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Abstract

We investigate phenomenological consequences of locally supersymmetric extensions of the
Standard Model consistent with primordial nucleosynthesis, leptogenesis and dark matter
constraints. An unequivocal prediction of local supersymmetry is the existence of the grav-
itino, the spin-3/2 superpartner of the graviton. Due to its extremely weak couplings, decays
involving the gravitino in the initial or the final state may cause problems in the early universe.
One class of models solving the gravitino problem makes the gravitino either the heaviest
or the lightest supersymmetric particle (LSP), while predicting a higgsino-like neutralino
as the LSP or the next-to-lightest superparticle (NLSP), respectively. In both cases the
LHC phenomenology is determined by the higgsino states. The mass degeneracy between
the charged and neutral states, together with very heavy colored states, prevent an early
discovery at the LHC, especially if one demands a lightest Higgs mass compatible with the
recent LHC signal excess.
Another class of models, in which the gravitino is also a dark matter candidate, introduces a
small violation of R-parity to render the cosmology consistent. In this case, the phenomenol-
ogy at the LHC is determined by the R-parity violating decays of the NLSP which can be
a bino-like or a higgsino-like neutralino or a stau. Using a novel approach to describing bi-
linear R-parity violation, we compute decay rates of the gravitino and the possible NLSP.
Due to a connection between the gravitino and neutralino decay widths, we can predict the
neutralino NLSP decay length at the LHC directly from the recent Fermi-LAT results for
decaying dark matter searches. The decays of the NLSP in the detectors distort the miss-
ing transverse energy (MET) signature, which complicates the searches relying on it, while
creating a new secondary vertex signature. We conclude that for gluino and squark masses
accessible at the LHC, searches based on secondary vertices can probe values of the R-parity
breaking parameter which are far below the present upper bounds obtained from astrophysics
and cosmology.





Zusammenfassung

Wir präsentieren eine Untersuchung der phänomenologischen Konsequenzen von lokalen su-
persymmetrischen Erweiterungen des Standardmodells, welche eine korrekte Menge von dunk-
ler Materie vorhersagen und sich durch eine Vereinbarkeit mit primordialer Nukleosynthese
und Leptogenese auszeichnen. Die Existenz vom Gravitino, einem Spin-3/2 Superpartner
vom Graviton, ist eine eindeutige Vorhersage der lokalen Supersymmetrie. Die Zerfälle, die
das Gravitino im Anfang- oder Endzustand beinhalten, sind Ursache für Probleme im frühen
Universum, da das Gravitino nur sehr schwach wechselwirkt.
Eine Klasse von Modellen, in denen das Gravitino-Problem gelöst ist, sagt vorher, dass Gravi-
tino das leichteste oder das schwerste supersymmetrische Teilchen ist, begleitet vom nächst-
leichtesten oder dem leichtesten Higgsino-artigen Neutralino. In beiden Fällen wird die LHC
Phänomenologie von den Higgsino Zuständen beherrscht. Die Massenentartung zwischen den
geladenen und den neutralen Zuständen, und die sehr schweren Farb-geladenen Zustände,
verhindern eine frühe Entdeckung am LHC, insbesondere wenn man verlangt, dass die Masse
des leichtesten Higgs Teilchens nahe dem letzten experimentellen Hinweis vom LHC liegt.
Eine andere Klasse von Modellen, die das Gravitino als Kandidaten für die dunke Materie
ansieht, führt eine geringe Verletzung der R-Parität ein, um die Kosmologie konsistent zu
machen. Die Phänomenlogie am LHC ist in diesem Fall durch die R-Parität-verletzenden
Zerfälle des nächst-leichtesten supersymmetrischen Teilchens bestimmt, welches ein Bino-
oder Higgsino-artiges Neutralino oder ein Stau sein kann.
Wir verwenden eine neuartige Beschreibung bilinearer R-Paritäts Verletzung, um die Zerfalls-
breiten des Gravitinos und des möglichen nächst-leichtesten supersymmetrischen Teilchens zu
berechnen. Da es einen Zusammenhang zwischen den Zerfällen des Gravitinos und denen des
Neutralinos gibt, können wir die Zerfallslänge des Neutralinos am LHC direkt aus den Fermi-
LAT Ergebnissen der Suche nach kosmischer Gammastrahlung aus den Zerfällen der dunklen
Materie vorhersagen. Die Zerfälle des nächst-leichtesten supersymmetrischen Teilchens in den
Detektoren am LHC deformieren die Verteilung der fehlenden transversalen Energie so, dass
die Suchen nach dieser Signatur erheblich erschwert sind. Gleichzeitig erzeugen sie aber ei-
ne neue Signatur, basierend auf den sekundären Vertices. Es stellt sich heraus, dass für die
vom LHC erreichbaren Gluino- und Squarkmassen, die Suchen nach den sekundären Vertices
solche Werte der R-Paritäts brechenden Parameter untersuchen können, die weit unter den
bestehenden oberen Schranken aus der Astrophysik und Kosmologie liegen.





In memory of my father,
Feliks Bobrovskyi
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Chapter 1

Introduction

Quod est superius est sicut quod est inferius - “As above so below” are the words of central
meaning in the teaching of the western Hermetic tradition, as they encode the presumed
relation between the different layers of reality. Through the millennia the adepts of the
occult believed that changes in the constellation of stars and planets are mirrored by the
fateful events in the human life. The scientific method has come a long way since that times,
explaining the universe around us with unprecedented precision and making attempts to
explain even ourselves, our consciousness, through combination of different fields, including
neuroscience and psychology, without any recourses to immaterial elements. The progress in
physics during the last decades allows us to reinterpret the Hermetic statement and to cast it
into a precise, empirically testable form. The laws of the microcosm determine the history of
the macrocosm, and the gravitational interaction seen through macroscopic effects presumably
play a key role at the smallest scales. Thus, the ultimate quest for the understanding of the
cosmogony is the understanding of all of the laws and entities of the microworld combined
with an universal treatment of gravity by means of quantum theory. Even leaving the problem
of quantum gravity aside, we know that we are just in the beginning of this road, since a
number of questions connecting elementary particle physics and cosmology is unanswered or
only partially answered so far.

The current paradigm of the elementary particle physics is embodied in the Standard
Model (SM), an incredible well tested theory of fundamental interactions built within the
framework of quantum field theory upon the principle of local gauge invariance. The Standard
Model was established in the seventies and saw its greatest success in the eighties with the
discovery of the W and Z boson - the force carriers of the weak interactions. We refer the
reader to reference [1] for more details and a historical account. The electroweak part of
the Standard Model was tested to high precision at the Large Electron Positron Collider,
which confirmed all of SM predictions, except for the spin-zero Higgs particle, connected to
the field responsible for the so called “spontaneous breaking” of the electroweak symmetry,
which was not found [2–4]. It appears certain that the Higgs particle, or a messenger of an
other mechanism for the creation of gauge boson masses, should be seen at the Large Hadron
Collider [5–9]. At the time of writing, there are first hints for the Higgs boson with a mass
around 125 GeV at the LHC [10–12].

Besides theoretical questions concerning the infrared properties of unbroken gauge theo-
ries1, the SM is also challenged by experimental results from the neutrino experiments. They

1The Clay mathematics institute offers a million dollar prize for the solution of the mass gap problem in
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have observed flavor changing processes which were then interpreted as neutrino flavor os-
cillations as a result of non-zero neutrino masses [14–16]. Neutrinos are usually taken to be
massless in the Standard Model, but it is easily possible to introduce neutrino masses via two
different ways: i) a Dirac mass term can be added to the Lagrangian leading to an extreme
small Yukawa coupling, which then has to be explained, or ii) neutrino can be a Majorana
particle and acquire its mass via the seesaw-mechanism, which involves introduction of new
heavy neutrino states [17–19]. In both cases the Standard Model can be retained with small
modifications.

This situation changes if one follows the principle from the beginning of the chapter,
i.e. tries to explain the history of the universe with the help of the Standard Model. First
of all, one hits the fundamental problem of quantum gravity, as mentioned above, since
the gravitational interaction is described by the general theory of relativity, a classical field
theory. The fundamental problem can be set aside stating that it becomes important only
in extreme situations arising near the singularities of the space-time continuum. Away from
these regions, which means sufficiently late in time after the initial singularity, if one considers
cosmography, the behavior of matter at small scales will be governed solely by the quantum
mechanical laws of particle physics, because of the (super) weak interaction strength of the
gravitation. At large scales, the behavior of the universe will be governed only by gravitation
sourced by the expectation value of the energy-momentum tensor, due to the short range of
the weak and strong interactions and an on average zero charge of matter.

Such approach to gravitation lies at the heart of the current concordance model of cos-
mology, the Lambda CDM model. We refer the reader to [20, 21] and references therein
for an introduction to this topic. It describes an expanding, on average homogeneous and
isotropic universe by means of the Friedmann-Lemâıtre-Robertson-Walker metric within gen-
eral relativity. The expansion of the universe is confirmed by a wide range of astronomical
observations. Projecting this expansion back in time taking into account the matter content
of the universe, one comes to the conclusion that the universe should be in a hotter, denser
state in the past. The observation of the cosmic microwave background (CMB), a relic from
the time of last scattering when photons decoupled from the thermal plasma of electrons
and light elements, is the most compelling evidence for such hot thermal phase in the early
universe and an example for successful application of the laws of particle physics to cosmol-
ogy. Another successful application of nuclear physics to cosmology is the process of big bang
nucleosynthesis (BBN), i.e. the production of light elements, which took place even earlier in
the history of the universe. The abundances of light elements predicted by BBN are in good
agreement with astrophysical observations.

Being homogeneous and isotropic at largest scales, the universe exhibits a variety of struc-
ture at smaller scales varying from the cosmic web of galaxy superclusters to the planetary
systems within galaxies. These inhomogeneities, responsible for our existence, are generated
by gravitational instability from some seeds which should be present at earlier times and which
are clearly seen as temperature anisotropies in the CMB. The best explanation for these seeds
provides inflation - a part of the concordance model proposing a phase of exponential expan-
sion after the initial singularity and before the hot state. This phase can be created by the
dynamics of a scalar field, the inflaton. This field is not part of the Standard Model2 and has
to be added to our description of the microcosm. The thermal phase starts after the end of

Yang-Mills theory [13].
2Proposals to associate this field with the Higgs field seem to be flawed so far [22–25].
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inflation in a process called reheating, which is also not understood so far. Another process
which cannot be described by the Standard Model is the generation of the matter-antimatter
asymmetry - baryogenesis. Any initial baryon asymmetry (being itself a peculiar initial con-
dition) would be diluted by inflation, making a dynamical creation process necessary. The
conditions for successful baryogenesis, which are called Sakharov conditions [26], cannot be
satisfied by the particle content and the interactions of the SM3. However, it is important to
note that baryogenesis can be linked to seemingly unrelated problem of neutrino masses, in
particular to the see-saw extension of the Standard Model, a fact vindicating the motto of
this chapter.

So far we haven’t considered the meaning of the name given to the concordance model,
albeit this name itself characterizes quantities lying beyond the Standard Model of particle
physics. The greek letter lambda is reserved in cosmology for the constant term proportional
to the metric in Einstein’s equation of motion. One view is that the cosmological constant is
an additional freedom in the definition of the theory arising from the renormalization of the
energy momentum tensor [30]. However, the general belief is that the constant is determined
by the matter content of the theory as the energy density of the vacuum [31]. The observed
positive value of the cosmological constant, while being responsible for seventy percent of the
current total energy content of the universe, is an extremely small number which cannot be
explained within the scope of the Standard Model or even any quantum field theory to date.

The CDM part in the model name abbreviates cold dark matter - another unresolved
problem in cosmology and particle physics. The term dark matter refers to non-luminous
source of gravitation which was proposed already in the thirties by Fritz Zwicky to explain
radial velocities of the galaxies in the Coma cluster [32]. While the existence of dark matter
is firmly established on the basis of astrophysical and cosmological observations, its nature
is unknown [33, 34]. It has been proposed, that the observed gravitational effects might be
explained by a modification of the theory of gravity [35] or that they might be caused by non-
luminous astrophysical objects in the halo of galaxies [36,37]. However, these explanations are
strongly disfavored by current experimental data. Again, the best explanation seem to come
from the layer of microphysics, dark matter being a new kind of elementary particle obeying
all observational constraints, since the Standard Model has no viable candidates [38,39].

Summing up, one clearly sees that, even not taking into account various purely internal
theoretical reasons and quantum gravity, our current description of the elementary particle
physics is by far incomplete. However, there is a tension between this certainty originating
from astrophysical observations and the lack of direct evidence from the high-energy experi-
ments. This situation has lead to a multitude of theoretical models trying to accommodate
the observations and to become a successor of the Standard Model. A definite further progress
can only be achieved if we gain new insights into the nature of the phenomena, preferably,
from high-energy experiments where new processes happen in the laboratory, and one is able
to measure repeatedly a high number of observables. A lot of hope is associated with the
Large Hadron Collier, a proton-proton accelerator with a design center-of-mass energy of 14
TeV. It seems probable that the LHC not only allows us to pose further questions concerning
the nature of the Higgs mechanism, but also gives us the possibility to shed light on the nature
of dark matter. Having summarized the current situation in particle physics and cosmology,
we now turn our attention to promising dark matter candidates.

3The phase transition occurring in the early universe during electroweak symmetry breaking is not strong
enough for a successful electroweak baryogenesis [27–29].
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The theoretically best studied dark matter candidates are stable weakly interacting mas-
sive particles (WIMPS). Due to the weak interaction strength they would be produced in the
right abundance in the early universe. Their stability is usually associated with some dis-
crete symmetry which forbids decays into the lighter stable particles of the Standard Model.
The prototype dark matter candidate of this class is the lightest neutralino in the Minimal
Supersymmetric Standard Model (MSSM) with conserved R-parity [40]. Depending on the
spectrum of new particles, neutralinos could be produced at the LHC and would then be
detected by the large experiments. Besides being produced at the LHC, WIMPs should also
annihilate in the halo of the milky way and contribute to the spectra of cosmic rays. Fur-
thermore, they would scatter off nuclei in the dedicated direct detection experiments while
traversing the Earth.

Only a combination of evidence from all these experiments will allow to perform the
connection between particles and the cosmos identifying the nature of dark matter. However,
the simplest supersymmetric models with easily accessible spectra seem already to be excluded
in direct searches, as well as in indirect searches at colliders [41–43]. It is expected that
neutralino dark matter will be detected or completely excluded within the next decade.

Being very popular, weakly interacting massive particles, and in particular neutralino, are
not the only viable dark matter candidates. A very interesting particle is the gravitino, the
gauge fermion of supergravity, which is present in all locally supersymmetric theories [44,45].
The discovery of the gravitino would be as important as the discovery of the W and Z bosons
of the Standard Model. Since the mass of the gravitino is tightly linked to the unknown
mechanism of supersymmetry breaking, the gravitino can have a wide range of masses and
be the lightest superparticle and therefore a natural dark matter candidate [46,47].

Further hints for gravitino dark matter originate from the interplay between cosmologi-
cally successful predictions of the Standard Model, its seesaw-extension, and the preferable
mechanism for baryogenesis linked to it. Leptogenesis creates the baryon asymmetry via C
and CP violating out of equilibrium decays of heavy right-handed neutrinos. These decays
violate also a lepton number and create lepton asymmetry. The sphaleron processes which
are in thermal equilibrium at high temperature transform the lepton asymmetry into baryon
asymmetry [48–50]. The right-handed neutrinos must have a mass of the order of 1010 GeV
in order to create the mass scale of the light neutrinos, which is below 1 eV, via the see-saw
mechanism. Therefore, leptogenesis requires the universe to be very hot so that the heavy
neutrino states can be produced from the thermal bath.

At such high temperature the gravitinos will be also copiously produced in thermal scat-
terings [51]. If gravitinos can decay into lighter particles, their decays will in general spoil
the predictions of primordial nucleosynthesis for the abundance of light elements [52].

One possible solution to this gravitino problem involves a super-heavy gravitino of several
tenth of TeV, which can be realized in models with anomaly-mediated SUSY breaking [53–55].
A recent study [56] showed that an AMSB model with very heavy spectrum but light higgsi-
nos can lead to a consistent cosmology including WIMP dark matter. Another solution makes
gravitino the lightest supersymmetric particle and hence a dark matter candidate, as stated
above. Gravitino is an elusive dark matter candidate, due to its super-weak interactions sup-
pressed by the Planck scale, and will be probably never seen in direct detection experiments,
without some technology far beyond the current state of the art. Stable gravitinos in the halo
would also produce no measurable signal.

The prospects for indirect detection at colliders depend strongly on the gravitino mass
and the full superparticle spectrum. If the mass difference between the gravitino and the
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next to lightest supersymmetric particle is not large enough, the lifetime of the (NLSP) is
very long and it does not decay inside of the detector leading to the usual missing transverse
energy signature. If the mass of the NLSP is too large it cannot be produced in the decay-
chains or in extreme case it cannot be even directly produced at the LHC. Only if the full
spectrum and the NLSP-LSP mass difference allows it, the gravitino can manifest itself as
missing transverse energy accompanied by gauge bosons.

Moreover, the late decays of the NLSP into the gravitino will in general also lead to
conflicts with big bang nucleosynthesis. However, it is possible to reconcile gravitino dark
matter, leptogenesis and the primordial nucleosynthesis if one allows for small R-parity vio-
lation. Such small R-parity breaking couplings can be naturally induced if the breaking of
R-parity is associated with the breaking of the difference between the baryon and the lepton
number [57]. If R-parity is broken, NLSP will decay before big bang nucleosynthesis directly
into particles of the Standard Model. Gravitino becomes also unstable but its lifetime exceeds
by far the age of the universe, since its coupling is suppressed not only by the Planck scale but
also by the small amount of R-parity breaking [58]. Therefore, gravitino remains a perfect
dark matter candidate.

The breaking of R-parity endows gravitino with a rich phenomenology. The decays of the
gravitino may be seen in the late universe as signals in the diffuse gamma ray flux [57–62],
in the fluxes of cosmic-ray antimatter [61–64], or in the flux of neutrinos [63, 65]. This is
possible, in spite of the extremely long gravitino lifetime, due to the high density of dark
matter in the galactic halo. Additionally, the experiments at the LHC may see the NLSP
decays into Standard Model particles. The signatures depend on the nature of the NLSP and
range from long maximally ionizing tracks in the case of heavy charged particles to secondary
vertices in the inner or outer detector components for neutral NLSP [57, 66–71]. However, a
direct detection of gravitinos seems still not viable [72].

Most studies so far were focused on the indirect detection prospects of the decaying grav-
itino dark matter. The present work, on the other hand, emphasizes the consequences of
gravitino cosmology for new physics searches at colliders. Thus, it is complementary to the
recent work [72] investigating in detail the direct and indirect detection prospects for decay-
ing gravitino dark matter. Furthermore, we also consider the consequences of models with
R-parity conservation and super heavy gravitinos.

The main motivation of the present work is the aforementioned tension between the as-
trophysical observations and the negative results from the LHC. Taking local supersymmetry
seriously we consider two possible solutions for the gravitino problem: i) gravitino as the
heaviest supersymmetric particle ii) gravitino as the lightest supersymmetric particle. In the
first case, we consider the AMSB model [73] with higgsino-like neutralino LSP leading to
consistent cosmology [56]. In the second case, one also can obtain consistent cosmology if one
allows additional entropy production in case of higgsino-like neutralino NLSP predicted in
models with hybrid gauge-gravity mediated SUSY breaking [74, 75]. The popular mSUGRA
model of SUSY breaking predicts however a bino-like neutralino or a stau NLSP, and ad-
ditional entropy production cannot solve the NLSP decay problem [76]. However, a small
violation of R-parity can render the cosmology consistent and leads to a multitude of sig-
natures in the sky from decaying gravitino and at the LHC from decaying NLSP, as stated
above. The R-parity can also be broken in models with higgsino NLSP and gravitino dark
matter and lead to slightly different signatures at the LHC.

The LHC phenomenology of models with conserved R-parity and higgsino-like neutralino
NLSP or LSP turns out to be very similar. Both models predict very heavy colored particles,
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such that they cannot be produced at the LHC. The only accessible SUSY production chan-
nel is then direct electroweak production of higgsino states leading to negligible transverse
momentum of the event. This fact, combined with the mass degeneracy between charged
and neutral higgsino states, leads to the absence of visible signatures at the LHC, which we
have confirmed in our study including the effects of detector simulation. The only hope for a
LHC discovery is the search for monojet or monophoton signatures arising from initial state
radiation giving rise to a transverse momentum kick and a jet or a photon.

Taking into consideration only the results for the lower bound on the Higgs mass, the
hybrid gauge-gravity mediation model allows for light stop states leading to a spectrum similar
to the one obtained in natural SUSY proposals, see [77] and references therein. Stops decaying
into higgsinos consequently play the most important role in one of our studies. Because of
the usually large mass difference, this decay will give rise to very high-energetic jets, which
provides a handle to distinguish signal events from Standard Model backgrounds. On the
other hand, we can also discriminate between our light higgsino scenario and a generic MSSM
with comparable squark and gluino masses. This is because in the latter one would expect
to see also events with high-energetic isolated leptons from chargino and neutralino decays.
Such events are absent in our scenario, since the higgsino-like chargino and neutralinos are
nearly degenerate in mass; consequently, leptons in the final state are too soft to be detected.

If R-parity is violated gravitino LSP and the NLSP will decay. Using a novel description
of bilinear R-parity violation, which yields a trilinear coupling previously not discussed in
the literature, we derive in a simple way all decay modes of the gravitino, the neutralino,
for both bino and higgsino-like cases, and the stau. Then, we compute the gravitino decay
into photon and neutrino as well as all neutralino and stau decays using the two-component
spinor technique for fermions. Especially the computation of the gravitino decay is simpli-
fied compared to the usual four-component approach. Having the decay widths, we discuss
cosmological constraints on the size of R-parity violation and compare them with the bounds
obtained in direct searches and with indirect bounds from low-energy processes. Additionally,
we review the bounds on the size of R-parity violation from the gravitino decays. An im-
portant observation of this work is the connection between the gravitino decays into photon
and neutrino and the neutralino decays. Using the bounds on R-parity violating couplings
from the Fermi-LAT data, we are able to make rather model independent predictions for the
neutralino decay length at the LHC. If the NLSP is a stau, we obtain a lower bound on the
stau decay length from the requirement that the baryon asymmetry is not washed out.

Focusing on the results for neutralino NLSP, we observe that the predicted decay lengths
are macroscopic. The neutralinos decay, therefore, throughout the detector volume and distort
the missing transverse energy signature. We have evaluated this distortion on the generator
level, since there is no disposable realistic detector simulation taking into account the final
radial size of the detector. Nevertheless, we show that the distribution of missing transverse
momentum is sufficiently different from the R-parity conserving case and SUSY can be hidden
from searches relying on the usual signatures. In order to find the signal, we derive all
signatures of decaying neutralinos. While a detailed study of a higgsino-like neutralino at
the LHC is work in progress, we present a search for bino-like neutralino decays at the LHC
using muons coming from secondary vertices. This study is based on our implementation of
muon reconstruction process in cases where they are coming not from the primary interaction
point. As a result, we find that for gluino and squark masses accessible at the LHC, values
of the R-parity breaking parameter can be probed which are one to two orders of magnitude
smaller than the present upper bound obtained from astrophysics and cosmology. Finally, we
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also estimate the discovery reach of the LHC if all NLSP decays are taken into account.
This thesis is organized as follows. In Chapter 2 we introduce the concepts of supersym-

metry and supergravity and provide the main arguments why this theory is considered to
be the best motivated extension of the Standard Model. The discussion of the supergravity
Lagrangian uses modern two-component notation for fermions introduced in Appendix A,
and the Lagrangian was rewritten from the notation of Wess and Bagger [78]. Having dis-
cussed the breaking of supersymmetry, we present a number of models leading to consistent
cosmology. The supersymmetric particle spectra predicted by these models are used for the
discussion of the LHC signatures. Finally, we provide a short review of the field-theoretical
description of the gravitino in the two-component formalism and summarize its implications
for cosmology. Chapter 3 motivates the breaking of R-parity and provides an introduction to
this topic. After the presentation of consistent patterns of R-parity breaking, we focus on the
bilinear R-parity breaking scenario. The phenomenological consequences of R-parity breaking
are derived in Chapter 4. We also review the bounds on R-parity breaking couplings from
various sources. The connection between consistent cosmology and hidden supersymmetry
at the LHC is explored in Chapter 5. Finally, we will present our conclusions and a short
outlook.

The appendices contain supporting material on the calculations in this work: Appendix A
introduces the two-component spinor technique extending the usual discussion to the case
of gravitino decays. Appendix B presents the diagonalization of neutralino and chargino
matrices, as well as the derivation of neutral and charged currents.

The discussion of the bilinear R-parity violation as well as the presentation of the model
for spontaneous R-parity breaking in Chapter 3 are based on the work published in [69].
Compared to the published results, the discussion is vastly expanded and includes the full
supercurrent. The phenomenological discussion of neutralino and stau decays in Chapter 4
is also based on the publication [69]. However, the whole discussion of the neutralino decays
was updated taking into account the recent LHC results as well as the results from [72].
Additionally, we have included the decay channel into the lightest Higgs boson and neutrino
neglected in [69]. Furthermore, the discussion of the higgsino-like neutralino case is completely
new, as well as the discussion of gravitino decays. The discussion of the Higgsino world
scenario in Chapter 5 is based on the publication [79]. The search for bino-like neutralino
NLSP decays via muons from secondary vertices has been published in [70]. Compared to the
published result, we have updated the discussion in view of the recent LHC results. We have
also analyzed a larger amount of Monte Carlo data for the backgrounds. The discussion of
searches for higgsino-like neutralino is work in progress.
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Chapter 2

Supersymmetry and Supergravity

Supersymmetry (SUSY) [80–84] is a hypothetical symmetry between fermionic and bosonic
degrees of freedom of a quantum field theory. It introduces fermionic charges transforming
fermions into bosons and vice-versa:

Q |boson〉 ' |fermion〉 , Q |fermion〉 ' |boson〉 . (2.1)

At first sight, these transformations seem to be similar to internal global symmetry trans-
formations, for example to isospin, which relates protons and neutrons. Global internal
symmetries lead to conserved charges and superselection sectors within the Hilbert space of
states, cf. [85] and references therein. In this sense they are physical opposed to local gauge
transformations which represent redundancies in the description of the system. Internal global
symmetries have a unifying role, since the states have to be arranged in definite representa-
tions of the considered symmetry group, and these representations can be seen as the basic
ontological objects, as long as the symmetry is unbroken. In the case of isospin, this view
would imply that the true existing objects are nucleon doublets. Proton and neutron appear
as individual objects due to the breaking of isospin by electromagnetic interactions.

The most prominent physical symmetries are the external symmetries of space-time.
Therefore, it would be natural to obliterate the distinction between internal and external
symmetries by combining the global symmetry group with the Lorentz group into some sim-
ple (non-compact) symmetry group. However, it is impossible to accomplish this project as
it was shown by Coleman and Mandula [86].

Here the interesting nature of supersymmetry comes into play, as it turns out that su-
persymmetry is the only possible extension of the Poincaré algebra [87], and hence unifies
the boson-fermion relation with the symmetries of space-time. This distinctive nature of su-
persymmetry makes it theoretically attractive, irrespective of the possible phenomenological
implications [88]. Unbroken SUSY would imply the existence of mass-degenerate bosons for
each fermion of the Standard Model and vice versa, since it is impossible to combine known
fermions and bosons into supermultiplets, see [89] for a historical overview and references.
Since no such particles were discovered so far, SUSY must be broken.

Nevertheless, SUSY is the most studied extension of the Standard Model and it is expected
to find at least parts of the new particle spectrum of the SM superpartners at the LHC. A
possible attempt for the classification of arguments in favor of the existence of supersymmetry
in nature and for the connection between SUSY and the Fermi-scale can proceed as follows:
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CHAPTER 2. SUPERSYMMETRY AND SUPERGRAVITY

Metaphysical arguments

• Supersymmetry is an extension of the Poincaré algebra. The true symmetry of space-
time should be the largest possible (mathematically-consistent) symmetry.

• Supersymmetry is intrinsically elegant. The more elegant a theory is, the more probable
it is that this is a true theory.

• Unification I : Supersymmetry blurs the distinction between matter-particles and force-
carriers.

Inner-theoretical arguments

• Supersymmetry improves the renormalization properties of theories. Some quantities
even acquire no radiative corrections for the case of unbroken SUSY.

• Energy is represented by a positive operator, no extra assumption is needed to ensure
the positivity of energy (in global SUSY only).

• Supersymmetry presents solution to the hierarchy problem: The scale of the electroweak
symmetry breaking is stabilized via cancellation of the quadratic divergences in the
radiative corrections to the mass-square of the Higgs-boson. This argument works if
the sparticles weigh less than about 1 TeV (at least the superpartners of the third
generation). [FS]

• Unification II : The running gauge couplings of the Standard Model come close to each
other at some high scale, suggesting that they are descendants of a fundamental coupling
connected to a simple gauge group broken to the SM at the high scale. However,
the couplings do not actually meet in the SM. The inclusion of superpartners in the
renormalization-group equations (RGEs) for the gauge couplings permit them to unify
at the scale MGUT ≈ 1016 GeV. The unification happens if the supersymmetric mass
scale is at most around 10 TeV. [FS]

• Unification III : Local supersymmetry, or supergravity, incorporates Einstein’s theory
and improves the renormalization properties of the usual gravity. However, the theory
still remains non-renormalizable.

• Supersymmetry is essential for string theory and string theory is believed to be the best
candidate for a fundamental theory at the Planck scale.

Experimental hints

• The lightest supersymmetric particle in models with conserved R-parity is a natural
candidate for dark matter. The observed dark matter density can be explained if the
lightest supersymmetric particle weighs less than 1 TeV. A similar argument can be
made for the gravitino dark matter. [FS]

• Direct searches, as well as electroweak fits, suggest that Higgs boson is lighter than 127
GeV, in agreement with predictions of simplest supersymmetric theories.
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• The mass of the Higgs boson is connected with the stability of the electroweak vacuum.
If the Higgs is very light, the vacuum would be destabilized by radiative corrections due
to the top quark, unless the Standard Model is supplemented by additional scalar par-
ticles. This happens automatically in SUSY. One can even argue, that any mechanism
to stabilize the electroweak vacuum must resemble SUSY [90].

• The measured value of the anomalous magnetic moment of the muon disagrees with the
Standard Model prediction. Light supersymmetric spectrum can explain the measured
value, but such spectrum is in tension with the recent LHC results [91].

The arguments are extracted from [88, 90, 92, 93]; a bold FS in brackets indicates a strong
hint for super-partners of the SM particles (superparticles) withing the LHC reach, whereas
FS in a regular font indicates a possibility for discovery.

Examining these points it becomes clear that supersymmetry is intertwined with the pro-
gram of unification. The metaphysical underpinning of this school of thought is the idea
that nature is as simple and as economical as possible. A minimal number of interactions
and minimal number of fundamental objects seem desirable. However, the perceived nature
possesses a multitude of structures and rich dynamics making symmetry breaking as impor-
tant as the symmetries themselves, since a perfectly symmetric world would be static and
structureless. Therefore, it is natural that almost all symmetries are broken and we observe
only their remnants. In the case of supersymmetry it is not known at which point in the
history of the universe this breaking happened and whether SUSY was an exact symmetry
at all, since it is broken by thermal effects and at zero temperature if the vacuum has non
vanishing energy density.

Being very attractive, the idea of unification between fermion and bosons does not auto-
matically follow from the SUSY algebra, as it was pointed out by Fayet [94], since it does
not require the existence of fundamental bosons. Using non-linear realization of SUSY a
fermionic field can be transformed into composite bosonic field made of fermionic ones. Ad-
ditionally, even in usual supersymmetric theories the unification program is incomplete, since
the Yukawa-type interactions are not unified with the gauge-interactions. This feature is
connected with the problem of flavor, since the symmetry, if there is any, behind flavor is
not understood. As the author of [95] points out: “In fact, it [Flavor symmetry] poses some
embarrassment for SUSY when considering flavor: if SUSY is broken, why do we not have
FCNCs all over the place ?”.

One of the main arguments for Fermi-scale SUSY is the hierarchy problem sketched above.
It is important to note that the hierarchy problem depends on one’s view on renormalization.
It is an inner-theoretical problem, often connected with the question of unification, within
the framework of effective field theory. Assuming that there is a physics beyond the Standard
Model (usually the particles and interactions associated with the unification force), the cut-
off arising in the regularization procedure is interpreted as physical validity border for the
original theory. The hierarchy problem does not arise in different interpretations of the
renormalization procedure, e.g. if one performs renormalization directly in the position space
with methods of causal perturbation theory build upon the renormalization scheme of Epstein
and Glaser, see [96, 97] and references therein. In this case one will not even encounter
divergent integral. On the other hand one could argue that this method simply hides the
problem.

It is interesting to note that a possible discovery of the Higgs-boson with a mass around
125 GeV can point to a stable or at least meta-stable electroweak vacuum [98,99] all the way
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Figure 2.1: The left figure shows the scale Λ at which the two-loop RGEs drive the quartic
SM Higgs coupling to become non-perturbative, and the scale Λ at which the RGEs create an
instability in the electroweak vacuum. The width of the bands indicates the errors induced
by the uncertainties in mt and αs (added quadratically). The perturbativity upper bound
is given for λ = π (lower bold line [blue]) and λ = 2π (upper bold line [blue]). Their
difference indicates the size of the theoretical uncertainty in this bound. The absolute vacuum
stability bound is displayed by the light shaded [green] band, while the less restrictive finite-
temperature and zero-temperature metastability bounds are medium [blue] and dark shaded
[red], respectively. The dark [green] line indicates a Higgs-boson with a mass of 125± 1 GeV.
Shaded regions indicate various exclusion bounds from direct searches. The lower bound
from the LHC searches is not shown. The right picture is identical to the left-one, but has a
zoomed ordinate, and exclusion bounds (upper and lower) only from the LHC Higgs searches
(combination of the results from ATLAS and CMS) [10,101]. Both figures are adapted versions
from [99].

to the Planck scale making the supersymmetric extension unnecessary. Figure 2.1 shows on
the left the stability and perturbativity bounds on the Higgs mass as a function of the scale
where the Higgs quartic coupling becomes either negative, signaling that the electroweak
vacuum is only a local minimum, or develops a Landau pole. The right picture shows a
zoom to the low-mass region. Both figures are adapted from [99]; a green line indicates the
presumed Higgs boson mass of 125± 1 GeV.

Another interesting argument for no physics beyond the Standard Model is the prediction
of the Higgs mass around 126 GeV by Shaposhnikov and Wetterich [100] from the assumption,
that the Standard Model supplemented by asymptotically safe gravity is valid up to the Planck
scale.

Finally, even the metaphysical claim of the elegance can be challenged, since Haag found
the resulting scheme of their work not very beautiful, because the fermionic charges generated
the space-time translations but not the Lorentz transformations [93].

Summing up, we conclude that supersymmetry remains the best-motivated theory for
physics beyond the Standard Model. If it is realized in nature near the Fermi scale, it
will be found by the LHC. An absence of SUSY signals does not imply that it is falsified,
since the mechanism of SUSY breaking is not understood and the breaking scale cannot be
predicted so far. However, in this case, supersymmetry loses some of its explanatory power,
e.g. its connection to dark matter and especially the hierarchy problem, and the focus of the

12



2.1. GLOBAL SUPERSYMMETRY

research will probably shift to another scenarios. Therefore, it is important to look beyond
standard scenarios and investigate different realizations of supersymmetric models, which
can be hidden from the LHC. This is the main topic of the present work. In the following
we will introduce our notations, some aspects of the formalism, and the phenomenological
implications of supersymmetry which will be needed in the following chapters. The discussion
follows references [78,89,102,103] which contain a comprehensive introduction to these topics.

2.1 Global Supersymmetry

We investigate the properties of N = 1 supersymmetry, which is the only phenomenologically
interesting realization of supersymmetry in four dimensions. The supersymmetric extension
of the Poincaré algebra reads:

{
Qα, Q

†
α̇

}
= 2σµαα̇Pµ, {Qα, Qβ} =

{
Q†α̇, Q

†
β̇

}
= 0, [Pµ, Qα] =

[
Pµ, Q†α̇

]
= 0. (2.2)

Representations Irreducible representations of the supersymmetry algebra are called su-
permultiplets, they unify fermionic and bosonic degrees of freedom. There are two such
(massless) supermultiplets in our case, the chiral and the vector supermultiplet.

The chiral multiplet contains one complex scalar φ and one two-component fermion ψ
transforming in the defining representation of SL(2,C), see Appendix A for details on the
two-component notation. In order for the SUSY algebra to close off-shell, the chiral multiplet
is augmented with an auxiliary complex scalar F , which has no kinetic term in the full theory.

The vector supermultiplet contains one massless vector field Aµ, one two-component
fermion λα transforming also as (1

2 , 0), and off-shell a real auxiliary scalar D. Since the
supersymmetry generators commute with the generators of the gauge transformations, the
whole supermultiplet transforms in the same representation of the gauge group, in particular
the fermion λ transforms in the adjoint representation.

Superfields We have seen that supersymmetry has a peculiar feature being on the one
hand an internal symmetry, and on the other hand an extension of the external Poincaré
group. Both notions can be conciliated if one introduces superspace as natural stage for
supersymmetry. Superspace is obtained by adding four fermionic coordinates to the usual
bosonic space-time coordinates. Points in superspace are labeled by coordinates:

xµ, θα, θ†α̇. (2.3)

Here θα and θ†α̇ are constant complex anticommuting two-component spinors with dimen-
sion [mass]−1/2. The components of θ are anticommuting Grassmann numbers. The objects
living in superspace are superfields, functions of the superspace coordinates, containing the
component fields of the supermultiplets. They embody linear representation of the SUSY
transformations, since global supersymmetry transformations are represented as infinitesi-
mal translations in the superspace. Consequently, the dichotomy between the internal and
external nature of the SUSY transformations is resolved: they are external physical transfor-
mations in superspace perceived as internal symmetries from the viewpoint of ordinary space.
This discussion suggests that superspace should be taken as real and not as a pure heuristic
instrument, a view surely open for debate.

13



CHAPTER 2. SUPERSYMMETRY AND SUPERGRAVITY

Superfields can be easily defined by a power series expansion in the anticommuting vari-
ables, with components that are functions of xµ. Such expansion always terminates, with
each term containing at most two θ’s and two θ†’s, due to the anticommuting nature of the
variables. The general superfield reads:

S(x, θ, θ†) = a+ θξ + θ†χ† + θθb+ θ†θ†c+ θ†σ̄µθνµ + θ†θ†θη + θθθ†ζ† + θθθ†θ†d. (2.4)

The components of the general superfield S are eight complex bosonic fields a, b, c, d and
νµ, and four two-component fermionic fields ξ, χ†,η, ζ†. The spinorial products are discussed
in Appendix A. The number of degrees of freedom match, although there are more degrees
of freedom than in the chiral or vector supermultiplet. Therefore, the general superfield is a
reducible representation of the SUSY algebra. In order to find the irreducible representations,
one must impose constraints on the general superfield. Important constraints arise from chiral
covariant derivatives, which are also supersymmetric covariant: acting on superfields, they
return superfields. Two of the derivatives read:

Dα =
∂

∂θα
− i(σµθ†)α∂µ, D†α̇ =

∂

∂θ†α̇
− i(σµθ)α̇∂µ (2.5)

The chiral supermultiplet is contained in the (left-)chiral superfield Φ(x, θ, θ†) , which is
defined via the constraint:

D†α̇Φ = 0. (2.6)

The complex conjugate field Φ∗ is called antichiral (or right-chiral) superfield and satisfies

DαΦ∗ = 0. (2.7)

A chiral superfield has a dimension [mass], and its expansion reads:

Φ = φ(x)− iθσµθ†∂µφ(x)− 1

4
θθθ†θ†∂µ∂µφ(x) +

√
2θψ(x)− i√

2
θθθ†σµ∂µψ(x) + θθF (x),

where we clearly identify the components of the chiral supermultiplet. Any holomorphic
function W (Φi) of chiral superfields is again a chiral superfield.

A vector (or real) superfield V is obtained by imposing the constraint V = V ∗ on a general
superfield. It is dimensionless and has the expansion:

V (x, θ, θ†) = a+ θξ + θ†ξ† + θθb+ θ†θ†b∗ + θσµθ†Aµ + θ†θ†θ(λ− i

2
σµ∂µξ

†)

+ θθθ†(λ† − i

2
σµ∂µξ) + θθθ†θ†(

1

2
D − 1

4
∂µ∂

µa). (2.8)

A superfield cannot be both chiral and real at the same time, unless it is identically constant
(i.e., independent of xµ, θ, and θ†). However, if Φ is a chiral superfield, then Φ + Φ∗ and
i(Φ− Φ∗) and ΦΦ∗ are all real (vector) superfields.

The vector superfield contains, in general, more fields than the vector supermultiplet, as
it can be seen in the expansion above. The additional auxiliary fields are : a real scalar a, a
two-component fermion ξ, and a complex scalar b, with mass dimensions respectively 0, 1/2,
and 1. These fields can be supergauged away by the transformation:

V → V + i(Ω∗ − Ω), (2.9)
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2.1. GLOBAL SUPERSYMMETRY

where Ω is a chiral superfield gauge transformation parameter, if V was associated with a
U(1) gauge symmetry. After making a supergauge transformation to eliminate a, ξ, and b,
the vector superfield is said to be in Wess-Zumino gauge, and is simply given by:

VWZ gauge = θσµθ†Aµ + θ†θ†θλ+ θθθ†λ† +
1

2
θθθ†θ†D. (2.10)

Adopting Wess-Zumino gauge is equivalent to partially fixing the supergauge, while still
maintaining the full freedom to do ordinary gauge transformations.

Renormalizable Actions in Superspace An action is a scalar (real) quantity invariant
under all symmetries of the system. The invariance under external symmetries is obtained
by integrating some dynamical quantity over the full manifold under consideration. In the
supersymmetric case one therefore has to integrate over the full superspace.

The only surviving quantity after the full integration is the θθθ†θ† (or D-term) component
of some (composite) vector superfield, which transforms into a total derivative under the SUSY
transformations confirming the initial idea. Additionally, one can add some (composite) chiral
superfield and its complex conjugate and integrate only over the θθ subspace, since the F -
term transforms also into a total derivative under SUSY transformations. The composite
vector superfield is in general a function of (primitive) chiral and antichiral superfields and
is called Kähler potential, while the general chiral superfield is a function of only (primitive)
chiral superfields and is called superpotential.

Imposing the renormalizability constraint specifies the possible functions. The Kähler
potential is at most a quadratic polynomial of chiral and antichiral superfields, whereas the
superpotential is at most cubic in chiral superfields.

It turns out, that the Kähler potential contains exactly the kinetic terms for the dynamic
fields of the chiral supermultiplet. Therefore, it is natural to incorporate gauge interactions
via the minimal coupling into the Kähler potential. If a general gauge symmetry is realized
on chiral superfields Φi in a representation R with matrix generators T aji , one defines matrix-
valued vector and gauge parameter superfields in the representation R:

Vi
j = 2gaT

aj
i V a, Ωi

j = 2gaT
aj
i Ωa, (2.11)

and writes the gauge transformations on chiral superfields as:

Φi →
(
eiΩ
)
i
jΦj , Φ∗i → Φ∗j

(
e−iΩ

†)
j
i. (2.12)

The Kähler potential then has the form:

K (Φ∗i ,Φj) = Φ∗i(eV )i
jΦj . (2.13)

The kinetic terms and self-interactions of the vector multiplets are obtained from the chiral
field-strength superfield:

Wα = −1

4
D†D†

(
e−VDαe

V
)
, (2.14)

via the following term:
1

4kag2
a

Tr[WαWα]F = [WaαWa
α]F , (2.15)

where |F indicates integration over half of the superspace, as discussed above and ka is the
normalization factor for generators usually set to 1/2.
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CHAPTER 2. SUPERSYMMETRY AND SUPERGRAVITY

The general renormalizable Lagrangian for a supersymmetric gauge theory (including
superpotential interactions for the chiral supermultiplets when allowed by gauge invariance
and omitting U(1) D-terms) reads:

L =

(
1

4
− ig

2
aΘa

32π2

)
[WaαWa

α]F + c.c.+
[
Φ∗i(e2gaTaV a)i

jΦj

]
D

+ ([W (Φi)]F + c.c.) . (2.16)

General Actions in Superspace The extension of supersymmetry to supergravity re-
quires the discussion of general non-renormalizable interactions. Furthermore, as we will be
interested in understanding physics at very high energy scales connected with the breaking
of supersymmetry, additional gauge symmetries and R-parity, we regard our current theo-
ries as low-energy approximations to some fundamental theory and are therefore allowed to
introduce non-renormalizable terms.

A non-renormalizable gauge-invariant theory involving chiral and vector superfields can
be constructed as:

L =
[
K(Φi, Φ̃∗j)

]
D

+

([
1

4
fab(Φi)ŴaŴb + W (Φi)

]

F

+ c.c.

)
, (2.17)

where

Φ̃∗j ≡ Φ∗k
(
e2TaV̂ a

)
k
j , V̂ a = gaV

a , (2.18)

and we have omitted higher derivative terms.

The action depends on couplings encoded in three functions of the superfields:

• The superpotential W with dimension [mass]3, which is an arbitrary gauge-invariant
holomorphic function of the chiral superfields.

• The real Kähler potential K with dimension [mass]2, which is a supergauge invariant
function of chiral, antichiral and vector superfields. This function is called Kähler
potential, because the action is invariant under the Kähler transformation:

K(Φi, Φ̃∗j)→ K(Φi, Φ̃∗j) + F (Φ) + F ∗ (Φ∗) , (2.19)

with a holomorphic function F , since the D-term of a chiral superfield is a total deriva-
tive on space-time.

• The dimensionless gauge kinetic function fab(Φi), which is a holomorphic function of
the chiral superfields and encodes in general the non-renormalizable couplings of the
gauge supermultiplets to the chiral supermultiplets. It is symmetric under interchange
of the two indices a, b running over the adjoint representations of the simple and Abelian
component gauge groups of the model. In the special case of renormalizable supersym-
metric Lagrangians at tree level, it is independent of the chiral superfields, and is equal
to fab = δab(1/g

2
a − iΘa/8π

2).

The whole component field Lagrangian after integrating out the auxiliary fields will be
determined in terms of the functions W , K, fab, and their derivatives.
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2.1. GLOBAL SUPERSYMMETRY

Supersymmetry breaking As stated already in the introduction to this chapter, super-
symmetry must be broken. The only interesting case is spontaneous breaking of supersymme-
try, in which case it is still a symmetry of the laws but not the symmetry of the vacuum state.
Supersymmetry is spontaneously broken if the variation of some fermionic field operator ac-
quires a vacuum expectation value (VEV). It is often stated that spontaneous SUSY breaking
is indicated by the vacuum expectation value of the Hamiltonian, but this is not the case,
since the Hamiltonian would be undefined if the Hamiltonian density would acquire a VEV.
In fact, the generators of the superalgebra cease to exist after the breaking of supersymmetry.
The explicit known models of SUSY breaking give vacuum expectation values either to a
D-term or to an F -term in the scalar potential. However, there are severe difficulties if the
are renormalizable tree-level couplings between the SUSY-breaking fields and quarks and lep-
tons. Either the obtained spectrum is unrealistic (F -term breaking due to supertrace rules),
or there are quantum anomalies (D-term breaking). Therefore, the idea is to decouple the
sector of supersymmetry breaking from the observable sector of quarks, leptons, and gauge
interactions. One refers to the former as a hidden sector. After the breaking, the information
must somehow reach the observable sector. Some of the models for this mechanism which are
used in the present work will be presented in the Section 2.4.

In phenomenological discussions one usually introduces explicit SUSY-breaking terms,
which do not introduce quadratic divergences and are therefore called soft. Augmented by
these terms supersymmetric models still solve the hierarchy problem. The allowed terms have
been classified and are remarkably simple:

• Scalar mass terms m2 and b:

m2φ∗φ+ bφ2 + b∗φ∗2, (2.20)

where the first term treats the scalar and the pseudoscalar (real and imaginary part) of
the supermultiplet equivalently, whereas the other terms introduce a gap between them.

• Gaugino masses Ma for each gauge group:

1

2
Ma λ

aλa. (2.21)

• Trilinear scalar couplings a:

aφ3 + a∗φ∗3. (2.22)

• Tadpole coupling ti, which can occur if one scalar is a singlet under all gauge groups:

tiφi (2.23)

The terms presented above clearly break supersymmetry, because they involve only scalars
and gauginos but not their superpartners. Having established the techniques and notions of
supersymmetry, we summarize the features of the minimal extension of the Standard Model
introducing our notation.
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Names Superfield Spin-0 Spin-1/2 SU(3)C , SU(2)L, U(1)Y

Squarks, Quarks Q q̃ = (ũ d̃ ) q = (u d)
(
3, 2, +1

6

)

(× 3 families) U ˜̄u ū
(
3̄, 1, −2

3

)

D ˜̄d d̄
(
3̄, 1, +1

3

)

Sleptons, Leptons L l̃ = (ν̃ ẽ) l = (ν e)
(
1, 2, −1

2

)

(× 3 families) E ˜̄e ē (1, 1, +1)

Higgs, Higgsinos Hu Hu = (H+
u H0

u) hu = (h+
u h

0
u)

(
1, 2, +1

2

)

Hd Hd = (H0
d H

−
d ) hd = (h0

d h
−
d )

(
1, 2, −1

2

)

Table 2.1: Chiral supermultiplets, their components and quantum numbers in the Minimal Su-
persymmetric Standard Model. The spin-0 fields are complex scalars, and the spin -1/2 fields
are two-component fermions transforming in the fundamental representation of SL(2,C).
Note that the bars over the fields are parts of the name. This notation is introduced in
Appendix A.

Names Superfield Spin-1/2 Spin-1 SU(3)C , SU(2)L, U(1)Y

Gluino, Gluon G g G (8, 1, 0)

Winos, W-bosons W w1, w2, w3 W 1, W 2, W 3 (1, 3, 0)

Bino, B-boson B b B (1, 1, 0)

Table 2.2: Gauge supermultiplets, their components and quantum numbers in the Minimal
Supersymmetric Standard Model.

2.2 The Minimal Supersymmetric Standard Model

The Minimal Supersymmetric Standard Model (MSSM) is a supersymmetrized version of
the Standard Model with minimal number of additional particles and without new gauge
interactions. The matter content as well as the gauge fields of the SM are incorporated
into supersymmetric multiplets and the interactions between them are supersymmetrized.
Table 2.1 introduces our notation for the chiral supermultiplets of the MSSM fields and
their components as well as their transformation properties under the Standard Model gauge
group. In comparison with the Standard Model there are two Higgs multiplets with opposite
hypercharge. This is needed since the superpotential is a holomorphic function and therefore
one cannot employ conjugate fields. Additionally, this is required for the anomaly freedom of
the electroweak theory due to contributions from fermionic partners.

Table 2.2 introduces our notation for the vector superfields of the MSSM and their compo-
nent fields, as well as their transformation properties under the SM gauge group. The gauge
interactions and kinetic terms are defined by the usual renormalizable Kähler potential. The
superpotential of the MSSM reads:

WMSSM = huijQiHuUj + hdijQiHdDj + heijLiHdEj + µHuHd + h.c. (2.24)

The dimensionless Yukawa coupling parameters hu, hd, he are 3× 3 matrices in family space;
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and the i, j are the corresponding family indices. All of the gauge indices are suppressed.
The µ term is the supersymmetric version of the Higgs boson mass and the only dimensionful
supersymmetric parameter, which we choose to be real.

Contrary to the case of the Standard Model, the Yukawa couplings presented so far are
not the most general couplings compatible with gauge invariance and renormalizability. Addi-
tional potentially dangerous terms violating baryon and lepton number can be added. These
terms are usually forbidden by discrete symmetry, R-parity, which will be the topic of the
next chapter. Therefore, at this stage the MSSM is defined as the model with the minimal
field and coupling content.

The description of the MSSM is completed with the specification of the soft supersymmetry
breaking terms discussed in the previous section:

−LMSSM
soft =

1

2
(M3 g g +M2ww +M1 b b+ h.c.)

