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ABSTRACT

Pseudo-scalar meson production in semi-inclusive deep inelastic scattering (SIDIS) at
HERMES has provided essential information towards the understanding of the transverse
momentum dependent structure of the proton. SIDIS dihadron (hadron pair) production
also provides access to the structure of the proton and is complimentary to that provided
by pseudo-scalars production, as the same parton distribution functions are involved. For
example, while pion and kaon �nal states allow access to �avor combinations of the Sivers
distribution function, SIDIS φ meson production (included in the K+K− dihadron sample)
allows direct access to the Sivers function for the strange quarks. The Sivers function for
strange quarks is also related to the orbital angular momentum of the gluons. In the SIDIS
cross section, the distribution functions are integrated with fragmentation functions for the
respective �nal states. These fragmentation functions yield information regarding the quark
hadronization process. Of particular interest, the Lund/Artru model of fragmentation makes
speci�c predictions regarding the relation between results for dihadron and pseudo-scalar
meson production for certain transverse momentum dependent moments. This dissertation
presents the �rst transverse momentum dependent (non-collinear) analysis of the transverse
target moments in SIDIS dihadron production, extracting results from the 2002-2005 Her-
mes data set for π+π0, π+π−, π−π0 and K+K− dihadrons. A new transverse momentum
dependent Monte Carlo generator, TMDGen, is also introduced. Additionally, several the-
oretical developments have been completed, including a new partial wave analysis of the
fragmentation functions, computation of the next-to-leading twist dihadron cross section,
and the �rst model calculation for transverse momentum dependent dihadron fragmentation
functions.
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CHAPTER I

Introduction

In the development and understanding of physical processes, one often considers a partic-
ular physical circumstance or setting. One of the most remarkable pairings of physical set-
tings and physics concepts is the hydrogen atom and its relation to Quantum Mechanics and
Quantum Electrodynamics (QED). Both historically and pedagogically, the hydrogen atom
can be considered the key laboratory in the development and understanding of Quantum
Mechanics, and hints towards the QED theory. In a very similar manner, the proton is the
key laboratory in understanding certain aspects of Quantum Chromodynamics (QCD)�the
theory of quarks and gluons and their interactions�and of the parton model�the descrip-
tion of hadrons as bound states of quarks and gluons, denoted partons. Trying to understand
the internal structure of the proton in terms of its partonic constituents, including spin and
angular orbital momentum degrees of freedom, has pushed our understanding of QCD and
the constituent quark model, and may also hint towards physics beyond the standard model.

Experiments regarding the proton's internal structure, as well as experiments regarding
the internal structure of the neutrons, deuterons, and other nucleons, raise important ques-
tions concerning the present interpretation of QCD. Such questions include how the spin and
orbital angular momentum of each parton contribute to the total spin of the nucleon. Ini-
tially it was thought that the proton primarily constituted of three quarks, denoted valence
quarks, each carrying one third of the total spin. Experimental evidence [1] later suggested
that the valence quarks carry only a small fraction of the total spin, resulting in the situation
known as the �Spin Crisis� and leading to the commissioning of several new experiments, in-
cluding Hermes. The quarks were eventually determined to carry about 1/3 of the proton's
spin [2, 3, 4]. A current review of the Spin Crisis can be found in Refs. [5, 6].

TheHermes experiment included a polarized gas target and utilized the electron/positron
beam of the Hera accelerator. Many Hermes results related to the Spin Crisis involve semi-
inclusive deep inelastic scattering, which can be understood as the process of scattering an
electron or positron from a nucleus in the target gas, producing additional particles (thus
inelastic), and detecting the scattered electron and some, but not all, of the produced par-
ticles (thus semi-inclusive). The virtual photon mediating the scattering must have high
energy, allowing the individual partons to be probed (hence the deep quanti�er) as opposed
to interacting with the nucleus as a whole.

Proton structure experiments also address another open question in QCD: the nature of
con�nement. Con�nement is the statement that quarks are never observed as free particles,
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but rather occur in bound states with other partons. Although con�nement is experimentally
con�rmed, it is not currently known how to derive con�nement from the theory of QCD,
and it must be independently postulated. Any quark which might be observed as a free
particle immediately undergoes a process resulting in the quark being in a bound state. Two
analogous titles are given this process: hadronization, as bound states of quarks are denoted
hadrons, and fragmentation, as the quark is said to �fragment� into the observed hadrons.

The hadronization process, though not speci�cally a feature of proton structure, is yet
related to proton structure. Hadronization concerns how hadrons are initially formed, and
thus addresses how the structure of a given hadron, such a proton, is created. More prac-
tically, proton structure experiments involve interacting with the partons, often removing
quarks from the proton. Thus the measured results are the integration of features of both
the proton's structure, i.e. the state of the quark before being struck, and the hadronization
process, i.e. how the state of the measured particles relate to the state of the quark after
being struck. Details related to proton structure are described by partonic distribution func-
tions, which depend on the type of parton, and details regarding the hadronization process
are described by fragmentation functions, which depend on both the type of parton struck
and the actual observed particles.

In the earlier days of the parton model, it was assumed that one can neglect motion of
the partons in any direction not parallel with the direction of the center of mass of the bound
state. E�ects dependent on momentum transverse to, rather than collinear with, the center of
mass were considered to either �average out� or be prevented by symmetry considerations [7].
Neglecting the transverse motion of the quarks is denoted the �collinear assumption,� as one
considers only partonic motion collinear with the center of mass. Conversely, theories and
functions which depend on the transverse momentum of the partons are denoted �transverse
momentum dependent� (TMD).

Several results related the those leading to the Spin Crisis [1] could not be explained with
collinear models. Two theories were put forth which depended on the transverse momentum
of the partons. One theory, that of D. Sivers, placed the TMD e�ect within the structure
of the nucleon [8], while the other theory, that of J. Collins, placed the TMD e�ect within
the hadronization process [9]. The e�ects from each theory are thus called, respectively, the
Sivers and Collins e�ects and are speci�cally encapsulated in the Sivers distribution function
and the Collins fragmentation function. Theoretically, it was found that additional Wilson
lines, related to additional initial and �nal state interactions [10] allow the presence of TMD
e�ects. Early results from Hermes [11] demonstrated both processes are realized in nature,
and the sub-�eld of TMD e�ects in nucleon structure and hadronization was established.

Additional TMD e�ects were developed, such as the Boer-Mulders e�ect [12], and re-
considered, such as the Cahn e�ect [13, 14]. An increasing number of theoretical papers
developed the relation between the TMD distribution and fragmentation functions and vari-
ous cross sections, e.g. Refs. [12, 15, 16]. These concepts were also detailed for SIDIS hadron
pairs (denoted dihadrons) and vector mesons [17, 18].

Even with the development of TMD functions, the collinear distribution and fragmen-
tation functions remain important, as each collinear function is an integral of a respective
TMD function. Collinear functions are also easier to estimate in global �ts, as the evolution
with respect to energy scale is understood for collinear functions [19, 20, 21, 22, 23], while the
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evolution equations for TMD functions are not known. Knowledge of the evolution equations
is required to compare results from experiments at di�erent energy scales.

One of these distribution functions, for which both a collinear and TMD version exists,
is the transversity distribution h1 [15, 24, 25, 26]. This function occurs integrated with the
Collins function in the SIDIS production of pseudo-scalar mesons. Unfortunately, since it
is combined with a TMD function, certain di�culties arise in the comparison of results be-
tween di�erent experiments. However, the SIDIS dihadron cross section contains two terms
where h1 occurs with collinear, yet Collins-like, fragmentation functions. This collinear ac-
cess to transversity has historically been the primary motivation for SIDIS dihadron results,
both experimentally and theoretically. For instance, the only published SIDIS dihadron re-
sults [27], as well as the published next-to-leading twist cross section [28], are both restricted
to the collinear case.

However, much information is lost by not considering the TMD moments of the cross
section. For instance, the number of unpolarized moments at leading twist reduces from 15
to three, and the number of transverse target moments, again at leading twist, reduces from
27 to two. As the Sivers function is a TMD function, none of the nine transverse target
moments having contributions from the Sivers function occur in the collinear cross section.
This is unfortunate, as the Sivers function for s-quarks, occurring in φ mesons and kaon-pair
dihadron production, is of interest in understanding the process leading to gluon orbital
angular momentum [29]. However, two of the nine transverse target moments related to
Collins-like distribution functions exist in the collinear cross section. As the Collins function
is TMD, one would not expect any of the moments to be present in the collinear case.
This suggests that perhaps the two Collins-like functions occurring in the collinear moments
are fundamentally di�erent than the other seven Collins-like functions, though no strong
statement can be made based on the published theory. The relation between the various
Collins-like functions, and the possible distinction of two of the functions from the other
seven, is clari�ed in Chapter II.

One other strong motivation for considering TMD dihadron production is to test the
Lund/Artru string model of fragmentation [30], which predicts a sign change in the Collins
function between pseudo-scalar meson production certain partial waves of vector meson pro-
duction. In order to understand this prediction, it is necessary to fully quantify the relation
between the Collins function in pseudo-scalar production and the nine Collins-like functions
that occur in dihadron production. The previously developed theory is incomplete in de�n-
ing this relation, and thus one of the important developments contained in this dissertation
is the full quanti�cation of the connection between Collins and Collins-like functions. Note,
though, the Lund/Artru model can only be tested in the TMD case, not in the collinear
case.

This dissertation presents the �rst TMD analysis of the transverse target moments in
SIDIS dihadron production. Data was collected by the Hermes spectrometer during the
years of 2002 to 2005. This document is organized as follows. Chapter II provides three
essential ingredients. First, it includes the theoretical background, including de�nitions and
conventions used in the remainder of this work. Second, Chapter II also presents a new partial
wave analysis of the dihadron fragmentation functions, providing the explicit information
needed to test the Lund/Artru model. A side result of the partial wave analysis is the
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computation of the next-to-leading twist cross section. Third, Chapter II contains the �rst
model calculation of TMD dihadron fragmentation functions. The next chapter, Chapter III,
outlines needed numerical methods. In particular, Chapter III includes a description of the
acceptance correction method utilized in this analysis and also details a new TMD Monte
Carlo generator, TMDGen. Prior to this work, no TMD Monte Carlo generator was available
for SIDIS dihadron production, and only limited TMD generators were available for pseudo-
scalar production. Chapters IV and V detail the actual analysis of the dihadron data and the
accompanying systematic studies. Finally, Chapter VI discusses the results and conclusions
of this work.
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CHAPTER II

Theory

This chapter includes four major sections. First, necessary de�nitions and conventions
are presented. Second, items relevant to the cross section and its interpretation are given, the
key items being an alternate partial wave expansion of the dihadron fragmentation functions
(developed by the author) and the calculation of the next-to-leading twist dihadron cross
section. The next-to-leading twist cross section has not been computed prior to this work,
and the alternate partial wave expansion not only facilitates this computation but also aids in
the interpretation of the moments. Next, the Lund/Artru fragmentation model is discussed.
Testing a key prediction of the Lund/Artru model is one of the main motivations of the
research contained in this dissertation. The �nal section of this chapter focuses on a new
TMD spectator model calculation for dihadron fragmentation functions, a needed component
for the Monte Carlo generator described in Section 3.2.

2.1 De�nitions and Conventions
2.1.1 General De�nitions

Semi-inclusive deep inelastic scattering (SIDIS) is the scattering of a lepton from a nu-
cleon, such that the produced virtual photon has large invariant mass, the lepton and some
additional speci�ed particles are measured in the �nal state, and more than two additional
�nal state particles remain unmeasured. SIDIS production of single hadrons with an electron
or positron beam using a proton target is generally written as

e+ p→ e′ + h+X, (2.1)

where e, e′ are the initial and scattered leptons, p is the proton, h is the measured hadron,
and X represents the unmeasured particles in the �nal state. See also Figure 2.1. SIDIS
dihadron production is de�ned as

e+ p→ e′ + h1 + h2 +X, (2.2)

where now there are two measured hadrons in the �nal state, h1 and h2. Note, SIDIS
dihadron production involves multiple processes, including SIDIS vector meson production.
For a more detailed treatment of possible processes included in π+π− dihadron production,
see Section III of Reference [31].
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Figure 2.1: Diagrammatic depiction of SIDIS production of a single hadron. The incoming
and scattered leptons are denoted l and l′, the target is denoted P and the
outgoing hadron h. The additional unmeasured particles are denoted X. The
non-perturbation QCD portion of the interaction is shown as an open circle.

According to the factorization theorem for SIDIS production [32], the process can be
separated into three portions: a soft, non-perturbative part dealing with the distribution of
quarks in the nucleon, the hard (perturbative) scattering of the virtual photon and the struck
quark, and an additional soft, non-perturbative part dealing with the fragmentation of the
struck quark into the measured particles, i.e. the hadronization process. This factorization
theorem is independent of the speci�ed �nal state particles, and thus applies to both hadron
and dihadron production.

It will at times be important to distinguish with respect to which variables the cross
section is di�erential. These variables will be denoted independent variables, as these are
the statistically free variables. Additional variables will be denoted dependent variables and
can be written as functions of the independent variables.

In de�ning angular and kinematic variables, it is necessary to adopt a convention for
identifying which particle is h1 and which is h2. Following Ref. [33], let p1 denote the
positively charged hadron in the case of π+π− and K+K−, and let p1 denote the charged
hadron in the case of π±π0.

The twist is rigorously de�ned as the di�erence between the dimension and spin of an
operator in the operator product expansion of correlation functions [34]. In practice, a good
working de�nition of twist is related to writing a Taylor series expansion of the discussed
object (cross section, distribution function, fragmentation function, etc.) in terms of 1/Q2,
with Q2 the negative squared invariant mass of the virtual photon, de�ned in Equation 2.11.
The leading term of the SIDIS cross section is twist-2, and thus next-to-leading twist is
twist-3. Subtleties lie in the relation between twist and spin, and that the Taylor series
expansion must be done in dimensionless quantities, i.e. ratios of other quantities over Q2,
though these subtleties will not be of concern within this dissertation.
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2.1.2 Dirac Matrices
Gamma matrices will be in the chiral or Weyl representation, speci�cally,

γ0 =

(
0 I2

I2 0

)
γi =

(
0 −σi

σi 0

)
γ5 =

(
I2 0

0 −I2

)
, (2.3)

with I2 the two by two identity matrix and the Pauli σ-matrices being

σ1 =

(
0 1

1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0

0 −1

)
. (2.4)

Note that γi, γ5, for i = 1, 2, 3 have opposite sign in this convention than in others. The
commutator is de�ned as

σµν ≡ i

2
[γµ, γµ]. (2.5)

Projection operators P± are also de�ned as

P+ =
1

2
γ−γ+ = δ0,0 + δ3,3, (2.6)

P− =
1

2
γ+γ− = δ1,1 + δ2,2, (2.7)

with

γ+ =
1√
2
(γ0 + γ3) =

√
2 (δ2,0 + δ1,3) , (2.8)

γ− =
1√
2
(γ0 − γ3) =

√
2 (δ0,2 + δ3,1) . (2.9)

2.1.3 Reference Frames
It will be useful to de�ne three references frames, along with various coordinate systems

in each frame. If one is only interested in de�ning the kinematic variables and angles in
terms of measured momenta, such enumeration is somewhat pedantic. However, in Chapter
III it will be necessary to invert all the relations, i.e. determine the measured momenta
based on the cross section variables. In this case, such an enumeration is most useful.

The three di�erent reference frames are de�ned according to the system at rest in the
given frame: (I) the target, (II) the center of mass of the target, virtual photon system,
and (III) the center of mass of the produced hadron system. For each frame, a number
of coordinate systems are also relevant, denoted such that the Roman numeral indicates to
which rest frame the coordinate system belongs. The full listing is given in Table 2.1.3, along
with relations to other coordinate systems in use in the literature.

In some references, e.g. Ref. [17], a convention is used where any coordinate system with
the z-axis coaxial with the virtual photon is a ⊥-system, while any system with the z-axis
coaxial with the produced hadron system's center-of-mass is a T -system. In ⊥-systems the
photon has no components of its momenta transverse to the z-direction, while in T -systems
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Identi�er Description
Ia The detector system: ẑ is along the lepton beam line and ŷ is in

the physical up direction.
Ib Similar to the detector system Ia, except that ẑ is along the

momentum of the actual beam lepton, which may di�er from the
ideal beam direction due to magnetic �elds or radiative e�ects.

Ic The prime frame of Ref. [35], Fig. 1, and Ref. [36], Fig. 1: ẑ
is again in the direction of the beam lepton (as Ib), but the x̂-ẑ
plane is now the lepton scattering plane.

Id The unprimed system of Ref. [35], Fig. 1, and Ref. [36], Fig. 1:
system Ib is rotated about ŷ(Ib) so that ẑ(Ic) is in the direction
of the virtual photon. Like frame Ib, the x̂-ẑ plane is the lepton
scattering plane.

IIa As with system Ic, the z-axis is aligned with the virtual pho-
ton direction and the x- and z-axis lie in the lepton scattering
plane. The di�erence in frames Ic and IIa is a boost opposite
the direction of the virtual photon.

IIb The z-axis is now in the direction of the produced meson system,
and the x axis remains in the lepton scattering plane.

IIc As with system IIc, the z-axis is aligned with the direction of
the produced meson system. However, the x axis of this system
is in the hadron production plane. The primed system of Ref.
[35], Fig. 2, is anti-aligned with coordinate system IIc.

IIIa Frame IIb is boosted to the frame III.
IIIb Frame IIc is boosted to the frame III, corresponding to the un-

primed system of Ref. [35], Fig. 2.

Table 2.1: Description of coordinate systems.

the center of mass of the produced hadrons has no transverse components. Frames Id and
IIa are both ⊥ frames, while frames IIb, IIc, IIIa, and IIIb are all T frames. The T/⊥
convention does not de�ne which object is at rest in each frame. In fact, in some cases, a
speci�c object at rest is implied, while in other cases, the notation allows for any boost along
the z-axis. For the purpose of this dissertation, a more detailed notation is preferable.

2.1.4 Variable De�nitions
2.1.4.1 DIS Variables

Let the virtual photon 4-momentum be denoted qµ, and the three momentum and its
magnitude be denoted q and |q|, respectively. Let the target 4-momentum be denoted P µ,
and the incoming and scattered lepton four-momenta as kµ and k′µ.
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Variable De�nition
E lepton beam energy
E ′ scattered lepton energy
θe2 angle between lepton beam and scattered lepton

(polar angle of scattered lepton in frame Ia)
M Target mass

Table 2.2: Input quantities for DIS variables.

The DIS variables are all dependent on the quantities given in Table 2.2. As the target
mass M and beam energy E are assumed �xed, only two of the DIS variables can be chosen
as independent. The DIS variables can be computed from the quantities in Table 2.2, the
most common variables being

ν =
q · P
M

= E − E ′, (2.10)

Q2 = −q2 ≈ 4EE ′ sin2(θe2/2), (2.11)
W 2 = (P + q)2 = M2 + 2Mν −Q2, (2.12)

x =
Q2

2Mν
, (2.13)

y =
k · P
q · P =

ν

E
, (2.14)

s = (k + P )2 =
Q2

xy
+M2 +m2

l , (2.15)

γ =
2Mx

Q
=

Q

yEB

=
Q

ν
, (2.16)

ε =
1− y − 1

4
γ2y2

1− y + 1
2
y2 + 1

4
γ2y2

, (2.17)

sin θγ = γ

√
1− y − 1

4
γ2y2

1 + γ2
. (2.18)

The approximation in the de�nition of Q2 is based on the assumption of e�ectively
massless leptons. Note the lepton mass ml has been left in the equation for s. The quantity
Q2 is de�ned as the negative square of the mass of the virtual photon, while W is the mass
of the virtual photon, target system. The variables x and y are interpreted as the fraction
of the target momentum carried by the struck quark, and the fraction of the beam energy
transferred to the virtual photon, respectively. The variable ν is the virtual photon energy
in the lab frame. The value ε is the ratio of longitudinal and transverse photon �ux, and θγ

is the angle between the lepton beam and the virtual photon. For a complete review of the
de�nition of the various DIS variables, see Section 16 of Ref. [37].
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2.1.4.2 SIDIS Variables
The mass, energy, and momentum of the produced hadron system in the lab frame will

be denoted, respectively, Mh, Eh, Ph. The magnitude of the momentum will be written as
Ph := |Ph|. In the case of single hadron production, the momentum is measured and the
particle identi�cation yields the mass, thus specifying the energy. For dihadron production,
the energy and momentum of the system is determined from the energy and momentum
of the two measured hadrons, from which the dihadron mass can be determined. Thus for
dihadron production, the invariant mass is considered one of the SIDIS variables, while for
single hadron production the hadron mass is considered �xed.

The kinematic SIDIS variables generally used in the cross section (in addition to Mh)
are z and Ph⊥. They are de�ned, respectively, as the fraction of the virtual photon energy
carried by the hadron system, and as the projections of Ph perpendicular to the virtual
photon direction. In the lab frame, they can be computed as

z =
Eh

ν
, (2.19)

Ph⊥ = Ph sin θγh, (2.20)

where θγh is the angle between the dihadron momenta and the virtual photon momenta,
measured in the lab frame.

2.1.4.3 Angles
Three planes are utilized in de�ning the relevant azimuthal angles. The lepton scattering

plane includes the lepton beam, scattered lepton, and virtual photon. The hadron production
plane includes the virtual photon and the center of mass of the produced hadron system.
The decay plane includes the center of mass of the produced hadron system as well as the
two measured hadrons.

Both SIDIS dihadron and single hadron production utilize the azimuthal angle φh, the
angle between the lepton scattering plane and the hadron production plane, and φS, the
angle between the lepton production plane and the transverse target polarization direction.
Both of these angles are measured perpendicular to the virtual photon momenta direction,
and thus can be measured in either reference frame I or II. A diagram showing these
de�nitions is given in Figure 2.2. Note, a subtlety exists in regards to de�ning asymmetries
about the virtual photon direction or about the lepton beam direction. For a full treatment,
see Ref. [16] and the discussion in Section 3.2.1. The de�nitions for φh, φS are given in
agreement with the Trento convention [39], and can be explicitly computed according to

φh = signum
[
(k × Ph) · q

]
arccos

(q × k) · (q × Ph)

|q × k| |q × Ph| , (2.21)

φS = signum
[
(k × S) · q]

arccos
(q × k) · (q × S)

|q × k| |q × S| , (2.22)

with signum[a] = 1 if a > 0, −1 otherwise, and where S is a vector indicating the target
polarization in the lab frame. For Hermes, S is (0,−1, 0).
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Figure 2.2: Diagram depicting the angles φh and φS, from Ref. [38].

2.1.4.4 Additional Dihadron Variables

As the mass of the additional particle in the �nal state is assumed to be known, the ad-
ditional measured particle increases the number of independent variables by three. Likewise,
all previous SIDIS variables are now de�ned to be with respect to the two hadron system.
Letting pµ

1 , pµ
2 be the 4-vectors of the two measured hadrons, one can de�ne 4-vectors

P µ
h = pµ

1 + pµ
2 , (2.23)

Rµ =
1

2
(pµ

1 − pµ
2) . (2.24)

The three additional variables are usually chosen to be the invariant mass of the dihadron
system, Mh =

√
(Ph)µ (Ph)

µ, and cosϑ, φR, the cosine of the polar angle as well as the
azimuthal angle of Rµ in reference frame IIIa. Note, Rµ has azimuthal angle φR in both
coordinate system IIb and IIIa, as this angle is una�ected by the boost in the z-direction.
Other choices for independent variables include z1, z2, using Equation 2.19 for each of the
individual hadron energies; ζ = (z1− z2)/(z1 + z2), to the asymmetry between z1, z2; and/or
ϕ, the azimuthal angle of Rµ in frame IIIb. Note that the polar angle ϑ is the same in both
frame IIIa and IIIb. The set of variables (Mh, cosϑ, ϕ), correspond with those chosen in
exclusive meson production [35, 36].

To determine a closed form equation for φR, one needs to compute the x-axis in coordinate
system IIb from the available 3-vectors k, q, Ph, R, corresponding to the 3-momenta of input
lepton and the virtual photon and the 3-vector portions of the 4-vectors P µ

h and Rµ. Let n
be a vector parallel to the x-axis in coordinate system IIb. Then n is coplanar with k, q and
thus can be written as a linear combination of these two vectors. Imposing the constraint
that n is perpendicular to Ph, and �xing the sign of n by requiring (Ph × n) · (q × k) > 0,
yields the expression

n = (q · Ph) k − (k · Ph) q. (2.25)
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Let RT denote the projection of R perpendicular to Ph,

RT = R− R · Ph

|Ph|2 Ph. (2.26)

One can then identify

φR = signum
[
(n×RT ) · Ph

]
arccos

n ·RT

|n||RT | , (2.27)

which can also be equivalently written as

φR = signum
[
(R× Ph) · n

]
arccos

(q × k) · (Ph ×RT )

|q × k| |Ph ×RT | . (2.28)

Note Ph ×RT = Ph ×R. Although φR has been de�ned with words in many references, no
closed form solution for φR has been presented prior to this work. Note, Equation 2.28 must
be computed in reference frame II.

In some references [27], φR⊥ is used instead of φR.1 The di�erence between φR⊥ and φR

is Q2 suppressed, and thus ignored in leading twist analyses. The angle φR⊥ is de�ned by
taking the projection of RT perpendicular to k, and then considering the azimuthal angle
with respect to the lepton scattering plane. In analogy with the Trento convention for φh,
one can then write

φR⊥ = signum
[
(q × k) ·RT

]
arccos

(q × k) · (q ×RT )

|q × k| |q ×RT | , (2.29)

consistent with the de�nition of φR in Ref. [18]. In the high Q2 limit, Ph becomes parallel
with q, and Equation 2.28 and 2.29 become equal, as required.

An additional relationship between the quantities φR and ϕ can be determined by com-
paring the rotation matrix that transforms frame IIa to IIb with the matrix that transforms
frame IIa to IIc. The di�erence in the azimuthal angles of these frames is simply ϕ − φR.
Also note that ϕ = φh + φR⊥. Comparing the rotation matrices yields the result

tan (ϕ− φR) = tan(φh) cos θ
(II)
γh , (2.30)

where cos θ
(II)
γh is the angle between the virtual photon and Ph in rest frame II. This expression

then implies
φR − φR⊥ = φh − tan−1

(
tan(φh) cos θ

(II)
γh

)
. (2.31)

Once again, this equation shows that in the limit of in�nitely high Q2, the di�erence between
φR and φR⊥ approaches zero, as in that limit the quantity cos θ

(II)
γh approaches unity.

To compute the quantity cos θ
(II)
γh , one can boost P µ

h to frame IIa, where the z component
is P (IIa)

h,z =
∣∣∣P (IIa)

h

∣∣∣ cos θ
(IIa)
γh . If one �rst computes the analogous quantity in the lab frame

1Some references, e.g. Refs. [31, 40], actually use the symbol φR but give it the de�nition of φR⊥. Such
references are generally focused on the high Q2 limit (leading twist), where the angles become equivalent.
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(rest frame I) via2

cos θγh =

√
1−

(
Ph⊥
Ph

)2

, (2.32)

one can then determine

P
(IIa)
h,z =

(
ν +M

W

)
Ph cos θγh − |q|

W
Eh, (2.33)

∣∣∣P (IIa)
h

∣∣∣ =

√
P 2

h⊥ +
(
P

(IIa)
h,z

)2

, (2.34)

cos θ
(IIa)
γh =

P
(IIa)
h,z∣∣∣P (IIa)
h

∣∣∣
. (2.35)

Combining Equations 2.30 with 2.33 through 2.35 yields a precise relation relation between
φR and φR⊥. Note, that although the di�erence between φR and φR⊥ is well known to be
suppressed by Q2, no exact expression such as Equation 2.31 was previously available.

2.1.4.5 Intrinsic Variables
The transverse momentum of the struck quark (i.e. the quark to which the distribution

function corresponds) will be denoted pT , with magnitude pT := |pT |, and azimuthal angle
φp. Likewise, the transverse momentum of the fragmenting quark (i.e. the quark to which
the fragmentation function corresponds) will be denoted kT , with magnitude kT := |kT | and
azimuthal angle φk. The quantities pT and kT are always positive, in contrast with some
sources which de�ne kT as the norm of the a four vector with only transverse components.
The Minkowski metric would then make such a norm negative. The above identi�cation
of pT , kT is consistent with the Amsterdam notation of the distribution and fragmentation
functions, [15, 16, 28, 36], which is used throughout this dissertation. Note, some theorists
do not follow the Amsterdam notation, and instead follow that of the Torino theory group,
e.g. [41, 42, 43], where

pT

∣∣∣
Torino

= zkT

∣∣∣
Amsterdam

= k′T , (2.36)

kT

∣∣∣
Torino

= pT

∣∣∣
Amsterdam

. (2.37)

2.2 Partial Wave Expansion and Cross Section
2.2.1 Distribution Functions

Distribution functions will be given in the Amsterdam notation [12, 15, 44], as previously
noted. The leading twist distribution functions can be interpreted as di�erences in helicity
distributions or equivalently as helicity amplitudes [45]. Owing to the great deal of literature
available concerning the distribution functions, a few references are provided rather than

2This is from the inversion of Equation 2.20, assuming θγ,h ≤ π/2.
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Figure 2.3: The generic diagram for the three leading order fragmentation functions. Via the
optical theorem, the fragmentation functions are de�ned as the imaginary part
of the above amplitude. The quarks are indicated as q, q′, with their spin states
speci�ed by χ, χ′, while the hadrons (dihadrons) h and h′ are, respectively, in
the partial waves |`1,m1〉 and |`2,m2〉.

attempting to summarize this large and complex �eld of study. Some of the more common
leading twist fragmentation functions include the Sivers function f⊥1T [8, 46], transversity h1

[47, 48], the Boer-Mulders function h⊥1 [12, 49], and pretzelocity h⊥1T [50, 51]. It should be
remarked that the Sivers function for the φ meson, as well as for K+K− hadron pairs, has
been related to the orbital angular momentum of the gluons and can provide important tests
for the relevant mechanisms [29].

