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1
Introduction

When my friends ask me about the research topic of my PhD thesis, it always comes with
one inevitable, simple question: What is the use of a particle accelerator? – It accelerates
particles, I answer. To justify why accelerating particles is useful, I obviate part of the answer
and take advantage that I work in a deep inelastic scattering experiment, HERMES at DESY.
We accelerate particles to crash them against other particles, like protons, in order to study
their properties, just as you would throw stones to an apple tree to see how apples are on
the inside. Deep inelastic scattering (DIS) experiments are like a powerful microscope to see
inside the proton.

Electrons as a tool for investigating the nucleon After more than 40 years of DIS
experiments, we now have a rich and impressive knowledge of the structure of the proton,
or nucleons in general. The idea is simple: very high energy leptons (electrons, positrons or
muons) are collided against nucleons. The momentum of the lepton must be large enough
such that the wavelength associated to the photon mediating the electromagnetic interaction
is smaller than the nucleon’s size; this way we know the photon gets deep in the nucleon.
By detecting the lepton in the final state, and measuring its momentum and the angle at
which it was scattered, one obtains information about the nucleon and its internal structure.

Parton distribution functions This information is encoded in parton distribution functions
(PDFs), which represent the probability to find a parton (whatever the nucleon is made of)
with certain properties inside of the nucleon. The building blocks of the nucleon, the quarks
and gluons, were discovered this way. Data from DIS experiments show unequivocally that
the nucleon possesses a charged substructure of a spatial size much smaller than the nucleon
itself, and that its components behave like quasi-free objects when probed at high energies.
These observations were formalized by Bjorken and Feynman in their parton model [19], that
would later develop into the theory of Quantum Chromodynamics (QCD) [2], describing the
interaction of color charged particles, the quarks and gluons. QCD is the basis for models
that describe all particles made by these: the hadrons.
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Spin crisis Another crucial observation from the early DIS experiments is the fact that
quarks have spin-1/2. A nucleon made of three quarks can easily be accommodated in this
picture by assuming that two of the quarks would have their spin aligned to the nucleon
spin, and the remaining quark would have its spin anti-aligned. However, the results from
longitudinally polarized DIS (where the spin of the nucleon is polarized along the same
direction as the incoming beam) by the EMC collaboration [14] in the late 80’s indicated
that the spin of the quarks contributes only about 30% to the total spin of the nucleon.
This striking observation was called a spin crisis [24] in the parton model, and led to a
renewed interest in the nucleon substructure and other spin-related phenomena. In fact,
the HERMES experiment was planned with the goal of studying in more detail the spin the
contribution of the spin of the quarks [3].

AN in hadronic collisions The spin structure of the nucleon, i.e., the means by which the
quarks and gluons and their dynamics contribute to the total spin of the nucleon, is still
nowadays an unresolved puzzle. In addition to the spin crisis, other polarization phenomena
have been observed that deeply challenge the current understanding of the role of spin in
particle physics [97]. Perhaps one of the most glaring examples is the case of the large
left-right asymmetry AN for pions produced in hadron-nucleon collisions with transversely
polarized beam or targets, many times observed in different experiments but not yet fully
understood [47–71]. Such a large transverse spin asymmetry was found surprising in the
late 1970’s, when it was observed for the first time, due to the wrong preconception that
all transverse spin effects should be suppressed inside a relativistic proton [72]. However,
inside of a nucleon, even a fast moving one, there is enough place for transverse motion of
quarks and gluon radiations. Both cases are known nowadays to cause complex correlations
between the spin of the nucleon and the momentum of the quarks, hence possibly giving rise
to an asymmetrical distribution of the outgoing hadrons.

Transverse momentum of quarks Over the last two decades, two main approaches have
been proposed that could generate transverse spin asymmetries. One [96] is based in the
use of transverse-momentum dependent parton distribution and fragmentation functions
(TMDs). In this context, two mechanisms exist that can explain the observed AN : the Sivers
and Collins effects. In the Sivers effect [74], an asymmetrical distribution of unpolarized
quarks (having its origin in a correlation between the spin of the proton and the quark
transverse momentum) is responsible for the preferred production of the outgoing hadrons in
a certain direction. In the case of the Collins effect [75], the asymmetry is generated due to
a correlation between the momentum of the produced hadron and the spin and momentum
of the fragmenting quark. In the other approach [77], the transverse motion of quarks is
ignored, but transverse SSAs arise from higher-order correlations between the quarks and
gluons of the fragmenting proton. These two approaches are valid in separate kinematic
regimes, but have been proven to be consistent with each other in the region of overlap [78].
In particular, both approaches predict that AN should be zero for a sufficiently large value
of the transverse momentum of the hadron, but more experimental data is needed in this
region to check the validity of the models. In addition, a substantial number of theoretical
predictions exist, which await experimental data [78,79].
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AN in electroproduction In recent years, the interest of measuring the transverse spin
asymmetry AN in electron-proton reactions has been pointed out [5], with an unpolarized
electron beam and a transversely polarized proton target. Since these reactions involve
only the quark fields of one proton, they offer a much cleaner interpretation of AN in
terms of TMDs than for the hadronic data. A measurement of AN in ep reactions can
therefore be utilized to support or rule out some of the ideas discussed in this context. A
theoretical prediction [89] exists for the kinematics of the HERMES experiment, suggesting
that the Sivers effect could generate a sizable asymmetry for pions produced in the reaction
e p
↑ → π±X.

Such a measurement of a transverse spin asymmetry in inclusive electroproduction does
not exist up to date, and it is presented for the first time in this thesis1.

Towards the complete picture of the nucleon The TMDs are a crucial step towards a
complete picture of the parton structure of the nucleon in QCD. These distribution functions
depend on the intrinsic motion of partons inside the nucleon, and allow the reconstruction
of the nucleon structure in momentum space. With an increasing knowledge of TMDs, one
expects to provide precise answers about e.g., the dynamics of the quarks in the nucleon and
the correlation between the orbital motion of quarks, their spin, and the spin of the nucleon.
The measurement and characterization of TMDs have generated an enormous amount of
both experimental and theoretical work over the last years, and still are a high priority in
the physics programs of accelerator facilities like DESY (HERMES), CERN (COMPASS),
Jefferson Lab, and RHIC, as well as of forthcoming experiments like those planned for the
Electron-Ion Collider (EIC).

The complementary aspect of the nucleon structure – the description of quarks in the
coordinate space – is addressed by the Generalized Parton Distribution functions (GPDs) [6].
The GPDs are accessible in exclusive reactions, where all reaction products are detected.
The transverse position of the parton on which the scattering took place is obtained by
a Fourier transform from the transverse momentum of the scattered nucleon. A better
understanding of the spatial distribution of partons would provide essential insight into the
QCD dynamics inside hadrons. With the information from TMDs and GPDs combined, a
complete multi-dimensional imaging of the nucleon could be achieved. A unified framework
of parton distribution functions, from which both TMDs and GPDs can be derived, has been
proposed recently [7]. This new set of mother distributions is referred to as Generalized
Transverse-Momentum Dependent parton distribution functions (GTMDs).

1Preliminary HEMES results were shown previously at several conferences. See for instance Ref. [1].
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1.1 Outline
The structure of this work is as follows:

• In Chapter 2, the relevant formalism for the study of SSAs is given, together with
a selected overview of concepts and facts related to these. This Chapter can be
considered as an extended version of the introduction given above.

• In Chapter 3, the HERMES experiment is described in detail.

• In Chapter 4, the selection of data and the method used to extract the asymmetries
are discussed, and preliminary results for the asymmetries are shown, including only
statistical error bars.

• Chapter 5 is dedicated to the estimation of systematic uncertainties that could affect
the measurement of SSAs.

• Final results are presented in Chapter 6, together with an extended discussion of
the measured asymmetries, and a possible interpretation in terms of the available
theoretical knowledge.

• In Chapter 7, an additional study, reporting on the measurement of transverse SSAs in
inclusive DIS is included. Such an asymmetry has been signaled as an indication for
two-photon exchange effects in the ep reaction. This analysis was performed prior to
the one described in the preceding chapters, and it was published in Phys. Lett. B682
(2010) 351-354. See Ref. [158].

• Other relevant information is included in the Appendices. These are correspondingly
linked from the main chapters.

So, what’s the work you do for your thesis? – I count particles, I answer.
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In this chapter, the relevant formalism for the discussion of transverse single spin asymmetries
(SSAs) is considered. The starting point is the study of polarized deep inelastic scattering
(DIS) reactions in Section 2.1 and the consequent formulation of the quark parton model
(QPM) in Section 2.2, which subsequently led to the discovery and establishment of the
theory of quantum chromodynamics (QCD), – Section 2.3. This framework provides a quite
satisfactory understanding of the physics related to the nucleon’s longitudinal spin. The
transverse spin structure of the nucleon is more difficult to access. However, large transverse
SSAs have been observed both in the inclusive production of hadrons from hadronic collisions
(the controversial AN discussed in Section 2.4) and in the polarized semi-inclusive DIS (SIDIS)
– Section 2.5, a process which allows for a deeper exploration of the nucleon structure.
Transverse-momentum dependent parton distribution and fragmentation functions (TMDs)
are discussed in Section 2.6, and provide an explanation for transverse SSAs and point to
the important role of the intrinsic motion of quarks, related to e.g., the Sivers and Collins
effects. Other frameworks exist in which transverse spin effects can be accommodated, like
for instance the high-twist collinear model, briefly discussed in Section 2.7. Based on the
TMD formalism, a detailed discussion of transverse SSAs in the inclusive electroproduction
of hadrons is presented in Section 2.8, where estimates of AN are given for the HERMES
kinematics.

2.1 Deep inelastic scattering

A schematic DIS reaction is depicted in Fig. 2.1. An incoming lepton with four-momentum
k interacts with a target nucleon having four-momentum P . The interaction takes place by
the exchange of a virtual photon γ∗ with momentum q – the curvy line in between1. The
term virtual refers to the fact that the photon is only the mediator, and not a detectable

1The interaction could be mediated as well by a weak boson Z0 but at the energy scale of an experiment
like HERMES, this is very improbable. Therefore, we just consider an electromagnetic interaction between
both particles.
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real photon. As a result of the collision, the proton fragments into new hadrons (typically,
pions and kaons), and the beam lepton is scattered with a certain angle θe.

Figure 2.1. Diagram and kinematic plane for inclusive DIS.

2.1.1 Kinematics

With the three vectors given in Fig. 2.1, one can build six Lorentz invariant observables:
k
2, P 2, q2, P · q, k · P and k · q. The first two are the invariant masses of the lepton and

nucleon, respectively. The invariants q2 and P · q describe the interaction of the virtual
photon with the nucleon. The last two depend on the energy of the lepton-nucleon system
and the lepton scattering angle θe.

• The HERMES laboratory frame is defined such that the target nucleon is at rest
P

lab

= (M, 0).

• The four-momenta of the electron before and after the interaction are respectively
k = (E, k) and k � = (E �, k�).

• The four-momentum of the virtual photon is q = k − k �. The squared invariant mass
of the virtual photon q2 corresponds to the four-momentum transfer to the nucleon.
The virtuality of the photon is expressed by negative values of q2 < 0, in contrast to
real photons, which are massless and therefore have q2 = 0.

For the analyses presented in this thesis, it suffices to characterize the scattered beam
lepton by its energy and angle θe. In the lab system, neglecting the lepton mass, the
momentum transfer becomes

q
2 lab

� −4EE � sin2
θe

2
< 0, (2.1)

Usually, one rather takes Q2 = −q2 in order to avoid working with negative quantities.
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• The energy transfer to the nucleon (ν) and the dimensionless fractional energy transfer
(y) are defined

ν =
P · q

M

lab

= E − E �, y =
P · q

P · k

lab

=
ν

E
. (2.2)

• The total energy available in the center of mass is k + P . The square of it is also
Lorentz invariant s = (P + k)2

lab

� M2 + 2ME.

• The squared invariant mass of the final state is W 2 = (P + q)2 lab

= M2 + 2Mν −Q2.

• Another useful dimensionless variable is

x =
Q
2

2 P · q
lab

=
Q
2

2Mν
, (2.3)

known as the x-Bjorken variable. In the center-of-mass frame, x can be related to the
fraction of the momentum of the nucleon carried by the nucleon’s component that
absorbs the virtual photon. It can also be used to indicate the degree of inelasticity of
the process. A value of x = 1 means Q2 = 2Mν, which implies that all the available
energy is transformed into kinetic energy W 2 = M2.

In addition, another two important objects needed to describe the scattering process are
the target polarization vector S and the azimuthal angle φS

φS =
q× k · S

|q× k · S|
cos−1

q× k · q× S

|q× k||q× S|
, (2.4)

defined around the direction q of the virtual photon, between the lepton scattering plane
(the plane containing both q and k�) and the perpendicular component of the target spin
vector S⊥. See Fig. 2.1.

One-photon-exchange approximation This picture of a DIS reaction is based on the
assumption that only one virtual photon is exchanged between both particles. This simplifies
the calculations and it is generally accepted to be a good approximation. Contributions from
two-photon exchange are discussed in more detail in Chapter 7.

2.1.2 Cross section
A general expression for the elastic cross section of two point-like charged particles can

be derived form first principles by the use of the Feynman rules for QED. This is done in
Appendix A. The idea to keep in mind is that the cross section implies the contraction of
two tensors Lµν, given in Eq. (A.9), which describe the electromagnetic currents jµ and jν
of the two charged particles. This leads to a cross section expression

σelastic ∼ L
a

µν
L
µν

b
. (2.5)

The leptonic tensor can be expressed [9] as a sum

Lµν = L
S

µν
+ LA

µν
, (2.6)
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of a symmetric term LS

νµ
and an anti-symmetric term LA

νµ
according to their properties under

the exchange of the µ, ν indexes2; only the anti-symmetric part depends on the nucleon spin.

In inelastic ep scattering, similarly, the cross section can be written as

σDIS ∝ LµνW
µν
, (2.7)

where the hadronic tensor Wµν, describes the interaction between the virtual photon and
the nucleon and is formally defined in terms of scattering matrix elements of the hadronic
electromagnetic current jh

µ
[10, 35]

2MWµν(q;P, S) =
1

2π

�

X

�
d3PX
(2π)32EX

(2π)4δ4(P + q − PX),

×�P, S| j
h

µ
(0) |X��X| jh

ν
(0) |P, S�. (2.8)

Here the sum is over all particles X in the final state, having four momenta PX = (EX,PX).
The δ4 guarantees 4-momentum conservation3. Without any information about the nucleon
internal dynamics, it is only possible to restrict the content ofWµν using symmetry arguments,
and write it in terms of structure functions 4, that parametrize our ignorance about the
nucleon substructure. For inelastic ep scattering, assuming γ∗ exchange, only four structure
functions W1, W2, G1 and G2 are necessary

Wµν(q;P, S) = W
S

µν
(q;P ) + iW A

µν
(q;P, S),

such that W
S

µν
∝ W1,W2,

W
A

µν
∝ G1, G2.

The structure functions W1,2 contained in W S

µν
(q;P ) are unpolarized, and the G1,2 depend

on the proton spin. These functions depend mostly on the observables q2 and q · P , i.e., on
Q
2 and x , see Eq. (A.25), and are all measurable quantities.

Bjorken scaling In the limit of large momentum transfer (Q2 → ∞), the structure
functions become independent of Q2

lim
Q2→∞

M W1(Q
2
, x) ≡ F1(x),

lim
Q2→∞

ν W2(Q
2
, x) ≡ F2(x),

lim
Q2→∞

ν M
2
G1(Q

2
, x) ≡ g1(x),

lim
Q2→∞

ν
2
M G2(Q

2
, x) ≡ g2(x).

Large Q2 implies large ν and therefore the Q2-independent functions F1,2 and g1,2 depend
only on x = Q2/2Mν, which remains fixed. This phenomenon was originally predicted [11]
by James Bjorken in 1968 and shortly afterwards confirmed experimentally at SLAC.The
structure functions measured as a function of Q2, see Fig. 2.2, are practically constant for
different values of fixed x . See discussion further down in Section 2.2.2.

2
L

S

µν = L
S

νµ, but LA

µν = −L
A

νµ.
3See Appendix A for more details about other terms.
4Somewhat equivalent to the electric and magnetic form factors in elastic ep scattering.
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Figure 2.2. The proton structure function F2 measured in electromagnetic scattering
of electrons and positrons on protons (collider experiments H1 and ZEUS
for Q2 ≥ 2 GeV2 ), in the kinematic domain of the HERA data, and for
electrons (SLAC) and muons (BCDMS, E665, NMC) on a fixed target.
Statistical and systematic errors added in quadrature are shown. For the
purpose of plotting F2 has been multiplied by 2ix , where ix is the number
of the x bin, ranging from ix = 1 (x = 0.85) to ix = 24 (x = 0.00005).
Figure taken from Ref. [12]. See references therein for the used data.
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Measurement of structure functions The four structure functions can be measured in
experiments by exploiting the symmetry behavior of the DIS cross section.

σDIS ∝ L
S

µν
W
µνS
− L

A

µν
W
µνA
. (2.9)

The determination of the spin-dependent structure functions g1 and g2 requires the use
of a longitudinally polarized beam in addition to a polarized (longitudinal and transverse,
respectively) target. In this case, the differential cross section is [9, 81]

d2σ

dx dy
= σUU + |SL|σLL + |S⊥|σLT , (2.10a)

with σUU ≡
d2σ

dx dy
=
4πα2s

Q4

�
x y
2
F1 + (1− y)F2

�
, (2.10b)

σLL ≡
d2σ++

dx dy
−

d2σ+−

dx dy
=
16πα2

Q2

��
1−
y

2

�
g1 −

2M2xy

Q2
g2

�
, (2.10c)

σLT ≡
d2σ+↑

dx dy
−

d2σ+↓

dx dy
=
16πα2

Q2
η

�
1− y − η

y 2

4

�
y

2
g1 + g2

�
, (2.10d)

where |SL| and |S⊥| are the longitudinal and transverse components of the target spin with
respect to the incoming beam direction; η ≡ 2Mx/

√
Q2; σUU is the unpolarized cross section

(with both target and beam unpolarized); σLL is the cross section difference for the parallel
(σ++) and antiparallel (σ+−) longitudinal target spin configuration and a longitudinal beam;
and σLT is the cross section difference for the case of a longitudinal polarized beam and a
transversely polarized target in two opposite spin directions (σ+↑ and σ+↓).

• Unpolarized case Summing over the spins of the particles only the symmetric term
L

S

µν
W
µνS survives. This allows to determine the structure functions F1 and F2 in

unpolarized DIS from Eq. (2.10b). For a fixed target experiment, at a given (x,Q2),
Eq. (2.10b) implies at least two cross section measurements for two different values
of y , i.e., beam energies.5

• Longitudinally polarized case The difference of cross sections with opposite target
spin polarizations singles out the anti-symmetric term LA

µν
W
µνA, given by Eq. (2.10c).

The spin-dependent structure function g1 can be measured from the expression
g1 = σUU A� + g2, where the double-spin asymmetry A� ≡ σLL/σUU can be measured
in inclusive DIS, and g2 implies only small corrections. The first extraction of g1 for the
proton, neutron and deuteron was done in 1988 by the EMC collaboration [14]. Since
then, the result has been improved several times from data by other collaborations [15],
including HERMES [16].

• Transversely polarized case In the case of a transversely polarized target, Eq. (2.10d)
is used to determine g2, since g1 is multiplied by a factor of y 2 and represents a small
contribution to the cross section difference. The extraction of g2 is reported in
Ref. [17], and turns out to be much smaller than g1. A very recent measurement of
g2 by HERMES can be found in Ref. [18].

5Alternatively, one can relate both structure functions to the ratio σL/σT = R(x,Q2) ∼ F2/(2xF1) of
longitudinal and transverse virtual-photon cross sections, for which parametrizations exist, and extract for
instance F2 from a single cross section measurement [10,13].
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2.2 Quark-parton model

The quark parton model (QPM) was devised in 1969 by Feynman and Bjorken [19] with the
goal of providing an explanation, based on fundamental concepts, to the inelastic processes
observed in the early DIS experiments. Not long afterwards it was linked to the ideas
proposed a few years earlier by Gell-Mann [20] and Zweig [21], who had introduced the
concept of quarks based on symmetry properties of mesons and baryons multiplets.

The basic idea of the parton model is that, when probed at high energies, the proton
behaves as if it were made up of several point-like constituents or parts6. The DIS collisions
ep → eX can then be regarded as the incoherent sum7 for the elastic scattering of leptons
off free quarks eq → eq

dσ ep→eX

dx dQ2
=

�

q

e
2
q
q(x)

dσ̂ eq→eq

dQ2
, (2.11)

where the function q(x) expresses the probability of finding a quark inside the proton with a
certain momentum fraction x . The term dσ̂/dQ2 is the (computable) cross section for the
scattering of two free, pointlike particles. The derivation of Eq. (2.11) is done in Appendix A.

Quarks can be considered as free particles in a reference frame where the proton is
moving very fast, i.e., in an infinite momentum frame 8, where the interaction rate is slowed
down by the relativistic time dilation. The Lorentz boost along the direction of motion also
allows to neglect the transverse momentum of quarks: quarks can be assumed to move
collinear with the proton9.

Partons are pointlike! The scaling of the structure functions F1,2 in
the Bjorken limit, Q2 →∞, implies that the inner structure of the proton
consists of pointlike constituents. Large Q2 means a high-energy virtual
photon, i.e., with short wavelength and therefore high spatial resolution:
The photon can resolve a finer substructure within the proton. The fact
that the structure “seen” by the photon is independent of its invariant
mass can only be explained if this is interacting with components without
structure!

6hence the name partons
7This is generally called the impulse approximation, namely that the virtual photon is absorbed by only one

of the partons, and thus Eq. (2.11) can be summed incoherently over each quark species.
8In practice, just a “very high momentum” frame.
9This point will become relevant later in Sections 2.4 and 2.6 for the discussion of transverse spin effects.
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2.2.1 PDFs

In the QPM model, the nucleon is described in terms of Parton Distribution Functions
(PDFs). The most basic PDF is the unpolarized distribution function q(x). In a proton with
a given spin vector, we can study the project of the quarks along the same axis and study
whether their spin is aligned (+) or anti-aligned (−) with the spin direction of the proton.
Thus, the q(x), expressed in terms of the number densities q±(x), is simply

q(x) = q+(x) + q−(x). (2.12)

For a longitudinally polarized proton target, and following this notation, quarks can be
found with the same spin direction (q++), or opposite (q+−) to that of the proton, where now
the superscript refers to the proton’s spin.

Here, it is convenient to introduce the concept of helicity: the projection
of the spin of a particle along its direction of movement. This can take
the values −1 or +1, simply indicated with − or +. Note that, because of
parity invariance, q++ = q

−
− and q+− = q

−
+ , meaning that the distribution of

quarks with negative helicity in a proton with positive helicity is the same
as that of quarks with positive helicity in a proton with negative helicity.

The difference of cross sections with opposite longitudinal target polarization leads to10

dσ+

dx dy
−

dσ−

dx dy
=

�

q

e
2
q
∆q(x)

�
dσ̂+

dy
−

dσ̂−

dy

�
, (2.13)

where ∆q(x) is the helicity distribution of quarks

∆q(x) = q++(x)− q
+
−(x). (2.14)

Note that in double longitudinally polarized e p scattering, the quark that absorbs the virtual
photon must have its spin polarized opposite to the photon’s spin, in order to conserve
total angular momentum. Therefore a cross section measurement with reversed target
polarization is sensitive to the difference ∆q.

In the case of a transversely polarized target, the difference of cross sections is related
to the transversity distribution ∆T (x)

dσ+↑

dx dy
−

dσ+↓

dx dy
=

�

q

e
2
q
∆Tq(x)

�
dσ̂+↑

dy
−

dσ̂+↓

dy

�
= 0, (2.15)

which cannot be measured in inclusive DIS since dσ̂+↑ − dσ̂+↓ � 0. The reason for this is
the conservation of helicity – an intuitive explanation is given at the end of Section 2.3.3.

10See Appendix A for a derivation.
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2.2.2 Interpretation of the structure functions

One great advantage of the QPM is that it provides a partonic interpretation of some of the
structure functions. Starting from Eq. (2.11), calculating the cross section for the elastic
eq → eq scattering process, and comparing to the expression of the DIS cross section in
terms of structure functions in Eq. (2.10a), one finds that the structure functions become [9]

F1(x) =
1

2

�

q

e
2
q
q(x), F2(x) = x

�

q

e
2
q
q(x) = 2xF1(x), (2.16)

g1(x) =
1

2

�

q

e
2
q
∆q(x), g2(x) = 0. (2.17)

This means that one can determine the distribution q(x) of quarks in the proton by a
measurement of F1 or F2, i.e., from an unpolarized cross section measurement. Similarly,
the polarized structure function g1 gives information about the distribution of quarks with
different helicities, i.e., with opposite longitudinal spin polarizations, inside a longitudinally
polarized proton. The function g2 is zero in the QPM and therefore does not have a partonic
interpretation.

Partons have spin 1/2! The relationship between F1 and F2 given in
Eq. (2.16) is known as the Callan-Gross relation [22] and implies that the
unpolarized cross section is entirely described by only one of the structure
functions, e.g., F2. The experimental agreement with the Callan-Gross
relation indicates that partons are spin 1/2 particles, as this relation is
only true in such case.

Separately from the conclusions derived from DIS experiments, Gell-Mann and Zweig,
based on the properties of the SU(3) symmetry group, concluded that the nucleons must be
made from at least three quarks: point-like, electrically charged objects with spin 1/2. In
particular, a minimum of two different types of quarks are needed to explain the properties
of nucleons, designated as the u (up) quark, with charge +2/3 and the d (down) quark,
with charge −1/3. These quarks represent the quarks of the nucleon that determine its
quantum numbers. In addition, other qq̄ pairs, resulting from gluon interactions (see next
section), are also present in the nucleon, called the sea quarks.

Partons are quarks! The experimental evidence that partons have no
structure and that they are spin 1/2 particles connected the DIS formalism
by Bjorken and Feynman with the quark model.

Results from neutrino data The above expressions for the structure functions are valid
for all quark and anti-quark flavors. This implies that sea quarks are also “visible” in DIS
experiments, since they do have an electric charge and therefore interact with the virtual
photon. Assuming for simplicity that the sea inside the nucleon is only made of pairs of uū,
dd̄ , and strange quarks ss̄ (these last ones also with charge 1/3) the F2 structure function
can be calculated as a sum of the parton probabilities u(x) ≡ qu(x), d(x) ≡ qd(x) and
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s(x) ≡ qs(x) for the nucleon. For example, for a proton target

F
ep

2 (x) =
4

9
x [u(x) + ū(x)] +

1

9
x [d(x) + d̄(x) + s(x) + s̄(x)]. (2.18)

Similarly, the structure function can be calculated from charged current DIS, which takes
place by the exchange of a W+ boson and consequently this can only hit quarks of charge
−1/3 or antiquarks of charge −2/3, giving

F
νp

2 = 2x [d(x) + s(x) + ū(x)]. (2.19)

Another relevant observation in neutrino DIS comes from the determination of the F2
structure function for the nucleon, which can be done by exploiting the isospin symmetric
quark content of protons and neutrons. The expression for F2 reads

F
νN

2 =
1

2
(F νp2 + F

νn

2 ),

= x [d(x) + s(x) + ū(x)] + x, [d̄(x) + s̄(x) + u(x)] ≡ x Σ(x). (2.20)

If the proton is only made of free quarks, the sum over all values of x and quark types must
satisfy the momentum sum rule

�
dx Σ(x) = 1. However, from the measurement of F νN2

and F eN2 it can be deduced that
�
dx Σ(x) ∼ 0.5. This suggests that quarks carry only

about 50% of the nucleon’s momentum!

A comparison of neutrino and lepton scattering for isoscalar targets leads to a specific
value of the ratio between the structure function measured in both cases F eN2 /F νN2 � 5/18.
The confirmation of this prediction by experimental data, together with the explanation of
the Bjorken scaling, represented a great success of the QPM predictive power, and served
to establish the validity of the model.

Violation of Bjorken scaling Possibly the strongest evidence against the naive QPM is
the fact that the scaling of the unpolarized structure functions is only approximate. This
can be seen in Fig. 2.2, A slight but significant Q2-dependence is observed, such that the
value of F2(x) increases at low x , and decreases at large x . Does this mean that quarks
have also a substructure?

Partons interact! The two problematic facts introduced above can still
be explained within the QPM if one takes into account interactions between
partons. These interactions take place via the exchange of gluons, which
can also fluctuate into q− q̄ pairs. At large Q2, as the resolution increases,
gluons start to be resolved by the virtual photon, sharing therefore part of
the nucleon’s momentum. As a consequence, the probability of finding a
parton with a large momentum fraction x decreases and the probability of
finding one at low x increases. The breaking of Bjorken scaling is then
explained in a fundamental way.
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2.2.3 Spin crisis “ where, oh where is the
proton’s spin? [24] ”

In order to gain more insight from the role of the spin-dependent structure function g1,
one can take its first moment Γ1, i.e., integrate the left hand side of Eq. 2.17 over x

Γ1 =

� 1

0

g1(x)dx =
1

2

�

i

e
2
i
∆qi , with ∆qi =

� 1

0

∆qi(x)dx, (2.21)

and write it in terms of the quark content of the proton

Γ
p

1 =
1

2

�
4

9
(∆u + ∆ū) +

1

9
(∆d + ∆d̄) +

1

9
(∆s + ∆s̄)

�
,

=
1

9
a0 +

1

12
a3 +

1

36
a8,

where the coefficients a0, a3, and a8 are arranged [9] in terms of symmetry properties under
SU(3) such that

a0 = (∆u + ∆ū) + (∆d + ∆d̄) + (∆s + ∆s̄) ≡ ∆Σ, (2.22)
a3 = (∆u + ∆ū)− (∆d + ∆d̄),

a8 = (∆u + ∆ū) + (∆d + ∆d̄)− 2(∆s + ∆s̄).

The value of a3 and a8 can be measured experimentally in the beta decay of neutrons and
hyperons [9]. This way, the contributions from the quarks to the spin of the proton, ∆Σ,
may be determined from the measurement of Γ p1 . This was done for the first time in 1988 by
the EMC collaboration at CERN, finding [25] Γ p1 � 0.126± 0.010± 0.015. Given the values
of a3 and a8 of available at that time, this implied a value of a0 � 0.098± 0.076± 0.113.

Interpretation of the EMC results In the naive parton model, only the quarks are con-
sidered to be spin-polarized (gluons are ignored) and these move collinear with the nucleon
such that their transverse momentum is zero. Thus their momenta do not contribute to the
total angular momentum Jz along the direction of motion (say the z direction). The spin of
the nucleon Sz = 1/2 can then be expressed as

(Squarks

z
)QPM =

� 1

0

dx

��
1

2

�
q+(x) +

�
−
1

2

�
q−(x)

�
, (2.23)

since q±(x) count the number of quarks with momentum fraction x and spin component
±1/2. Using Eq. (2.14) and Eq. (2.22), one finds

(Squarks

z
)QPM =

1

2

� 1

0

dx ∆q(x) ≡
1

2
∆Σ =

1

2
a0. (2.24)

which together with the EMC result for the value of Γ p1 , i.e., a0, it implies that the spin of
the quarks are just a small contribution to the proton’s spin

(Squarks

z
)exp � 0.03�

1

2
. (2.25)

This surprising fact was termed a “spin crisis in the parton model” [24] by E. Leader and
M. Anselmino.
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Resolution of the spin crisis The expression for Γ1 in Eq. (2.21) is only true in the simple
parton model. If QCD corrections are taken into account, there is a gluonic contribution
coming from the split of a gluon into a qq̄ pair. The virtual photon can then be absorbed by
one of the radiated quarks, which probes the gluon longitudinal polarization instead. This
leads to a new interpretation of a0

a0 = ∆Σ− 2
αs

2π
∆g, (2.26)

where ∆g is the gluonic equivalent of ∆q, i.e., the difference between the density of gluons
with the same helicity as that of the nucleon and those with different helicity.11

This implies that the small measured value of a0 does not necessarily imply that ∆Σ is
small. The simple parton model formulae for a0 and Γ1 in terms of the ∆q are therefore
incorrect. A large value of the gluon polarization could then explain the small value measured
for a0, and yet keep a large value of ∆Σ. Nevertheless, recent extractions of ∆g seem
to indicate a quite small value [41], which means that there must exist yet another large
contribution to the nucleon spin.

Angular momentum sum rule The answer to the spin crisis possibly is in the transverse
motion of partons, which is neglected in the collinear parton model. The transverse
momentum can generate orbital angular momentum Lz , which would sum with the spin of
quarks and gluons. This way, the angular momentum sum rule is

Jz =
1

2
∆Σ+ ∆g + Lz =

1

2
. (2.27)

The study of inclusive and semi-inclusive DIS reactions with transversely polarized protons
is the subject of the rest of the chapter. On the next section, the QCD formalism for the
parton model is described, that will be useful later to discuss the transverse-momentum
dependent PDFs.

2.3 QCD formulation of the parton model

The QPM led eventually to the formulation of quantum chromodynamics (QCD), the theory
describing the properties of strongly-interacting particles, the quarks and gluons from which
hadrons are made of. As a non-abelian gauge theory, QCD has two particular features:
confinement and asymptotic freedom.

• Confinement refers to the property of the strong coupling constant, αS, to grow
exponentially at large distances or small-energies

αS(Q
2) ∝

1

lnQ2
, (2.28)

11The gluonic correction to a0 is often called in the bibliography the axial anomaly or anomalous gluon
contribution, referring to the fact that it survives in the limit Q2 →∞, where the effective strong coupling
goes to zero and one would expect all QCD effects to be switched off.
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explaining this way why quarks are bound together inside the nucleon. This dependence
of αS with the energy makes it rather difficult to perform exact calculations of processes,
like for instance scattering amplitudes, since the number of gluon corrections grows
“exponentially”, making the calculations impossible to compute12.

• Asymptotic freedom, in contrast, implies that at short distance or for high-energy
interactions, αS becomes smaller, which makes it possible to use perturbation theory
in order to expand the object of interest in powers of the coupling constant

σ = σLO (1 + αS c1 + α
2
S
c2 + . . .). (2.29)

A certain magnitude can then be calculated at leading order (LO), corresponding to
σLO, next-to-leading order (NLO), next-to-next-to-leading order (NNLO), etc. In this
regard, asymptotic freedom can be seen as the prerequisite that permits us to study
the nucleon structure. The simple QPM represents then the limiting case of QCD in
which Q2 →∞ and therefore there is no interaction between partons.

Perturbation theory is useful for the description of quantities that are either insensitive to
long-distance physics, or that can be separated or factorized into short-distance (perturbative)
and long-distance (non-perturbative) physics. An example of the latter is the DIS cross
section, involving large momentum transfers (Q2 →∞,αS → 0), which allows to consider
the quarks as quasi-free particles in the interaction of the nucleon with a high-energy electron.

The cross-section formula for the parton model, given in Eq. (2.11), can be written in a
factorized form as a product of two parts

dσ ep→eX =
�

q

fq(x)⊗ dσ̂eq→eq(Q2) (2.30)

• a high-energy part, dσ̂eq→eq, describing the hard elastic scattering of the virtual photon
off the quark; for high-energy transfers, dσ̂eq→eq can be calculated in perturbation
theory as

σ̂hard ∼ (ŝ
2 + û 2), (2.31)

with ŝ = (pi + q)2 and û = (k � − pi)2 the usual Mandelstam variables, and pi = xP
the parton momentum.

• a low-energy part, the parton distribution functions fq(x), containing all interactions
and fluctuations of the quarks confined inside the proton. These low-energy interactions
cannot be calculated, since they are typically non-perturbative, but can be measured
in one type of process and applied to others13.

At higher orders in perturbation theory, there are corrections of the order of powers of
αS to the hard-scattering cross section dσ̂eq→eq. One must consider virtual loop corrections
to the eq → eq elementary process as well as the radiation of gluons from the outgoing
quarks. This introduces a well-known Q2 dependence on the PDFs (see Section 2.3.1)

fq(x)→ fq(x,Q
2). (2.32)

12The radiation of gluons between quarks in two polarized protons involves about half a million diagrams! [26]
13A property known as universality of the PDFs. See Appendix D.
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On the other hand, the parton distribution functions can be formally derived from the
soft, non-perturbative part of the hadronic tensor. See Section 2.3.2.

Figure 2.3. QCD corrections to the DIS cross section.

2.3.1 QCD corrections
The simplest QCD corrections are illustrated in Fig. 2.3. Gluons can be radiated from quarks,
(QCD-Compton scattering) or they can absorb the virtual photon, turning into a qq̄ pair
(photon-gluon fusion). These processes can be calculated to a certain expansion order in
pQCD, but one must pay some extra price. To illustrate this, let us consider the radiation
of a gluon with momentum pg by the quark with momentum k .

Note that in the previous sections, k and k � were use to designate the
four-momenta of the electron before and after the scattering off the
proton, respectively. From now on, we focus on the interaction of the
virtual photon with the proton, i.e., with the quarks and gluons. The
electron is therefore “left behind”, and its momentum will not appear in
the next sections unless stated. In the following, then, k is always used to
denote quarks.

The objects of interest are the quark-gluon vertices of Fig. 2.3. On the left hand
diagram, it is considered the radiation of a quark by a gluon in the interaction with the
virtual photon. On the right hand, a gluon emitted by the proton absorbs the virtual photon,
converting afterwards in a quark-antiquark pair. The vertex contributions in each case are
given respectively by

/kγµ(/k − /pg)

−2 k · pg + i�
and

/k
�
γµ(/k

�
− /p

g
)

2 k� · pg − i�
. (2.33)

These two vertices contain three types of singularities, coming from the way the denominators
may vanish: k-collinear, k �-collinear and soft. The soft singularities arise from the fact that
gluons are massless, and then all components of pg may go to zero. Similarly, the k- and
k
�-singularities arise because the mass of quarks is usually neglected. Since there is no mass
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term in the denominators, the scalar product k · pg = k pg cos θ vanishes for θ → 0. This
corresponds to the gluon being emitted collinear with the initial parton direction.

The nature of the transverse quark momentum kT can be perturbative,
i.e., from the radiation of gluons like described in the previous section, or
non-perturbative, usually called intrinsic parton momentum which merely
arises from the spatial distribution of quarks inside the proton. Note that
the radiation of a gluon naturally introduces a transverse momentum kT
of the partons!

Renormalization of divergences The collinear divergences at kT = 0 imply that the cross
section cannot be integrated over dk2

T
from 0 to k2

T
(max) but rather starting at a cut-off

value κ2. As a consequence of the κ2 integration, a residual term ln(Q2/κ2) is left. However,
the physics of the process cannot depend on an arbitrary parameter like κ2. A solution is to
consider a certain scale µ2, such that

ln

�
Q
2

κ2

�
= lnQ2 − lnκ2

= lnQ2 − lnµ2 + lnµ2 − lnκ2

= ln

�
Q
2

µ2

�
+ ln

�
µ
2

κ2

�
.

The new term ln(µ2/κ2) is a trace of soft physics, and can be incorporated into the parton
density qi(x)→ qi(x, µ2), which is also of non-perturbative nature.

