
Simulation and characterization
of the RF system and global

stability analysis at the REGAE
linear electron accelerator

Master thesis
by

Frank Mayet

Universität Hamburg
Department Physik
30. Oktober 2012



Gutachter: Prof. Dr. Florian Grüner
Zweitgutachter: Dr. Klaus Flöttmann



Abstract

LAOLA (LAboratory for Laser- and beam-driven plasma Acceleration), is a col-
laboration between groups from DESY and the University of Hamburg. Its mission
is to complement basic research in the relatively new field of plasma wakefield ac-
celeration (PWA) by an explicit combination with DESY’s conventional, modern
accelerators.
The linear electron accelerator REGAE is designed to produce sub 10 fs low

charge electron bunches with ultra-low emittance at a repetition rate of 50Hz.
The planned experiments include femtosecond electron diffraction (R.J. Dwayne
Miller), as well as the probing of laser induced plasma wakefields with well char-
acterized bunches (LAOLA). They all require high bunch time of flight stability
down to 10 fs. The REGAE machine consists of two RF cavities, both fed by a
single klystron. While the first one — the gun cavity — is used for acceleration of
the electrons, the second one — the buncher cavity — can be used to reduce the
electron bunch length. This scheme only works for a specific RF phase relation
between the two cavities.
This thesis is split into two parts. In the first one the implications of the unique

two cavity design on day-to-day machine operation are analyzed. To this end an
analytical model of the RF system is developed, which is necessary for understand-
ing how to individually adjust the cavity phases. In the second part the influence
of the setup on time of flight stability is discussed with an emphasis on phase jitter
compensation. RF phase stability measurements reveal that the current machine
setup allows for a time of flight stability down to 50 fs right after the gun.



Zusammenfassung

LAOLA (LAboratory for Laser- and beam-driven plasma Acceleration) ist eine
Kollaboration zwischen Gruppen des DESY und der Universität Hamburg. Ihre
Aufgabe ist es, die Grundlagenforschung im relativ neuen Feld der Plasma Wa-
kefield Beschleunigung (PWA) durch Kombination mit DESYs konventionellen,
modernen Beschleunigern zu ergänzen.
Das Design des Elektronenbschleunigers REGAE sieht die Erzeugung von sub

10 fs Elektronenpaketen mit niedriger Ladung und Emittanz bei einer Frequenz von
50Hz vor. Die geplanten Experimente beinhalten Femtosekunden Elektronenbeu-
gung (R.J. Dwayne Miller), sowie das Abtasten einer lasererzeugten Plasmawelle
(LAOLA). Für die Experimente ist eine Flugzeitstabilität der Elektronenpakete
von bis zu 10 fs notwendig. Die REGAE Maschine beeinhaltet zwei HF Kavitäten,
welche beide von einem einzigen Klystron gespeist werden. Während die erste —
die Gun Cavity — zur Beschleunigung der Elektronen eingesetzt wird, kann die
zweite — die Buncher Cavity — zur Reduktion der Länge der Pakete eingesetzt
werden. Dies funktioniert nur für eine bestimmte HF Phasenbeziehung zwischen
den zwei Kavitäten.
Diese Arbeit ist in zwei Teile aufgeteilt. Im ersten Teil werden die Implikatio-

nen der Implementation zweier Kavitäten im Bezug auf den alltäglichen Betrieb
analysiert. Zu diesem Zweck wird ein theoretisches Modell des HF Systems entwi-
ckelt, welches zum Verstehen der individuellen Einstellung der Phasen notwendig
ist. Im zweiten Teil wird der Einfluss des Aufbaus auf die Flugzeitstabilität mit
Schwerpunkt auf eine Phasenjitterkompensation diskutiert. HF Phasenstabilitäts-
messungen zeigen, dass der aktuelle Maschinenaufbau eine Flugzeitstabilität von
50 fs direkt hinter der Gun erlaubt.
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1

Introduction

The linear electron accelerator REGAE is designed to produce sub 10 fs low charge
electron bunches with ultra-low emittance at a repetition rate of 50Hz. These spec-
ifications allow for time resolved detection of transition states in complex chemical
systems via femtosecond electron diffraction, which could be an important step
towards recording chemical reactions at their characteristic time scales. In ad-
dition to that, the bunch parameters permit the external injection of electrons
into laser induced plasma wakefields. Even though plasma wakefields can nowa-
days be simulated using sophisticated particle-in-cell codes, direct measurement
of the wakefield properties is difficult. The external injection of well characterized
electron bunches into a laser induced plasma wakefield as a means to probe the
wakefield structure is one of the main goals of the REGAE experiment. One of
the main challenges at REGAE is to achieve the required ∼10 fs electron bunch
time of flight stability.
In order to be able to provide the required bunch parameters and timing stability,

a deep understanding of the RF system is necessary. At REGAE the high power
RF system consists of a 1.5 cell gun cavity and a four cell buncher cavity, which
are both fed by a single klystron. The subject of this thesis is to investigate the
behavior of this unique RF setup, as well as to perform a global stability analysis.
In order to do so, this thesis is split into three chapters, where the first one will
give a short introduction to the REGAE facility and the two main experiments.
The remaining two chapters will then focus on the main topics of this thesis and
will be followed by a short outlook that will be focusing on stating the current
status of the REGAE accelerator and possible optimizations in terms of stability.

1
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Figure 1.1: Schematic of the REGAE linear electron accelerator.

1.1 REGAE

The REGAE (Relativistic Electron Gun For Atomic Exploration) machine is a
small linear electron accelerator situated at the DESY campus in Hamburg. It
is mainly comprised of an S-band (3GHz) 1.5 cell standing-wave RF gun and an
additional S-band 4 cell standing-wave buncher cavity. A simple schematic of the
experimental assembly can be seen in figure 1.1. The RF system feeds the cavities
with up to 6µs long RF pulses with a design repetition rate of 50Hz. Its unique
features compared to other RF systems will be discussed in detail in chapter 2. In
order to inject the electrons into the gun cavity the 266 nm harmonic of a pulsed
Ti:Sapphire laser is directed onto a Cesium Telluride (Cs2Te) photo cathode, which
is situated at the back of the gun cavity. Electrons are then emitted into the RF-
field at a phase, where the electrons are accelerated most efficiently (on-crest). It
is immediately clear that this injection process can only be performed successfully,
if both the laser and the RF pulses are synchronized. Knowing this, it is also
clear that the properties of the electron bunch distribution crucially depend on
the stability and properties of both the laser and the RF parameters at the time
of injection. This circumstance will be discussed in more detail in chapter 3.
Successfully accelerated electrons then pass several beam optics components (see
figure 1.1). At REGAE there are three different kinds of beam optics elements:

• Single solenoid

• Double solenoid

• Steerer magnets

Solenoids act like lenses in an optical setup and the focusing strength is propor-
tional to the integral over the squared magnetic field strength. The main difference

2
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Figure 1.2: Schematic of the velocity bunching scheme. The electron bunch is depicted
by the light blue ellipse. Electrons in the front of the bunch arrive at a
lower phase, where they are decelerated by the Ez of the buncher cavity.
Electrons in the back of the bunch arrive at a higher phase and are thus
accelerated.

to an optical lens is the fact that due to radial components of the magnetic field
the electrons are in fact focused, but also rotated around the longitudinal axis of
the solenoid. Using a second solenoid with reversed field direction, one can circum-
vent this problem, as the electrons are then rotated back to their initial position.
This works under the assumption that the offset between the electron beam and
the longitudinal axis of the solenoid is sufficiently small (paraxial approximation).
In this case only linear forces act on the particles. Another means to affect the
electron beam orbit are so called steerer magnets. At REGAE the steerer mag-
nets described in [2] are being used, which are basically two small dipole magnets
that are arranged orthogonally and can impose a field strength dependent kick
onto the passing electrons. These steerers are for example used to avoid the prob-
lems explained above (i.e. compensating alignment errors and therefore entering
a solenoid on-axis), or to steer the electron beam onto a specific target. Having
passed these beam optics, the electrons then enter the buncher cavity. It has been
stated above that in order to get optimal acceleration (this will also be discussed in
more detail in chapter 3) the electrons have to be injected on-crest. For maximum
bunching inside the buncher cavity the electrons have to be injected off-crest into
the so called bunching phase, i.e. the phase where the field has its zero-crossing.
The underlying concept is the so called velocity bunching scheme ([3]). Electrons

3
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in the front of a bunch arrive at a phase where they are decelerated, whereas elec-
trons in the back arrive at a phase, where they are accelerated (see figure 1.2).
This way an additional energy spread is imposed onto the electron bunch and after
a certain distance the electron bunch length reaches a minimum due to the fact
that the accelerated electrons in the back of the bunch now overtake the deceler-
ated electrons in the front. It is now easy to understand why the electron bunch
length increases again after having reached its minimum. The design minimum
bunch length for REGAE is 7 fs RMS (cf. [4]). In addition to the experimental

Figure 1.3: Photo of the REGAE linear electron accelerator. On the left: the target
chamber, on the right: the accelerator section.

setup itself, the REGAE assembly also contains five diagnostics stations (DDC1,
DDC2, DC3, TARGET and DETECTOR). The first three feature a Faraday cup
for charge measurements and a motorized LYSO scintillator screen that can be
looked at using a CCD camera. DC3 includes a dipole magnet that bends the
electron orbit according to the electron energy and thus can be used as a disper-
sive element for energy and energy spread measurements. The detector, which
is situated at the far end of the beam line includes a highly sensitive scintillator
screen that can detect single electrons ([5]) when being cooled down in order to
suppress noise. All of the screens are motorized. As the charge measurement using
a Faraday cup is destructive (i. e. the diagnostics interrupts normal operation), the
REGAE beam line also incorporates a so called non-invasive DaMon (dark current
monitor) cavity. Every electron bunch that is directed through the DaMon cavity
induces a voltage that can be related to the bunch charge.

4



1.2 Experiments at the REGAE Facility

1.2 Experiments at the REGAE Facility

In this section an overview of the two main experiments that will be conducted
at the REGAE facility will be given. The main motivation to build the REGAE
accelerator, is the notion of recording the so called molecular movie using fem-
tosecond electron diffraction, as it has been proposed by Dwayne Miller et al. in
[6] in 2006. The second experiment will be conducted by the LAOLA collabo-
ration between DESY and the University of Hamburg. Here the properties of a
plasma wakefield excited by a high power laser are probed by the well characterized
REGAE electron bunch. This concept is called external injection scheme.

1.2.1 Femtosecond Electron Diffraction

One of the main goals at REGAE is to use the ultra-short electron bunches for fem-
tosecond electron diffraction (FED) experiments. FED enables the time resolved
detection of transition states in complex chemical systems ([6]), which is often
also paraphrased as “making the molecular movie”. The main advantage of this
method compared to molecular beam techniques for example is the fact that FED
captures reactions inside a three-dimensional volume. This way multiple reaction
coordinates inside a complex chemical system can be taken into account. Through
the use of relativistic electrons, atomic resolution is possible. The timescale of
two atoms moving approximately one bond length inside a molecular system is
on the order of 100 fs ([6]). This defines the minimal time resolution requirement
for conducting a time resolved measurement and with that defines the limits of
pulse length and timing jitter, which need to be well below this threshold. Both
X-ray and electron pulses are suitable for these kind of spatial and temporal re-
quirements, but electrons have the advantage of a six orders of magnitude larger
scattering cross-section ([7]). This is because X-rays are only scattered by the
electron distribution of the sample (Thompson scattering), whereas electron are
scattered by both the electron distribution and the atomic nuclei (Coulomb scat-
tering). This leads to improved contrast in the resulting diffraction patterns and
the possibility reduce the pulse length in order to improve the temporal resolution.
In addition to that, electrons cause less damage to the samples, as the inelastic
to elastic scattering ratio is much less compared to X-ray pulses ([7]). This is
important for the study of fragile biological samples.
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Figure 1.4: One of the first diffraction patterns detected at REGAE. The pattern has
been recorded using a gold 50 nm sample at 4.1MeV mean beam energy.
The plot on the right shows the angular integration of the image. Data
courtesy of Stephanie Manz (CFEL Hamburg)

1.2.2 External Injection of Electrons into a Plasma
Wakefield

In plasma accelerators electrons are accelerated inside a so called plasma wakefield,
which is created either by a high power laser pulse (laser driven), or an electron
beam (beam driven). One of the most important questions in plasma accelerator
physics is the actual structure of the plasma wakefield. Plasma wakefields can
be simulated using so called particle-in-cell codes, but direct measurement of the
fields is difficult. One way to overcome this problem and to gain more knowledge
on the actual field distributions inside the plasma wake is the so called external
injection scheme ([8]). Here a well characterized electron bunch is injected into
a plasma wakefield in order to study the electron beam dynamics. The effect of
the plasma wakefield on the bunch parameters of the previously injected electrons
(like emittance) can be used to infer the wakefield structure. The wakefield can
then be mapped by varying the time delay between the externally injected electron
bunches and the laser pulse that excites the wakefield inside the plasma. Figure 1.5
shows a simulation of a quasi linear plasma wakefield. One of the main challenges
at REGAE is to achieve the required ∼ 10 fs synchronization of the drive laser to
the electron beam.
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Figure 1.5: Simulation of a quasi linear plasma wakefield. The shaded area marks the
part of the wake, where electrons are both accelerated and focused. Figure
courtesy of Benno Zeitler (CFEL Hamburg)
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2

The REGAE RF System

In this chapter the REGAE high power RF (radio frequency) system will be dis-
cussed in more detail. The first part will give a short introduction into the relevant
microwave circuit and cavity/resonator theory. Then the unique setup at REGAE
is discussed and a simple yet powerful analytical model based on the scattering
matrix formalism will be developed in order to gain a deeper understanding as to
how the RF system behaves in operation. An algorithm for arbitrary and inde-
pendent phase control for both cavities based on the analytical model will also be
proposed. In addition to that, numerical simulations using CST Microwave Studio
([9]) will be presented and compared to actual measurements. The goal of this
chapter is to provide an extensive overview of the REGAE high power RF system,
as well as a usage guide for operators.

2.1 Microwave Circuit and Resonator Theory

In order to understand the behavior and the functionality of the RF system, it
is important to quickly summarize the fundamental concepts of waveguides and
resonators. Starting from Maxwell’s equations the most important equation can
be derived, which is the wave equation for the electric and the magnetic field ([10]).
Assuming ∇ · E = 0 (i. e. charge-free space) the wave equations then read:

∆E− εrµr
c2
· ∂2tE = 0

∆H− εrµr
c2
· ∂2tB = 0.

(2.1)
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2 The REGAE RF System

Also assuming free space and wave propagation in z direction, we then get the
plane wave solution

E⊥ = E0 · exp[i(ωt− kz)], (2.2)

where k =
√
εrµr · ω/c. The fact that in this case ∂x = ∂y = 0 has also been

used. It has to be noted that these plane waves do not have electrical field compo-
nents in the direction of propagation, which is a necessary condition for successful
particle acceleration. This problem can be avoided by imposing proper boundary
conditions as it will be described in the following section.

2.1.1 Rectangular Waveguide

In order to find solutions with non-zero longitudinal field components, let us first
consider boundary conditions in the form of metallic boundaries, as it is the case for
rectangular waveguides. Let Ez = Fx(x) · Fy(y) · Fz(z) be a non-zero combination
of functions that obey equation 2.1. Inserting this ansatz into the wave equation
gives:

∆Ez −
εrµr
c2
· ∂2tEz = 0

∇

∂xFx(x) · Fy(y) · Fz(z)

Fx(x) · ∂yFy(y) · Fz(z)

Fx(x) · Fy(y) · ∂zFz(z)

 = −k2(Fx(x) · Fy(y) · Fz(z))

∂2xFx(x)

Fx(x)
+
∂2yFy(y)

Fy(y)
+
∂2zFz(z)

Fz(z)
= −k2.

From this it is easy to see, since k is constant that every term on the l.h.s. must
be constant as well and therefore

k2 ≡ k2x + k2y + k2z . (2.3)

With the definition k2c = k2x+k2y it follows that kz =
√
k2 − k2c . The phase velocity

of the longitudinal electric field component is then given by

vph =
ω

kz
=

ω√
k2 − k2c

. (2.4)

If kc > k, the phase velocity becomes imaginary, which leads to an exponential
decay of Ez, or a so called evanescent wave. This is why kc is called the cut-
off wavenumber. Let us now try to relate the cut-off wavenumber to geometrical
properties of a rectangular waveguide with metallic boundaries (see figure 2.1).
Having metallic boundaries leads to the condition that the tangential components
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2.1 Microwave Circuit and Resonator Theory
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y

Figure 2.1: Schematic of a rectangular waveguide.

of the electric field must vanish. Thus only cosine functions can be correct solutions
for Fx(x) and Fy(y). The final solution for the longitudinal electric field is now
given by

Ez = E0 cos
(mπx

a

)
cos
(nπy

b

)
exp[i(ωt− kzz)], (2.5)

where m,n ∈ N define the so called transverse field modes (since the system is now
subject to boundary conditions, only discrete solutions are allowed). The solution
for the magnetic field component reads

Bz = B0 sin
(mπx

a

)
sin
(nπy

b

)
exp[i(ωt− kzz)]. (2.6)

Having found these solutions and recalling that k2c = k2x + k2y, it can now be seen
that

kc =

√(mπ
a

)2
+
(nπ
b

)2
, (2.7)

which can be used to determine the cut-off frequency (or wavelength) of a particular
waveguide mode. Using the wave equation 2.1 and the solutions 2.5 and 2.6, it is
possible to write down Ex and Ey in terms of Ez. Inserting the solutions we get:

Ex = i(kz∂xEz + ck0∂yBz)/(k
2
z − k2),

Ey = i(kz∂yEz − ck0∂xBz)/(k
2
z − k2),

Bx = i(ckz∂xBz − εµk0∂yEz)/c(k2z − k2),
By = i(ckz∂yBz + εµk0∂xEz)/c(k

2
z − k2),

(2.8)

where k0 = ω/c is the vacuum wavenumber. Looking at equation 2.8 three funda-
mental classes of field configurations can be distinguished:
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2 The REGAE RF System

(1) Ez = 0 TEmn-modes (transverse electric)

(2) Bz = 0 TMmn-modes (transverse magnetic)

(3) Ez = Bz = 0 TEMmn-modes (transverse electromagnetic)

Since Ez = 0 for TE- and TEM-modes, it is clear that the most important modes
for particle acceleration are TM-modes. The indices m,n can be understood phys-
ically as the number of half-wavelengths along the x− and y−axis respectively.
From equation 2.5 it follows that the lowest TM-mode is the TM11 mode. Figure
2.2 shows the field configuration for two modes in a rectangular waveguide. It
is now possible to calculate all possible modes in a particular rectangular waveg-
uide. A sample calculation can be seen in table 2.1. Every waveguide has a so
called dominant mode. The dominant mode is the mode with the smallest cut-off
frequency, or in other words the mode which supports the broadest range of fre-
quencies. For rectangular waveguides the TE10 is the dominant mode, which can
be seen from equation 2.7 (TE11 for cylindrical waveguides, see below). Another

Table 2.1: TM-modes for a rectangular waveguide with a = 7.0 cm and b = 3.2 cm,
which corresponds to a WR-284 S-band waveguide (EIA (The Electronic In-
dustries Alliance) specifications). The cut-off frequency has been calculated
using equation 2.7 and the assumption that the wave travels in vacuum.

m n fc,mn (GHz)

1 1 5.15
1 2 9.61
2 2 10.3

important quantity for rectangular waveguides is the waveguide wavelength λg.
From the usual definition λ = 2π/k we get:

λg =
2π

kz
=

2π√
k2 − k2c

. (2.9)

It is important to note that λg > λ, where λ is the free space wavelength.

2.1.2 Cylindrical Waveguide

At REGAE (as it has been stated in chapter 1) the electrons are accelerated
using a standing-wave 1.5 cell RF cavity. Since this cavity, as well as the buncher
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Figure 2.2: Electric and magnetic field configuration of the TE10 and TM11 mode in
a rectangular waveguide. The blue solid lines depict the electric field lines
and the red dashed lines the magnetic field lines. The top view is a cut
through the waveguide at y = b/2 as defined in figure 2.1.

cavity are cylindrical, it is useful to quickly review the waveguide quantities that
have been derived above for cylindrical waveguides. For the derivation of these
properties it makes sense to switch to cylindrical coordinates. As a matter of fact
this is the only difference, which has to be taken into account. The wave equation
for the z-component in cylindrical coordinates is given by

∂2rEz +
∂rEz
r

+
∂2φEz

r2
+ ∂2zEz +

εrµr
c2

Ez = 0. (2.10)

The solution of the equation can be found using Bessel’s functions of the first kind
Jα(x) in integer order (cylindrical symmetry):

Ez = E0Jm(kcr) exp[i(ωt−mφ− kzz)]. (2.11)

Due to metallic surfaces, the boundary condition is Ez = 0 at the boundary of
the waveguide. Looking at the solution, it is clear that in order to satisfy this
condition at all times, it is necessary to find the roots of the Bessel functions
Jα(kca), where a is the radius of the waveguide pipe. This also defines the cut-off
wavenumber, which now depends on the radius of the waveguide in a way that
waves with a wavelength smaller than the pipe diameter cannot be guided. The
cut-off wavenumber for TM modes is now defined as

kc =
jα,β
a
, (2.12)
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2 The REGAE RF System

where jα,β is the β-th root of the Bessel function of the first kind of order α.
Therefore the modes for cylindrical waveguides are now called TEα,β and TMα,β.
Physically the two indices describe the number of half-wavelengths along one half-
circumference (α) and the radius (β) respectively. Figure 2.3 shows the field con-
figuration for two modes in a cylindrical waveguide.

