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Abstract

Relic gravitational waves, generated by strongly firsteorphase transitions in the early
Universe, can serve as cosmological probes for new physigsnial the Standard Model.
We investigate phase transitions at temperatures betweeeléctroweak and the GUT
scale in two extensions of the Standard Model for their filitgi to provide detectable
gravitational radiation. First, we study ti# symmetry breaking phase transition in the
Standard model extended by a real gauge singlet. The amgigdils that the gravitational
wave amplitude of the first-order phase transition with arttedly induced barrier is several
orders too small for being detectable. The second model seais$ is a left-right symmet-
ric model based on the gauge gro8p(2), ® SU(2)r ® U(1)g_, generating a first-order
phase transition already due to the emergence of a bartiee imee-level potential. We de-
rive an upper bound on the peak amplitude of the gravitaltisase spectrum of the order
hgﬁGW ~ 3.107!L. Hence, for very strong phase transitions a detection wétspaceborne
interferometer LISA will be possible, whereas the senigjtiof the (cross-correlated) BBO
detector will even allow to observe the gravitational wapgecirum within the whole pa-
rameter range of the model. By using the correlation betvtleecharacteristic parameters
a andp of the gravitational wave spectrum, we finally compute thvediobounds o (T))

in dependence of the tunneling temperatliravhich are necessary for a detection of the
model spectrum by the specific detectors.

Zusammenfassung

Relikt-Gravitationswellen, die wahrend Phasenubergéregster Ordnung im frihen Uni-
versum erzeugt wurden, sind kosmologische Phdnomeneaziedienen konnen Konzepte
neuer Physik jenseits des Standardmodells zu tberpriferunitérsuchen die Phasentber-
gange zweier Erweiterungen des Standardmodells bei Teopen im Bereich zwischen
der elektroschwachen Skala und der Skala der GrofR3en Verticliung im Hinblick auf
ihre Mdglichkeit detektierbare Gravitationswellen zu geeren. Zuerst analysieren wir
einenZ,-Symmetrie brechenden Phaseniibergang in einem ModelfjataStandardmod-
ell um ein reelles Eichsinglett erweitert. Unsere Rechhuaigt, dass die Amplituden
der Gravitationswellen, die durch einen thermisch indtieie Phasentbergang erster Ord-
nung generiert wurden, fir eine Detektion mehrere Grofgkmamgen zu klein sind. Als
zweites untersuchen wir ein links-rechts-symmetrischexiél basierend auf der Eich-
gruppeSuU(2), ® SU(2)r®U(1)g_, das einen Phaseniibergang erster Ordnung bereits durch
eine Barriere in der niedrigsten Ordnung dégldiven Potentials erzeugt. Wir erhalten fir
die Amplituden der Gravitationswellen eine obere Grenzehé@ew ~ 3-1011. Demnach
wird es im Fall starker Phasentbergange moglich sein, dagt&tionswellenspektrum mit
dem weltraumgestutzten Interferometer LISA zu beobac¢hteniiberhinaus die Sensitiv-
itdt des (korrelierten) BBO-Detektors eine Detektion dpel8ra des gesamten Parameter-
bereichs erlauben wird. Unter Ausnutzung der Korrelatienaharakteristischen Parameter
a undgB bestimmen wir abschlieend die fiir eine Messung der Speltch die spezischen
Detektoren erforderlichen unteren Grenz€m, ) in Abhangigkeit der Tunneltemperaty.
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Introduction

Preface

A direct detection of gravitational waves (GWSs) will prohalbecome reality in the near
future. Currently, the first generation of ground-basedriierometric GW detectors, such
as LIGO B, 7] and VIRGO B2, 9], is already operational, while the second generation of
spaceborne interferometers like LISA/ 68, 69, 22, 153 and BBO [L07, 139 is planned
to be launched within the next years. On the one hand, thgsiments aim to search for
GW signals from individual astrophysical events as fordnse coalescing binary systems
[21, 2, 5] (e.g., white dwarf binaries), continuous gravitationalices {/] as rotating neu-
tron stars or orbiting black hole systems as well as GW wavstd(?0, 3]. On the other
hand, the searches focus on (stochastic) GW backgroundsrophysical source$(, 44]
such as core collapse of supernovae, but also of cosmolagigan.

Stochastic GW backgrounds of cosmological origin are dtstd by (redshifted) relic
gravitational waves from the early stages in the evolutibrthe Universe, carrying un-
altered information about the state of the universe at tine ©f their production. Thus,
these gravitational waves can serve, in case of their detects cosmological probes for
fundamental concepts of particle physics at unexploret bigergies which will never be
reachable by accelerator or collider experiments.

Possible cosmological sources for the production of stetahgravitational waves com-
pose inflation 17, 197, 14], preheating after inflation11, 79, 78, 94|, first-order phase
transitions .38 125 49, 103 117, a pre-big-bang phase of expansict?,[ 96], cosmic
topological defectsd01, 202, 45, 46, 3(] (e.g. vibration of cosmic strings) or dynamics
of extra dimensionsl89, 59, 60]. Among these hypothetical sources, the GW production
during inflation (by quantum generation of gravitons) isottetically strongly motivated.
A detection of the relic gravitational waves from inflatiamhich will be achievable by the
space interferometer BBO, would be a smoking-gun signat firdlation and would in par-
ticular allow to test the paradigm of inflation as an era ofamgntial expansion in the early
Universe!

1The WMAP constraint on the energy scale of the inflaton reguat least a GW amplitude bfQew <
107 ... 107% of the inflationary GW spectrumip1]. The detection of this relic GW background from



Introduction

We will however focus on the stochastic background of gadicihal waves produced by
cosmologicalfirst-order phase transitions In a first-order phase transition the Universe
finds itself in a metastable state (the symmetric “true vatustate) which is separated
from the false vacuum state (the broken phase) by a barritreirpotential of the order
parameter, usually a scalar fiebd 23, 167]. The phase transition from the true to the false
vacuum state proceeds by nucleation of true-vacuum bubl@eguantum tunneling. If the
rate of bubble nucleation exceeds the expansion rate of tineetse, the bubbles percolate
leaving the Universe in the broken-symmetry phase.

During first-order phase transitions stochastic grawtetl waves can be produced by col-
liding phase boundaries (bubble collisiong){, 137, 136, 167, 50, 117, turbulent motion
of the plasma{35, 77, 48, 99 or magnetic fields 10, 199, 11, 39, 48]. We will focus on
the production of gravitational waves by bubble collisiolrsthis case, the vacuum energy
(latent heat) gained in the phase transition is transfdoéthetic energy of the bubble wall
and bulk motion of the plasma. A large amount of the vacuumiggnis stored close to
the bubble walls. When bubble collisions break the sphlesigametry of the individual
bubbles, this energy is partially released into gravitetlovaves.

Quantitatively, a first-order phase transition is chardmge by the phase transition strength.
The phase transition strength is defined as ratio of the vaa@xpectation value (VEV) of
the regarded scalar fielglat the critical temperaturéc of the phase transition to the latter.
For a strongly first-order phase transition the phase tiansstrength has to lie above the
lower bound §1]

m > 1 (0.2)
Tc

Note that this is the same condition as required for viablgdmenesis avoiding sphaleron
washout §7, 88].2

Within the thermal evolution of the Universe a number of ghaansitions are expected
to have been occurred. In particular, the QCD phase transitioceeded at a temperature
Tocp = 150MeV [118 188 187. Above this temperature the deconfinement of quarks
and gluons generates a quark-gluon plasma. At temperaififesy = 10° GeV the sponta-
neous breakdown of tH8U(2), ® U(1)y symmetry taJ (1), induces the electroweak phase
transition (EWPT) [5, 74, 43]. Further phase transitions could have occurred evereearli
at temperatures up to the grand-unification (GUT) scale@btderTgyT = 10 GeV [19].
Based on the fact that the running couplings of the StandardeVunify to a single gauge
coupling at the temperaturdguTt = 10 GeV, the key idea of GUTSs is to describe the
fundamental interactions by a unique gauge gr@upcluding the Standard Model gauge

inflation will be one of the main goals of the space interfeeten BBO (“Big Bang Observer”).

2Two possible combustion modes of the energy liberated bpleutpllisions exist, deflagration and detona-
tion. The latter allows large production of gravitationadwes if the bubble wall velocity is bigger than the
speed of sound. This is the same condition for “local bargegis” B andC P violating processes close to
the bubble wall) to dominate “non-local baryogenesis” ydbP violating processes). As the subsequently
expanding bubbles can drive the primordial plasma out afntlaé equilibrium, these requirements allow
to fulfill the Sakharov conditions for successful baryoggse To avoid sphaleron washout, the sphaleron
process need to be ffigiently suppressed in the broken phase leading to the ¢ondiit (0. 1).



symmetry as a subgoup (for a review see for instan¢é]]. Via a pattern of the sponta-
neous symmetry breaking during the thermal evolution ofuinéerse, this symmetry is
subsequently broken down to the Standard Model gauge symniéénce, in extensions
of the Standard Model phase transitions might have beerrrectat considerably higher
temperaturesdd.

Due to the failure in providing an explanation on open issaagesgark matter and dark en-
ergy, the origin of neutrino masses, the baryon asymmettigeoniverse or the hierarchy
problem, an extension of the Standard Model is necessadlyired. The Standard Model
itself can be rather considered as direetive theory with a low physical cuio which can
be probed with current particle physics experiments asfstance the LHC.

In the Standard Model the EWPT is neither strong enough fablei baryogenesis, nor
for production of detectable gravitational waves . Indeb@, requirement of a strongly
first-order phase transition in the Standard Model imposegpper bound on the Higgs
mass which is below the current experimental bound and fiverexcluded 35]. Non-
perturbative lattice simulations revealed that the pheaesition is not of first order, but
rather a smooth crossover (between first and second ord&i) 81, 66].

Partially motivated by the importance for baryogenesig BWPT has been studied in
extensions of the Standard Model such as the Minimal Superatric Standard Model
(MSSM) [98, 166, 86, 41], the Next-to-Minimal Supersymmetric Standard Model (N8AS)
[172, 70, 111, 15¢, where an additional gauge singlet in the Higgs sector timdtuced,
and its restricted version, the nMSSNIEB, 71, 158 114] solving the u-problem of the
NMSSM?, or the Standard Model with dimension-six Higgs potentiald, 104, 36]. In the
MSSM a strong enough phase transition requires light Higglsstop masses leaving only
marginally possibilities for viable baryogenesis/f], whereas the N(n)MSSM provides a
phase transition which is strong enough for baryogenesgisul&aneously, the lightest neu-
tralino could simultaneously provide the dark matter oftheverse.

Detectible relic gravitational waves from first-order phasnsitions can give a hint for the
physics beyond the Standard Model. In particular, it has beeestigated if the EWPT in
the MSSM, N(n)MSSM and the Standard Model with dimensionksiggs potential pro-
vide the possibility of observable gravitational waves. the MSSM a detection of the
GW spectrum is excluded’f]. Whereas in the N(nN)MSSM and the Standard Model with
dimension-six Higgs potential the gravitational radiati@ill be not detectable by LISA
(possessing a minimal sensitivity li§Qgw ~ 10711), but only by the cross-correlated BBO
(h2Qcw ~ 10717) in case of extremely strong phase transitionsJ. However, for a wide
range of the model parameter space a detection is excluégedf@vBBO. This is partially
caused by the correlation between the strength of the prasstion and the peak frequency
of the GW spectrum: Strongly first-order phase transitiorsraquired for generating a
peak amplitude of the GW spectrum which overlaps with theimmh sensitivity the GW
detectors and hence will be detectable. Since strongeephassitions proceed at lower

3The MSSM stffers from the so-called-problem due to domain walls. For consistency of the thelogymass
mixing termu between the two Higgs doublet in the superpotential has tif thee order of the electroweak
scale being much smaller than the GUT scale and additiostdlyle under perturbative corrections. An
elegant way to solve this problem consists in introducing@ditional gauge singlet in the Higgs sector so
that the the mass term is generated dynamically as the sihglelops its VEV.
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temperatures and create larger bubbles, the peak freqoéttoy GW spectrum is simulta-
neously shifted to lower frequencies which might lie beytimel experimentally accessible
frequency rangel[l3 117. (The spaceborne detectors as LISA and BBO are sensitive in
the frequency rangé ~ 107 ... 1 Hz, while a frequency range déf~ few Hz...few kHz is
accessible by ground based detectors like LIGO and VIRGd]])

Concept of the Thesis

Our motivation in this thesis is therefore to investigatstforder phase transitions in ex-
tensions of the Standard Model which are assumed to procdethperatures between the
electroweak and the GUT scale,

Tew < T <Tgur. (0.2)

Due to this high temperature scale the peak frequency of ¥es@ectrum, arising from
bubble collisions during the first-order phase transitioill, lie in the high-frequency part
of the experimentally accessible frequency range. If watiaaclly require the phase tran-
sition to be strongly first-order so that a high peak ampétigdgenerated, the GW spectrum
might light in the experimentally sensitive range an henoeld be detectable. In turn, the
gravitational waves could serve as cosmological probekseofinderlying physical concep-
tion of the model.

Within the framework of this thesis, we will explicitly ingdgate two extensions of the
Standard Model, which provide fiiérent mechanisms for generating a strongly first-order
phase transition, with regard to their possibility of pidiag detectable gravitational waves.
The most studied mechanism to achieve a first-order phasséiton inducing the neces-
sary barrier between the true and the false vacuum therrbgllysing the bosonic finite-
temperature one-loop corrections to generate a cubic tetheidfective potential. We will
apply this mechanism to the Standard model extended by dticedd real gauge singlet.
The importance of this model is due to the fact that a largeetyaof extensions of the Stan-
dard Model contain elements which transform non-triviallyder a hidden sector gauge
group, but as singlets under the Standard Model gauge gfu4]. The Standard Model
Higgs field plays a special role with respect to the hiddemosesince the only renormaliz-
able interaction of such scalars with the Standard Modaliaceia the Higgs sector. This
can in consequence serve as window into the hidden sectomaid provide important
theoretical and phenomenological implications§, 170, 38).

The second model we will discuss is the left-right symmemimdel which is based on the
gauge symmetry groupU(2), ®SU(2)reU (1)g_ [169, 163, 190. Besides its original con-
ception for explaining parity violation by incorporatinigais spontaneous broken symmetry
[167), the left-right symmetric model associates a physical mreato theU (1) generator
arising as thé8 — L quantum number and provides additional source€wiolation . The
extension of the gauge group is associated with an enlargeshéhe Standard Model par-
ticle content by right-handed (Majorana) neutrinos as wagllight-handed massive gauge
bosons. Since these right-handed particle escape expgahuetection, the right-handed



particles have to acquire their masses during L-R symmae&gKing at large scale. As the
left-right symmetric model incorporates a barrier of tlikeetive potential already at tree-
level (and not due to thermal corrections), the associatedetransition will be strongly
first-order and hence suitable for a possible generatiori@uthble gravitational waves.

This thesis is structured as follows. Rart | we will develop the theoretical framework
necessary to investigate gravitational waves from firdeoiphase transition at high tem-
perature scales. Therefore, we will first review the conioeptof thermal field theory (cf.
Chap.). As the study of spontaneous symmetry breaking at finitgoegature can be re-
duced to the investigation of théfective potential of a field inside a thermal bath, we will
compute the fective potential, including zero-temperature and finitagerature correc-
tions to the tree-level potential, up to the one-loop orddrerwards, we will determine in
Chap. 2the GW spectrum from bubble collisions during first-ordeagd transitions and in
particular discuss the key parameters characterizing Wes@ectrum.

In Part Il, we will apply the derived formulae to the cases of the singl¢ension of the
Standard Model (cf.Chap.3 and the left-right symmetric model (cfChap.4. For both
models, we will compute thefiective potential in order to investigate the phase tramsiti
In detail, we will determine the critical temperature and torresponding VEV of the ef-
fective potential and discuss the parameter constrairdsssary to generate a physically
viable phase-transition scenario in the specific model.erfards, we will compute the
parameters characterizing the GW spectrum arising fronttimsidered phase transition.
Finally, we will perform a numerical analysis of the gratibaal wave spectrum to discuss
whether the physical conception of the model can be probetthdyletection of gravita-
tional waves. We will summarize and discuss our resultserCibnclusions

In the Appendixwe compute the bosonic thermal masses for the singlet eaten$ the
Standard Model (cfChap.A. These are needed to generate the thermal barrier for she fir
order phase transition. Besides, the field-dependent dgaagmn masses for the left-right
symmetric model are derived (dhap.B

To be able to compare the GW spectra derived from the mod#ie experimental sensitiv-
ities, we review inChap. Cthe diferent types of interferometric GW detectors and compute
their sensitivity curves from the experimental data.

Notations and Conventions

As usual in particle physics, we will work in natural unitsevh the reduced Planck constant
h, the speed of light as well as the Boltzmann constdnequal

h:C:k::L (03)

We will display Lorentz indices by small Greek letters as ifmstanceu,v = 0,1,2, 3,
whereas Latin indices, e.@.j = 1,2, 3, ..., will refer to conventional summations. In ad-
dition, we will use the Einstein summation convention by licify summing over repeated
indices.






Part I.

Theoretical Framework






Chapter 1

Thermal Field Theory

In order to investigate first-order phase transitions pedogy at high temperatures in the
early stages of the Universe, we have to use the framewdheafalquantum field theory.
In comparison to the classical field theory, quantum fieldthat zero temperature involves
virtual particles (in form of internal loops) whiclifact the field energy density by emission
and reabsorbing processes. To include these quantum thonsedhe classical field theory
is generalized to anfiective theory. The corresponding potential density iseckihe &ec-
tive potential. Moreover, in thermal field theory, thermalctiuations of the quantum fields
have to be taken into account. Therefore, a generalizafitimeadfective potential at finite
temperature is required.

As the study of spontaneous symmetry breaking can be redadbd determination of the
nature of the ground state of th&extive potential, i.e. the vacuum state of the theory, the
effective potential will provide our basic tool for the invegttion of phase transitions at
finite temperature. In this chapter, we will discuss the nasipects of thermal field the-
ory related to the fective potential. If not marked otherwise, we will therelgjer to the
reviews 31, 126, 40, 175, 177,178, 180.

1.1. Hfective Potential at Zero Temperature

The fundamental quantity of quantum field theories is thediagian density = £[¢>i, 8#¢i],
which is usually referred to simply as Lagrangian. It is actional of the space-time de-
pendent quantum fields (%) = ¢i(X) and their derivatives, ¢;.! In generalgi(x) might
represent scalar, vector and fermion fields.

The integral of the Lagrangian density over the four dimemsi space-time defines the
actionS as a functional of the quantum fieldg

S[¢i] = fd4x£[¢i, Outi]. (1.1)

We will denote functions by parentheses, egg(x), and functionals, such a§ = L[¢i,a”¢i], by square
brackets.



Chapter 1 Thermal Field Theory

1.1.1. Generating Functionals

Consider now a theory described by one dlar field ¢(x) with Lagrangian[j[qbi, aﬂgbi].
The Lagrangian is required to be intrinsically invarianttwiespect to the underlying gauge
symmetry. In the presence of an external fig{g) however, the coupling of the fielglx)

to the external source causes a symmetry breaking term iretip@ngian {21],

L] 61, 0uti| = L|¢i. 0| + (0 I . (1.2)

The determination of the vacuum expectation value (VEV)hef field ¢(x) in the pres-
ence of the external sourc¥x) can be reduced to a pure variational problem by using the
analogy between the vacuum-transition amplitude ofShmatrix in quantum field theo-
ries and the partition functiod in statistical mechanics3[]. In the Feynman path-integral
representationd1] this analogy reads

(01073 = 2031 = [ D¢ expli [ax{L]s1. 3,6 + 609 I}). (1.3)

whereZ[J] constitutes the generating functional of the source fidlde definition of the
free energy functionalv[J] by

Z[J] = expli W[J]) (1.4)

(in analogy to the free energy in statistical physics) afider deriving the VEV of the
field ¢(x) in the presence of the external soutkedefined as the classical fiedd(x), by
functional variation
_{0%g(x)107)5 _ dW[J]
= 00, TSI

Do o) exp(i [ax{ L] i, 3u91] + () IM)]) (1-5)
D¢ exp(i fd“x{L[qSi, 6ﬂ¢>i] + ¢(X) J(x)}) '
It is convenient to perform a Legendre transformationpl] to introduce the fective ac-

tion I'[¢¢ ] (constituting the quantum analogy to the Gibbs free energyatistical physics)
as a functional of the classical fiefd,
SW[J]
[pa] = W[J] - | dx——=
[l = W] - % 55309 w6
= W3] - [ d%ga (9 309

Expanding the energy function®/[J] and the &ective actionl'[¢¢] in a Taylor series in
terms ofJ andg, respectively

W= >’ L-n' jol“x1 o d% I(X) - I) GV (x4, %), (1.7)
n=0

Mgal = ) :]—r: fd“xl % 6, (%) - by (%) T (xe, .. X)), (1.8)
n=0

2Alternatively, the &ective action[¢¢] can be expanded in powers of momentum about the point with
vanishing external momenta, i.e. about an constant vajugf the classical field(x) [205, 64].
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1.1 Hfective Potential at Zero Temperature

points out their physical importance. The energy functiongJ] constitutes the gener-
ating functional for the connected Green's functi@®s™ (xq, . . ., X,), while the dfective
action arises as generating functional for the one-pariiceducible (1PI) Green’s func-
tionsI'"(xy, ..., X»), defined as the sum of all connected Feynman diagrams, waitiot
be disconnected by removing a single internal line, anduedatl without propagators on
the external lines409).

If we now perform a Fourier transformation Bf(x1, . . ., X,) to momentum space and re-
quire the classical field to be space-time independgfntx) = ¢, (1.8) becomes 75

(o)

Mool = Y. 201 20%090) 1O = 0) = [d% 3" 2ot 10 =0).  (1.9)
n=0 n=0 "

Thereby, we have used the integral definition of the Ditdanction in the last step. The
comparison of the above equation with tHeeetive potentialV,,(¢q), which is defined in
analogy to {.1) by

[¢a] = - IdAX Vi (@cl) (1.10)

as a function of the classical fiefg,, finally allows for deriving a general expression of the
effective potential,

1
Ve (#e) = = 3 — 0T (pi = 0). (1.11)
n=0 -

Since the classical fielgl, in the absence of an external source equals the VEV of quantum
field ¢ (cf. (1.5) and ooa] _ —-J (cf. (1.6)), the condition for spontaneous symmetry

. Ol
breaking reads
6¢c|
or equivalently by usingl(.10
oV,
Newlel) _ 0  forge #0. (1.13)
a¢cl

Hence, the study of spontaneous symmetry breaking can begedo the computation of
the dfective potential whose minimum will determine the naturéhefground state’?D5].

1.1.2. Functional Evaluation of the Hfective Potential at Zero Temperature

According to (L.11), the calculation of the féective potential requires the summation of
infinite series of Feynman diagrams at vanishing externaheraum. However, it is possi-
ble by usage of the path-integral formalism to deduce a ftanmepresenting thefkective
potential as a series expansion to a given loop-order, \whesxh order contains faite

11



Chapter 1 Thermal Field Theory

number of Feynman diagrams1[d]. Define therefore a Lagrangiaf(¢q; #(X)) by shifting
the scalar fields(x) by the constant classical fielg,

5S[¢cl]
5¢cl ’

where the subtraction of the shifted acti®fp. | ensures the vacuum energy to be zero and
the last term is required for canceling the tadpole part efsthifted action.

Next we decompose the Lagrangiﬁl(kpd; #(X)) into a free term, containing the quadratic
field contributions and providing the propagat(¢; x — y) of the shifted theory, and an
interaction term for the higher-order field contributions,

L(¢e; $(X) = Lo(det; 3(X) + L (bel; (X)) - (1.15)

J d% Z£(6ci; 909) = Slar + $(9] - Slgal - [dxp() === (1.14)

By using the fact that the propagator in the shifted the®Xg.; X — y) also satisfies the
relation

6S[¢]

5609 360) (1.16)

i D (e x— ) =

¢=dcl

and performing a Fourier transform of the inverse propagatoD—(¢q; p), the dfective
potential finally reads

Vi (9a) = Vy(der) - zj( oyt {0l D76 P

+i{exp|i [k 2@ 009)|)
=V, (¢c|) + VT 0(¢CI) + Vn>2 (¢cr) -

Therein, the zero-loop contributiow (¢¢) just equals the classical (tree-level) potential,
whereas the second term is the zero-temperature one-loggrtion to the fect potential
and the last term summarizes all higher-order loop cooasti

(1.17)

1.1.3. One-Loop Hective Potential at Zero Temperature

Scalar Fields. Since we calculatedl(17) from the premise of a theory described by one
real scalar fields(x) (cf. Sec.1.1.}, the shifted propagator in the one-loop contribution of
the above equation is given b (¢ p) = p? — mP(¢q), containing theshiftedmass

62Vo (¢ + ¢C|)

m2(¢C|) = a¢2

(1.18)

¢=0

After inserting the propagator inl(17) and performing a Wick rotatiop® = ip% with
PE = (—ipo, ri) to Euclidean four-dimensional space-titneve obtain the final expression

3In the following, we will omit the explicit notation of the bindexE, denoting the Euclidean momenta.

12



1.1 Hfective Potential at Zero Temperature

of the one-loop contribution to thefective potential for one real scalar field*as

_ 1dp
o) =3 ot " [p? + ()] . (1.19)

The generalization of this equation to the case of multg@enplexscalar fieldsg; with
Lagrangianf = g*¢¥ 6ﬂ¢>i -V,(¢i), 1,k e {1,...,Ns}, implies the existence dis classical
fields ¢, and hence the replacing of the shifted mass by a mass mat£ie;,) whose
elements are defined b5

OVo(¢i +9,,)

(M&(1)),, = (i) = Toginy | fork,I € {1,...,Ng}. (1.20)
Consequently,1(.19 transforms into
=(i,) = zj (2ﬂ4Tr(|n[p + Me(#i)). (1.21)

where the trace acts on the field-space indicégct. (1.20).

The computational methods 8fc.1.1.JandSec.1.1.Zan be analogously applied all pre-
vious procedures applied to derive the one-loop contdbutd the éective potential in
theories containing fermions and gauge bosons.

Fermion Fields. For multiple fermion fields/,, describing the fermionic sector of a the-
, — — K _ _

ory by the LagrangiatC = i,y 9y -, (M%)I oy with k.| € {1,..., N¢}, the mass-matrix

elements arise as linear combinations of the Yukawa cogtplihto the classical scalar field

b (M (¢>d)) F:‘ ¢ In this case, the one-loop contribution to thEeetive potential is
calculated to be

VI=%g,) = Af 2 Tr(in[p? + M2(s,)]). (1.22)

whereinA = 1 for Weyl fermions andl = 2 for Dirac fermions { 75].