The parameter µ represents the factorization scale of the process, which can be set freely
in order to specify which radiative corrections can be included in the PDFs – soft gluons,
and which should be considered part of the hard quark-photon scattering – hard gluons. In
DIS, the scale µ2 is chosen conveniently to be equal to Q2, a variable which has a physical
meaning. Note that both the hard cross section and the parton distributions are in reality
independent of µ, but it is only through this parameter that these objects can be assigned a
meaning in the context of a quantum field theory like QCD [29].

Twist In addition to the perturbative corrections like the ones described above, related to
the expansion on αS, there are other corrections to Eq. (2.30) of non-perturbative nature.
These are typically suppressed by inverse powers of the momentum transfer to the nucleon,
O(1/Q2). The order in 1/Q2 at which a certain observable appears is indicated by the
concept of twist. If it is seen at (1/Q2)p, this corresponds to twist t = 2 + 2p. Thus,
leading-twist means t = 2. Formally, the twist can be regarded as a new quantum number,
related to the dimension and spin of field operators [27]. Most spin effects known to date are
related to leading-twist observables, like the three PDFs introduced in the previous section.
Higher-twist PDFs have also been proven to play a significant role – see Section 2.7.
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Evolution equations for parton densities The rescaled or renormalized parton density
qi(x, µ2) cannot be calculated perturbatively but its variation with lnµ2 is given by

∂qi(x, µ2)

∂ lnµ2
=
αs

2π

� 1

x

dξ

ξ

�
qi(ξ, µ

2)Pqq(x/ξ) + g(ξ, µ
2)Pqg(x/ξ)

�
, (2.34)

where Pqq is the (calculable) probability that a quark radiates a gluon and Pqg, similarly, the
probability that a gluon converts into a qq̄ pair. An equivalent equation is found for the
gluon density

∂gi(x, µ2)

∂ lnµ2
=
αs

2π

� 1

x

dξ

ξ

�
�

i

qi(ξ, µ
2)Pgq(x/ξ) + g(ξ, µ

2)Pgg(x/ξ)

�

, (2.35)

where Pgq is equivalent to Pqg and Pgg represents a 3-gluon vertex.

The Eqs. 2.34 and 2.35 are known as the DGLAP evolution equations, also known as
the Altarelli-Parisi equations14. They describe the Q2 dependence of the parton distribution
functions, which implies that if the PDF is known at a certain scale Q20, it is possible to
calculate it at any given Q2. The DGLAP equations represent one of the milestones of
perturbative QCD, due to the very good agreement of their solutions with experimental
data [32].

2.3.2 Quark correlator

The momentum q(x), helicity ∆q(x) and transversity ∆Tq(x) distribution functions were
introduced in Section 2.2.1 to provide a partonic interpretation of the DIS interactions.
These and other PDFs can be formally derived from the hadronic tensor Wµν describing the
hadronic current.

Definition The general form of the hadronic tensor was defined in Eq. (2.8) without any
assumption on the hadron structure. Considering now that the ep scattering process takes
place via the hard scattering off a quark, the final state |X� in Eq. (2.8) can then be split
into a quark with momentum k � = k + q and a remnant. See Fig. 2.4.

Using the rules for Feynman diagrams, the tree-level Feynman amplitude is given by15

M
µ = ū(k �)γµAq(k ;P, S), (2.36)

including a free-quark spinor ū(k �) for the outgoing quark, the photon-quark vertex ieqγµ,
and a matrix element Aq(k;P, S) describing the extraction of a quark with momentum k
from the nucleon and the nucleon’s remnant with momentum P and spin S.

14Dokshitzer in 1977, Gribov and Lipatov in 1972, and Altarelli and Parisi in 1977 wrote independently the
first formulation of these equations [30]. An accessible review by Altarelli can be found in Ref. [31].

15In the following, k is used to denote quarks, instead of leptons. This is an unfortunate convention used in
most of the relevant literature.
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Figure 2.4. The schematic representation of the correlator.

In order to expand the hadronic tensor using Feynman diagrams,
factorization into a hard and a soft part must be assumed. Another
approach for the quantum field formulation of the hadronic tensor is
based on the Operator Product Expansion (OPE) technique, in which
factorization is actually proven. See Ref. [33] for a review of both
approaches. In the diagrammatic approach chosen here, the diagram of
Fig. 2.4 is just the tree-level contribution. A complete handling implies
corrections to the hard scattering by gluons, in which case the results are
equivalent to those provided by the OPE.

The hadronic tensor can be written as 16

2MW µν(q;P, S) =
1

2π

�

q

e
2
q

�

X

�
d3PX

(2π)3 2EX

�
d4k

(2π)4

�
d4k �

(2π)4
δ(k �2)

×
�
ū(k �)γµAq(k ;P, S)

�∗ �
ū(k �)γνAq(k ;P, S)

�

× (2π)4 δ4(P − k − PX) (2π)
4
δ
4(k + q − k �) . (2.37)

Here, k � is the momentum of the quark after absorbing the virtual photon; the δ(k �2)
arises from the condition that the scattered quark is on-shell, i.e., it is a free particle
satisfying the energy-mass relation E �2 = k�2 +m2

q
. The quark mass can be neglected in

the calculation. The [. . .]∗ indicates the complex conjugate of the amplitude, that can be
replaced with an hermitian conjugate † since this is a real number. The matrix element can
be written as Aqi(k,X;P, S) = �X|ψi(0)|P, S�, where the ψ(ξ) are the local quark fields,
describing one type of quark, which depend on the space-time coordinate17

ξ. Similarly,
A

†
qi
(k,X;P, S) = �P, S| ψ̄i(0)|X� with ψ̄(ξ) describing anti-quarks. On the other hand, the

product of the two spinors is u(k �)ū(k �) = /k � + mq � /k + /q, again neglecting the quark

16The derivation in Refs. [34–36] were used in this section.
17The variable ξ is used to indicate the space-time four vector to avoid confusion with the x-Bjorken variable.
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mass18.Then Eq. (2.37) becomes

2MW µν(q;P, S) =
1

2π

�

q

e
2
q

�

X

�
d3PX

(2π)3 2EX

�
d4k

(2π)4

�
d4k �

(2π)4
δ(k �2)

soft part→ × �P, S|ψ̄i(0)|X� �X|ψj(0)|P, S� (2.38)
hard part→ × [(−iγ µ)(/k + /q)(iγ

ν)] (2.39)
× (2π)4 δ4(P − k − PX) (2π)

4
δ
4(k + q − k �) ,

where the separation into the hard and soft parts has been emphasized. All information
about the nucleon internal structure and soft non-perturbative interactions is contained in
the quark-quark correlation matrix Φi j(k ;P, S), defined as

Φi j(k ;P, S) =
�

X

�
d3PX
(2π)3 2P 0

X

δ
4(P − k − PX)

×�P, S|ψ̄j(0)|X� �X|ψi(0)|P, S�. (2.40)

The hadronic tensor can then be rewritten as

2MWµν =
�

q

e
2
q

�
d4k

(2π)4

�
d4k �

(2π)4
δ(k �2) (2π)4 δ4(k + q − k �)Tr

�
Φ γµ/k

�
γ
ν
�

=
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q

e
2
q

�
d4k

(2π)4
δ
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�
Tr

�
Φ γµ(/k + /q)γ

ν
�
, (2.41)

The Φi j(k ;P, S) correlation matrix (simply called the quark-quark correlator) characterizes
the soft, non-perturbative interactions inside the proton. This is graphically illustrated by
the grey “blob” in Fig. 2.4.

A more compact form of the correlator can be found by applying a Fourier transformation19

and using the completeness relation |X��X| = to eliminate the unobserved X states, which
leads to

Φi j(k ;P, S) =
1

(2π)4

�
d4 ξ e−i p·ξ �P, S|ψ̄j(ξ) ψi(0)|P, S�. (2.42)

The quark correlator Φ can be regarded as a bilocal operator ψ̄(0)ψ(ξ) that relates the
initial state of the nucleon |P, S� to the struck quark, integrated over all possible separations
ξ in space-time the quark might have 20.

Integration For further exploration of the correlator, it is convenient to use light-cone
variables21, such that the quark momentum can be parametrized as [35]22

k = [k+, k−, kT ] =

�
xP
+
,
k
2 + |kT |2

2xP+
, kT

�
. (2.43)

18The Feynman slash notation for a four-momentum A corresponds to /A ≡ γµ Aµ.
19See Eq. (A.5).
20The above definition of Φi j does not take into account the presence of Wilson lines, see Appendix D.
21See definition of k± at the end of Appendix D.
22Note that in Ref. [35], light-cone vectors are written with the minus component first k = [k−, k+, kT ].
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Assuming that the virtuality of the quark k2 and its transverse momentum kT are both small
in comparison to Q2, the relevant component of the quark momentum respect to the proton
momentum becomes k+ = xP+, and the quark correlator is effectively a function of only x
and S. The correlator can then be integrated over the other variables, depending on the
case of interest:

• If only the momentum of the scattered lepton is known (in inclusive DIS), the scattered
electron does not carry any information on the intrinsic motion of quarks and the quark
correlator can be integrated over both dk− and d2kT

ΦDIS(x, S) =

�
d2kT dk

−Φ(k ;P, S), (2.44)

which leads to the three leading-twist PDFs described in the next paragraph.

• If in addition, one hadron is detected in coincidence with the lepton (in semi-inclusive
DIS), the hadron transverse momentum ph⊥ can be related to the parton intrinsic
motion. One can then investigate the kT -dependent correlator

ΦSIDIS(x, kT , S) =

�
dk−Φ(k ;P, S), (2.45)

which leads to the transverse-momentum dependent (TMDs) parton distribution
functions. See Section 2.6.1.

Distribution functions The quark-quark correlator Φ(x, S) is constrained by the hermiticity
properties of the fields, and by parity and time reversal invariance. This allows to expand Φ
in terms of twelve scattering amplitudes for leading-twist, which are real scalar functions
A(p ·P, p2)23. Imposing such symmetry requirements, they can be reduced to just three [34]

Φ(x, S) =
1

2
[f1(x) /P + SL g1L(x) γ

5 /P + h1T iσµνγ
5
P
µ
S
ν

⊥]. (2.46)

The three functions f1(x), g1L(x) and h1T correspond to the three distribution functions
already introduced, just with different notation24. These can be projected out of the quark
correlator by means of the corresponding Dirac matrices [34]

1

2
Tr

�
γ
+Φ(x, S)

�
= f1(x, k⊥) ≡ q(x) , (2.47)

1

2SL
Tr

�
γ
+
γ5Φ(x, S)

�
= g1L(x, k⊥) ≡ ∆ q(x) , (2.48)

1

2Sj⊥
Tr

�
iσ
j+
γ5Φ(x, S)

�
= h1T (x, k⊥) ≡ ∆Tq(x) . (2.49)

23Just like the four structure functions describing Wµν were a function of q · P and q2.
24There are different symbols used to denote the most common distribution functions, due to the different

authors. A good summary can be found in Ref. [38].
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Figure 2.5. The three quark-nucleon helicity amplitudes.

Probabilistic interpretation The hadronic tensor can be related to forward virtual Comp-
ton scattering, i.e., the probability amplitudes of a virtual photon scattering off a proton, by
means of the optical theorem [34]. These amplitudes are of the form AΛλ,Λ�λ�, representing
different ways in which the helicities of the quark (λ) and proton (Λ) can change in the scat-
tering process. This can happen in 16 different ways, which, after imposing the conservation
of helicity and parity invariance, leads to just three independent amplitudes25

A++,++ , A+−,+− , A+−,−+ . (2.50)

Using the optical theorem, the three leading-twist PDFs can be related to these amplitudes
in the following way

q(x) = q+(x) + q−(x) ∼ Im(A++,++ +A+−,+−) , (2.51a)
∆q(x) = q+(x)− q−(x) ∼ Im(A++,++ −A+−,+−) , (2.51b)
∆Tq(x) = q↑(x)− q↓(x) ∼ ImA+−,−+ . (2.51c)

The probability amplitudes are represented graphically in the diagrams of Fig. 2.5. The
transversity distribution, related to the right-most diagram, implies a mix of both helicity
states, and is therefore off-diagonal in the helicity basis. For this reason, it only admits an
interpretation in terms of probability densities in the transverse polarization basis

∆Tq(x) = q↑(x)− q↓(x) ∼ Im(A↑↑,↑↑ −A↑↓,↑↓) . (2.52)

As shown in the next section, this mixing of helicity states is the origin of the reason
why transverse spin effects are absent in inclusive DIS.

Determination of PDFs The unpolarized PDFs are by now the best known partonic
distributions. They can be extracted from DIS data using the DGLAP equations (see
Section. 2.3.1). There is extensive bibliography about this, see for example the first section
of Ref. [90]. One possibility, for instance, is to exploit the simple relation of F2 with the
quark distributions q(x), given in Eq. (2.18). One starts with possible parametrization of
the parton dependence, usually with a large (10-30) number of free parameters. This set of
parameters is then fit to available cross section and F2 data. By using large sets of data
from several experiments, e.g., obtained with different beams and targets, the fits can be
optimized.

25 If the kT dependence is taken into account, a total of six independent helicity amplitudes are needed to
describe the TMDs contained in the Φ(x, kT , S) correlator.
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The quark helicity distributions have been measured by several experiments, including
HERMES [39], and are also well known. Their evolution with Q2 is not completely studied,
and more experimental data are needed. The gluon helicity presents more difficulties to be
accessed, as it is measured through scaling violations of g1. See Refs. [40, 90] for more
information. The evolution of the g1 structure function is sensitive to the helicity density
of gluons ∆g through the Q2 evolution given by the DGLAP equations. At first order, the
splitting of gluons into quark pairs g → qq̄ contributes weakly to g1. At next-to-leading
order, additional sensitivity arises from the photon-gluon fusion process (see Fig. 2.3), which
produces a qq̄ pair resulting in two jets of hadrons. This signature can be used to access
∆g in the detection of hadron pairs at large transverse momentum, or in inclusive hadron
production, from double-spin cross section asymmetries. The quantity ∆g/g was determined
this way by the HERMES and COMPASS collaborations [41].

The transversity distribution is the least known of the three leading-twist integrated
PDFs, partially due to the fact that it cannot be accessed in DIS. This is discussed next.

2.3.3 Why transversity cannot be measured in inclusive DIS?

In terms of scattering amplitudes introduced in Section 2.3.2, the transversity distribution
can be regarded as

∆Tq = |�↑ X| ↑�|
2
− |�↓ X| ↑�|

2
, (2.53)

where the term �↓ X| ↑� is the transition probability of a transversely polarized proton with
spin up | ↑� resulting in a quark with spin down �↓ | plus X more particles in the final state.
The | ↑� and | ↓� states can be represented in the helicity basis as

| ↑� =
1
√
2
(|+�+ i |−�), | ↓� =

1
√
2
(|+� − i |−�). (2.54)

Inserting these expressions into Eq. (2.53), it is easy to prove that the transversity distribution
implies a helicity flip

∆Tq = �+X|+� �−X|−�. (2.55)

This is shown in Fig. 2.6. The lower diagram represents the term in Eq. (2.55) and the
upper part represents a generic DIS diagram with possible loop corrections. If the helicity
of the quark in the initial state is, e.g., +1 there is no way, by means of photon or gluon
couplings, of flipping the helicity to −1 in the final state, as QED and QCD interactions
conserve helicity26. Both diagrams are therefore incompatible: transversity decouples from
DIS. The parton model result for the difference of transversely polarized cross sections leads
to dσ+↑ − dσ+↓ = 0.

A function that does not conserve the helicity or chirality is called to be chiral-odd,
in contrast to chiral-even functions, that do conserve it. Given its chiral-odd nature, a
possibility to access the transversity distribution is that it comes together with another
chiral-odd process. A double helicity flip would turn into a conservation of the total helicity.

26 Helicity conservation is only guaranteed for hard scattering, i.e., very high energies, in all strong and
electroweak interactions in the standard model. However, helicity flips are allowed at low energies.
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Figure 2.6. Decoupling of transversity from DIS due to the helicity flip.

Why gluons cannot carry transversity? Gluons are gauge bosons and hence have spin 1,
i.e., they exist with helicity ±1. In terms of the helicity amplitudes, the transversity
distribution for gluons hg1 would imply a helicity flip of 2 units, which cannot take place in a
spin-1/2 nucleon. In DIS reactions using targets with higher spin, like deuterium, this could
be allowed.

Access to transversity The cleanest and most direct way to measure transversity is [42]
via the double transversely polarized Drell-Yan process, p↑p̄↓ → e+e−X, which couples two
transversity distributions. See Fig. 2.7. This process does not violates helicity: one has −+
both in the initial and final state. However, the single helicities of the proton and quark
states change, thus probing transversity via the double transverse spin asymmetry

ATT =
dσ↑↑ − dσ↑↓

dσ↑↑ + dσ↑↓
, (2.56)

=

�
q
e
2
q
[h1q(x1) h1q(x2) + h1q̄(x1) h1q̄(x2)]�
q
e2
q
[q(x1) q(x2) + q̄(x1) q̄(x2)]

dσ̂↑↑ − dσ̂↑↓

dσ̂↑↑ + dσ̂↑↓
, (2.57)

Unfortunately, such a process is difficult to achieve experimentally, and no data is available
yet to test the available lattice and model calculations. Data are expected to be collected
from the collisions at RHIC and at GSI.

At the moment, the most reasonable way to measure h1 is in SIDIS processes, in which
the transversity distributions is coupled to a chiral-odd fragmentation function, called the
Collins function H⊥1 . This is shown in the right hand diagram of Fig. 2.7. The first extraction
of the transversity distribution for the u and d quarks was recently done by Anselmino et
al. [43] from a global analysis of the results from the HERMES [44] and COMPASS [45]
collaborations, together with the measurement of the Collins fragmentation function by the
BELLE [46] collaboration from e+e− → hhX collisions at KEK.
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Figure 2.7. Experimental access to transversity. Left: The combination of two
transversity distributions in polarized Drell-Yan processes. Right: Transver-
sity coupled to a chiral-odd fragmentation function in polarized SIDIS.

2.4 Transverse spin physics

In the previous section, it has been discussed how the structure of the nucleon can be
explained in terms of the PDFs, the parton distribution functions. These are introduced in
the context of the QPM and can also be derived from the quark-quark correlator describing
the non-perturbative part of the γ∗q cross section. In particular, the longitudinal spin
structure of the nucleon is very well understood and the agreement between experimental
data and theory, excellent.

The transverse spin structure is much more challenging, and less studied. The fact that
the transversity distribution cannot be accessed in DIS, as discussed in Section 2.3.3, and
that in general all spin effects associated to the transverse polarization of the proton are
very small, like the polarized structure function g2, kept the study of transverse spin effects
away from the general interest for a long time. Moreover, as argued in Section 2.4.2, it was
believed for a long time that any large transverse SSAs would be forbidden in pQCD.

The observation, however, of large transverse SSAs in the inclusive production of hadrons
from hadronic collisions, discussed in Section 2.4.1, led to a deeper revision of the subject. In
particular, the essential role that the intrinsic motion of quarks plays both in the distribution
of quarks inside the nucleon and in the final hadronization processes was understood.

Note that a distinction between longitudinal and transverse spin effects makes only sense
in the context of a relativistic nucleon, i.e., in a nucleon at rest the helicity and transversity
distributions are the same.

2.4.1 AN in hadronic interactions

The transverse single-spin asymmetry AN is one of the simplest spin observables in particle
collisions. One scatters a beam of transversely polarized protons off unpolarized protons and
measures the number of pions (or mesons in general) produced to the left and to the right
of the transverse spin, in the plane defined by the azimuthal projection of the momentum
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p of the detected particle and the spin vector S⊥ of the polarized particles. An equivalent
experiment can be performed with an unpolarized beam scattering off a transversely polarized
target. A left-right asymmetry is defined this way, related to the spin-dependent part of the
cross section

AN ≡
dσ↑(p,S⊥)− dσ↑(p,−S⊥)

dσ↑(p,S⊥) + dσ↑(p,−S⊥)
=
∆σ(p,S⊥)

σ(p)
. (2.58)

Such asymmetries have been measured over the last four decades in several experiments [47–
71], for the inclusive production of several hadron types in hadron-nucleon collisions, at
center-of-mass energies in the range 5–200 GeV. In most cases, surprisingly large asymmetries
were observed, up to 40%, with a clear kinematic dependence on the transverse momentum of
the hadron pT as well as on the Feynman variable xF , related to the longitudinal momentum
of the hadron – see Eq. (2.98). Some of the measurements of AN are summarized in Fig. 2.8.

Figure 2.8. Measurements of AN for charged pions in p↑ p → h X collisions. The
center-of-mass energies correspond respectively (from left to right) to
√
s = 4.9 GeV, 6.6 GeV, 19.4 GeV, 62.4 GeV.

2.4.2 The problem with transverse SSAs
The conceptual simplicity of AN contrasts with the complexity of the theoretical analysis.
In fact, an explanation for the large values observed for this asymmetry has represented a
challenge for theoretical spin physics over the last decades. The reason for this is that the
asymmetry for an inclusive process like A↑B → h X is related to effects that go beyond the
leading-twist framework based on a collinear factorization theorem, where cross sections can
be written as convolutions of leading-twist parton distributions, fragmentation functions,
and hard elementary cross sections, and where observables are not sensitive to intrinsic
transverse parton momentum, k⊥. This can be seen by considering the difference of cross
sections with opposite spin polarization of hadron A

dσ↑ − dσ↓ =
�

abcd ;sasc

∆T fa/A(xa, sa)⊗ fb/B(xb)⊗ [dσ̂
↑
− dσ̂↓]⊗Dh/c(z). (2.59)

The above equation involves the convolution of
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• the transversity distribution

∆T fa/A(xa) = fa+/A↑(xa)− fa+/A↓(xa) = fa+/A↑(xa)− fa−/A↑(xa), (2.60)

which is suppressed for the process considered, where only one proton (beam or target)
is transversely polarized, since pQCD interactions conserve chirality. This leads to
power suppressions of AN,

• the difference of cross sections [dσ̂↑−dσ̂↓] for the elementary hard scattering of quarks
a and b, which at leading order, is related to the partonic asymmetry âN [72]

âN ≡
dσ̂↑ − dσ̂↓

dσ̂↑ − dσ̂↓
∝ αS

mq
√
s
−→
mq=0

0, (2.61)

which strongly depends on the strong coupling constant, αS and the mass mq of the
quarks, and since it is inversely proportional to the energy of the collision, it should
vanish at high energies,

• a fragmentation function Dh/c(z) which, if assumed to be independent of the spin of
the partons, Dh/c(z, sc) = Dh/c(z,−sc) ≡ Dh/c(z), cancels in the cross section ratio.

For transversity to contribute, the hard-scattering functions need to involve a trans-
versely polarized quark scattering off an unpolarized quark, for which the hard-scattering
cross section vanishes. In addition, a non-vanishing SSA requires the presence of a relative
interaction phase between the interfering amplitudes for the different helicities. At leading
twist, this phase can only arise through loop corrections, which are of high order in αS and
thus lead to a further suppression.

For a long time, it was believed that this small asymmetry at partonic level âN should
also translate into a vanishing asymmetry at hadronic level AN [72]. Following this reasoning,
the observation of a large transverse SSA was signaled by the authors of Ref. [72], as either
an indication that QCD is not valid in this region, or it cannot be applied perturbatively
because αS turns out to be too large, or “conceivable, something is wrong with the present
formulation of QCD itself”. The failure of Eq. (2.59) in explaining transverse SSAs indicates
the limitation of the collinear factorization in QCD at leading twist, and the need to look for
other alternatives.

Explanations for AN There are three different scenarios in which this situation can be
improved, related to the three factorized terms of Eq. (2.59)

(i) Use transverse momentum dependent PDFs fa/A↑(xa, k⊥). Within the parton model,
considering only the elementary interaction qq → qq at leading order, the final pT of
the hadron can originate from the transverse intrinsic motion of partons k⊥.

(ii) Take higher order pQCD corrections like qq → qqg or qg → qqq̄ in the elementary
cross section, which also leads to hadrons produced at large pT .

(iii) Consider a spin-dependent fragmentation process, in which the final hadron obtains a
transverse motion respect to the direction of the fragmenting quark.
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The calculation of AN including next-to-leading order terms in the elementary cross-
section – case (ii), leads to a partonic asymmetry âN still negligible at high energies [73].
Note that, in a purely collinear configuration, the struck quark would fragment only in
the forward direction, which strongly suppresses by rotational invariance any transverse
momentum dependent asymmetry [85].

The cases (i) and (iii) were first considered by Sivers [74] and Collins [75], respectively,
and imply taking into account k⊥-dependent parton distribution and fragmentation functions.
Such observables can be accessed in semi-inclusive DIS (SIDIS) scattering, characterized by
a large scale Q2, and by a smaller transverse momentum ph⊥ of the produced hadron. In this
case, one can prove a factorization theorem for the spin-dependent part of the cross section
into k⊥-dependent functions describing the distribution of quarks and gluons in the polarized
proton and that of hadrons in the fragmenting partons, and a partonic hard-scattering cross
section that can be calculated in pQCD. Large transverse SSAs can be obtained this way,
present at leading twist (i.e., not power suppressed). This is discussed in more detail in
Section 2.6.

A non-vanishing asymmetry AN can also be obtained in collinear QCD (where the intrinsic
motion of the partons is ignored) by taking into account higher-twist contributions. A
collinear factorization theorem can then be proven in terms of quark-gluon correlation func-
tions for single inclusive processes, like p↑ p → h X, where the only hard scale is the transverse
momentum of the detected hadron pT . The transverse SSA in such case is power-suppressed
by 1/pT . The calculation of AN at twist-3 was done by Qiu and Sterman [77], and is briefly
considered in Section 2.7.

In the next section, the process of semi-inclusive deep-inelastic scattering (SIDIS) is
described, which provides a convenient framework in order to study the intrinsic partonic
motion and related transverse-spin effects.

2.5 Semi-inclusive DIS
A one-particle semi-inclusive DIS reaction is shown in Fig. 2.9. In addition to the scattered
lepton27, detected with momentum k �, one of the outgoing hadrons, resulting from the
fragmentation of the proton, is detected with momentum ph. All other reaction products
(X) are undetected. In the following, we consider only correlations between the scattered
lepton and one detected hadron, i.e., between the angles φS and φh. In practice, events
with more than one hadron in the final state are usually detected, in which case only angular
correlations between the lepton and each one of the hadrons are considered separately. 28

27Now k is again the lepton variable!
28Although not considered here, the case of two-hadron SIDIS can also be used to access the transversity

distribution [80].
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Figure 2.9. Schemmatic diagram and reaction plane in semi-inclusive DIS.

2.5.1 Kinematics

In addition to the DIS observables, described in Section 2.1.1, additional variables are needed
to characterize the hadron detected in the final state with momentum ph = (Eh,ph). As
ph can point in any direction, it is better to work with its longitudinal and perpendicular
components defined with respect to the virtual photon momentum q , since this determines
the direction of the Lorentz boost. One then has the following three variables

• z , which indicates the longitudinal fraction of the energy transferred to the proton
carried by the final state hadron

z =
P · p

P · q

lab

=
Eh

ν
, (2.62)

and therefore can be in the range z ∈ [0, 1],

• ph⊥, the transverse component of the hadron momentum with respect to q,

• φh, the azimuthal angle around the direction of the virtual photon, defined between
the lepton scattering plane and the hadron direction, see Fig. 2.9, as

φh =
q× k · ph
|q× k · ph|

cos−1
q× k · q× ph
|q× k||q× ph|

. (2.63)

2.5.2 Cross section

Similarly to the case of inclusive DIS, a full analytical expression for the differential SIDIS
cross section cannot be written out explicitely, but it can be decomposed in terms of several
polarized and unpolarized structure functions. For the general case of a polarized proton
target with spin vector S, where S� is the longitudinal component and S⊥ is the transverse
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component, relative to the virtual photon direction, one finds [81]

dσ

dx dy dφS dzh dφh dp2h⊥
∝

�
FUU,T + �FUU,L + � cos(2φh)F

cos 2φh
UU

+ |S�| � sin(2φh)F
sin 2φh
UL

+ |S�|λe
�
1− �2 FLL

+ |S⊥|
�
sin(φh − φS)

�
F
sin(φh−φS)
UT,T

+ �F sin(φh−φS)
UT,L

�

+ � sin(φh + φS)F
sin(φh+φS)
UT

+ � sin(3φh − φS)F
sin(3φh−φS)
UT

�

+ |S⊥|λe
�
1− �2 cos(φh − φS)F

cos(φh−φS)
LT

+ . . .
�
. (2.64)

Here, the subscripts of the structure functions Fx y,z indicate the longitudinal (L) or
transverse (T ) polarizations of the beam and target, respectively, or if these are unpolarized
(U); the third subscript indicates the polarization of the virtual photon. The variable � is the
degree of longitudinal polarization of the virtual photon, and λe is the helicity of the electron.
See Eq. (2.7) of Ref. [81] for more details. Note that the DIS cross section formula in
Eq. (2.10a) can be obtained from Eq. (2.64) by performing the integrals over ph⊥ and z
and summing over all hadrons in the final state [81].

2.5.3 Fragmentation correlator
In Section 2.3.2, the formalism to study the interaction of the virtual photon with the
quarks was presented. This formalism can be extended to take into account the final state
fragmentation of the nucleon into hadrons. The tree-level Feynman amplitude in this case
is29

M
µ = Ah(k

�; ph, sh)γ
µ
Aq(k ;P, S), (2.65)

where the free quark spinor is now replaced by a matrix element describing the a-priori
unknown fragmentation of the quark into a hadron with momentum ph and spin Sh

Aq(k
�; ph, sh) = �0|ψ(0) |ph, sh, X�. (2.66)

Similarly to Eq. (2.41), the hadronic tensor now includes a new soft structure ∆(k �; ph, sh)

2MW µν =
�

q

e
2
q

�
d4k

(2π)4

�
d4k �

(2π)4
δ
4(k + q − k �)Tr[Φ γµ∆ γν] , (2.67)

see also Fig. 2.10. The ∆(k �; ph, sh) is the fragmentation correlator defined as [34]

∆i j(k
�; ph, sh) =

�

X

�
d3PX

(2π)3 2EX

�
d4ξ e ik

�·ξ

× �0|ψi(ξ) |ph, sh, X��ph, sh, X|ψ̄j(0)|0�. (2.68)

29 From now on, k and k � are used again to denote the quarks momenta before and after absorbing the
virtual photon, respectively.
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Figure 2.10. Diagram showing the factorization of semi-inclusive DIS.

In the collinear case, where both kT = 0 and k�
T
= 0, the momenta of the quarks in the

initial and final state can be represented by their “plus” and “minus” components, respectively

k
+ = xP+, k

�− = p−
h
/z, (2.69)

the fragmentation matrix can be expressed as the sum of three-leading twist fragmentation
functions

∆(z) =
1

2

�
D(z) /p

h
+ ShL∆D(z) γ5/ph + ∆TD(z) /phγ5/shT

�
. (2.70)

These functions are absent in inclusive DIS, where none of the produced hadrons are
detected; they play, however, an important role in SIDIS. The unpolarized fragmentation
function D(z) ≡ Dh

q
describes the number density of hadrons of type h with longitudinal

momentum fraction z in the fragmenting quark. For spinless hadrons in the final state,
e.g., pions, the hadronization processes is described by just this function. The other two
fragmentation functions, ∆D(z) and ∆TD(z), are related to the production of hadrons with
spin polarization, e.g., in the case of spontaneous polarization of Lambda particles [83].

The fragmentation functions are related to the probability Nh/q of finding a hadron with
longitudinal momentum fraction z inside a quark q, depending of the polarization states [34]

D(z) = Nh/q(z) , (2.71a)
∆D(z) = Nh/q+(z)−Nh/q−(z) , (2.71b)
∆TD(z) = Nh/q↑(z)−Nh/q↓(z) . (2.71c)

Experimental determination Fragmentation functions are mostly determined from cross
section measurements in e+e− annihilation data, in which one hadron is detected in the final
state, coming from photon or Z-boson decay [84]

σ
h

σtotal

≡ F
h(x, s) =

�

q

� 1

x

dz

z
Cq Dh/q(x/z, s), (2.72)
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where σh ≡ dσe+e−→ γ(Z)→ hX/dx , F h are the hadron fragmentation functions, and the co-
efficients Cq are related to the electroweak coupling, or to the squared parton charge e2

q

if weak effects can be neglected. The absence of hadrons in the initial state make the
e
+
e
− processes very suitable for a clean determination of the parton FFs, although it is only

sensitive to combinations of Dh/q +Dh/q̄ via γ(Z)→ qq̄ → h +X.

In semi-inclusive DIS, information about Dh/q can be obtained from an unpolarized cross
section measurement

d3σh

dx dz dQ2
(x, z,Q2) ∝

�
e
2
q
q(x,Q2)Dh/q(z,Q

2), (2.73)

which requires knowledge on the unpolarized quark distributions q(x,Q2). See, e.g., Ref. [82].

2.6 Parton model with intrinsic momentum
There is enough evidence, both theoretical and experimental, to consider the intrinsic
transverse motion of quarks inside the nucleon [85]

• Since the size of the nucleon is about 1 fm, an intrinsic transverse momentum of the
quarks of about �k⊥� ∼ 0.2 GeV is allowed by the Heisenberg uncertainty principle.

• The radiation of gluons by massless collinear quarks naturally introduces a transverse
motion (cf. Sec. 2.3).

• The production of hadrons in SIDIS processes with respect to the virtual photon
direction is clearly non-collinear, and hadrons with large transverse momentum are
observed.

• The process of hadronization of quarks into jets has also been observed to be non-
collinear.

• The experimental observation of the Cahn effect [86], which predicts a cosφh de-
pendence of the elementary cross section eq → eq in unpolarized SIDIS processes.
This angular dependence originates from the angle of the vector k⊥, vanishing when
k⊥ = 0, and has been observed experimentally [87] in SIDIS processes. A fit to the
data assuming a Gaussian k⊥ dependence of the PDFs gives �k⊥� = 0.25 GeV, as
expected from elementary arguments.

The quark transverse motion cannot be accessed in inclusive DIS, given the impossibility
of the scattered lepton to “remember” that information. In a SIDIS reaction, with at least one
of the produced hadrons detected in coincidence with the lepton, the transverse momentum
of the hadron ph⊥ can be related to k⊥. The factorization of the cross section for SIDIS
can be expressed as

dσ ep→ehX =
�

q

fq(x, k⊥;Q
2)⊗ dσ̂eq→eq(y , k⊥;Q2)⊗Dh/q(z,ph⊥;Q2). (2.74)
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Here, the fq(x, k⊥;Q2) correspond to Transverse-Momentum Dependent parton distribution
functions (TMDs), and the Dh/q(z,ph⊥;Q2) to fragmentation functions (FFs) describing
the hadronization of a quark q into a hadron h carrying a longitudinal momentum fraction z
of the virtual photon’s momentum. Both types of functions are usually referred to as TMDs.

2.6.1 TMDs
The TMDs contain information on the intrinsic motion of quarks and gluons inside a fast
moving proton. Moreover, they indicate correlations between the spin S and momentum P
of the proton, the spin sq and transverse momentum k⊥ of the partons, and/or the spin sh
and transverse momentum ph⊥ of the hadrons in the final state.

Sivers The first TMD was historically introduced by Dennis Sivers in 1990 [74] as a possible
explanation for the transverse asymmetry AN observed in the inclusive production of pions
from hadronic collisions (see Section 2.4.1). Sivers proved that if the unpolarized partons
inside a transversely polarized proton could have an asymmetric k⊥ distribution

fq/p↑(x, k⊥) �= fq/p↑(x,−k⊥) = fq/p↓(x, k⊥), (2.75)

this would lead to a correlation between the transverse momentum of unpolarized partons
and the transverse spin of the nucleon. Such correlation can only be of the form

S · (P̂× k̂⊥), (2.76)

since this is the only combination of these three vectors that conserves parity.

Under parity transformation, the momenta of the proton and quark
change respectively as P(P̂) = −P̂ and P(k̂⊥) = −k̂⊥, while the
spin is a pseudo-vector and therefore gives P(S) = S; this can also
seen considering that the spin changes as an angular momentum
L = (r × p)→ (−r)× (−p) = r × p.

This asymmetric distribution of quarks leads to a new reinterpretation of the unpolarized
parton distribution function inside a transversely polarized proton

fq/p↑(x, k⊥) = fq/p(x, k⊥) +
1

2
∆Nfq/p↑(x, k⊥)S · (P̂× k̂⊥). (2.77)

Here, the ∆Nfq/p↑ is the so-called Sivers function, also sometimes found in the literature as
f
⊥
1T = −∆f

N

q/p↑M/2|k⊥|.

∆fq/p↑(x, k⊥) = fq/p↑(x, k⊥)− fq/p↑(x,−k⊥) (2.78)

≡ ∆Nfq/p↑ (x, k⊥) S⊥ · (P̂× k̂⊥)

= −2
k⊥

M
f
⊥
1T (x, k⊥) S⊥ · (P̂× k̂⊥) .

The Sivers distribution function leads to sizable transverse SSAs, present at leading-twist.
These are discussed, as measured from HERMES data, together with an interpretation of
the Sivers effect, in Section 2.6.2.
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Collins The second TMD was introduced in 1993 by John Collins [75], now, in the quark
fragmentation scheme. Following the works initiated by Efremov et al. [76], Collins proposed
a new way of determining the transverse polarization state of a parton undergoing a hard
scattering, i.e., as a tool to measure the transversity distribution, which in turn could also
explain the origin of large transverse SSAs. For this purpose, Collins pointed out the relevance
of polarized SIDIS reactions. He showed how a spin transfer from a transversely polarized
quark to an unpolarized (or spinless) hadron should lead to a significant azimuthal asymmetry
in the distribution of hadrons in the transverse plane. Such effect would manifest itself at
leading twist, described by a function

∆Dh/q↑(z, k
�
⊥) ≡ Dh/q↑(z, k

�
⊥)−Dh/q↑(z,−k

�
⊥), (2.79)

with Dh/q↑(z,−k
�
⊥) = Dh/q↓(z, k

�
⊥), (2.80)

leading to a non-zero ∆Dh/q↑. This function, now called the Collins function, appears in
the fragmentation function for an unpolarized hadron generated in the fragmentation of
a polarized quark due to a correlation between the spin sq of the fragmenting quark, its
momentum pq, and the transverse momentum of the produced hadron ph⊥

Dh/q↑(z, k
�
⊥) = Dh/q(z, k

�
⊥) +

1

2
∆Dh/q↑(z, k

�
⊥) (p̂q × p̂h⊥) · sq. (2.81)

This (again) is the only possible combination of these three vectors conserving parity.
Notice the similarity with Eq. (2.77). Another common notation for the Collins function is
H
⊥
1 = zmh ∆Dh/q↑/2ph⊥, with mh the mass of the produced hadron.

∆Dh/q↑ (z, k
�
⊥) = Dh/q↑ (z, k

�
⊥)−Dh/q↓ (z, k

�
⊥) (2.82)

≡ ∆NDh/q↑ (z, k
�
⊥) sq · (p̂

�
q
× k̂�⊥)

=
2 k⊥
z mh

H
⊥
1 (z, k

�
⊥) sq · (p̂

�
q
× k̂�⊥) ,

Note that here k�
T

is defined with respect to the direction of the produced hadron. A more
extended discussion on the Collins fragmentation function is given in Section 2.6.2.

