
+

1

τHERMES

. (4.8)

During normal running the contribution of τHERMES had to be greater than 45 hours.
This leads to a typical areal densities of about 1016 atoms/cm2, however HERMES was
allowed to increase the areal density whenever the lepton beam current fell below 15mA.
In this case the areal densities of about 1017 atoms/cm2 were achieved. Another limit
on the density of an unpolarized gas target arises from the requirements of HERMES
data acquisition system (DAQ), which had a maximum trigger rate of 500Hz. With the
increase of a target density the background of Møller electrons in the HERMES front
region would also increase resulting in a total increase of DAQ deadtime.

4.3 The HERMES Spectrometer

The fragments of interaction in the storage cell were detected in the HERMES spec-
trometer. HERMES had a typical for a fixed target experiments forward angle spectrom-
eter. It consists of two identical parts, arranged below and above the HERA lepton beam
plane. The coordinate system used at HERMES has the z-axis along the electron/positron
beam direction, y-axis vertical upwards, and the x-axis in horizontal direction, forming an
orthogonal right-handed coordinate system, which originates at interaction point (center
of target cell). The spectrometer consists of several detector components, which pro-
vide high efficient tracking and identification of scattered and produced particles. The
schematic view of HERMES spectrometer is shown in Figure 4.6. The front region be-
fore the spectrometer magnet consists of a silicon strip detector, drift vertex and two
front chambers (DVC, FC1/2), and a trigger hodoscope (H0 at 145 cm distance from the
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Figure 4.6: The schematic view of HERMES Spectrometer

center of target cell). At the region behind the magnet four backward drift chambers
(BC1/2, BC3/4) were mounted, with a ring-imaging cherenkov detector (RICH) between
them. The latter are followed by a trigger hodoscope (H1), a transition-radiation detec-
tor (TRD), a preshower detector (H2), a luminosity detector, and a lead-glass calorimeter
(CALO). In the gap of magnet three multi-wire proportional chambers (MWPC) (MC1-
3) were installed . A number of muon hodoscopes were also installed between the field
clamps and the body of the magnet, and directly behind hodoscope H1, as well as behind
a one meter thick iron wall.

The spectrometer magnet is a H-type dipole magnet, with a deflecting power of 1.3Tm.
It creates a vertical dipole magnetic field, which bends charged particle tracks mainly in
the horizontal direction. The shielding of lepton/proton beam is provided by 11 cm thick
iron plate (septum plate) located in a x-z plane. Further the fringe field in the septum
plate was corrected by a correction coil with a deflecting power of 0.08Tm. The filed
clamps in front and behind the magnet reduce the outer fringe field below 0.1T . The
magnet and the septum plate limit the geometrical acceptance of the spectrometer to
±170mrad in the horizontal direction and from ±40mrad to ±140mrad in the vertical
direction.

4.3.1 The tracking system

The purpose of tracking system is the three-dimensional reconstruction of the tracks of
the charged particles and precise determination of particle trajectories, i.e. the scattering
angles (θ and φ) and momenta. The detector components of tracking system are the
silicon detector, the drift chambers (DVC, FC1/2) in front of magnet, four drift chambers
(BC1/2, BC3/4) behind the magnet and proportional wire chambers (MCs) in the magnet
gap. The variety of tracking devices serve to solve certain requirements. The silicon strip
detector installed in 2002 was aimed to improve the detection of long living particles (Λ,
Ks ...) that decay outside the target cell. It is described in details in [Ste00]. For the
analysis discussed in this report it was not used. Also an information from MCs is not
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essential in this report, as they were used for momentum determination of low energy
particles that do not reach the back region, i.e. BCs. The main information for tracking
comes from DVC, FCs and BCs. They are conventional drift chambers of horizontal type.
Each chamber consists of six layers of drift cells. The cells are organized in three pairs, a
vertical X, X’ pair of planes, together with U,U’ and V,V’ planes which are at an angle
of ±30◦ with respect to the vertical plane. The two layers of one pair are used with an
offset of half the cell size in order to help resolve ambiguities. Each layer in its tern is
made of a plane of alternating anode and cathode wires between the cathode foils. The
cathode wires and foils are at negative high voltage of a few thousand volts, while the
anode wires at ground potential. All drift chambers were filled with the same gas mixture
Ar/CO2/CF4 with proportions 90/5/5.

4.3.2 The Particle Identification Detectors

The particle identification at HERMES is achieved by means of four detectors. First,
leptons and hadrons are separated using an information from transition radiation detector
(TRD) in combination with lead-glass electromagnetic calorimeter and preshower detec-
tor. Further charged pions, kaons and protons can be identified by ring imaging cherenkov
detector (RICH), which was installed in 1998, instead of conventional cherenkov detector
used in 1996 and 1997. RICH can also be used for lepton hadron separation in a momen-
tum range up to 4GeV , while for present analysis the typical lepton momenta are above
that threshold. Therefore the RICH was not used for DVCS analysis.

The transition radiation detector was chosen to provide a pion rejection factor of above
100 for particles at energies above 5GeV . It’s operation is based on a radiation of X-rays
by ultra-relativistic charged particles passing through boundary of two materials with
different dielectric coefficients of refraction. The transition radiation is emitted in a cone
with opening angle θ proportional to 1/γ, where γ is the Lorenz factor (γ =

√
1 + v2/c2).

The mean radiated energy for a single transition between dielectric material with plasma-
frequency ωpf is given by

ETR =
2

3
αγωpf . (4.9)

The emitted energy is proportional to γ, which is about 270 times larger for electrons/positrons
than for pions with the same energy. This enables a separation of leptons from hadrons
in the sense that at typical HERMES energies mainly electrons/positrons emit a transi-
tion radiation photon. For practical usage of TRD it is essential to provide a multiple
medium/vacuum transitions, as the intensity of radiation is low for single transition.

The HERMES TRD consists of six modules per detector half. Each module consists
of 6.35 cm thick poly-propylene/ethylene fiber radiator and 2.54 cm thick proportional
multi-wire chambers (MWPC). The MWPCs are built out of 256 vertical wires and filled
with a gas mixture of Xe/CH4 (90/10), which provides an efficient X-ray absorption.
Traversing through MWPCs all particles deposit some energy due to ionization of the
gas. Although it is difficult to distinguish between ionization signal from the charged
particles, it is possible to separate leptons from hadrons, taking into account the fact
that leptons in contrast to hadrons produce transition radiation. Therefore leptons in
average deposit approximately 2.5 times more energy than hadrons. In order to obtain a
good hadron rejection factor, an information from several modules was combined by the
“truncated mean” method: the largest signal from the 6 modules was discarded while the
average of the other five was taken (see [Van06] for details).
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The preshower detector consists of a passive radiator, and a scintillator counter (H2

hodoscope). The radiator is made of 11mm (two radiation length) thick lead, sandwiched
between 1.3mm stainless steel sheets. Passing through radiator the leptons have much
higher probability to produce electromagnetic showers then hadrons. Therefore leptons
deposit more energy in the scintillator than hadrons, which lose energy mainly due to the
ionization. The scintillator itself consists of 42 vertical paddles per detector half. Each
paddle is made of 1 cm thick fast scintillation material BC-412 and have an area of 9.3×91
cm2. The scintillation light was detected by a photomultiplier tube installed at the outer
edges of the scintillator paddles. A pion rejection factor of about 10 was achieved by the
preshower detector with 95% efficiency for lepton detection.

Figure 4.7: Schematic view of the calorimeter and preshower detector.

The last detector of the HERMES PID system is the electromagnetic calorimeter. It
consists of an array of 42 × 10 F101 lead-glass blocks in each detector half. Each block
have a front area of 9 × 9 cm2 and 50 cm depth, corresponding to 18 radiation lengths.
The blocks are optically connected to a photomultiplier tubes as shown in Figure 4.7. The
surface area of blocks was chosen in a way that 90% of electromagnetic shower is contained
in a block, while the matrix of 3× 3 blocks (defined as cluster) contains more than 99%
of the signal created by a shower. The electrons and positrons from a shower produce
a cherenkov light in the lead-glass blocks. The amount of cherenkov photons is further
detected by the photomultipliers, thus providing a measure of the energy of the shower.
In order to discriminate between leptons and hadrons the ratio E/P is considered. Here
E is the energy deposit in a cluster and P is the momentum of particle measured by means
of tracking detectors. Since leptons lose almost all of their energy in the calorimeter, the
average ration of E/P is typically unity. While for the hadrons, which deposit only a
fraction of their energy through ionization, the E/P ratio is less than unity. The hadron
rejection factor of the calorimeter was between 10 and 100, depending on the lepton energy
and calorimeter threshold.
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The calorimeter and preshower detectors are of special importance for the DVCS
analysis, as they are the only detectors which can detect photons. The preshower detector
does not provide a measure of energy or position of photons, therefore it is used for
optimization of the cut imposed on cluster energy in order to improve the resolution of
the photon energy measurement and for certain systematic checks. The position of the
photons (leptons) in the calorimeter is reconstructed as a weighted-average of centroids of
each block in a cluster with the weights wi = max{0, 4.8 + ln( EiP

Ei
)}. This reconstruction

algorithm described in [Ely01], provides position reconstruction resolution of about 0.5cm.
The energy resolution of the calorimeter for leptons can be described by [Ava98]

σ(E)

E
=

5.1± 1.1√
E

+ (2.0± 0.5) +
10.0± 2.0

E
. (4.10)

For the case of photons, it is assumed that the shower development mechanism is similar
to that of leptons. Investigations show [Ely02], that this is a good approximation for the
photons that start showering in the preshower, like most of the leptons do.

In order to obtain good lepton/hadron identification, the responses of PID detectors
are combined in a probability-based algorithm described in [Kai97]. For each PID detector

a quantity PIDi = lg(P l
i /P

h
i ) is defined, where P

l(h)
i is the probability that lepton (l)

or hadron (h) with the specified polar angle and momentum, gives the measured signal
in the considered PID detector i (or detector module). The commonly used logarithmic
probability ratios are defined for combined preshower and calorimeter response as PID2,
and respectively PID3 and PID5 for RICH and TRD. Further, the PID values from
different detectors can be combined to achieve sufficient particle identification. As an
example a typical combined PID distribution from calorimeter, preshower and TRD is
shown in Figure 4.8, which indicates a clear separation between leptons and hadrons.
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Figure 4.8: The PID2 + PID5 distribution for DIS events from 2000 data on an unpo-
larized deuterium.

4.3.3 The trigger system

In order to distinguish between events of specific physics interest from the background
and also initiate digitization and readout of the detector signals, various trigger systems
were installed at HERMES. The most important physics trigger for this analysis is the
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DIS trigger (trigger-21), which indicates signals in the three hodoscopes H0, H1 and H2,
together with a cluster in the calorimeter, coinciding with the HERA lepton bunch. The
H0 hodoscope consists of only one 3.2mm thick scintillator paddle per detector half, read
out by two photomultipliers. It was installed in front of FCs in order to suppress the
trigger signals initiated by a backwards-going particles originated from a proton beam.
The hodoscope H1 was constructed in the same way as H2 except the lead sheet in
front of latter. It was installed in front of TRD as shown in Figure 4.6. The signal
from the hodoscope H1 prevents the shower initiated by the photon in the preshower
and calorimeter to be associated with the lepton. The response from the preshower
was required to be above the minimum-ionizing signal, ensuring electromagnetic shower
development. While the response of the calorimeter was required to be above a threshold
of 1.4GeV for polarized, and above 3.5GeV for unpolarized data taking periods. The
trigger decision is made in about 400ns. After a trigger has been generated, all the
relevant data are read out from the detectors. During that period no information can
be recorded, resulting in a dead time of the spectrometer. The dead time is defined as
the ratio of trigger requests which had to be rejected and the total number of readout
requests. During standard running it is typically well below 10%.

4.4 Luminosity monitor

For calculation of cross sections or cross section asymmetries, the precise knowledge of
absolute or relative luminosity is necessary. This is done either by counting the DIS events
in data set or by using the luminosity monitor. The luminosity is the product of beam
current and target density, integrated over the measurement time. Although both target
density and beam current can be measured separately, more accurate determination of
luminosity was achieved at HERMES by installation of luminosity monitor [Ben01]. The
luminosity can be determined by comparing the measured rate of the well known process
with the evaluated cross section, for example the elastic scattering processes of beam
leptons off shell electrons in the target gas. In the case of positron beam, both the Bhabha
scattering process (e+e− → e+e−) and the annihilation processes (e+e− → γγ) contribute,
while for the electron beam the Møller scattering processes is taken into account. For a
high energetic beam the scattering angles of both leptons or photons are small and both
final state particles have similar amount of energy.

The luminosity monitor consists of two small calorimeters located 7.2m downstream
the target. Each calorimeter is constructed of 3×4 array of radiation resistantNaBi(WO4)2

crystals, having a 22× 22mm2 surface area and 200mm length. A photomultiplier tubes
coupled to each crystal at the back side, provide a read out of the signal. The result-
ing horizontal acceptance of 4.6− 8.9mrad sufficiently covers the detection of symmetric
events from above mentioned processes. An event from desired process is selected if there
is a simultaneous response in both calorimeters, each having an energy deposition greater
than 4.5GeV . The energy constraint reduces the dominant background from DIS scat-
tered leptons, which has high energy deposition in only one of the calorimeter sections.

The measured absolute luminosity has a large systematic uncertainty of about 7%.
It acquires due to the dependence of luminosity monitor acceptance on beam position
and slopes. Nevertheless, in various asymmetry measurements only relative luminosity is
essential, which has significantly lower systematic uncertainty.
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4.5 Data acquisition and processing

The data production chain consists of two main parts. First data acquisition (DAQ)
system realizes digitization and fast read out of the detector signals, whenever a trigger
signal occurs. For digitalization of timing and analogue signals, LeCroy 1877 Multihit
FastBus timetodigital converters (TDC) and LeCroy 1881M FastBus analoguetodigital
converters (ADC) were used. The raw data from TDCs and ADCs are further buffered
in EPIO (Experimental Physics Input Output) format on hard disks and backed up on
data tapes. Later in the offline analysis the raw data were processed by the HERMES
decoder (HDC), where the signals from ADCs and TDCs are translated into HERMES
coordinate system using individual detector geometries and calibrations. The output of
HDC is stored in DAD (Distributed ADamo) [CER93] tables. Subsequently the data
are processed by HERMES reconstruction code (HRC). HRC reconstructs particle tracks
by evaluating them in the front and back region of the spectrometer and joining them in
the center of magnet. It also provides the charges and momenta of the particles, together
with an information about PID.

In parallel to DAQ system, a slow control system reads out an information, which
changes slowly and independently on triggers from the spectrometer. Those are for ex-
ample beam and target polarizations, an information from luminosity monitor, detector
temperature, etc.. The slow control data are read out every 10 s and combined with
the output of HRC into micro data summary tapes (µDST). The µDST files contain all
necessary information to perform the data analysis.

The data at HERMES are specified within different time scales. The shortest time
scale is event. It contains information about all reconstructed tracks corresponding to
a single trigger signal. Events recorded within approximately 10 s, are grouped into a
burst, which corresponds to a single readout of slow control data. The bursts are grouped
into a run, which is defined by a size of about 450Mb of EPIO data. Runs contain data
collected in a time interval of about 10 minutes. Nevertheless the time interval of a run
depends on beam current, target density and luminosity. Finally the largest time scale
is the fill, corresponding to data recorded during a HERA lepton beam fill, which has a
typical time interval of 8-14 hours.
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Chapter 5

Data Analysis

This chapter describes in details the procedure of data analysis. All data collected on
both unpolarized and longitudinally vector polarized deuterium target until 2006 are used
in the analysis. Chapter starts from the description of selection criteria for the DVCS/BH
candidate events. As the recoiled particle was not detected, the missing mass technique
was used to achieve exclusivity. With the optimal choice of kinematic cuts it is possible to
enhance the signal and reduce the background. The extraction of asymmetry amplitudes is
discussed in section 5.4 by means of maximum likelihood method. Further, the systematic
studies of the detector response and the possible contributions from background processes
are described using both experimental and Monte Carlo data.

5.1 Data Quality

The data used in different physics analysis, carried out at HERMES, have to satisfy
various data quality requirements. Depending on the specificity of the studied physics
process and considered observables the condition of the lepton beam, HERMES-target
and the relevant detector components must be checked to ensure that the data are stable,
free of any problems, and useful for the analysis. As was discussed in section 4.5 the
combined information of the data sample from DAQ and slow control system is stored
in the µDST files. The µDST files are labeled by two last digits of corresponding data
taking year, by a letter denoting the version of the production, and a cypher. The
first version of µDST files (a-production) is based on a calibration of the detectors on
the basis of the data from a preceding years. Further, the a-production is used as an
input for more precise calibrations of the detectors and reproduction of µDST files. The
process of reproduction of data continues until all the calibrations and corrections are
applied. Finally, the cypher indicates the number of reproductions without a new track
reconstruction. For the analysis presented in this report the data productions 96d0, 97d1,
98d0, 99c0, 00d2, and 05c1 were used.

Although the µDST files contain all the information about the status of the beam,
target and the detector components, a special group of experts (Data Quality Group)
provided an additional information about data quality on a burst level. This information
is given in a form of 32-bit hexadecimal numbers for each half of the spectrometer (top
and bottom). For the DVCS analysis of the unpolarized data the list of data quality
constraints is different from that of longitudinally vector polarized one, as certain bits in
the bit pattern refer to a polarization status of the target and hence are not essential in
the analysis of unpolarized data.
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Bit 503e13dc 5dbf97fd Description
0 – + Ensures that the target is in a spin state antiparallel or

parallel to the beam polarization.
2 + + Selects the bursts with reasonable dead time.
3 + + Ensures that the length of the burst was reasonable.
4 + + Selects the bursts with a reasonable beam current.
5 – + Discards data with very small count rates and also data

with very large fluctuations in target density.
6 + + Checks that the burst was not the first in an experimen-

tal run.
7 + + Discards all bursts with bad µDST records or last bursts

in a fill.
8 + + Rejects any burst which has no PID values due to initial-

ization problems or unknown Calorimeter thresholds.
9 + + Accepts the bursts belonging to a run marked as ana-

lyzable in the HERMES electronic logbook.
10 – + Rejects unpolarized data and accepts only data where

the target was in the two or four state mode, respec-
tively.

12 + + Specifies the case when the bit 10 was set because no
data was available.

15 – + Discards unpolarized data according to the valve set-
tings of the target.

16 – + Rejects data were the target was not properly functional.
17 + + Discards any burst in which at least one calorimeter

block was dead.
18 + + Discards the burst if at least one block in the H2 Ho-

doscope or Luminosity Monitor was marked as dead.
19 + + Ensures that the TRD was operational.
20 + + Accepts the bursts when no high voltage trips occur in

the FCs or BCs.
21 + + Rejects bursts belonging to a run marked as bad due to

strange Calorimeter behavior or a bad RICH.
23 – + Accepts the burst if α0 value is reasonable.
24 – + Accepts the burst if αR value is reasonable.
26 – + Accepts the burst when the target is in one of the two

tensor polarized states.
27 – + Accepts the burst when reasonable target polarization

was measured.
28 + + Accepts the burst if the latest beam polarization mea-

surement was taken not more than 5 minutes ago.
30 + + Discards the burst if the polarized data undergoes a dead

time correction.

Table 5.1: List of data quality requirements and a corresponding bits.
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The data quality cuts for DVCS analysis were applied according to the following
0x503e13dc and 0x5dbf97fd bit patterns respectively for unpolarized and polarized data
sets, which correspond to the requirements listed in Table 5.1. Except from the cuts en-
coded in the bit patterns, several additional cuts were applied on a burst level. For exam-
ple, the raw luminosity count rate was chosen to be reasonable, together with the lifetime
of the data taking system. In a conventional variables of HERMES data acquisition system
they read as 5 < g1Beam.rLumiRate < 3000 and 0.8 < g1.DAQ.rDeadCorr21 ≤ 1.0.
Also the TRD was required to be fully operational g1Quality.rTrdDQ == 3 and a rea-
sonable beam polarization was available (g1DAQ.bProdMethods&0x00800) == 0. Since
the performed analysis contains measurements of the asymmetries with respect to the
beam helicity, it was required for the fitted value of the beam polarization to be below
80% and not equal to zero. This requirements were applied in order to reject non physical
values of the beam polarization, as in the experiment a polarization above 80% was never
observed. For the case of polarized data an additional cut was applied on measured raw
target polarization 0.5 < |g1Target.rPol| < 1.5, which rejects data with small or illegal
values of target polarization.

5.2 Event Selection

Events that pass the data quality requirements are further used for the selection of
exclusive DVCS/BH sample. The measurement of an exclusive process requires exact
determination of the final state, which in the case of DVCS/BH consists of three particles.
As the cross section of DVCS/BH processes decreases rapidly with increasing negative four
momentum transfer to the target, most of these events are produced from the kinematic
range of negative four momentum transfer below 1 GeV 2. As a consequence the recoiled
target particle with low momentum escapes detection by a forward spectrometer. Even
though by detection of only scattered lepton and emitted photon, it is still possible to
achieve exclusivity by means of restriction of the squared missing mass of the reaction
ed → eγX to certain kinematic range. Note that in this case it becomes impossible to
separate contributions to the yield of coherent process when the deuteron stays intact
(ed→ edγ), from that of incoherent process when it breaks up (ed→ epnγ). In addition,
their is a large contribution from the associated incoherent processes when one of the
target nucleons excites to a resonance in the final state, and from a decay of neutral
mesons in DIS fragmentation processes.

Due to the complications mentioned above, it is convenient to consider the event
selection in three steps. As a first step the events containing exactly one electron/positron
that satisfies all the DIS requirements are selected. These events are referred to as DIS
events in the following. In a second step, within the DIS events those with exactly one
photon are selected (referred to as single photon events in the following). Finally, in a
third step the exclusive DVCS/BH events (exclusive events or sample) are selected by
means of missing mass technique.

5.2.1 Selection of DIS events

The DIS events were selected first of all requiring a trigger-21 to be fired. Further,
the events that contain at least one charged track reconstructed by HRC from the signals
in both front and rear tracking chambers, and with certain energy deposition in the
calorimeter, are selected. To be sure that the charged track did not hit the frames of the
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tracking chambers and also the septum plate or the field clamps, the fiducial volume cuts
were applied on the x-coordinate of the track at the front field clamp |xFFC | ≤ 0.31 cm,
y-coordinate of the track at the beginning of the septum plate |ySP | > 7cm, and on the x
and y-coordinates of the track at the rear field clamp |xRFC | ≤ 100 cm, |yRFC | ≤ 54 cm.
In addition the impact x and y positions of the track at the surface of the calorimeter were
required to be |xCalo| ≤ 175 cm and 30 cm ≤ |yCalo| ≤ 108cm, respectively. This assures
that the tracks are not incident in the outermost two-third of the outer row/column of
the calorimeter blocks and the shower produced by them is entirely contained in the
lead glass blocks. Further the charged track had to be identified as a lepton. As was
mentioned earlier, the RICH detector was not used in this analysis for the identification
of the particles, therefore the requirement on the likelihood of the combined PID detector
responses of the preshower and calorimeter (PID2) and the response of the TRD (PID5)
was chosen to be more than 2 (PID2+PID5>2). This means that the track is 100 times
more likely a lepton than a hadron. It was also required that the track possesses the same
charge as the charge of the beam in the considered data taking year.
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Figure 5.1: The distributions of the reconstructed longitudinal position zvtx (left panel)
and transverse position rTvtx (right panel) for a combined exclusive sample of events for
whole unpolarized data set.

In order to assure correct vertex reconstruction by HRC, the z position of the primary
interaction vertex zvtx was required to be between -18 and 18 cm. Although the target
cell has an extension of ±20 cm, the choice of this restriction is caused by the resolution of
the spectrometer for zvtx, which is about 2 cm. Another cut was applied on a transverse
position of the primary vertex rTvtx =

√
x2
vtx + y2

vtx, where xvtx and yvtx are the x and y
positions of the reconstructed interaction vertex. The transverse position was required
to be less than 0.75cm to assure that the vertex is within the elliptical cross section
of the target cell. As an example, the distributions of the longitudinal and transverse
positions of the reconstructed vertexes are shown in Figure 5.1 for an exclusive sample of
the unpolarized data set.