Gauge-Boson Fields. Consider a theory where gauge-bosons are implemented hya co
tribution £ = —3Tr(F,F*) + %(D#gb)T (D*¢) to the LagrangianK,, denotes the field-
strength tensor and, the covariant derivative of the corresponding symmetryigjoThe
gauge-boson one-loop contribution in the Landau gaugejnag no ghost-field compen-
sating terms yields

Viz(g,) = zf L Tr (In [0 + M24(6.)]). (1.23)

4The zero-temperature one-loop contribution to tikective potential is usually refered to as Coleman-
Weinberg contribution since Coleman and E. Weinberg ilhjtiperformed calculations of theffective
potential at one-loop ordef§, 205. Higher order computations were first done by Jackiw.

13



Chapter 1 Thermal Field Theory

In a theory with scalar, fermion and gauge-boson fields thdiffite-temperature one loop
contribution at zero-temperature arises as the sunl.d®), (1.22 and (.23, multiplied
by the degrees of freedoy of the corresponding particle. The degrees of freedpm
constitute the product of the particle’s spin-, color- ahdrge-state degrees.

1.1.4. Renormalization

As the zero-temperature one-loop contributiofsl®, (1.22 and (.23 are ultraviolet
(UV) divergent, we have to apply the conventional renoraaion procedure to make the
theory finite and hence physically meaningful. In the precekregularizationthe UV
divergences are absorbed by appropriate counterterme ibafjrangian, whereby the pa-
rameters of the theory gegnormalized.The theory written as function of the renormalized
parameters is finite. Depending on the choice of renormaiz&onditions, dferent renor-
malization schemes exist.

We will use dimensional regularization which has been ohiced by t'Hooft and Veltman
[196]. This regularization scheme bases on an analytic corttorugarocedure of the Feyn-
man integrals to the complex plane in the number of space-timension®, wherein the
singularities of the integrals arising as polesﬂ%& have to be subtracted out. By intro-
ducing the regulatos > 0, we can compute the integrals in the zero-temperaturdcmpue-
contributions 1.19), (1.22 and (.23 in D = 4 — ¢ dimensions with infinities parametrized
by % The resulting expressions read

Vi =(¢a) = 671772 2, & (ga) [In [@] - Ci - Cuv +0(9) |, (1.24)

where the summation indéxefers to all bosonic and fermionic particles of the theargl a

u? denotes the mass scale introduced to balance the dimerfsioa integration measure.
The constants;, C; andCyy are defined as

(1, g) for scalars
(a,Ci) = (—2/1, %’) for fermions (1.25)
(3.2)  for gauge-bosons

Cw= (% —ye+In (47r)), (1.26)

containing the Euler-Mascheroni constaat~ 0.5772 [L01].

Subsequently, the regularizeéfextive potential of 1.24) has to be renormalized. In the
context of éfective potentials one usually uses thES (modified minimal subtraction)
scheme wherein the divergent term proportionaCtg, is absorbed by the counterterms
and thus subtracted from the regularized potential,

VI =%(g)) = 6Tlnz Z gi & m'(¢c) [In (niifd)) - Ci] : (1.27)

14



1.2 Htective Potential at Finite Temperature

If we additionally introduce modified degrees of freedom as
g =0 a, (1.28)

to incorporate the constaat,>we can summarize the full one-loop contribution to the ef-
fective potential at zero-temperature by

T 0(¢c|) = 47_[2 Z gl m (¢cl) [|n [miz(d’cl)] Ci)7 (1.29)

where the constants; are defined in1.25).

1.2. Hfective Potential at Finite Temperature

As conventional quantum field theory describes particlerattions in a surrounding vac-
uum, it is suitable to be applied to interactions taking elat nearly perfectly shielded
accelerators. However, in the early stages of the Univeasiicjes interactions proceeded
in a thermal bath of matter and radiation with a non-neglgitemperature and density.
A description of these interactions thus requires a modifiozof quantum field theory to
incorporate finite-temperaturdtects.

The formalism of thermal field theory was developed by Weigh&0€¢], Bernard 3] as
well as Dolan and Jackiw/[], while finite-temperatureféects in quantum field theory and
their cosmological implications (such as inflationary medind phase transitions) were
first considered by Kirzhnits and Lindé30, 131, 132, 146, 148].6

1.2.1. Generating Functionals and Thermal Green’s Functins

The methods of thermal field theory are closely related tiodseermodynamics and quan-
tum statistical physics due to the fact that the backgrouatt $or the particle interactions
constitutes a thermal bath at the temperalucé the universe. The finite-temperature gener-
ating functionalZ™ [J], WT[J] andI'T[¢¢ ] are defined analogously to the zero-temperature
case ofSec.1.1.1but include thehermalGreen’s functions defined as grand canonical av-
erage of the time-ordered product of théeld operators 175

Tr(e M T{g(x), ... , 6 (%))

GT (n)(Xl, ey Xn) = Tr (e-,BH) s

(1.30)

whereg = % Two particularly appropriate appropriate ways for the patation of the
thermal Green’s functions are given by the imaginary antitie& formalism 31, 124].

5The introduction of modified degrees of freedgmwill be in particular useful for the summarization of
finite-temperature contributions to th&extive potential (cf. 1.48 and (L.50)).

6Kirzhnits and Linde suggested in particular symmetry neston to occur in relativistic field theories above a
critical temperatur@ ¢ by drawing an analogy to the Meissner-Ochsenfdldat in superconductors {4.
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Chapter 1 Thermal Field Theory

Zero temperature Finite temperature
Boson propagator =i P = (Po. P) pz_l_mz P = (iwp,, P)
Fermion propagator y,pi_m, P = (Po. P) o P = (iwp,, P)
Loop integral =k (%)4 iT Yo [k (2,,)3
Vertexs-function @n)?* 9 p) (2”) 8(Ziwi) BT B)

Table 1.1: Comparison of Feynman rules at zero temperature and at fieitgperature in
the imaginary time formalismThe Matsubara frequencies, andwj, for bosonic and
fermionic fields are given byl(31) and (L.32), respectively.

The basic idea of thanaginary time formalisntonstitutes in expressing the grand canon-
ical averages of the thermal Green'’s functions as VEVs irnarg quantum field theory
evolved by an imaginary time= iB. This results merely in a change of boundary condi-
tions in Minkowski space-time in comparison to the zerofiemature case. In Euclidean
space-time however the change of boundary condition ertteél remarkable consequence
that the thermal Green'’s functions become periodic for busfields and antiperiodic for
fermionic field with period3 = % The periodicity in Euclidean time direction directly im-
plies a replacement of the continuous frequenigigdy the discrete bosonic and fermionic
Matsubara frequencies$7]

= 27nT, (1.31)
wt, = (2n+ ) xT, (1.32)

and hence a modification of the Feynman rules at finite-teatiper. The finite-temperature
Feynman rules arising in the imaginary time formalism amemsarized inTab. 1.1

In the real time formalismthe straight time contour from real initial timeto t; — iB is
replaced by a contour from to real final timets before going suitable badk— i3. The
piecewise composition of the resulting complex time conteads to more complicated
Feynman rules, but avoids the analytic continuations requin the imaginary time for-
malism. Besides, the propagators computed in the real timmedlism are automatically
separated into a zero- and finite-temperature part.

Since the propagators and Feynman rules in the imaginaryeaidime formalism how-
ever give the same physical results, we will choose the inagitime formalism for the
computation of the féective potential at finite temperature.

1.2.2. One-Loop Hective Potential at Finite Temperature

In this section we will use the Feynman rules derived in thagmary time formalism to
compute the fective potential at finite temperature up to the one-loogerdenerally,
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1.2 Htective Potential at Finite Temperature

Figure 1.1: Scalar tadpole diagram.The derivative of the féective potential\/lTs(qbd) in
(1.34) with respect to the classical fief) corresponds to a scalar tadpole diagram.

the one-loop ffective potential can be written as the sum of the tree-legtmiial Vio(¢c))
corrected by the one-loop contribution at finite tempem\lﬁ@&d),

Vet (@) = Volgar) + V (¢ct) - (1.33)

As we will explicitly see, the one-loop correction at finientperature can be separated
into a temperature-independent part, equaling exactlyéne-temperature one-loop con-
tribution V," °(¢) of Sec. 1.1.2and a temperature-dependent pgtt°(s¢) which will be
computed in the following.

Scalar Fields. According to the finite-temperature Feynman rules, degiateTab.1.1
the zero-temperature one-loop contribution bfl) for a single real scalar field transforms
into

& 3,
VI (¢a) = % > jﬂ In[o? +o?, (1.34)

with the bosonic Matsubara frequencies,, defined in .31), andw? = P + MP(4a).
Different ways for the evaluation of the above equation exise iffinite sum can be for
instance evaluated by the use of summation identities, @asea possible solution for the
integral is obtained by closing the integration intervaitia complex plane to subsequently
apply the residues theoremd].

A subtle way for the evaluation ofL(34) consists however in computing its derivative in

the shifted theory, ;‘T ) and subsequently re-integratingj7f]. Diagrammatically the
derivative of the &ective potential corresponds to the tadpole diagram dasgpictFig. 1.1
Since only the shifted mas®*(¢¢), included in the definition af2, depends on the classical

field ¢, the computation can be equivalently performed with ressfoethe shifted mass,

(¢c1) T
dni(¢e) 2 Z I(ZT)3 w +w2 (1.35)

N=—o00

17



Chapter 1 Thermal Field Theory

By use of several series representations (for detailsIS&®) [the infinite sum can be trans-
formed into an infinite integral which can be computed by wi@tontinuation to the com-
plex plane. Thereby, the integral naturally separates antemperature-dependent and a
temperature-independent part given by

dV (¢c|) 1
dmZ(¢C|) ) f 20 \20 ( oo 1). (1.36)

After integration with respect to?(¢¢), the final results arises as

\@wm=jf1(“+Tmp )
zj(fmb+#mﬂ

= VIS 0(¢c|) + VI:O(‘pcI) )

(m2T(¢2>d)) (1.37)

wherein the temperature-independent part exactly eqbalszéro-temperature one-loop
contributionvlTSZO(¢c|) of (1.19. The finite-temperature one-loop contribution,

VI®(pa) = A J (nFT(?d))’ (1.38)

is expressed in terms of the thermal bosonic funcﬂ@é@) defined as

[ o)
e V¥ ‘ (1.39)

m(ea)\ _
JB( Tzl)z!dxlen 1-

In the limit @ < 1 the thermal bosonic function can be expanded as

‘Mwm”_f zmenUMﬂ%

T2 25712712 B\ T2
32(sz®3€|)) In a—lB—sz(fc')] (1.40)
.mun 1 m(ga)\ "
- 2 Z( VD r(|+2)(4n T2 ) :

including the constanég = 16r%e 5-2e as well as the Riemant+function and thd'-
function. Therefore, the finite-temperature one-loop KGbuation of (1.38 possesses a high-
temperature expansion which will be useful for the invesdtan of phase transitions. Note

"As in the case of the zero-temperature one-loop contributigeneralization to the case of multiple scalar
fields ¢, is achieved by replacing the shifted mass by the mass rrmgi@:di) (cf. (1.20).
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1.2 Htective Potential at Finite Temperature

Figure 1.2: Fermion tadpole diagram.The depicted tadpole diagram corresponds to the
derivative of the &ective potentiah/ff (¢¢1) In (1.47) with respect to the classical scalar

field ¢.

in particular that the high-temperature expansion of tleenttal bosonic functiodg incor-

3
porates a monomial cubic mass temﬁm2(¢c|)) /2. This term will be crucial for generating
first-order phase transitions as it allows to induce a thebaaier in the &ective potential.

The finite-temperature one-loop contributions to tifeaive potential for theories contain-
ing fermionic and gauge-boson fields can be derived by amgaat calculation procedure.

Fermion Fields. Applying the finite-temperature Feynman rules in the imagintime
formalism, given inTab. 1.] to a theory with fermion fields, the zero-temperature aog|
contribution of (.22 is converted to

VI (¢y) = —AT Z j( )3 nw? +o?. (1.41)

N=—oco0
where the fermionic Matsubara frequencies are definetl. B9(andw? = p? + M?(gbd). In
analogy to the case of scalar fields, the one-loop contabut finite temperature Vle (04)
can be evaluated by computing the tadpole diagrafigfl.2in the shifted theory and re-
integrating.Thereof, the final expression for the fermsoone-loop contribution at finite
temperature arises as

V1f(¢c|) =-21 I( 27 (2 ( AT In[ e_%])

4 (Mf(ga)
=-A j( )4 In [p2 + M%(d’cl)] - /l% Je {tl_—zl} (142)

= Virf 0(¢c|) + VT¢0(¢C|) )

including the zero-temperature one-loop contribuN(ir‘rO(¢c|) of (1.22). The finite-temperature
one-loop contribution

T4

V1) = —A—

M?(‘pcl)]
— (1.43)

T2
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Chapter 1 Thermal Field Theory

Figure 1.3: Gauge-boson tadpole diagrarn a theory with gauge-boson fields the deriva-
tive of the dfective potential\/lTg b(<;>C|) with respect to the classical scalar fielg dia-
grammatically corresponds to a gauge-boson tadpole diagra

2(¢c|)

includes the thermal fermionic functial ( ) which is defined as (cf.1(39)

f(‘/’cl)
1+e Vo7 ‘ (1.44)

M (¢cl)] j‘odXXZ In

As the thermal fermionic function can be expanded in thetl%fi) < 1las

3 M$(¢cl) N 7_7r4 n_sz(‘pcl)
FiITT2 | 360 24 712
M2(¢e) ZI 1 M2(par) Lae
2|7 | Ma T (1.43)

o i( ) 4(2' 2D (1o 22 r(| " 1)

(1+1 2) (2 T2

1 M%wc.)]'*z

with constangg = 72 e%‘ZVE, a high-temperature expansion of the fermionic finite-terature
one-loop contributiorvleo(cpd) in (1.43 exists. Note that the high-temperature approxi-
mation of the thermal fermionic functiadk, in contrast taJg (cf. (1.40), does not include

a cubic term. Therefore, thermally induced barriers in-firster phase transitions arise

merely from the bosonic finite-temperature one-loop cbuation.

Gauge-Boson Fields. The gauge-boson one-loop contribution to the finite-temipee
effective potential is obtained by computing the tadpole diagof Fig.1.3in the shifted
theory and re-integrating. After evaluating the tadpolpression the final expression is
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1.2 Htective Potential at Finite Temperature

given by

d 4 M2 (4c1)
V1 (da) = g | (2::';’4 In[p? + M2(gar)] + 3% JB[ = ' }

= Vi %¢a) + V1) |

(1.46)

where the zero-temperature one-loop contribuﬁfmo((pd) equals the expression derived
in 1.23 while the finite-temperature one-loop contribution,

T4 M2 (¢c|)
VI::O@CI) = o2 JB{ g_T_z ], (1.47)

includes the thermal bosonic functidp, defined in .39 and possessing a high-temperature
expansion given inl(40). Note that the finite-temperature one-loop contributibgange-

boson fields also provides a cubic teainﬁmZ(qsd))a/2 due the high-temperature expansion of
the thermal bosonic function.

In a theory containing scalar, fermion and gauge-bosonsfitld finite-temperature one-
loop contribution arises as the sum df£39), (1.43 and (L.47) multiplied by the degrees
of freedom of the single particles. By use of the definitionmafdifieddegrees of freedom
g in(1.28) the full finite-temperature one-loop contribution to tHeeetive potential can be
summarized as

T4 _
V] #%¢q) = o2 Z Oi JF,B(
i

= (1.48)

”}2(¢cl)) ’

wherein the summation indexefers to all bosonic and fermionic particles of the theory.

1.2.3. Ring-Diagram Contributions to the Hfective Potential

The emergence of the subleading term of orgie'm the high-temperature expansion of the
thermal bosonic functiodg (cf. (1.40)) is a manifestation of the breakdown of perturbative
expansion in thermal field theory. At finite temperatureanéd (IR) divergences, generated
by long-range fluctuationslLp9], break down the perturbative expansion in terms of small
coupling constants. Thus, the finite-temperature one-tmoytribution to the fective po-
tential is incomplete as higher-loop corrections of thesanter appear in the IR limit’p].
The dominant contribution of these multi-loop correctianises from the ring diagrams (or
so-called daisy diagramg§%]) which constituteN-loop diagrams wit(N — 1) loops ring
attached to the remaining one (€fig. 1.4). The ring diagrams are taken into account in the
effective potential by using propagators resummed in the IR fvanishing momenta,
wn = P = 0, leading to a shift of the bosonic field-dependent maaﬁwd) by the self-
energylIli(¢q, T) in the IR limit. Therefore, the field-dependent masses gukaveed by
thermalfield-dependent masses (so-called Debye masség) [

M (g1, T) = MP(¢er) + (i, T) - (1.49)
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Chapter 1 Thermal Field Theory

Figure 1.4: Ring diagrams to leading ordetin this figure, the solid lines of the ring dia-
grams are assumed to represent scalar, fermion as well ge-gagon fields. The small
loops correspond to thermal loops in the IR limit, being sef#y IR divergent, but IR
finite when summarized.

Note that only the bosonic sector of the theory demonstiiiedreakdown of perturba-
tion theory since only the zero-mode of the bosonic Matsalfi@quenciesop, = 27n T,
behaves as a massless degree of freedom and generates rfemies at high tempera-
ture, whereas the fermionic Matsubara frequencigs= (2n+ 1) # T for n = 0 behave as
non-negligible mass contributions of order Furthermore, in the IR limit the gauge-boson
polarization tensor can be expressed in terms of the lodigél projection tensor3].
Consequently, only the longitudinal polarization of theige bosons acquire a thermal-
mass correction.

In the so-called self-consistent methdth] the ring diagrams are implemented in the ef-
fective potential by shifting all Matsubara modes for thediuic fields by the self-energies.
This shift generates a temperature dependency of the UVgdine parts so that the UV
behavior of the theory becomes dependent on the IR dynantiasdwoes not introduce cal-
culational errors, but contradicts physical intuition.téhatively, only the zero-modes of
the bosonic Matsubara frequencieg, = O, incorporating the leading contribution of the
ring diagrams at one-loop order, can be shifted. After resation of zero-mode of the
propagator in the IR limit, the ring-diagram contributianthe dfective potential reads’¥]

Vg (601, T) = —%T > g [(Miz(¢c|,T))3/2 - (mP(6a))” 2], (1.50)

i=bosons

wherein the summation indéxncludes all bosonic particles of the model. In particullae
longitudinal and transversal polarizations of the gaug®he have to be taken into account
separately. As the transversal polarizations of the gdnagen self-energies in the IR limit
are zeroJIgy (¢a, T) = 0, (1.50 leads only to a thermal shift of the longitudinal polariza-
tions of the gauge bosons.

The ring-diagram contribution to théfective potential modifies the cubic terms by replac-
ing the field-dependent masses by thermal masses and ifotieeceucial for the analysis
of the phase transition.
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1.3. Summarization of Contributions to the Hfective Potential

The summarization of the contributions to th@eetive potential in of 1.29, (1.48 and
(1.50 yields the full finite-temperature one-looffective potential

Vi (da) = Vo(éal) + V1T=0(¢cl) + Vf¢0(¢cl) + Vr-i|;1=go(¢cl)

= Vo(¢ar) + 6Tlnz Z g M (¢er) (In @] - ci]
o~ c (1.51)
+ % 2.0 JF,B(nfT(f ')]

ST Y 6| (MPa ) - (o)™

i=bosons

including all bosonic and fermionic particles of the theofe constant€; and the mod-
ified degrees of freedorg, are defined in1.25 and (.28, respectively. The above ex-
pression will provide the basic formula for the computatidrthe efective potential in the
models investigated iRart Il.
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Chapter 2

Gravitational Waves from
First-Order Phase Transitions

The behavior of the féective potential in dependence on the temperature detesntfre
dynamics of the phase transition. First-order phase tiansj characterized by a barrier
separating the metastable symmetric phase and the brokese’pproceed via nucleation
of true-vacuum bubbles inside the false-vacuum phase.igrctiapter we will review the
two main production mechanisms of gravitational wavesrdyfirst-order phase transitions,
namely bubble collisions and turbulence, and provide tleesgary equations for the com-
putation of the parametersandg which characterize the GW spectrum. Finally, we will
discuss the GW spectrum from bubble collisions.

2.1. Production Mechanisms of Gravitational Waves during
First-Order Phase Transitions

During a first-order phase transition the Universe finddfiieea metastable symmetric
phase (the “false vacuum” state) separated from the “traewa” broken state by a barrier
in the dfective potential [67]. The phase transition from the symmetric to the brokerestat
proceeds by nucleation of true-vacuum bubbles inside th&"“sf false vacuum. Iweakly
first-order phase transitions bubble nucleation occursuaytym tunneling and by thermal

1According to theEhrenfest classificatigrthe ordern of a phase transition corresponds to those lowest-
order derivative of the free enerdgywhich is discontinuous with respect to a thermodynamicaksde, for
instance the temperatufie [193, 34]. As the Ehrenfest classification however does not take watcof
phase transitions where divergences in the derivative effriile energy occur, theodern classification
[34] distinguishes only between first-order (discontinuous) second-oder (continuous) phase transitions.
Cosmological first-order phase transitions involve inipatar a latent heat = —T AS originating from a
discontinuity in the entropy = % This discontinuity arises due to a barrier in theetive potential
which separates the true and the false vacuum. The emergéadearrier distinguishes first-order phase
transitions from second-order ones, which are for instararesidered in the so-called new inflationary
models [L49, 16, 15].
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Chapter 2 Gravitational Waves from First-Order Phase Ttiians

fluctuations, whereas istronglyfirst-order phase transitions bubbles are merely nucleated
via quantum tunnelinglf56, 103.

If the size of the nucleated bubbles is smaller than a ctisize, their volume energy is not
suficient to overcome the shrinkingfect of surface tension. However, as the cosmic tem-
perature decreases due to the expansion of the UniverdeleBulshich are larger than the
critical size can be nucleated below a certain critical terajureTc. Since the nucleated
bubbles in this case start expanding, a part of the energyedan the transition from the
false to the true vacuum is released into the plasma raitsrgmperature, while the other
part is converted into kinetic energy stored close to théblmulvalls and bulk motions of
the fluid? The bubble wall velocity and energy of the expanding bubllesease the more
regions of space convert to the ground state. Simultangdbsl bubble walls become thin-
ner so that the energy density of the wall grows rapidly. Hm@vethe spherical symmetry
of the bubbles forbids energy to be directly transferred gnavitational waves129. If
however two or morebubbles collidethe spherical symmetry is broken allowing to release
energy into gravitational radiation. Note that the breglafispherical symmetry is a neces-
sary condition for gravitational wave production. The dedtradiation does not depend on
the internal structure of the colliding bubbles, but onlytha kinetic energy stored in the
uncollided bubble regions, i.e., it is only dependent ongthape of the uncollided regions
[137]. This provides the basis for the so-called envelope appration [136, 103 117].

Two possible combustion modes for the energy liberated bybihbble collisions exist.
These depend on the strength of the phase transition ané berthe velocity of the bub-
ble walls: If the bubble wall profile propagates slower thae speed of sound, which is
cs = 1/v3in a relativistic thermal bath, gravitational waves areduwed bydeflagration
[194, 137, 138, 136. However, the amount of kinetic energy stored close to tiigble
walls and hence the characteristic bubble wall velocities so small that gravitational
wave production is strongly suppresséd [|. Besides, deflagration is not stable against
non-spherical hydrodynamic perturbatiorig{]. If the bubble boundaries in contrast prop-
agate faster than the speed of soggdthe combustion of energy proceeds ditonation
[194, 125, associated by a large production of gravitational wavd®e bubble expansion
proceeds via detonation in case of strongly first-order @t@nsitions (which are required
for a detectable GW signal) so that we will restrict our cdesitions to this combustion
mode in the following. Besides, this ensures the thin-wafiraximation (cf.Sec.2.2.2to

be valid (cf. [L29).

Additionally, the bubble expansions cause macroscopiéam®tn the cosmic plasma. If
at least two bubbles collide, anisotropic stirring of thagpha develops at a length scale
comparable to the bubble radii at the collision time &mtbulent motionsarise. Turbulent
motions constitute another possible mechanism of GW pitamtud135, 77, 48, 99].

The total stochastic GW background from first-order phaagsitions is the sum of the con-
tributions from bubble collisions and turbulent motionst |dw frequencies the dominant
contribution to the GW spectrum arises from turbulence, re&e the high-frequency part

2Expanding bubbles constitute a possible source to drivéntiigolasma in the early Universe out of equi-
librium. Departure from thermal equilibrium is in turn récpd by the Sakharov conditions for viable
baryogenesis.
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of the spectrum is mainly determined by the contributiomrfigubble collisions 167]. For
stronger phase transitions the peak frequency of the GWirsjpeds shifted to lower fre-
quencies which might lie below the experimentally sensitange (see for instanceld).
Therefore, the high-frequency part of the GW spectrum daisih by bubble collisions be-
comes particularly important with regard to detectabhility

As the turbulence contribution to the GW spectrum is stiicdissed and fierent ap-
proaches lead to fierent peak frequencies, we will focus on the contributiamfioubble
collisions here.

2.2. Characteristic Parameters of the Gravitational Wave
Spectrum

The GW spectrum from first-order phase transitions is gdélgecharacterized by two es-
sential parameters, namelyT ) andB(T,), evaluated at the tunneling temperatliref the
phase transition. In the following, we will provide the nssary formulae for the calculation
of the parameters andps which will subsequently determine the GW spectrum.

2.2.1. Parametera

The parametew is defined as the ratio of the false-vacuum energy dergity and the
thermal energy densit(T) of the symmetric phase P9,

-0

Commonly, the symmetric (high-temperature) phase is d@stiby the equation of state of
a relativistic gas with thermal energy density

2.1)

7T2
oT) = 550.T" (2.2)

Therein, the temperature-dependent quargtityounts the total number effectivedegrees
of freedom including only the relativistic particle spexigith massesy < T [139],

Ti\v¢ 7 Ti\t
g.= bZ: gi (?) + §fz gi (?) , (2.3)
whereg; denotes the degrees of freedom of the corresponding a(titl Sec.1.1.3and
the relative facto% originates from the dierence in Fermi and Bose statistics. Since the
summation only includes those particles with masss< T, the number of fective degrees
of freedom depends on the temperaturéor temperature§ > 300 GeV however, all

3For most of the evolution of the Universe all particle spediad a common temperatiFe Only after the

. . . . ¥
decoupling of the neutrinos, i.e., for<« 1 MeV, the neutrino temperatufig evolves ad, = (111) 3T and
has to be taken into account separately.
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Chapter 2 Gravitational Waves from First-Order Phase Ttiians

Standard Model particles can be regarded as extremelyvistiat In this case the total
number of &ective degrees of freedom for the Standard Model ylglds 10675.
According to the definition in statistical mechanics, thisdavacuum energy densig(T),
which provides the energy available to be transferred to GWs]

€(T) = AV, (T) - TAS

i (T) (2.4)
= AV, (T) - Ta—;.
arises as the Legendre transformation of thEedénce in free-density
Vi (T) = Vi (9, T) = Vg (94, T) (2.5)

with ¢_ and ¢, denoting the false and the true vacuum, respectively. Atthial tem-
peratureTc the false-vacuum energy density equals the latent Heat, e (Tc), since
the degeneracy of the true and the false vacuum leads to shiagipotential dterence

eff (TC) =

Lo 1T I AV,(T) 06

STt ' *0
T=T¢c

between the false vacuum energy (latent heat) density anplasma thermal energy den-

sity, computed at the transition temperatiirea(T,). It gives a measure of the transition

strength: Forr < 1 the phase transition is very weak, for~ O(1) the phase transition is

very strong.