+
(
au q̃Hu ˜̄u+ ad q̃Hd

˜̄d+ ae l̃Hd ˜̄e+ h.c.
)

+ m̃2
q q̃
†q̃ + m̃2

l l̃
† l̃ + m̃2

u
˜̄u† ˜̄u+ m̃2

d
˜̄d† ˜̄d+ m̃2

e
˜̄e† ˜̄e

+m2
uH

†
uHu +m2

dH
†
dHd + (BHuHd + h.c.) . (2.25)

In eq. (2.25), M3, M2, and M1 are the gluino, wino, and bino mass terms. We have suppressed
the adjoint representation gauge indices on the wino and gluino fields, and the gauge indices
on all of the chiral supermultiplet fields. The second line in eq. (2.25) contains the (scalar)3

couplings. Each of au, ad, ae is a complex 3 × 3 matrix in family space, with dimensions
of [mass]. They are in one-to-one correspondence with the Yukawa couplings of the super-
potential. The third line of eq. (2.25) consists of squark and slepton mass terms, the mass
matrices are in general 3×3 matrices in family space that can have complex entries, but they
must be hermitian so that the Lagrangian is real. In the last line of eq. (2.25) one has the
supersymmetry-breaking contributions to the Higgs potential; m2

u and m2
d are squared-mass

terms of the m2 type, while B is the only squared-mass term of the type b in e.q. (2.20)
that can occur in the MSSM1. The dagger on Hu and Hd indicates the contraction of the
doublets in contrast to terms like HuHd which should be read as εijHuiHdj , ε = iσ2 being the
SU(2) metric. The soft breaking terms introduce many new parameters not present in the
Standard Model. It turns out that the MSSM Lagrangian has 105 physical masses, phases
and mixing angles, which have no counterpart in the Standard Model. This arbitrariness in
the Lagrangian is not inherent to supersymmetry but arises from the unknown mechanism of
supersymmetry breaking. Most of the new parameters imply flavor mixing or CP-violating
processes, which are restricted by experimental data. This is precisely the point attacked
by author of [95], as mentioned in the introduction to this chapter. Usually, it is assumed
that supersymmetry breaking is universal, meaning that the squark and slepton squared-mass
matrices are flavor blind. Additionally, one assumes that the scalar trilinear couplings are
proportional to Yukawa couplings and that the soft parameters do not introduce new complex
phases. These relations should result naturally from the specific model for the origin of SUSY
breaking. We will discuss such simplified models in the end of this chapter.

For the later discussion we will need the effects of the electroweak symmetry breaking in
the MSSM, which we introduce in the following section.

1The parameter called B in this work is often denoted by b or Bµ.
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2.2.1 Electroweak Symmetry Breaking

Electroweak symmetry breaking in the MSSM occurs dynamically, as the soft Higgs mass mu

receives radiative corrections which drive it negative. The Higgs fields which turn out to be
neutral under the unbroken U(1)em already have suggestive names. They acquire vacuum
expectation values

〈
H0
u

〉
= vu and

〈
H0
d

〉
= vd. The ratio of the Higgs VEVs is a new

parameter of the theory and is denoted by:

tanβ ≡ vu
vd
. (2.26)

The vacuum expectation values of the Higgs doublets are related to the Fermi scale in the
following way:

v2 = v2
u + v2

d = 174 GeV, vu = v sinβ, vd = v cosβ. (2.27)

Analogously to electroweak symmetry breaking in the SM, the gauge fields acquire masses
except for the photon which stays massless. The masses of the W and Z bosons are given by:

mW =
gv√

2
, and mZ =

gv√
2 cos θw

=

√
g2 + g′2v√

2
, (2.28)

where θw is the weak mixing angle defined by:

sin θw =
g′√

g2 + g′2
, cos θw =

g√
g2 + g′2

. (2.29)

The couplings constants g′ and g are the couplings of hypercharge and weak isospin respec-
tively. The charged gauge bosons are defined as:

W± =
1√
2

(
W 1
µ ∓ iW 2

µ

)
, (2.30)

while the Z boson is defined via

Zµ = − sin θwBµ + cos θwW
3
µ . (2.31)

The Higgs sector of the MSSM is more complicated than its counterpart in the SM due to
two Higgs doublets. There are five physical Higgs mass eigenstates consisting of two CP-even
neutral scalars h and H, one CP-odd neutral scalar A0, and a pair of charge conjugate scalars
H±. The gauge-eigenstate fields can be expressed in terms of the mass eigenstate fields as:

(
H0
u

H0
d

)
=

(
vu
vd

)
+

1√
2
Rα

(
h
H

)
+

i√
2
Rβ0

(
G0

A0

)
, (2.32)

(
H+
u

H−∗d

)
= Rβ±

(
G+

H+

)
, (2.33)

where the orthogonal rotation matrices

Rα =

(
cosα sinα
− sinα cosα

)
, (2.34)
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Rβ0 =

(
sinβ0 cosβ0

− cosβ0 sinβ0

)
, Rβ± =

(
sinβ± cosβ±
− cosβ± sinβ±

)
, (2.35)

are chosen such that the quadratic part of the potential has diagonal squared-masses. In
the tree-level approximation one finds that β0 = β± = β, and that the Nambu-Goldstone
bosons G0, G± have zero mass and can be set to zero in the unitary gauge. The masses of
the physical Higgs bosons are given by:

m2
A0 = 2B/ sin(2β) = 2|µ|2 +m2

u +m2
d, (2.36)

m2
h,H =

1

2

(
m2
A0 +m2

Z ∓
√

(m2
A0 −m2

Z)2 + 4m2
Zm

2
A0 sin2(2β)

)
, (2.37)

m2
H± = m2

A0 +m2
W . (2.38)

The mixing angle α is determined, at tree-level, by

sin 2α

sin 2β
= −

(
m2
H +m2

h

m2
H −m2

h

)
,

tan 2α

tan 2β
=

(
m2
A0 +m2

Z

m2
A0 −m2

Z

)
, (2.39)

and is traditionally chosen to be negative; it follows that −π/2 < α < 0 (provided mA0 > mZ).
In the decoupling limit, i.e. in the case mA0 � mZ , the Higgs particles H, A0 and H± are

very heavy and decoupled from the low-energy phenomenology. The lightest Higgs particle h
behaves as the Standard Model Higgs boson with the mass near the Fermi scale. The mixing
angle α becomes β − π/2, which will be important in the discussion of the R-parity violating
coupling of the neutralino to the Higgs boson.

Including all loop corrections, supersymmetry provides an upper bound on the mass of the
lightest Higgs boson, which is often used in its support in the light of the recent experimental
data and electroweak fits. The bound is:

mh . 135 GeV. (2.40)

The µ Problem and Giudice-Masiero Mechanism We have already noted that the µ
parameter which couples the Higgs doublets in the superpotential is the only dimensionful
parameter allowed by unbroken supersymmetry. However, it also plays an important role
during electroweak symmetry breaking, since it is obviously connected with the Higgs sector.
Writing down the squared Z boson mass in terms of the fundamental parameters:

m2
Z =

∣∣m2
d −m2

u

∣∣
√

1− sin2(2β)
−m2

u −m2
d − 2 |µ|2 , (2.41)

one discovers that, barring large cancellations, all of the parameters should have values near
the Fermi scale. Why a SUSY-preserving parameter should have a value near the SUSY-
breaking scale is completely unclear. On the other hand, this problem would be solved if one
could connect the µ term with the breaking of supersymmetry. A solution was proposed by
Giudice and Masiero [104]. They observed that the µ term is generated in supergravity models
from non-renormalizable terms in Kähler potential. One way to analyze the mechanism is
to consider the low-energy effective theory below MP involving a non-renormalizable Kähler
potential:

K = H∗uHu +H∗dHd +

(
λµ
MP

HuHdX
∗ + h.c.

)
, (2.42)
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where λµ is a dimensionless coupling and X is a chiral superfield which breaks SUSY through
its auxiliary F field: X∗ → θ†θ† 〈F ∗X〉, where 〈F ∗X〉 is the SUSY breaking vacuum expectation
value. The integration of θ†θ† 〈F ∗X〉HuHd over the full superspace amounts then to integra-
tion of 〈F ∗X〉HuHd over the half of the superspace, as it should be in case of superpotential
contributions, cf. Section 2.1. After the breaking the µ term is given by :

µ =
λµ
MP
〈F ∗X〉 . (2.43)

Note that the additional term in eq. (2.42) is the only leading-order contribution to K. We
will see in Section 2.4, that 〈F ∗X〉 ∼ m3/2MP ∼ msoftMP which gives us a desired µ term. The
B-term in the soft SUSY breaking sector can arise similarly from Kähler potential terms. In
the later discussion we will see a mechanism of this kind generating R-parity violating terms.

In the next section we look at the effects of the electroweak symmetry breaking in the
gaugino-higgsino sector. We are interested in neutralinos because the lightest of them is often
either the lightest supersymmetric particle (LSP), or the next-to-lightest supersymmetric
particle (NLSP) (if gravitino is the LSP) in the models considered in the present work, see
Sections 2.4.1 and 2.4.2. In the following section we introduce our notation and set the ground
for the later discussion of the neutralino-chargino sector in models with R-parity violation.

2.2.2 Neutralinos and Charginos

The higgsinos and electroweak gauginos mix with each other because of the effects of elec-
troweak symmetry breaking. The neutral higgsinos (h0

u and h0
d) and the neutral gauginos (b,

w0) combine to form four mass eigenstates called neutralinos χ0
i . The charged higgsinos (h+

u

and h−d ) and winos (w+ and w−) mix to form two mass eigenstates with charge ±1 called
charginos χ±i . By convention, these are labeled by their masses in ascending order, so that
mχ0

i
< mχ0

i+1
and mχ±1

< mχ±2
.

In the gauge eigenstates basis ψ0 = (b, w0, h0
u, h

0
d)
T , the neutralino mass part of the

Lagrangian is given by:

− Lneutralino mass =
1

2
ψ0TMNψ0 + h.c. , (2.44)

where

MN =




M1 0 mZsβsw −mZcβsw
0 M2 −mZsβcw mZcβcw

mZsβsw −mZsβcw 0 −µ
−mZcβsw mZcβcw −µ 0


 . (2.45)

Here we have introduced abbreviations sβ = sinβ, cβ = cosβ, sw = sin θw, and cw =
cos θw. The entries of the mass matrix follow from the soft breaking terms of the MSSM, the
superpotential mass term for the Higgs fields, and the gauge couplings to Higgs and higgsino
after electroweak symmetry breaking. The mass matrixM is symmetric; the mass eigenstates
can be found via the Takagi diagonalization, see Appendix B :

U (n)TMNU (n) =MN
diag. (2.46)

The unitary matrix U (n) relates the neutral gauge eigenstates to the mass eigenstates χ0
i .

The masses and the mixing matrix can be given in closed form, but the results are in general
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not very illuminating. However, in all cases considered in the present work, the electroweak
symmetry breaking effects are only small perturbations on the neutralino mass matrix and
there is a hierarchy between the gaugino and higgsino mass terms:

mZ < |µ±M1| , |µ±M2| . (2.47)

In this case it is possible to perturbatively diagonalize the mass matrix and the neutralino
mass eigenstates are very nearly “bino-like”, “wino-like” and “higgsino-like”. The ordering of
the masses depends on the ordering of gaugino and higgsino masses. If mZ < M1 < M2 < µ
we diagonalize the mass matrix to the second order in mZ/µ and find:

mχ0
1

= M1 −
m2
Zs

2
w(M1 + µs2β)

(µ2 −M2
1 )

(
1 +O

(
m2
Z

µ2

))
,

mχ0
2

= M2 −
m2
Zc

2
w(M2 + µs2β)

(µ2 −M2
2 )

(
1 +O

(
m2
Z

µ2

))
,

mχ0
3

= µ+
m2
Z(1− s2β)(µ+M1c

2
w +M2s

2
w)

2(µ+M1)(µ+M2)

(
1 +O

(
m2
Z

µ2

))
,

mχ0
4

= µ+
m2
Z(1 + s2β)(µ−M1c

2
w −M2s

2
w)

2(µ−M1)(µ−M2)

(
1 +O

(
m2
Z

µ2

))
, (2.48)

where we have defined s2β = sin(2β), and have assumed that sign (µ) = +1. The lightest neu-
tralino is bino-like, as expected. The perturbative diagonalization technique will be essential
in the case of R-parity violation. It is summarized in Appendix B.

The chargino mass term in the gauge eigenstate basis ψ− = (w−, h−d ), ψ+ = (w+, h+
u )T

reads:
− Lchargino mass = ψ−MCψ+ + h.c. , (2.49)

where

MC =

(
M2

√
2mZsβcw√

2mZcβcw µ

)
. (2.50)

The chargino mass matrix is an arbitrary complex matrix, therefore one has to use its singular
value decomposition (also described in Appendix B), in order to obtain the physical masses:

U (c)†MCŨ (c) =MC
diag, (2.51)

where U (c) and Ũ c are unitary. The chargino masses can be easily given in analytical form, but
we are again interested in the limit of eq. (2.47), in which case the chargino mass eigenstates
consist of a wino-like χ±1 and a higgsino-like χ±2 , with masses

mχ±1
= M2 −

m2
Zc

2
w(M2 + µs2β)

(µ2 −M2
2 )

(
1 +O

(
m2
Z

µ2

))

mχ±2
= µ+

m2
Zc

2
w(µ+M2s2β)

(µ2 −M2
2 )

(
1 +O

(
m2
Z

µ2

))
. (2.52)

The lightest chargino is degenerate with the neutralino χ0
2 up to the higher orders. The mass

degeneracies between the charginos and neutralinos will have important phenomenological
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consequences in the case of higgsino-like neutralino NLSP with gravitino LSP and R-parity
conservation, discussed in Chapter 5.

Another particle turning out to be the LSP in mSUGRA-type models is the scalar partner
of the tau lepton, the stau. Usually, this region is excluded since dark matter is obviously
not charged. However, stau is a viable NLSP in models with gravitino dark matter. In the
following section we introduce our notation in the stau sector.

2.2.3 Scalar Tau Leptons

The mass pattern of the third generation of squarks and sleptons differs from their counter-
parts in the first two families due to various effects of large Yukawa-couplings. Besides the
diagonal SUSY-breaking mass terms for the τ̃ and ˜̄τ † scalars there are also diagonal mass
terms proportional to the tau lepton mass from the quartic F-terms in the scalar potential
after the electroweak symmetry breaking. Additionally, there is a substantial mixing between
the both stau states, which are usually called left- and right-handed, coming from trilinear
F- and a-terms. The quadratic Lagrangian has the form :

− Lstau mass = ψ†τ̃m
2
τ̃ψτ̃ , (2.53)

where ψTτ̃ = (τ̃ , ˜̄τ †), and the stau mass-matrix m2
τ̃ reads:

m2
τ̃ =

(
m̃2
l3

+m2
τ v(ae∗33 cosβ − he33µ sinβ)

v(ae33 cosβ − he33µ
∗ sinβ) m̃2

e3 +m2
τ

)
. (2.54)

We have included the quantum corrections into the diagonal masses. The hermitian mass
matrix can be diagonalized via a unitary transformation to give mass eigenstates:

(
τ̃1

τ̃2

)
=

(
sin θτ cos θτ
cos θτ − sin θτ

)(
τ̃
˜̄τ †

)
, (2.55)

were we have assumed that the off-diagonal elements of the mass matrix are real. The mixing
angle θτ can be chosen in the range 0 ≤ θτ < π. The mass eigenstates are ordered, such that
τ̃1 is always the lightest state and therefore our NLSP.

Having established the important ingredients of the MSSM in the context of global super-
symmetry, we now explore the gravitational theory of the superspace: Supergravity. Another
road to supergravity, without superspace, follows from local supersymmetry transformations
which require introduction of a spin-2 field, which couples to the energy-momentum tensor
for matter, and whose quanta are identified with gravitons.

2.3 Supergravity

Supergravity is the gravitational theory of the superspace. It includes Einstein’s theory of
gravitation and is therefore non-renormalizable as the theory of gravitation itself. Supergrav-
ity arises as the low-energy limit of superstring theories and is viewed as an effective field
theory whose infinities will be cured by the fundamental theory of gravitation. Furthermore,
supergravity emerges if one attempts to promote the global supersymmetry transformations
to local ones.

The phenomenological importance of supergravity resides in the fact that it is believed
that the SM superpartners cannot acquire tree-level masses via spontaneous breaking of global
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Name Spin-2 Spin-3/2 SU(3)C , SU(2)L, U(1)Y

Graviton, Gravitino gµν ψµ (1, 1, 0)

Table 2.3: The gravity supermultiplet present in all locally supersymmetric theories. Listed
are quantum numbers with respect to the Standard Model gauge group

supersymmetry at the TeV scale, since it would lead to problems with tree-level sum rules
which imply that some scalar partners of fermions (sfermions) must be lighter than fermions.
The MSSM is, therefore, regarded as a low energy effective theory to be derived from a
theory which incorporates supersymmetry breaking. Often, this theory is assumed to be a
supergravity theory.

Upon promoting SUSY to a local symmetry, one is forced to add a new supermultiplet
to the theory, the gravity multiplet, which consists of the spin-2 graviton and the spin-3/2
gravitino (see Table 2.3). Local transformations of the usual SUSY Lagrangian will require
the introduction of the spin-3/2 field, whose variation under local SUSY transformations
couples to the energy-momentum tensor and is canceled by the variation of the spin-2 field.
Supergravity is covered in detail in the Book by Wess and Bagger [78] and in the review
by Van Nieuwenhuizen [105], see references therein for the original works. Note that our
definition of the metric signature and sigma-matrices differs from the definition of Wess and
Bagger. The notational conventions of this chapter follow partly [103] (but also with different
signature).

2.3.1 The Supergravity Lagrangian

As stated above, supergravity is a non-renormalizable theory and therefore should in general
depend on the three functions defined in section on general actions in superspace. The
remarkable feature of the supergravity Lagrangian is that it depends on the gauge kinetic
function and just one combination:

G = K/M2
P + ln

(
|W |2/M6

P

)
, (2.56)

of the Kähler potential and the superpotential. G is called Kähler function and is real and
dimensionless. We have maintained the dependence on the reduced Planck mass:

MP =
1√

8πGN
' 2.4× 1018 GeV. (2.57)

In what follows, derivatives of the Kähler function with respect to the chiral superfields are
denoted by:

Gi =
∂G

∂Φi

∣∣∣∣
Φi→φi

, and Gj =
∂G

∂Φ∗j

∣∣∣∣
Φj→φj

. (2.58)

Note that the superfields have been replaced by their scalar components after differentiation.
The position of the indices corresponds to the chirality of the superfield with respect to which
the quantity is differentiated. Raised (lowered) indices i correspond to derivatives with respect
to Φi (Φ∗i). The Kähler metric

Gji =
∂2G

∂Φj∂Φ∗i

∣∣∣∣
Φi→φi

=
Ki
j

M2
P

, (2.59)
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does not depend on the superpotential. The inverse of the Kähler metric is denoted (G−1)ji ,
so that:

(G−1)kiG
j
k = δji . (2.60)

It can be also written as M2
P (K−1)ji . Additionally, we define the Kähler “connection” Γkij ,

and the “curvature” Rikjl , where we differentiate now directly with respect to the scalars:

Γijk =
(
G−1

)l
k

∂

∂φi
Gjl , (2.61)

Rikjl =
∂

∂φi

∂

∂φ∗j
Gkl − (G−1)nm

(
∂

∂φ∗j
Gml

)(
∂

∂φi
Gkn

)
. (2.62)

The purely bosonic part of the supergravity Lagrangian is of the form

LB√−g = −M
2
P

2
R+M2

PG
i
j

(
D̃µφi

)(
D̃µφ∗j

)
− V (φ, φ∗)

− 1

4
(Refab)F

a
µνF

bµν +
1

4
(Imfab)F

a
µνF̃

bµν , (2.63)

where g = det gµν is the determinant of the space-time metric. The first part involving the
Ricci scalar R is the Einstein-Hilbert term, the second part is the kinetic term of the scalar
fields, in general, not in the canonical form, the third term is the scalar potential, while the
last two terms correspond to the kinetic term of the gauge bosons and the CP-violating term
due to instanton effects. From now on, we write explicitly the dependence on the gauge
coupling ga. The field space of the scalars is a Kähler manifold, with the metric defined in
eq. (2.59).

The covariant derivative of the scalars has the form:

D̃µφi = ∂µφi − gaAaµXa
i = ∂µφi + igaA

a
µ(G−1)ji

∂Da

∂φ∗j
, (2.64)

where the Xia are holomorphic Killing vector fields corresponding to isometries of the Kähler
metric Gij and the Da are the associated Killing potentials. In the case of a renormalizable

Kähler potential K = ΦiΦ̃
i∗, the Killing vectors and the Killing potential take the following

form:

Xa
i = −i (T a) ji φj (2.65)

Da = φ∗i (T a) ji φj (2.66)

leading to the usual covariant derivative.

The scalar potential V (φ, φ∗) is a sum of two contributions:

V = VF + VD, (2.67)

where VF is the generalization of the F -term contribution to the scalar potential and is given
by

VF = M4
P e

G
[
Gi
(
G−1

)
Gj − 3

]
. (2.68)
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Unlike the case of global supersymmetry, the scalar potential in supergravity is not necessarily
non-negative, because of the −3 term. This fact spoils the nice feature of global supersym-
metry, which was one of the theoretical arguments in its favor. We will reflect on this issue
further in the next section. The D-term contribution from gauge interactions reads:

VD =
g2
a

2
(Ref−1

ab )DaDb (2.69)

where we have extracted the dependence on ga from the gauge kinetic function as noted above.
Before proceeding with the full supergravity Lagrangian in component form, we will give the
covariant derivatives of the fermion χ which constitutes the chiral multiplet together with the
scalar φ, the fermion λ which belongs to the gauge multiplet and the gravitino ψ. We will
use the derivatives of the Kähler potential K when appropriate.

D̃µχi ≡ ∂µχi −
i

2
ωabµ σabχi + Γjki D̃µφjχk − ga (Refab)A

a
µ

∂Xib

∂φj
χj

− 1

4M2
P

(
KjD̃µφj −KjD̃µφ∗j

)
χi −

i

2M2
P

ga (Refab)A
a
µImF bχi (2.70)

D̃µλa ≡ ∂µλa −
i

2
ωabµ σabλ

a − gafabcAbµλc

+
1

4M2
P

(
KjD̃µφj −KjD̃µφ∗j

)
λa +

i

2M2
P

ga (Refbc)A
b
µImF cλa (2.71)

D̃µψν ≡ ∂µψν −
i

2
ωabµ σabψν

+
1

4M2
P

(
KjD̃µφj −KjD̃µφ∗j

)
ψnu+

i

2M2
P

ga (Refbc)A
b
µImF cψν . (2.72)

In these expressions ωabµ is the spin connection, and

F a ≡ −iGij
∂Da

∂φ∗j
∂K

∂φi
+ iDa , (2.73)

σµν ≡ i

4
(σµσ̄ν − σνσµ) . (2.74)

The most general supergravity Lagrangian [106] is lengthy. It can be found in terms of
two- and four-component spinors in the book by Wess and Bagger and also with our metric
in the work of Moroi [107]. However, nota bene that some of our signs differ from the ones
in [107]. Here we give the Lagrangian for the simplified case fab = δab(1− iΘa/8π

2) restoring
the dependence on the Planck mass and with our metric and sigma matrix conventions:

L√−g =
LB√−g − ε

µνρσψ†µσ̄νD̃ρψσ

+M2
P

(
iGijχ

†jσµD̃µχi +
√

2gaG
i
jX
∗ajχiλa +

√
2gaG

i
jX

a
i χ
†jλ†a

)

+
i

2
(Refab)

[
λaσµD̃µλ†b + λ†aσµD̃µλb

]
− 1

2
(Imfab)D̃µ

[
λaσµλ†b

]

+
1

MP

[ga
2

(Refab)
(
Daψµσ

µλ†b −Daψ†µσ
µλb
)

− M2
P√
2
Gij

(
D̃νφ∗jχiσµσ̄νψµ + D̃νφiχ†jσµσνψ†µ

)
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− 1

4
(Refab)

(
ψµσ

ρσσµλ†a + ψ†µσ̄
ρσσµλa

)(
F bρσ + F̂ bρσ

)]

+
1

M2
P

[
−M

2
P

4
Gij

(
iεµνρσψµσνψ

†
ρ − ψρσ

σψ†ρ
)
χiσσχ

†j

+
3

16
(Refab)(Refcd)λ

aσµλ†bλcσµλ†d

− M4
P

8

(
GijG

k
l − 2Rikjl

)
χiχkχ

†jχ†l − M2
P

8
Gij(Refab)χ

†jσµχiλ†aσ̄µλb
]

+ ieG/2MP

(
ψµσ

µνψν + ψ†µσ̄
µνψ†ν

)
− i√

2
eG/2M2

P

(
Giχiσ

µψ†µ +Giχ
†iσµψµ

)

− eG/2M3
P

[
1

2

(
Gij +GiGj

)
χiχj +

1

2
(Gij +GiGj)χ

†iχ†j
]
, (2.75)

where

F̂ aµν ≡ F aµν −
i

2MP

(
ψµσνλ

†a + ψ†µσ̄νλ
a + ψνσµλ

†a + ψ†νσ
µλa
)
. (2.76)

Note, that Gij has dimension [mass]−2, and Gi has the dimension of [mass]−1. The total
Lagrangian contains interactions between the gravitino field ψµ and the supercurrent Sµ
needed in the later discussion. Therefore, we extract these interactions:

LψS√−g = − 1√
2MP

Ki
j

(
D̃νφ∗jχiσµσ̄νψµ + D̃νφiχ†jσµσνψ†µ

)

− 1

2MP
(Refab)

(
ψµσ

ρσσµλ†a + ψ†µσ̄
ρσσµλa

)
F bρσ. (2.77)

2.3.2 The Super-Higgs mechanism

In order for local or global SUSY to be broken, the expectation value of the variation of a
spinorial operator under supersymmetric transformations has to be non-zero. The variation
of the chiral fermion includes a term

Fi = −M2
P e

G/2
(
G−1

)j
i
Gj . (2.78)

The Fi are order parameters for symmetry breaking in supergravity and are generalizations of
the auxiliary fields F in global supersymmetry. Therefore, local SUSY is broken if one of the Fi
acquires a vacuum expectation value. The breaking of global supersymmetry is accompanied
by the appearance of a massless Goldstone fermion in the spectrum - the goldstino. In
supergravity, as in ordinary gauge theory, the goldstino gets mixed with the gravitino and
provides it with the longitudinal degrees of freedom and hence a mass. This phenomenon is
called the super-Higgs mechanism. The converse statement is however not true. Gravitino
mass is, in general, not the order parameter of SUSY breaking.

Gravitino acquires a mass if the Kähler function G acquires a vacuum expectation value.
The would-be gravitino mass term can be found in the Lagrangian eq. (2.75) and reads

ieG/2MP

(
ψµσ

µνψν + ψ†µσ̄
µνψ†ν

)
. (2.79)

The mass of the gravitino is given by

m3/2 = eG0/2MP , (2.80)
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where G0 is the expectation value of the Kähler function G. Writing the scalar potential as

VF = Ki
jFiF

∗j − 3eK/M
2
PWW ∗/M2

P , (2.81)

with Fi defined in eq. (2.78), one sees that SUSY can be unbroken in spaces with negative
vacuum energy (AdS) and non-vanishing gravitino mass if Gj vanishes.

If SUSY is broken, the potential (2.81) tells us that the vacuum can have an arbitrary
value of the cosmological constant. However, even if astrophysical observations imply a tiny
cosmological constant, the value is far too low to be associated with SUSY breaking, since
in general at the minimum V ≈ m3/2M

2
P . Therefore, it is usually assumed that the vacuum

energy vanishes. Why this is the case, is not understood. In the case of the vanishing
cosmological constant one finds:

〈
Ki
jFiF

∗j〉 = 3M4
P e
〈G〉, (2.82)

which leads to an equivalent formula for the gravitino mass:

m2
3/2 =

〈
Ki
jFiF

∗j
〉

3M2
P

. (2.83)

2.4 Origins of Supersymmetry Breaking

The MSSM, as presented in the previous sections, has a huge number of free parameters asso-
ciated with the breaking of supersymmetry. Therefore, the general MSSM is not a tractable
framework for phenomenological studies. Usually, the general features of the MSSM are asso-
ciated with the conservation of R-Parity, which leads to signatures involving missing transverse
energy from the lightest stable supersymmetric particle. However, even this prediction is not
robust, since R-parity might be violated. It is possible to obtain some hints about the struc-
ture of the SUSY breaking terms from low energy experiments looking for flavor changing
neutral currents and violation of CP symmetry. Effects from arbitrary patterns (including
phases) of squark mass matrices would enter via loops into the low energy observables like the
mass difference between the long-lived and short-lived Kaons, or the electric dipole moment
of the neutron. The tight constraints on such effects suggest a pattern of universality in the
scalar mass terms. It is assumed that they are real, proportional to the identity matrix, and
degenerate in the first two generations. Usually, one takes the third family also to be de-
generate in mass with the first two. Additionally, the renormalization group evolution of the
gaugino masses is proportional to the evolution of the corresponding gauge couplings. Since
the gauge couplings should unify at the scale of grand unification, it is natural to assume that
also the masses of the gauginos unify at the GUT scale.

In order to obtain control over the huge parameter space of the MSSM, one has to make
assumptions on the structure of some underlying theory which is approximated by the MSSM
in the low energy regime. These assumptions are reflected in different phenomenological
models of supersymmetry which reduce the number of free parameters by exploiting the
hints presented above. In these models SUSY is broken at some high scale F � M2

W in a
hidden sector, whose dynamics is unimportant for phenomenology. The important part is
the nature of the agent, which is a superheavy particle of mass mX transmitting the SUSY
breaking to the fields of the observable sector. The coupling of the goldstino to the observable
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sector is suppressed by a power of
√
F/MX , and the soft SUSY breaking masses are of order

msoft ∼ F/MX . The soft masses are required to be comparable to the weak scale, even though
the fundamental SUSY breaking scale may be much larger.

The different supersymmetric models are distinguished by the nature of the SUSY breaking
messenger:

• Going beyond global supersymmetry to the local case includes gravity into the descrip-
tion of nature. Since quantum gravity couples universally to energy mediation of SUSY
breaking by gravitationally coupled degrees of freedom is always present. Therefore,
the scale MX is associated with the Planck scale and

√
F ∼ 1010 GeV. All soft masses

are connected with the gravitino mass which should be thus near the Fermi scale .

• Even if effects of gravity are always present, one may exclude them from the effective
description, if one assumes that some other effects give dominant contributions, e. g.
the breaking is mediated by SM gauge interactions. In gauge-mediated supersymmetry
breaking models (GMSB), new messenger fields M , that couple directly to the hidden
sector but which also have SM gauge couplings act as mediators. The supersymmetry
breaking masses are created only at the loop level, evading the tree-level sum rules. The
SUSY-breaking masses are given by

mi ∝
g2
i ni

16π2

〈FS〉
M

, (2.84)

where 〈FS〉 is the induced SUSY-breaking vacuum expectation value, M is the messenger
sector mass, and ni are group-theoretical factors. Since M can be much smaller than
the Planck scale the expectation value FS can have much smaller value than in gravity
mediation models. The gravitino mass, however, is determined by the Planck mass and
the fundamental SUSY breaking scale F with typically FS < F or FS ∼ F , leading to
a gravitino mass which is much smaller than in the case of gravity mediation and also
much smaller than the masses of other superparticles.

In the following we will describe the models which will be used throughout the present
work.

2.4.1 Minimal Supergravity (mSUGRA) Model

In supergravity models of SUSY breaking, the superpotential consists of the visible and hidden
sector terms which are completely independent. The dynamics of the hidden sector breaks
supersymmetry. The goldstino degrees of freedom are absorbed by the gravitino which obtains
a mass m3/2. The low energy effective theory is obtained by taking the Planck scale to infinity
while keeping the gravitino mass fixed. The theory obtained consist of the supersymmetric
version of the SM augmented by SUSY breaking masses of order m3/2 ∼ mW and higher
dimensional operators suppressed by appropriate powers of MP .

In general, all gaugino masses are different and the trilinear a terms are not proportional
to the corresponding superpotential Yukawa couplings. However, the most studied model
of gravity mediated supersymmetry breaking, which will be also used in the present work
is the minimal supergravity model. The “minimal” in the name refers to the choice of a
renormalizable Kähler potential i.e. flat Kähler metric leading to a common mass of all
scalars m2

0 = m2
3/2 + V0/M

2
P , where V0 is the minimum of the scalar potential. Common
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2.4. ORIGINS OF SUPERSYMMETRY BREAKING

gaugino masses arise either by unification of gauge interactions or from a universal gauge
kinetic function for each factor of gauge symmetry. The fundamental parameters of this
model are :

m0, m1/2, A0, tanβ, sign(µ), (2.85)

where m0 is the common mass of the scalars, m1/2 is the common gaugino mass, A0 is the
universal proportionality constant between an a-term and the corresponding Yukawa coupling,
tanβ is the ratio of the Higgs vacuum expectation ratios, as defined in section 2.2.1 which is
treated for the B-term after electroweak symmetry breaking, and sign(µ) is the sign of µ term,
whose magnitude is fixed by the Z-boson mass after electroweak symmetry breaking. It is
assumed that the universality of the parameters holds at the scale of grand unification rather
than at MP . The model is also called the CMSSM for constrained minimal supersymmetric
Standard Model rather than mSUGRA, since supergravity does not necessary lead to high
scale universality, in contrast to what was originally thought [102].

2.4.2 Hybrid Gauge-Gravity Mediation

The apparent unification of gauge couplings at the scale MGUT ≈ 1016 GeV is a strong hint
for the paradigm of unification presented in the beginning of this chapter. The forces should
unify and be described by a simple gauge group. However, since now all particles have to form
multiplets of the larger gauge group, which is at least SU(5), one faces the problem of SU(3)-
triplet Higgs fields which lead to the proton decay via dimension-5 operators. Therefore, it
is assumed that Higgs multiplets are incomplete (split). The question why matter appears in
complete representations, while the Higgs multiplets are split, is one of the motivations for
grand unified theories on orbifolds.

In these models the usual space-time is augmented by compact extra dimensions. The
compact manifold M and the quantum-field theory under discussion are both thought to be
symmetric under a discrete group G. If the manifold possesses fixed-points under the non-
trivial action of the group, the physical shape of the extra dimensions is a quotient manifold
C = M/G which turns out to be an orbifold (orbit-manifold). It is not smooth, but has
singular points which are precisely the fixed points. The fields living on the orbifold (bulk
fields) have to obey special boundary conditions at the fixed points, which can differ from
fixed point to fixed point. The physical fields in the effective 4-dimensional theory are the zero
modes of the Kaluza-Klein expansion on the orbifold which respect all boundary conditions
and the fields living on the branes at the fixed-points. The effects of the orbifold construction
can be twofold: The gauge symmetry can be reduced from the full gauge group to a subgroup
either in the bulk or at the brane located at some fixed point, if not all gauge fields posses
zero modes. The same mechanism can lead to appearance of split multiplets in the case of
matter or Higgs fields.

Any incomplete multiplet, besides the Higgs, should have a mass near MGUT in order not
to spoil gauge coupling unification. They can obtain masses from SM singlet fields acquiring
vacuum expectation values of the order of MGUT . Since the incomplete multiplets are charged
under the SM gauge group, the singlets couple always to conjugate pairs i.e. to a “vector-like”
representation of the SM gauge group. Therefore, vector-like pairs of exotics obtain masses.
The number of such exotics in orbifold models can be large. If the singlets also obtain F-
term expectation values (break SUSY) from some dynamics, the vector-like fields will act
as messengers for gauge-mediated SUSY breaking. The resulting patter of SUSY-breaking
terms will be different from the usual low-scale gauge mediation scenarios sketched above,
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CHAPTER 2. SUPERSYMMETRY AND SUPERGRAVITY

where the messengers need to form complete GUT multiplets in order to allow for gauge
coupling unification. Since the messenger scale is MGUT , the gauge-mediated contribution to
soft SUSY breaking terms is comparable with the gravity-mediated contribution:

msoft =
〈FS〉

16π2MGUT
≈ 〈FS〉

MP
∼ 〈F 〉
MP

∼ m3/2. (2.86)

This is the reason why this possible pattern of breaking is called hybrid gauge-gravity medi-
ation, see [74, 75] and referenced therein. In cases where the number of messengers is large
the gauge mediated terms will dominate. However, gauge mediation cannot give rise to the
µ term which is still generated by the Giudice-Masiero mechanism, see section 2.2.1. The µ
term as well as the B and the trilinear a terms can therefore be smaller than the soft-masses.
The GUT-scale MSSM parameters are then characterized by the hierarchy:

{
µ,m3/2, A,

√
B
}
�
{
m1/2,m0,mu/d

}
. (2.87)

This hierarchy allows for peculiar low-energy spectra: The only light states can be the
lightest Higgs state and higgsinos with masses around 100 GeV. The gravitino is the natural
lightest supersymmetric particle, with a higgsino-like neutralino NLSP. The second neutralino
and a higgsino-like chargino are slightly heavier. The mass of the lightest Higgs scalar can
be lifted to around 120− 125 GeV by large squark loop effects. All the remaining states are
very heavy and may be even non accessible at the LHC. We will investigate, in detail, the
phenomenological consequences of this model in Chapter 5.

2.4.3 Anomaly Mediation

Another breaking mechanism involving extra spatial dimensions is the anomaly-mediated su-
persymmetry breaking (AMSB) [108, 109]. Assuming one additional hidden dimension all
fields of the MSSM can be localized at the 4-dimensional hypersurface - the MSSM brane,
while the SUSY-breaking sector is confined to another parallel hypersurface - the hidden
brane. The transmission of supersymmetry breaking takes then place entirely due to (su-
per)gravity effects.

The Planck-scale can enter the supergravity formulation [106] as the vacuum expectation
value of the scalar component of a non-dynamical chiral supermultiplet 〈φ〉 = 1, usually
called conformal compensator. Without this VEV the theory exhibits enlarged symmetry -
the local superconformal invariance which must be broken since the real-world gravitational
interactions set a preferred scale given by the Newton’s constant. The SUSY breaking at the
hidden brane given by 〈F 〉 6= 0 causes the F -term of the conformal compensator which has a
dimension of mass also to obtain a VEV:

〈Fφ〉 ∼
〈F 〉
MP

∼ m3/2. (2.88)

However, the supersymmetry is still unbroken at the MSSM brane at the classical level, since
the effects of SUSY breaking are exponentially suppressed by the extra-dimensions. In the
quantum description, on the other hand, the scale-invariance is anomalously violated, see for
example dimensional transmutation in QCD, and since SUSY is also broken by the conformal
compensator field the effects of SUSY breaking appear at loop level at the MSSM brane.
The gaugino masses arise at one-loop order while the scalar-squared masses arise at two loop
order, see also [103] for details.
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Figure 2.2: Possible mass spectra of supersymmetric particles in different scenarios of SUSY
breaking. The blue lines indicate colored particles, while the green [red] line indicates the
lightest neutral Higgs [gravitino]. Neutralinos and charginos are written in terms of the
dominant gauge-eigenstate contribution. In case of the CMSSM the NLSP is a bino-like
neutralino, while it is a higgsino-like neutralino in the case of hybrid gauge-gravity mediation.
In the heavy gravitino scenario the LSP is also the higgsino-like neutralino. The CMSSM
spectrum was obtained by means of SOFTSUSY [110] with m0 = m1/2 = 350 GeV, A0 = 0,
tanβ = 10, sign(µ) = 1. The hybrid spectrum is taken from [75], while the AMSB spectrum
is taken from [73].

The discussion above does not constrain the supersymmetric higgsino mass parameter and
allows for following hierarchical mass spectra:

µ� msoft � m3/2 , (2.89)

for example with µ ∼ O(100) GeV, msoft ∼ O(104) GeV, and m3/2 ∼ O(106) GeV. Such
extreme hierarchy could for example solve the µ problem [73] and give rise to a Higgs mass
compatible with the current experimental bounds and close to the current hints at the LHC.
In general, such scenarios involve superheavy gravitino, heavy scalars and gauginos, the only
light SUSY particles being the higgsinos.

Figure 2.2 summarizes the possible supersymmetric mass spectra in different SUSY break-
ing scenarios. Although the CMSSM is the most studied case it is obvious that SUSY breaking
can be realized in nature in many different ways which can lead to a dramatically different
LHC phenomenology. We will investigate in the following chapters why such unusual spectra
might be well motivated by cosmology and estimate their impact on the results of SUSY
searches at the LHC. As we have seen in this chapter the gravitino obtains a mass after the
breaking of supersymmetry and appears somewhere in the supersymmetric spectrum. In the
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CHAPTER 2. SUPERSYMMETRY AND SUPERGRAVITY

next section we discuss the massive gravitino and review the implications of the presence of
the gravitino in the early universe.

2.5 The massive Gravitino

The massive gravitino in the flat limit is described by the following Lagrangian which can be
inferred from eq. (2.75):

L3/2 = −εµνρσψ†µσ̄ν∂ρψσ + im3/2(ψµσ
µνψν + ψ†µσ̄

µνψ†ν) + Lint. (2.90)

Translated into the four-component notation with Ψµ = (ψµ, ψ
†
µ)T using the notation from

reference [111], we obtain the Lagrangian [51]:

L3/2 = −1

2
εµνρσΨ̄µγ

5γν∂ρΨσ −
1

4
m3/2(Ψ̄µ[γµ, γν ]Ψν) + Lint. (2.91)

In this section we will make a number of comparisons with the four-component notation used
in other works for calculations involving gravitinos in order to check our results. However,
we will perform all calculations directly in the two-component notation as in the rest of this
work.

From eq. (2.90) we obtain following equation of motion for the free gravitino:

− εµνρσσ̄ν∂ρψσ + 2im3/2(σ̄µνψ†ν) = 0. (2.92)

Differentiating both sides of the equation with ∂µ we obtain

− 1

2
m3/2

[
(∂σ)σ̄νψ†ν − σν(∂σ̄)ψ†ν

]
= 0. (2.93)

Equation (2.92) can be further modified using the relations

εµρσν σ̄ν = i (σ̄µσρσ̄σ − gµρσ̄σ + gµσσ̄ρ − gρσσ̄µ) , (2.94)

and
2i(σ̄µν)α̇

β̇
= gµνδα̇

β̇
− (σ̄µσν)α̇

β̇
, (2.95)

leading to

− iσ̄ν∂νψµ − iσ̄µσρσ̄σψσ + i∂µσ̄
σψσ + iσ̄µ∂νψν = −mψ†ν +mσ̄µσνψ†ν . (2.96)

Equations (2.93) and (2.96) lead to the Rarita-Schwinger equations [112]:

σ̄µψµ(x) = 0, (2.97)

σνψ†ν(x) = 0, (2.98)

∂µψµ(x) = 0, (2.99)

iσ̄ν∂νψµ(x) = mψ†µ(x), (2.100)

which read in the four-component notation:

γµΨµ(x) = 0 and (i/∂ −m3/2)Ψµ(x) = 0. (2.101)
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The Rarita-Schwinger equations can be solved, as usual, in the momentum space and one
obtains the positive and negative frequency solutions

ψ+
µ (p, s), and ψ−µ (p, s), with s = ±3

2
,±1

2
, (2.102)

which in turn obey similar constraints as the position space wave-functions. A detailed
field-theoretical treatment of massive gravitino in the four-component notation can be found
in [107,113,114]. For the calculation of unpolarized matrix elements we will need the gravitino
polarization tensors

P±µν(p) =
∑

s

ψ±µ (p, s)ψ†±ν (p, s), (2.103)

P
±
µν(p) =

∑

s

ψ±†µ (p, s)ψ±ν (p, s), (2.104)

where the sum is performed over the four helicity states. The polarization tensors for a
gravitino with four-momentum p are given by

P±µν(p) = −(σp)Φµν(p) (2.105)

for both the positive and negative frequency mode functions. For the conjugate tensor we
obtain

P
±
µν(p) = −(σ̄p)Φ̃µν(p). (2.106)

In the above expressions we use

Πµν(p) =

(
gµν −

pµpν
m2

3/2

)
, (2.107)

and

Φµν(p) = Πµν(p)− 1

3
Πµσ(p)Πνλ(p)σ̄σσλ, (2.108)

Φ̃µν(p) = Πµν(p)− 1

3
Πµσ(p)Πνλ(p)σσσ̄λ. (2.109)

These expressions are derived in Section A.5. The interaction part of the gravitino Lagrangian
will be considered in Chapter 4.

2.5.1 Gravitino Cosmology

If local supersymmetry is realized in nature, violent conditions in the early universe will create
gravitinos. The presence of gravitinos, in general, poses a number of intertwined constraints
on several mechanisms operating during different epochs in the history of the universe. Many
of these are not welcomed and therefore the network of constraints is usually summarized by
the term the cosmological gravitino problem.

In the universe without inflation, the gravitino would reach thermal equilibrium and have
very high abundance, which would lead to an energy density larger than the critical density, for
stable gravitinos not lighter than O(eV) [46]. If the gravitino is very light, its energy density
is simply negligible for the energy budget of the universe, however, the theory possesses then
no dark matter candidates, since all other supersymmetric particles are unstable.
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Inflation solves these problems by diluting any initial abundance of gravitinos during the
exponential expansion of the universe [115]. It is assumed that the gravitino does not enter
thermal equilibrium after inflationary phase. Nevertheless, gravitinos are produced from the
thermal bath via supersymmetric QCD reactions of the form G+G→ g+ψµ. The gravitino
relic density is then proportional to the reheating temperature TR [116, 117] and is given
by [51,118–120]

Ω3/2h
2 ' 0.5

(
TR

1010 GeV

)(
100 GeV

m3/2

)( mg

1 TeV

)2
, (2.110)

where mg is the gluino mass. Depending on the reheating temperature of the universe the
gravitinos can have again significant impact on cosmology. Thus, the gravitino problem is
recreated after inflation.

We have seen in the previous sections, that the gravitino mass depends on the unknown
nature of supersymmetry breaking. Gravitino can, therefore, be either an unstable particle
somewhere in the supersymmetric spectrum or the lightest supersymmetric particle and hence
stable if one assumes R-parity conservation.

If gravitino is not the LSP, it will decay via interactions suppressed by the Planck scale
with a lifetime [53]

τ3/2 ∼
M2
P

m3
3/2

≈ 3 years

(
100 GeV

m3/2

)3

. (2.111)

Clearly, in general the lifetime is longer than couple of seconds and therefore gravitino decays
take also place during BBN. The electromagnetic and/or hadronic cascades from gravitino
decays can significantly alter the predictions of light element abundances and spoil the suc-
cessful predictions of big bang nucleosynthesis. If one requires that the density of gravitinos is
small enough to let the predictions of nucleosynthesis unchanged, one has to assume that the
reheating temperature of the universe was at most 106 GeV [121–126]. Unfortunately, lepto-
genesis cannot happen for such low temperatures and one has to look for other explanations
for matter-antimatter asymmetry in the universe.

However, the gravitino decays early enough if its mass is larger than O(10) TeV, cf.
eq. (2.111). As we have seen in Section 2.4 , such heavy gravitinos can appear in scenarios
where anomaly mediated contributions to the soft masses are significant. If there is significant
amount of gravitino decays after the freeze-out of the LSP, they will give rise to a non-thermal
component of the LSP energy-density, assuming R-parity conservation. It turns out, that
such non-thermal production of pure wino- or higgsino-like neutralino LSP in heavy gravitino
decays can account for the observed amount of dark matter and simultaneously fulfill the
constraints from BBN, while allowing for reheating temperatures needed for leptogenesis [56].
In the case of higgsino LSP, the usual SUSY searches at the LHC may be insufficient for
the discovery. We will investigate the consequences of higgsino LSP (NLSP) for the LHC
phenomenology in Section 5.1. An alternative solution to the unstable gravitino case, is a
supersymmetric particle spectrum that allows only for decays into particle species decoupled
from the thermal bath [127].

If the gravitino is the LSP, and R-parity is conserved, it is stable and there are no dangerous
gravitino decays. In this case the gravitino relic density eq.( 2.110) can explain the observed
dark matter density for reasonable values of gluino mass, the gravitino mass in the O(100)
GeV range and TR ≈ O(1010) GeV allowing for leptogenesis. If the gravitino is too light,
the gravitino relic density, however, may exceed the critical density of the universe for high
reheating temperatures needed for leptogenesis. A very light gravitino with a mass of O(1)
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keV which can enter thermal equilibrium and allow for arbitrary reheating temperature is
excluded by warm dark matter constraints [128].

In case of gravitino LSP, one has also to take care of the NLSP2 decays, since the coupling
of the NLSP to the gravitino is also suppressed by the Planck scale. The NLSP lifetime is
given by

τNLSP ≤ 2 months
( m3/2

100 GeV

)2
(

200 GeV

mNLSP

)5

� 1 s ∼ tBBN, (2.112)

and one once again recovers potential tension with the predictions of the BBN [129]. Whether
the NLSP decay problem truly occurs or not, depends on the nature of the NLSP. The hadronic
decays of a neutralino NLSP typically dissociate the primordial light elements [130–132] and
also the stop NLSP is strongly constrained [133, 134]. A long lived stau NLSP can form a
bound state with 4He and catalyze the production of 6Li [135–138] but it is possible to obtain
a consistent cosmology with leptogenesis in some corners of its parameter space [139–141].
Also a sneutrino NLSP can allow for consistent cosmological scenarios due to its invisible
decays [142–144].

Although there are some regions in the parameter space of the theories allowing for con-
sistent cosmology, as presented above, there are also other mechanisms which can circumvent
the NLSP problem and lead to interesting consequences. The gravitino may be degenerate
in mass with the NLSP, so that its decay products are low-energetic and do not change the
predictions of BBN [141]. The gravitino could also have additional decay channels to hidden
sector particles and decay before the BBN [145,146]. Also a light gravitino with a super-light
neutralino is a possible spectrum solving all problems [147]. Furthermore, the number density
of the NLSPs can be diluted by late-time entropy production before the BBN [76, 137, 148].
A recent work exploring some of this ideas is [149].

In the present work we will mainly pursue another line of thought: Small violation of
R-parity is sufficient to cause the NLSP to decay into the SM particles before the onset of
BBN. In the next chapter we will extensively review R-parity violation and introduce the R-
parity violating couplings. In general, a gravitino coupling to the SM particles of the order of
10−13 is sufficient to solve the NLSP decay problem [57]. We will review the upper bounds on
R-parity violating couplings from cosmology in Chapter 4, but we can state already here that
there is a several orders of magnitude wide range for the couplings allowed by all constraints.
The gravitino will also decay into SM particles but its decay is double suppressed due to
the Planck scale and the tiny R-parity violating couplings, and it therefore remains a viable
(decaying) dark matter candidate with a life-time exceeding the age of the universe [58].
The gravitino abundance in such scenario is determined only by the thermal production rate
and can explain the abundance of dark matter. Thus, small amount of R-parity breaking
renders supersymmetric cosmology consistent and allows additionally for interesting LHC
phenomenology involving long lived particles. In some cases the presence of R-parity violation
can significantly change supersymmetric signatures and hide SUSY from LHC searches. This
will be investigated in Section 5.2. Additionally, small violation of R-parity may also relax
cosmological constraints on the axion multiplet and therefore be connected with the solution
to the strong CP problem [150].

Summing up, we note that the presence of gravitino in the supersymmetric spectrum can
significantly change the course of the history of the universe. In order to achieve consistent

2In the context of gravitino LSP, the NLSP is sometimes called LOSP - lightest ordinary supersymmetric
particle.
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cosmology involving generation of light elements via big bang nucleosynthesis and generation
of the matter-antimatter asymmetry via leptogenesis, one has to change the usual supersym-
metric scenarios. These changes can in turn have an impact on the signatures at the LHC,
along the lines of our motto - as above so below. In this work we will focus on consistent
cosmological scenarios involving i) a higgsino LSP, NLSP in models with super-heavy grav-
itino, gravitino dark matter and late time entropy production, respectively, ii) a higgsino,
bino, or stau NLSP in models with gravitino dark matter and R-parity violation. In both
cases supersymmetry can escape searches at the LHC largely relying on missing transverse
energy signature.