Leading-twist TMDs These and other TMDs can be formally derived from the quark
correlator Φ, defined in Eq. (2.40). By means of combinations of the Dirac matrices γ+, γ5
and σ+j , expanding the correlator in powers of 1/Q2 and taking only the leading order, the
following terms contributing to Φ can be selected [88]

1

2
Tr

�
γ
+Φ(x, k⊥,S)

�
= f1(x, k⊥)−

�
jk
k
j

⊥ S
k

T

M
f
⊥
1T (x, k⊥), (2.83)

1

2
Tr

�
γ
+
γ5Φ(x, k⊥,S)

�
= SL g1(x, k⊥) +
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g1T (x, k⊥), (2.84)
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+
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h
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1 (x, k⊥), (2.85)
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leading to a total of eight leading-twist TMDs:

• f1(x, k⊥) is the unpolarized, k⊥-dependent momentum distribution of partons inside a
nucleon. Integrated over k⊥ this is the unpolarized PDF, q(x) for quarks (and g(x)
for gluons).

• g1(x, k⊥) is the k⊥-dependent helicity distribution, relating partons with opposite spin
along the direction of motion in a nucleon longitudinally polarized. The integrated
version corresponds to ∆q(x) and ∆g(x), discussed in Sections 2.2.1 and 2.3.2.

• h1(x, k⊥) is the transversity distribution of quarks with opposite transverse spin
direction inside a nucleon with transversely polarized spin. As in the k⊥-integrated
case, there is no transversity distribution of gluons in a spin 1/2 hadron.

• f ⊥1T (x, k⊥) is the Sivers function, related to the momentum distribution of unpolarized
partons q inside a transversely polarized proton p↑, which links the parton intrinsic
motion k⊥ to the proton momentum and spin in the way given by Eq. (2.77). In
semi-inclusive DIS, the Sivers effect leads to an azimuthal asymmetric distribution of
the hadrons produced, and represents a clear indication of parton orbital motion. This
effect has been observed by the HERMES [91] and COMPASS [92] collaborations.

• h⊥1 is the Boer-Mulders function [93], which describes the momentum distribution of
transversely polarized quarks inside an unpolarized proton

f1(x, k⊥; sq) =
1

2
f1(x, k⊥)−

k⊥

2M
h
⊥
1 (x, k⊥) sq · (P̂× k̂⊥) . (2.86)

This function singles out polarized quarks in unpolarized nucleons and therefore might
give rise to unexpected spin effects in unpolarized processes. A spin asymmetry
originating from h⊥1 was recently measured by the HERMES collaboration [94].

• The other TMDs appearing in Eq. (2.83) – (2.85) are related to double spin correlations
in the PDFs: g1T (x, k⊥) indicates the distribution of longitudinally polarized partons in
a transversely polarized proton, h⊥1L(x, k⊥) the amount of transversely polarized quarks
in a longitudinally polarized proton, and h⊥1T (x, k⊥) of transversely polarized quarks
in a proton polarized transversely but in a different direction. At leading twist, these
three functions can be expressed approximately in terms of the other TMDs, and have
rather a secondary role.

The partonic picture of the leading-twist TMDs is summarized in Fig. 2.11. At higher
twist, the corresponding TMDs appear in observables which are suppressed by inverse pow-
ers of Q2 and are therefore less likely to be measured. After integration over k⊥, these
eight functions lead to the three leading-twist PDFs of Eqs. (2.47)-(2.49).The notation
used here to denote TMDs follows the one in Ref. [37]. See also the Trento conventions [38].

In addition to the spin-k⊥ correlations given by these eight TMDs, similar correlations
can occur in the fragmentation of a quark with spin vector sq and momentum kq into a
hadron. In this case, the fragmentation of a quark into an unpolarized hadron is described
by two independent leading-twist transverse-momentum dependent fragmentation functions
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Figure 2.11. Partonic interpretation of the eight unintegrated leading-twist TMDs.
Nucleon and quark are represented with the light and dark circles,
respectively. The arrows indicate their spin orientations with respect to
the virtual photon direction, which is assumed to enter the figure from
the left side.

• Dq1h(z,ph⊥) (also denoted as Dh/q) is the unpolarized, ph⊥ dependent, fragmentation
function describing the fragmentation of a parton a into a hadron h independently of
the spins. Its ph⊥-integrated version is Dq1h(z) =

�
d
2ph⊥D

q

1h(z,ph⊥).

• H⊥q1 (z,ph⊥) is the Collins function, describing the fragmentation of a transversely
polarized quark into an unpolarized hadron, in the only possible way given by Eq. (2.81).
The Collins effect leads as well to an azimuthal SSA in SIDIS. This was observed by
the HERMES collaboration [95] and also by the COMPASS collaboration [92].

• Another six leading-twist fragmentation functions should exist, equivalent to the TMDs
of Fig. 2.11, given the similarity of the formalisms describing both sets of functions.
These could, in principle, be measured in future or ongoing experiments.

Chirality An important feature of some of the TMDs is that they change the helicity (or
chirality) of the partons in the reaction. This is the case for the transversity function h1,
the Boer-Mulders function h⊥1 and the Collins fragmentation function H⊥1 . For these reason,
these distribution functions are called to be chiral-odd, in contrast to the chiral-even TMDs,
that conserve chirality. Since the total chirality of the SIDIS reaction must be conserved, in
the scheme of Eq. (2.74) a chiral-odd PDF (h1 or h⊥1 ) must always appear accompanied
by a chiral-odd fragmentation function (H⊥1 ) (see right-hand side of Fig. 2.7) or another
chiral-odd PDF (see left-hand side of Fig. 2.7). An example of chiral-even PDF is the
Sivers function f ⊥1T , which therefore can be convoluted with the chiral-even unpolarized
fragmentation function D1. Such correspondences can be further seen in Eqs. (2.88 – 2.91).

Applicability of TMDs The factorization of the SIDIS cross section into TMDs has been
only proven for the kinematic range in which the transverse momentum of the hadron ph⊥ is
small in comparison to the Q2 scale of the reaction

ph⊥ � ΛQCD � Q. (2.87)
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If ph⊥ is small (i.e., in the presence of a soft scale) the hadronization processes can be
considered along the same direction as the quark motion, which simplifies the calculation of
the contribution from the unintegrated PDFs. For hadrons with larger transverse momentum,
however, other mechanisms might become significant, arising from quark-gluon correlations
and higher pQCD contributions [89]. The hard scale (largeQ2), on the other hand, guarantees
that one remains in the region of validity of the QCD parton model.

TMD factorization in one-scale processes The situation is different for processes where
only one scale is present, e.g., in the inclusive detection of hadrons from e p↑ or p↑ p reactions.
A large-enough hadron transverse momentum is needed to ensure a large momentum transfer.
In the case of e p production, discussed in Section 2.8, the ratio p2

T
/Q
2 should in addition

be kept small to guarantee the applicability of the TMDs.
TMD factorization for such processes was first suggested by Sivers [74] and then

phenomenologically adopted [96] to reproduce the large values of AN measured by the E704
collaboration [8], and in Ref [97] for the RHIC data [98]. However, a definite proof of
the validity of the TMD factorization for hadronic processes with only one scale is still
lacking [89]. Several alternatives have been proposed in this regard.

In particular, in Ref. [89], a phenomenological test of the TMD factorization for processes
with just one large scale was proposed by considering the spin asymmetries in inclusive
electroproduction of hadrons, ep↑ → hX, where only one hadron (and not the scattered
beam lepton) is detected in the final state. Given the impossibility of reconstructing the
direction q of the virtual photon, such analysis must be performed in the e−p center-of-mass
frame. In this case, the transverse momentum of the outgoing hadron pT is defined with
respect to the beam direction, in contrast to ph⊥, defined with respect to the γ∗ direction.
Such an analysis is a close analogue to that for p↑p → hX processes, with the advantage
that it is a cleaner channel, involving only the parton distributions of the polarized proton,
while using a point-like electromagnetic probe. This is covered in Section 2.8 in more detail.

SIDIS structure functions revisited In the kinematic region where the TMDs are defined,
the structure functions of the SIDIS cross section in Eq. (2.64) become, for the case of an
spinless (or unpolarized) outgoing hadron [90]
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1 . (2.91)

This factorization of the structure functions as a convolution of TMDs holds only in
the parton model approximation. Most analyses of TMDs performed to date are based on
this assumption, providing a quite satisfactory general view of their features. However, for
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studies involving a higher precision, i.e., higher energy, radiation of soft gluons should be
included [90], which modifies the above expressions.

Figure 2.12. Sivers (left) and Collins (right) amplitudes for π+, π0, π−, K+ and
K
− as a function of x , z and ph⊥, measured at HERMES from SIDIS

data with a transversely polarized proton target and a 27.6 GeV electron
beam. The figures are taken from Refs. [91] and [95], respectively.

2.6.2 Interpretation of the Sivers and Collins effects

Transverse SSAs associated with the Sivers and Collins effects can be measured from SIDIS
data by exploiting the azimuthal angular modulations present in the SIDIS cross section.
From Eq. (2.64) and Eqs. (2.89-2.90), it is clear that the following azimuthal amplitudes
are sensitive to these TMDs

sin(φh − φS) ∼ f
⊥
1T (x)⊗D1(z) (Sivers + unpolarized FF) (2.92)

sin(φh + φS) ∼ h1(x)⊗H
⊥
1 (z) (transversity + Collins). (2.93)
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Figure 2.13. Interpretation of the Sivers effect, in the production of a π+ from
the scattering off an u quark in a transversely polarized proton. The
attractive final state interactions (FSI) deflect the struck quark, resulting
in a transverse SSA. Figure taken from Ref. [101].

Sivers asymmetries In the QCD parton model, the sin(φh − φS) amplitude can be inter-
preted as [91]

2� sin(φh−φS)�UT = −

�

q

e
2
q
f
⊥
1T ⊗W D1

�

q

e
2
q
f1 ⊗D1

, (2.94)

where symbol ⊗ (⊗W) represents a (weighted) convolution integral over intrinsic and frag-
mentation transverse momenta.

The HERMES results for the Sivers amplitudes for several mesons are shown in the
left hand panel of Fig. 2.12. Non-zero asymmetries were measured for π+, π0 and K+,
demonstrating for the first time the existence of T-odd distribution functions in DIS. The
existence of such functions, and in particular the fact that they depend on the quark
transverse momentum suggests that these quarks carry a significant amount of orbital
angular momentum. These results are of great relevance, as the orbital angular momentum
of quarks is one of the missing pieces of the spin puzzle, mentioned in Section 2.2.3.
An attempt to connect the Sivers function, or other similar function describing spin-orbit
correlations, with the angular momentum contribution of the quarks to the nucleon spin has
been made in Refs. [99,100].

Interpretation of the Sivers effect The Sivers effect can be visualized in Fig. 2.13.
Following the ideas presented in Ref. [99], the parton distribution function can be expressed
in the impact parameter space b⊥, defined as the transverse distance of the quark to the
transverse center of longitudinal momentum. The distribution q(x,bT ) of unpolarized quarks
is axially symmetric for an unpolarized or longitudinally polarized nucleon, but in the case of a
transversely polarized nucleon, due to the S ·(P×k⊥) correlation, it is distorted perpendicular
to both the spin and the momentum of the nucleon. Such distortion makes the quark
densities to appear enhanced on one side of the nucleon or another depending on the orbital
angular momentum Lq, but vanishes if there is no Lq of quarks parallel to the nucleon spin.
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The distortion can be understood, in a semi-classical model, by considering the orbital
motion of quarks with orbital momentum parallel to the proton spin. In the interaction with
the virtual photon, these quarks appear to be moving towards the photon on the left side of
the proton spin, for the case of a transversely polarized proton, and away from it on the
right side. Thus, they are probed with momentum fractions xobs different than the ones in
an unpolarized proton, i.e., smaller on the left side and larger on the right side. Since the
unpolarized PDF decreases very rapidly with x at large momenta30, this implies that the
smaller xobs observed at the left side of the proton corresponds to a larger value of the PDF,
i.e., there are effectively more quarks of that type at the left side of the proton spin than at
the right side. This is the case for the u quarks in a transversely polarized proton as seen in
Ref. [99]. Thus the probability of the virtual photon to struck an u quark is larger for the
left hemisphere of the proton. For quarks with orbital angular momentum anti-parallel to the
proton spin, the case of d quarks [99], the distortion reflects into an enhancement on the right
hemisphere. Once the quark is struck, the presence of final state interactions (FSI), i.e., the
exchange of gluons between the struck quark and the color-charged proton remnant, which
are expected to be in average attractive [99], cause the quark to be deflected towards the
center of momentum before its fragmentation. Thus, an u quark in a transversely polarized
proton (this corresponds to φS = π/2), fragmenting into a π+ has a higher probability to
be struck on the left hemisphere of the proton, and therefore be deflected by FSI to the
right (φh = π) , leading to a positive Sivers asymmetry (sin(φh − φS) = sinπ/2 > 0), as
observed at HERMES. On the contrary, d quarks fragmenting into π− are deflected into the
opposite direction, thus leading to a negative Sivers amplitude. In the case of π− production
at HERMES, however, scattering off both u and d must be taken into account due to the
abundance of u quarks in the proton target. This would lead to a cancellation of effects,
thus explaining the vanishing π− asymmetry in Fig. 2.12.

It should be emphasized that the Sivers distribution function needs the existence of a
net orbital angular momentum of the quarks to be non-zero. In addition, the asymmetric
distribution resulting from the S · (P× k⊥) term is forbidden by time reversal invariance. It is
by the presence of FSI that a non-vanishing Sivers function is allowed. The non-conservation
of time reversal invariance makes the Sivers function a naive T-odd distribution function.
See note on Wilson lines in Appendix D for more details.

Based on a combined fit from HERMES and COMPASS data, and on the available
parametrizations for the unpolarized fragmentation function D1(z), well known from electron-
positron annihilation processes, a extraction of the Sivers distribution function f ⊥1T for the u
and d quarks was done in Ref. [102]. The extracted parametrization describes well both the
HERMES and COMPASS data.

30See e.g., Fig. 18.4 of Ref. [12].
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Figure 2.14. Interpretation of the Collins effect by Artru [103]. See text for details.

Collins asymmetries The Collins amplitude, in turn, can be interpreted as [95]

2� sin(φh+φS)�UT =
(1− y)

(1− y + y 2/2)
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where the symbol C[...] stands for the convoluted integral 31
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The sin(φh + φS) amplitudes measured by the HERMES collaboration are shown in the
right hand panel of Fig. 2.12 for charged pions and kaons, and π0. The large asymmetries
measured for charged pions represented the first proof of non-vanishing transversity and
Collins distribution functions.

An intuitive explanation for the Collins effect was suggested by Artru in Ref. [103]. This
is illustrated in Fig. 2.14. The struck quark q0, with transverse spin polarization, is kicked
out of the nucleon after absorbing the virtual photon. A q q̄ pair is created as a consequence
of the color string break. The new pair must be in a JP = 0+ state in order to preserve the
vacuum quantum numbers32. The positive parity forces the spin of the new quark and the
antiquark to be aligned (S = 1), and thus the pair obtains an orbital angular momentum
L = 1 to compensate the total spin33. The struck quark q0 recombines with the newly
created antiquark, with their spins antiparallel, to form a pion (S = 0). This way, the
angular momentum of the q q̄ pair is transferred to the pion, acquiring a certain transverse
momentum with respect to the virtual photon.

The fragmentation of an u quark is said to be favoured if the produced hadron contains
an u quark as a valence quark (e.g., π+) and unfavoured in the opposite case (e.g., π−).
The large π− asymmetries measured at HERMES, given the u quark dominance in the
ep scattering, suggests therefore that the favoured and unfavoured Collins fragmentation
functions are of similar magnitude but with opposite sign [104].

31In this equations, k�
T

refers to the transverse momentum of the fragmenting quark with respect to the
direction of the produced hadron, like in Eqs. (2.79) – (2.82), while kT is used to denote the transverse
momentum of the quark with respect to the momentum on the nucleon, like it is the case of the PDFs.

32The + sign indicates that under a parity transformation, the vacuum state does not change.
33According to |L− S| < J < |L+ S|.
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2.7 High-twist PDFs in collinear framework
In a collinear framework, where partons move parallel with the proton and therefore k⊥ = 0,
large spin effects are also found if higher-twist contributions to the cross section are
considered. In this case, the kinematical dependence of the spin asymmetries on the hadron
transverse momentum pT arises from high-order quark-gluon correlations, absent at leading
twist where only the quark-quark correlator discussed in Section 2.3.2 contributes.

The first calculation34 of a sizable SSA in collinear pQCD came out in 1991 by Qiu
and Sterman [105], for the case of direct photon production in p↑p collisions, and was
subsequently also done for the case of inclusive pion production [77]. In both cases, the
formalism is based on the use of a generalized factorization theorem that allows to write the
transverse spin-dependent cross-section as a sum of several terms, involving twist-3 parton
distribution functions for the polarized initial proton f (3)

a/A↑
(x1, x2), convoluted with standard

twist-2 PDFs for the non-polarized proton fb/B(x �), and a short-distance hard-scattering
part calculable in perturbative QCD [77] σ̂, plus the corresponding fragmentation functions

∆σA+B→π =
�

abc

f
(3)
a/A↑
(x1, x2)⊗ fb/B(x

�)⊗ σ̂a+b→c ⊗Dc→π(z)

+
�

abc

δq
(2)
a/A
(x)⊗ f (3)

b/B
(x �1, x

�
2)⊗ σ̂

��
a+b→c ⊗Dc→π(z) (2.97)
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abc

δq
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a/A
(x)⊗ fb/B(x

�)⊗ σ̂�
a+b→c ⊗D

(3)
c→π(z1, z2)

+ higher power corrections.

The twist-3 PDFs involve quark-gluon correlations, related to the interaction of quarks
with the color fields of the hadron remnant. Such correlations are absent at leading twist
where only the quark-quark correlator discussed in Section 2.3.2 contributes.

2.7.1 Other approaches
Apart from the TMD approaches and the high-twist collinear model, there exist other
QCD-based theoretical frameworks in which transverse SSAs (in particular, AN) can be
reproduced. One example is the “orbiting valence quark model” of Liang and Boros [73], in
which the fragmentation into mesons can be calculated from the fusion of a quark from the
target hadron with an antiquark of the projectile hadron (a process that cannot be calculated
using pQCD). The orbital angular momentum of the quarks, together with hadronic surface
effects due to the spatial extension of the colliding hadrons, would be responsible for the
spin asymmetry of the produced mesons. Another non-perturbative approach is the model
of Troshin and Tyurin [107], in which the valence quarks inside the colliding hadrons are
considered to be composite objects, i.e., multi-quark condensates made of so-called current
quarks; the origin of the asymmetry is attributed to the orbital angular momentum of these.

34In the literature, the seeds of this idea can already be found in the works of Kane et al. [72] and Efremov
and Teryaev [106]. These realized that pQCD can be used to study the effects of transverse spin, but were
unable to explain the large magnitude of the observed transverse SSAs. In particular, in Ref. [106] it was
pointed out that a non-zero AN could be obtained in pQCD beyond the leading power expansion.
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2.8 Inclusive hadron production in ep scattering
In the last sections, possible mechanisms have been discussed that can give rise to large
transverse spin asymmetries. In the following, we focus on the goal for the work done in
this thesis: the measurement of transverse SSAs in the inclusive production of hadrons from
e p
↑ collisions.

Motivation Transverse SSAs in hadron inclusive electroproduction are appealing. On the
one hand, it is an alternative measurement of AN, never done before in contrast to the
various results coming from p↑ p scattering. On the other hand, as already commented
in Section 2.6.1, it can provide relevant insight into the validity of TMD factorization for
processes with only one large scale (in this case, the transverse momentum pT of the detected
hadron). Such transverse SSAs are deeply connected with the asymmetries associated to
the Sivers and Collins functions, shown in Fig. 2.12, as they represent the general case in
which the lepton variables (i.e., φS) are integrated over. The spin mechanisms behind both
types of asymmetries - the inclusive and the SIDIS ones, should therefore be very related
in the kinematic region of overlap. Note that, since the lepton track is not required, it is
therefore not possible to cut on the usual DIS kinematic variables. In particular, this implies
that the total inclusive sample contains a significant proportion of hadrons produced at very
low Q2, i.e., in quasi-real photoproduction (Q2 � 0). A transverse SSA for hadrons in this
low-Q2 region cannot be explained, in principle, by the TMD formalism, which is only valid
for events with p2

T
/Q
2
< 1. Other mechanisms, for example connected to higher-twist PDFs,

could play a role there. See further discussion in Chapter 6.

In Ref. [89], the formalism for the study of SSAs in ep↑ → hX assuming TMD factorization
is presented, and numerical estimates are given based on the contributions of the Sivers and
Collins effects to AN at different kinematic regimes (HERMES, COMPASS, ENC, JLab).
This paper can be therefore regarded as the theoretical background on which the analyses
presented in this thesis are based on. The main ideas are outlined next.

Figure 2.15. Reaction plane for inclusive detection of hadrons in e p↑ collisions. The
4-momenta in parentheses correspond to undetected particles.
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2.8.1 Kinematics
The reaction of interest is depicted in Fig. 2.15. An incoming electron (or positron) with
momentum k collides against a static proton target with mass M and zero momentum in
the laboratory frame. The spin S of the proton is polarized along the ylab direction (up or
down), transversely to the direction of the beam. In addition to k and S, the only other
known direction is the momentum p of one outgoing hadron, produced as a result of the
hadronization of the proton after the collision with the electron.

Since the scattered beam lepton is not detected, it is not possible to reconstruct the
direction q of the virtual photon, necessary for the calculation of the relevant DIS variables,
like x and Q2 (see Section 2.1.1). The beam direction, along the z lab axis, is taken as the
direction of reference and the following observables are used instead

• xF = 2 pCM

z
/
√
s, known as the x-Feynman variable, related to the longitudinal fraction

of the hadron momentum pCM

z
, calculated in the center-of-mass system as

p
CM

z
= γ (plab

z
− β E),

with β =
Ebeam

M + Ebeam

,

γ =
1�
1− β2

,

and E =
�
p2 +m2 is the energy of the hadron with mass m.

• pT , the transverse momentum of the hadron,

• φ, the azimuthal angle around the beam direction, between the hadron production
plane, containing k and p, and the target spin vector S, defined as

φ =
k× S · p

|k× S · p|
cos−1

k× S · k× p

|k× S||k× p|
. (2.98)

Notice the difference between pT and ph⊥. The latter is defined with respect to the
direction of the exchanged virtual photon, for which the scattered lepton must be detected.
As this is not the case in the inclusive detection of the produced hadrons, pT is defined with
respect to the direction of the beam.

2.8.2 Cross section

The cross section for the process p↑e → hX can be written as [89]

dσ =
�

q,{λ}

�
dx dz

16π2x z2s
d2k⊥ d

3p⊥ δ(p⊥ · p̂
�
q
) δ(ŝ + t̂ + û)Σ(S)qe→qe , (2.99)

where35,
35Note that the formalism in Ref. [89] considers the case of a transversely polarized proton beam colliding

against a static electron target, p↑ e → h X, which is the opposite case of the HERMES experiment.
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• the summation in Eq. (2.99) runs over all helicity indices λ and parton types q,

• x and z are the fraction of the proton momentum carried by the parton, and by the
outgoing hadron, respectively36

• k⊥ is the transverse momentum of the parton in the proton,

• p⊥ is the transverse momentum of the final hadron with respect to the fragmenting
quark,

• p�
q

is the momentum of the fragmenting parton, which can be expressed as a function
of the final hadron kinematics (See (Eq. A6) of Ref. [89]),

• ŝ , t̂ , û are the usual Mandelstam variables,

• Σ(S)qe→qe is the spin-dependent term of the cross section, describing the elementary
quark-lepton interaction. It depends on the target proton spin S. Its exact expression
is [89]

Σqe→qe =

�
ρ
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λq,λ
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q
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(2.100)

where

◦ ρ
q/p↑

λq,λ
�
q

is the helicity density matrix of parton q inside the transversely polarized
proton p↑,
◦ f̂q/p↑(x, k⊥) is the PDF of unpolarized partons q inside the transversely polarized

proton p↑,
◦ M̂λq,λe ;λq,λe and M̂∗

λ�q,λe ;λ
�
q,λe

are the helicity amplitudes for the process qe → qe,

◦ D̂
λ
h
,λ�
h

λq,λ
�
q
(z, p⊥) is the product of fragmentation amplitudes for the q → h + X

process, such that the unpolarized fragmentation function Dh/q(z) is given by
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h
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λq,λq
(z, p⊥) . (2.101)

2.8.3 Computation of AN
The transverse SSA can be measured by looking at the production of hadrons at different
values of pT and xF , by reversing the target polarization S⊥ between the up (↑) and down
(↓) states

AN =
dσ↑(S⊥)− dσ↓(S⊥)

dσ↑(S⊥) + dσ↓(S⊥)
. (2.102)

Inserting Eq. (2.99) in the above expression, for the two proton polarization states, leads to

AN =

�
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�
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16π2x z2s
d2k⊥ d3p⊥ δ(p⊥ · p̂

�
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. (2.103)

36In Ref. [89], x and z are actually defined as the light-cone momentum fractions of partons in hadrons and
of hadrons in partons, respectively.
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Figure 2.16. Estimates of AN vs. xF for the p↑ e → πX process at HERMES, taken
from Ref. [89]. Left panel: Sivers effect at pT = 1.5 GeV; central panel:
Sivers effect at pT = 2.5 GeV; right panel: Collins effect at pT = 2.5
GeV.

Using the TMD formalism, the spin-dependent terms can be expressed as
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where the first term contains the Sivers function ∆Nfq/p↑(x, k⊥) and the unpolarized frag-
mentation function Dh/q(z, p⊥). The second term of Eq. (2.104) shows the contribution to
AN of the transversity distribution h1(x, k⊥) coupled to the Collins function ∆NDh/q↑(z, p⊥).
Similarly, one has

�
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[Σ(↑) +Σ(↓)]qe→qe = fq/p(x, k⊥)
�
|M̂
0
1 |
2 + |M̂02 |

2
�
Dh/q(z, p⊥) . (2.105)

Contributions to AN from other TMDs were dropped from the above equations, as they
turn out to be negligible [89]. Moreover, numerical calculations show that the dominating
contribution to AN comes from the Sivers function, while the term containing the Collins
and transversity functions represent only a modest contribution.

The numerical computation of AN can be done from Eqs. (2.103)–(2.105). For this, one
needs a expression for the elementary interaction amplitudes (M̂01 , M̂02), which are calculable,
as well as an expression for the contributing TMDs. As the latter cannot be derived from
first principles, one can use available parametrizations extracted from data (see below).

Theory predictions Based on the above formalism, the authors of Ref. [89] give estimates
of AN for the kinematics of the HERMES experiment, for the inclusive production of either a
π
+, a π− or a π0. These are shown in Fig. 2.16, where the contributions from the Sivers and

Collins effect are shown separately. The predictions for AN are presented as a function of
xF , for two different fixed values of pT (1.5, 2.5 GeV) in the case of the Sivers contribution,
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and for a fixed value of pT = 2.5 GeV for the contribution of the Collins function. These
values of pT should be taken as the hard scale of the process, ensuring a large momentum
transfer in the proton–electron hard collision (Q2 > 1 GeV). It was checked that a value
of pT = 2.5 GeV guarantees a safe Q2 region in the whole xF range, while pT = 1.5 GeV
implies it only for backward production, xF � 0.

• The Collins effect, shown on the right-most panel, is almost negligible in this kinematical
region. This is due to the dynamical suppression of the Collins effect in the backward
region (xF < 0), where the partonic spin transfer cross section37 becomes smaller,
which is in addition reinforced by the integration over the azimuthal angles.

• The Sivers contribution are significantly higher, and showing a clear dependence on
both xF and pT . The estimates for AN indicate a larger asymmetry for large negative
values of xF , for pT = 2.5 GeV

• For this calculation of AN , the parametrization for the Sivers function from Ref. [108]
was used, extracted from SIDIS data; the parametrization for the transversity and
Collins functions of Ref. [109], extracted from SIDIS and e+e− data, the unpolarized
PDFs of Ref. [110] and the FFs of Ref. [111]. In the left panel, the statistical
uncertainty bands for charged pions are shown, coming from the parametrization of
the Sivers functions [108].

• These results are for p↑ e scattering. Nevertheless they can be easily adapted to the
HERMES case (e p↑), taking into account that, because of rotational invariance,

A
e p↑→h X
N

(xF , pT ) = −A
p↑ e→h X
N

(−xF , pT ) . (2.106)

2.9 Outlook

In this chapter, the formalism of deep inelastic scattering (DIS) was reviewed (Sec. 2.1–2.3),
with special emphasis on the study of reactions using a transversely polarized proton target
(Sec. 2.4–2.8). In particular, the relevance of transverse single-spin asymmetries (SSAs)
associated to the Sivers and Collins effect was discussed in Section 2.6, together with
the theoretical framework of transverse-momentum dependent parton distribution and
fragmentation functions (TMDs), in which these and other SSAs can be interpreted. Other
approaches to sizable transverse SSAs were briefly discussed in Section 2.7. Finally, in
Section 2.8, the measurement of transverse SSAs in the inclusive electroproduction of
hadrons, e p↑ → h X, was proposed as a test of the validity of the factorization of the
e p
↑ cross section into TMDs. No experimental data on this channel have been published

until now, but theoretical calculations, done for the kinematics of the HERMES experiment,
indicate that the Sivers function leads to large asymmetries in the production of several
mesons species. The measurement of such transverse SSAs has been done for the first time
in the work presented in this thesis, and will be covered in detail in the next chapters.

37Related to the helicity amplitudes M̂01M̂
0
2 , which enter the Collins contribution to AN in Eq. (2.104).
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HERMES

The HERMES1 experiment took place between the years 1995 and 2007 at the DESY
research center in Hamburg, Germany. With the goal of studying in detail the nature of
the nucleon spin, the experiment performed high energy electron-nucleon collisions using
the electron beam from the HERA accelerator and an atomic gas target with spin-polarized
nucleons. Information about the spin of the proton components could be obtained by
measuring spin asymmetries.The experiment was originally planned in 1988, motivated by
the astonishing observation of the EMC experiment at CERN, that quarks only carry a small
fraction of the nucleon’s spin – the so-called spin-crisis. In addition to the spin physics
program, the HERMES collaboration has been able to provide the particle physics community
with a rich variety of results over the last 16 years. The possibility of using different beam
and target polarizations together with the very precise particle identification system were
some of the key elements to move from the initially planned measurement of inclusive spin
asymmetries to the more advanced semi-inclusive measurements.

In this chapter, the main features of the experimental setup of the HERMES experiment
are reviewed, with particular emphasis on the components involved in the analysis described
in the next chapters of this thesis. For a complete review of the HERMES setup, as well as
for more technical details, see the cited bibliography.

3.1 HERA and DESY

The idea of building a hadron-electron ring accelerator (HERA) at the Deutsches Elektronen-
Synchrotron (DESY) laboratory was originally suggested in the late 70s [112] as a powerful
electron microscope to investigate the structure of the proton. Approved for construction in
1984 and with the first electron-proton collisions taking place in 1991, HERA was successfully
operating for more than 15 years until its final shutdown in 2007. The accelerator devices
for both particle beams resided in a 6.3 km long underground ring at the city of Hamburg,
in the north of Germany.

1HERA measurement of spin
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Figure 3.1. Schematic view of the HERA accelerator.

A schematic view of HERA is shown in Fig. 3.1. The tunnel consisted of four circular
arcs joined by four straight segments (each 360 m long) where four large experimental halls
housed the H1, HERA-B, HERMES and ZEUS detectors. The proton beam with energy of
920 GeV and the 27.6 GeV electron beam were originally used by the collider experiments
H1 and ZEUS to obtain direct head-on electron-proton collisions at center-of-mass energies
of about 300 GeV. After 1995, the fixed-target experiment HERMES in addition studied the
nucleon spin by making the electron beam traverse a gas with spin-polarized nucleons. For a
shorter time, at the HERA-B experiment, CP-violation in the decay of B-mesons was aimed
to be measured by colliding the HERA protons with the atomic nuclei of a fast moving thin
target wire. The electrons and protons were pre-accelerated before their injection into the
HERA rings. This was done by a couple of linear accelerators (LINAC and LINAC II) plus
a synchrotron accelerator (named originally DESY) and the PETRA ring, the other main
accelerator at DESY. The protons were obtained from a source of H− ions with an energy of
50 MeV provided by the LINAC, accelerated to about 7.5 GeV in the synchrotron and then
injected into the PETRA ring after removing the electrons. The electron beam was initially
accelerated up to 200 MeV in the LINAC II and then up to 7.5 GeV in the synchrotron. At
the PETRA ring, electrons reached an energy of 14 GeV, and protons of about 40 GeV,
before their final injection into HERA.

The broad physics program of the four involved experiments made the HERA accelerator
a pioneering one in various aspects [113], most remarkably in the use of two colliding
beams of particles with different masses. The development of the technology necessary for
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accelerating protons and electrons at such high energies in two separate rings and colliding
them in flight was a major challenge at DESY. In the two collision points, where both beams
interacted at a small angle, the protons were deflected into the electron pipe by guiding
magnets and brought back to their trajectory after the interaction. The geometry and energy
requirements planned for HERA also made necessary the use of superconducting magnets
for deviating the proton beam in the sharp bends. These were able of providing a magnetic
field with a strength of about 4.7 T, cooled down with liquid helium to temperatures of only
4.5 K. HERA was, together with the Tevatron at the Fermilab research center in Chicago,
the first superconducting accelerator2.

The DESY research center was established in Hamburg in 1959 with the goal of helping
the development, construction and operation of particle accelerator facilities. The main
research tool before the construction of the HERA collider was the acceleration of electron
and positron beams at the storage rings DORIS and PETRA. Still nowadays, and for over 50
years, the HASYLAB laboratory uses the synchrotron radiation generated at these to carry
on investigation in various fields of physics, chemistry, material science, molecular biology
and medicine. The near future of DESY seems to go in fact into these latter directions,
with the current construction of the European X-ray laser project XFEL.

3.1.1 The polarized lepton beam

Another new technique developed at HERA was the longitudinal polarization of an electron
beam in an accelerator ring. This was required by the HERMES experiment in order to
perform measurements of spin asymmetries, and later also used by the H1 and ZEUS collider
experiments. Back in the early 1990s, polarized electron and muon beams were being or
had been used at SLAC and the SMC experiments at CERN, respectively. In the first
case, polarized electrons were obtained from photo-ionization of Li atoms [114] or from
photoelectric emission from a Ga-As surface excited by a polarized laser light [115]; in
the latter, weak decay of pions or kaons was used to achieve a naturally polarized muon
beam [116]. Such experimental set-ups presented much less problems than the polarization
of an electron beam circulating in a ring like HERA.

The beam-polarization technique was based on the previously known Sokolov-Ternov
effect [117]. Transverse polarization of electrons had been discovered in the late 1960s3 to
happen spontaneously when these are accelerated in a ring. The emission of synchrotron
radiation causes an accelerating electron to flip its spin in order to conserve total angular
momentum. The self-polarization of the beam comes from the fact that the probability of
emitting radiation is slightly bigger for the electrons with spin parallel to the magnet field
than for the ones with anti-parallel spin, thus populating more the latter state. For positrons,
the opposite is true. This small effect produced transverse polarizations of about 55 % in

2The technology was invented in the 1960s at the Rutherford-Appleton Laboratory, UK and first used at
Fermilab in 1987, with magnets reaching 4.4 T at a temperature of 4.6 K.

3The effect carries since them the name of their discoverers, the Russian physicists A. A. Sokolov and I. M.
Ternov.



54 3. HERMES

nearly 20 minutes time – a quite optimal time scale for the lifetime of about 10 hours of the
electron beam.

Longitudinal polarization was achieved by rotating the spin of the electrons right before the
interaction points. This was a crucial point in the physics program of the collaborations, as
spin effects caused by the transverse polarization of an electron beam are strongly suppressed
by the mass of the electron. The spin rotator consisted of a series of magnets that, by
applying small corrections to the direction of the electron spin, were able of switching from
transverse to longitudinal polarization over about 60 m distance. After its passing through
the experimental halls, the beam polarization was set back to transverse before entering
the arcs in order to favor the self-polarization process. The transverse and longitudinal
polarizations of the beam were constantly measured by analyzing the Compton scattering
of laser light off the beam. Longitudinal polarizations ranging between 40% and 60% were
obtained at HERA for the electron beam.

The HERA beam could be operated with both electrons and their antiparticles, positrons.
The data selected for these analyses were obtained with the positron beam used between
the years 2002 and 2004, while for the complete year 2005, from which most data originate,
electrons were employed. In the following, unless leading to confusion, the term electron, or
more generically lepton, will refer to both types of beam. The use of a polarized beam did
not restrict the physics analyses to spin-related subjects. A data sample with zero average
beam polarization could be easily arranged by balancing the data sets taken with the different
orientation of the beam spin.

Some characteristics of the HERA electron beam are summarized in Table 3.1.

Length of the ring 6.3 km
Number of bunches 189
Injected beam current ∼ 50 mA
Energy 27.6 GeV
Lifetime ∼ 10 h
Bunch density 5× 1010 e±

Time interval between bunches ∆t = 96 ns
Number of times a bunch flies
through the HERA ring in a second

47000

Time width of a bunch σt ∼ 35 ps
Beam size (elliptical) σx = 0.26 mm

σy = 0.07 mm
σz = 11 mm

Table 3.1. Features of the HERA lepton beam.
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3.2 The polarized gas target

The HERMES target was designed to fulfill two main experimental requirements: (i) achieve
effective lepton-nucleon scattering with a high polarized target source, and (ii) guarantee a
high lifetime of the HERA lepton beam after the interaction, so that it could be further used
by the two collider experiments H1 and ZEUS. The solution was an innovative approach, not
seen before at other polarized deep-inelastic scattering experiments: the use of a gas target
with spin polarized nucleons in an internal storage cell through which the electron beam passes.
The target could also be operated with unpolarized gases. Hydrogen and deuterium gases
were mainly used with the polarized setup, as the spin of their nucleons is easier to keep under
control, while the unpolarized target ran as well on 4He, N, Kr, Ne and Xe-gases. The data an-
alyzed in this thesis were taken exclusively with the transversely polarized hydrogen gas target.

An schematic view of the HERMES target region can be seen in Figure 3.2, consisting of
three main parts responsible for the storage, injection and monitoring of the spin polarized
target gas, plus a magnet. These are described in more detail in the next sections. For a
complete description of the HERMES polarized target, see Ref. [118].

Figure 3.2. Diagram of the polarized gas target with on the left the Atomic Beam
Source (ABS) in the middle the target cell and on the right the Target
Gas Analyzer (TGA) and the Breit-Rabi Polarimeter (BRP).