2.2.2. ParameterB

The second essential parameter for the determination dbWespectrum, namelg, cor-
responds to the rate of (time) variation of the bubble nudaeaatel itself. Hence, this
parameter is related to the durationf the phase transition approximately by s~* and
to the typical radius of the colliding bubbles, setting teadth scale of the problem, by
(R) oc VpT =~ %.4

At finite temperature the bubble nucleation rate per uniawve is given by 103

I'(t) ~ To(t) e, 2.7)

where the prefactoFo(t) ~ T4 andS(t) ~ % Therein,S3 denotes the three-dimensional
Euclidean action. Consequently, the paramgtehich is defined asl[67]

_ds| _1dr

T4t T T

=%l : (2.8)

“Different choices fo(R) are possible. Using for instance the maximum of the bubbleme distribution
in momentum space approximately yiekl® ~ 5w, whereas referring to the size of the largest bubble
leads t{R) ~ v,7. The diferent choices of the length scale are one possible cause ahtertainty in the
contribution from turbulence to the GW spectruim. fj.
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2.2 Characteristic Parameters of the Gravitational Wasz&pm

constitutes the logarithmic time derivative of the bubbielration rate. If we expand
St) ~ S(t,) — B(t—t,) about the transition tim¢ and take the approximate adiabatic
expansion of the universe into accou%{ = —T H(t), where the Hubble parametei(t)
describes the expansion rate of the universe, we obtain {208 the normalized dimen-
sionless parameter

B Ss(T))

H: d_T( T , (2.9)

T=T,

wherebyT. is the tunneling temperature of the phase transition Inilddtacorresponds to

the temperature where the probability for nucleating oneblaiper horizon volume and
time approaches % ~ 0(1). This guarantees that bubble percolation arises even for an
inflationary expansibn of the univers&(f]. Since the Hubble parameter arises from the
Friedmann-Lemaitre equations as

87G 8739, T4

H? = 2.10
; 3 Ptot = QOME,I ( )

and hence théi? « M_Z’ the condltlon— ~ O(1) translates intoSiLrT—*2 =4 In(X2).

If we assume temperatures of the eIectroweak stale 10°GeV and approximate the
Planck mass byp, ~ 10'°GeV, the probability of a single bubble to be nucleated in a
horizon volume of orde©(1) is well approximated in the Early Universe by

S3(T)

~ 140 2.11
T (211)

Note that the exponential factor of the tunneling probgbiénsures this approximation
to be valid for a broad temperature randge’§]. According to 3(T) ~ 4 In(MF") the

dimensionless quantitf- depends only logarithmically on the temperature scale.|&\the
size of the bubbles increases by orders of magnitude bettheemncleation and percolation,
the temperatur@, and hence the parameterand% nearly remain unchanged@4].

Euclidean Action

According to @.9), it is necessary to compute the Euclidean ac8g(T) to determine the
normalized parametef:. At zero temperature the Euclidean action reads]

sg—jdrd%([ a¢ (V¢) V.. (6) 2.12)

with Euclidean timer. In the case of field theory at finite temperatiirghe Euclidean field
theory is periodic in imaginary time with perio# (cf. Sec.1.2.). As the temperature of
the universes decreases by evolution in time, the Euclidetion acquires additionally a
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Chapter 2 Gravitational Waves from First-Order Phase Ttiians

dependence on cosmic tinhe Therefore, it has to be computed in the space of functions
periodic in Euclidean (Wick rotated) time= it so that 3]

e o
0

( a‘f) (V¢) ff(¢,T)l, (2.13)
whereV

(@, T) is the efective potential which has to be shifted\fg,(0, T) = 0) for the
computation P3]. For large temperatureg however, the Euclidean ActioB; becomes
time-independent. Hence, for tunneling in a thermal systémO(4) symmetry of .13

is replaced by an O(3) symmetry and the corresponding Eratliciction reads

So(M) = [ o [5 (%0)" + Va7

_ j oc? |3 ¢(9)) V. (600). T)]

where we have assumed spherical symmetry by definiagV'x? in the last step.

In the semi-classical theory of tunneling3] 47, 150, the tunnel probability depends on the
action of the so-called bounce solution. This configurafidfills the classical Euclidean
equation of motion. In the case of tunneling at finite tempeeathe equation of motion is
given by [LO, 147, 150

d’¢ LY _ dV,, (¢, T)
dp2  odo  do

with damping cofficienty = 2° It has to be solved for thawverted potential and the
boundary conditions

dg(o)
do

(2.14)

(2.15)

=0, lim¢(o) = ¢-, (2.16)
00 0—00
whereg_ denotes the symmetric minimum (false vacuum) of the paie¥i (¢, T).
By generalizing the thermal casencalar fieldsg = (41, ..., én), (2.14 transforms into

So(T) = 4n f doo [ ‘”(QQ)] V(00 T)] (2.17)
2 \2
where(%f)) =i, (%) The corresponding equations of motion
d?¢ 2d¢ o -
@ gdg = Tl®T) 219
with V = ((9 o e %) can be interpreted as classical particle moving imtaémensional

inverted potentlal with a time-dependent damping tetfv].

5In the case of tunneling in vacuum the dampingfiioent equaly = 3.
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Thin-Wall Approximation. If the bubble radiusR(T) becomes much larger than the
thickness of the waltl = 82Veff(¢ T) |¢ [107], R(T) > d, it is possible to neglect the
second term in the equation of motlcihlS) In this thin-wall regime, where the maxima of

the inverted potential are almost degenersfg(¢., T) =~ V., (¢, T), the finite-temperature
Euclidean action of4.14) can be approximated by 5]

S3(T) = —4—37 R(T)? AV, (T) + 4n R(T)? Sy(T), (2.19)
whereAV,, (T), defined in2.5, denotes the dlierence between the two maxima of the in-
verted potential and

0
51 - j do [ ( "’@) veff(cb(g),T)] (2.20

- [o @) (2.21)
[

is the one-dimensional Euclidean acti®(T) in the thin-wall approximation. As the
temperature-dependent radius of the bubble, determineatding to Hamilton’s principle
of least action by variation 0f2(19), is given by

281(T)

AV, (T)’
an explicit expression for the three-dimensional Euclidaetion at finite temperature can
be derived by inserting2(22) in (2.19,°
167S1(T)3

3(AV,, (M)°

Note that equating(11) and @.23 allows to directly determine the tunneling temperature
T.. Furthermore,4.11) can be used to derive for the paramq%nthe expression (cf.2(9))

R(T) = (2.22)

Sa(T) = (2.23)

B _+ _(33(T))
H-ar\ T
T=T,
M, e | (224)
AV, (T
280 T ( eff( *)) ,
A, ar\ T )

6By an analogously performed calculation the three-dinmradiEuclidean action at zero temperature in the
thin-wall approximation emerges as

_ 27n%S,(T)*
3(av,, ()"
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where we have assumed in the second step that the term aordasg to the logarithmic

— AV, (T.) . . G . -
derivative of# is the dominant contribution in the sum. (We will see exllycin

Sec.4.5andSec. 4.@hat this is justified.)

2.2.3. Parameterss, and

Apart from @ and B, two additional parameters are in principle needed for daténg
the GW spectrum from bubble collisions, namely the expamsiocity v, of the bubble
walls and the fractiomr of false-vacuum energy density (latent heat) transformaaifiuid
kinetic energy (bulk motion) instead of heating the plasimageneral, the determination
of vy and requires to take friction féects into account due to departures from thermal
equilibrium in the vicinity of the bubble wallsipg 165 12(. However, in the case of
denotation, where the bubble walls propagate faster thasptbed of sound, these quantities
are merely functions of, vy(a) and«(e), independently on the microphysics driving the
phase transitionl[57]. For strongly first-order phase transitions the velocityhe bubble
walls in the case of detonation is approximately given /]

L 4 Jo?+ 2a
Vo(a) = 2 > (2.25)

1+«
constituting an increasing function in termsmfvhich varies between the speed of sound
Cs = % (in a relativistic thermal bath) and the speed of light 1. As the exact value o4,
however is dependent on the underlying theagyniay be #ected for instance by particle
scatterings with the bubble wall) , we will assume for thegase of this work

V(@) = 1. (2.26)

(As we require strongly first-order phase transitions tovalfor a detectable GW signal,
this constitutes an appropriate assumption.)

The dhiciency factork(a), indicating the ratio of false vacuum-energy density tfamed
into kinetic energy of the bulk fluid, can be determined nuoadly as a function of the
parameter yielding [125]

1 4 3
K(a’) =~ m [07150’ + 2—7 E (l’) . (227)

The dficiencyx(a) increases with the enlargementaoby varying betweer(a) =0 ... 1.
As (2.27) is only approximately numerically determined and we regstrongly first-order

phase transitions, we will assume in the following

k(@) ~ 1. (2.28)
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2.3. Gravitational Wave Spectrum from Bubble Collisions

The GW spectrum is in general expressed in terms of the ertmgyity of gravitational
wavespgw per logarithmic frequency interval, normalized to theicalt energy densityc
for a close universelfp6, 167]

1 docw
Qew(f) = — ) 2.29
As the critical energy density, arising from the Friedmammaitre equations as
3HS 2.30
pC = 881G’ (2.30)

incorporates an experimental uncertainty in the HubblampaterHy = hy - 100 SKA"“)C (with

ho parametrizing the experimental uncertainty), the GW spettis usually described by
the dimensionless quantibfQgew(f).

In the following, we will first derive the peak frequendyand the peak amplitud@gw

of the GW spectrum, which have been redshifted from the tioneequivalently the tem-
perature) of their production during the phase transitmthe present time. Subsequently,
we will express the GW spectrulfQew(f), which is observable today, in terms biand

Qcw.

Peak frequency f. If we work in the Friedmann-Robertson-Walker (FRW) metrie i
cluding the cosmological scale factafT) and assume a radiation-dominated Universe at
the time of the phase transition, the frequency scalefBs . Therefore, the redshifted
frequency of the gravitational waves, produced at the teatpee T with a frequencyf ,
arises at the present time as

_al) . (9s0)° To
=2t _( 5 ) =1 (2.31)

s

Wl

where we used the fact that the entropy per comoving volumeires constant in an adi-
abatic expanding Univers&(T) « a(T)3gs(T) T3. Thereby, the relativistic degrees of
freedomgs related to the entrop$(T) (not to the thermal energy densigfT)) emerge
from (2.3) by replacing the quartic power terms of by a cubic ones. At the present
time the relativistic degrees of freedom ajg(To) ~ 3.91 (for three neutrino species)
[103], whereas the temperature of the cosmic microwave backgrdGMB) is given by
To = 2725K = 2.348- 1013GeV [92]. Inserting this in .31) and expressing the fre-
qguencyf, in terms of the Hubble parametéf yields the redshifted frequency observed
today

f26.10°mHz [ ) (i)é. (2.32)
H )| T00Gev/\ 100
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Using this relation, the peak frequency of the GW spectruthepresent time emerges as

F 165102 mHz () (B) (T ) (9
f-165-10 mHZ(,B)(H*)(looGeV)(loo) : (2.33)

where the function% is numerically approximated as17]

f 0.62
B 18-0.1vp(a) +V2(a)

(2.34)

As we assumer(a) =~ 1 Where% ~ 0.23, the peak frequency in dependency of the

characteristic parametﬁ—, the tunneling temperatur€ and the degrees of freedog
finally reads

f-379.10%mHz [ 2 )(—" (i)é. (2.35)
H )| T00Gev/\ 100

Note that if we assume the phase transition to proceed atltotra@veak scalel | =~
10? GeV and choose typical values for the other paramegrs, 1% ... 10° andg, =~ 100,

the resulting peak frequency fs= 0.5 ... 10 mHz [L03, which remarkably coincides with
the most sensitive frequency range of the GW detector LISAGhap. Q.

Peak amplitude Qgw. In the FRW metric the energy density scales l&&)* [103,
whereas the critical energy density evolved#%)? (cf. (2.30),

4 2
pGW = (%) PGW, pC = (%) oc.- (2.36)

*

Using these relations and the expression for the Hubblentea from the Friedmann-
Lemaitre equations of2(10), the gravitational waves, which have been produced at the
temperaturd_ with a peak amplitud€gy, , arise at present time with a peak amplitude (cf.

(2.29)
O = a(T) 4 H, 452
GW‘(m) (H_o) e

100)% 1 -

~1.67-10° (— — Qcw,
2 g
g hO

(2.37)

Since the peak amplitud@gy, of the gravitational waves at the time of the proceeding of
the phase transition can be written asf

~ - > (H 200 \2
Bow, = Ax(a) (ﬂ) (m) , (2.38)
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the peak amplitude which would be observed today is obtadya@dshifting from 2.37),

100
h2Qcw = 1.67- lO‘SQGW( . )

1
. H \2 2 3
= 1.67- 10°° A k() (—) ( @ ) (@) .
B a+1l g
Therein, the dimensionless functidh has to be determined numerically. According to
[117), itis approximately given by
- 011v¥(a)

Ax " (2.40)
0.42+ v2(a)

(2.39)

yielding A ~ 0.08 for vp(a) ~ 1. Assuming additionally(e) ~ 1, (2.39 finally leads to the
expression

~ H\2, o \2 100%
2 _ . —6 *
h20ew = 1.29- 10 (—ﬁ) (a+1) (—g ) (2.41)

for the peak amplitude of the GW spectrum.

Graviational Wave Spectrum from Bubble Collisions

Following [117], we parametrize the GW spectrudgw, (f.) generated by bubble collisions
during a first-order phase transition in the envelope appration as

(a+b) fPf2

0 Y-8 (i LT 2.42
GVV*( *) GW, b f(a+b) +af(a+b)’ ( )

where the exponents lie in the range [2.66, 2.82] andb € [0.90, 1.19]. For a strongly
first-order phase transition with(«) =~ 1, the numerical simulation for a large number of
colliding bubbles in{17] yieldsa ~ 2.8 andb ~ 1.0 so that the GW spectrum rises@’so

for low frequencies and fallsfbas f:l-o for high frequencies. Note that the decrease of the
GW spectrum including multi-bubble collisions is consalaly slighter than in the case of
two colliding bubbles where the spectrum fal§ as f 18 [125).

With a ~ 2.8 andb ~ 1.0 and by redshifting the peak frequency and amplitude agogrd
(2.35 and @.41), the GW spectrum which is observed at the present time reads

h2Qeu(f) = h2 381128 (2.43)
oW T T FaE 1 2.8 138 '
with
1
. H 3
h2Qgw = 1.29- 1078 (E) ail (1?00) : (2.44)
1
F—379.10°3 B T. (i)e
f=379.10 mHZ(H*)(looGeV) o) - (2.45)
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The peak amplitudhgﬁgw of the GW spectrum is independent of the tunneling temperatu
T and hence does not depend on the energy scale of the phasiéidranAs the peak
amplitude includes however the dimensionless parametam;i%, it rather depends on the
shapeof the dfective potential at the temperatufe but not onT, itself. The parameters
and,% are correlated by their dependencefn, (T, ). In detail, bigger values afV,,,(T.)

lead to an increase of the parametefcf. (2.4)) and a simultaneous decrease@f(cf.
(2.29)). For generating a peak amplitude within the experimgntatcessible sensitivity
range,a and% roughly have to be of ordef.DJ

a~0), &~ ou00. (2.46)

Stronger phase transitions generally lead to a decreadee gfarameter3, and £ (and
hence an increase of [113 117. The equations4.44) and Q.45 display explicitly that
the peak amplitudh%fzgw is consequently enlarged, whereas the peak frequérigyow-
ered. For a detection of the GW spectrum itis required thtkt, ibe peak amplitudla%fzgw
as well as the peak frequendy lie in the experimentally accessible region. Our intemtio
will be therefore to consider phase transitions which aggired to bestrongly first-order
generating a high peak amplitud@fzgw, and which additionally proceed high tempera-
tures(Tew < T, < TguT), shifting the peak frequencf to the high-frequency range.

In Part II, we will investigate whether the gravitational waves frdra first-order phase tran-
sitions in two extensions of the Standard Model will be digtlele under these conditions
and hence could serve as cosmological probes for the tiwarebnception of the models.
Thereby, the formulae ir2(43), (2.44) and .45 will constitute our main equations for the
calculation of the GW spectra.
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Chapter 3

Singlet Extension of the Standard
Model

In this part we will study first-order phase transitions irotextensions of the Standard
Model to investigate their possibility of providing detabte gravitational waves. The first
model we will consider will be the minimal extension of theadard Model by a real
scalar gauge singl&. Although there exists a large variety of Standard Modedmesions,
the importance of this model lies in the fact that many extersscontain hidden sectors
whose elements transform non-trivially under a hiddenosegauge group, but as singlets
under the Standard Model groug 84]. Since the only renormalizable interactions of such
scalars occur via the Standard Model Higgs sector, theseairttons can serve as window
(“portal”) into the hidden sectorlB6, 170, 3¢]. In the following, we will therefore assume
the additional single$ to couple only to the Standard Model Higgs douldbet

3.1. Tree-Level Scalar Potential

In the singlet extension of the Standard Model the Lagrangifathe Higgs and singlet
sector is given by

Los = (D,®) (D*®)+ % (9,5) (") - Vo(@,S). (3.1)

whereD, = a#+i%o-a A+ %Y B, is the covariant derivative of the Standard Mo8el2), ®
U(1)y gauge groupl76, 174. The complex Higgs doublet

_ 1 (xi+ixe
® = \/E( A ) (3.2)

contains the physical scalar Higgs fididand the three massless Goldstone figlgss.
V,(®, S) denotes the tree-level potential consisting of the Stahtodel Higgs potential

39



Chapter 3 Singlet Extension of the Standard Model

V(D) = _,uﬁ (cI)T(I)) + An (cIﬂcD)2 with yﬁ > 0 anda, > 0, a Higgs-singlet contribution
Vus(®, S) and a pure singlet potentiglks(S). The most general (renormalizable) ansatz for
the tree-level potential consists ind, 87
Vo(@, S) = V(D) + Vus(@, S) + Vs(S)
; 2
= —uf, (@7®) + 2 (0T )
a1 ¥ a F V2 o2 (3.3)
= (@ 01>)S+E (@'@)"s
+b18+28 +35 +4
where we require all parameters to be redib obtain the tree-levedcalar potential in terms
of the physical Higgs fielth and the singles, the complex Higgs doubleb of (3.2) has to
be expanded about its (zero-temperature) VEVI[ 174]

1 (0
@-=(7] (3.4)
so thatd'® = |@? = %(v+ h)2. Inserting this in 8.3) and removing the field-independent
(and hence physically unimportant) constant terms, yi#h@sscalar tree-level potential
Vo(h, S). If we require additionally the potential to be invariantden the discret&, sym-
metry transformatiors — —S, the odd-power terms i vanish. Hence, the scalar tree-
level potential takes the form

An As
4 4
where we have redefineay = Am, b, = -1 andbs = As (with u3 > 0, As > 0). The
real parametefy, is generally not restricted to be either positive or negatin our further
considerations we will assumig, > 0.

The singletS is stable until thermal fluctuations induce the spontandwaaking of the
Z, symmetry which is associated by a phase transition. Toigate this phase-transition
scenario, we will next compute théective potential.

84

2 2
A
V,(h,S) = -‘% he 4+ Shpt “—25 s+ 28+ s, (3.5)

3.2. Hfective Potential

We will determine the #ective potential in the singlet extension of the Standardi&lo
up to the one-loop order at finite temperature by includireyzéro-temperature Coleman-
Weinberg contributionsvf =0(h, S), the finite-temperature correctiof\/slT *O(h, S) and the
contributionsV, _(h, S) from the ring diagrams. The tree-level potential corredigdhese

ring

terms composes the full one-loop finite-temperatufeative potential (cf. 1.51))
V,,(n,S,T) = V,(h,S) + V] °(",S) + V[ *°(, S, T) + V,,,(n, S, T). (3.6)

We start with computing the zero-temperature Coleman—l&z?&'gncontributions/lT (h, S, T).

1The normalization factors of the parameters are chosenregidrd to the simplicity of the Higgs and singlet
couplings arising from the tree-level potential.

40



3.2 Hfective Potential

3.2.1. One-Loop Hective Potential at Zero Temperature

According to (.29, the one-loop correction to the tree-level potential abzemperature
in the MS renormalization scheme is given by

VT O(h S) 47T2 Zgl 4(¢c|) (In[mz( ] Ci), (3-7)

where the constants; and the modified degrees of freedgmnare defined in1.25 and
(1.28), respectively. Hereby, the summation over the indexcludes all particles of the
model, i.e. the Standard Model fermions and bosons as weleasdditionalS-boson.
Since the dominant mass contributions will emerge from dipecuarkt, the gauge bosons
W=* andZ, the Goldstone bosong ,,, the Higgsh and the single, we will restrict our
considerations to the latter and neglect all other (fericjoparticle contributions in the
following.

To compute the one-loop contributiho=°(h, S) of (3.7), we have to determine the modi-
fied degrees of freedogy and the field-dependent massaéh, S) for the considered parti-
cles.

The degrees of freedom arise as the product of the partgbi's, color- and charge-state
degrees. According td (28 in Sec.1.1.3the modified degrees of freedom for the regarded
particles are

g=-12 g, =3
ow=6  Oh=1 (3.8)
g_Z = 3’ g_S =1
Note that we have used the modified degrees of freedom to loytab®e prefacto(-1) of
the zero-temperature one-loop contribution for the topgkua
Due to the restriction of th8-boson coupling to the Higgs field, the field-dependent ngsse

for the top quark and the gauge bosolg*, Z are independent of the singlet field and hence
remain unchanged in comparison to the Standard Made] [

me(h) = y‘ e,
mG,(h) = Z e, (3.9)
2 72
m%(h) — g + g h2,
4
wherey; denotes the top-quark Yukawa coupling, whilandg’ are theSU(2), - andU (1)y-

couplings of the Standard Model gauge group, respectively.
The field-dependent masses of the Goldstone boggnsthe Higgsh and the single§ are

2At high temperatures th&-boson and the photon are not mass eigenstates. As disdasseéd, treating
them as such in the computation however gives the corregitses
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Chapter 3 Singlet Extension of the Standard Model

on the contrary fiected by the Higgs-singlet interactions. They are derivedigenvalues
of the field-dependent mass mat/i#?(h, S), defined in {.20), with respect to the tree-level
potentialV,(h, S). The diagonalization of the mass matrix

2V (hsS) 52V (hS)
Mz(h, S) — ( ;‘Eh(h, S) m‘ﬁS(h, S) ) = { 0 0 ]’ (3_10)
S

e has
VvV (hS) 4°V(hS)
n(.S) msgh.S) 757k 757

whose elements are given by

A
Mg, (h, S) = —u2 + 34 h? + 7’“ s2,
méq(h, S) = —u3 + 315 S% + /1_2m h?, (3.11)

ms(h, S) = mg(h,S) = AmhS,

yields the physical Higgs and singlet eigenmasses

m2g(h,S) = %{mﬁh(h, S) + m«(h, S) :\/ [M2,(h,S) - meg(h )| + 4nEg(h, S)}
- %{—Mﬁ—y§+(3/lh+ %") h2+(3/15+ /%m) s? (3.12)

1 1 2
- \/[—pﬁ i+ (S/Ih - 7”‘) h2 (343 - 7”‘) SZ] + 4 hS}.

The field-dependent masses of the Goldstone bosons equalithdliggs contribution in
the mass matrixp£(h, S) = n¥(h, S).

Thus, we have determined the Coleman-Weinberg contribm’gffo(h, S) in the singlet
extension of the Standard Model by the degrees of freedor®.gfgnd the field-dependent
masses of3.9) and @3.12). Next, we will have to derive the finite-temperature oneglo
contributionV]*%(h, S, T).

3.2.2. One-Loop Hfective Potential at Finite Temperature

Since we will investigate the phase transition in the singiedel for temperatures between
the electroweak and the GUT scale, it is justified to use tiga-temperature expansion
(mP(h, S) < T2) of the finite-temperature one-loop contribution (&.32),
T o, (m(hS)
Vi*%h,S,T) = P Z i JrB (T] (3.13)
|

and to include only the dominant contributions from the thar bosonic and fermionic
functionsJg (1.40 andJk (1.45),

] (nf(h,S)) 77t 22 m¢(h,S)
F

N — -

T2 ) 360 24 T2 °
s (3.14)
; mé(h, S) ~_n_4+n_2nf(h,8)_g né(h, S)\?
\" T2 ) 127 T2 el T2 )

42



3.2 Hfective Potential

in the calculation of theféective potential. By inserting the above expressionsland Jr
in (3.15), we determine the finite-temperature one-loop contrdouiin the singlet extension
as

VI*0(h,S,T) gt[ ;go 48T2m§(h)]

- g.[ TTé 2 T S) - = T (f(h 5))%]

i=WZy.xhS

(3.15)

Note that the thermal bosonic functialg, in contrary toJg, includes a contributionx

Y2 . . . o " .
(nf(h, S)) being crucial for the investigation of the phase transitiés this term gener-
ates a cubic contribution of the singlet fiéddn the dfective potential, it leads to a thermally
induced barrier and hence provides the necessary ingtefdiea first-order phase transi-
tion.

However, the emergence of the monomial term of or%ieeveals the breakdown of per-
turbation theory in the high-temperature expansion du®tdivergences. As explained in
(Sec.1.2.3 we consequently have to include the contribution of ting diagrams in the
calculation of the one-loopfkective potential.

3.2.3. Ring-Diagram Contributions to the Hfective Potential

Due to the ring-diagram contribution to thffextive potential (cf. 1.50)

ST =-mT Y 6 |(M2n s ™) - ()| Be)

rlng
1on iI=Wi .2 t.71.6x.h.S

the field-dependent massnéé(h, S) of the finite-temperature one-loop contribution are re-
placed by thehermalfield-dependent masses, definedi) as

MZ(h, S, T) = mé(h, S) + I1;(h, S, T), (3.17)

whereinII; (h, S, T) denotes the self-energy of the bosonic fieid the IR limit. In the
gauge-boson sector, only the longitudinal polarizatioegf@ermally shifted as the transver-
sal polarizations of the self-energies in the IR limit areozé&l;(h, S, T) ~ 0. The longitu-
dinal and transversal components of the modified gaugerbdsgrees of freedom for the
gauge bosons are given by

Gy =2 Gy=4
G =1 G, =2 (3.18)
gyI 1, @tzz.