TE01 TM01

T
O
P

FR
O
N
T

Figure 2.3: Electric and magnetic field configuration of the TE01 and TM01 mode in
a cylindrical waveguide. The blue solid lines depict the electric field lines
and the red dashed lines the magnetic field lines. The top view is a cut
through the waveguide at a = 0.

2.1.3 Standing Wave Cavity

Since for both the rectangular and the cylindrical waveguides the phase velocity vph
exceeds the speed of light, both structures are not suitable for particle acceleration,
because the particles would be overrun by the wave. One way to overcome this
problem is to use standing waves in an (in the case of REGAE) cylindrical RF
cavity (or pillbox cavity). The simplest cavity resonator would be a waveguide
with a short circuit termination at each end. In the ideal case the walls are
perfect conductors, which leads to the boundary conditions that have also been
used above: Electrical field lines end perpendicular to the cavity walls and the
magnetic field lines are parallel close to the walls. If L = p · λg/2, where L is the
cavity length, p ∈ N and λg the guide wavelength as defined in equation 2.9, the
condition for standing waves is fulfilled and the z-component of the electric field
is then a superposition of Ez and E−z from equation 2.11. Due to the fact that
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the system is now bounded in the z-direction, an additional index is added to the
mode specification. For a cylindrical cavity the modes are now called TEαβp and
TMαβp. The so called HEM (hybrid EM) modes are superpositions of the two.
All of the modes are now characterized by their azimuthal (α), radial (β) and
longitudinal (p) field configuration. In accelerator physics the usual nomenclature
for the azimuthal modes is monopol (α = 0), dipole (α = 1), quadrupole (α = 2)
and so on ([11]).
Taking the resonance condition L = p · λg/2, it is possible to calculate the

resonant frequencies for TM modes of a cylindrical single cell cavity in the following
way. Noticing that

λg =
2L

p
=

2π√
k2r − k2c

, (2.13)

where equation 2.9 has been used, it is possible to solve for kr, which is the
wavenumber that fulfills the resonance condition:

k2r =
π2p2

L2
+ k2c . (2.14)

Inserting equation 2.12 yields

fr =
c

2π
·

√
j2αβ
a2

+
π2p2

L2
. (2.15)

For TM-modes the special case p = 0 is the case where Ez has no longitudinal
dependence. This implies that the resonant frequency — in this case — does not
depend on the length of the cavity. Therefore for this special case

fr(TMαβ0) =
c

2π
·

√
j2αβ
a2
. (2.16)

The lowest monopole mode is called the fundamental mode and in the case of a
cylindrical single cell cavity it is the TM010 mode (see figure 2.4). Setting α = 0,
β = 1 and p = 0, the resonant frequency of this mode can readily be computed
using equation 2.15 and j0,1 = 2.4048:

fr(TM010) =
c

2π
· 2.4048

a
. (2.17)

So in order to build an S-band TM010 resonator cavity, the radius of the cavity
would need to be a3GHz = 3.83 cm (REGAE: a = 3.93 cm). All other modes except
for the fundamental mode are called HOMs, or higher order modes. These modes
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Electric Field Magnetic Field

Figure 2.4: Numerical simulation of the TM010 mode for a cylindrical single cell cavity.

are not desirable for particle acceleration, because they can lead to deflection of
particles due to their azimuthal fields. Even without exciting them actively they
can however be excited by the electron beam itself. The REGAE gun cavity is a 1.5
cell resonator cavity, which means that a single and a half cell are coupled to form
one cavity. This half cell configuration has been developed to enable the injection
of the electrons that are created at the photo cathode into the maximum of the
field (see section 2.6.4 for field measurements). Newly emitted electrons have to be
accelerated first to an energy where they are synchronized with the field. During
this period phase slippage occurs and the electrons are not accelerated properly. It
can be shown that the electrons are synchronized with the field after the first cell
([12]). Inside of the second cell the electrons now do not experience phase slippage
any more and are thus accelerated properly. This system of coupled cavities can be
understood as two coupled electrical resonators. The equivalent circuit is shown
in figure 2.5. As a result of this coupling, the azimuthal modes are now split into

CIRCUIT a

CIRCUIT b

LL CC

M
Ia Ib

Figure 2.5: Simple equivalent circuit for two coupled resonator cavities.
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N + 1 sub-modes, where N + 1 is the number of coupled resonator cavities. The
usual nomenclature in accelerator physics is to add the phase advance between each
cell in multiples of π to the original azimuthal mode specification ([11]). So the
fundamental modes of a system of two coupled cylindric resonator cavities would
now be the TM010 0 mode and the TM010 π mode. The latter is often simply called
the monopole π mode. So why does this splitting occur? Assuming that both cells
have the same resonant frequency ω0,1 = ω0,2 = ω0 (and therefore L1 = L2 = L and
C1 = C2 = C), the system can be analyzed easily using Kirchoff’s law. Referring
to figure 2.5 we get for circuit a and b:(∑

U
)
a/b

= Ia/b(iΩL) +
Ia/b
iΩC

+ Ib/a(iΩM) = 0, (2.18)

where M = k · √L1L2 = k · L is the mutual inductance between the two circuits
and k ∈ [0, 1] is the coupling coefficient of the two circuits. This can be simplified
the following way:

Ia/b(iΩL) +
Ia/b
iΩC

+ Ib/a(iΩM) = 0

⇐⇒ Ia/b

(
ΩL− 1

ΩC

)
+ Ib/aΩM = 0

⇐⇒ Ia/b

(
1− 1

Ω2LC

)
+ Ib/a

M

L
= 0

⇐⇒ Ia/b

(
1− ω2

0

Ω2

)
+ Ib/ak = 0

(2.19)

where ω0 = 1/
√
LC for electrical circuits. This set of equations can be brought

into matrix form which leads to the following eigenvalue problem(
1/ω2

0 k/ω2
0

k/ω2
0 1/ω2

0

)
·
(
Ia
Ib

)
=

1

Ω2
·
(
Ia
Ib

)
(2.20)

with eigenvalues
Ω0/π =

ω0√
1± k

(2.21)

and eigenvectors

v0/π =

(
1

±1

)
, (2.22)

which correspond to the in phase (0 mode) and out of phase (π mode) normal
modes of the system. Expanding this to an arbitrary number of N + 1 cells and

17



2 The REGAE RF System

assuming nearest neighbor coupling, equation 2.18 then becomes

In

(
1− ω2

0

Ω2

)
+ κ(In−1 + In+1) = 0, (2.23)

where κ = k/2. This equation can now be solved by imposing periodic boundary
conditions and using Floquet’s theorem ([13]), which states that

In+1 = In · exp(iφ)

In−1 = In · exp(−iφ),
(2.24)

or in other words: Because of the spatial periodicity of the system, the individual
functions In differ only by a phase factor exp(iφ). It is interesting to note that this
property of periodic structures is very common for example in solid state physics
(see Bloch’s theorem). Inserting equation 2.24 into 2.23 yields

In

(
1− ω2

0

Ω2

)
+ κ(In exp(−iφ) + In exp(iφ)) = 0

⇐⇒
(

1− ω2
0

Ω2

)
+ 2κ cos(φ) = 0

⇐⇒ 1

Ω2
=

1 + 2κ cosφ

ω2

⇐⇒ Ω =
ω√

1 + 2κ cos(φ)
.

(2.25)

Using the result 2.21 it can be seen that φ = πq/N , where q ∈ [0, N ] is the mode
number. Therefore the dispersion relation for the normal modes is now given by

Ωq =
ω0√

1± k cos(πq/N)
, (2.26)

where the sign of k depends on whether the cells are coupled magnetically (sgn(k) =

−1), or electrically (sgn(k) = +1). The original derivation where the authors use
a slightly different approach can be found in [14]. A more detailed derivation of
equation 2.26 which also includes losses can be found in [13]. For particle accel-
eration π mode is the most used modes because of their particularly useful phase
advance. Figure 2.6 shows the dispersion relation for seven magnetically coupled
cells. From the plot one can immediately see one important aspect of coupled
resonant structures, namely the mode spacing. In the vicinity of the 0 and π the
mode spacing is smaller. For a large number of cells (typically > 9) this can lead
to the so called instability of the π-mode, since adjacent modes begin to overlap.
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Figure 2.6: Dispersion relation for 7 magnetically coupled cells. The values have been
calculated using equation 2.26.

It is important to note that due to the cosine term in the denominator, the disper-
sion curve shown in figure 2.6 can be extended for arbitrary values for the phase
advance. This results in a sinusoidal shape of the dispersion curve and an infinite
number of so called spatial harmonics for a given allowed frequency. Spatial har-
monics on the positive slope can be attributed to forward waves, the ones on the
negative slope are the backward wave spatial harmonics. The total electric field
can then be understood as a sum over all the spatial harmonics.

2.1.4 Figures of Merit

Having established the basic concepts of waveguides and standing wave resonant
cavities, the following section will highlight some of the important figures of merit
of an RF cavity. The first important quantity is the so called shunt impedance,
which is defined as

RS =
|Uacc|2
Pd

(2.27)

where Uacc is the effective accelerating voltage and Pd is the power loss, or the
dissipated power. The effective accelerating voltage is defined by

Uacc =

∫
Ez(z)ei

ω
βc
zdz, (2.28)
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i. e. the voltage a particle with velocity βc experiences during its transit through
the cavity, subject to time variations of the field. Therefore the proportionality
factor, which connects Uacc with the time-independent accelerating voltage U0 is
called the transit time factor Tβ. It is defined by

Uacc = Tβ · U0 =

∫
Ez(z)ei

ω
βc
zdz

U0

· U0 =

∫
Ez(z)ei

ω
βc
zdz∫

Ez(z)dz
· U0. (2.29)

For the TM010-mode Ez(z) = E0 is not not a function of z, therefore the transit
time factor can be calculated by noticing that the integral in the numerator is now
just the Fourier transform of a box function. If z ∈ [−L/2, L/2], then

Tβ(TM010) =
sin
(
L
βλ

)
L
βλ

, (2.30)

where ω/βc = 2π/βλ has been used. The cavity length L must now be chosen
according to the free space wavelength λ and β (hence the particle type), such
that Tβ is maximized. This is called β-matching and the resulting mode is the
synchronous mode. From this it can be concluded that all other spatial harmonics
of the synchronous mode do not contribute to the net accelerating field, since they
are not β−matched (recall figure 2.6).
The shunt impedance can be understood as the quantity that defines the effi-

ciency of power transfer to the electron beam through Pb = RS · I2. Knowing this,
it is clear that RS needs to be maximized. Power losses inside the cavity occur
due to the finite conductivity of the cavity walls, which has been neglected in the
calculations above. In fact the fields and surface currents penetrate into the cavity
walls as deep as the so called skin depth ([15])

δs =

√
2

µ0µwσw · ω
, (2.31)

where µw and σw are the wall permeability and conductivity respectively. The
power loss is directly proportional to the skin depth and the square of the cavity
voltage [15]. Therefore the shunt impedance is mostly influenced by the choice of
material and the cavity shape. It is also important to note that the power loss de-
pends on the particular cavity mode. In accelerator physics it is common to quote
the shunt impedance per unit length, or the so called specific shunt impedance. As
a rule of thumb the following formula can be used to estimate the specific shunt
impedance for a copper cavity [15]:

rs(MΩ/m) ≈ 1.28 ·
√
frf(MHz). (2.32)
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Another important property of a resonator cavity is the quality factor. Resonator
cavities can be thought of as damped oscillators with external excitation. The
damping is again due to power losses in the cavity walls, but also due to the
energy transfer from the field to the electron beam. Starting from the well known
ODE for the damped harmonic oscillator

ẍ+ 2αẋ+ ω2
0 = Aext exp(iωextt), (2.33)

where α is the damping coefficient, one finds [15] solutions of the form
x = A exp(iωextt). The amplitude A is then given by

A = a exp(iΨ) =
Aext√

(ω2
0 − ω2

ext)
2 + 4α2ω2

ext

exp(iΨ), (2.34)

where Ψ describes the phase shift between the external excitation and the oscil-
lator and is often called the tuning angle, because its magnitude is a measure for
the detuning of the system. The maximum of the amplitude is reached for the
perturbed resonant frequency

ωext =
√
ω2
0 − 2α2. (2.35)

One can see that this frequency depends on the damping of the system. Without
any damping the frequency response of the system would correspond to a δ-peak,
but in reality the damping leads to broadening. The amount of broadening, or in
other words the width of the resonance curve determines the quality factor of the
system. It is defined as

Q =
ωres

2α
. (2.36)

Another definition relates the stored energy to the energy loss:

Q =
ωresWsto

Wlos
. (2.37)

Knowing the quality factor of the system, the tuning angle near the resonance can
be found using the following formula [15]:

cot Ψ ≈ 2Q
ω − ωres

ωres
. (2.38)

It is important to note that in reality due to lossy coupling between the waveguides
and the cavity and in the case of an accelerator cavity the electron beam itself
(beam loading), additional damping is introduced. Therefore two different factors
exist for such cavities: The loaded quality factor Q (with beam and a coupling
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Figure 2.7: Amplitude and tuning angle for an externally excited damped resonator.

coefficient smaller than one) and the unloaded quality factor Q0 (without beam
and critical coupling). Looking at the definitions of both the shunt impedance and
the quality factor, one notices that both depend on the power loss in the system,
which is connected to the material properties. A more general figure of merit can
be found by looking at the ratio between the shunt impedance and the quality
factor R/Q, which is hence called R over Q. It is given as

R

Q
=

U2
acc

ωresWsto
. (2.39)

R over Q only depends on the shape of the cavity and is therefore a useful char-
acteristic quantity for resonator cavities.

2.2 CST Simulations

In the last section the basic theory of RF waveguides and standing wave cavities
has been discussed. This section will focus on numerical simulations of the cavity
modes for both the gun and the buncher using CST Microwave Studio 2012. The
numerical calculations are based on three dimensional CAD drawings of the two
cavities, as well as the coaxial coupler courtesy of Marcus Barenscheer (DESY).
These calculations should show how the electric field configurations look like in the
highly optimized cavities, which have been developed for REGAE. The results will
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2.2 CST Simulations

then be compared to actual RF measurements, which will be presented in section
2.6.1 in more detail.

2.2.1 Gun Cavity

The gun cavity used at REGAE is based on a 1.5 cell design. Table 2.2 shows
the dimensions of the individual cells. Looking at the actual CAD drawing (see
figure 2.8), it can be seen that the cells are tapered towards the ends. This leads
to a reduction of peak electric fields and surface losses due to the high magnetic
fields (recall figure 2.4). In addition to that, the iris (coupling hole between the
cells) edges are shaped according to a circle arc, which reduces the non-linear
components of the electric field in the gap region ([12]). The iris radius determines
the coupling strength between the two cells. Since this system comprises two
coupled resonators, the modes are expected to split into the 0- and the π−modes.
Recalling the last chapter, the fundamental mode is the TM010-mode, which now
is split, due to the coupling. Figure 2.8 shows the simulation results for the TM010

modes. The RF signal is coupled into the cavity — like in the real experiment
— using a coaxial coupling antenna. The coaxial design of the coupler avoids
potential field asymmetries that would arise from other coupling schemes, like a
simple coupling loop ([16]). One can see that the longitudinal fields inside the
individual resonators are indeed in phase for the 0-mode as expected. The TM010

π-mode is also shown in figure 2.8. Here the fields — again as expected from the
theory — differ in phase by π. Table 2.3 shows the calculated, as well as the
measured mode frequencies. It can be seen that the frequencies are the same for
the 0-mode, in the case of the π-mode there is a difference of approximately 1MHz.
Therefore the mode-spacing does not exactly correspond. This mismatch can have
two reasons. The first could be inaccuracies in the three dimensional drawings.
The second could be the tuning of the gun, as well as a slightly different position
of the antenna due to a different gasket between the gun and antenna part. In
addition to that the calculation has been performed using a dummy model of the
cathode, which is different from the real cathode.

Table 2.2: Dimensions of the REGAE gun cavity (taken from the CAD drawings).

Length (mm) Radius at center (mm)

Half cell 23.83 39.33
Full cell 43.33 39.33
Iris gap 10.00 10.83
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Figure 2.8: Numerical simulation of the electric field of the TM010 modes inside the
REGAE gun cavity.

Table 2.3: Calculated and measured frequencies for the gun TM010 modes. All values
are given in GHz.

0-mode π-mode

Microwave Studio 2.989 2.997
Measurement 2.989 2.998
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2.2 CST Simulations

2.2.2 Buncher Cavity

The buncher cavity comprises four full cells. The dimensions of the individual
cells are shown in table 2.4. It can be seen that the cells are only tapered towards
one end. This is due to the modular design of the cavity, which allows stacking
of individual cell modules. Since the cavity contains four cells, the expected fun-
damental modes are the TM010 0, TM010 π/3, TM010 2π/3 and TM010 π-mode.
Figure 2.9 shows all of the TM010 modes for the buncher cavity. Again, the phase
relations are as expected. Table 2.5 shows the calculated, as well as the measured
mode frequencies. It can be seen that the spacing between the adjacent modes
is — bearing in mind the accuracy of both the RF measurements and the sim-
ulations — in good agreement, except for the spacing between the 0-mode and
its adjacent mode. The measured 0-mode is 1MHz lower than the simulated one.
The difference between the actual values is again due to additional tuning of the
cavity and possible inaccuracies in the three dimensional mesh of the CAD draw-
ing. Recalling the dispersion curve (figure 2.6) for coupled resonators, one might
ask why the modes spacing the 0- and its adjacent mode is not the same as the
spacing between the π-mode and its adjacent mode. It has to be noted here, that
the derivation of equation 2.26 — which has been used to calculate the disperion
curve — is based on the assumption of identical cell to cell coupling coefficients.
Numerical simulations using Microwave Studio take these factors and the actual
cavity shape into account.

Table 2.4: Dimensions of the REGAE buncher cavity (taken from the CAD drawings).

Length (mm) Radius at center (mm)

Full cells 40.00 39.33
Iris gap 10.00 10.83

Table 2.5: Calculated and measured frequencies for the buncher TM010 modes. All
values are given in GHz.

0-mode π/3-mode 2π/3-mode π-mode

Microwave Studio 2.983 2.988 2.993 2.995
Measurement 2.985 2.991 2.996 2.998
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π-Mode

2π/3-Mode
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Figure 2.9: Numerical simulation of the electric field of the TM010 modes inside the
REGAE buncher cavity.

26



2.3 Analytical Description of the RF System

2.3 Analytical Description of the RF System

In the preceding sections the basic properties of RF waveguides and resonator
cavities, as well as numerical simulations of the actual REGAE gun and buncher
cavity fields using CST Microwave Studio have been presented. This section will
focus on the unique RF setup at the REGAE facility. At REGAE both cavities are
fed by a single klystron. Figure 2.10 shows a simple schematic of the setup. The
signal is first split by the shunt-T and then delivered via the two waveguide arms to
the individual cavities. On the gun arm a phase shifter has been implemented. This
device enables the operators to adjust both phases (gun, buncher) independently,
since any adjustments to the klystron phase affect both cavities at the same time.
The phase shifter can also be used to alter the power distribution in the system,
which would otherwise be fixed by the shunt-T. In reality, the cavities will always
reflect a portion of the incoming wave. Hence the two cavities by design of the RF
system are prone to crosstalk effects. These crosstalk effects also alter the behavior
of the phase shifter. Using the so called S-Matrix formalism, an analytical model
will now be developed, in order to understand how the system reacts to adjustments
of the phase shifter settings.

Klystron Shunt-T

Phase

shifter

Gun
cavity

Buncher
cavity

Figure 2.10: Simple schematic of the REGAE RF system.

2.3.1 S-Matrix Formalism

The behavior of an n-port network of RF devices can be described using the so
called S- or Scattering-Matrix formalism. What this matrix essentially describes
is the reaction of the system to incoming waves ai onto either of the n ports. Using
this formalism, it is easy to calculate the outgoing waves bi for all the n ports. The
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2 The REGAE RF System

general formulation for an n-port reads:

b = Ŝ · a (2.40)

where both a and b are n-dimensional vectors and Ŝ is an n × n matrix. The
matrix elements Sij — or S-parameters are unique for every element in the network
and have to be calculated. For most of the commonly used elements there are
tables of S-parameters available ([17]). The diagonal elements of the S-matrix
are called reflection coefficients. In the case of a 2-port device, the off-diagonal
matrix elements are called the forward gain coefficients. The S-matrix of a simple
transmission line (and hence a 2-port) is given by:

ŜT =

(
0 e−γL

e−γL 0

)
, (2.41)

where L is the length of the transmission line and γ = α+ ik, with the attenuation
factor α and the wave number k is called the propagation factor. Looking at the
matrix elements, one can immediately see the effect of the transmission line on an
incoming wave. In the case of the transmission line, a phase factor plus a possible
attenuation is added and no reflections at the ports occur, which is the expected
result for a transmission line element.

a1

a2

b2

b1
1 2

Figure 2.11: A two-port device.