Target cell The storage cell consisted of a 400 mm long aluminum tube with an elliptical
cross section of 21× 8.9 mm2, made of two aluminum sheets 75 µm thick welded together.
Both extremes were open, such that the cell was directly connected to the HERA electron
beam pipe.The target gas was injected at the center of the cell by the atomic-beam source
(ABS) and removed at the extremes by two powerful turbo-molecular pumps. This resulted
in a triangular distribution of the target atoms, with maximum at the center of the cell. Gas
densities of about 1− 2× 1014 nucleons/cm2 were reached during the polarized target runs.
As the target cell was directly attached to the HERA lepton beam pipe, two collimators
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upstream protected the cell from synchrotron radiation and scattered leptons hitting the cell
walls. The transition from the beam pipe to the cell was also made RF-smooth by a thin
perforated titanium tube which confined the electromagnetic field of the bunched HERA
beam and avoided the generation of wake fields that could cause heating. Two cooling rails
along the cell kept the temperature at 100 K to minimize depolarization effects.

Target magnet The target region was placed within a magnetic field obtained by a
surrounding magnet. Such field determined the geometrical axis of the spin of the gas
nucleons. Two different target magnets were employed to obtain a polarized spin target
at HERMES. During the years 1997-2000, longitudinal spin polarization was achieved by a
set of superconducting magnet coils, while on the period 2002-2005 it was replaced by a
conventional dipole magnet to obtain a transverse spin. The target magnetic field served as
well to reduce the depolarization of the nucleons inside the target cell: spin relaxation can
undergo by collision of the polarized atoms with the walls of the target cells, or between
them, and by the transient magnetic fields generated at the passage of the lepton beam
bunches. These depolarization effects can be minimized by applying a strong magnetic field
of high uniformity. The field value of the transverse target magnet was of about 300 mT.

Polarized atomic gas injection The injection of spin polarized nucleons into the target
cell was accomplished at HERMES by an atomic-beam source (ABS), capable of dissociating
and polarizing hydrogen (H) or deuterium (D) atoms from their molecular gases. Injection
rates of about 6.5× 1016 atoms/s were reached with nuclear polarization above 97%. The
principle of operation of the ABS is the following: Molecules are dissociated into atoms
by a radio-frequency electric discharge, achieving a degree of dissociation up to 80%. The
dissociated gas expands through a conical nozzle of 2mm of diameter into a vacuum chamber,
where a set of sextupole magnets, based on the Stern-Gerlach principle, focuses the atoms
with electron spin +12 and deflects those with electron spin −12 . Nuclear polarization is then
obtained by a proper recombination of the four hyperfine energy levels that atomic hydrogen
exhibits in the presence of a magnetic field4.

By applying high-frequency magnetic fields, those atoms with nucleon spin up or down
can be selected such that the total electron polarization vanishes. The apparatus for these
fields consisted of a resonator cavity in the case of the strong field transition (SFT) or a
high-frequency coil in the case of the weak field and medium field transition (WFT and
MFT) [119]. This way, atoms with spin-polarized nucleons and unpolarized shell electrons
were injected into the target cell. The spin state of the nucleons was flipped at 1-3 min
time interval, in order to provide data in both spin states, essential for the calculation of
spin asymmetries.

The vacuum inside the ABS chamber was provided by a powerful pumping system with a
power higher than 15000 l/s. This high vacuum suppressed the scattering of the atomic
beam and guaranteed a low flux of atoms into the vacuum of the HERA lepton pipe.

4Resulting from the up and down spin states of the nucleon and the shell electron.
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Year Polarization
2002 0.783 ± 0.041
2003 0.795 ± 0.033
2004 0.737 ± 0.055
2005 0.705 ± 0.065

Table 3.2. Target polarization values for each year of transverse polarization data.

Measurement of target polarization With the use of an internal gas target, an additional
challenging requirement was to determine the effective target polarization seen by beam.
This is in principle different from the polarization of the injected beam, as a result of the
several interactions that the atoms of the target may undergo inside the storage cell. Two
main categories of processes take place in the target chamber: recombination of atoms into
molecules by collisions with the cell walls and spin relaxation processes. The effect of these
could have been measured by scattering processes from beam leptons if the cross sections
involved were higher. Instead, a sampling technique was employed by analyzing a sample
of the target gas contained in the storage cell with a Breit-Rabi polarimeter (BRP) and a
target gas analyzer (TGA). Both devices were fed by a common tube, providing a sample of
about 5 % of the target gas. The feed was connected to the center of the storage cell at
the same angle but opposite side as the injection tube from the ABS, in order to ensure
that the analyzed gas would not stem directly from the injected beam.

The BRP measured the population of the hyperfine states of hydrogen atoms. Its logic
is similar to the ABS injection device: a set of hyperfine transition units and sextupole
magnets allows to focus or deflect atoms into a detector chamber where a quadrupole mass
spectrometer (QMS) and an electron multiplier provide flux rates. The TGA provided the
degree of dissociation of the target gas by measuring the atomic and molecular content. It
was mounted inside the BRP vacuum, 7◦ off-axis with respect to the BRP to not interfere
with the beam entering the polarimeter, and made use of an detector similar to the one in
the BRP to measure the atomic and molecular flux.

Target polarization values The average target polarization PT as seen by the lepton beam
is given by the expression

PT = α0(αr + (1− αr)β)Pa, (3.1)

where α0 is the initial atomic fraction in the gas injected by the ABS, αr is the fraction of
nucleons in atoms after recombination in the storage cell, Pa is the nuclear polarization of
atoms and β = Pm/Pa is the ratio of the nuclear polarization in molecules to the one in
atoms. These quantities were calculated using the measurements from the TGA and BRP
in combination with various calibrations. From this analysis, a systematic uncertainty to PT
was correspondingly assigned.

Using Eq. 3.1, the average degree of the target spin polarization was determined for each
data period. This is summarized in Table 7.1 together with the uncertainties. See Ref. [120]
for more information. For the transversely polarized data set used in this analysis, the target
spin vector was polarized either up or down along the ylab axis (see Sec. 3.3.4).
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3.3 The spectrometer

The big forward-angle spectrometer [121] used by the HERMES experiment was located in
the east hall of the HERA tunnel. Seven floors below ground level, behind a thick concrete
wall that protected the outside from the radiation of the HERA beams, the 7× 5× 4 m3

detector was placed along the HERA beams, right behind the target region described before.
A forward-angle spectrometer is generally used by experiments with a fixed target, as the
particles resulting from the collision with a high-energy beam are most probably emitted in
the forward direction.

Figure 3.3. Side view of the HERMES spectrometer. Particle identification detectors
and tracking devices are depicted in dark and light gray, respectively. The
dashed lines delimitates the detection acceptance.

A schematic view of the HERMES experiment is shown in Fig. 3.3. The spectrometer
consisted mainly of two types of detectors, namely tracking devices and particle identification
detectors, that permitted detecting and identifying both the scattered lepton and the
produced particles resulting from the hadronization of the broken target proton. All detectors
were divided in two parts, a top and a bottom part, with a horizontal gap in between them
such that the HERA beam pipes could go through.

• The wire chambers located at the front (FC), back (BC) or in between (MC) the poles
of the spectrometer magnet were used for the tracking of charged particles.

• The dipole magnet consisted of several tons of iron, providing a magnetic field with
a deflecting power of

�
Bdl = 1.3 Tm. The two poles of the magnet delimited the

maximum angle of 140 mrad at which tracks were detected in the vertical direction,
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whereas the minimum acceptance corresponded to 40 mrad due to a 11 cm thick iron
plate that shielded the HERA beam pipes from the strong field of the magnet. In the
horizontal direction, the maximum acceptance was 170 mrad. This acceptance gap at
low angles implied that in many of the recorded events, the beam lepton would not be
detected after colliding with the target, as it often was scattered at angles smaller
than 40 mrad.

• Particle identification (PID) was carried out by the combination of several detectors:
a ring-imaging Cherenkov (RICH) detector, a transition radiation detector (TRD), a
pre-shower/hodoscope detector (H2) and an electromagnetic calorimeter.

• The hodoscopes H1 and H2 provided the signal for the trigger system. They were
made of several paddles of scintillator, a material which emits light at the passage of a
charged particle, read out by photomultiplier tubes. An additional small hodoscope H0,
made of two paddles and placed before the magnet, helped to discriminate against
background events mainly caused by the proton beam and so reduce the trigger rates.

• The luminosity detector, placed at the rear end of the spectrometer, very close to the
electron beam pipe, determined the luminosity of the experiment during each period of
data taking.

More information about the tracking and PID detectors as well as the luminosity measurement
is given in the next sections.

3.3.1 Tracking

Two types of tracking chambers were employed at HERMES, either proportional wire cham-
bers (MC) or drift chambers (FC and BC). Wire chambers have been used in particle
detectors for more than half a century. They are based on an array of thin wires, operating at
a certain electric potential, that collect the ionization produced by charged particles traversing
a gas volume. The more advanced drift chambers originated in the 1970s and provide a finer
spatial resolution by using the drift time of the ionization products inside the detector volume.

The front chambers (FC) [122] served to determine the vertex of the interaction at the
target cell from the initial trajectory of the tracks. In combination with the back chambers
(BC) [123], the momentum of the charged tracks was calculated from the bending in the
magnetic field provided by the spectrometer magnet, using momentum look-up tables. The
BC were also used to identify the hits in the PID detectors.

Tracks were reconstructed by a fast tree-based search algorithm, selecting combinations
of hits in the FC and BC that would intersect at the center of the magnet. The magnet
chambers (MC) [124] were used to track low-momentum particles, strongly deflected in the
magnetic field and therefore not reaching the BC. The momenta of particles was determined
with a resolution finer than 2%, and the angles within ±1.8 mrad.
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3.3.2 Particle Identification
The precise identification of pions, kaons and protons, and the efficient separation of these
hadrons from leptonic tracks was one of the main features of the HERMES spectrometer.
The four components used by the PID system are reviewed on the next paragraphs. The way
their signals were combined to actually perform the identification of particles is described in
Section 4.2.1.

RICH The ring imaging Cherenkov (RICH) detector [125] was installed in 1998 to improve
hadron identification over a wide momentum range as part of the plan of the collaboration
to measure semi-inclusive spin asymmetries. This represented an upgrade with respect to
the previously operating threshold gas-Cherenkov detector.

Like any Cherenkov detector, the RICH detector is based on the effect discovered [126]
by P. A. Cherenkov in 19375 that radiation is emitted by charged particles when these travel
in a medium at a speed higher than the speed of light in that medium. Cherenkov photons
are emitted in a cone of angle θC about the direction of motion of the particle. The opening
angle is related to the relativistic speed β of the particle and the refractive index n of the
material as cos θC = 1/βn. A radiator material (typically gas) and a set of photomultiplier
tubes (PMTs) are used to produce and detect the Cherenkov photons.

An schematic drawing of the RICH detector used at HERMES can be seen in the left-hand
side of Fig. 3.4. In this case, two radiators were used instead of one: (i) an aerogel radiator
with refraction index n = 1.03, covering the pion momentum range 1− 10 GeV/c, and (ii)
a pure C4F10 gas radiator with n = 1.0014, optimal for hadrons with momentum between
10 and 17 GeV/c. The HERMES RICH detector was one of the first ones to make use of
aerogel tiles, shortly after their use was demonstrated in a test setup [127] at CERN 6. A
panel of 1934 PMTs of 15 mm diameter each collected the emitted light, after reflection
and focusing by a spherical mirror. The separation of pions, kaons and protons is shown in
the right-hand side of Fig. 3.4.

The ring pattern recognition is usually done at other RICH detectors by a fit to the
circular hit pattern. This was not possible at HERMES as the spherical mirror produces
elliptical rings. Two different reconstruction algorithm were used on this analysis. The direct
ray tracing (DRT) is based on the comparison of the detected pattern to simulations of the
several particle hypotheses, assigning a probability to each hypothesis. For events containing
more than one track, an event level tracking (EVT) algorithm improves the identification
of close tracks whose Cherenkov rings overlap, by performing combinations of all expected
DRT patterns.

5and awarded in 1958 with the Nobel Prize in physics, together with I. Y. Tamm and I. M. Frank,
6Already in 1983 EMC used an aerogel counter with blocks of 18× 18× 2.7 cm3 [128].
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Figure 3.4. Left: Schematic picture of the RICH detector at HERMES. Charged
particles traversing the RICH detector produce Cherenkov photons when
they pass through the radiators (the aerogel tiles and the C4F10 gas filling
the inner volume of the detector). These photons are projected onto a
matrix of PMTs by a spherical mirror. Right: The Cherenkov angle as a
function of the particle’s momentum, showing the achieved separation
for the both radiators.

TRD The transition radiation detector (TRD) at HERMES provided a highly efficient
discrimination of hadrons and leptons. Its operating mechanism is based on the phenomenon7

that highly relativistic charged particles emit radiation in a cone with opening angle θ ∼ 1/γ
when they go through two media with different dielectric constant. Here, γ = 1/

�
1− β2

is the Lorentz factor. This transition radiation is emitted due to the reorganization of the
Coulomb field, that must satisfy the condition of continuity at the boundary between the
two media.

The TRD at HERMES consisted of a set of radiator blocks and multi-wire proportional
chambers, optimized for the frequencies8 of the produced photons. The radiator would ideally
be an arrangement of thin layers of a material (medium 1) with high photon transparency
separated by vacuum (medium 2), but this is not technically achievable in large dimensions.
An array of polypropylene fibers was used instead such that the ∼ 20 µm cylindrical fibers
approximate the foil layers.

As the probability of emitting a photon is directly proportional to γ, essentially only
leptons (with γ ∼ 104 at HERMES energies) and not hadrons (γ ∼ 101) produced transition
radiation. A track detected in coincidence with a photon signal was then a clear signature
of a lepton track. For a complete description of the TRD at HERMES, see Ref. [131].

7Originally predicted in 1946 [129] and first demonstrated for experimental use in the early 70’s [130].
8For the HERMES energies, in the x-ray region.
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Calorimeter and pre-shower The electromagnetic calorimeter measured the energy of
leptons and photons and also provided a separation between hadrons and leptons. As depicted
in Fig. 3.5, it consisted of 420 lead-glass blocks of 9× 9 cm2 cross section and 50 cm long,
stacked in a 42× 10 array. The principle of an electromagnetic calorimeter is quite simple:
leptons and photons lose their energy in electromagnetic showers.

Figure 3.5. Schematic view of the pre-shower detector (H2) and the electromagnetic
calorimeter.

An electromagnetic shower originates right after a high-energy electron, positron or
photon enters a material. For energies above 100 MeV, the dominating processes are
bremsstrahlung for electrons and positrons, as a result of their interaction with the Coulomb
field of the material, and e+e− pair production for photons. These processes successively
generate a cascade of particles until the energy of the produced particle is low enough, in
which case they primarily lose their energy by ionization. The longitudinal development of
the shower is characterized by the radiation length of the material, defined as the mean
distance over which the electron loses all but 1/e of its energy by bremsstrahlung [132].
The block dimensions were chosen to be 18 radiation lengths long and such that 99% of
the energy of an electromagnetic shower would be deposited into a set of 3× 3 blocks. A
measurement of the deposited energy was done based on the Cherenkov photons radiated
by the many lower energy constituents of the shower that are still highly relativistic. These
Cherenkov photons traveled through the mirror shielded blocks, to be finally collected by a
PMT at the rear end. Lepton and photon showers are not distinguishable, but they can be
differentiated by the existence of a charged track in the tracking system associated to the
shower.

The use of the calorimeter as a PID detector to separate hadrons from leptons was possible
thanks to the topological difference between electromagnetic and hadronic showers. The
radiation length for hadrons is much higher than for leptons, as their large mass suppresses
significantly the energy lost by bremsstrahlung (∝ 1/m2). The hadronic showers usually
initiate when a hadron collides with a nucleus, producing pions and nuclear fragments which
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eventually decay themselves. Neutral pions decay into photons which start electromagnetic
cascades within the hadronic shower. Hadronic showers typically started only in the second
half of the calorimeter and spread over the boundaries of a 3 × 3 block array, but still
deposited a smaller amount of energy than leptons or photons.

In order to improve the lepton-hadron separation at the calorimeter, a 1.1 cm thick lead
plate was installed at the front side of the hodoscope H2, that would make leptons (and
not hadrons) initiate showers, leaving a large signal in the hodoscope. The electromagnetic
calorimeter was used to provide a first level trigger on the scattered beam leptons, based on
a minimum energy deposition in a localized spatial region – 1.4 GeV for the polarized data
set.

3.3.3 Luminosity measurement

In a fixed target experiment, the luminosity is given by the product of the target density nt
and the beam current Ib, integrated over the time of measurement. These can be measured
separately, or their product determined more accurately by measuring the reaction rates R
of a process of well determined cross section dσ/dΩ in a detector with acceptance region Ω,

L =

�
dt ntIb =

R�
dΩ

dσ
dΩ

. (3.2)

The precise determination of the collected luminosity is essential for the measurement of
spin asymmetries, as this is used to normalize the particle yields taken with each orientation
of the target spin and to weight the different data sets used.

At HERMES, the luminosity detector was based on the coincident collection of particle
pairs coming from the elastic scattering of the beam leptons off the electrons of the gas
atoms stored in the target cell. . The cross section for these elastic processes are well known,
being either Møller scattering (e−e− → e−e−) for an electron beam, or Bhabha scattering
(e+e− → e+e−) for a positron beam. In the last case, also photon pairs resulting from e+e−

annihilation can be produced. With a beam energy of 27.6 GeV, the elastic scattering angle
is 6.1 mrad, making the pair of particles leave the beam pipe at 7.2 m from the center of
the target cell. This was the exact location of the luminosity monitor [133], consisting of
two small calorimeter blocks read out by PMTs. Each block consisted of a 3× 4 matrix of
lead-glass crystals with size 22 × 22 × 200 mm3. An independent trigger system fired in
case an energy deposition bigger than 4.5 GeV was found simultaneously in both calorimeter
blocks. This way, background events were filtered, as they typically deposit energy in only
one detector. The trigger was calibrated with signals from beam leptons scattered elastically
off the target nucleons, depositing an energy approximately equal to the beam energy of
27.6 GeV in one of the blocks of the luminosity monitor.

In practice, the luminosity was measured from the event rate collected over 10 s of data
taking, a burst, from the relation

L = �RLumi� · CLumi · Nn · τDAQ · tBurst, (3.3)
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where �RLumi� is the average rate measured by the luminosity monitor, CLumi is a proportion-
ality constant which varies year-to-year relating the rate to the luminosity per nucleon, Nn is
the number of nucleons per nucleus in the target gas, τDAQ is the fractional life-time of the
data acquisition system (in %) and tBurst is the length of the burst.

3.3.4 Coordinate system

The HERMES coordinate system was chosen such that the beam pipe runs along the z lab

axis, with its origin starting at the center of the target cell. The target cell extended therefore
over the range −20 cm to 20 cm. The x lab and y lab-coordinates had their origin at the
center of the electron beam pipe. The x lab-coordinate has its positive values pointing to
the left looking downstream, towards the proton HERA pipe. The y lab-coordinate is defined
positive for the top half.

In addition to the geometrical coordinates, the angles φ and θ are used to define the
position of tracks. The polar angle θ lab is defined as the angle between the track momentum
p and the z lab-axis, being positive for y lab > 0 and negative for y lab < 0. The azimuthal
angle φ lab is defined as the angle between the track and the positive half of the x lab-axis.

The HERMES lab coordinate system is shown schematically in Figure 3.6. The left and
right parts of the detector are indicated with respect to the orientation of the target spin
vector. This will be relevant later in Section 4.5 for the definition of spin asymmetries.

Figure 3.6. Transverse section of the HERMES spectrometer.
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3.4 The trigger system
The trigger system selects events of interest for physics analyses or detector monitoring
and calibration. This is done by the combination of signals from various detectors (typically
hodoscopes, drift/wire chambers, calorimeter) within a certain time window after an event
(i.e., collision) occurs.

At HERMES, the first level trigger decision was taken 400 ns after the passage of the
lepton beam bunch signal (every 96 ns), synchronized with the HERA clock. Several trigger
schemes were used at HERMES over the years of data taking. Some of them served to
indicate potential events of interests for certain analysis, while other triggers were used
merely for calibration of the detectors.

The main physics trigger, trigger 21, guaranteed a clean sample of events, suitable for
most DIS analysis performed at HERMES, consists of the responses in coincidence of the
hodoscopes H0, H1, H2, and the electromagnetic calorimeter

trig21 = (H0 ·H1 ·H2 · calo)top + (H0 ·H1 ·H2 · calo)bot ,

where the signals from both the top and bottom halves are taking into account. Two
independent triggers for each half also exist, trigger 24 (top), and 25 (bottom):

trig24 = (H0 ·H1 ·H2 · calo)top
trig25 = (H0 ·H1 ·H2 · calo)bot ,

such that trig21 = trig24 + trig25 can be built from a logical OR from both triggers.

Some observations:

• A typical DIS event at HERMES was characterized by a lepton track leaving a signal
in the hodoscopes and depositing a large amount of energy in the calorimeter, in
coincidence with some hadronic tracks, seen by the tracking and PID detectors.

• High-energy photons also start electromagnetic showers in H2 and the calorimeter
with large energy depositions. By including the hodoscopes H0 and H1 (where only
charged tracks leave a signal), these could be discarded as not being DIS events.

• The energy deposition in the pre-shower hodoscope H2 and the calorimeter is much
higher for leptons than for hadrons. This implies that a hadron track has a higher
probability of firing trigger 21 if a lepton was simultaneously detected in the calorimeter
acceptance.

• The energy threshold for the calorimeter was 1.4 GeV for the polarized data set used
for the analyses of this thesis. In other data-taking periods, the calorimeter threshold
was increased to 3.5 GeV (y < 0.87) to discard hadronic showers, or to reduce trigger
rates in the case of runs with high-density unpolarized gas targets.

For the analysis of hadron tracks, where other detected tracks, like leptons, are ignored,
the simultaneous detection of a lepton in the calorimeter increased therefore the chance
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that the trigger fired and the event was recorded. This happens with higher probability in
certain kinematic regions, e.g., at high transverse momentum where the lepton escapes the
septum acceptance gap, and can therefore lead to an artificial abundance of hadron tracks
at such kinematics. One way to avoid this problem is by correcting the particle yields for the
trigger efficiency. This is discussed in detail in Section 4.3.

The other relevant trigger for the discussion of inclusive hadron tracks is trigger 28,
called the photoproduction trigger, formed from the responses of the hodoscopes H0, H1
and the back chambers

trig28 = (H0 ·H1 · BC)top × (H0 ·H1 · BC)bot . (3.4)

As it does not involve the calorimeter, trigger 28 could be use to select hadron tracks
not necessarily originating from DIS events, usually produced at low angles, corresponding
to low four-momentum transfers (Q2 → 0), hence the label photoproduction. Note that
trigger 28 requires the presence of at least one track in each detector half, while trigger 21
fires always that trigger 24 and/or 25 does. This will become relevant in Section 4.3 for the
estimation of trigger efficiencies.

3.5 Data production chain

The data acquisition (DAQ) at HERMES consisted of various stages. The first step started
at the electronics trailer, a few meters away from the spectrometer. A wealth of cables,
under the thick concrete walls protecting from the HERA radiation, connected each detector
with the readout electronics, responsible for the digitization of the detector responses. At
the command of the trigger system, all detector signals necessary for reconstructing an
event were collected from their various components. Simultaneously, and independently of
the trigger, information from the status of the detectors and other experimental conditions
was recorded every 10 s. These slow data contained for instance the beam and target
polarizations, luminosity scalars and detector temperatures or operating voltages, and it is
used later in Sec 4.1 to decide if the data were taken under optimal running conditions.
Both types of data were sorted by the DAQ software and written in EPIO format into DLT
data tapes, by a small Linux cluster at the HERMES control room, in the same experimental
hall. The EPIO data files were then copied to a taping robot at the DESY main site.

The second part of the data processing was to convert the raw detector data into a
format suitable for physics analyses. First, the HERMES decoder software (HDC) interpreted
the electronic detector signals as, e.g., hit positions or energy depositions, storing them
in an ADAMO database. This decoded detector information was translated into actual
tracks by the HERMES reconstruction code (HRC). Finally, by synchronizing the track
information with the slow control data, final ADAMO tables were created containing all
necessary information for the analyzers. These ready-to-use data files were (and still are
nowadays) updated periodically by incorporating latest information on detector calibration,
PID parent distributions, tracking efficiencies, etc. Every updated iteration of the HRC
data represents a µDST production, named after the year when the data were taken plus a
subscript consisting of a letter and a cypher.
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The data used in this analysis come from the µDST productions 02d1, 03d1, 04d1, 05d1.
One particular improvement of the d1 productions with respect to the µDST productions
done before 2009 is the use of a new tracking algorithm, the HERMES tracking code (HTC)
based on the Kalman filter method. HTC uses the track information from HRC and performs
a new parametrization of the tracks in terms of quality parameters and vertexing probabilities,
by taking into account the target magnetic field, the passage through materials and the
beam position.

The µDST files are organized into three data levels: events, bursts and runs. The event
level contains all relevant information from the reconstructed tracks, like momentum, angles,
PID, etc. All tracks within the 10 s lap where slow control data are taken form a burst. A
run is the collection of bursts corresponding to a raw EPIO data volume of about 450 Mb,
that was collected in about 10 minutes of polarized data taking.
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Measurement

In this chapter, the measurement of the asymmetries from the detected hadron tracks is
discussed in detail. This is done in three steps. First, data are discarded that were taken under
bad operating conditions of the spectrometer, beam and target – see Section 4.1. Second,
good hadron tracks are selected by imposing the kinematic and geometric cuts described in
Section 4.2. One major correction on the data yields is to account for the low efficiency of
the electromagnetic calorimeter for triggering on single hadron tracks. This is discussed in
Section 4.3. Kinematic distributions of the selected events are shown in Section 4.4. Finally,
in Section 4.5, the asymmetries are calculated from their azimuthal moments Asinφ

UT
, by a

fit of the expected target-spin angular dependence to the data. Different fitting methods
are discussed in that section, and their outcome briefly commented in Section 4.6. The
calculation of the associated systematic uncertainties will be performed in Chapter 5. Further
discussion of the measured asymmetries can be found in Chapter 6.

4.1 Data quality
The information provided by the DAQ system, described in Section 3.5, is used to decide
on the quality of the data to be analyzed. In particular, the following criteria were used to
select good events:

• Good operating conditions of the PID and tracking detectors. Data were discarded
if at least one block of the calorimeter, preshower or the luminosity monitor was not
operating properly. These three detectors were constantly monitored online during
the data taking runs by the gain monitoring system (GMS). Events for which voltage
spikes were seen in any detector were discarded.

• The target polarization must be in either the up or down state, defined with respect to
the HERMES coordinate system. The degree of nuclear polarization must be between
30% and 80% as injected by the ABS system (Sec. 3.2) and consistent with the one
determined by the TGA/BRP. Values higher than 80% were in any case not achieved
experimentally.
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• Reasonable beam current (2 mA ≤ IB ≤ 50 mA) and luminosity rates (1 Hz ≤ L ≤
50 Hz). The lower cut of the beam current discards data resulting in very small
counting rates and therefore with a very high statistical uncertainty.

• Data were also discarded if no DAQ information was available.

In addition to the beam current, the DAQ also checked the value of the longitudinal
polarization of the beam, necessary for other analysis at HERMES. The beam polarization is
only used for this analysis in order to guarantee a helicity-balanced data set, i.e., with no
net beam polarization.

In practice, the DAQ information is coded in a list of 32 bit patterns, set to 1 if the
good conditions were satisfied. These bad bits were checked every 10 seconds by the DAQ
system during the data taking. All events recorded within this 10 s interval represent a burst
of data and share therefore the same data quality parameters.

4.2 Event selection

Events were selected containing at least one charged-hadron track, ep↑ → hX, with h being
either a pion or a kaon. Tracks were reconstructed using the HTC method (see Sec. 3.5).
The quality of each track was ensured by a set of pre-defined criteria or cuts, common to
most HERMES analyses:

• The track must originate in the target cell. The origin vertex is calculated by HTC
from the crossing of the track with the electron beam. The zlab position of the vertex
was required to be within ±18 cm, to avoid events coming from the very end of the
target cell where the target gas densities were very low.

• The track must be contained within a trustable or fiducial volume of the spectrometer,
where proper tracking and identification can be guaranteed. This excludes a few mm of
the edges at the calorimeter, the regions around the metal septum plate shielding the
electron beam, and the field clamps at both sides of the magnet, where the particles
might have undergone interactions with the metal atoms. The precise values of these
geometrical cuts are summarized in Table 4.1.

• The momentum of the hadron tracks must be in the range 2 − 15 GeV where the
RICH detector has the highest efficiency for identifying hadrons. Pion tracks with
momentum down to 1 GeV were also identified with accuracy, but a common cut at
2 GeV was chosen for all analyzed hadron tracks for consistency.

• The sum of the momenta of all tracks within an event cannot be higher than the beam
momentum 27.6 GeV. As the track momentum was reconstructed with an accuracy of
2%, the sum is required to be smaller than 28.2 GeV.

• An energy cluster associated to the track is found in the calorimeter blocks, with a
minimum energy deposition of 1.4 GeV. This threshold was set originally such as to
detect the scattered lepton from DIS events, but was low enough to trigger on events
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front track back track
vertex position |zlab| ≤ 18 cm –
front field clamp (zlab = 172 cm) |xlab| ≤ 31 cm –
septum plate (zlab = 181 cm) |ylab| > 7 cm –
rear field clamp (zlab = 383 cm) |ylab| < 54 cm |ylab| ≤ 54 cm

|xlab| ≤ 100 cm
calorimeter (zlab = 783 cm) – |xlab| ≤ 175 cm

30 cm ≤ |ylab| ≤ 108 cm

Table 4.1. Geometrical requirements for the selected tracks.

consisting of only charged hadrons and no leptons in its geometrical acceptance. The
efficiency of the calorimeter is studied in detail in Section 4.3.

• The main physics trigger (21) must fire for the tracks in the event.

• Short tracks not reaching the back chambers after being bent in the magnet were
discarded, given the impossibility to identify them.

• Hadron and lepton tracks were differentiated by making use of the PID variable,
described in the next section. Hadrons were identified as having a value of PID < 0.

• In an inclusive analysis of hadron tracks, the lepton tracks are in in principle ignored.
However, lepton tracks can be used to tag the events produced in DIS reactions. The
selection of the DIS candidate is done according to a set of kinematic requirements.
This is discussed in detail in Appendix C. When reconstructed, lepton tracks were
required P ID > 2 in order to reduce misidentification.

4.2.1 Particle identification
The responses of the PID detectors described in Section 3.3.2 are combined to provide a
criterium to discriminate against different particle types. Hadrons are distinguished from
leptons by using the combination of the TRD, RICH and preshower detectors with the
electromagnetic calorimeter. The RICH detector provides as well a clear distinction between
several hadron types, namely pions, kaons and protons.

The idea behind the PID system is connected to Bayes’ theorem [134], which relates
the conditional probability P (A | B) of an event A under the condition that event B was
observed to its inverse probability P (B | A):

P (A | B) =
P (B | A) P (A)

P (B)
. (4.1)

This is an useful relation in case that the probabilities P (B|A) and P (A) are known a
priori. The term P (B) can be regarded in practice as a normalization factor.
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General case Let us consider a particle detector. A certain signal X in the detector can
be attributed to several particle types. The conditional probability P (i | X) that the signal
was caused by a particle of type i is given by Bayes’ theorem as

P (i | X) =
P (X | i) P (i)�

i

P (X | i) P (i)
. (4.2)

Here,

• P (i) is the probability to observe a particle of type i in the detector. This is given by
the flux factor φi of the particle, which is usually a function of the momentum and
angle of the particle, and can be measured;

• P (X | i) is the probability that a particle of type i leaves a specific signal X in the
detector D. This probability distribution is characteristic of each particle type and
detector type and is usually referred to as the parent distributions Li

D
. These can be

measured for example using test beams, or in Monte Carlo simulations [135]. The
parent distributions from several detectors D can be combined into a single probability
distribution Li =

�
D
Li
D

.

• The sum of all probabilities is normalized to unity
�

i

P (i | X) = 1.

Using then the notation

P
i
≡ P (i | X)

φ
i
≡ P (i)

L
i
≡ P (X | i)

and assuming that all particle fluxes φi and parent distributions Li of n different particle
types in the detector set are known, the probability P i that a certain signal was caused by a
particle i is then given by

P
i =

φ
iLi�

n

φ
n
L
n
. (4.3)

Hadron - lepton separation The discrimination of hadrons against leptons can be effec-
tively done with the PID detectors at HERMES as the responses of these detectors to
leptons and hadrons are significantly different. The parent distributions of leptons Le and
hadrons Lh are well defined as analytical expressions fitted to test beams or HERMES data.
The hadron and electron fluxes are determined from an iterative procedure [135] and are
usually combined into the flux ratio

Φ =
φ
h

φe
. (4.4)

The probabilities of detecting a hadron or lepton can be expressed then as

P
e =

Le

Le +ΦLh
P
h =

Lh

Φ−1Le + Lh
, (4.5)
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such that the sum of both is normalized to unity

P
e + Ph = 1. (4.6)

The most important particle identification quantity at HERMES is defined by the
logarithmic ratio

PID = log10
Pe

Ph
(4.7)

= log10
Le

ΦLh

= log10
Le

Lh
− log10Φ.

The use of a logarithmic ratio to combine both probabilities is very convenient and
provides a probability distribution that intuitively resembles the response of the PID detectors.
Positive values of the PID variable indicate that the particle is most probably a lepton,
while negative values identify hadrons. For a ratio equal to zero, the particle is with equal
probability a hadron or a lepton.

The responses from the several detectors can be combined as

PID = log10

�
�

D

Le
D

Lh
D

�

=
�

D

log10
Le
D

Lh
D

. (4.8)

This is calculated separately for the six modules of the TRD detector and combined under
the variable

PID5 = log10

�
6�

i=1

Le
TRDi

Lh
TRDi

�

(4.9)

and for the parent distributions of the calorimeter, preshower and RICH detectors as

PID3 = PIDcalo + PIDpre + PIDRICH = log10
Le

calo
Le

pre
Le

RICH

Lh
calo
Lh

pre
Lh

RICH

. (4.10)

The PID variable becomes then

PID ≡ PID3 + PID5 − log10Φ, (4.11)

and a convenient hadron-lepton separation is obtained by cutting on the zero value

PID > 0 : leptons
PID < 0 : hadrons.

The PID distribution of events from the selected data is shown in Fig. 4.1, from which
is clear that the probability distributions of hadrons and leptons are well distinguished by
using the PID variable. The tails of the distributions can nevertheless extend beyond the
zero value, contaminating the other sample. This can be be conveniently studied with the
formalism described below.
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Figure 4.1. The PID distribution of events. The dotted vertical line represents the
cut at PID = 0 used to distinguish hadrons.

In terms of the PID variable, the probabilities for detecting a lepton and hadron can be
written, using equations 4.6 and 4.8, as

P
e =

10PID

1 + 10PID
P
h =

1

1 + 10PID
. (4.12)

These distributions are plotted in Fig. 4.2. The use of a logarithmic y -axis allows to see
the mixing of both distributions around the cut value. The black thick line is the same PID
distribution as Fig. 4.1, the line-shaded histogram represents NPID · P

h and the gray-shaded
histogram, NPID · P

e, where NPID is the total number of events in each PID bin.
The lepton contamination Ce of the hadron sample accounts for the events of Pe below

PIDcut = 0, and can be calculated as

Ce =

�
PIDcut

−∞
P
e
dPID

�
PIDcut

−∞
(Pe + Ph)dPID

=

�
PIDcut

−∞
P
e
dPID

�
PIDcut

−∞
dPID

. (4.13)

In practice, these integrals can be calculated by summing over the event sample, for all
events that satisfy PID < PIDcut

Ce =

�

PID<0

10PID

1 + 10PID

�

PID<0

1
. (4.14)
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Figure 4.2. The PID distribution of hadronic and leptonic events. The dotted vertical
line represents the cut at PID = 0 used to distinguish hadrons.

In the same fashion, the hadron detection efficiency Eh accounts for the events of Ph

with PID > PIDcut and therefore discarded by the cut on the PID value

Eh =

�
PIDcut

−∞
P
h
dPID

� ∞

−∞
P
h
dPID

−→

�

PID<0

1

1 + 10PID

�

PID<0

1

1 + 10PID

. (4.15)

For the sample of analyzed hadron tracks, the lepton contamination was smaller than
0.06%, with a hadron detection efficiency of 99.94%. The same formalism can be applied to
the lepton sample. As the total number of collected leptonic events is significantly smaller,
a cut of PID < 2 was chosen to guarantee a clean sample with misidentification below 2%.

Identification of charged hadrons Pions and kaons resulting from interactions in the
target cell were identified with high precision over the momentum range 2− 15 GeV by the
RICH detector. In order to account for possible misidentification of the detected hadrons, the
efficiency of the RICH detector was investigated by determining the probability P (hid |htrue)
that a hadron of a particular species htrue is identified as hid . This can be accomplished by
using a PYTHIA simulation, where both variables (the real hadron type and the reconstructed)
are known.

Taking into account the three hadron types distinguishable by the RICH detector, pions,
kaons and protons, the yield of hadrons N id

h
identified as type h can be related to the yield
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Figure 4.3. P-matrices, i.e., the probability that a hadron of type htrue is identified
as hid , as a function of momentum. Columns represent true hadron type,
and rows identified type.
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where the elements of the off-diagonal are the probabilities that hadrons are misidentified.
Inverting the P-matrix, the true yield of hadrons can then be calculated from the measured

yields. This procedure is known as RICH unfolding. A track identified as being of type
hid is weighted in the true pion yield by the element P−1(πtrue|hid) of the P−1-matrix, and
as P−1(Ktrue|hid) in the true kaon yield. The true total number of hadron tracks of each
species is then obtained by summing these weights (w true

h
) over all tracks

N
true

h
=

�

tracks

w
true

h
=

�

tracks

P
−1(htrue|hid). (4.17)

The P-matrix was calculated specifically with the set of data selection cuts used for this
analysis from the PYTHIA sample described in Section 5.2. Possible kinematic dependences
were taken into account by calculating the P-matrix separately in bins of 1 GeV of the hadron
momentum. Also the number of hadrons detected in each detector half was considered, as
this determines the algorithm used in the ring pattern recognition, see Section 3.3.2. The
resulting probabilities for each case are plotted in Fig. 4.3.
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4.2.2 RICH hot spots

During the analysis of inclusive data, an excess of events was found in the distribution of
kaons in the θx-θy plane1. This is most noticeable for kaons with transverse momentum
larger than 1 GeV. This can be seen in Fig.4.4. Such excess is located in two well-defined
geometrical areas of the top part of the detector, from now on referred to as hot spots. A
shortage of events is found in the same areas for the pion distributions, thus being a clear
sign of misidentification of pions into kaons. These events must then be removed from the
data sample.

Figure 4.4. Distribution of events in the transverse plane, defined by the polar coordi-
nates θx and θy .

The reason for this misidentification was found to be in two malfunctioning PMTs which,
during the time period in which the data were taken, were located in the corresponding
regions of the top part of the RICH detector where the hot spots are found. The distribution
of events at the front face of the PMT matrix (zlab = 550 cm) of the RICH is shown in
Fig. 4.5 for hadrons with pT > 1 GeV. The hot spots are clearly visible in this case as well.
Note, in this figure, the effect of the deflection of charged particles in the magnetic field
of the spectrometer magnet.The problem of malfunctioning PMTs at these positions was
known from online control plots and monitoring during the data taking period, but this is
the first time that such an effect was noticed in the hadron distributions. Several tests were
done in order to gain insight in possible kinematical dependences of the events within the
hot spots. No particular dependences were found, supporting the idea that these events are
misidentified due to hardware problems.