2.2.2 Fragmentation Functions

The diagram used to de�ne the leading twist fragmentation functions is given in Figure
2.3. A new convention is adopted in this work, where the name and symbol of the frag-
mentation are entirely associated with the quark spin states, i.e. χ, χ′ in Figure 2.3, while
the various polarization states of the produced hadron(s), i.e. |l1,m1〉 and |l2,m2〉, are as-
sociated with partial waves of fragmentation functions. Such a convention requires a slight
rede�nition of the fragmentation functions and a new partial wave expansion. Note, previ-
ous de�nitions of the fragmentation functions either assume no polarization in the �nal state
hadrons [16] (applicable for pseudo-scalar production), or de�ne mixtures of certain partial
waves as new fragmentation functions [15, 18, 52]. For example, one of the original sources
for the SIDIS cross section, Ref. [15], introduces new fragmentation functions, including G1L

and G1T , based on the polarization of the �nal state. According to the convention proposed
in this dissertation, there are only two fragmentation functions: the unpolarized fragmen-
tation function D1 which corresponds to the sum of non-quark-spin-�ip diagrams, i.e those
with χ = χ′, and the polarized fragmentation function or generalized Collins fragmentation
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function H⊥
1 , which corresponds to the sum of diagrams where the quark �ips spin, i.e.

χ 6= χ′.
One advantage to this new convention is that it places a clear distinction between the spin

structure of fragmentation and the polarization structure of the produced system. However,
the �nal result for the cross section with this convention is fully consistent with the cross
section in the literature [18], given the relation between notations in Section 2.2.6.

To rigorously de�ne the fragmentation functions, one must �rst consider the leading twist
fragmentation correlation matrix ∆, de�ned as the sum of all possible polarization states of
Figure 2.3. This quantity is rigorously de�ned as a certain matrix element, e.g. Equation
24 of Ref. [15]. It is common to de�ne a shorthand notation for an integral of traces of the
fragmentation correlation matrix [15, 52]. For this document, let ∆[Γ] be de�ned as short
hand for

∆[Γ](z,Mh, |kT |, cosϑ, φR − φk) = 4π
z|R|
16Mh

∫
dk+ Tr [Γ∆(k, Ph, R)]

∣∣∣∣
k−=P−h /z

.

(2.38)

The fragmentation functions can be rigorously de�ned as traces of the fragmentation corre-
lation matrix

D1 = ∆[γ−(1+iγ5)], (2.39)

i
|kT |
Mh

eiφkH⊥
1 = ∆[−i(σ1−+iσ2−)γ5] = ∆[(γ2−iγ1)γ−γ5]. (2.40)

These fragmentation functions are denoted non-expanded fragmentation functions when it
is needed to distinguish them from fragmentation functions occurring in the partial wave
expansion. In the case of pseudo-scalar meson production, some of the traces in Equations
2.39 and 2.40 are zero, thus reducing the de�nitions to the common expressions for pseudo-
scalar productions [15].

2.2.3 Partial Wave Expansion

Note, for the rest of this dissertation, the h, h′ of Figure 2.3 are assumed to be dihadrons.
However, the following equally applies to any hadron, dihadron, or higher multiplicity hadron
Fock state, with the caveat that certain �nal states have limited partial waves. For example,
only the pure s-wave state |0, 0〉 is available for pseudo-scalar meson production.

The partial waves of the non-expanded fragmentation function can be de�ned in the direct
product basis |`1,m1〉 |`2,m2〉, de�ning the polarization states of both dihadrons occurring
in Figure 2.3. However, nature generally prefers direct sum bases rather than direct product
bases. For example, the four possible states of a quark, anti-quark pair in nature are a spin-0
pseudo-scalar meson and three polarizations of spin-1 vector mesons, not as two spin-aligned
and two spin-anti-aligned states. Similarly, individual terms in the cross section are not
related to partial waves in the direct product basis |`1,m1〉 |`2,m2〉, but are related to partial
waves in the direct sum basis |`,m〉, i.e. the overall spin-state of the two dihadron system.
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Note, there are four quarks exiting the top of the diagram in Figure 2.3. Thus, in the
usual shorthand, one writes

1

2
⊗ 1

2
⊗ 1

2
⊗ 1

2
=

(
1

2
⊗ 1

2

)
⊗

(
1

2
⊗ 1

2

)
,

= (1⊕ 0)⊗ (1⊕ 0) ,

= 2⊕ 1⊕ 1⊕ 1⊕ 0⊕ 0. (2.41)

Thus, sixteen states are actually present: the �ve states of the spin-2 system, nine states
arising from three sets of the three states of the spin-1 system, and the two spin-0 states.
However, distinguishing between the three di�erent spin-1 states, as well as between the
two spin-0 states, is di�cult. Theoretically, the di�erent ` = 1 and ` = 0 states can be
distinguished by using Generalized Casimir operators [53, 54]. These operators are related
to the coupling scheme, i.e. the placement of parenthesis in Equation 2.41. Speci�cally,
Equation 2.41 corresponds to coupling the �rst two and the last two quarks in the interme-
diate state. An alternate coupling scheme would be to couple the third quark to the �rst
two in the intermediate step. Although the �nal line in Equation 2.41 does not depend on
the coupling, di�erent bases within the degenerate 1⊕ 1⊕ 1 and 0⊗ 0 space are implied by
di�erent couplings. Relations between choices of basis are then given by Racah Coe�cients,
and Clebsch-Gordan coe�cients �nally could be used to relate all the states [54, 55]. This
would, unfortunately, require experimentally adjusting the coupling scheme, i.e. measuring
the interference between a three quark state and a one quark state, which is not possible.

Thus, only nine combinations of the sixteen states are experimentally accessible, appear-
ing as 2 ⊕ 1 ⊕ 0. The experimentally observed spin-1 states are the sum of three distinct
spin-1 systems: one arising from interference between the vector meson states (denoted
pp-interference), and the other two arising from interference between vector meson states
and pseudo-scalar states (denoted sp-interference). Likewise, the measurable spin-0 state
contains the pseudo-scalar state as well as pp-interference between the two transverse polar-
ization states.

The partial wave expansion into the 2 ⊕ 1 ⊕ 0 states is accomplished by expanding the
fragmentation functions of Equations 2.39 and 2.40 in terms of spherical harmonics. The
polar angle is cosϑ, while the azimuthal angle is φR − φk as other constraints require these
functions to only depend on this di�erence and not the angles φk, φR individually [18].

Previously, partial wave analyses have only been preformed either at leading twist [18] or
at next-to-leading twist but integrated over Ph⊥ [28]. In both cases, the partial wave analysis
is done with respect to the direct product basis |`1m1〉 |`2m2〉 of the two dihadrons occurring
in Figure 2.3. Previous expansions are related to those listed here via Clebsch-Gordon
coe�cients, up to normalizations of the basis functions. In fact, the common Legendre
polynomial expansion of the dihadron fragmentation functions [18, 28] corresponds with the
cosϑ dependent factor in Equations 2.42 and 2.43. Thus, although the usual expansions
in terms of Legendre polynomials occur with little motivation in the literature, the full
justi�cation is given by the partial wave expansion in the direct sum basis.
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The partial waves of the fragmentation functions are then de�ned according to

D1 =
∞∑

`=1

∑̀

m=−`

P`,m(cosϑ)eim(φR−φk)D
|`,m〉
1 (z,Mh, |kT |), (2.42)

H⊥
1 =

∞∑

`=1

∑̀

m=−`

P`,m(cosϑ)eim(φR−φk)H
⊥|`,m〉
1 (z,Mh, |kT |), (2.43)

and likewise for the higher twist fragmentation functions. All non-expanded fragmentation
functions depend on the variables z, Mh, |kT |, cosϑ, φR − φk, and possibly Q2 (as Q2

dependence is usually implicitly assumed)3. Alternately, the expansion could have been
done with respect to φR⊥− φk ≡ ϕ+ φh− φk. The �nal result for structure functions would
then align with [35]. At high enough Q2, the di�erence between the choice of expansion
becomes negligible.

In the cross section, the real and imaginary portions of D1 are separated, and thus it is
useful to de�ne the notation

D
|`,m〉+
1 = D

|`,m〉
1 +D

|`,−m〉
1 , (2.44)

D
|`,m〉−
1 = D

|`,m〉
1 −D

|`,−m〉
1 , (2.45)

assuming m > 0. The Legendre polynomials used in Equations 2.42 and 2.43 are

P0,0 = 1, P2,0 =
1

2

(
3 cos2 ϑ− 1

)
,

P1,0 = cosϑ, P2,1 = sin 2ϑ,

P1,1 = sinϑ, P2,2 = sin2 ϑ, (2.46)

with P`,−m := P`,m.

2.2.4 Explicit Cross Section
These new expanded fragmentation functions can be inserted into the hadronic tensor

and the cross section can be written in terms of structure functions, following the same
method as Ref. [16]. The leading twist cross section, written in terms of structure functions,
is identical to that one would obtain from Ref. [18].4 The interpretation of the structure
functions is then the only di�erence in the TMD twist-2 cross section between this work and
previously published papers. This work, however, also contains the TMD structure functions
arising at twist-3, which has not been previously available.

As was noted before, the cross section with the non-expanded fragmentation functions
is identical to that for single pseudo-scalar meson production. This allows one to compute
the cross section for dihadron production at any twist level, given the pseudo-scalar cross
section at the corresponding twist level. One just needs to apply the partial wave expansion

3The Q2 evolution for TMD fragmentation functions is still an open question. Related references include
[56, 57, 58, 59].

4Note, Equation C4 of Ref. [18] is missing the term proportional to cosϑ cos 2φh, which should be
accompanied by the fragmentation function H⊥

1,OL occurring in Equation 57 of the same reference.
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of the fragmentation functions. Note this method is much less complicated than traditional
methods, such as was employed for the collinear case [28].

A few details need description before the presentation of the cross section. Note, the terms
of the cross section will be grouped into terms denoted σXY based on the target and beam
polarization. Speci�cally, subscripts XY correspond to the beam (X) and target (Y ) polar-
ization, taking the values U (unpolarized), L (longitudinally polarized) and T (transversely
polarized). The total cross section is the sum of all terms σXY . The structure functions will
likewise have subscripts XY , with the same meaning. In a few cases the structure functions
are split into those for transverse and longitudinal virtual photon polarization. These are
indicated with a subscript XY,Z, with Z being either L or T to indicate the virtual photon
polarization.

The depolarization factors occurring with leading twist moments are [16]

A(x, y) =
y2

2(1− ε)
=

1− y + 1
2
y2 + 1

4
γ2y2

1 + γ2

≈
(

1− y +
1

2
y2

)
, (2.47)

B(x, y) =
y2

2(1− ε)
ε =

1− y − 1
4
γ2y2

1 + γ2

≈ (1− y) , (2.48)

C(x, y) =
y2

2(1− ε)

√
1− ε2 =

y
(
1− 1

2
y
)

1 + γ2

≈ y

(
1− 1

2
y

)
, (2.49)

while the depolarization factors occurring with the next-to-leading twist moments are

V (x, y) =
y2

(1− ε)

√
2ε(1 + ε) =

2(2− y)

1 + γ2

√
1− y − 1

4
γ2y2

≈ 2 (2− y)
√

1− y, (2.50)

W (x, y) =
y2

(1− ε)

√
2ε(1− ε) =

2y

1 + γ2

√
1− y − 1

4
γ2y2

≈ 2y
√

1− y. (2.51)

The approximations hold in the high Q2 limit when one neglects all but the next-to-leading
twist. Note also, in the high Q2 limit, the expressions in Equations 2.47 through 2.51 are
independent of x and only depend on y.

The cross section will be chosen to be di�erential with respect to x, y, z, Ph⊥, φh, φS,
Mh, cosϑ, and φR. The phase space factor is taken from the single hadron phase space factor
of Ref. [16], with an additional factor of 2MhPh⊥/4π to account for the phase space of cosϑ,
φR andMh, and the fact that the cross section is chosen di�erential with respect to the polar
angles Ph⊥, φh rather than the Cartesian 2-vector Ph⊥.
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Note, some discrepancy exists in the literature regarding the phase space factor. For
example, Ref. [15] uses s/Q4, while Ref. [16] uses 1/(xyQ2). Note,

s

Q4
=

1

xyQ2
+
M2

Q4
, (2.52)

and thus the factors agree at high Q2.
The magnitudes of the target polarization will be denoted S‖ and |S⊥|, referring to the

magnitudes of the longitudinal and transverse polarizations, as in Ref. [16]. These are the
same quantities as ST and SL in Ref. [36]. The longitudinal polarization factor for the beam
will be denoted λe.

The cross section for unpolarized beam, unpolarized target, can be written as

dσUU =
α2MhPh⊥
2πxyQ2

(
1 +

γ2

2x

)

×
2∑

`=0

{
A(x, y)

∑̀
m=0

[
P`,m cos(m(φh − φR))

×
(
F

P`,m cos(m(φh−φR))
UU,T + εF

P`,m cos(m(φh−φR))
UU,L

) ]

+B(x, y)
∑̀

m=−`

P`,m cos((2−m)φh +mφR)F
P`,m cos((2−m)φh+mφR)
UU

+ V (x, y)
∑̀

m=−`

P`,m cos((1−m)φh +mφR)F
P`,m cos((1−m)φh+mφR)
UU

}
.

(2.53)

The longitudinally polarized beam, unpolarized target moments are

dσLU =
α2MhPh⊥
2πxyQ2

(
1 +

γ2

2x

)
λe

×
2∑

`=0

{
A(x, y)

∑̀
m=1

[
P`,m sin(m(φh − φR))

×
(
F

P`,m cos(m(φh−φR))
LU,T + εF

P`,m cos(m(φh−φR))
LU,L

) ]

+W (x, y)
∑̀

m=−`

P`,m sin((1−m)φh +mφR)F
P`,m sin((1−m)φh+mφR)
LU

}
.

(2.54)
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The unpolarized beam, longitudinally polarized target moments are

dσUL =
α2MhPh⊥
2πxyQ2

(
1 +

γ2

2x

)
S‖

×
{
C(x, y)

2∑

`=1

∑̀
m=1

P`,m sin(−mφh +mφR)F
P`,m sin(−mφh+mφR)
UL

+B(x, y)
2∑

`=0

∑̀

m=−`

P`,m sin((2−m)φh +mφR)F
P`,m sin((2−m)φh+mφR)
UL

+ V (x, y)
2∑

`=0

∑̀

m=−`

P`,m sin((1−m)φh +mφR)F
P`,m sin((1−m)φh+mφR)
UL

}
.

(2.55)

The longitudinally polarized beam, longitudinally polarized target moments are

dσLL =
α2MhPh⊥
2πxyQ2

(
1 +

γ2

2x

)
λeS‖

×
2∑

`=0

{
C(x, y)

∑̀
m=0

P`,m cos(m(φh − φR))F
P`,m cos(m(φh−φR))
LL

+W (x, y)
∑̀

m=−`

P`,m cos((1−m)φh +mφR)F
P`,m cos((1−m)φh+mφR)
LL

}
.

(2.56)

The unpolarized beam, transversely polarized target moments are

dσUT =
α2MhPh⊥
2πxyQ2

(
1 +

γ2

2x

)
|S⊥|

×
2∑

`=0

∑̀

m=−`

{
A(x, y)

[
P`,m sin((m+ 1)φh −mφR − φS))

×
(
F

P`,m sin((m+1)φh−mφR−φS)
UT,T + εF

P`,m sin((m+1)φh−mφR−φS)
UT,L

) ]

+B(x, y)

[
P`,m sin((1−m)φh +mφR + φS)F

P`,m sin((1−m)φh+mφR+φS)
UT

+ P`,m sin((3−m)φh +mφR − φS)F
P`,m sin((3−m)φh+mφR−φS)
UT

]

+ V (x, y)

[
P`,m sin(−mφh +mφR + φS)F

P`,m sin(−mφh+mφR+φS)
UT

+ P`,m sin((2−m)φh +mφR − φS)F
P`,m sin((2−m)φh+mφR−φS)
UT

]}
.

(2.57)
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Lastly, the longitudinally polarized beam, transversely polarized target moments are

dσLT =
α2MhPh⊥
2πxyQ2

(
1 +

γ2

2x

)
λe|S⊥|

2∑

`=0

∑̀

m=−`

{

C(x, y)P`,m cos((1−m)φh +mφR − φS))F
P`,m cos((1−m)φh+mφR−φS))
LT

+W (x, y)

[
P`,m cos(−mφh +mφR + φS)F

P`,m cos(−mφh+mφR+φS)
LT

+ P`,m cos((2−m)φh +mφR − φS)F
P`,m cos((2−m)φh+mφR−φS)
LT

]}
.

(2.58)
In contrast with the 18 structure functions introduced in Ref. [16], dihadron production at
twist-3 includes 162, exactly a factor of 9 more, as 2⊕1⊕0 has dimension 9. However, the 18
structure functions involving a longitudinally polarized virtual photon are zero in dihadron
production, just as the two single hadron structure functions involving a longitudinally po-
larized virtual photon are zero. Thus it is also common to write that unpolarized single
hadron production has 16 moments, and dihadron production 16× 9 = 144.

2.2.5 Structure Functions
Each structure function occurring in Equations 2.53 through 2.58 has the form of

FXY = I [wfD] , (2.59)
where w is a pT , kT , φh, x, z, M , Mh dependent weight factor, f is a distribution function
and D is a fragmentation function. The labeling scheme for f and D seems backwards,
though it is given in this manner for historical reasons. Note that some structure functions
include sums of several terms of this form. The operator I is shorthand for

I [wfD] =
∑

q

e2q

∫
d2pTd

2kT δ
2

(
pT − kT − Ph⊥

z

)
wf qDq. (2.60)

Note that the distribution and fragmentation functions have �avor indices, but that the
structure functions do not.

The weights w will be written slightly di�erent than in other sources. Typically the
weights w are written in terms of dot, cross or even wedge products of the vectors pT , kT , P̂h⊥
[17, 16, 18]. However, this yields much more complicated expressions than is necessary. All
weights can instead be written in terms of a factor involving possibly |pT |/M and |kT |/Mh,
multiplied by a single sine or cosine function of the involved angles. For example, the weight
for the sin2 θ cos(4φh − 2φR) term in the unpolarized dihadron cross section is [18]

[
|kT |2 − 4

(
kT · P̂h⊥

)] [
(pT · kT )− 4

(
pT · P̂h⊥

)(
kT · P̂h⊥

)]

2MMh|kT |2

−
8
(
pT · P̂h⊥

)(
kT · P̂h⊥

)3

2MMh|kT |2 , (2.61)
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which can be written as |pT ||kT |
MMh

cos(4φh − φp − 3φk). (2.62)

Furthermore, writing in terms of dot products also hides similarities between various mo-
ments. For instance, all the leading order, unpolarized terms involving the Boer-Mulder's
function h⊥1 have a weight of the same form,

|pT ||kT |
MMh

cos((m− 2)φh + φp + (1−m)φk), (2.63)

when written in terms of the cosine of the angles, rather than dot products. Written as dot
products, the weights have very di�erent form for each m. For example, see Appendix C of
Ref. [18]. In particular, the m in Equation 2.63 corresponds to the m in the |l,m〉 angular
momentum state of the dihadron. Thus writing in terms of sine or cosine functions not only
makes the expressions simpler, this change also highlights deeper meanings and relationships
between the structure functions.

The leading twist unpolarized beam, unpolarized target moments are

F
P`,m cos(mφh−mφR)
UU,L = 0, (2.64)

F
P`,m cos(mφh−mφR)
UU,T =




I

[
f1D

|`,0〉
1

]
m = 0,

I
[
2 cos(mφh −mφk)f1D

|`,m〉+
1

]
m > 0,

(2.65)

F
P`,m cos((2−m)φh+mφR)
UU = −I

[ |pT ||kT |
MMh

cos
(
(m− 2)φh + φp + (1−m)φk

)

× h⊥1 H
⊥|`,m〉
1

]
, (2.66)

while the twist-3 structure functions are

F
P`,m cos((1−m)φh+mφR)
UU = −2M

Q
I
[
|kT |
Mh

cos((m− 1)φh + (1−m)φk)

×
(
xhH

⊥|`,m〉
1 +

Mh

M
f1
D̃⊥|`,m〉

z

)

+
|pT |
M

cos((m− 1)φh + φp −mφk)

×
(
xf⊥D|`,m〉

1 +
M

Mh

h⊥1
H̃ |`,m〉

z

)]
. (2.67)

The longitudinally polarized beam, unpolarized target structure functions are, at leading
twist and for ` = 1, 2 and m > 0,

F
P`,m sin(mφh−mφR)
LU,T = −I

[
2 cos(mφh −mφk)f1D

|`,m〉−
1

]
. (2.68)
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The unpolarized beam, longitudinally polarized target structure functions are, at leading
twist,

F
P`,m sin((2−m)φh+mφR)
UL = −I

[ |pT ||kT |
MMh

cos
(
(m− 2)φh + φp + (1−m)φk

)

× h⊥1LH
⊥|`,m〉
1

]
, (2.69)

and additionally for ` = 1, 2 and m > 0,

F
P`,m sin(mφh−mφR)
UL = −I

[
2 cos(mφh −mφk)g1LD

|`,m〉−
1

]
. (2.70)

The longitudinally polarized beam, longitudinally polarized target moments are, at leading
twist,

F
P`,m cos(mφh−mφR)
LL =




I

[
g1LD

|`,0〉
1

]
m = 0

I
[
2 cos(mφh −mφk)g1LD

|`,m〉+
1

]
m > 0.

(2.71)

The unpolarized beam, transversely polarized target moments are, at leading twist,

F
P`,m sin((m+1)φh−mφR−φS)
UT,L = 0 (2.72)

F
P`,m sin((m+1)φh−mφR−φS)
UT,T = −I

[ |pT |
M

cos
(
(m+ 1)φh − φp −mφk

)

×
(
f⊥1TD

|`,m〉+
1 + signum[m]g1TD

|`,m〉−
1

) ]
, (2.73)

F
P`,m sin((1−m)φh+mφR+φS)
UT = −I

[ |kT |
Mh

cos
(
(m− 1)φh − φp −mφk

)
h1H

⊥|`,m〉
1

]
,

(2.74)

F
P`,m sin((3−m)φh+mφR−φS)
UT = I

[ |pT |2|kT |
M2Mh

cos
(
(m− 3)φh + 2φp − (m− 1)φk

)

× h⊥1TH
⊥|`,m〉
1

]
. (2.75)

The longitudinally polarized beam, transversely polarized target moments are, at leading
twist,

F
P`,m cos((m+1)φh−mφR−φS)
LT = −I

[ |pT |
M

cos
(
(m+ 1)φh − φp −mφk

)

×
(
g1TD

|`,m〉+
1 + χ(m)f⊥1TD

|`,m〉−
1

) ]
. (2.76)

The twist-3 structure functions, except those for the unpolarized beam and unpolarized
target, are not written out in terms of the distribution and fragmentation functions, as
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the speci�c formula are quite complex and results are not needed in the remainder of the
dissertation.

It is worthy to note that the collinear fragmentation functions are simply integrals of spe-
ci�c partial waves of the TMD fragmentation functions. For example, the dihadron fragmen-
tation function which has received the most interest [27, 40] occurs in the
F

sin ϑ sin(φR+φS)
UT structure function, i.e. Equation 2.74 with l = 1 and m = 2. The spe-

ci�c fragmentation function, in both notations, is given later in Equation 2.90. Note, that
the spin-�ip inherent in the Collins functions requires a one unit change in the z-projections
of angular momentum. Thus, the fragmentation function which survives in the collinear
case is the one with m = 1 such that the z-projection of the angular momentum is zero.
The l = 2, m = 1 partial wave in Equation 2.74 likewise survives in the collinear case for
the identical reason. In a similar manner, the Boer-Mulders function also requires a spin-
�ip, and thus the partial wave of the Collins function that survives when paired with the
Boer-Mulders function in Equation 2.66 are the m = 2 partial waves. A necessary, but not
su�cient, power counting condition can be established. For a structure function that has
a factor of (pT/M)α(kT/Mh)

β, one must have |m| = |α + β| if the structure function is to
survive in the collinear case. Thus, the fragmentation functions in the structure functions
surviving in the collinear case are not particularly special, but re�ect the spin structure of a
speci�c pair of distribution and fragmentation functions.

2.2.6 Relations with Previous Notation
The fragmentation functions occurring in the partial wave expansion of this dissertation

represent a change of basis with respect to the common fragmentation functions de�ned
in the literature. The relations between fragmentation functions in both notations can be
determined by comparing the trace identities and expansion of this dissertation, speci�cally
Equations 2.39, 2.40, 2.42, and 2.43, with the trace de�nitions and expansion common in
the literature, speci�cally Equations 19-21 of Ref. [52] and Equation 57 of Ref. [18].5 The
results are

D
|0,0〉
1 = D1,OO =

(
1

4
Ds

1,OO +
3

4
Dp

1,OO

)
, (2.77)

D
|1,0〉
1 = D1,OL, (2.78)

D
|1,±1〉
1 = D1,OT ∓ |kT | |R|

M2
h

G⊥1,OT , (2.79)

D
|2,0〉
1 =

1

2
D1,LL, (2.80)

D
|2,±1〉
1 =

1

2

(
D1,LT ∓ |kT | |R|

M2
h

G⊥1,LT

)
, (2.81)

D
|2,±2〉
1 = D1,TT ∓ 1

2

|kT | |R|
M2

h

G⊥1,TT , (2.82)

5It should be noted two typographical errors exist in Equation 57 of Ref. [18]. On the line expanding
H̄�1 , the factor of cos(2φk − 2φR) should in fact be cos(φk − φR), while on the line expanding H⊥

1 , the last
symbol H�1,TT should actually be H̄�1,TT .
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for the partial waves of the unpolarized distribution function. The relations for the combi-
nations D|`,m〉+

1 , D|`,m〉+
1 are

D
|1,1〉+
1 = D1,OT , (2.83)

D
|1,1〉−
1 = −|kT | |R|

M2
h

G⊥1,OT , (2.84)

D
|2,1〉+
1 =

1

2
D1,LT , (2.85)

D
|2,1〉−
1 = −1

2

|kT | |R|
M2

h

G⊥1,LT , (2.86)

D
|2,2〉+
1 = D1,TT , (2.87)

D
|2,1〉−
1 = −1

2

|kT | |R|
M2

h

G⊥1,TT , (2.88)

while for the partial waves of the Collins function,

H
⊥|0,0〉
1 = H⊥

1,OO =
1

4
H⊥s

1,OO +
3

4
H⊥p

1,OO, (2.89)

H
⊥|1,1〉
1 = H⊥

1,OT +
|R|
|kT |H̄

�
1,OT =

|R|
|kT |H

�
1,OT (2.90)

H
⊥|1,0〉
1 = H⊥

1,OL, (2.91)
H
⊥|1,−1〉
1 = H⊥

1,OT , (2.92)

H
⊥|2,2〉
1 = H⊥

1,TT +
|R|
|kT |H̄

�
1,TT =

|R|
|kT |H

�
1,TT , (2.93)

H
⊥|2,1〉
1 =

1

2
H⊥

1,LT +
1

2

|R|
|kT |H̄

�
1,LT =

1

2

|R|
|kT |H

�
1,LT , (2.94)

H
⊥|2,0〉
1 =

1

2
H⊥

1,LL, (2.95)

H
⊥|2,−1〉
1 =

1

2
H⊥

1,LT , (2.96)

H
⊥|2,−2〉
1 = H⊥

1,TT . (2.97)

One point which is particularly subtle in the current literature is the di�erence between
H�1,XT , H̄

�
1,XT , and H�′1,XT , for X=O,L,T . Although the literature is not completely con-

sistent, the notation of Ref. [18] is perhaps the most common, wherein the partial wave
expansion and fragmentation correlator use the functions H̄�1,XT , with the cross section writ-
ten in terms of

H�1,XT = H̄�1,XT +
|kT |
|R|H

⊥
1,XT . (2.98)

The subtle di�erence in notation is di�cult to see and already suggests that the choice of
basis for the partial wave expansion in the literature is not optimal.
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Note, the multiplicity of the ` = 0 state discussed in 2.2.3 is re�ected in the old notation
in that the |0, 0〉 states of both D1 and H⊥

1 have been written as a sum of s- and p-waves,
as in Equation 2.77, 2.89, correspondingly Equations 39 and B5 of [18].

Using the above relations in notation, one can then compare the cross sections given
in this dissertation and in published papers to ensure consistency. Such a process reveals
several typographical errors in Equation C4 of Ref. [18], which can be shown to be related
to inconsistencies within that document. Speci�cally, −D1,OT , −D1,LT , and −D1,TT need to
be respectively replaced with 2D1,OT , 2D1,LT , and 2D1,TT .

One could likewise compare the cross section given in Ref. [28] with the above twist-3
structure functions to fully relate the higher twist notation. Such description is outside the
scope of this dissertation, as herein it is only necessary understand the structure of the cross
section at twist-3, not interpret any higher twist moments.

2.3 Model Predictions

2.3.1 The Lund/Artru Model

Models considered in Section 2.3 are relevant for SIDIS production of mesons, while
previous portions of this chapter have considered SIDIS production of both mesons and
baryons. It will be assumed that the parton struck by the virtual photon was a quark, rather
than an anti-quark, but the conclusions follow identically for either case. It will be further
assumed that the struck quark is transversely polarized, and thus the model predictions
are related to the Collins fragmentation function. In cross sections, the Collins function is
always paired with a distribution function involving a transversely polarized quark [16], e.g.
transversity h1, Boer-Mulders h⊥1 , or pretzelocity h⊥1T . In at least the case of the transversity
distribution function, one can further interpret the distribution function as the being related
to the probability of the quark being the up state of transverse polarization, with the proton
polarization de�ning the quantization axis.

The Lund/Artru string model of fragmentation [30] posits that the struck quark is initially
connected with the target remnant via a gluon �ux tube, or string. The Lund/Artru model
further posits that, when the gluon �ux tube breaks, the produced quark, anti-quark system
has quantum numbers equal to that of the vacuum, 0++. This requires that the quark and
anti-quark have their spins aligned, in order to have positive parity, and that the pair have
one unit of orbital angular momentum in the opposite direction of the spin. One can quantize
the system such that there are two cases: the anti-quark being produced with spin aligned
or anti-aligned with that of the struck quark. From the point of view of the struck quark,
i.e. facing in the direction of the quarks momentum with the transverse polarization in the
up direction, the unit of angular momentum will cause the produced meson system to move
preferentially to the left (right) in the case the quark spins are anti-aligned (aligned). This
produces a left-right azimuthal asymmetry, with opposite signs depending on whether the
anti-quark is aligned or anti-aligned with the fragmenting quark.
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2.3.2 Relation to Amplitudes
Relative to the nucleon's transverse spin, the fragmenting quark can, in general, be in one

of two spin states, though particular distribution functions may restrict the available spin
states of the fragmenting quark. The two states are taken to be up or down, i.e.