In the next chapter we will review the ideas behind R-parity and investigate in detail
bilinear pattern of R-parity breaking. In the following chapters we will then explore the
connection between gravitinos and the LHC phenomenology.
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Chapter 3

R-parity Breaking

R-parity [151–156] is a discrete remnant of a group of continuous U(1)R transformations
acting on the supersymmetry generators. It is closely connected with the baryon and lepton
numbers and its conservation naturally allows for conserved baryon and lepton numbers in
supersymmetric theories. The inverse statement is also true and the violation of R-parity
requires violation of B or L conservation laws. We have seen in the previous chapter that the
MSSM is defined as the theory with minimal number of interactions without possible terms
violating L or B, which are otherwise allowed by renormalizability and gauge invariance. Since
these terms would lead to possible rapid proton decay, it seems rational to impose conservation
of R-parity. Furthermore, as it will be shown, conservation of R-parity ensures the stability
of the lightest supersymmetric particle, making it a natural dark matter candidate. On the
other hand, we know that at some stage in the history of the universe the baryon number
conservation law had to be violated, in order to allow for the creation of the matter anti-matter
asymmetry. This observation follows the general pattern, introduced in the last chapter,
stating that most symmetries are either approximative, slightly broken or do not hold at all
scales, in order to allow for the diverse phenomenology of the observed world. Therefore, it is
possible that a slight violation of R-parity can be present in nature, leading to new phenomena.
As stated in the previous chapter, small amount of R-parity breaking not only preserves the
successful predictions of the MSSM, but leads to a consistent cosmological picture including
neutrino masses, leptogenesis, and gravitino dark matter. From the experimental point of
view, it on the one hand can shed light on the ethereal gravitino dark matter, and on the
other hand possibly hide the next-to-lightest supersymmetric particle from a fast discovery
at the LHC. We will discuss these topics in the following chapters.

This chapter introduces the continuous R-symmetry and its descendant R-parity, as well
as possible patterns of R-parity breaking. Since the breaking of R-parity can be connected
with the breaking of the lepton number leading to a model with bilinear R-parity breaking,
we investigate, in detail, the general Lagrangian for this breaking pattern. We choose a
particular basis of scalar SU(2) doublets where all bilinear mixing terms vanish. This leads
to new Yukawa and gaugino couplings, one of which was previously not discussed in the
literature. Some parts of the presentation follow [89, 103] and the extensive review [157],
which includes also historical introduction.
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3.1 R-symmetry

It turns out that the super Poincaré algebra presented in the previous chapter can be enlarged
by the introduction of a global internal U(1) symmetry group acting on the supersymmetry
charges. This group is unique and is called R-symmetry. Its generators satisfy the following
relations:

[Qα, R] = Qα, (3.1)

[Q†α̇, R] = −Q†α̇. (3.2)

In the linear realization of supersymmetry the action of the group can be understood geo-
metrically as a phase rotation of the complex coordinates θ and θ†:

Rθ = eiαθ, R θ† = e−iαθ†. (3.3)

where α parametrizes R-transformations. The different charges of the coordinates give rise
to the different transformation properties of the component fields, which can be anticipated
since R-symmetry does not commute with supersymmetry. The action of R-symmetry on the
chiral superfield reads:

RΦ(y, θ) = eirαΦ(y, e−iαθ), (3.4)

RΦ∗(y∗, θ†) = e−irαΦ∗(y∗, eiαθ†), (3.5)

where yµ = xµ − iθσµθ† and r is by definition the R-charge of the supermultiplet. In terms
of the component fields this reads:

Rφ(x) = eirαφ(x), (3.6)

Rψ(x) = ei(r−1)αψ(x), (3.7)

RF (x) = ei(r−2)αF (x). (3.8)

Vector superfields are real and therefore have charge 0. It follows that their components
transform as:

RAµ(x) = Aµ(x), (3.9)

Rλ(x) = eiαλ(x), (3.10)

RD(x) = D(x), (3.11)

while the chiral field-strength superfield Wα has R-charge +1. The full superspace integra-
tion measure is invariant under the R-symmetry, while the integration measure d2θ becomes
e2iαd2θ if θ goes to e−iαθ. As a consequence, all terms in the SUSY Lagrangian coming from
vector superfields are R-symmetric, as well as all terms coming from renormalizable Kähler
potential. However, the full Lagrangian exhibits this symmetry only if the superpotential has
the charge +2, which is not always the case.

The historical introduction of R-symmetry is connected with the question of how to define
conserved fermionic quantum numbers, like B or L in supersymmetric theories [94,157]. The
original idea was to unify the known fermions with gauge bosons inside the vector super-
multiplet. Fermionic Majorana components could be then combined into Dirac fermions, cf.
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Superfield Q U D L E Hu Hd G W B

R-charge 1 1 1 1 1 0 0 0 0 0

Table 3.1: R-charges of the superfields in the Minimal Supersymmetric Standard Model. The
scalar components have the charges r of the superfields, while the fermionic components have
charges r − 1.

Section A.3, and the R-symmetry might be tentatively identified as lepton number. However
it turned out that such models are untenable for various reasons. The modern solution to the
problem of fermionic quantum numbers is the attribution of the latter to the scalar partners
of the fermions inside of chiral superfields, an approach which had earlier been viewed as a
rather heretic idea.

R-symmetry reappears in modern approaches to SUSY, since the Nelson-Seiberg theorem
[158] enforces exact U(1)R symmetry upon a theory with generic superpotential which breaks
SUSY by a non-zero F-term. This conclusion can be avoided if the SUSY-breaking vacuum
is only metastable, which seems to be the case in our universe, since exact R-symmetry is
associated with phenomenological problems, see [103] and the following discussion.

3.2 From R-symmetry to R-parity

As we have seen in the previous section, most terms in the Lagrangian of a supersymmetric
theory are naturally also R-symmetric. The only care has to be taken in the superpotential,
in order to ensure that it has the charge 2. Considering the minimal extension of the standard
model, it is desirable to have the trilinear terms of the MSSM, in order to give masses to the
fermions via the Higgs mechanism. Furthermore, it is possible to attribute charge 0 to all
SM particles, including the Higgs boson, while giving the superpartners charges ±1. These
requirements fix the charges of the squark and lepton superfields to 1 and the charges of the
Higgs superfields to 0 as shown in table 3.1. It turns out, that some terms of the MSSM
cannot be recovered in the theory with R-invariance. First, the supersymmetric mass term
for the Higgs bosons has charge 0 and is therefore forbidden. This is not a big drawback,
since it is possible to replace the µ term by a trilinear coupling involving an extra chiral
singlet field with R-charge 2, as in the Next-to Minimal Supersymmetric Standard Model
(NMSSM) which then spontaneously breaks R-symmetry. However, R-symmetry also forbids
the Majorana mass terms of the gauginos which correspond to a change in R of ∆R = ±2
after a R-transformation, and it is very difficult to create a model generating this terms
by spontaneous R-symmetry breaking. Massless Majorana fermions are phenomenologically
untenable, since massless gluinos would lead to the existence of R-hadrons, while massless
winos and higgsinos would lead to a chargino lighter than the W-boson, all phenomena which
have not been observed, see [157] and references therein. Additionally, unbroken U(1)R
prevents supersymmetry from being spontaneously broken in context of supergravity theories,
because it forces also the gravitino to stay massless.

Consequently, one has to abandon the continuous R-invariance. However, having excluded
the R-symmetry from the constraints on a supersymmetric theory, one is faced with potentially
dangerous interaction mediated not by gauge bosons, but by new scalars carrying B or L. A
natural solution to this problem, which is also compatible with the experimental constraints, is
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the introduction of a discrete R-parity. The gravitino mass term appearing after the breaking
of supersymmetry breaks itself the U(1)R into a discrete Z2 subgroup, since it is invariant
under a U(1)R transformation with angle α = π:

ei2πψµσ
µνψν = ψµσ

µνψν = (−1)2 ψµσ
µνψν . (3.12)

As a result, one no longer distinguishes between the value +1 and −1 of the additive quantum
number R, but only between R-odd particles having RP = −1 and R-even ones having RP = 1.
In the superspace picture the R-parity symmetry operator is a reflection of the anticommuting
fermionic Grassmann coordinate θ → −θ. R-parity allows the gaugino mass terms as well
as the µ term in the superpotential. The size of the µ term appears now to be connected
with the scale of the U(1)R breaking which is also the scale of SUSY breaking - the gravitino
mass m3/2. Thus, the solution of the µ problem is connected with the breaking of U(1)R into
R-parity. We will see this in more detail in the Section 3.5.

Imposing R-parity (allowing only terms having RP = +1) one forbids dangerous B- and
L-violating terms in the Lagrangian. In order to see this, one first notes that R-even particles
are precisely the particles of the SM, while R-odd particles are their superpartners:

RP = (−1)R =

{
+1 SM particles,

−1 superpartners,
(3.13)

where we write now the U(1)R charge r as R. In the next step R-parity can be re-expressed
in terms of the spin S and matter-parity (−1)3(B−L) [156] as

RP = (−1)2S(−1)3(B−L). (3.14)

Both definitions coincide because, as we noted in the previous section, B and L are purely
fermionic quantum numbers in the SM. Matter parity is a remainder of the continuous
U(1)B−L [159–161], the difference between the baryon and lepton number. Global B − L
is an accidental symmetry of the SM without neutrino masses conserved classically and at
the quantum level. This is not the case for B or L symmetries alone because they are violated
by non-perturbative effects [162]. The U(1)B−L is often gauged and broken in models beyond
SM in order to allow for Majorana neutrino masses needed for the see-saw mechanism. We
will connect the breaking of B−L to the breaking of R-parity in Section 3.5. Note that some
authors define the R-parity directly as descendant of matter parity [103].

Summing up, the consequences of exact R-parity are:

• Conservation of B and L at each vertex.

• Stability of the lightest supersymmetric particle.

• Each supersymmetric particle other than the LSP will decay in a cascade into an odd
number of LSPs.

• In collider experiments, supersymmetric particles can only be produced in even numbers.

MSSM is defined to conserve R-parity, see section 2.2, because of the desirable phenomeno-
logical consequences. Nevertheless, there is no a priori reason for R-parity conservation. Its
breaking is possible as long as it is not in conflict with experimental results. As stated in the
introduction to this chapter, R-parity breaking can even render gravitino dark matter com-
patible with leptogenesis. Therefore, we will investigate R-parity breaking in the following
sections.
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3.3 Patterns of R-parity Breaking

In the absence of R-parity, R-parity odd terms allowed by renormalizability and gauge invari-
ance have to be included in the superpotential of the MSSM :

W = WMSSM + µiHuLi +
1

2
λijkLiLjEk + λ′ijkLiQjDk +

1

2
λ′′ijkUiDjDk, (3.15)

where we have suppressed the summation over the gauge indices. Gauge invariance enforces
the antisymmetry of the λijk couplings with respect to their first two indices, and antisymme-
try of λ′′ijk couplings with respect to their last two indices. As expected, first three additional
terms of the superpotential break lepton number conservation, while the last term breaks
baryon number. Altogether eq. 3.15 involves 48 complex parameters: 3 dimensionful parame-
ters µi mixing the lepton and down-type Higgs superfields, and 45 dimensionless Yukawa-type
couplings.

After the breaking of supersymmetry one must also allow for R-parity violating soft terms
which have to be added to the soft-terms of the MSSM:

−Lsoft = −LMSSM
soft +

1

2
aijk l̃i l̃j ˜̄ek + a′ijk l̃iq̃j

˜̄dk +
1

2
a′′ijk ˜̄ui

˜̄dj
˜̄dk

+BiHu l̃i +m2
id l̃
†
iHd + h.c. (3.16)

The new soft terms in eq. 3.16 introduce 51 new complex parameters: 45 a-terms with the
same antisymmetry properties as the corresponding trilinear superpotential couplings, 3 Bi
associated with the bilinear superpotential terms, and 3 R-parity violating soft mass param-
eters m2

id mixing the down-type Higgs boson with the slepton fields.
Depending on the model of R-parity breaking not all of these terms will be present in the

theory. A priori, one can try to investigate the effects of some particular R-parity breaking
terms added to the MSSM. However, in order to be consistent at the quantum level, one has to
include all terms at the tree-level, which could otherwise be created by radiative corrections.
The consistent patterns of R-parity breaking can be classified in the following way:

• General R-parity breaking. This is the most general possibility involving all terms
defined in this section. It corresponds to the introduction of dimension 2, 3, and 4
operators breaking RP . This pattern introduces 96 physically meaningful RP breaking
parameters.

• R-parity breaking through d = 2 and d = 3 operators. This pattern consist of
the bilinear breaking terms from the superpotential augmented by all RP -breaking soft
terms. It introduces 54 new parameters.

• R-parity breaking through d = 2 operators. This pattern contains only bilinear
soft terms and can be parametrized by 6 parameters.

• Bilinear R-parity breaking. In this scenario the R-parity is broken only by bilinear
terms coming both from the superpotential and the soft Lagrangian. Although, it leaves
out d = 3 a-terms, the scenario is consistent, since these terms are not generated from
quantum corrections. This pattern introduces 9 new parameters.

Note, that the popular scenario of explicit trilinear R-parity breaking is not included in
this list, since bilinear RP violating couplings in this scenario cannot be completely absent.
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They are generated through one-loop diagrams involving lepton-number violating trilinear
RP -breaking interactions. The only consistent possibility is then R-parity breaking solely by
the UDD operator. As an example, the d = 4 operators, which are the fermion-fermion-
scalar terms from the superpotential would induce the d = 3 higgsino-lepton mixing terms
µihuli and d = 2 Higgs-slepton mixing mass terms BiHu l̃i and m2

id l̃
†
iHd [163–165]. In the

following we will investigate in detail bilinear R-parity breaking. We are interested in this
pattern, because it does not lead to proton decay (due to the absence of B-violating terms), is
described by only 9 parameters, and can lead to consistent gravitino dark matter cosmology.

3.4 Bilinear R-parity Breaking

The minimal supersymmetric standard model including bilinear R-parity breaking [166] is
described by the following superpotential:

W = µiHuLi + µHuHd + huijQiHuUj + hdijQiHdDj + heijLiHdEj . (3.17)

After supersymmetry breaking, soft SUSY breaking terms have to be added to the Lagrangian:

−L = m̃2
qi q̃
†q̃ + m̃2

li
l̃† l̃ + m̃2

ui
˜̄u† ˜̄u+ m̃2

di
˜̄d† ˜̄d+ m̃2

ei
˜̄e† ˜̄e

+m2
uH

†
uHu +m2

dH
†
dHd +

(
BHuHd +BiHu l̃i +m2

id l̃
†
iHd + h.c.

)
, (3.18)

where we show only the scalar mass terms from the usual LMSSM
soft . For simplicity, we have

assumed flavor diagonal mass matrices.

Electroweak symmetry breaking Contrary to the case of pure MSSM, cf. Section 2.2.1,
the electroweak symmetry is broken by vacuum expectation values of all scalar SU(2) doublets
(for a generic choice of parameters):

〈H0
u〉 = vu , 〈H0

d〉 = vd , 〈ν̃i〉 = vi. (3.19)

In order to find the value of the sneutrino VEV, one has to minimize the full scalar
potential. Having replaced the neutral components of the scalar SU(2) doublets with their
VEVs, we obtain the following expression for the minimum of the potential:

Vmin =
∑

i

|µ|2 (v2
d + v2

u) + (µµ∗i + µµi)vdvi + |µi|2 (v2
u + v2

i ) +m2
dv

2
d +m2

uv
2
u

− (B +B∗)vuvd + m̃2
li
v2
i − (Bi +B∗i )vuvi + (m2

id +m2
id)vdvi

+
1

8

(
g2 + g′2

)
(v2
u − v2

d − v2
i )

2 (3.20)

The parameters B and Bi can always be chosen real by a suitable choice of the phases of the
slepton and Higgs fields, see [167] and references therein. We will assume that the parameters
governing the R-parity violation are small. In the next section we will present a model which
gives us such parameters. In this case, the vacuum expectation values of the Higgs fields are
not changed by the effects or R-parity violation. The VEVs of the sneutrino fields can then
be found by investigation of the minimum of the scalar potential in the sneutrino directions:

0
!

=
∂V

∂ν̃∗i

∣∣∣∣
min

= µ(Reµi)vd + |µi|2 vi + m̃2
li
vi −Bivu +m2

idvd

+
1

4

(
g2 + g′2

)
(v2
u − v2

d + v2
i )vi. (3.21)
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Neglecting all terms which are cubic or higher in the small parameters µi and/or vi, one
obtains the following expression for the VEVs of the sneutrino fields:

ε̂i ≡
vi
vd

=
Bi tanβ −m2

id − µ(Reµi)

m̃2
li + 1

2m
2
Z cos 2β

. (3.22)

Choice of the Weak Interaction Basis In the absence of R-parity and, therefore, in
the absence of lepton number conservation there is no distinction between the Hd and Li
superfields, which have the same gauge quantum numbers, cf. Table 2.1. Appealing to the
Leibnizean principle of the identity of indiscernibles we conclude that all these objects are
different degrees of freedom of the same entity, and one can therefore freely rotate the weak
eigenstate basis by a unitary transformation:

(
Hd

Li

)
→
(
H ′d
L′i

)
= U

(
Hd

Li

)
, (3.23)

where U is an SU(4) matrix.

The µ and the RP violating µi terms can now be written in compact form in the super-
potential

W ⊃ µαHuHα, (3.24)

where µα = (µ, µi), and Hα = (Hd, Li)
T . The same expression can be rewritten in another

basis:

µαHuHα = µαHu

(
U−1

)
αβ
H ′β. (3.25)

We are interested in a infinitesimal transformation U = 1+ T , with T † = −T and neglecting
O(T 2) terms. Using it, we can find the expressions for the µ and µi terms in the Lagrangian
in the new (primed) basis.

µ′ = µ+ T ∗0iµi, (3.26)

µ′i = −T0iµ+ µi + T ∗ijµj . (3.27)

Similar expressions can be found for the other parameters. The equations above make it
clear that the values of lepton number violating couplings are basis dependent. Therefore,
it is crucial for the discussion of the effects of RP breaking to specify the basis one is using.
Another option, pursued by some authors, is to define a complete set of basis-independent
quantities parameterizing the effects of R-parity breaking, see [157] and references therein.

We will discuss the predictions of the model in a basis of SU(2) doublets where the mass
mixings µi, Bi and m2

id in eqs. (3.17) and (3.18) are traded for R-parity breaking Yukawa
couplings. This basis simplifies the discussion of the phenomenological consequences. First,
we go into a basis in which the µi term vanishes. Looking at eq. (3.27), we find the following
transformation:

T ∗ij = 0, T0i = εi =
µi
µ
. (3.28)

The full transformation matrix then has the following form:

U−1 =

(
1 −εi
ε∗i 13×3

)
, (3.29)
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and the transformations of the superfields read:

Hd = H ′d − εiL′i , Li = L′i + εiH
′
d , (3.30)

where we have assumed that the µi are real. Note that the assumption µi � µ makes the
whole procedure consistent. As wanted, the bilinear term (3.17) vanishes for the new fields,
i.e., µ′i = 0, and one obtains instead the cubic R-parity violating terms

∆W ′ =
1

2
λijkL

′
iEjL

′
k + λ′ijkDiQjL

′
k , (3.31)

where
λijk = −heijεk + hekjεi , λ′ijk = −hdijεk . (3.32)

The new R-parity breaking mass mixings are given by:

B′i = Bi −Bεi , m2′
id = m2

id + εi(m̃
2
li −m2

d) . (3.33)

The corrections for R-parity conserving mass terms are negligible. In this basis the sneutrino
VEVs are given by:

ε̂ ′i =
B′i tanβ −m2′

id

m̃2
li + 1

2m
2
Z cos 2β

. (3.34)

For the second step, we note that after the breaking of supersymmetry we are not forced
to perform basis changes or field redefinitions simultaneously in bosonic and fermionic sectors.
The up-type Higgs field εH∗u has the same quantum numbers as the down-type Higgs field Hd

and the scalar lepton field l̃i, with ε = iσ2 cf. eq. (A.40). Therefore, it is possible to arrange
them in a vector and write all quadratic terms as a multiplication with a matrix:

−Lquadratic =
(
HT
u ε ,H

†′
d , l†′i

)


−m2

u B B′i
B m2

d m2′
id

B′i m2′
id m̃2

li





εH∗u
H ′d
l̃′i


 . (3.35)

Then one can perform a non-supersymmetric infinitesimal SU(5) rotation among all scalar
SU(2) doublets:

H ′d = H ′′d − ε′i l̃
′′
i , εH∗u = εH

′∗
u − ε′′i l̃

′′
i , l̃′i = l̃′′i + ε′iH

′′
d + ε′′i εH

′∗
u , (3.36)

H†′d = H†′′d − ε′i l̃
†′′
i , HT

u ε = H
′T
u ε+ ε′′i l̃

†′′
i , l̃†′i = l̃†′′i + ε′iH

†′′
d − ε′′iHT

u ε . (3.37)

The R-parity conserving parameters change by a negligible amount, while the bilinear R-
parity breaking terms become:

B′′i = B′i − ε′iB + (m2
u − m̃2

li
)ε′′i (3.38)

m2′′
id = m2′

id + ε′′iB + (m̃2
li
−m2

d)ε
′
i (3.39)

Choosing

ε′i = −
B′iB +m2′

id

(
m̃2
li
−m2

u

)
(
m̃2
li
−m2

u

)(
m̃2
li
−m2

d

)
−B2

, (3.40)

ε′′i =
B′i
(
m̃2
li
−m2

d

)
+Bm2′

id(
m̃2
li
−m2

u

)(
m̃2
li
−m2

d

)
−B2

, (3.41)
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the Hu l̃i and l̃†Hd mixing terms vanish in the new basis of doublets:

B′′i = 0 , m2′′
id = 0 . (3.42)

According to (3.34) also the scalar lepton VEVs 〈ν̃i〉 vanish in this basis. In the discussion
above, the Higgs mass terms m2

u and m2
d already contain the contributions |µ|2 from the

superpotential (3.17), which are invariant under the redefinitions in the scalar sector.

RP violating Couplings and Mixings It is straightforward to work out the R-parity
violating Yukawa couplings which are induced by the rotation (3.36). We are particularly
interested in the terms containing one light superparticle, i.e, a scalar lepton, bino, wino or
higgsino. The corresponding couplings read, after dropping prime and double-prime super-
scripts on all fields:

−∆L ⊃ 1

2
λijkli ˜̄ejlk + λ′ijkd̄iqj l̃k + λ̂ijkliēj l̃k + λ̂′ijkqiūjεl̃

∗
k

+ heij(ε
′
iHd + ε′′i εH

∗
u)ējhd

− g′√
2

(ε′iH
†
d − ε′′iHT

u ε)lib+
g√
2

(ε′iH
†
d − ε′′iHT

u ε)σ
aliw

a + h.c. , (3.43)

where the Yukawa couplings are given by

λijk = −heijεk + hekjεi , λ′ijk = −hdij(εk + ε′k) , (3.44)

λ̂ijk = −heij(εk + ε′k) + hekjεi , λ̂′ijk = huijε
′′
k . (3.45)

Since the field transformations are non-supersymmetric, the couplings λijk and λ̂ijk are no

longer equal as in eq. (3.32). Furthermore, a new coupling of right-handed up-quarks, λ̂′ijk,
has been generated.

After electroweak symmetry breaking one obtains new mass mixings between higgsinos,
gauginos and leptons,

−∆LM ⊃ me
ij

ζi
cβ
ējh
−
d −mZswζ

∗
i νib+mZcwζ

∗
i νiw

3 +
√

2mZcwζ
∗
i eiw

+ + h.c. , (3.46)

where we have defined

ζi =
ε′ivd + ε′′i vu

v
, (3.47)

me
ij = heijvd , (3.48)

and used the definition of the Z-boson mass eq. (2.28).

Additionally, one also obtains couplings of the bino and wino to lepton doublets and Higgs:

−∆L = − g′√
2

(
ε′iH

0∗
d νi + ε′′iH

0
uνi
)
b+

g√
2

(
ε′iH

0∗
d νi + ε′′iH

0
uνi
)
w3 + h.c. , (3.49)

where we have shown only the couplings to the neutral Higgs states. The neutral higgsino, on
the other hand, only couples to charged Higgs. Introducing the physical Higgs fields in the
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unitary gauge, see eq. (2.32), and taking only the coupling to the lightest Higgs into account
one obtains:

−∆L = −1

2
g′κihνib+

1

2
gκihνiw

3 + h.c. (3.50)

where

κi = ε′i sin(−α) + ε′′i cos(α). (3.51)

In the Higgs decoupling limit, cf. Section 2.2.1, α ' β − π/2 and therefore κi ' ζi. We will
show that all models considered in the present work satisfy the decoupling limit.

Given the Yukawa couplings huij , h
d
ij and heij , the Lagrangian (3.43) predicts 108 R-parity

breaking Yukawa couplings in terms of 9 independent parameters which may be chosen as

µi , Bi , m
2
id or εi , ε

′
i , ε

′′
i . (3.52)

These parameters determine the lepton-gaugino mass mixings, lepton-slepton, and quark-
slepton Yukawa couplings as well as couplings of the Higgs fields to gauginos and leptons,
and therefore the low-energy phenomenology. The values of these parameters depend on the
pattern of supersymmetry breaking and the flavor structure of the supersymmetric standard
model.

3.4.1 Neutralinos and Charginos

The R-parity breaking described in the previous section leads to mass mixings between the
neutralinos b, w3, h0

u, h0
d with the neutrinos νi, and the charginos w+, h+

u , w−, h−d with the
charged leptons ēi, ei, respectively.

The 7× 7 neutralino mass matrix reads in the gauge eigenbasis

MN =




M1 0 mZsβsw −mZcβsw −ζimZsw
0 M2 −mZsβcw mZcβcw ζimZcw

mZsβsw −mZsβcw 0 −µ 0
−mZcβsw mZcβcw −µ 0 0
−ζimZsw ζimZcw 0 0 0




, (3.53)

where we have neglected neutrino masses. All effects of R-parity violation in the neutralino
sector are parametrized by the three parameters ζi. As is in the case of the MSSM, cf.
Section 2.2.2, the neutralino mass matrix can be perturbatively diagonalized, which we will
do explicitly in Chapter 4 for the case of bino- and higgsino-like neutralino LOSP (LSP).

The 5× 5 chargino mass matrix which connects the states (w−, h−d , ei) and (w+, h+
u , e

c
i ) is

given by

MC =




M2

√
2mZsβcw 0 0 0√

2mZcβcw µ ζ1h
e
11µ ζ2h

e
22µ ζ3h

e
33µ√

2ζ1mZcw 0 he11vcβ 0 0√
2ζ2mZcw 0 0 he22vcβ 0√
2ζ3mZcw 0 0 0 he33vcβ




, (3.54)

and will also be diagonalized in Chapter 4.
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3.4.2 Gravitino Interactions

In addition to the effects in the slepton and gaugino sectors, bilinear R-parity breaking will
also affect the gravitino interactions eq. (2.77). On the one hand, the basis transformations
discussed in the previous section cause various mixings between gauginos and leptons, which
are discussed in Chapter 4. On the other hand, the non-supersymmetric rotation will directly
change the interactions of the gravitino with scalars fermions and gauge-bosons:

L /RPψ = − 1√
2MP

{(
ε′i(DνHd) + ε′′i (DνεH

∗
u)
)
l†iσ

µσνψ†µ

−
(
ε′i(Dν l̃i)h

†
d + ε′′i (Dν l̃

†
i )εh

†
u

)
σµσνψ†µ + h.c.

}
, (3.55)

where we have assumed flat spacetime. Having evaluated the covariant derivative in terms of
mass eigenstate fields (cf. Appendix B) we obtain following interaction terms:

L /RPψ = − 1√
2MP

{[
(ε′i(∂νH

0
d) + ε′′i (∂νH

0∗
u ))ν†i + (ε′i(∂νH

−
d )− ε′′i (∂νH+∗

u ))e†i

− (ε′i(∂ν ν̃)h0†
d + ε′′i (∂ν ν̃

†
i )h

0†
u )− (ε′i(∂ν ẽi)h

−†
d − ε′′i (∂ν l̃

†
i )h

+†
u )

+
ig√

2

(
(ε′iH

−
d − ε′′iH+∗

u )ν†i − (ε′iẽih
0†
d + ε′′i h

+†
u ν̃†i )

)
W+
ν

+
ig√

2

(
(ε′iH

0
d + ε′′iH

0∗
u )e†i − (ε′iν̃ih

−†
d − ε′′i ẽ†h0†

u )
)
W−ν

+
ig

2cw

(
(ε′iH

0
d + ε′′iH

0∗
u )ν†i − (ε′iH

−
d − ε′′iH+∗

u )e†i

−(εiν̃ih
0†
d − ε′′i ν̃

†
i h

0†
u ) + (ε′iẽih

−†
d + ε′′i ẽ

†
ih

+†
u )
)
Zν

+
ig

cw
s2
w

(
(ε′iH

−
d − ε′′iH+∗

u )e†i − (ε′iẽih
−†
d + ε′′i ẽ

†
ih

+†
u )
)
Zν

+ ie
(
−(ε′iH

−
d − ε′′i h+∗

u )e†i + (ε′iẽih
−†
d + ε′′i ẽ

†
ih

+†
u )
)
Aν

]
σµσνψ†µ + h.c.

}
(3.56)

After electroweak symmetry breaking we obtain inter alia the following trilinear interactions:

L /RPψ ⊃ −
1

2MP

(
i
(
mZζiν

†
iZν +

√
2mZcwζie

†
iW
−
ν

)
+ κi(∂νh)ν†i

)
σµσνψ†µ + h.c. . (3.57)

The interactions in the equations above, together with the RP violating interactions mediated
via the mixing terms, cover all R-parity violating interactions of the gravitino found in the
literature, see [72] and references therein. Nota bene that we also find new R-parity violating
four-vertex interactions, for example of the form ψµ → h l−i W

+ (h νi Z), which have to be
taken into account for the computation of the three body decays of heavy gravitinos. Note
also that our approach allows for a transparent identification of all relevant terms without
the need to use sneutrino VEVs or mass-insertion techniques.

3.5 Spontaneous R-parity Breaking

In this section we compute the parameters εi, ε
′
i and ε′′i in a specific example where the spon-

taneous breaking of R-parity is related to the spontaneous breaking of B − L, the difference
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Superfield Ψ Hu Hd S S̄ Φ X Z

RP -charge 1 0 0 0 -2 -1 4 0

Table 3.2: RP -charges of matter superfields Ψ = Q,U,D,E,L, N̄ , Higgs superfields and gauge
singlet superfields.

of baryon and lepton number [57]1.

We consider a supersymmetric extension of the standard model with the symmetry group

G = SU(3)× SU(2)× U(1)Y × U(1)B−L × U(1)R . (3.58)

In addition to three quark-lepton generations and the Higgs fields Hu and Hd the model
contains three right-handed neutrinos N̄i, two non-Abelian singlets S̄ and S, which transform
as N̄ and its complex conjugate, respectively, and three gauge singlets X, Φ and Z. The part
of the superpotential responsible for neutrino masses has the usual form:

Wν = hνijLiN̄jHu +
1

MP
hnijN̄iN̄jS

2 . (3.59)

The expectation value of Hu generates Dirac neutrino masses, whereas the expectation value
of the singlet Higgs field S generates the Majorana mass matrix of the right-handed neutrinos
N̄i. The superpotential responsible for B − L breaking is chosen as:

WB−L = X(SS̄ − Φ2) , (3.60)

where unknown Yukawa couplings have been set equal to one. Φ plays the role of a spectator
field, which will finally be replaced by its expectation value, 〈Φ〉 = vB−L. Similarly, Z is a
spectator field which breaks supersymmetry 〈Z〉 = FZθθ and the continuous U(1)R down to
RP , since its F-term causes change in R of ∆R = −2, cf. Section 3.2. The superpotential in
eqs. (3.59) and (3.60) is the most general one consistent with the R-charges listed in Table 3.2,
up to nonrenormalizable terms which are irrelevant for our discussion.

The expectation value of Φ leads to the breaking of B − L. The scalar potential reads :

VB−L =
∣∣s̃˜̄s− v2

B−L
∣∣2 + |x̃|2|˜̄s|2 + |x̃|2|s̃|2 +

1

2
g′′2
(
|s̃|2 − |˜̄s|2

)2
, (3.61)

where g′′ is the coupling of U(1)B−L, and f̃ denotes the scalar component of the superfield
F . Minimizing the potential, we find:

〈S〉 = 〈S̄〉 = 〈Φ〉 = vB−L , (3.62)

where the first equality is a consequence of the U(1)B−L D-term. The VEV of the S field
generates a Majorana mass matrix M for the right-handed neutrinos with three large eigen-
values M3 > M2 > M1. If the largest eigenvalue of hn is O(1), one has M3 ' v2

B−L/MP , c.f
eq. (3.59). Integrating out the heavy Majorana neutrinos one obtains the familiar dimension-5

1The connection between B − L breaking and R-parity breaking in the context of string compactifications
is discussed in [168,169].
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seesaw operator which yields the light neutrino masses. Note that we will treat neutrinos as
massless in phenomenological discussions.

Since the field Φ carries R-charge −1, the VEV 〈Φ〉 breaks R-parity, which is conserved
by the VEV 〈Z〉. Thus, the breaking of B − L is tied to the breaking of R-parity, which is
then transmitted to the low-energy degrees of freedom via higher-dimensional operators in
the superpotential and the Kähler potential. Bilinear R-parity breaking, as discussed in the
previous section, is obtained from a correction to the Kähler potential,

∆K =
1

M3
P

(
aiZ

∗Φ∗S̄HuLi + a′iZ
∗ΦS∗HuLi

)

+
1

M4
P

(
biZ
∗ZΦ∗S̄HuLi + b′iZ

∗ZΦS∗HuLi

+ciZ
∗ZΦ∗S̄L∗iHd + c′iZ

∗ZΦS∗L∗iHd

)
+ h.c. . (3.63)

Note that the products Z∗Z of the SUSY breaking fields are proportional to θ†θ†θθ after the
breaking and the operators involving these products therefore solely give rise to products of
scalars in the Lagrangian. Replacing the spectator fields Z and Φ, as well as S̄ and S by their
expectation values, one obtains the correction to the superpotential

∆W = µiHuLi ,

with

µi =
√

3(ai + a′i)m3/2Θ , Θ =
v2
B−L
M2
P

' M3

MP
, (3.64)

where m3/2 = FZ/(
√

3MP ) is the gravitino mass. Note that Θ can be increased or decreased
by including appropriate Yukawa couplings in eqs. (3.59) and (3.60). The corresponding
corrections to the scalar potential are given by

−∆L = BiHu l̃i +m2
id l̃
†
iHd + h.c. ,

where
Bi = 3(bi + b′i)m

2
3/2Θ , m2

id = 3(ci + c′i)m
2
3/2Θ . (3.65)

The neutrino mass scale mν ' 0.01 eV implies for the heaviest right-handed neutrinos
M2 ∼ M3 ∼ 1012 GeV. The corresponding scales for B − L breaking and R-parity breaking
are

vB−L ' 1015 GeV , Θ =
v2
B−L
M2
P

' 10−6 . (3.66)

As desired, the model produces tiny R-parity violation. The estimation of parameters is
self-consistent, since the neutrino masses generated by R-parity violation are quadratic in
R-parity breaking couplings (cf. eq. (4.21)) and are therefore negligible compared to the see-
saw contribution, for the size of the R-parity violating couplings predicted by our model, cf.
eq. (3.73).

The R-parity conserving terms are generated by the Giudice Masiero mechanism, cf.
Section 2.2:

K ⊃ a0

MP
HuHdZ

∗ +
b0
M2
P

HuHdZ
∗Z + h.c. , (3.67)
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Superfield 103 102 101 5∗3 5∗2 5∗1 N̄3 N̄2 N̄1 Hu Hd Φ X Z

Charge 0 1 2 1 1 2 0 0 1 0 0 0 0 0

Table 3.3: Froggatt-Nielsen charges of the superfields of our model. The MSSM fields are
combined in representations of SU(5): 10i = (Qi, Ui, Ei), 5∗i = (Di, Li), i = 1 . . . 3.

which yields

W ⊃ µHuHd , µ =
√

3a0m3/2 , (3.68)

−L ⊃ BHuHd + h.c. , B = 3b0m
2
3/2 . (3.69)

Higher dimensional operators yield further R-parity violating couplings between scalars
and fermions. However, the cubic couplings allowed by the symmetries of our model are
suppressed by one power of MP compared to ordinary Yukawa couplings and cubic soft
supersymmetry breaking terms. Note that the coefficients of the nonrenormalizable operators
are free parameters, which are only fixed in specific models of supersymmetry breaking. In
particular, one may have µ2, m̃2

i > m2
3/2 and hence a gravitino LSP. All parameters are defined

at the GUT scale and have to be evolved to the electroweak scale by the renormalization group
equations.

The phenomenological viability of the model depends on the size of R-parity breaking
mass mixings and therefore on the scale vB−L as well as the parameters ai . . . c

′
i in eq. (3.63).

Any model of flavor physics, which predicts Yukawa couplings, will generically also predict
the parameters ai . . . c

′
i.

3.5.1 Hierarchy of R-parity violating Couplings

As a typical example, we use a model [170] for quark and lepton mass hierarchies based on a
Froggatt-Nielsen U(1) flavor symmetry, which is consistent with thermal leptogenesis and all
constraints from flavor changing processes [171].

Froggatt-Nielsen Mechanism The Froggatt-Nielsen mechanism [172] explains the emer-
gence of flavor from an underlying symmetry. In general, flavor assignment means that some
particles having the same transformation properties under all symmetry groups have different
masses. This situation needs an explanation because the appearance of three identical families
contradicts the idea that differences in masses should follow from other different properties.
In other words the hierarchy in Yukawa matrices is unexplained in the MSSM or SM. The idea
of Froggatt and Nielsen follows the pattern seen in various discussions of this and the previous
chapter: The families are considered not to be identical but to differ by a charge under a new
U(1) symmetry. This symmetry gets broken above the GUT scale by an expectation value
of some field φ called flavon which is otherwise a gauge singlet. The charge of φ is −1 while
other particles have positive or zero charges. Besides the particles of the MSSM the theory
possesses a number of heavy states which appear in “spaghetti”-like diagrams [173] between
the MSSM fields, see figure 3.1. All the heavy states have the same mass of the order of
the flavor scale Λ. The Yukawa couplings as well as other family-dependent couplings arise
from this non-renormalizable interactions (“spaghetti-diagrams”) after the flavon acquires
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Q3 d̄2,3

Hd φ

F1 F̄1

Figure 3.1: An example interaction between the Froggatt-Nielsen fields Fi, the flavon φ and
the MSSM fields which will give rise to a Yukawa coupling hd3(2,3). The diagram follows the
rules presented in Section A.4.

vacuum expectation value. The entries of the Yukawa couplings depend on the number of
flavon-tadpoles needed to cancel the charges of MSSM fields in the interactions, each tadpole
contributing η ' 〈φ〉/Λ.

In the models we consider the scale Λ is given by Λ = 〈φ〉/η > ΛGUT , η ' 0.06. The
η-dependence of Yukawa couplings and bilinear mixing terms for multiplets ψi with charges
Qi is given by

hij ∝ ηQi+Qj , µi ∝ ηQi , Bi ∝ ηQi , m2
id ∝ ηQi . (3.70)

The charges Qi for quarks, leptons, Higgs fields and singlets are listed in table 3.3.

The R-parity breaking parameters µi, Bi and m2
id strongly depend on the mechanism of

supersymmetry breaking. In the example considered in this section all mass parameters are
O(m3/2), which corresponds to gravity or gaugino mediation. From eqs. (3.64),(3.65) and
(3.70) one reads off

µi = âηQim3/2Θ , Bi = b̂ηQim2
3/2Θ , m2

id = ĉηQim2
3/2Θ , (3.71)

with â, b̂, ĉ = O(1). Correspondingly, one obtains for ε-parameters (cf. (3.40),(3.41))

εi = aηQiΘ , ε′i = bηQiΘ , ε′′id = cηQiΘ , (3.72)

with a, b, c = O(1). Thus, the predicted size of R-parity breaking coupling is

ε′i ' ε′′i ' ζ ' ηΘ ' 6× 10−8. (3.73)

Our phenomenological analysis of stau decays in Chapter 4 will be based on this parametriza-
tion of bilinear R-parity breaking.

Depending on the mechanism of supersymmetry breaking, the R-parity breaking soft terms
may vanish at the GUT scale [157,174,175],

Bi(ΛGUT) = m2
id(ΛGUT) = 0 . (3.74)

Non-zero values of these parameters at the electroweak scale are then induced by radiative
corrections. The renormalization group equations for the bilinear R-parity breaking mass
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terms read (cf. [157,174,175], t = ln Λ):

16π2dµi
dt

= 3µi

(
hujkh

u∗
jk −

1

5
g2

1 − g2
2

)
+ µkh

e
ijh

e∗
kj − µ

(
λijkh

e∗
kj + 3λ′kjih

d∗
kj

)
, (3.75)

16π2dBi
dt

= 3Bi

(
hujkh

u∗
jk −

1

5
g2

1 − g2
2

)
+ 6µi

(
1

5
g2

1M1 + g2
2M2

)

+Bkh
e
ijh

e∗
kj −B

(
λijkh

e∗
kj + 3λ′kjih

d∗
kj

)
, (3.76)

16π2dm
2
id

dt
= λ∗kjih

e
kjm

2
d −m2

jdh
e
jkh

e∗
ik − 3λ′kjih

d
kjm

2
d + hejkh

e∗
jkm

2
id

+ 3hd∗kjh
d
kjm

2
id + m̃2

liλ
∗
nkih

e
nk − 3m̃2

liλ
′∗
nkih

e
nk

+ 2λ∗kjim̃
2
lkλkj + 2λ∗kjih

e
kjm̃

2
ej − 6λ′∗kjih

d
kjm̃

2
dk − 6λ′∗kjim̃

2
qjh

d
kj . (3.77)

In bilinear R-parity breaking, the R-parity violating Yukawa couplings vanish at the GUT
scale. One-loop radiative corrections then yield the following soft terms at the electroweak
scale (cf. eqs. (3.75),(3.76); εi = µi/µ):

Bi(ΛEW) =
µi

16π2

(
6

5
g′2M1 + 6g2M2

)
ln

ΛGUT

ΛEW
, m2

id(ΛEW) = 0 . (3.78)

This illustrates that the bilinear R-parity breaking terms µ2
i , Bi and m2

id are not necessarily
of the same order of magnitude at the electroweak scale.
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Chapter 4

Broken R-parity: From the Sky to
the LHC

Supersymmetric extensions of the Standard Model with broken R-parity have a rich phe-
nomenology [166,174,176,177]. In most models rather large R-parity violating couplings are
considered, which lead to prompt decays of the lightest superparticle in the detector. In
models where small R-parity violating interactions generate neutrino masses, macroscopic
decay lengths up to 1 mm are obtained [175]. In the case of gauge mediated supersymmetry
breaking, R-parity violating decays then compete with R-parity conserving decays where the
final state contains a gravitino [178].

In the present work we are interested in the case of very small R-parity breaking couplings,
as they occur if R-parity is spontaneously broken at the grand unification scale, since they
lead to a consistent cosmology including primordial nucleosynthesis, thermal leptogenesis and
gravitino dark matter, cf. Section 2.5.

The introduction of such small couplings, leads to decays of the gravitino LSP and the
NLSP into particles of the Standard Model, while all other particles of the supersymmetric
spectrum decay via the usual R-parity conserving interactions. In the following sections we
first obtain R-parity breaking matrix elements of neutral current, charged current, and su-
percurrent assuming bilinear R-parity violation as presented in the previous chapter. Then,
using these matrix elements and the trilinear R-parity breaking couplings, we compute grav-
itino, neutralino, and stau decays. Having the analytical formulas for the decay lengths, we
review the constraints on the strength of R-parity violation from cosmology and verify our
initial assumptions. In the next step we summarize the constraints on the R-parity breaking
couplings from direct and indirect searches, and finally establish a direct connection between
the expected gamma-ray flux from gravitino decays and the decay length of the neutralino
NLSP at the LHC. This connection will lead to a lower bound on the neutralino NLSP decay
length from the results of the indirect searches for decaying gravitino dark matter. If the
NLSP is a stau, we obtain a lower bound on the stau decay length from the requirement that
the baryon asymmetry is not washed out.

4.1 Neutral, Charged and Supercurrents

In Section 3.4 we have discussed R-parity violating Yukawa couplings as well as R-parity
violating couplings of the Higgs field in our model. For a phenomenological analysis we also
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need the couplings of the gauge fields, i.e., photon, W-bosons and gravitino, to charged and
neutral matter,

L = −eJeµAµ −
g

cw
JZµZ

µ − g√
2
J−µW

+µ − g√
2
J+
µW

−µ − 1

2MP
(ψµS

µ + h.c.) . (4.1)

The corresponding currents are derived in Appendix B and read

Jeµ =J3
eµ + J2,1

eµ

= w+†σ̄µw+ − w−†σ̄µw− − e†i σ̄µei + ē†i σ̄µēi − h
−†
d σ̄µh

−
d + h+†

u σ̄µh
+
u ,

JZµ =− 1

2
h0†
u σ̄µh

0
u +

1

2
h0†
d σ̄µh

0
d +

1

2
ν†i σ̄µνi

+ w+†σ̄µw+ − w−†σ̄µw− −
1

2
e†i σ̄µei −

1

2
h−†d σ̄µh

−
d +

1

2
h+†
u σ̄µh

+
u − s2

wJ
2,1
eµ ,

J−µ =
√

2
(
w3†σ̄µw− − w+†σ̄µw3

)
+ ν†i σ̄µei + h0†

d σ̄µh
−
d + h+†

u σ̄µh
0
u ,

J+
µ =

√
2
(
w−†σ̄µw3 − w3†σ̄µw+

)
− e†i σ̄µνi − h

−†
d σ̄µh

0
d − h0†

u σ̄µh
+
u ,

Sµ = σρσσµ
(
b†Bρσ + w†aW a

ρσ

)

+ σν σ̄µ
(

(cosαh0
u − sinαh0

d)(∂νh)− i
√

2mZcw
(
cosβW+

ν h
−
d + sinβW−ν h

+
u

)

− ig√
2

(
cosαW−ν h

+
u − sinαW+

ν h
−
d

)
h− imZ

(
cosβ h0

d − sinβ h0
u

)
Zµ

+
ig

2cw

(
sinαh0

d + cosαh0
u

)
hZµ

− imZζiνiZν − i
√

2mZcwζieiW
+
ν + κiνi(∂νh)

)
. (4.2)

The upper indices of the electromagnetic currents indicate the transformation properties of
the fields in the current under SU(2)L.

In eq. (4.2) we have only listed contributions to the currents which will be relevant in our
phenomenological analysis.

As stated in the previous chapter, the R-parity breaking leads to mass mixings between
the neutralinos b, w3, h0

u, h0
d with the neutrinos νi, and the charginos w+, h+

u , w−, h−d with
the charged leptons ēi, ei, respectively. The 7× 7 neutralino mass matrix reads in the gauge
eigenbasis

MN =




M1 0 mZsβsw −mZcβsw −ζimZsw
0 M2 −mZsβcw mZcβcw ζimZcw

mZsβsw −mZsβcw 0 −µ 0
−mZcβsw mZcβcw −µ 0 0
−ζimZsw ζimZcw 0 0 0




, (4.3)

where we have neglected neutrino masses induced by the see-saw mechanism. Correspond-
ingly, the 5× 5 chargino mass matrix which connects the states (w−, h−d , ei) and (w+, h+

u , e
c
i )
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Figure 4.1: The parameters µ and B of eqs. (3.17) and (3.18), respectively, as functions of the
bino mass M1 in mSUGRA models. The plot has been obtained by means of SOFTSUSY [110].

is given by

MC =




M2

√
2mZsβcw 0 0 0√

2mZcβcw µ ζ1h
e
11µ ζ2h

e
22µ ζ3h

e
33µ√

2 ζ1mZcw 0 he11vcβ 0 0√
2 ζ2mZcw 0 0 he22vcβ 0√
2 ζ3mZcw 0 0 0 he33vcβ




. (4.4)

Note that all gaugino and higgsino mixings with neutrinos and charged leptons are governed
by the three parameters ζi.

In the following sections we shall need the couplings of gravitino, W and Z bosons to
neutralino and chargino mass eigenstates. Since ζi � 1, diagonalization of the mass matrices
to first order in ζi is obviously sufficient. Moreover, similar to the MSSM case, we consider
only models where the effects of electroweak symmetry breaking are small perturbations on
the mass matrix. In the case of mSUGRA models (cf. Section 2.4.1) the supersymmetry
breaking parameters satisfy the inequalities (cf. Figure 4.1):

mZ < M1,2 < µ , (4.5)

while in the case of hybrid gauge-gravity mediation or AMSB (cf. Sections 2.4.2 and 2.4.3)
the inequalities are:

mZ < µ < M1,2. (4.6)

The gaugino-higgsino mixings are O(mZ/µ) or O(mZ/M1,2), and therefore suppressed, and
χ0

1, the lightest neutralino, is either bino or higgsino-like.

The mass matricesMN andMC are diagonalized by Takagi diagonalization and singular
value decomposition, respectively,

U (n)TMNU (n) =MN
diag , U (c)†MCŨ (c) =MC

diag , (4.7)
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where U (n)†U (n) = U (c)†U (c) = Ũ (c)†Ũ (c) = 1. These unitary transformations relate the
neutral and charged gauge eigenstates to the mass eigenstates (χ0

a, ν
′
i) (a = 1, . . . , 4) and

(χ−α , e
′
i), (χ+

α , ēi) (α = 1, 2), respectively. Inserting these transformations in eqs. (4.2) and
dropping prime superscripts, one obtains electromagnetic current , neutral current , charged
current and supercurrent in the mass eigenstate basis:

Jeµ = χ−†α σ̄µV
(χ−)
αβ χ−β + χ+†

α σ̄µV
(χ+)
αβ χ+

β + e†i σ̄µV
(e)
ij ej + ē†i σ̄µV

(ē)
ij ēj (4.8)

+
(
χ−†α σ̄µV

(χ−,e)
αj ej + χ+†

α σ̄µV
(χ+,ē)
αj ēj + h.c.

)
,

JZµ = χ0†
a σ̄µV

(χ0)
ab χ0

b + χ−†α σ̄µV
(χ−)
αβ χ−β + χ+†

α σ̄µV
(χ+)
αβ χ+

β + ν†i σ̄µV
(ν)
ij νj + e†i σ̄µV

(e)
ij ej (4.9)

+ ē†i σ̄µV
(ē)
ij ēj +

(
χ0†
a σ̄µV

(χ,ν)
aj νj + χ−†α σ̄µV

(χ−,e)
αj ej + χ+†

α σ̄µV
(χ+,ē)
αj ēj + h.c.

)
− s2

wJeµ ,

J−µ = χ0†
a σ̄µV

(χ)
aβ χ−β + χ+†

α σ̄µV
(χ)
αb χ

0
b + χ0†

a σ̄µV
(χ,e)
aj ej + ē†i σ̄µV

(χ,e)
ib χ0

b (4.10)

+ ν†i σ̄µV
(ν,χ)
iβ χ−β + χ+†

α σ̄µV
(ν,χ)
αj νj + ν†i σ̄µV

(ν,e)
ij ej + ē†i σ̄µV

(ν,e)
ij νj ,

Sµ = σρσσµ
((
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i
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,

where we have defined the following matrix elements:

U (γ̃,χ)
a = cwU

(χ0)
1a + swU

(χ0)
2a , U

(γ̃,ν)
i = cwU

(χ0,ν)
1i + swU

(χ0,ν)
2i , (4.12)

U (Z̃,χ)
a = swU

(χ0)
1a + cwU

(χ0)
2a , U

(Z̃,ν)
i = swU

(χ0,ν)
1i + cwU

(χ0,ν)
2i , (4.13)

U (χ0,h)
a = cαU

(χ0)
3a − sαU (χ0)

4a , U
(ν,h)
i = cαU

(χ0,ν)
3i − sαU (χ0,ν)

4i , (4.14)

U (χ0,Z)
a = cβU

(χ0)
4a − sβU (χ0)

3a , U
(ν,Z)
i = cβU

(χ0,ν)
4i − sβU (χ0,ν)

3i , (4.15)

U (χ0,h,Z)
a = sαU

(χ0)
4a + cαU

(χ0)
3a , U

(ν,h,Z)
i = sαU

(χ0,ν)
4i + cαU

(χ0,ν)
3i , (4.16)

and abbreviations for the mixing angles:

sα = sinα , cα = cosα , (4.17)

sβ = sinβ , cβ = cosβ . (4.18)

The unitary transformations between gauge and mass eigenstates and the resulting matrix el-
ements of neutral and charged currents are given to next-to-leading order in mZ/µ (mZ/M1,2)
in Appendix B. As we shall see, that expansion converges remarkably well.
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4.1. NEUTRAL, CHARGED AND SUPERCURRENTS

The explicit expressions for the couplings as well as for the mass eigenvalues depend on
the nature of the neutralino wave function. In this work we will consider only bino- and
higgsino-like neutralinos. We will give the couplings for these cases in the later discussion,
but provide here the masses of the neutralino states for both cases. Additionally, we discuss
the generation of neutrino masses induced by R-parity breaking.

