
UNIVERSITÄT HAMBURG
FACHBEREICH PHYSIK

An experimental Test of

Newton’s Law of Gravitation

for small Accelerations

Dissertation

zur Erlangung des Doktorgrades

des Fachbereichs Physik

der Universität Hamburg

vorgelegt von

Dipl.-Phys. Sven Schubert

aus Oschatz

Hamburg

2011



Gutachter der Dissertation: Prof. Dr. Günter Sigl

Prof. Dr. Hinrich Meyer

Gutachter der Disputation: Prof. Dr. Günter Sigl

Prof. Dr. Dieter Horns

Datum der Disputation: 12. Oktober 2011

Vorsitzender des Prüfungsausschusses: Prof. Dr. Dieter Horns

Vorsitzender des Promotionsausschusses: Prof. Dr. Peter H. Hauschildt

Leiterin des Fachbereichs Physik: Prof. Dr. Daniela Pfannkuche

Dekan der MIN-Fakultät: Prof. Dr. Heinrich Graener



Abstract

The experiment presented in this thesis has been designed to test Newton’s
law of gravitation in the limit of small accelerations caused by weak gravitational
forces. It is located at DESY, Hamburg, and is a modification of an experiment
that was carried out in Wuppertal, Germany, until 2002 in order to measure the
gravitational constant G. The idea of testing Newton’s law in the case of small
acclerations emerged from the question whether the flat rotation curves of spiral
galaxies can be traced back to Dark Matter or to a law of gravitation that deviates
from Newton on cosmic scales like e.g. MOND (Modified Newtonian Dynamics).

The core of this experiment is a microwave resonator which is formed by two
spherical concave mirrors that are suspended as pendulums. Masses between 1
and 9 kg symmetrically change their distance to the mirrors from far to near
positions. Due to the increased gravitational force the mirrors are pulled apart
and the length of the resonator increases. This causes a shift of the resonance
frequency which can be translated into a shift of the mirror distance. The small
masses are sources of weak gravitational forces and cause accelerations on the
mirrors of about 10−10 m/s2. These forces are comparable to those between stars
on cosmic scales and the accelerations are in the vicinity of the characteristic
acceleration of MOND a0 ≈ 1.2 ·10−10 m/s2, where deviations from Newton’s law
are expected. Thus Newton’s law could be directly checked for correctness under
these conditions.

First measurements show that due to the sensitivity of this experiment many
systematic influences have to be accounted for in order to get consistent results.
Newton’s law has been confirmed with an accuracy of 3%. MOND has also been
checked. The interpolation function presented in [Bek05] respectively [Cap09]
can be excluded. In order to be able to distinguish Newton from MOND with
other interpolation functions the accuracy of the experiment has to be improved.



Zusammenfassung

Das in dieser Arbeit vorgestellte Experiment dient dazu, das Newtonsche Gra-
vitationsgesetz im Grenzfall kleiner, gravitationsbedingter Beschleunigungen zu
überprüfen. Es wurde am DESY in Hamburg aufgebaut und ist aus einem Ex-
periment hervorgegangen, mit dem in Wuppertal die Gravitationskonstante G
gemessen wurde. Hintergrund ist die Frage, ob die nach außen hin abflachenden
Rotationskurven von Spiralgalaxien auf Dunkle Materie zurückzuführen sind oder
auf ein Gravitationsgesetz, dass im Bereich kosmischer Skalen vom Newtonschen
Gesetz abweicht wie z.B. MOND (Modified Newtionian Dynamics).

Herzstück des Experiments ist ein Mikrowellenresonator, der aus zwei sphäri-
schen Hohlspiegeln besteht. Diese hängen sich als Pendel gegenüber. Massen zwi-
schen 1 und 9 kg werden symmetrisch von einer entfernten Stellung an die Spie-
gel heranbewegt. Die von den Massen verursachte Gravitationskraft vergrößert
sich und die Spiegel werden auseinander gezogen. Dadurch verschiebt sich die
Resonanzfrequenz. Diese Frequenzverschiebung lässt sich in eine Abstandsände-
rung der Spiegel umrechnen. Die kleinen Massen sind Quellen schwacher Gra-
vitationsfelder und verursachen Beschleunigungen von etwa 10−10 m/s2 auf die
Spiegel. Dies liegt im Bereich der für MOND charakteristischen Beschleunigung
a0 ≈ 1.2 · 10−10 m/s2 und ist vergleichbar mit den Beschleunigungen, die auf
kosmischen Skalen vorherrschen und wo Abweichungen vom Newtonschen Ge-
setz erwartet werden. Das Newtonsche Gesetz kann somit direkt unter diesen
Bedingungen geprüft werden.

Erste Messungen zeigen, dass das aufgrund der Empfindlichkeit des Experi-
ments viele systematische Einflüsse berücksichtigt werden müssen, um konsisten-
te Ergebnisse zu erhalten. Das Newtonsche Gesetz wurde mit einer Genauigkeit
von 3% bestätigt. MOND wurde ebenfalls geprüft. Die Interpolationsfunktion
aus [Bek05] bzw. [Cap09] kann ausgeschlossen werden. Um jedoch das Newton-
sche Gesetz von MOND mit anderen Interpolationsfunktionen unterscheiden zu
können, muss die Genauigkeit des Experiments erhöht werden.
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Chapter 1

Motivation

In this chapter the motivation to test the law of gravitation at small acclerations
is explained. The sections 1.1 to 1.3 are dedicated to develop the theoretical
background that is necessary to understand the experiment. In Chap. 1.4 the
process of measurement is discussed which, for the experiment, leads to important
restrictions.

1.1 MOND

In [Mil83] M. Milgrom proposed an alternative theory of gravitation, called
MOND (Modified Newtonian Dynamics) in order to explain large scale dynam-
ics, like e.g. the motion of the stars within a galaxy (s.a. [Mil01] [Sca06] and
[Bek06]). In contrast to the introduction of Dark Matter, Milgrom has suggested
to alter the law of motion in a way that it describes galaxy dynamics without
the need of extra matter. Unlike Newton’s law of gravitation with its Poisson
equation

~∇ · ~∇Φ(~r) = 4πG ρ(~r) (1.1)

with Φ(~r) as the gravitational potential, ρ(~r) as the matter density and G as the
gravitational constant, the modified law of gravitation is governed by the field
equation

~∇ ·
[
µ(|~∇ΦM(~r)|/a0) ~∇ΦM(~r)

]
= 4πG ρ(~r) (1.2)

with ΦM(~r) as the modified gravitational potential, a0 ≈ 1.2 ·10−10m/s2 as a new
constant and the interpolation function µ(x) which has to satisfy the boundary
conditions

µ(x) ≈

{
1 for x � 1

x for x � 1
(1.3)

with x = a/a0 and a = −~∇ΦM . Apart from the boundary conditions (1.3), the
interpolation function µ(x) has to be determined experimentally. Eq. (1.2) and
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CHAPTER 1. MOTIVATION 4

Figure 1.1: example rotation curves of the gas-dominated galaxy NGC 1560, i.e. the
rotation velocity v plotted against the distance R from the center of the galaxy: Left:
Three-parameter dark-matter halo fit (solid curve). The fit parameters are the mass-
to-luminosity-ratio (M/L), the halo core radius and the halo asymptotic velocity. Also
shown are the rotation curve for stellar (dashed), gas (dotted) and dark halo (dash-
dotted). Right: MOND fits: one-parameter fit (dotted) with the M/L ratio as the
fit parameter and two-parameter fit (solid curve) with the M/L ratio and the distance
from the center of the galaxy. From [Sca06]

Figure 1.2: Tully-Fisher relation: Total baryonic mass Mb of disc galaxies plotted
against the asymptotic rotational speed vf . The upper line is the prediction of standard
cosmology ΛCDM. The lower line is predicted by MOND. From [McG11]
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(1.3) imply that Newton’s law will only be a good approximation if |~∇Φ(~r)| � a0

and therefore a0 has the meaning of a threshold acceleration. Since MOND has
been derived to explain the observations, it produces the flat rotation curves of
spiral galaxies in a natural way (s. Fig. 1.1). As a non-trivial prediction it leads
to the Tully-Fisher relation

Mb ∝ vβ
f , β ≈ 3.0− 4.2 (1.4)

with Mb as the baryonic mass of a spiral galaxy and vf its asymptotic rotation
speed (s. Fig. 1.2). This relation was empirically found by [Tul77].

Finally Milgrom pointed out the numerical relation

a0 ≈ cH0 (1.5)

which, according to him, suggests some deep connection between relativistic cos-
mology and the threshold acceleration a0. If there is more behind that relation
than merely a coincidence, the modifications that extend standard cosmology due
to MOND may already be contained in standard cosmology itself since a0 could
be calculated by using only the constants c and the Hubble constant H0.

1.2 Interpolation Functions

According to (1.3), MOND is undefined between the boundary conditions since
(1.2) does not contain a rule to determine the interpolation function µ(x) that
fulfills the conditions (1.3).

To narrow down the choice, first of all one has to demand that MOND, en-
dowed with a specific interpolation function, has to be in accordance with the
astrophysical observations. Interpolation functions that have been determined in
this way are

µ(x) = x/
√

1 + x2 (1.6)

and
µ(x) = x/(1 + x) (1.7)

with x = a/a0 and a = −~∇ΦM the effective acceleration due to the modified grav-
itational potential ΦM . The interpolation function (1.6) was primarily proposed
by [Mil83] and is according to [Sca06] the most used function in the literature.
The function (1.7) was mentioned in [Fam05].

However MOND defined by Eq. (1.2) and (1.3), with an interpolation function
like (1.6) or (1.7), still gives rise to some questions. It is non-relativistic and above
all, purely phenomenological. A relativistic generalization named TeVeS 1 has
been proposed by [Bek05], extending general relativity with addional vector and

1TeVeS = abbr. for Tensor Vector Scalar
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scalar fields. In the non-relativistic limit, TeVeS yields an interpolation function
µ(x) that strongly depends on these additional fields. A linearization in the case
of spherically symmetric systems results in

µ(x) =

√
1 + 4x− 1√
1 + 4x + 1

(1.8)

As shown in [Fam05], this interpolation function is not consistent with astrophys-
ical observations concerning the Milky Way.

An alternative way that could result in a fundamental theory behaving like
MOND in the non-relativistic case has been proposed by [Li10]. They adapted
the idea of [Ver10] who assumed that each gravitational system within a specific
volume is equivalent to a system of bits on the boundary of this volume. As
a result of that kind of a holographic principle the gravitational force can be
interpreted as an entropic force that only emerges at macroscopic scales. In
addition [Li10] described the excitations of the bits on the boundary by a one
dimensional Debye model. As a consequence of this, the law of gravitation will
have to be modified in a way that within weak gravitational potentials it leads
to (1.2) with the interpolation function

µ(x) =
6

π2
x

∫ π2

6x

0

z

ez − 1
dz (1.9)

This approach gives also rise to the relation (1.5). Further developments con-
nected with entropic gravitation are mentioned e.g. in [Paz11].

A modified, still non-relativistic gravitational theory that is endowed with a
broken scale invariance due to the appearance of a mass-length scale has been
proposed by [Men10]. This theory results in MOND with the interpolation func-
tion

µ(x) = y
1− y3

1− y4
(1.10)

where y = y(x) and has to be calculated by solving

x = y
1− y4

1− y3
(1.11)

for y.
In [Cap09], an f(R)-gravity model is studied that in the case of a weak field

approximation is equivalent to MOND with the interpolation function

µ(x) =
1 + 2x−

√
1 + 4x

2x
(1.12)

which is identical to (1.8).
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1.3 MOND vs. Dark Matter

In contrast to MOND, the Dark Matter paradigm assumes that Newton’s law of
gravitation is valid. To be nonetheless in accord with the astrophysical observa-
tions, extra matter has to be introduced which only interacts gravitationally with
ordinary matter. Since such extra matter has not been observed yet, it is called
Dark Matter. It is assumed that within most of the galaxies the Dark Matter
is distributed such that it encloses the galaxy like a halo. This idea was first
proposed by [Zwi33].

Now the crucial question is: Has the law of gravitation to be modified or is
Dark Matter the correct way? Both ways have their strong and weak points in
explaining large scale dynamics. On the one hand MOND can not explain the
dynamics within galaxy clusters as long as the distribution of hydrogen within the
universe is estimated correctly. On the other hand Newton’s law with Dark Mat-
ter fails to describe the motion of binary stars that are separated beyond 7000 AU
so that the mutual accelerations are around a0 (see [Her11]). The Tully-Fisher
relation can not be reproduced as well (see Fig. 1.2). A comparison of both
approaches can be found e.g. in [Bek06] and [Mil11]. Thus a lab-based exper-
iment that can decide between Newton’s law and MOND would be a valuable
contribution to this debate.

1.4 Restrictions concerning Measurements

According to [Mil94], modified gravitation is not the only way of interpreting Eq.
(1.2). It is also possible to consider MOND to be modified inertia. This approach
leads to a non-local theory where the interpolation function µ(x) is not fixed but
depends on the trajectory of the particle respectively on the experimental setup.
That complicates the interpretation of measurements. However [Bek06] showed
that in the case of interpreting MOND as modified inertia, the formula (1.2) does
not conserve momentum, angular momentum and energy. Therefore modified
intertia has to be rejected and Eq. (1.2) has to be read as modified gravitation.

An ambiguity still remains: Does |~∇Φ(~r)| ≈ a0 mean that the acceleration due
to the gravitational potential Φ(~r) has to be weak to observe any deviation from
Newton’s law? Or do only the relative accelerations need to be weak? The latter
would mean that although the experiment is earthbound and hence is exposed
to strong gravitational accelerations compared to a0 we could measure deviations
from Newton’s law if we studied small, gravitational accelerations between two
bodies that accelerate one another perpendicular to the acceleration field of the
earth. Since the experiment described in Chap. 2 is earthbound, it could only
measure deviations corresponding to MOND in the latter case. If however abso-
lute accelerations have to be weak, the measurement of that deviations will be
beyond our scope and will require an experiment carried out in space.



Chapter 2

The Experiment

In Chap. 2.1 an overview is given on the experiment and on how the measure-
ment is carried out. The subsequent sections 2.2 to 2.8 are dedicated to explain
important parts of the experiment in detail.

2.1 Overview

Fig. 2.1 shows a simplified illustration of the experiment. Two spherical concave
mirrors are suspended as pendulums, with a pendulum length of about 3 m.
Face to face with each other and 24 cm apart, both mirrors form a microwave
resonator (see Chap. 2.2.1). Field masses M, placed at the positons A, are
moved to the inner positions B. Then the mirror pendulums are exposed to a
higher gravitational force due to the decreased distance of the field masses. As
a result the mirrors are pulled apart and the length of the resonator increases.
This causes a shift of the resonance frequency of the resonator. By measuring
the resonance frequency before and after the shift of the field masses (see Chap.
2.5), the frequency shift can be determined. Translating this shift back into a
change of the mirror distance (see Chap. 2.2.2), the gravitational law can be
tested. After moving the field masses back to position A, the whole procedure
of measuring the change of the mirror distance is repeated until enough data
are collected in order to be able to test the law of gravitation with the required
precision.

Field masses between 1 and 9 kg are used. Such masses cause the mirrors
to change their distance by 3 to 10 nm (see Chap. 3). If field masses of 3
kg or lighter are used, the mirror pendulums will be exposed to gravitational
accelerations comparable to a0, such that if MOND was correct a deviation from
Newton would be observable.

To reduce disturbances caused by Brownian motion of air particles and varia-
tions of air pressure and temperature, the pendulums are placed inside a cryostat
that serves as a vacuum vessel. The vacuum system is described in detail in Chap.

9
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Figure 2.1: Simplified illustration of the experiment: Two mirror pendulums will be
pulled apart due to gravitation if field masses on both sides change their position from
A to B.

2.8. Furthermore two plumb-lines are suspended from the lid of the cryostat and
point onto the granite blocks in order to determine the position of the cryostat
relative to the field masses.

Apart from the lighter field masses and the improved measurement electronics,
this experiment is similar to the one carried out in Wuppertal until 2002 to
measure the gravitational constant G (see [Sch92], [Wal95], [Sch99], [Kle02] and
[Kle99]). There, in order to maximize the signal-to-noise ratio, field masses of
about 500 kg were used.

2.2 The Resonator

After the detailed description of the resonator in Chap. 2.2.1, it is shown how its
resonance modes can be calculated and how a shift of the resonance frequency
caused by the repositioning of the field masses can be translated back into the
change of the mirror distance (see Chap. 2.2.2). The final part, Chap. 2.2.3,
is dedicated to the sensitivity of the resonator in respect of seismically induced
excitation.