∣∣1
2
,±1

2

〉
, and

thus there are two possible diquark states with quarks anti-aligned,
∣∣1
2
,±1

2

〉 ∣∣1
2
,∓1

2

〉
and two

states with quarks aligned,
∣∣1
2
,±1

2

〉 ∣∣1
2
,±1

2

〉
. However, the direct product basis, where the

spins of both quarks are speci�cally denoted, is not the basis in which measurable particles
are diagonal. Instead, measurable hadrons are in the direct sum basis. Physicists often
write the relation as 1

2
⊗ 1

2
= 1 ⊕ 0. The one spin-0 state is a pseudo-scalar meson, while

three spin-1 states correspond to the three polarizations of vector mesons: |1, 0〉 being a
longitudinal vector meson, and |1,±1〉 being the two transverse polarizations.

The Clebsch-Gordan coe�cients relating the two bases show that pseudo-scalar mesons
are a symmetric combination of the two anti-aligned states, while longitudinal vector mesons
correspond with the anti-symmetric combination of the two anti-aligned states. Transversely
polarized vector mesons are uniquely the two aligned states, with no mixing. Note, as the
model predictions are all relative to the struck quark polarization, there is no di�erence
between the asymmetries for the two anti-aligned states

∣∣1
2
, 1

2

〉 ∣∣1
2
,−1

2

〉
and

∣∣1
2
,−1

2

〉 ∣∣1
2
, 1

2

〉
.

Thus, the anti-symmetric combination of the states should yield zero asymmetry. The �nal,
amplitude level, prediction is then that the asymmetry for pseudo-scalar mesons has opposite
sign to that for transversely polarized vector mesons (for each given �avor combination),
while the asymmetry for longitudinal vector mesons is predicted to be zero. The model
also predicts the sign, in that the pseudo-scalars should prefer left and the transverse vector
mesons right, in regards to the left-right asymmetry from the point of view of the struck
quark. Note, data related to the Collins asymmetry for pions [47, 60] is in agreement with
the sign of this model.

2.3.3 Cross Section Level
To connect these amplitude level asymmetries with the Collins function, one needs to

consider the cross section level, i.e. the sum of contributing amplitudes times the complex
conjugate as shown in Figure 2.3. In other words, the Lund/Artru model makes predictions
for the individual dihadrons, but the Collins function includes pairs of dihadrons.

Although not speci�cally developed by the Lund/Artru model, it will be assumed that
the longitudinal |1, 0〉 |1, 0〉 partial wave of the Collins function behaves as the model predicts
the amplitude-level |1, 0〉 state to behave, i.e. that it is identically zero. Likewise, the Collins
function for the two transverse partial waves |1,±1〉 |1,±1〉 are assumed to have the oppose
sign as the Collins function for pseudo-scalar meson production.

According to the Clebsch-Gordan coe�cients, the two-dihadron (direct sum basis) states
|2,±2〉 are directly the squares of the transverse states, i.e.

|2,±2〉 ≡ |1,±1〉 |1,±1〉 . (2.99)

Since each term in the cross section is related to a partial wave in the direct sum basis, and
since the ` = 2 state only occurs once in Equation 2.41, these partial waves have a clear
access. In particular, neglecting possible twist-4 and higher e�ects, the structure functions
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F
P`,|m| sin((2−m)φh+mφR+φS

UT in Equations 2.57 for ` = 2, m = ±2, should have opposite sign as
the corresponding pseudo-scalar Collins moments. Additionally, again neglecting twist-4 and
higher e�ects, the unpolarized structure functions F P`,|m| sin((2−m)φh+mφR

UU in Equation 2.53 for
` = 2, m = ±2 should have opposite sign as the Boer-Mulders moments of pseudo-scalar
production.

For each of the above predictions regarding transverse vector mesons, the e�ect could be
diluted by the presence of dihadrons, not arising from vector meson decay, yet in |2,±2〉 par-
tial waves. This dilution is assumed to be negligible, though no theoretical or experimental
results speci�cally address this issue.

The longitudinal state |1, 0〉 |1, 0〉 is a mixture of the |2, 0〉 state and the |0, 0〉 state arising
from interference between vector meson polarization states. However, the |0, 0〉 partial wave
of dihadrons not arising from vector mesons is known to be larger than the |0, 0〉 partial wave
of vector meson production. Thus it is not possible to isolate the longitudinal |1, 0〉 |1, 0〉
state and it is not possible to test this portion of the Lund/Artru model prediction.

2.3.4 The Gluon Radiation Model

It should be remembered that each fragmentation function (and each partial wave) de-
pends on the �avor of the quark which is fragmenting. A common assumption is that the
fragmentation functions for all �avors present in the observed hadron system are equal, which
are collectively denoted the �favored� fragmentation function. For pion, ρ meson, and pion-
pair production, one generally also assumes that the contributions from s, s̄, and heavier
quarks are negligible. In this case, the fragmentation functions for �avors not present in the
�nal state are also assumed equal and are denoted �disfavored� fragmentation functions.

It should be noted that the Lund/Artru model is only applicable when the struck quark is
actually present in the observed hadron system, i.e. only for favored fragmentation functions.
For disfavored fragmentation functions, another model is suggested by the author, denoted
the �gluon radiation model.� In this model, the struck quark emits a gluon in such a way that
most of the momentum is transferred to the gluon. The struck quark becomes part of the
remnant, and the gluon pair-produces to form a vector diquark. In the case of pseudo-scalar
meson production, the diquark must interact further with the remnant in order to become
a pseudo-scalar. In the case of vector meson production, this diquark can directly form the
vector meson, and it will be assumed for vector meson production that further interactions
with the remnant are higher order e�ects and negligible.

In cases where the diquark does interact further with the remnant, the gluon radiation
model can be described within the paradigm of the Lund/Artru model, i.e. by considering
fragmentation in terms of a struck quark and a gluon �ux tube. In contrast to the the
Lund/Artru model, the gluon radiation model considers the case where most of momentum
of the struck quark is transferred to the pair-produced quark anti-quark system. Rather
than requiring this quark anti-quark system to have the quantum numbers of the vacuum,
the gluon radiation model has the system hadronize into the observed �nal state and thus
have the quantum numbers of the �nal state. The portion of the gluon �ux tube between
the break point and the remnant is interpreted as an interaction between the pair produced
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system and the remnant, required for pseudo-scalar production but a higher order e�ect for
vector meson production.

In both models, the anti-quark which is produced is present in the �nal state. However,
the main di�erence between the models is which quark joins the produced anti-quark in
�nal state: in one case, the stuck quark, and in the other case, the produced quark. In this
manner, the Lund/Artru model describes favored fragmentation, and the gluon radiation
model describes disfavored fragmentation.

One can then consider the relation, predicted by the gluon radiation model, between
the disfavored fragmentation functions for vector meson production and the fragmentation
functions for pseudo-scalar production. Comparing the Feynman diagrams for both models,
as in Figure 2.4, one can determine that the perturbative portion of the gluon radiation
model is present in the diagram for the Lund/Artru model, though the speci�c quarks which
form the observed hadron is di�erent in the two cases.

Assuming that the vector meson is produced in the |1, 1〉 state, the emission of the gluon
must �ip the struck quark from the

∣∣1
2
, 1

2

〉
to

∣∣1
2
,−1

2

〉
spin states. However, this diagram

is exactly the initial part of the relevant diagram for the Lund/Artru model for the spin
anti-aligned case, i.e. the one related to pseudo-scalar production. Thus the disfavored
|2, 2〉 Collins function is expected to have opposite sign as the favored pseudo-scalar Collins
function. In a similar manner, the production of vector mesons in the |1, 0〉 state is related
to the antisymmetric combination of the spin aligned and the spin anti-aligned cases of the
Lund/Artru diagram, and thus expected to be zero. However, it has already been discussed
that predictions for the vector meson |1, 0〉 state are not experimentally accessible.

2.3.5 Summary of Model Predictions

The following summary combines the results of both models and the discussion of ampli-
tudes versus cross sections. The Lund/Artru model predicts that the |2, 2〉 partial wave of
the Collins function for SIDIS vector meson production, for quark �avors present in the pro-
duced vector meson, has the opposite sign as the respective pseudo-scalar Collins function.
The gluon radiation model implicates that the |2, 2〉 partial wave of the Collins function for
SIDIS vector meson production, for quark �avors not present in the produced vector meson,
also has the opposite sign as the respective pseudo-scalar Collins function. Note, while data
[47] suggests that the pseudo-scalar favored and disfavored Collins functions are nearly equal
and opposite, these models predict that in the vector meson case the favored and disfavored
Collins functions have the same sign, for at least the |2,±2〉 moments. Although the models
yield expectations regarding the signs of certain partial waves, neither model addresses the
relative size of the |2, 2〉 versus |2,−2〉 partial waves, nor their relative size compared with
the pseudo-scalar Collins function.

It should be noted that the sign change of the |2, 2〉 moment for the Collins function
(based on the Lund/Artru model) is truly a prediction. In contrast, the gluon radiation
model was developed after preliminary results were �rst available, and thus the expectations
of the gluon radiation model are more explanations of possible results rather than true
predictions.
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Figure 2.4: Feynman diagrams relevant for the Lund/Artru and Gluon Radiation models.
In all panels, the quark entering from the right is the struck quark. For the
upper panels, the particles connected to the bottom of the diagram are interac-
tions with the target remnant. The open circle represents the non-perturbative
hadronization process of the quark anti-quark pair forming a hadron. The upper
left panel represents the Lund/Artru model and the upper right panel, the gluon
radiation model. The lower panel is the perturbative sub-diagram, common to
both diagrams. The di�erence between the Lund/Artru model and gluon radi-
ation model is related to which quark returns to the remnant and which enters
in the observed hadron. Note, the Artru model also requires an extra gluon
emission, related to one half of the broken gluon �ux tube.

2.4 Spectator Model of Dihadron Fragmentation
The only published models for dihadron fragmentation [31, 61] are spectator models.

Reference [61] is designed for a pion, proton dihadron, including the Roper resonance, and is
not directly applicable to the scope of this dissertation. Reference [31], however, is designed
to be directly comparable with the previously published Hermes dihadron result [27]. This
section, Section 2.4 is an extension of the work done in Ref. [31].

2.4.1 Fragmentation Correlation Matrix
Following Ref. [31], the X of Equation 2.2 is replaced with a single, on-shell particle, �the

spectator,� with quantum numbers equal to that of the target. Unfortunately, Ref. [31] lacks
three important aspects: 1) the results are all integrated over transverse momenta, 2) the
model is only for π+π− pairs, 3) the l = 2 states for the Collins function H⊥|l,m〉

1 are all zero.
While solving the third point, i.e. developing a model with non-zero l = 2 states for the
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Collins function, is outside the scope of this dissertation, the �rst two de�ciencies are solved
in this section, Section 2.4. The TMD fragmentation functions can be computed by starting
with the same fragmentation correlation function but without introducing the integration
over transverse momentum. Additional �nal states can be included by modifying the vertex
function and allowing the parameters to depend on the quark �avor.

A certain subtlety regarding the choice of usingMh orM2
h as a dependent variable is worth

a comment. When using Mh instead of M2
h , an extra factor of 2Mh must be included. The

subtlety is whether this factor is included in the de�nition of the fragmentation functions,
or is considered part of the overall phase space factor for the cross section. In this work,
the fragmentation functions are de�ned to be di�erential with respect to Mh, and the extra
factor of M2

h is included in the phase space factor of the cross section.
The speci�c expression for the correlator in this model is given in Equation 19 of Ref. [31].

Setting the quark mass to zero (as it done later in Ref. [31]), the correlator is

∆q(k, Ph, R) =

{
|F s|2 e−2 k2

Λ2
s /k

(
/k − /P h +Ms

)
/k

+ |F p|2 e−2 k2

Λ2
p /k /R

(
/k − /P h +Ms

)
/R/k

+ F s∗F pe
−2 k2

Λ2
sp /k

(
/k − /P h +Ms

)
/R/k

+ F sF p∗e
−2 k2

Λ2
sp /k /R

(
/k − /P h +Ms

)
/k

}

× 1

(2π)3

1

k4
δ
(
(k − Ph)

2 −M2
s

)
e
−2

k2
T

Λ2
b , (2.100)

where Ms is the mass of the spectator, F s/p are the vertex functions, and Λs,p,sp,b are inverse
slopes for the k2 and k2

T cut-o�s. Note, this correlator has an extra k2
T -cuto�, with inverse

slope Λb, than that in Ref. [31]. The extra factor was found to be necessary in numerical
studies, and the inverse slope is given a subscript b designating that it a�ects both s and p
waves, and likewise their interference.

Implicit in Equation 2.100 is the assumption that the masses of both hadrons h1 and h2 are
equal, i.e. m1 = m2. In case m1 6= m2, the dihadron propagator needs to include additional
terms. E�ectively, every /R in Equation 2.100 would be replaced with a new quantity. Such
computation is outside the scope of this dissertation, and thus the computations of this
section, Section 2.4, are only be applicable to producing hadrons with approximately equal
mass. Thus, it will be assumed m1 = m2, and the hadron mass is thus de�ned as m := m1.

The inverse slopes in Equation 2.100 are parametrized as

Λs,p,b = αs,p,bz
βs,p,b(1− z)γs,p,b , (2.101)

2

Λ2
sp

=
1

Λ2
s

+
1

Λ2
p

. (2.102)

The exponential form of the cuto� makes the inverses Λ−1 analogous to the b-slope parame-
ters in exclusive vector meson production [62], and are also related to the variance parameter
in the so called �Gaussian Ansatz� for the kT -dependence of the fragmentation functions.
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The scalar vertex function is just a constant, F s = fs, one of the parameters of the model.
The p-wave vertex function for pion-pion dihadrons is de�ned as

F p = fρ

(
M2

h −M2
ρ

)− iΓρMρ(
M2

h −M2
ρ

)2
+ Γ2

ρM
2
ρ

+ fω
(M2

h −M2
ω)− iΓωMω

(M2
h −M2

ω)
2
+ Γ2

ωM
2
ω

− if ′ω

√
λ (M2

ω,M
2
h ,m

2
π)Θ (Mω −mπ −Mh)

4πΓωM2
ω

4
√

4M2
ωm

2
π + λ (M2

ω,M
2
h ,m

2
π)
, (2.103)

λ
(
M2

ω,M
2
h ,m

2
π

)
=

[
M2

ω − (Mh +mπ)
] [
M2

ω − (Mh +mπ)
]
, (2.104)

while for kaon-kaon dihadrons it is

F p = fφ

(
M2

h −M2
φ

)− iΓφMφ(
M2

h −M2
φ

)2
+ Γ2

φM
2
φ

. (2.105)

The spectator mass Ms is assumed proportional to Mh. There are a total of 14 free parame-
ters thus far for pion-pion dihadrons, and two less for kaon-kaon dihadrons, since the quark
mass is �xed at zero. The parameters are speci�cally the 9 parameters αs,p,b, βs,p,b, γs,p,b,
involved in the z dependence of the Λ slopes, the spectator mass factor, and the couplings
fs, fρ, fω, fω′ , and fφ.

Using the properties of gamma matrices, the correlator can be rewritten as

∆q(k, Ph, R) =

{
|F s|2 e−2 k2

Λ2
s

[
Msk

2 +
(
k2 − 2(k · Ph)

)
/k + k2 /P h

]

+ |F p|2 e−2 k2

Λ2
p

[
Msk

2R2 − 2k2
(
(R · k)− (R · Ph)

)
/R− k2R2 /P h

+
(
4(R · k)

(
(R · k)− (R · Ph)

)
+ 2R2(k · Ph)− k2R2

)
/k
]

+ 2Re [F s∗F p] e
−2 k2

Λ2
spMs

[
2(k ·R)/k − k2 /R

]

+ 2Im [F sF p∗] e
−2 k2

Λ2
sp

[(
k2 − 2(k · Ph)

)
/R/k + 2(R · k)/P h/k − k2 /P h /R

]

+ (F sF p∗) e
−2 k2

Λ2
sp

[
2
(
(R · k)− (R · Ph)

)
k2

]}

× 1

(2π)3

1

k4
δ
(
(k − Ph)

2 −M2
s

)
. (2.106)

Note, when applying the integral in Equation 2.100, the δ-function in of Equation 2.106
forces the on-shell condition of k2,

k2 =
z

1− z
|kT |2 +

M2
s

1− z
+
M2

h

z
, (2.107)

and introduces an extra face space factor of (2zP−h )−1. Equation 20 of Ref. [31] can be
derived from the above Equation 2.106 by integrating over d2kT and noting

d2kT = |kT |d|kT |dφk =
d|k2

T |
2

dφk. (2.108)

Equation 20 of Ref. [31] additionally replaces dφk with 2π, and has evaluated the δ-function
and thus includes the on-shell condition and extra phase space factor.
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2.4.2 Model Prediction for Fragmentation Functions
The fragmentation functions are computed according to the trace identities given in

Equations 2.39 and 2.40. Expressions for these fragmentation functions can then be expanded
in partial waves via Equations 2.42 and 2.43, to yield the functions D|l,m〉

1 and H⊥|l,m〉
1 .

Substituting Equation 2.106 into Equation 2.39 yields the model estimate

D1 =
|R|

16π2Mhk4

{
|F s|2 e−2 k2

Λ2
s

[
(1 + z)k2 − 2(k · Ph)

]

+ Re [F s∗F p] e
−2 k2

Λ2
spMs

[
4(k ·R)− zζk2

]

+ |F p|2 e−2 k2

Λ2
p

[(
4(R · k)− zζk2

)(
(R · k)− (R · Ph)

)

−R2
(
(1 + z)k2 − 2(k · Ph)

)]}
, (2.109)

dependent on z, kT , Mh, cosϑ, (φR − φk). Note that D1 can be written as

D1 = τss |F s|2 e−2 k2

Λ2
s + τspMsRe [F s∗F p] e

−2 k2

Λ2
sp + τpp |F p|2 e−2 k2

Λ2
p , (2.110)

with

τss =
|R|

16π2Mhk4

(
(1 + z)k2 − 2(k · Ph)

)
, (2.111)

τsp =
|R|

16π2Mhk4

(
4(k ·R)− zζk2

)
, (2.112)

τpp =
(
(R · k)− (R · Ph)

)
τsp −R2τs. (2.113)

It is useful to note the following products [18]

R · Ph =
m2

1 −m2
2

2
, (2.114)

k · Ph =
M2

h

2z
+ z

k2 + |kT |2
2

, (2.115)

k ·R =
1

z
(Ph ·R) +

ζ

2
(Ph · k)− |kT ||RT | cos(φR − φk), (2.116)

P 2
h = M2

h , (2.117)

R2 =
m2

1 +m2
2

2
− M2

h

4
, (2.118)

intermediate quantities,
|RT | = |R| sinϑ, (2.119)

|R|2 =
M2

h

4
− m2

1 +m2
2

2
+

(m2
1 −m2

2)
2

4M2
h

, (2.120)

ζ =
1

Mh

(√
m2

1 + |R|2 −
√
m2

2 + |R|2 − 2|R| cosϑ

)
, (2.121)
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and light cone coordinates

zk− =
2

ζ
R− = P−h , (2.122)

R+ =
1

P−h

(
m2

1 −m2
2 −

ζ

2
M2

h

)
, (2.123)

k+ =
z (|kT |2 + k2)

2P−h
, (2.124)

P+
h =

Mh

2P−h
. (2.125)

Note that R2 is the Lorentz invariant R2 := RµRµ, while |R| is the magnitude of the spatial
components of Rµ, and |RT | is the magnitude of the transverse (x, y) components of R.

Applying the partial wave expansion of Equation 2.42 to D1 in Equation 2.109 yields the
expressions

16π2Mhk
4

|R| D
|0,0〉
1 =

(
z2|kT |2 +M2

s

1− z

)[
|F s|2 e−2 k2

Λ2
s −R2 |F p|2 e−2 k2

Λ2
p

]

+
(
ΥD

|0,0〉
1

sp

) [
Re [F s∗F p] e

−2 k2

Λ2
sp

]

+
(
ΥD

|0,0〉
1

pp

) [
|F p|2 e−2 k2

Λ2
p

]
, (2.126)

16π2Mhk
4

|R| D
|1,1〉
1 = −2Ms|R||kT |

[
Re [F s∗F p] e

−2 k2

Λ2
sp

]

+
(
ΥD

|1,1〉
1

pp

) [
|F p|2 e−2 k2

Λ2
p

]
, (2.127)

16π2Mhk
4

|R| D
|1,0〉
1 = −2

Ms|R|
zMh

(
M2

h + z2|kT |2
) [

Re [F s∗F p] e
−2 k2

Λ2
sp

]

+
(
ΥD

|1,0〉
1

pp

) [
|F p|2 e−2 k2

Λ2
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, (2.128)

16π2Mhk
4

|R| D
|2,2〉
1 =

1

3
|kT |2|R|2

[
|F p|2 e−2 k2

Λ2
p

]
, (2.129)
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(2.130)
16π2Mhk
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34



with D|l,−m〉
1 = D

|l,m〉
1 in this model, and Υ functions

ΥD
|0,0〉
1
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z

) [
Mh

(
1 +

z2|kT |2
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)(√
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]
, (2.132)
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√
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4

3
|kT |2|R|2, (2.133)
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1
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2
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, (2.134)
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|1,0〉
1
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2z2M2
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)[(√
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√
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h + z2|kT |2
)

+ 2Mh

(
m2

1 −m2
2

)
]
. (2.135)

The Υ functions depend on the mass di�erence between the two produced hadrons (m1−m2),
and converge to zero when the di�erence is much smaller than the other mass scales (Mh,
|R|, k). Although, earlier it was assumed m1 = m2, the above Υ functions give a part of the
needed correction for non-equal masses.

Proceeding in a similar manner for H⊥
1 , i.e. substituting Equation 2.100 into Equation

2.40, yields the model estimate

H⊥
1 =

|R|
8π2k4

( (
k2 − 2(k · Ph)

)
R+ + 2(R · k)P+

h

− (
k2P+

h +
(
k2 − 2(k · Ph)

)
k+

) |R|
|kT | sinϑe

i(φR−φk)

)[
Im [F s∗F p] e

−2 k2

Λ2
sp

]
,

(2.136)
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again dependent on z, kT , Mh, cosϑ, (φR − φk). The partial wave expansion is

8π2k4

|R| H
⊥|0,0〉
1 =

1

2z

{
2

(
z(1− z)k2 − z2|kT |2

)(
m2

1 −m2
2

)

+Mh

(
2M2

h + z (2z − 1) k2 + 2z2|kT |2
)

×
(√

m2
1 + |R|2 −

√
m2

2 + |R|2
) }

×
[
Im [F s∗F p] e

−2 k2

Λ2
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]
, (2.137)

8π2k4
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⊥|1,1〉
1 = − |R||kT |

(
k2 + |kT |2

)( (
1− z2

)
k2 − z2|kT |2

)

×
[
Im [F s∗F p] e

−2 k2

Λ2
sp

]
, (2.138)

8π2k4
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⊥|1,0〉
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1

z
Mh|R|

(
zk2 − 2

(
M2

h + z2(k2 + |kT |2)
) )

×
[
Im [F s∗F p] e

−2 k2

Λ2
sp

]
, (2.139)

8π2k4

|R| H
⊥|1,−1〉
1 = −M2

h |R||kT |
[
Im [F s∗F p] e

−2 k2

Λ2
sp

]
. (2.140)

Note that H⊥|0,0〉
1 is zero in the case of m1 = m2.

2.4.3 Flavor Dependence

Note that the fragmentation functions computed in Section 2.4.2 are all based on the
correlator in Equation 2.100 which has a �avor index. The �avor index is not carried through
in the subsequent equations for sake of brevity, as the fragmentation functions for each �avor
have identical form. The possible di�erence in the �avors is re�ected in the ability to make
di�erent choices for the parameter per each �avor, as well as a possible change in sign of the
3-vector R.

In applying the model to π+π−-dihadrons, which includes SIDIS ρ0 production, it is
su�cient to use two sets of parameters, as isospin relations give that u → π+π−X has the
same correlator as d̄ → π+π−X, d → π−π+X, ū → π−π+X. CP symmetry (replacing a
quark with its anti-quark partner) also implies that the correlator of s → π+π−X is equal
to that for s̄→ π−π+X. Thus one has a set of parameters for u and s, and all others �avors
are either equal or equivalent up to the sign of the R.

For π+π0 production, one again has the �avors u and d̄ equivalent, and separately d and
ū are equivalent, though isospin symmetry gives no relation between u and d. One call also
posit non-zero parameters for s �avor, in which case s̄ is again related to s by changing the
sign of R. Given the parameters for π−π0 production, isospin symmetry (equivalently CP
symmetry) speci�es all the parameters for π+π0.
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For K+K− production, one again can use three sets of parameters, u, d, s, and the
anti-quark �avors are each related to their conjugate via changing the sign of R.

2.4.4 Numerical Results
Speci�c numerical results are computed using the TMDGen Monte Carlo generator, de-

scribed later in Section 3.2. Thus, the numeric results for the above computed model, as
well as the optimized parameter sets, are given in Section 3.2.5.
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CHAPTER III

Numerical Methods

Two essential numerical tools are covered in this chapter. First, Section 3.1 describes a
smearing and acceptance correction method, while the new Monte Carlo generator TMDGen
is described in Section 3.2. A signi�cant component of TMDGen is the inversion of the equa-
tions of Section 2.1.4, such that particle momenta can be determined from the cross section
variables. It is hoped that the TMDGen will not only be useful for the analysis in this disser-
tation, but will also be useful for others analyses at various experiments and for theorists
interpreting various SIDIS results.

3.1 Acceptance and Smearing Corrections
While theoretically one is interested in the true angular distribution of the produced

particles, the Hermes detector does not have a full 4π angular acceptance. Additionally,
higher order QED e�ects, brehmsstrahlung and detector resolution can smear the values of
the measured variables. Estimating the true angular moments, given smeared data within
acceptance, is the subject of this section. Note, for the actual dihadron analysis of this
dissertation, smearing e�ects are negligible. However, the following method is applicable
either with our without the presence of signi�cant smearing. The methods described in this
section, Section 3.1, are based on the authors work in Refs. [63, 64]. Furthermore, the
method utilized in Ref. [65] can be shown to be a special case of the method described in
Section 3.1.2.

3.1.1 Fredholm Integral Equation

To quantitatively discuss the e�ect of acceptance and smearing, it is necessary to in-
troduce three quantities: p

(
x(T )

)
, the true distribution, i.e. the distribution of the true

variables, as one would measure with a perfect, 4π detector; p
(
x(R)

)
, the reconstructed

distribution or the distribution of the reconstructed variables; and p
(
x(R)

∣∣ x(T )
)
, the con-

ditional probability of reconstructing certain values of the variables given their true value.
The D-dimensional vectors x(T ), x(R) include the D parameters with which the cross section
is di�erential. For simplicity, it is assumed in the following section that the domain of x(T )

and x(R) are identical, though this is not necessary for the method.
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From basic laws of probability, the relationship between the densities is

p
(
x(R)

)
= η

∫
dDx(T ) p

(
x(R)

∣∣ x(T )
)
p
(
x(T )

)
, (3.1)

with
1

η
=

∫
dDx(R)dDx(T ) p

(
x(R)

∣∣ x(T )
)
p
(
x(T )

)
. (3.2)

The proportionality constant η is required to ensure that both p
(
x(R)

)
and p

(
x(T )

)
are nor-

malized probability distributions, as it is possible that not all true data will be reconstructed.
However, the absolute normalization is not relevant for the purpose of this dissertation, and
we will focus on extracting ηp

(
x(T )

)
, a non-normalized distribution. Once ηp

(
x(T )

)
is found,

one can obtain p
(
x(T )

)
by enforcing normalization.

One can interpret Equation 3.1 in terms of a smearing operator, mapping functions of
the true domain to function of the reconstructed domain,

g̃
(
x(R)

)
= S

[
g(x(T ))

]
, (3.3)

=

∫
dDx(T ) p

(
x(R)

∣∣ x(T )
)
g

(
x(T )

)
. (3.4)

Thus Equation 3.1 can be simply written as

p
(
x(R)

)
= S

[
ηp

(
x(T )

)]
. (3.5)

Note, data from the detector can be used to estimate p
(
x(R)

)
, and data from a Monte

Carlo, which includes the full simulation of the detector and all other e�ects for which one
desires to correct, can be used to estimate p

(
x(R)

∣∣ x(T )
)
. To obtain the desired ηp

(
x(T )

)
, one

needs to invert Equation 3.1. This equation, Equation 3.1, is a Fredholm integral equation of
the �rst kind, and the problem of solving for p

(
x(T )

)
belongs to the general class of inversion

problems.
The inversion of Fredholm integral equations is a well studied problem, though it has been

shown to be ill-conditioned [66]. This means it is possible that slight variations in p
(
x(R)

)
could cause drastically di�erent solutions for p

(
x(T )

)
. The proof that the problem is ill-

conditioned involves showing that the eigenfunctions are, in general, degenerate. However,
this is a worst case scenario, and the cases of interest are not always so badly conditioned.
Section 3.1.5 speci�cally considers the e�ect of the poor conditioning within the context of
the speci�c numerical method used in this dissertation.

In some speci�c cases, smearing e�ects are found to be negligible, and one considers
p
(
x(R)

∣∣ x(T )
)
to have the form

p
(
x(R)

∣∣ x(T )
)

= δD
(
x(T ) − x(R)

)
ε
(
x(R)

)
. (3.6)

As the δ-function removes the integral, one naively expects the solution to Equation 3.1 to
be simply

ηp
(
x(T )

)
=
p
(
x(R)

)

ε (x(R))

∣∣∣∣∣
x(R)=x(T )

. (3.7)
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However, one has neglected the fact that a change of variables would introduce extra factors
and one has naively assumed that the original choice of variables is the choice leading to
a factor of unity. Furthermore, in low density areas, ε may be zero (or near zero), causing
Equation 3.7 to be singular (or near singular). Thus for numeric studies, it is generally best
to represent acceptance as an an integral operator rather than a simple distribution.