Note that the only contribution of the massless photon taitigecontributions emerges due
to the non-vanishing longitudinal polarization of the satiergyIl,,.
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Chapter 3 Singlet Extension of the Standard Model

The computation of the self-energies in the singlet extensf the Standard Model, which
is explained in detail irBec.A.1 yields the following results

11
rI\/\/I = Egz T2,

2
My = _% h? + 11 g2T2 = —mg, (h) + — 11 92T (3.19)

2 11 11
My, = 30+ Z@T2 = g, (0 + 50T

As Am) 2
Mes = (22 4+ 20\ T
ss (4+6 :
A Am  3P+9% W\ (3.20)
M= =(Zh 2m, H T Iy :
hh = Hx (2+24+ 6 Tal' >
Ilhs = IIsh~ O

for the Higgs and singlet contributions (cfA.€)). Thereof, the physical Higgs and Singlet
thermal massewlﬁ(h, S, T) and Mg(h, S, T) are computed as eigenvalues of thermal mass
matrix

2 2
M2 (h,S,T) MZ(hS,T) ) (3.21)

Miema.S.T) ‘( M (h, S, T) M&g(h,S,T)
where the single elements are given by

M2 (h, S, T) = még(h, S) + Tss(T),
MZ.(h, S, T) = mé,(h, S) + TTnn(T), (3.22)
M2(h, S, T) = MZs(h, S, T) ~ nig(h, S).

with még(h, S), ng,(h, S) andm(h, S) given in @.11). After diagonalization of
M2 (h, S, T), the thermal Higgs and singlet eigenmasses emerge, ingyn@ldhe non-

thermal

thermal case, as

M24(h, S, T) = {Mﬁh(h S) + M2(h.S) ¥ \/[Mﬁh(h, S) - M2y, S)[ + 4mEg(h, S)}
(3.23)

Finally, by summarizing the one-loop corrections to thedevel potential .5 at zero-
and finite temperature3(7) and 3.15), respectively, and including the ring-diagram con-
tributions of 3.16), the full one-loop &ective potential at finite temperature in the singlet
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3.2 Hfective Potential

extension of the Standard Model reads

V(0 S, T) = V,(h,S) + V] =°(h,S) + V] *°(h, S, T) + V,,,(n, S, T)

ring
2 2
_ Hhpe A HS oo ASca Am oo
_2h+4h 2S+48+4h8
1 _ mé(h, S)
romr Y, anes(n| T2 -c)

i=tWZy.hS

9%~ 720

+ g[—g—ZT4+2—14T2nf(h,S)]

i=WZy.hS

_%T D g_i(Miz(h,S))%.

7n? 1 (3.24)
—— T4+ Esztz(h)]

=W .2 t-71,00:h.S

In the following, we will neglect the constant termsT# in the dfective potential. As these
terms arefield-independentthey are neither physically important for the phase-itams
scenario (cfSec.3.3.2nor for the spectrum of gravitational waves (8kc.3.5.1.

3.2.4. High-Temperature Approximation of the Hfective Potential

Our intention is to investigate whether the first-order ghiansition in the singlet model
provides the possibility for detectable gravitational esat temperatures between the elec-
troweak and the GUT scale.

Within this temperature range, the dominant correctionsho tree-level potential will
arise from the temperature-dependent one-loop and ringilbotions. To derive a high-
temperature approximation of th€ective potential, zero-temperature Coleman-Weinberg
corrections can be neglected. Additionally, the restiictio the high-temperature scale
leads to a natural decoupling of the singlet figlfrom the low-energy sector of the model.
This allows in particular to neglect the contributions af tHiggs fieldh to the dfective po-
tential, including the dependency of field-dependent (tfaty masses oh. Consequently,
the field-dependent masses of the Standard Model partieleish; while the Higgs and
singlet eigenmasses are reduced to a pure depender&y on

Following this considerations, the full one-looffextive potential of .24 reads in the
high-temperature approximation

Veff(S’ T) = VO(S) + V]TiO(S7 T) + \/ring (Sv T)

2
. Hsg2 Asca
=SS (3.25)

+ g_i[2—14T2rniz(S) - %T(Mf(S,T))g].

i=y,hS
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Chapter 3 Singlet Extension of the Standard Model

Therein, the field-dependent Higgs and singlet eigenmassawputed in§.12), reduce to

Ma(S) = ME(S) = —uj + %m s, (3.26)

m&(S) ~ —u3 + 31s S?, (3.27)
and lead to the thermal eigenmasses @R29)

MA(S. T) = MXS,T) ~ —f + %m S%+¢, T2, (3.28)

M3(S,T) ~ —u4 + 315 S* + cs T2 (3.29)
with

Ch = (% + %) (3.30)

Cs = (%S ; %’“) (3.31)

Note in particular that the neglection of the Higgs fibldliagonalizes the mass matrices
(3.10 and @.2]) so that the Higgs and singlet (thermal) eigenmasses cairdxly read
off from the diagonal elements, for instant(S) = N, (S) andMZ(S, T) = MZ.(S).
Insertingg, = 3, 0n = 1 andgs = 1 in (3.29 finally yields for the &ective potential in the
high-temperature approximation
1
Vi (8.T) = 5 (-4 +csT?)S? +
1 2
-5 T [4(Mh(s,T))

As 1

7 st - 22 (4,11% +M%)T2
3 3 (3.32)
2 4 (Mg(s,T))z]

with Mﬁ’S(S,T) given in 3.28 and (3.29. This expression for theflective potential con-
sists our basic equation for the further investigation efgthase transition.

3.3. Investigation of the Phase Transition

3.3.1. Phase-Transition Scenario

We will consider the following phase-transition scenarithie singlet extension of the Stan-
dard Model: Due to the symmetry restoration at high tempeeat the symmetric phase
S(T) = O initially constitutes the absolute stable minimum of tfeetive potential. When
the temperature is lowered, a local minimum, separated fr@symmetric phase at the
origin by a barrier in the fective potential, occurs &(T) # 0. As long as the temperature
is larger than the critical temperatufe, where both minima become degenerate, the sin-
glet is stable. Thereafter, thermal fluctuations can indheespontaneous breaking of the
Zp-symmetry and the phase transition from the false to thevagaum proceeds, whereby
the singlet acquires a (non-vanishing) VEV. The emergericheobarrier in the ffective
potential thereby restricts the phase transition to be sif dirder.
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3.3 Investigation of the Phase Transition

3.3.2. Conditions for a First-Order Phase Transition

A first-order phase transition necessarily requires twaditmms to be fulfilled® These
can be used to determine the critical temperaligef the phase transition and the corre-
sponding singlet VEMS(T¢)) = + Sc (with Sc > 0). At first, the emergence of a barrier
between the true and the false vacuum state requires thiogment of a second minimum
apart from the origin17¢g),

oV, (S, T) 0PV, (S, T)
(’)—S =0 with T > O, (333)
S#0 S0
whereof the temperature-dependent singlet VE&(T)) # 0 can be derived. Secondly,
the definition ofT¢ as the temperature where both minima become degeneratettetive

condition [L7¢]

Aveff(T) |T:TC =0 (3.34)

with (cf. (2.9))
AV (T) = V(S =0,T) = V( (S =(S(T)), T). (3.35)

From 3.34the critical temperatur@c of the phase transition and subsequently the corre-
sponding singlet VENS¢c can be computed. The ratio betwe®8a and T¢ defines in turn
the strength of the phase transition. Fat@nglyfirst-order phase transition it has to lie in
the range §1]

Sc

= >1 3.36

o 2 (3.36)
The dfective potential of .25 only allows to determine the critical temperature and the
singlet VEV numerically due to the emergence of the termsrdtélog containing the ther-
mal masses. However, it is possible to derive an approxiauaddytical solution for these
guantities which will reveal their functional dependencetlee model parameters.

Analytical Approximation of the Critical Temperature and t he Singlet VEV

We will consider two approximations of thdfective potential in .25 which allow to
determine the critical temperature and the singlet VEVwiglly. The first approximation
will consist in the neglection of the thermal masses of thegdiand the singlet, whereas
the second approximation will base on a constraint imposeith® Higgs thermal mass by
still neglecting the singlet contribution.

3Reviews on finite-temperature phase transitions, wherehheacteristics of first- and second-order phase
transitions are discussed, can be found for instanceif [L77, 178, 180, 139.
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Veff(S!T) Vef‘f(svT)
T>T¢ / T>Tc /
/ /
/ /
/ /
/ /
/ /
/ /
)/ T=Tc / T=Tc
/ /
/ /
/ /
/ /
7/ 7/
e
_- S #0 -
—— . S = S
~ = - — O =~ -
T~ T=0_ = T~ T=0_
(a) First-order phase transition. (b) Second-order phase transition.

Figure 3.1: Comparison of first- and second-order phase transitionsésinglet extension
of the Standard ModelThe barrier between the true and the false vacuum infteeteve
potential, which is generated in the singlet model by a tldigninduced cubic, distin-
guishes first-order and second-order phase transitiorate (fRat we have only depicted
the dfective potential foiS > 0.)

Neglection of the Higgs and Singlet Thermal Masses. If we neglect the thermal masses
of the Higgs and the singlet,

MZ(S.T) =0, M4(S,T) =0, (3.37)
the dfective potential of .32 becomes

/1_554 1

1
Vi (8.T) = 5 (-4 +csT?)S? + 25

(44 +u3) T2 (3.38)
with cs defined in 8.31). In this approximation the thermally induced cubic texns?3,
which is contained in the thermal mass contributions aneégeas the barrier between the
true and the false vacuum state, vanishes. Therefore, tseplansition is not of first-order
any more, but reduces to a second-order phase transitich [As depicted inFig. 3.1, the
temperature-dependent singlet VEV, derived as minimuninefdfective potential §.38),
yielding

pg — csT?

S(M) ==+ e

: (3.39)

collapses with the symmetric phase to an inflection poinhédrigin at the critical temper-
ature,

(S(Te)) =0, (3.40)
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3.3 Investigation of the Phase Transition

implying Sc = 0. At T = T¢ the quadratic termx S? in the dfective potential of .39
thus changes in sign, so that the critical temperature catetsemined &s

0V, (S, T) 13
— =0 =Tc= \/—. (3.41)
2
S S=0,T=T¢ Cs

The strength of the second-order phase transition (at itieattemperature) therefore van-
ishes,?—g =0.

The considered case of the second-order phase transitiealsehe relevance of the ther-
mally induced barrier for the phase-transition scenariothke second approximation, we
will therefore include the Higgs thermal mass to generataerddy between the degenerated
minima, but still neglect the singlet thermal mass to preséne possibility for deriving an
analytical solution for the critical temperature and thegit VEV. (The physical motiva-
tion on which these assumptions are based will be explam&e¢. 3.3.3

Neglection of the Singlet Thermal Mass. If we assume the thermal masses of the Higgs
and the singlet to take the form

Pl
Mi(S. Te) = 5 §% ME(S,Tc) = 0 (3.42)

at the critical temperature, a pure cubic singlet contidut S, providing the barrier for
the first-order phase transition, arises in tfie&ive potential (cf. §.25)

3
1, 2 22 1 (Am)? 3, 4s
A e R o
X :
Y (4,11% +M§;) T

In analogy to the “Mexican hat” form of the Higgs potentiab[], the above equation can
be rewritten by the ansatz

A
Vur(S.Te) = 7 (S~ So)* S

S5g.g34. 28
2°C> Ty

s (3.44)
:Z%§— s?

(where the physically irrelevant last term i8.43 could be included as constant in the
ansatz, but has been ignored here). The comparison of the ée62 and« S® in (3.43
and @.44) yields the singlet VEV, the critical temperature and thersgth of the phase

“Note that the conditiomV, (T) |T L= 0 with AV, (T) given in (3.34), generally determines the critical
=Tc

temperature regardless of the order of the phase transitidrhence yields the same result as obtained by

(3.4).
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transition,
2(—p2 +csT2 2 2
SC = + ( S C) = 1 lﬁ, (345)
As S&rZﬁcs -14s
2
Te / s (3.46)
CS ~ 362 15
3
S 2 Ayl
>C _ i Im (3.47)
Tc 6r As
with cs given in 3.31). Thereby, the additional temcn?)Tlﬂ2 % in the expression for the

critical temperature corresponds to the correction to ffectve potential arising from the
thermal Higgs mass (the cubic singlet term). Although ituaab the critical temperature
only marginally (due to the suppression by the fatgté{g), it is essential for generating a
singlet VEV S¢ # 0.

Note that dimensional reasons require the singlet \@gVand the critical temperaturi:

to be proportional to the dimensionful parame;tér The choice op% will therefore set the
temperature scale for the phase transition. Consequémlgtrength of the phase transition,
defined as ratio 06¢ andTc, is independent of the temperature scale, but only depend on
the (small) couplings (cf.3.47). This is a general feature of first-order phase transition
generated by thermally induced barrietg]|

Based on this considerations, we will determine numesiddié singlet VEV, the critical
temperature and the phase transition strength for theffigitéve potential of .32,

Ver(S:T) = % (-5 +csT?)S% + %S s'- 2_14 (4 +13) T2
3 ; (3.48)

including both the Higgs and singlet thermal massE$S, T) and M2(S, T) of (3.28 and
(3.29, respectively. In the numerical analysis, we have to mkdhe constraints on the
model parameters to obtain a physically viable phaseitransscenario. We will discuss
these parameter constraints in the following section.

3.3.3. Parameter Constraints

The choice of model parameters for the numerical analysiesgicted to those regions
in parameter space which preserve the physical relevande ahodel. These regions are
determined by the following parameter constraints:

Vacuum Stability. The zero-temperature tree-level potential 8],

Ah
4

As

2
Hs <2
h*-—=8
2> "2

T 4, Am 202
Vo(h,S):—?h + S +Th S (349)
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3.3 Investigation of the Phase Transition

with ,uﬁs > 0 andAnsm > 0, has to be bounded from below to guarantee the vacuum
stability of the theory. Thus, the potential is requireda@ach infinity when the Higgs and
singlet field become infinite in any directiond], i.e.,

h S
V,(h,S) - cofor §. & O 27 (3.50)
h— o and S—
Since the large-field behavior of the tree-level potensalominated by the quartic contri-
butions in terms of the fieldsandS, vacuum stability is ensured if the constraint

Ahds > 22, (3.51)
is fulfilled.

Higgs mass and VEV. The low-energy features of the singlet model are dictatethby
Standard Model phenomenology. In particular, the Stantrdel Higgs potential has to
be regained at temperatures of the electroweak scale Whete ,u%. Furthermore, the
singlet model has to reproduce the experimentally detexth{mero-temperature) VEV and
mass of the Higgs boson correctly.

At zero temperature the singlet VEV yields approximatelf (€3.39) (S(0)) = Sp =
VH&/1s . By inserting this expression in the tree-level potentigld, S) given in @.3), a
redefined Higgs potential

V(@) = Vo(@,(S)) = 7 (@7®) + Ay (@ D)” (3.52)

can be derived. Therein, the contributions of the single¥Y\t&the tree-level potential have
been absorbed by introducing the parameter

o o Ak

Fh=Hh =% 7o (3.53)
The Higgs VEWV = /21, and the squared Higgs masg = 4i2 = 81,2 emerge from
the vanishing first derivative and the second derivativdnefredefined Higgs potential with
respect to the Higgs field, respectively. By setting 250 GeV andm, = 125GeV?® the
last equation transforms into the constraint
= mﬁ N 0.03 3.54
Since this constraint includes the ratio between the Higg¥ ¥nd the respective mass, it
determines the parametey independently of the temperature scale. The Higgs mmass
and hence the Higgs VEV, in contrary, are negligible at temperatures significaatpve
the electroweak scale, requiring the redefined paranﬁﬁteao vanish as well. Inserting
ﬁﬁ ~ 0in (3.53 then yields as a second constraint

2
M= (3.55)

Ah

5This choice of the Higgs mass is in accordance with the ctiegmerimental results[, 1, 37].
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Parameter | Constraint Free
h =D =12003 @59 x
As As = % (350 X
Am / v
p2 2= o (359 x
1 / v

Table 3.1:Free and constrained parameters in the singlet extensidgheoStandard Model.
Since the parametepﬁ, An and As are restricted by either phenomenological or model
constraints, the remaining free parameters of the singtetenarey? and Am. The di-
mensionful parametept% will determine the symmetry breaking scale, while the choic
of A will be the crucial ingredient for determining the strengftthe phase transition.

Thermal Higgs mass. The above equation relates the paramed#rto the symmetry
breaking scale set l:y% As ,ug likewise determines the scale of the critical temperature
Tc, we require these contributions in the Higgs thermal massatwel each other at the
critical temperature,uﬁ = cn TZ. This generates a strong cubic tesmS® in the dfec-
tive potential by the reduction of the Higgs thermal mass paoii@ singlet contribution (cf.

(3.29),

P!
M3(S, Tc) = 7m s2. (3.56)

After insertingpﬁ, given in 3.55, andT¢, approximated by3.41), in the conditionpﬁ =
cn T2, we solve the resulting equation fag and obtain the constraint

Afy

g = — M
ST B - Am

(3.57)

Free and Constrained Parameters in the Singlet Extension dhe Standard Model

The parameter constraints for the singlet extension of taedaird Model are summarized
Tab.3.1 As the two parametejs’ and.y are constrained by the Higgs phenomenology and
the model constraint on the thermal Higgs mass restrictpdn@meterls, two of the five
model parameters, namqb@ andAn, remain free to choose. (As we will seeSec.3.4.1
the upper bound imposed a, by the requirement of vacuum stability will be implicitly
fulfilled.) The choice of the dimensionful parametérwill determine the symmetry break-
ing scale and hence the order of magnitude of the criticab&atureTc as well as of the
singlet VEVSc. The strength of the phase transitié@, which is consequently dimension-
less, cannot depend on the paramﬁ@rbut only on the couplings. Therefore, the choice
of the free parametet,, will be dominantly determine the strength of the phase ttians

As the determination of the critical temperature, the €h§IEV and the phase transition
strength for the full &ective potential of §.48) is not achievable by analytical means, we
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3.4 Numerical Analysis of the Phase Transition

will next perform a numerical analysis by taking into accotire derived parameter con-
straints.

3.4. Numerical Analysis of the Phase Transition

Our intention for the numerical analysis of the phase ttamsiis to investigate whether
the parameter constraints allow for a choice of paramefgsoariate to provide a strongly
first-order phase transition in the singlet extension of$tendard Model. Since stronger
phase transitions in general generate GW spectra with hjgak amplitudes2Qgw, this
requirement will be crucial with regard to the detectapitf the gravitational radiation.

3.4.1. Determination of the Parameter Space

Which regions of the parameter space are allowed to choedbdgarameters in the sin-
glet extension of Standard Model? The space of parametemimed by the parameter
constraints guaranteeing a physical viable phase-transitenario. These determine the
parametersly, As and ,u%, whereas the parameteis, and ,u% are not constrained. In the
following, we will discuss the allowed range for the choidelg, and will set the scale for
the symmetry breaking to occur by choosﬁ@

Range of 1. In general, the renormalizability of the theory restri¢te touplingsty, As
and A, to values< 1. While the parametety, is dictated by the low-energy Higgs phe-
nomenologyn =~ 0.03 (cf. (3.54), the parameteis will be determined by the constraint
(3.57 in dependency onp,. By requiringds < 1, we can thus derive an upper bound on
the parametei,,

Am < 0.16 (3.58)

(where we consider only the cagg > 0). Note that this upper bound additionally ensures
the condition for vacuum stability irB(51) to be implicitly fulfilled. Besides, it guarantees
As > 0 sincedn, < 64y (cf. (3.57)).

Since the couplingg,, and As are confined by the parameter constraints, the choicg,of
will determine the strength of the phase transition. (Asulsed before, the dimensionless
phase transition strength cannot depend on the dimenisiméiparameteﬂ%.) According

to (3.36), a strongly first-order phase transition requires a stten§at Ieast?—g > 1. For
very large values o% the phase transition is however expected to never be cosalg:l].
Therefore, we require the strength of the phase transiﬁdnat?—g < 4. By inserting the
constraint 8.57) on As in the approximate analytical expressidh4b) for the strength of
the phase transition, the dema%@js 4 transforms into a lower bound o,

Am = 1.24-107. (3.59)

For the numerical analysis, we will thus vaty, in the range A6 > A, > 1.24-10°°.
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Chapter 3 Singlet Extension of the Standard Model

Choice of g?> In the singlet extension of the Standard Moﬁél is the only parameter
which is neither confined by a parameter constraints norsisiceed to a certain range of
parameter space. This allows in particular a free choicdn@fsymmetry breaking scale
set by,ué. Since our intention is to investigate the phase-transitiba temperature scale
between the electroweak and the GUT sc@lay < T. < TguT With Tew =~ 10° GeV and
Tout =~ 108 GeV , we will choose

ué = 10" (GeV)? (3.60)

for the further analysis, leading to values of the criticainperature in the rangé: =~
10°... 10’ GeV. We will discuss the results of the numerical analysigatail in the follow-
ing section.

3.4.2. Results of the Numerical Analysis

A selection of the results from the numerical analysis igiin Tab.3.2 We compare
the numerical solutions to the corresponding solutionsiobtl from the approximately
analytical determined expressior45-(3.47) for critical temperature, the singlet VEV
and the strength of the phase transition.

The numerical as well as the approximate analytical aralyigld results for the critical
temperatur@ ¢ of the phase transition which onlyfégr marginally. However, the numerical
and analytical solutions for singlet VES deviate the stronger, the bigger the valua gf
This deviation originates from the contribution of the that Higgs mass at the critical
temperatureMﬁ(S, Te) = %"‘ S? (cf. (3.56), which has been included for the numerical
determination oS¢, but was neglected for deriving an approximate analyticalten. For
small values ofl, the contribution of the thermal Higgs mass is negligible amparison
to the one of the singlet thermal mass. Thus, the solutiosoderived numerically from
the full effective potential is well approximated by the analyticalsion of (3.45 for small
values ofin,.

Since the strength of the phase transition is defined as o&8 andTc, it displays the
same behavior as the singlet VEV. This is depicted-ig.3.2 For values ofi,, close
to the upper bound, the numerical resultfati from those derived from the approximate
analytical solution, while the functional dependence ef strength of the phase transition
is well approximated by the analytical solutiact47),

3
S 2 A7
>C _ i Im (3.61)
Tc 6r As
for small values oftn,. If Am < Ay, the parameter constraint dg, given in 3.57), reduces
2
to s ~ 6”—5?‘. Hence, the dominant functional dependence of the phassitican strength on

the model parameters arisesziso: L

i
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3.4 Numerical Analysis of the Phase Transition

&~

Numerical solution
Sc[GeV] Tc[Gev] =

Appr. analytical solution
Sc[GeV] Tc[Gev] 32

2.10° | 173-10° 549.10° 315/ 1.72-10° 549-10° 3.15
6-10° | 575-10° 3.17-10° 182 | 574-10° 317-10" 182
1-104 | 345-10" 245-10° 141 344-10° 245-10° 141
2.10% | 172-10° 1.73-10" 099 | 1.72-10° 1.73-10" 0.99
6-10% | 572-10° 999.-10° 057 | 571-10° 9.99-1C° 057
0.001 | 342-10° 7.73-10° 044 | 341-10° 7.73-1C°F 044
0.01 327-10°P 236-10° 014 | 313-10° 236-10° 0.13
0.1 276-10* 478-10° 006 | 9.76-10° 4.70-10° 0.02

Table 3.2:Results of the numerical analysis for the first-order phaaedition in the singlet
extension of the Standard Model in comparison with the tesflthe approximate ana-
lytical expressionsFor the numerical analysis we have chosen the free parayr@eter
beuZ = 10'°(GeV)? yielding critical temperatures of the order®10 10’ GeV, whereas
the parameten, has been varied in the allowed range leading fiedent values of the
phase transition strength. The highlighted values comgiestwer bound for a strongly
first-order phase transition.
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s
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1.5¢

1.0r
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0.02

0.04 0.06 0.08

Am

(a) Functional dependency of the phase transition stre
rameter,, varied in the allowed rangeéwhile the dashed line consti-  phase transition strengthsr%
tutes a trendline for values of the phase transition stretigtlicated by on the parameterd, in the
dots) which have been numerically determined from the flilaive range relevant for generating
potential in 3.48), the solid line displays the functional behavior of the a strong first-order phase tran-
approximate analytically derived expressi@¥(/). The deviation for sition. For small A, the nu-
bigger values oft,, results from the neglection of the thermal Higgs merical results (dots) are well
mass in the approximate solution.

0.1C 2x10°%  5x10°° 1x10* 2x10™*
/\m

tlon the pa- (b) Functional dependency of the

approximated by the analytical
solution fori—g (solid line).

Figure 3.2: Functional dependency of the phase transition strengthherparameten;,.

For investigating whether the phase transition in this rhpdevides the possibility of de-
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Chapter 3 Singlet Extension of the Standard Model

tectable gravitational waves, we require it to be strongkt-forder. For achieving a phase
transition strength, lying in the range< 3¢ < 4, the dependence & on Ar, forces us
to choose very small values for the parametgr In detail, we obtain a phase transition
strength$S = 0.99 for 1y = 2+ 107 (cf. Tab.3.3, while even a value oy, = 2- 10 is

necessary for a considerable strongly first-order phassitien with % =3.14.

Hence, to generate a strongly first-order phase transitjoa thermally induced barrier in
the singlet-extension of the Standard Model, it is necgssachoose (unnaturally) small
values of the couplingn. In the following section, we will discuss if observable gta-
tional waves could be induced from this phase-transiti@mado and could in consequence
serve as cosmological probes for the physical conceptidheosinglet model.

3.5. Gravitational Waves as Cosmological Probes

The characteristic features of the GW spectrum are the peajidncyf and the peak
amplitudehgfzgw (cf. Sec.4.5.R If the peak frequency lies in the experimentally sensitiv
frequency range and the peak amplitude additionally isdrigfian the minimal achievable
sensitivity of the GW detectors, the GW spectrum will be dttile®

The peak frequency, given b2.45 as

F_379.10% mHz (B ) (T ) (9}
f=379-10 mHZ(H*)(looGeV)(loo) : (3.62)

is determined (apart from,) by the parametef- and the tunneling temperatufe where
the phase transition proceeds. Thus, the chosen tempesatale has a direct impact on the
position of the peak frequency. Since we are allowed to chtios parameter%, setting the
temperature scale, we will be able to adapt the position@ptek frequency by variation
of u% to the experimentally accessible frequency range.