Bino-like Neutralino As shown above, we can treat the breaking of electroweak symmetry
as a small perturbation of the neutralino and chargino mass matrices, and perturbatively
diagonalize them to first order in ζi and to second order in mZ/µ. The neutralino mass
eigenstates read:

mχ0
1

= M1 −
m2
Zs

2
w(M1 + µs2β)

(µ2 −M2
1 )

(
1 +O

(
m2
Z

µ2

))
,

mχ0
2

= M2 −
m2
Zc

2
w(M2 + µs2β)

(µ2 −M2
2 )

(
1 +O

(
m2
Z

µ2

))
,

mχ0
3

= µ+
m2
Z(1− s2β)(µ+M1c

2
w +M2s

2
w)

2(µ+M1)(µ+M2)

(
1 +O

(
m2
Z

µ2

))
,

mχ0
4

= µ+
m2
Z(1 + s2β)(µ−M1c

2
w −M2s

2
w)

2(µ−M1)(µ−M2)

(
1 +O

(
m2
Z

µ2

))
,

mν = 0. (4.19)

Obviously, the mass eigenstates at this order in ζi are precisely the same as in R-parity
conserving SUSY, cf. eq. (2.48). The effects of R-parity violation first appear at the order
ζ2, in particularly R-parity violation generates one neutrino mass at tree-level which will be
considered in the following. We have numerically checked that varying M1 between 120 and
500 GeV, the relative correction to the lightest neutralino mass is less than 10%.

Higgsino-like Neutralino The diagonalization of the mass matrices in the case of a
higgsino-like neutralino is very similar to the bino-like case. We expand to first order in
ζ and to second order in mZ/M1 and obtain the following neutralino masses:

mχ0
1

= µ− m2
Z(1 + s2β)(M1c

2
w +M2s

2
w − µ)

2(M1 − µ)(M2 − µ)

(
1 +O

(
m2
Z

M2
1

))
,

mχ0
2

= µ+
m2
Z(1− s2β)(µ+M1c

2
w +M2s

2
w)

2(µ+M1)(µ+M2)

(
1 +O

(
m2
Z

M2
1

))
,

mχ0
3
, mχ0

4
= M1 +

m2
Zs

2
w(M1 + µs2β)

(M2
1 − µ2)

(
1 +O

(
m2
Z

M2
1

))
,

= M2 +
m2
Zc

2
w(M2 + µs2β)

(M2
2 − µ2)

(
1 +O

(
m2
Z

M2
1

))
,

mν = 0, (4.20)

where we have not specified the hierarchy between M1 and M2. We have numerically checked
that at the points of interest, the relative correction to the masses is less than 5%.
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Neutrino Masses Irrespectively of the neutralino wave function, the neutralino-neutrino
mixing generates tree-level neutrino mass at the order ζ2:

mν = ζ2m2
Z

(
s2
w

M1
+
c2
w

M2

)(
1 +O

(
m2
Z

µ2

))
, (4.21)

where
ζ2 =

∑

i

ζ2
i , (4.22)

and we have assumed a bino-like neutralino for the calculation. The appearance of the
neutrino mass can be understood as a kind of seesaw mechanism due to the strong hierarchy
between the gaugino-higgsino 4 × 4 block Mχ and the off-diagonal 3 × 4 block m in the
neutralino mass matrix:

MN =

(
Mχ mT

m 03×3

)
. (4.23)

The effective mass matrix is obtained by integrating out the neutralinos and is given by:

Mν
tree ' −mM−1

χ mT . (4.24)

Using our parametrization of MN we can exactly diagonalize the neutrino mass matrix. As
expected, we obtain two zero eigenvalues and one neutrino mass :

mν = ζ2m2
Z

M1c
2
w +M2s

2
w

M1M2 −m2
Z/µ s2β(M1c2

w +M2s2
w)
. (4.25)

Note that our expression is equal to the result obtained in [179] up to the effect of the second
basis transformation, see Section 3.4. Without the non-supersymmetric rotation the coupling
between gauginos and neutrinos is given by:

ζi =
µi
µ

vd
v

=
µi
µ

cosβ . (4.26)

Neutrino masses also receive loop contributions from R-parity violating couplings, see [157]
and references therein, and, therefore, are lifted from zero. For our choice of the parameters
ζi ∼ 10−8, the tree-level mass, and consequently the loop induced masses are much smaller
than the contributions from the usual see-saw mechanism, assuming a neutrino mass scale
of 0.01 eV, cf. eq. (3.66). Thus, they can be safely neglected, as stated in Section 3.5. On
the other hand, if one takes our parametrization of bilinear R-parity violation and disregards
cosmological implications, one can fix the size of R-parity violation demanding that mν < 1 eV
for some supersymmetric model. For example, choosing M1 = 100 GeV and M2 = 200 GeV
one obtains ζ . 4.5× 10−6. However, it would be also necessary to fix the other parameters
of the model, in order to explain all neutrino oscillation data.

Chargino Masses Although we will not use them in the following work, we also show the
chargino mass eigenvalues:

mχ±1
= M2 −

m2
Zc

2
w(M2 + µs2β)

(µ2 −M2
2 )

(1 +O (ζ2ζ3)) ,

mχ±2
= µ+

m2
Zc

2
w(µ+M2s2β)

(µ2 −M2
2 )

(1 +O (ζ2ζ3)) ,

mei = heiivcβ (1 +O (ζ2ζ3)) . (4.27)
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The masses of the charginos at this order in ζi coincide with the results in the R-parity
conserving SUSY, cf. eq. (2.52).

4.2 R-parity violating Decays

Various mass mixings induced by R-parity violation as well as direct trilinear R-parity violat-
ing couplings lead to decays of the supersymmetric particles into the particles of the Standard
Model. We are interested in the decays of the gravitino LSP, stau NLSP, and neutralino NLSP.

4.2.1 Gravitino Decays

The gravitino decay channels can be found from the supercurrent in the mass eigenstate basis,
cf. eq (4.11). The two-body decays are

ψµ → ν γ , ψµ → ν Z , ψµ → ν h , ψµ → e+W− , (4.28)

whereas the three-body decays are

ψµ → e+W− h , ψµ → ν Z h . (4.29)

To the best of our knowledge the three body decays presented above have not been considered
in the literature. However, they are suppressed and can only play a role for a sufficient heavy
gravitino. If the gravitino is lighter than the gauge bosons, it will decay into photon and
neutrino and also into trilepton final states via virtual gauge bosons. Above the threshold
for the production of W and Z bosons the gravitino will predominantly decay into W boson
and charged lepton and Z boson and neutrino. These decays were first discussed in [60],
however, a part of the contribution was omitted. Two additionally diagrams were taken into
account in [61], and finally two more diagrams were discussed in [72]. We refer the reader
to the work [72] for the calculations and results. Note that in our approach we recover all
contributions in a transparent way. The interaction Lagrangian responsible for the decay into
Z boson and neutrino is given by

LψZν =
1

2MP
ψµ

(
σρσσµν†iU

(Z̃,ν)
i Zρσ + iσνσµmZ

(
U

(ν,Z)
i + ζi

)
νiZν

)
+ h.c. , (4.30)

and the interaction Lagrangian responsible for the decay into W boson and charged lepton is
given by:

LψWl = − 1

2MP
ψµ

(
σρσσµē†i Ũ

(χ+,ē)
1i W+

ρσ − i
√

2σνσµmZcw

(
cβU

(χ−,e)
2i + ζi

)
eiW

+
ν

)

− 1

2MP
ψ†µ
(
σ̄ρσσµeiU

(χ−,e)
1i W+

ρσ + i
√

2σ̄νσµmZcwsβŨ
(χ+,ē)
2i ē†iW

+ν
)

+ h.c. . (4.31)

If the gravitino is heavy enough to decay into the Higgs bosons, the branching ration into
photon and neutrino is even more suppressed. This leads to the reduction of the strength of a
monoenergetic signal of gamma rays from gravitino decays in indirect detection experiments.
Neglecting threshold effects, the decay into the Higgs boson has the same strength as the decay
into the Z boson and neutrino. The reader is referred to [72, 114] for a detailed discussion.
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ψµ

γ

νi

Figure 4.2: Gravitino decay into photon and neutrino.

The interaction Lagrangian which gives rise to the decay into the Higgs boson and neutrino
reads

Lψhν = − 1

2MP
ψµ

(
σνσµ

(
U (ν,h) + κi

)
νi(∂νh)

)
+ h.c. . (4.32)

In the present work we are primarily interested in the decay of the gravitino into photon and
neutrino, which we shall compute in the two component spinor formalism in the next section.

Gravitino Decay ψµ → γν

The interaction Lagrangian responsible for this decay is given by

Lψγν = − 1

2MP
ψµσ

ρσσµν†iU
(γ̃,ν)
i Fρσ . (4.33)

The decay is shown in Figure 4.2 and was computed first in [58]. Here we will compute
this decay using the two component formalism in order to show the assets of this method.
The Feynman rules can be directly read off from the Lagrangian following the general rules
presented in Appendix A. If the photon has the momentum k, the gravitino the momentum
q, and neutrino the momentum p, the gravitino-photon-neutrino coupling reads

1

2MP
U

(γ̃,ν)
i (σk)σ̄σσµ , (4.34)

for the appropriate choice of the spinor index structure. The matrix elements are then given
by

iM =
1

2MP
U

(γ̃,ν)
i ψ+

µ (q)(σk)σ̄σσµx†i (p)ε
∗
σ(k) ,

−iM∗ =
1

2MP
U

(γ̃,ν)∗
i ψ+†

ν (q)(σ̄k)σγ σ̄νxi(p)εγ(k) . (4.35)

The matrix element squared reads

|M|2 =
1

4M2
P

|U (γ̃,ν)
i |2 (ε∗σεγ)

(
x†σµσσ(σ̄k)ψ+

µ

)(
ψ+†
ν (σ̄k)σγ σ̄νx

)
, (4.36)

where we have dropped the momentum dependence of the wave functions. We have rewritten
the matrix elements in the form appropriate for the computation using the spinor algebra
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rules from Appendix A. Summing over the spins of the final states and averaging over the
gravitino spin states ,we obtain

1

4

∑

(λψ ,λν ,λγ)

|M|2 = − 1

16M2
P

|U (γ̃,ν)
i |2Tr

[
σµσσ(σ̄k)P+

µν(σ̄k)σσσ̄
ν(σp)

]
, (4.37)

where P+
µν is the gravitino polarization tensor given in eq. (2.108). Using the explicit expres-

sion for P+
µν we finally obtain

1

4

∑

(λψ ,λν ,λγ)

|M|2 =
1

16M2
P

|U (γ̃,ν)
i |2 (4.38)

× Tr

[
σµσσ(σ̄k)(σq)

{
gµν −

4

3

qµqν
m2

3/2

− 1

3
σ̄µσν +

1

2
σ̄µ
qν(σq)

m2
3/2

+
1

3

qµ(σ̄q)σν
m2

3/2

}
(σ̄k)σσσ̄

ν(σp)

]
.

Each summand in the trace can be computed separately using eqs. (A.52), (A.53) and
eqs. (A.56) - (A.58), as well as the relation (σ̄l)(σl) = l2 for some momentum l. Note
that (σ̄k)(σk) is equal to zero for the photon momentum k. The results of the traces are

Tr [σµσσ(σ̄k)(σq)gµν(σ̄k)σσσ̄
ν(σp)] = 16(k · q)(k · p) , (4.39)

Tr [σµσσ(σ̄k)(σq)qµqν(σ̄k)σσσ̄
ν(σp)] = −8(k · q)

[
2(k · q)(q · p)−m2

3/2(k · p)
]
, (4.40)

Tr [σµσσ(σ̄k)(σq)σ̄µσν(σ̄k)σσσ̄
ν(σp)] = 0 , (4.41)

Tr [σµσσ(σ̄k)(σq)σ̄µqν(σq)(σ̄k)σσσ̄
ν(σp)] = −16(k · q)

[
2(k · q)(q · p)−m2

3/2(k · p)
]
, (4.42)

Tr [σµσσ(σ̄k)(σq)qµ(σ̄q)σν(σ̄k)σσσ̄
ν(σp)] = 0 . (4.43)

Therefore, we obtain the following result for the unpolarized matrix element squared:

1

4

∑

(λψ ,λν ,λγ)

|M|2 =
1

16M2
P

|U (γ̃,ν)
i |2

×
(

16(k · q)(k · p) +
16

3m2
3/2

(k · q)
[
2(k · q)(q · p)−m2

3/2(k · p)
])

=
2

3M2
Pm

2
3/2

|U (γ̃,ν)
i |2

(
(k · q)2(q · p) +m2

3/2(k · q)(k · p)
)
. (4.44)

The products of the momenta can be evaluated in the center-of-mass system of the reaction:

(k · p) =
m2

3/2 −m2
ν

2
, (4.45)

(k · q) =
m2

3/2 −m2
ν

2
, (4.46)

(q · p) =
m2

3/2 +m2
ν

2
. (4.47)

Using them, we obtain the following result:

1

4

∑

(λψ ,λν ,λγ)

|M|2 =
1

12

1

M2
Pm

2
3/2

|U (γ̃,ν)
i |2

(
m2

3/2 −m2
ν

)2 (
m2
ν + 3m2

3/2

)
. (4.48)
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We will neglect the neutrino mass hereafter.
The total decay width of a two body decay process is given by [4]

Γ =

∣∣M
∣∣2

8π

|~p1|
M2

, (4.49)

where M is the mass of the decaying particle, M is the unpolarized matrix element squared
and |~p1| is the final state momentum given in the center of mass frame by

|~p1| =
1

2M

√
(M2 − (m1 +m2)2) (M2 − (m1 −m2)2) , (4.50)

where m1, m2 are masses of the final-state particles.
It follows that the total rate for gravitino decay into photon and neutrino is given by

Γ3/2(γν) =
1

32π

∑

i

|U (γ̃,ν)
i |2

m3
3/2

M2
P

, (4.51)

where we also took into account the decay rate into photon and antineutrino.
So far, we have obtained the gravitino decay rate as a function of an unspecified photino-

neutrino matrix element. In general, such matrices depend on the nature of the NLSP.
However, it turns out that the photino-neutrino mixing needed for the gravitino decay is
independent of the neutralino wave function as long as the parameters of the mass matrix are
hierarchical. In both bino and higgsino-like neutralino case the matrix element is given by1:

U
(γ̃,ν)
i = ζi

mZswcw (M2 −M1)

M1M2

(
1 +O

(
s2β

m2
Z

µ2

))
. (4.52)

Inserting the matrix element (4.52) into the gravitino decay width (4.51) one obtains the
gravitino lifetime

τ3/2(γν) =
32
√

2

αζ2

GFM
2
P

m3
3/2

M2
1M

2
2

(M2 −M1)2

(
1 +O

(
s2β

m2
Z

µ2

))
, (4.53)

where α is the electromagnetic fine-structure constant evaluated at the Fermi scale. The
corrections to the leading order expression in (4.53) are less than 10%.

4.2.2 Neutralino Decays

The neutralino decay channels follow from the neutral and charge currents, cf. eqs. (4.9),
and (4.10), and also directly from the R-parity violating coupling of the gauginos to the
Higgs boson, cf. eq. (3.50), after both have been evaluated in the mass eigenstate basis.

Thus, we obtain following decay channels, c.f Fig. 4.3.

χ0
1 → ν Z , χ0

1 → ν h , χ0
1 → e−W+ . (4.54)

The interaction Lagrangian responsible for the neutralino decay into neutrino and Z boson

1The matrix element U
(γ̃,ν)
i agrees with the one used in [60, 114] for M2 − M1 � M1. Note that this

assumption is unjustified in models assuming grand unification.
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χ0
1

Z

νi

χ0
1

W+

ei

χ0
1

h

ν†
i

Figure 4.3: Neutralino decays into neutrino and Z boson, charged lepton and W boson, and
neutrino and the lightest Higgs boson.

is given by

Lχ0
1νZ

= − g

cw
χ0

1σµV
(χ,ν)∗

1i ν†iZ
µ + h.c. , (4.55)

while the interaction Lagrangian responsible for the neutralino decay into charged lepton and
W boson reads

Lχ0
1eiW

= − g√
2
χ0

1σµV
(χ,e)∗

1i e†iW
−µ + h.c. . (4.56)

The interaction Lagrangian responsible for the neutralino decay into neutrino and the lightest
Higgs boson is given by

Lχ0
1νh

=
1

2
gνiṼ

(ν,χ)
i1 χ0

1h+ h.c. , (4.57)

where we have defined the matrix element

Ṽ
(ν,χ)
i1 =

∑

j

κj

(
tan θw(U

(χ0,ν)
1j U

(ν,χ0)
i1 + U

(ν)
ij U

χ0

11 )− (U
(χ0,ν)
2j U

(ν,χ0)
i2 + U

(ν)
ij U

χ0

21 )
)
. (4.58)

The transformation matrices appearing in Ṽ
(ν,χ)
i1 are defined in Appendix B, and will be

evaluated in the following sections.
Let us first compute the decay into charged lepton and W boson. The matrix element

reads

iM = − i√
2
gV ε∗µx

†
iσ
µxj , (4.59)

where the neutralino has momentum pj , the lepton has momentum ki, the W boson has

momentum kW and the external wave functions are xj ≡ y(pj , λj), x
†
i ≡ y†(ki, λi), and

ε∗µ ≡ ε∗µ(kW , λk). The mixing matrix V
(χ,e)

1i is represented in the calculation by V . The
square of the matrix element gives:

|M|2 = |V |2 g
2

2
ε∗µεν

(
x†i σ̄

µxj

)(
x†j σ̄

νxi

)
. (4.60)

Performing the sum over the polarizations of the W boson and the lepton and averaging over
the neutralino polarizations we obtain

1

2

∑

spins

|M|2 = |V |2 g
2

2

(
−gµν +

kWµkWν

m2
W

)(
kµj p

ν
i + kνj p

µ
i − gµνkjpi

)

= |V |2 g
2

2

(
kjpi +

2(kWkj)(kW pi)

m2
W

)
, (4.61)
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The momentum contractions are completely similar to the gravitino case, and we are led to
the following result:

1

2

∑

(λχ,λe,λW )

|M|2 = |V |2 g2

4m2
W

(m2
χ0
1
−m2

W )(2m2
W +m2

χ0
1
) . (4.62)

Now we introduce Fermi’s constant using the relation:

8GF√
2

=
g2

m2
W

, (4.63)

and obtain

1

2

∑

(λχ,λe,λW )

|M|2 = |V |2
√

2GF (m2
χ0
1
−m2

W )(2m2
W +m2

χ0
1
) . (4.64)

The total decay rate follows the general two body decay formula introduced in the previous
section and reads

Γ
(
χ0

1 →W+e−i
)

=
GF

8π
√

2

∣∣∣V (χ,e)
1i

∣∣∣
2
m3
χ0
1

(
1− m2

W

m2
χ0
1

)2(
1 + 2

m2
W

m2
χ0
1

)
. (4.65)

The computation of the neutralino decay into Z boson and neutrino is completely similar,

the only change being the mixing matrix V
(χ,ν)

1i and the coupling g/cw. The result reads

Γ
(
χ0

1 → Zνi
)

=
GF

4π
√

2

∣∣∣V (χ,ν)
1i

∣∣∣
2
m3
χ0
1

(
1− m2

Z

m2
χ0
1

)2(
1 + 2

m2
Z

m2
χ0
1

)
. (4.66)

Finally, we have to compute the decay of the neutralino into neutrino and the lightest Higgs
boson. The matrix element for this decay is given by

iM1 =
i

2
gṼ

(ν,χ0)
i1 xiyj , (4.67)

where the neutralino has momentum pi, the antineutrino has momentum ki and the external
wave functions are xi ≡ x(pi, λi), yj ≡ y(kj , λj). The square of the matrix element reads

|M|2 =
1

4
g2
∣∣∣Ṽ (ν,χ0)
i1

∣∣∣
2 (
xiyjy

†
jx
†
i

)
, (4.68)

and the unpolarized matrix element squared is given by

1

2

∑

(λχ,λν)

|M|2 =
1

8
g2
∣∣∣Ṽ (ν,χ0)
i1

∣∣∣
2

(Tr(kjσpiσ))

=
1

4
g2
∣∣∣Ṽ (ν,χ0)
i1

∣∣∣
2

(pi · kj)

=
1

8
g2
∣∣∣Ṽ (ν,χ0)
i1

∣∣∣
2 (
m2
χ0
1
−m2

h

)
. (4.69)
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Thus, the decay rate is given by

Γ
(
χ0

1 → hνi
)

=
1

32

α

s2
w

∣∣∣Ṽ (ν,χ0)
i1

∣∣∣
2
mχ0

1

(
1− m2

h

m2
χ0
1

)2

, (4.70)

where we have used the following relation:

g2

4π
=

α

s2
w

. (4.71)

Neutralino-Higgs Coupling

So far, the coupling of the neutralino to the neutrino and the lightest Higgs boson is governed
by the R-parity breaking parameter κi and not by ζi which governs the other channels. As
stated before, κi ' ζi in the Higgs decoupling limit. In this section we show that the Higgs
decoupling limit is satisfied in all models considered in the present work.

The R-parity violating coupling of the lightest Higgs boson

κi = ε′i sin(−α) + ε′′i cos(α) , (4.72)

depends on the Higgs mixing angle α, which is connected with the mass of the CP-odd Higgs
scalar A0 and tanβ:

tan 2α

tan 2β
=
m2
A0 +m2

Z

m2
A0 −m2

Z

. (4.73)

The so-called decoupling limit occurs when mA0 � mZ . Then, the lightest CP-even Higgs h
saturates the upper bound on the Higgs mass with m2

h ' m2
Z cos2(2β) + loop corrections. In

this case the angle α is very nearly β−π/2 and h has the same couplings to the particles of the
Standard Model as would the ordinary Higgs boson without supersymmetry. The bino-like
neutralino is the NLSP if we choose the following boundary conditions for the supersymmetry
breaking parameters of the MSSM at the grand unification scale:

m0 = m1/2 , A0 = 0 , tanβ = 10 . (4.74)

Now we can evaluate the mass of the CP-odd Higgs for different values of m1/2. Since the
neutralino mass also depends on the gaugino mass parameter, we can evaluate the A0 mass
for every value of the neutralino mass. Figure 4.4a shows the mass of the CP-odd Higgs A0

as a function of the neutralino mass mχ0
1
. It is obvious that the condition for the decoupling

limit is satisfied even for small neutralino masses. In order to further quantify this relation,
we show the difference between α and β−π/2 as a function of the neutralino mass in Fig. 4.4b,
where we have defined

∆α =
∣∣∣α− β +

π

2

∣∣∣ . (4.75)

For neutralino masses around 100 GeV, ∆α . 0.01 and the decoupling limit is satisfied.
In the case of a higgsino-like neutralino NLSP we are in the extreme decoupling limit [74],

since we start with very large parameters m2
u,d and small parameter µ at the GUT scale. The

mass of the Z boson at the electroweak scale can be approximated by

− m2
Z

2
' |µ|2 +m2

u , (4.76)
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Figure 4.4: Two functions of the neutralino mass mχ0
1

which demonstrate that the decoupling
limit is satisfied for the boundary conditions giving bino-like neutralino NLSP.

for tanβ ≥ 5, while the mass of the CP-odd Higgs, cf. eq. (2.36) is then given by

m2
A0 ' m2

Z +m2
d . (4.77)

The parameter m2
d stays large after the evolution from the GUT scale to the electroweak scale

and therefore mZ � mA0 .
Since the decoupling limit is satisfied in all cases considered in the present work, we will

replace κi by ζi in all relevant expressions. In particular, the coupling of the neutralino to
neutrino and the lightest Higgs boson is given by

Ṽ
(ν,χ)
i1 =

∑

j

ζj

(
tan θw(U

(χ0,ν)
1j U

(ν,χ0)
i1 + U

(ν)
ij U

χ0

11 )− (U
(χ0,ν)
2j U

(ν,χ0)
i2 + U

(ν)
ij U

χ0

21 )
)
. (4.78)

Total Neutralino Decay Width

Let us first inspect the phase space factors of the various decay channels:

fW,Z(mχ0
1
) =

(
1−

m2
W,Z

m2
χ0
1

)2(
1 + 2

m2
W,Z

m2
χ0
1

)
,

fh(mχ0
1
) =

(
1− m2

h

m2
χ0
1

)2

. (4.79)

One sees immediately that the decay into the Higgs is suppressed compared to the decay
into the gauge bosons which have three degrees of freedom instead of one. Additionally, the
longitudinal mode of the gauge boson has a larger contribution than each transversal mode.
This fact is called the Nambu-Goldstone enhancement [180].

The total neutralino decay width including decays into the antiparticles is given by:

Γχ0
1

=
GF

2π
√

2
m3
χ0
1

∑

i

(
1

2

∣∣∣V (χ,e)
1i

∣∣∣
2
fW (mχ0

1
) +

∣∣∣V (χ,ν)
1i

∣∣∣
2
fZ(mχ0

1
)

)

+
1

16

α

s2
w

mχ0
1

∑

i

∣∣∣Ṽ (ν,χ)
i1

∣∣∣
2
fh(mχ0

1
) (4.80)
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For further evaluation of the decay width we need the various matrix elements appearing
in the expression above . Since they depend on the neutralino wave function, they have to be
given separately for both cases considered in the present work.

Bino-like Neutralino After the diagonalization of the mass matrices the charged and
neutral current couplings are given by

V
(χ,ν)

1i =− ζi
mZsw
2M1

(
1 +O

(
s2β

m2
Z

µ2

))
, (4.81)

V
(χ,e)

1i =− ζi
mZsw
M1

(
1 +O

(
s2β

m2
Z

µ2

))
. (4.82)

Note that they agree up to the isospin factor at leading order in m2
Z/µ

2, i.e., V
(χ,ν)

1i = V
(χ,e)

1i /2.
The coupling of the neutralino to the lightest Higgs boson and the neutrino is given at the
leading order by

Ṽ
(ν,χ)
i1 = ζi tan θw +O

(
m2
Z

µ2

)
. (4.83)

The neutralino decay width reads

Γχ0
1

=
1
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α

c2
w

ζ2mχ0
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(
1

2
fW (mχ0

1
) +

1

4
fZ(mχ0

1
) +

1

4
fh(mχ0

1
)

)
, (4.84)

where we have used M1 ' mχ0
1
.

Higgsino-like Neutralino The charged and neutral current couplings in the higgsino-like
neutralino case have a more complicated form:

V
(χ,ν)

1i =
ζm2

Z

2
√

2µ

((
s2
w
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+
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2
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)(
1 +O

(
m2
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(4.85)

V
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×
(

1 +O
(
m2
Z

M2
2
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.

The neutralino-neutrino-Higgs coupling reads
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. (4.87)

The calculation of the total decay width of the neutralino gives a lengthy expression:
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where we have used mχ0
1
' µ.
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4.2.3 Stau Decays

Contrary to the neutralino NLSP decay, which will be connected to the gravitino decay in
the last section, the R-parity violating decays of a τ̃1-NLSP strongly depend on the flavor
structure and the supersymmetry breaking parameters, because they arise due to the direct
R-parity violating trilinear couplings, cf. eqs. (3.44), (3.45). Since the R-parity breaking
Yukawa couplings are proportional to the ordinary Yukawa couplings, decays into fermions
of the second and third generation dominate. The leading partial decay widths of left- and
right-handed τ̃ -leptons, ignoring the masses of the final state particles, are (cf. eq. (3.43))

Γτ̃ (τ̄ †ν†) =
1

16π

∑

i

|λ̂i33|2mτ̃ , (4.89)

Γτ̃ (t†b̄†) = Γτ̃ (t†s̄†) =
3

16π
|λ′333|2mτ̃ , (4.90)

Γτ̃ (t̄ b) =
3

16π
|λ̂′333|2mτ̃ , (4.91)

Γ˜̄τ†(τν) = Γ˜̄τ†(µν) =
1

16π

∑

i

|λi33|2m˜̄τ . (4.92)

Note that in the usual notation ˜̄τ † ≡ τ̃R. In the flavor model discussed in section 3.5.1, the
order of magnitude of the various decay widths is determined by the power of the hierarchy
parameter η (η2 ' 1/300),

Γτ̃ (τ̄ †ν†) ∼ Γ˜̄τ†(τν) = Γ˜̄τ†(µν)

∼ Γτ̃ (t†b̄†) ∼ Γτ̃ (t†s̄†) ∼ η4Θ2mτ̃ , (4.93)

Γτ̃ (t̄ b) ∼ η2Θ2mτ̃ . (4.94)

The lightest mass eigenstate τ̃1 is a linear combination of τ̃ and ˜̄τ †, cf. Section 2.2.3,

τ̃1 = sin θτ τ̃ + cos θτ ˜̄τ † . (4.95)

From the above equations we obtain the τ̃1-decay width

Γτ̃1 = sin2 θτ

(
Γτ̃ (τ̄ †ν†) + 2Γτ̃ (t†b̄†) + Γτ̃ (t̄ b)

)
+ 2 cos2 θτΓ˜̄τ†(τν) . (4.96)

The total width is dominated by the contributions ˜̄τ † → τν, µν and τ̃ → t̄ b, respectively,

Γτ̃1 = sin2 θτΓτ̃ (t̄ b) + 2 cos2 θτΓ˜̄τ†(τν) , (4.97)

and it can be directly expressed in terms of the τ -lepton and top-quark masses,

Γτ̃1 = 3
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16πv2

m2
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m3
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sin2 θτ
(
m2
τ̃1 −m2
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)2
+ 2

ε2

16πv2

m2
τ

m3
τ̃1

tan2 β cos2 θτ
(
m2
τ̃1 −m2

τ

)2
, (4.98)

where we have restored the dependence on the final state masses, used

he33 = mτ/(v cosβ) ≈ mτ tanβ/v (4.99)

for tanβ = 10, and assumed

ε2,3 = ε′2,3 = ε′′2,3 ≡ ε . (4.100)

This corresponds to the parameter choice a = b = c = 1 in Eq. (3.72). Note that the τ̃1-
decay width and branching ratios are affected with a considerable uncertainty since these
parameters depend on the unspecified mechanism of supersymmetry breaking.
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4.3 Bounds on R-parity violating Couplings

The assumption of broken R-parity in general introduces a number of new interactions be-
tween ordinary and supersymmetric particles, which can contribute to a variety of low-,
intermediate- and high-energy processes. The range of R-parity violating couplings consid-
ered in the present work is set by the requirement of obtaining a consistent cosmology. It
turns out that in order to satisfy the cosmological bounds, the R-parity violating couplings
must be small, a fact which was assumed throughout the present work. Such couplings could
for example arise via a model presented in Section 3.5. Assuming such small couplings, the
only relevant phenomenological effects should be the decays of the gravitino LSP and the
NLSP, as stressed in the introduction to this chapter. Nevertheless, we shall briefly summa-
rize general indirect bounds on the R-parity odd interactions, and present direct searches for
R-parity violation at colliders. Finally, we obtain limits on the gravitino lifetime from the
analysis of cosmic rays. Using these limits we are able to reduce the allowed range of the
R-parity violating couplings, and make predictions for LHC phenomenology.

4.3.1 Bounds from Cosmology

The desire for a consistent cosmology is the main motivation for the present work. As pointed
out in Section 2.5.1, the presence of the gravitino in the spectrum can cause a number of
problems for the presumed mechanisms operating in the early universe, for example for BBN.
It was stated that these problems can be solved by the introduction of a small amount of
R-parity violation. In this section we shall determine the range of the R-parity breaking
couplings which leads to a consistent cosmological picture.

Assuming gravitino dark matter, we first obtain a lower bound on the R-parity violating
couplings by demanding that the NLSP decays take place before the BBN. In the case of
a charged NLSP, like a scalar tau lepton, its lifetime has to be ττ̃ ≤ (103 − 104) s [135,
136]. In case of a neutralino, BBN excludes lifetimes longer than 102 s due to the strong
constraints from hadronic showers [130, 181, 182]. The NLSP lifetime becomes sufficiently
short for ζ > 4× 10−13, λ > 2× 10−14 in case of a neutralino and stau NLSP

τχ0
1
' 102 s

(
ζ

4× 10−13

)−2( mχ0
1

100 GeV

)−1

,

τNLSP ' 103 s

(
λ

10−14

)−2( m̃

100 GeV

)−1

, (4.101)

where in the second equation we have assumed a generic charged NLSP decaying via a trilinear
R-parity breaking coupling.

The upper bound on the size of the R-parity breaking can be obtained from the re-
quirement that the baryon asymmetry of the universe survives in the presence of R-parity
violating interactions, which also violate B − L. Above the critical temperature of TC ∼ 100
GeV and up to very high temperatures of O(1012) GeV, sphaleron processes are in thermal
equilibrium [162,183]. These processes correspond to level crossing [184,185] of all SU(2) dou-
blets in the bosonic background of a topologically non-trivial gauge field configuration (the
sphaleron) leading to the simultaneous creation or disappearance of 9 quarks and 3 leptons,
one lepton and three quarks from each generation. Thus, each combination

B

3
− Lα (4.102)
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is conserved in sphaleron processes although the baryon number B and the individual lepton
numbers Lα, α = 1, 2, 3 are violated. The baryon asymmetry of the universe can, therefore,
be generated above the Fermi scale only in the form of B − L. The presence of additional
baryon or lepton number violating interactions (which obviously break B − L) in thermal
equilibrium would wash out any generated B−L asymmetry and hence spoil the predictions
of otherwise successful theories of baryogenesis like leptogenesis [186–190]. This problem can
be circumvented if the R-parity breaking interactions are out of equilibrium. This means that
their rate is smaller than the Hubble parameter, i.e. their characteristic timescale is longer
than the age of the universe at a given epoch.

The best bounds on trilinear couplings are obtained from the decays of squarks and
sleptons in two fermions, and the corresponding rate is given by [187,191]:

Γλ ' 1.4× 10−2 |λ|2 m̃
T
, (4.103)

where m̃ is the mass of the decaying sfermion, and λ stands for any trilinear R-parity violating
coupling. Since

H ' 1.66
√
g∗
T 2

MP
, (4.104)

where g∗ is the number of the effectively massless degrees of freedom at the temperature T ,
and we demand Γλ < H, the best bound is obtained at the critical (the lowest) temperature.
Assuming m̃ ∼ T ∼ 100 GeV, one obtains [191] the rather generic prediction

|λijk| ,
∣∣λ′ijk

∣∣ ,
∣∣λ′′ijk

∣∣ . 10−7. (4.105)

However, its often argued [190] that the above cosmological constraints can be circumvented
if the baryon number and one of the lepton flavor numbers are sufficiently conserved. That
means it should be sufficient that only the processes violating one particular combination in
eq. (4.102) are out of equilibrium, even if the other two combinations are violated by processes
in thermal equilibrium. For example, if λ′1ijk . 10−7 is satisfied, then it is often assumed that
λ′2jkan λ′3jk can be much larger.

In a recent study Endo, Hamaguchi and Iwamoto [192] have shown that the conclusion
above becomes unjustified in all models with tiny lepton flavor violation (LVF). They stated
that LVF is a rather generic prediction of SUSY models, and appears, for example, in see-saw
models with gravity mediated SUSY breaking with a typical size which is large enough to
erase the flavor dependence of B/3− Lα. Under the assumption of small LVF they obtained
the following bounds:

√∑

ijk

∣∣∣λ′′ijk
∣∣∣
2
. (4− 5)× 10−7 , (4.106)

√∑

ijk

∣∣∣λ′ijk
∣∣∣
2
. (3− 6)× 10−7 , (4.107)

√∑

ijk

|λijk|2 . (0.6− 1)× 10−6 , (4.108)

√√√√∑

i

∣∣∣∣
µi
µ

∣∣∣∣
2

. (1− 2)× 10−6 , (4.109)
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for m̃q̃ ' 200 − 1200 GeV, and m̃l̃ ' 100 − 400 GeV. We use these bounds in the present
work.

Let us finally check that the gravitino is still a viable dark matter candidate. The gravitino
lifetime is given by

τ3/2(γν) = 1× 1025 s

(
ζ

10−6

)−2( M1

100 GeV

)2 ( m3/2

10 GeV

)−3

, (4.110)

assuming a SUSY breaking scenario where M2 ' 2M1 at the electroweak scale. Thus, we
are led to the conclusion that for the allowed values of R-parity breaking parameters, the
gravitino is still a viable dark matter candidate and, therefore, all cosmological constraints
can be satisfied at once. Nevertheless, the gravitino will decay, and its decays taking place
in the galactic halo or extragalactic structures will produce additional contributions to the
spectra of cosmic rays which might be observable on top of the astrophysical background.
The limits on the gravitino lifetime from searches for decaying dark matter will be the topic
of the last part of this section.

Having established the parameter range of R-parity violation of interest to us

10−13 . ζ . 10−6 , 10−14 . λ . 10−7 , (4.111)

(where we have assumed ε ' ζ, which follows from our model of R-parity breaking, and λ is
a generic R-parity violating trilinear coupling) we note that the amount of R-parity violation
produced in the model of Section 3.5 falls exactly within this range. In the next step we
can check whether some parts of this parameter space have already been excluded by various
direct and indirect searches for new physics.

It is not possible to summarize all of the present direct and indirect bounds within the
scope of this work, and we will, therefore, present an assortment of results and refer the reader
to the review [157] for a detailed account. Note that since the authors of [157] are interested
in bilinear R-parity violation as source of the neutrino masses, their conclusion concerning
the use of R-parity violation for consistent gravitino cosmology is diametrically opposed to
the one put forward in the present work.

4.3.2 Indirect Bounds

The requirement that R-parity violating contributions do not spoil the successful predictions of
the Standard Model for various observables, or do not exceed experimental upper limits on rare
processes, allows us to put constraints on the size of the R-parity violation. Additionally, it is
possible to provide some weak constraints by requiring that the R-parity violating couplings
stay perturbative up to the scale of the unification, i.e.

λ2
ijk(MGUT )

(4π)2
< 1 , (4.112)

where λijk is a generic trilinear coupling.
It is interesting to note that all indirect bounds are obtained directly for the trilinear

R-parity violating couplings (often assuming the trilinear breaking scenario). If the trilinear
couplings are generated from bilinear R-parity violation, their properties, however, can be
different compared to the pure trilinear case, cf. eqs.(3.44), (3.45). Furthermore, most of
the established indirect bounds have been derived under the hypothesis that one particular
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Coupling Bound Origin

λ12k 0.05 ˜̄e†k Vud
λ23k 0.07 ˜̄e†k Rτ
λ233 0.9 RGE

λ′111 3.3× 10−4 q̃2g1/2 ββ0ν

λ′333 0.32 ˜̄b† B → τνX

λ′i33 4× 10−4 bm̃−1/2 mν < 1 eV

ζ 4.4× 10−6 χ1
0
−1

mν < 1 eV

Table 4.1: Single (indirect) bounds on the R-parity violating couplings at the 2σ level. The
abbreviations in the last column refer to the processes explained in the text. The indices
i, j, k run over the three generations. The dependence on the (super)particle mass is noted as
pq, which stands for

( mp
100 GeV

)q
, where mp is the mass of the particle p; m̃ is an average mass

scale of superparticles. Parts of the table are extracted from [157].

coupling dominates over all other contributions. This assumption is called the single coupling
dominance hypothesis. The bounds derived under this hypothesis are in general moderately
strong and involve a linear dependence on the superparticle mass [157]:

λ, λ′, λ′′ < (10−2 − 10−1)
m̃

100 GeV
, (4.113)

where λ, λ′, λ′′ denote the trilinear couplings and m̃ is the superparticle mass scale. Some of
the indirect bound chosen to demonstrate different sources of constraints are summarized in
Table 4.1. We omit the bounds on the baryon number violating coupling, since this coupling
is not generated by bilinear R-parity violation. The absence of this coupling ensures the
stability of the proton. In the last column of the table we indicate via which process the
bound in question was obtained. There the abbreviation RGE stands for bounds obtained
from the perturbativity requirement, cf. eq (4.112). The abbreviation Vud indicates that the
bound was obtained from the measurement of the CKM matrix elements. The experimental
value of Vud is determined from comparison between the nuclear β decay and the muon decay,
and is changed if R-parity violating interactions are present. Rτ stands for the ration of the
leptonic τ -lepton decay widths

Rτ =
Γ(τ → ν†eντ )

Γ(τ → µν†µ)ντ
, (4.114)

which is affected by the decays mediated by the scalars. The abbreviation ββ0ν refers to the
bounds obtained from the neutrinoless double beta decay. The bound quoted here is obtained
in the minimal supergravity framework from the lower limit on the half-life of 76Ge measured
by the Heidelberg-Moscow experiment [193]. B → τνX indicates that the corresponding limit
was derived from the inclusive semileptonic B meson decay process B− → Xqτ

−ν† which
can be expressed solely in terms of the single coupling constant λ′333 assuming the single
coupling constant dominance hypothesis. The limit on λ′i33 can be, furthermore, derived from
the loop-induced neutrino masses, since, as we have seen in this chapter, R-parity violation
generates one neutrino mass at tree-level, while other masses are generated via loops. This
limit is indicated by mν < 1 eV . The trilinear couplings λ, λ′ contribute to each entry of
the neutrino mass matrix Mν

ij through the lepton-slepton and quark-squark loops. Assuming
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e
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˜̄d∗
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λ′
11k

λ′∗
11k

Figure 4.5: Sample Feynman diagram for the single resonant s-channel production of the
˜̄d squark in e − p collisions with subsequent decay into SM particles via the λ′11k Yukawa
coupling.

degenerate scalar masses, A-terms proportional to the Yukawa couplings of the MSSM, and
a flavor hierarchy of the trilinear R-parity violating couplings linked to the one found in the
Yukawa couplings of the MSSM, which is natural if both are generated by the Froggatt-Nielsen
mechanism (cf. Section 3.5.1), one obtains

Mν
ij

∣∣
λ′
∼ λ′i33λ

′
i33(7.7× 106 eV)

( mb

4.5 GeV

)2
(

100 GeV

m̃

)
, (4.115)

where m̃ is the average scalar mass. Demanding that the neutrino mass scale stays below
1 eV one can set limits on the couplings. Note that no bounds have been derived so far on
the coupling of right-handed up-quarks, λ̂′ijk introduced in Section 3.4.

We can also obtain a bound on ζ from the requirement that the tree-level neutrino mass,
eq. (4.21), generated by bilinear R-parity violation is smaller than the experimental bound of
1 eV:

ζ < 4.5× 10−6M1 = 100 GeV , M2 = 200 GeV , (4.116)

ζ < 2× 10−5M1 = 2000 GeV , M2 = 4000 GeV . (4.117)

We assumed in both cases hierarchical spectra a with bino-like neutralino and large µ in
the first case and a higgsino-like neutralino in the second case. Note that in this case the
model for the spontaneous R-parity breaking, cf. Section 3.5, is not consistent, since it uses a
neutrino mass scale of 0.01 eV which is dominated by the see-saw contribution. Demanding
its validity, i.e. mν . 0.01 eV, lowers both limits exactly by one order of magnitude.

Let us now look at some of the recent results from the direct searches for R-parity violation
at colliders.

4.3.3 Bounds from direct Searches

First, we quote part of the results from the search for squarks in supersymmetric models
with R-parity violation at the HERA accelerator in Hamburg [194]. Being a hadron-electron
storage ring, HERA allows for resonant single squark production via the LQD operator, cf.
eq. (3.15). A non-zero coupling λ′1jk leads to the production of squarks which then decay into
SM particles, via cascades of neutralinos, charginos, gluinos and possibly lighter squarks and
sleptons. Figure 4.5 shows one possible Feynman diagram for such process.
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Figure 9.4: Exclusion limits (95% CL) on λ′
11k for (a) k = 1, 2 and (b) k = 3 as

a function of the squark mass derived from a scan of the MSSM parameter space, as
indicated in the Figures using 183 pb−1 of e−p collision data [1]. The dark shaded
region indicates values of the coupling λ′

11k excluded in all investigated scenarios, whereas
the light shaded region is excluded only in part of the scenarios. Indirect limits from
neutrinoless double beta decay experiments (ββ0ν) [35; 47] and tests of charged current
universality (CCU) [35; 48] are also shown. For comparison, the corresponding H1limits
from the previous analysis [53] (c,d), as well as unpublished results [34] (a,b), based on
the same luminosity of 13.5 pb−1 are also indicated.
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Figure 9.4: Exclusion limits (95% CL) on λ′
11k for (a) k = 1, 2 and (b) k = 3 as

a function of the squark mass derived from a scan of the MSSM parameter space, as
indicated in the Figures using 183 pb−1 of e−p collision data [1]. The dark shaded
region indicates values of the coupling λ′

11k excluded in all investigated scenarios, whereas
the light shaded region is excluded only in part of the scenarios. Indirect limits from
neutrinoless double beta decay experiments (ββ0ν) [35; 47] and tests of charged current
universality (CCU) [35; 48] are also shown. For comparison, the corresponding H1limits
from the previous analysis [53] (c,d), as well as unpublished results [34] (a,b), based on
the same luminosity of 13.5 pb−1 are also indicated.
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Figure 4.6: 95% C.L. exclusion limits on λ′113 for (a) tanβ = 2 and (b) tanβ = 6 as a function
of the squark mass derived from a scan of the MSSM parameter space, as indicated in the
figures using 183 pb−1 of e − p collision data. The dark shaded region indicates values of
the coupling λ′113 excluded in all investigated scenarios, whereas the light shaded region is
excluded only in part of the scenarios. Indirect limits from neutrinoless double beta decay
experiments (ββ0ν) and tests of charged current universality (CCU) are also shown, as well
as previous results of the H1 collaboration. Both figures are taken from [194].

No significant deviation from the SM predictions could be observed in the analysis of
the data sets of the H1 experiment corresponding to integrated luminosities of 183 pb−1 of
electron-proton, and 255 pb−1 of positron-proton collision data collected at a center-of-mass
energy of

√
s = 319 GeV. The non-observation of a signal was interpreted in a phenomeno-

logical version of the MSSM. The masses of squarks and sleptons were set to fixed values and
the gaugino masses were determined via the set of parameters µ, M2, and tanβ. The gluino
mass was set to a large value Mg ∼ M3 � M2. Mixing effects in the sfermion sector were
neglected for the first two squark generations, and sleptons were considered to be degenerate
in mass. Their masses were set to 90 GeV. Furthermore, as in the case of indirect limits, the
single coupling dominance hypothesis was assumed.

Figure 4.6 shows exclusion limits on the strength of the R-parity violating coupling λ′113

depending on the squark mass hypothesis. The limits were derived in the MSSM by a scan
of the supersymmetric parameters 70 GeV < M2 < 350 GeV and −300 GeV < µ < 300 GeV
at tanβ = 2 and 6. The limits exclude the coupling λ′11k at the level

λ′11k < 0.5× 10−2 , at Mq̃ = 100 GeV , (4.118)

λ′11k < 0.5 , at Mq̃ = 290 GeV , (4.119)

for all three squark generations k = 1, 2, 3. A similar result was also obtained for the coupling
λ′1j1.

After the shutdown of HERA and Tevatron, LHC is the only running particle physics
experiment which could possibly look for direct R-parity violating production and decays
of supersymmetric particles. The LHC collaborations now put great effort into the analysis
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Figure 4.7: Feynman diagrams for the two R-parity violating processes under consideration
by the ATLAS collaboration. LH: Production of a single tau sneutrino at the LHC with
subsequent decay into oppositely charged electron and muon pairs. RH: Neutralino decaying
into a muon and two jets, via a virtual smuon possibly leading to a displaced vertex.

of the LHC data searching primarily for R-parity conserving supersymmetry. However, also
some results concerning the R-parity violating SUSY have been published. The ATLAS
collaboration has searched for resonant single slepton production with a subsequent R-parity
violating decay into oppositely charged electron and muon pairs and also for displaced vertices
from neutralino decays, see [195] and references therein. Figure 4.7 shows the processes under
consideration.

In the search for the electron-muon resonance the collaboration assumed that all R-parity
violating couplings except λ′311 and λ312 are zero. Furthermore, it was assumed that the
tau sneutrino is the LSP, because in this case the only contribution to the e µ final state
originates from ν̃τ . The collaboration analyzed 1.07± 0.04fb−1 of data collected in 2011 and
observed 4053 e µ candidates, while 4150 ± 250 events were expected from Standard Model
processes. Since no evidence for a signal was observed, the collaboration set an upper limit
on σ(pp→ ν̃τ)× BR(ν̃τ → eµ) using a Bayesian method with a uniform prior for the signal
cross section. Figure 4.8a shows the 95% C.L. upper limits on the λ′311 coupling as a function
of the tau sneutrino mass for four values of λ312. The regions above the curves are excluded
in each case.

The ATLAS collaboration also searched for a heavy particle decaying into multiple charged
particles at distances between 4 mm and 180 mm from the primary vertex in events containing
a muon with high transverse momentum. It was assumed that the neutralino decays into this
final state due to a non-zero λ′2ij coupling, cf. right hand side of Fig. 4.7. Note that the ATLAS
collaboration assumed an explicit trilinear R-parity breaking scenario with a dominant LQD
operator, a scenario which is not consistent at the quantum level since bilinear R-parity
violating couplings would be generated via loops. In the case of bilinear R-parity violation,
the neutralino would predominantly decay via two body decays presented in this work, cf.
Section 4.2.2. Events were selected from a data sample of 33 pb−1 collected in 2010 and had to
pass the pT > 40 GeV single-muon trigger requirement. A primary vertex (PV) originating
from the pp collision was required to contain a minimum of five tracks and a z position
within 200 mm. A displaced vertex was reconstructed by selecting only tracks with pT > 1
GeV. A large impact parameter (> 2 mm), with respect to the transverse position of the PV
was required, rejecting 98% of all tracks originating from the primary pp interaction. The
discriminating variables for the search were the mass of the reconstructed vertex (mDV) and
the number of reconstructed charged tracks (N trk

DV). A vertex satisfied the selection criteria if
mDV > 10 GeV and N trk

DV > 4. No vertices were found in the signal region. The collaboration
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grounds (W/Z+ γ , W/Z+jets and multijet events with photons or jets reconstructed as leptons).
All processes listed in the first category, along with photon related backgrounds, are estimated from
MC simulation (described elsewhere [4]). The remaining fake backgounds are described using a
4×4 matrix method described in [3]. The lepton definitions are loosened to allow events to be
classified based on whether they pass or fail the loose and standard requirements. These can then
be used to quantify the overall lepton efficiencies and jet fake backgrounds.

Analysing 1.07±0.04 fb−1 of data collected in 2011 using single lepton triggers (measured to
be 100% efficient), a total of 4053 eµ candidates are observed, while 4150±250 are expected from
Standard Model processes. The distribution of the invariant mass meµ is presented in Figure 2(a).

Since no evidence for signal is observed the number of events in each search region, as a
function of increasing meµ , are used to set an upper limit on σ(pp→ ν̃τ) × BR(ν̃τ → eµ) using a
Bayesian method with a uniform prior for the signal cross section. Figure 2(b) shows the 95% C.L
upper limits on the λ ′

311 coupling as a function of mν̃τ for three values of λ312. The regions above
the curves are excluded in each case. Please refer to [3] for the full limits and exclusion curves on
the ν̃τ production cross section.

(a) Observed and predicted eµ invariant mass distributions
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Figure 2: Distribution of events and constraints on the RPV couplings for the eµ resonance search.

3. Displaced vertices

We report on results of a search for a heavy particle decaying into multiple charged particles
at a distance of order millimeters to tens of centimeters from the pp interaction point in events
containing a muon identified with high pT [5]. In the SUGRA scenario, such a signature may be
manifested via the decay of the lightest supersymmetric particle due to non-zero λ ′

2i j couplings via
a diagram such as is shown in Figure 1(b). Current limits on RPV couplings [6] allow for the decay
vertex to be displaced and within range of the ATLAS inner tracking detectors.

Events are selected from a data sample of 36 pb−1 collected in 2010 and must pass the
pT > 40 GeV single-muon trigger requirement. A primary vertex (PV), originating from the pp
collision is required and must contain a minimum of five tracks and a z position within 200 mm.

3

(a)

Search for RPV SUSY with ATLAS Paul D. Jackson, on behalf of the ATLAS Collaboration

Figure 4: Upper limits at 95% CL on the production cross-section times branching fraction vs. the neu-
tralino lifetime times the speed of light for different combinations of squark and neutralino masses, based
on the observation of zero events in a 33 pb−1 data sample. The horizontal lines show the cross-sections
calculated from PROSPINO [7] for squark masses of 700 GeV and 150 GeV.

turity, and searches for SUSY with R-parity violation with two different approaches have been
presented herein. At time of writing no deviations from the Standard Model have been observed
in these channels. However, these early analyses will form the foundation of further searches to be
performed in the near future.
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set upper limits on the supersymmetry production cross section times the branching fraction
of the simulated signal decays for different combinations of squark and neutralino masses,
and for different values of the theoretical decay length cτ , where c is the speed of light and τ
the neutralino lifetime. The observed limit is shown in Fig. 4.8b.