The proposed method of this section corrects for all e�ects which are included in the
data sample used to estimate p

(
x(R)

∣∣ x(T )
)
. Thus, whether or not a smearing correction is

applied depends on whether such an e�ect is included in the data set used for estimating
p
(
x(R)

∣∣ x(T )
)
. The mathematics of the correction method are, however, the same regardless

of which e�ects are included.

3.1.2 Solution Using Basis Expansion
To solve Equation 3.1, a �nite basis expansion is proposed. Let {fi(x)}N

i=0 be a set of
N basis functions, which can be assumed to be linearly independent with respect to the
L2 norm. In the context of this dissertation, the basis functions are products of Legendre
polynomials in cosϑ multiplied with sine and cosine functions, the arguments of the sines
and cosine functions being linear combinations of φh, φR, and φS. Let the solution ηp

(
x(T )

)
and the conditional probability p

(
x(R)

∣∣ x(T )
)
be restricted to this �nite basis,

ηp
(
x(T )

)
=

∑
i

αifi

(
x(T )

)
, (3.8)

p
(
x(R)

∣∣ x(T )
)

=
∑
i,j

Γi,jfi

(
x(R)

)
fj

(
x(T )

)
. (3.9)

The Γ matrix, multiplied by a matrix taking into account the normalization of the basis, is
a representation of the acceptance and smearing, while α represents the �nal �t parameters
which one desires to estimate. Thus, the basis expansion allows one to turn a di�cult integral
inversion problem into a parameter estimation problem�a much easier class of problems.
Note, however, such a change does not remove the inherent poor conditioning of the problem.

3.1.2.1 Fitting the Conditional Probability
The next step is to determine matrix Γ by minimizing the integrated squared error (ISE),

∫
dDx(R)dDx(T )

[
p
(
x(R)

∣∣ x(T )
)−

∑
i,j

Γi,jfi(x
(R))fj(x

(T ))

]2

. (3.10)

It is helpful to de�ne

Bi,j =

∫
dDx(R)dDx(T ) p

(
x(R)

∣∣ x(T )
)
fi

(
x(R)

)
fj

(
x(T )

)
, (3.11)

Fi,j =

∫
dDx(T ) fi

(
x(T )

)
fj

(
x(T )

)
. (3.12)

Elements of the matrix F are simply the L2 overlaps between basis elements. This implies
F is symmetric, positive de�nite, and thus invertable. Elements of the matrix B can be
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interpreted as the L2 overlaps between basis elements fi and smeared basis elements S [fj].
Note that B is only symmetric in the case of symmetric smearing, including the case of
no smearing. One can show that B is positive semi-de�nite, and the fact that B can have
zero (or near zero) eigenvalues is exactly related to the inherent ill-conditioned nature of the
Fredholm equation.

Using Equations 3.11 and 3.12, one can reduce Equation 3.10 to

Tr
[
ΓFΓTF

]− 2Tr
[
ΓBT

]
+ const., (3.13)

where the constant is meant with respect to Γ. The ISE is minimized when Γ = F−1BF−1.
Note, ΓF = F−1B is the representation of the smearing operator restricted to the space

spanned by the basis functions. Speci�cally, given a function g(x(T )) =
∑

i βifi

(
x(T )

)
, the

smeared function can be found by acting ΓF on the parameters β, as

S
[
g

(
x(T )

)]
=

∫
dDx(T )p

(
x(R)

∣∣ x(T )
)
g

(
x(T )

)
, (3.14)

=

∫
dDx(T )

[∑
i,j

Γi,jfi

(
x(R)

)
fj

(
x(T )

)
] [∑

k

βkfk

(
x(T )

)
]
, (3.15)

=
∑

i,j,k

fi

(
x(R)

)
Γi,jβk

∫
dDx(T )fj

(
x(T )

)
fk

(
x(T )

)
, (3.16)

=
∑

i

(ΓFβ)i fi

(
x(R)

)
, (3.17)

=
∑

i

(
F−1Bβ

)
i
fi

(
x(R)

)
, (3.18)

assuming the integrals and sums are all convergent.

3.1.2.2 Fitting the True Distribution
To compute α, one again forms the ISE, this time based on Equation 3.7,

∫
dDx(R)

{
p
(
x(R)

)− S
[
ηp

(
x(T )

)] }2

. (3.19)

It is helpful to introduce the expectation value of the functions with respect to p
(
x(R)

)
,

bi =

∫
dDx(R)p

(
x(R)

)
fi

(
x(R)

)
. (3.20)

The ISE of Equation 3.19 then reduces to

αTBTF−1Bα− 2αTBTF−1b + const. (3.21)

The minimum occurs when (
BTF−1B

)
α = BTF−1b. (3.22)
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If
(
BTF−1B

)
is invertable, the solution for α is then

α =
(
BTF−1B

)−1
BTF−1b. (3.23)

If B is itself invertable, the solution reduces to

α = B−1b. (3.24)

In solving either of Equations 3.23 or 3.24, one typically does not directly compute the
inverse, but rather uses standard methods for solving matrix equations involving either a
QR or LU decomposition. A QR decomposition, using Householder transformations, is
considered the most stable method for solving for α.

An alternate derivation of Equation 3.23 can be found by computing the ISE estimate of
p
(
x(R)

)
, and then constructing the ISE. In this case, Equation 3.19 can be written

ISE =

∫
dDx(R)

{
p
(
x(R)

)− S
[
ηp

(
x(T )

)] }2

, (3.25)

=

∫
dDx(R)

{∑

k

(
F−1b− F−1Bα

)
k
fk

(
x(R)

) }
, (3.26)

=
(
F−1b− F−1Bα

)T
F

(
F−1b− F−1Bα

)
, (3.27)

where the similarity with typical linear regression is more apparent. Minimizing Equation
3.27 also results in Equation 3.23. However, this derivation makes clear the need for the
basis to be chosen such that both p

(
x(T )

)
and p

(
x(R)

)
are in the span, not just p

(
x(T )

)
. As

p
(
x(R)

)
is not explicitly �t to the basis in the �rst derivation, this subtlety is only apparent

in the second derivation.

3.1.3 Uncertainty Calculation
For simplicity, in this section (Section 3.1.3) it will be assumed that bothB and

(
BTF−1B

)
are invertable. The case they are not invertable is considered in Section 3.1.5, which details
the computation of a pseudo-inverse, which can then be used in the formulas of this section,
Section 3.1.3. The principle equation used in computing α is then

Bα = b. (3.28)

Three possible sources of uncertainty can be identi�ed: two from propagating the uncertainty
from B and b, and the third related to the inverse Hessian of the optimization function, in
this case the ISE. Let C(b) be the covariance matrix of b and C(B)

i,j;i′,j′ be the covariance 4-form
of B. Also de�ne the matrix C ′(B)

C
′(B)
i,i′ =

∑

j,j′
C

(B)
i,j;i′,j′αjαj′ . (3.29)

The covariance of α, denoted C(α) can then be written as

C(α) = B−1C(b)B−T +B−1C ′(B)B−T +
(
BTF−1B

)−1
. (3.30)
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The last term in Equation 3.30 is that arising from the inverse Hessian and does not scale
with statistics. In numerical studies, it has been shown that the �rst two terms su�ciently
quantify the relevant uncertainty, and that the �nal term is not meaningful. Equation 3.30
followed from the standard methods of propagating uncertainty (i.e. covariance matrices).
Note, implicit di�erentiation of Equation 3.28 is used to �nd partial derivatives of elements
of α with respect to elements of B.

3.1.4 Numerical Calculation

The matrix Γ, introduced in �tting the conditional probability, never needs to be explicitly
computed. Instead, only the matrices F and B and the vector b need be estimated from
available data. The matrix F can be computed analytically, while B and b can be computed
via Monte Carlo integration.

Given a set of data {x(R,k)}NR
k=1 drawn from p

(
x(R)

)
, i.e. the actual data from theHermes

detector, the expectation value and covariance matrix can be estimated via

bi =
V

NR

NR∑

k=1

fi

(
x(R,k)

)
, (3.31)

(
Cb

)
j,j′ =

δj,j′

NR − 1

[
V 2

NR

NR∑

k=1

f 2
i

(
x(R,k)

)− (bi)
2

]
. (3.32)

The quantity V is the volume of the domain (assumed to be the same for both the x(T ) and
x(R) domains).

Computing B and its covariance requires careful preparation of the Monte Carlo gen-
erator, as it is does not makes sense to discuss data drawn from a conditional probability.
However, if data is generated uniform in x(T ), then pMC

(
x(T )

)
= V −1. One can then run

this data through the simulation of the detector and the full data reconstruction scheme,
yielding data distributed according to some pMC

(
x(T ),x(R)

)
. The conditional probability is

numerically related to the joint distribution as

p
(
x(R)

∣∣ x(T )
)

=
pMC

(
x(T ),x(R)

)

pMC (x(T ))
= V pMC

(
x(T ),x(R)

)
. (3.33)

Thus the matrix B can be written as

Bi,j = V

∫
dDx(R)dDx(T ) pMC

(
x(T ),x(R)

)
fi

(
x(R)

)
fj

(
x(T )

)
, (3.34)

where elements of B are simply expectation values of products of basis functions. Note,
that the factor of V in Equation 3.34 only a�ects the normalization of α, and thus can be
absorbed into the yet unknown normalization factor.
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Given data {x(T,k),x(R,k)}NMC
k=1 drawn from a Monte Carlo prepared as described, the

matrix B and its covariance can then be computed via

Bi,j =
V 3

NMC

NMC∑

k=1

fi

(
x(R,k)

)
fj

(
x(T,k)

)
, (3.35)

(
CB

)
j,k;j′,k′ =

δj,j′δk,k′

Nε − 1

[
V 4

Nε

Nε∑

k=1

f 2
j

(
x(M,k)

)
f 2

k

(
x(T,k)

)− (Bj,k)
2

]
. (3.36)

Once the quantities B, b and their covariance are computed via Equations 3.31, 3.32,
3.35, and 3.36, the vector α and its covariance can be found via Equations 3.28 and 3.30.
The largest amount of the computation time is spent in summing over the two data samples
to compute B and b, though in general the entire algorithm is quite fast.

3.1.5 Inverting the Matrix

While naively one might choose the set of basis functions to exactly match the modula-
tions occurring in the cross section, one should also consider including extra terms to capture
additional acceptance e�ects, i.e. one needs to represent well both p

(
x(T )

)
and p

(
x(R)

)
by

the chosen basis. For example, one can consider including additional terms with the same
azimuthal dependence as the terms from the cross section, but with a di�erent Legendre
polynomial of cosϑ. The side e�ect of including additional basis functions, however, is that
the matrix B tends to be even more poorly conditioned. However, the matrix B can be
poorly conditioned even without increasing the number of basis functions.

To invert B, or to compute an estimate of a pseudo-inverse, a technique is used which is
common in dimensional reduction problems. Let N denote the dimension of B, and let the
m×m identity matrix be denoted Im, for any m > 0. Note that B is positive semi-de�nite,
and thus the eigenvalues of B are non-negative and the eigenvectors are orthogonal. Consider
the eigenvalue decomposition of B, B = V DV T , whereD is diagonal and V TV = V V T = IN .

Next, considers the n largest eigenvalues, with n chosen such that the sum of the n
largest eigenvalues equals a certain fraction of the sum of all eigenvalues. For the case of this
dissertation, the fraction is chosen to be 95%. One then de�nes V ′, an N × n matrix whose
columns are the eigenvectors corresponding to the n largest eigenvalues, as well as D′, an
n× n matrix of the n largest eigenvalues. One then has B = V DV T ≈ V ′D′V ′T . Note that
while V ′TV ′ = In, one has V ′V ′T 6= IN .

It can be shown that the matrix equation Bα = b has solution

α = V ′ (D′)−1
V ′T b, (3.37)

and thus one can use B−1 ≈ V ′ (D′)−1 V ′T as a pseudo-inverse. In practice, QR decomposi-
tion leads to more stable estimates of α than using Equation 3.37. However, in propagating
the uncertainty, the reverse is true. In this case, utilizing the pseudo-inverse of B is more
stable than using the inverse computed from QR or any other matrix decomposition.
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3.2 The TMDGen Generator
For systematic studies, it is necessary to either generate data according to the TMD

SIDIS dihadron cross section, or to at least evaluate this cross section for given data points.
Although Pythia [67] includes SIDIS dihadron production, no model is included for the
angular dependence. In fact, no Monte Carlo generator has been previously available for the
full angular dependence.

A limited generator, known as gmctrans [68], had been developed in FORTRAN by other
members of the Hermes collaboration. This generator only included SIDIS single hadron
production and was also restricted to the Gaussian ansatz for the pT and kT dependence
for each distribution and fragmentation function. The generator also had several other
disadvantages. Speci�cally, the program design made it di�cult to extend to other cases,
due to a large number of FORTRAN common blocks, exacerbated by the fact that the code
was linked to a large number of other generators. The design did also not allow for the
separation from the rest of the standard Hermes software, which is necessary for any broad
use by other experiments or theorists.

For these reasons, a new generator, denoted TMDGen, has been developed. The generator
is not simply a porting of the older FORTRAN code, but a complete redesign into an
object oriented framework. Many advantages of the more modern language, such as class
inheritance, namespaces, encapsulation, and longer names allow for cleaner, better organized
code. The library is designed to be dependent on as few other libraries as possible and can
both operate independent of the Hermes software suite and can connect to the Hermes
processes chain. Additionally, the new TMDGen fully models the intrinsic transverse momenta,
pT , kT , and places no model assumptions on their distribution.

The new generator includes SIDIS production of identi�ed single hadrons, hadron pairs,
and vector mesons, assuming a polarized electron or positron beam and �xed, polarized,
proton target. The results of the generator can serve as input into a simulation of a detector,
such as by using GEANT, followed by the usual data processing chain of an experiment.

The remainder of this chapter is organized as follows. Section 3.2.1 describes the basic
methodology of the generator. Details regarding the computation of the track momenta
from the cross section variables are given in Section 3.2.2. Code organization is discussed
in Section 3.2.3. Section 3.2.4 describe models currently implemented in TMDGen. Finally,
Section 3.2.5 compares numerical results from TMDGen with those from a Pythia production
tuned to Hermes kinematics [69, 70, 71].

3.2.1 Methodology
The basic method of generation is the simple acceptance/rejection method. The method

is as follows. Let x denote the independent variables, and let f(x) be the distribution from
which one desires to generate data. Let g(x) be an additional distribution from which one
can already generate data, generally chosen to be uniform. Also, let M > 0 be given such
that f(x) ≤Mg(x) for all x. Let Xg be a set of data generated from g. A data set following
the distribution of f can then be determined by rejecting data points x∗ ∈ Xg such that

f(x∗)
Mg(x∗)

≤ r, (3.38)
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where r is uniformly distributed in [0, 1).
In the case of TMDGen, f of Equation 3.38 is the cross section for the given process. The

distribution g(x) is set to unity, (though this can be overwritten by de�ning a new child
class of the variable thrower class) and M is set to max f(x). As M is not known exactly, it
is estimated by randomly sampling the distribution f , i.e. the cross section.

For single hadron production, the independent variables x are x, y, z, Ph⊥, φh, ψ, pT , and
φpT

, and for dihadron production x additionally includesMh, cosϑ and φR. These quantities
are de�ned in Section 2.1.4, with the exception of ψ, which is merely the rotation angle from
coordinate system Ib to Ic, or equivalently, minus the azimuthal angle of the scattered lepton
in coordinate system Ib.

In the case that the lepton beam is purely in the ẑ direction in coordinate system Ia,
i.e. coordinate systems Ia and Ib are identical, a simple relation exists between ψ and φe2 ,
the azimuthal angle of the scattered lepton in coordinate system Ia. Speci�cally ψ = −φe2 .
However, allowing the beam to have any direction in coordinate system Ia (i.e. a generic
relation between systems Ia and Ib) results in a more complicated expression. Note, again
assuming coordinate systems Ia and Ib are identical, and assuming very small θγ, the relation
also holds that φS ≈ ψ − π/2. These relations have been useful in debugging TMDGen and
may prove useful to others debugging code designed to link with TMDGen.

As the cross section is chosen di�erential with respect to the polar coordinates pT , φp

rather than the Cartesian pT , an additional factor of pT must be included in the phase space.
Additionally, a factor of ~2/c2 = 389.379 µbarns GeV2 is included to convert the cross section
to units of µbarns.

Note that the target polarization is given with respect to the lepton beam, with the
magnitude of transverse polarization being P⊥ and of longitudinal polarization P‖. The cross
section is chosen di�erential with respect to ψ rather than φS, to avoid the introduction of
additional phase space factor due to specifying P‖, P⊥ rather than S‖, S⊥ [36].

To determine φS, S‖, S⊥ from the given P‖, P⊥, ψ one just needs to transform the
polarization vector from frame Ia, where P‖, P⊥ are de�ned, to frame Id, where S‖, S⊥ are
de�ned. The speci�c rotation matrices are




S⊥ cosφS

S⊥ sinφS

−S‖


 =




cos θγ 0 − sin θγ

0 1 0

sin θγ 0 cos θγ




×




cosψ − sinψ 0

sinψ cosψ 0

0 0 1







cos θe1 0 − sin θe1

0 1 0

sin θe1 0 cos θe1




×




cosφe1 sinφe1 0

− sinφe1 cosφe1 0

0 0 1







0

−P⊥
−P‖


 , (3.39)

with θγ being the angle between the beam lepton's momentum and the virtual photon's
momentum. Equation 3.39 reduces to Equation 4 of Ref. [36] in the case that θe1 = 0,
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φe1 = 0. Multiplying the matrices in Equation 3.39 results in

S⊥ cosφS = P‖

(
cos θγ cosψ sin θe1 + sin θγ cos θe1

)

+ P⊥

(
sin θγ sin θe1 sinφe1 − cos θγ cosψ cos θe1 sinφe1

+ cos θγ sinψ cosφe1

)
, (3.40)

S⊥ sinφS = P‖

(
sinψ sin θe1

)
+ P⊥

(
sinψ cos θe1 sinφe1 − cosψ cosφe1

)
,

(3.41)

from which S⊥, and φS can be computed, and

−S‖ = P‖

(
sin θγ cosψ sin θe1 − cos θγ cos θe1

)

+ P⊥

(
sin θγ cosψ cos θe1 sinφe1 + cos θγ sin θe1 sinφe1

− sin θγ sinψ cosφe1

)
, (3.42)

from which S‖ can be computed.
Although neither Q2, Ph⊥, or W 2 is generated directly, the domain of the generated vari-

ables can be restricted in order to keep these three variables within the physically accessible
range. This is done by directly computing these variables according to

Q2 = 2xyMEB, (3.43)
ν = yEB, (3.44)

W 2 = M2 + 2Mν −Q2, (3.45)

and rejecting events where these are out of a user speci�ed range.
Note that the cross section for single hadron production can be written

d6σ

dx dy dz dPh⊥ dψ
=

∫
d2pTd

2kT δ2

(
pT − kT − Ph⊥

z

)
×

d10σ

dx dy dz dψ dPh⊥ dpT dkT

, (3.46)

=

∫
d2pT

d10σ

dx dy dz dψ dPh⊥ dpT dkT

∣∣∣∣
kT =pT−Ph⊥/z

, (3.47)

and thus one can identify

d8σ

dx dy dz dψ dPh⊥ dpT

=
d10σ

dx dy dz dψ dPh⊥ dpT dkT

∣∣∣∣
kT =pT−Ph⊥/z

. (3.48)
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Similar expressions can be written for the dihadron cross section. To fully simulate the pT

and kT dependence, one can e�ectively remove the integrals from the cross section in Section
2.2, include pT in the list of independent variables, and set kT to the value required by
the δ-function. To recover the physically realizable cross section, one needs to use just the
physically realizable variables, e�ectively performing a Monte Carlo integration over pT .

3.2.2 Computation of Track Momenta

Once the independent variables, those denoted as x in preceding paragraphs, are gener-
ated, it is necessary to invert the usual relations, Section 2.1.4, to determine the momentum
of the scattered electron and produced mesons. First the electron and virtual photon mo-
menta are determined, followed by the momentum of the center of mass of the produced
hadron system, and �nally, for dihadrons, the momenta of measured particles.

3.2.2.1 Angles of the Scattered Electron

Using the de�nitions of the variables, Section 2.1.4, the energy and polar angle of the
scattered electron in the frame/coordinate system Ib, equivalently coordinate systems Ic, is

E ′ = (1− y)EB, (3.49)

cos θe2 = 1− Q2

2(1− y)EB

= 1− xy

1− y

M

EB

. (3.50)

One can equivalently write

cos θe2 = 1− γ2y2

2(1− y)
, (3.51)

sin θe2 = ± y

1− y
γ

√
1− y − γ2y2

4
. (3.52)

Note, a relation between θe2 and θγ can be show, speci�cally

sin θγ =
(1− y)EB√
ν2 +Q2

sin θe2 , (3.53)

=
E ′

|q| sin θe2 . (3.54)

Numerically, one computes θe2 from Equation 3.50 and θγ from Equation 3.53.
The momenta of the scattered lepton in coordinate system Ic has magnitude and direc-

tion given by Equations 3.49 and 3.50, with the azimuthal angle being zero. To determine
the momenta in Ia, one just needs to apply the necessary transformations between these
coordinate systems.
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3.2.2.2 Angles of the Meson System
The energy of the produced hadron system can be computed by inversion of the kinematic

variable de�nitions, and the momentum then directly follows from the mass, speci�cally

Eh = yzEB, (3.55)

Ph =
√
E2

h −M2
h . (3.56)

In coordinate system Id, the momentum of the produced hadron system has polar and
azimuthal angles θγh, φh. Note, the angle θγh was de�ned in Equation 2.32. A rotation
about ŷ of θγ followed by a rotation about ẑ′ of −φe2 moves a vector from this coordinate
system to system Ia. Using vector and matrix notation, one can then write

P̂
(Ia)
h

(
θ

(Ia)
h , φ

(Ia)
h

)
= Rbz′(−φe2)Rby(θγ)P̂

(Id)
h

(
θ

(I)
γh , φh

)
, (3.57)

from which the quantities θ(Ia)
h , φ(Ia)

h can be determined.
It is also necessary to determine boost P (Id)

h to frame IIa to compute other dihadron
variables. In frame Id, the four momentum is

(
P

(Id)
h

)µ

=
[
Eh, Ph sin θ

(I)
γh cosφh, Ph sin θ

(I)
γh sinφh, Ph cos θ

(I)
γh

]
, (3.58)

noting that Eh, Ph is de�ned in frame I, i.e Eh ≡ E
(I)
h , Ph ≡ P

(I)
h . The boost parameters

from I to II are
γ =

ν +M

W
, γβz =

|q|
W
. (3.59)

In frame IIa the x and y components are unchanged, while the energy and z components are

E
(II)
h =

ν +M

W
Eh − |q|

W
Ph cos θ

(I)
γh , (3.60)

P
(IIa)
h,z =

ν +M

W
Ph cos θ

(I)
γh −

|q|
W
Eh. (3.61)

The magnitude of the three momentum in this frame is then

P
(II)
h =

√
P 2

h⊥ +
(
P

(IIa)
h,z

)2

. (3.62)

For other equations following, it is useful to note the light cone coordinates P+
h and P−h in

IIb and IIc are

P±h =
1√
2

(
E

(II)
h ± P

(II)
h

)
, (3.63)

=
1√
2

(
ν +M ∓ |q|

W

) (
zν ± Ph cos θ

(I)
γh

)
, (3.64)

(3.65)

One also has the relation that 2P+
h P

−
h = M2

h .
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3.2.2.3 Angles of the Decay Products
For single pseudo-scalar meson production, the hadron system is purely the single meson,

and the previous subsections are enough to determine all the measured momenta based on the
cross section variables. For dihadron production, one needs to yet determine the momenta of
the two measured hadrons. Computationally, one transforms Rµ from reference frame IIIa,
where it can be written directly, to frame Ia. Then knowing Rµ and P µ

h , one can compute
P µ

1 and P µ
2 . The four vector Rµ in frame IIIa can be written as a function of angles ϑ, φR,

and the relevant masses, as [18]

Rµ =

[
m2

1 −m2
2

2Mh

, |R| cosφR sinϑ, |R| sinφR sinϑ, |R| cosϑ

]
, (3.66)

with

|R|2 =
M2

h

4
− m2

1 +m2
2

2
+

(m2
1 −m2

2)
2

4M2
h

. (3.67)

It should be noted that the Lorentz invariant R2 := RµRµ has the value

R2 =
m2

1 +m2
2

2
− M2

h

4
. (3.68)

One can boost to frame IIb via boost parameters

γ =
E

(II)
h

Mh

, γβz = −P
(II)
h

Mh

. (3.69)

The rotation matrix from frames IIb to IIa can best be expressed as functions of the
Cartesian three momenta P

(IIa)
h . The matrix represents a rotation about the x axis, such

that Ph is in the y-z plane, followed by a rotation about the y axis. The matrix can be
written as

R(IIb→IIa) =




P
(IIa)
h,z

P
(IIa)
h,xz

−P
(IIa)
h,x P

(IIa)
h,y

P
(IIa)
h,xz P

(IIa)
h

P
(IIa)
h,x

P
(IIa)
h

0
P

(IIa)
h,xz

P
(IIa)
h

P
(IIa)
h,y

P
(IIa)
h

−P
(IIa)
h,x

P
(IIa)
h,xz

−P
(IIa)
h,y P

(IIa)
h,z

P
(IIa)
h,xz P

(IIa)
h

P
(IIa)
h,z

P
(IIa)
h



, (3.70)

with
P

(IIa)
h,xz =

√(
P

(IIa)
h,x

)2

+
(
P

(IIa)
h,z

)2

. (3.71)

To boost to Id, one simply changes the sign of βz in Equation 3.59. One can then
transform Rµ from Id to Ia with the same rotation matrices as those given in Equation 3.57.
Once Rµ and P µ

h are determined, one can then determine P µ
1 , P µ

2 according to

P µ
1 =

1

2
Ph +Rµ, (3.72)

P µ
2 =

1

2
Ph −Rµ. (3.73)
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Distribution Functions Model Identi�er
f1 CTEQ [74]
f1 LHAPDF [75]
f1 BCR08 [76]
f1 GRV98 [77]
g1 GRSV2000 [78]

f1T , h⊥1T , h1 Torino Group [79, 80, 81, 82, 83]
f1, g1, g1L, g1T , f1T , h1, h⊥1 , h⊥1T Pavia Spectator Model [31]

Table 3.1: Models of distribution function available in TMDGen.

3.2.3 Code Organization

One of the guiding principles in writing the generator, besides including the necessary
cross sections, is to allow a very general framework that can be updated and improved with
the least disturbance to the existing code. The generator is written in C++ and uses object
orient design capabilities to assist in this goal. Each major task or task category is associated
with a parent class, such as throwing the dependent variables, evaluating a distribution or
fragmentation function, and evaluating a term of the cross section or the entire cross section.
Specialization is accomplished by de�ning child classes. For example, there exists a child
class of the distribution function class for each implemented model, while for the cross
section class, there exists separate child classes for pseudo-scalar and dihadron production.
Generalizing TMDGen to related TMD processes, such as in proton-proton collisions or in e-p
collider, would only require de�ning additional child classes where needed.

In a few cases, specializations are not provided by children class, but rather by de�ning
additional output functions. For example, the main controlling TMDGen class includes func-
tions for each possible output type, current choices include ROOT [72] and DAD/ADAMO [73].
The use of preproccessor #define and #ifdef allow one to select which output options are
compiled into the code, and users from additional experiments need only to de�ne an extra
function, detailing how to output to their format, and disable ROOT and/or DAD/ADAMO by
unde�ning the necessary macros.

3.2.4 Implemented Models

A variety of models are available for both distribution and fragmentation functions, with
full lists given in Tables 3.1 and 3.2. Note that some of the f1 models are duplicated by
allowing access to the LHAPDF library. However, use of LHAPDF requires the user to
have installed this library, while the other f1 functions are provided within the TMDGen
package. To minimize dependencies on other libraries, access to (and thus dependence on)
the LHAPDF libraries can be turned o� via a compile time option. All other distribution
and fragmentation models are fully packaged within TMDGen.
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Frag. Functions Final State Model Identi�er
D1 pseudo-scalar fDSS [84, 85]
D1 pseudo-scalar Kretzer [86]

D1, H⊥
1 dihadron Spectator Model (Section 2.4)

D1, H⊥
1 dihadron Set given partial wave proportional

to any other partial wave

Table 3.2: Models of fragmentation function available in TMDGen.

3.2.5 Comparison with Other Generators
In this section, 1D distributions of each of the 5D kinematic variables from both Pythia

and TMDGen are compared. The GRV98 model [77] is used for the unpolarized f1 distribution
function, and the spectator model is used for the unpolarized D|0,0〉

1 fragmentation function.
The spectator model fragmentation function parameter sets for the pion and kaon-pair di-
hadrons under consideration are chosen (by hand) to match the given Pythia distributions,
while the Pythia distributions have been optimized to match Hermes kinematics. The ac-
tual values of the parameters for the spectator model are given in Table 3.3. As the speci�c
choices were obtained by hand, it is possible that a more optimal set of parameters may
exist. Note, the given models poorly constrain the pT , kT distributions, meaning that it is
possible to have the measurable variables match fairly well for various choices of parameters,
yet with drastically di�erent 〈p2

T 〉, 〈z2k2
T 〉 values.