2.2.1 Detailed Description

Fig. 2.2 shows an illustration of the resonator. The resonator consists of two
spherical concave mirrors. Each mirror is made of copper, has a curvature radius
of 58 cm and has an aluminum coating. The mass of one mirror is about 3.8
kg. The center of mass is at the center of the concave surface. Each mirror is
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Figure 2.2: Simplified illustration of the two mirror pendulums that form a microwave
resonator. Between the mirrors a mode filter is suspended as a pendulum in order to
suppress high order transversal modes and to close the resonator. Magnet packets are
mounted on a table under the mirrors in order to damp their oscillations.

suspended by two tungsten wire straps1 that are fixed at a plate mounted under
the lid of the cryostat, such that the pendulum length is about 2.7 m. The plate is
made of zerodur, a material with a low thermal expansion coefficient. Due to that
kind of suspension the distance of the mirrors is insensitive to small tilts of the
frame caused by microseismics or temperature-induced deformations of the frame
(see [Kle02]). A microwave, generated with an HP 8340b frequency generator,
is fed into the resonator via a wave guide on the left side of the resonator. The
wave passes the left mirror through an axial hole that is filled with a dielectricum.
Behind the right mirror a wave guide catches the part of the wave that leaves
the resonator through the axial hole of the right mirror. A diode2 transforms
the power of this transmitted wave into a DC voltage proportional to that power.
This signal is detected. Dependent on the distance of the mirrors, standing waves
occur between the mirrors at specific frequencies, i.e. resonances emerge. In that
case the power of the transmitted wave and therefore the measured DC voltage
becomes maximal. Two other diodes are installed to measure the power of the
ingoing wave as well as the wave that is reflected from the left mirror.

To optimize the coupling between the wave guides and the resonator, the wave
guides can be adjusted using stepper motors. To minimize the electromagnetic

1diameter of the wires ≈ 200µm
2Millitech DXP-42
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Figure 2.3: Simplified illustration of the two mirror pendulums that form a microwave
resonator. They are suspended under the lid of the cryostat. The mode filter, which
closes the resonator, is not shown. The movable table with the magnet packets is
connected with a table that is attached to the lid. This attachment is not shown.
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loss in case of a resonance, the resonator is closed with a hollow cylinder that also
serves as a mode filter and is not mechanically connected with the mirrors. A
more detailed descripton of the resonator, especially of the coupling mechanism,
can be found in [Kle02], [Sch99] and [Wal95]. The microwave circuit is explained
in detail in [Sch08] and [Kle02].

2.2.2 Mode Spectrum and Resonator Geometry

Assuming b as the distance between the centers of mass of both mirrors, according
to [Kle02] the length of the resonator is also given by b. With R as the curvature
radius of the mirrors, the possible resonance frequencies can be calculated by

fR =
c

2b

[
q +

n

π
arccos(1− b/R) + N (±) c

8π2 R fR

+O
(
(kΩ)−6

)]
(2.1)

with c as the speed of light in vacuum, k the wave number of the microwave and
Ω the beam waist of the resonance mode given by

Ω =

√
b

k
·
(

2R

b
− 1

)1/4

(2.2)

Furthermore it is

n = 2p + m + 1 (2.3)

N (±) = 2p2 + 2pm−m2 + 2p− 2 + m± 4m

with p, m and q as the number of the radial, azimutal and axial knots of the
resonance mode. As Eq. (2.1) shows, a change in the distance b + ∆b of the
mirrors causes a change of fR + ∆fR. If, like in our case, ∆b � b a Taylor
expansion of (2.1) leads to

∆b = β ·∆fR (2.4)

with

β = − b

fR

(
1− n c

2π fR

√
1

2 R b− b2
+O

(
(kΩ)−6

))−1

(2.5)

where β ≈ −10 nm/kHz, dependent on the mode that is used. Both b and R can
be calculated if the pattern of resonance modes of the resonator is known, i.e. if
the resonance frequencies are measured and the knot parameters p, m, q and N (±)

are assigned to each of these frequencies. Such a method is explained in [Sch92]
and [Kle02]. In [Sch08], the software hexenwerk was written in order to assign
the knot parameters automatically. As a cross check the curvature radius R of
both mirrors can be measured independently. A method that allows to calculate
b without the knowledge of the knot parameters is presented in Chap. 7.2.
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Figure 2.4: Transition function Hb(ω), plotted against the ratio ω/ω0: left: with
δω0 = 1 · 10−3s−1 and the difference δγ of the damping constants of both pendulums
as a parameter, right: with δγ = 1 · 10−3s−1 and the difference δω0 of the natural
frequencies of both pendulums as a parameter.

2.2.3 Transition Characteristics

Both mirrors are suspended as pendulums because that makes the mirror dis-
tance, b, insensitive to seismically induced motion of the frame. To study this
effect in detail, it is assumed that a mirror pendulum is excited by an external
periodic force of frequency ω and amplitude Sext(ω).

The equation of the i-th mirror pendulum excited by an external periodic
force will be given by

1

ω2
0i

ϕ̈i +
2γi

ω2
0i

ϕ̇i + ϕi = Sext(ω)eiωt (2.6)

with ω0i
as the natural frequency of that pendulum and γi as its damping con-

stant. Due to that excitation the mirror distance b oscillates with the amplitude
Sb(ω). The transition function is then given by

Hb (ω) =
Sb(ω)

Sext(ω)
=

g

ω2
01

H1(ω) eiφ1(ω) − g

ω2
02

H2(ω) eiφ2(ω) (2.7)
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with g = 9.81 m/s2 and

Hi(ω) =
ϕi(ω)

Sext(ω)
=

ω2
0i√

(ω2 − ω2
0i

)2 + (ωγi)2
(2.8)

φi(ω) = arctan

(
2 γi ω

ω2 − ω2
0i

)
(2.9)

The transition function (2.7), plotted in Fig. 2.4, shows that the two mirrors
form a bandpass filter. Fig. 2.4 shows that seismics are the better suppressed the
higher the synchronicity of the mirror pendulums is. If ω01 = ω02 and γ1 = γ2,
seismic excitations of the frame would not be transfered to the mirror distance,
b, at all.

As shown in [Sch08] and [Gos04], the transition characteristics are also modi-
fied due to the finite deflection of the mirror pendulums, the nonvanishing anelas-
ticity of the pendulum wires and the additional damping of the pendulums that
follows from these effects. Compared to the effects mentioned above, this is
neglegible, especially if the accuracy of our measurement is taken into account.

2.3 The Magnetic Brakes

The sensitivity of the mirror distance, b, to seismic excitations can be minimized
using adjustable magnetic brakes. With these brakes the damping constant of
both mirror pendulums can be adjusted separately to synchronize their oscilla-
tions.

The magnetic brake consists of two magnet packets mounted on a table that
can be moved up and down, relative to the mirrors (see Fig. 2.2 and 2.3). The
table sits inside a frame that is attached to the lid of the cryostat from below,
such that the table hangs under the mirrors and is not mechanically connected
with them, except via the lid (see [Sch92], [Wal95], [Sch99] and [Kle02]). The
left magnet packet is fixed on that table. The right packet can be additionally
moved relatively to the left packet, in order to adjust the damping of the mirror
pendulums separately. Both the table and the right packet are moved via stepper
motors controlled by the software FullThrottle. Since the position of the
magnet packets cannot be reproducibly measured via the internal counters of the
stepper motors, two slide resistances are installed to measure the positions of
both magnet packets relative to the mirrors. One resistance records the position
of the table relative to the mirrors. The other one records the position of the
movable magnet packet relative to the table.

These brakes can only damp oscillations of the mirrors relative to the table
at which the magnet packets are mounted. Since the table can be also treated as
a pendulum, which is excited to oscillate due to seismics, the transition function
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material no. weight [kg] diameter [mm]

plastic 1 1, 001 127, 136
2 1, 001 127, 133

granite 1 2, 926 127, 136
2 2, 917 127, 133

marble 1 2, 925 127, 186
2 2, 924 127, 205

brass 1 9, 020 127, 0
2 9, 020 127, 0

Table 2.1: Material, diameter and weight of the homogeneous spheres that are used
as field masses. The uncertainty of the diameter is given by 7µm, that of the weight
by 0, 1 g.

(2.7) will change to

H2
b (ω) =

ω4
0 + (ωγ)2 ·H2

M(ω)

(ω2 − ω2
0)

2 + (ωγ)2
(2.10)

with ω0 the natural frequency of the mirrors, γ the damping due to the brakes
and HM(ω) the transition function of the brakes. More details about that can
be found in [Sch92]. Furthermore the oscillating table excites the attachment at
which the mirrors are suspended. Since the natural frequency of the table is much
higher than the resonance frequency of the mirrors, this effect can be separated
and is therefore negligible.

2.4 The Field Masses

The field masses are solid homogeneous spheres of different material and different
mass but with the same diameter (s. Tab. 2.1). On each side of the experiment
one sphere is placed on a guide rail that is placed itself on a granite block. As
an expample the right hand rail is illustrated in Fig. 2.5. The spheres will move
between the positions A and B automatically when the rail moves up or down
at its far end C. This movement is done via stepper motors. If the far end of
the rails moves up the spheres will roll from the far to the near position. If the
rails move down, the spheres will roll back to the far position. This movement
needs about 2 minutes. Both at A and B, stoppers determine the position of the
spheres. Before and after a measurement, these stoppers can be moved manually
to adjust these positions.

Like in the case of the magnetic brakes, the stepper motors of both guide
rails are also controlled via FullThrottle. To move the masses automatically
during the measurement, the measurement software EagleEye communicates
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Figure 2.5: Simplified illustration of the right hand guide rail with a sphere placed
at the near position B. The far light barriers are indicated as LA1 and LA2, the near
ones as LB1 and LB2. At position C a stepper motor can move the guide rail up and
down.

with FullThrottle remotely via TCP/IP, such that the spheres change their
positions between A and B with a period of 40 minutes. To assure that the
spheres are always at a well-defined position, i.e. touch the designated stoppers,
light barriers are used: The spheres will be at the positions A if the light barriers
LA1 are open whereas LA2 are closed. The same would be true for the positions
B and the barriers LB1 and LB2. If an error occures during the movement of
the spheres, EagleEye will cancel the measurement and will send the TCP/IP
communication report via e-mail to all users that want to be informed about that
error.

2.5 Measurement of the Resonance Frequency

To determine the change of the mirror distance, ∆b, according to Eq. (2.4) the
shift of the resonance frequency, ∆fR, has to be measured. To get ∆fR, the
resonance frequency has to be found before and after the shifting of the field
masses. Finding the resonance frequency of the cavity is done in the following
way: If a resonance is at fR and if a microwave with frequency f around fR is fed
into the cavity and the transmitted power is detected using a DC voltage diode,
one will measure the voltage

U(f) = Umax ·

[
1 + 4

(
f − fR

f1/2

)2
]−1

(2.11)
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if Umax is the maximal amplitude of the resonance and f1/2 its width. The max-
imal amplitude depends on the power of the wave that is fed into the resonator.
It also depends on the coupling. Due to the setup the coupling is maximal for
axial modes, i.e. modes with p = m = 0. The ratio Umax/f1/2, as well as how
the shape of the measured resonance resembles the profile Eq. (2.11), depends
on the quality of the cavity. The quality is the higher the lower the energy loss
is within the resonator. More details about quality issues can be read in [Sch92]
or [Kle02].

To measure fR, first of all a resonance frequency f ∗R is guessed. Symmetrically
around f ∗R an interval [fl, fh] is choosen such that its width fh− fl is of the order
of the guessed width f ∗1/2 of the resonance and that fR can be found within [fl, fh].
Beside fR, other resonance modes must not be within this interval. To guarantee
this, a membrane is fixed inside the mode filter that is suspended between the
mirrors. This suppresses the resonance modes of high transversal order. To find
the real resonance frequency fR, a number of equidistant frequencies fk(k ∈ N)
within [fl, fh] are generated by the frequency generator. For each fk the amplitude
Uk of the transmitted wave is measured with the diode. Then the values (fk, Uk)
are fitted to the resonance profile (2.11) to get the parameters of the resonance
fR, f1/2 and Umax. Using the χ2 of this fit, one can check, if Eq. (2.11) is adequate
to describe the resonance. If this is not the case, the deviation of the resonance
from Eq. (2.11) has to be determined and the fit results have to be corrected. In
Chap. 6.4 it is explained how this can be done.

In an iteration, the estimated resonance frequency f ∗R and the estimated width
f ∗1/2, the fitted parameters of the previous fit are used. For the first measurement,
f ∗R is read from the generator. Thus before the measurement starts, the resonance
mode has to be found manually via an oscilloscope. The width, f ∗1/2, of that
resonance can also be guessed using the oscilloscope.

Such a resonance measurement, i.e. the sweep and the subsequent fit, is
automatically done by the software EagleEye which also writes the measured
data to disk. The measurement period can be arbitrarily chosen by the user, but
has to be at least 0.5 s due to hardware constraints.

2.6 Environmental Measurements

Since the mirror distance is measured with high precision, all external influences
that spoil the signal are measured with high precision as well. To extract the
signal from the background caused by these influences, one has to understand
how these influences affect the signal. Therefore a number of environmental
parameters are recorded during the measurement.

First of all the temperature is measured at six different positions using 4-wire
RTD circuits: three sensors are placed at the three supporting points where the
vacuum containter is fixed within the steel frame. One sensor is placed within the
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Channel No. Measured Quantity

105 temperature inside the DVM that measures
the amplitude of the resonance

106 temperature inside the DVM that is
connected to the environment channels

107 auxiliary channel, temperature lid
108 temperature hall
109 temperature tent
110 ambient pressure
111 tilt lid, along the axis
112 tilt lid, perpendicular to the axis
113 tilt frame, along the axis
114 tilt frame, perpendicular to the axis
115 temperature north
116 temperature south
117 temperature west
118 voltage, pre vacuum
119 voltage, high vacuum

Table 2.2: Assignment of environment channels that are connected to the KE2701
with the Model 7700 switch channel module.

temperature-insulated tent that encloses the whole experiment. Another sensor
measures the temperature of the hall wherein the tent is placed. Furthermore
a sensor measures the temperature of the DVM that is connected with the DC
voltage diode that measures the power of the microwave transmitted through the
resonator. Finally a sensor measures the temperature inside the DVM that is
connected to the environment sensors described in this chapter. Inside the tent,
also the air pressure is measured.

Additionally the tilt is measured on the lid and on the steel frame, in each
case both along and perpendicular to the symmetry axis of the resonator. As tilt
sensors, single axis electrolytic sensors of type Spectron RG-33T are used. Tem-
perature, air pressure and tilt sensors are connected with a multi-channel DVM
of type Keithley KE2701 extended with a Model 7700 switch channel module.
The detailed assignment of that channels can be found in Tab. 2.2. The measure-
ment is conducted by the software Envy, that has been written in LabVIEW.
Finally the seismic motion is measured with a Güralp CMG-T30-0038 broadband
seismometer. This data acquisition is done with a separate PC.
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2.7 GPS Synchronization

According to [Sch92], the frequency of the microwave that is generated by the
HP8340b has an accuracy of 4 Hz. Furthermore the frequency drifts slowly due to
deterioration of the internal quartz oscillator. To improve the longterm stability
of the generated frequency, a GPS receiver is connected to the HP8340b in order
to be used as an external reference clock. As a reference signal it generates a
periodic rectangular 10 MHz signal that is fed into the HP8340b.

2.8 The Vacuum System

The mirror pendulums are placed in an evacuated cryostat to avoid noise from
thermal and convection effects of the surrounding air. According to [Sch92] a
pressure of 10−5 mbar is required inside the cryostat.

To obtain this vacuum, first of all a rotary vane pump is used to reach a
prevacuum of 10−2 mbar. A turbomolecular pump reduces this vacuum to 10−5

mbar. To keep that vacuum during the measurement, both vacuum pumps run
all the time. Since they are connected to the lid of the cryostat via flexible tubes,
the transmission of their vibrations to the mirror pendulums is suppressed as
long as the frame is adjusted properly. A noise measurement that was done after
switching off the vacuum pumps showed no difference between that measurement
and a measurement with running pumps. Thus the vacuum pumps do not increase
the displacement noise of the mirror distance.

Both the prevacuum and the high-vacuum are measured. To get the pressure
of the prevacuum a thermal conductivity vacuum gauge is used, and a Penning
gas discharge tube measures the pressure of the high-vacuum.



Chapter 3

Calculation of the expected
Signal

This chapter is dedicated to the calculation of the change of the mirror distance,
∆b, that is caused by the shifting of the field masses described in Chap. 2.1. This
calculation is done both for Newton’s law and for MOND with the interpolation
functions proposed in 1.2.