Phase Shifter

The RF system at the REGAE facility incorporates a two-arm mechanical phase
shifter (see figure 2.12), where the phase shift can be adjusted by altering the
lengths of the two arms, which are both terminated critically and hence have
a reflection coefficient r = 1. Adjustment of the length is achieved using stepper
motors, which can be remotely controlled from the control room. The phase shifter
is essentially a 2-port device, but the theoretical treatment has to be done using
4-port network theory. Every n-port device can be broken down into an arbitrary
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2.3 Analytical Description of the RF System

Figure 2.12: Photo of the REGAE phase shifter.
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2 The REGAE RF System

amount of concatenated sub-devices ([17]). In the case of the REGAE phase
shifter, the network contains a so called 4-port 3 dB coupler and two transmission
lines with lengths L2 and L4 (the two arms) (see figure 2.10). As it has been

ain

bref

bout

a3

a2

a4

b2

b4

aL2

aL4

bL4

bL2

L2

L4

r

r

1 2

3 4

3 dB Coupler

Figure 2.13: Schematic of the REGAE phase shifter.

mentioned above, the transmission lines are both terminated with r = 1. The
S-matrix of the transmission lines can be found in equation 2.41, the matrix of a
3 dB coupler looks as follows ([17]):

Ŝ3db =
1√
2
·


0 1 0 i

1 0 i 0

0 i 0 1

i 0 1 0

 (2.42)

In the following calculations it is assumed that there is no input at port 3 (see
figure 2.13). Using equations 2.42, 2.41 and 2.40 and a3 = 0 we get:

b1 = S3dB,12 · a2 + S3dB,14 · a4 ≡ bref

b2 = S3dB,21 · a1
b3 = S3dB,32 · a2 + S3dB,34 · a4 ≡ bout

b4 = S3dB,41 · a1

(2.43)
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2.3 Analytical Description of the RF System

The input signals to ports 2 and 4 must be calculated using the S-matrix of a
transmission line:

a2 = e−2γL2 · b2 = e−2γL2 · a1√
2

a4 = e−2γL4 · b4 = e−2γL4 · a1√
2
· i,

(2.44)

where in figure 2.13 a1 = ain, b1 = bref and b3 = bout. It is now easy to calculate
the output wave and the reflected wave:

bout =
a4 + ia2√

2

bref =
a2 + ia4√

2
.

(2.45)

In order to check conservation of power, it is necessary to check if the modulus
squared of the input is equal to the sum of the modulus squared of output and
reflected wave:

|bout|2 + |bref|2 = b?outbout + b?refbref =
|ain|2

2
+
|ain|2

2
= |ain|2. (2.46)

The system as calculated satisfies the conservation of power.

The Phase Shifter as a 2-Port Device

As it has been stated above, the phase shifter is essentially a 2-port device. There-
fore it must be possible to describe the system using a 2 × 2 scattering matrix.
Assuming again that a3 = 0, i.e. that the load is perfectly matched, we immedi-
ately get using equation 2.40:

Ŝ2portPS =
1

2
·
( [

e−2γL2 − e−2γL4
]

0

i ·
[
e−2γL4 + e−2γL2

]
0

)
. (2.47)

In the above calculations it has always been assumed that a3 = 0 in order to
keep the calculations simple. This in fact leads to a scattering matrix 2.47 that
is not completely correct, as such a device violates reciprocity. A network that
contains only transmission lines and a phase shifter must be reciprocal. Reciprocity
describes the fact that the behavior of the system does not depend on the direction
of the signal, or in other words that it must be possible to exchange input and
output without changing the effect of the device on the signal. Mathematically
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2 The REGAE RF System

this means that the scattering matrix must be equal to its transpose, i.e. Ŝ = ŜT .
Therefore the reciprocal 2-port scattering matrix for the phase shifter must be:

Ŝ2portPS =
1

2
·
( [

e−2γL2 − e−2γL4
]

i ·
[
e−2γL4 + e−2γL2

]
i ·
[
e−2γL4 + e−2γL2

] [
e−2γL2 − e−2γL4

] ) (2.48)

This is now the final S-matrix for the REGAE phase shifter. The next device it is
necessary to find an S-matrix for, is the shunt-T power divider.

Shunt-T Power Divider

A power divider is a 3-port device, which splits the incoming power P1 at port 1
into P2 at port 2 and P3 at port 3. The division factor α = P2/P3 is not fixed to
0.5, but the device can be constructed to accomplish any factor from 0 to 1. It
can be shown that it is physically not possible to construct a 3-port device that is
at the same time matched, lossless and reciprocal. For the calculations a so called
resistive power divider will be used, which is assumed to be matched, reciprocal,
but lossy.
Due to the assumption that all ports are matched, the diagonal elements of the

scattering matrix vanish and therefore

S11 = S22 = S33 = 0. (2.49)

Another assumption of this model is efficient devision of the power, or in other
words that the division process does not result in any power loss. This immediately
yields

|S11|2 + |S21|2 + |S31|2 = 1. (2.50)

and hence |S21|2 = α as well as |S31|2 = 1 − α. The third assumption (which is
cleary unrealistic and needs to be addressed) is that there is no crosstalk between
port 2 and 3:

S23 = S32 = 0. (2.51)

From the reciprocity condition the last matrix elements are:

S12 = S21

S13 = S31.
(2.52)

Now the scattering matrix for the resistive power divider can be written as:

ŜShuntT = −i ·

 0
√
α
√

1− α√
α 0 0√

1− α 0 0

 . (2.53)
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In order to address the crosstalk between the two arms the following matrix has
to be used:

ŜShuntT = −i ·

 0
√
α

√
1− α√

α 0
√
α√

1− α
√

1− α 0

 . (2.54)

One immediately sees that this modification breaks the reciprocity of the matrix
for α 6= 0.5. This is the expected result, because as soon as the power is not
distributed evenly, the choice of ports does indeed matter.

Cavity Couplers

At REGAE the RF waves are coupled into the cavity using a coaxial coupler. The
coupling can essentially be described by one single quantity, namely the coupling
coefficient β. A coupling coefficient equal to unity would correspond to a perfect
coupling and hence complete transmission of the wave. In scattering matrix for-
malism this device can be described as a 2-port. The coupling matrix is therefore
given by

ŜCoupler = −i ·
(√

1− β √
β√

β
√

1− β

)
. (2.55)

2.3.2 The T-Matrix

In the previous sections the S-matrices of the RF devices used in the REGAE
RF system have been calculated and discussed. The advantage of the S-matrix
approach is that it reduces the description of a rather complex system to a simple
matrix multiplication. One disadvantage however is that it is not possible to
concatenate these matrices. For a chain of an arbitrary number of 2-port devices
the so called T-matrices can be used. The T-matrices (or transfer matrices) of
2-port devices can be concatenated in order to describe the whole system with
one matrix. This total transfer matrix then takes all reflections into account. The
T-matrix of a 2-port device is defined by(

b1
a1

)
=

(
T11 T12
T21 T22

)
·
(
a2
b2

)
= T̂ ·

(
a2
b2

)
. (2.56)

A chain of 2-port devices can then be described by the total transfer matrix

T̂tot = T̂n · T̂n−1 · · · T̂2 · T1. (2.57)

Conversion between S- and T-matrices can be done using the following formulae
([17]):
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T11 = −det(Ŝ)

S21

T12 =
S11

S21

T21 = −S22

S21

T22 =
1

S21

S11 =
T12
T22

S12 =
det(T̂)

T22

S21 =
1

T22

S22 = −T21
T22

This way it is possible to calculate an S-matrix for a chain of devices. It has to be
noted though that this approach is only valid for a chain of 2-port devices ([18]).
For the REGAE RF system the T-matrix approach will be applied to both the
gun- and the buncher-arm. The whole system can then be calculated by solving
equation 2.40 using 2.54.

Combining all Devices

Having calculated all the relevant scattering matrices, it is now possible to combine
them using the T-matrix approach. In addition to that, it is useful to note that
both arms (gun- and buncher-arm respectively) are effectively 1-port devices and
can be described by a time and frequency dependent reflection coefficient r(t, ω).
Using this and the assumption that the connections to the shunt-T are matched,
it is possible to solve the set of equations for the scattering matrix 2.54.

b1 =
√
α · a2 +

√
1− α · a3,

b2 =
√
α · a1 +

√
α · a3,

b3 =
√

1− α · a1 +
√

1− α · a2,
(2.58)

where a2 = rb(t, ω) · b2 and a3 = rg(t, ω) · b3. Solving this set of equations yields

b1 =
a1rbα

2 + a1rbrgα
2β + a1rgβ

2 + a1rbrgαβ
2

rbrgαβ − 1
,

b2 = −a1α + a1rgαβ

rbrgαβ − 1
,

b3 = −a1β + a1rbαβ

rbrgαβ − 1
,

(2.59)

where β = 1−α. In order to get the reflection coefficients for the arms one just has
to use the fact that bref = r(t, ω) · ain, where bref can be calculated using the total
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S-matrix of the arm and the reflection coefficient of the cavity coupler. Therefore:

ri(t, ω) =
bref,i
ain

(2.60)

These sets of equations can now be used as a model for the behavior of the phase
shifter. In the next section the model will be compared to actual RF measurements
that have been conducted at REGAE.

2.4 Phase Shifter Measurements

In the preceding section an analytical description of the RF system at REGAE
has been developed using the S-matrix formalism. The main motivation for this is
the need to be able to gain an understanding of how the phase shifter acts on the
cavity phases and amplitudes during machine operation. Ideally — which means
without any crosstalk between the cavities — the phase shifter just acts on the
gun phase. In order to test this and the analytical model, an automated phase
shifter scan procedure has been implemented as a MATLAB ([19]) stand-alone
tool. There are three questions that need to be answered now:

(1) How does the phase shifter act on the machine, when both arms are moved
at the same time?

(2) How can the power distribution be altered by moving the arms indepen-
dently?

(3) Can these behaviors be described by the analytical model?

Using the phase shifter scan tool the following measurements have been conducted.

Both Arms at the same Time

Figure 2.14 shows the results of a phase shifter scan, where both arms have been
moved at the same time over the whole possible travel range. The recorded data
is the gun forward phase, i. e. the phase measured at a directional coupler right
before the gun cavity. Two theoretical curves that have been calculated using
the theoretical model are also shown. Several things can now be extracted here.
First of all, the measurement shows that the gun phase can be shifted at a rate
of approximately 5.15 deg/mm. This result should be connected to the guide
wavelength λg as defined in equation 2.9. Taking the two arm design of the phase
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Figure 2.14: Comparison between measurement and simulation of the gun forward
phase for a simultaneous scan of both phase shifter motor positions.

shifter into account, a travel distance of λg results in a phase shift of 2 · 360 deg.
Therefore the theoretical rate is given by

∆φ

∆z
=

720 deg
λg

. (2.61)

The guide wavelength for the fundamental mode of the REGAE waveguides can
be calculated using equations 2.7 and 2.9 to be λg = 13.9 cm, where the waveguide
dimensions a = 7.2 cm and b = 3.4 cm have been used. Inserting this result into
equation 2.61 yields the theoretical phase shift rate of 5.18 deg/mm, which differs
from the measured value by only 0.6%. The second insight that can be extracted
is the fact that the phase change is subject to a slight periodicity. Comparison
with the theoretical model shows that the measured signal can be described by the
model as soon as the buncher arm is added to the model. Two things can therefore
be concluded:

(1) The effect of the phase shifter on the machine parameters is altered by the
cross-talk between the gun and buncher cavities.

(2) The measurement can be described by the simple theoretical model.

Since the periodicity in the phase signal seems to stem from the cross-talk between
the cavities, another measurement has been conducted with a 20mm offset between
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Figure 2.15: Comparison between measurement and simulation of the gun forward
phase for a simultaneous scan of both phase shifter motor positions with
an offset of 20mm.

the motor positions. This way the power distribution and hence the strength of
the cross-talk can be altered. Figure 2.15 shows the results of this measurement
compared to the theoretical model. It can be seen that the periodicity has changed
substantially due to the offset. This is an important result, because it has to be
taken in account by the operator, when the power distribution needs to be changed
with respect to the design setting. From both measurements it is now clear that
the phase shifter not only acts on the gun phase, but also on the buncher and
vice versa. Figure 2.16 shows the behavior of the buncher forward amplitude and
phase for a simultaneous scan of both phase shifter motor positions without any
offset. Once again, the data can be described by the analytical model.

Moving the Arms independently

As it has already been stated above, the power distribution between the two cav-
ities can be adjusted using the phase shifter, by varying the offset between the
motor positions. This effect is simply due to the additional reflections one intro-
duces at the phase shifter ports. Figure 2.17 shows the result of a measurement
of the gun forward amplitude as a function of the displacement of the two motor
positions. Again, the scan can be described by the theoretical model nearly flaw-
lessly. Only the dip on the first peak (between -60 and -40mm) does not lie on the

37



2 The REGAE RF System

0 20 40 60 80 100
-5

0

5

10

15

20

 Analytical Model
 Measurement

 

 

B
un

ch
er

FW
P

ha
se

 (d
eg

)

Motor Position (mm)
0 20 40 60 80 100

0,70

0,75

0,80

0,85

0,90

0,95

1,00

1,05

1,10

 Analytical Model
 Measurement

 

 
B

un
ch

er
FW

A
m

p 
(n

or
m

al
iz

ed
, a

.u
.)

A

Measurement
Measurement

Motor Position (mm)

0 20 40 60 80 100

B
u
n
ch

er
F
W

P
h
a
se

(d
eg

)

�5

0

5

10

15

20

ModelModel

Motor Position (mm)

0 20 40 60 80 100

B
u
n
ch

er
F
W

A
m

p
(n

or
m

.
a
.u

.)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

Figure 2.16: Comparison between measurement and simulation of the buncher for-
ward amplitude (left plot) and phase (right plot) during a scan of the
phase shifter (both arms at the same time) over the full travel range.
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Figure 2.17: Comparison between measurement and simulation of the gun forward
amplitude for a scan of the difference between the phase shifter motor
positions. “Motor Delta” ≡ xM3 − xM2.
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theoretical curve. This dip might be caused by damages in the phase shifter arms.
This can be concluded from the fact that the effect has been observed in later mea-
surements as well for similar phase shifter settings. From the measurement and
the model it can be seen that it is indeed possible to lower the gun amplitude to
almost zero, or in other words introduce near total reflection on the phase shifter.
This way the power division can be altered substantially.

Concluding Remarks

In this section the effect of the phase shifter on the amplitude and phase have been
discussed. In addition to that, the analytical model has been proven to be able
to describe the behavior of the cavity phases and amplitudes qualitatively, even
though it is based on very basic assumptions.
The measurement also showed how the power division can be adjusted using

the phase shifter, but they also reveal the fact that it would have been possible
to basically disable the buncher, if the phase shifter would have been installed on
the buncher arm. Being able to disable the buncher — or lower its effect on the
beam – is important for many characterization measurements, like a phase scan
for the gun energy. In addition to that, emittance measurements using solenoid
scans also require the buncher to be turned off (see [20]). The initial motivation
to implement the phase shifter in the gun arm however is to account for the fact
that the reflected power on the shunt-T is larger for the buncher port than for the
gun port. Therefore the phase shifter has been implemented on the gun arm, in
order to minimize unwanted effects on the cavities due to changing phase shifter
settings.
It has also been shown that operating the phase shifter at REGAE is not a

trivial task. In the following section a useful future application of the analytical
model will be presented, which could alleviate the operation of the phase shifter
in the future.

2.5 Arbitrary Phase Tool

One of the most important features of the REGAE setup is the combination of
gun and buncher cavity. Since the two cavities are both fed by one klystron, the
mechanical phase shifter has been included in the RF design in order to be able to
adjust the phases of both cavities independently. Unfortunately the last section
has shown that due to cross-talk effects the operation of the phase shifter is not
trivial.
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2 The REGAE RF System

2.5.1 Arbitrary Phase Algorithm

In this section an algorithm based on the analytical model shown in the preceding
section will be developed. It will help the REGAE operators in the future with the
usage of the phase shifter by determining the two setpoints (ψ,L) for the klystron
phase and the phase shifter motor setting respectively for a given energy. The
dependence of the setpoints on the beam energy is due to the energy dependence
of the time of flight of the electron bunch between the two cavities. This then
results in an additional phase factor ∆φ̃(E) that needs to be taken into account.
A more thorough derivation of the bunch time of flight can be found in section 3.2.
Figure 2.18 shows the algorithm in form of an UML (Unified Modeling Language)
diagram. The algorithm consists of three main blocks:

(1) Calculation of the phase correction factor ∆φ̃(E) using theoretical consider-
ations and ASTRA tables

(2) Coarse adjustment of (ψ,L) via previously calculated tables and the analyt-
ical model in a small setpoint space volume

(3) Fine tuning of (ψ,L).

In the first part the phase correction due to the energy dependence of the bunch
time of flight has to be calculated. This factor needs to be considered, because
the calibration of the buncher phase (see next section) is only valid for one fixed
energy. The phase correction can be split into two main contributions. We have

∆φ̃(E) = δφTOF(E) + δφgun(E). (2.62)

The first contribution is the phase difference due to the time of flight difference
between the gun and the buncher. For two electron bunches the time of flight
difference after a drift section can be described by

∆T =
d

c

(
1

β2
− 1

β1

)
, (2.63)

where d is the distance of the drift, c is the speed of light and βi is the normalized
velocity of the respective electron bunch. The phase difference is then given by

∆φ = β2ck ·∆T = kd

(
1− β2

β1

)
, (2.64)

where k = 2πf/c. The second contribution stems from the time of flight difference
that occurs inside of the gun cavity. This cannot be computed easily, but it can be
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Figure 2.18: Enhanced UML diagram of the arbitrary phase algorithm.
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calculated numerically using the equation that will be derived in section 3.2, or by
using an ASTRA simulation. ASTRA (A Space Charge Tracking Algorithm) is
a numerical particle tracking algorithm, that has been developed at DESY ([21]).
This way a table of arbitrary accuracy can be included into the program using
equation 2.64.

In the second block the best (ψ,L) will be picked from a previously calculated
table of configurations (using the analytical model of the phase shifter) based
on the two input phases (φg, φb), ∆φ̃(E) and the zero phases that have been
determined through calibration (see next section).
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Figure 2.19: Parametric plot of the cavity phase configuration space, that can be
explored using the klystron phase setting and the phase shifter (phases
are arbitrary).

The last part of the algorithm is the fine tuning part, which is necessary due
to inaccuracies in the analytical model and the mechanical damages in the phase
shifter that have been discussed above. Fine tuning has to be applied also due the
fact that the vector modulator slightly couples amplitude and phase (or in other
words: changes in phase result in a small change in amplitude and vice versa).
As the final step the so called learning feed forward will be applied, which is an
adaptive feed forward system that has been implemented as part of the low level
RF system (LLRF).
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2.5 Arbitrary Phase Tool

2.5.2 Finding the Zero Phases

In order for the algorithm to work, the two cavities need to be calibrated in terms
of phase dependent energy gain. This is a procedure that needs to be performed —
at least for the gun cavity — prior to every measurement, even when the algorithm
is not to be used.

Gun Cavity

The main tool for this calibration is the phase scan tool, that has been implemented
in the REGAE consoles as a MATLAB tool. The tool scans the klystron phase
and simultaneously records the charge that is measured via a Faraday cup. For the
calibration of the gun phase, the DDC1 cup right after the gun is used. Figure 2.20
shows such a phase scan. The blue curve represents the recorded charge at DDC1.
The exact shape of the resulting curve will be discussed in more detail in the next
chapter. During operation, this measurement is a standard tool for determining
the maximum energy gain phase for the gun cavity, as it can be performed even
with enough accuracy in under a minute. In order to determine the maximum
energy gain phase — or zero phase — a phase scan has been performed whilst
measuring the mean beam energy using the dipole spectrometer. Since the dipole
spectrometer is installed behind the buncher cavity, it had been detuned during
the scan in order to be able to just record the gun cavity’s contribution to the
beam energy. The results are also shown in figure 2.20. It can be seen that the
maximum energy gain occurs at +40 deg from the phase, where the first charge
can be detected on the Faraday cup. As this kind of measurement requires the
buncher to be detuned and in addition to that has to be performed manually using
the dipole spectrometer (which is not yet automated), this kind of measurement
cannot be part of day to day operation. However knowing the phase dependence
of both the charge and the energy gain, the fast phase scan tool described above
can be used. Having scanned the phase, the operator then just needs to adjust the
phase +40 deg from the phase where the first charge is detected. This is then the
phase for maximum energy gain.

Buncher Cavity

Calibration of the buncher phase essentially means finding the phase difference ∆φ

between gun and buncher for maximum energy and maximum bunching respec-
tively. To this end a ∆φ scan needs to be performed using the phase shifter, whilst
measuring the energy gain due to the buncher cavity at constant gun amplitude
and phase. From the phase shifter characterization measurements shown above
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Figure 2.20: Phase scan for both the charge at the DDC1 Faraday cup and the mean
beam energy, measured using the spectrometer arm. The buncher had
been detuned during the energy measurements. Hence effects due to the
buncher have been minimized.

it is now known that all of the four important parameters for this measurement
(amplitude and phase for each cavity) are altered when the phase shifter is used.
Therefore in order to keep the gun parameters constant, the klystron settings need
to be adjusted for every scan step. Figure 2.21 shows the results of such a measure-
ment. The black data points correspond to the raw measurement data. Since the
buncher amplitude changed during the measurement, the data needed to be cor-
rected using the knowledge of the phase shifter behavior. This corrected data now
represents the phase dependent energy gain due to the buncher cavity at constant
amplitude. It can be seen that the data fits the expected sine shape (see section
3.2.1). Using this measurement, the ∆φ for maximum energy gain can now be
determined. For the gun energy of 2.96MeV that was used for this measurement
∆φmax = −197 deg, which corresponds to a phase shifter setting of 39.5mm for
both arms. The bunching phase is then ∆φmax − 90 deg.
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Figure 2.21: Phase scan for the energy gain due to the buncher cavity. Gun amplitude
and phase have been kept constant during the scan. The corrected values
have been corrected according to the change in buncher amplitude during
the scan.