The comparisons for the dihadrons related to the ρ-triplet and φ mesons are given in
Figures 3.2 through 3.4. The plots are made within the kinematic region

Q2 > 1 GeV4/c2, W 2 > 10 GeV2/c4,

0.023 < x < 0.4, 0.2 < y < 0.95,

0.2 < z < 0.8, 0.05 < Ph⊥ < 1.6 GeV/c,

withMh < 1.6 GeV/c2 for the ππ dihadrons andMh < 1.05 GeV/c2 for theK+K− dihadrons.
In general, the 1D comparisons are quite close, except perhaps the x distribution. This

discrepancy in the x distribution is related to the �avor balance, and in particular, the �avor
dependence of f1, which is not a parameter being adjusted. Note, the full 5D distribution
shows some deviations from Pythia, but Pythia also fails to match the full multivariate
distribution seen in Hermes data. The multivariate di�erences between TMDGen and Pythia
are more clearly observed when comparing within acceptance. Although the 1D plots match
in 4π acceptance, they no longer match as well within acceptance.

For the TMDGen generator, one can also plot the magnitude of the intrinsic transverse
momenta, pT = |pT | and kT = |kT |. It is common to consider the distribution of zkT rather
than that of kT . The resulting TMDGen distributions are given in Figure 3.5. Note that, for
all dihadrons, it is required that pT ≈ zkT in order to obtain a narrow Ph⊥ distribution.
Likewise, the narrowness of the Ph⊥ distribution shows that all dihadron subprocesses have
similar pT and kT dependence.
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Figure 3.1: Comparison of 1D kinematic distributions from TMDGen and Pythia, in 4π, for
π+π0 dihadrons. Listing the rows from top to bottom, and within each row from
left to right, the panels are respectively the x, y, z, Ph⊥, and Mh distributions.
TMDGen data is designated with blue circles, and Pythia data designated with
red open squares.
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ππ K+K−

Parameter u, d̄, d, ū u, ū d, d̄ s, s̄

αs 3.0 4.5 4.5 4.5
βs -0.751 -0.125 -0.125 -0.125
γs -0.193 -0.6 -0.6 -0.6
αp 7.0 0.0 0.0 4.5
βp -0.75 0.0 0.0 -1.125
γp -0.193 0.0 0.0 -0.6
αk 0.9 1.3 1.3 1.3
βk 0.125 0.6 0.6 0.6
γk -0.6 -0.8 -0.8 -0.8
Ms 1.5 3.0 3.0 3.0
fs 500.0 500.0 200.0 500.0

fρ, fφ 150.0 0.0 0.0 350.0
fω 0.63
fω′ 150.0

Table 3.3: Parameter sets for spectator model of dihadron production. Parameters for the
strange quark �avor in ππ production are set to zero. The quantities fω and fω′

are not relevant for K+K− production, and thus the corresponding entries in the
above table are intentionally left blank.
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Figure 3.2: Comparison of 1D kinematic distributions from TMDGen and Pythia, in 4π, for
π+π− dihadrons. Panels and markers are as in Figure 3.1.
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Figure 3.3: Comparison of 1D kinematic distributions from TMDGen and Pythia, in 4π, for
π−π0 dihadrons. Panels and markers are as in Figure 3.1.
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Figure 3.4: Comparison of 1D kinematic distributions from TMDGen and Pythia, in 4π, for
K+K− dihadrons. Panels and markers are as in Figure 3.1.
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Figure 3.5: The pT and zkT distributions from TMDGen for all four dihadrons. Clock-wise from
upper left, the panels are for π+π0, π−π0, K+K−, and π+π−. The distribution
for pT is shown in blue circles, while zkT is shown in red open squares.

58



CHAPTER IV

Analysis

4.1 Experimental Setup

TheHermes spectrometer was located at theHera storage ring from 1995 through 2007.
Hermes utilized only the lepton storage ring, with the lepton beam incident on a �xed gas
target, while the other experiments at the Hera ring used either just the proton storage
ring (Hera-B) or both the proton and lepton rings (H1and Zeus). Hera was located at
the Deutsches Electronen Synchotron (DESY) laboratory in Hamburg, Germany. In June
of 2007, the Hera ring and the three experiments still utilizing the ring (H1, Zeus, and
Hermes) were decommissioned. At this time Petra, the injection ring used to �ll Hera,
began being used for other purposes.

4.1.1 The Spectrometer

The Hermes spectrometer consisted of a large number of di�erent subsystems, with
the upper portion being nearly perfectly symmetric with the lower portion. A schematic
drawing, applicable for the 2002-2005 running period, is shown in Figure 4.1. Details of
various components of the spectrometer can be found in many sources, with most complete
technical reference being Ref. [87]. Many Hermes PhD dissertations also include detailed
descriptions, e.g. [60, 88, 89, 38]. The components most relevant for this analysis are discussed
in the following paragraphs.

The Target The target consists of a gas �lled cell [90], the cell being an open ended
tube within the lepton beam pipe. During 2002-2005, the cell was 40 cm long and had an
elliptical cross section of 29 mm × 9 mm. The target cell could be �lled with a variety of
gases, including H2, D2, 3He, N2, Xe and Kr, with the heavier gases being used near the
end of the lepton �ll. The cell was accompanied by a pump system to ensure the gas did
not disperse into the lepton beam pipe, and the cell was also continuously fed by an atomic
beam source (ABS). The ABS utilized radio frequency transitions between certain hyper�ne
states to produce atoms with polarized nuclei and unpolarized electrons. During 2002-2005,
the nuclei were polarized transverse to the direction of the incoming lepton beam [91], while
in other years the nuclei were either unpolarized or longitudinally polarized.
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Figure 4.1: Schematic drawing of the 2002-2005 setup of the Hermes spectrometer. Taken
from Ref. [87].

Hodoscopes Three scintillating hodoscopes are present [92], identi�ed as H0, H1 and H2
in Figure 4.1. The three hodoscopes are made of paddles 1 cm thick and 9 cm wide and
are connected to photomultiplier tubes. The paddles are also overlapped 2-3 mm to increase
e�ciency. H0 serves to veto particles originating from Hera's proton beam. The H1 and
H2 hodoscopes are used for time of �ight information. This, in turn, can be combined with
the momentum determination from the tracking systems to compute the particle's mass, and
therefore determine its identi�cation. Furthermore, 11 mm of lead is installed in front of H2
to aid in lepton/hadron separation. The lead causes the lepton to shower, and thus leptons
tend to deposit signi�cantly more energy than hadrons. For this reason, H2 is also called
the preshower.

Transition Radiation Detector (TRD) The TRD is designed to discriminate between
hadrons and leptons and consists of a 6 cm thick 2D matrix of dielectric �bers. Electrons
and positrons produce transition radiation which is measured in proportional wire chambers.
Pions also interact with the TRD through ionization, though the amount energy deposited
is much higher for leptons than for hadrons.

Calorimeter The electromagnetic calorimeter is designed to measure the energy of elec-
trons, positrons and photons. It consists of 840 lead-glass blocks (420 per detector half)
which are 9 cm square in cross section and 50 cm (18 radiation lengths) long. As hadrons do
not deposit much energy in the calorimeter, the energy deposited, divided by the momentum
determined by the tracking systems, can be used to distinguish leptons and hadrons. The
calorimeter is also able to determine the position of photons to about 0.5 cm [93]. Combin-
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ing information from the TRD, preshower and calorimeter allows a lepton-hadron separation
e�ciency of about 98%, with a contamination rate less than 2%.

Ring Imaging �erenkov Detector The RICH is a dual radiator ring imaging �erenkov
Detector [94] and is designed to determine whether given hadrons are pions, kaons, or protons.
The two (dual) radiators are a wall of silica aerogel tiles and a gas radiator volume of C4F10.
The speed of light in the radiators is greater than the typical speed of the particles, and
thus a cone of �erenkov light is produced. This light is re�ected by mirrors and detected
by photomultiplier tubes. The opening angle of the cone can be detected with a resolution
of about 7.2 mrad. The distributions of opening angle versus momenta for each particle
type to not overlap over most of the momentum range, which allows determination of the
particle identi�cation. Unfortunately, at low momentum the distributions begin to overlap,
thus impeding proper identi�cation. Kaons and protons cannot be distinguished from each
other if the momentum is below 2 GeV/c, and particle identi�cation is not reliable for tracks
with momenta below 1 GeV/c. An event level identi�cation procedure (EVT) was also
developed in 2007 [38], which superseded the next best algorithm, which is based on direct
ray tracing (DRT) [95]. The EVT algorithm is particularly advantageous when the �erenkov
rings from more than one particle overlap.

DIS Trigger Although not a speci�c hardware component, an e�cient trigger system is
utilized to decide which events to store. While a given event is being stored, the detector
cannot take new data, thus causing some dead time. One trigger, trigger 21 or the DIS
trigger, requires coincident signals from the two forward hodoscopes (H1 and H2) and an
energy deposition above a certain threshold in two adjacent columns of the calorimeter. This
trigger serves to identify candidate deep inelastic scattering events through the detection of
a high energy scattered lepton.

4.1.2 Further Considerations
During portions of the 2002-2005 running period, the Hermes target chamber was �lled

with transversely polarized hydrogen with an average polarization of around 75%. For this
reason, these years are known as the transverse target running period. The lepton beam was
longitudinally polarized, with an average polarization of about 85%. The beam energy was
27.6 GeV/c2. The lepton beam consisted of positrons during 2002-2004 and of electrons in
2005.

During the transverse target running period, a transverse target magnet was additionally
installed. This magnet de�nes the quantization axis for the target polarization and also
increased the relaxation time of the polarization. However, the transverse target magnet
was not included in the previously existing reconstruction code, and two transverse magnet
correction methods were implemented [96]. Later, careful measurements of the �eld map
were taken, and a new tracking code, denoted HTC, incorporated all magnetic �elds and
an advanced event level vertex �nding algorithm. The analysis presented in this document
utilizes the HTC procedure, while Ref. [27] utilized the transverse magnet correction codes.
The HTC algorithm determines a common vertex, given several tracks assumed to originate
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Year R.F. Freq. R.F. O�set
2002 500 260
2003 500 260
2004 500 300
2005 500 360

Table 4.1: Values used for the beam energy correction.

from a common vertex. The algorithm also provides a measure of the probability that all
tracks did indeed originate from the common vertex, as well as the individual probability for
each given track having originated from the vertex.

The lepton beam energy has been found to vary slightly over time. However, a correction
method has been determined, based on the frequency and o�set of the radio frequency
cavities of the Hera accelerator. The fractional shift in energy between the actual E and
nominal E0 beam energy is

E − E0

E0

= − 1

α

δf

f
, (4.1)

with α = 4.7× 10−4, and with f and δf being the frequency and o�set values for the radio
frequency cavities. The speci�c values of f and δf are given in Table 4.1.

4.2 Data Selection Requirements
Analyzable, polarized hydrogen runs are selected using the standard Hermes burst lists.

As a sanity check, the target type and polarization state are also checked for each event. All
tracks are required to be �long,� i.e. to reach the back portion of the spectrometer, as well
as to �ag trigger 21, the DIS trigger. Leptons are identi�ed according to the sum of PID
variables 3 and 5 being positive, while hadrons are associated with negative values of this
sum. The sum is related to a combined analysis of four hardware components, including
the RICH, the TRD (transition radiation detector), preshower and calorimeter. Tracks with
an absolute value of this sum being larger than 100 are also rejected, as these values are
considered spurious. Note that photons are identi�ed as clusters in the calorimeter without
associated charged tracks and are distinct from neutrons due to the energy deposited.

It is also required that the event vertex, as determined by the HTC tracking algorithm,
be within ±20 cm of the center of the target, corresponding roughly to the target length. A
cleaner lepton sample is obtained by requiring the sum of PID variables 3 and 5 be greater
than unity for leptons. For π+π− and K+K− dihadrons, it is required that the two hadron
tracks have opposite charge. Hadronic identi�cation is accomplished with the EVT method,
or DRT if EVT fails. The lepton momentum is required to be less than the beam energy. The
momentum of pions is required to be within 1 to 15 GeV/c, and for kaons 2 to 15 GeV/c. The
upper hadron momentum cut is to avoid spurious data, while the lower hadron momentum
cut is required for clean RICH identi�cation. The individual HTC track probabilities are also
required to be greater than 0.01, while the overall HTC vertex probability is required to be

62



Physical Object Cut
Front �eld clamp |Xoff + 172.0 tan θX | < 31 cm

Vertical lower limit (septum plate) |Yoff + 181.0 tan θY | < −7 cm
Rear �eld clamp |Yoff + 383.0 tan θY | < 54 cm

Rear clamp |Xpos + 108.0Xsl| < 100 cm
|Ypos + 108.0Ysl| < 54 cm

Calorimeter |Xpos + 463.0Xsl| < 175 cm
30 < |Ypos + 108.0Ysl| < 108 cm

Table 4.2: Fiducial volume cuts for charged particle tracks.

Physical Object Cut
Calorimeter |X| < 125 cm

33 < |Y | < 105 cm

Table 4.3: Fiducial volume cuts for trackless calorimeter clusters.

greater than 10−5. To reduce background, a minimum value of 0.8 GeV/c2 for the corrected
cluster energy is also enforced, with the cluster energy correction described in Section 4.2.1.
A data quality bit mask of 0x427ffffd is used. This incorporates a large number of common
data quality parameters, with each bit being de�ned in detail in Ref. [97].

Each track is also required to be within the standard Hermes �ducial volume. For
charged particle tracks, one de�nes tan θX and tan θY as the tangent of the angles between
the track momentum and the x̂ and ŷ axes in the Hermes coordinate system, system Ia.
The �ducial volume cuts depend on these angles, as well as the x and y o�sets, slopes, and
positions, (Xoff , Yoff , Xsl, Ysl, Xpos, Ypos) as given in the Hermes production �les. The
speci�c cuts are given in Table 4.2.

For energy clusters in the calorimeter without charged tracks, such as those caused by
photons, a di�erent set of �ducial volume cuts are used. In this case, the cuts are based on
the X and Y positions of the clusters, with the speci�c cuts given in Table 4.3. The cuts
are designed to ensure the clusters are not too near the edges of the calorimeter.

In addition to the above selection requirements related to data quality and track recon-
struction, restrictions are also placed on the relevant kinematic variables. Speci�cally, it is
required that

Q2 > 1 GeV2/c4, 0.023 < x < 0.4,

W 2 > 10 GeV2/c4, 0.2 < y < 0.95,

0.05 < Ph⊥ < 1.6 GeV/c, 0.2 < z < 0.8.

(4.2)

As the theory is applicable in the high Q2 limit, it is required that Q2 > 1. The lower limit
onW 2 is to ensure the event is di�ractive. Radiative e�ects become much more prominent at
higher y, and thus y is limited below 0.95. Many Hermes analyses use a more conservative
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Var. Bin Edges
x 0.023 0.04 0.055 0.085 0.40
y 0.20 0.60 0.70 0.80 0.95
z 0.20 0.34 0.44 0.56 0.80

Ph⊥
[
GeV/c

]
0.05 0.30 0.50 0.75 1.6

Table 4.4: Bin edges for the kinematic variables.

Dihadron Mh Bin Edges [GeV/c2]
ππ 0.279 0.450 0.640 0.900 1.600

K+K− 0.987 1.012 1.028 1.050

Table 4.5: Bin edges for the invariant mass Mh.

upper y-cut of 0.85. Justi�cation that this analysis can use a higher threshold without
incurring signi�cant radiative e�ects is based on the studies in Section 5.1. The lower limit
on Ph⊥ is to ensure good resolution in φh, as φh is ill-de�ned in the limit of Ph⊥ going
to zero. The lower limit on z is to ensure the produced hadron comes from the struck
quark (i.e., the current fragmentation region) rather than being a target remnant (i.e., the
target fragmentation region). The upper limit in z is related to the exclusive vector meson
background, and is further discussed in Section 4.5.4. The other requirements Equation 4.2
that are not speci�cally mentioned in this paragraph do not limit the data signi�cantly, but
instead are used to consistently de�ne the domain of the cross section.

Fits are preformed in either 1D bins, in Mh, or in 2D binning, Mh versus one of x, y,
z, Ph⊥. The �tting functions are parametric with respect to only the angular variables, and
the �t parameters represent integrals over the given kinematic bins. More details regarding
�tting is given in Section 4.4. The speci�c kinematic bins are given in Table 4.4, while Table
4.5 lists the bins in Mh. The lower limits on Mh are based on the production threshold
for pion and kaon-pairs. The upper limit on Mh for pion-pairs are to provide a consistent
integration range, while for kaon-pairs, it is to identify an appropriate sideband region with
invariant mass Mh in the range just above the upper edge of the the φ meson peak. A
signi�cant amount of data for pure SIDIS kaon-pair production exists above the 1.05 GeV/c2
threshold, but this data has yet been analyzed. For pion-pairs, one can identify in Table 4.5
two bins in the invariant mass region below the ρ meson mass peak and one bin above the
ρ meson mass peak, while for kaon-pairs, bins are provided for the φ meson peak and one
sideband region on either side.

4.2.1 Reconstruction of Neutral Pions

Neutral pions decay nearly immediately, and so the decay vertex, within detector reso-
lution, is identical to the primary vertex. The neutral pions decay into two photons with a
branching ration of greater than 98.8% [37]. Photons are identi�ed in the detector as energy
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clusters in the calorimeter with no accompanying charged particle track. As the calorimeter
is calibrated for leptonic clusters, the measured energy needs to be multiplied by a given
factor for photonic clusters. For Hermes data, the factor is 0.97. For Pythia Monte Carlo
data, the energy correction factor is 0.9255, while for TMDGen data the factor is 0.95. Note,
the calibration of the calorimeter energy for photonic clusters is a known issue with the
current Hermes productions, and is being investigated by the collaboration. Thus, some
analyzers have used more complex energy correction factors, and the exact choice is still
open. The given factors have been chosen to optimize the mean π0 mass.

Assuming the two photons come from an single parent, the mass of the parent can be
computed according to [88]

Mγγ = 2
√
Eγ1Eγ2 sin

θγγ

2
, (4.3)

with Eγ1 , Eγ2 the energies of the two photons and θγγ the angle between the photons'
momenta, in the Hermes coordinate system (Ia).

To determine the angle between the two photons, it is necessary to determine, for each
cluster, the spatial distance between the location of the primary vertex and the center of
the cluster in the calorimeter. The x and y position of the cluster are given in the standard
Hermes data �les, and the tracking methods provide the location of the vertex. Note, that
the x and y position of the vertex is not used, as the magnitude of these positions is much
smaller than other distances in this calculation. Also, historically, the x and y positions
were not available in all tracking methods or were not considered reliable. It is not possible
to determine exactly the z-position of the center of the cluster. Studies performed by other
Hermes analyzers suggest using the value of 734 cm for photons which interact with the
preshower (which is the case for the majority of photons in the kinematic region of interest),
and a value of 747.5 cm for those that do not. Other studies have shown that the results for
the invariant mass spectrum are not very sensitive to the choice of z-vertex.

Figure 4.2 shows the invariant mass of the two photon system Mγγ for the Hermes data
set, within acceptance. No di�erence is seen in the Mγγ distribution in the positron and
electron data samples, and so Figure 4.2 is the combined data set. Note, the peak position,
and uncertainty from the �t, are 136.43±0.08 MeV/c2 and 136.42±0.09 MeV/c2, respectively,
for the π+γγ and π−γγ data sets. This is quite close to the accepted pion mass of 139.6
MeV/c2 [37]. The Gaussian σ values are, respectively, 11.88± 0.08 MeV/c2 and 12.06± 0.09
MeV/c2, re�ecting the detector resolution in determining the π0 mass.

Comparisons of the Mγγ distribution between data and Monte Carlo are provided in
Figure 4.3. The main di�erence between data and Monte Carlo is the is non-resonant γγ
pair background, due to both combinatorics and other processes.

Based on Figure 4.2, π0 events are identi�ed by 0.115 < Mγγ < 0.115 GeV/c2. The
background fractions, based on the �ts included in Figure 4.2, are 26.1% and 25.1%, re-
spectively, among π+π0 and π+π− candidate events. Discussion regarding correcting for this
background is found in Section 4.5.1.

4.2.2 Vector Meson Reconstruction
The vector mesons also decay before moving any measurable distance and can be identi-

�ed by a resonant peak in the spectrum of the invariant mass of the produced hadron system.
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Figure 4.2: Invariant mass of the two photon system among π+γγ (left panel) and π−γγ
(right panel) events from the full Hermes data set. A �t is provided, using
a Gaussian distribution plus a linear background. The total �t line is drawn
in black, while the individual Gaussian and background portions are drawn in
red and blue, respectively. The gray shaded region, from 0.115 < Mγγ < 0.155
GeV/c2, is de�ned as the π0 mass window.

Non-SIDIS processes can also be present within the kinematic range, speci�cally exclusive
vector meson and exclusive hadron pair production. Section 4.5.3 further discusses these
non-SIDIS backgrounds.

Even within SIDIS production, a number of subprocesses contribute to the dihadron
process. The Pythia prediction of the Mh spectrum for several contributing processes is
given in Figure 4.4. The processes contributing to the π±π0 spectrum are very similar to
each other. These processes are also similar to those contributing to the π+π− distribution,
with the exception that the π+π− distribution also includes contributions from η, η′ and
K0,S. The K+K− spectrum includes purely resonant φ mesons and non-resonant kaons
pairs, without the variety of additional subprocesses seen in the pion-pair distributions.

Figure 4.5 shows Hermes data �t to a Breit-Wigner distribution plus a linear back-
ground. The relative fraction of the vector meson signal versus other dihadron processes,
along with possible extraction of the vector meson signal, is discussed in Section 4.5.4.

4.3 Kinematic Distributions in Acceptance
In Section 3.2.5, the Pythia and TMDGen Monte Carlo generators were compared within

prefect 4π acceptance and with no radiative corrections (the Born level for the hard quark,
virtual-photon vertex). One can also compare the Monte Carlo generators within acceptance.
For the Pythia generator, radiative e�ects are also included using RadGen [98]. However,
radiative e�ects have not yet been implemented in TMDGen.

The comparison is again given in 1D projections for each of the kinematic variables, Mh,
x, y, z, Ph⊥, as well as the cosϑ distribution. These distributions are shown in Figures
4.6, 4.7, 4.8, and 4.9 for π+π0, π+π−, π−π0, and K+K− dihadrons, respectively. For the
dihadrons involving neutral pions, the two photon invariant massMγγ was already compared
in Figure 4.3. The TMDGen generator was set to have all angular distributions turned o� for

66



γγM
0.08 0.1 0.12 0.14 0.16 0.18 0.2

N
or

m
al

iz
ed

 C
ou

nt
s

0

0.02

0.04

0.06

0.08

0.1

0.12 +TMDGen, e
±Pythia, e

Hermes, 02-05

γγM
0.08 0.1 0.12 0.14 0.16 0.18 0.2

N
or

m
al

iz
ed

 C
ou

nt
s

0

0.02

0.04

0.06

0.08

0.1

0.12 +TMDGen, e
±Pythia, e

Hermes, 02-05
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Figure 4.4: Pythia prediction of processes contributing to the dihadron invariant mass spec-
trum. Clock-wise from upper left, the panels are for π+π0, π+π−, K+K−, and
π−π0 dihadrons. Black data points are Hermes data, 2002-2005, and a few
select subprocesses are as indicated. In particular, the vector meson channel is
indicated in red. Note the ρ meson peak near 0.770 GeV/c2 and the φ meson
peak near 1.02 GeV/c2.

67



]2 [GeV/c0π+πM
0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

2
C

o
u

n
ts

 p
er

 7
.0

0 
M

eV
/c

0

100

200

300

400

500

600

700

800

900  0.1812±: 0.7572 σ ±Mean 

Num Sig.: 5497

Num Bkg.: 11938

Num Tot.: 17436

Bkg Frac: 68.47%

]2 [GeV/c-π+πM
0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

2
C

ou
nt

s 
pe

r 
7.

00
 M

eV
/c

0

500

1000

1500

2000

2500

3000

3500

4000
 -0.0720±: 0.7547 σ ±Mean 

Num Sig.: 10846

Num Bkg.: 63626

Num Tot.: 74472

Bkg Frac: 85.44%

]2 [GeV/c0π-πM
0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

2
C

ou
nt

s 
pe

r 
7.

00
 M

eV
/c

0

100

200

300

400

500

600

700

800
 0.1345±: 0.7537 σ ±Mean 

Num Sig.: 2775

Num Bkg.: 9792

Num Tot.: 12567

Bkg Frac: 77.92%

]2 [GeV/c-K+KM
1 1.005 1.01 1.015 1.02 1.025 1.03 1.035 1.04 1.045 1.05

2
C

ou
nt

s 
pe

r 
1.

00
 M

eV
/c

0

20

40

60

80

100

120

140
 0.0058±: 1.0193 σ ±Mean 

Num Sig.: 700

Num Bkg.: 327

Num Tot.: 1027

Bkg Frac: 31.86%

Figure 4.5: Dihadron invariant mass spectrum from Hermes data. Clock-wise from upper
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the kinematic plots in Figures 4.6 through 4.9. Thus, the cosϑ distributions show exactly
the e�ect of acceptance on the distribution of this variable.

68



x
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

N
or

m
al

iz
ed

 C
ou

nt
s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2 TMDGen

s
Pythia, w/o K

Hermes, 02-05

y
0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
or

m
al

iz
ed

 C
ou

nt
s

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04 TMDGen

s
Pythia, w/o K

Hermes, 02-05

z
0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
or

m
al

iz
ed

 C
ou

nt
s

0

0.005

0.01

0.015

0.02

0.025

0.03
TMDGen

s
Pythia, w/o K

Hermes, 02-05

hP
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

N
or

m
al

iz
ed

 C
ou

nt
s

0

0.01

0.02

0.03

0.04

0.05

TMDGen

s
Pythia, w/o K

Hermes, 02-05

hM
0.4 0.6 0.8 1 1.2 1.4 1.6

N
or

m
al

iz
ed

 C
ou

nt
s

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
TMDGen

s
Pythia, w/o K

Hermes, 02-05

θcos 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 C
ou

nt
s

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

TMDGen

s
Pythia, w/o K

Hermes, 02-05

Figure 4.6: Comparison of kinematic variables for Hermes, Pythia, and TMDGen for π+π0

dihadron data within acceptance. The panels, clock-wise from upper left, are
the x, y, Ph⊥, cosϑ, Mh, and z distributions. Data from the TMDGen generator is
shown in blue circles, Pythia with red open squares, and Hermes with purple
triangles.
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Figure 4.7: Comparison of kinematic variables for Hermes, Pythia, and TMDGen for π+π−

dihadron data within acceptance. Panels and markers are the same as in Figure
4.6.
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Figure 4.8: Comparison of kinematic variables for Hermes, Pythia, and TMDGen for π−π0

dihadron data within acceptance. Panels and markers are the same as in Figure
4.6.
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Figure 4.9: Comparison of kinematic variables for Hermes, Pythia, and TMDGen for K+K−

dihadron data within acceptance. Panels and markers are the same as in Figure
4.6.
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4.4 Fitting Details

4.4.1 Fitting Functions

In cases where no acceptance correction is applied, a basic maximum likelihood estimate
(MLE) is performed to determine the �t parameters. Speci�cally, the Hybrid S.J. routine [99,
100], as provided in the GNU General Scienti�c Library (GSL) [101] is used to �nd the roots
of the �rst derivative of the MLE objective function. In cases where acceptance correction
is applied, the ISE method of Section 3.1 is used.

In most cases, the �t function is chosen to include all of the unpolarized moments,
including twist-3, as well as the Sivers and Collins transverse target moments. This equals
24 unpolarized moments (including the constant term) as well as 18 polarized moments, for
a total of 42 moments. The �t function in this case can be speci�cally written as

f(cosϑ, φh, φR, φS) =
2∑

`=0

[ ∑̀
m=0

a
|`,m〉
1 P`,m cos(mφh −mφR)

+
∑̀

m=−`

(
a
|`,m〉
2 P`,m cos((2−m)φh +mφR)

+ a
|`,m〉
3 P`,m cos((1−m)φh +mφR)

+ b
|`,m〉
1 P`,m sin((m+ 1)φh −mφR − φS)

+ b
|`,m〉
2 P`,m sin((1−m)φh +mφR + φS)

)]
. (4.4)

When applying the acceptance correction, one can consider including additional cosϑ
dependence while including all the same azimuthal moments as in Equation 4.4. Among the
Legendre polynomials up to ` = 2, there are �ve linearly independent functions. Allowing
each azimuthal moment of Equation 4.4 to occur with each of the possible Legendre functions
results in 115 moments. Speci�cally, the �t function can be written as

f(cosϑ, φh, φR, φS) =
2∑

m=0

(
a

(m)
1 · F (m)

)
cos(mφh −mφR)

+
2∑

m=−2

( (
a

(m)
2 · F

)
cos((2−m)φh +mφR)

+
(
a

(m)
3 · F

)
cos((1−m)φh +mφR)

+
(
b

(m)
1 · F

)
sin((m+ 1)φh −mφR − φS)

+
(
b

(m)
2 · F

)
sin((1−m)φh +mφR + φS)

)
, (4.5)
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Year 〈P⊥〉
2002-2004 0.753± 0.050

2005 0.706± 0.065

2002-2005 0.723± 0.059

Table 4.6: Average target polarization per running period.

with a
(m)
i · F (m) shorthand for

a
(m)
i · F (m) =





a
(m)
i1 + a

(m)
i2 cosϑ+ a

(m)
i3

1
2
(3 cosϑ2 − 1)

+ a
(m)
i4 sinϑ+ a

(m)
i5 sin 2ϑ m = 0, 1

a
(m)
i1 + a

(m)
i2 cosϑ+ a

(m)
i3 sin2 ϑ

+ a
(m)
i4 sinϑ+ a

(m)
i5 sin 2ϑ m = 2

, (4.6)

and equivalently for b
(m)
i . Note the only di�erence between F (m) for m = 0, 1 and m = 2

is in the third component, where P2,0 is replaced with P2,2, since among P0,0, P2,2 and P2,0,
there are only two linearly independent functions. The pair P0,0, P2,0 is chosen in most cases,
except when the azimuthal moment occurs in the cross section with a factor of P2,2.

The target polarization is not considered accurate on an event level, but the o�cial
average over certain running periods is considered accurate. The average values 〈P⊥〉, per
larger data sample, as provided by the target group within Hermes, are used. The �ts are
performed without explicitly using the factor of 〈P⊥〉. One must then divide the results by
〈P⊥〉. For plots in this chapter, the results have not been divided by 〈P⊥〉, although results
have been divided by this factor for all �gures in Chapters V and VI as well as Appendices B
and C. A table of the average target polarization per running period is given in Table 4.6.
Note, the target group has also published polarization factors per certain sets of runs. These
values have not been used, as the yearly and multi-yearly averages of Table 4.6 have been used
instead. The uncertainty due to the target polarization results in a 7.3% scale uncertainty,
which is indicated on each of the �nal result plots in Chapter VI and Appendix C.