1The variables θx and θy are defined in Eq. (4.22).
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Figure 4.5. Distribution of events in the transverse plane at the coordinates of the
PMT matrix of the RICH detector (z = 550 cm).

Removal of hot spots The hot spots are present at all values of the momentum of the
hadrons, although due to the large statistics at lower momentum values, they are most
visible in the range p ∈ [8, 10] GeV or for hadrons with transverse momentum larger than
1 GeV. Events were removed according to the following ellipses, optimized to cover the
surface of each spot

(xRICH − 4)2

92
+
(yRICH − 45)2

122
= 1 for the upper spot, (4.18)

(xRICH − 65)2

152
+
(yRICH − 25)2

52
= 1 for the lower spot. (4.19)

The same ellipses were used for pions and kaons since the mis-identification stems from
a geometrically well defined hardware problem. Note that the circles drawn in the above
figures are only for visual reference. The ellipses used to cut the events are much narrower,
fitted to the hot spots.
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4.3 Trigger Efficiencies
Trigger efficiencies account for the effectivity of a detector in detecting a particle of a certain
type. The efficiency of the main physics trigger (21) is the product of the efficiencies of
each detector involved, namely

�(trig 21) = �(H0) · �(H1) · �(H2) · �(calo). (4.20)

The hodoscopes H0, H1 and H2 are known to have a good response (� ∼ 1) to both hadron and
lepton tracks [138,139]. The calorimeter, on the other hand, relies on the energy deposition
in its lead-glass blocks. In the case of lepton tracks, the energy deposition is generally much
larger than the minimum threshold of 1.4 GeV, thus leading to �leptons(calo) ∼ 1. Hadrons,
however, deposit much less energy in the calorimeter blocks than leptons, often smaller than
1.4 GeV. A lower efficiency of the calorimeter is thus expected for events with only hadron
tracks and no leptons. This happens generally at low-Q2 events, where the beam lepton is
scattered at low angles (θ2

e
∝ Q2) and therefore not entering the calorimeter geometry.

Figure 4.6. Schematic picture of the energy deposition in the calorimeter

Why correcting by the trigger efficiency? In the measurement of a cross section ratio,
trigger efficiencies are expected to cancel out as they do not depend on the target polarization
but rather on the kinematics and spatial configuration of the event [138]. In our particular
case, however, since Q2 is correlated with the hadron transverse momentum pT , we know
that more hadrons are collected at large transverse momentum, where a larger number of
events containing a lepton are expected. This excess of hadrons at large pT is artificially
induced by the operating conditions of the calorimeter. In such case, the trigger efficiency
is folded with the detector acceptance. In other words, the trigger efficiency for hadron
tracks depends, in addition to the hadron kinematics and position, on the kinematics and
geometrical distribution of lepton tracks. This is in principle a complex dependence, and
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may not cancel out in the asymmetry ratio, thus affecting the measured asymmetries. For
this reason, the data yields must be corrected by the calorimeter efficiency. The way to
proceed is the following:

1. Calculate calorimeter efficiency for single hadron tracks The trigger efficiency of
the calorimeter is calculated from events containing only single hadron tracks. This is done
without requiring any of the data quality cuts described in Section 4.2, as these would
interfere with the actual efficiency.

The calorimeter efficiency can be obtained, given the HERMES trigger scheme (Sec-
tion 3.4), by comparing the cases in which both trigger 21 and 28 fired to the cases in which
only trigger 28 did

�(calo) =
N28&21

N28
. (4.21)

Note that trigger 28 requires the simultaneous detection of a track in the top and bottom
parts of the spectrometers, and that the BC chambers are also required to fire. Optimally
one would use trigger equivalent to trigger 21 but without the requirement on the calorimeter.
But this is the best we can do2.

In order to increase the sensibility of the correction procedure, the calorimeter efficiency
is calculated as a function of the momentum of the hadron and its spatial coordinates. The
latter can be properly characterized by the θx and θy coordinates, defined as

θx = arctan(tan θ · sinφ) (4.22)
θy = arctan(tan θ · cosφ).

The bins in p, θx , θy used are defined in Table 4.2. The resulting values for the efficiency
are kept in a file, that will later serve as a look-up table for the calorimeter efficiency. The
calorimeter efficiency for single hadron tracks in the central region of the calorimeter is
essentially the same for all hadron types, being about 0.2 for the lowest bin in momentum,
and rising in a kind of logarithmic way up to 0.6 for the larger momentum bins. Kaons have
slightly smaller values than pions and protons. In the detector edges, due to the bending of
the particles in the magnet field, the efficiency is different for positive and negative charged
particles, i.e., for the left-end side of the detector (θx ∼ −0.2) the efficiency for π+ is about
twice the efficiency for π− – towards the right-end side, this trend is reversed. A graphical
representation of the efficiency as a function of the hadron momentum, averaged over the
8× 8 bins of θx and θy can be found in Fig. E.28.

An uncertainty can be assigned to the trigger efficiency, according to the formula

δ� =

�
(N28&21 + 1)(N28 − N28&21 + 1)

(N21 + 2)2(NB + 3)
, (4.23)

that takes into account that the error should be smaller for efficiencies approaching the unity
value. Additionally, it was also checked whether the efficiencies had any dependence on the
target spin, as this could create artificial asymmetries. No significant dependence was found
within the uncertainties..

2When the HERMES trigger scheme was planned back in the 90s, the goal of the collaboration was not
really to perform analyses of inclusive hadrons!
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Variable Bins Bin borders
p 8 [2, 2.8, 3.1, 4, 5, 6.5, 8, 10, 15]

θx 8 [−0.2,−0.09,−0.04,−0.01, 0, 0.01, 0.04, 0.09, 0.2]

θy 8 [−0.15,−0.09,−0.06,−0.05, 0, 0.05, 0.06, 0.09, 0.15]

Table 4.2. Bins used for calculation and correction of the data yields by the calorimeter
efficiency.

2. Correct data yields With the efficiency look-up table in hand, one can proceed to
correct the particle yields. This is done at extraction level, i.e., in the same piece of analysis
code as described in Section 4.2. Each hadron track is weighted by the calorimeter efficiency
associated to that event.

Note that correcting each track separately by its associated trigger efficiency would be
wrong, as this only accounts for the efficiency of single tracks3. If several hadrons deposit
energy at the same turn, the efficiency of the calorimeter correspondingly must increase.

A solution to this is to take into account all other tracks detected simultaneously. One
must calculate then the trigger efficiency separately for each track according to its p, θx , θy ,
and then combine the trigger efficiencies for all tracks in that event into an average efficiency
���. Each track in the same event is then weighted by the same ���.

The average is actually done in two steps

1. First, one must consider the different probabilities for a given track to be of a certain
hadron species, according to the PID identification of the RICH detector. This turns
into a RICH-weighted efficiency, for each single track, given by

�w =
απ �π + αK �K + αp�p
απ + αK + αp

, (4.24)

where �π,K,p are the trigger efficiencies, as read from the look-up table, for the p, θx , θy
of a given track, according to the hypotheses of that track being a pion, kaon or
proton.

2. Second, once the �w are calculated for each track in the event, these are combined
into an average efficiency for the whole event as

��� = 1−
�

event

(1− �w). (4.25)

This operation corresponds to a logical-OR, i.e., the inverse of the product of the
inverses. In the cases that a lepton track is also found in the event, the trigger
efficiency for all tracks in the event is set manually to 1.

The calorimeter efficiency in each kinematical bin, averaged over the entire data sample,
is shown in Fig. 4.7. These average values represent the average over all tracks, calculated
according to Eq. (4.25), and are therefore generally larger than the efficiencies for triggering

3The multiplicity of tracks was checked to be larger than one in a significant fraction of events, particularly
for hadrons with large transverse momentum.
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on single hadron tracks. The average efficiency shows a clear dependence on the hadron
energy, i.e., on both pT and xF . Notice that, at large pT and xF , where it is more likely to
detect the scattered electron (which contributes with ��� = 1), a “boost” of the average
efficiency values is seen. These average values are only shown for illustrative purposes, but
they are not used anywhere in the analysis. See also Figs. E.26, E.27 and E.28.
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Figure 4.7. Average calorimeter efficiency in each bin of the hadron transverse mo-
mentum used in the analysis.

4.3.1 Effect on the data
The comparison between the data yields before and after the correction by the calorimeter
efficiency can be seen in Fig. 4.8 as a function of pT and xF . The kinematical distributions
of the corrected data are slightly shifted towards smaller values of pT and xF . This reflects
the fact that at large hadron momenta, for which it is more likely that the scattered lepton
ends up in the calorimeter acceptance, more hadrons are detected due to the influence of
the energy deposited by the lepton on the trigger system. The impact of the calorimeter
efficiency is more noticeable in the angular distributions of Fig. 4.10. The detected hadrons
are shifted towards lower polar angles. Lower θ implies lower momentum transfer Q2,
reflecting again the influence of the lepton tracks, typically detected in collisions at large Q2.
The comparison of the φ distributions is particularly interesting, showing how the data are
shifted from the center of the detector towards the outer sides.
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4.4 Kinematic distributions
The selected hadronic events are plotted in the left panel of Fig. 4.8 as a function of the
transverse momentum of the hadrons, and in the right panel as a function of xF . The majority
of events are distributed at both low pT and xF , the fraction of those with pT > 1 GeV or
xF > 0.3 being significantly small. Both kinematic variables are related to the momentum of
the hadron and are therefore correlated, as can be seen in Fig. 4.9.
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Figure 4.8. Distribution of collected events as a function of pT (left) and xF (right).
The vertical dotted lines correspond to the bins defined in the first two
rows of Table 4.3, respectively. The histograms for kaons are multiplied
by a factor of 10. The histograms with the black (dotted) line represent
the data after (before) correction by the calorimeter efficiency.

Variable Bins Bin borders
pT 12 [0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.2] GeV
xF 12 [0, 0.085, 0.120, 0.155, 0.190, 0.225,

0.26, 0.30, 0.34, 0.38, 0.42, 0.48, 0.55]

xF 4 [0, 0.1, 0.2, 0.3, 0.55]

pT 12 [0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.2] GeV
pT 4 [0, 0.33, 0.66, 1.0, 2.2] GeV
xF 12 [0, 0.085, 0.120, 0.155, 0.190, 0.225,

0.26, 0.30, 0.34, 0.38, 0.42, 0.48, 0.55]

φ 20 [0.0, 0.27, 0.54, 0.81, 1.08, 1.35, 2.02, 2.29, 2.56, 2.83,
3.10, 3.37, 3.64, 3.91, 4.18, 4.45, 5.17, 5.44, 5.71, 5.98, 6.29] rad

Table 4.3. Kinematic bins used in the analysis.
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Kinematic binning The dotted lines in the above mentioned figures illustrate the chosen
bins in which the asymmetries are calculated. The exact value for each bin boundary is given
in Table 4.3. The bins for the pT and xF distributions are chosen to be finer in the region
where the statistics are larger in order to increase the sensibility of the measurement to the
kinematical dependence of the asymmetries. A two-dimensional analysis was also performed,
using the bins defined in the two bottom rows of Table 4.3. In this case, the asymmetry are
calculated as a function of pT in four different slices of xF , and as a function of xF in four
different slices of pT .

Figure 4.9. Distribution of events in the pT -xF kinematic plane. The dotted lines
correspond to the bins defined in the third row of Table 4.3. The points
represent the average xF value in each bin of pT .

Angular dependence The distribution of the collected data as a function of the relevant
angular variables, φ and θ, is plotted in Fig. 4.10. The azimuthal angle φ is crucial for the
calculation of spin asymmetries, done in the next section. Note that the φ distribution has
been shifted by π/2 to show the actual azimuthal acceptance of the HERMES spectrometer.
The polar angle θ is used to determine the hadron transverse momentum from the expression
pT = p cos θ. These angular distributions reveal the acceptance of the HERMES spectrom-
eter. The empty area around φ ∼ π corresponds to the gap between the top and bottom
parts of the spectrometer, which are separated by a corresponding polar angle θ = 40 mrad.
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Figure 4.10. Distribution of collected events as a function of φ (left) and θ (right).
The histograms for kaons are multiplied by a factor of 10. The histograms
with the black (dotted) line represent the data after (before) correction
by the calorimeter efficiency.

4.4.1 Collected statistics
The total statistics collected amount to about 120 million pion tracks and 8 million kaon
tracks. Exact numbers are given in Table 4.4, corresponding to Ntrue

h
, see Eq. (4.17), i.e.,

π
+

π
−

K
+

K
− all hadron tracks

02d1 5.027.166 4.308.669 457.901 255.121 10.704.173
03d1 2.926.625 2.491.391 254.928 140.805 6.378.049
04d1 17.628.295 15.066.379 1.533.550 856.286 37.950.221
05d1 36.426.365 31.146.723 3.175.454 1.789.987 78.443.265

all data 62.008.451 53.013.161 5.421.833 3.042.200 133.475.708

Table 4.4. Collected hadron tracks for each data production.

corrected by the RICH unfolding technique. The above given yields do not include the
correction by the trigger efficiency. These hadron tracks are well defined and their relevant
properties (momentum, direction and particle type) precisely determined, and are therefore
the starting point of the data analysis itself.
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4.5 Extraction of Asinφ
UT

amplitudes
As it was already discussed in Section 2.8, a dependence on the target spin in inclusive
particle production, e p↑ → h X, can result into a spin asymmetry AUT of the particles
produced, related to the azimuthal angle φ

AUT ≡
σUT (φ)

σUU
. (4.26)

With the use of a transversely polarized target and the spin pointing in the direction of S⊥, and
only one reaction plane defined by the transverse momentum pT of the produced/scattered
particle and the momentum of the incoming beam particle k, the only possible dependence
of the spin-dependent part of the cross section on these magnitudes is

σUT ∝ S⊥ · (k× pT ). (4.27)

This is the only combination of these three vectors that conserves parity4. As the cross
product (k × pT ) results in a vector perpendicular to the hadron production plane, parity
invariance allows AUT to be different from zero only if the target spin has a component S⊥
perpendicular to such plane. Working out the mixed product, the term becomes

S · (k× pT ) = S⊥ cos
�
π

2
− φ

�
(k pT ) = S⊥ k pT sinφ, (4.28)

such that the sinφ dependence of the polarized cross section produces an asymmetrical
distribution of the outgoing particles in the plane transverse to the beam direction. If the
distribution of particles is analyzed in symmetric bins of the azimuthal angle φ with respect
to the target spin, this results into a left-right asymmetry. An equivalent asymmetric
distribution must be observed when comparing data, for the same bin of φ, when reversing
the target spin between two opposite directions, thus resulting into a target-spin asymmetry.

Left-right asymmetry AUT can be measured from the count rates of particles produced
to the left (NL) and the right (NR) of the target spin vector5

AUT =
1

�P �

N
↑
L
− N

↑
R

N
↑
L
+ N↑

R

≡ AN, (4.29)

with �P � the average target polarization that accounts for the fact that, in practice, not
all target centers have their spin polarized in the same direction. A left-right asymmetry
defined this way is conventionally called AN, for it is an asymmetry in the plane normal to
the target spin. The asymmetry is then determined by comparing the data yields in different
bins of φ, which span symmetrical regions of the detector with respect to the target spin. In
the case of HERMES, the data taken with opposite target spin polarizations (↑ and ↓) can
be combined into

AN =
1

�P �

(N↑
L
+ N↓

R
)− (N↑

R
+ N↓

L
)

(N↑
L
+ N↓

R
) + (N↑

R
+ N↓

L
)
. (4.30)

4See note under Eq. (2.76).
5See Fig. 3.6.
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Here it is taken into account that the geometrical region spanned by a φ bin changes from
the left to the right part of the detector as the target spin polarization changes between the
up and down states. In other words, the total number of particles collected being scattered
at the left of the target spin is NL = N↑L + N

↓
R
. In the above expression of AN, the particle

yields must be properly normalized by the corresponding luminosities collected with each
target spin orientation.

When measured this way, AN can suffer from the limited detector acceptance, especially
in cases of miscalibration or displacement of the detectors involved in the detection of the
outgoing particles, which could induce a fake left-right asymmetry.

Target-spin asymmetry A better alternative to measure AUT is by keeping the azimuthal
angle φ fixed, and comparing the yields obtained with opposite target spins. Using Eq. (4.27)
and Eq. (4.28), the polarized cross section σUT for the e p → h X reaction can be expressed
as

σUT = σUU S⊥ A
sinφ
UT
sinφ, (4.31)

such that all possible kinematic dependences are included in the term Asinφ
UT

. This term is the
amplitude of the sinφ form that describes the angular dependence of the data, and therefore,
it can be extracted from a fit of the data to a sinφ functional form. The Asinφ

UT
amplitudes

are related to AN in the way given by

AN = −

�
π

0 dψ σUT sinψ�
π

0 dψ σUU

= −
2

π
· A
sinψ
UT
, (4.32)

whose derivation is done in detail in Appendix B. Both measurements, Asinφ
UT

and AN, are
therefore equivalent. The extraction of the azimuthal moments, however, offers the ad-
vantage that it is less sensitive to the acceptance of the detector, since the kinematical
dependence is extracted from a fit over all φ bins. This method was thus preferred in this work
in order to determine the SSA in the production of inclusive hadrons in ep↑ collisions. On the
following, it is described in detail how the Asinφ

UT
amplitudes can be extracted from a fit to data.

Two alternatives were tested concerning the fitting procedure. One is based on the
method of least squares, which requires the data points (e.g. the events) to be Gaussian
distributed with a known variance, and therefore the events must be grouped into bins
with sufficiently high statistics. The other alternative is based on the maximum likelihood
estimation, which can be applied to unbinned data. Both methods are discussed below.

1. Binned least-squares fit One possibility is to bin the data in bins of the azimuthal
angle φ and perform a conventional χ2 fit to the data using the MINUIT package [136]. In
this case, and given the divided geometry of the HERMES spectrometer, the φ bins must
be defined such that the gap around the beam pipe is incorporated into the adjacent bins.
The distribution of events in φ is shown in Fig. 4.10. The acceptance gap is located around
the values of φ = ±π/2. The binned fit is an easy alternative from the computational point
of view, but it has the disadvantage that in the bins with lower statistical power, it might
lead to a lack of precision.
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The asymmetry was calculated as

AUT (pT , xF ,φ) =

N
↑

L
↑
P

−
N
↓

L
↓
P

N
↑

L↑
+
N
↓

L↓

, (4.33)

where N↑(↓) are the number of events measured in bins of pT , xF and φ, contained in
Table. 4.3. The differential yield for a given target spin direction (↑ upwards or ↓ downwards)
can be expressed as

d3N↑(↓)

dpT dxF dφ
=

�
L
↑(↓) d3σUU + (−)L

↑(↓)
P
d3σUT

�
Ω(pT , xF ,φ)

= d3σUU
�
L
↑(↓) + (−)

L
↑(↓)
P
A
sinφ
UT
(pT , xF ) sinφ

�
Ω(pT , xF ,φ). (4.34)

Here, σUU is the unpolarized cross section, L↑(↓) is the total luminosity in the ↑ (↓) polarization
state, L↑(↓)

P
=

�
L
↑(↓)(t) P (t) dt is the integrated luminosity weighted by the magnitude P

of the target polarization, and Ω is the detector acceptance efficiency.
If the average polarizations of both target spin states are the same 6, �P ↑� = �P ↓�, the

asymmetry becomes
AUT (pT , xF ,φ) = A

sinφ
UT
(pT , xF ) sinφ. (4.35)

The Asinφ
UT

amplitudes were extracted with a binned χ2 fit of the functional form p1 sinφ
to the measured asymmetry. These are plotted with open points in Figs. 4.11 – 4.14.

2. Unbinned maximum-likelihood fit A more sophisticated alternative is to perform a
maximum likelihood fit of a sinφ form to the data. The dependence of data on the azimuthal
angle φ is extracted in this case from each collected event directly by an iterative procedure.
Maximum likelihood fits are useful in the case of sparse data and rapidly varying distribution
of data, and particularly in the case of low statistics7.

In the maximum likelihood fit approach, the data set is assumed to follow, in every bin
of pT and xF , the following probability density function

pdf (φ) = 1 + S⊥ · (a + A
sin φ
UT

sin φ), (4.36)

and the best values of the parameters α = {a, Asinφ
UT

} are found by maximizing the
likelihood function L in the total sample of N events

L(α) =
N�

i

pdf (φi ;α). (4.37)

6For the case of small differences between �P ↑� and �P ↓� , consult Appendix B.
7With enough statistical power and a sufficiently large number of bins in φ, both binned and unbinned

methods should provide a similar result.
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In practice, this is done by minimizing the quantity −2 lnL, which has the same minimum
values for the set of parameters α as L its maximum values. The minimum, and therefore
the value of the parameters α, is found with the MIGRAD command of MINUIT [136]. The
exact form of the likelihood function used to extract the Asinφ

UT
amplitudes is

− 2 lnL = −2
N�

i

ln

�
pdf (φi ;α)

CS

�
wi , (4.38)

where the coefficients CS are a normalization factor to the total luminosity LT collected
for every spin state S up (↑) or down (↓) of the polarized target: CS = L↑(↓)/LT . The
weight wi takes into account the probability of a track of being a hadron of true type h,
given by the RICH unfolding procedure in Eq. (4.17), and the calorimeter efficiency, given by
Eq. (4.25), in the following way

wi = w
true

h
/���. (4.39)

Note that weighting data by wi changes the effective number of hadrons for a given
kinematic point, and therefore this affects the statistical uncertainty of the asymmetry
amplitudes. In order to avoid this, the following procedure has to be used to get the correct
error estimation

1. using the above defined likelihood function, L, run the HESSE command of MINUIT
at the same minimum given my MIGRAD, to obtain the corresponding covariance
matrix C,

2. define a new likelihood function Lerr as

− 2 lnLerr = −2
N�

i

ln

�
pdf (φi ;α)

CS

�
w
2
i
, (4.40)

where the weight now enter squared w 2
i
,

3. run HESSE again by using Lerr; this provides a new covariance matrix Cerr,

4. the correct values for the parameters uncertainty is given by the corrected covariance
matrix Ccorr = C · C−1err

· C.

This procedure is based on the prescription given by F. T. Solmitz [137], although not
exactly the same8.

8In Ref. [137], a different quantity is used instead of C−1
err

which in some cases coincide.
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4.6 Preliminary results

The measured Asinφ
UT

amplitudes for charged pions and kaons are shown in Fig. 4.11 as a
function of the hadron transverse momentum, and in Fig. 4.13 as a function of xF . A
multidimensional extraction of Asinφ

UT
is shown in Fig. 4.12 as a function of pT for four different

slices of xF , and in Fig. 4.14 as a function of xF in four different regions of the transverse
momentum. Only statistical error bars are included in these figures. The open points in
the figures show the result of using the least squares fit approach. The larger error bars
in this case are a consequence of binning the data, which implies a loss of precision and
it is reflected in the statistical uncertainty. For this reason, maximum likelihood fits were
preferred to extract the asymmetry amplitudes, and only this approach is used in all results
shown later unless explicitly stated. Only data points whose statistical uncertainty is smaller
than 0.1 are plotted.
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Figure 4.11. The Asinφ
UT

amplitudes extracted by two different fit methods as a function
of pT .

Dependence on pT The Asinφ
UT

amplitudes for positive hadrons show a a clear dependence
on the transverse momentum of the hadron. The asymmetry for π+ increases with the
transverse momentum, within the range 0 < pT < 1 GeV, up to a value of about 6%, then
decreases for pT > 1 GeV down to 2% and rises again for the largest pT bin up to a value
of about 5%. For K+, a similar behavior is observed, although the lack of statistics at
large transverse momentum makes it difficult to conclude if there is a second rise after
pT > 1 GeV. The asymmetries for π− are nearly zero for the entire pT range investigated.
For K−, these are also consistent with zero.
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Figure 4.12. The Asinφ
UT

amplitudes for the four different types of hadrons, extracted
as a function of pT , in four different bins of xF .

In the case of the two-dimensional results, shown in Fig. 4.12, a similar message holds
for the π+ and K+ as in the monodimensional case. Besides, no strong dependence on xF
is observed, as it can be concluded from the comparison of the Asinφ

UT
points for each pT

bin over the four rows, indicating four different slices of xF . Only the points at large pT
seem to depend on xF . The situation is quite different for the negative hadrons. The π−

amplitudes clearly change sign within the range pT < 1 GeV over the four xF regions, being
nearly zero, but positive, for the lowest row in xF and of larger magnitude, and negative, for
the highest row. In the range 0.30 < xF < 0.55, the amplitudes for π−, in addition, change
sign with pT , being negative for pT < 1 GeV and positive for pT > 1 GeV. A similar tendency
is observed for the K− amplitudes, but with larger error bars.

Dependence on xF The evolution of the Asinφ
UT

amplitudes with xF is much smoother than
with pT , as it can be seen in Fig. 4.13. For positive pions, they increase with xF up to a
value of 10% for the largest xF bin. For positive kaons, asymmetries between 5% and 8%
are observed, with a small dependence on xF . The π− amplitudes are symmetric to the
π
+ but smaller in magnitude, reaching only about −4% for the largest xF bin. The K−

amplitudes, on the contrary, are essentially zero for the entire xF range, with certain trend
towards negative values (down to 3%) for the range 0.25 GeV < pT < 3.5 GeV.
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Figure 4.13. The Asinφ
UT

amplitudes extracted by two different fit methods as a function
of xF .

The apparent dependence on xF of these asymmetries becomes less evident when
observing the multidimensional extraction of the amplitudes in Fig. 4.14. In this case, the
π
+ amplitudes are rather flat over the entire xF range, and show a clear dependence with

the transverse momentum, i.e., the four vertical plots on the column corresponding to π+.
The moderate slope of the π+ amplitudes at large xF can be attributed to the residual
dependence of xF on the transverse momentum due to the sizable width of the bins in pT .
A similar message can be drawn for all other hadron types.

Conclusion The dominating kinematic dependence of the amplitudes is then on the
transverse momentum of the hadron. The dependence of the asymmetries on xF , as seen in
Fig. 4.13 is probably just a reflection of the correlation between these two variables, shown in
Fig. 4.9. The determination of the systematic uncertainty associated to the Asinφ

UT
amplitudes

is done in the next chapter. A more extended discussion and interpretation of the presented
results will be done after that, in Chapter 6.

Effect of the calorimeter efficiency on the Asinφ
UT

amplitudes The correction of the
hadron yields by the calorimeter efficiency, described in Section 4.3, has a significant impact
on the extracted asymmetry amplitudes, particularly for the bins at high pT . See Figures
E.29 – E.32.
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Figure 4.14. The Asinφ
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amplitudes for the four different types of hadrons, extracted
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5
Systematics

Systematic effects are all sources of uncertainty arising from inadequate knowledge of
the experimental setup that lead to a measurement that differs from the real value by a
fixed amount. Some examples are the mis-calibration of the detectors, changes in the
data-taking conditions or malfunctioning detector parts. Unlike statistical uncertainty, the
error associated with systematic effects does not decrease with the statistical power. A
systematic effect can be identified by a steady trend in the difference of two data sets
obtained with two different experimental configurations.

The definition of the SSA (see Section 4.5) offers the advantage that many systematic
effects cancel in the ratio of cross sections. In addition, the fully differential extraction of
the Asinφ

UT
amplitudes was chosen such that it minimizes the impact of other non-vanishing

effects. In this chapter, the potential influence of several sources of error is investigated, and
a systematic uncertainty is correspondingly assigned to the asymmetry amplitudes presented
in the previous chapter.

One important case is the problem originating from the limited acceptance of the HERMES
spectrometer, introduced in Section 5.1. Most systematic studies, and in particular the
estimation of the acceptance effects were done with the help of a Monte Carlo simulation.
The idea is to reconstruct the asymmetry from a Monte Carlo sample where the generated
events exhibit the same target spin dependence as the one observed in data. These events
are then run through a simulation of the HERMES spectrometer that reproduces the way
real particles are detected. Deviations of the reconstructed asymmetry from the input used
at generation level represent the actual effect of the measurement, and can be taken as the
systematic uncertainty on Asinφ

UT
.

The general features of the Monte Carlo production are reviewed in Section 5.2. The
implementation of the target spin dependence describing Asinφ

UT
into this sample is described

in Section 5.3. The influence on the measured Asinφ
UT

moments is summarized in Section 5.4,
where other sources of systematic uncertainty are also considered, most of them being
negligible or their effect already accounted for in the acceptance studies.
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5.1 Acceptance effects and misalignment
The limited acceptance of the HERMES spectrometer implies that not all particles produced
in a collision are necessarily being detected. The hadron yields of Section 4.4.1 represent
therefore a certain, a priori unknown fraction of the original particle rate. The limited kine-
matic distribution of the collected events might influence the Asinφ

UT
amplitudes. One example

is the case discussed in Section 4.3. There are other ways in which artificial asymmetries
can be induced in the data, as mentioned below. For this reason, the acceptance studies are
highly relevant for the correct interpretation on the measured asymmetries.

In practice, the number of events collected in a particular kinematic bin is convoluted
with the acceptance function � of the detector, that may depend on the relevant kinematic
variables

N
↑↓(pT , xF ,φ) =

�
�(pT , xF ,φ) σ(pT , xF ,φ), (5.1)

such that �(pT , xF ,φ) does not necessarily cancel out in the cross section ratio (Eq. (4.26)).
This implies that the process of measuring might lead itself to a false detector asymmetry.

Something similar happens in the case of an off-centered, inclined or curved beam not
properly aligned with the longitudinal zlab-axis of the spectrometer. This is illustrated in
Fig. 5.1. In the aligned case, the scatter products are symmetrically distributed in both
detector halves, thus leading to a null left-right asymmetry. If the beam and the detector
are misaligned with respect to each other, however, an asymmetric distribution of events
is found. In simple cases, reversing the target spin direction and combining the particle
yields as described in Section 4.5 would help canceling out such misalignment effects. More
generally, the effects of the HERMES acceptance can be conveniently estimated with the
Monte Carlo description of the next sections.

Figure 5.1. Examples of misalignment between the beam and the detector that can
lead to fake left-right asymmetries.
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5.2 Unpolarized Monte Carlo sample
The acceptance studies are performed on a large production of Monte Carlo events generated
purposely for this analysis. The systematic uncertainty associated to Asinφ

UT
is related to the

statistical power of the Monte Carlo sample (cf. Section 5.4). Enough statistics must be
generated to bring the systematic uncertainty down to a reasonable value in comparison to
the statistical uncertainties of the data asymmetry amplitudes. This is no trivial task, given
the small statistical error bars of the measured Asinφ

UT
and the fact that, as it happens also in

the case of real data, most of the generated events have very low pT and Q2, thus making
the region at large pT and xF quite unaccessible from the point of view of the generation of
events in those bins.

5.2.1 Event generator
The general scheme of the Monte Carlo production chain (HMC) is depicted in Fig. 5.2.
The starting point is the simulation of the electron-proton collisions. This is done with a
version of PYTHIA [140], where the cross section of all implemented processes was tuned
to HERMES data. Some of these processes are for instance DIS, QCD-Compton and
photon-gluon fusion reactions or the exclusive formation of vector mesons. The kinematics
of the scattered lepton are then generated according to the relative cross sections.

Figure 5.2. The HERMES Monte Carlo production chain (HMC).

Radiative corrections, i.e., Bremsstrahlung in the initial or final state of the scattering
process, can be included at this point by the RADGEN software [141]. The fragmentation of
the proton into hadrons is described by JETSET [140] based on the LUND string model [142],
modified to describe the hadron multiplicities measured at HERMES [143].

The final kinematics of the total event are then run through a simulation of the HERMES
detector done with the GEANT package [144]. A precise description of the dimensions
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and materials of every component of the spectrometer is contained in a geometry file. A
parametrization of the HERMES magnetic field, measured in experimental surveys, is included
in a similar way. Finally tracks are reconstructed, accounting for the detector smearing and
resolution due to the passage of the particles through the different materials and detector
components. After 2005, the HMC code included as well the new HTC tracking method,
used to reconstruct tracks in real data.

A µDST writer converts the generated data into ADAMO tables with a similar structure
to the ones done for data. The main difference with the data tables is that all information
about the generated values is also conserved. The tables are written to files, ready to use in
analyses.

Why PYTHIA? The choice of PYTHIA over other Monte Carlo generators used at
HERMES like disNG or gmc_trans was preferred as it can generate events down to Q2 ∼
0 GeV2 and W 2 > 4 GeV2, which is of crucial importance as the biggest fraction of the
events in the analyzed inclusive data set comes from quasi-real photoproduction, with very
low Q2 (cf. Chapter 6).

The use of gmc_trans can be particularly useful for the study of SSA in semi-inclusive
analysis, since it can simulate azimuthal distributions based on the available knowledge
of TMDs [145]. For the inclusive measurement presented in this thesis, however, there
might be other significant contributions to the spin-dependent cross section σUT beyond the
results from SIDIS measurements. For this reason, it was preferred to use an unpolarized
generator like PYTHIA, and implement by hand the target spin dependence seen for the
A
sinφ
UT

amplitudes.

5.2.2 Generated statistics
Three sets of Monte Carlo data were generated, amounting to a total of nearly 1100
million events. As indicated in Table 5.1, a PYTHIA sample was first generated containing
approximately 1020 million events, from which only about 315 million were useful for the
analysis. This implies a reconstruction efficiency of just 30%. Of the remaining 70%, it was
found out that ∼20% are rejected as the hadrons have momentum smaller than 2 GeV, and
about 10% are discarded by requiring the ’fiducial volume’ and ’short track’ cuts and the
track’s vertex to be in the target cell. The remaining 40% is lost after track reconstruction,
mainly because they escape the HERMES acceptance. In addition, a very small percentage
of events at high-pT is generated.

Two other samples of smaller size were produced with the goal of reducing the systematic
uncertainty of the large pT bins. This was done by only writing to disk those final state
hadrons whose pT were larger than a certain cut (0.9 GeV and 1.5 GeV, respectively). This
way, no selector is used at the generation stage. A selector is a common trick to generate
only events of interest, i.e., with Q2 bigger than 1 GeV2, but which could result into a sample
with altered kinematic properties and in turn affect the Asin φ

UT,MC
amplitudes. The last two

columns of Table 5.1 show how the events generated this way are more efficiently produced
regarding the data quality cuts imposed in the analysis code. In prod_pt0.9, up to 64% of
the events pass the analysis cuts in comparison with the 30% of prod[44]. The main reason
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Production prod[44] prod_pt0.9 prod_pt1.5
cut – pT > 0.9 GeV pT > 1.5 GeV
generated statistics 1021 M 73 M 680 K
from which

selected events 315 M 47 M 340 K
reconstruction efficiency 30% 64% 50%
events with pT > 1 GeV 0.56% 28% 60%
events with pT > 1.6 GeV 0.02% 0.86% 51%

Table 5.1. Monte Carlo productions generated for the study of systematic effects.

for this is that, by requiring a larger pT , many events produced at low Q2, and therefore
with not a sufficiently large angle θ to escape the HERMES acceptance gap, are discarded.

The distribution of all produced MC data in the pT– xF plane can be seen in Fig. 5.3.

Figure 5.3. Distribution of Monte Carlo data in the pT -xF kinematic plane. The
dotted lines correspond to the bins defined in Section 4.4. The points
represent the average xF value in each pT bin.
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5.2.3 Comparison to data

The MC productions are used to estimate the systematic uncertainty. Therefore the relevant
properties of the MC data are (i) that it reproduces well the kinematic distribution of
the analyzed data (cf. Section 4.4), and (ii) that it does not generate by itself any fake
asymmetry. The latter is inspected in the next section.

The comparison between the kinematic distributions of MC and data events as a function
the relevant kinematic variables pT , xF and φ, and the azimuthal (φ) and polar angles (θ) is
shown in Fig. 5.4. The amount of MC data is about 3 times bigger than the analyzed data
from the 02-05 productions, therefore the MC histograms were normalized to the data ones.
As it can be seen in the above mentioned figure, the distribution of data and Monte Carlo
events are quite consistent with each other. Some differences are found at low pT and low xF ,
where more events are found for the Monte Carlo data, being particularly noticeable in the
case of the K+. Such deviations are known from other analyses of kaon data at HERMES.
The origin of this seems to be intrinsic to the simulation software and it could not be
improved. Only MC data from prod[44] are plotted in these one-dimensional representations.
Including the other two MC productions (prod_pt0.9 and prod_1.5) adds two corresponding
excesses of events at large pT to the histograms, which hampers the comparison of the
tales of the data and MC distributions. The two-dimensional distribution of all Monte Carlo
events in the pT– xF plane is shown in Fig. 5.3. The average values, represented by the
black points, did not change when including the two large-pT productions, indicating that the
average kinematics are well reproduced also by these productions. Regarding the comparison
to data distribution in Fig. 4.9, it is observed these average values are slightly shifted to
lower values of xF for the same pT bins.

It is worth noting that the correction of the data yields by the calorimeter efficiency
significantly improved the agreement between the Monte Carlo and data distributions. This
can be concluded from a quick look to the one-dimensional distributions of data with and
without correction by the trigger efficiency (see Section 4.4), and the comparison of the
Monte Carlo and corrected data distributions shown on the next page.

Fraction of DIS events in Monte Carlo Besides, there was found a significant discrepancy
in the fraction of DIS events between Monte Carlo and real data. The fraction of DIS
events was found to be similar both in both cases only for the range of pT < 0.8 GeV.
For larger values of the transverse momentum, the fraction of DIS events in Monte Carlo
was more than twice as large as for real data. This trend was somehow reversed when
comparing Monte Carlo data with real data uncorrected by the trigger efficiency. In this
case, the agreement seemed to be better at large values of pT , and worse at low pT values.
A reasonable explanation for this effect was not found. However, this could be related to
the fact that the kinematical configuration of these Monte Carlo data was originally tuned
to reproducing available HERMES data from quasi-real photoproduction events, and not
to DIS data. The disagreement between Monte Carlo and data concerning the fraction of
DIS events – an essential parameter, and the lack of time and manpower to improve this,
prevented us from using the Monte Carlo data for other studies, i.e., estimation of �Q2� or
�p2
T
/Q
2� for each measured value of the Asinφ

UT
amplitudes.
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Nevertheless, given the good agreement between the kinematical distribution of the data
with the Monte Carlo events, the Monte Carlo sample can be safely used for the estimation
of systematic uncertainties.
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Figure 5.4. Distribution of Monte Carlo events (dotted line) as a function of pT (top
left), xF (top right), φ (bottom left) and θ (bottom right) compared to
the distribution of real data (black line). The dotted vertical lines in the
histograms of the upper panels correspond to the bins defined in the first
two rows of Table 4.3, respectively. All kaon histograms are multiplied by
a factor of 10.
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5.2.4 Zero asymmetry test
Before implementing a target spin dependence on the PYTHIA events, it is crucial to check
whether this unpolarized sample can generate an asymmetry. In such case, this asymmetry
can be attributed exclusively to the limited acceptance and detector effects. Applying the
technique described in Section 4.5, the asymmetry amplitudes can be extracted from this
unpolarized Monte Carlo sample in an equivalent way as done for data.