Using their result, we can set limits on the models presented in this work. Assuming a
bino-like neutralino with a mass of 100 GeV, which as we will see is the lower mass limit, a ζ
of 6.9×10−8 is required in oder to have a decay length of one meter, which is the upper bound
in the plot. Then, we can exclude models with such value of ζ if they have a production cross
section of approximately 12 pb, since the neutralino will decay into W boson and muon with
a branching ratio of 1/3, cf. Section 4.4.1. Note that the models which will be intensively
studied in the present work are beyond the scope of this search, due to small cross sections
and small R-parity violating couplings. However, the situation could change in the future if
this search was performed with new data.

Finally, the ATLAS collaboration has interpreted a generic search in terms of bounds on
SUSY with bilinear R-parity violation [196]. They assumed an mSUGRA/CMSSM SUSY
production model, with bilinear R-parity breaking parameters fitted to the neutrino oscilla-
tions data as described in [197] under the assumption that the tree-level contribution domi-
nates [198]. The neutralino LSP is unstable and decays through modes including neutrinos,
cf. Section 4.2.2. It was assumed that such decays, along with the presence of neutrinos in
SUSY decay chains such as χ± → νχ0

1, would lead to a significant missing transverse momen-
tum signature. The observed number of events in the data was consistent with the Standard
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well as the ±1σ variation on the expected limit, for the bi-
linear R-parity violation model in MSUGRA parameter space
using the 4JT selection in the muon channel. The region with
LSP lifetimes cτ > 15 mm is not shown.

for the decay ratio x > 1/2, LSP masses below 200 GeV
are excluded for gluino masses below 600 GeV. For the
first time at the LHC, limits are set on supersymmetric
models with bilinear R-parity violation.
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Figure 4.9: Observed and expected 95% CL exclusion limits, as well as the ±1σ variation on
the expected limit, from ATLAS experiment for the bilinear R-parity violation model fitted
to neutrino mass parameters in mSUGRA parameter space using the tight four-jet selection
in the muon channel. The region with LSP lifetimes cτ > 15 mm is not shown. The figure is
taken from [196].

Model expectation, and the collaboration set 95% C.L. exclusion limits in the mSUGRA
parameter space using tight four-jet selection in events with exactly one muon. The tight
selection demanded four jets with at least 40 GeV transverse momentum. The leading jet
was required to have pT > 60 GeV. Additionally, the missing transverse energy Emiss

T was
required to be larger than 200 GeV, Emiss

T /meff > 0.15, meff > 500 GeV, where

meff = plT +
∑

i

p
jeti
T + Emiss

T , (4.120)

the sum is taken over the four leading jets, and plT is the muon transverse momentum. The
exclusion limits are shown in Figure 4.9. The ATLAS collaboration states that the model was
not tested for regions of parameter space where cτ of the LSP exceeds about 15 mm. Within
the context of the model considered by ATLAS , and for equal squark and gluino masses,
masses below 760 GeV are excluded.

We note that the authors of [196] do not describe how exactly the neutralino lifetime
affects the limits. If the lifetime becomes larger, more of the neutralinos should decay outside
of the detector, leading to more missing transverse energy creating signatures similar to R-
parity conserving SUSY. The difficulties probably arise in the intermediate regime where most
of the decays happen inside of the detector volume but outside of the inner tracking system.
It would be very helpful if the collaborations would shed more light on the difficulties and
prospects for discovery in such cases, since this is the prediction of the model put forward in
the present work.

Furthermore, the assumption that significant amount of missing energy is created if neu-
tralinos decay in the inner parts of the detector is not model independent. We will show in
the later discussion that, assuming that all R-parity violating parameters ζi are equal, the
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ses, we simulated 25,000 signal events for the process
pp → !̃i/ν̃i → qjqk for each slepton mass, m̃. For
the ATLAS search, we followed closely the prescription
given in the Appendix of Ref. [21]. There, the limits
are presented assuming a certain width to mass ratio
of the resonance, σG/mG. In our study we determined
σG/mG with Gaussian fits of the dijet invariant mass
distribution in the region between 0.8m̃ and 1.2m̃. It
ranges from 8% to 5% for slepton masses from 0.9 GeV
to 4 TeV. The acceptance A is given by the fraction
of events lying in the region 0.8m̃ to 1.2m̃ (after all
other kinematic requirements are applied) and ranges
from 8.1% to 18.6% for slepton masses from 0.9 TeV
to 4 TeV.

Both A and σG/mG are fairly independent of
λ′

ijk (j, k ∈ {1, 2}) for values between 0.001 and 1.0,
since the resonance shape is dominated by the jet
smearing of the detector simulation. Thus, we can
easily derive upper limits on the R-parity violating
coupling squared times the branching ratio to dijets of

the resonant slepton, λ′2 × B(!̃i/ν̃i → jj), for a given
resonant slepton mass, m̃. These limits4 are shown in
Fig. 6 for the four types of couplings λ′

i11, λ′
i12, λ′

i21

and λ′
i22 (i = 1, 2, 3). In the case of an intermediate

third generation slepton (i = 3), the limit has to be
multiplied by cos2 θτ̃ to account for possible mixing
in the stau sector. To be conservative, we reduced
the signal by 7% to take into account the theoreti-
cal uncertainty of the NLO cross section prediction.
The statistical uncertainty of the acceptance estimate
is negligible.

The upper bounds on the four investigated R-parity
violating couplings, as derived from the ATLAS search,
are listed together with A and σG/mG in Tab. II
in Appendix A. We only show upper limits for val-
ues λ′ < 1 (perturbativity). For instance, assum-
ing the decay to dijets being the only accessible de-
cay mode, we can derive the upper bounds λ′

i11 ≤
0.07 (0.09) and λ′

i22 ≤ 0.38 (0.64) for a slepton mass
m̃ = 1000 GeV (1500 GeV).

In the CMS search [22], so–called wide jets are con-
structed based on anti-kT jets with distance parameter
R = 0.5. This allows to distinguish between a quark–
quark (qq), quark–gluon (qg) and a gluon–gluon (gg)
dijet system. Here, we employ the 95% CL upper lim-
its on σ×A derived for a qq dijet system. These limits
only assume the natural resonance width to be small
compared to the CMS dijet mass resolution.

We adopt the CMS construction of wide jets and ap-
ply the kinematic requirements to the jets. The ac-
ceptance is defined by the fraction of events with dijet

4 This analysis assumes that the sneutrino and the charged slep-
ton resonance are not distinct. This is generally the case as
long as the mass splitting is not too large, i.e. m!̃ − mν̃ !
σG ! 10% m!̃.
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invariant mass mjj > 838 GeV. It ranges from 33.8%
to 44.8% for slepton masses from 1.0 TeV to 4.1 TeV.
Again, we take into account a 7% systematic uncer-
tainty on the signal.

In Fig. 7 we present the upper bounds on λ′2 ×
B(!̃i/ν̃i → jj) for the same couplings as before, but
now derived from the CMS search. These results are
given in detail in Tab. III in Appendix A. For a pure
dijet decay of the slepton, B(!̃i/ν̃i → jj) ≈ 100%,
the upper bounds obtained are λ′

i11 ≤ 0.03 (0.05)
and λ′

i22 ≤ 0.18 (0.37) for a slepton mass m̃ =
1000 GeV (1500 GeV). Due to the higher acceptance
of the CMS search, these limits are considerably stricter
than those obtained from the ATLAS search.
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invariant mass mjj > 838 GeV. It ranges from 33.8%
to 44.8% for slepton masses from 1.0 TeV to 4.1 TeV.
Again, we take into account a 7% systematic uncer-
tainty on the signal.

In Fig. 7 we present the upper bounds on λ′2 ×
B(!̃i/ν̃i → jj) for the same couplings as before, but
now derived from the CMS search. These results are
given in detail in Tab. III in Appendix A. For a pure
dijet decay of the slepton, B(!̃i/ν̃i → jj) ≈ 100%,
the upper bounds obtained are λ′

i11 ≤ 0.03 (0.05)
and λ′

i22 ≤ 0.18 (0.37) for a slepton mass m̃ =
1000 GeV (1500 GeV). Due to the higher acceptance
of the CMS search, these limits are considerably stricter
than those obtained from the ATLAS search.

(b)

Figure 4.10: Upper bounds on λ′2 × BR(ẽi, /ν̃i → jj) derived from the (a) ATLAS and (b)
CMS dijet resonance searches with 1 fb−1 of data. Both figures are taken from [199].

cut on Emiss
T > 200 GeV is too severe even for ζ = 3 × 10−8 . The requirement to explain

neutrino masses with R-parity violation sets in our model ζ = 4.5× 10−6, and therefore most
of the neutralinos would decay inside of the inner part of the detector, leading to a much
smaller amount of missing transverse energy compared to the R-parity conserving case or to
the scenario with ζ = 3 × 10−8. However, in order to explain all of the measured properties
of neutrino oscillations, more parameters of the model have to be fitted to the data and,
therefore, more neutrinos could be in principle produced.

For values of the R-parity violating parameter considered in the present work, the neu-
tralino decay length is much larger than 15 mm and thus all models are not affected by the
presented constraints. Even if one does note take the restriction on the lifetime into account,
the distribution of Emiss

T in our models is sufficiently different and we assume that even the
lightest supersymmetric spectrum in the present work is not excluded. This topic will be
central to our discussion in Section 5.2.

Recently, Dreiner and Stefaniak [199] reinterpreted the ATLAS and CMS searches for dijet
resonances, as well as the ATLAS search for like-sign dimuon pairs in terms of bounds on the
λ′ coupling. They investigated resonant slepton production at the LHC via the LQD operator
followed by decays either via the same operator resulting in resonant dijet production, or via
a neutralino leading to a signature with same-sign dileptons due to the Majorana nature of
neutralinos.

Figure 4.10 shows upper limits on the R-parity violating couplings (λ′i11, λ′i12, λ′i21 , λ′i22,
i = 1, 2, 3) squared times the branching ratio to dijets of the resonant slepton, for a given
resonant slepton mass m̃. The limits were derived (a) from the ATLAS and (b) from the CMS
searches for dijet resonances. In the case of an intermediate third generation slepton (i = 3),
the limit has to be multiplied by cos2 θτ to account for possible mixing in the stau sector. The
strictest limits were obtained from the CMS searches. Assuming BR(ẽi, /ν̃i → jj) ≈ 100%
the upper bounds obtained are

λ′i11 ≤ 0.03 (0.05) , (4.121)

λ′i22 ≤ 0.18 (0.37) , (4.122)
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FIG. 9. Upper bounds on λ′
2jk (j, k ∈ {1, 2}) in the (mχ̃0

1
, m̃) mass plane in the bino-like χ̃0

1 scenario, derived from

the ATLAS prompt like–sign dimuon search. The contour levels are given in steps of 0.0005. The green striped region is
excluded due to the lower mass bound from LEP on the lightest neutralino, mχ̃0

1
≥ 39 GeV [66, 67].

due to the insensitivity of the like–sign dimuon search
in the regions of low neutralino mass and low ∆m =
m̃ − mχ̃0

1
, we cannot obtain upper bounds on λ′ in

these regions.

The most stringent limits are obtained for the cou-
pling λ′

211 due to the larger cross section, cf. Fig. 1.
For a roughly elliptic region with mχ̃0

1
∼ m̃−100 GeV

and m̃ ∼ (150 − 300) GeV, we obtain λ′
211 ≤ 0.001.

Even for large smuon masses of ! O(1 TeV), we can
still derive bounds down to λ′

211 ! 0.0045. The other
couplings are less constrained due to the smaller cross
section, cf. Sect. II A. The weakest bounds are there-
fore set on λ′

222, ranging from 0.002 for (mχ̃0
1
, m̃) ∼

(100, 200) GeV to 0.0065 for smuon masses m̃ !
550 GeV.

We now turn to the discussion of the results in
the wino–like χ̃0

1 scenario (S2 ) shown in Fig. 10.
The LEP lower mass limit on the chargino, mχ̃±

1
≥

103 GeV [66, 67], is indicated by the green striped

region. As discussed in Sect. II B, we expect only
1/12 of the time like-sign dimuon events from the
charged slepton gauge decays. Thus, the upper lim-
its on the R-parity violating coupling λ′ are weaker.
For instance, for light smuon and neutralino masses,
(mχ̃0

1
, m̃) = (100, 200) GeV, the upper bounds ob-

tained in the wino–like χ̃0
1 scenario are λ′

211, λ
′
212 ≤

0.0015, λ′
221 ≤ 0.002 and λ′

222 ≤ 0.0035.

The bino-like and wino-like χ̃0
1 limits can be inter-

preted as the best-case and worst-case scenarios for
the like–sign dilepton signature, respectively. These
new limits improve current limits from the Teva-
tron [40, 41] on λ′

211 by a factor O(40) or more.

We do not consider a higgsino-like lightest neu-
tralino (S3 ). As discussed in Sect. II B, the slepton
decay to the higgsino-like χ̃0

1, χ̃0
2 and χ̃±

1 is highly
suppressed due to the small Yukawa coupling and the
competing R-parity violating decay µ̃ → jj would
dominate, leading to an overall suppression of the like–
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The most stringent limits are obtained for the cou-
pling λ′

211 due to the larger cross section, cf. Fig. 1.
For a roughly elliptic region with mχ̃0
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and m̃ ∼ (150 − 300) GeV, we obtain λ′
211 ≤ 0.001.

Even for large smuon masses of ! O(1 TeV), we can
still derive bounds down to λ′
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the like–sign dilepton signature, respectively. These
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211 by a factor O(40) or more.

We do not consider a higgsino-like lightest neu-
tralino (S3 ). As discussed in Sect. II B, the slepton
decay to the higgsino-like χ̃0
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2 and χ̃±
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suppressed due to the small Yukawa coupling and the
competing R-parity violating decay µ̃ → jj would
dominate, leading to an overall suppression of the like–
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Figure 4.11: Upper limits on the couplings (a) λ′211 and (b) λ′222 derived from the ATLAS
search for anomalous production of prompt like-sign muon pairs assuming a bino-like neu-
tralino. Both figures are taken from [199].

for a slepton mass m̃ = 1000 (1500) GeV.

Figure 4.11 shows the upper limits on the couplings (a) λ′211 and (b) λ′222 derived from
the ATLAS search for anomalous production of prompt like-sign muon pairs in models with
a bino-like neutralino. The authors of [199] assumed resonant production of a smuon µ̃ with
a following decay into the lightest neutralino and muon. The neutralino can then decay to
a muon with the same charge. The bounds are presented as contours in the (mχ0

1
, m̃) mass

plane, where m̃ is the smuon mass. The green striped region indicates the LEP lower mass
limit on the lightest neutralino mχ0

1
≥ 39 GeV. The derived upper bounds on λ′ range from

0.001 (dark) to 0.0065 (bright) and are displayed in steps of 0.0005 in grayscale. Since the
single slepton production cross section decreases with the slepton mass, the bounds become
weaker for heavier smuons. Also due to the insensitivity of the like-sign dimuon search in the
regions of low neutralino mass and low mass difference between the smuon and neutralino,
upper bounds on λ′ could not be obtained in these regions.

We have chosen to show the upper limits on λ′211 and λ′222 since these couplings were the
two extreme cases in the study under consideration. The most stringent limits were obtained
on λ′211 due to the large cross section. For a roughly elliptic region with mχ0

1
∼ m̃− 100 GeV

and m̃ ∼ (150− 300) GeV they obtained

λ′211 ≤ 0.001. (4.123)

The weakest bounds were set on λ′222, ranging from 0.002 for (mχ0
1
, m̃) ∼ (100, 200) GeV to

0.0065 for smuon masses m̃ ≤ 550 GeV.

It is important to note that the presented analysis has improved the existing bounds.
For instance, the bound on λ′211 for a slepton mass of 300 (400) GeV and neutralino mass
of 150 (200) GeV was improved from the D0 result at the Tevatron λ′211 ≤ 0.04 (0.08)
to λ′211 ≤ 0.001 (0.0015). Figure 4.2 summarizes the recent bounds on R-parity violating
couplings from direct searches.
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Coupling Bound Condition Origin

λ′11k 5× 10−3 q̃ HERA resonant single squark
λ′211 1× 10−3 χ0

1 mµ̃ = 200 GeV ATLAS like-sign muon (D.S.)
λ′222 2× 10−3 χ0

1 mµ̃ = 200 GeV ATLAS like-sign muon (D.S.)
λ′311 2.5× 10−3 λ312 = 0.07 ATLAS resonant single slepton
λ′i11 0.03 ml̃ = 1 TeV CMS dijet resonance (D.S.)
λ′i22 0.18 ml̃ = 1 TeV CMS dijet resonance (D.S.)

ζ 6.9× 10−8 χ0
1
−1

σ ≥ 12 pb ATLAS secondary vertex

Table 4.2: Bounds on the R-parity violating couplings from direct searches. The abbreviations
in the last column refer to the collaboration and search strategy mentioned in the text. The
indices i, j, k run over the three generations. The dependence on the (super)particle mass is
noted as pq, which stands for

( mp
100 GeV

)q
, where mp is the mass of the particle p if not stated

otherwise. (D.S.) refers to the independent interpretation of the LHC results in [199].

4.3.4 Searches for decaying Dark Matter

The indirect detection of dark matter is an active research topic and we refer the reader to
the recent work by Grefe [72] for an extensive discussion of prospects of indirect detection of
gravitino dark matter. In this section we shortly summarize the results needed for the present
work. The obtained limits are given as bounds on the gravitino lifetime vs. the gravitino
mass. The interpretation of these limits in terms of the R-parity breaking parameters is model
dependent, since the gravitino lifetime depends on the gaugino mass parameters M1 and M2.
We will present such interpretations in the following section. The R-parity violating gravitino
decays will lead to the production of intermediate SM particles that eventually hadronize
or decay further into a set of stable particles: electrons, protons, deuterons, neutrinos and
photons. These secondary particles propagate through the intergalactic medium and can be
observed in the fluxes of cosmic rays by ground-based and spaceborne experiments. While
charged cosmic rays are affected by magnetic fields, photons and neutrinos propagate on
straight paths.

Let us begin with the lower limits on the gravitino lifetime derived from charged cosmic
rays. They are obtained from the requirement that the contribution of the gravitino signal to
the flux stays below the error bars of the measurements. We refer the reader to Ref. [72] and
references therein for a detailed discussion. Figure 4.12 shows the bounds obtained from the
PAMELA measurement of the positron fraction [200], the measurements of the total electron
+ positron flux by Fermi LAT [201] and H.E.S.S. [202,203], and the PAMELA measurement
of the antiproton flux [204].The best bounds are obtained from antimatter particles, since it is
usually assumed that the only astrophysical process contributing to the creation of antimatter
is spallation involving high energetic cosmic rays impinging on the interstellar medium. The
best limits are obtained from antiprotons, due to the famous excess above the astrophysical
background in the PAMELA measurement of the positron fraction. A gravitino lifetime of
the order of 1026 seconds could explain the rise of the positron fraction in the data. However,
this possibility is ruled out by the constraints from the antiproton channel. Figure 4.12 shows,
additionally, an estimate of the sensitivity of the forthcoming antideuteron experiments to the
gravitino parameter space. The experiments which were taken into account are: The Gaseous
Antiparticle Spectrometer (GAPS) [205], and the recently launched AMS-02 experiment on
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Figure 5.10: Bounds on the gravitino lifetime from observations of charged cosmic rays
and sensitivity of forthcoming antideuteron experiments.

from gravitino three-body decays at low gravitino masses [79]. It might well be that
the sensitivity of the antideuteron channel is even higher than that of the gamma-ray
channel. Clearly this also depends on the strength of the gamma-ray line from gravitino
decays.

One comment is in order: Of course one should remember that these exclusion and
sensitivity regions are only rough estimates as there is quite some uncertainty in the
expected fluxes, for instance due to the choice of the propagation model. In addition,
taking into account the expected flux contributions from astrophysical charged particle
production can lead to much stricter limits on the gravitino parameters. In particular
in the case of antiprotons the expected astrophysical background practically perfectly
matches the observations, leaving only little space for an exotic contribution.

5.4 Probing Gravitino Dark Matter with Neutrinos

In this section we present a study on the neutrino signals from gravitino dark mat-
ter decays that was performed in analogy to our published phenomenological study of
neutrino signals from generic decay channels of fermionic and scalar dark matter par-
ticles [78]. This study is complementary to our previous study on tau neutrino signals
from gravitino decays in [30, 154].

104

Figure 4.12: Bounds on the gravitino lifetime from observations of charged cosmic rays and
sensitivity of forthcoming experiments. The figure is taken from [72].

the International Space Station [206].

The most important limits on the gravitino lifetime can be obtained from the photon
(gamma-ray) signal which contains spectral and directional information [72]. Decaying grav-
itinos will produce a diffuse flux from all directions with only mild angular dependence con-
tributing to the isotropic diffuse gamma-ray background This background is a diffuse flux of
high-energetic photons that is thought to have its origin in unresolved astrophysical sources.
Demanding that the gravitino decays do not produce an excess of photons incompatible with
the observations one can constrain the gravitino lifetime. Additionally, it is possible to search
for a monochromatic signal in the photon spectrum. Such signal is an unambiguous signature
for non-astrophysical processes creating photons, since gamma rays of astrophysical origin are
expected to have a power-law spectrum. The observation of such a gamma-ray line would,
thus, be of paramount interest for the understanding of dark matter in the Universe. So far
no gamma-ray lines have been observed2 and limits on the partial lifetime of gravitino dark
matter decaying via a two-body decay into at least one photon have been derived.

Figure 4.13 shows the results of the conservative lifetime estimate from the diffuse flux
and the photon line searches. The data on isotropic diffuse gamma-ray flux was taken from
the observations of Fermi-LAT [208], the bounds from photon-lines were obtained also by the
Fermi-LAT collaboration [209] shown in black, and independently in a larger energy range by
Vertongen and Weniger [210] from the available Fermi-LAT data. The sharp fall-off of the
bound in the region where the gravitino mass becomes compatible with the W boson mass

2A recent independent analysis of the Fermi-LAT data [207] claims to have found an evidence for a gamma
ray line at 130 GeV with a significance of 3.3σ.
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Figure 5.3: Bounds on the gravitino lifetime from observations of the diffuse extragalactic
gamma-ray background and from photon line searches.

lifetime in the following way:

τ3/2 ≥ BR
(
ψ3/2 → γ νi

)
× τhalo

γν and τ3/2 ≥ BR
(
ψ3/2 → γ νi

)
× τ center

γν . (5.21)

We will only use the bounds from the full-sky analysis since they are stronger than the
bounds from the central region of the Milky Way for decaying dark matter particles. The
results of the conservative lifetime estimate from the diffuse flux and the limits derived
from the photon-line searches are presented in Figure 5.3. For gravitino masses below
the W boson mass, the branching fraction for the gamma-ray line is close to 100 % in
our standard gravitino scenario (cf. Section 4.3.3) and a very strong lower limit on the
gravitino lifetime on the order of τ3/2 ! 5 × 1028 s is obtained from line searches. At
larger masses the branching ratio for the line drops quickly, reducing the significance of
the lifetime limit. The comparison of the continuum signal with the diffuse extragalactic
gamma-ray background leads to an estimate for the lower limit of the gravitino lifetime
at a constant level around τ3/2 ! 3 × 1026 s. In our standard scenario this limit becomes
more important than the limit from line searches for gravitino masses above a few
hundred GeV.

If the photon line is suppressed for some reason (see Section 4.3.3), the low gravitino
mass region is significantly less constrained since line searches do not provide a lifetime
limit in that case. There will, however, still be a constraint on the continuum gamma-ray
flux expected from three-body decays. Thus the lifetime limit derived from the diffuse
flux is expected to remain at the same order of magnitude.
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Figure 4.13: Bounds on the gravitino lifetime from observations of the diffuse extragalactic
gamma-ray background and from photon line searches. The figure is taken from [72].

is caused by the drop of the branching ration of gravitino into photon and neutrino after the
decay into the W boson becomes available, cf. Section 4.2.1. Thus, we obtain the following
limits on the gravitino lifetime:

τ3/2 & 5× 1028 s , m3/2 ≤ 80 GeV , (4.124)

τ3/2 & 3× 1026 s , m3/2 > 100 GeV . (4.125)

We refer the reader to the reference [72] for more details on the calculation.

Summing up, we conclude that searches for gamma-ray lines provide the best limit on the
gravitino lifetime for light gravitinos, while bounds from charged cosmic rays become more
important for gravitino masses above 100 GeV. In that region the lifetime should be larger
than 6× 1026 seconds.

Assuming a bino-like neutralino NLSP M2 ' 2M1 ' 2mχ0
1
, we can translate the limit on

the gravitino lifetime into limit on the R-parity breaking parameter ζ,

ζ ≤ 2× 10−9 , m3/2 = 60 GeV , mχ0
1

= 203 GeV , (4.126)

ζ ≤ 1.4× 10−8 , m3/2 = 10 GeV , mχ0
1

= 100 GeV , (4.127)

where the parameters where chosen such as to obtain a conservative limit, see next section
for details and limits on other parameter regions.
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4.3.5 Summary

We have to conclude that the region of the R-parity violating parameters set by cosmology
and considered in the present work has been tested so far only by searches for decaying
dark matter. The best indirect bound was obtained on the coupling ζ, ζ ≤ 10−6, from the
requirement that the tree-level neutrino mass generated by R-parity violation does not exceed
the experimental limits. However, this bound coincides with the cosmological constraints.
The most promising study for the detection of R-parity violation at the LHC seems to us
the search for secondary vertices [211]. It is desirable to repeat the search with more data
looking for secondary vertices farther away from the primary interaction point. So far this
study could only set limit on ζ, ζ . 6.9×10−8 for very light squarks and gluino. Furthermore,
it is essential to see the reinterpretation of the usual searches for R-parity conserving SUSY
in bilinear R-parity breaking scenarios without fitting the scenario to the neutrino data, since
is unclear how the bounds on gluino and squark masses would change. Additionally, it is
important to understand the limitation on the obtained bounds coming from the neutralino
decay length. In the next section we will explore the implications of the searches for decaying
gravitino dark matter for LHC phenomenology.

4.4 NLSP Decays at the LHC

We are now ready to evaluate the implications of the Fermi-LAT data and cosmological
constraints for signatures of decaying dark matter at the LHC. We shall first discuss the
parameter ranges for gravitino and neutralino masses which are consistent with electroweak
precision tests, gravitino dark matter as well as leptogenesis, and then analyze the implications
for a neutralino and a τ̃ -NLSP, respectively.

We will consider two SUSY scenarios with gravitino dark matter:

• Hybrid gauge-gravity mediation, cf. Section 2.4.2, leading to a higgsino-like neutralino
NLSP, and

• The CMSSM (mSUGRA), cf. Section 2.4.1.

In case of the CMSSM we will, furthermore, consider two typical boundary conditions for the
supersymmetry breaking parameters at the grand unification scale,

(A) m0 = m1/2, A0 = 0, tanβ = 10 , (4.128)

with equal universal scalar and gaugino masses, m0 and m1/2, respectively; in this case a
bino-like neutralino is the NLSP. The second boundary condition corresponds to no-scale
models or gaugino mediation,

(B) m0 = 0, m1/2, A0 = 0, tanβ = 10 , (4.129)

which yields the right-handed stau (τ̃R ≡ ˜̄τ †) as the NLSP. In both cases, the trilinear scalar
coupling A0 is put to zero for simplicity. Choosing tanβ = 10 as a representative value
of Higgs vacuum expectation values, only the gaugino mass parameter m1/2 remains as an
independent variable. For both boundary conditions (4.128) and (4.129), the gaugino masses
at the electroweak scale satisfy the familiar relations

M3

M1
' 6.0 ,

M2

M1
' 1.9 . (4.130)
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In case of hybrid gauge-gravity mediation we will consider a particular model (the (17,23,9)
model [75]) giving rise to a Higgs mass close to the tentative LHC result.

Let us first discuss the bounds on gravitino and NLSP masses in the CMSSM models.
Electroweak precision tests (EWPT) yield important lower bounds on the superparticle mass
spectrum [120]. In case of scenario (A) and ignoring the latest LHC hints, the universal
gaugino mass m1/2 is required to be high enough in order for the Higgs mass to fulfill the
recent LHC lower bound mh > 115.5 GeV [10]. This implies the lower limit mχ0

1
> 190 GeV.

This limit was obtained by means of SOFTSUSY [110]. However, allowing large negative A0

or scalar masses much larger than m1/2 at the GUT scale would weaken this limit, and we
will take mχ0

1
> 100 GeV as a lower bound for the neutralino mass subsequently. In the stau

NLSP case, the lower bound comes from the absence of pair production of heavy charged
particles at LEP and reads mτ̃1 > 100 GeV [4].

Requiring successful thermal leptogenesis and assuming a typical effective neutrino mass
m̃1 = 10−3 eV3, we obtain a minimal reheating temperature of TR ∼ 109 GeV [49]. Using
eq. (2.110) together with a lower bound on the gluino mass mg > 1.2 TeV from the LHC [42]
and demanding the observed dark matter density, we obtain a lower bound for the gravitino
mass m3/2 > 60 GeV. Nota bene that the LHC bound was obtained assuming R-parity
conservation. This bound is weakened if one allows for R-parity violation, due to changes in
the distribution of missing transverse energy.

In addition to the lower limits, NLSP mass upper limits follow from the requirement that
the gravitino does not overclose the Universe. Indeed by rewriting eq. (2.110) one obtains the
constraint

mNLSP ' 310 GeV

(
ξ

0.2

)( m3/2

100 GeV

) 1
2

(
109 GeV

TR

) 1
2

, (4.131)

where ξ = mNLSP/mg is implicitly fixed by the supersymmetry breaking boundary condi-
tions [120]. For each gravitino mass and reheating temperature, eq. (4.131) then gives the
NLSP mass for which the observed dark matter density is obtained. The absolute bound
on the NLSP mass can be obtained by requiring mNLSP = m3/2. In case of scenario (A)
eq. (4.131) implies mχ0

1
< 690 GeV for ξ = 1/5.9 and is essentially independent of m0 and

tanβ. For the stau NLSP, tanβ = 10 yields ξ = 1/6.2, which consequently leads to the more
stringent bound mτ̃1 < 615 GeV. Note that there is a strong dependence on tanβ in that
case [120], and that ξ decreases with increasing tanβ.

In the case of a higgsino NLSP, the neutralino mass is given by mχ0
1

= 205 GeV, while

the gluino mass is 3800 GeV [75]. Computing the gravitino mass with eq. (2.110) we obtain
a value larger than the neutralino mass. Therefore, thermal leptogenesis is not viable in
this case. Instead, we will assume that the hot phase of the universe was created in the
decay of the false vacuum of unbroken B − L [212, 213]. Since right-handed neutrinos are
created from inflaton decays, this scenario allows for gravitino dark matter, leptogenesis and
correct neutrino mass parameters while requiring lower reheating temperatures compared to
the thermal leptogenesis case. The lower bound on the gravitino mass obtained in [213] for
mg = 1 TeV is 10 GeV. It is possible to scale this bound for other gluino masses using [212]

m3/2 = m0
3/2

( mg

1000 GeV

)2
, (4.132)

3Note that we assumed a neutrino mass scale of 0.01 eV for our model of spontaneous R-parity breaking;
using mν = 10−3 one would slightly increase the scale of R-parity breaking without changes to the couplings
due to the unknown mechanism of SUSY breaking.
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where m0
3/2 is the original mass, and we obtain m3/2 > 144 GeV for mg = 3800 GeV.

Therefore, we can have a higgsino-like neutralino NLSP and gravitino dark matter. Note
that it is an interesting task to intertwine the breaking of R-parity with the begin of the hot
phase, since both models are based on the breaking of B − L.

Summing up, we obtain following bounds on the NLSP and gravitino masses:

CMSSM (A) 60 GeV < m3/2 < 690 GeV , 100 GeV < mχ0
1
< 690 GeV , (4.133)

CMSSM (B) 60 GeV < m3/2 < 615 GeV , 100 GeV < mτ̃1 < 615 GeV , (4.134)

Hybrid 144 GeV < m3/2 < 205 GeV , mχ0
1

= 205 GeV . (4.135)

Using these bounds as well as the constraints on the R-parity breaking parameters, we can
make predictions for the NLSP decays at the LHC. In the case of the neutralino NLSP we
have to distinguish the bino-like and the higgsino-like case.

4.4.1 Bino-like Neutralino

First, we have to translate the bound on the gravitino lifetime into the bound on R-parity
violation. On the one hand, since according to the gravitino dark matter constraint the

largest allowed bino mass scales like Mmax
1 ∝ m1/2

3/2, the largest lifetime (4.110), and therefore
the most conservative bound on ζ, is obtained for the smallest value of m3/2. On the other
hand, the limit on the gravitino lifetime becomes more severe for lighter gravitinos. Assuming
a gravitino mass of 100 GeV, the bound on the lifetime from the Fermi-LAT data becomes
τ3/2(γν) & 1× 1027 s. Therefore, we obtain

ζ . 9× 10−9 , (4.136)

for a gravitino mass of 100 GeV. However, if one would ignore the LHC bound on gluinos or
assume non-thermal leptogenesis [212, 213], and therefore allow for gravitino masses around
10 GeV, the bound on ζ would change to

ζ . 1.4× 10−8 . (4.137)

We will use the LHC bound on gluinos in the discussion of this section, but allow for larger
values of ζ in the LHC study presented in the following chapter.

Furthermore, the observation of a photon line corresponding to a gravitino lifetime close
to the present bound would determine the parameter ζ as

ζobs = 10−9

(
5× 1028s

τ3/2(γν)

)1/2(
M1

200 GeV

)( m3/2

100 GeV

)−3/2

. (4.138)

Note the strong dependence of ζobs on the gravitino mass. In (4.138) we have normalized
these masses to the central values suggested by thermal leptogenesis, electroweak precision
tests and gravitino dark matter [120].

Let us now examine the neutralino decays. The neutralino decay length is given by
eq. (4.84). Figure 4.14 shows phase space suppression factors and neutralino branching ratios
as a function of neutralino mass. We assumed a very light Higgs beyond the present LHC
bound, in order to investigate the impact of this channel on the decay length. Furthermore,
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Figure 4.14: Phase space suppression factors (a) and branching ratios (b) of a bino-like
neutralino as functions of the neutralino mass. The decays into W boson, Z boson, and Higgs
are shown in black, red, and blue, respectively. A Higgs mass of 113 GeV and the validity of
the Higgs decoupling limit are assumed. A total phase space suppression factor is shown in
green.

we assumed the validity of the Higgs decoupling limit and set ζ1 = ζ2 = ζ3. For large NLSP
masses, mχ0

1
� mh, one has

BR
(
χ0

1 →W±e∓
)
' 2 BR

(
χ0

1 → Zν
)
' 2 BR

(
χ0

1 → hν
)
, (4.139)

whereas in the region mχ0
1
' 100 GeV

BR
(
χ0

1 →W±e∓
)
' 5 BR

(
χ0

1 → Zν
)
, (4.140)

and the decay into Higgs is not present. The Higgs channel becomes important only for heavy
neutralinos and then contributes nearly with the same strength as the Z channel. We will
return to this topic in the following discussion.

Note that both the gravitino and the neutralino NLSP lifetimes are functions just of ζ and
the masses, without any further parameters. This direct connection between the gravitino and
NLSP lifetimes is the basis of the LHC study in the next chapter. Thus, using the expressions
for the neutralino decay width (4.84) and the gravitino decay length (4.53), we can express
the neutralino lifetime directly in terms of the gravitino lifetime:

τχ0
1

=
1

8
√

2

c2
w

GF

(M2 −M1)2

M2
2

m3
3/2

M2
Pm

2
χ0
1

τ3/2(γν) (4.141)

(
1

2
fW (mχ0

1
) +

1

4
fZ(mχ0

1
) +

1

4
fh(mχ0

1
)

)−1(
1 +O

(
s2β

m2
Z

µ2

))
. (4.142)

Additionally, we are able to make a prediction for the minimal neutralino decay length at the
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LHC:

cτχ0
1
& 4 m

(
mχ0

1

260 GeV

)−3 ( m3/2

100 GeV

)3
(
τ3/2(γν)

1× 1027 s

)

×
(

1

2
fW (mχ0

1
) +

1

4
fZ(mχ0

1
) +

1

4
fh(mχ0

1
)

)−1(
1 +O

(
s2β

m2
Z

µ2

))
, (4.143)

where we have used mχ0
1
' M1, M2 = 1.9M1. In eqs. (4.141) and (4.143) the corrections to

the leading order expressions are less than 10%. Evaluating the phase space factors, assuming
a 115 GeV Higgs, we obtain cτχ0

1
& 4.6 m.

The neutralino lifetime depends, in general, strongly on the neutralino and gravitino
masses. However, the obtained bound is robust, since assuming a gravitino of 10 GeV, a
neutralino of 100 GeV and taking the gravitino lifetime bound of 5× 1028 from Fermi-LAT,
we obtain a decay length of 21 m, due to phase space suppression factors.

In the last step, we evaluate the impact of the Higgs channel on the decay length. Since
the minimal decay length is obtained for a neutralino mass of 260 GeV, it is not changed by
taking the Higgs to have a mass of 125 GeV. Taking the Higgs channel not into account one
would predict a minimal decay length of 5.6 meters. The maximal error on the decay length
can be read off directly from the phase space suppression factors, cf. Fig. 4.14a. In the limit
of a very heavy neutralino all functions fW/Z/h tend to 1. Thus, not taking the Higgs into
account one overestimates the decay length by 33%.

In the next chapter we will be using the neutralino decays into the Z boson and neutrino
for a phenomenological study and neglect the decay into the Higgs. Therefore, we will over-
estimate the neutralino branching ratio into Z and neutrino. In the heavy neutralino limit
the error also amounts to 33%. However, the maximal neutralino mass considered by us will
be around 300 GeV, in which case the error is only ≈ 25%.

We conclude that, given the current bounds on the gravitino lifetime, a bino-like neu-
tralino NLSP may still decay into a gauge boson and a lepton inside the detector, yielding
a spectacular signature. The sensitivity of the LHC experiments to the R-parity breaking
parameter ζ is investigated in detail for various gluino and squark masses in the next chapter.

4.4.2 Higgsino-like Neutralino

In the case of a higgsino-like neutralino the bound on ζ is independent of the neutralino mass,
which is given by µ but depends on the masses of the heavier bino wino-like neutralinos,
which are 1800 GeV and 3800 GeV, respectively. The minimal gravitino mass is 144 GeV,
and, therefore, the bound on the lifetime is given by 3× 1026 s and we obtain

ζ . 5.6× 10−8 . (4.144)

Inserting this value of ζ in eq. (4.88) and taking into account tanβ = 52 yields the minimal
neutralino decay length

cτχ0
1
& 24 m. (4.145)

Note that this decay length is one order of magnitude larger than the minimal decay length
of the bino-like neutralino.

Figure 4.15 shows the branching ratios of the higgsino-like neutralino as functions of the
neutralino mass. Here, for illustration, we have varied the higgsino mass between 90 and 400
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Figure 4.15: Higgsino-like neutralino branching ratios as functions of the neutralino mass.

GeV, while keeping the other parameters fixed. The neutralino decays to ≈ 100% into the W
boson and a charged lepton. The neutralino decays will take place everywhere in the detector,
distorting, like in the bino-like neutralino case, the distribution of missing transverse energy.

The expression for the neutralino decay length can be simplified, using the fact that decays
into the Z boson and Higgs are negligible. Expressing the neutralino lifetime in terms of the
gravitino lifetime using mχ0

1
' µ , tanβ ' 52, and making an expansion in µ/M1 we obtain

τχ0
1
' 1

2
√

2

τ3/2

GFM2
P

m3
3/2

mχ0
1

c2
ws

2
w

m2
Z

fW (mχ0
1
)−1

(
M2 −M1

3M1c2
w +M2s2

w

)2(
1 +O

(
µ

M1

))
. (4.146)

The approximate formula gives 26 m for the minimal decay length in excellent agreement
with the exact result. Moreover, assuming that the ratio between M2 and M1 is fixed, the
unknown high scale vanishes from the result. Taking, for example, M2 ' 2M1 the last bracket
becomes close to 1/8. Using this approximation we obtain a decay length of 20 m, within
16% of the exact result.

Summing up, we expect the higgsino-like neutralino to decay within the range of the LHC
detectors. Under the assumption of gauge coupling unification, the higgsino-like neutralino
decay length can be deduced also directly from the gravitino lifetime. Additionally, since in
this model all squarks and the gluino are very heavy and, therefore, most neutralinos will be
produced directly via Drell-Yan processes, R-parity violation alleviates the detection at the
LHC. We will see in the next chapter that otherwise the detection of higgsino-like neutralinos
may become impossible.

4.4.3 Stau

As stated in Section 4.2.3 the R-parity violating decays of a τ̃1-NLSP strongly depend on the
flavor structure and the supersymmetry breaking parameters. Since the decays are governed
by a priori independent parameters ε, ε′, ε′′, we cannot connect them with gravitino decays.
Therefore, we estimate the size of R-parity breaking parameters directly from our model of
R-parity breaking, cf. Section 3.5. From Eqs. (3.47), (3.64) and η ' 0.06, one obtains for the
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Figure 4.16: The τ̃ -mixing angle sin2(θτ ) as a function of the lightest τ̃ -mass mτ̃1 .

R-parity breaking parameter

ε ' ζ ' ηΘ ' 6× 10−8 , (4.147)

which is consistent with the present upper bound (4.137).

The dependence of the mixing angle θτ on mτ̃1 is shown in Fig. 4.16 for the boundary
condition (4.129). For masses below the top-bottom threshold only leptonic τ̃1-decays are
possible. When the decay into top-bottom pairs becomes kinematically allowed, sin2 θτ is
small. However, the suppression by a small mixing angle is compensated by the larger Yukawa
coupling compared to the leptonic decay mode. This is a direct consequence of the couplings
λ̂′ which were not taken into account in previous analyses.

Due to the competition between the mixing angle suppression and the hierarchical Yukawa
couplings, the top-bottom threshold is clearly visible in the τ̃1-decay length as well as the
branching ratios into leptons and heavy quarks. This is illustrated in Figs. 4.17 and 4.18,
respectively, where these observables are plotted as functions of mτ̃1 . Representative values
of the τ̃1-decay lengths below and above the top-bottom threshold are

mτ̃1 < mt +mb : cττ̃1 |150 GeV = 1.4 m

(
ε

5× 10−8

)−2

, (4.148)

mτ̃1 > mt +mb : cττ̃1 |250 GeV = 0.6 m

(
ε

5× 10−8

)−2

. (4.149)

Choosing for ε the representative value (4.138) from gravitino decay, ε = ζobs = 10−9, one
obtains cττ̃1 = 4 km(1 km) for mτ̃1 = 150 GeV(250 GeV). It is remarkable that such lifetimes
can be measured at the LHC [71,214,215].

Is it possible to avoid the severe constraint from gravitino decays on the τ̃1-decay length?
In principle, both observables are independent, and the unknown constants in the definition of
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Figure 4.17: The τ̃1 decay length as a function of mτ̃1 . Above the top-bottom threshold
hadronic decays decrease the τ̃1-lifetime.
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Figure 4.18: τ̃1-branching ratios as functions of mτ̃1 . The dependence on the τ̃1-mass is
determined by the top-bottom threshold and the mass dependence of the τ̃1-mixing angle.

92



4.4. NLSP DECAYS AT THE LHC

ε, ε′ and ε′′ can be adjusted such that ζ = 0. However, this corresponds to a strong fine-tuning,
unrelated to an underlying symmetry. To illustrate this, consider the case where the soft R-
parity breaking parameters vanish at the GUT scale, Bi = m2

id = 0, which was discussed in
Section 3. In bilinear R-parity breaking, also the R-parity violating Yukawa couplings vanish
at the GUT scale. With the one-loop radiative corrections at the electroweak scale (cf. (3.78);
εi = µi/µ),

Bi(ΛEW) =
εiµ

16π2

(
6

5
g
′2M1 + 6g2M2

)
ln

ΛGUT

ΛEW
, m2

id(ΛEW) = 0 ,

and M1,2 ∼ µ, one reads off from Eqs. (3.33), (3.40) and (3.41)

ε′i, ε
′′
i = O(εi) . (4.150)

Hence, all R-parity breaking parameters are naturally of the same order, unless the fine-tuning
also includes radiative corrections between the GUT scale and the electroweak scale.

Even if one accepts the fine-tuning ζ = 0, one still has to satisfy the cosmological bounds
on R-parity violating couplings, which yield εi = µi/µ . 10−6 [192]. In the flavor model
discussed in Section 3 this corresponds to the choice a = 20 in Eq. (3.71). For the smaller
τ̃1-mass, which is preferred by electroweak precision tests, one then obtains the lower bound
on the decay length

cττ̃1 |150 GeV & 4 mm . (4.151)

However, let us emphasize again that current constraints from Fermi-LAT on the diffuse
gamma-ray spectrum indicate decay lengths several orders of magnitude larger.

4.4.4 Planck Mass Measurement

It has been pointed out in [57] that, in principle, one can determine the Planck mass from the
decay properties of a τ̃ -NLSP together with the observation of a photon line in the diffuse
gamma-ray flux, which is produced by gravitino decays. This is similar to the proposed
microscopic determination of the Planck mass based on decays of very long lived τ̃ -NLSP’s
in the case of a stable gravitino [66].

From our analysis of NLSP decays in this section it is clear that bino-like neutralino
NLSP decays are particularly well suited for a measurement of the Planck mass, which does
not require any additional assumptions. Eq. (4.141) implies (GF =

√
2/(4v2)),

MP =cwv
M2 −M1

M2

(
m3/2

mχ0
1

)3/2(
τ3/2(γν)

τχ0
1

)1/2

×
(

2fW (mχ0
1
) + fZ(mχ0

1
) + fh(mχ0

1
)
)−1/2

(
1 +O

(
s2β

mZ

µ

))
. (4.152)

As expected, for gravitino and neutralino masses of the same order of magnitude, the ratio
of the two-body lifetimes is determined by the ratio of the electroweak scale and the Planck
mass,

τχ0
1

τ3/2(γν)
∼ v2

M2
P

. (4.153)
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Quantitatively, using the relation (4.130) for the gaugino masses, one finally obtains (v =
174 GeV),

MP =3.6× 1018 GeV

(
m3/2

mχ0
1

)3/2(
τ3/2(γν)

1028 s

)1/2( τχ0
1

10−7 s

)−1/2

×
(

2fW (mχ0
1
) + fZ(mχ0

1
) + fh(mχ0

1
)
)−1/2

(
1 +O

(
s2β

mZ

µ

))
. (4.154)

It is remarkable that the observation of a photon line in the diffuse gamma-ray flux, to-
gether with a measurement of the neutralino lifetime at the LHC, can provide a microscopic
determination of the Planck mass.
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Chapter 5

Hidden Supersymmetry at the LHC

We have seen in Chapter 2 that supersymmetry is the best motivated extension of the Stan-
dard Model. It provides a dark matter candidate, solves the hierarchy problem, and brings
us closer to the goal of unification of forces. Already in the eighties, the common opinion was
that SUSY is just around the corner [216], and yet it still has not been found so far. The
search for supersymmetry is one of the main quests of the Large Hadron Collider, and the
result of this search will have a profound impact on the field of particle physics. The idea of
supersymmetry itself cannot be falsified at the LHC, but if all phenomena stay beyond the
reach of any experiment, it not only loses some of its desired features, but also becomes merely
a question of mathematics. The upcoming criticisms of the string theory (cf. [217,218]), which
needs SUSY, and even of the whole field of cosmology and particle physics (cf. [219]) may be
misguided, but will attain more weight in the light of the negative results. Therefore, it seems
crucial to investigate all possible occurrences of SUSY models and to go beyond simplified
models like CMSSM, since the mechanism of SUSY breaking is still poorly understood.

In the present chapter we will show that possible models motivated by the aim of consistent
cosmology have features which impede a fast discovery at the LHC. Furthermore, we will
present phenomenological studies how these models could nevertheless be discovered. Taking
local supersymmetry seriously, we know that the gravitino must be present in the spectrum
and could potentially cause problems, cf. Section 2.5.1. The problems are absent if the
gravitino is very heavy, a situation arising in the AMSB models of SUSY breaking. cf.
Section 2.4.3. In these models almost all SUSY particles are very heavy, such that the colored
states cannot be produced at the LHC. The lightest states, which are produced via electroweak
processes, could be higgsino-like making a discovery at the LHC almost impossible. Similar
situation can arise in hybrid gauge-gravity mediation models with gravitino dark matter,
cf. Section 2.4.2, which need additional moderate entropy production before nucleosynthesis
for consistency with early universe cosmology.

Another solution to the NLSP decay problem present in models with gravitino dark matter,
is the introduction of a small amount of R-parity violation created in, for example, the
breaking of B − L, cf. Chapter 3. Even such tiny amount of R-parity violation distorts
the usual LHC signatures, especially the distribution of missing transverse energy. We shall
investigate the impact of R-parity breaking on the LHC phenomenology in Section 5.2. In
this chapter we will use in the text and in tables the usual particle naming convention, where
a bar over a particle name denotes the antiparticle, i.e. l̄ standing for a generic antilepton
etc. .
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5.1 Higgsino World

The most characteristic feature of the higgsino world scenario is a large separation between
the higgsino masses and the masses of the other superparticles. The particle content is that of
the MSSM. Two higgsino-like neutralinos and a higgsino-like chargino are light: Their masses
can be arbitrarily close to the direct chargino search bound from LEP, mχ±1

& 105 GeV. There

is also a light Standard Model-like Higgs around 120 GeV. The heavier Higgs bosons, as well
as the gaugino-like neutralinos and chargino, gluino, squarks and sleptons, have masses of
at least 500 GeV, and possibly ranging up to several TeV in case of hybrid gauge-gravity
mediation, while their masses are around 104 GeV in the AMSB case, cf. Section 2.4.

This kind of spectrum is naturally compatible with both LHC and LEP search bounds.
Concerning the LHC, the absence of any signals for supersymmetry in cascade decays of
first-generation squarks and gluinos points to them being rather heavy. On the other hand,
evading the new LHC bound on the lightest Higgs mass requires large loop corrections from
third-generation soft terms, at least within the MSSM. This points to large third-generation
squark masses (bringing with them the inevitable fine-tuning which is present in the remaining
parameter regions of the MSSM). Charginos and neutralinos, by contrast, can comfortably
have masses between around only 100 – 200 GeV.

The MSSM with light higgsinos and otherwise heavy superparticles has previously been
studied e.g. in [220]. Additionally to the AMSB scenario [73] and the hybrid gauge-gravity
mediation [74], other models have been constructed which predict precisely this pattern, such
as the “lopsided gauge mediation” models of [221,222].

In this section we are interested in the consequences of such scenario for SUSY searches at
the LHC, in case of R-parity conservation. Irrespectively of the dark matter candidate, which
is gravitino in the hybrid mediation case and higgsino in the AMSB case, the phenomenology
at colliders will be very similar due to otherwise similar spectra and suppressed gravitino
couplings. Therefore, we will closely examine the hybrid gauge-gravity mediation scenario
while pointing out the possible differences in the AMSB case.