Note, that using P⊥ instead of S⊥ introduces a small mixing between the unpolarized
lepton and longitudinally polarized lepton terms in the cross section. However, Monte Carlo
studies show that the maximum deviation between P⊥ and S⊥ is about S⊥ = 0.97P⊥. Given
the size of the moments extracted in this dissertation, and considering that the data sample
is approximately beam balanced, this mixing e�ect is considered negligible.

4.4.2 Veri�cation of Acceptance Correction
Given the complexity of the �t functions and acceptance correction, it is necessary to

verify with what accuracy the various moments can be extracted, and in particular, to select
which moments are su�ciently accurate to be included in the �nal results. Details concerning
the precision of the correction method is further considered in Section 5.1. Note, this study
is denoted �Challenge A,� to contrast to the similar study in Section 5.1, which is denoted
�Challenge B.�
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Data Set π+π0 π+π− π−π0 K+K−

Proto 156k 386k 158k 400k
4π 972k 972k 971k 494k
Monte Carlo 347k 1.2M 737k 799k
Hermes 53k 259k 40k 2k

Table 4.7: Table of relevant statistics for Challenge A. The various data sets are described
in the text.

A large sample of TMDGen data was generated with no angular dependence, both in 4π
and with running through the full detector simulation and data processing chain. Angular
dependence can then be introduced by weighting the events. This method, that of generat-
ing with no angular dependence, allows for the greatest �exibility with the data set. The
weights are computed for each event by evaluating the cross section using TMDGen, using the
experimentally accessible cross section variables and integrating over pT . Table 4.7 includes
a comparison of the amount of statistics in the actual Hermes data with the amount used
in this Study.

There data sets are relevant in this study. The �rst, denoted proto-data, includes the
simulation of the detector as well as the data processing chain, and also includes weights to
induce angular dependence. The proto-data takes the place of the actual Hermes data for
this study. The second data set, denoted 4π data, representing the true distribution. No
detector simulation is used, though weights are used to induce the same angular distribution
as is induced in the proto-data. The third data set is the Monte Carlo data, that which is used
for estimating the joint distribution in the acceptance correction method. All of the data,
proto, 4π and Monte Carlo are in fact generated with the TMDGenMonte Carlo generator
for Challenge A. Note, the proto and Monte Carlo data both include a full simulation of
the detector and data processing chain, and are identical except for the additional weights
present in for the proto-data. To avoid introducing other e�ects into this study, all data for
this study is generated with a positron beam.

The model for the unpolarized moments are based on distribution and fragmentation
functions. Speci�cally, GRV98 [77] is used for f1 and the Torino group's parametrization is
used for h⊥1 [80]. The fragmentation functions used are those computed in Section 2.4 of this
dissertation. Only the twist-2 unpolarized moments are included, as the twist-3 unpolarized
|0, 0〉 term breaks positivity, due to the pT and Q2 range of the data sample. This is related
to the fact that the Q2 values for the data set are not as large as those for which one would
ideally hope.

Using the available distribution and fragmentation functions for the transverse target
moments results in moments that are extremely small. For the purpose of the studies in
this section, Section 4.4.2, and for the later study in Section 5.1, some of the systematic
e�ects could be masked by using too small of moments. Thus, instead of using distribution
and fragmentation functions for the polarized moments, a simple model for the moments is
chosen. The Sivers and Collins moments are set proportional to the f1D

|0,0〉
1 term, with the
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Sivers Collins
Parameter ` 6= 2 ` = 2 ` 6= 2 ` = 2

bx -0.75 -0.75 0.75 0.75
α -1.0 2.0 2.0 -1.0
β -1.0 2.0 2.0 -1.0

bM , ππ 0.1 0.1 1.0 1.0
cM , ππ -0.3 -0.3 0.0 0.0

bM , K+K− 10.0 -10.0 1.0 0.0
cM , K+K− -10.0 10.0 1.0 0.0

Table 4.8: Parameters used for the polarized moments, excluding the parameter a. Note,
di�erent values of bM and cM are used for pion-pair and kaon-pair dihadrons, due
to the di�erent mass ranges involved.

Partial Wave a

|0, 0〉 -0.05
|0, 1〉 0.05
|2, 0〉 -0.06
|2,±1〉 -0.04
|2,±2〉 -0.02

Table 4.9: Values of the parameter a used for the polarized moments. The same values are
used for both Sivers and Collins moments.

proportionality constant having the form

a
(
1− bx ln(x)

)
zα(1− z)β

(
1 + bMMh + cMM

2
h

)
. (4.7)

The speci�c values for the parameters a, bx, α, β, bM , cM are given in Tables 4.8 and 4.9.
Note, the variation in the a parameter over di�erent partial waves was chosen so that when
the data is �t, the �t parameters all have about the same magnitude. An alternate form
to that in Equation 4.7 was also considered, which included Ph⊥ dependence. However, this
other form was di�cult to tune, as it often broke positivity at high values of Ph⊥. Thus,
only the form in Equation 4.7 is used.

Given 4π data and data reconstructed in acceptance, both with the given model induced,
one can then compare the results of �tting each sample. The acceptance correction method of
Section 3.1 is applied to the reconstructed data, and the results are denoted the �acceptance
plus correction� results. For data in 4π, an MLE �t is preformed, and the results from this
�t are denoted the 4π results. Both �tting functions, Equation 4.4 and 4.5, were initially
considered for �tting the data in acceptance, though the 42 parameter �t, Equation 4.4, was
found to produce better results. Also, to solve Bα = b, both a QR decomposition using
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Householder transformations and the eigenvalue method of Section 3.1.5 were attempted, in
both cases using the relevant algorithms from the GSL package [101]. In both cases, the
eigenvalue method was used to compute B−1, used in propagating uncertainties. The QR
decomposition yielded more accurate and precise results.

Plots showing the full results for all �t parameters are not shown, as this would require
over 160 pages of plots. For the kinematic dependencies, the Collins |2, 2〉 moment is chosen
as representative. Plots comparing the 4π results with the acceptance plus correction results,
2D binning, are shown in Figures 4.10 through 4.13, for each dihadron type. In all but
a few kinematic bins, the acceptance correction method is able to accurately reconstruct
the moment. Note, this challenge was also repeated with the kinematic region reduced to
avoid some of the problem areas, speci�cally the lowest y and z bins were removed and the
maximum value of Mh for pion-pairs was set to 1.2 GeV/c2. Reducing the kinematic domain
did not improve the comparison but did signi�cantly reduced the amount of statistics. For
this reason, the full kinematic domain as de�ned in Section 4.2 is used.

Figure 4.14 includes the comparison of the 4π and acceptance plus correction results for
pion-pair dihadrons, considering binning just in invariance mass. In this case, the Collins
|1, 1〉 moment, the same moment as that analyzed in Ref. [27], and the Collins |2,±2〉
moments are chosen as representative. Figure 4.15 similarly compares 4π and acceptance plus
correction results for the 1D mass binning, except that the Sivers |0, 0〉 and |2,±2〉 moments
are chosen as representative. Again, the selected moments are generally reconstructed well.
Note the particularly small scale on Figure 4.14.

To determine the overall e�ectiveness in reconstructing each of the moments from data
within acceptance, a χ2/ndf statistic is computed for each moment. The χ2/ndf is computed
by comparing the 4π versus acceptance plus correction results, varying over all bins within
a speci�c binning choice. For example, the χ2/ndf for the Mh-x binning is computed by
determining the individual χ2 values between the two results per each of the sixteen bins,
and then taking the average value. The procedure is then repeated for each choice of 2D
binning, as well as for the one choice of 1D binning considered. Results for each dihadron
type are given in Appendix A, due to the four tables being somewhat lengthy. Speci�cally,
the χ2/ndf statistics are given in Tables A.1 through A.4.

Several trends in the data can be noticed among the χ2/ndf statistic for all three of
the pion-pair dihadrons. In particular, the |2,±2〉 moments tend to be reconstructed most
accurately. Note, the the |2,±2〉 moments occur with a sin2 cosϑ modulation, making them
most sensitive to data with small values of | cosϑ|. This is exactly the region where the
acceptance is best. Although the cosϑ distributions for the π±π0 dihadrons in Figures 4.6
and 4.8 would suggest the optimal acceptance is near cosϑ = 0.5, one must also consider the
e�ect of symmetry. Since the sin2 cosϑ is symmetric under the exchange of the sign of cosϑ,
one must consider the acceptance of the symmetrized cosϑ distribution, which does have
the highest acceptance near small values of | cosϑ|. For π+π− dihadrons, the acceptance in
cosϑ is symmetric, and Figure 4.7 shows that the acceptance is greatest near small values
of | cosϑ|.

The |1,±1〉 moments also tend to be reconstructed well for the pion-pair dihadrons,
except in the 1D binning for a few cases. As the acceptance can depend on all variables,
one generally expects 1D binning to yield worse results than higher dimensional binning.
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Figure 4.10: Comparison of 4π versus acceptance plus correction moments using TMDGen data
for π+π0 dihadrons, with kinematic dependencies, for the Collins |2, 2〉 moment.
The results for the MLE �t to data in 4π are shown with black �lled circles,
while the moments from the acceptance correction �t to data within acceptance
are shown with red open circles. The upper row of panels is for the lowest Mh

bin, with each row of panels being for the next higher Mh bin. From left to
right, the columns of panels represent binning with respect x, y, z, and Ph⊥.
Note, each row represents an independent data sample, while each column is a
di�erent binning of the same sample.
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Figure 4.11: Comparison of 4π versus acceptance plus correction moments using TMDGen
data for π+π− dihadrons, with kinematic dependencies, for the Collins |2, 2〉
moment. Panels and markers are the same as in Figure 4.10.
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Figure 4.12: Comparison of 4π versus acceptance plus correction moments using TMDGen data
for π−π0 dihadrons, with kinematic dependencies, for the Collins |2, 2〉 moment.
Panels and markers are the same as in Figure 4.10.
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Figure 4.13: Comparison of 4π versus acceptance plus correction moments using TMDGen
data for K+K− dihadrons, with kinematic dependencies, for the Collins |2, 2〉
moment. Panels and markers are the same as in Figure 4.10.

Note, these |1,±1〉 moments occur with a sinϑ modulation, and the general shape of sinϑ
is quite similar to that for sin2 ϑ. Thus the |1,±1〉 moments are reconstructed well for the
same reasons as that for the |2, 2〉 moments.

The |`, 0〉moments are most sensitive to data with large values of | cosϑ|. This is precisely
where the acceptance most severely reduces the data for pion-pair dihadrons, with the accep-
tance approaching zero as | cosϑ| goes to one. Thus, the |`, 0〉 moments are all reconstructed
poorly for pion-pair dihadrons. Additionally, the π±π0 dihadrons have a strong asymmetry
in their acceptance, with much worse acceptance for negative values of cosϑ. This is a re-
�ection that the acceptance for low momentum neutral pions is worse than the acceptance
for low momentum charged pions, or speci�cally that the minimum photon cluster energy
requirement removes more low momentum neutral pions than the minimum RICH momen-
tum requirement removes charged pions. For π±π0 dihadrons, one would expect the strong
asymmetry in the acceptance versus cosϑ would make reconstruction of the odd moments
|1, 0〉, |2,±1〉 di�cult. While the |1, 0〉 moments, which have no azimuthal dependence, are

81



)πInput (4

Acc. + Cor.

 [GeV]
h

, M0π+π
0.4 0.6 0.8 1 1.2

 [GeV]
h

, M-π+π
0.4 0.6 0.8 1 1.2

 [GeV]
h

, M0π-π
0.4 0.6 0.8 1 1.2

θ
)s

in
Sφ+

Rφ
si

n(

U
T

A

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

θ2
)s

in
Sφ+

Rφ
-2 hφ

si
n(

3

U
T

A

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

θ2
)s

in
Sφ-

Rφ
-2 hφ

si
n(

 

U
T

A

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Figure 4.14: Comparison of 4π versus corrected moments using TMDGen data for pion-pair
dihadrons, without kinematic dependencies. Each column represents a di�erent
dihadron, speci�cally, from left to right, the π+π0, π+π−, and π−π0 dihadrons.
The rows of panels, represent di�erent moments, and are, from top to bottom,
the |1, 1〉, |2,−2〉 and |2, 2〉 Collins moments. The distribution in 4π is shown
with black �lled circles, while the moments in acceptance plus correction are
shown with red open circles.
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the |1,−1〉, |2, 2〉 and |2,−2〉 Sivers moments. The distribution in 4π is shown
with black �lled circles, while the moments in acceptance plus correction are
shown with red open circles.

reconstructed quite poorly, the other odd moments are reconstructed fairly well�most likely
due to their additional azimuthal dependence.

For the K+K− dihadrons, there are no clear trends in the χ2/ndf statistics, Table A.4.
This is mainly due to the signi�cantly di�erent acceptance in cosϑ, as can be seen from
the cosϑ distribution in Figure 4.9. The kaon mass being larger than the pion mass causes
the RICH momentum cuts have a much less signi�cant e�ect. For this reason, the χ2/ndf.
statistics for all moments are much better for K+K− dihadrons than for any of the pion-pair
dihadrons. Note, though, the worst moments are still some of the |`, 0〉 moments, as with
pion-pair dihadrons.

For the main motivation of this dissertation, the moments of most interest are the |1, 1〉
and |2,±2〉 Collins moments for pion-pair dihadrons and the |0, 0〉 and |2,±2〉 Sivers moments
for K+K− dihadrons. Fortunately, the data is sensitive to these moments, and all of these
moments can be reconstructed quite well using the given acceptance correction method.
For the pion-pair dihadrons, all of the |2,±2〉 and |1,±1〉 Sivers and Collins moments can
be reconstructed well, and thus these will be the moments for which results are given in
Chapter VI. For the K+K− dihadrons, at this point, all moments will be considered, though
this will be reconsidered once the full systematic uncertainties are determined in Chapter V.

4.5 Processes and Backgrounds

4.5.1 Non-resonant Photon Pairs

As noted in the discussion regarding Figure 4.2 in Section 4.2.1, there exists a sizable
amount of non-resonant photon pairs within the π0 mass window. As no models exist for
any asymmetry present in the non-resonant sample, the only possible method is to �t data
from the sidebands and interpolate an e�ective asymmetry in the peak region. However, the
statistics are somewhat limited, as shown in Table 4.10.
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π+γγ π−γγ

Year L P H L P H
2002 516 4214 592 384 3250 445
2003 299 2330 351 253 1865 250
2004 1660 14338 1903 1287 11209 1450
2005 4009 32274 4634 2884 24256 3314
Total 6484 53156 7480 4808 40580 5459

Table 4.10: Table of statistics within di�erent two-photon invariant mass regions. L, P, and
H indicate low-sideband, peak, and high-sideband regions, de�ned as 0.075 <
Mγγ < 0.095 GeV/c2, 0.115 < Mγγ < 0.155 GeV/c2, and 0.175 < Mγγ < 0.195
GeV/c2, respectively.

Data from the Mγγ sideband regions, de�ned in the caption to Table 4.10, for both π+γγ
and π−γγ events, were �t using the acceptance correction method of Section 3.1 for both.
The same Monte Carlo data is used for correcting data in the sidebands as for the data in
the peak, since the TMDGen generator does not include any non-resonant photon pairs, and
thus includes no sideband regions.

As a representative moment, the results for the |2, 2〉 Collins moments versus Mh, for
π±γγ events, are shown in Figure 4.16. The kinematic dependencies for the |2, 2〉 moment,
just for π+γγ events, is shown in Figure 4.17. The e�ect of the correction is generally small:
the central values are only slightly shifted, and the uncertainties are slightly increased. This
correction is assumed e�ective, and no further systematic uncertainty is assigned for non-
resonant photon pairs.

4.5.2 Charge Symmetric Background

A number of processes produce electron-positron pairs, with one of the produced leptons
mimicking the scattered electron from the SIDIS process. These processes are denoted the
charge symmetric background, since they produce electrons and positrons symmetrically.
The dominant processes are quasi-real photo-production of π0 mesons in the target gas and
the interaction of particles with the collimator. A number of Hermes analyses found it
necessary to correct for this background, the biggest e�ect being seen in the low x and low
Q2 data used in the F2 structure function analysis [102]. The correction has been also used
in the exclusive ρ SDME and transverse target moment analysis [103].

In this analysis, the charge symmetric background fraction is quite low, as shown in Table
4.11. As the acceptance-correction �tting method is linear, it is su�cient to separately �t
the like and unlike sign data, and then make the appropriate linear combination post-�tting.
This is in contrast to using MLE, where �tting with negative weights is not numerically
identical to weighting the results of two separate �ts.

Data from the 2002-2005 running period, for the three pion-pair dihadrons and with
the apparent scattered lepton having opposite charge as the beam (the unlike-sign data),
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Figure 4.16: Comparison of the |2, 2〉 Collins moment versus Mh within three Mγγ regions.
Left panel is for π+γγ events; right panel is for π−γγ events. Results from the
lower sideband region are given with blue inverted triangles, from the higher
sideband region with black upright triangles, and with red �lled squares for
data from the π0 peak region. The corrected peak values are given with red,
open squares.

have been �t using the acceptance correction method of Section 3.1. The statistics for
unlike-charge lepton and K+K− dihadrons are too low to allow �tting. Due to the low
background fraction (1.2%) and low statistics, this background is considered negligible for
K+K− dihadrons. The results of �tting the unlike-sign data are mostly consistent with
zero and have very high uncertainties, especially for the kinematic dependencies. As a
representative moment, the |2, 2〉 Collins moment for all three pion are given in Figure 4.18,
for 1D binning inMh. As a representative �gure for the kinematic dependencies, Figure 4.19
shows the results with kinematic dependence, again for the |2, 2〉 moment, but only for π+π0

dihadron data. Based on the results of the �ts for the pion-pair dihadrons, it can be seen that
there is not enough data to accurately estimate the background signal. Furthermore, due to
the small background fraction, this background most likely has negligible e�ect on the �nal
results. Thus, no correction and no systematic uncertainty is assigned for this background.

Year π+π0 π+π− π−π0 K+K−

2002 222 5.0% 827 3.8% 145 4.3% 2 1.1%
2003 120 4.9% 477 3.9% 74 3.8% 1 1.0%
2004 762 5.0% 2849 3.9% 487 4.2% 4 0.7%
2005 1608 4.7% 7346 4.5% 1667 6.4% 18 1.4%
Total 2712 4.9% 11499 4.3% 2373 5.5% 25 1.2%

Table 4.11: Data statistics for lepton charge unlike beam lepton charge, separated by year
and dihadron type. For each year and dihadron, the total amount of statistics
is given, in addition to the background fraction those statistics represent.
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Figure 4.17: Comparison of the kinematic dependence of the |2, 2〉 Collins moment within
three Mγγ regions. Data is for π−γγ events. The markers are the same as in
Figure 4.16, and the panels are the same as for Figure 4.10.
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Figure 4.18: Comparison of the |2, 2〉 Collins moment versus Mh for like versus unlike lepton
sign. The panels, from left to right, are for π+π0, π+π−, and π−π0 dihadron
events. Black squares are for lepton with like sign as the lepton beam, red open
circles for unlike sign.

4.5.3 Exclusive Background

For interpretation of the results in terms of distribution and fragmentation functions, it is
essential that the dihadrons are produced semi-inclusively and not exclusively. Speci�cally,
this means that it is required that other particles are present in the �nal state. When other
particles are produced, they take some of the available energy, thus reducing the fractional
energy z of the produced hadron system.

One can remove much of the exclusive vector meson process from the data sample by
restricting the range of z and/or the missing mass MX . The missing mass is computed by
considering the missing momenta and energy, i.e. the di�erence between known input and the
considered outgoing particles, and computing the e�ective mass. In a previous publication
[27], both MX and z cuts were employed, though the following study shows that both cuts
are not needed.

Figure 4.20 shows the missing mass MX versus z distribution for each of the four di-
hadrons considered. The data sample is Pythia with a positron beam. No signi�cant
di�erence is seen when using Pythia data with an electron beam. Lines are drawn on the
plots at several choices of cuts, corresponding to those cuts listed in Table 4.12. The actual
background fractions are also included in Table 4.12. The extra MX cut is shown not to
improve the background fraction, and thus a cut of z < 0.8 is su�cient.

Unlike the charge symmetric background, there exists no model independent correction
method. There also exists no results for exclusive vector meson production in the correct
kinematic domain. Thus, one cannot correct for the background using negative weights nor
is it possible to estimate a systematic uncertainty. However, the background fraction is
quite small. Most exclusive ρ0 SDMEs for a transversely polarized target and unpolarized
beam tend to be quite small, with the largest (in absolute magnitude) being 0.11 and all
but one SDME less than than 0.07 in magnitude [103]. Thus one would expect the exclusive
ρ0 mesons can contribute no more than 0.004 to the polarized moments studied in this
dissertation. The charged ρ SDMEs have not been so well studied, but one can expect the
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Cut π+π0 π+π− π−π0 K+K−

z < 0.7 1903 0.5% 14204 3.0% 1316 1.0% 3363 2.5%
z < 0.8 2128 0.5% 15391 3.6% 1421 1.4% 3852 3.3%
z < 0.9 2247 0.6% 16315 4.7% 1502 1.7% 4200 4.5%
MX < 1.5 2253 0.7% 16470 5.4% 1510 2.0% 4222 4.7%
MX < 2.0 2163 0.6% 15620 4.2% 1443 1.5% 3896 3.8%

MX < 1.5 and z < 0.8 2128 0.5% 15386 3.6% 1420 1.4% 3850 3.4%
MX < 2.0 and z < 0.8 2109 0.5% 15229 3.7% 1410 1.3% 3778 3.4%

Table 4.12: Statistics and background fraction for exclusive production verses selectMX and
z cuts and dihadron type, from Pythia positron data.

Dihadron Est. VM Stats. Bkg. Frac.
π+π0 5497 68.5%
π+π− 10846 85.4%
π−π0 2774 77.9%
K+K− 700 31.9%

Table 4.13: Table of the vector meson fraction within the resonant mass peak. Data is
computed from the Breit-Wigner plus background �t of Hermes data, as shown
in Figure 4.5.

relative size of the SDMEs to be comparable. Thus, the exclusive background fraction can
be seen to have negligible e�ect on the �nal results, and no systematic uncertainty is needed.

4.5.4 Vector Meson Fraction

As discussed in Section 2.1.1, the SIDIS dihadron process includes many subprocesses.
When one considers pure SIDIS vector meson production, these other subprocesses are con-
sidered background. In Figure 4.5, the invariant mass distributions are �t with a Breit-
Wigner distribution plus a linear background, to estimate the amount of vector mesons.
The estimated statistics and background fractions are given in Table 4.13.

Note though, in many cases it is not meaningful to discuss separating the vector meson
signal from the other processes, especially when considering the interference between these
processes. Additionally, the fraction of vector mesons and other dihadron subprocesses to
each partial wave is unknown and cannot be estimated within the current theory. Thus,
although the angular integrated background fractions is given in Table 4.13, it is unknown
how much the other subprocesses contribute to the ` = 2 sector nor how this contribution
varies with Mh.

88



4.6 Comparison with Published Results
As a consistency check, one can perform a MLE �t of the π+π− data to compare with

Ref. [27]. The MLE �t is preformed with no corrections, using the older data productions,
and using the cuts, binning, and extraction methods of Ref. [27]. Note, the �tting method
of Ref. [27] involved a binned χ2-�t and anti-symmetrized in cosϑ. The �tting method used
therein also �xed the value of the unpolarized P2,0(cosϑ) to some number b, and then scans
over various possible values of b. For comparison, a MLE �t is used with the functional form
of

f(cosϑ, φR, φS) = 1 + a1 sinϑ sin(φR + φS) + a2 sin 2ϑ sin(φR + φS), (4.8)
where the unpolarized terms have been set to zero.

The idea for this comparison is a consistency check between the previous and current
analyses, rather than a full repetition of the previous analysis. Note though, since so much
of the analysis procedure is di�erent between this analysis and the publication, this can serve
only as a rough comparison.

The results of the MLE �t compared with the results of Ref. [27] are plotted in Figure
4.21. Only statistical uncertainty is shown. The central values are in good agreement.
However, the uncertainties for the MLE �t tend to be smaller than those for the published
results, by a factor of about 75%. Within the coarseness of this comparison, the agreement
is quite good.
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Figure 4.19: Comparison of the π+π0 dihadron |2, 2〉 Collins moment, with kinematic depen-
dencies, for like versus unlike lepton sign. Markers are as in 4.18, and the panels
are the same as for Figure 4.10. Some data points, which brake positivity, are
not shown.
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Figure 4.20: Distribution of missing mass MX versus z for Pythia positron data. Panels
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z = 0.8, z = 0.9, MX = 1.5 GeV/c2, and MX = 2.0 GeV/c2.
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CHAPTER V

Systematic Uncertainty Studies

This chapter details the estimation of the various sources of systematic uncertainty, with
the exception of those already determined (in Chapter IV) to be negligible. Three sources
of systematic e�ects are considered in this chapter: 1) residual smearing and acceptance
e�ects after the acceptance correction, 2) variations between experimental setup between
the 2002-2004 (positron beam) and 2005 (electron beam), and 3) uncertainty in the hadron
identi�cation procedure. The full results, comparing all sources of systematic uncertainty,
are given in Appendix B, including all moments, dihadrons, and binning options for which
�nal result are presented in Chapter VI and Appendix C.

Note, in all studies in this chapter using Hermes data, the target polarization has been
removed from the �t parameters and the acceptance correction method of �tting from Section
3.1 has been applied. However, the non-resonant photon pair background is not taken into
account in any �gures or in the estimate of the uncertainty, as the e�ect upon the uncertainty
estimation would be negligible.

5.1 Smearing and Acceptance
In Section 4.4.2, a model was introduced into TMDGen data, both in 4π and within accep-

tance. The comparison of the acceptance corrected and 4π moments is used to determine
which moments can be reliably extracted within acceptance, with the study being denoted
�Challenge A.� In this section, the same model used in Section 4.4.2 is induced into Pythia
data using the same procedure, i.e. by using TMDGen to evaluate the cross section and in-
troducing weights. The reconstructed Pythia sample, i.e. the sample within acceptance,
also has radiative e�ects included, via the subroutine RadGen [98]. Thus, this comparison
shows which moments can be reliably extracted with both smearing and acceptance e�ects
modifying the data sample, and is denoted �Challenge B.� Table 5.1 compares the amount
of statistics for the Hermes data set versus the data sets used in this study. Note, the
reconstructed Pythia data includes data from both beam charges, while the TMDGen data
used for the acceptance correction (for Challenge B) is only for positron beam. No signi�cant
di�erence has been shown by changing the beam charge for the Monte Carlo data used in
the acceptance correction.

The moments versus invariant mass are shown in Figures 5.1 and 5.2, for pion-pair and
K+K− dihadrons, respectively. The comparison is generally quite good, with the worst
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Data Set π+π0 π+π− π−π0 K+K−

Reconstructed Pythia (proto) 358k 2.7M 294k 26k
4π Pythia 2.3M 2.4M 1.8M 330k
TMDGen for Acc. Cor. (Monte Carlo) 503k 1.6M 895k 1.2M
Hermes 53k 259k 40k 2k

Table 5.1: Table of relevant statistics for Challenge B. The various data sets are described
in the text.

moments, among those plotted, being the |1, 1〉 Collins moment for π±π0 dihadrons and
the |1,−1〉 Sivers moment for K+K− dihadrons. In this section, Section 5.1, the kinematic
dependencies are not shown for sake of brevity. The systematic uncertainty estimated by
this study, however, is shown versus the 2D binning in Appendix B.

To obtain an overall idea of how well the moments compare between the 4π results and
acceptance plus correction results, the χ2/ndf statistic per moment and set of binning is
again computed, as it was in Section 4.4.2. The χ2/ndf statistics results, for each dihadron
type, are given in Appendix A, Tables A.5 through A.8. For pion-pair dihadrons, the general
trends observed in the study of Section 4.4.2 (�Challenge A�) are again observed in this study.
The moments of most interest, the |2,±2〉 and |1, 1〉 Collins moments, are still reconstructed
fairly well.

It is worth noting that, for most moments, the 1D binning results tend to have χ2/ndf
statistics similar to the 2D binning results. This is an indication that the kinematic depen-
dence of the smearing and acceptance e�ects is not overly strong. In other analysis where
the kinematic dependence of the smearing and acceptance is signi�cant, such as in Ref. [65],
even 2D binning is insu�cient and one must bin in all kinematic variables. The |1, 1〉 Collins
moments for π±π0 dihadrons, however, do have χ2/ndf statistics that are signi�cantly worse
for the 1D binning than the 2D binning. The kinematic dependence of these moments (not
shown) contain small systematic shifts, similar to the results for 1D binning shown in Figure
5.1. The di�erence in χ2/ndf between binning options for the π±π0 dihadron |1, 1〉 Collins
moments is more a re�ection of the higher uncertainty in the 2D binning, rather than a
re�ection of a di�erence in accuracy.

For K+K− dihadrons, the |1, 0〉 moments are shown to be quite poor, and the |2, 0〉
moments are also much higher than the other moments. Since the statistics for the K+K−

study were much smaller, a lower threshold for the χ2/ndf statistic should be chosen than
for pion-pair dihadrons. This is due to the fact that higher statistical uncertainty will
mask systematic di�erences, and the χ2/ndf values will appear smaller due to the larger
uncertainty on the moments being compared. Therefore, the results for all but the |1, 0〉 and
|2, 0〉 partial waves will be considered in the �nal results, though it remains to be seen which
moments will have small enough uncertainty to be meaningful.
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Figure 5.1: Comparison of 4π versus corrected moments using Pythia data for pion-pair
dihadrons, without kinematic dependencies. Each column represents a di�erent
dihadron type, speci�cally, from left to right, π+π0, π+π−, and π−π0 dihadrons.
The rows of panels represent di�erent moments, and are, from top to bottom, the
|1, 1〉, |2,−2〉 and |2, 2〉 Collins moments. The distribution in 4π is shown with
black �lled circles, while the moments in acceptance plus correction are shown
with red open circles.
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Figure 5.2: Comparison of 4π versus corrected moments using Pythia data for K+K− di-
hadrons, without kinematic dependencies. The upper left panel is intentionally
left blank. The other panels on the top row, from left to right, are the |0, 0〉,
|1, 1〉 and |1,−1〉 Sivers moments. The panels on the second row are, from left
to right, are the |2, 2〉, |2, 1〉, |2,−1〉 and |2, 2〉 Sivers moments. As with Figure
5.1, the distribution in 4π is shown with black �lled circles, while the moments
in acceptance plus correction are shown with red open circles.