In contrast, the dimensionless peak amplitb@@cy (cf. (2.44),

- H\>/ @ \2(100\3
2 _ . —6 [~
Redcw = 129 10 ( ﬁ) (-%5) (—g ) , (3.63)

cannot depend on the tunneling temperafyrigself, but only on the dimensionless param-
etersa(T,) andB(T,). Hence, these will be determined by the choicelgf As stronger
phase transition in general lead to GW spectra with highek penplitudes, we will con-
sider the parametel, in the rangel, = 2- 107 ... 2-107° allowing for a phase transition
strength?—g =0.99... 3.15. For detectable gravitational radiation, the pararsetemd%
are required to adopt values of the order (2£46)

a~0(1), Hﬁ* ~0(100 . (3.64)

bIn Sec.C.2he diferent GW experiments are briefly reviewed and the sengitivitvesh2Qew(f) are com-
puted from the experimental data.
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3.5 Gravitational Waves as Cosmological Probes

In the following we will determine the parametefor different strengths of the phase tran-
sition. We will in particular derive an upper bound enin the singlet extension of the
Standard Model. Since the parameterandﬁ are correlated by the dependency on the
potential barrier, as discussed $&c.2.3 we will be able to estimate the order of magni-
tude of ;- b corresponding to the value of the upper boundaonThis will consequently
allow to ant|C|pate whether the first-order phase transiitiothe singlet model provides the
possibility of detectable gravitational waves.

3.5.1. Numerical Determination of the Parameteix

At first, we will derive the formulae necessary for the deti@ation of the parameter in
the singlet model. Afterwards, we will explicitly computefor different model parameters.

Determination of the Parameter

According to @.1), the temperature-dependent paramet(@r) is defined as the ratio of the
false-vacuum energy densig(T) and the thermal energy densigyT) of the symmetric
phase,

e(T)
e(T)’

a

(3.65)

Thereby, the thermal energy densiyT) = g—gg*T“, includes the total number offective
degrees of freedom, of the singlet model. As the extension of the Standard Mogelrb
additional singletS enlarges the number of degrees of freedonmgdy= 1 (cf. (3.8)), we
obtain from @.3) a valueg, = 9,79 = 107.75 for the singlet model.

The false-vacuum energy densi.4),

eff (T)
aT

for the singlet extension of the Standard Model is deriveninfithe potential dference

V. (T) between the symmetric and the broken vacuum state. Forltlegtctive potential
of (3.48), including the Higgs and singlet thermal mass&2® and @.29, respectively,
this potential diference reads

e(T) = AV, (T) - T (3.66)

eff (T) - eff(S 0 T) eff(S - <S(T)> T)

1
= 5 (18 —csT2)(S(T)? - (S(T)>4

TZg.[ (M2, T)% (M2sTy. T)E .

i=x.hS

(3.67)

For characterizing the GW spectrum, the temperature-alepgnparametea(T ) has to
be evaluated at the tunneling temperatlirevhere the proceeding of the phase transition
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= Tc[GeV] | L[GeV)] e(To) [GeV)']  o(Tc)
315 549.10" | 2.98-10%® 321-10% 9.274- 1077
182 317-10° | 3.31-10% 3.56-10% 9.274-1077
141 245.10° | 1.19-10% 1.28-10% 9.273- 1077
099 173-10" | 297 -1¢* 3.20-10%° 9.272-10°7
Table 3.3: Results of the numerical analysis for paramatetharacterizing the GW spec-
trum of the singlet extension of the Standard Mo#&ek. the analysis we have chosen a
value ofyé = 10'°(GeV)? setting the temperature scale of the phase transition. rin pa
ticular, this choice determines the order of magnitude eflétent heat. and the false
vacuum energy, evaluated at the critical temperature. The values for Hrampeterr
are however independent on the choice of the temperatule, fca merely depend on
the strength of the phase transition.

starts. However, the rather slight temperature dependehae(in comparison to those

of Hﬁ) allows for an approximate evaluation ofat the critical temperature of the phase
transition by assuming. ~ Tc. Since the degeneracy of the minimum states causes a
vanishing potential dierenceAV,, (Tc) = 0 (cf. (3.34) at the critical temperature, the
false-vacuum energy consequently equals the latent B€Bt) = L, which is defined in
(2.6). After inserting 8.67) in the above equation, the evaluation 865 yields a(T¢).

As a(T¢c) cannot be calculated analytically in the singlet extensibthe Standard Model,

we will perform a numerical analysis by determiniafc) for different model parameters
under the presumption of a strongly first-order phase tiiansi

Results of the Numerical Analysis

The results of the numerical analysis are presentd@in3.3 Note that the latent heat and
the thermal energy density both are proportional to the &xatpre scale so that the values
for the parametew, defined as the ratio of the latent heat and the thermal erdegsgity,

are not dependent on the temperature scale, but are retetteel $trength of the phase tran-
sition. As can been seen irab. 3.3 stronger phase transitions lead to an enlargement of
the parameter. However, the dependency afon the phase transition strength is only
marginal in this model. In the ran% = 0.99... 3.15 the values for alpha only increase
in the rangexr = (9.272... 9.274 - 10~. Thus, we obtain in the singlet extension of the
Standard Model an upper bound< 9.274- 107, This maximal value forr is more than

six orders of magnitude smaller thé{1). Due to the correlation af and,%, the value for

the parametei- will simultaneously be several orders of magnitude biggantD(100).
Hence, the peak amplitude of the GW spectrum arising fronfitsieorder phase transition
in the singlet extension will be significantly too small fgirig in the sensitive range of the
GW detectors so that the GW spectrum will not be observabies€quently, gravitational
waves cannot serve as probe for the physical conceptioreditiglet model.

For inducing a strongly first-order phase transition in timglet model by taking into ac-
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3.5 Gravitational Waves as Cosmological Probes

count the parameter constraints, it is necessary to chbeseatues for the free parameter
Am unnaturally small. As the parameter(via the potential dferenceAV,, (T)) incorpo-
rates a dependency on the paramatgrthis will cause extremely small values of alpha.
Physically, this means that the barrier induced by the taemasses in thefiective poten-
tial is significantly to low for generating detectable gtational waves.
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Chapter 4

Left-Right Symmetric Model

The most studied mechanism to achieve a strongly first-qrtdase transition is based on
inducing a thermal barrier by the bosonic finite-tempermtme-loop contributions. How-
ever, as we have seen explicitly in the case of the singlensidn of the Standard Model,
the dfect of thermally induced barriers is mostly too small to gates strongly first-order
phase transitions providing the possibility of detectaptavitational waves. Therefore, we
will study the left-right symmetric model of weak interawis in this chapter. The left-right
symmetric is not only one of the most promising extensionthefStandard Model being
theoretically well motivated, but additionally providesbarrier in the éective potential
already at tree-level.

4.1. Concept of Left-Right Symmetric Models

Which basic idea motivates left-right symmetric models?e Thncept of left-right sym-
metric models was originally developed with regard to onthefremaining open questions
of the Standard Model: the origin of parity violation in weamlteractions {67. While
parity violation has to be incorporated in the Standard Madwosteriori by formulating a
chiral electroweak gauge theory, it arises naturally as a spootshebroken symmetry in
left-right symmetric models.

Within the framework of gauge theories, minimal left-righymmetric models are imple-
mented by extending the electrowe@l(2), ® U(1)y gauge group of the Standard Model
to a more naturally appearing

SU2). ® SURr® UL 4.1)

symmetry [69, 163 19(].1 The extension of the gauge group is associated with an en-
largement of the Standard Model particle content by rigirteed (Majorana) neutrinos as
well as right-handed massive gauge boséfsandZr. These can give rise to new physical

1Assuming the underlying gauge symmetry toes SU(2)r ® SU(2), ® U(1)g_, two stages of symmetry
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impacts.

Since the Lagrangian possesses a discrete left-right symomeder exchange of tHeU(2),
and SU(2)R field content, it is intrinsically parity-invariant. By as®ing parity symme-
try to be spontaneously broken at an energy scale much abewadctroweak scale, left-
right symmetric models hold the important feature to repoedthe Standard-Model phe-
nomenology correctly at low energies: The right-handedsimaggauge bosons would not
be experimentally detectible due to their high masses,istjduring the spontaneous par-
ity breaking. Below the symmetry-breaking scale paritylation occurs and thus leads to
the observed — A structure of weak interactions at low energies.

Another deficiency of the Standard Model is the missing gtalsineaning of the hyper-

chargeY as generator of th&J(1) symmetry. Within left-right symmetric models on the
contrary, all generators of the electroweak sector haveegtddbhysical meaning, since the
B — L quantum number arises BK1) generator [61]. The electric charge formula in the
left-right symmetric model49],

B-L
Q: |L3+IR3+ > , (42)

(with 1_g, denoting the third component of the weak isospin) is theeefoodified in com-
parison to the Standard Model whe@e= I, + % [19].

Depending on the restriction to exact or merely close-teeleft-right symmetry and on
the definition of the Higgs sector,ftiérent classes and variants of left-right symmetric mod-
els exist. In general, the extension of the gauge group fduding parity as spontaneous
broken symmetry entails an enlargement of the Higgs settue. additional Higgs repre-
sentation is required to preserve the R symmetry and to generate the correct symmetry
breaking pattern, in particular providing the (large) VEM the generation of the right-
handed gauge-boson masses. While all variants of left-egimmetric models include a
bidoublet field®, the further composition of the minimal Higgs sector to futfie above
requirements diers. If the Higgs sector, apart from the bidoublet field, immposed of an
additional left- and as well as right-handed Higimublet,the model fails to incorporate

a natural explanation for the smallness of the observedineumasses via the see-saw
mechanism 160, 161]. Since this requirement is however fulfilled in case of-leftd right
handedriplet Higgs fieldsA g, we will consider a left-right symmetric model with such a

breaking are required to obtain the Standard Model eleea®@8U(2), ® U(1)y symmetry b5, 54],

Z, ® SUR)r @ SUR), ® UL, — SURRr®SUER), eUD)s, — SUER). ®U(1)y,
9L#0R MwRr.Zg

where the spontaneous breakdown of the parity symnigtrgit the first stage leads tofférent gauge
couplingsg. # dr [167. (The left-handed gauge bosons obtain their masses inutbeeguent EWPT
SU(2), ® U(1)y Wl u@,.)

L4l
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minimal Higgs sector90, 159

o= (£ %) =319

¢ 5 22
% o
— 2 =
L V2

5;% 6++

ARz[Vﬁ F;];(o,l,z).
50 _°r
RTV2

Therein, the electric charge of the single Higgs field congmd® is indicated. The quan-
tum numbers with respect to ti8J(2), , SU(2)g, andU(1)g_, gauge group are denoted in
parentheses as convention.

The gauge-boson sector of left-right symmetric models istsm®f two triplet fields\N’L"R
and a singlet fieldB* with the following assignment to th8U(2), ® SU(2)gr ® U(1)g_|

gauge groupf?]
W'=(310), Wg=(130), B'=(110). (4.4)

Furthermore, thesU(2)_r charge is assigned to the quarks (and likewise the leptons) i
accordance to the left-right symmetry as]

(i) =)
L (4.5)

Ui e 1
vo-(4) =[r2d)
R

whereini = 1, 2, 3 constitutes the generation index. The correct electiacges are obtained
from these quantum numbers by use 4.

4.2. Tree-Level Potential

In the considered model, the Lagrangian is required to bagitally invariant under the
discrete left-right symmetry

Y o PR, AL o AR, © o OF, (4.6)

whereby¥| andW¥gr denote any left- and right-handed fermionic field of the tigedn
the most general renormalizable form, fulfilling the requients of gauge-invariance and
discrete left-right symmetry, the Lagrangian decomposts i

Loo=L +L,+ L, (4.7)
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Therein, the contributio, contains the fermionic kinetic energy terms and Yukawa cou-
plings, whereas< , incorporates the kinetic terms of the gauge bosons. ThesHiggtri-
bution to the Lagrangiad’,, consequently includes the kinetic energy terms of the scala
sector as well as the scalar interaction terms arising itrégelevel potential. Since we will
need the Higgs contribution for further calculations, wdutze its explicit form

Ly =Tr [(Dﬂop)T (Duop)] T [(DMAL)T (D#AL)] Y [(DﬂAR)T (D#AR)]
- VO(q)v AL? AR) B

where the covariant derivatives of the left-right symne®U(2),  SU(2)r®U (1)g_| gauge
group are given by

(4.8)

_ -9
Dﬂq>=a#q>+|§(aawﬁyq>—qmawﬁy),
DAL = d,A +i%(awaA Ach)+|gBA (4.9)
uRL = OulL 2a|_#L L GaVlV, 2 L .
D#AR = G#AR + Ig—2R (O-aWSy AR — AR O'aWS#) + I% BﬂAR.

For deriving a general ansatz of the tree-leVgl®, A, Ag) in (4.8), the requirements of
gauge-invariance and left-right symmetry have to be feffill The non-zer® — L quantum
number of the tripletd, andAg (cf. (4.3)) additionally forbids trilinear left-right symmetric
terms, Iiked)AIAR, in the tree-level potential restricting the allowed tertosgquadratic

combinations such aS{AR or AI@ARQT. The most general form of the tree-level potential
V,(®, AL, Ar) using the parametrization off] reads

Vo (D, AL, AR) = Vo (@) + Voa(®@, AL, AR) + VA(AL, AR), (4.10)
decomposed of a pure Higgs-bidoublet potential
Vo (®) = —12 Tr (007) - 13 [Tr (®07) + Tr (cbciﬂ)]
+ 4y [Tr(@a!) o {[1r(@0) + [Tr(061)]}
+ A3 [Tr (&)(DT)] : [Tr (cbcfﬁ)]
+ A {Tr(@@7) [Tr (D07) + Tr(0d7)]}

(4.11)

with @ = o, ®*0, [2€], a bidoublet-triplet contribution
Vaa(®. AL Ag) = a1 {Tr(@07) [Tr(A A]) + Tr(AAL)]}

+ o {Tr(®'@) [Tr(A A]) + Tr(AAL)]}
+ a5 {Tr(®07) [Tr(A A]) + Tr(AAL)])

+ a3 [Tr(@®TA AT) + Tr(@0TA AN (4.12)

+ By [Tr(@ARDTA]) + Tr(07A @AL)]

+ B2 [Tr(DALDTAT) + Tr (DA @A)

+ B3 [Tr(@ALDA]) + Tr(07A AL)|

¥
R
i

)
")
y
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4.2 Tree-Level Potential

and a pure triplet potential
Va (AL Ag) = —5Tr (AT A +ALAL)
+01 {[Tr (A[AL)]2 +[Tr (A;AR)]Z}
+o2 {[Tr(afa])] - [Tr(aa)] + [Tr(afad)] - [Tr(Agag)]}  (4-13)
+o3 [Tr(ATA )] - [Tr(AkAR)]
+oa {[Tr(A A [Tr(afaR)] +[Tr(ATA])] - [Tr (AgAR)]} -

Note that the imposed left-right symmetry, as defined4ird)( restricts the single terms
of the tree-level potential to be self-conjugate and cousptly the occurring parameters
(exceptay)? to be real.

4.2.1. Mean-Field Approximation

In order to investigate phase-transition scenarios ayifsiom the above tree-level potential
Vo(®, A, AR), it is essential to study the potential's behavior in depewe of the scalar-
sector VEVs(D), (AL) and(ARr). Thus, we will use the mean-field approximation, by
expressing the tree-level potential in terms of the VEV®unfurther considerations.

When the left- and right-handed triplets andAg acquire their VEVs, spontaneous break-
ing of the B — L quantum number and additionally of parity symmetry, in ca@\ ) #
(AR), occurs. Because of electric charge conservation, onlydiagral components of the
three scalar fieldss9, ¢9, 60 ands?, are allowed to acquire VEVS which we denote by the
real parameterky, ko,vi andvg, respectively. Therefore, the most general ansatz for the
VEVs of the scalar fields read54, 184]

[k O (0 0 (0 0
<<D>—( 0 kz),<AL>—(VL 0),<AL>—(VR 0), (4.14)

wherein the phenomenologically required separation of thdR symmetry-breaking scale
from the electroweak scale imposes the constrgins k1,2.3

In our further considerations, we will need the explicitrfoof the pure triplet contribution
to the tree-level potential, given ir(L3 in the mean-field approximation and therefore
display it here separately. After inserting the VEVs of toalar fields of 4.14) in (4.11),
the only non-vanishing terms, arising to be(ZEkD(AQ) =2, Tr ((AL)(A@) =2, reduce
the triplet contribution to thefeective potential in the mean-field approximation to

Va(Vi, VR) = =45 (VF + V&) + 01 (V! + V&) + 03V - V& (4.15)

°The parametet, has to be taken real by requiring the tree-level potentibktinitially CP invariant allowing
for spontaneous CP violatiofi §).

3Spontaneous CP violation is achieved by including a nonstémy phase factog?, 6 € R, in the ansatz for
the bidoublet VEV(®) [93, 67].
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Chapter 4 Left-Right Symmetric Model

4.3. Hfective Potential

In this section we will determine the one-looffextive potential at finite temperature which
will be our main tool for the investigation of phase-traiwit scenarios arising in the left-

right symmetric model. According td.(51), the one-loop fective potential consists of the

tree-level potential, given ir8(3)-(4.13) for the left-right symmetric model, complemented
by the zero- and finite-temperature one-loop correctioaiding the ring-diagrams

V (@, AL, AR, T) = V,(®@, AL, AR) + V{ 2(®, A, AR)
+ V@, AL AR, T) + Vo, (@, AL AR, T).

ring

(4.16)

We will focus on phase transitions occurring at theR symmetry breaking scale, which is
assumed to lie significantly above the electroweak sdale > T.,,. Hence, the behavior
of the dfective potential will be dominated by the dependence ondftednd right-handed
triplet fieldsA_r so that the Higgs-bidoublet sectdrin the gfective potential can be ne-
glected,V,;(®, AL, Ar, T) = V, (AL, Ar, T). This results in particular in a reduction of the
tree-level potentiaV/,(®, A, Ar) (cf. (4.10) to the pure triplet potential, (AL, Ar), given

in (4.13.

Due to the high temperature scale of the R symmetry breaking, the dominant correc-
tion to the tree-level potential will arise from the finitertperature one-loop contribution
VI =(AL, AR), including the quadratic field-dependent mass-tesrii$ m? (AL, Ag). There-
fore, we will neglect the zero-temperature one-lagF°(AL, Ar) (cf. (3.32) in the calcu-
lation of the dfective potential.

In the following chapter we will study a phase-transitioersario in the left-right symmet-
ric model where the barrier between the minima of tlfeaive potential is not induced
by the cubic terms of the finite-temperature corrections abises already within the tree-
level potential. In this case, it is ficient to consider only the leading-order terms of the
finite-temperature one-loop correction, ignoring the cubrms of the field-dependent and
thermal masses, respectiveB]. Thus, we will not have to regard the ring-diagram cor-
rectionsV, (AL, Ar, T) including the thermal masses in thiéegtive potential.

Given the previous conditions, thé&ective potential at. — Rsymmetry-breaking tempera-
tures reduces to

V(AL AR, T) = V(AL AR) + V{ *%(AL, AR, T) (4.17)

where the bidoublet tree-level potential in the mean-fiploraximation is derived in4.15).
For determining the explicit form of theffective potential, we now have to compute the
thermal one-loop correctio\;(lT *O(AL, Ar, T) to the tree-level potential.

4.3.1. One-Loop Hfective Potential at Finite Temperature

The general form of the one-loop contribution in the highmperature expansion arises as

(cf. (3.32),

T4 _
VIH 4D, AL AR, T) = o2 Zgi JF,B(
I

M@ A, Ag) ] , (4.18)

T2
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4.3 Hfective Potential

whereg; denotes the maodified degrees of freedom of the corresporgiirticle and the
summation index includes all fermions and bosons of the left-right symneetmodel with
corresponding fermionic and bosonic functiaks:, in dependence of the field-dependent
masses (D, Ar, AR).

However, at the left-right symmetry breaking scale, the swer the model’s particle con-
tent will be dominated by the mass-contributions of the lefid right-handed gauge bosons,
Wi, W, Z, andZg.* Consequently, only the latter will be included in the cadtigin of the
thermal one-loop correction.

According to (.40, the high-temperature expansion of the bosonic funciigrincluding
terms up to leading-order in the field-dependent massesjgéa gpproximately given by

O,ALLA 4 g2 D,ALLA

I8 MA@, A R _ A MA(®@, AL, AR) (4.19)
T2 457 12 T2

Hence, by neglecting the Higgs-triplet seclband proceeding to the mean-field description

in dependence of the VEMg andvg, the one-loop finite-temperature correction consists

in

VIO, VR, T) = Z Oi [—%T4 + = Tzn}Z(VL,VR) (4.20)

i=W|iR’ZLvR

The modified degrees of freedom remain unchanged for théndeftled gauge bosons in
comparison to the Standard Model (c8.8)). Due to the imposed left-right symmetry, the
right-handed gauge bosons are provided with degrees afdneedentical to those of the

corresponding left-handed particles so that

=2-3=6,
_gZL 3.

III
| gu

g_w (4.21)
9;
In Sec. B.1of the appendix, we compute the field-dependent massesfgeatige-bosons in

the left-right symmetric model. The resulting expressionge mean-field approximation
are given by

(o}
(]

m@v (V) = = V2,

MGy, (V) =
miR (VL, VR) =

:(UQN'M

V-
(of + %) vt + (dR+9%) V&

=\l +7) 2 + (+ 0) [ +ag” 8 |

4In analogy to the Standard Model, the photgneemains massless in the left-right symmetric model (cf.
Sec.B.).

-~ |

(4.22)

OOlH
—
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Chapter 4 Left-Right Symmetric Model

After inserting @.21) and @.22) in (4.20 and simplifying the terms arising from the gauge-
boson masses, we obtain the final expression for the onefiloitg-temperature contribu-
tion to the dfective potential

7T4
VIOV VR, T) = -5 T+ %Tz |2y, (1) + 2mG, (VR) + M2 (VL. VR) + M2, (VL. V)|

3 +g? , BG+g?,
32 t 32 R’

4
T

= —T4+71?
5

(4.23)

In conclusion, the completefective potential in the mean-field approximation, provigin
the basic ingredient for the further investigation of phaaasition scenarios in the left-
right-symmetric model, arises as (cf.17)

Vi (Vi VR, T) = Va(VL, VR) + V; *O(Vi, VR, T)
S (R R ren (€ ) e

39 +g” o 3 +g?,
32 * 32 R

t (4.24)
T

0 T4 T2
5 +

4.4. Investigation of the Phase Transition

Which phase-transition scenarios can we expect from thiential? The conception of
left-right symmetric models incorporates in general twatidct phase transitions, the- R
symmetry breaking phase transition and the EWPT. The latsrbeen treated in several
variants of the left-right symmetric modeij, 58, 29, 115 114 (including supersymmetric
and unified extensionsoh, 54, 184 and with regard to dferent cosmological implica-
tions such as CP violatiorvf, 28], baryogenesis via leptogenesis and bounds on the neu-
trino masses1[64, 93, 94, 183 27, 117, 187 or topological defects such as domain walls
[143, 209, 208 62].

Our intention however is to study the— R symmetry breaking phase transition at temper-
atures between the electroweak and the GUT scale and tdigateswhether the gravita-
tional waves, generated by a strongly first-order phaseaitian, can serve as cosmological
probes for the physical concept of the left-right symmetniocdel. A possibility for en-
hancing the strength of a phase transition significantlyasiged by considering the phase
transition in the case of flat directions of thffextive potential, as proposed ifZ] for

the singlet extension of the Standard Model. In the follayveection, we will apply this
scenario of flat directions to the left-right symmetric miode

4.4.1. Phase-Transition Scenario
For the left-right symmetric model we will discuss the phas@sition scenario which is

shown inTab.4.1 Due to symmetry restoration at very high temperaturesaliselute sta-
ble minimum of the &ective potential is initially located at the orig{a_, Ag) = (0,0). As
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4.4 Investigation of the Phase Transition

the temperature is lowered, the left-handed triplet figlddevelops a second minimum of
the dfective potential. At a certain critical temperatdre both minima become degener-
ate inducing a phase transiti¢g@, 0) — (v_ (T.), 0), whereby the left-handed triplet field
acquires a VEW,_ (T,). (Note that we will restrict our considerations in the lafht sym-
metric model, due to simplicity, to positive values of the W& In general, the left- and
right-handed triplet fields can acquire VE¥s r(T).)

By the decrease of the temperature, the left-handed minigwiT), 0) of the efective
potential is lowered. Simultaneously, the right-handéualdt-fields Ag forms a minimum
leading to the emergence of a barrier. When both minima beategenerate at the critical
temperaturdr = T¢ afirst-order phase transition from the pure left-handedmum state
to the pure right-handed one,

(v (Tc),0) = (0. vr(Tc)) (4.25)

proceeds so that the right-handed triplet field acquires & Vg(Tc). This will be the
phase transition we will investigate in detail in the furttsections. Below the critical
temperature, the right-handed minimum(@tvg (T)) evolves with the temperature to its
zero-temperature valire.

The phase-transition scenario described above requirgariicular a small deviation from
the exactL — R symmetry in the tree-level potential ofi.@4) to allow for a successive
development of the left- and right-handed minimum. (Othisenboth minima would be
degenerated at any temperatuf@dj we therefore replace the parame;érin the tree-level

potential by two distinct parametes$ # u& (with u? > 0), (4.24) transforms into

397 +g? 32 + g2

(4.26)

P 3 (Ve vh)+ A2

4 L R 4 LR’

where we have additionally neglected the physically i@t T4-term and have redefined
the parameters ag = ﬁ andoz = 42 with A, A, € R. Since the tree-level potential has to
be bounded from below to ensure vacuum stability, the tigtni A > O is required. The
parameterly, in generally can be either positive or negative. We will kefoth consider
the case wherdn, > 0. Note in particular that the terr v2v2 generates the tree-level
barrier in the éective potential determining the phase transition to berst-&rder.

4.4.2. Conditions for a First-Order Phase Transition

We will now derive the functional dependence of the VBNV & and the critical temperature
Tc on the model parameters. Their form is imposed by the camditfor generating the

5At T = Tew, the spontaneous breakdown of the(2), ® U(1)y symmetry toU(1),,, induces the EWPT,
wherein the bidoublet field (cf. (4.14) acquires a left-handed VEV providing the masses for tfte le
handed gauge-bosons.