On a next step, the hard leptoproduction regime of the DVCS/BH processes needs to
ensured. In principle this requires for Q2 to be much larger than the mass of the target
particle. However due to the limited statistics at relatively large values of Q2, the require-
ment Q2 > 1GeV 2 was applied on the data. The squared invariant mass W 2 was required
to be above 9GeV 2, which excludes the data from a resonance region. For the case of
DVCS process this cut does not affect the exclusive sample, as all the exclusive events
satisfy to that requirement [Ell04]. The lower cut on W 2 is essential for the selection of
inclusive DIS and semi-inclusive DIS processes. Especially for the semi-inclusive processes
one can expect large contribution from the target remnant in the selected hadron sample
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at smaller values of W 2. The choice of the cut on a W 2 was motivated by a comparison of
data collected in different time periods (years) with Monte Carlo simulations. On the left
upper plot of Figure 5.2 the W 2 distributions of inclusive DIS samples from different data
taking years are compared with Monte Carlo prediction. One can see, that started from
a value of 9GeV 2 the agreement between data from different years and Monte Carlo is
sufficient. It is very important to reach a good consistency between data sets collected in
different data taking periods not only for exclusive samples, but also for DIS samples, as
the latter is widely used for the normalization of the data. On the other hand it is impor-
tant to choose an appropriate kinematic range for the investigation of various background
processes, mainly the production of semi-inclusive neutral pions, which is one of the main
background processes and will be discussed in details in section 5.5.5. For the same data
consistency reasons, the energy transfer from the incoming lepton to the virtual photon ν
was restricted to the values below 22GeV . From the comparison of ν distributions from
different years with Monte Carlo on the top right plot of Figure 5.2, one can see a strong
inconsistency between data and Monte Carlo in the region above 22GeV . On the bottom
panels of Figure 5.2 the distributions in Q2 and Bjorken variable xN are shown for DIS
sample from unpolarized data and Monte Carlo. Note that the inclusive variables W 2

and xN were calculated using the proton mass.
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Figure 5.2: The distributions of W 2 (top left panel), ν (top right panel), Q2 (bottom
left) and nucleonic Bjorken variable xN for the inclusive DIS samples from different data
taking years on an unpolarized deuterium target . The solid line represents the Monte
Carlo simulation, discussed in section 5.3
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5.2.2 Selection of single photon events

The final state of DVCS/BH process, that is detected at HERMES, consists of a
scattered lepton and a real photon. Hence, from the selected sample of DIS events,
those need to be chosen, that contain exactly one additional uncharged cluster in the
calorimeter. To be sure that the trackless cluster originates from a photon, it was required
for the signal of a cluster in a preshower to be larger than 1MeV . As the HERMES
calorimeter was originally constructed for the detection of leptons, the photons that do
not shower in the preshower were found to be miscalibrated by 15% at a photon energy of
15GeV [Ely02]. The existing difference in the probability of showering in the preshower
detector by photons and leptons, leads to a wrong photon energy reconstruction in the
calorimeter for those photons that do not shower in the preshower, while the shower
development for the photons that start showering in the preshower detector is very similar
to those originating from leptons. Nevertheless, even for the photons that start showering
in the preshower, the possible differences of their shower development in the calorimeter
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Figure 5.3: On the right side the correlation between the photon energy and squared
missing mass is shown. The red horizontal line denotes the cut applied on photon energy.
On the left side the comparison of squared missing mass distributions corresponding to
different cuts applied on the photon energy is shown.

compared with leptons was accounted by choosing a different z-position of the cluster in
the calorimeter. Based on the Monte Carlo studies the z-position of shower development
in the calorimeter for the photons was found to be z = 729 cm, while for leptons z =
738 cm. Although the 1MeV cut on the preshower signal reduces the statistics by about
20 % [Ely02], it is essential for reliable reconstruction of photon energies.

Like in the case of DIS leptons, also for photons the fiducial volume cuts were applied,
restricting the x and y positions of a cluster on a surface of the calorimeter to be |xCalo| <
125 cm and 33 cm < |yCalo| < 105 cm. In addition, the photons were required to have an
energy larger than 5GeV . This cut is applied in order to improve the exclusivity of the
measurement. In the left side of Figure 5.3 the squared missing mass distributions (will
be defined in next section) are shown, corresponding to different cuts on photon energies.
As can be seen this cut has a very small impact on the events from the exclusive region
(MX ≈ mp), while it significantly reduces the yield in a non-exclusive region. The non-
exclusive region originates mainly from the photons of a π0 and η decay with a typically
low cluster energies. On the right side of Figure 5.3 the correlation of photon energy with
the squared missing mass is shown for a single photon events from the year 2005.

53



5.2.3 Selection of exclusive events

As it was mentioned in section 5.2, various processes contribute in the sample of single
photon events. Beside the coherent and incoherent DVCS/BH events, which are referred in
the following as a signal of interest, also the associated incoherent processes with resonance
excitation and semi-inclusive production of neutral mesons contribute in the single photon
event sample. The latter two are referred to as a background processes. In order to
maximally assure exclusivity of data sample, i.e. to select an event sample where the signal
of interest will significantly dominate the contribution from the background processes, a
number of requirements need to be applied on the ‘exclusive’ kinematic variables. One of
such a variables is the opening angle between virtual and real photons, defined as

θγ∗γ = arccos

(
~q · ~q′
|~q||~q′|

)
. (5.1)

For the extraction of azimuthal asymmetries, a full coverage of the acceptance in the
azimuthal angle φ is required. Moreover, the distribution of azimuthal angle φ has to be
uniform and independent from other kinematic variables. For these reasons an upper cut
on the opening angle was applied. As can be seen from the left plot of Figure 5.4, showing
the distribution of azimuthal angle φ versus the opening angle θγ∗γ, the full coverage of
φ acceptance can be achieved up to the values of the θγ∗γ about 0.07 rad. It should be
noted, that not only the acceptance effects increase with the increase of the opening angle
θγ∗γ, but also the fractional contribution of the background processes becomes dominant
at larger values of θγ∗γ. This is illustrated on the right plot of Figure 5.4, where the
Monte Carlo simulated fractional contributions of the signal and background processes
are presented in bins of θγ∗γ. An upper limit on the opening angle θγ∗γ equal to 0.045 rad,
that suppresses the contribution from the background processes, can be determined from
the same figure. Additionally, as the azimuthal angle φ is undefined when θγ∗γ = 0, also
a lower cut needs to be applied on opening angle. A Monte Carlo based investigations
of smearing effects showed, that at small values of θγ∗γ the smearing of azimuthal angle
significantly increases [Kra05], hence a lower cut on opening angle θγ∗γ > 0.005 rad was
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Figure 5.4: On the left side the scatter plot of the azimuthal angle φ versus the opening
angle θγ∗γ is shown for the exclusive event sample from the year 2005 without a cut
on θγ∗γ. The horizontal line denotes an upper cut θγ∗γ = 0.045 rad. On the right side
the fractional contributions of the signal and background processes are shown in bins of
opening angle θγ∗γ. The vertical line corresponds to an upper cut on θγ∗γ.
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determined. For further improvement of exclusivity of the event sample, an upper cut
was applied on the squared four momentum transferred to the target. Direct calculation
of variable t leads to

t ≡ (q − q′)2

= −Q2 − 2Eγ(ν −
√
ν2 +Q2 cos θγ∗γ). (5.2)

Here, the dependence on photon energy Eγ leads to a large uncertainties in the recon-
struction of t. Due to the small magnitude of t compared with Q2 and Eγ, the resolution
of Eγ, which is about a couple of percents, leads to a large resolution in t. This can be
eliminated considering the constrained variable tc instead of t. Within the assumption
that the process is elastic (MX = mp, where MX is defined in Eq. 5.4) the constraint
four-momentum transfer tc can be calculated without using the photon energy

tc =
−Q2 − 2ν(ν −

√
ν2 +Q2 cos θγ∗γ)

1 + 1
mp

(ν −
√
ν2 +Q2 cos θγ∗γ)

. (5.3)

Such a definition improves the resolution of t by one order of magnitude [Ell04], even
though only in the case of elastic process where the target proton/deuteron is considered
as a free particle the tc equals to t. In the case of background processes the relation
between tc and t is not obvious. Differences between tc and t appear also for coherent
and incoherent processes. The latter is expected due to the fact that the nucleons in the
deuteron are not free and possess a Fermi motion. However, the Monte Carlo simulations
show that for coherent and incoherent processes the tc and t are strongly correlated, which
allows to use tc in the following analysis. This is not the case for associated processes,
however the latter ones are not the main processes of interest in current analysis. On
the left panel of Figure 5.5 the distribution of kinematic variable −t is shown for the
exclusive sample of 2005 year, and on the right panel the correlation between −t and
−tc is presented. The smeared distribution of −t versus −tc originates from the limited
resolution of the calorimeter and possible contribution of the background processes in the
total measured signal.

In the data analysis an upper cut of |tc| < 0.7GeV 2 was applied in order to suppress
the background contribution. The left plot in Figure 5.6 shows the Monte Carlo simulated
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Figure 5.6: The Monte Carlo simulated fractional contributions of the signal and back-
ground processes are shown in bins of tc (left panel) and in bins of squared missing mass
M2

X (right panel).

fractional contributions of signal and background processes. Note that this constraint cuts
a negligible amount of data, as the typical values of −tc are well below 1GeV 2.

The applied constraints on opening angle θγ∗γ and tc can not totally exclude the non-
exclusive events. The further improvement of exclusivity of the data set is possible by
means of missing mass technique. The squared missing mass is defined as

M2
X = (q + p− q′)2

= m2
p + 2mp(ν − Eγ) + t. (5.4)

As in the case of t, the photon energy also enters in the calculation of M2
X , resulting in

a limited resolution of missing mass. As a consequence, the distribution of M2
x reaches

negative values. In practice their is no need to consider the MX rather than M2
X . However

in previous analysis the final exclusive sample of events was selected requiring the missing
mass to be −1.5GeV < Mx < 1.7GeV or respectively for the squared missing mass
−2.25GeV 2 < M2

X < 2.89GeV 2. This exclusive window was obtained from a Monte Carlo
studies performed in [Ely02]. In that studies the resolution of M2

X was estimated to be
1.840GeV 2, with central value of 1.502GeV 2, so the resolution in MX was approximated
according to

δMX =
d(MX)

d(MX)2
δM2

X =
1

2MX

δM2
X ≈ 0.8GeV. (5.5)

The exclusive window was chosen as −3δMX below and only +1δMX above the proton
mass, as the missing mass of the background processes is larger. In this analysis of
DVCS on deuteron, the upper cut on M2

X distribution was studied using a Monte Carlo
simulations. The result is shown on the right plot of Figure 5.6, where the fractional
contributions of signal and background processes are presented versus the squared missing
mass. The vertical lines on the plot represent the chosen exclusive window, which exactly
indicates the point where the background starts to dominate over the signal. Finally the
allowed intervals in Q2 and xN were limited by Q2 < 10GeV 2 and 0.03 < xN < 0.35, in
order to fix the kinematic coverage. This final sample of events refers to as an exclusive
sample.

Note that in the above presented procedure of event selection, various kinematic vari-
ables were reconstructed using the proton mass, although in the total yield also the
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Figure 5.7: The correlations between kinematic variables calculated with proton and
deuteron masses. On the top the inclusive variables W 2 and x are shown, and on the
bottom the exclusive variables tc and M2

X .

coherent process on the deuteron contributes. Since the recoiled target particle remains
undetected, one can not clearly separate the coherent and incoherent processes. There-
fore, in the reconstruction of the kinematic variables either proton or deuteron mass can
be chosen. However, as can be seen from Figure 5.7 both inclusive and exclusive variables
defined with proton and deuteron masses are strongly correlated. Hence, changing the
target mass in the calculations of certain kinematic variables, the corresponding values of
kinematic cuts will be changed only.

5.2.4 Luminosity and Normalization

In the current report, the presented results of the asymmetries were extracted using
the yield of DVCS/BH events, which are normalized to either time integrated luminosity
or to number of DIS events. The relation between observed experimental event rate R
and the cross section of the studied process is given by

R = σLE . (5.6)

Here, the E denotes the efficiency and receives contributions from the detector dead time,
trigger and tracking efficiencies, and other effects. Hence, the normalization of measured
event rate to absolute cross section requires a careful accounting for the efficiencies. From
the other side, one can use the proportionality of time integrated luminosity to the rate of
accepted deep inelastic scattering events for the relative normalization of the asymmetries.
Therefore, assuming that the experimental setup did not changed
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NDIS,1

NDIS,2

=

∫
1
dtL∫

2
dtL . (5.7)

Here, the indices (1,2) denote different data sets. This method of normalization is appli-
cable only for the data collected on an unpolarized target. As the HERA lepton beam is
always longitudinally polarized, the experimental yield of DIS events on a longitudinally
polarized target contains a double-spin dependent contribution. This breaks the constant
proportionality between the number of DIS events and time integrated luminosity. There-
for, for the normalization of the asymmetries from longitudinally polarized deuterium data
the total number of DIS can not be used anymore. Instead the time integrated luminosity
was used for the normalization of the asymmetries defined in section 3.4.2. Other prob-
lem with the DIS normalization occurs when combining data sets taken in different years.
Due to the changes in apparatus as well as accumulated radiation damage together with
possible misalignment of the detector components with respect to each other and with
respect to a beam, the constant of proportionality between number of DIS events and
time integrated luminosity can differ from year to year. Note, that the DIS normalization
is not sensitive to dead time corrections or global tracking inefficiencies, as the DIS events
as well as the DVCS events will be affected in the same way. It could be sensitive only
to trigger inefficiencies. This allows to obtain precise asymmetries from the data on an
unpolarized deuterium.

At HERMES the measurement of the luminosity is based on the knowledge of the cross
sections of Bhabha and Moller scattering. The coincidence rate RLUMI of such events,
measured by the luminosity monitor, is selected as:

L = C
A

Z

∫
dtRLUMI , (5.8)

where A denotes the number of nucleons per nucleus and Z denotes the number of protons
per nucleus. The uncertainty in the measurement of the luminosity comes from the uncer-
tainty of the determination of luminosity constant C, which is obtained from Monte Carlo
simulations. As the luminosity constant depends on the beam position, slopes and also
on the charge of the beam, it is provided separately for each data taking year. The values
of the luminosity constants for the data collected on a longitudinally polarized deuterium
are C = 417 ± 30mbarn−1 for the years 1999 and 2000, while it is reduced by a factor
of about 0.6 for the year 1998 [Els02]. The uncertainty of the luminosity constant results
in about 7.2% uncertainty in the measurement of integrated luminosity The integrated
luminosities obtained in this way are used for the normalization of asymmetries from the
data collected on a longitudinally polarized deuterium target.

5.2.5 Summary of event selection

The result of the event selection, that was described in previous sections is summarized
in the Table 5.3. Here the numbers of final exclusive events, are listed for different data
taking years and different configurations of beam charge, beam helicity and target spin
projection. Also presented are the numbers of DIS events, together with the luminosity
averaged values of beam and target polarization. The data productions used in this
analysis are mentioned in the table as well. Note that from 1998 to 2000 HERMES
has collected data on both unpolarized and longitudinally vector polarized deuterons.
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Figure 5.8: The correlations between kinematic variables Q2, xN and tc.

Data with electron beam were accumulated in 1998 and in 2005. Up to 1998 the beam
helicity was fixed within one year of data taking, while after that the helicity of the
beam was reversed approximately every two months. The average beam polarization
was typically lower for the electron data. As a consequence, in former analysis for the
extraction of target spin asymmetry the beam helicity balancing cuts were applied, in
order to reduce the net beam polarization. In the present report the beam balancing cuts
were omitted. Instead a combined analysis was performed (described in section 5.4), that
allows a simultaneous extraction of single-spin asymmetries together with double-spin
asymmetry.

The final results of the asymmetries will be presented in bins of kinematic variables
−tc, xN and Q2. In Figure 5.8 the correlations between those variables are presented for

−tc[GeV 2] xN Q2[GeV 2]

0.00-0.03 0.03-0.06 1.0-1.4
0.03-0.06 0.06-0.08 1.4-1.8
0.06-0.10 0.08-0.10 1.8-2.4
0.10-0.20 0.10-0.13 2.4-3.2
0.20-0.35 0.13-0.20 3.2-4.5
0.35-0.70 0.20-0.35 4.5-10.0

−tc[GeV 2] xN Q2[GeV 2]

0.00-0.06 0.03-0.07 1.0-1.5
0.06-0.14 0.07-0.10 1.5-2.3
0.14-0.30 0.10-0.15 2.3-3.5
0.30-0.70 0.15-0.35 3.5-10.0

Table 5.2: The binning used in the analysis of data collected on an unpolarized deuterium
is given in the left side table. In the right side the binning used in the analysis of
longitudinally polarized deuterium data is given.
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Year Target Beam Beam Nexcl. NDIS PBeam PTarget
State Charge Helicity

96d0 unpol + + 1586 1530286 51.644 % -
96d0 unpol + - - - - -
97d1 unpol + + - - - -
97d1 unpol + - 1843 1752367 -51.054 % -
98d0 unpol - + - - - -
98d0 unpol - - 1015 920076 -30.692 % -
99c0 unpol + + 193 172563 41.751 % -
99c0 unpol + - 26 31592 -55.230 % -
00d2 unpol + + 271 242563 55.809 % -
00d2 unpol + - 1128 1058919 -58.449 % -
05c1 unpol - + 2669 2348513 37.714 % -
05c1 unpol - - 2606 2346854 -35.467 % -

98d0 + - + - - - -
98d0 + - - 539 458171 -50.925 % 85.6 %
98d0 - - + - - - -
98d0 - - - 500 455906 -50.893 % -85.6 %
99c0 + + + 285 252984 51.789 % 83.2 %
99c0 + + - 242 263712 -54.689 % 83.2 %
99c0 - + + 306 237930 51.817 % -83.2 %
99c0 - + - 263 235358 -54.652 % -83.2 %
00d2 + + + 1521 1417381 52.397 % 85.1 %
00d2 + + - 787 769102 -53.676 % 85.1 %
00d2 - + + 1625 1476289 52.467 % -84.0 %
00d2 - + - 826 760053 -53.669 % -84.0 %

Table 5.3: The numbers of exclusive and DIS events for different data taking years and
different configuration of beam charge, beam helicity and target spin projection. together
with luminosity averaged values of beam and target polarization.

the exclusive data sample from the year 2005. The inclusive variables xN andQ2 are highly
correlated within the HERMES acceptance, while their is no strong correlation between
those two variables with −tc. In Table 5.2 the kinematic ranges (bins) of the above
mentioned variables are presented that were chosen for the presentation of final results
on asymmetries. The analysis of data on an unpolarized deuteron was performed in six
bins for each kinematic variable, while the analysis of data on longitudinally polarized
deuteron, due to lower statistics, was performed in four bins. The ranges of the bins were
chosen in a way that gain approximately similar amount of events in each bin. Also it
was required that the respective resolutions of the variables were smaller than the widths
of the bins and the full coverage of the φ acceptance was ensured in each bin.

According to HERMES convention, all results need to be cross-check by independent
coworkers. The cross-check of current analysis was performed in two steps. First the event
selection procedure was cross-checked, i.e. the numbers of DIS and exclusive events were
checked for all the analyzed data sample. In the second step the extraction procedure
which is described in section 5.4 was cross-checked. The cross-check was done by G. Hill,
D. Mahon (Glasgow University) and H. Marukyan (Yerevan Physics Institute), and the
results can be found in [MHMM08, MM09].
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5.3 Monte Carlo simulation

In this section the Monte Carlo simulation of the DVCS/BH processes, together with
the simulation of background processes is considered. A precise simulation of all relevant
processes is one of the essential requirements for the correct treatment of the measure-
ments. Monte Carlo simulations are widely used for estimation of various systematic
effects due to the detector response. They also provide a quantitative information about
signal to background ratio in different kinematic domains and are used for motivated
choice of kinematic cuts, as was discussed in previous sections.

The Monte Carlo production chain can be considered in three steps. At first, genera-
tion of various physics processes is carried out by special packages referred to as Genera-
tor of Monte Carlo (GMC). Depending on the specific type of considered process, various
event generators need to be used. The output of the GMC packages does not contain any
information about the geometry and the responses of certain detector components of the
HERMES spectrometer. Hence, for the implementation of the acceptance and particle
interaction effects , in the second step of Monte Carlo production, the generated events
pass through Hermes Monte Carlo package (HMC). HMC is based on the GEANT3 pack-
age [Bru78] and contains a precise model of each component of the spectrometer and the
target. The geometry and material of the different volumes can be set externally to the
HMC package. This allows to take care of possible effects caused my the relative alignment
of the detector components. The latter is important when combining data from different
years and with different alignments. HMC tracks the particles through the detector and

32 CHAPTER 4. MONTE CARLO SIMULATION

4.1 The HMonte Carlo Setup

GMC

HMC

HRC

microDSTwriter

HSG

Figure 4.1

Overview of the

H Monte Carlo

chain

The HMonte Carlo consists of a set of programs which

act as building blocks for a complete Monte Carlo chain (see

Figure 4.1). Each Monte Carlo production starts with a Gen-

erator Monte Carlo (GMC) program. Several event gen-

erators are available which are suitable to simulate different

aspects of H physics. Their output can be considered

as a simulation of what “really” happens on the physics level.

For a reasonable comparison with experimental data, however,

further effects have to be taken into account which are inevit-

ably introduced by the measuring process: Depending on the

kinematical regime, only a certain part of the particles in fact

traverse the detector. There, they might interact with detector

(and target) material before their kinematic properties can ac-

tually be measured. In the form of (multiple) scattering, these

interactions influence the energies and the measured angles of

the tracks. Since the particle momentum is determined by the bending of the tracks

induced by the spectrometer magnet, also the momentum determination is affected. Ad-

ditionally, the radiation of Bremsstrahlungsphotons biases the detected energy of the

particles. Finally, the detector signals have to be interpreted by the reconstruction pro-

gram. The reconstructed track properties (momentum, angles, particle type, . . . ) are

subject to inefficiencies like the limited detector resolution, misidentifications or even

complete particle loss if the signal does not allow to decode the information.

The acceptance and particle interaction effects are calculated by a program called

H Monte Carlo (HMC). It contains a model of the H detector and the tar-

get based on the GEANT toolkit [Bru78]. For each particle, the transition through the

detector is simulated taking into account the interaction cross sections with the material

it traverses. The HMC output contains the response of the detector components, such

as the signals from the individual wires of the tracking chambers. It is thus similar to

the actual detector responses recorded from the experiment, except that it contains in

addition the Monte Carlo information such as particle type and the originally generated

particle kinematics.

Due to the compatible data format, the HMC output can be fed directly into theH-

 reconstruction (HRC) program, which is also used to decode the detector response

of the real experiment (see Sec. 3.4.2 on page 27 and [Wan96]). Since the procedure to

transfer the detector response into actual track properties is thus identical for experiment

and simulation, all possible biases introduced at this stage are automatically accounted

for.

As a last step, the data is usually passed through the µDST writer. This step is ana-
logous to the experimental data productions. The result is a data set whose format is

compatible to experimental data set, except for the additional Monte Carlo information

(true particle type, true track kinematics, . . . ).

Figure 5.9: A diagram illustrating Monte Carlo Production chain at HERMES.

simulates all the possible interactions with the material in different components of the
spectrometer. The output of the HMC contains all the responses of the detectors like
energy depositions of the particles or signals from the wires of tracking chambers. In
addition HMC output contains extra information about particle types and the kinematic
parameters originally generated by the GMC, thus allowing to perform a spectrometer
resolution studies. Finally the output of HMC passes through HERMES Reconstruction
(HRC) package, which is used also for the production of experimental data. Here the
detector responses are transferred to reconstruction of particle tracks exactly in a same
way, like it was done for experimental data. Afterwards the µDSTwriter stores all the
information about particle types and tracks in the µDST files, which have compatible
structure with the ones from real experimental data. The above discussed steps of Monte
Carlo production are illustrated in Figure 5.9. Monte Carlo productions generated in the
full chain GMC+HMC+HRC referred to as fully tracked productions. Since the fully
trucked production are very time consuming, an alternative procedure exists, i.e. instead
of complete detector simulation the HERMES Smearing Generator (HSG) can be used.
Instead of tracking the particles through detector, the HSG uses the geometry of the
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spectrometer and look-up tables that contain information about possible influence of the
detectors on the position and momentum of the particles. Although the HSG production
contains significant approximations, it can be used for the quick estimation of kinematic
smearing effects and tracking inefficiencies , in a significantly shorter time intervals. All
Monte Carlo productions used in the current analysis were tracked with the full HERMES
Monte Carlo production chain, i.e. GMC+HMC+HRC.

5.3.1 Monte Carlo generators

In present analysis three Monte Carlo generators gmc dvcs, gmc dual and gmc DISNG
are used for the simulation of the relevant processes.

The gmc dvcs generator is used for the simulation of elastic DVCS/BH events and
the BH events with excitation of resonances (associated processes). The cross sections
of an unpolarized BH process are simulated based on the Mo-Tsai formalism [MT69].
The latter is applied for both nucleons and deuteron. For the calculation of unpolarized
coherent BH cross section within the Mo-Tsai formalism, only two electromagnetic form
factors are needed, that were taken from [Ste75]. The doubly polarized cross sections
are available only for nucleons. The double spin dependent part of the cross sections is
adopted from [BMK02].