5.1.1 Model Parameters

The precise details of the superparticle spectrum depend on the messenger content of the
model, on the exact choice of messenger scale and SUSY breaking scale, and on the assump-
tions about the gravity-mediated contributions to the soft terms. For our purposes of a first
tentative study of collider phenomenology, it is convenient to adopt a simplified parametriza-
tion: We fix the gravitino mass to be m3/2 = 100 GeV, and choose a common messenger mass
just below the GUT scale, Mm = 5 × 1015 GeV. Then the essential free parameters are the
gaugino masses M1, M2 and M3, the Higgs soft mass mixing Bµ, and the higgsino mass µ.
At the GUT scale we expect |Bµ| ' |µ|2 ' m2

3/2 and |M1,2,3| � m3/2. Scalar soft masses are
dominated by the gauge-mediated contribution, which is completely fixed after prescribing
the gaugino masses. Explicitly, they are given by the standard minimal gauge mediation
formula

m2
Φ = 2

(
g2

16π2

)2
(∑

a

Ca na

)∣∣∣∣
F

Mm

∣∣∣∣
2

, (5.1)
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particle model

Spectrum I Spectrum II HH50 HH50′ simplified

h0 116 123 115 117 117

χ0
1 124 205 206 207 125
χ±1 129 207 389 395
χ0

2 134 206 389 395

χ0
3 559 1 788 635 771
χ0

4 1 059 3 775 649 778
χ±2 1 059 3 775 648 779

H0 641 1 115 861 958
A0 642 1 120 861 958
H± 648 1 123 865 962

g 1 063 3 808 1 167 1 167

t̃1 665 2 311 860 660 659

b̃1 797 2 490 1 034 943
ũ1 1 155 3 513 1 122 1 130

d̃1 1 065 3 370 1 119 1 127
other squarks 1 070 – 1 500 3 300 – 4 500 1 120 – 1 160 990 – 1 270

τ̃1 509 461 528 520
other sleptons 790 – 1 160 1 700 – 3 200 530 – 600 530 – 600

Table 5.1: A light and a heavy spectrum, with a CMSSM point HH50, a CMSSM-like point
HH50′ and a simplified model for comparison. The parameters defining these models are
listed in Table 5.2. Particle masses are in GeV.

where a = 1, 2, 3 labels the Standard Model gauge factors, Ca is the corresponding quadratic
Casimir of Φ, the SUSY breaking scale F is

F =
√

3m3/2MPlanck = (2× 1010 GeV)2 , (5.2)

and the effective messenger numbers na are obtained by inverting the standard gaugino mass
formula

Ma =
g2

16π2
na

F

Mm
. (5.3)

We are neglecting the running of the gauge couplings between Mm and MGUT, as well as the
subdominant gravity-mediated contributions. Trilinear terms are again dominated by gravity
mediation; for simplicity we choose them to be universal and set A0 = µ.

Having thus fixed the MSSM parameters at the messenger scale, we evolve them to the
weak scale by means of their renormalization group equations using SOFTSUSY [110]. Re-
producing the correct value of the Z mass further reduces the number of free parameters by
one. In the end, within our simplified ansatz the mass spectrum is entirely determined by
the five parameters M1, M2, M3, µ and Bµ at the messenger scale. These are subject to the
conditions that electroweak symmetry should be broken with mZ = 91 GeV, and that there
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model µ
√
Bµ M1 M2 M3 m0 m

(3)
0 A0 A

(3)
0 tanβ

Spectrum I 150 200 1 250 1 250 428 46
Spectrum II 250 250 4 080 4 600 1 800 52

HH50 500 500 500 500 500 0 0 10
HH50′ 500 500 500 500 300 0 −1 000 10

Table 5.2: Defining parameters for a light and a heavy spectrum, with a CMSSM point and
a CMSSM-like point for comparison. Particle masses are in GeV. In HH50′ third-generation

squarks and sleptons were given a universal soft mass m
(3)
0 and a trilinear A-parameter A

(3)
0 .

should be a separation of mass scales according to

µ ∼
√
Bµ ∼ m3/2 � M1 ∼M2 ∼M3 . (5.4)

Table 5.1 shows two examples for low-energy spectra. Spectrum I has µ = 150 GeV,√
Bµ = 200 GeV, M1 = M2 = 1250 GeV and M3 = 428 GeV; these parameters are chosen

such that the model is close to the present LHC exclusion limits. Spectrum II has µ =
250 GeV,

√
Bµ = 250 GeV M1 = 4080 GeV, M2 = 4600 GeV and M3 = 1800 GeV, for

which the model would be invisible at the early LHC and almost impossible to find even at
14 TeV. Additionally, this spectrum has a Higgs mass close to the tentative LHC hint, and is
furthermore very similar to the spectrum (17, 23, 9) from [75], which was used in the previous
chapter for the predictions of the higgsino decay length in case of R-parity violation. The
numbers in the spectrum name refer to the effective messenger numbers connected to the
gaugino mass parameters (eq. 5.3). Note that the spectrum in AMSB case would be even
more extreme, neutralinos and charginos being the only particles which could be produced at
present and future colliders. Our analysis in this section will be mostly concerned with the
phenomenology of Spectrum I at

√
s = 7 TeV.

For comparison, we have also included a similar CMSSM benchmark point HH50 and
a CMSSM-like benchmark point HH50′. HH50 has m0 = m1/2 = 500 GeV, tanβ = 10,
µ > 0 and A0 = 0. HH50′ is defined in the same way, but with the soft terms of the third
generation chosen differently: Third-generation squarks and sleptons were given a universal

soft mass m
(3)
0 = 300 GeV and a trilinear A-parameter A

(3)
0 = −1 TeV. This choice was made

in order to have a reference spectrum whose t̃1t̃
∗
1 production cross section is comparable to

that of Spectrum I, while closely resembling the CMSSM. Finally, we also list a comparable
simplified model, containing only the t̃1 and a bino-like neutralino LSP. The model definitions
are summarized in Table 5.2.

5.1.2 Signatures

The light higgsinos of the hybrid gauge-gravity mediation scenario (and also of the AMSB
scenario) will be produced in copious numbers in electroweak processes at the LHC. The
Drell-Yan process gives rise to χ+

1 χ
−
1 , χ±1 χ

0
1,2 and χ0

1χ
0
2 final states, and W boson fusion can

give like-sign χ±1 χ
±
1 pairs. The subsequent decays of χ0

2 and χ±1 into χ0
1 will lead to events

with missing energy and soft jets or leptons.
Unfortunately, with the higgsino mass splittings in the range of only a few GeV, most of

these jets and leptons are too soft to even trigger on, and those events with high enough pT to
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Figure 5.1: Lepton transverse momentum and missing transverse energy distributions of lep-
tonic events from higgsino decays with Spectrum I. The higgsinos are produced in electroweak
processes; the numbers are scaled to 20 fb−1. For comparison, the SM background from WZ
production (which is just one of the several contributing processes) is also shown. See Section
5.1.3 for details of the event simulation.

be detected are completely swamped by the Standard Model background. Demanding large
missing transverse energy does not help much, since also the /ET spectrum falls very rapidly.
For illustration, the lepton pT and /ET distributions for Spectrum I are shown in Figure 5.1.
We have also studied events with additional jets from initial-state gluon radiation, in order to
increase the number of events with larger pT and /ET . While this somewhat enhances the tails
of the distributions, it also reduces the overall cross section, and the combined effect does very
little to improve the overall situation. In conclusion we confirm the findings of [223] that, in
order to find evidence for our scenario in electroweak processes, a linear collider would be far
better suited. For the LHC, a monojet or a monophoton (from initial-state gluon or photon
radiation) together with large missing ET might be a useful signal, in combination with other
searches. This is probably the only possibility to detect SUSY if the AMSB-like scenario is
realized in nature. We will however not pursue this possibility in the present work because
of the difficulties in accurately estimating the background without a full detector simulation.
The experimental efforts in this direction [224–227] seem to be very promising. The results
are however interpreted so far only in terms of contact interactions or for theories involving
large extra dimensions. We will also not consider the possibility of searches for staus, since the
mass predictions depend strongly on the parameters: The model (17, 23, 9) from [75] being
very similar to Spectrum II predicts a lightest stau with a mass of 550 GeV, contrary to 461
GeV in our case. Furthermore, such search is not a viable possibility in the AMSB scenario.

We are therefore led to consider those regions of parameter space where some colored
superparticles are still light enough to be produced at the LHC. At this stage we ignore the
LHC hint for a 125 GeV Higgs. The lightest colored superparticle in our class of models is
always the lighter of the scalar top quarks t̃1. At the LHC it may be produced in pairs, or it
may appear in cascade decays of first-generation squarks and gluinos if these are kinematically
accessible. It turns out that processes involving the t̃1 are particularly well suited to find
evidence for our scenario (or to constrain it), and also to distinguish it from more generic
incarnations of the MSSM1 .

1For some recent related studies of stops at the LHC, see for example [77,228–231].
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Figure 5.2: An example for a stop pair production event, showing up as to two high-energetic
b-jets and missing energy.

For definiteness we will from now on focus on the Spectrum I benchmark point M1 = M2 =
1250 GeV, M3 = 428 GeV, µ = 150 GeV,

√
Bµ = 200 GeV. In a sense this is a maximally

optimistic set of parameters, chosen such that it is still marginally allowed by current search
limits.

With superparticle masses as in Spectrum I, the clearest signatures at the early LHC will
be jets with missing ET . We will see that the cross sections for stop pair production on
the one hand and the more familiar q̃q̃, q̃q̃∗, q̃g and gg production (where q̃ stands for any
first-generation squark) on the other hand are comparable; all these processes contribute to
the signal.

More importantly, once there is evidence for supersymmetry in searches for jets plus
missing ET , our model can also be distinguished experimentally from generic variants of the
MSSM which lack its characteristic features of light and near-degenerate higgsinos. This is
achieved by focusing on the stop pair production channel. In Spectrum I, stop decays do not
involve hard leptons, since possible leptons from χ0

2 or χ±1 decays are too soft to be detected.
The signature of a t̃1 is therefore always a hard b-jet plus missing ET ; a typical stop pair
event is shown in Figure 5.2. By contrast, in generic supersymmetric models one usually
expects also events with jets, missing ET and isolated leptons, be it from cascade decays of
squarks and gluinos or from t̃ decaying into charginos or non-LSP neutralinos. Once a signal
is found in the jets + MET channel, we could use the absence of signals with leptons to
severely constrain interpretations in terms of generic supersymmetry, thus providing further
indirect evidence for our scenario.

We may even be able to discriminate between our model and a “simplified model” com-
prising only a t̃1 and a bino-like χ0

1. In such a framework, likewise, no events with hard
isolated leptons are expected. However, because the only possible t̃1 decay is then t̃1 → tχ0

1

with the t decaying further into bW , the b-jet spectrum turns out to be significantly different
from that of our model, where about half of the stops decay directly into a b quark without
an intermediate top.

In the following sections we present the results of three simulated searches. The first is
for jets and large missing ET , in order to show that early LHC will be able to find evidence
for our model. The second also includes leptons, to show that early LHC will, furthermore,
be able to distinguish our model from a comparable CMSSM-like model. More precisely,
our model will be compared both with the CMSSM point HH50, which has similar g̃ and
q̃ production cross sections, and with the CMSSM-like point HH50′, which in addition has
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model σ(q̃q̃∗) σ(q̃q̃) σ(t̃t̃∗) σ(b̃b̃∗) σ(gg) σ(gq̃) σ(tot)

Spectrum I 0.388 3.83 5.61 0.6 2.9 8.45 21.78
HH 50 1.79 12 0.682 0.044 1 9.3 24.8
HH 50’ 1.65 11.5 5.96 0.136 0.979 8.9 29

Table 5.3: Production cross sections of different models in fb calculated with PROSPINO [232,
233]. The cross section for b̃b̃∗-production is given at the lowest order, all other cross sections
are calculated at NLO.

sample σ [pb] events

expected simulated

tt̄ 163 3.3× 106 11.3× 106

single top 85.1 1.7× 106 1.7× 106

W + jet 826 1 652× 104 5× 104

W+W− 44.974 899× 103 1 000× 103

W+Z 11.580 }
358× 103 400× 103

W−Z 6.342
ZZ 6.195 124× 103 150× 103

W+W−W+ 4× 10−2 800 15 000
W+W−Z 3× 10−2 600 15 000
W+ZZ 9× 10−3 180 15 000
ZZZ 3× 10−3 60 5 629

Table 5.4: Cross sections and numbers of generated events of SM background used in the
present analysis. The single top production cross-section includes all LHC production chan-
nels. The cross sections for the tri-boson events are calculated at the Born level with
MADGRAPH, all other cross sections are taken from [234–236]

also a comparable t̃1 pair production cross section. Finally, we present a search with the cuts
optimized to select events from t̃1 pair production, and compare the result with the simplified
model mentioned above.

5.1.3 Simulation of Signal and Background

All Monte Carlo samples were generated with MADGRAPH 4.4.44 [237] interfaced with PYTHIA

6.4.22 [238] using CTEQ6L1 parton distribution functions [239]. In order to generate signal
events, decay widths of supersymmetric particles were computed with SDECAY [240] from
spectra calculated with SOFTSUSY. The generic detector simulation DELPHES [241], tuned to
the CMS detector, was used in order to account for effects of event reconstruction at the
detector level.

The signal production cross sections are listed in Table 5.3. For Spectrum I 43 500 signal
events were simulated, to be compared with 435 events expected at the early LHC with an
assumed integrated luminosity yield of 20 fb−1. The number of signal events passing the cuts
should therefore eventually be divided by a normalization factor 100 for a realistic estimate.
For HH50 and HH50′, we simulated 10 000 events each, with respectively 496 and 580 events
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expected, so the normalization factors are 20 and 17 respectively.
The corresponding figures for Standard Model backgrounds are listed in Table 5.4. It

turns out that tt̄ is the most important background. Since, consequently, the best statistics
is needed for this channel, we have simulated about three times more events than expected.
For the remaining backgrounds, the number of simulated events roughly matches the number
of expected events, or exceeds it in the case of tri-bosons (where the cross sections are small)
in order to avoid large Monte Carlo errors. An exception are background events with vector
bosons plus jets, where we have only simulated a small fraction of the expected events.
However, as will become clear when we present the cut flows, this background is very efficiently
removed by our cuts. Therefore, it can be safely neglected without having to simulate the
full sample.

5.1.4 Event Selection and Analysis

Discovery with all-hadronic Search

The first analysis serves to show that LHC will be able to find evidence for our model, i.e. to
distinguish its signatures from the Standard Model background.

In the first stage, candidate events with multiple high-energetic jets and missing transverse
energy are selected with the following pre-selection cuts at the level of the detector simulation:

• 1 < N(j) < 5 , where pT (j) > 100 GeV,

• /ET > 50 GeV.

Furthermore, all events with an isolated lepton (electron or muon) with pT > 10 GeV are
rejected in order to suppress events with genuine missing energy from neutrinos:

• N(l) = 0.

After imposing these pre-selection cuts, we use a set of cuts optimized for discriminating
between signal and background. Events are required to satisfy

• HT ′ > 500 GeV,

where HT ′ is the sum of the transverse momenta of the two most energetic jets,

HT ′ =
2∑

i=1

pT (ji) . (5.5)

Following the experimental analyses, we use the αT variable [242–244] as the main discrimi-
nator against QCD multi-jet production, defined for di-jet events as:

αT =
ET (j2)

MT
=

ET (j2)√(∑2
i=1ET (ji)

)2
−
(∑2

i=1 px(ji)
)2
−
(∑2

i=1 py(ji)
)2

, (5.6)

where j2 denotes the next-to-leading jet. In our analysis we use pT of the jets provided by
DELPHES instead of ET , and require the event to have

• αT > 0.55
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before pre-cuts

cuts N(j) /ET N(l) HT ′ αT /ET

S
p

ec
tr

u
m

I

q̃q̃∗ 720 569 555 420 401 86 78
q̃q̃ 7 660 6 416 6 329 4 788 4 581 919 761
t̃t̃∗ 11 220 8 909 8 729 7 690 5 123 1 074 864

b̃b̃∗ 1 200 993 983 866 691 162 138
gg 5 800 4 678 4 622 3 573 3 250 809 631
g̃q̃ 16 900 13 425 13 257 10 237 9 655 2 080 1 685

weighted events 42

HH50 10 000 8 892 8 822 7 119 6 882 1 888 1 770

weighted events 88

HH50′ 10 000 8 778 8 691 6 850 6 244 1 582 1 467

weighted events 84

S
M

tt̄ 11.3× 106 3.2× 106 930 000 510 000 59 992 312 64
t 1.7× 106 160 197 23 773 15 089 2 062 6 3
W + jet 50 000 120 5 2 0 0 0
di-bosons 1.55× 106 36 862 3 820 2 281 404 4 3
tri-bosons 50 629 9 051 2 763 1 714 470 9 6

weighted events 25

Table 5.5: Cut flow of general all-hadronic analysis for different signals and backgrounds at√
s = 7 TeV. Figures are given for all events that were simulated. The bold numbers are the

events surviving all cuts, properly normalized to an integrated luminosity of 20 fb−1. The cut
flow for the Spectrum I is shown separately for each different production channel.

in order to pass the cut. In events with jet multiplicity N(j) > 2, two pseudo jets are formed
following the CMS strategy [244] and the αT variable is constructed from the pseudojets.
Finally, in order to further suppress the tt̄ background, we demand a very high value of
missing transverse energy:

• /ET > 400 GeV.

Because of the high /ET cut in combination with the selection based on αT , we can safely
neglect QCD di- and multi-jet background contributions. The resulting cut flow is shown in
Table 5.5.

Evidently, with this analysis it will be possible to discriminate between our model and the
Standard Model background. The same is true for the HH50 and HH50′ models. This result
is of course unsurprising, since all these benchmark points were chosen to lie near the 1 fb−1

exclusion bounds, and here we are assuming a data sample of 20 fb−1.

Model Discrimination: CMSSM-like Models

The more interesting question is that of model discrimination. For this a fully hadronic
search such as the one we just presented is not suitable, even though the number of events
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After
pre-cuts

b-tag HT ′ αT /ET

S
p

ec
tr

u
m

I

q̃q̃∗ 420 78 77 0 0
q̃q̃ 4 788 1 153 1 126 226 183
t̃t̃∗ 7 690 3 851 3 268 834 562

b̃b̃∗ 866 445 405 112 87
gg 3 573 1 843 1 793 465 351
gq̃ 10 237 3 940 3 862 845 652

weighted events 18

HH50 7119 631 619 124 108

weighted events 5

HH50′ 6 850 930 841 158 124

weighted events 7

S
M tt̄ 51× 104 20× 104 48 624 391 25

t 15 089 4 798 656 3 2

weighted events 9

Table 5.6: Cut flow of the hadronic analysis with b-tagging for different signals and the
relevant backgrounds at

√
s = 7 TeV. The remaining signal and background events, scaled to

an integrated luminosity of 20 fb−1, are printed in bold. The cut flow for Spectrum I is shown
separately for each different production channel.

passing the above cuts is significantly different between our model and HH50 / HH50′. This
difference could, after all, be accounted for by slightly different squark and gluino production
cross sections – for instance, the HH50 and HH50′ spectra would just need to be slightly
heavier in order to reproduce the 42 events after cuts which we found for our model.

In fact, some information can be gained already by requesting, in addition to the cuts
of Section 5.1.4, that at least one jet should be b-tagged. We assume a pT -independent b-
tagging efficiency of 40 %, and a mistagging probability of 10 % as implemented in DELPHES.
The additional cut is then

• N(b-jets) ≥ 1 .

The cut flow is shown in Table 5.6. Note that the number of events from both HH50 and
HH50′ is dramatically reduced. This is partly because, in our model, a sizable fraction of
events was due to t̃ pair production, and the gluino can only decay into t̃1 or b̃1. By contrast,
in HH50 and HH50′ most events involve q̃ decays which do not necessarily lead to b-jets.
Moreover, by vetoing events with isolated leptons, fewer t̃1 events in our model are cut away
than in HH50 and HH50′ – these models tend to produce more leptonic events, which we will
now put to use in a separate semi-leptonic analysis.

More precisely, as explained in Section 5.1.2, t̃1 decays in our model can give hard isolated
leptons at most from secondary top decays (which is, incidentally, also true for b̃1 and even
g̃ decays, since the gluino can only decay into t̃1 or b̃1). In HH50 and HH50′ many more
leptons are expected, jets with missing ET and isolated leptons being one of the hallmark
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before pre-cuts

cuts N(l) N(j) /ET N(j) mT Iso HT ′ /ET

S
p

ec
tr

u
m

I

q̃q̃∗ 720 238 233 229 26 17 6 6 1
q̃q̃ 7 660 2 690 2 650 2 622 380 271 129 123 74
t̃t̃∗ 11 220 4 063 3 202 3 135 2 191 1 701 230 90 40

b̃b̃∗ 1 200 449 367 367 244 180 25 16 8
gg 5 800 2 224 2 202 2 173 258 207 53 46 29
gq̃ 16 900 6 397 6 346 6 261 690 536 170 142 76

events 2

HH50 10 000 2 432 2 352 2 330 615 438 242 225 147

events 7

HH50′ 10 000 2 699 2 519 2 496 796 576 308 246 147

events 9

SM tt̄ 11× 106 4× 106 1× 106 440 000 350 000 45 584 29 942 1 266 3

events 1

Table 5.7: Cut flow of semi-leptonic analysis for different signals and relevant background at√
s = 7 TeV. The remaining signal and background events, scaled to an integrated luminosity

of 20 fb−1, are printed in bold. The cut flow for Spectrum I is shown separately for each
different production channel.

signatures for generic supersymmetry. This motivates a semi-leptonic search for better model
discrimination.

An event is selected for further analysis if it contains exactly one lepton (muon or electron)
candidate

• N(l) = 1 , pT (l) > 15 GeV.

Other than that, our pre-selection cuts are as before,

• N(j) > 1 , pT (j) > 100 GeV,

• /ET > 50 GeV.

The actual cuts are now as follows. We select events with exactly two high-energetic jets,

• N(j) = 2.

This criterion selects preferably the t̃t̃∗ production channel, since usually more than two jets
are expected to appear in channels involving q̃ or g̃. Furthermore, we employ the transverse
mass variable

mT =
√

2pT (l)/ET
(
1− cos ∆φ(l, /ET )

)
, (5.7)

where ∆φ(l, /ET ) is the angle between missing transverse energy and the momentum of the
lepton in the transverse plane. This variable is bounded by the W boson mass if the lepton
and /ET originate in W boson decay. We select events with
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Figure 5.3: /ET distribution in the semi-leptonic analysis before the final /ET cut. SM events
are black, events in Spectrum I are blue and events in HH50′ are red.

• mT > 100 GeV,

and ensure that the leptons in these events are isolated. Furthermore, as in the previous
analysis we demand that the two jets have high transverse momentum and high missing
transverse energy,

• HT ′ > 500 GeV,

• /ET > 400 GeV.

The resulting cut flow is displayed in Table 5.7. As advertised, the number of leptonic
events to survive the cuts is not significantly above the SM background, whereas a significant
number of events survive in HH50 and HH50′ (cf. Figure 5.3). This set of cuts therefore serves
to discriminate between our model and CMSSM-like models.

Model Discrimination: A Simplified Model

The analysis of Section 5.1.4 relies on the presence of intermediate states (in the case of HH50
and HH50′, the wino-like χ±1 and χ0

2) whose decay into the LSP produces isolated leptons. In
models with non-unified gaugino masses, the LSP could still be bino-like while all remaining
charginos and neutralinos are much heavier. Can we still distinguish our model from a generic
model with a comparably heavy t̃1 and only a light bino LSP below it? It turns out that this
is rather more difficult, but still possible.

The simplified model in Table 5.1 has been designed to reproduce the relevant collider
signals. We use the production cross section of stop pairs taken from Spectrum I. The only
active states are a moderately heavy t̃1 and a light bino-like χ0

1. Stops that are produced in
pairs will decay as t̃1 → tχ0

1, with the t further decaying into bW . The signature is therefore
b-jets and missing energy. A similar decay chain is also open in our model (as in the lower
branch in Figure 5.2). However, in our model about 50 % of the stops will decay directly
into b quarks and missing energy (as in the upper branch). These latter events will produce
slightly harder b-jets than those involving an intermediate top.
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before pre-cuts

cuts N(j) /ET N(j) b-tag mT
jj HT ′ ∆φ /ET N(l)

S
p

ec
tr

u
m

I

q̃q̃∗ 720 569 555 71 12 3 3 2 2 2
q̃q̃ 7 660 6 416 6 329 978 179 55 53 48 33 24
t̃t̃∗ 11 220 8 909 8 729 6 093 3 158 1 928 1 378 1 238 637 575

b̃b̃∗ 1 200 993 983 651 332 152 125 116 72 63
gg 5 800 6 478 4 622 658 348 144 115 104 78 58
gq̃ 16 900 13 425 13 257 1 803 684 243 201 178 121 77

events 8

simplified 11 220 8 179 7 986 5 328 2 107 1 339 782 666 316 243

events 2

S
M tt̄ 1× 107 3× 106 1× 106 739 752 290 416 268 254 34 062 8 669 34 16

t 1.7× 106 160 197 23 773 21 234 6 858 6 330 907 176 6 3

events 8

Table 5.8: Cut flow of the analysis in which we examine the possibility to distinguish t̃
decays via bino-like neutralinos from decays via higgsino-like neutralinos at

√
s = 7 TeV. The

remaining signal and background events, scaled to an integrated luminosity of 20 fb−1, are
printed in bold.

To select the stop pair production channel in our model, we impose a series of simple cuts.
At the pre-selection cut level, we select event with at least two and at most four high-energetic
jets with pT larger than 100 GeV, similar to the all-hadronic analysis:

• 1 < N(j) < 5 , where pT (j) > 100 GeV,

• /ET > 50 GeV.

Heavy squarks and gluinos will decay via long decay chains, typically giving rise to a large
number of high-energetic jets. Therefore, we select events with exactly two high-energetic
jets in order to single out stop pair production. Furthermore, we demand that at least one of
these jets is a b-jet:

• N(j) = 2, where pT (j) > 100 GeV,

• N(b-jets) ≥ 1.

The invariant mass of the 2-jet system originating in such decays is sensitive to the masses of
the parent particles. We select events with relatively small 2-jet transverse mass:

• mT
jj ≡

√
2pT (j1)pT (j2) (1− cos ∆φ(j1, j2)) < 500 GeV

In order to suppress the Standard Model background we employ following cuts:

• HT ′ > 400 GeV,

• ∆φ
(
/ET , j2

)
> 1,
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• /ET > 400 GeV,

• N(l) = 0.

Missing transverse energy in QCD di- and multi-jet events can only appear due to the mis-
measurement of one of the jets. We assume that, in events with very large missing transverse
energy and exactly two high-energetic jets, the mismeasured jet is the next-to-leading one.
We therefore expect that no QCD event will survive the cuts on ∆φ

(
/ET , j2

)
and /ET . The

resulting cut flow is displayed in Table 5.8.

Evidently, these cuts can discriminate between Spectrum I and the simplified model. Of
course the latter is not a realistic scenario, and in a fully-fledged model cascade decays of
heavier states may also be relevant. However, since the cuts single out the stop pair production
channel in our model quite efficiently, it seems reasonable to expect that this remains true
for a generic full model which the simplified model is taken to represent here. The cuts are
even tight enough to remove almost all of the stop decay events in the simplified model, while
leaving a substantial excess above the Standard Model background in our model (presumably
coming from direct t̃1 → bχ±1 decays). Note, however, that this analysis will be rather
challenging with real data: Only few events survive, and the discrimination is not mainly due
to a single cut, but rather to the combined effects of all of them.

Having investigated the Higgsino World scenario, we now turn our attention to the case
of R-parity violation, leading also to veiled signatures.

5.2 R-parity Violation

The hybrid gauge-gravity mediation model can become cosmologically consistent not only
with the help of additional entropy production before the BBN, which leads to the LHC
signatures presented in the previous section, but also with the introduction of small R-parity
violation. This is also the case for mSUGRA models with gravitino dark matter, cf. Sec-
tion 2.4.1. Usually, the bulk of these models is viewed to be excluded by recent LHC data.
However, not taking into account the LHC hint for a Higgs boson with a mass of 125 GeV,
which is difficult to accommodate, a large region of mSUGRA parameter space becomes
untested in case of small R-parity violation.

While the hybrid mediation scenario leads to higgsino-like neutralino NLSP, the mSUGRA
scenario can have a bino-like neutralino or a stau as NLSP. In all cases, the decay lengths
of the particles are macroscopic, cf. Section 4.4. Large macroscopic decay lengths are of
great help in the search for decaying NLSPs. This remains true if the decay length is larger
than the size of the detector since a sizable fraction of NLSPs may still decay inside the
detector. This has been studied for neutral [214] as well as charged [215] NLSPs. Neutralino
decay lengths varying from 0.1 mm to 100 m also arise in models with generalized gauge
mediated supersymmetry breaking [245]. Alternatively, charged [246] and neutral [247] NLSP
decays have been studied for models where the decay lengths are so small that no displaced
vertices are observed and R-parity breaking Yukawa couplings determine the hierarchy of
decay channels. In this case multi-lepton events, and their flavor structure, are of crucial
importance.

The subject of this section is a quantitative analysis of bino-like neutralino NLSP decays
at the LHC in the case of very small R-parity breaking. The goal is the determination of the
sensitivity in the R-parity breaking parameter ζ for varying gluino and squark masses. We
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χ0
1

χ0†
2

χ0†
1

Z

W+

µ νµ

µ†

µ†

νµ

µ̄†invisible

W+

Figure 5.4: Typical R-parity violating decay chain involving higgsino-like neutralino at the
LHC. The primary vertex and the secondary vertices are highlighted.

shall focus on events with a clean signature: cascade processes with jets where one of the
produced neutralino NLSPs decays into Z boson and neutrino, with the subsequent decay of
the Z boson into a muon pair, cf. Section 4.4.1. This allows us to determine a conservative
5σ discovery range. Finally, we estimate the discovery reach of the LHC if all NLSP decays
are taken into account. Note that we will neglect the neutralino decay channel into the Higgs
boson and neutrino, which is either absent for low neutralino masses or is suppressed. We shall
point out the differences to the higgsino-like neutralino NLSP case, which has a branching
ratio of order 1 into the W boson and charged lepton, cf. Section 4.4.2. A full quantitative
analysis of this case is work in progress.

5.2.1 Decay Signatures of the higgsino-like Neutralino

Taking into account the LHC hint for the mass of the Higgs boson, we can assume that even the
third generation squarks are fairly heavy and may be not accessible at the LHC, cf. Spectrum
II in Tab. 5.1. Thus, the neutralinos will be produced in electroweak processes. While in the
case of R-parity conservation, cf. Section 5.1, the only signal at the LHC would be a monojet
(monophoton) signature, R-parity violation opens up new possibilities for detection. Nota
bene that the final states will always look similar to the case of pure neutralino production
even if charginos have been produced, due to small mass separation between the charged and
neutral higgsino states.

The final state neutralinos decay in a secondary vertex into W bosons and leptons almost
in 100% of decays. Fig. 5.4 shows an example of a decay cascade with muons in the final
state. The distance between the collision point and the secondary vertex depends on the
decay width of the neutralino (4.88), and hence on the R-parity breaking parameter ζ.

Table 5.9 summarizes all possible LHC signatures if the NLSP is higgsino-like neutralino
for sufficiently large values of ζ such that it is probable that both neutralinos decay inside
of the tracker volume. The signatures are classified according to the final states in the neu-
tralino decays; amazingly there are only two type of signatures: leptonic signatures involving
only leptons in the final state, and semi-leptonic signatures involving at least two charged
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category χ0
1 decays LHC signature

leptonic W+W−ll̄ → l̄lll̄νν
2l + 2l̄ + /ETW+W+ll → l̄l̄llνν

W−W− l̄l̄ → lll̄l̄νν

semi-leptonic W+W−ll̄ → jjlll̄ν 2j + 2l + 1l̄ + /ET
W+W+ll → jjl̄llν

W+W−ll̄ → jjl̄ll̄ν 2j + 1l + 2l̄ + /ET
W−W− l̄l̄ → jjll̄l̄ν

W+W−ll̄ → jjjjll̄ 4j + 1l + 1l̄

(same sign, W+W+ll → jjjjll 4j + 2l
no /ET ) W−W− l̄l̄ → jjjjl̄l̄ 4j + 2l̄

Table 5.9: All possible final states in higgsino-like neutralino case if both neutralinos decay
inside the tracking volume.

category χ0
1 decays LHC signature

leptonic W+l → l̄lν 1l + 1l̄ + /ET
(opposite sign) W− l̄ → ll̄ν

single lepton W+l → jjl 2j + 1l + /ET
W− l̄ → jjl̄ 2j + 1l̄ + /ET

Table 5.10: All possible final states in higgsino-like neutralino case if one of the neutralinos
decays outside the tracking volume.

leptons and jets. Note that all channels have only small amount of missing transverse energy
/ET , and therefore they are not considered in the usual searches (cf. [248, 249]). Neutralino
decays lead also to signatures containing same-sign lepton pairs but since no /ET is present
in these channels they are usually discarded in order to suppress various backgrounds [250].
Additionally, the leptonic signatures involve no jets in the final state from the hard process.
Therefore, a possible search strategy would be a search for events without jets.

If the value of ζ is rather small one of the neutralinos will decay outside of the detector
leading to signatures with larger amount of /ET as shown in Table 5.10. The leptonic decays
of one of the neutralinos inside the detector lead to a perfect opposite-sign signature. Further-
more, one could also search for single lepton events with large amount of missing transverse
energy.

Let us now look at the decays of the bino-like neutralino and compare the results with
the ones obtained in this section.

5.2.2 Decay Signatures of the bino-like Neutralino

Consider for simplicity, the following cascade process:

Gq → gq̃ → jjjχ0
1χ

0
1 , (5.8)
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Figure 5.5: Typical R-parity violating decay chain involving bino-like neutralino at the LHC.
The primary vertex and the secondary vertices are highlighted.

possible in mSUGRA scenarios with bino-like neutralino, where j denotes a jet. The final
state neutralinos decay in a secondary vertex into W bosons and leptons as well as into Z
bosons and neutrinos. Fig. 5.5 shows an example of a decay cascade with muons in final
state. The distance between the collision point and the secondary vertex depends on the
decay width of the neutralino (4.84), and hence on the R-parity breaking parameter ζ.

Table 5.11 summarizes the LHC signatures of the process (5.8) for sufficiently large values
of ζ such that it is probable that both neutralinos decay inside of the tracker volume. All
signatures contain at least three jets from the antecedent supersymmetric decays, contrary
to the higgsino-like case. In general more complicated signatures can arise. Intermediate
chargino decays can lead to additional gauge bosons in the final state, which then produce
more jets or leptons. These decay chains as well as all production processes were taken into
account in the simulation of the signal.

The signatures are classified similar to the higgsino-like case according to the final states
in the neutralino decays: leptonic signatures involving only leptons in the final state, semi-
leptonic signatures involving at least two charged leptons and jets, single lepton signatures
containing only one lepton, all-hadronic signatures where only jets accompanied by neutrinos
are present, and finally invisible channels where both neutralinos decay solely to neutrinos.
Additionally, we single out channels having a considerable amount of missing transverse energy
/ET from Z boson decays, since /ET is one of the main features searched for in usual searches for
new physics. Such channels are not present in higgsino-like neutralino decays. The channels
labeled as opposite sign could be found in usual supersymmetry (SUSY) searches as they
include a considerable amount of /ET , many jets and one isolated lepton pair with different
signs. However, some searches remove events with muon pairs having invariant mass around
the Z pole in order to dispose of Drell-Yan Z/γ∗ → ll̄ processes. Note that in the model
presented in this section this cut would lead to a suppression of the signal. Other channels
presented above are similar to the higgsino-like neutralino case, up to the number of jets in
the final state.

If the value of ζ is rather small one of the neutralinos will decay outside of the detector
leading to signatures with larger amount of /ET as shown in Table 5.12. The leptonic decays
of one of the neutralinos inside the detector lead to a perfect opposite-sign signature. As
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category χ0
1 decays LHC signature

leptonic W+W−ll̄ → l̄lll̄νν

3j + 2l + 2l̄ + /ET

W+W+ll → l̄l̄llνν
W−W− l̄l̄ → lll̄l̄νν
ZW− l̄ν → ll̄ll̄νν
ZW+lν → ll̄l̄lνν
ZZνν → ll̄ll̄νν

(opposite sign, ZW+lν → ννl̄lνν
/ET from Z) ZW− l̄ν → ννll̄νν 3j + 1l + 1l̄ + /ET

ZZνν → ννll̄νν

semi-leptonic W+W−ll̄ → jjlll̄ν
W+W+ll → jjl̄llν 5j + 2l + 1l̄ + /ET
ZW+lν → ll̄jjlν

W+W−ll̄ → jjl̄ll̄ν
W−W− l̄l̄ → jjll̄l̄ν 5j + 1l + 2l̄ + /ET
ZW− l̄ν → ll̄jjl̄ν

ZW+lν → jjl̄lνν
ZW− l̄ν → jjll̄νν 5j + 1l + 1l̄ + /ET
ZZνν → jjll̄νν

W+W−ll̄ → jjjjll̄ 7j + 1l + 1l̄

(same sign, W+W+ll → jjjjll 7j + 2l
no /ET ) W−W− l̄l̄ → jjjjl̄l̄ 7j + 2l̄

single lepton ZW+lν → jjjjlν 7j + 1l + /ET
(/ET from Z) ZW− l̄ν → jjjjl̄ν 7j + 1l̄ + /ET

ZW+lν → ννjjlν 5j + 1l + /ET
ZW− l̄ν → ννjjl̄ν 5j + 1l̄ + /ET

all-hadronic ZZνν → jjjjνν 7j + /ET
(/ET from Z) ZZνν → ννjjνν 5j + /ET

invisible ZZνν → νννννν 3j + /ET
(/ET from 2 Z)

Table 5.11: Possible final states assuming process (5.8) if both neutralinos decay inside the
tracking volume. In general more complicated signatures can arise.

mentioned above this signature can be hidden if one rejects events where the invariant mass
distribution of the lepton pair is in the range of the Z boson mass. A universally working
strategy is the search for single lepton events with large amount of missing transverse energy.

In general, the applicability and the reach of the usual SUSY searches applied to the
models presented in this work depends crucially on the size of R-parity breaking. In order
to further evaluate this statement, we investigated a number of characteristic variables in
supersymmetric events for the case of bino-like neutralino. The situation in higgsino-like
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category χ0
1 decays LHC signature

leptonic W+l → l̄lν
(opposite sign) W− l̄ → ll̄ν 3j + 1l + 1l̄ + /ET

Zν → ll̄ν

single lepton W+l → jjl 5j + 1l + /ET
W− l̄ → jjl̄ 5j + 1l̄ + /ET

all-hadronic Zν → jjν 5j + /ET

invisible Zν → ννν 3j + /ET

Table 5.12: Possible final states assuming process (5.8) if one of the neutralinos decays outside
the tracking volume. In general more complicated signatures can arise.

 = 3e-8 c
Entries  44504
Mean    2.956
RMS     1.839

 = 3e-8 c
Entries  44504
Mean    2.956
RMS     1.839

Neutralino GammBeta

N
eu

tr
a
li
n
o
s/

1
0

fb
−

1

βγ
0 1 2 3 4 5 6 7 8 9 10

0

200

400

600

800

1000

1200

1

Figure 5.6: βγ distribution of neutralinos at generator level for benchmark point HH27 (see
Table 5.14). The number of neutralinos corresponds to twice the number of the events scaled
to 10 fb−1 at

√
s = 7 TeV.

case should be comparable or even worse, since there is no /ET from Z decays. The events
were generated with PYTHIA as described in the next section, with the mSUGRA boundary
conditions m1/2 = m0 = 270, tanβ = 10, A0 = 0, and µ > 0. R-parity violating neutralino
decays were taken into account.

Fig. 5.6 shows the distribution of the βγ factors of the neutralinos. This factor enters the
formula for the neutralino decay length and one sees from the plot that analytic results in the
literature, which have been computed with βγ = 1, are correct within one order of magnitude.
The most important kinematic property connected with the neutralino decay length is the
amount of missing transverse momentum /pT which is shown in Fig. 5.7 for different values of
the R-parity violation parameter ζ. The missing transverse momentum was computed as the
sum of the transverse momenta of all neutrinos produced in the detector before the hadronic
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Figure 5.7: /pT distribution at generator level for benchmark point HH27 (see Table 5.14)
and different values of the R-parity breaking parameter ζ. Generator level /pT is defined as
sum over the pT of i) neutralinos decaying outside of the detector (see Section 5.2.4) and ii)
all neutrinos produced inside of the detector. The number of events is scaled to 10 fb−1 at√
s = 7 TeV.

particle transverse momentum pseudorapidity vertex position

electron pT > 7 GeV |η| < 2.5 r < 400 mm |z| < 1300 mm
muon pT > 6 GeV |η| < 2.5 r < 4000 mm |z| < 6000 mm

Table 5.13: Cuts for the generator level particle selection for the study of particle multiplicity.

calorimeter (r < 1800 mm, |z| < 3700 mm) and the transverse momenta of the neutralinos
decaying outside the hadronic calorimeter. The /pT distribution of the R-parity conserving

model ζ = 0 cannot be distinguished from the model with ζ = 1 × 10−9. However, the
distribution is significantly different for ζ = 3 × 10−8 since in this case most events have
only very little missing transverse momentum due to early neutralino decays. This suggests
that our model could only hardly be discovered in usual searches relying on /ET , in both bino
and higgsino-like neutralino cases. Thus, it is crucial to reinterpret the usual SUSY searches
at the LHC assuming now small R-parity violation as advocated in the present work, cf.
Section 4.3.3.

Another general feature of models with relatively large ζ is the large possible number of
leptons in the final state, illustrated in Fig. 5.8. The generator level particles selected for this
plot had to fulfill the criteria shown in Table 5.13 imposed in order to select leptons from
hard processes which could be reconstructed in a realistic detector. The cuts on the vertex
position represent a pessimistic estimate of the reconstruction efficiency (see Section 5.2.4).
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Figure 5.8: The number of generated particles per event for the benchmark point HH27 after
selection cuts described in Table 5.13. The color code for the curves in both plots is given in
Fig. 5.8b. The number of events is scaled to 10 fb−1 at

√
s = 7 TeV.

5.2.3 Search Strategies

As mentioned in the previous section, one of the striking features of the presented model are
events with secondary vertices and possibly many leptons in the final state. The search for
a secondary vertex is crucial in order to ensure the R-parity violating nature of the decays.
Possible search strategies can be optimized in order to find some of the channels described
in Tables 5.9, 5.10, 5.11, and 5.12. It is remarkable that many channels allow for the full
reconstruction of the neutralino mass: all decay chains including Z bosons in case of bino-like
neutralino or decay chains with hadronically decaying W bosons in both bino and higgsino-
like neutralino case. The reconstruction of the neutralino mass from the particles produced in
the Z boson decay depends crucially on the full reconstruction of the secondary vertex, which
is beyond the scope of this work2. This method of neutralino mass reconstruction works also
in R-parity conserving models where the neutralino decays into Z boson and gravitino [245].

For example, one promising strategy in case of higgsino-like neutralino is based on events
with zero jets and four leptons in the final state. Another strategy working for all ζ values
considered in this work and for both higgsino and bino-like neutralino is based on single lepton
events with some number of hard jets and missing transverse energy larger than 90 GeV. After
the preselection one could look for events where the lepton is coming from a secondary vertex
and try to reconstruct the W boson mass from a jet pair. In the final step one could try to
reconstruct the neutralino mass from the jets selected in the previous step and the lepton.
This search can be easily accommodated within the existing ATLAS search for secondary
vertices [211], cf. Section 4.3.3. However, such study depends crucially on the knowledge
of the detector response in the case of late decaying particles. A neutralino can decay in
various detector components and lead to unusual signals. Furthermore, for such values of ζ
where most decays take place not in the tracker this search would be successful only after the

2The four-vector pointing to the secondary vertex and the three-momenta of the leptons or jets from the Z
boson provide sufficient information for the reconstruction of the neutralino mass.
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experiments have gathered a very large number of inverse femtobarns of data. Additionally,
the mass resolution is limited by the uncertainty in the jet energy scale and by the uncertainty
in the determination of the jet momentum direction.

We will focus our study on leptonic final states from bino-like neutralino decays, which
have a particularly clean signature, and reconstruct the Z boson coming from a secondary
vertex. We will use only muon and track objects for which we assume to have modeled
a realistic detector response (see Section 5.2.4). A possible background for this search are
cosmic muons leaving no track in the detector. It is important to note that one would miss the
signal in this channel entirely if one imposes a cosmic muon veto which rejects all events with
muon pairs having no associated tracks (cf. [248]). While the search for secondary vertices in
singe lepton events can be used for the discovery of decaying neutralinos, our study presented
in the following section can be used for the determination of the neutralino wave function,
since it is expected to fail in the case of the higgsino-like neutralino. Additionally, this search
can be performed without the use of the tracker for the detection of secondary vertices, and
hence it can lead faster to a discovery in case of the bino-like neutralino.

5.2.4 Simulation of Signal and Background

Benchmark Points

A typical set of boundary conditions for the supersymmetry breaking parameters of the MSSM
at the grand unification scale is given by equal scalar and gaugino masses, m0 = m1/2. These
boundary conditions lead to a bino-like neutralino χ0

1 as NLSP. We choose a representative
value of tanβ and set the scalar trilinear couplings to zero,

A0 = 0 , tanβ = 10 . (5.9)

Thus, the universal gaugino mass remains the only independent supersymmetry breaking
parameter which will be varied in the present study. These boundary conditions correspond
to the CMSSM choice (A) in Section 4.4.

We will ignore at this stage the recent LHC exclusion limits for the Higgs boson mass, since
they can be accommodated by changing the values ofm0 and A0, cf. Section 4.4. Furthermore,
we will neglect the LHC hint for a Higgs boson with a mass of 125 GeV. On the other hand,
we chose the parameter points to be still allowed after the ATLAS search for secondary
vertices (cf. [211], Section 4.3.3 and Tab. 5.15), and to be consistent with our analysis in
Section 4.4 . In the present study the lightest superparticle spectrum corresponds to the
choice m0 = m1/2 = 270 GeV (HH27). At this benchmark point the NLSP is a neutralino
with mass mχ0

1
= 105.8 GeV and the lightest Higgs boson has a mass mh = 110.4 GeV.

In order to probe the region of gluino and squark masses accessible at the LHC [251], we
increase the gaugino mass parameter in four steps: m1/2 = 350, 500, 650, 800 GeV. Some
particle masses at these points are shown in Table 5.14. For the different benchmark points the
production cross sections, calculated with PROSPINO at

√
s = 7 TeV, are given in Table 5.15.

For the R-parity breaking parameter ζ we choose the following values: ζ = 3 × 10−8,
ζ = 2 × 10−8, 1 × 10−8, 5 × 10−9, 1 × 10−9, 5 × 10−10 and 1 × 10−10. Thus, we are probing
the wide range of the R-parity breaking coupling starting right above the lower bound of
ζ . 1.4× 10−8, cf. Section 4.4.1.
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GUT masses particle masses

m0 m1/2 mχ1
0

mh mg̃ mũ

HH27 270 270 105.8 110.5 662.4 653.4
HH35 350 350 140.5 112.5 841.7 831.8
HH50 500 500 205.7 115.1 1170 1160
HH65 650 650 271.5 116.7 1492 1481
HH80 800 800 337.8 117.9 1809 1798

Table 5.14: Definition of the benchmark points together with some particle masses; all masses
are in GeV.

partial crosssections [fb]

σ(q̃g) σ(q̃q̃) σ(q̃q̃) σ(gg) σ(tot) [fb]

HH27
1090 682 256 208 2236
(739) (570) (174) (83) (1566)

HH35
172 149 38 26 385

(105) (126) (25.2) (8.47) (265)

HH50
8.91 11.8 1.7 0.95 23.36

(4.36) (10.1) (1.02) (0.206) (15.7)

HH65
0.579 1.01 0.0943 0.0466 1.73

(0.216) (0.877) (0.0458) (6.37× 10−3) (1.145)

HH80
0.0379 0.0805 5.37× 10−3 2.44× 10−3 0.126

(0.0109) (0.0723) (1.98× 10−3) (0.203× 10−3) (0.0854)

Table 5.15: Production cross sections at NLO (LO) at the benchmark points calculated with
PROSPINO.

Major Backgrounds

Bino-like neutralino decays always have W and Z bosons in the final state (cf. Fig. 4.3) if one
neglects the decays into the Higgs boson, as it is done in the present analysis. We focus on the
reconstruction of Z boson decays to muon pairs. Therefore, we only consider SM backgrounds
which lead to at least two muons in the final state originating from W or Z bosons:

• tt̄ production: W bosons from top quark decays.

• Z production

• Di-boson production (WW, WZ, ZZ)

• Tri-boson production (WWW, WWZ, ZZW, ZZZ)

Table 5.16a gives an overview of the background samples used in our analysis. We have
simulated 10 times more signal events for small values of ζ than for large values of ζ in
order to improve the statistics. The numbers then correspond to 100, 10 fb−1, respectively.
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sample σ [pb] events

expected simulated

tt̄ 163 1.6× 105 11.3× 106

Z 977 9.7× 105 7× 105

W+W− 44.974 4.5× 104 1 000× 103

W+Z 11.580 }
17775 400× 103

W−Z 6.342
ZZ 6.195 6195 150× 103

W+W−W+ 4× 10−2 40 15 000
W+W−Z 3× 10−2 30 15 000
W+ZZ 9× 10−3 9 15 000
ZZZ 3× 10−3 3 5 629

(a) Samples of SM background. The cross sections for the tri-
boson events are calculated at the Born level with MADGRAPH, all
other cross sections are taken from [234,235,253]. The number
of expected events corresponds to an integrated luminosity of
1 fb−1.

ζ events

HH27
≥ 5× 10−9 22280
≤ 1× 10−9 222800

HH35
≥ 5× 10−9 10000
≤ 1× 10−9 100000

HH50
≥ 5× 10−9 10000
≤ 1× 10−9 100000

HH65
≥ 5× 10−10 10000

1× 10−10 100000

HH80 all ζ 10000

(b) Samples of signal events for different
benchmark points (see Table 5.14) and
ζ = α× 10−9 (α = 0.1, 0.5, 1, 5, 10, 20,
30).

Table 5.16: Monte Carlo samples of SM background and signal events used for our analysis.

We assume that pure QCD background can be efficiently suppressed in multi-lepton final
states with high transverse momentum (cf. [249, 252]). It turns out that tt̄ is the most
important background. Since, consequently, the best statistics is needed for this channel,
we have simulated about hundred times more events than expected at 1 fb−1. This is also
roughly true for all other backgrounds, except for the Z boson production where the number
of simulated events corresponds to the number of expected events at 1 fb−1.

Event Simulation

All Monte Carlo samples were generated using CTEQ6L1 parton distribution functions. For
the simulation of the background we used MADGRAPH 4.4.44 interfaced with PYTHIA 6.4.22.

Our simulation of the signal events relied on the following procedure. First, supersym-
metric mass spectra were calculated with a modified version of SOFTSUSY assuming mSUGRA
boundary conditions and R-parity conservation. The latter assumption is justified due to the
tiny amount of R-parity breaking in our model. The SOFTSUSY version was modified in order
to produce additionally to the spectrum, the R-parity violating neutralino decay width and
branching ratios according to eq. (4.84), except for the decay channel into the Higgs boson and
neutrino. The SOFTSUSY mass spectra were fed into SDECAY via the MADGRAPH homepage [254]
in order to calculate the decay widths of the SUSY particles (besides the neutralino LSP). In
the next step neutralino decay information was included into the SDECAY output. The signal
process (production of gg, gq̃, q̃q̃ and q̃q̃) was simulated with MADGRAPH and then given to
PYTHIA for computation of all subsequent decays according to the SDECAY output as well as
for parton showering and hadronization. Table 5.16b shows the signal samples used in our
analysis.

The generic detector simulation DELPHES, tuned to the CMS detector, was used in order to

118



5.2. R-PARITY VIOLATION

z [m]

r
[m

]

Muon System

Magnet

HCAL

ECAL

Tracker

Pixel

η = 2.4

10 12
0
0

2

2

4

4

6

6

8

8
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Figure 5.9: Layout of one quarter of the generic detector used for particle identification.

account for effects of event reconstruction at the detector level. However, DELPHES describes
the detector geometry solely in terms of angular variables, i.e. the detector is stretched
infinitely in the radial direction. This approximation is sufficient for most studies involving
prompt decays but is untenable in the case of late decaying particles. We overcome this
obstacle by adding vertex information from particles at the generator level to objects at the
detector level. Usually, this information is provided by the detector simulation. Our procedure
is described in detail in the following section. We emphasize that a full detector simulation,
which includes vertex reconstruction, needs to be done to improve our analysis.

Muon Reconstruction Process

Particles produced in the late decay of the neutralino will not be properly reconstructed in
a real detector if the position of their vertex is beyond or even within the crucial detector
component responsible for the respective identification. For example, an electron produced
inside of the electromagnetic calorimeter will leave no track in the tracker and will therefore
be identified as a photon or jet. In order to simulate the detector response to such events,
we use a detector geometry in the (r, z) coordinates, which is inspired by the CMS detector
at the LHC (see Fig. 5.9). The angular position of the detector components is given by the
CMS tune of DELPHES.