3.1 Calculation of the expected Distance Shift

First of all the gravitational force to which a mirror is exposed due to one sphere
is computed. To do this, the sphere that serves as the field mass is assumed
to have volume V and mass density ρ(~r) and that it is placed at the center
of the coordinate system. According to the field equation (1.2) of MOND and

~a(~r) = −~∇Φ(~r), the sphere is the source of an acceleration field ~a(~r) given by

~∇ · [µ (|~a(~r)|/a0) ~a(~r)] = 4πG · ρ(~r) (3.1)

Since the mass density of the field masses, ρ(~r), is approximately spherically
symmetric, the integration of Eq. (3.1) yields∫

S

µ (|~a(~r)|/a0) ~a(~r) d~S = 4πG ·M (3.2)

The interpolation function µ(|~a′(~r)|/a0) modifies the acceleration according to
the Newtionan case only by rescaling it without changing its direction. Therefore
the integral of Eq. (3.2) can be solved like in the Newtonian case. This results in

µ(a(r)/a0) a(r) = aN(r), aN(r) = G
M

r2
(3.3)

21
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Figure 3.1: Schematic illustration of repositioning the field masses from the far po-
sition A to the near position B. Compare in this context the description provided in
Chap. 2.1 and Fig. 2.1.

with aN the acceleration according to Newton’s law of gravitation. Eq. (3.3)
has to be solved for a(r) dependent on the interpolation function. The proce-
dure of calculating a(r) is explained in Chap. 3.2. Having calculated a(r), the
acceleration field ~a(~r) due to the sphere is given by

~a(~r) = −a(r)
~r

r
(3.4)

After that it is assumed that a mirror with volume Vmirr and mass distribution
ρmirr(~r) is placed within this acceleration field with its center of mass given by
~rCM. Then the force on the mirror due to the sphere can be calculated by

~F (~rCM) =

∫
Vmirr(~rCM)

ρmirr(~r, ~rCM)~a(~r) d3~r (3.5)

In case of the experiment, the mirror is a pendulum with natural frequency ω0.
Then the force ~F (~rCM) causes a deflection ∆~b of the pendulum of

∆~b =
~ares(~rCM)

ω2
0

, ~ares =
~F (~rCM)

Mmirr

(3.6)

with Mmirr as the mass of the mirror. Finally one has to calculate the change of
the mirror distance, ∆b, caused by moving the field masses from the far to the
near positions, as described in Chap. 2.1 and illustrated in Fig. 3.1. Moving the
field masses that way causes a change of the mirror distance along the symmetry
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axis of the resonator given by

∆b =
1

ω2
0

∑
i∈{L,R}

(
ares(ri,near)−ares(ri,near + b0)−ares(ri,far)+ares(ri,far + b0)

)
(3.7)

with ares(r) as the projection of ~ares(r) onto the symmetry axis. In the case of a
symmetric movement of the spheres one has

rL,near = rR,near = rnear

rL,far = rR,far = rfar

and Eq. (3.7) simplifies to

∆b =
2

ω2
0

(
ares(rnear)− ares(rnear + b0)− ares(rfar) + ares(rfar + b0)

)
(3.8)

The expected results, i.e. the change of the mirror distance, ∆b, depending
on the position and the mass of the field masses, are discussed in detail in Chap.
3.3.

3.2 Calculation of modified Accelerations

If both the acceleration aN = GM/r2 according to Newton’s law and the interpo-
lation function µ(x) are given, the modified acceleration a(r) can be calculated
by solving Eq. (3.3) for a(r).

In the case of the interpolation functions (1.6), (1.7), (1.8) and (1.10) the
accelerations a(r) can be calculated by solving analytically Eq. (3.3) for a(r).
With a0 as the threshold acceleration due to MOND, the interpolation function
(1.6) leads to

a(r) = aN ·

√√√√1

2
+

1

2
·

√
1 +

(
2a0

aN

)2

(3.9)

where (1.7) results in

a(r) =
aN

2
+

√(aN

2

)2

+ aNa0 (3.10)

The function (1.12) respectively (1.8) are associated with

a(r) = aN +
√

aNa0 (3.11)
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According to [Men10], the interpolation function (1.10) is associated with

a(r) = a0y
1− y4

1− y3
= a0y

1 + y + y2 + y3

1 + y + y2
, y =

√
aN/a0 (3.12)

In the case of (1.9), the modified acceleration a(r) as well as the interpolation
function µ(x) itself have be to calculated numerically. Since the integrand of (1.9)
becomes singular at x = 0, QAGS1 is used as an algorithm which should be able to
cope with such singularities. However by virtue of all these complications, it has
to be verified that µ(x) is integrated correctly. That can be done by comparing
the analytical calculation of µ(x) with its numerical counterpart at the level of
the first derivatives: Rearranging Eq. (1.9) leads to

µ(x)
π2

6x
=

∫ π2

6x

0

z

ez − 1
dz (3.13)

Differentiating both sides of Eq. (3.13) gives

d

dx

(
µ(x)

π2

6x

)
=

π4

36x3
· 1

1− e
π2

6x

(3.14)

Since µ(x) can only be integrated numerically, the left hand side of Eq. (3.14)
has to be differentiated numerically as well. Both sides of Eq. (3.14) are equal
for all x. Thus the numerical integration of µ(x), given by (1.9), can be trusted
and the associated calculation of the modified acceleration a(r) gives reasonable
results.

3.3 Discussion of the expected Results

Fig. 3.2 shows the change, ∆bN , of the mirror distance that will be expected
in the case of Newton’s law if the spheres are symmetrically moved from the far
to the near positions. It is plotted against the distance between a mirror and
its adjacent sphere at the near position. To associate this with Fig. 3.1, ∆bN

is plotted against rnear. This dependency is shown separately for field masses of
1, 3 and 9 kg. The distance between a mirror and its adjacent sphere at the far
position is always assumed to be rfar = 250 cm. It can be seen that in the case
of Newton’s law, ∆bN ∝ M is valid with M the mass of the spheres.

Fig. 3.3, 3.4 and 3.5 show the expected deviation ∆b −∆bN from Newton’s
law in case of MOND with the interpolation functions µ(x) presented in Chap.
1.2. Like in Fig. 3.2, the deviation is plotted against rnear and is separately

1An algorithm that numerically integrates functions with singularities using adaptive
quadrature, implemented e.g. in GNU Scientific Library (GSL)
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Figure 3.2: Expected change, ∆bN , of the mirror distance in the case of Newton’s
law if the spheres that are symmetrically moved from far to near positions. It is
plotted against the distance, rnear, between a mirror and its adjacent sphere at the
near position. The distance of the far position is assumed to be 250 cm. These plots
are separately shown for spheres of 1, 3 and 9 kg.

shown for the field masses 1, 3 and 9 kg. The 1 kg spheres cause the largest
deviation, ∆b−∆bN , from Newton’s law since they are the source of the weakest
acceleration field. The deviation will increase if rnear decreases. Thus the nearest
possible rnear has to be chosen to measure the largest deviation. Due to the setup
of the experiment, the nearest possible distance is given by rnear = 77 cm.

According to Fig. 3.2, the symmetric movement of the 1 kg spheres from
250 cm to 77 cm causes a change of the mirror distance of ∆bN ≈ 0.02 nm. The
relative deviation in the case of MOND would then be between +20% and −10%,
dependent on the interpolation function. Thus, if MOND was realized in nature,
a measurement could distinguish between different interpolation functions. The
smallest deviation from Newton’s law would be expected in case of the interpo-
lation function (1.9). Unlike in the case of Newton’s law, the relation ∆b ∝ M is
not valid for MOND.
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Figure 3.3: Expected deviation ∆b−∆bN from Newton’s law in the case of MOND
and 1 kg field masses, dependent on the interpolation function µ(x). As in Fig. 3.2,
the deviation is plotted against the near position of the spheres, rnear. The upper axis
shows aN/a0 with aN the acceleration of a mirror due to a sphere at rnear according to
Newton’s law.
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Figure 3.4: Expected deviation ∆b−∆bN from Newton’s law in the case of MOND
and 3 kg field masses, dependent on the interpolation function µ(x). As in Fig. 3.2,
the deviation is plotted against the near position of the spheres, rnear. The upper axis
shows aN/a0 with aN the associated acceleration of one mirror according to Newton’s
law due to a sphere at rnear.



CHAPTER 3. CALCULATION OF THE EXPECTED SIGNAL 28

distance mirror-ball [cm]
40 60 80 100 120 140 160

   
[n

m
]

N
 b

∆
 b

 -
 

∆
d

ev
ia

ti
o

n
 

-0.003

-0.002

-0.001

0

0.001

0/aNa
510152030

interpolation functions

  
21+x

x(x) = µ

  
1+x

x(x) = µ

 dz  
-1ze

z
6x

2π

0
∫ x 

2π
6(x) = µ

, y = y(x)  4 y−1 

3 y−1 
(x) = yµ

distance mirror-ball [cm]
40 60 80 100 120 140 160

   
[n

m
]

N
 b

∆
 b

 -
 

∆
d

ev
ia

ti
o

n
 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0/aNa
510152030

interpolation functions

  
 + 11+4x
 - 11+4x(x) = µ

Figure 3.5: Expected deviation ∆b−∆bN from Newton’s law in the case of MOND
and 9 kg field masses, dependent on the interpolation function µ(x). As in Fig. 3.2,
the deviation is plotted against the near position of the spheres, rnear. The upper axis
shows aN/a0 with aN the acceleration of a mirror due to a sphere at rnear according to
Newton’s law.
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Figure 3.6: Decomposition of a mirror into cylinders, with ρCu = 8.92 g/cm3 and
ρAl = 2.7 g/cm3. The corresponding measurements can be found in Tab. 3.1.

3.4 Corrections due to the Mirror Geometry

According to Fig. 2.2, the mirrors are far from being point masses. This section is
dedicated to the correction which has to be taken into account when calculating
the change, ∆b, of the mirror distance. If this effect was neglegible, the force
between a mirror and a sphere could be calculated according to

~F (~rCM) = Mmirr · ~a(~rCM) (3.15)

instead of using the integral (3.5) that has to be calculated numerically. To get
the correct answer, the expected result ∆b has to be calculated using both (3.15)
and (3.5). According to Fig. 3.6, each mirror can be seen as a composition of
different sized cylinders that are made of different materials, i.e. copper and
aluminum, but with constant mass density. Thus Eq. (3.5) can be simplified,
and the force between a mirror and a sphere can be written as

~F (~rCM) =
∑

i

ρi

∫
Vi(~rCM)

~a(~r) d3~r (3.16)

where Vi is the volume of the i-th cylinder with ρi as its constant mass density
and ~a(~r) is the acceleration field (3.4) due to one sphere.

The integration of the gravitational force has been done numerically in case
of Newton and MOND with the interpolation functions presented in Chap. 1.2.
To provide the functionality of integrating over the mirrors, an object oriented
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left mirror right mirror

R1 9.29 9.29
R2 9.4 9.38
R3 9.6 9.6
R4 9.9 9.9
R5 0.37 0.37
Rk 57.99 57.99
h1 3.03 3.05
h2 3.88 3.91
h3 4.65 4.68
h4 10.0 10.0
h5 3.43 3.42

Table 3.1: Measurements of both mirrors in cm according to Fig. 3.6. All quantities
have been measured with an accuracy of 10 µm.

geometry integration framework has been written in C++. This framework al-
lows to integrate the gravitational force between 3-dimensional bodies that have
been created with the geometry package of ROOT.2 Furthermore the mass, the
center of mass and the moment of inertia of these bodies can be integrated. In
the case of the moment of inertia, the rotation axis can be arbitrarily chosen. As
the integration algorithm a Monte Carlo algorithm has been imported from the
GNU Scientific Library (GSL) but has been adapted such that it can integrate
vector valued densities. Furthermore an interface exists that enables the user to
provide more sophisticated algorithms via external classes without recompiling
the integration framework. In the case of the integration of the gravitational
force assuming MOND, the framework can optionally be instructed to automati-
cally approximate the interpolation functions, µ(x), by B-splines3. In the case of
MOND with interpolation function (1.9), this reduces the time required for the
numerical integration by a factor of about 100.

Fig. 3.7 to 3.8 show the ratio ∆b/∆bP between the result of the integration,
∆b, and that of the point mass calculation, ∆bP . That ratio is plotted against
the distance, rnear, between a mirror and its adjacent sphere at the near position
(see Fig. 3.1). It can be seen that ∆b/∆bP depends on the distance rnear. In the
case of rnear = 80 cm, the ratio is about 0.97. Thus the integration must not be
neglected. In order to calculate ∆b, the partial accelerations in (3.7) respectively
(3.8) have to be integrated according to (3.5) instead of using (3.15).

2These bodies can be simple shapes that inherit from TGeoShape or of type TGeoCompos-
iteShape, i.e. can be any boolean composition of simpler shapes like e.g. tubes, spheres or
boxes.

3B-splines are a special kind of smoothly connected third-order polynomials (see [Blo98])
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Figure 3.7: Ratio ∆bN/∆bN,P between the result of numerical integration, ∆bN , and
that of the point mass calculation, ∆bN,P , in case of Newton’s law. This ratio does not
depend on the mass M of the field masses, since in the case of Newton ∆b ∝ M . As in
Fig. 3.2, the deviation is plotted against the near position of the spheres.

Analytical vs Numerical Integration

In the case of Newton’s law of gravitation, the force between a mirror and a sphere
can be integrated analytically as long as the mirror and the sphere share the same
symmetry axis. In that case the numerical integration can be compared directly
to the analytical integration. This has been done, and both calculations lead to
the same result. If the sphere is shifted perpendicularly out of the symmetry
axis by a small ∆x, the force can no longer be integrated analytically. To check
anyway the numerical integration for consistency, the force can be approximated
using a taylor expansion with respect to ∆x which gives

F (r, ∆x) = Fsym(r) ·
(
1 + f2(r)∆x2 + f4(r)∆x4 +O(∆x6)

)
(3.17)

whereas Fsym(r) is the force in the symmetrical case and f2(r) and f4(r) are
the 2nd- and 4th-order expansion terms that can be calculated analytically as
well. The terms f2(r) and f4(r) have been calculated using Mathematica. All
odd expansion terms vanish since the force F (r, ∆x) does not depend on the
sign of ∆x. The numerically integrated force has been compared with the force
approximated by Eq. (3.17) and both calculations give the same result.
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Figure 3.8: Ratio ∆b/∆bP between the result of numerical integration, ∆b, and that
of the point mass calculation, ∆bP , in case of MOND and 1 kg field masses, dependent
on the interpolation function. As in Fig. 3.2, the deviation is plotted against the near
position of the spheres, rnear. The upper axis shows aN/a0 with a the acceleration of
a mirror due to a sphere at rnear according to Newton’s law.
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3.5 Ambiguities connected with MOND

To close this chapter, a still open question has to be addressed that can be traced
back to Chap. 1.4 which was dedicated to deal with the restrictions concerning
the measurement process. According to Eq. (3.7) in Chap. 3.1, the following
prescription is provided to calculate the change, ∆b, of the mirror distance: First
of all the acceleration ares = F/Mmirr has to be calculated separately for the cases

ares(rL,near) ares(rR,near)
ares(rL,near + b0) ares(rR,near + b0)
ares(rL,far) ares(rR,far)
ares(rL,far + b0) ares(rR,far + b0)

Each of these terms describes a gravitationally induced acceleration of one mirror
(left or right) due to one sphere (left or right) at a specific position (near or far).
These accelerations have then to be summed up properly according to Eq. (3.7)
and have to be divided finally by ω2

0 in order to get ∆b. In the case of MOND
the sum goes over the modified accelerations.

Instead of doing it that way, one could argue differently: First of all one could
calculate the resulting acceleration of each mirror according to Newton’s law both
for the spheres at the near and at the far positions

∆aN,L,near = aN(rL,near)− aN(rR,near + b0) (3.18)

∆aN,R,near = aN(rR,near)− aN(rL,near + b0)

∆aN,L,far = aN(rL,far)− aN(rR,far + b0)

∆aN,R,far = aN(rR,far)− aN(rL,far + b0)

with ∆aN,L,near as the resulting acceleration of the left mirror due to the spheres
at the near positions and ∆aN,R,near as the analogous acceleration of the right
mirror, etc...

In that case ∆b would finally be given by

∆b =
1

ω2
0

(
a(∆aN,L,near) + a(∆aN,R,near)− a(∆aN,L,far)− a(∆aN,R,far)

)
(3.19)

with e.g. a(∆aN,L,near) as the modified acceleration that can be calculated from
its Newtonian counterpart ∆aN,L,near according to Chap. 3.2.

In the case of Newton’s law, both ways of calculating ∆b are equivalent. In
the case of MOND this equivalence does not hold. This ambiguity leads to the
following question: Do we have to calculate ∆b for both summation philosophies
in order to complete this chapter? The second way of summing up will only
predict deviations from Newton if absolute accelerations are weak. This can be
seen using Eqn. (3.18). If the resulting accelerations of the mirrors are calculated
according to (3.18), all partial accelerations that act upon the mirrors have to
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be regarded on the right hand side, including the g-vector. Thus the magnitude
of the resulting acceleration of each mirror exceeds by far a0, since on earth the
mirrors are exposed to a strong gravitational potential. But according to the
assumption in Chap. 1.4, an experiment carried out on earth could only measure
deviations if relative accelerations need to be weak. This way of interpreting
MOND corresponds to the first way of calculating ∆b that is explained in Chap.
3.1. Thus only this way has to be regarded in the context of the experiment.