The results of this zero input test can be seen in Fig. 5.5. The extracted amplitudes are
consistent with zero within 1%, which indicates that the limited acceptance of HERMES does
not generate artificial asymmetries by itself. As it is shown in the next section, the acceptance
effects become only relevant through the convolution with a real nonzero asymmetry (cf.
Eq. 5.1). Nevertheless, smalls deviations from the zero line are observed for certain bins.
See, for example, the fourth pT bin in the upper xF row for the K+, or the same bin one
row below. These deviations are also found later in Section 5.3.2 when the target spin
dependence is implement in the Monte Carlo sample. As it will be explained then, such
deviations are accounted for in the final systematic uncertainty.

On the next sections, all Monte Carlo asymmetries are plotted with orange points, while
the data asymmetries are plotted with the same color as in the last Chapter.
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Figure 5.5. Extraction of the azimuthal amplitudes as a function of pT , from the
unpolarized Monte Carlo sample, leading to zero asymmetries.
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5.3 Polarized Monte Carlo sample

The incorporation of the target spin effects was done by a sophisticated method [146] used
recently in other analyses of spin asymmetries at HERMES [147]. This method is based on
two steps:

• First, the kinematic dependence of the Asinφ
UT

amplitudes is extracted from data by
a maximum-likelihood fit procedure, based on a fully differential probability density
function (pdf), defined in Section 5.3.1.

• Second, a target spin dependence is introduced in the Monte Carlo events by assigning
their polarization state according to the distribution of probability given by the above
mentioned pdf. See Section 5.3.2.
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UT
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5.3.1 Model for the asymmetry

The full dependence of the Asinφ
UT

amplitudes on the kinematic variables pT , xF and the
azimuthal angle φ was extracted from data by a fit based on a fully differential probability
density function (pdf):

pdf(pT , xF ,φ) = 1 + S⊥ · AsinφUT (pT , xF ) · sin φ, (5.2)

where

• S⊥ is the degree of transverse polarization of the target, see table 7.1

• Asinφ
UT
(pT , xF ) is a Taylor expansion in pT and xF around the average kinematics of

the data sample. The Taylor expansion was truncated at fifth order in pT and first
order in xF , giving a total of 12 parameters:

A
sinφ
UT
(pT , xF ) =

5�

i=0

p̂
i

T
ci + x̂

i

F

5�

i=0

p̂
i

T
di . (5.3)

Here, p̂i
T
≡ pi

T
− �pT � and x̂ i

F
≡ x i

F
− �xF �, where �pT � and �xF � are the average

kinematic values of the whole data set1. The set of 12 parameters ci and di for each
hadron species was obtained from a maximum-likelihood fit to the entire data sample.
The number of terms in the expansion was optimized to reproduce the observed
A
sinφ
UT

amplitudes. The π− and K+ asymmetries were fitted with 10 parameters (4th
order in pT , 1st in xF ). In the case of the K− asymmetries, it was seen that these
were well described by using a total of 8 parameters (3th order in pT , 1st in xF ). Using
higher orders in the expansion was not seen to have an effect on the fitted parameters,
or made the fit procedure not to converge in MINUIT. The low order considered for
xF can be understood from the discussion of Section 4.6.

Figure 5.6 shows the Asin φ
UT

functions for the four hadron types, denoted with square
symbols, evaluated at the average bin kinematics �pT �, �xF �. A line matching the Asin φ

UT
points

is also drawn to guide the eye. In all cases, and most noticeably for pions where the collected
statistics are higher, the agreement between Asin φ

UT
and the data asymmetries is remarkably

good, reproducing the trends and various changes in slope. Nevertheless, a couple of outlaying
points are not perfectly matched. The one-dimensional projections of Asin φ

UT
as a function

of pT and xF can be seen in Fig. E.2 and Fig. E.4, and the two-dimensional projection as a
function of xF , in four different slices of pT , in Fig. E.6. Note that the fit function is the
same one in all cases, but projected in a different kinematic region.

The main advantage of this method lies in the fact that the asymmetries are not directly
fit to a certain functional form, thus lacking any physical meaning. The kinematic and
target spin dependence of the data themselves is extracted in the event-level fit. The only
constraint is therefore the truncation of the Taylor expansion, which was seen to not have
any impact on the extracted parameters.

1These average values define the function for a specific data set, and always the same values should be
used to evaluate the function in another sample, i.e., Monte Carlo or data from another experiment.
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5.3.2 Introduce spin dependence
The target spin dependence must be folded with the unpolarized cross section. Optimally, one
would do this at the stage where the events are generated by PYTHIA, before these are passed
to the hadronization and tracking software, and most importantly before reconstruction
through the HERMES acceptance. This way, events would be reconstructed the same way
as happens for real data, where the kinematics of the produced hadrons are determined by
the interaction of the beam electron with the spin polarized target proton.

The modification of the PYTHIA code to include the parametrization of Asinφ
UT

would be
a very time consuming task and is also not strictly necessary. In practice, the target spin
dependence does not change the number of resulting events, but implies only a redistribution
of events into other kinematic bins. On the other hand, it is no large approximation to
assume that the parametrization of the observed Asinφ

UT
amplitudes is also valid in a 4π,

acceptance-free volume.
The target spin dependence is then implemented by assigning manually the target spin

state of every reconstructed event, i.e., observed in the HERMES acceptance, according to
the distribution given by the pdf described in the previous section, evaluated at the generated
kinematics. A random number rnd is drawn between 0 and 1 and compared to the value of
the pdf evaluated at the generated values of pT , xF and φ and for each hadron species.

spin =






+1 if rnd < 0.5 (1 +Asinφ
UT
(pT , xF )gen · sinφgen),

−1 if rnd > 0.5 (1 +Asinφ
UT
(pT , xF )gen · sinφgen).

5.3.3 Reconstruction of Asin φ
UT,MC

With the target spin effects introduced in the generated sample, the asymmetries amplitudes
can be extracted in the same way as described in Section 4 for real data. Monte Carlo events
are required to fulfill the same requirements as the real data, when applicable. These are

• Reject short tracks,

• Fiducial volume cut,

• 2 GeV < p < 15 GeV,

• Production vertex within the target cell.

Results for the reconstructed Asin φ
UT,MC

are shown in Fig. 5.7. The Asin φ
UT

functions are
also shown, evaluated at the average bin kinematics of this sample in order to guarantee
that the comparison to Asin φ

UT,MC
can be done, for every bin, at the same kinematic point.

The resemblance to the data asymmetries is evident. The small deviations from the model,
depicted with the grey squares, indicate the difference between the spin asymmetry carried
by the hadrons as they are produced after the collisions in the target and after they are
detected. This deviation represents the effect of the actual detection process and it is used
in the next section to determine the systematic uncertainty introduced by the HERMES
spectrometer.
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The one-dimensional extractions of Asin φ
UT,MC

as a function of pT and xF can be seen
in Fig. E.3 and Fig. E.5, respectively, together with the corresponding projections of
A
sin φ
UT

evaluated in the average bin kinematics of the Monte Carlo sample. Similarly, Fig. E.7
shows the two-dimensional extraction of Asin φ

UT,MC
as a function of xF , in four different slices

of pT . Note that the fit function is in these cases the same one as extracted from data (i.e.,
in Section 5.3.1), but evaluated in the Monte Carlo sample.
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Figure 5.7. The Asin φ
UT,MC

amplitudes extracted from the polarized PYTHIA sample as
a function of pT in four slices of xF . The Asin φ

UT
function is also shown

for comparison; this is evaluated at the average bin kinematics �pT �MC,
�xF �MC for each hadron species.
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5.4 Systematic uncertainty
In this section, several contributions to the systematic uncertainty on the extraction of the
A
sinφ
UT

amplitudes are considered. The contribution from the acceptance studies described
in the last sections is calculated in Section 5.4.1. This represents the biggest source of
uncertainty, as it involves many experimental effects included in the Monte Carlo simulation.
Another significant contribution is the one coming from the uncertainty on the measurement
of the target transverse polarization, discussed in Section 5.4.2. The effect of other
considered sources is reviewed in the following subsections, and turned out to be negligible
or already accounted for in the all-in-one systematic uncertainty.

5.4.1 All-in-one determination

The deviation of the reconstructed Asin φ
UT,MC

asymmetry amplitudes from the model Asin φ
UT

,
shown in Fig. 5.7, is caused by the convolution of the HERMES acceptance with the target
spin dependence and it accounts for the uncertainty on Asinφ

UT
originating from all systematic

effects included in the Monte Carlo simulation. The statistical uncertainty of Asin φ
UT,MC

is
determined by the number of events in the Monte Carlo sample. The deviation between the
input model and the reconstructed asymmetry was seen to decrease with increasing Monte
Carlo statistics. Therefore, enough data were generated to bring down such deviation to a
smaller size than the statistical uncertainty of Asin φ

UT,MC
in most of the kinematical bins.

The systematic uncertainty is taken then as the biggest of either

(i) the deviation
|A
sinφ
UT
(pT , xF )av − A

sinφ
UT,MC

(pT , xF )| (5.4)

between the model function Asin φ
UT

evaluated at the average bin kinematics and the
asymmetry Asin φ

UT,MC
reconstructed in Monte Carlo, or

(ii) the statistical error of the Monte Carlo asymmetry Asin φ
UT,MC

. See Fig 5.7 for both cases.

The resulting systematic uncertainty is then smoothed, in order to avoid abrupt changes.
This can be done for instance by fitting the resulting distribution of uncertainty (i.e., the value
of the systematic uncertainty on each kinematic bin) to a linear or second-order polynomial.
The new systematic uncertainty is taken then as the absolute value of the polynomial in each
kinematic bin. The ROOT [148] software offers a convenient way of doing this, by filling a
histogram with the values of the systematic uncertainty (the original one) and using the
TH1F::Smooth() function. This last option was preferred. In any case, the result is similar.
As a result of the smoothing procedure, bins with large (smaller) systematic uncertainty
contribute to a larger (small) uncertainty of the adjacent bins.
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5.4.2 Target polarization error
The degree of polarization of the protons in the target gas is determined with a precision
smaller than < 10% by the BRP and the TGA polarimeters, described in Section 3.2. This
uncertainty propagates directly to Asinφ

UT
, e.g., via the 1/�P � term in Eq. (4.29), via the LP

term in Eq. (4.33), and via the S⊥ term in Eq. (4.36), for the different definitions.
The average polarization and uncertainty for the complete data set are obtained, for

each target spin orientation, with the integrals

�P
↑(↓)
� =
L
↑(↓)
P

L↑(↓)
=

1

L↑(↓)

�
L
↑(↓)(t) P (t) dt,

�∆P ↑(↓)� =
1

L↑(↓)

�
L
↑(↓)(t) ∆P (t) dt,

which in practice are calculated as a sum over the total number of collected bursts2. The
resulting values are shown in Table 5.2. No difference between the net polarization of each
target spin state is found. The systematic uncertainty on Asinφ

UT
coming from the measurement

of the target polarization is then given by the formula of standard error propagation. Writing
P = �P ↑(↓)� and ∆P = �∆P ↑(↓)� for brevity, one obtains

(∆Asinφ
UT
)pol =




�
∂A
sinφ
UT

∂P

�2
(∆P )2




1/2

= ∆P/P (5.5)

This is given in the right column of Table 5.2. Notice that this uncertainty is a constant
factor or scale uncertainty, relative to the absolute value of the asymmetry in each bin, and
independent of the kinematics.

Production �P ↑� �P ↓� �∆P � (∆Asinφ
UT
)pol

02d1 0.783 0.783 0.041 5.2%
03d1 0.795 0.795 0.033 4.1%
04d1 0.737 0.737 0.056 7.5%
05d1 0.705 0.705 0.065 9.2%
all 0.713 0.713 0.063 8.8%

Table 5.2. Average target polarizations for the data sets used in this analysis. The
last two columns contain the average uncertainty on the measurement of
the target polarization, and the relative uncertainty which is transferred
to the asymmetries.

2The target polarization and the luminosity are both scalers recorded only every 10 s (cf. Sec 3.2)
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5.4.3 Target magnet correction
The magnetic field provided by the target magnet deflected the produced charged hadrons
and the scattered electron in the target region. For the transversely polarized target the field
was directed along the negative ylab-axis and thus had a large component perpendicular to
the particle momentum. This affected the reconstruction of the tracks and their kinematics
at the scattering vertex.

The HTC tracking algorithm accounts for this effect based on a mapping of the magnetic
field in the target area. For real data, the deflection of the tracks is corrected and the
angular and vertex resolution are recovered as in the case of the target magnet switched
off [101]. Therefore, no significant influence on the Asinφ

UT
amplitudes is expected from this

source.

The effect is in any case accounted for in the extraction of the all-in-one systematic
uncertainty, since both the target magnetic field and the correction by HTC are included in
the Monte Carlo simulation.

5.4.4 Hadron misidentification
The true type of the hadron tracks identified by the RICH detector was determined in
Section 4.2.1 by an unfolding procedure such that each track is given a certain probability for
being a pion, a kaon or a proton track. The equivalent transformation, from the generated
true type to the reconstructed type identified by the RICH detector, is included in the
analysis of the PYTHIA sample and the extraction of Asin φ

UT,MC
. This way, the effect of the

mis-identification of the hadron candidates is included in the all-in-one systematic uncertainty.

The elements of the P and P−1 matrixes, however, are also determined in Monte
Carlo within a certain uncertainty, which propagates to the asymmetry measurement. This
correction is known to be very small [149] from other analyses performed at HERMES, and
in any case of order of the statistical uncertainty of the Monte Carlo sample. Therefore, no
extra source of error was assigned.

5.4.5 Angular and momentum resolution
The momenta of the particles is determined by HERMES with a good momentum resolution
of ∆P/P < 2.6%, and an angular resolution of ∆θ < 1.8 mrad. The resolution of the angle
φ that enters the extraction of Asinφ

UT
is directly related to these, and therefore also good.

This single contribution can also be estimated from the available PYTHIA simulation, where
the exact values of the generated and reconstructed angle φ are known. The effect of
this small uncertainty in the measured asymmetries is automatically accounted for in the
estimation of the all-in-one systematic uncertainty. of Section 5.4.1.
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5.4.6 Radiative corrections
The electrons of the beam are free particles and can therefore undergo radiation processes.
The emission of a real photon changes the kinematics of the process and consequently the
angles at which the new hadrons are produced. If a photon with four-momentum qrad is
radiated in the initial state, e.g., before the collision with a proton in the target gas, the
actual energy of the beam electron is ktrue = Ebeam − qrad smaller than the 27.6 GeV of the
HERA beam. If, on the contrary, the radiative process takes place in the final state, the
detected electron has less energy than right after the collision. This is illustrated in both
graphics of Fig. 5.8. In both cases, it implies a correction on the calculation of the virtual
photon four-momentum

qtrue = k − k
�
− qrad, (5.6)

which can be estimated using the PYTHIA production, where radiative corrections have
been previously implemented. The impact on the reconstruction of the hadronic tracks was
found to be negligible.

Figure 5.8. Radiative effects in the initial (left) and final (right) states.

5.4.7 Cross-check of results
The results presented in this and the previous chapter were cross checked using two indepen-
dent analysis codes. This is required by the guidelines of the HERMES collaboration for all
published data. In particular, the agreement between two analyzers must be larger than 95%
in order to be accepted for publication.

In our case, the discrepancy in the total amount of analyzed inclusive data, i.e., the
selected hadron tracks, was smaller than 0.1%. The differences in the selection of SIDIS
events, relevant for the discussion of the asymmetries in Chapter 6, were also brought
down to this level. The two analysis codes provided therefore nearly identical results for the
measured asymmetries, in all cases within the 95% confidence level.
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5.4.8 Compatibility of data productions
The data used in this analysis were collected between the years 2002 and 2005. Within such
a long period, and especially after long breaks in which some components of the accelerator
or the detectors were replaced or upgraded, some experimental conditions may change as
for instance the alignment of detectors or their calibrations. This in turn may influence the
asymmetry measurement. The compatibility of asymmetries calculated from data of two
different productions can be estimated with a Student’s t-test for two samples with unequal
size and variance (also known as Welch’s t-test) [150]. In this case, the t variable indicating
the deviation between the asymmetry values (Asinφ

UT, 1, A
sinφ
UT, 2) of two different data sets is

Deviation =
A
sinφ
UT, 1 − A

sinφ
UT, 2�

σ21 + σ
2
2

, (5.7)

where σ1 and σ2 are the corresponding statistical uncertainties of the asymmetries. Optimally,
one expects the deviation to be between the values of −1 and 1, and to not indicate any
systematic trend, i.e., the asymmetry being systematically bigger for one of the two sets.

Several t- tests were performed, i.e., between data from the different productions, in
order to check for possible discrepancies, and in that case, assign a corresponding systematic
uncertainty to the measured asymmetries. For this discussion, it will suffice to consider the
result of the t-test for the 05d1 and 04d1 data, plotted in Fig. 5.9 for each pT–xFbin and
each hadron type. These productions represent the largest parts of the analyzed data, as
can be seen from Table 4.4. Since the 04d1 data were taken with a positron beam, and the
05d1 data with an electron beam, this test also allows to check the possible influence of
the charge of the beam. A beam with the same particle type but opposite charge bends in
opposite directions in the strong magnetic field of the target. This can lead to corrections
to the asymmetry amplitudes.

The deviation of the asymmetries in this case is in most cases within the optimal [−1, 1]
boundaries, denoting 1σ deviations. No strong systematic trends are seen, although the
05d1 asymmetries, e.g., for π+, show a certain tendency towards larger values than the
04d1 in some kinematic regions. Most worrying are the cases in which the deviations are
large for asymmetry points at small values of the transverse momentum, where the statistics
are larger and therefore the statistical uncertainties of the asymmetries are small.

In order to check the possible impact of the asymmetry, an estimation of the systematic
uncertainty arising from the deviations of the 05d1 and 04d1 data was performed, based on
the following steps

1. Calculate the difference, in every kinematical bin of Fig. 5.9, of the asymmetry for
each year (Asinφ

UT, 1−A
sinφ
UT, 2). Standard error propagation allows to assign an uncertainty

to each point as
�
σ21 + σ

2
2.

2. Fit the resulting spectrum with a polynomial. A first-order polynomial (f (pT ) = a+b pT )
was seen to work well for this purpose.

3. With the set of parameters (a, b) obtained from the fit, evaluate the polynomial at
the average pT of every bin.
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4. The deviation of the polynomial from the zero line can be taken, for each bin, as a
systematic uncertainty to the measured Asinφ

UT
amplitudes.

The result of this procedure is plotted in Fig. 5.10. The grey square points denote the
difference of the asymmetries with error bars according to the item 1. above. The little
squares matched with a line denote the fitted polynomial, evaluated at the average pT of
every bin. In all cases, the deviations of the fitted function from the zero line is smaller
than the statistical uncertainty of the Asinφ

UT
amplitudes. Therefore, differences between the

data from the 05d1 and 04d1 productions can be considered as statistical fluctuations, in
all cases smaller than 1σ, showing that the productions are compatible, and no systematic
uncertainty must be assigned from this source.
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Figure 5.9. Student’s t-test for the Asinφ
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amplitudes of 05d1 and 04d1 data.
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Figure 5.10. Systematic uncertainty associated to the Asinφ
UT

amplitudes from the
differences of the 05d1 and 04d1 data. See text for details.

5.4.9 Total systematic uncertainty
Most of the sources of systematic error considered above are accounted for in the all-in-one
determination of the systematic uncertainty, described in Sections 5.3.1 – 5.4.1, or found to
be negligible. This is summarized in Table 5.3. The total uncertainty indicated in last row is
an average over all 1D bins of pT .

Source Size
Target polarization error 8.8%

Misalignment & acceptance all-in-one
Target magnet correction all-in-one
Hadron misidentification all-in-one

Angular & momentum resolution all-in-one
Radiative corrections negligible

Compatibility of data productions negligible

Table 5.3. Sources of systematic uncertainty considered.
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Results

The final results for the measured Asinφ
UT

amplitudes in the inclusive electroproduction of π+,
π
−, K+ and K− are shown in Fig. 6.1 for the one-dimensional extraction of the amplitudes

as a function of pT and xF . The two-dimensional extraction of the amplitudes is plotted
in Fig. 6.2 as a function of pT in four slices of xF , and in Fig. 6.3 as a function of xF in
four slices of pT . In all figures, the systematic uncertainty, estimated as described in the
previous chapter, is added in quadrature to the statistical uncertainty of the asymmetry
points. The inner error bars represent the statistical uncertainty and the outer bars, when
visible, the total uncertainty. Only data points whose statistical uncertainty is smaller than
0.1 are plotted. In this chapter, the measured Asinφ

UT
amplitudes are discussed in detail, and a

possible interpretation is offered.

6.1 Discussion
A description of the measured asymmetries based solely on the kinematic evolution of the
data was already provided in Section 4.6, according to the experimental uncertainty given by
statistical error bars. The inclusion of the systematic uncertainties constitutes in most cases
just a small correction to the statistical uncertainty1 and does not change this description.

In order to gain more insight into the origin of the measured asymmetries, we will focus
on the general evolution of these with the transverse momentum, which exhibits a richer
kinematic structure. Let us consider in the first place the π+ asymmetries as a function of
pT , plotted in the left upper panel of the top part of Fig. 6.1. The asymmetry is zero for the
lowest pT -bins, then rises up to a maximum of 10% for a value of the transverse momentum
of about 0.8 GeV, after which it decreases to nearly zero for pT ∼ 1.3 GeV. Such trend is
also observed over all four slices of xF , as seen in the right column of Fig. 6.2.

1Only in the case of the K+ asymmetries as a function of xF , the systematic uncertainty is larger than
the statistical uncertainty. This can be understood from a look at the upper-right panel of Fig E.5, where all
A
sin φ
UT,MC

points are quite far from the input function, in contrast to all other cases.
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Figure 6.1. The Asinφ
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amplitudes extracted as a function of pT (top) and as a function
of xF (bottom). The inner error bars represent the statistical uncertainty
of the measurement; the outer error bars indicate the total error obtained
by adding the statistical and systematic uncertainties in quadrature.
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The evolution of the π+ asymmetries at high pT , as it can be seen from the four left
panels of Fig. 6.2, is rather uncertain. Data points do not show a clear trend in this case,
and the larger error bars allow a variety of interpretations. However, in the one-dimensional
results of Fig. 6.1, an evident tendency of the asymmetry to increase with pT for the last
points at high pT is observed. This tendency is also found for the 0.20 < xF < 0.30 data
(second upper panel on the left column of Fig. 6.2), and is also compatible, within the error
bars, with the asymmetries extracted for the lower xF data. In the case of the upper (large
xF ) panel, it is difficult to conclude whether the π+ asymmetry rises at large pT (this could
be compatible with the large error bar of the last data point), or whether the asymmetry
vanishes, in which case, the second-last data point could be considered as resulting from a
statistical fluctuation of the data. However, an inspection of the asymmetry values for these
large-xF , large-pT region separately for each data production (02-05), seems to support the
idea of an increasing asymmetry2.

Bearing this in mind, and after the discussion of Section 4.6 on the other hadron species
and the evolution of Asinφ

UT
with xF , the following conclusions can be drawn:

• The dominating kinematic dependence of Asinφ
UT

is on the transverse momentum of the
hadron. The smooth dependence on xF can be almost entirely attributed to the residual
correlation between xF and pT due to the sizable width of the chosen bins of xF . This
can be also seen in Fig. 6.3, where the π+ asymmetries are essentially independent
of xF . The same message holds for the K+ case. However, a certain dependence
on xF is observed for the π− data (and less significantly for the case of K−), which
is also reflected in the change of sign of the π− asymmetry points for pT < 1 GeV
seen in Fig. 6.2 over the four slices in xF . This feature of the π+ data contrasts with
the results for inclusive pion asymmetries from the BRAHMS collaboration [68] in
proton-proton collisions, where the asymmetry was found to increase with xF after
binning the data in slices of pT , both for positive and negative pions.

• The evolution of the Asinφ
UT

amplitudes for pions as a function of xF is similar to the one
observed for AN in hadronic collisions (see Fig. 2.8). However, larger asymmetries are
found in the hadronic case. In addition, the measured π− asymmetries are smaller in
size than those for π+, in contrast to the symmetric evolution seen for hadronic data.

• The two-fold structure of the π+ data plotted against pT suggests a mix of contributions.
These (at least two) different mechanisms should also contribute to the asymmetries
for the other hadron species, although the smaller size of Asinφ

UT
measured for negative

hadrons and the reduced statistical power at high pT for K+ data do not allow for a
clear statement in this case.

• Eventually, we would like to establish a connection between the measured Asinφ
UT

ampli-
tudes and the two approaches for generating transverse SSAs discussed in Chapter 2,
i.e., the TMD approach in Section 2.6.1 and the twist-3 collinear approach of Sec-
tion 2.7.

2For some reason, the π+ asymmetry for 04d1 data is small (with large error bars) for the overall large-pT
range, but large values are found for the other years. The compatibility tests of Section 5.4.8 show anyhow
that the data are statistically compatible.
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Figure 6.2. The Asinφ
UT

amplitudes extracted as a function of pT in four slices of
xF , for the four different hadron types. The inner error bars represent
the statistical uncertainty of the measurement; the outer error bars
indicate the total error obtained by adding the statistical and systematic
uncertainties in quadrature.

Here some kinematic considerations must be kept in mind:

◦ The Sivers and Collins effects, and in general all TMDs, are only effective when
Q
2 � p2

T
and Q2 � Λ2

QCD
, with ΛQCD � 0.3 GeV.

◦ The twist-3 collinear approach requires only the presence of one large scale (i.e.,
pT ), which should be larger than ΛQCD.
◦ For pT � ΛQCD, and assuming a very smallQ2, one enters in the non-perturbative

regime, for which no precise theoretical knowledge presently exist.

• More information about the origin of the measured Asinφ
UT

amplitudes can be obtained
by examining different subprocesses independently. The total amount of analyzed
data are selected simply by the detection of at least one charged pion or kaon with
the requirements given in Section 4.2. These guarantee that the relevant properties
(momentum, position and particle type) are well determined, but generally speaking,
imply no constraints on the production channels of the hadrons3. In the kinematic
range where the Asinφ

UT
amplitudes were extracted, there exist several contributions to

3The only kinematical requirement is on the momentum of the hadron to be within 2 and 15 GeV, based
on the optimal range for the RICH detector to provide a good PID. See Section 3.3.2.
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Figure 6.3. The Asinφ
UT

amplitudes extracted as a function of xF in four slices of
pT , for the four different hadron types. The inner error bars represent
the statistical uncertainty of the measurement; the outer error bars
indicate the total error obtained by adding the statistical and systematic
uncertainties in quadrature.

the ep↑ cross section. The data are, nevertheless, expected to be dominated by events
from quasi-real photoproduction (Q2 → 0). This can be understood considering that,
since the scattered beam lepton is not required, many of the detected hadrons arise
from collisions in which the beam lepton is scattered at low angles, i.e., low Q2. On
the other hand, at sufficiently large pT , the proportion of hadrons resulting from DIS
collisions (with Q2 > 1 GeV) is expected to increase. These two type of processes may,
in principle lead to different SSAs. In addition, other subprocesses exist that eventually
produce a charged pion or kaon in the final state, e.g., vector-meson production.

• Therefore, in each kinematic bin, the measured Asinφ
UT

amplitudes are presumed to be a
sum of several contributions, i.e., from different subsamples of the inclusive data

A
sinφ
UT
(pT , xF ) =

samples�

i

fi A
sinφ
UT,i
(pT , xF ). (6.1)

Here, A sinφ
UT, i

is the asymmetry from the hadrons in each subsample, and fi ≡ Ni/Ninc

is the fraction of tracks in the subsample (corrected by the trigger efficiency) with
respect to the total number of inclusive data Ninc.
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An estimation of the contributing processes, and the corresponding SSAs and hadron
yields resulting from them, is thus essential to provide a deeper explanation of the measured
asymmetries, and in order to use these data as input for theory calculations. This could be
done for instance in a Monte Carlo simulation, where all necessary information about the
originating reactions of the hadrons is kept. However, given the lack of a fully reliable Monte
Carlo simulation, another approach was taken, based on the kinematical characterization of
the collected data.

This is discussed in detail in the next section, where the Asinφ
UT

amplitudes are extracted
for several subsamples of the inclusive data. With the corresponding asymmetries in hand
and also the relative yields in every kinematic bin of events in each subsample, we will try to
provide a cleaner interpretation of the measured asymmetries.

6.2 Contributing subprocesses

Based on the previous discussion, the question arises naturally what the contribution to the
measured Asinφ

UT
amplitudes from the two main processes is: quasi-real photoproduction and

semi-inclusive DIS reactions.

• Hadrons resulting from quasi-real photoproduction can be easily tagged by the
absence of the scattered lepton in the spectrometer acceptance. Since these reactions
imply very low momentum transfers (Q2 → 0 GeV2), the beam lepton is scattered at
very small angles, very close to the beam pipe, and remains undetected.

Let us call these events (where only hadrons and no leptons are detected) anti-tagged
events. Note that anti-tagged events can also result from beam leptons scattered
at very large angles, and therefore (since Q2 and the polar angle θ are correlated)
at large Q2. The fraction of events scattered at angles larger than the maximum
angular acceptance of the HERMES spectrometer was determined in a Monte Carlo
simulation. This turns out to be negligible for events with pT < 1 GeV, for all values
of xF . However, a significant increase was seen for the tracks at both large pT and
xF , being around 30% for the last bin of pT (at largest xF ) for positive hadrons, and
not bigger than 10% for negative hadrons. See Fig. E.34. Therefore, anti-tagged
events can be effectively regarded as originating from photoproduction4 reactions for
low hadron transverse momentum, while at large pT and large xF , the anti-tagged
sample consists of a mix of hadrons produced in photoproduction and DIS reactions.

• The SIDIS data set used in Refs. [91,95] to extract the semi-inclusive SSAs related to
the Sivers and Collins functions is entirely contained in the total inclusive data sample.
This offers a remarkable opportunity to compare the measured Asinφ

UT
amplitudes to the

semi-inclusive SSAs associated to the Sivers and Collins effects, in the same kinematic
regime. Note that this comparison is only approximate, as the SSAs imply different
azimuthal modulations in each case.

4Let us, for brevity, omit the label quasi-real.
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Hadrons produced in DIS collisions can be precisely determined by certain kinematic
requirements (or cuts) on the lepton track detected in coincidence with the hadrons.
These cuts are defined on Appendix C, and serve in three different ways: (i) maximize
the probability that the detected lepton corresponds to the scattered beam lepton,
(ii) enhance the proportion of hadrons resulting from hadronization of the struck
quark, and (iii) require a minimum Q2 > 1 GeV2. It is worth mentioning that the
lepton track is only used to tag the corresponding samples, i.e., the extraction of the
A
sinφ
UT

amplitudes from these data is done otherwise in exactly the same way as for
strictly inclusive data.

• In addition, a third group of events was considered: the anti-SIDIS events, i.e., those
hadrons tracks for which a lepton was detected in coincidence, but rejected by the SIDIS
kinematical cuts mentioned above. The two major contributions to this subsample
were found to be

◦ Hadrons with a large energy fraction (z > 0.7). These events are discarded in
analyses of SIDIS data as they might originate in the decay of exclusive vector
mesons. See Appendix C for more information.
◦ Events with small momentum transfer (Q2 < 1 GeV2). These events are

kinematically closer to the photoproduction regime, and therefore provide a good
opportunity to explore it for the case where the virtual-photon variables can be
reconstructed.
◦ All other residual subsets, rejected by the remaining cuts on the SIDIS variables

other than z or Q2, were found to be very small (z < 0.2) or insignificant (see
cuts on x , y and W 2) in comparison to the yields of total inclusive data in each
kinematic bin.

Note that the sum of these three subsamples: anti-tagged, SIDIS and anti-SIDIS5, represents
the total amount of inclusive data. Thus, the value of the inclusive asymmetry in each
kinematic bin is then

A
sinφ
UT
(pT , xF ) = f anti-tagged A

sinφ
UT, anti-tagged

(pT , xF ) (6.2)

+fSIDIS A
sinφ
UT,SIDIS

(pT , xF )

+f anti-SIDIS A
sinφ
UT, anti-SIDIS

(pT , xF ),

which, taking into account the above considerations about every subset, can be rewritten in
a more meaningful way (regarding the kinematical regimes) as

A
sinφ
UT
(pT , xF ) � f photo A

sinφ
UT, photo

(pT , xF ) (6.3)

+fSIDIS A
sinφ
UT,SIDIS

(pT , xF )

+f large-z A
sinφ
UT, large-z

(pT , xF )

+f low-Q2 A
sinφ
UT, low-Q2

(pT , xF ),

5The sum of SIDIS and anti-SIDIS data set is therefore the complete tagged sample.
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in an obvious notation. The fractions and asymmetries obtained in each of the four cases of
Eq. (6.4) are discussed in the next sections. The discussion will be centered only around
the one-dimensional results as a function of pT , which suffices for an interpretation. Other
results for each subset are included in Appendix E.

6.2.1 Contribution from photoproduction

The fraction of anti-tagged events with respect to the total inclusive data is plotted in
Fig. 6.4 for each bin of pT . As can be seen in this figure, nearly 100% of the hadrons
detected at low pT are produced in photoproduction reactions. For the bins at higher pT ,
this proportion decreases to a value of about 90% in the case of positive hadrons, while
for negative hadrons it is on average larger and shows a less pronounced downtrend. As
mentioned in Section 6.2, there is significant contribution to the anti-tagged category from
events produced in DIS reactions on the last bins of pT , see Fig. E.34.
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Figure 6.4. Fraction of collected hadrons for which no lepton track was detected in
coincidence.

The Asinφ
UT

amplitudes extracted only for the events in the anti-tagged sample are plotted
with star symbols in Fig. 6.5, together with the inclusive asymmetries6. Only the corre-
sponding statistical uncertainties are included in the error bars. For the low-pT range, both
asymmetries are nearly identical. At the bins of large-pT , the anti-tagged asymmetries for
positive (negative) hadrons are on average slightly smaller (larger) than the inclusive ones.
The evolution of the last three points of the π+ asymmetries, however, suggests that the
asymmetry goes to zero. Note that, even if the results in this case are compatible with the

6The data points corresponding to the anti-tagged sample have been slightly shifted to the right.
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Figure 6.5. The Asinφ
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amplitudes extracted from photoproduction events as a function
of pT , compared to the inclusive amplitudes.

inclusive Asinφ
UT

within the error bars, the agreement in this case must be evaluated in the
distance between the central values of the asymmetry in each case – both data samples are
part of the same sample, and therefore their statistical uncertainties are correlated. As it is
shown in next section, the asymmetry from the tagged subsamples are much larger than in
this case, especially at large pT . Therefore, and taking into account the mix of events from
photoproductions and DIS reactions at large pT , one can expect that the asymmetry from
photoproductions vanishes at large transverse momentum.

The measured inclusive Asinφ
UT

amplitudes are therefore dominated by the asymmetry
resulting from photoproduction events over the entire pT range explored (see Figs. E.19–E.15
in Appendix E for the results as a function of xF , and the two-dimensional extractions.).

This is not surprising, provided that the ep cross section rises steeply towards low values of
Q
2, such that the hadron-production rates increase considerably at these energies, becoming

much larger than those from DIS collisions. At low values of Q2, the mass spectrum of
the virtual photon exchanged in the electron-proton collisions extends towards values of
Q
2 = 0, which correspond to massless real photons. In this case, the outgoing hadrons can

be effectively regarded as produced in photoproduction events. These low-Q2 reactions are
intrinsically different to the virtual photon-proton collisions which take place in DIS.

At leading order, two type of processes can contribute: (i) direct photon processes, where
a real photon interacts itself with the proton (examples of these are the DIS, photon-gluon
fusion, and QCD Compton processes), and (ii) hadronic photon processes, where the photon
interacts with the proton via hadronic interactions. An example of the latter is the case of
diffractive scattering, in which the photon fluctuates into a qq̄ pair, and therefore the final
collision is between one of these quarks and the quarks in the proton. Such process can



124 6. Results

be calculated perturbatively provided that the transverse momentum of the quarks in the
pair is large enough with respect to the photon direction. Below this scale, no perturbative
calculations are possible and model estimates must be used instead to evaluate the cross
section [10].

The very low-Q2 data are therefore related to the hadronic component of the virtual
photon. A mechanism able of generating a SSA in this non-perturbative regime is presumably
similar to the case of the hadronic AN. One could conjecture that the SSA for this region
should originate from some unknown high-twist effect, i.e., related to a PDF appearing
at twist-3 or larger, dominated by quark-gluon correlations and where higher-order loop
corrections must be taken into account, given the low energy scale of the virtual photon. Such
high-twist phenomena are expected to be suppressed by pT [151]. This could be the reason
for the tendency of the asymmetries towards zero values for the range pT ∈ [0.8, 1.3] GeV.
On the other hand, any sizable effect related to the transverse spin is expected to vanish
for pT → 0, which would explain why the asymmetries become zero at low pT . For
pT � ΛQCD ∼ 0.3 GeV, the asymmetry could be related to a twist-3 PDF, as discussed in
Section 2.7.

6.2.2 Contribution from SIDIS

The fraction of hadrons produced in SIDIS reactions is indicated with grey circles in Fig. 6.6.
These are identified by the simultaneous detection of the hadron with the scattered beam
lepton, as discussed in Appendix C. For all four hadron species, the fraction of events in
the SIDIS regime is found to be less than 1% for the lowest pT bins, rising with increasing
value of the transverse momentum until pT � 1.5 GeV, after which it becomes smaller. The
fraction reaches a maximum of 3% for π+ and 2% for π−, while it is less than 4% for K+ and
2% for K−. The Asinφ

UT
amplitudes extracted from hadrons in the SIDIS subsample are plotted
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in Fig. 6.7, together with the inclusive asymmetries. Only the corresponding statistical
uncertainties are included in the error bars. For positive pions, the measured Asinφ

UT
amplitudes

for the SIDIS events rise continuously with the hadron transverse momentum, reaching a
value of about 20% for the largest bin in pT . Except for the region at moderate pT , these are
significantly larger than the amplitudes from all inclusive data. For negative pions, the SIDIS
amplitudes are clearly negative for almost the entire range in pT , reaching a maximum value
of about 5% at pT = 1.5 GeV. For the two largest bins of the transverse momentum, the π−

asymmetries from SIDIS data show a trend towards positive values. The K+ amplitudes for
the SIDIS sample are compatible with those from the total sample in most of the explored
kinematic range, showing a certain tendency towards larger values in the central pT -region.
No evident rise at large pT is seen in this case, in contrast to the π+ results. In the case of
the K− amplitudes, the smaller statistical power compared to the other samples, and the
apparently random distribution of the amplitudes for the SIDIS over the pT range, makes it
difficult to conclude anything, except that they are compatible with zero.
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Figure 6.7. The Asinφ
UT

amplitudes extracted from DIS events as a function of pT ,
compared to the inclusive amplitudes.