The gmc dvcs generator simulates also the associated BH processes with resonance
excitation. The mass of the final unobserved hadronic state was generated between 1.1
and 2GeV . The W dependence of the total γ∗p(n) cross section was modeled accord-
ing to Brasse parameterization [Bra76]. The individual cross sections for single-meson
production channels were modeled according to MAID2000 model [DHKT99].

The simulation of elastic DVCS process on nucleons is based on the analytic expressions
of the cross sections from [BMK02]. In gmc dvcs generator the parameterization of GPDs
is taken from [VGG99]. Within this parameterization, five different variants of the model

were suggested in [KN02], where only three GPDs H, H̃ and E are considered.

• The three GPDs H, H̃ and E are not skewed and factorize in x and t.

• The GPDs are skewed within the double-distribution formalism from [Rad99] and
the t-dependence of GPDs is factorized. The slope parameter b is set to 1.

• The same as the previous model, but with the slope parameter set to 3.

• The same as model two, but the double-distribution ansatz was expanded by adding
a D-term according to the predictions of the chiral quark-soliton model. The slope
parameter is set to 1.

• The same as the previous model, but with the slope parameter set to 3.

Although several GPD models exist that can be used for the simulation of coherent
DVCS process on deuteron, currently non of them was precisely implemented in the gen-
erator. Instead, in the gmc dvcs generator the coherent DVCS process on deuteron was
simulated as modulation factor of the coherent BH cross section σDV CS,coh. = σBH,coh ·(1+
λALU), where the prediction for ALU was taken from [KM04]. Due to lack of informa-
tion, also the associated DVCS process is not included in the generator. The incoherent
DVCS/BH process is implemented according to [Ber72], where the bound state effects are
taken into account. The latter is done by adding a suppression factor that modifies the
electric form factor of proton [Ste75], under the assumption that the electric form factor
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of neutron can be neglected. The detailed description of the gmc dvcs generator can be
found in [Kra05].

The gmc dual generator is an alternative to gmc dvcs to simulate the elastic BH/DVCS
cross sections. It is based on the dual parameterization of GPDs discussed in [GT06]. The

generator dose not contain any information about GPDs H̃ and Ẽ, hence it can be used
only for unpolarized targets. For the deuteron target the coherent process is modeled in
similar way as in gmc dvcs. No suppression is applied for the incoherent channel, i.e.
the nucleons in a deuteron are considered as a quasi-free particles. The generator con-
tains both factorized and Regge ansatz’s for modeling the t-dependence of GPDs. The
associated processes were not implemented in the gmc dual generator.

The gmc DISNG generator simulates semi-inclusive DIS processes. It is one of the
main generators used at HERMES. The generator is an extension of the leptoproduction
generator LEPTO [Ing97] which simulates polarized DIS processes. The fragmentation
and decay of the produced hadrons is simulated with JETSET [Sjo95], which in turn
is based on the LUND string model [AGIS83]. The used LUND model was tuned for
HERMES kinematics [Hil05]. Radiative processes are included with RADGEN [Aku99],
which provides simulation of both the elastic and associated BH processes. However, in
this code the simulation of the associated BH process is found to overestimate the cross
section [Kra05]. Hence, in the following the gmc DISNG will be used only for simulation
of semi-inclusive DIS processes.

Not included in the above discussed Monte Carlo generators are the radiative correc-
tions for DVCS process and also for BH process, i.e. higher order radiative corrections
to elastic scattering, which can have a substantial impact on the simulation of the cross
sections. Also one of the background processes, mainly the contribution of exclusive π0

production was not considered in this report, as it was found that the contribution from
exclusive π0 production is less than 1% for both hydrogen [Zei09] and deuterium [Kra05]
targets. The simulation of exclusive π0 production in the above mentioned references was
carried out by the gmc exclpion generator, which is based on the GPD model described
in [VGG99].

5.3.2 Data to Monte Carlo comparison

As it was mentioned above, the Monte Carlo events are reconstructed by HRC and
stored in µDST files. This allows to analyse the Monte Carlo data in a same way as the
real data, omitting only the data quality requirements, as it is assumed that in Monte
Carlo the particle identification is ideal. In order to compare the experimental data with
Monte Carlo, the output from different Monte Carlo generators needs to be combined. In
Figure 5.10 the comparison between real data and the Monte Carlo for kinematic variables
Q2, xN , θγγ∗, φ, Eγ, Elepton, M2

x and −tc are shown. In all figures except from a M2
x

distribution, the data correspond to an exclusive sample of events. The Monte Carlo data
were obtained from the combined gmc dvcs and gmc DISNG yield. From the gmc dvcs
generator the elastic/associated BH processes were chosen. The DVCS process was not
included for the comparison in Figure 5.10, to avoid a model dependent uncertainties. The
process of semi-inclusive production of π0 was selected from gmc DISNG production.
The presented data points correspond to whole data sample collected on an unpolarized
deuterium target. Also are presented the contributions of all relevant processes from
Monte Carlo and the ratio of Monte Carlo and data. The latter indicates a good agreement
between data and Monte Carlo. The existing differences can be caused by the missing
DVCS process, which is strongly model dependent. From the other side consideration
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Figure 5.10: Comparison between the Monte Carlo simulation (solid lines) and the exper-
imental data (solid points). Also shown are individual contributions from elastic coherent
(solid lines), elastic incoherent (dashed -doted lines), associated BH processes (shaded
area), and semi-inclusive processes (dotted line). The open points represent Monte Carlo
to data ratio.
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of DVCS process in the data to Monte Carlo comparison requires precise simulation
of radiative corrections, which currently are not available for the HERMES kinematic
conditions. Detailed comparison of data with five different Monte Carlo models can be
found in [Ye07], which indicates a small influence of the DVCS process on the estimation
of the fractional contributions of various processes in the measured signal.

5.3.3 Detector Resolution and Estimates for the Fractional Con-
tributions of Relevant Processes

Since the current report contains analysis of large amount of data collected on both
unpolarized and longitudinally polarized Deuterium target, it is expedient to perform the
kinematic dependences of the measured asymmetries. For an appropriate choice of binning
in a certain kinematic quantity, the resolutions of that quantity needs to be studied, to be
sure that the chosen bin widths are larger than the measurement accuracy of the quantity.

The resolutions can be studied from a Monte Carlo simulations, comparing the gen-
erated values of the kinematic variables with reconstructed ones. They are obtained as a
standard deviations from the differences between reconstructed and generated variables.
While in certain cases, it is useful to consider the width obtained from a Gaussian fit
to the difference between reconstructed and generated values, in order to suppress the
contributions from a long tails originating from a Bremsstrahlung in the detector. The
momentum and angular resolutions of DIS leptons are shown in Figure 5.11. The resolu-
tions are obtained from a Gaussian fit and are found to be below 2.6% and 0.9mrad for
momentum and scattering angle respectively. An increase of the momentum resolution
for faster leptons is caused by smaller deflection due the the spectrometer magnet.

P
/P

 (
%

)
δ

0

1

2

5 10 15 20 250

1

2

P [GeV]
5 10 15 20

 [
m

ra
d

]
le

p
to

n
θδ

0

0.5

1

0.05 0.1 0.15 0.20

0.5

1

 [rad]leptonθ
0.05 0.1 0.15 0.2

Figure 5.11: The momentum (top) and angular (bottom) resolutions of the DIS leptons
obtained from a Gaussian fit.

For kinematic variables Q2, xN , −tc, −t, φ, θγγ∗, Eγ, zvtx, φlepton the average differ-
ences between reconstructed and generated values are shown in Figure 5.12 as a function
of corresponding reconstructed variable. They were derived from an exclusive Monte
Carlo sample. Also are shown the mean values obtained from a fit with simple Gaus-
sian function to the difference of reconstructed and generated variables. For the same
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Figure 5.12: The mean of the distributions and the mean from a simple Gaussian fit to
the difference between reconstructed and generated kinematic variables as a function of
reconstructed variable.
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Figure 5.13: The RMS and the standard deviations from a simple Gaussian fit to the
difference between reconstructed and generated kinematic variables as a function of re-
constructed variable.
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set of kinematic variables the resolutions and the widths of Gaussian fits are shown in
Figure 5.13. Due to the specific kinematics of fixed-target experiment the Q2 and xN are
strongly correlated and the precision of their reconstruction is sensitive to the resolution
of the momentum and scattering angle. The obtained resolutions for Q2 and xN ensure
the reasonable choice of binning given in Table 5.2. Same holds also for tc, which has
a resolution of about 0.04GeV 2 for relatively large values −tc, while for smaller values
(−tc < 0.06GeV 2) the resolution is about 0.01GeV 2. Comparing the obtained resolutions
for −tc and −t one can see significant improvement of situation in the case of constrained
variable −tc. This is a consequence of large resolution in measurement of photon energies
Eγ, which is about 500MeV for a typical energy values of the exclusive sample 15GeV .
As was mentioned in section 5.2.3 the choice of constrained variable tc instead of t leads
to a smearing of events for background processes toward lower values of −tc. This was
studied in details in [Ell04] for both associated and semi-inclusive DIS processes. The
observed magnitude of the background event migration increases with increasing −tc and
appears to be quit large for relatively large values of −tc. While due to the decrease of
the total exclusive yield at larger values of −tc and consequently also for the background
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Figure 5.14: Fractional contributions in the exclusive sample of events from coherent,
incoherent, associated and Semi-inclusive DIS processes for the entire HERMES kine-
matics (left column) and in 6 bins in −tc, Q2 and xN , obtained from Monte Carlo. The
contributions of incoherent and associated processes are shown separately for proton and
neutron.
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processes, the absolute size of his effect is expected to have a negligible impact on the
measurement.Therefore the choice of constrained variable tc appears to be reasonable. On
the other side the migration of the background events can be accounted in the estimation
of fractional contributions of relevant processes in the exclusive sample.

For the measurement of azimuthal asymmetries, the precision of the reconstruction of
azimuthal angle φ is of special importance. It’s reconstruction is based on the determi-
nation of the scattering and production planes. The scattering plane is defined by the
momentum vectors of incident and scattered leptons, while the production plane is defined

by the momentum vectors of virtual and real photons,
−→
q∗ and −→q respectively. The recon-

struction of virtual photon momentum vector is directly related to the reconstruction of
scattered lepton momentum vector, while for the determination of real photon momentum
vector the precise knowledge of the photon hit position in the calorimeter and the vertex
position in the target are required. The resolution of reconstructed hit positions in the
calorimeter was studied in details in [Kra05, Ely02] and was found to be of an order 0.5 cm.
The precision of the measurement of azimuthal angle depends on measured uncertainty of
polar angle θγγ∗ between virtual and real photons. The resolution of the polar angle θγγ∗
is less then 3mrad in the region 0.005 rad < θγγ∗ < 0.045 rad, while it increases with the
increasing value of θγγ∗ above 45mrad. Therefore, in order to obtain a reliable measure-
ment of azimuthal angle φ, the lower limit on the polar angle θγγ∗ > 0.003 rad should be
applied. Nevertheless, the investigation of the resolution of azimuthal angle versus polar
angle (not shown here) and also the estimates for the smearing effects indicate, that an
appropriate choice of lower limit on polar angle is 0.005mrad [Kra05, Kop06].

Throughout this analysis the Monte Carlo simulations were used also for the estimation
of possible contributions of the relevant processes in the measured total yield. As an
example, in Figure 5.14 the fractional contributions of coherent, incoherent, associated and
semi-inclusive DIS processes in the exclusive sample of events are shown. The contribution
of incoherent and associated processes are shown separately for proton and neutron. The

Kinematic bin Quasi elastic(%) Coherent(%) Associated(%) Semi-inclusive(%)
overall 60.4 ± 0.3 17.7 ± 0.2 17.7 ± 0.1 4.2 ± 0.3

< 0.06 51.6 ± 0.6 36.4 ± 0.6 8.8 ± 0.1 3.1 ± 0.5
−tc 0.06 - 0.14 67.1 ± 0.7 10.7 ± 0.1 16.8 ± 0.2 5.4 ± 0.6

(GeV 2) 0.14 - 0.30 66.6 ± 0.6 3.0 ± 0.1 25.7 ± 0.3 5.1± 0.5
0.30 - 0.70 59.9 ± 0.6 0.6 ± 0.0 36.9 ± 0.5 2.6 ± 0.4
0.03 - 0.07 57.4 ± 0.6 24.6 ± 0.6 16.4 ± 0.2 1.6 ± 0.3

xN 0.07 - 0.10 62.8 ± 0.7 18.9 ± 0.3 17.2 ± 0.2 4.0 ± 0.6
0.10 - 0.15 62.7 ± 0.7 12.3 ± 0.2 18.9 ± 0.3 6.1 ± 0.8
0.15 - 0.35 65.4 ± 0.7 5.3 ± 0.1 20.2 ± 0.3 9.1 ± 0.8
1.0 - 1.5 57.8 ± 0.8 24.1 ± 0.6 13.9 ± 0.2 4.2 ± 0.7

Q2 1.5 - 2.3 59.1 ± 0.7 19.4 ± 0.4 16.9 ± 0.2 4.6 ± 0.6
(GeV 2) 2.3 - 3.5 61.0 ± 0.7 15.1 ± 0.3 19.6 ± 0.2 4.3 ±0.5

3.5 - 10.0 65.7 ± 0.5 8.0 ± 0.1 22.6 ± 0.3 3.7 ± 0.3

Table 5.4: The fractional contributions of various processes that contribute in the exclusive
sample. The fractions are obtained from the combined Monte Carlo data sample of
gmc dvcs and gmc DISNG generators. The latter was used only for simulation of semi-
inclusive processes.The fractions are given for the entire HERMES kinematics and in four
bins of −tc, xN and Q2.
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fractions are given for the entire HERMES kinematics and for 6 bins in −tc, Q2 and xN .
The numerical values of the fractions are given in Tables 5.4 and 5.5 for 4 and 6 bins in
−tc, Q2 and xN , respectively. Note that in current analysis the contribution of exclusively
produced neutral pions was not considered, as it was explained in section 5.3.3.

From Figure 5.14 and Tables 5.4 - 5.5 one can see that the coherent reaction contributes
mainly at very small values of the momentum transfer to the target, while the incoherent
process dominates elsewhere. The largest contribution from the coherent process appears
in the first −tc bin (see Table 5.5). Requiring −tc < 0.01GeV 2 can further enhance
the coherent contribution to 66%, but only at the cost of a rapidly decreasing yield. In
the following the −tc bins covering the range 0.00 − 0.06GeV 2 will provide a measure
of coherent effects. Meanwhile at large values of −tc the contribution from associated
processes significantly increases. The proton contributes about 75% of the incoherent
yield and the neutron about 25%, and included in these, nucleon resonance production
contributes about 22% of the incoherent yield. The incoherent reaction on a proton
dominates that on a neutron because of the suppression of the Bethe -Heitler amplitude
on the neutron by the small elastic electric form factor at low and moderate values of the
momentum transfer to the target. This is not the case for associated processes, where the
single-photon yields on proton and neutron are approximately the same.

The contribution from semi-inclusive processes varies from 1% to 12%, depending on
the kinematic conditions. It contributes about 4.2% for the entire HERMES kinematics,
while the largest contribution appears at large values of xN .

Kinematic bin Quasi elastic(%) Coherent(%) Associated(%) Semi-inclusive(%)
overall 60.4 ± 0.3 17.7 ± 0.2 17.7 ± 0.1 4.2 ± 0.3

< 0.03 42.7 ± 0.9 48.1 ± 1.1 6.4 ± 0.2 2.8 ± 0.7
0.03 - 0.06 59.9 ± 0.9 25.6 ± 0.5 11.0 ± 0.2 3.5 ± 0.7

−tc 0.06 - 0.10 66.9 ± 0.9 13.0 ± 0.2 15.0 ± 0.3 5.1 ± 0.8
(GeV 2) 0.10 - 0.20 68.4 ± 0.7 5.3 ± 0.1 20.6 ± 0.3 5.7± 0.6

0.20 - 0.35 65.1 ± 0.6 1.7 ± 0.0 28.9 ± 0.4 4.3 ± 0.5
0.35 - 0.70 58.3 ± 0.7 0.5 ± 0.0 38.7 ± 0.6 2.5 ± 0.5
0.03 - 0.06 57.0 ± 0.7 25.8 ± 0.7 16.1 ± 0.3 1.1 ± 0.3
0.06 - 0.08 59.3 ± 0.7 21.4 ± 0.5 16.0 ± 0.3 3.3 ± 0.6

xN 0.08 - 0.10 61.2 ± 0.8 17.6 ± 0.4 17.3 ± 0.3 3.9 ± 0.8
0.10 - 0.13 63.6 ± 0.8 12.7 ± 0.2 18.4 ± 0.3 5.3 ± 0.8
0.13 - 0.20 64.2 ± 0.7 7.8 ± 0.1 20.3 ± 0.3 7.7 ± 0.9
0.20 - 0.35 65.0 ± 0.9 3.2 ± 0.1 19.8 ± 0.4 12.0 ± 1.2
1.0 - 1.4 57.1 ± 0.8 25.3 ± 0.7 13.3 ± 0.2 4.3 ± 0.8
1.4 - 1.8 59.5 ± 0.9 20.9 ± 0.6 15.4 ± 0.3 4.2 ± 0.7

Q2 1.8 - 2.4 60.5 ± 0.8 17.2 ± 0.5 17.2 ± 0.3 5.1 ± 0.7
(GeV 2) 2.4 - 3.2 61.9 ± 0.8 15.0 ± 0.4 19.3 ± 0.3 3.8 ±0.5

3.2 - 4.5 64.0 ± 0.7 10.9 ± 0.2 21.9 ± 0.3 3.2 ± 0.4
4.5 - 10.0 66.5 ± 0.6 5.5 ± 0.1 23.7 ± 0.3 4.3 ± 0.4

Table 5.5: The fractional contributions of various processes that contribute in the exclusive
sample. The fractions are obtained from the combined Monte Carlo data sample of
gmc dvcs and gmc DISNG generators. The latter was used only for simulation of semi-
inclusive processes. The fractions are given for the entire HERMES kinematics and in six
bins of −tc, xN and Q2.
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5.4 Extraction of the amplitudes of azimuthal asym-

metries

In the present analysis the asymmetries in the azimuthal distributions of real pho-
tons were fitted with maximum likelihood technique, which is widely used in high-energy
physics [Ams08]. An important advantage of maximum likelihood method compared with
least-squares method, is that it does not need a binned distribution in azimuthal angle
φ. From the other side, maximum likelihood method does not provide any measure of
goodness of fit like χ2. Nevertheless, the goodness of fit can be still tested by fitting a
binned distribution. In this section a brief introduction to maximum likelihood method
is given, and its application to the present analysis is detailed.

5.4.1 Maximum likelihood fitting method

Suppose one has N sets of independently measured quantities xi = y1, y2, ..., which
are expected to be distributed by a probability distribution function (p.d.f.) f(xi, θ).
The latter depends on a set of unknown parameters θ, that had to be determined. The
likelihood function L for a given set of measurements is defined as a product of p.d.f.s

L =
N∏

i=1

f(xi, θ). (5.9)

Hence, the likelihood function represents a joint probability of all measurement. In this
context it follows, that for the set of apriori unknown parameters θ, which provide the
most sufficient description of the measured data, the likelihood function will have a max-
imum. So the parameters θ can be determined by maximizing the likelihood function or
equivalently minimizing the negative logarithm of it. The parameters θ are the solution
of the system of equations

∂lnL
∂θj

= 0, j = 1, 2, .. (5.10)

The inverse covariance matrix is given by

(C−1)ij = − ∂
2lnL

∂θi∂θj
. (5.11)

The precise determination of the unknown parameters strongly depends on the normal-
ization of the likelihood function (joint probability) or the p.d.f. f(xi, θ). The p.d.f.
f(xi, θ) is generally normalized to unity

∫
f(xi, θ) = 1, whereas in the maximum likeli-

hood method it is not necessarily to be so. Moreover, in the experimental measurements
the observed number of events (yield) very often has a Poisson fluctuation around its
expected actual value. In this case it is more convenient to use an extended maximum
likelihood method [Bar90], where the likelihood function is extended to

L =
[N(θ)]Ne−N(θ)

N !

N∏

i

f(xi, (θ)), (5.12)

where N(θ) can be interpreted as a normalization of the extended p.d.f F(xi, (θ)) =
f(xi, θ)N(θ)

N(θ) =

∫
F(xi, θ)dx. (5.13)

70



The resulting negative logarithm of extended likelihood function will be

− lnLEML(θ) = −
N∑

i

lnF(xi, θ) + N(θ), (5.14)

while the negative logarithm of a standard likelihood function is

− lnLSML(θ) = −
N∑

i

lnF(xi, θ) +NlnN(θ). (5.15)

A comparison of the EML and SML methods with that of least-square method, performed
on an experimental data, showed that the SML method fails with the correct determi-
nation of the uncertainties of the constant terms included in the fit function [LuY07].
Meanwhile the studies based on the Monte Carlo, showed that the EML method gives
much better results compared with least-square method, when reconstructing known in-
put asymmetries [Ye07]. A detailed comparison of EML and SML methods is given also
in [Hill08] and [Mah10]. The results of the fits that will be presented in the following are
extracted using the EML method.

5.4.2 Combined fit to the asymmetries from an unpolarized data

The data collected on an unpolarized deuterium target with both beam polarizations
and both beam charges were combined, which allowed to define three asymmetries given
in Eqs. 3.34 - 3.36. The distribution of the expectation value of the yield for scattering a
polarized lepton beam from an unpolarized deuterium target is given by

〈N〉(P`, e`, φ) = L(P`, e`) ε(e`, φ)σUU(φ)

×
[
1 + P`ADVCS

LU (φ) + e`AC(φ) + e`P`AI
LU(φ)

]
. (5.16)

Here, L denotes the integrated luminosity, P` the longitudinal beam polarization, ε the
detection efficiency, and σUU(φ) the cross section for an unpolarized target averaged over
both beam charges and both beam helicities, which is expressed as

σUU (φ) =
xD

32 (2π)4Q4

1√
1 + ε2

×
{

KBH

P1(φ)P2(φ)

2∑

n=0

cBH
n cos(nφ) +KDVCS

2∑

n=0

cDVCS
n cos(nφ)

}
. (5.17)

The Eq. 5.16 can be used as a p.d.f. for the EML method. To obtain a normalization or
a total number of events, let us consider a number of events dN in a small time dτ and
phase space interval dx = {dQ2dxBjd|t|dφ} for the case of 100 % detection efficiency

dN (x) = L(τ)dτdxσUU(x)
[
1 + e`AC(x) + P`(τ)ADVCS

LU + e`P`(τ)AI
LU

]
. (5.18)

It is convenient to introduce an effective polarization as a product of a beam charge
and polarization Pe` = e`P` and change the integration variable from time τ to effective
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polarization Pe`. Integrating the Eq. 5.18 over the effective polarization one gets

∫
P`>0,

e`=+1

dN (x, Pe`)

dxdPe`
dPe` = (5.19)

−→
N+(x) =

−→
L +σUU(x)

[
1 +AC(x) +

−→
P +ADVCS

LU (x) +
−→
P +AI

LU(x)
]

∫
P`<0,

e`=+1

dN (x, Pe`)

dxdPe`
dPe` = (5.20)

←−
N+(x) =

←−
L +σUU(x)

[
1 +AC(x) +

←−
P +ADVCS

LU (x) +
←−
P +AI

LU(x)
]

∫
P`>0,

e`=−1

dN (x, Pe`)

dxdPe`
dPe` = (5.21)

−→
N−(x) =

−→
L −σUU(x)

[
1−AC(x) +

−→
P −ADVCS

LU (x)−−→P −AI
LU(x)

]

∫
P`<0,

e`=−1

dN (x, Pe`)

dxdPe`
dPe` = (5.22)

←−
N−(x) =

←−
L −σUU(x)

[
1−AC(x) +

←−
P −ADVCS

LU (x)−←−P −AI
LU(x)

]
.

where the +/- sign in the superscript denotes the charge of the beam, while → / ←
denotes the beam helicity. The L and P are the integrated luminosity and luminosity
averaged beam polarizations respectively for each state. Resolving the system of Eqs. 5.19
- 5.22, one can express the unpolarized cross section σUU and three asymmetries through
normalized yields n=N/L and average values of the beam polarization of different states.
The unpolarized cross section will be

σUU(x) =
1

2

[ −→
N+(x)

−→
L +(1−−→P +/

←−
P +)

+

−→
N−(x)

−→
L −(1−−→P −/←−P −)

+

←−
N+(x)

−→
L +(1−←−P +/

−→
P +)

+

←−
N−(x)

←−
L −(1−←−P −/−→P −)

]
, (5.23)

while substituting the expression of σUU from Eq. 5.23 into Eqs. 5.19 - 5.22 and integrating
the latter ones over the x will yield in a total number of events or normalization of the
extended p.d.f..