2.6 RF System Characterization Measurements

2.6.1 Measurement of the Cavity Mode Spectra

In order to characterize how both the gun and buncher cavity behave inside the
REGAE setup it is important to know their mode spectra. To this end the forward
gain (S21) parameter has been measured using a network analyzer (NWA). The
amplified signal has been coupled into the respective cavity using the reflected
power port of the directional coupler, which is installed right before the cavity.
The scattering parameter S21 has then been measured via the probe antenna.
This is also the reason for the need of amplification of the NWA signal. The
forward port of the directional coupler was closed with a short. All recorded data
presented in the following are averaged over 64 consecutive measurements. Figures
2.22 and 2.23 show the results of an NWA frequency sweep for the gun and the
buncher respectively. For the gun one can identify the two fundamental modes
(0- and π-mode) at 2988.5Mhz and 2998.0MHz. Please note that the accuracy
is limited by the NWA. Looking closer at the data, another mode close to the
π-mode can be found at 2999.0MHz (highlighted in green). Figure 2.24 shows
the results of two measurements closer around this frequency region (blue curve:
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first measurement, red curve: second measurement). For the second measurement
the gun temperature had been reduced by 1 deg. It can be seen that the lower
frequency mode shifts to higher frequencies for lower temperatures (from the data:
approximately 50 kHz/deg). The higher frequency mode does however not move.
Therefore this resonance must stem from the klystron itself. In addition to the
gun modes and the klystron resonance the measurement also reveals a number of
other modes, which occur in a periodicity of approximately 8MHz. In order to
understand this structure, it is useful to look at the dependence of the so called
input impedance Zin(ω) on the load impedance ZL (klystron) and the waveguide
impedance Z0. It reads

Zin(ω) =
ZL + i · Z0 tan(l · ω

c
)

1 + i · tan(l · ω
c
) · ZL

Z0

, (2.65)

where l is the length of the waveguide. It can be derived using basic (lossless)
transmission line theory ([17]). The Impedance along a transmission line is given
by the usual expression

Z(z) =
V (z)

I(z)
. (2.66)

The voltage and current can be obtained as solutions to the wave equations 2.1,
with a forward traveling and a backward traveling part. Therefore

V (z) = V0,+e
−ikz + V0,−e

ikz = V0,+(e−ikz + Γeikz), (2.67)

where V0,− = ΓV0,+ with

Γ =
ZL − Z0

ZL + Z0

(2.68)

the reflection coefficient. Note that for a matched impedance Γ = 0 and hence no
reflection occurs. The current is then given by

I(z) =
V0,+
Z0

(e−ikz − Γeikz). (2.69)

It is now possible to calculate Z(z) using equation 2.68 and Euler’s formula.

Z(z) = Z0 ·
V0,+(e−ikz + Γeikz)

V0,−(e−ikz − Γeikz)

= Z0 ·
(ZL + Z0)e

−ikz + (ZL − Z0)e
ikz

(ZL + Z0)e−ikz − (ZL − Z0)eikz

= Z0 ·
ZL cos(kz)− i · Z0 sin(kz)

Z0 cos(kz)− i · ZL sin(kz)

=
ZL − i · Z0 tan(kz)

1− i · tan(kz) · ZL
Z0

.

(2.70)
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Inserting k = ω/c and z = −l (which is the usual definition for the input
impedance) yields equation 2.65. If waveguide and klystron impedances are not
matched, a periodic structure on the input impedance results. Therefore the peri-
odic occurrence of the peaks in figure 2.22 might be due to an impedance mismatch
between klystron and waveguide during the measurement.
The buncher cavity measurements have been conducted the same way as the gun

cavity measurements. They reveal the four fundamental modes at 2985.2MHz (0),
2990.6MHz (π/3), 2995.7MHz (2π/3) and 2997.7MHz (π). In addition to that,
the two gun modes are also visible in the spectrum (highlighted in red), which is
a sign of crosstalk between the cavities. The klystron resonance is again visible
at approximately 2999MHz (highlighted in green). It can be seen that the π- and
2π/3-modes are only separated by approximately 2MHz (as it has already been
seen in the CST simulations). The next sections will focus on the implications of
this circumstance and the crosstalk between the two cavities.

2.6.2 REGAE RF Pulses

In the preceding section the measurement of the cavity modes has been discussed.
In normal operation, the cavities are driven in their π-mode, the mode with the
highest frequency. Unfortunately due to the short RF pulses, which have — at the
time of this thesis — a configured length of 6µs, the adjacent other modes can be
excited. This is because a short pulse has a large bandwidth and is hence capable
of exciting multiple modes. Another effect that has to be taken into account is the
fact that a small mode spacing can result in an overlap of the tails of the adjacent
resonance curves and hence a perturbation of the individual modes. Figure 2.25
shows an actual measurement of the temporal RF pulse shape for both the gun and
the buncher cavity using the probe antennas. In addition to that, a small section
of the decaying part of the pulse is also shown. Here the exponential part of the
pulse has been removed, in order to isolate the oscillations. When two oscillations
with close frequencies ν1 and ν2 are super-imposed, the frequency of the envelope
of the resulting oscillation is then given by

νB = |ν2 − ν1|. (2.71)

This phenomenon is called beat and νB is the beat frequency. The oscillations
on the pulses can now be interpreted as a beat between several adjacent modes
and is most prominent in the filling and the decay part of the pulse. Using FFT,
the beat frequencies can be identified and compared to the modes found in the
preceding section. The expected result would be frequencies corresponding to
the mode spacing between the π-mode and the other cavity modes. Table 2.6
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Figure 2.25: Measurement of the time dependent cavity field amplitude via the probe
antenna for the gun (top) and the buncher (bottom).
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Table 2.6: Dominant beat frequencies extracted from the pulse data shown in figure
2.25 via FFT analysis.

Gun Buncher
νB (MHz) Rel. Amplitude νB (MHz) Rel. Amplitude

1.49 1.00 2.11 1.00
9.42 0.80 7.21 0.13

9.62 0.08

shows the results of an FFT analysis of the pulse data. This data can now be
compared to the RF measurements above (fig. 2.22 and 2.23). The gun pulse
contains two main frequencies at 1.49MHz and 9.42MHz, where the lower one can
be attributed to the mode spacing between the gun π-mode and the klystron, the
second one corresponds to the mode spacing between the gun’s two main modes
and is the dominant frequency. For the buncher three frequencies can be identified
and the most dominant is the 2.11MHz, which corresponds to the spacing between
the buncher’s π-mode and its adjacent mode. The next frequency component,
7.21MHz, can be attributed to the spacing between the π-mode and the buncher’s
third mode. Since the last contribution at 9.62MHz corresponds to the spacing
between the buncher π-mode and the gun 0−mode, even the crosstalk between the
cavities can be identified. It has to be noted that the frequencies do not exactly
match the ones measured using the NWA. This has several reasons.

• The beat structure on the pulses is strongly dependent on the individual
tuning of the cavities.

• The cavities could have been tuned differently during the RF measurements.

• The temporal resolution of the pulse data is limited to 1024 samples at
62.5MHz, which also limits the FFT resolution.

• The resolution of the NWA measurements has been limited due to the large
frequency span.

Analytical Description of the Phenomenon

In order to understand this beat phenomenon, one can describe the multi-mode
cavity by a series of parallel RLC-circuits, which represent the individual cavity
modes ([22]). Using Kirchoff’s law, the differential equation for an externally
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driven RLC-circuit is given by

C∂2t V +
∂tV

R
+
V

L
= ∂tId, (2.72)

where ∂tId is the driving term. The quality factor of a parallel RLC-circuit is given
by

Q = R

√
C

L
. (2.73)

Therefore equation 2.72 can be expressed as

∂2t V +
ωm
Q
∂tV + ω2

mV = −ωm
Q
Vd, (2.74)

where ωm = 1/
√
LC is the resonant frequency of the mode. The driving voltage

Vd is the voltage as observed in the cavity, which can be related to the voltage
supplied by the klystron by the so called transformer ratio

n =

√
Rs

2Zcβ
, (2.75)

where RS is the shunt impedance, β is the coupling coefficient and Zc is the
impedance of the waveguide mode. The voltage is then given by Vd = n · Vext.
Now the voltage in the oscillation resonant mode can be related to the common
quantities that have been derived in section 2.1. Assuming that the mode sepa-
rations are larger than the width of the individual resonance curves, the overall
cavity voltage can be expressed as the sum of the mode contributions that can be
calculated using equation 2.74. In [23] the differential equation has been solved
for a flat-top input pulse of length T , which is defined by

V (t)

V0
= H(t) ·

(
1− e−t/τ

)
−H(t− T ) ·

(
1− e−(t−T )/τ

)
, (2.76)

where H(t) is the Heaviside step function, τ is the rise/fall time and V0 is the
maximum voltage. The lengthy result of the calculation can be found in [23] and
is omitted here for brevity. The mode voltage is then a function of n, β,Ψ, Q, ωm
and ωd, where Ψ is the tuning angle as defined in equation 2.38 and ωd is the
frequency of the driving signal. Figure 2.26 shows the calculated pulse shapes
for the gun and buncher cavity. The parameters have been extracted from the
Microwave Studio simulations that have been discussed in section 2.2. In order to
estimate the detuning of the cavities on the day the pulses shown in figure 2.25
have been recorded, the cavity temperatures have been taken from the archive. It
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Figure 2.26: Calculated pulses shapes for the gun (left plot) and buncher (right plot).
The pulses have been calculated using the solution to equation 2.74 and
RF parameters from the simulations shown in section 2.2. Cavity detun-
ing has been estimated using archived cavity temperature data.

is important to note that the calculations are based on a perfect flat top, whereas
the real REGAE pulse might not have been perfectly flat. It can be seen that the
analytically calculated pulses are very close to the measured pulse shapes. This
leads to the conclusion that the beat structure indeed stems from contributions of
adjacent oscillating modes.

Effect of the Beats on the Electron Bunch

As it has been stated above, the total field in the cavity is the sum of the fields
of the excited modes. This total field, as a result, has now a slightly different
phase advance between the cavity cells compared to single mode operation. This
can have an effect on transverse, as well as longitudinal beam parameters and
dynamics. Since the investigation of these effects is not in the scope of this thesis,
two effects will be presented that have been observed by other groups.
At the SLAC Gun Test Facility (see [24]) it has been measured that the phase ad-

vance in their 1.6 cell GTF gun for π-mode operation is 187 deg instead of 180 deg.
The difference in phase in the half cell is reported to be 5 deg. The GTF gun
has a mode spacing between 0- and π-mode of 3.5MHz. Due to this different
phase advance, the RMS energy spread has been measured by the authors to be
approximately 3.5 times higher than in the simulated single mode case at linac
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phase of 0 deg. It has to be noted though that this is not an absolute increase
of the energy spread, but a shift of the minimum towards different phases. An
increase in mode spacing has been shown in [23] to decrease the effects on the
energy spread dramatically. In addition to the energy spread, the emittance due
to the time dependent RF field has been reported in [25]to be reduced by a factor
of approximately 1.9 by increasing the 0-π mode spacing from 3.5MHz to 15MHz.
This emittance contribution is important in cases where the space charge induced
emittance growth is small (also see [25]).
Since the REGAE gun has a mode spacing of approximately 9.5MHz, the effects

on beam dynamics should be small, but this has to investigated in the future. The
RF induced transverse emittance is given by ([22])

εRFx =
k3α√

2
· σ2

xσ
2
z , (2.77)

where α is the normalized vector potential and k the wavenumber. Therefore for
the REGAE bunch parameters (short bunch < 10 fs RMS and spot size 5µm
RMS) this contribution is negligible, which has been tested and verified through
simulations ([26]). It has to be noted that the mode spacing between the buncher
cavity modes is much smaller (2π/3−π spacing is approximately 2MHz). Therefore
it has to be investigated in what extent this affects the performance of the cavity
in bunching mode.

2.6.3 Fine Tuning of the Cavities

Mechanical tuning of the accelerating cavities can only be done up to a certain
accuracy that depends on the actual tuning method. Another reason is the fact
that the cavities are in the final RF setup part of a circuit. In order to cope with
this situation, the dependence of the resonance frequency of the cavity on the
temperature can be utilized. This dependence is simply the result of the expan-
sion/contraction of the material. A measurement of the temperature dependent
reflected RF signal at the cavity can thus be used to determine the optimal cavity
temperature and hence as a means of fine tuning. The cavity at the temperature
that minimizes the reflected signal is then tuned to the frequency of the incoming
wave.
Using a MATLAB tool that controls the cavity heaters, the temperature of both

the gun and the buncher cavity has been scanned, whilst recording the forward
and reflected wave at the cavity. As it has already been shown, the single klystron
setup at REGAE leads to crosstalk between the cavities. In order to investigate
this circumstance, two measurements have been performed for each cavity: One
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Figure 2.27: Temperature scan of the gun cavity for two different settings. The opti-
mal temperature has been determined to be T0,g = 48.0 ◦C.

with the other cavity tuned and the second with the other cavity detuned far off
resonance (at 55 ◦C). The results are shown in figures 2.27 and 2.28. The best
tuning temperatures have been determined to be

T0,g = 48.0 ◦C,
T0,b = 38.6 ◦C.

(2.78)

It can be seen that the gun cavity is not perturbed by the buncher cavity, as both
scans result in nearly the same curve. The temperature scan for the buncher on
the other hand shows some interesting features. In the range of the scan three
modes can be identified (three dips). The first one at 38.6 ◦C has the strongest
coupling. This is the π-mode of the buncher. The second one at approximately
41.7 ◦C is much more pronounced in the tuned-gun case and can hence be identified
as cross-coupling of the gun π-mode. The third one has a very weak coupling and
does shift to lower temperatures in the detuned-gun case due to the weaker cross-
coupling between the cavities. It can also be seen that the crosstalk between the
cavities diminishes the coupling of the buncher π-mode.
In order to quantify the effect of the crosstalk on the coupling of the modes,

the complex reflection coefficient Γ can be calculated from the data. The data
consists of amplitude (AFW and AREF) and phase (φFW and φREF) signals from
the directional couplers right in front of the respective cavity (note that the phase
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Figure 2.28: Temperature scan of the buncher cavity for two different settings. The
optimal temperature has been determined to be T0,b = 38.6 ◦C.

signals are given in degrees instead of radians). The complex signal is now defined
as

aFW/REF = AFW/REF · exp(iφFW/REF · π/180) (2.79)

and the complex reflection coefficient:

Γ =
aREF
aFW

. (2.80)

The complex reflection coefficient can then be plotted in the complex plane. For
a single resonance, Γ describes a circle in the complex plane (see derivation be-
low). Figures 2.29 and 2.30 show the results for the gun and the buncher cavity
respectively. Looking at the data, it can be seen that the reflection coefficients
— in the case of the REGAE cavities — do not describe an ideal circle. Instead
a combination of several circles, or spiral can be seen. These kinds of shapes
in the complex reflection coefficient have been shown by Dohlus et al. to result
from multiple closely spaced modes (see [27]). The shape of the reflection coeffi-
cients evolution in the complex plane therefore confirms the results that have been
presented above.
It has been shown ([28]) that the coupling coefficient β can be extracted from

Γ using a circle fit in the complex plane that determines the center position and
the radius. This can be derived the following way. Starting from equation 2.72
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Figure 2.29: The complex reflection coefficient measured for the gun cavity, plotted
in the complex plane together with a circle fit. The left plot shows the
case where the buncher cavity had been tuned. On the right the case
where the buncher cavity had been detuned is shown.
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Figure 2.30: The complex reflection coefficient measured for the buncher cavity, plot-
ted in the complex plane together with a circle fit. The left plot shows
the case where the gun cavity had been tuned. On the right the case
where the gun cavity had been detuned is shown.
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(differential equation of the RLC resonator) and assuming that the external driving
voltage is given by a harmonic function of the form

Vext(t) = (Vext,r(t) + iVext,i(t)) · exp(iωt), (2.81)

i. e. an slowly varying envelope and a fast oscillating term, one can separate the
resulting differential equation into real and imaginary parts, yielding

∂2t Vr +
ωo
Q
∂tVr − 2ω∂tVi − ω2Vr −

ωω0

Q
Vi + ω2

0Vr =
ω0

Q
∂tVext,r −

ωω0

Q
Vext,i

∂2t Vi +
ωo
Q
∂tVi + 2ω∂tVr − ω2Vi +

ωω0

Q
Vr + ω2

0Vi =
ω0

Q
∂tVext,i +

ωω0

Q
Vext,r.

(2.82)

In the appendix of [29] the author introduces the assumptions Q� 1, ω1/2 � ω0

and ∆ω � ω0, where ω1/2 is the half-bandwidth of the resonator and ∆ω is
the detuning as a means to simplify equation 2.82 In addition to that, the small
second order terms can be neglected. Thus the following approximation can be
found, which is appropriate in the case of accelerator cavities:

∂tVr = −ω1/2Vr −∆ωVi + ω1/2Vext,r

∂tVi = ∆ωVr − ω1/2Vi + ω1/2Vext,i.
(2.83)

Combining real and imaginary part and neglecting the fast oscillating part, one
gets

∂tV = Vr + iVi

= Vr(i∆ω − ω1/2) + Vi(−∆ω − iω1/2) + ω1/2Vext

= Vr(i∆ω − ω1/2) + iVi(i∆ω − ω1/2) + ω1/2Vext

= (i∆ω − ω1/2)V + ω1/2Vext.

(2.84)

This is the so called envelope equation. The cavity voltage V in this equation
is given by the sum aFW + aREF. Introducing the reflection coefficient for zero
detuning Γ0 (due to impedance mismatch), the external driving voltage can be
written as Vext = (1 + Γ0) · aFW. Using equation 2.80, the complex reflection
coefficient for steady state condition (∂tV = 0) now reads

Γ = (1 + Γ0) ·
ω1/2

ω1/2 + i∆ω
− 1. (2.85)

This expression — in the complex plane — describes a circle, if plotted for different
values of ∆ω. All of the derivations that have been shown so far are based on the
assumption of perfectly calibrated field probes and directional couplers. In reality
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2.6 RF System Characterization Measurements

the measured signals are subject to calibration errors in amplitude and phase.
Therefore (without any crosstalk in the directional couplers)

aFW = A · ãFW
aREF = B · ãREF,

(2.86)

with the complex correction factors A and B. The measured values are denoted
by the tilde. Recalling the definition of the reflection coefficient (equation 2.80),
it can be seen that the real reflection coefficient differs from the measured value
by a factor of B/A. This fact makes the interpretation of the plots 2.29 and 2.30
difficult, because the plotted values are scaled. In order to overcome this problem,
Brandt et al. have found a relation between the reflection coefficient Γ0 and the
properties of the circle ([28]):

Γ0 = −B
A

(|c| − r) c|c| = −|c| − r|c|+ r
, (2.87)

where c is the center of the circle fit and r is the radius. It can be seen that
the calibration errors are already included. Using the definition for the coupling
coefficient

β =
1 + Γ0

1− Γ0

, (2.88)

it is now possible to compare the coupling coefficients for the different cases in
order to determine the effect of the crosstalk on the coupling. The following
calculations have been performed according to the derivation above and using a
circle fit algorithm that was proposed by Pratt in [30]. Only the data close to the
resonance temperature has been used for the fit. The results are shown in table
2.7. It can be seen that the crosstalk between the cavities reduces the coupling in
both cases. For the gun the coupling is reduced by approximately 0.77%, which is
negligible. In contrast to that, the buncher coupling is reduced by approximately
9.94%.

Table 2.7: Coupling coefficients βgun and βbun calculated from the complex reflection
coefficients for the gun and buncher cavity.

βgun βbun

Crosstalk 0.906 0.634
No crosstalk 0.913 0.704
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2 The REGAE RF System

2.6.4 Characterization of the REGAE Gun Cavity II

The new REGAE gun cavity features a newly designed cathode holder which
incorporates a new spring that resembles the ones used for vacuum tube holders.
This eliminates the problem that the probability of damaging the spring during
cathode exchange had been very high with the previous design.
In order to characterize the modified gun cavity, the following measurements

have been conducted using a Hewlett Packard 8720C network analyzer (NWA):

• Measurement of the π- and 0-mode

• Reproducibility of the cathode position

• Measurement of the E-field profile using the bead-pull technique

In order to guarantee optimal results, the NWA has been recalibrated using the
Agilent 85032 B Type N Calibration Kit prior to every measurement.

Measurement of the π- and 0-Mode

The π- and 0-mode has been determined by measurement of the S11 scattering
parameter using the NWA at room temperature (22 °C) in air. In addition to the
resonant frequencies the bandwidth, the coupling (minimal S11) and the loaded
quality factor QL has been measured. The results are shown in table 2.8. Due to
the better coupling of the π-mode, the measured loaded Q-factor of this mode is
lower than the quality factor of the 0-mode.

Table 2.8: Measurement results for the π-mode and 0-mode.

f (MHz) BW (kHz) QL S11 (dB)

0-Mode 2986.512 349 8517 -11.062
π-Mode 2996.206 462 6522 -22.468

Delta 9.694 113 -1995 -11.406

The reflection coefficient Γ which describes the ratio between reflected to forward
power, is related to S11 by

Γ2 = 10
S11
10 (2.89)

and to the coupling coefficient β by

β =
1 + Γ

1− Γ
. (2.90)
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The square in the first equation introduces an ambiguity, i.e. it is not a priory
clear whether the coupling is overcoupled (β > 1) or undercoupled (β < 1). The
coupling of the 0-mode hence yields β = 1.77 or β = 0.56, from which the unloaded
quality factor is calculated as Q0 = (1 + β)QL = 23592 or Q0 = 13286.The first
value is significantly higher than expected from theory, thus an undercoupled case
with β = 0.56 can be concluded. For the π-mode β = 1.16 or β = 0.86 and
Q0 = 14087 or Q0 = 12131, respectively. The theoretically expected quality factor
indicates again an undercoupled case. In the REGAE experiment the gun cavity
is operated at T = 40 to 45 °C and in vacuum. Therefore a correction has to be
applied to the measurement shown in table 2.9:

Table 2.9: Measurement results for the π-mode and 0-mode.