This discussion holds also for the two-dimensional extractions of the amplitudes from
SIDIS data, shown in Fig. E.19. However, the fraction of SIDIS events changes significantly
with xF , for a given pT bin. This can be seen in Fig. E.18. For all hadron species, the
largest fraction of SIDIS events is in the range 0.1 < xF < 0.2, at a value of pT � 1.7 GeV,
being about 5% for π+, 4% for π−, 6% for K+ and less than 3% for K−. This effect is
most noticeable at large values of the transverse momentum and seems to be correlated
with the evolution of the fraction of events with large z , plotted with squares. In the case
of the two-dimensional asymmetries, one subtle difference is found with respect to the
one-dimensional results. For π+, the two-dimensional amplitudes appear to reproduce the
same tendency at moderate pT , i.e., the rise-drop-rise trend, although in a smoother way.
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One relevant observable for the interpretation of these asymmetries in terms of the
TMDs is the ratio p2

h⊥/Q
2 ∼ p2

T
/Q
2. As discussed in Section 2.6.1, the factorization of the

ep cross section into TMDs is only proven so far for the kinematic range in which ph⊥ � Q2.
One normally assumes that this is true if the ratio p2

h⊥/Q
2
< 1. For the subsamples of

inclusive data in which the scattered beam lepton was detected, it is possible to reconstruct
the virtual photon and provide an estimation of this ratio, based on the average value of
pT and Q2 in each kinematic bin. This is shown in Fig. 6.8, indicating that this condition is
fulfilled for all data points, except for the last or two last points at large pT , for which the
ratio is slightly above 1. See Appendix E for more figures. In addition, the average Q2 of
the data in each bin is shown in Fig. 6.9.

The mechanism generating these asymmetries should therefore be related to some of
the TMDs defined in Section 2.6.1. A natural candidate is the Sivers function f ⊥1T , given
that its azimuthal dependence on the target spin (sin(φh − φS)) leads to a sinφ dependence
when integrated over φS, i.e., in the case where the scattered beam electron is not detected.
This can easily be seen by comparing the definition of the azimuthal angles φS and φh
for the SIDIS process, depicted in the right-hand side of Fig. 2.9, with the definition of φ
for the inclusive production of hadrons in Fig. 2.15. The difference between φS and φh is
precisely φ. Note, however, that φS and φh are defined with respect to the direction of the
virtual photon q, while φ is defined with respect to the direction of the incoming beam k.
Therefore, the relation between the azimuthal angles in both cases makes only sense under
the assumption that q and k are collinear. The collinearity of the scattering process is related
to the magnitude of the transverse momentum of the outgoing hadrons. For relatively low
values of pT , the approximation of φS − φh = φ should hold, whereas deviations between
both quantities should be present at large pT . This implies that, at large pT , contributions
to the measured asymmetries from other TMDs, like for instance the Collins fragmentation
function H⊥1 , are also expected.

The measured Asinφ
UT

amplitudes for the SIDIS subsample are indeed quite similar to those
measured in Refs. [91] for SIDIS data, supporting the idea that the Sivers effect could be
the leading contribution. The smaller value of the measured asymmetries for π− and K−

for this data subsample in comparison to those for positive hadrons could be interpreted
as a cancellation of different contributions between favored and disfavored fragmentations
functions7, as pointed out in Ref. [91].

Similarly, these results could be interpreted in terms of the twist-3 collinear model
(cf. Section 2.7), where the generating mechanism could be either a twist-3 chiral-odd
fragmentation function coupled to the transversity distribution or a twist-3 chiral-even
distribution function coupled to the ordinary twist-2 unpolarized fragmentation function.

7i.e., between a d-quark Sivers function opposite in sign to the dominant u-quark Sivers function. See the
discussion given in Section 2.6.2 about the Sivers asymmetries from SIDIS data.
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Acceptance studies The measured asymmetries could be affected by the fact that an
electron track is detected. This, as pointed out in Section 4.3, enhances the probability that
the physics trigger fires and, therefore, that hadron tracks are collected. If these acceptance
effects are large, the correction of the hadron yields by the trigger efficiency could not be
sufficient. The estimation of acceptance effects for events with and without an electron
can be done conveniently for the data in the SIDIS subsample, for which a fully-dimensional
parametrization exist [147] in terms of the relevant SIDIS variables – let us call this the
SIDIS asymmetry function PSIDIS, including azimuthal modulations due to the Sivers and
Collins effects, as well as a sinφS modulation

PSIDIS(x,Q
2
, z, ph⊥,φh,φS) = 1 + S⊥ · ASivers · sin(φh − φS) (6.4)

+ACollins · sin(φh + φS)

+A sinφS · sin φS.

Here, ASivers, ACollins and A sinφS are Taylor expansions (up to with 44 parameters) in the
relevant variables around the average kinematics of the SIDIS data sample. See Ref. [147]
for more details, in particular Eq. (6.32) therein and related discussion. The procedure is
the following: 8

• Generate Monte Carlo events in the SIDIS kinematic regime, i.e., with the kinematic
cuts defined in Appendix C for x , Q2, y and W 2 applied to the electron track at
generation level and hadrons in the spectrometer acceptance with the requirement
0.2 < z < 0.7, but without applying any geometrical or angular cut to the scattered
electron. The same PYTHIA production as described in Section 5.2 was used.

• Weight the events according to the probability function in Eq. (6.4), which introduces
an azimuthal target spin dependence.

• Reconstruct the asymmetry for these events, which is affected by the geometrical
acceptance for hadron tracks.

• Repeat the procedure but now applying the geometrical cuts also for the electron
track, i.e., requiring the presence of an electron track in the final state within the
geometrical acceptance.

• Reconstruct the asymmetry for these events with an electron, which is affected by the
geometrical acceptance for both hadron and electron tracks. This asymmetry will have
larger error bars than the previous case (only for reconstructed hadrons).

• Deviations between both cases are a hint of effects due to the geometrical acceptance.

The results of this test indicated a good agreement between the reconstructed asymme-
tries, apart from small statistical fluctuations of the data. Thus, it was concluded that the
measured Asinφ

UT
amplitudes are free of remarkable acceptance effects.

8The idea is similar to the one used in Chapter 5 to determine the all-in-one systematic uncertainty.
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6.2.3 Contribution from large z

The results for this subsample are particularly interesting, since it is the fraction of the data
for which largest asymmetries were measured. Events in this category are designated by the
DIS cuts on x , y , Q2 and W 2, defined in Appendix C, and having a large energy fraction
z > 0.7 (in opposition to conventional SIDIS events, required to have 0.2 < z < 0.7).

The fraction of SIDIS events with z > 0.7 is plotted in Fig. 6.6, denoted with square
symbols. For the low-pT range, this is found to be smaller than the fraction of SIDIS events,
discussed in the previous section, whose z is in the range 0.2 < z < 0.7. However, at large
pT , the fraction of events with z > 0.7 increases significantly up to 7% for π+ and 6% for
K
+. For π−, this is found to be comparable to the events with 0.2 < z < 0.7, while for K−,

it does not represent more than 1% of the inclusive yields at any given value of pT .

The corresponding asymmetries for this data set are plotted in Fig. 6.10 with squared
symbols. Very large positive asymmetries are found, exceeding 30%, in the case of π+ and
up to 40% for K+. Also striking is the smooth, nearly non-existing dependence of these
asymmetries on the transverse momentum. In the case of π−, large negative asymmetries are
found, increasing in size with pT , exceeding 20%. This contrasts with the results for all other
subsamples, where the measured π− asymmetries are always suppressed in comparison to the
π
+, pointing to possible cancellation effects. Moreover, the large negative asymmetries for
π
− for these data resemble the predictions from Anselmino et al. in Ref. [89]. No relevant

conclusions can be drawn from the K− asymmetries at large z given the large error bars.
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The �p2
T
/Q
2� corresponding to these data are plotted with squared symbols in Fig. 6.8.

The situation is similar as to the SIDIS data. However, the average value of �p2
T
/Q
2� in

each bin is slightly higher, for pT < 1.3 GeV, for the large-z events, and it does not become
bigger than 1 in any case. This can be understood by examining the �Q2� of these data in
Fig. 6.9.

The origin of these large asymmetries could be in different sources:

• Dominance of struck quark In a proton target, due to the dominance of u quarks,
it is more likely to produce a meson containing an u quark, like π+ and K+ (favored
fragmentation), than a meson containing a d quark, like π− and K−, which in many
cases will originate from unfavored fragmentation of u quarks. This would explain
why the Sivers asymmetries measured in SIDIS data [91] are bigger for positive than
for negative mesons, as the latter would involve a dilution between the favored and
unfavored fragmentation channels and this would lead to a cancellation of the Sivers
effect for u and d quarks, with different sign. As a large value of z indicates a large
correlation with favored fragmentation of the struck quark, one expects therefore a
higher sensibility to the Sivers asymmetry inherent in the struck quark, without dilution
from unfavored fragmentation of other quark species. This could explain the bigger
size of the asymmetries measured for this sample, in particular for the π−.

• Exclusive vector meson production Large z implies as well a higher probability that
the hadron was produced in an exclusive channel. The decay of ρ mesons [153,154]
typically produces pions in the final state, e.g., in the reaction e N → e � ρ0N � →
e
�
π
+
π
−
N
�, while φ mesons contribute to the kaon yield. The contributions from

exclusive vector-meson decay to the SIDIS π+ and K+ yields are estimated in Ref. [91].
This is found to be much larger for π+ (nearly 20%) than for K+ (<4%). Note that
in the cited reference, only data with 0.2 < z < 0.7 are analyzed. For larger z , the
contribution to π+ rises to about 50% [155].

• Exclusive single-pion or kaon production Besides, large AsinφS
UT

amplitudes, up
to 80%, were observed for large z in the direct production of π+ from exclusive
reactions (e p → e n π+) [156]. A clear relation between these AsinφS

UT
amplitudes

and the measured Asinφ
UT

amplitudes, however, has not yet been established. Also the
A
sin(φh−φS)
UT

amplitude for π+, related to the Sivers effect, were measured in Ref. [156]
and found to be negative and smaller in magnitude (∼ 20%). The corresponding quasi-
exclusive channel for direct π− production is e p → e � π−∆++, and for K+ production
is e p → e ΛK+. However, the contributions from these channels are expected to be
small [157]. No exclusive channel that could contribute to the K− asymmetries is
known.

Missing mass One way of checking the possible contribution from exclusive channels to
these large-z events is by looking at the spectrum of the missing mass M2

X
, defined as

the squared mass of the undetected products X in the reaction e p → h e �X. By applying
conservation of energy and momentum, M2

X
can be calculated from the relation

MX =
�
E2
X
− |pX |2. (6.5)
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Here,

• EX = Ebeam+MP −
�
M2 + |p|2−Ee �, with MP the mass of the proton, M and p the

mass and momentum of the hadron, respectively, and Ee � the energy of the scattered
beam electron;

• the three components of the pX vector are

pXx = −p sin θ cosφ− pe � sin θe � cosφe �,

pXy = −p sin θ sinφ− pe � sin θe � sinφe �,

pXz = Ebeam − p cosθh − pe � cos θe �,

where θ and φ are the polar and azimuthal angles of the hadron track, respectively,
and θe � and φe � the corresponding ones of the scattered electron.

As the remnant of the proton target (usually a proton or a neutron resulting from
reconversion of the quark lines) is never detected, a missing mass spectrum peaking at
around 1 GeV (the nucleon mass), with a small tail towards higher mass values (i.e., little
energy is available to produce other particles), would be an indication for an exclusive channel.
The spectrum for MX was calculated for the events in the large-z sample in every bin of
pT and xF , from which it was concluded that these should not be dominated by exclusive
production channels. Nevertheless, some of the high-pT bins showed a small but significant
peak around MX = 1 GeV. Some examples of the resulting spectra can be seen in Fig. E.33.
Notice, for instance, the peak around 1.8 GeV in the π− spectrum (bottom left panel)
indicating the production of ∆++.

6.2.4 Contribution from low-Q2

The contribution to the measured Asinφ
UT

amplitude from tagged events with Q2 < 1 GeV2

was also considered. These data could be naively expected to have a similar behavior as
the photoproduction data, which would offer a good opportunity to check their kinematic
dependence given that, in this case, both scales (Q2 and pT ) can be reconstructed. However,
the resulting asymmetries contrast substantially with those from the anti-tagged sample.

This can be seen in Fig. 6.5, plotted with triangular symbols. A small but constant
asymmetry of about 2% was found for the π+ data, with only a light dependence on pT .
For K+, the asymmetry was found to increase with pT , being smaller than the inclusive
(photoproduction) asymmetries at low-pT , and larger than these after pT > 1 GeV. The
asymmetries for negative pions observed from these data are compatible with the ones from
inclusive (photoproduction) data. The values for the fraction, �p2

T
/Q
2� and �Q2� in each bin

of pT are correspondingly plotted in Figs. 6.6, 6.8, and 6.9.
In any case, one should be cautious with the interpretation of the results from this

subsample. The tagged hadronic events with Q2 < 1 GeV2 correspond to electrons scattered
at very low angles, just reaching the spectrometer geometry above and under the beam pipe,
and one could expect that these events are strongly influenced by acceptance effects. This
could be investigated in the same way as described for the events in the SIDIS subsample.
Since these events represent a narrow kinematic corner, no additional studies were performed.
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6.3 Conclusions
Transverse SSAs were measured for the first time in data from inclusive electroproduction of
charged pions and kaons, resulting from e p↑ collisions with a 27.6 GeV unpolarized electron
beam and a transversely polarized proton target. Positive asymmetries, reaching a value
of 6% were observed for positive pions, and of 8% for positive kaons, exhibiting a clear
dependence on the transverse momentum pT of the hadrons. The asymmetries were found
to become larger with pT up to a maximum value around pT ∈ [0.7, 0.9] GeV, and then
decrease to nearly zero for pT ∼ 1.3 GeV. After this value of pT , the π+ asymmetries were
seen to increase again up to their maximum value, while for K+ they were consistent with
zero. In the case of negatively charged pions and kaons, the measured asymmetries were
very small or consistent with zero within the statistical and systematic uncertainties over
the entire range of the transverse momentum investigated. While there is no significant
xF -dependence for positive hadrons, the amplitudes for π− change sign from small positive
values at low xF to negative values at high xF , for pT < 1 GeV. For K−, the amplitudes are
positive at low xF , but appear to be consistent with zero at high xF .

These data were manifestly dominated by events from quasi-real photoproduction, with
very small, nearly zero, four-momentum transfer Q2. The fraction of the inclusive yields
corresponding to this regime was found to be larger than 95% for the range of transverse
momentum 0 GeV < pT < 1 GeV, and to decrease to less than 90% for positively charged
hadrons and about 95% for negatively charged hadrons in the range 1 GeV < pT < 2.2 GeV.
Correspondingly, similar asymmetries (nearly identical) to the measured Asinφ

UT
amplitudes

were observed from hadrons in the photoproduction regime, for all values of the transverse
momentum, being only slightly smaller (larger) than the inclusive asymmetries for positive
(negative) hadrons at the highest pT . In the case of π+ data, a tendency of the asymmetries
from photoproduction events to decrease to zero was seen at high pT , in contrast to the
results from the total inclusive sample.

The fraction of hadrons produced in DIS reactions represented only about 3% (2%)
for positive (negative) charged hadrons for the bins of pT > 1.3 GeV, while it was smaller
than 2% for lower values of pT , decreasing with it to nearly zero. Larger asymmetries were
measured for this data set than for the total inclusive sample. The most remarkable case is
the π+, for which asymmetries as large as 20% were seen, continuously increasing with pT .
This fraction of the data constitutes the same hadron sample of semi-inclusive data used in
Ref. [91] to measure the Asin(φh−φS)

UT
azimuthal moments associated with the Sivers parton

distribution function, and in Ref. [95] to measure the Asin(φh+φS)
UT

moments related to the
Collins fragmentation function. The measured Asinφ

UT
amplitudes from hadrons produced in

DIS events strongly resemble the semi-inclusive asymmetries of Ref. [91] associated with
the Sivers effect, as it can be expected from elementary arguments, given the equivalence of
the azimuthal modulations φ � φh − φS in both cases.

Most striking were the contribution to the asymmetry from DIS events with large
z > 0.7, with z being the fraction of the energy transferred to the proton carried by the
outgoing hadron. Large positive asymmetries, up to 40%, were measured in this case for
positive hadrons, with a smooth dependence on the transverse momentum, while negative
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asymmetries with a largest value of 20% were found for π−, increasing with pT . Since a large
value of z increases the correlation with the struck quark, these results can be interpreted
as resulting from the Sivers effect, which is known to be strengthened with increasing z in
semi-inclusive analyses [91]. A contribution to the measured asymmetries from vector-meson
production or direct single -pion or single-kaon production in exclusive channels could not be
excluded for these data. More studies should be done in this case.

Comparison to theory predictions In the kinematic region where predictions exist, i.e.,
pT > 1 GeV, they agree relatively well with the results obtained in this analysis for positive
pions, while the large negative amplitudes expected in Ref. [89] for negative pions, based on
the contribution from the Sivers function, could not be confirmed. Such large asymmetries
for π− were found, though, for events at large z . The region below pT < 1 GeV for
photoproduction events lacks any theoretical framework at the moment, although a possible
mechanism generating the asymmetry could be related to higher-twist effects, which are pT
suppressed and therefore could play a role at low pT . No theoretical calculations for kaons
exist. Both the higher-twist collinear approach and TMD approach, discussed in Chapter 2,
predict that the asymmetries vanish for a sufficiently high value of the hadron transverse
momentum. This is consistent with the dependence of the Asinφ

UT
amplitudes for positive

pions on pT , for the range 0 GeV < pT < 1.5 GeV, and also with the amplitudes extracted
for K+ data over the entire kinematic range. However, in the latter case more data would
be necessary to provide stronger evidence, most noticeably for pT > 2 GeV. In contrast to
this, a clear trend of the π+ amplitudes to rise with pT > 1.5 GeV is observed.

Comparison to hadronic data The Asinφ
UT

amplitudes measured for charged pions for
the photoproduction events have a similar kinematic evolution with xF as the asymmetry
AN measured in the inclusive production of pions in hadron collisions. However, much
smaller values of the asymmetries are obtained from ep data, and with larger values for
π
+ than for π− in this case, in contrast to the symmetrical evolution of AN for these

hadrons. The apparent independence from xF , seen in the two-dimensional extraction of
the Asinφ

UT
amplitudes does not agree with the behavior observed in inclusive charged pion

production by the BRAHMS experiment [68], where an increase with xF was seen even after
binning the data in slices of pT .

The results presented in this thesis provide relevant information for a better understanding
of the role of transverse-momentum dependent parton distribution and fragmentation
functions and of higher-twist quark-quark and quark-gluon correlations in the generation
of single-spin asymmetries. In particular, these data can be used to test the validity of
the TMD factorization theorem, largely accepted for processes with two large scales (pT
and Q2), but still under debate for processes with only one large scale (pT ), like the one
studied here. Moreover, the measured Asinφ

UT
amplitudes are closely related to the single-spin

asymmetry AN observed in transversely polarized hadron-hadron collisions which, since more
than 40 years, represents a challenge to theoretical physics, and specifically to calculations
based on perturbative QCD. The presented data could serve to study the transition region
between the non-perturbative regime at low pT , for which no precise calculations presently
exist, and the perturbative domain.





7
Two-photon exchange in DIS

In this chapter, the measurement of transverse single-spin asymmetries (SSAs) in inclusive
DIS (e± pup → e±X) is discussed and results are presented. Such an asymmetry can
be unequivocally related to the exchange of two or more photons in the ep interaction.
Experimentally, this measurement is very similar to the one described in Chapter 4, but
comprising the analysis of the scattered beam lepton instead of hadron tracks in the final
state. A brief motivation for two-photon physics is done in Section 7.1, while in Section 7.2
two experimental methods to determine two-photon exchange contributions are described
together with an overview on existing measurements. The formalism for DIS including
two-photon exchange effects is presented in Section 7.3. The actual measurement of
transverse SSAs from HERMES data is reported in Section 7.4, and results are discussed
in Section 7.5. These results were published in Phys. Lett. B682 (2010) 351 – see
Ref. [158], and constitute the first precise measurement of SSAs from inclusive DIS data of
e p
↑ collisions1.

Figure 7.1. Feynman diagrams contributing to the electromagnetic interaction of two
charged particles.

1In the time between the publication of Ref. [158] and the writing of this dissertation, preliminary results
from the search of two-photon exchange in inclusive DIS from e 3He↑ → eX reactions at Hall A (Jefferson
Lab) were also reported [190].
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7.1 Motivation

The formalism for DIS, described in Chapter 2, is only valid under the assumption that
no more than one photon is exchanged in the ep collision. This is normally referred to as
the Born approximation, and it is equivalent of taking the first term in the diagrammatical
expansion of the cross section depicted in Fig. 7.1. In most cases, such approximation
suffices to understand the observed scattering phenomena. Corrections to the cross section
from higher-order terms have been considered in the past [159], and were found to be not
bigger than 2%. However, such estimates were based on contributions to inelastic scattering
from the resonance region and are expected to be valid only for Q2 < 1 GeV2 [160].

On the other hand, the increasing precision of experiments over the last decades has
provided sensibility to effects present at higher orders, with a consequent growth of the
interest on studying higher-order contributions to the ep cross section, in particular in the
case of two-photon exchange, depicted in the second diagram of the above figure. Note
that with these corrections it is not meant the effect of soft (real or virtual) photons, i.e.,
radiative corrections, but the actual exchange of two or more hard photons between the
lepton and the nucleon.

Mesurement of form factors Probably the best example where corrections beyond the
Born level have received more attention is in the measurement of the proton electric (GE)
and magnetic (GM) form factors2. Two-photon exchange has been proposed as a candidate
to explain the differences in the determination of the ratio GE/GM by two independent
methods:

• The Rosenbluth method [162], that relies on the linearity of the reduced unpolarized
cross section σR with respect to polarization � of the virtual photon [163]

σR ≡
dσ

dΩ

� (1 + τ)

σMott

= τ G2
M
(Q2) + �Q2

E
(Q2), (7.1)

with � =
1

1 + 2 (1 + τ) tan2(θe/2)
=
ν
2 −M4 τ (1 + τ)

ν2 +M4 τ (1 + τ)
.

Here, τ = −q2/4M2, and σMott is the Mott cross section, describing the elastic
scattering from a point charge – see Eq. (A.24). At fixed Q2 (fixed τ), the form
factors are constant and σR depends only on �. The Rosenbluth technique consists of
measuring σR at different beam energies, keeping Q2 fixed (i.e., measuring at different
scattering angles) while varying �. The electric form factor G2

E
can be then extracted

from the slope of σR, and the magnetic form factor G2
M

from the constant term.

• The polarization-transfer method [164] utilizes polarization degrees of freedom to
increase the sensitivity of the electric form factor at large Q2 . In this case, longitudinally
polarized electrons are scattered off unpolarized protons, such that a certain polarization
is transferred to the recoiling proton �e + p → e + �p. The ratio GE/GM of form factors

2See Appendix A for a definition, in particular Eq. (A.23).
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can be directly related to the longitudinal (Pl) and transverse (Pt) components of the
polarization of the recoiling proton [163]

GE

GM
= −
Pt

Pl

(Ee + E �e) tan(θe/2)

2M
. (7.2)

The outcome of extracting the ratio GE/GM from both methods is plotted in Fig. 7.2.
Results from the Rosenbluth method are plotted with triangles, showing that the ratio
is compatible with 1, and practically constant with Q2. On the other hand, results from
the polarization-transfer method are plotted with circles, indicating a clear linear evolution
with the momentum-transfer. These results were calculated in Ref. [163], using data from
Ref. [165], assuming one-photon exchange in both cases. The square symbols denote
the GE/GM ratio extracted from Ref. [167] data with the Rosenbluth method corrected
by two-photon exchange, as done in Ref. [166]. As it can be observed for the range
Q
2 ∈ [2, 3] GeV2, the agreement between the results from both methods is better if two-

photon exchange corrections are taken into account. The two-photon exchange corrections
are rather significant for the Rosenbluth method (up to a few percents), while for the
polarization-transfer method, they represent only a small correction – this can be understood
from the corresponding version of Eqs. (7.1) and (7.2) including the two-photon exchange
term [160,166].

Figure 7.2. Ratio of electric and magnetic form factors of the proton, measured
with the Rosenbluth method and the polarization-transfer method (Pol.).
Figure taken from Ref. [166].

Further evidence The impact of the two-photon exchange correction to the measurement
of form factors has motivated a deeper revision of other electron scattering measurements
that require high precision. This is for instance the case of parity violation in elastic scattering
of longitudinally polarized electrons off unpolarized protons, where corrections of several
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percent to the parity-violating asymmetry were found [168]. A recent and complete review
on the role of two-photon exchange in electron scattering can be found in Ref. [169].

7.2 Experimental access
In order to investigate contributions from two-photon exchange, it is necessary to find
experimental observables that allow their isolation. Direct experimental evidence from
two-photon exchange effects can be obtained, in particular, from two types of observables.
One consists of differences in the cross section for different charges of beam particles (i.e.,
beam-charge asymmetries), and the other is related to the measurement of transverse
single-spin asymmetries. All non-zero evidence to date of two-photon exchange effects in
lepton-nucleon scattering comes from elastic scattering, while no hint of these effects was
found for inelastic collisions.

• Beam-charge asymmetries. The ratio of elastic cross sections for positron e+p and
electron e−p scattering is defined as [169]

R ≡
σ
e+p

σe
−p
�
|Me+

γ
|2 + 2Re

�
Me+∗
γ
Me+

γγ

�

|Me−
γ
|2 + 2Re

�
Me−∗
γ
Me−
γγ

� , (7.3)

where σe±p ≡ dσe±p/dΩ. Here, Re stands for the real part of the cross section, and the
Mγ andMγγ are the scattering amplitude for one- and two-photon exchange processes,
respectively. The electron amplitudeMe−

γ
changes sign under the interchange e− → e+,

whileMe−
γγ

does not [169]. The interference of both amplitudes (M∗
γ
Mγγ) has then

opposite sign for the electron and positron scattering. This way, deviations of R from
unity can be used as an indicator for two-photon exchange effects.

Based on existing e±p data from early measurements at SLAC [170], Cornell [171],
DESY [172], and Orsay [173] (see Ref. [174] for a compilation of measurements of
R
e+e−), a deviation of the cross-section ratio of about 5% from unity was found [175].

These data were mainly for low Q2, where two-photon exchange corrections to the
cross section are known to be smaller than 1%. In recent years, other experiments
have begun to collect data from e±p elastic collisions, with the goal of improving the
precision of the measurement and extending the range in Q2, like the VEPP-3 ring in
Novosibirsk [176], the E07-005 experiment [177] at Jefferson Lab, and the OLYMPUS
experiment [178] at DESY.

Extractions of the cross section ratio R from inelastic scattering for both e+/e− and
µ
+
/µ
− beams have not supplied any signature of two-photon exchange effects so

far [179] within their accuracy of a few percent.

• Transverse SSAs. Two-photon exchange effects also manifest as a single-spin asym-
metry AN in electron-nucleon scattering, when either the target or the beam spin
are polarized normal to the scattering plane [180]. The combination of time-reversal
invariance, parity conservation, and the hermiticity of the electromagnetic current
operator forbids such asymmetry in the one-photon exchange approximation, as stated
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in the Christ-Lee theorem [181], but a non-vanishing asymmetry can be obtained if
two or more photons are exchanged, which makes this observable a clear indicator.
The target spin asymmetry is defined as

AN =
σ
↑ − σ↓

σ↑ − σ↓
, (7.4)

which, at order α in the electromagnetic coupling, can be written as

AN =
2 Im

�
M∗
γ
Mγγ

�

|Mγ|
2

. (7.5)

A measurement of AN provides therefore direct access to the imaginary part of the
interference between the one- and two-photon exchange amplitudes Im

�
M∗
γ
Mγγ

�
.

The size of such asymmetry can be expected to be of order α 1/137 O(10−2). In
the case of a transverse beam asymmetry, the polarization of a relativistic particle in
the direction normal to its momentum involves a suppression of m/E, with m and E
the mass and energy of the particle. Therefore a beam normal asymmetry for e↑ p
scattering in the range of 1 GeV must be of order 10−5–10−6.

On the experimental side, non-zero beam normal asymmetries of the order 10−5–10−6

were measured in elastic scattering of transversely polarized electrons off unpolarized
protons [182–184]. In inelastic scattering, however, no indication of two-photon
exchange has been found to date. Transverse SSAs were measured at the Cambridge
Electron Accelerator [185] and at SLAC [186], being compatible with zero within the
precision of few percent of the experimental uncertainties.

Note that the leading contribution to the two-photon exchange effects is in all cases
the interference between the one-photon and two-photon processes. Even if the effect is
a sole consequence of the two-photon term, the interference with the one-photon term,
that contributes with one factor of the coupling constant α, amplifies the effect. This is in
contrast to the termM∗

γγ
Mγγ, which is suppressed by α2.

7.3 Formalism for DIS

The formalism for a transverse target SSA in DIS is presented in Ref. [187]. The derivation
is equivalent to the Born cross section, derived in Section 2.1.2. However, the introduction
of the extra photon in the interference term leads to a third index ρ, such that the cross
section is proportional to

σ2γ ∝ LµνρW
µνρ (7.6)

with the leptonic and hadronic tensors defined as [187]

L
µνρ =

1

2
Tr
�
(k/ +m)γ5S/ γ

µ(k �/ +m)γν(�/ +m)γρ
�
, (7.7)

4πW µνρ =
�

q

e
3
q

M x

Q2

1

(p + k − �)2 + i�
g
q

T
(x)

×Tr
�
γ5 S/ γ

µ(p/ + k/ − k �/ ) γν(p/ + k/ − �/ )γρ
�
. (7.8)
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Figure 7.3. Contribution from two-photon exchange to DIS.

Here, k and k � are the momenta of the lepton before and after the interaction with
the nucleon, p is the momentum of the quark in the nucleon p, and � is the momentum
of the lepton in the “intermediate” state between the emission of the two virtual photons,
as indicated in Fig. 7.3. The Feynman slash notation stands for /A ≡ γµ Aµ, where Aµ is a
four-momentum. Furthermore, M and m are the masses of the proton and beam lepton,
respectively, and gT is the twist-3 quark distribution, defined through [187]

S
i
gT (x) =

P
+

M

�
dξ
−

4π
e
ip·ξ
�P, S|ψ̄(0) γ iγ5ψ(ξ)|P, S�

���
ξ+=ξT=0

, (7.9)

with i denoting any transverse index.

For an unpolarized beam (U) and a transversely (T) polarized nucleon target, the
spin-dependent part of the cross section is given by

σUT ∝ e α
M

Q
�µνρσ S

µ
p
ν
k
ρ
k
�σ
CT . (7.10)

Here, e is the charge of the incident lepton, M is the nucleon mass, −Q2 is the squared four-
momentum transfer, p, k and k � are the four-momenta of the target, the incident and the
scattered lepton, respectively, while �µνρσ is the Levi-Civita tensor. The term �µνρσSµpνkρk �σ

is proportional to S · (k× k�), consequently the largest asymmetry is obtained when the spin
vector S is perpendicular to the lepton scattering plane defined by the three-momenta k and
k�. Other kinematic dependences are included in the term CT .

Note that the presence of the twist-3 quark correlation function gT in the polarized cross
section implies that target SSA is a twist-3 effect. In this formalism, only quark-quark corre-
lations are considered, and a zero quark mass is assumed. If one would keep a quark mass,
then a term proportional to the transversity distribution h1 would also appear. Moreover,
if one considers pT -dependent terms in the quark-quark correlator, also the unintegrated
g1T parton density appears in the hadronic tensor [187]. The inclusion of quark-gluon-quark
correlations can also be related to a combination of gT and g1T [187].
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Predictions for SSAs The polarized cross section σUT is proportional to the electromag-
netic coupling constant α, and therefore it is expected to be small. Due to the factor M/Q
in Eq. (7.10), σUT is expected to become larger with decreasing Q2. A calculation based on
certain model assumptions [188] for a Jefferson Lab experiment [189] yields expectations for
the asymmetry of order 10−4 at the kinematics of that experiment. The authors in Ref. [187],
on the other hand, do not exclude asymmetries as large as 10−2 and point out that the term
CT in Eq. (7.10) cannot be completely evaluated at present. Given the dependence of σUT
on the charge of the beam lepton e, the asymmetry is expected to have a different sign for
opposite beam charges.

7.4 Measurement

The analyzed data were collected with the HERMES spectrometer (see Chapter 3) during
the period 2002-2005. The data quality requirements for this analysis are described in
Section 4.1 3. In this analysis, only tracks corresponding to the scattered leptons from
reactions e p↑ → e �X were selected. This was done by a combination of kinematical
constraints on the lepton tracks, as discussed in Appendix C, and other requirements
described in Section 4.2. In particular,

• Leptons were distinguished from hadrons by the PID detectors mentioned in Sec-
tion 3.3.2, and with the algorithm discussed in Section 4.2.1. In this case, a PID value
bigger than 2 was required to lepton tracks in order to exclude any contamination
from a transverse hadron SSA in the lepton signal. This way, the contamination of
hadrons in the lepton sample was smaller than 2× 10−4, with a lepton identification
efficiency greater than 94%.

• Events were selected in the kinematic region 0.007 < x < 0.9, 0.1 < y < 0.85,
0.25 GeV2 < Q2 < 20 GeV2, and W 2 > 4 GeV2. See Section 2.1.1 for the definition
of these variables.

• The minimum threshold for the energy deposition in the electromagnetic calorimeter
was 1.4 GeV.

• All other requirements of Section 4.2 (not related to hadron tracks) apply.

The data productions used in this case were the 02c2, 04c2, 05c2 (see Section 3.5) 4.
No data from 2003 was included, which represented anyway just a small fraction of DIS
events. The total collected statistics for each production is summarized in the right column
of Table 7.1.

3Being identical to those for the analysis of inclusive hadron tracks.
4The main difference with respect to the d1 productions mentioned in Chapter 4 is the use of a different

tracking method (HRC instead of HTC).
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Extraction of azimuthal moments The differential yield for a given target spin direction
(↑ upwards or ↓ downwards) can be expressed as

d3N↑(↓)

dx dQ2 dφS
=

�
L
↑(↓) d3σUU + (−)L

↑(↓)
P
d3σUT

�
Ω(x,Q2,φS)

= d3σUU
�
L
↑(↓) + (−)

L
↑(↓)
P
A
sinφS
UT
(x,Q2) sinφS

�
Ω(x,Q2,φS). (7.11)

Here, σUU is the unpolarized cross section, L↑(↓) is the total luminosity in the ↑ (↓) polarization
state, L↑(↓)

P
=

�
L
↑(↓)(t) P (t) dt is the integrated luminosity weighted by the magnitude P of

the target polarization, and Ω is the detector acceptance efficiency. The angle φS is defined
in this case as the azimuthal angle about the beam direction, between the upwards target
spin direction and the lepton scattering plane, i.e., opposite5 to the definition depicted in
Fig. 2.1. The sinφS azimuthal dependence follows directly from the form S · (k× k�) of the
spin-dependent part of the cross section; AsinφS

UT
refers to its amplitude.

The asymmetry was calculated as

AUT (x,Q
2
,φS) =

N
↑

L
↑
P

−
N
↓

L
↓
P

N
↑

L↑
+
N
↓

L↓

, (7.12)

where N↑(↓) are the number of events measured in bins of x, Q2, and φS. With the use
of Eq. (7.11), it can be approximated6, for small differences of the two average target
polarizations �P ↑(↓)� = L↑(↓)

P
/L
↑(↓), as

AUT (x,Q
2
,φS) � A

sinφS
UT
sinφS +

1

2

�P ↓� − �P ↑�

�P ↑��P ↓�
. (7.13)

As shown in Table 7.1, �P ↑� and �P ↓� are the same to a good approximation for all data-taking
periods.

year beam �P ↑� �P ↓� Events
2002 e

+ 0.783±0.041 0.783±0.041 0.9 M
2004 e

+ 0.745±0.054 0.742±0.054 2.0 M
2005 e

− 0.705±0.065 0.705±0.065 4.8 M

Table 7.1. Average target polarizations and total number of inclusive events for the
three data sets used in this analysis.

5This “alternative” definition of φS led to an error in Ref. [158], where the angle is defined in the standard
way, in contrast to the definition in analysis code.

6See derivation in Appendix B.
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The advantage of using the fully-differential asymmetry AUT (x,Q2,φS) in Eq. (7.12) is
that the acceptance function Ω cancels in each (x,Q2,φS) kinematic bin, provided that the
bin size is small. Assuming the φS dependence of σUT in Eq. (7.10) and Eq. (7.11), it can
be easily shown7 that the sinφS amplitude AsinφS

UT
and a left-right normal asymmetry AN are

related by

AN =
σL − σR

σL + σR
=

�
π

0 dφS d
3
σUU A

sinφS
UT

sinφS�
π

0 dφS d
3σUU

=
2

π
A
sinφS
UT
, (7.14)

where σL (σR) refers to the integrated cross section within the angular range 0 ≤ φS <
π (π ≤ φS < 2π).

Kinematic binning The chosen bins for x and φS are summarized in Table 7.2. The
Q
2 range was divided into a “DIS region” with Q2 > 1 GeV2 and a “low-Q2 region” with
Q
2
< 1 GeV2 in order to test for a possible enhancement of the transverse-target SSA

due to the factor M/Q appearing in Eq. (7.10) at low Q2. The lowest reachable Q2 at
HERMES, for a minimum value of x = 0.0073, corresponds to 0.25 GeV2 – see Appendix C
for more information. These low-Q2 data should be interpreted carefully, though, since
strictly speaking, Eq. (7.10) may not be applicable to this range.

Variable Bins Bin borders
Q
2 1 [0.25, 20]GeV2

x 5 [0.0073, 0.012, 0.017, 0.021, 0.030, 0.054]

Q
2 1 [1, 20]GeV2

x 17 [0.0073, 0.012, 0.017, 0.021, 0.030, 0.036, 0.044, 0.054, 0.066,

0.08, 0.098, 0.12, 0.15, 0.19, 0.24, 0.35, 0.54, 0.9000]

φS 20 [0.0, 0.27, 0.54, 0.81, 1.08, 1.35, 2.02, 2.29, 2.56, 2.83,
3.10, 3.37, 3.64, 3.91, 4.18, 4.45, 5.17, 5.44, 5.71, 5.98, 6.29] rad

Table 7.2. Kinematic bins used in this analysis.

Fitting The AsinφS
UT

amplitudes were extracted with a binned χ2 fit of the functional form
p1 sinφS + p2 to the measured asymmetry. Leaving p2 as a free parameter or fixing it to the
values given by Eq. (7.13) and Table 7.1 had no impact on the extracted sinφS amplitude
A
sinφS
UT

, corresponding to parameter p1.

7See derivation in Appendix B.
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7.5 Results

The final results for the measured sinφS amplitudes AsinφS
UT

are shown in Fig. 7.4 as a function
of x separately for electrons (two panels of the left side) and positrons (two panels on the
right side). The results in the narrow panels at the left of each plot indicate the asymmetries
integrated over the range of x . The open (closed) circles identify the data with Q2 < 1
GeV2 (Q2 > 1 GeV2). The error bars show the statistical uncertainties, while the error boxes
show the systematic uncertainties.

Figure 7.4. The x dependence of the sinφS amplitudes AsinφS
UT

measured with an
electron beam (left) and a positron beam (right). The asymmetries
integrated over x are shown on the left panel at the left of each case.