5.2 Year dependence

The Hermes data sample, as well as the TMDGenMonte Carlo data used in the acceptance
correction, includes data from both beam charges, in roughly equal amounts. For instance,
roughly 60% of the Hermes dihadron data was collected with an electron beam, and the
remainder with a positron beam. Among the Hermes collaboration, uncertainties due to
the di�erences between the two running periods (positron, 2002-2004, and electron, 2005)
are historically called year dependent systematic uncertainties. However, �beam-charge�
dependent rather than �year dependent� might have been a better choice, as the data samples
in 2002 and 2003 are too small to consider individually and are instead included with the
2004 data. Although the SIDIS process is invariant with respect to beam charge, many
systematic e�ects are not, most notably the beam position, o�set, and slope, as well as the
curvature of the beam through the target region.

Two systematic issues must be addressed. First, one must determine if there is any
systematic e�ect due to �tting the data samples simultaneously rather than �tting separately
and then combining the results. Determining whether a systematic e�ect is present, and the
size of the resulting systematic uncertainty, shall be denoted �Study 1.� In order to determine
an e�ect, the source of such an e�ect would have to be included in simulations of the detector
for the two running conditions.

The second study, denoted �Study 2,� is then to determine whether there is a residual
di�erence between the electron and positron sub-samples which is not accounted for in the
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detector simulation or data processing chain. Study 2 is accomplished by checking the con-
sistency between the results for �tting electron and positron data separately, each corrected
with the TMDGen data of the respective beam charge.

5.2.1 Year Dependent Study 1

In this study, the results for a combined �t of the electron and positron Hermes sub-
samples, using combined electron and positron TMDGen data for correcting the acceptance, is
compared with �tting and correcting the sub-samples separately and forming the appropriate
linear combination. In all cases, the acceptance correction �t of Section 3.1 is used for
�tting and correcting the data. Tables of χ2/ndf statistics are computed, similar to those in
Challenge A and B, and are listed in Appendix A.

In general, the results for both methods are very consistent, except for certain moments
already shown to be unstable in previous studies. These unstable moments tend to be the
|`, 0〉 moments for all dihadrons and the |2,−1〉 Sivers moments for π±π0 dihadrons. Based
on these results, it appears that all known systematic di�erences between the running periods
(included in the detector simulation) have either been corrected in the data processing chain
or are negligible. Thus, one can use an electron-positron combined �t, and no systematic
uncertainty is assigned thus far.

5.2.2 Year Dependent Study 2

In this study, the results for the positron beam (2002-2004) and electron beam (2005)
data samples, are checked for consistency. A comparison of the results per Mh bin, for both
lepton charge samples as well as the combined sample, is given in Figures 5.3 and 5.4. For
pion-pair dihadrons, there are only a few bins where there are signi�cant di�erences between
the sub-samples. For K+K− dihadrons, there appear to be some systematic trends, though
with only three bins, it is di�cult to say whether the inconsistency is due to a larger trend
or localized to certain individual bins.

Again, χ2/ndf statistics are computed for each binning set and are provided in Ap-
pendix A. For Study 2, the χ2/ndf values are slightly larger than one would hope. While
some of the moments of interest have χ2/ndf values near unity, several moments also have
χ2/ndf values in the range of 2.0 to 4.0, implying about a variation comparable to about
1.5 standard deviations of a one dimensional Gaussian variable. This is close enough to
be purely statistical �uctuations, though this could also be indicative of some systematic
e�ect. Note, the possible systematic e�ect would have to be one not previously observed
at Hermes, as a large number of other Hermes analyses have also investigated possible
systematic di�erences between these running periods, and known e�ects for these years have
been incorporated in the the simulation and data processing chain. All other observables
considered in this analysis, such as the 1D projects of the distribution of relevant variables,
positions of mass peaks, etc., show no signi�cant di�erence between the two running periods.
Note also, the overall statistic provided in Tables A.13 through A.16 is quite good, though
the most extreme moments are not considered in the overall. As no other indication exists of
a yet unknown systematic di�erence between the positron and electron data samples, except
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Figure 5.3: Comparison of select Hermes results versus lepton beam charge for pion-pair
dihadrons, 1D binning. The rows, from top to bottom, represent the results for
the |1, 1〉, |2,−2〉, and |2, 2〉 Collins moments. The columns, from left to right,
are for dihadron types π+π0, π+π−, and π−π0, respectively. The blue circles are
for positron beam, the red open squares are for electron beam, and the black
triangles are results for the combined sample.
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Figure 5.4: Comparison of select Hermes results versus lepton beam charge for K+K−

dihadrons, 1D binning. The panels represent various partial waves of the Sivers
moments, and are arranged identical to Figure 5.2. As with Figure 5.3, the blue
circles are for positron beam, the red open squares are for electron beam, and
the black triangles are results for the combined sample.

that of the χ2/ndf values for a few moments are in the range of 2.0 to 4.0, the conclusion is
that the discrepancy is mostly statistical.

An uncertainty is assigned, per each moment and per each bin, by �rst determining
the value of the assigned uncertainty that would reduce the χ2 value between the two sub-
samples to unity. Since the discrepancy is assumed to be mostly statistical, this uncertainty
is then divided by a factor of two. In the case that the χ2 value is less than one, no systematic
uncertainty is assigned. Given that the results for the two sub-samples, electron and positron,
are respectively Ae ± δAe and Ap ± δAp, the uncertainty δAyear is computed according to

δAyear =
1

4

√
(Ae − Ap)

2 − δ2Ae − δ2Ap. (5.1)

Note the factor of one quarter is the product of the extra factor of one half times the factor
of one half arising from the fact that the uncertainty is being added to both samples. In the
case that the squared di�erence is much larger than the sum of the variances, the resulting
uncertainty is approximately one quarter of the magnitude of the di�erence, i.e. |Ae−Ap|/4.
The results for this systematic uncertainty are shown in comparison with the other systematic
uncertainties in Appendix B.

5.3 Hadronic Identi�cation Procedure
Two methods exist for using the EVT algorithm for determining the particle identi�cation

of each hadron. One method is to simply assign each hadron the most likely identi�cation.
The other method is to consider the conditional probability of assigning a certain particle
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identi�cation given the true identi�cation. This conditional probability has been traditionally
called the P -matrix among the Hermes collaboration. The second method is then to use the
inverse of the P -matrix to assign a weight, interpreted as the probability that the given track
is a certain type. Theoretical justi�cation is given in Ref. [38], with the governing equation
being a Fredholm integral equation, similar to that in Section 3.1. This second proposed
method is denoted as RICH unfolding, as inverting a conditional probability statement has
traditionally been denoted unfolding.

Neither method, a priori, is necessarily more accurate. Thus, both methods are consid-
ered, and half the magnitude of the di�erence in the results for each method is taken as
the systematic uncertainty due to the hadronic identi�cation procedure. Results from both
methods, for select moments versus Mh, are shown in Figures 5.5 and 5.6. No signi�cant
di�erence between the methods is apparent, though the RICH unfolding method has slightly
larger uncertainty. Note, the RICH unfolding results include the requirement that the abso-
lute value of the weight is less than 5, to remove tracks with unreasonably high weights. The
simpler method, without RICH unfolding, is the one used through this dissertation, and is,
speci�cally, the method used for the �nal results.

This estimates of the uncertainty due to hadronic identi�cation is shown in comparison
with the other sources of systematic uncertainty in Appendix B. In general, this uncertainty
is negligible in comparison with the other sources considered, though this was not known
before conducting this study.
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Figure 5.5: Comparison of select Hermes results versus hadron identi�cation method for
pion-pair dihadrons, 1D binning. The panels are arranged as in Figure 5.3. The
black circles use the method of assigning the most likely particle type, while the
red squares use the RICH unfolding method.
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Figure 5.6: Comparison of select Hermes results versus hadron identi�cation method for
K+K− dihadrons, 1D binning. The panels are arranged as in Figure 5.2. As
with Figure 5.5, the black circles use the method of assigning the most likely
particle type, while the red squares use the RICH unfolding method.
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CHAPTER VI

Results and Conclusions

6.1 Results
Results for the Collins |1, 1〉, |2,−2〉, and |2, 2〉 moments of pion-pair dihadron production

are presented and discussed in Sections 6.1.1 and 6.1.2. Results for the Sivers moments of
K+K− production, for all partial waves except |1, 0〉 and |2, 0〉, are presented and discussed
in Section 6.1.3. Results for several additional moments, for all dihadron types considered,
are given in Appendix C. The results in the appendix are considered stable, but their
interpretation is more relevant in the context of a global �t rather than in the discussion of
individual plots. Note, all result plots have a 7.3% scale uncertainty, indicated on each plot,
due to uncertainty in the measurement of the target polarization.

6.1.1 Collins |2, ±2〉 Moments for Pion-Pair Dihadrons
The Collins |1, 1〉, |2,−2〉, and |2, 2〉 moments are shown versus invariant mass in Fig-

ure 6.1. One generally assumes that no hadron pairs are in the |2, 2〉 partial wave except
those resulting from a vector meson decay. Thus, one would expect non-zero moments only
in the Mh bin which includes the vector meson peak. Even within the mass bin including
the vector meson peak, the moments are expected to be small, as the cross section for the
SIDIS vector meson subprocess represents a fairly small portion of the total dihadron cross
section. The results in Figure 6.1 support these expectations. Furthermore, in agreement
with both the Lund/Artru and gluon radiation models, the |2, 2〉 moments are small but
non-zero (within the Mh bin containing the ρ-mass peak), while the |2,−2〉 moments are
consistent with zero.

The kinematic dependencies for the |2,−2〉 moment are shown in Figure 6.2. It is im-
portant to note that the moments are consistent with zero across all kinematic bins. Thus,
the prior observation�that results for the |2,−2〉 moments in Figure 6.2 are consistent with
zero�is not due to a cancellation of signi�cantly positive and negative regions, but is gen-
erally true in all kinematic bins. This is again consistent with the Lund/Artru and gluon
radiation models.

The kinematic dependencies for the |2, 2〉 moment are shown in Figure 6.3. Within the
uncertainties, no strong kinematic dependencies can be observed. The variation with each
kinematic variable rarely changes the sign of the moment with statistical signi�cance. A
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Figure 6.1: Final Results versus Mh for the Collins |1, 1〉, |2,−2〉, and |2, 2〉 moments for
pion-pair dihadrons. Statistical uncertainties are demarcated by the horizontal
error bar, and the combined statistical and systematic uncertainties are indicated
by the full error bar. The panels, from left to right, are for the |1, 1〉, |2,−2〉,
and |2, 2〉 partial waves.

slight increase with Ph⊥ is generally observable, though, given the uncertainties, the results
are also consistent with other possibilities.

In order to connect the given results with implications of the Lund/Artru and gluon
radiation models, it is necessary to relate the disfavored and favored fragmentation functions
with the observed dihadrons. To accomplish this, one generally assumes u quark dominance,
i.e. one assumes that the cross section is dominated by scattering o� u quarks, with the
total contributions from other �avors being much smaller. The TMDGen models used in
Chapters IV and V predict that u quark scattering accounts for just under 70% of the cross
section for all three pion-pair dihadrons. The u quark dominance assumption implies that
the π+ and ρ+ results are mainly due to favored fragmentation functions, while π− and ρ−
results are primarily due to disfavored fragmentation functions. Results for π0 are generally
considered (and consistent with) the average of the results for π+ and π−. The Collins
|2,±2〉 moments for ρ0 production is more complex, possibly involving both the favored and
disfavored fragmentation functions of ρ± production. Note, the given models and results
both indicate that the moments for ρ0 are not equal with the average of ρ+ and ρ−.

In order to test the Lund/Artru and gluon radiation models, a naive method to extract
the vector meson signal has has been implemented. One de�nes the Mh bin containing the
vector meson peak as the peak Mh bin. A simple linear interpolation, using the two bins
on either side of the peak Mh bin, is used to determine the non-vector meson signal in the
peak Mh bin. It is also assumed that the moments represent the value at the average Mh

of the given bin. Using the background fractions of Table 4.13, one can then estimate the
vector meson signal. This is a particularly naive method, as it neglects shifts in the average
kinematics between Mh bins. However, the size of the uncertainties on the �nal results,
especially when considering the kinematic dependencies, are high enough not to merit a
more complicated procedure. Kinematic dependencies are also found to be not large, thus
this naive method is su�cient.
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Figure 6.2: Final Results for the Collins |2,−2〉 moments for pion-pair dihadrons, including
kinematic dependencies. The panels are arranged as for other kinematic plots,
with the addition of a column on the left for the 1D Mh results. Additional
columns, from left to right, represent binning with respect x, y, z, and Ph⊥, per
each Mh bin. The upper row of panels is for the lowest Mh bin, with each row of
panels being for the next higher Mh bin. Blue circles indicate π+π0 dihadrons,
red inverted triangles indicate π+π− dihadrons, and upright purple triangles
indicate π−π0 dihadrons.
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Figure 6.3: Final Results for the Collins |2, 2〉 moments for pion-pair dihadrons, including
kinematic dependencies. Panels and markers are arranged as in Figure 6.2.

The results of isolating the vector meson signal is shown in Figure 6.4. For their interpre-
tation, let us assume u quark dominance and that the pion results are as in Ref. [47]. The
Lund/Artru model predicts the results for ρ+ to be negative and the results for ρ0 to be con-
sistent with zero. The gluon radiation model implies the results for ρ− to also be negative and
of comparable size to those for ρ+. The magnitude of the moments are also expected to in-
crease with x and Ph⊥, based on the pion results, though the uncertainties on the kinematic
dependencies are too large to con�rm or invalidate these expectations. Furthermore, the
Lund/Artru and gluon radiation models focus on the overall sign of the moments, allowing
for di�erent kinematic dependencies between the pseudo-scalar and dihadron results.

In general, the uncertainties are slightly higher than desirable, given the apparent size
of the moments. However, the basic conclusions of the Lund/Artru model and the gluon
radiation model regarding the sign of the SIDIS |2, 2〉 moments are observed in the data.
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Figure 6.4: Final Results for the Collins |2,±2〉 moments for ρ mesons, including kinematic
dependencies. Columns of and markers are arranged as in Figure 6.2. The top
row indicates the |2,−2〉 moments, and the bottom row the |2, 2〉 moments.

6.1.2 Collins |1, 1〉 Moments for Pion-Pair Dihadrons

The Collins |1, 1〉 moment for pion-pair dihadrons is of theoretical interest as it allows
collinear access to the transversity distribution function h1. Results versus invariant mass
are in Figure 6.1, left panel, while the kinematic dependencies are shown in Figure 6.6.

The results for π+π− dihadrons are an updated version of the results in Ref. [27]. The
results of Figures 6.1 and 6.6 include an acceptance correction, use of the angle φR rather
than φR⊥, and involve a di�erent �tting procedure and function. Although the binning is
slightly di�erent, the comparison is quite close, as shown in Figure 6.5. When comparing the
results versus Mh, the bins outside the mass peak are very consistent. The bin containing
the ρ0 mass peak has results di�ering by about one to two standard deviations, though part
of the e�ect can be related to the narrower bin in this analysis. This discrepancy is also seen
when comparing the x and z dependencies within thisMh region near the ρmeson mass peak.
Some hoped that the improved results would yield moments two or three times larger, thus
reducing the discrepancy between previous Hermes results [27] and Compass results [40].
Although the |1, 1〉 moment in the peak is larger than in Ref. [27], it is questionable whether
this increase is not enough to recover the di�erence.

The kinematic dependence of the moments between this analysis and Ref. [27] are some-
what di�erent. While both support larger values of the moments for medium values of x, the
results herein indicate a decrease of the moment with increasing z, a feature not present in
Ref. [27]. The results of Ref. [27] also tend to be much more noisy than the results presented
here.

As with the |2, 2〉 moments, the π+π− results are not the average of the π±π0 results, as
one might expect from naive isospin invariance. The π+π0 and π−π0 moments are, in general,
quite similar and opposite in sign to the π+π− results. There is no indication among any of
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Figure 6.5: Comparison of the Collins |1, 1〉 moment with previous results. Previous results
from Ref. [27] are shown with �lled black circles, while the results from this
dissertation are shown with open red circles. The left panels show results with
respect to Mπ+π− . The middle and right panels show, respectively, the x and
z dependence within the Mh region including ρ meson mass peak. Note the
Mπ+π− region and the x and z bins are not consistent between Ref. [27] and
this document. The full error bar indicates combined statistical and systematic
uncertainty, while the horizontal bar indicates the statistical uncertainty.

the pion-pair dihadrons of a sign change of the fragmentation function across the ρ meson
peak, as suggested in Refs. [104, 105].

6.1.3 Sivers Moments for K+K− Dihadrons
The currently theory is quite vague regarding predictions for K+K− dihadrons and pos-

sible implications of the results. Unfortunately, the data is statistically limited, not allowing
a determination of the x dependence. Without the x dependence, little can be said regarding
the Sivers function.

It is worth noting, however, that no clear signal is observed within the middle Mh bin,
which contains the φ meson peak. The background fraction is fairly low, on the order of one
third, and so a signal will not be masked nearly as strongly as in the pion-pair dihadron case.
The only indication of a di�erence between the central Mh bin versus the exterior Mh bins
is for the |0, 0〉 partial wave, which includes contributions from both longitudinal φ mesons
and non-resonant kaon pairs. Unfortunately, this data set can neither con�rm nor exclude a
non-zero Sivers function for strange quarks.
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Figure 6.6: Final Results for the Collins |1, 1〉 moments for pion-pair dihadrons, including
kinematic dependencies. Panels and markers are arranged as in Figure 6.2.
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Figure 6.7: Final Results versus Mh for select Sivers moments for K+K− dihadrons. The
panels are, top row, left to right, for |0, 0〉, and |1,±1〉 partial waves, and the
bottom panels are, left to right, for |2,±1〉 and |2,±2〉 partial waves. Filled
circles indicate m ≥ 0, and open circles m < 0.
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6.2 Conclusions

This dissertation has focused on the TMD analysis of select transverse target moments of
SIDIS dihadron production. The main motivation has been to test the Lund/Artru model of
fragmentation, investigate the gluon shower model, and provide measurements related to the
strange quark �avor of the Sivers function, with the side bene�t of improving the Hermes
results for collinear access to transversity.

Several theoretical advancements have been described, including a new partial wave ex-
pansion of the cross section and the computation of the next-to-leading twist dihadron cross
section. This has allowed the quanti�cation of the connection between the Collins moment
of pseudo-scalar meson production and the several Collins-like moments in dihadron pro-
duction, and organizes the complexity of the many moments occurring in the dihadron cross
section. Speci�c predictions of the Lund/Artru model, related to moments of the cross sec-
tion, have been determined, and a new gluon radiation fragmentation model has been put
forth. Additionally, a new spectator model calculation for dihadron TMD fragmentation
functions has also been completed.

A TMDMonte Carlo generator, TMDGen, has been written, which includes polarized SIDIS
pseudo-scalar and dihadron production. Although TMDGen was written for this analysis, the
generator was designed with the expansion to additional analysis and experiments in mind.
TMDGen also includes a full simulation of the intrinsic transverse momenta, pT and kT .

The analysis of the transverse target moments for SIDIS dihadron production from Her-
mes data is also presented, speci�cally for π+π0, π+π−, π−π0, and K+K− dihadrons. A
new acceptance correction method has been proposed and tested, and relevant systematic
uncertainties have been estimated.

The results for the Collins |2,±2〉 moments for pion-pair dihadrons are in agreement
with expectations. The Collins |2,−2〉 moment seems everywhere consistent with zero, as
expected from the struck quark being in the positive transverse polarization state. A signal
is seen for the |2, 2〉 moment in the ρ peak mass bin, while the results in other mass bins are
consistent with zero.

Additionally, the signs of the |2, 2〉 partial waves for ρ+ and ρ− production are consistent
with the Lund/Artru and gluon radiation models, given the previous π± results. The un-
certainties are too large to allow a good comparison regarding the kinematic dependencies,
though the models are mainly concerned with the sign of the moments, not the full kinematic
dependence.

The results for the Collins |1, 1〉 moment for π+π− dihadrons is generally in agreement
with Ref. [27], though the results of this document are much less noisy. Some kinematic
dependence is now observable, which was masked by noise in the previous result. Although
predictions are not available for the results for the π±π0 dihadrons, the results for π+π0 are
similar to those for π−π0, and both tend to be of the opposite sign as the π+π− results. These
trends were also observed in the |2, 2〉 moments: that the |1, 1〉 is similar is not surprising.

Note, neither the fragmentation functions computed in Chapter II, nor those in Ref. [31],
can be used as model predictions for π±π0 dihadrons, since they involve some parameters
that need to be �t with data. However, the presented results allow such a �t for π±π0

dihadrons, as has been previously done for π+π− dihadrons [40]. The �t of Ref. [40] for
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π+π− dihadron results should also be repeated with the newer data set, though it seems the
newer results of in this dissertation will not reconcile the di�erences between the Hermes
and Compass results.

With regard to the Sivers moments for K+K− dihadrons, no clear indication exists that
the signal for the φ meson production subprocess is di�erent than that for non-resonant
kaon-pair dihadron production. These results are consistent with the gluons having either
relatively small, or possibly zero, orbital angular momentum.

The main goals and motivation of this dissertation have been accomplished, with the
results generally in agreement with expectations. This dissertation represents the �rst trans-
verse momentum dependent analysis of polarized SIDIS dihadron production. It is hoped
that future analyses and experiments will utilize the theoretical developments provided herein
and improve upon these results. Already, an analysis is in progress at Je�erson Laboratory,
regarding collinear SIDIS dihadron production with a longitudinally polarized beam and
unpolarized target [106], though the possibilities for a TMD analysis and for other polar-
ization states are existent. Collinear analyses are also in progress, or have been completed,
at Phoenix and Compass, and transverse momentum dependent analyses could be con-
ducted at these experiments in the future. The Belle collaboration has released results
for collinear dihadron fragmentation, occurring in electron positron annihilation, and it is
hoped they will also consider transverse momentum dependent dihadron fragmentation. The
most information might yet come from future experiments, such as the proposed electron
ion collider. However, each incremental step will continue to further our understanding of
hadronic structure and the fragmentation process, today and in the future.
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APPENDIX A

Additional Tables

Two studies have been discussed in this dissertation wherein a model is induced in a data
set with a perfect 4π detector as well as in a data set within acceptance, within acceptance
meaning the data has been through a full simulation of the Hermes detector and has been
reconstructed by the usual data processing chain. In Section 4.4.2, the data is generated by
TMDGen, while in Section 5.1, the data is generated by Pythia, with the reconstructed data
also including radiative e�ects.

For both studies, a χ2/ndf per transverse target moment is computed, averaged over
all bins within each choice of binning, as described in Section 4.4.2. As these tables are
somewhat lengthy, they have been placed in this appendix rather than within the respective
chapters. Results relevant for Section 4.4.2 are given in Table A.1 through Table A.4 and
are denoted �Challenge A Results.� Results relevant for Section 5.1 are given in Table A.5
through Table A.8 and are denoted �Challenge B Results.�

Two additional studies, denoted �Year Dependence Study 1� and �Year Dependence Study
2� are discussed in Section 5.2. Study 1 includes the comparison of �tting the positron
(2002-2004) and electron (2005) data simultaneously versus �tting each data separately and
forming the appropriate linear combination of the results. Tables of χ2/ndf statistics, in the
same format as those for Challenge A and B, are given in Table A.9 through Table A.12,
Year Dependence Study 2 tests for consistency between the separate �ts of the positron and
electron data, and tables of χ2/ndf statistics are given in Table A.13 through Table A.16.
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χ2/ndf per Binning Option
Moment Mh Mh-x Mh-y Mh-z Mh-Ph⊥

Sivers |0, 0〉 24.262 7.933 7.442 26.445 11.041
Sivers |1,−1〉 4.130 1.798 1.501 1.423 1.368
Sivers |1, 0〉 32.172 40.630 17.661 50.027 11.113
Sivers |1, 1〉 2.105 1.335 1.259 0.842 1.038
Sivers |2,−2〉 2.267 1.055 1.516 1.505 1.073
Sivers |2,−1〉 1.558 3.525 3.379 7.401 4.048
Sivers |2, 0〉 206.813 63.409 59.620 201.947 65.524
Sivers |2, 1〉 3.309 2.847 3.466 30.484 4.804
Sivers |2, 2〉 1.851 1.047 1.668 0.785 1.426
Collins |0, 0〉 11.510 6.359 4.172 15.407 7.394
Collins |1,−1〉 1.947 1.501 1.109 0.610 1.487
Collins |1, 0〉 67.696 63.585 19.607 15.370 25.493
Collins |1, 1〉 5.863 1.851 1.835 1.423 2.025
Collins |2,−2〉 0.392 1.108 1.012 1.041 0.393
Collins |2,−1〉 2.708 2.208 3.038 21.793 1.687
Collins |2, 0〉 49.310 33.906 18.686 125.888 18.458
Collins |2, 1〉 5.632 2.865 1.766 8.277 3.025
Collins |2, 2〉 3.906 1.857 1.157 1.787 1.854

Table A.1: Table of χ2/ndf statistics per Sivers and Collins moments for π+π0 dihadrons,
Challenge A. The χ2/ndf is computed over the various bins, for each di�erent
choice of binning. The number of degrees of freedom is 3 for the 1D Mh binning
and 15 for each of the 2D binning options.
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χ2/ndf per Binning Option
Moment Mh Mh-x Mh-y Mh-z Mh-Ph⊥

Sivers |0, 0〉 8.332 2.922 2.410 3.141 3.348
Sivers |1,−1〉 1.377 1.215 1.209 0.797 1.650
Sivers |1, 0〉 3.672 13.696 6.074 24.869 4.027
Sivers |1, 1〉 3.885 1.535 1.459 0.600 2.031
Sivers |2,−2〉 4.464 1.763 2.455 1.407 1.991
Sivers |2,−1〉 4.221 2.746 5.739 1.213 1.529
Sivers |2, 0〉 17.283 13.656 16.336 10.363 8.876
Sivers |2, 1〉 9.009 2.495 7.246 2.522 2.905
Sivers |2, 2〉 5.555 2.251 1.558 1.069 1.922
Collins |0, 0〉 0.597 1.297 2.691 2.121 1.671
Collins |1,−1〉 1.534 1.045 1.032 1.090 0.666
Collins |1, 0〉 3.332 7.135 3.347 10.184 4.462
Collins |1, 1〉 1.852 1.149 1.722 1.915 1.610
Collins |2,−2〉 1.796 0.709 0.547 1.265 1.020
Collins |2,−1〉 2.012 0.965 2.373 1.427 1.437
Collins |2, 0〉 6.309 9.775 22.394 8.380 10.849
Collins |2, 1〉 2.372 1.702 2.285 5.366 2.044
Collins |2, 2〉 0.681 0.547 1.293 0.965 1.067

Table A.2: Table of χ2/ndf statistics per Sivers and Collins moments for π+π− dihadrons,
Challenge A. See caption for Table A.1.
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χ2/ndf per Binning Option
Moment Mh Mh-x Mh-y Mh-z Mh-Ph⊥

Sivers |0, 0〉 18.911 7.036 8.475 15.532 4.144
Sivers |1,−1〉 1.200 1.152 1.677 1.247 1.819
Sivers |1, 0〉 23.597 20.808 17.314 35.048 42.272
Sivers |1, 1〉 2.678 1.058 1.423 1.194 2.728
Sivers |2,−2〉 2.819 1.554 1.405 0.920 1.849
Sivers |2,−1〉 18.069 6.053 6.073 6.626 5.915
Sivers |2, 0〉 171.745 91.661 53.056 104.607 49.063
Sivers |2, 1〉 9.204 3.040 3.794 3.380 2.215
Sivers |2, 2〉 4.381 1.090 1.326 0.844 1.954
Collins |0, 0〉 40.907 10.621 12.926 32.680 15.072
Collins |1,−1〉 1.305 1.411 0.893 1.178 0.537
Collins |1, 0〉 116.182 71.356 45.478 67.321 32.063
Collins |1, 1〉 2.167 1.806 0.983 0.592 1.051
Collins |2,−2〉 1.160 1.515 1.116 1.194 0.995
Collins |2,−1〉 8.307 4.052 3.649 10.863 2.406
Collins |2, 0〉 164.146 38.817 56.540 143.452 98.096
Collins |2, 1〉 3.287 2.363 2.969 3.225 2.572
Collins |2, 2〉 1.107 0.558 0.909 1.289 0.888

Table A.3: Table of χ2/ndf statistics per Sivers and Collins moments for π−π0 dihadrons,
Challenge A. See caption for Table A.1.
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χ2/ndf per Binning Option
Moment Mh Mh-x Mh-y Mh-z Mh-Ph⊥

Sivers |0, 0〉 2.893 0.879 0.753 0.773 0.773
Sivers |1,−1〉 1.426 0.638 1.887 0.384 0.956
Sivers |1, 0〉 0.966 2.479 2.814 3.826 1.314
Sivers |1, 1〉 0.424 0.766 0.739 0.484 0.585
Sivers |2,−2〉 2.557 1.629 4.248 2.167 1.543
Sivers |2,−1〉 6.033 1.530 3.755 0.862 1.931
Sivers |2, 0〉 10.648 6.473 5.043 5.731 5.742
Sivers |2, 1〉 4.680 1.571 2.500 0.526 1.000
Sivers |2, 2〉 7.071 2.336 5.544 0.960 1.402
Collins |0, 0〉 1.982 1.436 1.168 0.954 0.439
Collins |1,−1〉 2.345 0.806 0.955 0.743 0.757
Collins |1, 0〉 2.110 4.455 2.847 1.814 1.585
Collins |1, 1〉 0.282 0.686 0.596 0.338 0.481
Collins |2,−2〉 0.603 0.594 1.744 0.560 0.529
Collins |2,−1〉 2.109 1.656 1.686 0.803 1.311
Collins |2, 0〉 0.785 1.816 2.229 1.304 2.237
Collins |2, 1〉 1.681 0.406 1.861 1.357 1.419
Collins |2, 2〉 2.914 0.789 1.397 1.742 1.341