N(θ) =

∫
dx(
−→
N+(x, θ) +

−→
N−(x, θ) +

←−
N+(x, θ) +

←−
N−(x, θ))

≈
Nobs∑

i=1

K(Pi, ei)
[
M1 +M2AC(xi, θ) +M3ADVCS

LU (xi, θ) +M4AI
LU(xi, θ)

]
(5.24)

where

K(Pi, ei) =





1
2

1−→
L+(1−−→P +/

←−
P +)

(Pi > 0, ei = +1)
1
2

1−→
L−(1−−→P −/←−P −)

(Pi > 0, ei = −1)
1
2

1←−
L+(1−←−P +/

−→
P +)

(Pi < 0, ei = +1)
1
2

1←−
L−(1−←−P −/−→P −)

(Pi < 0, ei = −1)

(5.25)

and
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M1 =
−→
L + +

−→
L − +

←−
L + +

←−
L − (5.26)

M2 =
−→
L + −−→L − +

←−
L + −←−L − (5.27)

M3 =
−→
L +−→P + +

−→
L −
−→
P − +

←−
L +←−P + +

←−
L −
←−
P − (5.28)

M4 =
−→
L +−→P + −−→L −−→P − −←−L +←−P + +

←−
L −
←−
P − . (5.29)

In the evaluation of the integral from Eq. 5.24, the fallowing relations were taken into
account

∫
N (x)dx ≈ Nobs. =

Nobs.∑

i=1

1 (5.30)

∫
N (x)A(x)dx ≈

Nobs.∑

i=1

A(xi). (5.31)

Within the above presented normalization the possible luminosity imbalances with respect
to beam charge and polarization, are accounted by the coefficients K(Pi, ei), hence their
is no need to apply any balancing cuts on the data.

The asymmetries defined in section 3.4 are related to the Fourier coefficients from the
azimuthal decomposition of the leptoproduction cross section of a real photon. Based on
these relations, an appropriate form of the fit function can be chosen for each asymme-
try. Particularly, for the asymmetries extracted from data collected on an unpolarized
deuterium target AC,AI

LU and ADVCS
LU the following expansion in terms of the same har-

monics in φ as in the numerator of the corresponding asymmetries from Eqs. 3.34 - 3.36
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Figure 5.15: The amplitudes of beam-charge asymmetries AC for entire HERMES kine-
matics and in bins of −tc, xN , Q2 extracted from raw data.
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was applied.

AI
LU(φ) '

2∑

n=1

A
sin(nφ)
LU,I sin(nφ) + A

cos(0φ)
LU,I , (5.32)

ADVCS
LU (φ) ' Asinφ

LU,DVCS sinφ+ A
cos(0φ)
LU,DVCS , (5.33)

AC(φ) '
3∑

n=0

A
cos(nφ)
C cos(nφ) . (5.34)

Here, an additional constant amplitudes A
cos(0φ)
LU,I and A

cos(0φ)
LU,DVCS were included in a fit

function as a consistency check. Due to the fact that the asymmetries AI
LU and ADVCS

LU

are odd functions of φ (see Eqs. 3.34 - 3.35), their Fourier decomposition can not contain
constant or even amplitudes. Same holds for the asymmetry AC, while in this case the
Fourier decomposition contains only even amplitudes. The extracted amplitudes of the
asymmetries AC,AI

LU and ADVCS
LU are shown in Figures 5.15 - 5.17. In the left column of

the figures the ‘overall’ results of the asymmetry amplitudes corresponding to the entire
HERMES kinematics are shown, while in the rest columns the results in six bins of tc, xN
and Q2 are presented.

As it was mentioned, in the expression of distribution in expectation value of the mea-
sured yield the detection efficiency enters linearly (see Eq. 5.16). This allows to take into
account the detection inefficiencies by applying weights to corresponding events. Depend-
ing on considered inefficiency, the weight to the event can be applied according to the hit
position on the surface of the detector or for the given kinematic range in certain kinematic
variable or for the given time period, etc.. While in this case the sum of all weights does
not coincide to total number of measured events. This should be taken into account in the
propagation of statistical errors from the maximum likelihood fit. According to [Sol64]
the statistical uncertainties need to be evaluated from the corrected covariance matrix
Ccorr., which is derived from the covariance matrix C obtained in the weighted maximum
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Figure 5.16: The amplitudes of combined asymmetry with respect to beam charge and
beam helicity (charge-difference beam-helicity) AI

LU, extracted from raw data.
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Figure 5.17: The amplitudes of the beam-helicity asymmetry (charge-averaged) ADVCS
LU ,

extracted from raw data.

likelihood fit and from the covariance matrix C ′ obtained in the maximum likelihood fit
weighted with the squares of the weights w2, accordingly:

Ccorr. = C · C ′−1 · C (5.35)

5.4.3 Combined fit to the asymmetries from a longitudinally
polarized data

The EML fit method, described in previous section, can be used to fit also the asym-
metries defined in section 3.4.2 for the scattering off a longitudinally polarized deuterium
target. For the extraction of single-charge asymmetries AL

⇐⇒,ALL and AUL the distribu-
tion in the expectation value of the yield for scattering a longitudinally polarized positron
beam from a longitudinally vector polarized deuterium target read as

d〈N〉(e` = +1, P`, Pz, Pzz, φ) = L (e` = +1, P`, Pz, Pzz) ε(φ)

× dσU⇐⇒(e` = +1, Pzz, φ)
[
1 + P`AL

⇐⇒(e` = +1, Pzz, φ)

+ PzAUL(e` = +1, Pzz, φ) + P`PzALL(e` = +1, Pzz, φ)
]
. (5.36)

In a close analogy with the case of unpolarized data, one can write a system of equations
similar to those in Eqs. 5.19 - 5.22 in order to obtain the normalization of the correspond-
ing EML function. In this case the cross section of the production of real photons by
unpolarized positrons on a tensor-polarized deuterium target with vanishing vector po-
larization σU⇐⇒, and three asymmetries have an internal dependence on the charge of the
beam (which is +1 for this particular case) and on tensor polarization of the target. The
effective polarization will be defined as a product of a beam and target vector polariza-
tion P`z = P`Pz. Then the integration of number of events over the effective polarization
yields,
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∫
P`>0,

Pz>0

dN (x, P`z)

dxdP`z
dP`z = (5.37)

−→
N⇒(x) =

−→
L⇒σU⇐⇒(x)

[
1 +
−→
P ⇒` AL

⇐⇒(x) +
−→
P ⇒z AUL(x) +

−→
P ⇒`
−→
P ⇒z ALL(x)

]

∫
P`>0,

Pz<0

dN (x, P`z)

dxdP`z
dP`z = (5.38)

−→
N⇐(x) =

−→
L⇐σU⇐⇒(x)

[
1 +
−→
P ⇐` AL

⇐⇒(x) +
−→
P ⇐z AUL(x) +

−→
P ⇐`
−→
P ⇐z ALL(x)

]

∫
P`<0,

Pz>0

dN (x, P`z)

dxdP`z
dP`z = (5.39)

←−
N⇒(x) =

←−
L⇒σU⇐⇒(x)

[
1 +
←−
P ⇒` AL

⇐⇒(x) +
←−
P ⇒z AUL(x) +

←−
P ⇒`
←−
P ⇒z ALL(x)

]

∫
P`<0,

Pz<0

dN (x, P`z)

dxdP`z
dP`z = (5.40)

←−
N⇐(x) =

←−
L⇐σU⇐⇒(x)

[
1 +
←−
P ⇐` AL

⇐⇒(x) +
←−
P ⇐z AUL(x) +

←−
P ⇐`
←−
P ⇐z ALL(x)

]
.

Here, the single and double arrows in the superscripts denote the beam and target polar-
ization directions, respectively. In order to obtain the normalization of the p.d.f. which
will account for the luminosity imbalances with respect to the beam and target polariza-
tions, one needs to resolve the system of Eqs. 5.37 - 5.40 with respect to the unpolarized
cross section σU⇐⇒ and asymmetries AL

⇐⇒,ALL,AUL. Then the expression for the unpolar-
ized cross section can be substituted in the system of Eqs. 5.37 - 5.40 and the integration
over the phase-space will give the normalization of the p.d.f.. The complications in this
case appear in the analytic representation of the unpolarized cross section and asymme-
tries through normalized yields n = N/L and luminosity averaged polarizations of the
beam and the target. Due to the fact that the absolute values of the beam and target
polarizations can be different for each of the four states, the general expression for the
unpolarized cross section becomes very complicated. Meanwhile for the extraction of the
asymmetry amplitudes the analytic expressions for the coefficients Ki(P

i
` , P

i
z) are not nec-

essary, hence one can resolve the system of Eqs. 5.37 - 5.40 numerically and use numerical
values of the coefficients in the normalization. In practice, during data taking period on
longitudinally polarized deuterium target the polarization of target was stable and the
existing differences of the averaged target polarization for different states are negligibly
small. Hence, an average absolute value of the target polarization Pz can be used for all
events. In this case the normalization can be given by

N(θ) ≈
Nobs∑

i=1

K(P i
` , P

i
z)
[
M1 +M2AL

⇐⇒(xi, θ) +M3AUL(xi, θ) +M4ALL(xi, θ)
]
, (5.41)

where

M1 =
−→
L⇒ +

−→
L⇐ +

←−
L⇒ +

←−
L⇐ (5.42)

M2 =
−→
L⇒
−→
P`
⇒ +
−→
L⇐
−→
P`
⇐ +
←−
L⇒
←−
P`
⇒ +
←−
L⇐
←−
P`
⇐ (5.43)

M3 =
[−→
L⇒ −−→L⇐ +

←−
L⇒ −←−L⇐

]
Pz (5.44)

M4 =
[−→
L⇒
−→
P`
⇒ −−→L⇐−→P`⇐ +

←−
L⇒
←−
P`
⇒ −←−L⇐←−P`⇐]Pz . (5.45)
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Figure 5.18: The amplitudes of the asymmetries AL
⇐⇒, extracted from raw data.

Here, the coefficients Ki(P
i
` , P

i
z) are defined in analogy to those in Eq. 5.25, interchanging

the states defined by beam charge with the states defined by target polarization Pz.
The fit functions for the asymmetries AL

⇐⇒,ALL and AUL are the following

AL
⇐⇒(e` = +1, Pzz, φ) '

2∑

n=1

A
sin(nφ)

L
⇐⇒ (e` = +1, Pzz) sin(nφ), (5.46)

AUL(e` = +1, Pzz, φ) '
3∑

n=1

A
sin(nφ)
UL (e` = +1, Pzz) sin(nφ), (5.47)

ALL(e` = +1, Pzz, φ) '
2∑

n=0

A
cos(nφ)
LL (e` = +1, Pzz) cos(nφ) . (5.48)
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Figure 5.19: The amplitudes of target-spin asymmetry AUL, extracted from raw data.
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Figure 5.20: The amplitudes of double-spin asymmetry ALL extracted from raw data.

Here, the single beam-helicity or target-spin asymmetries are expanded into sin(nφ)
amplitudes, while the double-spin asymmetry was expanded in cos(nφ) amplitudes. The
amplitudes of these asymmetries are shown in Figures 5.18 - 5.20.

For the extraction of the amplitudes of single-helicity asymmetries AC←⇐⇒
,A 0←L

and AC←L

the distribution in the expectation value of the yield for scattering a negatively polarized
lepton beam off a longitudinally vector polarized deuterium target is parameterized as

d〈N〉(e`, P`, Pz, Pzz, φ) = L (e`, P`, Pz, Pzz) ε(φ) dσC←⇐⇒
(P`, Pzz, φ)

×
[
1 + e`AC←⇐⇒

(P`, Pzz, φ) + PzA 0←L
(P`, Pzz, φ) + e`PzAC←L

(P`, Pzz, φ)
]
, (5.49)

And the asymmetries were decomposed in a following way

AC←⇐⇒
(P`, Pzz, φ) '

3∑

n=0

A
cos(nφ)
C←⇐⇒

(Pzz) cos(nφ) + P`

2∑

n=1

A
sin(nφ)
C←⇐⇒

(Pzz) sin(nφ) , (5.50)

A 0←L
(P`, Pzz, φ) ' P`

1∑

n=0

A
cos(nφ)
0←L

(Pzz) cos(nφ) +
2∑

n=1

A
sin(nφ)
0←L

(Pzz) sin(nφ) , (5.51)

AC←L
(P`, Pzz, φ) ' P`

2∑

n=0

A
cos(nφ)
C←L

(Pzz) cos(nφ) +
3∑

n=1

A
sin(nφ)
C←L

(Pzz) sin(nφ) . (5.52)

The results for the leading amplitudes are given in Figure 5.21
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Figure 5.21: The leading amplitudes of the asymmetries AC←⇐⇒
,AC←L

and A 0←L
extracted

from raw data.
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5.5 Systematic studies

The extracted amplitudes of the asymmetries are influenced by various systematic
effects. This section describes in details the systematic studies performed to ensure the
stability of the results, a number of corrections that were applied on the extracted ampli-
tudes and the methods to estimate the impact of various systematic effects on the final
results. The considered systematic effects are listed below:

• Fit stability.

• Year-by-year comparison

• Miscalibration of the calorimeter and the shift of the mean values of M2
X distribution

• Background correction

• Acceptance effects

• Misalignment of the detector components and the beam

• Kinematic smearing

• An impact of finite-bin-width or bin centering effects

• Detection inefficiency

• Normalization uncertainty

• Scale uncertainties due to beam and target polarization measurement

• QED radiative corrections

• Contribution from transverse component of target polarization

5.5.1 Fit stability

The considered observables that were defined in section 3.4 do not provide a clear
access to Fourier coefficients from the leptoproduction cross section in Eqs. 3.14 - 3.16.
They rather encompass a complicated azimuthal dependence, and moreover, only the
moments of the asymmetries, i.e. asymmetry amplitudes, can be extracted from the fit.
Thereby, the choice of the fit function plays an important role in the treatment of the
measurement. The asymmetries were expanded into truncated harmonics in azimuthal
angle φ. The amount of harmonics (amplitudes) in the expansion of the asymmetries
or of the fit function was taken to be the same as the amount of Fourier coefficients
entering the numerator of the corresponding asymmetries. This choice of the fit function
does not warranty that the higher amplitudes do not exist. They could appear due to
the φ dependence of the denominator of the asymmetries or due to the φ dependence of
lepton propagators. However, it is assumed that the additional non-zero amplitudes do
not change the magnitudes of the amplitudes of interest. Note that if the asymmetry is
an even (odd) function in φ, then its Fourier expansion should contain only even (odd)
harmonics. Hence, as an example the constant moments of the asymmetries AI

LU and
ADVCS

LU should be consistent with zero. The stability of the extracted amplitudes to the
choice of the fit function is illustrated in Figure 5.22, where the leading amplitudes of
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Figure 5.22: The leading amplitudes of the asymmetries AC,AI
LU and ADVCS

LU extracted
with 7 or 9 parameter fit .

the asymmetries AC,AI
LU and ADVCS

LU are shown, extracted either with 7 or 9 parameter
fit functions. In the case of 7 parameter fit function the additional constant amplitudes
of the asymmetries AI

LU and ADVCS
LU were excluded. As can be seen from this figure,

the impact of the additional amplitudes on the leading ones is negligible. Hence, no
systematic uncertainty was applied due to the choice of the fit function. Similar checks
were performed for the other asymmetries.

5.5.2 Year-by-year comparison

The results obtained from a combined analysis of the data collected during several
years might be influenced by the possible effects, that lead to an inconsistency or internal
differences of the data samples accumulated during large time interval. These effects
can be caused by replacement of different detector components or due to the changes
from positron to electron beam. Therefore, the consistency of the data sets needs to be
ensured, which can be done by comparing the distributions of the kinematic variables
from different data sets. As an example on the top plots of Figure 5.23 the ratios of
normalized yield of DIS events in Q2 and xB for different data sets of polarized data are
compared. The kinematic distributions of the DIS samples agree very well, which can be
seen also in Figure 5.2, where the distributions of W 2, Q2, xN and ν are compared for all
unpolarized data taking years. For the DVCS analysis the most important distributions
are the squared missing mass and the −tc distributions. In the bottom plots of Figure 5.23
the ratios of M2

X and −tc distributions from exclusive sample of different unpolarized
data sets are presented. Apart from a small differences at large −tc and small M2

X , the
exclusive samples from different data taking periods also agree very well. Nevertheless,
more detailed comparison of the M2

X distributions from different years indicate a small
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Figure 5.23: The plots on the top show the ratio of normalized distributions of Q2 and
xN from different data sets. The plots on the bottom show the ratio of normalized
distributions of tc and M2

X from different data sets.

shift in the position of the exclusive peak. This will be discussed in details in the next
section.

Together with the direct comparison of the kinematic distributions of data from
different years, the consistency between data sets was checked on a level of the extracted
asymmetry amplitudes. In Figure 5.24 the leading amplitudes of the asymmetriesAC,AI

LU

and ADVCS
LU , extracted from a different combinations of the data collected on an unpolar-

ized deuterium target for the entire HERMES kinematic acceptance, are presented. The
results are in good agreement. The largest deviations appear for the A

cos(0φ)
C amplitude,

which do not exceed one standard deviation. Similar consistence holds also for the am-
plitudes extracted in bins of −tc, xN and Q2, that are not presented here.
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Figure 5.24: Comparison of the leading amplitudes of the asymmetries AC,AI
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Another possible check for the consistency of the data from different years was provided
by the inclusion of non physical constant amplitudes A

cos(0φ)
LU,I and A

cos(0φ)
LU,DVCS in the fit

functions of the AI
LU and ADVCS

LU asymmetries, since mainly the constant amplitudes are
sensitive to the relative normalization. As can be seen from the Figures 5.16 - 5.17, these
amplitudes are consistent with zero. Non physical constant amplitudes were extracted
also for the AUL and AL

⇐⇒ asymmetries, while for the beam-charge AC and double-spin
ALL asymmetries an even amplitudes (sinφ) were introduced in the fit functions (not
shown here), that were found to be compatible with zero.

The above mentioned consistency checks and many other investigations of the inter-
nal differences between data sets carried out in [Kra05, Kop06, Ell04] did not reveal an
essential differences between data sets except from a slight shift in the missing mass peak
position, which will be discussed in the next section. Hence, no systematic uncertainty
was applied on the results presented in this report due to the year dependence.

5.5.3 Miscalibration of the calorimeter and the shift of M 2
X peak

position.

As was mentioned in previous section, when comparing the spectra of the missing mass
distributions from several data taking periods, a shift in the mean value of the distributions
in an exclusive region is observed. Based on the observed shift the data collected on an
unpolarized deuteron were split into four time periods, divided into positron or electron
data and data taken before and after installation of RICH detector in 1998. In the latter
case the shift is caused by changes in the momentum resolution of the DIS leptons due
to the RICH detector. For the above mentioned four periods the mean values of the
M2

X distributions in the exclusive region were obtained. The new exclusive windows
were determined according to the differences in these values for different periods. The

Running period Mean [GeV 2] Shift [GeV 2] Window [GeV 2]

e+ (1996+1997) 1.153 0.028 [-2.02,2.81]
e− (1998) 1.000 -0.125 [-2.38,2.77]

e+ (1999+2000) 1.125 0.000 [-2.25,2.89]
e− (2005) 1.043 -0.082 [-2.33,2.81]

Table 5.6: The mean values of the M2
X distributions in the standard exclusive region, the

relative shifts of the mean values and the adjusted exclusive windows for different running
periods on an unpolarized deuterium target.

exclusive windows were adjusted with respect to the 1999/2000 data taking year. The
mean values of the squared missing mass distributions in an exclusive region, the shifts
and the obtained new exclusive windows for different data taking periods are given in
Table 5.6. Note that for the data set taken before the installation of the RICH, the
width of the exclusive peak in the M2

X distribution was decreased by approximately 6%.
Therefore, the width of the window for these period was decreased accordingly. Finally,
the adjusted exclusive M2

X widows were used for the selection of exclusive event sample.
The numbers of exclusive events obtained from the adjusted exclusive windows are given
in Table 5.7 for whole unpolarized data sample.

In Figure 5.25 the leading amplitudes of the asymmetries AC, AI
LU and ADVCS

LU are
shown extracted after applying a shift on the exclusive region of M2

X distribution in
comparison with the amplitudes extracted from the data using standard exclusive window.
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Beam Charge Beam Helicity Nexcl.

+1 +1 2022
+1 -1 2959
-1 +1 2613
-1 -1 3556

Table 5.7: The final statistics after applying the shift on the exclusive window of the
missing mass distributions.

One can see that the size of the correction is small. Nevertheless, a systematic uncertainty
was applied to the final results equal to one quarter of the difference between amplitudes
obtained with standard and shifted exclusive windows.
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Figure 5.25: The leading amplitudes of the asymmetries AC,AI
LU and ADVCS

LU extracted
with the standard exclusive window in comparisons with amplitudes extracted with the
shifted exclusive window.

The above described procedure of the correction of the results due to the shift of
missing mass distributions was applied only for the asymmetry amplitudes from the un-
polarized data, i.e AC, AI

LU and ADVCS
LU . For the polarized data, a more detailed analysis

of the possible reasons of the shift was performed and an alternative approach was taken.
Particularly, as the missing mass is the only kinematic variable, among the variables used
this analysis, which is reconstructed from the photon energy, it is natural to refer the effect
of the shift to miscalibration of the calorimeter. For the calibration of the calorimeter
the ratio of the energy E measured by the calorimeter to the reconstructed momentum
P of the DIS sample of leptons is considered. In Figure 5.26 the E/P ratio is shown for
polarized data. The distributions are fitted to the function of the form

f(x) = p0 ·
{
p1 + p2 · x+ exp

[
− (x− p3)2

2 · p2
4

]}
. (5.53)
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Figure 5.26: The E/P ratio for sample of DIS leptons from a different polarized data
taking years. Also results of the fit are given on the plots.

Comparing the mean values obtained from a fit, one can see that the relative difference
of the E/P ratio between electrons (1998) and positrons (1999, 2000) is approximately
1%. Although the mean values of the E/P ratio were obtained for leptons, they can be
applied also for the correction of energies for those photons, which produce a signal in
the preshower detector (see section 5.2.2). In order to provide a more precise calibration
of the calorimeter, the momentum dependence of the E/P ratio was studied. A similar
fits like in Figure 5.26 were done in fixed bins of the lepton momentum. The obtained
momentum dependence of the E/P ratio for polarized data is shown in Figure 5.27, with
the maximum relative shift of about 2% between 1998 and 2000 data at low momentum.
The mean values obtained from the fit were used for the energy dependent correction

P [GeV]
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E
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 00d2

Figure 5.27: Momentum dependence of the E/P ratio for DIS leptons from polarized
data.

of the photon energies. To see the impact of this correction on the M2
X distribution,

the mean values of a simple Gaussian fits to squared missing mass spectra before and
after applying the correction on photon energy for each data taking year are compared in

data set before corr. after corr.

1998 1.221± 0.075 1.342± 0.077
1999 1.371± 0.067 1.304± 0.065
2000 1.514± 0.034 1.369± 0.032

Table 5.8: The mean values of the Gaussian fit to the squared missing mass spectra before
and after applying the photon energy correction.
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Table 5.8. Within the uncertainties of the fit one can see that the Gaussian means of the
three spectra become consistent. Also the mean values of the M2

x distributions, that are
not given in the table agree within their uncertainties. The numbers of exclusive events
obtained on longitudinally vector polarized deuterium target after applying the described
correction on photon energy, are summarized in Table 5.9 for different data sets.

Beam Charge Beam Helicity Target Pol. Nexcl.

+1 +1 + 1870
+1 +1 - 1991
+1 -1 + 1032
+1 -1 - 1133
-1 +1 + 532
-1 +1 - 494
-1 -1 + -
-1 -1 - -

Table 5.9: The numbers of exclusive events for all combinations of beam charge, beam
helicity and target polarization, obtained after applying an energy correction for photons.

The resulting leading amplitudes of the asymmetries A⇐⇒, ALL and AUL are shown
in Figure 5.28, in comparison with the amplitudes extracted without the photon energy
correction. Note that this second approach for the correction of the photon energies was
applied only on polarized data sets, which compensates the shifts in M2

X distributions.
Therefore, in this case no systematic uncertainty from this effect was assigned to the final
results.
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Figure 5.28: The leading amplitudes of the asymmetries A⇐⇒, ALL and AUL extracted from
the data with corrected photon energies in comparison with the amplitudes extracted
without applying a photon energy correction.