6 A possible reason for a deviation from exact R symmetry could be for instance a suppression of terms at
theL — Rbreaking scale if the model is descended from another unifiede! [52].
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Chapter 4 Left-Right Symmetric Model

Minimum of V,,

Scale T Physical behavior at (AL, AR)

GUT Scale | Tgyt ~ 10'°°GeV
> T, Symmetry restoration (0,0
Phase transition (0,0) —» (v (TL),0)
TL (left-handed triplet acquires (degenerated minima)
VEV v)

L-R
Symmetry | < T, Left-handed triplet VEW, (v (T),0

Scale

First-order phase transition, (v (Tc),0) — (0O, vr(Tc))
Tr=Tc (right-handed triplet acquires (degenerated minima)
VEV )

<Tr Right-handed triplet VEWr (O,vg(T))
EW Scale | Tew ~ 107 GeV

Table 4.1: Considered phase-transition scenario in the left-rightngyetric model. We
will investigate the first-order phase transition from theepleft-handed minimum state
to the pure right-handed one proceeding at the critical tatpreTr = Tc. (Note that
we have denoted only positive VEVs of the left- and rightdteoh triplet fields.)

desired phase-transition scenario. In particular, thergemee of a barrier at the critical
temperature, separating the left- and right-handed VEAgsifies the phase transition to be
of first order. Thus, we will have to apply the conditions 8133 and (3.34) of Sec.3.3.2
to the dfective potential of4.26). The starting point of our calculations will be the deter-
mination of the temperature-dependent left- and righdlednocal minima of theféective
potential.

Temperature-Dependent Left- and Right-Handed Minima

The left- and right-handed VEVs form degenerated minimdefdtective potential
V,.;(vL, VR, T) at the critical temperature of the phase transition. Thegrgmas temperature-
dependent non-zero stationary points,,, of the dfective potential and are located on

curvesD|_ g (T) with vanishing first derivative of thefiective potential §7],

OV (VL, VR, T)

“6— - 0 = {VZRStaI = O’ Rstat = Dé (VL’ T)} ’ (427)
VR

6Veff(VLv VR, T)

8—\/L =0 = {Vlz—stat =Y Vﬁstat(VR’ T) #0= V% = DE(VLstav T)} : (428)
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4.4 Investigation of the Phase Transition

If we parametrize the curves with vanishing first derivatigdsing from the fective po-
tential of @.26), in terms ofv. andT,

1 3 2 + 12

DR(vLT) = o3 [4u§ ~ A - B2 TZ] : (4.29)
1 3 2 + 12

D2 T) = - [4uﬁ ~av - TZ] , (4.30)
m

their functional behavior becomes evident: They congtipdrabolas which fer in the
widths, but possess a common symmetry axis/at= 0. With increasing temperature
T the curves approach this axis so that symmetry restordtior 0) is ensured at high
temperatures. At the intersection points of the parabdhi%(,vL,T) = DFf(vL,T), the
effective potential develops coinciding left- and right-heddtationary pointS/,Eslat(T) and

vﬁstat(T) (determined viat.28). These constitute left- and right-handed minima of thenfor

3(21¢? - Am Q3

—

+ (24— Am) 92 ]
T2

! 4(2/1,115 - /lm,u%) -

VL(T) =\ ———
L(T) \4/12_/“2“7

; B . | (4.31)

1 3(2105 = Amgp) + (21 - Am) 92

T 4(22 43 — dmp?) - R - T2
— % |

QQ|~—| ©

Vr(T) =\

if additionally the sifficient condition for local minima of4.40) is fulfilled by requiring
A> %m

Critical Temperature

The critical temperaturéc for the considered phase transition (€ab.4.) from the pure
left-handed minimum state to the respective right-handes] (@, (Tc),0) — (0, vk (Tc)),
can now be calculated from the condition of degeneracy ohtirema: At T = Tc the
left- and right-handed minimum become degenerate so teatfbtential diference has to
vanish (cf. 8.34))

AV, (T) |HC = 0. (4.32)
Therein, the dferenceAV,, (T) = V,,(v.(T),0,T) — V,,(0,vr(T),T), arising from the
effective potential of 4.26) by insertion of the left- and right handed minima #h32), is
given by

”_ > [c1(9) T - co(g.1%) TE + ca(i?)| (4.33)

WO, -

"Note that the case of identical widths, where the cumesg (v., T) overlie each other, gives rise to flat
directions of the fective potential. We will discuss this in more detailSec.4.4.3
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Chapter 4 Left-Right Symmetric Model

with

sos (0B~ &) [3(cB + &) + 297

olo.1) = 3 [3(GRet - & ) + 02 i - ) (438
cafu?) =4 (ke — )

(Herein, we have indicated the functional dependence gbrtétactorsc; 23 ong r andg’
by “g” and onyf ; by “u?".)

Consequently,4.32) yields a quartic equation with respectTg. Due to the restriction to
Tc > 0 and by requiring consistency with the total symmetric gabes u? (cf. (4.29),
where the minima are degenerated at any temperature and hierc0, the four solutions
of (4.32 for the critical temperature reduce to one unique result

cu(9) =

(4.35)

where the conditiongr > g, and,uga > ,uE, emerging from the parameter constraints in
Sec.4.4.3have to be satisfied (and guaranieeto be real).

Left- and Right-Handed VEVs at the Critical Temperature

By inserting @.35) in the expressions for the left- and right-handed mininfa(@&31)), we
can subsequently determine the VEVs of tfieeive potential at the critical temperature
Tc. The left-handed false vacuum and the right-handed truewadurn out to possess
identical values at the critical temperature (so that themal diference of the pure left-
and right handed minimum state per se vanishes). We arddhe ble to summarize the
expressions for the VEVs at the critical temperature/bye v (Tc) = Ve (Tc) where

1 4[3(0Ru? - G uB) - 92 (k- k)]
21 + Am 3(9% - gE) .

Vc = (436)

Strength of the Phase Transition

The determination of the critical temperature and the retspeVEVs allows for calculating
the strength of the phase transition, defined accordin@.®6) as the ratio of the broken
phase VEV and the critical temperature

[ 1 1 ng,uE - gE ﬂ% 2
— == 3 —g2|. (4.37)
TC 4 21 + /lm ﬂ% — ,uE
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Note that in contrast to the singlet extension of the Stahd&odel, where the strength
of the phase transition only depends on the (dimensionkss)l couplings (cf. .47)),
(4.37) includes the dimensionful paramete:ﬁsR setting the temperature scale. But since
the strength of the phase transition is dimensionless nihaadepend on the temperature
scale itself, but only on the ratio betwegf andu2.2 This fact will be crucial with regard
to the detectability of the GW spectrum from the considerbdsp transition in the L-
R symmetric model: We will choose an appropriate tempegasgale generating a peak
frequencyf within the detectable frequency region, but will be able thy choice of the
ratio betweerpf and,u%, to enlarge the strength of the phase transition and heedesiight

of the GW amplituddngfzgw independently from the temperature scale.

4.4.3. Parameter Constraints

The choice of parameters is restricted by the parametetraims necessary to preserve
the physically relevant features of the appearing quastiéind for the considered phase-
transition scenario. In detail, the following parametenstoaints emerge in the left-right

symmetric model:

Vacuum Stability. To ensure the vacuum stability of the theory, the tree-lpaténtial
VO(VL, VR) of (4.2@,

VAL VR) = R - iR+ g (V) + R (4.38)

with yE’R, A, An > 0, has to be bounded from below. AnalogouslyStec.3.3.3it has to
reach infinity when the mean-fieldg r become infinite in any direction. The large-field
behavior of the tree-level potential is determined by thartic contributions of the fields
VL r. Since we have chosel, > 0 in Sec.4.4.1lvacuum stability is maintained in case of

A> Am. (4.39)

Sufficient Conditions for Local Minima.  In addition to the necessary conditions, given
in (4.27) and @.28), the left- and right-handed minimum have to fulfill thefstient condi-
tions

0V (vL(T), VR, T) N 0V, (VL, VR(T), T)

0, > 0. (4.40)
VA V2

VR=(VR(T)) v =(v(T)

Both inequalities turn out to be satisfied in case of
Am

1> (4.41)

2 2
8This can be easily seen by expressiiasy? = x - u2 with ”;% <X< % (where the allowed range of
R R
will have to be determined by the parameter constraints).

73
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As we will see inSec.4.4.3the limiting case of flat directions arises forE= %“ so that we
will choose the parameters randomly in accordance with ¢timstcaint ¢.41). Hence, this
constraint consists an improvement of the bound derived.B8).

Consistency with the Standard Model. At low energies, the left-right symmetric model
has to reproduce the phenomenology of the Standard Modete $¥e have assumed the
bidoublet field to acquire a left-handed VEV at the electrakvecale (cfSec.4.4.) evolv-
ing with T down to the (experimentally determined) zero-temperaktliggs VEV, the ob-
served left-handed gauge boson masses will arise corittttlyparameterg,. andg’ equal
their Standard Model value§],°

g.~064, ¢ ~0.35 (4.42)

Physically Viability of the Critical Temperature.  To be a physically viable quantity, the
critical temperature in particular has to be real, Tl'é. > 0. Since the physical concept of
the left-right symmetric model bases on the assumption that

Or > 0L, (4.43)
the critical temperature, as computed4n3p), is real if additionally the constraint
HR> 1L (4.44)

is fulfilled.

Physically Viability of the VEV vc. The same condition for physical viability holds true
for the VEV vc. The requirement of a real VEV% > 0, applied to the result of4(36)
imposes dower bound on the parametﬁf,

30% + g2

2 L 2 2

> ——— R = H{,_ . (4.45)
- 302 + 02 R™IL

In case ofu? = uf the VEV\c vanishes.

Broken Right-Handed Minimum.  For temperature$ < T¢ the right-handed minimum
is required to form the broken vacuum state. The conditiantlie phase transition to
proceed, guaranteeing the right-handed minimum to be thpeadt, yields{”]

d?AV,;, (T)

5 >0 (4.46)

T=T¢c

®Note that we do not take account of running couplings in thistext. The above couplings andg’ are
given at theZ-pole.
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Parameter | Constraint Free
Am / ) v
A A>3 (4.4) X
[S[N gL = 0.64 X
g g ~0.35 (443 x
orR OrR> 0L (443 x
e / o

2 ﬂimax > ,LlE > 'uEmin Wlth
2 _ 3(302+2g3)+50% o
ML ML =3 3gé+29? 507 MR 447 «x
_ 3g2+g?
i = 37g7 i (4495

Table 4.2: Free and constrained parameters in the left-right symrmetnodel. The re-
maining free parameters of the left-right symmetric modelig, andpé. While Am will
dominantly determine the strength of the phase transithmparametep% will set the
temperature scale. Apart from the parametgrandg’, which are dictated by their Stan-
dard Model values, we will choose the parameterg andpf randomly with respect to
the parameter constraints.

with AV, (T) given in @.33-(4.34). By including the conditiom > %“ and assuming
Or > gi, the above expression transforms intougperbound or)uf,

, 3(3gf + Zg'é) +5¢2 . e
#Lmax = 2 2 2 /’tR > /’tLv ( . )
3(39R + ZgL) +5g

which in particular implies;uga > ,uf. In combination with the lower bound i @45), this
constraint restricts the paramegrto a distinct rangey? > uf > pf . Note that the
allowed range fo;uf (in terms ofyﬁ) is only determined by the couplings g andg’ and
thus independent of the parametarand A,

Free and Constrained Parameters in the Left-Right Symmetrc Model

The discussed parameter constraints emerging in theidgit-symmetric model are sum-
marized inTab.4.2 As two of the seven model parameters are dictated by Stndadel
values(g., g’) and three further parameters are restricted by model b((un@ﬁ, ,uE) two
(completely) free parameters, nameh,(and,ué, remain. Analogously to the singlet exten-
sion of the Standard Model,, will be the crucial parameter to determine the strength ef th
phase transition and hence the GW amplithﬁéew, while the choice of the dimensionful
paramete;ué will set the temperature scale and subsequently the pegqieney f of the
GW spectrum.

19Setting the upper bound in relation to the lower bourfd, > 7 yields the constraint (Rgé + gﬁ)+4g’2 >0
which is automatically fulfilled fog g, g’ > O.
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Furthermore, we will choose the relation between the patensi@ and A, (cf. (4.41), gr
andg, (cf. (4.43) as well as,uf and;;% (cf. (4.45 and @.47) randomly in consistency
with the parameter constraints to generate a stronglydidsy phase transition. Their rel-
evance for the strength of the phase transition will becovigeat in the next section. As
we will see, the limiting case of these parameter conssaiill lead to flat directions of
the dfective potential.

6.4.3 Flat Directions

Flat directions of the fective potential develop in the particular limiting caseendthe
curvesD2(vi, T) andD?(vi, T), defined in .29 and @.30), are completely identical and
overlie each otherd?]. In this case, the curves correspond to flat directions éndfective
potential. Hence, the condition for flat directions to akdeasists in

DZ(vi, T) = D2(v, T). (4.48)

By inserting .29 and @.30) in this expression and comparing the fimgents of the terms
on the left- and right-hand side, we derive the parameteditons for flat directions of the
effective potential. These are

21 A 1121
ph="ut, A1=7, gr= \/5 [/1— (392 +9?) - 9’2]. (4.49)
m

If we subsequently use the second conditibs: %m of (4.49 to simplify the other two
equations, the first equation reduce;aﬁo: ,uE, while the third one becomeag = g, .

As displayed byTab. 4.2 the parameter constraints however require %“ u% > ,uf and

Or > 0. so that the above conditions for flat directions corresporttie particulatimiting
caseof the parameter constraints, but are excluded per coistnuaf the model.

In the case of flat directions the strength of the phase tiansian be significantly enlarged
[87]. (This will be explicitly discussed iec.4.6) Therefore, we will approach close to the
flat directions by choosing > %m randomly in consistency with the parameter constraints.
Thus, the constrain;azﬁ > ,uE andgr > g, will be automatically reproduced correctly from

the first and third condition of4(49 by insertingd > <.

4.5. Gravitational Waves as Cosmological Probes

After having discussed the characteristics of the firsepphase transition in the left-right
symmetric model, we are now ready to investigate its cosgicdd implications. Partic-
ularly, we will determine the GW spectrum from bubble cadiiss, characterized by the
parametersa(T) andB(T). In contrast to the singlet extension of the Standard Matieil

be possible for the left-right symmetric model to perforra talculation ofr andp analyt-
ically. This will allow to display explicitly their dependee on the model parameters. At
first, we will determine the parameter
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4.5.1. Analytical Determination of the Parametera

The parametew(T) is defined as the ratio of false-vacuum energy dengity to thermal
energy densitg(T) = g—f)gT4 of the symmetric phase (cf2(1)),

_€(T)
a = e(T) . (450)
The false-vacuum energy density (c2-4)),
dAV,, (T)
e(T) = AV, (T) - Ta—T’ (4.51)

in the left-right symmetric model is derived from the potehtlifferenceAV,,, (T) between
the left- and right-handed temperature-dependent mingiman in @.33, and yields

e(T) = ﬁ [-3ca(g) T* + co(g, 12) T2 + ca(?)] (4.52)

with c1(9), C2(9. 42), cs(4?) given in @4.34). At the critical temperatur@c the false-vacuum
energy density equals the latent heatlefined in 2.6)), since the degeneracy of the minima
leads to a vanishing potentialfiérenceAV,, (Tc) = 0. By inserting .52 in (2.6), we
derive for the latent heat in the left-right symmetric motted expression

8 AV, (T)
©TaT

T=T¢c

- 4/122:l 12 [—ch(g) T + CZ(Q,MZ)]Té (4.53)
m
3
“ g (B R) T

revealing a direct proportionality to the VEY and the critical temperaturi:, L o V%T(Z:

The result for the false-vacuum energy densityobp) in general determines the parameter
o = % for the left-right symmetric model and will be used for thenmerical analysis.
However, we can derive a physically more intuitive expr@sgor o by approximating the

false-vacuum energy density by the latent heéf,) ~ L. From the resulting equation

2
veTe
T4

a(T) = an7g 21— (gR - gL)

(4.54)
it becomes directly apparent tha{Tc) — oo for the limiting case of flat directions where

A= %m Hence, by approaching the flat directions in consistendki thie parameter con-
straintl > %"‘ it will be possible to enlarge(T) significantly. This will be essential with
regard the detectability of the GW spectrum, as will be dised in detail ir5ec.4.5.3

For the calculation of the gravitational wave spectrum,ghmmeter(T) has to evaluated
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Chapter 4 Left-Right Symmetric Model

at the tunneling temperatuile. Sincea is not at all as strongly temperature-dependent as
Hﬁ (what will be confirmed by the numerical analysisSec.4.$, even the approximate
evaluation ofx atT ~ T,

Te) = -?) = 4.
@(Te) = 22g s (%R gL)(TC) : (4.55)
generates suitable results. In this approximation, thetiogl between the strength of the
phase transition‘% and the parameter is simply described by the proportionality o
(%/1c)?. Hence, stronger phase transitions will lead to largeresbfa and hence higher
peak amplitudes of the GW spectra. Note that this is geryevalid [125, 117].

4.5.2. Analytical Determination of the Parameterg

After having computed the parameterin the left-right symmetric model in the previous
section, we will now calculatg as second parameter characterizing the GW spectrum.
According to @.24), the parameteB(T,) renormalized to the Hubble parametérat the
tunneling temperatur€ is given by

Hﬁ T 1(53(1_))

=har\TT

AV, (T,
~ —280 T* i eff( *)
AV (T) dT\ T,

T=T,

(4.56)

T=T,

with S3(T) denoting the three-dimensional Euclidean action for ttaéemneling in thin-
wall approximation (cf. 2.23),

167 S1(T)3

Ss(T) = ,
3 B(Aveff (T))2

(4.57)

andAV,,,(T) defined in §.33-(4.34). For an analytical determination (ﬁ we expand
AV,,(T) in a Taylor series aboulc up to the first order (the zeroth order vanishes since
AV, (Tc) = 0),

OAV,,(T)

AV, (T) = 5T

L
= (T -To), (4.58)

T=T¢c

containing the latent heat of (2.6). By inserting this equation in4(56), we obtain an
expression for& which is only dependent on the critical temperatligeand the tunneling
temperaturd,

0 _zsoTC_T* _280(5 1). (4.59)
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4.5 Gravitational Waves as Cosmological Probes

In the last step, we have rewritten the tunneling tempegatisi™, = T (1 - 6) by intro-
duction of the parameteY. Since the tunneling temperature is required to be equat to o
smaller than the critical temperaturég > T, > 0, the parametef is constrained to the
range 0< o < 1.

Note the approximate expression F,é:ras well as the exact equation ih.%6) with (4.57)

become divergent fof, = Tc. Hence,£ is strongly temperature-dependent and it will be
crucial to determine the tunneling temperatlire

Analytical Determination of the Tunneling Temperature

The tunneling temperatufe can be derived from the three-dimensional Euclidean action
Since the dominant temperature dependen@&s6T) is contained in the potentialfiierence
AV, (T,) (causing in particular its divergence at the critical terapgre), we approximate
(4.57) by use of .58 as

Sy(T,) _  167Sy(Tc)®
- 2
T. 3Tc (Aveff(T*))
_ler Si(Te)® e

3 L2 (T -To)

(4.60)

where we have evaluated the one-dimensional Euclideamnaatithe critical temperature,
S1(T)) = S1(Tc), and have divided by¢ instead ofT, on the right-hand side. Relating

(4.60 to the general expressio‘c’@ ~ 140 (cf. 2.11) subsequently yields the tunneling
temperature,

T _1._ | 160 TcSy(To)®
¢ 3.140 L2 (4.61)

=Tc(1-9),

where the parametéremerges as

167 Si(Te)®
3-140 T¢-L2°

0

(4.62)

To determine the tunneling temperature in terms of the mpdehmeters, it remains to
compute the one dimensional Euclidean ac®a(T¢) in the left-right symmetric model.

One-dimensional Euclidean Action. The one-dimensional Euclidean acti®p in the
left-right symmetric model is given by3[]

. ] 2
s= | dT[%(avgf)) = RACTORAOR) (4.63)
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Chapter 4 Left-Right Symmetric Model

with Euclidean timer and boundary conditions imposed by the phase-transitienaso,

Vi(t=-00)=Vc, V(r=00)=0, v (7)]_.0, (4.64)
VR (T = —oo) =0, VR (T = 00) = Vg, aTVR (T)l 0. .

According to Hamilton’s principle of least action, the tefing of the fieldsv, g proceeds
along the pathp(r) for which the Euclidean action becomes stationary. If wepsatrize
the Euclidean actio®; by the pathy(r), we can derive the thin-wall approximation from
the equation of motion, as explainedSec.2.3

< 2

S = j dr[% f(o(1)) (3925-7)) + Ve”((’o(T)’T)l (4.65)
()

= [ de\21() Vil ), (4.66)
p(=e0)

Therein, we have defined the function

%) ()

f(p) = ( (4.67)

To compute the Euclidean acti@y from the above equations, we choose the following
ansatz for the parametrization of the tunneling pe) [81]

VL) = Ve code(]. e(e) = vesinl(@]. w(r) = Z(L+tant]Z]).  (4.68)

wherein we have normalized the Euclidean time the wall thicknessl.. Note that this
parametrization fulfills the boundary conditions th&4). Besides, the parametric function
f () becomes constant(p) = V2.

As the one-dimensional Euclidean action reveals only astigpendency on the tempera-
ture, we will perform the calculation by approximati§g(T,) ~ S1(Tc). The dependency
of the one-dimensional Euclidean action on the temperaswrentained in the contribution
of the dfective potentiaV,,(¢(7), T) = V,;(VL(¢), Vr (¢), T) (cf. (4.65 and @.66)). Con-
sequently, we can evaluate thféeetive potential, given in4(26), at the critical temperature.
At first, we determine the exact solution of the one-dimemalidcuclidean actio®; g(Tc)
without thin-wall approximation. By inserting thefective potential4.26) at T = T¢ in
(4.65 and solving the integral for the parametrization ansatzd@9, we obtain the result

S1e(Te) = Ne V21 — Am V. (4.69)

where the constant

7 \/yE — Ci(27) +In (2n)

N
E™ 24 12

~0.35 (4.70)
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4.5 Gravitational Waves as Cosmological Probes

includes the Euler-Mascheroni constanit and the cosine integral €). Next, we can
analogously determine the one-dimensional Euclideanmaatithe thin-wall approximation
S1.a(Tc) by computing the integrald(66). The result

S1a(Tc) = Nav22 — AV (4.71)
with constant
Na= 2 _ o6, (4.72)
22

containing the sine integral 81), reveals the same functional dependence on the model pa-
rameters as the exact soluti8ag(Tc) differing only by a factorﬂ—: ~ 1.85 of the constant.
For the numerical analysis we will therefore use the exailt®f (4.69-(4.70).

The determination of the one-dimensional Euclidean adiinaly allows to compute the
tunneling temperatur€ and the paramet@(T.). After inserting the latent heatof (4.53
as well as the results o469 and @.71), respectively, in the definition of the parameder
in (4.62,

7 3 5
16 1 - 7N
6 (2/1 /lm)4 EA (VC ) (4.73)

3@-¢ 4 105 \Tc
the tunneling temperature (c#.61)) takes the form

T =Tc(1-9)

|y 18 1 @i-aws [7TNg (VC )5 (4.74)
=lc|+— = T >
3 gé— gE A 105 \Tc

while the parametes(T,), according t04.59), arises as

B :280(}—1)
0

H,
3 Pl 1(105\%(Tc\’
{16 (gR gL) (Zﬂ—/lm)‘zl Ve NE,A Vc

The strength of the phase transiti#@ is given in @.37). Note that the parameteris

directly proportional to the strength of the phase traosijth « (vc/Tc)%% A stronger phase
transition will therefore result in an increase of the pagtans within the range (< 6 <
1. This will lead in turn to a decrease of the tunneling terapee T, as well as of the
parameterHﬁ*. Hence, the peak amplitude of the GW spectruﬁﬁgw o (B/H.)7L, will be

enlarged, whereas the peak frequenicyr T (6/H,), will be simultaneously lowered. By
this behavior the above equations directly reflect an ingmrgeneric feature of the GW
spectrum arising from phase transitions: In general, gegpiphase transitions proceed at
smaller peak frequencies due to the decrease ahd £ [113 117. In the next section,
we will discuss the consequences of this feature for thectiigity of the GW spectrum.

(4.75)
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Chapter 4 Left-Right Symmetric Model

4.5.3. Gravitational Wave Spectrum from Bubble Collisions

After having calculated the parameterandﬁ at the tunneling temperatufie, the spec-
trum of gravitational waves generated by bubble collisidnsng the first-order phase tran-
sition (cf. (2.43-2.45),

5 ey (a+b) fPfa
heQew(f) = hgQaw CF@D 5 @D (4.76)
with
26 s (H\2/ @ \2(100\3
206w = 1.29- 107 (F) (m) (?) : (4.77)
1
= a79 107z () (- L) (L
f=379.10 mHZ(H*)(looGeV) 50) - (4.78)

is determined. (We will assume the total number of degredseefiom in the left-right
symmetric model to be approximatedy ~ 100)

As discussed before, stronger phase transitions gendgalliyto a decrease of the param-
etersT, and% so that the peak frequendyof the GW spectrum (cf. 478) is lowered,

whereas the peak amplitutﬂ%fzgw (cf. (4.77) is enlarged. Note that the peak amplitude
besides is enhanced by an increase of the parametes discussed iSec.2.3the param-
eterse and£- are correlated by the potentialidirenceAV,,. Smaller values oﬁ entail in
particular bigger values af. Besides, the increase effor stronger phase transitions is in
particular revealed by4(55 wherea o (v/Tc)?.

Based on the considerations $ec. 2.3 we will therefore require the phase transition in
the left-right symmetric model to k&trongly first—order(¥—f: > 1) and to proceed at laigh

temperature scaléTew < T. < TgyT) for generating a peak amplitudi%fzew and a peak

frequencyf which both lie in the sensitive range of the GW detectors. his tase, the

GW spectrum from the first-order phase transition in thergfit symmetric model will be

detectable.

Taking this conditions into account, we will perform a nuinalanalysis of the GW spec-
trum in the following section.

4.6. Numerical Analysis

Our intention for the numerical analysis is to investigateether gravitational waves from
the considered first-order phase transition can serve asatogical probes for the physical
properties of the left-right symmetric model. Therefores will have to analyze if the pa-
rameter space consistent with the constraintsdn. 4.4.&llows for detectable gravitational
waves.

The necessary condition for the detection is in the firstelde overlap of the spectral
peak amplituden2Qcy with the sensitivity range of the GW experiments, reachimgnf
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4.6 Numerical Analysis

h2Qew ~ 1078 [156] for the ground-based Advanced LIGO detectorh§®cw ~ 1071t
andh2Qew ~ 10717 [117 for the planned spaceborne interferometers LISA and éeorr
lated) BBO, respectivel{t We will discuss the parametric dependence of the quantities
andHﬁ* for determining the highest possible peak amplith@@cy arising from the first-
order phase transition in the left-right symmetric model.

The second condition to be necessarily fulfilled for detaetgravitational waves requires
the peak frequency of the GW spectrum to lie in the frequersage accessible by the
GW detectors. While the ground-based detectors like LIGO\ARRGO are sensitive in
the high frequency regioh ~ few Hz...few kHz, the sensitivity of the spaceborne interfer-
ometers LISA, BBO and DECIGO covers the low-frequency rahge 104 ... 1 Hz [156
(cf. Sec.C.). Since the peak frequency of the GW spectrum (independentihe peak
amplitudehgﬁgw) can be shifted to higher or lower frequencies by varyingttmaeling
temperature, we will determine the temperature scale bghbice of the model parameters
with regard to the experimentally accessible frequencioreg

4.6.1. Determination of the Parameter Space

To derive an upper bound on the peak amplithg@cw of the GW spectrum arising from
the first-order phase transition in the left-right symneetriodel, we first have to determine
the parameter space consistent with the constraints anchtéhe to choose the parameters
randomly.