Chapter 4

Analysis Methods

This chapter is dedicated to the question of how the change of mirror distance, ∆b,
respectively the shift of the resonance frequency, ∆fR, caused by the movement
of the spheres, can be determined from a measurement. Different methods that
can separate the signal from the background are proposed and their advantages
and disadvantages are discussed.

4.1 Introduction

Fig. 4.1 shows a measurement of resonance frequencies lasting about 13 hours
that was started on August 27, 2009. With a period of 40 minutes, test spheres
of 11.7 kg were moved periodically between the far and the near positions. The
resonance frequency is measured once every second and averaged over 2 minutes.
The averages are plotted against the elapsed time. After separating the signal
from a slowly varying background that is mainly caused by alignment changes
of the resonator due to longterm effects like e.g. variation of temperature (see
Chap. 6), a periodic rectangular profile remains that is overlayed with noise. The
lower values (black) correspond to the resonance frequency measured when the
spheres were placed at the near position. These are called the signal values. The
upper values (grey) correspond to the far position of the spheres and are called
reference values.

As long as the measurement is not spoiled by systematics, the histograms of
both the signals and the references give a gaussian distribution (see Fig. 4.2).
The shift of the resonance frequency, ∆fR, is then given by the difference of the
means of both distributions. Using Eq. (2.4), the frequency shift can finally be
translated into a change, ∆b, of the mirror distance.

But since the signal is modulated with a slowly varying background, it has to
be extracted from the background before the frequency shift, ∆fR, can be deter-
mined according to the above procedure. Methods to get rid of the background
are explained in Chap. 4.2.

35
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Figure 4.1: A measurement of the resonance frequency, startet on August 27, 2009,
averaged over 2 minutes: The resonance frequency is plotted against the elapsed time of
the measurement, above: before the background subtraction, below: after the back-
ground subtraction. With a period of 40 minutes, spheres of 11.7 kg were repositioned
between far and near positions. This period can be seen in the below plot. The grey
values (references) were measured with the spheres at the far position. The black values
(signals) correspond to the near position. The gaps indicate the mass movement. The
data taken during this time are rejected.
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Figure 4.2: Histograms of the signals and the references of the measurement shown
in Fig. 4.1, but without averaging over 2 minutes: Both histograms give gaussian
distributions. The shift of the resonance frequency, ∆fR, is given by the difference of
the means of both distributions, in this case ∆fR = (25± 2) Hz.

4.2 Separating Signal from Background

4.2.1 Approximating the Background by a Polynomial

The first method approximates the background by a polynomial that covers the
whole range of the measurement. This method can be applied in the case of a
smooth background. If the background is discontinuous, the data will have to be
separated at these discontinuities into pieces with a smooth background.

For each of these pieces, the measured resonance frequencies are separated into
signals and references as explained in Chap. 4.1. The background polynomial
is only fitted to the references. After that the polynomial is subtracted from
both the signals and the references. To finally get the frequency shift, ∆fR, the
method of Chap. 4.1 is applied to these data. As a cross-check the references
and the signals can be interchanged which should give the same result.

But if the background polynomial is only fitted to the references, only half of
the data will be used for the fit. The signals, which are not used, include addi-
tional information. Using also them would improve the fit. If on the other hand
both the signals and the references are used to fit the background polynomial,
parts of the periodic rectangular signal will be mistaken as background. Then
the frequency shift would systematically be too small. To avoid that, one could
think of subtracting the spectral components that correspond to the periodic
rectangular signal from the fitted background polynomial before this polynomial
is subtracted from the data. If ∆fR is the expected shift of the resonance fre-
quency due to the movement of the spheres, with TFM as the time the spheres
spend in the near or in the far position, the fourier expansion of the periodic
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rectangular signal will be given by

fR(t) =
∆fR

π

∞∑
n=1

1

n

(
1− cos(nπ)

)
sin(2πnt/2TFM) (4.1)

Correcting the fitted background polynomial pBK(t) from artefacts of fR(t) means
to apply a bandstop filter to pBK(t) at the frequencies n/2TFM with n = 1 . . .∞.
As shown in Chap. 2, the resonance frequencies are measured with at least a
period of T = 0.5 s. According to the Nyquist criterion, only spectral components
with n/2TFM < 1/2T appear at its designated positions. Higher frequencies fold
back and the associated spectral components show up at positions within the
interval 0 . . . 1/2T that can not be associated unambiguously with the periodic
rectangular signal, fR(t). Thus, instead of providing a satisfying solution, the
subsequent application of a bandstop filter would only complicate the analysis.
A method that allows to fit the background polynomial to both the reference
and the signal data at the same time without the need of correcting the fitted
polynomial afterwards is explained in the next section.

4.2.2 Including a periodic Step Function

The following method extends the previous one, proposed in Chap. 4.2.1, by
fitting additionally a step function to the data. This allows to fit the background
polynomial to both the signal and the reference data without mistaking parts of
the periodic rectangular signal as background.

Assuming ∆fR as the frequency shift that has to be extracted and pBK(t) as
the background polynomial, the data can be modelled as

F (t) = ∆fR · T (t) + pBK(t) (4.2)

where T (t) is a step function with T = −1/2 when the field masses are at the
near position and T = +1/2 otherwise. In order to separate the signal from the
background, the model F (t) is fitted to both the signal and the reference data
with ∆fR and the coefficients of pBK(t) as the free parameters. This method is
equivalent to simultanously fitting a polynomial to the reference data and another
one to the signal data whereupon both polynomials share the same coefficients
apart from the constant shift. The difference in the constant shift is then given
by ∆fR.

The frequency shift, ∆fR, can either be taken directly from the corresponding
parameter, ∆fR, of the fitted F (t) or it can be calculated as explained in Chap.
4.1 after the fitted background polynomial pBK(t) has been subtracted from the
data. The latter way allows to apply some post processing algorithm to improve
the result, like e.g. filter techniques or subtracting the sliding average that is
explained in Chap. 4.2.6.
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4.2.3 Determining the Degree of the Polynomial

The methods explained in Chap. 4.2.1 and 4.2.2 approximate the background by
a polynomial pBK(t). This section is dedicated to the question of how overfitting
can be avoided, in other words: how the degree of the polynomial can be deter-
mined such that it describes the data sufficiently without approximating also the
statistical fluctuations.

The standard method is to start a polynomial fit assuming degree 1 and to
repeat this fit with ascending degree until the χ2 falls below d = n − k with
d the number of degrees of freedom, n the number of data points to which the
polynomial is fitted and k the number of the coefficients of the polynomial.

To extend this method, the Bayesian information criterion [Sch78] can be
used. This approach is based on the concept of entropy. If a polynomial pBK(t)
of degree d is fitted to n data points, the number

BIC = χ2 + d · ln n (4.3)

will have the meaning of the relative loss of information when a given model pBK(t)
is chosen to describe the data. The BIC value (4.3) will be minimal if the degree
d of the fitted polynomial is optimal. Fig. 4.3 shows the data of a frequency
measurement started on November 17, 2009. The above plot shows a polynomial
of degree 18 fitted to the data. The polynomial of degree 50 shown in the below
plot already has the tendency to approximate the statistical fluctuations and
additionally oscillates at the boundaries. In Fig. 4.4 the BIC value is plotted
against the degree of a polynomial that has been fitted to the data shown in Fig.
4.3. A sharp minimum at degree 8 can be seen.

An alternative and quite sophisticated way to determine the degree of the
polynomial is inspired by [Bis95]: First of all the n data points to which the
polynomial has to be fitted are randomly partitioned into fit and control samples.
This is done by randomly marking each data point with equal probability as fit
or control sample. Only the n/2 points marked as fit samples are used to fit the
background polynomial. In order to find the degree of the polynomial, it is fitted
to the fit samples with increasing degree, starting with degree 1. For each fit, the
χ2 is calculated as

χ2 = χ2
fit + χ2

ctrl (4.4)

with χ2
fit and χ2

ctrl the χ2 values of the fit respectively the control samples. The
value χ2

fit goes to zero as the degree of the polynomial goes to n/2− 1. But since
the control samples are not used for the fit, χ2

ctrl will increase if the polynomial
starts to overfit the fit samples. Hence, the χ2 according to Eq. (4.4) will have
a minimum if the degree of the background polynomial will be optimal. In Fig.
4.4 the χ2 given by Eq. (4.4) is plotted against the degree of a polynomial that
is fitted to the data of the measurement shown in Fig. 4.3. It can be seen
that a polynomial with a degree between 15 and 25 is acceptable. Therefore the
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Figure 4.3: A measurement of the resonance frequency startet on November 17,
2009, averaged over 5 minutes, 216 data points: above: a polynomial with degree 18
describes the data (grey) sufficiently, below: a polynomial with degree 50 is already
overfitted and additionally shows oscillations at the boundaries.
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Figure 4.4: The values χ2, see Eq. (4.4), and BIC, see Eq. (4.3), plotted against the
degree of the polynomial that is fitted to the data of the measurement shown in Fig.
4.3: To the BIC a constant was added such that its minimum is equal to that of χ2.
The optimal degree of the polynomial can be found at the minimum of χ2 respectively
BIC.

polynomial of degree 18 plotted in Fig. 4.3, above, describes the data sufficiently.
The sharp increase of χ2 between degree 30 and 60 indicates overfitting and is
mainly caused by oscillations of high order polynomials at the boundaries (see
Fig. 4.3, below).

If the background polynomial pBK(t) is a sum of orthonormal base polyno-
mials, e.g. Tchebycheff polynomials, its coefficients can be calculated indepen-
dently. This simplifies the numerical calculations in such a way that especially
the polynomial fit with ascending degree is accelerated tremendously. The whole
procedure of randomly partitioning the data into fit and control samples, fitting
pBK(t) respectively the model (4.2) to the fit samples until (4.4) becomes min-
imal, subtracting pBK(t) from the data and determining ∆fR is repeated until
enough ∆fR are collected to create a gaussian distribution. The final result is
then given by the mean 〈∆fR〉 of this distribution.

The method that randomly partitions the data into fit and control samples
and the one that uses the Bayesian information criterion (BIC) differ in their
predictions concerning the optimal degree of the polynomial (see Fig. 4.4). On
the one hand the BIC method is faster because the polynomial only has to be
fitted once. On the other hand the random partition method is very sensitive
to unexpected oscillations caused by high order polynomials. The BIC method
seems to be

”
blind“ to these oscillations because (4.3) only increases in case

of high order polynomials due to the additional term d · ln n. Thus, if these
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oscillations have to be avoided randomly partitioning the data into fit and control
samples will be the recommended way. Furthermore this method combines the
information from fitting different partitions which could lead to better robustness
in the case of irregular noise.

4.2.4 Approximating the Background by B-Splines

If the background is of a more complicated structure and if a polynomial is fitted
to the whole range of the measurement, a high order polynomial will be needed
in order to approximate the background sufficiently. But as already shown in
Fig. 4.3, below, polynomials of high order can lead to unexpected behaviour like
e.g. oscillations.

In order to avoid this, the background can be approximated by fitting B-
splines to the references and subtracting them from the data. B-splines are
chains of smoothly connected, usually cubic polynomials. The positions along
the x-axis at which these polynomials are connected are called knots. A method
of approximating data by B-splines is explained in detail e.g. in [Blo98]. But
calculations of the frequency shift using B-splines show that the result is very
sensitive to the number and the position of the knots. Furthermore artefacts
occur at the positions of the knots. This additionally biases the result. Thus,
approximating the background by a B-spline is not recommended. Since the knots
have to be chosen carefully, especially those spline algorithms are not suitable that
determine the number and the position of the knots automatically.

4.2.5 Sliding Background Polynomials

A method that approximates complex backgrounds without using high order
polynomials but does not share the disadvantages of B-splines has been proposed
in [Sch99]. As described in Chap. 4.2.1, the data are separated into signals and
references. For each connected signal interval the background is approximated
separately. This is done in the following way: Each signal interval is considered
that has at least one reference interval at its left and its right side. To all data
points within these both reference intervals, a polynomial is fitted. In that case
polynomials of degree 5 are adequate to approximate the background. The degree
can also be determined using the methods of Chap. 4.2.3. After the fit, the
background polynomial is subtracted from the data of the enclosed signal interval.
This procedure is repeated for each signal interval. The corrected data of all signal
intervals should distribute according to gaussian distribution with its mean at the
frequency shift, ∆fR. If, as in Chap. 4.2.2, a step function is used, the data of
the enclosed signal interval can also be used to fit the polynomial. That could
lead to better robustness.

Alternativley one could fit for each signal interval a straight line to both
the left and the right reference interval. The background of the signal interval
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could then be estimated by a third order polynomial that interpolates smoothly
between the left and the right line.

4.2.6 Sliding Average Method

Backgrounds of a more irregular nature can not be modelled as polynomials. In
that case the sliding average of the measured signal may be a better approxima-
tion of the background. If TFM is the time the spheres spend in the near or in
the far position, then for each data point at time t, the background is computed
as the average of all measured frequencies between t− TFM and t + TFM . If the
background varies strongly within this interval, the average has to be corrected
by fitting a polynomial and subtracting it from the data before calculating the
average. Moreover data with excessive noise have to be rejected. After calcu-
lating the sliding average at each data point, the data have to be corrected by
subtracting the background.

The procedure of approximating the background by the sliding average and
subtracting it from the data can be repeated iteratively.

4.3 Error Estimation

The result of a measurement is given by a frequency shift ∆fR and its error
σ∆fR

. To see if the error, σ∆fR
, is correctly estimated, a statistically significant

number of similar measurements has to be analysed. From the result of each
measurement, ∆fR, the pull is calculated according to

∆pull =
∆fR − 〈∆fR〉

σ∆fR

(4.5)

with 〈∆fR〉 the weighted average of all individual measurements, ∆fR.
If the errors of the single measurements, σ∆fR

, are correctly estimated, the
pulls are distributed according to a gaussian distribution with center 0 and width
1. If the width is greater than 1, the individual errors are very likely underesti-
mated. In that case the individual errors have to be multiplied by the width of the
pull distribution to obtain their correct values. A width of the pull distribution
that is lower than 1 indicates that the errors may have been overestimated.

4.4 List of Analysis Methods

To finalize this chapter, six analysis methods are presented which mainly differ
in their ways of separating the signal from the background. In order to subtract
the background they use a method explained in Chap. 4.2. The analysis method
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A1 has been developed by the author of this thesis. The methods A2 to A6 are
used as control methods.

A1 The data are separated into pieces with a smooth background. Data with
high fluctuations are rejected. For each smooth piece the following method
is applied: The background is approximated by a sum of orthogonal base
polynomials whose recursion formula is calculated according to [Blo98].
Additionally a step function is fitted as explained in Chap. 4.2.2, so that
both the signal and reference data can be used for the fit. As a first guess
the Bayesian information criterion is used to determine the degree of the
polynomial (see Chap. 4.2.3). After the fit the background polynomial is
subtracted from the data. Data with a spread of more than 5σ are rejected.
Then the background polynomial is fitted again to the remaining data.
The degree of the polynomial is now determined by randomly separating
the data into fit and control samples (see Chap. 4.2.3). After subtracting
this polynomial from both the signal and the reference data, the frequency
shift is calculated as explained in Chap. 4.1.

A2 After separating the data into smooth pieces, the background is approxi-
mated for each piece by the sliding average as explained in Chap. 4.2.6.
The sliding average is iterated twice and a correction is applied to take
into account the effect of the gaps in the data during the movement of the
spheres.

A3 Like in method A1, the background is approximated by a periodic step
function and the sum of orthogonal base polynomials. In contrast to method
A1, Tchebycheff polynomials are used as base polynomials. To prevent
overfitting the data are randomly separated into fit and control samples
(see Chap. 4.2.3). The degree of the polynomial is increased until the χ2 is
in the vicinity of the minimum, i.e. until χ2 < 1.05χ2

min.

A4 The background is approximated separately for each signal interval by fit-
ting a straigt line to both the left and the right reference interval and
smoothly interpolating a third order polynomial between these lines (see
Chap. 4.2.5). Data with high fluctuations are rejected

A5 The background is approximated by the sliding average as explained in
Chap. 4.2.6. In contrast to A2 no iteration is applied.

A6 The data are separated into smooth pieces of at least 4 hours. For each a
5-th or a 7-th order polynomial is fitted to the reference data in order to
approximate the background. As a cross-check the polynomial is also fitted
to the signal data.



Chapter 5

Monte Carlo Tests

In order to compare the analysis methods of Chap. 4.4 and check them for
correctness, resonance measurements with a frequency shift of 6 Hz and different
backgrounds were created by a Monte Carlo generator.