In order to be as conservative as possible, we only use muon and track objects for the
present analysis, since these objects allow a simple simulation of detection efficiency losses
due to the finite size of the detector. Namely, we assume that a muon can be reconstructed
as long as its vertex is in front of the muon chambers, and analogously a track can be
reconstructed if it originates approximately in the first third of the tracker (This region is
called pixel detector in Fig. 5.9). For the matching between generator level particles and
objects reconstructed by DELPHES we use the distance in pseudorapidity η and azimuthal
angle φ, defined as ∆R =

√
(∆φ)2 + (∆η)2.

In the following we will call generator level muons, produced by PYTHIA, GenMuons,
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objects reconstructed by DELPHES we use the distance in pseudorapidity η and azimuthal

angle φ, defined as ∆R =
√

(∆φ)2 + (∆η)2.

In the following we will call generator level muons, produced by PYTHIA, GenMuons,

muons reconstructed initially by DELPHES muon candidates, and track objects reconstructed

by DELPHES RecoTracks. Only GenMuons and RecoTracks have the coordinates of their

vertex.

First, we perform the following pT cuts on muon candidates and RecoTracks:

• pT (µ) > 20GeV,

• pT (Track) > 15GeV.

These cuts are guided by our SUSY search strategy (cf. section 5), since we expect that

muons coming from Z-boson decay have high pT , and a sufficiently high pT cut can effec-

tively suppress QCD fake leptons. Furthermore, DELPHES itself reconstructs only muons

with pT above 10 GeV. Additionally, these cuts were optimized in order to get a realistic

muon reconstruction efficiency (see section 4.5).

In the second step vertex information is added to the muon candidates by matching

with GenMuons:

• A GenMuon is selected for matching with muon candidates if its vertex lies in front

of the muon system: rµ =
√

x2 + y2 < 4000mm, |zµ| < 6000mm (see figure 8).

• The ∆R distance between each selected GenMuon and all muon candidates is com-

puted.

• A GenMuon vertex is added to the muon candidate closest in ∆R, if ∆R < 0.1 and

GenMuon and muon candidate have the same charge.

• Muon candidates with added vertex information are called RecoMuons.

In the final step, muons with or without signal in the tracker are distinguished:

• A RecoTrack is selected for matching with RecoMuons if the track vertex lies in the

following range: rT < 400mm , |zT | < 1300mm.
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Figure 5.10: Muon reconstruction process.

muons reconstructed initially by DELPHES muon candidates, and track objects reconstructed
by DELPHES RecoTracks. Only GenMuons and RecoTracks have the coordinates of their vertex.

First, we perform the following pT cuts on muon candidates and RecoTracks:

• pT (µ) > 20 GeV,

• pT (Track) > 15 GeV.

These cuts are guided by our SUSY search strategy (cf. Section 5.2.5), since we expect that
muons coming from Z boson decay have high pT , and a sufficiently high pT cut can effec-
tively suppress QCD fake leptons. Furthermore, DELPHES itself reconstructs only muons with
pT above 10 GeV. Additionally, these cuts were optimized in order to get a realistic muon
reconstruction efficiency, see next section.

In the second step vertex information is added to the muon candidates by matching with
GenMuons:

• A GenMuon is selected for matching with muon candidates if its vertex lies in front of
the muon system : rµ =

√
x2 + y2 < 4000 mm, |zµ| < 6000 mm (see Fig. 5.9).

• The ∆R distance between each selected GenMuon and all muon candidates is computed.

• A GenMuon vertex is added to the muon candidate closest in ∆R, if ∆R < 0.1 and
GenMuon and muon candidate have the same charge.

• Muon candidates with added vertex information are called RecoMuons.

In the final step, muons with or without signal in the tracker are distinguished:

• A RecoTrack is selected for matching with RecoMuons if the track vertex lies in the
following range: rT < 400 mm , |zT | < 1300 mm.

• Each selected RecoTrack is matched with the RecoMuon closest in ∆R, if ∆R < 0.1.

• Matched RecoTracks and RecoMuons are called tracker muons. RecoMuons which
cannot be matched with RecoTracks are called chamber muons. Each RecoMuon is
therefore either a tracker muon or a chamber muon.
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Figure 1: Muon reconstruction efficiency for the benchmark point HH27.
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Figure 5.11: Muon reconstruction efficiency for the benchmark point HH27.

After the reconstruction procedure one is left with two kinds of muon objects: (i) chamber
muons which have no track in the tracker and are therefore reconstructed solely by the muon
chambers, and (ii) tracker muons which have a track. The muon reconstruction process is
depicted in Fig. 5.10. The ∆R matching condition has been optimized in order to get a
realistic muon reconstruction efficiency (see next section).

Muon Reconstruction Efficiency

In order to test our method of obtaining physically sensible objects, we compute the muon
reconstruction efficiency in the following way:

• Muons are created as described above.

• GenMuons are matched with RecoMuons without any constraints on the position of the
GenMuon vertex.

• The number of successfully matched objects is compared binwise (in bins of r and |z|)
with the number of all GenMuons.

The second condition is necessary in order to see whether the assignment between RecoMuons
and GenMuons is correct. Since the matching procedure only relies on angular variables, it is
possible that a RecoMuon originally matched with a GenMuon created in front of the muon
chamber belongs in fact (i.e. has smaller angular distance) to a GenMuon coming from a
decay inside the muon chamber or even outside of the detector. Such wrong matchings would
be seen in the efficiency plot as efficiencies not equal to zero in regions where muons could
not be detected by the detector defined above (rµ > 4000 mm, |zµ| > 6000 mm).

Fig. 5.11 shows the computed muon efficiency in bins of r and |z|. As expected one sees
a sharp decline in efficiency in the r plot at rµ = 4000 mm, where the hard cut applies. The
decline in the z plot is gradually, since physical particles have to fulfill both r and |z| criteria.
The particles originating at small values of r and large values of |z| are not reconstructed due to
the limited pseudorapidity coverage of the muon detector. The efficiency stays at zero beyond
r = 4000 mm and |z| = 6000 mm as expected, confirming our method of muon reconstruction.
We expect that the computed muon efficiency agrees within 15 % with efficiencies of present
LHC detectors including losses due to muon-jet separation requirements.
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5.2.5 Search for the Neutralino Decay χ0
1 → Zν

As described in Section 5.2.3, our study is focused on the channel χ0
1 → Zν → µ+µ−ν. This

channel possesses certain physical and technical advantages. On the physical side reliable
muon identification is possible already in the early stage of the LHC data taking and one can
assume that QCD background can hardly fake two muons at the same time. Furthermore,
this signal leads to spectacular events and has no easily identifiable SM background at all, as
shown in this section. Additionally, the muon chamber is the detector component which is
farthermost away from the primary vertex and hence one can expect that it will be possible
to detect a significant number of clean late time decays even for very small R-parity breaking.
On the technical side, muons seem to be the simplest objects for which a realistic detector
response can be modeled within DELPHES (see Section 5.2.4), due to the limitations of this
simulation in the presence of secondary vertices.

The spectacular feature of this signal are opposite sign muon pairs with invariant mass
close to the Z boson mass, which have either associated tracks in the tracker with clearly
visible secondary vertices or no associated tracks at all. Such muon pairs can only be hardly
generated by usual SM background as it will be shown in the following. However, a similar
signal can arise from cosmic muons traversing the detector. We could not create a Monte
Carlo background sample for cosmic muons, and we simply assume that such background can
be suppressed by use of the full timing information of the event: cosmic muons will first cause
a signal in the muon chamber which is closest to the ceiling of the experimental hall followed
by a signal in the opposite direction.

An intrinsic background for the presented search are muon pairs from R-parity violating
decays, where one muon is coming from the W boson decay while the other muon is coming
either from the neutralino decay into the W boson in either of the two branches or from the
W or Z boson decay in the second branch, cf. Fig. 5.5. This background can be suppressed
if one has access to the corresponding tracks by demanding that both of them originate from
the same vertex. In the case of muons without tracks this background is irreducible. However
it belongs itself to the signal one is looking for.

Event Selection

In order to find the signal we now employ a series of simple cuts on the reconstructed objects
(muons, tracker muons, and chamber muons). As we will see, already with an integrated
luminosity of only 1 fb−1 at

√
s = 7 TeV a discovery of the benchmark scenario HH27 with

ζ = 3× 10−8 is possible.

First, we perform a selection cut on the number of muons in the event:

• N(muons) ≥ 2.

We define two event classes depending on the number of tracker muons:

• Class 1: event contains at least two tracker muons N(tracker muons) ≥ 2.

• Class 2: otherwise.

From the description of the signal presented above, we implement additionally two sets of
cuts depending on the class of the event. The cuts for Class 1 events are:
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background signal

tt̄ Z di- tri- ζ

boson 3× 10−8 10−9

before cuts 11300000 700000 1550000 50629 22280 220000
N(muons) ≥ 2 89951 9458 16586 1506 2912 4404

Is Class 1 89951 9458 16586 1506 1049 4342
80 GeV < Mµ+µ− < 100 GeV 12654 9118 11294 1051 195 980

d(Vertex) > 5 mm 39 0 0 0 49 13
∆d(Vertex)ij < 5 mm 1 0 0 0 36 0

Is Class 2 89950 9458 16586 1506 2876 4404
N(chamber muons) ≥ 2 0 0 0 0 1049 18

80 GeV < Mµ+µ− < 100 GeV 0 0 0 0 138 2

Total 1 0 0 0 174 2

Table 5.17: Cut flow for HH27 at
√
s = 7 TeV. The number of signal events for ζ = 3× 10−8

(ζ = 1× 10−9 ) corresponds to an integrated luminosity of 10 fb−1 (≈ 100 fb−1).

• All possible invariant masses of opposite sign tracker muons are computed. An event
passes the cut if at least one invariant mass is in the range of the Z boson mass: 80 GeV <
Mµ+µ− < 100 GeV. If the event contains more than one appropriate combination of the
tracker muons, the muons from the combination with invariant mass closest to the Z
boson mass are selected for further analysis.

• d(Vertex) > 5 mm: Each of the tracks associated with the two selected tracker muons
should have a vertex which is further than 5 mm away from the primary vertex. This
value is approximately one order of magnitude larger than the current resolution of the
inner tracker (cf. [252,255]).

• ∆d(Vertex)ij < 5 mm: The distance between the two track vertices should be less than
5 mm.

• If the event fails one of the cuts it is classified as a Class 2 event.

The cuts for Class 2 events are:

• N(chamber muons) ≥ 2: If an event has less than two tracker muons, it should have at
least two chamber muons.

• All possible invariant masses of opposite sign chamber muons are computed. An event
passes the cut if at least one invariant mass is in the range of the Z boson mass:
80 GeV < Mµ+µ− < 100 GeV.

Since each Class 1 event is classified as a Class 2 event if it fails one of the cuts, no signal
event is discarded because of the presence of muons with tracks not coming from neutralino
decay.

Most events will fall into the second class. The analysis is then very simple and amounts
to the search for events with muons without associated track in which the invariant mass of a
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muon pair lies in the Z boson mass range. The cut flow is given in Table 5.17. As expected,
no background events survived the cuts (assuming integrated luminosity of 1 fb−1), since
no standard model process should produce secondary vertices so far away from the primary
interaction point. One background event from tt̄ production survives the cut, assuming eval-
uation of 100 fb−1 of data. This event could originate from highly boosted B meson decay
into a final state containing two muons. We conclude that SM contributions to the selected
events would be vary rare. However, the major uncertainty in this study, the number of
the background events from cosmic muons, cannot be estimated with the present software.
Therefore, a full fledged analysis with full detector simulation taking into account the cos-
mic muon background is needed. In the following, we assume that this background can be
efficiently suppressed with the full timing information of the event as described in the intro-
duction to Section 5.2.5. Furthermore, we only estimate the systematic uncertainty due to
the background and neglect statistical errors and the uncertainty of the muon reconstruction
efficiency.

The significance of the signal is computed with the profile likelihood method [256] in-
corporated in the SIGCALC code [257]. We assume an integrated luminosity of 1 fb−1 at√
s = 7 TeV LHC and a ten times higher Monte Carlo luminosity LMC = Nb/σb = 10 fb−1

for all the background events. At this integrated luminosity 17 signal events and no back-
ground events survive the cuts, which corresponds to a significance ZPL = 9.03. Instead, if
one makes the pessimistic estimate that 1 background event from the cosmic muons passes
the cuts one finds a significance ZPL = 6.39. Therefore, we conclude that at the benchmark
point HH27 with ζ = 3 × 10−8, R-parity breaking neutralino decays can be discovered with
the first inverse femtobarn of LHC data. Note that since the actual amount of data collected
by the LHC experiments exceeds 1 fb−1 , it is crucial that they perform new searches for
secondary vertices.

Discovery Reach at the LHC

In the previous section we have studied in detail the benchmark point HH27: m1/2 = m0 =
270 GeV, which yields the rather small superparticle masses mχ0

1
= 106 GeV, mg ' 660 GeV

and mq̃ ' 650 GeV for the light quark flavors (cf. Table 5.14). From the decay rates given
in Section 4.2.2 and the phase space factors shown in Fig. 4.14a one obtains for decay length
and branching ratio into Z boson/neutrino final states:

cτχ0
1
' 31 m

(
ζ

10−8

)−2

, BR(χ0
1 → Zν) ' 0.17 . (5.10)

Based on the production cross sections listed in Table 5.15 an integrated luminosity L =
10 fb−1 yields about 22000 events and therefore 44000 NLSPs.

We have studied this benchmark point for two different values of the R-parity breaking
parameter: ζ = 3 × 10−8 and ζ = 1 × 10−9. For the larger value of ζ one has cτχ0

1
' 3.4 m.

Hence, essentially all neutralinos decay inside the detector, most of them close to the origin.
The spacial distribution of secondary vertices is displayed in the contour plot Fig. 5.12. Using
BR(Z → µ+µ−) ' 0.034 and the branching ratio given in Eq. (5.10), one concludes that
there are 251 events with a secondary χ0

1-decay vertex, which contain a µ+µ− pair with
Mµ+µ− 'MZ . This is consistent with the simulation which yields 282 events in the detector
volume (cf. Fig. 5.13) and 174 events passing all cuts (cf. Table 5.17). The locations of the
secondary vertices of these events are shown in Fig. 5.13.
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Figure 1: Contour plot for the density of neutralino decays inside the detector per m−3;
the numbers on the horizontal boundaries of the detector components correspond to the
total number of decays in the enclosed volume; m1/2 = m0 = 270GeV, ζ = 3 × 10−8 and
L = 10 fb−1.
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Figure 2: Location of secondary vertices for the decays χ0
1 → Zν with Z → µ+µ− (blue

crosses: inside pixel detector, black dots: outside pixel detector); the numbers on the hor-
izontal boundaries of the detector components give the number of decays in the enclosed
volume; m1/2 = m0 = 270GeV, ζ = 3 × 10−8 and L = 10 fb−1.
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Figure 5.12: Contour plot for the density of neutralino decays inside the detector per m−3;
the numbers on the horizontal boundaries of the detector components correspond to the
total number of decays in the enclosed volume; m1/2 = m0 = 270 GeV, ζ = 3 × 10−8 and
L = 10 fb−1.
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Figure 1: Contour plot for the density of neutralino decays inside the detector per m−3;
the numbers on the horizontal boundaries of the detector components correspond to the
total number of decays in the enclosed volume; m1/2 = m0 = 270GeV, ζ = 3 × 10−8 and
L = 10 fb−1.
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Figure 2: Location of secondary vertices for the decays χ0
1 → Zν with Z → µ+µ− (blue

crosses: inside pixel detector, black dots: outside pixel detector); the numbers on the hor-
izontal boundaries of the detector components give the number of decays in the enclosed
volume; m1/2 = m0 = 270GeV, ζ = 3 × 10−8 and L = 10 fb−1.
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Figure 5.13: Location of secondary vertices for the decays χ0
1 → Zν with Z → µ+µ− (blue

crosses: inside pixel detector, black dots: outside pixel detector); the numbers on the horizon-
tal boundaries of the detector components give the number of decays in the enclosed volume;
m1/2 = m0 = 270 GeV, ζ = 3× 10−8 and L = 10 fb−1.
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CHAPTER 5. HIDDEN SUPERSYMMETRY AT THE LHC

For the smaller value of the R-parity breaking parameter, ζ = 1× 10−9, the decay length
increases to cτχ0

1
' 3.1 km. Now most neutralino NLSPs decay outside the detector. This is

apparent from Fig. 5.14 where the total number of decays in the different subvolumina of the
detector are given. Compared to ζ = 3 × 10−8, the number of decays inside the detector is
smaller by a factor ∼ 200, which roughly corresponds to the ratio of the decay lengths, as
suggested in [214].

According to the simulation described in the previous section, for ζ = 1 × 10−9 an inte-
grated luminosity of 100 fb−1 is needed to obtain 2 signal events χ0

1 → Zν → µ+µ−ν, which
is consistent with the naive estimate within the statistical uncertainty and the detector effi-
ciency. The number is very small compared to the total number of about 1000 decays in the
detector volume used in the present analysis (cf. Section 5.2.4), which is a consequence of the
tiny branching ratio into the chosen specific final state. It is likely that a substantially larger
fraction of the events can be used in the search for a decaying neutralino. In [214] it has been
argued that already 10 χ0

1 decays inside the detector may be sufficient for the discovery of a
decaying NLSP, which would require an integrated luminosity of only 1 fb−1. It remains to
be seen whether for events with a secondary vertex and jets, signal and background can be
sufficiently well separated.

Let us now consider the benchmark point HH50: m1/2 = m0 = 500 GeV, which implies
the heavier superparticle masses mχ0

1
= 206 GeV and mg ' mq̃ ' 1200 GeV for the light

quark flavors (cf. Table 5.14). The phase space suppression for gauge boson channels is now
negligible, fW ' fZ ' 1, while the Higgs channel is still suppressed. Thus, one obtains for
decay length and branching ratio into Z boson/neutrino final states:

cτχ0
1
' 5.4 m

(
ζ

10−8

)−2

, BR(χ0
1 → Zν) ' 0.32 . (5.11)

The BR into the Z boson is 14% too large, since the Higgs channel was excluded. However,
the error is acceptable. The total production cross section for these heavier gluino/squark
pairs is about two orders of magnitude smaller (cf. Table 5.15), and therefore an integrated
luminosity L = 10 fb−1 only yields 460 NLSPs.

We have studied this benchmark point again for the two different values of the R-parity
breaking parameter ζ = 3 × 10−8 and ζ = 1 × 10−9. For the larger value of ζ one has
cτχ0

1
' 60 cm, and essentially all neutralinos decay inside the detector. The branching ratio

into the considered final state is now somewhat larger, BR(χ0
1 → Zν → µ+µ−ν) ' 0.01, so

that one expects about 5 events with this final state, which is consistent with our simulation.
Hence, for this larger value of the R-parity breaking parameter and this benchmark point,
the discovery of a decaying NLSP appears feasible already in the early phase of the LHC.

For ζ = 1 × 10−9, the decay length is cτχ0
1
' 540 m and most neutralino NLSPs decay

outside the detector. The spacial distribution of secondary vertices inside the detector, in total
12 for 10 fb−1, is shown in Fig. 5.15. Due to the 1 % branching ratio into the Zν → µ+µ−ν
final state one then estimates that 1000 fb−1 will be needed for a discovery, which is consistent
with our simulation.

In Fig. 5.16 we have summarized the results of our simulations for the decay chain χ0
1 → Zν

with Z → µ+µ−. The benchmark points HH27–HH80 correspond to gluino and squark masses
ranging from 650 GeV to 1800 GeV (cf. Table 5.14). The bands reflect the different number
of events required for a 5σ discovery depending on the simulated background. The central
value corresponds to 6 signal events (with luminosity L) with no background events for a
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Figure 1: Location of all neutralino decays inside of the detector (blue crosses: decays inside
pixel detector; black dots: decays outside pixel detector); the numbers on the horizontal
boundaries of the detector components correspond to the total number of decays in the
enclosed volume; m1/2 = m0 = 270GeV, ζ = 1 × 10−9 and L = 10 fb−1.
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Figure 2: Location of all neutralino decays inside of the detector (blue cross: decay inside pixel
detector; black dots: decays outside pixel detector); the numbers on the horizontal boundaries
of the detector components correspond to the total number of decays in the enclosed volume;
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Figure 5.14: Location of all neutralino decays inside of the detector (blue crosses: decays inside
pixel detector; black dots: decays outside pixel detector); the numbers on the horizontal
boundaries of the detector components correspond to the total number of decays in the
enclosed volume; m1/2 = m0 = 270 GeV, ζ = 1× 10−9 and L = 10 fb−1.
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Figure 2: Location of all neutralino decays inside of the detector (blue cross: decay inside pixel
detector; black dots: decays outside pixel detector); the numbers on the horizontal boundaries
of the detector components correspond to the total number of decays in the enclosed volume;
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Figure 5.15: Location of all neutralino decays inside of the detector (blue cross: decay inside
pixel detector; black dots: decays outside pixel detector); the numbers on the horizontal
boundaries of the detector components correspond to the total number of decays in the
enclosed volume; m1/2 = m0 = 500 GeV, ζ = 1× 10−9 and L = 10 fb−1.
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Figure 5.16: 5σ discovery reach in ζ for quasi-stable neutralino NLSPs via the decays χ0
1 →

Zν with Z → µ+µ−. The different bench mark points correspond to gluino and squark
masses between 650 GeV and 1800 GeV; the bands represent different assumptions about the
background (see text).
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Figure 5.17: Estimate of the 5σ discovery reach in ζ for quasi-stable neutralino NLSPs at
the LHC; the lower (upper) boundary of the bands corresponds to 10 (20) decays inside the
detector. The different bench mark points correspond to gluino and squark masses between
650 GeV and 1800 GeV.
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simulated luminosity of 10 × L; the lower (upper) boundary represents 3 (13) signal events
(with luminosity L) with no (1) background event for a simulated luminosity of 100 × L
(10×L). Since we expect at least 1 background event from tt̄ at 100 fb−1, the upper bounds
represent a realistic estimate of the discovery reach for such large luminosities. We conclude
that with 10 fb−1 a 5σ discovery of a quasi-stable neutralino is possible for squark and gluino
masses of 830 GeV (cf. HH35) and an R-parity breaking parameter ζ = 3 × 10−9, which is
one order of magnitude smaller than the present astrophysical bound, cf. Section 4.3.

We expect that the sensitivity in the parameter ζ can be significantly improved if also
neutralino decays with jets are taken into account. Fig. 5.17 represents an estimate of the
discovery reach for quasi-stable neutralino NLSPs at the LHC, assuming 10–20 decays inside
the detector (cf. [214]). The parameter space, which can be probed, is now significantly
extended. As an example, with 10 fb−1 and squark and gluino masses of 830 GeV (cf. HH35),
one is now sensitive to ζ = 3 × 10−10, which lies two orders of magnitude below the present
astrophysical bound. Correspondingly, for heavier gluinos and squarks, mg ' mq̃ ' 1480 GeV
(cf. HH65), one can probe values of the R-parity breaking parameter down to ζ = 3× 10−9.

5.3 Summary

Supersymmetry could still be just around the corner, even though the corner has now moved
a bit. Should LHC do not observe candidate SUSY signatures within the next year, it will
become clear that SUSY models studied in the last decades are not realized in nature. It is
therefore important to study the collider characteristics of physically well motivated scenarios
beyond the border of simplified models, designed for their simple collider phenomenology, or
simple ad-hoc parametrizations such as the CMSSM. The models considered in the present
work are supersymmetric extensions of the Standard Model consistent with primordial nu-
cleosynthesis, thermal leptogenesis and either neutralino or gravitino dark matter. In both
cases supersymmetry can be easily hidden from the usual SUSY searches relying on missing
transverse energy signature and long decay chains involving many jets.

In the Higgsino World scenario the R-parity is conserved, and the gravitino is either very
heavy or the lightest supersymmetric particle. In both cases the phenomenology at colliders
is governed by the higgsino-like neutralino (N)LSP. Taking the LHC hint for the Higgs boson
mass seriously, the AMSB and hybrid gauge-gravity mediation model predict that all colored
particles are too heavy to be produced at the LHC. The directly produced higgsino pairs
have no pT and decay invisibly, since the mass differences between charged and neutral states
are to small to produce detectable leptons. The only possibility for the discovery is then the
monojet (monophoton) signature, where the missing transverse momentum arises from the
initial state radiation.

Allowing for lower Higgs boson masses, the stops may be accessible at the LHC in the
hybrid gauge-gravity mediation model. Then, with early LHC data, evidence for this model
could be found in jets plus missing transverse energy searches. Moreover, with dedicated
cuts and using also the leptonic search channels, it will be possible to distinguish this model
from more commonly studied standard SUSY frameworks, such as the CMSSM or a bino-LSP
simplified model.

If R-parity is violated in nature and gravitino is the LSP, the LHC phenomenology is
governed by the NLSP decays. Even in the case of a very long lived NLSP, enough particles
decay inside of the detector to change the missing transverse energy signature, such that usual
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searches become ineffective. If the NLSP is higgsino-like neutralino, some of the decay chains
have additionally no jets in the final state.

Nevertheless, the LHC experiments could discover these models by analyzing events in-
volving secondary vertices far away from the primary interaction point. Irrespectively of the
wave function of the neutralino, a search for secondary vertices in single muon events seems
promising. On the other hand, one can focus on events with a clean signature: cascade
processes with jets where one of the produced neutralino NLSPs decays into Z boson and
neutrino, with a subsequent decay of the Z boson into a muon pair. Such events are expected
if the neutralino is bino-like, and therefore this search can be used to reject the higgsino-like
neutralino hypothesis. The results for the discovery reach for quasi-stable neutralino NLSPs
in this case roughly agree with the simple estimates which one obtains from the branching ra-
tios into the Z(µ+µ−)ν final state together with the assumption that these events are nearly
background free. It is remarkable that already with 10 fb−1 a 5σ discovery is possible for
squark and gluino masses of 830 GeV and an R-parity breaking parameter ζ = 3 × 10−9,
which is one order of magnitude smaller than the present astrophysical bound.
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Chapter 6

Conclusions and Outlook

The start of operation of the Large Hadron Collider marks a new milestone in the exploration
of the microcosm which began more than one hundred years ago with the discovery of the
atomic nucleus by Ernest Rutherford. The LHC enters new territory in terms of energy and
therefore length scale, and it is expected that it not only reconfirms the current paradigm by
finding the Higgs boson, but also finds new phenomena expected to be there from theoretical
considerations such as the hierarchy problem. The most studied extension of the Standard
Model stabilizing the Fermi scale is supersymmetry. Besides having rich collider phenomenol-
ogy, SUSY also solves one of the astrophysical puzzles providing a number of possible dark
matter candidates.

However, in spite of numerous predictions for an early discovery, the LHC experiments see
no hints for popular SUSY models so far. The main result of the present work is the conclusion
that supersymmetry is naturally hidden from the usual search strategies in models aiming
for consistency between leptogenesis, primordial nucleosynthesis and dark matter constraints,
especially in the light of the recent LHC hint for the value of the Higgs mass.

Locally supersymmetric extensions of the Standard Model predict the existence of the
spin-3/2 superpartner of the graviton - the gravitino. Assuming that the baryon asymmetry
of the universe is created via the leptogenesis process, which needs high temperature in the
plasma, gravitinos are produced in thermal scatterings in the early universe. If the mass of the
gravitino is very large, it decays before the onset of big bang nucleosynthesis. If the lightest
supersymmetric particle is then the neutralino, it serves as a perfect WIMP dark matter
candidate. On the other hand, the gravitino itself can be the lightest supersymmetric particle
and hence a dark matter candidate. In this case, the next-to-lightest supersymmetric particle
has either to decay before the BBN, or its density should be diluted, for example via late-time
entropy production. The first condition can be satisfied if the R-parity is slightly violated.
Although, the gravitino is no longer stable in this case, its lifetime exceeds the age of the
universe, since its decays are doubly suppressed by the Planck mass and the small R-parity
breaking parameter. Therefore, the gravitino remains a viable dark matter candidate.

The present thesis investigates in detail the phenomenological consequences of locally
supersymmetric models satisfying the conditions sketched above. After a short review of the
main arguments in favor of supersymmetry, we have presented the formalism needed for the
construction of locally supersymmetric extensions of the Standard Model. Since the exact
SUSY breaking mechanism is unknown, we have reviewed a number of models leading to
supersymmetric spectra consistent with cosmology.
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In the AMSB case, the gravitino is very heavy and the only particles accessible at the LHC
are the various higgsino states, the higgsino-like neutralino being the dark matter candidate.
In the hybrid gauge-gravity mediation model of SUSY breaking, the gravitino is the dark
matter candidate, but otherwise the spectrum is similar to the AMSB case, especially if
one demands the Higgs mass to be 125 GeV. Relaxing this requirement, the model can
accommodate a stop which could be produced at the LHC. The decays of the higgsino-
like neutralino NLSP pose no problems for big bang nucleosynthesis either because they are
sufficiently fast if R-parity is violated, or because the density of neutralinos is diluted by the
additional entropy production. If one allows for R-parity violation and neglects the latest
LHC hints for the Higgs boson mass, some parts of the parameter space of mSUGRA models,
which are otherwise excluded, become also viable.

The realization that R-parity violation can make a number of models with gravitino dark
matter cosmologically consistent is the reason for a detailed study of R-parity breaking in this
work. Having presented R-symmetry and argued why R-parity was introduced, we then have
shown that there are no a priori reasons for it to be conserved. Afterwards, we have introduced
various patterns of R-parity breaking. Our focus has lied on the bilinear breaking scenario,
which has been analyzed in a basis of scalar SU(2) doublets, where all bilinear terms vanish.
In this basis one has R-parity violating Yukawa, gaugino and gravitino couplings. They are
given in terms of ordinary Yukawa couplings and 9 R-parity breaking parameters εi, ε

′
i and

ε′′i , i = 1, ..., 3, which are constrained by the flavor symmetry of our model. The R-parity
violating couplings include terms proportional to the up-quark Yukawa couplings, which were
not taken into account in previous analyses. Using this approach, we have been able to
identify a number of gravitino decay channels including all channels found in the literature.
Hereafter, we have presented an explicit model giving rise to small R-parity breaking couplings
from spontaneous breaking of B − L.

The cosmologically consistent SUSY breaking models studied in the present work lead
either to a (bino or higgsino-like) neutralino or a scalar tau NLSP, assuming the scenario
with gravitino dark matter. If R-parity is broken, the collider phenomenology of these models
is governed by the decays of the NLSPs into the particles of the Standard Model. On the
other hand, the decays of the gravitino can lead to a signature in cosmic rays. Using our
description of bilinear R-parity breaking, we have obtained to good approximation analytical
expressions for the R-parity breaking matrix elements of the neutral current, the charged
current and the supercurrent. Using these matrix elements, as well as the trilinear R-parity
breaking couplings, we have explicitly computed R-parity violating gravitino, neutralino and
stau decay widths. In case of the gravitino, we were interested only in the decay into photon
and neutrino. In case of the neutralino, we have given the results for the bino and higgsino-like
neutralino case. All computations, including the gravitino decay, were made using the two-
component formalism for fermions, which is summarized in the appendices. This summary
includes also the new developed tools needed for the computations of gravitino decays.

Having calculated the decay widths of the relevant particles, we have recapitulated the
cosmological bounds on the size of R-parity violation (10−13 . ε . 10−6) and have compared
these bounds with the results obtained indirectly from various processes and with the direct
searches at colliders. The most promising study, which is able to reach the parameter region
favored by cosmology, is the search for muon tracks coming from secondary vertices performed
by the ATLAS experiment at the LHC. However, the most stringent limits on R-parity vi-
olating couplings, so far, can be derived from the bounds on the gravitino lifetime obtained
from the gamma ray searches for decaying dark matter.
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One of the main results of this work is the connection between gravitino and neutralino
decays. We have shown that the lower bound on the neutralino decay length (cτχ0

1
& 4.6 m

bino-like, cτχ0
1
& 24 m higgsino-like) is a direct consequence of the Fermi-LAT constraints on

decaying dark matter. On the other hand, the lower bound on the stau decay length (cττ̃1 & 4
mm) is determined by the cosmological bounds on R-parity breaking couplings, which follow
from the requirement that the baryon asymmetry is not washed out.

In the final chapter we have gone beyond the predictions for the NLSP decay lengths
and have performed a series of studies evaluating the LHC discovery potential for the models
presented throughout the present work using generic detector simulation DELPHES. The main
result of these studies, and of the present work, is the conclusion that all models presented
so far have features which impede a fast discovery at the LHC.

First, we have studied the LHC predictions for AMSB and hybrid gauge-gravity mediation
models which are cosmologically consistent in case of conserved R-parity. The assumption
that the mass of the lightest Higgs boson is 125 GeV, restricts the hybrid scenario to the
heavy spectra, such that the phenomenology of both models is very similar, and is governed
by the higgsino-like neutralino (N)LSP. This is the Higgsino World scenario. Since all colored
superparticles are not accessible at the LHC, only charged and neutral higgsinos are produced
in various electroweak processes. The particles are produced without transverse momentum
and leave thus no missing transverse energy signature. Furthermore, the mass difference
between the charged and neutral higgsino states is very small and therefore no visible leptons
are produced in the decays of the charged higgsinos. We have verified these statements
and showed that the discovery of neutralinos with missing transverse energy signature is
impossible by comparing missing transverse energy and lepton transverse momentum spectra
of the higgsinos and the WZ boson background after detector simulation. Thus, the only
possibility to discover such scenario at the LHC is a monojet of a monophoton signature
arising if the higgsino receives transverse momentum from initial state radiation seen in the
detector as a jet or a photon.

If the Higgs boson mass is below 125 GeV, the hybrid gauge-gravity mediation models
allowing for light stop become viable. In this case, usual SUSY searches could find these
models with more data. We have shown that using leptonic decay channels and dedicated
cuts a discrimination between the hybrid gauge-gravity mediated scenario and the CMSSM
is possible.

R-parity can also be violated in hybrid gauge-gravity SUSY breaking scenario. In this
case, the higgsino LSP will decay into the particles of the Standard Model as described above.
We have investigated which type of signatures would appear at the LHC, and have proposed
search strategies based on the appearance of secondary vertices. Note that SUSY is hidden
from usual searches in this case as well, since the decays of the neutralinos inside of various
detector components distort missing transverse energy signature.

We have investigated the impact of neutralino decays on missing transverse energy in
more detail for the case of bino-like neutralino, which is the NLSP in mSUGRA scenarios. As
stated above, they become allowed if one neglects the LHC hint for the mass of the lightest
Higgs boson. We have presented the distribution of the missing transverse momentum for
different values of the R-parity violating coupling at the generator level. If the value of the
coupling is around 10−9 the distribution becomes similar to the R-parity conserving case and
a large portion of models is excluded by usual SUSY searches. However, the situation is
different for smaller couplings, in which case the missing transverse energy distribution peaks
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at zero.
Finally, we have determined the range of the R-parity breaking couplings which can be

probed at the
√
s = 7 TeV LHC using bino-like neutralino decays into Z boson and neutrino

followed by the decay of the Z boson into a muon pair. This analysis required the imple-
mentation of the finite NLSP decay length into the DELPHES detector simulation. The LHC
experiments should be able to make a 5σ discovery with 10 fb−1 of data for squark and gluino
masses of 830 GeV and an R-parity breaking couplings of order 3× 10−9, which is one order
of magnitude smaller than the present astrophysical bound. Note that this region of the
mSUGRA parameter space is already excluded in case of R-parity conservation.

We conclude that irrespective of the Higgs boson mass, the LHC experiments should look
for unusual signatures like monojets (monophotons) or secondary vertices far away from the
primary interaction point in order not to miss SUSY. If the hint for the Higgs boson mass
becomes confirmed, then some version of the Higgsino World scenario seems probable and
the colored particles are not accessible at the LHC. In this case a linear collider like ILC
or CLIC can become invaluable. Furthermore, it is important to understand the response
of the LHC detectors to neutral particles decaying throughout the whole detector volume.
The impact of such decays on usual searches cannot be understood without the full detector
simulation. It is important to see how the already obtained results which exclude parts of the
MSSM parameter space would change if interpreted in models with R-parity violation. It is
unclear at which value of the R-parity breaking parameter the models become excluded again,
because of the essentially same signature as in the R-parity conserving case. In a future work
we will investigate the LHC discovery prospects for a decaying higgsino-like neutralino.

The best discovery strategy for the future is a combination of LHC searches for new
physics with further direct and indirect dark matter detection experiments. If dark matter is
made of gravitinos all direct detection experiments should not be able to see a signal, even
in the case of R-parity violation [72]. On the other hand, recent astrophysical result [258]
suggests that the structure of the dark matter halo is such that the local dark matter density
is negligible. This would also lead to a negative result for direct detection experiments even
in the case of WIMP dark matter - an interesting conspiracy in nature.

Nevertheless, signals from particle dark matter decays or annihilations should be seen in
various cosmic ray channels. Thus, a combination of a positive or a negative direct detection
result with a signal from cosmic rays and a signature at the LHC should allow for identifying
the nature of dark matter. If only negative results come from above (indirect detection exper-
iments) and below (direct detection experiments and LHC), we will be forced to reevaluate
our understanding of galaxy dynamics, gravitation and quantum field theory. In any case,
mankind will never stop to seek the first principles of things.
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Appendix A

Two Component Spinor Techniques

This appendix summarizes the two-component spinor technique extensively introduced in
[111] and used throughout the present work. Additionally, we provide rules needed for the
computation of the gravitino decays and the derivation of the gravitino polarization tensor in
the two-component formalism. Parts of the presentation follow [111], [259], and [260].

The use of two-component spinors may be motivated from different perspectives. First
of all, in 3+1 dimensions they are the defining elements out of which the more familiar four-
component spinors and world tensors can be readily build. As Penrose and Rindler note:
“Spinor calculus may be regarded as applying at a deeper level of structure of space-time
than that described by the standard world-tensor calculus.” [261]. The reason for this is
the structure of the rotation group SO(3), which is not simply-connected. Rotation of an
object through 2π corresponds to a closed curve in the group manifold which cannot be
continuously deformed to a point. Therefore, rotation through 2π cannot correspond to no
rotation at all, whereas rotation through 4π can. Spinorial objects are geometrical objects
which are congruent with the structure of space-time, such that a rotation through 2π about
any axis will send them into something distinct, and a further rotation through 2π is needed
to send them to the original state. A geometrical description of two-spinors as well as their
application in general relativity can be found in [261].

The use of four-component spinors in particle physics can be motivated in theories which
conserve parity, such as QED and QCD, since Dirac-spinors are four-dimensional irreducible
spinor representations of the orthochronous Lorentz group, which includes space-reversal
[259]. However, the electroweak interactions have a chiral nature, i.e. they maximally vio-
late parity. Therefore, the defining degrees of freedom for matter particles are two-component
spinors, which transform as irreducible representations under the standard model gauge group.
Furthermore, two-component spinors arise naturally in the context of supersymmetric the-
ories, due to the spinorial nature of the supersymmetry generators, and the holomorphic
structure of the superpotential. Even in the case of the parity-conserving QCD, the use of
two-component spinors can be justified, since they tremendously simplify calculations via the
helicity amplitude method. A historical overview as well as citations of the original works on
this topic can be found in [111].

First, we recapitulate the structure of the Lorentz group.
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A.1 Structure of the Lorentz Group

The space-time background of QFT is flat Minkowski space M. The Lorentz-invariant inner
product of two vectors x and y in M, with components xµ and yµ, is given by

xy = xµyµgµν , (A.1)

where
(gµν) = diag(+1,−1,−1,−1) (A.2)

is the metric tensor. A Lorentz transformation Λ : M → M is a linear transformation
satisfying (Λx)(Λy) = xy. The set of all Lorentz transformations forms the Lorentz group
L. From Eq. (A.1) follows that every Λ ∈ L satisfies following equation (treating g and Λ
as matrices):

ΛT gΛ = g. (A.3)

From this equation follows that detΛ2 = 1 and thus detΛ = ±1. The 00-component of the
equation A.3 reads:

(
Λ0

0

)2 −
3∑

i=1

(
Λi0
)2

= 1. (A.4)

what leads to
∣∣Λ0

0

∣∣ ≥ 1. Thus the group L consists of four topological components:

L↑+ : detΛ = +1 Λ0
0 ≥ 1 contains the identity

L↑− : detΛ = −1 Λ0
0 ≥ 1 contains space inversion

L↓+ : detΛ = +1 Λ0
0 ≤ −1 contains space-time inversion

L↓− : detΛ = −1 Λ0
0 ≤ −1 contains time inversion

Only the L↑+ component is a group itself - it contains the identity element. This subgroup
is called the restricted Lorentz group. This group is not simply connected, since it entails
the non-simply connected rotation group, whose fundamental group is a cyclic group of order
2. The universal cover of the Lorentz group is the group of 2 × 2 complex matrices with
determinant 1 - the group SL(2,C). The covering homomorphism

Λ :

{
SL(2,C) → L↑+
A 7→ Λ(A)

is declared in the following way. First a bijective map from the Minkowski space into the
space of 2× 2 matrices is defined via:

x 7→ x
∼

= x012×2 + ~x · ~σ =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
. (A.5)

This map leads to the following equation:

det x
∼

= x2, (A.6)

and finally a Lorentz transformation Λ(A) can be defined as:

Λ(A)x
∼

= Ax
∼
A∗. (A.7)

In the next step we explore the irreducible representations of the Lorentz group.

138



A.2. SPINOR REPRESENTATIONS OF SL(2,C)

A.2 Spinor Representations of SL(2, C)

A field ψ(x) is a function with some components which transform in a definite way under the
Lorentz transformations:

ψ′(x′) = D(A)ψ(x), x′ = Λ(A)x, A ∈ SL(2,C). (A.8)

The group SL(2,C) supersedes the Lorentz group and D(A) is a matrix representation of
SL(2,C). The fields can be classified according to irreducible representations of SL(2,C).
The group SL(2,C) has exactly two defining representations, all other matrix representations
are direct sums of these two.

The defining representation is described by:

D
1
2

0(A) = A (A.9)

The group acts naturally upon the two dimensional complex vector space C2 whose elements
are called spinors. Such spinor ψ has two complex components:

ψ =

(
ψ1

ψ2

)
. (A.10)

The spinor transformation law reads:

ψ′α = A β
α ψβ, A ∈ SL(2,C). (A.11)

Only undotted indices are used for spinors in the defining representation.

The conjugate representation is described by:

D0 1
2 (A) = A∗, (A.12)

where A∗ is the complex conjugate of A. This representation acts on complex conjugated
spinors ψ† = (ψ†α̇) which transform analogue to the ψ’s:

ψ†
′
α̇ = A∗ β̇

α̇ ψ†
β̇
, A ∈ SL(2,C). (A.13)

Both representations are inequivalent and dotted indices are reserved for the spinors of the
conjugate representation.

If one performs spinor multiplication or construction of Lorentz tensors, the height of the
spinor indices must be consistent, i.e. lowered indices must only be contracted with raised
indices. As a convention, descending contracted undotted indices and ascending contracted
dotted indices can be suppressed. A spinor index can be lowered or raised with the use of the
spinor metric tensors. The rules for spinor algebra are summarized in section A.5.

A general spinor s of type (j, k) is a tensor with complex components sα1···α2j ,α̇1···α̇2k
whose

transformation properties are implied by this notation. The tensor should be symmetric under
permutations of the first 2j undotted and the last 2k dotted indices. It can be shown that
the representation Djk of the SL(2,C) which acts on the space of all spinors of type (j, k) is
irreducible. The dimension of this representation space is (2j+ 1)(2k+ 1) and this dimension
is also assigned per definition to the representation Djk.
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If the representation Djk is limited to the subgroup SU(2), the defining and conjugate
representations become equivalent and the representation Djk becomes the reducible repre-
sentation Dj ⊗Dk of the SU(2). It can be decomposed into irreducible parts, as it is done in
the theory of angular momentum. The decomposition reads in terms of dimensions:

(2j + 1)(2k + 1) =

j+k∑

s=|j−k|
s. (A.14)

Now a connection between fields and corresponding spin can be established: If a field ψ(x)
transforms under Lorentz-transformations according to the irreducible representation Djk of
SL(2,C) it is called an irreducible field. It can possess following spin quantum numbers:

s = |j − k|, |j − k|+ 1, . . . , j + k. (A.15)

However, this connection only shows which particle species can be potentially described by
the field under consideration, it is imaginable that some possible spin values do not occur.
The vector field Aµ(x), for example, is a (1

2 ,
1
2) spinor and can describe spin-1 and spin-0

particles. Nevertheless, it is possible to isolate the spin-1 part and to suppress the spin-0
contribution1, as done in electrodynamics. In the next section we classify the fermion fields.

A.3 Properties of Fermion Fields

First we examine a massless field transforming as the D
1
2

0 representation of the SL(2,C).
The particle it describes obviously has spin-1/2, and its dynamics is governed by the Weyl
equation. Analyzing the plane wave solutions of this equations one finds that the spin direction
is constrained to be antiparallel to the momentum. Therefore, the particle described by this
field is said to be left-handed. This particle and in general all massless spin-1/2 particles are
called Weyl fermions.

In the next step, we examine the properties of the same field, but now assuming that it
is massive. In this case, the particle described by the field is called a Majorana fermion. We
denote the field by ζα; its free-field Lagrangian density is:

L = iξ†σµ∂µξ −
1

2
m(ξξ + ξ†ξ†). (A.16)

On-shell, ξ satisfies the free-field Dirac equation:

iσ̄µα̇β∂µξβ = mξα̇. (A.17)

After quantization it can be expanded in a Fourier series:

ξα(x) =
∑

s

∫
d3~p

(2π)3/2(2Ep)1/2

[
xα(~p, s)a(~p, s)e−ip·x + yαa

†(~p, s)eip·x
]
, (A.18)

ξ†α̇(x) ≡ (ξα(x))† =
∑

s

∫
d3~p

(2π)3/2(2Ep)1/2

[
x†α̇(~p, s)a†(~p, s)eip·x + y†α̇a(~p, s)e−ip·x

]
, (A.19)

1Lorenz gauge condition of electrodynamics excludes spin-0 photons
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where Ep =
√
|~p|2 + m2, and the creation and annihilation operators a† and a satisfy the

usual anticommutation relations. The anticommuting properties of the fields are encoded in
the creation and annihilation operators. Therefore the spinor wave-functions xα and yα are
commuting.

Finally, we analyze a collection of massive spin-1/2 fermions in the mass-eigenstate basis.
If the original Lagrangian was not in the mass-eigenstate basis, the mass matrix can be
diagonalized using the Takagi diagonalization technique leading to real non-negative masses.
This technique is introduced later in Appendix B. The Lagrangian reads:

L = iξ†iσµ∂µξi −
1

2
mi(ξiξi + ξ†iξ†i), (A.20)

where i denotes each fermion in the collection and the sum over i is implicit. If the non-
zero masses are non-degenerate, then the corresponding field describes a neutral Majorana
fermion as in the singe-field case. If one of the masses is zero, then the corresponding field is
a massless Weyl fermion as in the first example.

In case of two mass-degenerate fermion fields eq. (A.20) possesses a global internal O(2)
flavor symmetry, ξi → Oji ξj , where OTO = 12×2. Corresponding to this symmetry, there is a
conserved Noether current and a corresponding conserved charge:

Jµ = i(ξ†1σµξ2 − ξ†2σµξ1). (A.21)

It is possible to diagonalize the current by means of field redefinitions:

χ ≡ 1√
2

(ξ1 + iξ2), η ≡ 1√
2

(ξ1 − iξ2). (A.22)

Jµ = χ†σµχ− η†σµη. (A.23)

Therefore, the fermions χ and η are eigenstates of the charge operator Q with eigenvalues
±1. Rewriting the Lagrangian A.20 for two fermions with equal mass in the new basis, one
finds:

L = iχ†σµ∂µχ+ iη†σµ∂µη −m(χη + χ†η†). (A.24)

On-shell, the new fields satisfy the Dirac equations:

iσµ∂µχ = mη†, iσµ∂µη = mχ†. (A.25)

In the χ − η basis the global SO(2) symmetry is realized as the U(1) symmetry χ → eiθχ
and η → e−iθη, where θ is the rotation angle from the corresponding SO(2) rotation matrix.
Hence, a single Dirac fermion is build from two spinor fields: χ and η†. The decomposition
in Fourier-modes reads:

χα(x) =
∑

s

∫
d3~p

(2π)3/2(2Ep)1/2

[
xα(~p, s)a(~p, s)e−ip·x + yαb

†(~p, s)eip·x
]
, (A.26)

ηα(x) =
∑

s

∫
d3~p

(2π)3/2(2Ep)1/2

[
xα(~p, s)b(~p, s)e−ip·x + yαa

†(~p, s)eip·x
]
, (A.27)

where the creation and annihilation operators satisfy the usual anticommutator relations.
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Summing up, we note that massive spin-1/2 particles are Dirac or Majorana fermions
depending on the nature of the global symmetry that is present in the fermion Lagrangian,
in particular in the mass terms. An arbitrary collection of two-component fermion fields
transforming in the D

1
2

0 representation will consist of Majorana fermions if no such symmetry
exist. If the Lagrangian is invariant under a symmetry group G, then the collection of
fermions will split into a sum of multiplets transforming irreducibly under G. If a multiplet
transforms under a real representation of G, then the corresponding fermion mass eigenstates
are Majorana fermions. If the multiplet transforms under a complex representation of G,
then the corresponding fermion mass eigenstates are Dirac fermions. Due to similarities in
the description of massless Weyl fermions and the massive particles, the massive fields are also
called left-handed or right-handed depending on whether they transform in the defining or
the conjugate representation of SL(2,C). Having established the notions of different fermion
fields we present the basic Feynman rules in the next section.

A.4 Feynman Rules

We exclude propagators from the discussion of the Feynman rules, since they are not needed
in the present work. Furthermore, we omit the discussion of mass-matrix diagonalization
because it is treated explicitly in Appendix B and can be found in [111].

A.4.1 External Particles

The rules for the external particles follow from the Lorentz group transformation properties
of the fields. The rules are extracted from the terms in the Lagrangian by identifying the
incoming and outgoing particles and the transformation properties of the corresponding op-
erators under SL(2,C) (daggered or undaggered index). The two-component external state
spinors are assigned in the following way:

• For an initial-state fermion if the corresponding operator transforms as (1
2 , 0): x

• For an initial-state fermion if the corresponding operator transforms as (0, 1
2): y†

• For a final-state fermion if the corresponding operator transforms as (1
2 , 0): y

• For a final-state fermion if the corresponding operator transforms as (0, 1
2): x†

where the momentum and spin arguments of the spinor wave functions are suppressed. Note
that our rules differ slightly from the one in reference [111], since we want to identify the
correct scattering amplitude directly from the interaction Lagrangian. The arrows on the
lines indicate the spinor index structure of the external state spinors. Fields associated with
a spinor wave function with undotted index flow into the vertices, and fields associated with
a spinor wave function with dotted index flow out of the vertices. The rules for external
fermions are summarized in Fig. A.1. The rules for external boson lines are independent
from the treatment of fermions:

• For an initial state (incoming) or final-state (outgoing) spin-0 boson: 1

• For an initial state (incoming) spin-1 boson: εµ

• For an final state (outgoing) spin-1 boson: εµ∗
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(1
2, 0) fermion operator

(0, 1
2) fermion operator

x y

y†
x†

Initial State Final State

Figure A.1: Assignment rules for the external spinor wave-functions. The rules are governed
by the transformation properties of the fermion operators in the Lagrangian i.e. (1

2 , 0) or
(0, 1

2). Note that the figure is changed compared to reference [111].

In these rules we have suppressed momentum and helicity arguments of the spin-1 polarization
vectors.

The rules for the gravitino follow closely the rules for the fermions. The two-component
external state wave function x has to be changed to the positive frequency wave function ψ+

µ

and y to the negative frequency wave function ψ−µ in all the rules presented above.