Source Correction

Vacuum +0.95 MHz
Temperature -41.0 kHz/degree
Thread +24 kHz

During the measurements a nylon thread is stretched through the cavity (see
below for details). The thread reduces the resonance frequency of the cavity by
24 kHz. The temperature coefficient has been experimentally determined after
tuning of Gun I and verified the values during operation. (For the tuning of Gun
I 48.5 kHz/degree had been used.) Application of these corrections (assuming a
temperature change of 20 °C and therefore a correction of -0.82MHz) to the π-
mode frequency results in the following detuning of the π-mode:

Table 2.10: Detuning of the new REGAE gun cavity (π-mode).

f (MHz)

Design frequency (42 °C, vacuum, w. o. thread) 2998.000
Design frequency (22 °C, air, thread) 2997.850
Measured frequency (22 °C, air, thread) 2996.206
Corrected frequency (42 °C, vacuum, w. o. thread) 2996.360
Detuning -1.640

Reproducibility of the Cathode Position

The reproducibility of the cathode position has been determined by measuring the
π-mode frequency including the cathode and without the cathode being inserted.
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Table 2.11: Reproducibility of the cathode position (π-mode).

incl. Cathode without Cathode

f (GHz) S11 (dB) f (GHz) S11 (dB)

2.9962007 -22.871 2.9982407 -15.650
2.9961857 -22.048 2.9982407 -15.718
2.9961857 -22.278 2.9982407 -15.821
2.9961857 -22.503 2.9982407 -15.890

Average 2.9961887 -22.461 2.9982407 -15.787

Frequency shift due to the cathode: 2.052MHz

The results show that the repositioning of the cathode has almost no effect on
the resonant frequencies. This implies that the cathode can indeed be repositioned
very accurately into the new holder.

Figure 2.31: The new cathode holder with an inserted cathode dummy.

Measurement of the E-field Profile using the Bead-pull Technique

In order to measure the profile of the electric field inside of the gun cavity, the
so-called bead-pull technique has been used, where a small metal bead is pulled
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through the cavity using a thread. This bead then acts as a perturbation and
therefore shifts the resonant frequencies of the cavity proportional to the square of
the local electric field (see [31, 32]). It is thus possible to measure the z-dependent
frequency shift (where the z-axis is the axis that is defined by the thread) by
using a stepper motor. The spatial resolution of the measurement is defined by
the length of the bead (∼5mm). The length and wall thickness of the bead also
determines the frequency shift which limits the accuracy of the field measurement.

Figure 2.32: Small metal bead (marked by red circle) on a nylon thread in front of
the coupler entrance.

The results of the bead-pull measurement using a nylon thread are shown in
figure 2.33. Looking closer at the resonant frequencies for the bead being placed
outside the cavity on the coupler and the cathode side respectively it can be seen
that there is a small offset of 10 kHz for the 0-mode and 5 kHz for the π-mode. In
order to investigate this offset, a second measurement has been conducted using a
new thread of different material. The results are shown in figure 2.34. The offsets
have been determined to be 0Hz for the 0-mode and 3.1 kHz for the π-mode. This
implies that the offset can be attributed to the perturbations due to the thread.
It has to be noted that the perturbation is larger using the new thread due to a
slightly larger bead. All following measurements have been made with the new
bead/thread.

Tuning

To tune the cavity, the bottom of blind holes, which are located on the outer
cylinder of each cavity cell, are deformed. The deformation allows shifting the
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Figure 2.33: Bead-pull measurement using the nylon thread.
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Figure 2.34: Bead-pull measurement using the new thread.
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frequency only in one direction (upwards) and determines the field profile, i. e. the
ratio of the peak field in the full cell to the peak field in in the half cell. The
tuning has to be distributed to the cells such that the field profile stays close
to 1. A slightly higher field in the half cell is preferable. Since the frequency
measurement near the cathode hole is influenced by the cathode (e. g. when the
bead touches the cathode) the exact determination of the field profile is in general
difficult. The final frequency corresponds to an operation temperature of 39 °C.

Table 2.12: Frequency and field flatness for different tuning steps.

Frequency (MHz) Field Flatness

Start 2996.140 0.990
Step 1 2996.990 0.970
Step 2 2996.389 0.960
Turn Cavity 2996.380 0.970
Redo 2996.379 0.960
Step 3 2996.740 0.974

Final Measurements

Final measurements of the field profile of the π− and the 0-mode are shown in
figure 2.35 and summarized in table 2.13. For these measurements the averaging
mode of the NWA and a small step size has been used, which leads to a smooth
field profile and a field flatness of 0.99. The better coupling as compared to
the first measurement (see table 2.8) in conjunction with the lower quality factor
confirms an under-coupled case. The coupling coefficient and unloaded quality
factor are determined as β = 0.92 and Q0 = 12230.

Table 2.13: Measurement results for the π-mode and 0-mode after tuning.

f (MHz) BW (kHz) QL S11 (dB)

0-Mode 2988.037 357 8372 -11.4
π-Mode 2997.696 470 6370 -27.4

Delta 9.659 113 -2002 -16.0
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Figure 2.35: Field profile of the π-mode and 0-mode after tuning. Note: Cavity had
been turned around.
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3

Stability

In this chapter the stability of important parameters of the REGAE electron beam
will be discussed. Since the stability of the beam parameters is ultimately the result
of the stability of the whole REGAE machine, important machine parameters will
be discussed. The state of the machine stability during this M.Sc. project will
be presented and analyzed. Prior to the actual discussion of the current state
of the machine, a so called global sensitivity analysis will be carried out using a
method mainly based on work by Saltelli et al. ([33]) in conjunction with ASTRA
simulations. Using the results of this analysis, the important factors for specific
beam parameters that are crucial for the experiments presented in chapter 1 will be
identified. To conclude the first part of this chapter, a more in-depth theoretical
treatment of the time of flight sensitivity towards small phase changes will be
deduced.

3.1 Global Sensitivity Analysis

As it has already been stated in the introduction to this chapter, the stability of
beam parameters like bunch time of flight, beam spot size, etc. is ultimately the
result of the stability of basic machine parameters like the gun RF phase, or the
current of the solenoid lenses. Sometimes the effect of such a parameter can be
readily seen by considering the physics behind the acceleration process, but since
an accelerator is a complex machine consisting of many different devices, the effect
might be not as obvious. This can lead for example to the phenomenon of jitter
compensation, when certain parameters influence each other. A more detailed
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theoretical discussion of the sensitivity of the bunch time of flight towards small
RF phase changes will show how the gun/buncher setup that has been chosen for
REGAE can lead to such effects (see section 3.2).
The ideal starting point for the identification of important machine parameters

would be an analytical model of the form

Pi = Fm,i(a), (3.1)

where Pi is the beam parameter of interest and a is a set (vector) of machine input
parameters. Fm,i would be the general and analytical formula corresponding to
(in our case) the REGAE accelerator. Such an approach is in general not feasible,
because of the sheer amount of input parameters and the complexity of the system.
We therefore have to conclude that in most cases Fm,i is unknown and has to be
considered as a black box. So how can we approach a system like this? In practice
all the important beam parameters can be determined via numerical simulation
(beam tracking). The main tool for this is ASTRA. In the following sections all
simulations will be carried out using ASTRA. We now have access to the most
important beam parameters via ASTRA, but still need tools to determine the
sensitivity of certain beam parameters towards the input parameters. This way
we could identify the most important of them. The next section will give an
introduction to the most commonly used methods for sensitivity analysis, which
itself can be defined as “the study of how uncertainty in the output of a model
(numerical or otherwise) can be appointed to different sources of uncertainty in
the model input” (Saltelli et al., 2004).

3.1.1 Theoretical Background

The sensitivity analysis of a given system or mathematical model can be conducted
in several ways ([33]). Let f(a) be a mathematical model withM input parameters
and a anM -dimensional vector, which contains those parameters. This model has
just one output. For simplicity, let us assume the model to be defined as

f(a) =
M∑
i=0

ciai. (3.2)

Each input parameter is assumed to be normally distributed with an uncertainty
σai and the ci are arbitrary constants. One typical approach to specify the “sensi-
tivity” of such an analytical model towards the input parameters, is to just take
the partial derivatives. The measure of sensitivity would hence be defined by

Sai =
∂f(a)

∂ai
. (3.3)
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In our simple case we would get Sai = ci, or in other words: The most influential
parameter is the one with the largest slope (for example for the bunch time of
flight: StTOF = 1 ps/degRF). There are several problems here:

(1) This sensitivity measure is only globally valid for linear models, or if we
assume small changes and hence the σai to be sufficiently small.

(2) This method only works, if the input parameters are independent.

(3) The uncertainty of the individual input parameters is ignored.

The first problem is very straight forward. If our model includes nonlinear terms
in ai, it is necessary to assume small changes in ai in order to be able give a
global and constant Sai . Doing so will of course fix the sensitivity measure to one
point in the configuration space of the ai. The most important downside of this
simple method is the fact that the uncertainty of the input is ignored. Assuming
ci = c0 = const for all i, all partial derivatives and hence all Sai would evaluate
to the same value c0, meaning that the system is equally sensitive to all input
parameters, or: “all input parameters have the same effect on the output”. This is
clearly not true if σai 6= σaj for i 6= j and i, j ∈ [0, N ]. The input parameter with
the highest uncertainty will have the highest impact on the result, which is clearly
overlooked using simple partial derivatives.
A possible work around for problem (3) is using so called sigma normalized

derivatives. Sigma normalized derivatives take both the individual uncertainty
of the ai and the overall uncertainty of the output into account. The sensitivity
measure now looks like

S̃ai = σ̃i ·
∂f(a)

∂ai
, (3.4)

where σ̃i = σai/σf(a). It can be shown that for a linear additive model like equa-
tion 3.2 the sum of the S2

ai
is equal to one, which qualifies the sigma normalized

derivatives as a useful sensitivity measure [33]. The derivation can be done the
following way. Starting with

M∑
i=0

S̃2
ai

=
M∑
i=0

σ̃2
i

(
∂f(a)

∂ai

)2

=
1

σ2
f(a)

·
M∑
i=0

σ2
ai

(
∂f(a)

∂ai

)2

, (3.5)

it can be written for a model like equation 3.2:

M∑
i=0

S̃2
ai

=
1

σ2
f(a)

·
M∑
i=0

σ2
ai
c2i

!
= 1. (3.6)
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Therefore

σ2
f(a)

!
=

M∑
i=0

σ2
ai
c2i . (3.7)

Using the usual definition for the variance we get

σ2
f(a) =

1

N
·
N∑
j=0

(f(aj)− f̄)2. (3.8)

Without loss of generality M can be set to M = 2. Therefore it can be calculated
for N samples that

σ2
f(a) =

1

N
·
N∑
j=0

(c1a1,j + c2a2,j − f̄)2

=
1

N
·
N∑
j=0

(c1a1,j + c2a2,j − f̄1 − f̄2)2

=

1

N
·
N∑
j=0

(c1a1,j − f̄1)2 + (c2a2,j − f̄2)2

+ 2(f̄1f̄2 + c1a1,jc2a2,j − c1a1,j f̄2 − c2a2,j f̄1)

=
1

N
·
N∑
j=0

(c1a1,j − f̄1)2 + (c2a2,j − f̄2)2 + 2(c1a1,j − f̄1)(c2a2,j − f̄2).

(3.9)

Using the definition for the covariance Cov(x, y) = 〈(x− x̄)(y − ȳ)〉 we arrive at

σ2
f(a) = σ2

a1
c21 + σ2

a2
c22 + 2c1c2 · Cov(a1, a2). (3.10)

This result can be generalized for arbitrary M and corresponds to equation 3.7 if
all covariance terms vanish, which is the case for uncorrelated ai. The last assump-
tion of course implies an important constraint on the usefulness of this sensitivity
measure. Only additive, linear models with uncorrelated input parameters lead to
sum of the squares that is equal to one.
As it has been stated several times, the behavior of the REGAE beam param-

eters cannot in general be described by a simple analytical model. Despite this
circumstance it is possible to find so called model independent stability measures.
This thesis will focus on two kinds:

(1) Scatter plots and averaged partial variances

(2) Variance based sensitivity indices.
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3.1 Global Sensitivity Analysis

The first method is the method of scatter plots. Scatter plots can be obtained
via Monte Carlo simulations. A Monte Carlo simulation consists of a set of N
simulation runs of a given model, where the input vector a is generated pseudo-
randomly for each run. This way also numerical models like the ASTRA tracking
code can be used. In order to explain the method, the simple model from equation
3.2 with M = 4 will be used. A sample simulation can be seen in figure 3.1.
The scatter plots shown there immediately visualize the sensitivity of the model
towards the ai. A first graphical analysis can be the division of the scatter plots’
coordinate systems into the four usual quadrants I, II, III and IV. Then the shape
of the distribution can be characterized by

sai = (ΣI + ΣIII)− (ΣII + ΣIV), (3.11)

where Σj denotes the sum of data points in the quadrant j. So for a radially
distributed set of data points s would be approximately zero, the distribution
would have no significant shape. It has to be noted that this is a very vague
measure, as it only measures the overall shape of the distribution. A somewhat
more robust tool is the so called Pearson’s ρ, or in the case of empirical data the
correlation coefficient. The latter can be calculated using

rx,y =

∑N
i=0(xi − x̄)(yi − ȳ)√∑N

i=0(xi − x̄)2 ·∑N
i=0(yi − ȳ)2

. (3.12)

In our case x = f(a) and y = ai. The correlation coefficient r is a measure of the
linearity of the functional dependence x(y) and rx,y ∈ [−1, 1]. It can also be used
to calculate the fraction of the variance of x that can be attributed to its linear
connection to y, which is called R2 or the coefficient of determination and is just
the square of rx,y. Since rx,y ∈ [−1, 1], R2 ∈ [0, 1]. This coefficient is often also
used as a figure of merit for fit models. These two measures are good tools for
a quick analysis of scatter plots, but still do not fulfill the requirement of model
freeness. We ultimately want to determine how much of the variance of the output
parameter can be attributed to the variance of a specific input parameter for all
kinds of models (this is also the definition of sensitivity used in this thesis). By
doing so, the most important parameters can be filtered out. A popular method
([33]) is the analysis of scatter plots by cutting them into slices along the abscissa
and calculating the characteristics of the slice distributions. Saltelli et al. suggest
the variance of the mean of the output parameter along the slice as the quantile
of choice. In the limit of infinite slices this corresponds to the so called first
order effect of ai on f(a). These averaged partial variances have the important
advantage over sigma normalized derivatives for example that one explores the
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Figure 3.1: Scatter plots for a linear additive model like equation 3.2 with M = 4 and
1500 runs. The ci have all been chosen to be equal to 2 and the input
parameters ai are normally distributed around 0 with standard deviations
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< σa3

< σa4
. Please note the different scaling of the axes.
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x
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Figure 3.2: The four quadrants of a Cartesian coordinate system.

whole configuration space instead of focusing on one fixed ai. We are now able to
condense scatter plots into one single number, the first order effect, which is in its
normalized form also called the first order sensitivity index and defined by ([33])

Si =
Vai(E∼ai(f(a)|ai))

V(f(a))
, (3.13)

where in the literature the notation V is mostly used for the variance, E for the
expectation value and ∼ ai for “all but ai”. The numerator can be read as “the
variance of the expectation value of f(a) for fixed (known) ai” and is hence a condi-
tional variance. This measure is now indeed model free and Si ∈ [0, 1], but can only
describe the first order effect and therefore neglects all interdependencies between
the input parameters. This implies that for a model, where the interdependencies
between input parameters affect the output

ST =
M∑
i=1

Si < 1. (3.14)

Figure 3.3 shows the evolution of the mean of the output distribution along one
slice for 100 uniformly distributed slices of the scatter plots shown in 3.1. The
difference in variance can be seen. From these data the first order sensitivity
indices have been computed for different numbers of slices in order to show the
fact that one has to take the limit of infinite slices in order to approach the real
values. See figure 3.4 for the results of this calculation. Since the underlying model
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is the simple model from equation 3.2, the total first order effect must converge
to unity, which it does for a large number of slices. An important result from this
numerical experiment is the fact that for low slice numbers the difference between
the individual sensitivity indices is way too low, leading to a wrong judgment of
the sensitivities.
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Figure 3.3: Evolution of the mean output of 100 uniformly distributed slices for the
scatter plots shown in 3.1.

Having described a method to interpret Monte Carlo simulations of arbitrary
form (model free approach) using scatter plots and averaged partial variances, the
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Figure 3.4: First order sensitivity indices and the total first order effect for the scatter
plots shown in figure 3.1. The Si have been calculated using equation 3.13
and the total effect is defined by the sum of the individual Si.

focus will now be put on a well established variance based method for calculating
sensitivity indices like the one presented in equation 3.13 for an arbitrary model
with uncorrelated input parameters. It was first proposed by Sobol in 1990 ([34,
35]) and has since then been extended by Saltelli et al. and others ([1, 36]).
The first step is the setup of the Monte Carlo experiment by defining two input

matrices of the following form:

M̂1 =


a
(1)
1 a

(1)
2 . . . a

(1)
M−1 a

(1)
M

a
(2)
1 a

(2)
2 . . . a

(2)
M−1 a

(2)
M

...
... . . .

...
...

a
(N−1)
1 a

(N−1)
2 . . . a

(N−1)
M−1 a

(N−1)
M

a
(N)
1 a

(N)
2 . . . a

(N)
M−1 a

(N)
M

 , (3.15)

M̂2 =


ã
(1)
1 ã

(1)
2 . . . ã

(1)
M−1 ã

(1)
M

ã
(2)
1 ã

(2)
2 . . . ã

(2)
M−1 ã

(2)
M

...
... . . .

...
...

ã
(N−1)
1 ã

(N−1)
2 . . . ã

(N−1)
M−1 ã

(N−1)
M

ã
(N)
1 ã

(N)
2 . . . ã

(N)
M−1 ã

(N)
M

 , (3.16)

where each of these matrices is of dimension M × N . M is the number of input
parameters and N is the number of Monte Carlo runs. We now have two inde-
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pendent (denoted by the tilde characters in M̂2) and randomly generated sets of
input parameters. The next step is to setup the M so called re-sampled matrices
Cj, which are defined by

Ĉj =


ã
(1)
1 ã

(1)
2 . . . a

(1)
j . . . ã

(1)
M−1 ã

(1)
M

ã
(2)
1 ã

(2)
2 . . . a

(2)
j . . . ã

(2)
M−1 ã

(2)
M

...
... . . .

... . . .
...

...
ã
(N−1)
1 ã

(N−1)
2 . . . a

(N−1)
j . . . ã

(N−1)
M−1 ã

(N−1)
M

ã
(N)
1 ã

(N)
2 . . . a

(N)
j . . . ã

(N)
M−1 ã

(N)
M

 , (3.17)

i. e. a matrix M̂1, where all but the j-th column is re-sampled with values from
M̂2. Now the Monte Carlo experiment is performed for all of the M + 2 matrices,
resulting in N(M + 2) runs. The results are the output vectors

f0 = f(M̂2)

fj = f(Ĉj)

f1,2,...,M = f(M̂1).

(3.18)

Using these output vectors, it is now possible to calculate sensitivity indices as
follows.
Let us first recall equation 3.13. In order to calculate the numerator one has

to start with the variance of f(a) for one known ai = ãi. Using the standard
definition of the variance (σ2

x = 〈x2〉 − 〈x〉2) we then get

V(f(a)|ai = ãi) = 〈f(aai=ãi)
2〉 − 〈f(aai=ãi)〉2 (3.19)

Since we try to find a model free sensitivity measure, it is now necessary to integrate
over all ai, or in other words calculate the expectation value with respect to ai,
given by

E(V(f(a)|ai)) = E(〈f(aai=ãi)
2〉)− E(〈f(aai=ãi)〉2)

= 〈f(a)2〉 − E(〈f(aai=ãi)〉2),
(3.20)

where both notations for the expectation value are used for better readability. The
numerator in equation 3.13 can also be understood as the difference of the total
output variance and the expectation value of the output variance for known ai.
Hence

Vai(E∼ai(f(a)|ai)) ≡ V(f(a))− E(V(f(a)|ai)), (3.21)

where the second term is just equation 3.20. Inserting 3.20 into 3.21 we arrive at

Vai(E∼ai(f(a)|ai)) = 〈f(a)2〉 − 〈f(a)〉2 − 〈f(a)2〉+ E(〈f(aai=ãi)〉2)
= E(〈f(aai=ãi)〉2)− 〈f(a)〉2. (3.22)
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Adopting the notation from the original paper by Saltelli et al. ([1]) this conditional
variance can be written as

V C
i1,i2...iM

= Ui1,i2...iM − E2(f(a)) (3.23)

Note that before only first order effects had been discussed, which would lead to
a V C with only one index. Higher order effects are now described for example by
V C
1,4 = V1 + V4 + V1,4, which therefore includes all the first order terms plus the

interdependency term. It has been shown in [37] that the Uj can be estimated by

Uj =
f1,2,...,M · fj
M − 1

, (3.24)

where 〈·〉 denotes the scalar product between two vectors. Using a Monte Carlo
experiment carried out based on the input matrices M̂1 , M̂2 and Ĉj, it is now easy
to calculate Sj. In addition to that, one also can calculate the so called total effect
indices STj which contain the first order effects, as well as all interdependencies of
the aj. They are defined analogously to the Sj as

STj =
V(f(a))− V(E(f(aa−j)))

V(f(a))
= 1− U−j − E2(f(a)

V(f(a)
, (3.25)

where U−j = f0 · fj/(M − 1). The nominator in equation 3.25 can be verbalized
as “the difference between the total variance and the contributions to the variance
from ai, which do not depend on ai”. Table 3.1 shows all terms that can estimated
using this method for a model with M = 5.