For generating a high spectral peak amplitude, its funatidependence, given id(77) re-
quires a large value af coinciding with a smal\f—*. As displayed by the derived expression

for a of (4.59), and% of (4.79 in the left-right symmetric model, this is directly acheel/

by requiring a strongly first order phase transition. Not the contribution of the phase
transition strengthd o (v¢/7c)?, 6 o (vc/7c)7?) dominates the functional dependencexof
andHﬁ on the model parametet$.Thus, we have to choose the values for the parameters
in the numerical analysis with regard to the parametric depece of the strength of the
phase transition given ih.37as

e _ 1 1 3 JRME — OF MR _g? (4.79)
Tc 4\ 21+ Am ,qu — ,uE ' '

Choice of ggr. From the requirement of renormalizability of the theory we eestricted
to values< 1 for the couplings. While the parametggsandg’ are dictated by the Standard
Model valuesg, = 0.64 andg’ = 0.35 [58], the parametegr is free to choose.

The conception of the left-right symmetric model requites parameter constraigk > g

n Chap.G we review the dierent types of GW detectors and compute their sensitivityesiin terms
of hﬁﬁew, using either the experimental data from the operationtdaders or the instrumental design
parameters of the planned missions. The values for the basttisities of the specific GW detectors are
summarized iab.C.2

12As will be confirmed by the numerical analysis, the influentthe parameters appearing as prefactors in
andé is only marginal.
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R | £ om) & 20w
100 | 217 01333 607 4&2-101
095 | 195 00810 690 1.42-10
090 | 1.73 00454 806 H#9-10P
085 | 148 00225 985 @2-10716
080 | 1.21 00091 1312 &4-10Y
075 | 087 00025 2175 BK4.107'8
070 | 0.33 Q0001 15472 ®9-102%

Table 4.3: Dependence of the quantities characterizing the peak @maglitfQcw on the
parameter g. For the numerical calculation we have chosign= 0.1, 1 = 0.09,;15Q =
10", 2 = 0.87- uZ in consistency with the parameter constraints. In the éurémalysis
we will setgr = 0.95.

(cf. Tab.4., leaving the range.64 < gr < 1. As revealed by equatiort(79 and in
Tab.4.3 the strength of the phase transitié@ (and hence the peak amplitugQgyw) is
larger for bigger values air. For the further analysis we therefore choose

gr = 0.95. (4.80)

Choice Ofﬂi- In Sec.4.4.2ve have discussed that the dimensionless strength of ttse pha

transition cannot depend on the dimensionful param@%eitself, but only on the ratio
betweeru? andp .

The choice ofir determines the range pf in dependence qfé arising from the parameter
constraints. By inserting the values fgir g, andgg in the lower and the upper bound of
in (4.45) and @.47), respectively, the allowed range fof turns out to be @832 < u? <
0.88/1%. Since the strength of the phase transition strongly isagdor enlarging the ratio
betweerpf andpﬁ, as shown irig.4.1, we approach close to the upper bound by setting

u? = 0.87u4 (4.81)

Choice of . According toSec. 4.4.3the dfective potential develops flat directions in the
limiting caseAd = %m raising the strength of the phase transition%%o—> oo, To fulfill
the parameter constraints, we are however restricteld>tc§2ﬂ in our choice of the relation
betweenad and A,,. Thus, a strongly first-order phase transition in consistenith the
parameter constraints is achieved if we choose this relaaadomly*3 For the further
discussion, we therefore assume

A= 0.55Am. (4.82)

BNote that the physical scenario of the phase transitioniresjthe tunneling temperatufe = T¢ (1 - 6) of
(4.74) to be bigger than the critical temperatdre. The resulting constraidt < 1 transforms into an upper
bound on the relation ofand , namelya < 1.40 A, by inserting the already chosen parametersliig).
For approaching the case of flat directions, the upper baifdfilled in any case.
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2.0 ‘ :
Am = 0.01
1.5 Am = 0.04
Ve
— 1.0
Tc Am=0.16
0.5¢
An=1
0.0F ‘ ‘ ‘ ‘ ‘ ‘ ‘
0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85
I
I

Figure 4.1: Dependence of the phase transition strength on the ratipfoand ,u% for
different values oft,. Herein, we have assumed the relatibe: 0.9 - A,,. Note that the
lower bound omf leads per construction to a valug = 0 and hence a vanishing phase
transition strength.

Range of im. Apart from 3, the only remaining undetermined model parametelyis
After having chosen the couplings r, ' and set the ratio betweqrf: and,ué as well ast
and A, the value of the strength of the phase transition is onlyeddpnt on the choice of
Am. Although A, in principle is a free parameter of the model, the physicapprties of the
phase transition restrict its choice to a distinct range tl@none hand, the lower bound in
this range arises from the condition for a strongly firstesrghase transition witl¥% s 1.
On the other hand, the phase transition is expected to neveoinpleted for very large
values of¥—‘é [81]. Therefore, we restrict the strength of the phase tramsitd be}’—; < 4.
Transforming these bounds vid.79 into a range ofl,, reads

0.023 Am > 0.38 (4.83)

By the determination of the range &f,, all necessary parameters for the calculation of the
peak amplituddngfzew of the GW spectrum are set. Since the peak amplitude is higher
stronger phase transitions, the upper boundgsimultaneously yields an upper bound on
the order of magnitude of the spectral peak amplitude a@rifiom the considered phase
transition in the left-right symmetric model.

In the following section, we will give the results of the numcal analysis for the above
choice of parameters by varyin, in the range of 4.83 and discuss whether the phase
transition provides the possibility of detectable graiataal waves.
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.\I{—i a Hﬁ* h%QGW
397 179 131-10° 3.09-10%
355 095 196-10° 7.94.10712
275 Q29 376-10° 452.-10%3
195 008 705-10° 140-10714
138 Q02 117-10° 6.65-10716
104 001 169-10° 7.12.-10Y
Table 4.4: Results of the numerical analysis for the temperatureesgadependent quan-
tities a, % and hgszW. From the first-order phase transition in the left-right syetric

model we obtaim2Qgew =~ 3.09- 10"1! as upper bound on the peak amplitude of the GW
spectrum.

Thereby, we will use the only remaining free param¢t§rto determine the temperature
scale and hence the peak frequetfiayf the GW spectrum with regard to the detectability.

4.6.2. Detectability of Gravitational Waves

Does the first-order phase transition in the left-right syetnm model give rise to detectable
gravitational waves? If yes, at which temperature wouldgthese transition have to proceed
for generating gravitational radiation within the expegimelly accessible range?

The first necessary condition for the detectability of the &y&ctrum requires the spectral
peak amplitudeh%f)GW to lie in the sensitive region of the GW detectors. To derike a
upper bound on the peak amplitude, we perform the numeritaysis for the choice of
parameters discussed above by restricting the phasetimansirength to the range %

¥—E < 4. The results of the numerical analysis for the quant'ttieﬁ: andhgfzgw are listed

in Tab.4.4 From the discussed first-order phase transition in theilgit symmetric model
we derive an upper bound on the peak amplitude yielding

h2Qew,, ~ 3.09- 10°1%, (4.84)

If we compare this bound to the sensitivity range of the gtbbhased GW detectors GEO600,
VIRGO, LIGO, LCGT and the upgraded experiments Advanced &Rand Advanced
LIGO (cf. Tab.4.5, it turns out that that the derived value for the peak amg@étis much
smaller than the maximal sensitivities achievable by thegqeeriments. In particular, it
is six orders of magnitude too small to be detectable by th&T/BAGRA detector
(h%QGW ~ 105) and still five orders of magnitude smaller than the best Heitgiantici-

pated for the Advanced LIGO detect(d%QGW ~ l(TG). Hence, the GW spectrum arising
from the first-order phase transition in the left-right syetrit model will not be detectable
by the ground-based detectafs.

Even a detection by the cross-correlated Advanced LIGQu@ieg the last upgrade LIGOIII4], allowing
for a minimal sensitivity 0h2Qew ~ 1071° [103) would be excluded.
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Detector f [Hz] h2Q W e
GEO600 P 7] 1,09-10° 9.75.10°
VIRGO [20] 4,37-100 241-10°3
LIGO [144] 1,30-1¢* 1.61-10°3

Advanced VIRGO P04 | 4,68-10' 1.50-10"°

LCGT/KAGRA[127 | 6,90-10" 1.04-10°

Advanced LIGO 45 | 3,22-10! 5.48.10°

Table 4.5: Minimal sensitivities of several ground-based GW detectdrhe values for

the best sensitivities have been computed from the datahwizis been taken from the
indicated references. This is explained in detaibiec.C.2 (The maximal sensitivity
of the planned Advanced LIGO and LCBJIAGRA detectors are based on anticipated
sensitivity curves.)
Since the sensitivity may change slightly foffdrent data runs and with respect to the
current experimental status, these values should senaugh orientation for the order
of magnitude of the sensitivities achievable by the grobasged detectors.

Detector f [Hz] h2Q W e
LISA 2,09-10° 1.30-1011
FP-DECIGO 1,02-101 4.63-1013
BBO/

. 1 . 13
TDLDECIGO | 235-107% 113-10°

Correlated BBO | 2,76-101 884-101
Ultimate DECIGO| 1,70-10' 1.60-107%/

Table 4.6: Minimal sensitivities of several spaceborne GW detectditse values for the
best sensitivities for the spaceborne interferometers haen computed from the data of
the anticipated sensitivities curves generated by usé-di [ This is explained in detail
in Sec.C.2 As before, these values are given to estimate the order ghituige of the
experimentally achievable sensitivities.

This becomes clearly evident Fig.4.2 depicting the GW spectra for the sets of model
parameters given iffab.4.7 For obtaining a peak frequendy of the GW wave spec-
trum which lies in the frequency range accessible by the rgidaased detectord, =
few Hz...few kHz, we have chosep% = 6.02- 10'3(GeV)? setting the critical tempera-
ture toTc = 1.32- 10’ GeV. However, the peak amplituch%ﬁew of the GW spectrum
from the left-right symmetric model is several orders of miagle smaller than the maxi-
mal sensitivities of the ground-based GW detectors andehetiitnot be observable at this
temperature scale and in this frequency range, respactivel

Although the experimental observation of the model spdngrthe ground-based detectors
is excluded, the comparison ©&b. 4.4with Tab.4.6reveals that a detection by the planned
spaceborne interferometers LISA, BBO and T/BR-DECIGO, including Ultimate DE-
CIGO and the cross-correlated BBO detector, however wipdsible.
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Set | « Hﬁ* h2@ew  T.[GeV] f[Hz]
(A1) | L.79 131-10° 3.09-10 648-10° 3.22-10
(A2) | 095 196-10° 7.94-101? 718.10° 5.34-10
(A3) | 029 376-10° 452-10% 853-10° 1.21-1C?
(A4) | 0.08 705-10° 1.40-101* 989.10°F 264 10
(A5) | 0.02 117-10° 6.65-107¢ 1.08-10" 4.81-1C°
(A6) | 0.01 169-10° 7.12-101 1.14.10" 7.29 10
Table 4.7: Set of parameters corresponding to the GW spectra from thedht symmetric
model which are depicteig.4.2 For generating a model peak frequentywithin
the frequency range accessible the ground based deteswigve chosep% = 6.02-
10'3 (GeV)? setting the critical temperature 1@ = 1.32- 10’ GeV.

P
\ceoeto ' “‘ %
‘w | ‘ “' i
100C N |
VIRGO th I il Il 'W’ o
Y t,wr”'\JLJW‘M A M
Advancec
VIRGO LIGO ‘
|
LCGT/ ‘
KAGRA i )
) 10°®
hoQew Advanced
LIGO
10°°
1013
10"
1 10 100 100C 104
f [Hz]

Figure 4.2: GW spectra from the first-order phase transition in the tafkt symmetric
model at a critical temperature ofdT= 1.32- 10’ GeV in comparison with the sensitive
region of the ground-based GW detectofFsie maximal peak amplitude derived from the
first-order phase transition in the left-right symmetricdabdoes not lie in the sensitive
region of the ground-based detectors GEO600, VIRGO, LIGGGT/ KAGRA and the
upgraded experiments Advanced VIRGO and Advanced LIGOsTho experimental
detection of the model spectrum by the ground-based deseistexcluded.
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Figure 4.3: Shift of the GW spectrum to the low-frequency ranfee upper bound on the
peak amplitude derived for the left-right symmetric modeido low to allow for detec-
tion of the GW spectrum by the ground-based GW detectors;iwduie sensitive in the
frequency rangd = few Hz...few kHz. However, the GW spectrum will be observable
by the planned spaceborne detectors in the low-frequemgera f = 107*... 1 Hz.

By demanding the detectability of the GW spectrum, the phessition is therefore

restricted to proceed at a smaller temperature resultimgshift of the spectral peak fre-
guency to a lower frequency range. The areas of the figurdigiiged in blue refer to

the range of the peak amplitudes giverTah. 4.4

The best sensitivity of the Ultimate DECIGO (cross-conetiaBBO) detector, which is of
the ordemZQgw ~ 1077, will even allow for detection of the GW spectrum (nearly}him
the whole parameter rangesl¥—‘é < 4. However, in case of really strong phase transitions

with 1€ 2 3.70 even a detection with LISfh2Qgyw ~ 10711) will be achievable®

The second condition for detectability requires the peagifencyf of the GW spectrum to

lie in the frequency range accessible by the GW detector&eShe order of magnitude of
the GW spectrum restricts its detectability to the spaaebaletectors, the peak frequency
has to be shifted to the low-frequency ranige 107 ... 1 Hz, as shown irfFig. 4.3

A shifting to lower frequencies is achieved by restrictihng phase transition to proceed at
smaller temperatures. If we for instance set the critioalperature td'c = 8.56- 10° GeV,

by choosinguge = 2.55.10° (GeV)?, the maximal peak amplitude arises at a peak frequency

15For a phase transition strength @é ~ 3.70, the numerical analysis yields a peak amplituddagéiew ES

1.30- 10°*, which corresponds to the approximated maximal sensithVjfcw,, of the LISA detector
given inTab.4.6 For stronger phase transitions withQew,., = h2Qcw,., the respective GW spectra will
be detectable by LISA.
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10711
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(@) GW spectra from the left-right symmetric model in comparigdth the sensitive region of the
spaceborne GW detectorsAt a critical temperature ofc = 8.56- 107 GeV the peak frequency
f of the GW spectra lie within the frequency range accessiplthd spaceborne interferometers.
Since the corresponding peak amplitudiﬁéew additionally are in the sensitive region of these
GW detectors, the GW spectrum will be detectable.
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(b) Detectable region of the GW spectra from the left-right sytnim model. Within the detectable
region, which is highlighted in blue, the model spectrati¢tie sensitive region of the GW detec-
tors. The Ultimate DECIGO (cross-correlated BBO detecitiows to detect spectra from (nearly)
the whole parameter range, while the detection by LISA igieted to spectra with peak amplitude
h2Qew close to the upper bound.

Figure 4.4: GW spectra from the first-order phase transition in the fafht symmetric
model at a critical temperature ofT= 8.56 - 10° GeVin comparison with the sensitive
region of the spaceborne GW detectors.
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4.6 Numerical Analysis

Set | « & h2@ew  T.[GeV]  f[Hz]
(B1) | 1.79 131-10° 3.09-10 421.10° 209-10°3
(B2) | 0.95 196-10° 7.94-101% 467-10° 347-10°3
(B3) | 029 376-10° 452-10 555.10% 7.90-10°3
(B4) | 0.08 705-10° 140-10* 6.43-10° 1.72-1072
(B5) | 0.02 117-10® 6.65-10'® 7.06-10° 3.13-107?
(B6) | 0.01 169-10° 7.12-10Y 7.42.10° 4.74-1072
Table 4.8: Set of parameters corresponding to the GW spectra from thedht symmetric
model which are depictefiig.4.4 For generating a spectral peak frequerfcyithin
the frequency range accessible by the spaceborne detegtolave chosepgQ = 255-
10 (GeV)? setting the critical temperature T = 8.56- 107 GeV.

of f = 2.09- 1073 Hz and thus will be in particular detectable by LISA. Thislisstrated in
Fig.4.4for the sets of model parameters giverla. 4.8 In comparison withig. 4.2 the
critical temperature ifrig.4.4has been lowered by more than four orders of magnitude.

In which temperature range does the phase transition henaeth proceed for providing
observable gravitational radiation?

Fig.4.4displays that the GW spectrum for peak amplitudes closegaufiper bound will
even be detectable by the cross-correlated BBO and UltibatelGO detector if the peak
frequency reaches the lower frequency limit of 4Blz of the experimentally accessible
range. However, the numerical analysis yields in this casgeratures of the electroweak
scale for the phase transition to proceed. Below*H¥ the sensitivity of the spaceborne
detectors is expected to drop considerably3 ] so that we exclude a detection of
gravitational waves at even lower frequencies.

Physically more interesting will be the upper bound on thealing temperature derived
from the demand of detectability of the GW spectrum. We deitee this upper bound
on tunneling temperature from the peak frequef@t which the maximal peak amplitude
h2Qcw,.., intersects the sensitivity curBQew,.....( f) of the Ultimate DECIGO and cross-
correlated BBO detectors, i.4206w,,(f) = MQ0we(f) with f = f. For Ultimate
DECIGO we compute an upper bound on the tunneling temperafir = 1.73- 10° GeV
(TC =253.10° GeV), whereas we obtain for the cross-correlated BBO detectanamal
temperature off, = 2.31- 10P GeV (Tc = 4.69- 10° GeV). Thus, the GW spectrum from

the considered phase transition in the left-right symroatmbdel will be detectable for
tunneling temperatureg < 10° GeV.

Detectable Range ofx(T,)

For determining the upper bound on the tunneling temperatue have shifted the peak
frequencyf of the GW spectrum to the upper limit of the detectable freqyerange, but
have assumed the peak amplitut€cw to be maximal and hence constant. Now, we
will consider instead a constant tunneling temperafuréand hence peak frequency) by
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Chapter 4 Left-Right Symmetric Model

varying the peak amplitude. Since the parameter@snd Hﬁ depend on each other (cf.
Sec.2.3, we can numerically determin§~ in dependency of for different sets of model

parameters. Expressing the results as a func—?ﬁn the GW spectrum (in this model) is
only dependent on the parameterandT,. For diferent, but constant values ©f we can
subsequently determine the minimal valueadT,) where the peak amplitude of the GW
spectrum intersects the sensitivity curve of a specificaleteand hence will be detectable.
For the computation of(T) the data of the sensitivity curves for the spaceborne detect
generated by use 0i.}57], on the basis of the input parametersTafb. C.1lin Chap.G has
been used. The results for minimal values &) allowing for detection of the GW
spectrum from the phase transition in the left-right syntimenodel are summarized in
Tab.4.9 while the corresponding curvesT,) are depicted itfrig.4.5andFig.4.6. Therein,
the dashed lines refer to the uncertainty with respect toitimeerically determined relation
%. For being detectable by LISA, the GW spectrum is requiregdssess a minimal
valuea(T)) = 1.481 atT. = 3.23- 10° GeV. Note that this temperature lies slightly above
the electroweak sca(é’ Ew =~ 107 GeV) due to the correlation of the parameterand H%.

In detail, a decrease in the parametdeads to an enlargementéf. This dfect, revealed in
[103 113, 117, has already been discussediec. 4.5.3The optimal tunneling temperature
for Ultimate DECIGO, providing a minimal value @f(T ) = 0.013 for the detectability of

the GW spectrum, emerges Bs= 2.08- 10° GeV, while a detection by the cross-correlated
BBO detector will be possible for at leas(T ) = 0.024 atT. = 4.47- 10° GeV.
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4.6 Numerical Analysis

Detector T [GeV] oT,)
LISA 323-10° 1481 (cf.Fig.4.5
Ultimate DECIGO| 2.08-10° 0.013 (cf.Fig.4.9
Correlated BBO | 447-10° 0.024 (cf.Fig.4.9
Table 4.9: Minimal values ofe(T,) allowing for detection of the GW spectrum from the
first-order phase transition in left-right symmetric modet different spaceborne GW
detectors.

a(T,)

1.0

100 150 200 300 500 700 100C 150C
T, [GeV]

Figure 4.5: Lower bound on the paramete/T,) from the GW spectrum in the left-right
symmetric model allowing for detection by the LISA detectdre minimal values of
a(T,) generating a GW peak amplitude within the experimentaliectable range can
be computed from the data of the sensitivity curve {tiapter §. The dashed lines refer
to the uncertainty with respect to the numerically deteadirelationﬁ%.

The sensitivity range of the LISA detector requires a miiradue of o(T,) = 1.481
at a tunneling temperature ®f = 3.23- 10? GeV for the GW spectrum in the left-right
symmetric model to be detectable.
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(a) Lower bound on the parameteAT,) in the left-right symmetric allowing for the detection oéth
GW spectrum by the Ultimate DECIGO and cross-correlated BiB@ctor. For being detectable
by Ultimate DECIGO, the GW spectrum is required to posses#amal value ofa(T,) = 0.013
at a tunneling temperature @f = 2.08- 10°GeV (cf. 4.6b), whereas a detection of the GW
spectrum by the cross-correlated BBO detector will be [pbs$or a value of at least(T,) = 0.024
atT. = 4.47-10°GeV (cf. 4.60.
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(b) Lower bound on the paramete(T,) in the left-righ{c) Lower bound on the parametefT,) in the left-right
symmetric allowing for detection of the GW spectruraymmetric allowing for detection for detection of the
by Ultimate DECIGO GW spectrum by the cross-correlated BBO detector.

Figure 4.6: Lower bound on the parameter(T, ) from the GW spectrum in the left-
right symmetric model allowing for detection by the Ultim@ECIGO and the cross-
correlated BBO detectorThe curve of minimal values for the parametéil ), leading
to a GW peak amplitude within the experimentally accessibtege, has be computed
from the data of the sensitivity curves (c€hap.d. The uncertainty with respect to the
numerically determined relatioﬁf—) is depicted by dashed lines.
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Conclusions

First-order phase transitions constitute one possibleceaf the stochastic background of
cosmological origin. As these relic gravitational wavesganaltered information from the
state of the Universe at the time of their production, thay ©erve as cosmological probes
for new physics at energy scales inaccessible by partigleiphexperiments. Hence, their
detection allows to prove the underlying physical concéptextensions of the Standard
Model. The detection of the stochastic GW background reguirpreceding strongly first-
order phase transition. Since stronger phase transitimteed at lower temperatures by
creating larger bubbles, they lead to a shift of the spegieak frequency to frequencies
which might lie outside the experimentally accessible diertpy regior(f <104 Hz) and
therefore does not allow for detection (even in case @iigent height of the peak ampli-
tude). Therefore, our intention in this thesis was to irigese first-order phase transition in
extensions of the Standard Model which are assumed to take pt temperatures between
the electroweak and the GUT scale with regard to the poggibil detectable gravitational
waves.

First-order phase transitions are characterized by advaeparating the false from the true
vacuum state. The most studied approach is to induce a thieamger by the bosonic finite-
temperature one-loop contributions in thféeetive potential. We used these mechanism to
investigate th&Z,-symmetry breaking phase transition in the Standard Modeiheled by
a real gauge singled. The physical relevance of this model bases on the fact tratus
extensions of the Standard Model contain elements tramgfigrnon-trivially under a hid-
den sector gauge group, but as singlets in the Standard Madehe only renormalizable
interaction of such scalars with the Standard Model occiarthe Higgs sector, we assumed
the additional singlet to couple only to the Higgs field.

To investigate th&,-symmetry breaking phase transition we computed ffextve poten-
tial at finite temperature up to the one-loop order. Theralg/have in particular taken into
account the ring contributions to generate a thermallydadibarrier by the cubic contribu-
tions in terms of the thermal masses. As the singlet nayutdaltouples from the low-energy
Standard Model sector at temperatures between the elezkoand the GUT scale, where
the Zy-symmetry breaking phase transition is assumed to proeeederived a high tem-
perature approximation of théfective potential for the investigation of the phase tramsit

95



Conclusions

For obtaining a physically viable phase transition scenew® imposed constraints on the
model parameters restricting the free parameter;%tand Am. By the choice owg we
set the critical temperature of the phase transitioido= 10° ... 10’ GeV and used the
parametenly, to determine the strength of the phase transition. For géingra strongly
first-order phase transition with a strength of at Ie%%b 1, the couplingly, has to be

chosen small. The parametersand ;- £ characterizing the GW spectrum do not merely
depend on the phase transition strength but also incamaréurther dependency on the
model parameters (as we have explicitly seen in the case ¢dfiaright symmetric model).
Subsequently, the extremely small couplihg leads to values o significantly smaller
thanO(1) as required for a detectable signal. As the parameteusd - £ are correlated via

the dependency on the potentiaffdrence between the true and the false vacuum state, the
parameter@ is simultaneously expected to be several magnitudes of ¢eidge than the

necessary ordal?(loz) for detectable gravitational waves. Hence, the investijghase
transition scenario in the singlet extension of the Stathtéwdel does not provide the pos-
sibility of detectable gravitational waves so that its pbgkconception cannot be probed
by gravitational waves. The reason for this is that the tladigmnduced barrier, which is
typically proportional to the couplings of the model, is twmall for obtaining a first-order
phase transition resulting in detectable gravitationalesa

Due to the smallness of the thermally induced barrier ouh&rrmotivation was to study
a model providing a barrier in theffective potential already at tree-level. Therefore, we
investigated the left-right symmetric model being theicedty well motivated and consti-
tuting one of the most promising extensions of the Standaode¥l Apart from explaining
parity violation by including parity as a spontaneous brokgmmetry, the left-right sym-
metric model provides a physical meaning to Bie L quantum number as generator of
the U(1) gauge symmetry and incorporates additional sourcegidbite CP violation. As
the model includes right-handed massive gauge bosonsiegaperimental detection the
L — R symmetry breaking phase transition has to proceed at agyeseale much higher
than the electroweak scale. The occurrence of a stronglyofider phase transition, due
to the emergence of a barrier in the tree-level potentiaicvproceeds at temperatures be-
tween the electroweak and the GUT scale makes it suitable tovestigated with regard
to the detectability of gravitational waves. After the edition of the ective potential
in the mean-field approximation, we derived in particularaaalytic expression for the
strength of the phase transition influencing the GW spectiyrheing incorporated in the
parametersy andﬁ As the left-right symmetric model allows for an analytickdtermi-

nation of the parametews and 'B as well as the tunneling temperature we were able
to study the functional dependence of these quantities enmtbdel parameters. For de-
termining an upper bound on the GW amplitude we have subs#gughosen the model
parameters randomly in consistency with the parametert@ints, but also with regard
to the limiting case of flat directions which enhances thesphimansition strength sig-
nificantly. Based on this, we performed a numerical analg$ithe GW spectrum for
different sets of model parameters. From the first-order phaasition in the left-right
symmetric model, we derived an upper bound on the peak ardpliof the GW spectrum
yielding h2Qcw,., ~ 3.09- 107, Although this bound is below the best sensitivity the
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ground-based detectors such as Advanced VIRGO, LCKAGRA and Advanced LIGO
(h%QGW ~107° ... 1(TG) and even below the sensitivity range of the cross-corelA

vanced LIGO (LIGOIII) detectofh?Qcw ~ 10°2°), a detection of the GW spectrum with
the spaceborne interferometers will be possible. For vigongly first-order phase transi-
tions with peak amplitudes close to the upper bound the G\&tape will be observable by

LISA (thGW ~ 1011). The sensitivity of the Ultimate DECIGO and cross-coretaBBO

detecton(thGW ~ 1016 1(Tl7) even allows a detection of the GW spectrum within the
whole parameter range of the model. However, the restniatiothe GW spectrum to be
detectable only by the spaceborne interferometers imgosapper bound on the peak fre-
quency and hence on the temperature of the phase transitipodeed. The GW spectrum
will be detectable for temperatures beldws 10° GeV by assuming the parametérto be

close to the lower bound (generating the maximal peak auutezlhgfzgmax) of the model.
Finally, we have determined the minimal values6T. ) which are required for a detection
of the GW spectrum. Therefore, we have numerically detezthithe dependency of the
parameterHﬁ* ona for expressing the peak amplitudglew merely as function o&. For a
given temperatur@, setting the peak frequency of the spectrum, we computed thienal
value of alpha necessary for a detection of the GW spectrumreby, we related the nu-
merical analysis on the experimental sensitivity curvethefspecific detectors. For LISA
we derived a lower bound @f(T ) = 1.481 atT = 3.23- 10° GeV. The value lies slightly
above the electroweak scale as the correlation betwe&mﬂ,% leads to an enlargement of

% by decreasing values of For the Ultimate DECIGO detector we obtain a lower bound

a(T)) = 0.013 at a temperaturg = 2.08- 10° GeV, while the minimal value(T ) = 0.024
atT = 4.47-10°GeV is needed for a detection with BBO.