86



5.5.4 Detection efficiency

An inefficiencies in the detection can cause a strong dilution of the extracted asymme-
try amplitudes, especially in the case when results are obtained from data collected during
extended time periods, when the inefficiencies can be non-uniform and time dependent.
In this case the inefficiencies can introduce false asymmetries, since they will have a non-
uniform impact on the kinematic distributions of the selected events. The asymmetry
amplitudes discussed in this report can particularly be sensitive to the trigger inefficiency,
tracking inefficiency, and to the inefficiency of calorimeter in photon detection.

As was mentioned in section 5.2 the main physics trigger used at HERMES is trigger
21, which is formed from a combined responses of three hodoscopes H0, H1, H2 and
calorimeter. In order to estimate the possible influence of the trigger efficiency on the
measured asymmetries, the inefficiencies of all components of the trigger-21 need to be
obtained. This is done considering the triggers 17, 18, 19 and 201. Those are formed
from a combined responses of the three detectors eliminating respectively the signal from
Calo., H0, H1 and H2 hodoscope

Trig.17 = (H0&H1&H2)top + ()bot

Trig.18 = (H1&H2&Calo)top + ()bot

Trig.19 = (H0&H2&Calo)top + ()bot

Trig.20 = (H0&H1&Calo)top + ()bot .

The efficiencies of individual detector component were obtained as a ratio of the count
rate of events firing the trigger i over the number of events firing both trigger i and trigger
21, ε(i) = Ni/Ni∧21.
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Figure 5.29: The efficiencies of H0, H1, H2 hodoscopes and the calorimeter versus the
momentum of lepton track.

1 Note that the naming convention for various triggers was changing from year to year. Here for
simplicity the triggers are defined according to their definition during 1996 data taking year.
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Figure 5.30: The efficiencies of the H0 hodoscope versus hit position on its surface for all
analyzed data sample.
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The efficiencies for the hodoscopes and the calorimeter are shown in Figure 5.29 versus
momentum of the considered lepton. The efficiencies shown in this figure were obtained
for the DIS leptons from all data collected on an unpolarized deuterium. As can be seen
from Figure 5.29 the H1 and H2 hodoscopes were operating with approximately constant
and very high efficiency, while the efficiency of the calorimeter decreases at low momentum
of leptons. Nevertheless, since the typical energies of the leptons and photons for exclusive
sample of DVCS events are about 15 GeV (see Figure 5.10), the drop of efficiency of the
calorimeter at low energies can not affect current results. On the other side the photons
that start showering in the preshower detector are expected to have very similar behavior
to that of the leptons, hence the efficiency of the calorimeter in the detection of emitted
photons is expected to be similar to the trigger efficiency of the calorimeter, shown in
Figure 5.29. Therefore, the detection efficiency of the calorimeter also can not have a
sizable influence on the measured asymmetries.

Figure 5.29 shows, that the dominant contribution to the total inefficiency of trigger
21 arises from H0 hodoscope. Therefore, in current analysis it was studied in more details.
Since the changes in the inefficiency of the H0 hodoscope are caused by local radiation
damage, it is reasonable to study the efficiency versus hit position of the leptons on its
surface. The surface of the hodoscope was divided into a grid of cells with dimensions
4cm×2cm, and for each cell the efficiency was derived. The obtained efficiencies are shown
in Figure 5.30 for all analyzed data from different years and for combined unpolarized
data sample separately. As can be seen, the H0 efficiency was quit stable over its surface
area for all data taking years, while problems appeared only in 1998 when, the efficiency
decreased up to 90% in the bottom half of the hodoscope. In order to account for the
possible influence of H0 efficiency on the extracted asymmetry amplitudes, the inverse of

)φ
co

s(
0

C
A -0.2

-0.1

0

0.1

)φ
co

s(
C

A

-0.1

0

0.1

0.2

)φ
si

n
(

L
U

,I
A

-0.4

-0.2

0

)φ
si

n
(

L
U

,D
V

C
S

A -0.2

0

0.2

w/o H0 corr. 

H0 corr.

overall

-210 -110

-0.2

-0.1

0

0.1

-210 -110

-0.1

0

0.1

0.2

-210 -110

-0.4

-0.2

0

-210 -110

-0.2

0

0.2

]2 [GeVc-t

-210 -110

Bjx
-110

-0.2

-0.1

0

0.1

-110

-0.1

0

0.1

0.2

-110

-0.4

-0.2

0

-110

-0.2

0

0.2

NX

-110

)2 (GeV2Q
1 10

-0.2

-0.1

0

0.1

1 10

-0.1

0

0.1

0.2

1 10

-0.4

-0.2

0

1 10

-0.2

0

0.2

]2 [GeV2Q
1 10

Figure 5.31: The comparison of leading amplitudes of the asymmetries AC, AI
LU and

ADVCS
LU extracted with and without applying a correction due to the H0 inefficiency.
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Figure 5.32: The comparison of leading amplitudes of the asymmetries ALL, AL
⇐⇒ and

AUL extracted with and without applying a correction due to the H0 inefficiency.

the efficiency ε−1 for each cell on the surface was assigned as a weight to each exclusive
DVCS event according to the hit position of corresponding DIS lepton. Further the
asymmetry amplitudes were extracted from a weighted event sample with the method
described in section 5.4. The results of the efficiency correction for leading amplitudes
of the asymmetries AC,AI

LU,ADVCS
LU and ALL,AL

⇐⇒,AUL are shown in Figures 5.31 - 5.32
respectively, where they are compared with the amplitudes extracted without correcting
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Figure 5.33: The distribution of plane efficiencies of top and bottom halves of forward
chambers from the data taking year 2000 with polarized deuterons.
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for the H0 efficiency. The comparison in Figures 5.31 - 5.32 indicate that the influence of
H0 efficiency on the extracted asymmetry amplitudes is negligible.

Remaining sources of the detection inefficiencies that is relevant for current analysis
are the tracking inefficiencies. They are caused by the ability of HRC to reconstruct the
tracks from the hits in the tracking chambers. The efficiencies are defined for a single
tracking plane (‘plane efficiency’) as a ratio of number of tracks which have a hit in
the given detector plane to the number of reconstructed tracks without considering the
selected plane [Due95]. Further the plane efficiencies are combined and the global plane
efficiencies are given separately for each half of the forward and backward chambers. As
an example the plane efficiencies of the forward chambers are shown in Figure 5.33 for the
data collected on polarized deuterium in the year 2000. The average efficiencies for both
halves of the detector are larger than 99%. High efficiencies for the FC’s were obtained
also for all other years, while the efficiencies of BC’s were always higher then that of FC’s.

As a conclusion, the influence of detection inefficiencies on the extracted asymme-
try amplitudes were found to be negligible. Therefore, the data were not corrected for
the detection inefficiencies, and no systematic uncertainty due to these inefficiencies was
assigned to the final results.

5.5.5 Background correction

It has been discussed in a previous sections that the exclusive sample that is used for
the extraction of asymmetry amplitudes from the data collected on the deuterium target
originates from different processes. Beside the coherent and incoherent DVCS/BH pro-
cesses, which are the main signals of interest, also the background processes contribute
in the exclusive sample of events. Among the background processes the ones, whose
contribution in the exclusive sample exceeds 1% are the associated DVCS/BH processes
and semi-inclusive production of neutral mesons, mainly pions. The background itself is
dominated by the associated DVCS/BH processes. In present analysis without a detec-
tion of recoiled target particle, the associated process can not be separated and remains
as a part of signal. The contribution in the semi-inclusive background originates mainly
from π0 production, which significantly dominates over the production of η meson. These
processes contribute in the single photon sample, when one of the decay photons remains
undetected by a spectrometer or unresolved by the calorimeter. Beside above mentioned
processes, their is also a contribution from the exclusive production of neutral pions in
the measured yield. As was mentioned in section 5.3.3, the fractional contribution of
this process in the exclusive sample of DVCS events was estimated from Monte Carlo
and was found to be less than 0.7% [Kra05, Zei09]. Meanwhile the correction for exclu-
sive pion production was carried out in the analysis of DVCS asymmetries on hydrogen
target [Zei09, Ye07, Mah10], resulting in a negligibly small contribution compared with
semi-inclusive pion production. Therefore, in the current analysis no correction was ap-
plied on the measured amplitudes due to the exclusive pion production, and it was not
included also in the Monte Carlo simulations

In order to correct the extracted asymmetry amplitudes for the background processes,
the asymmetries of the background processes Abg need to be known, together with frac-
tional contributions of each process fbg in the exclusive sample. Further, the correction
can be done according to

Aela. =
1

1−
∑

i

f ibg
(Ameas. −

∑

i

f ibgA
i
bg) , (5.54)
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where the Aela. is the corrected asymmetry of the elastic process and Ameas. is the measured
asymmetry. The sum goes over all background process. As was mentioned above, among
the background processes the resonance production has the largest contribution, while the
asymmetries in current analysis were not corrected for the associated background process,
since not to much is known about the transition GPDs that govern the dynamics of the
associated DVCS processes and can produce azimuthal asymmetries.

The only process that was corrected for, is the semi-inclusive production of neutral
mesons. The fractional contributions of semi-inclusive processes were estimated from
Monte Carlo and are given in Tables 5.4 and 5.5 for each kinematic bin in −tc, Q2 and
xN . The semi-inclusive production of neutral mesons is dominated mainly by neutral pions
(about 80%) , therefore in the determination of the background asymmetries only neutral
pions will be considered. The asymmetries of semi-inclusive pions can be determined
from the experimental data accumulated at HERMES. For this purpose the so-called
two-photon analysis was performed. The following requirements were applied for the
selection of exclusive two-photon event sample.

• Same Data Quality Requirements as for DVCS analysis (see section 5.1).

• Same DIS cuts on the scattered lepton as in the case of DVCS analysis (see sec-
tion 5.2.1).

• Two uncharged clusters in the calorimeter.

– Both photons pass the fiducial volume cuts.

– Both photons leave a signal in the preshower.

– The leading photon deposits an energy above 5GeV and the non-leading one
above 1GeV .

• The invariant mass of reconstructed π0 was required to be 0.1GeV < mγγ <
0.17GeV .

• Same exclusive cut as in the case of DVCS analysis, except from the cut on squared
missing mass.
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Figure 5.34: On the left side the correlation of M2
x variable calculated either for recon-

structed pion or for leading photon kinematics is shown. On the right side the correlation
between the fractional energy z and M2

x calculated for reconstructed pions is shown. The
vertical line shows an upper boundary of the exclusive window M2

x = 2.89GeV 2.
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Figure 5.35: The distributions of invariant mass of reconstructed π0 before (left) and after
(right) applying an exclusive cuts. The distributions were obtained from all unpolarized
(top) and longitudinally polarized (bottom) data sample.

• The fractional energy z = Eπ0/ν was required to be larger than 0.8.

In the selection criteria of two-photon sample that can contribute in the exclusive
region of DVCS/BH sample, two alternative approaches can be applied. One can calculate
the kinematics either with respect to reconstructed neutral pion or with respect to leading
photon originated from the decay of π0. Since the exclusive DVCS/BH sample contains
only single cluster events, it is reasonable to consider the background asymmetries with
respect to the leading photon. While in this case a problem arises with the cut on M2

x . As
can be seen from the left side plot of Figure 5.34, where the correlation of M2

x is shown,
calculated either using the leading photon or using the reconstructed pion kinematics,
the yield of two photon events in the exclusive region −2.25GeV 2 < M2

x < 2.89GeV 2

is quit low for the case when M2
x is calculated using the leading photon kinematics. On

the other hand, from the correlation between pion fractional energy z and M2
x calculated

from the pion kinematics, shown on the right side plot of Figure 5.34, one can see that
mainly pions with fractional energies z > 0.8 contribute in the exclusive region. Hence,
for the selection of semi-inclusive background sample, the exclusive kinematic variables
were calculated using the kinematics of leading photon from two-photon data sample that
satisfy a requirement z > 0.8.

In Figure 5.35 the reconstructed π0 invariant mass distributions are shown for the
two-photon event sample before and after applying the exclusive cuts. Figure contains all
data collected on an unpolarized (top) and longitudinally polarized (bottom) deuterium
target. The selected sample of two-photon events is used for the extraction of asymmetry
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Figure 5.36: The leading amplitudes of the asymmetries AC, AI
LU and ADVCS

LU extracted
from the two-photon analysis, with respect to leading photon and reconstructed pion.

amplitudes of semi-inclusive neutral pion production. The results of the amplitudes of the
asymmetries AC, AI

LU and ADVCS
LU from semi-inclusive π0 sample are shown in Figure 5.36.

The asymmetry amplitudes obtained from a calculation of kinematics with respect to the
leading photons are compared with the amplitudes corresponding to the kinematics of
reconstructed pions. The comparison indicates that the asymmetry of neutral pions is
mostly carried by the leading photons. This feature was also studied in details using Monte
Carlo simulations [Ye07]. Note that the amplitudes of the asymmetries which are defined
with respect to the beam charge, i.e. the amplitudes of the asymmetries AC and AI

LU, are
compatible with zero. This is expected, as the beam-charge related asymmetries can not
appear in the semi-inclusive pion production within one photon exchange approximation.
Hence, the extracted zero valued amplitudes indicate a self consistence of the data and a
precise calibration of the detectors. Meanwhile the charge-averaged beam-helicity asym-
metry ADVCS

LU shows a non-zero value (bottom raw of Figure 5.36). In Figure 5.37 the
amplitudes of the asymmetries A⇐⇒, AUL and ALL are shown, extracted with respect to
the leading photons from decay of π0 in comparison with the ones extracted with respect
to the reconstructed pions.

With the knowledge of the fractional contributions fSIDIS and the asymmetry ampli-
tudes ASIDIS of the semi-inclusive neutral meson production, the background correction
can be applied according to the following formula:

Acorr. =
1

1− fSIDIS
(Ameas. − fSIDISASIDIS). (5.55)

Here Ameas. is the extracted asymmetry amplitude and Acorr. is the corrected one. The
statistical uncertainty of the corrected amplitudes were propagated accordingly:

94



)φ
co

s(
0

L
L

A

-0.4

-0.2

0

0.2

0.4
)φ

co
s(

L
L

A -0.2

0

0.2

0.4

)φ
si

n
(

⇐⇒
L

A

-0.4

-0.2

0

0.2

)φ
si

n
(

U
L

A

-0.4

-0.2

0

0.2

0.4

γleading 
0π

overall

-210 -110

-0.4

-0.2

0

0.2

0.4

-210 -110

-0.2

0

0.2

0.4

-210 -110

-0.4

-0.2

0

0.2

-210 -110

-0.4

-0.2

0

0.2

0.4

]2 [GeVc-t

-210 -110

Bjx
-110

-0.4

-0.2

0

0.2

0.4

-110

-0.2

0

0.2

0.4

-110

-0.4

-0.2

0

0.2

-110

-0.4

-0.2

0

0.2

0.4

NX

-110

)2 (GeV2Q
1 10

-0.4

-0.2

0

0.2

0.4

1 10

-0.2

0

0.2

0.4

1 10

-0.4

-0.2

0

0.2

1 10

-0.4

-0.2

0

0.2

0.4

]2 [GeV2Q
1 10

Figure 5.37: The leading amplitudes of the asymmetries A⇐⇒, AUL and ALL extracted
from the two-photon analysis, with respect to leading photon and reconstructed pion.

δAmeas =
1

1− fSIDIS
dAmeas (5.56)

δASIDIS = − fSIDIS
1− fSIDIS

dASIDIS (5.57)

δfSIDIS =
Ameas − ASIDIS
(1− fSIDIS)2

dfSIDIS (5.58)

dAcorr =
√
δ2
Ameas

+ δ2
ASIDIS

+ δ2
fSIDIS

. (5.59)

Note that the beam-charge related asymmetries AC, AI
LU, AC←⇐⇒

and AC←L
were corrected

for a semi-inclusive background as dilutions, i.e the background asymmetry was taken to
be ASIDIS = 0 and dASIDIS = 0. The results of the semi-inclusive background correction
for leading amplitudes of the asymmetries AC, AI

LU, ADVCS
LU and A⇐⇒, AUL, ALL are shown

in Figures 5.38 - 5.39 respectively, where they are compared with the amplitudes before
applying background correction.

Apart from the above described correction, also a systematic uncertainty was assigned
to the final results due to background correction. The systematic uncertainty was taken as
a half of correction size, with an additional contributions due to the statistical uncertain-
ties of the measured background asymmetry and simulated fractions of the background
process. The resulting systematic uncertainty was assigned as

Syst.Uncertainty =

√
(
Acorr − Ameas

2
)2 + δ2

ASIDIS
+ δ2

fSIDIS
.
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Figure 5.38: Comparison of leading amplitudes of the asymmetries AC, AI
LU and ADVCS

LU

before and after background correction.
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Figure 5.39: Comparison of leading amplitudes of the asymmetries A⇐⇒, AUL and ALL

before and after background correction.
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5.5.6 Four - in - one method

An estimate of possible influences on the extracted asymmetry amplitudes from the
acceptance, smearing, finite bin width, and misalignment of detector components with
respect to each other and with respect to the beam are discussed in this section.

The acceptance of HERMES spectrometer allows to measure the desired quantities
in a limited geometric region. In addition, to ensure the reliability of any measurement,
various kinematic requirements and limitations need to be satisfied. Given these circum-
stances, the measurement can be performed in a fixed phase space, specific for the given
experiment. For the comparison with other experimental measurements and also with
theoretical predictions, the results need to interpreted in 4π geometry and presented in
fixed kinematic point. This requires precise estimation of the possible difference between
asymmetries measured in the acceptance and in the 4π, 〈A(x)〉4π−〈A(x)〉HERMES. More-
over, since the theoretical predictions for the asymmetries are given for fixed kinematics,
also the experimental results, extracted from certain kinematic range, should be pre-
sented for averaged kinematics. Therefore, the bias introduced from averaging over finite
bin width (bin centering effect) should be estimate, 〈A(x)〉 − A(〈x〉). The complications
with the estimation of acceptance and finite-bin-width effects arise due to the fact that
the measured asymmetries are a priori unknown. The only knowledge about measured
asymmetries is available either from the experimental measurement which are almost af-
fected by the acceptance or binning effects or from a theoretical predictions, which are a
subject of model dependence. A Monte Carlo based investigations [Kra05, Ely02, Ell04]
indicate that the acceptance effects are mainly sensitive to the absolute values of the
true asymmetries, while the finite bin with effect has a strong dependence on the internal
kinematic dependences of the asymmetries. The latter does not allow to correctly esti-
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Figure 5.40: Reconstructed and generated leading amplitudes of the asymmetries AC,
AI

LU and ADVCS
LU obtained from gmc dual generator.
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mate the finite bin width effect by introducing a constant asymmetry in the Monte Carlo
generator. Apart from the above mentioned effects also the smearing of reconstructed
kinematic variables due the limited resolution of the detectors can cause a bias in the
measured asymmetries compared with the true ones. This effect is also sensitive to the
internal kinematic dependences of the asymmetries. Finally, the detector components of
the spectrometer were found to be slightly tilted or shifted from their designed positions,
also the HERA lepton beam was found to be tilted with respect to the z-axis. These
misalignment effects can also influence the reconstruction of kinematic variables.

The combined contribution of the above mentioned effects to the systematic uncertain-
ties was estimated from a Monte Carlo simulation. The Monte Carlo data were simulated
according to the full simulation chain described in section 5.3 and including an information
about the misalignment of the detector and the beam. The asymmetry amplitudes were
extracted in a same way as those from experimental data. These reconstructed asymme-
try amplitudes were compared with the amplitudes generated at the mean kinematics in
4π with the corresponding model. The difference between generated and reconstructed
amplitudes provides a measure of systematic uncertainty.

For the asymmetries from an unpolarized deuterium target the gmc dual generator was
used for the estimation of four-in-one systematic uncertainties, while for the polarized data
the gmc dvcs generator was used. In the latter case only incoherent process was considered
and the resulting systematic uncertainties were determined as root mean square of the
differences between generated and reconstructed amplitudes obtained from five available
models. The comparison between reconstructed and generated amplitudes are shown in
Figure 5.40 obtained from gmc dual generator and in Figures 5.41 - 5.42 from models one
and five of gmc dvcs generator.
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Figure 5.41: Reconstructed and generated leading amplitudes of the asymmetries A⇐⇒,
AUL and ALL obtained from model one of gmc dvcs generator.
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Figure 5.42: Reconstructed and generated leading amplitudes of the asymmetries AC←⇐⇒
,

A 0←L
and AC←L

obtained from model five of gmc dvcs generator.
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5.5.7 Normalization uncertainty

As was mentioned in section 5.2.4 the asymmetries discussed in current report can
be normalized to either integrated luminosity or to number of DIS events. Both nor-
malization methods have certain disadvantages and advantages, that were discussed in
section 5.2.4. The results obtained from data collected on an unpolarized deuterium were
normalized to DIS. The uncertainties arising from DIS normalization can be caused by
the trigger inefficiency, by differences in the acceptance for different data taking years or
by the charge symmetric background. The mentioned uncertainties are expected to affect
mainly the constant amplitude of the beam-charge asymmetry A

cos(0φ)
C . An influence of

position dependent trigger inefficiency was studied in section 5.5.4, for exclusive sample of
DVCS/BH events, and was found to be negligible. In the case of DIS counting, their is no
need to consider position dependent correction, therefore the correction to DIS numbers
will be less than 1%. The count rate of the DIS numbers were not corrected also for
the charge symmetric background. The latter is usually done by counting the number of
oppositely charged leptons that satisfy to all DIS requirements. This effect was found to
be of an order of 1%, while its variation for data collected in different years is even less.
Since the mentioned 1% effects refer to a count rate of the DIS number, their contribution
in the asymmetries is expected to be much smaller. Therefore, no systematic uncertainty
was applied to the final results due to the uncertainty of DIS normalization.

The situation is more complicated with luminosity normalization. The latter was
used in the extraction of asymmetry amplitudes from data collected on a longitudinally
polarized deuterium. As was mentioned in section 5.2.4, the uncertainty of integrated
luminosity measurement is about 7.2% for these data. For the normalization of single-
charge asymmetries ALL, AL

⇐⇒ and AUL, the raw luminosity count rate can be used instead
of integrated luminosity. As the luminosity constant for the data collected in 1999 and
2000 is the same. On the other hand since the luminosity measurement does not depend
on the target polarization, and the latter flips rapidly compared to changes in luminosity,
the uncertainty of measured luminosity can not affect the target-spin related asymmetries.
Therefore, no systematic uncertainty was applied due the luminosity normalization also
to the asymmetries extracted from the longitudinally polarized data set.

5.5.8 Radiative corrections

The results presented in current report are not corrected for QED radiative effects.
Substantial contributions to the BH and DVCS cross section originates from a soft photon
emission processes and from a first order one-loop corrections, that include vertex, lepton
self-energy, and vacuum polarization corrections. Although these corrections are expected
to be suppressed by one order of αem = 1/137, they can still have a non-negligible contri-
bution at certain kinematic regions. The radiative corrections to BH and DVCS processes
have been estimated for JLAB kinematic conditions [Van00], where they lead to a reduc-
tion of BH and DVCS cross section by about ≈ 20%. The same calculations for a single
beam-spin asymmetry at JLAB kinematics Ebeam = 6GeV , Q2 = 2GeV 2 and xBj = 0.3
suggest a reduction of asymmetry by about 5%. Since the radiative corrections are in-
versely proportional to the beam energy, they can be expected to have much smaller
contribution at HERMES. While the contribution of radiative corrections strongly de-
pends on the resolution of the detector. The calculations in [Van00] were done for the
soft photon energies up to 0.1GeV , assuming that soft photon emission with photon ener-
gies above 0.1GeV can be distinguished from a single photon events by the spectrometer.

100



The latter is not the case for HERMES. Therefore the estimates from [Van00] can not be
directly propagated to the results presented in this report. Other estimates of radiative
corrections have been carried out in [Afa06]. Here the single beam and target -spin asym-
metries were calculated, originating from radiative corrections only to BH process. The
estimated asymmetries for HERMES kinematic conditions were found to be negligibly
small. Presently no estimates exist for radiative corrections to beam-charge asymmetry.

As a conclusion no systematic uncertainty was assigned to the asymmetries presented
in current report due to the radiative corrections.