5.1 Description of the Monte Carlo Data

Five data samples were generated. Each sample contains either 50 or 100 mea-
surements. Each measurement has a length of 40 hours and is a time series of
resonance frequencies with a period of 72 seconds in order to simulate a measure-
ment with 1s intervals that has been averaged over 72 seconds. The frequency
shift of 6 Hz is simulated with a period of 2 hours in order to simulate a change
of the field mass positions each hour. As the slowly varying background, a third
order polynomial was added to each measurement. In order to simulate regular
statistical noise, at each data point a value between +7.5 and −7.5 Hz was ran-
domly chosen with equal probability. This value was added to the data point.
To four of these five Monte Carlo samples highly irregular noise was added. The
irregular noise was introduced in order to approximate the characteristic short
term fluctuations that can be seen in all frequency measurements and whose
nature is still unknown. This noise was generated by one of the following two
methods:

1. each 40 hour measurement is randomly separated into intervals of variable
length between 0.06 and 0.3 hours. For each interval, uniformly distributed
noise is added to its data points. The value of the noise is chosen with equal
probability between 0 and ±14 Hz respectively.

2. each 40 hour measurement is randomly separated into intervals of variable
length between 0.5 and 1 hours. For each interval, a constant frequency
value is randomly chosen between ±22 Hz. This value is added to all the
frequencies within this interval.

45
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In both cases the irregular noise averages to zero by construction. The data
samples created by the Monte Carlo generator are:

1. 50 measurements with irregular noise created by method 1

2. 50 measurements with irregular noise created by method 1 but fluctuations
have double amplitude

3. 50 measurements without irregular noise, only with the regular ±7.5 Hz
noise

4. 50 measurements with irregular noise created by method 1, background
polynomials have opposite curvature

5. 100 measurements with irregular noise created by method 2

5.2 Results

Tab. 5.1 and 5.2 summarize the results of the five Monte Carlo samples. The
first row shows the results obtained by the analysis method A1. The results of
the five control methods can be found in the below rows. In Fig. 5.1 to 5.4
the distributions of the 50 respectively 100 results ∆fi ± σ∆f,i and their pulls
∆pull,i = (∆fi −∆f̄)/σ∆f,i are plotted for each MC sample.

The results of method A1 agree with 6 Hz for each MC sample. In the case
of MC sample 3 with regular noise, the width of the pull distribution is about
0.8. Thus the errors of the 50 individual results within this sample are slightly
overestimated. In the case of the MC samples with irregular noise the individual
errors are underestimated since the width of the pull distribution is up to ≈ 4.5.
A single measurement does not provide sufficient information to estimate the
error correctly. A statistically significant number of similar measurments has to
be analysed, especially in the case of irregular noise.

Fig. 5.6 shows the distribution of the degrees of the background polynomials
that are associated with the 50 measurements of MC sample 4. Each entry
represents the degree of the background polynomial of one of the 50 measurements
within this sample. Although only a second order polynomial was used to simulate
the background (see Chap. 5.1), polynomials with a degree between 23 and 81 are
necessary to approximate the additional irregular noise. Polynomials of smaller
degrees do not describe the noise adequately and lead to a bias. Thus the degree
has to be predicted correctly. As shown in Chap. 4.2.3, Fig. 4.4, the Bayesian
information criterion predicts smaller degrees than the separation of the data into
fit and control samples. Consequently the degree of the background polynomial
should be determined with the latter method.
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method ∆fR(1) [Hz] ∆fR(2) [Hz] ∆fR(3) [Hz]

A1 6.03± 0.21 5.86± 0.24 6.000± 0.028
A2 6.03± 0.18 6.02± 0.35 6.028± 0.024
A3 6.06± 0.11 5.95± 0.21 6.000± 0.028
A4 6.01± 0.18 6.03± 0.34 6.028± 0.026
A5 6.03± 0.18 6.03± 0.32 6.028± 0.024
A6 6.83± 0.09

Table 5.1: Results of the Monte Carlo data samples 1, 2 and 3, dependent on the
analysis method.

method ∆fR(4) [Hz] ∆fR(5) [Hz]

A1 6.10± 0.18 5.982± 0.028
A2 6.59± 0.26 6.020± 0.027
A3 6.04± 0.17 5.982± 0.027
A4 6.66± 0.27
A5 6.59± 0.26
A6 6.42± 0.13 5.892± 0.025

Table 5.2: Results of the Monte Carlo data samples 4 and 5, dependent on the analysis
method.
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Figure 5.1: MC sample 1: Distributions of the results, ∆f , and the pulls, (∆f −
∆f̄)/σ∆f , obtained by analysis method A1.
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Figure 5.3: MC sample 3: Distributions of the results, ∆f , and the pulls, (∆f −
∆f̄)/σ∆f , obtained by analysis method A1.
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Figure 5.7: Correlation between the results obtained by method A1 and A2 in case of
left: Monte Carlo sample 3 with regular noise and right: Monte Carlo sample 4 with
highly irregular noise. In both cases each point represents one of the 50 measurements
of the sample. The x-coordinate of a point shows the result of method A1, the y-axis
the result of method A2. The dotted lines show the expected correlations.

5.3 Comparison of the Analysis Methods

In the case of sample 3 the results of all analysis methods agree with 6 Hz. Fig.
5.7, left, shows the correlation between method A1 and method A2. Each point
represents one of the 50 measurements of sample 3. The x-coordinate and the
horizontal error bar are the result and the error obtained by the method A1. The
y-coordinate and the vertical error bar are the result and the error of method
A2. The points cumulate around (6, 6) and the correlation is quite clear. Thus
the results of both methods agree with 6 Hz. All other possible correlation plots
between the analysis methods show the same behaviour in the case of sample 3.

In the case of the Monte Carlo samples with irregular noise the results of the
different analysis methods show a large spread, especially those associated with
sample 4. The results of the control methods A2, A4, A5 and A6 deviate from
6 Hz by at least 2σ. Furthermore the correlation between the different analysis
methods is very poor. Fig. 5.7 shows the correlation between method A1 and A2
in the case of Monte Carlo sample 4. The points still cumulate around (6, 6), but
the correlation is very poor. This means that in the case of a single measurement
the results of the different analysis methods may neither agree with 6 Hz nor
with each other. If however a statistically significant number of measurements is
evaluated, the results of the analysis methods will converge since by construction
the irregular noise of the Monte Carlos samples averages to zero.
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It can be seen that even in the case of 50 or 100 measurements the results of
the different analysis methods do not agree very well. Since irregular noise was
introduced to simulate real data, a large number of similar measurements has to
be analysed in order to obtain a consistent result.

Finally measurements were simulated without a signal, i.e. with 0 Hz fre-
quency shift. The results of the different analysis methods are in agreement with
0 Hz.



Chapter 6

Systematics

According to the Monte Carlo studies shown in Chap. 5, the analysis methods
explained in Chap. 4 are adequate in the case of data affected by external influ-
ences that can be described by a slowly varying background function modulated
with highly irregular noise as long as this noise averages to zero.

In order to check whether this is a good model for real data, external influences
are presented in this chapter. If such an influence can not be modelled in the
way mentioned above, methods to minimize this influence are proposed.

6.1 Misalignment of the Resonator

According to [Kle02], a vertical tilt of the cryostat by an angle Θ along the
symmetry axis of the resonator causes the mirror distance, δb, to change by

δb = δl ·Θ (6.1)

with δl the difference of the pendulum length of both mirror pendulums. Hence,
δl has to be minimized in order to obtain the maximal insensitivity of the mirror
distance to tilts. This can be done with an accuracy of about δl ≈ 1 mm. A
constant tilt of the cryostat only results in a constant shift of the measured mirror
distance. Since only differences, ∆b, of the mirror distance are measured, a con-
stant tilt would not influence the signal. If, however, this tilt varies with time, ∆b
will also be time dependent. A non-constant tilt is usually caused by seismically
excited motion of the steel frame or by non-uniform temperature changes within
the frame that finally causes the frame to deform itself irregularly. But a time
dependent temperature will not only influence the alignment of the resonator due
to the changing tilt of the frame. If the suspension wires of the mirrors differ in
their length, a non-constant temperature will also cause an unequal change of the
length of the wires. But since the temperature only varies slowly, the correspond-
ing variation of the resonator alignment only contributes to the slowly varying
background that can be described by a polynomial. Furthermore temperature
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Figure 6.1: Schematic illustration of the misalignment due to a twist of the symmetry
axis of the resonator by an angle Φ (top view).

induced variations of the tilt can be reduced by keeping the temperature as con-
stant as possible. This is done via an air condition that keeps the temperature
constant within 0.3 ◦C. Furthermore the experiment is thermally isolated.

Apart from estimating the dependency of the signal, ∆b, on the tilt of the
cryostat, Eq. (6.1) can be used to measure the difference, δl, of the penulum
length of both mirrors: Measuring the change of the mirror distance, ∆b, at
different tilt angles Θ of the cryostat results in a number of associated pairs
(∆b, Θ), since Θ can be measured independently using the tilt sensors. To obtain
δl, Eq. (6.1) has to be fitted to all pairs (∆b, Θ) with δl as the free parameter.
This measurement is time intensive and requires a well adjusted experiment.
The major part of the work described by this thesis consisted of adjusting the
resonator. Thus a possible measurement of δl had to be postponed to further
research.

Another bias of the measured signal, ∆b, due to a misalignment of the exper-
iment occurs if the symmetry axis of the resonator is not equal to the symmetry
axis of the moving field masses. If, as shown in Fig. 6.1, both axes were twisted
by a small angle Φ, it would bias the measured change of the mirror distance,
∆b, since

∆b ∝ cos Φ (6.2)

To minimize systematic errors due to misalignment, on the one hand air levels
are used to adjust the lid of the cryostat horizontally, both along and perpen-
dicular to the symmetry axis of the resonator. On the other hand laser beams
are mounted on the lid. These beams point to the walls of the tent, inside which
the experiment is placed, in order to be able to position the cryostat relative to
the tent. On the other hand, two plumb-lines are suspended from the lid of the
cryostat (see Chap. 2.1). That allows to determine the position of the cryostat
relative to the field masses.

6.2 Seismic Excitations

As shown in Chap. 2.3, the pendulum resonator is a bandpass filter with fre-
quency ω0 which means that the transmission of seismic excitations to the mirrors
depends on the frequencies of these excitations.

Seismic excitations with frequencies that are higher than the natural frequency
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ω0 of the mirrors, e.g. frequencies between roughly 4 and 300 Hz, are usually
caused by traffic, industry and related human activities. According to [Sch92]
the band pass filter will reduce this noise effectively by a factor of (ω0/ω)2 with ω
the frequency of the noise. Excitations with frequencies ω � ω0 are also damped
effectively. On the contrary excitations with frequencies around ω0 are amplified
due to the resonance at ω0 by a factor of about 2.

Noise with frequencies around ω0 is also caused by traffic. Additional sources
are wind that blows against buildings or swell of nearby seas or rivers. Fig. 6.2
shows the rms of the resonance frequency, σfR

, plotted against the weekday. In
Fig. 6.3 the rms is plotted against the wave height of the Elbe river. To create
both plots, all measurements between September 1, 2009, and February 19, 2010,
were evaluated. In Fig. 6.2 it can be seen that at daytime the noise is significantly
higher than at night or at the weekend. This means that the noise is dominated
by traffic.

Fig. 6.3 reveals an almost linear correlation between the wave height of the
Elbe and the frequency noise. A straight line fitted to the data intersects the
vertical axis at σfR

= 230 Hz. Thus noise above 230 Hz is significantly influenced
by the swell of the Elbe river. Noise below 230 Hz is dominated by other sources
like e.g. traffic.

As shown in Chap. 5, the seismic noise that is transmitted to the mirrors is
not a problem for the analysis of the measurement as long as it is regular. Even
irregular noise does not bias the result as long as the average of this noise agrees
statistically with zero. In both cases the accuracy of the result only depends
on the amount of data that are analysed. Furthermore averaging and filter tech-
niques can be used to increase the accuracy. On the contrary highly irregular and
sudden excitations, for example caused by earthquakes, destroy the data quality.
Fig. 6.16, above, shows the Chile earthquake on February 26, 2010, at 8:00. The
corresponding data have to be rejected.

6.3 Torsion and Violin Modes

Since the mirrors are not point masses and each mirror is suspended with two
wire straps, a mirror can oscillate in more complex ways than a simple mathe-
matical pendulum. Torsion modes of the mirror pendulums are possible, as well
as transversal modes of the wires.

The frequency ω of a torsion mode can be calculated as

Jφ̈ = D(φ) (6.3)

with φ a small torsion angle, D(φ) the torque of the mirror and J as the moment
of inertia with respect to the center of mass of the mirror. The moment of inertia
has been integrated numerically and is given by J = 118.9 kg cm2. According to
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Figure 6.4: Illustration of a mirror pendulum (top view) in order to derive its torsion
frequency: The four suspension points are shown. The mirror is deflected by a small
angle φ around its center of mass whereas its rotation axis is perpendicular to the plane
of projection.

Fig. 6.4, each mirror can be seen as being suspended by four wires. Then the
torque D(φ) is given by

D(φ) = g Mmirr
d2

l
φ (6.4)

with l the pendulum length, Mmirr = 3.872 kg the mass of a mirror, g = 9.81 m/s2

the local acceleration due to gravity and d = 10.2 cm. Replacing D(φ) in Eq.
(6.3) using Eq. (6.4) results in the differential equation

Jφ̈ = g Mmirr
d2

l
φ (6.5)

Solving Eq. (6.5) leads to a torsion frequency of

ftors =
d

2π

√
g Mmirr

J l
= 0.55 Hz (6.6)

The tendency of the mirrors to exhibit torsion modes can be reduced by adjust-
ing both wire straps of each mirror, such that they carry the same fraction of
the mirror weight and each wire strap is symmetrically loaded. After that the
influence of the remaining torsion modes can be neglected according to [Sch92].

In addition to torsion modes each wire can be individually excited to transver-
sal oscillations, also called violin-modes. According to [Gos04] the frequency of
the n-th violin-mode of a wire is given by

ωn =
nπ

l

√
P

ρπR2

(
1 +

2

l

√
EI

P
+O(1/l2)

)
(6.7)
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violin mode n 1 2 3 4
fn in Hz 22.9 45.9 68.9 91.9

Table 6.1: Frequency fn of the n-th transversal mode of a wire according to Eq. 6.7.
It is assumed that each of the four wires has to carry a quarter of the weight of one
mirror that is given by Mmirr = 3.8 kg.
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Figure 6.5: Power spectral density of the amplitude measurement started on May
27, 2010, at 11:45, plotted against the frequency: In order to get the spectrum, the
amplitude of the transmitted wave was measured with 20 Hz at a fixed frequency.

where l = 2.7 m is the length of the wire, ρ = 19.3 g/cm3 its mass density, R = 100
µm its radius, P = Mmirr g/4 the tension, E = 411 kN/mm2 the elasticity mod-
ulus and I = πR4/4 the fiber’s bending moment of inertia. According to [Gos04]
each violin-mode contributes to the power spectral density of the displacement
noise of each mirror.

Both torsion and violin modes modify the transition function (2.7) which
makes the pendulum resonator less capable of damping seismic excitations. Fig.
6.5 shows the power spectral density of amplitude of the transmitted wave. It
has been measured by generating a microwave of constant frequency on the right
side of a resonance and reading the amplitude of the transmitted wave with 20
Hz. The peak at 0.3 Hz is due to the natural frequency of the mirror pendulums.
The smaller peaks at higher frequencies can be caused by e.g. violin modes or
oscillations of the wave guides respectively the steel frame. Due to the discrete
sampling frequency, peaks at frequencies higher than 20 Hz alias into the spec-
trum between 0 and 10 Hz and appear as artefacts (see [Pre07]). Since it is not
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possible to adjust the length of the suspension wires in a way that their individual
transversal frequencies are perfectly equal, beats occur due to that differences.
Though according to Tab. 6.1 the frequencies of the transversal modes are far
higher than the natural frequency of the mirror pendulums (f0 = 0.3 Hz), they
can fold back such that peaks due to violin modes appear at frequencies below
the sampling frequency. A simple method of damping such violin modes has been
proposed in [Gos04]. Each suspension wire can be coated with drops of materials
like teflon at the antinodes of vibration. One could also think of reducing e.g.
noise due to torsion modes with additional magnetic brakes. However this would
complicate the setup of the experiment. Since the peaks due additional oscilla-
tion modes usually occur at high frequencies, the data can be easily cleared by
averaging or by applying filter techniques. Thus the expenses of modifying the
magnetic brakes would by far exceed its advantages.

6.4 Shape of the Resonance

In Chap. 2.5 it is assumed that the shape of the resonance is given by Eq.
(2.11). Since the resonator is neither closed nor perfectly aligned, this equation
is only an approximation. As shown in [Sch92], a resonator that is not closed
leads to a resonance profile with additional tails on both sides. Furthermore a
misalignment of the resonator may cause an asymmetric shape of the resonance
which would bias the result of the resonance fit. In this section it is explained
how the deviation of the resonance from (2.11) can be determined and how the
fitted resonance frequencies can be corrected.