A.4.2 Interaction Vertices

In this section we consider only renormalizable Lorentz-invariant interactions which involve
fermions. The aforementioned conditions constrain the interactions to consist of bilinears in
the fermionic fields transforming as a Lorentz scalar or vector, coupled to the appropriate
bosonic scalar or vector field. The scalar fields interact with the fermionic bilinears via the
Yukawa interaction:

Lint = −1

2
Y IjkφIψjψk −

1

2
YIjkφ

Iψ†
j
ψ†k, (A.28)

where the indices run over the gauge-group representation and flavor degrees of freedom.
The fermionic multiplet will in general consist of Majorana and Dirac fermions. The scalar
multiplet can involve complex scalars ΦI in which case ΦI ≡ (ΦI)

∗. The Lagrangian is
written in terms of mass-eigenstates and the form of the Yukawa-matrices is constrained
by selection rules imposed by conserved symmetries. The Feynman rules arising from the
Yukawa-interaction Lagrangian are shown in Fig. A.2. In the case of a complex scalar the
arrow on the scalar line shows the flow of analycity, i.e. it keeps track of the position of
the scalar flavor index entering or leaving the vertex. The arrows on the fermion fields were
explained in the previous section. Figure A.2 shows two version for each Feynman rule. The
versions differ in the position of the fermion indices. One always employ the version of the rule
which allows for the correct spinor index contraction defined in Section A.2 and summarized
in Section A.5. The renormalizable interactions of vector bosons with fermions and scalars
are constructed by demanding that the Lagrangian of the theory should be invariant under
gauge transformations for some gauge group G. The vector fields arise as Lie-algebra valued
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(b)
I

j, α̇

k, β̇

−iY Ijkδα̇
β̇

or −iY Ijkδβ̇
α̇

(a)
I

j, α

k, β

−iY Ijkδ β
α or −iY Ijkδ α

β

Figure A.2: Feynman rules for Yukawa couplings of scalars to fermions. The choice of which
rule to use depends on the index structure of the amplitude. When indices are suppressed,
the spinor index part is proportional to the identity matrix.

gauge-fields corresponding to the connection in the fiber bundle. The interactions arise from
replacing ordinary derivatives by covariant derivatives in order to compare different fibers.
The covariant derivative has the following form:

(Dµ) ji = ∂µδ
j
i + igaA

a
µ(Ta) ji . (A.29)

The index a runs over the adjoint representation of the gauge group, and the (Ta) ji are
hermitean representation matrices of the generators of the Lie algebra of the gauge group
acting on the fermions in the defining representation of the SL(2,C). For a U(1) gauge group
the representation matrices of the generators are replaced by real numbers corresponding to
the U(1) charges of the left-handed fermions. There is a separate coupling ga for each simple
group or U(1) factor of the gauge group G2. In the gauge interaction basis for the left-handed
fermions, the interaction Lagrangian following from the covariant derivative is given by:

Lint = −λ†iσµgaAaµ(Ta) ji λj . (A.30)

If the gauge bosons become massive due to the Higgs mechanism, the vector boson squared
mass matrix has to be diagonalized. If there is an unbroken U(1) symmetry, then the physical
gauge bosons will carry a conserved U(1) charge. The Feynman rules arising from the covari-
ant derivative are shown in Fig. A.3. For simplicity, we wrote the interaction in the gauge-
eigenstate basis but they can always be re-expressed in terms of physical mass-eigenstate
gauge boson fields.

A.4.3 General Structure of Amplitudes

Having collected the rules for the external particles and the vertices, it is possible to compute
the amplitudes for a given processes not involving propagators. First one draws all possible
diagrams compatible with the rules given in the previous sections. The amplitude is a sum

2For details see [111].

144



A.4. FEYNMAN RULES

a, µ

i, α̇

i, β

−i(T a) j
i σ̄α̇β

µ or i(T a) j
i σµβα̇

Figure A.3: Feynman rules for interactions of fermions with gauge bosons. The choice of the
rule to use depends on the index structure of the amplitude. Here we assume, for simplicity,
that gauge bosons are massless. In massive case the couplings times the generators of the
gauge group are replaced by the appropriate linear combinations. The coupling is absorbed
into the definition of the generator of the gauge group.

of contributions from each diagram. Every contribution is obtained by combining the factors
corresponding to the external wave functions and vertices. The factors are combined according
to following rule:

• Starting from any external wave function spinor factors corresponding to vertices (and
in general propagators) are written from left to right following the line until it ends
at another external state wave function. A x or y [x†, y†] external state spinor at
the beginning of the amplitude should have a raised undotted [lowered dotted] spinor
index. If the amplitude ends with an x or y [x†, y†] external state spinor, it should have
a lowered undotted [raised dotted index]. This rule determines whether one uses the σ
or σ̄ version of rules for interaction vertices.

The Fermi-Dirac statistics is implemented by the following rule:

• A relative minus sign is imposed between terms contributing to a given amplitude
whenever the ordering of external state spinors (written from left to right) differs by an
odd permutation.

A.4.4 Conventions for Fermion and Antifermion Names and Fields

Following [111] we establish conventions for labelling Feynman diagrams which involve two-
component fermion fields. In the case of Majorana fermions there is a one-to-one correspon-
dence between the particle names and the undaggered field transforming as (1

2 , 0). In the case
of Dirac fermions there are always two fields corresponding to each particle name which we
choose to be in the representation D

1
2
,0 and denote with f and f̄ . Nota bene that the bar is

part of the field name and does not refer to complex conjugation.
We label fermions by the two-component fields and not by the particle name. The names

of the SM and MSSM fermions and corresponding two-component fields are shown in Table
A.1. For each particle we list fields which have the same quantum numbers, i.e. the fields
which contain the annihilation operator for that one-particle state. Fermion lines in Feynman
diagrams are labelled according to the following conventions:

• An initial-state external fermion line is labelled by the corresponding undaggered field
if the arrow points into the vertex, and by the daggered field if the arrow points outside
of the vertex.
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• A final-state external fermion line is labelled by the corresponding daggered field if the
arrow points into the vertex, and by undaggered field if the arrow points away from the
vertex.

• In the definition of the Feynman rules for interaction vertices, the external lines are
always labelled by the undaggered fields regardless of the arrow direction.

These conventions are summarized for the case of Dirac fermions in Fig. A.4, and for the case
of Majorana fermions in Fig. A.5. Having established the rules and conventions necessary

Fermion Name Two-component fields

Lepton l, l̄†

Anti-Lepton l̄, l†

Neutrino ν, −
Anti-Neutrino −, ν†

Quark q, q̄†

Anti-Quark q̄, q†

Neutralino χ0
i , χ

0†
i

Chargino χ−i , χ+†
i

Anti-Chargino χ+
i , χ−†i

Gluino g, g†

Gravitino ψµ, ψ†µ

Table A.1: Fermion and antifermion names and two-component fields in the SM and the
MSSM. In the listing of two-component fields, the first is an undaggered field and the second
is a daggered field. The bars on the fermion fields are part of their names. In this table we
consider neutrinos to be massless Weyl fermions.

for computations with two-component spinors, we summarize our conventions and list some
key results from the spinor algebra in the next section.

A.5 Summary of Spinor Algebra and Conventions

Metric Signature Convention The metric tensor is taken to be:

gµν = gµν = diag(+1,−1,−1,−1), (A.31)

where µ, ν = 0, 1, 2, 3 are spacetime vector indices. Contravariant four-vectors are defined
with raised indices, and covariant four-vectors are defined with lowered indices:

xµ = (t; ~x), (A.32)

pµ = (E; ~p), (A.33)

Aµ(x) =
(

Φ(t; ~x); ~A(t; ~x)
)
, (A.34)

Jµ(x) =
(
ρ(t; ~x); ~J(t; ~x)

)
, (A.35)
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Initial-state Electron

Initial-state Positron

Final-state Electron

Final-state Positron

e ē†

ē e†

e

ē

ē†

e†

Figure A.4: The two-component field labelling conventions for external Dirac fermions in a
Feynman diagram for a physical process. The top row corresponds to an initial-state electron,
the second row to an initial-state positron, the third row to a final-state electron, and the
fourth row to a final-state positron. Fermion lines are labelled by the two-component field
names.

Initial-state

Final-state
χ0
i , ψµ χ0†

i , ψ†
µ

χ0
i , ψµ χ0†

i , ψ†
µ

Neutralino /Gravitino

Neutralino /Gravitino

Figure A.5: The two-component field labelling conventions for external Majorana fermions
in a Feynman diagram for a physical process. The top row corresponds to an initial-state
neutralino/gravitino, and the second row to a final-state neutralino/gravitino. Fermion lines
are labelled by the two-component field names.

∂µ ≡
∂

∂xµ
= (∂/∂t, ~∇), (A.36)

Dµ ≡ IdR∂µ + igAµ, (A.37)

where Aµ = AaµT
a is the matrix gauge field for a representation R of dimension dR, and IdR

is the dR × dR identity matrix.

Antisymmetric Symbols The totally antisymmetric pseudo-tensor εµνρσ is defined such
that

ε0123 = −ε0123 = +1. (A.38)

As stated in section A.2 the defining D
1
2

0 and conjugate D0 1
2 representations of SL(2,C)

are related by hermitean conjugation. Therefore, one can describe all degrees of freedom
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using only spinors transforming in the defining representation. In combining spinors to make
Lorentz tensors, it is useful to regard ψ†α̇ as a row vector, and ψα as a column vector, with:

ψ†α̇ ≡ (ψα)† . (A.39)

This notation is publicized in [111] and differs from the notation of Wess and Bagger [78]
which uses a bar for hermitean conjugation ψ̄α̇ ≡ (ψα)†. The spinor indices are raised and
lowered with the two-index antisymmetric epsilon symbol or spinor metric tensor with non-
zero components:

ε12 = −ε21 = ε21 = −ε12 = 1, (A.40)

and the same set of sign conventions for the corresponding dotted spinor indices. The formal
definitions are: εα̇β̇ ≡ (εαβ)∗ and εα̇β̇ ≡ (εαβ)∗. In addition we define the two-index symmetric
Kronecker delta symbol,

δ1
1 = δ2

2 = 1, δ1
2 = δ1

2 = 0, (A.41)

and δβ̇α̇ ≡ (δαβ )∗. Per definition the numerical values of undotted and dotted Kronecker delta
symbols coincide.

Spinor products In order to construct Lorentz invariant Lagrangians and observables,
one has to use spinor products to create objects transforming as Lorentz tensors. Combining
spinors one has to take care of spinor indices, i.e. lowered indices must only be contracted
with raised indices. As a convention one suppresses descending contracted undotted indices
and ascending contracted dotted indices:

α
α,

α̇
α̇ . (A.42)

Sigma Matrix Conventions Lorentz vectors are obtained by introducing the sigma ma-
trices σµ

αβ̇
and σ̄µα̇β defined by:

σ0 = σ̄0 =

(
1 0
0 1

)
, σ1 = −σ̄1 =

(
0 1
1 0

)
, (A.43)

σ2 = −σ̄2 =

(
0 −i
i 0

)
, σ3 = −σ̄3 =

(
1 0
0 −1

)
.

The sigma matrices are hermitean, and have been defined with an upper (contravariant) index
to be independent of metric signature convention. If one denotes the 2 × 2 identity matrix
by 12×2 and the three-vector of Pauli matrices by ~σ ≡ (σ1, σ2, σ3), the definition above is
equivalent to

σµ = (12×2;~σ) , σ̄µ = (12×2;−~σ) . (A.44)

The corresponding quantities with lower indices are obtained by contraction with the metric
tensor:

σµ = gµνσ
ν = (12×2;−~σ) , σ̄µ = gµν σ̄

ν = (12×2;~σ) . (A.45)

The generators of the defining and conjugate representation of the Lorentz group are, respec-
tively, given by:

σµν ≡ i

4
(σµσ̄ν − σν σ̄µ) , σ̄µν ≡ i

4
(σ̄µσν − σ̄νσµ) . (A.46)
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Nota bene that these definitions differ from the conventions of Wess and Bagger [78]. In their
notation and with their metric signature (−,+,+,+) the sigma matrices read:

(
σµ
αβ̇

)WB
= (−12×2, ~σ)

(
σ̄µα̇β

)WB
= (−12×2,−~σ) (A.47)

(
σµαβ̇

)WB
= (12×2, ~σ)

(
σ̄α̇βµ

)WB
= (12×2,−~σ) (A.48)

One consequence of this definition of the sigma matrices is the inverse sign of γ5 in the chiral
representation which associates a lowered undotted [raised dotted] two-component spinor with
a right-handed [left-handed] four-component spinor. In order to convert various identities
involving a number of sigma matrices to the conventions of Wess and Bagger, one first has
to take care of the metric signature, and then usually interchange σ ↔ σ̄. The conversion for
the case involving sigma matrices and fermions is more subtle.

We will use following identities to simplify expressions involving products of of σ and σ̄
matrices:

σµαα̇σ̄
β̇β
µ = 2δ β

α δβ̇α̇, (A.49)

σµαα̇σµββ̇ = 2εαβεα̇β̇, (A.50)

σµα̇ασβ̇βµ = 2εαβεα̇β̇, (A.51)

[σµσ̄ν + σν σ̄µ] β
α = 2gµνδ β

α , (A.52)

[σ̄µσν + σ̄νσµ]α̇
β̇

= 2gµνδα̇
β̇
, (A.53)

σµσ̄νσρ = gµνσρ − gµρσν + gνρσµ + iεµνρκσκ, (A.54)

σ̄µσν σ̄ρ = gµν σ̄ρ − gµρσ̄ν + gνρσ̄µ − iεµνρκσ̄κ. (A.55)

Computations of cross sections and decay rates require traces of alternating products of σ
and σ̄ matrices:

Tr [σµσ̄ν ] = Tr [σ̄µσν ] = 2gµν , (A.56)

Tr [σµσ̄νσρσ̄κ] = 2 (gµνgρκ − gµρgνκ + gµκgνρ + iεµνρκ) , (A.57)

Tr [σ̄µσν σ̄ρσκ] = 2 (gµνgρκ − gµρgνκ + gµκgνρ − iεµνρκ) . (A.58)

Traces involving a larger even number of sigma matrices can be systematically obtained from
the equations above by repeated use of eqs. (A.52) and (A.53) and the cyclic property of
the trace. Traces involving an odd number of sigma matrices cannot arise, since the spinor
indices cannot be connected consistently in this case.

Sometimes it is needed to reverse the order of anticommuting spinors or of the commuting
spinor wave functions. Therefore, it is convenient to introduce the following notation:

(−1)A ≡
{

+1 , commuting spinors,

−1 , anticommuting spinors,
(A.59)

in order to cover both cases simultaneously. The following identities hold for the general
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spinors zi:

z1z2 = − (−1)A z2z1, (A.60)

z†1z
†
2 = − (−1)A z†2z

†
1, (A.61)

z1σ
µz†2 = (−1)A z†2σ

µz1, (A.62)

z1σµσ̄
νz2 = − (−1)A z2σ

νσµz1, (A.63)

z†1σ
µσνz†2 = − (−1)A z†2σ̄

νσµz†1. (A.64)

Spin-sum Identities Having obtained the identities involving sigma matrices, we have to
state the spin-sum identities arising in computations of unpolarized squared matrix elements.
The results are:

∑

s

xα(~p, s)x†
β̇
(~p, s) = p · σαβ̇,

∑

s

x†α̇(~p, s)xβ(~p, s) = p · σ̄α̇β, (A.65)

∑

s

y†α̇(~p, s)yβ(~p, s) = p · σ̄α̇β,
∑

s

yα(~p, s)y†
β̇
(~p, s) = p · σαβ̇, (A.66)

∑

s

xα(~p, s)yβ(~p, s) = mδ β
α ,

∑

s

yα(~p, s)xβ(~p, s) = −mδ β
α , (A.67)

∑

s

y†α̇(~p, s)x†
β̇
(~p, s) = mδα̇

β̇
,

∑

s

x†α̇(~p, s)y†
β̇
(~p, s) = −mδα̇

β̇
. (A.68)

They are applicable to spin sums and helicity sums, and hold for both massive and massless
spin-1/2 fermions.

Polarization-sum Identities First we list the polarization-sum identities for the massless
and massive spin-1 particles. In the massless case we obtain:

∑

λ

ε∗µ(p)εν(p) = −gµν , (A.69)

while in the massive case the sum is changed to:

∑

λ

ε∗µ(p)εν(p) = −gµν +
pµpν
m2
A

, (A.70)

where mA is the mass of the boson.
Finally, we derive the polarization sums P±µν , P

±
µν of the gravitino in the two-component

notation following the approach from the four-component formalism [113, 114, 262]. The
polarization sums are given by:

P±µν(p) =
∑

s

ψ±µ (p, s)ψ†±ν (p, s), (A.71)

P
±
µν(p) =

∑

s

ψ±†µ (p, s)ψ±ν (p, s). (A.72)

First, we note the spinor index structure of P±µν which can be read from its explicit expression:

[
P±µν

]
αβ̇

=
∑

s

ψ±µα(p, s)ψ†±
νβ̇

(p, s). (A.73)
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In the next step we use the Rarita-Schwinger equations in momentum space to obtain the
following relations:

pµP±µν = 0, σµP±µν = 0, (σ̄p)P±µν(σ̄p) = m2
3/2P

±
µν . (A.74)

The momentum of the gravitino in its rest frame is given by pµ = (m3/2, 0, 0, 0)T , and the

first relation implies that the only non-vanishing components of P±µν in the rest frame are P±ij ,
where i, j are spatial indices.

The most general polarization tensor compatible with the transformation properties under
the Lorentz group and the spinor index structure is then given in the gravitino rest frame by:

P±ij = a(σ0m3/2)gij + b(σ0m3/2)σ̄iσj , (A.75)

where a, b are some arbitrary constants. The second relation in eq. (A.74) implies

σ̄iP±ij = aσ̄j(σ
0m3/2) + σ̄i(σ0m3/2)σ̄iσj = (a+ 3b)σ̄j(σ

0m3/2) = 0, (A.76)

where we have used eqs. (A.49). Thus, we obtain b = −1/3a. The last relation in eq. (A.74)

determines the form of P
±
µν . The factor a can be guessed from the results of the four-

component formalism to be −1. In the last step we have to generalize the expression to an
arbitrary frame. Using the following substitution rules:

(σ0m3/2)→ (σp), gij →
(
gµν −

pµpν
m2

3/2

)
, σ̄i →

(
gµσ −

pµpσ
m2

3/2

)
σ̄σ, (A.77)

we obtain the result:

P±µν = −(σp)

((
gµν −

pµpν
m2

3/2

)
− 1

3

(
gµσ −

pµpσ
m2

3/2

)(
gνλ −

pνpλ
m2

3/2

)
σ̄σσλ

)
. (A.78)
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Appendix B

Gauge and Mass Eigenstates

In this appendix we introduce techniques for the diagonalization of mass matrices and derive
neutral and charged currents used in the present work.

B.1 Mass Matrix Diagonalization

Complex symmetric matrices, for example mass matrices of neutral fermions, are diagonalized
by the Takagi diagonalization, see [111] for details and a historical introduction. The technique
is based upon the existence of the unitary matrix U (n) with the property:

U (n)TMU (n) = diag(m1,m2, . . . ,mn) , (B.1)

for every complex symmetric n× n matrix M . The mk are the singular values of M , defined
as non-negative square roots of the eigenvalues of M †M . Since all matrices encountered
explicitly in the present work are real, the Takagi diagonalization matrix U (n) is obtained
from a real orthogonal matrix Z, which diagonalizes M :

ZTMZ = diag(ε1m1, ε2m2, . . . , εnmn) , (B.2)

via
U

(n)
ij =

√
εiZij . (B.3)

Here the mk are real and non-negative, and the εkmk are the real eigenvalues of M with
corresponding signs εk = ±1.

Arbitrary complex matrices, for example mass matrices of charged fermions, are diagonal-
ized via the singular value decomposition, which is often called bi-unitary transformation in
physical literature . In this case, a complex n× n matrix M is diagonalized via two unitary
matrices U (c) and Ũ (c):

U (c)†MŨ (c) = diag(m1,m2, . . . ,mn) , (B.4)

where mk are the singular values of M .

B.1.1 Perturbative Matrix Diagonalization

Instead of using exact numerical matrix diagonalization methods, we perturbatively diagonal-
ize the matrices in order to obtain approximate analytical results. This method is justified,
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since i) in all cases considered in the present work, the electroweak symmetry breaking effects
are only small perturbations on the mass matrices of neutral and charged fermions, ii) there
is a hierarchy between the gaugino and higgsino mass terms:

mZ < |µ±M1| , |µ±M2| , (B.5)

and iii) in case of R-parity violation, the R-parity violating coupling is very small. Therefore,
we have two expansion parameters: ε = mZ/M , where M denotes the largest entry in the
matrix, and ζ.

In order to diagonalize a mass matrix M to the given order in ε and ζ, we perform the
following set of steps, here, for example, for charged fermions:

• Assuming real M , we set ε and ζ to zero and diagonalize the simple mass matrix with
usual methods.

• Using the results from the previous step, we construct the most general matrices Ũ (c)

and U (c) from the generators of the orthogonal group as expansions in ε and ζ up to
the given maximal order.

• The matrix M is then also written as expansion in ε and ζ.

• For a given order, there are several possibilities how the parameters ε and ζ are dis-
tributed among the matrices M , Ũ (c), and U (c). We take into account all possibilities
and write the result as a sum.

• In the final step, we solve the equation
[
U (c)†MŨ (c)

]
ij

= 0
∣∣∣
i 6=j

, (B.6)

in each order of the expansion. In the end we combine the results.

This procedure can be performed in a consistent way and leads to correct transformation
matrices and also mass eigenstates. In case of the symmetric matrices, we use the same
method and ensure that the mass values are positive by multiplying the result by−1, if needed,
according to eq. (B.3). Having established our technique for mass matrix diagonalization, we
can proceed with the transformation of neutral current and charged current into the mass-
eigenstate basis.

B.2 Neutral and Charged Currents

For the computation of the neutralino decays we need the couplings of the gauge fields, i.e.
photon, Z and W boson to charged and neutral matter. The couplings of the gauge bosons
to fermions arise from the covariant derivatives in the fermionic kinetic terms. In the two-
component notation the kinetic terms have the form:

L = iλi†σµ(Dµ) ji λj , (B.7)

where i and j are gauge group indices. The covariant derivative has the form:

(Dµ) ji = ∂µδ
j
i + ig(a)A

a
µ(Ta) ji , (B.8)
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where the index a runs over the adjoint representation of the gauge group, and the (Ta) ji are
hermitian representation matrices of the generators of the Lie-algebra g corresponding to the
gauge group G acting on the left-handed fermions. For a U(1) gauge group the representation
matrices of the generators are replaced by real numbers corresponding to the U(1) charges
of the fermions. There is a separate coupling ga for each simple group or U(1) factor of the
gauge group G1. In the gauge interaction basis for the left-handed fermions the interaction
Lagrangian following from the covariant derivative is given by:

L = −λi†σµg(a)A
a
µ(Ta) ji λj . (B.9)

In the case of the electroweak theory, we have to re-express the hermitian matrix gauge field
in terms of physical mass-eigenstate gauge boson fields.

The covariant derivative of the electroweak sector of the standard model is given by:

(Dµ) ji = ∂µδ
j
i + igW a

µ (Ta) ji + ig′Y Bµδ
j
i , (B.10)

where Y is the hypercharge of the matter field. The physical mass-eigenstate gauge boson
fields are linear combinations of the original W a

µ and Bµ fields:

W±µ =
1√
2

(
W 1
µ ∓ iW 2

µ

)
, (B.11)

Zµ = cos θwW
3
µ − sin θwBµ , Aµ = sin θwW

3
µ + cos θwBµ ,

where

sin θw =
g′√

g2 + g′2
, cos θw =

g√
g2 + g′2

. (B.12)

In the following we use the abbreviations cw for cos θw and sw for sin θw.

First, we rewrite the covariant derivative for the fermion fields transforming in the funda-
mental representation of SU(2)L:

(Dµ) ji = ∂µδ
j
i +

i

2
g
(
W 1
µσ

1 +W 2
µσ

2
)

+ igW 3
µσ

3 + ig′Y Bµδ
j
i (B.13)

= ∂µδ
j
i +

i

2
g

((
0 1
0 0

)√
2W+

µ +

(
0 0
1 0

)√
2W−µ

)
+
i

2
gW 3

µσ
3 + ig′Y Bµδ

j
i

= ∂µδ
j
i +

i√
2
g
(
W+
µ T

+ +W−µ T
−)+

i

2
gW 3

µσ
3 + ig′Y Bµδ

j
i ,

where σ are the Pauli matrices, and

T± =
1

2

(
σ1 ± iσ2

)
. (B.14)

Then, using the inverse relations between the original gauge fields and mass eigenstates:

Bµ = cwAµ − swZµ , W 3
µ = swAµ + cwZµ , (B.15)

1For details see [111].
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we rewrite the neutral part of the interaction omitting the representation indices:

i

2
gW 3

µσ
3 + ig′Y Bµ = igT 3 (swAµ + cwZµ) + ig′Y (cwAµ − swZµ)

= i
(
gcwT

3 − g′swY
)
Zµ + i

(
gswT

3 + g′cwY
)
Aµ

= i
g

cw

(
T 3 − s2

wQ
)
Zµ + ieQAµ , (B.16)

where we have identified the coupling of the massless photon as the elementary charge e, and
the combination of the unbroken generator of the gauge group and the hypercharge as the
electromagnetic charge operator Q:

gsw = g′cw = e , Q = T 3 + Y . (B.17)

Therefore, we find for the covariant derivative in terms of the mass-eigenstate field (omitting
the representation indices):

Dµ = ∂µ +
i√
2
g
(
W+
µ T

+ +W−µ T
−)+ i

g

cw

(
T 3 − s2

wQ
)
Zµ + ieQAµ . (B.18)

Using this form of the covariant derivative we can derive the couplings of the fermions trans-
forming in the fundamental representation of SU(2) to the gauge fields.

Lint = −λ†iσµ
(
g√
2

(
W+
µ T

+ +W−µ T
−)+

g

cw

(
T 3 − s2

wQ
)
Zµ + eQAµ

)
λi , (B.19)

where now the index i runs over all fermions in the fundamental representation. For the
up-type Higgs doublet we obtain the following interaction Lagrangian:

LHuint =− g√
2
h+†
u σµW+

µ h
0
u +

g√
2
h0†
u σ

µW−µ h
+
u −

g

cw

1

2
h+†
u σµh+

uZµ + s2
w

g

cw
h+†
u σµh+

uZµ

+
g

cw

1

2
h0†
u σ

µh0
uZµ − eh+†

u σµh+
uAµ . (B.20)

For the down-type Higgs doubling we similarly obtain:

LHdint =− g√
2
h0†
d σ

µW+
µ h
−
d +

g√
2
h−†d σµW−µ h

0
d −

g

cw

1

2
h0†
d σ

µh0
dZµ +

g

cw

1

2
h−†d σµh−d Zµ

− s2
w

g

cw
h−†d σµh−d Zµ + eh−†d σµh−d Aµ . (B.21)

The interaction Lagrangian for the lepton doublet has the form:

Leint =− g√
2
ν†i σ

µW+
µ ei +

g√
2
e†iσ

µW−µ νi −
g

cw

1

2
ν†i σ

µνiZµ +
g

cw

1

2
e†iσ

µeiZµ

− s2
w

g

cw
e†iσ

µeiZµ + ee†iσ
µeiAµ . (B.22)

The interaction Lagrangian for the lepton singlet is then:

Lecint =s2
w

g

cw
ē†iσ

µēiZµ − eē†iσµēiAµ . (B.23)
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In the next step we have to obtain the interaction terms for the gaugino fields transforming
in the adjoint representation of SU(2), these are the winos. The generators of the adjoint
representation are:

T 1 =




0 0 0
0 0 −i
0 i 0


 , T 2 =




0 0 i
0 0 0
−i 0 0


 , T 3 =




0 −i 0
i 0 0
0 0 0


 . (B.24)

We denote the wino triplet by (w1, w2, w3). The winos will mix and form charged combinations
similarly to the gauge bosons. Since they have no hypercharge, the interaction Lagrangian
has the following form:

Lwint = −g
(
w1†, w2†, w3†

)
σµ



−iW 3w2 + iW 2w3

iW 3w1 − iW 1w3

−iW 2w1 + iW 1w2


 . (B.25)

After the multiplication we obtain:

Lwint =−
(
g(−iw1†σµw2 + iw2†σµw1)W 3 (B.26)

+ g(iw3†σµ(W 1w2 −W 2w1) + i(w1†σµW 2 − w2†σµW 1)w3)
)
. (B.27)

Next, we define the following fields:

w± =
1√
2

(w1 ∓ iw2) , w±† =
1√
2

(w1† ± iw2†) , (B.28)

and observe:

w+† + w+† − w−†w−† = −iw1†w2 + iw2†w1 ,

w−W+ − w+W− = i(W 1w2 −W 2w1) , (B.29)

w−†W− − w+†W+ = i(w1†W 2 − w2†W 1) .

Using these relations and the relations between W 3 and mass-eigenstate fields, we obtain:

Lwint =−
(
g(w+†σµw+† − w−†σµw−†)(cwAµ − swZµ) (B.30)

+ g(w3†σµw− − w+†σµw3)W+ + (w−†σµw3 − w3†σµw+)W−
)

=

(
−eAµ −

g

cw
Zµ

)
(w+†σµw+ − w−†σµw−)

− g
(
w3†σµw− − w+†σµw3

)
W+ − g

(
w−†σµw3 − w3†σµw+

)
W− .

Combining all these results, we arrive at the couplings of the gauge fields to charged and
neutral matter:

L = −eJeµAµ −
g

cw
JZµZ

µ − g√
2
J−µW

+µ − g√
2
J+
µW

−µ . (B.31)
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The currents in the gauge eigenstate basis are

Jeµ =J3
eµ + J2,1

eµ

= w+†σ̄µw+ − w−†σ̄µw− − e†i σ̄µei + ē†i σ̄µēi − h
−†
d σ̄µh

−
d + h+†

u σ̄µh
+
u ,

JZµ =− 1

2
h0†
u σ̄µh

0
u +

1

2
h0†
d σ̄µh

0
d +

1

2
ν†i σ̄µνi

+ w+†σ̄µw+ − w−†σ̄µw− −
1

2
e†i σ̄µei −

1

2
h−†d σ̄µh

−
d +

1

2
h+†
u σ̄µh

+
u − s2

wJ
2,1
eµ ,

J−µ =
√

2
(
w3†σ̄µw− − w+†σ̄µw3

)
+ ν†i σ̄µei + h0†

d σ̄µh
−
d + h+†

u σ̄µh
0
u ,

J+
µ =

√
2
(
w−†σ̄µw3 − w3†σ̄µw+

)
− e†i σ̄µνi − h

−†
d σ̄µh

0
d − h0†

u σ̄µh
+
u . (B.32)

The upper indices of the electromagnetic currents indicate the transformation properties of
the fields in the current under the SU(2)L. Having derived the currents, we have to transform
them into the mass-eigenstate basis of fermions. Therefore, we have to diagonalize the mass
matrices MN and MC .

B.2.1 Currents in the mass-eigenstate Basis

The mass matrices MN and MC read

MN =




M1 0 mZsβsw −mZcβsw −ζimZsw
0 M2 −mZsβcw mZcβcw ζimZcw

mZsβsw −mZsβcw 0 −µ 0
−mZcβsw mZcβcw −µ 0 0
−ζimZsw ζimZcw 0 0 0




,

MC =




M2

√
2mZsβcw 0 0 0√

2mZcβcw µ ζ1h
e
11µ ζ2h

e
22µ ζ3h

e
33µ√

2 ζ1mZcw 0 he11vcβ 0 0√
2 ζ2mZcw 0 0 he22vcβ 0√
2 ζ3mZcw 0 0 0 he33vcβ




. (B.33)

They are diagonalized by Takagi diagonalization and singular value decomposition, respec-
tively,

U (n)TMNU (n) =MN
diag , U (c)†MCŨ (c) =MC

diag , (B.34)

where U (n)†U (n) = U (c)†U (c) = Ũ (c)†Ũ (c) = 1. These unitary transformations relate the
neutral and charged gauge-eigenstates to the mass-eigenstates (χ0

a, ν
′
i) (a = 1, . . . , 4) and

(χ−α , e
′
i), (χ+

α , e
′c
i ) (α = 1, 2), respectively




b
w3

h0
u

h0
d

νi




= U (n)




χ0
1

χ0
2

χ0
3

χ0
4

ν ′i




,



w−

h−d
ei


 = U (c)



χ−1
χ−2
e′i


 ,



w+

h+
u

eci


 = Ũ (c)



χ+

1

χ+
2

ec′i


 . (B.35)
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The transformation matrices are given by:

U (n) =


 U

(χ0)
ab U

(χ0,ν)
ai

U
(ν,χ0)
ia U

(ν)
ij


 , (B.36)

U (c) =


 U

(χ−)
αβ U

(χ−,e)
αi

U
(e,χ−)
iα U

(e)
ij


 , Ũ (c) =


 Ũ

(χ+)
αβ Ũ

(χ+,ē)
αi

Ũ
(ē,χ+)
iα Ũ

(ē)
ij


 . (B.37)

Note that we perform a perturbative diagonalization of the mass matrices as described in the
previous section. Therefore, the transformation matrices are given by an expansion in ζ and
ε, where ε = mZ

M , and M is the largest mass parameter of either M1, M2 or µ. The parameter
choice neither effects the expansion of the transformation matrices, nor the mass eigenstates.

Explicit Results for bino-like Neutralino

Let us now give some explicit results for the unitary transformation matrices for the case of
bino-like neutralino. The unitary matrix U (n) is given by

U
(χ0)
ab =




1 0 0 0
0 1 0 0
0 0 − 1√

2
1√
2

0 0 1√
2

1√
2




+




−mZ
2(M1

2+2µs2βM1+µ2)s2w
2(M1

2−µ2)2
mZ

2(M2+µs2β)s2w

2(M1−M2)(M2
2−µ2)

mZ(cβ+sβ)sw√
2(M1−µ)

mZ(cβ−sβ)sw√
2(M1+µ)

− mZ
2(M1+µs2β)s2w

2(M1−M2)(M1
2−µ2) −mZ

2c2w(M2
2+2µs2βM2+µ2)

2(M2
2−µ2)2

−mZcw(cβ+sβ)√
2(M2−µ)

mZcw(sβ−cβ)√
2(M2+µ)

mZ(µcβ+M1sβ)sw
M1

2−µ2 −mZcw(µcβ+M2sβ)

M2
2−µ2

mZ
2(cβ+sβ)

µ2
x1

(cβ−sβ)mZ
2

µ2
x2

−mZ(M1cβ+µsβ)sw
M1

2−µ2
mZcw(M2cβ+µsβ)

M2
2−µ2

(cβ+sβ)mZ
2

µ2
x3

(cβ−sβ)mZ
2

µ2
x4




×
(

1 +O
(
m2
Z

µ2

))
, (B.38)

where we used the abbreviations

x1 =
µ

4
√

2

(
(M2sβ − (M2 − 2µ)cβ)c2

w

(M2 − µ)2
+

(M1sβ − (M1 − 2µ)cβ)s2
w

(M1 − µ)2

)
, (B.39)

x2 =
µ

4
√

2

(
−((M2 + 2µ)cβ +M2sβ)c2

w

(M2 + µ)2
− ((M1 + 2µ)cβ +M1sβ)s2

w

(M1 + µ)2

)
, (B.40)

x3 =
µ

4
√

2

(
((M2 − 2µ)sβ −M2cβ)c2

w

(M2 − µ)2
+

((M1 − 2µ)sβ −M1cβ)s2
w

(M1 − µ)2

)
, (B.41)

x4 =
µ

4
√

2

(
(M2cβ + (M2 + 2µ)sβ)c2

w

(M2 + µ)2
+

(M1cβ + (M1 + 2µ)sβ)s2
w

(M1 + µ)2

)
. (B.42)

The numerical error of the matrix (B.38) in our parameter range of interest is smaller than
40% of the given NLO term. We do not discuss the slow convergence for this R-parity
conserving sub-matrix further, since this is beyond the scope of our analysis.
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Furthermore,

U
(χ0,ν)
ai = ζi




sw
mZ
M1

−cwmZM2

−mZ
2cβ(M1c2w+M2s2w)

M1M2µ
mZ

2sβ(M1c2w+M2s2w)
M1M2µ




(
1 +O

(
s2β

m2
Z

µ2

))
, (B.43)

U
(ν,χ0)
ia = ζi




−swmZM1

cw
mZ
M2

mZ
2(M1c2w+M2s2w−µ)(cβ+sβ)√

2(M1−µ)µ(µ−M2)
mZ

2(M1c2w+M2s2w+µ)(cβ−sβ)√
2µ(M1+µ)(M2+µ)




(
1 +O

(
m2
Z

µ2

))
, (B.44)

U
(ν)
ij = δij +O

(
ζ2m

2
Z

µ2

)
. (B.45)

The uncertainties in Eq. (B.43) evaluate numerically to less than 5%. For U
(ν,χ0)
ia they are

less than 0.15, 0.10, 0.25, 0.25, for a = 1, . . . , 4, respectively.

The chargino matrix is diagonalized by the following transformation:

Ũ
(χ+)
αβ =

(
1 0
0 1

)
+



−mZ

2c2w(µcβ+M2sβ)2

(M2
2−µ2)2

√
2mZcw(µcβ+M2sβ)

µ2−M2
2

−
√

2mZcw(µcβ+M2sβ)

µ2−M2
2 −mZ

2c2w(µcβ+M2sβ)2

(M2
2−µ2)2



(

1 +O
(
m2
Z

µ2

))
,

(B.46)

Ũ
(ē)
ij = δij +O

(
ζ2
)
. (B.47)

Numerically, the relative correction to the NLO contribution to Ũ
(χ+)
αβ is less than 25%. The

off-diagonal elements of the matrix Ũ (c) to leading order in heii are

Ũ
(χ+,ē)
αi =− ζiheii

(
0
1

)

+ ζih
e
ii




√
2mZcw(M2sβ−vcβ)

M2
2

2mZ
2cβc

2
w(vµcβ+M2(v−µ)sβ)

M2
2µ2




1 +O




s2βm
2
Z

µ2

m2
Z
µ2




 , (B.48)

Ũ
(ē,χ+)
iα = ζih

e
ii

(
0
1

)

+ ζih
e
ii




√
2mZcw(M2sβµ

2+(M2
2(v+µ)−vµ2)cβ)

M2
2(M2

2−µ2)
− mZ

2µ2c2wy

(µ2−M2
2)

2



(

1 +O
(
m2
Z

µ2

))
, (B.49)

where

y =
1

µ4

(
s2βM2

(
M2

2µ− 2µ3 + v(µ2 −M2
2 )
)

+ c2
βµ(2v(µ2 −M2

2 )− µ3) + s2
βµ

2(M2
2 − 2µ2)

)
.

(B.50)
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The numerical relative correction to the NLO term in Ũ
(ē,χ+)
iα is smaller than 0.10, 0.15 for

α = 1, 2, respectively. For Ũ
(χ+,ē)
1i it is smaller2 than 1%, and smaller than 10% for Ũ

(χ+,ec)
2i .

The block diagonal elements of the matrix U (c) are

U
(χ−)
αβ =

(
1 0
0 1

)
+



−mZ

2c2w(M2cβ+µsβ)2

(M2
2−µ2)2

−
√

2mZcw(M2cβ+µsβ)

µ2−M2
2

√
2mZcw(M2cβ+µsβ)

µ2−M2
2 −mZ

2c2w(M2cβ+µsβ)2

(M2
2−µ2)2



(

1 +O
(
m2
Z

µ2

))
,

(B.51)

U
(e)
ij = δij +O

(
ζ2
)
. (B.52)

Numerically, the relative correction to the NLO contribution to U
(χ−)
αβ is smaller than 20%.

The off-diagonal elements of U (c) are

U
(χ−,e)
αi = ζi

(
−
√

2mZcw
M2

2mZ
2c2wsβ

M2µ

)(
1 +O

(
s2βm

2
Z

µ2

))
, (B.53)

U
(e,χ−)
iα = ζi

( √
2mZcw
M2

2mZ
2c2w(µcβ+M2sβ)

µ3−M2
2µ

)(
1 +O

(
s2βm

2
Z

µ2

))
. (B.54)

Here we ignored corrections that are proportional to the Yukawa couplings heii or higher
powers thereof. The numerical value of the higher order correction relative to the NLO term

is smaller than 1% for U
(χ−,e)
αi , smaller than 5% for U

(e,χ−)
i1 , and smaller than 15% for U

(e,χ−)
i2 .

Current Transformations

The higgsino and neutrino gauge-eigenstates read in terms of the mass eigenstates:

b = U
(χ0)
1b χ0

b + U
(χ0,ν)
1j ν ′j , (B.55)

w3 = U
(χ0)
2b χ0

b + U
(χ0,ν)
2j ν ′j , w− = U

(χ−)
1β χ−β + U

(χ−,e)
1j e′j , w+ = Ũ

(χ+)
1β χ+

β + Ũ
(χ+,ē)
1j ē′j ,

h0
u = U

(χ0)
3b χ0

b + U
(χ0,ν)
3j ν ′j , h+

u = Ũ
(χ+)
2β χ+

β + Ũ
(χ+,ē)
2j ē′j ,

h0
d = U

(χ0)
4b χ0

b + U
(χ0,ν)
4j ν ′j , h−d = U

(χ−)
2β χ−β + U

(χ−,e)
2j e′j ,

νi = U
(ν,χ0)
ib χ0

b + U
(ν)
ij ν

′
j , ei = U

(e,χ−)
iβ χ−β + U

(e)
ij e

′
j , eci = Ũ

(ē,χ+)
iβ χ+

β + Ũ
(ē)
ij ē

′
j .

Therefore, the photon current in the mass eigenstate basis is given by:

Jeµ = (χ+†
β Ũ

(χ+)
1β + ē′†j Ũ

(χ+,ē)
1j )σ̄µ(Ũ

(χ+)
1β χ+

β + Ũ
(χ+,ē)
1j ē′j)

− (χ−†β U
(χ−)
1β + e′†j U

(χ−,e)
1j )σ̄µ(U

(χ−)
1β χ−β + U

(χ−,e)
1j e′j)

− (χ−†β U
(e,χ−)
iβ + e′†j U

(e)
ij )σ̄µ(U

(e,χ−)
iβ χ−β + U

(e)
ij e

′
j)

+ (χ+†
β Ũ

(ē,χ+)
iβ + ē′†j Ũ

(ec)
ij )σ̄µ(Ũ

(ē,χ+)
iβ χ+

β + Ũ
(ē)
ij ē

′
j)

− (χ−†β U
(χ−)
2β + e′†j U

(χ−,e)
2j )σ̄µ(U

(χ−)
2β χ−β + U

(χ−,e)
2j e′j)

+ (χ+†
β Ũ

(χ+)
2β + ē′†j Ũ

(χ+,ē)
2j )σ̄µ(Ũ

(χ+)
2β χ+

β + Ũ
(χ+,ē)
2j ē′j) , (B.56)

2The numerical calculation of the error reaches our numerical precision. The given value is calculated from
the comparison with the analytical NNLO expression.
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which can be expanded to

Jeµ = χ+†
α Ũ

(χ+)
1α σ̄µŨ

(χ+)
1β χ+

β + χ+†
α Ũ

(χ+)
1α σ̄µŨ

(χ+,ē)
1j ē′

+ ē′†i Ũ
(χ+,ē)
1i σ̄µŨ

(χ+)
1β χ+

β + ē′†Ũ (χ+,ē)
1i σ̄µŨ

(χ+,ē)
1j ē′

− χ−†α U
(χ−)
1α σ̄µU

(χ−)
1β χ−β − χ−†α U

(χ−)
1α σ̄µU

(χ−,e)
1j e′j

− e′†i U
(χ−,e)
1i σ̄µU

(χ−)
1β χ−β − e

′†
i U

(χ−,e)
1i σ̄µU

(χ−,e)
1j e′j

− χ−†α U
(e,χ−)
iα σ̄µU

(e,χ−)
iβ χ−β − χ−†α U

(e,χ−)
iα σ̄µU

(e)
ij e

′
j

− e′†i U
(e)
ki σ̄µU

(e,χ−)
kβ χ−β − e

′†
i U

(e)
ki σ̄µU

(e)
kj e

′
j

+ χ+†
α Ũ

(ē,χ+)
iα σ̄µŨ

(ē,χ+)
iβ χ+

β + χ+†
α Ũ

(ē,χ+)
iα σ̄µŨ

(ē)
ij ē

′

+ ē′†i Ũ
(ē)
ki σ̄µŨ

(ē,χ+)
kβ χ+

β + ē′†i Ũ
(ē)
ki σ̄µŨ

(ē)
kj ē

′

− χ−†α U
(χ−)
2α σ̄µU

(χ−)
2β χ−β − χ−†α U

(χ−)
2α σ̄µU

(χ−,e)
2j e′j

− e′†i U
(χ−,e)
2i σ̄µU

(χ−)
2β χ−β − e

′†
i U

(χ−,e)
2i σ̄µU

(χ−,e)
2j e′j

+ χ+†
α Ũ

(χ+)
2α σ̄µŨ

(χ+)
2β χ+

β + χ+†
α Ũ

(χ+)
2α σ̄µŨ

(χ+,ē)
2j ē′

+ ē′†i Ũ
(χ+,ē)
2i σ̄µŨ

(χ+)
2β χ+

β + ē′†i Ũ
(χ+,ē)
2i σ̄µŨ

(χ+,ē)
2j ē′ . (B.57)

Finally, the simplified expression reads

Jeµ = χ−†α σ̄µV
(χ−)
αβ χ−β + χ+†

α σ̄µV
(χ+)
αβ χ+

β + e†i σ̄µV
(e)
ij ej + ē†i σ̄µV

(ē)
ij ēj

+
(
χ−†α σ̄µV

(χ−,e)
αj ej + χ+†

α σ̄µV
(χ+,ē)
αj ēj + h.c.

)
, (B.58)

where we have defined:

V
(χ−)
αβ = −U (χ−)

1α U
(χ−)
1β − U (χ−)

2α U
(χ−)
2β −

∑

i

U
(e,χ−)
iα U

(e,χ−)
iβ ,

V
(χ+)
αβ = Ũ

(χ+)
1α Ũ

(χ+)
1β + Ũ

(χ+)
2α Ũ

(χ+)
2β +

∑

i

Ũ
(ē,χ+)
iα Ũ

(ē,χ+)
iβ ,

V
(e)
ij = −U (χ−,e)

1i U
(χ−,e)
1j − U (χ−,e)

2i U
(χ−,e)
2j −

∑

k

U
(e)
ki U

(e)
kj ,

V
(ē)
ij = Ũ

(χ+,ē)
1i Ũ

(χ+,ē)
1j + Ũ

(χ+,ē)
2i Ũ

(χ+,ē)
2j +

∑

k

Ũ
(ē)
ki Ũ

(ē)
kj ,

V
(χ−,e)
αj = −U (χ−)

1α U
(χ−,e)
1j − U (χ−)

2α U
(χ−,e)
2j −

∑

i

U
(e,χ−)
iα U

(e)
ij ,

V
(χ+,ē)
αj = Ũ

(χ+)
1α Ũ

(χ+,ē)
1j + Ũ

(χ+)
2α Ũ

(χ+,ē)
2j +

∑

i

Ũ
(ē,χ+)
iα Ũ

(ē)
ij . (B.59)

The neutral current in the mass eigenstate basis is given by

JZµ =− 1

2
(χ0†
b U

(χ0)
3b + ν ′†j U

(χ0,ν)
3j )σ̄µ(U

(χ0)
3b χ0

b + U
(χ0,ν)
3j ν ′j)

+
1

2
(χ0†
b U

(χ0)
4b + ν ′†j U

(χ0,ν)
4j )σ̄µ(U

(χ0)
4b χ0

b + U
(χ0,ν)
4j ν ′j)
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+
1

2
(χ0†
b U

(ν,χ0)
ib + ν ′†j U

(ν)
ij )σ̄µ(U

(ν,χ0)
ib χ0

b + U
(ν)
ij ν

′
j)

+ (χ+†
β Ũ

(χ+)
1β + ē′†j Ũ

(χ+,ē)
1j )σ̄µ(Ũ

(χ+)
1β χ+

β + Ũ
(χ+,ē)
1j ē′j)

− (χ−†β U
(χ−)
1β + e′†j U

(χ−,e)
1j )σ̄µ(U

(χ−)
1β χ−β + U

(χ−,e)
1j e′j)

− 1

2
(χ−†β U

(e,χ−)
iβ + e′†j U

(e)
ij )σ̄µ(U

(e,χ−)
iβ χ−β + U

(e)
ij e

′
j)

− 1

2
(χ−†β U

(χ−)
2β + e′†j U

(χ−,e)
2j )σ̄µ(U

(χ−)
2β χ−β + U

(χ−,e)
2j e′j)

+
1

2
(χ+†
β Ũ

(χ+)
2β + ē′†j Ũ

(χ+,ē)
2j )σ̄µ(Ũ

(χ+)
2β χ+

β + Ũ
(χ+,ē)
2j ē′j)− s2

wJeµ , (B.60)

which expands to

JZµ =− 1

2
χ0†
a U

(χ0)
3a σ̄µU

(χ0)
3b χ0

b −
1

2
χ0†
a U

(χ0)
3a σ̄µU

(χ0,ν)
3j ν ′j

− 1

2
ν ′†j U

(χ0,ν)
3j σ̄µU

(χ0)
3b χ0

b −
1

2
ν ′†i U

(χ0,ν)
3i σ̄µU

(χ0,ν)
3j ν ′j

+
1

2
χ0†
a U

(χ0)
4a σ̄µU

(χ0)
4b χ0

b +
1

2
χ0†
a U

(χ0)
4a σ̄µU

(χ0,ν)
4j ν ′j

+
1

2
ν ′†j U

(χ0,ν)
4j σ̄µU

(χ0)
4b χ0

b +
1

2
ν ′†i U

(χ0,ν)
4i σ̄µU

(χ0,ν)
4j ν ′j

+
1

2
χ0†
a U

(ν,χ0)
ia σ̄µU

(ν,χ0)
ib χ0

b +
1

2
χ0†
a U

(ν,χ0)
ia σ̄µU

(ν)
ij ν

′
j

+
1

2
ν ′†j U

(ν)
ij σ̄µU

(ν,χ0)
ib χ0

b +
1

2
ν ′†i U

(ν)
ki σ̄µU

(ν)
kj ν

′
j

+ χ+†
α Ũ

(χ+)
1α σ̄µŨ

(χ+)
1β χ+

β + χ+†
α Ũ

(χ+)
1α σ̄µŨ

(χ+,ē)
1j ē′j

+ ē′†i Ũ
(χ+,ē)
1i σ̄µŨ

(χ+)
1β χ+

β + ē′†i Ũ
(χ+,ē)
1i σ̄µŨ

(χ+,ē)
1j ē′j

− χ−†α U
(χ−)
1α σ̄µU

(χ−)
1β χ−β − χ−†α U

(χ−)
1α σ̄µU

(χ−,e)
1j e′j

− e′†U (χ−,e)
1i σ̄µU

(χ−)
1β χ−β − e

′†
i U

(χ−,e)
1i σ̄µU

(χ−,e)
1j e′j

− 1

2
χ−†α U

(e,χ−)
iα σ̄µU

(e,χ−)
iβ χ−β −

1

2
χ−†α U

(e,χ−)
iα σ̄µU

(e)
ij e

′
j

− 1

2
e′†i U

(e)
ki σ̄µU

(e,χ−)
kβ χ−β −

1

2
e′†i U

(e)
ki σ̄µU

(e)
kj e

′
j

− 1

2
χ−†α U

(χ−)
2α σ̄µU

(χ−)
2β χ−β −

1

2
χ−†α U

(χ−)
2α σ̄µU

(χ−,e)
2j e′j

− 1

2
e′†i U

(χ−,e)
2i σ̄µU

(χ−)
2β χ−β −

1

2
e′†i U

(χ−,e)
2i σ̄µU

(χ−,e)
2j e′j

+
1

2
χ+†
α Ũ
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This expression can be combined to

JZµ = χ0†
a σ̄µV

(χ0)
ab χ0

b + χ−†α σ̄µV
(χ−)
αβ χ−β + χ+†
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(ν)
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(e)
ij ej (B.62)

+ ē†i σ̄µV
(ē)
ij ēj +

(
χ0†
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)
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where
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(χ+,ē)
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The charged current is given by
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After the insertion of the mass eigenstate fields, we obtain
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1j σ̄µU

(χ0)
2b χ0

b −
√
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(χ+)
2β σ̄µU

(χ0,ν)
3j ν ′j
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The final expression for the charged current is given by
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where we have defined
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After the diagonalization of the mass matrices we obtain analytical expressions for the various
matrix elements. Assuming bino-like neutralino, i.e. expanding in ε = mZ/µ, we obtain
following expression for the R-parity violating part of the neutral CKM-like matrix element:
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with abbreviations
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. (B.70)

Numerically, the relative errors are smaller than 0.10, 0.20, 0.15, 0.05 for a = 1, . . . , 4. For
the R-parity violating part of the charged CKM-like matrix we find
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165



APPENDIX B. GAUGE AND MASS EIGENSTATES

with abbreviations
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ṽ2 =(sβ − cβ)
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Note that we would obtain same results for the higgsino-like neutralino, however, in different
order.
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