5.5.9 Scale uncertainty

The polarization of HERA lepton beam was measured by two independent polarime-
ters LPOL and TPOL, that were discussed in section 4.1. In parallel with polarization
measurement various systematic investigations were performed by group of experts to
ensure the stability and reliability of these measurements. The polarization measurement
is detailed in [Bar93, Bec02] for TPOL and LPOL respectively, where also the possi-
ble sources of systematic uncertainties are discussed and the total scale uncertainty is
given for the polarization measurement. They are listed in Table 5.10 separately for both
polarimeters and for different data taking years. Note that during operation the polariza-
tion measurement was not always carried out by both polarimeters. For some fills only
measurements from one of the polarimeters were provided. Table 5.10 summarizes the
collected integrated luminosities during the operation of each polarimeter in each data
taking year. Whenever measurements were available from both polarimeters, they are
combined with LPOL measurements, since its systematic uncertainty is smaller from that
of TPOL. From Table 5.10 the scale uncertainties were derived for each of the asymme-
tries, sensitive to the beam polarization measurement. They were obtained by luminosity
weighted averaging uncertainties from different data taking years. For the asymmetries
that are sensitive to the target polarization measurement, the scale uncertainties were de-
rived from Table 4.1, while for the double-spin asymmetries, the scale uncertainties from
beam and target polarization measurement were combined in quadrature. The exact
numbers will be given in section 5.5.11.

Data set LumiTPOL [ pb−1 ] LumiLPOL [ pb−1 ] SystTPOL SystLPOL

96d0 43.9 - 3.26 % -
97d1 53.1 - 3.26 % -
98d0 10.6 13.5 3.26 % 1.6 %
99c0 - 6.1 3.26 % 1.6 %
00d2 1.3 37.4 3.26 % 1.6 %
05c1 14.8 117.2 3.26 % 2.0 %

98d0 pol. 23.0 3.6 3.26 % 1.6 %
99c0 pol. 2.5 27.2 3.26 % 1.6 %
00d2 pol. 27.6 98.2 3.26 % 1.6 %

Table 5.10: The integrated luminosities of each data set used in current analysis. The
collected luminosities for each data taking year are given separately for a time periods,
when each of the polarimeters was operating. Also given are the systematic uncertainties
of the beam polarization measurement for each data taking year and each polarimeter.
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5.5.10 Contribution from transverse component of target polar-
ization

In the extraction of asymmetry amplitudes with respect to longitudinal vector polar-
ization of the target it was assumed that the target is polarized along the virtual photon
direction. Based on this assumption an appropriate decomposition of Fourier coefficients
from the BH/DVCS cross section was introduced in Eqs. 3.20 - 3.21, respectively for
spin-1/2 and spin-1 targets and also the azimuthal dependencies of each term of the cross
section in Eqs. 3.42 - 3.44. While in the real experimental situation the target was po-
larized with respect to the lepton beam. Therefore the polarization vector is rotated
with respect to the virtual photon direction by an angle θγ∗. This is illustrated on the
left plot of Figure 5.432. The above mentioned effect leads to a non-vanishing transverse
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Asin φ
UL Asin 2φ

UL # of excl. events
no correction −0.071± 0.034 −0.113± 0.034 2454
y(>0)

γ − 0.5cm −0.069± 0.034 −0.114± 0.034 2422
deviation 0.002 0.001

Table 7.5: Amplitudes Asin φ
UL and Asin 2φ

UL and the number of exclusive events
for corrected and not corrected measured photon hit position y(>0)

γ . The
last line of the table shows the deviation of the asymmetry caused by the
correction.

this correction affects not only the number of events in the exclusive sample,
but also the measurement of the azimuthal angle. Hence in order to estimate
with MC studies its impact on the measured LTSA, addition model assump-
tions are required on the azimuthal dependence of the measured asymmetry.
Hence this uncertainty is estimated from data as described above.

7.4.7 Contribution from the Transverse TSA to the
Longitudinal TSA

x
y

z
γ

θγ∗ #S⊥
#S

l

l′

γ∗

φ

Figure 7.12: Kinematics of the DVCS process for a longitudinally polarized
target. The angle θγ∗ denotes the angle between the virtual photon and the
polarization vector of the longitudinally polarized target "S, aligned along the
direction of the incoming positron.

The polarization vector of the longitudinally polarized target is aligned
either parallel or antiparallel to the beam direction at HERMES. Due to
the kinematics of the reaction (figure 7.12) there is a small, but finite angle
θγ∗ between the beam and the virtual photon directions, which projects the
longitudinal polarization of the target into a certain transverse one with
respect to the virtual photon. Therefore, the generated TTSA AUT (for
details see section 3.6) can contribute to the measured LTSA AUL.
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Figure 5.43: On the left side the orientation of target polarization vector with respect
to the virtual photon and lepton beam is shown. On the right side the distribution of
the angle between lepton beam and virtual photons is shown from data collected with
longitudinally polarized deuterium target during the year 2000.

polarization component of the target and meanwhile introduces a depolarization of the
longitudinal component. In order to estimate a possible contribution of this effect on the
extracted asymmetries, the knowledge of transverse single target-spin and double-spin
asymmetries is necessary. The latter are unknown for the coherent process on deuterium,
and it is expected that they do not differ much from that on hydrogen target. The leading
amplitudes of transverse single and double-spin asymmetries on hydrogen are sensitive to
the Fourier coefficients from the azimuthal decomposition of the interference term of the
BH/DVCS cross section on transversely polarized target. The latter reads as [BMK02]:

I = − KIe`
P1(φ)P1(φ)

[ 3∑

n=0

cIn,unp cos(nφ) + P`
[ 2∑

n=1

sIn,unp sin(nφ)
]

+ (5.60)

ST
[ 3∑

n=0

cIn,TP− sin(φ− φs) cos(nφ) +
3∑

n=1

sIn,TP+ cos(φ− φs) sin(nφ)
]

+

P`ST
[ 2∑

n=0

cIn,TP+ cos(φ− φs) cos(nφ) +
2∑

n=1

sIn,TP− sin(φ− φs) sin(nφ)
]]
,

2Note that the coordinate system shown in the figure is also rotated with respect to the HERMES
coordinate system by an angle θγ∗.
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where φs is the angle between lepton scattering plane and transverse component of target
polarization. Since the target is polarized in the lepton scattering plane, the angle φs has
fixed values of 0 and π for positive and negative target polarization respectively. These
allows to distinguish between coefficients from Eq. 5.60 that can contribute either in
sin(φ) or sin(2φ) amplitude of longitudinal target-spin asymmetry AUL, and respectively
in cos(0φ) or cos(φ) amplitude of longitudinal double-spin asymmetry ALL

The extracted longitudinal target-spin asymmetry amplitudes A
sin(φ)
UL and A

sin(2φ)
UL can

be related to the true values of the same amplitudes A
∗ sin(φ)
UL and A

∗ sin(2φ)
UL as

A
sin(φ)
UL = cos(θγ∗)A

∗ sin(φ)
UL − 1

2
sin(θγ∗)

[
2A

sin(φ−φs)
UT,I (5.61)

−Asin(φ−φs) cos(2φ)
UT,I + A

cos(φ−φs) sin(2φ)
UT,I

]

φs=0

A
sin(2φ)
UL = cos(θγ∗)A

∗ sin(2φ)
UL − 1

2
sin(θγ∗)

[
A

sin(φ−φs) cos(φ)
UT,I (5.62)

+A
cos(φ−φs) sin(φ)
UT,I − Asin(φ−φs) cos(3φ)

UT,I + A
cos(φ−φs) sin(3φ)
UT,I

]

φs=0

The estimates for the depolarization effect can be done based on the reconstructed values
of the angle θeγ∗, that is shown on the right plot of Figure 5.43 and has an average
value of about 0.08 rad. Hence, the depolarization effects that are proportional to the
〈cos(θeγ∗)〉 are less than 1%. The absolute size of the contribution from transverse target-
spin asymmetry are estimated from the values of corresponding asymmetry amplitudes
extracted at HERMES [Air08]. Since the largest amplitude of transverse target-spin

was measured to be A
sin(φ−φs) cos(φ)
UT = −0.164 ± 0.039(stat.) ± 0.023(syst.), therefore the

absolute size of this effect does not exceed the value of 0.008. And in addition it mainly
contributes to the A

sin(2φ)
UL amplitude.

The estimates of depolarization effects hold also for the case of double-spin asymmetry
amplitudes. For the estimation of the contribution from transverse double-spin asymmetry
ALT , one can write the relations between measured amplitudes A

cos(0φ)
LL and A

cos(φ)
LL and

their true values as:

A
cos(0φ)
LL = cos(θγ∗)A

∗ cos(0φ)
LL − 1

2
sin(θγ∗)

[
A

cos(φ−φs) cos(φ)
LT,I (5.63)

+A
sin(φ−φs) sin(φ)
LT,I

]

φs=0

A
cos(φ)
LL = cos(θγ∗)A

∗ cos(φ)
LL − 1

2
sin(θγ∗)

[
2A

cos(φ−φs)
LT,I (5.64)

+A
cos(φ−φs) cos(2φ)
LT,I + A

sin(φ−φs) sin(2φ)
LT,I

]

φs=0

The preliminary HERMES results of the transverse double-spin asymmetry suggest even
smaller contribution, then that for single target spin asymmetry.

Based on the above discussed estimates of contribution from transverse polarization
component of the target and also of the depolarization effects, no correction and no
systematic uncertainty were assigned from these sources to the final results.
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5.5.11 Summary of Systematic Uncertainties

Among various sources of systematic uncertainties that were discussed in previous
sections, the ones that were found to make a sizable contributions were accounted for
the total systematic uncertainty. Those are the uncertainties caused by the measurement
of beam and target polarization, background correction, the shift of missing mass dis-
tribution, and by the combined influence of acceptance, finite-bin-width, smearing and
misalignment effects. The individual contributions of these uncertainties are given in
Table 5.11 for the leading asymmetry amplitudes, corresponding to the entire HERMES
kinematics. The total uncertainty was obtained by quadratically adding all the contribu-
tions, except from the scale uncertainty. The systematic uncertainties were estimated for
each kinematic bin separately.

Asymmetry Amplitude δM2
x shift δ BG. corr. δ 4-in-1 Scale Uncertainty

A
cos(0φ)
C 0.001 0.001 0.014 -

A
cos(φ)
C < 0.001 0.002 0.023 -

A
sin(φ)
LU,I < 0.001 0.004 0.031 2.4%

A
sin(φ)
LU,DV CS 0.002 0.006 0.003 2.4%

A
cos(0φ)
LL - 0.002 0.004 4.4 %

A
cos(φ)
LL - 0.003 0.019 4.4 %

A
sin(φ)
UL - 0.002 0.029 4.0 %

A
sin(φ)

L
⇐⇒ - 0.004 0.057 1.9 %

A
cos(0φ)

C
⇐⇒ - < 0.001 0.034 -

A
cos(φ)

C
⇐⇒ - 0.001 0.008 -

A
sin(φ)

C
⇐⇒ - 0.001 0.057 2.2 %

A
cos(0φ)
C←L

- < 0.001 0.002 5.7 %

A
cos(φ)
C←L

- 0.003 0.006 5.7 %

A
sin(φ)
C←L

- < 0.001 0.028 5.3 %

A
cos(0φ)
0←L

- 0.003 0.009 5.7 %

A
cos(φ)
0←L

- 0.005 0.009 5.7 %

A
sin(φ)
0←L

- 0.001 0.002 5.3 %

Table 5.11: Individual contributions of different sources of systematic uncertainties to the
leading amplitudes of the asymmetries for entire HERMES kinematics.
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Chapter 6

Results

In this chapter the final results of the asymmetry amplitudes are presented. The
obtained asymmetry amplitudes from the analysis of the data collected on an unpolar-
ized and longitudinally vector polarized deuterium targets are compared with the model
predictions. Also a comparison of the results obtained on a deuterium target, with the
similar ones extracted from a hydrogen data at HERMES is given.

6.1 Results on beam-charge and beam-helicity asym-

metries for an unpolarized deuterium target

The final results of the asymmetry amplitudes extracted from a data collected on
an unpolarized deuterium target are shown in Figures 6.1 - 6.3 as a function of −t,
xN , or Q2. Note that in the following t will stand for a constrained variable tc. While
the variable xD would be the appropriate choice when presenting experimental results
for pure coherent scattering, the nucleonic Bjorken variable xN is the practical choice
in this case where incoherent scattering dominates over most of the kinematic range.
The ‘overall’ results in the left columns correspond to the entire HERMES kinematic
acceptance. Figure 6.1 shows the amplitudes of beam-charge asymmetry A

cos(nφ)
C , and

Figure 6.2 shows the amplitude of charge averaged beam-helcity asymmetry Asinφ
LU,DVCS,

and the amplitudes of charge difference beam-helicity asymmetry A
sin(nφ)
LU,I . All amplitudes

are listed in Table 6.1 with the mean kinematic values of each bin1, together with the
statistical and systematic uncertainties.

In the case of beam-charge asymmetry, of special interest is the amplitude Acosφ
C . In the

HERMES kinematic conditions the latter is sensitive to the GPDH1 for coherent and GPD
H for the incoherent process. The amplitude Acosφ

C shows a positive value by 2.4 standard
deviations from total experimental uncertainty. Moreover the present data indicates that
this amplitude increases with increasing −t. The amplitude A

cos(0φ)
C in Figure 6.1, which is

expected to relate to the same combination of GPDs as doesAcosφ
C , shows similar behaviour

but with opposite sign, as expected [BMK02]. The dependences of the amplitudes A0 cosφ
C

and Acosφ
C on xN and Q2 are flat, while possibly a small decrease of the amplitude A0 cosφ

C

at smaller values of xN can be seen. The other two amplitudes A
cos(2φ)
C and A

cos(3φ)
C , related

to twist-3 GPDs and the gluon transversity operator, respectively , are consistent with
zero.

1 The results of the amplitudes extracted in four bins in −t , xN and Q2, i.e. a binning used for
the extraction of the asymmetry amplitudes from polarized data given in Table 5.2, are available in the
Durham database.
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Figure 6.1: Amplitudes of the beam-charge asymmetry, which are sensitive to the in-
terference term, in bins of −t, xN , or Q2. The squares represent the results from
the present work. The error bars (bands) represent the statistical (systematic) un-
certainties. The finely (coarsely) hatched bands are theoretical calculations for inco-
herently combined proton and neutron targets, using variants of a double-distribution
model [VGG99, Rad99, GPV01] with the VGG Regge (VGG Factorized) ansatz for GPDs.
The lowest panel shows the simulated fractions of coherent and resonant production.

The fractional contributions to the yield from the coherent processes and from pro-
cesses with excitation of resonant final states are presented in the bottom row of Figure 6.1.
Note that these fractional contributions that are given also in Table 5.5, are subject to
considerable model dependence.

Figure 6.2 shows amplitudes of beam-helicity asymmetries, with the charge-averaged
case related to the squared DVCS term in the upper row and the charge-difference case
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Figure 6.2: The first row shows the sinφ amplitude of the charge averaged beam-helicity
asymmetry that is sensitive to the squared DVCS term, in bins of −t, xN , or Q2. Cor-
respondingly, the second (third) row shows the sinφ (sin 2φ) amplitude of the charge
difference beam-helicity asymmetry sensitive to the interference term. All symbols are
defined as in Figure 6.1. There is an overall 2.4% scale uncertainty arising from the
uncertainty in the measurement of the beam polarization.

related to the interference term in the other rows. The amplitude Asinφ
LU,DVCS, which is re-

lated to twist-3 GPDs, is found to be consistent with zero. Like the amplitude Acosφ
C , the

amplitude Asinφ
LU,I is also sensitive to the GPD H1 [H] for the coherent [incoherent] process,

although these two asymmetries reveal different aspects of the (real) GPD, selected by
different convolutions with (complex) hard scattering amplitudes. While the amplitude
Acosφ

C is related to the real part of the CFF H1 [H], the Asinφ
LU,I amplitude is proportional

to the imaginary part and shows significant negative values. The amplitude A
sin(2φ)
LU,I ap-

pears at twist-3 level, but nevertheless it shows a value which is non-zero and positive
by 1.7 standard deviations of the total experimental uncertainty. Figure 6.3 shows the
amplitudes that are forbidden by parity conservation but were included in the fit as a
consistency test. They are consistent with zero.

The two hatched bands in Figures 6.1 and 6.2 are theoretical calculations for the
incoherent process, based on two different ansätze for modeling GPDs [GPV01] in the
VGG model [VGG01] (the coherent process will be considered in Section 6.3). In this
model, a GPD is written as a double distribution [Mul94, Rad96] complemented by a
D-term:

• In the ‘factorized ansatz’ (VGG Fact.), the dependences on t and (x, ξ) are uncorre-
lated. The t dependence is written in accordance with proton elastic form factors.
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Figure 6.3: The cos(0φ) amplitudes (constant terms) that are included as a consistency
test in the fit function. All symbols are defined as in Figure 6.1. There is an overall
2.4% scale uncertainty arising from the uncertainty in the measurement of the beam
polarization.

The (x, ξ) dependence is based on double distributions [Mul94] constructed from or-
dinary PDFs complemented with a profile function that characterizes the strength
of the ξ dependence; in the limit b → ∞ of the profile parameter b, the GPD is
independent of ξ [Rad99]. Note that b is a free parameter to be experimentally
determined independently for valence and sea quarks.

• The ‘Regge ansatz’ (VGG Regge) implements entanglement of the t dependence of
the GPD with its dependence on x and ξ. This feature is inspired by the traditional
interpretation of measurements of elastic diffractive processes in terms of Regge phe-
nomenology [GPV01], and finds further support in more recent phenomenological
considerations [DFJK05]. This ansatz for GPDs hence uses for the t dependence
of the double distributions a soft Regge-type parameterization ∝ |ξ|−α(0)+α′ |t| with
α′ = 0.8 GeV−2 . . . 0.9 GeV−2 for quarks.

Both theoretical calculations are averaged at the cross section level over incoherent
processes on the proton and neutron in each kinematic bin. In both calculations the D-
term is assigned the value zero. Earlier, it was found that inclusion of a D-term with any
significant magnitude in the double-distribution model of reference [VGG01] employing
several variants of Regge or factorized ansätze with any choice of profile parameters fails
to describe the beam-charge asymmetry amplitudes measured at HERMES on a hydro-
gen target [Air08, Air09]. The theoretical bands in Figures 6.1 and 6.2 correspond to the
range of values of the asymmetry amplitudes obtained by varying the profile parameters
bval and bsea between unity and infinity. The theoretical calculations based on the factor-
ized ansatz fail to describe the t dependence of A

cos(0φ)
C and Acosφ

C as seen in Figure 6.1.
The calculations based on the Regge ansatz for GPDs are in good agreement with the
t dependence of the measured asymmetry amplitudes with respect to the beam charge
A

cos(nφ)
C . Both ansätze predict that Acosφ

C decreases with increasing xN , which is not seen
in the data. Both ansätze undershoot the asymmetry amplitudes with respect to the
beam helicity A

sin(nφ)
LU,I .
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kinematic bin 〈−t〉 〈xN 〉 〈Q2〉 A
cos (0φ)
C Acos φ

C
[GeV2] [GeV2] ±δstat ± δsyst ±δstat ± δsyst

overall 0.13 0.10 2.5 −0.028± 0.010± 0.014 0.067± 0.015± 0.023

−
t[
G

e
V

2
] 0.00-0.03 0.02 0.07 1.7 −0.004± 0.023± 0.003 0.056± 0.035± 0.011

0.03-0.06 0.04 0.09 2.2 −0.020± 0.024± 0.014 0.034± 0.033± 0.007
0.06-0.10 0.08 0.10 2.4 −0.008± 0.024± 0.020 0.045± 0.034± 0.023
0.10-0.20 0.14 0.11 2.7 −0.029± 0.021± 0.024 0.085± 0.030± 0.027
0.20-0.35 0.26 0.12 3.1 −0.067± 0.028± 0.018 0.093± 0.039± 0.022
0.35-0.70 0.46 0.11 3.5 −0.066± 0.042± 0.029 0.114± 0.064± 0.057

x
N

0.03-0.06 0.12 0.05 1.3 −0.052± 0.026± 0.003 0.092± 0.040± 0.036
0.06-0.08 0.10 0.07 1.8 −0.024± 0.022± 0.017 0.049± 0.031± 0.028
0.08-0.10 0.11 0.09 2.3 −0.030± 0.025± 0.016 0.056± 0.036± 0.023
0.10-0.13 0.13 0.11 2.9 0.011± 0.026± 0.030 0.039± 0.037± 0.030
0.13-0.20 0.17 0.16 4.0 −0.021± 0.028± 0.007 0.070± 0.040± 0.031
0.20-0.35 0.23 0.24 6.1 −0.013± 0.052± 0.055 0.136± 0.074± 0.022

Q
2
[G

e
V

2
] 1.0-1.4 0.09 0.05 1.2 −0.032± 0.022± 0.016 0.077± 0.033± 0.037

1.4-1.8 0.10 0.07 1.6 −0.050± 0.026± 0.017 0.100± 0.037± 0.016
1.8-2.4 0.12 0.09 2.1 −0.031± 0.023± 0.017 0.025± 0.032± 0.035
2.4-3.2 0.14 0.11 2.8 −0.021± 0.024± 0.026 0.106± 0.038± 0.013
3.2-4.5 0.16 0.14 3.8 −0.010± 0.027± 0.014 0.026± 0.037± 0.029
4.5-10.0 0.23 0.20 5.8 −0.010± 0.032± 0.035 0.055± 0.046± 0.023

kinematic bin 〈−t〉 〈xN 〉 〈Q2〉 A
cos (2φ)
C A

cos (3φ)
C

[GeV2] [GeV2] ±δstat ± δsyst ±δstat ± δsyst

overall 0.13 0.10 2.5 −0.007± 0.014± 0.016 0.005± 0.014± 0.001

−
t[
G

e
V

2
] 0.00-0.03 0.02 0.07 1.7 0.003± 0.032± 0.008 −0.007± 0.032± 0.004

0.03-0.06 0.04 0.09 2.2 −0.013± 0.033± 0.001 −0.041± 0.034± 0.005
0.06-0.10 0.08 0.10 2.4 0.014± 0.035± 0.017 0.059± 0.035± 0.010
0.10-0.20 0.14 0.11 2.7 −0.026± 0.029± 0.023 −0.006± 0.029± 0.006
0.20-0.35 0.26 0.12 3.1 −0.006± 0.038± 0.050 0.044± 0.037± 0.002
0.35-0.70 0.46 0.11 3.5 −0.015± 0.056± 0.049 −0.007± 0.055± 0.008

x
N

0.03-0.06 0.12 0.05 1.3 0.024± 0.031± 0.002 0.024± 0.030± 0.005
0.06-0.08 0.10 0.07 1.8 0.004± 0.029± 0.014 −0.027± 0.030± 0.001
0.08-0.10 0.11 0.09 2.3 −0.014± 0.035± 0.013 −0.008± 0.035± 0.008
0.10-0.13 0.13 0.11 2.9 0.004± 0.037± 0.029 0.068± 0.037± 0.004
0.13-0.20 0.17 0.16 4.0 −0.051± 0.040± 0.011 0.000± 0.038± 0.002
0.20-0.35 0.23 0.24 6.1 −0.091± 0.069± 0.039 0.000± 0.069± 0.008

Q
2
[G

e
V

2
] 1.0-1.4 0.09 0.05 1.2 0.000± 0.029± 0.007 −0.030± 0.030± 0.004

1.4-1.8 0.10 0.07 1.6 0.000± 0.034± 0.018 0.021± 0.034± 0.006
1.8-2.4 0.12 0.09 2.1 −0.035± 0.033± 0.015 0.074± 0.034± 0.009
2.4-3.2 0.14 0.11 2.8 0.045± 0.036± 0.021 −0.042± 0.035± 0.003
3.2-4.5 0.16 0.14 3.8 0.018± 0.037± 0.015 −0.003± 0.037± 0.004
4.5-10.0 0.23 0.20 5.8 −0.095± 0.046± 0.025 0.013± 0.045± 0.003

kinematic bin 〈−t〉 〈xN 〉 〈Q2〉 Asin φ
LU,DVCS Asin φ

LU,I A
sin (2φ)
LU,I

[GeV2] [GeV2] ±δstat ± δsyst ±δstat ± δsyst ±δstat ± δsyst

overall 0.13 0.10 2.5 −0.007± 0.033± 0.007 −0.192± 0.035± 0.031 0.073± 0.031± 0.012

−
t[
G

e
V

2
] 0.00-0.03 0.02 0.07 1.7 −0.042± 0.074± 0.011 −0.296± 0.104± 0.006 0.056± 0.071± 0.011