First of all n resonance frequencies, fR, are measured. As explained in Chap.
2.5, each frequency is determined by sampling the resonance at m points and
fitting the resonance curve (2.11) to these data. After each fit, the sum of the
squared residuals

r2 =
m∑

k=1

(
U(fk)− Uk

)2
= χ2 · σ2

U (6.8)

is calculated with fk the frequencies and Uk the amplitudes at the m sampling
points and U(fk) the expected amplitude according to Eq. (2.11). The error of
an amplitude measurement is given by σU . If Eq. (2.11) describes the resonance
profile sufficiently, the n values r2/σ2

U should give a χ2 distribution with m − 3
degrees of freedom since 3 parameters (resonance frequency, width and maximal
amplitude) are fitted. The error σU can be estimated by σU =

√
r2/(m− 3) or

it can be calculated by fitting the expected χ2-distribution to the measured one
with σU as an additional free parameter. Furthermore for each k = 1 . . . m, the
residuals rk = U(fk) − Uk of the n fits should give a gaussian distribution with
mean r̄k = 0 and width σU .

Frequency measurements have been carried out by sampling the resonance
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Figure 6.6: χ2-distribution of a measurement with a 5 point fit, left: before and
right: after the asymmetry correction. The solid line shows the expected distribution
with 2 degrees of freedom.
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Figure 6.8: Averaged residuals of the resonance fit in the case of different measure-
ments with 5- and 7-point fits, but with same setup and resonance mode. Since all
plots show the same behaviour, the residuals indicate an asymmetry of the resonance
profile.

shape at either m = 5 or m = 7 points. The left plots of Fig. 6.6 and 6.7 show
the χ2-distributions of an m = 5 respectively m = 7 measurement, assuming Eq.
(2.11) as the shape of the resonance. In both cases the resonance mode with
frequency 21.139 GHz, width 676 kHz and maximal amplitude 172 mV was used.
Since both distributions differ largely from their expected ones, Eq. (2.11) does
not describe the resonance adequately. The deviation is given by the means r̄k

of the residuals with k = 1 . . . m. Fig. 6.8 shows these means in the case of
four different measurements with either m = 5 or m = 7. The variance σU at
each mean is about 0.03 mV in the case of m = 5 and 0.05 mV with m = 7.
The pattern of the residuals looks similar in the case of the four measurements
displayed in Fig. 6.8. These measurements have been carried out with the same
resonance mode and the same setup of the experiment. Thus the pattern of the
residuals is a real effect, maybe caused by a misalignment of the resonator.

After determining the deviation of the resonance shape from (2.11) that way,
the fitted resonance frequencies can be corrected as follows. Each resonance
frequency has to be fitted again. But before fitting Eq. (2.11) to the m pairs
(fk, Uk), from each amplitude Uk the corresponding mean of the residuals, r̄k, has
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Figure 6.9: Difference, δf , between the fitted resonance frequency before and after
the correction in the case of left: 5 point fits and right: 7 point fits.

to be subtracted.
Fig. 6.6, right, shows the χ2 distribution after the correction in the case of

sampling the resonance at 5-points. It is in good agreement with the expectation.
Fig. 6.9, left, shows the distribution of the differences, δf , between the fitted
resonance frequency before and after the correction. The frequencies shift by
about −0.4 Hz. According to Chap. 2.1 and 2.5, we are only interested in
frequency differences, ∆fR. Thus the correction only increases the noise of the
resonance frequencies by about 2.5 Hz. Compared with the normal frequency
noise, which is about 200 Hz, this additional noise is neglegible. The noise is
increased because the correction assumes that the positions of the m = 5 sampling
points fk relative to the peak of the resonance do not change during the n fits.
Since for each fit the fk are calculated using the resonance frequency of the
previous fit (see Chap. 2.5), the fk fluctuate around the resonance peak. The
assumption of non-fluctuating fk therefore increases the noise.

In the case of sampling the resonance at 7 points, the results paint a different
picture. Fig. 6.7, right, shows the χ2 distribution after the correction. It agrees
better with the expectation than before the correction but not as well as in the
case of sampling at 5 points. As shown in Fig. 6.9, right, the distribution of
differences between the fitted resonance frequency before and after the correction
give a distribution that is centered around 0 Hz. Thus the frequency shift due
to the correction is neglegible. In contrast the width of this distribution is about
500 Hz. Thus after the correction the noise is increased by the same amount.
This can not be neglected anymore. Furthermore the 7 point fits lead to higher
magnitudes of the residuals than the 5 point fits.

The differences between sampling the resonance at 5 and 7 points can be
traced back to the fact that the 7 point fits use a larger frequency interval to
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estimate the resonance frequency. Since the quality of the fit is higher in the
vicinity of the resonance peak than at the tails, the narrower 5 point fits lead to
better results. If however both the 5 and the 7 point fits used frequency intervals
of the same width, the results of course would be comparable. Since most of
the measurements were carried out by sampling the resonance at 5 points, the
deviation of the resonance shape from Eq. (2.11) can be neglected.

6.5 Variations of the local Gravity

The ambient pressure does not only influence the measured resonance frequency
due to dielectric effects, as described in Chap. 6.7, or due to pressure induced
deformations of the cryostat. A non-constant ambient pressure also influences
the distribution of air around the experiment. The mass variation of the air that
is usually associated with weather phenomena could be high enough to have an
effect on the mirror pendulums. To study this effect in detail, the distribution of
the areas of low and high pressure would have to be analysed. Furhermore the
local gravity depends on the distribution of ground water or the tide of nearby
rivers or seas.

The influence of all these effects on the measured resonance frequency is very
complicated to estimate. But since the variation of the local gravity is slow
compared with the period of the mass movement, these effects are only part of
the slowly varying background that can be separated from the signal using the
methods proposed in Chap. 4.2.

6.6 Brownian Motion

According to Chap. 2.8, the mirror pendulums are suspended inside a cryostat
with a vacuum of 10−5 mbar. The remaining air particles randomly excite the
mirrors to oscillate. To estimate how this effect contributes to the displacement
noise of one mirror, each mirror is considered to be a grain with radius a. Its
mean square deviation 〈x2〉 after time t is then given by

〈x2〉 =
2kT · t
3πaη

(6.9)

with kB = 1.38 · 10−23 J/K the Boltzmann constant, T the temperature and
η ≈ 17 µNs/m2 the viscosity of the gas. The viscosity is given by

η = p

√
2m

πkBT
λm (6.10)
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Figure 6.10: Illustration of the pressure dependence of the mean free path λm(p):
Solid: λm at T = 290 K, plotted against the pressure p. As molecules, N2 are assumed
with a diameter d = 0.32 nm, Dotted: maximal mean free path λm,max as constraint
given by the vacuum vessel, Dashed: mean free path λm without this constraint.

with p the pressure, m the mass of an air molecule, d its diameter and λm the
mean free path

λm =
kBT√
2πpd2

(6.11)

In Fig. 6.10 the mean free path is plotted against the pressure. Combining Eq.
(6.10) and (6.11) leads to the statement that the viscosity does not depend on the
pressure as long as the mean free path of the air particles is much smaller than the
dimensions of the cryostat. If λm reaches the dimensions of the cryostat, which
corresponds to p ≈ 10−4 mbar, λm remains constant with decreasing pressure.
Thus at lower pressures the viscosity (6.10) behaves like η ∝ p.

Since the mirrors are suspended as pendulums, each mirror sits in a potential
well. If a particle of energy kBT collides with a mirror, the potential energy will
be increased, the mirror gets out of its equilibrium position and is deflected by

x =

√
2LkBT

g Mmirr

(6.12)

with L ≈ 3 m the pendulum length, kB the Boltzmann constant, T the temper-
ature, g = 9.81 m/s2 the local acceleration due to gravity and Mmirr the mass
of one mirror. Thus collisions with particles of energy kBT cause the mirror to
deflect by x = 3 ·10−11 m, which corresponds to a shift of the resonance frequency
of ∆fR = 2 Hz. According to Eq. (6.9), the mirrors oscillate very slowly. Since
the damping due to the magnetic brakes is proportional to the oscillation speed,
excitations due to Brownian motion can not be damped effectively. As a conse-
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quence, Brownian motion of the remaining air particles cause the displacement
noise of the mirror distance to increase by approximately 2 Hz. Because of its
gaussian character, this noise can be simply reduced by averaging the data.

6.7 Dielectric Effects

According to [Sch92] the relative dielectrical constant εr of the air between the
mirror pendulums depends on the temperature and the ambient pressure. The
dependency is given by

εr(T, p) = 1 + (εr − 1)
p

1013 mbar
· 273 K

T
(6.13)

with εr = 1.00059 in case of air. If T and p change, the corresponding variation
of εr(T, p) will be given by

δεr = (εr − 1) · 278 K

1013 mbar
· 1

T 2
(T δp− p δT ) (6.14)

with T the temperature in K, p the air pressure in mbar and δT respectively δp
small changes of the temperature and the ambient pressure. The speed of light
between the mirrors depends on εr according to c = c0/

√
εr. Combining this

relation with Eq. (2.1) leads in the first approximation to

fR =
c0

2b
q/
√

εr (6.15)

Thus a small shift of ε causes a shift of fR that is given by

δfR = − fR

2εr

δεr (6.16)

As shown in [Sch08], this relation is in accordance with the measurements of
the resonance frequency performed in air. In order to reduce these influences,
the mirror pendulums are suspended inside a thermally isolated cryostat that
serves as a vacuum vessel. In that case the correlation between the resonance
frequency and the ambient pressure nearly vanishes. However the frequency is
still correlated with the temperature. But since in this case the temperature is
also correlated with the tilt of the experiment, that variation of the resonance
frequency is not caused by dielectric effects but by temperature induced changes
of the resonator alignment which is mentioned in Chap. 6.1. In the case of
measurements carried out using a vacuum, dielectric effects are neglegible.
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6.8 Electromagnetic Induction

Fig. 6.11 shows the resonance frequency that has been measured on March 15,
2011, during a standard massage cycle of PETRA which is necessary to reduce
magnetic history. The resonance frequency is correlated with the beam energy
which is proportional to the current in the dipole magnets of PETRA. To study
the correlation of Fig. 6.11 in detail, the different magnet circuits were ramped in-
dependently on April 21, 2010. Fig. 6.12 shows the first time derivative, dBx/dt,
of the x-component of the magnetic field that is caused by the current in the
bus bars of different magnet circuits and that is measured at the position of the
pendulum resonator. Furthermore it shows the resonance frequency, fR, of the
resonator that was measured at the same time. This plot reveals the relation

fR ∝
dBx

dt
(6.17)

which also holds for the y- and z-components and can be traced back to electro-
magnetic induction.

The bus bars of the PETRA magnets are about r = 10 m away from the pen-
dulum resonator and can be considered to be approximately parallel to the sym-
metry axis of the resonator. During the ramping process, the current that runs
through the bus bars of the dipole magnets maximally changed with dI/dt = 500
A/min. Due to Ampere’s law, this current produces a time dependent magnetic
field that circulates around the bus bars. That causes the magnetic field in the
vicinity of the pendulum resonator to change with µ0/2rπ · dI/dt = 4 · 10−7 T/s.
Since the mirrors are conducting, this field causes a circular current of about
IM = 0.3 mA on the surface of each mirror. Both mirrors are exposed to a static
magnetic field B = 0.1 T due to the magnetic brakes that are installed in order
to damp the pendulum oscillations (see Chap. 2.3). This results in a Lorentz
force

FL = IM · l ×B = 3 · 10−7N (6.18)

which causes each mirror pendulum to deflect by 10−5 mrad resp. 30 nm. This
shifts the resonance frequency, fR, by about 2 kHz. In Eq. (6.18) l = 1 cm
represents the length of each brake along the symmetry axis.

On the one hand the correlation between the resonance frequency and the
magnetic fields of PETRA is well understood. Therefore one could try to correct
the affected data as follows. First of all the part has to be subtracted that is due
to dBx/dt according to Fig. 6.12. But since the shift of the resonance frequency,
∆fR, has to be measured with an accuracy of at least 0.1 Hz, this would only
be a first order correction. To reach the required accuracy, the data have to be
corrected iteratively from the remaining electromagnetic influences that shift the
frequency by more than 0.1 Hz. On the other hand ramping is not done very often
so that only few data are affected. Thus a complex correction algorithm would
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Figure 6.11: The measurement started on March 17, 2010, at 10:20, shows that the
resonance frequency, fR, of the pendulum resonator is connected with the beam energy,
E, which is proportional to the dipole current of PETRA. From fR a constant offset
of about 21 GHz has been subtracted in order to increase the readability.
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Figure 6.12: The measurement started on April 21, 2010, at 11:42, shows the corre-
lation between the resonance frequency, fR, and the first time derivative, dBx/dt, of
the x-component of the magnetic field caused by the ramping current of PETRA. Like
in Fig. 6.11, a constant offset of about 21 GHz has been subtracted from fR.
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not be worth the effort of implemeting it. As a consequence the data measured
during the ramping of the PETRA magnets are rejected.

6.9 Vacuum Effects

Fig. 6.13, upper part, shows a measurement of the resonance frequency that was
started on April 5, 2010, and that can not be analysed because it is spoiled with
a number of sharp peaks. The lower plot shows that the peaks of the resonance
frequency are correlated with the pressure changes inside the vacuum vessel, that
was measured at the same time.

On the one hand this could be a real effect which means that the pressure
inside the cryostat varies with time. At the sharp peaks the vacuum suddenly
improves. These sudden improvements can be caused by a malfunction of the
compressor that is used to keep the angle valve open in order to maintain the
vacuum during the measurement. If this compressor fails, the valve will close for
a short period of time and the pressure inside the cryostat changes. According to
Chap. 6.10, the mean free path of the remaining air particles at 10−5 mbar is of
the order of the dimensions of the cryostat. The mode filter between the mirror
pendulums closes the resonator up to a gap of about 1 mm. Since this gap is
much smaller than the mean free path, the pressure variation propagates into the
resonator with a delay. If the vacuum improves suddenly, for a short period of
time the pressure outside the resonator is smaller than inside. Thus the mirrors
are pulled apart and the resonance frequency decreases.

On the other hand the peaks of the vacuum plot could be artefacts due to
the measurement process. According to Chap. 2.8, the vacuum is measured with
a Penning gas discharge tube. Inside this tube, electrical discharges take place
erratically while the vacuum is measured. To exclude this influence, the vacuum
should not be measured at the same time the resonance is measured.

6.10 Frequency Jumps

Fig. 6.14 shows a measurement of the resonance frequency during September
16, 2009, that is spoiled by jumps of about 0.5 kHz. Contrary to the peaks
shown in Chap. 6.9, such a jump causes the resonance frequency to change
permanently. However these jumps have no effect on the amplitude and the
width of the resonance which indicates that the mode remains the same. Fig.
6.15 shows the distribution of the jumps. It can be seen that jumps of large
magnitude preferably occur at daytime, between 5:00 and 19:00.

First of all these jumps can be caused by sudden changes of the resonator
geometry. On the one hand this could happen if the alignment of the cryostat or
the frame changes. In that case the tilt measurement would also show permanent
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Figure 6.13: above: A measurement of the resonance frequency, started on April
5, 2010, at 23:45, after subtracting a 3-rd order background polynomial and averaging
over 2 minutes, below: a measurement of the pressure inside the cryostat at the same
time.
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Figure 6.14: A measurement of the resonance frequency during September 16, 2009,
plotted against the time: above: four permanent jumps of the resonance frequency of
a magnitude of about 1 kHz, below: zoomed into the 5 minute interval around the
first jump of the above plot.
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Figure 6.15: Distribution of the frequency jumps between September 2009 and Febru-
ary 2010, with |∆f |/∆t the absolute value of the height of the jump, ∆f , divided by
its duration, ∆t: dotted: all jumps, solid: jumps between 19:00 and 5:00.

jumps. Since no correlation can be found between the tilt and frequency jumps,
this possibility has to be excluded. The resonator geometry will also change if
the length of the suspension wires change due to molecular displacements or if
the wires change its positions on the attachment. To suppress the latter effect,
the wires are fixed by a dip of glue.

Electronics can be excluded as a source of the frequency jumps. In order to see
whether the frequency generator causes the jumps due to e.g. a malfunction or
an inaccuracy of the closed loop control, the Agilent HP8340b was temporarily
replaced with a Rohde & Schwarz SMR40. However a difference could not be
seen, neither in the number nor in the magnitude of the jumps. If the DVM
that measures the amplitudes caused the jumps, a sudden jump of the measured
amplitude would indeed worsen the resonance fit, but it would not translate
directly into a jump of the fitted resonance frequency. Above all, the frequency
jump would not be permanent in that case. Finally a surge absorber was used
to protect the measurement electronics from over- or undervoltage but the jumps
did not disappear. Thus sudden changes of the resonator geometry are the most
likely reason for these frequency jumps.