Table 3.1: Terms that can be estimated given the corresponding vectors of model
evaluation, M = 5 (Taken from [1]).

f0 f1 f2 f3 f4 f5 f2345 f1345 f1245 f1235 f1234 f12345

f0 V̂ (y)

f1 ŜT
1 V̂ (y)

f2 ŜT
2 V̂ C

−12 V̂ (y)

f3 ŜT
3 V̂ C

−13 V̂ C
−23 V̂ (y)

f4 ŜT
4 V̂ C

−14 V̂ C
−24 V̂ C

−34 V̂ (y)

f5 ŜT
5 V̂ C

−15 V̂ C
−25 V̂ C

−35 V̂ C
−45 V̂ (y)

f2345 Ŝ1 Ê2(y) V̂ C
12 V̂ C

13 V̂ C
14 V̂ C

15(y) V̂ (y)

f1345 Ŝ2 V̂ C
12 Ê2(y) V̂ C

23 V̂ C
24 V̂ C

25(y) V̂ C
−12(y) V̂ (y)

f1245 Ŝ3 V̂ C
13 V̂ C

23 Ê2(y) V̂ C
34 V̂ C

35(y) V̂ C
−13(y) V̂ C

−23 V̂ (y)

f1235 Ŝ4 V̂ C
14 V̂ C

24 V̂ C
34 Ê2(y) V̂ C

45 V̂ C
−14(y) V̂ C

−24(y) V̂ C
−34 V̂ (y)

f1234 Ŝ5 V̂ C
15 V̂ C

25 V̂ C
35 V̂ C

45 Ê2(y) V̂ C
−15 V̂ C

−25(y) V̂ C
−35(y) V̂ C

−45 V̂ (y)

f12345 Ê2(y) Ŝ1 Ŝ2 Ŝ3 Ŝ4 Ŝ5 ŜT
1 ŜT

2 ŜT
3 ŜT

4 ŜT
5 V̂ (y)

The advantage of this method compared to the scatter plot method is the fact
that also higher order effects can be detected. On the other hand many evaluations

77



3 Stability

are necessary, which will be visualized now using the simple linear model 3.2 with
M = 3 and c1 = c2 = c3 = 1. In order to evaluate how many model evaluations are
necessary to reach an accurate estimate for the Sj, a Monte Carlo experiment has
been performed, where the sensitivity analysis is performed 100 times for different
numbers of model evaluations. After that, the mean value and standard deviation
for the Sj has been calculated for each number of evaluations. Figure 3.5 shows
the results for S3. It can be seen that in order to achieve a reasonable accuracy of
>99%, an amount of model runs of at least 400000 is necessary.
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Figure 3.5: Mean value and standard deviation of S3 calculated for different amounts
of model evaluations. For every data point the sensitivity analysis has
been performed 100 times.

3.1.2 Sensitivity Analysis based on ASTRA Simulations

In this section, two of the sensitivity analysis methods that have been discussed
above will be applied to several parameters at REGAE. As it has already been
stated, the method by Saltelli et al. — even though it is one of the most efficient
([33]) — requires a large amount of simulation runs. If one wants to perform a
sensitivity analysis for REGAE, the only possibility is to use the particle tracking
code ASTRA. Therefore in order to be able to generate enough statistics, one
needs to perform an immense amount of ASTRA simulations (N(M + 2)). Since
REGAE is a relatively small machine and therefore the number of input parameters
is manageable, it can be used to also evaluate the feasibility of the variance based
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sensitivity analysis methods that have been presented, in the context of accelerator
physics. In this thesis two different sensitivity analyses will be performed:

(a) Scatter plot analysis based on ASTRA simulations performed using electron
bunches for several machine parameters

(b) Saltelli type analysis based on single particle ASTRA simulations.

The first one will be focused on beam parameters like transverse emittance, energy
spread and bunch length. Here also the effects due to the solenoid lenses will be
studied. The second — Saltelli type — analysis will then be focused on the mean
beam energy, which leads to changes in the time of flight of the bunches. To this
end the cavity amplitudes and phases will be used as input parameters.

Using ASTRA for Sensitivity Studies

A Saltelli type sensitivity analysis requires an easy mechanism to perform the
model evaluations in an automated way. ASTRA simulations always start with a
so called input deck, which contains all the required simulation parameters and the
machine layout. This implies that for each simulation run a unique input deck is
required. In other words, the input matrices M̂1, M̂2 and Ĉj need to be translated
into valid ASTRA input decks. To this end a MATLAB tool has been written,
which performs the following five steps:

(1) Random generation of the input matrices M̂1, M̂2

(2) Calculation of the re-sampled matrices Ĉj

(3) Generation of theN(M+2) ASTRA input decks, based on the input matrices

(4) Consecutive execution of the ASTRA code for all N(M + 2) input decks

(5) Calculation of sensitivity measures based on the ASTRA output and using
Saltelli’s method.

It has been shown above that in order to improve the accuracy (reduce the standard
deviation) of the sensitivity indices, a large number of model runs is necessary.
Therefore the sensitivity analysis tool has been setup in a away that it can run on
multiple processors. The following simulations have been performed using a total
of 32 cores (Intel Xeon and Intel Core i5), which resulted in a simulation time of
7 days.
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Scatter Plot Analysis

For the scatter plot analysis 32000 ASTRA simulations from the cathode to the
target screen at z = 5.5m have been performed. As output parameters horizontal
RMS emittance, energy spread, bunch length and horizontal RMS spot size on
the target were chosen. For the input both cavity phases, as well as the magnetic
fields of the solenoid lenses have been chosen. Variation of the input has been
configured to be compliant with the design stability goals of 0.01 deg phase sta-
bility for both cavities, while the solenoid field stability has been adjusted to a
stability obtained from the measurements that will be discussed in section 3.3.1.
Using the slice analysis method discussed above, the first order sensitivity indices
shown in table 3.2 have been estimated. For the variance of the horizontal RMS
emittance the gun phase stability is the most important factor. This makes sense,
because this is where the beam emittance is first defined through the acceleration
process. Interestingly also the first solenoid has a significant effect on the variance
of the RMS emittance. Its sensitivity index is approximately half the gun phase
sensitivity. This circumstance can be explained by non linear forces that act on
the beam when it passes the first solenoid. In fact this is also true for the other
two solenoids, but the beam size right after the gun cavity is much larger, since it
is not focused yet (except for the focusing effect of the gun itself). This leads to a
larger fraction of the bunch being exposed to non-linearities of the solenoid field.
The bunch length variance is mainly dependent on the cavity phases. It turns

out that the gun cavity’s phase is the most influential parameter. This can be
explained by considering that phase slippage effects inside the gun cavity — which
are different depending on the injection phase — can affect the bunch length. In
addition to that, the energy spread also depends on the injection phase, which is
an important factor in the velocity bunching scheme.
According to the analysis, the variance of the horizontal RMS spot size on target

is mostly dependent on the last solenoid’s variance, which is the last element in

Table 3.2: First order sensitivity indices for the slice based scatter plot analysis using
ASTRA simulations. (S1 → gun phase, S2 → buncher phase, S3 → solenoid
1 field, S4 → solenoid 2_3 field, S5 → solenoid 4_5 field)

S1 S2 S3 S4 S5 ΣSi

Horizontal RMS emittance 0.621 0.009 0.326 0.043 0.008 1.006
Bunch length 0.553 0.425 0.01 0.006 0.005 0.999
Energy spread 0.745 0.237 0.011 0.005 0.005 1.003
Horizontal RMS spot size 0.024 0.024 0.022 0.176 0.713 0.959
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front of the target. It can also be seen that the focusing effect of the cavities
cannot be neglected. The effect on the spot size variance is on the same order as
the effect of the first solenoid.
Except for the case of the spot size, interdependencies of the input parameters

do not seem to have an effect on the variances. It is important to note that a total
sensitivity value slightly greater than one can occur due to statistical inaccuracies.
An increase in the number of slices leads to a slight oscillation around the asymp-
totic value. The stability of the REGAE magnets will be discussed in detail in
section 3.3.1.

Saltelli Type Analysis

For the second sensitivity analysis 600000 ASTRA simulations have been per-
formed using the sensitivity tool. Since this analysis is limited to single particle
simulations, only one output parameter will be evaluated, the beam energy. As
input parameters the gun amplitude and phase, as well as the buncher amplitude
and phase have been studied. Table 3.3 shows the results of the analysis. There are
several things that can be extracted from the sensitivity indices here. First of all
it can be seen that the buncher phase is the most important parameter of the four.
This makes sense, because the buncher is operated off-crest. It can also be seen
that the phases show significantly larger sensitivity compared to the amplitudes.
The third observation is the fact that the sum of the Si is smaller than one. Re-
calling the theory of the sensitivity indices, this leads to the conclusion that higher
order effects, or in other words the combined effect of the individual parameters
also influence the overall beam energy variance. This can also be concluded from
the total effect indices, which are in all cases greater than the first order effects.
The sensitivity analysis for the beam energy has revealed how the individual

variances of the cavity parameters affect the beam energy. In the next section the
dependence of the electron bunch time of flight stability on the RF phase stability
will be discussed looking at the underlying physics in an analytical way.

Table 3.3: First order, as well as total sensitivity indices for the sensitivity analysis
using ASTRA for the mean beam energy. The values have been obtained
using Saltelli’s method. (S1 → gun amplitude, S2 → gun phase, S3 →
buncher amplitude, S4 → buncher phase)

S1 S2 S3 S4 ΣSi

1st order effect 0.004 0.069 0.019 0.881 0.973
Total effect 0.028 0.105 0.037 0.927 1.097
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Concluding Remarks

In this section variance based sensitivity analysis methods have been applied to
several parameters of the REGAE machine. Even though the results of both analy-
ses provide insight into the importance and interplay of different input parameters,
it has to be admitted that the sheer amount of required model runs limits these
techniques to small machines like REGAE. A complex machine like FLASH (Free
electron LASer Hamburg) for example, has so many input parameters that in
order to analyze them, the number of model runs and the resulting computing
time would not be feasible.

3.2 Dependence of Bunch Time of Flight
Stability on RF Stability

In the preceding chapters the dependence of several beam parameters on the vari-
ance of input parameters like the gun phase and amplitude have been discussed on
the basis of statistical methods. As it has been stated in the introductory chapter,
the stability of the bunch time of flight is crucial for the experiments, which are
going to be conducted using the REGAE machine. The first part of this section
will give the relevant physical background for understanding the dependence of
time of flight on small RF phase changes. In the second part actual measurements
of the phase stability at REGAE will be presented.

3.2.1 Physical Background

The phase for which the electron and the field reach a fixed phase relationship
inside the accelerator cavity is the so called synchronous phase φsync, which has
been derived elsewhere ([12]) to be:

φsync = φ0 +
1

2α
· csc

(
φ0 +

1

2α

)
(3.26)

where φ0 + 1/2α ≡ φeff is the effective phase that compensates the phase slippage
effects right after the injection process ([12]) and α is the normalized vector po-
tential of the field, which can be written in terms of the maximum accelerating
field E0 as

α =
eE0

2mec2k
, (3.27)

where e and me are the charge and the mass of the electron and k = 2π/λ. For
α ≥ 1 relativistic effects in the particle dynamics have to be taken into account.
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3.2 Dependence of Bunch Time of Flight Stability on RF Stability

For an S-band cavity — like the cavities that are used at REGAE — operating at
110MV/m, the normalized vector potential is approximately equal to 1.7. When
the electron has reached φsync, its velocity is v ≈ c, where c is the speed of light in
vacuum. This implies that an electron which could be injected at φ0 = φsync must
have the shortest time of flight, which in turn means that φsync − φ0 is a measure
for the time of flight of a particle. The phase of the electron can be expressed as:

φ = ωt− kz + φ0 = βckt− kz + φ0, (3.28)

where k = 2π/λ and β = v/c. So for t = 0 and z = 0 (hence the injection point in
space and time) the phase is equal to φ0. We now have:

φsync − φ0 = ωt− kz = βckt− kz. (3.29)

And from this it follows that the time of flight of the particle after a certain
distance z can be expressed as:

Tg =
φsync − φ0 + kz

βck
. (3.30)

The minimum time of flight is reached for E0 = 110MV/m at φ ≈ 73 deg, which
corresponds to an effective phase inside the first cell of 90 deg. This is the expected
result if we define the maximum of the field to be at a phase of 90 deg, which is
the standard definition for RF guns.

Exact Solution

It should be noted that the calculation only estimates the time of flight of the
particle. In order to calculate the exact value of Tg, one has to integrate the γ(z)

dependent velocity of the particle over the desired flight distance. Noticing that

β(z) =

√
γ(z)2 − 1

γ(z)
, (3.31)

it can be seen that this involves integrals of the form:

t =
1

c
·
∫ z2

z1

γ(z)√
γ(z)2 − 1

dz, (3.32)

which cannot be solved analytically. They can of course be solved numerically.
In order to get the exact time of flight for the REGAE gun cavity, one would
then have to solve three integrals, accounting for the half cell section, the full cell
section and the subsequent drift region. So Tg would then be:

Tg = t1/2 + t1 + tdrift. (3.33)
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Small Deviations of the Phase

Since we are for now only interested in the time of flight changes caused by small
phase changes in the gun system, it is not necessary to find the exact solution for
T (φ0, z). It is sufficient to focus on small time of flight differences caused by small
phase differences of around one degree. The time of flight deviation due to small
phase changes is then given by the derivative of Tg with respect to φ0. In order to
simplify the equations and to account for the fact that β is also a function of φ0,
Tg(φ0) can be written as

Tg(φ0) =
φsync(φ0)− φ0 + kz

β(φ0) · ck
=
T̃g(φ0)

β(φ0)
. (3.34)

The derivative is thus given by

dTg(φ0)

dφ0

=
dφ0T̃ (φ0)

β(φ0)
− T̃ (φ0) · dφ0β(φ0)

β(φ0)2
, (3.35)

where the abbreviation dφ0 = d/dφ0 has been used. The derivative of T̃g is given
by

dT̃g
dφ0

=
1

ck
·
(
dφsync(φ0)

dφ0

− 1

)
, (3.36)

where the derivative of the synchronous phase with respect to φ0 can be calculated
using its definition 3.26 and the fact that

d
dx

csc(x) = − cos(x)

sin2(x)
(3.37)

It is also called the bunch compression factor. Using this result we then get

dTg
dφ0

=
1

β(φ0)2ck
·
[
β(φ0)

2α
· cos(φeff)

sin2(φeff)
− (φsync(φ0)− φ0 + kz) · dφ0β(φ0)

]
. (3.38)

Under the assumption that β is approximately constant, i. e. for a φ0 close to an
effective phase of 90 deg, the following simplified expression can be found. Since β
is now constant regardless of a small phase change δφ, the second term in equation
3.38, which accounts for time of flight differences in the drift region after the gun
(z-dependence), vanishes and

dTg
dφ0

≈ 1

βck

(
1

2α
· cos(φeff)

sin2(φeff)

)
. (3.39)

In order to obtain the more accurate approximation 3.38, the phase dependent
velocity β(φ0)c has to be calculated. The energy gain inside the cavity across the
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distance ∆z = z2−z1 due to the RF field and under constant phase approximation
is given by ([12]):

∆γ(z2, z1) = α ·
[
k∆z sin(φ̃)− 1

2

(
cos(φ̃+ 2kz2)− cos(φ̃+ 2kz1)

)]
, (3.40)

where φ̃ is φeff inside the half cell (in order to account for the phase slippage)
and φsync inside the full cell of the REGAE gun cavity. The total energy gain for
the REGAE 1.5 cell gun is then given by the sum of the contributions of each
individual cell. Therefore

γg = 1 + ∆γ(z1/2, 0) + ∆γ(zg, z1/2), (3.41)

where zg is the length of both cells and z1/2 is the length of the half cell. Using
this result and

β(φ0) =

√
γ(φ0)2 − 1

γ(φ0)
(3.42)

equation 3.38 can be evaluated. Figure 3.6 shows a comparison of results from
ASTRA simulations and values obtained using equation 3.38. One can see that

1000

−1000

−500

500

0

φ(deg)

δt
/
δφ

(f
s)

ASTRA Simulation

Analytical Model

70 90 1105030

Figure 3.6: Time of flight deviations due to small phase changes δφ in the gun cavity.
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equation 3.38 is very close to the numerical solution, except for the extreme cases.
Differences from the ASTRA results are due to the fact that an ideal RF-field (sine)
has been assumed. ASTRA in turn uses the real field map of the REGAE gun.
Another reason for the differences is the fact that the REGAE gun incorporates
a so called elongated half-cell, which is also taken into account in the ASTRA
simulations. Elongation of the half cell results in an increase of the energy gain in
the half cell. The elongation length is obtained via optimization calculations that
take space charge effects into account ([38]).

Buncher Cavity

In order to determine the time of flight variations induced by the phase changes of
the buncher cavity, one first has to look at the energy gain of the particles inside of
a full RF cell, which is given by equation 3.40. For the buncher cavity a constant φ
can be assumed, because the particles have already reached φsync in the gun cavity.
Using φ0 = φsync and equation 3.30, the time of flight is given by

Tb =
z − z0
βbc

, (3.43)

where z0 is the position of the first cell of the buncher cavity. The velocity βc

can again be calculated via the energy gain. As it has been already discussed in
chapter 2, the REGAE buncher cavity is comprised of four full cells, hence the
energy gain inside the buncher is given by four times the energy gain due to a full
cell. A full cell has exactly the length of a half wavelength, therefore in this case
z2 = z1 + λ/2. Inserting this into equation 3.40, we get

∆γ = α ·
[
kλ

2
sin(φ)− 1

2
(cos(φ+ 2kz1 + 2π)− cos(φ+ 2kz1))

]
= α ·

[
2πλ

2λ
sin(φ)− 1

2
(cos(φ+ 2kz1)− cos(φ+ 2kz1))

]
= απ · sin(φ).

(3.44)

Therefore
∆γb = 4παb · sin(φ), (3.45)

where αb is the normalized vector potential of the buncher cavity. Hence βb in
equation 3.43 is given by

βb = βb(γ0 + ∆γb), (3.46)

where γ0 is the initial γ of the incoming particle. The time of flight deviation due
to small buncher phase changes is now given by the derivative of equation 3.43
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3.2 Dependence of Bunch Time of Flight Stability on RF Stability

with respect to the buncher phase. Figure 3.7 shows the time of flight deviation
for ∆z = 2.21m calculated using equation 3.43 compared to ASTRA simulations.
It can be seen that the analytical solution approximates the ASTRA simulations
very well over a large phase region, but fails to describe the extreme cases suf-
ficiently. For phases smaller than 0 the electrons start to be decelerated, which
cannot be described by this model sufficiently. The other extreme case is the de-
bunching case. These cases can however be neglected, since only phases around
0 deg (bunching), or 90 deg (maximum energy gain) are of interest in most cases.
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Figure 3.7: Time of flight deviations due to small phase changes δφ in the buncher
cavity at z = 2.21m.

Combining Gun and Buncher

The total time of flight jitter of the whole system is essentially determined by
three phase jitter sources: gun phase jitter, buncher phase jitter and the so called
common phase jitter. Gun and buncher phase jitter can for example be caused
by temperature fluctuations which result in the expansion or contraction of the
copper material. This in turn causes a change of the resonant behavior of the
respective cavities and hence their resonant frequencies. As both cavities are fed
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by one single klystron, phase jitter originating from the klystron causes a phase
jitter on both cavities, the common phase jitter. Two things now have to be taken
into account. First of all γ0 in equation 3.46 now depends on the gun phase φg
and hence

βb = βb(φb, φg) = βb(γg(φg) + ∆γb(φb)). (3.47)

Secondly, the fact that the time of flight between the two cavities depends on
the gun phase, has to be taken into account. In normal operation the two cavity
phases φg and φb are adjusted to maximum energy gain and maximum bunching
respectively. It is important to note now that due to phase dependent time of flight
between the cavities, φb is in configured phase only for fixed φg. An electron with
a shorter or longer time of flight will arrive at a different phase in the buncher. In
other words, a gun phase jitter corresponds to a buncher phase jitter. Therefore a
correction has to be added to the buncher phase and φb is now a function of the
gun phase. Thus

φb(φg) = φb + φ̃(φg), (3.48)

where the correction phase is given by

φ̃(φg) = βg(φg)ck ·
dTg(φg)
dφg

· (φg − φ0
g). (3.49)

The factor (φg−φ0
g) ensures that the correction is only applied for phase deviations

δφ from φ0
g (it is assumed that the machine has been configured for a fixed pair of

φ0
g and φb). This phase correction also has to be taken into account in the context

of the arbitrary phase tool (see section 2.5). It has to be noted that this effect
can also lead to compensation effects. These compensation effects can in fact be
interpreted as the higher order effects, which have been observed in the sensitivity
analysis.
In order to describe the effects of the different phase jitter sources on the time of

flight, one now has to combine the formulae that have been derived above, keeping
in mind the phase correction. Hence

Tges(φg, φb, φc) = Tg(φg, φc) + Tb(φg, φc, φb + φ̃(φg)), (3.50)

where φc is a phase factor which can be introduced into the formulae as a phase
term that is added to both the gun and buncher phases, in order to account for
the common phase changes. The three jitter contributions can then be calculated
by deriving the total time of flight with respect to φg,φb, or the common phase φc.
Since the time of flight of a particle also depends on the RF amplitude (α = α(E0)),
equation 3.50 can also be derived with respect to the gun and buncher amplitudes.

88



3.2 Dependence of Bunch Time of Flight Stability on RF Stability

The phase correction factor in this case depends on the gun amplitude. Table
3.4 shows the expected time of flight deviation per degree and MV/m for all of
the three contributions at a typical phase setting of maximum energy gain and
bunching at a z-position of 5.5m (REGAE target chamber). From these results it
can be seen that in order to reach a 10 fs time of flight stability a phase stability
on the order of 7 · 10−3 deg and 0.01MV/m is necessary. It is important to note
that the result for the buncher cavity is only valid for an ideal field (sine) at zero
crossing phase. A deviation of 1 deg from this setting results in an increase of the
E0,g contribution by 40 fs/(MV/m).