0.03-0.06 0.04 0.09 2.2 −0.101± 0.077± 0.013 −0.167± 0.084± 0.008 0.034± 0.072± 0.009
0.06-0.10 0.08 0.10 2.4 0.032± 0.080± 0.032 −0.064± 0.081± 0.010 0.114± 0.076± 0.032
0.10-0.20 0.14 0.11 2.7 0.018± 0.068± 0.009 −0.215± 0.071± 0.016 −0.022± 0.065± 0.013
0.20-0.35 0.26 0.12 3.1 0.095± 0.087± 0.009 −0.286± 0.095± 0.008 0.206± 0.085± 0.024
0.35-0.70 0.46 0.11 3.5 −0.029± 0.118± 0.035 0.003± 0.122± 0.005 0.133± 0.124± 0.030

x
N

0.03-0.06 0.12 0.05 1.3 −0.007± 0.064± 0.021 −0.197± 0.083± 0.061 0.080± 0.066± 0.015
0.06-0.08 0.10 0.07 1.8 0.012± 0.069± 0.018 −0.286± 0.096± 0.032 0.084± 0.067± 0.014
0.08-0.10 0.11 0.09 2.3 0.041± 0.080± 0.025 −0.017± 0.080± 0.031 −0.018± 0.075± 0.010
0.10-0.13 0.13 0.11 2.9 −0.056± 0.084± 0.033 −0.212± 0.090± 0.023 0.060± 0.080± 0.013
0.13-0.20 0.17 0.16 4.0 −0.109± 0.090± 0.037 −0.189± 0.093± 0.020 0.029± 0.083± 0.002
0.20-0.35 0.23 0.24 6.1 0.222± 0.160± 0.053 −0.313± 0.161± 0.032 0.444± 0.163± 0.032

Q
2
[G

e
V

2
] 1.0-1.4 0.09 0.05 1.2 −0.028± 0.068± 0.035 −0.208± 0.082± 0.060 0.052± 0.065± 0.011

1.4-1.8 0.10 0.07 1.6 0.175± 0.079± 0.030 −0.222± 0.087± 0.049 0.127± 0.077± 0.019
1.8-2.4 0.12 0.09 2.1 −0.108± 0.076± 0.020 −0.124± 0.077± 0.029 −0.011± 0.071± 0.007
2.4-3.2 0.14 0.11 2.8 0.005± 0.083± 0.023 −0.244± 0.091± 0.037 0.054± 0.077± 0.010
3.2-4.5 0.16 0.14 3.8 −0.045± 0.086± 0.037 −0.169± 0.088± 0.022 0.119± 0.082± 0.005
4.5-10.0 0.23 0.20 5.8 −0.038± 0.104± 0.010 −0.233± 0.105± 0.006 0.166± 0.100± 0.006

Table 6.1: Results for azimuthal Fourier amplitudes of the beam-charge and beam-helicity
asymmetries extracted from an unpolarized deuteron.
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6.2 Comparison of the deuteron results with the HER-

MES results on beam-charge and beam-helicity

asymmetries on the proton

In Figures 6.4 - 6.6 the overall asymmetry amplitudes as well as their −t, xN , and
Q2 dependences, measured for the unpolarized deuterium target, are compared with the
analogous results obtained from HERMES data on the proton [Air09]. The analysis of
the data and the extraction of the asymmetry amplitudes on Hydrogen target is discussed
in details in [Zei09]. The deuteron data include the coherent process ~e± d → e± d γ, and
the incoherent process ~e± d → e± p n γ, where a nucleon may be excited to a resonance.
The proton data include only ~e± p→ e± p γ and the case with resonance excitation. Any
difference that appears at small values of −t (coherent-enriched data sample) may be due
to the coherent process.
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Figure 6.4: Fourier amplitudes of the beam-helicity asymmetry that are sensitive to the
interference term, in bins of −t, xN , or Q2, extracted from deuteron data (squares) and
from proton data (triangles). The error bars (bands) represent the statistical (systematic)
uncertainties, which include all sources apart from the 2.4% (2.8%) scale uncertainty for
the deuteron (proton) data due to the beam polarization. The hatched band is for the
deuterium target.
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Figure 6.5: Fourier amplitudes of the beam-charge asymmetry, which are sensitive to the
interference term, in bins of −t, xN , or Q2, extracted from deuteron data (squares) and
from proton data (triangles). The points for deuterium are slightly shifted along the x-axis
for visibility. The error bars (bands) represent the statistical (systematic) uncertainties.
The hatched band is for the deuterium target.

Monte Carlo simulations described in section 5.3 indicate that the incoherent process
dominates for 0.06 GeV2 < −t < 0.7 GeV2 (incoherent-enriched data sample). Meanwhile
the contribution of proton to the incoherent process dominates over that from neutron.
Therefore, one could expect similar results on both targets for intermediate values of −t.
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And indeed, as shown in Figures 6.4 - 6.6, the deuteron and proton results are found to
be consistent in most kinematic regions. A possible difference in the last two −t bins
of the amplitude Acosφ

C , shown in Figure 6.5, may be due to the contributions of the

neutron and its resonances. The proton and deuteron results for the amplitude A
sin(φ)
LU,I

in Figure 6.4, agree very well for both coherent and incoherent-enriched data samples,
and do not show any significant dependence on kinematic variables −t, Q2 and xN . The
proton and deuteron results for the amplitude A

sin(2φ)
LU,I in Figure 6.4, integrated over the

acceptance differ by 2.5 times the total experimental uncertainties. This possible discrep-
ancy is most evident at large −t and large xN (or Q2). Such a discrepancy would have

no obvious explanation. The results for the amplitude A
sin(φ)
LU,DVCS of charge-averaged beam

helicity asymmetry, shown in Figure 6.6 for both proton and deuteron targets, also agree
over the whole kinematic range.

-0.4

-0.2

0

0.2

0.4

A
LU

, D
V

C
S

sin
 φ

overall
10-2 10-1

-t [GeV2]
10-1

xN

e
→ ± d → e± γ X

1 10
Q2 [GeV2]

e
→ ± p → e± γ X

Figure 6.6: Fourier amplitudes of the beam-helicity asymmetry that are sensitive to the
squared DVCS term, in bins of −t, xN , or Q2, extracted from deuteron data (squares) and
from proton data (triangles). The error bars (bands) represent the statistical (systematic)
uncertainties, which include all sources apart from the 2.4% (2.8%) scale uncertainty for
the deuteron (proton) data due to the beam polarization. The hatched band is for the
deuterium target.

6.3 Estimates of the asymmetries from coherent scat-

tering

Estimates of the asymmetries for coherent scattering in the range −t < 0.06 GeV2,
corresponding to the first two bins, were derived by correcting for the incoherent contribu-
tions of the proton and its resonances using the simulated fractional coherent contributions
from Table 5.5, under the assumption that the asymmetries for these contributions are
the same as those on the free proton. The simulated contribution of approximately 7%
from the process ~e± n → e± n γ is estimated to have an effect on the asymmetries of
less than 0.01. The extracted coherent asymmetries Acosφ

C,coh and Asinφ
LU,I,coh are found to be
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Exp. value Model

value ± δstat ± δsyst A B B0 B̂ B′ C [CP04]

Asinφ
LU,I,coh −0.29± 0.18±0.03 -0.44 -0.38 -0.16 -0.37 -0.39 -0.58 -0.36

Acosφ
C,coh 0.11± 0.07± 0.03 0.10 0.09 -0.17 0.09 0.09 0.22 -0.15

Table 6.2: Experimental and theoretical values of the beam-helicity and beam-charge
asymmetries for the coherent process on the deuteron. The theoretical predictions are
for variants of the models of [BMK02, KM04] and a model from [CP04]. The experi-
mental uncertainties do not account for the model dependence of the simulated fractional
contributions of coherent and incoherent processes.

deuteron H1 GPD Model

Model parameters A B (B′, B̂) B0 C
bval 1 ∞ ∞ 1
bsea ∞ ∞ − 1

Bsea [GeV−2] 20 20 − 15

Table 6.3: Model parameter sets for the GPD H1 of the deuteron [BMK02, KM04]. The
t slope parameter Bsea is used mainly to change the normalization of the sea quark GPD
H1.

0.11 ± 0.07 (stat.) ± 0.03 (syst.) and −0.29 ± 0.18 (stat.) ± 0.03 (syst.), respectively, at
the average kinematic values 〈−t〉 = 0.03 GeV2, 〈xD〉 = 0.04, and 〈Q2〉 = 1.9 GeV2.

These results for the coherent asymmetries are compared in Table 6.2 with model
estimates using the models A, B, B0, B̂, B′, and C of references [BMK02, KM04], the
main parameters of which are listed in Table 6.3. The model estimates are based on
the double distribution ansatz [Rad99] for nucleonic GPDs, combined with a factorized t
dependence, and with the D-term set to zero. The nucleonic GPDs are combined using the
impulse approximation. The contribution of sea quarks is neglected in model B0, while it
is enhanced in model C by a choice of a smaller value of the parameter bsea, which increases
the absolute value of the beam-helicity asymmetry amplitude Asinφ

LU,I,coh compared to model

A. In model B′ (B̂), the GPD H3 (H5) is taken into account by arbitrarily equating it with
H1 (H1(x)−H1(−x)). All other GPDs are kinematically suppressed and are set to zero.
The models B0 and C were previously ruled out by the beam-helicity and beam-charge
asymmetry measurements on the hydrogen target [Air01, Step01, Air08, Air07b, Air09].
Table 6.2 also includes model predictions from [CP04], that was discussed in section 2.8.

All models are consistent within two standard deviations in the total experimental
uncertainty with the extracted results for Asinφ

LU,I,coh and Acosφ
C,coh, except for models B0 and

that of [CP04], which disagree with the results of Acosφ
C,coh by about 3.5 standard deviations.

Here, it should be noted that predictions for the real part of the CFFs are subject to
delicate cancellations [BMK02] and hence are extremely sensitive to assumptions.

113



6.4 Single- and double-spin asymmetries

The results for the Fourier amplitudes of the single-charge asymmetries AL
⇐⇒(e` =

+1, Pzz, φ), AUL(e` = +1, Pzz, φ) and ALL(e` = +1, Pzz, φ) are presented in Figures 6.7–
6.9 as a function of −t, xN , or Q2 and are also given in Table 6.4. Figure 6.7 shows
the amplitudes A

sin(nφ)

L
⇐⇒ related to beam helicity only, while Figures 6.8 and 6.9 show the

amplitudes A
sin(nφ)
UL , which relate to target vector polarization only, and the amplitudes

A
cos(nφ)
LL , which relate to the product of beam helicity and target vector polarization.

The values for the sinφ amplitude of the asymmetry AL
⇐⇒ in Figure 6.7 are found to
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Figure 6.7: Results in red filled squares represent single-charge beam-helicity asymmetry
amplitudes A

sin(nφ)

L
⇐⇒ describing the dependence of the sum of squared DVCS and interfer-

ence terms on the beam helicity, for a tensor polarization of Pzz = 0.827 (indicated by

the symbol ↔). The black open squares represent charge-difference amplitudes A
sin(nφ)
LU,I

from only the interference term, extracted from unpolarized deuterium data. The error
bars represent the statistical uncertainties, while the coarsely hatched (open) bands rep-
resent the systematic uncertainties of the filled (opened) squares. There is an additional
overall 1.9% (2.4%) scale uncertainty arising from the uncertainty in the measurement
of the beam polarization in the case of polarized (unpolarized) deuterium data. The
points for unpolarized deuterium data are slightly shifted to the left for better visibility.
The finely hatched band shows the results of theoretical calculations for the combina-
tion of incoherent scattering on proton and neutron, using variants of the VGG double-
distribution model [VGG99, VGG01] with a Regge ansatz for modeling the t dependence
of GPDs [GPV01].
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Figure 6.8: Single-charge target-spin asymmetry amplitudes describing the dependence
of the sum of squared DVCS and interference terms on the target vector polarization, for
a tensor polarization of Pzz = 0.827. The squares represent the results from the present
work. The triangles denote the corresponding amplitudes extracted from longitudinally
polarized hydrogen data [Air10a]. The error bars (bands) represent the statistical (sys-
tematic) uncertainties. The finely hatched bands have the same meaning as in Figure 6.7.
There is an additional overall 5.0% (5.2%) scale uncertainty arising from the uncertainty
in the measurement of the target polarization in the case of deuterium (hydrogen). The
points for hydrogen are slightly shifted to the left for better visibility.

be significantly negative, while the sin(2φ) amplitude is found to be consistent with zero.
Figure 6.7 also presents for comparison the amplitudes of the charge-difference asymmetry
AI

LU extracted from an unpolarized deuterons. AL
⇐⇒ is expected to differ from AI

LU (only
if Pzz 6= 0) due only to a term involving the CFF H5. Figure 6.7 shows that these two
asymmetries are found to be consistent in most kinematic regions, except possibly for the
last −t or xN bin in the case of sin(2φ). (The overall results differ by only 1.7 standard
deviations in the total experimental uncertainties. The consistency in the first −t bin,
where the contribution from coherent scattering is significant, suggests that there is no
distinctive contribution from H5, as was observed in the case of corresponding forward
limit [Air05, Air07a].

In the first −t bin, the asymmetry amplitude Asinφ

L
⇐⇒,coh

for pure coherent scattering on
a polarized deuterium target was estimated from the measured asymmetry by correcting
for the incoherent contributions of the proton and neutron and their resonances . This
correction is based on the assumption that for the incoherent contribution of the proton,
Asinφ

L
⇐⇒ (Pzz = 0.827) ≈ Asinφ

LU,I where the latter was measured on a hydrogen target [Air09].
The fractional contributions and the asymmetry for incoherent scattering from the neutron
was taken from the Monte Carlo calculation described in section 5.3, with uncertainties
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Figure 6.9: Single-charge double-spin asymmetry amplitudes describing the dependence
of the sum of Bethe-Heitler, squared DVCS and interference terms on the product of the
beam helicity and target vector polarization, for a tensor polarization of Pzz = 0.827. The
plotted symbols and bands have the same meaning as in Figure 6.8. There is an additional
overall 5.4% (5.3%) scale uncertainty arising from the uncertainties in the measurement
of the beam and target polarizations in the case of deuterium (hydrogen) data.

equal to their magnitude. The result for the asymmetry amplitude Asinφ

L
⇐⇒,coh

(Pzz = 0.827)

is estimated to be −0.12 ± 0.17(stat.) ± 0.14(syst.) ± 0.02(model), where the systematic
uncertainty is propagated from only the corresponding experimental uncertainties. Within
the uncertainties there is no evidence of a difference between this value and the value for
the asymmetry amplitude Asinφ

LU,I,coh = −0.29±0.18(stat.)±0.03(syst.) previously estimated
for coherent scattering on an unpolarized deuterium target, using a disjoint HERMES
data set for an unpolarized deuterium target, but using the same data set for a hydrogen
target.

The extracted values for the sinφ and sin(2φ) amplitudes of the single-charge asymme-
try AUL measured on a longitudinally polarized deuterium target are shown in Figure 6.8.
The ‘overall’ values are slightly negative by less than 1.5 standard deviations of the total
experimental uncertainty. For coherent scattering on the deuteron, the amplitude Asinφ

UL

is sensitive to the imaginary part of a deuteron CFFs H̃1. For comparison, the same am-
plitudes measured on a longitudinally polarized hydrogen target [Air10a] are also shown
in Figure 6.8. The analysis of the data and the extraction of the asymmetry amplitudes
on longitudinally polarized hydrogen target are discussed in details in [Mah10]. The sinφ
amplitude shows consistency between deuterium and hydrogen data both for the ‘overall’
result and the kinematic projections on −t, xN , and Q2. In this comparison, no account
was taken of the 7.5% depolarization of nucleons in the deuteron due to the 5% admix-
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Kinematic bin 〈−t〉 〈xN 〉 〈Q2〉 Asin φ
L⇐⇒

A
sin (2φ)
L⇐⇒

[GeV2] [GeV2] ±δstat ± δsyst ±δstat ± δsyst

Overall 0.13 0.10 2.5 −0.148± 0.036± 0.058 −0.012± 0.035± 0.013

−
t[
G

e
V

2
]

0.00-0.06 0.03 0.08 1.9 −0.171± 0.058± 0.049 0.043± 0.057± 0.005

0.06-0.14 0.10 0.10 2.5 −0.131± 0.066± 0.037 −0.053± 0.065± 0.010

0.14-0.30 0.20 0.11 2.9 −0.246± 0.074± 0.025 0.032± 0.075± 0.007

0.30-0.70 0.42 0.12 3.5 0.064± 0.111± 0.032 −0.217± 0.115± 0.008

x
N

0.03-0.07 0.11 0.05 1.4 −0.093± 0.058± 0.064 0.018± 0.060± 0.035

0.07-0.10 0.11 0.08 2.1 −0.140± 0.067± 0.062 −0.019± 0.066± 0.013

0.10-0.15 0.14 0.12 3.1 −0.238± 0.077± 0.055 0.066± 0.077± 0.014

0.15-0.35 0.20 0.20 5.0 −0.156± 0.109± 0.049 −0.165± 0.103± 0.013

Q
2
[G

e
V

2
]

1.0-1.5 0.09 0.06 1.2 −0.103± 0.068± 0.043 −0.017± 0.067± 0.051

1.5-2.3 0.11 0.08 1.9 −0.169± 0.065± 0.047 0.065± 0.066± 0.032

2.3-3.5 0.14 0.11 2.8 −0.110± 0.074± 0.050 −0.077± 0.073± 0.014

3.5-10.0 0.20 0.17 4.9 −0.212± 0.079± 0.042 −0.036± 0.080± 0.006

Kinematic bin 〈−t〉 〈xN 〉 〈Q2〉 Asin φ
UL A

sin (2φ)
UL A

sin (3φ)
UL

[GeV2] [GeV2] ±δstat ± δsyst ±δstat ± δsyst ±δstat ± δsyst

Overall 0.13 0.10 2.5 −0.044± 0.023± 0.029 −0.037± 0.022± 0.010 −0.039± 0.022± 0.004

−
t[
G

e
V

2
]

0.00-0.06 0.03 0.08 1.9 −0.018± 0.037± 0.031 −0.015± 0.036± 0.010 0.009± 0.036± 0.005

0.06-0.14 0.10 0.10 2.5 −0.036± 0.042± 0.018 −0.094± 0.041± 0.013 −0.112± 0.041± 0.006

0.14-0.30 0.20 0.11 2.9 −0.057± 0.047± 0.012 −0.006± 0.048± 0.015 −0.045± 0.047± 0.006

0.30-0.70 0.42 0.12 3.5 −0.116± 0.071± 0.009 0.024± 0.075± 0.023 0.060± 0.074± 0.014

x
N

0.03-0.07 0.11 0.05 1.4 −0.025± 0.037± 0.016 −0.034± 0.038± 0.005 −0.053± 0.038± 0.002

0.07-0.10 0.11 0.08 2.1 −0.046± 0.042± 0.026 −0.023± 0.042± 0.006 0.006± 0.041± 0.004

0.10-0.15 0.14 0.12 3.1 −0.037± 0.049± 0.026 −0.048± 0.049± 0.006 −0.011± 0.047± 0.004

0.15-0.35 0.20 0.20 5.0 −0.104± 0.069± 0.030 −0.036± 0.068± 0.009 −0.142± 0.066± 0.011

Q
2
[G

e
V

2
]

1.0-1.5 0.09 0.06 1.2 −0.022± 0.043± 0.023 −0.004± 0.042± 0.005 −0.037± 0.042± 0.004

1.5-2.3 0.11 0.08 1.9 −0.035± 0.041± 0.026 −0.071± 0.042± 0.006 −0.006± 0.041± 0.006

2.3-3.5 0.14 0.11 2.8 −0.091± 0.047± 0.026 −0.002± 0.046± 0.008 −0.047± 0.046± 0.003

3.5-10.0 0.20 0.17 4.9 −0.025± 0.050± 0.024 −0.073± 0.050± 0.008 −0.069± 0.050± 0.005

Kinematic bin 〈−t〉 〈xN 〉 〈Q2〉 A
cos (0φ)
LL Acos φ

LL A
cos (2φ)
LL

[GeV2] [GeV2] ±δstat ± δsyst ±δstat ± δsyst ±δstat ± δsyst

Overall 0.13 0.10 2.5 0.011± 0.029± 0.004 0.072± 0.042± 0.019 −0.017± 0.042± 0.005

−
t[
G

e
V

2
]

0.00-0.06 0.03 0.08 1.9 0.012± 0.048± 0.005 0.136± 0.066± 0.010 −0.115± 0.068± 0.008

0.06-0.14 0.10 0.10 2.5 −0.011± 0.055± 0.007 0.013± 0.076± 0.011 0.002± 0.077± 0.009

0.14-0.30 0.20 0.11 2.9 −0.015± 0.063± 0.005 0.052± 0.090± 0.034 0.078± 0.089± 0.009

0.30-0.70 0.42 0.12 3.5 0.200± 0.099± 0.010 0.136± 0.147± 0.068 0.143± 0.139± 0.005

x
N

0.03-0.07 0.11 0.05 1.4 0.008± 0.051± 0.003 0.062± 0.074± 0.003 0.064± 0.070± 0.003

0.07-0.10 0.11 0.08 2.1 −0.011± 0.056± 0.007 0.108± 0.078± 0.014 −0.085± 0.079± 0.005

0.10-0.15 0.14 0.12 3.1 0.043± 0.064± 0.014 −0.004± 0.090± 0.021 −0.112± 0.088± 0.009

0.15-0.35 0.20 0.20 5.0 −0.003± 0.091± 0.024 0.199± 0.128± 0.034 0.065± 0.126± 0.017

Q
2
[G

e
V

2
]

1.0-1.5 0.09 0.06 1.2 −0.062± 0.056± 0.006 0.008± 0.078± 0.009 0.083± 0.080± 0.007

1.5-2.3 0.11 0.08 1.9 0.054± 0.055± 0.005 0.047± 0.079± 0.010 −0.150± 0.078± 0.007

2.3-3.5 0.14 0.11 2.8 0.001± 0.061± 0.006 0.103± 0.085± 0.007 0.027± 0.086± 0.007

3.5-10.0 0.20 0.17 4.9 0.045± 0.067± 0.016 0.166± 0.095± 0.010 −0.011± 0.095± 0.007

Table 6.4: Results for azimuthal Fourier amplitudes of the single-charge asymmetriesAL
⇐⇒,

AUL and ALL, extracted from longitudinally polarized deuteron data, for a tensor polar-
ization of Pzz = 0.827. Not included are the 1.9%, 4.0% and 4.4% scale uncertainties for
corresponding asymmetry amplitudes arising from the uncertainties in the measurement
of the beam, target, beam and target polarizations, respectively.
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ture of the D-state. The ‘overall’ results on the sin(2φ) amplitude differ between the two
targets by 1.5 standard deviations of the total experimental uncertainties, mainly due to
the region of large −t, but in only one xN bin. The ‘overall’ result on the asymmetry
amplitude A

sin(3φ)
UL is slightly negative by less than 1.7 standard deviation of the total ex-

perimental uncertainty. The sin(3φ) amplitude shows consistency between deuterium and
hydrogen data, accounting for the total experimental uncertainties of the corresponding
measurements, except possibly for the highest xN bin.

The A
cos(nφ)
LL amplitudes of the single-charge double-spin asymmetry measured using

longitudinally polarized deuteron data and presented in Figure 6.9 are found to be com-
patible with zero, although the Acosφ

LL amplitude is positive by 1.6 standard deviations of
the total experimental uncertainty. Within the uncertainties, these asymmetry amplitudes
do not show significant differences from those measured on a longitudinally polarized hy-
drogen target [Air10a], except possibly for the overall result for the amplitude A

cos(0φ)
LL ,

where there is observed a discrepancy of 1.9 standard deviations in the total experimental
uncertainties.

The model calculations predict a magnitude of the sinφ harmonic of the single-charge
beam-helicity asymmetry that exceeds that of the data by about a factor of two, a situ-
ation similar to that found in the case of a hydrogen target [Air10a]. On the other hand
the predictions are in good agreement with data for single-charge target-spin asymme-
tries. A large difference appears between the predictions for the sinφ harmonic of this
asymmetry on the deuteron and proton targets, arising entirely from the contributions
of the neutron. The data are consistent with this difference, but lack the precision to
confirm the large positive prediction of the neutron asymmetry by this model. The pre-
dictions are in good agreement with the single-charge double-spin asymmetry amplitudes,
aside from the cos(0φ) harmonic. Here the theoretical predictions for both the deuteron
and proton, which are dominated by the BH contribution, are significantly positive, in
agreement with the proton data, while the more precise deuteron data are consistent with
zero. The small contribution of coherent scattering to the overall result, with a predicted
negative asymmetry [KM04], is expected to slightly reduce this asymmetry amplitude for
the deuteron.