To be able to analyse measurements affected by frequency jumps, the data
are separated at the positions of the jumps into smooth intervals. If too many
jumps are found within an interval the corresponding data have to be rejected.
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6.11 Mechanical Instability

Between 2008 and 2010 the experiment was several times adjusted and upgraded
with additional sensors to record environmental parameters. After working on the
frame or on the lid of the cryostat it could be observed that the pendulums were
usually excited in a way that for half an hour or longer after the modification no
measurement was possible. Furthermore the resonance frequency was always very
sensitive to small changes of the adjustment. Sometimes after small modifications
of the adjustment measurements were not possible at all.

Fig. 6.16 shows a measurement of the resonance frequency during February
27, 2010. Two shocks caused by an earthquake can be seen. The earthquake
has been identified as the one in Chile with a magnitude of 8.8. After that
incident the mirror pendulums stopped their usual motion. Fig. 6.16, below,
shows that during the second shock an additional oscillation with a period of
T = 30 s appeared in the spectrum. After the earthquake the pendulums did not
adiabatically return to the equilibrium as they usually did before. All further
measurements were corrupt and could not be analysed.

Until that date, the croystat was suspended inside the steel frame at three
points (see Fig. 6.17a). At these points damping elements were installed. A de-
tailed description of this setup can be found in [Wal95], [Sch99] and [Kle02]. Due
to the difficult alignment the three suspension points usually were not equally
loaded. This led to mechanical tensions and instability. As an additional ingre-
dient, it turned out that the damping elements at the suspension points were
overloaded in a way that they could not damp seismical excitations sufficiently.

In order to increase the stability of the setup, the role of the steel frame
and the suspension of the cryostat inside this frame was studied. To reduce the
complexity, the cryostat was put directly on the ground without using the steel
frame. This was done using three machine supports (see Fig. 6.17b). Since
these supports were overloaded, the damping capabilities of this setup were even
worse than the suspension of the cryostat inside the steel frame. As a result,
measurements were not possible at all. After that the machine feets were replaced
by ironbricks. In order to damp the oscillations of the cryostat, four pendulums
were suspended from the cryostat (see Fig. 6.17c). In order to improve the
damping characteristics, the bricks could be replaced by machine feets which are
more flexible to adjust. If these machine supports would have active damping,
further improvements could be expected.

6.12 Summary

The collection of systematics presented so far enables one to see the sensitivity
of this experiment to various influences. Effects like e.g. Brownian motion are
not a problem since they only increase the gaussian noise. Misalignment of the
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Figure 6.16: A measurement of the resonance frequency during February 27, 2010,
plotted against the time: above: two subsequent shocks of the earthquake in Chile,
below: zoomed into the 10 minute interval during the second shock of the above plot.
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Figure 6.17: Different setups of the experiment: A: cryostat being suspended in the
steel frame according to Chap. 2, B: cryostat standing on the ground using machine
supports, C: cryostat standing on bricks and with pendulums to damp oscillations.

resonator leads to a bias but can at least be quantified. Electromagnetic induc-
tion or sudden frequency jumps result in data that can not be analysed at all.
Consequently the data have to be selected carefully before analysing them.

This experiment is a modification of that one shown in [Kle02], [Sch99] and
[Wal95]. The accuracy is comparable. Experiments like [Kap07], [Gun08] or
[Par10] tested the Newtonian law of gravitation by measuring either G or the
inverse square law. All these experiments confirm Newton’s law. Their accuracy
is of some orders of magnitude higher than [Kle02]. Nevertheless this does not
make the experiment presented in Chap. 2 obsolete. In [Kap07] the inverse
square law was tested with torsion-balance experiments. The restoring force of
the pendulums was caused by the torsion of a tungsten wire, which is caused by
electromagnetic forces within the material of the wire. Since this phenomenon is
quite complex, it can be an additional source of systematic errors. In the case
of our experiment the restoring force is caused by gravitation. In [Par10] the
concept of [Kle02] was adopted and modified. They used a laser interferometer
instead of a microwave resonator. This led to a more compact and robust setup.

In contrast to [Par10], [Kap07] and [Gun08], the apparatus shown in Chap.
2 has an important advantage: it can be modified without reinventing the whole
experiment. The masses of the spheres, as well as their near and far positions,
even the alignment of the resonator can be changed without big effort. This
flexibility allows to study systematic influences in detail.



Chapter 7

Preparative Measurements

7.1 Amplitude Noise

As explained in Chap. 2.5 and 6.4, the resonance frequency is determined by
fitting Eq. (2.11), page 17, to a number of amplitudes measured at equidistant
frequencies around the expected resonance frequency. The amplitudes are mea-
sured as DC voltages. Thus the amplitude noise, σU , has contributions from
electronic noise, σe, like pickup noise or readout noise of the DVM and from
fluctuations of the resonance frequency, σf . While the electronic noise should be
independent of the frequency at which the amplitude is measured, the contribu-
tion from the fluctuations of the resonance frequency is given by

σU(f) =

∣∣∣∣∂U(f)

∂f

∣∣∣∣σf (7.1)

with σU the amplitude noise, U(f) the expected resonance profile according to
Eq. (2.11) and σf the noise due to the fluctuating resonance frequency. Solving
Eq. (2.11) for f and replacing f in Eq. (7.1) with this expression, gives

σU(U) = 4U

√
U(Umax − U)

Umax · f1/2

σf (7.2)

with Umax the maximal amplitude of the resonance, f1/2 its width and U an
arbitrary amplitude between 0 and Umax.

If the amplitude noise, σU , is measured at different amplitudes, U , of a reso-
nance, it should distribute according to Eq. (7.2) as long as the noise is dominated
by fluctuations of the resonance frequency. Furthermore a fit of Eq. (7.2) to the
measured pairs (U, σU) should give the noise, σf , of the resonance frequency. As
a cross-check, σf can be measured independently by calculating the rms of the
fitted resonance frequencies.

Fig. 7.1 shows on the left hand side the expected profile (2.11) of the resonance

75
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Figure 7.1: Resonance at 21.390 GHz, width 691 kHz and maximal amplitude 175 mV,
left: the expected resonance profile and right: the amplitude noise, σU , dependent on
the amplitude, U , measured and expected.
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Figure 7.2: rms of fitted resonance frequencies that were measured each second (April
19, 2010). The same resonance as in Fig. 7.1 was used.
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at 21.390 GHz with width 691 kHz and maximal amplitude 175 mV. The right
hand side shows the associated distribution (7.2) of the amplitude noise: The
six points represent the amplitude noise, σU , measured at amplitudes between 30
mV and 175 mV. To obtain the amplitude noise, a fixed frequency was chosen in
the vicinity of the resonance frequency, the amplitude was measured each 50 ms
and the rms was calculated. The solid line shows Eq. (7.2) fitted to these values.
It can be seen that the measured amplitude noise, σU , distributes according to
Eq. (7.2). Thus the amplitude noise is dominated by the noise of the resonance
frequency. The readout noise of the DVM can be neglected. As an additional
result of the fit, the noise of the resonance frequency is given by σf ≈ 500 Hz.

Fig. 7.2 shows the rms, σf , of the fitted resonance frequencies that were
measured with the same resonance mode and the same setup. This noise is about
250 Hz which seems to contradict the previous calculation. The discrepancy
can be explained with the characteristics of the resonance fit. The measurement
shown in Fig. 7.2 was carried out sampling the resonance shape at 5 points. Such
a fit requires about 300 ms. Since the resonance frequency fluctuates during this
time span, a fit already averages over the frequencies. This reduces the frequency
noise by about a factor

√
5.

7.2 Mirror Distance

According to Chap. 2.1 and 2.2, the distance of the mirror pendulums, b, is about
24 cm. In order to calculate the expected distance shift as shown in Chap. 3, the
exact value of b has to be known. It is given by

b = (24.0554± 0.0007) cm

and has been calculated by analysing the mode spectrum of the resonator. This
method leads to a more accurate result than the direct measurement which has
only an accuracy of about 1 mm. In contrast to the methods proposed in [Sch92]
and [Kle02], the knowledge of the knot parameters p, m, q and N (±) is not
required. In the following the calculation of b is explained.

Tab. 7.1 shows the frequencies and amplitudes of the n = 11 largest resonance
modes of the resonator. These modes have been found with the oscilloscope. First
of all, the n(n−1)/2 mutual differences ∆fk > 0 of the n resonance frequencies of
Tab. 7.1 are calculated. These differences are arranged into groups such that for
each group |∆fk−∆fl| ≤ ∆fmin with ∆fk and ∆fl two arbitrary members of this
group. Each group may contain several entries. The minimal difference, ∆fmin,
is given by the smallest possible difference due to the expected mode spectrum,
i.e. the frequency difference between the N (+) and the N (−) mode that share the
same p, q and m with m = 1. Thus according to Eq. (2.1), page 13, ∆fmin is
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frequency [GHz] amplitude [mV]
20.895429 11.5
20.947431 6.0
21.137756 50.0
21.168767 2.5
21.313257 3.0
21.384657 125.0
21.760858 38.0
22.007434 75.0
22.363984 6.5
22.630682 18.0
23.254004 13.0

Table 7.1: Mode spectrum of the resonator: resonance frequencies and maximal
amplitudes of the resonance modes.

given by

∆fmin =
c2

2π2bRfR

(7.3)

with c the speed of light in vacuum, b and R the estimated mirror distance
respectively curvature radius of the mirror surfaces and fR the largest frequency
of Tab. 7.1. If for b and R a range is specified, their maximal values will have
to be used in Eq. (7.3). The arrangement of the frequency differences ∆fk into
these groups can be done as follows. All possible differences ∆∆fkl = ∆fk −∆fl

with ∆∆fkl > 0 are calculated. Then all ∆∆fkl > ∆fmin are rejected. The
remaining ones are sorted in ascending order. The smallest ∆∆fkl is taken and
the both associated frequency differences ∆fk and ∆fl are filled into the first
group. After that the next smallest ∆∆fkl is chosen and for each of the associated
∆fk and ∆fl it is separately tested whether they fit into the first group. This
will be true e.g. for ∆fk if the first group contains only differences ∆fj with
|∆fj −∆fk| ≤ ∆fmin. If this is not true, a new group will be created with ∆fk

as its first entry. The difference ∆fk will be rejected if it is already a member of
a group. Then the next largest ∆∆fkl is chosen and it is checked whether the
associated frequency differences ∆fk and ∆fl fit into one of the existing groups.
If one of these differences do not fit into these groups, a new group is created
with the corresponding difference as its first entry. This procedure is repeated
with ascending ∆∆fkl until ∆∆fkl > ∆fmin.

After the n(n−1)/2 frequency differences have been arranged into i = 1 . . . m
groups, for each the mean, ∆f̄i ± σf̄ ,i of the contained differences is calculated.
Groups that only contain one difference, are rejected. After that all mutual ratios
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rij ± σr,ij of these means are calculated according to

rij =
∆f̄i

∆f̄j

, rij > 1 (7.4)

The ratio rij will be rational, i.e. rij ∈ Q, if the group that is associated with ∆f̄i

only contains differences of frequencies whose modes only differ in the number q
of the axial knots, i.e. by ∆qi. The same has to be true for ∆f̄j and ∆qj. In that
case rij will also be given by

rij =
∆qi

∆qj

(7.5)

This can be seen consulting Eq. (2.1), page 13. Since ∆qi and ∆qj can always
be chosen such that every rij is rational within its error, ∆qi and ∆qj have to be
restricted. This can be done as follows. The range of q is estimated by

qmin = (fR)min · 2b/c− 1, qmax = (fR)max · 2b/c + 1 (7.6)

with c the speed of light in vacuum, b the estimated mirror distance and (fR)min

and (fR)max the smallest and the largest frequency of Tab. 7.1 respectively. Since
rij > 1, the enumerator, ∆qi, and the denominator, ∆qj, of the ratio (7.5) can
be restricted to the values

∆qi = 2 . . . (qmax − qmin)

∆qj = 1 . . . (qmax − qmin − 1) (7.7)

∆qi > ∆qj

In order to find the rational ratios, all rij±σr,ij have to be found that agree with
∆qi/∆qj, with ∆qi and ∆qj restricted to (7.7). All other ratios are rejected. Com-
bining Eq. (7.4) and (7.5) with Eq. (2.1) on page 13, for each of the remaining
ratios rij the relation

∆f̄i

∆qi

=
∆f̄j

∆qj

=
c

2b
(7.8)

should be valid within the errors σf̄ ,i/∆qi respectively σf̄ ,j/∆qj. For b, the es-
timated mirror distance is used. If this b is specified by a range [bmin, bmax],
the values ∆f̄i/∆qi and ∆f̄j/∆qj should be within [c/2bmax, c/2bmin]. Since the
ratios rij are well separated, the estimated range of b can be quite large, e.g.
b ∈ [23.5 cm, 24.5 cm]. Each frequency difference, ∆f̄i, that is part of a ratio that
satisifies Eq. (7.8), leads to an individual value of b according to

bi =
c

2
· ∆qi

∆f̄i

(7.9)

The final value of the mirror distance, b, is given by the weighted mean of all bi
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that follow from Eq. (7.9).
The algorithm presented in this section is implemented in the software hex-

enwerk such that the mirror distance can be calculated automatically. As a
cross check, the mirror distance has also been calculated using the mode spectra
measured in [Sch92] and [Kle02]. The results are in agreement with those of
[Sch92] and [Kle02].

7.3 Pendulum Frequency

The natural frequency, ω0 = 2πf0, of the mirror pendulums is required to calcu-
late the shift, ∆b, of the mirror distance and the gravitational constant G (see
Chap. 3.1 and 8.2). The value of f0 can be determined by estimating the power
spectrum of the time series of the resonance frequency.

In Fig. 7.3 the shaded curve shows this power spectrum: The power spec-
tral density (PSD) is plotted against the frequency. In order to calculate this
spectrum, 850 hours of resonance measurements between September 2009 and
February 2010 have been evaluated. The resonace frequencies were measured
with a period of 1s. These data have been separated into non-overlapping inter-
vals of 4096 data points. For each interval the power spectrum has been calculated
separately by Fourier transforming its data points. In order to prevent leakage,
the data points were weighted with Slepian taper functions. This method is ex-
plained e.g. in [Pre07]. The final power spectrum, shown in Fig. 7.3, is given
by the mean of all these spectra. A peak can be seen at the expected natural
frequency of about 0.3 Hz. The sharp peaks at multiples of 1/60 Hz are caused
by the environment measurement (see Chap. 2.6) which ran with a period of 60s.
Due to an unknown electronic effect it caused every 60s a sharp peak in the time
series of the resonance frequencies.

The power spectral density at frequency ω is proportional to the square of
the part of the seismic noise at ω that is transmitted to the mirror distance
respectively to the resonance frequency. If the seismic noise is independent of ω,
the relation

λPSD(ω) ∝ |Hb(ω)|2 (7.10)

will be valid with λPSD(ω) the power spectral density at ω and Hb(ω) the transi-
tion function according to Eq. (2.7), page 14. A fit of |Hb(ω)|2 to the spectrum
of Fig. 7.3 around the peak gives the natural frequencies ω01 and ω02 of both
mirror pendulums and their damping constants γ1 and γ2. The results of the
fit are shown in Tab. 7.2. It can be seen that the difference of the natural fre-
quencies is smaller than or at least comparable with the error. The same is true
for the damping constants. Thus both the natural frequencies and the damping
constants can be considered to be identical within the uncertainties. In the case
of ω0,1 both the statistical and the larger systematic error are shown. The latter
has been estimated by using different intervals for fitting |Hb(ω)|2 and comparing
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Figure 7.3: Power spectral density (PSD) of the measured resonance frequencies,
plotted against the frequency: grey: measured, solid line: the fitted square, |Hb(ω)|2
of the transition function (2.7), page 14, dotted line: the expectation in the case of
an ideal resonator.

f0,1 = ω0,1/2π [Hz] 0.30419± 0.00002± 0.001
δf0 = f0,2 − f0,1 [Hz] (−6.66± 0.24) · 10−5

γ1 [1/s] 0.3155± 0.0006
δγ = γ2 − γ1 [1/s] (7.213± 0.021) · 10−3

Table 7.2: Natural frequencies f0,1 and f0,2 of both mirror pendulums and their
damping constants γ1 and γ2. The values of f0,2 respectively γ2 are shown relative to
f0,1 and γ1. The second error of f0 is the systematic error.

the different results of ω0,1.
According to Fig. 7.3, the expected |Hb(ω)|2 is in good agreement with the

PSD around the resonance peak. Thus the seismic noise does not depend on the
excitation frequency in the vicinity of the peak. Since the mirrors can oscillate in
more complex ways than mathematical pendulums, the resonator is less capable of
damping seismics than the ideal resonator with the transition function (2.7). As
a consequence of this, the spectrum deviates from its expectation on both sides.
The additional peak at 0.44 Hz can be caused by torsion modes or oscillations
of the wave guides respectively the steel frame. Thus |Hb(ω)|2 is only a good
approximation of the power spectral density in the vicinity of the resonance peak
at f0 ≈ 0.3 Hz.
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Figure 7.4: Schematic top view of the experiment: near and far positions of the
spheres in mm, relative to the mirror pendulums. The mirror distance is given by
b = (24.0554± 0.0007) cm. Its calculation is explained in Chap. 7.2.