Table 3.4: Time of flight deviation due to small phase and amplitude changes. The
values have been obtained using equation 3.50 and a phase setting for max-
imum energy gain and bunching and z = 5.5m

Contribution Value (fs/deg) Contribution Value (fs/(MV/m))

φg 86 E0,g -1010
φb -1434 E0,b 0
φc -1348 E0,c -1010

In order to study the compensation effects due to the time of flight differences
between the cavities, a Monte Carlo experiment has been performed using equation
3.50. The phases have been set to the maximum energy gain for the gun and the
bunching phase for the buncher cavity, i. e. usual operation settings. Normally
distributed phase errors of the order of 0.03 deg have been applied to the cavity
phases, as well as the common phase. Table 3.5 shows the resulting normalized
standard deviations for all possible jitter scenarios. It can be seen that in all cases

Table 3.5: Results of a Monte Carlo experiment that determines the effect of the time
of flight differences between the cavities. Values are normalized.

Jitter applied to φb φb + φ̃(φg)

φg φb φc 1 0.95
φg φb − 0.69 0.69
φg − − 0.03 0.04
φg − φc 0.72 0.65
− φb φc 0.99 0.95
− − φc 0.72 0.65
− φb − 0.69 0.7
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where the common phase is involved a compensation of approximately 6% can
be observed. Recalling the two figures 3.6 and 3.7 this makes sense for the phase
settings that have been used for the experiment. The gun phase jitter induces a
positive time of flight deviation and the buncher phase jitter a negative one.

Considering the compensation effects, another interesting question is whether
there exists a pair of (φg, φb) with minimal standard deviation of the time of flight.
Therefore a second Monte Carlo experiment has been performed for differ ent phase
settings. Figure 3.8 shows the results of the numerical experiment in form of a
density plot. The phase range has been chosen to be compliant to usual operation
phases for both cavities (φg), where φg = 0deg is now defined as the phase for
maximum energy gain and φb = −90 deg as the bunching phase. The numerical
experiment shows that there is indeed a minimum. This minimum occurs for the
case of both cavities being set to an accelerating phase, which is the expected result.
In the usual operating setup (maximum energy gain + bunching) a much higher
jitter is expected due to the off-crest operation mode of the buncher cavity. This
circumstance is also confirmed by the numerical experiment. The compensation
effect can thus not be leveraged.
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Figure 3.8: Density plot of the standard deviation of the time of flight obtained via
a Monte Carlo experiment using equation 3.50 for different cavity phase
settings.
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Concluding Remarks

In this section the physical background of time of flight deviations due to small
phase changes has been discussed. Three important insights can be extracted.
First of all there are three different phase jitter sources, which have independent
sources and can compensate each other. The second insight is the fact that a gun
phase jitter leads to an additional buncher phase jitter, because of the change in
time of flight between the two cavities. Finally the requirements for 10 fs time of
flight stability are 7 · 10−3 deg and 0.01MV/m according to the analytical model.
In the following section the analytical approximations will be used to estimate

the time of flight jitter at REGAE based on actual phase jitter measurements.

3.2.2 Measurement of the RF Phase Stability using the
Phase Scan Technique

As it has been discussed above, the RF phase is a very important parameter
especially for the beam energy and hence the time of flight of the electron bunch.
It is therefore necessary to know the phase jitter as accurate as possible. There are
several methods for measuring the RF phase. The first method is the measurement
of the phase inside the cavities using a probe antenna. This way both the gun
and the buncher phase and the gun phase jitter can be measured easily. One
thing to keep in mind here is the fact that this method is indeed a so called
in-loop measurement. The real phase stability is determined by the bandwidth
of the cavity (gun π−mode: 462 kHz, see chapter 2.6.4), which leads to a much
more stable phase. Knowing this, it becomes clear that a method based on beam
diagnostics should be used in order to determine the real phase jitter. A very
accurate technique is the so called phase scan method, where the electron bunch
charge is measured at a phase where the charge is most sensitive to small changes
in the phase ([39]). Figure 3.9 shows an ASTRA simulation of the gun phase
dependent bunch charge, as well as the the four main regimes. The simulation
determines the charge at the position of the first diagnostics station (DDC1, z =

693mm), where the first of three Faraday cups is installed. Regime (I) describes the
case where no electrons arrive at the Faraday cup due to the immediate deceleration
inside of the half-cell. The electrons essentially get pushed back onto the cathode.
In regime (II) parts of the electron bunch are emitted into an accelerating phase;
at the phase φ1/2, 50% of the emitted electrons are accelerated and can therefore
be detected. Phase region (III) shows a monotonic increase of the charge. This can
be explained by the Schottky effect, which leads to a decrease of the work function
inside the Cs2Te cathode that can be attributed to higher field gradients at the
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Figure 3.9: ASTRA simulation of the gun phase dependent charge at DDC1. Gun
amplitude: 60MV/m.

cathode. A decreased work function leads to an increase of emitted electrons and
hence the monotonic increase in charge ([40]). The last regime (IV) is the regime,
where parts of the beam get accelerated in the half-cell, but decelerated, or even
reflected in the full-cell. Reflected electrons can then produce secondary electrons,
if they hit the cathode. Secondary electrons that oscillate collectively in the RF
field of the cavity can then also cause the so called multipacting effect, which leads
to an avalanche of newly emitted electron if the secondary electron yield is high
enough (bigger than 1, see [41]). Looking at figure 3.9, it becomes apparent that
the most sensitive phase is φ1/2. Thus a phase stability measurement can now be
performed by first scanning the phase and then measuring the charge jitter at φ1/2.
Since the increase in charge around this phase is almost linear, the charge jitter
can then readily be related to a phase jitter.

Measurement at REGAE

In order to conduct the measurement according to the method described above,
two self-written diagnostics tools in MATLAB have been used. They both interface
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with data acquisition servers, which collect all the diagnostics data and provide
them via the TINE protocol (cf. [42] for details on the protocol). The first tool
(FM_PhaseScanTool) performs a phase scan and records the charge on one of the
Faraday cups, whereas the second (FM_ReadOutTool) can be used to display and
also record diagnostics data to disk.
The phase stability measurement has been performed for four different machine

setups:

(1) No feedback

(2) With analogue feedback

(3) With digital learning feedforward correction (LLRF)

(4) With digital learning feedforward correction (LLRF) and analogue feedback.

The comparison of these cases should show the effects of both the feedback and
the LLRF (low level RF) feedforward correction. The analogue feedback system
is essentially a simple proportional type feedback loop, with acts on the klystron
phase according to the error signal at the gun probe antenna. Since this system
— being p-type — acts very fast, an improvement of the overall RMS stability
is expected. The learning feedforward correction (LFF) is an adaptive algorithm,
acting on the LLRF part of REGAE, specifically the so called feedforward tables
that define the output pulse shape. It tries to keep the amplitude of the pulse,
where the electron bunch is emitted in time, as flat as possible. In addition to
that, the phase is also tried to be kept as constant as possible during this period
of time. Because the algorithm averages over 10 pulses, only relatively slow drifts
are expected to be corrected by the LFF.

Case (1)

Figure 3.10 shows the complete phase scan for the charge at the Faraday cup
(DDC1). All of the following measurements have been conducted using this di-
agnostic. The data shown is an average over five consecutive measurements. For
all of the following measurements the gun amplitude had been set to 60MV/m.
In comparison to the ASTRA simulation shown above, the signal is much noisier.
This noise might be attributed to space charge effects, since the measurement has
been conducted at a relatively low gun gradient of 60MV/m and high values of
the charge up to approximately 4.5 pC. For the stability measurement two phases
have been chosen; one on the first flank of the charge curve (postive slope) and one
on the second flank (negative slope). In addition to that, a third measurement has
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Figure 3.10: Phase scan of the charge at the Faraday cup (DDC1). The analogue
feedback, as well as the learning feedforward correction had been turned
off.
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Figure 3.11: Detailed phase scan of the charge at the Faraday cup (DDC1). The left
plot shows the first flank, the right plot the second one. Both plots also
include the linear fit curve ±1 deg around the phase the measurement
was conducted at.
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been performed at a phase, where the charge is insensitive to phase changes, in
order to determine the intrinsic noise of the Faraday cup, which ultimately limits
the resolution of this technique. The charge jitter due to the Faraday cup and
its digitization electronics have been determined to be 0.007 pC, which limits the
accuracy of the measurement depending on the slope of the flank to approximately
20 fs. Data was recorded for a period of 5min for every 6th pulse. Table 3.6 shows
the results of this measurement. The time of flight jitter has been estimated for
the target chamber position (z = 5.5m) using the theory shown in section 3.2.1
assuming common phase jitter. Looking at the results, one can see the large RMS
errors for this setting, which are also strongly different for each flank. This can
be attributed to the phase drifts of up to approximately 0.19 deg/min that oc-
curred during the measurement. They were caused by cavity temperature drifts
of approximately -0.02 ◦C.

Table 3.6: Results of the RF phase stability measurement using the phase scan tech-
nique without any feedback. The in loop data has been measured using the
gun probe antenna.

RMSE – Beam based RMSE – In loop
Phase (deg) Time of flight (fs) Phase (deg) Time of flight (fs)

1st flank 0.182 245.336 0.173 233.204
2nd flank 0.311 419.228 0.341 459.668

Average 0.247 332.956 0.257 346.436

Case (2)

For the second case the analogue feedback was used. Again, two measurements
were performed, one at each flank. The results (see table 3.7) show that the
analogue feedback dramatically reduces the phase jitter, which is the expected
result.

Case (3)

The third measurement was conducted using just the LFF and usual measurement
scheme. Looking at table 3.8, one can see that the RMS values are between the
cases (1) and (2) and almost the same as the RMS values for case (1), when the
linear drift is removed (see table 3.8). It can therefore be concluded that the LFF
reduces the slow phase drifts as expected. A more thorough analysis of data shows
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Table 3.7: Results of the RF phase stability measurement using the phase scan tech-
nique with analogue feedback. The in loop data has been measured using
the gun probe antenna.

RMSE – Beam based RMSE – In loop
Phase (deg) Time of flight (fs) Phase (deg) Time of flight (fs)

1st flank 0.071 95.708 0.053 71.444
2nd flank 0.073 98.404 0.054 72.792

Average 0.072 97.056 0.0535 72.118

Table 3.8: Results of the RF phase stability measurement using the phase scan tech-
nique with LFF. The in loop data has been measured using the gun probe
antenna.

RMSE – Beam based RMSE – In loop
Phase (deg) Time of flight (fs) Phase (deg) Time of flight (fs)

1st flank 0.093 125.364 0.151 203.548
2nd flank 0.096 129.408 0.195 262.86

Average 0.0945 127.386 0.173 233.204
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Figure 3.12: Histograms of the phase stability measurement at the second flank for
both the gun probe signal (left plot) and the beam based signal via
Faraday cup (right plot).

an interesting behavior of the vector modulator though. Comparison of the gun
probe phase signal and the beam based phase signal for the second flank show a
significant difference. Figure 3.12 shows histograms for both the gun phase signal
measured via the probe and the beam based method. It can be seen that the
probe signal is based upon two different normal distributions (σ−10.2 = 0.047 deg
and σ−9.8 = 0.066 deg). The beam based signal shows a single normal distribution
with σb = 0.096 deg. All other signals are also normally distributed. A scatter plot
of the gun probe signal also reveals the two distributions (figure 3.13). It turns
out that this phenomenon can be tracked down to the vector modulator, which
produces a signal that jumps in phase between to central phases. This might be
caused by crosstalk between signals in the master oscillator. At the time of the
measurement (04.09.2012) the LLRF group had just changed the vector modulator
board. The new board also suffered from sudden signal offsets that required a reset
of the whole module. There are two question left to answer

1. Why can the phase jumps only be seen in the probe signal?

2. Why are the phase jumps not visible in the beam based phase signal?

The first question can be answered by noticing that the double distribution is
also visible on the buncher phase. Due to the small bandwidth the system —
in contrast to the klystron and waveguide system — reacts to the jumps, which
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Figure 3.13: Raw gun probe data for the stability measurement at the second flank.
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Figure 3.14: Illustration of how the adaptive window of the Faraday cup electronics
works. δt1 and δt2 are the timing windows due to the phase jitter at
the two center phases. ∆t is the dynamic time window of the Faraday
cup electronics. The three points Ti show different scenarios of data
acquisition. Scenario T2 depicts the case where the electronics mix the
data from both δti.
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3.2 Dependence of Bunch Time of Flight Stability on RF Stability

is then visible in the measured signal. Answering the second question requires
some knowledge of the Faraday cup electronics. The current electronics use an
adaptive time window, which is centered around the bunch according to the signal
history. Using an adaptive window improves the resolution of the measurement,
which divides the pulse into 8 parts of 0.5 ns. If the phase and therefore the time
of flight of the bunch (see section 3.2.1) now changes, the window needs to change
its position in time. This can lead to a situation, where old and new data is mixed,
if the window cannot adjust to the sudden phase jump fast enough. Figure 3.14
illustrates this problem. As a result the jitter on the beam based phase signal can
now be understood as a convolution of the real phase jitter of the system and jitter
of the jumps the vector modulator produces. Therefore the expected result is a
single broadened normal distribution.

Case (4)

The last measurement was conducted using both the LFF and the analogue feed-
back. Table 3.9 shows the stability of this setup, which is — as expected — the
best of the four. Unfortunately this measurement also suffered from RF jumps,
which makes the interpretation of the individual results difficult.

Table 3.9: Results of the RF phase stability measurement using the phase scan tech-
nique with LFF and analogue feedback. The in loop data has been measured
using the gun probe antenna.

RMSE – Beam based RMSE – In loop
Phase (deg) Time of flight (fs) Phase (deg) Time of flight (fs)

1st flank 0.068 91.664 0.049 66.052
2nd flank 0.087 117.276 0.068 91.664

Average 0.0775 104.47 0.0585 78.858

Phase Stability with a new Vector Modulator

As a reaction to the problems described above the vector modulator has been re-
placed. In addition to that the master oscillator (that provides the 3GHz reference
signal) as well as the cabling had been checked.
The following measurement has been conducted on the basis of this new setup.

Both the analogue feedback and the LFF had been turned on, because this setting
turned out to be the most stable (see above). The results in terms of the RMS
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Figure 3.15: Phase scan of the charge at the Faraday cup (DDC1) using the new
vector modulator setup. The analogue feedback, as well as the learning
feedforward correction had been turned on.
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Figure 3.16: Detailed phase scan of the charge at the Faraday cup (DDC1) using the
new vector modulator setup. The left plot shows the first flank, the right
plot the second one. Both plots also include the linear fit curve ±1deg
around the phase the measurement was conducted at.
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Figure 3.17: Raw data from the beam based phase stability measurement. The data
has been recorded at the second flank.
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Figure 3.18: Raw data from the gun probe antenna based phase stability measure-
ment. The data has been recorded at the second flank.
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Table 3.10: Results of the RF phase stability measurement using the phase scan tech-
nique with LFF and analogue feedback, as well as the new vector modu-
lator. The in loop data has been measured using the gun probe antenna.

RMSE – Beam based RMSE – In loop
Phase (deg) Time of flight (fs) Phase (deg) Time of flight (fs)

1st flank 0.038 51.224 0.036 48.528
2nd flank 0.037 49.876 0.036 48.528

Average 0.0375 50.55 0.036 48.528

stability are shown in table 3.10. Looking at these results a significant improvement
in comparison to the values obtained with the old setup can be observed. Figures
3.17 and 3.18 show the raw data for a period of approximately 8min. In addition
to the phase jitter, the gun amplitude jitter during this measurement has also been
determined. Table 3.11 shows the results. It can be seen that the contribution
to bunch time of flight jitter due to gun amplitude jitter is approximately 15%
smaller than the contribution due to gun phase jitter. Although — due to the
missing jumps in the phase — the beam based results of the phase measurement
now almost match the ones measured in loop, a periodic perturbation of the charge
signal that ultimately degrades the calculated RMS stability can be seen. In order
to track down the source of this modulation, a readout for the laser power meter
has been included into the data acquisition software.

Table 3.11: Results of the RF amplitude stability measurement using LFF and ana-
logue feedback, as well as the new vector modulator. The in loop data
has been measured using the gun probe antenna.

RMSE – In loop
Amplitude (deg) Time of flight (fs)

1st flank 0.039 39.39
2nd flank 0.043 43.43

Average 0.041 41.41
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3.2 Dependence of Bunch Time of Flight Stability on RF Stability

Side Note: Correlation of Time Series

One of the most important things one has to consider when the correlation
of different time series needs to be determined is the simultaneity. This is
especially important when time series need to be compared, which suffer
from a lot of random noise. Using a simple Mathematica calculation, the
problem can be illustrated. Consider two time series of data S1 and S2,
where S2 contains data that is linearly dependent on the data contained in
S1. Let S1 contain normally distributed data and S2 the linear function of
the data in S2, plus some additional random normally distributed jitter.
Then a plot of S1 vs. S2 would look like the left one shown in figure
3.19. The linear dependence can readily be extracted from the scatter
plot. Suppose the data is now shifted in time with respect to each other
by just one data point (for the calculation 10000 data points have been
used). Then the scatter plot would look like the right one shown in figure
3.19. No clear linear dependence can be extracted from the data. In reality
the simultaneity of the data can also be randomly distributed over the time
series, which would result in a mixture of the two scenarios.
In the case of all the measurements conducted for this thesis the si-

multaneity of the recorded data can only be guarantied, when the data
is acquired from a single TINE server. In order to overcome the problem
described above, the method of so called 2D cross covariograms obtained
using sliding window cross-covariance can be employed. Here the cross-
covariance defined by

(f ? g)(x) =

∫
f ∗(x)g(x+ t)dt (3.51)

is calculated for small time windows that “slide” over the whole time se-
ries. The cross-covariance is a measure of similarity of two functions f
and g, therefore using the sliding windows the evolution of similarity and
also possible offsets can be extracted from the resulting 2D map, or covar-
iogram.

Figure 3.20 shows 2D covariograms for the phase stability measurement conducted
using both analogue feedback and the LFF. It can be seen that the fluctuations
in the laser intensity are clearly the dominant source of perturbation. From the
structure of the covariogram the similarity of the two signals can be concluded.
The other two possible sources show no significant similarity over the course of the
measurement.
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Figure 3.19: Comparison of two scatter plots for two different data acquisition scenar-
ios. The left one corresponds to simultaneously taken data points, the
left one to data with a slight temporal offset.

Temperature Stability

The data that has been presented above reveal a worsening of the phase stability
when both the analogue feedback and the LFF are disabled. In order to estimate
the effect of the cavity temperature stability on the RF phase stability, equation
2.38 in conjunction with the cavity parameters (see section 2.6.4) can be used.
For the gun cavity a temperature change of 1 ◦C then results in a phase change
of approximately 10 deg. At REGAE the gun cavity temperature RMS stability
has been measured to be 0.027 ◦C. Therefore the expected RMS phase jitter due
to temperature instability can be estimated to be 0.27 deg, which is in the order
of to the phase jitter that has been measured for the ‘no feedback’ case.

Concluding remarks

The phase stability measurement shown above has characterized the current status
of the REGAE machine in terms of phase stability. It has also revealed problems
with the vector modulator that have an impact on the overall phase stability. This
has been addressed by swapping the vector modulator and by identifying problems
with the master oscillator. The measurement also contributed to the understanding
of how the Faraday cup electronics work and how charge measurements using this
diagnostic have to be interpreted. In addition to that it can be concluded from
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to the auto-covariogram of the charge signal.
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the intrinsic noise level of the Faraday cup signal that the design phase stability of
0.01 deg cannot be measured using this kind of setup. The dark current monitor
(DaMon) mentioned in section 1.1 is expected to provide a better resolution [43],
but has not been available at the time of this thesis.
The current state of the machine allows for an RMS phase stability of approx-

imately 50 fs. This value is a factor of 2 smaller than the 100 fs limit that has
been discussed in the context of femtosecond electron diffraction, but does not
comply with the stability requirements of external injection experiments. It has
also been found out that the beam based measurements are strongly perturbed by
the instability of the laser power. Improvements concerning temperature stability
are currently in the works.

3.3 General Stability Studies

In this section the stability of several machine parameters will be discussed. Based
on the results of the measurements the current status of the machine stability is
evaluated.

3.3.1 Magnet Power Supplies

The stability of the solenoid power supplies is an important factor for the overall
beam stability at REGAE. As it has been shown in the introductory chapter, the
REGAE setup features three focusing elements in the form of solenoids (one single
and two double solenoids). In addition to that, four steerer pairs are part of the
beam optics. As part of the master thesis by Tim Gehrke a large Helmholtz type
coil has been added to the design in order to compensate the earth’s magnetic
field (see [44]). An important device for the beam energy diagnostics is the dipole
magnet, which is part of the spectrometer. The stability of the dipole magnet’s
field is therefore crucial for energy stability measurements conducted using the
spectrometer.
All of the stability measurements have been conducted over-night using a MAT-

LAB tool, which calculates the standard deviation over a given period of time for
different current setpoints. The following stability data is based on 30 minutes of
recorded data and is normalized to the respective current setting. The results can
be seen in figures 3.21, 3.22 and 3.23. The data for the dipole is shown in figure
3.24.

106



3.3 General Stability Studies

0 1 2 3 4 5 6 7 8 9 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
R
M
SE

(r
el
at
iv
e)

(%
)

Current (A)

SOL1
SOL2_3
SOL4_5

Figure 3.21: Stability measurement for the REGAE solenoid power supplies. Each
data point corresponds to 30min of recorded data.