6.5 The single-helicity asymmetries

The results for the Fourier amplitudes of the single-beam-helicity asymmetries are
presented in Figures. 6.10 - 6.12. More specifically, Figures. 6.10, 6.11, and 6.12 show
the cos(nφ) and sin(nφ) harmonics of the asymmetry AC←⇐⇒

(P`, Pzz, φ), A 0←L
(P`, Pzz, φ)

and AC←L
(P`, Pzz, φ), respectively (see also Tables 6.5 - 6.7), for P` = −0.530± 0.012 and

Pzz = 0.827± 0.027.
The only overall results for the asymmetry AC←⇐⇒

in Figure 6.10 that are found to be
significantly non-zero are the cosφ and sinφ amplitudes. The theoretical calculations for
incoherent scattering predict that the results for the amplitudes A

cos(nφ)
C←⇐⇒

should strongly

resemble those for the amplitudes A
cos(nφ)
C measured with an unpolarized beam on an

unpolarized deuterium target . The data confirm this resemblance, even in the first −t bin
where coherent scattering contributes about 40% of the yield. This is another indication
that the CFF H5 [KM04], in this case its real part, makes no distinctive contribution to
coherent scattering off deuterons, similar to the case of Asinφ

L
⇐⇒ .

The numerators of the A
sin(nφ)
C←⇐⇒

amplitudes shown in Figure 6.10 differ from those of
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Figure 6.10: Results in red filled squares represent single-beam-helicity beam-charge asym-
metry amplitudes A

cos(nφ)

C
⇐⇒ and A

sin(nφ)

C
⇐⇒ , for P` = −0.530 and a tensor polarization of

Pzz = 0.827 (indicated by the symbol↔). The black open squares are A
cos(nφ)
C amplitudes

extracted from data recorded with an unpolarized deuterium target. The error bars and
bands and finely hatched bands have the same meaning as in Figure 6.7. The points for
unpolarized deuterium data are slightly shifted to the left for better visibility. There is
an additional overall 2.2% scale uncertainty for the A

sin(nφ)
C←⇐⇒

amplitudes arising from the

uncertainty in the measurement of the beam polarization.
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the sin(nφ) amplitudes of the AL
⇐⇒ asymmetry shown in Figure 6.7 only by squared DVCS

terms. Furthermore, the cross sections dσU⇐⇒ and dσC←⇐⇒
in the denominators of these two

asymmetries should be similar because they are dominated by Bethe-Heitler contributions.
Hence, these asymmetry amplitudes are expected to be similar, and within the statistical
accuracy this is indeed found to be the case.

The cos(nφ) amplitudes of the asymmetry A 0←L
in Figure 6.11 contain a sum of BH

and squared DVCS even harmonics, and relate to the longitudinal vector polarization
of the target. However, even where the BH contribution dominates the numerator of
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Figure 6.11: Kinematic dependence of the charge-averaged single-beam-helicity target-
spin asymmetry amplitudes A

cos(nφ)
0←L

and A
sin(nφ)
0←L

, for P` = −0.530 and a tensor polarization

of Pzz = 0.827. The plotted symbols and bands have the same meaning as in Figure 6.10.
There is an additional overall 5.3% (5.7%) scale uncertainty for the extracted A

sin(nφ)
0←L(

A
cos(nφ)
0←L

)
amplitudes arising from the uncertainties in the measurement of the target

(beam and target) polarizations.
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the asymmetry amplitude A
cos(0φ)
0←L

for incoherent scattering at not small −t, the data are

found to be consistent with zero, and differing by 1.7 standard deviations in the total
experimental uncertainty from the positive prediction for the overall result. The sin(nφ)
amplitudes of the asymmetry A 0←L

in Figure 6.11 receive contributions from the pure
squared DVCS harmonics only, and are found to be consistent with zero.

Of particular interest are the A
cos(nφ)
C←L

and A
sin(nφ)
C←L

amplitudes shown in Figure 6.12,

which represent respectively the even and odd vector-polarization related harmonics of
the interference term only, receiving no contribution from pure BH and DVCS terms.
The theoretical predictions for the cos(nφ) harmonics are negligibly small, while the data
differ from zero by about two standard deviations for the first two harmonics. As expected
and observed in the case of unpolarized hydrogen and deuterium targets, the cos(0φ) and
cosφ harmonics are found to have opposite signs.

Like the asymmetry amplitude A
sin(φ)
UL , in the first −t bin the asymmetry amplitude

Asinφ
C←L

is sensitive to the imaginary part of the deuteron CFF H̃1. Within their statistical

accuracies, they are found to be consistent, although Asinφ
UL receives also a contribution

Kinematic bin 〈−t〉 〈xN 〉 〈Q2〉 A
cos (0φ)
C←⇐⇒

Acos φ
C←⇐⇒

A
cos (2φ)
C←⇐⇒

[GeV2] [GeV2] ±δstat ± δsyst ±δstat ± δsyst ±δstat ± δsyst

Overall 0.13 0.10 2.5 −0.012± 0.018± 0.034 0.065± 0.026± 0.009 0.017± 0.026± 0.003

−
t[
G

e
V

2
]

0.00-0.06 0.03 0.08 1.9 0.006± 0.030± 0.031 0.001± 0.041± 0.012 0.005± 0.042± 0.009

0.06-0.14 0.10 0.10 2.5 0.074± 0.035± 0.034 0.037± 0.049± 0.008 0.046± 0.049± 0.006

0.14-0.30 0.20 0.11 2.9 −0.098± 0.036± 0.031 0.139± 0.052± 0.008 −0.007± 0.051± 0.005

0.30-0.70 0.42 0.12 3.5 −0.086± 0.058± 0.028 0.159± 0.088± 0.007 0.056± 0.079± 0.008

x
N

0.03-0.07 0.11 0.05 1.4 −0.046± 0.031± 0.035 0.042± 0.044± 0.009 −0.078± 0.043± 0.005

0.07-0.10 0.11 0.08 2.1 0.025± 0.035± 0.030 0.005± 0.050± 0.005 0.071± 0.048± 0.003

0.10-0.15 0.14 0.12 3.1 0.007± 0.040± 0.028 0.038± 0.055± 0.010 0.034± 0.055± 0.004

0.15-0.35 0.20 0.20 5.0 −0.052± 0.054± 0.024 0.194± 0.077± 0.018 0.091± 0.079± 0.004

Q
2
[G

e
V

2
]

1.0-1.5 0.09 0.06 1.2 −0.059± 0.034± 0.039 0.119± 0.047± 0.007 0.019± 0.049± 0.006

1.5-2.3 0.11 0.08 1.9 0.002± 0.034± 0.034 0.004± 0.049± 0.004 −0.023± 0.047± 0.002

2.3-3.5 0.14 0.11 2.8 0.012± 0.038± 0.028 0.034± 0.053± 0.005 0.087± 0.054± 0.004

3.5-10.0 0.20 0.17 4.9 −0.005± 0.041± 0.022 0.111± 0.058± 0.010 −0.004± 0.058± 0.005

Kinematic bin 〈−t〉 〈xN 〉 〈Q2〉 A
cos (3φ)
C←⇐⇒

Asin φ
C←⇐⇒

A
sin (2φ)
C←⇐⇒

[GeV2] [GeV2] ±δstat ± δsyst ±δstat ± δsyst ±δstat ± δsyst

Overall 0.13 0.10 2.5 0.044± 0.026± 0.003 −0.123± 0.049± 0.057 0.036± 0.049± 0.020

−
t[
G

e
V

2
]

0.00-0.06 0.03 0.08 1.9 −0.018± 0.042± 0.004 −0.158± 0.081± 0.050 0.109± 0.080± 0.005

0.06-0.14 0.10 0.10 2.5 0.075± 0.049± 0.004 −0.156± 0.095± 0.036 −0.021± 0.094± 0.015

0.14-0.30 0.20 0.11 2.9 0.053± 0.052± 0.005 −0.126± 0.098± 0.021 0.018± 0.099± 0.011

0.30-0.70 0.42 0.12 3.5 0.098± 0.077± 0.007 0.141± 0.142± 0.029 −0.015± 0.153± 0.015

x
N

0.03-0.07 0.11 0.05 1.4 −0.002± 0.041± 0.002 −0.109± 0.080± 0.060 −0.028± 0.081± 0.039

0.07-0.10 0.11 0.08 2.1 0.028± 0.049± 0.003 −0.069± 0.092± 0.059 0.095± 0.094± 0.018

0.10-0.15 0.14 0.12 3.1 0.091± 0.056± 0.006 −0.288± 0.107± 0.058 0.119± 0.107± 0.018

0.15-0.35 0.20 0.20 5.0 0.089± 0.075± 0.005 −0.032± 0.147± 0.054 −0.020± 0.141± 0.011

Q
2
[G

e
V

2
]

1.0-1.5 0.09 0.06 1.2 −0.020± 0.048± 0.002 0.020± 0.095± 0.041 0.011± 0.092± 0.056

1.5-2.3 0.11 0.08 1.9 0.074± 0.047± 0.003 −0.266± 0.087± 0.043 0.095± 0.092± 0.038

2.3-3.5 0.14 0.11 2.8 0.076± 0.053± 0.006 −0.076± 0.101± 0.053 −0.023± 0.099± 0.016

3.5-10.0 0.20 0.17 4.9 0.059± 0.058± 0.003 −0.145± 0.112± 0.044 0.042± 0.112± 0.011

Table 6.5: Results for azimuthal Fourier amplitudes of the single-beam-helicity charge
asymmetry AC←⇐⇒

, extracted from longitudinally polarized deuteron data, for P` = −0.530
and a tensor polarization of Pzz = 0.827. Not included is the 2.2% scale uncertainty for
sin(nφ) asymmetry amplitudes arising from the uncertainty in the measurement of the
beam polarization.
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from the squared DVCS term . The asymmetry amplitude Acosφ
C←L

is sensitive to the real

part of the deuteron CFF H̃1. Unlike the corresponding harmonic Acosφ
LL , it does not

receive a contribution from the Bethe-Heitler term. The sin(nφ) harmonics are found to
be consistent with zero and also with the small negative prediction in the case of the sinφ
harmonic.

From the definitions of the asymmetries AUL, ALL, A 0←L
and AC←L

in Eqs. 3.46, 3.47,
3.54, and 3.55, and also from examination of Table 3.1, it can be seen that they are
related. In the case of approximate equality of dσU⇐⇒ and dσC←⇐⇒

, the following relations
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Figure 6.12: Kinematic dependence of the single-beam-helicity charge-difference target-
spin asymmetry amplitudes A

cos(nφ)
C←L

and A
sin(nφ)
C←L

, for P` = −0.530 and a tensor polarization

of Pzz = 0.827. The plotted symbols and bands have the same meaning as in Figure 6.10.
There is an additional overall 5.3% (5.7%) scale uncertainty for the extracted A

sin(nφ)
C←L(

A
cos(nφ)
C←L

)
amplitudes arising from the uncertainties in the measurement of the target

(beam and target)
polarizations.
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hold between the asymmetry amplitudes:

A
sin(nφ)
UL ' A

sin(nφ)
0←L

+ A
sin(nφ)
C←L

, n = 1, 2 , (6.1)

A
cos(nφ)
LL ' A

cos(nφ)
0←L

+ A
cos(nφ)
C←L

, n = 0, 1 . (6.2)

For most of the kinematic points, the differences between left and right hand sides of
Eqs. 6.1 and 6.2 are found below 1.2 standard deviations of the total experimental un-
certainties, while for the remaining six points they are between 1.5 and 2.0. Note that
here the correlations between two asymmetries from the right hand sides are taken into
account.

The correlation coefficients between extracted asymmetry amplitudes are given in the
appendix, separately for the amplitudes of the asymmetries from unpolarized deuterium
target, for the amplitudes of singe-beam-charge asymmetries, and for the single-beam-
helicity asymmetries.

Kinematic bin 〈−t〉 〈xN 〉 〈Q2〉 A
cos (0φ)
0←L

Acos φ
0←L

[GeV2] [GeV2] ±δstat ± δsyst ±δstat ± δsyst

Overall 0.13 0.10 2.5 0.021± 0.044± 0.009 −0.041± 0.062± 0.010

−
t[
G

e
V

2
]

0.00-0.06 0.03 0.08 1.9 −0.009± 0.072± 0.008 0.087± 0.101± 0.011

0.06-0.14 0.10 0.10 2.5 0.039± 0.083± 0.012 −0.005± 0.115± 0.011

0.14-0.30 0.20 0.11 2.9 0.030± 0.091± 0.008 −0.282± 0.128± 0.024

0.30-0.70 0.42 0.12 3.5 0.024± 0.142± 0.014 −0.056± 0.206± 0.059

x
N

0.03-0.07 0.11 0.05 1.4 0.051± 0.075± 0.004 −0.121± 0.106± 0.005

0.07-0.10 0.11 0.08 2.1 −0.014± 0.083± 0.012 −0.049± 0.117± 0.021

0.10-0.15 0.14 0.12 3.1 −0.158± 0.095± 0.019 0.033± 0.133± 0.030

0.15-0.35 0.20 0.20 5.0 0.228± 0.135± 0.027 0.093± 0.187± 0.044

Q
2
[G

e
V

2
]

1.0-1.5 0.09 0.06 1.2 0.028± 0.085± 0.009 −0.108± 0.116± 0.013

1.5-2.3 0.11 0.08 1.9 −0.029± 0.082± 0.006 −0.077± 0.119± 0.009

2.3-3.5 0.14 0.11 2.8 0.018± 0.091± 0.012 −0.049± 0.125± 0.013

3.5-10.0 0.20 0.17 4.9 0.078± 0.100± 0.022 0.127± 0.142± 0.020

Kinematic bin 〈−t〉 〈xN 〉 〈Q2〉 Asin φ
0←L

A
sin (2φ)
0←L

[GeV2] [GeV2] ±δstat ± δsyst ±δstat ± δsyst

Overall 0.13 0.10 2.5 0.005± 0.033± 0.003 −0.036± 0.033± 0.003

−
t[
G

e
V

2
]

0.00-0.06 0.03 0.08 1.9 0.011± 0.054± 0.004 0.033± 0.054± 0.005

0.06-0.14 0.10 0.10 2.5 0.003± 0.063± 0.006 −0.108± 0.062± 0.006

0.14-0.30 0.20 0.11 2.9 0.058± 0.068± 0.003 −0.034± 0.068± 0.005

0.30-0.70 0.42 0.12 3.5 −0.137± 0.100± 0.008 −0.093± 0.111± 0.011

x
N

0.03-0.07 0.11 0.05 1.4 −0.001± 0.054± 0.002 −0.008± 0.056± 0.002

0.07-0.10 0.11 0.08 2.1 0.020± 0.062± 0.004 −0.043± 0.062± 0.006

0.10-0.15 0.14 0.12 3.1 0.093± 0.072± 0.006 −0.029± 0.071± 0.006

0.15-0.35 0.20 0.20 5.0 −0.108± 0.100± 0.011 −0.069± 0.095± 0.011

Q
2
[G

e
V

2
]

1.0-1.5 0.09 0.06 1.2 −0.011± 0.065± 0.008 0.019± 0.065± 0.005

1.5-2.3 0.11 0.08 1.9 −0.025± 0.059± 0.005 −0.140± 0.061± 0.005

2.3-3.5 0.14 0.11 2.8 0.047± 0.069± 0.004 −0.011± 0.066± 0.005

3.5-10.0 0.20 0.17 4.9 0.024± 0.075± 0.005 −0.013± 0.075± 0.007

Table 6.6: Results for azimuthal Fourier amplitudes of the single-beam-helicity charge-
averaged target-spin asymmetry A 0←L

, extracted from longitudinally polarized deuteron
data, for P` = −0.530 and a tensor polarization of Pzz = 0.827. Not included is the 5.3%
(5.7%) scale uncertainty for the sin(nφ) (cos(nφ)) asymmetry amplitudes arising from the
uncertainties in the measurement of the target (beam and target) polarizations.
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Kinematic bin 〈−t〉 〈xN 〉 〈Q2〉 A
cos (0φ)
C←L

Acos φ
C←L

A
cos (2φ)
C←L

[GeV2] [GeV2] ±δstat ± δsyst ±δstat ± δsyst ±δstat ± δsyst

Overall 0.13 0.10 2.5 −0.082± 0.044± 0.002 0.148± 0.062± 0.007 −0.044± 0.057± 0.002

−
t[
G

e
V

2
]

0.00-0.06 0.03 0.08 1.9 −0.089± 0.072± 0.002 0.124± 0.100± 0.006 −0.161± 0.095± 0.003

0.06-0.14 0.10 0.10 2.5 −0.071± 0.082± 0.002 0.147± 0.114± 0.007 −0.225± 0.110± 0.006

0.14-0.30 0.20 0.11 2.9 −0.152± 0.091± 0.003 0.262± 0.127± 0.008 0.092± 0.114± 0.005

0.30-0.70 0.42 0.12 3.5 0.190± 0.142± 0.014 0.244± 0.205± 0.006 0.547± 0.172± 0.014

x
N

0.03-0.07 0.11 0.05 1.4 −0.044± 0.075± 0.003 0.101± 0.109± 0.001 0.019± 0.093± 0.003

0.07-0.10 0.11 0.08 2.1 −0.170± 0.082± 0.004 0.210± 0.116± 0.006 −0.132± 0.108± 0.003

0.10-0.15 0.14 0.12 3.1 0.058± 0.095± 0.002 0.323± 0.132± 0.010 −0.239± 0.123± 0.007

0.15-0.35 0.20 0.20 5.0 −0.281± 0.135± 0.012 −0.045± 0.188± 0.009 0.269± 0.173± 0.012

Q
2
[G

e
V

2
]

1.0-1.5 0.09 0.06 1.2 −0.100± 0.085± 0.002 −0.016± 0.116± 0.001 −0.032± 0.108± 0.005

1.5-2.3 0.11 0.08 1.9 −0.097± 0.082± 0.002 0.140± 0.119± 0.005 −0.069± 0.104± 0.003

2.3-3.5 0.14 0.11 2.8 −0.002± 0.089± 0.001 0.483± 0.123± 0.010 −0.068± 0.120± 0.002

3.5-10.0 0.20 0.17 4.9 −0.145± 0.100± 0.003 −0.003± 0.141± 0.008 0.005± 0.131± 0.009

Kinematic bin 〈−t〉 〈xN 〉 〈Q2〉 Asin φ
C←L

A
sin (2φ)
C←L

A
sin (3φ)
C←L

[GeV2] [GeV2] ±δstat ± δsyst ±δstat ± δsyst ±δstat ± δsyst

Overall 0.13 0.10 2.5 −0.023± 0.033± 0.028 −0.035± 0.033± 0.008 −0.009± 0.030± 0.003

−
t[
G

e
V

2
]

0.00-0.06 0.03 0.08 1.9 −0.032± 0.054± 0.033 −0.116± 0.053± 0.007 −0.064± 0.050± 0.004

0.06-0.14 0.10 0.10 2.5 0.016± 0.062± 0.016 −0.016± 0.062± 0.009 −0.033± 0.059± 0.005

0.14-0.30 0.20 0.11 2.9 −0.045± 0.068± 0.010 0.024± 0.067± 0.015 0.025± 0.060± 0.008

0.30-0.70 0.42 0.12 3.5 −0.001± 0.102± 0.005 0.212± 0.115± 0.020 0.201± 0.099± 0.008

x
N

0.03-0.07 0.11 0.05 1.4 −0.027± 0.054± 0.015 0.006± 0.058± 0.005 −0.007± 0.051± 0.001

0.07-0.10 0.11 0.08 2.1 −0.073± 0.061± 0.023 −0.098± 0.062± 0.004 0.001± 0.057± 0.003

0.10-0.15 0.14 0.12 3.1 0.031± 0.072± 0.026 −0.087± 0.072± 0.003 0.025± 0.065± 0.003

0.15-0.35 0.20 0.20 5.0 0.009± 0.100± 0.031 −0.001± 0.097± 0.002 −0.036± 0.090± 0.006

Q
2
[G

e
V

2
]

1.0-1.5 0.09 0.06 1.2 −0.003± 0.065± 0.022 0.020± 0.065± 0.003 −0.003± 0.058± 0.001

1.5-2.3 0.11 0.08 1.9 −0.064± 0.059± 0.026 −0.041± 0.061± 0.004 −0.017± 0.057± 0.005

2.3-3.5 0.14 0.11 2.8 −0.087± 0.068± 0.021 −0.090± 0.065± 0.008 −0.014± 0.062± 0.001

3.5-10.0 0.20 0.17 4.9 0.102± 0.075± 0.027 −0.040± 0.075± 0.005 −0.004± 0.070± 0.004

Table 6.7: Results for azimuthal Fourier amplitudes of the single-beam-helicity charge-
difference target-spin asymmetry AC←L

, extracted from longitudinally polarized deuteron
data, for P` = −0.530 and a tensor polarization of Pzz = 0.827. Not included is the 5.3%
(5.7%) scale uncertainty for the sin(nφ) (cos(nφ)) asymmetry amplitudes arising from the
uncertainties in the measurement of the target (beam and target) polarizations.
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Chapter 7

Summary and Conclusion

Deeply virtual Compton scattering is studied in this report, using all data collected
at the HERMES experiment from 1996 to 2005. Azimuthal asymmetries with respect to
beam-helicity, beam-charge and target polarization alone and also to their different com-
binations for hard exclusive electroproduction of real photons in deep-inelastic scattering
from a both unpolarized and longitudinally polarized deuterium targets are measured.
The asymmetries are attributed to the interference between the deeply virtual Compton
scattering and Bethe–Heitler processes. The asymmetries are observed in the exclusive
region −(1.5)2 GeV2 < M2

X < (1.7)2 GeV2 of the squared missing mass. The dependences
of these asymmetries on −t, xN , or Q2 are investigated. The results include the coherent
process e d → e d γ and the incoherent process e d → e p n γ where in addition a nucleon
may be excited to a resonance.

For an unpolarized deuterium target, the leading Fourier amplitude of the beam-
helicity asymmetry that is sensitive to the interference term is found to be substantial,
but no significant t dependence is observed. The leading amplitude of the beam-charge
asymmetry is substantial at large −t, but becomes small at small values of −t. The
amplitudes of the beam-helicity asymmetry that are sensitive to the squared DVCS term
are found to be consistent with zero. The data are able to discriminate among various
GPD models.

The measured asymmetry amplitudes from unpolarized deuteron and proton [Air09,
Air10b] targets are consistent in most kinematic regions, except possibly for the leading
amplitude of the beam-charge asymmetry in the last two −t bins, and the ‘overall’ value
of A

sin(2φ)
LU .

The beam-charge and beam-helicity asymmetry amplitudes for coherent scattering
from the deuteron are extracted from the asymmetry amplitudes measured on unpolarized
deuteron and proton targets. When compared to the GPD models of [BMK02, KM04],
the results disfavor a large sea quark contribution while favoring a non-zero contribution.
The results disfavor the variants of the model of [BMK02, KM04] that omit sea quark
contributions, and also the model of [CP04].

Within the total experimental uncertainties, the results of the sinusoidal (cosinusoidal)
amplitudes of the asymmetry AL

⇐⇒ (AC←⇐⇒
) extracted from a longitudinally polarized data

set with Pzz = 0.827 (corresponding to a small population for the Λ = 0 state) resemble
those for the amplitudes extracted from unpolarized deuterium data. Therefore, no indi-
cation of effects of tensor polarization was found at small values of −t, in particular in
the first −t bin where the coherent process contributes up to 40%. Neither the Asin(nφ)

UL

nor Acos(nφ)
LL amplitudes measured on longitudinally polarized deuterons show significant

differences compared with those extracted from longitudinally polarized protons, consid-
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ering the total experimental uncertainties. (Statistically marginal differences are observed

for Asin(2φ)
UL and Acos(0φ)

LL ).
The differences between the leading amplitudes of the asymmetries AI

LU and AL
⇐⇒

for coherent scattering from unpolarized and longitudinally polarized deuterium targets,
respectively, is expected to be small. Indeed, within the total experimental uncertainties,
no difference is seen between the reconstructed values of the asymmetry amplitudesAsinφ

L
⇐⇒,coh

and Asinφ
LU,I,coh.

In conclusion, even in the first −t bin where the coherent process contributes about
40%, all asymmetries on deuterium that have (approximate) counterparts for hydrogen
are found to be compatible with them. The data are unable to reveal any evidence of
the influence of the Compton form factor H5 or features of the deuteron Compton form
factors H1 and H̃1 that distinguish them from the counterparts for the proton. Hence,
coherent scattering presents no obvious signature in these data. The deuteron Compton
form factor H1 appears to have a similar behavior as H of the proton. The data were
compared with theoretical calculations for only incoherent scattering, based on a well-
known GPD model. Those asymmetries that are expected to resemble counterparts for a
hydrogen target reveal the same shortcomings of the model calculations that appeared in
comparisons with the hydrogen data.
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Appendix: Correlation Matrices
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Figure 7.1: Correlation coefficients between the amplitudes of the asymmetries AC, AI
LU

and ADVCS
LU from an unpolarized data. The area of the symbols represents the size of the

correlation. Filled and open squares represent positive and negative values respectively.
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