7.4 Positions of the Spheres

Fig. 7.4 shows a simplified top view of the experiment. The mirror pendulums
are surrounded by a dotted circle which illustrates the cryostat. Guide rails are
mounted on the left and on the right granite block. Both spheres are in the
near position. The distances fL, nL, fR, nR and dLR have been measured with
an accuracy of 1 mm. According to Chap. 7.2 the mirror distance is given by
b = (24.0554±0.0007) cm. The distance a between the left granite block and the
center of mass of its adjacent mirror pendulum was measured with an estimated
accuracy of about 5 mm. According to Fig. 7.4, the near distances are given by
rL,near = 76.6 cm and rR,near = 77.9 cm. Thus both values can only be determined
with an accuracy of at least 5 mm. Furthermore rL,near and rR,near are correlated
due to the constraint

rL,near + rR,near + b = dLR + nL + nR (7.11)

In order to check the measured values of Fig. 7.4 for correctness, the distances
rL,near and rR,near have also been determined with the following method: The fre-
quency shift, i.e. the change of the mirror distance, was measured using different
configurations. The spheres were moved either symmetrically on both sides, or a
sphere was moved only on the left or on the right hand side. Furthermore spheres
of different masses were used. All in all about n ≈ 50 measurements were evalu-
ated, each several hours long. If the validity of Fig. 7.4 is assumed, one will be
able to calculate the expected frequency shift, as explained in Chap. 3, for each
of these configurations. On the other hand one can assume the distances rL,near
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rL,near [cm] rR,near [cm] χ2/n
with constraint 76.3± 0.8 77.7± 0.8 1.98
without constraint 78.2± 1.2 79.9± 1.3 1.47

Table 7.3: Values of rL,near and rR,near (see Fig. 7.4) obtained from fitting the expected
to the measured frequency shifts with rL,near and rR,near as the free parameters. n ≈ 50
measurements with different configurations have been analysed. The fit was done both
with and without the constraint given by Eq. (7.11). The validity of Newton’s law has
been assumed.

and rR,near to be unknown. In that case their values can be determined by fitting
the expected frequency shifts to the measured ones using rL,near and rR,near as free
parameters. This fit has been done both with and without the constraint given
by Eq. (7.11). The results can be found in Tab. 7.3. The measured frequency
shifts have been obtained with the analysis method A2 because it is faster than
e.g. the methods A1 or A3. Nevertheless its results are consistent with the other
methods (see e.g. Chap. 5 and 8). As can be seen in Tab. 7.3, the fit without
the constraint leads to values with errors larger than 1 cm. Using the constraint
(7.11) leads to smaller errors. Furthermore the values of rL,near and rR,near are
in better agreement with Fig. 7.4. Nonetheless the fit without the constraint
results in a better χ2 which indicates that the data seem to favour the fit without
the constraint. This points to inconsistencies regarding the measured distances
shown in Fig. 7.4. In order to be conservative, an error of 1 cm is assumed for
rL,near and rR,near. Thus their values are given by rL,near = (76.6 ± 1.0) cm and
rR,near = (77.9± 1.0) cm



Chapter 8

Results

Chap. 8.1 summarizes the shifts of the resonance frequency that have been mea-
sured using 1, 2.92 and 9.02 kg spheres. In Chap. 8.2 the gravitational constant
G is calculated from these frequency shifts in order to check the measurements
and the analysis methods for correctness. In Chap. 8.3 the measured frequency
shifts are finally compared with the predictions of Newton’s law and MOND.

8.1 Measured Frequency Shifts

Tab. 8.1 and Fig. 8.1 show the measured frequency shift, ∆fR, dependent on the
mass of the spheres that have been moved between the far to the near positions.
To get these results, measurements between September 2009 and February 2010
have been evaluated using the analysis methods explained in Chap. 4.4.

The results of the first three analyisis methods agree with each other sepa-
rately for 1, 2.92 and 9.02 kg spheres. The following discussions will be based on
the results of the method A1 if nothing else is mentioned. The other methods
are used as control methods.

method ∆fR(1.0kg) [Hz] ∆fR(2.92kg) [Hz] ∆fR(9.02kg) [Hz]

A1 2.06± 0.25 6.09± 0.24 18.65± 0.40
A2 2.00± 0.44 6.25± 0.32 19.12± 0.54
A3 2.06± 0.38 6.19± 0.34 18.53± 0.60
A4 2.94± 0.48 6.36± 0.31 19.30± 0.61
A5 1.72± 0.59 6.31± 0.36 20.09± 0.51
A6 1.60± 0.25 5.63± 0.23 17.00± 0.56

Table 8.1: Frequency shift, ∆fR, caused by the movement of 1, 2.92 and 9.02 kg
spheres, separately plotted for the different analysis methods of Chap. 4.4.

84
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Figure 8.1: Measured frequency shift, ∆fR, and the associated change, ∆b, of the
mirror distance, dependent on the mass of the spheres and on the analysis method.
The dotted lines show the expectations in the case of Newton’s law.

8.2 Calculation of the gravitational Constant

In order to check the results of Tab. 8.1 for correctness, the gravitational constant
G is calculated using these frequency shifts. Since the decision between Newon’s
law and MOND has not yet been reached, an assumption has to be made in
order to continue: In the case of the measurements with 9.02 kg spheres, the
acceleration on a mirror pendulum caused by its adjacent sphere at the near
position (rnear ≈ 70 cm) is far higher than the threshold acceleration a0 of MOND
(see e.g. Fig. 3.5, page 28). Tab. 8.8, page 91, shows the expected frequency
shifts dependent on the law of gravitation. In the case of 9.02 kg measurements
the predictions of MOND agree within 1% with Newton’s law as long as MOND
5 is excluded. Thus G can be calculated with an accuracy of 1% by

G = β
∆fR

∆b∗
(8.1)

with β the conversion factor (2.5) on page 13, ∆fR the measured shift of the
resonance frequency according to Tab. 8.1, ∆b∗ the expected change of the mirror
distance (3.7) on page 23 in the case of Newton’s law divided by G. As shown
in Chap. 3.4, the mirrors can not be treated like point masses. Thus ∆b∗ has
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method G± σG [10−11 m3/kg s−2] G−GCODATA

A1 6.57± 0.22 −0.46σ
A2 6.74± 0.26 0.24σ
A3 6.53± 0.27 −0.53σ
A4 6.80± 0.28 0.45σ
A5 7.08± 0.26 1.56σ
A6 5.99± 0.25 −2.71σ

Table 8.2: Gravitational constant G and its error σG, calculated using Eq. (8.1) and
the frequency shifts, ∆fR, in Tab. 8.1 in the case of the 9.02 kg measurements.

source value contrib. to σG/G [%]
near position of the spheres
rL,near, rR,near [cm] 76.6, 77.9, ±1.0 2.53
frequency shift ∆f [Hz] 18.65± 0.40 2.14
pendulum frequency f0 [Hz] 0.304± 0.001 0.66
correction due to numerical
integration (scale factor) 0.976± 0.002 0.2
mass of the spheres [kg] 9.02± 0.01 0.11
mirror distance b [cm] 24.0554± 0.0007 0.007
resonance frequency [GHz] 21.3905± 0.0001 0.0005
curvature radius R [cm] 57.99± 0.01 0.0005

Table 8.3: Sources of systematic uncertainties and their contributions to the error of
G which has been calculated in Tab. 8.2.

been integrated numerically. The calculation of the expected shift of the mirror
distance is explained in Chap. 3.

The result G = (6.57 ± 0.24) · 10−11 m3/kg s−2 agrees within 1σ with the
official CODATA value of 2010, G = 6.67384(80) · 10−11 m3/kgs2 (see [Nis11]).
Tab. 8.2 summarizes results of all analysis methods. The G values have been
calculated according to Eq. (8.1) using the frequency shifts of Tab. 8.1 in the
case of measurements with 9.02 kg spheres. The results of the first three control
methods also agree within 1σ with the official G value. The results of the methods
A5 and A6 deviate by 1.6σ repectively 2.7σ. As can be seen in Tab. 8.1 and Fig.
8.1, the frequency shifts of method A6 are systematically smaller than the results
of the other methods. The deviation is always about 3σ. The large spread of the
results obtained by different analysis methods points to unknown systematics,
e.g. caused by highly irregular noise during the frequency measurement. This
presently is the most severe limitation of the experiment.
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method α(2.92, 1.0) α(9.02, 1.0) α(9.02, 2.92)

A1 2.96± 0.38 9.05± 1.12 3.06± 0.14
A2 3.12± 0.71 9.56± 2.12 3.06± 0.18
A3 3.00± 0.58 9.00± 1.68 2.99± 0.19
A4 2.16± 0.37 6.56± 1.09 3.03± 0.18
A5 3.67± 1.28 11.68± 4.02 3.18± 0.20
A6 3.52± 0.57 10.62± 1.70 3.02± 0.16

Table 8.4: Ratios α(M1,M2) = ∆fR(M1)/∆fR(M2) of the measured frequency shifts
according to Tab. 8.1.

8.3 Newton vs. MOND

There are several ways of comparing the measurements with the predictions of
Newton’s law and MOND. One can either compare the measured frequency shifts
∆fR with their expectations or the ratios ∆fR(M1)/∆fR(M2), with M1 and M2

either 1.0, 2.92 or 9.02 kg. In the case of Newton’s law, the relation

∆fR(M1)

∆fR(M2)
=

∆b(M1)

∆b(M2)
=

M1

M2

(8.2)

must apply. In the case of MOND, Eq. (8.2) is not valid anymore and the
ratio ∆fR(M1)/∆fR(M2) additionally depends on the interpolation function. As
an advantage the comparison of ratios does not require the knowledge of the
factor β (see Eq. 2.5, page 13), which allows to convert frequency shifts into
changes of the mirror distance or vice versa. This conversion factor depends on
the resonance mode and the geometry of the resonator. Therefore it can be an
additional source of systematic errors. If the frequency shifts are compared with
their expectations, the factor β is needed to convert the expected change of the
mirror distance into a frequency shift. Furthermore the ratios are not biased by
systematics that rescale the measured frequency shift (see e.g. Chap. 6.1).

First of all the ratios of frequency shifts are compared. Tab. 8.4 shows
the ratios of the measured frequency shifts (see Tab. 8.1). In Tab. 8.5 the
expected ratios are shown, dependent on the law of gravitation. The measured
ratio α(9.02, 2.92) has the smallest spread. The largest spread can be found in
the case of α(9.02, 1.0). Tab. 8.6 shows the deviation of the measured mean ratio
from the expected ratio in units of the standard deviation σ of the measured
ratio, dependent on the law of gravitation. Only the ratio α(9.02, 2.92) can be
used to make a statement. The ratio agrees within 1σ with Newton’s law and
MOND version 2, 3 and 4. MOND version 5 shows the largest deviation with
≈ 2σ, which is not significant.

According to Tab. 8.6 the ratios do not provide sufficient information to
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α(2.92, 1.0) α(9.02, 1.0) α(9.02, 2.92)
Newton 2.92± 0.09 9.00± 0.28 3.09± 0.10
MOND 1 3.03± 0.10 9.99± 0.33 3.29± 0.11
MOND 2 2.59± 0.08 7.65± 0.23 2.96± 0.09
MOND 3 2.84± 0.08 8.73± 0.26 3.08± 0.10
MOND 4 2.88± 0.09 9.05± 0.28 3.15± 0.10
MOND 5 2.50± 0.07 6.93± 0.20 2.77± 0.08

Table 8.5: Expected ratios α(M1,M2) = ∆b(M1)/∆b(M2), dependend on the masses
and on the gravitation law. The MOND laws are numbered according to the interpo-
lation function µ(x) in Tab. 8.7. The errors are due to the uncertainty of the positions
and the masses of the spheres. The positions can only be determined with an accuracy
of 1 cm, the masses with 10 g.

α(2.92, 1.0) α(9.02, 1.0) α(9.02, 2.92)
Newton 0.11σ 0.05σ −0.18σ
MOND 1 −0.20σ −0.84σ −1.69σ
MOND 2 0.98σ 1.26σ 0.76σ
MOND 3 0.32σ 0.29σ −0.12σ
MOND 4 0.21σ 0.01σ −0.61σ
MOND 5 1.20σ 1.90σ 2.13σ

Table 8.6: Deviations of the ratios of Tab. 8.4 from the expected ratios of Tab. 8.5
in units of the standard deviation σ of the measured ratios.
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no. µ(x) Literature

1 x/
√

1 + x2 [Mil83]

2 x/(1 + x) [Fam05]

3 6
π2 x

∫ π2

6x

0
z

ez−1
dz [Li10]

4 y 1−y3

1−y4 , y = y(x) [Men10]

5
√

1+4x−1√
1+4x+1

[Bek05]

Table 8.7: MOND interpolation functions µ(x), associated with the five MOND laws
in Tab. 8.5 and 8.6. In Chap. 1.2, page 5, these functions are presented in detail.
There also the calculation of interpolation function 4 is explained.

distinguish Newton’s law fom MOND. Therefore the frequency shifts are now
compared with their expectations. Fig. 8.2 shows the measured frequency shifts,
∆f (see Tab. 8.1) for M = 1, 2.92 and 9.02 kg spheres, divided by the mass
M of the spheres. The bands show the expectations ∆f/M plotted against M ,
dependent on the law of gravitation. The MOND laws are numbered according
to Tab. 8.7. In the case of Newton’s law, the expectation does not depend on M
because ∆f ∝ M .

Tab. 8.9 shows the χ2 values associated with the different laws of gravitation
which are given by

χ2 =
∑
M

(∆f(M)−∆fexp(M))2

σ2
∆f + σ2

∆f,exp

(8.3)

with M = 1, 2.92 and 9.02 kg, ∆f(M)±σ∆f the measured frequency shift in the
case of spheres of mass M and ∆fexp± σ∆f,exp the expectation dependent on the
law of gravitation. The χ2 value should be around 3. Newton’s law, MOND 3
and MOND 4 fit very well. MOND 1 is disfavoured. MOND 5 can be excluded
which is in accordance with [Fam05].

8.4 Conclusion

The results of Tab. 8.1 respectively Tab. 8.4 have been obtained by using six
different analysis methods, which are explained in Chap. 4.4. The individual
results of these methods are statistically correlated because they are based on
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Figure 8.2: Measured and expected frequency shift, ∆f , divided by the mass of the
spheres, M , plotted against M . The points show the measured frequency shift for
1, 2.9 and 9.02 kg spheres. The dotted and the shaded bands show the expectation
dependent on the law of gravitation according to Tab. 8.7.
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∆f(1.0kg) [Hz] ∆f(2.92kg) [Hz] ∆f(9.02kg) [Hz]
Newton 2.10± 0.04 6.12± 0.13 18.88± 0.42
MOND 1 1.88± 0.04 5.69± 0.13 18.74± 0.42
MOND 2 2.48± 0.05 6.41± 0.14 18.96± 0.42
MOND 3 2.16± 0.04 6.12± 0.13 18.86± 0.42
MOND 4 2.06± 0.04 5.93± 0.13 18.65± 0.42
MOND 5 3.20± 0.06 8.02± 0.17 22.21± 0.48

Table 8.8: Expected frequency shift, ∆fexp, dependent on the mass of the spheres
and on the law of gravitation.

Newton MOND
1 2 3 4 5

χ2 0.16 2.54 4.10 0.28 0.32 87.16

Table 8.9: χ2 according to Eq. (8.3), calculated for Newton’s law and for the five
MOND versions of Tab. 8.7.

the same data. The spread reflects the influence of systematic effects on different
analysis methods.

The accelerations of the mirror pendulums caused by the 1 and 3 kg spheres
are in the vicinity of the threshold acceleration of MOND a0 ≈ 1.2 · 10−10 m/s2.
In this regime Newton’s law has been tested and confirmed with an accuracy of
3%. The MOND versions 1, 3 and 4 can not be distinguished from Newton’s law.
MOND 2 is disfavoured and MOND 5 can be excluded. Even if the precision
could be increased, MOND in general could not be rejected by this experiment
because one could not exclude the existence of an interpolation function µ(x)
that make MOND indistinguishable from Newton within the errors.

If the prediction of MOND deviates from that of Newton’s law only in the
case of weak gravitational fields, this experiment, which is carried out in the
gravitational field of earth, will not be able to distinguish between these both laws,
even if MOND was realised in Nature (see Chap. 1.4). This experiment can only
check whether Newton is correct in the case of small relative accelerations. Since
it is still an open question whether graviational fields have to be weak to measure
deviations from Newton, this experiment provides at least an opportunity to
answer this question.
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