In both cases the asymmetries are consistent with zero within their uncertainties. Due
to the kinematics of the experiment, the quantities x and �Q2� are strongly correlated, as
shown in Fig. 7.5.

Fraction of elastic events The resulting amplitudes were not corrected for higher order
QED effects or contamination by the radiative tail from elastic scattering. The latter
correction requires knowledge of the presently unknown elastic two-photon asymmetry. From
the definition of x and W 2 (see Section 2.1.1), it follows that for elastic reactions (W = M),
x is equal to 1. For this reason, events with x > 0.9 are discarded from the data sample.
The radiation of a photon by the lepton before the interaction with the proton, however,
might provoke that elastic events (with x close to unity) end up being observed in the
inelastic region. The contribution of the elastic radiative tail to the total event sample was
estimated from a Monte Carlo simulation based on the LEPTO generator [191] together
with the RADGEN [141] determination of QED radiative effects and with a GEANT [144]
based simulation of the detector. The fraction of elastic events is shown in Fig. 7.4, denote
with triangles. It reaches values as high as about 35% in the lowest x bin, where y is large
(�y� � 0.80) and hence radiative corrections are largest [192]. The elastic fraction rapidly
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Figure 7.5. Average Q2 vs. x from data (squares), and the fraction of elastic back-
ground events to the total event sample from a Monte Carlo simulation
(triangles).

decreases towards high x , becoming less than 3% for x > 0.1.

Estimation of systematic uncertainties The systematic uncertainties, shown in the fourth
column of Table 7.3 and as error boxes in Fig. 7.4, include contributions due to corrections
for misalignment of the detector, beam position and slope at the interaction point and
bending of the beam and the scattered lepton in the transverse holding field of the target
magnet. They were determined from a high statistics Monte Carlo sample obtained from a
simulation containing a full description of the detector, where an artificial spin-dependent
azimuthal asymmetry was implemented 8. Input asymmetries being zero or as small as
10−3 were well reproduced within the statistical uncertainty of the Monte Carlo sample,
which was about five times smaller than the statistical uncertainty of the data. For each
measured asymmetry point the systematic uncertainty was obtained as the maximum value
of either (i) the statistical uncertainty of the Monte Carlo sample or (ii) the difference
between the input asymmetry and the reconstructed one9. Systematic uncertainties from
other sources like particle identification or trigger efficiencies were found to be negligible.
The total estimated systematic uncertainty for the high (low) Q2 data is about 50% (100%)
for positrons and about 35% (50%) for electrons. Scale uncertainties from the target
polarization (cf. Section 5.4.2) are not included in either case; these amount to 9.3% (6.6%)
for the electron (positron) sample.

The transverse single-spin asymmetry amplitudes AsinφS
UT

for electron and positron beams
integrated over x are given separately for the “low-Q2 region” and the “DIS region” in
Table 7.3 along with their statistical and systematic uncertainties. All asymmetry amplitudes
are consistent with zero within their uncertainties, which in the DIS region are of order 10−3.
The only exception is the low-Q2 electron sample, where the asymmetry is 1.9 standard
deviations different from zero. No hint of a sign change between electron and positron
asymmetries is observed within uncertainties.

8Equivalently to the technique described in Chapter 5.
9See Section 5.3.
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beam A
sinφS
UT

δA
sinφS
UT

(stat.) δA
sinφS
UT

(syst.) �x� �Q2�

×10−3 ×10−3 ×10−3 [GeV2]

e
+ -0.61 3.97 0.63

0.02 0.68
e
− -6.55 3.40 0.63
e
+ -0.60 1.70 0.29

0.14 2.40
e
− -0.85 1.50 0.29

Table 7.3. The integrated transverse single-spin asymmetry amplitude AsinφS
UT

with
its statistical and systematic uncertainties and the average values for x
and Q2 measured separately for electron and positron beams in the two
Q
2 ranges Q2 < 1 GeV2 (upper rows) and Q2 > 1 GeV2 (lower rows).

7.6 Outlook
In this chapter, the first precise measurement of single-spin asymmetries in inclusive DIS
(previously published in Ref. [158]) is reported, using data taken with the HERMES spec-
trometer with unpolarized electron and positron beams and a transversely polarized hydrogen
target. This asymmetry is a direct indicator for two-photon exchange effects in the DIS
collisions. No evidence for such effects was found within the experimental uncertainties,
which are of order 10−3.
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A
Scattering basics

Fermi Golden rule The cross section for the scattering of two point-like particles ab → X
is given by

σ
a+b→X =

�

X

1

F

�
P |M|2, (A.1)

• M is the transition matrix element related to the probability amplitude for the reaction.
It can be calculated, separately for each particle, from the Feynman rules. Formally, it
is defined as

M = �ψf |V|ψi� =

�
ψ
∗
f
V ψidV, (A.2)

where V is the operator describing the interaction potential and the integral is over a
finite volume V . The wave functions ψi ,f of the incoming and outgoing particles can
be described, in Born approximation, by plane waves ψ = e ipz/

√
V .

• F refers to the initial state particle flux, that depends on the initial particle energies and
velocities F = 2Ea 2Eb |va−vb|. In terms of the center of mass energy s = (pa+pb)2,
it can be expressed as a Lorentz invariant

F = (s −m2
a
−m

2
b
)2 − 4m2

a
m
2
b
. (A.3)

• P is the Lorentz invariant phase space. It accounts for the spherical interval 4πp2dp,
in momentum space, that a particle occupies after scattering. For a final state with
nX particles and momenta pX =

�
i
ki , this is

P = (2π)4 δ4(pX − pa − pb)
nX�

i

d3ki
(2π)32k0

i

, (A.4)

where the δ4 arises from the condition of momentum conservation
�
e
i x (pf−pi )d4x = (2π)4δ4(pf − pi). (A.5)
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Figure A.1. Feynman diagram for the elastic scattering of two fermions.

Elastic scattering of point-like particles The electromagnetic interaction of two particles
a and b with electric charges e and e �, respectively, is described, at leading-order, by the
Feynman diagram in Fig. A.1. The electromagnetic vertex joining the fermion lines defines
the particle currents

j
µ

a
= ieūaγ

µ
ua, (A.6)

j
ν

b
= ie

�
ūbγ

ν
ub, (A.7)

By means of the photon propagator −igµν/q2, the matrix element can be written as

M =
iee

�

q2
(ūaγµua) (ūbγ

ν
ub) =

iee
�

q2
Lµν (A.8)

where the leptonic tensor Lµν is

Lµν = [ū(k �, s �) γµ u(k, s)]
∗[ū(k �, s �) γν u(k, s)], (A.9)

= kµk
�
ν
+ k �

µ
kν − gµν(k · k

�
−m

2), (A.10)
+m �µναβ s

α
q
β
, (A.11)

and only the last term (Eq. (A.11)) depends on the spin. If the spins of the particles are
not taken into account, these must be averaged in the initial state and summed over the
final state. The square of the matrix element involves then the contraction of two leptonic
tensors

1

4

�

spins

|M|
2 =
e
2
e
�2

q4
L
µν

a
L
b

µν
(A.12)

which, after some non-trivial algebra using the Dirac trace techniques, and neglecting the
particle masses, is given by

La L
b = 8[(k � · p�) (k · p) + (k � · p) (k · p�)],

= 2 (s2 + u2),

= s
2 [1 + (1− y)2], (A.13)

in terms of the Mandelstam variables s = (k + p)2 � 2k · p, and u = (k � − p)2 � −2k � · p,
and using the relation u/s = y − 1.
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The expression for the cross section is given by Eq. A.1, after putting together the flux
factor and phase space and performing the corresponding δ4 integrations

dσ
dQ2

=
e
2
e
�2

8πQ4
[1 + (1− y)2], (A.14)

or alternatively
dσ
dy
=
e
2
e
�2

8πQ4
[1 + (1− y)2] s, (A.15)

We see that the scattering process is fully described by just one kinematic variable, i.e., Q2

or y , related to the energy exchanged between both particles.

Electron-quark scattering The result above can be particularized for the elastic scattering
of electrons and quarks inside a hadron, with the conversions

e
� = eqe, p → xp, (A.16)

since quarks carry a fractional charge and a fraction x of the hadron momentum. The same
happens with the center of mass energy in the electron-hadron system, that now turns
s → xs. In addition, a distribution function q(x) must be taken into account which gives
the probability that the struck quark has a certain momentum fraction x . The assumption
of incoherent scattering implies that one sums

�
i
over all quarks with a specific value of x .

From Eq. A.15 and the conversions above, it follows that

dσ
dy
=
e
2
e
2

8πQ4
[1 + (1− y)2] xs

�

i

e
2
i
qi(x), (A.17)

and then, Eq. (A.14), with the conversion d/dQ2 = xs d/dy , becomes

dσ
dQ2

=
e
2
e
2

8πQ4
[1 + (1− y)2]

�

i

e
2
i
qi(x). (A.18)

From Eqs. (A.14) and (A.18), the relationship for the DIS cross section in the naive parton
model given in Eq. (2.11) becomes clear.

Notice that, for elastic scattering, one finds

p + q = p�, x =
Q
2

2p · q
= 1, Q

2 = sy , (A.19)

and thus for inclusive DIS

p + q = p� +X, 0 < x =
Q
2

2p · q
< 1, Q

2 = sxy . (A.20)
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Elastic electron-proton scattering The same formalism can be applied to the case of the
elastic scattering of a charged particle off a composite object like the proton. In this case,
the scattering amplitude is related to

|M|
2
∼
α
2

q4
L
µν
Kµν, (A.21)

where Kµν is the hadronic tensor, describing the absorption of the virtual photon by the
proton. This tensor cannot be derived from first principles, but it can be parametrized in
terms of the so-called elastic proton form factors K1,2 as

K
µν = K1

�
−g

µν +
q
µ
q
ν

q2

�
+
K
2

M2

�
P
µ +
1

2
q
µ

� �
P
ν +
1

2
q
ν

�
, (A.22)

with M and P the mass and momentum of the proton, respectively. These form factors can
be redefined in terms of the electric and magnetic form factors, related to the distribution
of charge (GE) and magnetic moment (GM) of the proton. In terms of these form factors,
the cross section for the elastic electron-proton scattering can be expressed as

dσ

dΩ
= σMott

�
G
2
E
+ τ G2

M

1 + τ
+ 2τ G2

M
tan2(θ/2)

�
, (A.23)

with σMott =
4α2 E2 cos2(θ/2)

q4 [1 + (2E/M) sin2(θ/2)]
, (A.24)

with dΩ the differential of solid angle and θ the scattering angle, and τ = −q2/4M2. This
is known as the Rosenbluth formula, characterized by a typical 1/q4 dependence.

Inelastic electron-nucleon scattering The hadronic tensor for DIS can be expressed in
terms of four scalar functions W1, W2, G1 and G2

Wµν = W
S

µν
(q;P ) + iW A

µν
(q;P, S), (A.25)

with

W
S

µν
=

�
−gµν +

qµ qν

q2

�
W1

+
1

M2

�
pµ −

P · q

q2
qµ

��
pν −

P · q

q2
qν

�
W2,

W
A

µν
= M�µναβ q

α
S
β
G1

+
1

M
�µναβ q

α
�
(P · q) Sβ − (S · q) P β

�
G2.

Formally, another three terms associated to the unpolarized functions W3, W4 and W5
are necessary to describe the structure of Wµν. Nevertheless, W4 and W5 are associated
to current conservation of the hadron vertex (qµW µν = qνW µν) and can be expressed in
terms of W1 and W2. The term related to W3 violates parity and is therefore absent in ep
scattering, since electromagnetic interactions conserve parity. In neutrino DIS, however, a
contribution from W3 cannot be excluded.
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Helicity distribution The cross section for double-polarized DIS, following the parton
model formula, cf. Eq. (2.11), in terms of the quarks PDFs and the proton and quarks
helicities is

dσ++ =
�

q

e
2
q
[q++ dσ̂

++ + q+− dσ̂
+−] proton“+��, (A.26)

dσ+− =
�

q

e
2
q
[q−+ dσ̂

+− + q−− dσ̂
+−] proton“−��, (A.27)

(A.28)

where dσ ≡ dσ/dx dy , and dσ̂ ≡ dσ̂/dy ; the superscripts dσ+− refer to a beam electron
with spin polarized along the direction of movement (+), and a proton target polarized
anti-parallel (−) with respect to the incoming beam direction; for the eq hard scattering
cross sections, dσ̂+− refers to the scattering of a “+” electron with a “−” quark.

Thus, the difference yields

dσ++ − dσ+− =
�

q

e
2
q
[∆q dσ̂++ − ∆q dσ̂+−], (A.29)

=
�

q

e
2
q
∆q (dσ̂++ − dσ̂+−), (A.30)

using q++ = q
−
− , q+− = q

−
+ and ∆q = q++ − q

+
− .
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Derivation of formulae

Dependence of AUT on the polarizations The number of events in the two polarization
states for each (pT , xF ,φ) kinematic bin, with N↑(↓) ≡ d3N↑(↓)/dpT dxF dφ, σUU ≡ d3σUU,
and σUT ≡ d3σUT , is

N
↑ = (L↑σUU + L

↑
P
σUT ) Ω(pT , xF ,φ), (B.1)

N
↓ = (L↓σUU − L

↓
P
σUT ) Ω(pT , xF ,φ).

The definition of the asymmetry is

AUT =

N
↑

L
↑
P

−
N
↓

L
↓
P

N
↑

L↑
+
N
↓

L↓

(B.2)

=

2 σUT + σUU
�
L
↑

L
↑
P

−
L
↓

L
↓
P

�

2 σUU + σUT
�
L
↑
P

L↑
−
L
↓
P

L↓

�

=

2 σUT + σUU
� 1

�P ↑�
−
1

�P ↓�

�

2 σUU + σUT (�P ↑� − �P ↓�)
,

where we introduced the two averaged polarizations �P ↑� and �P ↓�. Since σUT and
�P ↑� − �P ↓� are small we can do a Taylor expansion of AUT :
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AUT �

�
2 σUT + σUU

� 1

�P ↑�
−
1

�P ↓�

�� 1

2 σUU

�
1−

σUT

2 σUU
(�P ↑� − �P ↓�)
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=
σUT

σUU
+
1

2

� 1
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1

�P ↓�

�
−
σ
2
UT

2 σ2
UU

(�P ↑� − �P ↓�)−
1

4

σUT

σUU
(�P ↑� − �P ↓�)

� 1
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−
1

�P ↓�

�

=
σUT

σUU

(�P ↑�+ �P ↓�)2
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2 σ2
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(�P ↑� − �P ↓�)

=
σUT

σUU

�
1 +

�
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−
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2 σ2
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(�P ↑� − �P ↓�)

� A
sinφ
UT
sinφ+

1

2

�P ↓� − �P ↑�

�P ↑��P ↓�
, (B.3)

where terms proportional to σ2
UT
(�P ↑�−�P ↓�) and σUT (�P ↑�−�P ↓�)2 have been neglected.

In the case of same average polarizations for both target spin states, this leads to Eq. 4.35.

Relation between Asinφ
UT

and AN The definition of the normal left-right asymmetry is

AN =
σL − σR

σL + σR
(B.4)

=

� 2π
π
dψ (σUU + σUT )−

�
π

0 dψ (σUU + σUT )� 2π
π
dψ (σUU + σUT ) +

�
π

0 dψ (σUU + σUT ) .

Considering an anti-symmetric ψ-dependence of σUT
� � 2π

π
dψ σUT = −

�
π

0 dψ σUT

�

and taking into account that σUU is independent of ψ, the asymmetry can be written as

AN = −

�
π

0 dψ σUT�
π

0 dψ σUU

. (B.5)

In the case of a sin ψ modulation of σUT , this leads to Eq. (4.32)

AN = −

�
π

0 dψ σUU A
sinψ
UT
sinψ�

π

0 dψ σUU

= −
2

π
A
sinψ
UT
. (B.6)



C
Selection of DIS events

The main physics trigger (21 or DIS trigger), discussed in Section 3.4, was originally designed
to select inclusive DIS events. However, from these events, the sample of real DIS events,
for which the scattered beam lepton is actually detected, represents only a small subset since
most of the DIS trigger events contain only hadrons and no leptons1. In addition, some of
the events containing a lepton are produced at Q2 < 1 GeV2 and should not be counted as
DIS events.

inclusive DIS semi-inclusive DIS large-z
(0.25) 1GeV2 < Q2 < 20GeV2 1GeV2 < Q2 < (6GeV2) 1GeV2 < Q2 < (6GeV2)

4GeV2 < W 2 10GeV2 < W 2 10GeV2 < W 2

0.1 < y < 0.85 (0.18) < y < 0.95 (0.18) < y < 0.95

(0.007) 0.023 < x < 0.9 0.023 < x < 0.4 0.023 < x < 0.4

2 GeV < p < 15 GeV 2 GeV < p < 15 GeV
0.2 < z < 0.7 0.7 < z

Table C.1. Kinematic requirements for the inclusive DIS, SIDIS and large-z samples
used in this analysis.

The selection of good DIS candidates is done by a set of kinematic requirements. These
are listed in the left column of Table C.1. The boundaries of each kinematic variable were
optimized in the past, and in most cases correspond to the limitations of the spectrometer
acceptance. Additionally, the kinematics at HERMES are highly correlated (particularly
x and Q2), and therefore some of the boundaries depend on each other. This is better
illustrated in Fig. C.1. The central column of Table C.1 corresponds to the selection of
semi-inclusive DIS events, where at least one hadron is detected in coincidence with the
scattered beam lepton. The right column indicates the criteria for the large-z region of the
SIDIS events, discussed in Section 6.2.

1This is indeed shown in Section 6.2 and it has been studied several times in the past. See, e.g., Ref. [101].
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Figure C.1. Kinematic plane of DIS events at HERMES illustrating the boundaries
on each variable.

• The cut on the squared mass of the final state W 2 discards events from the region of
baryon resonances. In the case of SIDIS events, the higher cut improves the separation
of the hadrons resulting from the hadronization of the struck quark from hadrons
coming from the target remnant.

• The upper limit on the fractional energy transfer y < 0.85 removes events that may be
affected by higher order QED radiation effects, i.e., bremsstrahlung. In semi-inclusive
DIS events, the tagging of hadrons reduces these radiation effects and, thus, the
upper limit can be raised up to y < 0.95. The upper cut on y also fixes the minimum
momentum of the accepted lepton tracks. A value of y < 0.85 corresponds to 4.1
GeV, while for y < 0.95 leptons with energy as low as 1.38 GeV can be reconstructed.
The lowest reachable value of the fractional energy transfer is y = 0.07, which is
excluded by a minimum cut on 0.1 < y . In the case of SIDIS events, the constraints
on Q2 and W 2 imply a minimum reachable value of y = 0.18, so that, in practice, no
minimum cut is required for this case.

• The widest range in x that can be accessed at HERMES goes from x ∼ O(10−3) to
x = 1. The lower bound, related to the acceptance of the spectrometer, is given by
the minimum scattering angle of about 40 mrad (which depends on the vertex position
in the target cell) and the lowest accepted momentum due to the bending power of
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the magnet. With the upper requirement of y < 0.95, the lowest reachable value of x
corresponds to x = 0.00124. For the DIS data set, the constraints on Q2 > 1 GeV2

and y > 0.85 imply a minimum of 0.023 < x . For the analysis of inclusive DIS data
described in Chapter 7, in which data taken at low Q2 were also analyzed, a minimum
value of x > 0.007 was required in order to avoid the very low end of the distribution,
where the population of bins at very low both x and Q2 was found to be rather unstable
and cut-dependent. The condition of x > 0.007 restricts the momentum transfer to
be Q2 > 0.25GeV2.

The highest reachable value of x depends on the minimum W 2 required. For SIDIS
analyses, the line W 2 > 10 GeV2 crosses the x = 0.5 line around Q2 ∼ 9 GeV2, and the
x = 0.4 around Q2 ∼ 6 GeV2. The population of events after x > 0.4 is however very
small, and therefore this upper cut on x is used. For inclusive analyses, the condition
W
2
> 4 GeV2 implies that more events are found at higher x . Since x = 1 corresponds

to elastic scattering, the cut on x < 0.9 is required in to reduce the background of
events from elastic scattering. These cuts on x and W 2 determine the maximum value
of 20 GeV2 for Q2 in the DIS data set.

• In the case of semi-inclusive analyses, the momentum of the selected hadron tracks
is required to be in the range 2 GeV < p < 15 GeV to ensure a reliable hadron
identification by the RICH detector (See Section 3.3.2).

• The cuts on the hadron energy fraction z serve to enhance the semi-inclusive sample
with hadrons originating from the struck quark. The lower limit of 0.2 < z , in
combination with the W 2 cut, discards hadrons resulting from the target remnant.
The maximum limit z > 0.7 coincides with the region where exclusive vector meson
production becomes bigger than 20% [147]. These exclusive channels typically decay
in a pair of charged pions, which therefore have a large energy fraction.

If more than one lepton track is found to fulfill these requirements, only the one with
larger momentum is taken as DIS candidate.

Charge symmetric background In addition to the scattered beam lepton, e+ e− pairs
might be produced in several background processes, such as meson Dalitz decays or photon
conversions, which in some cases, may end up being identified as DIS events. The rates
for electrons and positrons from these charge symmetric background events are usually
equivalent. Therefore, the real yield of DIS events in each kinematic bin is corrected for this
background by subtracting the number of leptons with the charge opposite to that of the
beam particle. The charge symmetric background reaches up to 25% at low x (i.e., low Q2)
and becomes negligible at large values of x . [16].
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Wilson lines and universality

The Sivers function f ⊥1T , nowadays one of the key parton distribution functions to understand
the nucleon’s transverse structure, did not have “a happy childhood”. Not long after the
original formulation by Sivers in Ref. [74], Collins (in the same paper [75] introducing the
fragmentation function now carrying his name) proposed a proof of the vanishing of the
Sivers function. Collins’ argument was that the Sivers distribution function does not conserve
time reversal invariance (a minus sign results after applying space- and time-reversal) and,
thus, it should be forbidden in strong interactions

f
⊥
1T (x, k⊥)

T
−→ −f

⊥
1T (x, k⊥). (D.1)

The reason why Collins argument was wrong, and why in fact we nowadays have experimental
evidence of a non-vanishing Sivers function, relies on an incorrect definition of the quark-quark
correlator in Eq. (2.40), ignoring the presence of a Wilson line in the operators defining the
parton density [193].

What is a Wilson line? The strong coupling constant is large for the interaction of soft
particles, i.e., particles with low energy. This implies that in scattering experiments involving
hadrons, there is always soft gluon radiation. This radiation consists in principle of an
infinite number of soft gluons, which would make their calculation in perturbation theory
rather unmanageable1. In practice, in a diagrammatical approach, this soft radiation can be
regarded as the exchange of a soft gluon between e.g., the quark-quark correlator Φ and
the outgoing quark lines, or in the case of a hadron in the final state, in addition, between
the fragmentation correlator ∆ and the corresponding quark lines2 Such extra diagrams,
contributing to the tree-level process, can be resummed by means of an approximation
somewhat equivalent to a path-ordered integral, a path-ordered exponential, also called a
gauge link or Wilson line, that takes into account the radiation of soft gluons and ensures
the color gauge invariance.

1An infinite amount of radiation would result into a infinite deflection of the particle trajectory!
2See, e.g., Figs. 1 and 2 from Ref. [194].
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Thus, in order to make the correlation function Φ gauge invariant, a path-dependent
Wilson line W0ξ must be inserted between the quark fields of Eq. (2.42)

Φi j(k ;P, S) =
1

(2π)4

�
d4 ξ e−i p·ξ �P, S|ψ̄j(ξ)W0ξ ψi(0)|P, S�, (D.2)

where the Wilson line

W0ξ = P exp
�
− i

�
4παS

�
ξ

0

dsµ Aµ(s)

�
, (D.3)

is a bilocal operator connecting the quark fields ψ in two different points in space and time,
0 and ξ. Here, P indicates the path-ordering integral over the gauge field Aµ, which is
process-dependent. An analogous expression is found for the fragmentation correlator ∆,
see e.g., Ref. [33].

Process dependence In the case of SIDIS, this soft radiation can be identified with the final
state interactions mentioned in Section 2.6.2, and corresponds to the gluons interchanged
between the struck quark (carrying a certain color charge c) and the proton remnant (which
must then carry a color charge c̄ as the original proton is a color-neutral object). This is
schematically depicted in the right-hand side of Fig. D.1. In order to run over all exchanged
gluons, which happens after the γ∗ q collision, the Wilson line must then go to future infinity,
i.e., W0∞. This way, all soft-gluon radiation is absorbed into the parton densities and the
corresponding fragmentation functions. Effectively, one considers only the case of Fig. 2.10
but now with a Φ and ∆ that contain the gauge links [194].

The opposite case is found for Drell-Yan processes, in which two protons collide. One
quark from each proton interacts with the other. These should have color charges c and
c̄ , respectively. Therefore, the corresponding color-charged proton remnants interact with
the quarks before the collision, leading to initial state radiation. The Wilson path must go
therefore to the past infinity. See left-hand side of Fig. D.1.

Sivers revisited We can now reexamine the original Collins’ proof for the vanishing of
the Sivers function in Eq. (D.1). Once the parton distribution functions have been made
gauge invariant, under time-reversal, the future-pointing Wilson line W0∞ is replaced by a
past-pointing Wilson line W−∞ 0, so that the correct version of the proof gives

f
⊥
1T (x, k⊥)|W0∞

T
−→ f

⊥
1T (x, k⊥)|W−∞ 0. (D.4)

Since the past-pointing Wilson lines are appropriate for factorization in the Drell-Yan process,
the correct interpretation is not that the Sivers function vanishes, but rather that it has
opposite sign in SIDIS and Drell-Yan

f
⊥
1T (x, k⊥)|DIS = −f

⊥
1T (x, k⊥)|Drell-Yan. (D.5)
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Figure D.1. Radiation of soft gluons between struck quark and proton remnants. In
the central diagram, an schematic representation of the color gauge link,
i.e., Wilson line, between ψ(0) and ψ(x) in the light cone is given.

Naive T−odd functions Parton distribution functions which in the absence of Wilson
lines would not conserve time-reversal invariance are labelled as T -odd functions. The
conservation of hermiticity, parity and time-reversal of the quark-quark correlator follows
from the properties of the quark fields and it is expressed with the following relations [35]

hermiticity: Φ(k ;P, S) = γ0Φ
†(k ;P, S) γ0, (D.6a)

parity: Φ(k ;P, S) = γ0Φ(k̄ ; P̄ ,−S̄) γ0, (D.6b)
time-reversal: Φ∗(k ;P, S) = i γ1 γ3Φ(k̄ ; P̄ , S̄) i γ1 γ3, (D.6c)

where the tilde four-vectors are defined as p̄µ = (p0,−p). Parton distribution functions
satisfying Eq. (D.6c) are said to be T -even, while for T -odd distribution functions, like the
Sivers or Boer-Mulders functions, the time-reversal operation leaves a minus sign. These
distribution functions are sometimes said to be naive T -odd, since in the relation (D.6c),
the time-reversal operation is applied to the spins, momenta and field-operator combination
without interchanging the initial and final states of the process [33]. A fragmentation
function will be called T -odd if the corresponding distribution function is T -odd; e.g., the
Collins fragmentation function H⊥1 is T -odd since the Boer-Mulders function h⊥1 is T -odd.

Universality The parton distribution functions are inherently non-perturbative objects and
cannot be fully calculated from first principles. This would mean that expressions for cross
sections involving TMDs have limited predictive value. For that reason one usually makes
the proposition of universality of parton distribution functions. That is, the distribution of
partons inside a certain hadron is assumed to be the same, regardless of the process in which
it is probed. This allows to determine the PDFs from a certain process, e.g., DIS, and use
them as input for the cross sections of other processes, like Drell-Yan. The assumption of
universality, thus, makes the parton model, and QCD, a theory with predictive power.

The inclusion of Wilson lines, being process-dependent, in the definition of the distribution
functions is therefore a crucial question regarding the validity of the assumption of universality
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of these. In some processes, like the SIDIS and Drell-Yan commented above, the Wilson
line implies a change of sign in the PDFs. In other processes, it can lead to much more
complicated dependences, and further studies are needed to fully probe the universality of
other PDFs. See Refs. [33,194,200] for more information.

Light-cone coordinates In the infinite momentum frame, where the partons and the proton
can be considered quasi-collinear, it is convenient to express the relevant variables in terms of
their components in the light cone. For example, the momentum p = (p0,p) = (p0, p1, p2, p3)
can be written as p = (p+, p−,pT ), where p± = p0 ± p3)/

√
2 and pT = (p1, p2). If p is

collinear with the boost direction, this implies that it points along the + direction of the line
cone p � (p+, 0, 0). Then, 4-vectors can be simply described with their + component in the
light cone.
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Figure E.1. Average Q2 in every kinematic bin estimated from a Monte Carlo sample.
As a function of xF , all data points have �Q2� < 1GeV2.
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Figure E.16. Fraction of tagged hadrons, i.e., for which a lepton track was detected
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Figure E.18. Fraction of tagged hadrons, i.e., for which a lepton track was detected
in coincidence, in every bin of pT . See Sections 6.2.2 – 6.2.4.

!
si

n
U

T
A

-0.2

0

0.2

0.4

0.6 inclusive

SIDIS
z > 0.7

 + X+" # $ep

-0.2

0

0.2

0.4

0.6
 + X -" # $ep

-0.2

0

0.2

0.4

0.6
 + X+ K# $ep

-0.2

0

0.2

0.4

0.6
 + X- K# $ep

 < 0.55F0.30 < x

-0.2
0

0.2
0.4

0.6

-0.2
0

0.2
0.4

0.6

-0.2
0

0.2
0.4

0.6

-0.2
0

0.2
0.4

0.6  < 0.30F0.20 < x

-0.2

0
0.2

0.4
0.6

-0.2

0
0.2

0.4
0.6

-0.2

0
0.2

0.4
0.6

-0.2

0
0.2

0.4
0.6  < 0.20F0.10 < x

0 0.5 1 1.5 2
-0.2

0
0.2
0.4
0.6

0.5 1 1.5 2
-0.2

0
0.2
0.4
0.6

0.5 1 1.5 2
-0.2

0
0.2
0.4
0.6

 [GeV]
T

p
0.5 1 1.5 2

-0.2
0

0.2
0.4
0.6  < 0.10F0.00 < x

Figure E.19. The two-dimensional extraction of the Asinφ
UT

amplitudes for DIS events
as a function of pT in four slices of xF , compared to the inclusive
amplitudes. See Sections 6.2.2 – 6.2.4.
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Figure E.21. Average Q2 calculated for each xF bin and different subsamples of the
data. See Section 6.2.2 – 6.2.4.



176 E. Extra figures

! 2
 Q"

 / 2 Tp

0

1

2
SIDIS
z > 0.7

 + X+# $ %ep

0

1

2

 + X -# $ %ep

0

1

2

 + X+ K$ %ep

0

1

2

 + X- K$ %ep
 < 0.55F0.30 < x

0

1

2

0

1

2

0

1

2

0

1

2

 < 0.30F0.20 < x

0

1

2

0

1

2

0

1

2

0

1

2

 < 0.20F0.10 < x

0 0.5 1 1.5 2
0

1

2

0.5 1 1.5 2
0

1

2

0.5 1 1.5 2
0

1

2

 [GeV]
T

p
0.5 1 1.5 2

0

1

2

 < 0.10F0.00 < x

Figure E.22. The ratio �p2
T
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2� calculated for each pT bin and different subsamples

of the data. See Section 6.2.2 – 6.2.4.
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Figure E.23. Average Q2 calculated for each pT bin and different subsamples of the
data. See Section 6.2.2 – 6.2.4.
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Figure E.26. Average calorimeter efficiency as a function of pT (top) and as a function
of xF (bottom), including the effect of lepton tracks. See Section 4.3.
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Figure E.27. Average calorimeter efficiency as a function of xF , for the two-
dimensional binning used in the analysis, including the effect of lepton
tracks. See Section 4.3.
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amplitudes as a function of pT with and without the correction
by the calorimeter efficiency. See Section 4.6.
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181

!
si

n
U

T
A

-0.1

0

0.1

0.2
corrected

uncorrected

 + X+" # $ep

-0.1

0

0.1

0.2

 + X -" # $ep

-0.1

0

0.1

0.2

 + X+ K# $ep

-0.1

0

0.1

0.2

 + X- K# $ep
 < 0.55F0.30 < x

-0.1

0

0.1

0.2

-0.1

0

0.1

0.2

-0.1

0

0.1

0.2

-0.1

0

0.1

0.2
 < 0.30F0.20 < x

-0.1

0

0.1

0.2

-0.1

0

0.1

0.2

-0.1

0

0.1

0.2

-0.1

0

0.1

0.2
 < 0.20F0.10 < x

0 0.5 1 1.5 2
-0.1

0

0.1

0.2

0.5 1 1.5 2
-0.1

0

0.1

0.2

0.5 1 1.5 2
-0.1

0

0.1

0.2

 [GeV]
T

p
0.5 1 1.5 2

-0.1

0

0.1

0.2
 < 0.10F0.00 < x

Figure E.31. The Asinφ
UT

amplitudes as a function of pT , in four slices of xF , with and
without the correction by the calorimeter efficiency. See Section 4.6.
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Figure E.33. Squared missing mass of events with z > 0.7 in different ranges of pT and
xF , for the inclusive production of pions and kaons. See Section 6.2.3.
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Figure E.34. Fraction of Monte Carlo generated hadron tracks in which the beam
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trometer, with respect to the total number of inclusive hadron tracks.
The star symbols denote events for which the electron is scattered on a
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Samenvatting

Na meer dan 60 jaar werken met “Diep Inelastische Verstrooiing” (Deep Inelastic Scattering,
DIS) hebben fysici nu een indrukwekkend rijk beeld van de interne structuur van het proton,
of meer in het algemeen, de nucleonen. Het idee achter DIS is eenvoudig: zeer hoog
energetische leptonen (elektronen, positronen of muonen) worden in botsing gebracht met
nucleonen. De impuls van het lepton moet hoog genoeg zijn opdat de golflengte van het
foton dat de elektromagnetische wisselwerking overbrengt kleiner is dan de afmetingen van
het nucleon. Op deze manier weten we dat het foton diep in het nucleon doordringt. Door
het verstrooide lepton te meten, en zijn impuls en de strooihoek te bepalen, bekomt men
informatie over de interne structuur van het nucleon.

Deze informatie is vervat in zogenaamde parton distribution functions (PDF) die de
waarschijnlijkheid weergeven om een parton (letterlijk een deel van het nucleon) met wel-
bepaalde eigenschappen in het nucleon aan te treffen. Op deze manier werden de bouwstenen
van het nucleon, quarks en gluonen, ontdekt. Uit de vroegste metingen was al onmiddellijk
duidelijk dat quarks spin 1/2 hebben. Een nucleon opgebouwd uit 3 quarks kan dan beschouwd
worden als een systeem waarbij twee van de quarks hun spin parallel met de spin van het
nucleon plaatsen, en de overblijvende quark met zijn spin anti-parallel. Maar in tegenstelling
tot dit beeld vond een experiment van de EMC-samenwerking in de vroege jaren ’80 dat
de spin van de quarks slechts ongeveer 30% oplevert van de totale spin van het nucleon.
Deze verrassende vaststelling werd de spin crisis genoemd, en leidde tot een hernieuwde
belangstelling voor de substructuur van het nucleon en andere fenomenen gerelateerd aan de
spin. Het HERMES experiment werd precies ontworpen en gebouwd met als primaire doel in
meer detail de rol van de spin van de quarks te bepalen.

De precieze spin structuur van het nucleon is ook vandaag nog niet in detail gekend,
alhoewel het beeld sedert het EMC-experiment veel duidelijker is. Zo weten we vandaag
dat zowel de spin van de quarks, als die van de gluonen, en hun onderliggende dynamica
allen een rol spelen in het opbouwen van de spin van het nucleon. Anderzijds zijn er nog
polarisatie-fenomenen waargenomen die de rol van spin in deeltjesfysica sterk in de verf
zetten. In het bijzonder denken we dan aan de grote asymmetrieën die waargenomen worden
in experimenten met transversaal gepolariseerde nucleonen. Dergelijke transversale spin
asymmetrie was een verrassing bij de ontdekking in de late ’70er jaren, vooral omdat men
dacht dat alle transversale spin effecten onderdrukt zouden zijn in een relativistisch proton.
Maar we weten nu dat er binnen in een nucleon, zelfs een snel-bewegend proton, voldoende
ruimte is voor transversale beweging van de quarks en gluonen. Hierdoor kunnen complexe
correlaties ontstaan tussen de spin van het nucleon en de impuls van de quarks, waarbij er
asymmetrische patronen kunnen voorkomen in de emissie van hadronen.
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In DIS werden twee modellen uitgewerkt die leiden tot transversale asymmetrieën: re-
spectievelijk het Sivers en het Collins-effect. Beide effecten werden waargenomen in semi-
inclusieve DIS reacties, waarbij naast het verstrooide lepton ook een hadron gedetecteerd
wordt. Om dit te vergelijken met de hadron-geïnduceerde reacties waarin enkel het gepro-
duceerde hadron gemeten wordt, moet men inclusieve elektroproductie van hadronen aan
een transversaal gepolariseerd proton meten met een ongepolariseerde lepton- bundel. Een
dergelijke meting wordt voor het eerst gepresenteerd in deze thesis.

Transversale “single-spin” asymmetrieën (SSA) werden hier voor het eerste gevonden
in gegevens voor inclusieve elektroproductie van geladen pionen en kaonen, afkomstig van
ep
↑ botsingen van een 27.6 GeV ongepolariseerde elektronbundel en een transversaal gepo-

lariseerde protontarget. Positieve asymmetrieën tot een waarde van 6% werden gevonden
voor positief geladen pionen, en tot 8% voor positieve kaonen. Deze SSA zijn ook duidelijk
afhankelijk van de transversale impuls pT van de hadronen. Ze nemen toe met stijgende pT
tot een maximum rond 0.7-0.9 GeV, en nemen dan af tot bijna nul voor pT � 1.3 GeV. Voorbij
deze waarde van pT nemen de π+ asymmetrieën weer toe, terwijl ze voor K+ consistent
met nul blijven. In het geval van negatief geladen pionen en kaonen zijn de asymmetrieën
zeer klein of consistent met nul binnen de fout, over het gehele bereik van de metingen.

De resultaten werden opgesplitst naar evenementen afkomstig van quasi-reële fotopro-
ductie en DIS. Alhoewel de gemeten asymmetrieën bijna volledig afkomstig lijken te zijn van
de dominante fotoproductie evenementen, werden effectief grotere asymmetrieën gevonden
in het geval van DIS-kinematieken, waarbij de resultaten erop duiden dat ze afkomstig is van
het Sivers-mechanisme.

In een laatste hoofdstuk wordt ook verslag gedaan van de eerste meting van een andere
inclusieve single-spin asymmetrie, ditmaal inclusief over alle hadronen, d.w.z. enkel het
verstrooide elektron werd gedetecteerd. Een dergelijke asymmetrie zou een directe aanwijzing
zijn voor twee-foton uitwisseling in de DIS-botsingen. Er werd geen asymmetrie gevonden
binnen de experimentele nauwkeurigheid. Als er een dergelijke asymmetrie bestaat, dan is ze
kleiner dan 10−3.
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