Table A.4: Table of χ2/ndf statistics per Sivers and Collins moments for K+K− dihadrons,
Challenge A. See caption for Table A.1. Note, the number of degrees of freedom
forK+K− dihadrons is 2 for the 1DMh binning and 11 for each of the 2D binning
options.
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χ2/ndf per Binning Option
Moment Mh Mh-x Mh-y Mh-z Mh-Ph⊥

Sivers |0, 0〉 10.257 6.154 5.898 6.199 6.886
Sivers |1,−1〉 8.649 2.064 1.872 2.681 3.024
Sivers |1, 0〉 38.928 48.047 27.105 59.303 16.620
Sivers |1, 1〉 1.072 1.729 2.029 1.393 1.549
Sivers |2,−2〉 8.710 1.312 2.256 1.948 2.242
Sivers |2,−1〉 14.156 7.346 5.586 11.712 5.233
Sivers |2, 0〉 191.392 81.096 46.959 106.730 80.811
Sivers |2, 1〉 9.984 1.987 6.877 4.140 4.155
Sivers |2, 2〉 1.746 0.987 0.993 1.409 1.403
Collins |0, 0〉 12.917 5.923 9.475 24.251 6.392
Collins |1,−1〉 0.806 1.851 1.135 2.099 2.088
Collins |1, 0〉 47.455 31.840 37.332 45.703 20.431
Collins |1, 1〉 16.554 2.497 3.843 4.319 3.131
Collins |2,−2〉 0.605 1.011 0.465 0.569 1.363
Collins |2,−1〉 12.480 2.694 2.772 14.441 3.673
Collins |2, 0〉 33.781 32.088 28.132 174.760 16.624
Collins |2, 1〉 3.693 2.127 2.664 10.043 1.161
Collins |2, 2〉 1.596 0.740 1.227 1.364 1.048

Table A.5: Table of χ2/ndf statistics per Sivers and Collins moments for π+π0 dihadrons,
Challenge B. See caption for Table A.1.
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χ2/ndf per Binning Option
Moment Mh Mh-x Mh-y Mh-z Mh-Ph⊥

Sivers |0, 0〉 8.150 2.759 4.746 4.965 16.288
Sivers |1,−1〉 4.021 2.722 1.655 2.871 2.283
Sivers |1, 0〉 14.778 8.770 11.368 27.578 7.217
Sivers |1, 1〉 4.613 1.152 2.238 2.515 1.831
Sivers |2,−2〉 8.545 1.821 3.128 1.812 3.992
Sivers |2,−1〉 15.639 2.840 4.841 4.418 13.097
Sivers |2, 0〉 21.056 8.615 21.184 17.354 20.621
Sivers |2, 1〉 0.230 1.640 2.964 1.078 7.262
Sivers |2, 2〉 0.496 0.797 1.442 1.794 1.469
Collins |0, 0〉 6.811 3.382 4.183 2.828 11.761
Collins |1,−1〉 2.905 1.208 1.176 1.628 1.368
Collins |1, 0〉 13.143 2.759 12.866 7.086 9.756
Collins |1, 1〉 2.002 2.266 0.952 1.823 1.131
Collins |2,−2〉 0.471 1.314 1.254 0.717 0.876
Collins |2,−1〉 5.851 1.984 4.245 0.818 3.332
Collins |2, 0〉 22.087 10.313 7.726 26.236 17.176
Collins |2, 1〉 11.138 3.387 1.891 2.985 7.727
Collins |2, 2〉 4.056 1.806 2.383 1.803 1.948

Table A.6: Table of χ2/ndf statistics per Sivers and Collins moments for π+π− dihadrons,
Challenge B. See caption for Table A.1.
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χ2/ndf per Binning Option
Moment Mh Mh-x Mh-y Mh-z Mh-Ph⊥

Sivers |0, 0〉 25.319 8.626 8.475 20.388 7.444
Sivers |1,−1〉 6.011 2.119 2.794 1.246 1.993
Sivers |1, 0〉 8.677 31.761 16.525 25.274 16.724
Sivers |1, 1〉 1.572 0.666 1.667 1.881 0.814
Sivers |2,−2〉 4.522 0.572 1.364 1.402 1.925
Sivers |2,−1〉 9.338 5.064 6.190 13.393 6.561
Sivers |2, 0〉 139.563 41.736 49.833 163.535 66.695
Sivers |2, 1〉 4.105 2.379 2.771 11.088 5.461
Sivers |2, 2〉 1.546 0.989 1.995 1.513 1.683
Collins |0, 0〉 23.867 7.926 11.397 13.055 7.601
Collins |1,−1〉 0.793 1.354 2.126 1.734 1.947
Collins |1, 0〉 7.822 11.987 19.515 43.712 20.314
Collins |1, 1〉 10.736 2.290 4.205 2.273 4.068
Collins |2,−2〉 1.255 0.955 1.003 1.081 1.957
Collins |2,−1〉 1.238 1.324 1.183 2.410 2.824
Collins |2, 0〉 51.900 30.394 96.140 75.190 41.508
Collins |2, 1〉 4.916 2.660 3.965 5.619 2.545
Collins |2, 2〉 0.834 1.055 0.822 1.023 1.211

Table A.7: Table of χ2/ndf statistics per Sivers and Collins moments for π−π0 dihadrons,
Challenge B. See caption for Table A.1.
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χ2/ndf per Binning Option
Moment Mh Mh-x Mh-y Mh-z Mh-Ph⊥

Sivers |0, 0〉 1.979 0.813 0.662 1.038 0.991
Sivers |1,−1〉 0.354 0.259 0.616 0.607 0.673
Sivers |1, 0〉 47.171 15.372 18.166 16.839 16.269
Sivers |1, 1〉 1.138 0.880 1.161 0.953 0.991
Sivers |2,−2〉 0.328 1.353 0.941 1.578 0.852
Sivers |2,−1〉 1.936 1.207 2.272 1.416 2.074
Sivers |2, 0〉 5.350 7.257 9.452 4.908 26.442
Sivers |2, 1〉 0.443 1.412 0.838 3.130 1.239
Sivers |2, 2〉 0.398 0.904 1.379 1.751 1.415
Collins |0, 0〉 1.032 0.719 0.944 1.465 0.652
Collins |1,−1〉 1.364 1.242 1.042 1.342 1.327
Collins |1, 0〉 27.877 10.402 7.462 8.711 7.011
Collins |1, 1〉 3.638 1.385 0.774 1.678 1.330
Collins |2,−2〉 1.015 0.929 1.948 1.399 0.786
Collins |2,−1〉 0.385 1.355 0.655 1.401 1.694
Collins |2, 0〉 2.305 7.375 6.560 6.966 5.846
Collins |2, 1〉 0.429 1.592 1.212 1.053 1.550
Collins |2, 2〉 1.011 2.119 1.801 0.436 0.546

Table A.8: Table of χ2/ndf statistics per Sivers and Collins moments for K+K− dihadrons,
Challenge B. See caption for Table A.1.
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χ2/ndf per Binning Option
Moment Mh Mh-x Mh-y Mh-z Mh-Ph⊥

Sivers |0, 0〉 0.377 0.188 0.104 0.995 0.206
Sivers |1,−1〉 0.292 0.061 0.062 0.301 0.067
Sivers |1, 0〉 1.522 1.801 1.214 3.540 1.037
Sivers |1, 1〉 0.131 0.028 0.036 0.148 0.035
Sivers |2,−2〉 0.083 0.014 0.019 0.149 0.065
Sivers |2,−1〉 2.475 0.598 0.498 2.323 0.686
Sivers |2, 0〉 4.789 2.588 0.985 3.675 3.804
Sivers |2, 1〉 0.142 0.048 0.040 0.543 0.098
Sivers |2, 2〉 0.015 0.018 0.010 0.044 0.022
Collins |0, 0〉 0.073 0.147 0.060 0.163 0.102
Collins |1,−1〉 0.042 0.026 0.012 0.020 0.018
Collins |1, 0〉 5.567 3.441 2.799 2.629 5.550
Collins |1, 1〉 0.052 0.021 0.026 0.059 0.017
Collins |2,−2〉 0.039 0.011 0.026 0.022 0.020
Collins |2,−1〉 0.021 0.027 0.023 0.192 0.037
Collins |2, 0〉 0.595 1.113 0.574 3.365 1.958
Collins |2, 1〉 0.068 0.058 0.029 0.198 0.036
Collins |2, 2〉 0.041 0.013 0.019 0.059 0.016

Overall
(
χ2

Mh
/ndf < 9

)
0.690 0.533 0.342 0.963 0.720

Table A.9: Table of χ2/ndf statistics per Sivers and Collins moments for π+π0 dihadrons,
Study 1. See caption for Table A.1. An overall χ2/ndf is provided for each
binning option, though only moments with a χ2/ndf < 9 for the 1D Mh binning
is included in the overall statistic.
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χ2/ndf per Binning Option
Moment Mh Mh-x Mh-y Mh-z Mh-Ph⊥

Sivers |0, 0〉 0.319 0.062 0.096 0.094 0.108
Sivers |1,−1〉 13.728 2.750 2.433 4.484 3.031
Sivers |1, 0〉 27.803 7.201 6.789 11.875 6.472
Sivers |1, 1〉 0.214 0.025 0.039 0.108 0.057
Sivers |2,−2〉 0.031 0.017 0.023 0.011 0.028
Sivers |2,−1〉 0.118 0.024 0.073 0.031 0.066
Sivers |2, 0〉 0.344 0.529 1.668 1.009 1.209
Sivers |2, 1〉 0.062 0.032 0.029 0.037 0.050
Sivers |2, 2〉 0.005 0.011 0.016 0.011 0.005
Collins |0, 0〉 0.035 0.040 0.059 0.088 0.055
Collins |1,−1〉 0.022 0.017 0.024 0.014 0.025
Collins |1, 0〉 0.242 0.132 0.958 0.084 1.382
Collins |1, 1〉 0.049 0.020 0.038 0.013 0.019
Collins |2,−2〉 0.009 0.008 0.008 0.016 0.008
Collins |2,−1〉 0.010 0.025 0.017 0.037 0.017
Collins |2, 0〉 1.125 0.812 1.237 0.468 1.497
Collins |2, 1〉 0.045 0.031 0.059 0.254 0.056
Collins |2, 2〉 0.037 0.013 0.012 0.017 0.018

Overall
(
χ2

Mh
/ndf < 9

)
0.127 0.106 0.256 0.135 0.271

Table A.10: Table of χ2/ndf statistics per Sivers and Collins moments for π+π− dihadrons,
Study 1. See caption for Tables A.1 and A.9.
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χ2/ndf per Binning Option
Moment Mh Mh-x Mh-y Mh-z Mh-Ph⊥

Sivers |0, 0〉 0.983 0.281 0.231 0.254 0.402
Sivers |1,−1〉 0.083 0.028 0.020 0.082 0.052
Sivers |1, 0〉 5.886 2.682 2.082 3.432 1.528
Sivers |1, 1〉 0.023 0.039 0.021 0.025 0.032
Sivers |2,−2〉 0.045 0.018 0.016 0.063 0.024
Sivers |2,−1〉 3.393 0.520 0.630 2.250 1.054
Sivers |2, 0〉 7.528 3.138 2.946 2.354 1.849
Sivers |2, 1〉 0.084 0.058 0.049 0.273 0.064
Sivers |2, 2〉 0.021 0.019 0.014 0.020 0.023
Collins |0, 0〉 0.151 0.093 0.076 0.178 0.154
Collins |1,−1〉 0.041 0.021 0.018 0.032 0.027
Collins |1, 0〉 0.749 2.155 0.744 1.135 1.638
Collins |1, 1〉 0.081 0.026 0.026 0.038 0.031
Collins |2,−2〉 0.039 0.017 0.017 0.015 0.020
Collins |2,−1〉 0.050 0.049 0.048 0.055 0.021
Collins |2, 0〉 1.699 1.076 0.718 1.647 1.508
Collins |2, 1〉 0.018 0.021 0.033 0.224 0.041
Collins |2, 2〉 0.014 0.007 0.014 0.010 0.022

Overall
(
χ2

Mh
/ndf < 9

)
0.883 0.536 0.403 0.632 0.444

Table A.11: Table of χ2/ndf statistics per Sivers and Collins moments for π−π0 dihadrons,
Study 1. See caption for Tables A.1 and A.9.
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χ2/ndf per Binning Option
Moment Mh Mh-x Mh-y Mh-z Mh-Ph⊥

Sivers |0, 0〉 0.014 0.010 0.018 0.008 0.007
Sivers |1,−1〉 0.010 0.003 0.015 0.004 0.007
Sivers |1, 0〉 0.360 0.154 0.238 0.142 0.067
Sivers |1, 1〉 0.017 0.008 0.014 0.014 0.006
Sivers |2,−2〉 0.003 0.011 0.023 0.016 0.015
Sivers |2,−1〉 0.022 0.016 0.034 0.020 0.025
Sivers |2, 0〉 0.005 0.104 0.927 0.462 0.146
Sivers |2, 1〉 0.018 0.019 0.067 0.009 0.009
Sivers |2, 2〉 0.027 0.028 0.023 0.015 0.010
Collins |0, 0〉 0.015 0.018 0.036 0.010 0.013
Collins |1,−1〉 0.015 0.017 0.007 0.011 0.010
Collins |1, 0〉 0.017 0.027 0.022 0.057 0.029
Collins |1, 1〉 0.022 0.009 0.007 0.014 0.008
Collins |2,−2〉 0.013 0.009 0.013 0.013 0.012
Collins |2,−1〉 0.005 0.012 0.023 0.016 0.009
Collins |2, 0〉 0.067 0.055 0.093 0.073 0.042
Collins |2, 1〉 0.037 0.022 0.037 0.016 0.013
Collins |2, 2〉 0.043 0.023 0.044 0.044 0.037

Overall
(
χ2

Mh
/ndf < 9

)
0.027 0.028 0.084 0.048 0.024

Table A.12: Table of χ2/ndf statistics per Sivers and Collins moments for K+K− dihadrons,
Study 1. See caption for Tables A.1 and A.9.
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χ2/ndf per Binning Option
Moment Mh Mh-x Mh-y Mh-z Mh-Ph⊥

Sivers |0, 0〉 17.591 7.096 7.334 2.969 10.694
Sivers |1,−1〉 0.051 0.404 0.597 0.288 0.466
Sivers |1, 0〉 40.876 52.202 52.818 25.205 40.600
Sivers |1, 1〉 0.495 0.637 1.323 0.865 1.033
Sivers |2,−2〉 2.103 0.613 0.541 0.546 1.103
Sivers |2,−1〉 15.068 3.275 5.699 4.385 4.765
Sivers |2, 0〉 91.219 81.814 74.223 32.666 105.408
Sivers |2, 1〉 2.320 2.824 2.776 1.372 3.607
Sivers |2, 2〉 0.535 0.514 0.335 0.256 0.810
Collins |0, 0〉 5.401 5.215 4.460 2.854 8.523
Collins |1,−1〉 0.263 0.776 0.653 0.863 0.431
Collins |1, 0〉 13.891 45.293 51.312 21.691 23.983
Collins |1, 1〉 1.291 0.770 0.803 0.551 0.669
Collins |2,−2〉 1.019 0.529 0.518 0.469 0.603
Collins |2,−1〉 4.734 2.183 1.942 2.593 2.850
Collins |2, 0〉 29.137 45.527 39.443 25.770 60.356
Collins |2, 1〉 1.594 1.324 2.896 1.296 3.115
Collins |2, 2〉 1.291 0.601 0.656 0.712 1.126

Overall
(
χ2

Mh
/ndf < 9

)
1.347 1.287 1.374 0.995 1.911

Table A.13: Table of χ2/ndf statistics per Sivers and Collins moments for π+π0 dihadrons,
Study 2. See caption for Tables A.1 and A.9.
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χ2/ndf per Binning Option
Moment Mh Mh-x Mh-y Mh-z Mh-Ph⊥

Sivers |0, 0〉 41.586 9.109 7.231 6.785 18.924
Sivers |1,−1〉 0.963 0.514 0.761 0.516 0.840
Sivers |1, 0〉 58.949 30.940 17.729 14.455 39.386
Sivers |1, 1〉 1.622 0.846 0.644 0.363 0.873
Sivers |2,−2〉 2.927 0.895 0.678 0.804 1.505
Sivers |2,−1〉 7.955 3.291 4.217 1.250 6.070
Sivers |2, 0〉 83.691 66.833 39.826 72.668 69.292
Sivers |2, 1〉 1.996 1.100 1.042 1.560 2.063
Sivers |2, 2〉 1.504 0.702 0.361 0.567 0.702
Collins |0, 0〉 2.268 1.162 2.205 2.826 4.764
Collins |1,−1〉 0.906 0.528 0.627 0.284 0.532
Collins |1, 0〉 18.955 15.265 6.044 7.677 31.230
Collins |1, 1〉 0.582 0.326 0.354 0.374 0.455
Collins |2,−2〉 1.416 0.767 0.508 0.688 0.890
Collins |2,−1〉 1.111 1.147 1.216 0.891 1.609
Collins |2, 0〉 43.253 9.824 48.356 20.935 69.267
Collins |2, 1〉 2.829 1.676 2.668 3.247 2.377
Collins |2, 2〉 2.260 0.526 0.618 0.747 0.895

Overall
(
χ2

Mh
/ndf < 9

)
1.667 0.977 1.152 1.023 1.708

Table A.14: Table of χ2/ndf statistics per Sivers and Collins moments for π+π− dihadrons,
Study 2. See caption for Tables A.1 and A.9.
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χ2/ndf per Binning Option
Moment Mh Mh-x Mh-y Mh-z Mh-Ph⊥

Sivers |0, 0〉 5.263 4.155 4.285 6.431 3.446
Sivers |1,−1〉 0.227 1.306 1.478 0.630 0.965
Sivers |1, 0〉 22.580 37.623 51.008 45.214 38.451
Sivers |1, 1〉 0.995 0.981 0.695 0.927 0.767
Sivers |2,−2〉 0.645 0.204 0.558 0.606 0.617
Sivers |2,−1〉 9.440 3.033 7.027 6.847 3.200
Sivers |2, 0〉 61.082 59.477 68.170 55.123 67.931
Sivers |2, 1〉 1.050 1.046 1.786 2.792 1.371
Sivers |2, 2〉 0.424 0.539 0.520 0.321 0.675
Collins |0, 0〉 3.232 2.697 3.634 3.501 4.339
Collins |1,−1〉 1.163 0.819 1.073 0.902 0.551
Collins |1, 0〉 248.022 62.586 77.125 67.778 55.059
Collins |1, 1〉 3.889 1.141 1.447 1.472 1.491
Collins |2,−2〉 0.181 0.353 0.257 0.736 0.469
Collins |2,−1〉 2.268 1.126 1.686 2.792 1.720
Collins |2, 0〉 24.163 24.670 33.925 32.875 59.468
Collins |2, 1〉 0.495 0.747 1.234 3.651 0.913
Collins |2, 2〉 1.305 0.627 0.368 0.467 0.563

Overall
(
χ2

Mh
/ndf < 9

)
1.243 1.141 1.378 1.828 1.296

Table A.15: Table of χ2/ndf statistics per Sivers and Collins moments for π−π0 dihadrons,
Study 2. See caption for Tables A.1 and A.9.
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χ2/ndf per Binning Option
Moment Mh Mh-x Mh-y Mh-z Mh-Ph⊥

Sivers |0, 0〉 2.973 0.565 0.468 0.744 0.653
Sivers |1,−1〉 0.099 0.272 0.261 0.320 0.353
Sivers |1, 0〉 2.607 2.309 8.390 3.821 4.250
Sivers |1, 1〉 0.218 0.270 0.223 0.593 0.285
Sivers |2,−2〉 2.244 0.562 1.019 0.661 0.661
Sivers |2,−1〉 0.065 0.339 0.423 0.101 0.422
Sivers |2, 0〉 6.515 6.963 16.789 4.085 4.315
Sivers |2, 1〉 2.297 0.457 0.702 0.697 0.500
Sivers |2, 2〉 0.349 0.362 0.571 0.419 0.124
Collins |0, 0〉 0.473 0.252 0.161 0.280 0.256
Collins |1,−1〉 0.340 0.267 0.546 0.619 0.303
Collins |1, 0〉 0.310 1.438 3.035 0.976 2.499
Collins |1, 1〉 0.471 0.125 0.500 0.375 0.193
Collins |2,−2〉 0.240 0.191 0.182 0.412 0.166
Collins |2,−1〉 1.893 0.442 0.375 0.633 0.453
Collins |2, 0〉 0.907 2.554 1.764 1.680 1.873
Collins |2, 1〉 0.559 0.249 0.463 0.263 0.324
Collins |2, 2〉 0.625 0.251 0.665 0.414 0.531

Overall
(
χ2

Mh
/ndf < 9

)
0.875 0.914 1.869 0.875 0.929

Table A.16: Table of χ2/ndf statistics per Sivers and Collins moments for K+K− dihadrons,
Study 2. See caption for Tables A.1 and A.9.
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APPENDIX B

Kinematic Dependence of Systematic Uncertainties

Chapter V documents the estimation of three sources of systematic uncertainty, specif-
ically uncertainty due to smearing and acceptance, year dependence (beam charge depen-
dence), and the hadronic identi�cation procedure. The full comparison of the contributions
towards the total systematic uncertainty is contained in the �gures in this appendix, at least
for all moments for which �nal results are presented.

The results for K+K− dihadrons are given in Figures B.1 and B.2. As the �nal results for
K+K− are only given with respect to the 1D Mh binning, only the 1D binning systematics
are shown in this appendix. The results for pion-pair dihadrons are given in Figures B.3
through B.26. Note, for pion-pair dihadrons, the results for the 1D and all 2D binning choices
are shown on the same plot.

In general, the uncertainty related to the hadronic identi�cation procedure is much
smaller than the other systematic uncertainties in almost every case. The systematic un-
certainty is generally dominated by the smearing/acceptance uncertainty, though there are
many exceptions.
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Figure B.1: Comparison of sources of systematic uncertainty for the Sivers moments for
K+K− dihadrons. The panels are arranged as in Figure 5.2. The upper left
panel is intentionally left blank. The other panels on the top row are, from left
to right, the |0, 0〉, |1, 1〉 and |1,−1〉 Sivers moments. The panels on the second
row are, from left to right, the |2, 2〉, |2, 1〉, |2,−1〉 and |2, 2〉 Sivers moments.
The blue circles are for the uncertainty due to smearing and acceptance, the
red squares for the year dependence, and the purple, upright triangles for the
hadronic identi�cation procedure. The total systematic uncertainty is shown
with black, inverted triangles.
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Figure B.2: Comparison of sources of systematic uncertainty for the Collins moments for
K+K− dihadrons. The markers are the same as in Figure B.1, as are the ar-
rangement of the partial waves. Note, however, these are the Collins moments
while Figure B.1 presents the Sivers moments.
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Smearing/Acceptance
Year dependence
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Figure B.3: Comparison of sources of systematic uncertainty for the |1,−1〉 Sivers moments
for π+π0 dihadrons. The panels are as in Figure 4.10, except the results versus
Mh are given in a new column on the far left. The markers are as in Figure B.1.
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Figure B.4: Comparison of sources of systematic uncertainty for the |1, 1〉 Sivers moments
for π+π0 dihadrons. Markers and panels are as in Figure B.3.
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Figure B.5: Comparison of sources of systematic uncertainty for the |2,−2〉 Sivers moments
for π+π0 dihadrons. Markers and panels are as in Figure B.3.
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Figure B.6: Comparison of sources of systematic uncertainty for the |2, 2〉 Sivers moments
for π+π0 dihadrons. Markers and panels are as in Figure B.3.

136



Smearing/Acceptance
Year dependence
Hadron Identificiation
Total

]2 [GeV/chM
0.4 0.6 0.8 1 1.2

x
-110

y
0.3 0.4 0.5 0.6 0.7 0.8 0.9

z
0.3 0.4 0.5 0.6 0.7 0.8

 [GeV/c]hP
0.2 0.4 0.6 0.8 1 1.2

 <
 0

.4
5 

G
eV

h
0.

27
9 

< 
M

0

0.02

0.04

0.06

0.08

0.1

 <
 0

.6
4 

G
eV

h
0.

45
 <

 M

0

0.02

0.04

0.06

0.08

0.1
 <

 0
.9

 G
eV

h
0.

64
 <

 M

0

0.02

0.04

0.06

0.08

0.1

 <
 1

.6
 G

eV
h

0.
9 

< 
M

0

0.02

0.04

0.06

0.08

0.1

Figure B.7: Comparison of sources of systematic uncertainty for the |1,−1〉 Collins moments
for π+π0 dihadrons. Markers and panels are as in Figure B.3.
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Figure B.8: Comparison of sources of systematic uncertainty for the |1, 1〉 Collins moments
for π+π0 dihadrons. Markers and panels are as in Figure B.3.
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Figure B.9: Comparison of sources of systematic uncertainty for the |2,−2〉 Collins moments
for π+π0 dihadrons. Markers and panels are as in Figure B.3.
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Figure B.10: Comparison of sources of systematic uncertainty for the |2, 2〉 Collins moments
for π+π0 dihadrons. Markers and panels are as in Figure B.3.
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Figure B.11: Comparison of sources of systematic uncertainty for the |1,−1〉 Sivers moments
for π+π− dihadrons. Markers and panels are as in Figure B.3.
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Figure B.12: Comparison of sources of systematic uncertainty for the |1, 1〉 Sivers moments
for π+π− dihadrons. Markers and panels are as in Figure B.3.
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Figure B.13: Comparison of sources of systematic uncertainty for the |2,−2〉 Sivers moments
for π+π− dihadrons. Markers and panels are as in Figure B.3.
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Figure B.14: Comparison of sources of systematic uncertainty for the |2, 2〉 Sivers moments
for π+π− dihadrons. Markers and panels are as in Figure B.3.
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Figure B.15: Comparison of sources of systematic uncertainty for the |1,−1〉 Collins mo-
ments for π+π− dihadrons. Markers and panels are as in Figure B.3.
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Figure B.16: Comparison of sources of systematic uncertainty for the |1, 1〉 Collins moments
for π+π− dihadrons. Markers and panels are as in Figure B.3.
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Figure B.17: Comparison of sources of systematic uncertainty for the |2,−2〉 Collins mo-
ments for π+π− dihadrons. Markers and panels are as in Figure B.3.
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Figure B.18: Comparison of sources of systematic uncertainty for the |2, 2〉 Collins moments
for π+π− dihadrons. Markers and panels are as in Figure B.3.
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Figure B.19: Comparison of sources of systematic uncertainty for the |1,−1〉 Sivers moments
for π−π0 dihadrons. Markers and panels are as in Figure B.3.
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Figure B.20: Comparison of sources of systematic uncertainty for the |1, 1〉 Sivers moments
for π−π0 dihadrons. Markers and panels are as in Figure B.3.
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Figure B.21: Comparison of sources of systematic uncertainty for the |2,−2〉 Sivers moments
for π−π0 dihadrons. Markers and panels are as in Figure B.3.
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Figure B.22: Comparison of sources of systematic uncertainty for the |2, 2〉 Sivers moments
for π−π0 dihadrons. Markers and panels are as in Figure B.3.
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Figure B.23: Comparison of sources of systematic uncertainty for the |1,−1〉 Collins mo-
ments for π−π0 dihadrons. Markers and panels are as in Figure B.3.
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Figure B.24: Comparison of sources of systematic uncertainty for the |1, 1〉 Collins moments
for π−π0 dihadrons. Markers and panels are as in Figure B.3.
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Figure B.25: Comparison of sources of systematic uncertainty for the |2,−2〉 Collins mo-
ments for π−π0 dihadrons. Markers and panels are as in Figure B.3.
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Figure B.26: Comparison of sources of systematic uncertainty for the |2, 2〉 Collins moments
for π−π0 dihadrons. Markers and panels are as in Figure B.3.
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APPENDIX C

Additional Results

The moments of most theoretical interest are presented and discussed in Chapter VI. Ad-
ditional moments, for all dihadron types considered, are provided in this appendix. Specif-
ically, the Collins |1,−1〉 moment and Sivers |1,±1〉 and |2,±2〉 moments for pion-pair
dihadrons are presented in Figures C.1 through C.5. Collins moments for K+K− dihadron
production are also provided in Figure C.6. As described in Chapter VI, these results are
considered stable but their interpretation is more relevant in the context of a global �t rather
than in the discussion of individual plots.
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Figure C.1: Final Results for the Sivers |1,−1〉 moments for pion-pair dihadrons, including
kinematic dependencies. Panels and markers are arranged as in Figure 6.2.
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Figure C.2: Final Results for the Sivers |1, 1〉 moments for pion-pair dihadrons, including
kinematic dependencies. Panels and markers are arranged as in Figure 6.2.
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Figure C.3: Final Results for the Sivers |2,−2〉 moments for pion-pair dihadrons, including
kinematic dependencies. Panels and markers are arranged as in Figure 6.2.
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Figure C.4: Final Results for the Sivers |2, 2〉 moments for pion-pair dihadrons, including
kinematic dependencies. Panels and markers are arranged as in Figure 6.2.
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Figure C.5: Final Results for the Collins |1,−1〉 moments for pion-pair dihadrons, including
kinematic dependencies. Panels and markers are arranged as in Figure 6.2.
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Figure C.6: Final Results versus Mh for select Collins moments for K+K− dihadrons. The
panels are, top row, left to right, for |0, 0〉, and |1,±1〉 partial waves, and the
bottom panels are, left to right, for |2,±1〉 and |2,±2〉 partial waves. Filled
circles indicate m ≥ 0, and open circles m < 0.
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