Our results are visualized kig.4.2 Fig.4.4as well ag-ig.4.6and 4.6a
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Appendix A

Singlet Extension of the Standard
Model

A.1l. Bosonic Self-Energies in the Infrared Limit

In this chapter of the appendix we will compute the bosoniitefitemperature self-energies
(polarization tensordJ; (h, S, T) for the singlet extension of the Standard Model. These are
needed to determine the bosonic thermal masses3(af7)f

MZ(h, S, T) = mé(h, S) + 1;(h, S, T), (A.1)

I =Wt 21y, h'S, appearing in the ring-diagram contributions to tifieetive poten-
tial in Sec.3.2.3

A.1.1. Finite-Temperature One-Loop Contributions to the RIf-Energies

We will compute the self-energidg; (h, S, T) at finite temperature in leading order. The
one-loop diagrams contributing to the bosonic self-emsrgi the singlet model arise from

quartic interactions, from interactions with fermion figl@de. t-quark fields) and from cubic

interactions with the scalars (cFig.A.1). The corresponding one-loop integragn?),

It (m?) andKy (m?, m?) [20(] have to be evaluated at finite temperature. After dimeraion
regularization their values are given by

d3 26
25 Z f
3- 26 2
(271)2 a) tw 2 (A2)
T 1 AT
- m(h S) 12 167T2 +7YE — IOg( /J )] mz,
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(a) Quiatrtic interactions.

(b) Interactions with fermion fields.

(c) Cubic interactions with scalars.

Figure A.1: One-loop contributions to the bosonic self-energies indimglet extension
of the Standard Modelln the above diagrams the solid external lines are assumed to
represent scalar and gauge-boson fields.

3— 26
I 26 Z d -
T? nwlf (271T)3 2 “ Hf T? (A9)
N_ﬂ_r&z Z""YE Iog( 2 )] ”12
d3 26 1
K _ 26
o n;»f(z”)"* * o+ e[ (p-p)" e o, ]

——jdxw' a(X) = —x(X+ ) pf+ (@ -xmé+xn?  (A4)
I T = Pi j

JW 1672 [1 Iog(4ﬂT2)]

with mass scalg andw? = p?+n?(h, S). The bosonic and fermionic Matsubara frequencies
wp, andwy, are defined inX.31) and (L.32), respectively. Since the dominant contributions
of the integrals A.2) and (A.3) to the self-energies at high temperatures emerge from the
termsc T2, we will neglect the other terms (and in particular the tearising from @.4))

in the computation of the self-energies.
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A.1 Bosonic Self-Energies in the Infrared Limit

A.1.2. Self-EnergiedI; (h,ST)

For the computation of the self-energies the integral dauions have to be multiplied
by the corresponding couplings and the appropriate cortdysiahand symmetry factors
of the Feynman diagrams. Apart from the Standard Model @ogplof the gauge-boson
and fermion fields to the Higgs (and Goldstone) fields and tlygsifield self-couplings
[51], the additional couplings arising in the singlet extendeadel from the singlet self-
interactions and the Higgs-singlet interactions are plediby the tree-level potential in
Sec.3.1

Self-Energies of the Scalar Fields. The self-energylss(h, S, T), constituting the thermal
correction to the pure singlet mass matrix elen'rezgg(h, S) (cf. (3.22), arises for instance
as the sum of the self-energy contributions from the singgdftinteraction as well as the
singlet interactions with the Higgs and Goldstone fields,

ssth, S,T) = 3ls In(rdg) + 2 1o(m8y) + 3 2 1o(nf)

L (A5)

= (2 + 2072
(Z+%

Analogously, we can compute the further scalar self-ererigiading to the results

As ﬂm) 2
Mes = (22 + 20\ T
sS (4+6 :
A Am 3P +9% W\ (A.6)
Tn=Il, =|—+ =+ —— + —|T .
hh =L (2+24+ 6 < 4)
Ilhs = IIsh =~ O,

Self-Energies of the Gauge-Boson Fields.Next we will derive the self-energies of the
gauge-boson sector. Therefore, we write the gauge-boslamization tensoﬂ‘IAtf‘ of the
original (Standard ModelpU(2), andU(1)y gauge fields\;; andB,, (cf. Sec.3.} in matrix
form. Inthe IR limit only the longitudinal components of thauge bosons receive a thermal
mass correction from the self-energy contributions in tbafization tensor3]. The
polarization tensor reduces in this limit to a diagonal matr

My O 0 0
W
0 e O 0
HQ[JB = Al‘ s
0 0 Mg 0
0 0 0 I

(A7)

whose elements contain the self-energies of the gauge AgldadB,. Analogously to the
previous computations, these are computed arise as thefgshmself-energy contributions
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from the gauge-boson fields, the Higgs fields and the t-qualdtsfiyielding

11 11,
Tps = EgZTZ, Ig, = €gZTZ. (A.8)

To obtain the self-energies in the basis of the mass eigesstae. thephysicalgauge-
boson fieldsWy, Z, andA,, we have to diagonalize the thermal mass mamgb (hT)=

Msb () + Hgt?(h, T) containing the zero-temperature (Standard Model) massxdithe
gauge-boson fielda? andB,,

® 0 0 O
hl 0 ¢ © 0
410 0 ¢ -gg

0 0 -gg g?

In the charged gauge-boson sector, where the physical despn fields are per convention

defined as\¥ = «/AE (Al +iA2), the thermal mass matrix appears already in diagonal from.

This allows to directly read fb the corresponding thermal massbﬁvl(h,T). The self-
energies equal in particular

Mz, (h) = (A.9)

Ty = %ngz. (A.10)
Since the thermal mass matrix in the neutral gauge-bosdorseowever possessest-o
diagonal elements, it has to be diagonalized by an orthdgotation matrixR connecting
the neutral gauge-boson fielf&?, B, ) to the physical field$Z,, A,) corresponding to the
mass eigenstates of the neutral gauge-bogoasdy [25, 85]. After diagonalizing the
respective thermal masses arise as eigenvalues (diagenatras) of the thermal mass
matrix. Since these can be written as

M (. T) = m(h) - e (1) + -9 T2

11
M5 (h,T) = m(h) + =g° T2,

(A.11)

we can identify the self-energies as thermal correctioribedield-dependent masses

11,
Mz, = () + =g T2

IT,, = mg,(h) + 1Elngz.

(A.12)

Due tonﬁ(h) = 0, the only contribution of the photon to the ring-diagrannrection in the
effective potential arises from the non-vanishing self-epénghe thermal mass.

Note that our results for the self-energiég;, I1; andIl,, are consistent with those iff]. The deviation
of the prefactors is only caused by thdfdient definitions of the (zero-temperature) Higgs VEVs (cf.
Sec.3.3.3
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Appendix B

Left-Right Symmetric Model

B.1. Gauge-Boson Masses

In this chapter of the appendix we compute the masses of thmgmsonSNiR andZ, r

in the left-right symmetric model.

The masses of thehysicalgauge-boson fields correspond to the eigenvalues of the mass
matrices derived from the covariant derivatives in the Hifigld contribution to the La-
grangian. Hence, the latter will be the starting point for calculations.

Gauge-Boson Mass Matrices
The Higgs sector of the Lagrangian, as definedhs)( is given by

Ly =Tr [(Dﬂcp)T (D#cl))] T [(D#AL)T (DﬂAL)] T [(D#AR)T (DﬂAR)]
= Vo(®, AL, AR),

(B.1)

Therein, the covariant derivatives of the bidoublet angletifields®, A, andAg (cf. (4.9),

DL = 3,D +13 (AW, &~ DoraWE, ),

2
DuAL = 9uAL + 12 (caW AL - ALoaWR ) 412 BA
WAL =0y |_+I7(O'a Ly AL~ LOa Lﬂ)+IE uAL, (B.Z)
D#AR = C')ﬂAR + Ig—2R (o-aWS# AR — AR O'aWS#) + I% B#AR,

consist of a kinetic termo(,®, d,AL andd,Ag, respectively) complemented by a gauge-
invariance preserving term which will provide the gaugsdromasses.

Substituting the Higgs sector VEVs of.(4),

@=( 2 ) w2 o) wo-(2 o) ®3)

VL VR
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for the scalar fields ing.2) and inserting this in§.1) generates the gauge-boson mass terms
L in the Higgs-sector Lagrangian

(W) + (W) (w)']

LH aLm_ (k2+k2

\_/

+g§(k§+k)[(V\£) + (Wa)+ (w)| (B.4)
-SR] - (02 -0
- 8| )]+ (o we- o)

The above equation can be separated into two parts, prgvitie@ mass terms for the
charged and neutral gauge-bosons, respectively

L= Lmc+ Lmn. (B.5)

Charged Gauge- Boson Sector. By defining thephysicalcharged gauge-boson fields per
convention asW; = < (W} z ¥ W7 ) (equivalently to the Standard Model), we can
write the part of the Lagrangian containing the mass termthfocharged gauge-bosons in

the form

W-
Lnec = (VWL VWR) M2 (VLsVR)[ V\lll‘; ) (B.6)
)1

and derive the elements of the charged gauge-boson mass wtfv, , vg) from (B.4)

(B.7)

M2 (VL,V ) _ = [ gL (k2 + k% + VL) —ZngR k1k2 )

—ZngR ki ko gé (ki + k% + V%)

Since the (squared) gauge-boson masses correspond tgémeaiies of the mass matrix
in the basis of the mass eigenstates (the physical gaugetiiietds), they can be obtained
by diagonalizing the mass matrix and readiriftbe diagonal elements.

However, the neglection of the Higgs-bidoublet contribasik; k,, as motivated ingec. 4.3,
already reduces the mass matrix Bf{) to a diagonal matrix,

2 _1 gl_v2 0

so that the masses of the charged gauge-bodéfnsdirectly arise as

g, (1) = L7 %y
L L)— 4 L msz(VR)— 4 R* (B-9)
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B.1 Gauge-Boson Masses

Neutral Gauge-Boson Sector. For computing the neutral gauge-boson masses, we derive
from (B.4) and@.5) the Lagrangian containing the corresponding mass terms,

W3
1.3 w3 2 i
Lm,n = E (V\Z L \MR’ B;z) Mn (VLa VR) V\/fR > (BlO)
B,
where the neutral gauge-boson mass mawk(v, , vg) emerges as

9? (kf +K3 + VE) —0LOR (kf + k%) gLy V2

1
M2 (VL VR) = AR (kf + kg) g%(kf +K3 + v%) —grO'VE | (B.11)
-g.g' V? ~RIVE g (V+VA)
Despite the neglection of the Higgs-bidoublet VEVs, legdim
[ 9V 0 -0.9' v}
Mive) =71 O ggvVZ ORIV |, (B.12)

~9 gV -RIVZ g (V+VR)
the neutral gauge-boson mass matrix posseggesagonal terms so that a mixing between
the gauge boson field#/3, W3, and B, of the neutral sector occurs, in contrary to the
charged gauge-boson sector (@.§)).
To obtain the physical masses of the neutral gauge bosomsnass matrixM2 (vi, Vr)
has to be diagonalized (as in the Standard-Model case) bythogonal rotation matrix
R connecting the neutral weak fiel(j\li\/#3 , V\fR, Bﬂ) to the corresponding physical fields
(ZﬂL, Z,R, A#) of the neutral weak sector. The calculation yields the foiihg results for
the neutral gauge-boson masses

rn%L,R(VL’ VR) = %{(gi + 9,2) V|2_ + (gé + 912) V%

i r07) 5 (o) s

(B.13)

mi(VL,VR) =0.
Note that the photol remains massless in the left-right symmetric model likehe $tan-
dard Model as well and consequently does not appear in the-demendent thermal one-
loop correction of 4.18 and @.23), respectively. Additionally, by setting eithgy or vg
to zero, theZ, r-boson mass equation takes an analogous form as in the 8taviddel,

_ gptd
rn%L’R (VL’R) - 4 VE,R'

Finally, the Lagrangia’, of (B.4) in terms of the physical gauge-boson fields and masses
reads

Lin =, (Vi) WETW + m, (VR) We W e

1 - 1 - (B.14)
+ EIT’I%L (V|_, VR) Zf+Z#L + EIT’I%L (V|_, VR) Z‘;;—Z‘u R

1From our calculation forn§LR (v, vr) we reobtain exactly the result ¢¥§], when assuming, = gg = gand
g>dq. '
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Appendix C

Sensitivity Curves of the
Gravitational Wave Detectors

Current and future GW experiments aim to search for grawitat waves of astrophysical
and cosmological origin. The searches mainly focus on gréwnal waves from coalescing
binary systems (cf. for instancel, 2, 5]), continuous gravitational waves sources (e.g.,
rotating neutron stars)], GW bursts PO, 3] as well as (stochastic) GW backgroundsl,|

6]. Phase transitions in the early evolution of the Universestitute a possible production
mechanism for stochastic GW backgrounds of cosmologidglnor Among the diferent
types of GW detectors (for instance cryogenic resonant[h&r3), the GW interferometers
possess a frequency range suitable for the detection otafiamal waves of cosmological
origin [15€].

In this appendix we will briefly review the fierent classes of interferometric gravitational-
wave detectors. Afterwards, we will generate the sensitiiirves or diferent GW detec-
tors in terms of the strain sensitivily (f) and the normalized GW energy densigcw(f)

by use of the experimental data.

C.1. Interferometric Gravitational Wave Detectors

C.1.1. Ground-Based Interferometers

In general, two classes of interferometric gravitatiomalse detectors exists. The first gen-
eration of interferometers comprises ground-based deteof large scale as for instance
the currently operational “Laser Interferometer Graidtaal-Wave Observatory” (LIGO)
[8, 7] with arms of 4000 m length or the comparable VIRGO deteciar §] possessing an
arm length of 4000m. An important improvement of the sevigjtihas been and will be
achieved by the upgraded experiments Advanced VIR%d][(operational) and Advanced
LIGO [10§] (planned).
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The GEOG600 detectorip4, 155 (600 m arm length) is marginally smaller than LIGO and
VIRGO, but uses advanced techniques (as narrow-bandig) [which will be important
for the future generations of detectors. Currently still@nconstruction is the Japanese
LCGT detector 41, 24, 140, 197 (renamed as KAGRA due to its location at Kamioka),
whereas the so-called “Einstein Telescope” (EJ0), [L09, 185 is proposed as detector of
the third generation.

The ground-based detectors are sensitive in the frequamgyerf. 56]

f ~ few Hz... few kHz (C.1)

While the upper bound on the frequency is set by the dominatiashe laser shot (position)
noise, the lower bound arises from the seismic noise lex@lcévering the low-frequency
range, which is inaccessible on Earth due to the seismienéisure GW detectors will
therefore operate as spaceborne interferometers.

C.1.2. Spaceborne Interferometers

The future spaceborne interferometers will be sensititkeérfrequency range.pq
f~10%.1Hz (C.2)

The first proposed cornerstone mission, the “Laser Intenfieter Space Antenna” (LISA)
[67, 68, 69, 22, 159,will be a detector with three arms of-3.0° m length in a respective
angle of 60, can be thought of as two interferometers sharing a comnman As planned
follow-on mission of the LISA detector, the “Big Bang Obser(BBO) [107, 139 and
the Japanese DECIGO detectoP], 128 have been proposed. In addition to LISA, BBO
and the original DECIGO detector, which will implement tliecalled time-delay interfer-
ometry (TDI), a Fabry-Pérot (FP) type spaceborne intenfietter [L39, adopting the same
technique as used by the ground-based interferometer&chBM-DECIGO, has been sug-
gested. (To distinguish between the two types of DECIGOadtlets, we will refer to the
original DECIGO detector as TDI-DECIGO). As an observagioimmitation we will con-
sider the Ultimate DECIGO detector which is conceptionaltyilar to TDI-DECIGO, but
whose sensitivity is assumed to be only limited by quantuisas

The instrumental design parameters for thi@edent spaceborne interferometers are listed
in Tab.C.1

C.2. Sensitivity Curves

C.2.1. Strain Sensitivityh¢(f)

The experimental sensitivity of the GW detector is expréssgerms of the strain sensitiv-
ity h¢(f) which is linear in the noise density and has dimens{hm] = 1/+/Hz. The strain
sensitivity is defined aslp6]

he(f) = VSi(9), (C.3)
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Parameter LISA BBO TDI-DECIGO  FP-DECIGO Ultimate
[159 [106 107 [14] (19 DECIGO [14]
Arm Length L[m] 5.10° 5.10 5.10 10° 5.10
Arm Angle al’] 60 60 60 60 60
Telescope
. D[m] 0.3 25 1 1 1
Diameter
Laser
A[nm] 1064 355 532 532 532
Wavelength
Laser Power  P[W] 1 300 10 10 10
Optical
. € 0.3 0.3 03 03 03
Efficiency
Acceleration m 15 17 17 17 10
Noise VS| 28] | 310 3-10 39.10Y7[139 7.9-10%7[139 3-10°[139
Position Noise S, [ 2| | 2:10%  15.10%7 12-10%°[139 22.10%°[139 3.107%°[13]

Table C.1: Instrumental Parameters for the Spaceborne Interferoraet&€he design pa-
rameters for the space interferometers are taken from gpecéve references given in
the headline of the table, if not marked otherwise. They aexlas input for the gener-
ation of the sensitivity curves by usin@q7. Note that the mission design of BBO in-
cludes diferent variants of instrumental parameters and hence tisdigiy may change
slightly in the final design.

whereS,(f) denotes the square spectral noise density. A significanttie of the overall
sensitivity is achieved by cross-correlating the signéilseveral separated detectois3{].
The cross-correlation strain sensitivity for a two-dedeconstellation is given byl[]

hy

I’:]f,cross(f) ~S NF% —  _1-
(2TAT)4

(C.4)

Therein, S NRcorresponds to the signal-to-noise ratio of the stoch&¥¢ background
over the frequency range+ Af andT denotes the observation time. We have explicitly
computed the strain sensitivity ¢ros4 f) for a cross-correlated BBO constellation. Accord-
ing to [156], we have assumed for the BBO detector a frequency resolitio= %) and
have choseS NR=1,T = 1yr.

whereS NRis the signhal-to-noise ratio of the stochastic gravitalomave background over
the frequency rangé + Af andT is the observation time. According td6], we assume
for the BBO detector a frequency resolutiat = % andSNR=1,T = 1yr.

For generating the sensitivity curves in terms of the stsainsitivity h; (f) for the ground-
based interferometers, we have taken the experimental data203 , 97] of LIGO,
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Detector f [Hz] hy ‘/%Z h2Q 6w,
LISA 2,09-10° 206-10%° 130-10 11
FP-DECIGO 1,02-101 1.14-10% 463-1013
BBO/ TDI-DECIGO 2,35-101 1.62-10%* 1.13.1013
Correlated BBO 2,76-101 355.102% 884.10Y
Ultimate DECIGO 1,70-101 3.12.10% 1.60-10Y
GEO600 P7] 1,09-10° 1.73-10%1 9.75.101
VIRGO [20]] 4,37-100 1.08-10%2 241-10°3
LIGO [144] 1,30-10? 171-102 161-10°3
Advanced VIRGO $04 | 4,68-10 7.66-10%* 1.50-10°
LCGT/KAGRA[127] | 6,90-10" 356-102* 1.04-10°
Advanced LIGO |45 | 3,22-100 8.10-10%* 548-10°

Table C.2: Minimal sensitivities of gierent GW detectors readfdrom the experimen-
tal data. The points of best strain sensitivify from the experimental data were used
to compute the sensitivith2Qgw via (C.6). For the ground-based interferometers the
sources of experimental data are indicated, while the datfacoanticipated sensitivity
curves for the spaceborne interferometers has been geddratise of [57] on the basis
of Tab.C.1
The sensitivities may change slightly foffdirent data runs and with respect to the current
experimental status. Therefore, these values should b&dssad as rough orientation
for the order of magnitude of the achievable sensitivity. Mfer to these figures in the
numerical analysis dbec.4.6

VIRGO, Advanced VIRGO and GEOG600 as well as the dat&] 127] anticipating the
sensitivity curves of the Advanced LIGO upgrade and the LEGAGRA detector.
Besides, we have taken the instrumental parametefalofC.1as input to generate data of
anticipated sensitivities for the future spaceborne fatemeters LISA, BBO, TDI/ FP-
DECIGO and Ultimate DECIGO by usind $7. Thereof, we have computed in particular
the sensitivityﬁf,cross(f) via (C.4) for the cross-correlated BBO detector.

The resulting strain-sensitivity curves are depicteéio C.J, Fig.C.2andFig.C.3

C.2.2. Sensitivityh2Qgy(f)

A stochastic GW background of cosmological origin is usuaharacterized by the (nor-
malized) energy density per unit logarithmic frequencyeiwal, h2Qgw(f). In particu-
lar, we express the GW spectra arising from cosmologicas@ltensitions as functions
h2Qew(f). For a comparison of the GW spectra with the experimentalbessible sensi-
tivity range it is therefore necessary covert the strairsisigity h; (f) into the dimensionless
quantity hi2Qaw(f).

A stochastic GW background will manifest itself in a GW déte@s an excess in noise.
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Hence it will be observable at a frequentyf spectral GW densitys,(f) exceeds the spec-
tral noise densitys,(f), Si(f) > %&(f), whereF is the angular ficiency factorF of the
GW detector. Inserting this equation in the relatiGh(]

i sy c5)

h2Qaw(f) =
o] GW( ) 3H0

and expressing the Hubble parametertas= hg - 1005,'|§,|"[‘)C, we can derive a minimal
detectable value for the detectable energy density,

, 1 foyl h¢
h2QMin(f) ~ = . 1072 . .
0w 1) F o (100 Hz) (10‘22(1/\/H_z)) (C.6)

(We will refer to the energy density of the GW detectors siyrgd sensitivity.) The angular
efficiency factor for interferometric GW detectors is given by

F =2 sirf(e) )

with @ denoting the angle between the interferometer arms. Fayrthend-based interfer-
ometers LIGO, VIRGO, GEO600 and LCGTKAGRA « = 90°, yielding an éiciency
factor of F = 2. The arms of the spaceborne interferometers LISA, BBO an@IGD

comprise an angle af = 60° (cf. Tab.C.) so thatF = 1—30.

We have used(.6) to convert the experimental data (cEec.C.2.}, given in terms of
the strain sensitivityhs (f), into values of energy densith2Qcw(f). From the data, we
have determined the best sensitivities, i.e. the minimialegofhs andh%QGW, achievable
by the diferent GW detectors. The results are listedlab.C.2 For the ground-based
detectors we obtain a minimal sensitivity li§Qsw ~ 1078 achievable by the advanced
LIGO detector, while the best sensitivities for the spacebdnterferometers reach from
h2Qew ~ 1071 for LISA up to h2Qgw ~ 1077 for the Ultimate DECIGO and cross-
correlated BBO detector. The orders of magnitude of thesadequal the values given in
[113 117 and are used in the numerical analysisSefc. 4.6

Besides, we have generated the energy-density senstivitesh2Qcw( f) for the ground-
based and spaceborne interferometric GW detectors. Thesdepicted irFFig.C.4 Fig.C.5
andFig.C.6

Note that the relation between the energy density and tamstensitivity incorporates a facter f3. Thus,
the values of energy density for the spaceborne interfetensiewhich are sensitive in the low-frequency
region, are several orders of magnitude smaller in companth those of the high-frequency ground-
based detectors.
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Figure C.1: Strain-sensitivity curvehs (f) for different ground-based and spaceborne interferometric GWettete The spaceborne
interferometers LISA, BBO, TDIf FP-DECIGO, Ultimate DECIGO and the cross-correlated BB@cier are sensitive in the low-
frenquency range, while the ground based interferomet&©l. VIRGO, GEO600, LCGT KAGRA, Advanced LIGO and Advanced
VIRGO cover the higher frequency range.
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Figure C.2: Strain-sensitivity curveh;(f) for the spaceborne interferometric GW detec-
tors LISA, BBO, TDI/ FP-DECIGO, Ultimate DECIGO and the cross-correlated BBO

detector.
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Figure C.3: Strain-sensitivity curvels; (f) for the ground-based interferometric GW detec-
tors LIGO, VIRGO, GEO600, LCGTKAGRA, Advanced LIGO and Advanced VIRGO.
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Figure C.4: Sensitivity curves3cw(f) for different ground-based and spaceborne interferometric GWetite The best sensitivities
of the spaceborne interferometers lie in the range betw@@aw(f) ~ 107! (LISA) and h2Qew(f) ~ 10717 (correlated BBO,
Ultimate DECIGO), wheras the ground based interferometetg allow for sensitivities as low as2Qew(f) ~ 10 (Advanced
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