Solenoids

From the results it can be seen that the power supplies are optimized for high
currents > 5A. The solenoid power supply stability strongly depends on the
current used in operation. In low-current situations the standard deviation can be
as large as 0.4%. For currents above 5A the power supplies can be regarded as
very stable with stabilities better than 0.1%. But how does the current actually
affect the focusing of the solenoids? Particle motion in a magnetic field B is given
by the Lorentz force

ma = qv ×B. (3.52)

Since we are interested in the focusing properties of the solenoid it makes sense to
use cylindrical coordinates and to look at the radial component of the equation of
motion. We then get

m(r̈ − rθ̇2) = qrθ̇Bz, (3.53)

where r, θ and z are the components of the cylindrical coordinate system. From
the other components it can be derived ([45]) that

θ̇ =
−q
2m

Bz. (3.54)

Using this and the fact that

r̈ = dtṙ = dt(dzrdtz) = d2zr · ż2 + dzr · z̈, (3.55)
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Figure 3.22: Stability measurement for the REGAE steerer magnet power supplies.
Each data point corresponds to 30min of recorded data.

equation 3.52 becomes

d2rr =
−q2
4pz

B2
zr. (3.56)

In thin lens approximation the focal length is defined as

1

f
=
−dzr
r

. (3.57)

Therefore by integrating equation 3.56 and inserting the result into equation 3.57
we arrive at

1

f
=

q2

2pz
·
∫
B2
zdz. (3.58)

The focal length is hence inversely proportional to the spatial integral over the
square of the longitudinal magnetic field. Since the magnetic field of a solenoid is
linearly dependent on the current I, it follows that

f ∝ 1

I2
. (3.59)

A detailed derivation of the solenoid lens can be found in [46, 12].
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Figure 3.23: Stability measurement for the REGAE compensation coil power supply.
Each data point corresponds to 30min of recorded data. The data has
been recorded around the usual set point of -9.75A (optimal compensa-
tion of the earth’s magnetic field).

Steerers

The steerer magnet power supplies behave similar to the solenoid power supplies,
but the stability is generally about 0.05% better due to a lower load. Interestingly
the stability suddenly decreases at a current of 7A. In addition to that it can also
be seen that the third steerer pair is not as stable as the other ones. The ST3H
power supply has the worst stability. It has to be noted that the steerer magnets
should only be used at low fields in order to minimize large divergences when
entering the solenoid lenses or the buncher cavity. Therefore it can be concluded
that the power supplies of the steerer magnets are not optimized for usual machine
operation.

Compensation Coil

As the compensation coil acts on the whole machine, a high stability of the power
supplies is important. Looking at the result for the compensation coil, it can be
seen that the power supply is stable up to approximately 0.055%, which is a very
good result. Since all power supplies are of the same type, it can be seen that they
are optimized for high current operation. This clearly does not comply with the
needs especially in the case of the steerer magnets.
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Figure 3.24: Stability measurement for the REGAE dipole power supply. Each data
point corresponds to 30min of recorded data.

Dipole

The dipole magnet is used as a dispersive element in the spectrometer section.
Stability of the dipole’s magnetic field is therefore crucial for determining the
mean beam energy. Calibration of the dipole leads to the following linear relation:

Ebeam
∧
= 4.072

MeV
A
· Idip + 0.211MeV. (3.60)

This calibration has been determined using simulations. During operation, the
energy of the beam can then be determined by positioning the beam in the center
of the x-axis of the screen using the dipole (see figure 3.25). At this position 3.60
holds. The beam position on the x-axis depends due to the layout of the dipole
spectrometer on two main factors:

• Beam momentum pz

• Dipole current Idip.

Therefore a large jitter on the dipole current can on the one hand complicate the
identification of the beam position and on the other hand also complicate energy
stability measurements. In the following the effect of a current jitter on the x
position of the beam will be discussed using transfer matrix formalism.
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Figure 3.25: REGAE beam on the DC3 screen (dipole arm).

The dipole spectrometer can — as a first approximation — be thought of as a
combination of an ideal dipole magnet and a drift section. In [47] the 6-dimensional
transfer matrices have been derived to be

Mdip =



cos(φ) ρ sin(φ) ρ(1− cos(φ)) 0 0 0

− sin(φ)/ρ cos(φ) sin(φ) 0 0 0

0 0 1 0 0 0

0 0 0 1 ρφ 0

0 0 0 0 1 0

0 0 0 0 0 1

 (3.61)

and

Mdrift =



1 d 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 d 0

0 0 0 0 1 0

0 0 0 0 0 1

 , (3.62)

where ρ is the bending radius, φ is the bending angle and d is the distance between
dipole and DC3 screen. The beam itself is in this definition characterized by the
vector v = (x0, x

′
0,∆p/p, y0, y

′
0,∆p/p)

T . The x position on the screen can now be
calculated via the matrix multiplication

Mdrift ·Mdip · v. (3.63)

Since we are interested in the effect of the current jitter, we need to relate the
x-position to the current. For small changes in the current it is useful to map the
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small ∆Idip to small changes in the beam momentum ∆p. The cyclotron radius ρ
is defined as

ρ =
p

|q|B, (3.64)

where q is the charge of the electron. Using this we now get

p+ ∆p

|e|B(Idip)
=

p

|e|B(Idip + ∆Idip)

⇔ ∆p

|e|B(I)
=

p

|e|B(Idip + ∆Idip)
− p

|e|B(Idip)

⇔ ∆p = p ·
(

B(Idip)

B(Idip + ∆Idip)
− 1

) , (3.65)

where B(Idip) for REGAE has been determined to be

B(Idip) = 0.046
T
A
· Idip + 0.006T. (3.66)

Implying ideal boundary conditions (x0 = 0, x′0 = 0 and φ = π/2) and using
d = 0.295m at REGAE, it is now possible to calculate the jitter of the x position
due to a dipole current jitter using the calibration 3.60.For a dipole current of 1A,
which — according to figure 3.24 — corresponds to a jitter of 0.43%, the resulting
jitter in the x-position is σx = 2.17mm. On the DC3 screen each mm has been
determined to correspond to 11.25 keV. Therefore the beam energy jitter can only
be detected down to a standard deviation of 24.4 keV at this setting. This makes
it almost impossible to perform reasonable energy stability measurements using
the spectrometer arm. Such a measurement could be used to measure the bunch
time of flight jitter caused by cavity amplitude jitter. In order to be sensitive to
the required 10 fs, an energy resolution of at least 0.5 keV is necessary. This can be
estimated using the theory shown in section 3.2.1. Therefore a more stable power
supply must be incorporated into the setup in order to be able to perform reliable
energy stability measurements. A modified version of the current power supply
(see “New Dipole Power Supply” in figure 3.24) turned out to have an even worse
stability.

3.3.2 Beam Pointing Stability

The REGAE accelerator is situated in the old LINAC I building, which is right
next to the synchrotron DESY II. During DESY II operation, the REGAE beam
has turned out to be less stable. Figure 3.26 shows two beam pointing measure-
ments. One of the measurements had been performed at a time, where DESY II
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had a scheduled maintenance day, whereas the other one on a day with DESY II
operation. It turns out that the DESY “DI_DC_GM” magnet acts on the RE-
GAE beam and therefore degrades the beam pointing stability. Table 3.12 shows
the standard deviation of the beam center of mass position on the screen. It can be
seen that during the DESY operation the pointing stability is reduced by a factor
of 8.7 for the x-direction and by a factor of 2.2 in the y-direction. Currently the
only way to avoid this problem, is to run REGAE at 12.5Hz, which is the DESY
II working frequency. In the future shielding will have to be installed at DESY to
enable REGAE to run at different non-synchronized frequencies.

Table 3.12: Standard deviation of the beam center of mass position on the DDC2
screen.

σx (µm) σy (µm)

DESY Magnet OFF 4.92 17.57
DESY Magnet ON 42.99 38.85

3.3.3 Long Term Measurements

In the last sections short term stability of machine parameters has been discussed.
This section will focus on long term (> 5h) measurements that have been con-
ducted mostly over-night. For the following studies the MATLAB parameter read-
out tool RFReadOutTool, which is based on the TINE MATLAB API (see [42])
has been written and used. It is now also used in day to day operation as a readout
panel.

Measurement with RF Rack Temperature Regulation

In order to determine the — at that time — current overall stability of the RF
signals without feedback several LLRF parameters were recorded from 02-May-
2012 21:30:34 to 03-May-2012 08:39:40 using the RFReadOutTool. During this
period the machine had not been used for other experiments and the set-points
for amplitude and phase were constant. Temperature regulation was active for all
racks inside of the modulator room. Figures 3.27 and 3.28 show the recorded data
for the different RF signals. From the data it can immediately be seen that there
is a periodic modulation on both the phase and the amplitude signals. It has to be
noted that for the phase signals the data range is [−180 deg, 180 deg]. This leads
to folding effects in the data. A detailed view of the gun phase probe signal (see
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Figure 3.26: Comparison between two 10min measurements of the REGAE electron
beam pointing at DDC2. The X-Y range of the main plot corresponds
to the complete visible area of the DDC2 screen. The inset shows a
magnification.
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Figure 3.27: Recorded phase data from 02-May-2012 21:30:34 to 03-May-2012
08:39:40.
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Figure 3.28: Recorded amplitude data from 02-May-2012 21:30:34 to 03-May-2012
08:39:40.
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Figure 3.29: Detailed view of the gun phase signal measured via the probe antenna.

figure 3.29) reveals the shape of the periodic modulation. During the measurement
the RF modulator shut itself down due to an interlock (see figure 3.30). The
following data shows the evolution of the parameters after this interlock (full data
range 02-May-2012 21:30:34 to 03-May-2012 08:39:40). It can be seen that the
periodicity of the signal is still present for the preamplifier signals. For all other
signals it is gone. From this it can be concluded that the periodicity originates
from the preamplifier. The following measurements had been performed in order
to investigate if this periodicity can be attributed to the temperature regulation
inside of the RF rack, where the preamplifier is installed.

Measurement without RF Rack Temperature Regulation

In order to investigate the saw-tooth like periodic perturbation, another measure-
ment had been conducted from 03-May-2012 21:31:43 to 04-May-2012 08:50:35.
For this measurement the temperature regulation of the RF-rack had been dis-
abled. During this period the machine had (again) not been used for other ex-
periments and the setpoints for amplitude and phase were constant. Figures 3.31
and 3.32 show the recorded data for the different LLRF parameters. From the
data it can be seen that the periodic modulation on both the phase and the ampli-
tude signals is not present when the temperature regulation is switched off. This
measurement shows the importance of correct temperature control in the RF rack.
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Figure 3.30: Recorded data from 02-May-2012 21:30:34 to 03-May-2012 08:39:40 for
the gun phase and the preamplifier forward phase.
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Figure 3.31: Recorded phase data from 03-May-2012 21:31:43 to 04-May-2012
08:50:35.
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Figure 3.32: Recorded amplitude data from 03-May-2012 21:31:43 to 04-May-2012
08:50:35.

Klystron Voltage Stability

One of the most important factors for cavity field amplitude stability is the klystron
voltage. In order to determine the amplitude stability limit given by the klystron
voltage stability, the gun amplitude has been measured for different klystron volt-
age settings (see figure 3.33). The linear fit results in a slope of 0.23 MV/m

V . During
the measurement from 03-May-2012 21:31:43 to 04-May-2012 08:50:35 the klystron
voltage has been recorded. The result is a mean voltage of 859.84V and a standard
deviation of 0.02V. This translates to an RMS amplitude jitter of 4.6 ·10−3 MV/m,
which in turn leads according to section 3.2.1 to a bunch time of flight jitter of
4.65 fs (gun cavity). This jitter value is much smaller than the ones caused by
phase instability and can therefore be regarded as the lower limit for time of flight
stability at REGAE.

46 Hour long Term Measurement with enabled LFF

Since the learning feedforward correction is mainly focused on reducing slow linear
drifts of the phase and amplitude over the whole RF pulse, a 46 hour long term
measurement has been conducted in order to determine possible residual linear
drifts. To this end a measurement has been set up, where both the analogue
feedback and the LFF had been enabled. Table 3.13 summarizes the results of the
measurement for the gun phase and amplitude. The bunch time of flight (TOF)
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Figure 3.33: Measurement of the gun amplitude via the probe antenna for different
klystron voltage settings. The linear fit reveals a slope of 0.23 MV/m

V .

RMS values have been estimated for the target chamber position (z = 5.5m) using
the theory shown in section 3.2.1 and assuming common phase jitter. It can be
seen that the LFF indeed reduces the linear drifts very efficiently. The amplitude
drifted only with a rate of 2.16 ·10−3 percent of the initial amplitude per hour.

Concluding remarks

The long term measurements that have been discussed above lead to some inter-
esting conclusions concerning stability at REGAE. First of all it has been shown
that the cooling system for the LLRF components is a crucial factor for the overall
stability of the important RF parameters. It has also been shown that the REGAE
modulator offers extraordinary voltage stability even over > 6h periods of time.
The measured value of 4.65 fs RMS stability can be regarded as the lower limit of
the time of flight stability at REGAE at the time of this thesis. The first learning
feedforward implementation has also been put to the test via a 46 hour measure-

Table 3.13: Results for the 46 hour long term measurement from 21-September-2012.

Linear Drift RMSE Estimated TOF RMSE

Gun phase −2.77 · 10−4 degh 0.046 deg 62.008 fs
Gun amplitude −1.13 · 10−4MV/m

h 0.039 MV
m 39.39 fs
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ment, which showed that the LFF indeed almost eliminates phase and amplitude
drifts. The bunch time of flight stability over 46 hours has been approximately
62 fs, which is given by the phase jitter contribution.

3.3.4 Some Remarks on the Learning Feedforward

It has been shown in the preceding sections that the learning feedforward — es-
pecially in conjunction with the analogue feedback — dramatically reduces the
linear drifts on the gun phase. This is a very important result, but it comes with
a cost. Since the only way the LFF can act on the machine is to adjust the I and
Q (real and imaginary part) values of the klystron output signal, it becomes ap-
parent that every such regulation also affects the buncher cavity. This can be best
seen in the data from the 46 hour measurement presented in section 3.3.3. Figure
3.34 shows the difference between gun and buncher phase for this measurement. It
can be seen that although the gun phase is practically locked, the buncher phase
suffers from both external factors like temperature and in addition to that, the
input signal adjustments of the LFF. This circumstance obviously poses a major
problem, albeit the drifts occur on large timescales.
There are only two possibilities to cope with this problem. The first one is to

establish an additional feedback, which acts on the phase shifter. This feedback
will — due to the construction type of the phase shifter — only be able to reduce
slow phase drifts. In addition to that the learning feedforward will have to be re-
designed, since the phase shifter primarily acts on the gun phase (the phase shifter
is installed on the gun arm of the RF system), which changes the LFF’s reference
phase. Although this approach can minimize phase drifts, the short term RMS
stability of the buncher phase cannot be improved easily. Therefore the stability
of the buncher phase will rely heavily on the stability of external factors like the
cavity temperature. A second approach would be to introduce the LFF to the
buncher cavity and the slow feedback to the gun cavity. This could be a sensible
solution, since this thesis showed that the time of flight stability strongly depends
on the stability of the buncher phase.
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4

Conclusion and Outlook

In this thesis two main aspects of the REGAE machine have been discussed in
detail. The first part focused on the high power RF system by first deriving the
basic microwave circuit and resonator theory from first principles. In addition
to that, CST simulations of the actual REGAE cavities have been presented and
compared to measurements. Here it has been shown that in order to describe the
exact mode structure of the highly optimized RF cavities, numerical calculations
are necessary. This has been verified by comparison with actual measurements.
Using the scattering matrix approach, an analytical model of the RF system, which
includes a two arm phase shifter, has been derived and verified through comparison
to phase shifter measurements at REGAE. Building on this theoretical model, the
so called Arbitrary Phase Tool has been proposed and discussed. This tool could
simplify the REGAE operation, by enabling the operators to adjust the cavity
phases independently, making use of the theoretical model of the phase shifter
system. Currently adjustment of the phases involves manual operation of the
phase shifter motors and re-adjustment of the klystron phase. In the context of
the arbitrary phase tool measurements of the reference phases for both the gun
and the buncher cavity have been discussed. In order to be able to conduct these
kind of measurements, a MATLAB tool has been implemented into the control
system, which is now used in day-to-day operation for phase scan measurements.
In the last part of the chapter, RF system characterization measurements for the
— at the time of this thesis — current setup of the REGAE machine and the new
REGAE Gun Cavity II have been presented and discussed. As part of this section
the effect of the mode spacing on the REGAE RF pulses has been measured and
theoretically described. From these measurements and calculations it can be seen
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that in both cavities multiple modes are simultaneously excited. In this context
the effect of the presence of multiple excited cavity modes on bunch parameters
like energy spread and transverse emittance has been discussed. Although the
mode spacing of the gun cavity is large enough (9.5MHz), the relatively small
mode spacing between the buncher π-mode and its adjacent mode (2MHz) could
affect the performance of the cavity in bunching mode. Fine tuning measurements
via temperature scans have revealed the negative effect of the crosstalk between
the cavities on the individual coupling coefficients. For the gun cavity the coupling
is reduced by approximately 1%, whereas for the buncher cavity approximately
10%. This chapter — in conclusion — provides an extensive overview of the
current REGAE high power RF system and provides a solution for the problem of
arbitrary phase control during machine operation. It has also been shown that even
though the RF system incorporates two cavities both fed by a single klystron, the
behavior of the system can be described by the relatively simple scattering matrix
approach.
The second part of this thesis focused on stability of several REGAE machine

parameters at the time of this thesis, as well as a discussion of several sensitivity
analysis methods. It has been discussed what kind of analysis methods might
be feasible to apply to a system like REGAE. To this end a global sensitivity
analysis based on a method as proposed by Saltelli et al. has been performed
and discussed. Even though the results of the analyses provide insight into the
importance and interplay of different input parameters, the studies revealed that
the sheer amount of required model runs limits these techniques to small machines
like REGAE. Shifting the focus on the phase stability, which plays a key role
for both experiments that have been introduced in the introductory chapter, a
theoretical description of the physics behind the actual acceleration process is
given. Because of changes in the bunch time of flight between the two cavities,
phase jitter compensation can occur. This has been verified using a Monte Carlo
experiment based on the theoretical considerations. The results of the theoretical
derivation can be used to estimate the bunch time of flight jitter due to phase
and amplitude jitter in the cavities. Bunch time of flight stability, according to
these calculations, mostly depends on the buncher phase stability. In addition to
that, phase stability measurements based on the phase scan method have been
presented and discussed. This way the current state of the machine in terms
of phase stability has been evaluated. As part of this section, problems with
the low level RF electronics have been discussed. The measurements reveal that
the current phase stability using both the analogue feedback and the learning
feedforward allows for a time of flight stability of approximately 50 fs right after
the gun. 2D-cross-covariograms are used to show a strong correlation of the bunch
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charge measurements with the cathode laser power during this measurement. As
a conclusion of this chapter, the stability of the magnet power supplies, as well
as long term RF parameter stability measurements have been presented. This
way the dipole stability has been revealed to be insufficient for accurate energy
and especially energy stability measurements. It has also been revealed that the
beam pointing is affected by the operation of DESY II magnets. The long term
measurements show that the learning feedforward effectively suppresses slow gun
phase and amplitude drifts. Additional thoughts on the current implementation
of the learning feedforward correction in the context of the RF system layout are
also given. It is suggested to implement an additional feedback on the buncher
cavity phase in the future.
All in all this thesis provides an extensive overview of the theory behind the RF

system at REGAE (chapter 2). In addition to that, a way to cope with the problem
of adjusting the cavity phases independently has been proposed. Characterization
measurements have revealed the effect of the crosstalk between the cavities on
coupling, pulse shape and the usage of the phase shifter. It can be concluded from
the results presented in chapter 3 that the current state of the REGAE machine
is close to design stability in terms of amplitude and phase stability for a single
cavity. In order to be able to achieve this kind of stability at the target, additional
modifications to the setup will be necessary.

Outlook

As it has been stated above, the phase stability of the REGAE machine is close
to design stability for a single cavity. The second cavity — which is right now the
buncher cavity — unfortunately suffers from long term drifts, which are caused
by the overall phase drift in the system and in addition to that the regulation of
the learning feedforward correction, which (currently) tries to minimize long term
drifts on the gun phase and amplitude. Since the LFF acts on the klystron phase
and amplitude, all regulation efforts also affect the other cavity. This problem
needs to be addressed in the future by implementing a slow feedback on the phase
shifter. The ideal implementation would be a feedback algorithm based on the
analytical phase shifter model. In chapter 3 it has been shown that the overall
time of flight stability mostly depends on the phase stability of the buncher cavity.
Therefore is must be evaluated in the future, if the overall phase stability can be
improved by applying the LFF to the buncher cavity signals. In order to further
improve the phase stability measurements, a better readout system for the laser
parameters needs to be included into the control system.
In terms of the RF system it must be further studied, whether the narrow mode
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spacing between the buncher 2π/3− and π-mode has a negative effect on beam
parameters like energy spread and emittance. This will be a crucial factor espe-
cially for the external injection experiment, where initial bunch parameters need
be known as accurate as possible. In order to cope with the crosstalk between the
cavities, it must be evaluated if the implementation of lossy elements or circulators
into the waveguide system could mitigate this problem. Unfortunately — at the
time of this thesis — circulators are not yet available for the REGAE high power
RF system.
The next step in terms of the RF system following this thesis should be the

implementation of the arbitrary phase tool, as proposed in chapter 2. In this
context the analytical model for the phase shifter could also be further enhanced
by implementing losses, etc.
As it has been stated above, the variance based sensitivity analysis techniques

cannot be applied to more complex machines like FLASH, because the computation
time is not feasible. Based on the results of this thesis however, it might be
interesting to extend the scatter plot analysis to higher order polynomial fits.
The results of the different orders could then be compared. This way it could
be possible to apply this method to archived machine parameter data and to
extract the mathematical dependence of output parameters on individual or sets
of machine parameters. An analysis like this could then also be applied to more
complex machines.
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